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Abstract

The recent availability of large catalogs of 3D models enables new possibilities

for a 3D reasoning from photographs. This thesis investigates the use of

convolutional neural networks (CNNs) for relating 3D objects to 2D images.

We �rst introduce two preliminary studies that are used throughout this

thesis: an automatic memory reduction method for deep CNNs, and a study

of CNN features for cross-domain matching. In the �rst one, we develop

a library built on top of Torch7 which automatically reduces up to 91% of

the memory requirements for deploying a deep CNN. In the second one, we

study the e�ectiveness of various CNN features extracted from a pre-trained

network for retrieving images from di�erent modalities (real or synthetic

images). We show that despite the large cross-domain di�erence between

rendered views and photographs, it is possible to use CNN features for in-

stance retrieval. We also present a multi-view extension and demonstrate an

application to image-based rendering.

We then present a framework to perform 3D instance detection in images:

given a 3D model (or a set of 3D models) and an image we locate and align the

model in the image. We show that simply using CNN features is not enough

for this task, and we propose to learn a transformation that takes the features

from the real images close to the features from the rendered views. We

evaluate our approach both qualitatively and quantitatively on two standard

datasets: the IKEAobject dataset, and a subset of the Pascal VOC 2012

dataset of the �chair� category, and we show state-of-the-art results on both

of them.

Finally, we move away from instances and attempt to extract 3D in-

formation for a full object category. There has been several recent uses of

CNNs for the task of object viewpoint estimation, sometimes with very dif-

ferent design choices. We present these approaches in an uni�ed framework

and we analyse the key factors that a�ect performance. We propose a joint

training method that combines both detection and viewpoint estimation and

performs better than any existing approach. We also study the impact of

the formulation of viewpoint estimation either as a discrete or a continuous

task, we quantify the bene�ts of deeper architectures and we demonstrate

that using synthetic data is bene�cial. With all these elements combined,
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we improve over previous state-of-the-art results on the Pascal3D+ dataset

by a approximately 5% of mean average viewpoint precision.



Résumé

La récente mise à disposition de grandes bases de données de modèles 3D

permet de nouvelles possibilités pour un raisonnement à un niveau 3D à

partir des photographies. Cette thèse étudie l'utilisation des réseaux de

neurones convolutifs (CNN) pour mettre en relation les modèles 3D et les

images.

Nous présentons tout d'abord deux études préliminaires qui sont utilisées

tout au long de cette thèse : une méthode pour la réduction automatique de

la mémoire pour les CNN profonds, et une étude des représentations internes

apprises par les CNN pour la mise en correspondance d'images appartenant

à des domaines di�érents. Dans un premier temps, nous présentons une

bibliothèque basée sur Torch7 qui réduit automatiquement jusqu'à 91% des

besoins en mémoire pour déployer un CNN profond. Dans un second temps,

nous étudions l'e�cacité des représentations internes des CNN extraites d'un

réseau pré-entraîné lorsqu'il est appliqué à l'identi�cation d'images provenant

de modalités di�érentes (réelles ou synthétiques). Nous montrons que malgré

la grande di�érence entre les images synthétiques et les images naturelles, il

est possible d'utiliser des représentations des CNN pour l'identi�cation du

modèle de l'objet. Nous présentons aussi aussi une extension multi-vue que

nous illustrons avec une application pour le rendu basé sur l'image.

Nous présentons ensuite une méthode pour la détection d'instances 3D

sur les images : à partir d'un modèle 3D (ou un ensemble de modèles 3D)

et d'une image, le modèle est localisé et aligné sur l'image. Nous montrons

que l'application directe des représentations obtenues par un CNN ne suf-

�t pas, et nous proposons d'apprendre une transformation qui rapproche

les représentations internes des images réelles des représentations des im-

ages synthétiques. Nous évaluons notre approche à la fois qualitativement

et quantitativement sur deux jeux de données standard: le jeu de données

IKEAobject, et le sous-ensemble du jeu de données Pascal VOC 2012 con-

tenant des instances de chaises, et nous montrons des améliorations sur cha-

cun des deux.

En�n, nous nous éloignons des instances et nous essayons d'extraire des

informations 3D pour les catégories entières d'objets. Récemment, les CNN

ont été utilisés pour l'estimation de point de vue des objets dans les images,
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parfois avec des choix de modélisation très di�érents. Nous présentons ces

approches dans un cadre uni�é et nous analysons les facteurs clés qui ont une

in�uence sur la performance. Nous proposons une méthode d'apprentissage

jointe qui combine à la fois la détection et l'estimation du point de vue, et qui

fonctionne mieux que toutes les approches existantes. Nous étudions égale-

ment l'impact de la formulation de l'estimation du point de vue comme une

tâche discrète ou continue, nous quanti�ons les avantages des architectures

de CNN plus profondes et nous montrons que l'utilisation des données syn-

thétiques est béné�que. Avec tous ces éléments combinés, nous améliorons

l'état de l'art d'environ 5% pour la précision de point de vue moyenne sur

l'ensemble des données Pascal3D+.
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Chapter 1

Introduction

1.1 Objectives

An application that automatically retrieves a speci�c piece of furniture in

large online catalogs from only a single picture; a robot able to manipulate

new objects without human supervision; augmented-reality systems that can

change the arrangement or types of objects in a real scene: these are a few

examples of applications that could bene�t from the work presented in this

dissertation. The goal of this thesis is to develop models and techniques

to obtain important pieces of information to perform these tasks e�ciently:

to relate three-dimensional (3D) information of the objects in a scene with

single images.

This is a very generic problem which can be approached in several ways.

In this thesis, we focus on exploring the representational power of Deep

Convolutional Neural Networks (CNNs) to achieve this goal. CNNs are a

family of computational models that are able to extract high-level informa-

tion from data (in our case, images) in a hierarchical manner. Initial levels

in this hierarchy extracts low-level information, such as oriented edges, while

intermediate levels in the hierarchy hold more complex information, inferred

from the previous levels, such as structured patterns and textures. Going

higher in the hierarchy, the combination of these mid-level features allows

to represent highly-semantic information in a compact manner. CNNs are

trained end to end, and were recently shown to perform extremely well in a

wide variety of tasks. We are interested in exploring if the mid- and high-

level information contained in deeper levels of this CNN hierarchy are suited

for three-dimensional reasoning in images.

The three-dimensional informations that are the most meaningful to be

extracted from images are most certainly application-speci�c. In this work,

we focus our attention on inferring object properties that do not require

reasoning at a whole-scene level and that only requires limited context. We
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2 CHAPTER 1. INTRODUCTION

are interested in predicting the orientation and instance type of rigid objects

that can be de�ned by a three-dimensional model. More precisely, we are

addressing here the following tasks, which are illustrated in Figure 1.1:

Retrieving a 3D model from images (from images to 3D models).

The recent availability of large collections of 3D models [17, 119]

allows to explore new possibilities for a 3D understanding of images.

Given an image containing a single object and a large catalog of

3D models, we are interested in �nding the 3D model that is the

most similar to the object depicted in the query image. We restrict

ourselves to rigid-body objects categories; no mesh deformations are

thus taken into account.

Detecting a 3D model in an image (from 3D models to images).

We are also interested in approaching the retrieval task the other

way around. Instead of providing an image where we know there is

an object and asking which object is pictured, we start from a 3D

model and ask the opposite question: is an object corresponding to

the 3D model in this image, and if so, where? This corresponds to a

detection task, where we know in advance the object we are looking

for, but we only have its 3D model and no real image of this object

to help guide the detection. This is more complex than the retrieval

task, as we also need to estimate a detection probability and not just

a ranking between rendered views.

Object pose estimation. Estimating the pose and location of an object

given a single image can be seen as a �rst step towards a three-

dimensional understanding. While traditional approaches often fo-

cused on estimating the pose for a speci�c object instance, such as

a particular type of IKEA chair, in this work we are interested in

predicting orientation for whole categories of objects. This is an inher-

ently more di�cult task to solve, as in addition to the visual diversity

that comes from di�erent lighting conditions, occlusions and camera

noise, we also need to cope with the intra-class variability of shapes

and textures.
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(a) Instance retrieval. Given a query image (left), �nd the 3D model and orien-
tation that is the closest to the object depicted in the query image.

(b) 3D model detection. Given a 3D model (or a collection of 3D models), �nd
and align in a photograph all possible instances of the model.

θ

(c) Object pose estimation. Estimate in an image the pose of any object of a
set of pre-de�ned categories.

Figure 1.1: The three main tasks addressed in this thesis.
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1.2 Motivation

With the advent of large 3D model repositories such as Shapenet [17] and

Trimble 3D Warehouse [1], new exciting possibilities to reason about 3D

objects in 2D images have appeared, at both research and industrial level.

If we were able to automatically align 3D models in 2D images, we could

directly transfer all the rich information from the CAD models to the images

themselves, such as 3D normals, relative depth, part segmentation, grasping

usage instructions, and any other information available in the model. Some

examples of applications that leverages this 3D information are illustrated

in Figure 1.2 and include:

Image-based rendering. Traditional approaches for image-based render-

ing usually performs poorly in highly-specular surfaces, like the metal-

lic surfaces of cars, or when transparency is present, as in windows,

because the 3D reconstruction is not reliable in these cases. By auto-

matically detecting, retrieving and aligning similar 3D models to the

objects present in the scene, such as cars, we can improve the qual-

ity of the rendering on those surfaces, as we can directly leverage the

3D information present in the models. This enables more realistic

augmented-reality experiences, without requiring any manual annota-

tion. An example of such application is presented in Chapter 3.

Automatic 3D model retrieval. Nowadays, almost every available prod-

uct on the market can be bought online. With current product indexes,

it is straightforward to retrieve a product given its name. On the other

hand, in the absence of a model name or brand, the task of retriev-

ing a speci�c object becomes much more involved, usually requiring to

browse over a catalog of elements from the desired class. It would be

much simpler if we could provide an image of the desired product, and

automatically retrieve its name and vendors. For rigid objects with

little texture, such as industrial pieces, there might not be enough

product images available to perform image retrieval using standard

approaches without a severe decrease in retrieval accuracy. But for

such products, 3D models could be readily available, as prototypes are

�rst modeled in CAD softwares before going to production. In such

context, leveraging these 3D models can lead to improved retrieval

performances, and thus better customer experiences.
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(a) Virtual reality systems which automatically uses 3D models aligned to the
scene when rendering the environment, leading to an improved user experience and
allowing a greater user interaction. Image from http://www.gputechconf.com/

virtual-reality-track

(b) Product retrieval on large object catalogs. From a single picture, the system is
able to retrieve the product depicted in the photograph. Image by Moodstocks.

(c) Automatic robotic manipulation.

Figure 1.2: Possible applications of the work developed in this thesis.

http://www.gputechconf.com/virtual-reality-track
http://www.gputechconf.com/virtual-reality-track
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Figure 1.3: Small subset of the 3D models used in this work for the �chair�
category. On devices with limited memory, leveraging large amounts of 3D
models becomes challenging.

Robotic manipulation. Robotic interaction in complex dynamic environ-

ments is a very challenging task. In this scenario, the precise position of

each object is not known in advance and can change over time. In such

an environment, grasping an object is a very complex procedure. Not

only the robot needs to identify and localize the object, it also needs

to understand the underlying 3D shape associated with the object.

An algorithm leveraging 3D CAD models of the object that the robot

seeks to manipulate can greatly help attacking this grasping problem.

By automatically aligning the 3D model in the scene, we directly get

the 3D geometry of the object. More interestingly, if grasping annota-

tions are available in the 3D model, they can be directly transferred to

the image, allowing the robot to predict more precise movements and

potentially leading to less mishandling and a more e�ective system

overall.

1.3 Challenges

The problems we address in this thesis raise the following issues:
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(a) Real image (b) Rendered image

Figure 1.4: For the same object in the same viewpoint, the visual appearance
can drastically change between a photograph and a rendered 3D model.

1.3.1 Computational challenges

Using large amounts of CAD models brings the possibility of performing

exemplar-based instance retrieval relying solely on synthetic data. Figure 1.3

shows a small subset of the 3D models that will we used in this thesis. But

such a large amount of data also brings several computational di�culties.

Another di�culty appears when one attempts to compare large numbers of

elements together. For example, detecting and localizing in an image the

presence of a speci�c instance of an object requires comparing this instance

to many potential candidate regions in the image. When the number of in-

stances to be detected becomes large, this comparison can quickly become

very di�cult to be performed in a reasonable time. Graphics processing units

(GPUs) greatly speed up several tasks that are amenable to parallelization,

such as convolutions, which are at the core of modern deep-learning archi-

tectures. But GPUs have much less available memory compared to CPUs,

so dealing with large amounts of data e�ciently on the GPU is challenging.

Furthermore, deep CNNs usually have high memory requirements, making

it necessary to optimize the way the memory is used in order to maximize

GPU utilization when dealing with large amounts of data.
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1.3.2 Domain gap between synthetic and real images

Leveraging 3D models enables retrieval on real images for which the query

object is very speci�c and annotated photographs are not available or not

easily available. It also enables arti�cially extending an existing dataset, for

example to obtain a diverse dataset with balanced orientations for each class.

There is however a considerable visual di�erence between the synthetically

generated images and natural images, as the former usually lacks texture and

context, whereas the latter is usually visually very rich in details. Figure 1.4

illustrates such a di�erence. One way to overcome this problem would be

to create realistic 3D scenes for each object, as an attempt to reduce these

di�erences. Such 3D scene creation would be very time consuming, as it

usually requires not only good quality textures, but also a full scene model

and a realistic lightning model. CNN features are able to extract both low-

level and high-level information from images, but it is unclear whether they

can directly be used in such disparate domains, or if substantial modi�cations

to these features are needed.

1.3.3 Handling diversity and ambiguity

Predicting the orientation of a whole object category in real images is a

di�cult task for a variety of reasons:

1. It requires a varying level of invariance for di�erent properties. On one

hand, it involves being invariant to illumination, texture and intra-

class variability. On the other hand, it requires being discriminative

enough to identify small angle perturbations, which don't change much

the image, as can be seen in Figure 1.5.

2. The pose of a rigid object instance or category, while well-de�ned for

completely asymmetric classes, is usually ill de�ned when symmetries

are involved. On may think about a square table for example: turning

it by 90 degrees does not a�ect its geometry. As the orientation of

an object is a continuous quantity, it is natural to express the pose

estimation as a regression problem. There is a fundamental di�culty

with this formulation though, as it cannot represent well ambiguities

in the prediction.
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(a) Visual diversity inside a category (all the chairs have the same viewpoint).

(b) Same instance of a chair at di�erent orientations.

Figure 1.5: Challenges for pose prediction. (a) For the same category, visual
appearance of di�erent instances can greatly vary. (b) On the other hand,
small angle di�erences may not signi�cantly change the appearance of an
object.

1.4 Contributions

This thesis focuses on relating 3D information of objects in natural images.

We start by presenting preliminary studies on the following points:

• memory optimization for neural networks in Torch7. We developed a

library that allows to train deep CNNs that otherwise would not �t in

memory. It was also useful to enable large image batches in a CNN

while computing predictions, enabling faster execution times as larger

batch sizes better exploit GPU parallelism.

• study of the e�ectiveness of CNN features for retrieving CAD rendered

views from natural images containing only one centered object.

• multi-view extension of this simple 3D model retrieval approach, which

uses information from several images to �nd the single best 3D model

depicted in the views, and application to image-based rendering.

We then present the two main contributions of this thesis:

• a new framework for exemplar-based CAD model detection on real im-

ages, which learns a mapping from the CNN features of natural images
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such that they better align with the features of CAD models. Our

exemplar-based detection framework enables detection given only a

single 3D model of an object, and outputs both its location and orienta-

tion. When compared against previous approaches for exemplar-based

detection, our technique gives state-of-the-art detection results on both

the IKEAobject dataset [76] and the chair subset of Pascal VOC2012

validation set [31] when solely synthetic data is used for training.

• an extensive study of di�erent ways of formulating pose estimation

with Convolutional Neural Networks. We show that: (a) learning a

multi-task classi�er to perform both the detection as well as a discrete

pose estimation performs best, and (b) leveraging synthetic data for

increasing the amount of training data helps both detection and pose

estimation. By combining both, we improve the state-of-the-art results

on the challenging Pascal3D+ dataset by a considerable margin for all

of the proposed metrics.

1.4.1 Publications

The work done during this PhD lead to the following publications:

Peer-reviewed conferences

• Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered

Views, Francisco Massa, Bryan Russell and Mathieu Aubry, at Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2016 [83]

• Crafting a multi-task CNN for viewpoint estimation, Francisco Massa,

Renaud Marlet and Mathieu Aubry, at British Machine Vision Con-

ference (BMVC), 2016 [82]

• Automatic 3D Car Model Alignment for Mixed Image-Based Rendering,

Rodrigo Ortiz-Cayon, Abdelaziz Djelouah, Francisco Massa, Mathieu

Aubry and George Drettakis, at International Conference on 3D Vision

(3DV), 2016 [85]

Technical reports

• Convolutional Neural Networks for Joint Object Detection and Pose

Estimation : A Comparative Study, Francisco Massa, Mathieu Aubry
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and Renaud Marlet, arXiv preprint arXiv :1412.7190, 2014 [81]

1.4.2 Software contributions

During the course of this PhD, several contributions to open-source projects

have been made. In particular, I'm one of the main contributors of Torch7

neural networks package. The following generic libraries were released during

my work for this PhD:

Object detection

Generic framework for object detection developed in Torch7, which allows

to seamlessly switch between di�erent object detection algorithms, such as

R-CNN, SPPnet and Fast R-CNN, and has around 75 weekly unique visitors.

This library was used as the back-end for most of the experiments in this

thesis.

https://github.com/fmassa/object-detection.torch

Optimize-Net

Generic memory optimizer for Torch7 neural networks. With the advent of

very deep neural networks, it became more and more di�cult to experiment

with the latest models, as they usually require more memory than what is

currently available in most GPUs. This library was born from the need of

experimenting deep models in constrained environments, allowing to save up

to 91% of memory at test time, and 39% at training time. As of December

2016, this library has around 175 weekly unique downloads, showcasing the

importance of saving memory in current deep learning frameworks.

https://github.com/fmassa/optimize-net

Code for the projects

In addition to the generic libraries aforementioned, we also released the code

corresponding to the papers:

• Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered

Views at imagine.enpc.fr/~suzano-f/exemplar-cnn/

• Crafting a multi-task CNN for viewpoint estimation at imagine.enpc.

fr/~suzano-f/bmvc2016-pose/.

https://github.com/fmassa/object-detection.torch
https://github.com/fmassa/optimize-net
imagine.enpc.fr/~suzano-f/exemplar-cnn/
imagine.enpc.fr/~suzano-f/bmvc2016-pose/
imagine.enpc.fr/~suzano-f/bmvc2016-pose/
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1.5 Thesis outline

This thesis is organized as follows: Chapter 2 presents an overview of the

related work, Chapter 3 presents an algorithm for automatically reducing

the memory requirements for deep convolutional neural networks, as well as

a study of which CNN features are better adapted for relating 3D models

to 2D images, and we evaluate this study for the task of 3D model retrival

in 2D images. Chapter 4 presents our object detection pipeline solely based

on CAD models. Chapter 5 presents our pose estimation study. Finally,

Chapter 6 concludes this work, presenting possible avenues for future work.



Chapter 2

Background

In this chapter, we give an overview of the concepts and methods that are

the most relevant to this dissertation.

We start by a brief presentation of the �eld of Machine Learning, and

more speci�cally Supervised Learning. After a quick introduction to Machine

Learning, which is the necessary foundation for presenting Arti�cial Neural

Networks, we provide an overview of Neural Networks, starting from its

origins until the recent breakthroughs in the �eld, which improved the quality

of the results on many Computer Vision tasks by a large factor.

