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Résumé en Français

0.1 Introduction

De nos jours, les concepteurs s’appuient sur le logiciel de CAO 3D pour

modéliser des formes complexes de forme libre basée sur les courbes et sur-

faces. en design industriel, cette étape de modélisation géométrique est sou-

vent encapsulés dans un plus grand processus de développement de pro-

duit (DDP) qui peuvent comporter la conception préliminaire, l’ingénierie

inverse, la simulation ainsi que les étapes de fabrication dans laquelle plusieurs

acteurs interagissent (Falcidieno et al., 2014). En fait, la forme finale d’un

produit est souvent le résultat d’un long et fastidieux processus d’optimisation

qui vise à satisfaire les exigences associées aux différentes étapes et acteurs

de la DDP. Exigences peut être vu comme contraintes. Ils sont généralement

exprimés soit avec les équations, une fonction d’être réduits au minimum,

et/ou en utilisant des procédures (Gouaty et al., 2016). Ce dernier se réfère

à la notion de bôıte noire, les contraintes n’est pas question dans le présent

document, qui se concentre seulement sur les contraintes géométriques qui

peuvent être exprimés par des objets linéaires ou équations non linéaires.

Pour satisfaire les exigences, les concepteurs peuvent agir sur les vari-

ables associées aux différentes étapes de la DDP. Plus précisément, dans ce

document, les variables sont censés être les paramètres de la surfaces NURBS

impliqués dans le processus d’optimisation de forme. Pour façonner un ob-

jet de forme libre défini par de telles surfaces, les concepteurs ont ensuite

de spécifier les contraintes géométriques l’objet a à satisfaire. Par exemple,

un patch doit passer par un ensemble de points 3D et de satisfaire à des

contraintes de position, la distance entre deux points situés sur un patch

est fixe, deux patchs doivent répondre à des contraintes de tangence ou con-

ditions de continuité d’ordre supérieur, etc. Ces contraintes géométriques

donnent lieu à un ensemble de linéaire et équations non linéaires reliant les

variables dont les valeurs doivent être trouvés. En raison À l’appui local pro-
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priété de NURBS (Piegl and Tiller, 1996), Les équations n’impliquent pas

toutes les variables et certaines décompositions peuvent être prévus. De plus,

les concepteurs peuvent exprimer involontairement plusieurs fois les mêmes

exigences à l’aide de différentes contraintes, menant ainsi à des équations

redondantes. Mais les concepteurs peuvent également générer des équations

contradictoires involontairement et peut-être affronter avec contraintes et

configurations insatisfaisant.

Parfois, des configurations avec contraintes peut être résolu par l’insertion,

l’utilisation des degrés de liberté (DDL) avec le nœud de Boehm algorithme

d’insertion. En conséquence, de nombreux points de contrôle sont ajoutés

dans les régions où peu de ddl sont nécessaires (Pernot et al., 2005). Cette

augmentation incontrôlée de la DDLs a une incidence sur la qualité générale

de la finale les surfaces qui deviennent plus difficiles à manipuler que les

premiers. En outre, certaines contraintes structurelles plus-ne peut pas dis-

parâıtre à la suite de cette stratégie d’aide à la décision dédiés et ap-

proches doivent être développées pour identifier et gérer les configurations

avec contraintes. Contrairement à 2D avancée sketchers disponible dans

la plupart des logiciels de CAO, commerciale et qui peuvent identifier de

manière interactive la sur-contraintes pendant le processus de dessin, il

n’est pas encore tout à fait possible d’effectuer une pré-analyser l’état de

la 3D à base de systèmes d’équation NURBS avant de les soumettre à un

solveur. Ainsi il y a une nécessité de développer une nouvelle approche pour

la détection et la résolution des contraintes redondantes et contradictoires

dans les systèmes d’équation NURBS. Cela correspond à l’identification et

le traitement de sur-contraint, bien limitées et sous-Pièces contraintes. Dans

cet article, le traitement correspond à la suppression des contraintes avant de

résoudre. Une fois les contraintes supprimées, le système d’équation devient

souvent sous-contraint et le concepteur doit également ajouter une exigence

par la moyenne d’une fonction d’être réduits au minimum afin de résoudre et

Trouver les valeurs des inconnues. Cet aspect ne fait pas partie de l’approche

proposée mais il sera discuté lors de l’introduction des résultats dans lequel

un particulier est fonctionnelle réduite au minimum.

La suppression des contraintes spécifiées par l’utilisateur est une étape

précédente comme le résultat ne satisfait pleinement ce que les designers

ont spécifié. Ainsi, non seulement il est important d’élaborer une approche

sur-mesure de supprimer les contraintes, mais il est également souhaitable

de développer des mécanismes d’aide à la décision qui peuvent aider les

concepteurs de cerner et d’éliminer les bonnes contraintes, c’est-à-dire ceux

qui préserver autant que possible le but de la conception initiale.

Cette contribution est d’aborder ces deux questions difficiles en pro-
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posant une approche d’aide à la décision d’origine pour gérer des configu-

rations géométriques avec contraintes lorsque la déformation de surfaces de

forme libre. L’algorithme linéaire poignées ainsi que d’équations non linéaires

et exploite la propriété de soutien locales NURBS. S’appuyant sur une

série de décompositions structurelles associées à des analyses numériques,

la méthode détecte et traite aussi bien que redondante contraintes contra-

dictoires. Depuis le résultat de ce processus de détection n’est pas unique,

plusieurs critères sont mis à conduire le concepteur à identifier les con-

traintes qui devraient être retirés afin de limiter l’impact sur sa/son de-

sign original intention. Ainsi, même si le noyau de l’algorithme travaille sur

des équations et des variables, la décision est prise en tenant compte des

contraintes géométriques spécifiées par l’utilisateur à un niveau élevé.

Le papier est organisé comme suit : La section 0.2 présente le contexte et

examine les travaux connexes. La section 0.3 présente le cadre de notre algo-

rithme, énonce les principes et les caractéristiques de ses différentes étapes

et propose des critères d’évaluation de ses résultats. L’approche proposée

est ensuite validé sur les deux exemples académiques et industriels qui sont

décrites à la section 0.4. Enfin, la section 0.5 conclut ce document par une

discussion sur les principales contributions ainsi que les travaux futurs.

0.2 Contexte et travaux connexes

Cette section présente comment les concepteurs peuvent préciser leurs

besoins au sein d’un problème d’optimisation. Il analyse également les méthodes

utilisées pour détecter plus de structure ou numériques-contraintes.

0.2.1 Modélisation de plusieurs exigences dans un problème
d’optimisation

Au cours des dernières décennies, de nombreuses techniques de déformation

ont été proposés et il n’est pas le but de cet article pour détailler toutes. La

plupart du temps, quand on parle de travailler sur des techniques de déformation

des courbes et surfaces NURBS, l’objectif est de trouver la position X de

certains points de contrôle de façon à satisfaire aux contraintes spécifiées

par l’utilisateur qui peut être traduit en un ensemble de linéaire et/ou

d’équations non linéaires F (X) = 0. car le problème est souvent à l’échelle

mondiale sous-contraint, c.-à-d. il y a moins d’équations que de variables

inconnues, l’un des objectifs de la fonction G(X) doit également être réduit

au minimum. En conséquence, la déformation des formes de forme libre est
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souvent le résultat de la résolution d’un problème d’optimisation :

{
F (X) = 0

minG(X)
(1)

Pour certaines applications particulières, le problème d’optimisation peut

aussi considérer que les degrés, le nœud des séquences ou les poids des

NURBS sont inconnus. Cependant, dans ce document, seule la position

des points de contrôle sont considérés comme inconnus. En fonction de

l’approche, l’objectif différent fonction peut être adopté, mais ils ressem-

blent souvent à une fonction d’énergie qui peut s’appuyer sur des modèles

physiques ou mécaniques. Les contraintes bôıte à outils peut également con-

tenir des contraintes plus ou moins sophistiqué avec plus ou moins intuitive

des mécanismes permettant de les définir.

Penser à la DDP ainsi qu’aux besoins de génération des formes per-

mettant de satisfaire aux diverses exigences, l’on peut remarquer que les

concepteurs ont accès à trois principaux paramètres à préciser leurs besoins

et objectifs associés au sein d’un problème d’optimisation. Ils peuvent ef-

fectivement agir sur les inconnues X de décider quels points de contrôle

sont fixés et quels sont ceux qui peuvent se déplacer. De cette façon, ils

indiquent les parties de la forme initiale qui ne devrait pas être affecté par

la déformation. Bien sûr, les concepteurs peuvent faire usage de la bôıte à

outils pour spécifier les contraintes les équations F (X) = 0 pour être con-

vaincu. Enfin, les concepteurs peuvent également spécifier certaines de leurs

exigences par la fonction G(X) d’être réduit au minimum. Par exemple, ils

peuvent décider de conserver ou non la forme d’origine tout en réduisant au

minimum une fonction énergétique caractérisant la forme de déformation.

Cependant, la plupart des déformations de forme libre-forme techniques

ne considérer que le problème résultant de l’ensemble des équations F (X) =

0 est sous-contraint (Elber, 2001; Bartoň, Elber, and Hanniel, 2011) et peu

d’attention a été accordée à l’analyse et le traitement les sur-contraints. Cet

article propose une approche pour détecter les équations redondantes et con-

tradictoires, et d’aider le concepteur à résoudre ces problèmes par la simple

élimination d’un certain nombre de contraintes. Cependant, les sections 0.3.4

et 0.4 discuter de la possibilité de fixer plus ou moins de points de contrôle

et modifier ainsi le vecteur inconnu X, ainsi que la possibilité de modifier

le comportement en déformation globale grâce à la personnalisation de la

fonction objectif G(X) d’être réduit au minimum.
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0.2.2 Contraintes géométriques

Géométriques sur-contraintes sont classés structurelles et numérique sur-

contraintes (Sridhar, Agrawal, and Kinzel, 1996). Structurelle sur-contraintes

peut être détecté à partir d’une analyse de la DDLs, au niveau de la géométrie

ou les équations. Numérique sur-contraintes sont habituellement déterminées

à partir de l’analyse de la solvabilité du système d’équations. Puisque notre

approche est basée sur des équations, les deux aspects sont à définir.

Contraintes structurelles

Jermann et al. donner une définition générale d’une structure avec

contraintes, bien limitées et sous-systèmes d’équations limitée à un niveau

macro plutôt et compte tenu de la dimension de l’espace (Jermann et al.,

2006). Cette définition a été ici adapté au système d’équations où le système

devrait être fixé à l’égard d’un système de coordonnées global.

Définition 1. Le degré de liberté DDL(v) d’une entité géométrique v est le

nombre de paramètres indépendants qui doivent être définis pour déterminer

sa position et l’orientation. par exemple, dans l’espace 2D, il est égal à 2 pour

les points et lignes. Pour un système de contraintes géométriques G avec un

ensemble V de géométries, le degré de liberté de toutes les géométries est

DDLs =
∑

v∈V DDL(v).

Définition 2. Le degré de liberté DDC(e)d’une contrainte géométrique e

est le nombre d’équations indépendantes nécessaires pour représenter. Par

exemple, les contraintes de distance ont une DDC en 2D et 3D. Pour un

système de contraintes géométriques G avec un ensemble E of contraintes, le

degré de liberté de l’ensemble des contraintes est DDCs =
∑

e∈E DDC(e).

Définition 3. Un système de contraintes géométriques G est structurelle

bien-contraint si G satisfait DDCs = DDLs et si tous les sous-systèmes

après décomposition satisfaire DDCs ≤ DDLs.

Définition 4. Un système de contraintes géométriques G est structurelle

sur-contraint s’il existe un sous-système satisfaisant DDCs > DDLs. Struc-

turelle sur-contraint sont les contraintes que transformer un structurelle sur-

contraint système dans un structurelle bien-contraint system lorsqu’ils sont

supprimés.

Enfin, les définitions de comptage basées sur le DDL-comparer le nom-

bre d’équations pour le nombre de variables d’un système. Cependant, il

n’est pas couvrir les cas tels que les licenciements géométriques induites par

les théorèmes géométriques. Afin de couvrir ces situations, les définitions
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algébriques sont introduits.

Sur-contraintes numériques

Les définitions structurelles antérieures ne peuvent pas distinguer les

contraintes redondantes et contradictoires. Cependant, du point de vue

algébrique, c’est que cet examen pourrait être traitée correctement par

Grobner ou méthodes Wu-Ritt (Chou and Gao, 1990). Ces méthodes sont

couramment utilisées dans l’algèbre abstraite et requiert de solides bases

mathématiques pour comprendre.

Définition 5. Soit G = (E, V, P ) un système de contraintes géométriques,

où E est un ensemble d’équations, V est un ensemble de variables et P est un

ensemble de paramètres. Er est une collection non-vide de sous-ensembles

de E, appelée textbf equations de base (nous l’appelons base en bref,

satisfaisant:

• non base contient correctement un autre base;

• si Er1 et Er2 sont base respectivement et si e est une équation de Er1,

alors il y a une équation f de Er2 tel que {(Er1 − e) ∪ f} est aussi un

base.

Définition 6. SoitG = (E, V, P ) un système de contraintes géométriques. Soit

Er un base. Pour une équation e, en l’ajoutant à Er formant un nouveau

groupe: {Er ∪ e}. Si {Er ∪ e} est solvable, alors e est une équation redon-

dante.

Définition 7. SoitG = (E, V, P ) un système de contraintes géométriques. Soit

Er un base. Pour une équation e, en l’ajoutant à Er formant un nouveau

groupe: {Er ∪ e}. Si {Er ∪ e} n’est pas solvable, alors e est une équation

conflictuelle.

Définition 8. Soit G = (E, V, P ) un système de contraintes géométriques

composé de deux sous-systèmes: Gb = (Eb, V, P ) et Go = (Eo, V, P ) avec

{E = Eb ∪ Eo, Eb ∩ Eo = ∅}. Si Eb est un base, alors Eo est un ensemble

de sur-contraintes numériques.

Il convient de noter que l’ensemble des contraintes de base and numérique

sur-contraintes d’un système donné n’est pas unique. Ainsi, décision-support

des mécanismes et des critères doivent être définis pour aider les concepteurs

à identifier le bon redondant et à supprimer les contraintes contradictoires.



vii Contexte et travaux connexes

0.2.3 Modélisation du système de contraintes géométriques

Tel que discuté précédemment, un système de contraintes géométriques

peuvent être décrites, que ce soit au niveau des équations ou au niveau de

la géométrie. D’une part, d’un système d’équations, il existe des méthodes

algébriques en mesure de s’attaquer directement aux problèmes de cohérence

(Cox, Little, and O’Shea, 2015) ou d’analyser la structure indirectement à

partir d’un graphe bipartite où deux classes de nœuds représentent des vari-

ables et équations indépendamment (Bunus and Fritzson, 2002a). D’autre

part, pour la modélisation au niveau de la géométrie, deux types de graphique

sont principalement utilisés : soit les graphes bipartis avec deux classes de

nœuds représentant les entités géométriques et contraintes séparément (Hoff-

mann, Lomonosov, and Sitharam, 1998), ou les graphiques de contrainte

avec les noeuds représentant les entités géométriques et les bords des con-

traintes représentant (Gao and Chou, 1998; Hoffman, Lomonosov, and Sitharam,

2001).

Toutefois, compte tenu des systèmes NURBS de contrainte n’est pas

simple car il existe plusieurs types de variables contribuant à la forme de

déformation. d’une part, système d’équations d’activer un moyen viable de

paramètres de modélisation où comme noeuds et poids peuvent être définies

comme des variables. D’autre part, la modélisation graphique au niveau de

la géométrie est actuellement limitée à des variables comme les coordonnées

des points de contrôle et les poids qui leur sont associés. Représentant des

variables telles que degrés, noeuds, les valeurs de u et v paramètres à l’aide

de graphes de contraintes au niveau de la géométrie n’est pas démontré

de façon convaincante dans la littérature. Dans l’œuvre de Lesage (Lesage,

2002), les points de contrôle entre les vecteurs sont utilisés pour représenter

des objets Nurbs ainsi que les contraintes géométriques telles que l’incidence

ou de tangence. Néanmoins, sa méthode est limitée aux cas où les points de

contrôle sont inconnues seulement et n’est pas suffisamment général pour la

comparaison de la modélisation à l’équation.

Selon les définitions précédentes, les méthodes de détection peuvent être

classées en deux catégories (Sridhar, Agrawal, and Kinzel, 1996): struc-

turelle sur-contraintes et numérique sur-contraintes détection.

0.2.4 Structurelle sur-contraintes détection

De nombreuses structurelle sur-contraintes peuvent être identifiés en

comptant DDLs au cours de la processus de décomposition du système. Parmi

les méthodes de décomposition, ceux qui sont utiles pour trouver avec con-

traintes structurellement sous-parties ont été identifiés et classés en trois
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catégories selon le type de sous-systèmes.

Modèles spécifiques

Cette catégorie est basée sur le fait que, lors de l’examen de leurs plans

d’ingénierie, la plupart des systèmes peuvent être décomposés tout en re-

connaissant une configuration spécifique, construit par règle et compas. divi-

sion récursive est d’abord proposé par Owen pour gérer les systèmes de con-

traintes 2D où seule la distance et l’angle les contraintes sont impliqués (Owen,

1991). Il a introduit plusieurs règles pour la détection de la redondance,

y compris des règles pour détecter les sous-parties trop rigide et règles

pour vérifier si les licenciements d’angle (Owen, 1996). Fudos et Hoffman

a adopté la méthode de réduction graphique qui fonctionne bien avec les

systèmes bien-contraint et sur-contraint en 2 dimensions (Fudos and Hoff-

mann, 1997). Ces méthodes sont en temps polynomial mais pas assez général

en raison du peu de répertoire de modèles, qui ne peut pas couvrir tous les

types de configurations géométriques.

Rigidité structurelle

Cette classe regroupe les méthodes qui se décomposer un système en

sous-systèmes rigides structurelles. Les méthodes varient en fonction de la

structure adoptée-rigidité définition ainsi que sur les algorithmes de recherche

correspondant. En modifiant le débit maximal du réseau supplémentaires

théorie, Hoffmann et al. développé la Dense algorithme pour identifier les

1-bien-contraint sous-graphe (Hoffmann, Sitharam, and Yuan, 2004). Leur

définition des sous-système rigide découle de Laman’s théorème sur la car-

actérisation de la rigidité des cadres de bar (Combinatorial Rigidity). Toute-

fois, la définition n’est pas traiter correctement les contraintes telles que les

incidences et parallélismes, qui sont largement utilisés dans les systèmes de

CAO. Jermann et al. modifié leur définition en introduisant la notion de

degree of rigidity (DoR) pour remplacer la dimension D (Jermann, Neveu,

and Trombettoni, 2003). La différence entre les deux réside sur le fait que la

valeur de DoR varie en sous-systèmes alors que d reste constante quelle que

soit la sous-systèmes sont (par exemple en 2D, D =3 et en 3D, D =6). Basée

sur la même théorie du flux réseau, son algorithme Over-rigid traite cor-

rectement les contraintes et/ou l’incidence parallèle spécifié mais est encore

limitée à des conditions où l’incidence les dégénérescences générique en rai-

son de théorèmes géométriques comme le co-linéarités, co-planarities sont

interdits (Jermann, Neveu, and Trombettoni, 2003).
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Correspondance maximum

Ces méthodes reconnâıtre les modèles avec contraintes structurelles en

comparant directement les DDLs et DDCs d’un système (ou sous-système)

sans prendre en compte la dimension constante dépendante D. Dulmage-

Mendelsohn (D-M) de l’algorithme de décomposition permet de décomposer

un système d’équations en sur-contraintes, bien-contraintes, et sous-contraintes

sous-systèmes (Dulmage and Mendelsohn, 1958). Il a été utilisé pour le

débogage dans l’équation de la modélisation des systèmes tels que Mod-

elica (Bunus and Fritzson, 2002b). Par ailleurs, il calcule un graphique acy-

clique (DAG) qui offre une résolution de l’ordre parmi les composantes forte-

ment connectées (SCC) du système. Serrano a été intéressé par l’utilisation

de l’algorithme de la théorie des graphes avec contraintes pour empêcher

les systèmes où toutes les contraintes et les entités géométriques sont d’un

DDL (Serrano, 1987). Latham et al. a étendu le travail de Serrano en pro-

posant la comparaison pondérée b maximum pour identifier les contraintes

à l’arbitraire avec DDLs (Latham and Middleditch, 1996).

Une partie avec contraintes contient soit redondant ou contraintes con-

tradictoires. Mais les autres parties peuvent également contenir des sur-

contraintes de numérique (Podgorelec, Žalik, and Domiter, 2008). C’est

parce que l’analyse ne tient pas compte de la structure de l’information

numérique d’un système. Par conséquent, pour mieux identifier les con-

traintes comme les plus subtils de la redondance géométrique, méthodes

numériques doivent être adoptées.

0.2.5 Détection numérique de sur-contraintes

Toute contrainte géométrique peut être transformé en un ensemble d’équ

ations algébriques (Hoffmann, Lomonosov, and Sitharam, 1998). Par conséqu

ent, géométriques sur-contraints sont l’équivalent d’un ensemble de contra-

diction or d’équations redondantes. Ici, les méthodes de détection numérique

ont été classées en deux catégories selon le type de contraintes.

Détection de sur-contraintes linéaires

L’élimination de Gauss, factorisation LU avec pivot partiel et Factori-

sation QR avec pivotant colonne ont été adoptées avec succès pour trou-

ver des équations contradictoires/redondants ainsi que de groupe dans les

systèmes d’équations linéaires (Strang, 2006). Light and Gossard a appliqué

l’élimination de Gauss pour calculer le rang ainsi que pour identifier davan-

tage les équations invalides (Light and Gossard, 1983). Serrano a étendu
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son travail pour vérifier l’existence de sur-contraintes dans les composants

fortement liés d’un système d’équations (Serrano, 1991). Ces méthodes ont

permis des détections stables et rapides mais se limitent aux cas linéaires.

Détection non-linéaire des sur-contraintes

Méthodes symboliques sont théoriquement fiables mais la complexité du

temps est exponentielle. Kondo a utilisé la méthode de base de Grobner

pour tester la dépendance entre les contraintes de dimension 2D (Kondo,

1992). Gao et Chou ont présenté l’algorithme de décomposition de Wu-

Ritt pour déterminer si un système est trop contraint (Gao and Chou,

1998). Cependant, les deux méthodes ne trouvent pas directement les groupes

d’extension de contraintes excessives.

Méthodes d’optimisation ont été utilisées pour résoudre les problèmes

de satisfaction des contraintes, qui fonctionne bien pour les systèmes sous

contraintes (Ge, Chou, and Gao, 1999).

Méthodes d’analyse matricielle jacobienne permettent une détection plus

rapide en étudiant la structure jacobienne des équations. Cependant, ils

ne sont pas en mesure de distinguer les contraintes redondantes et con-

flictuelles. La principale différence entre ces méthodes est la configuration

où la matrice jacobienne devrait se développer. Si le système est résoluble,

Haug a proposé de perturber la racine commune et de recalculer le rang une

fois que la matrice jacobienne est déficiente (Haug, 1989). Cependant, si le

système n’est pas résoluble, Foufou et al. suggèrent une méthode proba-

biliste numérique (NPM), qui analyse la matrice jacobienne à des configura-

tions aléatoires (Foufou and Michelucci, 2012). Cependant, il existe un risque

que la matrice jacobienne soit classée en défaut aux points choisis, mais elle

est à plus grande échelle partout ailleurs. Par conséquent, NPM est pratique

dans le calcul mais peut conduire à des contraintes excessives détectées incor-

rectement. Au lieu de sélectionner au hasard les configurations, Michelucci

et al. Ont suggéré d’étudier la structure jacobienne à la configuration des

témoins où les contraintes d’incidence sont satisfaites (Michelucci et al.,

2006). La witness configuration et la cible configuration partage la même

structure jacobienne. En conséquence, tous les sur-contraints sont iden-

tifiées. Plus récemment, Moinet et al ont développé des outils pour identifier

des contraintes conflictuelles en analysant le témoin d’un système linéarisé

de les équations (Moinet, Mandil, and Serre, 2014). Leur approche a été ap-

pliquée au cas de test de double banane bien connu sur lequel notre approche

sera également testée dans la section 0.4.

À partir de la discussion ci-dessus, il est clair que différentes méthodes
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sont capables de gérer certains systèmes de contraintes géométriques. Cepen-

dant, aucune méthode ne peut couvrir tous les cas parfaitement selon nos

critères. Ainsi, dans cet article, une nouvelle approche qui couple structurelle

comme ainsi que des méthodes numériques sont proposées.

0.3 Une approche générique couplant les décompositions

structurelles et les analyses numériques

Cette section décrit notre approche pour détecter et traiter les con-

traintes géométriques redondantes et conflictuelles. L’idée principale est de

décomposer le système d’équations en petits blocs qui peuvent être analysés

itérativement en utilisant des méthodes numériques dédiées. Le cadre global

et l’algorithme sont introduits avant de préciser les différentes étapes im-

pliquées.

Figure 1: Cadre global composé de trois boucles imbriquées définissant la

structure principale de l’algorithme de détection.

0.3.1 Cadre de détection global

Le cadre général a été modélisé en figure 1. Il est basé sur trois boucles

imbriquées: la décomposition structurelle en composants connectés (CC);

la décomposition structurelle d’un CC dans ses sous-parties (G1, G2, G3) et

son DAG correspondant de composants fortement connectés (SCC); l’analyse

numérique itérative de ces SCC. Le pseudo-code pour les procédures prin-

cipales est fourni dans la section 0.3.2.
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Boucle parmi les composants connectés

Le système des équations (SE) est initialement représenté par une struc-

ture de graphique G, où les noeuds correspondent aux variables et aux arêtes

aux équations. La structure est d’abord décomposée en n components con-

nectés {CC1, · · · , CCn} à l’aide de Breadth First Search (BFS) (Leiserson

and Schardl, 2010). Une telle décomposition est rendue possible grâce à la

propriété de support local de NURBS ou tout simplement en utilisant des

contraintes qui dissocient quoi se produit selon les instructions x, y et z du

cadre de référence (p. ex. contraintes de position ou de cöıncidence). Par

conséquent, les contraintes géométriques peuvent être détectées séparément

pour chaque CCi.

Boucle parmi les sous-parties obtenues par décomposition D-M

La décomposition de DM est utilisée pour décomposer structurellement

CCi en un maximum de trois sous-parties: Gi1 (sous-partie sur-contrainte),

Gi2 (sous-partie bien contrainte) et Gi3 (sous-sous-contrainte). Chaque sous-

partie (si elle existe) sera analysée itérativement à l’aide de la troisième

boucle imbriquée expliquée ci-dessous.

Cependant, un seul passage de la troisième boucle sur chaque Gij n’est

pas suffisant. En effet, toute passe peut conduire à la suppression des con-

traintes, qui modifie la structure de CCi et nécessite donc d’appliquer la

décomposition D-M à nouveau après la passe pour obtenir des sous-parties

mises à jour. L’exposant d est utilisé pour noter que CCd
i (resp. Gd

ij) se

réfère à CCi (resp. Gij) après son dth DM. Bien que le nombre de passes

requises soit inconnu à l’avance, il est garanti que le processus converge vers

un état où seule une sous-partie Gi3 est restée. En d’autres termes, les con-

traintes seront supprimées ou déplacées vers la troisième sous-partie le long

du processus.

Boucle parmi les composants fortement connectés

En plus des sous-parties, la décomposition de DM fournit également

un DAG pour chaque CCd
i . Les nœuds de ce DAG sont des composants

fortement connectés SCCd
ijk. Bordes de ce DAG (violet les flèches dans la

figure 1) désignent la résolution des dépendances entre SCCd
ijk et peuvent

traverser les sous-paragraphes Gd
ij limites. Dans ce qui suit, linkedSCC (Gd

ij)

se réfère à l’opération qui obtient (la sous-partie de) ce DAG à partir de dth

DM décomposition de CCd
ij qui correspond à la sous-partie donnée.
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La troisième boucle consiste à essayer itérativement (dans l’ordre in-

duit par les dépendances DAG) de trouver des contraintes numériques dans

chaque SCCd
ijk ou, lorsqu’il est résoluble, propager sa solution à d’autres

blocs. Étant donné que les blocs sont fortement connectés, il n’y a qu’une

seule solution possible pour chaque bloc, à moins qu’il contienne unique-

ment des variables, et ce dernier cas ne peut être rencontré que dans une

troisième sous-partie Gd
i3. Le processus ne fonctionne que le niveau supérieur

du DAG (blocs rouges de la figure) car ces équations de blocs n’utilisent pas

de variables d’autres blocs.

Pour chaque bloc rouge, et comme indiqué dans la partie supérieure

gauche de figure refdh, une méthode numérique appropriée (numFindRC

dans la figure et le pseudo-code) essaie de trouver redondant (R) ou con-

flictuelles (C). Ces sur-contraintes sont ensuite supprimées du composant

connecté actuellement analysé CCd
ij . Si le bloc est résoluble, sa solution

(unique) se propage vers des blocs dépendants, ce qui peut entrâıner la

détection de contraintes supplémentaires redondantes ou conflictuelles, et

supprimées de CCd
ij . Une fois que tous les blocs rouges ont été analysés, cette

partie du DAG (potentiellement transformer les blocs bleus en rouge) est re-

calculée jusqu’à ce que tous les blocs soient analysés. Cependant, il n’est

pas nécessaire de recalculer la décomposition D-M sur l’ensemble de CCd
ij ;

il suffit de la recalculer uniquement pour l’équivalent maximal pour la sous-

partie actuelle en appelant à nouveau le service linkedSCC. L’exposant m

est utilisé pour noter que Gdm
ij (resp. SCCdm

ijk ) se réfère à Gd
ij (resp. SCCd

ijk)

après sa mth matching. Bien que le nombre de passes requises soit inconnu à

l’avance, il est garanti que le processus converge vers un état où il n’y a plus

de blocs, ou ces blocs ne contiennent que des variables (et cela n’est possible

que pour la troisième sous-partie Gd
i3). En d’autres termes, les contraintes

et les variables sont supprimées jusqu’à ce que nous obtenions un système

sous-contraint avec plusieurs solutions, ce qui signifie qu’il n’y a plus de

propagation possible. Dans cette dernière étape, comme indiqué dans la

partie inférieure gauche de la figure, le système restant est analysé pour les

conflits numériques et procède avec le prochain composant connecté.

0.3.2 Pseudo-code

Cette section fournit le pseudo-code pour les deux procédures principales

de l’approche, entouré de rectangles pointillés sur la figure 1.
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Algorithm 1 Structural decomposition
1: SE ← System of Equations
2: G← Graph(SE)
3: [CC1, · · · , CCn]←BFS(G)
4: for i = 1 to n do
5: [G1

i1, G
1
i2, G

1
i3]←DM(CCi)

6: CC1
i ← CCi

7: for j = 1 to 3 do
8: d← 1
9: continue←True

10: while continue & Gd
ij 6= ∅ do

11: continue,CCd+1
i ← findRC(CCd

i , G
d
ij)

12: d← d + 1
13: [Gd

i1, G
d
i2, G

d
i3]←DM(CCd

i )
14: end while
15: end for
16: end for
17: return [CCd

1 , · · · , CCd
n]

Algorithm 2 findRC: Numerical analysis of Gd
ij subpart of CCd

i

Require: CCd
i and Gd

ij

Ensure: Boolean continue and updated CCd
i

1: [SCCd1
ij1, · · · , SCCd1

ijN ]←linkedSCC(Gd
ij)

2: m← 1
3: Gd1

ij ← Gd
ij

4: while [SCCdm
ij1 , · · · , SCCdm

ijN ] 6= ∅ do
5: l← 0
6: for k = 1 to N do
7: if onlyVariable(SCCdm

ijk ) then
8: l← l + 1
9: else

10: [R,C]← numFindRC(SCCdm
ijk )

11: if [R,C] == ∅ then
12: solution ← solve(SCCdm

ijk )

13: propagate(solution,CCd
i )

14: R← checkRedundant(CCd
i )

15: C ← checkConflicting(CCd
i )

16: end if
17: CCd

i ← removeRCfromCC(CCd
i , [R,C])

18: end if
19: if l == N then . all red blocks contain only variables
20: [R,C]← numFindRC(CCd

i )
21: CCd

i ← removeRCfromCC(CCd
i , [R,C])

22: return False,CCd
i

23: end if
24: end for
25: G

d(m+1)
ij ← update(CCd

i )
26: m← m + 1
27: [SCCdm

ij1 , · · · , SCCdm
ijN ]←linkedSCC(Gdm

ij )
28: end while
29: return True,CCd

i
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0.3.3 Analyse des composants fortement connectés

Cette section traite des techniques utilisées pour analyser les composants

fortement connectés SCCdm
ijk . Ceci correspond à la fonction numFindRC de

Algorithme 2 (section 0.3.2) utilisé pour trouver les contraintes redondantes

(R) et conflictuelles (C) d’un composant s’il existe. Sinon, le composant est

résolu et les solutions sont propagées sur l’ensemble du système.

Selon le type de contraintes, c’est-à-dire linéaire ou non linéaire, les

méthodes diffèrent et sont présentées dans les sous-sections suivantes. La

notation suivante A[i : j, l : k] est utilisée pour définir la matrice obtenue en

coupant les i th à j th lignes et les l th pour kth colonnes de A.

a)

b)

SVD

QR(At)
+

redondant

contradictoire

=

A

rang r

n

m

At.P

base sur

n

n

Q

.

m

n

r

r

R

At.P

base sur

r

r

Figure 2: Analyse par blocs des systèmes linéaires: (a) processus global de

détection, (b) factualisation QR avec pivotement des colonnes..

Système linéaire

Dans l’approche proposée, la factorisation QR avec le pivotement des

colonnes est utilisée pour détecter les contraintes linéaires. La factorisa-

tion QR avec une permutation de colonne facultative P , déclenchée par la

présence d’un troisième argument de sortie, est utile pour détecter la sin-

gularité ou la carence de rang la figure 2 montre le processus de détection

global. Les lignes droites de couleur horizontale correspondent aux équations

linéaires du système Ax = b à résoudre, où A a une dimension m×n. Ici, on

suppose que le rang du système est r, ce qui signifie qu’il y a des équations

indépendantes de r avec m > r. Le rang est calculé à l’aide de SVD, ce qui
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est relativement stable par rapport à d’autres méthodes.

En ce qui concerne la factorisation QR, les colonnes sont échangées au

début de k ième étape pour s’assurer que:∥∥∥A(k)
k (k : m))

∥∥∥
2

= max
j>k

∥∥∥A(k)
j (k : m))

∥∥∥
2

(2)

où A
(k)
j (k : m) = A[k : m, j]. À chaque étape de la factorisation, la colonne

de la matrice non factorisée restante avec la plus grande norme est utilisée

comme base pour cette étape et est déplacé vers la position principale

(Golub and Van Loan, 2013). Cela garantit que les éléments diagonaux

de R se produisent en ordre décroissant et que toute dépendance linéaire

parmi les colonnes est certainement révélée en examinant ces éléments. La

matrice de permutation P réarrange les colonnes de At afin que les colonnes

apparaissent dans l’ordre décroissant de leur norme.

Les premières r colonnes de AtP sont les contraintes de base de At et les

premières r colonnes deQ form une base orthogonale (figure 2.b). Puisque les

colonnesmr restantes dépendent linéairement des premières r columns (Don-

garra and Supercomputing, 1990), elles sont les contraintes excessives. Le

rang r correspond également au nombre de valeurs non nulles d’éléments

diagonaux de R.

