Keywords: estimation, 38

The recent availability of large catalogs of 3D models enables new possibilities for a 3D reasoning from photographs. This thesis investigates the use of convolutional neural networks (CNNs) for relating 3D objects to 2D images. We rst introduce two preliminary studies that are used throughout this thesis: an automatic memory reduction method for deep CNNs, and a study of CNN features for cross-domain matching. In the rst one, we develop a library built on top of Torch7 which automatically reduces up to 91% of the memory requirements for deploying a deep CNN. In the second one, we study the eectiveness of various CNN features extracted from a pre-trained network for retrieving images from dierent modalities (real or synthetic images). We show that despite the large cross-domain dierence between rendered views and photographs, it is possible to use CNN features for instance retrieval. We also present a multi-view extension and demonstrate an application to image-based rendering.

We then present a framework to perform 3D instance detection in images:

given a 3D model (or a set of 3D models) and an image we locate and align the model in the image. We show that simply using CNN features is not enough for this task, and we propose to learn a transformation that takes the features from the real images close to the features from the rendered views. We evaluate our approach both qualitatively and quantitatively on two standard datasets: the IKEAobject dataset, and a subset of the Pascal VOC 2012 dataset of the chair category, and we show state-of-the-art results on both of them.

Finally, we move away from instances and attempt to extract 3D information for a full object category. There has been several recent uses of CNNs for the task of object viewpoint estimation, sometimes with very different design choices. We present these approaches in an unied framework and we analyse the key factors that aect performance. We propose a joint training method that combines both detection and viewpoint estimation and performs better than any existing approach. We also study the impact of the formulation of viewpoint estimation either as a discrete or a continuous task, we quantify the benets of deeper architectures and we demonstrate that using synthetic data is benecial. With all these elements combined, i parfois avec des choix de modélisation très diérents. Nous présentons ces approches dans un cadre unié et nous analysons les facteurs clés qui ont une inuence sur la performance. Nous proposons une méthode d'apprentissage jointe qui combine à la fois la détection et l'estimation du point de vue, et qui fonctionne mieux que toutes les approches existantes. Nous étudions également l'impact de la formulation de l'estimation du point de vue comme une tâche discrète ou continue, nous quantions les avantages des architectures de CNN plus profondes et nous montrons que l'utilisation des données synthétiques est bénéque. Avec tous ces éléments combinés, nous améliorons l'état de l'art d'environ 5% pour la précision de point de vue moyenne sur l'ensemble des données Pascal3D+.

2.4.1

Contour-based alignment

we improve over previous state-of-the-art results on the Pascal3D+ dataset by a approximately 5% of mean average viewpoint precision.

Résumé

La récente mise à disposition de grandes bases de données de modèles 3D permet de nouvelles possibilités pour un raisonnement à un niveau 3D à partir des photographies. Cette thèse étudie l'utilisation des réseaux de neurones convolutifs (CNN) pour mettre en relation les modèles 3D et les images.

Nous présentons tout d'abord deux études préliminaires qui sont utilisées tout au long de cette thèse : une méthode pour la réduction automatique de la mémoire pour les CNN profonds, et une étude des représentations internes apprises par les CNN pour la mise en correspondance d'images appartenant à des domaines diérents. Dans un premier temps, nous présentons une bibliothèque basée sur Torch7 qui réduit automatiquement jusqu'à 91% des besoins en mémoire pour déployer un CNN profond. Dans un second temps, nous étudions l'ecacité des représentations internes des CNN extraites d'un réseau pré-entraîné lorsqu'il est appliqué à l'identication d'images provenant de modalités diérentes (réelles ou synthétiques). Nous montrons que malgré la grande diérence entre les images synthétiques et les images naturelles, il est possible d'utiliser des représentations des CNN pour l'identication du modèle de l'objet. Nous présentons aussi aussi une extension multi-vue que nous illustrons avec une application pour le rendu basé sur l'image.

Nous présentons ensuite une méthode pour la détection d'instances 3D sur les images : à partir d'un modèle 3D (ou un ensemble de modèles 3D) et d'une image, le modèle est localisé et aligné sur l'image. Nous montrons que l'application directe des représentations obtenues par un CNN ne suft pas, et nous proposons d'apprendre une transformation qui rapproche les représentations internes des images réelles des représentations des images synthétiques. Nous évaluons notre approche à la fois qualitativement et quantitativement sur deux jeux de données standard: le jeu de données IKEAobject, et le sous-ensemble du jeu de données Pascal VOC 2012 contenant des instances de chaises, et nous montrons des améliorations sur chacun des deux.

Enn, nous nous éloignons des instances et nous essayons d'extraire des informations 3D pour les catégories entières d'objets. Récemment, les CNN ont été utilisés pour l'estimation de point de vue des objets dans les images, iii Background 13 2. to obtain important pieces of information to perform these tasks eciently:

to relate three-dimensional (3D) information of the objects in a scene with single images. This is a very generic problem which can be approached in several ways.

In this thesis, we focus on exploring the representational power of Deep Convolutional Neural Networks (CNNs) to achieve this goal. CNNs are a family of computational models that are able to extract high-level information from data (in our case, images) in a hierarchical manner. Initial levels in this hierarchy extracts low-level information, such as oriented edges, while intermediate levels in the hierarchy hold more complex information, inferred from the previous levels, such as structured patterns and textures. Going higher in the hierarchy, the combination of these mid-level features allows to represent highly-semantic information in a compact manner. CNNs are trained end to end, and were recently shown to perform extremely well in a wide variety of tasks. We are interested in exploring if the mid-and highlevel information contained in deeper levels of this CNN hierarchy are suited for three-dimensional reasoning in images.

The three-dimensional informations that are the most meaningful to be extracted from images are most certainly application-specic. In this work, we focus our attention on inferring object properties that do not require reasoning at a whole-scene level and that only requires limited context. We are interested in predicting the orientation and instance type of rigid objects that can be dened by a three-dimensional model. More precisely, we are addressing here the following tasks, which are illustrated in Figure 1.1:

Retrieving a 3D model from images (from images to 3D models).

The recent availability of large collections of 3D models [START_REF] Chang | ShapeNet: an information-rich 3D model repository[END_REF][START_REF] Wu | 3D ShapeNets: A deep representation for volumetric shape modeling[END_REF] allows to explore new possibilities for a 3D understanding of images.

Given an image containing a single object and a large catalog of 3D models, we are interested in nding the 3D model that is the most similar to the object depicted in the query image. We restrict ourselves to rigid-body objects categories; no mesh deformations are thus taken into account.

Detecting a 3D model in an image (from 3D models to images).

We are also interested in approaching the retrieval task the other way around. Instead of providing an image where we know there is an object and asking which object is pictured, we start from a 3D model and ask the opposite question: is an object corresponding to the 3D model in this image, and if so, where? This corresponds to a detection task, where we know in advance the object we are looking for, but we only have its 3D model and no real image of this object to help guide the detection. This is more complex than the retrieval task, as we also need to estimate a detection probability and not just a ranking between rendered views.

Object pose estimation. Estimating the pose and location of an object given a single image can be seen as a rst step towards a threedimensional understanding. While traditional approaches often focused on estimating the pose for a specic object instance, such as a particular type of IKEA chair, in this work we are interested in predicting orientation for whole categories of objects. This is an inherently more dicult task to solve, as in addition to the visual diversity that comes from dierent lighting conditions, occlusions and camera noise, we also need to cope with the intra-class variability of shapes and textures.

Motivation

With the advent of large 3D model repositories such as Shapenet [START_REF] Chang | ShapeNet: an information-rich 3D model repository[END_REF] and Trimble 3D Warehouse [START_REF]Trimble 3D warehouse[END_REF], new exciting possibilities to reason about 3D objects in 2D images have appeared, at both research and industrial level.

If we were able to automatically align 3D models in 2D images, we could directly transfer all the rich information from the CAD models to the images themselves, such as 3D normals, relative depth, part segmentation, grasping usage instructions, and any other information available in the model. Some examples of applications that leverages this 3D information are illustrated in Figure 1.2 and include:

Image-based rendering. Traditional approaches for image-based rendering usually performs poorly in highly-specular surfaces, like the metallic surfaces of cars, or when transparency is present, as in windows, because the 3D reconstruction is not reliable in these cases. By automatically detecting, retrieving and aligning similar 3D models to the objects present in the scene, such as cars, we can improve the quality of the rendering on those surfaces, as we can directly leverage the 3D information present in the models. This enables more realistic augmented-reality experiences, without requiring any manual annotation. An example of such application is presented in Chapter 3.

Automatic 3D model retrieval. Nowadays, almost every available product on the market can be bought online. With current product indexes, it is straightforward to retrieve a product given its name. On the other hand, in the absence of a model name or brand, the task of retrieving a specic object becomes much more involved, usually requiring to browse over a catalog of elements from the desired class. It would be much simpler if we could provide an image of the desired product, and automatically retrieve its name and vendors. For rigid objects with little texture, such as industrial pieces, there might not be enough product images available to perform image retrieval using standard approaches without a severe decrease in retrieval accuracy. But for such products, 3D models could be readily available, as prototypes are rst modeled in CAD softwares before going to production. In such context, leveraging these 3D models can lead to improved retrieval performances, and thus better customer experiences.

(a) Virtual reality systems which automatically uses 3D models aligned to the scene when rendering the environment, leading to an improved user experience and allowing a greater user interaction. Image from http://www.gputechconf.com/ virtual-reality-track (b) Product retrieval on large object catalogs. From a single picture, the system is able to retrieve the product depicted in the photograph. Image by Moodstocks.

(c) Automatic robotic manipulation. Robotic manipulation. Robotic interaction in complex dynamic environments is a very challenging task. In this scenario, the precise position of each object is not known in advance and can change over time. In such an environment, grasping an object is a very complex procedure. Not only the robot needs to identify and localize the object, it also needs to understand the underlying 3D shape associated with the object.

An algorithm leveraging 3D CAD models of the object that the robot seeks to manipulate can greatly help attacking this grasping problem.

By automatically aligning the 3D model in the scene, we directly get the 3D geometry of the object. More interestingly, if grasping annotations are available in the 3D model, they can be directly transferred to the image, allowing the robot to predict more precise movements and potentially leading to less mishandling and a more eective system overall.

Challenges

The problems we address in this thesis raise the following issues:

Computational challenges

Using large amounts of CAD models brings the possibility of performing exemplar-based instance retrieval relying solely on synthetic data. Figure 1.3

shows a small subset of the 3D models that will we used in this thesis. But such a large amount of data also brings several computational diculties.

Another diculty appears when one attempts to compare large numbers of elements together. For example, detecting and localizing in an image the presence of a specic instance of an object requires comparing this instance to many potential candidate regions in the image. When the number of instances to be detected becomes large, this comparison can quickly become very dicult to be performed in a reasonable time. Graphics processing units (GPUs) greatly speed up several tasks that are amenable to parallelization, such as convolutions, which are at the core of modern deep-learning architectures. But GPUs have much less available memory compared to CPUs, so dealing with large amounts of data eciently on the GPU is challenging.

Furthermore, deep CNNs usually have high memory requirements, making it necessary to optimize the way the memory is used in order to maximize GPU utilization when dealing with large amounts of data.

Domain gap between synthetic and real images

Leveraging 3D models enables retrieval on real images for which the query object is very specic and annotated photographs are not available or not easily available. It also enables articially extending an existing dataset, for example to obtain a diverse dataset with balanced orientations for each class.

There is however a considerable visual dierence between the synthetically generated images and natural images, as the former usually lacks texture and context, whereas the latter is usually visually very rich in details. Figure 1.4 illustrates such a dierence. One way to overcome this problem would be to create realistic 3D scenes for each object, as an attempt to reduce these dierences. Such 3D scene creation would be very time consuming, as it usually requires not only good quality textures, but also a full scene model and a realistic lightning model. CNN features are able to extract both lowlevel and high-level information from images, but it is unclear whether they can directly be used in such disparate domains, or if substantial modications to these features are needed.

Handling diversity and ambiguity

Predicting the orientation of a whole object category in real images is a dicult task for a variety of reasons:

1. It requires a varying level of invariance for dierent properties. On one hand, it involves being invariant to illumination, texture and intraclass variability. On the other hand, it requires being discriminative enough to identify small angle perturbations, which don't change much the image, as can be seen in Figure 1.5.

2. The pose of a rigid object instance or category, while well-dened for completely asymmetric classes, is usually ill dened when symmetries are involved. On may think about a square table for example: turning it by 90 degrees does not aect its geometry. As the orientation of an object is a continuous quantity, it is natural to express the pose estimation as a regression problem. There is a fundamental diculty with this formulation though, as it cannot represent well ambiguities in the prediction.

(a) Visual diversity inside a category (all the chairs have the same viewpoint).

(b) Same instance of a chair at dierent orientations.

Contributions

This thesis focuses on relating 3D information of objects in natural images.

We start by presenting preliminary studies on the following points:

• memory optimization for neural networks in Torch7. We developed a library that allows to train deep CNNs that otherwise would not t in memory. It was also useful to enable large image batches in a CNN while computing predictions, enabling faster execution times as larger batch sizes better exploit GPU parallelism.

• study of the eectiveness of CNN features for retrieving CAD rendered views from natural images containing only one centered object.

• multi-view extension of this simple 3D model retrieval approach, which uses information from several images to nd the single best 3D model depicted in the views, and application to image-based rendering.

We then present the two main contributions of this thesis:

• a new framework for exemplar-based CAD model detection on real images, which learns a mapping from the CNN features of natural images such that they better align with the features of CAD models. Our exemplar-based detection framework enables detection given only a single 3D model of an object, and outputs both its location and orientation. When compared against previous approaches for exemplar-based detection, our technique gives state-of-the-art detection results on both the IKEAobject dataset [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] and the chair subset of Pascal VOC2012

validation set [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF] when solely synthetic data is used for training.

• an extensive study of dierent ways of formulating pose estimation with Convolutional Neural Networks. We show that: (a) learning a multi-task classier to perform both the detection as well as a discrete pose estimation performs best, and (b) leveraging synthetic data for increasing the amount of training data helps both detection and pose estimation. By combining both, we improve the state-of-the-art results on the challenging Pascal3D+ dataset by a considerable margin for all of the proposed metrics.

Publications

The work done during this PhD lead to the following publications:

Peer-reviewed conferences

Code for the projects

In addition to the generic libraries aforementioned, we also released the code corresponding to the papers:

• Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views at imagine.enpc.fr/~suzano-f/exemplar-cnn/

• Crafting a multi-task CNN for viewpoint estimation at imagine.enpc.

fr/~suzano-f/bmvc2016-pose/. Chapter 2

Background

In this chapter, we give an overview of the concepts and methods that are the most relevant to this dissertation.

We start by a brief presentation of the eld of Machine Learning, and more specically Supervised Learning. After a quick introduction to Machine Learning, which is the necessary foundation for presenting Articial Neural Networks, we provide an overview of Neural Networks, starting from its origins until the recent breakthroughs in the eld, which improved the quality of the results on many Computer Vision tasks by a large factor.

We then present an overview of the object detection task. We review both the classical methods that were employed to address this task, as well as more recent approaches that leverages CNNs and were shown to perform extremely well compared to more traditional approaches.

Finally, we present prior work on estimating rigid-object pose information from 2D images. We subdivide this part in three: rst we present work on contour-based alignment, followed by part-based alignment techniques and then methods for general category pose estimation.

Machine Learning Framework and Notations

In this section, we give some foundations of the Machine Learning framework, where we focus on the Supervised Learning case.

Machine Learning

Machine Learning is the eld of Computer Science that studies systems that learn from examples without being explicitly programmed. Such algorithms build models from example inputs, and use them to perform predictions, rather than by following hand-designed rules.

These models can be either parametric or non-parametric. A simple example of a non-parametric approach is the k-nearest neighbors algorithm.

In such a model, decisions are taken by considering the properties of the k nearest neighbors to an example. To dene a neighborhood, we need to dene a distance measure between examples. For images, one possible approach is to consider the RGB values for all the pixels in the image as the feature representation in a vector space, and use the euclidean distance to compute the neighborhood relationship between images. An example of parametric model is the linear regression. In this model, the relationship between the input examples, which belongs to a vector space, and the desired scalar- Reinforcement Learning: the algorithm (or agent) interacts with a dynamic environment aiming at performing a specic task. It receives feedback for each decision it takes. The agent then adapts its strategy in order to maximize an objective function which measures how well the task was performed.

In the following section, we expand on Supervised Learning, as it is the framework used in this dissertation.

Supervised Learning framework

In the supervised setting, we suppose we have a dataset D with N s examples.

The dataset consists of data observations x i ∈ X , which represents the input that is fed to the system, and the targets t i ∈ T , which correspond to the desired output of the model. More formally, we dene the dataset as follows:

D = (x i , t i), i = 1, . . . , N s . (2.1)
In what follows, we will restrict ourselves to the parametric case. Let f w : X → Y be the decision function, parametrized by w. The output space Y can be dierent from the target space T , in which case a pre-dened function g : Y → T is used to obtain the nal prediction of the system.

We will explain in more details the role of g later in this section, when introducing the classication case.

Let y i = f w (x i) be the output of the decision function f w on example x i . To measure how dierent the output y i is from the true target t i , we dene a loss function (y i , t i) : Y × T → R + which assesses the quality of the estimation. We seek to approximate the predictions g(y i) as much as possible to the targets t i . In order to quantify how far o are the predictions from the targets for a given training dataset D and decision function f w , we dene the empirical risk as the average of the losses over the training set:

R emp (f w) = 1 N s Ns i=1 (f w (x i), t i) (2.2)
High values for the empirical risk means that f w does not approximate well the training data, while a risk of zero indicates that the model perfectly describes the relationship between the input examples and the output targets. In order to correctly model the dependencies between the data and the targets, we look for the parameters w such that the empirical risk over the training data D is minimized. We call the function that we want to minimize the objective function.

Minimizing the objective function does not guarantee that f w will perform well in unseen data. For example, whenever f w has sucient capacity, In such a scenario, the model is said to overt the training data. This behaviour is not desirable, as it indicates that the model is unable to generalize well to new examples. One eective way to ght overtting is to enforce some regularization R(f w) on the objective function: We now subdivide the supervised setting in two branches: classication and regression. Both are relevant for this work, and will be developed in the following sections.

it
L(f w) = 1 N s Ns i=1 (f w (x i), t i) + λR(f w) (2.3) x f (x) f (x) = x

Classication

In the classication setting, we suppose that each data observation belongs to a discrete number of classes, and the goal of the model is to be able to predict in which class the observation belongs to. A typical example of a classication problem is to assign an e-mail to one of two classes: spam or non-spam. Let N c be the number of classes that each observation can take, and N s the number of training examples in the training dataset D. We dene T = {1, . . . , N c } as the space of possible labels. Let the space of possible inputs X ⊂ R N D be a subset of the N D -dimensional euclidean space, with N D the dimensionality of the input space, and let Y ⊂ R Nc be the output space of f w . As before, we consider y i = f w (x i) to be the output of the decision function for input x i . In our notation, we use subscripts to dene the individual elements of a vector. In other words, we dene the v i subscript as the i-th coordinate of a vector v. One loss commonly used in CNNs for training classication models is the cross-entropy loss, which is dened as follows:

CE (y i , t i) = -log softmax(y i) t i (2.4)
with the softmax function dened as

softmax(x) j = exp(x j) Nc c=1 exp(x c)
.

