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RÉSUMÉ LONG EN FRANÇAIS R -1 Introduction Générale

Les troubles de la colonne vertébrale ont une prévalence élevée dans tous les pays et touchent des personnes de tout âge. Dans les pays développés, ces incidences augmentent avec le vieillissement de la population. En plus de la nécessité de soulager les douleurs associées, ces troubles sont traités par des mesures correctives externes ou invasives (par exemple une intervention chirurgicale) qui nécessitent une planification et un suivi coûteux. Globalement, ces troubles représentent un lourd charge médical et économique pour les hôpitaux, avec un impact crucial sur la qualité de vie liée à la santé individuelle (HRQoL) [START_REF] Boissiere | Global tilt and lumbar lordosis index: two parameters correlating with health-related quality of life scores-but how do they truly impact disability[END_REF][START_REF] Hasegawa | Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects[END_REF]. L'imagerie de la colonne vertébrale est essentielle pour les planifications et décisions thérapeutiques et le CT, IRM ou des radiographies planaires sont les modalités généralement utilisées. Alors que le CT fournit des images 3D de haute qualité, sa dose de rayonnement considérable et la position allongée du patient biaisant la forme réelle du rachis sont des freins à son utilisation. D'autre part, l'IRM est une méthode d'imagerie non invasive, mais elle est principalement utilisée pour l'imagerie des tissus mous comme les disques intervertébraux. La radiographie planaire est la modalité d'imagerie de la colonne vertébrale la plus répandue, qui peut être utilisée pour évaluer les troubles de l'alignement postural. La radiographie biplane est une modalité d'imagerie qui se développe en routine clinique, et elle est en train de devenir une modalité de référence pour l'obtention de modèles de rachis 3D. Elle permet des acquisitions simultanées de radiographies frontales et sagittales dans une position verticale, préservant les déformations de la colonne vertébrale, et est associé à une faible dose de rayonnement grâce au système EOS, comme cela est fait dans cette thèse.

Une modélisation 3D précise de la colonne vertébrale est une condition préalable à de nombreuses procédures orthopédiques diagnostiques et thérapeutiques. Elle fournit une visualisation explicite des déformations de la colonne vertébrale, elle permet aussi de caractériser la pathologie grâce au calcul d'un ensemble de paramètres, en particulier quand il s'agit de la prise de décision d'une chirurgie thérapeutique. Les approches actuelles de reconstruction 3D de la colonne vertébrale à partir des rayons X biplanes sont robustes à l'occlusion et à une qualité d'image limitée (Humbert et al., 2009a;[START_REF] Kadoury | Personalized X-Ray 3-D Reconstruction of the Scoliotic Spine From Hybrid Statistical and Image-Based Models[END_REF][START_REF] Zhang | 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform[END_REF] Cependant, elles nécessitent généralement une supervision par un opérateur pour garantir une haute précision du modèle 3D généré. Malgré les avantages de prendre en compte les connaissances d'un expert, l'ajustement manuel des modèles prend du temps et, est source d'incertitude.

Certains outils de traitement d'images peuvent être exploités pour assister les tâches de supervision manuelle nécessaires au calcul des modèles 3D et des indices cliniques. Les outils peuvent être divisés en trois catégories principales : amélioration d'image ; détection des contours et extraction des caractéristiques ; détection de structure et segmentation. La détection est généralement abordée comme un problème d'apprentissage automatique [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF][START_REF] Major | Automated landmarking and labeling of fully and partially scanned spinal columns in CT images[END_REF][START_REF] Narang | Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine[END_REF], alors que la segmentation est couramment effectuée à l'aide d'un modèle déformable [START_REF] Klinder | Automated model-based vertebra detection, identification, and segmentation in CT images[END_REF][START_REF] Korez | A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation[END_REF][START_REF] Neubert | Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models[END_REF]. Pour la tâche de détection, les machines à vecteurs de support (Support Vector Machine -SVM) et les forêts aléatoires (Random forest -RF) sont des classifieurs efficaces pour apprendre les caractéristiques visuelles et spatiales sur les points de repère / structures anatomiques d'intérêt.

Dans cette thèse, nous nous concentrons sur le traitement d'images de radiographies biplanes du rachis pour la délimitation précise des repères vertébraux qui peut contribuer à l'automatisation de la modélisation géométrique 3D du rachis. Plusieurs algorithmes sont développés, impliquant l'amélioration d'image, la détection de points de repère et la manipulation d'un modèle déformable du rachis. Nous proposons des approches innovantes pour les tâches d'extractions de caractéristiques et la classification des pixels de l'image, basée sur l'apprentissage automatique. Trois algorithmes distincts sont formulés et évalués pour les trois tâches applicatives suivantes :

1. Localisation et identification des coins de la vertèbre 2. localisation et identification du pédicule vertébral, 3. Détection, identification et segmentation de l'épineuse vertébrale.

