
HAL Id: tel-01762479
https://pastel.hal.science/tel-01762479

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient algorithms and data structures for indexing
DNA sequence data

Kamil Salikhov

To cite this version:
Kamil Salikhov. Efficient algorithms and data structures for indexing DNA sequence data. Bioin-
formatics [q-bio.QM]. Université Paris-Est; Université Lomonossov (Moscou), 2017. English. �NNT :
2017PESC1232�. �tel-01762479�

https://pastel.hal.science/tel-01762479
https://hal.archives-ouvertes.fr


Thèse en vue de l’obtention du titre de
Docteur de l’Université Paris-Est

Spécialité : Informatique
École doctorale : MSTIC

Efficient algorithms and data structures for
indexing DNA sequence data

Kamil Salikhov

Jury:

Co-directeur Gregory Kucherov, Directeur de recherche LIGM Université Paris-Est, France
Co-directeur Nikolay Vereshchagin, Professor Moscow State University, Russia

Rapporteur Pierre Peterlongo, Chargé de recherche INRIA/Irisa Rennes, France

Rapporteur Alexander Kulikov, Senior research fellow Steklov Institute of Mathematics,
Saint Petersburg, Russia

Examinateur Stéphane Vialette, Directeur de recherche LIGM Université Paris-Est, France
Examinateur Rayan Chikhi, Chargé de recherche CRIStAL Université Lille, France
Examinateur Mireille Régnier, Directrice de recherche Ecole Polytechnique, Palaiseau, France

Soutenue le 17 novembre 2017



Acknowledgements
First, I would like to thank my PhD supervisor Gregory Kucherov, who introduced me
to the amazing world of bioinformatics, always tried to be involved regardless of any
geographic distance, whose expertise, creativity and support were very important for me
during this research. I also want to thank my second advisor Nikolay Vereschagin, whose
guidance, patience and help were invaluable during last four years.

I address a special thank you to Maxim Babenko, my first scientific advisor, who opened
the world of Computer Science for me, and whose support helped me to make first steps
in this world.

I would like to thank all the members of my committee, namely Pierre Peterlongo,
Alexander Kulikov, Stéphane Vialette, Rayan Chikhi, and Mireille Régnier for their time
and feedback.

I am incredibly thankful to my family: dad Marat, mom Rezeda, and brother Ayaz,
and to my girlfriend Aliya, for their love and boundless support.

I want to express gratitude to everybody I worked with during my research: Karel
Brinda, Simone Pignotti, Gustavo Sacomoto and Dekel Tsur. It was a big pleasure for me
to work with you, and I learned so much from all our discussions!

I am very thankful to Sylvie Cach and Corinne Palescandolo, whose help with admin-
istrative work was priceless during all four years of my study in Université Paris-Est.

Finally, I would like to acknowledge a support of the co-tutelle PhD fellowship grant of
the French government and the grant for co-tutelle PhD students of Université Paris-Est.

1



Abstract
Efficient algorithms and data structures for indexing DNA se-
quence data

Amounts of data generated by Next Generation Sequencing technologies increase expo-
nentially in recent years. Storing, processing and transferring this data become more and
more challenging tasks. To be able to cope with them, data scientists should develop more
and more efficient approaches and techniques.

In this thesis we present efficient data structures and algorithmic methods for the prob-
lems of approximate string matching, genome assembly, read compression and taxonomy
based metagenomic classification.

Approximate string matching is an extensively studied problem with countless num-
ber of published papers, both theoretical and practical. In bioinformatics, read mapping
problem can be regarded as approximate string matching. Here we study string matching
strategies based on bidirectional indices. We define a framework, called search schemes, to
work with search strategies of this type, then provide a probabilistic measure for the effi-
ciency of search schemes, prove several combinatorial properties of efficient search schemes
and provide experimental computations supporting the superiority of our strategies.

Genome assembly is one of the basic problems of bioinformatics. Here we present
Cascading Bloom filter data structure, that improves standard Bloom filter and can be
applied to several problems like genome assembly. We provide theoretical and experimental
results proving properties of Cascading Bloom filter. We also show how Cascading Bloom
filter can be used for solving another important problem of read compression.

Another problem studied in this thesis is metagenomic classification. We present a
BWT-based approach that improves the BWT-index for quick and memory-efficient k-mer
search. We mainly focus on data structures that improve speed and memory usage of
classical BWT-index for our application.

2



Résumé
Algorithmes et structures de données efficaces pour l’indexation
de séquences d’ADN

Les volumes des données générées par les technologies de séquençage haut débit augmentent
exponentiellement ce dernier temps. Le stockage, le traitement et le transfert deviennent
des défis de plus en plus sérieux. Pour les affronter, les scientifiques doivent élaborer des
approches et des algorithmes de plus en plus efficaces.

Dans cette thèse, nous présentons des structures de données efficaces et des algorithmes
pour des problèmes de recherche approchée de chaînes de caractères, d’assemblage du
génome, de compression de séquences d’ADN et de classification métagénomique de lectures
d’ADN.

Le problème de recherche approchée a été bien étudié, avec un grand nombre de travaux
publiés. Dans le domaine de bioinformatique, le problème d’alignement de séquences peut
être considéré comme un problème de recherche approchée de chaînes de caractères. Dans
notre travail, nous étudions une stratégie de recherche basée sur une structure d’indexation
dite bidirectionnelle. D’abord, nous définissons un formalisme des schémas de recherche
pour travailler avec les stratégies de recherche de ce type, ensuite nous fixons une mesure
probabiliste de l’efficacité de schémas de recherche et démontrons quelques propriétés com-
binatoires de schémas de recherche efficaces. Finalement, nous présentons des calculs ex-
périmentaux qui valident la supériorité de nos stratégies. L’assemblage du génome est un
des problèmes clefs en bioinformatique.

Dans cette thèse, nous présentons une structure de données — filtre de Bloom en
Cascade — qui améliore le filtre de Bloom standard et peut être utilisé pour la résolution
de certains problèmes, y compris pour l’assemblage du génome. Nous démontrons ensuite
des résultats analytiques et expérimentaux sur les propriétés du filtre de Bloom en Cascade.
Nous présentons également comment le filtre de Bloom en Cascade peut être appliqué au
problème de compression de séquences d’ADN.

Un autre problème que nous étudions dans cette thèse est la classification métagénomique
de lectures d’ADN. Nous présentons une approche basée sur la transformée de Burrows-
Wheeler pour la recherche efficace et rapide de k-mers (mots de longueur k). Cette étude
est centrée sur les structures des données qui améliorent la vitesse et la consommation
de mémoire par rapport à l’index classique de Burrows- Wheeler, dans le cadre de notre
application.

3



Publications, posters, presentations

[1] [2] [3]

Papers

i) Kamil Salikhov, and Gustavo Sacomoto, and Gregory Kucherov. “Using cascading
Bloom filters to improve the memory usage for de Brujin graphs.” In: Algorithms in
Bioinformatics - 13th International Workshop, WABI 2013, Sophia Antipolis, France,
September 2-4, 2013. Proceedings (2013), pp. 364-376.
doi:10.1007/978-3-642-40453-5_28

ii) Kamil Salikhov, and Gustavo Sacomoto, and Gregory Kucherov. “Using cascading
Bloom filters to improve the memory usage for de Brujin graphs.” In: Algorithms for
Molecular Biology 9.2 (2014), pp. 2.
doi:10.1186/1748-7188-9-2

iii) Gregory Kucherov, and Kamil Salikhov, and Dekel Tsur. “Approximate string match-
ing using a bidirectional index.” In: Combinatorial Pattern Matching - 25th Annual
Symposium, CPM 2014, Moscow, Russia, June 16-18, 2014. Proceedings (2014), pp.
222-231.
doi:10.1007/978-3-319-07566-2_23

iv) Gregory Kucherov, and Kamil Salikhov, and Dekel Tsur. “Approximate string match-
ing using a bidirectional index.” In: Theoretical Computer Science 638 (2016), pp.
145-158.
doi:10.1016/j.tcs.2015.10.043

v) Kamil Salikhov. “Improved compression of DNA sequencing data with Cascading
Bloom filters.” Accepted to: International Journal Foundations of Computer Science
(2017).

Posters

i) K. Břinda, K. Salikhov, S. Pignoti, and G. Kucherov. “Prophyle: a phylogeny-based
metagenomic classifier using Burrows-Wheeler Transform.” Second Workshop on Chal-
lenges in Microbiome Data Analysis, Boston (USA), February 16-17, 2017.

ii) K. Břinda, K. Salikhov, S. Pignoti, and G. Kucherov. “Prophyle: a phylogeny-
based metagenomic classifier using Burrows-Wheeler Transform.” HitSeq session of
ISMB/ECCB 2017, Prague (Czech Republic), July 24-25, 2017.

4



5

Presentations

i) Kamil Salikhov, and Gustavo Sacomoto, and Gregory Kucherov. “Using cascading
Bloom filters to improve the memory usage for de Brujin graphs.” Seminar at MSU,
Moscow (Russia), February, 2014.

ii) Kamil Salikhov, and Gustavo Sacomoto, and Gregory Kucherov. “Using cascad-
ing Bloom filters to improve the memory usage for de Brujin graphs.” Seminar at
LIGM/UPEM, Paris (France), May 20, 2014.

iii) Gregory Kucherov, and Kamil Salikhov, and Dekel Tsur. “Approximate string match-
ing using a bidirectional index.” Combinatorial Pattern Matching - 25th Annual Sym-
posium, CPM, Moscow (Russia), June 17, 2014.

iv) Gregory Kucherov, and Kamil Salikhov, and Dekel Tsur. “Approximate string match-
ing using a bidirectional index.” Workshop SeqBio 2014, Montpellier (France), Novem-
ber 5, 2014.

v) K. Břinda, K. Salikhov, S. Pignoti, and G. Kucherov. “ProPhyle – a memory efficient
BWT-based metagenomic classifier.” Workshop DSB 2017, Amsterdam (Netherlands),
February 22, 2017.

Papers outside the scope of the thesis

i) Maxim A. Babenko, and Kamil Salikhov, and Stepan Artamonov. “An Improved Al-
gorithm for Packing T-Paths in Inner Eulerian Networks.” In: Computing and Combi-
natorics - 18th Annual International Conference, COCOON 2012, Sydney, Australia,
August 20-22, 2012. Proceedings, pp. 109-120.
doi:10.1007/978-3-642-32241-9_10



Contents

I Introduction 7

1 Motivation and overview 9

2 Biological context 12

3 Basic data structures 15

II Efficient approximate string search 23

4 Algorithmic methods for read alignment 25

5 Approximate string matching using a bidirectional index 32

III Efficient representation of large genomic data with Cascading
Bloom filters 51

6 Algorithmic methods for genome assembly 53

7 De Bruijn graph representation using Cascading Bloom filters 57

8 Improved compression of DNA sequencing data with Cascading Bloom
filters 67

IV Metagenomic classification 73

9 Algorithmic methods for metagenomic classification 75

10 Data structures for BWT-index-based metagenomic classification 78

V Conclusions 95

6



Part I

Introduction

7



8

Contents - Part I

1 Motivation and overview 9
1.1 Some bioinformatic problems . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Read alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Genome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Metagenomic classification . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Biological context 12
2.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Sequencing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Basic data structures 15
3.1 Hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Bloom filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Suffix tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Suffix array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 BWT index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Bidirectional BWT index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Chapter 1

Motivation and overview

Advances in DNA sequencing opened many new directions in genomic research. Genomic
data helps to cure genetic and infectious diseases and to understand cancer medicine and
evolutionary biology. Genomics actively penetrates in our everyday life – for example,
recently a DNA test officially proved that Salvador Dali is not father of a Spanish woman
pretended to be his daughter1.

The whole story began in 1953 with the famous discovery of DNA double helix struc-
ture [4] and first DNA fragments sequenced in 1970s. But the unprecedented progress in
genomics was associated with the uprising of Next-Generation Sequencing in the early 21st
century, which led to an urgent necessity to develop new approaches for biological data
storage, processing and analysis. According to Moore’s law, the number of transistors in a
dense integrated circuit doubles approximately every two years. In other words, its com-
putational capacity doubles approximately every 24 months. On the other hand, in 2012
only about 1000 human genomes were sequenced, and this number tends to one million
in 2017. This implicitly proves that sequenced genomic data amounts grow faster (double
approximately every 7 months according to historical data, and will double every 12 month
according to Illumina predictions, see more details in [5]) than a processors’ computational
power. For computer scientists this means that increased amounts of data can not be
processed using parallel versions of existing algorithms, but new, faster and more memory
efficient algorithms should be designed. Sometimes even linear-time algorithms are not fast
enough and should be replaced by sublinear ones. Compression of data and compressed
data structures are also playing more and more important role in genomic data storage,
transfer and analysis.

Let us formulate and give a short introduction into several of the fundamental tasks
in processing DNA sequencing data – genome assembly, read alignment and metagenomic
classification – which we will study in more details in next chapters.

1.1 Some bioinformatic problems

1.1.1 Read alignment

One of the first challenges presented by sequencing technologies is the so-called read align-
ment problem. Next generation sequencers like Illumina or SOLID produce short sequences
consisting of tens or hundred nucleotides, while sequencers like Oxford Nanopore generate
sequences of length of thousands or even tens of thousands of nucleotides. These fragments
extracted from a longer DNA molecule are called reads.

1http://www.bbc.com/news/world-europe-41180146

9



CHAPTER 1. MOTIVATION AND OVERVIEW 10

Generally, the goal of read alignment or read mapping is, for a given read and a ref-
erence genome, to find position(s) in the reference where the read matches in the best
way. Mapping should be tolerant to different types of errors arising either introduced by
sequencers or appeared due to differences between the sequenced specie’s genome and the
reference genome. There are different variations of this problem, as many types of differ-
ences between reference subsequence and read can be allowed. More about read alignment
problem and its solutions can be found in Chapter 4.

1.1.2 Genome assembly

Currently, no sequencing technology can decode the entire genome sequence. All sequencers
cut chromosomes into overlapping fragments and read these short sequences. Thus the
natural problem of bioinformatics is to combine all reads together in order to reconstruct
the initial genomic sequence. This process is called genome assembly.

Genome assembly is usually a necessary step in bioinformatics pipelines, providing
a useful resource for various genomic approaches. As it was explained in Section 1.1.1,
genomes are used as reference sequences for read alignment. Another possible application
is evolutionary biology, when different genomes are compared to reveal relations between
different species. Genomes of different organisms of the same species (for example, human
population) can be examined in order to detect differences between them. In Chapter 6
we provide more information about popular approaches for solving the genome assembly
problem.

1.1.3 Metagenomic classification

Recent advances in Next-Generation Sequencing technologies have allowed a breakthrough
in metagenomics which aims to study genetic material obtained from environmental sam-
ples. This led to boosting the metagenomic analysis and to developing more and more
sophisticated methods and tools. The first samples studied were seawater [6, 7], human
gut [8], soil [9]. Nowadays, samples of many other different origins are investigated, in-
cluding extreme environments like acid water, areas of volcanism, etc. Research is also
focused on bacterial and viral populations, whereas the first one is better studied because
of extreme diversity of viral genomes. The Human Microbiome project [10] has the goal
to study a human microbiome and its correlation with human health.

Metagenomics via whole-genome sequencing deals with read sets of total size of hun-
dreds of millions and billions of nucleotides. These sequences are obtained from many
different species, and while some of them have a previously sequenced reference genome,
others may not have a reference genome even for a close relative. Thus, the goal of metage-
nomic classification is to determine for every sequence the corresponding reference genome
(or a set of genomes, which belong to one family, for example), or to say that it belongs
to a previously not sequenced species.

1.2 Brief overview

In this thesis, we present several data structures and algorithms that can be applied to
read alignment, genome assembly and metagenomic classification problems.

Although these problems seems to be quite far one from another, they actually have
many things in common, as we will show in next chapters of this work. Solutions of
these and many other problems are often based on similar ideas and data structures.
For example, many of early techniques to solve read alignment, genome assembly and



CHAPTER 1. MOTIVATION AND OVERVIEW 11

metagenomic classification problems were based on building a hash table for k-mers (words
of length k). Nowadays, for all these problems solutions exploiting memory efficiency of
BWT transform become more and more popular. In other words, these problems are
evolving in conjunction.

First, in Chapter 3 we describe basic data structures that are usually used as basic bricks
in more complicated algorithms and methods in bioinformatics. Some of them, namely
Bloom filter, hash table and BWT index are applied in our methods in next chapters.

In Chapter 4 we cover the problem of approximate string matching and describe main
techniques used in read alignment algorithms. Next, in Chapter 5 we study strategies of
approximate string matching based on bidirectional text indexes, extending and gener-
alizing ideas of [11]. We provide both a theoretical analysis and computations, proving
superiority of our methods.

In Chapter 6 we describe existing methods for solving the genome assembly problem.
Then, in Chapter 7 we introduce an efficient data structure, called Cascading Bloom filter,
which can be applied to fast and very memory efficient genome assembly. We also show
how this data structure can help to solve the read compression problem in Chapter 8.

We provide more details about different solutions of metagenomic classification prob-
lem in Chapter 9. Next, in Chapter 10 we address the problem of classification when a
taxonomic tree of studied species is given in advance, and we need to assign reads to nodes
of this tree. We introduce several data structures and techniques that make our solution
time and memory efficient.

We end with providing conclusions on the presented work in Part V.



Chapter 2

Biological context

2.1 Biological background

DNA (Deoxyribonucleic acid) is a macromolecule forming the genome of living organisms.
It lays in the foundation of life as it stores the genetic information necessary for devel-
opment, functioning and reproduction. DNA molecules are found in the cytoplasm of
prokaryotic organism cells and in the cell nucleus of eukaryotic organisms. In multicellular
eukaryotes, each nucleated cell stores a full copy of the genome, as this information is used
for cell reproduction.

DNA molecules are combined into chromosomes. A chromosome is composed of a very
long DNA molecule and consists of a linear array of genes, which are DNA regions encoding
genetic information. In addition, DNA has other regions with structural purposes, or the
ones involved in regulating the expression of genes. At a given locus (a specific location
inside a chromosome) different variants of a gene, called alleles, can appear [12].

Most DNA molecules consist of two strands and form the famous double helix model,
first identified by James Watson, Francis Crick and Maurice Wilkins in 1953 [4], whose
model-building efforts were guided by X-ray diffraction data acquired in 1952 by Rosalind
Franklin and Raymond Gosling [13]. For their discovery, Watson, Crick and Wilkins were
awarded the 1962 Nobel Prize for Physiology or Medicine, “for their discoveries concerning
the molecular structure of nucleic acids and its significance for information transfer in
living material”.

Each DNA strand consists of repeating units called nucleotides. Every nucleotide in-
cludes one of four possible nucleobases (or just bases) – adenine (A), cytosine (C), guanine
(G) and thymine (T). Adjacent nucleotides are connected through the use of sugars and
phosphates. Two strands are connected by hydrogen links between corresponding nucle-
obases – more precisely, adenine is connected to thymine, and cytosine is linked to guanine
(and vice versa). Such paired bases are called complementary.

DNA replication plays a key role in the process of cell division in all organisms. For
unicellular organisms, the DNA replication process is used for reproduction, and for mul-
ticellular ones, for the organism’s growth. During DNA replication, DNA strands split up
into two separate strands, and then, on the basis of each of them, a new two-strand DNA
is synthesised. Thus, every new DNA contains one strand from the initial cell and one
newly synthesised complementary strand.

12



CHAPTER 2. BIOLOGICAL CONTEXT 13

2.2 Mutations

DNA can be damaged by many sorts of mutagens, such as radiation, viruses, some chem-
icals etc., which change the DNA sequence. In the same time, mutations can appear
accidentally during the process of DNA replication. DNA collects mutations over time,
which are then inherited. Some mutations can cause diseases like cancer, whereas others
can contribute to evolution by enabling the generation of new functions in order to adopt
to environmental changes.

Mutations can be divided into several types. Some of them affect only few nucleobases,
while the others change long DNA segments, i.e. duplicate, remove, move or reverse them.

In this work we mainly deal with the first type of mutations – point mutations. Point
mutations are either substitutions of one nucleotide in the DNA sequence for another type
of nucleotide, or insertions and deletions of one or more nucleobases. Point mutations
can have different effects, according to the place where they occur and the nature of the
substitution, insertion or deletion.

2.3 Sequencing methods

To be able to perform computational analysis of the information enclosed in the genome,
the DNA sequence (i.e. the exact order of nucleotides in the DNA molecule) needs to be
determined. This is achieved via DNA sequencing methods.

First polynucleotide (77-nth yeast alanine tRNA) was sequenced twelve years after
the publication of the Watson and Crick double-helix DNA structure in 1953 [4]. The
RNA sequencing methods used at that time were two-dimensional chromatography and
spectrophotometric procedures. Only a few base pairs per year could be sequenced using
this methods. The first complete genome sequence – 3569-nucleotide-long bacteriophage
MS2 RNA sequence – was also a result of sequencing using these methods.

The next methods were developed by Maxam and Gilbert [14] and Sanger [15]. The
first of them is conducted by chemical cleaving specific bases of terminally labeled DNA
fragments and separating them by elecrophoresis. The second method is based on the
selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase dur-
ing DNA replication. Sanger’s method became much more popular due to its simplicity,
reduced use of toxic chemicals and lower amounts of radioactivity.

The first automated sequencer, based on Sanger’s method, was developed by Applied
Biosystem Instruments. Later, they were improved by adding computers to store and
analyse collected data. This method was the most widely used until about 2005, when
Next Generation Sequencing methods replaced it.

Next generation sequencing methods were developed due to a high demand for low-cost
high-throughput technologies, that can parallelize the sequencing process. These methods
sequence millions to billions of nucleotides in parallel and can produce gigabytes of data
per day.

Second-generation sequencers, such as Illumina or SOLiD, implement a so-called shot-
gun sequencing approach. They do not read every DNA molecule from the beginning to
the end as, for example, Sanger’s method does. Instead, DNA molecules are cut into many
small fragments, and then each fragment is scanned from one end or from both, generating
single-end or pair-end reads (when a fragment is read from both ends). Usually, sequencers
also provide information about the quality of bases in the read. Thus, for computations, a
read is just a sequence of A,C,G, T characters with (possibly) some quality (or measure of
confidence) associated with each position. A typical reads’ lengths are from a few tens to



CHAPTER 2. BIOLOGICAL CONTEXT 14

several hundreds of nucleobases (though, third-generation sequencers like PacBio can gen-
erate much longer – thousands and tens of thousands long – reads). From a computational
point of view, using shotgun sequencing to retrieve reads means that we need to put them
together in the correct order to obtain a whole genome.

A detailed history of first- and next- (which also can be divided into second- and third-)
generation sequencing technologies can be found in many articles [16, 17, 18, 19, 20, 21,
22, 23, 24, 25].

From 1965 to 2005, the cost of humane genome sequencing (which is about 3 billions
base pairs long) was reduced from millions to less than thousand of US dollars. For
example, as part of the Human Genome Project, the J. C. Venter genome [26] took almost
15 years to sequence at a cost of more than 1 million dollars using the Sanger method,
whereas the J. D. Watson (1962 Nobel Prize winner) genome was sequenced by NGS using
the 454 Genome Sequencer FLX with about the same 7.5x coverage within 2 months and
for approximately a hundredth of the price [27].

All sequencers produce sequencing errors and biases that should be corrected. The
major sequencing errors are largely related to high-frequency indel polymorphisms, ho-
mopolymeric regions, GC- and AT -rich regions, replicate bias, and substitution errors [28,
29, 30].



Chapter 3

Basic data structures

In bioinformatic applications, various algorithms are designed to obtain fast and memory
efficient solutions. Basic approach in many of them is to construct a data structure, usually
called index, that supports fast queries and occupies a reasonable amount of memory. Most
of them are built upon such basic and rather simple data structures like hash tables, suffix
trees, suffix arrays and others.

In this chapter we will consider some of them, namely a hash table, Bloom filter, suffix
tree and array, BWT index and a bidirectional version of BWT index. Even though these
structures have different design and support different types of operations, in many fields of
bionformatics they are used in different solutions for the same problem. Below we describe
the main properties of these data structures, discuss their advantages and drawbacks and
outline some problems in bioinformatics where they can be applied.

3.1 Hash table

A hash table can be regarded as an associative array, which stores (key, value) pairs and
permits to perform three operations:

• insert(key, value)

• find(key)

• remove(key)

A hash table uses a hash function h to map keys to integers from 0 to m − 1, which
represents the indexes of array A of size m. If for a key k h(k) = i, then we try to put
element (k, v) in slot i of the array. It can not be guaranteed that different keys will not
map to the same index. This situation introduces a collision: a situation, when two keys
are mapped to the same position in the array.

In practice, there are two basic ways of dealing with collisions. The first method is to
store a list of elements in every slot of array A, and if we need to put an element with key
k in slot i, we just append it to the end of the corresponding list. This method is called
separate chaining. Another strategy is called open adressing, and after failing to insert
a key k in the array (because the corresponding position is not empty), the algorithm
searches for another slot to insert this key.

Operations in a hash table are rather fast, as in average all of them work in constant
time (although, it depends on the parameters of the hash table and the hash function).
However, one downside is that one operation can take O(n) time in the worst case, where

15



CHAPTER 3. BASIC DATA STRUCTURES 16

n is the number of inserted elements. In practice, hash tables usually work faster than
other data structures storing (key, value) pairs and allowing for a search by key.

Choosing an appopriate hash function is very important to obtain a good performance
of a hash table. If a good hash function is chosen, and n elements are inserted into array of
size k, then the average search of one element works in O(1+ n

k ) time if a separate chaining
strategy is chosen for collisions resolution. Here n

k is called a load factor, and it shows how
many elements on average are inserted in the same slot in the array.

Although hash tables outperform many other data structures in query time perfor-
mance, they usually require much more memory.

If the set of elements is known in advance, there is another way to resolve collisions. We
can find a perfect hash function that maps elements to indices in array without collisions.
There are different algorithms for perfect hash function construction, among them [31, 32,
33].

In computer science, a hash table’s usage area includes, but is not limited to storing
associative arrays, sets and collections in databases. In bioinformatic applications, they
are often used to store sets of k −mers (strings of length k) and values associated with
them (see Chapters 4 and 6 for several examples).

3.2 Bloom filter

A Bloom filter [34] is a space-efficient data structure for representing a given subset of
elements T ⊆ U , with support for efficient membership queries with a one-sided error.
That is, if a query for an element x ∈ U returns no then x /∈ T , but if it returns yes
then x may or not belong to T , i.e. with small probability x /∈ T (false positive). A
Bloom filter consists of a bitmap (array of bits) B with size m and a set of p distinct hash
functions {h1, . . . , hp}, where hi : U 7→ {0, . . . ,m − 1}. Initially, all bits of B are set to
0. An insertion of an element x ∈ T is done by setting the elements of B with indices
h1(x), . . . , hp(x) to 1, i.e. B[hi(x)] = 1 for all i ∈ [1, p]. The membership queries are done
symmetrically, returning yes if all B[hi(x)] are equal to 1 and no otherwise. As shown in
[35], when considering hash functions that yield equally likely positions in the bit array,
and for large enough array size m and number of inserted elements n, the false positive
rate F is

F ≈ (1− e−pn/m)p = (1− e−p/r)p (3.1)

where r = m/n is the number of bits (of the bitmap B) per element. It is not hard to
see that this expression is minimized when p = r ln 2, giving a false positive rate of

F ≈ (1− e−p/r)p = (1/2)p ≈ 0.6185r. (3.2)

Assuming that hash functions are computed in constant time and the number of hash
functions is limited, then insertion of an element and search for an element can be completed
in O(1) time.

A major advantage of a Bloom filter over other data structures for representing sets,
such as search trees and hash tables, is that its size is independent of the size of inserted
elements. Thus, even if an element’s bit representation is rather long, the memory usage of
a Bloom filter is only a few (usually 8-16) bits per inserted element. The main drawback of
a Bloom filter comes from its probabilistic design, although a false positive rate is usually
chosen to be rather small. It is also worth noting that the basic version of a Bloom filter
does not allow deletions. However, Bloom filter has become a fruitful area for research,



CHAPTER 3. BASIC DATA STRUCTURES 17

and there has appeared many variations of them. Among these variations there is a Bloom
filter that allows deletions, a counting Bloom filter and a Bloom filter that allows storing
values along with keys.

In computer science, Bloom filters are widely used in web applications for storing
caches. For example, a Bloom filter was implemented in Google’s Chrome browser for
storing malicious sites list. If there are, for example, one million suspicious sites, and the
average length of their names is 25, then 25MB is needed to store them explicitly. Bloom
filter with a 1% error rate will occupy slightly more than 1MB for the same dataset.

Bloom filters are often used in bioinformatic aplications, usually, but not always, for
storing and counting k-mers (one of applications is discussed in Chapter 7).

3.3 Suffix tree

Suppose that we are given a string T of length n (a sequence of characters T [0..n − 1]).
Let us start with several definitions. We call any subsequence T [i..j], 0 ≤ i ≤ j < n a
substring of T . Substrings of form T [i..n − 1], 0 ≤ i < n and T [0..i], 0 ≤ i < n are called
suffixes and prefixes respectively.

Trie is a tree-like data structure for storing a dynamic set of strings S. Every edge of
the trie is labelled by a character, the root of the trie corresponds to an empty string. Every
string of S can be obtained while traversing trie, beginning from the root and concatenating
labels on the edges. A suffix trie of a string T is a trie, constructed on the set of suffixes
of T . A suffix tree is a suffix trie where two consecutive edges are merged into one (with
labels concatenation) if their common node has only one ingoing and one outgoing edge.

Definition 3.3.1. (another definition of suffix tree) The suffix tree of a string T is a tree
such that

• The tree has exactly n leaves numbered from 0 to n − 1 if T ends with special $
character.

• Every internal node, possibly except for the root, has at least two children.

• Each edge is labeled with a non-empty substring of S.

• No two edges starting out of a node can have string-labels beginning with the same
character.

• The string obtained by concatenating all the string-labels found on the path from
the root to leaf i spells out suffix T [i..n− 1], for i from 0 to n− 1.

The concept of a suffix tree was introduced in 1973 by Weiner in [36]. He was also the
first who suggested a linear-time construction algorithm. A naive construction algorithm
works in O(n2) time. McCreight in [37] created a more lightweight linear time algorithm
that was improved in a classic work [38] of Ukkonen. He also formulated a linear-time
online construction algorithm in [38].

It is worth noting that algorithms mentioned above are linear in case of small (i.e.,
constant-size) alphabets. In the worst case, for the alphabet of size O(n), their working
time increases to O(n log n).

In recent years, several algorithms have been suggested for fast (although still linear-
time, but independent of the alphabet’s size) and space-efficient construction of suffix trees.
Most of them are based on the ideas proposed by Farach in [39].



CHAPTER 3. BASIC DATA STRUCTURES 18

Basically, the suffix tree was designed for fast exact string matching (i.e., finding all
exact occurrences of a pattern in a given text). Then suffix trees were applied to other
problems in computer science, for example, to find the longest common substring of two
(or more) strings.

Search for a pattern P of length k in a text T using a suffix tree requires O(k+p) time,
where p is the number of occurrences of P in T . If the number of strings to search in is
more than one, a generalized suffix tree can be constructed. Its construction time is also
linear in the sum of lengths of all strings.

Although suffix trees require a linear amount of memory, the space used for one char-
acter is rather big (13 − 40 bytes per character depending on the alphabet). This is the
biggest drawback of suffix trees. More recent data structures, such as suffix arrays, can
solve problems that allow suffix tree-based solutions with the same efficiency, but they
require much less memory.

In bioinformatics, suffix trees are basically used in applications to read alignment (for
example, [40]). Another possible application is whole genome alignment (see, for example,
work of Delcher et al. [41]).

3.4 Suffix array

Again, we are given a string T of length n.

Definition 3.4.1. The suffix array SA of T is an array of starting positions of suffixes of
T , sorted in lexicographical order.

In other words, A is an array where SA[i] contains the starting position of i-th lexi-
cographically smallest suffix of T , thus the property T [SA[i − 1], n− 1] < T [SA[i], n− 1]
holds for any 0 < i ≤ n− 1.

Suffix arrays were introduced by Manber and Myers in [42] and independently in [43]
by Gonnet et al. as a memory efficient replacement of suffix trees. Whereas, being an
array of n integers from 0 to n−1, suffix array requires O(n log n) memory, integers stored
in a suffix arrays usually fit into 4 (or 8) bytes, and an overall suffix array fits into 4n (or
8n) bytes, which is less than memory needed for suffix trees.

In conjunction with a suffix array, an LCP (longest common prefix) array is often used.

Definition 3.4.2. For 0 < i ≤ n − 1, LCP [i] is the length of the longest common prefix
of T [SA[i− 1]..n− 1] and T [SA[i]..n− 1].

A naive suffix array construction algorithm (based on simple suffix sorting) works in
O(n2 log n) time (O(n log n) comparisons for a sorting algorithm, where one comparison
can be made in O(n) time). A slightly better approach is to use a radix sort, it reduces
the time complexity to O(n2). It is worth noting that a suffix array can be constructed in
O(n) time using a depth-first search if the suffix tree is given in advance.

However, there are algorithms for a direct linear time suffix array construction, that
do not need the suffix tree in advance. The first one was suggested by Kärkkäinen and
Sanders ([44]) in 2003. Nowadays, one of the fastest suffix array construction applications
is the algorithm SA-IS from [45] by Nong, Zhang and Chan, implemented by Yuta Mori.
It works in linear time, requires only 5 bytes of memory per character (minimum possible
value) and is fast in practice. It is noteworthy that its implementation in C language is no
longer than 100 lines of code. A good survey of state-of-the-art suffix array construction
algorithms is given in [46].



