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Résumé

Algorithmes et structures de données efficaces pour l'indexation de séquences d'ADN Les volumes des données générées par les technologies de séquençage haut débit augmentent exponentiellement ce dernier temps. Le stockage, le traitement et le transfert deviennent des défis de plus en plus sérieux. Pour les affronter, les scientifiques doivent élaborer des approches et des algorithmes de plus en plus efficaces.

Dans cette thèse, nous présentons des structures de données efficaces et des algorithmes pour des problèmes de recherche approchée de chaînes de caractères, d'assemblage du génome, de compression de séquences d'ADN et de classification métagénomique de lectures d'ADN.

Le problème de recherche approchée a été bien étudié, avec un grand nombre de travaux publiés. Dans le domaine de bioinformatique, le problème d'alignement de séquences peut être considéré comme un problème de recherche approchée de chaînes de caractères. Dans notre travail, nous étudions une stratégie de recherche basée sur une structure d'indexation dite bidirectionnelle. D'abord, nous définissons un formalisme des schémas de recherche pour travailler avec les stratégies de recherche de ce type, ensuite nous fixons une mesure probabiliste de l'efficacité de schémas de recherche et démontrons quelques propriétés combinatoires de schémas de recherche efficaces. Finalement, nous présentons des calculs expérimentaux qui valident la supériorité de nos stratégies. L'assemblage du génome est un des problèmes clefs en bioinformatique.

Dans cette thèse, nous présentons une structure de données -filtre de Bloom en Cascade -qui améliore le filtre de Bloom standard et peut être utilisé pour la résolution de certains problèmes, y compris pour l'assemblage du génome. Nous démontrons ensuite des résultats analytiques et expérimentaux sur les propriétés du filtre de Bloom en Cascade. Nous présentons également comment le filtre de Bloom en Cascade peut être appliqué au problème de compression de séquences d'ADN.

Un autre problème que nous étudions dans cette thèse est la classification métagénomique de lectures d'ADN. Nous présentons une approche basée sur la transformée de Burrows-Wheeler pour la recherche efficace et rapide de k-mers (mots de longueur k). Cette étude est centrée sur les structures des données qui améliorent la vitesse et la consommation de mémoire par rapport à l'index classique de Burrows 

Motivation and overview

Advances in DNA sequencing opened many new directions in genomic research. Genomic data helps to cure genetic and infectious diseases and to understand cancer medicine and evolutionary biology. Genomics actively penetrates in our everyday life -for example, recently a DNA test officially proved that Salvador Dali is not father of a Spanish woman pretended to be his daughter 1 .

The whole story began in 1953 with the famous discovery of DNA double helix structure [START_REF] Watson | Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid[END_REF] and first DNA fragments sequenced in 1970s. But the unprecedented progress in genomics was associated with the uprising of Next-Generation Sequencing in the early 21st century, which led to an urgent necessity to develop new approaches for biological data storage, processing and analysis. According to Moore's law, the number of transistors in a dense integrated circuit doubles approximately every two years. In other words, its computational capacity doubles approximately every 24 months. On the other hand, in 2012 only about 1000 human genomes were sequenced, and this number tends to one million in 2017. This implicitly proves that sequenced genomic data amounts grow faster (double approximately every 7 months according to historical data, and will double every 12 month according to Illumina predictions, see more details in [START_REF] Stephens | Big Data: Astronomical or Genomical?[END_REF]) than a processors' computational power. For computer scientists this means that increased amounts of data can not be processed using parallel versions of existing algorithms, but new, faster and more memory efficient algorithms should be designed. Sometimes even linear-time algorithms are not fast enough and should be replaced by sublinear ones. Compression of data and compressed data structures are also playing more and more important role in genomic data storage, transfer and analysis.

Let us formulate and give a short introduction into several of the fundamental tasks in processing DNA sequencing data -genome assembly, read alignment and metagenomic classification -which we will study in more details in next chapters.

Some bioinformatic problems

Read alignment

One of the first challenges presented by sequencing technologies is the so-called read alignment problem. Next generation sequencers like Illumina or SOLID produce short sequences consisting of tens or hundred nucleotides, while sequencers like Oxford Nanopore generate sequences of length of thousands or even tens of thousands of nucleotides. These fragments extracted from a longer DNA molecule are called reads.
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Generally, the goal of read alignment or read mapping is, for a given read and a reference genome, to find position(s) in the reference where the read matches in the best way. Mapping should be tolerant to different types of errors arising either introduced by sequencers or appeared due to differences between the sequenced specie's genome and the reference genome. There are different variations of this problem, as many types of differences between reference subsequence and read can be allowed. More about read alignment problem and its solutions can be found in Chapter 4.

Genome assembly

Currently, no sequencing technology can decode the entire genome sequence. All sequencers cut chromosomes into overlapping fragments and read these short sequences. Thus the natural problem of bioinformatics is to combine all reads together in order to reconstruct the initial genomic sequence. This process is called genome assembly.

Genome assembly is usually a necessary step in bioinformatics pipelines, providing a useful resource for various genomic approaches. As it was explained in Section 1.1.1, genomes are used as reference sequences for read alignment. Another possible application is evolutionary biology, when different genomes are compared to reveal relations between different species. Genomes of different organisms of the same species (for example, human population) can be examined in order to detect differences between them. In Chapter 6 we provide more information about popular approaches for solving the genome assembly problem.

Metagenomic classification

Recent advances in Next-Generation Sequencing technologies have allowed a breakthrough in metagenomics which aims to study genetic material obtained from environmental samples. This led to boosting the metagenomic analysis and to developing more and more sophisticated methods and tools. The first samples studied were seawater [START_REF] Venter | Environmental Genome Shotgun Sequencing of the Sargasso Sea[END_REF][START_REF] Karsenti | A Holistic Approach to Marine Eco-Systems Biology[END_REF], human gut [START_REF] Qin | A human gut microbial gene catalogue established by metagenomic sequencing[END_REF], soil [START_REF] Vogel | TerraGenome: a consortium for the sequencing of a soil metagenome[END_REF]. Nowadays, samples of many other different origins are investigated, including extreme environments like acid water, areas of volcanism, etc. Research is also focused on bacterial and viral populations, whereas the first one is better studied because of extreme diversity of viral genomes. The Human Microbiome project [10] has the goal to study a human microbiome and its correlation with human health.

Metagenomics via whole-genome sequencing deals with read sets of total size of hundreds of millions and billions of nucleotides. These sequences are obtained from many different species, and while some of them have a previously sequenced reference genome, others may not have a reference genome even for a close relative. Thus, the goal of metagenomic classification is to determine for every sequence the corresponding reference genome (or a set of genomes, which belong to one family, for example), or to say that it belongs to a previously not sequenced species.

Brief overview

In this thesis, we present several data structures and algorithms that can be applied to read alignment, genome assembly and metagenomic classification problems.

Although these problems seems to be quite far one from another, they actually have many things in common, as we will show in next chapters of this work. Solutions of these and many other problems are often based on similar ideas and data structures. For example, many of early techniques to solve read alignment, genome assembly and metagenomic classification problems were based on building a hash table for k-mers (words of length k). Nowadays, for all these problems solutions exploiting memory efficiency of BWT transform become more and more popular. In other words, these problems are evolving in conjunction.

First, in Chapter 3 we describe basic data structures that are usually used as basic bricks in more complicated algorithms and methods in bioinformatics. Some of them, namely Bloom filter, hash table and BWT index are applied in our methods in next chapters.

In Chapter 4 we cover the problem of approximate string matching and describe main techniques used in read alignment algorithms. Next, in Chapter 5 we study strategies of approximate string matching based on bidirectional text indexes, extending and generalizing ideas of [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF]. We provide both a theoretical analysis and computations, proving superiority of our methods.

In Chapter 6 we describe existing methods for solving the genome assembly problem. Then, in Chapter 7 we introduce an efficient data structure, called Cascading Bloom filter, which can be applied to fast and very memory efficient genome assembly. We also show how this data structure can help to solve the read compression problem in Chapter 8.

We provide more details about different solutions of metagenomic classification problem in Chapter 9. Next, in Chapter 10 we address the problem of classification when a taxonomic tree of studied species is given in advance, and we need to assign reads to nodes of this tree. We introduce several data structures and techniques that make our solution time and memory efficient.

We end with providing conclusions on the presented work in Part V.

Chapter 2

Biological context

2.1 Biological background DNA (Deoxyribonucleic acid) is a macromolecule forming the genome of living organisms. It lays in the foundation of life as it stores the genetic information necessary for development, functioning and reproduction. DNA molecules are found in the cytoplasm of prokaryotic organism cells and in the cell nucleus of eukaryotic organisms. In multicellular eukaryotes, each nucleated cell stores a full copy of the genome, as this information is used for cell reproduction. DNA molecules are combined into chromosomes. A chromosome is composed of a very long DNA molecule and consists of a linear array of genes, which are DNA regions encoding genetic information. In addition, DNA has other regions with structural purposes, or the ones involved in regulating the expression of genes. At a given locus (a specific location inside a chromosome) different variants of a gene, called alleles, can appear [START_REF] Alberts | Molecular Biology of the Cell. Fifth. Other[END_REF].

Most DNA molecules consist of two strands and form the famous double helix model, first identified by James Watson, Francis Crick and Maurice Wilkins in 1953 [START_REF] Watson | Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid[END_REF], whose model-building efforts were guided by X-ray diffraction data acquired in 1952 by Rosalind Franklin and Raymond Gosling [START_REF] Franklin | Molecular Configuration in Sodium Thymonucleate[END_REF]. For their discovery, Watson, Crick and Wilkins were awarded the 1962 Nobel Prize for Physiology or Medicine, "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material".

Each DNA strand consists of repeating units called nucleotides. Every nucleotide includes one of four possible nucleobases (or just bases) -adenine (A), cytosine (C), guanine (G) and thymine (T). Adjacent nucleotides are connected through the use of sugars and phosphates. Two strands are connected by hydrogen links between corresponding nucleobases -more precisely, adenine is connected to thymine, and cytosine is linked to guanine (and vice versa). Such paired bases are called complementary.

DNA replication plays a key role in the process of cell division in all organisms. For unicellular organisms, the DNA replication process is used for reproduction, and for multicellular ones, for the organism's growth. During DNA replication, DNA strands split up into two separate strands, and then, on the basis of each of them, a new two-strand DNA is synthesised. Thus, every new DNA contains one strand from the initial cell and one newly synthesised complementary strand.
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Mutations

DNA can be damaged by many sorts of mutagens, such as radiation, viruses, some chemicals etc., which change the DNA sequence. In the same time, mutations can appear accidentally during the process of DNA replication. DNA collects mutations over time, which are then inherited. Some mutations can cause diseases like cancer, whereas others can contribute to evolution by enabling the generation of new functions in order to adopt to environmental changes.

Mutations can be divided into several types. Some of them affect only few nucleobases, while the others change long DNA segments, i.e. duplicate, remove, move or reverse them.

In this work we mainly deal with the first type of mutations -point mutations. Point mutations are either substitutions of one nucleotide in the DNA sequence for another type of nucleotide, or insertions and deletions of one or more nucleobases. Point mutations can have different effects, according to the place where they occur and the nature of the substitution, insertion or deletion.

Sequencing methods

To be able to perform computational analysis of the information enclosed in the genome, the DNA sequence (i.e. the exact order of nucleotides in the DNA molecule) needs to be determined. This is achieved via DNA sequencing methods.

First polynucleotide (77-nth yeast alanine tRNA) was sequenced twelve years after the publication of the Watson and Crick double-helix DNA structure in 1953 [START_REF] Watson | Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid[END_REF]. The RNA sequencing methods used at that time were two-dimensional chromatography and spectrophotometric procedures. Only a few base pairs per year could be sequenced using this methods. The first complete genome sequence -3569-nucleotide-long bacteriophage MS2 RNA sequence -was also a result of sequencing using these methods.

The next methods were developed by Maxam and Gilbert [START_REF] Maxam | A new method for sequencing DNA[END_REF] and Sanger [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF]. The first of them is conducted by chemical cleaving specific bases of terminally labeled DNA fragments and separating them by elecrophoresis. The second method is based on the selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase during DNA replication. Sanger's method became much more popular due to its simplicity, reduced use of toxic chemicals and lower amounts of radioactivity.

The first automated sequencer, based on Sanger's method, was developed by Applied Biosystem Instruments. Later, they were improved by adding computers to store and analyse collected data. This method was the most widely used until about 2005, when Next Generation Sequencing methods replaced it.

Next generation sequencing methods were developed due to a high demand for low-cost high-throughput technologies, that can parallelize the sequencing process. These methods sequence millions to billions of nucleotides in parallel and can produce gigabytes of data per day.

Second-generation sequencers, such as Illumina or SOLiD, implement a so-called shotgun sequencing approach. They do not read every DNA molecule from the beginning to the end as, for example, Sanger's method does. Instead, DNA molecules are cut into many small fragments, and then each fragment is scanned from one end or from both, generating single-end or pair-end reads (when a fragment is read from both ends). Usually, sequencers also provide information about the quality of bases in the read. Thus, for computations, a read is just a sequence of A, C, G, T characters with (possibly) some quality (or measure of confidence) associated with each position. A typical reads' lengths are from a few tens to several hundreds of nucleobases (though, third-generation sequencers like PacBio can generate much longer -thousands and tens of thousands long -reads). From a computational point of view, using shotgun sequencing to retrieve reads means that we need to put them together in the correct order to obtain a whole genome.

A detailed history of first-and next-(which also can be divided into second-and third-) generation sequencing technologies can be found in many articles [START_REF] Mardis | Next-Generation DNA Sequencing Methods[END_REF][START_REF] Mardis | A decade's perspective on DNA sequencing technology[END_REF][START_REF] Metzker | Sequencing technologies -the next generation[END_REF][START_REF] Thompson | The properties and applications of single-molecule DNA sequencing[END_REF][START_REF] Margulies | Genome sequencing in microfabricated high-density picolitre reactors[END_REF][START_REF] Lam | Performance comparison of whole-genome sequencing platforms[END_REF][START_REF] Barba | Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology[END_REF]23,[START_REF] Liu | Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences[END_REF][START_REF] Kulski | Next-Generation Sequencing -An Overview of the History, Tools, and[END_REF].

From 1965 to 2005, the cost of humane genome sequencing (which is about 3 billions base pairs long) was reduced from millions to less than thousand of US dollars. For example, as part of the Human Genome Project, the J. C. Venter genome [START_REF] Levy | The Diploid Genome Sequence of an Individual Human[END_REF] took almost 15 years to sequence at a cost of more than 1 million dollars using the Sanger method, whereas the J. D. Watson (1962 Nobel Prize winner) genome was sequenced by NGS using the 454 Genome Sequencer FLX with about the same 7.5x coverage within 2 months and for approximately a hundredth of the price [START_REF] Wheeler | The complete genome of an individual by massively parallel DNA sequencing[END_REF].

All sequencers produce sequencing errors and biases that should be corrected. The major sequencing errors are largely related to high-frequency indel polymorphisms, homopolymeric regions, GC-and AT -rich regions, replicate bias, and substitution errors [START_REF] Bragg | Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data[END_REF][START_REF] Gilles | Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing[END_REF][START_REF] Huse | Accuracy and quality of massively parallel DNA pyrosequencing[END_REF].

Chapter 3

Basic data structures

In bioinformatic applications, various algorithms are designed to obtain fast and memory efficient solutions. Basic approach in many of them is to construct a data structure, usually called index, that supports fast queries and occupies a reasonable amount of memory. Most of them are built upon such basic and rather simple data structures like hash tables, suffix trees, suffix arrays and others.

In this chapter we will consider some of them, namely a hash table, Bloom filter, suffix tree and array, BWT index and a bidirectional version of BWT index. Even though these structures have different design and support different types of operations, in many fields of bionformatics they are used in different solutions for the same problem. Below we describe the main properties of these data structures, discuss their advantages and drawbacks and outline some problems in bioinformatics where they can be applied.

Hash table

A hash table can be regarded as an associative array, which stores (key, value) pairs and permits to perform three operations:

• insert(key, value)

• f ind(key)

• remove(key)

A hash table uses a hash function h to map keys to integers from 0 to m -1, which represents the indexes of array A of size m. If for a key k h(k) = i, then we try to put element (k, v) in slot i of the array. It can not be guaranteed that different keys will not map to the same index. This situation introduces a collision: a situation, when two keys are mapped to the same position in the array.

In practice, there are two basic ways of dealing with collisions. The first method is to store a list of elements in every slot of array A, and if we need to put an element with key k in slot i, we just append it to the end of the corresponding list. This method is called separate chaining. Another strategy is called open adressing, and after failing to insert a key k in the array (because the corresponding position is not empty), the algorithm searches for another slot to insert this key.

Operations in a hash table are rather fast, as in average all of them work in constant time (although, it depends on the parameters of the hash table and the hash function). However, one downside is that one operation can take O(n) time in the worst case, where n is the number of inserted elements. In practice, hash tables usually work faster than other data structures storing (key, value) pairs and allowing for a search by key.

Choosing an appopriate hash function is very important to obtain a good performance of a hash table. If a good hash function is chosen, and n elements are inserted into array of size k, then the average search of one element works in O(1 + n k ) time if a separate chaining strategy is chosen for collisions resolution. Here n k is called a load factor, and it shows how many elements on average are inserted in the same slot in the array.

Although hash tables outperform many other data structures in query time performance, they usually require much more memory.

If the set of elements is known in advance, there is another way to resolve collisions. We can find a perfect hash function that maps elements to indices in array without collisions. There are different algorithms for perfect hash function construction, among them [START_REF] Botelho | A Practical Minimal Perfect Hashing Method[END_REF][START_REF] Belazzougui | Monotone Minimal Perfect Hashing: Searching a Sorted Table with <italic>O</italic>(1) Accesses[END_REF][START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF].

In computer science, a hash table's usage area includes, but is not limited to storing associative arrays, sets and collections in databases. In bioinformatic applications, they are often used to store sets of k -mers (strings of length k) and values associated with them (see Chapters 4 and 6 for several examples).

Bloom filter

A Bloom filter [START_REF] Bloom | Space/Time Trade-offs in Hash Coding with Allowable Errors[END_REF] is a space-efficient data structure for representing a given subset of elements T ⊆ U , with support for efficient membership queries with a one-sided error. That is, if a query for an element x ∈ U returns no then x / ∈ T , but if it returns yes then x may or not belong to T , i.e. with small probability x / ∈ T (false positive). A Bloom filter consists of a bitmap (array of bits) B with size m and a set of p distinct hash functions {h 1 , . . . , h p }, where h i : U → {0, . . . , m -1}. Initially, all bits of B are set to 0. An insertion of an element x ∈ T is done by setting the elements of B with indices h 1 (x), . . . , h p (x) to 1, i.e. B[h i (x)] = 1 for all i ∈ [1, p]. The membership queries are done symmetrically, returning yes if all B[h i (x)] are equal to 1 and no otherwise. As shown in [START_REF] Kirsch | Less hashing, same performance: Building a better Bloom filter[END_REF], when considering hash functions that yield equally likely positions in the bit array, and for large enough array size m and number of inserted elements n, the false positive rate F is

F ≈ (1 -e -pn/m ) p = (1 -e -p/r ) p (3.1)
where r = m/n is the number of bits (of the bitmap B) per element. It is not hard to see that this expression is minimized when p = r ln 2, giving a false positive rate of

F ≈ (1 -e -p/r ) p = (1/2) p ≈ 0.6185 r . (3.2)
Assuming that hash functions are computed in constant time and the number of hash functions is limited, then insertion of an element and search for an element can be completed in O(1) time.

A major advantage of a Bloom filter over other data structures for representing sets, such as search trees and hash tables, is that its size is independent of the size of inserted elements. Thus, even if an element's bit representation is rather long, the memory usage of a Bloom filter is only a few (usually 8-16) bits per inserted element. The main drawback of a Bloom filter comes from its probabilistic design, although a false positive rate is usually chosen to be rather small. It is also worth noting that the basic version of a Bloom filter does not allow deletions. However, Bloom filter has become a fruitful area for research, and there has appeared many variations of them. Among these variations there is a Bloom filter that allows deletions, a counting Bloom filter and a Bloom filter that allows storing values along with keys.

In computer science, Bloom filters are widely used in web applications for storing caches. For example, a Bloom filter was implemented in Google's Chrome browser for storing malicious sites list. If there are, for example, one million suspicious sites, and the average length of their names is 25, then 25M B is needed to store them explicitly. Bloom filter with a 1% error rate will occupy slightly more than 1M B for the same dataset.

Bloom filters are often used in bioinformatic aplications, usually, but not always, for storing and counting k-mers (one of applications is discussed in Chapter 7).

Suffix tree

Suppose that we are given a string T of length n (a sequence of characters T [0..n -1]). Let us start with several definitions. We call any subsequence T [i..j], 0 ≤ i ≤ j < n a substring of T . Substrings of form T [i..n -1], 0 ≤ i < n and T [0..i], 0 ≤ i < n are called suffixes and prefixes respectively.

Trie is a tree-like data structure for storing a dynamic set of strings S. Every edge of the trie is labelled by a character, the root of the trie corresponds to an empty string. Every string of S can be obtained while traversing trie, beginning from the root and concatenating labels on the edges. A suffix trie of a string T is a trie, constructed on the set of suffixes of T . A suffix tree is a suffix trie where two consecutive edges are merged into one (with labels concatenation) if their common node has only one ingoing and one outgoing edge. Definition 3.3.1. (another definition of suffix tree) The suffix tree of a string T is a tree such that

• The tree has exactly n leaves numbered from 0 to n -1 if T ends with special $ character.

• Every internal node, possibly except for the root, has at least two children.

• Each edge is labeled with a non-empty substring of S.

• No two edges starting out of a node can have string-labels beginning with the same character.

• The string obtained by concatenating all the string-labels found on the path from the root to leaf i spells out suffix

T [i..n -1], for i from 0 to n -1.
The concept of a suffix tree was introduced in 1973 by Weiner in [START_REF] Weiner | Linear Pattern Matching Algorithms[END_REF]. He was also the first who suggested a linear-time construction algorithm. A naive construction algorithm works in O(n 2 ) time. McCreight in [START_REF] Mccreight | A Space-Economical Suffix Tree Construction Algorithm[END_REF] created a more lightweight linear time algorithm that was improved in a classic work [START_REF] Ukkonen | On-line construction of suffix trees[END_REF] of Ukkonen. He also formulated a linear-time online construction algorithm in [START_REF] Ukkonen | On-line construction of suffix trees[END_REF].

It is worth noting that algorithms mentioned above are linear in case of small (i.e., constant-size) alphabets. In the worst case, for the alphabet of size O(n), their working time increases to O(n log n).

In recent years, several algorithms have been suggested for fast (although still lineartime, but independent of the alphabet's size) and space-efficient construction of suffix trees. Most of them are based on the ideas proposed by Farach in [START_REF] Farach | Optimal suffix tree construction with large alphabets[END_REF].

Basically, the suffix tree was designed for fast exact string matching (i.e., finding all exact occurrences of a pattern in a given text). Then suffix trees were applied to other problems in computer science, for example, to find the longest common substring of two (or more) strings.

Search for a pattern P of length k in a text T using a suffix tree requires O(k + p) time, where p is the number of occurrences of P in T . If the number of strings to search in is more than one, a generalized suffix tree can be constructed. Its construction time is also linear in the sum of lengths of all strings.

Although suffix trees require a linear amount of memory, the space used for one character is rather big (13 -40 bytes per character depending on the alphabet). This is the biggest drawback of suffix trees. More recent data structures, such as suffix arrays, can solve problems that allow suffix tree-based solutions with the same efficiency, but they require much less memory.

In bioinformatics, suffix trees are basically used in applications to read alignment (for example, [START_REF] Meek | OASIS: an online and accurate technique for local-alignment searches on biological sequences[END_REF]). Another possible application is whole genome alignment (see, for example, work of Delcher et al. [START_REF] Delcher | Alignment of whole genomes[END_REF]).

Suffix array

Again, we are given a string T of length n. Definition 3.4.1. The suffix array SA of T is an array of starting positions of suffixes of T , sorted in lexicographical order.

In other words, A is an array where SA[i] contains the starting position of i-th lexicographically smallest suffix of T , thus the property

T [SA[i -1], n -1] < T [SA[i], n -1] holds for any 0 < i ≤ n -1.
Suffix arrays were introduced by Manber and Myers in [START_REF] Manber | Suffix Arrays: A New Method for On-line String Searches[END_REF] and independently in [START_REF] Gonnet | Information Retrieval[END_REF] by Gonnet et al. as a memory efficient replacement of suffix trees. Whereas, being an array of n integers from 0 to n -1, suffix array requires O(n log n) memory, integers stored in a suffix arrays usually fit into 4 (or 8) bytes, and an overall suffix array fits into 4n (or 8n) bytes, which is less than memory needed for suffix trees.

In conjunction with a suffix array, an LCP (longest common prefix) array is often used.

Definition 3.4.2. For 0 < i ≤ n -1, LCP [i] is the length of the longest common prefix of T [SA[i -1]..n -1] and T [SA[i]..n -1].
A naive suffix array construction algorithm (based on simple suffix sorting) works in O(n 2 log n) time (O(n log n) comparisons for a sorting algorithm, where one comparison can be made in O(n) time). A slightly better approach is to use a radix sort, it reduces the time complexity to O(n 2 ). It is worth noting that a suffix array can be constructed in O(n) time using a depth-first search if the suffix tree is given in advance.

However, there are algorithms for a direct linear time suffix array construction, that do not need the suffix tree in advance. The first one was suggested by Kärkkäinen and Sanders ([44]) in 2003. Nowadays, one of the fastest suffix array construction applications is the algorithm SA-IS from [START_REF] Nong | Linear Suffix Array Construction by Almost Pure Induced-Sorting[END_REF] by Nong, Zhang and Chan, implemented by Yuta Mori. It works in linear time, requires only 5 bytes of memory per character (minimum possible value) and is fast in practice. It is noteworthy that its implementation in C language is no longer than 100 lines of code. A good survey of state-of-the-art suffix array construction algorithms is given in [START_REF] Puglisi | A Taxonomy of Suffix Array Construction Algorithms[END_REF].