(2.5)

The output of the softmax function can be seen as converting the input vector x such that it is interpretable as a probability distribution, as all the entries are positive (because of the exponential) and sum to 1.

The classication model assigns a score f w (x i) c , with c = 1, . . . , N c , to each of the classes in T for each observation x i . To obtain the predicted class from the scores given by f w , we dene the conversion function g : Y → T as g : x → arg max c x c . Thus, the predicted class ti is the one with the highest score, and can be obtained via:

ti = arg max c∈{1,...,Nc} f w (x i) c .
(2.6)

Regression

In the regression setting, we want to estimate the values of the continuous The linear regression model writes:

target variable t ∈ T = R Nc
f w (x i) = w 1 x i ,
(2.7) with 1 x i the concatenation of a 1 in the beginning of x i , and w 1 x i the matrix-vector multiplication between w and 1 x i . In what follows, we simplify the notation by implicitly appending a 1 in the beginning of x i to take into account the bias term in the model.

Dierent loss functions can be employed when modeling a regression problem. A common choice is the squared loss, given by Eq. (2.8).

(u, v) = u -v 2 2 (2.8)
One drawback with the squared loss is that it is not robust to outliers, so that if two elements are far apart, due for example to noise in the observations or rare events, the loss will be very aected. One way to avoid this problem is to consider the absolute loss, presented in Eq. (2.9), which does not suer from the quadratic explosion on outliers.

(u, v) = u -v 1 (2.9)
The issue with the absolute loss is that its gradient equally penalizes elements that are nearby and elements that are far away, making learning via gradient descent suboptimal whenever the predictions are close to the ground-truth.

In such situation, the Huber loss (2.11) can be used. For a pair of real-valued numbers u c ∈ R and v c ∈ R, the Huber function is dened by:

H(u c , v c) =    0.5(u c -v c) 2 if |u c -v c | < 1 |u c -v c | -0.5 otherwise (2.10)
and the loss for two vectors u ∈ R Nc , v ∈ R Nc is given by:

l(u, v) = Nc c=1 H(u c , v c) (2.11)
where, once again the subscript corresponds to taking the elements of the vector. The Huber loss, which is used in robust regression, combines both the robustness of the absolute loss with respect to outliers as well as the sensitivity of the squared loss.

Articial Neural Networks

Origins of Articial Neural Networks

Articial Neural Networks are a family of parametric models that have a specic hierarchical structure. The structure is a combination of linear functions followed by non-linearities, which allows the model to learn complex non-linear functions in a compact manner. In this section, we give a brief overview of the mathematical models that originated articial neural networks.

The perceptron

The origins of Articial Neural Networks dates back to the end of the 1950's, with the development of the perceptron by Rosenblatt [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]. The term neural network has its origins in attempts to nd mathematical representations of information processing in biological systems [START_REF] Bishop | Pattern recognition[END_REF]. In what follows, we will give a brief denition of the perceptron model.

Let's consider an observation x i ∈ R N D . For ease of notation, we append a 1 into x i to take into account the bias, making it a R N D +1 vector. The perceptron maps the input to a binary output f w (x) ∈ {0, 1} by considering:

f w (x) =    1 if w • x > 0 0 otherwise , (2.12)
where w ∈ R N D +1 is a vector of real-valued weights. Note that this is equivalent to a linear function x → w • x followed by a non-linear activation function ψ(x), and can be equivalently written

f w (x i) = ψ(w • x i), (2.13)
where ψ(x) in here is the Heaviside step function, dened by ψ(x) = 1 if

x > 0 and 0 otherwise. An illustration of the perceptron is presented in A crucial question is how to select the parameter w so that the perceptron dened by f w (x) can perform a specic task. We consider the supervised setting where we have a dataset D = {(x i , t i) i∈{1,...,Ns} }, with, for all i, x i ∈ R N D +1 and t i ∈ {0, 1}.

In the original perceptron algorithm, the parameters are updated iteratively by re-evaluating the predictions at each parameter update, and modifying the parameters that yield incorrect predictions.

More formally, let y i = ψ(w

• x i) ∈ {0,

Dierentiable activation functions and the Delta Rule

The perceptron contains a discontinuous (and thus non-dierentiable) activation function ψ(x). If we replace the activation function by a dierentiable one, we can derive a more generic learning rule, called the delta rule. Using the same notation as in the previous section, the delta rule, which updates the weights stochastically for every training example, can be stated as follows:

w ← w + η(t i -y i)ψ (w • x i)x i , (2.15)
where ψ (x) is the derivative of ψ(x) with respect to x, and η is the learning rate, a real value that controls how fast the updates to the weights are made.

The learning rate is a very important hyper-parameter of the learning; too big values makes the learning unstable as the parameters oscillate around the desired solution or might even diverge, whereas too small values leads to a slow training and are more prone to get stuck in a poor local minima.

The delta rule can be derived by minimizing the loss in the output of the neural network for each example in the training dataset via stochastic gradient descent, using a squared distance loss. Gradient descent uses the gradient of the loss function with respect to the weights of the model w to perform the updates of the weights in a direction that will decrease the loss.

For linear activation functions ψ(x) = x, the delta rule can be simplied as follows:

w ← w + η(t i -y i)x i , (2.16)
which is very similar to the update rule from the perceptron in (2.14), even though their derivations are dierent as the Heaviside function is nondierentiable.

Multi-layer neural networks

Despite the initial success of the perceptron in identifying digits in small images, its representational power is very limited. Indeed, it can only learn predictions which are linearly separable in the input space, which is rarely the case. Several extensions were proposed in order to overcome such limitations.

In particular, having networks that contain internal representations (also called hidden layers) which are non-linear with respect to the input data allows for more expressive power. Unfortunately, the delta rule explained before does not apply in such situations, as it was specically tailored for the case where there is no hidden layers, so other learning techniques are needed. One early example is the Neocognitron [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaected by shift in position[END_REF], which stacked together several layers of linear functions followed by non-linearities, and used an unsupervised learning approach based on self-similarity between the input elements and the weights of the model to perform learning. Although such a learning approach allows to learn networks with hidden layers, there is no explicit constraint that ensures that the hidden layers learn an appropriate mapping. As we will see later in this section, it is possible to extend the delta rule to work for such multi-layer neural networks [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF][START_REF] Lecun | Une procedure d'apprentissage pour réseau a seuil asymetrique (a learning scheme for asymmetric threshold networks)[END_REF]. Before that, we rst introduce a sub-category of the multi-layer networks called feed-forward neural network, which is a commonly employed architecture for several tasks.

Feed-forward neural networks

In a feed-forward neural network, the output of each layer is passed as an input to the next layer. Each layer consists of a number of units (or neurons) that computes the weighted linear combination of the layer input, followed by an element-wise non-linearity. Figure 2.3 illustrates a feed-forward neural network with one hidden layer. Let N be the number of hidden layers.

Denoting by o n the output of layer n with weights w n , with as before the bias appended for sake of notation, the feed-forward procedure can be written as follows:

o n = ψ n (w n o n-1)
(2.17)

where ψ n (•) is a sub-dierentiable non-linearity function. Common choices for the non-linearity includes rectied linearities as ReLU, dened by ψ(x) = max(0, x), the sigmoid function ψ(x) = (1+e -x) -1 or the hyperbolic tangent ψ(x) = tanh(x).

Backpropagation

The set of parameters w = {w i } i=1,...,N are optimized to minimize the objective function L(f w) over the training set D. As we mentioned before, the delta rule is not adapted for multi-layer networks as its formulation only considers the case without hidden layers. To obtain an optimization procedure for the multi-layer case, let's start with a formulation similar to the one used to derive the delta rule. We consider the loss (y i , t i) computed for each element in the training set D, which we want to minimize. As for the delta rule, we use gradient descent to perform the optimization, which writes:

w ← w -η ∂ (f w (x i), t i) ∂w , (2.18)
where η is the learning rate, which controls the size of the update steps. As is, we note that this is a generalization of the delta rule, for the case where we consider a squared distance as the loss function and where the gradient is computed over the whole training dataset, and not only element by element.

To perform gradient descent to nd the parameters w that minimize the loss, we need a way of computing the derivatives of the loss function with respect to the parameters in an ecient manner.

The answer to this question, which is a generalization of the delta rule, was given in [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF][START_REF] Lecun | Une procedure d'apprentissage pour réseau a seuil asymetrique (a learning scheme for asymmetric threshold networks)[END_REF], and is traditionally called backpropagation. Backpropagation consists of computing, in a recursive manner, the gradients of a module in function of the gradients of the modules that come after it. The derivation of backpropagation is obtained by recursively applying the chain rule of the derivatives in the loss function that we seek to minimize. This makes it possible to construct arbitrarily complex functions by combining a number of smaller blocks, for which the derivative is known, and the gradient of the whole complicated function can be readily computed.

Adding hidden layers to a network potentially increases the capacity of the network to model complex functions. In the early 1990's, Hornik [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF] showed that a feed-forward network with a single hidden layer containing a nite number of neurons was capable of approximating any continuous function dened on compact subsets of R n . But as discussed in [START_REF] Bengio | Learning deep architectures for AI[END_REF], an important result in favour of deeper networks is that functions that can be compactly represented by a depth k network might require an exponential number of parameters with respect to the input size to be represented by a depth k -1 network.

The objective function optimized during backpropagation of the multilayer network is not convex with respect to the weights, due to the several layers of non-linearities that are present. Gradient descent can only nd a local minima, and for such non-convex functions, it is natural to wonder about the quality of the local minima found. Since the middle of the 1980's, there were already evidences that dierent local minima in multi-layer networks performed similarly well for a number of tasks [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF]. Recently, [START_REF] Kawaguchi | Deep learning without poor local minima[END_REF] has provided a mathematical proof for the fact that all local minima in deep neural networks are actually global minimum, given some reasonable assumptions.

Convolutional Neural Networks

Convolutional neural networks (CNNs) [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] are a sub-class of neural networks with constrained connectivity patterns in the linear mapping wx. A principle which has proven very eective in natural images is to hypothesize that the feature representation of an image should be approximately translation covariant. In other words, for an image x with a feature representation f (x), if a translation τ is applied to x, then the feature representation of the translated image should approximately correspond to f (x) translated by τ .

This covariance can be imposed by constraining the linear mapping wx to be a convolution. Enforcing that the linear mapping is a convolution brings the additional benet that larger images can be used without a huge increase in the amount of parameters of the model. Each unit becomes responsible for detecting a particular pattern in the image, for example an oriented edge in an image. With convolutions, the output of a layer is translated by the same amount as the translation of the input. In order to make the output of the network invariant by small translations and deformations, a Max Pooling operation was introduced. Max Pooling is a form of non-linear

CNNs and the ILSVRC competition

Even though most of the necessary foundations of CNNs have been established since [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF], there was only a handful of tasks for which CNNs excelled most traditional approaches based on hand-engineered features. It was only after the seminal work of Krizhevsky et al. [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] but was found necessary to model such a complex task as the one required to classify between the 1000 classes of ImageNet. Indeed, [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] mentions that by removing any of the intermediate layers results in a data to allow the model to generalize and not overt. For very large networks, even the 1.2 million images from ImageNet may not be sufcient, so several techniques for articially increasing the size of the dataset were employed, such as random scalings and croppings, horizontal ipping of the images and small color deformations.

Most of those contributions were already individually presented before [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF], but it required ground-breaking results in a challenging competition such as ILSVRC to attract the attention of the computer vision community back to CNNs. Since then, several major improvements in the way of training and factorizing CNNs were made, improving state-of-art performance on many tasks [START_REF] Xie | Holistically-nested edge detection[END_REF][START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF][START_REF] Gidaris | Attend rene repeat: Active box proposal generation via in-out localization[END_REF][START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF].

Visualizing the internal representations

What makes deep CNNs perform so well? Given the impressive results obtained by deep CNNs for vision tasks, it is natural to wonder what is internally learned by the network. By inspecting the internal feature activations of the network, Zeiler and Fergus [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF] showed that earlier layers of the network are responsible for detecting oriented edges and colors, while later layers learn more complex patterns, such as grids, circles or even faces, as can be seen in Given such improvements, it was natural to wonder if we only needed more powerful machines and bigger models to achieve better results. In [START_REF] He | Deep residual learning for image recognition[END_REF],

He et al. showed that simply increasing the depth in feed-forward CNNs doesn't necessarily improve classication accuracy, but by learning residual functions h(x) = x + f (x), it is possible to train much deeper networks with increasing accuracy.

While increasing depth was shown very benecial for learning more complex functions, it also increases by a large factor the amount of memory required by the CNN. In Section 3.1, we will present our automatic memory optimization framework, which allows to train deeper models for the same amount of available memory.

Object detection

Extracting high-level information from images is one of the utmost objectives of Computer Vision. Object detection can be described as the eld that aims at providing tools to answer the question what objects are where? We follow the standard formulation of category-level object detection discussed by Girshick in his PhD thesis [42], where the goal is to retrieve and localize objects of predened categories in still images. This localization is usually expressed in terms of a tight bounding box which delimits the visible part of the object. This is a very challenging task for several reasons. Firstly, still images correspond to noisy two-dimensional projections of a three-dimensional scene.

For the same object from two dierent viewpoints, the image representation can greatly dier. For smooth objects and small viewpoint changes, the dierence in the image can be approximated by ane transformations.

But this does not hold anymore as soon as a previously occluded part of the object becomes visible, or when a previously visible part of the object becomes occluded. Secondly, for the same scene, dierences in illumination can dramatically aect the image representation. Furthermore, for the same object, truncations and surrounding clutter also modify the image representation in a complex manner. Thirdly, the denition of category is usually specied in terms of usage, and not in terms of visual appearance of the objects. This can entail a large intra-class variation that makes the task of object classication more challenging. To give an example, imagine a chair and all the possible variations that can be present, some of which are illustrated in Figure 1.5. It can have a back or not, its shape can be rectangular or ellipsoidal, with or without arm-chairs, with four legs or not. While all of the aforementioned properties can help dierentiate a chair from a dog, some of them could also apply to tables. pened in 2005 [START_REF] Everingham | The 2005 pascal visual object classes challenge[END_REF]. It featured more complex images compared to previous datasets and showcased the limitations of existing approaches when faced with natural images in less controlled environments. One of such limitations was the use of a xed template HOG per category, which limits the variability of orientations and deformations that the detector can identify.

To address this limitation, deformable models based on HOG elements were proposed [START_REF] Felzenszwalb | A discriminatively trained, multiscale, deformable part model[END_REF]. Instead of having a single xed template to model the whole object, several templates are used to model dierent parts of an object. The relations between parts are usually expressed as a graph, where the nodes correspond to the parts and the edges to the relation between parts. The structure of the graph can be arbitrary, but to have fast and exact inference, tree or star structures are preferred.

In [START_REF] Felzenszwalb | A discriminatively trained, multiscale, deformable part model[END_REF][START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF]

CNN-based object detection

CNNs have been used for object detection since the early 1990's [START_REF] Vaillant | Original approach for the localisation of objects in images[END_REF], but with limited success and leading approaches relied on hand-crafted features as presented in Section 2. ImageNet could generalize to object detection. This question was answered concurrently by Sermanet et al. [START_REF] Sermanet | OverFeat: Integrated recognition, localization and detection using convolutional networks[END_REF] and Girshick et al. [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. In [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], Girshick et al. show that the features learned from a network trained on ImageNet transfer very well to object detection, and obtain an improvement of more than 30% relative to the best previous results on Pascal VOC 2012 detection challenge. The improvement in detection performance is mainly due to the better features that are learned end-to-end by the CNNs, which are able to capture more than simply the contour of objects, as in more classical object detectors based on HOG features. Furthermore, CNNs can be seen as a generalization of DPMs for object detection [START_REF] Girshick | Deformable part models are convolutional neural networks[END_REF], where the feature representation is learned and not hand-crafted using HOG features. Since then, the paradigm of supervised pre-training followed by task-specic netuning became widely adopted, leading to new state-of-art results in a wide range of computer vision tasks, such as edge detection [START_REF] Xie | Holistically-nested edge detection[END_REF], semantic segmentation [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF], bounding box proposals [START_REF] Gidaris | Attend rene repeat: Active box proposal generation via in-out localization[END_REF], object-viewpoint estimation [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] and depth estimation [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF].

Using regions for selective classication

How to adapt a classication network for a detection task? In [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] The CNN is then ne-tuned with a small learning rate to avoid modifying too much the original network parameters, and the other hyper-parameters are kept the same.

One important aspect of their system is how to select the patches which are used for training. The number of ground-truth objects in Pascal VOC 1 https://plus.google.com/+YannLeCunPhD/posts/JBBFfv2XgWM Sampling), he proposes to rst sample a set of images, and then to sample patches from those images (Image-Centric Sampling). While this sampling could potentially reduce the diversity of patches that are presented to the network at each mini-batch, Girshick shows that even by sampling as little as two images in a mini-batch is enough to provide diverse enough regions for the network to be well optimized. Furthermore, it is very ecient in re-using the convolutional features.

Most experiments presented in this dissertation build upon object detection techniques. As a pre-requisite for the work we will present in Chapter 4

and Chapter 5, we developed a generic object detection framework on Torch7 that supports both R-CNN, SPPnet and Fast R-CNN, and which was also used as a starting point for further research using object detection [START_REF] Zagoruyko | A multipath network for object detection[END_REF][START_REF] Simonovsky | Onionnet: Sharing features in cascaded deep classiers[END_REF].

Pose estimation

The task of estimating the pose of objects in images has been studied since the mid 1960's [START_REF] Roberts | Machine perception of 3-D solids[END_REF], and dierent ways of approaching the problem have been proposed. In this section, we discuss three directions that have been explored in the literature. In Section 2.4.

