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Résumé

Cette thèse porte sur des problèmes de statistiques mettant en jeu une série temporelle multivariable yn

de grande dimension M définie comme la somme d’un bruit gaussien blanc temporellement et spatiale-
ment et d’un signal utile généré comme la sortie d’un filtre 1 entrée / M sorties à réponse impulsionnelle
finie excité par une séquence déterministe scalaire non observable. Si l’on suppose que y est observé
entre les instants 1 et N, un bon nombre de techniques existantes sont basées sur des fonctionnelles
de la matrice de covariance empirique R̂L des vecteurs de dimensions ML (y(L)

n )n=1,...,N obtenus en em-
pilant les vecteurs yk entre les instants n et n +L− 1, où L est un paramètre bien choisi. Lorsque l’on
est en mesure de collecter un nombre d’observations très nettement plus grand que la dimension ML
des vecteurs (y(L)

n )n=1,...,N, R̂L a le même comportement en norme spectrale que son espérance math-
ématique, et cela permet d’étudier les techniques d’inférences basés sur R̂L par le biais de techniques
classiques de statistique asymptotique. Dans cette thèse, nous nous intéressons au cas où ML et N sont
du même ordre de grandeur, ce que nous modélisons par des régimes asymptotiques dans lesquels M et
N tendent tous les deux vers l’infini, et où le rapport ML/N converge vers une constante non nulle, L pou-
vant aussi croître avec M et N. Les problèmes que nous résolvons dans ce travail nécessitent d’étudier
le comportement des éléments propres de la grande matrice aléatoire R̂L. Compte tenu de la structure
particulière des vecteurs (y(L)

n )n=1,...,N, R̂L coïncide avec la matrice de Gram d’une matrice Hankel par
bloc ΣL, et cette spécificité nécessite le développement de techniques appropriées.

Dans le chapitre 2, nous nous intéressons au cas où le nombre de coefficients P de la réponse im-
pulsionnelle générant le signal utile et le paramètre L restent fixes quand M et N grandissent. La ma-
trice ΣL est alors une perturbation de rang fini de la matrice Hankel par bloc WL constituée à partir
du bruit additif. Nous montrons que les éléments propres de R̂L se comportent comme si la matrice
WL était à éléments indépendants et identiquement distribués. Cela nous permet d’aborder l’étude de
tests de détection du signal utile portant sur les plus grandes valeurs propres de R̂L ainsi que la mise en
évidence de nouvelles stratégies de détermination du paramètre de régularisation de filtres de Wiener
spatio-temporels estimés à partir d’une séquence d’apprentissage. Techniquement, ce dernier point est
abordé en caractérisant le comportement asymptotique des éléments de la résolvente de la matrice R̂L.
Nous montrons enfin également que ces résultats permettent d’analyser le comportement d’algorithmes
sous-espace de localisation de sources bande étroite utilisant la technique du lissage spatial.

Dans le chapitre 3, motivés par le cas où P et L peuvent tendre vers l’infini, nous nous écartons
quelque peu du modèle initial, et supposons que la matriceΣL est la somme de la matrice aléatoire Han-
kel par bloc WL avec une matrice déterministe sans structure particulière. En utilisant des approaches
basées sur la transformée de Stieltjes et des outils adaptés au caractère gaussien du bruit, nous montrons
que la distribution empirique des valeurs propres de R̂L a un comportement déterministe que nous car-
actérisons. Sous réserve L2/MN tende vers 0, nous faisons de même pour les éléments de la résolvante
de R̂L.

Dans le chapitre 4, nous revenons au modèle initial, mais supposons que P et L tendent vers l’infini
au même rythme. Dans ce contexte, la contribution du signal utile à la matriceΣL est une matrice dont le
rang tend vers l’infini, et les techniques utilisées dans le chapitre 2 ne sont plus applicables. En utilisant
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les résultats du chapitre 3, nous établissons que si L2/MN tende vers 0, les éléments de la résolvante
de R̂L se comportent comme les éléments d’une matrice déterministe qui coïncide avec l’équivalent
déterministe de la resolvente d’un modèle information plus bruit dans lequel les éléments de la matrice
de bruit sont indépendants et identiquement distribués. Dans le cas où L/M tend vers 0, ceci nous
permet d’étendre les résultats du chapitre 2 relatifs à la détermination du paramètre de régularisation
des filtres de Wiener spatio-temporels estimés à partir d’une séquence d’apprentissage.
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Abstract

This thesis focuses on statistical problems involving a multivariate time series yn of large dimension
M defined as the sum of gaussian white noise temporally and spatially and a useful signal defined as
the output of an unknown finite impulse response single input multiple outputs system driven by a
deterministic scalar nonobservable sequence. Supposing (yn)n=1,...,N is available, a number of exist-
ing methods are based on the functionals of empirical covariance matrix R̂L of ML–dimensional vectors
(y(L)

n )n=1,...,N obtained by stacking the vectors (yk )k=n,...,n+L−1, where L is a relevant parameter. In the case
where the number of observations N is much larger than ML the dimension of vectors (y(L)

n )n=1,...,N, R̂L

behaves as its mathematical expectation in the sense of spectral norm. This allows us to study the infer-
ence technique based on R̂L via classical techniques of asymptotic statistics. In this thesis, we interested
in the case where ML and N have the same order of magnitude, we call this the asymptotic regimes in
which M and N converge towards infinity, such that the ratio ML

N converges towards a strictly positive
constant, given that L may scale with M,N. To solve the problems in this work, it is necessary to investi-
gate the behaviour of the eigenvalues and eigenvectors of the random matrix R̂L. Taking account of the
particular structure of vectors (y(L)

n )n=1,...,N, R̂L coincides with the Gram matrix of a block-Hankel matrix
ΣL, and this specificity requires the development of appropriate techniques.

In chapter 2, we interested to the case where the number of coefficients P of the finite impulse re-
sponse generated the useful signal and the parameter L remain fixed when M,N grow large. As a con-
sequence, the matrix ΣL is a finite rank perturbation of block-Hankel matrix WL composed of additive
noise. We prove that eigenvalues and eigenvectors of R̂L behave as if the entries of matrix WL are inde-
pendent and identically distributed. This allows us to construct detection tests of useful signal based on
largest eigenvalues of R̂L and to develop new estimation strategies of the regularization parameter of the
spatio-temporal Wiener filter estimated from a training sequence. This approach is characterized by the
asymptotic behaviour of the resolvent of matrix R̂L. We also prove that these results provide consistent
subspace estimation methods for source localization using spatial-smoothing scheme.

In chapter 3, motivated by the case where P and L may converge towards infinity, we move off some-
what the initial model. We suppose that the matrixΣL is the sum of the block-Hankel random matrix WL

with a deterministic matrix without particular structure. Using the approaches based on Stieltjes trans-
form and tools adapted to gaussian noise, we prove that the empirical eigenvalue distribution of R̂L has
deterministic behaviour which we shall describe. Provided L2

MN converges towards 0, we do likewise for
the elements of the resolvent of R̂L.

In chapter 4, we return to the initial model, but we suppose that P,L converge towards infinity with
the same rate. In this context, matrix ΣL is a matrix whose rank goes to infinity, and thus the techniques
employed in chapter 2 are not applicable. Using the results obtained in chapter 3, we establish that
when L2

MN goes to 0, the elements of the resolvent of R̂L behave as the elements of a deterministic matrix
which coincides with the deterministic equivalent of the resolvent of the information plus noise model in
which entries of the noise matrix are independent and identically distributed. In the case where L

M goes
to 0, this allows us to extend the results of chapter 2 related to the determination of the regularization
parameter of the spatial-temporal Wiener filter estimated from a training sequence.
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Chapter 1

Introduction

1.1 Introduction

Due to the spectacular evolution of data acquisition devices and sensor networks, it becomes common
to be faced to multivariate signals of high dimension. Very often, the sample size that can be used in
practice to perform statistical inference cannot be much larger than the dimension of the observation
because the duration of the signals are limited, or because their statistics are not time-invariant over
large enough temporal windows. In this context, it is well established that fundamental statistical signal
processing techniques implemented in existing systems (e.g., source detection, source localisation, esti-
mation of various kinds of spatial and spatio-temporal filters, or of equalizers, blind source separation,
blind deconvolution and equalization,...) show poor performance. It is therefore of crucial importance
to revisit the corresponding problems, and to be able to propose new algorithms with enhanced per-
formance. In the last decade, a number of mathematical tools were thus developed in the context of
high-dimensional statistical signal processing. Among others, we mention the use of possible sparsity of
certain parameters of interest, and large random matrices. This thesis concentrates on the development
of large random matrix tools, and to their applications to important high-dimensional statistical signal
processing problems.

Large random matrices have been proved to be of fundamental importance in mathematics (high di-
mensional probability and statistics, operator algebras, combinatorics, number theory,...) and in physics
(nuclear physics, quantum fields theory, quantum chaos,..) for a long time. The introduction of large ran-
dom matrix theory in electrical engineering is more recent. It was introduced at the end of the nineties
in the context of digital communications in order to analyse the performance of large CDMA and MIMO
systems. Except the pioneering work of Girko ([26], [27]), the first works using large random matrix the-
ory in the context of multivariate statistical signal processing were published in the second part of the
2000s, see e.g. [53], [54], [55], [40], [57], [43], [58]. These works were followed by a number of subse-
quent contributions, e.g. [12], [16], [17], [18], [19], [72], [33], [74], [79], [80]. The common point of the
above mentioned works is to address statistical inference problems for the narrow band array processing
model, also called the linear static factor model in the statistical terminology. In this context, the obser-
vation is a M-dimensional signal yn defined as a noisy version of a low rank K useful signal on which
various informations have to be retrieved from samples (yn)n=1,...,N. In particular, one may want to de-
tect the presence or the absence of the useful signal, to estimate its rank K, the corresponding signal
subspace, or to estimate certain parameters (e.g. direction of arrival). A number of statistical inference
methods are based on the observation that the relevant informations are contained in the "true" spatial
covariance matrix R = E(yny∗n), and that, in the case where M << N, the empirical spatial covariance ma-
trix R̂ behaves as R. Therefore, many detection / estimation schemes use functionals of R̂, which, when
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CHAPTER 1. INTRODUCTION

M << N, behave as the corresponding functionals of R. When M and N are large and of the same order
of magnitude, it is well established that R̂ is a poor estimate of R in the sense that functionals of R̂ do
not behave as the functionals of R. The above mentioned papers developed methodologies that allow
to evaluate the behaviour of functionals of R̂ in the asymptotic regime M and N converge towards infin-
ity at the same rate, and to take benefit of the corresponding results to propose improved performance
statistical inference schemes.

In the present thesis, we address statistical inference problems for the wide band array processing
model in which the useful signal is low rank in the frequency domain, or, in other words, coincides with
the output of an unknown K inputs / M outputs filter (with K < M) driven by a K–dimensional time
series. In this case, the empirical spatial covariance matrix does not convey enough information on
the low rank component, and several inference schemes are rather based on empirical spatio-temporal
covariance matrices R̂(L) defined as the empirical covariance matrices of augmented ML–dimensional
vectors y(L)

n = (yT
n , . . . ,yT

n+L−1)T where L is a relevant parameter. Our goal is thus to study the asymptotic
behaviour of functionals of random matrices R̂(L) when M and N converge towards infinity, to use the
corresponding results to analyze the performance of traditional detection / estimation schemes, and to
propose improved methods. The main originality of this research program follows from the particular
structure of the ML×N augmented observation matrix YL = (y(L)

1 , . . . ,y(L)
N ). This matrix has a block-Hankel

structure, so that the analysis of the asymptotic behaviour of R̂(L) = YLY∗
L /N needs the establishment of

new results.

1.2 Review of useful known results.

In this section, we review some fundamental results concerning large empirical covariance matrices.

1.2.1 The Marcenko-Pastur distribution.

The Marcenko-Pastur distribution was introduced 40 years ago in [52], and plays a key role in a num-
ber of high-dimensional statistical signal processing problems. In this section, (vn)n=1,...,N denotes a se-
quence of i.i.d. zero mean complex Gaussian random M–dimensional vectors for which E(vnv∗n) =σ2IM.
We consider the empirical covariance matrix

1

N

N∑
n=1

vnv∗n

which can also be written as
1

N

N∑
n=1

vnv∗n = WNW∗
N

where matrix WN is defined by WN = 1p
N

(v1, . . . ,vN). WN is thus a complex Gaussian matrix with inde-

pendent identically distributed Nc (0, σ
2

N ) entries. When N →+∞ while M remains fixed, matrix WNW∗
N

converges towards σ2IM in the spectral norm sense. In the high-dimensional asymptotic regime defined
by

M →+∞,N →+∞,dN = M

N
→ d > 0 (1.2.1)

it is well understood that ‖WNW∗
N −σ2IM‖ does not converge towards 0. In particular, the empirical

distribution µ̂N = 1
M

∑M
m=1δλ̂m,N

of the eigenvalues λ̂1,N ≥ . . . ≥ λ̂M,N of WNW∗
N does not converge towards

the Dirac measure at point λ=σ2. More precisely, we denote by µd ,σ2 the Marcenko-Pastur distribution

7



CHAPTER 1. INTRODUCTION

of parameters (d ,σ2) defined as probability measure

dµd ,σ2 (λ) = δ0[1−d−1]+ +
p

(λ−λ−) (λ+−λ)

2σ2dπλ
1[λ−,λ+](λ)dλ

with λ− =σ2(1−p
d)2 and λ+ =σ2(1+p

d)2. Then, the following result holds.

Theorem 1.2.1. The empirical eigenvalue value distribution µ̂N converges weakly almost surely towards
µd ,σ2 when both M and N converge towards +∞ in such a way that dN = M

N converges towards d > 0.
Moreover, it holds that

λ̂1,N →σ2(1+p
d)2 a.s. (1.2.2)

λ̂min(M,N) →σ2(1−p
d)2 a.s. (1.2.3)

We also observe that Theorem 1.2.1 remains valid if WN is a non necessarily Gaussian matrix whose
i.i.d. elements have a finite fourth order moment (see e.g. [5]). Theorem 1.2.1 means that when ratio M

N
is not small enough, the eigenvalues of the empirical spatial covariance matrix of a temporally and spa-
tially white noise tend to spread out around the variance of the noise, and that almost surely, for N large
enough, all the eigenvalues are located in a neighbourhood of interval [λ−,λ+]. While the spreading of
the eigenvalues is not an astonishing phenomenon, it is remarkable that the behaviour of the eigenvalues
can be characterized very precisely.

In order to establish the convergence of µ̂N towardsµd ,σ2 , the simplest approach consists in studying
the asymptotic behaviour of the Stieltjes transform m̂N(z) of µ̂N defined as

m̂N(z) =
∫

R+

1

λ− z
d µ̂N(z) = 1

M

M∑
m=1

1

λ̂m,N − z
(1.2.4)

and to establish that for each z ∈C−R+, it holds that

lim
N→+∞

m̂N(z) = md ,σ2 (z) a.s., (1.2.5)

where md ,σ2 (z) = ∫
R+

1
λ−z dµd ,σ2 (λ) represents the Stieltjes transform of µd ,σ2 . Function md ,σ2 is known

to be the unique Stieltjes transform of a probability measure carried by R+ satisfying the equation

md ,σ2 (z) = 1

−z + σ2

1+σ2d md ,σ2 (z)

(1.2.6)

for each z. md ,σ2 (z) can also be defined as the first component of the solution of the coupled equation

md ,σ2 (z) = 1

−z
(
1+σ2m̃d ,σ2 (z)

) (1.2.7)

m̃d ,σ2 (z) = 1

−z
(
1+σ2dmd ,σ2 (z)

)
The second component m̃d ,σ2 (z) of the solution of (1.2.7) then coincides with −(1−d)/z +d md ,σ2 (z) i.e.
with the Stieltjes transform of (1−d)δ0 +d µd ,σ2 . It is easily seen that

(1−d)δ0 +d µd ,σ2 =µd−1,σ2d (1.2.8)

Therefore, it also holds that
m̃d ,σ2 (z) = md−1,σ2d (z) (1.2.9)
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CHAPTER 1. INTRODUCTION

for each z ∈C−R+. In order to establish (1.2.5), it is sufficient to use a Gaussian concentration argument,
and to prove that E(m̂N(z)) satisfies a perturbed version of (1.2.6). In the Gaussian case, this last point
can be addressed using the integration by parts formula and the Poincaré-Nash inequality, see below for
more details. We also mention that function wd ,σ2 (z) defined by

wd ,σ2 (z) = 1

zmd ,σ2 (z)m̃d ,σ2 (z)
(1.2.10)

is analytic on C− [λ−,λ+], verifies Im(w(z))
Im(z) > 0 if z ∈ C−R, wd ,σ2 (λ−) = −σ2

p
d and wd ,σ2 (λ+) = σ2

p
d .

Moreover, wd ,σ2 (λ) increases from −∞ to −σ2
p

d when λ increases from −∞ to λ−, wd ,σ2 (λ) increases
from σ2

p
d to +∞ when λ increases from λ+ to +∞, and the set {wd ,σ2 (λ),λ ∈ [λ−,λ+]} coincides with

the half circle {σ2
p

d e iθ} where θ increases from −π to 0. Using (1.2.7), it is possible to express md ,σ2 (z)
in terms of wd ,σ2 (z). More precisely, 1

zm̃d ,σ2 (z) =−(1+σ2dmd ,σ2 (z)) so that

wd ,σ2 (z) =−1+σ2dmd ,σ2 (z)

md ,σ2 (z)

Solving w.r.t. md ,σ2 (z) leads to

md ,σ2 (z) =− 1

wd ,σ2 (z)+σ2d
(1.2.11)

It can be shown similarly that

m̃d ,σ2 (z) =− 1

wd ,σ2 (z)+σ2 (1.2.12)

Plugging (1.2.11) into (1.2.6), we obtain that wd ,σ2 (z) is solution of the equation

φd ,σ2

(
wd ,σ2 (z)

)= z (1.2.13)

for each z ∈Cwhere φd ,σ2 (w) is the function defined by

φd ,σ2 (w) = (w +σ2)(w +σ2d)

w
(1.2.14)

It is useful to notice that if QW,N(z) denotes the resolvent of matrix WNW∗
N defined by

QW,N(z) = (
WNW∗

N − zIM
)−1 (1.2.15)

then m̂N(z) coincides with 1
M Tr

(
QW,N(z)

)
. We also note that it is possible to establish a stronger result,

i.e. for each z ∈C−R+,
a∗

N

(
QW,N(z)−md ,σ2 (z)IM

)
bN → 0 a.s. (1.2.16)

for each deterministic vectors aN,bN for which supN(‖aN‖,bN‖) <+∞. A similar result holds for Q̃W,N(z)
defined as the resolvent of W∗

NWN, i.e.

Q̃W,N(z) = (
W∗

NWN − zIN
)−1 (1.2.17)

More precisely, it holds that
ã∗

N

(
Q̃W,N(z)−m̃d ,σ2 (z)IN

)
b̃N → 0 a.s. (1.2.18)

for each deterministic vectors ãN, b̃N for which supN(‖ãN‖, b̃N‖) <+∞. Moreover, for each z ∈ C−R+, it
holds that

a∗
N

(
QW,N(z)WN

)
b̃N → 0 a.s. (1.2.19)

Finally, convergence properties (1.2.16, 1.2.18, 1.2.19) hold uniformly w.r.t. z on each compact subset of
C∗− [λ−,λ+].

9
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1.2.2 The Information plus noise spiked models.

An information plus noise model is a M×N random matrix model ΣN defined as

ΣN = BN +WN (1.2.20)

where complex Gaussian random matrix WN is defined as above, and where BN is a deterministic M×N
matrix. In the asymptotic regime (1.2.1), this kind of models were initially studied by Girko (see e.g.
[26]) , later by Dozier-Silverstein (see [20], [21]), and by [32] in the case where the entries of WN are
independent but not necessarily identically distributed. We denote by (λ̂m,N)m=1,...,M the eigenvalues of
ΣNΣ

∗
N arranged in the decreasing order. When the rank of matrix BN is a fixed value K that does not scale

with M and N, it is clear that the eigenvalue distribution ΣNΣ
∗
N still converges towards the Marcenko-

Pastur distribution µd ,σ2 . More importantly, [9] and [10] proposed an elementary analysis that allows to
characterize quite explicitly the largest eigenvalues and corresponding eigenvectors of matrix ΣNΣ

∗
N.

More precisely, we denote by λ1,N > λ2,N . . . > λK,N the non zero eigenvalues of matrix BNB∗
N arranged

in decreasing order, and by (uk,N)k=1,...,K and (ũk,N)k=1,...,K the associated left and right singular vectors
of BN. The singular value decomposition of BN is thus given by

BN =
K∑

k=1
λ1/2

k,Nuk,Nũ∗
k,N = UNΛ

1/2
N Ũ∗

N

Moreover, we assume that:

Assumption 1.2.1. The K non zero eigenvalues (λk,N)k=1,...,K of matrix BNB∗
N converge towards λ1 > λ2 >

. . . > λK when N →+∞.

Here, for ease of exposition, we assume that the eigenvalues (λk,N)k=1,...,K have multiplicity 1 and that
λk 6= λl for k 6= l . However, the forthcoming result can be easily adapted if some λk coincide.

Theorem 1.2.2. We denote by Ks , 0 ≤ Ks ≤ K, the largest integer for which

λKs >σ2
p

d (1.2.21)

Then, for k = 1, . . . ,Ks , it holds that

λ̂k,N
a.s.−−−−→

N→∞
ρk =φd ,σ2 (λk ) = (λk +σ2)(λk +σ2d)

λk
> λ+. (1.2.22)

Moreover, for k = Ks +1, . . . ,K, it holds that

λ̂k,N → λ+ a.s. (1.2.23)

Finally, for all deterministic sequences of M–dimensional unit vectors (aN), (bN), we have for k = 1, . . . ,Ks

a∗
Nûk,Nû∗

k,NbN = λ2
k −σ4d

λk (λk +σ2d)
a∗

Nuk,Nu∗
k,NbN +o(1) a.s. (1.2.24)

This result implies that if the some of the non zero eigenvalues of BNB∗
N are large enough, then the

corresponding greatest eigenvalues of ΣNΣ
∗
N escape from [λ−,λ+] that can be interpreted as the noise

eigenvalue interval. Moreover, each eigenvector ûk,N,k = 1, . . . ,Ks associated to such an eigenvalue has a
non trivial correlation with eigenvector uk,N (take aN = bN = uk,N in (1.2.24)) while u∗

l ,Nûk,N → 0 for each

10
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l 6= k. We note that the term
λ2

k−σ4d
λk (λk+σ2d) is less than 1, and is close to 0 when λk is close to the threshold

σ2
p

d . We also remark that if hd ,σ2 (z) represents the function defined by

hd ,σ2 (z) =
[
wd ,σ2 (z)

]2 −σ4d

wd ,σ2 (z)(wd ,σ2 (z)+σ2d)
(1.2.25)

then, (1.2.13) implies that
λ2

k −σ4d

λk (λk +σ2d)
= hd ,σ2 (ρk ) (1.2.26)

As eigenvalue λ̂k,N converges towards ρk , (1.2.26) leads to

hd ,σ2 (λ̂k,N) → λ2
k −σ4d

λk (λk +σ2d)

Therefore,
λ2

k−σ4d
λk (λk+σ2d) and each bilinear form of uk,Nu∗

k,N can be estimated consistently from λ̂k,N and

ûk,N as soon as σ2 is known.

In order to understand which particular properties of matrix WN play a role in this result, we pro-
vide a sketch of proof of Theorem 1.2.2. We first justify (1.2.22). In the following, we prefer to follow the
approach used in [17], which, while equivalent to [10], is more direct. For this, we denote by QN(z) and
Q̃N(z) the resolvents of matrices ΣNΣ

∗
N and Σ∗

NΣN respectively. The proof is based on the observation
that det(ΣNΣ

∗
N − zI) can be expressed in terms of det(WNW∗

N − zI), and that, in regime (1.2.1), the cor-
responding expression allows to check whether some of the K largest eigenvalues of ΣNΣ

∗
N may escape

from [λ−−ε,λ++ε] where ε> 0 may be arbitrarily small. We express ΣNΣ
∗
N − zI as

ΣNΣ
∗
N − zI = WNW∗

N − zI+ (UN,WNŨNΛ
1/2
N )

(
ΛN IK

IK 0

)(
U∗

N
Λ1/2

N Ũ∗
NW∗

N

)
(1.2.27)

Using (1.2.2) and (1.2.3), we obtain that if z 6= 0 is chosen real and outside [λ−− ε,λ++ ε], then matrix
WNW∗

N − zI is invertible. Therefore, for such z, ΣNΣ
∗
N − zI can be written as

ΣNΣ
∗
N − zI = (

WNW∗
N − zI

)(
I+QW,N(z)(UN,WNŨNΛ

1/2
N )

(
ΛN IK

IK 0

)(
U∗

N
Λ1/2

N Ũ∗
NW∗

N

))
(1.2.28)

Therefore, if z 6= 0 is real and outside [λ−−ε,λ++ε] , z is eigenvalue of ΣNΣ
∗
N if and only if

det

(
I+QW,N(z)(UN,WNŨNΛ

1/2
N )

(
ΛN IK

IK 0

)(
U∗

N
Λ1/2

N Ũ∗
NW∗

N

))
= 0

or equivalently, if and only if det(FN(z)) = 0 where FN(z) is the 2K×2K matrix defined by

FN(z) = I2K +
(

U∗
N

Λ1/2
N Ũ∗

NW∗
N

)
QW,N(z)(UN,WNŨNΛ

1/2
N )

(
ΛN IK

IK 0

)
It turns out that it is possible to evaluate the behaviour of the entries of matrix FN(z) when N → +∞.
More precisely, the entries of FN(z) depend on bilinear forms of matrices QW,N(z), QW,N(z)WN, and
W∗

NQN(z)WN = I+ zQ̃W,N(z). (1.2.16, 1.2.18, 1.2.19) imply immediately that FN(z) converge towards ma-
trix F(z) given by

F(z) =
(

IK +m(z)Λ m(z)IK

(1+ z m̃(z))Λ IK

)

11
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where Λ is the diagonal matrix Λ = Diag(λ1, . . . ,λK) and where we have denoted Stieltjes transforms
md ,σ2 (z) and m̃d ,σ2 (z) by m(z) and m̃(z) in order to simplify the notations. Therefore, if z 6= 0 is cho-
sen real and outside [λ−−ε,λ++ε], the limit form of equation det(ΣNΣ

∗
N − zI) = 0 is

det(Λ−w(z)IK) = 0 (1.2.29)

where w(z) is defined by (1.2.10). Using the properties of function w(z), we obtain immediately that
(1.2.29) has Ks solutions that coincide with theφ(λk ) = ρk for k = 1, . . . ,Ks . This, and some extra technical
details lead to (1.2.22).

We now justify (1.2.24). Again, we do not follow [10], and rather use (1.2.28) as well as the approach
developed in [75]. For this, we consider k ≤ Ks . As λ̂k,N converges towards ρk > λ+, projection matrix
ûk,Nû∗

k,N can be written as

ûk,Nû∗
k,N =− 1

2iπ

∫
Ck

(
ΣNΣ

∗
N − zI

)−1 d z (1.2.30)

where Ck is a contour enclosing the eigenvalue λ̂k,N, ρk , and not the other eigenvalues ofΣNΣ
∗
N. (1.2.24)

is based on the observation that it is possible to evaluate the almost sure asymptotic behaviour of the
bilinear forms of

(
ΣNΣ

∗
N − zI

)−1 = QN(z) for each z ∈ Ck . For this, we express QN(z) in terms of QW,N(z)
by taking the inverse of Eq. (1.2.27). After some algebra, we obtain that

QN = QW,N −QW,N(UN,WNŨNΛ
1/2
N )

(
ΛN I

I 0

)
× (1.2.31)

[
I+

(
U∗

N
Λ1/2

N Ũ∗
NW∗

N

)
QW(UN,WNŨNΛ

1/2
N )

(
Λ I
I 0

)]−1 (
U∗

N
Λ1/2

N Ũ∗
NW∗

N

)
QW

Using (1.2.16, 1.2.18, 1.2.19) as above, we obtain that(
U∗

N
Λ1/2

N Ũ∗
NW∗

N

)
QW(UN,WNŨNΛ

1/2
N )

a.s→
(

m(z)I 0
0 (1+ zm̃(z))Λ

)
Using again (1.2.16, 1.2.18, 1.2.19), we obtain after some algebra that for each sequence aN,bN of M–

dimensional unit vectors, it holds that

a∗
N (QN(z)−SN(z))bN → 0 a.s. (1.2.32)

for each z ∈C−R+, where SN(z) is the M×M matrix-valued function defined by

SN(z) =
(
−z(1+σ2m̃(z))+ BNB∗

N

1+σ2dm(z)

)−1

(1.2.33)

Moreover, it is easily seen that the convergence in (1.2.32) is uniform on each compact subset of C−R+.
This property is however not sufficient to claim that

a∗
N

(
ûk,Nû∗

k,N − 1

2iπ

∫
Ck

SN(z)d z

)
bN → 0 (1.2.34)

To justify this, we check that (1.2.32) holds uniformly on contour Ck . For this, we first verify that function
SN(z) is analytic in a neighbourhood of Ck . By (1.2.7), we obtain that w(z) = z(1+σ2m̃(z))(1+σ2dm(z)).
Using (1.2.11), SN(z) can thus also be written as

SN(z) = w(z)

w(z)+σ2d

(
BNB∗

N −w(z)I
)−1

12
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Using the properties of w(z) recalled in paragraph 1.2.1, it is easily checked that when z describes con-
tour Ck , w(z) describes a contour Dk enclosing λk , eigenvalue λk,N, and not the other eigenvalues of
BNB∗

N. Therefore, BNB∗
N −w(z)I is invertible in a neighbourhood of Ck , leading to the conclusion that

SN(z) is analytic in any such neighbourhood. As almost surely for N large enough, QN(z) is also analytic
there, (1.2.32) also holds uniformly on Ck . This justifies (1.2.34). In order to evaluate the contour integral
in (1.2.34), we write SN(z) as SN(z) = 1

w ′ (z)
SN(z) w

′
(z), and obtain that

1

2iπ

∫
Ck

SN(z)d z = 1

2iπ

∫
Ck

1

w ′(z)

w(z)

w(z)+σ2d

(
BNB∗

N −w(z)I
)−1 w

′
(z)d z

Differentiating (1.2.13) w.r.t. z, we get immediately that

w
′
(z) = w2(z)

w2(z)−σ4d
(1.2.35)

Therefore, it holds that

1

2iπ

∫
Ck

SN(z)d z = 1

2iπ

∫
Dk

w2 −σ4d

w(w +σ2d)

(
BNB∗

N −w(z)I
)−1 d w

Using residue theorem, we obtain that this contour integral coincides with
λ2

k,N−σ4d

λk,N(λk,N+σ2d) uk,Nu∗
k,N. There-

fore, (1.2.34) implies (1.2.24).

Remark 1. It is important to notice that the properties that have been used in the above discussion are the
following:

• (i) The eigenvalue distribution of WNW∗
N converges almost surely towards the Marcenko-Pastur dis-

tribution

• (ii) For each ε > 0, all the non zero eigenvalues of WNW∗
N are located inside [λ−− ε,λ++ ε] almost

surely for N large enough

• (iii) (1.2.16, 1.2.18, 1.2.19) hold uniformly w.r.t. z on each compact subset of C∗− [λ−,λ+].

Therefore, Theorem 1.2.2 holds if Gaussian random matrix with i.i.d. entries WN is replaced by a random
matrix verifying the conditions (i,ii, iii).

Remark 2. It is possible to evaluate the asymptotic behaviour of the bilinear forms of matrix Q̃N(z) using
the same kind of calculations. After some algebra, we obtain that

ã∗
N

(
Q̃N(z)− S̃N(z)

)
b̃N → 0 a.s. (1.2.36)

for each z ∈C−R+, where S̃N(z) is the N×N matrix-valued function defined by

S̃N(z) =
(
−z(1+σ2dm(z))+ B∗

NBN

1+σ2m̃(z)

)−1

(1.2.37)

Moreover, (1.2.36) holds uniformly on each compact subset of C−R+.
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1.2.3 The Information plus Noise model.

We now briefly review some results related to the information plus noise modelΣN = BN +WN where BN

is a deterministic matrix whose rank may scale with N. We refer the reader to [20] and to [72] for more
details. In order to simplify the presentation, we assume that BN satisfies the condition

sup
N

‖BN‖ <+∞ (1.2.38)

It is well known that the empirical eigenvalue distribution sequence (µ̂N)N≥1 of ΣNΣ
∗
N has almost surely

the same asymptotic behaviour than a sequence of probability measure (µN)N≥1 carried by R+. Measure
µN is characterized by its Stieltjes transform mN(z) which appears as the unique solution of the equation

mN(z) = 1

M
Tr

[
−z(1+σ2m̃N(z))+ BNB∗

N

1+σ2dNmN(z)

]−1

(1.2.39)

in the class S (R+) of Stieltjes transforms of probability measures carried by R+. In (1.2.39), m̃N(z) is
defined by m̃N(z) = dN mN(z)− 1−dN

z , and thus coincides with the Stieltjes transform of measure µ̃N =
dNµN + (1−dN)δ0. Therefore, it holds that

1

M
Tr(QN(z))−mN(z) → 0 a.s.

for each z ∈C−R+. Matrix TN(z) defined by

TN(z) =
[
−z(1+σ2m̃N(z))+ BNB∗

N

1+σ2dNmN(z)

]−1

(1.2.40)

coincides with the Stieltjes transform of a M×M positive matrix valued measure µN carried by R+ satis-
fying µN(R+) = IM, i.e.

TN(z) =
∫
R+

d µN(λ)

λ− z
dλ

TN(z) is thus holomorphic on C−R+. It can be shown that for each sequence of deterministic M×M
matrices DN such that supN ‖DN‖ <+∞, it holds that

1

M
Tr((QN(z)−TN(z))DN) → 0 a.s. (1.2.41)

for each z ∈C−R+. Moreover, for each sequence of deterministic unit vectors aN,bN, we have

a∗
N (QN(z)−TN(z))bN → 0 a.s. (1.2.42)

for each z ∈ C−R+. It is interesting to point out the differences between TN(z) and SN(z) defined by
(1.2.33): the expressions are the same, except that mN and m̃N are replaced by their Marcenko-Pastur
analogues m and m̃. As mN and m̃N have the same asymptotic behaviour that m and m̃ in the case
where K/N → 0, the entries of TN(z) and SN(z) have the same behaviour.

We also note that matrix T̃N(z) defined by

T̃N(z) =
[
−z(1+σ2dNmN(z))+ B∗

NBN

1+σ2m̃N(z)

]−1

(1.2.43)

is the Stieltjes transform of a N×N positive matrix valued measure µ̃N carried by R+ satisfying µ̃N(R+) =
IN, and m̃N(z) coincides with m̃N(z) = 1

N Tr
(
T̃N(z)

)
. Moreover, (1.2.41) and (1.2.42) still remain valid when

QN(z) and TN(z) are replaced by Q̃N(z) and T̃N(z) respectively. When K/N → 0, the entries of T̃N(z) and
of S̃N(z) defined by (1.2.36) have the same behaviour.

We finally mention that the support SN of measure µN can be characterized (see [72]), and that it
was proved that almost surely, for N large enough, there is no eigenvalue of ΣNΣ

∗
N in intervals [a,b] for

which [a −ε,b +ε]∩SN =; for each N large enough ([48]).
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1.3 Behaviour of the eigenvalues of the empirical spatio-temporal covari-
ance matrices of temporally and spatially complex Gaussian noise.

We consider a M-dimensional time series (yn)n=1,...,N observed between time 1 and time N+L−1 where
L is a certain integer. We consider the ML–dimensional random vector y(L)

n defined by

y(L)
n = (y1,n , . . . ,y1,n+L−1, . . . ,yM,n , . . . ,yM,n+L−1)T (1.3.1)

The ML×ML empirical covariance matrix

R̂(L)
y,N = 1

N

N∑
n=1

y(L)
n y(L)∗

n (1.3.2)

is usually called an empirical spatio-temporal covariance matrix. This kind of matrix plays of course an
important role in a number of statistical inference problems related to multivariate time series. There-
fore, it is potentially useful to study the properties of the eigenvalues of R̂(L)

y,N. When N →+∞ and that

ML remains fixed, the law of large number implies that ‖R̂(L)
y,N −E(y(L)

n y(L)∗
n )‖→ 0. However, in a number

of contexts, N is not much larger than ML, and the above mentioned traditional regime does not allow to
predict the properties of R̂(L)

y,N. It is therefore of great interest to study the matrix R̂(L)
y,N in the asymptotic

regime

N →+∞,ML →+∞, cN = ML

N
→ c > 0 (1.3.3)

This kind of problems was essentially studied in previous works when (yn)n=1,...,N coincides with
a sequence (vn)n=1,...,N of i.i.d. zero mean complex Gaussian random M–dimensional vectors for which
E(vnv∗n) =σ2IM. In order to simplify the notations, we denote by (wm,n)m=1,...,M,n=1,...,N the i.i.d. sequence

of Nc (0, σ
2

N ) random variables defined by wm,n = vm,np
N

where vm,n represents element m of vector vn . For

each m = 1, . . . ,M, W(m)
N represents the L×N Hankel matrix whose entries are given by(

W(m)
N

)
i , j

= wm,i+ j−1, 1 ≤ i ≤ L,1 ≤ j ≤ N (1.3.4)

If we define WN as the ML×N matrix

WN =


W(1)

N
W(2)

N
...

W(M)
N

 (1.3.5)

then, it is easily seen that the empirical spatio-temporal covariance matrix R̂(L)
v,N coincides with matrix

WNW∗
N.

Matrix WN can be interpreted as a block line matrix whose M line blocks (W(m)
N )m=1,...,M are inde-

pendent and identically distributed. When L does not scale with N, i.e. if M and N are of the same
order of magnitude, the works of Girko ([26], Chapter 16) and of [24] allow to conclude that the empirical
eigenvalue distribution of WNW∗

N converges towards the Marcenko-Pastur distribution µc,σ2 . When M is
reduced to 1, matrix WN is reduced to a Hankel matrix. When the w1,n for N < n < N+L are forced to 0,
matrix WNW∗

N coincides with the traditional empirical estimate of the autocovariance matrix of vector
(w1,n , . . . , w1,n+L−1)T. Using the moment method, it was shown in this context in [6] that the empirical
eigenvalue distribution of WNW∗

N converges towards a non compactly distributed limit distribution. The
case where M → +∞ while L may also converge towards +∞ is studied in [49]. As in the case where
L is finite, it is shown that the eigenvalue distribution converges towards µc,σ2 . More importantly, it is
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established in [49] that if L =O (Nα) with α< 2/3, then, almost surely, all the eigenvalues of WNW∗
N are lo-

calized in a neighbourhood of the support of µc,σ2 . More precisely, the main result of [49] is the following
Theorem.

Theorem 1.3.1. When M and N converge towards ∞ in such a way that cN = ML
N converges towards

c ∈ (0,+∞), the eigenvalue distribution of WNW∗
N converges weakly almost surely towards the Marcenko-

Pastur distribution with parameters (σ2,c). If moreover

L =O (Nα) (1.3.6)

where α < 2/3, then, for each ε > 0, almost surely, for N large enough, all the eigenvalues of WNW∗
N are

located in the interval [σ2(1−p
c)2−ε,σ2(1+p

c)2+ε] if c ≤ 1. If c > 1, almost surely, for N large enough, 0
is eigenvalue of WNW∗

N with multiplicity ML−N, and the N non zero eigenvalues of WNW∗
N are located in

the interval [σ2(1−p
c)2 −ε,σ2(1+p

c)2 +ε]

It is standard that the convergence towards the Marcenko-Pastur distribution µc,σ2 and the almost
sure location of the non zero eigenvalues in a neighbourhood of [σ2(1 −p

c)2,σ2(1 +p
c)2] imply the

almost sure convergence of λ̂1,N towards σ2(1+p
c)2 and of λ̂min(ML,N),N towards σ2(1−p

c)2. Therefore,
Theorem 1.3.1 implies that if the rate of convergence of L towards +∞ is not too fast (i.e. if (1.3.6) holds),
or equivalently if M = O (Nβ) with 1/3 < β ≤ 1), then the eigenvalues of WNW∗

N are localized as if the
entries of WN were independent identically distributed, a property which is of course not verified. As
shown below, properties (1.2.16, 1.2.18, 1.2.19) are also verified for d = c. Consequently, matrix WN

satisfies the properties mentioned in Remark 1. The behaviour of the largest eigenvalues of matrices
such as (BN+WN)(BN+WN)∗ where BN represents a deterministic matrix whose rank does not scale with
M,N,L will thus appear to be governed by Theorem 1.2.2.

1.4 Contributions of the thesis.

The general topic of the thesis is to study detection/estimation problems for M dimensional signals
(yn)n∈Z that can be written as

yn =
P−1∑
p=0

hp sn−p +vn = [h(z)]sn +vn (1.4.1)

where (sn)n∈Z is a non observable scalar deterministic sequence and where h(z) = ∑P−1
p=0 hp z−p is the

transfer function of an unknown 1–input / M–outputs linear system. While h(z) is assumed unknown,
P, which represents an upper bound on the number of non zero coefficients of h(z), is assumed to be
known. (vn)n∈Z represents a temporally and spatially complex Gaussian white noise of variance σ2. In
model (1.4.1), signal [h(z)]sn represents a useful wideband signal on which various informations have to
be inferred from the observation of N samples (yn)n∈Z. We have considered the case of a single wideband
signal to simplify the exposition, but we feel that the various results we obtained could be generalized in
the presence of K wideband signals where K does not scale with M and N.

In this thesis, we address the following problems when M and N converge towards +∞:

• Problem 1. Detection of an unknown wideband signal from (yn)n=1,...,N.

• Problem 2. Estimation of the parameter of a regularized spatio-temporal Wiener filter in the case
where a length N training sequence (sn)n=1,...,N is available.

• Problem 3. Subspace estimation of directions of arrivals of narrowband sources using spatial
smoothing schemes when the number of snapshots N is much smaller than the number of an-
tennas M.
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The various approaches that are proposed are based on the study of the eigenvalue/eigenvector decom-
position of the spatio-temporal covariance matrix R̂(L)

y defined by (1.3.2). In order to understand the

structure of R̂(L)
y , we remark that augmented vector y(L)

n defined by (1.3.1) can be written as

y(L)
n = H(L)s(L)

n +v(L)
n (1.4.2)

where s(L)
n represents P+L−1–dimensional vector s(L)

n = (sn−(P−1), . . . , sn+L−1)T and where ML× (P+L−1)
matrix H(L) is a block row matrix

H(L) =


H(L)

1
...

H(L)
M


where each block H(L)

m is a L× (P +L−1) Toeplitz matrix corresponding to the convolution between se-
quence s and the impulse response (hm,p )p=0,...,P−1 of component m hm(z) of filter h(z). If we denote by
Y(L) the ML×N matrix defined by

Y(L) = (y(L)
1 , . . . ,y(L)

N )

then (1.4.2) implies that

Y(L) = H(L)S(L) +V(L) (1.4.3)

Therefore, Y(L) is the sum of the low rank P+L−1 deterministic matrix H(L)S(L) with random matrix V(L).
In order to simplify the notations, we denote by Σ(L), B(L), W(L) the normalized matrices

Σ(L) = Y(L)

p
N

, B(L) = H(L)S(L)

p
N

, W(L) = V(L)

p
N

and remark that R̂(L)
y =Σ(L)Σ(L)∗ and that

Σ(L) = B(L) +W(L) (1.4.4)

Therefore, R̂(L)
y coincides with the Gram matrix Σ(L)Σ(L)∗ of a low rank deterministic perturbation of the

structured random matrix W(L) which has exactly the same properties than matrix WN defined by (1.3.5).
The study of the properties of Σ(L)Σ(L)∗ crucially depend on the behaviour of the rank P+L−1 1 of B(L).

In chapter 2, it is assumed that P and L do not scale with M,N, and we address Problem 1 and Problem
2 under this hypothesis. Problem 3 is also studied in chapter 2 because it appears equivalent to the study
of the eigenvalue/eigenvector decomposition of the Gram matrix of a structured fixed rank information
plus noise model similar toΣ(L). Chapter 3 is devoted to the case where P and L may scale with M and N,
and Problem 2 is revisited in this more difficult context.

Contributions of Chapter 2.

• In section 1, we first establish that the largest eigenvalues / eigenvectors of matrix Σ(L)Σ(L)∗ are
governed by Theorem 1.2.2 where parameter d should be replaced by c = (

limN→+∞ M
N

)
L. As briefly

mentioned at the end of section 1.3, this result holds because matrix W(L) satisfies the 3 properties
mentioned in Remark 1. As the 2 first properties follow directly from Theorem 1.3.1, it is sufficient
to establish (1.2.16), (1.2.18), (1.2.19).

1The rank of H(L) may be smaller than P+L−1 if the components of h(z) share a comon zero. As this property is generically
not satisfied, we assume in the following for the sake of simplication that Rank(H(L)) = P+L−1
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CHAPTER 1. INTRODUCTION

• In section 2, we consider detection Problem 1. It can be formulated as the following composite
hypothesis testing problem in which the hypothesis H0 corresponds to yn = vn for n = 1, . . . ,N
and in which the hypothesis H1 corresponds to yn = [h(z)]sn + vn for some scalar deterministic
sequence s and some SIMO filter h(z) of maximal degree P−1 where P is supposed to be known.
The generalized likelihood ratio test cannot be implemented in this context because the maximum
likelihood ratio estimate of s and h(z) cannot be expressed in closed form. Motivated by the GLRT
in the context of narrow band signals ([12]), we thus study the reasonable pragmatic test statistics
consisting in comparing the sum of the P+L−1 largest eigenvalues of matrix R̂(L)

y to a threshold.
Using the results of section 1, we study the conditions under which the above test is consistant,
and discuss on the optimum value of the parameter L.