Using only a suffix array, a pattern P of length m can be found in a text T of length n in O(m log n) time. This complexity can be improved, if LCP array is used, to O(m + log n).

In [START_REF] Abouelhoda | Replacing Suffix Trees with Enhanced Suffix Arrays[END_REF] it was shown that O(m + log n) bound can be improved even further to O(m), the same complexity as it is for suffix trees. The authors of [START_REF] Abouelhoda | Replacing Suffix Trees with Enhanced Suffix Arrays[END_REF] showed that any problem, that has a solution using suffix trees, can be solved using suffix arrays preserving the same time and space complexity. Nowadays, being much more lightweight structure than suffix trees and being able to solve same problems, suffix array replace suffix trees in applications in almost all domains of computer science.

One of the most famous problems, which can be solved by suffix array, is longest repeated substring problem, it can be solved in O(n) time with use of suffix array and LCP .

In bioinformatics, suffix arrays are usually used in read alignment, prefix-suffix overlaps computation and sequence clustering (see, for example, [START_REF] Malde | Fast sequence clustering using a suffix array algorithm[END_REF][START_REF] Abouelhoda | Replacing suffix trees with enhanced suffix arrays[END_REF][START_REF] Otto | Fast and sensitive mapping of bisulfitetreated sequencing data[END_REF]). Even though a suffix array requires much less space than a suffix tree, for human genome, for example, it occupies 12GB of memory (without LCP array), whereas genome itself (about 3 millions base pairs) can fit into less than 1 GB of memory. Such a big difference follows from the fact that the suffix array occupies O(n log n) memory, while the string on alphabet Σ requires only O(n log |Σ|) memory. Recently, new data structures like compressed suffix array and BWT index were designed to further reduce the memory usage.

BWT index

Both suffix array and suffix tree, along with some other structures out of scope of current manuscript, allow to perform forward (or left-to-right) search. That is, given a pattern, we scan it from the leftmost character to the rightmost one, finding occurrences of a longer and longer prefix of the pattern in the text.

BWT index is a compressed full-text string index, based on Burrows-Wheeler transform [START_REF] Burrows | A block-sorting lossless data compression algorithm[END_REF] (further BWT). It was suggested by Ferragina and Manzini in 2000 ([52]). Unlike these structures, a BWT index allows to perform backward search of the pattern in the text. Definition 3.5.1. Burrows-Wheeler transform (also called block-sorting compression) of the string T is a permutation BW T of characters of T , such that

BW T [i] = T [SA[i] -1] if SA[i] = 0 T [n -1] otherwise
BWT was proposed in [START_REF] Burrow | A block-sorting lossless data compression algorithm[END_REF] by Burrows and Wheeler in 1994. Initially, BWT was invented for data compression, and it is used, for example, as part of bzip2 data archiver. One of the main advantages of BWT is that it rearranges characters of the initial string such that it has runs of equal characters.

But what is more important and, maybe, surprising is the fact that Burrows-Wheeler transform if reversible. In other words, this means that given a BWT of an unknown string, we can restore this string.

Being just a permutation of a string, BWT can be stored in the same amount of memory as the initial string. Moreover, it can be computed in time linear in the size of the string, and the reverse transformation can be also performed in linear time.

In addition to BWT string, the BWT index stores some auxiliary data structures. The first of them is just an array C that for every character c from alphabet Σ stores how many characters are lexicographically smaller than c in T . For example, if

T = abacaba, Σ = {a, b, c}, then C[a] = 0, C[b] = 4, C[c] = 6. C array is also called a Count function.
The next part of a BWT index is a structure R that supports rank operations on the BWT string, that is for any i ≥ 0 and σ ∈ Σ, rank(σ, i) = number of such positions 0 ≤ j ≤ i that BW T [j] = σ. In other words, R allows to count the number of occurrences of each character in any prefix of BWT string. This structure can be implemented on basis of Wavelet tree [START_REF] Grossi | High-order Entropy-compressed Text Indexes[END_REF], for example, and it occupies O( n log log n log n ) memory. Given a BWT index, we can perform a backward search (i.e., find the interval in the suffix array which corresponds to all occurrences of the pattern) using the following algorithm:

Algorithm 1 Exact pattern matching using BWT index Input:

string

T [0..n -1]
BWT index for T with array C and rank function pattern

P [0..m -1] start = 0 end = n -1 for i = m -1 to 0 do if start > end then break end if σ = P [i] start = C[σ] + rank(σ, start -1) end = C[σ] + rank(σ, end) -1 end for Output:
if start > end, then output is empty; otherwise, all occurrences (and only they) are in interval (start, end).

However, unlike the suffix array or tree, Algorithm 1 does not provide a method for translation from a suffix array position to a position in the text. For these, a sampled suffix array stores suffix array values for selected positions (usually, for every K-th position for some constant K). Using a sampled suffix array, the position in the text can be retrieved using Algorithm 2.

Algorithm 2 Translate SA position x to position in the text

Input: text T BWT index of T SSA (sampled suffix array of T )

steps = 0 while (x is not sampled in SSA) do c = BW T [x] previous character in the text x = C[c] + rank(c, x) steps = steps + 1 end while Output: SSA[x] + steps
Together, algorithms 1 and 2 provide a linear-time approach to perform the exact pattern matching. Overall, the BWT index occupies O(n) bits of memory, using much less bits per character than the suffix array and the suffix tree. For example, for bioinformatic applications the memory usage can range from 2 to 4 bits per character of the text.

Being much more memory-efficient, BWT index is slower than suffix trees and suffix arrays in practice.

Besides the exact pattern matching problem, BWT index can also be used for solving the approximate pattern matching problem. In bioinformatics, it is applied in solutions problems like read alignment (see Chapter 4), genome assembly (Chapter 6) and many others. The BWT index has now been used in many practical bioinformatics software programs, e.g. [START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF][START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF][START_REF] Simpson | Efficient de novo assembly of large genomes using compressed data structures[END_REF].

Bidirectional BWT index

A suffix tree and a suffix array allow for a forward search, and a BWT index for a backward one. However, none of them allows to extend pattern in both directions. A naive way to make this possible is to store two structures together -for example, using a suffix tree (or suffix array, or BWT index) both for a string and the reverse of the string. Then, to perform a backward search, we should use the BWT index for the initial string, and to perform a forward search, we should perform a backward search of the reversed pattern in the BWT index for the reversed string. However, this method does not permit to change the direction of a pattern extension "on-the-fly", during one search. On the other hand, it requires exactly twice more memory to store data structures.

The possibility to alter the search direction can be provided by an improved ("bidirectional") version of a BWT index, as it was shown in [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF][START_REF] Russo | Approximate String Matching with Compressed Indexes[END_REF][START_REF] Schnattinger | Bidirectional search in a string with wavelet trees and bidirectional matching statistics[END_REF][START_REF] Belazzougui | Versatile Succinct Representations of the Bidirectional Burrows-Wheeler Transform[END_REF].

Let us consider here how BWT index can be made bidirectional. Let us start with a definition of a bidirectional search in BWT index.

For string S[0..n -1], let S R be a reverse of S, e.g.

S R = S[n -1][S[n -2]..S[1]S[0]
. Let BW T R be a BWT for S R . If (s, e) is a suffix array interval for pattern P and string T , then let (s R , e R ) denote the suffix array interval for pattern P and string T R .

Let BW T and BW T R be the Burrows-Wheeler transform with the support of the additional Count and Rank operations for strings T and T R respectively. Then the following lemma holds: Lemma 1. Given a pattern P , a character σ ∈ Σ, and suffix array intervals (s, e) and (s R , e R ) for P and P R with respect to T and T R correspondingly, suffix array intervals (s , e ) and (s R , e R ) for patterns P σ and (P σ) R with respect to T and T R correspondingly can be computed in O(|Σ|) time, where |Σ| is the size of the alphabet.

This lemma provides an idea how to perform a forward search (in other words, how to extend the pattern to the right) supporting suffix array intervals both for the text and for reversed text.

Proof. First, we show how to compute (s R , e R ). It is obvious that the suffix array interval for P R with respect to T R is just (s, e). Then, (s R , e R ) can be computed using a backward search in T R of pattern (P σ) R .

The tricky part is how to compute suffix array interval (s , e ) of P σ. It is obvious that (s , e ) is a subinterval of (s, e), as all suffixes in (s , e ) should start with P . Then, (s , e ) = (s + x, s + x + y -1), where x is the number of suffixes of type P σ with σ lexicographically smaller than σ, and y is the number of suffixes of type P σ. For arbitrary σ , the number of suffixes of type P σ can be computed as the size of the suffix array interval of (P σ ) R with respect to T R . This means that (s , e ) can be computed in O(Σ) time.

For the backward search, the similar lemma holds: Lemma 2. Given a pattern P , a character σ ∈ Σ, and suffix array intervals (s, e) and (s R , e R ) for P and P R with respect to T and T R correspondingly, suffix array intervals (s , e ) and (s R , e R ) for patterns σP and (σP ) R with respect to T and T R correspondingly can be computed in O(|Σ|) time, where |Σ| is the size of the alphabet.

In both lemmas 2 and 1 we support suffix array intervals both for T and T R . From this, two properties of a bidirectional BWT index follow:

• the search direction can be changed during the search (for example, we can extend the pattern to the right, then to the left, and then to the right again)

• it is enough to store only one sampled suffix array (say, for T ) to be able to translate suffix array positions to positions in the text. This means that the memory needed by bidirectional BWT index is less than memory occupied by two copies of BWT index.

Bidirectional search can be successfully applied to approximate pattern matching problem, as it will be shown in Chapter 5. 

Part II

Efficient approximate string search

Chapter 4

Algorithmic methods for read alignment

Sequence alignment

To discover differences between a newly sequenced organism, represented by a huge number of short reads, and a previously sequenced genome of the same (or related) species, the reads should be mapped (or aligned) to the genome. Short read alignment (we also refer to it as short read mapping, which is equivalent) is a common first step of genomic data analysis and plays a critical role in medical, population genetics and many other fields of bioinformatics.

Definition 4.1.1. An alignment of two sequences S = s 1 . . . s n and T = t 1 . . . t n over the same alphabet Σ consists of two equally sized sequences S = s 1 . . . s l and T = t 1 . . . t l obtained by inserting zero or more gaps (represented by symbol -) between the characters of S and T respectively with the constraint that h ∈ 1 . . . l : s h = t h = -.

Thus, an alignment of two sequences allows us to identify the similarities of these sequences. Such positions i that S i = -and T i = -and S i = T i correspond to mismatches, positions i that S i = -or T i = -correspond to indels, and if S i = T i , then this is a match.

Read alignment is a particular case of general sequence alignment, when one of the sequences is a read and another one is a reference genome.

A score, which is in general a function representing the "similarity" of two sequences, is associated with every alignment. The goal of sequence alignment is to find an alignment (or several alignments) which maximize the scoring function, so-called "optimal" alignment(s). If whole sequences are aligned, such an alignment is called global. It makes sense if two sequences are supposed to be similar in their entirety. In another type of alignments, local alignments, only subsequences of the initial sequences are aligned to identify regions of similarity within long sequences that are often widely divergent overall.

There exist two different types of output, produced by different aligners:

• best mapping aims to find the best alignment,

• all best mappings is to find all occurrences of the pattern having a score close to the best score.

Finding only one best mappings is computationally a less intensive task than calculating all best matches, although some good alignments could be omitted in this case. Methods, discussed in Chapter 5, are suitable for both cases.

Depending on whether the read has actually been mapped by the algorithm or not, and whether it is present in the genome or not, all reads are divided into four categories:

• True positives (TP): the reads that are present in the reference and are mapped correctly by the algorithm

• False positives (FP): the reads that are mapped by the algorithm by mistake

• True negatives (TN): the reads which are correctly not mapped

• False negatives (FN): the reads which should be mapped, but are not mapped by the algorithm Alignment algorithms are compared by many statistical parameters, the two main ones, Sensitivity and specificity, are defined below (see, e.g, [START_REF] Břinda | Novel computational techniques for mapping and classifying Next-Generation Sequencing data[END_REF] for more details). Most of modern fast read alignment algorithms build auxiliary data structures, called indices, for the reference sequence or for the reads set. This permits to eliminate huge parts of the reference where the read can not be found. Such a step is usually called filtration. Thus, a general idea of all these methods is first to limit significantly the search space, and then to apply a more time-consuming algorithm only for limited regions.

In Section 4.2 we first examine the read alignment problem from the computer science point of view. After that we overview methods based on dynamic programming in Section 4.3. Then we describe the seed-and-extend strategy in Section 4.4. In Section 4.4.1 we introduce spaced seeds that efficiently replace contiguous seeds in many applications. In Section 4.5 we briefly describe methods utilizing suffix tree-like data structures for sequence alignment. For a more detailed overview of existing aligners we refer to [START_REF] Li | A survey of sequence alignment algorithms for next-generation sequencing[END_REF][START_REF] Ribeca | Short-Read Mapping[END_REF][START_REF] Canzar | Short Read Mapping: An Algorithmic Tour[END_REF].

Read alignment as string matching

The read alignment problem (that is, to find a read's origin in a genome sequence) can be regarded as a string matching problem. Definition 4.2.1. Given a text T of length n and a pattern P of length m over the same alphabet Σ, the exact string matching problem is to find all the occurrences of P in T .

The exact string matching can be viewed as the "ideal" case of read alignment, where the read corresponds to the pattern and the genome corresponds to the text, and we do not allow any mismatches or indels (insertions and deletions) in the alignment.

The naive algorithm which attempts to find an occurrence of the pattern starting from every position in the text runs in O(nm) time in the worst case and is thus impractical for read mapping. First linear-time algorithms were created by Boyer-Moore [START_REF] Boyer | A Fast String Searching Algorithm[END_REF] and Knuth-Morris-Pratt [START_REF] Knuth | Fast Pattern Matching in Strings[END_REF]. They work in O(n + m) time, which is still too slow to find an alignment of genomes when n or m can be millions or billions.

Typically, string matching algorithms build auxiliary indices so that all occurrences of pattern can be found without full scan of the text. Usually, it is assumed that texts are static, and we do not need to reconstruct the index during matching. Suffix trees and suffix arrays, described in Sections 3.4 and 3.3, are classical data structures that allow us to solve the exact string matching problem in O(m + occ) time, where occ is the number of occurrences of the pattern in the text. The BWT index, examined in Section 3.5, is a more memory-efficient data structure designed to solve the exact string matching problem.

Exact string matching, being an extreme variant of a read alignment problem, is usually useless in practice, as there are always differences between the reference genome and the genome of the organism that was sequenced due to mutations and sequencing errors. Thus, any algorithm useful in practice should be able to find approximate occurrences of the pattern. This leads to the approximate string matching problem. First, in definitions 4.2.2 and 4.2.3 we introduce the concept of distance between two strings. The Hamming distance and the edit distance are two of the simplest score functions for alignment of two sequences. Definition 4.2.2. The Hamming distance between two strings S and T of equal length n and over the same alphabet Σ is the number of positions i : 1 ≤ i ≤ n so that S i = T i .

In other words, a hamming distance is the number of mismatches between two strings of equal length. The weighted edit distance between two strings is defined similarly to the simple edit distance, but instead of the number of operations it counts the sum of the weights of substitutions, deletions and additions.

For a given k > 0, text T of length n and pattern P of length m, k-mismatch problem [START_REF] Fischer | String-matching and other products[END_REF][START_REF] Galil | Improved string matching with k mismatches[END_REF][START_REF] Amir | Faster algorithms for string matching with k mismatches[END_REF] is to find all substrings of T within the Hamming distance k from P . Dynamic programming based approaches solve this problem in O((n + m)k) time. Similarly, k-difference problem [START_REF] Landau | Fast string matching with k differences[END_REF][START_REF] Galil | An improved algorithm for approximate string matching[END_REF] is to find all substrings of T within the edit distance k from P .

More general scoring systems for substitutions are usually defined by a substitution matrix A, where A[x, y] corresponds to the cost of x → y character substitution. These matrices are usually symmetrical (see, for example, BLOSUM62 [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF] or PAM120 [START_REF] Altschul | Amino acid substitution matrices from an information theoretic perspective[END_REF]). Under some limitations, the approximate string matching under the edit distance with a given substitution matrix is a problem equivalent to the read alignment.

When deletions and insertions are allowed, the deletion or insertion of consecutive characters is called a gap. More formally, a gap is a maximal sequence of dashes in the alignment. Usually, gaps are penalized using affine functions of the form a + b , where is the length of the gap. For the case of affine score functions, dynamic programming based approaches solve the problem in O((n + m)k) time. However, in case of large genomes it is impossible to spend O(nm) or even O((n + m)k) time to map millions of reads.

Dynamic programming based methods

The first appearance of biological sequence alignment problem dates back to the 1960s, when first proteins were sequenced. The original goal for aligning two protein sequences was to discover the evolutionary relationships between them. Assuming that they had a common ancestor, matches correspond to the characters from this common ancestor, while the positions where proteins differ represent mutations.

The first algorithm to find an optimal alignment of two sequences was proposed by Needleman and Wunsch in 1970 [START_REF] Needleman | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF]. It implements the so-called dynamic programming paradigm. In general, the Needleman-Wunsch algorithm works as follows: characters of the sequences are put in the 0-th row and in the 0-th column of the n by m matrix, and every cell (i, j) of the matrix contains the optimal alignment of the prefixes S 1 . . . S i and T 1 . . . T j . The values in the grid are computed from left to right and from top to bottom, and the value in a cell is calculated with the use of already computed values. The working time of this method is O(nm).

The Needleman-Wunsch algorithm allows us to compare two sequences in their entirety, but may fail to find local similarities. Smith and Waterman in 1981 [START_REF] Smith | Identification of common molecular subsequences[END_REF] adapted this method so that it finds local alignments and also works in O(nm) time.

Both Needleman-Wunsch and Smith-Waterman algorithms work reasonably fast only on small sequences, as they need to perform a full comparison of two sequences. They are too costly when two genomes have to be aligned to one another, or when many short reads are to be aligned against a long genome. However, under the Hamming or edit distance, if the number of errors is limited by some k, then Smith-Waterman algorithm works in O((n + m)k) time. Moreover, there are several techniques of Smith-Waterman algorithm parallelization. Some of them utilizes properties of modern CPUs and uses SIMD (single instruction -multiple data) instructions such as SSE2. Another algorithms, such as famous Myers bit-parallel algorithm [START_REF] Myers | A fast bit-vector algorithm for approximate string matching based on dynamic programming[END_REF], can speed-up alignment under a simple scoring system.

Methods based on seed-and-extend strategy

The seed-and-extend approach consists of two steps: first, all exact occurrences of some set of seeds are found, and then these occurrences are extended using algorithms like the Smith-Waterman one. A seed is characterized by a template which is a sequence of zeros and ones, where 1 corresponds to the position that should be matched, and 0 indicate the position that may or may not match. The number of ones in the seed template is called its weight. The seed "hits" the reference at some position if two subsequences extracted from the reference at this position and from the read according to the seed template are equal. For example, if seed template is 101, the reference is ACAGT and the read is CT GA, then we can extract subsequence C-G ("-" corresponds to 0 from the seed template) from the read and the same subsequence from the reference, and obtain a "hit". It is assumed that seeds match the reference without errors. If they are comparatively long and only several matching positions are found in the reference, then the second step (extension) can be performed quickly. If the seeding step is also fast, then the overall performance of the algorithm will be good.

The simplest variant of a seed is a seed containing only 1s, and we extract and compare only contiguous k-mers (strings over Σ of length k). Thus, the general seed-and-extend algorithm works in three steps:

1. extract the set of k-mers from the read (all k-mers, or only "informative" ones, may be extracted).

2. these k-mers are queried against a data structure (usually, hash table) that stores all occurrences of all k-mers from the reference genome.

3. perform the extension step for the regions of the reference which contain one or several k-mers from the read.

The first algorithms that followed the seed-and-extend approach were FASTA [START_REF] Pearson | Improved tools for biological sequence comparison[END_REF] and BLAST [START_REF] Altschul | Basic local alignment search tool[END_REF]. Interestingly, being one of the first tools implementing seed-and-extend strategy, FASTA package gave rise to the well-known format of the same name. FASTA was followed by BLAST, which became one of the leading tools for sequence comparison. It uses k equal to 11 for DNA data by default, which permits to reduce the search space significantly, while being small enough to fit into memory. The basic BLAST algorithm was improved to be able to find alignments of different types, for example, alignments with gaps. Besides the alignment itself, BLAST provides a very useful feature: it can estimate the probability that each mapping position was found by chance. It was one of the most popular aligners for more than twenty years and has tens of thousands citations nowadays.

Many other alignment algorithms follow the seed-and-extend strategy. Some of them, like SOAP [START_REF] Li | SOAP: Short oligonucleotide alignment program[END_REF][START_REF] Li | SOAP2: an improved ultrafast tool for short read alignment[END_REF], Novoalign1 , Mosaik [START_REF] Lee | MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation Sequencing Short-Read Mapping[END_REF], BFAST [START_REF] Homer | BFAST: an alignment tool for large scale genome resequencing[END_REF], index the reference genome. Other approaches, like MAQ [START_REF] Li | Mapping short DNA sequencing reads and calling variants using mapping quality scores[END_REF], RMAP [START_REF] Smith | Updates to the RMAP short-read mapping software[END_REF], ZOOM [START_REF] Lin | ZOOM! Zillions of oligos mapped[END_REF], SHRiMP [START_REF] David | SHRiMP2: Sensitive yet Practical Short Read Mapping[END_REF], build the index for the reads' set. The methods based on hash tables usually provide high sensitivity, but occupy a lot of memory.

Many methods above utilize the pigeonhole principle. It states that if there are m containers and there are n items in them, and n > m, then at least one container contains at least 2 items. In case of "lossless" (i.e., with a goal to find all approximate occurrences of the pattern) read mapping with up to two errors, it means that we can divide the read into three parts and at least one of them will be error-free. To solve k-mismatch problem, RMAP follows pigeonhole principle explicitly, subdividing the read into k +1 parts. Eland, MAQ and SOAP split the read into four parts of the same length in order to make at least two of them error-free in the case of 2-error problem. MAQ applies this strategy only to the first 28 most reliable characters of the read. Some aligners consider only regions of the reference where several seeds are found. The idea behind this is the following one: if the pattern (read) r matches the substring w of the text (reference) with up to e errors (mismatches or/and gaps), then the pattern and w share at least |r| + 1 -(k + 1)e k-mers. This statement, known as q-gramm lemma, allows us to consider only regions with multiple k-mer hits when solving the e-error matching problem. SHRiMP follows this approach, looking for an alignment only in regions with sufficiently large number of seed matches. Another software, utilizing a "multiple-hit" strategy (and based on spaced seeds, see Section 4.4.1), is YASS [START_REF] Noé | YASS: enhancing the sensitivity of DNA similarity search[END_REF].

It should be mentioned that seeding using hash tables works efficiently only for short reads and/or for reads with low sequencing error rate. For long reads with a high rate of sequencing errors they become inefficient due to the fact that seeds should be comparatively short, and the extension step is very slow.

Candidate positions found at the seeding step should be extended to an alignment of the read under the given error model. Usually, simpler models allow for faster algorithms. If the score system is the Hamming distance, then two strings can be compared using a linear scan. This strategy is utilized, for example, in MAQ. Under more complicated error models the Smith-Waterman algorithm is used to compute an alignment (see, for example, BFAST). NovoAlign and SHRiMP apply SIMD-vectorized Smith-Waterman algorithm implementations.

Spaced seeds

BLAST and many other approaches mentioned above use contiguous seeds to perform the seeding step. Ma et al. in [START_REF] Ma | PatternHunter: faster and more sensitive homology search[END_REF] and Burkhardt and Kärkkäinen in [START_REF] Burkhardt | Better Filtering with Gapped q-Grams[END_REF] introduced spaced seeds, that require a nonconsecutive sequence of characters to match. Thus, spaced seeds have templates containing both 1s and 0s.

While for seeding with contiguous (or solid) seeds of weight k choosing a big value of k may lead to missing some positions and choosing a small k can produce an excessive number of false positive hits that will not extend to a full alignment, an appropriately chosen spaced seed provides a better chance of hitting true matching positions and produces less false positives. Ma et al. [START_REF] Ma | PatternHunter: faster and more sensitive homology search[END_REF] discovered that using spaced seeds instead of consecutive ones leads to a more sensitive alignment algorithm.

PatternHunter [START_REF] Ma | PatternHunter: faster and more sensitive homology search[END_REF] was one of the first algorithm that used space seeds to align reads. PatternHunter uses spaced seeds to perform a "lossy" alignment, when some matches could be missed, but the associated error rate is limited. Another program, Eland2 , uses six seed templates to index the reads and to find all occurrences of the read with up to two mismatches. SOAP [START_REF] Li | SOAP: Short oligonucleotide alignment program[END_REF] provides a solution to the same problem by indexing the reference instead of the reads. SeqMap [START_REF] Jiang | SeqMap: Mapping massive amount of oligonucleotides to the genome[END_REF] and MAQ [START_REF] Li | Mapping short DNA sequencing reads and calling variants using mapping quality scores[END_REF] apply the same approach to solve the k-mismatch problem using 2k k seeds. RMAP [START_REF] Smith | Updates to the RMAP short-read mapping software[END_REF] uses only k + 1 seed templates to solve k-mismatch problem, but the weight of the seeds is comparatively small.

Designing "optimal" sets of seed templates, as well as designing seed templates, is a complicated and important problem, as it directly affects the performance of algorithms. A general framework for automatic spaced seed design was suggested by Kucherov et al. in [START_REF] Kucherov | A UNIFYING FRAMEWORK FOR SEED SENSITIVITY AND ITS APPLICATION TO SUBSET SEEDS[END_REF] and implemented in software Iedera3 . Lin et al. [START_REF] Lin | ZOOM! Zillions of oligos mapped[END_REF] showed how to construct a minimal number of spaced seeds, given a read length, the sensitivity requirement and memory usage. For example, to solve a 2-mismatch problem for reads of length 32 ZOOM program [START_REF] Lin | ZOOM! Zillions of oligos mapped[END_REF] constructs 5 seed templates of weight 14 while Eland uses 6 templates of weight 16. As the time needed to search using seeds can be considered to be proportional to the number of seed templates and the weight of the seeds, ZOOM has better time asymptotics than Eland if they fit the same memory requirements.