CHAPTER 3. BASIC DATA STRUCTURES 19

Using only a suffix array, a pattern P of lengthm can be found in a text T of length n in
O(m log n) time. This complexity can be improved, if LCP array is used, to O(m+ log n).
In [47] it was shown that O(m+ log n) bound can be improved even further to O(m), the
same complexity as it is for suffix trees. The authors of [47] showed that any problem, that
has a solution using suffix trees, can be solved using suffix arrays preserving the same time
and space complexity. Nowadays, being much more lightweight structure than suffix trees
and being able to solve same problems, suffix array replace suffix trees in applications in
almost all domains of computer science.

One of the most famous problems, which can be solved by suffix array, is longest repeated
substring problem, it can be solved in O(n) time with use of suffix array and LCP .

In bioinformatics, suffix arrays are usually used in read alignment, prefix-suffix overlaps
computation and sequence clustering (see, for example, [48, 49, 50]). Even though a suffix
array requires much less space than a suffix tree, for human genome, for example, it occupies
12GB of memory (without LCP array), whereas genome itself (about 3 millions base pairs)
can fit into less than 1 GB of memory. Such a big difference follows from the fact that
the suffix array occupies O(n log n) memory, while the string on alphabet Σ requires only
O(n log |Σ|) memory. Recently, new data structures like compressed suffix array and BWT
index were designed to further reduce the memory usage.

3.5 BWT index

Both suffix array and suffix tree, along with some other structures out of scope of current
manuscript, allow to perform forward (or left-to-right) search. That is, given a pattern, we
scan it from the leftmost character to the rightmost one, finding occurrences of a longer
and longer prefix of the pattern in the text.

BWT index is a compressed full-text string index, based on Burrows-Wheeler trans-
form [51] (further BWT). It was suggested by Ferragina and Manzini in 2000 ([52]). Unlike
these structures, a BWT index allows to perform backward search of the pattern in the text.

Definition 3.5.1. Burrows-Wheeler transform (also called block-sorting compression) of
the string T is a permutation BWT of characters of T , such that

BWT [i] =

{
T [SA[i]− 1] if SA[i] 6= 0

T [n− 1] otherwise

BWT was proposed in [53] by Burrows and Wheeler in 1994.
Initially, BWT was invented for data compression, and it is used, for example, as part

of bzip2 data archiver. One of the main advantages of BWT is that it rearranges characters
of the initial string such that it has runs of equal characters.

But what is more important and, maybe, surprising is the fact that Burrows-Wheeler
transform if reversible. In other words, this means that given a BWT of an unknown
string, we can restore this string.

Being just a permutation of a string, BWT can be stored in the same amount of memory
as the initial string. Moreover, it can be computed in time linear in the size of the string,
and the reverse transformation can be also performed in linear time.

In addition to BWT string, the BWT index stores some auxiliary data structures. The
first of them is just an array C that for every character c from alphabet Σ stores how many
characters are lexicographically smaller than c in T . For example, if T = abacaba,Σ =
{a, b, c}, then C[a] = 0, C[b] = 4, C[c] = 6. C array is also called a Count function.



CHAPTER 3. BASIC DATA STRUCTURES 20

The next part of a BWT index is a structure R that supports rank operations on the
BWT string, that is for any i ≥ 0 and σ ∈ Σ, rank(σ, i) = number of such positions 0 ≤
j ≤ i that BWT [j] = σ. In other words, R allows to count the number of occurrences of
each character in any prefix of BWT string. This structure can be implemented on basis
of Wavelet tree [54], for example, and it occupies O(n log logn

logn ) memory.
Given a BWT index, we can perform a backward search (i.e., find the interval in

the suffix array which corresponds to all occurrences of the pattern) using the following
algorithm:

Algorithm 1 Exact pattern matching using BWT index
Input:
string T [0..n− 1]
BWT index for T with array C and rank function
pattern P [0..m− 1]

start = 0
end = n− 1
for i = m− 1 to 0 do

if start > end then
break

end if
σ = P [i]
start = C[σ] + rank(σ, start− 1)
end = C[σ] + rank(σ, end)− 1

end for
Output:
if start > end, then output is empty;
otherwise, all occurrences (and only they) are in interval (start, end).

However, unlike the suffix array or tree, Algorithm 1 does not provide a method for
translation from a suffix array position to a position in the text. For these, a sampled suffix
array stores suffix array values for selected positions (usually, for every K-th position for
some constant K). Using a sampled suffix array, the position in the text can be retrieved
using Algorithm 2.

Algorithm 2 Translate SA position x to position in the text
Input:
text T
BWT index of T
SSA (sampled suffix array of T )

steps = 0
while (x is not sampled in SSA) do

c = BWT [x] . previous character in the text
x = C[c] + rank(c, x)
steps = steps + 1

end while
Output:
SSA[x] + steps



CHAPTER 3. BASIC DATA STRUCTURES 21

Together, algorithms 1 and 2 provide a linear-time approach to perform the exact
pattern matching. Overall, the BWT index occupies O(n) bits of memory, using much less
bits per character than the suffix array and the suffix tree. For example, for bioinformatic
applications the memory usage can range from 2 to 4 bits per character of the text.

Being much more memory-efficient, BWT index is slower than suffix trees and suffix
arrays in practice.

Besides the exact pattern matching problem, BWT index can also be used for solving
the approximate pattern matching problem. In bioinformatics, it is applied in solutions
problems like read alignment (see Chapter 4), genome assembly (Chapter 6) and many
others. The BWT index has now been used in many practical bioinformatics software
programs, e.g. [55, 56, 57].

3.6 Bidirectional BWT index

A suffix tree and a suffix array allow for a forward search, and a BWT index for a backward
one. However, none of them allows to extend pattern in both directions. A naive way to
make this possible is to store two structures together – for example, using a suffix tree
(or suffix array, or BWT index) both for a string and the reverse of the string. Then, to
perform a backward search, we should use the BWT index for the initial string, and to
perform a forward search, we should perform a backward search of the reversed pattern in
the BWT index for the reversed string. However, this method does not permit to change
the direction of a pattern extension “on-the-fly”, during one search. On the other hand, it
requires exactly twice more memory to store data structures.

The possibility to alter the search direction can be provided by an improved (“bidirec-
tional”) version of a BWT index, as it was shown in [11, 58, 59, 60].

Let us consider here how BWT index can be made bidirectional. Let us start with a
definition of a bidirectional search in BWT index.

For string S[0..n − 1], let SR be a reverse of S, e.g. SR = S[n − 1][S[n − 2]..S[1]S[0].
Let BWTR be a BWT for SR. If (s, e) is a suffix array interval for pattern P and string
T , then let (sR, eR) denote the suffix array interval for pattern P and string TR.

Let BWT and BWTR be the Burrows-Wheeler transform with the support of the ad-
ditional Count and Rank operations for strings T and TR respectively. Then the following
lemma holds:

Lemma 1. Given a pattern P , a character σ ∈ Σ, and suffix array intervals (s, e) and
(sR, eR) for P and PR with respect to T and TR correspondingly, suffix array intervals
(s′, e′) and (s′R, e′R) for patterns Pσ and (Pσ)R with respect to T and TR correspondingly
can be computed in O(|Σ|) time, where |Σ| is the size of the alphabet.

This lemma provides an idea how to perform a forward search (in other words, how to
extend the pattern to the right) supporting suffix array intervals both for the text and for
reversed text.

Proof. First, we show how to compute (s′R, e′R). It is obvious that the suffix array interval
for PR with respect to TR is just (s, e). Then, (s′R, e′R) can be computed using a backward
search in TR of pattern (Pσ)R.

The tricky part is how to compute suffix array interval (s′, e′) of Pσ. It is obvious
that (s′, e′) is a subinterval of (s, e), as all suffixes in (s′, e′) should start with P . Then,
(s′, e′) = (s + x, s + x + y − 1), where x is the number of suffixes of type Pσ′ with σ′

lexicographically smaller than σ, and y is the number of suffixes of type Pσ. For arbitrary



CHAPTER 3. BASIC DATA STRUCTURES 22

σ′, the number of suffixes of type Pσ′ can be computed as the size of the suffix array
interval of (Pσ′)R with respect to TR. This means that (s′, e′) can be computed in O(Σ)
time.

For the backward search, the similar lemma holds:

Lemma 2. Given a pattern P , a character σ ∈ Σ, and suffix array intervals (s, e) and
(sR, eR) for P and PR with respect to T and TR correspondingly, suffix array intervals
(s′, e′) and (s′R, e′R) for patterns σP and (σP )R with respect to T and TR correspondingly
can be computed in O(|Σ|) time, where |Σ| is the size of the alphabet.

In both lemmas 2 and 1 we support suffix array intervals both for T and TR. From
this, two properties of a bidirectional BWT index follow:

• the search direction can be changed during the search (for example, we can extend
the pattern to the right, then to the left, and then to the right again)

• it is enough to store only one sampled suffix array (say, for T ) to be able to translate
suffix array positions to positions in the text. This means that the memory needed
by bidirectional BWT index is less than memory occupied by two copies of BWT
index.

Bidirectional search can be successfully applied to approximate pattern matching prob-
lem, as it will be shown in Chapter 5.



Part II

Efficient approximate string search

23



24

Contents - Part II

4 Algorithmic methods for read alignment 25
4.1 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Read alignment as string matching . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Dynamic programming based methods . . . . . . . . . . . . . . . . . . . . . 28
4.4 Methods based on seed-and-extend strategy . . . . . . . . . . . . . . . . . . 28

4.4.1 Spaced seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Methods based on suffix tree-like structures . . . . . . . . . . . . . . . . . . 30

5 Approximate string matching using a bidirectional index 32
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Bidirectional search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Analysis of search schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Estimating the efficiency of a search scheme . . . . . . . . . . . . . . 35
5.3.2 Uneven partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Computing an optimal partition . . . . . . . . . . . . . . . . . . . . 40

5.4 Properties of optimal search schemes . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.1 Numerical comparison of search schemes . . . . . . . . . . . . . . . . 45
5.5.2 Experiments on genomic data . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



Chapter 4

Algorithmic methods for read
alignment

4.1 Sequence alignment

To discover differences between a newly sequenced organism, represented by a huge number
of short reads, and a previously sequenced genome of the same (or related) species, the
reads should be mapped (or aligned) to the genome. Short read alignment (we also refer
to it as short read mapping, which is equivalent) is a common first step of genomic data
analysis and plays a critical role in medical, population genetics and many other fields of
bioinformatics.

Definition 4.1.1. An alignment of two sequences S = s1 . . . sn and T = t1 . . . tn over the
same alphabet Σ consists of two equally sized sequences S′ = s′1 . . . s

′
l and T ′ = t′1 . . . t

′
l

obtained by inserting zero or more gaps (represented by symbol −) between the characters
of S and T respectively with the constraint that @h ∈ 1 . . . l : s′h = t′h = −.

Thus, an alignment of two sequences allows us to identify the similarities of these
sequences. Such positions i that S′i 6= − and T ′i 6= − and S′i 6= T ′i correspond to mismatches,
positions i that S′i = − or T ′i = − correspond to indels, and if S′i = T ′i , then this is a match.

Read alignment is a particular case of general sequence alignment, when one of the
sequences is a read and another one is a reference genome.

A score, which is in general a function representing the “similarity” of two sequences, is
associated with every alignment. The goal of sequence alignment is to find an alignment (or
several alignments) which maximize the scoring function, so-called “optimal” alignment(s).
If whole sequences are aligned, such an alignment is called global. It makes sense if two
sequences are supposed to be similar in their entirety. In another type of alignments, local
alignments, only subsequences of the initial sequences are aligned to identify regions of
similarity within long sequences that are often widely divergent overall.

There exist two different types of output, produced by different aligners:

• best mapping aims to find the best alignment,

• all best mappings is to find all occurrences of the pattern having a score close to the
best score.

Finding only one best mappings is computationally a less intensive task than calculating
all best matches, although some good alignments could be omitted in this case. Methods,
discussed in Chapter 5, are suitable for both cases.

25



CHAPTER 4. ALGORITHMIC METHODS FOR READ ALIGNMENT 26

Depending on whether the read has actually been mapped by the algorithm or not,
and whether it is present in the genome or not, all reads are divided into four categories:

• True positives (TP): the reads that are present in the reference and are mapped
correctly by the algorithm

• False positives (FP): the reads that are mapped by the algorithm by mistake

• True negatives (TN): the reads which are correctly not mapped

• False negatives (FN): the reads which should be mapped, but are not mapped by
the algorithm

Alignment algorithms are compared by many statistical parameters, the two main ones,
Sensitivity and specificity, are defined below (see, e.g, [61] for more details).

Definition 4.1.2. Sensitivity is the ratio of correctly mapped reads to all reads that should
be mapped, i.e. Sn = |TP |

|TP |+|FN | .

Definition 4.1.3. Specificity is the ratio of correctly unmapped reads to all reads that
should not be mapped, i.e. Sp = |TN |

|TN |+|FP | .

Most of modern fast read alignment algorithms build auxiliary data structures, called
indices, for the reference sequence or for the reads set. This permits to eliminate huge parts
of the reference where the read can not be found. Such a step is usually called filtration.
Thus, a general idea of all these methods is first to limit significantly the search space, and
then to apply a more time-consuming algorithm only for limited regions.

In Section 4.2 we first examine the read alignment problem from the computer science
point of view. After that we overview methods based on dynamic programming in Sec-
tion 4.3. Then we describe the seed-and-extend strategy in Section 4.4. In Section 4.4.1
we introduce spaced seeds that efficiently replace contiguous seeds in many applications.
In Section 4.5 we briefly describe methods utilizing suffix tree-like data structures for se-
quence alignment. For a more detailed overview of existing aligners we refer to [62, 63,
64].

4.2 Read alignment as string matching

The read alignment problem (that is, to find a read’s origin in a genome sequence) can be
regarded as a string matching problem.

Definition 4.2.1. Given a text T of length n and a pattern P of length m over the same
alphabet Σ, the exact string matching problem is to find all the occurrences of P in T .

The exact string matching can be viewed as the “ideal” case of read alignment, where
the read corresponds to the pattern and the genome corresponds to the text, and we do
not allow any mismatches or indels (insertions and deletions) in the alignment.

The naive algorithm which attempts to find an occurrence of the pattern starting from
every position in the text runs in O(nm) time in the worst case and is thus impractical for
read mapping. First linear-time algorithms were created by Boyer-Moore [65] and Knuth-
Morris-Pratt [66]. They work in O(n+m) time, which is still too slow to find an alignment
of genomes when n or m can be millions or billions.

Typically, string matching algorithms build auxiliary indices so that all occurrences of
pattern can be found without full scan of the text. Usually, it is assumed that texts are
static, and we do not need to reconstruct the index during matching.



CHAPTER 4. ALGORITHMIC METHODS FOR READ ALIGNMENT 27

Suffix trees and suffix arrays, described in Sections 3.4 and 3.3, are classical data
structures that allow us to solve the exact string matching problem in O(m + occ) time,
where occ is the number of occurrences of the pattern in the text. The BWT index,
examined in Section 3.5, is a more memory-efficient data structure designed to solve the
exact string matching problem.

Exact string matching, being an extreme variant of a read alignment problem, is usually
useless in practice, as there are always differences between the reference genome and the
genome of the organism that was sequenced due to mutations and sequencing errors. Thus,
any algorithm useful in practice should be able to find approximate occurrences of the
pattern. This leads to the approximate string matching problem. First, in definitions
4.2.2 and 4.2.3 we introduce the concept of distance between two strings. The Hamming
distance and the edit distance are two of the simplest score functions for alignment of two
sequences.

Definition 4.2.2. The Hamming distance between two strings S and T of equal length n
and over the same alphabet Σ is the number of positions i : 1 ≤ i ≤ n so that Si 6= Ti.

In other words, a hamming distance is the number of mismatches between two strings
of equal length.

Definition 4.2.3. For two strings S = S1 . . . Sn and T = T1 . . . Tm, the edit distance is
the minimum length of a series of edit operations, that transforms S into T . Operations
allowed are

• substitution: replace a single character in S with another one

• insertion: insert any single character at any place in S

• deletion: remove any single character from S.

The weighted edit distance between two strings is defined similarly to the simple edit
distance, but instead of the number of operations it counts the sum of the weights of
substitutions, deletions and additions.

For a given k > 0, text T of length n and pattern P of length m, k-mismatch prob-
lem [67, 68, 69] is to find all substrings of T within the Hamming distance k from P .
Dynamic programming based approaches solve this problem in O((n + m)k) time. Simi-
larly, k-difference problem [70, 71] is to find all substrings of T within the edit distance k
from P .

More general scoring systems for substitutions are usually defined by a substitution
matrix A, where A[x, y] corresponds to the cost of x → y character substitution. These
matrices are usually symmetrical (see, for example, BLOSUM62 [72] or PAM120[73]).
Under some limitations, the approximate string matching under the edit distance with a
given substitution matrix is a problem equivalent to the read alignment.

When deletions and insertions are allowed, the deletion or insertion of consecutive
characters is called a gap. More formally, a gap is a maximal sequence of dashes in the
alignment. Usually, gaps are penalized using affine functions of the form a+ b`, where ` is
the length of the gap. For the case of affine score functions, dynamic programming based
approaches solve the problem in O((n + m)k) time. However, in case of large genomes it
is impossible to spend O(nm) or even O((n+m)k) time to map millions of reads.



CHAPTER 4. ALGORITHMIC METHODS FOR READ ALIGNMENT 28

4.3 Dynamic programming based methods

The first appearance of biological sequence alignment problem dates back to the 1960s,
when first proteins were sequenced. The original goal for aligning two protein sequences
was to discover the evolutionary relationships between them. Assuming that they had a
common ancestor, matches correspond to the characters from this common ancestor, while
the positions where proteins differ represent mutations.

The first algorithm to find an optimal alignment of two sequences was proposed by
Needleman and Wunsch in 1970 [74]. It implements the so-called dynamic programming
paradigm. In general, the Needleman-Wunsch algorithm works as follows: characters of
the sequences are put in the 0-th row and in the 0-th column of the n by m matrix, and
every cell (i, j) of the matrix contains the optimal alignment of the prefixes S1 . . . Si and
T1 . . . Tj . The values in the grid are computed from left to right and from top to bottom,
and the value in a cell is calculated with the use of already computed values. The working
time of this method is O(nm).

The Needleman-Wunsch algorithm allows us to compare two sequences in their entirety,
but may fail to find local similarities. Smith and Waterman in 1981 [75] adapted this
method so that it finds local alignments and also works in O(nm) time.

Both Needleman-Wunsch and Smith-Waterman algorithms work reasonably fast only
on small sequences, as they need to perform a full comparison of two sequences. They are
too costly when two genomes have to be aligned to one another, or when many short reads
are to be aligned against a long genome. However, under the Hamming or edit distance,
if the number of errors is limited by some k, then Smith-Waterman algorithm works in
O((n + m)k) time. Moreover, there are several techniques of Smith-Waterman algorithm
parallelization. Some of them utilizes properties of modern CPUs and uses SIMD (single
instruction - multiple data) instructions such as SSE2. Another algorithms, such as famous
Myers bit-parallel algorithm [76], can speed-up alignment under a simple scoring system.

4.4 Methods based on seed-and-extend strategy

The seed-and-extend approach consists of two steps: first, all exact occurrences of some
set of seeds are found, and then these occurrences are extended using algorithms like the
Smith-Waterman one. A seed is characterized by a template which is a sequence of zeros
and ones, where 1 corresponds to the position that should be matched, and 0 indicate the
position that may or may not match. The number of ones in the seed template is called its
weight. The seed “hits” the reference at some position if two subsequences extracted from
the reference at this position and from the read according to the seed template are equal.
For example, if seed template is 101, the reference is ACAGT and the read is CTGA,
then we can extract subsequence C-G (“-” corresponds to 0 from the seed template) from
the read and the same subsequence from the reference, and obtain a “hit”. It is assumed
that seeds match the reference without errors. If they are comparatively long and only
several matching positions are found in the reference, then the second step (extension) can
be performed quickly. If the seeding step is also fast, then the overall performance of the
algorithm will be good.

The simplest variant of a seed is a seed containing only 1s, and we extract and compare
only contiguous k-mers (strings over Σ of length k). Thus, the general seed-and-extend
algorithm works in three steps:

1. extract the set of k-mers from the read (all k-mers, or only “informative” ones, may
be extracted).



CHAPTER 4. ALGORITHMIC METHODS FOR READ ALIGNMENT 29

2. these k-mers are queried against a data structure (usually, hash table) that stores all
occurrences of all k-mers from the reference genome.

3. perform the extension step for the regions of the reference which contain one or
several k-mers from the read.

The first algorithms that followed the seed-and-extend approach were FASTA [77] and
BLAST [78]. Interestingly, being one of the first tools implementing seed-and-extend strat-
egy, FASTA package gave rise to the well-known format of the same name. FASTA was
followed by BLAST, which became one of the leading tools for sequence comparison. It
uses k equal to 11 for DNA data by default, which permits to reduce the search space
significantly, while being small enough to fit into memory. The basic BLAST algorithm
was improved to be able to find alignments of different types, for example, alignments with
gaps. Besides the alignment itself, BLAST provides a very useful feature: it can estimate
the probability that each mapping position was found by chance. It was one of the most
popular aligners for more than twenty years and has tens of thousands citations nowadays.

Many other alignment algorithms follow the seed-and-extend strategy. Some of them,
like SOAP [79, 80], Novoalign1, Mosaik [81], BFAST [82], index the reference genome.
Other approaches, like MAQ [83], RMAP [84], ZOOM [85], SHRiMP [86], build the index
for the reads’ set. The methods based on hash tables usually provide high sensitivity, but
occupy a lot of memory.

Many methods above utilize the pigeonhole principle. It states that if there are m
containers and there are n items in them, and n > m, then at least one container contains
at least 2 items. In case of “lossless” (i.e., with a goal to find all approximate occurrences
of the pattern) read mapping with up to two errors, it means that we can divide the read
into three parts and at least one of them will be error-free. To solve k-mismatch problem,
RMAP follows pigeonhole principle explicitly, subdividing the read into k+1 parts. Eland,
MAQ and SOAP split the read into four parts of the same length in order to make at least
two of them error-free in the case of 2-error problem. MAQ applies this strategy only to
the first 28 most reliable characters of the read.

Some aligners consider only regions of the reference where several seeds are found. The
idea behind this is the following one: if the pattern (read) r matches the substring w of the
text (reference) with up to e errors (mismatches or/and gaps), then the pattern and w share
at least |r|+ 1− (k+ 1)e k-mers. This statement, known as q-gramm lemma, allows us to
consider only regions with multiple k-mer hits when solving the e-error matching problem.
SHRiMP follows this approach, looking for an alignment only in regions with sufficiently
large number of seed matches. Another software, utilizing a “multiple-hit” strategy (and
based on spaced seeds, see Section 4.4.1), is YASS [87].

It should be mentioned that seeding using hash tables works efficiently only for short
reads and/or for reads with low sequencing error rate. For long reads with a high rate of
sequencing errors they become inefficient due to the fact that seeds should be comparatively
short, and the extension step is very slow.

Candidate positions found at the seeding step should be extended to an alignment of
the read under the given error model. Usually, simpler models allow for faster algorithms.
If the score system is the Hamming distance, then two strings can be compared using a
linear scan. This strategy is utilized, for example, in MAQ. Under more complicated error
models the Smith-Waterman algorithm is used to compute an alignment (see, for exam-
ple, BFAST). NovoAlign and SHRiMP apply SIMD-vectorized Smith-Waterman algorithm
implementations.

1http://www.novocraft.com



CHAPTER 4. ALGORITHMIC METHODS FOR READ ALIGNMENT 30

4.4.1 Spaced seeds

BLAST and many other approaches mentioned above use contiguous seeds to perform the
seeding step. Ma et al. in [88] and Burkhardt and Kärkkäinen in [89] introduced spaced
seeds, that require a nonconsecutive sequence of characters to match. Thus, spaced seeds
have templates containing both 1s and 0s.

While for seeding with contiguous (or solid) seeds of weight k choosing a big value of k
may lead to missing some positions and choosing a small k can produce an excessive number
of false positive hits that will not extend to a full alignment, an appropriately chosen spaced
seed provides a better chance of hitting true matching positions and produces less false
positives. Ma et al. [88] discovered that using spaced seeds instead of consecutive ones
leads to a more sensitive alignment algorithm.

PatternHunter [88] was one of the first algorithm that used space seeds to align reads.
PatternHunter uses spaced seeds to perform a “lossy” alignment, when some matches could
be missed, but the associated error rate is limited. Another program, Eland2, uses six
seed templates to index the reads and to find all occurrences of the read with up to two
mismatches. SOAP [79] provides a solution to the same problem by indexing the reference
instead of the reads. SeqMap [90] and MAQ [83] apply the same approach to solve the
k-mismatch problem using

(
2k
k

)
seeds. RMAP [84] uses only k + 1 seed templates to solve

k-mismatch problem, but the weight of the seeds is comparatively small.
Designing “optimal” sets of seed templates, as well as designing seed templates, is a

complicated and important problem, as it directly affects the performance of algorithms.
A general framework for automatic spaced seed design was suggested by Kucherov et al.
in [91] and implemented in software Iedera3. Lin et al. [85] showed how to construct
a minimal number of spaced seeds, given a read length, the sensitivity requirement and
memory usage. For example, to solve a 2-mismatch problem for reads of length 32 ZOOM
program [85] constructs 5 seed templates of weight 14 while Eland uses 6 templates of
weight 16. As the time needed to search using seeds can be considered to be proportional
to the number of seed templates and the weight of the seeds, ZOOM has better time
asymptotics than Eland if they fit the same memory requirements.

4.5 Methods based on suffix tree-like structures

Some approximate matching algorithms use standard text indexes, such as suffix tree (3.3),
suffix array (3.4) or BWT index (3.5). All such algorithms reduce the approximate pattern
matching problem to the exact matching problem. They usually implement, explicitly or
implicitly, two steps: finding exact matches and then building inexact alignments around
exact ones. Finding exact matches is trivial and was discussed in Section 3. Extending
exact matches to approximate ones is much more tricky and usually is performed using
backtracking. This idea is covered in Chapter 5.

The advantage of using suffix tree-like structures, in comparison to hash tables, is that
all occurrences of a pattern correspond to one node in the tree, thus the extension step
should be easier. Another feature of such methods is that the choice of the data structure
(suffix tree, suffix array, BWT index, etc.) is independent from the approximate matching
algorithm itself.

For large datasets occurring in modern applications, such indexes as suffix tree and
suffix array are known to take too much memory. Suffix arrays and suffix trees typically

2part of Illumina software
3http://bioinfo.cristal.univ-lille.fr/yass/iedera.php



CHAPTER 4. ALGORITHMIC METHODS FOR READ ALIGNMENT 31

require at least 4 or 10 bytes per character respectively. The last years saw the development
of succinct or compressed full-text indexes that occupy virtually as much memory as the
sequence itself and yet provide very powerful functionalities [92]. The BWT index [52],
based on the Burrows-Wheeler Transform [53], may occupy 2–4 bits of memory per char-
acter for DNA texts. BWT index has now been used in many practical bioinformatics
software programs, e.g. [55, 56, 57]. Even if succinct indexes are primarily designed for
exact pattern search, using them for approximate matching naturally became an attractive
opportunity.

Among published aligners, MUMmer [41] and OASIS [40] are based on a suffix tree, and
Vmatch [49] and Segemehl [50] are designed on the basis of suffix array. As it was noted
above, the most memory efficient (and most popular) methods are based on BWT index,
among them Bowtie [93], BWA-MEM [94], SOAP2 [80], BWT-SW [95] and BWA-SW [96].

Nowadays, one of the most popular DNA sequence aligner is BWA-MEM [94]. Along
with BWA-Backtrack [97] and BWA-SW [95], it is based on a very efficient implementation
of BWT-index, which is an improvement of an index implemented in BWT-SW [95]. First,
for every suffix of a read BWA-MEM finds minimum exact matches (MEMs), used as
seeds. Then short seeds are thrown out, too long seeds are shortened and nearby seeds are
merged. Finally, the Smith-Waterman algorithm is applied to find the alignment.

Interestingly, succinct indexes can provide even more functionalities than classical ones.
In particular, succinct indexes can be made bidirectional, i.e. can perform pattern search
in both directions [11, 58, 59, 60]. Lam et al. [11] showed how a bidirectional BWT index
can be used to efficiently search for strings up to a small number (one or two) errors. The
idea is similar to one discussed in 4.4.1: to partition the pattern into k + 1 equal parts,
where k is the number of errors, and then perform multiple searches on the BWT index,
where each search assumes a different distribution of mismatches among the pattern parts.
It has been shown experimentally in [11] that this improvement leads to a faster search
compared to the best existing read alignment software. Bidirectional search, introduced
in [11], was further improved in [1]. Related algorithmic ideas appear also in [58].

In Chapter 5 we extend and generalize the ideas of using a bidirectional BWT index
for approximate pattern matching presented in [11].



Chapter 5

Approximate string matching using a
bidirectional index

5.1 Overview

In this chapter, we study the approximate string matching problem, both under the Ham-
ming distance and the edit distance (see Chapter 4.2). Let k be the maximum allowed
number of mismatches (for the Hamming distance) or errors (for the edit distance). We
study strategies of approximate pattern matching that exploit bidirectional text indexes,
extending and generalizing ideas of [11] in two main directions. We consider the case of
arbitrary k and propose to partition the pattern into more than k + 1 parts that can be
of unequal size. To demonstrate the benefit of both ideas, we first introduce a general
formal framework for this kind of algorithm, called search scheme, that allows us to easily
specify them and to reason about them (Section 5.2). Then, in Section 5.3 we perform
a probabilistic analysis that provides us with a quantitative measure of performance of a
search scheme, and give an efficient algorithm for obtaining the optimal pattern partition
for a given scheme. Furthermore, we prove several combinatorial results on the design of
efficient search schemes (Section 5.4). Finally, Section 5.5 contains comparative analyti-
cal estimations, based on our probabilistic analysis, that demonstrate the superiority of
our search strategies for many practical parameter ranges. We further report on large-
scale experiments on genomic data supporting this analysis in Section 5.5.2. We end with
providing directions for future development in Section 5.6.

5.2 Bidirectional search

In the framework of text indexing, pattern search is usually done by scanning the pattern
online and recomputing index points referring to the occurrences of the scanned part of
the pattern. With classical text indexes, such as suffix trees or suffix arrays, the pattern
is scanned left-to-right (forward search). However, some compact indexes such as BWT
index provide a search algorithm that scans the pattern right-to-left (backward search).

Consider now approximate string matching. For ease of presentation, we present most
of our ideas for the case of Hamming distance (see 4.2.2), although our algorithms extend
to the edit distance ( 4.2.3) as well. Section 5.3.1 below will specifically deal with the edit
distance.

Assume that k letter mismatches are allowed between a pattern P and a substring of
length |P | of a text T . Both forward and backward search can be extended to approximate
search in a straightforward way, by exploring all possible mismatches along the search,

32



CHAPTER 5. APPROXIMATE STRING MATCHING 33

as long as their number does not exceed k and the current pattern still occurs in the
text. For the forward search, for example, the algorithm enumerates all substrings of T
with Hamming distance at most k to a prefix of P . Starting with the empty string, the
enumeration is done by extending the current string with the corresponding letter of P ,
and with all other letters provided that the number of accumulated mismatches has not yet
reached k. For each extension, its positions in T are computed using the index. Note that
the set of enumerated strings is closed under prefixes and therefore can be represented by
the nodes of a trie. Similar to forward search, backward search enumerates all substrings
of T with Hamming distance at most k to a suffix of P .

Clearly, backward and forward search are symmetric and, once we have an implemen-
tation of one, the other can be implemented similarly by constructing the index for the
reversed text. However, combining both forward and backward search within one algorithm
results in a more efficient search. To illustrate this, consider the case k = 1. Partition
P into two equal length parts P = P1P2. The idea is to perform two complementary
searches: forward search for occurrences of P with a mismatch in P2 and backward search
for occurrences with a mismatch in P1. In both searches, branching is performed only
after |P |/2 characters are matched. Then, the number of strings enumerated by the two
searches is much less than the number of strings enumerated by a single standard forward
search, even though two searches are performed instead of one.

A bidirectional index of a text (a bidirectional BWT index was described in Section 3.6)
allows one to extend the current string A both left and right, that is, compute the posi-
tions of either cA or Ac from the positions of A. Note that a bidirectional index allows
forward and backward searches to alternate, which will be crucial for our purposes. Lam
et al. [11] showed how the BWT index can be made bidirectional. Other succinct bidi-
rectional indexes were given in [58, 59, 60]. Using a bidirectional index, such as BWT
index, forward and backward searches can be performed in time linear in the number of
enumerated strings. Therefore, our main goal is to organize the search so that the number
of enumerated strings is minimized.

Lam et al. [11] gave a new search algorithm, called bidirectional search, that utilizes
the bidirectional property of the index. Consider the case k = 2, studied in [11]. In this
case, the pattern is partitioned into three equal length parts, P = P1P2P3. There are now
6 cases to consider according to the placement of mismatches within the parts: 011 (i.e.
one mismatch in P2 and one mismatch in P3), 101, 110, 002, 020, and 200. The algorithm
of Lam et al. [11] performs three searches (illustrated in Figure 5.1):

1. A forward search that allows no mismatches when processing characters of P1, and 0
to 2 accumulated mismatches when processing characters of P2 and P3. This search
handles the cases 011, 002, and 020 above.

2. A backward search that allows no mismatches when processing characters of P3, 0 to
1 accumulated mismatches when processing characters of P2, and 0 to 2 accumulated
mismatches when processing characters of P1. This search handles the cases 110 and
200 above.

3. The remaining case is 101. This case is handled using a bidirectional search. It
starts with a forward search on string P ′ = P2P3 that allows no mismatches when
processing characters of P2, and 0 to 1 accumulated mismatches when processing the
characters of P3. For each string A of length |P ′| enumerated by the forward search
whose Hamming distance from P ′ is exactly 1, a backward search for P1 is performed
by extending A to the left, allowing one additional mismatch. In other words, the
search allows 1 to 2 accumulated mismatches when processing the characters of P1.