We then present an overview of the object detection task. We review

both the classical methods that were employed to address this task, as well

as more recent approaches that leverages CNNs and were shown to perform

extremely well compared to more traditional approaches.

Finally, we present prior work on estimating rigid-object pose information

from 2D images. We subdivide this part in three: �rst we present work on

contour-based alignment, followed by part-based alignment techniques and

then methods for general category pose estimation.

2.1 Machine Learning Framework and Notations

In this section, we give some foundations of the Machine Learning framework,

where we focus on the Supervised Learning case.

2.1.1 Machine Learning

Machine Learning is the �eld of Computer Science that studies systems that

learn from examples without being explicitly programmed. Such algorithms

build models from example inputs, and use them to perform predictions,

rather than by following hand-designed rules.

These models can be either parametric or non-parametric. A simple

example of a non-parametric approach is the k-nearest neighbors algorithm.

13
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In such a model, decisions are taken by considering the properties of the k

nearest neighbors to an example. To de�ne a neighborhood, we need to de�ne

a distance measure between examples. For images, one possible approach is

to consider the RGB values for all the pixels in the image as the feature

representation in a vector space, and use the euclidean distance to compute

the neighborhood relationship between images. An example of parametric

model is the linear regression. In this model, the relationship between the

input examples, which belongs to a vector space, and the desired scalar-

valued targets is approximated by a linear function. The parameters of the

linear mapping can be adjusted to better explain the training examples.

Machine Learning is usually divided in three sub�elds:

Supervised Learning: given input examples with their corresponding la-

bels, the goal of supervised learning is to learn a function which maps

the input to the labels, such that predictions can be made on unseen

data;

Unsupervised Learning: in the unsupervised learning setting, only the

input examples are given, and the algorithm tries to discover structure

or patterns in the data. Clustering is an example of an unsupervised

learning algorithm;

Reinforcement Learning: the algorithm (or agent) interacts with a dy-

namic environment aiming at performing a speci�c task. It receives

feedback for each decision it takes. The agent then adapts its strategy

in order to maximize an objective function which measures how well

the task was performed.

In the following section, we expand on Supervised Learning, as it is the

framework used in this dissertation.

2.1.2 Supervised Learning framework

In the supervised setting, we suppose we have a dataset D with Ns examples.

The dataset consists of data observations xi ∈ X , which represents the input

that is fed to the system, and the targets ti ∈ T , which correspond to the

desired output of the model. More formally, we de�ne the dataset as follows:

D =
{
(xi, ti), i = 1, . . . , Ns

}
. (2.1)
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In what follows, we will restrict ourselves to the parametric case. Let

fw : X → Y be the decision function, parametrized by w. The output

space Y can be di�erent from the target space T , in which case a pre-de�ned

function g : Y → T is used to obtain the �nal prediction of the system.

We will explain in more details the role of g later in this section, when

introducing the classi�cation case.

Let yi = fw(xi) be the output of the decision function fw on example

xi. To measure how di�erent the output yi is from the true target ti, we

de�ne a loss function `(yi, ti) : Y × T → R+ which assesses the quality of

the estimation. We seek to approximate the predictions g(yi) as much as

possible to the targets ti. In order to quantify how far o� are the predictions

from the targets for a given training dataset D and decision function fw, we

de�ne the empirical risk as the average of the losses over the training set:

Remp(f
w) =

1

Ns

Ns∑
i=1

`(fw(xi), ti) (2.2)

High values for the empirical risk means that fw does not approximate well

the training data, while a risk of zero indicates that the model perfectly

describes the relationship between the input examples and the output tar-

gets. In order to correctly model the dependencies between the data and the

targets, we look for the parameters w such that the empirical risk over the

training data D is minimized. We call the function that we want to minimize

the objective function.

Minimizing the objective function does not guarantee that fw will per-

form well in unseen data. For example, whenever fw has su�cient capacity,

it is possible that the model exactly memorizes the training examples, which

are often noisy, and possibly performs poorly in unseen examples, because

it starts to model the underlying noise, as illustrated in Figure 2.1.

In such a scenario, the model is said to over�t the training data. This

behaviour is not desirable, as it indicates that the model is unable to gener-

alize well to new examples. One e�ective way to �ght over�tting is to enforce

some regularization R(fw) on the objective function:

L(fw) =
1

Ns

Ns∑
i=1

`(fw(xi), ti) + λR(fw) (2.3)
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x

f(x)

f(x) = x

Figure 2.1: Illustration of over�t. Given a subset of noisy points following
an a�ne distribution, merely �tting a polynomial on those points can lead
to bad predictions.

with λ a scaling factor which de�nes a trade-o� on the importance of the reg-

ularization on the objective to be minimized. The regularization will control

the model complexity, for example by enforcing the norm of the parameters

w to be small, for which a common example is the weight decay, given by

R(fw) = ‖w‖22. This helps prevent the model from merely memorizing the

training examples.

Another way to reduce the risk of over�tting is to enforce the model

to also be able to perform another task. For a �xed budget of parameters,

enforcing that the model learns shared representations for di�erent tasks can

lead to more informative representations for each task, because it reduces

the e�ect of peculiarities of the data distribution and it can help overcome

limitations on the amount of training data for each task.

We now subdivide the supervised setting in two branches: classi�cation

and regression. Both are relevant for this work, and will be developed in the

following sections.

Classi�cation

In the classi�cation setting, we suppose that each data observation belongs

to a discrete number of classes, and the goal of the model is to be able to

predict in which class the observation belongs to. A typical example of a

classi�cation problem is to assign an e-mail to one of two classes: spam or
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non-spam. Let Nc be the number of classes that each observation can take,

and Ns the number of training examples in the training dataset D. We de�ne

T = {1, . . . , Nc} as the space of possible labels. Let the space of possible

inputs X ⊂ RND be a subset of the ND-dimensional euclidean space, with

ND the dimensionality of the input space, and let Y ⊂ RNc be the output

space of fw. As before, we consider yi = fw(xi) to be the output of the

decision function for input xi. In our notation, we use subscripts to de�ne

the individual elements of a vector. In other words, we de�ne the vi subscript

as the i-th coordinate of a vector v. One loss commonly used in CNNs for

training classi�cation models is the cross-entropy loss, which is de�ned as

follows:

`CE(yi, ti) = − log
(
softmax(yi)ti

)
(2.4)

with the softmax function de�ned as

softmax(x)j =
exp(xj)∑Nc
c=1 exp(xc)

. (2.5)

The output of the softmax function can be seen as converting the input

vector x such that it is interpretable as a probability distribution, as all the

entries are positive (because of the exponential) and sum to 1.

The classi�cation model assigns a score fw(xi)c, with c = 1, . . . , Nc, to

each of the classes in T for each observation xi. To obtain the predicted class

from the scores given by fw, we de�ne the conversion function g : Y → T as

g : x 7→ argmaxc xc. Thus, the predicted class t̂i is the one with the highest

score, and can be obtained via:

t̂i = argmax
c∈{1,...,Nc}

fw(xi)c. (2.6)

Regression

In the regression setting, we want to estimate the values of the continuous

target variable t ∈ T = RNc given the values of the input variable x ∈
RND , where Nc is the dimensionality of the target variables, and ND is

the dimensionality of the input variables. The mapping function g : Y →
T can be the identity mapping g : y 7→ y, so predictions are performed

by evaluating the model fw parametrized by w. Regression models are

widely used for prediction. One example of a regression model is the linear
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regression. In such a model, the dependency between the inputs and the

targets is approximated by a linear function. Let w ∈ RNc×(ND+1) be the

parameters of the model. The parameters include both a multiplicative

factor of dimension RNc×ND as well as an additive bias of dimension RNc .

The linear regression model writes:

fw(xi) = w
[
1 xi

]
, (2.7)

with
[
1 xi

]
the concatenation of a 1 in the beginning of xi, and w

[
1 xi

]
the matrix-vector multiplication between w and

[
1 xi

]
. In what follows,

we simplify the notation by implicitly appending a 1 in the beginning of xi

to take into account the bias term in the model.

Di�erent loss functions can be employed when modeling a regression

problem. A common choice is the squared loss, given by Eq. (2.8).

`(u, v) = ‖u− v‖22 (2.8)

One drawback with the squared loss is that it is not robust to outliers, so that

if two elements are far apart, due for example to noise in the observations

or rare events, the loss will be very a�ected. One way to avoid this problem

is to consider the absolute loss, presented in Eq. (2.9), which does not su�er

from the quadratic explosion on outliers.

`(u, v) = ‖u− v‖1 (2.9)

The issue with the absolute loss is that its gradient equally penalizes elements

that are nearby and elements that are far away, making learning via gradient

descent suboptimal whenever the predictions are close to the ground-truth.

In such situation, the Huber loss (2.11) can be used. For a pair of real-valued

numbers uc ∈ R and vc ∈ R, the Huber function is de�ned by:

H(uc, vc) =

0.5(uc − vc)2 if |uc − vc| < 1

|uc − vc| − 0.5 otherwise
(2.10)
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and the loss for two vectors u ∈ RNc , v ∈ RNc is given by:

l(u, v) =

Nc∑
c=1

H(uc, vc) (2.11)

where, once again the subscript corresponds to taking the elements of the

vector. The Huber loss, which is used in robust regression, combines both

the robustness of the absolute loss with respect to outliers as well as the

sensitivity of the squared loss.

2.2 Arti�cial Neural Networks

2.2.1 Origins of Arti�cial Neural Networks

Arti�cial Neural Networks are a family of parametric models that have a

speci�c hierarchical structure. The structure is a combination of linear func-

tions followed by non-linearities, which allows the model to learn complex

non-linear functions in a compact manner. In this section, we give a brief

overview of the mathematical models that originated arti�cial neural net-

works.

The perceptron

The origins of Arti�cial Neural Networks dates back to the end of the 1950's,

with the development of the perceptron by Rosenblatt [95]. The term neural

network has its origins in attempts to �nd mathematical representations of

information processing in biological systems [15]. In what follows, we will

give a brief de�nition of the perceptron model.

Let's consider an observation xi ∈ RND . For ease of notation, we append

a 1 into xi to take into account the bias, making it a RND+1 vector. The

perceptron maps the input to a binary output fw(x) ∈ {0, 1} by considering:

fw(x) =

1 if w · x > 0

0 otherwise
, (2.12)

where w ∈ RND+1 is a vector of real-valued weights. Note that this is

equivalent to a linear function x 7→ w · x followed by a non-linear activation
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Figure 2.2: Illustration of the perceptron, for an input x of dimension 3 and
a single output node.

function ψ(x), and can be equivalently written

fw(xi) = ψ(w · xi), (2.13)

where ψ(x) in here is the Heaviside step function, de�ned by ψ(x) = 1 if

x > 0 and 0 otherwise. An illustration of the perceptron is presented in

Figure 2.2.

A crucial question is how to select the parameterw so that the perceptron

de�ned by fw(x) can perform a speci�c task. We consider the supervised

setting where we have a dataset D = {(xi, ti)i∈{1,...,Ns}}, with, for all i,

xi ∈ RND+1 and ti ∈ {0, 1}.

In the original perceptron algorithm, the parameters are updated itera-

tively by re-evaluating the predictions at each parameter update, and mod-

ifying the parameters that yield incorrect predictions.

More formally, let yi = ψ(w ·xi) ∈ {0, 1} be the output of the perceptron
model. In order to �nd the set of parametersw that best explains the dataset

D, we perform stochastic parameter updates for every training pair (xi, ti)

in D following:

w← w + (ti − yi)xi, (2.14)

and the updates from (2.14) are performed either for a predetermined number

of iterations, or when the iteration error 1
Ns

∑Ns
i=1|ti − yi| is less than a pre-

de�ned threshold.
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Di�erentiable activation functions and the Delta Rule

The perceptron contains a discontinuous (and thus non-di�erentiable) acti-

vation function ψ(x). If we replace the activation function by a di�erentiable

one, we can derive a more generic learning rule, called the delta rule. Using

the same notation as in the previous section, the delta rule, which updates

the weights stochastically for every training example, can be stated as fol-

lows:

w← w + η(ti − yi)ψ′(w · xi)xi, (2.15)

where ψ′(x) is the derivative of ψ(x) with respect to x, and η is the learning

rate, a real value that controls how fast the updates to the weights are made.

The learning rate is a very important hyper-parameter of the learning; too

big values makes the learning unstable as the parameters oscillate around

the desired solution or might even diverge, whereas too small values leads to

a slow training and are more prone to get stuck in a poor local minima.

The delta rule can be derived by minimizing the loss in the output of

the neural network for each example in the training dataset via stochastic

gradient descent, using a squared distance loss. Gradient descent uses the

gradient of the loss function with respect to the weights of the model w to

perform the updates of the weights in a direction that will decrease the loss.

For linear activation functions ψ(x) = x, the delta rule can be simpli�ed as

follows:

w← w + η(ti − yi)xi, (2.16)

which is very similar to the update rule from the perceptron in (2.14),

even though their derivations are di�erent as the Heaviside function is non-

di�erentiable.

2.2.2 Multi-layer neural networks

Despite the initial success of the perceptron in identifying digits in small

images, its representational power is very limited. Indeed, it can only learn

predictions which are linearly separable in the input space, which is rarely the

case. Several extensions were proposed in order to overcome such limitations.

In particular, having networks that contain internal representations (also

called hidden layers) which are non-linear with respect to the input data

allows for more expressive power. Unfortunately, the delta rule explained
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Figure 2.3: Illustration of a feed-forward neural network with one hidden
layer.

before does not apply in such situations, as it was speci�cally tailored for

the case where there is no hidden layers, so other learning techniques are

needed. One early example is the Neocognitron [38], which stacked together

several layers of linear functions followed by non-linearities, and used an

unsupervised learning approach based on self-similarity between the input

elements and the weights of the model to perform learning. Although such

a learning approach allows to learn networks with hidden layers, there is no

explicit constraint that ensures that the hidden layers learn an appropriate

mapping. As we will see later in this section, it is possible to extend the delta

rule to work for such multi-layer neural networks [97, 70]. Before that, we

�rst introduce a sub-category of the multi-layer networks called feed-forward

neural network, which is a commonly employed architecture for several tasks.

Feed-forward neural networks

In a feed-forward neural network, the output of each layer is passed as an

input to the next layer. Each layer consists of a number of units (or neurons)

that computes the weighted linear combination of the layer input, followed

by an element-wise non-linearity. Figure 2.3 illustrates a feed-forward neural

network with one hidden layer. Let N be the number of hidden layers.

Denoting by on the output of layer n with weights wn, with as before the

bias appended for sake of notation, the feed-forward procedure can be written
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as follows:

on = ψn(wnon−1) (2.17)

where ψn(·) is a sub-di�erentiable non-linearity function. Common choices

for the non-linearity includes recti�ed linearities as ReLU, de�ned by ψ(x) =

max(0, x), the sigmoid function ψ(x) = (1+e−x)−1 or the hyperbolic tangent

ψ(x) = tanh(x).

Backpropagation

The set of parameters w = {wi}i=1,...,N are optimized to minimize the ob-

jective function L(fw) over the training set D. As we mentioned before,

the delta rule is not adapted for multi-layer networks as its formulation only

considers the case without hidden layers. To obtain an optimization proce-

dure for the multi-layer case, let's start with a formulation similar to the one

used to derive the delta rule. We consider the loss `(yi, ti) computed for each

element in the training set D, which we want to minimize. As for the delta

rule, we use gradient descent to perform the optimization, which writes:

w← w − η∂`(f
w(xi), ti)

∂w
, (2.18)

where η is the learning rate, which controls the size of the update steps. As

is, we note that this is a generalization of the delta rule, for the case where

we consider a squared distance as the loss function and where the gradient is

computed over the whole training dataset, and not only element by element.

To perform gradient descent to �nd the parameters w that minimize the

loss, we need a way of computing the derivatives of the loss function with

respect to the parameters in an e�cient manner.

The answer to this question, which is a generalization of the delta rule,

was given in [97, 70], and is traditionally called backpropagation. Back-

propagation consists of computing, in a recursive manner, the gradients of a

module in function of the gradients of the modules that come after it. The

derivation of backpropagation is obtained by recursively applying the chain

rule of the derivatives in the loss function that we seek to minimize. This

makes it possible to construct arbitrarily complex functions by combining a

number of smaller blocks, for which the derivative is known, and the gradient

of the whole complicated function can be readily computed.
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Adding hidden layers to a network potentially increases the capacity of

the network to model complex functions. In the early 1990's, Hornik [59]

showed that a feed-forward network with a single hidden layer containing

a �nite number of neurons was capable of approximating any continuous

function de�ned on compact subsets of Rn. But as discussed in [13], an

important result in favour of deeper networks is that functions that can be

compactly represented by a depth k network might require an exponential

number of parameters with respect to the input size to be represented by a

depth k − 1 network.

The objective function optimized during backpropagation of the multi-

layer network is not convex with respect to the weights, due to the several

layers of non-linearities that are present. Gradient descent can only �nd a lo-

cal minima, and for such non-convex functions, it is natural to wonder about

the quality of the local minima found. Since the middle of the 1980's, there

were already evidences that di�erent local minima in multi-layer networks

performed similarly well for a number of tasks [97]. Recently, [66] has pro-

vided a mathematical proof for the fact that all local minima in deep neural

networks are actually global minimum, given some reasonable assumptions.

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) [71] are a sub-class of neural networks

with constrained connectivity patterns in the linear mappingwx. A principle

which has proven very e�ective in natural images is to hypothesize that

the feature representation of an image should be approximately translation

covariant. In other words, for an image x with a feature representation

f(x), if a translation τ is applied to x, then the feature representation of the

translated image should approximately correspond to f(x) translated by τ .

This covariance can be imposed by constraining the linear mapping wx to

be a convolution. Enforcing that the linear mapping is a convolution brings

the additional bene�t that larger images can be used without a huge increase

in the amount of parameters of the model. Each unit becomes responsible

for detecting a particular pattern in the image, for example an oriented

edge in an image. With convolutions, the output of a layer is translated

by the same amount as the translation of the input. In order to make the

output of the network invariant by small translations and deformations, a

Max Pooling operation was introduced. Max Pooling is a form of non-linear
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Figure 2.4: A four-layer convolutional neural network with ReLUs (solid
line) reaches a 25% training error rate on CIFAR-10 six times faster than
an equivalent network with tanh neurons (dashed line). Figure from [68].

down-sampling, which uses the maximum operation in a local neighborhood

to aggregate the feature representation.

CNNs and the ILSVRC competition

Even though most of the necessary foundations of CNNs have been estab-

lished since [71], there was only a handful of tasks for which CNNs excelled

most traditional approaches based on hand-engineered features. It was only

after the seminal work of Krizhevsky et al. [68] on the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [98] in 2012 that CNNs started to

attract general attention. This breakthrough was due mainly to the following

reasons:

GPU: Convolutions, pointwise non-linearities and matrix multiplications,

all of which composes the basic building blocks of traditional Convo-

lutional Neural Networks, are naturally amenable to parallelization.

With the advent of the CUDA programming language, whose syntax

resembles the syntax of C++, implementing programs that parallelize

over hundreds or thousands of cores became much more accessible to

the machine learning community. This parallelization brings a crucial
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speed-up both at training and testing times, allowing for bigger models

to be trained within reasonable time.

ReLU: One of the biggest problems with deep CNNs prior to 2012 was

that they were very hard to train. Deep networks su�ered from a

vanishing gradient problem, where the gradients in the initial layers

became increasingly small, harming training. One common way to ad-

dress this problem was to initialize the weights of the network via a

layer-wise unsupervised pre-training. This solution was not optimal

for a few reasons: layer-wise pre-training was time consuming, as each

layer had to be trained separately prior to the supervised training, and

unsupervised learning of convolutional �lters was di�cult to optimize.

Recti�ed Linear Units (ReLUs) [47] helped address these di�culties.