• In section 3, we consider the problem of estimating a regularized spatio-temporal Wiener filter
from the observations (yn)n=1,...,N when a training sequence (sn)n=1,... is available at the receiver
side. The regularized spatio-temporal Wiener estimate of sequence s is defined by

ŝn = ĝ(L)∗
λ

y(L)
n

where the regularized spatio-temporal Wiener filter ĝ(L) is the ML–dimensional vector given by

ĝ(L) =
(
R̂(L)

y +λIML

)−1
r̂(L)

Y

where r̂(L)
Y is the empirical cross covariance between the augmented observations (y(L)

n )n=1,...,N and
the training sequence (sn)n=1,...,N. Our main contribution is the derivation of a new estimation
scheme of the regularization parameter λ that consists in choosing λ so as to maximize the sig-
nal to noise plus interference ratio SINR(λ) provided by the regularized spatio-temporal Wiener
estimate. The SINR appears to be a random variable depending on the noise samples corrupting
the observations (yn)n=1,...,N. However, we prove that in the high dimension regime, it converges
almost surely towards a deterministic term φ(λ), depending on λ and on the coefficients of h(z),
and that can be expressed in closed form. Although the coefficients of h(z) are unknown, we prove
thatφ(λ) can be estimated consistently from the observations (yn)n=1,...,N by a term φ̂(λ) for eachλ,
and we propose to choose the regularization parameter that maximizes φ̂(λ). In order to mention
the technical results that we develop, we consider the normalized matrix Σ(L) and the resolvent
Q(z) of matrixΣ(L)Σ(L)∗. Our results are based on the characterization of the asymptotic behaviour
of bilinear forms of matrices Q(z), Q(z)Σ(L), Σ(L)∗Q2(z)Σ(L), Σ(L)∗Q(z)H(L)H(L)∗Σ(L) when z lies on
the negative real axis. For this, we use the hypothesis that P +L−1 does not scale with M and N,
and take (1.2.31) as a starting point to express the above mentioned bilinear forms in terms of bi-
linear forms of matrices depending on the resolvent QW(L) (z) of the noise part W(L) of Σ(L) whose
behaviour is known.

• In section 4, we address the estimation of the directions of arrival of K narrow band sources im-
pinging on a large uniform linear array of sensors in the case where the number of snapshots N is
large, but much smaller than the number of sensors M. In this context, it is standard to use spa-
tial smoothing technics in order to generate L non overlapping subarrays of M−L+1 sensors, and
to multiply by L the number of snapshots. More precisely, the observations (yn)n=1,...,N follow the
classical narrow band array processing model

yn = AM sn +vn

where AM = (aM(θ1), . . . ,aM(θK)) is the M×K matrix of directional vectors associated to the K sources.
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For each n, we denote by Y (L)
n the (M−L+1)×L Hankel matrix defined by

Y (L)
n =



y1,n y2,n . . . . . . yL,n

y2,n y3,n . . . . . . yL+1,n
...

...
...

...
...

...
...

...
...

...
yM−L+1,n yM−L+2,n . . . . . . yM,n

 (1.4.5)

Column l of matrix Y (L)
n corresponds to the observation on subarray l at time n. Collecting all the

observations on the various subarrays allows to obtain NL snapshots, thus increasing artificially
the number of observations. We define Y(L)

N as the (M−L+1)×NL block-Hankel matrix given by

Y(L)
N =

(
Y (L)

1 , . . . ,Y (L)
N

)
(1.4.6)

Matrix Y(L)
N has a block Hankel structure similar to matrix defined by (1.4.3), the difference being

that the Hankel matrices are block columns in (1.4.6) while they are block lines in (1.4.3). It is there-
fore expected that the mathematical results developed to address Problems 1,2 can be used in the
context of Problem 3. It is easily seen that Y(L)

N is the sum of a rank K matrix whose range coincides
with the space generated by the (M−L+1)–dimensional vectors aM−L+1(θ1), . . . ,aM−L+1(θK)) with
the noise matrix V(L)

N defined in the same way than Y(L)
N . As

E

(
V(L)

N V(L)∗
N

NL

)
=σ2 IM−L+1

it possible to develop consistent subspace estimation methods of the angles (θk )k=1,...,K in the
asymptotic regime where NL →+∞ and M−L+1 remains fixed. This regime corresponds to val-
ues of L for which the virtual subarrays have a small number of elements, thus leading to poor
resolution methods. It is thus much more relevant to address the case where M−L+ 1 ' M, i.e.
L
M → 0. We thus consider an asymptotic regime in which N → +∞, M → +∞ and cN = M

NL → c
where c > 0. Adapting the above mentioned results to the present context, we are able to charac-
terize the largest eigenvalues and corresponding eigenvectors of the empirical covariance matrix
Y(L)

N Y(L)∗
N /NL provided N = O (Mβ) for 1/3 < β ≤ 1, and to deduce from this a consistent subspace

estimation method of the directional parameters.

Contributions of Chapter 3. In Chapter 3, we address the case where the observation y is generated
by a general model

yn = xn +vn

where x is a deterministic signal which is not necessarily defined as a filtered version of a scalar se-
quence. In this context, matrix Y(L) = X(L) +V(L) where X(L) is not necessarily rank deficient. In this more
general context, we study the behaviour of the empirical eigenvalue distribution of normalized matrix
Σ(L)Σ(L)∗ in the case where L =O (Nα) for α< 2/3. Generalizing the Gaussian tools used in [49], we prove
that the normalized traces and the bilinear forms of the resolvent Q(z) of matrixΣ(L)Σ(L)∗ have the same
behaviour than the normalized traces and the bilinear forms of a deterministic matrix-valued function
T(z) defined as the solution of a certain (complicated) equation. This result implies that the empirical
eigenvalue distribution µ̂N of Σ(L)Σ(L)∗ has a deterministic behaviour. However, we have not been able
to characterize the properties of the corresponding deterministic approximation of µ̂N (in particular its
support), and to obtain results concerning the almost sure location of the eigenvalues ofΣ(L)Σ(L)∗. How-
ever, the results of Chapter 3 are useful in Chapter 4.
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Contributions of Chapter 4. In Chapter 4, we consider again the wide band model (1.4.1), but as-
sume that P and L may scale with N, and that cN = ML

N converges towards a non zero constant c. We
assume that when P and L converge towards +∞, P = O (L). This implies that the rank of normalized

matrix B(L) = H(L)S(L)p
N

may scale with M and N, but that Rank(B(L))/N → 0.

• In section 3 and 4, we establish that matrix T(z) can be replaced by matrix defined by (1.2.40) corre-
sponding to a standard information plus noise model in which the noise matrix is i.i.d. Moreover,
scalar Stieltjes transform mN(z) can also be replaced by the Stieltjes transform of the Marcenko-
Pastur with parameters (c,σ2). If more information could be obtained on the location of the eigen-
values of Σ(L)Σ(L)∗, this result could be useful to understand the behaviour of the projection ma-
trices on certain eigenspaces.

• In section 5, we take benefit of the results of Chapter 3 to revisit Problem 2 in the case where P
and L may converge towards +∞. In particular, using Gaussian tools, we are able to generalize the
asymptotic behaviours of bilinear forms of Q(z)Σ(L), Σ(L)∗Q2(z)Σ(L) found in section 3 of Chap-
ter 2 when L = O (Nα) for α < 2/3. The study of the SINR also needs to evaluate bilinear forms of
Σ(L)∗Q(z)H(L)H(L)∗Σ(L), which, in the case where P and L are fixed, is an easy task. When P and
L scale with M and N, the problem appears more difficult. We however found a satisfying result
provided L

M → 0 (a condition nearly equivalent to L = O (Nα) for α < 1/2) because a number of
complicated terms vanish. Under this extra assumption, the SINR has the same asymptotic ex-
pression than in the case where P and L are fixed. However, we feel that the asymptotic behaviour
of Σ(L)∗Q(z)H(L)H(L)∗Σ(L) could also be characterized when L =O (Nα) for 1/2 ≤ α< 2/3, and that a
correcting term could appear in the expression of the limit form of the SINR.
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• G.T. Pham, P. Loubaton, P. Vallet, "Performance analysis of spatial smoothing schemes in the con-
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• G.T. Pham, P. Loubaton, P. Vallet, "Performance analysis of spatial smoothing schemes in the con-
text of large arrays", Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on Year: 2015, Pages: 2824 - 2828.

• G.T. Pham; P. Loubaton, "Applications of large empirical spatio-temporal covariance matrix in
multipath channels detection", Signal Processing Conference (EUSIPCO), Nice, September 2015.

• G.T. Pham; P. Loubaton, "Performances des filtres de Wiener spatio-temporels entrainés: le cas des
grandes dimensions", Proc. Colloque Gretsi, Lyon, September 2015.

• G.T. Pham; P. Loubaton, "Optimization of the loading factor of regularized estimated spatial-temporal
Wiener filters in large system case", Proc. of Statistical Signal Processing Workshop (SSP), Palma
de Majorque, June 2016.
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Chapter 2

Spatial-temporal Gaussian information
plus noise spiked model

2.1 Introduction

In this chapter, we assume that the M dimensional signals (yn)n∈Z is generated as

yn =
P−1∑
p=0

hp sn−p +vn = [h(z)]sn +vn (2.1.1)

where (sn)n∈Z is a non observable scalar deterministic sequence and where h(z) = ∑P−1
p=0 hp z−p is the

transfer function of an unknown 1–input / M–outputs linear system. While h(z) is assumed unknown,
P, which represents an upper bound on the number of non zero coefficients of h(z), is assumed to be
known. (vn)n∈Z represents a temporally and spatially complex Gaussian white noise of variance σ2.

In the following, we propose approaches based on the empirical spatio-temporal covariance matri-
ces of y to address 3 well defined inference problems. We recall that if y(L)

n is the ML–dimensional vector
defined by

y(L)
n = (y1,n , . . . ,y1,n+L−1, . . . ,yM,n , . . . ,yM,n+L−1)T

then the spatio-temporal covariance matrix R̂(L)
y is the ML×ML matrix defined by

R̂(L)
y,N = 1

N

N∑
n=1

y(L)
n y(L)∗

n = Y(L)
N Y(L)∗

N

N
(2.1.2)

where Y(L)
N = (y(L)

1 , . . . ,y(L)
N ). As mentioned in Chapter 1, matrix Y(L)

N can be written as

Y(L)
N = H(L)S(L)

N +V(L)
N (2.1.3)

where ML× (P+L−1) matrix H(L) is the block row matrix

H(L) =


H(L)

1
...

H(L)
M


where each row block H(L)

m is a L× (P+L−1) Toeplitz matrix corresponding to the convolution between
sequence s and the impulse response (hm,p )p=0,...,P−1 of component m hm(z) of filter h(z). In (2.1.3),

(P+L−1)×N matrix S(L)
N is the Hankel matrix whose entries are defined by (S(L)

N )i , j = si+ j−P.
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Therefore, Y(L)
N is the sum of the low rank P+L−1 deterministic matrix H(L)S(L)

N with random matrix

V(L)
N . All along this chapter, we assume that P and L do not scale with M and N. Therefore, if we denote

Σ(L)
N , B(L)

N , W(L)
N the normalized matrices

Σ(L)
N = Y(L)

Np
N

, B(L)
N = H(L)S(L)

Np
N

, W(L)
N = V(L)

Np
N

then normalized matrixΣ(L)
N = B(L)

N +W(L)
N can be interpreted as a finite rank deterministic perturbation of

the structured random matrix W(L)
N . We first characterize in section 2.2 the largest eigenvalues and corre-

sponding eigenvectors ofΣ(L)
N Σ(L)∗

N = R̂(L)
y,N, and establish that they behave as if block line Hankel random

matrix W(L)
N was i.i.d. In section 2.3, we study the problem of detecting the wideband signal [h(z)]sn and

in section 2.4 we propose a new approach to select the regularization parameter of estimated spatio-
temporal Wiener filters when a lenght N training sequence (sn)n=1,...,N is available at the receiver side.
Finally, we study in section 2.5 the performance of spatial smoothing schemes for the subspace estima-
tion of the directions of arrival of K narrow band sources impinging on a uniform linear array of sensors
in the case where the number N of snapshots is large, but much smaller than the number of antennas M.

2.2 Behaviour of the largest eigenvalues and corresponding eigenvectors of
Σ(L)

N Σ(L)∗
N .

In this section, we establish that the largest eigenvalues and corresponding eigenvectors ofΣ(L)
N Σ(L)∗

N be-

have as if the entries of noise matrix W(L)
N were i.i.d. (see Theorem 1.2.2). We first define some notations.

We denote by dN and cN the ratios dN = M
N and cN = ML

N . It is assumed that dN → d so that cN → c

where c = dL. (λ̂(L)
k,N)k=1,...,ML represent the eigenvalues of Σ(L)Σ(L)∗ arranged in the decreasing order and

(ûk )k=1,...,ML are the corresponding eigenvectors. λ(L)
1,N ≥ λ(L)

2,N . . . ≥ λ(L)
P+L−1,N are the non zero eigenvalues

of B(L)
N B(L)∗

N and (uk )k=1,...,P+L−1 are the corresponding eigenvectors.

We first remark that matrix W(L)
N verifies Theorem 1.3.1. Therefore, the empirical eigenvalue distribu-

tion of W(L)
N W(L)∗

N converges almost surely towards the Marcenko-Pastur distribution µdL,σ2 while almost

surely, for N large enough, all the non zero eigenvalues W(L)
N W(L)∗

N are localized in a neighbourhood of

[λ−L ,λ+L ] where λ−L =σ2(1−p
dL)2 and λ+L =σ2(1+p

dL)2.

In this section, we formulate the following assumption:

Assumption 2.2.1. The P+L−1 non zero eigenvalues (λ(L)
k,N)k=1,...,K of matrix B(L)

N B(L)∗
N converge towards

λ(L)
1 > λ(L)

2 > . . . > λ(L)
P+L−1 when N →+∞.

Then, the following Theorem holds.

Theorem 2.2.1. We denote by KL, 0 ≤ KL ≤ P+L−1, the largest integer for which λ(L)
KL

>σ2
p

dL. Then, for
k = 1, . . . ,KL, it holds that

λ̂(L)
k,N

a.s.−−−−→
N→∞

ρ(L)
k =φdL,σ2 (λ(L)

k ) =
(λ(L)

k +σ2)(λ(L)
k +σ2dL)

λ(L)
k

> λ+L =σ2(1+
p

dL)2

while for k = KL +1, . . . ,P+L−1, λ̂(L)
k,N → λ+L a.s.

22



CHAPTER 2. SPATIAL-TEMPORAL GAUSSIAN INFORMATION PLUS NOISE SPIKED MODEL

Finally, for all deterministic sequences of ML–dimensional unit vectors (aN), (bN), for k = 1, . . . ,KL, it
holds that

a∗
Nûk,Nû∗

k,NbN =
(λ(L)

k )2 −σ4dL

λ(L)
k (λ(L)

k +σ2dL)
a∗

Nuk,Nu∗
k,NbN +o(1) a.s. (2.2.1)

Proof. In order to simplify the notations, we will denote matrix W(L)
N by WN in the course of the proof.

The resolvents of matrices W(L)
N W(L)∗

N and W(L)∗
N W(L)

N will also be denoted QN(z) and Q̃N(z) respectively.
Finally, the Stieltjes transforms mc,σ2 and m̃c,σ2 will be denoted by mc (z) and m̃c (z).

As matrix WN verifies Theorem 1.3.1, Remark 1 implies that it is sufficient to check the following
properties:

• (i) For each deterministic vectors aN,bN for which supN(‖aN‖,bN‖) <+∞,

a∗
N (QN(z)−mc (z)IM)bN → 0 a.s. (2.2.2)

for each z ∈C−R+.

• (ii) For each deterministic vectors ãN, b̃N for which supN(‖ãN‖, b̃N‖) <+∞.

ã∗
N

(
Q̃N(z)−m̃c (z)IN

)
b̃N → 0 a.s. (2.2.3)

for each z ∈C−R+.

• (iii) For each deterministic vectors aN, b̃N such that supN(‖aN‖, b̃N‖) <+∞.

a∗
N (QN(z)WN) b̃N → 0 a.s. (2.2.4)

for each z ∈C−R+.

• (iv) Convergence properties (2.2.2, 2.2.3, 2.2.4) hold uniformly w.r.t. z on each compact subset of
C∗− [λ−c ,λ+c ].

Properties (2.2.2, 2.2.3, 2.2.4) hold as soon as ML
N → c, c > 0 and M = O (Nβ) where β > 0, or equiva-

lently L =O (Nα), α< 1. In particular, condition L finite or L =O (Nα), α< 2/3 are not needed. We thus use
the minimal conditions in the proofs. Item (iv) however needs that L =O (Nα), α< 2/3 holds.

We first establish (2.2.2). This property is nearly proved in [49], and appears as a particular case of
more general results in Chapter 3. However, to make the present proof reasonably self-contained, we
provide in the following a sketch of proof synthesizing the various points developed in [49]. We first
remark that

a∗
N (QN(z)−mc (z)I)bN = a∗

N (QN(z)−E(QN(z)))bN +a∗
N (E(QN(z))−mc (z)I)bN

and establish that the 2 terms at the right hand side of the above equation converge towards 0. In order to
simplify the notations, we denote by ξ the first term. The almost sure convergence of ξ towards 0 follows
from the Poincaré-Nash inequality (see e.g. Proposition 2 of [49] as well as Chapter 3 of the present
Thesis). More precisely, ξ can be considered as a smooth function ξ(WN,WN) of the entries of WN and
of matrix WN whose entries are the complex conjugates of the entries of WN. For each m = 1, . . . ,M, we
denote by Wm

i , j the entry (i , j ) of L×N matrix W(m)
N . Then, the Poincaré-Nash inequality is a concentration

inequality which states that

Var(ξ) ≤ ∑
m,m′

∑
i , j ,i ′, j ′

E

[
∂ξ

∂Wm
i , j

E
(
Wm

i , j (Wm′
i ′, j ′)

∗
)(

∂ξ

∂Wm′
i ′, j ′

)∗]
+

∑
m,m′

∑
i , j ,i ′, j ′

E

(
∂ξ

∂W
m
i , j

)∗
E
(
Wm

i , j (Wm′
i ′, j ′)

∗
) ∂ξ

∂W
m′
i ′, j ′
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We notice that the structure of WN implies that

E
(
Wm

i , j (Wm′
i ′, j ′)

∗
)
= σ2

N
δ(m −m′)δ(i + j = i ′+ j ′) (2.2.5)

so that the above sums reduce to simpler terms. The above upper bound of Var(ξ) was evaluated in
Proposition 3-1 in [49] (see Eq. (3.2)): Var(ξ) = E|ξ|2 = O ( L

N ) = O ( 1
M ). As M → +∞, this implies that ξ

converges in probability towards 0. In order to prove the almost sure convergence, we briefly justify that
for each k, it holds that

E|ξ|2k =O
(
(1/M)k

)
(2.2.6)

(2.2.6) is established by induction on k. As mentioned above, (2.2.6) is verified for k = 1. We now assume
that it holds until integer k −1, and prove (2.2.6). For this, we use the obvious relation:

E|ξ|2k =
(
E|ξ|k

)2 +Var(ξk )

In order to manage Var(ξk ), we use again the Poincaré-Nash inequality. As

∂ξk

∂Wm
i , j

= kξk−1 ∂ξ

∂Wm
i , j

the Poincaré-Nash inequality leads to

Var(ξk ) ≤ k2
∑

m,m′

∑
i , j ,i ′, j ′

E

[
|ξ|2k−2 ∂ξ

∂Wm
i , j

E
(
Wm

i , j (Wm′
i ′, j ′)

∗
)(

∂ξ

∂Wm′
i ′, j ′

)∗]
+

k2
∑

m,m′

∑
i , j ,i ′, j ′

E

|ξ|2k−2

(
∂ξ

∂W
m
i , j

)∗
E
(
Wm

i , j (Wm′
i ′, j ′)

∗
) ∂ξ

∂W
m′
i ′, j ′


Following the proof of Proposition 3-1 in [49], it is easy to check that the Poincaré-Nash inequality leads
to

Var(ξk ) ≤ C
L

N
E(|ξ|2k−2)

where C is a constant that depends on z but not on the dimensions L,M,N. As (2.2.6) is assumed to hold
until integer k −1, this implies that Var(ξk ) =O

(
(L/N)k

)
. The Schwartz inequality leads immediately to(

E|ξ|k
)2 ≤ E(|ξ|2)E(|ξ|2k−2)

which is a O
(
(L/N)k

)
term. This establishes (2.2.6). As M =O (Nβ) with β> 0, it is clear that it exists k0 for

which 1
Mk0

< 1
N1+δ for some δ> 0. Therefore, (2.2.6) for k = k0 leads to

E
(
|ξ|2k0

)
=O

(
1

N1+δ

)
The use of the Markov inequality and of the Borel-Cantelli lemma imply that ξ converges towards 0 al-
most surely as expected.

It remains to justify that
a∗

N (E(QN(z))−mc (z)I)bN → 0 (2.2.7)

For this, we first simplify the notations and denote by W,Q,Q̃ the matrices WN,QN(z),Q̃N(z). Moreover,
Q is a ML×ML block matrix, so that we denote by Qm1,m2

i1,i2
its entry (i1+ (m1−1)L, i2+ (m2−1)L). We also
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denote (w j ) j=1,...,N the columns of W. Although it is not stated explicitly in [49], (2.2.7) can be deduced
from various intermediate evaluations. In order to be more specific, we mention that it is proved in [49]
that matrix E(Q) can be written as

E(Q(z)) = IM ⊗RN(z)+∆N(z) (2.2.8)

(see Eq. (4.14) in [49]) where RN(z) is a L×L matrix whose expression is omitted, and where ∆N(z) is
shown to verify a∗

N∆N(z)bN → 0 using the Poincaré-Nash inequality (see Eq. (5.3) in [49]). As it will be
useful to establish (2.2.3), we give some insights on the proof of (2.2.8). [49] uses the identity

E
[

Qm1,m2
i1,i2

]
=−1

z
δ(i1 − i2)δ(m1 −m2)+ 1

z
E
[(

QWW∗)m1,m2

i1,i2

]
(2.2.9)

It turns out that the second term of the righthandside of (2.2.9) can be expressed in terms of the entries

of E(Q). To obtain the corresponding expression, [49] evaluates E

[(
Qwk w∗

j

)m1,m2

i1,i2

]
= E

[
(Qwk )m1

i1

(
w∗

j

)m2

i2

]
for each k, j , i1, i2,m1,m2. For this, the identity

E

[
(Qwk )m1

i1

(
w∗

j

)m2

i2

]
= ∑

i3,m3

E
(
Qm1,m3

i1,i3
Wm3

i3,k W
m2

i2, j

)
and the so-called the integration by parts formula

E
(
Qm1,m3

i1,i3
Wm3

i3,k W
m2

i2, j

)
= ∑

i ′ , j ′
E
(
Wm3

i3,k W
m3

i ′ , j ′
)
E

∂
(
Qm1,m3

i1,i3
W

m2

i2, j

)
∂W

m3

i ′ , j ′


are used. After some calculations, this allows to express

E
[(

QWW∗)m1,m2

i1,i2

]
=

N∑
j=1

(
Qw j w∗

j

)m1,m2

i1,i2

in terms of the entries of E(Q), and to plug the corresponding expression into (2.2.9). This, in turn, leads
to (2.2.8).

In order to complete the proof of (2.2.7), it remains to justify that

a∗
N (IM ⊗RN(z)−mc (z)I)bN → 0

or equivalently that
a∗

N

(
IM ⊗RN(z)−mcN (z)I

)
bN → 0 (2.2.10)

where mcN (z) is the Stieltjes transform of the Marcenko-Pastur distribution of parameters (cN,σ2), which,
of course, verifies mcN (z)−mc (z) → 0 because cN → c. The reader may check that (2.2.10) follows from
Corollary 5.1, Theorem 7.1 and Eq. (7.3) in [49].

Sketch of proof of (2.2.3). Using the Poincaré-Nash inequality, it can be proved as above that

ã∗
N

(
Q̃−E(Q̃)

)
b̃N → 0 a.s.

and establish that
ã∗

N

(
E(Q̃(z))−m̃c (z)I

)
b̃N → 0 (2.2.11)

for each z ∈ C−R+. The behaviour of matrix E(Q̃) is not studied in [49]. However, it can be evaluated
using the results of [49]. We first briefly justify that

E(Q̃) = R̃+ ∆̃ (2.2.12)
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where R̃ is a certain N×N matrix, and where ∆̃ verifies ã∗
N∆̃b̃N → 0. The proof of (2.2.12) uses the same

ingredients than the proof of (2.2.8). We first remark that

W∗QW = Q̃W∗W = I+ zQ̃ (2.2.13)

The above mentioned evaluation of E

[
(Qwk )m1

i1

(
w∗

j

)m2

i2

]
for each k, j , i1, i2,m1,m2 allows to calculate

E
(
(W∗QW) j ,k

)
in terms of the entries of E(Q) and of E(Q̃). Plugging this relation as well as (2.2.8) into

(2.2.13) leads to the expression (2.2.12). As previously, ã∗
N∆̃b̃N → 0 is obtained using the Poincaré-Nash

inequality.
The proof of ã∗

N

(
R̃(z)−m̃c (z)I

)
b̃N → 0 is omitted as it needs the introduction of several notations of

[49].

We establish (2.2.4). For this, we first remark that for each θ ∈ R, the distribution of matrix WNe iθ

coincides with the distribution of WN. Therefore, it holds that

E
(
QN(z)WNe iθ

)
= E (QN(z)WN)

which implies that E (QN(z)WN) = 0. In order to complete the proof of (1.2.19), it is sufficient to establish
that if we denote by κN the random variable κN = a∗

N (QN(z)WN) b̃N, then, for each p ≥ 1, it holds that

E |κN −E(κN)|2p =O

((
L

N

)p)
(2.2.14)

Choosing p large enough leads to κN −E(κN) = κN → 0 a.s. as expected. (2.2.14) can be proved as above
by using the Poincaré-Nash inequality.

We finally justify that, (2.2.2), (2.2.3), (2.2.4) hold uniformly w.r.t. z on each compact subset of C∗−
[λ−c ,λ+c ] when L = O (Nα) for α < 2/3. We just prove that it is the case for (2.2.4). By Theorem 1.3.1, for
each ε> 0, almost surely, for N large enough, there is no eigenvalue of WNW∗

N outside [λ−c −ε,λ+c +ε]∪{0}.
Therefore, almost surely, for N large enough, function z → κN(z) is analytic on C∗− [λ−c − ε,λ+c + ε]. We
use a standard argument based on Montel’s theorem ([64], p.282). We first justify that for each compact
subset K ⊂C∗− [λ−c −ε,λ+c +ε], then it exists a constant η such that

sup
z∈K

|κN(z)| ≤ η (2.2.15)

for each N large enough. We consider the singular value decomposition of matrix WN:

WN =ΓN∆NΘ
∗
N

where∆N represents the diagonal matrix of non zero singular values of WN. κN(z) can be written as

κN(z) = a∗
NΓN

(
∆2

N − zI
)−1

∆NΘ
∗
Nb̃N

Therefore, it holds that
|κN(z)| ≤

∥∥∥(
∆2

N − zI
)−1

∆N

∥∥∥‖aN‖‖b̃N‖

The entries of ∆2
N are located almost surely into [λ−c − ε,λ+c + ε]∪ {0} for each N large enough. Therefore,

for each z ∈K , it holds that∥∥∥(
∆2

N − zI
)−1

∆N

∥∥∥≤ 1

dist([λ−c −ε,λ+c +ε]∪ {0},K )
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The conclusion follows from the hypothesis that vectors aN and b̃N satisfy supN(‖aN‖,‖b̃N‖) <+∞. (2.2.15)
implies that the sequence of analytic functions (κN)N≥1 is a normal family . Therefore, it exists a subse-
quence extracted from (κN)N≥1 that converges uniformly on each compact subset of C∗− [λ−c − ε,λ+c + ε]
towards a certain analytic function κ∗. As (2.2.4) holds for each z ∈C−R+, function κ∗ is identically zero.
We have thus shown that each converging subsequence extracted from (κN)N≥1 converges uniformly to-
wards 0 on each compact subset of C∗− [λ−c − ε,λ+c + ε]. This, in turn, shows that the whole sequence
converges uniformly on each compact subset of C∗−[λ−c −ε,λ+c +ε]. As this property holds for each ε> 0,
the sequence also converges uniformly on each compact subset of C∗− [λ−c ,λ+c ] as expected.

Remark 3. Remark 1 leads to the conclusion that convergence properties (2.2.2, 2.2.3, 2.2.4) and their
uniformity w.r.t. z on each compact subset of C∗ − [λ−c ,λ+c ] implies that the bilinear forms of matrices
(ΣNΣ

∗
N − zI)−1 and (Σ∗

NΣN − zI)−1 have the same behaviour than the bilinear forms of matrices SN(z) and
S̃N(z) defined by (1.2.33) and (1.2.37).

2.3 Detection of a wideband signal.

2.3.1 Introduction

The multi-antenna detection of low rank non observable narrow band signals corrupted by an additive
spatially and temporally white Gaussian noise is a fundamental problem that was studied extensively e.g.
in the contexts of array processing (see e.g. [45], [11]) and more recently of spectrum sensing (see among
others [65], [47], [25]). The most popular method to solve the above problem is the GLRT test, which,
in the present case, can be expressed in closed form. In order to obtain some insights on the statistical
performance of the generalized likelihood ratio test (GLRT), it is standard to assume that the number of
observations N converge towards ∞, and to characterize the asymptotic distribution of the GLRT statis-
tics under the null and the alternative hypothesis. In practice, this approach provides reasonable results
when N is much larger than the number of antennas M at the receiver side. When the antenna array is
large, the assumption that N >> M is often not justified and the standard asymptotic analysis does not
provide reliable results (see e.g. [36] in the context of supervised detection). In this context, it is now
standard to consider the large system regime M →+∞, N →+∞ in such a way that M

N → d where d > 0.
We refer the reader to the papers [57], [43], [12] in which this approach is developed.

In this section, we assume that M and N are large and of the same order of magnitude. We address the
detection of a single signal in a multipath propagation channel, i.e. its contribution to the observation
coincides with the output of an unknown finite impulse response SIMO filter driven by an unobserv-
able deterministic scalar sequence s = (sn)n∈Z. The signal to be detected is thus a rank 1 signal in the
frequency domain. We assume moreover that the number of paths P, or equivalently the number of co-
efficients of the SIMO filter is much smaller than M. [65] studied the GLRT when s is an i.i.d. Gaussian
sequence and the filter has an infinite impulse response, or equivalently when P = +∞. Under certain
assumptions, [65] proposed to evaluate the log likelihood ratio using the Witthle approximation, and ob-
tained an expression based on integrals over the frequency domain. When P is finite, the GLRT cannot
be expressed in closed form because the maximization of the likelihood over sequence s and the filter
coefficients (hp )p=0,...,P−1 has no explicit solution.

As the GLRT cannot be used, a pragmatic approach is to observe that the signal to be detected can
be interpreted as a superposition of P narrow band deterministic signals. Therefore, it is possible to
use the corresponding GLRT which consists in comparing the sum of the P greatest eigenvalues of the
empirical spatial covariance matrix of the observation to a threshold, at least if the noise variance is
known. However, it is intuitively more appealing to consider the greatest eigenvalues of the empirical
spatio-temporal covariance matrix in order to take benefit of the particular convolutive structure of the
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signal to be detected. We compare these 2 approaches in the asymptotic regime M →+∞, N →+∞ in
such a way that M

N → d where d > 0. In this regime, the first order behaviour of the largest eigenvalues
of the empirical spatial covariance matrix is well known, and this allows to evaluate the relevance of
the "narrow band" test. In this section, we use Theorem 2.2.1 in order to evaluate the behaviour of
the greatest eigenvalues of the empirical spatio-temporal covariance matrix. This allows to have a clear
understanding of the advantages of the use of the spatio-temporal covariance matrix.

This section is organized as follows. In subsection 2.3.2, we precise the signal models and the un-
derlying assumptions. In subsection 2.3.3, we deduce from Theorem 2.2.1 the first order behaviour of
the detection test based on the greatest eigenvalues of the empirical spatio-temporal covariance matrix.
Finally, subsection 2.3.4 present numerical experiments sustaining our theoretical results.

In the following, Nc (x,Γ) represents the M-variate complex Gaussian (i.e. circular) distribution with
mean x and covariance matrix Γ.

2.3.2 Problem formulation.

In the following, we denote by (yn)n=1,...,N the M-dimensional signal received on the M-sensors array.
Under hypothesis H0, the observation is reduced to a spatially and temporally complex Gaussian noise,
i.e.

yn = vn , n = 1, . . . ,N (2.3.1)

where (vn)n=1,...,N are i.i.d. Nc (0,σ2I) distributed random vectors. We assume from now on that σ2 is
known in order to simplify the exposition, but our results can be easily generalized if σ2 is unknown (see
below). Under hypothesis H1, the observation is given by

yn =
P−1∑
p=0

hp sn−p +vn , n = 1, . . . ,N (2.3.2)

where (sn)n∈Z is a non observable deterministic scalar sequence and where the M×1 transfer function
h(z) = ∑P−1

p=0 hp z−p is unknown. We however assume that P is known, which, in practice, means that
an upper bound of the number of paths is available. s is assumed deterministic in order to avoid to
formulate restrictive hypotheses,e.g. that signal (sn)n∈Z is an i.i.d. Gaussian sequence.

In order to test hypothesis H0 versus H1, the GLRT cannot be implemented because, under H1, the
maximum likelihood estimator of filter h(z) and sequence (sn)n=−(P−1),...,N cannot be expressed in closed
form (see e.g. [66], [38]). We note that when s is an i.i.d. Gaussian sequence, [65] derived an approxi-
mate GLRT based on the Whittle approximation, but without assuming that filter h(z) is FIR. Moreover,
the approach of [65] needs the observation of at least M independent realizations of the observation
(yn)n=1,...,N, an hypothesis which is not formulated in the present paper. Finally, the approach of [65]
cannot be adapted to the case of a deterministic signal (sn)n∈Z.

As the GLRT cannot be implemented, we study pragmatic alternative approaches. The most obvious
solution is based on the observation that signal [h(z)]s(n) =∑P−1

p=0 hp sn−p can be interpreted as a super-

position of P narrow band signals. It is thus possible to test the hypothesis H0 against hypothesis H
′
1

defined by

yn =
P−1∑
p=0

hp s(p)
n +vn (2.3.3)

where signals (s(p))p=0,...,P−1 are non observable deterministic signals. Hypothesis H
′
1 is of course not

equivalent to H1 because the particular structure of s(p)
n = sn−p is ignored in the formulation of H

′
1. We
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denote by Y the M×N matrix defined by Y = (y1, . . . ,yN). Then, H
′
1 is of course equivalent to

Y = A+V (2.3.4)

where A is a rank P deterministic matrix, and where V is defined as Y. The corresponding GLRT is easy to
derive, and consists in comparing the statistics

ηN =
P∑

i=1
λi

(
YY∗

N

)
(2.3.5)

to a threshold. Here,
(
λi

(
YY∗

N

))
i=1,...,M

represent the eigenvalues of YY∗
N arranged in decreasing order.

The matrix YY∗
N coincides with the empirical spatial covariance matrix of the observations. In order to

take benefit of the particular convolutive structure of signal [h(z)]sn , it seems however more appropriate
to consider a statistics based on the largest eigenvalues of spatio-temporal covariance matrices. If L is
an integer, we denote by y(L)

n the ML–dimensional vector defined by

y(L)
n = (y1,n , . . . ,y1,n+L−1, . . . ,yM,n , . . . ,yM,n+L−1)T

and by Y(L) the ML×N block-Hankel matrix defined by Y(L) = (y(L)
1 , . . . ,y(L)

N ). We note that Y(L) depends
on (yn)n=1,...,N+L−1 while, in principle, the observation yn is available until n = N. As we consider in the
following asymptotic regimes in which N →+∞ while L remains fixed, the above mentioned end effect
has no consequence on our results.

Under hypothesis H0, matrix Y(L) is reduced to V(L), and under H1, Y(L) is given by

Y(L) = H(L)S(L) +V(L) (2.3.6)

(see (2.1.3)). Instead of using ηN defined by (2.3.5), we propose to consider the statistics η(L)
N given by

η(L)
N =

P+L−1∑
i=1

λi

(
Y(L)Y(L)∗

N

)
(2.3.7)

for a suitable value of integer L. We note that if L = 1, then Y(1) and η(1)
N coincide with Y and ηN.

In order to obtain some insights on the merits of statistics η(L)
N in the case where M and N are large

and of the same order of magnitude, we evaluate under both hypotheses the first order behaviour of
η(L)

N in the asymptotic regime M →+∞, N →+∞ in such a way that dN = M
N → d where d > 0. We also

assume that P and L do not scale with M,N. In the following, N →+∞ should be understood as the above
asymptotic regime. The study of η(L)

N when N →+∞ is equivalent to the study of the largest eigenvalues

of matrix Y(L)Y(L)∗
N .

Remark 4. The case σ2 unknown. When σ2 is unknown, the GLRT corresponding to hypotheses H0 and
H

′
1 given by (2.3.4) consists in comparing statistics ηN

1
M Tr(YY∗/N)

to a threshold. Therefore, it is relevant to

replace statistics η(L)
N by

η(L)
N

1
ML Tr(Y(L)Y(L)∗/N)

. It is easily seen that 1
ML Tr(Y(L)Y(L)∗/N) converges almost surely

towards σ2 in the absence and in the presence of signal. Therefore, the characterization of the first order
asymptotic behaviours of η(L)

N and of its normalized version are equivalent.

2.3.3 Asymptotic behaviour of η(L)
N .

W(L)
N , B(L)

N and Σ(L)
N are the normalized matrices defined by W(L)

N = V(L)
N /

p
N, B(L)

N = 1p
N

H(L)S(L) and Σ(L)
N =

B(L)
N +W(L)

N . We notice that Y(L)
N /

p
N coincides with W(L)

N under H0 and withΣ(L)
N under H1. The content of
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this chapter is based on Theorem 2.2.1 which, allows to evaluate the asymptotic behaviour of the largest
eigenvalues of Σ(L)

N Σ(L)∗
N .

In the following, we denote by (λ̂(L)
k,N)k=1,...,ML the eigenvalues of Σ(L)

N Σ(L)∗
N , and by λ(L)

1,N ≥ λ(L)
2,N . . . ≥

λ(L)
P+L−1,N the non zero eigenvalues of B(L)

N B(L)∗
N .

In order to simplify the following discussion, we formulate the following hypotheses on vectors (hp )p=0,...,P−1

and on signal (sn)n∈Z:

Assumption 2.3.1. • (i) When N →+∞, matrix H∗H converges towards a P×P matrix∆

• (ii) For each integers i , j ≥ 1, 1
N

∑N
n=1 sn+i−Ps∗n+ j−P converges towards a limit. In this case, the limit

only depends on i − j , and is denoted Ri− j .

As the entries of matrix H(L)∗H(L) depend on the entries of H∗H, (i) implies that H(L)∗H(L) converges
towards a matrix ∆(L) whose entries depend on the entries of ∆. In the following, we also denote by R(L)

the (P+L−1)× (P+L−1) Toeplitz matrix defined by R(L)
i , j = Ri− j .

As the non zero eigenvalues of B(L)
N B(L)∗

N coincide with the eigenvalues of matrix H(L)∗H(L) S(L)S(L)∗
N , it is

clear that Assumption 2.3.1 implies that Assumption 2.2.1 holds, and that λ(L)
k = λk

(
∆(L)R(L)

)
.

As Assumption 2.2.1 holds, Theorem 2.2.1 holds. It is clear that η(L)
N converges almost surely η(L)

defined by

η(L) =
KL∑

k=1
ρ(L)

k + (P+L−1−KL)σ2(1+
p

dL)2) (2.3.8)

We note that if KL = 0, or equivalently, if the largest limit eigenvalue λ(L)
1 of matrix B(L)

N B(L)∗
N is below

the detectability threshold σ2
p

dL, then the first order asymptotic behaviour of η(L)
N under hypotheses

H0 and H1 coincide. In this case, the test based on η(L)
N is not consistent, in the sense that it does not

allow to distinguish between the 2 hypotheses when N →+∞. If however λ(L)
1 is greater than σ2

p
dL, the

asymptotic behaviours of η(L)
N under H0 and H1 do not coincide and the test is consistent. In other words,

the test based on η(L)
N is consistent if and only if

λ(L)
1

σ2
p

dL
> 1 (2.3.9)

This condition implies that the value of L for which
λ(L)

1p
dL

is maximum can be considered as optimal from

the consistency of the GLRT test point of view. In order to obtain some insights on the optimal choice of
L, we first assume that (sn)n∈Z coincides with a realization of a unit variance zero mean i.i.d. sequence
and that the limit ∆ of matrix H∗H is diagonal, a condition meaning that the P paths are decorrelated.
In order to simplify the notations, we denote by δ0, . . . ,δP−1 the diagonal entries of ∆ which represent
the powers of the various paths. We notice that

∑P−1
p=0δp coincides with the power of the signal to be

detected. It is easily seen that for each L, matrix∆(L) is diagonal as well, and that its largest entry is equal
to

∑P−1
p=0δp if L ≥ P, and to maxk=0,P−L

∑L−1
p=0δp+k if L ≤ P. As matrix R(L) is equal to IP−L+1, this implies

that the largest limit eigenvalue λ(L)
1 is equal to

∑P−1
p=0δp if L ≥ P, and to maxk=0,P−L

∑L−1
p=0δp+k if L ≤ P. If

L ≥ P, the left handside of (2.3.9) is equal to ∑P−1
p=0δp

σ2
p

dL

while it is equal to
maxk=0,...,P−L

∑L−1
p=0δp+k

σ2
p

dL
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if L ≤ P. The optimal value of L of course depends on the particular values of δ0, . . . ,δP−1. If the powers
all coincide with a common term δ, the optimal value is L = P, and the test based on η(P)

N is consistent if
and only if

δ> σ2
p

dp
P

(2.3.10)

In contrast, we mention that if L = 1, the consistency condition is

δ>σ2
p

d (2.3.11)

Therefore, choosing L = P allows to gain a factor
p

P w.r.t. L = 1. If L > P, the consistency condition is
equivalent to

δ> σ2
p

dp
P

p
L/P (2.3.12)

thus showing that an overdetermination of L may also induce a loss of performance.
We now consider a more realistic scenario in which matrix ∆ is not diagonal. We assume that the

signal to be detected is a sampled version of a continuous time linearly modulated signal
∑

n sn ga(t −
nT) where (sn)n∈Z is an i.i.d. sequence of symbols and where ga(t ) is a continuous time shaping filter.
The propagation channel is a Rayleigh multipath channel with Q uncorrelated paths with time-delays
τ0, . . . ,τQ−1. In this context, vectors (hp )p=0,...,P−1 are given by

hp =
Q−1∑
q=0

λq ga(pT−τq ) (2.3.13)

where vectors (λq )q=0,...,Q−1 are the realizations of independent zero-mean random Gaussian vectors.
We denote byΛ the M×Q matrixΛ= (λ0, . . . ,λQ−1), and assume that matrixΛ∗Λ converges towards µIQ.
In practice, this hypothesis means that the Q paths share the same power. As H = (hP−1, . . . ,h0) is given by
H =ΛG where G = (gP−1, . . . ,g0) and where each Q–dimensional vector gp is given by gp = (ga((P−1)T−
τ0), . . . , ga((P−1)T−τQ−1))T, it is clear that matrix H∗H converges towards∆=µG∗G, and that H(L)∗H(L)

converges towards∆(L) =µG(L)∗G(L) where matrix G(L) is the QL×(P+L−1) block-Toeplitz matrix with first
block line (gP−1, . . . ,g0,0, . . . ,0). Therefore, the largest eigenvalue λ(L)

1 of ∆(L) is equal to µλ1(G(L)∗G(L)).
The optimal value of L thus depends on the way the largest eigenvalue of G(L)∗G(L) increases with L. As
the optimal value of L cannot be found using analytical arguments, we give a numerical example. We
assume that ga(t ) is a square root Nyquist filter with excess bandwidth 0.5 which is truncated to interval
[−2.5T,2.5T]. Moreover, Q = 2, τ0 = 0, τ1 = 2T, d = 1/2 and the SNR µ

σ2 is equal to 2 dB. In figure 2.1, we

plot the largest eigenvalue of G(L)∗G(L) and the lefthandside of (2.3.9) versus L. It is seen that the optimal
value of L is equal to 3, it is thus different from P, which, is the present context is equal to P = 7.

2.3.4 Simulation results.

In this section, we provide numerical simulations illustrating the results given in the previous para-
graphs. We first consider the case where matrix H coincides with a realization of a Gaussian random
matrix with i.i.d. NC(0,I/(MP)) entries. In this context, matrix H∗H converge towards IP/P. Sequence
(sn)n=2−P,...,N−P+1 is a realization of an i.i.d. sequence taking values ±1 with probability 1/2. In this con-
text, we have shown before that the optimal value of L is equal to P. In order to illustrate this behaviour,
we consider the case M = 80,N = 160 and P = 5, and represent in figure 2.2 the ROC curves, evaluated

using Monte-Carlo simulations, corresponding to the statistics η(L)
N ,ηN,λ1( Y(L)Y(L))∗

N ) and λ1( YY∗
N ), referred

to as spatio-temporal, spatial, lmax-st and lmax-s in figure 2.2. The numerical results confirm that the
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Figure 2.1 – Ratio Largest eigenvalue over detectability threshold versus L

use of η(5)
N leads to much better results than the use of ηN which corresponds to L = 1, and that it is in-

deed beneficial to take into account the P +L− 1 largest eigenvalues of the empirical spatio-temporal
covariance matrix, and not only the largest one.