Les trois chapitres du travail personnel, décrivent les solutions proposées pour les trois tâches applicatives mentionnées. Ces trois solutions partagent un cadre de calcul général commun qui implique une méthode similaire d'amélioration d'image, de descripteurs visuels et l'exploitation de classifieurs RF. Pour les trois solutions, l'apprentissage et la prévision sont faits sur des cohortes d'images EOS™ acquises auprès de divers centres d'imagerie médicale, dans le contexte du diagnostic clinique standard et de la planification du traitement.

Concernant la première tâche de détection des coins de la vertèbre, nous présentons une méthode de classification par RF basé sur une combinaison originale de descripteurs visuels et un modèle 2D de forme de colonne vertébrale. L'évaluation porte sur l'orientation des vertèbres et l'emplacement des repères vertébraux sur les régions cervicale et lombaire dans 49 radiographies. Les résultats montrent que l'algorithme proposé surpasse l'état de l'art trouvé dans la littérature.

Nous utilisons une approche similaire pour la deuxième tâche de détection et d'identification des pédicules. Nous introduisons de plus un nouveau filtrage heuristique basé sur la probabilité/score des points détectés, qui garantit une localisation fiable du centre pédiculaire. L'évaluation porte sur les mesures de rotation axiale et frontale des vertèbres thoraco-lombaires dans 57 radiographies frontales.

Les résultats suggèrent que notre méthode atteint une précision comparable aux localisations manuelles.

Concernant la troisième tâche de détection, d'identification et de segmentation du processus épineux, une méthode complétement automatique basée sur classifieur RF multi-classe est introduite.

L'évaluation porte sur 62 radiographies sagittales de la colonne cervicale (C1-C7). Les résultats rapportés confirment la haute précision et la robustesse de la méthode proposée par rapport aux approches état de l'art. L'analyse assistée par ordinateur de la colonne vertébrale sur des radiographies sagittales fournit un soutien objectif pour le diagnostic de la scoliose et la prise de décision thérapeutique. La lordose lombaire revêt une importance particulière, notamment dans l'analyse des irrégularités de la colonne vertébrale et des causes de lombalgie. D'autre part, les paramètres cervicaux sont essentiels non seulement pour déterminer la pathologie et le traumatisme, mais aussi en raison de leur valeur intrinsèque pour le diagnostic des troubles du rachis cervical et de leur pertinence dans l'analyse des mécanismes compensatoires [START_REF] Amabile | Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years[END_REF].

Certains outils peuvent fournir des paramètres morphologiques détaillés liés aux formes, aux positions et aux orientations des vertèbres, suite à une localisation manuelle de points de repère sur les vertèbres individuelles [START_REF] Champain | Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies[END_REF]. Ces outils sont plus adaptés à la recherche qu'à la routine clinique. D'un autre côté, certains outils sont disponibles pour la planification chirurgicale, nécessitant une supervision minimale de l'utilisateur mais ne fournissant que des paramètres globaux tels que la courbe vertébrale [START_REF] Duong | Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs[END_REF] ou quelques paramètres morphologiques isolés [START_REF] Lafage | Validation of a new computer-assisted tool to measure spino-pelvic parameters[END_REF]. Cependant, les analyses globale et locale de la forme du rachis sont essentiels dans la pratique clinique. Alors que la ligne globale de la colonne vertébrale est suffisante pour mesurer l'inclinaison et la courbure, les centres et orientations des corps vertébraux permettent de détecter les anomalies locales qui peuvent avoir une valeur clinique [START_REF] Champain | Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies[END_REF]. De plus, la longueur et la position de plateau vertébral peuvent aider à dimensionner des implants tels que des corsets ou des prothèses de disque, ou à rechercher un glissement possible entre deux vertèbres [START_REF] Tournier | Total disc arthroplasty: Consequences for sagittal balance and lumbar spine movement[END_REF].