Methods based on suffix tree-like structures

Some approximate matching algorithms use standard text indexes, such as suffix tree (3.3), suffix array (3.4) or BWT index (3.5). All such algorithms reduce the approximate pattern matching problem to the exact matching problem. They usually implement, explicitly or implicitly, two steps: finding exact matches and then building inexact alignments around exact ones. Finding exact matches is trivial and was discussed in Section 3. Extending exact matches to approximate ones is much more tricky and usually is performed using backtracking. This idea is covered in Chapter 5.

The advantage of using suffix tree-like structures, in comparison to hash tables, is that all occurrences of a pattern correspond to one node in the tree, thus the extension step should be easier. Another feature of such methods is that the choice of the data structure (suffix tree, suffix array, BWT index, etc.) is independent from the approximate matching algorithm itself.

For large datasets occurring in modern applications, such indexes as suffix tree and suffix array are known to take too much memory. Suffix arrays and suffix trees typically require at least 4 or 10 bytes per character respectively. The last years saw the development of succinct or compressed full-text indexes that occupy virtually as much memory as the sequence itself and yet provide very powerful functionalities [START_REF] Navarro | Compressed full-text indexes[END_REF]. The BWT index [START_REF] Ferragina | Opportunistic data structures with applications[END_REF], based on the Burrows-Wheeler Transform [START_REF] Burrow | A block-sorting lossless data compression algorithm[END_REF], may occupy 2-4 bits of memory per character for DNA texts. BWT index has now been used in many practical bioinformatics software programs, e.g. [START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF][START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF][START_REF] Simpson | Efficient de novo assembly of large genomes using compressed data structures[END_REF]. Even if succinct indexes are primarily designed for exact pattern search, using them for approximate matching naturally became an attractive opportunity.

Among published aligners, MUMmer [START_REF] Delcher | Alignment of whole genomes[END_REF] and OASIS [START_REF] Meek | OASIS: an online and accurate technique for local-alignment searches on biological sequences[END_REF] are based on a suffix tree, and Vmatch [START_REF] Abouelhoda | Replacing suffix trees with enhanced suffix arrays[END_REF] and Segemehl [START_REF] Otto | Fast and sensitive mapping of bisulfitetreated sequencing data[END_REF] are designed on the basis of suffix array. As it was noted above, the most memory efficient (and most popular) methods are based on BWT index, among them Bowtie [START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF], BWA-MEM [START_REF] Li | poster Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[END_REF], SOAP2 [START_REF] Li | SOAP2: an improved ultrafast tool for short read alignment[END_REF], BWT-SW [START_REF] Lam | Compressed indexing and local alignment of DNA[END_REF] and BWA-SW [START_REF] Li | Fast and accurate long-read alignment with Burrows-Wheeler transform[END_REF].

Nowadays, one of the most popular DNA sequence aligner is BWA-MEM [START_REF] Li | poster Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[END_REF]. Along with BWA-Backtrack [97] and BWA-SW [START_REF] Lam | Compressed indexing and local alignment of DNA[END_REF], it is based on a very efficient implementation of BWT-index, which is an improvement of an index implemented in BWT-SW [START_REF] Lam | Compressed indexing and local alignment of DNA[END_REF]. First, for every suffix of a read BWA-MEM finds minimum exact matches (MEMs), used as seeds. Then short seeds are thrown out, too long seeds are shortened and nearby seeds are merged. Finally, the Smith-Waterman algorithm is applied to find the alignment.

Interestingly, succinct indexes can provide even more functionalities than classical ones. In particular, succinct indexes can be made bidirectional, i.e. can perform pattern search in both directions [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF][START_REF] Russo | Approximate String Matching with Compressed Indexes[END_REF][START_REF] Schnattinger | Bidirectional search in a string with wavelet trees and bidirectional matching statistics[END_REF][START_REF] Belazzougui | Versatile Succinct Representations of the Bidirectional Burrows-Wheeler Transform[END_REF]. Lam et al. [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] showed how a bidirectional BWT index can be used to efficiently search for strings up to a small number (one or two) errors. The idea is similar to one discussed in 4.4.1: to partition the pattern into k + 1 equal parts, where k is the number of errors, and then perform multiple searches on the BWT index, where each search assumes a different distribution of mismatches among the pattern parts. It has been shown experimentally in [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] that this improvement leads to a faster search compared to the best existing read alignment software. Bidirectional search, introduced in [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF], was further improved in [START_REF] Kucherov | Approximate string matching using a bidirectional index[END_REF]. Related algorithmic ideas appear also in [START_REF] Russo | Approximate String Matching with Compressed Indexes[END_REF].

In Chapter 5 we extend and generalize the ideas of using a bidirectional BWT index for approximate pattern matching presented in [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF].

Chapter 5

Approximate string matching using a bidirectional index

Overview

In this chapter, we study the approximate string matching problem, both under the Hamming distance and the edit distance (see Chapter 4.2). Let k be the maximum allowed number of mismatches (for the Hamming distance) or errors (for the edit distance). We study strategies of approximate pattern matching that exploit bidirectional text indexes, extending and generalizing ideas of [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] in two main directions. We consider the case of arbitrary k and propose to partition the pattern into more than k + 1 parts that can be of unequal size. To demonstrate the benefit of both ideas, we first introduce a general formal framework for this kind of algorithm, called search scheme, that allows us to easily specify them and to reason about them (Section 5.2). Then, in Section 5.3 we perform a probabilistic analysis that provides us with a quantitative measure of performance of a search scheme, and give an efficient algorithm for obtaining the optimal pattern partition for a given scheme. Furthermore, we prove several combinatorial results on the design of efficient search schemes (Section 5.4). Finally, Section 5.5 contains comparative analytical estimations, based on our probabilistic analysis, that demonstrate the superiority of our search strategies for many practical parameter ranges. We further report on largescale experiments on genomic data supporting this analysis in Section 5.5.2. We end with providing directions for future development in Section 5.6.

Bidirectional search

In the framework of text indexing, pattern search is usually done by scanning the pattern online and recomputing index points referring to the occurrences of the scanned part of the pattern. With classical text indexes, such as suffix trees or suffix arrays, the pattern is scanned left-to-right (forward search). However, some compact indexes such as BWT index provide a search algorithm that scans the pattern right-to-left (backward search).

Consider now approximate string matching. For ease of presentation, we present most of our ideas for the case of Hamming distance (see 4.2.2), although our algorithms extend to the edit distance ( 4.2.3) as well. Section 5.3.1 below will specifically deal with the edit distance.

Assume that k letter mismatches are allowed between a pattern P and a substring of length |P | of a text T . Both forward and backward search can be extended to approximate search in a straightforward way, by exploring all possible mismatches along the search, as long as their number does not exceed k and the current pattern still occurs in the text. For the forward search, for example, the algorithm enumerates all substrings of T with Hamming distance at most k to a prefix of P . Starting with the empty string, the enumeration is done by extending the current string with the corresponding letter of P , and with all other letters provided that the number of accumulated mismatches has not yet reached k. For each extension, its positions in T are computed using the index. Note that the set of enumerated strings is closed under prefixes and therefore can be represented by the nodes of a trie. Similar to forward search, backward search enumerates all substrings of T with Hamming distance at most k to a suffix of P .

Clearly, backward and forward search are symmetric and, once we have an implementation of one, the other can be implemented similarly by constructing the index for the reversed text. However, combining both forward and backward search within one algorithm results in a more efficient search. To illustrate this, consider the case k = 1. Partition P into two equal length parts P = P 1 P 2 . The idea is to perform two complementary searches: forward search for occurrences of P with a mismatch in P 2 and backward search for occurrences with a mismatch in P 1 . In both searches, branching is performed only after |P |/2 characters are matched. Then, the number of strings enumerated by the two searches is much less than the number of strings enumerated by a single standard forward search, even though two searches are performed instead of one.

A bidirectional index of a text (a bidirectional BWT index was described in Section 3.6) allows one to extend the current string A both left and right, that is, compute the positions of either cA or Ac from the positions of A. Note that a bidirectional index allows forward and backward searches to alternate, which will be crucial for our purposes. Lam et al. [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] showed how the BWT index can be made bidirectional. Other succinct bidirectional indexes were given in [START_REF] Russo | Approximate String Matching with Compressed Indexes[END_REF][START_REF] Schnattinger | Bidirectional search in a string with wavelet trees and bidirectional matching statistics[END_REF][START_REF] Belazzougui | Versatile Succinct Representations of the Bidirectional Burrows-Wheeler Transform[END_REF]. Using a bidirectional index, such as BWT index, forward and backward searches can be performed in time linear in the number of enumerated strings. Therefore, our main goal is to organize the search so that the number of enumerated strings is minimized.

Lam et al. [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] gave a new search algorithm, called bidirectional search, that utilizes the bidirectional property of the index. Consider the case k = 2, studied in [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF]. In this case, the pattern is partitioned into three equal length parts, P = P 1 P 2 P 3 . There are now 6 cases to consider according to the placement of mismatches within the parts: 011 (i.e. one mismatch in P 2 and one mismatch in P 3 ), 101, 110, 002, 020, and 200. The algorithm of Lam et al. [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] performs three searches (illustrated in Figure 5.1):

1. A forward search that allows no mismatches when processing characters of P 1 , and 0 to 2 accumulated mismatches when processing characters of P 2 and P 3 . This search handles the cases 011, 002, and 020 above.

2. A backward search that allows no mismatches when processing characters of P 3 , 0 to 1 accumulated mismatches when processing characters of P 2 , and 0 to 2 accumulated mismatches when processing characters of P 1 . This search handles the cases 110 and 200 above.

3. The remaining case is 101. This case is handled using a bidirectional search. It starts with a forward search on string P = P 2 P 3 that allows no mismatches when processing characters of P 2 , and 0 to 1 accumulated mismatches when processing the characters of P 3 . For each string A of length |P | enumerated by the forward search whose Hamming distance from P is exactly 1, a backward search for P 1 is performed by extending A to the left, allowing one additional mismatch. In other words, the search allows 1 to 2 accumulated mismatches when processing the characters of P 1 . Each trie represents one search and assumes that all the enumerated substrings exist in the text T . In an actual search on a specific T , each trie contains of a subset of the nodes, depending on whether the strings of the nodes in the trie appear in T . A vertical edge represents a match, and a diagonal edge represents a mismatch.

We now give a formal definition for the above. Suppose that the pattern P is partitioned into p parts. A search is a triplet of strings S = (π, L, U ) where π is a permutation string of length p over {1, . . . , p}, and L, U are strings of length p over {0, . . . , k}. The string π indicates the order in which the parts of P are processed, and thus it must satisfy the following connectivity property: For every i > 1, π(i) is either (min j<i π(j)) -1 or (max j<i π(j)) + 1. The strings U and L give upper and lower bounds on the number of mismatches: When the j-th part is processed, the number of accumulated mismatches between the active strings and the corresponding substring of P must be between L[j] and U [j]. Formally, for a string A over integers, the weight of

A is i A[i]. A search S = (π, L, U ) covers a string A if L[i+1] ≤ i j=1 A[j] ≤ U [i]
for all i (assuming L[p+1] = 0). A k-mismatch search scheme S is a collection of searches such that for every string A of weight k, there is a search in S that covers A. For example, the 2-mismatch scheme of Lam et al. consists of searches S f = (123, 000, 022), S b = (321, 000, 012), and S bd = (231, 001, 012). We denote this scheme by S LLTWWY .

We introduce two types of improvements over the search scheme of Lam et al.

Uneven partition. In S LLTWWY , search S f enumerates more strings than the other two searches, as it allows 2 mismatches on the second processed part of P , while the other two searches allow only one mismatch. If we increase the length of P 1 in the partition of P , the number of strings enumerated by S f will decrease, while the number of strings enumerated by the two other searches will increase. We show that for some typical parameters of the problem, the decrease in the former number is larger than the increase of the latter number, leading to a more efficient search.

More parts. Another improvement can be achieved using partitions with k + 2 or more parts, rather than k + 1 parts. We explain in Section 5.3.2 why such partitions can reduce the number of enumerated strings.

Analysis of search schemes

In this section we show how to estimate the performance of a given search scheme S. Using this technique, we first explain why an uneven partition can lead to a better performance, and then present a dynamic programming algorithm for designing an optimal partition of a pattern.

Estimating the efficiency of a search scheme

To measure the efficiency of a search scheme, we estimate the number of strings enumerated by all the searches of S. We assume that performing single steps of forward, backward, or bidirectional searches takes the same amount of time. It is fairly straightforward to extend the method of this section to the case when these times are not equal. Note that the bidirectional index of Lam et al. [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] reportedly spends slightly more time (order of 10%) on forward search than on backward search.

For the analysis, we assume that characters of T and P are randomly drawn uniformly and independently from the alphabet. We note that it is possible to extend the method of this section to a non-uniform distribution. For more complex distributions, a Monte Carlo simulation can be applied which, however, requires much more time than the method of this section.

Hamming distance

Our approach to the analysis is as follows. Consider a fixed search S, and the trie representing this search (see Figure 5.1). The search enumerates the largest number of strings when the text contains all strings of length m as substrings. In this case, every string that occurs in the trie is enumerated. For other texts, the set of enumerated strings is a subset of the set of strings that occurs in trie. The expected number of strings enumerated by S on random T and P is equal to the sum over all nodes v of the trie of the probability that the corresponding string appears in T . We will first show that this probability depends only on the depth of v (Lemmas 3 and 4 below). Then, we will show how to count the number of nodes in each level of the trie.

Let p n,l,σ denote the probability that a random string of length l is a substring of a random string of length n, where the characters of both strings are randomly chosen uniformly and independently from an alphabet of size σ. The following lemma gives an approximation for p n,l,σ with a bound on the approximation error.

Lemma 3. |p n,l,σ -(1 -e -n/σ l )| ≤ 4nl/σ 2l if l ≥ log σ n 4l/σ l otherwise .
Proof. Let A and B be random strings of length l and n, respectively. Let E i be the event that A appears in B at position i. The event E i is independent of the events

{E j : j ∈ {1, 2, . . . , n -l + 1} \ F i }, where F i = {i -l + 1, i -l + 2, . . . , i + l -1}.
By the Chen-Stein method [START_REF] Chen | Poisson approximation for dependent trials[END_REF][START_REF] Barbour | Poisson approximation[END_REF],

p n,l,σ -(1 -e -n/σ l ) ≤ 1 -e -λ λ n-l+1 i=1 j∈F i (Pr[E i ] Pr[E j ] + Pr[E i ∩ E j ]),
where λ = n/σ l . Clearly,

Pr[E i ] = Pr[E j ] = 1/σ l . It is also easy to verify that Pr[E i ∩E j ] = 1/σ 2l . Therefore, |p n,l,σ -(1 -e -n/σ l )| ≤ ((1 -e -λ )/λ) • 4nl/σ 2l . The lemma follows since (1 -e -λ )/λ ≤ min(1, 1/λ) for all λ.
The bound in Lemma 3 on the error of the approximation of p n,l,σ is large if l is small, say l < 1 2 log σ n. In this case, we can get a better bound by observing that p n,l,σ ≥ p n,l 0 ,σ , where l 0 = 3 4 log σ n. Since p n,l 0 ,σ ≥ 1 -e -n/σ l 0 -4l 0 /σ l 0 , we obtain that |p n,l,σ -(1e -n/σ l )| ≤ max(e -n/σ l , e -n/σ l 0 + 4l 0 /σ l 0 ).

Let #str(S, X, σ, n) denote the expected number of strings enumerated when performing a search S = (π, L, U ) on a random text of length n and random pattern of length m, where X is a partition of the pattern and σ is the alphabet size (note that m is not a parameter for #str since the value of m is implied from X). For a search scheme S, #str(S, X, σ, n) = S∈S #str(S, X, σ, n).

Fix S, X, σ, and n. Let A l be the set of enumerated strings of length l when performing search S on a random pattern of length m, partitioned by X, and a text T containing all strings of length at most m as substrings. Let A l,i be the i-th element of A l (an order on A l will be defined in the proof of the next lemma). Let nodes l = |A l |, namely, the number of nodes at depth l in the trie that represents the search S. Let P * be the string containing the characters of P according to the order they are read by the search. In other words, P * [l] is the character such that every node at depth l -1 of the trie has an edge to a child with label P * [l]. Lemma 4. For every l and i, the string A l,i is a random string with uniform distribution.

Proof. Assume that the alphabet is Σ = {0, . . . , σ -1}. Consider the trie that represents the search S. We define an order on the children of each node of the trie as follows: Let v be a node in the trie with depth l -1. The label on the edge between v and its leftmost child is P * [l]. If v has more than one child, the labels on the edges to the rest of the children of v, from left to right, are (P * [l] + 1) mod σ, . . . , (P * [l] + σ -1) mod σ. We now order the set A l according to the nodes of depth l in the trie. Namely, let v 1 , . . . , v nodes l be the nodes of depth l in the trie, from left to right. Then, A l,i is the string that corresponds to v i . We have that A l,i [j] = (P * [j] + c i,j -1) mod σ for j = 1, . . . , l, where c i,j is the rank of the node of depth j on the path from the root to v i among its siblings. Now, since each letter of P is randomly chosen uniformly and independently from the alphabet, it follows that each letter of A l,i has uniform distribution and the letters of A l,i are independent.

By the linearity of the expectation,

#str(S, X, σ, n) = l≥1 nodes l i=1 Pr T ∈Σ n [A l,i is a substring of T ].
By Lemma 4 and Lemma 3,

#str(S, X, σ, n) = m l=1 nodes l • p n,l,σ ≈ m l=1 nodes l (1 -e -n/σ l ).
(5.1)

We note that the bounds on the approximation errors of p n,l,σ are small, therefore even when these bounds are multiplied by nodes l and summed over all l, the resulting bound on the error is small. In order to compute the values of nodes l , we give some definitions. Let nodes l,d be the number of strings in A l of length l with Hamming distance d to the prefix of P * of length l. For example, consider search S bd = (231, 001, 012) and partition of a pattern of length 6 into 3 parts of length 2, as shown in Figure 5.1(c). Then, P * = baaaba, nodes 5,0 = 0, nodes 5,1 = 2 (strings baabb and babab), and nodes 5,2 = 2 (strings baaba and babaa).

Let π X be a string obtained from π by replacing each character π(i) of π by a run of π(i) of length X[π(i)], where X[j] is the length of the j-th part in the partition X. Similarly, L X is a string obtained from L by replacing each character L[i] by a run of L[i] of length X[π(i)], and U X is defined analogously. In other words, values L X [i], U X [i] give lower and upper bounds on the number of allowed mismatches for an enumerated string of length i. For example, for S bd and the partition X defined above, π X = 223311, L X = 000011, and U X = 001122.

Values nodes l are given by the following recurrence.

nodes l = U X [l] d=L X [l] nodes l,d (5.2) 
nodes l,d =      nodes l-1,d + (σ -1) • nodes l-1,d-1 if l ≥ 1 and L X [l] ≤ d ≤ U X [l] 1 if l = 0 and d = 0 0 otherwise (5.3)
For a specific search, a closed formula can be given for nodes l . If a search scheme S contains two or more searches with the same π-strings, these searches can be merged in order to eliminate the enumeration of the same string twice or more. It is straightforward to modify the computation of #str(S, X, σ, n) to account for this optimization.

Consider equation (5.1). The value of the term 1 -e -n/σ l is very close to 1 for l ≤ log σ n -O(1). When l ≥ log σ n, the value of this term decreases exponentially. Note that nodes l increases exponentially, but the base of the exponent of nodes l is σ -1 whereas the base of 1 -e -n/σ l is 1/σ. We can then approximate #str(S, X, σ, n) with function #str (S, X, σ, n) defined by

#str (S, X, σ, n) = log σ n +cσ l=1 nodes l • (1 -e -n/σ l ), (5.4) 
where c σ is a constant chosen so that ((σ -1)/σ) cσ is sufficiently small. From the above formulas we have that the time complexities for computing #str(S, X, σ, n) and #str (S, X, σ, n) are O(|S|km) and O(|S|k log σ n), respectively.

Edit distance

We now show how to estimate the efficiency of a search scheme for the edit distance.

We define #str edit analogously to #str in the previous section, except that edit distance errors are allowed. Fix a search S = (π, L, U ) and a partition X. We assume without loss of generality that π is the identity permutation. Similarly to the Hamming distance case, define A l to be the set of enumerated strings of length l when performing the search S on a random pattern of length m, partitioned by X, and a text T containing all the strings of length at most m + k as substrings. Unlike the case of Hamming distance, here the strings of A l are not distributed uniformly. Thus, we do not have the equality #str edit (S, X, σ, n) = m l=1 nodes l • p n,l,σ . We will use m l=1 nodes l • p n,l,σ as an approximation for #str edit (S, X, σ, n), but we do not have an estimation on the error of this approximation. Note that in the Hamming distance case, the sizes of the sets A l are the same for every choice of the pattern, whereas this is not true for edit distance. We therefore define nodes l (P ) to be the number of enumerated strings of length l when performing the search S on a pattern P of length m, partitioned by X, and a text T . We also define nodes l to be the expectation of nodes l (P ), where P is chosen randomly.

We next show how to compute values nodes l . We begin by giving an algorithm for computing nodes l (P ) for some fixed P . Build a non-deterministic automaton A P that recognizes the set of strings that are within edit distance at most k to P , and the locations of the errors satisfy the requirements of the search [START_REF] Mihov | Fast approximate search in large dictionaries[END_REF][START_REF] Kärkkäinen | Faster Filters for Approximate String Matching[END_REF] (see Figure 5.2 for an example). For a state q and a string B, denote by δP (q, B) the set of all states q for which there is a path in A P from q to q such that the concatenation of the labels on the path is equal to B. For a set of states Q and a string B, δP (Q, B) = ∪ q∈Q δP (q, B). Clearly, nodes l (P ) is equal to the number of strings B of length l for which δP (q 0 , B) = ∅, where q 0 is the initial state. Let nodes l,Q (P ) be the number of strings B of length l for which δP (q 0 , B) = Q. The values of nodes l,Q (P ) can be computed using dynamic programming and the following recurrence.

nodes l,Q (P ) = c∈Σ Q : δP (Q ,c)=Q nodes l-1,Q (P ).
The values nodes l,Q (P ) gives the values of nodes l (P ), since by definition,

nodes l (P ) = Q nodes l,Q (P ),
where the summation is done over all non-empty sets of states Q. A path from the initial state q 0 to the state in the i-th row and j-column of the automaton correspond to a string with edit distance i -

1 to P [1..j -1]
. The nodes of the set Q 4 are marked by gray.

Note that for a string B of length l, set δP (q 0 , B) is a subset of a set of (k + 1) 2 states that depends on l. This set, denoted Q l , includes the l + 1-th state in the first row of the automaton, states l, l + 1, l + 2 on the second row, states l -1, l, . . . , l + 3 on the third row, and so on (see Figure 5.2). The size of

Q l is 1 + 3 + 5 + • • • + (2k + 1) = (k + 1) 2 .
Therefore, the number of sets Q for which nodes l,Q (P ) > 0 is at most 2 (k+1) 2 . If (k + 1) 2 is small enough, a state can be encoded in one machine word, and the computation of δP (Q , c) can be done in constant time using precomputed tables. Thus, the time for computing all values of nodes l,

Q (P ) is O(2 k 2 σm).
Now consider the problem of computing the values of nodes l . Observe that for Q ⊆ Q l , the value of δP (Q, c) depends on the characters of P [l -k + 1..l + k + 1], and does not depend on the rest of the characters of P . Our algorithm is based on this observation. For an integer l, a set Q ⊆ Q l , and a string P of length 2k + 1, define nodes l,Q,P =

P :P [l-k+1..l+k+1]=P nodes l,Q (P ). Then, nodes l,Q,P = c ∈Σ c∈Σ Q : δPc (Q ,c)=Q nodes l-1,Q ,P c ,
where P c = c P [1..2k], and P c is a string satisfying P c [(l -1) -k + 1..(l -1) + k + 1] = P c (the rest of the characters of P c can be chosen arbitrarily). From the above, the time complexity for computing

#str edit (S, X, σ, n) is O(|S|2 k 2 σ 2k+3 m).
Therefore, our approach is practical only for small values of k.

Uneven partitions

In Section 5.2, we provided an informal explanation why partitioning the pattern into unequal parts may be beneficial. We now provide a formal justification for this. To this end, we replace (5.4) by an even simpler estimator of #str(S, X, σ, n):

#str (S, X, σ, n) = log σ n l=1 nodes l .
(5.5)

As an example, consider scheme S LLTWWY . Denote by x 1 , x 2 , x 3 the lengths of the parts in a partition X of P into 3 parts. It is straightforward to give closed formulas for #str (S, X, σ, n) for each search of S LLTWWY . For example,

#str (S f , X, σ, n) = N if N ≤ x 1 c 1 (N -x 1 ) 3 + c 2 (N -x 1 ) 2 + c 3 (N -x 1 ) + N otherwise
where N = log σ n , c 1 = (σ -1) 2 /6, c 2 = (σ -1)/2, and c 3 = -(σ -1) 2 /6 + (σ -1)/2. Similar formulas can be given for S b and S bd . If x 1 , x 2 , and x 3 are close to m/3 and N < m/3 then #str (S LLTWWY , X, σ, n, m) = 3N and an equal sized partition is optimal in this case. However, if m/3 < N < 2m/3, then

#str (S LLTWWY ,X, σ, n) = c 1 (N -x 1 ) 3 + c 2 (N -x 1 ) 2 + c 3 (N -x 1 ) + c 1 (N -x 3 ) 2 + c 2 (N -x 3 ) + c 1 (N -x 2 ) 2 + c 2 (N -x 2 ) + 3N.
It is now clear why the equal sized partition is not optimal in this case. The degree of N -x 1 in the above polynomial is 3, while the degrees of N -x 2 and N -x 3 are 2. Thus, if x 1 = x 2 = x 3 = m/3, decreasing x 2 and x 3 by, say 1, while increasing x 1 by 2 reduces the value of the polynomial.