Contour-based alignment

Since the early ages of Computer Vision, there has been an interest in aligning 3D models to images. Roberts in the abstract of his PhD thesis [START_REF] Roberts | Machine perception of 3-D solids[END_REF] explains that his ultimate goal is to make it possible for a computer to reconstruct and display a three-dimensional array of solid objects from a single photograph. This is an ambitious goal, so in his work he restricted himself to the case where the objects have a known three-dimensional shape, thus being the rst to consider the 2D-3D instance alignment problem. His work, as most of works until the 1990's [START_REF] Mundy | Object recognition in the geometric era: A retrospective[END_REF], relies on object contours. The main idea of such approaches consists on using contours as the common representation between the 2D image and the 3D model, and the information from several edges are combined in order to align the 3D model to the image. The 3D edges from a 3D model are projected in the 2D image, which makes it possible to compare the 3D edges to the contours obtained from the image. Using contours bypasses the visual dierences that exist between both representations, and also makes the 2D-3D correspondence more robust to small illumination and color changes. Several methods have been developed to aggregate the information from dierent edges. Roberts [START_REF] Roberts | Machine perception of 3-D solids[END_REF] uses the hypothesis of a block world to recover polygons from sets of lines.

In [START_REF] Huttenlocher | Object recognition using alignment[END_REF], Huttenlocher and Ullman use an hypothesis-test paradigm where, given keypoints obtained by edges corners and inexions, correspondences between the image and the model are used to hypothesize a pose, and the pose is kept if the rendered model in the proposed pose is coherent with the image. In [START_REF] Lowe | The viewpoint consistency constraint[END_REF], Lowe uses the idea of line grouping to hypothesize a smaller number of possible correspondences between the image and the model.

More recently, a number of approaches leveraging contour information for instance alignment have been developed. In [START_REF] Arandjelovi¢ | Smooth object retrieval using a bag of boundaries[END_REF], Arandjelovi¢ and Zisserman retrieves sculptures using HOG descriptors on edge maps. In order to reliably obtain the edges from photographs, the authors present a solution which trains a classier on super-pixels to distinguish them as either sculpture or not-sculpture. In [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF], Lim et al. uses hand-made descriptors based on the contour of the objects to perform model retrieval and initial alignment, and the contours are once again used for rening the pose estimation of nontextured objects.

Contour detection

The success of those approaches depends on reliably nding the contours of the objects in the image. As such, a number of techniques have been developed for computing the edges on images. A classical example is the Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF]. Since then, a number of techniques have been proposed to improve edge detection results, making it more robust to textures and repetitive patterns, either by using image statistics [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Isola | Crisp boundary detection using pointwise mutual information[END_REF] or machine learning techniques [START_REF] Dollár | Supervised learning of edges and object boundaries[END_REF][START_REF] Dollár | Structured forests for fast edge detection[END_REF][START_REF] Xie | Holistically-nested edge detection[END_REF].

Part-based alignment

Rigid object viewpoint estimation was rst approached in the case of object instances with known 3D models, together with their detection, as presented in Section 2.4.1. These approaches were extended to whole object categories by leveraging techniques from object detection presented in Section 2.3. In [START_REF] Glasner | Viewpoint-aware object detection and pose estimation[END_REF], Glasner et al. propose an approach that integrates 3D reasoning with an appearance-based voting scheme, which relies on a non-parametric representation of the object class. Hejrati and Ramanan [START_REF] Hejrati | Analyzing 3D objects in cluttered images[END_REF] present a method for detecting and analyzing the 3D conguration of rigid objects that consists of two steps. In the rst step, a variant of DPM [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] is used to propose an initial detection and 2D estimates of shape via a number of detected keypoints. In the second step, the estimated detection and shape are rened by using an explicit 3D model of shape and viewpoint. In [START_REF] Pepik | Teaching 3D geometry to deformable part models[END_REF], Pepik et al.

extend DPM to include both estimates of viewpoint and 3D parts that are consistent across viewpoints.

Another line of research consists of using parametric models for performing the pose estimation. In [START_REF] Xiang | Estimating the aspect layout of object categories[END_REF], Xiang and Savarese propose the Aspect Layout Model (ALM), which rst constructs a parametric model of an object category via a collection of 3D models by decomposing the objects in parts, and then perform the detection and alignment using a Conditional Random Fields (CRF) [START_REF] Laerty | Conditional random elds: Probabilistic models for segmenting and labeling sequence data[END_REF] formulation.

More recently, there has been an increased interest in techniques leveraging large collection of 3D models, thanks to the availability of datasets such as ShapeNet [START_REF] Chang | ShapeNet: an information-rich 3D model repository[END_REF] and ModelNet [START_REF] Wu | 3D ShapeNets: A deep representation for volumetric shape modeling[END_REF]. Aubry [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF], which extends the Pascal VOC dataset [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF] by aligning a set of 3D CAD models for 12 rigid object classes, which enables the use of learning-based approaches leveraging real images, similarly to what was done for detection. Together with the Pascal3D+ dataset, Xiang et al. [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF] proposed an extension of the method of [START_REF] Pepik | Teaching 3D geometry to deformable part models[END_REF] which also predicts the viewpoint of the object. CNN-based approaches, which were until the availability of the Pascal3D+ dataset limited to special cases such as faces [START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF] and small datasets [START_REF] Penedones | Improving object classication using pose information[END_REF], also began to be applied to this problem at a larger scale. In [START_REF] Tulsiani | Viewpoints and keypoints[END_REF], Tulsiani and Malik used a simple classication approach with the VGG16 network [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and annotations for ImageNet objects to obtain very good pose estimation results on Pascal3D+. Su et al. Chapter 3

Preliminary studies

In this chapter, we present three contributions that are going to be used through this dissertation. We rst approach the problem of reducing the memory requirements of using deep CNNs, which is an important problem as deep CNNs have recently shown very good results, as discussed in Section 2.2.3. Then, we explore the use of CNN features for performing 3D instance retrieval in 2D images. We suppose we have available a potentially large database of 3D models. Our goal in this task is actually to study which CNN features are better adapted to relating natural images of objects with synthetic rendered views of 3D models representing these objects. Then, we extend the 3D model retrieval to use information from multiple images, and apply it to the image-based rendering task.

We place ourselves in the context of the instance-based alignment discussed in Section 2.4.1 and Section 2.4.2. We tackle the 2D-3D retrieval task by considering the 3D model as a set of 2D rendered views, and by matching the query image with the set of 2D rendered views for each model.

By focusing only on 2D images, we can use the representational power of o-the-shelf CNNs that were pre-trained on large annotated datasets such as ILSVRC [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF]. For a xed number of 3D models, the amount of dierent 2D rendered views that can be generated is potentially unlimited. We target databases of around 1000 models, with 100 rendered views per model, making up to 100k dierent rendered images to compare against.

The contributions of this chapter are three-fold:

1. In Section 3.1 we propose an automatic memory optimization algorithm for Torch7 neural networks [START_REF] Collobert | Torch7: A Matlab-like environment for machine learning[END_REF]. It facilitates the retrieval task when thousands of models are available and more generally it is extremely useful when experimenting with deep CNNs. Our algorithm works by reusing memory that is not needed anymore by the network to perform its computations. Without aecting runtime performance, it is able to save as much as 91% of the memory usually required by the default Torch7 neural networks package.

2. In Section 3.2, we present a systematic study of approaches based on nearest-neighbor matching of CNN features for instance retrieval from CAD models. We show that, despite the appearance gap from rendered views and real images, it is possible to use o-the-shelf pre-trained neural network models to perform instance retrieval.

Optimizing memory use in CNNs

In this section, we present our approach to automatically reduce the memory requirements of neural networks on Torch7 [START_REF] Collobert | Torch7: A Matlab-like environment for machine learning[END_REF].

Overview

Most of current deep learning frameworks allocate the memory required for computing a prediction either during network initialization or during the computation of the rst prediction. For modularity, a network is expressed as a sequence of individual modules (or layers), and each layer holds all necessary buers or network states. Examples of such buers or network states includes the output of the layer or the gradients with respect to the inputs, as well as any storage required for intermediate computations.

Having all the intermediate buers already pre-allocated allows faster execution, as it avoids expensive memory allocations and deallocations, which are specially costly in the GPUs because they enforce synchronization points.

But pre-allocating all the necessary buers for each module comes with a price: the amount of memory required grows linearly with the depth of the network. This means that deep networks, such as the 152-layer ResNet, requires an enormous amount of memory in most deep learning frameworks, even during inference, where we are interested in the output of the network after a forward pass. If the tensors were lazily allocated whenever they are needed and freed as soon as they go out of use, meaning that they are not necessary anymore for further computations, memory requirements would be greatly reduced, but runtime performance would suer on the GPU due to the aforementioned problems.

Related work

There has been a variety of works proposing to reduce the memory requirements of deep learning models. Some of them focus on network pruning, such as [START_REF] Han | Learning both weights and connections for ecient neural network[END_REF][START_REF] Han | Deep compression: Compressing deep neural network with pruning, trained quantization and human coding[END_REF], and aim at reducing the model size by removing small weights and employing sparse data structures. Such works are orthogonal to the technique we present in this section, as they concern solely the network size, and not the total memory requirements for running the model.

More related to our problem of reducing the memory consumption on deep networks running on the GPU, the cudnn library [START_REF] Chetlur | cudnn: Ecient primitives for deep learning[END_REF] was proposed, containing primitives for deep learning, such as convolutions and max pooling. It integrates fast convolution routines that does not require internal buers, such as the unfolded input image usually used to perform convolutions as a matrix multiplication.

Concurrently to our work, Rhu et al. [START_REF] Rhu | Virtualizing deep neural networks for memory-ecient neural network design[END_REF] propose a virtualized cudnn approach, which is similar in spirit to what we present in this section. Their approach saves memory by ooading the intermediate buers to the CPU, allowing for important memory savings, at the cost of some speed penalty.

On the contrary, we propose to reuse the intermediate buers whenever they go out of use, which does not aect runtime speed.

A number of approaches have recently been implemented for reducing memory usage in deep learning frameworks [START_REF] Chen | Mxnet: A exible and ecient machine learning library for heterogeneous distributed systems[END_REF]111], and share a number of similarities with our approach. The main dierence with ours is that these approaches directly start with the computation graph representation of the network as input to their memory optimization system, but such computation graph representation is not directly available in Torch7 neural network library [START_REF] Collobert | Torch7: A Matlab-like environment for machine learning[END_REF].

Approach: high-level overview

In order to be able to experiment with deeper models with large batch sizes, we decided to develop a non-intrusive library on top of Torch7 [START_REF] Collobert | Torch7: A Matlab-like environment for machine learning[END_REF] which we call optnet, aiming at reducing the memory requirements of using deep networks in an automated manner.

If the buers were allocated on demand and deallocated whenever they go out of use, the memory requirements would be kept close to minimal. Even though this would require less memory, it would involve expensive memory allocations and deallocations, which are specially expensive when performing GPU computations as they enforce synchronization points, harming parallelization. Instead, we would like to automatically identify whenever a tensor is not used anymore, and instead of freeing it, reusing the same tensor storage on further computations.

Overview of Torch7 neural networks framework

Torch7 neural network package denes the network architecture by means of computation modules and a set of container modules. A module denes 2 operations:

• a forward operation, which produces an output given a number of inputs;

• a backward operation, which computes the derivatives with respect to the inputs to the module, as well as with respect to its learnable parameters (if any).

Containers are a special type of modules that have no learnable parameters, but which have a number of child modules. Each container species how the computation of its child modules are linked together. The simplest example of a container is a Sequential container, which connects each of its child modules such that the output of child node i is fed as an input to child node i + 1. By mixing dierent containers, it is possible to construct arbitrarily complex network architectures for which the computation graph can be represented as a Directed Acyclic Graph (DAG).

We emphasize that the network structure is entirely dened during the construction of the network via containers and modules, and it doesn't change during runtime according to the inputs that are fed to it. An important consideration is that a module is completely indierent to its neighboring modules. There is no global reasoning on the whole network level, only on individual modules and containers.

A note on Tensor implementation In Torch7, Tensors are wrappers around Storages. A storage is a structure representing a block of contiguous memory. Tensors are implemented as a structure with a number of elds.

The most relevant ones for this section are the following: dimension: number of dimensions of the tensor; sizes: sizes for each dimension of the tensor; strides: step in each dimension required to access element i+1 from element i. This allows some operations to be performed very fast, as tensor elements do not need to be contiguous in memory. As an example, permuting dimensions in a tensor does not require memory copy and only swapping the strides is needed. storage: a Storage structure, which contains the pointer to the allocated memory;

By decoupling the tensor representation and the storage representation, it is possible for dierent tensors to share the same storage in a simple manner.

Computation graph construction from containers

In what follows, we restrict ourselves to the inference mode, which is the most relevant for this work. A similar reasoning was also applied for training mode, and is omitted here for brevity.

Dening a computation graph from containers

One of the drawbacks of the Container representation is that the network structure is implicitly dened. If we need to reason on the whole network level, for example to decide when a given tensor dened in a specic module can be reused, this container representation is not adapted. Instead, it would be better to reason using the computation graph dened by the network. The computation graph is a DAG that contains all the modules of the network, and the edges correspond to the data ow from one module to the other. Figure 3.1 illustrates the dierence between a representation based on containers and the corresponding computation graph of the network. To compute the output using a container representation, a depth-rst traversal of the tree representation dened by the containers is performed, visiting the nodes from left to right.

In order to facilitate the task of reasoning on the network structure, we convert the container representation, which is the default in Torch7, to its corresponding computation graph representation. The lack of constraints imposed by Torch7 neural network library when developing new layers makes a reliable reasoning on the graph structure harder. The only constraints imposed by the Torch7 neural network library when a module is to be implemented are the following:

• during forward pass, the result of the computation should be stored internally in the module, and should be the returned argument;

• during backward pass, the forward pass has to be called beforehand with the same input data, and the result of the gradient computation with respect to the input should be stored in the module, and should be returned.

If only these constraints were to be used, specifying how the dierent elements of the computation graph are linked together would require rewriting dedicated code for each network container and module. As such, this solution would not be sustainable, as every new module added to the main library would require additional changes to the code which generates the computation graph to correctly handle this new module. Instead, we rely on a conceptually simpler, but more reliable and generic approach: to let the computation graph be constructed during a forward propagation of the A ParallelTable container passes each element of its input to a dierent sub-network.

The model is evaluated in a depth-rst manner, from left to right. network. By letting the graph be constructed during the evaluation of the network, we eectively ensure that the computation graph will be representative of the ow of information inside the network, without requiring to implement specic code for each module or container.

In order to implement such a solution, we need to perform standard forward pass computation on the network, but keeping track of the inputs and outputs of each module at each time. The overall idea for constructing the computation graph is the following:

• for each module in the container representation, we keep a list of the input tensors that it uses, as well as the output tensors that it returns. In order to keep this list of input/output tensors, we overwrite the generic forward function such that it stores the input and output tensors of each module. To avoid having to change the function signature and introduce unwanted behaviour, we encapsulate the original function inside another function, that records the inputs and outputs of the module, all the while computing and returning the result. This recording is done via upvalues, which are variables that are accessed by the encapsulating function but whose scope is external to the function;

• every non-container module that performs some computation constitutes a node in the computation graph.

This excludes graphconstructor modules like nn.Identity or nn.SelectTable that only exist because of the container representation, and are needed to guide the ow of information, but that do not perform any operation;

• perform a forward pass over the network, which will populate the list of input/output tensors for each module;

• the edges between modules are given by the list of input/output tensors of each module. We do not add edges linking the input tensor to the output tensor for containers that do not perform any operation except from connecting its child modules (like nn.Sequential or nn.ConcatTable), as it would add an unwanted edge on the graph.

Instead, only operative containers such as nn.Concat or nn.Parallel contribute to new edges in the graph, as they perform some computation. To illustrate this point, we remark that a nn.Concat is equivalent to a nn.ConcatTable (which only distributes the inputs) followed by a nn.JoinTable (which concatenates a table of tensors into a tensor in a specied dimension).

The computation graph representation allows for an easier reasoning on the network structure, as well as the dependencies of each node. We will use this representation in the next section to decide when each buer is not needed anymore.

Selecting reusable buers

In what follows, we restrict ourselves to the buers corresponding to the outputs of each module of the network. A similar reasoning can be performed for the gradients with respect to the output of each layer.

Finding the moment in time where every buer is not used anymore can be performed by applying a liveness analysis algorithm [4] on the computation graph of the network. Such algorithms are usually used by compilers to calculate at which point in a computer program a memory location can potentially still be used in future computations or if it cannot and can thus be freed or reused.

We implemented a liveness analysis based on the implementation from

[111], with some additional improvements. The outline of the implemented algorithm is as follows:

1. Dene an analysis as a data structure that contains two elds per element: the information of the rst time a tensor is created, and the last time it is used.

2. Walk over the computation graph in the same order as the execution order. For each node in the graph (which corresponds to a module), identify which are the incoming tensors and the outcoming tensors.

Insert in the analysis the aforementioned tensors, keeping track of the rst time and last time a specic tensor is used.

3. Initialize an empty buer pool.

4. Sort analysis by last time each tensor was used.

5. Iterate over the analysis in order.

(a) For each analysis element, check if there is a tensor available in the buer pool that does not overlap with the living time of the element of the analysis.

(b) If there are available tensors in the buer pool, take greedily the one for which the storage is the most similar in size than the storage of the tensor in the current element of the analysis; if there is no available tensor, create a new tensor.

6. Change the original storages of the tensors in the network to use the buers that were created in the previous step.

An example of memory optimization for a forward pass on a complex graph can be seen in Figure 3.2. In this example, instead of requiring 21 internal buers for the outputs, our algorithm optimizes the assignment such that it only requires 7 of them.

Other savings

In addition to the outputs and gradients of the network, other temporary buers that are specic to each module can be reused. The strategy that we employ is as follows: share any temporary buers of a module between all instances in the network of the same module type. For a number of commonly used modules, such as convolutions and max-poolings, we keep a list of buers that can be reused in inference mode as well as in training mode. While suboptimal, this simple strategy already allows for important memory savings.

We also employ another basic strategy for inference mode. Torch7 by default keeps in memory both the parameters of the network and the gradients with respect to the parameters, even when we only want to compute predictions. Thus, during inference mode optimization, we remove the tensors corresponding to the gradients with respect to the parameters of the module, and replace them by some meta-information containing the sizes, strides and storage reference used by the tensor. With this meta-information, we are able to exactly reconstruct the gradients again by creating a new tensor with the same sizes, strides and storage reference 1 , which is necessary if 1 The storage reference is important because dierent tensors might share the same storage, for example in siamese networks. Note that only the storage reference is used, so that it is possible to identify storages that are reused by dierent tensors. we want to reuse a previously optimized network for training. This easily saves 50% of the memory required for the parameters compared to standard Torch7 networks, without side eects during evaluation mode.