We now generate vectors (hp )p=0,...,P−1 according to model (2.3.13) for Q = 2,τ0 = 0,τ1 = 2T,P = 7
and when ga(t ) is a square root Nyquist filter with excess bandwidth 0.5 which is truncated to interval
[−2.5T,2.5T]. In figure 2.3, we assume that M = 80,N = 160 and again represent the ROC curves cor-

responding to the statistics η(L)
N ,ηN,λ1( Y(L)Y(L))∗

N ) and λ1( YY∗
N ) for L = 3. This time, it is seen that it is not

beneficial to take into account the L+P−1 largest eigenvalues of Y(L)Y(L)∗/N, and that the best strategy
is to consider the largest eigenvalue, which, for L = 3, provides the best results.
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2.4 Estimation of regularized spatio-temporal Wiener filters

2.4.1 Introduction

Finite impulse response spatio-temporal Wiener filter estimation using a training sequence is a very
classical problem. When the useful signal is corrupted by an additive temporally and spatially white
Gaussian noise, the optimal estimator is known to be the standard least-squares estimate defined as the
action of the inverse of the empirical spatio-temporal covariance matrix on the empirical cross corre-
lation between the observation and the training sequence. However, it is known for a long time that
regularizing the empirical spatio-temporal covariance matrix by a multiple of the identity matrix may
enhance the performance of the estimate because this matrix can be ill-conditioned or even non in-
vertible when the size of the training sequence is smaller than the dimension of the vector associated
to the Wiener filter. The choice of the regularization parameter appears to be a crucial issue that was
addressed in a heuristic manner in a number of references (see e.g. [39], [78, p. 748], [50] and [42]) be-
cause classical figures of merit such as the signal to interference plus noise ratio (SINR) produced by the
estimated Wiener filter are difficult to estimate in the general case. In the context of large dimensional
systems where the number of sensors and the length of training sequence are both large, the situation
appears more favourable due to some subtle self-averaging effects. The existing related works addressed
the purely spatial context. Ledoit and Wolf proposed in [44] to find the loading factor so as to minimize
the mean-square error of the estimated empirical covariance matrix, and showed that the optimal value
can be estimated consistently. This approach was generalized in [16] to the Tyler estimator in the context
of robust estimation. Mestre and Lagunas [53] considered the case where the array response is a priori
known (no training sequence) and where the interference plus noise covariance matrix is unknown. It
is shown in [53] that the SINR produced by the regularized estimated Wiener filter can be consistently
estimated from the available observations, and [53] proposed to estimate the loading factor as the argu-
ment of the SINR maximization. The optimization of the SINR was also considered in [83] in the context
of robust estimation.

In the present section, we assume that the observation is a M–dimensional time series defined as a
noisy output of an unknown SIMO finite impulse response system driven by the sequence of interest.
We assume that a length N training sequence is available at the receiver side in order to estimate a regu-
larized degree L−1 FIR spatio-temporal Wiener filter from the N M–dimensional observations collected
during the transmission of the training sequence. In the large system context in which M and N both
converge towards +∞ at the same rate and where L remains fixed, we establish that the SINR produced
by the regularized estimated Wiener filter, which, in principle, depends on the additive noise corrupting
the N available observations, converges towards a deterministic term depending on the loading factor,
the noise variance, assumed to be known, and the unknown filter. We show that, while the channel filter
is unknown, the above limit SINR can be estimated consistently from the N available observations for
each value of the regularization parameter, and propose to estimate the loading factor as the argument
of its maximum.

This section is organized as follows. In subsection 2.4.2, we present the signal models and the un-
derlying assumptions. In subsection 2.4.3, we present some useful technical results. In subsection 2.4.4,
we establish that the SINR converges towards a deterministic term, and subsection 2.4.5 addresses the
consistent estimation of the limit SINR. Finally, subsection 2.4.6 presents numerical experiments sus-
taining our theoretical results, and comparing our proposal to the Ledoit-Wolf ([44]) estimator of the
regularization parameter and to other empirical schemes proposed in the past ([39], [78, p. 748], [50]
and [42]).
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2.4.2 Problem formulation.
We assume that the observation is a M–dimensional time series (yn)n∈Z defined by

yn =
P−1∑
p=0

hp sn−p +vn ,n = 1, ...,N (2.4.1)

where h(z) =∑P−1
p=0 hp z−p represents the transfer function of the unknown FIR SIMO system and (vn)n∈Z

is an i.i.d sequence of complex Gaussian random vectors with spatial covariance matrix σ2I. Although
h(z) is not known, we assume that P is known, i.e. in practice, that an upper bound of the support
of the impulse response associated to h(z) is available. We assume that a length N training sequence
(sn)n=1,...,N is available at the receiver side, and estimate from (yn)n=1,...,N the Wiener spatio-temporal
filter g = (gT

0 , . . . ,gT
L−1)T defined in such a way that

∑L−1
l=0 g∗

l yn+l represents the minimum mean-square

estimate of sn . If we denote by y(L)
n the ML–dimensional vector defined by

y(L)
n = (y1,n , . . . ,y1,n+L−1, . . . ,yM,n , . . . ,yM,n+L−1)T

we study the performance of the estimated regularized Wiener filter ĝλ defined by

ĝλ =
(

1

N

N∑
n=1

y(L)
n y(L)∗

n +λIML

)−1 (
1

N

N∑
n=1

y(L)
n s∗n

)
(2.4.2)

ĝλ is destined to estimate the unknown transmitted data (sn)n>N. In the following, for each m = 1, . . . ,M,
we denote by Hm the L× (P +L−1) Toeplitz matrix corresponding to the convolution of signal (sn)n∈Z
with sequence (hm,p )p=0,...,P−1, and define ML× (P +L−1) block-Hankel matrix H by H = (HT

1 , ...,HT
M)T.

Assuming sequence (sn)n>N i.i.d., the signal to interference plus noise ratio produced by ĝ(L)
λ

is easily
seen to be equal to

SINR(ĝλ) = |ĝ∗
λ

hP|2
ĝ∗
λ

H−PH∗
−Pĝλ+σ2‖ĝλ‖2 (2.4.3)

where hP is column P of H, and matrix H−P is obtained by deleting column P from matrix H. SINR(ĝ(L)
λ

)
is random in the sense that it depends on the vectors (yn)n=1,...,N, which are random themselves due to
the presence of the additive noise. When N →+∞ and M,L remain fixed, it is easy to see that if λ= 0, the
filter ĝ0 converges towards Wiener filter (HH∗+σ2I)−1hP and that SINR(ĝ0) converges towards γ defined
by

γ= h∗
P

(
HH∗+σ2I

)−1
hP

1−h∗
P

(
HH∗+σ2I

)−1 hP

(2.4.4)

Similar results hold when λ > 0. On the contrary, when M,N are of the same order of magnitude, the
analysis of the behaviour of SINR(ĝλ) is different and requires much more work. From now on, we as-
sume that

M,N →+∞, the ratio dN = M
N → d > 0, and P and L remain fixed.

To simplify the notations, N →+∞ should be understood as the above asymptotic regime. We also de-
note by cN the ratio cN = ML

N which converges towards c = dL.
In the following, we again consider the normalized block-Hankel matrices ΣN and WN defined by

ΣN = 1p
N

(y(L)
1 , ...,y(L)

N ),WN = 1p
N

(v(L)
1 , ...,v(L)

N )

respectively. Then, the relations between the available observations and sequence (sn)n=1,...,N can be
expressed as

ΣN = HUN +WN (2.4.5)
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where UN is the (P +L− 1)×N Hankel matrix defined by (U(L))i ,n = sn+i−P/
p

N. As the dimensions of
matrices H and UN scale with M,N, we have to formulate the following hypothesis:

Assumption 2.4.1. supN ‖H‖ <+∞, supN ‖UN‖ <+∞
Without loss of generality, we can assume that UNU∗

N = I, because it is possible to replace H by
H(UNU∗

N)1/2 and UN by UN (UNU∗
N)−1/2 without modifying the model and Assumption 2.4.1.

In the following, we define QN(z) (resp. Q̃N(z)) as the resolvent of matrix ΣNΣ
∗
N (resp. of matrix

Σ∗
NΣN), and remark that the estimated Wiener filter ĝλ can be written as

ĝ(L)
λ

= QN(−λ)ΣNu∗
N

where uN = 1p
N

(s1, . . . , sN) is the P-th row of matrix UN. To evaluate the behaviour of the SINR given by

formula (4.4.2) when N →+∞, it is sufficient to study the following 3 terms:

r1,N = h∗
Pĝλ = h∗

PQN(−λ)ΣNu∗
N (2.4.6)

r2,N = H∗
−Pĝλ = H∗

−PQN(−λ)ΣNu∗
N (2.4.7)

r3,N = ‖ĝλ‖2 = uNΣ
∗
NQN(−λ)2ΣNu∗

N (2.4.8)

r1,N and each component of P+L−2–dimensional vector r2,N are bilinear forms of matrix QN(z)ΣN for
z = −λ. As P and L do not scale with M,N, the asymptotic behaviour of ‖r2,N‖2 is equivalent to that of
each component of r2,N. Therefore, evaluating the behaviour of each bilinear form of QN(z)ΣN for z =−λ
allows to characterize

∣∣h∗
Pĝλ

∣∣2 and ‖H∗
−Pĝλ‖2 when N →+∞.

In order to study r3,N, we remark that the derivative w.r.t. z of QN(z) coincides with (QN(z))2. There-
fore,

Σ∗
NQN(z)2ΣN = ∂

∂z

[
Σ∗

NQN(z)ΣN
]

Using the identity Σ∗
NQN(z)ΣN = Q̃N(z)Σ∗

NΣN = I+ zQ̃N(z), we finally obtain that

Σ∗
NQN(z)2ΣN = ∂

∂z

[
z Q̃N(z)

]
(2.4.9)

Hence, in order to evaluate the asymptotic behaviour of r3,N, it is sufficient to study the behaviour of the
bilinear forms of zQ̃N(z), and to differentiate w.r.t. z for z ∈R−,∗.

2.4.3 Asymptotic behaviour of the bilinear forms of QN(z)ΣN, zQ̃N(z), and
(
zQ̃N(z)

)′
.

In this paragraph, we evaluate the behaviour of the bilinear forms of QN(z)ΣN, zQ̃N(z) and
(
zQ̃N(z)

)′
.

For this, we introduce the following notations: If EN and FN represent 2 sequence of ML×ML or N×N
matrices, we will write that EN ' FN if for each sequence of unit vectors aN,bN, it holds that a∗

NENbN −
a∗

NFNbN → 0.
As QN(z)ΣN = QN(z)HUN +QN(z)WN, we have to evaluate separately the bilinear forms of QN(z)WN

and of QN(z) (recall Assumption 2.4.1). For this, we denote by QW,N(z) and Q̃W,N(z) the resolvents of
matrices WNW∗

N and W∗
NWN. (2.2.2, 2.2.3, 2.2.4) imply that

QW,N(z) ' mc (z)IML, Q̃W,N(z) ' m̃c (z)IN, QW,N(z)WN ' 0 (2.4.10)

for each z ∈ C−R+, where mc (z) represents the Stieltjes transform of the Marcenko-Pastur distribution
of parameters (c,σ2). Using this, it is easy to check that the calculations of paragraph 1.2.2 devoted to
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the case where matrix WN has i.i.d. entries are still valid (see Remark 3)). In particular, (1.2.32) remains
valid, i.e.

QN(z) ' SN(z)

where SN(z) is the M×M matrix-valued function defined by

SN(z) =
(
−z(1+σ2m̃c (z))+ HH∗

1+σ2cmc (z)

)−1

or equivalently by
SN(z) = mc (z)

(
I− zmc (z)m̃c (z)HH∗)−1 (2.4.11)

Therefore, it holds that

QN(z)HUN ' mc (z)
(
I− zmc (z)m̃c (z)HH∗)−1 HUN (2.4.12)

In order to evaluate the bilinear forms of QN(z)WN, we express QN(z) in terms of QW,N(z) by a formula
similar to (1.2.31), except that the singular value decomposition of the deterministic part of ΣN is re-
placed by factorization HUN with UNU∗

N = IP+L−1. We have:

QN = QW,N −QW,N(H,WNU∗
N)

(
I I
I 0

)
× (2.4.13)

[
I+

(
H∗

UNW∗
N

)
QW(H,WNU∗

N)

(
I I
I 0

)]−1 (
U∗

N
UNW∗

N

)
QW

Using (2.4.10), we obtain after some algebra that

QN(z)WN '−mc (z)(1+ zm̃c (z))
(
I− zmc (z)m̃c (z)HH∗)−1 HUN (2.4.14)

Therefore, it holds that

QN(z)ΣN '−zmc (z)m̃c (z)
(
I− zmc (z)m̃c (z)HH∗)−1 HUN (2.4.15)

or equivalently,
QN(z)ΣN ' (

HH∗−wc (z)I
)−1 HUN (2.4.16)

As for zQ̃N(z), (1.2.36) remains valid, i.e.
Q̃N(z) ' S̃N(z)

where S̃N(z) is the N×N matrix-valued function defined by

S̃N(z) =
(
−z(1+σ2cmc (z))+ U∗

NH∗HUN

1+σ2m̃c (z)

)−1

which can also be written as

S̃N(z) = (
1+σ2m̃c (z)

) (
U∗

NH∗HUN −wc (z)I
)−1 =− 1

zmc (z)

(
U∗

NH∗HUN −wc (z)I
)−1 (2.4.17)

Therefore, it holds that

zQ̃N(z) '− 1

mc (z)

(
U∗

NH∗HUN −wc (z)
)−1 (2.4.18)

or, using the expression (1.2.11) of mc (z) in terms of wc (z),

zQ̃N(z) ' (wc (z)+σ2c)
(
U∗

NH∗HUN −wc (z)
)−1 (2.4.19)
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Writing the deterministic equivalent of zQ̃N(z) in terms of wc (z) is useful because the calculation of the
derivative w.r.t. z of the righthandside of (2.4.20) appears easy due to the rather simple expression of

w
′
c (z) = w 2

c (z)
w 2

c (z)−σ4c
(see 1.2.35).

In order to obtain an approximation of the bilinear forms of
(
zQ̃N(z)

)′
, we remark that it is possible

to differentiate (2.4.20) because the convergence of the corresponding bilinear forms is uniform on each
compact subset of C−R+. After some algebra, we obtain that

(
zQ̃N(z)

)′ ' w2
c (z)

w2
c (z)−σ4c

(
U∗

NH∗HUN −wc (z)
)−2 (

U∗
NH∗HUN +σ2c

)
(2.4.20)

2.4.4 Asymptotic behaviour of the SINR

Using (2.4.16) and (2.4.20), we obtain after some algebra the following result.

Proposition 2.4.1. For each λ > 0, when N → +∞, the three terms ‖h∗
Pĝλ‖2, ‖H∗

−Pĝλ‖2 et ‖ĝλ‖2 can be
approximated (i.e. have the same almost sure behaviour) by the following deterministic quantities:

• ‖h∗
Pĝλ‖2 ' (h∗

P(HH∗−wc (−λ)I)−1hP)2 (2.4.21)

• ‖H∗
−Pĝλ‖2 ' wc (−λ)h∗

P(HH∗−wc (−λ)I)−2hP +
h∗

P(HH∗−wc (−λ)I)−1hP
(
1−h∗

P(HH∗−wc (−λ)I)−1hP
)

(2.4.22)

• ‖ĝλ‖2 ' σ2c

wc (−λ)−σ4c

(
1−h∗

P(HH∗−wc (−λ)I)−1hP
)

+ wc (−λ)(σ2c +wc (−λ))

wc (−λ)−σ4c
h∗

P(HH∗−wc (−λ)I)−2hP (2.4.23)

Moreover, if we introduce α(λ) = h∗
P(HH∗−wc (−λ)I)−1hP and β(λ) = h∗

P(HH∗−wc (−λ)I)−2hP, it holds that

SINR(ĝ(L)
λ

)−φ(λ) → 0 (2.4.24)

almost surely, where φ(λ) is defined by

φ(λ) = α(λ)2

[1−α(λ)][(α(λ)+ σ4c
w 2

c (−λ)−σ4c
]+ w 2

c (−λ)(wc (−λ)+σ2)
w 2

c (−λ)−σ4c
β(λ)

(2.4.25)

When c = dL < 1, almost surely, for N large enough, QN(z) is analytic in a neighbourhood of 0. There-
fore, the results of Proposition (2.4.1) also hold for λ = 0. Using the observation that wc (0) = −σ2, we
obtain immediately that

φ(0) = γ
(1−dL)γ

γ+dL
(2.4.26)

whereγ is the SINR corresponding to the true Wiener filter (see Eq. (2.4.4)). Consequently, the estimation
of the Wiener filter by ĝL

(0) produces a SINR loss equal to (1−dL) γ
γ+dL , which, of course, is considerable

when dL is close from 1. As shown below, the use of a convenient regularization coefficient allows to
improve considerably the SINR in this context.
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2.4.5 Consistent estimators of the SINR
It is clear that function λ→φ(λ) depends on matrix H which is unknown. We establish in this subsection
that it is possible to estimate φ(λ) consistently for each λ > 0. For this, it is sufficient to estimate α(λ)
and β(λ) (see (2.4.25)). In the following, we show that α(λ) and β(λ) can be expressed in terms of S̃N(z)
given by (2.4.17) and of the derivative of zS̃N(z), and build the estimators from the observation that

Q̃N(z) ' S̃N(z) and from
(
zQ̃N(z)

)′ ' (
zS̃N(z)

)′
for each z ∈C−R+.

We first observe that

H∗ (
HH∗−wc (z)I

)−1 H = (
H∗H−wc (z)I

)−1 H∗H = I+wc (z)
(
H∗H−wc (z)I

)−1

Taking the (P,P) entry of this matrix equation, we obtain that α(λ) can be written as

α(λ) = 1+wc (−λ)((H∗H−wc (−λ)I)−1)P,P

We also remark that

((H∗H−wc (−λ)I)−1)P,P = uN (U∗
NH∗HUN −wc (−λ)I)−1)u∗

N

(2.4.17) implies that

(U∗
NH∗HUN −wc (z)I)−1) = 1

1+σ2m̃c (z)
S̃N(z)

and that

wc (z) (U∗
NH∗HUN −wc (z)I)−1) =− 1

m̃c (z)
S̃N(z)

As it holds that Q̃N(z) ' S̃N(z), we conclude that ((H∗H− wc (−λ)I)−1)P,P can be consistently estimated
− 1

1+σ2m̃c (−λ) uN Q̃N(−λ)u∗
N and that

α̂(λ) = 1− uNQ̃N(−λ)u∗
N

m̃d (−λ)
(2.4.27)

is a consistent estimate of α(λ). In order to obtain an estimator β̂(λ) of β(λ), we observe that

h∗
P(HH∗−wc (−λ)I)−2hP = ((H∗H−wc (−λ)I)−1)P,P +wc (−λ)((H∗H−wc (−λ)I)−2)P,P (2.4.28)

As the first term of the righthandside of (2.4.28) can be consistently estimated, it remains to be able to
estimate ((H∗H−wc (−λ)I)−2)P,P. For this, we remark that (2.4.20) leads to

uN zQ̃N(z)u∗
N ' (wc (z)+σ2c)((H∗H−wc (z)I)−1)P,P

Differentiating this w.r.t. z, we obtain immediately that (H∗H−wc (−λ)I)−2)P,P can be consistently esti-
mated and that β(λ) can be estimated by β̂(λ) defined by

β̂(λ) =− σ2c

(wc (−λ)+σ2c)2λuNQ̃N(−λ)u∗
N

+ w2
c (−λ)−σ4c

wc (−λ)(wc (−λ)+σ2c)

[
uN(Q̃N(−λ)−λQ̃2

N(−λ))u∗
N

]
(2.4.29)

Replacing α(λ) and β(λ) by α̂(λ) and β̂(λ) in formula (2.4.25), we obtain immediately a consistent esti-
mator φ̂(λ) of the asymptotic SINR φ(λ). Moreover, it is possible to establish that function φ(λ)− φ̂(λ)
converges uniformly towards 0 on each compact subset of R+∗ . Therefore, if we denote by λopt and λ̂opt

the argument of the maximum of φ and φ̂ on a fixed compact of R+∗ , it holds that λopt − λ̂opt → 0. There-
fore, maximizing function λ → φ̂(λ) allows to estimate a regularization parameter for which the true
asymptotic SINR φ(λ) is maximum. We also notice that this approach allows to choose the smoothing
factor L: it is sufficient to evaluate φ̂(λ̂opt ) for each choice of L, and to select the smoothing factor for
which the latter term is maximum. This is of course not a computationally efficient procedure because
it needs to evaluate matrix QN(−λ) et Q̃N(−λ) for each λ and each integer L.
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2.4.6 Numerical experiments.
In this section, we provide numerical simulations illustrating the results given in the previous sections.
We first illustrate the accuracy of the approximation SINR(ĝ(L)

λ
) ' φ(λ) where we recall that SINR(ĝ(L)

λ
)

is the true SINR defined by (4.4.2). Matrix (h0, ...,hP−1) is a realization of a normalized version (so as to
obtain a Frobenius norm equal to 1) of random matrix (a(θ0), ...,a(θP−1)), with a(θ) = 1p

M
(1, ...,e i (M−1)θ)T,

and where the angles are drawn uniformly on [0,2π]. The sequence (sn)n=1,...,N is a realization of an i.i.d
±1 sequence with probability 1/2. The signal to noise ratio SNR is thus equal to 1/σ2. In the follow-
ing experiments, N = 200,M = 40 and P = 5. In figure 2.4, SNR is equal to 8dB, L = 5, and we evaluate
by Monte-Carlo simulations (10.000 realizations are generated) function λ→ SINR(ĝ(L)

λ
). We represent

the graph of the function φ(λ) along with 2 plots representing the lower and upper bounds of the 95%
confidence interval of λ→ SINR(ĝ(L)

λ
). We can notice that the 3 graphs are close one from each other.
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Figure 2.4 – Confidence region and asymptotic curve of SINR versus λ

We now evaluate the performance of the estimator λ̂opt of λopt and evaluate by Monte-Carlo simu-
lation the root relative least mean squares error ofφ(λ̂opt )−φ(λopt ). We also evaluate the same quantity,
but whenλopt is estimated by other existing schemes: the Ledoit-Wolf estimator ([44]), 3 empirical meth-
ods mentioned in [53] to be referred to as M1 ([39], [78, p. 748]), M2 [50], M3 [42] in the figure 2.5, and
the naive estimate obtained by maximizing w.r.t. λ the expression (4.4.2) in which matrix H is replaced
byΣU∗, which, of course, is not supposed to be a good estimator when M and N are of the same order of
magnitude. The various root relative mean squares errors are given in figure 2.5 for various values of the
smoothing parameter L.

We finally justify that our approach may be used in order to estimate a relevant value of the smooth-
ing parameter L. Keeping the same parameters as above, we first represent in Figure 2.6 function λ→
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Figure 2.5 – RMMSE of different diagonal loading methods versus L

φ(λ) for L = 1,2,3,4,5,6,7,8, and conclude that L = P = 5 maximizes φ(λopt ), but that L = 6,7,8 also
provide reasonable optimum asymptotic SINR.
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Figure 2.6 – Asymptotic SINR versus L and λ

In order to estimate the optimum value of L, we evaluate φ̂(λ̂opt ) for each possible value of L, and
propose to select the value Lopt of L for which the latter term is maximum. We represent in Figure 2.7 the
histogram of 10.000 realizations of Lopt when Lopt is forced to belong to {1,2,3,4,5,6,7,8,9,10}. Figure
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2.7 shows that the selected values of L provide reasonably optimal SINR.
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Figure 2.7 – Histogram of Lopt

2.5 Performance analysis of spatial smoothing schemes in the context of
large arrays

2.5.1 Introduction

The statistical analysis of subspace DoA estimation methods using an array of sensors is a topic that has
received a lot of attention since the seventies. Most of the works were devoted to the case where the
number of available samples N of the observed signal is much larger than the number of sensors M of
the array (see e.g. [69] and the references therein). More recently, the case where M and N are large
and of the same order of magnitude was addressed for the first time in [53] using large random matrix
theory. [53] was followed by various works such as [40], [72], [34], [33]. The number of observations
may also be much smaller than the number of sensors. In this context, it is well established that spatial
smoothing schemes, originally developed to address coherent sources ([22], [68], [62]), can be used to
artificially increase the number of snapshots (see e.g. [69] and the references therein, see also the recent
related contributions [70], [71] devoted to the case where N = 1). Spatial smoothing consists in consid-
ering L < M overlapping arrays with M−L+1 sensors, and allows to generate artificially NL snapshots
observed on a virtual array of M−L+1 sensors. The corresponding (M−L+1)×NL matrix, denoted Y(L)

N ,
collecting the observations is the sum of a low rank component generated by (M−L+ 1)-dimensional
steering vectors with a noise matrix having a block-Hankel structure. Subspace methods can still be de-
veloped, but the statistical analysis of the corresponding DoA estimators was addressed in the standard
regime where M−L+1 remains fixed while NL converges towards ∞. This context is not the most rele-
vant when M is large because L must be chosen in such a way that the number of virtual sensors M−L+1
be small enough w.r.t. NL, thus limiting the statistical performance of the estimates. In this paper, we
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study the statistical performance of spatial smoothing subspace DoA estimators in asymptotic regimes
where M−L+1 and NL both converge towards ∞ at the same rate, where L

M → 0 in order to not affect
the aperture of the virtual array, and where the number of sources K does not scale with M,N,L. For this,
it is necessary to evaluate the behaviour of the K largest eigenvalues and corresponding eigenvectors of

the empirical covariance matrix
Y(L)

N Y(L)∗
N

NL . To address this issue, we prove that the above eigenvalues and

eigenvectors have the same asymptotic behaviour as if the noise contribution V(L)
N to matrix Y(L)

N , a block-
Hankel random matrix, was a Gaussian random matrix with independent identically distributed entries.
To establish this result, we use the same approach than in the proof of Theorem 2.2.1. This allows to ob-

tain a characterization of the behaviour of the largest eigenvalues and eigenvectors of
Y(L)

N Y(L)∗
N

NL . We deduce
from this improved subspace estimators, called DoA G-MUSIC SS (spatial smoothing) estimators, which
are similar to those of [72] and [33]. We deduce from the results of [74] that when the DoAs do not scale
with M,N,L, i.e. if the DoAs are widely spaced compared to aperture array, then both G-MUSIC SS and
traditional MUSIC SS estimators are consistent and converge at a rate faster than 1

M . Moreover, when the
DoAs are spaced of the order of 1

M , the behaviour of G-MUSIC SS estimates remains unchanged, but the
convergence rate of traditional subspace estimates is lower.

This section is organized as follows. In subsection 2.5.2, we precise the signal model, the underlying
assumptions, and formulate our main results. In subsection 2.5.3, we establish that the largest eigenval-

ues and eigenvectors of matrix
Y(L)

N Y(L)∗
N

NL behave as if the entries of V(L)
N were i.i.d., and obtain a result similar

to Theorem 2.2.1. In subsection 2.5.4, we use the main result of subsection 2.5.3, and follow [33] and [74]
in order to propose a G-MUSIC algorithm adapted to the spatial smoothing context of this paper. The
consistency and the convergence speed of the G-MUSIC SS estimates and of the traditional MUSIC SS
estimates are then deduced from the results of [74]. Finally, subsection 2.5.5 present numerical experi-
ments sustaining our theoretical results.

2.5.2 Problem formulation and main results.

Problem formulation.

We assume that K narrow-band and far-field source signals are impinging on a uniform linear array of M
sensors, with K < M. In this context, the M–dimensional received signal (yn)n≥1 can be written as

yn = AMsn +vn ,

where

• AM = [aM(θ1), . . . ,aM(θK)] is the M×K matrix of M–dimensionals steering vectors aM(θ1), . . . ,aM(θK),
with θ1, . . . ,θK the source signals DoA, and aM(θ) = 1p

M
[1, . . . ,ei(M−1)θ]T ;

• sn ∈CK contains the source signals received at time n, considered as unknown deterministic ;

• (vn)n≥1 is a temporally and spatially white complex Gaussian noise with spatial covariance E[vnv∗n] =
σ2I.

The received signal is observed between time 1 and time N, and we collect the available observations in
the M×N matrix YN defined

YN = [y1, . . . ,yN] = AMSN +VN, (2.5.1)

with SN = [s1, . . . ,sN] and VN = [v1, . . . ,vN]. We assume that Rank(SN) = K for each M,N greater than K.
The DoA estimation problem consists in estimating the K DoA θ1, . . . ,θK from the matrix of samples YN.
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When the number of observations N is much less than the number of sensors M, the standard sub-
space method fails. In this case, it is standard to use spatial smoothing schemes in order to artificially
increase the number of observations. In particular, it is well established that spatial smoothing schemes
allow to use subspace methods even in the single snapshot case, i.e. when N = 1 (see e.g. [69] and the
references therein). If L < M, spatial smoothing consists in considering L overlapping subarrays of di-
mension M−L+1. At each time n, L snapshots of dimension M−L+1 are thus available, and the scheme
provides NL observations of dimension M−L+1. In order to be more specific, we introduce the following
notations. If L is an integer less than M, we denote by Y (L)

n the (M−L+1)×L Hankel matrix defined by

Y (L)
n =



y1,n y2,n . . . . . . yL,n

y2,n y3,n . . . . . . yL+1,n
...

...
...

...
...

...
...

...
...

...
yM−L+1,n yM−L+2,n . . . . . . yM,n

 (2.5.2)

Column l of matrix Y (L)
n corresponds to the observation on subarray l at time n. Collecting all the obser-

vations on the various subarrays allows to obtain NL snapshots, thus increasing artificially the number
of observations. We define Y(L)

N as the (M−L+1)×NL block-Hankel matrix given by

Y(L)
N =

(
Y (L)

1 , . . . ,Y (L)
N

)
(2.5.3)

In order to express Y(L)
N , we consider the (M−L+1)×L Hankel matrix A (L)(θ) defined from vector aM(θ)

in the same way than Y (L)
n . We remark that A (L)(θ) is rank 1, and can be written as

A (L)(θ) =
√

L(M−L+1)/M aM−L+1(θ) (aL(θ))T (2.5.4)

We consider the (M−L+1)×KL matrix A(L)

A(L) = (
A (L)(θ1),A (L)(θ2), . . . ,A (L)(θK)

)
(2.5.5)

which, of course, is a rank K matrix whose range coincides with the subspace generated by the (M−L+1)-
dimensional vectors aM−L+1(θ1), . . . ,aM−L+1(θK). Y(L)

N can be written as

Y(L)
N = A(L) (SN ⊗ IL)+V(L)

N (2.5.6)

where matrix V(L)
N is the block Hankel matrix corresponding to the additive noise. As matrix SN⊗IL is full

rank, the extended observation matrix Y(L)
N appears as a noisy version of a low rank component whose

range is the K–dimensional subspace generated by vectors aM−L+1(θ1), . . . ,aM−L+1(θK). Moreover, it is
easy to check that

E

(
V(L)

N V(L)∗
N

NL

)
=σ2IM−L+1

Therefore, it is potentially possible to estimate the DoAs (θk )k=1,...,K using a subspace approach based
on the eigenvalues / eigenvectors decomposition of matrix Y(L)

N Y(L)∗
N /NL. The asymptotic behaviour of

spatial smoothing subspace methods is standard in the regimes where M−L+1 remains fixed while NL
converges towards∞. This is due to the law of large numbers which implies that the empirical covariance
matrix Y(L)

N Y(L)∗
N /NL has the same asymptotic behaviour than A(L)

(
SNS∗

N ⊗ IL/NL
)

A(L)∗+σ2IM−L+1, In this

context, the orthogonal projection matrix Π̂
(L)
N onto the eigenspace associated to the M−L+1−K smallest
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eigenvalues of Y(L)
N Y(L)∗

N /NL is a consistent estimate of the orthogonal projection matrixΠ(L) on the noise
subspace, i.e. the orthogonal complement of sp{aM−L+1(θ1), . . . ,aM−L+1(θK)}. In other words, it holds that∥∥∥Π̂(L)

N −Π(L)
∥∥∥→ 0 a.s. (2.5.7)

The traditional pseudo-spectrum estimate η̂(t )
N (θ) defined by

η̂(t )
N (θ) = aM−L+1(θ)∗Π̂(L)

N aM−L+1(θ)

thus verifies

sup
θ∈[−π,π]

∣∣∣η̂(t )
N (θ)−η(θ)

∣∣∣ a.s.−−−−→
N→∞

0. (2.5.8)

where η(θ) = aM−L+1(θ)∗Π(L)aM−L+1(θ) is the MUSIC pseudo-spectrum. Moreover, the K MUSIC tradi-
tional DoA estimates, defined formally, for k = 1, . . . ,K, by

θ̂(t )
k,N = argmin

θ∈Ik

η̂(t )
N (θ), (2.5.9)

where Ik is a compact interval containing θk and such that Ik ∩Il =; for k 6= l , are consistent, i.e.

θ̂(t )
k,N

a.s.−−−−→
N→∞

θk . (2.5.10)

However, the regime where M−L+1 remains fixed while NL converges towards ∞ is not very inter-
esting in practice because the size M−L+1 of the subarrays may be much smaller that the number of
antennas M, thus reducing the resolution of the method. We therefore study spatial smoothing schemes
in regimes where the dimensions M−L+ 1 and NL of matrix Y(L)

N are of the same order of magnitude
and where L

M → 0 in order to keep unchanged the aperture of the array. More precisely, we assume that
integers N and L depend on M and that

M →+∞,N =O (Mβ),
1

3
< β≤ 1, cN = M−L+1

NL
→ c (2.5.11)

In regime (2.5.11), N thus converges towards ∞ but at a rate that may be much lower than M thus
modelling contexts in which N is much smaller than M. As N →+∞, it also holds that M

NL → c. There-
fore, it is clear that L = O (Mα) where α= 1−β verifies with 0 ≤ α< 2/3. L may thus converge towards ∞
(even faster than N if β < 1/2) but condition α < 2/3 (or equivalently β > 1/3) implies that the conver-
gence speed of L to +∞ is not arbitrarily fast. As explained in paragraph 2.5.2, condition L =O (Mα) with
α< 2/3 implies that matrix V(L)

N , behaves, in some sense, as a random matrix with i.i.d. entries, and that
the results of [33] and [74] obtained in the case L = 1 can be extended to asymptotic regime (2.5.11).

As in regime (2.5.11) N depends on M, it could be appropriate to index the various matrices and DoA
estimators by integer M rather than by integer N as in definitions (2.5.5) and (2.5.9). However, we prefer
to use the index N in the following in order to keep the notations unchanged. We also denote projection
matrix Π(L) and pseudo-spectrum η(θ) by Π(L)

N and ηN(θ) because they depend on M. Moreover, in the
following, the notation N →+∞ should be understood as regime (2.5.11) for some β ∈ (1/3,1].
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Main results.

In regime (2.5.11), the empirical covariance matrix Y(L)
N Y(L)∗

N /NL is not a good estimate of the true covari-
ance matrix A(L)

(
SNS∗

N ⊗ IL/NL
)

A(L)∗+σ2IM−L+1 in the sense that∥∥∥Y(L)
N Y(L)∗

N /NL− (
A(L) (

SNS∗
N ⊗ IL/NL

)
A(L)∗+σ2IM−L+1

)∥∥∥
does not converge towards 0 almost surely. Roughly speaking, this is because the true covariance matrix
depends on (M−L+1)(M−L)

2 = O(M2) parameters, and that the number of independent random variables
that are available for estimation is equal to MN, which, in regime (2.5.11), is of course not sufficient.
Therefore, (2.5.7) is no more valid, and hence, (2.5.10) is questionable. In this chapter, we show that it is
possible to generalize the G-MUSIC estimators introduced in [33] and [74] in the case where L = 1 to the
context of spatial smoothing schemes in regime (2.5.11). In order to explain this informally, we denote

by XN, ZN, and BN the matrices defined by XN = Y(L)
Np
NL

, ZN = V(L)
Np
NL

, and BN = 1p
NL

A(L) (SN ⊗ IL) (we do not

mention that these matrices depend on L in order to simplify the notations), and observe that

XN = BN +ZN

We denote by (uk,N)k=1,...,K and (λk,N)k=1,...,K the non zero eigenvalues of matrix BNB∗
N, and by (ûk,N)k=1,...,M

and (λ̂k,N)k=1,...,M the eigenvalues of matrix XNX∗
N. Matrix XN coincides with the sum of rank K determin-

istic matrix BN and bloc-Hankel random matrix ZN due to the noise, and it is of course of fundamen-
tal interest to precise the behaviour of the K largest eigenvalues (λ̂k,N)k=1,...,K and related eigenvectors
(ûk,N)k=1,...,K in the asymptotic regime (2.5.11). If matrix ZN was i.i.d., Theorem 1.2.2 would imply that,
under the so-called separation condition

λK,N >σ2pc, for each N large enough (2.5.12)

then, for each k = 1, . . . ,K, it would hold that

aM−L+1(θ)∗ûk,Nû∗
k,NaM−L+1(θ) = h(λ̂k,N)aM−L+1(θ)∗uk,Nu∗

k,NaM−L+1(θ)+o(1) a.s., (2.5.13)

for each θ, where function h coincides with function hc,σ2 defined by (1.2.25). This would immediately
imply that the traditional pseudo-spectrum estimate η̂(t )

N (θ) would verify

η̂(t )
N (θ) = 1−

K∑
k=1

h(λ̂k,N)aM−L+1(θ)∗uk,Nu∗
k,NaM−L+1(θ)+o(1) a.s., (2.5.14)

and that the true MUSIC pseudo-spectrum

ηN(θ) = aM−L+1(θ)∗Π(L)
N aM−L+1(θ)

= 1−aM−L+1(θ)∗
K∑

k=1
uk,Nu∗

k,NaM−L+1(θ)

could be estimated consistently by

η̂N(θ) = (aM−L+1(θ))∗
(

I−
K∑

k=1

1

h
(
λ̂k,N

) ûk,Nû∗
k,N

)
aM−L+1(θ) (2.5.15)

While matrix ZN is of course not i.i.d. as soon as L > 1, we prove that the fundamental identity (2.5.13),
in principle valid when ZN is i.i.d., still holds in the asymptotic regime (2.5.11). For this, we again use
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Remark 1, and check the corresponding items. This not only implies (2.5.14) and the consistency of
η̂N(θ) for each θ, but also that

sup
θ∈[−π,π]

∣∣∣∣∣η̂(t )
N (θ)−

(
1−

K∑
k=1

h(λ̂k,N)aM−L+1(θ)∗uk,Nu∗
k,NaM−L+1(θ)

)∣∣∣∣∣→ 0 a.s. (2.5.16)

and

sup
θ∈[−π,π]

∣∣η̂N(θ)−ηN(θ)
∣∣→ 0 a.s. (2.5.17)

These uniform consistency properties allow to study the asymptotic behaviour of the traditional MUSIC
SS estimates (θ̂(t )

k,N)k=1,...,K and of the G MUSIC SS estimates (θ̂k,N)k=1,...,K defined as the K most signif-
icant local minima of |η̂N(θ)|. More precisely, (2.5.16) and (2.5.17) allow to generalize immediately in
the asymptotic regime (2.5.11) the proof of Theorem 3 of [33] and the proof of Theorem 5 of [74] (these
theorems address the case L = 1), and to conclude that, under the separation condition (2.5.12), it holds
that:

• (θ̂(t )
k,N)k=1,...,K and (θ̂k,N)k=1,...,K are consistent and verify

M(θ̂(t )
k,N −θk ) → 0 a.s., (2.5.18)

M(θ̂k,N −θk ) → 0 a.s. (2.5.19)

(2.5.18) and (2.5.19) hold when the DoA (θk )k=1,...,K are fixed parameters that do not depend on M and
N. In practice, this assumption corresponds to practical situations where the DoA are widely spaced
because when the DoA (θk )k=1,...,K are fixed, the ratio

mink 6=l |θk −θl |
(2π)/M

converges towards ∞. Adapting the proof of Theorem 6 of [74], we obtain that:

• If K = 2,
SNS∗

N
N → I2, and if the 2 DoAs scale with M,N is such a way that θ2,N −θ1,N = O ( 1

M ), then
the G-MUSIC SS estimates still verify (2.5.19) while the traditional MUSIC SS estimates no longer
verify (2.5.18)

As in the case L = 1, the separation condition (2.5.12) ensures that the K largest eigenvalues of the em-
pirical covariance matrix (Y(L)

N Y(L)∗
N )/NL correspond to the K sources, and the signal and noise subspaces

can be separated. In order to obtain some insights on this condition, and on the potential benefit of the
spatial smoothing, we study the separation condition when M and N converge towards ∞ at the same
rate, i.e. when M

N → d , or equivalently that β= 1 and that L does not scale with N. In this case, it is clear

that c coincides with c = d/L. Under the assumption that
SNS∗

N
N converges towards a diagonal matrix D

when N increases, then we establish that the separation condition holds if

λK
(
A∗

M−L+1AM−L+1D
)> σ2

p
dp

L
(2.5.20)

for each (M,N) large enough. If L = 1, the separation condition introduced in the context of (unsmoothed)
G-MUSIC algorithms ([33]) is of course recovered, i.e.

λK
(
A∗

MAMD
)>σ2

p
d
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If M is large and that L << M, matrix A∗
M−L+1AM−L+1 is close from A∗

MAM and the separation condition is
nearly equivalent to

λK
(
A∗

MAMD
)> σ2

p
dp

L

Therefore, it is seen that the use of the spatial smoothing scheme allows to reduce the threshold σ2
p

d
corresponding to G-MUSIC method without spatial smoothing by the factor

p
L. Therefore, if M and

N are the same order of magnitude, our asymptotic analysis allows to predict an improvement of the
performance of the G-MUSIC SS methods when L increases provided L << M. If L becomes too large,
the above rough analysis is no more justified and the impact of the diminution of the number of antennas
becomes dominant, and the performance tends to decrease.

2.5.3 Asymptotic behaviour of the largest eigenvalues and eigenvectors of
Y(L)

N Y(L)∗
N

NL .

In this subsection, N,M,L still satisfy (2.5.11) while K is a fixed integer that does not scale with N. We
consider the (M+L−1)×NL block-Hankel random matrix V(L)

N defined previously, as well as matrices ZN

defined by ZN = 1p
NL

V(L)
N , BN = 1p

NL
A(L)(SN ⊗ IL), and XN = BN +ZN = 1p

NL
Y(L)

N . The entries of ZN have of

course variance σ2/NL. We assume from now on that K×N matrix
SNS∗

N
N verifies

sup
N

‖SNS∗
N

N
‖ <+∞ (2.5.21)

a condition which implies that BN satisfies

sup
N

‖BN‖ <+∞ (2.5.22)

We denote by λ1,N > λ2,N . . . > λK,N the non zero eigenvalues of matrix BNB∗
N arranged in decreasing

order, and by (uk,N)k=1,...,K the associated eigenvectors. Moreover, we assume that:

Assumption 2.5.1. The K non zero eigenvalues (λk,N)k=1,...,K of matrix BNB∗
N converge towards λ1 > λ2 >

. . . > λK when N →+∞.

Here, for ease of exposition, we assume that the eigenvalues (λk,N)k=1,...,K have multiplicity 1 and that
λk 6= λl for k 6= l . However, the forthcoming results can be easily adapted if some λk coincide.

The purpose of this subsection is to formalize claim (2.5.13), and to establish that the K largest eigen-
values (λ̂k,N)k=1,...,K of matrix XNX∗

N as well as of their corresponding eigenvectors (ûk,N)k=1,...,K behave
as if the entries of ZN were i.i.d.

We denote by mc (z) the Stieltjes transform of the Marcenko-Pastur distribution µc,σ2 of parame-
ters (c,σ2) and by m̃c (z) the Stieltjes transform of cµc,σ2 + (1− c)δ0. wc (z) represents function wc (z) =

1
zmc (z)m̃c (z) and h(z) is defined by h(z) = wc (z)2−σ4c

wc (z)(wc (z)+σ2c) . Finally, we denote by QN(z) and Q̃N(z) the resol-
vents of matrices ZNZ∗

N and Z∗
NZN respectively. Then, the following Proposition holds.

Proposition 2.5.1. • (i) The eigenvalue distribution of matrix ZNZ∗
N converges almost surely towards

the Marcenko-Pastur distribution µc,σ2

• (ii) For each ε > 0, almost surely, for N large enough, all the eigenvalues of ZNZ∗
N belong to [σ2(1−p

c)2 −ε,σ2(1+p
c)2 +ε] if c ≤ 1, and to [σ2(1−p

c)2 −ε,σ2(1+p
c)2 +ε]∪ {0} if c > 1.
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• (iii) Moreover, if aN,bN are (M−L+1)–dimensional deterministic vectors satisfying supN(‖aN‖,‖bN‖) <
+∞ , then it holds that for each z ∈C−R+

a∗
N (QN(z)−mc (z)I)bN → 0 a.s. (2.5.23)

Similarly, if ãN and b̃N are NL–dimensional deterministic vectors verifying supN(‖ãN‖,‖b̃N‖) <+∞,
then for each z ∈C−R+, it holds that

ã∗
N

(
Q̃N(z)−m̃c (z)I

)
b̃N → 0 a.s. (2.5.24)

Moreover, for each z ∈C−R+, it holds that

a∗
N (QN(z)ZN) b̃N → 0 a.s. (2.5.25)

Finally, for each ε> 0, convergence properties (2.5.23, 2.5.24, 2.5.25) hold uniformly w.r.t. z on each
compact subset of C∗− [σ2(1−p

c)2,σ2(1+p
c)2].

Proof. Proposition 2.5.1 follows directly from Theorem 1.3.1 and from the results established in the
course of the proof of Theorem 2.2.1. In order to explain this, we denote by WN the NL×(M−L+1) matrix
defined by

WN = 1p
cN

Z∗
N

WN can be written as WN = (W(1)T
N , . . . ,W(N)T

N )T where matrices (W(n)
N )n=1,...,N are independent identically

distributed L× (M−L+1) Hankel matrices built from i.i.d. standard complex Gaussian sequences with
variance σ2

M−L+1 . As Z∗
NZN = cNWNW∗

N and that ZNZ∗
N = cNW∗

NWN, the use of Theorem 1.3.1 when (M,N)
is exchanged by (N,M− L + 1) immediately implies that item (i) holds. More precisely, the empirical
eigenvalue distributions of WNW∗

N and of W∗
NWN converge almost surely towards µc−1,σ2 and µc,σ2c−1

respectively. Therefore, the empirical eigenvalue distributions of Z∗
NZN and of ZNZ∗

N converge towards
µc−1,σ2c andµc,σ2 respectively as expected. (ii) holds for similar reasons. Item (iii) eventually follows from
the application of (2.2.2, 2.2.3, 2.2.4) to matrix WN as well as from the uniformity of the convergence of
(2.2.2, 2.2.3, 2.2.4) on the compact subsets C∗− [σ2(1−

p
c−1)2,σ2(1+

p
c−1)2].