Pour trouver des dépendances linéaires entre les colonnes, la déduction

suivante est nécessaire. D’abord, la matriceQ(:, 1 : r) est inversée en utilisant

l’équation suivante:

At(:, 1 : r) = Q(:, 1 : r).R(1 : r, 1 : r)

et est ensuite utilisé dans l’équation suivante:

At(:, r + 1 : n) = Q(:, 1 : r).R(1 : r, r + 1 : n)

fournissant ainsi la relation suivante entre les deux matrices tranchées At(:

, r + 1 : n) and At(:, 1 : r):

At(:, r + 1 : n) = At(:, 1 : r).R(1 : r, 1 : r)−1R(1 : r, r + 1 : n)

Enfin, pour identifier les équations redondantes et contradictoires, le

nouveau b vector après factorisation est redéfini comme suit:

bnew = b(r + 1 : n)− b(1 : r).R(1 : r, 1 : r)−1R(1 : r, r + 1 : n)

Les équations redondantes et contradictoires sont encore distinguées en

comparant la valeur des derniers m− r éléments de bnew avec 0.
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Figure 3: Analyse séquentielle des systèmes non linéaires. Phase I: détection

des sur-contraintes .

Système non-linéaire

En considérant un système d’équations non linéaires, on utilise un pro-

cessus d’identification en deux phases. Tout d’abord, la Witness Configu-

ration Method (Michelucci et al., 2006) est utilisé pour trouver toutes les

contraintes excessives (phase I), et Grobner Basis ou Incremental Solving

est ensuite appliqué pour distinguer davantage les contraintes redondantes

et contradictoires (phase II).

Phase I. Prenant avantage de la méthode proposée par Moinet et al. (Moinet,

Mandil, and Serre, 2014), une configuration de témoin générique est générée

à partir de la forme initiale de l’objet à déformer (étape 1). Effectivement,

dans notre cas, les variables x sont les positions des points de contrôle qui

ont un emplacement initial x(0) avant déformation. Ensuite, la factorisation

QR avec le pivotement de colonne est utilisée pour analyser cette configu-

ration de témoin (étape 2)., la séquence des équations est réorganisée. Le

premier r (le rang des équations Jacobian matrix est indépendant tandis

que les autres sont les sur-contraintes. Dans la figure 3, les lignes courbes

courbes représentent des équations non linéaires.
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Résoudre

Si solvable, fj est redondant, 
sinon c'est contradictoire

f1=0

fj=0

base 

sur

fr=0

fm=0

f1=0

fr=0

pour tous
sur-contraintes fj=0

m>10m<=10

Calculer rgbr+j

m<=10

Si rgbr+j==rgbr puis fj est redondant
Si rgbr+j=={1} puis fj est contradictoire

Calculer rgbr

Grobner basis Résolution Incrémentale

Figure 4: Phase II: Distinguer des contraintes redondantes et conflictuelles.

Phase II. Pour mieux distinguer les contraintes redondantes et conflictuelles,

on utilise soit la Grobner Basis, soit la résolution incrémentale. Dans notre

algorithme, ce choix repose sur le nombre d’équations. Si le nombre d’équations

m ≤ 10, on préfère Grobner Basis (Lamure and Michelucci, 1998). Sinon, la

résolution incrémentale est choisie. Pour expliquer les deux méthodes, sup-

posons que le système de contraintes suivant est disponible après la phase

I (figure 4): 

f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

...

fr(x1, x2, · · · , xn) = 0

fr+1(x1, x2, · · · , xn) = 0

...

fm(x1, x2, · · · , xn) = 0

(3)

où les équations 1 à r sont les contraintes de base et les équations (r + 1) à

m sont les sur-contraintes.

La méthode de résolution incrémentielle insère de façon incrémentielle

la sur-contrainte fj = 0, j ∈ {r+ 1, · · · ,m}, dans l’ensemble des contraintes

de base formant ainsi un nouveau groupe d’équations {f1 = 0, · · · , fr =

0, fj = 0}. Si le nouveau groupe est résoluble, alors l’équation fj = 0 est

redondante, sinon elle est contradictoire. Bien sûr, les contraintes de base

sont toujours résolvables.
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Quand Grobner basis (Cox, Little, and O’Shea, 2015) sont utilisés, la

méthode calcule d’abord la réduction Grobner basis rgbr de l’idéal 〈f1, · · · , fr〉.
Puisque l’ensemble des équations sont résolubles, rgbr 6= {1}. Ensuite, une

boucle sur toutes les sur-contraintes fj = 0, j ∈ {r + 1, · · · ,m}, réduction

Grobner basis rgbr+j de l’idéal 〈f1, · · · , fr, fj〉 est calculé. Si rgbr+j ≡ rgbr,
alors fj = 0 est une équation redondante. Si rgbr ⊂ rgbr+j , alors fj = 0 est

une équation redondante. Finalement, si rgbr+j = {1}, alors fj = 0 est une

équation conflictuelle.

0.3.4 Validation et évaluation des solutions

La section 0.2.1 a introduit les multiples façons de modéliser les exigences

dans un problème d’optimisation en spécifiant un vecteur inconnu X, les

contraintes à satisfaire F (X) = 0 et la fonction G(X) pour minimiser.

L’approche décrite dans cette section permet d’identifier des équations

redondantes et contradictoires. L’exactitude est assurée puisqu’elle consiste

en un algorithme à virgule fixe qui ne s’arrête que lorsque le système est

résoluble. De plus, toute équation supprimée est garantie soit conflictuelle

ou redondant avec l’ensemble restant. On a donc montré que l’ensemble des

équations F (X) = 0 peut être décomposé en deux sous-ensembles: Fb(X) =

0 contenant les équations de base, Fo(X) = 0 les sur-contraintes.

Pour rester proche des exigences que le concepteur a en tête, l’approche

proposée passe alors du niveau des équations au niveau des contraintes. Ainsi,

les contraintes géométriques associées aux équations Fo(X) = 0 sont analysées

et toutes les équations liées à ces contraintes sont regroupées dans un nou-

vel ensemble d’équations F̃o(X) = 0. Ainsi, les contraintes géométriques

associées aux équations Fo(X) = 0 sont analysées et toutes les équations

liées à ces contraintes sont rassemblées dans un nouvel ensemble d’équations

F̃o(X) = 0. Enfin, les équations liées aux contraintes qui ne sont ni con-

flictuelles ni redondantes forment l’autre ensemble F̃b(X) = 0. Cette trans-

formation permet de travailler au niveau des contraintes et non au niveau des

équations. Ceci est beaucoup plus pratique pour l’utilisateur final intéressé

à travailler au niveau des exigences géométriques.

Puisque cette décomposition n’est pas unique, elle donne naissance à

diverses solutions finales potentielles (la décomposition interactive est hors

de portée de cet article). Plusieurs critères sont maintenant introduits pour

évaluer ces solutions en fonction de l’intention initiale de conception. Car-

actériser la qualité des solutions obtenues, l’ensemble des paramètres spécifiés

par l’utilisateur P est introduit Cet ensemble rassemble tous les paramètres

que le concepteur peut introduire pour définir les contraintes que sa forme
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doit satisfaire. Par exemple, la distance d imposée entre deux points d’une

surface NURBS est un paramètre caractérisant une partie de l’intention de

conception. Ensuite, l’idée est d’évaluer dans quelle mesure les solutions

s’écartent de l’intention initiale de conception et notamment en termes de

paramètres P .

Pour ce faire, le problème d’optimisation contenant les contraintes de

base est résolu: {
F̃b(X) = 0

minG(X)
(4)

et la solution X ′ est alors utilisée pour évaluer les sur-contraintes non satis-

faites F̃o(X
′) ainsi que les valeurs réelles P ′ des paramètres P spécifiés par

l’utilisateur. Par exemple, si la distance spécifiée par l’utilisateur d entre les

deux patches ne peut pas être atteinte, la distance réelle d′ sera mesurée sur

la solution obtenue. A partir de cette solution, il est possible d’évaluer trois

Critères:

• Déviation en termes de paramètres/contraintes: ce critère vise à mesurer

dans quelle mesure les valeurs réelles P ′ des paramètres proviennent

des paramètres spécifiés par l’utilisateur P . Ce critère aide à compren-

dre si l’intention de conception est préservée en termes de paramètres

et par conséquent en termes de contraintes.

df =

∑
i |P ′i − Pi|∑

i |Pi|
(5)

• Déviation en termes de fonction pour minimiser : ce critère évalue di-

rectement dans quelle mesure la fonction objective G a été minimisée.

Ici, la fonction est simplement calculée à partir de la solution X ′

du problème d’optimisation. Pour préserver l’intention de conception,

cette valeur doit être minimisée. Ainsi, il peut être utilisé pour com-

parer les solutions entre eux.

dg = G(X ′) (6)

• Degré de quasi-dépendance: la carence de rang de la matrice jaco-

bienne sur le témoin révèle clairement les dépendances entre con-

traintes. Cependant, pour les systèmes d’équations basés sur NURBS,

les contraintes peuvent être indépendantes mais proches d’être dépend

antes. Dans ce cas, la matrice jacobienne de F̃b(X) au point de solu-

tion X ′ est mal conditionnée et la solution correspondante peut être

de mauvaise qualité Le troisième critère évalue donc le nombre de
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condition (cond) de la matrice jacobienne comme mesure de la quasi-

dépendance (Kincaid and Cheney, 2002):

cond = cond(JJ
F̃b

(X ′)) (7)

Enfin, même si ces critères caractérisent la qualité de la solution X ′

par rapport à l’intention de conception, ils n’ont pas été combinés dans un

indicateur unique. Ainsi, les résultats de la section suivante seront évalués

en analysant et en comparant trois critères pour chaque solution.

0.4 Résultats et discussion

Cette section présente deux configurations sur lesquelles la technique

de détection et de résolution de sur-contraintes proposée a été testée: Le

premier concerne le cas académique de double banane largement étudié dans

la littérature Il a été utilisé pour comparer notre solution à celles générées

par d’autres. Le second exemple est plus industriel et concerne la mise en

forme d’un verre composé de plusieurs patchs NURBS.

0.4.1 Cas de test Double-Banane

Les variables X, les contraintes F (X) = 0 et les paramètres P du cas de

test Double Banane sont exactement les mêmes que ceux testés par Moinet et

al. (Moinet, Mandil, and Serre, 2014). La seule différence est qu’ils utilisent

une formulation sans coordonnées tandis que la nôtre est à base cartésienne.

Ici, l’objectif est de trouver la position des 8 nœuds d’une structure 3D

afin que la longueur des 18 arêtes satisfasse les spécifications spécifiées par

l’utilisateur dimensions. La figure 5 illustre le Double-Banane dans sa con-

figuration initiale.

La configuration de Double-Banana ne contient qu’un seul composant

connexe, tel que révélé par BFS. L’analyse structurale utilisant la décomposition

de DM montre qu’elle est sous-contrainte et notre algorithme suit alors

la partie inférieure de la figure 1. L’analyse est utilisée dans notre fonc-

tion numFindRC et une surcontrainte est détectée. Plus spécifiquement,

l’équation e9 est ici détectée. En utilisant notre approche de résolution

incrémentale, l’équation est en outre caractérisée comme contradictoire.

L’équation e9 est donc supprimée et le système est résolu en utilisant la

position initiale des nœuds comme valeurs initiales des variables. En util-

isant les résultats, l’équation e9 est alors réévaluée et le paramètre associé

est comparé à la valeur spécifiée par l’utilisateur. Dans le cas présent, e9
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Figure 5: Géométrie initiale de la double banane comme décrit dans (Moinet,

Mandil, and Serre, 2014).

n’est pas satisfait puisqu’il est égal à 44.47 par rapport à la condition ini-

tiale de 45 spécifiée par l’utilisateur. Ainsi, l’écart par rapport à l’intention

de conception est de df = 0.53/45.

Notre algorithme donne une solution beaucoup plus proche de l’intention

de conception initiale que l’algorithme de Moinet et al., et le système restant

est moins mal-conditionné après la suppression de la contrainte conflictuelle (ta-

ble 1). En fait, l’algorithme de Moinet et al. identifie e18 comme une

équation conflictuelle et son retrait induit une déviation df = 4.38/32 de

l’intention initiale de conception.

Méthode Witness Sur-contrainte df cond

Notre esquisse initiale e9 0.53/45 16.97

Moinet et al. esquisse initiale e18 4.38/32 73.33

Table 1: Comparaison entre notre algorithme et l’approche de Moinet sur

le cas du test Double-Banane.

0.4.2 Esquisser un verre 3D

Dans cet exemple, l’idée est de montrer comment l’approche proposée de

détection et de résolution de sur-contraintes peut supporter l’esquisse d’un

verre 3D composé de 4 patchs NURBS connectés. Le concepteur esquisse son

intention de conception et les exigences associées. L’objectif est de modifier
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Contrainte Équations Type Composant Contrainte Équations Type Composant

4 1-3 linéaire 1 12 30-32 non-linéaire 2

2 4-6 linéaire 2 13 33-35 linéaire 2

1 7-9 linéaire 1 14 36-38 non-linéaire 2

3 10-12 linéaire 2 15 39-41 linéaire 1

5 13 non-linéaire 1 16 42-44 non-linéaire 1

6 14 non-linéaire 2 17 45-47 linéaire 1

7 15-17 linéaire 1 18 48-50 non-linéaire 1

8 18-20 non-linéaire 1 19 51-53 linéaire 2

9 21-23 linéaire 1 20 54-56 non-linéaire 2

10 24-26 non-linéaire 1 21 57-59 linéaire 2

11 27-29 linéaire 2 22 60-62 non-linéaire 2

Table 2: Typologie des contraintes et des équations impliquées dans la de-

scription de l’exemple d’esquisse en verre 3D.

la partie supérieure du verre en spécifiant les éléments suivants:

• Variables: Chaque patch a un degré 5×5 et a un polygone de contrôle

fait de 16×6 points de contrôle dont les coordonnées sont les variables

de notre processus d’optimisation (figure 6.a). Puisque l’objectif est de

modifier la partie supérieure du verre, le concepteur choisit combien

de rangées de points de contrôle doivent être bloquées et combien peu-

vent bouger. Par exemple, si le concepteur souhaite libérer la rangée

supérieure de points de contrôle du quatre patches, il y aura alors

6 × 4 × 3 = 72 variables dans le vecteur inconnu X. Les résultats

seront illustrés avec 4 et 5 lignes libres de se déplacer.

• Contraintes: Trois types de contraintes sont utilisés pour spécifier com-

ment la forme du verre 3D doit évoluer:

– Position: 4 contraintes de position sont ajoutées aux quatre extrémités

des patches le long des courbes de limite supérieure. Comme

le montre la figure 6.c, les points verts des patches doivent se

déplacer vers de nouvelles positions dans Espace 3D. Ils sont

étiquetés de 1 à 4 et génèrent 4 × 3 = 12 équations linéaires

étiquetées de 1 à 12 (table 2).

– Distance: 2 contraintes de distance sont définies entre les côtés

opposés des patchs (figure 6.d). Ils sont étiquetés 5 et 6 et ils

génèrent 2×1 équations non linéaires étiquetées 13 et 14 (table 2).

– Coincidence and tangency : 8 cöıncidences et 8 contraintes de tan-

gence sont spécifiées pour maintenir la continuité entre les parties

supérieures des patches pendant la déformation (figure 6.b). Ils

sont étiquetés de 7 à 22 et ils génèrent des équations non linéaires

de 8 × 3 linéaire et de 8 × 3 étiquetées de 15 à 62 (table 2). La

non-linéarité provient de l’utilisation du produit vectoriel pour

exprimer la colinéarité des normales.
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Dans l’ensemble, il existe 22 contraintes géométriques générant 62

équations dans l’ensemble F (X) = 0. Certaines de ces contraintes sont

contradictoires et c’est le but de cette section d’essayer de voir com-

ment notre algorithme peut les détecter et les supprimer sans affectant

trop l’intention de conception.

• Objective function: Puisque l’approche proposée supprime les sur-contr

aintes identifiées, le système d’équations résultant F̃b(X) = 0 (sec-

tion 0.3.4) peut devenir sous-contraint et un la fonction G(X) doit

être minimisée. Ici, l’idée est de faire usage de l’approche de Pernot

et al. pour définir deux types de comportement de déformation (Per-

not et al., 2005): soit une minimisation de la variation de la forme

(G1(X)) entre les configurations initiale et finale, soit la minimisation

de la forme finale (G2(X)). En termes d’intention de conception, le

premier a tendance à conserver la forme initiale du verre, alors que le

second oublie la forme initiale et tend à générer des surfaces similaires

aux structures de traction.

Figure 6: Esquisse initiale de la géométrie du verre.

Comme l’a révélé BFS, le système peut être décomposé en 2+24×Nrows

connection CCi où Nrows est le nombre de lignes libres de bouge toi. Parmi

eux, seuls deux composants CC1 et CC2 contiennent à la fois des variables

et des équations alors que les autres ne contiennent que des variables (Ta-

ble 2). L’analyse de ces deux composantes donne lieu à l’identification de

2 équations conflictuelles qui correspondent soit à la position, soit à la dis-

tance. Le résultat du processus de détection n’étant pas unique, 9 configura-

tions sont obtenues et sont rassemblées dans le table 3. Ici, il faut se rappeler
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Figure 7: Résultats de l’esquisse après suppression des contraintes con-

flictuelles avec Nrows = 4 : (a) verre initial, (b1) la configuration 1 et min-

imisation de la variation de forme, (b2) la configuration 1 et la minimisation

de la surface de la surface finale, (c1) la configuration 3 et minimisation de

la variation de forme, (b2) la configuration 3 et la minimisation de la surface

de la surface finale.

que même si le processus de détection identifie des équations conflictuelles,

notre algorithme supprime les contraintes associées à ces équations. Par ex-

emple, la configuration 1 considère que les deux contraintes de distance (une

entre les patches P1 et P4 et l’autre entre P2 et P3) doivent être sup-

primées (0 dans la table) et les 4 contraintes de position sont conservées (1

dans la table ).

Config. DIS(P1,P4) DIS(P2,P3) POS(P1) POS(P2) POS(P3) POS(P4)

1 0 0 1 1 1 1
2 1 0 0 1 1 1
3 1 0 1 1 1 0
4 0 1 1 0 1 1
5 0 1 1 1 0 1
6 1 1 0 0 1 1
7 1 1 1 1 0 0
8 1 1 1 0 1 0
9 1 1 0 1 0 1

Table 3: Statut des contraintes de distance et de posi-

tion (0 à enlever et 1 à garder) pour résoudre les 9 con-

figurations sur-contraintes.

Toutes les configurations sont alors résolues en agissant à la fois sur le

nombre de rangées supérieures à fixer (Nrows = 4 or 5), et la fonction objectif

à minimiser (soit G1(X) ou G2(X)). Les résultats sont rassemblés dans les

tableaux 4 et 5. Chaque configuration est évaluée à l’aide des trois critères

précédemment introduits dg, df et cond. Certaines solutions sont montrées

dans la figure 7.

On peut d’abord remarquer que selon les configurations, l’écart df sur les

contraintes varie. Par exemple, avec Nrows = 4 et en minimisant G1(X), la

configuration 7 génère une solution plus proche de l’intention de conception
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que la configuration 6 (0.10684 < 0.12607 dans Table 4). Pour la configu-

ration 3, il est clair que l’écart par rapport à l’intention de conception en

termes de contraintes est plus important en minimisant la surface de la sur-

face finale qu’en minimisant la variation de forme (0.2288 > 0.10179 dans le

table 4 ). Ceci est clairement visible sur les figures 7.c1 et 7.c2.

En considérant la minimisation de la variation de forme, on peut voir que

la configuration 3 est moins intéressante que la configuration 1 en ce sens

qu’elle minimise moins la variation de forme (15459.52 > 13801.04 dans le

table 4).

Enfin, pour une configuration donnée, on peut remarquer que lorsque

le nombre de lignes libres augmente, c’est-à-dire quand il y a plus de lib-

erté, la fonction objective diminue et la solution est donc plus proche de

l’intention de conception. Ceci est visible lors de la comparaison des valeurs

des Tableaux 4 et 5. Ainsi, la sélection des variables X est également im-

portante lors de la mise en place du problème d’optimisation.

Minimization of G1(X) Minimization of G2(X)

Config. dg1 df cond dg2 df cond

1 13801.04 0.10000 2.8654e19 96733.72 0.10000 1.4272e18
2 17990.88 0.10182 8.3172e18 95225.05 0.28157 4.3894e17
3 15459.52 0.10179 1.5071e19 94483.08 0.22880 4.9533e17
4 12265.51 0.10975 8.8857e18 89924.13 0.22806 3.9399e18
5 10970.98 0.10971 3.9852e19 86879.47 0.25225 8.2501e18
6 15826.68 0.12607 3.4260e18 76878.26 0.68278 1.6567e18
7 12936.45 0.10465 3.8205e18 76167.99 0.62820 3.9842e17
8 13889.18 0.11385 2.5681e18 78657.81 0.59160 4.1485e18
9 14883.21 0.11720 1.2523e18 74351.81 0.71765 6.7658e16

Table 4: Evaluation des 9 configurations avec Nrows = 4.

Minimization of G1(X) Minimization of G2(X)

Config. dg1 df cond dg2 df cond

1 11266.93 0.10000 4.0149e17 85121.36 0.10000 3.3441e17
2 14719.05 0.10280 4.6031e17 86295.47 0.25034 6.5355e19
3 12506.55 0.10277 1.7748e19 85190.96 0.20076 1.0972e18
4 9944.87 0.11452 1.7903e18 79428.31 0.20592 1.7041e18
5 8799.29 0.11448 6.1454e17 77800.57 0.22919 1.0218e18
6 12561.66 0.13935 4.1681e18 69603.16 0.76646 8.5100e16
7 10441.11 0.10684 1.0862e18 69502.72 0.70009 2.3460e18
8 11134.09 0.12097 2.5394e18 71465.72 0.65901 1.5773e18
9 11877.59 0.12601 1.3790e19 67661.55 0.80372 8.4472e17

Table 5: Evaluation des 9 configurations avec Nrows = 5.
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0.5 Conclusion et travaux futurs

Dans ce travail, une approche pour trouver toutes les sur-contraintes

dans des configurations géométriques de forme libre a été introduit. Il s’appuie

sur un couplage entre les décompositions structurelles et l’analyse numérique.

Le processus et son algorithme ont été décrits et analysés avec des résultats

à la fois exemples académiques et industriels. L’approche a plusieurs avan-

tages: elle est capable de distinguer les contraintes redondantes et con-

flictuelles; il est applicable à la fois sur les contraintes linéaires et non

linéaires; et cela applique des méthodes numériques sur de petits sous-blocs

du système original, permettant ainsi d’évoluer vers de grandes configura-

tions. De plus, puisque l’ensemble des sur-contraintes d’un système n’est pas

unique, il a été montré que notre approche est en mesure de fournir différents

ensembles en fonction de la la décomposition structurelle sélectionnée et les

critères proposés pour comparer et aider l’utilisateur à choisir les contraintes

il/elle veut supprimer. Même si le noyau de l’algorithme fonctionne sur des

équations et des variables, la décision est prise en considérant les contraintes

géométriques spécifiées par le concepteur à un niveau élevé.

Un certain nombre de perspectives découlent de ce travail. D’abord, une

automatisation de processus devrait aider le concepteur à choisir l’ensemble.

Le concepteur a accès à trois critères principaux (dg, df , cond) qui peu-

vent être difficiles à analyser pour un non-expert. Ainsi, des critères de

niveau supérieur devraient être imaginés en plus de ceux-ci. Deuxièmement,

l’approche peut être rendue interactive, c’est-à-dire permettre le concepteur

de choisir entre les différents ensembles en conflit le long de la processus, ou

même de modifier les contraintes défectueuses. Enfin, il est prévu de étendre

ce travail afin qu’il puisse être utilisé pour détecter et expliquer configura-

tions géométriques qui, même lorsqu’elles sont solubles, se traduisent des

conceptions de qualité.
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Introduction

Nowadays, designers rely on 3D CAD software to model sophisticated

shapes based on free-form curves and surfaces. In industrial design, this

geometric modeling step is often encapsulated in a larger Product Devel-

opment Process (PDP) which may incorporate preliminary design, reverse

engineering, simulation as well as manufacturing steps wherein several ac-

tors interact. Actually, the final shape of a product often results from a long

optimization process which tries to satisfy the requirements associated to the

different steps of the PDP. Requirements can be seen as constraints. They

are generally expressed either with equations, a function to be minimized,

and/or using procedures.

To satisfy the requirements, designers can act on variables associated to

the different steps of the PDP. More specifically, variables are supposed to

be the parameters of the NURBS surfaces involved in the shape optimization

process. To shape a free-form object defined by such surfaces, designers then

have to specify the geometric constraints the object has to satisfy. For ex-

ample, a patch has to go through a set of 3D points and satisfy to position

constraints, the distance between two points located on a patch is fixed,

two patches have to meet tangency constraints or higher-order continuity

conditions, etc. Those geometric constraints give rise to a set of linear and

non-linear equations linking the variables whose values have to be found. Due

to the local support property of NURBS, the equations do not involve all

the variables and some decompositions can be foreseen. Additionally, de-

signers may express involuntarily several times the same requirements using

different constraints thus leading to redundant equations. But the designers

may also involuntarily generate conflicting equations and may have to face

over-constrained and unsatisfiable configurations.

Sometimes, over-constrained configurations can be solved by inserting

extra degrees of freedom (DoFs) with the Boehm’s knot insertion algo-

rithm. As a consequence, many control points are added in areas where not

so many DoFs are necessary. This uncontrolled increase of the DoFs impacts
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the overall quality of the final surfaces which become more difficult to ma-

nipulate than the initial ones. Furthermore, some structural over-constraints

cannot disappear following this strategy and dedicated decision-support ap-

proaches have to be developed to identify and manage over-constrained con-

figurations.

Unlike advanced 2D sketchers available in most commercial CAD soft-

ware, and which can interactively identify the over-constraints during the

sketching process, it is not yet completely possible to pre-analyze the sta-

tus of 3D NURBS-based equation systems before submitting them to a

solver. Thus there is a need for developing a new approach for the detec-

tion and resolution of redundant and conflicting constraints in NURBS-

based equation systems. This corresponds to the identification and treat-

ment of over-constrained, well-constrained and under-constrained parts. In

this thesis, the treatment corresponds to the removal of constraints before

solving. Once the constraints removed, the equation system often becomes

under-constrained and the designer also has to add a requirement by mean

of a function to be minimized so as to solve and find the values of the un-

knowns. This aspect is not part of the proposed approach but it will be

discussed when introducing the results in which a particular functional is

minimized.

Removing user-specified constraints is a primary step as the result do

not fully satisfies what the designers have specified. Thus, not only is it

important to develop an approach able to remove over-constraints, but it is

also desirable to develop decision-support mechanisms which can help the

designers identifying and removing the right constraints, i.e. the ones which

preserve as much as possible the initial design intent.

In this thesis, the aim is to address these two difficult issues by proposing

an original decision-support approach to manage over-constrained geomet-

ric configurations when deforming free-form surfaces. Our approach handles

linear as well as non-linear equations and exploits the local support prop-

erty of NURBS. Based on a series of structural decompositions coupled with

numerical analyses, the method detects and treats redundant as well as con-

flicting constraints. Since the result of this detection process is not unique,

several criteria are introduced to drive the designer in identifying which

constraints should be removed to minimize the impact on his/her original

design intent. Thus, even if the kernel of the algorithm works on equations

and variables, the decision is taken by considering the geometric constraints

specified by the user at a high level.

The manuscript is composed of an introduction, 4 chapters and a final

conclusion as follows:



3 Introduction

• Chapter 1 shows the whole picture of Product Development Process

(PDP) and points out the position of our research. We introduce the

structure of PDP, its relationship with free-form shape modeling, mod-

eling user specified requirements, and transforming from requirements

to constraints, from constrains to equations.

• Chapter 2 provides an overview of techniques for geometric over-

constraints detection. In the context of free-form surfaces modeling,

we evaluate different techniques under given criteria and select the

ones that might be helpful to solve our problems by testing them on

different examples.

• Chapter 3 illustrates our approach: an algorithm combining sys-

tem decomposition, numerical methods, symbolic methods, and op-

timization techniques to detect redundant/conflicting constraints as

well as the corresponding spanning groups. In addition, our approach

enables to provide different sets of results and thus criteria are pro-

posed to compare them, to assist user choosing the over-constraints

he/she wants to remove.

• Chapter 4 illustrates the detection and resolution processes on both

academic and industrial examples. Moreover, it shows the efficiency

of the decomposition method used in our approach and the impact of

tolerances on the detection result.

• Finally, we discuss limits and perspectives of our research in the Con-

clusions and perspectives section.





Chapter 1

Positioning of the research

This chapter discusses briefly the Product Development Process (PDP) and

shows that its output can be seen as the result of an optimization prob-

lem where multiple requirements should be satisfied (section 1.1). Require-

ments can be realized by manipulating geometric models in CAD modelers

using different approaches (section 1.2). Modeling multiple requirements

on freeform objects can be seen as defining a shape deformation prob-

lem (section 1.3). Requirements can be transformed into constraints (sec-

tion 1.4) and constraints can be further transformed into equations (sec-

tion 1.5). Since the users’ design intent are sometimes uncertain and require-

ments may contain redundancies/conflicts, there is a need to debug them

so that users can better understand what they really want (section 1.6).

1.1 Product Development Process

Product design is a cyclic and iterative process, a kind of systematic

problem solving, which manages the creation of the product itself under

different conditions. The development process includes the idea genera-

tion, concept phase, product styling and design and detail engineering, all

of which are conducted in the context of adapting and satisfying require-

ments of the different stages. Usually, designers use CAD tools to deal with

associated requirements during the industrial Product Development Pro-

cess (PDP). Clearly, the PDP is not unique and vary deeply from company

to company, depending on the complexity of the product to be designed, the

equipment used, the team of specialists involved, the stages of a product to

be designed and so on. Regardless of the variability, Falcidieno at al (Fal-

cidieno et al., 2014) proposed a generic structure of a PDP as a reference

scheme that can be used by specific companies, on different scenarios and

classes of products (figure 1.1). Singe-headed arrows represent information
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and/or digital models that are communicated from one activity to another

as soon as the first activity has been carried out. Double-headed arrows

are not prescribing systematic communications between two or more activ-

ities. They can be reduced to single-way communications for some specific

scenarios (Falcidieno et al., 2014).

Figure 1.1: Generic structure of a PDP.

As it is shown in figure 1.1, the PDP can be divided into four main stages:

Preliminary design, Embodiment design, Detailed design and Process plan-

ning. In the Preliminary design stage, the desired product characteristics are

described and the product requirements are defined. The description of prod-

uct characteristics provides the basis for the definition of the requirement

specifications and target specifications of a new model. The requirement

specifications include a complete description of the new product character-

istics. For example, in the context of automotive development projects, the

description of product characteristics is supported by far-reaching market

studies, research into constantly changing customer demands and on evalu-

ation of future legislation-based conditions in target markets. Requirement

specifications takes into account the detailed information about the require-

ments of product design and the desired behavior of a product in terms of its

operation. The Embodiment design stage includes the functional and phys-

ical concept of the new product. On one hand, the new techniques are used

and evaluated with respect to their functional configurations and interac-

tions. For example, in the case of car design, new technologies in mechanical

parts, such as new safety equipment or environmentally friendly propulsion

technologies, are implemented and verified in terms of their general func-

tionalities within the full-vehicle system. On the other hand, the physical

concept covers the definition of the product composition. New functions are
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developed in mechanisms. In automotive development processes, the phys-

ical concept defines the vehicle body structure layout in consideration of

crash and stiffness requirements as well as it addresses basic requirements

of the new car concept, such as driving performances, fuel consumption,

vehicle mass, and estimated values of driving dynamics.

The Detailed design stage directly depends on the product concept phase.

Based on the knowledge from the concept phase, the geometric information

of all components are modeled in details and optimized while considering

the assembly of the product and the interactions of components. Also, in

this stage, materials of the components are defined and the boundaries for

the production planning are derived.

Finally, the last stage consists of production-related planning. This stage

is mainly concerned with determining the sequence of individual manufac-

turing operations needed to produce a given part or product. But it also

refers to the planning of use of blanks, spare parts, packaging material, user

instructions, etc. The resulting operation sequence is documented on a form

typically referred to as a route sheet containing a listing of the production op-

erations and associated machine tools for a work part or assembly. This phase

goes hand in hand with the design process because manufacturing bound-

aries often influence the design of components. Therefore, the production, as-

sembly and inspection-oriented development and the manufacturing-related

optimization interact with geometry creation and calculation processes.

With the goal of saving development time and costs, the PDP involves

virtual product-model-based processes to generate new products using ded-

icated tools. Depending on the categories of development applied, there

are different types of tools: computer-aided design (CAD), computer-aided

styling (CAS), computer-aided engineering (CAE), Computer-aided manu-

facturing (CAM), Computer-aided quality assurance (CAQ) and Computer-

aided testing (CAT). These tools enable the creation of product geome-

try and implementation of product characteristics. All those information

are stored within the Digital Mock Up which is managed by PDM (Prod-

uct Design Management) and PLM (Product Lifecycle Management) sys-

tems. Modern CAD systems allows for integrating multi-representation and

multi-resolution geometric models to shape complex components and model-

ing products possibly incorporating free-form surfaces (Pernot et al., 2008).

The CAD modeling approaches will be discussed in the next section.

Anyhow, the PDP allows the creation of products which can be seen

as the result of an optimization process where various requirements (e.g.

functional, aesthetic, economical, feasibility) have to be satisfied so as to

obtain desirable solutions. However, not all the requirements can be fulfilled
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and an approximation has to be found. Moreover, requirements are even

conflicting in some cases and methods for detecting and treating conflicts

are to be proposed. They are presented and compared in chapter 2. This

PhD thesis addresses such a difficult problem of detection and treatment of

so called over-constraints when manipulating geometric models which are

part of the DMU of complex systems.

1.2 CAD modeling approaches

1.2.1 Manipulating geometric models

As suggested by Maculet and Daniel in (Maculet and Daniel, 2004), the

manipulation of a geometric model can be performed at three levels:

• Level 0: manipulation of variables, or parameters (e.g.: coordinates of

a control point, coordinates of a point in parametric space...).

• Level 1: manipulation of elementary geometric entities (points, line

segments, curves, surfaces); it corresponds to the parametric and vari-

ational modelers solving elementary geometric constraints (e.g.: dis-

tance between two points, angle between two tangent lines, etc.).

• Level 2: manipulation of more complex geometric entities, composed

of simple elements of level 1(e.g.: groove in an area of an object); it

corresponds to the feature-based approaches, to solve more complex

constraints (e.g.: length of the groove), and which are generally asso-

ciated with a semantic meaning or with geometric properties.

Industrial CAD software relies on an incremental B-Rep (Boundary Repre-

sentation) modeling paradigm where volume modeling is performed itera-

tively through high-level operators (Hoffmann, Lomonosov, and Sitharam,

1998). These operators allows for acting directly on the geometric entities of

level 1 to directly shape the CAD models by manipulating structural and de-

tail features. However, even if CAD software allow working on the geometric

entities of level 2 based on the operators such as pad, pocket, shaft to get rid

of the direct use and manipulation of canonical surfaces and NURBS (Piegl

and Tiller, 1996), a lot of intermediate operations are required to get the

desirable shape of an object. The work is procedural and designers have to

break down the object body into basic shapes so as to link to different op-

erators of the software. This even truer in the freeform domain where CAD

softwares generate complex free-form shapes incrementally and interactively

through a sequence of simple shape modeling operations. The chronology of
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these operations is at the basis of a history tree describing the construc-

tion process of an object. Consequently, without a real construction tree,

free-form shape modifications are generally tedious and frequently result in

update failures. Clearly, an approach closer to the designers’ way of thinking

is missing and there is still a gap between the shapes designers have in mind

and the tools and operators provided to model them. Various approaches

have been introduced to bridge this gap and are briefly discussed in the

next section: parametric modeling, feature-based modeling and variational

modeling approaches.