Results

We applied the optimization schemes presented in the previous sections to several standard CNN architectures. In what follows, we analyse the savings for both inference and training mode.

Inference mode

In inference mode, we are only interested in the output of the network, and not in computing any gradients. For this reason, we can save more memory as we can reuse the output of each module as soon as it gets out of scope. Table 3.1 summarizes the savings for dierent network architectures when the batch size is 1, without using NVidia cudnn library. Each column contains a legend that corresponds to a specic element of the network that is evaluated, which is summarized as follow:

tot: total memory used by the network; out: memory used by the network for containing the outputs of each module; buf: intermediate buers of each module, such as the unfolded image representation used for representing convolutions as matrix multiplications, or the indices containing the maximal elements in Max Pooling; par: memory used for the parameters and gradients with respect to the parameters of the network.

Because the outputs can be directly reused in inference mode, the amount of memory required is not proportional to the depth of the network. As such, we can see larger gains for deeper networks. For example, with ResNet-152, we get 92% savings for the total memory used by intermediate outputs, going from 173MB to 14MB for a batch size of 1. We also notice that reusing internal temporary buers saves up to 96% of memory for ResNet-152.

To facilitate the comparison with next experiments using cudnn, we also present in Table 3.2 the results for a batch size of 1, but this time using cudnn. We note that cudnn does not require temporary internal buers for any of its modules, bringing already considerable savings for the baseline network. Looking closely, we see that, even though the relative savings for the output buers can get as high as 92% for ResNet-152, for a batch size of 1 the size of the model parameters outweights the size of the output buers by a considerable margin. We note though that the relative savings for the outputs are constant with respect to the batch size, so bigger batch sizes will benet more from the savings. This is illustrated in Table 3.3, which in turn presents results when using cudnn with a batch size of 128. We note that the total required memory is dominated by the intermediate buers holding the outputs of each module, and for the ResNet-152 network, we save up to 91% of the total memory which would usually be required, reducing the requirements from 22.6GB to only 2GB.

Training mode

In training mode, we cannot release the outputs in the same way as during inference mode, because the outputs are required for computing the gradients. Instead, we can reuse the gradients with respect to the outputs of each module during the backward pass. This means that the total amount of memory required after optimization is still dependent on the depth of the network, contrarily to the inference case. tot: total memory used by the network; grad: total memory used for the gradients with respect to the inputs of each layer.

We note that, as expected, the relative savings are smaller than in inference mode. Still, we are able to obtain 19% total savings for AlexNet, the shallowest among all tested networks, while for deeper networks such as ResNet-152 we obtain 39% total savings. As before, the relative savings for the gradients with respect to the outputs remains constant, so the absolute savings will be more important for larger batch sizes. Interestingly, one would expect that the relative savings with respect to the gradients in training mode to be similar to the savings of the outputs in inference mode. This is not the case here, where the relative savings are smaller. This is due to the fact that our backward computation graph construction is not optimal, and contains a number of spurious edges that limit optimizations.

Improving the backward graph construction requires handling some special cases in a few containers Containers and is left for future work.

Conclusion

In this section, we have presented optnet, a library for Torch7 that automatically optimizes the memory use for neural networks. Several advantages come with a reduced memory requirement: we can train deeper models that would not normally t in memory; we can use much larger batch sizes during inference mode, which can translate to faster runtimes on GPUs due to increased parallelism; and we can more easily deploy deep networks on memory-limited devices, such as mobiles. optnet was used in a number of experiments presented in this dissertation.

CNN features for relating 3D objects and images and application to object retrieval

This section describes our study of CNN features for relating 3D objects and images via a retrieval task: nding in a database the most similar 3D model given a real photograph containing a single object centered in the image. We obtain the centered objects by using 2D bounding boxes that indicates the location of the object in the image, and are used to crop the original image in an object-centric manner. Those bounding boxes can be either provided by the user (or dataset), or obtained via an object detector, such as [START_REF] Gidaris | Object detection via a multi-region and semantic segmentation-aware CNN model[END_REF]. We suppose we have available a large database of 3D models. We are interested in the task of nding in the 3D database the model which is the most similar to an object in a given image.

We pose the problem of 3D model retrieval as an image matching task.

An overview of our system is illustrated in Figure 3.3. Given the dierence between 3D meshes and 2D images, we consider each 3D model as a set of 2D rendered views and use them instead. We compute a matching score from the input image to each rendered view of each 3D model in the database. This matching score can then be used to sort the 3D models by similarity with respect to the input image. The question is then which image representation should be used, and how we should compute the similarity between these representations.

Recently, several works have investigated the use of CNN-based representations for image retrieval. Most of these works treat the activations from certain layers directly as descriptors, either by concatenanting the representations [START_REF] Babenko | Neural codes for image retrieval[END_REF][START_REF] Sharif Razavian | Cnn features o-the-shelf: an astounding baseline for recognition[END_REF] or by pooling them [START_REF] Babenko | Aggregating local deep features for image retrieval[END_REF]. Contrary our work presented in this section, these works focus on same-domain image retrieval.

In the sections that follows, we present our study of the eciency of using the output of a xed pre-trained CNN layer as the feature representation for 3D model retrieval between real and rendered images.

Similarity measure

In this work, we consider three standard metrics for computing the similarities between feature representations: a similarity based on the L 2 distance in Eq. (3.1), the cosine similarity in Eq. (3.2) and the dot-product similarity in Eq. (3.3).

S L 2 (a, b) = -a -b 2 2 (3.1) S cos (a, b) = cos(a, b) (3.2) S dot (a, b) = a • b (3.3)
In Section 3.2.4 we evaluate how the dierent metrics perform for a number of feature representations based on CNNs.

Feature representation

The visual dierence between 3D models and real images is very important, specially when the 3D model does not have texture, realistic lighting or background. To perform instance-based retrieval on such disparate domains, it is crucial to consider a feature representation which is invariant to this cross-domain variability, but discriminative enough to capture dierences in models.

Deep CNN features were shown to perform extremely well on a wide range of tasks, as discussed in Chapter 2. While early layers of the network were shown to extract lower-level information such as edges and textures, deeper layers extract more and more semantic information of the image. If we were interested in only retrieving objects of the same category, it would be natural to consider deeper layers, which contains more semantic information. But retrieving specic object instances requires less invariance to shape deformations, all the while being robust to illumination changes, dierences in textures and noise.

We perform a comparative study of dierent network architectures, for dierent layers, to identify which is the best suited for such a cross-domain retrieval. The network architectures that we consider are CaeNet [START_REF] Jia | Cae: Convolutional architecture for fast feature embedding[END_REF],

which is very similar to the AlexNet architecture [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF], and VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF].

Both networks were trained on ILSVRC [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF], and we also study if ne-tuning a CaeNet network for object detection in Pascal VOC improves the quality of the retrievals.

In order to avoid memory issues with earlier layers, which have a high feature dimensionality and are spartially large, and to speed up nearest neighbor matching, we apply a Max Pooling operation with stride of 2 on the features from conv3 and conv4, and we call them pool3 and pool4 respectively. This reduces the feature size by a factor of 4, and allows our experiments to be performed with less resources.

Aspect ratio ltering

To extract CNN features from images, the images are rst resized to 224x224 pixels, such that they have the same resolution as the images used to train the original CNNs. For this reason, the original aspect ratio of the image is lost before it reaches the network. Given that the query objects are centered in the image, we can enforce an additional constraint that the aspect ratio of the retrieved 2D rendered view should be similar to the aspect ratio of the query image.

Let AR(x) = height(x) width(x) be the function that computes the aspect ratio of image x. For a pair of images q and r, and a tolerance parameter τ , we dene the aspect ratio compatibility condition c τ (q, r) as follows:

c τ (q, r) = τ < AR(q) AR(r) < 1 τ .

(3.4)

The aspect ratio compatibility condition is true whenever both the ratio of the aspect ratios and its inverse are greater than the tolerance τ , indicating that both aspect ratios are similar, up to a factor of τ . During retrieval, by keeping only the rendered views for which the aspect ratio compatibility condition is true, we greatly reduce the number of false positives. Furthermore, the computational eciency of the whole system can be improved if we restrict the computation of the similarity function only for pairs of images that are considered compatible.

One drawback of this method is that it is not robust to truncations of the query image, and could possibly reject good matches. This is not a problem in the current setting, as we assume that the query object is fully contained in the image.

Results

In this section, we discuss the results obtained by the method proposed in Section 3.2 for 3D model retrieval from real images via rendered views. We consider the IKEAobject dataset of Lim et al. [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF], which has textureless CAD models of IKEA object instances manually aligned to their location in images depicting cluttered scenes. The retrieval task is dicult as there is a variety of object poses and perspective eects in the IKEAobject dataset.

To handle the variation in object pose and perspective eects, we rendered 36 azimuth and 7 elevation angles at 3 dierent distances for each object.

Note that the rendered views cover many possible viewpoints and perspective eects, but it does not cover all cases. To reduce the bias due to the lack of color and texture in the 3D models, we used grayscale images both for the query images as well as for the 3D renders. Examples of images and 3D models from the IKEAobject dataset can be found in Figure 3.4. There is a single object present in each cropped image used for the retrieval.

We performed retrieval using features extracted from pool3, pool4, pool5, fc6 and fc7 layers of 3 dierent networks: CaeNet, CaeNet ne-tuned for detection, and the corresponding layers of VGG-16. All features were extracted after a ReLU layer. In all our experiments, the tolerance parameter τ for the aspect ratio compatibility function is set to τ = 0.9. features for all networks, and the quality of the retrieval decreases with higher layers using cosine similarity. Moreover, conv4 features are known to be relatively generic features [START_REF] Agrawal | Analyzing the performance of multilayer neural networks for object recognition[END_REF][START_REF] Yosinski | How transferable are features in deep neural networks[END_REF] and make little use of the network knowledge gained on specic objects, such as chairs, sofas, and beds, in ImageNet classication. Interestingly, both L 2 similarity and dot product similarity metric perform poorly with VGG-16 features compared to Caf-feNet or CaeNet ne-tuned for object detection using R-CNN framework.

On the other hand, cosine distance is signicantly better with VGG-16 features. We also noticed that the retrievals using features from fully-connected layers have a worse orientation quality compared to convolutional features.

To illustrate this observation, Figure 3.5 shows the best match for a xed 3D model and query image using cosine similarity, for dierent layers.

Conclusion

In this section, we have presented a study of the CNN features for relating 3D objects and 2D images. To evaluate this study, we have considered the task of 3D model retrieval in images based on computing a matching score of the image features to the features from rendered views of the 3D models, and we have showed that a cosine similarity function together with pool4 features works best.

Multi-view extension for applications to Image-Based Rendering

In this section, we extend the 3D exemplar retrieval technique presented in the previous section to use information coming from several images. This is usually the case in robotic applications, when the system can combine informations from dierent viewpoints before making a decision, or with videos, where an object is usually visible from slightly dierent viewpoints in a sequence of frames, or in Image-Based Rendering.

Image-Based Rendering (IBR) is an approach for free-viewpoint navigation in captured environments, which may rely on 3D reconstruction from 2D images. Traditional approaches for IBR do not work well in the case of transparent surfaces or reective objects. A typical example of commonly found objects on outdoor scenes that fall into this case are cars.

For the car class, a large number of 3D models from dierent brands and types are available in 3D repositories such as ShapeNet [START_REF] Chang | ShapeNet: an information-rich 3D model repository[END_REF]. By manually aligning a 3D model to a 3D scene reconstructed from a number of photographs from the same scene, it is possible to improve the quality of the rendering in highly-specular surfaces, as can be seen in Figure 3.6. In this section, we apply the technique introduced in Section 3.2, which automatically retrieves and aligns a 3D model to a single photograph, in order to improve the quality of the rendering. To this end, we extend the method from Section 3.2 to use the information coming from several photographs to output the single best matching model.

Method

We build our method for the multi-view 3D model retrieval on top of the technique introduced in the previous section. We use pool4 features from the VGG-16 network with cosine similarity, which was shown to perform best in our retrieval task. We suppose we have N input images, each of which contains dierent views of the same object centered in the image. As before, we obtain bounding boxes for the objects in the image by applying the object detector from [START_REF] Gidaris | Object detection via a multi-region and semantic segmentation-aware CNN model[END_REF] to each image and the detected bounding boxes are used to crop the original images into object-centric images. We suppose that there is only one object in each non-cropped image. This assumption is not a limitation of our method, but it simplies the task of tracking the same objects in dierent images, and keeps the notations simpler. s m n = max v∈V s m,v n .

(3.5)

The score for a model m in image n is the maximum score over all the possible viewpoints v. We interpret the scores per model s m n as the log of the conditional probability P (m | I n) of model m given that the image is I n , up to a normalization factor. We have:

P (m | I n) = exp(s m n) Z(I n) (3.6) with Z(I n) = i∈M exp(s i n)
. We suppose that the information given by each image is independent from each other, so we have:

P (m | I 1 , I 2 , . . . , I N) = N n=1 P (m | I n) (3.7)
We look for the model m which has the highest probability given all the

Viewpoint estimation

Once the model m is selected, we are interested in obtaining the orientation of the model for each image I n . For that, we rely solely on the matching scores s m,v n . We suppose that the viewpoint vn for a given image I n is the one with maximal score under the constraint that the model is m, which is given by vn = arg max v∈V s m,v n .

(3.10)

Handling truncations

The retrieval technique from Section 3.2 doesn't handle explicitly the case of truncated objects. In the case where the object present in the image is truncated, the matches with the 2D rendered views will be highly unreliable.

For this reason, we only consider the subset of images I ⊂ {I 1 , . . . , I N } for which the depicted object is not truncated. Estimating if an object in an image is truncated is a dicult problem by itself. Instead, we leverage the fact that every query image is actually a cropped version of the original image by using the bounding boxes obtained from the object detector from [START_REF] Gidaris | Object detection via a multi-region and semantic segmentation-aware CNN model[END_REF], and we make the following simplifying assumption: whenever the bounding box corresponding to the object touches the boundary of the image, the object is assumed to be truncated. This rst approximation for removing truncated instances, even though simple, already allows to lter a number of candidates that could potentially spoil the retrieval results.

Qualitative results

We tested our multi-view extension of the single-view instance retrieval algorithm on a dataset of street images containing cars [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF][START_REF] Ortiz-Cayon | Automatic 3d car model alignment for mixed image-based rendering[END_REF]. This dataset is used for assessing the quality of Image-Based Rendering approaches. Due to the lack of an annotated dataset, we do not present quantitative results and we restrict ourselves to qualitative results.

We obtained the 3D models from ShapeNet database [START_REF] Chang | ShapeNet: an information-rich 3D model repository[END_REF]. ShapeNet contains a rich collection of the class car, which we use to validate our approach. We downloaded 5k car models from this database, and for each 3D model we rendered the object from 108 viewpoints uniformly sampled from the viewing sphere, with azimuth and elevation increasing 10 degrees in the range of [0, 360) and [0, 30) respectively. This constitutes our database of 5k car models, each associated to 108 views of the object. Some representative results of retrieval with multi-view model consistency can be found in Figure 3.7. As in the previous section, we use grayscale images both for the query images as well as for the 2D rendered views. We can see that the retrievals are generally visually similar to the cars depicted in the query image, up to a color dierence. We also observed that the azimuthal orientations are generally correct within 20 degrees.

In Figure 3.8, we present qualitative results for both the single-view instance retrieval from Section 3.2 as well as the multi-view extension. The multi-view consistency constraint helps correct ambiguous matches, and usually improves the quality of the retrieved model.

Although our method prunes query images that are potentially truncated, we are still severely aected whenever the query object is occluded.

Conclusion

In this chapter, we have presented preliminary studies in three subjects:

• We have developed a library on top of Torch7 that automatically reduces the memory requirements of running standard networks. For deep networks, it is able to save up to 91% of the total memory required without optimization. This library was extensively used for the experiments presented in this dissertation, some of which wouldn't be possible to be performed due to lack of available GPU memory.

• We have studied the use of a xed CNN for the task of 2D-3D instance retrieval. By reasoning in 2D instead of 3D, we were able to use CNNs that were pre-trained on large annotated datasets. We showed that, despite the visual dierences between synthetic renders and real images, the CNN features are robust enough such that a retrieval approach based on nearest neighbor matching can be successfully performed.

• We have proposed a simple extension of the 2D-3D instance retrieval method to exploit the information present in multiple query images.

As an application of our method, our multi-view instance retrieval extension was combined with image-based rendering techniques in [START_REF] Ortiz-Cayon | Automatic 3d car model alignment for mixed image-based rendering[END_REF] and improved the quality of urban scene rendering results where cars are present.

In Chapter 4, we will extend the 2D-3D instance retrieval presented in this chapter, which tries to answer the question which object is this?, to perform instance detection, where we will instead look into answering the question where is this object?

Chapter 4

Detection

In Chapter 3, we tackled the problem of retrieving the most similar 3D model from an image containing a single object placed in the center of the image. In this chapter, we present an end-to-end convolutional neural network (CNN) for 2D-3D exemplar detection. We demonstrate that the ability to adapt the features of natural images to better align with those of CAD rendered views is critical to the success of our technique. We show that the adaptation can be learned by compositing rendered views of textured object models on natural images. Our approach can be naturally incorporated into a CNN detection pipeline and extends the accuracy and speed benets from recent advances in deep learning to 2D-3D exemplar detection. We applied our method to two tasks: instance detection, where we evaluated on the IKEAobject dataset [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF], and object category detection, where we outperform Aubry et al. [7] for chair detection on a subset of the Pascal VOC dataset.

Introduction

Recently, Aubry et al. [7] performed object category detection by exemplar alignment with a large library of 3D object models. The aligned models often approximately matched the style of the depicted objects and allowed 3D information, such as hidden object surfaces and object pose, to be propagated to the 2D images. Such a result is useful for 3D scene reasoning and may potentially be used in applications such as object manipulation in robotics and model-based object image editing in computer graphics [START_REF] Kholgade | 3D object manipulation in a single photograph using stock 3D models[END_REF].

Despite recent progress on 2D-3D matching and retrieval [START_REF] Huang | Single-view reconstruction via joint analysis of image and shape collections[END_REF][START_REF] Li | Joint embeddings of shapes and images via CNN image purication[END_REF][START_REF] Su | Estimating image depth using shape collections[END_REF],

detection by 2D-3D alignment lags behind state-of-the-art object detection systems based on annotated images, e.g., R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], in terms of accuracy and speed. We see two primary reasons for this gap in performance: (i)

there is a large appearance gap between views rendered from CAD models and real images; and (ii) 2D-based object detection has beneted from re-69 cent successes of convolutional neural networks (CNNs) [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF][START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]. This work addresses both issues.