Contrary to standard saturating non-linearities like sigmoid or hyper-

bolic tangent, ReLU does not su�er from vanishing gradients when the

activations become larger. This accelerates training time considerably,

allowing deeper networks to be trained in reasonable time, as can be

seen in Figure 2.4.

Dropout: Dropout [105] is a regularization technique that was found crucial

to combat over�tting. During training, dropout randomly sets half

of the outputs of a speci�c layer to 0, which means that those zero-

ed elements won't participate in the backpropagation. This prevents

complex co-adaptations between features, as each neuron won't be able

to rely on the output of another neuron. At test time, all of the neurons

are left active, but the output is multiplied by 0.5 to compensate that

twice as many neurons are active. Dropout can also be interpreted

as an e�cient way of performing model ensembling, which only costs

about a factor of two during training, and does not introduce any cost

at test time.

Big model: The architecture proposed by Krizhevsky et al. contains 60

million parameters, and 8 layers of non-linearities, and is illustrated in

Figure 2.5. Using a network with such a size was without precedents,

but was found necessary to model such a complex task as the one

required to classify between the 1000 classes of ImageNet. Indeed, [68]

mentions that by removing any of the intermediate layers results in a
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Figure 2.5: An illustration of the network architecture presented in [68], also
called AlexNet in the literature. It consists of 5 convolutional layers, followed
by 3 fully-connected layers. Figure from [68].

loss of about 2% for the top-1 performance of the network, indicating

that the depth was fundamental to their good results.

Big dataset + dataset augmentation: Training such a huge model in

a supervised manner is only possible if there exists enough training

data to allow the model to generalize and not over�t. For very large

networks, even the 1.2 million images from ImageNet may not be suf-

�cient, so several techniques for arti�cially increasing the size of the

dataset were employed, such as random scalings and croppings, hori-

zontal �ipping of the images and small color deformations.

Most of those contributions were already individually presented before

[68], but it required ground-breaking results in a challenging competition

such as ILSVRC to attract the attention of the computer vision community

back to CNNs. Since then, several major improvements in the way of training

and factorizing CNNs were made, improving state-of-art performance on

many tasks [124, 126, 41, 30].

Visualizing the internal representations

What makes deep CNNs perform so well? Given the impressive results ob-

tained by deep CNNs for vision tasks, it is natural to wonder what is inter-

nally learned by the network. By inspecting the internal feature activations

of the network, Zeiler and Fergus [128] showed that earlier layers of the

network are responsible for detecting oriented edges and colors, while later

layers learn more complex patterns, such as grids, circles or even faces, as
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can be seen in Figure 2.6.

Training larger and deeper networks

Simonyan et al. [103] proposed a deep CNN architecture which replaces large

convolutional �lters present in the original architecture from [68] by a series

of 3 × 3 �lters, with ReLU non-linearities in between. For example, by re-

placing one 5×5 �lter by two 3×3 �lters, the e�ective receptive �eld remains

the same, meaning that the same region of the image is covered by the con-

volutions. This factorization increases the number of non-linearities present

in the network and additionally decreases the amount of parameters. This

was shown very bene�cial, and greatly improves the representational power

of the model, leading to an important improvement in terms of classi�cation

accuracy.

Shortly after, Io�e and Szegedy proposed Batch Normalization [62], a

simple technique that removes the covariate shift from the feature represen-

tations by normalizing the feature maps over each mini-batch. This also

has the positive advantage that the outputs of each layer are in the same

range. Batch Normalization allows for a faster training of the networks, and

eliminates the vanishing gradient problem.

Given such improvements, it was natural to wonder if we only needed

more powerful machines and bigger models to achieve better results. In [55],

He et al. showed that simply increasing the depth in feed-forward CNNs

doesn't necessarily improve classi�cation accuracy, but by learning residual

functions h(x) = x+ f(x), it is possible to train much deeper networks with

increasing accuracy.

While increasing depth was shown very bene�cial for learning more com-

plex functions, it also increases by a large factor the amount of memory

required by the CNN. In Section 3.1, we will present our automatic memory

optimization framework, which allows to train deeper models for the same

amount of available memory.

2.3 Object detection

Extracting high-level information from images is one of the utmost objectives

of Computer Vision. Object detection can be described as the �eld that aims

at providing tools to answer the question what objects are where?
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Figure 2.6: Visualization of what activates the most each neuron in a CNN
trained for classi�cation on ImageNet 2012 training set, for di�erent layers.
Each image on the left contains reconstructed patterns from the validation
set of ImageNet 2012 that cause high activations in a given feature map. On
the right, the corresponding image patches for each feature map are shown.
Figure by Zeiler and Fergus [128].
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We follow the standard formulation of category-level object detection dis-

cussed by Girshick in his PhD thesis [42], where the goal is to retrieve and

localize objects of prede�ned categories in still images. This localization is

usually expressed in terms of a tight bounding box which delimits the visible

part of the object.

This is a very challenging task for several reasons. Firstly, still images cor-

respond to noisy two-dimensional projections of a three-dimensional scene.

For the same object from two di�erent viewpoints, the image representa-

tion can greatly di�er. For smooth objects and small viewpoint changes,

the di�erence in the image can be approximated by a�ne transformations.

But this does not hold anymore as soon as a previously occluded part of

the object becomes visible, or when a previously visible part of the object

becomes occluded. Secondly, for the same scene, di�erences in illumination

can dramatically a�ect the image representation. Furthermore, for the same

object, truncations and surrounding clutter also modify the image represen-

tation in a complex manner. Thirdly, the de�nition of category is usually

speci�ed in terms of usage, and not in terms of visual appearance of the

objects. This can entail a large intra-class variation that makes the task of

object classi�cation more challenging. To give an example, imagine a �chair�

and all the possible variations that can be present, some of which are illus-

trated in Figure 1.5. It can have a back or not, its shape can be rectangular

or ellipsoidal, with or without arm-chairs, with four legs or not. While all

of the aforementioned properties can help di�erentiate a chair from a dog,

some of them could also apply to tables.

Standard datasets have helped compare computer vision algorithms in

the same setup. Pascal VOC Challenge [31] has been one of the most in-

�uential datasets for computer vision. To give some context, in the Pascal

VOC 2007 Challenge, the top performing method achieved a mean Aver-

age Precision of 21% [35], by using a multi-scale deformable parts model

based on HOG features. By 2016, performance has surpassed 85% [55] by

using very deep networks trained end-to-end for the detection task. More

recently, a more challenging dataset named Common Objects in Context [77]

(also known as COCO) was released. With 80 classes and more than 200k

images and 500k object instances segmented, it provides a new extremely

challenging setup for object detection and instance segmentation.
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2.3.1 Classical view

Initial work on category-level object detection focused on speci�c classes

such as person or car, due to the lack of richer datasets for the task of object

detection. One example of a successful category object detector is the face

detector from Viola and Jones [118] in 2001. It uses Haar-like features and

a cascade of classi�ers to perform detection. Weak classi�ers are used �rst,

in order to remove most of the false positives, and more complex classi�ers

are applied to the selected regions of the previous classi�ers. The Viola-

Jones detector performes fairly well on frontal faces, but struggles whenever

rotations are present.

Another line of research has developed methods that describe objects in

terms of its parts. In [2], Agarwal and Roth propose a category detector

which learns a vocabulary of object parts, together with the relationship

between the parts and represent that relationship inside the feature repre-

sentation. In [36], Fergus et al. propose a constellation model where parts

are constrained to be in a sparse set of locations given by an interest point

detector, and their geometric arrangement is determined by a Gaussian dis-

tribution. Leibe et al. [72] propose to learn a codebook of local appearance

descriptors, and an implicit shape model that speci�es where on the ob-

ject each codebook entry may occur. In their approach, local patches are

extracted around interest points and compared to the codebook. Matched

patches vote for the position of the object in the image, leading to object

hypotheses.

An important improvement in the �eld happened with the development

of Histogram of Oriented Gradients (HOG) [25] features. The original article

focused on pedestrian detection and showed signi�cant performance improve-

ment compared to previous approaches. HOG computes local histograms of

image gradient orientations similar to SIFT [79] but in a dense grid, and

were shown to be robust to illumination and small deformation changes. In

order to identify the pedestrians in an image, a SVM classi�er was trained

on HOG features extracted from positive and negative patches.

Most datasets until 2005 consisted of objects in very restricted orien-

tations and positions. For example, most of the images in Caltech-101

dataset [33] were centered and aligned in a stereotypical pose. In INRIA-

Person dataset [25], only upright people were annotated, and there was very

little variation in poses. The �rst version of the Pascal VOC challenge hap-
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Figure 2.7: DPM [34] object detection framework. (a) coarse root �lter, (b)
high resolution parts �lters and (c) spatial model for the location of each
part. Figure from [34].

pened in 2005 [32]. It featured more complex images compared to previous

datasets and showcased the limitations of existing approaches when faced

with natural images in less controlled environments. One of such limita-

tions was the use of a �xed template HOG per category, which limits the

variability of orientations and deformations that the detector can identify.

To address this limitation, deformable models based on HOG elements were

proposed [35]. Instead of having a single �xed template to model the whole

object, several templates are used to model di�erent parts of an object. The

relations between parts are usually expressed as a graph, where the nodes

correspond to the parts and the edges to the relation between parts. The

structure of the graph can be arbitrary, but to have fast and exact inference,

tree or star structures are preferred.

In [35, 34], Felzenszwalb et al. proposed a discriminatively trained, multi-

scale deformable parts model (DPM) that greatly improved detection per-

formance on Pascal VOC 2006. Their system, illustrated in Figure 2.7, uses

a low resolution root �lter, combined with high-resolution part �lters. The

object parts are treated as latent variables and are learned together with the

classi�ers.

2.3.2 CNN-based object detection

CNNs have been used for object detection since the early 1990's [115], but

with limited success and leading approaches relied on hand-crafted features

as presented in Section 2.3.1. After the impressive classi�cation results ob-
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tained by Krizhevsky et al. on the ImageNet Large Scale Visual Recognition

Challenge in 2012 [68], there was a vigorous discussion about the signi�cance

of those results to the computer vision community1. The main concern was

to know to what extent the CNN classi�cation results from a CNN trained on

ImageNet could generalize to object detection. This question was answered

concurrently by Sermanet et al. [100] and Girshick et al. [44]. In [44],

Girshick et al. show that the features learned from a network trained on

ImageNet transfer very well to object detection, and obtain an improvement

of more than 30% relative to the best previous results on Pascal VOC 2012

detection challenge. The improvement in detection performance is mainly

due to the better features that are learned end-to-end by the CNNs, which

are able to capture more than simply the contour of objects, as in more clas-

sical object detectors based on HOG features. Furthermore, CNNs can be

seen as a generalization of DPMs for object detection [45], where the feature

representation is learned and not hand-crafted using HOG features. Since

then, the paradigm of supervised pre-training followed by task-speci�c �ne-

tuning became widely adopted, leading to new state-of-art results in a wide

range of computer vision tasks, such as edge detection [124], semantic seg-

mentation [126], bounding box proposals [41], object-viewpoint estimation

[112] and depth estimation [30].

Using regions for selective classi�cation

How to adapt a classi�cation network for a detection task? In [44], Girshick

et al. propose Region-CNN (R-CNN), where bounding box proposals from

Selective Search [114] are used to restrain the search space for the possi-

ble locations of the objects, and the last classi�cation layer of the CNN is

replaced by a randomly-initialized layer. The R-CNN detection system is il-

lustrated in Figure 2.8. Each region is fed to the CNN and classi�ed between

background or one of the target classes (20 in the case of Pascal VOC 2012).

The CNN is then �ne-tuned with a small learning rate to avoid modifying

too much the original network parameters, and the other hyper-parameters

are kept the same.

One important aspect of their system is how to select the patches which

are used for training. The number of ground-truth objects in Pascal VOC

1https://plus.google.com/+YannLeCunPhD/posts/JBBFfv2XgWM

https://plus.google.com/+YannLeCunPhD/posts/JBBFfv2XgWM
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Figure 2.8: R-CNN object detection framework. Figure from [44].

2012 trainval is of 27450 for 11530 images, much smaller than the 2M re-

gions provided by Selective Search. To cope with this high imbalance, every

box proposal with an intersection-over-union overlap greater than 0.5 with a

ground-truth is considered as a positive element during training, e�ectively

increasing the positive training set by a large factor. Additionally, as there

are many more background patches in the images than object patches, they

balance every mini-batch such that 75% of the patches comes from the back-

ground, and the remaining ones are randomly sampled from the positive

patches.

Improving computational e�ciency by removing redundancy

A drawback of R-CNN is that each region is treated independently from the

CNN point of view. Thanks to the Max Pooling present in most CNNs,

the features are invariant with respect to small translations in the input

image, meaning that two regions in the image with high overlap should

have very similar convolutional features. This motivates reusing the feature

maps instead of recomputing them for every region. In this line of thought,

Sermanet et al. [100] apply a CNN densely over the image, predicting both

the classes and the bounding boxes, instead of relying on external region

proposals. Even though more run-time e�cient compared to R-CNN, the

results are less accurate due to more false positives because of their dense

sliding-window approach.

In [54], Kaiming et al. propose SPPnet, which leverages region propos-

als from [116] as in R-CNN, but instead of passing every image region inde-
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pendently to a CNN, SPPnet computes the convolutional feature maps for

the entire image, and �ne-tunes only the fully-connected layers, e�ectively

sharing computations among regions. The regions in the image space are

projected into the feature space, and an Adaptive Max Pooling is performed

in each region to output a �xed-size feature which is fed to the classi�er.

A limitation of SPPnet is that the convolutional �lters are �xed and are

not �ne-tuned for detection. To circumvent this problem, Girshick propose

Fast R-CNN [43], a method similar to SPPnet but which backpropagates

through the Adaptive Max Pooling layers as well. In order to make training

fast, he also proposes a di�erent way of sampling training regions. Instead

of selecting random patches from the whole pool of regions (ROI-Centric

Sampling), he proposes to �rst sample a set of images, and then to sample

patches from those images (Image-Centric Sampling). While this sampling

could potentially reduce the diversity of patches that are presented to the

network at each mini-batch, Girshick shows that even by sampling as little

as two images in a mini-batch is enough to provide diverse enough regions

for the network to be well optimized. Furthermore, it is very e�cient in

re-using the convolutional features.

Most experiments presented in this dissertation build upon object detec-

tion techniques. As a pre-requisite for the work we will present in Chapter 4

and Chapter 5, we developed a generic object detection framework on Torch7

that supports both R-CNN, SPPnet and Fast R-CNN, and which was also

used as a starting point for further research using object detection [127, 102].

2.4 Pose estimation

The task of estimating the pose of objects in images has been studied since

the mid 1960's [93], and di�erent ways of approaching the problem have been

proposed. In this section, we discuss three directions that have been explored

in the literature. In Section 2.4.1, we present an overview of approaches that

aligns known rigid 3D models to 2D images by matching 3D edges with image

contours. In Section 2.4.2, we discuss prior work on alignment approaches

that decomposes the object into parts and then retrieves the orientation

given the arrangement of the parts. Finally, in Section 2.4.3 we present

approaches that estimate the pose information for whole object categories,

and not only single instances.
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(a) Input image (b) di�erential image (c) reconstructed 3D solids

Figure 2.9: Object instance-level alignment by Lawrence Roberts [93].

2.4.1 Contour-based alignment

Since the early ages of Computer Vision, there has been an interest in align-

ing 3D models to images. Roberts in the abstract of his PhD thesis [93]

explains that his ultimate goal is �to make it possible for a computer to

reconstruct and display a three-dimensional array of solid objects from a

single photograph�. This is an ambitious goal, so in his work he restricted

himself to the case where the objects have a known three-dimensional shape,

thus being the �rst to consider the 2D-3D instance alignment problem. His

work, as most of works until the 1990's [84], relies on object contours. The

main idea of such approaches consists on using contours as the common rep-

resentation between the 2D image and the 3D model, and the information

from several edges are combined in order to align the 3D model to the im-

age. The 3D edges from a 3D model are projected in the 2D image, which

makes it possible to compare the 3D edges to the contours obtained from

the image. Using contours bypasses the visual di�erences that exist between

both representations, and also makes the 2D-3D correspondence more ro-

bust to small illumination and color changes. Several methods have been

developed to aggregate the information from di�erent edges. Roberts [93]

uses the hypothesis of a block world to recover polygons from sets of lines.

In [61], Huttenlocher and Ullman use an hypothesis-test paradigm where,

given keypoints obtained by edges corners and in�exions, correspondences

between the image and the model are used to hypothesize a pose, and the

pose is kept if the rendered model in the proposed pose is coherent with the

image. In [78], Lowe uses the idea of line grouping to hypothesize a smaller
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number of possible correspondences between the image and the model.

More recently, a number of approaches leveraging contour information for

instance alignment have been developed. In [5], Arandjelovi¢ and Zisserman

retrieves sculptures using HOG descriptors on edge maps. In order to reliably

obtain the edges from photographs, the authors present a solution which

trains a classi�er on super-pixels to distinguish them as either sculpture or

not-sculpture. In [76], Lim et al. uses hand-made descriptors based on the

contour of the objects to perform model retrieval and initial alignment, and

the contours are once again used for re�ning the pose estimation of non-

textured objects.

Contour detection

The success of those approaches depends on reliably �nding the contours

of the objects in the image. As such, a number of techniques have been

developed for computing the edges on images. A classical example is the

Canny edge detector [16]. Since then, a number of techniques have been

proposed to improve edge detection results, making it more robust to textures

and repetitive patterns, either by using image statistics [6, 64] or machine

learning techniques [27, 28, 124].

2.4.2 Part-based alignment

Rigid object viewpoint estimation was �rst approached in the case of object

instances with known 3D models, together with their detection, as presented

in Section 2.4.1. These approaches were extended to whole object categories

by leveraging techniques from object detection presented in Section 2.3. In

[46], Glasner et al. propose an approach that integrates 3D reasoning with

an appearance-based voting scheme, which relies on a non-parametric repre-

sentation of the object class. Hejrati and Ramanan [56] present a method for

detecting and analyzing the 3D con�guration of rigid objects that consists

of two steps. In the �rst step, a variant of DPM [34] is used to propose an

initial detection and 2D estimates of shape via a number of detected key-

points. In the second step, the estimated detection and shape are re�ned

by using an explicit 3D model of shape and viewpoint. In [90], Pepik et al.

extend DPM to include both estimates of viewpoint and 3D parts that are

consistent across viewpoints.
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Another line of research consists of using parametric models for perform-

ing the pose estimation. In [122], Xiang and Savarese propose the Aspect

Layout Model (ALM), which �rst constructs a parametric model of an object

category via a collection of 3D models by decomposing the objects in parts,

and then perform the detection and alignment using a Conditional Random

Fields (CRF) [69] formulation.

More recently, there has been an increased interest in techniques leverag-

ing large collection of 3D models, thanks to the availability of datasets such

as ShapeNet [17] and ModelNet [119]. Aubry et al. [7] propose a technique

for detecting and retrieving the most similar 3D model and orientation in a

image. It consists of three steps: (i) representing each model as a collection

of view-dependent mid-level visual elements learned from rendered views,

(ii) a calibration of the di�erent visual elements and (iii) the matching of

the visual elements on the test images, which allows small deformations but

preserves the viewpoint and style constraints. While their approach detects

and aligns instances, as the techniques presented in Section 2.4.1, because

they leverage a large number of instances for the same category, detection

and pose estimation for whole categories is possible.

2.4.3 Category pose estimation

As with object detection presented in Section 2.3.1, initial work on category

pose estimation focused either on faces or cars. One of the �rst works on

category pose estimation which was able to reliably detect objects in a wide

range of orientations is the paper of Schneiderman and Kanade [99]. They

start by discretizing the possible orientations of each category, and learn

separate object detectors for di�erent views.