En ce qui concerne le problème particulier de la détection des coins vertébraux sur les rayons X sagittaux, [START_REF] Benjelloun | A framework of vertebra segmentation using the active shape model-based approach[END_REF] ont proposé une méthode semi-automatique pour localiser le rachis cervical pour l'initialisation d'un modèle de forme active (Active Shape Model -ASM). Puis un détecteur de coin de Harris [START_REF] Harris | A Combined Corner and Edge Detector[END_REF] et un filtrage a posteriori ont été utilisés pour localiser les coins antérieurs des vertèbres cervicales (C3-C7), mais la précision de la détection n'a pas été renseignée. [START_REF] Lecron | Points of interest detection in cervical spine radiographs by polygonal approximation[END_REF] ont développé une méthode utilisant l'approximation polygonale pour extraire les coins antérieurs du rachis cervical. Plus tard [START_REF] Lecron | Fully Automatic Vertebra Detection in X-Ray Images Based on Multi-Class SVM[END_REF], ont utilisé un classifieur SVM avec les descripteurs SIFT [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF]) (transformation de caractéristiques visuelles invariante à l'échelle) pour catégoriser les coins détectés à partir de leur approche précédente. Les deux méthodes semblent vulnérables à la qualité des contours et nécessitent le réglage de seuil de distance ad hoc pour obtenir les coins postérieurs. [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF] Parmi les travaux antérieurs, [START_REF] Doré | Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients[END_REF] ont proposé une méthode basée sur un modèle déformable pour la segmentation des pédicules. Les centres pédiculaires ont ensuite été extraits à partir des segmentations et utilisés pour calculer les rotations frontales des vertèbres. Leur approche nécessite une sélection manuelle d'un point à l'intérieur de chacun des pédicules au niveau de la colonne thoracolombaire. (Zhang et al., 2010a[START_REF] Zhang | Snake-based approach for segmenting pedicles in radiographs and its application in three-dimensional vertebrae reconstruction[END_REF] ont proposé un modèle déformable basé sur la méthode de champ de vecteurs gradients (GVF) de [START_REF] Xu | Snakes, shapes, and gradient vector flow[END_REF] qui était contrôlé avec une contrainte de forme elliptique pour limiter les déformations. Là encore, une initialisation manuelle fine dans chaque niveau vertébral était nécessaire pour initialiser la segmentation des pédicules. Pour obtenir de meilleurs résultats de segmentation, [START_REF] Kumar | Semiautomatic Method for Segmenting Pedicles in Vertebral Radiographs[END_REF] ont proposé d'appliquer un modèle déformable basé sur le GVF aux radiographies prétraitées avec un filtrage basé sur la morphologie mathématique. Ils ont atteint des résultats de segmentation de haute qualité, mais une initialisation minutieuse manuelle des contours était encore nécessaire à chaque pédicule de chaque niveau vertébral. Dans une approche différente, [START_REF] Cunha | Pedicle Detection in Planar Radiographs Based on Image Descriptors[END_REF] ont développé une méthode de détection de pédicule basée sur le classifieur SVM et divers ensembles de différents descripteurs visuels pour détecter l'extrémité inférieure des pédicules gauches dans L1, L2 et L3. Ils ont rapporté le classifieur SVM avec des descripteurs HOG comme l'option la plus satisfaisante avec une précision de 47,6%.

Table R-2

Les erreurs de rotation frontale sur les 57 sujets de validation [START_REF] Yochum | Essentials of Skeletal Radiology[END_REF]. Tout désalignement dans ces courbes pourrait être une preuve de blessure ou de fracture. Parmi la littérature consacrée à ce domaine, citons le travail de [START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF], qui a développé une méthode semi-automatisée d'identification et de segmentation des vertèbres basée sur la transformée généralisée de Hough (GHT) [START_REF] Ballard | Generalizing the Hough transform to detect arbitrary shapes[END_REF] Pour évaluer la performance de la segmentation, nous avons appliqué trois métriques :

-La métrique de Dice (Dice LR, 1945) est utilisée pour déterminer la similarité entre les résultats de segmentation de l'algorithme et de la référence manuelle.

-La distance de Hausdorff (HD) est calculée entre la référence manuelle et le résultat de l'algorithme. Le HD est sensible aux valeurs aberrantes.

-La distance de Hausdorff moyenne (AHD), est aussi rapporté qui est moins sensible aux valeurs aberrantes.

R -4 -3 Résultats

Nous évaluons la performance de notre algorithme sur 62 radiographies du rachis cervical composées de 434 processus épineux. , 2014[START_REF] Narang | Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine[END_REF], par exemple, ils détectent un point de repère sur ou près de la courbe spinolaminaire et l'approximent par interpolation de ces points. Bien qu'il existe de nombreux travaux sur la détection, la segmentation et l'identification des corps vertébraux [START_REF] Glocker | Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[END_REF][START_REF] Klinder | Automated model-based vertebra detection, identification, and segmentation in CT images[END_REF][START_REF] Huang | Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI[END_REF] 

General Introduction

Spine disorders have high-prevalence in all countries and affect people of all ages. Its incidence is increasing with the aging of the general population in developed countries. In addition to the need to relieve any associated pain, these disorders are treated by external or invasive corrective measures (e.g. surgery) which require costly planning and follow-up. So overall, these disorders represent a major medical and economic burden to hospitals, with crucial incidence on individuals' health-related quality of life (HRQoL) [START_REF] Boissiere | Global tilt and lumbar lordosis index: two parameters correlating with health-related quality of life scores-but how do they truly impact disability[END_REF][START_REF] Hasegawa | Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects[END_REF]. Spine imaging is essential for therapeutic decisions and planning and is commonly performed using CT, MRI or planar X-rays.