1.2.2 Modeling approaches

The parametric modeling approach allows for modifying an object by

changing instantiations of its constitutive geometric model sequentially. Usu-

ally, a parametric system can be divided into subsystems that can be solved

one after another in a given order (Farin, Hoschek, and Kim, 2002). Dur-

ing the process of parametric modeling, designers are hard to make sure

that the added constraints stay consistent with previous ones as well as the

inserted variables are enough to correctly describe the variations of a prod-

uct. Therefore, final systems are generally under-constrained or sometimes

over-constrained. Designers have to check carefully the constraints with re-

spect to the product variations he/she needs so that the final system stays

well-constrained.

However, if a system can be divided into subsystems which are simulta-

neously solvable, then the system is variational. Designation of variational

configuration is first proposed by Lin, Gossard and Light (Lin, Gossard,

and Light, 1981). When defining a 3D shape, the constraints are often ge-

ometric constraints, which relate to different geometric primitives or fea-

tures (Bettig and Hoffmann, 2011). For example, they can be distances or

angles between (special points or axes of) geometric primitives or features,

incidence or tangency relations between parts of two geometric primitives or

features. Compared to the parametric modeling, variational modeling gives

a better answer to the designer’s needs. If the final configuration is well-

constrained, the solver is able to find a correct set of solutions. In configu-

rations that are under/over-constrained, decomposition methods have been

introduced to supplement the solving methods. The research in variational

modeling quickly concentrates on the important problem of constraints mod-

eling, how to represent and organize them with DAGs, and finally how to

solve them (Hoffmann and Juan, 1992).

The feature-based modeling approach considers geometric entities made
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up of simple elements which are called features. For example, the feature

’hole’ is composed by a set of cylinders and planes attached to an initial

plane (figure 1.2). In the freeform domain, four level classification has been

proposed by Fontana (Fontana, Giannini, and Meirana, 2000) and extended

by Pernot (Pernot, 2004). Designers manipulate directly on shape primi-

tives that can be parametrized and pre-defined rather than acting at lower

level ones by using features to build their CAD models. As it is shown in fig-

ure 1.3, constraints can be indirectly specified on the control points of control

polygon or directly onto the surface potentially made of multiple trimmed

patches connected together with continuity conditions. To satisfy their re-

quirements, designers often insert numerous DOFs through the use of the

Boehm’s knot insertion algorithm (Boehm and Prautzsch, 1985), resulting in

configurations with more variables than equations. The approach proposed

a) b)

Figure 1.2: Geometric model composed of free form features (Pernot et al.,

2005).

in this PhD can serve the three above mentioned modeling strategies. As

discussed in section 1.3, the proposed approach is intended to analyze a set

of constraints, and the associated equations, independently of the adopted

modeling strategy.

1.3 Modeling multiple requirements in an opti-

mization problem

Product requirements refer to the specifications that lead to criteria to

evaluate design variants and select the one that performs best when using

the product. As it is shown in Figure 1.1, requirements can be specified

during various stages of a PDP from preliminary design to process planing.

Usually, the requirements are of two categories: qualitative and quantitative

ones. Quantitative requirements like a power or a velocity can be subjected

to tolerances, which gives a flexibility to find the compromise. However,

qualitative requirements like aesthetics are not related to tolerances, and
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compromises are more subjective, which in some sense can reduce the un-

certainties. To find a compromise, a set of requirements can be adjusted

like adding/removing shape details, modifying dimensions, applying geo-

metric constraints on the digital shape models. Often, the product shape

results from an optimization problem where the various requirements are

specified by the actors of the PDP. Actually, the final shape of a product

often results from a long and tedious optimization process which tries to

satisfy the requirements associated to the different steps and actors of the

PDP. Those requirements can be of different types and their computation

may require the need of external tools or libraries. For example, the shape

of a turbine blade is the result of a complex optimization process which is

to find the best compromise between notably its aerodynamic and mechani-

cal performances. In general, requirements can be seen as constraints. They

are generally expressed either with equations, a function to be minimized,

and/or using procedures (Gouaty et al., 2016). The latter refers to the notion

of black box constraints, which are not addressed in this manuscript (sec-

tion 1.5.2). Here, we focuses only on geometric constraints that can be

expressed by linear or non-linear equations.

blocked nodes

a) b) c)

constraint line

Figure 1.3: Initial configuration a), deformation with a minimization which

ignores the initial shape b), and preserves the initial shape c) of initial

glass (Pernot et al., 2005).

Thinking to the PDP as well as to the needs for generating shapes which

satisfy multiple requirements, one can notice that designers can specify their

requirements and associated design intent within a shape deformation prob-

lem through accessing to three main parameters. On one hand, when speak-
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ing of deformation techniques working on NURBS curves and surfaces, the

goal is to find the position X of some control points so as to satisfy user-

specified constraints which can be translated into a set of linear and/or

non-linear equations F (X) = 0. For example, a patch has to go through

a set of 3D points and satisfy to position constraints (some of these con-

straints have been used to drive the glass deformation of figure 1.3), the

distance between two points located on a patch is fixed, two patches have to

meet tangency constraints or higher-order continuity conditions, etc. Since

the problem is often globally under-constrained, i.e. there are less equations

than unknown variables, an objective function G(X) also has to be mini-

mized. As a consequence, the deformation of free-form shapes often results

from the resolution of an optimization problem:{
F (X) = 0

minG(X)
(1.1)

For some particular applications, the optimization problem can also con-

sider that the degrees, the knot sequences or the weights of the NURBS are

unknown. Depending on the approach, different objective functions G(X)

can be adopted but they often look like an energy function which may rely

on mechanical or physical models. Figure 1.3 b and c show two results when

using two different minimization with the same set of constraints. The con-

straints toolbox can also contain more or less sophisticated constraints with

more or less intuitive mechanisms to specify them. Note that, in this thesis,

only the position of the control points are considered unknown. On

the other hand, designers can effectively act on the unknowns X to decide

which control points are fixed and which ones can move. In the example

of figure 1.3, the bottom row of control points are fixed. In this way, they

specify the parts of the initial shape which should not be affected by the

deformation. Of course, designers can make use of the constraints toolbox

to specify the equations F (X) = 0 to be satisfied. Finally, designers can also

specify some of their requirements through the function G(X) to be mini-

mized. For example, they can decide to preserve or not the original shape

while minimizing an energy function characterizing the shape deformation.

1.4 From requirements to constraints

As discussed above, multiple requirements in a PDP can be modeled

within an optimization problem. Here, we summarize the constraints satis-

fying different design requirements as well as a structure of these constraints

which must be incorporated to develop a fully constraint-based modeler for

curves and surfaces.
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1.4.1 Taxonomy of constraints

Section 1.3 has discussed the design intent where both the system of

equations F (X) = 0 and the objective function G(X) should be taken into

consideration. Therefore, the corresponding ways of specifying constraints

can be (Cheutet et al., 2007):

• Strict constraints, which are named classically constraints in the lit-

erature and can be transformed into a system of equations F (X) =

0. They must be strictly respected during the shape creation and ma-

nipulation processes. For example, the current sketchers in CAD mod-

elers are only using this type of constraints.

• Soft constraints, which corresponds to objective function G(X) to be

minimized. These constraints are used in the declarative modeling ap-

proach to allow the description of the object properties, but also to

deform free-form surfaces in some other approaches. They can express

the final aspect of a component shape or at least, the expectation to

obtain a solution close to it.

The above two categories classify constraints specification from a mathemat-

ical point of view. However, thinking to the PDP, the notion of constraints

during a design phase can be very large. Since it is commonly used at all

of its successive steps, different users have different meaning for design con-

straints. According to (Cheutet et al., 2007), constraints can be classified

into four semantic levels in the context of shape generation and modification,

depending on the type of the constrained entity:

• Level 1: constraints attached to a geometric element of a configuration:

such as local constraints used to manipulate its shape like position

constraints.

• Level 2: constraints between two or more geometric elements of a

configuration: for instance, to preserve the integrity of the configura-

tion during the shape modification, such as maintaining G0/G1/G2

continuity between trimmed patches.

• Level 3: constraints attached to the whole configuration like a volume

constraint, for example.

• Level 4: constraints related to the product itself rather than to the ge-

ometry. For example, the product should resist during its usage. This

specification makes use of mechanical properties such as the accept-

able maximum stress. In this case, constraints link the geometry with
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parameters of the material as well as boundary conditions of the prod-

uct.

The above levels describe how to express the constraints attached to a prod-

uct. In the next subsections, the constraints classically used for curve and

surface modeling are described in more details, according to the categories

previously defined in this section. Most of those constraints can be handled

by the approach developed in this PhD thesis.

1.4.2 Strict constraints

This section describes the strict constraints commonly used in shape

modeling and part of the first two categories previously listed (constraint

attached to one geometric element or between two or more geometric el-

ements of a component). Because they are directly related to geometric

parameters, they are named as geometric constraints in literature.

Constraints to control the shape of a local entity

Local geometric constraints are used to locally control a shape. The con-

trol is achieved through enforcing the curve/surface to pass through a new

user-specified location using the local support property of the underlying ge-

ometric model (figure 1.4, b). The constraining entity usually is a geometric

point while the constrained geometry can be curves, patches and meshes.

a) b)

displaced nodemodified area

unmodified area

N53(u)

N53(u), N43(v)

N43(v)

Figure 1.4: Bi-variate basis function a) associated to a control point which is

displaced b) to produce a local modification of a patch (Pernot et al., 2005)

The local support property can be explained as following. A B-Spline
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patch is defined by the following equation:

(u, v)∈ Nu×Nv, P (u, v) =
∑m

i=0

∑n
j=0Nip(u).Njq(v).sij ,

with Nu = [u0, um+p+1] and Nv = [v0, vn+q+1],
(1.2)

where p and q are the degrees in u and v respectively, m+ 1 and n+ 1 are

the number of control points in u and v direction respectively, Nu and Nv

are the knot sequences in u and v.

The displacement δhk of a control point shk induces a surface displace-

ment governed by the following equation:

(u, v)∈ Nu×Nv, P
′
(u, v) = P (u, v) +Nhp(u).Nkq(v).δhk (1.3)

Thus, the extent of the modified area directly depends on the influence

area of the bi-variate basis function Nhp(u).Nkq(v), whereas the amplitude

of the modification is directly related both to the shape of this bi-variate

function and to the displacement vector δhk. The example of figure 1.4 a,

displays the bivariate basis function associated to a control point which is

displaced to produce a local modification of a patch (figure 1.4, b). The

influence area of this displacement is therefore delimited by a rectangular

domain Ihk = [uh, uh+m+1]× [vk, vk+n+1]. This is an interesting property to

be able to decompose a problem into subproblems.

Curve constraints on a surface

In car aesthetic design, stylists manipulate a product by forcing the sur-

face to match a given curve at some stage of the product specification. Thus,

the surface model of the product is directed by the curves, which strongly

affect the shape of the product. The constraining entity is a curve and the

constrained entity is a surface. In the case of continuous surfaces like NURBS

surfaces, the curve constraint can be decomposed into a set of point con-

straints, with additional parameters related to the application domain (fig-

ure 1.5). The discretization process has a strong influence on the resulting

shape. For example, if the discretization is too coarse, then the shape vari-

ations of the initial curve would be lost; If the degrees of freedom is not

properly distributed after discretization, then over-constrained configura-

tions will be generated. There are cases for which the decomposition is not

necessary, but they are so particular that they are not often encountered in

industry (Michalik and Brüderlin, 2004).
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a) b)

constraint curve

parametric points

Figure 1.5: Matching a curve constraint a) initial configuration b) shape

after deformation and insertion of a discontinuity (Pernot et al., 2005)

Constraints to preserve model integrity

Figure 1.5 b) shows a shape that is not ”smooth” after deformation. This

discontinuity results from the trimmed self-intersection of the surface. Thus,

the integrity of the original configuration is not well preserved in this case. In

case of continuity conditions, the shape of a model can be defined by a

set of patches and the continuity conditions in position, tangency and/or

curvature between them have to be taken into account to preserve the

model integrity during the shape transformations (second semantic level,

section 1.4.1). More specifically, for a surface composed of a set of connected

trimmed patches, the continuity of the surface depends on the continuity of

each patch and on the continuity along their connections. Concerning the

connections, a C0 continuity indicates a continuity of position along the

common trimming lines of two patches, a C1 indicates a continuity of the

first-order derivatives along the common trimming lines and a C2 continuity

indicates a continuity of the second-order partial derivatives along the com-

mon trimming lines. Unfortunately, most of the time the characteristics of

the two connected patches (degrees of the basis functions, number of control

points and so on) prohibit the satisfaction of those equalities. Therefore, the

continuity must be approximated (Gi instead of Ci) and satisfied at spe-

cific points of the trimming lines. In this case, the G0 continuity corresponds

to position continuity at specific points, G1 to tangency continuity and G2

to curvature continuity.
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Constraints to control the shape of a global configuration

This section describes constraints that act on the whole curve/surface

(constraints from semantic level 3). They cannot be decomposed into a set of

point constraints like previous examples since they refer to integral proper-

ties of the associated curve/surface. In 2D space, curves can be constrained

to preserve either a prescribed area or a constant length or to preserve some

symmetry with a predefined axis during the deformation process (Sauvage,

Hahmann, and Bonneau, 2004; Hahmann, Sauvage, and Bonneau, 2005;

Elber, 2001). In 3D space, the volume preservation is important for achiev-

ing realistic deformations of solid objects in computer graphics (Lasseter,

1987). Other constraints such as moments have been studied in (Elber, 2000;

Gonzalez-Ochoa, McCammon, and Peters, 1998). An example of area con-

straint is provided in figure 1.6.

a) b) c)

fixed

initial shape specified displacement final shape

D
d

Figure 1.6: a) no area constraint b) constant inside area c) inside area scaled

with a factor α = D2/d2 (Pernot et al., 2005)

Constraints to satisfy engineering requirements

This section deals with constraints of the fourth semantic level. As dis-

cussed in section 1.4.1, these constraints are usually needed at a given stage

of the PDP and their expressions incorporate geometric as well as tech-

nological parameters, such as changing the shape of a component in some

areas while maintaining the maximum stress value in a given area. How-

ever, usually these constraints cannot be decomposed into constraints of the

other semantic levels since other quantities than the geometric ones are in-
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volved. Moreover, evaluating the results satisfying these constraints would

require the use of a specific algorithm, like a Finite Element Analysis. Most

of time, these constraints are seen by the designer as black boxes and the

results obtained are then incorporated into a geometric constraint solving

process (section 1.5.2). After that, the user can have ideas on which pa-

rameters need to be modified by analyzing the solutions. This level is not

addressed in this PhD manuscript, and black box constraints cannot be

handled yet.

1.4.3 Soft constraints

Constraints in terms of objective function to minimize

(Pernot et al., 2004) have shown that soft constraints can also be used to

monitor the shape deformation (figure 1.3). Since many configurations are

based on a set of trimmed patches, the corresponding deformation problem is

globally under-constrained, and the number of control points is generally far

greater than the number of constraints. Usually, objective function indicates

a user’s design tendency of a curve/surface behavior after deformation. For

example, shape fairness is often used to obtain the smoothest and the most

graceful shapes, and the criterion corresponds to the minimization of an

energy having a physical meaning and leading to natural surfaces. Therefore,

soft constraints can be used as a criterion to choose one solution among all

those satisfying strict constraints. Hence, soft constraints can be used to help

the designer adjust the shape in accordance to complementary parameters

that cannot be incorporated into geometric constraints.

This type of constraint, which act on the function G(X) to be mini-

mized, cannot be directly handled by the proposed approach which focuses

on the identification of redundancies and conflicts in a set of strict con-

straints. Those aspects are discussed in the results section.

1.5 From constraints to equations

1.5.1 Expressing constraints with equations

CAD modelers provide their solvers of geometric constraints and usually

the solver has its own constraints editor. Basically, the constraints con-

cern vertices of interest, straight lines, planes, circles, spheres, cylinders

or freeform curves and surfaces whose parameters are the unknown vari-

ables. Constraints ranging from level 1 to level 3 (Section 1.4.1) can be rep-
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resented with equations. Those equations can be linear or non-linear. Classi-

cal solvers use these constraints to sketch and constrain the shape of desired

models. For example, the 2D distance constraint d between two points (x, y)

and (x0, y0) is translated to the equation (x−x0)2 +(y−y0)2−d2 = 0. Con-

tinuity constraints between two patches can also be represented with equa-

tions. Moreover, those mathematical equations can also be represented using

computational graph, which is based on Directed Acyclic Graphs (DAGs). In

such a representation, a DAG is a tree with shared vertices. The leaves of

the tree are either variables (i.e. parameters or unknowns) or numerical

coefficients. The internal nodes of the tree are either elementary arithmetic

operations or functions such as exp; sin; cos; tan. The DAG is also called

white box DAG, since it allows for computing the derivatives and hessians

automatically. If the mathematical equations associated to geometric con-

straints are available, it is possible to compute the expressions of the deriva-

tives with formal calculus, which can be resorted to using Grobner basis or

Wu-Ritt method if all the constraints are algebraic and can be triangulated

into the form f1(U ;x1) = f2(U ;x1;x2) =:::= 0 (U is the parameters vector

and xi are the unknown variables).

1.5.2 Black box constraints

On the contrary, a DAG is called a black box DAG, and a constraint

is called a black box constraint when the corresponding constraints cannot

be represented with equations or are not computable in practice (Gouaty

et al., 2016). This corresponds to constraints of level 4 discussed in sec-

tion 1.4.1. Examples such as, the maximum of the Von Mises stress should

be smaller than 100MPa, the final product should cost less than 100, the

mass of the object should be smaller than 100 kilograms, there should not be

collisions between the parts, are requirements which cannot be transformed

into a set of equations. In the work of (Gouaty et al., 2016), they proposed

to use black box DAGs for Variational Geometric Modeling of free-form sur-

faces and subdivision surfaces and they presented a prototype, DECO, to

show the feasibility and promises of this approach. Black box constraints can

happen when free-form surfaces are generated tediously from fairly sophis-

ticated modeling functions (e.g. sweep, loft, blend). Of course, these black

box constraints cannot be manipulated in the same way as if some equations

were available and solvers have to take into account these constraints ex-

pressed by functions i.e. constraints requiring the call to a function. In the

context of this PhD thesis, we will only consider configurations involving

constraints defined by linear and/or non-linear equations. Configurations

involving black box constraints have not been addressed.
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1.6 Needs for better understanding the design in-

tent

1.6.1 Management of the uncertainties

Today’s modelers and solvers cannot fully handle the uncertainties when

designers define their requirements. When designing free-form objects, it is

impossible to precisely specify a shape at the beginning. Because the idea

designers have in mind are usually not fully refined at the conceptual phase

but evolves with engineering conditions and simulation results. As a con-

sequence, the PDP requires many back and forth attempts before getting

desirable results. Moreover, the results can sometimes be acceptable if they

are close to target ones. This can happen when deforming free-form objects,

since it inherits problems from the non-linear optimization domain, such

as results coverages to local minima rather than global minimum. The dis-

tance between local minima and global minimum is uncertain but under the

tolerance that designers can accept. Finally, the uncertainties can happen

directly on constraints. That is, constraints with inequalities and not only

strict constraints. Values of these constraints remain uncertain before solv-

ing but are acceptable if their real values after solving are within the range

of inequalities.

Figure 1.7: Need of relaxation areas (a) to avoid undesirable undulations

(b) (Pernot, Qiao, and Veron, 2007).

Pernot et al (Pernot, Qiao, and Veron, 2007) showed an example where

the deformation of a surface is constrained by constraint lines. As it is shown

in figure 1.7(b), a target line and a limiting line are specified on an initial

patch. However, during the drawing of the target line, designer does not

have accurate criterion to sketch the end points of the target line. After

the deformation, the Gaussian map of the curvature shows the presence of

hollows around the end points of the target line. These extremities of the
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target line are considered as uncertainty areas which must not be taken into

account during the deformation process. Such results are not acceptable

for designers. They proposed to relax user-specified constraints with two

types of scenarios and explains the effects of relaxation on an amplified

configuration in figure 1.7(a). The approach developed in this PhD allows for

the detection of redundant and conflicting constraints. Thus, once identified,

those configurations can either be deleted or the associated constraints can

be relaxed.

1.6.2 Detection and treatment of over-constraints

User-specified requirements may not always be consistent and the overall

set can be over-constrained. It is up to the solver to detect those inconsis-

tencies and to give feedbacks on how to remove them.

60

80

90

Well-Constrained

Under-Constrained

Over-Constrained

Conflicting

2 290 60 80 

60

80

100
Redundant

2 2100 60 80 

a)

b)

c)

Figure 1.8: 2D sketches a) constraints labeling with colors b) sketch with

conflicting constraints c) sketch with redundant constraints. Clearly, the

sketcher does not highlight differently redundant/conflicting constraints.

In most of today’s modeler, and as is shown in figure 1.8, a geometric

configuration can be of three types:

• Under-constrained: number of unknowns is greater than the number

of equations. This case happens quite often since designers often insert

extra DOFs to satisfy requirements.

• Well-constrained: number of unknowns is equal to the number of equa-

tions.
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• Over-constrained: number of unknowns is less than the number of

equations. And the type of extra equations have two possibilities:

– redundant: these equations are consistent with the other ones. That

is, they do not affect the solution of original system.

– conflicting: fully inconsistent with the others when constraints

express contradictory requirements and lead to no satisfactory

solution.

a)

b)

c)

Figure 1.9: A 2D curve sketch a) configuration with curve geometry b)

locally over-constrained (according to the local support property) c) globally

over-constrained (according to the sketcher)

More specifically, in terms of free-form geometry, the equations do not

involve all the variables due to its local support property. Designers may

express involuntarily several times the same requirements using different

constraints thus leading to redundant equations. But the designers may also

involuntarily generates conflicting equations and may have to face over-

constrained and unsatisfiable configurations. The configuration of a set of



constraints can however be even more complex: a problem can be glob-

ally under-constrained and locally over-constrained (figure 1.9). Tools to

detect globally over-constrained configurations exist but are limited to a

set of geometric constraints applied on Euler geometries like points, lines,

planes, etc (Guillet, 1999). As it is shown in figure 1.8, advanced 2D sketch-

ers available in most commercial CAD software can interactively identify

the over-constraints during the sketching process. However, they do not al-

low for the detection of redundant and/or conflicting constraints. Moreover,

the detection of locally over-constrained configurations is much difficult to

handle, especially in the case of hybrid geometries composed of polylines,

curves, meshes and surfaces. It is not yet possible to analyze the status of

3D NURBS-based equation systems before submitting them to a solver. For

example, Spline3 in figure 1.9 is locally over-constrained but globally under-

constrained. Constraint analysis of the 2D sketcher shows the whole geom-

etry is globally over-constrained, which is not correct.

Sometimes, over-constrained configurations can be solved by inserting

extra degrees of freedom (DoFs) with the Boehm”s knot insertion algo-

rithm. As a consequence, many control points are added in areas where not

so many DoFs are necessary (Pernot et al., 2005). This uncontrolled increase

of the DoFs impacts the overall quality of the final surfaces which become

more difficult to manipulate than the initial ones. Furthermore, some struc-

tural over-constraints cannot disappear following this strategy and dedicated

decision-support approaches have to be developed to identify and fully man-

age over-constrained configurations.

As a consequence, this PhD thesis has tried to overcome those limitations

while enabling for a proper identification of locally redundant or conflicting

configurations.

1.7 Conclusion

In this chapter, we first introduced the structure of PDP and its relation-

ship with the modeling of free-form shapes. Then, we explained modeling

multiple requirements in terms of controlling free-form shapes by transform-

ing requirements into constraints and transforming constraints into equa-

tions. Since user specified requirements sometimes can be redundant and

conflicting, we showed what current modelers can/cannot do with respect

to system of constraints and discussed the necessity of debugging the con-

straints system of free-form configurations. In next chapter, concepts of geo-

metric over-constraints, methods of debugging constraints systems, and the

selection of methods for free-form configurations will be discussed.
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Chapter 2

Geometric over-constraints

detection

In this chapter, background with respect to the modeling of geometric con-

straints systems are first introduced (section 2.1). Then definitions of geo-

metric over-constraints are summarized and compared in section 2.2. Then,

detection methods are introduced and compared in section 2.4, where the

evaluation criteria are defined and extracted from geometric constraints

solving domain (section 2.3). Some of the methods are tested on differ-

ent use cases in order to find ones that might be interesting for detecting

over-constraints of free form configurations (section 2.5).

.

2.1 Representation of geometric constraints sys-

tems

A geometric model can be manipulated either through variables or with

geometric entities. This requires a geometric model to be represented either

in the equation or geometry levels. In this section, we will show how the

models are presented in terms of the two levels.

2.1.1 Graph fundamentals

Graphs are mathematical concepts that have found many uses in com-

puter science. A graph is used to describe a structure where some pairs

of objects are involved with some kind of relationships. In constraint sys-

tems, objects are geometric entities and relationships are geometric con-

straints. Therefore, they are commonly used in geometric constraints solving
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domain. For example, bipartite graph is used in the work of (Ait-Aoudia,

Jegou, and Michelucci, 2014) whereas (Fudos and Hoffmann, 1997) use di-

rected graph. These two types of graphs are mostly used in literature. How-

ever, we also include directed graph in this section because it is often used

in constraint solving process and will be used in the later chapters of this

manuscript as well.

Bipartite graph

Definition In graph theory, a bipartite graph (G = (U ∪V,E)) is a graph

whose vertices can be divided into two disjoint sets U and V (that is, U and

V are independent sets) such that every edge e (e ∈ E) connects u (u ∈ U)

to v (v ∈ V ). Vertex sets U and V are usually called the parts of the

graph. Equivalently, a bipartite graph is a graph that does not contain any

odd-length cycles (Diestel, 2006). For example, figure 2.1-a is a bipartite

graph, where U is a set of applicants and V is a set of jobs. In terms of

geometric constraints system, U and V can either be equations and variables,

or constraints and entities depending on the level of modeling.

Matching problems are often concerned with bipartite graphs. A match-

ing in a bipartite graph is a set of the edges chosen in such a way that no

two edges share an endpoint. For a geometric constraints system, a matching

happens between one variable and one equation or between one constraint

and one entity. The unmatched ones within such bipartite graph enables

to know if there are constraints/equations or entities/variables left, which

indicates the constrained status of a system. To find them, we need to take

advantage of Maximum bipartite matching at the level of equations or Max-

imum weighted bipartite matching at the level of geometries.

Maximum bipartite matching A maximum matching is a matching of

maximum size (maximum number of edges). In a maximum matching, if any

edge is added to it, it is no longer a matching. There can be more than one

maximum matching for a given bipartite graph. For example, figure 2.1-b

shows a maximum matching found for the bipartite graph in figure 2.1-

a, meaning that there are maximum five people who can get jobs. In this

example, an applicant can get one job, and reversely a job can only be

assigned to one person. The maximum matching can be solved by converting

a bipartite graph into a flow network (figure 2.2-a) and then using Ford-

Fulkerson algorithm (Ford Jr and Fulkerson, 2009) to find the maximum

flow in the flow network.

The method is used to analyze the structure of equation systems. The
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applicants
U

jobs
V

maximum five people can get jobs

a) b)

Figure 2.1: a) bipartite graph b) bipartite graph with maximum match-

ing(red lines)

maximum matching approach was first used by Serrano (Serrano, 1991)

for systems of non-linear equations appearing in conceptual design prob-

lems. Also, it has been adopted by Dulmage-Mendelsohn decomposition al-

gorithm to debug a geometric constraints system (Dulmage and Mendelsohn,

1958). However, if a system is represented not at the level of equations but

at the level of geometries, then the method is not applicable. In this case,

Maximum weighted bipartite matching is used, which will be discussed in

next paragraph.

Maximum weighted bipartite matching Maximum weighted bipar-

tite matching is a generalization of maximum bipartite matching. For a

bipartite graph G = (U ∪ V,E), and edge weights wi,j , find a matching

of maximum total weight. These weights are used as variables during the

process of maximizing the total weight. The optimization process can be

solved by algorithms like Negative cycles, hungarian method, and Prime dual

method (Bang-Jensen and Gutin, 2008). Finding the maximum weighted bi-

partite matching has been used by Latham et al. to analyze the connectivity

of a constraints system (Latham and Middleditch, 1996), which is modeled

directly at the level of geometries.

Directed graph

A graph can be directed. For example, if the vertices represent people at a

party, and there is a directed edge from a person A to a person B corresponds
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applicants
U

jobs
Va)

s t

applicants
U

jobs
Vb)

s t

Figure 2.2: a) building a flow network b) finding a maximum matching by

computing the maximum flow from source to sink

to A’s admiring B, because admiration is not necessarily reciprocated. In

graph theory, a directed graph G = (V,E) is a graph that is a set of vertices

V connected by edges E, where the edges have a direction associated with

them. More specifically, a finite directed graph with loops is addressed as

a loop-digraph, while one without loops is addressed as a directed acyclic

graph (DAG). A DAG is a directed graph that starting at any vertex v

and following a consistently-directed sequence of edges cannot loop back

to v again (Thulasiraman and Swamy, 2011). Graphs of figure 2.3 are all

directed graphs. More precisely, figure 2.3-a is a DAG but figure 2.3-b is

not, since the latter has a loop inside the structure. Directed graphs are

often used as a flow network for computing the maximum flow or locating

subgraphs satisfying certain conditions (figure 2.2).

a b

cd

1

2
34

a)

a b

cd

1

2
34

b)

Figure 2.3: a) A DAG b) A loop-digraph
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Strongly connected component A strongly connected component is a

maximal subgraph of a directed graph G such that for every pair of vertices

(u, v) in the subgraph, there is a directed path from u to v and a directed

path from v to u. A strongly connected component of G is an induced sub-

graph which is strongly connected and no additional edges or vertices from

G can be included in the subgraph without breaking its property of being

strongly connected (figure 2.4-b). Strongly connected components are also

used to compute the Dulmage–Mendelsohn decomposition, a classification

of the edges of a bipartite graph, according to whether or not they can be

part of a perfect matching in the graph (Dulmage and Mendelsohn, 1958). A

perfect matching of a graph is a matching (i.e., an independent edge set) in

which every vertex of the graph is incident to exactly one edge of the match-

ing. Therefore, it is a matching containing n/2 edges (the largest possible),

meaning perfect matchings are only possible on graphs with an even number

of vertices. Strongly connected components can be found by Breadth First

Search (BFS) or Depth First Search (DFS) in linear time (Tarjan, 1972).

a b

cd

1

2
34

a)

a b

cd

1

2
34

b)

Figure 2.4: a) Weakly connected component marked blue b) Strongly con-

nected components marked purple

Weakly connected component A weakly connected component is a

maximal subgraph of a directed graph G such that for every pair of vertices

(u, v) in the subgraph, there is an undirected path from u to v and a directed

path from v to u. A weakly connected component of G is an induced sub-

graph which is weakly connected and no additional edges or vertices from

G can be included in the subgraph without breaking its property of being

weakly connected. The subgraph marked blue of figure 2.4-a is a weakly

connected component. As far as we know, weakly connected components

are not used by any method of geometric constraint solving. But in this

manuscript, we propose an algorithm to find a set of constraints to which
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an over-constraint is redundant or conflicting (section 3.4).

Undirected graph

A graph can also be undirected. For example, if the vertices represent

people at a party, and there is an edge between two people if they shake

hands, then this graph is undirected because any person A can shake hands

with a person B only if B also shakes hands with A. An undirected graph is a

graph in which edges have no orientation. The edge from v to u is identical

to the edge from u to v, i.e., they are not ordered pairs (figure 2.5). In

geometric constraints solving, it is often used as constraint graph to initially

represent a constraints system (section 2.1.3).

a b

cd

1

2
34

a)

a b

cd

1
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34

b)

Figure 2.5: a) Undirected graph of figure 2.4-a b) Undirected graph of fig-

ure 2.4-b

Matrix

Apart from graph representation, matrix is another format for showing

the relationships between related objects in graph theory. Depending on the

type of objects, matrix can either be incidence matrix or adjacency matrix.

Incidence matrix Incidence matrix shows the relationship between edges

and vertices of a graph. For a directed graphG = (V,E) with V = {v1, · · · , vn}
and E = {e1, · · · , em}, the incidence matrix is a n×m matrix B, such that

Bi,j = 1 if the edge ej leaves vertex vi, -1 if it enters vertex vi, and 0 other-

wise (figure 2.6). For an undirected graph G = (V,E) with V = {v1, · · · , vn}
and E = {e1, · · · , em}, the incidence matrix is a n×m matrix B, such that

Bi,j = 1 if the edge ej connects vertex vi and 0 otherwise (figure 2.7).
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Incidence matrix is mainly used for practical computation of an algo-

rithm since it stores information between vertices and edges of a struc-

ture. Sometimes, it is also interesting to know the relationship between ver-

tices of a structure before design a sophisticated algorithm. For example, if

most of the vertices of a structure are unconnected, then the structure can

be decomposed into small parts, and each part can be further analyzed. In

such case, adjacent matrix for representing a system is applied.

a b c d

1 1 -1 0 0

2 0 1 -1 0

3 0 1 0 -1

4 1 0 0 -1

b)

a b c d

1 1 -1 0 0

2 0 1 -1 0

3 0 1 0 -1

4 -1 0 0 1

a)

Figure 2.6: a) Incidence matrix of figure 2.4-a b) Incidence matrix of fig-

ure 2.4-b

a b c d

1 1 1 0 0

2 0 1 1 0

3 0 1 0 1

4 1 0 0 1

b)

a b c d

1 1 1 0 0

2 0 1 1 0

3 0 1 0 1

4 1 0 0 1

a)

Figure 2.7: a) Incidence matrix of figure 2.5-a b) Incidence matrix of fig-

ure 2.5-b

Adjacency matrix Adjacency matrix represents relationship between pair

of vertices of a graph. As a result, it is a square matrix. For an undirected

graph without self-loops, the adjacency matrix is a square |V | × |V | matrix

A such that its element Aij is 1 when there is an edge between vertex Vi
and vertex Vj , and 0 when there is no edge. For a directed graph without
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self-loops, the adjacency matrix is a square |V | × |V | matrix A such that

its element Aij is 1 when there is an edge from vertex Vi to vertex Vj , -1

when the edge is directed from vertex Vj to vertex Vi, and 0 when there is

no edge (figure 2.8). Here, |V | represents the number of elements in V . For

an undirected graph, the adjacency matrix is a square |V | × |V | matrix A

such that its element Aij is 1 when there is an edge between vertex Vi and

vertex Vj , and 0 when there is no edge (figure 2.9).

a b c d

a 0 1 0 -1

b -1 0 1 1

c 0 -1 0 0

d 1 -1 0 0

b)

a b c d

a 0 1 0 1

b -1 0 1 1

c 0 -1 0 0

d -1 -1 0 0

a)

Figure 2.8: a) Adjacency matrix of figure 2.4-a b) Adjacency matrix of

figure 2.4-b

a b c d

a 0 1 0 1

b 1 0 1 1

c 0 1 0 0

d 1 1 0 0

b)

a b c d

a 0 1 0 1

b 1 0 1 1

c 0 1 0 0

d 1 1 0 0

a)

Figure 2.9: a) Adjacency matrix of figure 2.5-a b) Adjacency matrix of

figure 2.5-b

All adjacency and incidence matrices are totally unimodular. It permits

Linear Programming for computing flows or maximum matching to work.