CHAPTER 5. APPROXIMATE STRING MATCHING 34

(a) Forward search (b) Backward search

(c) Bidirectional search

Figure 5.1: The tries representing the searches of Lam et al. for binary alphabet {a,b},
search string P = abbaaa, and number of errors 2. Each trie represents one search and
assumes that all the enumerated substrings exist in the text T . In an actual search on a
specific T , each trie contains of a subset of the nodes, depending on whether the strings of
the nodes in the trie appear in T . A vertical edge represents a match, and a diagonal edge
represents a mismatch.



CHAPTER 5. APPROXIMATE STRING MATCHING 35

We now give a formal definition for the above. Suppose that the pattern P is partitioned
into p parts. A search is a triplet of strings S = (π, L, U) where π is a permutation string
of length p over {1, . . . , p}, and L,U are strings of length p over {0, . . . , k}. The string
π indicates the order in which the parts of P are processed, and thus it must satisfy
the following connectivity property : For every i > 1, π(i) is either (minj<i π(j)) − 1 or
(maxj<i π(j)) + 1. The strings U and L give upper and lower bounds on the number of
mismatches: When the j-th part is processed, the number of accumulated mismatches
between the active strings and the corresponding substring of P must be between L[j]
and U [j]. Formally, for a string A over integers, the weight of A is

∑
iA[i]. A search S =

(π, L, U) covers a string A if L[i+1] ≤
∑i

j=1A[j] ≤ U [i] for all i (assuming L[p+1] = 0). A
k-mismatch search scheme S is a collection of searches such that for every string A of weight
k, there is a search in S that covers A. For example, the 2-mismatch scheme of Lam et al.
consists of searches Sf = (123, 000, 022), Sb = (321, 000, 012), and Sbd = (231, 001, 012).
We denote this scheme by SLLTWWY.

We introduce two types of improvements over the search scheme of Lam et al.

Uneven partition. In SLLTWWY, search Sf enumerates more strings than the other two
searches, as it allows 2 mismatches on the second processed part of P , while the other two
searches allow only one mismatch. If we increase the length of P1 in the partition of P , the
number of strings enumerated by Sf will decrease, while the number of strings enumerated
by the two other searches will increase. We show that for some typical parameters of the
problem, the decrease in the former number is larger than the increase of the latter number,
leading to a more efficient search.

More parts. Another improvement can be achieved using partitions with k+ 2 or more
parts, rather than k+ 1 parts. We explain in Section 5.3.2 why such partitions can reduce
the number of enumerated strings.

5.3 Analysis of search schemes

In this section we show how to estimate the performance of a given search scheme S. Using
this technique, we first explain why an uneven partition can lead to a better performance,
and then present a dynamic programming algorithm for designing an optimal partition of
a pattern.

5.3.1 Estimating the efficiency of a search scheme

To measure the efficiency of a search scheme, we estimate the number of strings enumerated
by all the searches of S. We assume that performing single steps of forward, backward,
or bidirectional searches takes the same amount of time. It is fairly straightforward to
extend the method of this section to the case when these times are not equal. Note that
the bidirectional index of Lam et al. [11] reportedly spends slightly more time (order of
10%) on forward search than on backward search.

For the analysis, we assume that characters of T and P are randomly drawn uniformly
and independently from the alphabet. We note that it is possible to extend the method of
this section to a non-uniform distribution. For more complex distributions, a Monte Carlo
simulation can be applied which, however, requires much more time than the method of
this section.



CHAPTER 5. APPROXIMATE STRING MATCHING 36

Hamming distance

Our approach to the analysis is as follows. Consider a fixed search S, and the trie repre-
senting this search (see Figure 5.1). The search enumerates the largest number of strings
when the text contains all strings of length m as substrings. In this case, every string that
occurs in the trie is enumerated. For other texts, the set of enumerated strings is a subset
of the set of strings that occurs in trie. The expected number of strings enumerated by S
on random T and P is equal to the sum over all nodes v of the trie of the probability that
the corresponding string appears in T . We will first show that this probability depends
only on the depth of v (Lemmas 3 and 4 below). Then, we will show how to count the
number of nodes in each level of the trie.

Let pn,l,σ denote the probability that a random string of length l is a substring of
a random string of length n, where the characters of both strings are randomly chosen
uniformly and independently from an alphabet of size σ. The following lemma gives an
approximation for pn,l,σ with a bound on the approximation error.

Lemma 3. |pn,l,σ − (1− e−n/σl)| ≤

{
4nl/σ2l if l ≥ logσ n

4l/σl otherwise
.

Proof. Let A and B be random strings of length l and n, respectively. Let Ei be the
event that A appears in B at position i. The event Ei is independent of the events
{Ej : j ∈ {1, 2, . . . , n− l + 1} \ Fi}, where Fi = {i− l + 1, i− l + 2, . . . , i+ l − 1}. By the
Chen-Stein method [98, 99],

∣∣∣pn,l,σ − (1− e−n/σl)
∣∣∣ ≤ 1− e−λ

λ

n−l+1∑
i=1

∑
j∈Fi

(Pr[Ei] Pr[Ej ] + Pr[Ei ∩ Ej ]),

where λ = n/σl. Clearly, Pr[Ei] = Pr[Ej ] = 1/σl. It is also easy to verify that Pr[Ei∩Ej ] =

1/σ2l. Therefore, |pn,l,σ − (1− e−n/σl)| ≤ ((1− e−λ)/λ) · 4nl/σ2l. The lemma follows since
(1− e−λ)/λ ≤ min(1, 1/λ) for all λ.

The bound in Lemma 3 on the error of the approximation of pn,l,σ is large if l is small,
say l < 1

2 logσ n. In this case, we can get a better bound by observing that pn,l,σ ≥ pn,l0,σ,
where l0 = 3

4 logσ n. Since pn,l0,σ ≥ 1 − e−n/σl0 − 4l0/σ
l0 , we obtain that |pn,l,σ − (1 −

e−n/σ
l
)| ≤ max(e−n/σ

l
, e−n/σ

l0 + 4l0/σ
l0).

Let #str(S,X, σ, n) denote the expected number of strings enumerated when perform-
ing a search S = (π, L, U) on a random text of length n and random pattern of length
m, where X is a partition of the pattern and σ is the alphabet size (note that m is not
a parameter for #str since the value of m is implied from X). For a search scheme S,
#str(S, X, σ, n) =

∑
S∈S #str(S,X, σ, n).

Fix S, X, σ, and n. Let Al be the set of enumerated strings of length l when performing
search S on a random pattern of length m, partitioned by X, and a text T̂ containing all
strings of length at most m as substrings. Let Al,i be the i-th element of Al (an order on
Al will be defined in the proof of the next lemma). Let nodes l = |Al|, namely, the number
of nodes at depth l in the trie that represents the search S. Let P ∗ be the string containing
the characters of P according to the order they are read by the search. In other words,
P ∗[l] is the character such that every node at depth l− 1 of the trie has an edge to a child
with label P ∗[l].

Lemma 4. For every l and i, the string Al,i is a random string with uniform distribution.



CHAPTER 5. APPROXIMATE STRING MATCHING 37

Proof. Assume that the alphabet is Σ = {0, . . . , σ− 1}. Consider the trie that represents
the search S. We define an order on the children of each node of the trie as follows: Let v
be a node in the trie with depth l − 1. The label on the edge between v and its leftmost
child is P ∗[l]. If v has more than one child, the labels on the edges to the rest of the
children of v, from left to right, are (P ∗[l] + 1) mod σ, . . . , (P ∗[l] + σ − 1) mod σ. We now
order the set Al according to the nodes of depth l in the trie. Namely, let v1, . . . , vnodesl be
the nodes of depth l in the trie, from left to right. Then, Al,i is the string that corresponds
to vi. We have that Al,i[j] = (P ∗[j] + ci,j − 1) mod σ for j = 1, . . . , l, where ci,j is the rank
of the node of depth j on the path from the root to vi among its siblings. Now, since each
letter of P is randomly chosen uniformly and independently from the alphabet, it follows
that each letter of Al,i has uniform distribution and the letters of Al,i are independent.

By the linearity of the expectation,

#str(S,X, σ, n) =
∑
l≥1

nodesl∑
i=1

Pr
T∈Σn

[Al,i is a substring of T ].

By Lemma 4 and Lemma 3,

#str(S,X, σ, n) =
m∑
l=1

nodes l · pn,l,σ ≈
m∑
l=1

nodes l(1− e−n/σ
l
). (5.1)

We note that the bounds on the approximation errors of pn,l,σ are small, therefore even
when these bounds are multiplied by nodes l and summed over all l, the resulting bound
on the error is small.

In order to compute the values of nodes l, we give some definitions. Let nodes l,d be the
number of strings in Al of length l with Hamming distance d to the prefix of P ∗ of length
l. For example, consider search Sbd = (231, 001, 012) and partition of a pattern of length
6 into 3 parts of length 2, as shown in Figure 5.1(c). Then, P ∗ = baaaba, nodes5,0 = 0,
nodes5,1 = 2 (strings baabb and babab), and nodes5,2 = 2 (strings baaba and babaa).

Let πX be a string obtained from π by replacing each character π(i) of π by a run of π(i)
of length X[π(i)], where X[j] is the length of the j-th part in the partition X. Similarly,
LX is a string obtained from L by replacing each character L[i] by a run of L[i] of length
X[π(i)], and UX is defined analogously. In other words, values LX [i], UX [i] give lower and
upper bounds on the number of allowed mismatches for an enumerated string of length i.
For example, for Sbd and the partition X defined above, πX = 223311, LX = 000011, and
UX = 001122.

Values nodes l are given by the following recurrence.

nodes l =

UX [l]∑
d=LX [l]

nodes l,d (5.2)

nodes l,d =


nodes l−1,d + (σ − 1) · nodes l−1,d−1 if l ≥ 1 and LX [l] ≤ d ≤ UX [l]

1 if l = 0 and d = 0

0 otherwise
(5.3)

For a specific search, a closed formula can be given for nodes l. If a search scheme S contains
two or more searches with the same π-strings, these searches can be merged in order to
eliminate the enumeration of the same string twice or more. It is straightforward to modify
the computation of #str(S, X, σ, n) to account for this optimization.



CHAPTER 5. APPROXIMATE STRING MATCHING 38

Consider equation (5.1). The value of the term 1 − e−n/σl is very close to 1 for l ≤
logσ n−O(1). When l ≥ logσ n, the value of this term decreases exponentially. Note that
nodes l increases exponentially, but the base of the exponent of nodes l is σ − 1 whereas
the base of 1 − e−n/σl is 1/σ. We can then approximate #str(S,X, σ, n) with function
#str′(S,X, σ, n) defined by

#str′(S,X, σ, n) =

dlogσ ne+cσ∑
l=1

nodes l · (1− e−n/σ
l
), (5.4)

where cσ is a constant chosen so that ((σ − 1)/σ)cσ is sufficiently small.
From the above formulas we have that the time complexities for computing #str(S, X, σ, n)

and #str′(S, X, σ, n) are O(|S|km) and O(|S|k logσ n), respectively.

Edit distance

We now show how to estimate the efficiency of a search scheme for the edit distance.
We define #stredit analogously to #str in the previous section, except that edit dis-

tance errors are allowed. Fix a search S = (π, L, U) and a partition X. We assume
without loss of generality that π is the identity permutation. Similarly to the Hamming
distance case, define Al to be the set of enumerated strings of length l when performing
the search S on a random pattern of length m, partitioned by X, and a text T̂ contain-
ing all the strings of length at most m + k as substrings. Unlike the case of Hamming
distance, here the strings of Al are not distributed uniformly. Thus, we do not have the
equality #stredit(S,X, σ, n) =

∑m
l=1 nodes l · pn,l,σ. We will use

∑m
l=1 nodes l · pn,l,σ as an

approximation for #stredit(S,X, σ, n), but we do not have an estimation on the error of
this approximation. Note that in the Hamming distance case, the sizes of the sets Al
are the same for every choice of the pattern, whereas this is not true for edit distance.
We therefore define nodes l(P ) to be the number of enumerated strings of length l when
performing the search S on a pattern P of length m, partitioned by X, and a text T̂ . We
also define nodes l to be the expectation of nodes l(P ), where P is chosen randomly.

We next show how to compute values nodes l. We begin by giving an algorithm for
computing nodes l(P ) for some fixed P . Build a non-deterministic automaton AP that
recognizes the set of strings that are within edit distance at most k to P , and the locations
of the errors satisfy the requirements of the search [100, 101] (see Figure 5.2 for an example).
For a state q and a string B, denote by δ̂P (q,B) the set of all states q′ for which there is a
path in AP from q to q′ such that the concatenation of the labels on the path is equal to
B. For a set of states Q and a string B, δ̂P (Q,B) = ∪q∈Qδ̂P (q,B). Clearly, nodes l(P ) is
equal to the number of strings B of length l for which δ̂P (q0, B) 6= ∅, where q0 is the initial
state. Let nodes l,Q(P ) be the number of strings B of length l for which δ̂P (q0, B) = Q.
The values of nodes l,Q(P ) can be computed using dynamic programming and the following
recurrence.

nodes l,Q(P ) =
∑
c∈Σ

∑
Q′:δ̂P (Q′,c)=Q

nodes l−1,Q′(P ).

The values nodes l,Q(P ) gives the values of nodes l(P ), since by definition,

nodes l(P ) =
∑
Q

nodes l,Q(P ),

where the summation is done over all non-empty sets of states Q.



CHAPTER 5. APPROXIMATE STRING MATCHING 39

Figure 5.2: Non-deterministic automaton corresponding to the search S = (12, 00, 02) and
pattern P = bbabab over the alphabet Σ = {a,b}. A path from the initial state q0 to
the state in the i-th row and j-column of the automaton correspond to a string with edit
distance i− 1 to P [1..j − 1]. The nodes of the set Q4 are marked by gray.

Note that for a string B of length l, set δ̂P (q0, B) is a subset of a set of (k+ 1)2 states
that depends on l. This set, denoted Ql, includes the l + 1-th state in the first row of the
automaton, states l, l+ 1, l+ 2 on the second row, states l− 1, l, . . . , l+ 3 on the third row,
and so on (see Figure 5.2). The size of Ql is 1+3+5+ · · ·+(2k+1) = (k+1)2. Therefore,
the number of sets Q for which nodes l,Q(P ) > 0 is at most 2(k+1)2 . If (k + 1)2 is small
enough, a state can be encoded in one machine word, and the computation of δ̂P (Q′, c)
can be done in constant time using precomputed tables. Thus, the time for computing all
values of nodes l,Q(P ) is O(2k

2
σm).

Now consider the problem of computing the values of nodes l. Observe that for Q ⊆ Ql,
the value of δ̂P (Q, c) depends on the characters of P [l − k + 1..l + k + 1], and does not
depend on the rest of the characters of P . Our algorithm is based on this observation. For
an integer l, a set Q ⊆ Ql, and a string P ′ of length 2k + 1, define

nodes l,Q,P ′ =
∑

P :P [l−k+1..l+k+1]=P ′

nodes l,Q(P ).

Then,
nodes l,Q,P ′ =

∑
c′∈Σ

∑
c∈Σ

∑
Q′:δ̂Pc (Q′,c)=Q

nodes l−1,Q′,P ′c ,

where P ′c = c′P ′[1..2k], and Pc is a string satisfying Pc[(l− 1)− k+ 1..(l− 1) + k+ 1] = P ′c
(the rest of the characters of Pc can be chosen arbitrarily).

From the above, the time complexity for computing #stredit(S,X, σ, n) isO(|S|2k2σ2k+3m).
Therefore, our approach is practical only for small values of k.

5.3.2 Uneven partitions

In Section 5.2, we provided an informal explanation why partitioning the pattern into
unequal parts may be beneficial. We now provide a formal justification for this. To this
end, we replace (5.4) by an even simpler estimator of #str(S,X, σ, n):

#str′′(S,X, σ, n) =

dlogσ ne∑
l=1

nodes l. (5.5)

As an example, consider scheme SLLTWWY. Denote by x1, x2, x3 the lengths of the
parts in a partition X of P into 3 parts. It is straightforward to give closed formulas for



CHAPTER 5. APPROXIMATE STRING MATCHING 40

#str′′(S,X, σ, n) for each search of SLLTWWY. For example,

#str′′(Sf , X, σ, n) =

{
N if N ≤ x1

c1(N − x1)3 + c2(N − x1)2 + c3(N − x1) +N otherwise

where N = dlogσ ne, c1 = (σ − 1)2/6, c2 = (σ − 1)/2, and c3 = −(σ − 1)2/6 + (σ − 1)/2.
Similar formulas can be given for Sb and Sbd. If x1, x2, and x3 are close to m/3 and
N < m/3 then #str′′(SLLTWWY, X, σ, n,m) = 3N and an equal sized partition is optimal
in this case. However, if m/3 < N < 2m/3, then

#str′′(SLLTWWY,X, σ, n) = c1(N − x1)3 + c2(N − x1)2 + c3(N − x1)

+ c′1(N − x3)2 + c′2(N − x3) + c′′1(N − x2)2 + c′′2(N − x2) + 3N.

It is now clear why the equal sized partition is not optimal in this case. The degree of
N − x1 in the above polynomial is 3, while the degrees of N − x2 and N − x3 are 2. Thus,
if x1 = x2 = x3 = m/3, decreasing x2 and x3 by, say 1, while increasing x1 by 2 reduces
the value of the polynomial.

5.3.3 Computing an optimal partition

In this Section, we show how to find an optimal partition for a given search scheme S and
a given number of parts p. An optimal partition can be naively found by enumerating all(
m−1
p−1

)
possible partitions, and for each partition X, computing #str′(S, X, σ, n). We now

describe a more efficient dynamic programming algorithm.
We define an optimal partition to be a partition that minimizes #str(S, X, σ, n). Let

N = dlogσ ne + cσ. If m ≥ pN , then any partition in which all parts are of size at least
N is an optimal partition. Therefore, assume for the rest of this section that m < pN .
We say that a partition X is bounded if the sizes of the parts of X are at most N . If
X is not bounded, we can transform it into a bounded partition by decreasing the sizes
of parts which are larger than N and increasing the sizes of parts which are smaller that
N . This transformation can only decrease the value of #str(S, X, σ, n). Therefore, there
exists an optimal partition which is bounded. Throughout this section we will consider
only bounded partitions. For brevity, we will use the term partition instead of bounded
partition.

Our algorithm takes advantage of the fact that the value of #str′(S, X, σ, n) does not
depend on the entire partition X, but only on the partition of a substring of P of length
N induced by X. More precisely, consider a fixed S = (π, L, U) ∈ S. By definition,
#str′(S,X, σ, n) depends on the values nodes1, . . . ,nodesN (the number of nodes in levels
1, . . . , N in the trie that correspond to the search S). From Section 5.3.1, these values
depend on the strings L and U which are fixed, and on the string πX [1..N ]. The latter
string depends on π[1..iX,π], where iX,π is the minimum index such that

∑iX,π
j=1 X[π(j)] ≥ N

and on the values X[π(1)], . . . , X[π(iX,π)].
The algorithm works by going over the prefixes of P in increasing length order. For

each prefix P ′, it computes a set of partitions of P ′ such that at least one partition in this
set can be extended to an optimal partition of P . In order to reduce the time complexity,
the algorithm needs to identify partitions of P ′ that cannot be extended into an optimal
partition of P . Consider the following example. Suppose that m = 13, p = 5, N = 4
and S = {S1, S2, S3}, where the π-strings of S1, S2, S3 are π1 = 12345, π2 = 32451, and
π3 = 43215, respectively. Consider a prefix P ′ = P [1..8] of P , and let Y1, Y2 be two
partitions of P ′, where the parts in Y1 are of sizes 3,3,2, and the parts in Y1 are of sizes



CHAPTER 5. APPROXIMATE STRING MATCHING 41

4,2,2. Note that Y1 and Y2 have the same number of parts, and they induce the same
partition on P [8−N + 1..8] = P [5..8]. We claim that one of these two partitions is always
at least as good as the other for every extension of both partitions to a partition of P . To
see this, let Z denote a partition of P [9..13] into two parts, and consider the three searches
of S.

1. For search S1 we have that π1
Y1∪Z [1..N ] = 1112 for every Z, and π1

Y2∪Z [1..N ] = 1111
for every Z. It follows that the value of #str′(S1, Y1 ∪ Z, σ, n) is the same for every
Z, and the value of #str′(S1, Y2 ∪Z, σ, n) is the same for every Z. These two values
can be equal or different.

2. For the search S2 we have that π2
Y1∪Z [1..N ] = π2

Y2∪Z [1..N ] = 3322. It follows that
#str′(S2, Y1 ∪Z, σ, n) = #str′(S2, Y2 ∪Z, σ, n) for all Z and this common value does
not depend on Z.

3. For the search S3 we have that π3
Y1∪Z [1..N ] = π3

Y2∪Z [1..N ] for every Z. For example,
if Z is a partition of P [9..13] into parts of sizes 2,2 then π3

Y1∪Z [1..N ] = π3
Y2∪Z [1..N ] =

4433. It follows that #str′(S3, Y1∪Z, σ, n) = #str′(S3, Y2∪Z, σ, n) for every Z. This
common value depends on Z.

We conclude that either #str′(S, Y1 ∪ Z, σ, n) < #str′(S, Y2 ∪ Z, σ, n) for every Z, or
#str′(S, Y1 ∪ Z, σ, n) ≥ #str′(S, Y2 ∪ Z, σ, n) for every Z.

We now give a formal description of the algorithm. We start with some definitions.
For a partition Y of a substring P ′ = P [m′′..m′] of pattern P , we define the following
quantities: mY is the length of P ′, lY is the length of the last part of Y , pY is the number
of parts in Y , and qY is the left-to-right rank of the part of Y containing P ′[m′ −N + 1].
Let prefix(Y ) be the partition of P [m′′..m′−lY ] of P ′ that is composed from the first pY −1
parts of Y . For the example above, mY1 = 8, lY1 = 2, pY1 = 3, qY1 = 2, and prefix(Y1) is a
partition of P [1..6] with parts sizes 3, 3.

For a partition Y of a prefix P ′ of P , S(Y ) is a set containing every search S ∈ S
such that qY appears before pY + 1 in the π-string of S. If the length of P ′ is less than
N we define S(Y ) = ∅, and if P ′ = P we define S(Y ) = S. For the example above,
S(Y1) = {S1, S2}.

Let Y1 be a partition of a substring P1 = P [i1..j1] of P , and Y2 be a partition of a
substring P2 = P [i2..j2]. We say that Y1 and Y2 are compatible if these partitions induce
the same partition on the common substring P ′ = P [max(i1, i2)..min(j1, j2)]. For example,
the partition of P [4..6] into parts of sizes 1, 2 is compatible with the partition of P [1..6]
into parts of sizes 2, 2, 2.

Lemma 5. Let Y be a partition of a prefix of P of length at least N . Let S ∈ S(Y ) be a
search. The value #str′(S,X, σ, n) is the same for every partition X of P whose first pY
parts match Y .

Proof. Let i′ be the index such that π(i′) = pY + 1. Since qY appears before pY + 1 in
string π, from the connectivity property of π we have that (1) Every value in π that appears
before pY + 1 is at most pY . In other words, π(i) ≤ pY for every i < i′. (2) qY , . . . , pY
appear before pY + 1 in π. By the definition of qY ,

∑pY
j=qY

X[j] ≥ N . Therefore, iX,π < i′

and π(1), . . . , π(iX,π) ≤ pY . Thus, string π[1..iX,π] and values X[π(1)], . . . , X[π(iX,π)] are
the same for every partition X that satisfies the requirement of the lemma.

For a partition Y of a prefix of P of length at leastN , define v(Y ) to be
∑

S∈S(Y ) #str′(S,X, σ, n),
where X is an arbitrary partition of P whose first pY parts match Y (the choice of X does



CHAPTER 5. APPROXIMATE STRING MATCHING 42

not matter due to Lemma 5). For a partition Y of a prefix of P of length less than N ,
v(Y ) = 0. Define

∆(Y ) = v(Y )− v(prefix(Y )) =
∑

S∈S(Y )\S(prefix(Y ))

#str′(S,X, σ, n).

Lemma 6. Let Z be a partition of a substring P [m′′..m′] such that pZ ≥ 2 and mprefix(Z) =
min(N,m′ − lY ). Let p′ ≥ pZ be an integer. The value of ∆(Y ) is the same for every
partition Y of P [1..m′] with p′ parts that is compatible with Z.

Proof. We assume N < m′ − lY (the case N ≥ m′ − lY is similar). Since mprefix(Z) =
min(N,m′ − lY ), the set S(Y ) \ S(prefix(Y )) is the same for every partition Y of P [1..m′]
with p′ parts that is compatible with Z. For a search S = (π, L, U) in this set, qY
appears before pY + 1 in π, and pY appears before qprefix(Y ). Let i = iX,π, where X
is an arbitrary partition of P whose first pY parts are the parts of Y . We obtain that
qprefix(Y ) ≤ π(1), . . . , π(i) ≤ pY , and the lemma follows.

For Z, p′ that satisfy the requirements of Lemma 6, let ∆(Z, p′) denote the value of
∆(Y ), where Y is an arbitrary partition of P [1..m′] with p′ parts that is compatible with
Z.

For m′ ≤ m, p′ ≤ p, and a partition Z of P [max(m′ − N + 1, 1)..m′] with at most p′

parts, let v(m′, p′, Z) be the minimum value of v(Y ), where Y is a partition of P [1..m′]
into p′ parts that is compatible with Z.

Lemma 7. For m′ ≤ m, 2 ≤ p′ ≤ p, and a partition Z of P [max(m′ −N + 1, 1)..m′] with
at most p′ parts,

v(m′, p′, Z) = min
Z′

(
v(m′ − lZ′ , p′ − 1, prefix(Z ′)) + ∆(Z ′, p′)

)
where the minimum is taken over all partitions Z ′ of a substring P [m′′..m′] of P that
satisfy the following: (1) Z ′ is compatible with Z, (2) 2 ≤ pZ′ ≤ p′, (3) mprefix(Z′) =
min(N,m′ − lZ′), (4) pZ = p′ if m′′ = 1.

An algorithm for computing the optimal partition follows from Lemma 7. The time
complexity of the algorithm isO

(
(|S|kN +m)

∑min(p−1,N)
j=1 (p−j)

(
N−1
j−1

))
, where |S|kN

∑min(p−1,N)
j=1 (p−

j)
(
N−1
j−1

)
is time for computing ∆ values, and O

(
m
∑min(p−1,N)

j=1 (p − j)
(
N−1
j−1

))
is time for

computing v values.

5.4 Properties of optimal search schemes

Designing an efficient search scheme for a given set of parameters consists of (1) choosing
a number of parts, (2) choosing searches, (3) choosing a partition of the pattern. While
it is possible to enumerate all possible choices, and evaluate the efficiency of the resulting
scheme using Section 5.3.1, this is generally infeasible due to a large number of possibilities.
It is therefore desirable to have a combinatorial characterization of optimal search schemes.

The critical string of a search scheme S is the lexicographically maximal U -string of a
search in S. A search of S is critical if its U -string is equal to the critical string of S. For
example, the critical string of SLLTWWY is 022, and Sf is the critical search. For typical
parameters, critical searches of a search scheme constitute the bottleneck. Consider a
search scheme S, and assume that the L-strings of all searches contain only zeros. Assume
further that the pattern is partitioned into equal-size parts. Let ` be the maximum index



CHAPTER 5. APPROXIMATE STRING MATCHING 43

such that for every search S ∈ S and every i ≤ `, U [i] of S is no larger than the number in
position i in the critical string of S. From Section 5.3, the number of strings enumerated by
a search S ∈ S depends mostly on the prefix of the U -string of S of length ddlogσ ne/(m/p)e.
Thus, if ddlogσ ne/(m/p)e ≤ `, a critical search enumerates an equal or greater number of
strings than a non-critical search.

We now consider the problem of designing a search scheme whose critical string is
minimal. Let α(k, p) denote the lexicographically minimal critical string of a k-mismatch
search scheme that partitions the pattern into p parts. The next theorems give the values
of α(k, k+ 2) and α(k, k+ 1). We need the following definition. A string over the alphabet
of integers is called simple if it contains a substring of the form 01j0 for j ≥ 0.

Lemma 8. (i) Every string A of weight k and length at least k + 2 is simple.

(ii) If A is a non-simple string of weight k and length k+ 1 then A[1] ≤ 1, A[k+ 1] ≤ 1,
and A[i] ≤ 2 for all 2 ≤ i ≤ k. Moreover, there are no two consecutive 2’s in A.

Proof. (i) The proof is by induction on k. It is easy to verify that the lemma holds for
k = 0. Suppose we proved the lemma for k′ < k. Let A be a string of weight k and length
p ≥ k + 2. If A[1] ≥ 1 then by the induction hypothesis A[2..p] is simple, and therefore A
is simple. Suppose that A[1] = 0. Let i > 1 be the minimum index such that A[i] 6= 1 (i
must exist due to the assumption that p ≥ k+2). If A[i] = 0 then we are done. Otherwise,
we can use the induction hypothesis on A[i+ 1..p] and obtain that A is simple.

(ii) Let A be a non-simple string of weight k and length k + 1. If A[1] ≥ 2 then
A′ = A[2..k + 1] has weight k − A[1] ≤ k − 2 and length k, and thus by (i) we obtain
that A′ is simple, contradicting the assumption that A is non-simple. Similarly, A[k + 1]
cannot be greater than 1. For 2 ≤ i ≤ k, if A[i] ≥ 3 then either A[1..i−1] or A[i+ 1..k+ 1]
satisfies the condition of (i). Similarly, if A[i] = A[i + 1] = 2 then either A[1..i − 1] or
A[i+ 2..k + 1] satisfies the condition of (i).

We use the following notation. For two integers i and j, [i, j] denotes the string i(i +
1)(i + 2) · · · j if i ≤ j, and the empty string if i > j. Moreover, [i, j] denotes the string
i(i− 1)(i− 2) · · · j if i ≥ j, and the empty string if i < j.

Theorem 9. α(k, k + 1) = 013355 · · · kk for every odd k, and α(k, k + 1) = 02244 · · · kk
for every even k.

Proof. We first give an upper bound on α(k, k + 1) for odd k. We build a search scheme
as follows. The scheme contains searches Sk,i,j = ([i, k+2][i− 1, 1], 0 · · · 0, [0, j]jk · · · k) for
all i and j, which cover all simple strings of weight k and length k + 1. In order to cover
the non-simple strings, the scheme contains the following searches.

1. S1
k,i,j = ([i, k + 1][i− 1, 1], 0 · · · 0, 013355 · · · jj(j + 1)k · · · k) for every odd 3 ≤ j ≤ k

(for j = k, the U -string is 013355 · · · kk).

2. S2
k,i,j = ([i, 1][i+ 1, k + 1], 0 · · · 0, 013355 · · · jj(j + 1)k · · · k) for every odd 3 ≤ j ≤ k

(for j = k, the U -string is 013355 · · · kk).

Let A be a non-simple string of weight k and length k + 1. By Lemma 8, A =
X0A10A20 · · · 0Ad0Y where each of X and Y is either string 1 or empty string, and each
Ai is either 2, 12, 21, or 121. A string Ai is called a block of type 1, 2, or 3 if Ai is equal
to 12, 21, or 121, respectively. Let B1, . . . , Bd′ be the blocks of type 1 and type 2, from
left to right.



CHAPTER 5. APPROXIMATE STRING MATCHING 44

We consider several cases. The first case is when X and Y are empty strings, and B1 is
of type 1. Since the weight of A is odd, it follows that d′ is odd. If A has no other blocks,
A is covered by search S1

k,i,k, where i+ 1 is the index in A in which B1 starts. Otherwise,
if B2 is of type 1, then A is covered by search S1

k,i,j , where i+ 1 is the index in A in which
B1 starts, and i+ j + 1 is the index in which the first block to the right of B1 starts (this
block is either B2, or a block of type 3). Now suppose that B2 is of type 2. If B3 is of
type 2, then A is covered by search S2

k,i,j , where i− 1 is the index in A in which B3 ends,
and i− j−1 is the index in which the first block to the left of B3 ends. By repeating these
arguments, we obtain that A is covered unless the types of B1, . . . , Bd′ alternate between
type 1 and type 2. However, since d′ is odd, Bd′ is of type 1, and in this case A is covered
by S1

k,i,j , where i+ 1 is the index in A in which B1 starts, and k − j is the index in which
the first block to the left of B1 ends.

Now, if X is empty string and Y = 1, define a string A′ = A20. By the above, A′ is
covered by some search Sj

′

k+2,i,j . Then, A is covered by either Sj
′

k,i,j or S
j′

k,i,j−2. The same
argument holds for the case when X = 1. The proof for the case when B1 is of type 2 is
analogous and thus omitted.

The lower bound on α(k, k + 1) for odd k is obtained by considering the string A =
012020 · · · 20. The U -string of a search that covers A must be at least 013355 · · · kk.

We next give an upper bound on α(k, k + 1) for even k. We define k-mismatch search
schemes Sk recursively. For k = 0, S0 consists of a single search S0,1 = (1, 0, 0). For k ≥ 2,
Sk consists of the following searches.

1. For every search Sk−2,i = (π, 0 · · · 0, U) in Sk−2, Sk contains a search Sk,i = (π ·k(k+
1), 0 · · · 0, U · kk).

2. A search Sk,k = ([k + 1, 1], 0 · · · 0, 01kk · · · k).

3. A search Sk,k+1 = (k(k + 1)[k − 1, 1], 0 · · · 0, 01kk · · · k).

Note that the critical string of Sk is 02244 · · · kk corresponding to item 1 above. We now
claim that all number strings of length k + 1 and weight at most k are covered by the
searches of Sk. The proof is by induction on k. The base k = 0 is trivial. Suppose the
claim holds for k − 2. Let A be a number string of length k + 1 and weight k′ ≤ k. If
A[k] + A[k + 1] ≤ 1, then A is covered by either Sk,k or Sk,k+1. Otherwise, the weight of
A′ = A[1..k−1] is at most k′−2. By induction, A′ is covered by some search Sk−2,i. Then
search Sk,i covers A.