Using Remark 1, we obtain immediately the following Theorem.

Theorem 2.5.1. We denote by s, 0 ≤ s ≤ K, the largest integer for which

λs >σ2pc (2.5.26)

Then, for k = 1, . . . , s, it holds that

λ̂k,N
a.s.−−−−→

N→∞
ρk =φ(λk ) = (λk +σ2)(λk +σ2c)

λk
>σ2(1+p

c)2. (2.5.27)

Moreover, for k = s +1, . . . ,K, it holds that

λ̂k,N →σ2(1+p
c)2 a.s. (2.5.28)

Finally, for all deterministic sequences of unit vectors (d1,N), (d2,N), we have for k = 1, . . . , s

d∗
1,Nûk,Nû∗

k,Nd2,N = h(ρk )d∗
1,Nuk,Nu∗

k,Nd2,N +o(1) a.s., (2.5.29)
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2.5.4 Derivation of a consistent G-MUSIC method.

We now use the results of section 2.5.3. We recall that (λ̂k,N)k=1,...,M−L+1 and (ûk,N)k=1,...,M−L+1 represent
the eigenvalues and eigenvectors of the empirical covariance matrix Y(L)

N Y(L)∗
N /NL, and that (λk,N)k=1,...,K

and (uk,N)k=1,...,K are the non zero eigenvalues and corresponding eigenvectors of 1
L A(L)

(
SNS∗

N/N⊗ IL
)

A(L)∗.

We recall thatΠ(L)
N represents the orthogonal projection matrix onto the noise subspace, i.e. the orthogo-

nal complement of the space generated by vectors (aM−L+1(θk ))k=1,...,K and that ηN(θ) is the correspond-
ing MUSIC pseudo-spectrum

ηN(θ) = aM−L+1(θ)∗Π(L)
N aM−L+1(θ)

Theorem 2.5.1 allows to generalize immediately the results of [33] and [74] concerning the consistency
of G-MUSIC and MUSIC DoA estimators in the case L = 1. More precisely:

Theorem 2.5.2. Assume that the K non zero eigenvalues (λk,N)k=1,...,K converge towards deterministic
terms λ1 > λ2 > . . . > λK and that

λK >σ2pc (2.5.30)

Then, the estimator η̂N(θ) of the pseudo-spectrum ηN(θ) defined by

η̂N(θ) = (aM−L+1(θ))∗
(

I−
K∑

k=1

1

h
(
λ̂k,N

) ûk,Nû∗
k,N

)
aM−L+1(θ) (2.5.31)

verifies

sup
θ∈[−π,π]

∣∣η̂N(θ)−ηN(θ)
∣∣ a.s.−−−−→

N→∞
0, (2.5.32)

(2.5.31) is a direct consequence of (2.5.29) and (2.5.27). (2.5.32) can be proved as Proposition 1 in
[33]. We notice that the proof of this Proposition uses extensively Lemma 5 in [33], which, in the context
of the present paper has to be replaced by item (iii) of Proposition 2.5.1.

In order to obtain some insights on condition (2.5.30) and on the potential benefits of the spatial
smoothing, we explicit the separation condition (2.5.30) when M and N converge towards ∞ at the same
rate, i.e. when M

N → d , or equivalently that β= 1 and that L does not scale with N. In this case, it is clear
that c coincides with c = d/L. It is easily seen that

1

L
A(L)

(
SNS∗

N

N
⊗ IL

)
A(L)∗ = (M−L+1/M) AM−L+1

(
SNS∗

N

N
•AT

L AL

)
A∗

M−L+1 (2.5.33)

where • represents the Hadamard (i.e. element wise) product of matrices, and where B stands for the

complex conjugation operator of the elements of matrix B. If we assume that
SNS∗

N
N converges towards

a diagonal matrix D when N increases, then
SNS∗

N
N • (AT

L AL) converges towards the diagonal matrix D •
Diag

(
AT

L AL
)= D. Therefore,

SNS∗
N

N • (AT
L AL) ' D when N is large enough. Using that L

M → 0, we obtain that
the separation condition is nearly equivalent to

λK
(
AM−L+1D A∗

M−L+1

)> σ2
p

dp
L

or to

λK
(
A∗

M−L+1AM−L+1D
)> σ2

p
dp

L
(2.5.34)

for each (M,N) large enough. If L = 1, the separation condition introduced in the context of (unsmoothed)
G-MUSIC algorithms ([33], [74]) is of course recovered, i.e.

λK
(
A∗

MAMD
)>σ2

p
d
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for each (M,N) large enough. If M is large and that L << M, matrix A∗
M−L+1AM−L+1 is close from A∗

MAM

and the separation condition is nearly equivalent to

λK
(
A∗

MAMD
)> σ2

p
dp

L

Therefore, it is seen that the use of the spatial smoothing scheme allows to reduce the threshold σ2
p

d
corresponding to G-MUSIC method without spatial smoothing by the factor

p
L. Hence, if M and N are

the same order of magnitude, our asymptotic analysis allows to predict an improvement of the perfor-
mance of the G-MUSIC methods based on spatial smoothing when L increases provided L << M. If L
becomes too large, the above rough analysis is no more justified and the impact of the diminution of
the number of antennas becomes dominant, and the performance tends to decrease. This analysis is
sustained by the numerical simulations presented in subsection 2.5.5.

We define the DoA G-MUSIC SS estimates (θ̂k,N)k=1,...,K by

θ̂k,N = argmin
θ∈Ik

∣∣η̂N(θ)
∣∣ , (2.5.35)

where Ik is a compact interval containing θk and such that Ik ∩Il = ; for k 6= l . As in [33], the uni-
form consistency (2.5.32) as well as the particular structure of directional vectors aM−L+1(θ) imply the
following result which can be proved as Theorem 3 of [33]

Theorem 2.5.3. Under condition (2.5.30), the DoA G-MUSIC SS estimates (θ̂k,N)k=1,...,K verify

M
(
θ̂k,N −θk

)→ 0 a.s. (2.5.36)

for each k = 1, . . . ,K.

Remark 5. We remark that under the extra assumption that
SNS∗

N
N converges towards a diagonal matrix,[33]

(see also [74] for more general matrices S) proved when L = 1 that M3/2
(
θ̂k,N −θk

)
converges in distribu-

tion towards a Gaussian distribution. It would be interesting to generalize the results of [33] and [74] to the
G-MUSIC estimators with spatial smoothing in the asymptotic regime (2.5.11).

Theorem 2.5.1 also allows to generalize immediately the results of [74] concerning the consistency
of the traditional estimates (θ̂(t )

k,N)k=1,...,K in the case L = 1. In particular, while the traditional estimate

η̂(t )
N (θ) of the pseudo-spectrum is not consistent, it is shown in [74] (see Theorem 5) that if L = 1, then the

arguments of its local minima (θ̂(t )
k,N)k=1,...,K are consistent and verify

M
(
θ̂(t )

k,N −θk

)
→ 0 a.s. (2.5.37)

for each k = 1, . . . ,K if the separation condition is verified. The proof of Theorem 5 in [74] can be imme-
diately adapted to the context of the present paper. For this, it is sufficient to follow the proof of [74], and
to use Theorem 2.5.1, as well as the uniform consistency property

sup
θ∈[−π,π]

∣∣∣∣∣η̂(t )
N (θ)−

(
1−

K∑
k=1

h(ρk )aM−L+1(θ)∗uk,Nu∗
k,NaM−L+1(θ)

)∣∣∣∣∣→ 0 a.s. (2.5.38)

which can be proved in the same way that (2.5.32). We note that, as λ̂k,N → ρk , then (2.5.38) and (2.5.16)
are equivalent. Therefore, the following result holds.

52



CHAPTER 2. SPATIAL-TEMPORAL GAUSSIAN INFORMATION PLUS NOISE SPIKED MODEL

Theorem 2.5.4. Under condition (2.5.30), the DoA traditional MUSIC SS estimates (θ̂(t )
k,N)k=1,...,K verify

M
(
θ̂(t )

k,N −θk

)
→ 0 a.s. (2.5.39)

for each k = 1, . . . ,K.

Remark 6. It is established in [74] in the case L = 1 that if
SNS∗

N
N converges towards a diagonal matrix,

then M3/2
(
θ̂(t )

k,N −θk

)
has a Gaussian behaviour, and that the corresponding variance coincides with the

asymptotic variance of M3/2
(
θ̂k,N −θk

)
. In particular, if L = 1, the asymptotic performance of MUSIC and

G-MUSIC estimators coincide. It would be interesting to check whether this result still holds true for the
MUSIC and G-MUSIC estimators with spatial smoothing.

Theorems 2.5.2 and 2.5.3 as well as (2.5.37) are valid when the DoAs (θk )k=1,...,K are fixed parameters,
i.e. do not depend on M and N. Therefore, the ratio

mink 6=l |θk −θl |
(2π)/M

converges towards+∞. In practice, this context is able to model practical situations in which supk 6=l |θk−
θl | is significantly larger than the aperture of the array. In the case L = 1, [74] also addressed the case
where the DoA’s (θk,N)k=1,...,K depend on N,M and verify θk,N−θl ,N =O ( 1

M ). This context allows to capture
practical situations in which the DoA’s are spaced of the order of a beamwidth. In order to simplify

the calculations, [74] considered the case K = 2, θ2,N = θ1,N + α
N and where matrix

SNS∗
N

N → I2. However,
the results can be generalized easily to more general situations. It is shown in [74] that the G-MUSIC

estimates still verify (2.5.39), but that, in general, M
(
θ̂(t )

k,N −θk

)
does not converge towards 0. The results

of [74] can be generalized immediately to the context of G-MUSIC estimators with spatial smoothing in
regime (2.5.11). For this, we have to assume that θ2,N = θ1,N + κ

M (in [74], M and N are of the same order
of magnitude so that the assumptions θ2,N = θ1,N + α

N and θ2,N = θ1,N + κ
M are equivalent), and to follow

the arguments of section 3 in [74]. The conclusion of this discussion is the following Theorem.

Theorem 2.5.5. Assume K = 2, θ2,N = θ1,N + κ
M , and that

SNS∗
N

N → I2. If the separation condition

1−|sincκ/2| >σ2c (2.5.40)

holds, then the G-MUSIC SS estimates (θ̂k,N)k=1,2 defined by

θ̂k,N = argmin
θ∈Ik,N

∣∣η̂N(θ)
∣∣ , (2.5.41)

where Ik,N = [θk,N − κ−ε
2N ,θk,N + κ−ε

2N ] for ε small enough, verify

M
(
θ̂k,N −θk,N

)→ 0 a.s. (2.5.42)

In general, the traditional MUSIC SS estimates defined by (2.5.41) when the G-MUSIC estimate η̂N(θ) is re-

placed by the traditional spectrum estimate η̂(t )
N (θ) are such that M

(
θ̂(t )

k,N −θk,N

)
does not converge towards

0.
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2.5.5 Numerical examples

In this section, we provide numerical simulations illustrating the results given in the previous sections.
We first consider 2 closely spaced sources with DoAs θ1 = 0 and θ2 = π

2M , and we assume that M = 160
and N = 20. The 2×N signal matrix is obtained by normalizing a realization of a random matrix with
NC(0,1) i.i.d. entries in such a way that the 2 source signals have power 1. The signal to noise ratio
is thus equal to SNR = 1/σ2. Table 2.1 provides the minimum value of SNR for which the separation
condition, in its finite length version (i.e. when the limits (λk )k=1,...,K and c are replaced by (λk,N)k=1,...,K

and cN respectively) holds, i.e.

(σ2)−1 = 1

λK,N

√
(M−L+1)/NL

It is seen that the minimal SNR first decreases but that it increases if L is large enough. This confirms the
discussion of the previous paragraph on the effect of L on the separation condition.

L 2 4 8 16 32 64 96 128
SNR 33.46 30.30 27.46 25.31 24.70 28.25 36.11 51.52

Table 2.1 – Minimum value of SNR for separation condition

In figure 2.8, we represent the mean-square errors of the G-MUSIC SS estimator θ̂1 for L = 2,4,8,16
versus SNR. The corresponding Cramer-Rao bounds are also represented. As expected, it is seen that the
performance tends to increase with L until L = 16. In figure 2.9, L is equal to 16, 32, 64, 96, 128.
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Figure 2.8 – Empirical MSE of G-MUSIC SS estimator θ̂1 versus SNR

For L = 32, it is seen that the MSE tends to degrade at high SNR w.r.t. L = 16, while the performance
severely degrades for larger values of L.
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Figure 2.9 – Empirical MSE of G-MUSIC SS estimator θ̂1 versus SNR

In Figure 2.10, parameter L is equal to 16. We compare the performance of G-MUSIC SS with the
standard MUSIC method with spatial smoothing. We also represent the MSE provided by G-MUSIC and
MUSIC for L = 1. The standard unsmoothed MUSIC method of course completely fails, while the use
of the G-MUSIC SS provides a clear improvement of the performance w.r.t. MUSIC SS and unsmoothed
G-MUSIC.

We finally consider the case L = 128, and compare as above G-MUSIC SS, MUSIC SS, unsmoothed
G-MUSIC and unsmoothed MUSIC. G-MUSIC SS completely fails because L and M are of the same order
of magnitude. Theorem 2.5.2 is thus no more valid, and the pseudo-spectrum estimate is not consistent.

We now consider 2 widely spaced sources with DoAs θ1 = 0 and θ2 = 5 2π
M , and keep the same param-

eters as above. We consider the case L = 16, and represent in Fig. 2.12 the performance of MUSIC, G-
MUSIC, MUSIC-SS, and G-MUSIC-SS. It is first observed that, in contrast with the case of closely spaced
DoAs, MUSIC-SS and G-MUSIC-SS have the same performance when the SNR is above the threshold

6 dB. This is in accordance with Theorem 2.5.4, and tends to indicate that, as in the case L = 1, if
SNS∗

N
N

converges towards a diagonal matrix, then the asymptotic performance of G-MUSIC-SS and MUSIC-SS
coincide (see Remark 6). The comparison between the methods with and without spatial smoothing also
confirm that the use of spatial smoothing schemes allow to improve the performance.
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Figure 2.10 – Empirical MSE of different estimators of θ1 when L=16
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Figure 2.11 – Empirical MSE of different estimators of θ1 when L=128
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Figure 2.12 – Empirical MSE of different estimators of θ1 when L=16 and widely spaced DoAs
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Chapter 3

Complex Gaussian information plus noise
models: the deterministic equivalents

Before introducing the content of this chapter devoted to the study of information plus noise block-
Hankel large random matrix models, we have to define some useful notations and tools.

3.1 Notations and useful tools.

3.1.1 Complex numbers and nice polynomials.

C+ denotes the set of complex numbers with strictly positive imaginary parts. The conjugate of a com-
plex number z is denoted by z∗ or z depending on the context.

A nice polynomial is a polynomial with positive coefficients whose degree and coefficients do not
depend on the dimensions L,M,N of the matrices under consideration.

3.1.2 Matrix notations and Toeplitzification operators

If A is a matrix, ‖A‖ represents the spectral norm of matrix A, and A∗ (resp. AT) denotes the conjugate
transpose (resp. transpose) of A. If A and B are 2 matrices, A⊗B represents the Kronecker product of A
and B, i.e the block matrix whose block (i , j ) is Ai , j B.

If A is a ML×ML matrix, we denote Am1,m2
i1,i2

the entry (i1 + (m1 −1)L, i2 + (m2 −1)L) of matrix A, while

Am1,m2 represents the L×L matrix Am1,m2
1≤(i1,i2)≤L. We also denote by Â the L×L matrix defined by

Â = 1

M

M∑
m=1

Am,m (3.1.1)

It is clear that ‖Â‖ ≤ ‖A‖, and that for each pair (b,c) of L–dimensional vectors, it holds that

b∗Â c = 1

M
Tr

(
A(IM ⊗cb∗)

)
(3.1.2)

For each 1 ≤ i ≤ L and 1 ≤ m ≤ M, fm
i represents the vector of the canonical basis of CML whose non zero

component is located at index i + (m −1)L, fm and fi represent the vectors of the canonical basis of CM

and CL respectively. If 1 ≤ j ≤ N, e j is the j th-vector of the canonical basis on CN.
If A is a square matrix, Re(A) and Im(A) represent the Hermitian matrices Re(A) = A+A∗

2 and Im(A) =
A−A∗

2i respectively.
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If (AN)N≥1 (resp. ((bN)N≥1)) is a sequence of matrices (resp. vectors) whose dimensions increase with
N, (AN)N≥1 (resp. ((bN)N≥1)) is said to be uniformly bounded if supN≥1 ‖AN‖ < +∞ (resp. supN≥1 ‖bN‖ <
+∞).

We now introduce certain Toeplitzification operators that will play an important role in the following:

Definition 1. • If A is a K×K Toeplitz matrix, we denote by (A(k))k=−(K−1),...,K−1 the sequence such that
Ak,l = A(k − l ).

• For any integer K, JK is the K×K “shift” matrix defined by (JK)i , j = δ( j − i = 1). In order to short the
notations, matrix J∗K is denoted by J−1

K , although JK is of course not invertible.

• For any PK×PK block matrix A with K×K blocks (Ap1,p2 )1≤(p1,p2)≤P, we define (τ(P)(A)(k))k=−(K−1),...,K−1

as the sequence

τ(P)(A)(k) = 1

PK
Tr

[
A(IP ⊗ Jk

K)
]
= 1

PK

∑
i− j=k

P∑
p=1

A(p,p)
i , j = 1

PK

P∑
p=1

K∑
u=1

Ap,p
k+u,u 11≤k+u≤K (3.1.3)

• For any PK×PK block matrix A and for 2 integers R and Q such that Q ≤ K, matrix T (P)
R,Q(A) represents

the R×R Toeplitz matrix given by

T (P)
R,Q(A) =

Q−1∑
q=−(Q−1)

τ(P)(A)(q) J∗q
R (3.1.4)

In other words, for (i , j ) ∈ {1,2, . . . ,R}, it holds that(
T (P)

R,Q(A)
)

i , j
= τ(P)(A)(i − j )1|i− j |≤Q−1 (3.1.5)

When P = 1, sequence (τ(1)(A)(k))k=−(K−1),...,K−1 and matrix T (1)
R,Q(A) are denoted by (τ(A)(k))k=−(K−1),...,K−1

and matrix TR,Q(A) in order to simplify the notations. We note that if A is a PK ×PK block matrix
matrix, then, it holds that

τ(P)(A)(k) = τ(Â)(k) (3.1.6)

for each k, where we recall that matrix Â is defined by Â = 1
P

∑P
p=1 A(p,p).

The reader may check that the following straightforward identities hold:

• If A is a R×R Toeplitz matrix, for any R×R matrix B, it holds that

1

R
Tr(AB) =

R−1∑
k=−(R−1)

A(−k)τ(B)(k) = 1

R
Tr

(
ATR,R(B)

)
(3.1.7)

• If A and B are both R×R matrices, and if Q ≤ R, then,

1

R
Tr

(
TR,Q(A)B

)= Q−1∑
q=−(Q−1)

τ(A)(−q) τ(B)(q) = 1

R
Tr

(
ATR,Q(B)

)
(3.1.8)

• If A is a PK×PK matrix, if B is a R×R matrix, and if R ≥ Q and Q ≤ K, then it holds that

1

R
Tr

(
BT (P)

R,Q(A)
)
=

Q−1∑
k=−(Q−1)

τ(B)(k) τ(P)(A)(−k) (3.1.9)

Moreover when Q = K, we have

1

R
Tr

(
BT (P)

R,K (A)
)
= 1

PK
Tr

[(
IP ⊗TK,K(B)

)
A
]

(3.1.10)
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• If C is a PK×PK matrix, B is a K×K matrix and D,E R×R matrices with K ≤ R, then, it holds that

1

K
Tr

[
BTK,K

(
DT (P)

R,K (C)E
)]

= 1

PK
Tr

[
C

(
IP ⊗TK,K[ETR,K(B)D]

)]
(3.1.11)

The above various Toeplitzified matrices have integral representations that allow to simplify a num-
ber of issues. In order to introduce these representations, for each integer K, we define aK(ν) and dK(ν)
as the K–dimensional vectors defined by

aK(ν) = 1p
K

(
1,e2iπν, . . . ,e2iπ(K−1)ν

)T
(3.1.12)

and

dK(ν) =
(
1,e2iπν, . . . ,e2iπ(K−1)ν

)T
(3.1.13)

Then, the following representation holds.

Proposition 3.1.1. If A is a PK×PK block matrix, then, it holds that

K−1∑
k=−(K−1)

τ(P)(A)(k)e−2iπν = aK(ν)∗ Â aK(ν) (3.1.14)

Moreover, matrix T (P)
R,K (A) can be written as

T (P)
R,K (A) =

∫ 1

0
dR(ν)dR(ν)∗ aK(ν)∗ Â aK(ν) dν (3.1.15)

Proof. Using the expression (3.1.6) of τ(P)(A)(k), the term
∑K−1

k=−(K−1)τ
(P)(A)(k)e−2iπkν can be written

as

Tr

(
Â

(
1

K

K−1∑
k=−(K−1)

e−2iπkνJk
K

))
It is easily seen that

1

K

K−1∑
k=−(K−1)

e−2iπkνJk
K = aK(ν)aK(ν)∗

from which (3.1.14) and (3.1.15) follow immediately.

We now establish some useful corollaries of Proposition 3.1.1.

Proposition 3.1.2. If A is a PK×PK positive definite matrix, then, for each integer R it holds that

T (P)
R,K (A) > 0 (3.1.16)

Proof. As A is positive definite, matrix Â is also positive definite which implies that aK(ν)∗ Â aK(ν) >
0 for each ν. Therefore, matrix T (P)

R,K (A) is hermitian. For each R–dimensional vector b, the integral
representation (3.1.15) leads to

b∗T (P)
R,K (A)b =

∫ 1

0

∣∣b∗dR(ν)
∣∣2 aK(ν)∗ Â aK(ν) dν

which is of course strictly positive as expected.
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Proposition 3.1.3. If A is a PK×PK matrix, then, for each integer R, it holds that∥∥∥T (P)
R,K (A)

∥∥∥≤ sup
ν∈[0,1]

∣∣aK(ν)∗Â aK(ν)
∣∣≤ ‖A‖ (3.1.17)

Proof. The first inequality of (3.1.17) is a well known property of Toeplitz matrices (see e.g. [13]). We
however provide the proof for the reader’s convenience. For each R–dimensional vectors b and c,∣∣∣b∗T (P)

R,K (A)c
∣∣∣≤ sup

ν∈[0,1]

∣∣aK(ν)∗Â aK(ν)
∣∣ ∫ 1

0
|b∗dR(ν)||dR(ν)∗c|dν

The Schwartz inequality leads to∫ 1

0
|b∗dR(ν)||dR(ν)∗c|dν≤

(∫ 1

0
b∗dR(ν)dR(ν)∗bdν

)1/2 (∫ 1

0
c∗dR(ν)dR(ν)∗cdν

)1/2

and the conclusion follows from the observation that∫ 1

0
b∗dR(ν)dR(ν)∗bdν= ‖b‖2

Therefore, we have checked that∣∣∣b∗T (P)
R,K (A)c

∣∣∣≤ sup
ν∈[0,1]

∣∣aK(ν)∗Â aK(ν)
∣∣‖b‖‖c‖

which implies the first inequality of (3.1.17). The second inequality of (3.1.17) follows directly from
‖Â‖ ≤ ‖A‖.

Remark 7. We can notice that

a∗
K(ν)

(
1

P

P∑
p=1

Ap,p

)
aK(ν) = 1

P

M∑
p=1

Tr(Ap,p aK(ν)a∗
K(ν))

= 1

P
Tr(A (IP ⊗aK(ν)a∗

K(ν)))

= 1

P
Tr

(
A

((
P∑

p=1
fp (fp )T

)
⊗aK(ν)a∗

K(ν)

))

= 1

P
Tr

(
P∑

p=1
A(fp ⊗aK(ν))(fp ⊗aK(ν))∗

)

= 1

P

P∑
p=1

(fp ⊗aK(ν))∗ A (fp ⊗aK(ν)) (3.1.18)

with (f1, ..., fP) the canonical base of CP. So that from (3.1.17), it holds immediately

∥∥∥T (P)
R,K (A)

∥∥∥≤ sup
ν∈[0,1]

∣∣∣∣∣ 1

P

P∑
p=1

(fp ⊗aK(ν))∗ A (fp ⊗aK(ν))

∣∣∣∣∣ . (3.1.19)

We finally establish the following result.

Proposition 3.1.4. If A is a K×K matrix and if R is an integer, then, it holds that

TR,K(A)
(
TR,K(A)

)∗ ≤TR,K(AA∗) (3.1.20)
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Proof. The proof takes benefit of the integral representation (3.1.15) and follows directly from a ver-
sion of the matrix-valued Schwartz inequality: If u(ν) and v(ν) are R–dimensional vector-valued func-
tions defined on [0,1], then it holds that

[u,v] ([v,v])−1 [u,v]∗ ≤ [u,u] (3.1.21)

where [u,v] represents the R×R matrix

[u,v] =
∫ 1

0
u(ν)v(ν)∗ dν

We use (3.1.21) for u(ν) = aK(ν)∗Â aK(ν) dR(ν) and v(ν) = dR(ν). It is clear that [u,v] coincides with
TR,K(A), that [v,v] = I, and that

[u,u] =
∫ 1

0

∣∣aK(ν)∗Â aK(ν)
∣∣2

dR(ν)dR(ν)∗ dν

The conclusion follows from the inequalities∣∣aK(ν)∗Â aK(ν)
∣∣2 ≤ aK(ν)∗ÂÂ∗aK(ν)

and (
1

P

P∑
p=1

A(p,p

)(
1

P

P∑
p=1

A(p,p

)∗
≤ 1

P

P∑
p=1

A(p,p A(p,p)∗ ≤ 1

P

P∑
p=1

(AA∗)(p,p)

which can be seen as a matrix Jensen inequality.

3.1.3 Resolvents and Stieltjes transforms.

Let µ be a finite positive measure with support supp(µ) ⊂R. Its Stieltjes transform mµ(z) is the function
defined by :

mµ(z) =
∫
R

dµ(λ)

λ− z
∀z ∈C\ supp(µ).

mµ satisfies the following properties:

Property 3.1.1. • mµ is holomorphic on C\ supp(µ);

• mµ verifies (mµ(z))∗ = mµ(z∗);

• z ∈C+ implies mµ(z) ∈C+;

• mµ(z) satisfies

|mµ(z)| ≤ µ(R)

di st (z, supp(µ))
(3.1.22)

for each z ∈C\ supp(µ), and

|mµ(z)| ≤ µ(R)

|Im(z)| (3.1.23)

for each z ∈C\R.
If moreover supp(µ) ⊂R+, then it holds that

• z ∈C+ implies z mµ(z) ∈C+;
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• mµ(z) satisfies

|mµ(z)| ≤ µ(R)

di st (z, supp(µ))
≤ µ(R)

di st (z,R+)
(3.1.24)

for each z ∈C\R+.

The following property shows how to recover the measure µ from its Stieltjes transform mµ(z).

Property 3.1.2. The mass µ(R) can be recovered through the formula

µ(R) = lim
y→∞−i ymµ(i y). (3.1.25)

Moreover, for allφ ∈Cc (R,R), the set of all compactly supported real valued smooth functions, it holds that∫
R
φ(λ)dµ(λ) = 1

π
lim
y↓0

Im

(∫
R
φ(x)mµ(x + i y)d x

)
. (3.1.26)

Finally, if a and b are continuity points of µ,

µ([a,b]) = lim
y↓0

∫ b

a
Im(mµ(x + i y))d x. (3.1.27)

The Stieltjes transforms are characterized by the following properties.

Property 3.1.3. If a function m(z) verifies the following conditions

1. m(z) is holomorphic on C+

2. z ∈C+ implies m(z) ∈C+

3. limsupy→∞ |i y m(i y)| <∞

then m(z) is the Stieltjes transform of a uniquely defined positive measure µ. If moreover zm(z) ∈C+ when
z ∈C+, then µ is carried by R+.

The concept of Stieltjes transform can be extended to finite positive matrix valued measures defined
on R. A finite positive matrix valued measure µ is a σ–additive positive matrix valued function defined
on the set of all Borel sets of R for which ‖µ(R)‖ < +∞. For such a measure, the support of µ is defined
as the support of the scalar positive measure Tr(µ). The Stieltjes transform mµ(z) of µ is the function
defined for z ∈C\ supp(µ) by

mµ(z) =
∫
R

1

λ− z
d µ(λ) (3.1.28)

mµ(z) satisfies properties that can be interpreted as matrix generalizations of Properties 3.1.1, 3.1.2 and
3.1.3. In particular, we have:

Property 3.1.4. • mµ is holomorphic on C\ supp(µ);

• mµ verifies (mµ(z))∗ = mµ(z∗);

• z ∈C+ implies Im
(
mµ(z)

)> 0;
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• If µ(R) = I, mµ(z) satisfies

mµ(z)
(
mµ(z)

)∗ ≤ I[
di st (z, supp(µ))

]2 (3.1.29)

for each z ∈C\ supp(µ), and

mµ(z)
(
mµ(z)

)∗ ≤ I

(Im(z))2 (3.1.30)

for each z ∈C\R.
If moreover supp(µ) ⊂R+, then it holds that

• z ∈C+ implies Im
(
z mµ(z)

)> 0;

• If µ(R) = I, mµ(z) satisfies

mµ(z)
(
mµ(z)

)∗ ≤ I[
di st (z, supp(µ))

]2 ≤ I

[di st (z,R+)]2 (3.1.31)

for each z ∈C\R+.

Proof. Bounds (3.1.29, 3.1.30, 3.1.31) are not classical so that we provide the proof of e.g. (3.1.23).
The proof is based on a version of the matrix Schwartz inequality. We denote by L2(µ) the space of all row
vector-valued functions u(λ) defined on R satisfying

∫
Ru(λ)d µ(λ)u(λ)∗ <+∞ (see [63] for more details

on the definition of the above integral). L2(µ) endowed with the scalar product < u,v > defined by

< u,v >=
∫
R

u(λ)d µ(λ)v(λ)∗

is a Hilbert space. Then, if U(λ) = (u1(λ)T, . . . ,up (λ))T)T and V(λ) = (v1(λ)T, . . . ,vp (λ))T)T are matrices
whose rows are elements of L2(µ), it holds that

[U,V] ([V,V])−1 [U,V]∗ ≤ [U,U] (3.1.32)

where [U,V] is matrix defined by ([U,V])i , j =< ui ,v j >. Using (3.1.32) for U(λ) = I
λ−z and V = I, and re-

marking that |λ− z|2 ≥ |Im(z)|2 for each λ, we obtain immediately (3.1.30).

Proposition (3.1.3) can also be extended as follows:

Property 3.1.5. If a square matrix valued function m(z) verifies the following conditions

1. m(z) is holomorphic on C+

2. z ∈C+ implies Im(m(z)) > 0

3. limsupy→+∞ |i y Tr(m(i y))| <∞
then m(z) is the Stieltjes transform of a uniquely defined positive matrix valued measure µ. If moreover
Im(zm(z)) > 0 when z ∈C+, then µ is carried by R+.

Definition 2. In the following, we will denote by SP(R+) the set of all Stieltjes transforms of positive CP×P-
valued measures µ carried by R+ and satisfying µ(R+) = IP.

We will often use the following consequence of Montel’s theorem ([64]).

Proposition 3.1.5. If ( fn(z))n∈N and (gn(z))n∈N are Stieltjes transforms of positive measures (µn)n∈N and
(νn)n∈N carried by R+ and satisfying supnµn(R+) ≤ κ and supn νn(R+) ≤ κ, and if fn(z)− gn(z) → 0 in a
certain domain D of C+, then, fn − gn converges towards 0 uniformly on each compact subset of C\R+.
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Proof. For each compact subset K ∈ S1(R+), (3.1.24) implies that | fn(z)− gn(z)| ≤ 2κ
dist(K ,R+) for each

z ∈ K . Therefore, ( fn − gn)n∈N is a normal family on C \R+. Each convergent subsequence extracted
from ( fn − gn)n∈N thus converges uniformly on each compact subset of C \R+ towards a function h(z)
which is analytic on C \R+. As fn(z)− gn(z) converges towards 0 for each z ∈ D, then h(z) = 0 for each
z ∈D. As h is analytic on C\R+, h must be zero on C\R+. This shows that the limits of each convergent
subsequence extracted from ( fn − gn)n∈N are zero, thus showing that the whole sequence ( fn − gn)n∈N
converges uniformly towards 0 on each compact subset of C\R+.

If A is a P×P matrix, we recall that the resolvent of AA∗ is defined as the matrix valued function

Q(z) = (
AA∗− zI

)−1 (3.1.33)

If AA∗ = ∑P
k=1λk uk u∗

k is the eigenvalue / eigenvector decomposition of AA∗, then, Q coincides with the
Stieltjes transform of the positive matrix-valued measure carried by R+ µ defined by

µ=
P∑

k=1
δλk uk u∗

k

where δλk represents the Dirac distribution at point λk . As µ(R) = I, Q verifies properties (3.1.29, 3.1.30,
3.1.31). We also recall that 1

P Tr(Q(z)) is the Stieltjes transform of the empirical eigenvalue distribution of
AA∗. We finally mention that Q(z) satisfies the equation

Q(z) =− IP

z
+ 1

z
Q(z)AA∗ (3.1.34)

3.2 Random variables notations and tools.

If x is a complex-valued random variable, the variance of x, denoted by Var(x), is defined by

Var(x) = E(|x|2)−|E(x)|2

The zero-mean random variable x −E(x) is denoted by x◦. x is said to be Nc (α,σ2) (complex circular)
distributed if E(x) = α and if Re(x) and Im(x) are independent real Gaussian variables of variance σ2/2.
Multivariable complex circular distribution is denoted Nc (α,Γ) in the following.

We now present the 2 fundamental tools that are used in the following.

Proposition 3.2.1. Integration by parts formula. Let ξ = [ξ1, . . . ,ξK]T be a Nc (0,Ω) distributed complex
Gaussian random vector. If Γ : (ξ) 7→ Γ(ξ,ξ) is a C 1 complex valued function polynomially bounded to-
gether with its derivatives, then

E[ξpΓ(ξ)] =
K∑

m=1
ΩpmE

[
∂Γ(ξ)

∂ξm

]
. (3.2.1)

Proposition 3.2.2. Poincaré-Nash inequality. Let ξ = [ξ1, . . . ,ξK]T be a Nc (0,Ω) distributed complex
Gaussian random vector. If Γ : (ξ) 7→ Γ(ξ,ξ) is a C 1 complex valued function polynomially bounded to-
gether with its derivatives, then, noting ∇ξΓ= [ ∂Γ∂ξ1

, . . . , ∂Γ∂ξK
]T and ∇

ξ
Γ= [ ∂Γ

∂ξ1
, . . . , ∂Γ

∂ξK
]T,

Var(Γ(ξ)) ≤ E
[
∇ξΓ(ξ)T Ω ∇ξΓ(ξ)

]
+E

[
∇
ξ
Γ(ξ)∗ Ω ∇

ξ
Γ(ξ)

]
(3.2.2)
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3.3 Overview of the results of Chapter.

We are now in position to present the results of this chapter, and first introduce the random matrix model
under study.

We consider independent identically distributed Nc (0,σ2/N) random variables (wm,n)m=1,...,M,n=1,...,N+L−1

where M,N,L are integers. We define the L×N matrices (W(m)
N )m=1,...,M as the Hankel matrices whose en-

tries are given by (
W(m)

N

)
i , j

= wm,i+ j−1, 1 ≤ i ≤ L,1 ≤ j ≤ N (3.3.1)

and WN represents the ML×N matrix

WN =


W(1)

N
W(2)

N
...

W(M)
N

 (3.3.2)

In this Chapter, we study the complex Gaussian block-Hankel information plus noise ML×N random
matrix model defined by :

YN = AN +WN (3.3.3)

where

• matrix AN is deterministic and satisfies supN ‖AN‖ <∞,

• matrix WN is defined as in (3.3.2).

in the asymptotic regime:

Assumption A-1: M →+∞,N →+∞ in such a way that cN = ML
N → c, where 0 < c <+∞

In order to avoid technicalities, we however consider the following regime which is nearly equivalent
to Assumption A-1

Assumption A-2: N →+∞, cN = ML
N → c, where 0 < c <+∞, L =O (Nα) for α< 1.

To shorten the notations, N → +∞ should be understood as the asymptotic regime defined by As-
sumption A-2.

Model (3.3.3) is a generalization of the normalized random matrix models ΣN = BN +WN considered
in Chapter 2 in which the rank of deterministic matrix BN does not scale with N. In this Chapter, we
study the behaviour of the resolvents QN(z) = (

YNY∗
N − zI

)−1 and Q̃N(z) = (
Y∗

NYN − zI
)−1, and show that

they behave as deterministic matrices TN(z) and T̃N(z), called the deterministic equivalents of QN(z) and
Q̃N(z), which are defined as the solutions of the following system of equations:TN(z) =

[
−z

(
IML +σ2IM ⊗TL,L(T̃T

N(z))
) +AN

(
IN +σ2cNT (M)

N,L (TT
N(z))

)−1
A∗

N

]−1

T̃N(z) =
[
−z

(
IN +σ2cNT (M)

N,L (TT
N(z))

)
+A∗

N

(
IML +σ2IM ⊗TL,L(T̃T

N(z))
)−1

AN

]−1
(3.3.4)

TN(z) and T̃N(z) are the Stieltjes transforms of matrix valued measures whose masses are equal to IML

and IN respectively, and 1
ML Tr(TN(z)) is the Stieltjes transform of a probability measure denoted µN. We

establish that if BN and B̃N are uniformly bounded ML×ML and N×N matrices, then, under Assumption
A-2, it holds that

1

ML
Tr[(QN(z)−TN(z))BN] → 0, a.s.

1

N
Tr

[(
Q̃N(z)− T̃N(z)

)
B̃N

]→ 0, a.s.
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If moreover α < 2/3, a condition nearly equivalent to L
M2 → 0, then, we prove that bounded bilinear

forms of (QN(z)−TN(z)) and
(
Q̃N(z)− T̃N(z)

)
also converge towards 0 almost surely. These results imply

that the empirical eigenvalue distribution of YNY∗
N has the same behaviour that µN. The deterministic

behaviour of the bilinear forms of QN(z) and Q̃N(z) can be of interest to study eigenvectors of YNY∗
N pro-

vided informations on the location of the eigenvalues can be collected: evaluation of the support of µN

and derivation of results showing that no eigenvalue of YNY∗
N can belong to intervals that are outside the

support of µN for each N large enough. However, we have not been able to obtain the corresponding re-
sults. In particular, the equation (3.3.4) looks complicated, and this makes the analysis of the support of
µN very difficult. As for the derivation of almost sure location of the eigenvalues of YNY∗

N, the most direct
approach would be to generalize the Haagerup-Thornbjornsen-Schultz approach ([35], [67]) used in [49]
in the case AN = 0. The method consists in expanding of E

( 1
ML Tr(QN(z))

)
up to the required order, and to

check that the various coefficients are Stieltjes transforms of distributions whose support are included
into the support ofµN. Even if AN = 0 (µN is the Marcenko-Pastur distribution of parameters (cN,σ2)), the
calculations are very complicated, and we have chosen to address different topics. However, the study of
the behaviour of the bilinear forms of QN(z) and Q̃N(z) are used in Chapter 4 in order to generalize the
results of section 2.4 to the case where P and L scale with N.

In order to study the asymptotic behaviour of QN(z) and Q̃N(z), we use the integration by parts for-
mula and the Poincaré-Nash inequality. We first establish that the variance of the various functionals
converge towards 0, and evaluate E(QN(z)) and E(Q̃N(z)) using the integration by parts formula. This al-
lows to establish that E(QN(z)) and E(Q̃N(z)) have the same behaviour than deterministic matrix valued
Stieltjes transforms RN(z) and R̃N(z) satisfying a perturbed version of equation (3.3.4). We then establish
the convergence towards 0 of the normalized traces and of the bilinear forms of E(QN(z))−TN(z) and
of E(Q̃N(z))− T̃N(z). Generally speaking, we evaluate the above terms for z ∈ C+ because this allows to
simplify the notations. A number of upper bounds are products of polynomials of |z| and of 1

Im(z) that
do not depend on the dimensions L,M,N (such polynomials are called nice polynomials in the follow-
ing). However, the above evaluations can be extended for z ∈ C−R+ by replacing Im(z) by the distance
between z and R+.

This chapter is organized as follows. In section 3.4, we evaluate the variances of various useful func-
tionals of QN(z) and Q̃N(z). In sections 3.5 and 3.6, we use the integration by parts formula and the
Poincaré-Nash inequality to establish that E(QN(z)) and E(Q̃N(z)) are close from the above mentioned
matrix-valued functions RN(z) and R̃N(z). The rate of convergence of various functionals is in particu-
lar evaluated. In section 3.7, we show that equation (3.3.4) has a unique solution in the relevant class
of matrix-valued functions, and in sections 3.8, 3.9, we prove that the normalized traces and bilinear
forms of E(QN(z))−TN(z) and of E(Q̃N(z))−T̃N(z) converge towards 0. Note that in contrast with the case
AN = 0 studied in [49], due to the lack of time, we have not been able to evaluate the corresponding rate
of convergence. This issue will be addressed in the next future.

3.4 Poincaré-Nash variance evaluations

In this section, we take benefit of the Poincaré-Nash inequality to evaluate the variance of certain impor-
tant terms. In particular, we prove the following useful result.

Proposition 3.4.1. Let B be a deterministic ML×ML matrix for which supN ‖B‖ ≤ κ, and consider 2 ML–
dimensional deterministic vectors b1,b2 such that supN ‖bi‖ ≤ κ for i = 1,2 as well as 2 L–dimensional
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deterministic vectors u1,u2 such that supN ‖ui‖ ≤ κ for i = 1,2. Then, for each z ∈C+, it holds that

Var

(
1

ML
Tr(BQ(z))

)
≤ C(z)κ2 1

MN
(3.4.1)

Var
(
b∗

1 Q(z)b2
)≤ C(z)κ4 L

N
(3.4.2)

Var

(
u∗

1

[
1

M

M∑
m=1

(Q(z))m,m

]
u2

)
≤ C(z)κ4 L

MN
(3.4.3)

where C(z) can be written as C(z) = P1(|z|)P2

(
1

Im(z)

)
for some nice polynomials P1 and P2. Moreover, if G is

a N×N deterministic matrix verifying supN ‖G‖ ≤ κ, the following evaluations hold:

Var

(
1

ML
Tr

(
BQ(z)YGY∗))≤ C(z)κ4 1

MN
(3.4.4)

Var
(
b∗

1 Q(z)YGY∗b2
)≤ C(z)κ6 L

N
(3.4.5)

Var

(
u∗

1

[
1

M

M∑
m=1

(
Q(z)YGY∗)m,m

]
u2

)
≤ C(z)κ6 L

MN
(3.4.6)

where C(z) can be written as above. Moreover, if B̃ is a ML×N deterministic matrix verifying supN ‖B̃‖ ≤ κ,
the following evaluations hold :

Var

(
1

ML
Tr

(
Q(z)B̃Y∗))≤ C(z)κ2 1

MN
(3.4.7)

Var
(
b∗

1 Q(z)B̃Y∗b2
)≤ C(z)κ6 L

N
(3.4.8)

Var

(
u∗

1

[
1

M

M∑
m=1

(
Q(z)B̃Y∗)m,m

]
u2

)
≤ C(z)κ6 L

MN
(3.4.9)

Proof. We first establish (3.4.1) and denote by ξ the random variable ξ= 1
ML Tr(BQ(z)). As the various

entries of 2 different blocks Wm1 ,Wm2 are independent, the Poincaré-Nash inequality can be written as

Varξ ≤ ∑
m,i1,i2, j1, j2

E

[(
∂ξ

∂W
m
i1, j1

)∗
E
(
Wm

i1, j1
W

m
i2, j2

) ∂ξ

∂W
m
i2, j2

]
+ (3.4.10)

∑
m,i1,i2, j1, j2

E

[
∂ξ

∂Wm
i1, j1

E
(
Wm

i1, j1
W

m
i2, j2

)(
∂ξ

∂Wm
i2, j2

)∗]
(3.4.11)

In the following, we just evaluate the right hand side of (3.4.10), denoted by α, because the behaviour of
the term defined by (3.4.11) can be established similarly. It is easy to check that

∂Q

∂W
m
i , j

=−QYe j (fm
i )TQ

so that
∂ξ

∂W
m
i , j

=− 1

ML
Tr

(
BQYe j (fm

i )TQ
)

which can also be written − 1
ML (fm

i )TQBQYe j . We recall that E
(
Wm

i1, j1
W

m
i2, j2

)
= σ2

N δ(i1 − i2 = j2 − j1) (see

(2.2.5)). Therefore, α is equal to the mathematical expectation of the term

1

(ML)2

σ2

N

∑
m,i1,i2, j1, j2

δ( j2 − j1 = i1 − i2)eT
j1

Y∗Q∗B∗Q∗fm
i1

(fm
i2

)TQBQYe j2
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We put u = i1 − i2 and remark that
∑

m,i1−i2=u fm
i1

(fm
i2

)T = IM ⊗ J∗u
L . We thus obtain that

α= 1

(ML)2

σ2

N
E

[
L−1∑

u=−(L−1)

∑
j2− j1=u

eT
j1

Y∗Q∗B∗Q∗(IM ⊗ J∗u
L )QBQYe j2

]

Using that
∑

j2− j1=u e j2 eT
j1
= J∗u

N , we get that

α= 1

ML

σ2

N
E

[
L−1∑

u=−(L−1)

1

ML
Tr

(
QBQYJ∗u

N Y∗Q∗B∗Q∗(IM ⊗ J∗u
L )

)]

If C is a ML×N matrix, the Schwartz inequality as well as the inequality (x y)1/2 ≤ 1/2(x + y) lead to∣∣∣∣ 1

ML
Tr

(
CJ∗u

N C∗(IM ⊗ J∗u
L )

)∣∣∣∣≤ 1

2ML
Tr

(
CJ∗u

N Ju
NC∗)+ 1

2ML
Tr

(
C∗(IM ⊗ J∗u

L Ju
L )C

)
It is clear that matrices J∗u

N Ju
N and J∗u

L Ju
L are less than IN and IL respectively. Therefore,∣∣∣∣ 1

ML
Tr

(
CJ∗u

N C∗(IM ⊗ J∗u
L )

)∣∣∣∣≤ 1

ML
Tr

(
CC∗)

(3.4.12)

Using (3.4.12) for C = QBQY for each u leads to

α≤ σ2

MN
E

[
1

ML
Tr

(
QBQYY∗Q∗B∗Q∗)]

The resolvent identity (3.1.34) can also be written as QYY∗ = I+ zQ. This implies that the greatest eigen-
value of QYY∗Q∗ coincides with the greatest eigenvalue of (I + zQ)Q∗ which is itself less than ‖Q‖ +
|z|‖Q‖2. As ‖Q‖ ≤ 1

Imz , we obtain that

QYY∗Q∗ ≤ 1

Imz

(
1+ |z|

Imz

)
I. (3.4.13)

Therefore, it holds that

α≤ 1

Imz

(
1+ |z|

Imz

)
1

MN
E

[
1

ML
Tr

(
QBB∗Q∗)]

(3.4.14)

We eventually obtain that α≤ C(z)κ2 1
MN where C(z) is defined by

C(z) = 1

(Imz)3

(
1+ |z|

Imz

)
The conclusion follows from the observation that C(z) verifies

C(z) ≤
[

1

(Imz)3 + 1

(Imz)4

]
(|z|+1)

In order to prove (3.4.2) and (3.4.3), we remark that

b∗
1 Q b2 = ML

1

ML
Tr

(
Qb2b∗

1

)
u∗

1

[
1

M

M∑
m=1

(Q(z))m,m

]
u2 = L

1

ML
Tr

(
Q(IM ⊗u2u∗

1 )
)
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(3.4.2) and (3.4.3) follow immediately from this and inequality (3.4.14) used in the case B = b2b∗
1 and

B = IM ⊗u2u∗
1 respectively.