33 Representation of geometric constraints systems

2.1.2 Graphs at the level of equations

In this section, we give an example of a geometric constraints system

by modeling it at the level of equations. As discussed in section 1.5.1, the

method use variables to describe shape, position etc. of geometries as well as

algebraic equations to show their relationships. Consequently, a constraint

system is represented by a group of algebraic equations.

1p 2p

3p
4p

3d

4d

1

3
4

1l

2l

3l

4l
 1 1 1: ,c PtonLine p l  2 2 2: ,c PtonLine p l

 3 3 3: ,c PtonLine p l  4 4 4: ,c PtonLine p l

 5 2 3 3: , ,c DistPP p p d  6 3 4 4: , ,c DistPP p p d

 7 1 2 1: , ,c AngLL l l 

 9 3 4 3: , ,c AngLL l l   10 4 1 4: , ,c AngLL l l 2

 8 2 3 2: , ,c AngLL l l 

 11 4 1: ,c PtonLine p l

 12 1 2: ,c PtonLine p l

 13 2 3: ,c PtonLine p l

 14 3 4: ,c PtonLine p l

Figure 2.10: A simple 2D sketch

For example, figure 2.10 is a 2D sketch with 14 constraints. If geometries

are represented with variables: pi, (xi, yi)i=1···4; li, (y = ai × x + bi)i=1···4,

then algebraic equations are:

e1 : a1 · x1 + b1 = y1; e2 : a2 · x2 + b2 = y2

e3 : a3 · x3 + b3 = y3; e4 : a4 · x4 + b4 = y4

e5 : (x3 − x2)2 + (y3 − y2)2 = d2
3

e6 : (x4 − x3)2 + (y4 − y3)2 = d2
4

e7 : cos(θ1)· ‖ −−−−→p2 − p1 ‖ · ‖
−−−−→
p4 − p1 ‖=

−−−−→
p2 − p1 ·

−−−−→
p4 − p1

e8 : cos(θ2)· ‖ −−−−→p1 − p2 ‖ · ‖
−−−−→
p3 − p2 ‖=

−−−−→
p1 − p2 ·

−−−−→
p3 − p2

e9 : cos(θ3)· ‖ −−−−→p2 − p3 ‖ · ‖
−−−−→
p4 − p3 ‖=

−−−−→
p2 − p3 ·

−−−−→
p4 − p3

e10 : cos(θ4)· ‖ −−−−→p1 − p4 ‖ · ‖
−−−−→
p3 − p4 ‖=

−−−−→
p1 − p4 ·

−−−−→
p3 − p4

e11 : a1 · x4 + b1 = y4; e12 : a2 · x1 + b2 = y1

e13 : a3 · x2 + b3 = y2; e14 : a4 · x3 + b4 = y3

(2.1)

The equations can then be analyzed by using numerical methods. However,

they can further be transformed into an equation graph, if structural analysis

methods are to be used.

An equation graph is a bipartite graph where two classes of nodes rep-

resent equations and variables respectively. In this case, the equation graph

of equations 2.1 is shown in figure 2.11.
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1e 2e 3e 4e 5e
6e 7e 8e

9e 10e 11e 12e
13e 14e

1x 1y
2x 2y

3x 3y
4x 4y 1a

1b 2a
2b 3a

3b 4a
4b

Figure 2.11: Bipartite graph of equations 2.1

2.1.3 Graphs at the level of geometries

The above system can also be represented at the level of geometries. Ex-

tract geometric entities and constraints into vertices of a graph provides

another way of system modeling.

Bipartite graph Similar to figure 2.11, bipartite graph can model a con-

straint system by using two classes of vertices to represent geometric entities

and constraints respectively as well as edges to show their relationships (fig-

ure 2.12).

1p 2p
3p 4p

1l 2l 3l 4l

1c 2c 3c
4c 5c 6c 7c 8c 9c 10c 11c 12c

13c 14c

Figure 2.12: Bipartite graph of configuration in figure 2.10

Constraint graph Bipartite graph is visually cumbersome and not intu-

itive. Some people prefer the constraint graph with vertices representing geo-

metric entity and edges representing constraints that visually more ’natural’

in the level of geometry. Constraint graph use vertices to represent geomet-

ric entities only and edges to represent constraints between. The constraint

graph of figure 2.10 is shown in figure 2.13.
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1p 2p

3p4p

1l 2l

3l4l

Figure 2.13: Constraint graph of configuration in figure 2.10

From above examples, we can see that modeling geometric systems at

the level of geometries is more intuitive than at the level of equations. But it

ignores numerical information of a system, since the latter generates concrete

equations. The selection of the two ways depends on users’ practical needs.

2.2 Basic definitions

This section introduces several key concepts in the manuscript. The first

one is geometric over-constraints which are defined both at the level of ge-

ometries and equations. Also, it is necessary to introduce singular configu-

rations since they often confuse the judgment of geometric over-constrained

configurations. After that, definition of over-constraints in terms of free form

geometry are formalized.

2.2.1 Geometric over-constraints at the level of geometries

At this level, definitions are classified into two groups: constraint graph

group and bipartite graph group. For the former, the constraint graph is

transformed into a weighted constraint graph, where the weight of a vertex

represents DoFs of an entity and the weight of an edge represents DoFs

removed by a constraint. For the bipartite graph group, only the weight of

vertices are added: the weight of an entity equals to its DoFs and the weight

of a constraint equals to the DoFs it can remove.



Geometric over-constraints detection 36

Definitions with respect to constraint graph

Here, we use G = (V,E) to represent a constraint system with | V |
number of entities and | E | number of constraints.

In Rigidity Theory (Combinatorial Rigidity), Laman’s theorem (Laman,

1970) characterizes the rigidity of bar frameworks, where a geometric system

is composed of points constrained by distances.

Theorem 1 A constraint system in the 2D plane composed of N points

linked by M distances is rigid iff 2 · N − M = 3 and for any subsystem

composed of n points and m distances, 2 · n−m ≥ 3.

The constraints and entities are limited to distances and points respec-

tively. Podgorelec (Podgorelec, Žalik, and Domiter, 2008) extended the the-

orem by assuming that each geometric element has 2 DoFs and each con-

straint eliminates 1 DoF. Therefore, the weight of vertices and edges are of

the constraint graph is 2 and 1 respectively.

Definition 1 For constraint graph G = (V,E), a geometric constraint

system is:

• Structurally over-constrained if there is a subgraph G′ = (V ′, E′) with

1 · |E′| > 2 · |V ′| − 3,

• Structurally under-constrained if G is not structurally over-constrained

and 1 · |E| < 2 · |V | − 3, or

• Structurally well-constrained if G is not structurally over-constrained

and 1 · |E| = 2 · |V | − 3.

Definition 2 A constraint e is a structural over-constraint if a structurally

over-constrained subsystem G′ = (V ′, E′) of G with e ∈ E′, can be derived

such that G′′ = (V ′, E′ − e) is structurally well-constrained.

An example is given to illustrate Definition 1. The system is composed

of 3 points (each has 2 dofs) with different constraints in 2D space. For

figure 2.14-a, it is over-constrained because it contains 3 distance constraints

and 3 vertical position constrains. Since each consumes 1 dof , the total

system consumes 6 dofs, satisfying 6 > 2×3−3. Figure 2.14-b is structurally

well-constrained since the constraints are reduced into 3 distance constraints,

which satisfying 3 = 2×3−3. Figure 2.14-c is structurally under-constrained

since only 2 distance constraints are left, satisfying 3 < 2× 3− 2.
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Definition 1 is correct if only all geometric entities are points and all

constraints are distances in 2D. It cannot be used to characterize geometric

constraint systems where constraints other than distance constraints are

involved. For example, in the case of angle constraints in 2D: 3 line segments

with 3 incidence constraints form a triangle with 3 · 4 − 3 · 2 = 6 DoFs. If

added 3 angle constraints(each remove 1 dof), the system will be Structurally

well-constrained according to Definition 1. But in fact, 2 angle constraints

is enough since the third one is linear combination of the other two. Another

counter example is the double banana geometry, where segments represent

point-point distances in 3D, which will be discussed in section 2.5.2.

d1 d2

d3

d1 d2

d3

d1 d2 Points

Vertical position constraint

Distance constraint

c)

a) b)

Figure 2.14: a) Structurally over-constrained b) Structurally well-

constrained c) Structurally under-constrained

To extend the definition to 3 dimensions and deal with double banana ge-

ometry properly, Sitharam and Zhou (Sitharam and Zhou, 2004) introduced

a set of new definitions. First, they replaced value 3 in the Definition 1

with D, which is a function of dimension d: D = (d+ 1) ∗ d/2.

Definition 3 Degree of freedom (DoF) of a geometry entity (DoF (v), v

is the geometry) is the number of independent parameters that must be set

to determine its position and orientation. For a system G = (V,E), its DoFs

is defined as DoF (G) =
∑

v∈V DoF (v).
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Definition 4 Degree of freedom of a geometric constraint (DoC(e), e is

the constraint) is the number of independent equations needed to repre-

sent it. For a system G = (V,E), the DoFs all constraints can remove is

DoC(E) =
∑

e∈E DoC(e).

Definition 5 For constraint graph G = (V,E), a geometric constraint

system is:

• Structurally over-constrained if there is a subgraph G′ = (V ′, E′) sat-

isfying DoC(E′) > DoF (V ′)−D,

• Structurally well-constrained if DoC(E) = DoF (V ) −D and all sub-

graphs G′ = (V ′, E′) satisfying DoC(E′) ≤ DoF (V ′)−D, or

• Structurally under-constrained if DoC(E) < DoF (V )−D and contains

no structurally over-constrained subgraphs.

A typical example that Definition 5 cannot treat properly is 2 points bind-

ing with distance constraint in 3D. It allows only 5 of 6 possible indepen-

dent displacements since the system cannot rotate around axis crossing the

2 points. More counter examples in (Jermann, Neveu, and Trombettoni,

2003) suggest that the value of D depends on the system itself rather than

dimension. Therefore, Jerman et al introduced Degree of Rigidity (DoR) to

replace the DoFs a system is expected to have if it is rigid. Their definitions

are as follows.

Definition 6 For constraint graph G = (V,E), a geometric constraint

system is:

• Structurally over-constrained if there is a subgraph G′ = (V ′, E′) sat-

isfying DoC(E′) > DoF (V ′)−DoR(V ′),

• Structurally well-constrained if DoC(E) = DoF (V )−DoR(V ) and all

subgraphs G′ = (V ′, E′) satisfying DoC(E′) ≤ DoF (V ′) − DoR(V ′),

or

• Structurally under-constrained if DoC(E) < DoF (V ) −DoR(V ) and

contains no structurally over-constrained subgraphs.

The rule of computing DoR is described in (Jermann, Neveu, and Trom-

bettoni, 2003). Within the rule, for two secant planes in 3D, the DoR is 5

while for two parallel planes is 4. Similarly, the DoR of 3 collinear points is

2, while the DoR of 3 non collinear points is 3.
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A pure graphbased method has no mean to know if 3 points are collinear

or not, or if two planes are parallel or not. It either assumes the configuration

is generic or it can try to look if the parallelism/collinearity is an explicit

constraint of the system; but it may happen that the parallelism/collinearity

is a remote consequence of a set of constraints, thanks to Desargues, or

Pappus, or Pascal, or Miquel theorems: the incidence in the conclusion is a

non trivial consequence of the hypothesis. This will be further discussed in

section 2.2.1.

Definitions with respect to bipartite graph

Latham et al (Latham and Middleditch, 1996) introduced similar defi-

nitions based on a connectivity graph. It is a graph where vertices repre-

sent geometric entities and constraints, which can be treated as a bipartite

graph. Note that, we use G = (U, V,E) to denote a bipartite graph whose

partition has the vertices U(entities) and V (constraints), with E denoting

the edges of the graph.

Definition 7 For bipartite graph G = (U, V,E), a geometric constraint

system is:

• Structurally over-constrained if it contains an unsaturated constraint,

• Structurally under-constrained if it contains an unsaturated entity.

A vertex u or v is said to be unsaturated if DoF (u) or DoC(v) is not equal

to the number of weights of incident edges in a maximal weighting. And

an unsaturated constraint is treated as a structural over-constraint. The

weights of edges are computed by maximal weighted matching of a bipartite

graph. In section 2.4.1, an example will be given to illustrate the definition.

Geometric redundancy

Geometric redundancy refers to those additional constraints trying to

constrain internally established relations. The relations are consequences of

domain-dependent mathematical theorems hidden in a geometric configu-

ration. Users are typically not aware of these implicit constraints and will

always try to constrain the internal established relations by additional con-

straints.
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Figure 2.15: Pappus’s hexagon theorem: Points X, Y and Z are collinear

on the Pappus line (dotted line). The hexagon is AFBDCE.

Geometric redundancy does not use parameters. Therefore, this type of

geometric over-constraints cannot be detected by methods based on Dof-

counting. In 2D, a typical example is the 3-angles constraints specified on

a triangle. Obviously, total value of three angles equals to 180◦. It is not

necessary to specify all three angles as constraints because the value of

third one can be easily derived once the values of other two angles are de-

fined. Therefore, specifying the 3-angles constraints will generate a geometric

redundancy that is either redundant or conflicting. In 3D, every incidence

theorem(Desargues, Pappus, Pascal etc) provides implicit dependent con-

straints (Michelucci and Foufou, 2006a). For example, Pappus’s hexagon

theorem (Coxeter and Greitzer, 1967) states that given one set of collinear

points A, B, C, and another set of collinear points D, E, F , then the in-

tersection points X, Y , Z of line pairs AE and DB, AF and DC, BF

and EC are collinear, lying on the Pappus line. In this case, if specifying

line pairs XY and Y Z to be collinear, then this constraint is the geometric

redundancy (figure 2.15).

Geometric over-constraints at the level of equations

In this section, we summarize the definitions used when a qualitative

study of geometric systems is to be performed at the level of equation. Mod-

eling in geometric level is geometric entity oriented, which preserves geomet-

ric information of the system. Modeling at the level of equations, however,

discards geometric properties of a system but enables a fine detection of

geometric over-constraints.
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Structural definition System of equations are transformed into bipartite

graph, where vertices represent equations and variables respectively (fig-

ure 2.11). The characterization is based on the results of maximum match-

ing (Ait-Aoudia, Jegou, and Michelucci, 2014). Here, we assume that G =

(U, V,E) is a bipartite graph with U and V (U ∩ V = ∅) representing

variables and equations respectively, and E representing edges.

Definition 8 For bipartite graph G = (U, V,E) and its subgraph G′ =

(U ′, V ′, E′). G′ is:

• Structurally over-constrained if the number of elements in U ′ is smaller

(in cardinality) than the number of V ′. i.e. | U ′ |<| V ′ |

• Structurally well-constrained iff G′ has perfect matching.

• Structurally under-constrained if the number of elements in U ′ is larger

(in cardinality) than the number of elements in V ′. i.e. | U ′ |>| V ′ |

Definition 9 Let M be a maximum matching of G = (U, V,E). If M is

not perfect matching and V ′ is the subset of V which is not saturated by

M , then equations of V ′ are the Structural over-constraints.

Numerical definition

Informally, an over-constrained problem has no solutions, a well-constrain

ed problem has a finite number of solutions, but an under-constrained prob-

lem has infinitively many solutions. Based on the Matroid theory (Oxley,

2006), we give definitions of basis equations, redundant and conflicting equa-

tion as follows.

Definition 10 Let G = (E, V, P ) be a geometric constraints system,

where E is a set of equations, V is a set of variables and P is a set of

parameters. Let Er be a non-empty collection of subsets of E, called basis

equations (we call it basis in short), satisfying:

• no basis properly contains another basis;

• if Er1 and Er2 are basis respectively and if e is any equation of Er1,

then there is an equation f of Er2 such that {(Er1 − e) ∪ f} is also a

basis.
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Definition 11 Let G = (E, V, P ) be a geometric constraints system. Let

Er be a basis. For an equation e, adding it to Er forming a new group:

{Er ∪ e}. If {Er ∪ e} is solvable, then e is a redundant equation.

Definition 12 Let G = (E, V, P ) be a geometric constraints system. Let

Er be a basis. For an equation e, adding it to Er forming a new group:

{Er ∪ e}. If {Er ∪ e} is non-solvable, then e is a conflicting equation.

Definition 13 Let G = (E, V, P ) be a geometric constraints system which

is composed of two subsystems: Gb = (Eb, V, P ) and Go = (Eo, V, P ) with

{E = Eb∪Eo, Eb∩Eo = ∅}. If Eb is a basis, then Eo is a set of numerical

over-constraints.

Property For an over-constraint Eoi ∈ Eo, the Spanning Group Esg of Eoi

is a group of independent constraints, with which Eoi is redundant or con-

flicting. For linear systems, the spanning group Esg = {esg1, esg2, · · · , esgn} ⊂
Eb of Eoi satisfies:

Eoi =
n∑

j=1

cjesgj + b (2.2)

where cj 6= 0 and is the corresponding scalar coefficient, {esg1, esg2, · · · , esgn}
are linear independent and b is the bias. Thus, Eoi is a linear combination

of {esg1, esg2, · · · , esgn, b}. Moreover, Eoi is redundant if b = 0 otherwise it

is conflicting.

However, Esg is not unique for a given Eoi. For example, assuming a

linear system of constraints represented at the level of equations:

e1 : x1 + x2 + x3 + x4 = 1

e2 : x1 + 2x2 + 3x3 + x4 = 4

e3 : x1 − 2x2 + x3 + x4 = 5

e4 : 6x1 + x3 + 2x4 = 7

e5 : 8x1 + 5x3 + 4x4 = 17

e6 : 11x1 + x2 + 10x3 + 7x4 = 27

(2.3)

Clearly, the system is over-constrained since there are more equations than

variables. Through linear analysis of the system, we find that e5 is a linear

combination of {e2, e3, e4, 1} and is spanned by {e2, e3, e4}; e6 is a lin-

ear combination of {e1, e2, e3, e4, 1} and is spanned by {e1, e2, e3, e4} (fig-

ure 2.16). Since the bias of the two groups is 1, both e5 and e6 are conflict-

ing. In this case, {e1, e2, e3, e4} can be treated as a set of basis constraints
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since all the equations are independent and the number of them equals to

the number of variables.

e1 : x1 + x2 + x3 + x4 = 1

e2 : x1 + 2x2 + 3x3 + x4 = 4

e3 : x1 − 2x2 + x3 + x4 = 5

e4 : 6x1 + x3 + 2x4 = 7

(2.4)

e5 e6

e2 e3 e4 e1 e2 e3 e4

= 1e2+1e3+1e4+1 = 1e1+2e2+2e3+1e4+1

Figure 2.16: Spanning group of e5 and e6: numbers marked green are coef-

ficients while the ones marked red are the biases

However, if we replace e4 with e5, the new set {e1, e2, e3, e5} is also

the basis constraints set satisfying Definition 13. Linear analysis result

shows that e4 is a linear combination of {e2, e3, e5,−1} and is spanned

by {e2, e3, e5}; e6 is a linear combination of {e1, e2, e3, e5} and is spanned

by {e1, e2, e3, e5} (figure 2.17). Also, e4 is conflicting and e5 is redundant

according to the corresponding bias values.

e1 : x1 + x2 + x3 + x4 = 1

e2 : x1 + 2x2 + 3x3 + x4 = 4

e3 : x1 − 2x2 + x3 + x4 = 5

e5 : 8x1 + 5x3 + 4x4 = 17

(2.5)

e4 e6

e2 e3 e5 e1 e2 e3 e5

= -1e2-1e3+1e5-1 = 1e1+1e2+1e3+1e5

Figure 2.17: Spanning group of e4 and e6: numbers marked green are coef-

ficients while the one marked red is the bias
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From the figure 2.16 and figure 2.17, we can see that the spanning group

of e6 is not unique, which depends on the set of basis constraints. Also, the

type of over-constraint can change: e6 is conflicting for basis constraints

set 2.4 while redundant for basis constraints set 2.5.

2.2.2 Evaluation of the definitions

A set of criteria are defined to evaluate these definitions (table 2.1). These

criteria corresponds to the columns of the table, which are: D is a dimen-

sion (system)-dependent constant discussed in section 2.2.1; geometries refer

to the geometric type a definition used to specify; counter example lists of

geometries that a definition cannot deal with; fixation is used to highlight

definitions that includes determining the location and orientation of a geo-

metric configuration; geometric redundancy is to distinguish definitions that

cannot be mislead by geometric redundancy.

D geometries constraints
counter
example

fixation
geometric

redundancy

Def 1 3 points distances
double
banana

no no

Def 5 0,3,6 points distances ex1 no no

Def 6 DoR points,lines,planes distances, incidencies ex2 no no

Def 7 0 any any ? yes no

Def 8 0 any any
black box

constraints
yes no

Def 10 0 any any
black box

constraints
yes no

ex1: 2 points binding with distance constraint in 3D
ex2: configurations with geometric redundancy

Table 2.1: Evaluations of definitions

From the table, we can see that definitions can de divided into two

groups: Def 1,5,6 and Def 7,8,10, either based on criteria D or on fixa-

tion. Because the former group manipulate geometric elements directly at

the level of geometries and geometric constraints are usually supposed to be

independent of all coordinates system, they can not be used to determine

the location and orientation of a geometric configuration (no fixation) as

well as carefully defined the value of D. Also, the defined type of geometries

and constraints are limited. For example, Def 1 and Def 5 are defined for

points geometries and distances constraints only. But collinear (and cocyclic,

coconic, cocubic, etc.) points are forbidden. Def 6 extends the type of geome-

tries to points, lines and planes as well as it allows for incidence constraints

to be defined. Def 7 extracts geometric entities and constraints to DoF s

and DoCs, and define over-constraints by simply comparing the number of
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DoF s of geometric entities and DoCs of geometric constraints. In this way,

the definition is not limited to any specific class of geometric entities and

constraints. Def 8,10, however, are numerical definitions manipulating ge-

ometries and constraints at the level of equations. These definitions can cover

any geometric entities and constraints once they can be transformed into

equations. The counter examples are black box constraints (section 1.5.2)

which cannot be represented with equations. Moreover, these definitions ex-

pect systems to be fixed with respect to a global coordinate system and thus

D = 0. Finally, since geometric redundancy does not use parameters of any

geometries of a constraints system, it cannot be covered by any of these

definitions.

2.3 Criteria for evaluating the approaches

To carry out appropriate analyses and comparisons between the over-

constraints detection approaches, various evaluation criteria and a ranking

system are here proposed. They depend on the application domain needs and

characteristics. Considering the detection process as well as users’ needs for

debugging, these approaches have been classified into five main categories:

criteria related to the process of detecting over-constraints; criteria related

to the system decomposition; criteria related to the system modeling; crite-

ria related to the way of generating results and criteria in terms of evaluating

results. Such ranking system permits a qualitative classification of the var-

ious approaches according to the specified criteria. Here, a boolean scale

is sufficient to characterize the capabilities of the approaches. Firstly, the

symbol 	/⊕ is used to tag the methods not adapted/well adapted, incom-

plete/complete with respect to the considered criterion (table 2.2). They

state a negative/incomplete (	) or positive/complete (⊕) tendency of the

approaches with respect to the given criteria. They are defined in such a

way that the optimal method would never be assigned the symbol(	). Sec-

ondly, in case the information contained in the articles do not enable the

assessment of a criterion, symbol (?) is used. Finally, the symbol (�) means

criteria that have no meaning for the method and are simply not applicable.

Symbols Criteria

	 Not adapted/Incomplete
⊕ Well adapted/Complete
? Not appreciable
� No meaning/Not applicable

Table 2.2: Symbols used to characterize the approaches.
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For example, distinguishing redundant and conflicting constraints is a

criteria for evaluating numerical detection methods. However, there is no

meaning applying it to evaluate structural detection methods since the latter

only generate structural over-constraints. Of course, synthesis results are

from our understanding of the publications.

2.3.1 Criteria attached to the level of detecting over-constraints

The first criterion is relative to the type of geometric over-constraints (Fig-

ure 2.18,a), which are either numerical (a⊕) or structural (a	). Second cri-

terion concentrates on distinguishing redundant and conflicting constraints

detected by numerical methods (Figure 2.18,b). Finally, in engineering de-

sign, designers could better debug and modify a geometric over-constraint

if its spanning group is informed (Figure 2.18,c). This criterion evaluates

numerical methods only.

Detection level Gradation of criteria

Level Criteria ⊕ 	
a type numerical structural
b redundant/conflicting yes no
c spanning group yes no

Table 2.3: Criteria attached to the detection level (set 1)

2.3.2 Criteria related to the system decomposition

Decomposition is an important phase in geometric constraints solving

domain. A large system is decomposed into small solvable subsystems which

speed up the solving process. A desirable method should return the de-

composition result to a user for debugging purpose by generating over-

constrained components, which helps him/her locating the geometric over-

constraints (d⊕). Also, the ability to generate rigid subsystems should be

considered. Here, the rigid are of two meanings. Numerical methods detect

the rigid subsystem which is solvable (finite solutions, e⊕) while structural

methods detect the rigid subsystem which is structurally well-constrained

(Definition 5, e	). Usually, the rigid subsystems are arranged with solving

order and over-constraints with each subsystem can be detected by analyzing

the subsystem individually.
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Over-
constraints

Basis-
constraints

Redundant-
constraints

Conflicting-
constraints

Basis-
constraints

Redundant-
Group

Conflicting-
Group

a)

b)c)

o)

Figure 2.18: (o): Level o (a): Level a (b): Level b (c): Level c

.

Decomposition Gradation of criteria

Level Criteria ⊕ 	
d over-constrained components yes no
e rigid subsystems numerical structural
f singular configuration yes no

Table 2.4: Criteria related to system decomposition (set 2)

Decomposition methods should take into account the singularities. In-

deed, many methods work under a genericity hypothesis and decompose sys-

tems into generically solvable components. A generic configuration remains

rigid (non-rigid) before and after an infinitesimal perturbation (Combinato-

rial Rigidity). A singular configuration, however, transforms from rigid (non-

rigid) to non-rigid (rigid) after an infinitesimal perturbation. It happens

when geometric elements are drawn with unspecified properties (collinearity,

coplanarity, etc.). It may be the case that a solution of a decomposed sys-

tem lies into a singular variety, e.g., includes some unspecified collinearity or

coplanarity. In this case, it happens that the generically solvable components

are no more solvable. For instance, the double-banana system (figure 2.36)
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is generically over-constrained but becomes under-constrained if the height

of both bananas is the same since the two ”bananas” can fold continuously

along the line passing through their extremities. Moreover, Jacobian matrix

at singular configuration is rank deficiency, which introduces dependences

between constraints. For example, the Jacobian matrix of the subsystem

{p3, l2, c, c7, c8, c13} of figure 2.19 is of size 7×7. But its rank is 5. The con-

figuration is singular. Obviously, there is no redundant constraints and the

singularity comes from the tangent constraints between c and l1, l2 (Xiaobo

et al., 2002).

Figure 2.19: Singular configuration as described in (Xiaobo et al., 2002)

2.3.3 Criteria related to system modeling

This set of criteria characterize detection approaches with respect to

system modeling: the type of geometries (g) and constraints (h), modeling

at the level of equation or geometry (i), 3D or 2D space (j). The first

criterion characterizes the type of geometries. Currently, geometric entities

are either Euler geometries (g	) such as line segments, cylinders, spheres etc

or NURBS geometries (g⊕). The second criterion deals with linear (h	) and

non-linear (h⊕) constraints. The third criterion describes a system either at

the level of equation (i⊕) or geometry (i	). Finally, a modeling system can

either be in 2D (j	) or 3D (j⊕) space.

System modeling Gradation of criteria

Level Criteria ⊕ 	
g geometries Free-form Euler
h constraints non-Linear linear
i modeling equation geometry
j dimension 3D 2D

Table 2.5: Criteria related to system modeling (set 3)
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2.3.4 Criteria related to the way of generating results

In reality, a designer may require that a modeler outputs geometric over-

constraints iteratively when modeling a geometric system interactively. Iter-

atively means the method enables to generate results through steps/loops (k	)

while single-pass methods generate the results all at once (k⊕). Also, a user-

friendly method should enable the treatment of results for debugging pur-

pose (m⊕). That is, locate the results at the level of geometries so that users

can modify/remove them.

Results generation Gradation of criteria

Level Criteria ⊕ 	
k way of detection single-pass iteratively
l debugging yes no

Table 2.6: Criteria related to the way of generating results (set 4)

2.4 Detection approaches

Now that the criteria used to evaluate the different approaches have

been introduced, this state-of-the-art gathers together existing techniques

that are capable of detecting geometric over-constraints. The techniques are

classified with respect to Definitions in section 2.2.1. The table 2.7 gathers

together the results of this analysis.

2.4.1 Methods working at the level of geometry

This group of methods detect geometric over-constraints based on Dof

analysis. Since these methods operate geometric entities directly, geometric

information of the over-constraints are retained and thus easy to interpret.

Methods corresponding to the Definition 1

Fudos and Hoffman (Fudos and Hoffmann, 1997) introduced a construc-

tive approach to solve a constraint graph, where geometric entities are lines

and points and geometric constraints are distances and angles. In their re-

duction algorithm, triangles are found and merged recursively until the ini-

tial graph is rewritten into a final graph. The structurally over-constrained

system/subsystem are detected in two ways. Firstly, before finding triangles,

the approach checks if the subgraph is structurally over-constrained. Sec-

ondly, if a 4-cycle graph is met during the reduction process, then the system
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is structurally over-constrained. A 4-cycle graph corresponds to two clusters

sharing two geometric elements, which is structurally over-constrained.

Results of evaluating the method are as following:

• Criteria set 1 Although the method allows for checking the con-

strained status of a system, it does not specify how to find the struc-

tural over-constraints as well as finding the spanning groups (a,c?). Since

the method is structural, it is meaningless addressing how to distin-

guish redundant and conflicting constraints (b�).

• Criteria set 2 The method enables to identify a 4-cycle graph which

is structurally over-constrained component (d⊕). Also, the triangles

found during the recursive process are the rigid subsystems (e	). Re-

garding to dealing with singular configurations, it is not mention in

the original paper (f?).

• Criteria set 3 Normally, the constraint systems are composed of

Euler geometries (g	) with non-linear constraints (distances, angles

h⊕) and modeled at the geometric level(i	) in 2D space (j	).

• Criteria set 4 Since detecting geometric over-constraints are not ad-

dressed, there is no meaning discussing how the over-constraints are

generated (k�) as well as debugging them(l�).

Methods corresponding to the Definition 5

Hoffman et al adapted their Dense algorithm (Hoffmann, Lomonosov,

and Sitharam, 1998) to locate 1-overconstrained subgraph (satisfyingDOCs >

DOFs−D+1) of 1-overconstrained graph (Hoffmann, Sitharam, and Yuan,

2004). The algorithm is composed of four main steps.

1. overloads the capacity from one arc from the source to a constraint by

D + 2.

2. distributes a maximum flow in the overloaded network.

3. finds subgraph of density ≥ −D + 1, where the density of a subgraph

A : d(A) = DOCs(A)−DOFs(A).

4. locates a minimal 1-overconstrained subgraph by deleting vertices one

by one.

As it is shown in figure 2.20, generally locating a minimal subgraph of

density −D + 1 is done as follows: first, by distributing an flow of weight
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Flow network derived from the bipartite graph, where source S is linked to

each constraint (capacity correspond to Doci of a constraint i) and each

entity is linked to the sink T (capacity correspond to Dof of an entity)

.

Doci +D + 2 from each constraint to its end points(entities) to find a sub-

graph of density −D + 1. Such dense graph is found when there exists an

edge whose edge cannot be distributed even with redistribution (Hoffmann,

Lomonosov, and Sitharam, 1997). The algorithm continues to locate min-

imal 1-overconstrained subgraph but in our opinion, to check if whether a

system is over-constrained or not, it is sufficient that the algorithm termi-

nates at step 3. The authors suggest to further extend the algorithm to

incrementally detect k-Overconstrained graphs. The algorithm allows for

updating constraints efficiently and maintaining dynamically. Once the con-

straints have been identified, they are removed. The algorithm excludes large

geometric structures that have rotational symmetry, however.

Results of evaluating the method are:

• Criteria set 1 The method does not specify neither detecting geomet-

ric over-constraints nor the spanning groups (a,c?). Since the method

is structural, talking about distinguishing redundant and conflicting

constraints is meaningless (b�).

• Criteria set 2 The algorithm locates the 1-overconstrained subgraph

(d⊕) rather than rigid subsystems (e�). Regarding singular analysis

of a system, it is not addressed by the method (f?).
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• Criteria set 3 The evaluation of this set of criteria on the method is

the same with the previous’s one except that the modeling dimension

can be both 2D and 3D (j⊕	).

• Criteria set 4 Since detecting geometric over-constraints are not ad-

dressed, there is no meaning discussing how the over-constraints are

generated (k�) as well as debugging them (l�).

Methods corresponding to the Definition 6

Hoffmann’s algorithm cannot deal with constraints such as alignments,

incidences and parallelisms either generic or non-generic. Based on their

work, Jermann et al (Jermann, Neveu, and Trombettoni, 2003) proposed

the Over-rigid algorithm with the following modifications:

1. The overload is applied on a virtual node R (figure 2.21, figure 2.22)

whereas in the Dense algorithm, it is applied on an constraint node.

2. The overload is Dor + 1 and the computation of Dor depends on the

subsets of constraint entities to which R is attached. For example,

Dor(A,B) ({A,B} is the subset of the configuration in figure 2.21)

is different from Dor(C,D,E) ({C,D,E} is the subset of the config-

uration in figure 2.22). But in the Dense algorithm, the overload is

invariant with different subsystems.

3. The R node is attached to Dor-minimal subsets of objects in order to

find over-rigid subsystems.

The Dor varies with different subsystems. Readers can refer to the orig-

inal paper to know the computation details. The Over-rigid algorithm is

initially designed to check whether a system is structurally well-constrained

or not. However, the authors do not show in specific how to detect struc-

turally over-constrained systems as Hoffmann et al did to the Dense al-

gorithm. Since the algorithm modified the Dense algorithm, the algorithm

can be adapted to detect over-constrained systems if setting the overload to

Dor + 2 and following the step 1-3 of the Dense algorithm (section 2.4.1).

The evaluation of adapted version of Over-rigid algorithm is the same as

the modified version of Dense algorithm.
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Figure 2.22: Overloading to subset {C,D,E}

Methods corresponding to the Definition 7

Latham et al (Latham and Middleditch, 1996) detected over-constrained

subgraphs based on DoFs analysis by finding a maximum weighted match-

ing (MWM) of a bipartite graph. The method decomposes the graph into

minimal connected components which they called balanced sets. If a bal-
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anced set is in a predefined set of patterns, then the subproblem is solved by

a geometric construction, otherwise a numeric solution is attempted. The

method addresses symbolic constraints and enables to identify under- and

over-constrained configurations.

As it is shown in figure 2.23, constraints system is initially represented

with a constraint graph with two classes of nodes representing DoFs of ge-

ometric entities and constraints respectively. Then, it is transformed into

a directed graph by specifying directions from constraints nodes to enti-

ties nodes. After that, maximum matching between constraints and enti-

ties is applied and those unsaturated constraints nodes are geometric over-

constraints. Moreover, they addressed the over-constrained problems by pri-

oritizing the given constraints, where over-constraints can automatically be

corrected using constraint priorities.
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Figure 2.23: Over-constraints detection process of an example taken

from (Latham and Middleditch, 1996). The unsaturated node is the geo-

metric over-constraint.

.

Results of evaluating the method are:
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• Criteria set 1 The unsaturated constraints are geometric over- con-

straints (a	). Since the detected over-constraints are structural, there

is no meaning discussing redundant and conflicting constraints as well

as the spanning groups (b,c�).