To prove that α(k, k+1) ≥ 02244 · · · kk for even k, consider the string A = 0202 · · · 020.
It is easy to verify that the U -string of a search that covers A must be at least 02244 · · · kk.

Theorem 10. α(k, k + 2) = 0123 · · · (k − 1)kk for every k ≥ 1.

Proof. We first give an upper bound on α(k, k+1). We build a k-mismatch search scheme
S that contains searches Sk,i,j = ([i, k+ 2][i− 1, 1], 0 · · · 0, [0, j]jk · · · k) for all i and j. Let
A be a string of weight k and length k + 2. By Lemma 8 there are indices i and j such
that A[i..i+ j + 1] = 01j0, and therefore A is covered by Sk,i,j .

The lower bound is obtained from the string A = 011 · · · 110. It is easy to verify that
the U -string of a search that covers A must be at least 0123 · · · (k − 1)kk.

An important consequence of Theorems 9 and 10 is that for some typical cases, parti-
tioning the pattern into k + 2 parts brings an advantage over k + 1 parts. For k = 2, for
example, we have α(2, 3) = 022 while α(2, 4) = 0122. Since the second element of 0122 is



CHAPTER 5. APPROXIMATE STRING MATCHING 45

smaller than that of 022, a 4-part search scheme potentially enumerates less strings than
a 3-part scheme. On the other hand, the average length of a part is smaller when using 4
parts, and therefore the branching occurs earlier in the searches of a 4-part scheme. The
next section shows that for some parameters, (k+2)-part schemes outperform (k+1)-part
schemes, while for other parameters the inverse occurs.

5.5 Case studies

In this Section, we provide results of several computational experiments we have performed
to analyse practical applicability of our techniques.

We designed search schemes for 2, 3 and 4 errors provided below using a greedy al-
gorithm. The algorithm iteratively adds searches to a search scheme. At each step, the
algorithm considers the uncovered string A of weight k such that the lexicographically min-
imal U -string that covers A is maximal. Among the searches that cover A with minimal
U -string, a search that covers the maximum number of uncovered strings of weight k is
chosen. The L-string of the search is chosen to be lexicographically maximal among all
possible L-string that do not decrease the number of uncovered strings. For each search
scheme and each choice of parameters, we computed an optimal partition.
For 2 mismatches or errors:

1. Slightly modified scheme SLLTWWY. The searches are: Sf = (123, 000, 022), Sb =
(321, 000, 012), and S′bd = (213, 001, 012). Note that the π-string of S′bd is 213 and
not 231 as in Sbd. While Sbd and S′bd have the same efficiency for equal-size partitions,
this in not the case for unequally sized parts.

2. 4-part scheme with searches (1234, 0000, 0112), (4321, 0000, 0122),
(2341, 0001, 0012), and (1234, 0002, 0022).

For 3 mismatches or errors:

1. 4-part scheme with searches (1234, 0000, 0133), (2134, 0011, 0133),
(3421, 0000, 0133), and (4321, 0011, 0133).

2. 5-part scheme with searches (12345, 00000, 01233), (23451, 00000, 01223),
(34521, 00001, 01133), and (45321, 00012, 00333).

For 4 mismatches or errors:

1. 5-part scheme with searches (12345, 00000, 02244), (54321, 00000, 01344),
(21345, 00133, 01334), (12345, 00133, 01334), (43521, 00011, 01244),
(32145, 00013, 01244), (21345, 00124, 01244) and (12345, 00034, 00444).

2. 6-part scheme with searches (123456, 00000, 012344), (234561, 00000, 012344), (654321, 000001, 012244),
(456321, 000012, 011344), (345621, 000023, 011244), (564321, 000133, 003344), (123456, 000333, 003344),
(123456, 000044, 002444), (342156, 000124, 002244) and (564321, 000044, 001444).

5.5.1 Numerical comparison of search schemes

We first performed a comparative estimation of the efficiency of search schemes using the
method of Section 5.3.1 (case of Hamming distance). More precisely, for a given search



CHAPTER 5. APPROXIMATE STRING MATCHING 46

Table 5.1: Values of #str(S, X, 4, 416) for 2-mismatch search schemes, for different pattern
lengths m. Second column corresponds to search scheme SLLTWWY with three equal-size
parts, the other columns show results for unequal partitions and/or more parts. The
partition used is shown in the second sub-column.

m 3 equal 3 unequal 4 unequal 5 unequal
24 1197 1077 9,7,8 959 7,4,4,9 939 7,1,6,1,9
36 241 165 15,10,11 140 12,5,7,12 165 11,1,9,1,14
48 53 53 16,16,16 51 16,7,9,16 53 16,1,15,1,15

Table 5.2: Values of #str(S, X, 30, 307) for 2-mismatch search schemes.
m 3 equal 3 unequal 4 unequal 5 unequal
15 846 286 6,4,5 231 5,2,3,5 286 5,1,3,1,5
18 112 111 7,6,5 81 6,2,4,6 111 6,1,4,1,6
21 24 24 7,7,7 23 7,3,4,7 24 7,1,6,1,6

scheme S, we estimated the number of strings #str(S, X, σ, n) enumerated during the
search.

Results for 2 mismatches are given in Table 5.1 and Table 5.2 for 4-letter and 30-letter
alphabets respectively. Table 5.3 contains estimations for nonuniform letter distribution.
Table 5.4 contains estimations for 3 mismatches for 4-letter alphabet.

We first observe that our method provides an advantage only on a limited range of
pattern lengths. This conforms to our analysis (see Section 5.3.2) that implies that our
schemes can bring an improvement when m/(k + 1) is smaller than logσ n approximately.
When m/(k+ 1) is small, Tables 5.1–5.4 suggest that using more parts of unequal size can
bring a significant improvement. For big alphabets (Table 5.2), we observe a larger gain
in efficiency, due to the fact that values nodes l (see equation (5.2)) grow faster when the
alphabet is large, and thus a change in the size of parts can have a bigger influence on
these values. Moreover, if the probability distribution of letters in both the text and the
pattern is nonuniform, then we obtain an even larger gain (Table 5.3), since in this case,
the strings enumerated during the search have a larger probability to appear in the text
than for the uniform distribution.

For 3 mismatches and 4 letters (Table 5.4), we observe a smaller gain, and even a
loss for pattern lengths 36 and 48 when shifting from 4 to 5 parts. This is explained by
Theorem 9 showing the difference of critical strings between odd and even numbers of
errors. Thus, for 3 mismatches and 4 parts, the critical string is 0133 while for 5 parts it
is 01233. When patterns are not too small, the latter does not lead to an improvement
strong enough to compensate for the decrease of part length. Note that the situation is
different for even number of errors, where incrementing the number of parts from k+ 1 to
k + 2 leads to transforming the critical strings from 0224 · · · to 0123 · · · .

Another interesting observation is that with 4 parts, obtained optimal partitions have
equal-size parts, as the U -strings of all searches of the 4-part scheme are all the same (see
Section 5.5.2).

These estimations suggest that our techniques can bring a significant gain in efficiency
for some parameter ranges, however the design of a search scheme should be done carefully
for each specific set of parameters.



CHAPTER 5. APPROXIMATE STRING MATCHING 47

Table 5.3: Values of #str(S, X, 4, 416) for 2-mismatch search schemes, using a non-uniform
letter distribution (one letter with probability 0.01 and the rest with probability 0.33 each).

m 3 equal 3 unequal 4 unequal 5 unequal
24 3997 3541 10,8,6 3592 6,7,1,10 3541 6,1,7,1,9
36 946 481 16,10,10 450 11,6,6,13 481 10,1,9,1,15
48 203 157 18,15,15 137 16,7,9,16 157 15,1,14,1,17

Table 5.4: Values of #str(S, X, 4, 416) for 3-mismatch search schemes. Best partitions
obtained for 4 parts are equal.

m 4 equal/unequal 5 unequal
24 11222 6,6,6,6 8039 4,6,5,1,8
36 416 9,9,9,9 549 6,11,5,1,13
48 185 12,12,12,12 213 11,11,11,1,14

5.5.2 Experiments on genomic data

To perform large-scale experiments on genomic sequences, we implemented our method
using the 2BWT library provided by [11] (http://i.cs.hku.hk/2bwt-tools/). We then
experimentally compared different search schemes, both in terms of running time and
average number of enumerated substrings. Below we only report running time, as in all
cases, the number of enumerated substrings produced very similar results.

The experiments were done on the sequence of human chromosome 14 (hr14 ). The
sequence is 88 · 106 long, with nucleotide distribution 29%, 21%, 21%, 29%. Searched
patterns were generated as i.i.d. sequences. For every search scheme and pattern length,
we ran 105 pattern searches for Hamming distance and 104 searches for the edit distance.

Search schemes

The following search schemes were used in experiments in this Section.
For 2 mismatches or errors:

1. Slightly modified scheme SLLTWWY. The searches are: Sf = (123, 000, 022), Sb =
(321, 000, 012), and S′bd = (213, 001, 012). Note that the π-string of S′bd is 213 and
not 231 as in Sbd. While Sbd and S′bd have the same efficiency for equal-size partitions,
this in not the case for unequally sized parts.

2. 4-part scheme with searches (1234, 0000, 0112), (4321, 0000, 0122),
(2341, 0001, 0012), and (1234, 0002, 0022).

For 3 mismatches or errors:

1. 4-part scheme with searches (1234, 0000, 0133), (2134, 0011, 0133),
(3421, 0000, 0133), and (4321, 0011, 0133).

2. 5-part scheme with searches (12345, 00000, 01233), (23451, 00000, 01223),
(34521, 00001, 01133), and (45321, 00012, 00333).

For 4 mismatches or errors:



CHAPTER 5. APPROXIMATE STRING MATCHING 48

Table 5.5: Total time (in sec) of search for 105 patterns in hr14, up to 2 mismatches.
2nd column contains time obtained on partition into three equal-size parts. The 3rd
(respectively 4th and 5th) column shows the running time respectively for the 3-unequal-
parts, 4-equal-parts and 4-unequal-parts searches, together with their ratio (%) to the
corresponding 3-equal-parts value.

m 3 equal 3 unequal 4 equal 4 unequal
15 24.8 25.4 (102%) 6,6,3 25.3 (102%) 25.3 (102%) 3,5,1,6
24 5.5 4.2 (76%) 10,7,7 5.2 (95%) 4.0 (73%) 7,4,4,9
33 1.73 1.45 (84%) 13,10,10 2.07 (120%) 1.25 (72%) 11,5,6,11
42 0.71 0.71 (100%) 14,14,14 1.24 (175%) 0.82 (115%) 14,6,8,14

Table 5.6: Total time (in sec) of search for 105 patterns in hr14, up to 3 mismatches.
m 4 equal 5 equal 5 unequal
15 241 211 (86%) 206 (85%) 2,3,5,1,4
24 19.7 26.7 (136%) 19.6 (99%) 2,9,3,1,9
33 4.3 6.9 (160%) 4.7 (109%) 6,9,6,1,11
42 1.85 2.52 (136%) 2.05 (111%) 10,10,9,1,12
51 1.07 1.57 (147%) 1.06 (99%) 12,13,12,1,13

1. 5-part scheme with searches (12345, 00000, 02244), (54321, 00000, 01344),
(21345, 00133, 01334), (12345, 00133, 01334), (43521, 00011, 01244),
(32145, 00013, 01244), (21345, 00124, 01244) and (12345, 00034, 00444).

2. 6-part scheme with searches (123456, 00000, 012344), (234561, 00000, 012344), (654321, 000001, 012244),
(456321, 000012, 011344), (345621, 000023, 011244), (564321, 000133, 003344), (123456, 000333, 003344),
(123456, 000044, 002444), (342156, 000124, 002244) and (564321, 000044, 001444).

Hamming distance

For the case of 2 mismatches, we implemented the 3-part and 4-part schemes (see Sec-
tion 5.5.2), as well as their equal-size-part versions for comparison. For each pattern
length, we computed an optimal partition, taking into account a non-uniform distribution
of nucleotides. Results are presented in Table 5.5.

Using unequal parts for 3-part schemes yields a notable time decrease for patterns of
length 24 and 33 (respectively, by 24% and 16%). Furthermore, we observe that using
unequal part lengths for 4-part schemes is beneficial as well. For pattern lengths 24 and
33, we obtain a speed-up by 27% and 28% respectively. Overall, the experimental results
are consistent with numerical estimations of Section 5.5.1.

For the case of 3 mismatches, we implemented 4-part and 5-part schemes from Sec-
tion 5.5.2, as well as their equal part versions for comparison. Results (running time) are
presented in Table 5.6. In accordance with estimations of Section 5.5.1, here we observe a
clear improvement only for pattern length 15 and not for longer patterns.

Edit distance

In the case of edit distance, along with the search schemes for 2 and 3 errors from the
previous section, we also implemented search schemes for 4 errors (see Section 5.5.2).
Results are shown in Table 5.7 (2 errors), Table 5.8 (3 errors) and Table 5.9 (4 errors).



CHAPTER 5. APPROXIMATE STRING MATCHING 49

Table 5.7: Total time (in sec) of search for 104 patterns in hr14, up to 2 errors (edit
distance).

m 3 equal 3 unequal 4 equal 4 unequal
15 11.5 11.4 (99%) 6,6,3 10.9 (95%) 11.1 (97%) 3,5,1,6
24 2.1 1.3 (62%) 11,5,8 1.5 (71%) 1.0 (48%) 7,4,4,9
33 0.34 0.22 (65%) 13,10,10 0.35 (103%) 0.19 (56%) 11,5,6,11
42 0.08 0.08 (100%) 14,14,14 0.18 (225%) 0.08 (100%) 14,6,8,14

Table 5.8: Total time (in sec) of search for 104 patterns in hr14, up to 3 errors (edit
distance).

m 4 equal 5 equal 5 unequal
15 233 174 (75%) 168 (72%) 2,2,6,1,4
24 13.5 13.2 (98%) 10.8 (80%) 3,8,3,1,9
33 0.74 1.81 (245%) 1.07 (145%) 5,10,5,1,12
42 0.28 0.45 (161%) 0.37 (132%) 9,10,9,1,13
51 0.13 0.24 (185%) 0.14 (108%) 12,12,12,1,14

Table 5.9: Total time (in sec) of search for 104 patterns in hr14, up to 4 errors (edit
distance).
m 5 equal 5 unequal 6 equal 6 unequal
15 4212 3222 (76%) 3,1,8,1,2 4028 (96%) 3401 (81%) 2,2,1,7,1,2
24 145 133 (92%) 7,3,5,1,8 131 (90%) 113 (78%) 2,7,3,4,5,3
33 6.5 5.8 (89%) 8,7,5,8,5 6.6 (102%) 5.1 (78%) 4,8,6,3,5,7
42 1.66 1.16 (70%) 12,8,7,8,7 1.51 (91%) 1.17 (70%) 7,8,8,5,2,12
51 0.60 0.49 (82%) 13,11,9,9,9 0.74 (123%) 0.54 (90%) 9,10,9,9,1,13
60 0.28 0.24 (86%) 14,13,11,11,11 0.44 (157%) 0.28 (117%) 11,12,11,11,1,14

Table 5.10: Total time (in sec) of search for 105 reads in hr14, up to 4 errors. First row
corresponds to read set with constant error rate 0.03. Second row corresponds to read set
with error rate increasing from 0.0 to 0.03.

m 5 equal 6 equal 6 unequal
100 247 250 (101%) 283 (115%) 20,20,20,19,1,20
100 415 367 (88%) 350 (84%) 20,20,20,19,1,20

For 2 errors, we observe up to two-fold speed-up for pattern lengths 15, 24 and 33. For
the case of 3 errors, the improvement is achieved for pattern lengths 15 and 24 (respectively
28% and 20%). Finally, for 4 errors, we obtain a significant speed-up (18% to 30%) for
pattern lengths between 15 and 51.

Experiments on simulated genomic reads

Experiments of Section 5.5.2 have been made with random patterns. In order to make
experiments closer to the practical bioinformatic setting occurring in mapping genomic
reads to their reference sequence, we also experimented with patterns simulating reads
issued from genomic sequencers. For that, we generated realistic single-end reads of length
100 (typical length of Illumina reads) from hr14 using dwgsim read simulator (https:
//github.com/nh13/DWGSIM). Two sets of reads were generated using two different error



CHAPTER 5. APPROXIMATE STRING MATCHING 50

rate values (parameter -e of dwgsim): 0.03 for the first dataset and 0.0-0.03 for the
second one. This means that in the first set, error probability is uniform over the read
length, while in the second set, this probability gradually increases from 0 to 0.03 towards
the right end of the read. The latter simulates the real-life situation occurring with current
sequencing technologies including Illumina.

The results are shown in Table 5.10. As expected, due to a large pattern length, our
schemes did not produce a speed-up for the case of constant error rate. Interestingly
however, for the case of non-uniform distribution of errors, our schemes showed a clear
advantage. This illustrates another possible benefit of our techniques: they are better
adapted to a search for patterns with non-uniform distribution of errors, which often occurs
in practical situations such as mapping genomic reads.

5.6 Discussion

Methods described in this chapter can be seen as the first step towards an automated
design of efficient search schemes for approximate string matching, based on bidirectional
indexes. More research has to be done in order to allow an automated design of optimal
search schemes. It would be very interesting to study an approach when a search scheme
is designed simultaneously with the partition, rather than independently as it was done in
our work.

We expect that search schemes similar to those studied in this work can be applied to
hybrid approaches to approximate matching (see 5.1), as well as possibly to other search
strategies.



Part III

Efficient representation of large
genomic data with Cascading Bloom

filters

51



52

Contents - Part III

6 Algorithmic methods for genome assembly 53
6.1 Genome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Overlap-Layout-Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 De Bruijn graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 De Bruijn graph representation using Cascading Bloom filters 57
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Cascading Bloom filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Analysis of the data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3.1 Memory and time usage . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.2 Using different values of r for different filters . . . . . . . . . . . . . 60
7.3.3 Query distribution among filters . . . . . . . . . . . . . . . . . . . . 60

7.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4.1 Construction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4.2 Implementation and experimental setup . . . . . . . . . . . . . . . . 62
7.4.3 E.coli dataset, varying k . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4.4 E. coli dataset, varying coverage . . . . . . . . . . . . . . . . . . . . 63
7.4.5 Human dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Improved compression of DNA sequencing data with Cascading Bloom
filters 67
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Description of the basic algorithm . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Chapter 6

Algorithmic methods for genome
assembly

6.1 Genome assembly

Accurate assembly of genomes lies in the basis of many modern bioinformatic and medical
projects. The goal of assembly is, given a set of reads, to build an initial DNA sequence.
However, due to reasons we discuss below (repeats and sequencing errors), it is usually
impossible, and long contiguous DNA sequences, called contigs, are reconstructed instead.
Assembled contigs can then be used as a reference for read alignment, thus, in some sense,
this is a necessary step before read alignment can be performed. Genome assembly can be
compared to solving a puzzle, when you need to combine many (from millions to billions)
small fragments into much longer pieces. In this thesis, we focus on efficient data structures
for storing reads for their assembly, while many other related algorithmic questions remain
out of scope of our work.

Let R be a set of reads, and our goal is to construct a set of contigs C. Although there
is no formal criteria for the “best” set of contigs, different sets can be compared with re-
spect to various characteristics like the size of C, the average contig length or the N50 value.
More details about different genome assemblers comparison can be found in [102, 103, 104].
A recent comparison of popular assemblers was made on insidedna.me platform (https://
insidedna.me/tutorials/view/benchmark-seven-popular-genome-assemblers). There
was also an open-data competition called Assemblathon [105] where assemblers sent by
many teams are compared.

The main challenge for all assembly algorithms is repeated sequences in genomes. Dif-
ferent regions often share perfect or almost perfect repeats, whose origin can not be dis-
tinguished, if reads are shorter than these repeats. Additionally, errors introduced during
sequencing make the assembly even more complicated. Assembly tools, taking into con-
sideration possible errors, can find some false positive connections between reads.

Here we describe two main algorithmic approaches to the genome assembly problem:
overlap-layout-consensus (OLC) and de Bruijn graph based approaches. The key idea of
both of them is to design a data structure representing overlaps between reads, and then
merge reads together.

OLC-based approaches generally implement three major steps:

1. calculate overlaps among all the reads,

2. find layout: find series of overlapping reads,

53



CHAPTER 6. ALGORITHMIC METHODS FOR GENOME ASSEMBLY 54

3. obtain consensus joining reads merging overlaps.

Overlap-layout-consensus implementations are usually based on the string (or assembly)
graph concept: the graph whose nodes correspond to reads, and edges represent overlaps
between two reads. Usually, a basic operation that a string graph implementation should
support is to quickly return reads which have a significant overlap with a given read.

Many computational tools dealing with NGS data, especially those devoted to genome
assembly, are based on the concept of a de Bruijn graph, see e.g. [106]. A de Bruijn graph,
for a given parameter k, of a set of reads R is entirely defined by the set T ⊆ U = Σk of
k-mers present in R. The nodes of the graph are precisely the k-mers of T and for any
two vertices u, v ∈ T , there is an edge from u to v if the suffix of u of size k − 1 is equal
to the prefix of v of the same size. Note that this is actually a subgraph of the de Bruijn
graph under its classical combinatorial definition. However, we still call it de Bruijn graph
to follow the terminology common to the bioinformatics literature. The value of k is an
open parameter, which can be, and is often required to be, specified by the user.

De Bruijn graph-based assemblers follow the same general outline:

1. extract k-mers from the reads,

2. construct the de Bruijn graph on the obtained set,

3. simplify the graph,

4. output paths in the graph as contigs.

There are many assemblers based both on Overlap-Layout-Consensus paradigm and on
de Bruijn graphs. However, from the algorithmic point of view, these two approaches are
very different. Finding the layout (step 2) in a graph corresponds to finding a Hamiltonian
path, which is a well-known NP -hard problem. At the same time, steps 3 and 4 involve an
Eulerian path construction in de Bruijn graph, which can be solved in linear, in number of
edges and nodes, time. Thus, the de Bruijn graph approach reduces the assembly problem
to an algorithmically less complicated task. Moreover, finding read overlaps (step 1) is
computationally very intensive.

In Section 6.2 we describe solutions based on the string graph concept, and in Sec-
tion 6.3, we cover de Bruijn graph based approaches.

6.2 Overlap-Layout-Consensus

Historically, first solutions of the assembly problem followed OLC paradigm, which is more
natural than de Bruijn graph approach. The OLC approach was introduced in [107] by
Staden and then expanded by many scientists. OLC was very successful in processing reads
generated by Sanger sequencing technologies. Many widely used assemblers implemented
OLC approaches, such as Arachne [108], Celera Assembler [109], CAP3 [110], PCAP [111],
Phrap [112], Phusion [113] and Newbler [114]. Celera [109] was used to assemble one of
the first versions of the human genome.

The main difficulty of such an approach is to compute pairwise read overlaps. Given
n = |R| (number of reads in the input set), a naive algorithm involves O(n2) overlap
computations, which is infeasible in the case of large n even if one overlap computation
is very fast. Then there are two major issues of these approach: reduction of number of
computations and fast pairwise overlap search.



CHAPTER 6. ALGORITHMIC METHODS FOR GENOME ASSEMBLY 55

The basic case of overlap computations assumes that the reads are sequenced without
errors, then exact suffix-prefix overlaps can be computed. However, in reality we need to
find approximate overlaps, allowing some number of mismatches or errors. This means that
overlap computation becomes a complicated problem itself.

Most of modern methods for computing approximate read overlaps implement the so-
called filtering approach, when the search of reads which have overlaps with a given one is
performed in two steps:

1. candidate reads are identified (filtering),

2. candidates are checked to verify the desired matching condition.

To reduce the number of overlap computations, Arachne [108] first extracts k-mers
from reads, sort them and calculate overlaps only for those read pairs which share one or
more k-mers (quite similar to FASTA [77] algorithm). Filtering algorithms, being often very
efficient in practice, usually do not yield good theoretical time bounds. For example, spaced
seeds (see Section 4.4.1 for the details) are often used in filtering based implementations
(see, as example, [89]). Another assembler that follows the filtering approach is SGA
assembler [115], which uses a basic substring filtering. Välimäki et al. [116] suggested to
apply a modified version of suffix filters earlier proposed by Kärkkäinen and Na [117]. In
[118], it was shown how this algorithm can be combinatorially improved to reach better time
boundaries. Many OLC paradigm-based assemblers, including Celera [109], eliminate many
read overlap computations skipping so-called transitive edges, when there are overlaps
between reads A and B (suffix of A matches prefix of B), B and C, and A and C. Several
methods, like CAP3 [110] and PCAP [111], combine (sub)set of reads into one big sequence
with separators and use BLAST[78]-like techniques to calculate positions where a suffix
or a prefix of a read can be found. These positions indicate the reads which potentially
overlap with a given read.

6.3 De Bruijn graph

The idea of using de Bruijn graph for genome assembly goes back to the “pre-NGS era” [119].
Note, however, that de novo genome assembly is not the only application of those graphs
when dealing with NGS data. There are several others, including: de novo transcriptome
assembly [120] and de novo alternative splicing calling [121] from transcriptomic NGS data
(RNA-seq); metagenome assembly [122] from metagenomic NGS data; and genomic variant
detection [123] from genomic NGS data using a reference genome.

Due to a very large size of NGS datasets, it is essential to represent de Bruijn graphs
as compactly as possible. This has been a very active line of research. Recently, several
papers have been published that propose different approaches to compressing de Bruijn
graphs [124, 125, 126, 127, 128].

Conway and Bromage [124] proposed a method based on classical succinct data struc-
tures, i.e. bitmaps with efficient rank/select operations. In the same direction, Bowe et
al. [127] proposed a very interesting succinct representation that, assuming only one string
(read) is present, uses only 4m bits, where m is the number of edges in the graph. A more
realistic case, where there are M reads, can be easily reduced to the one string case by
concatenating all M reads using a special separator character. However, in this case the
size of the structure is 4m + O(M logm) bits ([127], Theorem 1). While many methods
are built upon Bloom filters, implementation from [127] is based on the Burrows-Wheeler
transform.



CHAPTER 6. ALGORITHMIC METHODS FOR GENOME ASSEMBLY 56

Ye at al. [125] proposed a different method based on a sparse representation of de Bruijn
graphs, where only a subset of k-mers present in the dataset are stored. Pell et al. [128]
proposed a method to represent it approximately, using the so called probabilistic de Bruijn
graph. In their representation, de Bruijn graph is represented using a Bloom filter B. This
approach has the disadvantage of having false positive nodes, as direct consequence of the
false positive queries in the Bloom filter, which can create false connections in the graph
(see [128] for the influence of false positive nodes on the topology of the graph). The naive
way to remove those false positive nodes, by explicitly storing (e.g. using a hash table)
the set of all false positives of B, is clearly inefficient, as the expected number of elements
to be explicitly stored is 4kF , where F is the probability of false positive. Finally, Chikhi
and Rizk [126] improved Pell’s scheme in order to obtain an exact representation of the de
Bruijn graph. Their approach is implemented in a software called Minia, which is a part
of GATB analysis tool [129]. This was, to our knowledge, the best practical representation
of an exact de Bruijn graph based on Bloom filters.

One of the problems of de Bruijn graph based approaches is that k should be chosen
in advance. This issue is solved by a variable-order de Bruijn graph. Boucher et al. [130]
presented an improvement of [127] which allows changing the order of the graph “on the fly”,
while insignificantly increasing the space usage of the original representation. Supporting
different values of k is especially useful when some regions of the graph are sparser than
others. In [131] it was shown how to make the same structure bidirectional, allowing
traversal in both directions.

Chikhi et al. [132] use minimizers to obtain BWT-based de Bruijn graph implementa-
tion with only 1.5 GB memory usage for the human genome. In [133] Belazzougui et al.
show how to make de Bruijn graph implementation fully dynamic, allowing deletions along
with insertions.



Chapter 7

De Bruijn graph representation using
Cascading Bloom filters

7.1 Overview

In this chapter, we focus on the method proposed in [126] by Chikhi and Rizk which is
based on Bloom filters (see Section 3.2) and implements de Bruijn graph approach (see
Section 6.3). Let R be a set of reads and T0 be the set of occurring k-mers (nodes of the
de Bruijn graph) that we want to store. The key idea of [126] is to explicitly store only
a subset of all false positives of B, the so-called critical false positives. This is possible
because in order to perform an exact (without false positive nodes) graph traversal, only
potential neighbors of nodes in T0 are queried. In other words, the set of critical false
positives consists of the potential neighbors of T0 that are false positives of B, i.e. the k-
mers from U = Σk that overlap the k-mers from T0 by k− 1 letters and are false positives
of B. Thus, the size of the set of critical false positives is bounded by 8|T0|, since each
node of T0 has at most 2|Σ| = 8 neighbors (for each node, there are |Σ| k-mers overlapping
the k − 1 suffix and |Σ| overlapping the k − 1 prefix). Therefore, the expected number of
critical false positives can be upper-estimated by 8|T0|F .

Our contribution is an improvement of this scheme by changing the representation
of the set of false positives. We achieve this by iteratively applying a Bloom filter to
represent the set of false positives, then the set of “false false positives” etc. We introduce
the corresponding data structure, the so-called Cascading Bloom filter, and show how it can
replace the standard Bloom filter in Section 7.2. Then in Section 7.3 we show analytically
that this cascade of Bloom filters allows for a considerable further economy of memory,
improving the method of [126]. Depending on the value of k, our method requires 30% to
40% less memory with respect to the method of [126]. Moreover, with our method, the
memory grows very little as k grows. Finally, we implemented our method and tested it
against [126] on real datasets. The tests, presented in Section 7.4, confirm the theoretical
predictions for the size of structure and show a 20% to 30% improvement in query times.
We conclude with Discussions in 7.5.

7.2 Cascading Bloom filter

As stated in Section 7.1, the method of [126] stores T0 via a bitmap B1 using a Bloom
filter, together with the set T1 of critical false positives. T1 consists of those k-mers which
have a k − 1 overlap with k-mers from T0 but which are stored in B1 “by mistake”, i.e.

57



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 58

belong1 to B1 but not to T0. B1 and T1 are sufficient to represent the graph provided that
the only queried k-mers are those which are potential neighbors of k-mers of T0.

The idea we introduce in this chapter is to use this structure recursively and represent
the set T1 by a new bitmap B2 and a new set T2, then represent T2 by B3 and T3, and so
on. More formally, starting from B1 and T1 defined as above, we define a series of bitmaps
B1, B2, . . . and a series of sets T1, T2, . . . as follows. B2 stores the set of false positives T1

using another Bloom filter, and the set T2 contains the critical false positives of B2, i.e.
“true nodes” from T0 that are stored in B2 “by mistake” (we call them false2 positives).
B3 and T3, and, generally, Bi and Ti are defined similarly: Bi stores k-mers of Ti−1 using
a Bloom filter, and Ti contains k-mers stored in Bi “by mistake”, i.e. those k-mers that
do not belong to Ti−1 but belong to Ti−2 (we call them falsei positives). Observe that
T0 ∩ T1 = ∅, T0 ⊇ T2 ⊇ T4 . . . and T1 ⊇ T3 ⊇ T5 . . ..

The following lemma shows that the construction is correct, that is it allows one to
verify whether or not a given k-mer belongs to the set T0.

Lemma 11. Given a k-mer (node) K, consider the smallest i such that K 6∈ Bi+1 (if
K 6∈ B1, we define i = 0). Then, if i is odd, then K ∈ T0, and if i is even (including 0),
then K 6∈ T0.

Proof. Observe that K 6∈ Bi+1 implies K 6∈ Ti by the basic property of Bloom filters that
membership queries have one-sided error, i.e. there are no false negatives. We first check
the Lemma for i = 0, 1.

For i = 0, we have K 6∈ B1, and then K 6∈ T0.
For i = 1, we have K ∈ B1 but K 6∈ B2. The latter implies that K 6∈ T1, and then

K must be a false2 positive, that is K ∈ T0. Note that here we use the fact that the only
queried k-mers K are either nodes of T0 or their neighbors in the graph (see [126]), and
therefore if K ∈ B1 and K 6∈ T0 then K ∈ T1.

For the general case i ≥ 2, we show by induction that K ∈ Ti−1. Indeed, K ∈
B1 ∩ . . . ∩ Bi implies K ∈ Ti−1 ∪ Ti (which, again, is easily seen by induction), and
K 6∈ Bi+1 implies K 6∈ Ti.

Since Ti−1 ⊆ T0 for odd i, and Ti−1 ⊆ T1 for even i (for T0 ∩ T1 = ∅), the lemma
follows.

Naturally, the lemma provides an algorithm to check if a given k-mer K belongs to the
graph: it suffices to check successively if it belongs to B1, B2, . . . until we encounter the
first Bi+1 which does not contain K. Then, the answer will simply depend on whether i is
even or odd: K belongs to the graph if and only if i is odd.

In our reasoning so far, we assumed an infinite number of bitmaps Bi. Of course, in
practice we cannot store infinitely many (and even simply many) bitmaps. Therefore, we
“truncate” the construction at some step t and store a finite set of bitmaps B1, B2, . . . , Bt
together with an explicit representation of Tt. The procedure of Lemma 11 is extended in
the obvious way: if for all 1 ≤ i ≤ t, K ∈ Bi, then the answer is determined by directly
checking K ∈ Tt.

1By a slight abuse of notation, we also view Bj as the set of all k-mers on which the filter Bj returns
the positive answer.