We provide a sketch of proof of (3.4.4), and omit the proof of (3.4.6) and (3.4.5) which can be obtained
as above. We still denote by ξ the random variable ξ= 1

ML Tr(Q(z)YGY∗), and only evaluate the behaviour
of the right hand side α of (3.4.10) denoted α. After easy calculations, we obtain that

α ≤ 2σ2

MN
E

[
1

ML
Tr

(
QYGY∗BQYY∗Q∗B∗YG∗Y∗Q∗)]+ (3.4.15)

2σ2

MN
E

[
1

ML
Tr

(
G∗Y∗Q∗B∗BQYG

)]
(3.4.16)

The term defined by (3.4.16) is easy to handle because Q∗B∗BQ ≤ κ2

(Im(z))2 I. Therefore, (3.4.16) is less than
2σ2κ2

(Im(z))2
1

MN E
[ 1

MN Tr(YGG∗Y∗)
]

which is itself lower bounded by 1
MN

2σ2κ4

(Im(z))2 . To evaluate the righthandside

of (3.4.15), we use (3.4.13) twice, and obtain immediately that is less than C(z)κ4

MN .

We finally provide a sketch of proof of (3.4.7). We still denote by ξ the random variable ξ= 1
ML Tr

(
Q(z)B̃Y∗)

,
and only evaluate the behaviour of the right hand side α of (3.4.10) still denoted α. We obtain that

α ≤ 2σ2

MN
E

[
1

ML
Tr

(
QYY∗Q∗YB̃∗B̃Y∗)]+ (3.4.17)

2σ2

MN
E

[
1

ML
Tr

(
QB̃B̃∗Q∗)

)]
(3.4.18)

For the same reasons that above, we obtain immediately that the term α is O ( 1
MN ) term. We omit the

proof of (3.4.8) and (3.4.9), which can be obtained similarly.

Remark 8. The above Poincaré-Nash evaluations imply that under Assumption A-2, all the functionals
considered in Proposition 3.4.1 have almost surely the same asymptotic behaviour than their mathemati-
cal expectation. We just briefly justify that

1

ML
Tr(BQ(z))−E

[
1

ML
Tr(BQ(z))

]
→ 0, a.s. (3.4.19)

and
b∗

1 Q(z)b2 −E
(
b∗

1 Q(z)b2
)→ 0, a.s. (3.4.20)

We denote by χ1 the term defined by (3.4.19). Then, (3.4.1) leads to E(|χ1|2) = O ( 1
N2−α ), which, using the

Markov inequality and the Borel-Cantelli lemma implies that χ1 converges towards 0 almost surely. We
denote by χ2 the term defined by (3.4.20). This time, E(|χ2|2) = O ( 1

M ) = O ( 1
N1−α ), which does not allow to

conclude that χ2 → 0. However, using the same approach as in the proof of (2.2.6), it is possible to establish

that E(|χ2|2k ) =O
(

1
Mk )

)
=O

(
1

Nk(1−α) )
)

for each integer k. Choosing k in such a way that k(1−α) > 1 leads to

χ2 → 0 almost surely.

This discussion shows that in order to evaluate the asymptotic behaviour of terms such as 1
ML Tr(BQ(z)),

b∗
1 Q(z)b2, or b∗

1 Q(z)B̃Y∗b2, it is sufficient to evaluate the behaviour of their mathematical expectation.
This is the purpose of the next sections.

�
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3.5 Expression of matrices E(Q) and E(Q̃) obtained using the integration by
parts formula

In this section, we use the integration by parts formula in order to express E (Q(z)) ,E(Q̃(z)) as terms
which will appear to be close from T(z), T̃(z) where we recall that T(z), T̃(z) represent the solutions of
the equation (3.3.4). For this, we have first to introduce useful matrix valued functions of the complex
variable z and to study their properties.

Lemma 3.5.1. For each z ∈ C+, matrices IN +σ2cNT (M)
N,L (E(Q(z))) and IML +σ2IM ⊗TL,L(E(Q̃(z))) are in-

vertible. We denote by H(z) and H̃(z) their inverses, i.e.H(z) =
[

IN +σ2cNT (M)
N,L (E(Q(z)))

]−1

H̃(z) = [
IML +σ2IM ⊗TL,L(E(Q̃))

]−1
(3.5.1)

Then, functions z → H(z) and z → H̃(z) are holomorphic in C+ and verifyH(z)H(z)∗ ≤
( |z|

Imz

)2
IN

H̃(z)H̃(z)∗ ≤
( |z|

Imz

)2
IML

(3.5.2)

Similarly, for each z ∈C+, these following matricesR(z) = [−z
(
IML +σ2IM ⊗TL,L (E(Q̃T))

)+AHTA∗]−1

R̃(z) =
[
−z

(
IN +σ2cNT (M)

N,L (E(QT))
)
+A∗H̃TA

]−1 (3.5.3)

are well-defined and functions z → R(z) and z → R̃(z) are holomorphic in C+. Moreover, it exists positive
matrix-valued measures µ and µ̃ carried by R+ satisfying µ(R+) = IML and µ̃(R+) = IN, and for which

R(z) =
∫
R+

dµ(λ)

λ− z
; R̃(z) =

∫
R+

d µ̃(λ)

λ− z

Therefore, it holds that {
R(z)R(z)∗ ≤ ( 1

Imz

)2
IML

R̃(z)R̃(z)∗ ≤ ( 1
Imz

)2
IN

(3.5.4)

Finally, H,H̃,R, R̃ are analytic on C\R+.

Proof. The proof is sketched in the appendix.

We introduce the main result of this section :

Proposition 3.5.1. The expectation of matrices Q and Q̃ can be expressed as{
E(Q) = R+Υ
E(Q̃) = R̃+ Υ̃ (3.5.5)

whereΥ and Υ̃ are terms which converge towards zero in a certain sense.
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Proof.
In order to be able the integration by parts formula, we use the identity (3.1.34) which implies that

E
[

Qm1,m2
i1,i2

]
=−1

z
δ(i1 − i2)δ(m1 −m2)+ 1

z
E
[(

QYY∗)m1,m2

i1,i2

]
(3.5.6)

We express (QYY∗)m1,m2
i1,i2

as

(
QYY∗)m1,m2

i1,i2
=

N∑
j=1

(
Qy j y∗j

)m1,m2

i1,i2

=
N∑

j=1

(
Qy j

)m1

i1
Y

m2

i2, j

where we recall that (y j ) j=1,...,N represent the columns of Y. In order to be able to evaluate E

[(
Qy j y∗j

)m1,m2

i1,i2

]
,

it is necessary to express E

[(
Qyk y∗j

)m1,m2

i1,i2

]
= E

[(
Qyk

)m1

i1

(
y∗j

)m2

i2

]
for each pair (k, j ). For this, we use the

identity

E

[(
Qyk

)m1

i1

(
y∗j

)m2

i2

]
= E

[
(Qwk )m1

i1

(
y∗j

)m2

i2

]
+E

[
(Qak )m1

i1

(
y∗j

)m2

i2

]
(3.5.7)

where (w j ) j=1,...,N and (a j ) j=1,...,N represent the columns of W and A, and use the integration by parts
formula to evaluate the 2 terms of the right-hand-side of (3.5.7). As for the first term :

E

[
(Qwk )m1

i1

(
y∗j

)m2

i2

]
= ∑

i3,m3

E
(
Qm1,m3

i1,i3
Wm3

i3,k Y
m2

i2, j

)
(3.5.8)

We apply the integration by parts

E
(
Qm1,m3

i1,i3
Wm3

i3,k Y
m2

i2, j

)
= ∑

i ′ , j ′
E
(
Wm3

i3,k W
m3

i ′ , j ′
)
E

∂
(
Qm1,m3

i1,i3
Y

m2

i2, j

)
∂W

m3

i ′ , j ′


It is easy to check that

∂
(
Qm1,m3

i1,i3
Y

m2

i2, j

)
∂W

m3

i ′ , j ′
= Qm1,m3

i1,i3
δ(m2 = m3)δ(i

′ = i2)δ( j = j
′
)−

(
Qy j ′

)m1

i1

Qm3,m3

i ′ ,i3
Y

m2

i2, j

(3.3.1) implies that E
(
Wm3

i3,k W
m3

i ′ , j ′
)
= σ2

N δ(i3 − i
′ = j

′ −k). Therefore, we obtain that

E
(
Qm1,m3

i1,i3
Wm3

i3,k Y
m2

i2, j

)
= σ2

N
δ(i3 − i2 = j −k)δ(m2 = m3)E

(
Qm1,m3

i1,i3

)
− σ2

N

∑
i ′ , j ′

δ(i3 − i
′ = j

′ −k)E

[(
Qy j ′

)m1

i1

(
y∗j

)m2

i2

Qm3,m3

i ′ ,i3

]

and that

∑
i3,m3

E
(
Qm1,m3

i1,i3
Wm3

i3,k Y
m2

i2, j

)
= σ2

N

∑
i3,m3

δ(i3 − i2 = j −k)δ(m2 = m3)E
(
Qm1,m3

i1,i3

)
(3.5.9)

− σ2

N

∑
i3,m3

∑
i ′ , j ′

δ(i3 − i
′ = j

′ −k)E

[(
Qy j ′

)m1

i1

(
y∗j

)m2

i2

Qm3,m3

i ′ ,i3

]
(3.5.10)

72



CHAPTER 3. COMPLEX GAUSSIAN INFORMATION PLUS NOISE MODELS: THE
DETERMINISTIC EQUIVALENTS

The term on the right-hand-side of (3.5.9) is reduced to :

σ2

N
E
(
Qm1,m2

i1,i2−(k− j )

)
11≤i2−(k− j )≤L (3.5.11)

As for the term of (3.5.10), we put i = i
′ − i3, and get that

−σ2cN

L−1∑
i=−(L−1)

11≤k−i≤NE

[(
Qyk−i

)m1

i1

(
y∗j

)m2

i2

1

ML

∑
i ′−i3=i

∑
m3

Qm3,m3

i ′ ,i3

]
(3.5.12)

Using the definition (3.1.3), (3.5.12) is equal to

−σ2cN

L−1∑
i=−(L−1)

11≤k−i≤NE

[
τ(M)(Q)(i )

(
Qyk−i

)m1

i1

(
y∗j

)m2

i2

]
(3.5.13)

Plugging ((3.5.11),(3.5.13)) into ((3.5.9),(3.5.10)) and using (3.5.8), we obtain that

E

[
(Qwk )m1

i1

(
y∗j

)m2

i2

]
= σ2

N
E
(
Qm1,m2

i1,i2−(k− j )

)
11≤i2−(k− j )≤L

−σ2cN

L−1∑
i=−(L−1)

11≤k−i≤NE

[
τ(M)(Q)(i )

(
Qyk−i

)m1

i1

(
y∗j

)m2

i2

] (3.5.14)

Setting u = k − i , the second term of the right-hand-side of (3.5.14) can be written as

−σ2cNE

[
N∑

u=1
τ(M)(Q)(k −u)1−(L−1)≤k−u≤L−1

(
Qyu

)m1

i1

(
y∗j

)m2

i2

]

or, using the observation that τ(M)(Q)(k −u)1−(L−1)≤k−u≤L−1 =
(
T (M)

N,L (Q)
)

k,u
(see Eq. (3.1.5)), as

−σ2cN E

eT
k T (M)

N,L (Q)



(
Qy1

)m1

i1

(
y∗j

)m2

i2(
Qy2

)m1

i1

(
y∗j

)m2

i2
...(

QyN
)m1

i1

(
y∗j

)m2

i2




We express matrix Q as Q = E(Q)+Q◦ and define the following N×N matrices Xm1,m2

i1,i2
,Bm1,m2

i1,i2
,B◦m1,m2

i1,i2
,Um1,m2

i1,i2(
Xm1,m2

i1,i2

)
k, j

= E
[(

Qyk
)m1

i1

(
y∗j

)m2

i2

]
(3.5.15)(

Bm1,m2
i1,i2

)
k, j

= E
[

Qm1,m2

i1,i2−(k− j )11≤i2−(k− j )≤L

]
(3.5.16)(

B◦m1,m2
i1,i2

)
k, j

= Q◦m1,m2

i1,i2−(k− j )11≤i2−(k− j )≤L (3.5.17)

Um1,m2
i1,i2

=−σ2cNE

T (M)
N,L (Q◦)


(
Qy1

)m1

i1(
Qy2

)m1

i1
...(

QyN
)m1

i1


( (

y∗1
)m2

i2

(
y∗2

)m2

i2
. . .

(
y∗N

)m2

i2

)
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We notice that matrix 


(
Qy1

)m1

i1(
Qy2

)m1

i1
...(

QyN
)m1

i1


( (

y∗1
)m2

i2

(
y∗2

)m2

i2
. . .

(
y∗N

)m2

i2

)


can also be written as  yT
1 QT

...
yT

NQT

(
fm1

i1

)(
fm2

i2

)T (
y1, . . . ,yN

)
or as

YTQT
(
fm1

i1

)(
fm2

i2

)T
Y

Therefore,

Um1,m2
i1,i2

=−σ2cNE

[
T (M)

N,L (Q◦) YTQT
(
fm1

i1

)(
fm2

i2

)T
Y
]

(3.5.18)

It is useful to notice that matrix Bm1,m2
i1,i2

is a band Toeplitz matrix whose (k, l ) element is zero if |k − l | ≥ L.
It is clear that Eq. (3.5.14) is equivalent to

E

[
(Qwk )m1

i1

(
y∗j

)m2

i2

]
= σ2

N

(
Bm1,m2

i1,i2

)
k, j

− σ2cN

(
T (M)

N,L (E(Q))Xm1,m2
i1,i2

)
k, j

+
(
Um1,m2

i1,i2

)
k, j

(3.5.19)

Now we evaluate the second term of the right-hand-side of (3.5.7). It is clear that

E

[
(Qak )m1

i1

(
y∗j

)m2

i2

]
= E

[
(Qak )m1

i1

(
a∗

j

)m2

i2

]
+E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
(3.5.20)

We define N×N matrix Dm1,m2
i1,i2

as

(
Dm1,m2

i1,i2

)
k, j

= E
[

(Qak )m1
i1

(
a∗

j

)m2

i2

]
(3.5.21)

We can see easily that

E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
= ∑

i3,m3

E
(
Qm1,m3

i1,i3
Am3

i3,k W
m2

i2, j

)
(3.5.22)

Applying the integration by parts formula, we get that

E
(
Qm1,m3

i1,i3
Am3

i3,k W
m2

i2, j

)
= ∑

i ′ , j ′
E
(
W

m2

i2, j Wm2

i ′ , j ′

)
E

∂
(
Qm1,m3

i1,i3
Am3

i3,k

)
∂Wm2

i ′ , j ′


It is easy to check that

∂
(
Qm1,m3

i1,i3
Am3

i3,k

)
∂Wm2

i ′ , j ′
=−Qm1,m2

i1,i ′
eT

j ′
Y∗Qfm3

i3
Am3

i3,k

(3.3.1) implies that E
(
W

m2

i2, j Wm2

i ′ , j ′

)
= σ2

N δ(i2 − i
′ = j

′ − j ). Therefore

∑
m3,i3

E
(
Qm1,m3

i1,i3
Am3

i3,k W
m2

i2, j

)
=−σ

2

N

∑
i ′ , j ′

δ(i2 − i
′ = j

′ − j )E

[
Qm1,m2

i1,i ′
eT

j ′
Y∗Q

∑
m3,i3

fm3

i3
Am3

i3,k

]
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It is easy to check that
∑

m3,i3
Am3

i3,k fm3

i3
= ak = Aek , by (3.5.22), the last equation leads to

E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
=−σ

2

N

∑
i ′ , j ′

δ(i2 − i
′ = j

′ − j )E
[

Qm1,m2

i1,i ′
eT

j ′
Y∗QAek

]

We put i = i2 − i
′

in the above sum and get that

E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
= −σ

2

N

L−1∑
i=−(L−1)

11≤i2−i≤LE
[

Qm1,m2
i1,i2−i 11≤i+ j≤NeT

i+ j Y∗QAek

]
= −σ

2

N

L−1∑
i=−(L−1)

11≤i2−i≤LE
[

Qm1,m2
i1,i2−i 11≤i+ j≤N(Y∗QA)i+ j ,k

]
(3.5.23)

By decorrelating the term

E
[

Qm1,m2
i1,i2−i (Y∗QA)i+ j ,k

]
= E(Qm1,m2

i1,i2−i )E
[
(Y∗QA)i+ j ,k

]+E[
Q◦m1,m2

i1,i2−i (Y∗QA)i+ j ,k

]
We can see that it is necessary to calculate the expectation of matrix Y∗QA = W∗QA+A∗QA. For this, for
all 1 ≤ p, q ≤ N, we can easily see that

E
[
(W∗QA)p,q

]= ∑
m3,i3

E
[

(Qaq )m3

i3
(w∗

p )m3

i3

]
Using (3.5.23) when m1 = m2 = m3, i1 = i2 = i3, k = q and j = p, we get that

E
[

(Qaq )m3

i3
(w∗

p )m3

i3

]
=−σ

2

N

L−1∑
i=−(L−1)

E
[

Qm3,m3

i3,i3−i 11≤i3−i≤L(Y∗QA)i+p,q11≤p+i≤N

]
Therefore

E
[
(W∗QA)p,q

]=−σ2cN

L−1∑
i=−(L−1)

E

[
1

ML

∑
m3,i3

Qm3,m3

i3,i3−i 11≤i3−i≤L(Y∗QA)i+p,q11≤p+i≤N

]

As 1
ML

∑
m3,i3

Qm3,m3

i3,i3−i 11≤i3−i≤L = τ(M)(Q)(i ) (see Eq. (3.1.3) ), we obtain that

E
[
(W∗QA)p,q

]=−σ2cN

L−1∑
i=−(L−1)

E
[
τ(M)(Q)(i )(Y∗QA)i+p,q11≤p+i≤N

]
Setting r = p + i , the above equation can be written as

E
[
(W∗QA)p,q

]=−σ2cN

N∑
r=1

E
(
τ(M)(Q)(r −p)1−(L−1)≤r−p≤L−1(Y∗QA)r,q

)
Moreover, it holds that τ(M)(Q)(r − p)1−(L−1)≤r−p≤L−1 =

(
T (M)

N,L E(Q)
)

r,p
(see Eq. (3.1.5)), and using Q =

E(Q)+Q◦, we get

E
[
(W∗QA)p,q

]=−σ2cN

N∑
r=1

(
T (M)

N,L (E(Q))
)

r,p
E
(
(Y∗QA)r,q

)−σ2cN

N∑
r=1

E
(
(T (M)

N,L (Q◦))r,p (Y∗QA)r,q

)
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As a consequence, we obtain that

E
[
(W∗QA)p,q

]= −σ2cN

[
T (M)

N,L

(
E(QT)

)
E(Y∗QA)

]
p,q

−σ2cN

[
E
(
T (M)

N,L (Q◦T)Y∗QA
)]

p,q

= −σ2cN

[
T (M)

N,L

(
E(QT)

)(
E(W∗QA)+E(A∗QA)

)]
p,q

−σ2cN

[
E
(
T (M)

N,L (Q◦T)Y∗QA
)]

p,q

(3.5.24)

In order to evaluate matrix E(W∗QA), we express (3.5.24) as

[
IN +σ2cNT (M)

N,L

(
E(QT)

)]
E(W∗QA) =−σ2cNT (M)

N,L E(QT)E(A∗QA)− σ2cNE
(
T (M)

N,L (Q◦T)Y∗QA
)

(3.5.25)

Lemma 3.5.1 implies that matrix
[

IN +σ2cNT (M)
N,L (E(Q(z)))

]
is invertible for each z ∈ C+, and we recall

that its inverse is denoted by H(z). (3.5.25) leads to

E(W∗QA) =−σ2cNHTT (M)
N,L (E(QT))E(A∗QA)− σ2cNHTE

(
T (M)

N,L (Q◦T)Y∗QA
)

We recall that Y∗QA = W∗QA+A∗QA. Therefore, the above equation can be expressed as

E(Y∗QA) =
[

IN −σ2cNHTT (M)
N,L (E(QT))

]
E(A∗QA)−σ2cNHTE

(
T (M)

N,L (Q◦T)Y∗QA
)

Using that HT =
[

IN +σ2cNT (M)
N,L

(
E(QT)

)]−1
, we obtain immediately that IN −σ2cNHTT (M)

N,L (E(QT)) = HT.

Therefore

E(Y∗QA) = HTA∗E(Q)A−σ2cNHTE
(
T (M)

N,L (Q◦T)Y∗QA
)

(3.5.26)

Recalling (3.5.23) and setting r = i + j , we get

E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
=−σ

2

N

L−1∑
i=−(L−1)

11≤i2−i≤LE
[

Qm1,m2
i1,i2−i 11≤i+ j≤N(Y∗QA)i+ j ,k

]
= −σ

2

N

N∑
r=1

E
[

Qm1,m2
i1,i2−(r− j )11≤i2−(r− j )≤L(Y∗QA)r,k

]
= −σ

2

N

N∑
r=1

E(Qm1,m2
i1,i2−(r− j ))11≤i2−(r− j )≤LE(Y∗QA)r,k −

σ2

N

N∑
r=1

E
[

Q◦m1,m2
i1,i2−(r− j )11≤i2−(r− j )≤L(Y∗QA)r,k

]

We plug (3.5.26) into the expression of E(Y∗QA) in the above equation, we get

E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
=−σ

2

N

N∑
r=1

E
(
Qm1,m2

i1,i2−(r− j ))11≤i2−(r− j )≤L

)(
HTA∗E(Q)A−σ2cNHTE

(
T (M)

N,L (Q◦T)Y∗QA
))

r,k

−σ
2

N

N∑
r=1

E
[

Q◦m1,m2
i1,i2−(r− j )11≤i2−(r− j )≤L(Y∗QA)r,k

]
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Using the definitions of Bm1,m2
i1,i2

and B◦m1,m2
i1,i2

in ((3.5.16), (3.5.17)), we obtain that

E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
=−σ

2

N

N∑
r=1

(
Bm1,m2

i1,i2

)
r, j

(
HTA∗E(Q)A−σ2cNHTE

(
T (M)

N,L (Q◦T)Y∗QA
))

r,k

−σ
2

N

N∑
r=1

E
[

(B◦m1,m2
i1,i2

)r, j (Y∗QA)r,k

]
= −σ

2

N

(
(Bm1,m2

i1,i2
)THTA∗E(Q)A

)
j ,k

+ σ4

N
cN

(
(Bm1,m2

i1,i2
)THTE

(
T (M)

N,L (Q◦T)Y∗QA
))

j ,k

−σ
2

N
E
(
(B◦m1,m2

i1,i2
)TY∗QA

)
j ,k

= −σ
2

N

((
(Bm1,m2

i1,i2
)THTA∗E(Q)A

)T
)

k, j
+ σ4

N
cN

((
(Bm1,m2

i1,i2
)THTE

(
T (M)

N,L (Q◦T)Y∗QA
))T

)
k, j

−σ
2

N
E

((
(B◦m1,m2

i1,i2
)TY∗QA

)T
)

k, j
(3.5.27)

Finally, recall that

E

[(
Qyk

)m1

i1

(
y∗j

)m2

i2

]
= E

[
(Qwk )m1

i1

(
y∗j

)m2

i2

]
+E

[
(Qak )m1

i1

(
w∗

j

)m2

i2

]
+E

[
(Qak )m1

i1

(
a∗

j

)m2

i2

]
By (3.5.15), (3.5.19), (3.5.21) and (3.5.27), we can rewrite the above equation as(

Xm1,m2
i1,i2

)
k, j

= σ2

N

(
Bm1,m2

i1,i2

)
k, j

− σ2cN

(
T (M)

N,L (E(Q))Xm1,m2
i1,i2

)
k, j

+
(
Um1,m2

i1,i2

)
k, j

− σ2

N

((
(Bm1,m2

i1,i2
)THTA∗E(Q)A

)T
)

k, j
+ σ4

N
cN

((
(Bm1,m2

i1,i2
)THTE

(
T (M)

N,L (Q◦T)Y∗QA
))T

)
k, j

− σ2

N
E

((
(B◦m1,m2

i1,i2
)TY∗QA

)T
)

k, j
+

(
Dm1,m2

i1,i2

)
k, j

Therefore, we have[
IN +σ2cNT (M)

N,L (E(Q))
]

Xm1,m2
i1,i2

= σ2

N
Bm1,m2

i1,i2
+

(
Um1,m2

i1,i2

)
− σ2

N

(
(Bm1,m2

i1,i2
)THTA∗E(Q)A

)T

+ σ4

N
cN

(
(Bm1,m2

i1,i2
)THTE

(
T (M)

N,L (Q◦T)Y∗QA
))T − σ2

N
E
(
(B◦m1,m2

i1,i2
)TY∗QA

)T +Dm1,m2
i1,i2

Using that H =
[

IN +σ2cNT (M)
N,L (E(Q))

]−1
, matrix Xm1,m2

i1,i2
is equal to

Xm1,m2
i1,i2

= σ2

N
HBm1,m2

i1,i2
+ HUm1,m2

i1,i2
− σ2

N
H

(
(Bm1,m2

i1,i2
)THTA∗E(Q)A

)T

+ σ4

N
cNH

(
(Bm1,m2

i1,i2
)THTE

(
T (M)

N,L (Q◦T)Y∗QA
))T − σ2

N
H

(
E
(
(B◦m1,m2

i1,i2
)TY∗QA

))T + HDm1,m2
i1,i2

(3.5.28)

The term E (QYY∗)m1,m2
i1,i2

coincides with Tr
(
Xm1,m2

i1,i2

)
. Therefore, taking the trace of both side of (3.5.28),

we obtain

E
(
QYY∗)m1,m2

i1,i2
= σ2

N
Tr

(
H Bm1,m2

i1,i2

)
+ Tr

(
H Um1,m2

i1,i2

)
− σ2

N
Tr

(
(Bm1,m2

i1,i2
)THTA∗E(Q)AHT

)
+ σ4

N
cNTr

(
(Bm1,m2

i1,i2
)THTE

(
T (M)

N,L (Q◦T)Y∗QA
)

HT
)
− σ2

N
Tr

(
E
(
(B◦m1,m2

i1,i2
)TY∗QA

)
HT

)
+ Tr

(
HDm1,m2

i1,i2

)
(3.5.29)
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We can easily compute Tr
(
H Dm1,m2

i1,i2

)
, where we recall Dm1,m2

i1,i2
is defined by (3.5.21)

Tr
(
HDm1,m2

i1,i2

)
=

N∑
(k, j )=1

E
[

(Qak )m1
i1

(a∗
j )m2

i2
H j ,k

]
=

N∑
(k, j )=1

E
[

(QAek )m1
i1

HT
k, j (eT

j A∗)m2
i2

]
= E

(
QAHTA∗)m1,m2

i1,i2

As matrix Bm1,m2
i1,i2

is Toeplitz, it holds that (see Eq. (3.1.7))

1

N
Tr

(
H Bm1,m2

i1,i2

)
=

N−1∑
u=−(N−1)

τ(H)(u)E
(
Qm1,m2

i1,i2+u

)
11≤i2+u≤L

which also coincides with

1

N
Tr

(
H Bm1,m2

i1,i2

)
=

L−1∑
u=−(L−1)

τ(H)(u)E
(
Qm1,m2

i1,i2+u

)
11≤i2+u≤L

because 11≤i2+u≤L = 0 if |u| ≥ L. Setting v = i2 +u, this term can be written as

1

N
Tr

(
H Bm1,m2

i1,i2

)
=

L∑
v=1

E
(
Qm1,m2

i1,v

)
τ(H)(v − i2)

or, using definition (3.1.5), as

1

N
Tr

(
H Bm1,m2

i1,i2

)
=

L∑
v=1

E
(
Qm1,m2

i1,v

) (
TL,L(H)

)
v,i2

= (
E(Qm1,m2 )TL,L(H)

)
i1,i2

As the entry (i1, i2) of matrix E(Qm1,m2 )TL,L(H) coincides with
(
E(Q) IM ⊗TL,L(H)

)m1,m2

i1,i2
, it holds that

1

N
Tr

(
H Bm1,m2

i1,i2

)
= (
E(Q) IM ⊗TL,L(H)

)m1,m2

i1,i2

Computing in the same way we get the following relations

•
1

N
Tr

(
(Bm1,m2

i1,i2
)THTA∗E(Q)AHT

)
=(
E(Qm1,m2 )TL,L

(
HATE(QT)AH

))
i1,i2

=(
E(Q)

(
IM ⊗TL,L(HATE(QT)AH)

))m1,m2

i1,i2

•
1

N
Tr

(
(Bm1,m2

i1,i2
)THT E

(
T (M)

N,L (Q◦T)Y∗QA
)

HT
)
=

(
E(Qm1,m2 )TL,L

(
HE(ATQTYT (M)

N,L (Q◦))H
))

i1,i2

=
(
E(Q)

(
IM ⊗TL,L

(
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
)))m1,m2

i1,i2

•
1

N
Tr

(
E
(
(B◦m1,m2

i1,i2
)TY∗QA

)
HT

)
= E(

Q◦m1,m2TL,L(HATQTY)
)

i1,i2

= E(
Q◦ (

IM ⊗TL,L(HATQTY)
))m1,m2

i1,i2
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(3.5.18) implies that

Tr
(
H Um1,m2

i1,i2

)
=−σ2cNE

[
QY

(
T (M)

N,L (Q◦)
)T

HTY∗
]m1,m2

i1,i2

To simplify the notations, we define

∆=σ4cNE(Q)
(
IM ⊗TL,L

(
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
))
−σ2E

(
Q◦ (

IM ⊗TL,L(HATQTY)
) )

−σ2cNE
(
QY T (M)

N,L (Q◦T)HTY∗
)

(3.5.30)

Eq. (3.5.29) eventually leads to

E
(
QYY∗)= σ2E(Q)

(
IM ⊗TL,L(H)

)−σ2E(Q)
(
IM ⊗TL,L(HATE(QT)AH)

) +E(Q)AHTA∗ +∆ (3.5.31)

By (3.1.34), it holds that QYY∗ = IML + zQ. Therefore, we deduce from (3.5.31) that

E(Q)
[−zIML +AHTA∗]= IML + σ2E(Q)

[
IM ⊗TL,L

(−H + HATE(QT)AH
)] − ∆ (3.5.32)

We claim that

Lemma 3.5.2. The term −H + HATE(QT)AH is an approximation of zE(Q̃T) in a sense to be defined.

Proof. To prove lemma 3.5.2, we calculate the expectation of Q̃ = (Y∗Y− zIN)−1. For this we remark that
Y∗QY = Q̃Y∗Y = zQ̃ + I. The above calculate allow to compute E(Y∗QY). Indeed, for 1 ≤ j ,k ≤ N, we
express

E(Y∗QY) j ,k = ∑
m,i
E[(y∗j )m

i (Qyk )m
i ] = ∑

m,i
(Xm,m

i ,i )k, j (3.5.33)

Using the equation (3.5.28) when m1 = m2 = m and i1 = i2 = i , we can express Xm,m
i ,i

Xm,m
i ,i = σ2

N
HBm,m

i ,i + HUm,m
i ,i − σ2

N
H

(
(Bm,m

i ,i )THTA∗E(Q)A
)T

+ σ4

N
cNH

(
(Bm,m

i ,i )THTE
(
T (M)

N,L (Q◦T)Y∗QA
))T − σ2

N
H

(
E
(
(B◦m,m

i ,i )TY∗QA
))T + HDm,m

i ,i

Summing over m and i , we can notice that

•
1

ML

∑
m,i

(
Bm,m

i ,i

)
k, j

= 1

ML

∑
m,i
E
[

Qm,m
i ,i−(k− j )11≤i−(k− j )≤L

]
= τ(M)(E(Q))(k − j ) =

(
T (M)

N,L (E(Q))
)

k, j

•
1

ML

∑
m,i

(
B◦m,m

i ,i

)
k, j

= 1

ML

∑
m,i

[
Q◦m,m

i ,i−(k− j )11≤i−(k− j )≤L

]
= τ(M)(Q◦)(k − j ) =

(
T (M)

N,L (Q◦)
)

k, j

•
∑
m,i

(
Um,m

i ,i

)
k, j

=−σ2cN
∑
m,i

E
[
T (M)

N,L (Q◦) YTQT (
fm

i

)(
fm

i

)T Y
]

k, j
=−σ2cNE

[
T (M)

N,L (Q◦) YTQTY
]

k, j

•
∑
m,i

(
Dm,m

i ,i

)
k, j

= ∑
m,i
E
[

(Qak )m
i (a∗

j )m
i

]
= ∑

m,i
E
[

(a∗
j )m

i (Qak )m
i

]
= E[

A∗QA
]

j ,k = E[
ATQTA

]
k, j

So that we eventually get

∑
m,i

Xm,m
i ,i =σ2cNHT (M)

N,L (E(Q)) −σ2cNE
(
T (M)

N,L (Q◦) YTQTY
)
−σ2cNH

(
T (M)

N,L

(
E(QT)

)
HTA∗E(Q)A

)T

+σ4(cN)2H
(
T (M)

N,L

(
E(QT)

)
HTE

(
T (M)

N,L (Q◦T)Y∗QA
))T −σ2cNH

(
E
(
T (M)

N,L (Q◦T)Y∗QA
))T +HATE(QT)A
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By (3.5.33), we get

E(Y∗QY) j ,k =σ2cN

(
HT (M)

N,L (E(Q))
)

k, j
−σ2cN

[
HE

(
T (M)

N,L (Q◦)YTQTY
)]

k, j

−σ2cN

[
H

(
T (M)

N,L

(
E(QT)

)
HTA∗E(Q)A

)T
]

k, j
+σ4(cN)2

[
H

(
T (M)

N,L

(
E(QT)

)
HTE

(
T (M)

N,L (Q◦T)Y∗QA
))T

]
k, j

−σ2cN

[
H

(
E
(
T (M)

N,L (Q◦T)Y∗QA
))T

]
k, j

+ (
HATE(QT)A

)
k, j

So that we can obtain

E(Y∗QY) =σ2cNT (M)
N,L (E(QT))HT +A∗E(Q)AHT −σ2cN

(
T (M)

N,L

(
E(QT)

))
HTA∗E(Q)AHT

−σ2cNE
(
Y∗QYT (M)

N,L (Q◦T)
)

HT +σ4(cN)2
(
T (M)

N,L

(
(E(QT)

))
HTE

(
T (M)

N,L (Q◦T)Y∗QA
)

HT (3.5.34)

−σ2cNE
(
T (M)

N,L (Q◦T)Y∗QA
)

HT

To short the notations, we define

∆̃=−σ2cNE
(
Y∗QYT (M)

N,L (Q◦T)
)

HT +σ4(cN)2
(
T (M)

N,L

(
E(QT)

))
HTE

(
T (M)

N,L (Q◦T)Y∗QA
)

HT

−σ2cNE
(
T (M)

N,L (Q◦T)Y∗QA
)

HT (3.5.35)

Recalling that Y∗QY = Q̃Y∗Y = zQ̃+ I, (3.5.34) can be rewritten as

zE(Q̃) =−IN +σ2cN

(
T (M)

N,L (E(QT))
)

HT +A∗E(Q)AHT −σ2cNT (M)
N,L

(
E(QT)

)
HTA∗E(Q)AHT + ∆̃

which can be factorized into

zE(Q̃) =
[
−IN +σ2cNT (M)

N,L (E(QT))HT
][

IN −A∗E(Q)AHT]+ ∆̃
=

[
−(HT)−1 +σ2cNT (M)

N,L (E(QT))
]

HT [
IN −A∗E(Q)AHT]+ ∆̃

Using the definition of H =
(
IN +σ2cNT (M)

N,L (E(Q))
)−1

, zE(Q̃) is reduced to

zE(Q̃) =−HT [
IN −A∗E(Q)AHT]+ ∆̃

We obtain thus the relation

−H + HATE(QT)AH = zE(Q̃T)− ∆̃T
(3.5.36)

Equation (3.5.36) shows us that zE(Q̃T) can be approximated by −H + HATE(QT)AH since ∆̃ is an error
term with its normalized trace and bilinear form converge towards zero. This point will be proved in next
section 3.6.

We resume our previous calculations. Plugging (3.5.36) into (3.5.32), we get

E(Q)
[−zIML +AHTA∗]= IML + σ2E(Q)

[
IM ⊗TL,L(zE(Q̃T)− ∆̃T

)
]
− ∆

which leads to the equation

E(Q)
[−z

(
IML +σ2IM ⊗TL,L(E(Q̃T))

) + AHTA∗] = IML −σ2E(Q)(IM ⊗TL,L(∆̃
T

)) − ∆
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Lemma 3.5.1 implies that matrix
[−z

(
IML +σ2IM ⊗TL,L(E(Q̃T))

) + AHTA∗]
is invertible for each z ∈ C+,

and we recall that its inverse is denoted by R(z). We obtain that:

E(Q) = R −σ2E(Q)IM ⊗TL,L(∆̃
T

)R − ∆R

= R+Υ(∆,∆̃) (3.5.37)

with

Υ(∆,∆̃) =−σ2E(Q)IM ⊗TL,L(∆̃
T

)R − ∆R (3.5.38)

Now, plugging Eq. (3.5.37) into Eq. (3.5.36), we eventually get

E(Q̃) = 1

z

[−HT +HTA∗RAHT +HTA∗Υ(∆,∆̃)AHT + ∆̃]
(3.5.39)

By lemma 3.5.1, matrices

H̃ = [
IML + σ2IM ⊗TL,L

(
E(Q̃(z))

)]−1

and

R̃ =
[
−z

(
IN +σ2cNT (M)

N,L (E(QT))
)
+ A∗H̃TA

]−1

are well-defined for each z ∈C+. Moreover, we claim that

Lemma 3.5.3. The following equality holds

−HT +HTA∗RAHT = zR̃ (3.5.40)

Proof. We have that RAHT = H̃TAR̃ because it holds thatR(z) = [−z
(
IML +σ2IM ⊗TL,L (E(Q̃T))

)+AHTA∗]−1

R̃(z) =
[
−z

(
IN +σ2cNT (M)

N,L (E(QT))
)
+A∗H̃TA

]−1 ⇐⇒
{

R−1 =−z(H̃T)−1 +AHTA∗

R̃−1 =−z(HT)−1 +A∗H̃TA

which give us

{
IML =−zR(H̃T)−1 +RAHTA∗ (3.5.41)

IN =−z(H̃T)−1R̃+A∗H̃TAR̃ (3.5.42)

Multiplying (3.5.42) by RAHT, we get

RAHT =−zRAR̃+RAHTA∗H̃TAR̃

By (3.5.41), it is clear that RAHTA∗ = IML + zR(H̃T)−1. Plugging into the above equation we get

RAHT =−zRAR̃+ (IML + zR(H̃T)−1)H̃TAR̃ = HTAR̃

Thus we have

−HT +HTA∗RAHT = HT(−IN +A∗H̃TAR̃) = HT(−R̃−1 +A∗H̃TA)R̃ = HTz(HT)−1R̃ = zR̃

It finishes the proof of the lemma.
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As a consequence, we can rewrite (3.5.39) as

E(Q̃) = R̃+ 1

z

[
HTA∗Υ(∆,∆̃)AHT + ∆̃]

= R̃+ Υ̃(∆,∆̃) (3.5.43)

with

Υ̃(∆,∆̃) = 1

z

[
HTA∗Υ(∆,∆̃)AHT + ∆̃]

(3.5.44)

By (3.5.37) and (3.5.43), we finally get that{
E(Q) = R+Υ(∆,∆̃)

E(Q̃) = R̃+ Υ̃(∆,∆̃)

It completes the proposition 3.5.1. �

3.6 Preliminary controls of the error termsΥ,Υ̃

In this section, to short the notation, we will drop∆ and ∆̃ in the error termsΥ(∆,∆̃) and Υ̃(∆,∆̃), and just
denote by Υ and Υ̃. We evaluate the behaviour of various terms depending on Υ, i.e. normalized traces

1
ML TrΥB, quadratic forms b∗

1Υb2, quadratic forms of matrix Υ̂ = 1
M

∑M
m=1Υ

m,m . Using rough estimates
based on the results of section 3.4 and the Schwartz inequality, we establish that the normalized traces

are O ( L
MN ), and that two other terms are O (δN) where δN = sup

(
L

M2 ,
√

L
M3

)
. We first establish the following

proposition.

Proposition 3.6.1. Let B and B̃ be ML×ML and N×N matrices such that supN ‖B‖ ≤ κ and supN ‖B̃‖ ≤ κ.
Then, it holds that ∣∣∣∣ 1

ML
TrΥB

∣∣∣∣≤ C(z)
L

MN
κ (3.6.1)∣∣∣∣ 1

N
TrΥ̃B̃

∣∣∣∣≤ C(z)
L

MN
κ (3.6.2)

where C(z) can be written as C(z) = P1(|z|)P2
(
(Imz)−1

)
for some nice polynomials P1 and P2.

Proof. We only prove (3.6.1), (3.6.2) can be obtained similarly. We first express 1
ML TrΥB, for this we

recall that
Υ=−σ2E(Q)IM ⊗TL,L

(
∆̃

T
)

R−∆R

We get immediately that

1

ML
TrΥB =− σ2

ML
Tr

[
E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

RB
]
− 1

ML
Tr(∆RB)

We denote by γ1 the term − σ2

ML Tr
[
E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

RB
]

and by γ2 the term − 1
ML Tr(∆RB).

We first evaluate the term γ1. Using (3.1.10), we can see that

1

ML
Tr

[(
IM ⊗TL,L(∆̃

T
)
)

RBE(Q)
]
= 1

ML
Tr

[(
IM ⊗TL,L(∆̃

T
)
)

(RBE(Q))T
]

= 1

N
Tr

[
∆̃

(
T (M)

N,L (RBE(Q))
)T

]
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We recall the expression of ∆̃ :

∆̃=−σ2cNE
(
Y∗QY

(
T (M)

N,L (Q◦T)
))

HT +σ4(cN)2
(
T (M)

N,L (E(QT)
)

HTE
(
T (M)

N,L (Q◦T)Y∗QA
)

HT

−σ2cNE
(
T (M)

N,L (Q◦T)Y∗QA
)

HT

= ∆̃1 + ∆̃2 + ∆̃3

So that we have

γ1 =−σ
2

N
Tr

[
∆̃1

(
T (M)

N,L (RBE(Q))
)T

]
− σ2

N
Tr

[
∆̃2

(
T (M)

N,L (RBE(Q))
)T

]
− σ2

N
Tr

[
∆̃3

(
T (M)

N,L (RBE(Q))
)T

]
= γ1,1 +γ1,2 +γ1,3

We will prove that the term γ1,3 is a O ( L
MN ) quantity and omit to check γ1,1 and γ1,2. As we can see that

γ1,3 =σ2cNE

[
1

ML
Tr

(
T (M)

N,L (Q◦T)Y∗QAHT
(
T (M)

N,L (RBE(Q))
)T

)]
Using Eq. (3.1.9) and the identity τ(M)

(
(Q◦)T

)
(−u) = τ(M) (Q◦) (u), we get that

γ1,3 =σ2cNE

[
L−1∑

u=−(L−1)
τ(M)(Q◦)(u)

1

ML
Tr

(
QAHT

(
T (M)

N,L (RBE(Q))
)T

Ju
NY∗

)]

We can easily notice that
∥∥∥T (M)

N,L (RBE(Q))
∥∥∥ ≤ ‖R‖‖B‖‖E(Q)‖ ≤ κ

Im(z) , since ‖R‖ and ‖E(Q)‖ are upper-

bounded by 1
Im(z) and ‖B‖ ≤ κ.