Most datasets for category pose estimation until the 2010's were re-

stricted to single categories, approximate orientations, or were not publicly

available. In order to have a standard and challenging dataset for category-

viewpoint estimation comprising several categories, Xiang et al. propose

the Pascal3D+ dataset [121], which extends the Pascal VOC dataset [31]

by aligning a set of 3D CAD models for 12 rigid object classes, which en-

ables the use of learning-based approaches leveraging real images, similarly

to what was done for detection. Together with the Pascal3D+ dataset, Xi-

ang et al. [121] proposed an extension of the method of [90] which also

predicts the viewpoint of the object. CNN-based approaches, which were
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Figure 2.10: Render for CNN object category viewpoint estimation frame-
work. Figure from [107].

until the availability of the Pascal3D+ dataset limited to special cases such

as faces [86] and small datasets [87], also began to be applied to this problem

at a larger scale. In [112], Tulsiani and Malik used a simple classi�cation

approach with the VGG16 network [103] and annotations for ImageNet ob-

jects to obtain very good pose estimation results on Pascal3D+. Su et al.

[107] introduce a discrete but �ne-grained formulation of the pose estimation

which takes into account the geometry of the pose space, and demonstrate

using AlexNet [68] that adding rendered CAD models could improve the

results over using Pascal VOC data alone. Their framework is illustrated

in Figure 2.10. Recently, ObjectNet3D [120], a new large-scale dataset for

category-viewpoint estimation was made available. ObjectNet3D contains

100 categories and 90k images, and provides a new challenging setup for

category-viewpoint estimation.
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Chapter 3

Preliminary studies

In this chapter, we present three contributions that are going to be used

through this dissertation. We �rst approach the problem of reducing the

memory requirements of using deep CNNs, which is an important problem

as deep CNNs have recently shown very good results, as discussed in Sec-

tion 2.2.3. Then, we explore the use of CNN features for performing 3D

instance retrieval in 2D images. We suppose we have available a potentially

large database of 3D models. Our goal in this task is actually to study which

CNN features are better adapted to relating natural images of objects with

synthetic rendered views of 3D models representing these objects. Then, we

extend the 3D model retrieval to use information from multiple images, and

apply it to the image-based rendering task.

We place ourselves in the context of the instance-based alignment dis-

cussed in Section 2.4.1 and Section 2.4.2. We tackle the 2D-3D retrieval

task by considering the 3D model as a set of 2D rendered views, and by

matching the query image with the set of 2D rendered views for each model.

By focusing only on 2D images, we can use the representational power of

o�-the-shelf CNNs that were pre-trained on large annotated datasets such

as ILSVRC [98]. For a �xed number of 3D models, the amount of di�erent

2D rendered views that can be generated is potentially unlimited. We tar-

get databases of around 1000 models, with 100 rendered views per model,

making up to 100k di�erent rendered images to compare against.

The contributions of this chapter are three-fold:

1. In Section 3.1 we propose an automatic memory optimization algo-

rithm for Torch7 neural networks [24]. It facilitates the retrieval task

when thousands of models are available and more generally it is ex-

tremely useful when experimenting with deep CNNs. Our algorithm

works by reusing memory that is not needed anymore by the network

to perform its computations. Without a�ecting runtime performance,

41



42 CHAPTER 3. PRELIMINARY STUDIES

it is able to save as much as 91% of the memory usually required by

the default Torch7 neural networks package.

2. In Section 3.2, we present a systematic study of approaches based on

nearest-neighbor matching of CNN features for instance retrieval from

CAD models. We show that, despite the appearance gap from rendered

views and real images, it is possible to use o�-the-shelf pre-trained

neural network models to perform instance retrieval.

3. Finally, in Section 3.3, we propose a simple extension of the technique

presented in Section 3.2 for the case where the query consists of a set

of images of the same object, instead of a single image. By leveraging

several images from di�erent viewpoints, the retrieval can be made

more robust as it can automatically correct ambiguities present in the

single image case. Applications include image-based rendering.

3.1 Optimizing memory use in CNNs

In this section, we present our approach to automatically reduce the memory

requirements of neural networks on Torch7 [24].

3.1.1 Overview

Most of current deep learning frameworks allocate the memory required for

computing a prediction either during network initialization or during the

computation of the �rst prediction. For modularity, a network is expressed

as a sequence of individual modules (or layers), and each layer holds all

necessary bu�ers or network states. Examples of such bu�ers or network

states includes the output of the layer or the gradients with respect to the

inputs, as well as any storage required for intermediate computations.

Having all the intermediate bu�ers already pre-allocated allows faster ex-

ecution, as it avoids expensive memory allocations and deallocations, which

are specially costly in the GPUs because they enforce synchronization points.

But pre-allocating all the necessary bu�ers for each module comes with a

price: the amount of memory required grows linearly with the depth of the

network. This means that deep networks, such as the 152-layer ResNet, re-

quires an enormous amount of memory in most deep learning frameworks,

even during inference, where we are interested in the output of the network
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after a forward pass. If the tensors were lazily allocated whenever they are

needed and freed as soon as they go out of use, meaning that they are not

necessary anymore for further computations, memory requirements would

be greatly reduced, but runtime performance would su�er on the GPU due

to the aforementioned problems.

Related work

There has been a variety of works proposing to reduce the memory require-

ments of deep learning models. Some of them focus on network pruning, such

as [53, 52], and aim at reducing the model size by removing small weights

and employing sparse data structures. Such works are orthogonal to the

technique we present in this section, as they concern solely the network size,

and not the total memory requirements for running the model.

More related to our problem of reducing the memory consumption on

deep networks running on the GPU, the cudnn library [21] was proposed,

containing primitives for deep learning, such as convolutions and max pool-

ing. It integrates fast convolution routines that does not require internal

bu�ers, such as the unfolded input image usually used to perform convolu-

tions as a matrix multiplication.

Concurrently to our work, Rhu et al. [92] propose a virtualized cudnn

approach, which is similar in spirit to what we present in this section. Their

approach saves memory by o�oading the intermediate bu�ers to the CPU,

allowing for important memory savings, at the cost of some speed penalty.

On the contrary, we propose to reuse the intermediate bu�ers whenever they

go out of use, which does not a�ect runtime speed.

A number of approaches have recently been implemented for reducing

memory usage in deep learning frameworks [19, 111], and share a number

of similarities with our approach. The main di�erence with ours is that

these approaches directly start with the computation graph representation

of the network as input to their memory optimization system, but such

computation graph representation is not directly available in Torch7 neural

network library [24].
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Approach: high-level overview

In order to be able to experiment with deeper models with large batch sizes,

we decided to develop a non-intrusive library on top of Torch7 [24] which

we call optnet, aiming at reducing the memory requirements of using deep

networks in an automated manner.

If the bu�ers were allocated on demand and deallocated whenever they go

out of use, the memory requirements would be kept close to minimal. Even

though this would require less memory, it would involve expensive memory

allocations and deallocations, which are specially expensive when performing

GPU computations as they enforce synchronization points, harming paral-

lelization. Instead, we would like to automatically identify whenever a tensor

is not used anymore, and instead of freeing it, reusing the same tensor storage

on further computations.

Overview of Torch7 neural networks framework

Torch7 neural network package de�nes the network architecture by means of

computation modules and a set of container modules. A module de�nes 2

operations:

• a forward operation, which produces an output given a number of

inputs;

• a backward operation, which computes the derivatives with respect

to the inputs to the module, as well as with respect to its learnable

parameters (if any).

Containers are a special type of modules that have no learnable param-

eters, but which have a number of child modules. Each container speci�es

how the computation of its child modules are linked together. The simplest

example of a container is a Sequential container, which connects each of its

child modules such that the output of child node i is fed as an input to

child node i + 1. By mixing di�erent containers, it is possible to construct

arbitrarily complex network architectures for which the computation graph

can be represented as a Directed Acyclic Graph (DAG).

We emphasize that the network structure is entirely de�ned during the

construction of the network via containers and modules, and it doesn't

change during runtime according to the inputs that are fed to it.
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Two computation modes are present in Torch7 neural network package:

inference mode and training mode. Those modes are only relevant for mod-

ules that behave di�erently during training or test time, such as dropout or

batch normalization. Thus, Torch7 does not treat di�erently networks that

are used for evaluation to networks that are used for training. It allocates

all the necessary elements needed to perform training, such as the gradients

with respect to the parameters, even if they are not needed as the network

is used for evaluation.

An important consideration is that a module is completely indi�erent to

its neighboring modules. There is no global reasoning on the whole network

level, only on individual modules and containers.

A note on Tensor implementation In Torch7, Tensors are wrappers

around Storages. A storage is a structure representing a block of contiguous

memory. Tensors are implemented as a structure with a number of �elds.

The most relevant ones for this section are the following:

dimension: number of dimensions of the tensor;

sizes: sizes for each dimension of the tensor;

strides: step in each dimension required to access element i+1 from element

i. This allows some operations to be performed very fast, as tensor

elements do not need to be contiguous in memory. As an example,

permuting dimensions in a tensor does not require memory copy and

only swapping the strides is needed.

storage: a Storage structure, which contains the pointer to the allocated

memory;

By decoupling the tensor representation and the storage representation, it is

possible for di�erent tensors to share the same storage in a simple manner.

3.1.2 Computation graph construction from containers

In what follows, we restrict ourselves to the inference mode, which is the

most relevant for this work. A similar reasoning was also applied for training

mode, and is omitted here for brevity.
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De�ning a computation graph from containers

One of the drawbacks of the Container representation is that the network

structure is implicitly de�ned. If we need to reason on the whole network

level, for example to decide when a given tensor de�ned in a speci�c mod-

ule can be reused, this container representation is not adapted. Instead, it

would be better to reason using the computation graph de�ned by the net-

work. The computation graph is a DAG that contains all the modules of the

network, and the edges correspond to the data �ow from one module to the

other. Figure 3.1 illustrates the di�erence between a representation based

on containers and the corresponding computation graph of the network. To

compute the output using a container representation, a depth-�rst traversal

of the tree representation de�ned by the containers is performed, visiting the

nodes from left to right.

In order to facilitate the task of reasoning on the network structure, we

convert the container representation, which is the default in Torch7, to its

corresponding computation graph representation. The lack of constraints im-

posed by Torch7 neural network library when developing new layers makes

a reliable reasoning on the graph structure harder. The only constraints

imposed by the Torch7 neural network library when a module is to be im-

plemented are the following:

• during forward pass, the result of the computation should be stored

internally in the module, and should be the returned argument;

• during backward pass, the forward pass has to be called beforehand

with the same input data, and the result of the gradient computation

with respect to the input should be stored in the module, and should

be returned.

If only these constraints were to be used, specifying how the di�erent

elements of the computation graph are linked together would require rewrit-

ing dedicated code for each network container and module. As such, this

solution would not be sustainable, as every new module added to the main

library would require additional changes to the code which generates the

computation graph to correctly handle this new module. Instead, we rely

on a conceptually simpler, but more reliable and generic approach: to let

the computation graph be constructed during a forward propagation of the
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Model

nn.Sequential
Container

nn.ParallelTable
Container

nn.PairwiseDistance
Module

nn.Linear(2 ­> 1)
Module

nn.Sequential
Container

nn.Linear(2 ­> 2)
Module

nn.Linear(2 ­> 2)
Module

nn.ReLU
Module

nn.Linear(2 ­> 2)
Module

model = nn.Sequential()
cont = nn.ParallelTable()
subcont = nn.Sequential()
subcont:add(nn.Linear(2,2)):add(nn.ReLU())
       :add(nn.Linear(2,2))
cont:add(subcont)
cont:add(nn.Linear(2,2))
model:add(cont)
model:add(nn.PairwiseDistance(2))
model:add(nn.Linear(2,1))

(a) Example of a model representation via containers, with the corresponding code.
A ParallelTable container passes each element of its input to a di�erent sub-network.
The model is evaluated in a depth-�rst manner, from left to right.

Input 1

nn.Linear(2 ­> 2)

nn.ReLU

nn.Linear(2 ­> 2)

nn.PairwiseDistance

Input 2

nn.Linear(2 ­> 2)

nn.Linear(2 ­> 1)

Output

(b) The corresponding computation graph. The same colors were used to represent
corresponding modules between the container representation and the computational
graph representation.

Figure 3.1: Di�erent model representations.
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network. By letting the graph be constructed during the evaluation of the

network, we e�ectively ensure that the computation graph will be represen-

tative of the �ow of information inside the network, without requiring to

implement speci�c code for each module or container.

In order to implement such a solution, we need to perform standard

forward pass computation on the network, but keeping track of the inputs

and outputs of each module at each time. The overall idea for constructing

the computation graph is the following:

• for each module in the container representation, we keep a list of the

input tensors that it uses, as well as the output tensors that it re-

turns. In order to keep this list of input/output tensors, we overwrite

the generic forward function such that it stores the input and output

tensors of each module. To avoid having to change the function sig-

nature and introduce unwanted behaviour, we encapsulate the original

function inside another function, that records the inputs and outputs

of the module, all the while computing and returning the result. This

recording is done via upvalues, which are variables that are accessed by

the encapsulating function but whose scope is external to the function;

• every non-container module that performs some computation con-

stitutes a node in the computation graph. This excludes graph-

constructor modules like nn.Identity or nn.SelectTable that only exist

because of the container representation, and are needed to guide the

�ow of information, but that do not perform any operation;

• perform a forward pass over the network, which will populate the list

of input/output tensors for each module;

• the edges between modules are given by the list of input/output ten-

sors of each module. We do not add edges linking the input tensor

to the output tensor for containers that do not perform any opera-

tion except from connecting its child modules (like nn.Sequential or

nn.ConcatTable), as it would add an unwanted edge on the graph.

Instead, only operative containers such as nn.Concat or nn.Parallel

contribute to new edges in the graph, as they perform some computa-

tion. To illustrate this point, we remark that a nn.Concat is equivalent

to a nn.ConcatTable (which only distributes the inputs) followed by a
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nn.JoinTable (which concatenates a table of tensors into a tensor in a

speci�ed dimension).

The computation graph representation allows for an easier reasoning on

the network structure, as well as the dependencies of each node. We will

use this representation in the next section to decide when each bu�er is not

needed anymore.

3.1.3 Selecting reusable bu�ers

In what follows, we restrict ourselves to the bu�ers corresponding to the

outputs of each module of the network. A similar reasoning can be performed

for the gradients with respect to the output of each layer.

Finding the moment in time where every bu�er is not used anymore can

be performed by applying a liveness analysis algorithm [4] on the computa-

tion graph of the network. Such algorithms are usually used by compilers

to calculate at which point in a computer program a memory location can

potentially still be used in future computations or if it cannot and can thus

be freed or reused.

We implemented a liveness analysis based on the implementation from

[111], with some additional improvements. The outline of the implemented

algorithm is as follows:

1. De�ne an �analysis� as a data structure that contains two �elds per

element: the information of the �rst time a tensor is created, and the

last time it is used.

2. Walk over the computation graph in the same order as the execution

order. For each node in the graph (which corresponds to a module),

identify which are the incoming tensors and the outcoming tensors.

Insert in the �analysis� the aforementioned tensors, keeping track of

the �rst time and last time a speci�c tensor is used.

3. Initialize an empty bu�er pool.

4. Sort �analysis� by last time each tensor was used.

5. Iterate over the �analysis� in order.
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(a) For each �analysis� element, check if there is a tensor available in

the bu�er pool that does not overlap with the living time of the

element of the analysis.

(b) If there are available tensors in the bu�er pool, take greedily the

one for which the storage is the most similar in size than the

storage of the tensor in the current element of the analysis; if

there is no available tensor, create a new tensor.

6. Change the original storages of the tensors in the network to use the

bu�ers that were created in the previous step.

An example of memory optimization for a forward pass on a complex graph

can be seen in Figure 3.2. In this example, instead of requiring 21 internal

bu�ers for the outputs, our algorithm optimizes the assignment such that it

only requires 7 of them.

Other savings

In addition to the outputs and gradients of the network, other temporary

bu�ers that are speci�c to each module can be reused. The strategy that

we employ is as follows: share any temporary bu�ers of a module between

all instances in the network of the same module type. For a number of

commonly used modules, such as convolutions and max-poolings, we keep

a list of bu�ers that can be reused in inference mode as well as in training

mode. While suboptimal, this simple strategy already allows for important

memory savings.

We also employ another basic strategy for inference mode. Torch7 by de-

fault keeps in memory both the parameters of the network and the gradients

with respect to the parameters, even when we only want to compute pre-

dictions. Thus, during inference mode optimization, we remove the tensors

corresponding to the gradients with respect to the parameters of the mod-

ule, and replace them by some meta-information containing the sizes, strides

and storage reference used by the tensor. With this meta-information, we

are able to exactly reconstruct the gradients again by creating a new ten-

sor with the same sizes, strides and storage reference1, which is necessary if

1The storage reference is important because di�erent tensors might share the same

storage, for example in siamese networks. Note that only the storage reference is used, so

that it is possible to identify storages that are reused by di�erent tensors.
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(b) With optimization

Figure 3.2: Illustration of memory optimization on the forward pass. Same
color corresponds to the same storage. For ease of visualization, we show
the storage id for every module. Instead of allocating 21 di�erent bu�ers for
the output tensors, our optimization only requires 7 of them.

we want to reuse a previously optimized network for training. This easily

saves 50% of the memory required for the parameters compared to standard

Torch7 networks, without side e�ects during evaluation mode.

3.1.4 Results

We applied the optimization schemes presented in the previous sections to

several standard CNN architectures. In what follows, we analyse the savings

for both inference and training mode.

Inference mode

In inference mode, we are only interested in the output of the network,

and not in computing any gradients. For this reason, we can save more

memory as we can reuse the output of each module as soon as it gets out of
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Network
before (MB) after (MB) Relative (%)

tot out buf par tot out buf par tot out buf par

alexnet 486 3 21 462 236 1 4 231 51 75 80 50
vgg 1431 58 318 1056 666 25 113 528 53 57 64 50

googlenet 253 34 72 146 96 15 8 73 62 56 89 50
resnet18 166 20 57 89 60 8 8 45 64 61 86 50
resnet152 817 173 186 459 251 14 8 229 69 92 96 50

Table 3.1: Summary of optimization results for a batch size of 1 in inference
mode, without using cudnn. Description for each column is present in the
main text.

scope. Table 3.1 summarizes the savings for di�erent network architectures

when the batch size is 1, without using NVidia cudnn library. Each column

contains a legend that corresponds to a speci�c element of the network that

is evaluated, which is summarized as follow:

tot: total memory used by the network;

out: memory used by the network for containing the outputs of each mod-

ule;

buf: intermediate bu�ers of each module, such as the unfolded image repre-

sentation used for representing convolutions as matrix multiplications,

or the indices containing the maximal elements in Max Pooling ;

par: memory used for the parameters and gradients with respect to the

parameters of the network.

Because the outputs can be directly reused in inference mode, the amount of

memory required is not proportional to the depth of the network. As such,

we can see larger gains for deeper networks. For example, with ResNet-

152, we get 92% savings for the total memory used by intermediate outputs,

going from 173MB to 14MB for a batch size of 1. We also notice that reusing

internal temporary bu�ers saves up to 96% of memory for ResNet-152.

To facilitate the comparison with next experiments using cudnn, we also

present in Table 3.2 the results for a batch size of 1, but this time using

cudnn. We note that cudnn does not require temporary internal bu�ers for

any of its modules, bringing already considerable savings for the baseline

network. Looking closely, we see that, even though the relative savings for

the output bu�ers can get as high as 92% for ResNet-152, for a batch size of
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Network
before (MB) after (MB) Relative (%)

tot out par tot out par tot out par

alexnet 465 3 462 232 1 231 50 75 50
vgg 1114 58 1056 553 25 528 50 57 50

googlenet 180 34 146 88 15 73 51 56 50
resnet18 109 20 89 53 8 45 51 61 50
resnet152 632 173 459 243 14 229 61 92 50

Table 3.2: Summary of optimization results for a batch size of 1 in inference
mode, using cudnn. Description for each column is present in the main text.