• Criteria set 2 The subgraph containing an unsaturated constraint

node is the over-constrained component (d⊕). It can be found by

tracing the descendant nodes of the unsaturated n ode. Moreover, the

algorithm enables a decomposition of the system into balanced sub-

sets which are the rigid subsystems (e	). Also, analyzing the singular

configurations is not discussed by the authors (f?).

• Criteria set 3 The results of evaluation of this set of criteria are the

same with those of Over-rigid algorithm except the whole system is

modeled in 3D space (j⊕).

• Criteria set 4 The over-constraints are detected in single-pass way (k⊕).

And they proposed to correct the constraints according to constraints

priorities (l⊕).

2.4.2 Methods working at the level of equation

In general, almost all the geometric constraints can be translated me-

chanically into a set of algebraic equations (Hoffmann, Lomonosov, and

Sitharam, 1998). Therefore, detecting geometric over-constraints is equiva-

lent with identifying a set of conflicting/redundant equations. However, even

if detection works at the level of equations, the treatment is to be done at

the level of geometries and constraints.

Methods corresponding to the Definition 8

A variation of Latham’s method directly deals with algebraic constraints,

where a maximum cardinality of bipartite matching is used. D-M algorithm

decomposes an equations system into smaller subsystems by transforming

the equation system into a bipartite graph and canonically decomposes the

bipartite graph through maximum matchings and minimum vertex covers. It

decomposes a system into over-constrained, well-constrained and under-

constrained subsystems (Dulmage and Mendelsohn, 1958). It has been used

for debugging in equation-based modeling systems such as Modelica (Bunus

and Fritzson, 2002a). Serrano has been interested in using graph-theoretic

algorithm to prevent over-constrained systems where all constraints and ge-

ometric entities are of DoF one (Serrano, 1987).
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The process of D-M decomposition: D-M(A) = A(p, q) does not require

A need to be square or full structural rank. A(p, q) is split into a 4-by-4

set of coarse blocks: where A12, A23, and A34 are square with zero-free

diagonals. The columns of A11 are the unmatched columns, and the rows of

A44 are the unmatched rows. Any of these blocks can be empty. The whole

decomposition is composed of coarse and fine decomposition.

Coarse decomposition

• [A11A12] is the underdetermined part of the system—it is always rect-

angular and with more columns than rows, or does not exist.

• A23 is the well-determined part of the system—it is always square.

• [A34;A44] is the overdetermined part of the system—it is always rect-

angular with more rows than columns, or does not exist.

Fine decomposition The above sub-matrices are further subdivided into

block upper triangular form via the fine decomposition. Consequently, strong

connected components are generated and linked with solving order (Ait-

Aoudia, Jegou, and Michelucci, 2014). By analyzing each component fol-

lowing the solving order, the system is updated dynamically and over-

constraints are generated iteratively.

Results of evaluating the method are:

• Criteria set 1 Equations of [A34;A44] are structural over-constraints

(a	). Evaluation of criteria b and c is meaningless since the method

is structural (b,c�).
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• Criteria set 2 [A34;A44] after coarse decomposition is the structural

over -constrained subpart (d⊕). The strong connected components

after fine decomposition are structural rigid subsystems (e	). The

method does not discuss on analyzing singular configurations (f	).

• Criteria set 3 Since the modeling is based on system of equations,

any geometric constraints that are able to be transformed into system

of equations can be analyzed by the method. Therefore, the results for

evaluating this set of criteria are (g⊕	, h⊕	, i⊕, j⊕	).

• Criteria set 4 Structural over-constraints are contained in OG and

output in a single-pass way along with generation of OG (k⊕). The

method does not discuss on debugging the over-constraints (l?).

Methods corresponding to the Definition 10

Linear methods In this section, we gather together the existing tech-

niques from linear algebra that are capable of analyzing linear constraint

systems. We consider linear constraint systems in the matrix form Ax = b,

where A has dimension m× n , and n ≥ m ≥ r with r being the rank. The

notation A[i : j, l : k] defines the matrix obtained by slicing the ith to jth

rows, and the lth to kth columns of A. According to (Strang, 2006), meth-

ods such as Gauss-Jordan Elimination, LU and QR Factorization present a

good characteristic of locating inconsistent/redundant equations.

Gauss-Jordan Elimination with partial pivoting The elimination

process is terminated once a reduced row echelon form is obtained (An

example is shown in figure 2.25). Exchanging rows at the start of kth stage

to ensure that: ∣∣∣A(k)
kk

∣∣∣ = max
i>k

∣∣∣A(k)
ik

∣∣∣ (2.6)

where A
(k)
ik = A[i, k], an element of ith row and kth column in A.

Numerical over-constraints are identified by searching lines that contain

only 0. The vector b is updated to bnew when transforming [A, b]. The last

m− r values of the bnew allow to further distinguish redundant (equal to 0)

and conflicting (not equal to 0) constraints.
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Figure 2.25: Gauss elimination with partial pivoting.

Results of evaluating the method are as follows:

• Criteria set 1 The method allows for detecting redundant and con-

flicting constraints (a,b⊕). However, the method does not tell how to

find spanning groups of an over-constraint (c?).

• Criteria set 2 The method does not enable to decompose a sys-

tem. There is no meaning evaluate the method with respect to system

decomposition criteria (d,e,f�).

• Criteria set 3 The method analyzes linear equations. Therefore, any

geometry (g⊕	) with linear constraints (h	) in 3D or 2D space (j⊕	)

modeling at equation level (i⊕) can be handled by the method.

• Criteria set 4 The over-constraints are output all at once (k⊕) after

detection without debugging them (l	).

In the work of (Light and Gossard, 1983), they used this method to detect

invalid dimensioning schemes. Note that, in the following sections, G-J is

short for Gauss-Jordan elimination with partial pivoting.

LU factorization with partial pivoting The method is a high-level

algebraic description of G-J (Okunev and Johnson, 2005). The process is

shown in figure 2.26, where P is the permutation matrix reordering the

rows. The number of non-zero diagonal elements of U is the rank r. The
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last m− r rows of the reordered matrix P ∗A corresponds to the numerical

over-constraints.
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Figure 2.26: LU Factorization with partial pivoting

However, the factorization itself does not manipulate directly on b, which

means that distinguishing redundant and conflicting constraints is unavail-

able. To know them, we need further extension:

Ax = b

PA = LU

}
Ux = L−1Pb (2.7)

Now the distinguish step is similar to the one of G-J. That is, by comparing

the last m − r elements of L−1Pb with 0, redundant and conflicting con-

straints can be distinguished. However, one has to notice that the deduction

process is under the condition that L should be invertible.

To the best of our knowledge, using this method to detect geometric

over-constraints in not convincingly demonstrated in literature. Evaluation

of the method with respect to five criteria is the same as the one of G-J. Note

that in the following sections, we use LU in short for LU factorization with

partial pivoting.

QR Factorization with column pivoting Before applying QR ,

coefficients matrix A should be transposed first(A = At) since QR operates

on columns of a matrix. QR exchanges columns at the start of the kth stage

to ensure that: ∥∥∥A(k)
k (k : m))

∥∥∥
2

= max
j>k

∥∥∥A(k)
j (k : m))

∥∥∥
2

(2.8)
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where A
(k)
j (k : m) = A[k : m, j]
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Figure 2.27: QR Factorization with column pivoting.

As shown in figure 2.27, P is the permutation matrix where the informa-

tion about columns exchanges is stored. R is a triangular matrix where rank

r is the number of non-zeros diagonal elements. Equations corresponding to

At.p[:, r + 1 : m] are the over-constraints (Dongarra and Supercomputing,

1990).

Similar to LU, further deduction is needed to distinguish redundant and

conflicting constraints. First, the matrix Q(:, 1 : r) is inverted using the

following equation:

At(:, 1 : r) = Q(:, 1 : r).R(1 : r, 1 : r) (2.9)

and is then used in the following equation:

At(:, r + 1 : n) = Q(:, 1 : r).R(1 : r, r + 1 : n) (2.10)

thus providing the following relationship between the two sliced matricesAt(:

, r + 1 : n) and At(:, 1 : r):

At(:, r + 1 : n) = At(:, 1 : r).R(1 : r, 1 : r)−1R(1 : r, r + 1 : n) (2.11)

The relationship between over-constraints and independent constraints are

revealed in the matrixR(1 : r, 1 : r)−1R(1 : r, r+1 : n) in equation 2.11. From

the matrix, the spanning group of an over-constraint could also be known.
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Finally, to identify the redundant and conflicting equations, the new b vector

after factorization is redefined as follows:

bnew = b(r + 1 : n)− b(1 : r).R(1 : r, 1 : r)−1R(1 : r, r + 1 : n) (2.12)

Redundant and conflicting constraints can be further distinguished by com-

paring the value of the last m− r elements of bnew with 0.

The method was adopted by Hu et al (Hu, Kleiner, and Pernot, 2017) to

detect over-constraints of B-splines. Evaluation of the method with respect

to five criteria is the same as the one of G-J. We use QR in short for the

method for discussion in following sections.

Non-linear methods Detecting non-linear geometric constraints systems

is more complicated than linear ones. Since non-linear detection methods

include symbolic methods from abstract algebra, we introduce the math-

ematical fundamentals to make it easy to understand. The following two

theorems are induced from (Cox, Little, and O’shea, 1992). Readers can

find more details about concepts like ideals, affine varieties etc in the book.

Theorem 1 For a system of polynomial equations f0 = f1 = · · · =

fs = 0, where f0, f1, · · · , fs ∈ C[x1, · · · , xn]; If affine varietyW (f1, · · · , fs) 6=
∅ while W (f0, f1, · · · , fs) = ∅, then f0 = 0 is a conflicting equation; If

W (f0, f1, · · · , fs) = W (f1, · · · , fs) 6= ∅, then f0 = 0 is a redundant equa-

tion; If W (f0, f1, · · · , fs) 6= ∅, W (f1, · · · , fs) 6= ∅ and W (f0, f1, · · · , fs) 6=
W (f1, · · · , fs), then f0 = 0 is an independent equation.

Theorem 2 (Hilbert′s weak Nullstellensatz) Let k be an alge-

braically closed field. If f, f1, ..., fs ∈ k[x1, ..., xn] are such that f ∈ I(W (f1,

· · · , fs)), then there exists an integer m ≥ 1 such that fm ∈ 〈f1, · · · , fs〉
(and conversely).

Based on the Theorem 2, Michelucci et al (Michelucci and Foufou, 2006a)

deduced the Corollary 1.

Corollary 1 Let k be an algebraically closed field and W (f1, · · · , fs) 6=
∅. If f, f1, · · · , fs have the common root w, then rank([f

′
(w), f

′
1(w), · · · , f ′s(w

)]T )< s+ 1.

Informally, Corollary 1 tells that if a system of polynomial equations

containing redundant equations, then the Jacobian matrix of the equations

at the affine space (solution space) must be row rank deficiency. However,
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the reverse is not correct. In other words, if there exists Jacobian matrix

whose rank is deficiency at the solution space, then system of polynomial

equations does not necessarily contain redundant equations. A typical ex-

ample is the singular configuration in section 2.3.2: the system is row rank

deficiency at the solution space but the system does not contain geomet-

ric over-constraints. It is the singular configuration that causes the system

rank deficiency. Therefore, to detect over-constraints through analyzing Ja-

cobian matrix, one has to note that Jacobian matrix should be computed

on configurations in the solution space but avoid the singular ones.

Generate Jacobian matrix

@Affine space?

Yes

No

@Singular 
configuration?

Yes

Rank deficit?

No

Yes

Over-constraints exist  non-exist

No

Figure 2.28: Over-constraints detection based on Jacobian matrix analysis

We propose a schema on determining the existence of over-constraints

through analyzing Jacobian matrix in figure 2.28. That is, compute the

Jacobian matrix at a configuration from affine space. If the rank is full,

then there is no over-constraints. Otherwise, we check if the configuration is

singular. If not, then there exists over-constraints otherwise we move to test

the other configuration in the affine space. Loops means that one has to go

back to generate Jacobian matrix at different points until the existence/non-

existence of over-constraints can be determined. It is a recursive process of

finding points that can be used to determine the existence/non-existence

of over-constraints. In reality, however, affine space sometimes is hard to

find or even does not exist. Moreover, the singularity of a configuration is

sometimes difficult to test. A lot of research work have been done to address

the two issues.
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The first group of methods are symbolic algebraic methods, which com-

pute a Grobner basis for the given system of equations. Algorithms to com-

pute these bases include those by Buchberger (Bose, 1995), and by Wu-Ritt

(Chou, 1988b; Wu, 2012). These methods, essentially, transform the system

of polynomial equations into a triangular system whose solutions are those

of the given system.

Grobner Basis(GB) Assume a set of polynomials f0, f1, · · · , fs ∈
C[x1, · · · , xn]. The reduced Grobner basis(rgb0) of the ideal 〈f1, · · · , fs〉
satisfies rgb0 6= {1} and rgb0 6= {0} with respect to any ordering. The new

reduced Grobner basis of the ideal 〈f0, f1, · · · , fs〉 is rgbnew. If rgbnew = {1},
f0 = 0 is a conflicting equation; if rgbnew ≡ rgbold, f0 = 0 is a redundant

equation(b⊕); if rgbold ⊂ rgbnew, f0 = 0 is an independent equation (Cox,

Little, and O’Shea, 2015).

Results of evaluating the method are as follows:

• Criteria set 1 Obviously, the above method can tell if a constraint is

redundant or conflicting (a,b⊕). However, the method does not sup-

port finding spanning group of a (c	).

• Criteria set 2 The method is initially designated for solving poly-

nomial equations. Therefore, there is no meaning evaluating it with

set of criteria on system decomposition (d,e�). The method does not

analyze the singularity of a configuration (f	).

• Criteria set 3 The method analyzes non-linear equations. Therefore,

any geometries (g⊕	) with non-linear constraints (h⊕) in 3D or 2D

space (j⊕	) modeling at equation level (i⊕) are applicable for the

method.

• Criteria set 4 To detect a set of over-constraints, the process of

computing reduced grobner basis requires inputing one equation at a

time. Therefore, the over-constraints are not generated all at once but

iteratively (k	). However, debugging these over-constraints are not

supported (l	).

Construction of a Grobner basis is a potentially time-consuming pro-

cess. Hoffman used this technique to do geometric reasoning between ge-

ometric configurations (Hoffmann, 1989). In terms of detecting geometric

over-constraints, Kondo (Kondo, 1992) initially used Grobner basis method

to test dependencies among 2D dimension constraints.
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Wu-Ritt characteristic sets Let a system of polynomial equations

P = {f0 = f1 = · · · = fs = 0}, where f0, f1, · · · , fs ∈ Q[x1, · · · , xn] repre-

sent system of constraints and Zero(P) denote the set of all common zeros

of {f0, f1, · · · , fs}. The system contains redundant equations iff there exist

a polynomial p such that:

Zero (P − {p}) ≡ Zero (P ) (2.13)

For the polynomial set P , its zero set can be decomposed into a union

of zero sets of polynomial sets in triangular form through Wu-Ritt’s zero

decomposition algorithm:

Zero (P ) =
⋃

16i6k

Zero (TS {i} /I {i}) (2.14)

where each TS{i} is a polynomial set in triangular form, I{i} is the produc-

tion of the initials of the polynomials in TS{i} and k is the number of zero

sets. The system contains inconsistent equations iff k ≡ 0 (Chou, 1988a). In

the work of Gao and Chou (Gao and Chou, 1998), they present complete

methods for identifying conflicting and redundant constraints based on Wu-

Ritt’s decomposition algorithm. Also, the algorithm is used to solve Pappus

problems on deciding if a configuration can be drawn with ruler and com-

pass.

Results of evaluating Gao’s method are as follows:

• Criteria set 1 As discussed above, their method enable to detect con-

flicting and redundant constraints (a,b⊕) but cannot find the spanning

groups (c	).

• Criteria set 2 The method decomposes a set of polynomials into a

union of zero sets in triangular form. No over-constrained subparts,

rigid subsystems are generated as well as singular configurations are

analyzed (d,e,f	).

• Criteria set 3 The method analyzes non-linear equations. Any geome-

tries (g⊕	) with non-linear constraints (h⊕) in 3D or 2D space (j⊕	)

modeling at equation level (i⊕) are applicable.

• Criteria set 4 The results are the same as those of evaluating Grobner

basis.

Symbolic detection methods are sound in theory but suffer from high

computation cost. As discussed previously, the worst-case can be doubly ex-

ponential. Moreover, the reduced Grobner basis has to be computed every
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time an equation is to be analyzed. Therefore, this method are not able to

deal with large systems of equations.

The second group of methods analyze Jacobian matrix of equation sys-

tems. Contrary to symbolic methods, these numerical methods are more

practical in computation but are theoretical deficiency in some cases. On

one hand, if the affine space of a system does not exist, an equivalent one

that sharing similar Jacobian structure need to be found. On the other hand,

even if the Jacobian matrix of a configuration is row rank deficiency in affine

space, it has to be sure that the configuration is not singular.

Perturbation method Haug proposed a perturbation method to

deal with singular configurations and detect redundant constraints in me-

chanical systems (Haug, 1989). Initially, assume system of equations Φ(q) =

0 and the corresponding Jacobian matrix Φq is rank deficiency at q. As we

discussed before, this is not enough to determine the existence of the over-

constraints since the singular configuration always make a Jacobian matrix

rank deficiency. He suggested to analyze Jacobian matrix at one more con-

figuration by doing the following:

• Add a small perturbation δq to q and obtain Φqδq = 0. This process

is based on the Implicit Function Theorem (Krantz and Parks, 2012).

• Applying G-J elimination to Φq , Φqδq = 0 is transformed into[
ΦI
u ΦI

v

0 ΦR
v

] [
δu

δv

]
= 0. ΦI

u is the upper triangular matrix with 1s as

diagonal elements. ΦR
v can be treated as the matrix with all 0s un-

der given tolerance. Equations in Φ(q) = 0 corresponding to ΦI
u part:

ΦI(q) = 0 are independent.

• Now, Φqδq = 0 can be simplified into ΦI
uδu + ΦI

vδv = 0 and thus

δv = −(ΦI
v)−1ΦI

uδu, δq =

[
δu

δv

]
=

[
δu

−(ΦI
v)−1ΦI

uδu

]
• Assume q is perturbed to new point q∗ satisfying q∗ = q + δq. To

ascertain it lies in the affine space, is should satisfy Φ(q∗) = 0. This is

equivalent to ΦI(q∗) = 0 since the latter is composed of all independent

equations of the former.

• Solving ΦI(q∗) = 0, q∗ = q + δq, δq =

[
δu

δv

]
=

[
δu

−(ΦI
v)−1ΦI

uδu

]
, the

value of q∗ is obtained.
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• Compute the rank of Jacobian matrix at q∗: Φq∗ and check if it is rank

deficiency.

We can see from above that obtaining an appropriate value of the pertur-

bation δq so that q∗ lies in the affine space is the main part of the work.

Results of evaluating the method are as follows:

• Criteria set 1 The method enables to detect geometric over-constraints

(a⊕) but does not distinguish redundant and conflicting constraints (b	).

Finding the spanning groups is also not supported (c	).

• Criteria set 2 The method mainly detects the over-constraints based

on analyzing the Jacobian matrix of a whole system. There is no mean-

ing evaluate the method with respect to system decomposition crite-

ria (d,e,f�).

• Criteria set 3 The method analyzes both linear and non-linear equa-

tion systems. Therefore, any geometries (g⊕	) with non-linear and

linear constraints (h⊕	) in 3D or 2D space (j⊕	) modeling at equa-

tion level (i⊕) are applicable for the method.

• Criteria set 4 The over-constraints are generated in a single-pass

way since Jacobian matrix analysis is on the whole system at one

time (k⊕). However, debugging the over-constraints is not addressed (l	).

His method selects two points in affine space to determine the existence of

geometric over-constraints. If Jacobian matrix at any point is full rank, then

there is no over-constraint. However, if the rank of Jacobian matrix at both

points is deficiency, then there exists geometric over-constraints.

Numerical Probabilistic Method (NPM) Roots of system of equa-

tions can be sometimes hard to find or even do not exist. In these cases, the

affine space does not exist. Sebti Foufou et al (Foufou, Michelucci, and Ju-

rzak, 2005) suggest a Numerical Probabilistic Method (NPM), which is to

test Jacobian matrix at random points instead of the affine space. However,

there is a risk that Jacobian matrix is row rank deficiency at the chosen

points and the corresponding configurations happen to be singular. They

suggest to test on more testing points to reduce the possibility of happen-

ing such case. Moreover, in order to get more confidence, authors suggest

that testing at 10 different points should be sufficient. NPM is practical

in computation but is not sound in theory since the testing points are not

necessarily all in affine space.

Results of evaluating the method are as follows:
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• Criteria set 1 The method enables to identify numerical over-constraints

(a⊕). However, it can neither distinguish redundant and conflicting

constraints nor finding the spanning group of an over-constraint (b,c	).

• Criteria set 2 The method can be used to decompose a system into

rigid subsystems (e	). However, decomposition into over-constrained

components as well as analyzing singular configurations are not sup-

ported (d,f	).

• Criteria set 3 The method analyzes both linear and non-linear equa-

tion systems. Therefore, any geometries (g⊕	) with non-linear and

linear constraints (h⊕	) in 3D or 2D space (j⊕	) modeling at equa-

tion level (i⊕) are applicable for the method.

• Criteria set 4 Numerical over-constraints are detected all at once (k⊕)

but debugging them are not supported (l	).

Witness Configuration Method (WCM) Instead of randomly se-

lecting configurations, Michelucci et al. suggested to study the Jacobian

structure at witness configurations where incidence constraints are satis-

fied (Michelucci and Foufou, 2006b). The witness configuration and the tar-

get configuration shares the same Jacobian structure, which is non-singular

in affine space. As a consequence, all the numerical over-constraints can be

identified (Michelucci and Foufou, 2006a). More recently, Moinet et al. devel-

oped tools to identify conflicting constraints through analyzing the witness

of a linearized system of equations (Moinet, Mandil, and Serre, 2014). Their

approach has been successfully applied to the well-known Double-Banana

geometry.

For a geometric constraints system represented with a set of equations

F (U,X) = 0, where U denotes a set of parameters with prescribed values

UT (T for target), and X is the vector of unknowns. The solution is denoted

as XT . A witness is a couple (UW , XW ) such that F (UW , XW ) = 0. Most

of the time, UW and XW are different from UT and XT respectively. The

witness (UW , XW ) is not the solution but shares the same combinatorial

features with the target (UT , XT ), even if the witness and the target lie on

two distinct connected components of the solution set. Therefore, analyzing

a witness can detect numerical over-constraints of a system(Michelucci et

al., 2010; Michelucci et al., 2006). These numerical over-constraints are not

only the structural ones but also geometric redundancies.
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Figure 2.29: Witness configuration method

Figure 2.29 shows the witness method combining QR for detection. Step

one aims at generating the witness configuration while at step two, QR is

applied on the Jacobian matrix A. As a result, the rows of equations are

re-ordered by P and the number of basis constraints is revealed by r. Fi-

nally, coming back to the re-ordered original equations, the first r equations

are the basis constraints while the remaining ones are the numerical over-

constraints. Note that, QR can be replaced with G-J in the process and

would generate result different from the one of QR since the two methods

adopt different sorting rows strategy.

The results of evaluating the method are the same as those of eval-

uating NPM (section 2.4.2) except that the property of Correct is re-

tained (m⊕). Michelucci et al (Michelucci and Foufou, 2006a) have proved

that the WCM can identify all the dependencies among constraints. In other

words, if removing these dependent constraints, the remaining constraints

are independent.

WCM Extension Thierry et al (Thierry et al., 2011) extend WCM

to incrementally detect over-constrainedness and thus to compute a well-

constrained boundary system. Also, they design the so called W-decomposition

to identify all well-constrained subsystems, which manages to decompose

systems non-decomposable by classic combinatorial methods.

Results of evaluating the method are as follows:
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• Criteria set 1 The results of evaluation within this set of criteria are

the same with those of NPM.

• Criteria set 2 The W-decomposition enables to efficiently identify

the maximal well-constrained subsystems of an articulated system as

well as further decompose a rigid system into well-constrained subsys-

tems (e	) but finding over-constrained components is not discussed (d?).

For finding the spanning groups, it is not supported (f	).

• Criteria set 3 The results are the same with those of evaluating

NPM.

• Criteria set 4 Working on the witness, the naive idea would be

to try and remove constraints one by one and, at each step, com-

pute the rank again to determine if the constraint is redundant with

the remaining set. However, the author points out that performing

this way is expensive. They consider an incremental construction of

the geometric constraint system to identify the set of redundant con-

straints with no additional costs in comparison to the basic detection

of redundancy (k	). The method does not support debugging over-

constraints (l?).

a) b)

Figure 2.30: a) Rigid sketch b) Non-rigid sketch (Thierry et al., 2011)

.

Generating a witness configuration Sometimes, when certain ge-

ometric elements happens to be drawn with specific properties (collinearity,

coplanarities, etc) without representing a real constraint, the sketch is not

typical of the expected solution, for example it does not satisfy incidence
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constraints. Thus cannot be used as a witness configuration. A witness con-

figuration should be generic when it remains rigid before and after infinites-

imal perturbation. Likewise, if the sketch is not rigid before perturbation, it

should be not rigid after the perturbation (Combinatorial Rigidity). For ex-

ample, figure 2.30-a) is not generic: a small perturbation on the dimensions

of the bars will result in a non-rigid sketch shown in figure 2.30-b). However,

figure 2.30-b) is generic: if a small perturbation is introduced in the dimen-

sion of the sketch, it will remain non-rigid. Usually, non-generic sketches

are constituted with aligned line segments presented in figure 2.30-a). The

collinearity will induce artificial redundancy between the constraints associ-

ated with the collinear vectors. As a result, before using the WCM, one has

to make sure the witness configuration is typical of the expected solution.

Here, we adapted the algorithm of Moinet (Moinet, Mandil, and Serre,

2014) for generating generic witness configurations. Other methods for gen-

erating witness configurations can be found in (Thierry et al., 2011; Kubicki,

Michelucci, and Foufou, 2014). Moinet’s algorithm contains the following

steps:

1. Compute the Jacobian matrix of system of equations.

2. Calculate the rank rold of Jacobian matrix at initial sketch.

3. Randomly perturb the initial sketch (usually generated by users), re-

generate the Jacobian matrix, and recompute the rank rnew at the new

position(new sketch).

4. If rnew > rold, replace the initial sketch by the new one and reiterate

the third step.

5. Otherwise the old sketch is generic.

2.4.3 Hybrid methods

Serrano’s Serrano analyzes systems of equations (h⊕) to select a well

constrained, solvable subsets from candidate constraints(Serrano, 1987). His

method first detects structural over-constraints (a	) if there are equations

uncovered after maximum matching. To further detect numerical over- con-

straints (a⊕) within strong connected components (e	), symbolic and nu-

merical method are used. The symbolic method used is pure symbolic op-

erations, where constraints are eliminated one by one by substituting one

variable into other equations until a final expression is obtained. Also, non-

linear equations are linearized and G-J elimination method is applied to

analyze them. He repeated the above process until finally redundant and
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conflicting constraints are all distinguished (b⊕). Moreover, the author sug-

gests the spanning group of an over-constraint is a set of constraints within

the same strong connected component (c⊕). However, it will generate wrong

results if linearize non-linear systems for detection (example will be shown

in section 4.2.4).

His constraint manager enables designers to generate geometric over-

constraints iteratively (k	). When a geometric over-constraint is detected (l⊕),

the constraint manager provides three alternatives, where users can select

an appropriate one satisfying his/her needs. Finally, as the modeling is in

equations (i⊕), his method is applicable to geometries of both free-form and

Euler (g⊕	), linear and non-linear constraints (h⊕	) and 3D and 2D (j⊕	).

Results of all the evaluation results are summarized in the table 2.7.
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2.5 Benchmark and analysis of use cases

The previously introduced detection methods have been classified and

summarized in table 2.7 which clearly shows their theoretical capabilities. The

practical capabilities are studied in this section on different use cases.

2.5.1 Linear use case : Deformation of B-Spline curves

(x1,y1)

(x2,y2) (x3,y3)

(x4,y4)

(x5,y5)

(x11,y11)

(x22,y22) (x33,y33)

(x44,y44)

(x55,y55)

p1

p2
p3
p4

p5

p6
p7
p8
p9

seg1
seg2

seg3

seg4

seg5

seg6

seg7

seg8

seg9

seg10

Figure 2.31: Constraints specification for the deformation of a B-Spline

curve.
Problem description The first use case corresponds to the deformation

of a B-spline curve of degree 3 defined by 13 control points and a knot

sequence U = {u0, u0, u0, u0, u1, · · · , u9, u10, u10, u10, u10} with u0 = 0 and

u10 = 1. They are the values of knots, which are knowns. This knot sequence

highlights 10 segments [ui, ui+1] for which it will be important to understand

whether they are under-, well- or over-constrained. Figure 2.31 shows the

B-Spline curve with 10 of the control points (green circles) free to move

and the remaining ones fixed (red triangles). The deformation is driven by

9 position constraints (p1− p9). Finally, the deformation problem is defined

by 10 couples of variables (xj, yj) which are the coordinates of pj and 18

equations ek with k ∈ {1..18}. Free control points and position constraints

are presented in Table 2.8 together with the corresponding variables and

equations.

control
points

d00 d01 d02 d03 d04 d06 d07 d08 d09 d010

variables (x0, y0) (x1, y1) (x2, y2) (x3, y3) (x4, y4) (x6, y6) (x7, y7) (x8, y8) (x9, y9) (x10, y10)

constraints p1 p2 p3 p4 p5 p6 p7 p8 p9
equations (e1, e2) (e3, e4) (e5, e6) (e7, e8) (e9, e10) (e11, e12) (e13, e14) (e15, e16) (e17, e18)

Table 2.8: Typology of variables, constraints and equations involved in the

use case of Figure 2.31.
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Structural analysis : DoF counting As shown in figure 2.31, the curve

is composed of 10 local segments according to the 10 intervals of the knots

vector. Results of a manual DoFs analysis of each segment are presented

in table 2.9. The curve is globally under-constrained but contains locally

under-/well-/over-constrained subparts. However, DoF-based counting does

not accurately reflect the non-solvability of this system.

Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10

Affected by {d00...d
0
3} {d

0
1...d

0
4} {d

0
2...d

0
5} {d

0
3...d

0
6} {d

0
4...d

0
7} {d

0
5...d

0
8} {d

0
6...d

0
9} {d

0
7...d

0
10} {d

0
8...d

0
11} {d

0
9...d

0
12}

DoFs 8 8 6 6 6 6 8 8 6 4
DoCs 2 0 6 0 0 0 2 0 8 0
Status Under Under Well Under Under Under Under Under Over Under

Table 2.9: DoF counting to define the status (under-, well-, over-constrained)

of each local segment.

Figure 2.32: Results of applying BFS and D-M decomposition.

Structural analysis : BFS and D-M decomposition BFS allows to

split the configuration into two local components which correspond to the

upper and lower part of figure 2.32. D-M decomposition is then applied

on each part. As illustrated on Figure 2.32, component 1 is decomposed

into structurally under- and well-constrained subparts while component 2 is

decomposed into structurally under- and over-constrained subparts.

More precisely, the result in Figure 2.32 shows that constraints p1 in Seg1

and p5 in Seg7 are structurally under-constrained, constraints {p6, p7, p8, p9}
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in Seg9 are structurally over-constrained and the remaining constraints {p2, p3
, p4} in Seg3 are structurally well-constrained. The result matches well with

able 2.9. Moreover, since equations {e16, e17} are unmatched, constraints

{p8, p9} are structural over-constrained. Structural analysis using D-M de-

composition thus gives the same results as the manual DoF analysis.

seg1 seg2

seg3

seg4

seg5

seg6

seg7

seg8

seg9
seg10

seg1 seg2

seg3

seg4

seg5

seg6

seg7

seg8

seg9
seg10

Figure 2.33: Curve 2 (Upper) with conflicting constraints {p3, p4} and Curve

3 (Lower) with redundant constraints {p8, p9}.

However, D-M decomposition would fail when detecting numerical over-

constraints. New examples are then introduced to illustrate such configura-

tions. Figure 2.33 shows two new configurations obtained by modifying the

previously defined constraints. For Curve 2, a point of the curve is assigned

to two different positions (p3 6= p4) thus creating a conflict. For Curve 3,

a point of the curve is assigned to two similar constraints (p8 = p9) thus

creating a redundancy.

As illustrated on figure 2.34, D-M decomposition gives the same results

for the two configurations. Thus, the subtle difference between the two con-

figurations cannot be distinguished, which confirms the need for further

analyzing the system using numerical methods.
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Figure 2.34: Result of D-M analysis for Curve 2 and Curve 3.

Figure 2.35: G-J analysis of Curve 2 (Upper) and G-J analysis of Curve 3

(Lower) with r the rank and n the number of equations.

Numerical analysis Since the constraints of the two configurations are

linear, both G-J and QR can be used. Both methods identify equations

{e7, e8}, respectively equations {e15, e16}, as the numerical over-constraints

of Curve 2, respectively of Curve 3. However, in terms of fine detection, only

G-J further identifies the conflicting and redundant equations. For Curve

2 (upper part of figure 2.35), equation e7 is conflicting (last term of the row
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is not null) and e8 is redundant (last term of the row is null). Similarly, for

Curve 3 (lower part of figure 2.35), equations e15 and e16 are redundant

(zero values in the last column). Thus, as equations {e7, e8} come from

the same geometric constraint p4, respectively {e15, e16} come from con-

straint p8, they cannot be split in two and the whole constraint p4 is to be

considered as conflicting, respectively p8 considered as redundant.

Structural analysis Coarse detection Fine detection

BFS D-M
G-J

Elimination
QR

Factorization
G-J

Elimination

Curve 2
2 local
parts

structural under- and
well-constrained subparts

for each local part

e7 and e8
over-constraints

e7 and e8
over-constraints

e7 conflicting
e8 redundant

Curve 3
2 local
parts

structural under- and
well-constrained subparts

for each local part

e15 and e16
over-constraints

e15 and e16
over-constraints

e15 and e16
redundant

Table 2.10: Testing results of Curve 2 and Curve 3

The result of the whole detection process is shown in table 2.10. For

free-form linear constraints system, G-J is capable of conducting coarse and

fine detection but QR is applicable for coarse detection only.

2.5.2 Non-linear use case : Double Banana

Problem description This section presents a non-linear use case with

the Double Banana geometry (figure 2.36). The variables, constraints and

the parameters of the Double Banana configuration are exactly the same as

the one in the work of Moinet et al (Moinet, Mandil, and Serre, 2014). The

difference is that their modeling is based on coordinate-free system while

here it is Cartesian-based.

Pt2

Pt1
Pt3

Pt4

Pt5

Pt6

Pt7

Pt8

Figure 2.36: Initial geometry of the Double-Banana (Moinet, Mandil, and

Serre, 2014).
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As it is shown in figure 2.36, the Double Banana is defined by 8 points

whose 3D coordinates are unknowns, thus there are 24 variables whose val-

ues are to be found. The Double Banana is constrained with 18 non-linear

equations imposing distances between couples of points as detailed in fig-

ure 2.37.
M. Moinet et al. / Computer-Aided Design 48 (2014) 42–52 49

Fig. 8. Text file — example of the Double Banana geometry.

Fig. 9. Example of the Double Banana: initial geometry.