Computing an optimal partition

In this Section, we show how to find an optimal partition for a given search scheme S and a given number of parts p. An optimal partition can be naively found by enumerating all m-1 p-1 possible partitions, and for each partition X, computing #str (S, X, σ, n). We now describe a more efficient dynamic programming algorithm.

We define an optimal partition to be a partition that minimizes #str(S, X, σ, n). Let N = log σ n + c σ . If m ≥ pN , then any partition in which all parts are of size at least N is an optimal partition. Therefore, assume for the rest of this section that m < pN . We say that a partition X is bounded if the sizes of the parts of X are at most N . If X is not bounded, we can transform it into a bounded partition by decreasing the sizes of parts which are larger than N and increasing the sizes of parts which are smaller that N . This transformation can only decrease the value of #str(S, X, σ, n). Therefore, there exists an optimal partition which is bounded. Throughout this section we will consider only bounded partitions. For brevity, we will use the term partition instead of bounded partition.

Our algorithm takes advantage of the fact that the value of #str (S, X, σ, n) does not depend on the entire partition X, but only on the partition of a substring of P of length N induced by X. More precisely, consider a fixed S = (π, L, U ) ∈ S. By definition, #str (S, X, σ, n) depends on the values nodes 1 , . . . , nodes N (the number of nodes in levels 1, . . . , N in the trie that correspond to the search S). From Section 5.3.1, these values depend on the strings L and U which are fixed, and on the string π

X [1..N ]. The latter string depends on π[1..i X,π ], where i X,π is the minimum index such that i X,π j=1 X[π(j)] ≥ N and on the values X[π(1)], . . . , X[π(i X,π )].
The algorithm works by going over the prefixes of P in increasing length order. For each prefix P , it computes a set of partitions of P such that at least one partition in this set can be extended to an optimal partition of P . In order to reduce the time complexity, the algorithm needs to identify partitions of P that cannot be extended into an optimal partition of P . Consider the following example. Suppose that m = 13, p = 5, N = 4 and S = {S 1 , S 2 , S 3 }, where the π-strings of S 1 , S 2 , S 3 are π 1 = 12345, π 2 = 32451, and π 3 = 43215, respectively. Consider a prefix P = P [1..8] of P , and let Y 1 , Y 2 be two partitions of P , where the parts in Y 1 are of sizes 3,3,2, and the parts in Y 1 are of sizes 4,2,2. Note that Y 1 and Y 2 have the same number of parts, and they induce the same partition on P [8 -N + 1..8] = P [5..8]. We claim that one of these two partitions is always at least as good as the other for every extension of both partitions to a partition of P . To see this, let Z denote a partition of P [9..13] into two parts, and consider the three searches of S.

1. For search S 1 we have that π 1 Y 1 ∪Z [1.
.N ] = 1112 for every Z, and π 1 Y 2 ∪Z [1.

.N ] = 1111 for every Z. It follows that the value of #str (S 1 , Y 1 ∪ Z, σ, n) is the same for every Z, and the value of #str (S 1 , Y 2 ∪ Z, σ, n) is the same for every Z. These two values can be equal or different.

For the search

S 2 we have that π 2 Y 1 ∪Z [1..N ] = π 2 Y 2 ∪Z [1..N ] = 3322. It follows that #str (S 2 , Y 1 ∪ Z, σ, n) = #str (S 2 , Y 2 ∪ Z, σ, n
) for all Z and this common value does not depend on Z.

3. For the search S 3 we have that π 3

Y 1 ∪Z [1..N ] = π 3 Y 2 ∪Z [1.
.N ] for every Z. For example, if Z is a partition of P [9..13] into parts of sizes 2,2 then π 3

Y 1 ∪Z [1..N ] = π 3 Y 2 ∪Z [1..N ] = 4433. It follows that #str (S 3 , Y 1 ∪ Z, σ, n) = #str (S 3 , Y 2 ∪ Z, σ, n) for every Z. This common value depends on Z.
We conclude that either #str (S,

Y 1 ∪ Z, σ, n) < #str (S, Y 2 ∪ Z, σ, n) for every Z, or #str (S, Y 1 ∪ Z, σ, n) ≥ #str (S, Y 2 ∪ Z, σ, n) for every Z.
We now give a formal description of the algorithm. We start with some definitions. For a partition Y of a prefix P of P , S(Y ) is a set containing every search S ∈ S such that q Y appears before p Y + 1 in the π-string of S. If the length of P is less than N we define S(Y ) = ∅, and if P = P we define S(Y ) = S. For the example above,

S(Y 1 ) = {S 1 , S 2 }.
Let Y 1 be a partition of a substring P 1 = P [i 1 ..j 1 ] of P , and Y 2 be a partition of a substring P 2 = P [i 2 ..j 2 ]. We say that Y 1 and Y 2 are compatible if these partitions induce the same partition on the common substring P = P [max(i 1 , i 2 ).. min(j 1 , j 2 )]. For example, the partition of P [4..6] into parts of sizes 1, 2 is compatible with the partition of P [1..6] into parts of sizes 2, 2, 2.

Lemma 5. Let Y be a partition of a prefix of P of length at least N . Let S ∈ S(Y ) be a search. The value #str (S, X, σ, n) is the same for every partition X of P whose first p Y parts match Y .

Proof. Let i be the index such that π(i ) = p Y + 1. Since q Y appears before p Y + 1 in string π, from the connectivity property of π we have that (1) Every value in π that appears before p Y + 1 is at most p Y . In other words, π(i) ≤ p Y for every i < i . (2) q Y , . . . , p Y appear before p Y + 1 in π. By the definition of q Y , p Y j=q Y X[j] ≥ N . Therefore, i X,π < i and π(1), . . . , π(i X,π ) ≤ p Y . Thus, string π[1..i X,π ] and values X[π(1)], . . . , X[π(i X,π )] are the same for every partition X that satisfies the requirement of the lemma.

For a partition Y of a prefix of P of length at least N , define v(Y ) to be S∈S(Y ) #str (S, X, σ, n), where X is an arbitrary partition of P whose first p Y parts match Y (the choice of X does not matter due to Lemma 5). For a partition Y of a prefix of P of length less than N , v(Y ) = 0. Define

∆(Y ) = v(Y ) -v(prefix(Y )) = S∈S(Y )\S(prefix(Y ))
#str (S, X, σ, n). Lemma 6. Let Z be a partition of a substring P [m ..m ] such that p Z ≥ 2 and m prefix(Z) = min(N, m -l Y ). Let p ≥ p Z be an integer. The value of ∆(Y ) is the same for every partition Y of P [1..m ] with p parts that is compatible with Z.

Proof. We assume

N < m -l Y (the case N ≥ m -l Y is similar). Since m prefix(Z) = min(N, m -l Y ), the set S(Y ) \ S(prefix(Y )) is the same for every partition Y of P [1..m ]
with p parts that is compatible with Z. For a search S = (π, L, U ) in this set, q Y appears before p Y + 1 in π, and p Y appears before q prefix(Y ) . Let i = i X,π , where X is an arbitrary partition of P whose first p Y parts are the parts of Y . We obtain that q prefix(Y ) ≤ π(1), . . . , π(i) ≤ p Y , and the lemma follows.

For Z, p that satisfy the requirements of Lemma 6, let ∆(Z, p ) denote the value of ∆(Y ), where Y is an arbitrary partition of P [1..m ] with p parts that is compatible with Z.

For m ≤ m, p ≤ p, and a partition Z of P [max(m -N + 1, 1)..m ] with at most p parts, let v(m , p , Z) be the minimum value of v(Y ), where Y is a partition of P [1..m ] into p parts that is compatible with Z. 

(p -j) N -1 j-1
is time for computing v values.

Properties of optimal search schemes

Designing an efficient search scheme for a given set of parameters consists of (1) choosing a number of parts, (2) choosing searches, (3) choosing a partition of the pattern. While it is possible to enumerate all possible choices, and evaluate the efficiency of the resulting scheme using Section 5.3.1, this is generally infeasible due to a large number of possibilities. It is therefore desirable to have a combinatorial characterization of optimal search schemes.

The critical string of a search scheme S is the lexicographically maximal U -string of a search in S. A search of S is critical if its U -string is equal to the critical string of S. For example, the critical string of S LLTWWY is 022, and S f is the critical search. For typical parameters, critical searches of a search scheme constitute the bottleneck. Consider a search scheme S, and assume that the L-strings of all searches contain only zeros. Assume further that the pattern is partitioned into equal-size parts. Let be the maximum index such that for every search S ∈ S and every i ≤ , U [i] of S is no larger than the number in position i in the critical string of S. From Section 5.3, the number of strings enumerated by a search S ∈ S depends mostly on the prefix of the U -string of S of length log σ n /(m/p) . Thus, if log σ n /(m/p) ≤ , a critical search enumerates an equal or greater number of strings than a non-critical search.

We now consider the problem of designing a search scheme whose critical string is minimal. Let α(k, p) denote the lexicographically minimal critical string of a k-mismatch search scheme that partitions the pattern into p parts. The next theorems give the values of α(k, k + 2) and α(k, k + 1). We need the following definition. A string over the alphabet of integers is called simple if it contains a substring of the form 01 j 0 for j ≥ 0. 

+ 1 then A[1] ≤ 1, A[k + 1] ≤ 1,
and

A[i] ≤ 2 for all 2 ≤ i ≤ k.
Moreover, there are no two consecutive 2's in A.

Proof. (i)

The proof is by induction on k. It is easy to verify that the lemma holds for k = 0. Suppose we proved the lemma for k < k. Let A be a string of weight k and length 

p ≥ k + 2. If A[1] ≥ 1 then
+ 1. If A[1] ≥ 2 then A = A[2..k + 1] has weight k -A[1] ≤ k -2 and
length k, and thus by (i) we obtain that A is simple, contradicting the assumption that A is non-simple. Similarly,

A[k + 1] cannot be greater than 1. For 2 ≤ i ≤ k, if A[i] ≥ 3 then either A[1..i -1] or A[i + 1..k + 1] satisfies the condition of (i). Similarly, if A[i] = A[i + 1] = 2 then either A[1..i -1] or A[i + 2..k + 1] satisfies the condition of (i).
We use the following notation. For two integers i and j, [i, j] denotes the string i(i + 1)(i + 2) • • • j if i ≤ j, and the empty string if i > j. Moreover, [i, j] denotes the string i(i -1)(i -2) • • • j if i ≥ j, and the empty string if i < j. Proof. We first give an upper bound on α(k, k + 1) for odd k. We build a search scheme as follows. The scheme contains searches

S k,i,j = ([i, k + 2][i -1, 1], 0 • • • 0, [0, j]jk • • • k)
for all i and j, which cover all simple strings of weight k and length k + 1. In order to cover the non-simple strings, the scheme contains the following searches.

1. S 1 k,i,j = ([i, k + 1][i -1, 1], 0 • • • 0, 013355 • • • jj(j + 1)k • • • k) for every odd 3 ≤ j ≤ k (for j = k, the U -string is 013355 • • • kk). 2. S 2 k,i,j = ([i, 1][i + 1, k + 1], 0 • • • 0, 013355 • • • jj(j + 1)k • • • k) for every odd 3 ≤ j ≤ k (for j = k, the U -string is 013355 • • • kk).
Let A be a non-simple string of weight k and length k + 1. By Lemma 8,A 

= X0A 1 0A 2 0 • • • 0A d 0Y
where each of X and Y is either string 1 or empty string, and each A i is either 2, 12, 21, or 121. A string A i is called a block of type 1, 2, or 3 if A i is equal to 12, 21, or 121, respectively. Let B 1 , . . . , B d be the blocks of type 1 and type 2, from left to right.

We consider several cases. The first case is when X and Y are empty strings, and B 1 is of type 1. Since the weight of A is odd, it follows that d is odd. If A has no other blocks, A is covered by search S 1 k,i,k , where i + 1 is the index in A in which B 1 starts. Otherwise, if B 2 is of type 1, then A is covered by search S 1 k,i,j , where i + 1 is the index in A in which B 1 starts, and i + j + 1 is the index in which the first block to the right of B 1 starts (this block is either B 2 , or a block of type 3). Now suppose that B 2 is of type 2. If B 3 is of type 2, then A is covered by search S 2 k,i,j , where i -1 is the index in A in which B 3 ends, and i -j -1 is the index in which the first block to the left of B 3 ends. By repeating these arguments, we obtain that A is covered unless the types of B 1 , . . . , B d alternate between type 1 and type 2. However, since d is odd, B d is of type 1, and in this case A is covered by S 1 k,i,j , where i + 1 is the index in A in which B 1 starts, and k -j is the index in which the first block to the left of B 1 ends. Now, if X is empty string and Y = 1, define a string A = A20. By the above, A is covered by some search S j k+2,i,j . Then, A is covered by either S j k,i,j or S j k,i,j-2 . The same argument holds for the case when X = 1. The proof for the case when B 1 is of type 2 is analogous and thus omitted.

The lower bound on α(k, k + 1) for odd k is obtained by considering the string A = 012020 • • • 20. The U -string of a search that covers A must be at least 013355 • • • kk.

We next give an upper bound on α(k, k + 1) for even k. We define k-mismatch search schemes S k recursively. For k = 0, S 0 consists of a single search S 0,1 = (1, 0, 0). For k ≥ 2, S k consists of the following searches.

For every search S

k-2,i = (π, 0 • • • 0, U ) in S k-2 , S k contains a search S k,i = (π • k(k + 1), 0 • • • 0, U • kk). 2. A search S k,k = ([k + 1, 1], 0 • • • 0, 01kk • • • k). 3. A search S k,k+1 = (k(k + 1)[k -1, 1], 0 • • • 0, 01kk • • • k).
Note that the critical string of S k is 02244 • • • kk corresponding to item 1 above. We now claim that all number strings of length k + 1 and weight at most k are covered by the searches of S k . The proof is by induction on k. The base k = 0 is trivial. Suppose the claim holds for k -2. Let A be a number string of length k + 1 and weight

k ≤ k. If A[k] + A[k + 1] ≤ 1, then A is covered by either S k,k or S k,k+1
. Otherwise, the weight of

A = A[1..k -1] is at most k -2.
By induction, A is covered by some search S k-2,i . Then search S k,i covers A.

To prove that α(k, k +1) ≥ 02244 • • • kk for even k, consider the string A = 0202 • • • 020. It is easy to verify that the U -string of a search that covers A must be at least 02244 • • • kk.

Theorem 10. α(k, k + 2) = 0123 • • • (k -1)kk for every k ≥ 1.
Proof. We first give an upper bound on α(k, k +1). We build a k-mismatch search scheme S that contains searches

S k,i,j = ([i, k + 2][i -1, 1], 0 • • • 0, [0, j]jk • • • k)
for all i and j. Let A be a string of weight k and length k + 2. By Lemma 8 there are indices i and j such that A[i..i + j + 1] = 01 j 0, and therefore A is covered by S k,i,j .

The lower bound is obtained from the string A = 011 • • • 110. It is easy to verify that the U -string of a search that covers A must be at least 0123

• • • (k -1)kk.
An important consequence of Theorems 9 and 10 is that for some typical cases, partitioning the pattern into k + 2 parts brings an advantage over k + 1 parts. For k = 2, for example, we have α(2, 3) = 022 while α(2, 4) = 0122. Since the second element of 0122 is smaller than that of 022, a 4-part search scheme potentially enumerates less strings than a 3-part scheme. On the other hand, the average length of a part is smaller when using 4 parts, and therefore the branching occurs earlier in the searches of a 4-part scheme. The next section shows that for some parameters, (k + 2)-part schemes outperform (k + 1)-part schemes, while for other parameters the inverse occurs.

Case studies

In this Section, we provide results of several computational experiments we have performed to analyse practical applicability of our techniques.

We designed search schemes for 2, 3 and 4 errors provided below using a greedy algorithm. The algorithm iteratively adds searches to a search scheme. At each step, the algorithm considers the uncovered string A of weight k such that the lexicographically minimal U -string that covers A is maximal. Among the searches that cover A with minimal U -string, a search that covers the maximum number of uncovered strings of weight k is chosen. The L-string of the search is chosen to be lexicographically maximal among all possible L-string that do not decrease the number of uncovered strings. For each search scheme and each choice of parameters, we computed an optimal partition. For 2 mismatches or errors:

1. Slightly modified scheme S LLTWWY . The searches are: S f = (123, 000, 022), S b = (321, 000, 012), and S bd = (213, 001, 012). Note that the π-string of S bd is 213 and not 231 as in S bd . While S bd and S bd have the same efficiency for equal-size partitions, this in not the case for unequally sized parts. 

Numerical comparison of search schemes

We first performed a comparative estimation of the efficiency of search schemes using the method of Section 5.3.1 (case of Hamming distance). More precisely, for a given search We first observe that our method provides an advantage only on a limited range of pattern lengths. This conforms to our analysis (see Section 5.3.2) that implies that our schemes can bring an improvement when m/(k + 1) is smaller than log σ n approximately. When m/(k + 1) is small, Tables 5.1-5.4 suggest that using more parts of unequal size can bring a significant improvement. For big alphabets (Table 5.2), we observe a larger gain in efficiency, due to the fact that values nodes l (see equation (5.2)) grow faster when the alphabet is large, and thus a change in the size of parts can have a bigger influence on these values. Moreover, if the probability distribution of letters in both the text and the pattern is nonuniform, then we obtain an even larger gain (Table 5.3), since in this case, the strings enumerated during the search have a larger probability to appear in the text than for the uniform distribution.

For 3 mismatches and 4 letters (Table 5.4), we observe a smaller gain, and even a loss for pattern lengths 36 and 48 when shifting from 4 to 5 parts. This is explained by Theorem 9 showing the difference of critical strings between odd and even numbers of errors. Thus, for 3 mismatches and 4 parts, the critical string is 0133 while for 5 parts it is 01233. When patterns are not too small, the latter does not lead to an improvement strong enough to compensate for the decrease of part length. Note that the situation is different for even number of errors, where incrementing the number of parts from k + 1 to k + 2 leads to transforming the critical strings from 0224

• • • to 0123 • • • .
Another interesting observation is that with 4 parts, obtained optimal partitions have equal-size parts, as the U -strings of all searches of the 4-part scheme are all the same (see Section 5.5.2).

These estimations suggest that our techniques can bring a significant gain in efficiency for some parameter ranges, however the design of a search scheme should be done carefully for each specific set of parameters. 

Experiments on genomic data

To perform large-scale experiments on genomic sequences, we implemented our method using the 2BWT library provided by [START_REF] Lam | High Throughput Short Read Alignment via Bi-directional BWT[END_REF] (http://i.cs.hku.hk/2bwt-tools/). We then experimentally compared different search schemes, both in terms of running time and average number of enumerated substrings. Below we only report running time, as in all cases, the number of enumerated substrings produced very similar results.

The experiments were done on the sequence of human chromosome 14 (hr14 ). The sequence is 88 • 10 6 long, with nucleotide distribution 29%, 21%, 21%, 29%. Searched patterns were generated as i.i.d. sequences. For every search scheme and pattern length, we ran 10 5 pattern searches for Hamming distance and 10 4 searches for the edit distance.

Search schemes

The following search schemes were used in experiments in this Section. For 2 mismatches or errors: 1. Slightly modified scheme S LLTWWY . The searches are: S f = (123, 000, 022), S b = (321, 000, 012), and S bd = (213, 001, 012). Note that the π-string of S bd is 213 and not 231 as in S bd . While S bd and S bd have the same efficiency for equal-size partitions, this in not the case for unequally sized parts. 

Hamming distance

For the case of 2 mismatches, we implemented the 3-part and 4-part schemes (see Section 5.5.2), as well as their equal-size-part versions for comparison. For each pattern length, we computed an optimal partition, taking into account a non-uniform distribution of nucleotides. Results are presented in Table 5.5. Using unequal parts for 3-part schemes yields a notable time decrease for patterns of length 24 and 33 (respectively, by 24% and 16%). Furthermore, we observe that using unequal part lengths for 4-part schemes is beneficial as well. For pattern lengths 24 and 33, we obtain a speed-up by 27% and 28% respectively. Overall, the experimental results are consistent with numerical estimations of Section 5.5.1.

For the case of 3 mismatches, we implemented 4-part and 5-part schemes from Section 5.5.2, as well as their equal part versions for comparison. Results (running time) are presented in Table 5.6. In accordance with estimations of Section 5.5.1, here we observe a clear improvement only for pattern length 15 and not for longer patterns.

Edit distance

In the case of edit distance, along with the search schemes for 2 and 3 errors from the previous section, we also implemented search schemes for 4 errors (see Section 5.5.2). Results are shown in Table 5.7 (2 errors), Table 5.8 (3 errors) and Table 5.9 (4 errors). For 2 errors, we observe up to two-fold speed-up for pattern lengths 15, 24 and 33. For the case of 3 errors, the improvement is achieved for pattern lengths 15 and 24 (respectively 28% and 20%). Finally, for 4 errors, we obtain a significant speed-up (18% to 30%) for pattern lengths between 15 and 51.

Experiments on simulated genomic reads

Experiments of Section 5.5.2 have been made with random patterns. In order to make experiments closer to the practical bioinformatic setting occurring in mapping genomic reads to their reference sequence, we also experimented with patterns simulating reads issued from genomic sequencers. For that, we generated realistic single-end reads of length 100 (typical length of Illumina reads) from hr14 using dwgsim read simulator (https: //github.com/nh13/DWGSIM). Two sets of reads were generated using two different error rate values (parameter -e of dwgsim): 0.03 for the first dataset and 0.0-0.03 for the second one. This means that in the first set, error probability is uniform over the read length, while in the second set, this probability gradually increases from 0 to 0.03 towards the right end of the read. The latter simulates the real-life situation occurring with current sequencing technologies including Illumina.

The results are shown in Table 5.10. As expected, due to a large pattern length, our schemes did not produce a speed-up for the case of constant error rate. Interestingly however, for the case of non-uniform distribution of errors, our schemes showed a clear advantage. This illustrates another possible benefit of our techniques: they are better adapted to a search for patterns with non-uniform distribution of errors, which often occurs in practical situations such as mapping genomic reads.

Discussion

Methods described in this chapter can be seen as the first step towards an automated design of efficient search schemes for approximate string matching, based on bidirectional indexes. More research has to be done in order to allow an automated design of optimal search schemes. It would be very interesting to study an approach when a search scheme is designed simultaneously with the partition, rather than independently as it was done in our work.

We expect that search schemes similar to those studied in this work can be applied to hybrid approaches to approximate matching (see 5.1), as well as possibly to other search strategies. 

Contents -Part III

Chapter 6

Algorithmic methods for genome assembly

Genome assembly

Accurate assembly of genomes lies in the basis of many modern bioinformatic and medical projects. The goal of assembly is, given a set of reads, to build an initial DNA sequence. However, due to reasons we discuss below (repeats and sequencing errors), it is usually impossible, and long contiguous DNA sequences, called contigs, are reconstructed instead.

Assembled contigs can then be used as a reference for read alignment, thus, in some sense, this is a necessary step before read alignment can be performed. Genome assembly can be compared to solving a puzzle, when you need to combine many (from millions to billions) small fragments into much longer pieces. In this thesis, we focus on efficient data structures for storing reads for their assembly, while many other related algorithmic questions remain out of scope of our work. Let R be a set of reads, and our goal is to construct a set of contigs C. Although there is no formal criteria for the "best" set of contigs, different sets can be compared with respect to various characteristics like the size of C, the average contig length or the N50 value. More details about different genome assemblers comparison can be found in [START_REF] Li | Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph[END_REF][START_REF] Zhang | A Practical Comparison of De Novo Genome Assembly Software Tools for Next-Generation Sequencing Technologies[END_REF][START_REF] Salzberg | GAGE: A critical evaluation of genome assemblies and assembly algorithms[END_REF]. A recent comparison of popular assemblers was made on insidedna.me platform (https:// insidedna.me/tutorials/view/benchmark-seven-popular-genome-assemblers). There was also an open-data competition called Assemblathon [START_REF] Bradnam | Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species[END_REF] where assemblers sent by many teams are compared.

The main challenge for all assembly algorithms is repeated sequences in genomes. Different regions often share perfect or almost perfect repeats, whose origin can not be distinguished, if reads are shorter than these repeats. Additionally, errors introduced during sequencing make the assembly even more complicated. Assembly tools, taking into consideration possible errors, can find some false positive connections between reads.

Here we describe two main algorithmic approaches to the genome assembly problem: overlap-layout-consensus (OLC) and de Bruijn graph based approaches. The key idea of both of them is to design a data structure representing overlaps between reads, and then merge reads together.

OLC-based approaches generally implement three major steps:

1. calculate overlaps among all the reads, 2. find layout: find series of overlapping reads, 3. obtain consensus joining reads merging overlaps.

Overlap-layout-consensus implementations are usually based on the string (or assembly) graph concept: the graph whose nodes correspond to reads, and edges represent overlaps between two reads. Usually, a basic operation that a string graph implementation should support is to quickly return reads which have a significant overlap with a given read.

Many computational tools dealing with NGS data, especially those devoted to genome assembly, are based on the concept of a de Bruijn graph, see e.g. [START_REF] Miller | Assembly algorithms for next-generation sequencing data[END_REF]. A de Bruijn graph, for a given parameter k, of a set of reads R is entirely defined by the set T ⊆ U = Σ k of k-mers present in R. The nodes of the graph are precisely the k-mers of T and for any two vertices u, v ∈ T , there is an edge from u to v if the suffix of u of size k -1 is equal to the prefix of v of the same size. Note that this is actually a subgraph of the de Bruijn graph under its classical combinatorial definition. However, we still call it de Bruijn graph to follow the terminology common to the bioinformatics literature. The value of k is an open parameter, which can be, and is often required to be, specified by the user.

De Bruijn graph-based assemblers follow the same general outline:

1. extract k-mers from the reads, 2. construct the de Bruijn graph on the obtained set, 3. simplify the graph,

output paths in the graph as contigs.

There are many assemblers based both on Overlap-Layout-Consensus paradigm and on de Bruijn graphs. However, from the algorithmic point of view, these two approaches are very different. Finding the layout (step 2) in a graph corresponds to finding a Hamiltonian path, which is a well-known N P -hard problem. At the same time, steps 3 and 4 involve an Eulerian path construction in de Bruijn graph, which can be solved in linear, in number of edges and nodes, time. Thus, the de Bruijn graph approach reduces the assembly problem to an algorithmically less complicated task. Moreover, finding read overlaps (step 1) is computationally very intensive.