Equations (3.4.1), (3.4.7) imply that E
∣∣τ(M)(Q◦)(−u)

∣∣2
and Var

(
1

ML Tr

(
QAHT

(
T (M)

N,L (RBE(Q))
)T

Ju
NY∗

))
are

upperbounded by C(z)
MN κ

2. The Cauchy-Schwartz inequality thus implies immediately thatγ1,3 ≤ C(z)κ L
MN .

We now evaluate the term γ2, recall the expression of∆

∆ = σ4cNE(Q)
(
IM ⊗TL,L

(
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
))
−σ2E

(
Q◦ (

IM ⊗TL,L(HATQTY)
) )

−σ2cNE
(
QY T (M)

N,L (Q◦T)HTY∗
)

= ∆1 +∆2 +∆3

So that we have,

γ2 =− 1

ML
Tr [(∆1 +∆2 +∆3)R B]

1
ML Tr [(∆2 +∆3)R B] can be evaluated in the same way than γ1,3. As for the term 1

ML Tr(∆1RB), by (3.1.10)
we notice that

1

ML
Tr

[
E(Q)

(
IM ⊗TL,L

(
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
))

R B
]
= 1

N
Tr

[
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
(
T (M)

N,L (RBE(Q))
)]

Expanding T (M)
N,L (Q◦) as

∑L−1
u=−(L−1)τ(Q◦)(u)Ju∗, and using the same arguments than previously, we obtain

that
∣∣ 1

ML Tr(∆1RB)
∣∣≤ C(z) L

MNκ. Therefore (3.6.1) holds.

Recall that Υ̃= 1
z

[
σ2HTA∗ΥAHT + ∆̃]

. Since ‖H‖ ≤ |z|
Im(z) and supN ‖A‖ <+∞, using the same arguments

than previously, we can easily get that ∣∣∣∣ 1

N
TrΥ̃B̃

∣∣∣∣≤ C(z)
L

MN
κ

We now evaluate the behaviour of quadratic forms of matricesΥ, Υ̂ and Υ̃
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Proposition 3.6.2. LetδN = sup
(

L2

MN ,
√

L
M3

)
. Let b1 and b2 2 ML–dimensional vectors such that supN ‖bi‖ ≤

κ for i = 1,2 . Then, it holds that
|b∗

1Υb2| ≤ κ2C(z)δN (3.6.3)

for each z ∈C+.
Let ci , i = 1,2 be 2 deterministic L–dimensional vectors such that supN ‖ci‖ ≤ κ. Then, it holds that∣∣∣∣∣c∗1

(
1

M

M∑
m=1

Υm,m

)
c2

∣∣∣∣∣≤ κ2C(z)δN (3.6.4)

for each z ∈C+.
Moreover, for b̃1 and b̃2 2 N–dimensional vectors such that supN ‖b̃i‖ ≤ κ for i = 1,2. Then, it holds that

|b̃∗
1 Υ̃b̃2| ≤ κ2C(z)δN (3.6.5)

for each z ∈C+. Where C(z) can be written as C(z) = P1(|z|)P2
(
(Imz)−1

)
for some nice polynomials P1 and

P2.

Proof. We recall that
Υ=−σ2E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

R−∆R

So that we can express

b∗
1Υb2 =−σ2b∗

1E(Q)
(
IM ⊗TL,L(∆̃

T
)
)

Rb2 −b∗
1∆Rb2

By equation (3.1.10), we can see that

b∗
1E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

Rb2 = Tr
((

IM ⊗TL,L(∆̃
T

)
)

Rb2b∗
1E(Q)

)
= ML

N
Tr

(
∆̃

T
T (M)

N,L (Rb2b∗
1E(Q))

)
= cN

L−1∑
u=−(L−1)

1

ML
Tr

(
∆̃

TJ∗u
N

)(
b∗

1E(Q)
(
IM ⊗ Ju

L

)
Rb2

)
We notice that

∣∣b∗
1E(Q)

(
IM ⊗ Ju

L

)
Rb2

∣∣≤ κ2

(Im(z))2 . By (3.6.1), we have that

∣∣∣b∗
1E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

Rb2

∣∣∣≤ κ2C(z)L
L

MN
= κ2C(z)

L2

MN

As for the term b∗
1∆Rb2, we recall that ∆ =∆1 +∆2 +∆3 (see Eq. (3.5.30) ). We will control these terms

separately, we have that

b∗
1∆2Rb2 = −σ2b∗

1E
(
Q◦ (

IM ⊗TL,L(HATQTY)
))

Rb2

= −σ2E
[
Tr

((
IM ⊗TL,L(HATQTY)

)
Rb2b∗

1 Q◦)]
= −σ2E

[
L−1∑

u=−(L−1)
τ(HATQTY)(u)Tr

(
(Q◦ (

IM ⊗ J∗u
L

)
Rb2b∗

1

)]

= −σ2E

[
L−1∑

u=−(L−1)
τ(HATQTY)(u)(b∗

1 Q◦ (
IM ⊗ J∗u

L

)
Rb2)

]

(3.4.2, 3.4.7) and the Schwartz inequality lead immediately to

|b∗
1∆2Rb2| ≤ κ2C(z)L

1p
MN

√
L

N
= κ2C(z)

√
L

M

L

N

84



CHAPTER 3. COMPLEX GAUSSIAN INFORMATION PLUS NOISE MODELS: THE
DETERMINISTIC EQUIVALENTS

Using the same tricks we can prove that the term b∗
1∆3Rb2 is upperbounded by κ2C(z)

√
L
M

L
N .

To evaluate the term b∗
1∆1Rb2, we can see that

b∗
1∆1Rb2 = σ4cNb∗

1E(Q)
(
IM ⊗TL,L

(
HE(ATQTYT (M)

N,L (Q◦))H
))

Rb2

= σ4cNE
[

Tr
((

IM ⊗TL,L

(
(HATQTYT (M)

N,L (Q◦)H
))

Rb2b∗
1E(Q)

)]
= σ4cNE

[
L−1∑

u=−(L−1)
τ(M)(Q◦)(u)Tr

((
IM ⊗TL,L

(
HATQTYJ∗u

N H
))

Rb2b∗
1E(Q)

)]

= σ4cNE

[
L−1∑

u=−(L−1)

L−1∑
l=−(L−1)

τ(M)(Q◦)(u)τ(HATQTYJ∗u
N H)(l )Tr((IM ⊗ J∗l

L )Rb2b∗
1E(Q))

]

= σ4cNE

[
L−1∑

u=−(L−1)

L−1∑
l=−(L−1)

τ(M)(Q◦)(u)τ(HATQTYJ∗u
N H)(l ) b∗

1

(
E(Q)(IM ⊗ J∗l

L )R
)

b2

]

As
∣∣b∗

1 (E(Q)(IM ⊗ J∗l
L )R)b2

∣∣≤ κ2

(Im(z))2 , (3.4.2, 3.4.7) and the Schwartz inequality lead immediately to

|b∗
1∆1Rb2| ≤ L2κ2 1p

MN

1p
MN

C(z) = κ2C(z)
L2

MN

As N has the same order of magnitude than ML, it holds that O
(

L2

MN

)
=O

( L
M2

)
and O

(√
L
M

L
N

)
=O

(√
L

M3

)
,

thus the convergence rate is sup
(

L2

MN ,
√

L
M3

)
. This establishes (3.6.3).

We now establish (3.6.4). Firstly, we remark that

c∗1

(
1

M

M∑
m=1

Υm,m

)
c2 = 1

M
Tr((IM ⊗c2c∗1 )Υ)

=−σ2 1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)IM ⊗TL,L

(
∆̃

T
)

R
)
− 1

M
Tr

(
(IM ⊗c2c∗1 )∆R

)
Since IM ⊗TL,L(∆̃

T
) = (

IM ⊗TL,L
(
∆̃

))T =
(∑L−1

l=−(L−1)τ(∆̃)(l )IM ⊗ J∗l
L

)T = ∑L−1
l=−(L−1)τ(∆̃)(l )IM ⊗ Jl

L, we can

rewrite the term

1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

R
)
= 1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)

L−1∑
l=−(L−1)

τ(∆̃)(l )IM ⊗ Jl
LR

)

=
L−1∑

l=−(L−1)
τ(∆̃)(l )

1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)

(
IM ⊗ Jl

L

)
R

)
=

L−1∑
l=−(L−1)

τ(∆̃)(l )
1

M

M∑
m=1

c∗1 (E(Q)(IM ⊗ J∗k
L )R)m,mc2

We can notice that ‖E(Q)(IM⊗J∗k
L )R‖ ≤ 1

(Im(z))2 . Since (E(Q)(IM⊗Jl
L)R)m,m is a sub-matrix of E(Q)(IM⊗Jl

L)R,

we can easily deduce that
∣∣c∗1 (E(Q)(IM ⊗ Jl

L)R)m,mc2
∣∣≤ κ2

(Im(z))2 . It yields immediately that∣∣∣∣∣ 1

M

M∑
m=1

c∗1 (E(Q)(IM ⊗ Jl
L)R)m,mc2

∣∣∣∣∣≤ κ2

(Im(z))2 (3.6.6)

(3.6.1) implies that τ(∆̃
T

)(l ) is an O
( L

MN

)
. The term 1

M Tr
(
(IM ⊗c2c∗1 )E(Q)

(
IM ⊗TL,L(∆̃

T
)
)

R
)

is thus up-

perbounded by κ2 L2

MN C(z).
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As for the term 1
M Tr

(
(IM ⊗c2c∗1 )∆R

)
, we recall that∆=∆1+∆2+∆3. We can express each term separately

like as the following

•
1

M
Tr

(
(I⊗c2c∗1 )∆1R

)=σ4cN
1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)IM ⊗TL,L

(
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
)

R
)

=σ4cN

L−1∑
k=−(L−1)

τ
(
HE

(
ATQTYT (M)

N,L (Q◦)
)

H
)

(k)
1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)(IM ⊗ J∗k

L )R
)

=σ4cN

L−1∑
k=−(L−1)

E

[
τ

(
H ATQTY

L−1∑
l=−(L−1)

τ(Q◦)(l )J∗l
N H

)
(k)

]
1

M
Tr

(
(IM ⊗c2c∗1 )E(Q)(IM ⊗ J∗k

L )R
)

=σ4cN

L−1∑
k,l=−(L−1)

E
[
τ(Q◦)(l )τ

(
H ATQTYJ∗l

N H
)

(k)
] 1

M

M∑
m=1

c∗1 (E(Q)(IM ⊗ J∗k
L )R)m,mc2

(3.4.1) and (3.4.7) imply that E |τ(Q◦)|2 and E
∣∣τ(

H ATQTYJ∗l
N H

)
(k)

∣∣2
are upperbounded by terms of the

form C(z) 1
MN . The Cauchy-Schwartz inequality thus implies immediately that∣∣∣∣ 1

M
Tr

(
(I⊗c2c∗1 )∆1R

)∣∣∣∣≤ κ2 L2

MN
C(z)

As for the second term

•
1

M
Tr

(
(I⊗c2c∗1 )∆2R

)=−σ2 1

M
Tr

(
(IM ⊗c2c∗1 )E(Q◦IM ⊗TL,L(HATQTY))R

)
= σ2

M
E

[
Tr

(
(IM ⊗c2c∗1 )Q◦ L−1∑

l=−(L−1)
τ(HATQTY)(l )(IM ⊗ J∗l

L )R

)]

= σ2

M

L−1∑
l=−(L−1)

E
[

Tr
(
(IM ⊗c2c∗1 )(Q◦(IM ⊗ J∗l

L )R)
)
τ(HATQTY)(l )

]
=σ2

L−1∑
l=−(L−1)

1

M

M∑
m=1

E
[(

(fm ⊗c1)∗(Q◦(IM ⊗ J∗l
L )R)(fm ⊗c2)

)
τ(HATQTY)(l )

]
((3.4.2),(3.4.1)) imply that E|(fm ⊗c1)∗(Q◦(IM ⊗ J∗l

L )R)(fm ⊗c2)|2 and E|τ(HATQTY)(l )|2 are upperbounded
by κ4C(z) L

N and C(z) 1
MN terms respectively. Hence, by Cauchy-Schwartz inequality, it holds that∣∣∣∣ 1

M
Tr

(
(I⊗c2c∗1 )∆1R

)∣∣∣∣≤ κ2L

√
L

N

√
1

MN
C(z) = κ2

√
L

M

L

N
C(z)

As for the third term

•
1

M
Tr

(
(I⊗c2c∗1 )∆3R

)=−σ2cN
1

M
Tr

(
(IM ⊗c2c∗1 )E(QYT (M)

N,L (Q◦T)HTY∗)R
)

=−σ2cN
1

M
E

[
Tr

(
(IM ⊗c2c∗1 )QY

L−1∑
l=−(L−1)

τ(Q◦)(l )Jl
NHTY∗R

)]

=−σ2cN

L−1∑
l=−(L−1)

1

M

M∑
m=1

E
[(

(fm ⊗c1)∗QYJl
NHTY∗R(fm ⊗c2)

)
τ(Q◦)(l )

]
Using ((3.4.1),(3.4.5) and the Schwartz inequality, we obtain that | 1

M Tr
(
(I⊗c2c∗1 )∆3R

) | is upperbounded

by κ2
√

L
M

L
N C(z) . Thus we can conclude (3.6.4).

Finally, we recall that Υ̃ = 1
z

[
σ2HTA∗ΥAHT + ∆̃]

. Using the same tricks as previously, it is easy to prove
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(3.6.5) �

Proposition 3.6.2 implies that the bilinear forms of Υ and Υ̃ converge towards 0 if δN → 0. As L2

MN =
O ( L

M2 ), it is clear that δN → 0 if and only if L
M2 → 0. As it is assumed that L = O (Nα) with α < 1, L

M2 → 0
holds if and only if the following assumption is verified:

Assumption A-3: L =O (Nα) with α< 2/3.

We finally remark that Proposition 3.6.2 implies the following stronger properties.

Corollary 3.6.1. Under Assumption A-3, it holds that

‖Υ‖ = ‖E(Q)−R‖ ≤ C(z) sup

(
L2

MN
,

√
L

M3

)
→ 0, (3.6.7)

‖Υ̃‖ = ‖E(Q̃)− R̃‖ ≤ C(z) sup

(
L2

MN
,

√
L

M3

)
→ 0. (3.6.8)

for each z ∈ C+ where C(z) can be written as C(z) = P1(|z|)P2
(
(Imz)−1

)
for some nice polynomials P1 and

P2. Moreover,

‖T (M)
N,L (E(Q)−R)‖ ≤ C(z)sup

(
L2

MN
,

√
L

M3

)
(3.6.9)

‖TL,L
(
E(Q̃)− R̃

)‖ ≤ C(z)sup

(
L2

MN
,

√
L

M3

)
(3.6.10)

Proof. As C(z) in (3.6.3) does not depend on L,M,N and on b1,b2, (3.6.3) implies that

sup
‖b1‖=1,‖b2‖=1

∣∣b∗
1Υb2

∣∣= ‖Υ‖ ≤ C(z)δN → 0

(3.6.8) holds for the same reason. (3.6.9) and (3.6.9) follow from Proposition 3.1.3.
�

3.7 The deterministic equivalents: existence and uniqueness

In this section, we prove the existence and uniqueness of the solution of the equation governing the
matrix-valued deterministic equivalents of Q(z) and Q̃(z).

Theorem 3.7.1. The deterministic system of equations :T(z) =
[
−z

(
IML +σ2IM ⊗TL,L(T̃T(z))

) +A
(
IN +σ2cNT (M)

N,L (TT(z))
)−1

A∗
]−1

T̃(z) =
[
−z

(
IN +σ2cNT (M)

N,L (TT(z))
)
+A∗ (

IML +σ2IM ⊗TL,L(T̃T(z))
)−1

A
]−1

(3.7.1)

admits a unique solution (T(z), T̃(z)) for which T ∈SML(R+) and T̃ ∈SN(R+), i.e.{
µ(R+) = IML , µ̃(R+) = IN

T(z) = ∫
R+

µ(dλ)
λ−z , T̃(z) = ∫

R+
µ̃(dλ)
λ−z

(3.7.2)

for z ∈C+.
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Remark 9. We recall that as T(z), T̃(z) belong to SML(R+) and SN(R+) respectively, they verify

T(z)T(z)∗ ≤ IML

(Im(z))2 ; T̃(z)T̃(z)∗ ≤ IN

(Im(z))2 (3.7.3)

for every z ∈C+ (see (3.1.30)).

Proof of Theorem 3.7.1. We will prove that the solution of (3.7.1) exists and is unique. For this let us
consider the following propositions :

Proposition 3.7.1 (Uniqueness of solution). Assume that there exist two solutions (T1(z), T̃1(z)) and (T2(z), T̃2(z))
of the system (3.7.1). Then it holds that (T1, T̃1) = (T2, T̃2).

Proof. Let us calculate T1(z)−T2(z) for z ∈C+ :

T1(z)−T2(z) = T1(z)(T−1
2 (z)−T−1

1 (z))T2(z)

Standard calculation gives us that

T1(z)−T2(z) = σ2zT1(z)IM ⊗TL,L(T̃T
1 (z)− T̃T

2 (z))T2(z)

+σ2cNT1(z)A
(
IN +σ2cNT (M)

N,L (TT
2 (z))

)−1
T (M)

N,L (TT
1 (z)−TT

2 (z))
(
IN +σ2cNT (M)

N,L (TT
1 (z))

)−1
A∗T2(z)

By (3.1.17), ‖IM ⊗TL,L(T̃T
1 (z)− T̃T

2 (z))‖ ≤ ‖T̃1(z)− T̃2(z)‖ and ‖T (M)
N,L (TT

1 (z)−TT
2 (z))‖ ≤ ‖T1(z)−T2(z)‖, so

that we get

‖T1(z)−T2(z)‖ ≤ σ2|z|‖T1(z)‖ ‖T2(z)‖ ‖T̃1(z)− T̃2(z)‖

+σ2cN‖A‖2 ‖T1(z)‖ ‖T2(z)‖
∥∥∥∥(

IN +σ2cNT (M)
N,L (T1(z))

)−1
∥∥∥∥∥∥∥∥(

IN +σ2cNT (M)
N,L (T2(z))

)−1
∥∥∥∥ ‖T1(z)−T2(z)‖

As (Ti (z), T̃i (z))i=1,2 satisfy (3.7.2), it holds that

‖Ti (z)‖ ≤ 1

Im(z)
(3.7.4)

Moreover, we can prove for i = 1,2 that

∥∥∥∥(
IN +σ2cNT (M)

N,L (Ti (z))
)−1

∥∥∥∥≤ |z|
Im(z) by noticing that−

(
IN+σ2cNT (M)

N,L (Ti (z))
)−1

z

is an element of SN(R+). We omit the proof which it is similar to the proof of lemma 3.5.1.
We introduce the following maxima :

M(z) = max{‖T1(z)−T2(z)‖,‖T̃1(z)− T̃2(z)‖} and cN = max(
ML

N
,

N

ML
)

Note that cN ≥ cN = ML
N and cN ≥ 1 and recall that supN ‖A‖ ≤ C < +∞ .We obtain thus the following

upperbound of ‖T1(z)−T2(z)‖

‖T1(z)−T2(z)‖ ≤ cN

(
σ2 |z|

Im(z)2 +σ2C2 |z|2
(Im(z))4

)
M(z) = ξ(z)M(z) (3.7.5)

where ξ(z) = cNσ
2|z|

Im(z)2

(
1 +C2 |z|

(Im(z))2

)
The same kind of calculation yields

T̃1(z)− T̃2(z) = σ2cNzT̃1(z)T (M)
N,L (T1(z)−T2(z))T̃2(z)

+σ2T̃1(z)A∗ (
IML +σ2IM ⊗TL,L(T̃T

2 (z))
)−1

IML ⊗TL,L(T̃T
1 (z)− T̃T

2 (z))
(
IML +σ2IML ⊗TL,L(T̃T

1 (z))
)−1

AT̃2(z)
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which gives us the inequality
‖T̃1(z)− T̃2(z)‖ ≤ ξ(z)M(z) (3.7.6)

Finally, gathering (3.7.5) and (3.7.6) we obtain

M(z) ≤ ξ(z)M(z) (3.7.7)

If z verifies | z
Im(z) | ≤ 2 and Im(z) large enough, one has ξ(z) ≤ 1

2 , which, by (3.7.7), implies that M(z) = 0,
i.e. that T1(z) = T2(z) and T̃1(z) = T̃2(z) for these values of z. The analyticity of (Ti , T̃i )i=1,2 implies that
T1 = T2 and T̃1 = T̃2 on C−R+. Proposition 3.7.1 is proved.

�

Proposition 3.7.2 (Existence of solutions). There exists (T, T̃) ∈ SML(R+)×SN(R+) , solution of equation
(3.7.1).

Proof. We construct the desired solution by induction. Let

T(0)(z) =− IML

z

T̃(0)(z) =− IN

z

It is clear that T(0)(z) and T̃(0)(z) satisfy (3.7.2). For p ≥ 0, let

T(p+1)(z) =
[
−z

(
IML +σ2IM ⊗TL,L((T̃(p)(z))T)

) +A
(
IN +σ2cNT (M)

N,L ((T(p)(z))T)
)−1

A∗
]−1

T̃(p+1)(z) =
[
−z

(
IN +σ2cNT (M)

N,L ((T(p)(z))T)
)
+A∗ (

IML +σ2IM ⊗TL,L((T̃(p)(z))T)
)−1

A
]−1

Using the same arguments as in the proof of lemma 3.5.1, we can check that for each p ≥ 0, T(p) and T̃(p)

belong to SML(R+) and SN(R+) respectively.
We denote by

M(p)(z) = max{‖T(p+1)(z)−T(p)(z)‖,‖T̃(p+1)(z)− T̃(p)(z)‖}

The same calculations as in the proof of Proposition 3.7.2 yield

M(p+1)(z) ≤ ξ(z)M(p)(z),

where ξ(z) = cNσ
2|z|

Im(z)2

(
1 +κ2 |z|

(Im(z))2

)
.

Let z ∈ C+ be such that |z|
Im(z) ≤ 2. For Im(z) large enough, T(p)(z) and T̃(p)(z) are Cauchy sequences of

matrices w.r.t to spectral norms on CML×ML and CN×N respectively. Denote by T(z) and T̃(z) their cor-
responding limits. Moreover, (T(p)(z))p is a normal family over C+, since each T(p)(z) satisfies (3.7.2),
its norm is upperbounded on every compact set included in C+ uniformly in p (see (3.7.3) ). Therefore
one can extract, by Montel’s theorem, converging subsequence whose limit is analytic over C+. Since the
limit of any converging subsequence is equal to T in the domain {z ∈ C+, |z|

Im(z) ≤ 2,Im(z) large enough},

T(p)(z) converges towards an analytic function on C+, so that T(z) is analytic. Similar arguments can be
applied to prove the analyticity of T̃(z).

We now prove that T(z) and T̃(z) satisfy (3.7.2). The convergence of T(p)(z) immediately yields that
Im(T(p)(z)) ≥ 0 =⇒ Im(T(z)) ≥ 0

Im(zT(p)(z)) ≥ 0 =⇒ Im(zT(z)) ≥ 0

T(p)(z)T(p)(z)∗ ≤ IML
(Im(z))2 =⇒ T(z)T(z)∗ ≤ IML

(Im(z))2

(3.7.8)
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on C+.
Finally, as T(p)(z) −−−−−→

p→+∞ T(z), T(z) is therefore written as

T(z) =
[
−z

(
IML +σ2IM ⊗TL,L(T̃T(z))

) +A
(
IN +σ2cNT (M)

N,L (TT(z))
)−1

A∗
]−1

It is easy to see that limy→+∞−i yT(i y) = IML, this and (3.7.8) prove that T(z) ∈ SML(R+). We can prove
similarly that T̃(z) verifies (3.7.2). Proposition 3.7.2 is proved.

�

3.8 Convergence towards the deterministic equivalents: the normalized traces

In the following, we establish that {
1

ML Tr(E(Q(z))−T(z)) → 0
1
N Tr(E(Q̃(z)− T̃(z)) → 0

(3.8.1)

for each z ∈C\R+, with T and T̃ are defined as in Theorem 3.7.1.
In the following, we thus prove (3.8.1). Proposition 3.6.1 implies that for uniformly bounded ML×ML

and N×N matrices B, B̃, it holds that

1

ML
Tr[(E(Q(z))−R(z))B] =O (

L

MN
)

1

N
Tr[(E(Q̃(z))− R̃(z))B̃] =O (

L

MN
)

(3.8.2)

for each z ∈C+. Recall thatR(z) = [−z
(
IML +σ2IM ⊗TL,L (E(Q̃T))

)+AHTA∗]−1

R̃(z) =
[
−z

(
IN +σ2cNT (M)

N,L (E(QT))
)
+A∗H̃TA

]−1

with H(z) =
[

IN +σ2cNT (M)
N,L (E(Q(z)))

]−1

H̃(z) = [
IML +σ2IM ⊗TL,L(E(Q̃))

]−1

and T(z) =
[
−z

(
IML +σ2IM ⊗TL,L(T̃T(z))

) +A
(
IN +σ2cNT (M)

N,L (TT(z))
)−1

A∗
]−1

T̃(z) =
[
−z

(
IN +σ2cNT (M)

N,L (TT(z))
)
+A∗ (

IML +σ2IM ⊗TL,L(T̃T(z))
)−1

A
]−1

We will establish that

1

ML
Tr[(R(z)−T(z))B] → 0

1

N
Tr[(R̃(z)− T̃(z))B̃] → 0

(3.8.3)

For this, we first mention that straightforward computations lead to

R−T = σ2zR IM ⊗TL,L(E(Q̃T)− T̃T) T+σ2cNRA
(
IN +σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (E(QT)−TT)HTA∗T
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Writing that E(Q)−T = E(Q)−R+R−T and E(Q̃)− T̃ = E(Q̃)− R̃+ R̃− T̃, we obtain that

R−T =σ2zR IM ⊗TL,L(E(Q̃T)− R̃T) T+σ2cNRA
(
IN +σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (E(QT)−RT)HTA∗T

+σ2zR IM ⊗TL,L(R̃T − T̃T) T+σ2cNRA
(
IN +σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (RT −TT)HTA∗T (3.8.4)

so that we have

1

ML
Tr[(R−T)B] =σ2z

1

ML
Tr

[
(TBR)T IM ⊗TL,L(E(Q̃)− R̃)

]
+σ2cN

1

ML
Tr

[(
HTA∗TBRA

(
IN +σ2cNT (M)

N,L (TT)
)−1

)T

T (M)
N,L (E(Q)−R)

]
+σ2z

1

ML
Tr

[
(TBR)T IM ⊗TL,L(R̃− T̃)

]
+σ2cN

1

ML
Tr

[(
HTA∗TBRA

(
IN +σ2cNT (M)

N,L (TT)
)−1

)T

T (M)
N,L (R−T)

]
Direct application of (3.1.10) to the case P = M, K = L, R = N implies that

1

ML
Tr[(R−T)B] =σ2z

1

N
Tr

[
(E(Q̃)− R̃) T (M)

N,L ((TBR)T)
]

+σ2 1

ML
Tr

[
(E(Q)−R) IM ⊗TL,L

(
HTA∗TBRA

(
IN +σ2cNT (M)

N,L (TT)
)−1

)T]
+σ2z

1

N
Tr

[
(R̃− T̃) T (M)

N,L ((TBR)T)
]

+σ2 1

ML
Tr

[
(R−T) IM ⊗TL,L

(
HTA∗TBRA

(
IN +σ2cNT (M)

N,L (TT)
)−1

)T]
(3.8.5)

We define matrix G(B) by

G(B) =TL,L

(
HTA∗TBRA

(
IN +σ2cNT (M)

N,L (TT)
)−1

)T

(3.8.6)

We now prove that

sup
‖C‖≤1

∣∣∣∣ 1

ML
Tr((R−T)C)

∣∣∣∣→ 0

sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((R̃− T̃)C̃)

∣∣∣∣→ 0

when z belongs to a certain domain. For this, we first remark that Proposition 3.1.3 implies that

‖T (M)
N,L ((TBR)T)‖ ≤ ‖T‖ ‖R‖ ‖B‖

‖G(A)‖ ≤ ‖H‖ ‖T‖ ‖R‖ ‖A‖2
∥∥∥∥(

IN +σ2cNT (M)
N,L (TT)

)−1
∥∥∥∥ ‖B‖

We assume that z ∈ C+. By lemma 3.5.1, it holds that ‖H‖ ≤ |z|
(Im(z)) and ‖R‖ ≤ 1

Im(z) . By (3.7.4), we have

that ‖T‖ ≤ 1
Im(z) and

∥∥∥∥(
IN +σ2cNT (M)

N,L (TT)
)−1

∥∥∥∥≤ |z|
Im(z) . Consequently, we get that

‖T (M)
N,L ((TBR)T)‖ ≤ 1

(Im(z))2 ‖B‖

‖G(B)‖ ≤ |z|2
(Im(z))4 ‖A‖2 ‖B‖
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We recall that supN ‖A‖ ≤ C <+∞. For each ML×ML matrix B such that ‖B‖ ≤ 1, it holds that ‖T (M)
N,L (B)‖ ≤

‖B‖ ≤ 1 and that ‖IM ⊗TL,L(B)‖ ≤ ‖B‖ ≤ 1. Thus, it follows

•

∣∣∣∣ 1

N
Tr

[
(E(Q̃)− R̃) T (M)

N,L ((TBR)T)
]∣∣∣∣≤ 1

(Im(z))2 sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((E(Q̃)− R̃)C̃)

∣∣∣∣
•

∣∣∣∣ 1

N
Tr

[
(R̃− T̃) T (M)

N,L ((TBR)T)
]∣∣∣∣ ≤ 1

(Im(z))2 sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((R̃− T̃)C̃)

∣∣∣∣
•

∣∣∣∣ 1

ML
Tr [(E(Q)−R) IM ⊗G(B)]

∣∣∣∣≤ C2|z|2
(Im(z))4 sup

‖C‖≤1

∣∣∣∣ 1

ML
Tr((E(Q)−R)C)

∣∣∣∣
•

∣∣∣∣ 1

ML
Tr [(R−T) IM ⊗G(B)]

∣∣∣∣≤ C2|z|2
(Im(z))4 sup

‖C‖≤1

∣∣∣∣ 1

ML
Tr((R−T)C)

∣∣∣∣
Proposition 3.6.1 implies that

sup
‖C‖≤1

∣∣∣∣ 1

ML
Tr((E(Q)−R)C)

∣∣∣∣=O (
L

MN
)

sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((E(Q̃)− R̃)C̃)

∣∣∣∣=O (
L

MN
)

This and Eq. (3.8.5) eventually imply that

sup
‖C‖≤1

∣∣∣∣ 1

ML
Tr((R−T)C)

∣∣∣∣≤O (
L

MN
)+ σ2|z|

(Im(z))2 sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((R̃− T̃)C̃)

∣∣∣∣ + σ2κ2|z|2
(Im(z))4 sup

‖C‖≤1

∣∣∣∣ 1

ML
Tr((R−T)C)

∣∣∣∣
(3.8.7)

Using similar tricks, we obtain

sup
‖C̃‖≤1

∣∣∣∣ 1

ML
Tr((R̃− T̃)C̃)

∣∣∣∣≤O (
L

MN
)+ σ2cN|z|

(Im(z))2 sup
‖C‖≤1

∣∣∣∣ 1

ML
Tr((R−T)C)

∣∣∣∣ + σ2cNκ
2|z|2

(Im(z))4 sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((R̃− T̃)C̃)

∣∣∣∣
(3.8.8)

Denote by δ= sup‖C‖≤1

∣∣ 1
ML Tr((R−T)C)

∣∣ and δ̃= sup‖C̃‖≤1

∣∣ 1
ML Tr((R̃− T̃)C̃)

∣∣, we have that{
δ≤ σ2|z|

(Im(z))2 δ̃+ σ2κ2|z|2
(Im(z))4 δ+O ( L

MN )

δ̃≤ σ2cN|z|
(Im(z))2δ+ σ2cNκ

2|z|2
(Im(z))4 δ̃+O ( L

MN )
(3.8.9)

which is equivalent to {
(1− σ2κ2|z|2

(Im(z))4 )δ≤ σ2|z|
(Im(z))2 δ̃+O ( L

MN )

(1− σ2cNκ
2|z|2

(Im(z))4 )δ̃≤ σ2cN|z|
(Im(z))2δ+O ( L

MN )
(3.8.10)

Let z ∈ C+ such that |z|
Im(z) ≤ 2. For Im(z) large enough, 1− σ2κ2|z|2

(Im(z))4 ≤ 1
2 and 1− σ2cNκ

2|z|2
(Im(z))4 ≤ 1

2 . (3.8.10) thus
verify that 

δ≤ σ2|z|
(Im(z))2

1

1− σ2κ2 |z|2
(Im(z))4

δ̃+O ( L
MN )

δ̃≤ σ2cN|z|
(Im(z))2

1

1− σ2cNκ2 |z|2
(Im(z))4

δ+O ( L
MN )

(3.8.11)

which leads to 
δ≤ σ4cN|z|2

(Im(z))4
1

(1− σ2κ2 |z|2
(Im(z))4 )(1− σ2cNκ2 |z|2

(Im(z))4 )
δ+O ( L

MN )

δ̃≤ σ4cN|z|2
(Im(z))4

1

(1− σ2κ2 |z|2
(Im(z))4 )(1− σ2cNκ2 |z|2

(Im(z))4 )
δ̃+O ( L

MN )
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Therefore, if z ∈C+ such that |z|
Im(z) ≤ 2, for Im(z) large enough, we obtain that

δ= sup
‖C‖≤1

∣∣∣∣ 1

ML
Tr((R−T)C)

∣∣∣∣=O (
L

MN
)

δ̃= sup
‖C̃‖≤1

∣∣∣∣ 1

N
Tr((R̃− T̃)C̃)

∣∣∣∣=O (
L

MN
)

This establish (3.8.3) for uniformly bounded ML×ML and N×N matrices B, B̃ whenever z is well chosen.
Moreover, for these values of z, 1

ML Tr((R−T)B) and 1
N Tr((R̃−T̃)B̃) are O

( L
MN

)
terms and thus 1

ML Tr((E(Q)−
T)B) and 1

N Tr((E(Q̃)−T̃)B̃) are O
( L

MN

)
terms. A standard application of Montel’s theorem (see Proposition

3.1.5) implies that (3.8.3) holds on C\R+. This, in turn, establish (3.8.1)
�

3.9 Convergence towards the deterministic equivalents: the bilinear forms

In this section, we prove the following Proposition. We recall that δN = sup
(

L2

MN ,
√

L
M3

)
.

Proposition 3.9.1. Under Assumption A-3, it holds that

‖R(z)−T(z)‖ = sup
‖b1‖=‖b2‖=1

∣∣b∗
1 (R(z)−T(z))b2

∣∣→ 0 (3.9.1)

‖R̃(z)− T̃(z)‖ = sup
‖b̃1‖=‖b̃2‖=1

∣∣b̃∗
1 (R̃(z)− T̃(z))b̃2

∣∣→ 0 (3.9.2)

for each z ∈C\R+

Proof. We consider 2 unit vectors b1 and b2. It is easy to check that

b∗
1 (R−T)b2 =σ2zb∗

1 R IM ⊗TL,L(E(Q̃T)− R̃T) Tb2

+σ2cNb∗
1 RA

(
IN +σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (E(QT)−RT)HTA∗Tb2

+σ2zb∗
1 R IM ⊗TL,L(R̃T − T̃T) Tb2

+σ2cNb∗
1 RA

(
IN +σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (RT −TT)HTA∗Tb2

So that we have

|b∗
1 (R−T)b2| ≤σ2|z| ‖b1‖ ‖b2‖ ‖R‖ ‖IM ⊗TL,L(E(Q̃T)− R̃T)‖ ‖T‖

+σ2cN‖b1‖ ‖b2‖ ‖R‖ ‖A‖ ‖
(
IN +σ2cNT (M)

N,L (TT)
)−1 ‖ ‖T (M)

N,L (E(QT)−RT)‖ ‖HT‖ ‖A∗‖ ‖T‖
+σ2|z|‖b1‖ ‖b2‖ ‖R‖ ‖IM ⊗TL,L(R̃T − T̃T)‖ ‖T‖
+σ2cN‖b1‖ ‖b2‖ ‖R‖ ‖A‖ ‖

(
IN +σ2cNT (M)

N,L (TT)
)−1 ‖ ‖T (M)

N,L (RT −TT)‖ ‖HT‖ ‖A∗‖ ‖T‖

We assume that z ∈ C+. We recall that supN ‖A‖ ≤ C < +∞ , ‖H‖ ≤ |z|
Im(z) , ‖R‖ ≤ 1

(Im(z)) , ‖T‖ ≤ 1
Im(z) and∥∥∥∥(

IN +σ2cNT (M)
N,L (TT)

)−1
∥∥∥∥≤ |z|

Im(z) . Therefore, it holds that

sup
‖b1‖=‖b2‖=1

|b∗
1 (R−T)b2| = ‖R−T‖ ≤ σ2|z|

(Im(z))2 ‖IM ⊗TL,L(E(Q̃)− R̃)‖+ σ2cNκ
2|z|2

(Im(z))4 ‖T (M)
N,L (E(Q)−R)‖

+ σ2|z|
(Im(z))2 ‖IM ⊗TL,L(R̃− T̃)‖+ σ2cNκ

2|z|2
(Im(z))4 ‖T (M)

N,L (R−T)‖
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We recall that ‖E(Q)−R‖ =O (δN) and that ‖E(Q̃)− R̃‖ =O (δN). Proposition 3.1.3 thus implies that,

‖R−T‖ ≤ O (δN)+ σ2|z|
(Im(z))2 ‖R̃− T̃)‖+ σ2cNκ

2|z|2
(Im(z))4 ‖R−T‖ (3.9.3)

We denote by γ= ‖R−T‖ and γ̃= ‖R̃− T̃‖. (3.9.3) leads to

γ≤O (δN)+ σ2|z|
(Im(z))2 γ̃+

σ2cNκ
2|z|2

(Im(z))4 γ

Using the same calculations, we get that

γ̃≤O (δN)+ σ2cN|z|
(Im(z))2γ+

σ2κ2|z|2
(Im(z))4 γ̃

From this, it is straightforward to check that if z ∈C+ verifies |z|
Im(z) ≤ 2 and Im(z) large enough, we have

γ= ‖R(z)−T(z)‖ =O (δN)

γ̃= ‖R̃(z)− T̃(z)‖ =O (δN)

We now establish that ‖R(z) − T(z)‖ and ‖R̃(z) − T̃(z)‖ converge towards 0 for each z ∈ C \R+ using
an argument "à la Montel". For this, we assume that it exists z0 ∈ C \R+ for which ‖RN(z0)−TN(z0)‖
does not converge towards 0. We consider 2 unit vectors b1,N(z0),b2,N(z0) such that ‖RN(z0)−TN(z0)‖ =
|b1,N(z0)∗(RN(z0)−TN(z0))b2,N(z0)|. Then, sequence b1,N(z0)∗(RN(z0)−TN(z0))b2,N(z0) does not converge
towards 0. However, if we consider the sequence of analytic functions fN(z) defined by b1,N(z0)∗(RN(z)−
TN(z))b2,N(z0), fN(z) converges towards 0 when z ∈ C+ verifies |z|

Im(z) ≤ 2 and Im(z) large enough. Se-
quence fN is a normal family on C \R+. Therefore, by Montel’s theorem, fN(z) converges towards 0 for
each z ∈C \R+, and also for z = z0, a contradiction. Therefore, (3.9.1) holds for each z ∈C \R+. (3.9.2) is
proved in the same way.

Remark 10. We remark that Proposition3.9.1 does not provide the rate of convergence of ‖R(z)−T(z)‖ and
‖R̃(z)−T̃(z)‖ because analytic continuation arguments does not allow to preserve the rates of convergence.
We suspect that it is possible to establish that ‖R(z)−T(z)‖ and ‖R̃(z)− T̃(z)‖ are O (δN) for each z ∈C\R+.
However, the proof of this result does not seem to be an easy task.

As we have shown the ‖E(Q(z))−R(z)‖ and ‖E(Q̃(z))− R̃(z)‖ converge towards 0 (see Corollary 3.6.1),
the following Corollary holds.

Corollary 3.9.1. Under Assumption A-3, it holds that

‖E(Q(z))−T(z)‖ = sup
‖b1‖=‖b2‖

∣∣b∗
1 (E(Q(z))−T(z))b2

∣∣→ 0 (3.9.4)

‖E(Q̃(z))− T̃(z)‖ = sup
‖b̃1‖=‖b̃2‖

∣∣b̃∗
1 (E(Q̃(z))− T̃(z))b̃2

∣∣→ 0 (3.9.5)

for each z ∈C\R+.

Proof. It just remains to justify that ‖E(Q(z))−R(z)‖ and ‖E(Q̃(z))− R̃(z)‖ converge towards 0 for
z ∈ C \R+. For this, it is sufficient to use again the argument "à la Montel" used in the proof of Proposi-
tion 3.9.1.

�
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3.A Proof of lemma 3.5.1

We use the same ingredients than in the proof of Lemma 5-1 of [28]. The invertibility of IN+σ2cNT (M)
N,L (E(Q(z)))

for z ∈C+ is a direct consequence of Im(Q(z)) > 0 on C+ as well as of Proposition 3.1.2 . In order to prove
(3.5.2), we first establish that function G1(z) defined by

G1(z) =−H(z)

z

coincides with the Stieltjes transform of a positive CN×N matrix valued measure ν1 carried by R+ such
that ν1(R+) = IN, i.e

G1(z) =
∫
R+

dν1

λ− z

For this it is sufficient to check that Im(G1(z)) and Im(zG1(z)) are both positive onC+, and that limy→+∞−i yG1(i y) =
IN(see proof of Lemma 5-1 of [28]).
Im(G1(z)) can be written as

Im(G1(z)) = H(z)

z

1

2i

[
zH−1(z)− z∗(H−1(z))∗

] H(z)∗

z∗

which is equivalent to

Im(G1(z)) = H(z)

z
E
[

Im(z)+σ2cNT (M)
N,L (Im(zQ(z)))

] H(z)∗

z∗

As Im(zQ(z)) > 0 on C+, this implies that

Im(G1(z)) > Im(z)

|z|2 H(z)H(z)∗ ≥ 0

The term zG1(z) =−H(z), so that we have

Im(zG1(z)) =−Im(H(z)) =−H(z)
[
(H−1(z))∗−H−1(z)

]
H(z)∗

which is equivalent to
Im(zG1(z)) =σ2cNH(z)T (M)

N,L (E(Im(Q(z)))H(z)∗

As Im(Q(z)) > 0 on C+, thus Im(zG1(z)) is positive.
Moreover, since ‖Q(z)‖ ≤ 1

Im(z) , we can easily get

lim
y→+∞−i yG1(i y) = lim

y→+∞

[
IN +σ2cNT (M)

N,L (E(Q(i y)))
]−1 = IN

Therefore, since G1(z) is the Stieltjes transform of ν1, it is clear that

Im(G1(z)) = Im(z)
∫
R+

dν1

|λ− z|2 ≤ 1

Im(z)
IN

So that we have
1

Im(z)
≥ Im(G1(z)) > Im(z)

|z|2 H(z)H(z)∗

which implies

H(z)H(z)∗ ≤
( |z|

Im(z)

)2

IN

The other statements of lemma 3.5.1 are proved similarly.
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Chapter 4

Convergence towards spiked model : the
case of wideband array processing models

4.1 Introduction

In this chapter, we take benefit of the results of chapter 3 to revisit the information plus noise block-
Hankel random matrix model built from samples collected from the M–dimensional time series (yn)n∈Z
given by

yn =
P−1∑
p=0

hp sn−p +vn , n = 1, ...,N

between time 1 and time N. Here, h(z) = ∑P−1
p=0 hp z−p represents the transfer function of an unknown

FIR(Finite Impulse Response) SIMO complex channel, s is a scalar non observable sequence and (vn)n∈Z
is an i.i.d sequence of Nc (0,σ2I) random vectors.

If L is an integer, for each m = 1, . . . ,M, we define for n = 1, . . . ,N the L–dimensional vector y(L)
m,n given

by

y(L)
m,n = (ym,n , ..., ym,n+L−1)T

and the ML–dimensional vector y(L)
n given by

y(L)
n = ((y(L)

1,n)T, (y(L)
2,n)T, ..., (y(L)

M,n)T)T

We denote by Y(L)
N the ML×N matrix defined by

Y(L)
N = (y(L)

1 , ...,y(L)
N )

and notice that Y(L)
N is given by

Y(L)
N =


Y(L)

1,N
...

Y(L)
M,N


in which, for each m, matrix Y(L)

m,N is defined as

Y(L)
m,N =


ym,1 ym,2 · · · ym,N

ym,2 ym,3 · · · ym,N+1

ym,3 · · · · · · ym,N+2
...

...
...

...
ym,L ym,L+1 · · · ym,N+L−1
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Moreover we notice that for each m, matrix Y(L)
m,N is equal to H(L)

m,NS(L)
N +V(L)

m,N, where V(L)
m,N has the

same structure of Y(L)
m,N, and H(L)

m,N is the L× (P+L−1) Toeplitz matrix defined by

H(L)
m,N =


hm,P−1 · · · hm,0 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 hm,P−1 · · · hm,0


and S(L)

N is the (P+L−1)×N Hankel matrix defined by

S(L)
N =

 s2−P · · · sN−P+1
...

...
sL · · · sN+L−1


Therefore, it holds that

Y(L)
N =


H(L)

1,N
...

H(L)
M,N

S(L)
N +


V(L)

1,N
...

V(L)
M,N

=H(L)
N S(L)

N +V(L)
N

Finally, we rather consider normalized versions of the above matrices, i.e. define ΣN = 1p
N

Y(L)
N , AN =

H(L)
N

1p
N

S(L)
N and WN = 1p

N
V(L)

N . The model thus becomes

ΣN = AN +WN (4.1.1)

As in the previous chapter, we study this model in the asymptotic regime

Assumption A-4: We assume that ML and N converge towards +∞ in such a way that cN = ML
N satisfies

cN → c where 0 < c <+∞, and that moreover, P,L are O (Nα) with 0 < α< 2
3 .