Network
before (MB) after (MB) Relative (%)

tot out par tot out par tot out par

alexnet 854 392 462 327 96 231 62 75 50
vgg 8428 7372 1056 3664 3136 528 57 57 50

googlenet 4538 4392 146 1993 1920 73 56 56 50
resnet18 2613 2524 89 1025 980 45 61 61 50
resnet152 22583 22124 459 1994 1764 230 91 92 50

Table 3.3: Summary of optimization results for a batch size of 128 in inference
mode, using cudnn. Description for each column is present in the main text.

1 the size of the model parameters outweights the size of the output bu�ers

by a considerable margin. We note though that the relative savings for the

outputs are constant with respect to the batch size, so bigger batch sizes will

bene�t more from the savings. This is illustrated in Table 3.3, which in turn

presents results when using cudnn with a batch size of 128. We note that

the total required memory is dominated by the intermediate bu�ers holding

the outputs of each module, and for the ResNet-152 network, we save up

to 91% of the total memory which would usually be required, reducing the

requirements from 22.6GB to only 2GB.

Training mode

In training mode, we cannot release the outputs in the same way as during

inference mode, because the outputs are required for computing the gradi-

ents. Instead, we can reuse the gradients with respect to the outputs of each

module during the backward pass. This means that the total amount of

memory required after optimization is still dependent on the depth of the

network, contrarily to the inference case. Table 3.4 presents the optimization

results for a batch size of 128, using cudnn. The labels from each column

correspond to the following:



54 CHAPTER 3. PRELIMINARY STUDIES

Network
before (MB) after (MB) Relative (%)
tot grad tot grad tot grad

alexnet 1462 608 1182 328 19 46
vgg 15880 7748 11640 3208 27 57

googlenet 11226 6688 8578 4040 24 40
resnet18 5753 3136 4297 1680 25 46
resnet152 51229 28712 31483 8896 39 69

Table 3.4: Summary of optimization results for a batch size of 128 in training
mode, using cudnn. Description for each column is present in the main text.

tot: total memory used by the network;

grad: total memory used for the gradients with respect to the inputs of

each layer.

We note that, as expected, the relative savings are smaller than in in-

ference mode. Still, we are able to obtain 19% total savings for AlexNet,

the shallowest among all tested networks, while for deeper networks such

as ResNet-152 we obtain 39% total savings. As before, the relative savings

for the gradients with respect to the outputs remains constant, so the ab-

solute savings will be more important for larger batch sizes. Interestingly,

one would expect that the relative savings with respect to the gradients in

training mode to be similar to the savings of the outputs in inference mode.

This is not the case here, where the relative savings are smaller. This is

due to the fact that our backward computation graph construction is not

optimal, and contains a number of spurious edges that limit optimizations.

Improving the backward graph construction requires handling some special

cases in a few containers Containers and is left for future work.

3.1.5 Conclusion

In this section, we have presented optnet, a library for Torch7 that auto-

matically optimizes the memory use for neural networks. Several advantages

come with a reduced memory requirement: we can train deeper models that

would not normally �t in memory; we can use much larger batch sizes dur-

ing inference mode, which can translate to faster runtimes on GPUs due

to increased parallelism; and we can more easily deploy deep networks on

memory-limited devices, such as mobiles. optnet was used in a number of

experiments presented in this dissertation.
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Figure 3.3: CNNs for exemplar-based retrieval. We consider each 3D model
as a number of 2D rendered views, and we use a pre-trained CNN to compute
a feature representation for each rendered view. For a given query image, we
compute its feature representation using the same CNN, and compare it to
the features from the rendered views using a similarity metric. The rendered
view with the highest similarity corresponds to the retrieved model.

3.2 CNN features for relating 3D objects and im-

ages and application to object retrieval

This section describes our study of CNN features for relating 3D objects and

images via a retrieval task: �nding in a database the most similar 3D model

given a real photograph containing a single object centered in the image. We

obtain the centered objects by using 2D bounding boxes that indicates the

location of the object in the image, and are used to crop the original image

in an object-centric manner. Those bounding boxes can be either provided

by the user (or dataset), or obtained via an object detector, such as [40]. We

suppose we have available a large database of 3D models. We are interested

in the task of �nding in the 3D database the model which is the most similar

to an object in a given image.

We pose the problem of 3D model retrieval as an image matching task.

An overview of our system is illustrated in Figure 3.3. Given the di�erence

between 3D meshes and 2D images, we consider each 3D model as a set of 2D

rendered views and use them instead. We compute a matching score from the
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input image to each rendered view of each 3D model in the database. This

matching score can then be used to sort the 3D models by similarity with

respect to the input image. The question is then which image representation

should be used, and how we should compute the similarity between these

representations.

Recently, several works have investigated the use of CNN-based repre-

sentations for image retrieval. Most of these works treat the activations from

certain layers directly as descriptors, either by concatenanting the represen-

tations [11, 101] or by pooling them [10]. Contrary our work presented in

this section, these works focus on same-domain image retrieval.

In the sections that follows, we present our study of the e�ciency of using

the output of a �xed pre-trained CNN layer as the feature representation for

3D model retrieval between real and rendered images.

3.2.1 Similarity measure

In this work, we consider three standard metrics for computing the similar-

ities between feature representations: a similarity based on the L2 distance

in Eq. (3.1), the cosine similarity in Eq. (3.2) and the dot-product similarity

in Eq. (3.3).

SL2(a, b) = −‖a− b‖
2
2 (3.1)

Scos(a, b) = cos(a, b) (3.2)

Sdot(a, b) = a · b (3.3)

In Section 3.2.4 we evaluate how the di�erent metrics perform for a num-

ber of feature representations based on CNNs.

3.2.2 Feature representation

The visual di�erence between 3D models and real images is very important,

specially when the 3D model does not have texture, realistic lighting or

background. To perform instance-based retrieval on such disparate domains,

it is crucial to consider a feature representation which is invariant to this
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cross-domain variability, but discriminative enough to capture di�erences in

models.

Deep CNN features were shown to perform extremely well on a wide

range of tasks, as discussed in Chapter 2. While early layers of the network

were shown to extract lower-level information such as edges and textures,

deeper layers extract more and more semantic information of the image. If

we were interested in only retrieving objects of the same category, it would

be natural to consider deeper layers, which contains more semantic informa-

tion. But retrieving speci�c object instances requires less invariance to shape

deformations, all the while being robust to illumination changes, di�erences

in textures and noise.

We perform a comparative study of di�erent network architectures, for

di�erent layers, to identify which is the best suited for such a cross-domain

retrieval. The network architectures that we consider are Ca�eNet [65],

which is very similar to the AlexNet architecture [68], and VGG-16 [103].

Both networks were trained on ILSVRC [98], and we also study if �ne-tuning

a Ca�eNet network for object detection in Pascal VOC improves the quality

of the retrievals.

In order to avoid memory issues with earlier layers, which have a high fea-

ture dimensionality and are spartially large, and to speed up nearest neighbor

matching, we apply a Max Pooling operation with stride of 2 on the features

from conv3 and conv4, and we call them pool3 and pool4 respectively. This

reduces the feature size by a factor of 4, and allows our experiments to be

performed with less resources.

3.2.3 Aspect ratio �ltering

To extract CNN features from images, the images are �rst resized to 224x224

pixels, such that they have the same resolution as the images used to train

the original CNNs. For this reason, the original aspect ratio of the image is

lost before it reaches the network. Given that the query objects are centered

in the image, we can enforce an additional constraint that the aspect ratio

of the retrieved 2D rendered view should be similar to the aspect ratio of

the query image.

Let AR(x) = height(x)
width(x) be the function that computes the aspect ratio of

image x. For a pair of images q and r, and a tolerance parameter τ , we
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Figure 3.4: Illustrative examples from the IKEAobject dataset. In the �rst
two rows, we show original images from the dataset, before cropping in an
object-centric manner single. In the bottom row, we show rendered views of
the 3D models available with the dataset.

de�ne the aspect ratio compatibility condition cτ (q, r) as follows:

cτ (q, r) = τ <
AR(q)

AR(r)
<

1

τ
. (3.4)

The aspect ratio compatibility condition is true whenever both the ratio of

the aspect ratios and its inverse are greater than the tolerance τ , indicating

that both aspect ratios are similar, up to a factor of τ . During retrieval,

by keeping only the rendered views for which the aspect ratio compatibility

condition is true, we greatly reduce the number of false positives. Further-

more, the computational e�ciency of the whole system can be improved if

we restrict the computation of the similarity function only for pairs of images

that are considered compatible.

One drawback of this method is that it is not robust to truncations of the

query image, and could possibly reject good matches. This is not a problem

in the current setting, as we assume that the query object is fully contained

in the image.
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(a) reference (b) pool5 (c) fc6 (d) fc7

Figure 3.5: Top nearest neighbor retrieval using features from di�erent layers
from the Ca�eNet network �ne-tuned for detection using R-CNN framework,
using cosine similarity and the same �xed model. Retrieval results from
convolutional features provides better orientation than features from fully-
connected layers.

3.2.4 Results

In this section, we discuss the results obtained by the method proposed in

Section 3.2 for 3D model retrieval from real images via rendered views. We

consider the IKEAobject dataset of Lim et al. [76], which has textureless

CAD models of IKEA object instances manually aligned to their location in

images depicting cluttered scenes. The retrieval task is di�cult as there is

a variety of object poses and perspective e�ects in the IKEAobject dataset.

To handle the variation in object pose and perspective e�ects, we rendered

36 azimuth and 7 elevation angles at 3 di�erent distances for each object.

Note that the rendered views cover many possible viewpoints and perspective

e�ects, but it does not cover all cases. To reduce the bias due to the lack

of color and texture in the 3D models, we used grayscale images both for

the query images as well as for the 3D renders. Examples of images and 3D

models from the IKEAobject dataset can be found in Figure 3.4. There is a

single object present in each cropped image used for the retrieval.

We performed retrieval using features extracted from pool3, pool4, pool5,

fc6 and fc7 layers of 3 di�erent networks: Ca�eNet, Ca�eNet �ne-tuned for

detection, and the corresponding layers of VGG-16. All features were ex-

tracted after a ReLU layer. In all our experiments, the tolerance parameter

τ for the aspect ratio compatibility function is set to τ = 0.9. Table 3.5

presents the instance retrieval accuracy results on IKEAobject dataset. The
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Ca�eNet
Dimensionality L2 similarity Dot product Cosine similarity

Pool3 13824 57.7 46.0 61.3
Pool4 13824 57.7 47.5 65.0
Pool5 9216 38.7 54.7 60.6
fc6 4096 38.7 59.9 59.9
fc7 4096 48.2 61.3 52.6

Ca�eNet �ne-tuned for detection using R-CNN
Dimensionality L2 similarity Dot product Cosine similarity

Pool3 13824 53.3 46.7 62.0
Pool4 13824 56.9 48.2 65.0
Pool5 9216 37.2 52.6 58.4
fc6 4096 43.1 42.3 49.6
fc7 4096 50.4 48.9 48.2

VGG-16
Dimensionality L2 similarity Dot product Cosine similarity

Pool3 12544 43.1 34.3 46.7
Pool4 25088 48.2 44.5 69.3

Pool5 25088 29.9 56.2 60.6
fc6 4096 40.2 56.9 58.4
fc7 4096 50.4 51.8 56.9

Table 3.5: Instance retrieval accuracy on the IKEAobject dataset [76] for
di�erent networks, di�erent layers (rows) and di�erent similarity measures
(cols). In the second column, we indicate the dimensionality of the features
extracted in each layer.

accuracy is computed as the percentage of the number of good retrievals

divided by the total number of cropped images. Best results are consistently

obtained by considering the combination of cosine similarity with the pool4

features for all networks, and the quality of the retrieval decreases with

higher layers using cosine similarity. Moreover, conv4 features are known

to be relatively generic features [3, 125] and make little use of the network

knowledge gained on speci�c objects, such as chairs, sofas, and beds, in

ImageNet classi�cation. Interestingly, both L2 similarity and dot product

similarity metric perform poorly with VGG-16 features compared to Caf-

feNet or Ca�eNet �ne-tuned for object detection using R-CNN framework.

On the other hand, cosine distance is signi�cantly better with VGG-16 fea-

tures. We also noticed that the retrievals using features from fully-connected
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layers have a worse orientation quality compared to convolutional features.

To illustrate this observation, Figure 3.5 shows the best match for a �xed

3D model and query image using cosine similarity, for di�erent layers.

3.2.5 Conclusion

In this section, we have presented a study of the CNN features for relating

3D objects and 2D images. To evaluate this study, we have considered the

task of 3D model retrieval in images based on computing a matching score

of the image features to the features from rendered views of the 3D models,

and we have showed that a cosine similarity function together with pool4

features works best.

3.3 Multi-view extension for applications to Image-

Based Rendering

In this section, we extend the 3D exemplar retrieval technique presented in

the previous section to use information coming from several images. This

is usually the case in robotic applications, when the system can combine

informations from di�erent viewpoints before making a decision, or with

videos, where an object is usually visible from slightly di�erent viewpoints

in a sequence of frames, or in Image-Based Rendering.

Image-Based Rendering (IBR) is an approach for free-viewpoint naviga-

tion in captured environments, which may rely on 3D reconstruction from

2D images. Traditional approaches for IBR do not work well in the case of

transparent surfaces or re�ective objects. A typical example of commonly

found objects on outdoor scenes that fall into this case are cars.

For the car class, a large number of 3D models from di�erent brands and

types are available in 3D repositories such as ShapeNet [17]. By manually

aligning a 3D model to a 3D scene reconstructed from a number of pho-

tographs from the same scene, it is possible to improve the quality of the

rendering in highly-specular surfaces, as can be seen in Figure 3.6. In this

section, we apply the technique introduced in Section 3.2, which automat-

ically retrieves and aligns a 3D model to a single photograph, in order to

improve the quality of the rendering. To this end, we extend the method

from Section 3.2 to use the information coming from several photographs to
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(a) (b)

(c)

(d)

Figure 3.6: Bene�ts of using 3D models for image-based rendering (IBR). By
aligning a 3D model from a car to the scene, the quality of the rendering can
be greatly improved. (a) initial scene reconstruction from multiple images,
used as a guide for IBR, (b) 3D model of a car aligned to the reconstructed
scene, (c) rendering result of a standard IBR method, (d) rendering result
using the aligned 3D model to the scene.
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output the single best matching model.

3.3.1 Method

We build our method for the multi-view 3D model retrieval on top of the

technique introduced in the previous section. We use pool4 features from

the VGG-16 network with cosine similarity, which was shown to perform

best in our retrieval task. We suppose we have N input images, each of

which contains di�erent views of the same object centered in the image. As

before, we obtain bounding boxes for the objects in the image by applying

the object detector from [40] to each image and the detected bounding boxes

are used to crop the original images into object-centric images. We suppose

that there is only one object in each non-cropped image. This assumption

is not a limitation of our method, but it simpli�es the task of tracking the

same objects in di�erent images, and keeps the notations simpler.

For each cropped image In, with n ∈ {1, . . . , N}, we compute a matching

score sm,vn for every 3D model m ∈ M and viewpoint v ∈ V following the

technique introduced in Section 3.2. Given those matching scores, we look

for a single 3D model which best aligns with all the images.

Let us consider the matching score of each model m for each image n as

follows:

smn = max
v∈V

sm,vn . (3.5)

The score for a model m in image n is the maximum score over all the

possible viewpoints v. We interpret the scores per model smn as the log of

the conditional probability P (m | In) of model m given that the image is In,

up to a normalization factor. We have:

P (m | In) =
exp(smn )

Z(In)
(3.6)

with Z(In) =
∑

i∈M exp(sin). We suppose that the information given by

each image is independent from each other, so we have:

P (m | I1, I2, . . . , IN ) =
N∏
n=1

P (m | In) (3.7)

We look for the model m̂ which has the highest probability given all the
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images.

m̂ = argmax
m∈M

P (m | I1, I2, . . . , IN )

= argmax
m∈M

N∏
n=1

P (m | In)

= argmax
m∈M

N∏
n=1

exp(smn )

Z(In)

= argmax
m∈M

1

Z

N∏
n=1

exp(smn ) (3.8)

where the normalizing constant Z =
∏N
n=1 Z(In) is independent from m and

can be removed from the maximization. By replacing (3.5) in (3.8), we have:

m̂ = argmax
m∈M

N∑
n=1

max
v∈V

sm,vn . (3.9)

Thus, once we have computed the scores sm,vn following the technique from

Section 3.2, we use equation (3.9) to obtain the model that best aligns with

the set of images.

Viewpoint estimation

Once the model m̂ is selected, we are interested in obtaining the orientation

of the model for each image In. For that, we rely solely on the matching

scores sm̂,vn . We suppose that the viewpoint v̂n for a given image In is the

one with maximal score under the constraint that the model is m̂, which is

given by

v̂n = argmax
v∈V

sm̂,vn . (3.10)

Handling truncations

The retrieval technique from Section 3.2 doesn't handle explicitly the case

of truncated objects. In the case where the object present in the image is

truncated, the matches with the 2D rendered views will be highly unreliable.

For this reason, we only consider the subset of images I ⊂ {I1, . . . , IN} for
which the depicted object is not truncated. Estimating if an object in an

image is truncated is a di�cult problem by itself. Instead, we leverage the
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fact that every query image is actually a cropped version of the original image

by using the bounding boxes obtained from the object detector from [40],

and we make the following simplifying assumption: whenever the bounding

box corresponding to the object touches the boundary of the image, the

object is assumed to be truncated. This �rst approximation for removing

truncated instances, even though simple, already allows to �lter a number

of candidates that could potentially spoil the retrieval results.

3.3.2 Qualitative results

We tested our multi-view extension of the single-view instance retrieval al-

gorithm on a dataset of street images containing cars [18, 85]. This dataset

is used for assessing the quality of Image-Based Rendering approaches. Due

to the lack of an annotated dataset, we do not present quantitative results

and we restrict ourselves to qualitative results.

We obtained the 3D models from ShapeNet database [17]. ShapeNet

contains a rich collection of the class �car�, which we use to validate our

approach. We downloaded 5k car models from this database, and for each

3D model we rendered the object from 108 viewpoints uniformly sampled

from the viewing sphere, with azimuth and elevation increasing 10 degrees

in the range of [0, 360) and [0, 30) respectively. This constitutes our database

of 5k car models, each associated to 108 views of the object.

Some representative results of retrieval with multi-view model consis-

tency can be found in Figure 3.7. As in the previous section, we use grayscale

images both for the query images as well as for the 2D rendered views. We

can see that the retrievals are generally visually similar to the cars depicted

in the query image, up to a color di�erence. We also observed that the

azimuthal orientations are generally correct within 20 degrees.

In Figure 3.8, we present qualitative results for both the single-view in-

stance retrieval from Section 3.2 as well as the multi-view extension. The

multi-view consistency constraint helps correct ambiguous matches, and usu-

ally improves the quality of the retrieved model.

Although our method prunes query images that are potentially trun-

cated, we are still severely a�ected whenever the query object is occluded.

Figure 3.9 illustrates this limitation of our method.
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Figure 3.7: Representative multi-view retrieval examples for cars.
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(a) (b) (c)

Figure 3.8: Example of the e�ect of the multi-view consistency constraint,
with images coming from the same scene. (a) reference image, (b) with-
out multi-view consistency between models, (c) with multi-view consistency
between models.