While CT provides high-quality 3D images, its considerable radiation dose and the patient's imaging position remain an issue in spine imaging. MRI, on the other hand, is a non-invasive imaging method but it is mainly used for imaging of soft tissues like intervertebral discs. Planar radiography is the most prevalent spine imaging modality, which can be used for assessing spine misalignments. Biplanar radiography is a growing imaging modality in clinical routine, and has become a modality of reference for obtaining 3D spine models. It enables image acquisitions in an upright standing position, preserving the spine deformities, and is associated with low radiation when using the EOS ultra-low radiation dose system, as done in this thesis.

A precise 3D modelling of vertebral column is a prerequisite for numerous diagnostic and therapeutic orthopaedic procedures. It provides an explicit visualization of spine deformities, especially when it comes to decision-making whether therapeutic surgery is required for the patient or not. Existing spine reconstruction approaches from biplanar X-rays are robust to occlusion and to limited image quality (Humbert et al., 2009a;[START_REF] Korez | Sparse and multi-object pose+shape modeling of the three-dimensional scoliotic spine[END_REF][START_REF] Zhang | 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform[END_REF]. However, they commonly require operator-based supervision to guarantee high precision of the generated 3D model. Despite benefits of taking an expert person's knowledge into account, manual adjustment of the models is time consuming, source of uncertainty, and imposes fatigue to the workforce.

Some image processing tools can be exploited to assist the manual supervision tasks required for computing the spine shape models and parameters. The tools can be divided into the following three categories: image enhancement, feature and edge extraction, structure detection and segmentation.

Detection is commonly approached as a machine learning problem [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF][START_REF] Major | Automated landmarking and labeling of fully and partially scanned spinal columns in CT images[END_REF][START_REF] Narang | Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine[END_REF], while segmentation is commonly performed with the help of a deformable shape template [START_REF] Klinder | Automated model-based vertebra detection, identification, and segmentation in CT images[END_REF][START_REF] Korez | A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation[END_REF][START_REF] Neubert | Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models[END_REF]. For the detection task, support vector machine (SVM) and Random Forest (RF) are efficient classifiers to learn visual and spatial characteristics on the landmarks/anatomical structures of interest.

In this thesis, we focus on the exploitation of biplanar X-ray spine imaging for precise delineation of vertebrae landmarks and improved automation of spine shape modelling. Computational pipelines are developed, involving image enhancement, landmark detection and manipulation of a deformable spine shape model. We propose innovative approaches for the tasks of feature extractions and machinelearning-based voxel classification. Three distinct pipelines are formulated and evaluated for the three following applicative tasks:

1. Vertebrae corner localization and identification 2. Vertebrae pedicle localization and identification, 3. Spinous process detection, identification, and segmentation.

The thesis starts with an introduction chapter on spine anatomy, an overview of common spine imaging modalities, and a literature review chapter on previous image processing techniques dedicated to spine imaging. The following three chapters describe the proposed solutions for the three applicative tasks.

These three solutions share a common general computational framework that involves similar image enhancement, spatial features and the exploitation of Random Forest classifiers. Adjustments of these components are designed and evaluated separately for the three tasks. All three solutions are trained and tested on cohorts of EOS™ images acquired from various medical imaging centres, in the context of standard clinical diagnosis and treatment planning.

Regarding the first task of vertebrae corners detection, we introduce the Random Forest classification method together with a novel hybrid pool of features and a regression method to adjust a 2D spine shape model. Evaluation focuses on precise measures of vertebrae orientations and corner points locations on the cervical and lumbar regions in 49 sagittal X-rays. Results show that the proposed algorithm outperforms the state-of-the-art found in the literature.

Regarding the second task of pedicle detection and identification, we introduce a novel heuristic point score filtering that guaranties a reliable pedicle centre localization. Evaluation focuses on frontal and axial vertebrae rotation measures from thoracolumbar pedicles in 57 frontal X-rays. Results suggest that our proposed method achieves comparable precision to manual localizations.