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 59

7.3 Analysis of the data structure

7.3.1 Memory and time usage

First, we estimate the memory needed by our data structure, under the assumption of an
infinite number of bitmaps. Let N be the number of “true positives”, i.e. nodes of T0. As
stated in Section 7.1, if T0 has to be stored via a bitmap B1 of size rN , the false positive
rate can be estimated as cr, where c = 0.6185. And, the expected number of critical false
positive nodes (set T1) has been estimated in [126] to be 8Ncr, as every node has eight
extensions, i.e. potential neighbors in the graph. We slightly refine this estimation to 6Ncr

by noticing that for most of the graph nodes, two out of these eight extensions belong to
T0 (are real nodes) and thus only six are potential false positives. Furthermore, to store
these 6Ncr critical false positive nodes, we use a bitmap B2 of size 6rNcr. Bitmap B3 is
used for storing nodes of T0 which are stored in B2 “by mistake” (set T2). We estimate the
number of these nodes as the fraction cr (false positive rate of filter B2) of N (size of T0),
that is Ncr. Similarly, the number of nodes we need to put to B4 is 6Ncr multiplied by
cr, i.e. 6Nc2r. Keeping counting in this way, the memory needed for the whole structure
is rN + 6rNcr + rNcr + 6rNc2r + rNc2r + ... bits. The number of bits per k-mer is then

r + 6rcr + rcr + 6rc2r + ... = (r + 6rcr)(1 + cr + c2r + ...) = (1 + 6cr)
r

1− cr
. (7.1)

A simple calculation shows that the minimum of this expression is achieved when r = 5.464,
and then the minimum memory used per k-mer is 8.45 bits.

As mentioned earlier, in practice we store only a finite number of bitmaps B1, . . . , Bt
together with an explicit representation (such as array or hash table) of Tt. In this case,
the memory taken by the bitmaps is a truncated sum rN + 6rNcr + rNcr + .., and a data
structure storing Tt takes either 2k ·Ncd

t
2
er or 2k · 6Ncd

t
2
er bits, depending on whether t

is even or odd. The latter follows from the observations that we need to store Ncd
t
2
er (or

6rNcd
t
2
er) k-mers, each taking 2k bits of memory. Consequently, we have to adjust the

optimal value of r minimizing the total space, and re-estimate the resulting space spent
on one k-mer.

Table 7.1 shows estimations for optimal values of r and the corresponding space per
k-mer for t = 4 and t = 6, and several values of k. The data demonstrates that even such
small values of t lead to considerable memory savings. It appears that the space per k-mer
is very close to the “optimal” space (8.45 bits) obtained for the infinite number of filters.
Table 7.1 reveals another advantage of our improvement: the number of bits per stored
k-mer remains almost constant for different values of k.

The last column of Table 7.1 shows the memory usage of the original method of [126],
obtained using the estimation (1.44 log2( 16k

2.08) + 2.08) the authors provided. Note that
according to that estimation, doubling the value of k results in a memory increment by
1.44 bits, whereas in our method the increment is of 0.11 to 0.22 bits.

Let us now estimate preprocessing and query times for our scheme. If the value of t
is small (such as t = 4, as in Table 7.1), the preprocessing time grows insignificantly in
comparison to the original method of [126]. To construct each Bi, we need to store Ti−2

(possibly on disk, if we want to save on the internal memory used by the algorithm) in order
to compute those k-mers which are stored in Bi−1 “by mistake”. The preprocessing time
increases little in comparison to the original method of [126], as the size of Bi decreases
exponentially and then the time spent to construct the whole structure is linear on the size
of T0.



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 60

k optimal r bits per k-mer optimal r bits per k-mer bits per k-mer
for t = 4 for t = 4 for t = 6 for t = 6 for t = 1 ([126])

16 5.777 8.556 5.506 8.459 12.078
32 6.049 8.664 5.556 8.47 13.518
64 6.399 8.824 5.641 8.49 14.958
128 6.819 9.045 5.772 8.524 16.398

Table 7.1: 1st column: k-mer size; 2nd and 4th columns: optimal value of r for Bloom
filters (bitmap size per number of stored elements) for t = 4 and t = 6 respectively; 3rd
and 5th columns: the resulting space per k-mer (for t = 4 and t = 6); 6th column: space
per k-mer for the method of [126] (t = 1)

The query time can be split in two parts: the time spent on querying t Bloom filters
and the time spent on querying Tt. Clearly, using t Bloom filters instead of a single
one introduces a multiplicative factor of t to the first part of the query time. On the
other hand, the set Tt is generally much smaller than T1, due to the above-mentioned
exponential decrease. Depending on the data structure for storing Tt, the time saving in
querying Tt vs. T1 may even dominate the time loss in querying multiple Bloom filters.
Our experimental results (Section 7.4 below) confirm that this situation does indeed occur
in practice. Note that even in the case when querying Tt weakly depends on its size (e.g.
when Tt is implemented by a hash table), the query time will not increase much, due to
our choice of a small value for t, as discussed earlier.

7.3.2 Using different values of r for different filters

In the previous section, we assumed that each of our Bloom filters uses the same value of
r, the ratio of bitmap size to the number of stored k-mers. However, formula (7.1) for the
number of bits per k-mer shows a difference for odd and even filter indices. This suggests
that using different parameters r for different filters, rather than the same for all filters,
may reduce the space even further. If ri denotes the corresponding ratio for filter Bi, then
(7.1) should be rewritten to

r1 + 6r2c
r1 + r3c

r2 + 6r4c
r1+r3 + ..., (7.2)

and the minimum value of this expression becomes 7.93 (this value is achieved with r1 =
4.41; ri = 1.44, i > 1).

In the same way, we can use different values of ri in the truncated case. This leads to
a small 2% to 4% improvement in comparison with case of unique value of r. Table 7.2
shows results for the case t = 4 for different values of k.

7.3.3 Query distribution among filters

The query algorithm that follows from Lemma 11 simply queries Bloom filters B1, . . . , Bt
successively as long as the returned answer is positive. The query time then directly
depends on the number of filters need to apply before getting a negative answer. Therefore,
it is instructive to analyse how the query frequencies to different filters are distributed. We
provide such an analysis in this section.

In our analysis, we assume that all true nodes of the graph and all their potential neigh-
bors are queried with the same frequency. This is supported by the fact that during graph



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 61

k r1, r2, r3, r4 bits per k-mer bits per k-mer
different values of r single value of r

16 5.254, 3.541, 4.981, 8.653 8.336 8.556
32 5.383, 3.899, 5.318, 9.108 8.404 8.664
64 5.572, 4.452, 5.681, 9.108 8.512 8.824
128 5.786, 5.108, 6.109, 9.109 8.669 9.045

Table 7.2: Estimated memory occupation for the case of different values of r vs. single
value of r, for 4 Bloom filters (t = 4). Numbers in the second column represent values of ri
on which the minimum is achieved. For the case of single r, its value is shown in Table 7.1.

traversal, each time after querying a true node we also query all its potential neighbors, as
there is no other mean to tell which of those neighbors are real. Note however that this
assumption does not take into account structural properties of the de Bruin graph, nor
any additional statistical properties of the genome (such as genomic word frequencies).

For a filter Bi, we want to estimate the number of k-mers for which Bi returns no.
This number is the difference of the number of k-mers submitted to Bi and the number of
k-mers for which Bi returns yes. Note that the k-mers submitted to Bi is precisely those
on which the previous filter Bi−1 returns yes.

If the input set T0 contains N k-mers, we estimate by 7N the number of all tested k-
mers, a typical node of the graph will have two true neighbors and six potential neighbors
not belonging to the graph. Filter B1 will return yes on N + 6crN k-mers, corresponding
to the number of true and false positives respectively. For an arbitrary i, filter Bi returns
yes precisely on the k-mers inserted to Bi (i.e. k-mers Bi is built on), and the k-mers
which are inserted to Bi+1 (which are critical false positives for Bi). The counts then
easily follow from the analysis of Section 7.3.1.

Table 7.3 provides counts for the first four filters, together with the estimated fraction
of k-mers on which each filter returns the concluding answer (no).

B1 B2 B3 B4

submitted k-mers 7N (1 + 6cr)N (6cr + cr)N (cr + 6c2r)N

k-mers returning yes (1 + 6cr)N (6cr + cr)N (cr + 6c2r)N (6c2r + c2r)N

k-mers returning no (7− 1− 6cr)N (1− cr)N (6cr − 6c2r)N (cr − c2r)N

percentage of ending queries 79.5 13.25 5.76 0.96

Table 7.3: Theoretically counted number of queries returning 0 and 1 for bitmaps
B1, B2, B3, B4 for r corresponding to the infinite bitmaps case.

As Table 7.3 shows, 99.48% of all queries end in first 4 bitmaps.

7.4 Experimental results

7.4.1 Construction algorithm

In practice, constructing a cascading Bloom filter for a real-life read set is a computa-
tionally intensive step. To perform it on a commonly-used computer, the implementation
makes an essential use of external memory. Here we give a short description of the con-
struction algorithm for up to four Bloom filters. Extension for larger number of filters is



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 62

strightforward.
We start from the input set T0 of k-mers written on disk. We build the Bloom filter B1

of appropriate size by inserting elements of T0 successively. Next, all possible extensions
of each k-mer in T0 are queried against B1, and those which return true are written to the
disk. Then, this set is traversed and only the k-mers absent from T0 are kept. This results
in the set T1 of critical false positives, which is also kept on disk. Up to this point, the
procedure is identical to that of [126].

Next, we insert all k-mers from T1 into B2 and to obtain T2, we check for each k-mer
in T0 if a query to B2 returns true. This results in set T2. Thus, at this point we have B1,
B2 and T2, a complete representation for t = 2. In order to build the data structure for
t = 4, we continue this process, by inserting T2 in B3 and retrieving T3 from T1 (stored
on disk). It should be noted that to obtain Ti we need Ti−2, and by always storing it on
disk we guarantee not to use more memory than the size of the final structure. The set Tt
(that is, T1, T2 or T4 in our experiments) is stored as a sorted array and is searched by a
binary search. We found this implementation more efficient than a hash table.

7.4.2 Implementation and experimental setup

We implemented our method using the Minia software [126] and ran comparative tests for
2 and 4 Bloom filters (t = 2, 4). Note that since the only modified part of Minia was the
construction step and the k-mer membership queries, this allows us to precisely evaluate
our method against the one of [126].

The first step of the implementation is to retrieve the list of k-mers that appear more
than d times using DSK [134] – a constant memory streaming algorithm to count k-mers.
Note, as a side remark, that performing counting allows us to perform off-line deletions of
k-mers. That is, if at some point of the scan of the input set of k-mers (or reads) some of
them should be deleted, it is done by a simple decrement of the counter.

Assessing the query time is done through the procedure of graph traversal, as it is im-
plemented in [126]. Since the procedure is identical and independent on the data structure,
the time spent on graph traversal is a faithful estimator of the query time.

We compare three versions: t = 1 (i.e. the version of [126]), t = 2 and t = 4. For
convenience, we define 1 Bloom, 2 Bloom and 4 Bloom as the versions with t = 1, 2 and 4,
respectively.

7.4.3 E.coli dataset, varying k

In this set of tests, our main goal was to evaluate the influence of the k-mer size on
principal parameters: size of the whole data structure, size of the set Tt, graph traversal
time, and time of construction of the data structure. We retrieved 10M E. coli reads of
100bp from the Short Read Archive (ERX008638) without read pairing information and
extracted all k-mers occurring at least two times. The total number of k-mers considered
varied, depending on the value of k, from 6,967,781 (k = 15) to 5,923,501 (k = 63). We
ran each version, 1 Bloom ([126]), 2 Bloom and 4 Bloom, for values of k ranging from 16
to 64. The results are shown in Fig. 7.1.

The total size of the structures in bits per stored k-mer, i.e. the size of B1 and T1

(respectively, B1, B2,T2 or B1, B2, B3, B4,T4) is shown in Fig. 7.1(a). As expected, the
space for 4 Bloom filters is the smallest for all values of k considered, showing a considerable
improvement, ranging from 32% to 39%, over the version of [126]. Even the version with
just 2 Bloom filters shows an improvement of at least 20% over [126], for all values of k.
Regarding the influence of the k-mer size on the structure size, we observe that for 4 Bloom



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 63

filters the structure size is almost constant, the minimum value is 8.60 and the largest is
8.89, an increase of only 3%. For 1 and 2 Bloom the same pattern is seen: a plateau from
k = 16 to 32, a jump for k = 33 and another plateau from k = 33 to 64. The jump at
k = 32 is due to switching from 64-bit to 128-bit representation of k-mers in the table Tt.

The traversal times for each version is shown in Fig. 7.1(c). The fastest version is 4
Bloom, showing an improvement over [126] of 18% to 30%, followed by 2 Bloom. This
result is surprising and may seem counter-intuitive, as we have four filters to apply to the
queried k-mer rather than a single filter as in [126]. However, the size of T4 (or even T2)
is much smaller than T1, as the size of Ti’s decreases exponentially. As Tt is stored in an
array, the time economy in searching T4 (or T2) compared to T1 dominates the time lost
on querying additional Bloom filters, which explains the overall gain in query time.

As far as the construction time is concerned (Fig. 7.1(d)), our versions yielded also a
faster construction, with the 4 Bloom version being 5% to 22% faster than that of [126].
The gain is explained by the time required for sorting the array storing Tt, which is much
higher for T0 than for T2 or T4. However, the gain is less significant here, and, on the other
hand, was not observed for bigger datasets (see Section 7.4.5).

7.4.4 E. coli dataset, varying coverage

From the complete E. coli dataset (≈44M reads) from the previous section, we selected
several samples ranging from 5M to 40M reads in order to assess the impact of the coverage
on the size of the data structures. This strain E. coli (K-12 MG1655) is estimated to have
a genome of 4.6M bp [135], implying that a sample of 5M reads (of 100bp) corresponds to
≈100X coverage. We set d = 3 and k = 27. The results are shown in Fig. 7.2. As expected,
the memory consumption per k-mer remains almost constant for increasing coverage, with
a slight decrease for 2 and 4 Bloom. The best results are obtained with the 4 Bloom version,
an improvement of 33% over the 1 Bloom version of [126]. On the other hand, the number
of distinct k-mers increases markedly (around 10% for each 5M reads) with increasing
coverage, see Fig. 7.2(b). This is due to sequencing errors: an increase in coverage implies
more errors with higher coverage, which are not removed by our cutoff d = 3. This suggests
that the value of d should be chosen according to the coverage of the sample. Moreover, in
the case where read qualities are available, a quality control pre-processing step may help
to reduce the number of sequencing errors.

7.4.5 Human dataset

We also compared 2 and 4 Bloom versions with the 1 Bloom version of [126] on a large
dataset. For that, we retrieved 564M Human reads of 100bp (SRA: SRX016231) without
pairing information and discarded the reads occurring less than 3 times. The dataset
corresponds to ≈17X coverage. A total of 2,455,753,508 k-mers were indexed. We ran
each version, 1 Bloom ([126]), 2 Bloom and 4 Bloom with k = 23. The results are shown
in Table 7.4.

The results are in general consistent with the previous tests on E.coli datasets. There
is an improvement of 34% (21%) for the 4 Bloom (2 Bloom) in the size of the structure.
The graph traversal is also 26% faster in the 4 Bloom version. However, in contrast to
the previous results, the graph construction time increased by 10% and 7% for 4 and 2
Bloom versions respectively, when compared to the 1 Bloom version. This is due to the
fact that disk i/o operations now dominate the time for the graph construction, and 2 and
4 Bloom versions generate more disk accesses than 1 Bloom. As stated in Section 7.4.1,
when constructing the 1 Bloom structure, the only part written on the disk is T1 and it



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 64

20 30 40 50 60

8
10

12
14

16
18

Structure size

k-mer size

bi
ts

 / 
k-

m
er

1 bloom
2 bloom
4 bloom

(a)

20 30 40 50 60

0
50
00
0

15
00
00

25
00
00

35
00
00

Size of false positives table

k-mer size

fa
ls

e 
po

si
tiv

es
 ta

bl
e 

si
ze

1 bloom
2 bloom
4 bloom

(b)

20 30 40 50 60

20
30

40
50

60

dBG traversal time

k-mer size

tra
ve

rs
al

 ti
m

e 
(s

)

1 bloom
2 bloom
4 bloom

(c)

20 30 40 50 60

10
15

20
25

30

dBG construction time

k-mer size

co
ns

tru
ct

io
n 

tim
e 

(s
)

1 bloom
2 bloom
4 bloom

(d)

Figure 7.1: Results for 10M E.coli reads of 100bp using several values of k. The 1 Bloom
version corresponds to the one presented in [126]. (a) Size of the structure in bits used
per k-mer stored. (b) Number of false positives stored in T1, T2 or T4 for 1, 2 or 4 Bloom
filters, respectively. (c) De Bruijn graph construction time, excluding k-mer counting step.
(d) De Bruijn graph traversal time, including branching k-mer indexing.



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 65

5 10 15 20 25 30 35 40

8
10

12
14

16
18

Structure size

number of reads (M)

bi
ts

 / 
k-

m
er

1 bloom
2 bloom
4 bloom

(a)

5 10 15 20 25 30 35 40

5e
+0
6

6e
+0
6

7e
+0
6

8e
+0
6

9e
+0
6

Number of distict k-mers

number of reads (M)

nu
m

be
r o

f k
-m

er
s

(b)

Figure 7.2: Results for E.coli reads of 100bp using k = 27. The 1 Bloom version corre-
sponds to the one presented in [126]. (a) Size of the structure in bits used per k-mer stored.
(b) Number of distinct k-mers.

is read only once to fill an array in memory. For 4 Bloom, T1 and T2 are written to the
disk, and T0 and T1 are read at least one time each to build B2 and B3. Moreover, since
the size coefficient of B1 reduces, from r = 11.10 in 1 Bloom to r = 5.97 in 4 Bloom, the
number of false positives in T1 increases.

Method 1 Bloom 2 Bloom 4 Bloom
Construction time (s) 40160.7 43362.8 44300.7
Traversal time (s) 46596.5 35909.3 34177.2

r coefficient 11.10 7.80 5.97

Bloom filters size (MB)

B1 = 3250.95 B1 = 2283.64 B1 = 1749.04
B2 = 323.08 B2 = 591.57

B3 = 100.56
B4 = 34.01

False positive table size (MB) T1 = 545.94 T2 = 425.74 T4 = 36.62

Total size (MB) 3796.89 3032.46 2511.8
Size (bits/k-mer) 12.96 10.35 8.58

Table 7.4: Results of 1, 2 and 4 Bloom filters version for 564M Human reads of 100bp
using k = 23. The 1 Bloom version corresponds to the one presented in [126].

7.5 Discussion

Using cascading Bloom filters for storing de Bruijn graphs brings a clear advantage over
the single-filter method of [126]. In terms of memory consumption, which is the main
parameter here, we obtained an improvement of around 30%-40% in all our experiments.
Our data structure takes 8.5 to 9 bits per stored k-mer, compared to 13 to 15 bits by
the method of [126]. This confirms our analytical estimations. The above results were
obtained using only four filters and are very close to the estimated optimum (around 8.4



CHAPTER 7. DE BRUJIN GRAPH REPRESENTATION 66

bits/k-mer) produced by the infinite number of filters. An interesting characteristic of our
method is that the memory grows insignificantly with the growth of k, even slower than
with the method of [126]. Somewhat surprisingly, we also obtained a significant decrease,
of order 20%-30%, of query time. The construction time of the data structure varied from
being 10% slower (for the human dataset) to 22% faster (for the bacterial dataset).

An interesting prospect for further possible improvements of our method is offered by
work [136], where an efficient replacement to Bloom filter was introduced. The results of
[136] suggest that we could hope to reduce the memory to about 5 bits per k-mer. However,
there exist obstacles on this way: an implementation of such a structure would probably
result in a significant construction and query time increase.



Chapter 8

Improved compression of DNA
sequencing data with Cascading
Bloom filters

8.1 Overview

Rozov et al. in [137] showed how Cascading Bloom filter, which we designed to solve the
genome assembly problem, can be applied to the read compression problem, introduced
below. In this chapter, we first show how Cascading Bloom filter is applied in [137] to
the lossless reference-free compression of read sets (Section 8.2). Then we present an
improvement of this technique in Section 8.3. Through computational experiments on real
data, we demonstrate that our improvement results in a significant associated memory
reduction in practice in Section 8.4. We end with Discussion in Section 8.5.

The disk space used for storing NGS data can easily reach tens or even hundreds of
GBs. The time needed for transmission of this data between different servers via Internet
may cause significant delay of the experiments. Thus, problems of compact storage and
fast transmission of read sets are becoming more and more significant nowadays and are
providing a motivation to develop different methods and algorithms.

All compression tools can be compared in terms of two important characteristics: com-
pression ratio (i.e., the ratio of compressed file size to the original file size), and reads
set decoding/encoding time. Specialized methods that take into account the fact that
reads were obtained from genomes with mutations and errors turn out to provide better
compression ratio and speed performance than general tools like gzip.

All specialized methods can be classified into reference-based, which typically align
reads on a reference sequence [138, 139, 140, 141, 142], and reference-free [138, 140, 143,
144, 145, 146, 147, 148, 149].

To compress reads, reference-based methods first align the reads to the reference genome
in order to find the best alignment position. Typically, such alignment-based compression
tools allow only for few errors per read to be efficient. Information about positions and dif-
ferences between reads and the reference genome is then effectively encoded and compressed
using general compression tools. Although such approaches achieve good compression ra-
tios, they take significantly more time in comparison to reference-free methods as they
require a time-consuming mapping procedure on the reference genome.

Reference-free methods implement various techniques. Some of them ([144, 147]) re-
order reads in order to group similar reads together and then use general purpose com-
pressing tools. This reordering can improve the compression ratio due to local similarity

67



CHAPTER 8. COMPRESSION WITH CASCADING BLOOM FILTERS 68

of reads. Another popular approach is to first assemble reads into contigs, and then use
assembled contigs as a reference. Such methods benefit from some advantages of reference-
based approaches and do not need a reference genome to decompress the input set of
reads.

A detailed comparison of many existing NGS reads compression tools can be found
in [138].

Paper [137] proposes a method for compressing a set of reads of fixed length `, based on
the idea of extracting reads from a reference genome instead of storing them explicitly. The
method from [137] achieves a good trade-off between speed and compression ratio, where
the gain in speed is due to avoiding the mapping process and the gain in compression is
due to the use of a Cascading Bloom filter. Below we improve results of [137] by applying
the recursive compression strategy to other subsets of the reads.

8.2 Description of the basic algorithm

In this section we briefly describe encoding and decoding processes proposed in [137].
Let G be a genome of length N and S be a set of reads, sequenced from G (with errors

and mutations). All reads from S should be of the same length, denoted as `.
For simplicity, let us assume that all reads are unique, and all of them consists of

characters [A,C,G, T ] only. First, the algorithm adds all reads from S to a Bloom filter B.
Then we query all substrings of G of length ` against B to identify all reads that potentially
can be reconstructed from G. As some of queried substrings are false positives, we add such
substrings (which are accepted by B, but do not belong to S) to the set of false positives
FP . As the set S was sequenced from the genome of a species that contains mutations
in comparison to genome G, then some reads from S are not covered by substrings of G.
Moreover, sequencing errors also lead to reads that can not be reconstructed from G. Such
reads, that can not be obtained as a substring of G, are added to the set of false negatives
FN . Finally, set S is encoded by B, set of false positives FP and set of false negatives
FN . They can be further compressed by general purpose compressing tools.

The encoding process is described in Algorithm 3.

Algorithm 3 Encoding
1: add all repeated reads and reads containing ambiguous characters to FN
2: S = S \ FN
3: add all reads from S to Bloom filter B
4: P = ∅
5: for (r ∈ set of all substrings of length ` from G) do
6: if r ∈ B then
7: if (r ∈ S) then
8: P = P ∪ {r}
9: else
10: FP = FP ∪ {r}
11: end if
12: end if
13: end for
14: FN = FN ∪ (S \ P )

Decoding works in the same way as encoding. First, we scan all substrings ofG of length
`, query them against B and check whether they are present in FP . If the substring is in



CHAPTER 8. COMPRESSION WITH CASCADING BLOOM FILTERS 69

Reads RFN

B1

B2

B3

duplicates

false negatives

false positives

false2 positives

unique

FP

substrings of G 

of length l

query

…

Figure 8.1: Encoding of read set S with a reference genome G.



CHAPTER 8. COMPRESSION WITH CASCADING BLOOM FILTERS 70

B, but not in FP , then we add it to the set Sencoded. Finally, we add all reads from FN
to Sencoded.

To relax condition on repeats and ambiguous characters (non-[A,C,G, T ] characters,
like N) in S, we simply add all such reads to (now multiset) FN . The encoding and
decoding processes remains the same.

The algorithm above does not turn out to achieve a good compression ratio. Partially,
this is because the set FP is comparatively large. To reduce its size, we store FP in a
Cascading Bloom filter, as it was suggested in [2] and Chapter 7.

Bloom filter B (denoted also as B1) can be considered as the first Bloom filter in the
cascade. Each element from FP (denoted also as FP1) is added to Bloom filter B2 – it
stores false positive reads, and thus it should reject true reads. It means that all unique
reads without ambiguous characters from S, that are in B1 (denote this set as S′), should
be rejected by B2. So, we query all reads from S′ against B2 to obtain FP2 – false false
positive reads. This procedure can be continued infinitely, but in practice we should stop
after fixed number of filters. If n Bloom filters are in the cascade, then S is encoded by
B1, B2, . . . Bn, FPn, FN .

The described encoding algorithm is schematically shown on Figure 8.1.
To decode the reads, we query all substrings of G of length ` against B1, B2 . . . until

one of them rejects the substring. Let Bi be the first Bloom filter that rejected a substring
r. If i is even, then r is a true read (as B1, B3, B5 . . . store true reads, and B2, B4, B6 . . .
store false positives), and is a false positive read otherwise. More detailed proof can be
found in Chapter 7 and in [137, 2].

Since elements inserted to Bi are a subset of Bi−2, then the size of Bloom filters
decreases exponentially. The exact formula for the size of Bloom filters (in other words,
for number of bits used for one read) can be found in [137].

8.3 Improvements

We propose to save on storing FN too. FN consists of two disjoint sets: set FN 0 of reads
from S which are not substrings of G and a (multi-)set FN rep of reads which are substrings
of G and occur in S multiple times (more than once). For FN0, there is no way to store
it compactly in the described paradigm, as reads from this set can not be easily extracted
from G. We propose to compress set FN rep as follows.

First, let us represent FN rep as a set T of pairs (read,multiplicity). As for each
element of T has multiplicity at least 2, then we can decrease all multiplicities by 1, and
this procedure is reversible. Then we partition reads from T into two subsets: a subset
FN 1

rep of reads that have multiplicity 1 and a subset FN>2
rep of reads that have multiplicity

at least 2. Since elements of FN 1
rep have no duplicates, FN 1

rep can again be compressed by
applying Cascading Bloom filter described in Section 8.2. Depending on the size of FN>2

rep,
this procedure may be iteratively applied to FN>2

rep again. However, in our experiments
described below we didn’t do that, as the size of FN>2

rep (reads in S with multiplicity at
least 3 occurring in G exactly) appeared to be small.

Encoding of FN rep is shown in Algorithm 4.
The decoding of the initial set FN rep is straightforward. First, set FN 1

rep is recon-
structed applying algorithm described in Section 8.2. Then sets FN 1

rep and FN>2
rep are

merged, and multiplicity of each read is incremented by 1. The obtained set joint with
FN 0 finish the reconstruction of FN . Then full initial set S can be decoded as it was
described in Section 8.2.



CHAPTER 8. COMPRESSION WITH CASCADING BLOOM FILTERS 71

Algorithm 4 FN encoding
1: FN rep = reads from FN that are substrings of G and occur in S multiple times
2: FN rep = FN rep with decreased multiplicities by one
3: FN 1

rep = reads from FN rep having multiplicity one
4: FN>2

rep = reads from FN rep having multiplicity two or more
5: compress FN 1

rep using Algorithm 3
6: repeat lines 2-6 for FN>2

rep

As a remark, note that the set of reads repeated multiple time (FN rep) depends only
on G and S, and this set is larger when the coverage of G by the read set S is higher.
Moreover, multiple reads are more likely to occur in G exactly, as the probability that such
a read was sequenced with errors is lower. This supports the idea that compressing FN rep

can be advantageous.

8.4 Experiments

We modified the code of BARCODE1 software [137] to implement the above extension.
We experimented with Mycobacterium abscessus complete genome (about 5Mbp). We tried
the following coverage values 30, 50, 75, 100, 150. Single-end reads of length 100 with 0.000
to 0.005 base mutation rate were generated using dwgsim2 simulator (options dwgsim -C
[30-150] -H -e 0.0-0.005 -R 0.0 −1 100 −2 0 -y 0.0). The extensive experimental comparison
with other compression tools is provided in [137], and our goal was to simply estimate the
influence of ideas described in Section 8.3. We didn’t apply the post-compression with
SCALCE, as our goal was limited to compare the size of compressed with BARCODE
FN rep with uncompressed FN rep.

For coverage values 30 and 50, the fraction of repeated reads (set FNrep) was relatively
small, with the coverage by FNrep smaller than four. For example, for coverage 50, the
coverage by FNrep is 3.5, the size of FNrep is 17MB, and total size of Bloom filters, false
positive and false negative sets for FNrep is 16MB. Therefore, in this case, the additional
compression is insignificant compared to the size of FNrep.

For coverage values between 75 and 150, which are common, for example, for bacterial
sequencing data, we observed a significant additional compression of FNrep. Results are
shown in Table 8.1. For both versions of compression (initial BARCODE and the one
with our improvements) we provide the total sum of all data structure sizes to give some
estimations on the total size, even though it is not correct to directly sum their sizes, as
they can be compressed afterwards with different compression ratios.

The three of four last rows show sets that replace FNrep. Sets of false positives for
filters storing FNrep turned out to be insignificantly small.

First of all, as it was theoretically predicted, coverage of FN set is growing when
coverage of S increases. Secondly, Table 8.1 shows that the larger FNrep is, the more
significant improvement is. Finally, using Cascading Bloom filters for compressing FNrep

set seems to be profitable for examined values of coverage.
1available at http://www.cs.tau.ac.il/~heran/cozygene/software.shtml
2https://github.com/nh13/DWGSIM



CHAPTER 8. COMPRESSION WITH CASCADING BLOOM FILTERS 72

Table 8.1: Sizes of different data structures for coverage values 75, 100 and 150. Size of
FNrep is shown after removing one copy of each read.

Coverage 75X 100X 150X
Set of reads S (M) 3.8 5.1 7.7

Bloom filters {BFi} (MB) 4 4 2.5
FP (MB) 0.9 6 90
FN (MB) 181 268 466
FN0 (MB) 105 138 200
FNrep (MB) 40 69 146

Total size (MB) 149.9 217 438.5
Bloom filters for FNrep (MB) 11 14 6
False positives for FNrep (MB) 0 0 0
False negatives for FNrep (MB) 10 21 57

Total size of improved structure (MB) 130.9 (87%) 183 (84%) 355.5 (81%)

8.5 Discussion

Rozov et al. in [137] showed that Cascading Bloom filters can be effectively applied to
read compression problem. Interestingly, without utilizing a Cascading Bloom filter the
presented technique does not show a good performance. Thus, there can also be another
applications where Cascading Bloom filter can be a more efficient replacement of a standard
Bloom filter.

In this chapter, we showed that the read compression method using Cascading Bloom
filter can be made even more efficient, if we use the compression strategy recursively on
the set of false negative reads. We experimentally demonstrated that compression of read
sets with coverage values between 75 and 150 can be improved using this method. Finally,
coverage values like 150 and higher possibly can benefit from using more than one filter in
the cascade for FNrep.



Part IV

Metagenomic classification

73



74

Contents - Part IV

9 Algorithmic methods for metagenomic classification 75

10 Data structures for BWT-index-based metagenomic classification 78
10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.2 Index construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.3 Index query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.4 Improvements of query algorithm . . . . . . . . . . . . . . . . . . . . . . . . 81

10.4.1 kLCP array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.4.2 Using kLCP array for removing the last character . . . . . . . . . . 83
10.4.3 Speeding up SA-to-text translation . . . . . . . . . . . . . . . . . . . 83

10.5 Memory usage improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5.1 Storing D compactly . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.5.2 Multiple contig borders between t and next(t) . . . . . . . . . . . . . 88
10.5.3 Correct node id for next(t) . . . . . . . . . . . . . . . . . . . . . . . 89
10.5.4 Memory improvement estimation . . . . . . . . . . . . . . . . . . . . 89

10.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.6.1 Storing kLCP array . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.6.2 Experiments on query time . . . . . . . . . . . . . . . . . . . . . . . 91
10.6.3 kLCP properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.6.4 Experiments on Node ID . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.6.5 Experiments on ProPhyle index . . . . . . . . . . . . . . . . . . . . . 94

10.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Chapter 9

Algorithmic methods for
metagenomic classification

Analysis of multiple genomes, “living” in some environment, is usually called metagenomics
or community genomics. It became a popular and booming field of research in bioinformat-
ics in recent years. In this work we concentrate on the problem of metagenomic classifica-
tion with a given taxonomic tree, which represents the evolutionary relationships between
various biological species based on their similarities and differences in their genetic char-
acteristics. Thus, the goal of such classification is, for every given read, to find its origin
in this tree.

Metagenomic classification can be regarded as a read alignment problem, with the
only difference that sequences should be mapped to many genomes, not to one. Thus
different solutions for read alignment problem can be applied (such methods, applied
to metagenomic classification, are called alignment-based). Several specialized tools, like
MEGAN [150], MetaPhlAn [151], MetaPhyler [152], follow this approach, but they are
not able to deal with metagenomic datasets of thousands and tens of thousands reference
genomes, whose total length can be of billions and tens of billions base pairs. Using even
the most efficient applications for NGS reads mapping as BWA [97], Novoalign1, Bowtie
[93] and many others can not provide sufficient speed for classification. One more obstacle
is that read mapping tools usually find only alignments with a score close to the best
alignment score and can not identify occurrences with lower quality.