Matrix ΣN is a particular case of random matrix models defined in the previous chapter by Eqs.
(3.3.3), except that matrix AN has the particular structure AN = H(L)

N
1p
N

S(L)
N . AN is in particular a rank

P +L− 1 matrix, which, under the Assumption A-4, is much smaller than N. Matrix ΣN is also similar
to model (2.4.5) of chapter 2 except that P and L may scale with M and N in the context of the present
chapter. Therefore, the methods used in chapter 2 are no more valid. The purpose of the present chapter
is to extend the results of section 2.4 of chapter 2 to the case where P and L may converge towards +∞
according to Assumption A-(4). For this, we take benefit of the general results derived in chapter 3.

4.2 Overview of the results.

As in the previous chapters, we denote by QN(z) and Q̃N(z) the resolvents of ΣNΣ
∗
N and Σ∗

NΣN respec-
tively. As P+L−1 = o(N), it is clear that the empirical eigenvalue distribution ofΣNΣ

∗
N converges towards

the Marcenko-Pastur distribution µc,σ2 of parameters (c,σ2), i.e. the normalized trace of QN(z) has the
same asymptotic behaviour than the Stieltjes transform of µc,σ2 . However, this property is no longer true
for the bilinear forms of QN(z) whose asymptotic behaviour is useful to extend the results of section 2.4
of chapter 2 to the case where P and L may converge towards +∞.

In section 4.3, we study the asymptotic behaviour of the bilinear forms of QN(z) and Q̃N(z) in the
context of model (4.1.1). The results of chapter 3 show that these bilinear forms have the same behaviour
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than the forms of TN(z) and T̃N(z). As matrices TN(z) and T̃N(z) have complicated expressions, we use
the particular structure of matrix AN =H(L)

N
1p
N

S(L)
N to establish that the bilinear forms of QN(z) and Q̃N(z)

behave as if P and L were fixed integers. More precisely, we define T1,N(z) and T̃1,N(z) as the solutions of
the equation T1,N(z) =

(
−z(1+σ2 t̃1,N(z))IML + ANA∗

N
1+σ2cNt1,N(z)

)−1

T̃1,N(z) =
(
−z(1+σ2cNt1,N(z))IN + A∗

NAN

1+σ2 t̃1,N(z)

)−1 (4.2.1)

where t1,N(z) = 1
ML Tr(T1,N(z)) and where t̃1,N(z) = 1

N Tr(T̃1,N(z)) also coincides with cN t1,N(z)−(1−cN)/z.
It is clear that T1,N(z) and T̃1,N(z) correspond to the deterministic equivalents of the resolvents of matri-
ces Σ1,NΣ

∗
1,N and Σ∗

1,NΣ1,N where Σ1,N represents a virtual information plus noise model

Σ1,N = AN +W1,N (4.2.2)

where W1,N represents a ML×N random matrix with Nc (0,σ2/N) independent, identically distributed
entries, see . Eq (1.2.40, 1.2.43) in chapter 1. Then, we establish that TN(z) ' T1,N(z) and T̃N(z) ' T̃1,N(z)
where we recall that the symbol ' means that the bilinear forms of the 2 matrices have the same asymp-
totic behaviour. Moreover, as P +L− 1 = o(N), Stieltjes transforms t1,N(z) and t̃1,N(z) can be replaced
by the Stieltjes transforms mc (z) and m̃c (z) associated to the Marcenko-Pastur distribution µc,σ2 . If we
denote by SN(z) and S̃N(z) the functions defined bySN(z) =

(
−z(1+σ2m̃c (z))IML + ANA∗

N
1+σ2cmc (z)(z)

)−1

S̃N(z) =
(
−z(1+σ2cmc (z))IN + A∗

NAN

1+σ2m̃c (z)

)−1 (4.2.3)

then, it also holds that T1,N(z) ' SN(z) and T̃1,N(z) ' S̃N(z). It is shown in chapter 2 that QN(z) ' SN(z)
and Q̃N(z) ' S̃N(z) when P and L do not scale with N. Therefore, we generalize this result to the case
where P and L converge towards +∞ at rate strictly less than O (N2/3).

4.3 Simplified behaviour of the bilinear forms of QN(z) and Q̃N(z).

In this section, we prove that TN(z) ' T1,N(z) and T̃N(z) ' T̃1,N(z) for each z ∈ C+. Montel’s theorem will
thus imply that this equivalence also holds for z ∈C\R+. The proof of T1,N(z) ' SN(z) and T̃1,N(z) ' S̃N(z)
is straightforward, and thus omitted.

The above equivalence holds true however under certain hypotheses on filter h(z) and on sequence
s. More precisely, we formulate the following assumptions. (h(m)(z))m=1,...,M represent the components
of h(z), and if ν ∈ [0,1], we denote by h(m)(ν) and h(ν) the terms h(m)(e2iπν) and h(e2iπν).

Assumption A-5: We assume that

sup
M

sup
ν∈[0,1]

M∑
m=1

|h(m)(ν)|2 <+∞.

Remark 11. Assumption A-5 implies that supN ‖H(L)
N ‖ <+∞. To see this, we can notice that

H(L)
m =

∫
[0,1]

e2iπ(P−1)νh(m)(ν)dL(ν)d∗
P+L−1(ν)dν

and that

H(L)
N =


H(L)

1,N
...

H(L)
M,N

=
∫

[0,1]
(e2iπ(P−1)νh(ν)⊗dL(ν))d∗

P+L−1(ν)dν
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Using the definition of spectral norm, we can write

‖H(L)
N ‖ = sup

b1∈CML;b2∈CP+L−1

‖b1‖=‖b2‖=1

∣∣∣b∗
1H

(L)
N b2

∣∣∣= sup
b1∈CML;b2∈CP+L−1

‖b1‖=‖b2‖=1

∣∣∣∣∫
[0,1]

b∗
1 (e2iπ(P−1)νh(ν)⊗dL(ν))d∗

P+L−1(ν)b2dν

∣∣∣∣
We express b1 = (bT

1,1, ...,bT
M,1)T, with (bm,1)m=1,...,M L–dimensional vectors. Using Cauchy-Schwartz in-

equality, we obtain that

∣∣∣b∗
1H

(L)
N b2

∣∣∣= ∣∣∣∣∣
∫

[0,1]

(
M∑

m=1
e2iπ(P−1)νh(m)(ν)b∗

m,1dL(ν)

)
d∗

P+L−1(ν)b2dν

∣∣∣∣∣
≤

√√√√∫
[0,1]

∣∣∣∣∣ M∑
m=1

h(m)(ν)b∗
m,1dL(ν)

∣∣∣∣∣
2

dν

√∫
[0,1]

∣∣d∗
P+L−1(ν)b2

∣∣2 dν

≤
√√√√∫

[0,1]

M∑
m=1

∣∣h(m)(ν)
∣∣2

M∑
m=1

∣∣∣b∗
m,1dL(ν)

∣∣∣2
dν ‖b2‖

≤
√√√√ sup

ν∈[0,1]

M∑
m=1

∣∣h(m)(ν)
∣∣2

√√√√∫
[0,1]

M∑
m=1

∣∣∣b∗
m,1dL(ν)

∣∣∣2
dν ‖b2‖

≤
√√√√ sup

ν∈[0,1]

M∑
m=1

∣∣h(m)(ν)
∣∣2

√√√√ M∑
m=1

∥∥bm,1
∥∥2 dν ‖b2‖

≤
√√√√ sup

ν∈[0,1]

M∑
m=1

∣∣h(m)(ν)
∣∣2 ‖b1‖ ‖b2‖

Therefore, it holds that

sup
N

‖H(L)
N ‖ ≤ sup

M

√√√√ sup
ν∈[0,1]

M∑
m=1

∣∣h(m)(ν)
∣∣2 <+∞

�

Finally, we formulate the following assumption on signal sn :

Assumption A-6: We assume that (sn)n∈Z is a real stationary random process defined as

sn =
∞∑

j=0
α j εn− j ,

∞∑
j=0

|α j | < +∞ ,α0 = 1 (4.3.1)

where εn is an i.i.d. sequence of zero mean unit variance random variables having finite moments of all
order, and whose characteristic function Q(θ), satisfies

sup
|θ|>θ0>0

|Q(θ)| = β(θ0) < 1

and E(εn) = 0 and E(ε2
n) = 1.

In addition, we assume that, there exists a certain η> 1
α −1 for which

∞∑
j=m

|α j | =O
(
m−η) (4.3.2)
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In the following, we denote by φ(ν) the continuous function defined by

φ(ν) =
∣∣∣∣∣+∞∑

j=0
α j e−2iπν j

∣∣∣∣∣
2

=
+∞∑

u=−∞
γue−2iπνu (4.3.3)

where γu =∑+∞
l=0 αu+lαl 1u+l≥0 = E(sm+u s∗m) and remark thatφ(ν) coincides with the spectral density of s.

The hypothesis that sequence s is real is certainly not necessary, and could probably be replaced by
s complex circular, i.e. in representation (4.3.1), the real part and the imaginary parts of εn are mutually
independent sequences sharing the same probability distribution. However, the technical results we
use in the following (a moderate deviation result related to the periodogram of sequence (sn)n=1,...,N) is
apparently only available in the real case. Due to the lack of time, we have not tried to extend it to the
complex circular case.

Lemma 4.3.1. Under Assumption A-6, when N →∞, the empirical covariance matrix 1
N S(L)

N S(L)∗
N converges

almost surely towards the (P+L−1)× (P+L−1) Toeplitz matrix RS defined by

RS =
∫

[0,1]
φ(ν)dP+L−1(ν)d∗

P+L−1(ν)dν (4.3.4)

in the spectral norm sense. Moreover, it holds that

∥∥∥∥ 1

N
S(L)

N S(L)∗
N −RS

∥∥∥∥=O

√
log(L)

N1−α

 , a.s

Proof. The proof is given in the appendix.

We recall that the deterministic equivalents T, T̃ of the resolvents Q = (ΣΣ∗−zIML)−1 and Q̃ = (Σ∗Σ−
zIN)−1 are defined byT(z) =

[
−z

(
IML +σ2IM ⊗TL,L(T̃T(z))

) +A
(
IN +σ2cNT (M)

N,L (TT(z))
)−1

A∗
]−1

T̃(z) =
[
−z

(
IN +σ2cNT (M)

N,L (TT(z))
)
+A∗ (

IML +σ2IM ⊗TL,L(T̃T(z))
)−1

A
]−1

We will show that T, T̃ converge in the spectral norm sense towards the deterministic equivalents of clas-
sical complex Gaussian information plus noise model (see e.g [9],[48],[32]) which we denote by T1, T̃1.
These quantity T1, T̃1 are defined byT1 =

(
−z(1+σ2 t̃1(z))IML + AA∗

1+σ2cNt1(z)

)−1

T̃1 =
(
−z(1+σ2cNt1(z))IN + A∗A

1+σ2 t̃1(z)

)−1 (4.3.5)

where t1(z) = 1
ML Tr(T1) and t̃1(z) = 1

N Tr(T̃1).

Proposition 4.3.1. Under assumptions A-6 and A-5, it holds that{
‖T(z)−T1(z)‖ = sup‖b1‖=‖b2‖=1 |b∗

1 (T(z)−T1(z))b2|→ 0

‖T̃(z)− T̃1(z)‖ = sup‖b̃1‖=‖b̃2‖=1 b̃∗
1 (T̃(z)− T̃1(z))b̃2|→ 0

(4.3.6)

for each z ∈C\R+.
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Proof: By standard algebra, we have that

• T−T1 = zσ2T1 IM ⊗TL,L(T̃T − T̃T
1 )T+ σ2cN

1+σ2cNt1(z)
T1 A

(
IN + σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (TT −TT

1 )A∗T

+ zσ2T1 IM ⊗TL,L(T̃T
1 − t̃1(z)IN)T + σ2cN

1+σ2cNt1(z)
T1 A

(
IN + σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (TT

1 − t1(z)IML)A∗T

(4.3.7)

• T̃− T̃1 = zσ2cNT̃1 T (M)
N,L (TT −TT

1 ) T̃ + σ2

1+σ2 t̃1(z)
T̃1A∗ (

IML +σ2IM ⊗TL,L(T̃T)
)−1

IM ⊗TL,L(T̃T − T̃T
1 )AT̃

zσ2cNT̃1 T (M)
N,L (TT

1 − t1IML) T̃ + σ2

1+σ2 t̃1(z)
T̃1A∗ (

IML +σ2IM ⊗TL,L(T̃T)
)−1

IM ⊗TL,L(T̃T
1 − t̃1(z)IN)AT̃

(4.3.8)

To prove Proposition 4.3.1, we first prove that

‖T (M)
N,L (T1 − t1IML)‖ ≤ C(z)

√
log(L)

N1−α (4.3.9)

‖TL,L(T̃1 − t̃1IN)‖ ≤ C(z)

√
log(N)

N1−α (4.3.10)

for each z ∈ C+.
First step: Proof of (4.3.9)

We first express T1 − t1(z)IML. Recall that T1 =
(
−z(1+σ2 t̃1(z))IML + AA∗

1+σ2cNt1(z)

)−1
. We notice that

T1 − −1

z(1+σ2 t̃1(z))
IML = T1

(−z(1+σ2 t̃1(z)−T−1
1

) −1

z(1+σ2 t̃1(z))

= T1AA∗ 1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))
(4.3.11)

Taking the normalized trace of both side, and noticing that t1(z) = 1
ML Tr(T1) we get that

t1(z) = −1

z(1+σ2 t̃1(z))
+ 1

ML
Tr(T1AA∗)

1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))

Thus, we can express T1 − t1(z)IML as

T1 − t1(z)IML = T1 − −1

z(1+σ2 t̃ (z))
− 1

ML
Tr(T1AA∗)

1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))
(4.3.12)

Plugging (4.3.11) into (4.3.12), we obtain

T1 − t1(z)IML = 1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))
(T1AA∗− 1

ML
Tr(T1AA∗)IML) (4.3.13)

Since the Toeplitzification operator T (M)
N,L (.) is linear and T (M)

N,L (IML) = IN, we obtain that

T (M)
N,L (T1 − t1IML) = 1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))

(
T (M)

N,L (T1AA∗)− 1

ML
Tr(T1AA∗)IN

)
(4.3.14)

We recall (see paragraph 1.2.3)) that T1 belongs to SML(R+) coincides with the Stieltjes transform of a
positive matrix-valued measure µN carried by R+ such that µN(R+) = IML i.e

T1 =
∫
R+

dµ(λ)

λ− z
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Therefore, it is clear that t1(z) and t̃1(z) are Stieltjes transforms of the probability measures µN = 1
MLµN

and cNµN + (1− cN)δ0, so that we have |t1(z)| and |t̃1(z)| are bounded by 1
Im(z) .

From section 3.1.3, in chapter 3, it is easy to check that 1
z(1+σ2cNt (z) and 1

z(1+σ2 t̃1(z) are also Stieltjes trans-

forms of probability measure carried by R+, which particularly implies that
∣∣∣ 1

z(1+σ2cNt (z)

∣∣∣ and
∣∣∣ 1

z(1+σ2 t̃1(z)

∣∣∣
are upper-bounded by 1

Im(z) .
Therefore, taking the spectral norm of both side of (4.3.14), we get that∥∥∥T (M)

N,L (T1 − t1IML)
∥∥∥≤

∣∣∣∣ 1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))

∣∣∣∣(∥∥∥T (M)
N,L (T1AA∗)

∥∥∥+ ∣∣∣∣ 1

ML
Tr(T1AA∗)

∣∣∣∣)
≤ |z|

(Im(z))2

(∥∥∥T (M)
N,L (T1AA∗)

∥∥∥+ ∣∣∣∣ 1

ML
Tr(T1AA∗)

∣∣∣∣) (4.3.15)

Since ‖T1‖ ≤ 1
Im(z) and the rank of A is the same as that of H(L), i.e P+L−1, it holds that

1

ML
Tr[T1AA∗] ≤ C(z)

M

Thus, (4.3.15) becomes ∥∥∥T (M)
N,L (T1 − t1IML)

∥∥∥≤ |z|
(Im(z))2

∥∥∥T (M)
N,L (T1AA∗)

∥∥∥+ C(z)

M

It remains to prove that
∥∥∥T (M)

N,L (T1AA∗)
∥∥∥=O

(√
log(L)
N1−α

)
. For this, we first recall from (3.1.19) that

‖T (M)
N,L (T1AA∗)‖ ≤ sup

ν∈[0,1]

∣∣∣∣∣ 1

M

M∑
m=1

(fm ⊗aL(ν))∗ T1AA∗(fm ⊗aL(ν))

∣∣∣∣∣
with (f1, ..., fM) the canonical base of CM. By Cauchy-Schwarz inequality, we have that

|(fm ⊗aL(ν))∗ T1AA∗(fm ⊗aL(ν))| ≤ (
(fm ⊗aL(ν))∗ T1T∗

1 (fm ⊗aL(ν))
)1/2 (

(fm ⊗aL(ν))∗ (AA∗)2(fm ⊗aL(ν))
)1/2

As ‖T1‖ ≤ 1
Im(z) , the following inequality holds

sup
ν∈[0,1]

(
(fm ⊗aL(ν))∗ T1T∗

1 (fm ⊗aL(ν))
)1/2 ≤ ‖T1‖ ≤ 1

Im(z)

Moreover, as we assumed that supN ‖A‖ ≤ C <+∞, we obtain that(
(fm ⊗aL(ν))∗ (AA∗)2(fm ⊗aL(ν))

)1/2 ≤ ‖A‖(
(fm ⊗aL(ν))∗ AA∗(fm ⊗aL(ν))

)1/2

≤ C
(
(fm ⊗aL(ν))∗ AA∗(fm ⊗aL(ν))

)1/2

Thus, the following inequality is obtained

‖T (M)
N,L (T1AA∗)‖ ≤ C

Im(z)
sup
ν∈[0,1]

1

M

M∑
m=1

(
(fm ⊗aL(ν))∗ AA∗(fm ⊗aL(ν))

)1/2

On the other hand, we recall that AA∗ =H(L) S(L)S(L)∗
N H(L)∗. Therefore,

AA∗ =H(L)
(

S(L)S(L)∗
N

−RS

)
H(L)∗+H(L)RSH(L)∗
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In this way we obtain

(fm ⊗aL(ν))∗ AA∗(fm ⊗aL(ν)) = (fm ⊗aL(ν))∗ H(L)
(

S(L)S(L)∗
N

−RS

)
H(L)∗(fm ⊗aL(ν))

+(fm ⊗aL(ν))∗ H(L)RSH(L)∗(fm ⊗aL(ν))

≤ ‖H(L)‖2
∥∥∥∥S(L)S(L)∗

N
−RS

∥∥∥∥+ (fm ⊗aL(ν))∗ H(L)RSH(L)∗(fm ⊗aL(ν))

By lemma 4.3.1, we have that
∥∥∥S(L)S(L)∗

N −RS

∥∥∥ = O

(√
log(L)
N1−α

)
. Moreover, ‖H(L)‖ is uniformly bounded by

Remark 11. Hence, ‖H(L)‖2
∥∥∥S(L)S(L)∗

N −RS

∥∥∥ = O

(√
log(L)
N1−α

)
. Therefore, in order to prove ‖T (M)

N,L (T1AA∗)‖ =

O

(√
log(L)
N1−α

)
, we will prove that supν∈[0,1]

1
M

∑M
m=1(fm⊗aL(ν))∗ H(L)RSH(L)∗(fm⊗aL(ν)) =O

( 1
M

)=O
( 1

N1−α
)
.

We notice that

H(L)RSH(L)∗ =


H(L)

1 RSH(L)∗
1 · · · H(L)

1 RSH(L)
M

...
...

H(L)
M RSH(L)∗

1 · · · H(L)
M RSH(L)

M


It is easy to see that

1

M

M∑
m=1

(fm ⊗aL(ν))∗ H(L)RSH(L)∗(fm ⊗aL(ν)) = aL(ν)∗
(

1

M

M∑
m=1

H(L)
m RSH(L)∗

m

)
aL(ν)

In order to calculate τ(H(L)
m RSH(L)∗

m )(l ), we express (H(L)
m RSH(L)∗

m ) j ,k , for 1 ≤ j ,k ≤ L and 1 ≤ m ≤ M.
We can notice that

(H(L)
m RSH(L)∗

m ) j ,k = eT
j H

(L)
m RSH(L)∗

m ek

with (e1, ...,eL) the canonical base of CL.
Recall that

RS =
∫

[0,1]
φ(θ)dP+L−1(θ)d∗

P+L−1(θ)dθ

It is clear that

• eT
j H

(L)
m = (0, ...,0︸ ︷︷ ︸

j−1

,hm,P−1, ...,hm,0︸ ︷︷ ︸
P

,0, ...,0︸ ︷︷ ︸
L− j

)

• H(L)∗
m ek = (0, ...,0︸ ︷︷ ︸

k−1

,hm,P−1, ...,hm,0︸ ︷︷ ︸
P

,0, ...,0︸ ︷︷ ︸
L−k

)T

We eventually get

eT
j H

(L)
m RSH(L)∗

m ek =
∫

[0,1]
φ(θ)

(
P−1∑
t=0

e2iπ(t+ j )θhm,P−1−t

)(
P−1∑
u=0

e−2iπ(u+k)θhm,P−1−u

)
dθ

=
∫

[0,1]
φ(θ)e2iπ( j−k)θ

(
P−1∑
t=0

e2iπtθhm,P−1−t

)(
P−1∑
u=0

e−2iπuθhm,P−1−u

)
dθ

=
∫

[0,1]
φ(θ)|h(m)(θ)|2e2iπ( j−k)θdθ
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where we recall that h(m)(θ) =∑P−1
u=0 hm,ue−2iπθl .

It yields immediately that

H(L)
m RSH(L)∗

m =
∫

[0,1]
φ(θ)|h(m)(θ)|2dL(θ)d∗

L (θ)dθ

As a∗
L (ν)dL(θ) = 1p

L

∑L
l=0 e2iπ(θ−ν)l , we get that

aL(ν)∗H(L)
m RSH(L)∗

m aL(ν) =
∫

[0,1]
|h(m)(θ)|2φ(θ)

1

L

∣∣∣∣∣L−1∑
l=0

e2iπ(θ−ν)l

∣∣∣∣∣
2

dθ

Finally, we have that

1

M

M∑
m=1

aL(ν)∗H(L)
m RSH(L)∗

m aL(ν) = 1

M

∫
[0,1]

(
M∑

m=1
|h(m)(θ)|2

)
φ(θ)

1

L

∣∣∣∣∣L−1∑
l=0

e−i 2π(θ−ν)l

∣∣∣∣∣
2

dθ (4.3.16)

Assumption A-5 give us that supM supθ
∑M

m=1 |h(m)(θ)|2 < +∞ and φ(θ) is the spectral density which is
finite positive and bounded, thus there exists a constant C such that

sup
M

sup
θ

φ(θ)

∣∣∣∣∣ M∑
m=1

h(m)(θ)

∣∣∣∣∣
2

≤ C

As a consequence, it yields

1

M

M∑
m=1

aL(ν)∗H(L)
m RSH(L)∗

m aL(ν) ≤ C

M

∫
1

L

∣∣∣∣∣L−1∑
l=0

e−i 2π(θ−ν)l

∣∣∣∣∣
2

dθ

Moreover, Parseval identity leads to

1

L

∫
[0,1]

∣∣∣∣∣L−1∑
l=0

e−i 2π(θ−ν)l

∣∣∣∣∣
2

dθ= 1

L
L = 1

By (4.3.16), it follows ∣∣∣∣∣ 1

M

M∑
m=1

aL(ν)∗H(L)
m RSH(L)∗

m aL(ν)

∣∣∣∣∣≤ C

M

for all ν ∈ [0,1], and C is a constant independent of N,M and L. We conclude that∥∥∥T (M)
N,L

(
H(L)RSH(L)∗)∥∥∥≤ C

M
,

from which (4.3.9) follows immediately. �
Second step: Proof of (4.3.10)

We recall that T̃1 =
(
−z(1+σ2cNt1(z))IN + A∗A

1+σ2 t̃1(z)

)−1
and t̃1(z) = 1

N Tr(T̃1).

Using the same approach as in (4.3.11), we obtain that

t̃ (z) = −1

z(1+σ2cNt1(z))
+ 1

N
Tr(T̃1A∗A)

1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))

It follows

T̃1 − t̃ (z)IN = 1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))

(
T̃1A∗A− 1

N
Tr(T̃1A∗A)IN

)
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since TL,L(.) is linear, we get that

TL,L(T̃1 − t̃1IN) = 1

z(1+σ2 t̃1(z))(1+σ2cNt1(z))

(
TL,L(T̃1A∗A)− 1

N
Tr(T̃1A∗A)IL

)
taking the spectral norm, we get

‖TL,L(T̃1 − t̃1IN)‖ ≤ 1

|z(1+σ2 t̃1(z))(1+σ2cNt1(z))|
(∥∥TL,L(T̃1A∗A)

∥∥+ ∣∣∣∣ 1

N
Tr(T̃1A∗A)

∣∣∣∣)
We recall that ‖T̃1‖ ≤ 1

Im(z) and we remark that the rank of matrix A is P+L−1 and P and L have the same
order of magnitude. Hence ∣∣∣∣ 1

N
Tr(T̃1A∗A)

∣∣∣∣≤ C(z)
L

N
=O

(
1

M

)
=O

(
1

N1−α

)
It remains to prove that ∥∥TL,L(T̃1A∗A)

∥∥=O

√
log(N)

N1−α


By (3.1.17), we have that

‖TL,L(T̃1A∗A)‖ ≤ sup
ν∈[0,1]

|a∗
N(ν)T̃1A∗AaN(ν)| (4.3.17)

By Cauchy-Schwarz inequality, for all ν ∈ [0,1], it yields

|a∗
N(ν)T̃1A∗AaN(ν)| ≤ (a∗

N(ν)T̃1T̃∗aN(ν))1/2(a∗
N(ν)(A∗A)2aN(ν))1/2

As ‖T1‖ ≤ 1
Im(z) , supN ‖A‖ ≤ C, and recall that A∗A = S(L)∗p

N
H(L)∗H(L) S(L)p

N
, we obtain

|a∗
N(ν)T̃1A∗AaN(ν)| ≤ C

Im(z)

(
a∗

N(ν)A∗AaN(ν)
)1/2

≤ C

Im(z)

(
a∗

N(ν)
S(L)∗
p

N
H(L)∗H(L) S(L)

p
N

aN(ν)

)1/2

≤ C‖H(L)‖
Im(z)

(
a∗

N(ν)
S(L)∗S(L)

N
aN(ν)

)1/2

≤ C(z)

(
a∗

N(ν)
S(L)∗S(L)

N
aN(ν)

)1/2

(4.3.18)

(4.3.18) is obtained by recalling that supN ‖H(L)‖ <+∞, thus it exists a constant C0 > 0, such that supN ‖H(L)‖ ≤
C0.
Combining (4.3.17) and (4.3.18), we get

‖TL,L(T̃1A∗A)‖ ≤ C(z) sup
ν∈[0,1]

(
a∗

N(ν)
S(L)∗S(L)

N
aN(ν)

)1/2

(4.3.19)

It remains to prove that supν∈[0,1] a∗
N(ν) S(L)∗S(L)

N aN(ν) =O
(

logN
M

)
. For this we can notice that

Sp
N

aN(ν) = 1

N

 s2−P · · · sN−P+1
...

...
sL · · · sN+L−1


 1

...
e2iπ(N−1)ν

= 1

N


∑N

k=1 s1−P+k e2iπkν

...∑N
k=1 sL+k e2iπkν
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and that ∥∥∥∥ Sp
N

aN(ν)

∥∥∥∥2

= 1

N

P+L−1∑
l=1

∣∣∣∣∣ 1p
N

N∑
k=1

s−P+l+k e2iπkν

∣∣∣∣∣
2

(4.3.20)

We notice that for 1 ≤ l ≤ P+L−1,
∣∣∣ 1p

N

∑N
k=1 s−P+l+k

∣∣∣2
is the periodogram of the sequence (s−P+l+1, s−P+l+2, ..., s−P+l+N)

that we denote by I(l )
N (ν). And we use the following result due to [3]

Remark 12. Under Assumption A-6, it holds

lim
N→∞

max
ν∈[0,1]

IN(ν)

φ(ν) logN
= 1, a.s (4.3.21)

with IN(ν) = 1
N

∣∣∑N
n=1 sne−2iπνn

∣∣2
the periodogram of sequence (s1, ..., sN) and φ(ν) = |∑+∞

j=0α j e−2iπν j |2 the
spectral density of s.

By (4.3.21),for 1 ≤ l ≤ P+L−1, ∀ε> 0, almost surely, for N large enough, we have that

max
ν∈[0,1]

I(l )
N (ν)

φ(ν) log(N)
≤ 1+ε

Almost surely, for N large enough, we thus have

∀ν ∈ [0,1], I(l )
N (ν) ≤ (1+ε)φ(ν) log(N)

Applying this inequality to (4.3.20), almost surely, for N large enough,

∀ν ∈ [0,1]

∥∥∥∥ Sp
N

aN(ν)

∥∥∥∥2

≤ 1

N

P+L−1∑
l=1

(1+ε)φ(ν) log(N)

≤ (1+ε)φ(ν)
P+L−1

N
log(N)

Since P,L are O (Nα), with 0 < α< 1, supν∈[0,1]

∥∥∥ Sp
N

aN(ν)
∥∥∥2 =O

(
log(N)
N1−α

)
. This and (4.3.19) give us that

‖TL,L(T̃1A∗A)‖ =O

√
log(N)

N1−α


This completes the proof of (4.3.10). �
Now, let (b1,b2) two unitary ML–dimensional vectors, and (b̃1, b̃2) two unitary N–dimensional vectors.
Recall the expressions of (4.3.7) and (4.3.8), we take the bilinear forms

b1(T−T1)b2 = zσ2b1 T1 IM ⊗TL,L(T̃T − T̃T
1 )T b2

+ σ2cN

1+σ2cNt1(z)
b1T1 A

(
IN + σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (TT −TT

1 )A∗Tb2

+ zσ2b1 T1 IM ⊗TL,L(T̃T
1 − t̃1(z)IN)T b2

+ σ2cN

1+σ2cNt1(z)
b1 T1 A

(
IN + σ2cNT (M)

N,L (TT)
)−1

T (M)
N,L (TT

1 − t1(z)IML)A∗T b2
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b̃1(T̃− T̃1)b̃2 = zσ2cNb̃1 T̃1 T (M)
N,L (TT −TT

1 ) T̃ b̃2

+ σ2

1+σ2 t̃1(z)
b̃1 T̃1 A∗ (

IML +σ2IM ⊗TL,L(T̃T)
)−1

IM ⊗TL,L(T̃T − T̃T
1 )A T̃ b̃2

+ zσ2cNb̃1 T̃1 T (M)
N,L (TT

1 − t1IML) T̃ b̃2

+ σ2

1+σ2 t̃1(z)
b̃1 T̃1 A∗ (

IML +σ2IM ⊗TL,L(T̃T)
)−1

IM ⊗TL,L(T̃T
1 − t̃1(z)IN)A T̃ b̃2

It is clear that

|b1(T−T1)b2| ≤ |z|σ2‖b1‖ ‖T1‖‖IM ⊗TL,L(T̃T − T̃T
1 )‖‖T‖ ‖b2‖

+ σ2cN

|1+σ2cNt1(z)| ‖b1‖‖T1‖‖A‖
∥∥∥∥(

IN + σ2cNT (M)
N,L (TT)

)−1
∥∥∥∥ ‖T (M)

N,L (TT −TT
1 )‖‖A∗‖‖T‖‖b2‖

+|z|σ2‖b1‖‖T1‖‖IM ⊗TL,L(T̃T
1 − t̃1(z)IN)‖‖T‖‖b2‖

+ σ2cN

1+σ2cNt1(z)
‖b1‖‖T1‖‖A‖

∥∥∥∥(
IN + σ2cNT (M)

N,L (TT)
)−1

∥∥∥∥ ‖T (M)
N,L (TT

1 − t1(z)IML)‖‖A∗‖‖T‖‖b2‖

Since b1,b2 are unitary vectors, ‖A‖ ≤ κ, ‖T‖ ≤ 1
Im(z) , ‖T1‖ ≤ 1

Im(z) ,

∥∥∥∥(
IN + σ2cNT (M)

N,L (TT)
)−1

∥∥∥∥ ≤ |z|
Im(z) ,

1
|1+σ2cNt1(z)| ≤ 1

Im(z) , ‖T (M)
N,L (T1 − t1IML)‖ =O

(√
log(L)
N1−α

)
, and ‖TL,L(T̃1 − t̃1IN)‖ =O

(
log(N)
N1−α

)
, it yields

|b1(T−T1)b2| ≤ |z|σ2

(Im(z)2 ‖IM ⊗TL,L(T̃− T̃1)‖

+ σ2cNκ
2|z|

(Im(z))4 ‖T (M)
N,L (T−T1)‖+O

√
log(L)

N1−α


Recall that ‖TL,L(T̃T−T̃T

1 )‖ ≤ sup‖b̃1‖,‖b̃2‖=1 |b̃1(T̃−T̃1)b̃2| and ‖T (M)
N,L (T−T1)‖ ≤ sup‖b1‖,‖b2‖=1 |b1(T−T1)b2|,

we can simply get that

sup
‖b1‖,‖b2‖=1

|b1(T−T1)b2| ≤ |z|σ2

(Im(z))2 sup
‖b̃1‖,‖b̃2‖=1

|b̃1(T̃− T̃1)b̃2|

+ σ2cNκ
2|z|

(Im(z))4 sup
‖b1‖,‖b2‖=1

|b1(T−T1)b2|+O

√
log(L)

N1−α

 (4.3.22)

Similar calculations give us that

sup
‖b̃1‖,‖b̃2‖=1

|b̃1(T̃− T̃1)b̃2| ≤ |z|σ2cN

(Im(z))2 sup
‖b1‖,‖b2‖=1

|b1(T−T1)b2|

+ σ2κ2|z|
(Im(z))4 sup

‖b̃1‖,‖b̃2‖=1

|b̃1(T̃− T̃1)b̃2|+O

√
log(L)

N1−α

 (4.3.23)

Solving the system of linear inequalities (4.3.22), (4.3.23), we obtain that for z ∈ C+ well chosen ‖T(z)−
T1(z)‖ = sup‖b1‖,‖b2‖=1 |b∗

1 (T−T1)b2| and ‖T̃(z)− T̃1(z)‖ = sup‖b̃1‖,‖b̃2‖=1 |b̃∗
1 (T̃− T̃1)b̃2| are both

√
log(N)
N1−α

terms. Using the argument "à la Montel" used in the course of the proof of Proposition 3.9.1, we obtain
the convergence towards 0 of ‖T(z)−T1(z)‖ and of ‖T̃(z)− T̃1(z)‖ for each z ∈C\R+.

We finally mention that T1 and T̃1 behave as S and S̃ defined by (4.2.3), and that this implies that
‖T−S‖ and ‖T̃− S̃‖ converge towards 0. More precisely, the following Corollary holds.
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Corollary 4.3.1. For each z ∈C\R+, it holds that

‖T1(z)−S(z)‖ → 0 (4.3.24)

‖T̃1(z)− S̃(z)‖ → 0 (4.3.25)

and that

‖T(z)−S(z)‖ → 0 (4.3.26)

‖T̃(z)− S̃(z)‖ → 0 (4.3.27)

The proof of (4.3.24, 4.3.25) is based on the observation that t1(z)−mc (z) → 0 and that t1(z)−mc (z) →
0, while (4.3.26, 4.3.27) follows directly from (4.3.6).

�

4.4 Application to regularized estimated spatial-temporal Wiener filters in
large system case

In this section, we revisit Section 2.4 in the case where P and L may converge towards +∞. We recall that
(sn)n∈Z represents an i.i.d. sequence available from n = 1 to n = N. We study the performance of the
estimated regularized Wiener filter ĝλ defined by

ĝλ =
(

1

N

N∑
n=1

y(L)
n y(L)∗

n +λIML

)−1 (
1

N

N∑
n=1

y(L)
n s∗n

)
(4.4.1)

ĝλ is destined to estimate the unknown transmitted data (sn)n>N. We recall that the signal to interference
plus noise ratio produced by ĝ(L)

λ
is equal to

SINR(ĝλ) = |ĝ∗
λ

h(L)
P |2

ĝ∗
λ
H(L)

−PH
(L)∗
−P ĝλ+σ2‖ĝλ‖2

(4.4.2)

where h(L)
P is column P of H(L), and matrix H(L)

−P is obtained by deleting column P from matrix H(L).

SINR(ĝ(L)
λ

) is random in the sense that it depends on the vectors (yn)n=1,...,N, which are random them-
selves due to the presence of the additive noise. In the following, we generalize the results of Section
2.4 and establish that, provided L

M → 0, SINR(ĝλ) has exactly the same asymptotic behaviour than in the
case where P and L do not scale with N, i.e. SINR(ĝλ) converges almost surely towards termφ(λ) defined
by (2.4.25). The reader may check that in the present context, the estimate φ̂(λ) of φ(λ) introduced in
Section 2.4 is still consistent in the context of the present chapter. From now on, we assume that

Assumption A-7: ML and N converge towards +∞ in such a way that cN = ML
N satisfies cN → c∗ where

0 < c∗ <+∞. P,L are O (Nα) with 0 < α< 1
2 , and that M =O

(
N1−α).

and that

Assumption A-8: Sequence s is an independent identically distributed sequence verifying Assumption
A-6

To simplify the notations, N →+∞ should be understood as the above asymptotic regime.
As in Section 2.4, we denote by UN the matrix (P+L−1)×N defined by UN = 1p

N
S(L)

N . We also denote by

Σ(L)
N and W(L)

N the normalized observed and noise matrices Y(L)
N /

p
N and V(L)

N /
p

N. In Section 2.4, it was
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assumed without restriction that UN verified UNU∗
N = I because replacing H by H

(
1p
N

S(L)
N

)1/2
and UN

by
(

1p
N

S(L)
N

)−1/2
UN had no impact. In the present context, this is however apparently not true because

replacingH and UN byH
(

1p
N

S(L)
N

)1/2
and

(
1p
N

S(L)
N

)−1/2
UN breaks the Hankel structures of the 2 matrices.

The Hankel structures were important to establish that ‖T(z)−T1(z)‖ and ‖T̃(z)−T̃1(z)‖ converge towards
0. However, as sequence s verifies Assumption A-8, matrix UNU∗

N verifies

‖UNU∗
N − IP+L−1‖→ 0

and it is easy to check that the replacement of H by H
(

1p
N

S(L)
N

)1/2
and of UN by

(
1p
N

S(L)
N

)−1/2
UN has no

impact on the proof of Proposition 4.3.1. We therefore assume without restriction that UNU∗
N = I as in

Section 2.4.

In the following, we define Q(z) as the resolvent of matrixΣΣ∗ defined by Q(z) = (ΣΣ∗ −zIML)−1, and
recall that the estimated Wiener filter ĝλ can be written as

ĝ(L)
λ

= Q(−λ)Σu∗

where u = 1p
N

(s1, . . . , sN) is the P-th row of matrix U. To evaluate the behaviour of the SINR given by

formula (4.4.2) when N →+∞, it is necessary to study |h∗
Pĝλ|2 ,‖H∗

1 ĝλ‖2, and ‖ĝλ‖2. These terms depend
on bilinear forms of matrices Q(−λ) and Q(−λ)2 whose asymptotic behaviour have thus to be evaluated.
In the following, we prove that the above 3 terms behave as in the case where P and L do not scale with
N, thus showing that the SINR has also the same behaviour.

4.5 Asymptotic behaviour of the SINR

In this section, we study the asymptotic behaviour of the SINR and evaluate |ĝ∗
λ

h(L)
P |2, ĝ∗

λ
H(L)

−PH
(L)∗
−P ĝλ

and ‖ĝλ‖2.

4.5.1 Evaluation of ĝ∗
λ

h(L)
P

This subsection is devoted to the evaluation of ĝ∗
λ

h(L)
P , or more generally, of b∗ĝλ = b∗Q(−λ)Σu∗, where

b is a deterministic ML–dimensional vector such that supN ‖b‖ ≤ κ.
Now let z ∈C\R+, and consider b∗Q(z)Σu∗. To short the notation, we omit the variable z in the calcula-
tions of Q. Remark 8 implies that

b∗[QΣ −E(QΣ)]u∗ → 0

almost surely. It is thus sufficient to evaluate E(QΣ)

Expression of E(QΣ)

For this, we express E(QΣ) as E(QΣ) = E(QW)+E(QA), and we calculate E(QW) using the integration by
parts formula. We recall the notation (QW)m

i , j , the entry (i + (m−1)L,n) of ML×N matrix QW for 1 ≤ m ≤
M, 1 ≤ i ≤ L and 1 ≤ j ≤ N and use the identity

E
[

(QW)m
i , j

]
= ∑

m1,i1

E
(
Qm,m1

i ,i1
Wm1

i1, j

)
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By the integration by parts formula, it yields

E
(
Qm,m1

i ,i1
Wm1

i1, j

)
= ∑

i ′, j ′
E
(
Wm1

i1, j W
m1

i ′, j ′
)
E

(
∂Qm,m1

i ,i1

∂W
m1

i ′, j ′

)

It is easy to check that
∂Qm,m1

i ,i1

∂W
m1

i ′, j ′
=−(QΣ)m

i , j ′Q
m1,m1
i ′,i1

(3.3.1) implies that E
(
Wm1

i1, j W
m1

i ′, j ′
)
= σ2

N δ(i1 − i ′ = j ′− j ). Therefore, we obtain that

E
(
Qm,m1

i ,i1
Wm1

i1, j

)
=−σ

2

N

∑
i ′, j ′

δ(i1 − i ′ = j ′− j )E
[

(QΣ)m
i , j ′Q

m1,m1
i ′,i1

]
We put u = i1 − i ′ in the above sum, and get that

E
(
Qm,m1

i ,i1
Wm1

i1, j

)
=−σ

2

N

L−1∑
u=−(L−1)

E
(
(QW)m

i ,u+ j Qm1,m1
i1−u,i1

)
11≤u+ j≤N11≤i1−u≤L

and that

E
[

(QW)m
i , j

]
= ∑

m1,i1

E
[

Qm,m1
i ,i1

Wm1
i1, j

]
=−σ

2

N

L−1∑
u=−(L−1)

E

(
(QW)m

i ,u+ j 11≤u+ j≤N
∑

m1,i1

Qm1,m1
i1−u,i1

11≤i1−u≤L

)

Using the definition τ(M)(Q)(−u) = 1
ML

∑
m1,i1

Qm1,m1
i1−u,i1

11≤i1−u≤L, we get that

E
[

(QW)m
i , j

]
=−σ2 ML

N

L−1∑
u=−(L−1)

E
(
(QW)m

i ,u+ j 11≤u+ j≤Nτ
(M)(Q)(−u)

)
Setting k = u + j , the righthandside of the above equation can also be written as

−σ2cN

N∑
k=1

E
(
(QΣ)m

i ,kτ
(M)(Q)(−k + j )1−(L−1)≤k− j≤L−1

)
or, using the observation that τ(M)(Q)( j −k)1−(L−1)≤ j−k≤L−1 =

(
T (M)

N,L (Q)
)

j ,k
(see Eq. (3.1.5)), as

−σ2cN

N∑
k=1

E

(
(QΣ)m

i ,k

(
T (M)

N,L (QT)
)

k, j

)
Therefore,

E
[

(QW)m
i , j

]
=−σ2cN

N∑
k=1

E

(
(QΣ)m

i ,k

(
T (M)

N,L (QT)
)

k, j

)
=−σ2cNE

[(
QΣT (M)

N,L (QT)
)m

i , j

]
It is clear that

E [QW] =−σ2cNE
[

QΣT (M)
N,L (QT)

]
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Thus, we obtain that

E[QΣ] = E[QW]+E[QA]

=−σ2cNE
[

QΣT (M)
N,L (QT)

]
+E[Q]A

We express matrix Q as Q = E(Q)+Q◦, and obtain that

E[QΣ] = E(Q)A−σ2cNE [QΣ]T (M)
N,L (E(QT))−σ2cNE

[
QΣT (M)

N,L

(
(Q◦)T)]

Hence, we get that

E[QΣ]
[

IN +σ2cNT (M)
N,L (E(QT))

]
= E(Q)A−E

[
QΣT (M)

N,L

(
(Q◦)T)]

The invertibility of
[

IN +σ2cNT (M)
N,L (E(QT))

]
is proven in section 3.A, and we recall that its inverse is de-

noted by H. We obtain that

E[QΣ] = E(Q)AH+E
[

QΣT (M)
N,L

(
(Q◦)T)]

H (4.5.1)

Convergence of bilinear form b∗E(QΣ)u∗

In this subsection, we prove that the bilinear form b∗E(QΣ)u∗ converges towards a deterministic quan-
tity. First of all, we prove the lemma

Lemma 4.5.1. Under assumption A-7, it holds that

b∗ [E[QΣ]−E(Q)AH]u∗ → 0

when N →∞.