In Section 6.2 we describe solutions based on the string graph concept, and in Section 6.3, we cover de Bruijn graph based approaches.

Overlap-Layout-Consensus

Historically, first solutions of the assembly problem followed OLC paradigm, which is more natural than de Bruijn graph approach. The OLC approach was introduced in [107] by Staden and then expanded by many scientists. OLC was very successful in processing reads generated by Sanger sequencing technologies. Many widely used assemblers implemented OLC approaches, such as Arachne [START_REF] Batzoglou | ARACHNE: a whole-genome shotgun assembler[END_REF], Celera Assembler [START_REF] Myers | A Whole-Genome Assembly of Drosophila[END_REF], CAP3 [START_REF] Huang | CAP3: A DNA sequence assembly program[END_REF], PCAP [START_REF] Huang | PCAP: A whole-genome assembly program[END_REF], Phrap [START_REF] De La Bastide | Assembling genomic DNA sequences with PHRAP[END_REF], Phusion [START_REF] Mullikin | The Phusion Assembler[END_REF] and Newbler [START_REF] Margulies | Genome sequencing in microfabricated high-density picolitre reactors[END_REF]. Celera [START_REF] Myers | A Whole-Genome Assembly of Drosophila[END_REF] was used to assemble one of the first versions of the human genome.

The main difficulty of such an approach is to compute pairwise read overlaps. Given n = |R| (number of reads in the input set), a naive algorithm involves O(n 2 ) overlap computations, which is infeasible in the case of large n even if one overlap computation is very fast. Then there are two major issues of these approach: reduction of number of computations and fast pairwise overlap search.

The basic case of overlap computations assumes that the reads are sequenced without errors, then exact suffix-prefix overlaps can be computed. However, in reality we need to find approximate overlaps, allowing some number of mismatches or errors. This means that overlap computation becomes a complicated problem itself.

Most of modern methods for computing approximate read overlaps implement the socalled filtering approach, when the search of reads which have overlaps with a given one is performed in two steps:

1. candidate reads are identified (filtering), 2. candidates are checked to verify the desired matching condition.

To reduce the number of overlap computations, Arachne [START_REF] Batzoglou | ARACHNE: a whole-genome shotgun assembler[END_REF] first extracts k-mers from reads, sort them and calculate overlaps only for those read pairs which share one or more k-mers (quite similar to FASTA [77] algorithm). Filtering algorithms, being often very efficient in practice, usually do not yield good theoretical time bounds. For example, spaced seeds (see Section 4.4.1 for the details) are often used in filtering based implementations (see, as example, [START_REF] Burkhardt | Better Filtering with Gapped q-Grams[END_REF]). Another assembler that follows the filtering approach is SGA assembler [START_REF] Simpson | Efficient de novo assembly of large genomes using compressed data structures[END_REF], which uses a basic substring filtering. Välimäki et al. [START_REF] Välimäki | Approximate all-pairs suffix/prefix overlaps[END_REF] suggested to apply a modified version of suffix filters earlier proposed by Kärkkäinen and Na [START_REF] Kärkkäinen | Faster Filters for Approximate String Matching[END_REF]. In [START_REF] Kucherov | Improved Filters for the Approximate Suffix-Prefix Overlap Problem[END_REF], it was shown how this algorithm can be combinatorially improved to reach better time boundaries. Many OLC paradigm-based assemblers, including Celera [START_REF] Myers | A Whole-Genome Assembly of Drosophila[END_REF], eliminate many read overlap computations skipping so-called transitive edges, when there are overlaps between reads A and B (suffix of A matches prefix of B), B and C, and A and C. Several methods, like CAP3 [START_REF] Huang | CAP3: A DNA sequence assembly program[END_REF] and PCAP [START_REF] Huang | PCAP: A whole-genome assembly program[END_REF], combine (sub)set of reads into one big sequence with separators and use BLAST [START_REF] Altschul | Basic local alignment search tool[END_REF]-like techniques to calculate positions where a suffix or a prefix of a read can be found. These positions indicate the reads which potentially overlap with a given read.

De Bruijn graph

The idea of using de Bruijn graph for genome assembly goes back to the "pre-NGS era" [START_REF] Pevzner | An Eulerian path approach to DNA fragment assembly[END_REF]. Note, however, that de novo genome assembly is not the only application of those graphs when dealing with NGS data. There are several others, including: de novo transcriptome assembly [START_REF] Grabherr | Full-length transcriptome assembly from RNA-Seq data without a reference genome[END_REF] and de novo alternative splicing calling [START_REF] Sacomoto | KISSPLICE: de-novo calling alternative splicing events from RNA-seq data[END_REF] from transcriptomic NGS data (RNA-seq); metagenome assembly [START_REF] Peng | Meta-IDBA: a de Novo assembler for metagenomic data[END_REF] from metagenomic NGS data; and genomic variant detection [START_REF]De novo assembly and genotyping of variants using colored de Bruijn graphs[END_REF] from genomic NGS data using a reference genome.

Due to a very large size of NGS datasets, it is essential to represent de Bruijn graphs as compactly as possible. This has been a very active line of research. Recently, several papers have been published that propose different approaches to compressing de Bruijn graphs [START_REF] Conway | Succinct data structures for assembling large genomes[END_REF][START_REF] Ye | Exploiting sparseness in de novo genome assembly[END_REF][START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF][START_REF] Bowe | Succinct de Bruijn Graphs[END_REF][START_REF] Pell | Scaling metagenome sequence assembly with probabilistic de Bruijn graphs[END_REF].

Conway and Bromage [START_REF] Conway | Succinct data structures for assembling large genomes[END_REF] proposed a method based on classical succinct data structures, i.e. bitmaps with efficient rank/select operations. In the same direction, Bowe et al. [START_REF] Bowe | Succinct de Bruijn Graphs[END_REF] proposed a very interesting succinct representation that, assuming only one string (read) is present, uses only 4m bits, where m is the number of edges in the graph. A more realistic case, where there are M reads, can be easily reduced to the one string case by concatenating all M reads using a special separator character. However, in this case the size of the structure is 4m + O(M log m) bits ( [START_REF] Bowe | Succinct de Bruijn Graphs[END_REF], Theorem 1). While many methods are built upon Bloom filters, implementation from [START_REF] Bowe | Succinct de Bruijn Graphs[END_REF] is based on the Burrows-Wheeler transform.

Ye at al. [START_REF] Ye | Exploiting sparseness in de novo genome assembly[END_REF] proposed a different method based on a sparse representation of de Bruijn graphs, where only a subset of k-mers present in the dataset are stored. Pell et al. [START_REF] Pell | Scaling metagenome sequence assembly with probabilistic de Bruijn graphs[END_REF] proposed a method to represent it approximately, using the so called probabilistic de Bruijn graph. In their representation, de Bruijn graph is represented using a Bloom filter B. This approach has the disadvantage of having false positive nodes, as direct consequence of the false positive queries in the Bloom filter, which can create false connections in the graph (see [START_REF] Pell | Scaling metagenome sequence assembly with probabilistic de Bruijn graphs[END_REF] for the influence of false positive nodes on the topology of the graph). The naive way to remove those false positive nodes, by explicitly storing (e.g. using a hash table) the set of all false positives of B, is clearly inefficient, as the expected number of elements to be explicitly stored is 4 k F, where F is the probability of false positive. Finally, Chikhi and Rizk [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] improved Pell's scheme in order to obtain an exact representation of the de Bruijn graph. Their approach is implemented in a software called Minia, which is a part of GATB analysis tool [START_REF] Drezen | GATB: Genome Assembly & Analysis Tool Box[END_REF]. This was, to our knowledge, the best practical representation of an exact de Bruijn graph based on Bloom filters.

One of the problems of de Bruijn graph based approaches is that k should be chosen in advance. This issue is solved by a variable-order de Bruijn graph. Boucher et al. [START_REF] Boucher | Variable-Order De Bruijn Graphs[END_REF] presented an improvement of [START_REF] Bowe | Succinct de Bruijn Graphs[END_REF] which allows changing the order of the graph "on the fly", while insignificantly increasing the space usage of the original representation. Supporting different values of k is especially useful when some regions of the graph are sparser than others. In [START_REF] Belazzougui | Bidirectional Variable-Order de Bruijn Graphs[END_REF] it was shown how to make the same structure bidirectional, allowing traversal in both directions.

Chikhi et al. [START_REF] Chikhi | On the Representation of De Bruijn Graphs[END_REF] use minimizers to obtain BWT-based de Bruijn graph implementation with only 1.5 GB memory usage for the human genome. In [START_REF] Belazzougui | Fully Dynamic de Bruijn Graphs[END_REF] Belazzougui et al. show how to make de Bruijn graph implementation fully dynamic, allowing deletions along with insertions.

Chapter 7

De Bruijn graph representation using Cascading Bloom filters

Overview

In this chapter, we focus on the method proposed in [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] by Chikhi and Rizk which is based on Bloom filters (see Section 3.2) and implements de Bruijn graph approach (see Section 6.3). Let R be a set of reads and T 0 be the set of occurring k-mers (nodes of the de Bruijn graph) that we want to store. The key idea of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] is to explicitly store only a subset of all false positives of B, the so-called critical false positives. This is possible because in order to perform an exact (without false positive nodes) graph traversal, only potential neighbors of nodes in T 0 are queried. In other words, the set of critical false positives consists of the potential neighbors of T 0 that are false positives of B, i.e. the kmers from U = Σ k that overlap the k-mers from T 0 by k -1 letters and are false positives of B. Thus, the size of the set of critical false positives is bounded by 8|T 0 |, since each node of T 0 has at most 2|Σ| = 8 neighbors (for each node, there are |Σ| k-mers overlapping the k -1 suffix and |Σ| overlapping the k -1 prefix). Therefore, the expected number of critical false positives can be upper-estimated by 8|T 0 |F.

Our contribution is an improvement of this scheme by changing the representation of the set of false positives. We achieve this by iteratively applying a Bloom filter to represent the set of false positives, then the set of "false false positives" etc. We introduce the corresponding data structure, the so-called Cascading Bloom filter, and show how it can replace the standard Bloom filter in Section 7.2. Then in Section 7.3 we show analytically that this cascade of Bloom filters allows for a considerable further economy of memory, improving the method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. Depending on the value of k, our method requires 30% to 40% less memory with respect to the method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. Moreover, with our method, the memory grows very little as k grows. Finally, we implemented our method and tested it against [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] on real datasets. The tests, presented in Section 7.4, confirm the theoretical predictions for the size of structure and show a 20% to 30% improvement in query times. We conclude with Discussions in 7.5.

Cascading Bloom filter

As stated in Section 7.1, the method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] stores T 0 via a bitmap B 1 using a Bloom filter, together with the set T 1 of critical false positives. T 1 consists of those k-mers which have a k -1 overlap with k-mers from T 0 but which are stored in B 1 "by mistake", i.e. belong1 to B 1 but not to T 0 . B 1 and T 1 are sufficient to represent the graph provided that the only queried k-mers are those which are potential neighbors of k-mers of T 0 .

The idea we introduce in this chapter is to use this structure recursively and represent the set T 1 by a new bitmap B 2 and a new set T 2 , then represent T 2 by B 3 and T 3 , and so on. More formally, starting from B 1 and T 1 defined as above, we define a series of bitmaps B 1 , B 2 , . . . and a series of sets T 1 , T 2 , . . . as follows. B 2 stores the set of false positives T 1 using another Bloom filter, and the set T 2 contains the critical false positives of B 2 , i.e. "true nodes" from T 0 that are stored in B 2 "by mistake" (we call them false 2 positives). B 3 and T 3 , and, generally, B i and T i are defined similarly: B i stores k-mers of T i-1 using a Bloom filter, and T i contains k-mers stored in B i "by mistake", i.e. those k-mers that do not belong to T i-1 but belong to T i-2 (we call them false i positives). Observe that

T 0 ∩ T 1 = ∅, T 0 ⊇ T 2 ⊇ T 4 . . . and T 1 ⊇ T 3 ⊇ T 5 . . ..
The following lemma shows that the construction is correct, that is it allows one to verify whether or not a given k-mer belongs to the set T 0 .

Lemma 11. Given a k-mer (node) K, consider the smallest i such that K ∈ B i+1 (if K ∈ B 1 , we define i = 0). Then, if i is odd, then K ∈ T 0 , and if i is even (including 0), then K ∈ T 0 .

Proof. Observe that K ∈ B i+1 implies K ∈ T i by the basic property of Bloom filters that membership queries have one-sided error, i.e. there are no false negatives. We first check the Lemma for i = 0, 1.

For i = 0, we have K ∈ B 1 , and then K ∈ T 0 . For i = 1, we have K ∈ B 1 but K ∈ B 2 . The latter implies that K ∈ T 1 , and then K must be a false 2 positive, that is K ∈ T 0 . Note that here we use the fact that the only queried k-mers K are either nodes of T 0 or their neighbors in the graph (see [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]), and therefore if K ∈ B 1 and K ∈ T 0 then K ∈ T 1 .

For the general case i ≥ 2, we show by induction that K ∈ T i-1 . Indeed, K ∈ B 1 ∩ . . . ∩ B i implies K ∈ T i-1 ∪ T i (which, again, is easily seen by induction), and

K ∈ B i+1 implies K ∈ T i .
Since T i-1 ⊆ T 0 for odd i, and T i-1 ⊆ T 1 for even i (for T 0 ∩ T 1 = ∅), the lemma follows.

Naturally, the lemma provides an algorithm to check if a given k-mer K belongs to the graph: it suffices to check successively if it belongs to B 1 , B 2 , . . . until we encounter the first B i+1 which does not contain K. Then, the answer will simply depend on whether i is even or odd: K belongs to the graph if and only if i is odd.

In our reasoning so far, we assumed an infinite number of bitmaps B i . Of course, in practice we cannot store infinitely many (and even simply many) bitmaps. Therefore, we "truncate" the construction at some step t and store a finite set of bitmaps B 1 , B 2 , . . . , B t together with an explicit representation of T t . The procedure of Lemma 11 is extended in the obvious way: if for all 1 ≤ i ≤ t, K ∈ B i , then the answer is determined by directly checking K ∈ T t .

Analysis of the data structure

Memory and time usage

First, we estimate the memory needed by our data structure, under the assumption of an infinite number of bitmaps. Let N be the number of "true positives", i.e. nodes of T 0 . As stated in Section 7.1, if T 0 has to be stored via a bitmap B 1 of size rN , the false positive rate can be estimated as c r , where c = 0.6185. And, the expected number of critical false positive nodes (set T 1 ) has been estimated in [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] to be 8N c r , as every node has eight extensions, i.e. potential neighbors in the graph. We slightly refine this estimation to 6N c r by noticing that for most of the graph nodes, two out of these eight extensions belong to T 0 (are real nodes) and thus only six are potential false positives. Furthermore, to store these 6N c r critical false positive nodes, we use a bitmap B 2 of size 6rN c r . Bitmap B 3 is used for storing nodes of T 0 which are stored in B 2 "by mistake" (set T 2 ). We estimate the number of these nodes as the fraction c r (false positive rate of filter B 2 ) of N (size of T 0 ), that is N c r . Similarly, the number of nodes we need to put to B 4 is 6N c r multiplied by c r , i.e. 6N c 2r . Keeping counting in this way, the memory needed for the whole structure is rN + 6rN c r + rN c r + 6rN c 2r + rN c 2r + ... bits. The number of bits per k-mer is then

r + 6rc r + rc r + 6rc 2r + ... = (r + 6rc r )(1 + c r + c 2r + ...) = (1 + 6c r ) r 1 -c r . ( 7.1) 
A simple calculation shows that the minimum of this expression is achieved when r = 5.464, and then the minimum memory used per k-mer is 8.45 bits.

As mentioned earlier, in practice we store only a finite number of bitmaps B 1 , . . . , B t together with an explicit representation (such as array or hash table) of T t . In this case, the memory taken by the bitmaps is a truncated sum rN + 6rN c r + rN c r + .., and a data structure storing T t takes either 2k • N c t 2 r or 2k • 6N c t 2 r bits, depending on whether t is even or odd. The latter follows from the observations that we need to store N c t 2 r (or 6rN c t 2 r ) k-mers, each taking 2k bits of memory. Consequently, we have to adjust the optimal value of r minimizing the total space, and re-estimate the resulting space spent on one k-mer.

Table 7.1 shows estimations for optimal values of r and the corresponding space per k-mer for t = 4 and t = 6, and several values of k. The data demonstrates that even such small values of t lead to considerable memory savings. It appears that the space per k-mer is very close to the "optimal" space (8.45 bits) obtained for the infinite number of filters. Table 7.1 reveals another advantage of our improvement: the number of bits per stored k-mer remains almost constant for different values of k.

The last column of Table 7.1 shows the memory usage of the original method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF], obtained using the estimation (1.44 log 2 ( 16k 2.08 ) + 2.08) the authors provided. Note that according to that estimation, doubling the value of k results in a memory increment by 1.44 bits, whereas in our method the increment is of 0.11 to 0.22 bits.

Let us now estimate preprocessing and query times for our scheme. If the value of t is small (such as t = 4, as in Table 7.1), the preprocessing time grows insignificantly in comparison to the original method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. To construct each B i , we need to store T i-2 (possibly on disk, if we want to save on the internal memory used by the algorithm) in order to compute those k-mers which are stored in B i-1 "by mistake". The preprocessing time increases little in comparison to the original method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF], as the size of B i decreases exponentially and then the time spent to construct the whole structure is linear on the size of T 0 . k optimal r bits per k-mer optimal r bits per k-mer bits per k-mer for t The query time can be split in two parts: the time spent on querying t Bloom filters and the time spent on querying T t . Clearly, using t Bloom filters instead of a single one introduces a multiplicative factor of t to the first part of the query time. On the other hand, the set T t is generally much smaller than T 1 , due to the above-mentioned exponential decrease. Depending on the data structure for storing T t , the time saving in querying T t vs. T 1 may even dominate the time loss in querying multiple Bloom filters. Our experimental results (Section 7.4 below) confirm that this situation does indeed occur in practice. Note that even in the case when querying T t weakly depends on its size (e.g. when T t is implemented by a hash table), the query time will not increase much, due to our choice of a small value for t, as discussed earlier.

Using different values of r for different filters

In the previous section, we assumed that each of our Bloom filters uses the same value of r, the ratio of bitmap size to the number of stored k-mers. However, formula (7.1) for the number of bits per k-mer shows a difference for odd and even filter indices. This suggests that using different parameters r for different filters, rather than the same for all filters, may reduce the space even further. If r i denotes the corresponding ratio for filter B i , then (7.1) should be rewritten to

r 1 + 6r 2 c r 1 + r 3 c r 2 + 6r 4 c r 1 +r 3 + ..., (7.2) 
and the minimum value of this expression becomes 7.93 (this value is achieved with r 1 = 4.41; r i = 1.44, i > 1).

In the same way, we can use different values of r i in the truncated case. This leads to a small 2% to 4% improvement in comparison with case of unique value of r. Table 7.2 shows results for the case t = 4 for different values of k.

Query distribution among filters

The query algorithm that follows from Lemma 11 simply queries Bloom filters B 1 , . . . , B t successively as long as the returned answer is positive. The query time then directly depends on the number of filters need to apply before getting a negative answer. Therefore, it is instructive to analyse how the query frequencies to different filters are distributed. We provide such an analysis in this section.

In our analysis, we assume that all true nodes of the graph and all their potential neighbors are queried with the same frequency. This is supported by the fact that during graph k r 1 , r traversal, each time after querying a true node we also query all its potential neighbors, as there is no other mean to tell which of those neighbors are real. Note however that this assumption does not take into account structural properties of the de Bruin graph, nor any additional statistical properties of the genome (such as genomic word frequencies). For a filter B i , we want to estimate the number of k-mers for which B i returns no. This number is the difference of the number of k-mers submitted to B i and the number of k-mers for which B i returns yes. Note that the k-mers submitted to B i is precisely those on which the previous filter B i-1 returns yes.

If the input set T 0 contains N k-mers, we estimate by 7N the number of all tested kmers, a typical node of the graph will have two true neighbors and six potential neighbors not belonging to the graph. Filter B 1 will return yes on N + 6c r N k-mers, corresponding to the number of true and false positives respectively. For an arbitrary i, filter B i returns yes precisely on the k-mers inserted to B i (i.e. k-mers B i is built on), and the k-mers which are inserted to B i+1 (which are critical false positives for B i ). The counts then easily follow from the analysis of Section 7.3.1.

Table 7.3 provides counts for the first four filters, together with the estimated fraction of k-mers on which each filter returns the concluding answer (no). 

B 1 B 2 B 3 B 4 submitted k-mers 7N (1 + 6c r )N (6c r + c r )N (c r + 6c 2r )N k-mers returning yes (1 + 6c r )N (6c r + c r )N (c r + 6c 2r )N (6c 2r + c 2r )N k-mers returning no (7 -1 -6c r )N (1 -c r )N (6c r -6c 2r )N (c r -c 2r )N percentage of

Experimental results

Construction algorithm

In practice, constructing a cascading Bloom filter for a real-life read set is a computationally intensive step. To perform it on a commonly-used computer, the implementation makes an essential use of external memory. Here we give a short description of the construction algorithm for up to four Bloom filters. Extension for larger number of filters is strightforward.

We start from the input set T 0 of k-mers written on disk. We build the Bloom filter B 1 of appropriate size by inserting elements of T 0 successively. Next, all possible extensions of each k-mer in T 0 are queried against B 1 , and those which return true are written to the disk. Then, this set is traversed and only the k-mers absent from T 0 are kept. This results in the set T 1 of critical false positives, which is also kept on disk. Up to this point, the procedure is identical to that of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF].

Next, we insert all k-mers from T 1 into B 2 and to obtain T 2 , we check for each k-mer in T 0 if a query to B 2 returns true. This results in set T 2 . Thus, at this point we have B 1 , B 2 and T 2 , a complete representation for t = 2. In order to build the data structure for t = 4, we continue this process, by inserting T 2 in B 3 and retrieving T 3 from T 1 (stored on disk). It should be noted that to obtain T i we need T i-2 , and by always storing it on disk we guarantee not to use more memory than the size of the final structure. The set T t (that is, T 1 , T 2 or T 4 in our experiments) is stored as a sorted array and is searched by a binary search. We found this implementation more efficient than a hash table.

Implementation and experimental setup

We implemented our method using the Minia software [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] and ran comparative tests for 2 and 4 Bloom filters (t = 2, 4). Note that since the only modified part of Minia was the construction step and the k-mer membership queries, this allows us to precisely evaluate our method against the one of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF].

The first step of the implementation is to retrieve the list of k-mers that appear more than d times using DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] -a constant memory streaming algorithm to count k-mers. Note, as a side remark, that performing counting allows us to perform off-line deletions of k-mers. That is, if at some point of the scan of the input set of k-mers (or reads) some of them should be deleted, it is done by a simple decrement of the counter.

Assessing the query time is done through the procedure of graph traversal, as it is implemented in [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. Since the procedure is identical and independent on the data structure, the time spent on graph traversal is a faithful estimator of the query time.

We compare three versions: t = 1 (i.e. the version of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]), t = 2 and t = 4. For convenience, we define 1 Bloom, 2 Bloom and 4 Bloom as the versions with t = 1, 2 and 4, respectively.

E.coli dataset, varying k

In this set of tests, our main goal was to evaluate the influence of the k-mer size on principal parameters: size of the whole data structure, size of the set T t , graph traversal time, and time of construction of the data structure. We retrieved 10M E. coli reads of 100bp from the Short Read Archive (ERX008638) without read pairing information and extracted all k-mers occurring at least two times. The total number of k-mers considered varied, depending on the value of k, from 6,967,781 (k = 15) to 5,923,501 (k = 63). We ran each version, 1 Bloom ([126]), 2 Bloom and 4 Bloom, for values of k ranging from 16 to 64. The results are shown in Fig. 7.1.

The total size of the structures in bits per stored k-mer, i.e. the size of B 1 and T 1 (respectively, B 1 , B 2 ,T 2 or B 1 , B 2 , B 3 , B 4 ,T 4 ) is shown in Fig. 7.1(a). As expected, the space for 4 Bloom filters is the smallest for all values of k considered, showing a considerable improvement, ranging from 32% to 39%, over the version of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. Even the version with just 2 Bloom filters shows an improvement of at least 20% over [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF], for all values of k. Regarding the influence of the k-mer size on the structure size, we observe that for 4 Bloom filters the structure size is almost constant, the minimum value is 8.60 and the largest is 8.89, an increase of only 3%. For 1 and 2 Bloom the same pattern is seen: a plateau from k = 16 to 32, a jump for k = 33 and another plateau from k = 33 to 64. The jump at k = 32 is due to switching from 64-bit to 128-bit representation of k-mers in the table T t .

The traversal times for each version is shown in Fig. 7.1(c). The fastest version is 4 Bloom, showing an improvement over [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] of 18% to 30%, followed by 2 Bloom. This result is surprising and may seem counter-intuitive, as we have four filters to apply to the queried k-mer rather than a single filter as in [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. However, the size of T 4 (or even T 2 ) is much smaller than T 1 , as the size of T i 's decreases exponentially. As T t is stored in an array, the time economy in searching T 4 (or T 2 ) compared to T 1 dominates the time lost on querying additional Bloom filters, which explains the overall gain in query time.

As far as the construction time is concerned (Fig. 7.1(d)), our versions yielded also a faster construction, with the 4 Bloom version being 5% to 22% faster than that of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. The gain is explained by the time required for sorting the array storing T t , which is much higher for T 0 than for T 2 or T 4 . However, the gain is less significant here, and, on the other hand, was not observed for bigger datasets (see Section 7.4.5).