The figure in Fig. 9 is drawn using vertices coordinates (listed
in Fig. 8); they do not fulfil length specifications (also in Fig. 8).
The resolution of the GCSP is assigned to the solver developed by
the authors [5]. The result expected is a geometry that conforms
to all the 18 specifications given. As this case study is over-
constrained, the solver is unable to find a geometry that satisfies
the 18 specifications. Consequently, this research proposes to add
a numerical problem analysis before solving the GCSP. The result
of this analysis gives a set of compatibility equations required to
find a new set of consistent specifications stored in S′.

5.1. Analysis of the numerical problem

The numerical analysis of the problem is performed by adapting
the witness method to the case of the double banana structure.

The first part is to find a generic sketch. A linear system is
generated from the initial configuration. Its rank is calculated as
17. The points of the initial sketch are perturbed randomly. A
second system is generated and its rank is calculated. It is also
17. It can therefore be concluded that the initial object is generic.
Furthermore, the rank of matrix A is lower than the number of
constraints (17 < 18); thus we can assume (based on Michelucci
results) that the case is over-constrained. Then two options are
offered to the users: either they reformulate the problem alone,
or they leave the algorithm to manage this overstress. We now
describe the second scenario. In this example, an extract of the
matrix A of size 18 × 144 (144 = 18 · 8) is given in (34) (see
Box I). The computation of the Gaussian elimination using Matlab
rref() function gives the matrix presented in (35) (see Box II).
From this point we can first observe that the 18th row is full of
0, meaning that the 18th specification is redundant. Secondly, it
can be seen that the columns numbered {12, 18, 20, 21, . . . , 144}
do not contain any elimination value which means that the value
of unknowns {12, 18, 20, 21, . . . , 144} can be chosen freely. This
second feature is not considered in the method presented.

Consequently to have a well-posed problem, the proposed
solution is to release the 18th constraint. The new reducedproblem
is therefore composed of 17 specifications which are stored in S̃.
This new well-posed problem, is sent to the solver. A solution is
found in 4 iterations. In Fig. 10, we can see all the configurations
of the objects obtained during the solving. An object can be drawn
at each step of the algorithm. Convergence is reached very quickly.
Indeed, the configuration desired is almost obtained after only one
iteration. It is necessary to wait for the 4th stage for an object to
reach standard convergence (ϵ = 1e−6 in Algorithm 1).

The solution computed is a set of points called P′, with the
same topology as before. The geometrical solution is illustrated by
Fig. 11. The analysis of this solution gives the length parameters
presented in Table 1. It can be seen that the 18th constraint that
has been removed is equal to L18 = 27.622761 instead of 32
(the designer’s original goal). This solution is not the exact desired
solution. It is probably just one solution close to the designer’s
aims. The geometrical solver also gives the compatibility equations
(in this example, only one equation describes the dependence
between the 18 parameters) (there are only 17 independent

Figure 2.37: Parameters of the Double Banana configuration (Moinet,

Mandil, and Serre, 2014).

Structural analysis: BFS and D-M decomposition As in the pre-

vious example, structural analysis methods are tested first. Results show

that the whole system is only one connected component that is structurally

under-constrained. However, we will see in the following that a conflicting

constraint is therefore undetected.

Numerical analysis The results for coarse and fine detection are shown

respectively in table 2.11 and table 2.12. Since two different sorting rows

strategies are used, two different numerical over-constraints are detected (e14

for G-J and e9 for QR) and none of them is the same with the one found

by Moinet et al. (e18). At the geometric level, those identified equations

correspond to lengths imposed between points of the Double Banana. Thus,

two aspects can be discussed when analyzing the results.

First, it is interesting to know how far are the lengths `14(A14), `9(A9)

and `18(A18) from their initial specifications. This can be achieved while
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Method Over-constraint dev cond

G-J e14 0.84/35 18.28
QR e9 0.53/45 16.97

Moinet e18 4.38/32 73.33

Table 2.11: Coarse detection using witness configuration on the Double

Banana.

computing the deviation between the lengths that should be reached (i.e.

imposed lengths as detailed in figure 2.37) and the lengths obtained by

releasing the corresponding over-constraint, then solving and evaluating the

new lengths. The column dev of table 2.11 gathers together the deviations

when considering the identified over-constraints. For example, the identified

over-constraint e14 is associated to the length `14(A14) initially set up to

35. If this equation is removed, the system can be solved and we obtained

`14(A14) = 35.84 which gives a relative deviation of 0.84/35 = 0.024. The

deviations obtained using G-J or QR are quite similar and rather small

(i.e. about 10 times smaller) when compared to the deviation 4.38/32 '
0.137 obtained when removing e18 identified by the algorithm of Moinet et

al (Moinet, Mandil, and Serre, 2014).

Then, it is interesting to know the degree of dependencies between con-

straints of the final system. This can be evaluated computing the condi-

tion number of the Jacobian matrix at the solution point of the new sys-

tem generated after removing the over-constraints (i.e. `14(A14), `9(A9) or

`18(A18)). The results are shown in the column cond of the table 2.11. The

dependencies between remaining constraints are lower for G-J and QR than

for the method of Moinet et al.

Method over-constraint type time (s)

Increm. solving G-J e14 conflicting 174
Increm. solving QR e9 conflicting 172

Grobner basis G-J e14 ? ?
Grobner basis QR e9 ? ?

Optimization G-J e14 conflicting 633
Optimization QR e9 conflicting 667

Moinet e18 conflicting −

Table 2.12: Fine detection using witness configuration on the Double Ba-

nana.
In terms of fine detection methods, table 2.12 shows that equations e14

and e9 are found to be conflicting by both incremental solving and opti-

mization methods. The former method outperforms the latter because of

less computational time and a ? is put in the table. However, Grobner-Basis

does not converge in this amount of time. It is consistent with the discus-

sion in (Latham and Middleditch, 1996) that Grobner-Basis is applicable

for small systems with less than 10 non-linear algebraic equations. Finally,
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the method by Moinet et al. also identifies e18 as a conflicting constraint

but their paper does not address the time issue which can therefore not be

compared.

Testing different witness configurations In the work of Moinet et

al., the Double Banana configuration is linearized and the conflicting con-

straint e18 is detected from the linearized system (Moinet, Mandil, and

Serre, 2014). Their linearization is on the witness configuration generated

from the initial sketch. Here, this section extends their work by lineariz-

ing the system at a witness not generated from the initial sketch but from

random configurations. The idea is to better understand whether the se-

lection of a witness configuration affects the detection and identification of

conflicting constraints.

Witness 1 2 3 4 5 6 7 8 9 10 11 12

G-J e14 e1 e6 e18 e4 e8 e16 e11 e13 e15 e12 e5

Q-R e14 e1 e6 e18 e4 e8 e16 e11 e13 e15 e12 e5

conflicting Yes Yes Yes Yes Yes No Yes No No No Yes Yes

dev 0.84/35 3.3/75 -1.73/51 4.38/32 4.58/48 − 2.96/34 − − − -2.45/74 -3.17/50

Table 2.13: Linearization at random witness to identify conflicting equa-

tions.

Table 2.13 gathers together the results of this analysis. It shows that

there are cases where conflicting constraints are wrongly detected. here,

witness configurations 6, 8, 9 and 10 do not allow a proper identification of

conflicting constraints. For example, let us consider the witness configuration

9 illustrated on figure 2.38 and for which the coordinates of the points are

given in table 2.14. This configuration is generic (Michelucci et al., 2006) be-

cause the rank of the matrix remains constant (and equal to 17 in the present

case) even after a random perturbation on all the coordinates (figure 2.38

and table 2.14).

node 1 2 3 4 5 6 7 8

witness
9

X 29 51 26 54 30 41 34 13
Y 26 51 1 21 14 17 18 49
Z 36 48 30 29 61 7 5 46

witness
9’

X 30 51 27 54 29 40 34 13
Y 27 52 1 21 13 18 18 48
Z 35 49 31 30 61 8 5 46

Table 2.14: Coordinates of witness configurations 9 and 9’ where the later

is obtained by randomly inserting a perturbation in the coordinates of the

former.
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Figure 2.38: Left: Witness configuration 9 which does not allow a proper

identification of the conflicting equations Right: Witness configuration 9’

obtained from witness 9 with a random perturbation of amplitude ε = 1.

Linear analysis identifies e13 as a conflicting constraint. We remove e13

and solve the remaining system using the solver based on Levenberg–Marquardt

algorithm in MATLAB toolbox. The remaining system and the correspond-

ing initial sketch where the solver starts to solve are shown in figure 2.39. The

system is the same with the original one except that edge constraint A13

are removed. However, in this case, the solution process does not converge.

Figure 2.39: System of removing e13

We can not reach a conclusion that the remaining system is non-solvable,
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since the Levenberg-Marquardt algorithm converges to local minima rather

than a global one. When applying an incomplete solver to solve system

of equations, if the solving process converges, then the system is indeed

solvable. Otherwise, complete solvers should be applied to know the solv-

ability of a system, which will induce reliable results on determining redun-

dant/conflicting status of an over-constraint.

2.6 Conclusion

This chapter has introduced several approaches for finding over-constrain

ts and identifying conflicting as well as redundant equations in linear and

non-linear geometric systems. Structural and numerical methods have been

tested and analyzed with results on B-Spline curves and on the Double-

Banana use cases. Several benefits have been reached. The definition of

over-constraints with respect to free-form geometries is formalized. Local

segments of free-form geometries can be found by BFS. Linear methods such

as G-J and QR are capable of analyzing linear equations systems. These

methods can also be used as part of the witness method to analyze non-

linear equations systems. In this case, a particular attention has to be paid

on the choice of the witness. In order to stay consistent with respect to the

user-specified requirements, the discussion is first performed at the level of

the equations but is then moved to the level of the geometry and design

intent while considering the constraints encapsulating the different equa-

tions. As it is often the case in geometric constraint solving, large systems

are first decomposed in subsystems which are then analyzed using numerical

methods. Second, the treatment of the over-constraints could be extended

while considering the variables as well as the objective function to be mini-

mized as potential parameters to be found so as to get a solution closer to

the design intent (The definition will be addressed formally in next chap-

ter). Considering free-form geometries, a particular attention could be paid

to the treatment of configurations where the knots of the knot sequences as

well as the weights of the NURBS are considered as unknowns, and espe-

cially when considering free-form surfaces deformation. This will be further

discussed in the next chapter.





Chapter 3

Detection and resolution in

NURBS-based systems

In this chapter, we first introduce two detection frameworks (section 3.1)

based on a combination of methods discussed in previous section. Then, we

propose an original decision-support approach to address over-constrained

geometric configurations. It focuses particularly on the detection and res-

olution of redundant and conflicting constraints as well as finding the cor-

responding spanning groups (section 3.4) when deforming NURBS patches.

Based on a series of structural decompositions coupled with numerical anal-

yses, the proposed approach handles both linear and non-linear constraints

(section 3.2). Since the result of this detection process is not unique, several

criteria are introduced to drive the designer in identifying which constraints

should be removed to minimize the impact on his/her original design in-

tent (section 3.3).

3.1 Detection framework: first scenarios

In real-life application, debugging geometric constraints systems can be

done in two different ways. First, like within CAD modelers, designers are

able to detect over-constraints interactively during the modeling process in

2D sketches (figure 1.9). In this case, the constraints are added incremen-

tally. The other way of debugging is to analyze system of constraints that

already exist. Here, it is assumed that all the constraints and associated

equations have been predefined and that the analysis is to be performed on

the whole system. Based on the work of previous section, we propose two

detection frameworks to meet the two debugging ways: incremental detec-

tion and decremental detection. Both of them are based on a combination

of structural and algebraic methods. These methods are listed in table 3.1

and table 3.2 respectively, and are discussed in the next subsection.
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Level Modeling Method
Strong connected

components

equation bipartite graph D-M irreducible subsystems
geometry bipartite graph MWM balanced sets

Table 3.1: Structural methods selected from table 2.7

Linear Method Non-linear Method

over-constraints WCM WCM

redundancies
/conflicts

G-J/QR
Grobner basis

/Incremental solving

Table 3.2: Algebraic methods selected from table 2.7

3.1.1 Incremental detection framework

Constraints set S

C Unmatched?

rank(C+S)>rank(S)
@witness

No

Yes

Constraints CAdd
Maximum matching/
Maximum b-matching

Yes C: Structural 
over-constraint

No C: Numerical 
over-constraint

C: Independent constraint

 C

Figure 3.1: Incremental detection framework where constraints are added

one by one

Here, we assume that the constraint C is to be added to a set of con-

straints S. This framework is to test if C is an over-constraint with respect

to S. The first method we use is either D-M or MWM (table 3.1), which de-

tects structural over-constraints through maximum matching or maximum

b-matching. The method is applied to the new group S + C after adding
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C. If C is unmatched, then C is a structural over-constraint. Otherwise,

we apply WCM method (table 3.2) to detect numerical over-constraints of

S + C. If the rank of the new system S + C is bigger than that of S at

witness configurations, C is an independent constraint otherwise it is a nu-

merical over-constraint. And whether it is redundant or conflicting can be

checked using Grobner basis or Incremental solving method (figure 3.5). In

this case, since the constraints has been added incrementally, the users can

be informed directly if the newly inserted constraint has been detected as

an over-constraint.

In the context of this PhD thesis, such a scenario is not necessarily the

best one. As in this case, the detected over-constraints will not necessarily

well affect the design intent, but rather the modeling process and its nu-

merous modeling steps. However, one advantage is to be able to detect and

treat the over-constraints as soon as they appear in the modeling process.

3.1.2 Decremental detection framework

Bipartite graph

Unmatched  

constraints

Maximum
matching/b-
matching

Yes

No

Strong connected 
components

Debug

Fine 
decomposition

Over-constraints

=

Yes

Debug

No

terminate

=

Algebraic analysis

Constraints set S

C Unmatched?
Yes

No

C: Structural 
over-constraint

Rank(C+S)>Rank(S)?
@witness

C: Numerical 
over-constraint

No

Yes

C: Independent constraint

Constraint C
Add

Maximum
matching/b-
matching

Figure 3.2: Decremental detection framework
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Decremental detection analyzes a set of existing constraints. The con-

straints set and its associated equations set are initially represented with

a bipartite graph. Structural over-constraints will be identified using either

D-M or MWM (table 3.1) if there exists unmatched constraints after maxi-

mum matching (or b-matching). They will be removed and then the system

is updated. If there is no unmatched constraints, strongly connected compo-

nents (irreducible subsystems of D-M or balanced sets of MWM) are gener-

ated by fine decomposition of the system. Then, algebraic methods are used

to detect numerical over-constraints inside each component. Since strongly

connected components linked with solving order is actually a DAG struc-

ture, components corresponding to the source vertices are usually analyzed

first. Once an over-constraint is found, it is removed. After that, the system

is updated as well as the corresponding bipartite graph is rebuilt. The de-

tection process finishes when no more numerical over-constraints are found.

In contrary to the previous scenario, the advantage here is that the de-

cision on what to regarding the detected over-constraints can be performed

on the entire system, thus better considering the design intent. At the oppo-

site, if the system to checked is rather large, it can be more difficult to take

decisions at the end, than to take decision during the modeling process.

3.1.3 Necessity of combining decomposition and algebraic
methods

Drawbacks of algebraic analysis The previous sections have illustrated

algebraic approaches as a mean to process system of equations and include:

• Symbolic methods for determining polynomial ideal membership in al-

gebraically closed fields such as the Grobner basis and Wu-Ritt meth-

ods capable of distinguishing redundant and conflicting equations.

• Numerical methods analyzing Jacobian matrix of a system to find the

rank deficient rows, such G-J, QR, NPM, and WCM: G-J and QR

enable to distinguish linear redundant and conflicting equations while

NPM and WCM can only identify over-constrained equations.

These direct algebraic solvers deal with general systems of polynomial equa-

tions, i.e. they do not exploit geometric domain knowledge. Symbolic meth-

ods have at least exponential time complexity and they are slow in practice

as well. In addition, algebraic methods do not take into account design con-

siderations and thus cannot assist in the conceptual design process.
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Benefits of system decomposition Generally, decomposition exploits

the local support property of NURBS geometry, which allows for knowing

the distribution of local segments as well as the constrained status of each

local parts. If some parts are locally over-constrained, users will treat these

parts directly without globally inserting unnecessary control points. More

specially, coarse decomposition returned by some methods enables a user

for debugging purpose (e.g., identification of over-/under-constrained com-

ponents), which corresponds to the view the user has of its system. For

this reason, it is generally desirable to respect a coarse decomposition in-

duced by a high-level user’s manipulation of entities (e.g., mechanical com-

ponents). Sitharam et al. proposed to adapt graph-based recursive assembly

methods to this requirement (Sitharam, Peters, and Zhou, 2004). Moreover,

decomposition methods are appealing for the drastic gain in efficiency they

offer. For example, symbolic methods cannot be applied directly to large

systems due to high computational cost but are applicable to the small sub-

systems after system decomposition.

Therefore, an algorithm should use geometric domain knowledge to de-

velop a plan for locating local parts of a configuration, decomposing a local

part into subsystem as small as possible so that algebraic methods could

be applied recursively. Also, it is desirable if the algorithm provides coarse

decomposition allowing for debugging purpose directly.

3.1.4 A Decomposition-Detection plan

The first requirement of a Decomposition-Detection (D-D) plan is that it

should be able to find local segments of free-form configurations. Secondly, a

D-D plan should decompose a constraint system into small subsystems and

analyze these subsystems using algebraic methods. Since the time cost of

over-constraints detection is proportional (at least polynomial) to the size

of a system, the second requirement is that the small subsystems should be

as small as possible so that algebraic methods can analyze them as fast as

possible. If there is no over-constraints of a subsystem, it should be solved

and the solution should be substituted into the entire system resulting in a

simpler system. As it is shown in figure 3.3, a D-D plan initially decompose

a system S into {S1, · · · , Si, · · · , Sn} local segments using for instance the

local support property of NURBS curves and surfaces. Then, for each local

segment Si, the D-D plan proceeds by iteratively applying the following

steps at each iteration j:



89 Detection framework: first scenarios

···

S

···

S1

Si

Sn

Ssi,1
Ti,1(Ssi,1)

SSi,2

Ti,j-1(Ssi,j-1)

··· Ssi,n

Si = Ei,1 Ei,2 = Ti,1(Ei,1) Ei,j = Ti,j-1(Ei,j-1) En = Ti,n-1(Ei,n-1)

Decremental 
Framework

···
SSi,j

Figure 3.3: A Decomposition-Detection plan. Si is the ith component after

decomposition; Sij is the component Si at jth step when analyzing; Eij

refers to the entire system when analyzing Sij .

1. Find the small subsystem SSi,j of the current local part Si. Since the

small subsystems are linked with solving sequence, the ones that are

the source of the sequence should be chosen first (SSi,1).

2. Detect numerical over-constraints in SSi,j using algebraic methods of

Section 2.4.2. Users can either remove or modify them once they are

detected. Otherwise, solve SSi,j directly using algebraic solver.

3. Replace SSi,j−1 by an abstraction or simplification Ti,j−1(SSi,j−1)

thereby replacing the entire system Ei,j−1 by a simplification Ei,j =

Ti,j−1(Ei,j−1). The simplification can be the removal/modification of

the over-constraints or solving SSi,j−1 and substituting the solution to

Ei,j−1. The latter operation can potentially generate over-constraints

since the solution of SSi,j−1 may cause some equations of Ei,j−1 sat-

isfied or unsatisfied (Section 3.3).

The decremental framework can be adapted and incorporated into a D-D

plan to analyze Si. In this way, Si is initially represented with a bipartite

graph. SSi,j corresponds to the strongly connected component of jth itera-

tion, which is to be analyzed by algebraic method (Ti,j(SSi,j)). The analysis

results could then be used to simplify Ei,j through Ti,j(Ei,j). As a result,

Ei,j is updated to Ei,j+1. More details of the proposed decomposition plan

will be given in Section 3.2



Detection and resolution in NURBS-based systems 90

3.2 A generic approach coupling structural decom-

positions and numerical analyses

This section describes our approach for detecting and treating redundant

and conflicting geometric constraints. The main idea is to decompose the

system of equations into smaller blocks that can be analyzed iteratively

using dedicated numerical methods. The overall framework and algorithm

are first introduced before detailing the different steps involved (Hu, Kleiner,

and Pernot, 2017).

3.2.1 Overall detection framework

The overall framework has been modeled in Figure 3.4. It is based on

three nested loops: the structural decomposition into connected compo-

nents (CC); the structural decomposition of a CC into its subparts (G1, G2,

G3) and its corresponding DAG of stronglyly connected components (SCC);

the iterative numerical analysis of these SCC. Pseudo-codes for the main

procedures are provided in Section 3.2.3

Loop among connected components

The system of equations (SE) is initially represented by a graph struc-

ture G, where nodes correspond to variables and edges to equations. The

structure is first decomposed into n connected components {CC1, · · · , CCn}
using Breadth First Search (BFS) (Leiserson and Schardl, 2010). Such a de-

composition is made possible thanks to the local support property of NURBS

or simply when using constraints which decouple what happens along the x,

y and z directions of the reference frame (e.g. position or coincidence con-

straints). As a result, geometric over-constraints can be detected separately

for each CCi.

Loop among subparts obtained by D-M decomposition

The D-M decomposition is used to structurally decompose CCi into

a maximum of three subparts: Gi1 (over-constrained subpart), Gi2 (well-

constrained subpart) and Gi3 (under-constrained subpart). Each subpart (if

it exists) will be analyzed iteratively using the third nested loop explained

below.

However, a single pass of the third loop on each Gij is not sufficient.

Indeed, any pass may lead to the removal of constraints, which modifies the
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structure of the CCi and thus requires to apply D-M decomposition again

after the pass to obtain updated subparts. The superscript d is used to note

that CCd
i (resp. Gd

ij) refers to CCi (resp. Gij) after its dth D-M decomposi-

tion. Although the number of passes required is unknown in advance, it is

guaranteed that the process will converge to a state where only one subpart

Gi3 is left. In other words, constraints will be either removed or moved to

the third subpart along the process.

Loop among stronglyly connected components

In addition to the subparts, D-M decomposition also provides a DAG

for each CCd
i . Nodes of this DAG are stronglyly connected components

SCCd
ijk. Edges of this DAG (purple arrows in the figure 3.4) denote solving

dependencies between the SCCd
ijk and may cross subpartsGd

ij boundaries. In

the following, linkedSCC(Gd
ij) refers to the operation that obtains (the sub-

part of) this DAG from the dth D-M decomposition of CCd
ij that corresponds

to the given subpart.

The third loop consists in trying to iteratively (in the DAG-dependencies

induced order) find numerical over-constraints in each SCCd
ijk or, when it

is solvable, propagate its solution to other blocks. Since blocks are strongly

connected, there is only one potential solution to each block unless it con-

tains only variables, and this latter case can only be encountered in a third

subpart Gd
i3. The process works only the top-level of the DAG (red blocks in

the figure) because these blocks equations do not use variables from other

blocks. Moreover, the other level of the DAG (blue blocks in the figure) use

variables from other blocks, which contains the same number of variables

and equations.

For each red block, and as shown in the top-left part of the figure 3.4, an

appropriate numerical method (numFindRC in the figure and the pseudo-

code) tries to find redundant (R) or conflicting (C) constraints. These over-

constraints are then removed from the currently analyzed connected com-

ponent CCd
ij . If the block is solvable, its (unique) solution is propagated

to dependent blocks, which may lead to additional redundant or conflict-

ing constraints being detected and removed from CCd
ij . Once all red blocks

have been analyzed, this part of the DAG (potentially turning blue blocks

into red ones) is recomputed until all blocks are analyzed. However, there is

no need to recompute the D-M decomposition on the whole CCd
ij and it is

sufficient to recompute it only the maximum matching for the current sub-

part by calling linkedSCC again. The superscript m is used to note that Gdm
ij

(resp. SCCdm
ijk ) refers to Gd

ij (resp. SCCd
ijk) after its mth matching. Although
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the number of passes required is unknown in advance, it is guaranteed that

the process will converge to a state where there are either no blocks left,

or these blocks only contain variables (and that is only possible for the

third subpart Gd
i3) according to our testing experiences . In other words,

constraints and variables are removed until we obtain an under-constrained

system with multiple solutions, meaning no more propagation is possible. In

that last step, as shown in the bottom-left part of the figure, the remain-

ing system is analyzed for numerical conflicts and proceeds with the next

connected component.

3.2.2 Strongly connected components analysis

This section discusses the techniques used to analyze the stronglyly con-

nected components SCCdm
ijk . This corresponds to numFindRC function of

Algorithm 2 (section 3.2.3) used to find redundant (R) and conflicting (C)

constraints of a component if they exist. Otherwise the component is solved

and solutions are propagated to the whole system. Here, QR is used for

linear systems.

For non-linear systems, methods can be of three types. As discussed in

section 2.5.2, symbolic methods like Grobner basis is limited to high com-

putational cost when analyzing large systems of equations. Sometimes, the

solving process cannot coverage (table 2.12). Numerical method like WCM,

however, enables to detect numerical over-constraints of non-linear systems

in polynomial time (Michelucci and Foufou, 2006a) but cannot further dis-

tinguish redundant and conflicting constraints. To find them, WCM should

be used together with other methods that are able to distinguish redundant

and conflicting constraints. In this section, we show how these methods are

combined to detect redundant and conflicting constraints of a system. The

different combinations are illustrated in figure 3.5 and discussed in next

paragraphs.

Let us define a constraints system with a set of polynomial equations:

f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

...

fr(x1, x2, · · · , xn) = 0

fr+1(x1, x2, · · · , xn) = 0

...

fm(x1, x2, · · · , xn) = 0

(3.1)
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m
···

n

basis 

over

f1=0

fr=0

fm=0

for all the 
over-constraints fj=0

f1=0

fr=0

fj=0

If rgbr+j==rgbr then fj is redundant
If rgbr+j=={1} then fj is conflicting

Compute rgbr

Grobner basis

Solve

If solvable, fj is redundant, 
otherwise it is conflicting

Incremental solving

Min:

S.t. : 

2

jF f

1 0,... 0rf f  Min: 2 2

1

r

j i

i

F f f


 
Compute rgbr+j

If               ,fj is redundant, 
otherwise it is conflicting

Optimization

min 0F 

m ···

n

WCM

Figure 3.5: Combing WCM with Grobner basis, Incremental solving or Op-

timization to detect redundant and conflicting constraints.

By using WCM, we find that equations 1 to r are the basis constraints and

the equations (r+1) to m are the over-constraints (figure 3.5). To distinguish

redundant and conflicting constraints, further steps are needed. They are

detailed in the following paragraphs.

WCM+GB (Grobner Basis)

The Grobner Basis method for distinguishing redundant and conflict-

ing equations can be briefly illustrated as follows. For a set of polynomials

f0, f1, · · · , fs ∈ C[x1, · · · , xn]. Assuming the reduced Grobner basis(rgb0)

of the ideal 〈f1, · · · , fs〉 satisfies rgb0 6= {1} and rgb0 6= {0} with respect

to any ordering. To know if f0 = 0 is a conflicting, redundant or inde-

pendent equation, we compute the new reduced Grobner basis of the ideal

〈f0, f1, · · · , fs〉, which is rgbnew. If rgbnew = {1}, f0 = 0 is a conflicting equa-

tion; if rgbnew ≡ rgbold, f0 = 0 is a redundant equation; if rgbold ⊂ rgbnew,

f0 = 0 is an independent equation (paragraph 2.4.2).

As for distinguishing redundant and conflicting constraints in the over-

constraints set, we first compute the reduced Grobner basis (rgbbasis) of the

basis constraints ({f1, · · · , fr}); then add one equation (fj = 0, j ∈ {r +

1, · · · ,m}) of the over-constraints list to the basis constraints and compute

the reduced Grobner basis of the new group (rgbnew). Of course, rgbbasis
satisfies rgbbasis 6= {1} and rgbbasis 6= {0} since equations contained are all

independent. Moreover, rgbnew satisfies either rgbnew = {1} or rgbnew = {0},
indicating fj = 0 as redundant or conflicting respectively. Following the same
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way, equations of the over-constraints are tested one by one with respect to

the basis constraints. As a result, redundant and conflicting constraints in

a set of the over-constraints are distinguished.

WCM+IS (Incremental Solving)

The Incremental Solving method test redundant and conflicting con-

straints by directly testing the solvability of system of equations. The solv-

ability of basis constraints {f1 = 0, · · · , fr = 0} are tested first. Indeed,

it is solvable. Then, we incrementally insert an over-constraint fj = 0,

j ∈ {r + 1, · · · ,m} to the set of basis constraints forming a new group

of equations {f1 = 0, · · · , fr = 0, fj = 0}. If the new group is solvable, then

fj = 0 is redundant, otherwise it is conflicting.

WCM+OP(Optimization)

In the work of Ge et al (Ge, Chou, and Gao, 1999), optimization method

is used to address geometric constraint satisfaction problems. They pro-

posed to convert the system of equations F = {f1, f2, · · · , fn} into the sum

of squares σ =
∑n

i=1 f
2
i and find the minimal value of σ. If σmin is not

equal to 0, the system is inconsistent. The method is mainly used to de-

cide whether a system is consistent or not. In other words, it can be used

to know the existence of conflicting constraints. However, we extend the

method to two approaches (Optimization 1 and Optimization 2 ) to test the

redundancy or conflicting of fj = 0, j ∈ {r+1, · · · ,m} with respect to basis

constraints{f1 = 0, · · · , fr = 0}.

• Optimization 1 A constraint satisfaction problem is set by transform-

ing the over-constraint fj = 0 to an objective function F = f2
j (X).

minimize
X

F = f2
j (X)

subject to {f1 = 0, · · · , fr = 0}, i = 1, . . . r.

If Fmin is equal to 0, then fj = 0 is redundant; otherwise, it is con-

flicting.

• Optimization 2 The constraints set {f1 = 0, · · · , fr = 0, fj = 0} is

transformed into CSP:

minimize
X

F = f2
j (X) +

r∑
i=1

f2
i (X)

If Fmin is equal to 0, then fj = 0 is redundant; otherwise, it is con-

flicting.
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3.2.3 Pseudo-code

Algorithm 3 Structural decomposition
1: SE ← System of Equations
2: G← Graph(SE)
3: [CC1, · · · , CCn]←BFS(G)
4: for i = 1 to n do
5: [G1

i1, G
1
i2, G

1
i3]←DM(CCi)

6: CC1
i ← CCi

7: for j = 1 to 3 do
8: d← 1
9: continue←True

10: while continue & Gd
ij 6= ∅ do

11: [continue,CCd+1
i ] ← findRC(CCd

i , G
d
ij)

12: d← d + 1
13: [Gd

i1, G
d
i2, G

d
i3]←DM(CCd

i )
14: end while
15: end for
16: end for
17: return [CCd

1 , · · · , CCd
n]

Algorithm 4 findRC: Numerical analysis of Gd
ij subpart of CCd

i

Require: CCd
i and Gd

ij

Ensure: Boolean continue and updated CCd
i

1: [SCCd1
ij1, · · · , SCCd1

ijN ]←linkedSCC(Gd
ij)

2: m← 1
3: Gd1

ij ← Gd
ij

4: while [SCCdm
ij1 , · · · , SCCdm

ijN ] 6= ∅ do
5: l← 0
6: for k = 1 to N do
7: if onlyVariable(SCCdm

ijk ) then
8: l← l + 1
9: else

10: [R,C]← numFindRC(SCCdm
ijk )

11: if [R,C] == ∅ then
12: solution ← solve(SCCdm

ijk )

13: propagate(solution,CCd
i )

14: R← checkRedundant(CCd
i )

15: C ← checkConflicting(CCd
i )

16: end if
17: CCd

i ← removeRCfromCC(CCd
i , [R,C])

18: end if
19: if l == N then . all red blocks contain only variables
20: [R,C]← numFindRC(CCd

i )
21: CCd

i ← removeRCfromCC(CCd
i , [R,C])

22: return False,CCd
i

23: end if
24: end for
25: G

d(m+1)
ij ← update(CCd

i )
26: m← m + 1
27: [SCCdm

ij1 , · · · , SCCdm
ijN ]←linkedSCC(Gdm

ij )
28: end while
29: return True,CCd

i
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As it is shown in above tables, we provide the pseudo-code for the two

main procedures of the approach, surrounded by dotted rectangles on fig-

ure 3.4.

3.2.4 Rough time complexity analysis

Assuming systems of equations have V number of variables and E num-

ber of equations. It is initially decomposed into N number of unconnected

components. Then, for each component i, DM decomposition is applied Mi

times to analyze the DAGs (figure 3.6). For one DAG j, we assume that

there are Eij number of equations and Vij number of variables as well as

Kij number of red blocks. In these blocks, we assume that there are Kij−non
number of blocks containing non-linear equations and Kij−lin number of

blocks containing linear equations. Also, for one block Kk, we assume that

there are mijk number of equations and nijk number of variables.

System of 
Equations

Component i··· ··· Component NComponent 1

BFS

···

··· ···

···
DM DM

1 j Mi

1 KijKk··
mijk

nijk

Eij

Vij

··

V: variables 
E: equations

DAG:

Figure 3.6: Decomposition for time complexity analysis.
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Operation BFS D-M Grobner basis QR

Time complexity O (V + E) O (EijVij) + O (Eij) 2
(
d2/2 + d

)2nijk−1

O(n3
ijk)

BFS: Operate on the whole system of equations
D-M: Operate on one of the DAGs (jth-DAG) (Pothen and Fan, 1990)
Grobner basis: Operate on one of the red blocks (kth red block). nijk is the number of vari-
ables, and d is the maximal total degree of the input polynomials (Dubé, 1990)

Table 3.3: Time complexity for individual operations

Time complexity of the methods used in the basic operations is sum-

marized in table 3.3 As a result, by adding basic operations together, the

total time complexity can be estimated as:

O(V+E)+
N∑
i=1

M∑
j=1

O(EijVij)+O(Eij)+

Kij−non∑
k=1

2(d2/2+d)2
nijk−1

+

Kij−lin∑
k=1

n3
ijk


(3.2)

The above time complexity estimates the upper bound computation time

for detecting over-constraints that are detected by QR or Grobner basis

method. However, for detecting over-constraints using Optimization or In-

cremental solving, the time complexity is hard to estimate because solv-

ing nonlinear equations is an iterative process, whose convergence speed is

problem-dependent. Therefore, estimate the time complexity of the whole

algorithm by considering only the number of equations and variables is not

enough. Actually, time complexity estimation considering only number of

equations and variables can be misleading in some cases. Empirical experi-

ments on time complexity will be shown in section 4.4

3.3 Validation and evaluation of the solutions

Section 1.3 has introduced the multiple ways to model requirements

within an optimization problem by specifying an unknown vector X, the

constraints to be satisfied F (X) = 0 and the function G(X) to minimize.

The approach described in this section allows for the identification of

redundant and conflicting equations. Correctness is ensured since it consists

of a fixed-point algorithm that only stops when the system is solvable. Ad-

ditionally, any removed equation is guaranteed to be either conflicting or

redundant with the remaining set. It has thus been shown that the set of

equations F (X) = 0 can be decomposed in two subsets: Fb(X) = 0 contain-

ing the basis equations, and Fo(X) = 0 the over-constrained ones.

To stay close to the requirements the designer has in mind, the proposed

approach then moves from the equations level to the constraints level. Thus,
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the geometric constraints associated to the equations Fo(X) = 0 are ana-

lyzed and all the equations related to those constraints are gathered together

in a new set of equations F̃o(X) = 0. Of course, the equations Fo(X) = 0 are

included in the set of equations F̃o(X) = 0. Finally, the equations related

to constraints which are neither conflicting nor redundant form the other

set F̃b(X) = 0. This transformation allows working at the level of the con-

straints and not at the level of the equations. This is much more convenient

for the end-user interested in working at the level of geometric requirements.