Consequently, novel methods that avoid read alignment for classification should be
developed. Such methods are called alignment-free and were actively studied in recent
years. The majority of such methods are based on the analysis of shared words between
reference genomes and sequences. One approach can be to analyse the frequency vectors,
which is an array for every word containing the number of its occurrences in the sequence.
However, such an approach usually requires too much memory and time to construct
vectors and to compare them, thus in recent applications only the existence of every word
(usually of fixed length, k-mer) in a string is taken into consideration, without information
about the number of occurrences. This approach is shown schematically on Figure 9.1.

Generally, all k-mer based approaches implement the following steps:

1. extract k-mers from reference genomes and construct an index for them,

2. extract k-mers from reads one by one and query them against the index,
1http://www.novocraft.com/

75



CHAPTER 9. ALGORITHMIC METHODS FOR METAGENOMIC CLASSIFICATION76General	approach	

k-mers	

Read	

Index	
of	

k-mers	

queries	

“Is	this	k-mer	in	the	
genome?”	yes/no	

Goal:	es@mate	the	
“likelihood”	of	a	read	to	
belong	to	the	genome	
(assign	a	score)		

Figure 9.1: Extraction of k-mers and construction of an index.

3. based on matched nodes for all k-mers from the read, assign the read to a node in
the taxonomic tree (or leave it unassigned).

Here we briefly list the most popular algorithmic techniques and metagenomic classifi-
cation tools.

Although extracting k-mers and indexing them is the dominant basic method used in
practice, there are some other algorithmic ideas worth to mention. One of them is based
on the read assembly into longer contigs [153]. This method can significantly reduce the
number of queried sequences, but it is sensitive to errors of assembly which should be done
very carefully. At the same time, assembly step can be very expensive in terms of time and
memory. Another possible improvement is to build an index not for all reference sequences,
but for most informative regions only [154, 24, 151]. The problem of such an approach
could be that it misses a big part of informative reads, leaving them unclassified.

The first popular k-mer based metagenomic classification tool was LMAT [155]. For
every k-mer it stores the list of all nodes in the taxonomic tree that contain this k-mer.
This correspondence is stored in a hash table with k-mers as keys and lists of node ids
as values. Then, after find matching nodes for all k-mers from the read, the read itself is
assigned to a “best matching” node in the tree. Optionally, LMAT can construct a reduced
database for most informative k-mers only. The biggest problem of this tool is its huge
memory requirements (hundreds of GBs for a bacterial genome database [156]).

Kraken [157] is, to our knowledge, the most widely used classification tool nowadays.
It implements an approach similar to LMAT. For every k-mer in reference genomes, only
the LCA (lowest common ancestor) of nodes containing the k-mer is stored in a hash
table. Kraken provides a very fast classification (partially due to storing k-mers with the
same minimizer in the same place in memory), but requires huge memory (more than a
hundred GBs for index construction and an index of size 70 GBs for the bacterial database
mentioned above). Storing LCAs instead of full information about matching k-mers leads
to one more drawback of Kraken, its lossy nature.

Both Kraken and LMAT use hash tables for storing a k-mers set. As it was discussed
in Chapter 4, being extremely efficient in terms of query time (with appropriate implemen-
tation), such approaches have a very big memory footprint. To overcome this problem,
recently many tools started to utilize BWT index to store k-mers.

Centrifuge [158] is a BWT index-based classifier. After binarizing the taxonomic tree,
for each pair of nodes it propagates similar subsequences up along edges of the taxonomic
tree. Then it creates a BWT index (implementation from Bowtie2 [159]). Reportedly, this



CHAPTER 9. ALGORITHMIC METHODS FOR METAGENOMIC CLASSIFICATION77

leads to a very small memory usage, namely 4 GB index for a database of 4,300 prokaryotic
genomes. However, similar to Kraken, some information is lost during merge of similar
sequences step.

Kaiju [160] is a protein level classifier based on a BWT index. Kaiju algorithm trans-
lates input reads in six possible reading frames and searches for maximum exact matches
(MEMs) of amino acid sequences in a given database of annotated proteins from microbial
reference genomes. Kaiju outputs the node in the tree if a match is found (the LCA of
nodes if there are many equally good matches). The memory footprint of Kaiju is only 6
GB for the default database of bacterial, archaeal, and viral protein sequences.

Another idea of storing k-mers is to hash them in Bloom filter 3.2. This approach is
implemented in FACS [161] and CoMeta [162] classifiers. Both of them utilize only k-mer
presence in reference genomes and do not take into consideration their frequencies. This
approach also leads to large memory requirements (around 40 GB for bacterial database
and k = 30 for CoMeta).

A more detailed comparison of different metagenomic classification tools can be found
in multiple papers [163, 164, 165, 166, 167, 168].



Chapter 10

Data structures for
BWT-index-based metagenomic
classification

10.1 Overview

In this chapter, we study the problem of metagenomic classification that was defined in
Section 9. We follow the alignment-free approach (see Section 9 for the details): we extract
all k-mers from genomes and store them in a data structure (index ). Then, for every read
we extract all k-mers from it and query them against the index. Based on the information
about k-mers found in the index, the read is assigned to a node in the taxonomic tree.

We present data structures that we use in our metagenomic classification tool called
ProPhyle. We decided to create ProPhyle on the basis of a full-text search index, as such
indices occupy a small amount of memory and allow for comparatively fast queries, at
the same time providing a possibility to store full information about k-mer presence in the
reference sequences. We are mainly focusing on algorithmic methods that allow ProPhyle to
be fast and memory-efficient. In Sections 10.2 and 10.3 we describe the index construction
process and provide query details. In Sections 10.4 and 10.5 we present data structures and
methods that improve ProPhyle’s query speed and memory usage correspondingly. Then
we provide experimental results in Section 10.6 and conclusions in Section 10.7.

10.2 Index construction

As an input, we are given a taxonomic tree and a set of genomes, each of them correspond-
ing to some leaf in the tree. Our goal is to design a data structure that will allow fast
queries of k-mers returning the list of genomes (i.e., nodes in the taxonomic tree) where a
k-mer appears.

The index construction consists of 5 steps:

• extracting k-mers from reference genomes,

• k-mers propagation along the edges of the taxonomic tree,

• assembly of k-mers at each node into longer contigs,

• merging all contings for all nodes into one file,

78



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 79

1,	2,	3,	7	 2,	3,	4,	5,	7	 3,	4,	7	 1,	3,	5,	6	 2,	3,	5,	6	

3	

3,	5,	6	3,	7	

Figure 10.1: Propagation of k-mers. k-mers in transparent font are propagated to the
parent. k-mer forest is shown for K = 5.

• constructing a BWT index (see Section 3.5 for the details) with some additional data
structures.

Below we describe each of the steps above in more detail.

Extracting k-mers from reference genomes For each leaf node in the taxonomic
tree (with a corresponding reference genome) we extract all k-mers and remove duplicates.
We do not add reverse complements of k-mers, as they will be processed during the next
steps.

k-mers propagation This step is one of the key ideas of the whole algorithm. Usu-
ally, reference genomes share a huge number of k-mers, especially if there are many close
relatives in the database under study. This leads to the idea of “propagation” of a k-mer
K to the parent node if all its children contain K. In other words, all shared k-mers are
propagated to parent nodes, and the total number of k-mers in all nodes decreases. An
example of the propagation is shown in Figure 10.1. Here we come to the concept of k-mer
forest: instead of storing a k-mer K in all nodes where reference genome contains K, we
store only roots of subtrees where all leaves contain K. In Figure 10.1, we can see an
example of k-mer forest for K = 5. This allows us to save on storing k-mers that occur in
genomes of related species.

Assembly of k-mers After k-mer propagation, we aim to compress k-mer sets at every
node. In order to do this we assemble k-mers into longer contigs, without loosing or
adding any information, using the de Bruijn graph concept (see Section 6.3): two k-mers
are merged into one k + 1-mer if and only if they have a suffix-prefix overlap of length



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 80

k − 1. The following simple greedy algorithm is used: the algorithm randomly chooses a
k-mer to start with and then extends it in both directions, every time choosing a random
k-mer with a suffx-prefix overlap of length k − 1 if there are multiple choices.

Merging contings for all nodes into one FASTA file This step is straightforward:
one big FASTA file containing all contigs for all nodes is created. Contigs for one node are
put together in this file.

Constructing a BWT index with some additional data structures A FASTA
file, described in Paragraph 10.2, is used as an input for a BWT index construction. We
use BWA as BWT index implementation (see more details about the implementation in
Section 10.6).

A detailed explanation of these construction steps can be found in [61].

10.3 Index query

Suppose we have a BWT index P constructed for a text T as described in Section 10.2
and a read R that we want to classify. Following the strategy, described in Section 9, we
extract all k-mers from R and query them independently against index P . We call this
type of search “restarted”, as we query all k-mers independently and do not use the fact
that two neighbouring k-mers share (k − 1)-mer.

Here we describe how to query a k-mer K against index P . As P is, in fact, a BWT
index, then the general query process consists of two steps:

• find a Suffix Array (or SA) interval (s, e) corresponding to K,

• translate every position from (s, e) to a position in the initial text.

In our case, we actually do not need exact positions in the text, but only the name of
the node in the taxonomic tree. BWA provides a translation from the text position to the
contig, so we need to add one more step to BWA to obtain the corresponding node in the
taxonomic tree.

If a k-mer appears in the text, then the SA interval search works in O(k) time (see
Section 3.5 for more details). Thus, the search of SA intervals for all k-mers in the read
can be completed in O(`k) time, where ` = |R| � k. The second step of the query process
is usually implemented using a sampled suffix array: if a current position in SA is sampled,
then there is an explicit translation to the text position; if it is not sampled, then we move
to the suffix array position corresponding to the previous position in the text, and repeat
this operation until the current position is sampled. Finally, the answer will be the found
text position shifted by the number of steps back.

It is also important that both parts of the query process require a significant time if
the k-mer appears in the text.

We found two inefficient parts in the reasoning above:

• the restarted search of k-mers is not efficient as we do not use the information that
two consecutive k-mers share k − 1-mer,

• we do not need exact positions in the text where a k-mer appears, therefore we can
reduce information that has to be stored in the index.

In Sections 10.4 and 10.5 we address both these problems.



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 81

10.4 Improvements of query algorithm

Recall that a query in a BWT index consists of two steps: search for a SA interval and
translation of SA positions to text positions. First, let us focus on finding a Suffix Array
interval.

Suppose that we are querying two k-mers k2 and k1 of the form Xb and aX, where
X is a (k − 1)-mer and a, b ∈ Σ. Recall from Section 3.5 that in a BWT index search is
done in the backward direction, therefore we first query Xb and then aX. If (sb, eb) is a
suffix interval corresponding to k2 = Xb, then the suffix array interval for X is (sX , eX)
satisfying sX ≤ sb and eb ≤ eX , because X and k2 share the same prefix X. The procedure
of obtaining (sX , eX) from (sb, eb) can be regarded as removing the last character from the
pattern.

Below we describe a data structure called kLCP that can be used for removing the
last character from the pattern during search in a BWT index.

10.4.1 kLCP array

Recall that LCP of a string T of length n is the array of integers such that LCP [i] is the
length of the longest common prefix of T [SA[i− 1]..n− 1] and T [SA[i]..n− 1], where SA
is the suffix array of T .

Definition 10.4.1. Define a kLCP array as

kLCP [i] =

{
LCP [i] if LCP [i] ≤ k − 1

k, otherwise

Definition 10.4.2. Define kLCP0−1 as

kLCP0−1[i] =

{
0 if LCP [i] < k − 1

1, otherwise

Using LCP , removing the last character can be performed in the following way: de-
crease s while LCP [s] ≥ |X| and increase e while LCP [e + 1] ≥ |X|, and the interval
obtained will be exactly the suffix array interval for X. As for all our queries |X| ≤ k− 1,
then LCP can be replaced by kLCP in this process. Moreover, if |X| = k − 1, then
removing the last character can be performed using kLCP0−1 instead of LCP as we need
to know only whether kLCP [i] ≥ k − 1 or not.

kLCP and kLCP0−1 can be constructed in linear time if LCP is known in advance.
There exist many linear-time algorithms for LCP array construction, and both kLCP and
kLCP0−1 can be constructed in linear time too. Below we present another algorithm for
kLCP0−1 construction that uses only a part of the BWT index.

Lemma 12. Given a text T of length n and a BWT index for T , kLCP0−1 can be con-
structed in O(nk) time in the worst case using no additional memory.

Proof. We will construct kLCP0−1 with enumeration through all (k− 1)-mers and trying
to find them in the BWT index. If at some step we obtain empty SA interval, then we
stop this branch of backtracking (this is the first heuristic). If some SA interval contains
only one element, we also stop this branch (this is the second heuristics).

If we find a (k− 1)-mer in the BWT index, and the SA interval is of size at least 2, we
set ones to the corresponding elements of kLCP0−1. Finally, we set all remaining elements
of kLCP0−1 to zero.



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 82

A	
C	 G	

T	

T	G	C	A	

k	

Stop:	
1)  s	>	e	
2)  s	=	e	

(s,	e)	

Figure 10.2: kLCP0−1 construction. The tree represents backtracking process, where each
nodes corresponds to extending the pattern by one character. If at some node the SA
interval (s, e) contains zero or one element, we stop this branch of backtracking – such
nodes are red.

Let us prove that in the worst case, this algorithm works in O(nk) time.
The whole backtracking can be considered as traversing a tree. We can stop at a node

V with the corresponding SA-interval (s, e) for two reasons:

• s > e (the SA interval is empty). In this case some non-stopping (or stopping by
the second heuristics) branch of backtracking contains the parent of V . The number
of branches non-stopping or stopping by the second heuristics is up to n, so the
number of nodes where we stopped backtracking is up to nk (the number of nodes
in non-stopping branches) multiplied by 4 (size of alphabet).

• s = e. For each such branch there is an element in SA, so the number of nodes in
such branches is up to nk again.

Finally, we can traverse up to 4nk + nk + n = O(nk) vertices in the tree, and this
proves the lemma.

In Figure 10.2 the traversing of a tree is shown schematically.

It is worth to note that we actually do not use the whole BWT index in Lemma 12:
for example, the sampled Suffix Array is not used.

The algorithm from Lemma 12 can be easily parallelized as it works independently for
all k-mers. This algorithm requires memory for storing kLCP0−1 itself and for a part of
BWT index, and does not require the Suffix Array or the full LCP array.

To continue with the kLCP construction algorithm, we need to prove several state-
ments.

Lemma 13. For two strings P1 and P2, corresponding suffix array intervals either do not
intersect or are enclosed one to another.



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 83

Proof. If one of the strings (for certainty, P1) is a prefix of P2, then obviously suffix
array interval of P2 is enclosed into suffix array interval of P1. Otherwise, they can not
intersect.

Lemma 14. Given a text T of length n and a part of BWT index for T (namely, the
BWT string and data structures supporting count and rank operations), kLCP can be
constructed in O(nk) time in the worst case using no additional memory.

Proof. Let us follow the algorithm described in Lemma 12. Both heuristics there can be
used for kLCP construction too. The only step that changes is filling the kLCP array: in
Lemma 12 we put ones in kLCP0−1 if and only if some (k − 1)-mer is found during the
search, whereas for kLCP construction we need to distinguish all patterns of length from
1 to k − 1.

We need to prove that this increased number of insertions into the kLCP array does
not affect the working time asymptotics. As it follows from Lemma 13, for a fixed length
`, SA intervals for two different strings of length ` can not intersect. This means that for
a fixed `, we can make up to n insertions in kLCP , and overall for lengths 1 ≤ ` ≤ k − 1
number of insertions is up to nk, and thus the construction time of kLCP remains O(nk).

10.4.2 Using kLCP array for removing the last character

On the one hand, using kLCP for removing the last character during pattern search in a
BWT index is straightforward: given a SA interval (s, e) for pattern Xa where |X| ≤ k−1,
we can decrease s while kLCP [s] ≥ |X| and increase e while LCP [e + 1] ≥ |X|, and the
new interval (sX , eX) will be the SA interval for X. On the other hand, the working time
of this naive algorithm is O(|s− sX |+ |e− eX |), and if X appears in the text many more
times than Xa, then the naive algorithm can be time-consuming.

Decreasing s while kLCP [s] ≥ |X| can be viewed from another side: for a given s to
find a maximum sX ≤ s such that kLCP [sX ] < |X|. In this formulation, this problem
can be solved using a data structure supporting rank and select operations: first, find the
number t = number of s′ < s such that kLCP [s′] < |X| and then select the index sX such
that sX is the t-th position satisfying kLCP [sX ] < |X|. The same statement holds for the
kLCP0−1 array. Thus, we proved the following lemma:

Lemma 15. The last character of a k-mer can be removed and the suffix array interval of
the corresponding (k−1)-mer can be updated in O(1) time with use of kLCP0−1 augmented
by an auxiliary data structure for fast rank and select operations.

Using the approach described above, we perform search of k-mers one by one in the
backward direction. If the SA interval for a k-mer k2 is not empty, then we remove the
last character of k2 and then in O(1) obtain the SA interval for the next k-mer k1. We call
this approach the rolling window search.

In Section 10.6 we show that using kLCP0−1 improves the working time of the SA
interval search. We also show how to efficiently store kLCP without using rank and select
operations.

10.4.3 Speeding up SA-to-text translation

Suppose that there is only one occurrence of each consecutive k-mers aX and Xb at
positions i and j of the text. Obviously, it is very likely that they appear at consecutive
positions of the text (this is true even for a random text for a sufficiently big k). The



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 84

statement above remains true even if there are multiple occurrences of k-mers. This means
that after we found position(s) of Xb in the text, we can avoid the translation of SA
positions for aX in most cases.

Our goal is, given SA intervals for aX and Xb ((sa, ea) and (sb, eb) correspondingly),
and text positions for Xb (array Q), to find text positions for aX. A first obvious idea is to
prove that if ea− sa = eb− sb (in other words, there is equal number of occurrences of aX
and Xb in the text), then positions of aX can be obtained from positions of Xb by shifting
them by 1. However, this is not correct. Let T = TACTACGTCGT, a = A,X = C, b = G.
Then there are two occurrences of aX = AC at positions 2 and 5, and two occurrences
of Xb = CG at positions 6 and 9. Thus, there are equal number of occurrences of AC
and CG, but only at positions 5 and 6 they appear together, while the other occurrences
of these k-mers are far one from another. This, in some sense, proves that if we use the
restarted search, then the information about k-mers (SA intervals) is not enough to speed
up translation SA positions to text positions. But for the rolling window search speeding
up SA-to-text translation is possible, which is proved in the following lemma:

Lemma 16. Let (sa, ea), (sb, eb) and (sX , eX) be SA intervals for aX, Xb and X corre-
spondingly found during the rolling window search. Then, if ea − sa = eb − sb = eX − sX
then the positions in the text where aX appears can be obtained from the positions for Xb
by shifting by one position to the left.

Proof. Every time when aX or Xb appear in the text, X also appears there. Thus
eX − sX ≥ ea − sa and eX − sX ≥ eb − sb. Suppose that at some position aX is not
followed by b, then there are at least ea − sa + 1 occurrences of X in the text. So the
opposite is correct, and aX and Xb appear at consecutive positions in the text.

Applying Lemma 16 to the translation step during the rolling window search we can
reduce the time of the translation, as shifting positions by one is much more lightweight
operation than translation using sampled Suffix Array. In Section 10.6 we will show that
ideas described in this section improve working time significantly in practice.

10.5 Memory usage improvement

As it was mentioned in Section 10.3, for our purposes we do not need exact text positions
where k-mers appear, but only corresponding taxonomic node identifier. A sampled Suffix
Array used for the translation from SA positions to the text positions can be replaced by
a more lightweight data structure that allows a direct translation to node ids.

For this part it is important that in our case the “text” is a concatenation of several
contigs without any separator between them. Consecutive contigs belong to the same node
from the taxonomic tree. An example of such a text is shown in Figure 10.3.

One idea is to store not a text position but a corresponding node_id (we call this
array node id array) for every sampled position of suffix array. We call this new array,
storing only node ids instead of text positions, node_id array further in the text. Then,
the translation can be done in the same way as for a sampled suffix array: move to the
previous text position until we find a sampled position, and the answer will be the node
id corresponding to this position. Such an approach can return a wrong node id in several
situations: if while moving backward in the text we cross a border of two nodes, then the
answer will be wrong. Another problem is that every found position should be checked
whether the k-mer spans the border of two consecutive contigs (and should not be in the
output in this case). However, we can check whether a position is at the border of two



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 85

node1	 node2	

con@g	borders	

K	

Figure 10.3: Text consisting of several concatenated contigs. Consecutive contigs belong
to the same node from the taxonomic tree. Red horizontal line represents a k-mer K on
the border of two contigs.

contigs only if we have exact text positions. If we translate SA positions directly to node
ids then a direct check becomes impossible. In Figure 10.3 k-mer K spans the border of
two contigs, and should not be in the output of the query.

However, even such a naive approach can sometimes provide good results (in other
words, the error rate may be small). Imagine, for example, a text of length 106 that
consists of 1000 contigs of equal length, and there are 10 nodes each including 100 contigs.
Let every 10th position be sampled in the suffix array. At each border of two contigs we
will return an incorrect answer for 10 positions in average, and overall for approximately
10 · 999 = 9900 positions the node id will be wrong. Thus, the probability of an error for
such an input is only 9900

106
≈ 0.01.

Further in this section we will construct a more sophisticated data structure that avoids
the problems described above.

Let T be a text of length n, SSA the sampled suffix array with sampling distance s
and let l be the number of contigs which T consists of and m number of nodes. SSA can
be stored in two very different ways:

1. sample every s-th position of the text

2. sample every s-th position in Suffix Array

The main difference is that in the first version the distances between consecutive sam-
pled positions are equal (and the distances between concescutive sampled SA positions are
different), and vice-versa for the second version.

Let SA−1 be the inverse of SA (such that SA−1[SA[i]] = i).
Algorithm 5 describes the usual process of translation from SA positions to texts posi-

tion.
Checking whether a SA position x is sampled or not is different for different types of

SSA: for the second version it is obvious (we just check x mod s = 0 or not), whereas for
the first version we need to store a data structure supporting rank and select operations.



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 86

Algorithm 5 SA position to text translation
1: Input: BWT, sampled suffix array SSA, starting SA position x
2: steps = 0
3: while x is not sampled do
4: x = SA−1[SA[x] − 1] (in other words, suffix index that corresponds to previous

position in the text, it is found using BWT )
5: steps = steps+ 1
6: end while
7: Output: SSA[x] + steps

It is easy to see that the second variant of SSA occupies less memory and is faster than
the first one at the price of the worst case.

For a position t in the text let next(t) be the next sampled position of the text.
Actually, both problems with the node_id array described above come from the same

source: we do not know exact positions in the text and can not compare them with
contig borders. The basic idea of our solution is to store contig borders in another way,
i.e., if b1, b2.. are contigs borders between t and next(t) (for uniqueness, including t and
not including next(t)), then we store pairs (t, b1 − t), (t, b2 − t)... To maintain a common
enumeration, let the border between positions x and x+1 be x. As t is a sampled position,
then this is equivalent to storing set of (key, value) pairs C = (SA−1[t], b1−t), SA−1[t], b2−
t)... Below we show how this set of (key, value) pairs can be stored efficiently.

Suppose that there is at most one contig border between any pair of sampled positions
(t, next(t)). As it was mentioned above, the first type of SSA implementation is usually
slower and less memory efficient than the second one. For example, BWA, which we use
in ProPhyle, implements the second variant of SSA. Below we will describe how to replace
SSA with a node_id array for the second type of SSA. However, same statements, with
small and rather technical changes, apply to the first type of SSA too.

Definition 10.5.1. Define an array D of size n
s as

D[i] =

{
−1, if sampled positions SA[i · s] and next(SA[i · s]) belong to the same contig
b− SA[i · s] (where b is a border position between SA[i · s] and next(SA[i · s])), otherwise.

If x and steps are values found by Algorithm 5, then there are two possibilities:

1. D[x] = −1: there is no contig borders between SA[x] and next(SA[x]), and the node
id is node_id[x],

2. D[x] ≥ 0:

(a) steps < D[x]− k + 1: return node_id[x],

(b) D[x]− k+ 1 ≤ steps ≤ D[x]: position is at the border of two contigs, it should
not be present in the output,

(c) steps > D[x]: return node_id[SA−1[next(SA[x])]] (we will explain how to get
id of next(t) later).

Here we utilize the fact that all contigs belonging to one node are grouped together in
the text. Also we assume that sequences corresponding to different nodes are concatenated
in the predefined order (in other words, we have a correspondence between node identifiers



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 87

and nodes in the taxonomic tree). In Algorithm 10.5 we also use some properties of the
BWT index implementation from BWA, namely, the fact that contigs are concatenated
without any separators, thus in our case k − 1 positions at the border of two contigs are
false positives. Under the discussed constraint, Algorithm 10.5 can determine a correct
node id:

Lemma 17. The algorithm described in 10.5 returns a correct node id if and only if there
is up to one contig border between t and next(t) for any sampled text position t.

Proof. One part of this statement is obvious: if all positions in contig i are not sampled,
then if a k-mer appears at the first position of contig i+ 1, Algorithm 5 can find (i− 1)-th
contig as an answer, and the algorithm will not return the correct answer.

The second part of the statement is also easy to prove: as the BWT implementation
of BWA just concatenates contigs together without separators, and exactly k− 1 positions
on the border are forbidden, then this situation corresponds to the second case of Algo-
rithm 10.5. Positions to the left of the border belong to the node node_id[x], and to the
right of the border – to the node node_id[SA−1[next(SA[x])]].

As we are working with the second type of SSA, then there is no upper bound for values
of the array D. This means that each element of D occupies log n bits of memory, and
overall D occupies n

s log n memory, which is equal to the SSA memory usage. However, we
know that the average value of D[i] is s which means that we can store D more compactly.
Below we show how to do that.

10.5.1 Storing D compactly

The idea is to store only those distances D[i] in the array Dcut[i] which do not exceed some
predefined constant dmax, and if D[i] ≥ dmax − 2 then to store −2. In other words, we
replace D with Dcut defined as

Definition 10.5.2.

Dcut[i] =

{
D[i], if D[i] < dmax − 2

−2, otherwise.

ArrayDcut allows us to use the same algorithm to determine node id from a SA position,
but we introduce one more type of errors at the border of two contigs: if the distance
between two sampled positions in the text is too big (more than dmax − 3), then we may
return an incorrect node id. For such sampled positions, we store values of D which exceed
dmax − 3 explicitly in a hash table or a sorted list E.

The smaller is dmax, the smaller values are stored in Dcut, but the bigger is the size
of E, and vice-versa. Thus, we need to find a trade-off between the size of Dcut and the
size of E by choosing an appropriate value of dmax. Below we analytically evaluate the
optimal value of dmax and the sizes of Dcut and E. In Section 10.6 we also provide some
experimental results confirming our idea.

We can store E as a sorted array, containing pairs (x, d), where x is a sampled position
in the suffix array and d is the distance to the nearest contig border to the right. As
1 ≤ x ≤ n and 1 ≤ d ≤ n, then we need 2 log n bits of memory for each entry of E. For
each entry of Dcut we need log dmax bits of memory. There are n

s elements in Dcut and
p · ns elements in E, where p is the probability that the distance from a sampled position
to the contig border exceeds dmax − 3. Next lemma estimates this probability:



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 88

Lemma 18. Let T be the text of length n and let S be n
s randomly and uniformly distributed

different positions in T (“random” analogue of the SSA). Then the probability P (S[i+ 1]−
S[i] > dmax) can be estimated as (1− dmax

n )
n
s .

Proof. It is obvious that P (S[i+ 1]− S[i] > dmax) ≈ P (minS[i] > dmax) = P (∀i 1 ≤ i ≤
n
s : S[i] > dmax). Let us remove the condition of the lemma that positions are different (this
does not significantly change the distribution of distances), then P (∀i 1 ≤ i ≤ n

s : S[i] >

dmax) =

n
s∏
i=1

P (S[i] > dmax). Recall that positions are chosen independently and uniformly,

thus P (S[i] > dmax) = 1− dmax
n , and finally the sought-for probability is (1− dmax

n )
n
s .

We can simplify the probability from Lemma 18: in our setup, dmax � n and s � n,
thus we can apply (1 + a

x)x ≈ ea if x → ∞ and finally obtain (1 − dmax
n )

n
s = ((1 −

dmax
n )

n
dmax )

dmax
s ≈ e

−dmax
s for big enough values of n.

Now we can calculate the expected number of elements in E : |E| = e
−dmax

s · ns , and the
total expected size of D and E together that we want to minimize is e

−dmax
s · ns · 2 log n+

n
s log dmax. The following lemma finds a condition on dmax when this minimum is achieved:

Lemma 19. The total expected size of E and G is minimum when dmax = c · s, where c
satisfies ce−c = 1

2 logn .

Proof. We want to minimize f(dmax) = e
−dmax

s · ns ·2 log n+ n
s log dmax. Below we replace

dmax by d to simplify equations. As n
s is constant, then it is equivalent to minimizing

g(d) = e
−d
s · 2 log n+ log d. The minimum is achieved when 0 = g′(d) = 1

d −
1
se
−d
s · 2 log n,

which is equivalent to de
−d
s = s

2 logn . Let d = cs, then for c holds ce−c = 1
2 logn , which

proves the statement of the lemma.

The default value for s is usually 32 (BWA also uses it). We numerically computed the
optimal value of dmax for n = 109 (typical value for our applications) using Lemma 19 and
obtained dmax = 187. Then the optimal size of D is n

s log dmax ≈ 0.23n, and the optimal
size of E is |E| = 2e

−dmax
s · ns log n ≈ 10−4n log n.

Now we show how to solve the two remaining issues: the first one concerning multiple
contig borders between t and next(t), and the second one about finding the correct node
id for next(t) from Algorithm 10.5.

10.5.2 Multiple contig borders between t and next(t)

Let us return to the initial formulation of the problem: there is a set C consisting of pairs
(x, d) where 1 ≤ x ≤ n

s and −2 ≤ d < dmax − 2 (remember that we store pairs with
d ≥ dmax in a separate structure, so we can consider that −1 ≤ d < dmax). Moreover,
there is at least one value associated with every key x. As we showed above, if there is
at most one value associated with every key, then we can store them in the usual array
optimally.

When there is more than one value associated with some keys , we use a standard trick
to store C: we sort all pairs from C in the ascending order to obtain a sorted array Csorted
(first sorted by keys, and if keys are equal then sorted by values), and store only values
of all pairs in the array Dcut (we will use the same name for clarity) in the same order.
Additionally we store a bit array K that contains |C| values: for every index 1 ≤ i ≤ |C|
we store 1 if Csorted[i].key 6= Csorted[i − 1].key (here we assume Csorted[−1] = (−1,−1)).



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 89

On top of K we store a compact data structure that supports a fast select operation, i.e.,
for a given i finds i-th 1 in K. We call K together with this auxiliary data structure
Kselect. Kselect occupies only |K|+ o(|K|) bits and performs select operation in O(1) time
(see, for example, [169, 170]).

Everything proved in Section 10.5 remains true when we switch from Dcut for the
single-border case to Dcut augmented by Kselect.

10.5.3 Correct node id for next(t)

The last issue to be solved is to determine a correct node id when we cross the border in
Algorithm 10.5. The idea is to store one bit showing whether crossing the corresponding
border changes the node id or not for every entry of C. For every t the position next(t)
belongs to the same node or to the next one, thus for every entry one bit is enough to
store this information, and we store them in array B. Algorithm 10.5 can be modified
accordingly to support multiple borders for the same sampled position and to identify
node id correctly.

Overall, we replace the sampled Suffix Array with the following data structures: node_id
array, Dcut array, E (sorted list or map), Kselect and B.

Let us describe an example of obtained data structures. Suppose we have 4 contigs of
length 20, 30, 15 and 35 correspondingly. Let first two of them belong to the first node
and the others to the second node. We enumerate all positions starting from 0 (so the
last one will be 99). Let the sampling distance s be 32, and let positions 15, 30, 70 and
90 be sampled. Assume that they correspond to Suffix Array positions 0, 32, 64 and 96
correspondingly (in reality, the order can be different). We will use numbers 0, 1, 2 and
3 to index sampled positions 15, 30, 70 and 90, respectively. Finally, let k (the length of
k-mers) be 4 and dmax be 25.

First, node_id[0] = 1,node_id[1] = 1,node_id[2] = 2 and node_id[3] = 2. Between
positions 15 and 30 there is one border (at position 19), between positions 30 and 70
there are two borders (at positions 49 and 64) and between positions 70 and 90 there is
no borders. Then, we need to store four (key, value) pairs describing borders: (0, 19 −
15) = (0, 4), (1, 49 − 30) = (1, 19), (1, 64 − 30) = (1, 34), (2,−1) and (3,−1). Note that
34 > dmax − 3, so we add the pair (1, 34) to E (hash table or sorted list, for example).
Then we store the rest of the pairs in the array as 4, 19,−2,−1,−1. As every entry in this
array, except the third one, corresponds to a new sampled position, then the bit array K
will be 1, 1, 0, 1, 1. Finally, the array B described above will look like 0, 1, 0, 0, 0, as only
for the second sampled position the next contig belongs to the next node.

Obtained data structures are shown on Figure 10.4.