E. coli dataset, varying coverage

From the complete E. coli dataset (≈44M reads) from the previous section, we selected several samples ranging from 5M to 40M reads in order to assess the impact of the coverage on the size of the data structures. This strain E. coli (K-12 MG1655) is estimated to have a genome of 4.6M bp [START_REF] Blattner | The Complete Genome Sequence of Escherichia coli K-12[END_REF], implying that a sample of 5M reads (of 100bp) corresponds to ≈100X coverage. We set d = 3 and k = 27. The results are shown in Fig. 7.2. As expected, the memory consumption per k-mer remains almost constant for increasing coverage, with a slight decrease for 2 and 4 Bloom. The best results are obtained with the 4 Bloom version, an improvement of 33% over the 1 Bloom version of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. On the other hand, the number of distinct k-mers increases markedly (around 10% for each 5M reads) with increasing coverage, see Fig. 7.2(b). This is due to sequencing errors: an increase in coverage implies more errors with higher coverage, which are not removed by our cutoff d = 3. This suggests that the value of d should be chosen according to the coverage of the sample. Moreover, in the case where read qualities are available, a quality control pre-processing step may help to reduce the number of sequencing errors.

Human dataset

We also compared 2 and 4 Bloom versions with the 1 Bloom version of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] on a large dataset. For that, we retrieved 564M Human reads of 100bp (SRA: SRX016231) without pairing information and discarded the reads occurring less than 3 times. The dataset corresponds to ≈17X coverage. A total of 2,455,753,508 k-mers were indexed. We ran each version, 1 Bloom ([126]), 2 Bloom and 4 Bloom with k = 23. The results are shown in Table 7. [START_REF] Watson | Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid[END_REF].

The results are in general consistent with the previous tests on E.coli datasets. There is an improvement of 34% (21%) for the 4 Bloom (2 Bloom) in the size of the structure. The graph traversal is also 26% faster in the 4 Bloom version. However, in contrast to the previous results, the graph construction time increased by 10% and 7% for 4 and 2 Bloom versions respectively, when compared to the 1 Bloom version. This is due to the fact that disk i/o operations now dominate the time for the graph construction, and 2 and 4 Bloom versions generate more disk accesses than 1 Bloom. As stated in Section 7.4.1, when constructing the 1 Bloom structure, the only part written on the disk is T 1 and it is read only once to fill an array in memory. For 4 Bloom, T 1 and T 2 are written to the disk, and T 0 and T 1 are read at least one time each to build B 2 and B 3 . Moreover, since the size coefficient of B 1 reduces, from r = 11.10 in 1 Bloom to r = 5.97 in 4 Bloom, the number of false positives in T 1 increases. 

Discussion

Using cascading Bloom filters for storing de Bruijn graphs brings a clear advantage over the single-filter method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. In terms of memory consumption, which is the main parameter here, we obtained an improvement of around 30%-40% in all our experiments. Our data structure takes 8.5 to 9 bits per stored k-mer, compared to 13 to 15 bits by the method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. This confirms our analytical estimations. The above results were obtained using only four filters and are very close to the estimated optimum (around 8.4 bits/k-mer) produced by the infinite number of filters. An interesting characteristic of our method is that the memory grows insignificantly with the growth of k, even slower than with the method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. Somewhat surprisingly, we also obtained a significant decrease, of order 20%-30%, of query time. The construction time of the data structure varied from being 10% slower (for the human dataset) to 22% faster (for the bacterial dataset). An interesting prospect for further possible improvements of our method is offered by work [START_REF] Porat | An Optimal Bloom Filter Replacement Based on Matrix Solving[END_REF], where an efficient replacement to Bloom filter was introduced. The results of [START_REF] Porat | An Optimal Bloom Filter Replacement Based on Matrix Solving[END_REF] suggest that we could hope to reduce the memory to about 5 bits per k-mer. However, there exist obstacles on this way: an implementation of such a structure would probably result in a significant construction and query time increase. of reads. Another popular approach is to first assemble reads into contigs, and then use assembled contigs as a reference. Such methods benefit from some advantages of referencebased approaches and do not need a reference genome to decompress the input set of reads.

A detailed comparison of many existing NGS reads compression tools can be found in [START_REF] Bonfield | Compression of FASTQ and SAM Format Sequencing Data[END_REF].

Paper [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] proposes a method for compressing a set of reads of fixed length , based on the idea of extracting reads from a reference genome instead of storing them explicitly. The method from [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] achieves a good trade-off between speed and compression ratio, where the gain in speed is due to avoiding the mapping process and the gain in compression is due to the use of a Cascading Bloom filter. Below we improve results of [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] by applying the recursive compression strategy to other subsets of the reads.

Description of the basic algorithm

In this section we briefly describe encoding and decoding processes proposed in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF].

Let G be a genome of length N and S be a set of reads, sequenced from G (with errors and mutations). All reads from S should be of the same length, denoted as .

For simplicity, let us assume that all reads are unique, and all of them consists of characters [A, C, G, T ] only. First, the algorithm adds all reads from S to a Bloom filter B. Then we query all substrings of G of length against B to identify all reads that potentially can be reconstructed from G. As some of queried substrings are false positives, we add such substrings (which are accepted by B, but do not belong to S) to the set of false positives F P . As the set S was sequenced from the genome of a species that contains mutations in comparison to genome G, then some reads from S are not covered by substrings of G. Moreover, sequencing errors also lead to reads that can not be reconstructed from G. Such reads, that can not be obtained as a substring of G, are added to the set of false negatives F N . Finally, set S is encoded by B, set of false positives F P and set of false negatives F N . They can be further compressed by general purpose compressing tools.

The encoding process is described in Algorithm 3.

Algorithm 3 Encoding

1: add all repeated reads and reads containing ambiguous characters to F N 2: S = S \ F N 3: add all reads from S to Bloom filter B 4: P = ∅ 5: for (r ∈ set of all substrings of length from G) do

6: if r ∈ B then 7:
if (r ∈ S) then end if 13: end for 14: F N = F N ∪ (S \ P ) Decoding works in the same way as encoding. First, we scan all substrings of G of length , query them against B and check whether they are present in F P . If the substring is in B, but not in F P , then we add it to the set S encoded . Finally, we add all reads from F N to S encoded .

To relax condition on repeats and ambiguous characters (non-[A, C, G, T ] characters, like N ) in S, we simply add all such reads to (now multiset) F N . The encoding and decoding processes remains the same.

The algorithm above does not turn out to achieve a good compression ratio. Partially, this is because the set F P is comparatively large. To reduce its size, we store F P in a Cascading Bloom filter, as it was suggested in [START_REF] Salikhov | Using cascading Bloom filters to improve the memory usage for de Brujin graphs[END_REF] and Chapter 7.

Bloom filter B (denoted also as B 1 ) can be considered as the first Bloom filter in the cascade. Each element from F P (denoted also as F P 1 ) is added to Bloom filter B 2 -it stores false positive reads, and thus it should reject true reads. It means that all unique reads without ambiguous characters from S, that are in B 1 (denote this set as S ), should be rejected by B 2 . So, we query all reads from S against B 2 to obtain F P 2 -false false positive reads. This procedure can be continued infinitely, but in practice we should stop after fixed number of filters. If n Bloom filters are in the cascade, then S is encoded by

B 1 , B 2 , . . . B n , F P n , F N .
The described encoding algorithm is schematically shown on Figure 8.1.

To decode the reads, we query all substrings of G of length against B 1 , B 2 . . . until one of them rejects the substring. Let B i be the first Bloom filter that rejected a substring r. If i is even, then r is a true read (as B 1 , B 3 , B 5 . . . store true reads, and B 2 , B 4 , B 6 . . . store false positives), and is a false positive read otherwise. More detailed proof can be found in Chapter 7 and in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF][START_REF] Salikhov | Using cascading Bloom filters to improve the memory usage for de Brujin graphs[END_REF].

Since elements inserted to B i are a subset of B i-2 , then the size of Bloom filters decreases exponentially. The exact formula for the size of Bloom filters (in other words, for number of bits used for one read) can be found in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF].

Improvements

We propose to save on storing FN too. FN consists of two disjoint sets: set FN 0 of reads from S which are not substrings of G and a (multi-)set FN rep of reads which are substrings of G and occur in S multiple times (more than once). For F N 0 , there is no way to store it compactly in the described paradigm, as reads from this set can not be easily extracted from G. We propose to compress set FN rep as follows.

First, let us represent FN rep as a set T of pairs (read, multiplicity). As for each element of T has multiplicity at least 2, then we can decrease all multiplicities by 1, and this procedure is reversible. Then we partition reads from T into two subsets: a subset FN 1 rep of reads that have multiplicity 1 and a subset FN 2 rep of reads that have multiplicity at least 2. Since elements of FN As a remark, note that the set of reads repeated multiple time (FN rep ) depends only on G and S, and this set is larger when the coverage of G by the read set S is higher. Moreover, multiple reads are more likely to occur in G exactly, as the probability that such a read was sequenced with errors is lower. This supports the idea that compressing FN rep can be advantageous.

Experiments

We modified the code of BARCODE1 software [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] to implement the above extension. We experimented with Mycobacterium abscessus complete genome (about 5Mbp). We tried the following coverage values 30, 50, 75, 100, 150. Single-end reads of length 100 with 0.000 to 0.005 base mutation rate were generated using dwgsim2 simulator (options dwgsim -C [30-150] -H -e 0.0-0.005 -R 0.0 -1 100 -2 0 -y 0.0). The extensive experimental comparison with other compression tools is provided in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF], and our goal was to simply estimate the influence of ideas described in Section 8.3. We didn't apply the post-compression with SCALCE, as our goal was limited to compare the size of compressed with BARCODE FN rep with uncompressed FN rep .

For coverage values 30 and 50, the fraction of repeated reads (set F N rep ) was relatively small, with the coverage by F N rep smaller than four. For example, for coverage 50, the coverage by F N rep is 3.5, the size of F N rep is 17MB, and total size of Bloom filters, false positive and false negative sets for F N rep is 16MB. Therefore, in this case, the additional compression is insignificant compared to the size of F N rep .

For coverage values between 75 and 150, which are common, for example, for bacterial sequencing data, we observed a significant additional compression of F N rep . Results are shown in Table 8.1. For both versions of compression (initial BARCODE and the one with our improvements) we provide the total sum of all data structure sizes to give some estimations on the total size, even though it is not correct to directly sum their sizes, as they can be compressed afterwards with different compression ratios.

The three of four last rows show sets that replace F N rep . Sets of false positives for filters storing F N rep turned out to be insignificantly small. First of all, as it was theoretically predicted, coverage of F N set is growing when coverage of S increases. Secondly, Table 8.1 shows that the larger F N rep is, the more significant improvement is. Finally, using Cascading Bloom filters for compressing F N rep set seems to be profitable for examined values of coverage. 

Discussion

Rozov et al. in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] showed that Cascading Bloom filters can be effectively applied to read compression problem. Interestingly, without utilizing a Cascading Bloom filter the presented technique does not show a good performance. Thus, there can also be another applications where Cascading Bloom filter can be a more efficient replacement of a standard Bloom filter.

In this chapter, we showed that the read compression method using Cascading Bloom filter can be made even more efficient, if we use the compression strategy recursively on the set of false negative reads. We experimentally demonstrated that compression of read sets with coverage values between 75 and 150 can be improved using this method. Finally, coverage values like 150 and higher possibly can benefit from using more than one filter in the cascade for F N rep .

Chapter 9

Algorithmic methods for metagenomic classification

Analysis of multiple genomes, "living" in some environment, is usually called metagenomics or community genomics. It became a popular and booming field of research in bioinformatics in recent years. In this work we concentrate on the problem of metagenomic classification with a given taxonomic tree, which represents the evolutionary relationships between various biological species based on their similarities and differences in their genetic characteristics. Thus, the goal of such classification is, for every given read, to find its origin in this tree.

Metagenomic classification can be regarded as a read alignment problem, with the only difference that sequences should be mapped to many genomes, not to one. Thus different solutions for read alignment problem can be applied (such methods, applied to metagenomic classification, are called alignment-based). Several specialized tools, like MEGAN [START_REF] Huson | Integrative analysis of environmental sequences using MEGAN4[END_REF], MetaPhlAn [START_REF] Segata | Metagenomic microbial community profiling using unique cladespecific marker genes[END_REF], MetaPhyler [START_REF] Liu | MetaPhyler: Taxonomic profiling for metagenomic sequences[END_REF], follow this approach, but they are not able to deal with metagenomic datasets of thousands and tens of thousands reference genomes, whose total length can be of billions and tens of billions base pairs. Using even the most efficient applications for NGS reads mapping as BWA [97], Novoalign1 , Bowtie [START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF] and many others can not provide sufficient speed for classification. One more obstacle is that read mapping tools usually find only alignments with a score close to the best alignment score and can not identify occurrences with lower quality.

Consequently, novel methods that avoid read alignment for classification should be developed. Such methods are called alignment-free and were actively studied in recent years. The majority of such methods are based on the analysis of shared words between reference genomes and sequences. One approach can be to analyse the frequency vectors, which is an array for every word containing the number of its occurrences in the sequence. However, such an approach usually requires too much memory and time to construct vectors and to compare them, thus in recent applications only the existence of every word (usually of fixed length, k-mer) in a string is taken into consideration, without information about the number of occurrences. This approach is shown schematically on Figure 9.1.

Generally, all k-mer based approaches implement the following steps:

1. extract k-mers from reference genomes and construct an index for them, 2. extract k-mers from reads one by one and query them against the index,

General approach k-mers

Read Index of k-mers queries "Is this k-mer in the genome?" yes/no Goal: es@mate the "likelihood" of a read to belong to the genome (assign a score) 3. based on matched nodes for all k-mers from the read, assign the read to a node in the taxonomic tree (or leave it unassigned).

Here we briefly list the most popular algorithmic techniques and metagenomic classification tools.

Although extracting k-mers and indexing them is the dominant basic method used in practice, there are some other algorithmic ideas worth to mention. One of them is based on the read assembly into longer contigs [START_REF] Pell | Scaling metagenome sequence assembly with probabilistic de Bruijn graphs[END_REF]. This method can significantly reduce the number of queried sequences, but it is sensitive to errors of assembly which should be done very carefully. At the same time, assembly step can be very expensive in terms of time and memory. Another possible improvement is to build an index not for all reference sequences, but for most informative regions only [START_REF] Berendzen | Rapid phylogenetic and functional classification of short genomic fragments with signature peptides[END_REF][START_REF] Liu | Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences[END_REF][START_REF] Segata | Metagenomic microbial community profiling using unique cladespecific marker genes[END_REF]. The problem of such an approach could be that it misses a big part of informative reads, leaving them unclassified.

The first popular k-mer based metagenomic classification tool was LMAT [START_REF] Ames | Scalable metagenomic taxonomy classification using a reference genome database[END_REF]. For every k-mer it stores the list of all nodes in the taxonomic tree that contain this k-mer. This correspondence is stored in a hash table with k-mers as keys and lists of node ids as values. Then, after find matching nodes for all k-mers from the read, the read itself is assigned to a "best matching" node in the tree. Optionally, LMAT can construct a reduced database for most informative k-mers only. The biggest problem of this tool is its huge memory requirements (hundreds of GBs for a bacterial genome database [START_REF] Tatusova | RefSeq microbial genomes database: new representation and annotation strategy[END_REF]).

Kraken [START_REF] Wood | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF] is, to our knowledge, the most widely used classification tool nowadays. It implements an approach similar to LMAT. For every k-mer in reference genomes, only the LCA (lowest common ancestor ) of nodes containing the k-mer is stored in a hash table. Kraken provides a very fast classification (partially due to storing k-mers with the same minimizer in the same place in memory), but requires huge memory (more than a hundred GBs for index construction and an index of size 70 GBs for the bacterial database mentioned above). Storing LCAs instead of full information about matching k-mers leads to one more drawback of Kraken, its lossy nature.

Both Kraken and LMAT use hash tables for storing a k-mers set. As it was discussed in Chapter 4, being extremely efficient in terms of query time (with appropriate implementation), such approaches have a very big memory footprint. To overcome this problem, recently many tools started to utilize BWT index to store k-mers.

Centrifuge [START_REF] Kim | Centrifuge: rapid and sensitive classification of metagenomic sequences[END_REF] is a BWT index-based classifier. After binarizing the taxonomic tree, for each pair of nodes it propagates similar subsequences up along edges of the taxonomic tree. Then it creates a BWT index (implementation from Bowtie2 [START_REF] Langmead | Fast gapped-read alignment with Bowtie 2[END_REF]). Reportedly, this leads to a very small memory usage, namely 4 GB index for a database of 4,300 prokaryotic genomes. However, similar to Kraken, some information is lost during merge of similar sequences step.

Kaiju [START_REF] Menzel | Fast and sensitive taxonomic classification for metagenomics with Kaiju[END_REF] is a protein level classifier based on a BWT index. Kaiju algorithm translates input reads in six possible reading frames and searches for maximum exact matches (MEMs) of amino acid sequences in a given database of annotated proteins from microbial reference genomes. Kaiju outputs the node in the tree if a match is found (the LCA of nodes if there are many equally good matches). The memory footprint of Kaiju is only 6 GB for the default database of bacterial, archaeal, and viral protein sequences.

Another idea of storing k-mers is to hash them in Bloom filter 3.2. This approach is implemented in FACS [START_REF] Stranneheim | Classification of DNA sequences using Bloom filters[END_REF] and CoMeta [START_REF] Kawulok | CoMeta: Classification of Metagenomes Using kmers[END_REF] classifiers. Both of them utilize only k-mer presence in reference genomes and do not take into consideration their frequencies. This approach also leads to large memory requirements (around 40 GB for bacterial database and k = 30 for CoMeta).

A more detailed comparison of different metagenomic classification tools can be found in multiple papers [START_REF] Lindgreen | An evaluation of the accuracy and speed of metagenome analysis tools[END_REF][START_REF] Randle-Boggis | Evaluating techniques for metagenome annotation using simulated sequence data[END_REF][START_REF] Ricke | Evaluating performance of metagenomic characterization algorithms using in silico datasets generated with FASTQSim[END_REF][START_REF] Peabody | Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities[END_REF][START_REF] Vinje | Comparing K-mer based methods for improved classification of 16S sequences[END_REF][START_REF] Pavlopoulos | Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies[END_REF]. • constructing a BWT index (see Section 3.5 for the details) with some additional data structures.

Below we describe each of the steps above in more detail.

Extracting k-mers from reference genomes For each leaf node in the taxonomic tree (with a corresponding reference genome) we extract all k-mers and remove duplicates. We do not add reverse complements of k-mers, as they will be processed during the next steps.

k-mers propagation This step is one of the key ideas of the whole algorithm. Usually, reference genomes share a huge number of k-mers, especially if there are many close relatives in the database under study. This leads to the idea of "propagation" of a k-mer K to the parent node if all its children contain K. In other words, all shared k-mers are propagated to parent nodes, and the total number of k-mers in all nodes decreases. An example of the propagation is shown in Figure 10.1. Here we come to the concept of k-mer forest: instead of storing a k-mer K in all nodes where reference genome contains K, we store only roots of subtrees where all leaves contain K. In Figure 10.1, we can see an example of k-mer forest for K = 5. This allows us to save on storing k-mers that occur in genomes of related species.

Assembly of k-mers After k-mer propagation, we aim to compress k-mer sets at every node. In order to do this we assemble k-mers into longer contigs, without loosing or adding any information, using the de Bruijn graph concept (see Section 6. Merging contings for all nodes into one FASTA file This step is straightforward: one big FASTA file containing all contigs for all nodes is created. Contigs for one node are put together in this file.

Constructing a BWT index with some additional data structures A FASTA file, described in Paragraph 10.2, is used as an input for a BWT index construction. We use BWA as BWT index implementation (see more details about the implementation in Section 10.6).

A detailed explanation of these construction steps can be found in [START_REF] Břinda | Novel computational techniques for mapping and classifying Next-Generation Sequencing data[END_REF].

Index query

Suppose we have a BWT index P constructed for a text T as described in Section 10.2 and a read R that we want to classify. Following the strategy, described in Section 9, we extract all k-mers from R and query them independently against index P . We call this type of search "restarted", as we query all k-mers independently and do not use the fact that two neighbouring k-mers share (k -1)-mer.

Here we describe how to query a k-mer K against index P . As P is, in fact, a BWT index, then the general query process consists of two steps:

• find a Suffix Array (or SA) interval (s, e) corresponding to K,

• translate every position from (s, e) to a position in the initial text.

In our case, we actually do not need exact positions in the text, but only the name of the node in the taxonomic tree. BWA provides a translation from the text position to the contig, so we need to add one more step to BWA to obtain the corresponding node in the taxonomic tree.

If a k-mer appears in the text, then the SA interval search works in O(k) time (see Section 3.5 for more details). Thus, the search of SA intervals for all k-mers in the read can be completed in O( k) time, where = |R| k. The second step of the query process is usually implemented using a sampled suffix array: if a current position in SA is sampled, then there is an explicit translation to the text position; if it is not sampled, then we move to the suffix array position corresponding to the previous position in the text, and repeat this operation until the current position is sampled. Finally, the answer will be the found text position shifted by the number of steps back.

It is also important that both parts of the query process require a significant time if the k-mer appears in the text.

We found two inefficient parts in the reasoning above:

• the restarted search of k-mers is not efficient as we do not use the information that two consecutive k-mers share k -1-mer,

• we do not need exact positions in the text where a k-mer appears, therefore we can reduce information that has to be stored in the index.

In Sections 10.4 and 10.5 we address both these problems.
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Improvements of query algorithm

Recall that a query in a BWT index consists of two steps: search for a SA interval and translation of SA positions to text positions. First, let us focus on finding a Suffix Array interval. Suppose that we are querying two k-mers k 2 and k 1 of the form Xb and aX, where X is a (k -1)-mer and a, b ∈ Σ. Recall from Section 3.5 that in a BWT index search is done in the backward direction, therefore we first query Xb and then aX. If (s b , e b ) is a suffix interval corresponding to k 2 = Xb, then the suffix array interval for X is (s X , e X ) satisfying s X ≤ s b and e b ≤ e X , because X and k 2 share the same prefix X. The procedure of obtaining (s X , e X ) from (s b , e b ) can be regarded as removing the last character from the pattern.

Below we describe a data structure called kLCP that can be used for removing the last character from the pattern during search in a BWT index. 

kLCP [i] = LCP [i] if LCP [i] ≤ k -1 k, otherwise
Definition 10.4.2. Define kLCP 0-1 as

kLCP 0-1 [i] = 0 if LCP [i] < k -1 1, otherwise
Using LCP , removing the last character can be performed in the following way: decrease s while LCP [s] ≥ |X| and increase e while LCP [e + 1] ≥ |X|, and the interval obtained will be exactly the suffix array interval for X. As for all our queries |X| ≤ k -1, then LCP can be replaced by kLCP in this process. Moreover, if |X| = k -1, then removing the last character can be performed using kLCP 0-1 instead of LCP as we need to know only whether kLCP [i] ≥ k -1 or not.

kLCP and kLCP 0-1 can be constructed in linear time if LCP is known in advance. There exist many linear-time algorithms for LCP array construction, and both kLCP and kLCP 0-1 can be constructed in linear time too. Below we present another algorithm for kLCP 0-1 construction that uses only a part of the BWT index.

Lemma 12. Given a text T of length n and a BWT index for T , kLCP 0-1 can be constructed in O(nk) time in the worst case using no additional memory.

Proof. We will construct kLCP 0-1 with enumeration through all (k -1)-mers and trying to find them in the BWT index. If at some step we obtain empty SA interval, then we stop this branch of backtracking (this is the first heuristic). If some SA interval contains only one element, we also stop this branch (this is the second heuristics).

If we find a (k -1)-mer in the BWT index, and the SA interval is of size at least 2, we set ones to the corresponding elements of kLCP 0-1 . Finally, we set all remaining elements of kLCP 0-1 to zero. Let us prove that in the worst case, this algorithm works in O(nk) time. The whole backtracking can be considered as traversing a tree. We can stop at a node V with the corresponding SA-interval (s, e) for two reasons:

• s > e (the SA interval is empty). In this case some non-stopping (or stopping by the second heuristics) branch of backtracking contains the parent of V . The number of branches non-stopping or stopping by the second heuristics is up to n, so the number of nodes where we stopped backtracking is up to nk (the number of nodes in non-stopping branches) multiplied by 4 (size of alphabet).

• s = e. For each such branch there is an element in SA, so the number of nodes in such branches is up to nk again.

Finally, we can traverse up to 4nk + nk + n = O(nk) vertices in the tree, and this proves the lemma.

In Figure 10.2 the traversing of a tree is shown schematically.

It is worth to note that we actually do not use the whole BWT index in Lemma 12: for example, the sampled Suffix Array is not used.

The algorithm from Lemma 12 can be easily parallelized as it works independently for all k-mers. This algorithm requires memory for storing kLCP 0-1 itself and for a part of BWT index, and does not require the Suffix Array or the full LCP array.

To continue with the kLCP construction algorithm, we need to prove several statements.

Lemma 13. For two strings P 1 and P 2 , corresponding suffix array intervals either do not intersect or are enclosed one to another. CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 83 Proof. If one of the strings (for certainty, P 1 ) is a prefix of P 2 , then obviously suffix array interval of P 2 is enclosed into suffix array interval of P 1 . Otherwise, they can not intersect.

Lemma 14. Given a text T of length n and a part of BWT index for T (namely, the BW T string and data structures supporting count and rank operations), kLCP can be constructed in O(nk) time in the worst case using no additional memory.

Proof. Let us follow the algorithm described in Lemma 12. Both heuristics there can be used for kLCP construction too. The only step that changes is filling the kLCP array: in Lemma 12 we put ones in kLCP 0-1 if and only if some (k -1)-mer is found during the search, whereas for kLCP construction we need to distinguish all patterns of length from 1 to k -1.

We need to prove that this increased number of insertions into the kLCP array does not affect the working time asymptotics. As it follows from Lemma 13, for a fixed length , SA intervals for two different strings of length can not intersect. This means that for a fixed , we can make up to n insertions in kLCP , and overall for lengths 1 ≤ ≤ k -1 number of insertions is up to nk, and thus the construction time of kLCP remains O(nk).