Since this decomposition is not unique, it gives rise to various potential

final solutions (interactive decomposition has not been considered in this

thesis). Therefore several criteria are now introduced to evaluate these so-

lutions according to the initial design intent. To be able to characterize the

quality of the obtained solutions, the set of user-specified parameters P is

introduced. This set gathers together all the parameters the designer can

introduce to define the constraints his/her shape has to satisfy. For exam-

ple, the distance d imposed between two points of a NURBS surface is a

parameter characterizing a part of the design intent. Then, the idea is to

evaluate how much the solutions deviate from the initial design intent and

notably in terms of the parameters P .

To do so, the optimization problem containing the basis constraints is

solved : {
F̃b(X) = 0

minG(X)
(3.3)

and the solution X ′ is then used to evaluate the unsatisfied over-constraints

F̃o(X
′) as well as the real values P ′ of the user-specified parameters P . For

example, if the user-specified distance d between the two patches cannot

be met, then the real distance d′ will be measured on the obtained solu-

tion. From this solution, it is then possible to evaluate three quality criteria:

• Deviation in terms of parameters/constraints: this criterion aims at

measuring how far/close the real values P ′ of the parameters are from

the user-specified parameters P . This criterion helps understanding if

the design intent is preserved in terms of parameters and consequently

in terms of constraints.

df =

∑
i |P ′i − Pi|∑

i |Pi|
(3.4)

• Deviation in terms of function to minimize: this criterion directly eval-

uates how much the objective function G has been minimized. Here,
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the function is simply computed from the solution X ′ of the opti-

mization problem. To preserve the design intent this value is to be

minimized. Thus, it can be used to compare several solutions between

them.

dg = G(X ′) (3.5)

• Degree of near-dependency : rank deficiency of the Jacobian matrix at

the witness clearly reveals the dependencies between constraints. How-

ever, for NURBS-based equation systems, the constraints can be inde-

pendent but near to be dependent. In this case, the Jacobian matrix of

F̃b(X) at the solution point X ′ is ill-conditioned and the correspond-

ing solution can be of bad quality. The third criterion thus evaluates

the condition number (cond) of the Jacobian matrix as a measure of

near-dependency (Kincaid and Cheney, 2002):

cond = cond(JJ
F̃b

(X ′)) (3.6)

Finally, even if those criteria characterize the quality of the solution

X ′ with respect to the design intent, they have not been combined in a

unique indicator. Thus, the results of the next chapter will be evaluated by

analyzing and comparing those three criteria for each solution.

3.4 Finding spanning groups

Among one loop of analyzing stronglyly connected components, numer-

ical over-constraints can be found by either analyzing strongly connected

components directly or indirectly generated during the process of propagat-

ing solutions. In this section, we first discuss how the spanning groups of

these over-constraints can be found in one loop and then discuss how to

link the spanning groups of different loops together so as to obtain the final

spanning groups of the over-constraints.
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Figure 3.7: Detecting over-constraints in one loop: An example
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3.4.1 In one loop

In this section, we assume that the DAG structure of one loop is shown in

figure 3.7(a). Block A is solvable while block I contains over-constraints. Af-

ter solving block A and propagating the solutions to the other blocks, all

the over-constraints in block B are either satisfied or unsatisfied. For the

former, spanning groups of over-constraints of block I are inside the block

itself. For the later, however, spanning groups of over-constraints of block B

are outside the block since these over-constraints are triggered by solutions

of block A.

Inside block

For an over-constraint Eoi of a set of over-constraints Eo in a block, its

spanning group Esg is the set of basis constraints Eb of that block. Since in

a strongly connected component every vertex is reachable from every other

vertex, the over-constraint can be reached from all the basis constraints

through the variables they share.

Outside block

In this case, the spanning group of an over-constraint gathers together

the constraints of the block whose solution triggers the satisfactory or un-

satisfactory of the over-constraint.

Taken figure 3.7 as an example. At step a), block A and I are ana-

lyzed. The result shows that block A is solvable while I contains numerical

over-constraints which are I.2 and I.5. As discussed in previous section, the

spanning group of the over-constraints are {I.1, I.3, I.4}. In step c), we solve

the block A and propagate the solution to the DAG structure. As a result,

constraints in block B {B.1, B.2} are the over-constraints with constraints

in block A as the spanning group {A.1, A.2, A.3, A.4}. They are summarized

in table 3.4.

type over-constraints spanning groups

I I.2,I.5 I.1,I.3,I.4

II B.1,B.2 A.1,A.2,A.3,A.4

Table 3.4: Two types of over-constraints and spanning groups

Thus, there exist two types of over-constraints: over-constraints de-

tected based on the basis constraints inside the same block (type I), or

over-constraints detected based on the solutions from other blocks (type
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II). For the former, they are detected by numerical methods discussed in

section 3.2.2. For the latter, they are detected during the process of propa-

gating solutions.

Finding the spanning group of type II

Spanning group of type I is easy to find, since the basis constraints are

within the same block of an over-constraint. In this paragraph, we propose

a method for finding the spanning group of type II based on a directed

graph. We take figure 3.7 as an example. Since constraints of block B are

fully fed by solutions from block A, the spanning group can be traced back

through the feeding variables.

A
1 2
3 4

1 2

B

· · · ·

· ·

1 2 3 4

· · · ·

· ·

1 2 3 4

· · · ·

· ·

1 2 3 4

1 2 1 2 1 2

A

B

A

B

A

B

o) a) b) c)

directed

graph

after 

solving

Solvable

Same variables

Solving order between equations

equation

Variables·
Adding reverse edge

Figure 3.8: Finding spanning group of type II of figure 3.7.

Steps to find spanning groups are:

1. Equation graphs are generated according to the equations. Note that,

here we assume that the variables within a block are shared by ev-

ery two equations so that the block is a strongly connected compo-

nent(figure 3.8 a).

2. Directed graphs are generated by transforming edges into directed

edges where a direction is pointed from an equation to a variable. As

it is shown in figure 3.8 b), we also use a bi-directed edge to link the

feeding variables between the two blocks. These variables are exactly

the same variables.

3. After solving, new directed edges are generated by pointing from vari-

ables to edges. As it is shown in step c) of the figure, they are the red

edges in block A by simply reversing the edges of step b).
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4. Starting from B.1 and B.2, the spanning groups are the equations

reached along the directed edges, which are the set of equations {A.1, A.2,
A.3, A.4} in this case.

3.4.2 Linking loops together

The previous paragraph has shown how to find the spanning group of an

over-constraint in one loop of D-M decomposition. However, as it is shown

in figure 3.4, the DAG structure Gdm
ij is updated frequently when looping on

analyzing SCCdm
ijk s, which means that a constraint may go through many

loops before it is finally detected as an over-constraint. For example, in

figure 3.9, three groups of over-constraints are detected during the three

loops of applying D-M decomposition (table 3.5).

Figure 3.9: Detecting over-constraints along several D-M loops. a) First

loop b) Second loop c) Third loop

Over-constraints First loop Second Loop Third loop

type I I.2,I.5 D.1 E.3

type II B.1,B.2 F.1

Table 3.5: Over-constraints detected in three loops of figure 3.9

The spanning group of the three over-constraints are summarized in the

table 3.6 Spanning group of D.1 is {I.3, I.4} which are directly from red

block I. Spanning group of E.3 is more complicated, However. In loop c),
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the spanning group is {E.1, E.2}. But in loop b), the solution of block C

is propagated to the equations of block E, resulting in red block E in loop

c). Therefore, equations in block E of loop c) is equivalent with the equa-

tions in block C and E of loop b). The spanning group of E.3 is extended

to {E.1, E.2, C.1, C.2, C.3, I.1}. Similarly, in loop a), the solution of block

A updates the structure of block C. By adding equations of block A, the fi-

nal spanning group of E.3 is {E.1, E.2, C.1, C.2, C.3, I.1, A.1, A.2, A.3, A.4}.
Comparing to E.3, F.1 is of type II and thus does not have spanning group

inside block F. The final spanning group is a set of equations outside the

block (table 3.6, third column).

Over-constraint D.1 E.3 F.1

Spanning group I.3,I.4 E.1,E.2,C.1,C.2,C.3,I.1,A.1,A.2,A.3,A.4 C.1,C.2,C.3,I.1,A.1,A.2,A.3,A.4

Table 3.6: Spanning groups of the over-constraint: D.1, E.3 and F.1

3.4.3 General case

In our algorithm, variables of a constraint can be substituted at dif-

ferent loops of D-M decomposition before it is finally detected as an over-

constraint. For example, in figure 3.10, variables of constraint E.3 and F.1

are fed by solution from block C which has been fed by the solution from

block A. More general case of constraint E.3 and F.1 are shown in figure 3.11

a) and b) respectively. Variables of an over-constraint or basis constraints

can be substituted at different D-M loops before the final identification.

Figure 3.10: Loops of detecting the over-constraint: D.3 (left), E.3 (middle)

and F.1 (right)

The final spanning group is a combination of the spanning group in each

D-M loop. For case a) of figure 3.11, the spanning group of each loop is a

set of equations of the yellow blocks whose solution contributes directly or

indirectly to the substitution of the variables of the over-constraint. Note
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that, we use Ei to represent a set of equations in a block. For example, in

step n-1) of figure 3.12, solutions of equation set E6 are substituted directly

to the over-constraint(type II) while solutions of equation set E4 and E5 are

firstly propagated to equation set E2 and E3 respectively and then in step

n), the solution of E2 and E3 are directly fed to the over-constraint. In the

latter case, solutions of E4 and E5 are fed indirectly to the over-constraint

in step n-1).

1 2( , , , , , ) 0k nf x x x x  ( , ) 0nf x  ( , ) 0nf x 
()f

1 2( , , , , , ) 0k nf y y y y  2( , , , , ) 0k nf y y y  ( ) 0f 
( ) 0f 

1 2( , , , , , ) 0k nf z z z z  ( , , , ) 0k nf z z  ( , , ) 0k nf z z 
( ) 0f 

···

basisf

( ) :f X

( ) :f Y

( ) :f Z

···

···

···

···

···

···

= constant

a)

b)

Solved

Solution
propagating

D-M 

Figure 3.11: General feeding process of over-constraints

Figure 3.12: Finding spanning group during D-M decompositions

However, for an over-constraint of type I, the spanning group of each

loop is a set of equations of the yellow blocks whose solution contributes di-
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rectly or indirectly to the substitution of the variables of the over-constraint

as well as the corresponding basis constraints. As it is shown in figure 3.13,

in step n-1), the spanning group are E4 which spans the over-constraint; E5

and E6 which span the basis constraints.

Figure 3.13: Finding spanning group during D-M decompositions

3.4.4 Pseudocode

This section provides the pseudo-code for finding the spanning groups. We

modified the previous algorithms and generated the new ones.

Algorithm 5 Structural decomposition
1: SE ← System of Equations
2: G← Graph(SE)
3: [CC1, · · · , CCn]←BFS(G)
4: for i = 1 to n do
5: [G1

i1, G
1
i2, G

1
i3]←DM(CCi)

6: CC′i ← directedGraph(CCi) . directions are from equations to variables
7: CC1

i ← CCi

8: CC′1i ← CC′i
9: for j = 1 to 3 do

10: d← 1
11: continue←True
12: while continue & Gd

ij 6= ∅ do

13: [continue , CCd+1
i , CC′d+1

i ]← findRCandSpanningGroup(CCd
i , G

d
ij , CC′di )

14: d← d + 1
15: [Gd

i1, G
d
i2, G

d
i3]←DM(CCd

i )
16: end while
17: end for
18: end for
19: return [CCd

1 , · · · , CCd
n]
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Algorithm 6 findRCandSpanningGroup: Find redundant/conflicting con-

straints and their spanning groups
Require: CCd

i , Gd
ij and CC′di

Ensure: Boolean continue, updated CCd
i , CC′di , spanningGroupR, spanningGroupC

1: [SCCd1
ij1, · · · , SCCd1

ijN ]←linkedSCC(Gd
ij)

2: m← 1
3: Gd1

ij ← Gd
ij

4: while [SCCdm
ij1 , · · · , SCCdm

ijN ] 6= ∅ do
5: l← 0
6: for k = 1 to N do
7: if onlyVariable(SCCdm

ijk ) then
8: l← l + 1
9: else

10: [R,C]← numFindRC(SCCdm
ijk )

11: if [R,C] == ∅ then
12: solution ← solve(SCCdm

ijk )

13: CC′di ← reverseEdge(CC′di , SCCdm
ijk ) . reverse the edges of SCCdm

ijk in CC′di :
from variables to equations

14: propagate(solution,CCd
i )

15: R← checkRedundant(CCd
i )

16: spanningGroupR← descendantEquations(CC′di , R) . Find all the
descendant equations starting from R in CC′di .

17: C ← checkConflicting(CCd
i )

18: spanningGroupC ← descendantEquations(CC′di , C) . Find all the
descendant equations starting from C in CC′di .

19: else
20: spanningGroupR← descendantEquations(CC′di , R ∪ SCCdm

ijk .basis) . Find

all the descendant equations starting from R and the basis equations in SCCdm
ijk .

21: spanningGroupC ← descendantEquations(CC′di , C ∪ SCCdm
ijk .basis) . Find

all the descendant equations starting from C and the basis equations in SCCdm
ijk .

22: end if
23: CCd

i ← removeRCfromCC(CCd
i , [R,C])

24: end if
25: if l == N then . all red blocks contain only variables
26: [R,C]← numFindRC(CCd

i )
27: CCd

i ← removeRCfromCC(CCd
i , [R,C])

28: return False, CCd
i , CC′di

29: end if
30: end for
31: G

d(m+1)
ij ← update(CCd

i )
32: m← m + 1
33: [SCCdm

ij1 , · · · , SCCdm
ijN ]←linkedSCC(Gdm

ij )
34: end while
35: return True, CCd

i , CC′di

One can notice that those algorithms do not really return the redun-

dant and conflicting equations as they are removed during the detection

process. Spanning groups are identified and the list of equations is saved

outside the algorithm.
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3.5 Conclusion

In this chapter an approach for finding all over-constraints in free-form

geometric configurations has been introduced. It relies on a coupling be-

tween structural decompositions and numerical analysis. The approach has

several benefits: it is able to distinguish between redundant and conflict-

ing constraints; it is applicable on both linear and non-linear constraints;

and it applies numerical methods on small sub-blocks of the original sys-

tem, thus allowing to scale to some large configurations. Additionally, since

the set of over-constraints of a system is not unique, it has been shown

that our approach is able to provide different sets depending on the selected

structural decomposition, and proposed criteria to compare them and as-

sist the user in choosing the constraints he/she wants to remove. Even if

the kernel of the algorithm works on equations and variables, the decision

is taken by considering the geometric constraints specified by the designer

at a high level. Finally, method on finding the spanning group of an over-

constraint is proposed. For an over-constraint, there may exist many span-

ning groups. Our algorithm enables to find one of them based on a directed

graph. In the next chapter, the detection and resolution processes as well as

finding spanning groups are illustrated with results on both academic and

industrial examples.





Chapter 4

Results and discussion

This chapter presents three configurations on which the proposed over-

constraints detection and resolution technique has been tested. The first

one concerns the academic Double-Banana testing case widely studied in

the literature (section 4.1). It has been used to compare our solution to

the ones generated by others. The two other examples are more industrial

and concerns the shaping of a teapot (section 4.2) and glass (section 4.3)

composed of several NURBS patches. The relationship between time com-

plexity and size of a system, and the influence of specified tolerances on the

detection results are discussed in section 4.4.

4.1 Double-Banana testing case

The variables X, the constraints F (X) = 0, and the parameters P of

the Double-Banana testing case are exactly the same as the ones tested by

Moinet et al. (Moinet, Mandil, and Serre, 2014). The configuration as well

as the parameters are discussed in section 2.5.2.

4.1.1 Modeling

The system to be solved is composed of 18 equations (figure 4.1) and

24 variables. The variables are the coordinates (xi, yi, zi) of 8 vertices (Pti)

of the Double-Banana geometry. The incidence matrix of the equations is

shown in table 4.1
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Figure 4.1: System of equations of the Double Banana geometry

x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7 x8 y8 z8

e4 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

e1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1

e9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

e2 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e18 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

e10 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

e7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

e15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

e13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

e12 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

e8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

e16 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

e17 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

e3 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

e5 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

e11 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Table 4.1: Incidence matrix of the equations of the Double Banana geometry

4.1.2 Detection process

Incidence matrix describes the relationships between variables and equa-

tions. Adjacency matrix describes the relationships between variables, which

can be obtained from incidence matrix. Based on the adjacency matrix, the

constraint graph between variables is drawn in figure 4.2.
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Finding local parts

The Breadth First Search (BFS) is used to find the unconnected com-

ponents of the constraint graph. As revealed by BFS, the constraint graph

contains only one component, meaning that there is only one local part in

the whole system.

  Pt1x   Pt1y

  Pt1z

  Pt2x

  Pt2y

  Pt2z

  Pt3x

  Pt3y

  Pt3z

  Pt4x

  Pt4y

  Pt4z
  Pt5x

  Pt5y

  Pt5z
  Pt6x

  Pt6y

  Pt6z

  Pt7x

  Pt7y

  Pt7z

  Pt8x

  Pt8y  Pt8z

Figure 4.2: Constraint graph of the variables of the Double Banana geometry

Analysis of the local parts

z4 z6 z7 x8 y8 z8 x1 y1 z1 x2 x3 y3 x4 y4 x5 y5 z5 y2 z2 x6 y6 x7 y7 z3

e17 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
e18 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
e4 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
e1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
e16 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1
e6 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
e3 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0
e9 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
e7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0
e8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0
e10 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
e12 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
e14 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
e13 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
e15 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
e11 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0
e5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1

Table 4.2: Incidence matrix after D-M decomposition
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Structural analysis For the local part, D-M decomposition is used for

structural analysis. As it is shown in table 4.2, the whole part is structurally

under-constrained. Maximum matching of the part is the diagonal (marked

red) of the matrix. Strongly connected components and the solving sequence

between them form a DAG structure which is shown in figure 4.3. Since

all the red blocks are only variables, the whole part should be analyzed

together. Thus, the process follows the bottom part of the algorithm of

figure 3.4.

· · · · · ·

z1y5z5y6y7z3

z4 z6 z7 x8 y8 z8 x1 y1 x2 x3 y3 x4 y4 x5 y2 z2 x6 x7

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

10

13G orderedLinkedSCC

11

13G

Figure 4.3: Evolution of G1
13

Numerical analysis WCM analysis is used within our numFindRC func-

tion and an over-constraint is detected. More specifically, the equation e9

is here detected. Using our Incremental Solving approach, the equation is

further characterized as a conflicting one (type I).

Component
Initial D-M D-M

times
Over-constraints

Over Well Under Redundant Type Conflicting Type

1
√

1 e9 I

Table 4.3: Result of analyzing Double-Banana configuration

The equation e9 is therefore removed and the system is solved using

the initial position of the nodes as initial values of the variables. Using

the results, the equation e9 is then reevaluated and the associated param-

eter is compared to the user-specified value. In the present case, e9 is not

satisfied since it is equal to 44.47 compared to the initial user-specified re-

quirement of 45 (figure 2.37). Thus, the deviation from the design intent

is df = 0.53/45. Our algorithm gives a solution that is much closer to the

initial design intent than the algorithm of Moinet et al., and the remaining

system is less ill-conditioned after removing the conflicting constraint (ta-

ble 4.4). Actually, the algorithm of Moinet et al. identifies e18 as a conflicting
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equation and its removal induces a deviation df = 4.38/32 from the initial

design intent.

Method Witness Over-constraint df cond

Our initial sketch e9 0.53/45 16.97

Moinet et al. initial sketch e18 4.38/32 73.33

Table 4.4: Comparison between our algorithm and Moinet’s approach on

the Double-Banana testing case

It has been shown that our algorithm works well on this geometry. To see

if it works well on the other configurations as well, we introduce the following

industrial example: a 3D teapot, whose geometry type and constraints are

much more complex.

4.2 Sketching a 3D teapot

In this example, we show how the proposed over-constraints detection

and resolution approach can support the sketching of a 3D teapot (fig-

ure 4.4). The designer sketches the teapot following his/her design intent

and the associated requirements.

surf36 surf34

surf27

surf28

Lid

Spout

Figure 4.4: Initial sketch of a teapot

4.2.1 Modeling

Here, the objective is to modify the spout and lid of the teapot by

specifying the following elements:
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Figure 4.5: Free control points of the Lid
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U
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··· ···

Figure 4.6: Free control points of the Spout

• Variables: As it is shown in figure 4.5, the lid is composed of two

symmetric patches (surf36 and surf34). Each patch has a degree 6× 3

and has a control polygon made of 41 × 7 control points. Similarly,

the spout is composed of two symmetric patches (surf27 and surf28),

each of which has a degree 6 × 6 and has a control polygon made

of 33 × 9 control points (figure 4.6). Positions of free control points
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with respected to the control polygon are indicated in the table of

both figures and their coordinates are the variables of our optimization

process. Since the objective is to modify the dimension of the teapot,

the designer selects how many rows of control points are to be blocked

and how many can move. For example, in figure 4.5, free control points

of row 1 and 7 are selected to modify the shape of surf36. As a result,

there are 2 × 16 × 3 = 96 variables. Results will be illustrated with

free control points of the same columns in rows [1,7] and rows [1,2,6,7]

for both surf34 and surf36. For surf27 and surf28, free control points

are in rows [1,9] and [1,2,8,9] along V direction as well as columns

[30,31,32,33] along U direction (figure 4.6).

surf36

surf34

Label:1,2

Label:3,4

Label:5,6

Label:9,10 Label:7,8

CO+TAN

surf27surf28
a) b)

Label:11,12

Label:13,14

Label:15,16

Figure 4.7: Coincidence and tangency constraints of a) the Lid, b) the Spout

• Constraints: Two types of constraints are used to specify how the

shape of the 3D teapot has to evolve:

– Coincidence and tangency : In figure 4.7, 8 coincidence and 8 tan-

gency constraints are specified to maintain the continuity between

surf34 and surf36, surf27 and surf28. They are labeled from 1 to

16 and they generate 8× 3 linear and 8× 3 non-linear equations

labeled from 1 to 48 (table 4.5). The non-linearity comes from the

use of the vector product to express the collinearity of normals.
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surf34

surf36

O

Dis = 160

Dis = 50

Dis = 170

Dis = 100

X

Z

Y

O

Label:17

Label:18

Label:19

Label:20

Figure 4.8: Distance constraints of teapot

– Distance: 2 distance constraints are defined between the lid and

the bottom along the Z direction, and 2 distance constraints be-

tween the spout and the bottom along the X direction respec-

tively (figure 4.8). They are labeled 17 and 18, 19 and 20. The

corresponding equations are equations 49 and 50, 51 and 52 (ta-

ble 4.5).

Constraint Equations Type Component

1 1-3 linear 1

2 4-6 non-linear 1

3 7-9 linear 3

4 10-12 non-linear 3

5 13-15 linear 5

6 16-18 non-linear 5

7 19-21 linear 2

8 22-24 non-linear 2

9 25-27 linear 4

10 28-30 non-linear 4

11 31-33 linear 6

12 34-36 non-linear 6

13 37-39 linear 8

14 40-42 non-linear 8

15 43-45 linear 7

16 46-48 non-linear 7

17 49 linear 5

18 50 linear 5

19 51 linear 7

20 52 linear 7

Table 4.5: Typology of constraints and equations involved in the description

of the 3D teapot sketching example
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Overall, there are 20 geometric constraints generating 52 equations in

the set F (X) = 0. Some of those constraints are added intentionally

conflicting and it is the purpose of this section to try to see how our

algorithm can detect and remove them without affecting too much the

design intent at the level of the constraints.

4.2.2 Detection Process

Finding local parts

BFS decompose the whole system into 59 unconnected components with

51 of them containing only variables (figure 4.9). Each of the other 8 com-

ponents contains equations and they are analyzed further by our algorithm.

CC1

CC2

CC5

CC4

CC3

CC6

CC7

CC8

Figure 4.9: Constraint graph between variables

Analysis of the local parts

Analyzing component 1 (CC1) Incidence matrix between variables and

equations is shown in table 4.6. The evolution of G10
11 is shown in figure 4.10.

Since all the red blocks contains only variables, all the equations of CC1 are

analyzed at one time. As a result, equation e6 is redundant (type I). The

spanning group of e6 is {e1, e2, e3, e4, e5}.

Analyzing component 2 (CC2) Component CC2 is very similar to com-

ponent CC1. That is, their equations are different only in the name of vari-

ables and equations. Following the similar analysis process of CC1, equation
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·
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10
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Figure 4.10: Evolution of G1
11

e24 is redundant(type I). It is redundant with {e19, e20, e21, e22, e23}, which

corresponds to the spanning group.

Analyzing component 3 (CC3) Component CC3 contains 6 equations

with 30 variables. The red blocks of the DAG structure (figure 4.11) con-

tain only variables and thus all the system of equations are analyzed to-

gether. As a result, equation e10 is redundant (type I). It is redundant with

{e7, e8, e9, e11, e12} which corresponds to the spanning group.

·

x52 x53 x54 x55 x56 x57
e7 e8 e9 e10 e11 e12

x51 x204 x190
···

x60 x58
······ · · · ··

x46

10

31G orderedLinkedSCC

11

31G

Figure 4.11: Evolution of G1
31

Analyzing component 4 (CC4) Component 4 is very similar to com-

ponent 3. The analysis result shows that equation e28 is redundant (type

I). It is redundant with {e25, e26, e27, e29, e30} which corresponds to the

spanning group.
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x67 x68 x69 x70 x71 x72 x211 x212 x213 x214 x215 x216

e13 0 0 0 1 0 0 0 0 0 1 0 0

e14 0 0 0 0 1 0 0 0 0 0 1 0

e15 0 0 0 0 0 1 0 0 0 0 0 1

e16 1 1 1 1 1 1 1 1 1 1 1 1

e17 1 1 1 1 1 1 1 1 1 1 1 1

e18 1 1 1 1 1 1 1 1 1 1 1 1

e49 0 0 0 0 0 1 0 0 0 0 0 0

e50 0 0 0 0 0 1 0 0 0 0 0 0

Table 4.8: Component 5 (CC5 8× 12)

Analyzing component 5 (CC5) Component 5 contains 8 equations and

12 variables (table 4.8). After D-M decomposition, it is initially decom-

posed into structurally over-constrained (G10
51), well-constrained and under-

constrained subpart (table 4.9). For G10
51, at the step of G11

51, the red block

is solvable and the solution is propagated to the block containing equa-

tion e50. As a result, the difference is -1.40e+01 and it is conflicting with

e49 (type II). After launching D-M decomposition second time, the system is

decomposed into structurally well-constrained (G20
52) and under-constrained

subparts (table 4.10). The evolution of G20
52 is shown in figure 4.13. How-

ever, there is no over-constraints identified and the solution of the red block

are propagated to the other blocks. Finally, after applying D-M decompo-

sition three times, the whole system is structurally under-constrained (ta-

ble 4.11). Since all red blocks contain only variables, all the equations in

table 4.11 are analyzed as a whole. As a result, equation e16, e17 and

e18 are redundant (type I). The spanning group of the three equations are

{e13, e14, e15, e49}.

x211 x212 x213 x214 x215 x67 x68 x69 x70 x71 x216 x72

e16 1 1 1 1 1 1 1 1 1 1 1 1
e17 1 1 1 1 1 1 1 1 1 1 1 1
e18 1 1 1 1 1 1 1 1 1 1 1 1
e13 0 0 0 1 0 0 0 0 1 0 0 0
e14 0 0 0 0 1 0 0 0 0 1 0 0
e15 0 0 0 0 0 0 0 0 0 0 1 1
e49 0 0 0 0 0 0 0 0 0 0 0 1
e50 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.9: First time D-M decomposition on CC5 (d=1)
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Figure 4.12: Evolution of G1
51

x67 x68 x69 x70 x71 x211 x212 x213 x214 x215 x216

e16 1 1 1 1 1 1 1 1 1 1 1
e17 1 1 1 1 1 1 1 1 1 1 1
e18 1 1 1 1 1 1 1 1 1 1 1
e13 0 0 0 1 0 0 0 0 1 0 0
e14 0 0 0 0 1 0 0 0 0 1 0
e15 0 0 0 0 0 0 0 0 0 0 1

Table 4.10: Second time D-M decomposition on CC5 (d=2)

20

52G
e15

x216

orderedLinkedSCC

21

52G

e15

x216

Figure 4.13: Evolution of G2
52

x211 x212 x213 x214 x215 x67 x68 x69 x70 x71

e16 1 1 1 1 1 1 1 1 1 1
e17 1 1 1 1 1 1 1 1 1 1
e18 1 1 1 1 1 1 1 1 1 1
e13 0 0 0 1 0 0 0 0 1 0
e14 0 0 0 0 1 0 0 0 0 1

Table 4.11: Third time D-M decomposition on CC5 (d=3)
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Figure 4.14: Evolution of G1
53

Analyzing component 6 (CC6) Component 6 contains 6 equations and

12 variables (table 4.12), which is structurally under-constrained (table 4.13)

after applying D-M decomposition. The evolution of G1
63 is shown in fig-

ure 4.15. At the step of G11
63, the red blocks contain only variables and thus

the algorithm takes all the equations as input and equations e34, e35 and

e36 are all redundant with {e31, e32, e33} (type I).

x163 x164 x165 x166 x167 x168 x115 x116 x117 x118 x119 x120

e34 1 1 1 1 1 1 1 1 1 1 1 1

e35 1 1 1 1 1 1 1 1 1 1 1 1

e36 1 1 1 1 1 1 1 1 1 1 1 1

e31 0 0 0 1 0 0 0 0 0 1 0 0

e32 0 0 0 0 1 0 0 0 0 0 1 0

e33 0 0 0 0 0 1 0 0 0 0 0 1

Table 4.12: Component 6 (CC6 6× 12)

x163 x164 x165 x166 x167 x168 x115 x116 x117 x118 x119 x120

e34 1 1 1 1 1 1 1 1 1 1 1 1
e35 1 1 1 1 1 1 1 1 1 1 1 1
e36 1 1 1 1 1 1 1 1 1 1 1 1
e31 0 0 0 1 0 0 0 0 0 1 0 0
e32 0 0 0 0 1 0 0 0 0 0 1 0
e33 0 0 0 0 0 1 0 0 0 0 0 1

Table 4.13: First time D-M decomposition on CC6 (d=1)

Analyzing component 7 (CC7) Component 7 contains 8 equations and

6 variables (table 4.14). After D-M decomposition, it is initially decomposed
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Figure 4.15: Evolution of G1
63

into structurally over-constrained (G10
71) and well-constrained subpart (ta-

ble 4.15). For G10
71, at the step of G11

71, the red block is solvable and the solu-

tion is propagated to the block e52 and block e51. The differences are -2.52

and 9.16 respectively and the two are all conflicting with e43 (type II). Af-

ter launching D-M decomposition second time, the system is structurally

well-constrained (G20
72). The evolution of G20

72 is shown in figure 4.17. How-

ever, there is no over-constraints identified and solutions of red blocks are

propagated to the other blocks.

x8 x7 x9 x11 x12 x10

e47 1 1 1 1 1 1

e46 0 1 1 0 1 1

e48 0 1 1 0 1 1

e44 0 0 0 1 0 0

e45 0 0 0 0 1 0

e43 0 0 0 0 0 1

e51 0 0 0 0 0 1

e52 0 0 0 0 0 1

Table 4.14: Component 7 (CC7 8× 6)

x8 x7 x9 x11 x12 x10

e47 1 1 1 1 1 1
e46 0 1 1 0 1 1
e48 0 1 1 0 1 1
e44 0 0 0 1 0 0
e45 0 0 0 0 1 0
e43 0 0 0 0 0 1
e51 0 0 0 0 0 1
e52 0 0 0 0 0 1

Table 4.15: First time D-M decomposition on CC7 (d=1)
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Figure 4.16: Evolution of G1
71

x8 x7 x9 x11 x12

e47 1 1 1 1 1
e46 0 1 1 0 1
e48 0 1 1 0 1
e44 0 0 0 1 0
e45 0 0 0 0 1

Table 4.16: Second time D-M decomposition on CC7 (d=2)
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Figure 4.17: Evolution of G1
72

Analyzing component 8 (CC8) Component 8 contains 6 equations and

3 variables (table 4.17). After D-M decomposition, it is initially decomposed

into structurally over-constrained (G10
81) subpart (table 4.18). For G10

81, at the

step of G11
81, the red blocks are solvable and solutions are propagated to the

block e41, e42, and e40. The differences are -2.94e-7, –5.49e-12, and -1.29e-

11 respectively and they are redundant with {e37, e39}, {e37, e38, e39}, and

{e37, e39} respectively (type II).
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x1 x2 x3

e37 1 0 0

e38 0 1 0

e39 0 0 1

e40 1 0 1

e41 1 1 1

e42 1 0 1

Table 4.17: Component 8 (CC8 6× 3)

x1 x2 x3

e37 1 0 0
e38 0 1 0
e39 0 0 1
e40 1 0 1
e41 1 1 1
e42 1 0 1

Table 4.18: First time D-M decomposition on CC8 (d=1)
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Figure 4.18: Evolution of G1
81

Finally, the proposed detection and resolution method have been applied

on 8 component and the above detection results are summarized in the

table 4.19.

Component
Initial D-M D-M

times
Over-constraints

Over Well Under Redundant Type Conflicting Type

1
√

1 e6 I
2

√
1 e24 I

3
√

1 e10 I
4

√
1 e28 I

5
√ √ √

3 e16/e17/e18 I e50 II
6

√
1 e34/e35/e36 I

7
√ √

2 e51/e52 II
8

√
1 e40/e41/e42 II

Table 4.19: Detection results of the teapot geometry with non-linear equa-

tions directly
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4.2.3 Over-constraints and the spanning groups

Detected over-constraints and the corresponding spanning groups are

summarized in table 4.20. It shows which equation is redundant/conflicting

with which group of equations. However, it cannot be presented to users for

debugging purpose directly since users are not directly working at the level

of the equations but at the level of the constraints. To make it easier to

understand, over-constraints and the spanning groups at the level of geom-

etry is shown in table 4.21. The correspondences between constraints and

equations is given in table 4.5.

Over-constraint Spanning Group

e6 e1, e2, e3, e4, e5
e24 e19, e20, e21, e22, e23
e10 e7, e8, e9, e11, e12
e28 e25, e26, e27, e29, e30
e50 e49
e16 e13, e14, e15, e49
e17 e13, e14, e15, e49
e18 e13, e14, e15, e49
e34 e31, e32, e33
e35 e31, e32, e33
e36 e31, e32, e33
e51 e43
e52 e43
e40 e37, e39
e41 e37, e38, e39
e41 e37, e38, e39
e42 e37, e39

Table 4.20: Over-constraint and the spanning group at the level of equations

on the teapot

Over-constraint Spanning Group

constraint 1 constraint 2
constraint 8 constraint 7
constraint 4 constraint 3
constraint 10 constraint 9
constraint 18 constraint 17
constraint 6 constraint 5, 17
constraint 12 constraint 11
constraint 19 constraint 15
constraint 20 constraint 15
constraint 14 constraint 13

Table 4.21: Over-constraints and the spanning groups at the level of geome-

tries on the teapot
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4.2.4 Result of linearizion

Linearizion In the work of Moinet (Moinet, Mandil, and Serre, 2014),

and Serrano (Serrano, 1987), non-linear constraints systems are linearized

so that linear detection methods can be applied. The linearizion is based on

Taylor-series expansion at a given point and the linear detection methods

are QR (used by Hu et al) and G-J (used by Moinet, Serrano).