The appearance gap across two dierent domains encountered in 2D-3D alignment is not unique to our problem and can be found in other tasks, e.g., when learning on one dataset and testing on another [START_REF] Torralba | Unbiased look at dataset bias[END_REF]. To bridge such appearance gaps, a number of cross-domain adaptation algorithms have been developed, some of which are presented in Section 4.1.1. Building on the success of these methods, we present an approach that learns to adapt natural image features for the task of 2D-3D exemplar detection. We hypothesize that, given the features of a natural image depicting an object, it is possible to infer the features of a corresponding rendered view of an object CAD model with similar style and pose. Note that a similar reasoning has been explored in a recent work to predict CAD object features for a dierent view [START_REF] Su | 3D-assisted feature synthesis for novel views of an object[END_REF].

To achieve our adaptation learning goal, we need a large training set of pairs made of a natural image and an aligned rendered view depicting a similar object. While there are existing datasets with aligned pairs, e.g., IKEA [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] and Pascal3D [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF], such datasets are either relatively small or have aligned models that only coarsely approximates the object style. To overcome these challenges, we make use of the ability to render views from CAD models and composite with natural images, which allows us to create a large training set. The composite image and rendered view pairs form training data with which to learn the feature adaptation, and have been similarly employed in prior work to train 2D object detectors over CAD renders [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF] and predict object pose [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF].

In learning the adaptation, we adopt a formulation similar to Lenc and Vedaldi [START_REF] Lenc | Understanding image representations by measuring their equivariance and equivalence[END_REF], which studied the equivariance of image features under geometric deformations of the image. Our work can be seen as an extension of their approach beyond geometric transformations. We show that the adaptation can be incorporated as a module in a CNN-based object detection pipeline.

Furthermore, we show that pre-computed features of the rendered views can be added as a fully-connected layer in a CNN, which brings the benets of accuracy and speed from recent advances in deep learning to 2D-3D exemplar detection.

Contributions. Our contributions are twofold:

• We introduce a cross-domain adaptation approach for 2D-3D exemplar detection using generated pairs of rendered views of CAD models and composite views with natural background. Our adaptation routine adapts features of natural images depicting objects to more closely match features of CAD model rendered views.

• We show how our adaptation routine can be incorporated into a CNNbased detection pipeline, which leads to an increase in accuracy and speed for 2D-3D exemplar detection.

We evaluated our method on the tasks of CAD instance retrieval on the IKEA dataset [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] and on 2D-3D object class detection on the Pascal VOC subset used in Aubry et al.

Related Work

A 3D understanding of 2D natural images has been a problem of interest in computer vision since its very beginning [START_REF] Roberts | Machine perception of 3-D solids[END_REF]. Our work is in line with traditional geometry-centric approaches for object recognition based on alignment [START_REF] Mundy | Object recognition in the geometric era: A retrospective[END_REF]. There has been a number of successful approaches for instance-level recognition, e.g., [START_REF] Chum | Total Recall: Automatic query expansion with a generative feature model for object retrieval[END_REF][START_REF] Li | Worldwide pose estimation using 3D point clouds[END_REF][START_REF] Rothganger | 3D object modeling and recognition using local ane-invariant image descriptors and multi-view spatial constraints[END_REF], typically based on SIFT matching [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] with geometric constraints. More recent approaches have leveraged contour-based representation to align skylines [START_REF] Baatz | Large scale visual geolocalization of images in mountainous terrain[END_REF] and statues [START_REF] Arandjelovi¢ | Smooth object retrieval using a bag of boundaries[END_REF]. Furthermore, simplied or parametric geometric models have been used for category recognition/detection [START_REF] Fidler | 3D object detection and viewpoint estimation with a deformable 3D cuboid model[END_REF][START_REF] Gupta | Blocks world revisited: Image understanding using qualitative geometry and mechanics[END_REF][START_REF] Hejrati | Analyzing 3D objects in cluttered images[END_REF][START_REF] Pepik | Teaching 3D geometry to deformable part models[END_REF][START_REF] Xiao | Localizing 3D cuboids in singleview images[END_REF][START_REF] Zia | Detailed 3D representations for object recognition and modeling[END_REF]. We will focus our discussion in this section on prior work using CAD models for category recognition and 2D-3D alignment.

Rendered views from CAD models have been used as input for training

an object class detector [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF][START_REF] Sun | From virtual to reality: Fast adaptation of virtual object detectors to real domains[END_REF] or for viewpoint prediction [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF]. Most similar to us are approaches that align models directly to images. Examples include alignment of IKEA furniture models to images [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF], exemplar-based object detection [START_REF] Malisiewicz | Ensemble of exemplarsvms for object detection and beyond[END_REF] by matching discriminative elements [7,[START_REF] Choy | Object detection with 2D-3D registration and continuous viewpoint estimation[END_REF], and using hand-crafted features for retrieving CAD models for depth prediction [START_REF] Su | Estimating image depth using shape collections[END_REF] and compositing from multiple models [START_REF] Huang | Single-view reconstruction via joint analysis of image and shape collections[END_REF]. Also related are approaches for CAD retrieval given RGB-D images (e.g., from Kinect scans) [START_REF] Gupta | Aligning 3D models to RGB-D images of cluttered scenes[END_REF][START_REF] Song | Sliding shapes for 3d object detection in depth images[END_REF]. More recently there has been work to enrich the feature representation for matching and alignment using CNNs, which include CAD retrieval based on CNN responses (e.g., AlexNet [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] pool5 features) [START_REF] Aubry | Understanding deep features with computer-generated imagery[END_REF], learning a transformation from CNN features to light-eld descriptors for 3D shapes [START_REF] Li | Joint embeddings of shapes and images via CNN image purication[END_REF], and training a Siamese network for style retrieval [START_REF] Bell | Learning visual similarity for product design with convolutional neural networks[END_REF]. Building on ecient CNN-based object class detection, e.g., R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], our approach extends the above CNN-based approaches for ecient CAD-exemplar detection.

Bridging two very dierent image modalities is a classic problem for alignment [START_REF] Irani | Robust multi-sensor image alignment[END_REF]. Past approaches have addressed this problem using two main strategies. A rst line of work has used manually-designed feature detectors and adapted them, for example by adding a mask, so that they focus on the information available in both CAD models and real images [7,[START_REF] Choy | Object detection with 2D-3D registration and continuous viewpoint estimation[END_REF][START_REF] Vazquez | Virtual and real world adaptation for pedestrian detection[END_REF]. Another line of work has focused on increasing the realism of rendered views, e.g., by extracting likely textures and background from annotated images [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF][START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF][START_REF] Sun | From virtual to reality: Fast adaptation of virtual object detectors to real domains[END_REF]. Domain adaptation approaches have been formulated for CNNs [START_REF] Bengio | Deep learning of representations for unsupervised and transfer learning[END_REF][START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Romero | Fitnets: Hints for thin deep nets[END_REF][START_REF] Ganin | Unsupervised domain adaptation by backpropagation[END_REF], most recently for object detection [START_REF] Homan | LSDA: Large scale detection through adaptation[END_REF],

ne tuning across tasks [START_REF] Tzeng | Simultaneous deep transfer across domains and tasks[END_REF], and, in a contemporary work, transfer learning from RGB to optical ow and depth [START_REF] Gupta | Cross modal distillation for supervision transfer[END_REF]. Most similar to our approach is domain adaptation with CAD [START_REF] Sun | From virtual to reality: Fast adaptation of virtual object detectors to real domains[END_REF], which adapted hand-crafted features (HOG [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF]) for object detection. We formulate a generic domain adaptation approach over image features, which can be applied to hand-crafted features, e.g., HOG [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] or CNN responses. We then compare the adapted features with calibrated rendered view features to obtain matching scores for each rendered view (Section 4.3). Note that our detection pipeline can be implemented as a CNN. An evaluation of our approach is in Section 4.4. System overview. Our system takes as input individual 2D image object proposal windows (top-left) generated by the selective search algorithm [START_REF] Uijlings | Selective search for object recognition[END_REF]. The image window is passed through the initial layers of a pre-trained CaeNet model [START_REF] Jia | Cae: Convolutional architecture for fast feature embedding[END_REF] to generate a feature vector (top-middle). Here, we visualize CNN features using the inversion network of [START_REF] Dosovitskiy | Inverting visual representations with convolutional networks[END_REF] (outlined in red), which infers the original image given a CNN layer's response. In an oine step (bottom-left), we similarly pass rendered views of a library of 3D object CAD models through the initial layers of CaeNet and record their responses.

Overview

As there is a domain gap between the appearance of natural images and rendered views of CAD models, we learn to adapt the features for a natural image to better align to those of CAD models (top-right). We compare the features and return the view that best matches the style and pose of the input image (bottom-right).

Adapting from real to rendered views

In this section we describe our approach for adapting features extracted from real images to better correspond to features extracted from rendered views of CAD models. Our approach is general and can be applied to any image feature set, e.g., HOG [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] and CNN-based features [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]. We adapt from real images to rendered views (and not from rendered to real) since it is likely more dicult to hallucinate features corresponding to missing image details, such as the surrounding context of an object and its texture, than to remove them.

Formally, we seek to learn a transformation φ over the features of real images. Intuitively φ is a projection of the real image feature space to the space of features from CAD rendered views. Ideally, φ has the property of mapping a given real image feature depicting an object of interest to features of rendered views of CAD object models with the same geometry, style, and pose. Figure 4.2 illustrates our adaptation system.

Suppose we have as input a set of N pairs of features {(x i , y i)} N i=1 corre- sponding to examples of real images and rendered views of well-aligned CAD models, respectively. We seek to minimize the following cost over φ:

L(φ) = - N i=1 S (φ (x i) , y i) + R(φ), (4.1)
where S denotes a similarity between the two features φ(x i) and y i , and R is a regularization function over φ. Note that in the case where φ is an ane transformation, our formulation is similar to the one of Lenc and Vedaldi [START_REF] Lenc | Understanding image representations by measuring their equivariance and equivalence[END_REF] where a mapping was learned given image pairs to analyze the equivariance of CNN features under geometric transformations.

Adaptation

While the simplest choice for φ is an ane transformation, which we use as a reference in our experiments, we also tested more constrained and complex transformations. We focused on transformations that could be formulated as CNN layers, and in particular successions of convolutional and ReLU layers.

Note that considering more complex transformations also increases the risk of overtting. Similar to Lenc and Vedaldi [START_REF] Lenc | Understanding image representations by measuring their equivariance and equivalence[END_REF] we attempted to constrain the structure of the transformation and its sparsity. This is easily done in a CNN by replacing a fully-connected layer by a convolutional layer with limited support, which implies translation invariance in the adaptation. We found that the best-performing transformation was only a slight modication of the ane transformation:

φ(x) = ReLU (Ax + b), (4.2)
where ReLU (x) = max(0, x) is the element-wise maximum over zero. We observed that applying the ReLU function consistently improved results, and is in agreement with state-of-the-art CNN architecture design choices for object recognition.

Similarity

We tried both L 2 and squared-cosine similarity to measure the similarity in Equation (4.1). We found that the squared-cosine similarity S(a, b) = -1 -a T b a b 2 leads to better results. This is expected, since cosine similarity is known to work better when comparing CNN features [START_REF] Aubry | Understanding deep features with computer-generated imagery[END_REF], but also because we later used the cosine distance to compare real and synthetic features (c.f. Section 4.4). This result is also consistent with the observation of the importance of task-specic similarities in Lenc and Vedaldi [START_REF] Lenc | Understanding image representations by measuring their equivariance and equivalence[END_REF]. [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF][START_REF] Guo | Beyond the line of sight: labeling the underlying surfaces[END_REF], the models are often not similar in style.

Recent work on accurate alignment to 3D models by composition [START_REF] Huang | Single-view reconstruction via joint analysis of image and shape collections[END_REF] and semi-automatic 3-sweep modeling [START_REF] Chen | 3-sweep: extracting editable objects from a single photo[END_REF] are promising approaches for obtaining accurate image-model alignments, but no large-scale results are yet available.

Instead, we build on recent approaches for eective training from rendered views [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF] to render views of CAD models and composite on natural image backgrounds. This gives us access to virtually unlimited training data. The backgrounds provide natural-looking surrounding context and encourages the transformation φ to learn to subtract away the background context. To avoid color artifacts in the composite images, we used gray-scale image pairs and also used gray-scale images at test time. Note that contrary to prior approaches using manually-annotated scenes to increase the realism of the composite [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF], we do not directly use any object annotation in our background selection process. For the 3D models, we found that using a diverse database comprising several object categories produced better results than focusing on a target set of 3D models we aim to detect. We used as reference in all our experiments the textureless rendered views from Aubry and Russell [START_REF] Aubry | Understanding deep features with computer-generated imagery[END_REF] to train the adaptation.

Implementation details.

We used a small L 2 regularization R in all our experiments and found that it improved our results despite our very large training sets. We trained φ using stochastic gradient descent within the Torch7 framework [START_REF] Collobert | Torch7: A Matlab-like environment for machine learning[END_REF]. We used a weight decay of 5e-4, corresponding to the L 2 regularization, a momentum 0.9, and mini-batch size of 128. We started with a learning rate of 1 and reduced it every 15 epochs by a factor of 10 until convergence.

Exemplar detection with CNNs

In this section we show how the adaptation procedure in Section 4.2, together with feature computation and exemplar-based retrieval, can be incorporated into an ecient CNN-based detection routine, similar to R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], for 2D-3D exemplar detection. For a given input image, we seek to detect the bounding box location of an object in the image and return a corresponding CAD model having similar style, along with the pose of the depicted object.

Exemplar-detection pipeline.

Following the initial part of the R-CNN object detection pipeline [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], we rst extract a set of selective search windows [START_REF] Uijlings | Selective search for object recognition[END_REF] and compute CNN responses

x at an intermediate layer (e.g., CaeNet pool5 layer) for each window. We then apply our adaptation φ to these features and compare the results φ(x) to the features of dierent CAD model rendered views. Let s i (x) = S(φ(x), y i)

be the similarity between φ(x) and the features y i of the ith rendered view.

As shown in Aubry et al. [7], calibration is an important step for comparing similarity across dierent views and CAD models. Starting from the initial similarity score s i (x), we apply their ane calibration routine to compute a new calibrated similarity s i (x) = c i s i (x)+d i . The scalar parameters c i and d i are selected using a large set of random patches such that s i (x 0) = -1 and s i (x 1) = 0, where x 0 and x 1 correspond to random patch features with mean and 99.99-percentile similarity scores, respectively. This calibration leads to an expected false positive rate of 0.01% when s i (x) = 0.

We take advantage of the fact that in an exemplar-based detection setup the expected aspect ratio of the alignments are known. We remove candidate rendered-view alignments when the aspect ratio has a dierence of more than 10% between the selective search window and rendered view. Finally, we rank the remaining alignments by their score s i (x) and perform non-maximum suppression to obtain the nal detections.

4.3.2 CNN implementation.

Experiments

In this section we qualitatively and quantitatively evaluate our method and analyze dierent design choices. Based on the results presented in Section 3.2, we use cosine distance over pool4 features in all our experiments.

First, we present our main results on object-instance and object-class detection by aligning to CAD rendered views, comparing against existing base-lines (Section 4.4.1). Then, we perform an analysis of our algorithm (Section 4.4.2), study the quality of the retrieved pose (Section 4.4.3) and report computational running time (Section 4.4.4).

Detection

In this section, we demonstrate our feature-adaptation algorithm for 2D-3D detection. We consider two tasks: object-instance and object-category detection by 2D-3D alignment. For object-instance detection, we evaluated on the IKEA dataset [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF]. For object-category detection, we evaluated on the subset of Pascal VOC containing chairs used in Aubry et al. [7]. We

show qualitative and quantitative results on both benchmarks and compare against prior work.

Object-instance detection by 2D-3D alignment

For object-instance detection by 2D-3D alignment, we evaluated our approach on the IKEA dataset and followed the detection protocol outlined in Lim et al. [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF]. We report average precision detection performance in Table 4.1(top), along with baselines for this task. It can be seen that we clearly improve over the baselines for several well-represented classes. However, our mAP is smaller than the baselines. We will show that this is due to two main eects: a chance factor for classes where very few objects were annotated or had missing annotations, and a failure of our algorithm on bookcases, which we analyze in detail.

Dataset and additional annotations. Two important issues when using the IKEA object dataset for evaluating instance detection are (i) its relatively small size (we report the number of annotated instances in the rst line of table 4.1), and (ii) the partial annotations made available, with a maximum of one object per image when several are often present. To partly address these issues, we annotated all instances in the 288 test images for the classes that included more than three instances in the original dataset (except for Billy3, where the detections reported in [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] appear to correspond to a dierent model). This increases the number of annotated objects of the selected classes from 129 to 223. We report our results on our new extended annotation set in Table 4. 1(bottom). With these extended annotations our mAP is similar to [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF], but with strong dierences in the performance for the dierent objects. We have similar results or clear improvements over [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] (shown in blue in Table 4.1) for most classes, but much lower performance for bookcases (shown in red in Table 4.1).

Failures on bookcases.

Here we analyze our failures for bookcases, which and aligned to their chair rendered views. We followed their detection protocol and report average precision for the detection task. We compare our performance against the baseline of Aubry et al. [7], which also performs detection by 2D-3D alignment. We also report performance of DPM [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] and R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] Table 4.1: Instance detection performance on the IKEA object dataset [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF]. We report average precision using a bounding box overlap threshold of 0.5. Note that some categories reported in [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] have very few annotated examples. We report results for classes that include more than 3 annotated instances. The top part of the table presents results with the original annotation of [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] and the bottom part with our extended annotations. We evaluated the detection outputs provided from [START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF] using these extended annotations. *

The dataset includes three dierent but similar sizes of the same bed. Since we were not able to dierentiate visually between these three kind of beds, all were annotated with the same label. which were trained on natural images for 2D object detection. As another baseline, we report the performance of a logistic regression classier trained using synthetic images (with and without adaptation), which is similar in spirit to recent approaches that trains a 2D object detector using synthetic training images [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF]. In order to better situate our work with respect to approaches that train a classier using synthetic images with composite backgrounds [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF], we also report results for the following baselines using synthetic images composited with natural-image background as positives, and without adaptation: (a) logistic regression classier, (b) our exemplar detector. Finally, we report results for the best performing method of Peng et al. [START_REF] Peng | Learning deep object detectors from 3D models[END_REF], corresponding to their W-UG synthetic images.

We report our results in Table 4.2. With our adaptation, our method outperforms all baselines except R-CNN + SVM. We obtain an average precision of 52.3% compared to 41% for DPM, 33.9% for Aubry et al.