10.5.4 Memory improvement estimation

Altogether, for s = 32, data structures Dcut, E, Kselect and B occupy approximately
0.23n+ 10−4n log n+ 2n

32 + 2g+ o(n)
s bits of memory. node_id array itself occupies n

s logm
bits of memory, where m is the number of nodes (thousands or tens of thousands in our
case) and g is the number of contigs. Let us compare it with the memory needed for the
sampled Suffix Array, which is n

s log n bits. Assume that s = 32. In terms of bits used per
one character of the text, our structures occupy A = logm

32 +0.23+10−4 log n+ 1
16 + 2g

n bits
per character, and the sampled Suffix Array occupies B = logn

32 . A typical value of n for
our inputs is of order of 1010, the number of nodes m is of order of 104, and the average
contig length is around 100, thus g ∼ n

100 . For n = 1010, log n ≈ 33, and thus positions
are stored in 64 bits in practice (for example, BWA stores values of sampled Suffix Array



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 90

0	 …	 19	 20	 …	 49	 50	 …	 64	 65	 …	 99	

con-g1	 con-g2	 con-g3	 con-g4	

node1	 node2	

1	

1	

2	

2	

0	 15	

1	 30	

2	 70	

3	 90	

0	 4	

1	 19	

1	 34	

2	 -1	

3	 -1	

SSA	 Node	ID	 C	(borders)	 E	

(1,	34)	4	

19	

34	

-1	

-1	

D	

4	

19	

-2	

-1	

-1	

Dcut	

1	

1	

0	

1	

1	

K	

0	

1	

0	

0	

0	

B	

Figure 10.4: Example of data structures, replacing sampled Suffix Array.

in 64 bits). For m = 104, each entry of node_id array is stored in 16 bits. Then, for
n = 1010,m = 104, g = 107, A ≈ 16

32 + 0.23 + 1
16 + 2

100 = 0.8125, B = 2. Therefore A is
2.5 times less than B, and we can save around 60% of memory compared to storing the
sampled Suffix Array.

10.6 Experimental results

In this section we provide experiments on ProPhyle index properties. First, in Sec-
tion 10.6.1 we introduce the way we store the kLCP array. Then in Section 10.6.2 we
measure the index query speed and the influence of query improvements, described in Sec-
tion 10.4. In Section 10.6.3 we reveal some experimental properties of the kLCP array.
In Section 10.6.4 we find out how using of Node ID array instead of Suffix Array influ-
ences the memory usage and the time performance. Finally, in Section 10.6.5 we provide
experimental properties of the whole ProPhyle index.

For all our experiments we use the RefSeq database containing 2787 bacterial genomes [156].
We generated reads using dwgsim (https://github.com/nh13/DWGSIM) simulator (op-
tions dwgsim -1 100 -2 0 -e 0.02 -C 0.1). All experiments have been done on a computer
with Ubuntu, 24 cores and 64 GB of memory.

10.6.1 Storing kLCP array

In Section 10.4 we briefly mentioned two ways of storing the kLCP array. A naive approach
is to store a bit array and iterate over its elements one by one in order to extend a SA
interval. This approach is straightforward and easy to implement, however, if the SA



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 91

											…	 0	1	1	0	1	0	1	1	 1	0	1	1	1	0	1	1	 												…	

block	 block	

(s,	e)	

Figure 10.5: Storing kLCP array as blocks of 8 bits. First and last zero bits are red and
green correspondingly. To extend the interval (s, e), we need to find the first zero to the
left and to the right.

interval can be extended significantly, then this naive approach can be slow. The second
idea is to store an auxiliary data structure supporting rank and select operations to be able
to find new SA interval borders in O(1). This approach requires an additional memory
and may be slower than the naive algorithm when extensions are generally small.

Here we present another way to store the kLCP array (see Figure 10.5 for reference).
First, for practical reasons elements of the kLCP bitarray are grouped in blocks of p
elements (usually, p is 8, 16, 32, 64 or 128). We choose p to be 16 and for every possible
value of the block (from 0 to 216 − 1) we compute the place of the first and the last zero
bits in its bit representation. Then, while extending a SA interval (s, e), we iterate over
blocks, not individual bits, and for every block check whether it has zero bit or not to the
left or to the right of s or e. If it does, then the result is the adjacent bit to the first or last
zero (depending on the direction of the extension) in this block. Otherwise we move to the
next block. This algorithm requires just 216 · 4 · 2 < 106 bytes of memory to store the first
and the last zero bits for every block. This approach is faster than the naive one for big
SA interval extensions, and it is faster than the second algorithm described above in the
case of considerably small extensions. Finally, in the case of metagenomic classification,
when extensions are generally small, this algorithm can be a good way for storing kLCP .

10.6.2 Experiments on query time

In this section we measure the efficiency of query improvements, introduced in Section 10.4.
First, recall that a BWT query consists of two parts: finding a SA interval (s, e) and

translation of every position from (s, e) to a text position. In some border cases, one of
these steps can take much more time than the other one. Suppose that, in some artificial
experiment, for every queried k-mer we stop the query on (k−1)-mer because of the empty
SA interval. Then the translation step will not be used at all, so the SA interval search
will occupy 100% of time. On the other hand, it is easy to imagine an input when the
translation step takes much more time than the SA interval search: suppose that the text is
big enough and random, and we query k-mers with a very small k. Then SA intervals found
on the first step will be very big, and the translation will be extremely slow. However, both
these situations (and many others) are not usual cases when we deal with the metagenomic
classification problem, as many k-mers will be found in the index. At the same time, due
to the propagation, for big enough values of k SA intervals will be rather small. These
considerations, in some sense, prove that both improvements, described in Section 10.4,



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 92

can significantly reduce the query time in practice.
Query speed for different query algorithms are shown in Table 10.1: the basic one, the

one using kLCP for SA search, and the one with both improvements. It is clear that both
improvements improve the query speed, and together they make queries 2.5 times faster.

Table 10.1: Query speed (in reads per minute) for different query algorithms.
Algorithm RPM

basic 190000
using kLCP for SA search only 234000

using kLCP both for SA search and for sa-to-text translation 434000

10.6.3 kLCP properties

In this section, we experimentally study statistical properties of kLCP array. They are
interesting from two points of view. First, they allow us to better understand how to store
and query kLCP array. Secondly, they may lead to a better understanding of the whole
index.

First, we calculate the distribution of ones and zeros in the kLCP array and the average
length of a consecutive run of ones for different values of k. The results are presented in
Table 10.2.

Table 10.2: kLCP properties.
k 16 20 24 31

percentage of ones 94% 35% 26% 24%
average length of run of ones 17.3 2.82 3.05 3.09

From Table 10.3, we observe that the number of ones decreases when k increases.
Moreover, the percentage of ones is 94% for k = 16 which can be explained by the fact
that many 16-mers appear multiple times in the text as k is quite small. For k = 20 the
percentage (35%) is much lower.

The average length of consecutive ones is big for k = 16 and is almost the same for
k = 20, 24, 31. Moreover, the average length even increases insignificantly. The latter may
be due to the fact that “random” (and thus single) ones disappear when k increases from
k = 20 to k = 31, while “real” ones are almost the same for k = 20, 24, 31.

Next, we use kLCP to query simulated reads, and calculate the average SA interval
extension length while removing last character. The results for different values of k are
shown in Table 10.3.

Table 10.3: Average SA interval extension length while removing the last character.
k 16 20 24 31

average SA interval extension 48 0.79 0.23 0.14

Tables 10.2 and 10.3 show that, with increase of k, the average number of ones, the
average length of a run of ones and, most importantly, the average extension of SA interval
decrease. Thus, the bigger k we use, the faster the removal of the last character works.

10.6.4 Experiments on Node ID

We implemented a basic version of node_id array, replacing a sampled Suffix Array. Instead



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 93

of storing a correspondence between SA positions and text positions, for every sampled
SA position we store corresponding node id. In our implementation, every entry of Suffix
Array occupies 64 bits (as it does not fit into 32 bits provided by int32 type), while node_id
array elements can be stored in 16 bits, as number of nodes is only 2787. Thus, node_id
requires less than 1 GB of memory in comparison to Suffix Array occupying more than 3
GB.

As it was discussed in Section 10.5, Suffix Array replacement by node_id array can
lead to incorrect results in two cases:

1. some SA positions can be translated to a wrong node id, as a border of two nodes
can be passed while moving backward in the text,

2. positions on a border of two consecutive contigs should be excluded from results,
which is impossible with node_id array, as contig borders can not be checked without
knowing exact text position.

We queried simulated reads against the index for values of k = 20, 24, 31. For every
position in Suffix Array that we translated to a node id, we compared the translation using
the sampled Suffix Array (that is always correct) to the translation using node_id array.
There are three possibilities:

1. the corresponding k-mer spans a border of two consecutive contigs (this corresponds
to error described in case 2 above),

2. the resulting node ids are different (see 1),

3. they are the same (this number should be close to 100% if node_id can replace Suffix
Array without the big number of false answers).

The results of these experiments are presented in Table 10.4.

Table 10.4: Translation error rate using node_id array.
k 20 24 31

correct translations, % 97.2 98.5 98.9

incorrect node id, % 0.006 0.006 0.006

position on a border, % 2.79 1.49 1.05

From Table 10.4, we can see that the percentage of wrong node ids is very low. The
primary reason for this is that the number of nodes (2787) is very small in comparison to
size of the text (≈ 1010 characters for bacteria dataset [156]). Thus, the probability that
we cross the border of two nodes moving backward using the sampled Suffix Array is very
small.

The number of situations when we cross the border of two contigs is much bigger.
Partially this can be explained by the fact that the number of contigs (of order of 108 in
our case) is much bigger than the number of nodes. With k increasing from 20 to 31, the
percentage of k-mers that span borders becomes significantly lower. We believe that this is
due to the fact that most such situations are caused by “random” matches. k-mers spanning
a border of two contigs are in some sense random, as they appeared as a concatenation of
the end of one contig and the beginning of another contig. As a consequence, using just
the node_id array instead of the sampled Suffix Array leads to a significant memory usage
reduction, while almost not affecting the results of classification as a small number of these
random k-mers spanning the border will not change lists of matching k-mers for nodes in
the tree significantly.



CHAPTER 10. DATA STRUCTURES FOR METAGENOMIC CLASSIFICATION 94

10.6.5 Experiments on ProPhyle index

For the current implementation, the index construction for the bacteria dataset [156] for
k = 31 takes around 5 hours. The main reason is non-parallel algorithms used during
many steps of construction. The most memory-consuming step is BWT transform (around
2 hours). The kLCP array construction takes around 1.5 hours. We believe that the
construction time can be strongly reduced as kLCP construction algorithm can be easily
parallelized.

ProPhyle can classify around 434000 reads per minute (RPM) (this time does not
include index loading time). This time is achieved using the rolling window search. The
restarted search works around 2.5 times slower (190000 RPM). This time includes only
reads query time, and does not include time needed for the classification.

Memory usage during ProPhyle index construction is 13 GB (for example, Kraken [157]
uses 120 Gb). For queries, ProPhyle occupies 12.4 GB in case of restarted search and
14.2 GB for rolling window search. More details about the space occupied by different
substructures are provided in Table 10.5.

Table 10.5: ProPhyle memory usage.
structure space, GB

BWT string + rank/select structure 7.5

sampled Suffix Array 3.8

kLCP array 1.9

information about contig borders 1.0

Main ProPhyle repository is https://github.com/prophyle/prophyle. Index con-
struction and query described in this manuscript are implemented in https://github.
com/prophyle/prophex. A comparison with Kraken [157] can be found in [61].

10.7 Discussion

We introduced several data structures that are used in our metagenomic classification tool
called ProPhyle. Our BWT-index-based solution utilizes only a small amount of memory
and, at the same time, allows for fast queries. Moreover, our index is lossless, storing a
full information about k-meran approach to approximate string matching that relies on a
bidirectional index of the text presence in the reference genomes.

We believe that ProPhyle, being extensively developing, can be refined further in many
directions. From the performance point of view, index construction, query speed and
memory footprint can be improved.

The index construction can be strongly speeded up as non-parallel algorithms are used
in most steps. The most time consuming index construction step is the calculation of BWT.
As it was stated in Section 10.6, the construction of a kLCP array occupies significant
time. In Section 10.4 we mentioned that our construction algorithm is easily parallelizible,
and this may significantly reduce the construction time.

Full implemetation of node_id array can significantly reduce the memory used by a
whole index, while providing the same results. Moreover, taxonomic tree binarization and
better k-mer assembly can improve memory usage even further.



Part V

Conclusions

95



Conclusions

In this thesis, we studied algorithmic methods and data structures for string matching,
genome assembly and metagenomic classification problems. Here we summarize our main
results and enumerate directions for the future research.

Approximate string matching In Part II we studied an approach to approximate
string matching that relies on a bidirectional index of the text. We presented a framework
called search schemes and provided a probabilistic measure of their efficiency. Then we
provided two types of improvements and experimentally proved their efficiency. We also
discovered and proved several combinatorial properties of optimal search schemes.

We believe that efficient search schemes, based on bidirectional indexes, can be designed
automatically. We expect that the methods, discussed in this work, can be applied in
practice to hybrid approaches to approximate string matching, when filtering of potential
matched positions is followed by approaches based on backtracking.

Genome assembly and Read compression In Part III we introduced a novel memory-
efficient data structure called Cascading Bloom filter.

We described how Cascading Bloom filter can be applied to the genome assembly
problem. We provided analytical calculations showing that Cascading Bloom filter uses
8 to 9.5 bits per k-mer, compared to 13 to 15 bits used by the method of [126]. We
incorporated our data structure into Minia software [126] and showed that using Cascading
Bloom filter leads 30%-40% smaller memory footprint and 20%-30% decrease in query time.

In Chapter 8 we showed how Cascading Bloom filter can be applied to reference-based
read set compression. We introduced an extension of the strategy presented in [137] that
led to a notable improvement of the compression ratio.

More memory efficient replacements of Bloom filter, such as presented in [136], may
lead to more efficient implementation of Cascading Bloom filter.

Metagenomic classification In Part IV we presented data structures used in our
metagenomic classification tool called ProPhyle. We improved the standard BWT index
for the purpose of our application both in terms of query speed and memory usage. We
introduced data structures called kLCP and N ode ID array and showed their efficiency
both theoretically and experimentally.

We believe that ProPhyle can be improved even further both in terms of efficiency
and versatility and can be applied to different genomic analyses involving metagenomic
datasets. Using parallel versions of algorithms, we could strongly improve ProPhyle index
construction time. Memory usage could be reduced applying taxonomic tree binarization,
better k-mer assembly and full implementation of node_id array.

One more direction for future is developing precise and accurate assigning algorithms.
Currently only simple assigning algorithms that choose a node with best k-mer hit number

96



97

or coverage are implemented in Python and C++. We believe that much more accurate
assigning algorithms, utilizing the lossless nature of our index, can be designed.



Bibliography

[1] G. Kucherov, K. Salikhov, and D. Tsur. “Approximate string matching using a
bidirectional index”. In: Theor. Comput. Sci. 638 (2016), pp. 145–158. doi: 10.
1016/j.tcs.2015.10.043. url: https://doi.org/10.1016/j.tcs.2015.10.043
(cit. on pp. 4, 31).

[2] K. Salikhov, G. Sacomoto, and G. Kucherov. “Using cascading Bloom filters to
improve the memory usage for de Brujin graphs”. In: BMC Algorithms for Molecular
Biology 9.1 (2014), p. 2. url: http://www.almob.org/content/9/1/2 (cit. on
pp. 4, 70).

[3] K. Salikhov. “Improved compression of DNA sequencing data with Cascading Bloom
filters”. In: Special issue of the International Journal Foundations of Computer Sci-
ence (IJFCS) for the international Student Conference on Mathematical Founda-
tions in Bioinformatics (MatBio) (2017). To appear. (cit. on p. 4).

[4] J. D. Watson and F. H. Crick. “Molecular structure of nucleic acids; a structure
for deoxyribose nucleic acid.” In: Nature 171.4356 (Apr. 25, 1953), pp. 737–738.
url: http://www.ebi.ac.uk/citexplore/citationDetails.do?externalId=
13054692%5C&dataSource=MED (cit. on pp. 9, 12, 13).

[5] Z. D. Stephens et al. “Big Data: Astronomical or Genomical?” In: PLoS Biol 13.7
(July 2015), pp. 1–11. doi: 10.1371/journal.pbio.1002195. url: http://dx.
doi.org/10.1371/journal.pbio.1002195 (cit. on p. 9).

[6] J. C. Venter. “Environmental Genome Shotgun Sequencing of the Sargasso Sea”.
In: Science 304.5667 (2004), pp. 66–74. doi: 10.1126/science.1093857. url:
http://www.sciencemag.org/cgi/doi/10.1126/science.1093857%20http:
//www.ncbi.nlm.nih.gov/pubmed/15001713 (cit. on p. 10).

[7] E. Karsenti et al. “A Holistic Approach to Marine Eco-Systems Biology”. In: PLoS
Biology 9.10 (2011), e1001177. doi: 10.1371/journal.pbio.1001177. url: http:
//dx.plos.org/10.1371/journal.pbio.1001177%20http://www.ncbi.nlm.nih.
gov/pubmed/22028628%20http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=PMC3196472 (cit. on p. 10).

[8] J. Qin et al. “A human gut microbial gene catalogue established by metagenomic
sequencing”. In: Nature 464.7285 (2010), pp. 59–65. doi: 10.1038/nature08821.
url: http://www.nature.com/doifinder/10.1038/nature08821 (cit. on p. 10).

[9] T. M. Vogel et al. “TerraGenome: a consortium for the sequencing of a soil metagenome”.
In: Nature Reviews Microbiology 7.4 (2009), pp. 252–252. doi: 10.1038/nrmicro2119.
url: http://www.nature.com/nrmicro/journal/v7/n4/full/nrmicro2119.
html%20http://www.nature.com/doifinder/10.1038/nrmicro2119 (cit. on
p. 10).

98



BIBLIOGRAPHY 99

[10] J. Peterson et al. “The NIH Human Microbiome Project”. In: Genome Research
19.12 (2009), pp. 2317–2323. doi: 10.1101/gr.096651.109. url: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=2792171%7B%5C&%7Dtool=
pmcentrez%7B%5C&%7Drendertype=abstract%20http://genome.cshlp.org/cgi/
doi/10.1101/gr.096651.109 (cit. on p. 10).

[11] T. W. Lam et al. “High Throughput Short Read Alignment via Bi-directional
BWT”. In: Proc. IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). 2009, pp. 31–36 (cit. on pp. 11, 21, 31–33, 35, 47).

[12] B. Alberts et al. Molecular Biology of the Cell. Fifth. Other, Nov. 20, 2007. url:
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&
path=ASIN/0815341067 (cit. on p. 12).

[13] R. E. Franklin and R. G. Gosling. “Molecular Configuration in Sodium Thymonu-
cleate”. In: Nature 171.4356 (Apr. 25, 1953), pp. 740–741. doi: 10.1038/171740a0.
url: http://dx.doi.org/10.1038/171740a0 (cit. on p. 12).

[14] A. M. Maxam and W. Gilbert. “A new method for sequencing DNA.” In: Pro-
ceedings of the National Academy of Sciences of the United States of America 74.2
(Feb. 1977), pp. 560–564. url: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC392330/ (cit. on p. 13).

[15] F. Sanger, S. Nicklen, and A. R. Coulson. “DNA sequencing with chain-terminating
inhibitors.” In: Proceedings of the National Academy of Sciences of the United States
of America 74.12 (Dec. 1, 1977), pp. 5463–5467. doi: 10.1073/pnas.74.12.5463.
url: http://dx.doi.org/10.1073/pnas.74.12.5463 (cit. on p. 13).

[16] E. R. Mardis. “Next-Generation DNA Sequencing Methods”. In: Annual Review of
Genomics and Human Genetics 9.1 (June 19, 2008), pp. 387–402. doi: 10.1146/
annurev.genom.9.081307.164359. url: http://dx.doi.org/10.1146/annurev.
genom.9.081307.164359 (cit. on p. 14).

[17] E. R. Mardis. “A decade’s perspective on DNA sequencing technology”. In: Nature
470.7333 (Feb. 9, 2011), pp. 198–203. doi: 10.1038/nature09796. url: http:
//dx.doi.org/10.1038/nature09796 (cit. on p. 14).

[18] M. L. Metzker. “Sequencing technologies - the next generation.” In: Nature reviews.
Genetics 11.1 (Jan. 8, 2010), pp. 31–46. doi: 10.1038/nrg2626. url: http://dx.
doi.org/10.1038/nrg2626 (cit. on p. 14).

[19] J. Thompson and P. Milos. “The properties and applications of single-molecule DNA
sequencing”. In: Genome Biology 12.2 (2011), pp. 217+. doi: 10.1186/gb-2011-
12-2-217. url: http://dx.doi.org/10.1186/gb-2011-12-2-217 (cit. on p. 14).

[20] M. Margulies et al. “Genome sequencing in microfabricated high-density picol-
itre reactors”. In: Nature 437.7057 (July 31, 2005), pp. 376–380. doi: 10.1038/
nature03959. url: http://dx.doi.org/10.1038/nature03959 (cit. on p. 14).

[21] H. Y. K. Lam et al. “Performance comparison of whole-genome sequencing plat-
forms”. In: Nature Biotechnology 30.1 (Dec. 18, 2011), pp. 78–82. doi: 10.1038/
nbt.2065. url: http://dx.doi.org/10.1038/nbt.2065 (cit. on p. 14).

[22] M. Barba, H. Czosnek, and A. Hadidi. “Historical Perspective, Development and
Applications of Next-Generation Sequencing in Plant Virology”. In: Viruses 6.1
(2014), pp. 106–136. doi: 10.3390/v6010106. url: http://www.mdpi.com/1999-
4915/6/1/106 (cit. on p. 14).



BIBLIOGRAPHY 100

[23] L. T. França, E. Carrilho, and T. B. Kist. “A review of DNA sequencing techniques.”
In: Quarterly reviews of biophysics 35.2 (May 2002), pp. 169–200. url: http://
view.ncbi.nlm.nih.gov/pubmed/12197303 (cit. on p. 14).

[24] B. Liu et al. “Accurate and fast estimation of taxonomic profiles from metagenomic
shotgun sequences”. In: BMC Genomics 12.2 (2011), S4. doi: 10.1186/1471-2164-
12-S2-S4 (cit. on pp. 14, 76).

[25] J. K. Kulski. Next-Generation Sequencing — An Overview of the History, Tools,
and “Omic” Applications. 2015. doi: 10.5772/61964. url: http://dx.doi.org/
10.5772/61964 (cit. on p. 14).

[26] S. Levy et al. “The Diploid Genome Sequence of an Individual Human”. In: PLoS
Biol 5.10 (Sept. 4, 2007), e254+. doi: 10.1371/journal.pbio.0050254. url:
http://dx.doi.org/10.1371/journal.pbio.0050254 (cit. on p. 14).

[27] D. A. Wheeler et al. “The complete genome of an individual by massively parallel
DNA sequencing”. In: Nature 452.7189 (Apr. 17, 2008), pp. 872–876. doi: 10.1038/
nature06884. url: http://dx.doi.org/10.1038/nature06884 (cit. on p. 14).

[28] L. M. Bragg et al. “Shining a Light on Dark Sequencing: Characterising Errors in
Ion Torrent PGM Data”. In: PLoS Comput Biol 9.4 (Apr. 11, 2013), e1003031+.
doi: 10.1371/journal.pcbi.1003031. url: http://dx.doi.org/10.1371/
journal.pcbi.1003031 (cit. on p. 14).

[29] A. Gilles et al. “Accuracy and quality assessment of 454 GS-FLX Titanium pyrose-
quencing”. In: BMC Genomics 12.1 (May 19, 2011), pp. 245+. doi: 10.1186/1471-
2164-12-245. url: http://dx.doi.org/10.1186/1471-2164-12-245 (cit. on
p. 14).

[30] S. Huse et al. “Accuracy and quality of massively parallel DNA pyrosequencing”. In:
Genome Biology 8.7 (July 20, 2007), R143+. doi: 10.1186/gb-2007-8-7-r143.
url: http://dx.doi.org/10.1186/gb-2007-8-7-r143 (cit. on p. 14).

[31] F. C. Botelho, Y. Kohayakawa, and N. Ziviani. “A Practical Minimal Perfect Hash-
ing Method”. In: Experimental and Efficient Algorithms. 2005, pp. 488–500. doi:
10.1007/11427186\_42. url: http://dx.doi.org/10.1007/11427186%5C_42
(cit. on p. 16).

[32] D. Belazzougui et al. “Monotone Minimal Perfect Hashing: Searching a Sorted Ta-
ble with <italic>O</italic>(1) Accesses”. In: Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms. 2009, pp. 785–794. doi: 10.1137/
1.9781611973068.86. url: http://epubs.siam.org/doi/abs/10.1137/1.
9781611973068.86 (cit. on p. 16).

[33] A. Limasset et al. “Fast and scalable minimal perfect hashing for massive key sets”.
In: CoRR abs/1702.03154 (2017) (cit. on p. 16).

[34] B. H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable Errors”. In:
Commun. ACM 13.7 (July 1970), pp. 422–426. doi: 10.1145/362686.362692. url:
http://doi.acm.org/10.1145/362686.362692 (cit. on p. 16).

[35] A. Kirsch and M. Mitzenmacher. “Less hashing, same performance: Building a better
Bloom filter”. In: Random Struct. Algorithms 33.2 (Sept. 2008), pp. 187–218. url:
http://dx.doi.org/10.1002/rsa.v33:2 (cit. on p. 16).



BIBLIOGRAPHY 101

[36] P. Weiner. “Linear Pattern Matching Algorithms”. In: Proceedings of the 14th An-
nual Symposium on Switching and Automata Theory (Swat 1973). SWAT ’73. Wash-
ington, DC, USA: IEEE Computer Society, 1973, pp. 1–11. doi: 10.1109/SWAT.
1973.13. url: http://dx.doi.org/10.1109/SWAT.1973.13 (cit. on p. 17).

[37] E. M. McCreight. “A Space-Economical Suffix Tree Construction Algorithm”. In: J.
ACM 23.2 (Apr. 1976), pp. 262–272. doi: 10.1145/321941.321946. url: http:
//doi.acm.org/10.1145/321941.321946 (cit. on p. 17).

[38] E. Ukkonen. “On-line construction of suffix trees”. In: Algorithmica 14.3 (1995),
pp. 249–260. doi: 10.1007/BF01206331. url: http://dx.doi.org/10.1007/
BF01206331 (cit. on p. 17).

[39] M. Farach. “Optimal suffix tree construction with large alphabets”. In: Foundations
of Computer Science, 1997. Proceedings., 38th Annual Symposium on. Oct. 1997,
pp. 137–143. doi: 10.1109/SFCS.1997.646102 (cit. on p. 17).

[40] C. Meek, J. M. Patel, and S. Kasetty. “OASIS: an online and accurate technique
for local-alignment searches on biological sequences”. In: Proceedings of the 29th
international conference on Very large data bases - Volume 29 (2003), pp. 910–921
(cit. on pp. 18, 31).

[41] A. L. Delcher et al. “Alignment of whole genomes”. In: Nucleic Acids Research
27.11 (1999), pp. 2369–2376. doi: 10.1093/nar/27.11.2369. url: http://nar.
oxfordjournals.org/content/27/11/2369.abstract (cit. on pp. 18, 31).

[42] U. Manber and G. Myers. “Suffix Arrays: A NewMethod for On-line String Searches”.
In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’90. San Francisco, California, USA: Society for Industrial and Applied Math-
ematics, 1990, pp. 319–327. url: http://dl.acm.org/citation.cfm?id=320176.
320218 (cit. on p. 18).

[43] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. “Information Retrieval”. In: ed.
by W. B. Frakes and R. Baeza-Yates. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1992. Chap. New Indices for Text: PAT Trees and PAT Arrays, pp. 66–82.
url: http://dl.acm.org/citation.cfm?id=129687.129692 (cit. on p. 18).

[44] J. Kärkkäinen and P. Sanders. “Simple Linear Work Suffix Array Construction”. In:
Automata, Languages and Programming: 30th International Colloquium, ICALP
2003 Eindhoven, The Netherlands, June 30 – July 4, 2003 Proceedings. Ed. by
J. C. M. "Baeten et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 943–
955. doi: 10.1007/3-540-45061-0_73. url: http://dx.doi.org/10.1007/3-
540-45061-0_73 (cit. on p. 18).

[45] G. Nong, S. Zhang, and W. H. Chan. “Linear Suffix Array Construction by Almost
Pure Induced-Sorting”. In: 2009 Data Compression Conference. Mar. 2009, pp. 193–
202. doi: 10.1109/DCC.2009.42 (cit. on p. 18).

[46] S. J. Puglisi, W. F. Smyth, and A. H. Turpin. “A Taxonomy of Suffix Array Con-
struction Algorithms”. In: ACM Comput. Surv. 39.2 (July 2007). doi: 10.1145/
1242471.1242472. url: http://doi.acm.org/10.1145/1242471.1242472 (cit. on
p. 18).

[47] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. “Replacing Suffix Trees with En-
hanced Suffix Arrays”. In: J. of Discrete Algorithms 2.1 (Mar. 2004), pp. 53–86. doi:
10.1016/S1570-8667(03)00065-0. url: http://dx.doi.org/10.1016/S1570-
8667(03)00065-0 (cit. on p. 19).



BIBLIOGRAPHY 102

[48] K. Malde, E. Coward, and I. Jonassen. “Fast sequence clustering using a suffix array
algorithm”. In: Bioinformatics 19.10 (July 1, 2003), pp. 1221–1226. doi: 10.1093/
bioinformatics/btg138. url: http://dx.doi.org/10.1093/bioinformatics/
btg138 (cit. on p. 19).

[49] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. “Replacing suffix trees with en-
hanced suffix arrays”. In: Journal of Discrete Algorithms 2.1 SPEC. ISS. (2004),
pp. 53–86. doi: 10.1016/S1570-8667(03)00065-0 (cit. on pp. 19, 31).

[50] C. Otto, P. F. Stadler, and S. Hoffmann. “Fast and sensitive mapping of bisulfite-
treated sequencing data”. In: Bioinformatics 28.13 (2012), pp. 1698–1704. doi: 10.
1093/bioinformatics/bts254 (cit. on pp. 19, 31).

[51] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Tech. rep. 1994 (cit. on p. 19).

[52] P. Ferragina and G. Manzini. “Opportunistic data structures with applications”. In:
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on.
2000, pp. 390–398. doi: 10.1109/SFCS.2000.892127 (cit. on pp. 19, 31).

[53] M. Burrow and D. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124. Digital Equipment Corporation, California, 1994 (cit. on
pp. 19, 31).

[54] R. Grossi, A. Gupta, and J. S. Vitter. “High-order Entropy-compressed Text In-
dexes”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’03. Baltimore, Maryland: Society for Industrial and Ap-
plied Mathematics, 2003, pp. 841–850. url: http://dl.acm.org/citation.cfm?
id=644108.644250 (cit. on p. 20).

[55] B. Langmead et al. “Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome”. In: Genome Biology 10.3 (2009), R25 (cit. on pp. 21,
31).

[56] H. Li and R. Durbin. “Fast and accurate short read alignment with Burrows-Wheeler
transform”. In: Bioinformatics 25.14 (2009), pp. 1754–1760 (cit. on pp. 21, 31).

[57] J. Simpson and R. Durbin. “Efficient de novo assembly of large genomes using
compressed data structures”. In: Genome Research 22.3 (2012), pp. 549–556. doi:
10.1101/gr.126953.111. url: http://genome.cshlp.org/content/22/3/549.
abstract (cit. on pp. 21, 31).

[58] L. Russo et al. “Approximate String Matching with Compressed Indexes”. In: Al-
gorithms 2.3 (2009), pp. 1105–1136. doi: 10.3390/a2031105. url: http://www.
mdpi.com/1999-4893/2/3/1105 (cit. on pp. 21, 31, 33).

[59] T. Schnattinger, E. Ohlebusch, and S. Gog. “Bidirectional search in a string with
wavelet trees and bidirectional matching statistics”. In: Information and Computa-
tion 213 (2012), pp. 13–22 (cit. on pp. 21, 31, 33).

[60] D. Belazzougui et al. “Versatile Succinct Representations of the Bidirectional Burrows-
Wheeler Transform”. In: Proc. 21st European Symposium on Algorithms (ESA).
2013, pp. 133–144 (cit. on pp. 21, 31, 33).

[61] K. Břinda. “Novel computational techniques for mapping and classifying Next-
Generation Sequencing data”. PhD thesis. Université Paris-Est, 2016. doi: DOI:10.
5281/zenodo.1045316. url: http://brinda.cz/publications/brinda_phd.pdf
(cit. on pp. 26, 80, 94).



BIBLIOGRAPHY 103

[62] H. Li and N. Homer. “A survey of sequence alignment algorithms for next-generation
sequencing”. In: Briefings in Bioinformatics 11.5 (2010), pp. 473–483. doi: 10.1093/
bib/bbq015 (cit. on p. 26).

[63] P. Ribeca. “Short-Read Mapping”. In: Bioinformatics for High Throughput Sequenc-
ing. New York, NY: Springer New York, 2012, pp. 107–125. doi: 10.1007/978-1-
4614-0782-9_7 (cit. on p. 26).

[64] S. Canzar and S. L. Salzberg. “Short Read Mapping: An Algorithmic Tour”. In:
Proceedings of the IEEE (2015), pp. 1–23. doi: 10.1109/JPROC.2015.2455551
(cit. on p. 26).

[65] R. S. Boyer and J. S. Moore. “A Fast String Searching Algorithm”. In: Commun.
ACM 20.10 (Oct. 1977), pp. 762–772. doi: 10.1145/359842.359859. url: http:
//doi.acm.org/10.1145/359842.359859 (cit. on p. 26).

[66] D. E. Knuth, J. James H. Morris, and V. R. Pratt. “Fast Pattern Matching in
Strings”. In: SIAM Journal on Computing 6.2 (1977), pp. 323–350. doi: 10.1137/
0206024. url: https://doi.org/10.1137/0206024 (cit. on p. 26).

[67] M. J. Fischer and M. S. Paterson. “String-matching and other products”. In: Sym-
posium on Complexity of Computation: SIAM-AMS Proceedings Volume 7 1974.
Vol. 7. American Mathematical Society. 1974, pp. 113–125 (cit. on p. 27).