(a)

(b)

Figure 3.9: Failure cases when occlusions are present.
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3.4 Conclusion

In this chapter, we have presented preliminary studies in three subjects:

• We have developed a library on top of Torch7 that automatically re-

duces the memory requirements of running standard networks. For

deep networks, it is able to save up to 91% of the total memory re-

quired without optimization. This library was extensively used for the

experiments presented in this dissertation, some of which wouldn't be

possible to be performed due to lack of available GPU memory.

• We have studied the use of a �xed CNN for the task of 2D-3D instance

retrieval. By reasoning in 2D instead of 3D, we were able to use CNNs

that were pre-trained on large annotated datasets. We showed that, de-

spite the visual di�erences between synthetic renders and real images,

the CNN features are robust enough such that a retrieval approach

based on nearest neighbor matching can be successfully performed.

• We have proposed a simple extension of the 2D-3D instance retrieval

method to exploit the information present in multiple query images.

As an application of our method, our multi-view instance retrieval

extension was combined with image-based rendering techniques in [85]

and improved the quality of urban scene rendering results where cars

are present.

In Chapter 4, we will extend the 2D-3D instance retrieval presented in

this chapter, which tries to answer the question which object is this?, to

perform instance detection, where we will instead look into answering the

question where is this object?



Chapter 4

Detection

In Chapter 3, we tackled the problem of retrieving the most similar 3D model

from an image containing a single object placed in the center of the image. In

this chapter, we present an end-to-end convolutional neural network (CNN)

for 2D-3D exemplar detection. We demonstrate that the ability to adapt the

features of natural images to better align with those of CAD rendered views is

critical to the success of our technique. We show that the adaptation can be

learned by compositing rendered views of textured object models on natural

images. Our approach can be naturally incorporated into a CNN detection

pipeline and extends the accuracy and speed bene�ts from recent advances

in deep learning to 2D-3D exemplar detection. We applied our method

to two tasks: instance detection, where we evaluated on the IKEAobject

dataset [76], and object category detection, where we outperform Aubry et

al. [7] for �chair� detection on a subset of the Pascal VOC dataset.

4.1 Introduction

Recently, Aubry et al. [7] performed object category detection by exemplar

alignment with a large library of 3D object models. The aligned models

often approximately matched the style of the depicted objects and allowed 3D

information, such as hidden object surfaces and object pose, to be propagated

to the 2D images. Such a result is useful for 3D scene reasoning and may

potentially be used in applications such as object manipulation in robotics

and model-based object image editing in computer graphics [67].

Despite recent progress on 2D-3D matching and retrieval [60, 75, 106],

detection by 2D-3D alignment lags behind state-of-the-art object detection

systems based on annotated images, e.g., R-CNN [44], in terms of accuracy

and speed. We see two primary reasons for this gap in performance: (i)

there is a large appearance gap between views rendered from CAD models

and real images; and (ii) 2D-based object detection has bene�ted from re-

69
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cent successes of convolutional neural networks (CNNs) [68, 71]. This work

addresses both issues.

The appearance gap across two di�erent domains encountered in 2D-3D

alignment is not unique to our problem and can be found in other tasks,

e.g., when learning on one dataset and testing on another [110]. To bridge

such appearance gaps, a number of cross-domain adaptation algorithms have

been developed, some of which are presented in Section 4.1.1. Building on the

success of these methods, we present an approach that learns to adapt natural

image features for the task of 2D-3D exemplar detection. We hypothesize

that, given the features of a natural image depicting an object, it is possible

to infer the features of a corresponding rendered view of an object CAD

model with similar style and pose. Note that a similar reasoning has been

explored in a recent work to predict CAD object features for a di�erent

view [108].

To achieve our adaptation learning goal, we need a large training set

of pairs made of a natural image and an aligned rendered view depicting

a similar object. While there are existing datasets with aligned pairs, e.g.,

IKEA [76] and Pascal3D [121], such datasets are either relatively small or

have aligned models that only coarsely approximates the object style. To

overcome these challenges, we make use of the ability to render views from

CAD models and composite with natural images, which allows us to create

a large training set. The composite image and rendered view pairs form

training data with which to learn the feature adaptation, and have been

similarly employed in prior work to train 2D object detectors over CAD

renders [88, 89] and predict object pose [107].

In learning the adaptation, we adopt a formulation similar to Lenc and

Vedaldi [73], which studied the equivariance of image features under geomet-

ric deformations of the image. Our work can be seen as an extension of their

approach beyond geometric transformations. We show that the adaptation

can be incorporated as a module in a CNN-based object detection pipeline.

Furthermore, we show that pre-computed features of the rendered views can

be added as a fully-connected layer in a CNN, which brings the bene�ts of

accuracy and speed from recent advances in deep learning to 2D-3D exemplar

detection.

Contributions. Our contributions are twofold:
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• We introduce a cross-domain adaptation approach for 2D-3D exemplar

detection using generated pairs of rendered views of CAD models and

composite views with natural background. Our adaptation routine

adapts features of natural images depicting objects to more closely

match features of CAD model rendered views.

• We show how our adaptation routine can be incorporated into a CNN-

based detection pipeline, which leads to an increase in accuracy and

speed for 2D-3D exemplar detection.

We evaluated our method on the tasks of CAD instance retrieval on the

IKEA dataset [76] and on 2D-3D object class detection on the Pascal VOC

subset used in Aubry et al. [7]. We show state-of-the-art exemplar detection

performance on IKEA instances and out-perform the discriminative element

approach of Aubry et al. [7] both in terms of accuracy and speed. The

extended annotations for the IKEA object dataset, a new diverse dataset of

textured and non-textured rendered views of CAD models we used to learn

the adaptation, and our full code are available at http://imagine.enpc.

fr/~suzano-f/exemplar-cnn/.

4.1.1 Related Work

A 3D understanding of 2D natural images has been a problem of inter-

est in computer vision since its very beginning [93]. Our work is in line

with traditional geometry-centric approaches for object recognition based

on alignment [84]. There has been a number of successful approaches for

instance-level recognition, e.g., [23, 74, 96], typically based on SIFT match-

ing [79] with geometric constraints. More recent approaches have leveraged

contour-based representation to align skylines [9] and statues [5]. Further-

more, simpli�ed or parametric geometric models have been used for category

recognition/detection [37, 49, 56, 90, 123, 129]. We will focus our discussion

in this section on prior work using CAD models for category recognition and

2D-3D alignment.

Rendered views from CAD models have been used as input for training

an object class detector [88, 89, 109] or for viewpoint prediction [107]. Most

similar to us are approaches that align models directly to images. Examples

include alignment of IKEA furniture models to images [76], exemplar-based

object detection [80] by matching discriminative elements [7, 22], and using

http://imagine.enpc.fr/~suzano-f/exemplar-cnn/
http://imagine.enpc.fr/~suzano-f/exemplar-cnn/
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hand-crafted features for retrieving CAD models for depth prediction [106]

and compositing from multiple models [60]. Also related are approaches for

CAD retrieval given RGB-D images (e.g., from Kinect scans) [50, 104]. More

recently there has been work to enrich the feature representation for match-

ing and alignment using CNNs, which include CAD retrieval based on CNN

responses (e.g., AlexNet [68] �pool5� features) [8], learning a transformation

from CNN features to light-�eld descriptors for 3D shapes [75], and training

a Siamese network for style retrieval [12]. Building on e�cient CNN-based

object class detection, e.g., R-CNN [44], our approach extends the above

CNN-based approaches for e�cient CAD-exemplar detection.

Bridging two very di�erent image modalities is a classic problem for

alignment [63]. Past approaches have addressed this problem using two

main strategies. A �rst line of work has used manually-designed feature

detectors and adapted them, for example by adding a mask, so that they

focus on the information available in both CAD models and real images

[7, 22, 117]. Another line of work has focused on increasing the realism of

rendered views, e.g., by extracting likely textures and background from an-

notated images [88, 89, 107, 109]. Domain adaptation approaches have been

formulated for CNNs [14, 57, 94, 39], most recently for object detection [58],

�ne tuning across tasks [113], and, in a contemporary work, transfer learn-

ing from RGB to optical �ow and depth [51]. Most similar to our approach

is domain adaptation with CAD [109], which adapted hand-crafted features

(HOG [25]) for object detection. We formulate a generic domain adaptation

approach over image features, which can be applied to hand-crafted features,

e.g., HOG [25] or CNN responses.

4.1.2 Overview

Figure 4.1 shows our 2D-3D exemplar detection pipeline. We start by com-

puting CNN features for an image corresponding to a selective search win-

dow, along with CNN features for rendered views of CAD models. Due to the

large appearance gap across the two domains, we learn how to adapt features

of natural images to better match features for rendered views (Section 4.2).

We then compare the adapted features with calibrated rendered view fea-

tures to obtain matching scores for each rendered view (Section 4.3). Note

that our detection pipeline can be implemented as a CNN. An evaluation of

our approach is in Section 4.4.
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Figure 4.2: Adapting real images to rendered views. A transformation φ is
learned such that it brings features from the real images closer to the features
from the CAD rendered views.

4.2 Adapting from real to rendered views

In this section we describe our approach for adapting features extracted from

real images to better correspond to features extracted from rendered views

of CAD models. Our approach is general and can be applied to any image

feature set, e.g., HOG [25] and CNN-based features [71]. We adapt from real

images to rendered views (and not from rendered to real) since it is likely

more di�cult to hallucinate features corresponding to missing image details,

such as the surrounding context of an object and its texture, than to remove

them.

Formally, we seek to learn a transformation φ over the features of real

images. Intuitively φ is a projection of the real image feature space to the

space of features from CAD rendered views. Ideally, φ has the property of

mapping a given real image feature depicting an object of interest to features

of rendered views of CAD object models with the same geometry, style, and

pose. Figure 4.2 illustrates our adaptation system.

Suppose we have as input a set of N pairs of features {(xi, yi)}Ni=1 corre-

sponding to examples of real images and rendered views of well-aligned CAD

models, respectively. We seek to minimize the following cost over φ:

L(φ) = −
N∑
i=1

S (φ (xi) , yi) +R(φ), (4.1)

where S denotes a similarity between the two features φ(xi) and yi, and R
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is a regularization function over φ. Note that in the case where φ is an a�ne

transformation, our formulation is similar to the one of Lenc and Vedaldi [73]

where a mapping was learned given image pairs to analyze the equivariance

of CNN features under geometric transformations.

4.2.1 Adaptation

While the simplest choice for φ is an a�ne transformation, which we use as

a reference in our experiments, we also tested more constrained and complex

transformations. We focused on transformations that could be formulated as

CNN layers, and in particular successions of convolutional and ReLU layers.

Note that considering more complex transformations also increases the risk

of over�tting. Similar to Lenc and Vedaldi [73] we attempted to constrain

the structure of the transformation and its sparsity. This is easily done in

a CNN by replacing a fully-connected layer by a convolutional layer with

limited support, which implies translation invariance in the adaptation. We

found that the best-performing transformation was only a slight modi�cation

of the a�ne transformation:

φ(x) = ReLU(Ax+ b), (4.2)

where ReLU(x) = max(0, x) is the element-wise maximum over zero. We

observed that applying the ReLU function consistently improved results,

and is in agreement with state-of-the-art CNN architecture design choices

for object recognition.

4.2.2 Similarity

We tried both L2 and squared-cosine similarity to measure the similarity

in Equation (4.1). We found that the squared-cosine similarity S(a, b) =

−
(
1− aT b

‖a‖‖b‖

)2
leads to better results. This is expected, since cosine sim-

ilarity is known to work better when comparing CNN features [8], but also

because we later used the cosine distance to compare real and synthetic fea-

tures (c.f. Section 4.4). This result is also consistent with the observation of

the importance of task-speci�c similarities in Lenc and Vedaldi [73].



76 CHAPTER 4. DETECTION

Figure 4.3: Examples of image pairs used for learning the adaptation.

4.2.3 Training data details.

Our adaptation formulation requires a large training set of well-aligned pairs

of images and rendered views of CAD models matching the style and pose

of depicted objects. Such a dataset is di�cult to acquire. While existing

datasets have object CAD models aligned to images closely matching the

depicted object pose [121, 48], the models are often not similar in style.

Recent work on accurate alignment to 3D models by composition [60]

and semi-automatic 3-sweep modeling [20] are promising approaches for ob-

taining accurate image-model alignments, but no large-scale results are yet

available.

Instead, we build on recent approaches for e�ective training from ren-

dered views [88, 107] to render views of CAD models and composite on nat-

ural image backgrounds. This gives us access to virtually unlimited training

data. The backgrounds provide �natural-looking� surrounding context and

encourages the transformation φ to learn to subtract away the background

context. To avoid color artifacts in the composite images, we used gray-scale

image pairs and also used gray-scale images at test time. Note that contrary

to prior approaches using manually-annotated scenes to increase the realism

of the composite [88, 89], we do not directly use any object annotation in

our background selection process. Figure 4.3 shows four representative im-

age pairs from our adaptation data (top � object rendered views; bottom �

rendered views composited with natural image backgrounds).

For the 3D models, we found that using a diverse database comprising

several object categories produced better results than focusing on a target
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set of 3D models we aim to detect. We used as reference in all our exper-

iments the textureless rendered views from Aubry and Russell [8] to train

the adaptation.

4.2.4 Implementation details.

We used a small L2 regularization R in all our experiments and found that it

improved our results despite our very large training sets. We trained φ using

stochastic gradient descent within the Torch7 framework [24]. We used a

weight decay of 5e-4, corresponding to the L2 regularization, a momentum

0.9, and mini-batch size of 128. We started with a learning rate of 1 and

reduced it every 15 epochs by a factor of 10 until convergence.

4.3 Exemplar detection with CNNs

In this section we show how the adaptation procedure in Section 4.2, together

with feature computation and exemplar-based retrieval, can be incorporated

into an e�cient CNN-based detection routine, similar to R-CNN [44], for

2D-3D exemplar detection. For a given input image, we seek to detect the

bounding box location of an object in the image and return a corresponding

CAD model having similar style, along with the pose of the depicted object.

4.3.1 Exemplar-detection pipeline.

Following the initial part of the R-CNN object detection pipeline [44], we �rst

extract a set of selective search windows [114] and compute CNN responses

x at an intermediate layer (e.g., Ca�eNet pool5 layer) for each window. We

then apply our adaptation φ to these features and compare the results φ(x) to

the features of di�erent CAD model rendered views. Let si(x) = S(φ(x), yi)

be the similarity between φ(x) and the features yi of the ith rendered view.

As shown in Aubry et al. [7], calibration is an important step for com-

paring similarity across di�erent views and CAD models. Starting from the

initial similarity score si(x), we apply their a�ne calibration routine to com-

pute a new calibrated similarity s′i(x) = cisi(x)+di. The scalar parameters ci
and di are selected using a large set of random patches such that s′i(x0) = −1
and s′i(x1) = 0, where x0 and x1 correspond to random patch features with
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mean and 99.99-percentile similarity scores, respectively. This calibration

leads to an expected false positive rate of 0.01% when s′i(x) = 0.

We take advantage of the fact that in an exemplar-based detection setup

the expected aspect ratio of the alignments are known. We remove candidate

rendered-view alignments when the aspect ratio has a di�erence of more than

10% between the selective search window and rendered view. Finally, we rank

the remaining alignments by their score s′i(x) and perform non-maximum

suppression to obtain the �nal detections.

4.3.2 CNN implementation.

Figure 4.1 shows our CNN for 2D-3D exemplar detection. Our network

starts with layers corresponding to a CNN trained on a di�erent task (e.g.,

Ca�eNet [65] trained for ImageNet classi�cation in our experiments) until an

intermediate layer (e.g., �pool5�). Next, the resulting features pass through

the adaptation layers corresponding to φ, implemented as a fully-connected

layer followed by a ReLU.

The resulting adapted features are compared to the exemplar rendered-

view features. Several standard similarity functions, such as dot product and

cosine similarity, can be implemented as CNN layers. For example, cosine

similarity can be implemented by a feature-normalization layer followed by

a fully-connected layer. The weights of the fully-connected layer correspond

to a matrix Y of stacked unit-normalized features for the exemplar rendered

views, computed in an o�ine stage. While the a�ne calibration could be

implemented as an independent layer, we incorporated it directly into the

fully-connected layer by replacing the matrix rows by Yi ← ciYi and adding

a bias di corresponding to each row i. The �nal exemplar rendered-view

scores is Y φ(x)+d given image features x, and can be computed by a single

forward pass in a CNN.

4.4 Experiments

In this section we qualitatively and quantitatively evaluate our method and

analyze di�erent design choices. Based on the results presented in Sec-

tion 3.2, we use cosine distance over pool4 features in all our experiments.

First, we present our main results on object-instance and object-class detec-

tion by aligning to CAD rendered views, comparing against existing base-
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lines (Section 4.4.1). Then, we perform an analysis of our algorithm (Sec-

tion 4.4.2), study the quality of the retrieved pose (Section 4.4.3) and report

computational running time (Section 4.4.4).

4.4.1 Detection

In this section, we demonstrate our feature-adaptation algorithm for 2D-

3D detection. We consider two tasks: object-instance and object-category

detection by 2D-3D alignment. For object-instance detection, we evaluated

on the IKEA dataset [76]. For object-category detection, we evaluated on

the subset of Pascal VOC containing �chairs� used in Aubry et al. [7]. We

show qualitative and quantitative results on both benchmarks and compare

against prior work.

Object-instance detection by 2D-3D alignment

For object-instance detection by 2D-3D alignment, we evaluated our ap-

proach on the IKEA dataset and followed the detection protocol outlined in

Lim et al. [76]. We report average precision detection performance in Ta-

ble 4.1(top), along with baselines for this task. It can be seen that we clearly

improve over the baselines for several well-represented classes. However, our

mAP is smaller than the baselines. We will show that this is due to two main

e�ects: a chance factor for classes where very few objects were annotated

or had missing annotations, and a failure of our algorithm on �bookcases�,

which we analyze in detail.

Dataset and additional annotations. Two important issues when using

the IKEA object dataset for evaluating instance detection are (i) its relatively

small size (we report the number of annotated instances in the �rst line of

table 4.1), and (ii) the partial annotations made available, with a maximum

of one object per image when several are often present. To partly address

these issues, we annotated all instances in the 288 test images for the classes

that included more than three instances in the original dataset (except for

�Billy3�, where the detections reported in [76] appear to correspond to a

di�erent model). This increases the number of annotated objects of the

selected classes from 129 to 223. We report our results on our new extended

annotation set in Table 4.1(bottom). With these extended annotations our
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Figure 4.4: Example images of the bookcases missed by our algorithm, most
of which are �lled with books.

mAP is similar to [76], but with strong di�erences in the performance for

the di�erent objects. We have similar results or clear improvements over [76]

(shown in blue in Table 4.1) for most classes, but much lower performance

for bookcases (shown in red in Table 4.1).

Failures on bookcases. Here we analyze our failures for bookcases, which

are very poor in contrast to other categories where they matched or exceeded

the baselines. Inspecting the bookcases missed by our algorithm, some of

which are present in Figure 4.4, almost all of them consist of highly cluttered

examples, e.g., bookcases �lled with books of di�erent colors. We veri�ed

that for our extended annotations, only 14% of billy1 bookcases are empty,

whereas billy2 and billy4 do not have any non-cluttered examples in the

dataset. Looking at our top false positives in Figure 4.5 con�rms this, since

we �nd many parts of empty bookcases or bookcases from other categories.

The rest of the negatives is explained by the fact that the back- and side-

views from the bookcases CAD models, i.e. half of the views we use, have

almost no discriminative features, and thus, in the absence of hard negative

mining, generate many false positive.