[7] and 29.6% for Peng et al. [START_REF] Peng | Learning deep object detectors from 3D models[END_REF]. Besides, we also tried using the method of [START_REF] Peng | Learning deep object detectors from 3D models[END_REF] with the chairs from [7], which resulted in an average precision of 9.0%. This dierence in performance is likely due to their manual selection of realistic viewpoints and models in the W-UG set.

A more detailed analysis reveals the importance of the adaptation for all the methods based only on CNN features from CAD models. Note that the benet of using the adaptation is less important when using the fc7 layer for logistic regression. This shows that unsurprisingly fc7 is less sensitive to the type of representation than conv4, and may explain the good results obtained by [START_REF] Peng | Learning deep object detectors from 3D models[END_REF][START_REF] Pepik | What is holding back convnets for detection? In Pattern Recognition[END_REF] using the fc7 layers directly. An interesting question is whether the adaptation could be replaced by synthetic images composited with natural-image backgrounds. As can be seen from Table 4.2, even though the composites help in some cases (notably in our exemplar detector), its performance still lags behind the performance obtained using the adaptation. Note that we used a single background per exemplar view. While one could include more composites per exemplar, this would excessively increase the memory requirements as one would need to store all of the additional exemplars.

Algorithm analysis

In this section we perform a study of dierent design choices of our approach. Inuence of adaptation on alignment.

In Figure 4.6, we show the top detections with and without adaptation.

Notice that while the non-adapted features have higher detection scores for CAD-like images of darker chairs on mostly white background (Fig.

Adaptation design.

As discussed in Section 4.3, the adaptation φ in Equation (4.2) can be implemented in a CNN as a fully-connected layer, followed by a ReLU nonlinearity.

We seek to study variants of φ. 4.2). Imposing adaptations with limited spatial support (conv) performed worse than a fully-connected layer. This can be understood by considering that the eect of the projection depends on the interpretation of the image as foreground object and background as clutter, a task that can be better performed globally. Using two layers for the adaptation degraded performance. Note that we observed the validation loss was better optimized using two layers. We believe this eect is due to the synthetic nature of our training data, which only approximates the relation between real and synthetic images. Finally, we found that adding a ReLU after the convolutional layer consistently increased the performance. The use of a single fully-connected layer followed by a ReLU produced the best performance. Aspect ratio threshold. experiment. As expected, increasing the threshold rst improves the results because it removes many false positives.The results are then relatively stable between 0.75 and 0.9 since both positives and negatives are discarded.

Finally, the performance drops for higher thresholds as more true positives get discarded. In all our experiments, we used an aspect-ratio threshold of 0.9.

Number of rendered views.

We studied the relative importance of the CAD model dataset size on the nal detection performance by conducting experiments over the set of 86K renders from Aubry et al. [7]. We randomly selected increasing subsets of all rendered views (Table 4.3(a)), and randomly selected increasing numbers of CAD models and used all their 62 rendered views (Table 4.3(b)). Notice that performance increases with the number of CAD renders, as expected.

Interestingly, the diversity of the CAD models plays an important role in the nal detection score. For roughly the same number of rendered views, 5 CAD models (for a total of 310 views) performs considerably worse than 200 random views.

Evaluation of the retrieved pose.

We conducted the same experiment as in Aubry et al. [7] to evaluate the quality of the retrieved poses. For the ground truth, we used the pose annotations from Pascal3D [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF].

Computational run time

Our system runs in computational time similar to R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] if all the CAD rendered views t into GPU memory. Excluding the time to compute bounding box proposals, we can align a test image to 2k rendered views in approximately 9.5 seconds on a GeForce GTX980 graphics card. We can align to more views at the expense of copying pre-computed rendered view features to the GPU memory. This can be overcome with larger-memory graphics cards, by running on multiple cards in parallel or by using optnet, presented in Section 3.1, which allows to t larger amounts of CAD rendered views into GPU memory. For 80k rendered views, our approach currently takes around 52 seconds. Similar to recent fast CNN detection pipelines [START_REF] He | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF][START_REF] Girshick | Fast R-CNN[END_REF],

our timings could be further optimized by reusing the convolutional features for each bounding box, which could potentially reduce the computational time to a fraction of a second. Filtering by aspect ratio before comparing the features could also reduce the number of tests to perform, especially in the case of a very large number of 3D views. Note that even without these improvements, our computational run times are already much faster than those presented in Aubry et al. [7].

Conclusion

We demonstrated an end-to-end CNN for 3D CAD model detection in 2D images. We showed that an adaptation of image features to closely match features of rendered views of CAD models is essential to its success. Our adaptation approach is agnostic to the feature set and could potentially benet other 2D-3D detection methods.

many elements play an important role in the quality of these results, which

have not yet been fully analyzed. In particular, several approaches have been proposed, such as a regression approach with joint training for detection [START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF][START_REF] Penedones | Improving object classication using pose information[END_REF], a direct viewpoint classication [START_REF] Tulsiani | Viewpoints and keypoints[END_REF], and a geometric structure aware ne-grained viewpoint classication [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], where the authors modify the classication objective to take into account the uncertainty of the annotations and encode implicitly the topology of the pose space. These papers however dier in a number of other ways, such as the training data or the network architecture they use, making it dicult to compare performances.

We explore systematically the essential design choices for a CNN-based approach to pose estimation and we demonstrate that a number of elements inuence the performance of the nal algorithm in an important way.

Contributions

In this chapter, we study several factors that aect performance for the task of joint object detection and pose estimation with CNNs. Using the best design options, we rationally dene an eective method to integrate detection and viewpoint estimation, quantify its benets, as well as the boost given by deeper networks and more training data, including data from ImageNet and synthetic data. We demonstrate that the combination of all these elements leads to an important improvement over state-of-the-art results on Pascal3D+, from 31.1% to 36.1% AVP in the case of the most challenging 24 viewpoints classication. While several of the elements that we employ have been used in previous work [START_REF] Penedones | Improving object classication using pose information[END_REF][START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF][START_REF] Tulsiani | Viewpoints and keypoints[END_REF], we know of no systematic study of their respective and combined eect, resulting in an absence of clear good practices for viewpoint estimation and sub-optimal performances.

Related work

Most of the related work for this chapter is covered in Chapter 2. Here we review some relevant work for this chapter.

Convolutional Neural Networks. While convolutional neural network have a long history in computer vision (e.g. [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]), their use has been generalized only in 2012 after the demonstration of their benets by Krizhevsky et al. [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] on the ImageNet large-scale visual recognition challenge [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]. Since then, they have been used to increase performances on many vision tasks.

This has been true in particular for object detection, where the R-CNN technique of Girshick et al. [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] provided an important improvement over previous methods on the Pascal VOC dataset [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF]. Relying on an independent method to provide bounding box proposals for the objects in the image, R-CNN ne-tunes a network pre-trained on ImageNet to classify these proposal as objects or background. This method has then been improved in several ways, in particular using better network architectures [START_REF] He | Deep residual learning for image recognition[END_REF], better bounding box proposals [START_REF] Pinheiro | Learning to segment object candidates[END_REF] and a better sharing of the computations inside an image [START_REF] He | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF][START_REF] Girshick | Fast R-CNN[END_REF].

Viewpoint estimation. Rigid object viewpoint estimation was rst tackled in the case of object instances with known 3D models, together with their detection [START_REF] Roberts | Machine perception of 3-D solids[END_REF][START_REF] Lowe | The viewpoint consistency constraint[END_REF][START_REF] Huttenlocher | Object recognition using alignment[END_REF][START_REF] Arandjelovi¢ | Smooth object retrieval using a bag of boundaries[END_REF][START_REF] Li | Worldwide pose estimation using 3D point clouds[END_REF][START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF]. These approaches were extended to object categories detection using either extensions of Deformable Part Models (DPM) [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF][START_REF] Glasner | Viewpoint-aware object detection and pose estimation[END_REF][START_REF] Hejrati | Analyzing 3D objects in cluttered images[END_REF][START_REF] Pepik | Teaching 3D geometry to deformable part models[END_REF], parametric models [START_REF] Zia | Detailed 3D representations for object recognition and modeling[END_REF][START_REF] Xiang | Estimating the aspect layout of object categories[END_REF] or large 3D instances collections [7,[START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF].

With the advent of Pascal3D+ dataset [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF], which extends Pascal VOC dataset [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF] by aligning a set of 3D CAD models for 12 rigid object classes, learning-based approaches using only on example images became possible and proved their superior performance. For example, Xiang et al. [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF] extended the method of [START_REF] Pepik | Teaching 3D geometry to deformable part models[END_REF], which uses an adaptation of DPM with 3D constraints to estimate the pose. CNN-based approaches, which were until the availability of the Pascal3D+ data limited to special cases such as faces [START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF] and small datasets [START_REF] Penedones | Improving object classication using pose information[END_REF], also began to be applied to this problem at a larger scale. In [START_REF] Massa | Convolutional neural networks for joint object detection and pose estimation: A comparative study[END_REF], we explored dierent pose representations and showed the interest of joint training using AlexNet [START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] and Pascal VOC [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF] data. Tulsiani and Malik [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] used a simple classication approach with the VGG16 network [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and annotations for ImageNet objects and established the current state-of-the-art on Pascal3D+. Su et al. [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF] introduced a discrete but ne-grained formulation of the pose estimation which takes into account the geometry of the pose space, and demonstrate using AlexNet that adding rendered CAD models could improve the results over using Pascal VOC data alone.

Overview

We focus on the problem of detecting and estimating the pose of objects in images, as dened by the Pascal3D+ challenge Average Viewpoint Precision (AVP) metric. In particular, we focus on the estimation of the azimuthal angle. For object detection, we use the standard Fast R-CNN framework [START_REF] Girshick | Fast R-CNN[END_REF],

which relies on region proposal but is signicantly faster than the original R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. In addition, we associate a viewpoint to each bounding box and for each object class. Indeed, since viewpoint conventions may not be coherent for the dierent classes, we learn a dierent estimator for each class.

However, to avoid having to learn one network per class, we share all but the last layer of the network between the dierent classes.

In Section 5.3, we rst discuss dierent approaches to viewpoint prediction with CNNs and in particular the dierences between regression and classication approaches. Then in Section 5.4, we introduce dierent ways to integrate the viewpoint estimation and the detection problem. Finally, in Section 5.5 we present the results of the dierent methods as well as a detailed analysis of dierent factors that impact performance.

Notations. We call N s be the number of training samples and N c the number of object classes. For i ∈ {1, ..., N s } we associate to the i-th training sample x i its azimuthal angle θ i ∈ [0, 2π[, its class c i ∈ {1, ..., N c } and the output of the network with parameters w, f w (x i). The viewpoints are often discretized and we call N v the number of bins, and θi ∈ {1, ..., N v } the bin that includes θ i . We use subscripts to denote the elements of a tensor; for example, f w (x i) k,l is the element (k, l) from tensor f w (x i). To make the notation simpler, whenever we mention a loss, we omit the weight decay regularization factor R(f w) = w 2 2 as it will be used in all our equations.

Approaches for viewpoint estimation

In this section, we assume the bounding box and the class of the objects are known and we focus on the dierent approaches to estimate their pose. chapter. The target for each approach is visualized in red. For the regression approaches, the possible values of the targets lie on a line. For the classication approaches, the predictions correspond to probability distributions on a discrete set.

Viewpoint estimation as regression

The azimuth angle of a viewpoint being a continuous quantity, it is natural to tackle pose estimation as a regression problem. The choice of the pose representation F (θ) of an azimuthal angle θ is of course crucial for the effectiveness of this regression. Indeed, if we simply consider F (θ) = θ, the periodicity of the pose is not taken into account. Thus, as highlighted in [START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF], a good pose representation F (θ) satises the following properties: (a) it is invariant to the periodicity of the angle θ, and (b) it is analytically invertible.

We explore two representations which satisfy both properties: (i) F (θ) = cos(θ), sin(θ) , probably the simplest way to represent ori- entations, used for example in [START_REF] Penedones | Improving object classication using pose information[END_REF];

(ii) F (θ) = cos θ -π 3 , cos (θ) , cos θ + π 3
, a formulation which was presented in [START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF], and that has a higher dimensionality than the previous one, allowing more exibility for the network to better capture the pose information.

These representations have dierent output dimensionality N d , respectively 2 and 3, and we designate the associated regressions by regression 2D and regression 3D respectively. Since we treat the regression independently for each class, the outputs f w (x) of the network that we train for pose estimation have values in R Nc×N d and we designate by f w (x) c,k the angular element k of the output for class c.

For training the regression with these representations, we used the Huber loss (also known as Smooth L1) on each component of the pose representation F (θ). It is known to be more robust to outliers than the Euclidean loss and provides much better results in our experiments. Our regression loss can then be written:

L reg (w) = Ns i=1 N d k=1 H(f w (x i) c i ,k -F (θ i) k) (5.1)
with H the Huber loss, dened by:

H(z) =    0.5z 2 if |z| < 1 |z| -0.5 otherwise (5.2)
Given the output f w (x) c,• of the network for a sample x of class c, we can estimate its pose simply by computing the pose of the closest point on the curve described by F (cf. Figure 5.1). Other regression approaches and loss are discussed in [START_REF] Massa | Convolutional neural networks for joint object detection and pose estimation: A comparative study[END_REF] but lead to lower performances.

Viewpoint estimation as classication

As pointed out by [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], the main limitation of a regression approach to viewpoint estimation is that it cannot represent well the ambiguities that may exist between dierent viewpoints. Indeed, objects such as a table

have symmetries or near symmetries that make the viewpoint estimation problem intrinsically ambiguous, and this ambiguity is not well handled by the representations discussed in the previous paragraph. One solution to this problem is to discretize the pose space and predict a probability for each orientation bin, thus formulating the problem as one of classication.

Note that a similar diculty is found in the problem of keypoint prediction, for which the similar solution of predicting a heat map for each keypoint instead of predicting directly its position has proven successful [START_REF] Tulsiani | Viewpoints and keypoints[END_REF].

In the case of a classication approach, the output of the network belongs to R Nc×Nv and each value can be interpreted as a log probability. We write f w (x) c,v the value corresponding to the orientation bin v for an input x of class c.

Direct classication

The approach successfully applied in [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] is to simply predict, for each class independently, the bin in which the orientation of the object falls.

This classication problem can be addressed for each object class with the standard cross-entropy loss:

L classif (w) = - Ns i=1 log exp(f w (x i) c i , θi) Nv v=1 exp(f w (x i) c i ,v) (5.3)
At test time, the predicted angular bin θ(x, c) for an input x of class c is given by θ(x, c) = arg max v∈{1,...,Nv}

f w (x) c,v (5.4)
Geometric structure aware classication

The drawback of the previous classication approach is that it learns to predict the poses without using explicitly the continuity between close viewpoints. Two neighboring bins have indeed a lot in common. This geometrical information may be especially important for ne-grained orientation prediction, where only few examples per bin are available.

A solution to this problem was proposed in [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF]. The authors nely discretize the orientations in N v = 360 bins and consider the angle estimation as a classication problem, but adapt the loss to include a structured relation between neighboring bins and penalize less angle errors that are smaller:

L geom (w) = - Ns i=1 Nv v=1 exp -d(v, θi) σ log exp(f w (x i) c i ,v) Nv v=1 exp(f w (x i) c i ,v) (5.5)
where d(v, θi) is the distance between the centers of the two bins v and θi , and σ is a parameter controlling how much similarity is enforced between neighboring bins. Following [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], we use σ = 3 for N v = 360. The inference is done as in Equation (5.4).

Classification probabilities Orientations

Joint detection and pose estimation

The methods presented in the previous section assume that the object detector is already trained and kept independent from the pose estimator. Since object detection and pose estimation relies on related information, we expect a benet from training them jointly. We thus present extensions of the methods from Section 5.3 to perform this joint training.

Joint model with regression

Two main approaches can be considered to extend the regression approach of Section 5.3.1 to jointly perform detection. The rst one, described in [START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF] is to encode respectively the presence or absence of an object by a point close or far from the regression line described by F in the space where the regression is performed. An alternative approach, discussed in [START_REF] Penedones | Improving object classication using pose information[END_REF] and illustrated in Figure 5.2, is to add an output to the regression network specifically dedicated to detection. The loss used to train the network can then be decomposed into two terms: a classication loss L det (w), which is independent on the pose, and a regression loss L reg (w) which takes into account only the pose estimation. Since state-of-the-art performance for detection are obtained using a classication loss, we selected the second option in the following.

Our network thus has two outputs: f w,det (x) ∈ R Nc+1 L j-reg (w) = L det (w) + λL reg (w)

(5.6)

We dene L reg exactly as in Equation (5.1), using the pose estimation output of the network f w,pose (x). The detection loss L det is the standard crossentropy loss for detection, using the detection part of the network output f w,det (x). We set the balancing parameter λ = 1 in our experiments.

Also, we share the weights of the detection and pose estimation network only up to the pool5 layer. This is essential to obtain a good performance, as the regression and classication losses are dierent enough that sharing more weights leads to much worse results.

Joint model with classication

A similar approach, separating two branches of the network, can be applied for classication. However, we introduce a new simpler and parameter-free way to perform jointly detection and pose estimation in a classication setup, which is illustrated in Figure 5.3. Indeed, one can simply add a component, associated to the background patches, to the output vector of the pose estimation setup of Section 5.3.2 and normalize it globally, rather than for each class independently as in Equation (5.3). Each value is then interpreted as a log probability of the object being of one class and in a given orientation bin, rather than the conditional probability of the object being in a given orientation bin knowing its class. To obtain the probability of the object to belong to one class, one can simply sum the probabilities corresponding to all the bins for this class.

Similar to Section 5.3.2, we write f w,obj (x) c,v ∈ R Nc×Nv the value of the network output corresponding to the orientation bin v for an input x of class c. We additionally write f w,bg (x) ∈ R its value corresponding to the background and associate a class c i = 0 to the elements x i in the background.

The loss, which derives from the cross-entropy, writes:

L j-classif (w) = - Ns i=1 1 c i =0 log exp(f w,bg (x i)) exp(f w,bg (x i)) + Nc c=1 Nv v=1 exp(f w,obj (x i) c,v) - Ns i=1 1 c i =0 log exp(f w,obj (x i) c i , θi) exp(f w,bg (x i)) + Nc c=1 Nv v=1 exp(f w,obj (x i) c,v) (5

Experiments

We now present experiments comparing the dierent approaches for pose estimation which were presented in the previous sections. Our experiments are based on the Fast R-CNN object detection framework [START_REF] Girshick | Fast R-CNN[END_REF], with Deep Mask [START_REF] Pinheiro | Learning to segment object candidates[END_REF] bounding boxes proposals.