[68] Z. Galil and R. Giancarlo. “Improved string matching with k mismatches”. In: ACM
SIGACT News 17.4 (1986), pp. 52–54 (cit. on p. 27).

[69] A. Amir, M. Lewenstein, and E. Porat. “Faster algorithms for string matching with
k mismatches”. In: Journal of Algorithms 50.2 (2004), pp. 257–275 (cit. on p. 27).

[70] G. M. Landau and U. Vishkin. “Fast string matching with k differences”. In: Journal
of Computer and System Sciences 37.1 (1988), pp. 63–78 (cit. on p. 27).

[71] Z. Galil and K. Park. “An improved algorithm for approximate string matching”.
In: Automata, Languages and Programming: 16th International Colloquium Stresa,
Italy, July 11–15, 1989 Proceedings. Ed. by G. Ausiello, M. Dezani-Ciancaglini, and
S. R. Della Rocca. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 394–
404. doi: 10.1007/BFb0035772. url: https://doi.org/10.1007/BFb0035772
(cit. on p. 27).

[72] S. Henikoff and J. G. Henikoff. “Amino acid substitution matrices from protein
blocks.” In: Proceedings of the National Academy of Sciences 89.22 (1992), pp. 10915–
10919. doi: 10.1073/pnas.89.22.10915 (cit. on p. 27).

[73] S. F. Altschul. “Amino acid substitution matrices from an information theoretic
perspective”. In: Journal of Molecular Biology 219.3 (1991), pp. 555–565. doi: 10.
1016/0022-2836(91)90193-A (cit. on p. 27).

[74] S. B. Needleman and C. D. Wunsch. “A general method applicable to the search for
similarities in the amino acid sequence of two proteins”. In: Journal of Molecular
Biology 48.3 (1970), pp. 443–453. doi: 10.1016/0022-2836(70)90057-4. url:
http://www.ncbi.nlm.nih.gov/pubmed/5420325%20http://linkinghub.
elsevier.com/retrieve/pii/0022283670900574 (cit. on p. 28).



BIBLIOGRAPHY 104

[75] T. F. Smith and M. S. Waterman. “Identification of common molecular subse-
quences.” In: Journal of molecular biology 147.1 (1981), pp. 195–7. doi: 10.1016/
0022 - 2836(81 ) 90087 - 5. url: http : / / www . sciencedirect . com / science /
article/pii/0022283681900875%20http://www.sciencedirect.com/science/
article/pii/0022283681900875/pdf?md5=c13489402e4edce622fe841d3a3e0940%
7B%5C&%7Dpid=1-s2.0-0022283681900875-main.pdf%20http://linkinghub.
elsevier.com/retrieve/pii/0022283681900875%20http://www.ncbi.nlm.nih.
gov/pubmed/7265238 (cit. on p. 28).

[76] G. Myers. “A fast bit-vector algorithm for approximate string matching based on
dynamic programming”. In: Journal of the ACM 46.3 (1999), pp. 395–415. doi:
10.1145/316542.316550 (cit. on p. 28).

[77] W. R. Pearson and D. J. Lipman. “Improved tools for biological sequence compar-
ison.” In: Proceedings of the National Academy of Sciences of the United States of
America 85.8 (1988), pp. 2444–8. doi: 10.1073/pnas.85.8.2444. url: http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=280013%7B%5C&
%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract (cit. on pp. 29, 55).

[78] S. F. Altschul et al. “Basic local alignment search tool”. In: Journal of Molecular
Biology 215.3 (1990), pp. 403–410. doi: 10.1016/S0022-2836(05)80360-2. url:
http://www.ncbi.nlm.nih.gov/pubmed/2231712%20http://linkinghub.
elsevier.com/retrieve/pii/S0022283605803602 (cit. on pp. 29, 55).

[79] R. Li et al. “SOAP: Short oligonucleotide alignment program”. In: Bioinformatics
24.5 (2008), pp. 713–714. doi: 10.1093/bioinformatics/btn025 (cit. on pp. 29,
30).

[80] R. Li et al. “SOAP2: an improved ultrafast tool for short read alignment”. en.
In: Bioinformatics 25.15 (2009), pp. 1966–1967. doi: 10.1093/bioinformatics/
btp336. url: http://www.ncbi.nlm.nih.gov/pubmed/19497933%20http://
bioinformatics . oxfordjournals . org / cgi / doi / 10 . 1093 / bioinformatics /
btp336 (cit. on pp. 29, 31).

[81] W.-P. Lee et al. “MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation
Sequencing Short-Read Mapping”. In: PLoS ONE 9.3 (Mar. 5, 2014), e90581+. doi:
10.1371/journal.pone.0090581. url: http://dx.doi.org/10.1371/journal.
pone.0090581 (cit. on p. 29).

[82] N. Homer, B. Merriman, and S. F. Nelson. “BFAST: an alignment tool for large scale
genome resequencing.” In: PloS one 4.11 (2009), e7767. doi: 10.1371/journal.
pone.0007767. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2770639%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
(cit. on p. 29).

[83] H. Li, J. Ruan, and R. Durbin. “Mapping short DNA sequencing reads and call-
ing variants using mapping quality scores.” In: Genome research 18.11 (2008),
pp. 1851–1858. doi: 10.1101/gr.078212.108. url: http://genome.cshlp.
org/cgi/doi/10.1101/gr.078212.108%20http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=2577856%7B%5C&%7Dtool=pmcentrez%7B%5C&
%7Drendertype=abstract (cit. on pp. 29, 30).

[84] A. D. Smith et al. “Updates to the RMAP short-read mapping software”. In: Bioin-
formatics 25.21 (2009), pp. 2841–2842. doi: 10.1093/bioinformatics/btp533
(cit. on pp. 29, 30).



BIBLIOGRAPHY 105

[85] H. Lin et al. “ZOOM! Zillions of oligos mapped.” en. In: Bioinformatics 24.21
(2008), pp. 2431–7. doi: 10.1093/bioinformatics/btn416. url: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=2732274%7B%5C&%7Dtool=
pmcentrez%7B%5C&%7Drendertype=abstract (cit. on pp. 29, 30).

[86] M. David et al. “SHRiMP2: Sensitive yet Practical Short Read Mapping”. en.
In: Bioinformatics 27.7 (2011), pp. 1011–1012. doi: 10.1093/bioinformatics/
btr046. url: http : / / www . ncbi . nlm . nih . gov / pubmed / 21278192 % 20http :
//bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/
btr046 (cit. on p. 29).

[87] L. Noé and G. Kucherov. “YASS: enhancing the sensitivity of DNA similarity
search.” In: Nucleic acids research 33.Web Server issue (2005), W540–3. doi: 10.
1093/nar/gki478 (cit. on p. 29).

[88] B. Ma, J. Tromp, and M. Li. “PatternHunter: faster and more sensitive homology
search”. en. In: Bioinformatics 18.3 (2002), pp. 440–445. doi: 10.1093/bioinformatics/
18.3.440. url: http://bioinformatics.oxfordjournals.org/cgi/doi/10.
1093/bioinformatics/18.3.440 (cit. on p. 30).

[89] S. Burkhardt and J. Kärkkäinen. “Better Filtering with Gapped q-Grams”. In:
Combinatorial Pattern Matching: 12th Annual Symposium, CPM 2001 Jerusalem,
Israel, July 1–4, 2001 Proceedings. Ed. by A. Amir. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 73–85. doi: 10.1007/3-540-48194-X_6. url: http:
//dx.doi.org/10.1007/3-540-48194-X_6 (cit. on pp. 30, 55).

[90] H. Jiang and W. H. Wong. “SeqMap: Mapping massive amount of oligonucleotides
to the genome”. In: Bioinformatics 24.20 (2008), pp. 2395–2396. doi: 10.1093/
bioinformatics/btn429 (cit. on p. 30).

[91] G. KUCHEROV, L. NOÉ, and M. ROYTBERG. “A UNIFYING FRAMEWORK
FOR SEED SENSITIVITY AND ITS APPLICATION TO SUBSET SEEDS”. In:
Journal of Bioinformatics and Computational Biology 04.02 (2006), pp. 553–569.
doi: 10.1142/S0219720006001977. url: http://www.worldscientific.com/doi/
abs/10.1142/S0219720006001977 (cit. on p. 30).

[92] G. Navarro and V. Mäkinen. “Compressed full-text indexes”. In: ACM Computing
Surveys 39.1 (2007) (cit. on p. 31).

[93] B. Langmead et al. “Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome.” en. In: Genome biology 10.3 (2009), R25. doi:
10.1186/gb- 2009- 10- 3- r25. url: http://www.pubmedcentral.nih.gov/
articlerender . fcgi ? artid = 2690996 % 7B % 5C & %7Dtool = pmcentrez % 7B % 5C &
%7Drendertype=abstract (cit. on pp. 31, 75).

[94] H. Li. poster Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. 2013 (cit. on p. 31).

[95] T. W. Lam et al. “Compressed indexing and local alignment of DNA”. In: Bioinfor-
matics 24.6 (2008), pp. 791–797. doi: 10.1093/bioinformatics/btn032 (cit. on
p. 31).

[96] H. Li and R. Durbin. “Fast and accurate long-read alignment with Burrows-Wheeler
transform”. In: Bioinformatics 26.5 (2010), pp. 589–595. doi: 10.1093/bioinformatics/
btp698 (cit. on p. 31).



BIBLIOGRAPHY 106

[97] H. Li and R. Durbin. “Fast and accurate short read alignment with Burrows-
Wheeler transform”. en. In: Bioinformatics 25.14 (2009), pp. 1754–1760. doi: 10.
1093/bioinformatics/btp324. url: http://www.pubmedcentral.nih.gov/
articlerender . fcgi ? artid = 2705234 % 7B % 5C & %7Dtool = pmcentrez % 7B % 5C &
%7Drendertype=abstract%20http://bioinformatics.oxfordjournals.org/
cgi/doi/10.1093/bioinformatics/btp324 (cit. on pp. 31, 75).

[98] L. H. Y. Chen. “Poisson approximation for dependent trials”. In: The Annals of
Probability 3.3 (1975), pp. 534–545 (cit. on p. 36).

[99] A. D. Barbour, L. Holst, and S. Janson. Poisson approximation. Clarendon Press
Oxford, 1992 (cit. on p. 36).

[100] S. Mihov and K. U. Schulz. “Fast approximate search in large dictionaries”. In:
Computational Linguistic 30.4 (2004), pp. 451–477 (cit. on p. 38).

[101] J. Kärkkäinen and J. C. Na. “Faster Filters for Approximate String Matching”. In:
Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX). 2007,
pp. 84–90 (cit. on p. 38).

[102] Z. Li et al. “Comparison of the two major classes of assembly algorithms: over-
lap–layout–consensus and de-bruijn-graph”. In: Briefings in Functional Genomics
11.1 (2012), p. 25. doi: 10.1093/bfgp/elr035. url: +%20http://dx.doi.org/10.
1093/bfgp/elr035 (cit. on p. 53).

[103] W. Zhang et al. “A Practical Comparison of De Novo Genome Assembly Software
Tools for Next-Generation Sequencing Technologies”. In: PLoS ONE 6.3 (Mar. 14,
2011), e17915+. doi: 10.1371/journal.pone.0017915. url: http://dx.doi.org/
10.1371/journal.pone.0017915 (cit. on p. 53).

[104] S. L. Salzberg et al. “GAGE: A critical evaluation of genome assemblies and as-
sembly algorithms”. In: Genome Research 22.3 (Dec. 6, 2011), pp. 557–567. doi:
10.1101/gr.131383.111. url: http://dx.doi.org/10.1101/gr.131383.111
(cit. on p. 53).

[105] K. R. Bradnam et al. “Assemblathon 2: evaluating de novo methods of genome
assembly in three vertebrate species”. In: GigaScience 2.1 (2013), p. 1. doi: 10.
1186/2047-217X-2-10. url: +%20http://dx.doi.org/10.1186/2047-217X-2-10
(cit. on p. 53).

[106] J. R. Miller, S. Koren, and G. Sutton. “Assembly algorithms for next-generation
sequencing data”. In: Genomics 95.6 (June 2010), pp. 315–327 (cit. on p. 54).

[107] R. Staden. “A mew computer method for the storage and manipulation of DNA gel
reading data”. In: Nucleic Acids Research 8.16 (1980), p. 3673. doi: 10.1093/nar/
8.16.3673. url: +%20http://dx.doi.org/10.1093/nar/8.16.3673 (cit. on
p. 54).

[108] S. Batzoglou et al. “ARACHNE: a whole-genome shotgun assembler.” In: Genome
research 12.1 (Jan. 1, 2002), pp. 177–189. doi: 10.1101/gr.208902. url: http:
//dx.doi.org/10.1101/gr.208902 (cit. on pp. 54, 55).

[109] E. W. Myers et al. “A Whole-Genome Assembly of Drosophila”. In: Science 287.5461
(Mar. 24, 2000), pp. 2196–2204. doi: 10.1126/science.287.5461.2196. url:
http://dx.doi.org/10.1126/science.287.5461.2196 (cit. on pp. 54, 55).

[110] X. Huang and A. Madan. “CAP3: A DNA sequence assembly program.” In: Genome
research 9.9 (Sept. 1, 1999), pp. 868–877. doi: 10.1101/gr.9.9.868. url: http:
//dx.doi.org/10.1101/gr.9.9.868 (cit. on pp. 54, 55).



BIBLIOGRAPHY 107

[111] X. Huang et al. “PCAP: A whole-genome assembly program”. In: Genome Res. 13.9
(2003), pp. 2164–2170 (cit. on pp. 54, 55).

[112] M. de la Bastide and W. R. McCombie. “Assembling genomic DNA sequences with
PHRAP.” In: Current protocols in bioinformatics / editoral board, Andreas D. Bax-
evanis ... [et al.] Chapter 11 (Mar. 2007). doi: 10.1002/0471250953.bi1104s17.
url: http://dx.doi.org/10.1002/0471250953.bi1104s17 (cit. on p. 54).

[113] J. C. Mullikin and Z. Ning. “The Phusion Assembler”. In: Genome Research 13.1
(Jan. 1, 2003), pp. 81–90. doi: 10.1101/gr.731003. url: http://dx.doi.org/
10.1101/gr.731003 (cit. on p. 54).

[114] M. Margulies et al. “Genome sequencing in microfabricated high-density picol-
itre reactors”. In: Nature 437.7057 (July 31, 2005), pp. 376–380. doi: 10.1038/
nature03959. url: http://dx.doi.org/10.1038/nature03959 (cit. on p. 54).

[115] J. T. Simpson and R. Durbin. “Efficient de novo assembly of large genomes using
compressed data structures”. In: Genome Research 22.3 (Mar. 1, 2012), pp. 549–556.
doi: 10.1101/gr.126953.111. url: http://dx.doi.org/10.1101/gr.126953.111
(cit. on p. 55).

[116] N. Välimäki, S. Ladra, and V. Mäkinen. “Approximate all-pairs suffix/prefix over-
laps”. In: Information and Computation 213 (2012), pp. 49–58. doi: http://dx.
doi.org/10.1016/j.ic.2012.02.002. url: http://www.sciencedirect.com/
science/article/pii/S0890540112000260 (cit. on p. 55).

[117] J. Kärkkäinen and J. C. Na. “Faster Filters for Approximate String Matching”. In:
2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 84–90. doi: 10.1137/1.9781611972870.8. url: http://epubs.
siam.org/doi/abs/10.1137/1.9781611972870.8 (cit. on p. 55).

[118] G. Kucherov and D. Tsur. “Improved Filters for the Approximate Suffix-Prefix
Overlap Problem”. In: String Processing and Information Retrieval: 21st Interna-
tional Symposium, SPIRE 2014, Ouro Preto, Brazil, October 20-22, 2014. Proceed-
ings. Ed. by E. Moura and M. Crochemore. Cham: Springer International Pub-
lishing, 2014, pp. 139–148. doi: 10.1007/978-3-319-11918-2_14. url: http:
//dx.doi.org/10.1007/978-3-319-11918-2_14 (cit. on p. 55).

[119] P. A. Pevzner, H. Tang, and M. S. Waterman. “An Eulerian path approach to DNA
fragment assembly”. In: Proc. Natl. Acad. Sci. U.S.A. 98.17 (Aug. 2001), pp. 9748–
9753 (cit. on p. 55).

[120] M. G. Grabherr et al. “Full-length transcriptome assembly from RNA-Seq data
without a reference genome”. In: Nat Biotech 29.7 (July 2011), pp. 644–652 (cit. on
p. 55).

[121] G. Sacomoto et al. “KISSPLICE: de-novo calling alternative splicing events from
RNA-seq data”. In: BMC Bioinformatics 13.Suppl 6 (2012), S5 (cit. on p. 55).

[122] Y. Peng et al. “Meta-IDBA: a de Novo assembler for metagenomic data”. In: Bioin-
formatics 27.13 (2011), pp. i94–i101 (cit. on p. 55).

[123] Z. Iqbal et al. “De novo assembly and genotyping of variants using colored de Bruijn
graphs”. In: Nat. Genet. 44.2 (Feb. 2012), pp. 226–232 (cit. on p. 55).

[124] T. Conway and A. Bromage. “Succinct data structures for assembling large genomes”.
In: Bioinformatics 27.4 (2011), pp. 479–486 (cit. on p. 55).



BIBLIOGRAPHY 108

[125] C. Ye et al. “Exploiting sparseness in de novo genome assembly”. In: BMC Bioin-
formatics 13.Suppl 6 (2012), S1. url: http://www.biomedcentral.com/1471-
2105/13/S6/S1 (cit. on pp. 55, 56).

[126] R. Chikhi and G. Rizk. “Space-Efficient and Exact de Bruijn Graph Representation
Based on a Bloom Filter”. In: Algorithms in Bioinformatics - 12th International
Workshop, WABI 2012, Ljubljana, Slovenia, September 10-12, 2012. Proceedings.
Ed. by B. J. Raphael and J. Tang. Vol. 7534. Lecture Notes in Computer Science.
Berlin: Springer, 2012, pp. 236–248 (cit. on pp. 55–60, 62–66, 96).

[127] A. Bowe et al. “Succinct de Bruijn Graphs”. In: Algorithms in Bioinformatics - 12th
International Workshop, WABI 2012, Ljubljana, Slovenia, September 10-12, 2012.
Proceedings. Ed. by B. Raphael and J.Tang. Vol. 7534. Lecture Notes in Computer
Science. Berlin: Springer, 2012, pp. 225–235 (cit. on pp. 55, 56).

[128] J. Pell et al. “Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs”. In: Proc. Natl. Acad. Sci. U.S.A. 109.33 (Aug. 2012), pp. 13272–13277 (cit.
on pp. 55, 56).

[129] E. Drezen et al. “GATB: Genome Assembly & Analysis Tool Box”. In: Bioinformat-
ics 30.20 (Oct. 15, 2014), pp. 2959–2961. doi: 10.1093/bioinformatics/btu406.
url: http://dx.doi.org/10.1093/bioinformatics/btu406 (cit. on p. 56).

[130] C. Boucher et al. “Variable-Order De Bruijn Graphs”. In: Proceedings of the 2015
Data Compression Conference. DCC ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 383–392. doi: 10.1109/DCC.2015.70. url: http://dx.doi.
org/10.1109/DCC.2015.70 (cit. on p. 56).

[131] D. Belazzougui et al. “Bidirectional Variable-Order de Bruijn Graphs”. In: LATIN
2016: Theoretical Informatics - 12th Latin American Symposium, Ensenada, Mex-
ico, April 11-15, 2016, Proceedings. 2016, pp. 164–178. doi: 10.1007/978-3-662-
49529-2_13. url: http://dx.doi.org/10.1007/978-3-662-49529-2_13 (cit. on
p. 56).

[132] R. Chikhi et al. “On the Representation of De Bruijn Graphs”. In: Proceedings of
the 18th Annual International Conference on Research in Computational Molecular
Biology - Volume 8394. RECOMB 2014. Pittsburgh, PA, USA: Springer-Verlag New
York, Inc., 2014, pp. 35–55. doi: 10.1007/978-3-319-05269-4_4. url: http:
//dx.doi.org/10.1007/978-3-319-05269-4_4 (cit. on p. 56).

[133] D. Belazzougui et al. “Fully Dynamic de Bruijn Graphs”. In: String Processing and
Information Retrieval - 23rd International Symposium, SPIRE 2016, Beppu, Japan,
October 18-20, 2016, Proceedings. 2016, pp. 145–152. doi: 10.1007/978-3-319-
46049-9_14. url: http://dx.doi.org/10.1007/978-3-319-46049-9_14 (cit. on
p. 56).

[134] G. Rizk, D. Lavenier, and R. Chikhi. “DSK: k-mer counting with very low memory
usage”. In: Bioinformatics 29.5 (Mar. 2013), pp. 652–3 (cit. on p. 62).

[135] F. R. Blattner et al. “The Complete Genome Sequence of Escherichia coli K-12”.
In: Science 277.5331 (1997), pp. 1453–1462 (cit. on p. 63).

[136] E. Porat. “An Optimal Bloom Filter Replacement Based on Matrix Solving”. In:
Computer Science - Theory and Applications, Fourth International Computer Sci-
ence Symposium in Russia, CSR 2009, Novosibirsk, Russia, August 18-23, 2009.
Proceedings. Vol. 5675. Lecture Notes in Computer Science. Berlin: Springer, 2009,
pp. 263–273 (cit. on pp. 66, 96).



BIBLIOGRAPHY 109

[137] R. Rozov, R. Shamir, and E. Halperin. “Fast lossless compression via cascading
Bloom filters”. In: BMC Bioinformatics 15.9 (2014), S7. doi: 10.1186/1471-2105-
15-S9-S7. url: http://dx.doi.org/10.1186/1471-2105-15-S9-S7 (cit. on
pp. 67, 68, 70–72, 96).

[138] J. K. Bonfield and M. V. Mahoney. “Compression of FASTQ and SAM Format Se-
quencing Data”. In: PLOS ONE 8.3 (Mar. 2013), pp. 1–10. doi: 10.1371/journal.
pone.0059190. url: https://doi.org/10.1371/journal.pone.0059190 (cit. on
pp. 67, 68).

[139] M. H. Fritz et al. “Efficient storage of high throughput DNA sequencing data using
reference-based compression”. In: Genome Research 21.5 (May 1, 2011), pp. 734–
740. doi: 10.1101/gr.114819.110. url: http://dx.doi.org/10.1101/gr.
114819.110 (cit. on p. 67).

[140] D. C. Jones et al. Compression of next-generation sequencing reads aided by highly
efficient de novo assembly. July 10, 2012. url: http://arxiv.org/abs/1207.2424
(cit. on p. 67).

[141] C. Kingsford and R. Patro. “Reference-based compression of short-read sequences
using path encoding”. In: Bioinformatics 31 (2015). doi: 10.1093/bioinformatics/
btv071. url: https://doi.org/10.1093/bioinformatics/btv071 (cit. on p. 67).

[142] C. Kozanitis et al. “Compressing Genomic Sequence Fragments Using SlimGene”. In:
Research in Computational Molecular Biology. Ed. by B. Berger. Vol. 6044. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2010.
Chap. 20, pp. 310–324. doi: 10.1007/978- 3- 642- 12683- 3\_20. url: http:
//dx.doi.org/10.1007/978-3-642-12683-3%5C_20 (cit. on p. 67).

[143] G. Benoit et al. “Reference-free compression of high throughput sequencing data
with a probabilistic de Bruijn graph”. In: BMC Bioinformatics 16.1 (Sept. 14, 2015),
p. 288. doi: 10.1186/s12859-015-0709-7. url: https://doi.org/10.1186/
s12859-015-0709-7 (cit. on p. 67).

[144] A. J. Cox et al. “Large-scale compression of genomic sequence databases with
the Burrows–Wheeler transform”. In: Bioinformatics 28.11 (2012), p. 1415. doi:
10.1093/bioinformatics/bts173. url: +%20http://dx.doi.org/10.1093/
bioinformatics/bts173 (cit. on p. 67).

[145] S. Deorowicz and S. Grabowski. “Compression of dna sequence reads in fastq for-
mat”. In: Bioinformatics 27 (2011). doi: 10.1093/bioinformatics/btr014. url:
https://doi.org/10.1093/bioinformatics/btr014 (cit. on p. 67).

[146] S. Grabowski, S. Deorowicz, and Ł. Roguski. “Disk-based compression of data from
genome sequencing”. In: Bioinformatics 31 (2014) (cit. on p. 67).

[147] F. Hach et al. “SCALCE: boosting sequence compression algorithms using locally
consistent encoding”. In: Bioinformatics 28.23 (2012), p. 3051. doi: 10 . 1093 /
bioinformatics/bts593. url: +%20http://dx.doi.org/10.1093/bioinformatics/
bts593 (cit. on p. 67).

[148] L. Janin, O. Schulz-Trieglaff, and A. J. Cox. “Beetl-fastq: a searchable compressed
archive for dna reads”. In: Bioinformatics 30 (2014) (cit. on p. 67).

[149] R. Patro and C. Kingsford. “Data-dependent bucketing improves reference-free
compression of sequencing reads”. In: Bioinformatics 31 (2015). doi: 10.1093/
bioinformatics/btv248. url: https://doi.org/10.1093/bioinformatics/
btv248 (cit. on p. 67).



BIBLIOGRAPHY 110

[150] D. H. Huson et al. “Integrative analysis of environmental sequences using MEGAN4”.
In: Genome Research 21.9 (2011), pp. 1552–1560. doi: 10.1101/gr.120618.111
(cit. on p. 75).

[151] N. Segata et al. “Metagenomic microbial community profiling using unique clade-
specific marker genes”. In: Nat Meth 9.8 (Aug. 2012), pp. 811–814. url: http:
//dx.doi.org/10.1038/nmeth.2066 (cit. on pp. 75, 76).

[152] B. Liu et al. “MetaPhyler: Taxonomic profiling for metagenomic sequences”. In:
2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2010, pp. 95–100. doi: 10.1109/BIBM.2010.5706544 (cit. on p. 75).

[153] J. Pell et al. “Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs”. In: Proceedings of the National Academy of Sciences 109.33 (2012), pp. 13272–
13277. doi: 10.1073/pnas.1121464109 (cit. on p. 76).

[154] J. Berendzen et al. “Rapid phylogenetic and functional classification of short ge-
nomic fragments with signature peptides”. In: BMC Research Notes 5.1 (2012),
p. 460. doi: 10.1186/1756-0500-5-460 (cit. on p. 76).

[155] S. K. Ames et al. “Scalable metagenomic taxonomy classification using a reference
genome database”. In: Bioinformatics 29.18 (2013), pp. 2253–2260. doi: 10.1093/
bioinformatics/btt389 (cit. on p. 76).

[156] T. Tatusova et al. “RefSeq microbial genomes database: new representation and
annotation strategy”. In: Nucleic Acids Research 42.D1 (2014), pp. D553–D559.
doi: 10.1093/nar/gkt1274. url: http://nar.oxfordjournals.org/lookup/
doi/10.1093/nar/gkt1274 (cit. on pp. 76, 90, 93, 94).

[157] D. E. Wood and S. L. Salzberg. “Kraken: ultrafast metagenomic sequence classifica-
tion using exact alignments.” In: Genome biology 15.3 (2014), R46. doi: 10.1186/
gb-2014-15-3-r46. url: http://www.pubmedcentral.nih.gov/articlerender.
fcgi ? artid = 4053813 % 7B % 5C & %7Dtool = pmcentrez % 7B % 5C & %7Drendertype =
abstract%20http://genomebiology.biomedcentral.com/articles/10.1186/
gb- 2014- 15- 3- r46%20http://www.ncbi.nlm.nih.gov/pubmed/24580807%
20http://www.pubmedcentral.nih.gov/arti (cit. on pp. 76, 94).

[158] D. Kim et al. “Centrifuge: rapid and sensitive classification of metagenomic se-
quences”. In: bioRxiv preprints (2016). doi: 10 . 1101 / 054965. url: http : / /
biorxiv.org/lookup/doi/10.1101/054965 (cit. on p. 76).

[159] B. Langmead and S. L. Salzberg. “Fast gapped-read alignment with Bowtie 2.”
en. In: Nature methods 9.4 (2012), pp. 357–9. doi: 10.1038/nmeth.1923. url:
http://www.nature.com/nmeth/journal/v9/n4/abs/nmeth.1923.html%20http:
//www.ncbi.nlm.nih.gov/pubmed/22388286%20http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=3322381%7B%5C&%7Dtool=pmcentrez%7B%
5C&%7Drendertype=abstract (cit. on p. 76).

[160] P. Menzel, K. L. Ng, and A. Krogh. “Fast and sensitive taxonomic classification
for metagenomics with Kaiju”. In: Nature Communications 7 (2016), p. 11257. doi:
10.1038/ncomms11257. url: http://www.nature.com/doifinder/10.1038/
ncomms11257 (cit. on p. 77).

[161] H. Stranneheim et al. “Classification of DNA sequences using Bloom filters”. In:
Bioinformatics 26.13 (July 1, 2010), pp. 1595–1600. doi: 10.1093/bioinformatics/
btq230. url: http://dx.doi.org/10.1093/bioinformatics/btq230 (cit. on
p. 77).



BIBLIOGRAPHY 111

[162] J. Kawulok and S. Deorowicz. “CoMeta: Classification of Metagenomes Using k-
mers”. In: PLOS ONE 10.4 (2015), e0121453. doi: 10.1371/journal.pone.0121453
(cit. on p. 77).

[163] S. Lindgreen, K. L. Adair, and P. P. Gardner. “An evaluation of the accuracy and
speed of metagenome analysis tools”. In: Scientific Reports 6 (2016), p. 19233. doi:
10.1038/srep19233. url: http://www.nature.com/articles/srep19233 (cit. on
p. 77).

[164] R. J. Randle-Boggis et al. “Evaluating techniques for metagenome annotation using
simulated sequence data”. In: FEMS Microbiology Ecology 92.7 (2016), fiw095. doi:
10.1093/femsec/fiw095. url: http://femsec.oxfordjournals.org/lookup/
doi/10.1093/femsec/fiw095 (cit. on p. 77).

[165] D. O. Ricke, A. Shcherbina, and N. Chiu. “Evaluating performance of metagenomic
characterization algorithms using in silico datasets generated with FASTQSim”. In:
bioRxiv (2016), p. 046532. doi: 10.1101/046532. url: http://biorxiv.org/
content/early/2016/03/31/046532.abstract (cit. on p. 77).

[166] M. A. Peabody et al. “Evaluation of shotgun metagenomics sequence classifica-
tion methods using in silico and in vitro simulated communities”. In: BMC Bioin-
formatics 16.1 (2015), p. 363. doi: 10.1186/s12859-015-0788-5. url: http:
//www.biomedcentral.com/1471-2105/16/363 (cit. on p. 77).

[167] H. Vinje et al. “Comparing K-mer based methods for improved classification of 16S
sequences”. In: BMC Bioinformatics 16.1 (2015), p. 205. doi: 10.1186/s12859-
015-0647-4. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=4487979%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
(cit. on p. 77).

[168] Pavlopoulos et al. “Metagenomics: Tools and Insights for Analyzing Next-Generation
Sequencing Data Derived from Biodiversity Studies”. In: Bioinformatics and Biology
Insights (2015), p. 75. doi: 10.4137/BBI.S12462. url: http://www.la-press.
com/metagenomics-tools-and-insights-for-analyzing-next-generation-
sequenci-article-a4809 (cit. on p. 77).

[169] D. Clark. “Compact Pat Trees”. PhD thesis. University Waterloo, 1996 (cit. on
p. 89).

[170] J. I. Munro. “Tables”. In: 16th FST TCS LNCS 1180 (1996), pp. 37–42 (cit. on
p. 89).


	I Introduction
	Motivation and overview
	Some bioinformatic problems
	Read alignment
	Genome assembly
	Metagenomic classification

	Brief overview

	Biological context
	Biological background
	Mutations
	Sequencing methods

	Basic data structures
	Hash table
	Bloom filter
	Suffix tree
	Suffix array
	BWT index
	Bidirectional BWT index


	II Efficient approximate string search
	Algorithmic methods for read alignment
	Sequence alignment
	Read alignment as string matching
	Dynamic programming based methods
	Methods based on seed-and-extend strategy
	Spaced seeds

	Methods based on suffix tree-like structures

	Approximate string matching using a bidirectional index
	Overview
	Bidirectional search
	Analysis of search schemes
	Estimating the efficiency of a search scheme
	Uneven partitions
	Computing an optimal partition

	Properties of optimal search schemes
	Case studies
	Numerical comparison of search schemes
	Experiments on genomic data

	Discussion


	III Efficient representation of large genomic data with Cascading Bloom filters
	Algorithmic methods for genome assembly
	Genome assembly
	Overlap-Layout-Consensus
	De Bruijn graph

	De Bruijn graph representation using Cascading Bloom filters
	Overview
	Cascading Bloom filter
	Analysis of the data structure
	Memory and time usage
	Using different values of r for different filters
	Query distribution among filters

	Experimental results
	Construction algorithm
	Implementation and experimental setup
	E.coli dataset, varying k
	E. coli dataset, varying coverage
	Human dataset

	Discussion

	Improved compression of DNA sequencing data with Cascading Bloom filters
	Overview
	Description of the basic algorithm
	Improvements
	Experiments
	Discussion


	IV Metagenomic classification
	Algorithmic methods for metagenomic classification
	Data structures for BWT-index-based metagenomic classification
	Overview
	Index construction
	Index query
	Improvements of query algorithm
	kLCP array
	Using kLCP array for removing the last character
	Speeding up SA-to-text translation

	Memory usage improvement
	Storing D compactly
	Multiple contig borders between t and next(t)
	Correct node id for next(t)
	Memory improvement estimation

	Experimental results
	Storing kLCP array
	Experiments on query time
	kLCP properties
	Experiments on Node ID
	Experiments on ProPhyle index

	Discussion


	V Conclusions