Using kLCP array for removing the last character

On the one hand, using kLCP for removing the last character during pattern search in a BWT index is straightforward: given a SA interval (s, e) for pattern Xa where |X| ≤ k -1, we can decrease s while kLCP [s] ≥ |X| and increase e while LCP [e + 1] ≥ |X|, and the new interval (s X , e X ) will be the SA interval for X. On the other hand, the working time of this naive algorithm is O(|s -s X | + |e -e X |), and if X appears in the text many more times than Xa, then the naive algorithm can be time-consuming. Decreasing s while kLCP [s] ≥ |X| can be viewed from another side: for a given s to find a maximum s X ≤ s such that kLCP [s X ] < |X|. In this formulation, this problem can be solved using a data structure supporting rank and select operations: first, find the number t = number of s < s such that kLCP [s ] < |X| and then select the index s X such that s X is the t-th position satisfying kLCP [s X ] < |X|. The same statement holds for the kLCP 0-1 array. Thus, we proved the following lemma: Lemma 15. The last character of a k-mer can be removed and the suffix array interval of the corresponding (k -1)-mer can be updated in O(1) time with use of kLCP 0-1 augmented by an auxiliary data structure for fast rank and select operations.

Using the approach described above, we perform search of k-mers one by one in the backward direction. If the SA interval for a k-mer k 2 is not empty, then we remove the last character of k 2 and then in O(1) obtain the SA interval for the next k-mer k 1 . We call this approach the rolling window search.

In Section 10.6 we show that using kLCP 0-1 improves the working time of the SA interval search. We also show how to efficiently store kLCP without using rank and select operations.

Speeding up SA-to-text translation

Suppose that there is only one occurrence of each consecutive k-mers aX and Xb at positions i and j of the text. Obviously, it is very likely that they appear at consecutive positions of the text (this is true even for a random text for a sufficiently big k). The CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 84 statement above remains true even if there are multiple occurrences of k-mers. This means that after we found position(s) of Xb in the text, we can avoid the translation of SA positions for aX in most cases.

Our goal is, given SA intervals for aX and Xb ((s a , e a ) and (s b , e b ) correspondingly), and text positions for Xb (array Q), to find text positions for aX. A first obvious idea is to prove that if e a -s a = e b -s b (in other words, there is equal number of occurrences of aX and Xb in the text), then positions of aX can be obtained from positions of Xb by shifting them by 1. However, this is not correct. Let T = T ACT ACGT CGT, a = A, X = C, b = G. Then there are two occurrences of aX = AC at positions 2 and 5, and two occurrences of Xb = CG at positions 6 and 9. Thus, there are equal number of occurrences of AC and CG, but only at positions 5 and 6 they appear together, while the other occurrences of these k-mers are far one from another. This, in some sense, proves that if we use the restarted search, then the information about k-mers (SA intervals) is not enough to speed up translation SA positions to text positions. But for the rolling window search speeding up SA-to-text translation is possible, which is proved in the following lemma: Lemma 16. Let (s a , e a ), (s b , e b ) and (s X , e X ) be SA intervals for aX, Xb and X correspondingly found during the rolling window search. Then, if e a -s a = e b -s b = e X -s X then the positions in the text where aX appears can be obtained from the positions for Xb by shifting by one position to the left.

Proof. Every time when aX or Xb appear in the text, X also appears there. Thus e X -s X ≥ e a -s a and e X -s X ≥ e b -s b . Suppose that at some position aX is not followed by b, then there are at least e a -s a + 1 occurrences of X in the text. So the opposite is correct, and aX and Xb appear at consecutive positions in the text.

Applying Lemma 16 to the translation step during the rolling window search we can reduce the time of the translation, as shifting positions by one is much more lightweight operation than translation using sampled Suffix Array. In Section 10.6 we will show that ideas described in this section improve working time significantly in practice.

Memory usage improvement

As it was mentioned in Section 10.3, for our purposes we do not need exact text positions where k-mers appear, but only corresponding taxonomic node identifier. A sampled Suffix Array used for the translation from SA positions to the text positions can be replaced by a more lightweight data structure that allows a direct translation to node ids.

For this part it is important that in our case the "text" is a concatenation of several contigs without any separator between them. Consecutive contigs belong to the same node from the taxonomic tree. An example of such a text is shown in Figure 10.3.

One idea is to store not a text position but a corresponding node_id (we call this array node id array) for every sampled position of suffix array. We call this new array, storing only node ids instead of text positions, node_id array further in the text. Then, the translation can be done in the same way as for a sampled suffix array: move to the previous text position until we find a sampled position, and the answer will be the node id corresponding to this position. Such an approach can return a wrong node id in several situations: if while moving backward in the text we cross a border of two nodes, then the answer will be wrong. Another problem is that every found position should be checked whether the k-mer spans the border of two consecutive contigs (and should not be in the output in this case). However, we can check whether a position is at the border of two contigs only if we have exact text positions. If we translate SA positions directly to node ids then a direct check becomes impossible. In Figure 10.3 k-mer K spans the border of two contigs, and should not be in the output of the query. However, even such a naive approach can sometimes provide good results (in other words, the error rate may be small). Imagine, for example, a text of length 10 6 that consists of 1000 contigs of equal length, and there are 10 nodes each including 100 contigs. Let every 10th position be sampled in the suffix array. At each border of two contigs we will return an incorrect answer for 10 positions in average, and overall for approximately 10 • 999 = 9900 positions the node id will be wrong. Thus, the probability of an error for such an input is only 9900 10 6 ≈ 0.01. Further in this section we will construct a more sophisticated data structure that avoids the problems described above.

Let T be a text of length n, SSA the sampled suffix array with sampling distance s and let l be the number of contigs which T consists of and m number of nodes. SSA can be stored in two very different ways:

1. sample every s-th position of the text

sample every s-th position in Suffix Array

The main difference is that in the first version the distances between consecutive sampled positions are equal (and the distances between concescutive sampled SA positions are different), and vice-versa for the second version.

Let SA -1 be the inverse of SA (such that SA -1 [SA[i]] = i). Algorithm 5 describes the usual process of translation from SA positions to texts position.

Checking whether a SA position x is sampled or not is different for different types of SSA: for the second version it is obvious (we just check x mod s = 0 or not), whereas for the first version we need to store a data structure supporting rank and select operations. x = SA -1 [SA[x] -1] (in other words, suffix index that corresponds to previous position in the text, it is found using BW T ) 5: steps = steps + 1 6: end while 7: Output: SSA[x] + steps It is easy to see that the second variant of SSA occupies less memory and is faster than the first one at the price of the worst case.

For a position t in the text let next(t) be the next sampled position of the text.

Actually, both problems with the node_id array described above come from the same source: we do not know exact positions in the text and can not compare them with contig borders. The basic idea of our solution is to store contig borders in another way, i.e., if b 1 , b 2 .. are contigs borders between t and next(t) (for uniqueness, including t and not including next(t)), then we store pairs (t, b 1 -t), (t, b 2 -t)... To maintain a common enumeration, let the border between positions x and x + 1 be x. As t is a sampled position, then this is equivalent to storing set of (key, value)

pairs C = (SA -1 [t], b 1 -t), SA -1 [t], b 2 - t).
.. Below we show how this set of (key, value) pairs can be stored efficiently.

Suppose that there is at most one contig border between any pair of sampled positions (t, next(t)). As it was mentioned above, the first type of SSA implementation is usually slower and less memory efficient than the second one. For example, BWA, which we use in ProPhyle, implements the second variant of SSA. Below we will describe how to replace SSA with a node_id array for the second type of SSA. However, same statements, with small and rather technical changes, apply to the first type of SSA too. Here we utilize the fact that all contigs belonging to one node are grouped together in the text. Also we assume that sequences corresponding to different nodes are concatenated in the predefined order (in other words, we have a correspondence between node identifiers CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 87 and nodes in the taxonomic tree). In Algorithm 10.5 we also use some properties of the BWT index implementation from BWA, namely, the fact that contigs are concatenated without any separators, thus in our case k -1 positions at the border of two contigs are false positives. Under the discussed constraint, Algorithm 10.5 can determine a correct node id: Lemma 17. The algorithm described in 10.5 returns a correct node id if and only if there is up to one contig border between t and next(t) for any sampled text position t.

Proof. One part of this statement is obvious: if all positions in contig i are not sampled, then if a k-mer appears at the first position of contig i + 1, Algorithm 5 can find (i -1)-th contig as an answer, and the algorithm will not return the correct answer.

The second part of the statement is also easy to prove: as the BWT implementation of BWA just concatenates contigs together without separators, and exactly k -1 positions on the border are forbidden, then this situation corresponds to the second case of Algorithm 10.5. Positions to the left of the border belong to the node node_id[x], and to the right of the border -to the node node_id

[SA -1 [next(SA[x])]].
As we are working with the second type of SSA, then there is no upper bound for values of the array D. This means that each element of D occupies log n bits of memory, and overall D occupies n s log n memory, which is equal to the SSA memory usage. However, we know that the average value of D[i] is s which means that we can store D more compactly. Below we show how to do that.

Storing D compactly

The idea is to store only those distances D[i] in the array D cut [i] which do not exceed some predefined constant d max , and if D[i] ≥ d max -2 then to store -2. In other words, we replace D with D cut defined as Definition 10.5.2.

D cut [i] = D[i], if D[i] < d max -2 -2, otherwise.
Array D cut allows us to use the same algorithm to determine node id from a SA position, but we introduce one more type of errors at the border of two contigs: if the distance between two sampled positions in the text is too big (more than d max -3), then we may return an incorrect node id. For such sampled positions, we store values of D which exceed d max -3 explicitly in a hash table or a sorted list E.

The smaller is d max , the smaller values are stored in D cut , but the bigger is the size of E, and vice-versa. Thus, we need to find a trade-off between the size of D cut and the size of E by choosing an appropriate value of d max . Below we analytically evaluate the optimal value of d max and the sizes of D cut and E. In Section 10.6 we also provide some experimental results confirming our idea.

We can store E as a sorted array, containing pairs (x, d), where x is a sampled position in the suffix array and d is the distance to the nearest contig border to the right. As 1 ≤ x ≤ n and 1 ≤ d ≤ n, then we need 2 log n bits of memory for each entry of E. For each entry of D cut we need log d max bits of memory. The default value for s is usually 32 (BWA also uses it). We numerically computed the optimal value of d max for n = 10 9 (typical value for our applications) using Lemma 19 and obtained d max = 187. Then the optimal size of D is n s log d max ≈ 0.23n, and the optimal size of E is |E| = 2e -dmax s

• n s log n ≈ 10 -4 n log n. Now we show how to solve the two remaining issues: the first one concerning multiple contig borders between t and next(t), and the second one about finding the correct node id for next(t) from Algorithm 10.5.

Multiple contig borders between t and next(t)

Let us return to the initial formulation of the problem: there is a set C consisting of pairs (x, d) where 1 ≤ x ≤ n s and -2 ≤ d < d max -2 (remember that we store pairs with d ≥ d max in a separate structure, so we can consider that -1 ≤ d < d max ). Moreover, there is at least one value associated with every key x. As we showed above, if there is at most one value associated with every key, then we can store them in the usual array optimally.

When there is more than one value associated with some keys , we use a standard trick to store C: we sort all pairs from C in the ascending order to obtain a sorted array C sorted (first sorted by keys, and if keys are equal then sorted by values), and store only values of all pairs in the array D cut (we will use the same name for clarity) in the same order. Additionally we store a bit array K that contains |C| values: for every index 1 ≤ i ≤ |C| we store 1 if C sorted [i].key = C sorted [i -1].key (here we assume C sorted [-1] = (-1, -1)). On top of K we store a compact data structure that supports a fast select operation, i.e., for a given i finds i-th 1 in K. We call K together with this auxiliary data structure K select . K select occupies only |K| + o(|K|) bits and performs select operation in O(1) time (see, for example, [START_REF] Clark | Compact Pat Trees[END_REF][START_REF] Munro | Tables[END_REF]).

Everything proved in Section 10.5 remains true when we switch from D cut for the single-border case to D cut augmented by K select .

Correct node id for next(t)

The last issue to be solved is to determine a correct node id when we cross the border in Algorithm 10.5. The idea is to store one bit showing whether crossing the corresponding border changes the node id or not for every entry of C. For every t the position next(t) belongs to the same node or to the next one, thus for every entry one bit is enough to store this information, and we store them in array B. Algorithm 10.5 can be modified accordingly to support multiple borders for the same sampled position and to identify node id correctly.

Overall, we replace the sampled Suffix Array with the following data structures: node_id array, D cut array, E (sorted list or map), K select and B. Let us describe an example of obtained data structures. Suppose we have 4 contigs of length 20, 30, 15 and 35 correspondingly. Let first two of them belong to the first node and the others to the second node. We enumerate all positions starting from 0 (so the last one will be 99). Let the sampling distance s be 32, and let positions 15, 30, 70 and 90 be sampled. Assume that they correspond to Suffix Array positions 0, 32, 64 and 96 correspondingly (in reality, the order can be different). We will use numbers 0, 1, 2 and 3 to index sampled positions 15, 30, 70 and 90, respectively. Finally, let k (the length of k-mers) be 4 and d max be 25. ). Note that 34 > d max -3, so we add the pair [START_REF] Kucherov | Approximate string matching using a bidirectional index[END_REF][START_REF] Bloom | Space/Time Trade-offs in Hash Coding with Allowable Errors[END_REF] to E (hash table or sorted list, for example). Then we store the rest of the pairs in the array as 4, 19, -2, -1, -1. As every entry in this array, except the third one, corresponds to a new sampled position, then the bit array K will be 1, 1, 0, 1, 1. Finally, the array B described above will look like 0, 1, 0, 0, 0, as only for the second sampled position the next contig belongs to the next node.

Obtained data structures are shown on Figure 10.4.

Memory improvement estimation

Altogether, for s = 32, data structures D cut , E, K select and B occupy approximately 0.23n + 10 -4 n log n + 2n 32 + 2g + o(n) s bits of memory. node_id array itself occupies n s log m bits of memory, where m is the number of nodes (thousands or tens of thousands in our case) and g is the number of contigs. Let us compare it with the memory needed for the sampled Suffix Array, which is n s log n bits. Assume that s = 32. In terms of bits used per one character of the text, our structures occupy A = log m 32 + 0.23 + 10 -4 log n + 1 16 + 2g n bits per character, and the sampled Suffix Array occupies B = log n 32 . A typical value of n for our inputs is of order of 10 10 , the number of nodes m is of order of 10 4 , and the average contig length is around 100, thus g ∼ n 100 . For n = 10 10 , log n ≈ 33, and thus positions are stored in 64 bits in practice (for example, BWA stores values of sampled Suffix Array 

Experimental results

In this section we provide experiments on ProPhyle index properties. First, in Section 10.6.1 we introduce the way we store the kLCP array. Then in Section 10.6.2 we measure the index query speed and the influence of query improvements, described in Section 10.4. In Section 10.6.3 we reveal some experimental properties of the kLCP array. In Section 10.6.4 we find out how using of Node ID array instead of Suffix Array influences the memory usage and the time performance. Finally, in Section 10.6.5 we provide experimental properties of the whole ProPhyle index.

For all our experiments we use the RefSeq database containing 2787 bacterial genomes [START_REF] Tatusova | RefSeq microbial genomes database: new representation and annotation strategy[END_REF]. We generated reads using dwgsim (https://github.com/nh13/DWGSIM) simulator (options dwgsim -1 100 -2 0 -e 0.02 -C 0.1). All experiments have been done on a computer with Ubuntu, 24 cores and 64 GB of memory.

Storing kLCP array

In Section 10.4 we briefly mentioned two ways of storing the kLCP array. A naive approach is to store a bit array and iterate over its elements one by one in order to extend a SA interval. This approach is straightforward and easy to implement, however, if the SA interval can be extended significantly, then this naive approach can be slow. The second idea is to store an auxiliary data structure supporting rank and select operations to be able to find new SA interval borders in O(1). This approach requires an additional memory and may be slower than the naive algorithm when extensions are generally small.

Here we present another way to store the kLCP array (see Figure 10.5 for reference). First, for practical reasons elements of the kLCP bitarray are grouped in blocks of p elements (usually, p is 8, 16, 32, 64 or 128). We choose p to be 16 and for every possible value of the block (from 0 to 2 16 -1) we compute the place of the first and the last zero bits in its bit representation. Then, while extending a SA interval (s, e), we iterate over blocks, not individual bits, and for every block check whether it has zero bit or not to the left or to the right of s or e. If it does, then the result is the adjacent bit to the first or last zero (depending on the direction of the extension) in this block. Otherwise we move to the next block. This algorithm requires just 2 16 • 4 • 2 < 10 6 bytes of memory to store the first and the last zero bits for every block. This approach is faster than the naive one for big SA interval extensions, and it is faster than the second algorithm described above in the case of considerably small extensions. Finally, in the case of metagenomic classification, when extensions are generally small, this algorithm can be a good way for storing kLCP .

Experiments on query time

In this section we measure the efficiency of query improvements, introduced in Section 10.4.

First, recall that a BWT query consists of two parts: finding a SA interval (s, e) and translation of every position from (s, e) to a text position. In some border cases, one of these steps can take much more time than the other one. Suppose that, in some artificial experiment, for every queried k-mer we stop the query on (k -1)-mer because of the empty SA interval. Then the translation step will not be used at all, so the SA interval search will occupy 100% of time. On the other hand, it is easy to imagine an input when the translation step takes much more time than the SA interval search: suppose that the text is big enough and random, and we query k-mers with a very small k. Then SA intervals found on the first step will be very big, and the translation will be extremely slow. However, both these situations (and many others) are not usual cases when we deal with the metagenomic classification problem, as many k-mers will be found in the index. At the same time, due to the propagation, for big enough values of k SA intervals will be rather small. These considerations, in some sense, prove that both improvements, described in Section 10.4, CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 92 can significantly reduce the query time in practice.

Query speed for different query algorithms are shown in Table 10.1: the basic one, the one using kLCP for SA search, and the one with both improvements. It is clear that both improvements improve the query speed, and together they make queries 2.5 times faster. Table 10.1: Query speed (in reads per minute) for different query algorithms.

Algorithm RPM basic 190000 using kLCP for SA search only 234000 using kLCP both for SA search and for sa-to-text translation 434000 10.6.3 kLCP properties

In this section, we experimentally study statistical properties of kLCP array. They are interesting from two points of view. First, they allow us to better understand how to store and query kLCP array. Secondly, they may lead to a better understanding of the whole index.

First, we calculate the distribution of ones and zeros in the kLCP array and the average length of a consecutive run of ones for different values of k. The results are presented in Table 10.2. 10.3, we observe that the number of ones decreases when k increases. Moreover, the percentage of ones is 94% for k = 16 which can be explained by the fact that many 16-mers appear multiple times in the text as k is quite small. For k = 20 the percentage (35%) is much lower.

The average length of consecutive ones is big for k = 16 and is almost the same for k = 20, 24, 31. Moreover, the average length even increases insignificantly. The latter may be due to the fact that "random" (and thus single) ones disappear when k increases from k = 20 to k = 31, while "real" ones are almost the same for k = 20, 24, 31.

Next, we use kLCP to query simulated reads, and calculate the average SA interval extension length while removing last character. The results for different values of k are shown in Table 10.3. 10.2 and 10.3 show that, with increase of k, the average number of ones, the average length of a run of ones and, most importantly, the average extension of SA interval decrease. Thus, the bigger k we use, the faster the removal of the last character works.

Experiments on Node ID

We implemented a basic version of node_id array, replacing a sampled Suffix Array. Instead CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 93 of storing a correspondence between SA positions and text positions, for every sampled SA position we store corresponding node id. In our implementation, every entry of Suffix Array occupies 64 bits (as it does not fit into 32 bits provided by int32 type), while node_id array elements can be stored in 16 bits, as number of nodes is only 2787. Thus, node_id requires less than 1 GB of memory in comparison to Suffix Array occupying more than 3 GB.

As it was discussed in Section 10.5, Suffix Array replacement by node_id array can lead to incorrect results in two cases:

1. some SA positions can be translated to a wrong node id, as a border of two nodes can be passed while moving backward in the text, 2. positions on a border of two consecutive contigs should be excluded from results, which is impossible with node_id array, as contig borders can not be checked without knowing exact text position.

We queried simulated reads against the index for values of k = 20, 24, 31. For every position in Suffix Array that we translated to a node id, we compared the translation using the sampled Suffix Array (that is always correct) to the translation using node_id array. There are three possibilities:

1. the corresponding k-mer spans a border of two consecutive contigs (this corresponds to error described in case 2 above), 2. the resulting node ids are different (see 1), 3. they are the same (this number should be close to 100% if node_id can replace Suffix Array without the big number of false answers).

The results of these experiments are presented in Table 10.4. 10.4, we can see that the percentage of wrong node ids is very low. The primary reason for this is that the number of nodes (2787) is very small in comparison to size of the text (≈ 10 10 characters for bacteria dataset [START_REF] Tatusova | RefSeq microbial genomes database: new representation and annotation strategy[END_REF]). Thus, the probability that we cross the border of two nodes moving backward using the sampled Suffix Array is very small.

The number of situations when we cross the border of two contigs is much bigger. Partially this can be explained by the fact that the number of contigs (of order of 10 8 in our case) is much bigger than the number of nodes. With k increasing from 20 to 31, the percentage of k-mers that span borders becomes significantly lower. We believe that this is due to the fact that most such situations are caused by "random" matches. k-mers spanning a border of two contigs are in some sense random, as they appeared as a concatenation of the end of one contig and the beginning of another contig. As a consequence, using just the node_id array instead of the sampled Suffix Array leads to a significant memory usage reduction, while almost not affecting the results of classification as a small number of these random k-mers spanning the border will not change lists of matching k-mers for nodes in the tree significantly. 

Experiments on ProPhyle index

For the current implementation, the index construction for the bacteria dataset [START_REF] Tatusova | RefSeq microbial genomes database: new representation and annotation strategy[END_REF] for k = 31 takes around 5 hours. The main reason is non-parallel algorithms used during many steps of construction. The most memory-consuming step is BWT transform (around 2 hours). The kLCP array construction takes around 1.5 hours. We believe that the construction time can be strongly reduced as kLCP construction algorithm can be easily parallelized.

ProPhyle can classify around 434000 reads per minute (RPM) (this time does not include index loading time). This time is achieved using the rolling window search. The restarted search works around 2.5 times slower (190000 RPM). This time includes only reads query time, and does not include time needed for the classification.

Memory usage during ProPhyle index construction is 13 GB (for example, Kraken [157] uses 120 Gb). For queries, ProPhyle occupies 12.4 GB in case of restarted search and 14.2 GB for rolling window search. More details about the space occupied by different substructures are provided in Table 10.5. Main ProPhyle repository is https://github.com/prophyle/prophyle. Index construction and query described in this manuscript are implemented in https://github. com/prophyle/prophex. A comparison with Kraken [START_REF] Wood | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF] can be found in [START_REF] Břinda | Novel computational techniques for mapping and classifying Next-Generation Sequencing data[END_REF].

Discussion

We introduced several data structures that are used in our metagenomic classification tool called ProPhyle. Our BWT-index-based solution utilizes only a small amount of memory and, at the same time, allows for fast queries. Moreover, our index is lossless, storing a full information about k-meran approach to approximate string matching that relies on a bidirectional index of the text presence in the reference genomes.

We believe that ProPhyle, being extensively developing, can be refined further in many directions. From the performance point of view, index construction, query speed and memory footprint can be improved.

The index construction can be strongly speeded up as non-parallel algorithms are used in most steps. The most time consuming index construction step is the calculation of BWT. As it was stated in Section 10.6, the construction of a kLCP array occupies significant time. In Section 10.4 we mentioned that our construction algorithm is easily parallelizible, and this may significantly reduce the construction time.

Full implemetation of node_id array can significantly reduce the memory used by a whole index, while providing the same results. Moreover, taxonomic tree binarization and better k-mer assembly can improve memory usage even further.
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 412 Sensitivity is the ratio of correctly mapped reads to all reads that should be mapped, i.e. Sn = |T P | |T P |+|F N | . Definition 4.1.3. Specificity is the ratio of correctly unmapped reads to all reads that should not be mapped, i.e. Sp = |T N | |T N |+|F P | .
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 423 For two strings S = S 1 . . . S n and T = T 1 . . . T m , the edit distance is the minimum length of a series of edit operations, that transforms S into T . Operations allowed are• substitution: replace a single character in S with another one• insertion: insert any single character at any place in S• deletion: remove any single character from S.
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 51 Figure 5.1: The tries representing the searches of Lam et al. for binary alphabet {a, b}, search string P = abbaaa, and number of errors 2.Each trie represents one search and assumes that all the enumerated substrings exist in the text T . In an actual search on a specific T , each trie contains of a subset of the nodes, depending on whether the strings of the nodes in the trie appear in T . A vertical edge represents a match, and a diagonal edge represents a mismatch.
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 52 Figure 5.2: Non-deterministic automaton corresponding to the search S = (12, 00, 02) and pattern P = bbabab over the alphabet Σ = {a, b}. A path from the initial state q 0 to the state in the i-th row and j-column of the automaton correspond to a string with edit distance i -1 to P [1..j -1]. The nodes of the set Q 4 are marked by gray.

  For a partition Y of a substring P = P [m ..m ] of pattern P , we define the following quantities: m Y is the length of P , l Y is the length of the last part of Y , p Y is the number of parts in Y , and q Y is the left-to-right rank of the part of Y containing P [m -N + 1]. Let prefix(Y ) be the partition of P [m ..m -l Y ] of P that is composed from the first p Y -1 parts of Y . For the example above, m Y 1 = 8, l Y 1 = 2, p Y 1 = 3, q Y 1 = 2, and prefix(Y 1 ) is a partition of P [1..6] with parts sizes 3, 3.

Lemma 7 .

 7 For m ≤ m, 2 ≤ p ≤ p, and a partition Z of P [max(m -N + 1, 1)..m ] with at most p parts, v(m , p , Z) = min Z v(m -l Z , p -1, prefix(Z )) + ∆(Z , p ) where the minimum is taken over all partitions Z of a substring P [m ..m ] of P that satisfy the following: (1) Z is compatible with Z, (2) 2 ≤ p Z ≤ p , (3) m prefix(Z ) = min(N, m -l Z ), (4) p Z = p if m = 1. An algorithm for computing the optimal partition follows from Lemma 7. The time complexity of the algorithm is O (|S|kN + m) min(p-1,N ) j=1 (p-j) N -1 j-1 , where |S|kN min(p-1,N ) j=1 (pj) N -1 j-1 is time for computing ∆ values, and O m min(p-1,N ) j=1

Lemma 8 .