We trained and evaluated our models using the Pascal3D+ dataset [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF], which contains pose annotations for the training and validation images from Pascal VOC 2012 [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF] for 12 rigid classes, as well as for a subset of ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]. We also extended the training data by adding the synthetic images from [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF]. The evaluation metric we used is the Average Viewpoint Precision (AVP) associated to Pascal3D, which is very similar to the standard Average Precision (AP) metric used in detection tasks, but which considers as positive only the detections for which the viewpoint estimate is correct.

More precisely, the viewpoints are discretized into K bins and the viewpoint estimate is considered correct if it falls in the same bin as the ground-truth annotation. We focus on the AVP24 metric, which discretizes the orientation into K = 24 bins and is the most ne-grained of the Pascal3D+ challenge [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF]. We also consider the mean AP (mAP) and mean AVP (mAVP) over all classes.

Training details

We ne-tune our networks, starting from a network trained for ImageNet classication, using Stochastic Gradient Descent with a momentum of 0.9 and a weight decay of 0.0005. We augment all datasets with the horizontallyipped versions of each image, ipping the target orientations accordingly.

During the training of the joint detection and pose estimation models, 25% of the mini-batches consist of positive examples. Our mini-batches are of size 128 except when using synthetic images. When using synthetic images, we randomly create montages with the rendered views from [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], each montage containing 9 objects, for a total mini-batch size of 137 (96 backgrounds and 32 positive patches from real images and 9 positive synthetic objects). This allows for an ecient training in the setup of Fast R-CNN.

We initialize the learning rate at 0.001, and divide it by 10 after convergence of the training error. The number of iterations depends of the amount of training data: when using only Pascal VOC data, we decrease the learning rate after 30K iterations and continue to train until 40K; when adding Im-ageNet data we decrease the learning rate after 45K iterations and continue to train until 100K; and nally, when adding synthetic data, we decrease the learning rate after 100K iterations and continue to train until 300K.

All experiments were conducted using the Torch7 framework [START_REF] Collobert | Torch7: A Matlab-like environment for machine learning[END_REF] and the full code can be found at imagine.enpc.fr/~suzano-f/bmvc2016-pose/.

Results

Comparison of the dierent approaches for pose estimation

We rst compare the dierent approaches for pose estimation from Sec- results in Table 5.1. We can rst observe that for regression, a pose representation with a higher dimensionality (3D) performs better than when using a smaller dimensionality (2D). We believe the redundancy in the representation helps to better handle ambiguities in the estimation. The classication approach however signicantly outperforms both regressions (19.3% AVP compared to 13.9% and 15.7%). Interestingly, the simplest classication approach from Section 5.3.2 performs slightly better than the geometry-aware method. We think the main reason for this dierence is that the simple classication optimize exactly for the objective evaluated by the AVP, and thus this result can be seen as an artefact of the evaluation. Note that the results could be dierent for even more ne-grained estimation where less examples per class are available. Nevertheless, since the more complex geometric structure aware approach performed worse than the direct classication baseline, we focus in the rest of this chapter on the simplest direct classication approach.

Benets of joint training for detection and pose estimation

We evaluate the benets of jointly training a model to detect the objects and predict their orientation. These benets can be of two kinds. First, the order of the detections candidates given by the new detector may favor the condent orientations and thus increase the AVP. Second, the pose estimates can be better for a given object. To evaluate both eects independently, we report in Table 5.2 the results using both the order given by the detector used in the previous section and the order given by the new joint classier.

All experiments were performed as above, with the AlexNet architecture and the Pascal VOC training data.

Comparing Table 5.2 to Table 5.1 shows two main eects. First, the mAVP is improved even when using the same classier, demonstrating im- proved viewpoint estimation with joint training. Second, the mAP is decreased, showing that the detection performs worse when trained jointly.

However, one can also notice that the best mAVP is still obtained with the joint classier. This shows that the pose estimation is better in the joint model, and also that for the case of classication the order learned when training jointly the detector favours condent poses. This is not the case for the regression approaches for which the best results are obtained using the independent detector and the jointly-learned pose estimation.

Inuence of network architectures and training data

In this section, we consider our joint classication approach, which performs best in the evaluations of the previous section, and study how its performance varies when using dierent architectures and more training data.

The comparison of the left and right columns of Table 5.3 shows that unsurprisingly the use of the VGG16 network instead of AlexNet consistently improves performances. This improvement is slightly less for the mAVP than for the mAP, hinting that the mAVP boost is mainly due to improved detection performances. architecture and includes the ImageNet images, a fact that was not demonstrated in [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF]. Note that our joint approach signicantly outperforms the state-of-the-art results [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] (currently 31.1% mAVP, based on VGG16 and ImageNet annotations) both without using synthetic data with VGG16, and with synthetic data and AlexNet architecture.

Comparison to the state of the art Table 5.4 provides the details of the AVP24 performance improvements over all classes as well as a comparison with three baselines: DPM-VOC+VP [START_REF] Pepik | Teaching 3D geometry to deformable part models[END_REF], which uses a modied version of DPM to also predict poses, Render for CNN [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF] which uses real images from Pascal VOC as well as CAD renders

for training a CNN based on AlexNet, and [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] which uses a VGG16 architecture and ImageNet data to classify orientations for each object category.

It can be seen that we improve consistently on all baselines except for the chair class. A more detailed analysis shows that this exception is related to the dierence between the ImageNet and Pascal chairs. Indeed, when adding the ImageNet data to the Pascal data, the detection performance for chairs drops from 34.5% AP to 19.23% AP. Similarly, the dierence between the very dierent appearance of the rendered 3D models and real images is responsible for the fact that synthetic training data decreases performance on boats, motorbikes and trains. In average, we still found that synthetic images boost the results by 1.7% mAVP.

Finally, Table 5.5 provides the comparison between our full pipeline and the baselines for the 4, 8 and 16 viewpoint classication tasks, showing that our improvement of the state of the art is consistently high.

Conclusion

Combining our joint classication approach to the improvements provided by

a

Discussion

This chapter presents a summary of the contributions presented in this thesis, as well as possible directions for future work.

Contributions

In this thesis, we explored the possible use of deep CNNs to relate threedimensional information to photographs of objects. In Chapter 3, we have conducted preliminary studies that were used for the remaining of this dissertation, which can be summarized as follows:

• In Section 3.1, we have presented the core concepts of optnet, a library built on top of Torch7 that automatically optimizes the memory usage in neural networks. By exploiting the optimizations implemented by optnet, it is possible to use deeper architectures in limited resources environments. optnet was extensively used in the experiments presented in this dissertation, some of which wouldn't be possible to be performed due to lack of GPU memory.

• In Section 3.2, we have presented a study of the eciency of o-theshelf pre-trained CNNs for the task of 3D model retrieval from real photographs. We have showed that the CNN features are robust enough so that it is possible to use them to perform 3D model retrieval, despite the large appearance gap between real images and rendered views.

• In Section 3.3, we have proposed a multi-view extension of the approach presented in Section 3.2, which exploits the information of an ensemble of query images to retrieve the best matching 3D model. We • In Chapter 5, we have studied dierent ways of formulating the viewpoint estimation problem using a CNN architecture. We have showed that a formulation that jointly optimizes over the detection and the viewpoint estimation is benecial, and that an approach that discretizes the orientations performs best. With the combination of synthetic renders and our formulation for viewpoint estimation, we have improved over the previous state-of-art on Pascal3D+ dataset [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF] by 5 mAVP over all the viewpoint metrics, setting a new baseline for the viewpoint estimation task.

6.2 Perspectives

Improving memory optimization in training mode

In Section 3.1, we have presented a library that automatically optimizes the memory use in Torch7 neural networks. Even though the initial goal was to use it in inference mode, it has found a lot of interest in the Torch7 community thanks to the training mode as well. Our current backward computation graph creation is sub-optimal, as it does not remove a number of spurious edges that appear due to the container representation. Properly handling the computation graph would allow for better optimizations, allowing to t larger models in memory.

Object compositing

In Section 3.2, we have presented a method that can retrieve a 3D model similar to a given picture by matching the object to many 3D models and selecting the most condent one. When the number of models increases, this requires comparing a large number of templates to the image. We would like to explore the fact that objects can naturally be decomposed into parts, and those parts can be shared among dierent 3D models. By combining parts from dierent models, we can expect to predict better 3D information from an image, as there might not be a single 3D model that explains the object.

Retrieval with millions of objects

Scaling our 3D model retrieval pipeline to millions of images requires a number of optimizations. One possibility is to study more compact feature representations, which would allow for smaller memory footprint and faster runtime for performing nearest neighbor. Another possibility, orthogonal to the rst one, would be to have a more ecient nearest neighbor operation, which does not require to compute the comparison of the query image to all objects of the database.

Additional constraints in multi-view instance retrieval

In Section 3.3, we have presented an approach for multi-view instance retrieval using CNNs. Additional constraints could be exploited to improve the retrieval. For example, by exploiting the calibration (camera pose estimation) between dierent images, it would be possible to enforce a 3D model viewpoint consistency between images. Another possibility would be to use an out-of-the-box object viewpoint estimator, like the one presented in Chapter 5, to re-weight the matching scores taking the viewpoint probabilities into account. Besides, a current limitation of our method appears when the query object is occluded. Modeling the occlusion inside the method would allow to handle such cases, improving retrieval accuracy in cluttered environments.

Metric learning for domain adaptation

In Chapter 4, we have presented our framework for detecting 3D models in 2D images. The core of our method is based on learning an adaptation that makes the features from the real images similar to the features from the rendered views. Instead of dening by hand a similarity function to compare features from dierent domains, we might instead learn how we should compare the images from dierent domains. From our experience when designing the adaptation, we saw that adding more layers to the adaptation reduced the detection accuracy, probably because the training data that we used for learning the adaptation is only an approximation of the task we want to address. In order to learn more complex representations, instead of using a synthetic dataset for learning the adaptation, we might need large amounts of pairs of real images and aligned 3D models, which is however dicult to acquire.

 (a) Instance retrieval. Given a query image (left), nd the 3D model and orientation that is the closest to the object depicted in the query image. (b) 3D model detection. Given a 3D model (or a collection of 3D models), nd and align in a photograph all possible instances of the model.

θ

 (c) Ob ject pose estimation. Estimate in an image the pose of any object of a set of pre-dened categories.

Figure 1 . 1 :

 11 Figure 1.1: The three main tasks addressed in this thesis.

Figure 1 . 2 :

 12 Figure 1.2: Possible applications of the work developed in this thesis.

Figure 1 . 3 :

 13 Figure 1.3: Small subset of the 3D models used in this work for the chair category. On devices with limited memory, leveraging large amounts of 3D models becomes challenging.

Figure 1

 1 Figure 1.4: For the same object in the same viewpoint, the visual appearance can drastically change between a photograph and a rendered 3D model.

Figure 1 . 5 :

 15 Figure 1.5: Challenges for pose prediction. (a) For the same category, visual appearance of dierent instances can greatly vary. (b) On the other hand, small angle dierences may not signicantly change the appearance of an object.

 valued targets is approximated by a linear function. The parameters of the linear mapping can be adjusted to better explain the training examples. Machine Learning is usually divided in three subelds: Supervised Learning: given input examples with their corresponding labels, the goal of supervised learning is to learn a function which maps the input to the labels, such that predictions can be made on unseen data; Unsupervised Learning: in the unsupervised learning setting, only the input examples are given, and the algorithm tries to discover structure or patterns in the data. Clustering is an example of an unsupervised learning algorithm;

 is possible that the model exactly memorizes the training examples, which are often noisy, and possibly performs poorly in unseen examples, because it starts to model the underlying noise, as illustrated in Figure 2.1.

Figure 2 . 1 :

 21 Figure 2.1: Illustration of overt. Given a subset of noisy points following an ane distribution, merely tting a polynomial on those points can lead to bad predictions.

 given the values of the input variable x ∈ R N D , where N c is the dimensionality of the target variables, and N D is the dimensionality of the input variables. The mapping function g : Y → T can be the identity mapping g : y → y, so predictions are performed by evaluating the model f w parametrized by w. Regression models are widely used for prediction. One example of a regression model is the linear regression. In such a model, the dependency between the inputs and the targets is approximated by a linear function. Let w ∈ R Nc×(N D +1) be the parameters of the model. The parameters include both a multiplicative factor of dimension R Nc×N D as well as an additive bias of dimension R Nc .

Figure 2 . 2 :

 22 Figure 2.2: Illustration of the perceptron, for an input x of dimension 3 and a single output node.

Figure

 Figure 2.2.

Figure 2 . 3 :

 23 Figure 2.3: Illustration of a feed-forward neural network with one hidden layer.

Figure 2

 2 Figure 2.4: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed line).Figure from [68].

 Figure from [68]. down-sampling, which uses the maximum operation in a local neighborhood to aggregate the feature representation.

Figure 2 . 5 .

 25 Figure 2.5. Using a network with such a size was without precedents,

Figure 2 . 5 :

 25 Figure 2.5: An illustration of the network architecture presented in [68], also called AlexNet in the literature. It consists of 5 convolutional layers, followed by 3 fully-connected layers. Figure from [68].

Figure 2. 6 .

 6 Training larger and deeper networks Simonyan et al.[START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] proposed a deep CNN architecture which replaces large convolutional lters present in the original architecture from[START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] by a series of 3 × 3 lters, with ReLU non-linearities in between. For example, by replacing one 5×5 lter by two 3×3 lters, the eective receptive eld remains the same, meaning that the same region of the image is covered by the convolutions. This factorization increases the number of non-linearities present in the network and additionally decreases the amount of parameters. This was shown very benecial, and greatly improves the representational power of the model, leading to an important improvement in terms of classication accuracy.Shortly after, Ioe and Szegedy proposed Batch Normalization[START_REF] Ioe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], a simple technique that removes the covariate shift from the feature representations by normalizing the feature maps over each mini-batch. This also has the positive advantage that the outputs of each layer are in the same range. Batch Normalization allows for a faster training of the networks, and eliminates the vanishing gradient problem.

Figure 2 . 6 :

 26 Figure 2.6: Visualization of what activates the most each neuron in a CNN trained for classication on ImageNet 2012 training set, for dierent layers. Each image on the left contains reconstructed patterns from the validation set of ImageNet 2012 that cause high activations in a given feature map. On the right, the corresponding image patches for each feature map are shown.

Figure

 Figure by Zeiler and Fergus[START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF].

 Standard datasets have helped compare computer vision algorithms in the same setup. Pascal VOC Challenge[START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF] has been one of the most inuential datasets for computer vision. To give some context, in the Pascal VOC 2007 Challenge, the top performing method achieved a mean Average Precision of 21%[START_REF] Felzenszwalb | A discriminatively trained, multiscale, deformable part model[END_REF], by using a multi-scale deformable parts model based on HOG features. By 2016, performance has surpassed 85%[START_REF] He | Deep residual learning for image recognition[END_REF] by using very deep networks trained end-to-end for the detection task. More recently, a more challenging dataset named Common Objects in Context[START_REF] Lin | Microsoft COCO: Common objects in context[END_REF] (also known as COCO) was released. With 80 classes and more than 200k images and 500k object instances segmented, it provides a new extremely challenging setup for object detection and instance segmentation.

2. 3 . 1

 31 Figure 2.7: DPM [34] object detection framework. (a) coarse root lter, (b) high resolution parts lters and (c) spatial model for the location of each part. Figure from [34].

 , Felzenszwalb et al. proposed a discriminatively trained, multiscale deformable parts model (DPM) that greatly improved detection performance on Pascal VOC 2006. Their system, illustrated in Figure 2.7, uses a low resolution root lter, combined with high-resolution part lters. The object parts are treated as latent variables and are learned together with the classiers.

3 . 1 .

 31 After the impressive classication results ob-tained by Krizhevsky et al. on the ImageNet Large Scale Visual Recognition Challenge in 2012 [68], there was a vigorous discussion about the signicance of those results to the computer vision community 1 . The main concern was to know to what extent the CNN classication results from a CNN trained on

 , Girshick et al. propose Region-CNN (R-CNN), where bounding box proposals from Selective Search [114] are used to restrain the search space for the possible locations of the objects, and the last classication layer of the CNN is replaced by a randomly-initialized layer. The R-CNN detection system is illustrated in Figure 2.8. Each region is fed to the CNN and classied between background or one of the target classes (20 in the case of Pascal VOC 2012).

Figure 2 . 8 :

 28 Figure 2.8: R-CNN object detection framework. Figure from [44].

 Figure 2.9: Object instance-level alignment by Lawrence Roberts [93].

Figure 2 . 10 :

 210 Figure 2.10: Render for CNN object category viewpoint estimation framework. Figure from [107].

[107]

 107 introduce a discrete but ne-grained formulation of the pose estimation which takes into account the geometry of the pose space, and demonstrate using AlexNet[START_REF] Krizhevsky | ImageNet classication with deep convolutional neural networks[END_REF] that adding rendered CAD models could improve the results over using Pascal VOC data alone. Their framework is illustrated in Figure2.10. Recently, ObjectNet3D[START_REF] Xiang | Objectnet3d: A large scale database for 3d object recognition[END_REF], a new large-scale dataset for category-viewpoint estimation was made available. ObjectNet3D contains 100 categories and 90k images, and provides a new challenging setup for category-viewpoint estimation.

 The corresponding computation graph. The same colors were used to represent corresponding modules between the container representation and the computational graph representation.

Figure 3 . 1 :

 31 Figure 3.1: Dierent model representations.

Figure 3 . 2 :

 32 Figure 3.2: Illustration of memory optimization on the forward pass. Samecolor corresponds to the same storage. For ease of visualization, we show the storage id for every module. Instead of allocating 21 dierent buers for the output tensors, our optimization only requires 7 of them.

Figure 3 . 3 :

 33 Figure 3.3: CNNs for exemplar-based retrieval. We consider each 3D model as a number of 2D rendered views, and we use a pre-trained CNN to compute a feature representation for each rendered view. For a given query image, we compute its feature representation using the same CNN, and compare it to the features from the rendered views using a similarity metric. The rendered view with the highest similarity corresponds to the retrieved model.

Figure 3 . 4 :

 34 Figure 3.4: Illustrative examples from the IKEAobject dataset. In the rst two rows, we show original images from the dataset, before cropping in an object-centric manner single. In the bottom row, we show rendered views of the 3D models available with the dataset.

Figure 3 . 5 :

 35 Figure 3.5: Top nearest neighbor retrieval using features from dierent layers from the CaeNet network ne-tuned for detection using R-CNN framework, using cosine similarity and the same xed model. Retrieval results from convolutional features provides better orientation than features from fullyconnected layers.