Object-category detection by 2D-3D alignment

For object-category detection by 2D-3D alignment, we evaluated our ap-

proach on the subset of the Pascal VOC dataset containing images of non-

di�cult, non-occluded, and non-truncated �chairs� used in Aubry et al. [7],

and aligned to their chair rendered views. We followed their detection pro-

tocol and report average precision for the detection task. We compare our

performance against the baseline of Aubry et al. [7], which also performs de-

tection by 2D-3D alignment. We also report performance of DPM [34] and

R-CNN [44] with and without SVM, both without bounding box regression,
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Figure 4.5: Top 10 detections for the billy1 IKEA model. Note that the �rst
good detection is counted as negative with the original annotation because
it was not annotated in the dataset, but is counted as positive with our
extended annotations. Most of our other detections are di�erent bookcases
or parts of bookcases.

Training with real data

DPM [34] 41.0
R-CNN [44] 44.8

R-CNN + SVM [44] 54.5

Training with CAD data

Aubry et al. [7] 33.9
Peng et al. [88] (W-UG) 29.6

Adaptation
No Adaptation

Compos. White bg.

Logistic pool4 12.9 3.7 1.4
Logistic fc7 26.6 9.2 14.0

Ours, no calibration 5.6 6.0 3.2
Ours with calibration 52.3 36.4 17.9

Table 4.2: Average precision for chair detection on the Pascal VOC subset
of non-di�cult chairs [7]. Our best method outperforms the baselines of
[7] by 18%. �White bg� column corresponds to synthetic images on white
background. �Compos� column corresponds to synthetic images composited
on real-image backgrounds.
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which were trained on natural images for 2D object detection. As another

baseline, we report the performance of a logistic regression classi�er trained

using synthetic images (with and without adaptation), which is similar in

spirit to recent approaches that trains a 2D object detector using synthetic

training images [88, 89]. In order to better situate our work with respect

to approaches that train a classi�er using synthetic images with composite

backgrounds [88, 89], we also report results for the following baselines using

synthetic images composited with natural-image background as positives,

and without adaptation: (a) logistic regression classi�er, (b) our exemplar

detector. Finally, we report results for the best performing method of Peng et

al. [88], corresponding to their W-UG synthetic images.

We report our results in Table 4.2. With our adaptation, our method

outperforms all baselines except R-CNN + SVM. We obtain an average pre-

cision of 52.3% compared to 41% for DPM, 33.9% for Aubry et al. [7] and

29.6% for Peng et al. [88]. Besides, we also tried using the method of [88]

with the chairs from [7], which resulted in an average precision of 9.0%. This

di�erence in performance is likely due to their manual selection of realistic

viewpoints and models in the W-UG set.

A more detailed analysis reveals the importance of the adaptation for all

the methods based only on CNN features from CAD models. Note that the

bene�t of using the adaptation is less important when using the fc7 layer

for logistic regression. This shows that unsurprisingly fc7 is less sensitive

to the type of representation than conv4, and may explain the good results

obtained by [88, 89] using the fc7 layers directly. An interesting question

is whether the adaptation could be replaced by synthetic images compos-

ited with natural-image backgrounds. As can be seen from Table 4.2, even

though the composites help in some cases (notably in our exemplar detector),

its performance still lags behind the performance obtained using the adapta-

tion. Note that we used a single background per exemplar view. While one

could include more composites per exemplar, this would excessively increase

the memory requirements as one would need to store all of the additional

exemplars.

4.4.2 Algorithm analysis

In this section we perform a study of di�erent design choices of our approach.
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(a) Without adaptation (b) With adaptation

Figure 4.6: Top detections without and with adaptation on the Pascal VOC
chair subset [7]. Notice that while the alignments are good with and without
adaptation, detection without adaptation returns dark chairs having �CAD-
like� white backgrounds. Detections with adaptation include brighter objects
and cluttered backgrounds.
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(a) Top false positives without adaptation

(b) Top false positives with adaptation

Figure 4.7: Top-ranked false positives without and with adaptation on the
Pascal VOC chair subset of [7]. Since there were several false positives per
image without adaptation, we only show the best ranked for each image.
The false positives without adaptation occur on uniform background patches.
With adaptation, this e�ect largely disappears and the false positives corre-
spond to patches that look like chairs or chair parts.

In�uence of adaptation on alignment.

In Figure 4.6, we show the top detections with and without adaptation.

Notice that while the non-adapted features have higher detection scores for

�CAD-like� images of darker chairs on mostly white background (Fig. 4.6a),

the adaptation allows us to detect chairs of all colors in natural cluttered

scenes (Fig. 4.6b). Similarly, we show the top false positives in Figure 4.7.

Notice that without adaptation the top false positives correspond to regions

with uniform background (Fig. 4.7a), while adaptation yields chair-shaped

false positives similar to an object detector trained on natural images only

(Fig. 4.7b).

Adaptation design.

As discussed in Section 4.3, the adaptation φ in Equation (4.2) can be imple-

mented in a CNN as a fully-connected layer, followed by a ReLU nonlinearity.

We seek to study variants of φ. Since the pool4 Ca�eNet features maintain

spatial bin structure, we consider adaptations with limited spatial support

via convolution with 1 × 1 and 3 × 3 kernels. We also consider whether to

use the ReLU nonlinearity or not, and whether to consider multiple convo-

lutional layers in the adaptation.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30

35

40

45

50

Aspect ratio threshold

A
P

conv 1x1
conv 1x1 - relu - conv 1x1

conv 3x3
conv 3x3 - relu - conv 3x3

fully connected
fully connected + relu

Figure 4.8: Average precision for di�erent adaptation functions φ as a func-
tion of the aspect ratio threshold.

Figure 4.8 shows the average precision for di�erent variants of φ as a

function of the aspect ratio threshold. Notice that all of the adaptation

variants that we tried performed better than without adaptation (17.9% AP

from Table 4.2). Imposing adaptations with limited spatial support (conv)

performed worse than a fully-connected layer. This can be understood by

considering that the e�ect of the projection depends on the interpretation

of the image as foreground object and background as clutter, a task that

can be better performed globally. Using two layers for the adaptation de-

graded performance. Note that we observed the validation loss was better

optimized using two layers. We believe this e�ect is due to the synthetic na-

ture of our training data, which only approximates the relation between real

and synthetic images. Finally, we found that adding a ReLU after the con-

volutional layer consistently increased the performance. The use of a single

fully-connected layer followed by a ReLU produced the best performance.

Aspect ratio threshold.

Figure 4.8 shows the evolution of the average precision as a function of aspect

ratio threshold for di�erent adaptations on the Pascal VOC subset detection
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(a) Number of rendered views

# rend. 200 500 1k 2k 10k 86k
AP 33.3 37.6 41.3 44.8 45.7 50.0

(b) Number of CAD models

# CAD 5 10 20 40 160 1393
# rend. 310 620 1240 2480 10k 86k
AP 21.7 26.6 29.8 33.9 44.6 50.0

Table 4.3: Detection AP in the subset of Pascal VOC chair subset [7] for the
fully-connected projection as a function of (a) the number of CAD rendered
views and (b) the number of unique CAD models used, where we also show
the number of rendered views to facilitate the comparison.

experiment. As expected, increasing the threshold �rst improves the results

because it removes many false positives.The results are then relatively sta-

ble between 0.75 and 0.9 since both positives and negatives are discarded.

Finally, the performance drops for higher thresholds as more true positives

get discarded. In all our experiments, we used an aspect-ratio threshold of

0.9.

Number of rendered views.

We studied the relative importance of the CAD model dataset size on the

�nal detection performance by conducting experiments over the set of 86K

renders from Aubry et al. [7]. We randomly selected increasing subsets of

all rendered views (Table 4.3(a)), and randomly selected increasing numbers

of CAD models and used all their 62 rendered views (Table 4.3(b)). Notice

that performance increases with the number of CAD renders, as expected.

Interestingly, the diversity of the CAD models plays an important role in

the �nal detection score. For roughly the same number of rendered views,

5 CAD models (for a total of 310 views) performs considerably worse than

200 random views.

4.4.3 Evaluation of the retrieved pose.

We conducted the same experiment as in Aubry et al. [7] to evaluate the

quality of the retrieved poses. For the ground truth, we used the pose an-

notations from Pascal3D [121]. Figure 4.9 shows a histogram of azimuth

angle errors at 25% recall (similar to Fig. 6 in Aubry et al. [7]). Our algo-
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Figure 4.9: Azimuth angle error for correct detections at 25% recall.

rithm returns an azimuth angle within 20◦ of the ground truth for 90% of

the examples, compared with 87% for Aubry et al. [7].

4.4.4 Computational run time

Our system runs in computational time similar to R-CNN [44] if all the

CAD rendered views �t into GPU memory. Excluding the time to compute

bounding box proposals, we can align a test image to 2k rendered views in ap-

proximately 9.5 seconds on a GeForce GTX980 graphics card. We can align

to more views at the expense of copying pre-computed rendered view features

to the GPU memory. This can be overcome with larger-memory graphics

cards, by running on multiple cards in parallel or by using optnet, presented

in Section 3.1, which allows to �t larger amounts of CAD rendered views

into GPU memory. For 80k rendered views, our approach currently takes

around 52 seconds. Similar to recent fast CNN detection pipelines [54, 43],

our timings could be further optimized by reusing the convolutional features

for each bounding box, which could potentially reduce the computational

time to a fraction of a second. Filtering by aspect ratio before comparing

the features could also reduce the number of tests to perform, especially in

the case of a very large number of 3D views. Note that even without these

improvements, our computational run times are already much faster than

those presented in Aubry et al. [7].
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4.5 Conclusion

We demonstrated an end-to-end CNN for 3D CAD model detection in 2D

images. We showed that an adaptation of image features to closely match

features of rendered views of CAD models is essential to its success. Our

adaptation approach is agnostic to the feature set and could potentially

bene�t other 2D-3D detection methods.
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Chapter 5

Pose Estimation

In this chapter, we present our study of the task of object category viewpoint

estimation using Convolutional Neural Networks (CNNs). As discussed in

Section 2.4.3, di�erent ways of formulating this problem have been proposed

and the competing approaches have been explored with very di�erent de-

sign choices. This chapter presents a comparison of these approaches in a

uni�ed setting as well as a detailed analysis of the key factors that impact

performance. Followingly, we present a new joint training method with the

detection task and demonstrate its bene�t. We also highlight the superiority

of classi�cation approaches over regression approaches, quantify the bene�ts

of deeper architectures and extended training data, and demonstrate that

synthetic data is bene�cial even when using ImageNet training data. By

combining all these elements, we demonstrate an improvement of approxi-

mately 5% mAVP over previous state-of-the-art results on the Pascal3D+

dataset [121]. In particular, for their most challenging 24-view classi�cation

task, we improve the results from 31.1% to 36.1% mAVP.

5.1 Introduction

Joint object detection and viewpoint estimation is a long-standing problem in

computer vision. While it was initially tackled for single objects with known

3D models [93, 78, 61], it was progressively investigated for complete object

categories. The interest in this problem has recently increased both by the

availability of the Pascal3D+ dataset [121], which provides a standard way to

compare algorithms on diverse classes, and by the improved performance of

object detection, which encouraged researchers to focus on extracting more

complex information from the images than the position of objects.

Convolutional Neural Networks were recently applied successfully to this

task of object category pose estimation [107, 112], leading to large improve-

ments of state-of-the-art results on the Pascal3D+ benchmark. However

91



92 CHAPTER 5. POSE ESTIMATION

many elements play an important role in the quality of these results, which

have not yet been fully analyzed. In particular, several approaches have

been proposed, such as a regression approach with joint training for detec-

tion [86, 87], a direct viewpoint classi�cation [112], and a geometric structure

aware �ne-grained viewpoint classi�cation [107], where the authors modify

the classi�cation objective to take into account the uncertainty of the anno-

tations and encode implicitly the topology of the pose space. These papers

however di�er in a number of other ways, such as the training data or the

network architecture they use, making it di�cult to compare performances.

We explore systematically the essential design choices for a CNN-based ap-

proach to pose estimation and we demonstrate that a number of elements

in�uence the performance of the �nal algorithm in an important way.

Contributions

In this chapter, we study several factors that a�ect performance for the task

of joint object detection and pose estimation with CNNs. Using the best de-

sign options, we rationally de�ne an e�ective method to integrate detection

and viewpoint estimation, quantify its bene�ts, as well as the boost given

by deeper networks and more training data, including data from ImageNet

and synthetic data. We demonstrate that the combination of all these el-

ements leads to an important improvement over state-of-the-art results on

Pascal3D+, from 31.1% to 36.1% AVP in the case of the most challenging 24

viewpoints classi�cation. While several of the elements that we employ have

been used in previous work [87, 107, 112], we know of no systematic study

of their respective and combined e�ect, resulting in an absence of clear good

practices for viewpoint estimation and sub-optimal performances.

Related work

Most of the related work for this chapter is covered in Chapter 2. Here we

review some relevant work for this chapter.

Convolutional Neural Networks. While convolutional neural network

have a long history in computer vision (e.g. [71]), their use has been general-

ized only in 2012 after the demonstration of their bene�ts by Krizhevsky et

al. [68] on the ImageNet large-scale visual recognition challenge [26]. Since
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then, they have been used to increase performances on many vision tasks.

This has been true in particular for object detection, where the R-CNN

technique of Girshick et al. [44] provided an important improvement over

previous methods on the Pascal VOC dataset [31]. Relying on an indepen-

dent method to provide bounding box proposals for the objects in the image,

R-CNN �ne-tunes a network pre-trained on ImageNet to classify these pro-

posal as objects or background. This method has then been improved in

several ways, in particular using better network architectures [55], better

bounding box proposals [91] and a better sharing of the computations inside

an image [54, 43].

Viewpoint estimation. Rigid object viewpoint estimation was �rst tack-

led in the case of object instances with known 3D models, together with

their detection [93, 78, 61, 5, 74, 76]. These approaches were extended to

object categories detection using either extensions of Deformable Part Mod-

els (DPM) [34, 46, 56, 90], parametric models [129, 122] or large 3D instances

collections [7, 107].

With the advent of Pascal3D+ dataset [121], which extends Pascal VOC

dataset [31] by aligning a set of 3D CAD models for 12 rigid object classes,

learning-based approaches using only on example images became possible

and proved their superior performance. For example, Xiang et al. [121]

extended the method of [90], which uses an adaptation of DPM with 3D

constraints to estimate the pose. CNN-based approaches, which were un-

til the availability of the Pascal3D+ data limited to special cases such as

faces [86] and small datasets [87], also began to be applied to this problem

at a larger scale. In [81], we explored di�erent pose representations and

showed the interest of joint training using AlexNet [68] and Pascal VOC

[31] data. Tulsiani and Malik [112] used a simple classi�cation approach

with the VGG16 network [103] and annotations for ImageNet objects and

established the current state-of-the-art on Pascal3D+. Su et al. [107] intro-

duced a discrete but �ne-grained formulation of the pose estimation which

takes into account the geometry of the pose space, and demonstrate using

AlexNet that adding rendered CAD models could improve the results over

using Pascal VOC data alone.
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5.2 Overview

We focus on the problem of detecting and estimating the pose of objects in

images, as de�ned by the Pascal3D+ challenge Average Viewpoint Precision

(AVP) metric. In particular, we focus on the estimation of the azimuthal

angle. For object detection, we use the standard Fast R-CNN framework [43],

which relies on region proposal but is signi�cantly faster than the original

R-CNN [44]. In addition, we associate a viewpoint to each bounding box

and for each object class. Indeed, since viewpoint conventions may not be

coherent for the di�erent classes, we learn a di�erent estimator for each class.

However, to avoid having to learn one network per class, we share all but

the last layer of the network between the di�erent classes.

In Section 5.3, we �rst discuss di�erent approaches to viewpoint pre-

diction with CNNs and in particular the di�erences between regression and

classi�cation approaches. Then in Section 5.4, we introduce di�erent ways

to integrate the viewpoint estimation and the detection problem. Finally,

in Section 5.5 we present the results of the di�erent methods as well as a

detailed analysis of di�erent factors that impact performance.

Notations. We call Ns be the number of training samples and Nc the

number of object classes. For i ∈ {1, ..., Ns} we associate to the i-th training

sample xi its azimuthal angle θi ∈ [0, 2π[, its class ci ∈ {1, ..., Nc} and the

output of the network with parameters w, fw(xi). The viewpoints are often

discretized and we call Nv the number of bins, and θ̃i ∈ {1, ..., Nv} the bin
that includes θi. We use subscripts to denote the elements of a tensor; for

example, fw(xi)k,l is the element (k, l) from tensor fw(xi). To make the

notation simpler, whenever we mention a loss, we omit the weight decay

regularization factor R(fw) = ‖w‖22 as it will be used in all our equations.

5.3 Approaches for viewpoint estimation

In this section, we assume the bounding box and the class of the objects

are known and we focus on the di�erent approaches to estimate their pose.

Section 5.3.1 �rst discusses the design of regression approaches. Section 5.3.2

then presents two variants of classi�cation approaches. The intuition behind

these di�erent approaches are visualized on Figure 5.1.
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(a) 2D regres-
sion

(b) 3D regres-
sion

(c) Direct classi�-
cation

(d) Geom.
structure
aware classi�-
cation

Figure 5.1: Di�erent approaches to orientation prediction discussed in this
chapter. The target for each approach is visualized in red. For the regression
approaches, the possible values of the targets lie on a line. For the classi�ca-
tion approaches, the predictions correspond to probability distributions on
a discrete set.

5.3.1 Viewpoint estimation as regression

The azimuth angle of a viewpoint being a continuous quantity, it is natural

to tackle pose estimation as a regression problem. The choice of the pose

representation F (θ) of an azimuthal angle θ is of course crucial for the ef-

fectiveness of this regression. Indeed, if we simply consider F (θ) = θ, the

periodicity of the pose is not taken into account. Thus, as highlighted in

[86], a good pose representation F (θ) satis�es the following properties: (a)

it is invariant to the periodicity of the angle θ, and (b) it is analytically

invertible.

We explore two representations which satisfy both properties:

(i) F (θ) =
(
cos(θ), sin(θ)

)
, probably the simplest way to represent ori-

entations, used for example in [87];

(ii) F (θ) =
(
cos
(
θ − π

3

)
, cos (θ) , cos

(
θ + π

3

))
, a formulation which was

presented in [86], and that has a higher dimensionality than the pre-

vious one, allowing more �exibility for the network to better capture

the pose information.

These representations have di�erent output dimensionality Nd, respectively

2 and 3, and we designate the associated regressions by regression 2D and

regression 3D respectively. Since we treat the regression independently for

each class, the outputs fw(x) of the network that we train for pose estimation

have values in RNc×Nd and we designate by fw(x)c,k the angular element k
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of the output for class c.

For training the regression with these representations, we used the Huber

loss (also known as Smooth L1) on each component of the pose representation

F (θ). It is known to be more robust to outliers than the Euclidean loss and

provides much better results in our experiments. Our regression loss can

then be written:

Lreg(w) =

Ns∑
i=1

Nd∑
k=1

H(fw(xi)ci,k − F (θi)k) (5.1)

with H the Huber loss, de�ned by:

H(z) =

0.5z2 if |z| < 1

|z| − 0.5 otherwise
(5.2)

Given the output fw(x)c,• of the network for a sample x of class c, we

can estimate its pose simply by computing the pose of the closest point on

the curve described by F (cf. Figure 5.1). Other regression approaches and

loss are discussed in [81] but lead to lower performances.

5.3.2 Viewpoint estimation as classi�cation

As pointed out by [107], the main limitation of a regression approach to

viewpoint estimation is that it cannot represent well the ambiguities that

may exist between di�erent viewpoints. Indeed, objects such as a table

have symmetries or near symmetries that make the viewpoint estimation

problem intrinsically ambiguous, and this ambiguity is not well handled by

the representations discussed in the previous paragraph. One solution to

this problem is to discretize the pose space and predict a probability for

each orientation bin, thus formulating the problem as one of classi�cation.

Note that a similar di�culty is found in the problem of keypoint prediction,

for which the similar solution of predicting a heat map for each keypoint

instead of predicting directly its position has proven successful [112].