 8 (i) Every string A of weight k and length at least k + 2 is simple. (ii) If A is a non-simple string of weight k and length k

Theorem 9 .

 9 α(k, k + 1) = 013355 • • • kk for every odd k, and α(k, k + 1) = 02244 • • • kk for every even k.
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 71 Figure 7.1: Results for 10M E.coli reads of 100bp using several values of k. The 1 Bloom version corresponds to the one presented in [126]. (a) Size of the structure in bits used per k-mer stored. (b) Number of false positives stored in T 1 , T 2 or T 4 for 1, 2 or 4 Bloom filters, respectively. (c) De Bruijn graph construction time, excluding k-mer counting step. (d) De Bruijn graph traversal time, including branching k-mer indexing.
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 72 Figure 7.2: Results for E.coli reads of 100bp using k = 27. The 1 Bloom version corresponds to the one presented in [126]. (a) Size of the structure in bits used per k-mer stored. (b) Number of distinct k-mers.
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 81 Figure 8.1: Encoding of read set S with a reference genome G.
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 91 Figure 9.1: Extraction of k-mers and construction of an index.
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 101 Figure 10.1: Propagation of k-mers. k-mers in transparent font are propagated to the parent. k-mer forest is shown for K = 5.
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 41 kLCP array Recall that LCP of a string T of length n is the array of integers such that LCP [i] is the length of the longest common prefix of T [SA[i -1]..n -1] and T [SA[i]..n -1], where SA is the suffix array of T . Definition 10.4.1. Define a kLCP array as
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 10102 Figure 10.2: kLCP 0-1 construction. The tree represents backtracking process, where each nodes corresponds to extending the pattern by one character. If at some node the SA interval (s, e) contains zero or one element, we stop this branch of backtracking -such nodes are red.
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 10103 Figure 10.3: Text consisting of several concatenated contigs. Consecutive contigs belong to the same node from the taxonomic tree. Red horizontal line represents a k-mer K on the border of two contigs.
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 10 DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 86 Algorithm 5 SA position to text translation 1: Input: BWT, sampled suffix array SSA, starting SA position x 2: steps = 0 3: while x is not sampled do 4:
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 1051 Define an array D of size n s as D[i] = -1, if sampled positions SA[i • s] and next(SA[i • s]) belong to the same contig b -SA[i • s] (where b is a border position between SA[i • s] and next(SA[i • s])), otherwise. If x and steps are values found by Algorithm 5, then there are two possibilities: 1. D[x] = -1: there is no contig borders between SA[x] and next(SA[x]), and the node id is node_id[x], 2. D[x] ≥ 0: (a) steps < D[x] -k + 1: return node_id[x], (b) D[x] -k + 1 ≤ steps ≤ D[x]: position is at the border of two contigs, it should not be present in the output, (c) steps > D[x]: return node_id[SA -1 [next(SA[x])]] (we will explain how to get id of next(t) later).

s

  • 2 log n + log d. The minimum is achieved when 0 = g (d) = 1 d -1 s e -d s • 2 log n, which is equivalent to de -d s = s2 log n . Let d = cs, then for c holds ce -c = 1 2 log n , which proves the statement of the lemma.
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  First, node_id[0] = 1, node_id[1] = 1, node_id[2] = 2 and node_id[3] = 2. Between positions 15 and 30 there is one border (at position 19), between positions 30 and 70 there are two borders (at positions 49 and 64) and between positions 70 and 90 there is no borders. Then, we need to store four (key, value) pairs describing borders: (0, 19 -15) = (0, 4), (1, 49 -30) = (1, 19), (1, 64 -30) = (1, 34), (2, -1) and (3, -1

Figure 10 . 4 :

 104 Figure 10.4: Example of data structures, replacing sampled Suffix Array.

Figure 10 . 5 :

 105 Figure 10.5: Storing kLCP array as blocks of 8 bits. First and last zero bits are red and green correspondingly. To extend the interval (s, e), we need to find the first zero to the left and to the right.
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  -Wheeler, dans le cadre de notre application. Presentations i) Kamil Salikhov, and Gustavo Sacomoto, and Gregory Kucherov. "Using cascading Bloom filters to improve the memory usage for de Brujin graphs." Seminar at MSU, Moscow (Russia), February, 2014. Some bioinformatic problems . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Read alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Genome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Metagenomic classification . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Sequencing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	5
	Contents -Part I
	1 Motivation and overview
	1.1 2 Biological context
	2.1
	Part I
	Introduction

3 Basic data structures 3.1 Hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Bloom filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Suffix tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Suffix array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 BWT index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Bidirectional BWT index . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 1

  Spaced seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Methods based on suffix tree-like structures . . . . . . . . . . . . . . . . . . Bidirectional search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Analysis of search schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Estimating the efficiency of a search scheme . . . . . . . . . . . . . . 5.3.2 Uneven partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 Computing an optimal partition . . . . . . . . . . . . . . . . . . . . 5.4 Properties of optimal search schemes . . . . . . . . . . . . . . . . . . . . . . 5.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Numerical comparison of search schemes . . . . . . . . . . . . . . . . 5.5.2 Experiments on genomic data . . . . . . . . . . . . . . . . . . . . . . 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Contents -Part II
	4 Algorithmic methods for read alignment
	4.1 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2 Read alignment as string matching . . . . . . . . . . . . . . . . . . . . . . .
	4.3 Dynamic programming based methods . . . . . . . . . . . . . . . . . . . . .
	4.4 Methods based on seed-and-extend strategy . . . . . . . . . . . . . . . . . .
	4.4.1 5 Approximate string matching using a bidirectional index
	5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.2

Table 5 .

 5 1: Values of #str(S, X, 4, 416 ) for 2-mismatch search schemes, for different pattern lengths m. Second column corresponds to search scheme S LLTWWY with three equal-size parts, the other columns show results for unequal partitions and/or more parts. The partition used is shown in the second sub-column.

	m 3 equal	3 unequal	4 unequal		5 unequal
	24	1197	1077	9,7,8	959	7,4,4,9	939	7,1,6,1,9
	36	241	165 15,10,11 140 12,5,7,12 165 11,1,9,1,14
	48	53	53	16,16,16 51 16,7,9,16 53 16,1,15,1,15

Table 5 .

 5 2: Values of #str(S, X, 30, 307 ) for 2-mismatch search schemes. we estimated the number of strings #str(S, X, σ, n) enumerated during the search.Results for 2 mismatches are given in Table5.1 and Table5.2 for 4-letter and 30-letter alphabets respectively. Table5.3 contains estimations for nonuniform letter distribution. Table5.4 contains estimations for 3 mismatches for 4-letter alphabet.

	m 3 equal 3 unequal	4 unequal	5 unequal
	15	846	286 6,4,5 231 5,2,3,5 286 5,1,3,1,5
	18	112	111 7,6,5 81 6,2,4,6 111 6,1,4,1,6
	21	24	24 7,7,7 23 7,3,4,7 24 7,1,6,1,6
	scheme S,		

Table 5 .

 5 3: Values of #str(S, X, 4, 416 ) for 2-mismatch search schemes, using a non-uniform letter distribution (one letter with probability 0.01 and the rest with probability 0.33 each).

	m 3 equal	3 unequal	4 unequal	5 unequal
	24	3997	3541	10,8,6	3592 6,7,1,10 3541	6,1,7,1,9
	36	946	481 16,10,10 450 11,6,6,13 481		10,1,9,1,15
	48	203	157 18,15,15 137 16,7,9,16 157 15,1,14,1,17

Table 5 .

 5 4: Values of #str(S, X, 4, 416 ) for 3-mismatch search schemes. Best partitions obtained for 4 parts are equal.

	m	4 equal/unequal		5 unequal
	24 11222	6,6,6,6	8039	4,6,5,1,8
	36	416	9,9,9,9	549	6,11,5,1,13
	48	185	12,12,12,12 213 11,11,11,1,14

Table 5 .

 5 5: Total time (in sec) of search for 10 5 patterns in hr14, up to 2 mismatches. 2nd column contains time obtained on partition into three equal-size parts. The 3rd (respectively 4th and 5th) column shows the running time respectively for the 3-unequalparts, 4-equal-parts and 4-unequal-parts searches, together with their ratio (%) to the corresponding 3-equal-parts value.

	2. 4-part	scheme	with	searches	(1234, 0000, 0112),	(4321, 0000, 0122),
	(2341, 0001, 0012), and (1234, 0002, 0022).		
	For 3 mismatches or errors:			
	1. 4-part	scheme	with	searches	(1234, 0000, 0133),	(2134, 0011, 0133),
	(3421, 0000, 0133), and (4321, 0011, 0133).		
	2. 5-part scheme with searches (12345, 00000, 01233), (23451, 00000, 01223),
	(34521, 00001, 01133), and (45321, 00012, 00333).	
	For 4 mismatches or errors:			

Table 5 .

 5 7: Total time (in sec) of search for 10 4 patterns in hr14, up to 2 errors (edit distance).

	m 3 equal	3 unequal	4 equal	4 unequal
	15	11.5	11.4 (99%)	6,6,3	10.9 (95%)	11.1 (97%)	3,5,1,6
	24	2.1	1.3 (62%)	11,5,8	1.5 (71%)	1.0 (48%)	7,4,4,9
	33	0.34	0.22 (65%) 13,10,10 0.35 (103%) 0.19 (56%) 11,5,6,11
	42	0.08	0.08 (100%) 14,14,14 0.18 (225%) 0.08 (100%) 14,6,8,14
	Table 5.8: Total time (in sec) of search for 10 4 patterns in hr14, up to 3 errors (edit
	distance).						
		m 4 equal		5 equal	5 unequal
		15	233		174 (75%)	168 (72%)	2,2,6,1,4
		24	13.5	13.2 (98%)	10.8 (80%)	3,8,3,1,9
		33	0.74	1.81 (245%) 1.07 (145%)	5,10,5,1,12
		42	0.28	0.45 (161%) 0.37 (132%)	9,10,9,1,13
		51	0.13	0.24 (185%) 0.14 (108%) 12,12,12,1,14

Table 5 .
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	m 5 equal	5 unequal	6 equal	6 unequal
	15	4212	3222 (76%)	3,1,8,1,2	4028 (96%) 3401 (81%)	2,2,1,7,1,2
	24	145	133 (92%)	7,3,5,1,8	131 (90%)	113 (78%)	2,7,3,4,5,3
	33	6.5	5.8 (89%)	8,7,5,8,5	6.6 (102%)	5.1 (78%)	4,8,6,3,5,7
	42	1.66	1.16 (70%)	12,8,7,8,7	1.51 (91%)	1.17 (70%)	7,8,8,5,2,12
	51	0.60	0.49 (82%)	13,11,9,9,9	0.74 (123%) 0.54 (90%)	9,10,9,9,1,13
	60	0.28	0.24 (86%) 14,13,11,11,11 0.44 (157%) 0.28 (117%) 11,12,11,11,1,14

9: Total time (in sec) of search for 10 4 patterns in hr14, up to 4 errors (edit distance).

Table 5 .

 5 

	m 5 equal	6 equal	6 unequal
	100	247	250 (101%) 283 (115%) 20,20,20,19,1,20
	100	415	367 (88%)	350 (84%) 20,20,20,19,1,20

10: Total time (in sec) of search for 10 5 reads in hr14, up to 4 errors. First row corresponds to read set with constant error rate 0.03. Second row corresponds to read set with error rate increasing from 0.0 to 0.03.
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Table 7 .

 7 1: 1st column: k-mer size; 2nd and 4th columns: optimal value of r for Bloom filters (bitmap size per number of stored elements) for t = 4 and t = 6 respectively; 3rd and 5th columns: the resulting space per k-mer (for t = 4 and t = 6); 6th column: space per k-mer for the method of[START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] (t = 1)

		= 4	for t = 4	for t = 6	for t = 6	for t = 1 ([126])
	16	5.777	8.556	5.506	8.459	12.078
	32	6.049	8.664	5.556	8.47	13.518
	64	6.399	8.824	5.641	8.49	14.958
	128	6.819	9.045	5.772	8.524	16.398

Table 7 .

 7 2: Estimated memory occupation for the case of different values of r vs. single value of r, for 4 Bloom filters (t = 4). Numbers in the second column represent values of r i on which the minimum is achieved. For the case of single r, its value is shown in Table7.1.

	2 , r 3 , r 4	bits per k-mer	bits per k-mer
		different values of r single value of r
	16 5.254, 3.541, 4.981, 8.653	8.336	8.556
	32 5.383, 3.899, 5.318, 9.108	8.404	8.664
	64 5.572, 4.452, 5.681, 9.108	8.512	8.824
	128 5.786, 5.108, 6.109, 9.109	8.669	9.045

Table 7 . 3 :

 73 Theoretically counted number of queries returning 0 and 1 for bitmaps B 1 , B 2 , B 3 , B 4 for r corresponding to the infinite bitmaps case. As Table7.3 shows, 99.48% of all queries end in first 4 bitmaps.

	ending queries	79.5	13.25	5.76	0.96

Table 7 .

 7 4: Results of 1, 2 and 4 Bloom filters version for 564M Human reads of 100bp using k = 23. The 1 Bloom version corresponds to the one presented in [126].

	Method	1 Bloom	2 Bloom	4 Bloom
	Construction time (s)	40160.7	43362.8	44300.7
	Traversal time (s)	46596.5	35909.3	34177.2
	r coefficient	11.10	7.80	5.97
		B 1 = 3250.95 B 1 = 2283.64 B 1 = 1749.04
	Bloom filters size (MB)		B 2 = 323.08	B 2 = 591.57 B 3 = 100.56
				B 4 = 34.01
	False positive table size (MB) T 1 = 545.94	T 2 = 425.74	T 4 = 36.62
	Total size (MB)	3796.89	3032.46	2511.8
	Size (bits/k-mer)	12.96	10.35	8.58

  1 rep have no duplicates, FN 1 rep can again be compressed by applying Cascading Bloom filter described in Section 8.2. Depending on the size of FN 2 rep , this procedure may be iteratively applied to FN 2 rep again. However, in our experiments described below we didn't do that, as the size of FN 2 rep (reads in S with multiplicity at least 3 occurring in G exactly) appeared to be small. Encoding of FN rep is shown in Algorithm 4. The decoding of the initial set FN rep is straightforward. First, set FN 1 rep is reconstructed applying algorithm described in Section 8.2. Then sets FN 1 rep and FN 2 rep are merged, and multiplicity of each read is incremented by 1. The obtained set joint with FN 0 finish the reconstruction of F N . Then full initial set S can be decoded as it was described in Section 8.2. Algorithm 4 FN encoding 1: FN rep = reads from FN that are substrings of G and occur in S multiple times 2: FN rep = FN rep with decreased multiplicities by one 3: FN 1 rep = reads from FN rep having multiplicity one 4: FN 2 rep = reads from FN rep having multiplicity two or more 5: compress FN 1 rep using Algorithm 3 6: repeat lines 2-6 for FN 2

	rep

Table 8 .

 8 1: Sizes of different data structures for coverage values 75, 100 and 150. Size of F N rep is shown after removing one copy of each read.

	Coverage	75X	100X	150X
	Set of reads S (M)	3.8	5.1	7.7
	Bloom filters {BF i } (MB)	4	4	2.5
	F P (MB)	0.9	6	90
	F N (MB)	181	268	466
	F N 0 (MB)	105	138	200
	F N rep (MB)	40	69	146
	Total size (MB)	149.9	217	438.5
	Bloom filters for F N rep (MB)	11	14	6
	False positives for F N rep (MB)	0	0	0
	False negatives for F N rep (MB)	10	21	57
	Total size of improved structure (MB) 130.9 (87%) 183 (84%) 355.5 (81%)

  3): two k-mers are merged into one k + 1-mer if and only if they have a suffix-prefix overlap of length CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 80 k -1. The following simple greedy algorithm is used: the algorithm randomly chooses a k-mer to start with and then extends it in both directions, every time choosing a random k-mer with a suffx-prefix overlap of length k -1 if there are multiple choices.

  There are n s elements in D cut and p • n s elements in E, where p is the probability that the distance from a sampled position to the contig border exceeds d max -3. Next lemma estimates this probability: CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 88 Lemma 18. Let T be the text of length n and let S be n s randomly and uniformly distributed different positions in T ("random" analogue of the SSA). Then the probability P (S[i + 1] -S[i] > d max ) can be estimated as (1 -dmax n ) It is obvious that P (S[i + 1] -S[i] > d max ) ≈ P (min S[i] > d max ) = P (∀i 1 ≤ i ≤Now we can calculate the expected number of elements in E : |E| = e , and the total expected size of D and E together that we want to minimize is e

		n s .
	Proof. n s : S[i] > d max ). Let us remove the condition of the lemma that positions are different (this does not significantly change the distribution of distances), then P (∀i 1 ≤ i ≤ n s : S[i] > n
	s	
	d max ) =	P (S[i] > d max ). Recall that positions are chosen independently and uniformly,
	i=1 thus P (S[i] > d max ) = 1 -dmax n , and finally the sought-for probability is (1 -dmax n )	n s .
	We can simplify the probability from Lemma 18: in our setup, d max thus we can apply (1 + a x ) x ≈ e a if x → ∞ and finally obtain (1 -dmax n and s n s = ((1 -n, n ) dmax n dmax ) dmax s ≈ e -dmax s for big enough values of n. n ) -dmax s • n s -dmax s • n s • 2 log n +

n s log d max . The following lemma finds a condition on d max when this minimum is achieved: Lemma 19. The total expected size of E and G is minimum when d max = c • s, where c satisfies ce -c = 1 2 log n . Proof. We want to minimize f (d max ) = e -dmax s • n s • 2 log n + n s log d max . Below we replace d max by d to simplify equations. As n s is constant, then it is equivalent to minimizing g(d) = e

Table 10 .

 10 2: kLCP properties.

	k	16	20	24	31
	percentage of ones	94% 35% 26% 24%
	average length of run of ones 17.3 2.82 3.05 3.09
	From Table				
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 10 3: Average SA interval extension length while removing the last character.

	k	16 20	24	31
	average SA interval extension 48 0.79 0.23 0.14
	Tables			

Table 10 .

 10 4: Translation error rate using node_id array.

	k	20	24	31
	correct translations, %	97.2	98.5	98.9
	incorrect node id, %	0.006 0.006 0.006
	position on a border, % 2.79	1.49	1.05
	From Table			

Table 10 .
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	5: ProPhyle memory usage.
	structure	space, GB
	BWT string + rank/select structure	7.5
	sampled Suffix Array	3.8
	kLCP array	1.9
	information about contig borders	1.0

http://www.bbc.com/news/world-europe-41180146

http://www.novocraft.com

part of Illumina software

http://bioinfo.cristal.univ-lille.fr/yass/iedera.php

By a slight abuse of notation, we also view Bj as the set of all k-mers on which the filter Bj returns the positive answer.

available at http://www.cs.tau.ac.il/~heran/cozygene/software.shtml

https://github.com/nh13/DWGSIM
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Efficient representation of large genomic data with Cascading Bloom filters

Chapter 8

Improved compression of DNA sequencing data with Cascading Bloom filters

Overview

Rozov et al. in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] showed how Cascading Bloom filter, which we designed to solve the genome assembly problem, can be applied to the read compression problem, introduced below. In this chapter, we first show how Cascading Bloom filter is applied in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] to the lossless reference-free compression of read sets (Section 8.2). Then we present an improvement of this technique in Section 8.3. Through computational experiments on real data, we demonstrate that our improvement results in a significant associated memory reduction in practice in Section 8.4. We end with Discussion in Section 8.5.

The disk space used for storing NGS data can easily reach tens or even hundreds of GBs. The time needed for transmission of this data between different servers via Internet may cause significant delay of the experiments. Thus, problems of compact storage and fast transmission of read sets are becoming more and more significant nowadays and are providing a motivation to develop different methods and algorithms.

All compression tools can be compared in terms of two important characteristics: compression ratio (i.e., the ratio of compressed file size to the original file size), and reads set decoding/encoding time. Specialized methods that take into account the fact that reads were obtained from genomes with mutations and errors turn out to provide better compression ratio and speed performance than general tools like gzip.

All specialized methods can be classified into reference-based, which typically align reads on a reference sequence [START_REF] Bonfield | Compression of FASTQ and SAM Format Sequencing Data[END_REF][START_REF] Fritz | Efficient storage of high throughput DNA sequencing data using reference-based compression[END_REF][START_REF] Jones | Compression of next-generation sequencing reads aided by highly efficient de novo assembly[END_REF][START_REF] Kingsford | Reference-based compression of short-read sequences using path encoding[END_REF][START_REF] Kozanitis | Compressing Genomic Sequence Fragments Using SlimGene[END_REF], and reference-free [START_REF] Bonfield | Compression of FASTQ and SAM Format Sequencing Data[END_REF][START_REF] Jones | Compression of next-generation sequencing reads aided by highly efficient de novo assembly[END_REF][START_REF] Benoit | Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph[END_REF][START_REF] Cox | Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform[END_REF][START_REF] Deorowicz | Compression of dna sequence reads in fastq format[END_REF][START_REF] Grabowski | Disk-based compression of data from genome sequencing[END_REF][START_REF] Hach | SCALCE: boosting sequence compression algorithms using locally consistent encoding[END_REF][START_REF] Janin | Beetl-fastq: a searchable compressed archive for dna reads[END_REF][START_REF] Patro | Data-dependent bucketing improves reference-free compression of sequencing reads[END_REF].

To compress reads, reference-based methods first align the reads to the reference genome in order to find the best alignment position. Typically, such alignment-based compression tools allow only for few errors per read to be efficient. Information about positions and differences between reads and the reference genome is then effectively encoded and compressed using general compression tools. Although such approaches achieve good compression ratios, they take significantly more time in comparison to reference-free methods as they require a time-consuming mapping procedure on the reference genome.

Reference-free methods implement various techniques. Some of them ( [START_REF] Cox | Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform[END_REF][START_REF] Hach | SCALCE: boosting sequence compression algorithms using locally consistent encoding[END_REF]) reorder reads in order to group similar reads together and then use general purpose compressing tools. This reordering can improve the compression ratio due to local similarity Chapter 10

Data structures for BWT-index-based metagenomic classification 10.1 Overview

In this chapter, we study the problem of metagenomic classification that was defined in Section 9. We follow the alignment-free approach (see Section 9 for the details): we extract all k-mers from genomes and store them in a data structure (index ). Then, for every read we extract all k-mers from it and query them against the index. Based on the information about k-mers found in the index, the read is assigned to a node in the taxonomic tree.

We present data structures that we use in our metagenomic classification tool called ProPhyle. We decided to create ProPhyle on the basis of a full-text search index, as such indices occupy a small amount of memory and allow for comparatively fast queries, at the same time providing a possibility to store full information about k-mer presence in the reference sequences. We are mainly focusing on algorithmic methods that allow ProPhyle to be fast and memory-efficient. In Sections 10.2 and 10.3 we describe the index construction process and provide query details. In Sections 10.4 and 10.5 we present data structures and methods that improve ProPhyle's query speed and memory usage correspondingly. Then we provide experimental results in Section 10.6 and conclusions in Section 10.7.

Index construction

As an input, we are given a taxonomic tree and a set of genomes, each of them corresponding to some leaf in the tree. Our goal is to design a data structure that will allow fast queries of k-mers returning the list of genomes (i.e., nodes in the taxonomic tree) where a k-mer appears.

The index construction consists of 5 steps:

• extracting k-mers from reference genomes,

• k-mers propagation along the edges of the taxonomic tree,

• assembly of k-mers at each node into longer contigs,

• merging all contings for all nodes into one file,

Conclusions

In this thesis, we studied algorithmic methods and data structures for string matching, genome assembly and metagenomic classification problems. Here we summarize our main results and enumerate directions for the future research.

Approximate string matching In Part II we studied an approach to approximate string matching that relies on a bidirectional index of the text. We presented a framework called search schemes and provided a probabilistic measure of their efficiency. Then we provided two types of improvements and experimentally proved their efficiency. We also discovered and proved several combinatorial properties of optimal search schemes. We believe that efficient search schemes, based on bidirectional indexes, can be designed automatically. We expect that the methods, discussed in this work, can be applied in practice to hybrid approaches to approximate string matching, when filtering of potential matched positions is followed by approaches based on backtracking.

Genome assembly and Read compression

In Part III we introduced a novel memoryefficient data structure called Cascading Bloom filter.

We described how Cascading Bloom filter can be applied to the genome assembly problem. We provided analytical calculations showing that Cascading Bloom filter uses 8 to 9.5 bits per k-mer, compared to 13 to 15 bits used by the method of [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF]. We incorporated our data structure into Minia software [START_REF] Chikhi | Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter[END_REF] and showed that using Cascading Bloom filter leads 30%-40% smaller memory footprint and 20%-30% decrease in query time.

In Chapter 8 we showed how Cascading Bloom filter can be applied to reference-based read set compression. We introduced an extension of the strategy presented in [START_REF] Rozov | Fast lossless compression via cascading Bloom filters[END_REF] that led to a notable improvement of the compression ratio.

More memory efficient replacements of Bloom filter, such as presented in [START_REF] Porat | An Optimal Bloom Filter Replacement Based on Matrix Solving[END_REF], may lead to more efficient implementation of Cascading Bloom filter.

Metagenomic classification

In Part IV we presented data structures used in our metagenomic classification tool called ProPhyle. We improved the standard BWT index for the purpose of our application both in terms of query speed and memory usage. We introduced data structures called k LCP and N ode ID array and showed their efficiency both theoretically and experimentally.

We believe that ProPhyle can be improved even further both in terms of efficiency and versatility and can be applied to different genomic analyses involving metagenomic datasets. Using parallel versions of algorithms, we could strongly improve ProPhyle index construction time. Memory usage could be reduced applying taxonomic tree binarization, better k-mer assembly and full implementation of node_id array.

One more direction for future is developing precise and accurate assigning algorithms. Currently only simple assigning algorithms that choose a node with best k-mer hit number