Regarding the third task of spinous process detection, identification, and segmentation, a multi-class Random Forest classifier is introduced. Evaluation focuses on 62 sagittal X-rays of the cervical spine (C1-C7). Reported results confirm high precision and robustness of the proposed method when compared to state-of-the-art approaches.

Finally, in the last chapter we draw a general conclusion and present future perspectives for refinements of the method and exploitation in clinical settings.

From a computing perspective, this thesis proposes competitive and fast-running image processing tools, requiring minimal manual initialization while robust to severe scoliotic pathologies. From a clinical perspective, our results show for the first time an extensive validation on multiple morphological parameters, which are critical for diagnosis and therapy planning. For example, the cervical spine posterior arch is of great interest as very important clinical parameters can be obtained from this region [START_REF] Yochum | Essentials of Skeletal Radiology[END_REF]. However, a very limited set of studies has reported satisfactory measurement accuracy for this arch. Overall the work of this thesis aimed to go beyond existing solutions mainly focused on finding limited sets of landmarks from specific regions and for a single morphological parameter. Exploiting a single general computational framework has great potential for translation and integration in existing 2D/3D statistical shape modelling tools currently commercialized. It could improve quality of reconstructions without any extra manual algorithmic tuning and manual post-processing. Handling of severe pathologies is also demonstrated, at the cost of the choice of relying on a very light manual initialization of a 2D shape model.

Three scientific journal papers describing the proposed pipelines for the three applicative tasks are prepared and will be submitted to specialized medical image analysis and clinical application oriented journals. Preliminary implementation and results for the first application was peer-reviewed and presented at the IEEE International Symposium on Biomedical Imaging (ISBI) 2016 [START_REF] Ebrahimi | Lumbar spine posterior corner detection in Xrays using Haar-based features[END_REF].

Chapter 1

Anatomy and Spinal Imaging

-1. Spine

Spinal column forms two-fifth of our height and is one of the key elements forming the skeleton of body trunk together with the ribs and the sternum, while it serves as an attachment point for the ribs and sternum. The spine is a complex set of bones, muscles, nerves and connecting tissues, and functions as a pillar to protect the spinal cord and support the body's weight. It is commonly composed of 26 different vertebrae in adults, divided into the following five regions (Figure 19) as follows:

• 7 cervical vertebrae in the neck region.

• 12 thoracic vertebrae in the chest region.

• 5 lumbar vertebrae in the low back region.

• 1 sacrum, consisting of 5 fused sacral vertebrae, attached to the pelvis.

• 1 coccyx, usually consisting of 4 fused coccygeal vertebrae.

The spine vertebrae are often referred with letters and numbers, such as: C, T, L, and S, which stand for the cervical, thoracic, lumbar and sacral vertebrae respectively (i.e. C1 refers to the first cervical bone).

-1.1. Normal Curves of the Spine

Looking at the spine from the lateral side (Figure 19), naturally we see four different curves in different spine regions. While, from the anterior side the spine appears vertically straight. The four lateral curves are slightly convex in the cervical and lumbar regions and are concave in the thoracic and sacral regions. The curvature architecture of the spine has some essential functions such as absorbing shocks during our activities, preventing it from vertebrae fractures, maintaining the body in an upright position and making the spine stronger. Due to various circumstances, in some individuals we see curvature abnormalities, which bring various problems and discomforts for the patients.

-1.3. Spine Curvature Disorders

Two common spine curvature disorders are hyperkyphosis and scoliosis, illustrated in (Figure 21).

• Hyperkyphosis: is characterized by abnormal forward rounding of the upper back and is more prevalent in older patients, though it can be noticed at any age.

• Scoliosis: is a condition that involves an abnormal 3D deformity of the spine with local and global alterations, and is more frequent in females. The Cobb angle [START_REF] Cobb | Outline for the Study of Scoliosis[END_REF] illustrated in Figure 5, measured on frontal X-rays, and is the most common clinical parameter used for characterizing the severity of a scoliosis. However, its limitations are regularly underlined [START_REF] Courvoisier | Transverse plane 3D analysis of mild scoliosis[END_REF][START_REF] Nault | Three-Dimensional Spinal Morphology Can Differentiate Between Progressive and Nonprogressive Patients With Adolescent Idiopathic Scoliosis at the Initial Presentation[END_REF][START_REF] Skalli | Early Detection of Progressive Adolescent Idiopathic Scoliosis[END_REF]. Projection bias may be high because of the spatial deformity.

Moreover, other clinical parameters are essential, such as axial vertebral rotations.

Therefore, 3D reconstruction with parameter computation related to the spine curvature deformity is an essential task, required for disease diagnosis, treatment planning, and follow up.

initialization quality takes a significant part in the final precision of the segmentations.