In the case of a classi�cation approach, the output of the network belongs

to RNc×Nv and each value can be interpreted as a log probability. We write

fw(x)c,v the value corresponding to the orientation bin v for an input x of

class c.
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Direct classi�cation

The approach successfully applied in [112] is to simply predict, for each

class independently, the bin in which the orientation of the object falls.

This classi�cation problem can be addressed for each object class with the

standard cross-entropy loss:

Lclassif(w) = −
Ns∑
i=1

log

(
exp(fw(xi)ci,θ̃i)∑Nv
v=1 exp(f

w(xi)ci,v)

)
(5.3)

At test time, the predicted angular bin θ̂(x, c) for an input x of class c is

given by

θ̂(x, c) = argmax
v∈{1,...,Nv}

fw(x)c,v (5.4)

Geometric structure aware classi�cation

The drawback of the previous classi�cation approach is that it learns to

predict the poses without using explicitly the continuity between close view-

points. Two neighboring bins have indeed a lot in common. This geometrical

information may be especially important for �ne-grained orientation predic-

tion, where only few examples per bin are available.

A solution to this problem was proposed in [107]. The authors �nely

discretize the orientations inNv = 360 bins and consider the angle estimation

as a classi�cation problem, but adapt the loss to include a structured relation

between neighboring bins and penalize less angle errors that are smaller:

Lgeom(w) = −
Ns∑
i=1

Nv∑
v=1

exp

(
−d(v, θ̃i)

σ

)
log

(
exp(fw(xi)ci,v)∑Nv
v=1 exp(f

w(xi)ci,v)

)
(5.5)

where d(v, θ̃i) is the distance between the centers of the two bins v and θ̃i,

and σ is a parameter controlling how much similarity is enforced between

neighboring bins. Following [107], we use σ = 3 for Nv = 360. The inference

is done as in Equation (5.4).
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Classification 
probabilities

Orientations

Background

Airplane

Bicycle

Chair

0.1

0.85

0.04

0.01

Figure 5.2: Joint model with regression. For each category, a contin-
uous viewpoint prediction is performed. The detection and the viewpoint
estimation are jointly trained, and the category with the highest detection
score determines the orientation.

5.4 Joint detection and pose estimation

The methods presented in the previous section assume that the object detec-

tor is already trained and kept independent from the pose estimator. Since

object detection and pose estimation relies on related information, we ex-

pect a bene�t from training them jointly. We thus present extensions of the

methods from Section 5.3 to perform this joint training.

5.4.1 Joint model with regression

Two main approaches can be considered to extend the regression approach

of Section 5.3.1 to jointly perform detection. The �rst one, described in [86]

is to encode respectively the presence or absence of an object by a point

close or far from the regression line described by F in the space where the

regression is performed. An alternative approach, discussed in [87] and il-

lustrated in Figure 5.2, is to add an output to the regression network specif-

ically dedicated to detection. The loss used to train the network can then

be decomposed into two terms: a classi�cation loss Ldet(w), which is inde-

pendent on the pose, and a regression loss Lreg(w) which takes into account

only the pose estimation. Since state-of-the-art performance for detection

are obtained using a classi�cation loss, we selected the second option in the

following.

Our network thus has two outputs: fw,det(x) ∈ RNc+1 for the detection

part (predicting probabilities for each of the Nc classes and the background
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Background
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Bicycle

Chair

Orientations

Σ

Output probabilities

Σ Class 
probability= 0.85
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maxΣ Predicted 

angle bin= 2
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maxΣ Predicted 

angle bin= 1
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Figure 5.3: Joint model with classi�cation. The orientations are dis-
cretized into bins, and the detection and viewpoint estimation are jointly
trained using cross-entropy loss. During test time, the detection score for a
category is the sum of the detection scores for that category over all orien-
tations.

class), and fw,pose(x) ∈ RNc×Nd for the pose estimation part. The multi-

task loss for joint classi�cation and regression-based pose estimation writes

as follows:

Lj-reg(w) = Ldet(w) + λLreg(w) (5.6)

We de�ne Lreg exactly as in Equation (5.1), using the pose estimation output

of the network fw,pose(x). The detection loss Ldet is the standard cross-

entropy loss for detection, using the detection part of the network output

fw,det(x). We set the balancing parameter λ = 1 in our experiments.

Also, we share the weights of the detection and pose estimation network

only up to the pool5 layer. This is essential to obtain a good performance,

as the regression and classi�cation losses are di�erent enough that sharing

more weights leads to much worse results.

5.4.2 Joint model with classi�cation

A similar approach, separating two branches of the network, can be applied

for classi�cation. However, we introduce a new simpler and parameter-free

way to perform jointly detection and pose estimation in a classi�cation setup,

which is illustrated in Figure 5.3. Indeed, one can simply add a component,

associated to the background patches, to the output vector of the pose esti-

mation setup of Section 5.3.2 and normalize it globally, rather than for each
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class independently as in Equation (5.3). Each value is then interpreted as

a log probability of the object being of one class and in a given orientation

bin, rather than the conditional probability of the object being in a given

orientation bin knowing its class. To obtain the probability of the object to

belong to one class, one can simply sum the probabilities corresponding to

all the bins for this class.

Similar to Section 5.3.2, we write fw,obj(x)c,v ∈ RNc×Nv the value of

the network output corresponding to the orientation bin v for an input x of

class c. We additionally write fw,bg(x) ∈ R its value corresponding to the

background and associate a class ci = 0 to the elements xi in the background.

The loss, which derives from the cross-entropy, writes:

Lj-classif(w) =

−
Ns∑
i=1

1ci=0 log

(
exp(fw,bg(xi))

exp(fw,bg(xi)) +
∑Nc

c=1

∑Nv
v=1 exp(f

w,obj(xi)c,v)

)

−
Ns∑
i=1

1ci 6=0 log

(
exp(fw,obj(xi)ci,θ̃i)

exp(fw,bg(xi)) +
∑Nc

c=1

∑Nv
v=1 exp(f

w,obj(xi)c,v)

)
(5.7)

At inference, the score associated to the detection of an object x for class c

is

S(x, c) =

∑Nv
v=1 exp(f

w,obj(x)c,v)

exp(fw,bg(x)) +
∑Nc

c′=1

∑Nv
v=1 exp(f

w,obj(x)c′,v)
(5.8)

5.5 Experiments

We now present experiments comparing the di�erent approaches for pose

estimation which were presented in the previous sections. Our experiments

are based on the Fast R-CNN object detection framework [43], with Deep

Mask [91] bounding boxes proposals.

We trained and evaluated our models using the Pascal3D+ dataset [121],

which contains pose annotations for the training and validation images from

Pascal VOC 2012 [31] for 12 rigid classes, as well as for a subset of ImageNet

[26]. We also extended the training data by adding the synthetic images

from [107]. The evaluation metric we used is the Average Viewpoint Preci-

sion (AVP) associated to Pascal3D, which is very similar to the standard

Average Precision (AP) metric used in detection tasks, but which considers
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as positive only the detections for which the viewpoint estimate is correct.

More precisely, the viewpoints are discretized into K bins and the viewpoint

estimate is considered correct if it falls in the same bin as the ground-truth

annotation. We focus on the AVP24 metric, which discretizes the orientation

into K = 24 bins and is the most �ne-grained of the Pascal3D+ challenge

[121]. We also consider the mean AP (mAP) and mean AVP (mAVP) over

all classes.

5.5.1 Training details

We �ne-tune our networks, starting from a network trained for ImageNet

classi�cation, using Stochastic Gradient Descent with a momentum of 0.9

and a weight decay of 0.0005. We augment all datasets with the horizontally-

�ipped versions of each image, �ipping the target orientations accordingly.

During the training of the joint detection and pose estimation models, 25%

of the mini-batches consist of positive examples. Our mini-batches are of size

128 except when using synthetic images. When using synthetic images, we

randomly create montages with the rendered views from [107], each montage

containing 9 objects, for a total mini-batch size of 137 (96 backgrounds and

32 positive patches from real images and 9 positive synthetic objects). This

allows for an e�cient training in the setup of Fast R-CNN.

We initialize the learning rate at 0.001, and divide it by 10 after conver-

gence of the training error. The number of iterations depends of the amount

of training data: when using only Pascal VOC data, we decrease the learning

rate after 30K iterations and continue to train until 40K; when adding Im-

ageNet data we decrease the learning rate after 45K iterations and continue

to train until 100K; and �nally, when adding synthetic data, we decrease the

learning rate after 100K iterations and continue to train until 300K.

All experiments were conducted using the Torch7 framework [24] and the

full code can be found at imagine.enpc.fr/~suzano-f/bmvc2016-pose/.

5.5.2 Results

Comparison of the di�erent approaches for pose estimation

We �rst compare the di�erent approaches for pose estimation from Sec-

tion 5.3. We use a �xed object detector based on the AlexNet architecture,

trained for detection on Pascal VOC 2012 training set and we report the

imagine.enpc.fr/~suzano-f/bmvc2016-pose/


102 CHAPTER 5. POSE ESTIMATION

Method mAP mAVP24
Regression 2D 51.6 13.9
Regression 3D 51.6 15.7

Direct classi�cation 51.6 19.3

Geometric structure aware classi�cation 51.6 18.4

Table 5.1: Di�erent approaches for pose estimation with AlexNet architec-
ture, Pascal VOC 2012 data, and using a �xed detector.

results in Table 5.1. We can �rst observe that for regression, a pose repre-

sentation with a higher dimensionality (3D) performs better than when using

a smaller dimensionality (2D). We believe the redundancy in the representa-

tion helps to better handle ambiguities in the estimation. The classi�cation

approach however signi�cantly outperforms both regressions (19.3% AVP

compared to 13.9% and 15.7%). Interestingly, the simplest classi�cation ap-

proach from Section 5.3.2 performs slightly better than the geometry-aware

method. We think the main reason for this di�erence is that the simple

classi�cation optimize exactly for the objective evaluated by the AVP, and

thus this result can be seen as an artefact of the evaluation. Note that

the results could be di�erent for even more �ne-grained estimation where

less examples per class are available. Nevertheless, since the more complex

geometric structure aware approach performed worse than the direct classi-

�cation baseline, we focus in the rest of this chapter on the simplest direct

classi�cation approach.

Bene�ts of joint training for detection and pose estimation

We evaluate the bene�ts of jointly training a model to detect the objects

and predict their orientation. These bene�ts can be of two kinds. First, the

order of the detections candidates given by the new detector may favor the

con�dent orientations and thus increase the AVP. Second, the pose estimates

can be better for a given object. To evaluate both e�ects independently, we

report in Table 5.2 the results using both the order given by the detector

used in the previous section and the order given by the new joint classi�er.

All experiments were performed as above, with the AlexNet architecture and

the Pascal VOC training data.

Comparing Table 5.2 to Table 5.1 shows two main e�ects. First, the

mAVP is improved even when using the same classi�er, demonstrating im-
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Joint detector Independant detector
Method mAP mAVP24 mAP mAVP24

Joint Regression 2D 49.2 15.7 51.6 16.4
Joint Regression 3D 49.6 17.1 51.6 17.4
Joint classi�cation 48.6 21.1 51.6 20.5

Table 5.2: Jointly training for detection and pose estimation with AlexNet
architecture and Pascal VOC 2012 data.

proved viewpoint estimation with joint training. Second, the mAP is de-

creased, showing that the detection performs worse when trained jointly.

However, one can also notice that the best mAVP is still obtained with the

joint classi�er. This shows that the pose estimation is better in the joint

model, and also that for the case of classi�cation the order learned when

training jointly the detector favours con�dent poses. This is not the case for

the regression approaches for which the best results are obtained using the

independent detector and the jointly-learned pose estimation.

In�uence of network architectures and training data

In this section, we consider our joint classi�cation approach, which performs

best in the evaluations of the previous section, and study how its performance

varies when using di�erent architectures and more training data.

The comparison of the left and right columns of Table 5.3 shows that

unsurprisingly the use of the VGG16 network instead of AlexNet consistently

improves performances. This improvement is slightly less for the mAVP

than for the mAP, hinting that the mAVP boost is mainly due to improved

detection performances.

For the training data, we �rst progressively add training images from Im-

ageNet to the training images from Pascal VOC. The full subset of the Im-

ageNet dataset annotated in Pascal3D+ contains in average approximately

1900 more images per class, but is strongly unbalanced between the di�erent

classes. The analysis of these results shows consistent improvements when

the training set includes more data. Interestingly, the mAVP is improved

more than the mAP, showing that the additional data is more useful for

pose estimation than for detection. The addition of synthetic data (2.4M

positive examples) improves the results even more, demonstrating that the

amount of training data is still a limiting factor even if one uses an AlexNet
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AlexNet VGG16
Training data mAP mAVP24 mAP mAVP24

Pascal VOC2012 train 48.6 21.1 56.9 27.3
+ 250 per class 51.6 25.0 58.0 30.0
+ 500 per class 53.8 26.5 59.0 31.6
+ 1000 per class 53.6 28.3 60.0 32.9
+ full ImageNet 52.8 28.4 59.9 34.4
+ synthetic data 55.9 31.5 61.6 36.1

Table 5.3: In�uence of the amount of training data and network architecture
on our joint classi�cation approach.

architecture and includes the ImageNet images, a fact that was not demon-

strated in [107]. Note that our joint approach signi�cantly outperforms the

state-of-the-art results [112] (currently 31.1% mAVP, based on VGG16 and

ImageNet annotations) both without using synthetic data with VGG16, and

with synthetic data and AlexNet architecture.

Comparison to the state of the art

Table 5.4 provides the details of the AVP24 performance improvements over

all classes as well as a comparison with three baselines: DPM-VOC+VP

[90], which uses a modi�ed version of DPM to also predict poses, Render for

CNN [107] which uses real images from Pascal VOC as well as CAD renders

for training a CNN based on AlexNet, and [112] which uses a VGG16 archi-

tecture and ImageNet data to classify orientations for each object category.

It can be seen that we improve consistently on all baselines except for the

chair class. A more detailed analysis shows that this exception is related

to the di�erence between the ImageNet and Pascal chairs. Indeed, when

adding the ImageNet data to the Pascal data, the detection performance for

chairs drops from 34.5% AP to 19.23% AP. Similarly, the di�erence between

the very di�erent appearance of the rendered 3D models and real images is

responsible for the fact that synthetic training data decreases performance

on boats, motorbikes and trains. In average, we still found that synthetic

images boost the results by 1.7% mAVP.

Finally, Table 5.5 provides the comparison between our full pipeline and

the baselines for the 4, 8 and 16 viewpoint classi�cation tasks, showing that

our improvement of the state of the art is consistently high.
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5.6 Conclusion

Combining our joint classi�cation approach to the improvements provided by

a deep architecture and additional training data, we increase state-of-the-art

performance of pose estimation by 5% mAVP. We think that highlighting

the di�erent factors of this improvement and setting a new baseline will help

and stimulate further work on viewpoint estimation.
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Chapter 6

Discussion

This chapter presents a summary of the contributions presented in this thesis,

as well as possible directions for future work.

6.1 Contributions

In this thesis, we explored the possible use of deep CNNs to relate three-

dimensional information to photographs of objects. In Chapter 3, we have

conducted preliminary studies that were used for the remaining of this dis-

sertation, which can be summarized as follows:

• In Section 3.1, we have presented the core concepts of optnet, a library

built on top of Torch7 that automatically optimizes the memory usage

in neural networks. By exploiting the optimizations implemented by

optnet, it is possible to use deeper architectures in limited resources

environments. optnet was extensively used in the experiments pre-

sented in this dissertation, some of which wouldn't be possible to be

performed due to lack of GPU memory.

• In Section 3.2, we have presented a study of the e�ciency of o�-the-

shelf pre-trained CNNs for the task of 3D model retrieval from real pho-

tographs. We have showed that the CNN features are robust enough so

that it is possible to use them to perform 3D model retrieval, despite

the large appearance gap between real images and rendered views.

• In Section 3.3, we have proposed a multi-view extension of the ap-

proach presented in Section 3.2, which exploits the information of an

ensemble of query images to retrieve the best matching 3D model. We

have applied this technique in the pipeline of an image-based render-

ing algorithm, considerably improving the quality of the rendering on

re�ective surfaces of cars.

107
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These studies were the basis for the two main contributions of this thesis

which can be summarized as follows:

• In Chapter 4, we have presented our 2D-3D exemplar-based detection,

which uses 3D models and CNNs to perform instance detection on

real images. Without using any real annotated image, our technique

outperforms previous approaches based on exemplar detection, and

performs almost on par with R-CNN technique when evaluated on the

subset of Pascal VOC 2012 validation containing only non-occluded

and non-truncated instances of chairs.

• In Chapter 5, we have studied di�erent ways of formulating the view-

point estimation problem using a CNN architecture. We have showed

that a formulation that jointly optimizes over the detection and the

viewpoint estimation is bene�cial, and that an approach that dis-

cretizes the orientations performs best. With the combination of syn-

thetic renders and our formulation for viewpoint estimation, we have

improved over the previous state-of-art on Pascal3D+ dataset [121] by

5 mAVP over all the viewpoint metrics, setting a new baseline for the

viewpoint estimation task.

6.2 Perspectives

6.2.1 Improving memory optimization in training mode

In Section 3.1, we have presented a library that automatically optimizes the

memory use in Torch7 neural networks. Even though the initial goal was to

use it in inference mode, it has found a lot of interest in the Torch7 commu-

nity thanks to the training mode as well. Our current backward computation

graph creation is sub-optimal, as it does not remove a number of spurious

edges that appear due to the container representation. Properly handling

the computation graph would allow for better optimizations, allowing to �t

larger models in memory.

6.2.2 Object compositing

In Section 3.2, we have presented a method that can retrieve a 3D model

similar to a given picture by matching the object to many 3D models and
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selecting the most con�dent one. When the number of models increases, this

requires comparing a large number of templates to the image. We would like

to explore the fact that objects can naturally be decomposed into parts, and

those parts can be shared among di�erent 3D models. By combining parts

from di�erent models, we can expect to predict better 3D information from

an image, as there might not be a single 3D model that explains the object.

6.2.3 Retrieval with millions of objects

Scaling our 3D model retrieval pipeline to millions of images requires a num-

ber of optimizations. One possibility is to study more compact feature rep-

resentations, which would allow for smaller memory footprint and faster

runtime for performing nearest neighbor. Another possibility, orthogonal to

the �rst one, would be to have a more e�cient nearest neighbor operation,

which does not require to compute the comparison of the query image to all

objects of the database.

6.2.4 Additional constraints in multi-view instance retrieval

In Section 3.3, we have presented an approach for multi-view instance re-

trieval using CNNs. Additional constraints could be exploited to improve

the retrieval. For example, by exploiting the calibration (camera pose es-

timation) between di�erent images, it would be possible to enforce a 3D

model viewpoint consistency between images. Another possibility would be

to use an out-of-the-box object viewpoint estimator, like the one presented

in Chapter 5, to re-weight the matching scores taking the viewpoint prob-

abilities into account. Besides, a current limitation of our method appears

when the query object is occluded. Modeling the occlusion inside the method

would allow to handle such cases, improving retrieval accuracy in cluttered

environments.

6.2.5 Metric learning for domain adaptation

In Chapter 4, we have presented our framework for detecting 3D models in

2D images. The core of our method is based on learning an adaptation that

makes the features from the real images similar to the features from the ren-

dered views. Instead of de�ning by hand a similarity function to compare
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features from di�erent domains, we might instead learn how we should com-

pare the images from di�erent domains. From our experience when designing

the adaptation, we saw that adding more layers to the adaptation reduced

the detection accuracy, probably because the training data that we used for

learning the adaptation is only an approximation of the task we want to

address. In order to learn more complex representations, instead of using a

synthetic dataset for learning the adaptation, we might need large amounts

of pairs of real images and aligned 3D models, which is however di�cult to

acquire.
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