To know whether linearizion of non-linear system affects the detection

results or not, equations system of teapot geometry are linearized at the

witness configuration starting from initial sketch. Then, our algorithm is

used to detect the numerical over-constraints. The results are summarized in

table 4.22. Comparing to the table 4.19, {e34, e35} are detected as conflicting

and {e46, e48} are new conflicting constraints.

Component
Initial D-M D-M

times
Over-constraints

Over Well Under Redundant Type Conflicting Type

1
√

1 e6 I
2

√
1 e24 I

3
√

1 e10 I
4

√
1 e28 I

5
√ √ √

3 e16/e17/e18 I e50 II
6

√
1 e36 I e34/e35 I

7
√ √

2 e51/e52, e46/e48 II,I
8

√
1 e40/e41/e42 II

Table 4.22: Detection results of linearized teapot geometry

In our algorithm, a redundant and conflicting constraint is distinguished

by comparing the difference ∆|P0−P ′| of the over-constraint between initial

specified value (e(X0) = P0) and final value (e(X ′) = P ′) after releasing

over-constraints with defined tolerance. The value of the tolerance used in

this testing case is 1e-4. The deviations (∆) from the design intent after

removing the identified over-constraints are summarized in table 4.23 for

both the original system and the linearized one.

From the table, it is obvious that differences of {e6, · · · , e36} of linearized

system are much higher than those of original system. This is because the

linearized system ignores the truncation error O(X2) when expanding the

Taylor series at the witness to the first order. Meanwhile, it can cause in-

dependent constraints detected as over-constraints, which may be wrong

in some cases ({e46, e48}, for example). Therefore, linearizion of non-linear

system is unreliable both in detecting numerical over-constraints as well as

distinguishing redundant and conflicting constraints. As a result, linearizion

of non-linear systems is not recommended when dealing with non-linear sys-

tems.
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Original Linearized

over-constraint ∆ over-constraint ∆

e6 1.32e-14 e6 0.0118

e24 6.46e-15 e24 0.0111

e10 5.31e-15 e10 4.55e-04

e28 2.91e-14 e28 0.0017

e16 3.10e-09 e16 3.69e-05

e17 1.70e-09 e17 2.01e-05

e18 1.11e-13 e18 1.47e-08

e34 2.68e-14 e34 0.0096

e35 2.17e-14 e35 0.0052

e36 1.35e-14 e36 3.97e-07

e40 -1.29e-11 e40 -1.29e-11

e41 2.94e-07 e41 2.94e-07

e42 -5.46e-12 e42 -5.46e-12

e50 -1.40e+01 e50 -1.40e+01

e51 -2.52 e51 -2.52

e52 9.16 e52 9.16

e46 0.0074

e48 0.0034

Table 4.23: Deviations (∆) from the design intent when removing over-

constraints detected in original and linearized systems.

This testing example has shown that our algorithm works well on free

form configurations. More specifically, it can deal properly with the local

support property. However, the detection is still at the level of equations

and the resolution of geometric over-constraints is not addressed. All these

issues will be discussed in a 3D glass geometry in the next section.

4.3 Sketching a 3D glass

In this example, the idea is to show how the proposed over-constraints

detection and resolution approach can support the sketching of a 3D glass

composed of 4 connected NURBS patches. The designer sketches his/her

design intent and associated requirements.

4.3.1 Modeling

Here, the objective is to modify the upper part of the glass by specifying

the following elements:

• Variables: Each patch has a degree 5 × 5 and has a control polygon

made of 16×6 control points which coordinates are the variables of our

optimization process (figure 4.19a). Since the objective is to modify the

upper part of the glass, the designer selects how many rows of control
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points are to be blocked and how many can move. For example, if

the designer wishes to free 4 upper rows of control points of the four

patches, then there will be 4 × (6 × 4) × 3 = 288 variables in the

unknown vector X. The results will be illustrated with 4 and 5 rows

free to move.
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Figure 4.19: Initial sketch of glass geometry.

• Constraints: Three types of constraints are used to specify how the

shape of the 3D glass has to evolve:

– Position: 4 position constraints are added to the four end points

of the patches along the upper boundary curves. As shown in fig-

ure 4.19c, the green points of the patches need to move to new

positions in 3D space. They are labeled from 1 to 4 and they gen-

erate 4×3 = 12 linear equations labeled from 1 to 12 (table 4.24).

– Distance: 2 distance constraints are defined between the oppo-

site sides of the patches (figure 4.19d). They are labeled 5 and

6 and they generate 2 × 1 non-linear equations labeled 13 and

14 (table 4.24).

– Coincidence and tangency : 8 coincidence and 8 tangency con-

straints are specified to maintain the continuity between the up-

per parts of the patches during the deformation (figure 4.19b).

They are labeled from 7 to 22 and they generate 8× 3 linear and

8×3 non-linear equations labeled from 15 to 62 (table 4.24). The

non-linearity comes from the use of the vector product to express

the collinearity of normals.
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Overall, there are 22 geometric constraints generating 62 equations in

the set F (X) = 0. Some of those constraints are conflicting and it is

the purpose of this section to try to see how our algorithm can detect

and remove them without affecting too much the design intent.

• Objective function: Since the proposed approach removes the identified

over-constraints, the resulting system of equations F̃b(X) = 0 (sec-

tion 3.3) may become under-constrained and a function G(X) has to

be minimized. Here, the idea is to make use of the approach of (Per-

not et al., 2005) to define two types of deformation behavior: either a

minimization of the variation of the shape (G1(X)) between the ini-

tial and final configurations, or minimization of the area of the final

shape (G2(X)). In terms of design intent, the first one tends to pre-

serve the initial shape of the glass, whereas the second forgets the

initial shape and tends to generate surfaces similar to tensile struc-

tures.

Constraint Equations Type Component

4 1-3 linear 1

2 4-6 linear 2

1 7-9 linear 1

3 10-12 linear 2

5 13 non-linear 1

6 14 non-linear 2

7 15-17 linear 1

8 18-20 non-linear 1

9 21-23 linear 1

10 24-26 non-linear 1

11 27-29 linear 2

12 30-32 non-linear 2

13 33-35 linear 2

14 36-38 non-linear 2

15 39-41 linear 1

16 42-44 non-linear 1

17 45-47 linear 1

18 48-50 non-linear 1

19 51-53 linear 2

20 54-56 non-linear 2

21 57-59 linear 2

22 60-62 non-linear 2

Table 4.24: Typology of constraints and equations involved in the descrip-

tion of the 3D glass sketching example
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  x1  x2  x3  x4  x5  x6  x7  x8  x9  x10  x11  x12  x13  x14  x15  x16  x17  x18  x19  x20  x21  x22  x23  x24

  x25   x26   x27   x28

  x29   x30   x31   x32

  x33   x34   x35   x36

  x37   x38   x39   x40

  x41   x42   x43   x44

  x45   x46   x47   x48

  x49  x50  x51  x52  x53  x54  x55  x56  x57  x58  x59  x60

  x61  x62  x63

  x64  x65  x66  x67  x68  x69  x70  x71  x72  x73  x74  x75  x76  x77  x78  x79  x80  x81  x82  x83  x84  x85  x86  x87  x88  x89  x90  x91  x92  x93  x94  x95  x96

  x97   x98   x99   x100
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  x169   x170   x171   x172

  x173   x174   x175   x176

  x177   x178   x179   x180

  x181   x182   x183   x184
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Figure 4.20: Constraint graph between variables

4.3.2 Detection Process

Finding local parts

After applying BFS, as visible in figure 4.20, there are 98 unconnected

components (red vertices) in the graph with 96 of them containing only

variables (right part of the figure). The other two components CC1 and

CC2 contain both variables and equations. Since the two components are

similar, the process is illustrated only with CC2 component.

Analysis of the local parts

After applying D-M decomposition (1st time) on initial CC0
2 , we got

structurally over-constrained subpart (G1
21, green section of table 4.26),

well-constrained subpart (G1
22, yellow section of table 4.26) and under-

constrained subpart (G1
23, gray section of table 4.26). Maximum matching

of these subparts is the diagonal (marked red) of each section.

The process of analyzing each subpart is illustrated as following:

• Evolution of G1
21 subpart. As it is shown in figure 4.21, initially G1

21 is

set to G10
21 before maximum matching and strong connected blocks are

generated. After applying orderedLinkedSCC, strong connected com-

ponents {SCC11
211, · · · , SCC11

215} are generated as red blocks and G10
21 is

now updated to G11
21. Since these blocks are solvable, the solutions are
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propagated to the other dependent blocks. Same procedure is applied

on G11
21, where the red block is solved and the solution is fed to the

component containing e14. As a result, it is conflicting and the span-

ning group is {e4, e5, e6, e10, e11, e12}. e14 is removed and the system

is now updated to CC1
2 .

· · · · ·

·

e5

x68
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211SCC

Figure 4.21: Evolution of G1
21

• Evolution of G2
22 subpart. For the new system CC1

2 , D-M is applied

second time resulting a structurally well-constrained subpart (G2
22, yel-

low section of the table 4.27) and under-constrained subpart (G2
23,

gray section of the table 4.27). As it is shown in figure 4.22, af-

ter applying orderedLinkedSCC to G20
22, strong connected components

{SCC21
221, · · · , SCC21

226} are solvable red blocks. No numerical over-

constraints are found and solutions are propagated to the other de-

pendent blocks. The system is now updated to CC2
2 .
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Figure 4.22: Evolution of G2
22

• Evolution of G3
23 subpart. After employing D-M decomposition third

time to the new system CC2
2 , only structurally under-constrained sub-

part G3
23 is generated. As it is shown in figure 4.23, after applying

orderedLinkedSCC on G30
23, all the generated red blocks contain only

variables. Equations of these blocks are analyzed together. As a result,

equations {e32, e56, e38, e62} are found to be redundant. The spanning

group of each equation is {e10, e11, e12, e27, e28, e29, e30, e31, e33,

e34, e35, e36, e37, e4, e5, e6, e51, e52, e53, e54, e55, e57, e58, e59, e60, e61}.
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Figure 4.23: Evolution of G3
23

The detection results of CC2 are summarized in the table 4.29.

Component
Initial D-M D-M

times
Over-constraints

Over Well Under Redundant Type Conflicting Type

2
√ √ √

3 e32/e56/e38/e62 I e14 II

Table 4.29: Detection results of CC2 of the glass geometry
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4.3.3 Over-constraints and the spanning groups

The analysis of those two components gives rise to the identification of

2 conflicting equations (e13, e14) which correspond to either the position or

distance constraints. Also, 8 redundant equations are detected, which are

contained in 8 tangent constraints (section 4.3.1).

These over-constraints and the corresponding spanning groups at the

level of equations is summarized in table 4.30, at the level of constraints is

summarized in table 4.31.

Component Over-constraint Spanning group

CC2

constraint 6 constraint 2, 3
constraint 12 constraint 2, 3, 11, 13, 19, 21
constraint 14 constraint 2, 3, 11, 13, 19, 21
constraint 20 constraint 2, 3, 11, 13, 19, 21
constraint 22 constraint 2, 3, 11, 13, 19, 21

CC1

constraint 5 constraint 1, 4
constraint 8 constraint 1, 4, 7, 9, 15, 17
constraint 10 constraint 1, 4, 7, 9, 15, 17
constraint 16 constraint 1, 4, 7, 9, 15, 17
constraint 18 constraint 1, 4, 7, 9, 15, 17

Table 4.31: Over-constraint and the spanning group at the level of geome-

tries on the glass

Since the result of the detection process is not unique, 9 configurations

are obtained and are gathered together in Table 4.32. Here, one has to

remember that even if the detection process identifies conflicting equations,

our algorithm removes the constraints associated to those equations. For

example, configuration 1 considers that the two distance constraints (one

between patches P1 and P4, and the other between P2 and P3) are to be

removed (0 in the table) and the 4 position constraints are kept (1 in the

table).

Config. DIS(P1,P4) DIS(P2,P3) POS(P1) POS(P2) POS(P3) POS(P4)

1 0 0 1 1 1 1
2 1 0 0 1 1 1
3 1 0 1 1 1 0
4 0 1 1 0 1 1
5 0 1 1 1 0 1
6 1 1 0 0 1 1
7 1 1 1 1 0 0
8 1 1 1 0 1 0
9 1 1 0 1 0 1

Table 4.32: Status of the distance and position constraints (0 to remove and

1 to keep) to solve the 9 over-constrained configurations
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All configurations are then solved while acting on both the number of

upper rows to be fixed (Nrows = 4 or 5), and the objective function to be

minimized (either G1(X) or G2(X). The effects of applying two objective

functions on configuration 1 are shown in figure 4.25 a). The results are

gathered together in Tables 4.33 and 4.34. Each configuration is evaluated

through the three previously introduced criteria dg, df and cond. Some so-

lutions are shown in Figure 4.24.

Figure 4.24: Results of the sketching after removing conflicting constraints

with Nrows = 4 : (a) initial glass, (b1) configuration 1 and minimization of

the shape variation, (b2) configuration 1 and minimization of the area of the

final surface, (c1) configuration 3 and minimization of the shape variation,

(b2) configuration 3 and minimization of the area of the final surface

One can first notice that depending on the configurations, the deviation

df on the constraints varies. For example, with Nrows = 4 and while mini-

mizing G1(X), the configuration 7 generates a solution that is closer to the

design intent than configuration 6 (0.10684 < 0.12607 in Table 4.33). For

configuration 3, it is clear that the deviation to the design intent in terms

of constraints is more important when minimizing the area of the final sur-

face than when minimizing the shape variation (0.2288 > 0.10179 in Ta-

ble 4.33). This is clearly visible on Figures 4.24c1 and 4.24c2.

But the deviation dgi on the objective function to be minimized also

varies. While considering the minimization of the shape variation, one can

see that configuration 3 is less interesting than configuration 1 in the sense

that it minimizes less the shape variation (15459.52 > 13801.04 in Ta-

ble 4.33).

Finally, for a given configuration, one can notice that when the number

of free rows increases, i.e. when there is more freedom, the objective function

decreases and the solution is therefore closer to the design intent. This is

visible when comparing values from Tables 4.33 and 4.34. For example, in

figure 4.25 b), the shape variation of configuration 1 of 5 rows is more

minimized than the one of 4 rows (11266.93 < 13801.04). Thus, the selection
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of the variables X are also important when setting up the optimization

problem, which should affect the design intent.

Minimization of G1(X) Minimization of G2(X)

Config. dg1 df cond dg2 df cond

1 13801.04 0.10000 2.8654e19 96733.72 0.10000 1.4272e18
2 17990.88 0.10182 8.3172e18 95225.05 0.28157 4.3894e17
3 15459.52 0.10179 1.5071e19 94483.08 0.22880 4.9533e17
4 12265.51 0.10975 8.8857e18 89924.13 0.22806 3.9399e18
5 10970.98 0.10971 3.9852e19 86879.47 0.25225 8.2501e18
6 15826.68 0.12607 3.4260e18 76878.26 0.68278 1.6567e18
7 12936.45 0.10465 3.8205e18 76167.99 0.62820 3.9842e17
8 13889.18 0.11385 2.5681e18 78657.81 0.59160 4.1485e18
9 14883.21 0.11720 1.2523e18 74351.81 0.71765 6.7658e16

Table 4.33: Evaluation of the 9 configurations with Nrows = 4

Minimization of G1(X) Minimization of G2(X)

Config. dg1 df cond dg2 df cond

1 11266.93 0.10000 4.0149e17 85121.36 0.10000 3.3441e17
2 14719.05 0.10280 4.6031e17 86295.47 0.25034 6.5355e19
3 12506.55 0.10277 1.7748e19 85190.96 0.20076 1.0972e18
4 9944.87 0.11452 1.7903e18 79428.31 0.20592 1.7041e18
5 8799.29 0.11448 6.1454e17 77800.57 0.22919 1.0218e18
6 12561.66 0.13935 4.1681e18 69603.16 0.76646 8.5100e16
7 10441.11 0.10684 1.0862e18 69502.72 0.70009 2.3460e18
8 11134.09 0.12097 2.5394e18 71465.72 0.65901 1.5773e18
9 11877.59 0.12601 1.3790e19 67661.55 0.80372 8.4472e17

Table 4.34: Evaluation of the 9 configurations with Nrows = 5

4 rows

5 rows

6 rows

b)a)

 2G X

 1G X

Figure 4.25: a) Configuration 1 with 5 free rows after minimizing G1 and

G2; b) Configuration 1 with 4,5,6 free rows after minimizing G1
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4.4 Additional experiments

4.4.1 Effect of system decomposition on computation time

We implemented the Algorithm 1 and 2 (Section 3.2.3) in MATLAB. Our

code was executed on a Dell Precision M4800, Windows 7 system. To know

the effect of system decomposition, experiments are conducted on the glass

example and the results are compared with a detection method without

decomposition. This method used consists in WCM + IS (section 3.2.2)

shown in figure 4.26.

m
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rA n

···

···

n

m

Jacobian matrix 
@witness

m
···

n

Step 1

generate Witness
configuration

QR(At)

Step 2

m
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n
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over

Step 3

f1=0

fr=0

fm=0

If solvable, fj is redundant, 
otherwise it is conflicting

Incremental solving

f1=0

fr=0
fj=0

Step 4

Figure 4.26: Method WCM + IS without decomposition

Experiments are based on a glass series with different number of the vari-

ables and constraints (coincidence and tangent constraints). As it is shown

in figure 4.27, variables are the coordinates of control points ranging from

row 1 to row 3,4,5 and 6 with corresponding variables of number 216,288,360

and 432 respectively. Also, the coincidence and tangent constraints of point

1-8 are added incrementally. In other words, they are turned off (marked 0)

at the beginning. Then, they are added incrementally from point 1 to 8 by

turning on a constraint (marked 1) until all the constraints are added (all

the constraints are marked red).
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Figure 4.27: Changing variables and constraints. a) Increasing number of

variables b) Increasing number of constraints (coincidence and tangent)
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Figure 4.28: Computation time with respect to number of equations when

number of variables = 216.
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Figure 4.29: Computation time with respect to number of equations when

number of variables = 288.
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Figure 4.30: Computation time with respect to number of equations when

number of variables = 360.
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Figure 4.31: Computation time with respect to number of equations when

number of variables = 432.

Computation time with respect to 3,4,5 and 6 rows of variables are shown

in the figures 4.28, 4.29, 4.30, and 4.31 respectively. For a given set of vari-

ables, if the number of equations are less than 20, the effect of system de-

composition is not obvious; However, when adding more equations, system

decomposition significantly reduces computational time. The average com-

putation time of figures 4.28, 4.29, 4.30, and 4.31 using decomposition are 6

times faster than ones without decomposition. Since it strongly depends on

the system to be analyzed, a theoretical complexity analysis has not yet been

done. The reader can anyhow check section 3.2.4 for a first understanding

of complexity issues without considering solving process.

4.4.2 Results with respect to tolerance

In our algorithm, the separation between basis (Eb) and over-constraints

(Eo) is based on the rank computation of the Jacobian matrix at the wit-

ness configuration, where the number of Eb is equal to the value of the

rank. However, the latter depends on a tolerance. Actually, we use Singu-

lar Value Decomposition (SVD) to compute the rank, which is equal to the

number of singular values that are larger than the tolerance (tolrank).

Formally, the singular value decomposition of a m × n real or complex

matrix M is a factorization of the form UΣV , where U is a m × m real

or complex unitary matrix, Σ is a m × n rectangular diagonal matrix with

non-negative real numbers on the diagonal, and V is a n×n real or complex

unitary matrix. The diagonal entries σi of Σ are known as the singular values
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of M . The rank of M equals to the number of σis > tolrank in Σ.
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Figure 4.32: Singular Value Decomposition

Moreover, tolerance could also affect the number of conflicting and re-

dundant constraints. In our algorithm, the detected over-constraints are

of two types: type I and type II. Further distinguishing on the redundant

and conflicting constraints inside the two types of over-constraints requires a

solving and feeding process respectively. On one hand, termination of a solv-

ing process is determined by termination tolerance on the function value, on

the first-order optimality, and on the values of variables between steps. On

the other hand, substituting a solution(X0) to a constraint(e(X) = P ) would

give new value to the constraint(e(X0) = P ′). Comparing the absolute dif-

ference between the two (|P − P ′|) with the tolerance would determine if

a constraint is conflicting (|P − P ′| > tolerance) or redundant(|P − P ′| ≤
tolerance). Here, we define this tolerance as tolrc.

In this section, we use the teapot example to show the variation of

the two type of tolerances (tolrc and tolrank) on the results of the over-

constraints detection. The tolrc, tolrank are ranging from 10−1 to 10−10

respectively. Note that, in the teapot testing case (section 4.2), the two

tolerances are both fixed to 10−6. The results are summarized in the ta-

bles 4.35, 4.36, and 4.37. The results of the testing case in section 4.2 are

highlight in tables below.

10i -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

-1 13 13 13 9 7 7 7 6 3 3
-2 13 13 13 8 7 7 7 3 3 3
-3 13 13 13 9 7 7 7 3 3 3
-4 13 13 13 9 7 7 7 3 3 3
-5 13 13 13 8 7 7 7 3 3 3
-6 13 13 13 9 7 7 7 3 3 3
-7 13 13 13 8 7 7 7 3 3 3
-8 13 13 13 8 7 7 7 4 3 3
-9 13 13 13 9 7 7 7 3 3 3
-10 13 13 13 9 7 7 7 4 3 3

Table 4.37: Number of identified redundant constraints with respect to

tolrank(column) and tolrc(row) on the teapot
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10i -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

-1 16 16 16 12 10 10 10 6 6 6
-2 16 16 16 11 10 10 10 6 6 6
-3 16 16 16 12 10 10 10 6 6 6
-4 16 16 16 12 10 10 10 6 6 6
-5 16 16 16 11 10 10 10 6 6 6
-6 16 16 16 12 10 10 10 6 6 6
-7 16 16 16 11 10 10 10 6 6 6
-8 16 16 16 11 10 10 10 7 6 6
-9 16 16 16 12 10 10 10 6 6 6
-10 16 16 16 12 10 10 10 7 6 6

Table 4.35: Number of identified numerical over-constraints with respect to

tolrank(column) and tolrc(row) on the teapot

10i -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

-1 3 3 3 3 3 3 3 3 3 3
-2 3 3 3 3 3 3 3 3 3 3
-3 3 3 3 3 3 3 3 3 3 3
-4 3 3 3 3 3 3 3 3 3 3
-5 3 3 3 3 3 3 3 3 3 3
-6 3 3 3 3 3 3 3 3 3 3
-7 3 3 3 3 3 3 3 3 3 3
-8 3 3 3 3 3 3 3 3 3 3
-9 3 3 3 3 3 3 3 3 3 3
-10 3 3 3 3 3 3 3 3 3 3

Table 4.36: Number of identified conflicting constraints with respect to

tolrank(column) and tolrc(row) on the teapot

From the three tables, we can see that both of the two tolerances influ-

ence the number of redundant constraints (table 4.37) and numerical over-

constraints (table 4.35). The number of conflicting constraints, however,

remains the same since the differences of conflicting constraints in figure 4.8

are larger than the range of specified tolerances. This case is specific since

these differences are added intentionally large at the beginning to test the

algorithm. In practical computation, one has to pay attention to the specifi-

cation of the two thresholds, which, as demonstrated in this example, affects

the detection results.

Actually, the two thresholds are to be consistent with respect to the

accuracy of the adopted CAD modeler. So, if the CAD modeler is using an

accuracy of 1e-4, then our algorithm should be set up with this value for the

two thresholds.

4.5 Conclusion

In this work, the over-constraints detection and resolution process have

been described and analyzed with results on both academic and industrial

examples. More specially, in the Double-Banana geometry, we shown that
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our approach generates a solution that is much closer to the initial design

intent than the one of Moinet. In the teapot geometry, we concluded that

linearizion of non-linear systems is not reliable since it will induce more over-

constraints than what to test really. In the glass geometry, we have been

illustrated that the selection of over-constraints set influences the deviation

from initial intent. Finally, we shown the efficiency of the decomposition

method used in our algorithm and demonstrated that the specification of

tolerances would affect the detection result.





Conclusion and perspectives

The general objective of this work was the detection and treatment

of geometric over-constraints during the manipulation of free form sur-

faces. It results in an algorithm detecting geometric over-constraints (re-

dundant and conflicting constraints) as well as finding the corresponding

spanning groups. The detection of the over-constraints is at the level of

equations but the treatment is at the level of geometries, which enables the

manipulation of geometric constraints well suited to engineering design. In

this way, the treatment tries to maintain the design intent.

This work has been decomposed in two main categories: the definition

of geometric over-constraints, methods and tools for the detection

of geometric over-constraints (Chapter 2), the selection and integration

of these methods to give rise to the algorithms for identifying geometric

over-constraints of free form configurations as well as high level

manipulations of these over-constraints (Chapter 3). The proposed

approach allows the detection and treatment of redundant and conflicting

constraints. The proposed concepts and algorithms have been implemented

and tested on both academic and industrial examples (Chapter 4).

Several practical conclusions have already introduced various perspec-

tives relative to the developed modules. This final section of the manuscript

mostly focuses on other perspectives which have not been discussed before.

Basic definitions, detection methods and tools...

The chapter 2 of this document describes a set of basic definitions of geo-

metric over-constraints, methods and tools that are able to detect geometric

over-constraints. Since the geometric over-constraints can be defined struc-

turally or numerically, the corresponding detection methods and tools are

classified into structural detection methods and numerical detection meth-

ods. However, these structural definitions and detection methods are mainly
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for systems containing only Euler geometries. For systems made from free

form geometries, there is no structural definitions i.e. definitions based on

DoF counting. As a result, we adopt the numerical definitions of geometric

over-constraints for free form geometries, which would require a constraint

system represented in an equation form and methods working at the level

of equations. To select methods that are useful for identifying geometric

over-constraints of free form configurations, several cases are used, where

methods are tested and compared with respect to a specified criterion.

One perspective can stem from this part of the work. Formal definitions

of geometric over-constraints in terms of free-form geometry should be given

while considering its local support property. Also, structural representation

of free form configurations as well as the corresponding decomposition meth-

ods should be discussed. The decomposition should taken into account the

local support property as well.

Over-constraints detection and resolution in geo-

metric equation systems...

Free form configurations can be represented with a set of polynomial

equations and the problem is thus transformed into finding numerical over-

constraints from the equation set. More specially, since numerical over-

constraints are either redundant or conflicting, a set of consistent and incon-

sistent equations are to be detected. To find them, the chapter 3 describes

a tool which is a combination of the structural decompositions and numeri-

cal analysis methods. In addition, our approach is able to provide different

sets depending on the selected structural decomposition, and proposed cri-

teria to compare them and assist the user in choosing the constraints he/she

wants to remove. Moreover, the spanning groups of the over-constraints are

detected and help users to quickly locate which set of constraints gener-

ates these over-constraints. This makes the debugging process easier. The

kernel of the proposed approach works on equations and variables, but the

decision is taken by considering the geometric constraints specified by the

designer at the geometric level. In chapter 4, the over-constraints detection

and resolution process have been described and analyzed with results on

both academic and industrial examples. Our approach uses a general DoF-

based constriction check enhanced by a WCM-based validation in a recursive

assembly way, which allows for interleave decomposition and recombination

of system of equations. As shown in the testing cases, it is better than any

existing detection method with respect to generality and reliability. Here,

the generality refers to the scale of types of geometries and constraints while
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the latter refers to the detected over-constraints satisfying our definition of

redundant and conflicting constraints.

A number of perspectives stem from this part of work:

• We have restricted the variables to control points in this manuscript. Pa-

rameters like degrees of curves/surfaces, weights of the NURBS can

also be set as variables, leaving more freedom to the users when ma-

nipulating free form geometries. Generally speaking, our algorithm can

analyze such cases as well, since it is initially designed for analyzing

system of polynomial equations. The generality of our algorithm can be

tested when more parameters other than coordinates of control points

are set as variables. However, our algorithm cannot be directly used

for cases where knots in knots sequences are set as unknowns. This is

due to the fact that in this case, computing positions, derivatives on

curves/surfaces uses recursive approach. No equations can be gener-

ated without knowing the values of knots sequences. Without equa-

tions, our approach cannot be set up.

• This give rise to second perspective, that is, develop tools to detect

over-constrained configurations when no equations (black box con-

straints) are available. The tools should detect inconsistencies and give

feedbacks to the experts on how to modify them.

• An automation of the process should assist the designer in selecting

the set of over-constraints that less deviate from his/her original design

intent. As it is, the designer has access to three main criteria (dg, df ,

cond) which can be difficult to analyze for a non-expert. Thus, higher-

level criteria should be imagined on top of those ones.

• The approach can be made interactive, i.e. allowing the designer to

select between the different conflicting sets along the process, or even

modify the faulty constraints.

• Complete solver like interval analysis can be used to solve system of

equations. The current solver in our detection framework is based on

Levenberg–Marquardt (LM) algorithm, which converges to local min-

ima rather than global one when solving system of equations. Inter-

val analysis is an approach to putting bounds on rounding errors and

measurement errors in mathematical computation and thus developing

numerical methods that yield reliable results. The solver can be incor-

porated to our detection framework to analyze academic/industrial

cases and compare results with the ones of LM solver.
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• Find the minimum number of spanning groups of an over-constraint. Our

method enables to find one of spanning groups but not necessarily min-

imum one. This can be extended in the future. Presenting a user the

minimum number of spanning group of an over-constraint will help

him/her avoid considering too many constraints when debugging an

over-constrained system.

Towards advanced detection of solvable configura-

tions generating poor quality solutions...

It is planned to extend this work so that it can be used to detect and

explain geometric configurations which, even when solvable, result in poor

quality designs. In the context of free form surfaces deformation, configura-

tions with poor quality are of various types: surfaces with ridges, saddles,

troughs, domes, saddle ridges etc. Using artificial intelligence techniques,

the rules linking the input parameters to the generation of bad shapes could

be obtained by learning carefully selected bad quality examples. Once these

rules are obtained, they can be used on a new case to a priori estimate the

impact of input parameters without having to perform it.

Figure 4.33: Applying machine learning to classify solvable configurations.
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Dubé, Thomas W (1990). “The structure of polynomial ideals and Gröbner
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Lamure, Hervé and Dominique Michelucci (1998). “Qualitative study of geo-

metric constraints”. In: Geometric Constraint Solving and Applications.

Springer, pp. 234–258.

Lasseter, John (1987). “Principles of traditional animation applied to 3D

computer animation”. In: ACM Siggraph Computer Graphics. Vol. 21. 4.

ACM, pp. 35–44.



BIBLIOGRAPHY 160

Latham, Richard S and Alan E Middleditch (1996). “Connectivity analysis:

a tool for processing geometric constraints”. In: Computer-Aided Design

28.11, pp. 917–928.

Leiserson, Charles E and Tao B Schardl (2010). “A work-efficient parallel

breadth-first search algorithm (or how to cope with the nondeterminism

of reducers)”. In: Proceedings of the twenty-second annual ACM sym-

posium on Parallelism in algorithms and architectures. ACM, pp. 303–

314.
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DÉTECTION ET TRAITEMENT DE CONFIGURATIONS INCONTINENTES OU 

LOCALEMENT CONTRAINTES PENDANT LA MANIPULATION DE MODÈLES              

GÉOMÉTRIQUES 3D EN SURFACES DE FORME LIBRE 

 

RESUME: Les modeleurs de CAO actuels doivent intégrer des fonctionnalités de plus en 

plus avancées pour la modélisation de produits de haute qualité définis par des formes 

complexes. Il est notamment nécessaire de développer des outils d'aide à la décision 

pour aider les concepteurs lors de la phase de modélisation géométrique. En fait, la 

forme finale d'un produit résulte souvent de la satisfaction d'exigences esquissées au 

cours d'un processus de conception itératif. Les exigences peuvent être considérées 

comme des contraintes à satisfaire. Pour définir un objet de forme libre, les concepteurs 

doivent spécifier les contraintes géométriques que l'objet doit satisfaire. La plupart du 

temps, ces contraintes génèrent un ensemble d'équations linéaires et non-linéaires reliant 

des variables dont les valeurs doivent être trouvées. Pendant le processus de 

modélisation, les concepteurs peuvent exprimer involontairement plusieurs fois les 

mêmes exigences en utilisant différentes contraintes conduisant ainsi à des équations 

redondantes. Ils peuvent également générer involontairement des équations 

contradictoires produisant des configurations insatisfiable. En outre, en raison de la 

propriété de support locale des NURBS, les équations peuvent ne pas s'étendre à toutes 

les variables, entraînant ainsi des sous-parties localement potentiellement surcontraintes. 

 

Cette thèse propose une approche originale d'aide à la décision pour aborder les 

configurations géométriques sur-contraintes durant les phases de conception assistée par 

ordinateur. Elle se concentre particulièrement sur la détection et la résolution de 

contraintes redondantes et conflictuelles lors de la déformation de surfaces libres à base 

de carreaux NURBS. À partir d'une série de décompositions structurelles couplées à des 

analyses numériques, l'approche proposée traite à la fois les contraintes linéaires et non-

linéaires. Les décompositions structurelles sont particulièrement efficaces en raison de 

la propriété de support local des NURBS. Puisque le résultat de ce processus de 

détection n'est pas unique, plusieurs critères sont introduits pour inciter le concepteur à 

identifier les contraintes à supprimer afin de minimiser l'impact sur son intention de 

conception initiale. Ainsi, même si le noyau de l'algorithme travaille sur des équations 

et des variables, la décision est prise en considérant les contraintes géométriques 

spécifiées par l'utilisateur. 

 

Mots clés : Processus de développement de produit, déformation de surface de forme 

libre, équations linéaires et non linéaires, sous-parties localement sur-contraintes, 

contraintes redondantes et conflictuelles, décomposition structurelle, analyse numérique, 

aide à la décision, intention de conception 

 

 



 

 

DETECTION AND TREATMENT OF INCONSISTENT OR LOCALLY OVER-

CONSTRAINED CONFIGURATIONS DURING THE MANIPULATION OF 3D 

GEOMETRIC MODELS MADE OF FREE-FORM SURFACES 

 

ABSTRACT: Today's CAD modelers need to incorporate more and more advanced 

functionalities for the modeling of high-quality products defined by complex shapes. 

There is notably a need for developing decision support tools to help designers during 

the free-form geometric modeling phase of the Product Design Process (PDP). Actually, 

the final shape of a product often results from the satisfaction of requirements sketched 

during an incremental design process. The requirements can be seen as constraints to be 

satisfied. To shape a free-form object, designers have to specify the geometric 

constraints the object has to satisfy. Most of the time, those constraints will generate a 

set of linear and non-linear equations linking variables whose values have to be found. 

During the modeling process, designers may express involuntarily several times the 

same requirements using different constraints thus leading to redundant equations, or 

they can involuntarily generate conflicting equations resulting in unsatisfiable 

configurations. Additionally, due to the local support property of NURBS, equations 

may not span on all variables, thus resulting in locally over-constrained subparts. 

 

This work proposes an original decision-support approach to address over-constrained 

geometric configurations in Computer-Aided Design. It focuses particularly on the 

detection and resolution of redundant and conflicting constraints when deforming free-

form surfaces made of NURBS patches. Based on a series of structural decompositions 

coupled with numerical analyses, the proposed approach handles both linear and non-

linear constraints. The structural decompositions are particularly efficient because of the 

local support property of NURBS. Since the result of this detection process is not 

unique, several criteria are introduced to drive the designer in identifying which 

constraints should be removed to minimize the impact on his/her original design intent. 

Thus, even if the kernel of the algorithm works on equations and variables, the decision 

is taken by considering the user-specified geometric constraints. 

 

 

Keywords : Product Development Process, free-form surface deformation, linear and 

non-linear equations, locally over-constrained subparts, redundant and conflicting 

constraints, structural decomposition, numerical analysis, decision support, design 

intent 
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