In defining a strategy for mapping images to clinical information, adaptability is a key element. Some essential requirements should be met by the proposed processing algorithm. The proposed algorithm should be able to tackle various obstacles, including:

• Anatomical disorders and pathologies

• Anatomical variability

• Poor image quality

• Various image plane orientations

• Various imaging modalities

• Various acquisition protocols

• Applicability in both 2D and 3D

• Limited training and testing samples

The aptitude of the algorithm in responding appropriately to the above barriers, determines its superiority to other approaches.

Localization, in general, can be challenged by some non-methodological barriers like the quality of the ground truth, which becomes very important especially in acquiring clinical knowledge from the algorithm outputs. Diversity of the available dataset is also important. Especially in machine learningbased approaches, where appropriate diversity guaranties better learning, and higher anticipation power.

In the following sections, we discuss the detectionidentification frameworks in Section 2 -1.1, and then segmentation methods in Section 2 -1.2. Finally, spine statistical shape modelling is discussed in Section 2 -1.3.

-1.1. Detection -Identification Approaches in Spine Image

Analysis

Almost all existing approaches have two separate phases of detection and then identification. The detection is mainly performed by the mean of anatomical features extraction and learning the anatomy features using machine learning methods. Various identification strategies exist to best fit a shape model on the anatomical features of interest in a ROI. Identification can be performed with manual input reference points and statistical shape inferences. Or, as in Chapter 4, visual characteristics can directly be encoded in specialized feature descriptors, enabling detection and identification to be performed automatically and at a same time. Visual Features. In the literature on anatomy detection, some visual features, descriptors and machine learning methods are popular and often used. Scale-invariant feature transform (SIFT) [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] captures local histogram of gradient orientations from a patch around an interest point, and was utilized in an ensemble of previous methods. [START_REF] Lecron | Fully Automatic Vertebra Detection in X-Ray Images Based on Multi-Class SVM[END_REF] combined SIFT with a multi-class SVM to differentiate upper and lower anterior corners of cervical vertebrae (C3-C7) from interest points obtained from [START_REF] Lecron | Points of interest detection in cervical spine radiographs by polygonal approximation[END_REF]. In their approach, 2 point clicks were required for ROI selection and identification in sagittal radiographs. As their approach was meant to assist an active shape model (ASM) [START_REF] Cootes | Active Shape Models-Their Training and Application[END_REF] initialization, precision of detections was not studied. [START_REF] Wang | Regression Segmentation for M3 Spinal Images[END_REF] integrated different features (WI-SIFT, WI-SURF, Gist, and HOG) in a regression process using support vector regression (SVR). From the extracted features, 100 anatomy boundary points were regressed and exploited for a smooth boundary approximation of spine structures like vertebrae and discs in different planes. Their approach was evaluated on both MRI and CT scans. However, from their figures it seems that their algorithm tends to fail in the presence of shape variability and pathology.

Haar-like features were also commonly used for spine detection. Their simple implementation, their fast real-time computation, and their high discrimination power make them one of the most popular feature descriptors. [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF], 2015a) explored the application of Haar-like features with a Hough forest regressionclassification architecture presented in [START_REF] Gall | Hough Forests for Object Detection, Tracking, and Action Recognition[END_REF] to detect cervical vertebrae (C3-C7) corners in sagittal X-rays. To initiate their algorithm, an operator was required to determine each vertebral body centre. Although better performance is achieved by integrating Hough forest and Haar-like features, the algorithm is still vulnerable to vertebrae shape deformity and pathology. Using 2D MRI sagittal scans, (Szu-Hao [START_REF] Huang | Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI[END_REF] detected spine vertebral bodies by putting tight bounding boxes using a modified AdaBoost classification. AdaBoost enables object detection by examining multiple weak feature descriptors such as Haar wavelet features and cascading the ones with high-probability scores. As the reported false positive and false negative rates are high, they added a RANSAC-based refinement stage to approximate the position of missing vertebrae and discard unreliable detections. No identification was reported in this study. [START_REF] Kelm | Spine detection in CT and MR using iterated marginal space learning[END_REF] used

Haar-like features combined with a probabilistic boosting tree (PBT) classifier to detect disc candidates. Their method was applicable to both MR and CT volumes. Other feature descriptors such as steerable features were also used to refine the detections and reduce the false alarm rate. [START_REF] Major | Automated landmarking and labeling of fully and partially scanned spinal columns in CT images[END_REF] presented an AdaBoost-based vertebra detectionidentification algorithm that used PBT as machine learning tool, applied with an ensemble of cascaded features in a coarse-to-fine computationally effective manner. The visual descriptors are Haar-like features, various imagederivative-based features and their histograms. The algorithm was applied on full/partial CT datasets with multiple pathological subjects. As reported the algorithm failed for some pathological cases.