Proof of lemma (4.5.1): Using the equation (4.5.1) and the definition T (M)
N,L

(
(Q◦)T

)=∑L−1
l=−(L−1)τ

(M)(Q◦)(l )Jl ,
we can obtain that:

b∗ [E[QΣ]−E(Q)AH]u∗ = b∗
(
E
[

QΣT (M)
N,L

(
(Q◦)T)]

H
)

u∗

= Tr

(
E

[
QΣ

L−1∑
l=−(L−1)

τ(M)(Q◦)(l )Jl

]
Hu∗b∗

)

= E
[

L−1∑
l=−(L−1)

τ(M)(Q◦)(l )b∗QΣJl Hu∗
]

(3.4.1,3.4.7) imply that E|τ(M)(Q◦)(l )|2 and Var
(
b∗QΣJl Hu∗)

are upperbounded by terms of the form C(z)
MN

and κ2C(z) L
N respectively. The Cauchy-Schwartz inequality thus implies that

|b∗ [E[QΣ]−E(Q)AH]u∗| ≤ κC(z)L

√
L

MN2 =O

(√
L

M

L

N

)
=O

(√
L

M3

)

As L
M2 → 0, the lemma is thus proved. �

We now prove that

Proposition 4.5.1.

b∗
[
E(Q)AH− 1

1+σ2cNt1(z)
T1A

]
u∗ → 0 (4.5.2)

with T1 =
(
−z(1+σ2 t̃1(z))IML + AA∗

1+σ2cNt1(z)

)−1
, T̃1 =

(
−z(1+σ2cNt1(z))IN + A∗A

1+σ2 t̃1(z)

)−1
, t1(z) = 1

ML Tr(T1)

and t̃1(z) = 1
N Tr(T̃1).
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Proof. We recall that H =
(
IN +σ2cNT (M)

N,L (E(Q))
)−1

. It is clear that

b∗
[
E(Q)AH− 1

1+σ2cNt1(z)
T1A

]
u∗

= b∗(E(Q)−T1)A H u∗+b∗T1A
[

H− 1

1+σ2cNt1(z)
IN

]
u∗

= b∗(E(Q)−T1)A H u∗+b∗T1A H
[
(1+σ2cNt1(z))IN −H−1] 1

1+σ2cNt1(z)
u∗

= b∗(E(Q)−T1)A H u∗+b∗T1A H
[

(1+σ2cNt1(z))IN −
(
IN +σ2cNT (M)

N,L (E(Q))
)] 1

1+σ2cNt1(z)
u∗

= b∗(E(Q)−T1)A H u∗

+ σ2cN

1+σ2cNt1(z)
b∗T1A H

[
t1(z)IN −T (M)

N,L (TT
1 )+T (M)

N,L (TT
1 )−T (M)

N,L

(
E(QT)

)]
u∗

= b∗(E(Q)−T1)AHu∗+ σ2cN

1+σ2cNt1(z)
b∗T1A H

(
T (M)

N,L

(
t1(z)IML −TT

1

))
u∗

+ σ2cN

1+σ2cNt1(z)
b∗T1A H

(
T (M)

N,L

(
TT

1 −E(QT)
))

u∗ (4.5.3)

Since supN ‖A‖ <+∞, ‖H‖ ≤ |z|
Im(z) , Corollary 3.9.1, Proposition 4.3.1 and ( (4.3.9)) imply (4.5.2).

Therefore, we have the following result.

Proposition 4.5.2. Under Assumption A-7, it holds that

b∗
[

QΣ− 1

1+σ2cNt1(z)
T1A

]
u∗ → 0, a.s (4.5.4)

for each z ∈C\R+.

In order to connect this with the corresponding result in Section 2.4 (see Eq. (2.4.16)), we remark that
t1(z) and T1(z) can be replaced in (4.5.4) by mc (z) and S(z) where mc (z) is the Stieltjes of the Marcenko-
Pastur distribution of parameters (c,σ2) and where S(z) is given by

S(z) =
(
−z(1+σ2m̃c (z))+ HH∗

1+σ2cmc (z)

)−1

(see Corollary 4.3.1). Moreover, A =HU and Au∗ =HUu∗. As U is assumed orthogonal, Uu∗ = eP where
eP is the P-th vector of the canonical basis of CP+L−1. Therefore, (4.5.4) is equivalent to

b∗QΣu∗− 1

1+σ2cmc (z)
b∗S hP → 0, a.s (4.5.5)

for each z ∈C\R+, which is precisely the evaluation that follows from (2.4.16). in section 2.4.

4.5.2 Evaluation of ‖ĝλ‖2

In this subsection, we study the behaviour of ‖ĝλ‖2, when N converges towards ∞. In order to do this,
we express ‖ĝλ‖2 = uΣ∗Q2(−λ)Σu∗. As we can notice that d

d z Q(z) = Q2(z), we can obtain

uΣ∗Q2(z)Σu∗ = d

d z

(
uΣ∗Q(z)Σu∗)

= u
d

d z

(
Σ∗Q(z)Σ

)
u∗

112



CHAPTER 4. CONVERGENCE TOWARDS SPIKED MODEL : THE CASE OF WIDEBAND ARRAY
PROCESSING MODELS

We recall that Σ∗Q(z)Σ= Q̃(z)Σ∗Σ= IN + zQ̃(z). It follows that

uΣ∗Q2(z)Σu∗ = u
d

d z

(
Σ∗Q(z)Σ

)
u∗

= u
d

d z

(
IN + zQ̃(z)

)
u∗

= u
d

d z

(
zQ̃(z)

)
u∗

= d

d z

(
zuQ̃(z)u∗)

We have thus to evaluate the behaviour of zuQ̃(z)u∗ for z ∈C\R+ and to differentiate w.r.t z to obtain the
behaviour of ‖ĝλ‖2. As uQ̃(z)u∗−uE(Q̃(z))u∗ → 0 almost surely for each z ∈C\R+, we have just to study
E(uQ̃(z)u∗). Again, the result we obtain is the same as in Section 2.4. In particular, we have the following
result.

Proposition 4.5.3. For all z ∈C\R+, it holds that

u
d

d z

[
z(E(Q̃)− T̃1)

]
u∗ → 0 (4.5.6)

when N →∞.

Proof. We express E(Q̃)−T̃1 = E(Q̃)−T̃+T̃−T̃1. (3.9.4) and (4.3.6) imply that u(E(Q̃)−T̃)u∗ and u(T̃−T̃1)u∗

both converge towards 0, when N →∞, for all z ∈C\R+. Hence, it holds that

u(E(Q̃)− T̃1)u∗ → 0

for all z ∈C+. (4.5.6) is obtained by noticing that the convergence of zu(E(Q̃)−T̃1)u∗ towards 0 is uniform
on each compact subset of C\R+.

In order to retrieve the result of Section 2.4, we remark that, by Corollary 4.3.1, T̃1(z) can be replaced
in (4.5.6) by S̃(z) given by

S̃(z) =
(
−z(1+σ2cmc (z))+ U∗H∗HU

1+σ2m̃c (z)

)−1

4.5.3 Evaluation of ĝ∗
λ
H(L)

−PH
(L)∗
−P ĝλ

This subsection is devoted to study the behaviour of the quantity ĝ∗
λ
H(L)

−PH
(L)∗
−P ĝλ when N grows large.

First of all, we express
ĝ∗
λH

(L)
−PH

(L)∗
−P ĝλ = uΣ∗QH(L)

−PH
(L)∗
−P QΣu∗

We denoteD =H(L)
−PH

(L)∗
−P . By Poincaré-Nash inequality, we can prove easily that u(Σ∗QDQΣ−E(Σ∗QDQΣ))u∗ →

0, almost surely. Therefore, it is necessary to calculate matrix E(Σ∗QDQΣ) and to study the behaviour
of its bilinear forms. For this, we still use the integration by parts formula. However, the calculations are
this time very tedious because it is necessary to evaluate E(Σ∗QDQΣ) which is more complicated than
E(QΣ). We therefore do not present all the calculations we did, and just provide a summary of the main
steps.
First of all, for 1 ≤ j ,k ≤ N, it is clear that(

Σ∗QDQΣ
)

j ,k = ∑
m1,m2,i1,i2

(Σ∗)m1
j ,i1

(QDQ)m1,m2
i1,i2

Σ
m2

i2,k
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Recalling that Σ= A+W, we evaluate the following term.

E
[

(QDQ)m1,m3

i1,i3
Σ

m3

i3,k (Σ∗)m2
j ,i2

]
= E

[
(QDQ)m1,m3

i1,i3
Wm3

i3,k (Σ∗)m2
j ,i2

]
+E

[
(QDQ)m1,m3

i1,i3
Am3

i3,k (W∗)m2
j ,i2

]
+E

[
(QDQ)m1,m3

i1,i3
Am3

i3,k (A∗)m2
j ,i2

]
(4.5.7)

Remark 13. We recall that ' between matrices means that their spectral norms have the same asymptotic
behaviour.

We use the integration by parts to evaluate the 2 first terms on the righthandside of (4.5.7). We can
easily get that

E
[

(QDQ)m1,m3

i1,i3
Wm3

i3,k (Σ∗)m2
j ,i2

]
= ∑

i ′, j ′

σ2

N
δ(i3 − i ′ = j ′−k)×

E
[
−(QΣ)m1

i1, j ′(QDQ)m3,m3

i ′,i3
(Σ∗)m2

j ,i2
− (QDQΣ)m1

i1, j ′Q
m3,m3

i ′,i3
(Σ∗)m2

j ,i2
+ (QDQ)m1,m3

i1,i3
δ(m2 = m3)δ(i2 = i ′)δ( j = j ′)

]
(4.5.8)

and that

E
[

(QDQ)m1,m3

i1,i3
Am3

i3,k (W∗)m2
j ,i2

]
= ∑

i ′, j ′

σ2

N
δ(i2 − i ′ = j ′− j )E

[
−Qm1,m2

i1,i ′ (Σ∗QDQ)m3

j ′,i3
Am3

i3,k − (QDQ)m1,m2
i1,i ′ (Σ∗Q)m3

j ′,i3
Am3

i3,k

]
(4.5.9)

Summing both side of (4.5.8) and (4.5.9) over m3 and i3, we obtain that

E
[

(QDQW)m1

i1,k (Σ∗)m2
j ,i2

]
=−σ2cNE

[(
QΣ

(
T (M)

N,L (QDQ)
)T

)m1

i1,k

(
Σ∗)m2

j ,i2

]
−σ2cNE

[(
QDQΣT (M)

N,L (QT)
)m1

i1,k
(Σ∗)m2

j ,i2

]
+ σ2

N
E
[

(QDQ)m1,m2

i1,i2−(k− j )

]
11≤i2−(k− j )≤L (4.5.10)

and that

E
[

(QDQA)m1

i1,k (W∗)m2
j ,i2

]
=−σ

2

N

L−1∑
i=−(L−1)

E
[

Qm1,m2
i1,i+i2

(Σ∗QDQA) j−i ,k + (QDQ)m1,m2
i1,i+i2

(Σ∗QA) j−i ,k

]
11≤i+i2≤L11≤ j−i≤N

(4.5.11)

We recall that zQ̃ =Σ∗QΣ− IN. From (4.5.10), setting m1 = m2, i1 = i2 and summing over m1, i1, we get
that

E
[
Σ∗QDQW

]
j ,k =−σ2cNE

[
Σ∗QΣ

(
T (M)

N,L (QDQ)
)T

]
j ,k

−σ2cNE
[
Σ∗QDQΣT (M)

N,L (QT)
]

j ,k
+σ2cNE

[
T (M)

N,L (QDQ)
]

k, j

=−σ2cNE

[
(Σ∗QΣ− IN)

(
T (M)

N,L (QDQ)
)T

]
j ,k

−σ2cNE
[
Σ∗QDQΣT (M)

N,L (QT)
]

j ,k

=−σ2cNzE

[
Q̃

(
T (M)

N,L (QDQ)
)T

]
j ,k

−σ2cNE
[
Σ∗QDQΣT (M)

N,L (QT)
]

j ,k
(4.5.12)

We obtain immediately that

E
[
Σ∗QDQW

]=−σ2cNzE

[
Q̃

(
T (M)

N,L (QDQ)
)T

]
−σ2cNE

[
Σ∗QDQΣT (M)

N,L (QT)
]

'−σ2cNzE
(
Q̃

)(
T (M)

N,L (E(QDQ))
)T −σ2cNE

(
Σ∗QDQΣ

)
T (M)

N,L (E(QT)) (4.5.13)
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Similarly, from (4.5.11), setting m1 = m2, i1 = i2 and summing over m1, i1, we get that

E
[
W∗QDQA

]
j ,k =−σ2cNE

[
T (M)

N,L (QT)Σ∗QDQA
]

j ,k
−σ2cNE

[(
T (M)

N,L (QDQ)
)T
Σ∗QA

]
j ,k

(4.5.14)

It follows that

E
[
W∗QDQA

]=−σ2cNE
[
T (M)

N,L (QT)Σ∗QDQA
]
−σ2cNE

[(
T (M)

N,L (QDQ)
)T
Σ∗QA

]
'−σ2cNT (M)

N,L (E(QT))E
(
Σ∗QDQA

)−σ2cN

(
T (M)

N,L (E(QDQ))
)T
E
(
Σ∗QA

)
'−σ2cNT (M)

N,L (E(QT))E
(
W∗QDQA

)−σ2cNT (M)
N,L (E(QT))E

(
A∗QDQA

)
−σ2cN

(
T (M)

N,L (E(QDQ))
)T
E
(
Σ∗QA

)
(4.5.15)

(3.5.26) in chapter 3 implies that
E
[
Σ∗QA

]' HTA∗E(Q)A

while we recall that H =
(
IN +σ2cNT (M)

N,L (E(Q))
)−1

. Therefore, (4.5.15) becomes

[
IN +σ2cNT (M)

N,L (E(QT))
]
E
[
W∗QDQA

]'−σ2cNT (M)
N,L (E(QT))A∗E (QDQ)A−σ2cN

(
T (M)

N,L (E(QDQ))
)T

HTA∗E(Q)A

It follows that

E
[
W∗QDQA

]'−σ2cNHT T (M)
N,L (E(QT))E

(
A∗QDQA

)−σ2cNHT
(
T (M)

N,L (E(QDQ))
)T

HT A∗E(Q)A (4.5.16)

By (4.5.13),(4.5.16), it is clear that

E
[
Σ∗QDQΣ

]= E[
Σ∗QDQW

]+E[
W∗QDQA

]+E[
A∗QDQA

]
'−σ2cNzE

(
Q̃

)(
T (M)

N,L (E(QDQ))
)T −σ2cNE

(
Σ∗QDQΣ

)
T (M)

N,L (E(QT))

−σ2cNHT T (M)
N,L (E(QT))E

(
A∗QDQA

)−σ2cNHT
(
T (M)

N,L (E(QDQ))
)T

HT A∗E(Q)A+E[
A∗QDQA

]
Hence, we eventually obtain

E
[
Σ∗QDQΣ

][
IN +σ2cNT (M)

N,L (E(QT))
]
'−σ2cNzE

(
Q̃

)(
T (M)

N,L (E(QDQ))
)T

−σ2cNHT
(
T (M)

N,L (E(QDQ))
)T

HT A∗E(Q)A+
[

IN −σ2cNHT T (M)
N,L (E(QT))

]
E
(
A∗QDQA

)
Noticing that IN −σ2cNHT T (M)

N,L (E(QT)) = HT, it holds that

E
[
Σ∗QDQΣ

]'−σ2cNzE
(
Q̃

)(
T (M)

N,L (E(QDQ))
)T

HT

−σ2cNHT
(
T (M)

N,L (E(QDQ))
)T

HT A∗E(Q)AHT +HT E
(
A∗QDQA

)
HT (4.5.17)

We notice immediately that it is necessary to calculate the expectation of QDQ. To do this, we can ob-
serve that QDQΣΣ∗ = zQDQ+QD. Therefore, we will evaluate E(QDQΣΣ∗). However, simply plugging
(4.5.10) and (4.5.11) to the expression

E
[

(QDQΣ)m1

i1,k (Σ∗)m2
j ,i2

]
= E

[
(QDQW)m1

i1,k (Σ∗)m2
j ,i2

]
+E

[
(QDQA)m1

i1,k (W∗)m2
j ,i2

]
+E

[
(QDQA)m1

i1,k Am2
j ,i2

]
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and summing over k = j , will not allow us to have a closed form equation of E(QDQ).
To circumvent this problem, we will use the same technique as in chapter 3. More precisely, we define
the following N×N matrices [

Xm1,m2
i1,i2

]
k, j

= E
[

(QDQΣ)m1

i1,k (Σ∗)m1
j ,i2

]
(4.5.18)[

Ym1,m2
i1,i2

]
k, j

= E
[

(QΣ)m1

i1,k (Σ∗)m1
j ,i2

]
(4.5.19)[

Bm1,m2
i1,i2

]
k, j

= E
[

(QDQ)m1,m2

i1,i2−(k− j )

]
11≤i2−(k− j )≤L (4.5.20)[

Cm1,m2
i1,i2

]
k, j

= E
[

Qm1,m2

i1,i2−(k− j )

]
11≤i2−(k− j )≤L (4.5.21)

and notice that E
[

(QDQΣΣ∗)m1,m2
i1,i2

]
= Tr(Xm1,m2

i1,i2
). Therefore, we will calculate matrix Xm1,m2

i1,i2
.

Using (4.5.12), (4.5.14), after a few calculations, we obtain that

Xm1,m2
i1,i2

' σ2

N
HBm1,m2

i1,i2
−σ2cNT (M)

N,L (E(QDQ))Ym1,m2
i1,i2

− σ2

N
HAT (E(QDQ))T AHCm1,m2

i1,i2

+ σ2

N
H

[
σ2cN(Cm1,m2

i1,i2
)THT

(
T (M)

N,L (E(QDQ))
)T

HTA∗E(Q)A−
(
Bm1,m2

i1,i2

)
HTA∗E(Q)A

]T

+HAT (E(QDQ))T fm1
i1

(
fm2

i2

)T
A (4.5.22)

Taking the trace of both side of (4.5.22), we obtain after some calculations that

E(QDQΣΣ∗) ' E(QDQ)
[
AHTA∗−σ2zIM ⊗TL,L(E(Q̃T))

]−σ2E(Q)IM ⊗TL,L(HAT (E(QDQ))T AH)

+σ4cNE(Q)IM ⊗TL,L

(
HATE(QT)AHT (M)

N,L (E(QDQ))H
)
−σ4cNE(Q)IM ⊗TL,L

(
HT (M)

N,L (E(QDQ))H
)

−σ2cNE(Q)AHT
(
T (M)

N,L (E(QDQ))
)T

HTA∗+σ4E(Q)IM ⊗TL,L(HT (M)
N,L

(
E(QDQ))HATE(QT)AH

)
(4.5.23)

Now, we remark that

IM ⊗TL,L(HAT (E(QDQ))T AH) =
L−1∑

l=−(L−1)

1

N
Tr

(
HAT (E(QDQ))T AHJl

)
IM ⊗ J∗l

L

and we recall that the rank of A is P+L−1. As a consequence∣∣∣∣ 1

N
Tr

(
HAT (E(QDQ))T AHJl

)∣∣∣∣≤ C(z)
L

N

It follows that ∥∥IM ⊗TL,L(HAT (E(QDQ))T AH)
∥∥≤ C(z)

L2

N
=O

(
L

M

)
which converge towards 0 under assumption 7. Similarly, we have that∥∥∥IM ⊗TL,L

(
HATE(QT)AHT (M)

N,L (E(QDQ))H
)∥∥∥→ 0∥∥∥IM ⊗TL,L(HT (M)

N,L

(
E(QDQ))HATE(QT)AH

)∥∥∥→ 0

Therefore, (4.5.23) can be simplified as follows

zE(QDQ)+E(QD) ' E(QDQ)
[
AHTA∗−σ2zIM ⊗TL,L(E(Q̃T))

]
−σ4cNE(Q)IM ⊗TL,L

(
HT (M)

N,L (E(QDQ))H
)
−σ2cNE(Q)AHT

(
T (M)

N,L (E(QDQ))
)T

HTA∗
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or equivalently

E(QDQ)
[−z

(
IML +σ2IM ⊗TL,L(E(Q̃T))

)+AHTA∗]'
E(Q)

[
D+σ4cNIM ⊗TL,L

(
HT (M)

N,L (E(QDQ))H
)
+σ2cNAHT

(
T (M)

N,L (E(QDQ))
)T

HTA∗
]

Recalling that R = [−z
(
IML +σ2IM ⊗TL,L(E(Q̃T))

)+AHTA∗]−1
, it holds that

E(QDQ) ' E(Q)DR+σ4cNE(Q)IM ⊗TL,L

(
HT (M)

N,L (E(QDQ))H
)

R+σ2cNE(Q)AHT
(
T (M)

N,L (E(QDQ))
)T

HTA∗R

(4.5.24)

Lemma 4.5.2. Under assumption A-7, for each z ∈C\R+, it holds that

‖E(QDQ)−TDT‖→ 0 (4.5.25)

Proof. This lemma will be proved in the appendix.

Moreover, we have that |E(Q)−T‖→ 0 and
∥∥E(Q̃)− T̃

∥∥→ 0. Denoting by HT =
[

IN +σ2cNT (M)
N,L (T)

]−1
.

(4.5.17) becomes

E
[
Σ∗QDQΣ

]'−σ2cNzT̃
(
T (M)

N,L (TDT)
)T

HT
T

−σ2cNHT
T

(
T (M)

N,L (TDT)
)T

HT
T A∗TAHT

T +HT
T A∗TDTAHT

T (4.5.26)

Since D =H(L)
−PH

(L)∗
−P , the rank of D is P+L−2. As a consequence, the rank of TDT is P+L−2. Therefore,

by remarking that

T (M)
N,L (TDT) =

L−1∑
l=−(L−1)

1

ML
Tr

(
TDT

(
IM ⊗ Jl

L

))
J∗l

N

we can have immediately that
∥∥∥T (M)

N,L (TDT)
∥∥∥=O

( L
M

)
which converges towards 0. Therefore,

‖σ2cNzT̃
(
T (M)

N,L (TDT)
)T

HT
T −σ2cNHT

T

(
T (M)

N,L (TDT)
)T

HT
T A∗TAHT

T‖→ 0 (4.5.27)

Hence, equation (4.5.26) can be simplified into

E
[
Σ∗QDQΣ

]' HT
T A∗TDTAHT

T (4.5.28)

Recalling that (T1, T̃1) are defined byT1 =
(
−z(1+σ2 t̃1(z))IML + AA∗

1+σ2cNt1(z)

)−1

T̃1 =
(
−z(1+σ2cNt1(z))IN + A∗A

1+σ2 t̃1(z)

)−1

where t1(z) = 1
ML Tr(T1) and t̃1(z) = 1

N Tr(T̃1), under assumption A-7, we have that ‖T − T1‖ → 0 and

‖T (M)
N,L (T1)− t1(z)IML‖→ 0, with t1(z) = 1

ML Tr(T1). It is clear that∥∥∥∥HT − 1

1+ cNt1(z)
IN

∥∥∥∥→ 0

Remarking that t1(z) and T1(z) can be replaced by mc (z) and S(z), we obtain that

E
[
Σ∗QDQΣ

]' 1

(1+σ2cNmc (z))2 A∗SDSA =
(

U∗H∗ S

1+σ2cNmc (z)
H−PU

)2

(4.5.29)

which is exactly what can be obtained from (2.4.16) when P and L remain fixed.
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Appendix

4.A Proof of lemma 4.3.1

To prove lemma 4.3.1, we first consider the (P+L−1)× (N+2(P+L−1)) matrix

S̃(L) =


0 · · · 0 s2−P · · · sN−P+1 sN−P+2 · · · sN+L−1
...

...
...

...
...

...
... 0

0
...

...
...

...
...

...
...

s2−P · · · sL−1 sL · · · sN+L−1 0 · · · 0

 (4.A.1)

and we define the following (P+L−1)× (P+L−2) matrices

S(L)
− =


0 · · · 0
...

... s2−P

0
...

...
s2−P · · · sL−1

 (4.A.2)

and

S(L)
+ =


sN−P+2 · · · sN+L−1

...
... 0

sN+L−1
...

...
0 · · · 0

 (4.A.3)

We can notice that S̃(L) = (S(L)− ,S(L),S(L)
+ ). As a consequence we have

S̃(L)S̃(L)∗

N+P+L
= S(L)− S(L)∗−

N+P+L
+ S(L)

+ S(L)∗
+

N+P+L
+ N

N+P+L

S(L)S(L)∗

N

which gives us

S(L)S(L)∗

N
= N+P+L

N

S̃(L)S̃(L)∗

N+P+L
− S(L)− S(L)∗−

N
− S(L)

+ S(L)∗
+

N

It follows that

S(L)S(L)∗

N
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν= S̃(L)S̃(L)∗

N+P+L
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

+P+L

N

S̃(L)S̃(L)∗

N+P+L
− S(L)− S(L)∗−

N
− S(L)

+ S(L)∗
+

N

The introduction of matrix S̃(L) is motivated by the observation that matrix S̃(L)S̃(L)∗/N+ L− 1 is a
Toeplitz matrix whose symbol φ̂(ν) coincides with a windowed periodogramm of sequence (sn)n=2−P,...,sN+L−1 .
Existing results will be used to establish that supν |φ̂(ν)−φ(ν)|→ 0, and this will imply that

∥∥∥∥ S̃(L)S̃(L)∗

N+P+L
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

∥∥∥∥→ 0
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The strategy of the proof consists in proving the three following properties.

•

∥∥∥∥ S̃(L)S̃(L)∗

N+P+L
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

∥∥∥∥=O

√
log(L)

N1−α

 , a.s (4.A.4)

•

∥∥∥∥S(L)− S(L)∗−
N

∥∥∥∥=O

(
Llog(L)

N

)
, a.s (4.A.5)

•

∥∥∥∥∥S(L)
+ S(L)∗

+
N

∥∥∥∥∥=O

(
Llog(L)

N

)
, a.s (4.A.6)

It is clear that

P+L

N

∥∥∥∥ S̃(L)S̃(L)∗

N+P+L

∥∥∥∥≤ P+L

N

∥∥∥∥ S̃(L)S̃(L)∗

N+P+L
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

∥∥∥∥
+P+L

N

∥∥∥∥∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

∥∥∥∥
and that ∥∥∥∥∫

[0,1]
φ(ν)dP+L−1(ν)d∗

P+L−1(ν)dν

∥∥∥∥≤ sup
ν∈[0,1]

|φ(ν)| < +∞

Moreover, since P+L
N =O

( 1
N1−α

)
, we can easily conclude that

∥∥∥P+L
N

S̃(L)S̃(L)∗
N+P+L

∥∥∥=O
( 1

N1−α
)
, almost surely.

4.A.1 Proof of (4.A.4)

We prove the first point (4.A.4). We denote (e1, ...,eP+L−1) the canonical basis of CP+L−1. For 1 ≤ k, l ≤
P+L−1, it holds that

(
S̃(L)S̃(L)∗
N+P+L

)
k,l

= 1
N+P+L eT

k S̃(L)S̃(L)∗el , and we can easily see that

• eT
k S̃(L) = ( 0, · · · ,0︸ ︷︷ ︸

P+L−1−k

, s2−P, · · · , sN+L−1︸ ︷︷ ︸
N+P+L−2

,0, · · · ,0︸ ︷︷ ︸
k−1

)

• S̃(L)∗el = (0, · · · ,0︸ ︷︷ ︸
P+L−1−l

, s2−P, · · · , sN+L−1︸ ︷︷ ︸
N+P+L−2

,0, · · · ,0︸ ︷︷ ︸
l−1

)T

Thus, it yields

(
S̃(L)S̃(L)∗

N+P+L

)
k,l

=


1

N+P+L

N+L−1−(k−l )∑
m=2−P

sm+(k−l )s∗m ,k ≥ l

1

N+P+L

N+L−1−|k−l |∑
m=2−P

sm s∗m+|k−l | ,k < l

∆= γ̂k−l

Therefore, S̃(L)S̃(L)∗
N+P+L is Toeplitz, and its entries are the α̂k−l . We denote by φ̂(ν) the well-known windowed

periodogram estimate of φ(ν):

φ̂(ν) =
P+L−2∑

u=−(P+L−2)
γ̂ue−2iπνu = a∗

P+L−1(ν)
S̃(L)S̃(L)∗

N+P+L
aP+L−1(ν) (4.A.7)

and notice that
S̃(L)S̃(L)∗

N+P+L
=

∫
[0,1]

φ̂(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

From this, we obtain immediately the following result:
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Lemma 4.A.1. Almost surely,for N large enough, if

sup
ν∈[0,1]

|φ̂(ν)−φ(ν)| =O

√
log(L)

N1−α


then we have ∥∥∥∥ S̃(L)S̃(L)∗

N+P+L
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

∥∥∥∥=O

√
log(L)

N1−α


almost surely.

Proof: By the definition of spectral norm, we have that∥∥∥∥ S̃(L)S̃(L)∗

N+P+L
−

∫
[0,1]

φ(ν)dP+L−1(ν)d∗
P+L−1(ν)dν

∥∥∥∥= sup
b1,b2∈CP+L−1

‖b1‖=‖b2‖=1

∣∣∣∣b∗
1

(∫
[0,1]

(φ̂(ν)−φ(ν))dP+L−1(ν)d∗
P+L−1(ν)dν

)
b2

∣∣∣∣
≤ sup

b1,b2∈CP+L−1

‖b1‖=‖b2‖=1

∫
[0,1]

|φ̂(ν)−φ(ν)| |b∗
1 dP+L−1(ν)d∗

P+L−1(ν)b2|dν

≤ sup
ν∈[0,1]

|φ̂(ν)−φ(ν)| sup
b1,b2∈CP+L−1

‖b1‖=‖b2‖=1

∫
[0,1]

|b∗
1 dP+L−1(ν)d∗

P+L−1(ν)b2|dν

≤ sup
ν∈[0,1]

|φ̂(ν)−φ(ν)| sup
b1,b2∈CP+L−1

‖b1‖=‖b2‖=1

(∫
[0,1]

|b∗
1 dP+L−1(ν)|2dν

)1/2 (∫
[0,1]

|d∗
P+L−1(ν)b2|2dν

)1/2

≤ sup
ν∈[0,1]

|φ̂(ν)−φ(ν)|

This concludes the lemma. �
According to the result obtained in the lemma 4.A.1, we will prove (4.A.4) in two steps, supν∈[0,1] |E(φ̂(ν))−
φ(ν)| =O

( 1
N1−α

)
and supν∈[0,1] |φ̂(ν)−E(φ̂(ν))| =O

(√
Llog(L)

N

)
First step.

The first step consists in showing that

sup
ν∈[0,1]

|E(φ̂(ν))−φ(ν)| =O

(
1

N1−α

)
for large N.
For this, we can rewrite the spectral density as

φ(ν) =
(+∞∑

k=0
αk e−2iπνk

)(+∞∑
l=0

αl e2iπνl

)

=
+∞∑

u=−∞

+∞∑
l=0

αu+lαl 1u+l≥0e−2iπνu

=
+∞∑

u=−∞
γue−2iπνu

where

γu =
+∞∑
l=0

αu+lαl 1u+l≥0 = E(sm+u s∗m)
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represent the autocovariance coefficients.
It follows that

E(φ̂(ν))−φ(ν) =
P+L−2∑

u=P+L−2
(E(γ̂u)−γu)e−2iπνu + ∑

|u|≥P+L−1
γue−2iπνu

Hence, for all ν ∈ [0,1]

|E(φ̂(ν))−φ(ν)| ≤
P+L−2∑

u=P+L−2
|E(γ̂u)−γu |+

∑
|u|≥P+L−1

|γu | (4.A.8)

Since, γ̂u = 1
N+P+L

∑N+L−1−|u|
m=2−P sm+u s∗m , it is easily seen that

E(γ̂u) = 1

N+P+L

N+L−1−|u|∑
m=2−P

γu =
(
1− 2+|u|

N+P+L

)
γu

This leads to

P+L−2∑
u=P+L−2

|E(γ̂u)−γu | ≤ 1

N+P+L

P+L−2∑
u=P+L−2

(2+|u|)|γu |

≤ 2(P+L−1)−1

N+P+L

(
P+L−2∑

u=P+L−2
|γu |

)

Now since
∑P+L−2

u=P+L−2 |γu | < +∞, it is clear that

|E(γ̂u)−γu | =O

(
L

N

)
=O

(
1

N1−α

)
(4.A.9)

As for the term
∑

|u|≥P+L−1 |γu |, we can see that

∑
|u|≥P+L−1

|γu | ≤
∑

|u|≥P+L−1

+∞∑
l=0

αu+lαl 1u+l≥0

≤ ∑
|u|≥P+L−1

∑
|l |>b P+L−1

2 c
|αu+l ||αl |+

∑
|u|≥P+L−1

∑
|l |≤b P+L−1

2 c
|αu+l ||αl |

We can easily determine an upperbound for the term∑
|u|≥P+L−1

∑
|l |>b P+L−1

2 c
|αu+l ||αl | =

∑
|l |>b P+L−1

2 c

∑
|u|≥P+L−1

|αu+l ||αl |

≤
( ∑

u∈Z
|αu |

) ∑
|l |>b P+L−1

2 c
|αl |


By (4.3.2),

∑
|l |>b P+L−1

2 c |αl | =O
( 1

Lη
)
, which implies that

∑
|u|≥P+L−1

∑
|l |>b P+L−1

2 c
|αu+l ||αl | =O

(
1

Lη

)
(4.A.10)

Using the same trick, we obtain similarly that∑
|u|≥P+L−1

∑
|l |≤b P+L−1

2 c
|αu+l ||αl | ≤

∑
|l |≤b P+L−1

2 c
|αl |

∑
|u|≥P+L−1

|αu+l |

≤ ∑
|l |≤b P+L−1

2 c
|αl |

 ∑
|k|>b P+L−1

2 c
|αk |

=O

(
1

Lη

)
(4.A.11)
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as
∑

|l |≤b P+L−1
2 c |αl | ≤

∑+∞
l=0 |αl | < +∞.

(4.A.10) and (4.A.11) imply that ∑
|u|≥P+L−1

|γu | =O

(
1

Lη

)
=O

(
1

Nηα

)
Since η> 1

α −1, the convergence rate 1
Nηα is faster than 1

N1−α . This, (4.A.9) and (4.A.8) imply that

sup
ν∈[0,1]

|E(φ̂(ν))−φ(ν)| =O

(
1

N1−α

)
�

Second step.
The second step consists in showing that, almost surely, for N sufficiently large

sup
ν∈[0,1]

|φ̂(ν)−E(φ̂(ν))| =O

√
Llog(L)

N

=O

√
log(L)

N1−α

 (4.A.12)

We recall the expression of the estimator of the spectral density φ̂(ν) =∑P+L−2
u=−(P+L−2) γ̂ue−2iπνu . Since φ̂(ν)

is a trigonometric polynomial of order 2L, we can bound its maximum by the maximum over a discrete
grid. More precisely, we use lemma 3 in [82]:

Lemma 4.A.2. Let S(ν) = 1
2 a0 +∑n

k=1[ak cos(2πνk)+ bk + si n(2πνk)] be a trigonometric polynomial of

order n. For any δ> 0 and l > 2(1+δ)n, we denote by ν j = j
l for 0 ≤ j ≤ l . Then, it holds that

max
ν∈[0,1]

|S(ν)| ≤ (1+ 1

δ
) max

0≤ j≤l
|S(ν j )|.

For δ> 0, let ν j = j
d4(1+δ)Le , for 0 ≤ j ≤ d4(1+δ)Le, then by lemma 4.A.2,

sup
ν∈[0,1]

|φ̂(ν)−E(φ̂(ν))| ≤ (1+ 1

δ
)max

j
|φ̂(ν j )−E(φ̂(ν j ))| (4.A.13)

Moreover, we have for each ε> 0 that

P(max
j

|φ̂(ν j )−E(φ̂(ν j ))| > ε) ≤∑
j
P[|φ̂(ν j )−E(φ̂(ν j ))| > ε] (4.A.14)

We evaluate then the quantity P[|φ̂(ν)−E(φ̂(ν))| > ε] for each ν ∈ [0,1]. For this we express the estimator
of the spectral density as

φ̂(ν) =
P+L−2∑

u=−(P+L−2)

 1

N+P+L

N+L−1∑
m,n=2−P
m−n=u

sm s∗n

e−2iπνu

= 1

N+P+L

P+L−2∑
u=−(P+L−2)

N+L−1∑
m,n=2−P
m−n=u

sm s∗ne−2iπν(m−n)

We can notice that φ̂(ν) has the form QN
N+P+L , with QN is the quadratic form of sn defined as

QN = ∑
2−P≤m,n≤N+L−1

am,n sm s∗n
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with am,n = e−2iπν(m−n)1|m−n|≤P+L−2. In addition, supm,n |am,n | ≤ 1 and am,n = 0 when |m−n| > P+L−2.
This remark leads us to adapt Theorem 10 from [82] to our case. More precisely, the theorem 10 from
[82] gives us a bound on the quantity P[|QN−E(QN)| > ε]. To apply this, we have to justify some technical
conditions.
Firstly, we propose the following lemma which assures that sn is in L p , ∀p ≥ 1:

Lemma 4.A.3. For every p ≥ 1, sn ∈L p

Proof. We recall the expression of sn =∑+∞
k=0αkεn−k .

• For p = 1,

E|sn | = E
∣∣∣∣∣+∞∑
k=0

αkεn−k

∣∣∣∣∣
≤

+∞∑
k=0

|αk |E|εn−k | < +∞

as
∑+∞

k=0 |αk | and E|εn−k | are both bounded for all n,k
• For p > 1, there exists an integer q which satisfy 1

p + 1
q = 1, using Hölder inequality, we get

E|sn |p = E
∣∣∣∣∣+∞∑
k=0

αkεn−k

∣∣∣∣∣
p

≤ E
(+∞∑

k=0
|αk ||εn−k |

)p

≤ E
(+∞∑

k=0
|αk |1/q |αk |1/p |εn−k |

)p

≤ E
((+∞∑

k=0
|αk |

)1/q (+∞∑
k=0

|αk ||εn−k |p
)1/p)p

≤
(+∞∑

k=0
|αk |

)p/q (+∞∑
k=0

|αk |E|εn−k |p
)

Since
∑+∞

k=0 |αk | and E|εn−k |p are both bounded for all n,k, we can conclude that sn ∈L p . �
For p ≥ 1, we define

Θp (t ) =
∞∑

n=t
δp (n), t ≥ 2−P, where δp (n) = ‖sn − s′n‖p

where s′n =∑∞
k=0;k 6=2−Pαkεn−k +αn+P−2ε

′
2−P and ε′2−P is an i.i.d copy of ε2−P.

In Wu (2005) [81], the quantity δp (n) is called physical dependence measure. We make the convention
that δp (n) = 0 for n < 2−P.
We will prove that the process sn satisfies the short-range dependence condition Θp := Θp (2−P) < ∞,
∀p ≥ 1. For this we calculate

δp (n) = ‖sn − s′n‖p = ‖αn+P−2(ε2−P −ε′2−P)‖p = |αn+P−2|
(
E|ε2−P −ε′2−P|p

)1/p

≤ |αn+P−2|
(
E(|ε2−P|+ |ε′2−P|)p)1/p

≤ C1/p
p |αn+P−2|

with

Cp =
p∑

i=0

(
i
p

)
Mp−1Mi
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where Mi = E(|ε2−P|i ), i = 0, ..., p the p +1 moments of ε2−P, so that we have

Θp (2−P) =
∞∑

n=2−P
δp (n) ≤ C1/p

p

∞∑
n=2−P

|αn+P−2| <∞

Moreover we can easily see that Θp (m) = O (m−η), η > 0 since
∑∞

n=m |αn | = O (m−η). We can now adapt
the theorem 10 from [82]

Theorem 4.A.1. Assume that sn ∈L p , p > 4, E(sn) = 0, and Θp (m) =O (m−η). Set cp = (p +4)ep/4Θ2
4. For

any a > 1, let xN = 2cp
√

NLlog(L)a. Assume that L →∞ and L = O (Nα) for some 0 < α< 1. Then for any
α< β< 1, there exists a constant Cp,a,β > 0 such that

P

( |QN −E(QN)|
N+P+L

≥ xN

N+P+L

)
≤ Cp,a,βxp/2

N (log(N))
[

(NL)p/4 N−ηβp/2 +NLp/2−1−ηβp/2 +N
]
+Cp,a,βL−a

(4.A.15)

We recall that φ̂(ν) = QN
P+P+L . Therefore, it is clear that |φ̂(ν)−E(φ̂(ν))| = |QN−E(QN)|

N+P+L . Applying theorem
4.A.1, we get that

P

(
|φ̂(ν)−E(φ̂(ν))| ≥ 2cp

√
NLlog(L)a

N+P+L

)
≤ Cp,a,βxp/2

N (log(N))
[

(NL)p/4 N−ηβp/2 +NLp/2−1−ηβp/2 +N
]
+Cp,a,βL−a

(4.A.16)

for every ν ∈ [0,1].
(4.A.16) and (4.A.14) imply that

P

(
max

j
|φ̂(ν j )−E(φ̂(ν j ))| ≥ 2cp

√
NLlog(L)a

N+P+L

)
≤∑

j
P

(
|φ̂(ν j )−E(φ̂(ν j ))| > 2cp

√
NLlog(L)a

N+P+L

)
≤ L

(
Cp,a,βxp/2

N (log(N))
[

(NL)p/4 N−ηβp/2 +NLp/2−1−ηβp/2 +N
]
+Cp,a,βL−a

)
Recall that L =O (Nα), where 0 < α< 1. We choose α< β< 1 and consider the values of a and p verifying

• a > 1+ 1

α
and

• p > max

(
2(α+1)

ηβ
,

8

1−α+2ηβα
,4

(
1+ 1

α

))
Then, it is easy to check that

L
(
Cp,a,βxp/2

N (log(N))
[

(NL)p/4 N−ηβp/2 +NLp/2−1−ηβp/2 +N
]
+Cp,a,βL−a

)
is O

(
1

N1+δ

)
, with a certain δ> 0. Consequently, almost surely for N large enough, it holds that

max
j

|φ̂(ν j )−E(φ̂(ν j ))| ≤ C

√
Llog(L)

N

This and (4.A.13) imply that almost surely, for N large enough

sup
ν∈[0,1]

|φ̂(ν)−E(φ̂(ν))| =O

√
Llog(L)

N

=O

√
log(L)

N1−α


This finish the proof of (4.A.4). �
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4.A.2 Proof of (4.A.5) and (4.A.6)

We only prove (4.A.5), (4.A.6) is obtained similarly. For this, we recall the expression of S(L)−

S(L)
− =


0 · · · 0
...

... s2−P

0
...

...
s2−P · · · sL−1


We can notice that spectral norm of

S(L)
−p
N

is equal to spectral norm of the (P+L−2)× (P+L−2) matrix

S0 = 1p
N


s2−P 0 · · · 0

...
. . .

. . .
...

...
. . . 0

sL−1 · · · · · · s2−P


Otherwise, S0 can be expressed as

S0 = 1p
N

∫
[0,1]

L−1∑
l=2−P

sl e−2iπ(l+P−2)νdP+L−2(ν)d∗
P+L−2(ν)

As a result, we have the following inequality∥∥∥∥S(L)− S(L)∗−
N

∥∥∥∥≤ sup
ν∈[0,1]

1

N

∣∣∣∣∣ L−1∑
l=2−P

sl e−2iπ(l+P−2)ν

∣∣∣∣∣
2

Since it is easy to remark that 1
P+L−2

∣∣∑L−1
l=2−P sl e−2iπ(l+P−2)ν

∣∣2
is the periodogram of sequence (s2−P, ..., sL−1),

(4.3.21) implies that

lim
L→∞

sup
ν∈[0,1]

1
P+L−2

∣∣∑L−1
l=2−P sl e−2iπ(l+P−2)ν

∣∣2

φ(ν) log(P+L−2)
= 1, a.s

from which we obtain that, ∀ε> 0,∃N0 such that ∀N > N0, ∀ν ∈ [0,1]

1−ε≤
1
N

∣∣∑L−1
l=2−P sl e−2iπ(l+P−2)ν

∣∣
(P+L−2)log(P+L−2)

N φ(ν)
≤ 1+ε, a.s

It follows

(1−ε)
(P+L−2)log(P+L−2)

N
φ(ν) ≤ 1

N

∣∣∣∣∣ L−1∑
l=2−P

sl e−2iπ(l+P−2)ν

∣∣∣∣∣
2

≤ (1+ε)
(P+L−2)log(P+L−2)

N
φ(ν), a.s

This implies directly that ∥∥∥∥S(L)− S(L)∗−
N

∥∥∥∥=O

(
Llog(L)

N

)
Therefore, we get (4.A.5). (4.A.6) is obtained in the same way.
Combining (4.A.4), (4.A.5),(4.A.6), we conclude that∥∥∥∥ 1

N
S(L)

N S(L)∗
N −RS

∥∥∥∥=O

√
log(L)

N1−α


�
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CHAPTER 4. CONVERGENCE TOWARDS SPIKED MODEL : THE CASE OF WIDEBAND ARRAY
PROCESSING MODELS

4.B Proof of lemma 4.5.2

Recalling that HT =
[

IN +σ2cNT (M)
N,L (T)

]−1
, we introduce the linear functional

Φ(X) =σ4cNTIM ⊗TL,L

(
HTT (M)

N,L (X)HT

)
T+σ2cNTAHT

T

(
T (M)

N,L (X)
)T

HT
TA∗T

It is proved in chapter 3 that ‖E(Q)−T‖ and ‖R−T‖ converge towards 0. Therefore, the approximation
(4.5.24)

E(QDQ) ' E(Q)DR+σ4cNE(Q)IM⊗TL,L

(
HT (M)

N,L (E(QDQ))H
)

R+σ2cNE(Q)AHT
(
T (M)

N,L (E(QDQ))
)T

HTA∗R

can be written as
E(QDQ) ' TDT+Φ(E(QDQ)) (4.B.1)

Moreover, by equation (4.5.27), we have that

‖Φ(TDT)‖→ 0

Therefore, denoting by∆= E(QDQ)−TDT, we can express (4.B.1) as

∆=Φ(∆)+δ

with δ =Φ(TDT)+ ε. We mention that the matrix ε is the negligible matrix which appears implicitly in
the approximation (4.B.1). Its spectral norm converges towards 0. Thus, it is clear that ‖δ‖→ 0.
We can notice that the functional Φ verifies

‖Φ(X)‖ ≤ C(z)‖X‖

where C(z) is a nice polynomial which does not depend on M,N,L.
Thus, for z ∈ C\R+ well chosen such that |C(z)| < 1

2 , for all fixed dimensional matrices X, the series∑∞
n=0Φ

(n)(X) converges.
We notice that

∆=
K∑

k=0
Φ(k)(δ)+Φ(K+1)(∆)

which implies immediately that

∆=
∞∑

k=0
Φ(k)(δ)

It is clear that
‖∆‖ ≤ C(z)‖δ‖

Therefore, for z well chosen ‖∆‖→ 0. We can extend this convergence on C\R+, for this, it is sufficient to
use again the argument "à la Montel" used in the proof of Proposition 3.9.1.
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