Figure 3 . 6 :

 36 Figure 3.6: Benets of using 3D models for image-based rendering (IBR). By aligning a 3D model from a car to the scene, the quality of the rendering can be greatly improved. (a) initial scene reconstruction from multiple images, used as a guide for IBR, (b) 3D model of a car aligned to the reconstructed scene, (c) rendering result of a standard IBR method, (d) rendering result using the aligned 3D model to the scene.

For

 each cropped image I n , with n ∈ {1, . . . , N }, we compute a matching score s m,v n for every 3D model m ∈ M and viewpoint v ∈ V following the technique introduced in Section 3.2. Given those matching scores, we look for a single 3D model which best aligns with all the images. Let us consider the matching score of each model m for each image n as follows:

P

 (m | I 1 , I 2 , . . . , I N) the normalizing constant Z = N n=1 Z(I n) is independent from m and can be removed from the maximization. By replacing (3.5) in (3.8), we have: we have computed the scores s m,v n following the technique from Section 3.2, we use equation (3.9) to obtain the model that best aligns with the set of images.

Figure 3 .Figure 3 . 8 :Figure 3 . 9 :

 33839 Figure 3.9 illustrates this limitation of our method.

 [7]. We show state-of-the-art exemplar detection performance on IKEA instances and out-perform the discriminative element approach of Aubry et al.[7] both in terms of accuracy and speed. The extended annotations for the IKEA object dataset, a new diverse dataset of textured and non-textured rendered views of CAD models we used to learn the adaptation, and our full code are available at http://imagine.enpc. fr/~suzano-f/exemplar-cnn/.

Figure 4 . 1

 41 Figure 4.1 shows our 2D-3D exemplar detection pipeline. We start by computing CNN features for an image corresponding to a selective search window, along with CNN features for rendered views of CAD models. Due to the large appearance gap across the two domains, we learn how to adapt features of natural images to better match features for rendered views (Section 4.2).

Figure

 Figure 4.1:

Figure 4 . 2 :

 42 Figure 4.2: Adapting real images to rendered views. A transformation φ is learned such that it brings features from the real images closer to the features from the CAD rendered views.

Figure 4 . 3 :

 43 Figure 4.3: Examples of image pairs used for learning the adaptation.

 Figure 4.3 shows four representative image pairs from our adaptation data (top object rendered views; bottom rendered views composited with natural image backgrounds).

Figure 4 .

 4 Figure 4.1 shows our CNN for 2D-3D exemplar detection. Our network starts with layers corresponding to a CNN trained on a dierent task (e.g., CaeNet [65] trained for ImageNet classication in our experiments) until an intermediate layer (e.g., pool5). Next, the resulting features pass through the adaptation layers corresponding to φ, implemented as a fully-connected layer followed by a ReLU.The resulting adapted features are compared to the exemplar renderedview features. Several standard similarity functions, such as dot product and cosine similarity, can be implemented as CNN layers. For example, cosine similarity can be implemented by a feature-normalization layer followed by a fully-connected layer. The weights of the fully-connected layer correspond to a matrix Y of stacked unit-normalized features for the exemplar rendered views, computed in an oine stage. While the ane calibration could be implemented as an independent layer, we incorporated it directly into the fully-connected layer by replacing the matrix rows by Y i ← c i Y i and adding a bias d i corresponding to each row i. The nal exemplar rendered-view scores is Y φ(x) + d given image features x, and can be computed by a single forward pass in a CNN.

Figure 4 . 4 :

 44 Figure 4.4: Example images of the bookcases missed by our algorithm, most of which are lled with books.

 are very poor in contrast to other categories where they matched or exceeded the baselines. Inspecting the bookcases missed by our algorithm, some of which are present in Figure 4.4, almost all of them consist of highly cluttered examples, e.g., bookcases lled with books of dierent colors. We veried that for our extended annotations, only 14% of billy1 bookcases are empty, whereas billy2 and billy4 do not have any non-cluttered examples in the dataset. Looking at our top false positives in Figure 4.5 conrms this, since we nd many parts of empty bookcases or bookcases from other categories. The rest of the negatives is explained by the fact that the back-and sideviews from the bookcases CAD models, i.e. half of the views we use, have almost no discriminative features, and thus, in the absence of hard negative mining, generate many false positive. Object-category detection by 2D-3D alignment For object-category detection by 2D-3D alignment, we evaluated our approach on the subset of the Pascal VOC dataset containing images of nondicult, non-occluded, and non-truncated chairs used in Aubry et al. [7],

Figure 4 . 5 :

 45 Figure 4.5: Top 10 detections for the billy1 IKEA model. Note that the rst good detection is counted as negative with the original annotation because it was not annotated in the dataset, but is counted as positive with our extended annotations. Most of our other detections are dierent bookcases or parts of bookcases.

Figure 4. 6 :

 6 Figure 4.6: Top detections without and with adaptation on the Pascal VOC chair subset [7]. Notice that while the alignments are good with and without adaptation, detection without adaptation returns dark chairs having CADlike white backgrounds. Detections with adaptation include brighter objects and cluttered backgrounds.

 (a) Top false positives without adaptation (b) Top false positives with adaptation

Figure 4

 4 Figure 4.7: Top-ranked false positives without and with adaptation on the Pascal VOC chair subset of [7]. Since there were several false positives per image without adaptation, we only show the best ranked for each image. The false positives without adaptation occur on uniform background patches. With adaptation, this eect largely disappears and the false positives correspond to patches that look like chairs or chair parts.

 4.6a), the adaptation allows us to detect chairs of all colors in natural cluttered scenes (Fig. 4.6b). Similarly, we show the top false positives in Figure 4.7. Notice that without adaptation the top false positives correspond to regions with uniform background (Fig. 4.7a), while adaptation yields chair-shaped false positives similar to an object detector trained on natural images only (Fig. 4.7b).

Figure 4 . 8 :

 48 Figure 4.8: Average precision for dierent adaptation functions φ as a function of the aspect ratio threshold.

Figure 4 . 8

 48 Figure 4.8 shows the average precision for dierent variants of φ as a function of the aspect ratio threshold. Notice that all of the adaptation variants that we tried performed better than without adaptation (17.9% AP from Table4.2). Imposing adaptations with limited spatial support (conv)

Figure 4 . 8

 48 Figure 4.8 shows the evolution of the average precision as a function of aspect ratio threshold for dierent adaptations on the Pascal VOC subset detection

 Figure 4.9: Azimuth angle error for correct detections at 25% recall.

Section 5 . 3 .Figure 5 . 1 :

 5351 Figure 5.1: Dierent approaches to orientation prediction discussed in this

Figure 5 . 2 :

 52 Figure 5.2: Joint model with regression. For each category, a continuous viewpoint prediction is performed. The detection and the viewpoint estimation are jointly trained, and the category with the highest detection score determines the orientation.

Figure 5 . 3 :

 53 Figure 5.3: Joint model with classication. The orientations are discretized into bins, and the detection and viewpoint estimation are jointly trained using cross-entropy loss. During test time, the detection score for a category is the sum of the detection scores for that category over all orientations.

. 7)

 7 At inference, the score associated to the detection of an object x for class c is S(x, c) = Nv v=1 exp(f w,obj (x) c,v) exp(f w,bg (x)) + Nc c =1 Nv v=1 exp(f w,obj (x) c ,v) (5.8)

tion 5 . 3 .Table 5 . 1 :

 5351 We use a xed object detector based on the AlexNet architecture, trained for detection on Pascal VOC 2012 training set and we report the Dierent approaches for pose estimation with AlexNet architecture, Pascal VOC 2012 data, and using a xed detector.

For the training

 data, we rst progressively add training images from Im-ageNet to the training images from Pascal VOC. The full subset of the Im-ageNet dataset annotated in Pascal3D+ contains in average approximately 1900 more images per class, but is strongly unbalanced between the dierent classes. The analysis of these results shows consistent improvements when the training set includes more data. Interestingly, the mAVP is improved more than the mAP, showing that the additional data is more useful for pose estimation than for detection. The addition of synthetic data (2.4M positive examples) improves the results even more, demonstrating that the amount of training data is still a limiting factor even if one uses an AlexNet AlexNet VGG16

 have applied this technique in the pipeline of an image-based rendering algorithm, considerably improving the quality of the rendering on reective surfaces of cars. 107 These studies were the basis for the two main contributions of this thesis which can be summarized as follows: • In Chapter 4, we have presented our 2D-3D exemplar-based detection, which uses 3D models and CNNs to perform instance detection on real images. Without using any real annotated image, our technique outperforms previous approaches based on exemplar detection, and performs almost on par with R-CNN technique when evaluated on the subset of Pascal VOC 2012 validation containing only non-occluded and non-truncated instances of chairs.

 1} be the output of the perceptron model. In order to nd the set of parameters w that best explains the dataset D, we perform stochastic parameter updates for every training pair (x i , t i)

	in D following:		
	w ← w + (t i -y i)x i ,	(2.14)
	and the updates from (2.14) are performed either for a predetermined number
	of iterations, or when the iteration error	1 Ns	Ns i=1 |t i -y i | is less than a pre-
	dened threshold.		

 et al. [7] propose a technique for detecting and retrieving the most similar 3D model and orientation in a

image. It consists of three steps: (i) representing each model as a collection of view-dependent mid-level visual elements learned from rendered views, (ii) a calibration of the dierent visual elements and (iii) the matching of the visual elements on the test images, which allows small deformations but preserves the viewpoint and style constraints. While their approach detects and aligns instances, as the techniques presented in Section 2.4.1, because they leverage a large number of instances for the same category, detection and pose estimation for whole categories is possible.

2.4.3 Category pose estimation

As with object detection presented in Section 2.3.1, initial work on category pose estimation focused either on faces or cars. One of the rst works on category pose estimation which was able to reliably detect objects in a wide range of orientations is the paper of Schneiderman and Kanade

[START_REF] Schneiderman | A statistical method for 3D object detection applied to faces and cars[END_REF]

. They start by discretizing the possible orientations of each category, and learn separate object detectors for dierent views.

Most datasets for category pose estimation until the 2010's were restricted to single categories, approximate orientations, or were not publicly available. In order to have a standard and challenging dataset for categoryviewpoint estimation comprising several categories, Xiang et al. propose the Pascal3D+ dataset

 3. Finally, in Section 3.3, we propose a simple extension of the technique presented in Section 3.2 for the case where the query consists of a set

of images of the same object, instead of a single image. By leveraging several images from dierent viewpoints, the retrieval can be made more robust as it can automatically correct ambiguities present in the single image case. Applications include image-based rendering.

 Two computation modes are present in Torch7 neural network package: inference mode and training mode. Those modes are only relevant for modules that behave dierently during training or test time, such as dropout or batch normalization. Thus, Torch7 does not treat dierently networks that are used for evaluation to networks that are used for training. It allocates all the necessary elements needed to perform training, such as the gradients with respect to the parameters, even if they are not needed as the network is used for evaluation.

 Example of a model representation via containers, with the corresponding code.

	model = nn.Sequential() cont = nn.ParallelTable()		Model
	subcont = nn.Sequential()	
	subcont:add(nn.Linear(2,2)):add(nn.ReLU())
	:add(nn.Linear(2,2))	
	cont:add(subcont) cont:add(nn.Linear(2,2))		nn.Sequential Container
	model:add(cont)		
	model:add(nn.PairwiseDistance(2))	
	model:add(nn.Linear(2,1))	
		nn.ParallelTable Container	nn.PairwiseDistance Module	nn.Linear(2 > 1) Module
		nn.Sequential Container	nn.Linear(2 > 2) Module
	nn.Linear(2 > 2) Module	nn.ReLU Module	nn.Linear(2 > 2) Module
	(a)		

Table 3 .

 3 1: Summary of optimization results for a batch size of 1 in inference mode, without using cudnn. Description for each column is present in the main text.

Table 3 .

 3 2: Summary of optimization results for a batch size of 1 in inference mode, using cudnn. Description for each column is present in the main text.

	Network	before (MB) tot out par tot out par tot out par after (MB) Relative (%)
	alexnet	465	3	462	232	1	231	50	75	50
	vgg	1114 58 1056 553	25 528	50	57	50
	googlenet 180	34	146	88	15	73	51	56	50
	resnet18 109	20	89	53	8	45	51	61	50
	resnet152 632 173 459	243	14 229	61	92	50
	Network	before (MB) tot out par tot out par tot out par after (MB) Relative (%)
	alexnet	854	392	462	327	96	231	62	75	50
	vgg	8428 7372 1056 3664 3136 528	57	57	50
	googlenet 4538 4392 146 1993 1920 73	56	56	50
	resnet18 2613 2524	89	1025 980	45	61	61	50
	resnet152 22583 22124 459 1994 1764 230	91	92	50

Table 3 .

 3

3: Summary of optimization results for a batch size of 128 in inference mode, using cudnn. Description for each column is present in the main text.

Table 3

 3

	.4 presents the optimization

Table 3 .

 3 4: Summary of optimization results for a batch size of 128 in training mode, using cudnn. Description for each column is present in the main text.

Table 3

 3

	.5

Table 3 .

 3

5: Instance retrieval accuracy on the IKEAobject dataset

[START_REF] Lim | Parsing IKEA objects: Fine pose estimation[END_REF]

for dierent networks, dierent layers (rows) and dierent similarity measures (cols). In the second column, we indicate the dimensionality of the features extracted in each layer. accuracy is computed as the percentage of the number of good retrievals divided by the total number of cropped images. Best results are consistently obtained by considering the combination of cosine similarity with the pool4

 with and without SVM, both without bounding box regression,

	chair bookcase sofa table bookcase desk bookcase bed stool poang billy1 ektorp lack billy2 expedit billy4 malm2 poang mAP Original annotations of [76]	40 18 13 20 10 8 6 7 7	27.0 24.3 7.3 14.0 26.6 18.8 32.6 22.6 14.8 20.89
	class	Number of instances et al. [76] Lim DPM [34]

Table 5 .

 5 2: Jointly training for detection and pose estimation with AlexNet architecture and Pascal VOC 2012 data.

		Joint detector	Independant detector
	Method	mAP	mAVP24	mAP	mAVP24
	Joint Regression 2D	49.2	15.7	51.6	16.4
	Joint Regression 3D	49.6	17.1	51.6	17.4
	Joint classication	48.6	21.1	51.6	20.5

Table 5 .

 5 3: Inuence of the amount of training data and network architecture on our joint classication approach.

	Training data	mAP	mAVP24	mAP	mAVP24
	Pascal VOC2012 train	48.6	21.1	56.9	27.3
	+ 250 per class	51.6	25.0	58.0	30.0
	+ 500 per class	53.8	26.5	59.0	31.6
	+ 1000 per class	53.6	28.3	60.0	32.9
	+ full ImageNet	52.8	28.4	59.9	34.4
	+ synthetic data	55.9	31.5	61.6	36.1

Table 5 .

 5 deep architecture and additional training data, we increase state-of-the-art performance of pose estimation by 5% mAVP. We think that highlighting the dierent factors of this improvement and setting a new baseline will help and stimulate further work on viewpoint estimation. 4: Summary of results and comparison with baselines using AVP24. .0 23.6 68.9 46.3 15.2 29.3 49.4 35.6 47.0 37.3 40.6Table 5.5: Comparison with state of the art using AVP4, AVP8 and AVP16.

	[112] AVP4 63.1 59.4 23.0 69.8 55.2 25.1 24.3 61.1 43.8 59.4 55.4 49.1 70.3 67.0 36.7 75.4 58.3 21.4 34.5 71.5 46.0 64.3 63.4 55.4 Ours AVP4 24.7 20.5 59.5 43.7 53.3 45.6 44.5 [112] AVP8 57.5 54.8 18.9 59.4 51.5 66.0 62.5 31.2 68.7 55.7 19.2 31.9 64.0 44.7 61.8 58.0 51.3 Ours AVP8 20.8 18.5 38.8 33.5 42.5 32.9 36.0 [112] AVP16 12.7 64.6 42.7 46.6 42.0 51.4 43Ours AVP16	Method measure aero bike boat bus car chair table mbike sofa train tv mAVP	+ ImageNet data 42.4 37.0 18.0 59.6 43.3 7.6 25.1 39.3 29.4 48.1 28.4 34.4 43.2 39.4 16.8 61.0 44.2 13.5 29.4 37.5 33.5 46.6 32.5 + synthetic data 36.1	+ VGG16 instead of AlexNet 26.3 29.0 8.2 56.4 36.3 13.9 14.9 27.7 20.2 41.5 26.2 27.3	+ our joint training 24.4 16.2 4.7 49.2 25.1 7.7 10.3 17.7 14.8 36.6 25.6 21.1	Classif. approach & AlexNet 21.6 15.4 5.6 41.2 26.4 7.3 9.3 15.3 13.5 32.9 24.3 19.3	Viewpoints & Keypoints [112] 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1	Render For CNN [107] 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8	DPM-VOC+VP [90] 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6	Method aero bike boat bus car chair table mbike sofa train tv mAVP24

Chapter 5

Pose Estimation

In this chapter, we present our study of the task of object category viewpoint estimation using Convolutional Neural Networks (CNNs). As discussed in Section 2.4.3, dierent ways of formulating this problem have been proposed and the competing approaches have been explored with very dierent design choices. This chapter presents a comparison of these approaches in a unied setting as well as a detailed analysis of the key factors that impact performance. Followingly, we present a new joint training method with the detection task and demonstrate its benet. We also highlight the superiority of classication approaches over regression approaches, quantify the benets of deeper architectures and extended training data, and demonstrate that synthetic data is benecial even when using ImageNet training data. By combining all these elements, we demonstrate an improvement of approximately 5% mAVP over previous state-of-the-art results on the Pascal3D+ dataset [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF]. In particular, for their most challenging 24-view classication task, we improve the results from 31.1% to 36.1% mAVP.

Introduction

Joint object detection and viewpoint estimation is a long-standing problem in computer vision. While it was initially tackled for single objects with known 3D models [START_REF] Roberts | Machine perception of 3-D solids[END_REF][START_REF] Lowe | The viewpoint consistency constraint[END_REF][START_REF] Huttenlocher | Object recognition using alignment[END_REF], it was progressively investigated for complete object categories. The interest in this problem has recently increased both by the availability of the Pascal3D+ dataset [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF], which provides a standard way to compare algorithms on diverse classes, and by the improved performance of object detection, which encouraged researchers to focus on extracting more complex information from the images than the position of objects.

Convolutional Neural Networks were recently applied successfully to this task of object category pose estimation [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF][START_REF] Tulsiani | Viewpoints and keypoints[END_REF], leading to large improvements of state-of-the-art results on the Pascal3D+ benchmark. However