Overall, although Haar-based algorithms are computationally cost effective, they are commonly sensitive to rotation, do not provide regional information regarding surrounding areas, and have a high false alarm rate.

Since the introduction of histogram of oriented gradients (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], it has become one of the most popular visual feature in computer vision and medical image analysis applications. Methods using HOG, commonly via a sliding window strategy, search for object instances in some ROI. [START_REF] Oktay | Simultaneous Localization of Lumbar Vertebrae and Intervertebral Discs With SVM-Based MRF[END_REF] studied simultaneous detections of discs and vertebrae in 2D sagittal MRI (L1-S1) by integrating HOG and specific "image projection descriptors (IPD). Separate SVMs are trained for individual discs and vertebrae structures, and used in the detection step. Refinement and labelling were performed by combing detection scores and regional geometrical inferences under a Markov Random Field (MRF) framework. However, their SVM-based detections just rely on local anatomical features, that can be challenged in the presence of abnormalities. Besides, for automated ROI selection, both T1 and T2-weighted MRI scans were required. [START_REF] Ghosh | A new approach to automatic disc localization in clinical lumbar MRI: Combining machine learning with heuristics[END_REF] studied localization of vertebral discs in lateral MRI scans from the lumbar region. To do so, using a SVM machine learning algorithm, specialized HOG-based classifiers are trained to generate oriented bounding boxes around the discs. Localization is assisted by a priori knowledge from axial slices. Although disc orientation is taken into account in obtaining the bounding boxes, comparison of orientation differences between the manual delineations and the algorithm outcome were not reported. HOG was also applied for pedicle detection in frontal view X-rays. [START_REF] Cunha | Pedicle Detection in Planar Radiographs Based on Image Descriptors[END_REF] studied the performance of various feature descriptors and a SVM classifier for the pedicle detection task. Among all features, HOG achieved the best outcome with a detection accuracy of 47.6%. In their study, the field of view (FOV) was limited to the lumbar spine (L1-L3) and only the detection rate was reported. In [START_REF] Lootus | Vertebrae Detection and Labelling in Lumbar MR Images[END_REF] an automated approach is presented for detection and identification of vertebrae in MR sagittal images. Four different HOG templates with different aspect ratios for the vertebral bodies (T10-L5) and a template for the sacrum part (S1-S2) were utilized to train two SVMs, one for the reference sacral vertebrae and one for the rest of vertebrae. The detection scores and a graphical model were used for refinement and labelling. Although the approach is automated, the identification process requires the sacral vertebrae to be in the MR planes. Similar to the work in [START_REF] Ghosh | A new approach to automatic disc localization in clinical lumbar MRI: Combining machine learning with heuristics[END_REF], their detected bounding boxes included the orientation information, however, no orientation analysis was reported. Overall vertebral body centre localization error of 3.3 ± 3.2 mm was reported for the correctly labelled vertebrae and best labelling result was for sacral vertebrae with 91% correct identification rate.

Another category of feature descriptors is contextual features (CF), and various architectures of these patch-based features were presented in the literature. Besides their simplicity in computation, their other advantage is the ability to capture contextual information from both local and remote areas. They are also very adaptable for being used in different applications such as anatomy detection, precise landmark detection, and even anatomical structure segmentation. [START_REF] Glocker | Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[END_REF] were one of the pioneers in applying CF, jointly with Random Forest regression for vertebrae detection in a heterogeneous set of 200 3D CT-scans with arbitrary FOV. They applied a Hidden Markov Model (HMM) with statistical shape and appearance to refine their detections and identify every individual vertebra. The long-range context capture of CF features enabled a rough identification of the vertebrae based on the appearance and contextual information of the surrounding anatomical structures. Their features were composed of an ensemble of intensity and gradient information gathered from various patches around the structure of interest. Benefiting from the posterior distribution provided by RF regression, their dynamic programing approach enabled fitting a statistical model to achieve a patientspecific spine representation. In [START_REF] Glocker | Vertebrae localization in pathological spine CT via dense classification from sparse annotations[END_REF] using similar CF features, they explored the use of RF classification for the task of vertebrae localization. This time, they evaluated their algorithm on 424 pathological and heterogeneous datasets of 3D CT-scans with arbitrary FOV. Using a model fitting mean-shift strategy like the one in [START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF], they estimated the vertebrae centroids together with removing false detections, refining the overall detection accuracy, and scorebased vertebrae labelling. Localization errors were still high for some cases, while overall promising.

Although each RF regressionclassification approach has its own benefits and limitations, they showed in [START_REF] Glocker | Random forests for localization of spinal anatomy, in: Random Forests for Localization of Spinal Anatomy[END_REF] that RF classification was a bit better for the localization task. Another kind of CF-based vertebral body detection and identification method was presented in [START_REF] Chu | Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method[END_REF]. In a coarse-to-fine implementation manner, using cubic shape contextual features, RF regression and a HMM, vertebral body positions were approximated, refined, and identified. Next, RF classification is applied to generate a segmentation of the previously detected vertebral bodies. They evaluated their method on a cohort of 3D MR and CT-scans. For vertebrae corner detection on sagittal radiographs from the cervical region (C3-C7), [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF] developed a Hough forest-based method and a novel contextual feature, named random mirrored feature (RMF). The feature was designed to pick contextual information from mirrored locations randomly selected around a patch.

The identification procedure was performed manually by selecting the vertebrae centres (C3-C7). Generalized Hough Transform (HOG) [START_REF] Ballard | Generalizing the Hough transform to detect arbitrary shapes[END_REF], and its modifications have also been widely studied in spine image analysis frameworks. [START_REF] Zheng | Automated Segmentation of Lumbar Vertebrae in Digital Videofluoroscopic Images[END_REF]) applied a GHT to localize and track spine vertebrae (L1-L5) while in motion. They applied their algorithm on a limited set of sagittal digital videos of fluoroscopic sequences. [START_REF] Tezmol | Customized Hough transform for robust segmentation of cervical vertebrae from X-ray images[END_REF] used a GHT to capture shape variability and vertebra orientation via multiple templates in cervical spine sagittal radiographs. The accuracy directly depended on the number of templates being used, at the cost of higher computational complexity. [START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF]) applied a GHT-based template matching to localize cervical vertebrae (C3-C7) in sagittal X-rays. The ROI is determined by the mean of two manual inputs. Based on a priori knowledge about the number of vertebrae in the FOV, k-means clustering is used to group detected candidate points in five separate clusters (C3-C7), followed by vertebrae centres computation and labelling. [START_REF] Zhang | 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform[END_REF] developed a deformation-tolerant GHT to match a semi-automatically computed initial solution with 2D edges of the target, obtained from biplanar radiographs. Their method was engineered to capture vertebrae orientation rather than precise edge contour adjustments.

Severe scoliosis, noise and occlusion were reported as the main sources of errors.

Other anatomical structure detection and identification approaches include the work in [START_REF] Benjelloun | A framework of vertebra segmentation using the active shape model-based approach[END_REF] that uses Harris corner detection together with some filtering to find anterior corners of cervical vertebrae (C3-C7) in sagittal radiographs. In their framework identification is done using manually-determined ROIs. Localized corners are then used for initialization of an active shape model segmentation step. They did not report the localization accuracy of their detections. [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF] developed a multi scale Harris corner detector-based pipeline, which provided comparable results to their previous Hough forest-based corner detectors. Again, localization was performed manually. Another approach especially for corners candidate extraction is the work presented in [START_REF] Lecron | Points of interest detection in cervical spine radiographs by polygonal approximation[END_REF]. To obtain cervical vertebrae corners (C3-C7) on sagittal radiographs, after image enhancement, a Canny edge detector is applied and vertebrae edge boundaries are approximated using the line simplification method presented in [START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF]. By tuning the spatial threshold of their line simplifier algorithm, they demonstrate the feasibility of vertebrae anterior corners detection but the method cannot be used as a standalone tool for vertebrae corner detection. However, the provided candidate points can be used in a machine learning classification approach as in [START_REF] Lecron | Fully Automatic Vertebra Detection in X-Ray Images Based on Multi-Class SVM[END_REF]. One limitation of such approaches is the presence of occlusions, which affect the quality of the edge maps, and consequently, the corner point candidate extraction process. In such cases, anatomical assumptions are required to refine the detection and handle missing points. On whole spine MR volumes, (Zhigang [START_REF] Peng | Automated Vertebra Detection and Segmentation from the Whole Spine MR Images[END_REF] proposed an automated algorithm for vertebrae localization and segmentation. They perform a least square pattern matching for disc localization and then, by selecting some reference pattern on intensity profiles (10 th disc clue) they initiate vertebra localization and identification procedures. Selecting a reference pattern just based on intensity profile can lack robustness, and their algorithm requires the presence of a specific vertebra in the FOV for labelling to work. Methods based on mathematical morphology filtering were also developed for vertebrae and discs labelling. [START_REF] Naegel | Using mathematical morphology for the anatomical labeling of vertebrae from 3D CT-scan images[END_REF] used mathematical morphology and some anatomical inference to detect intervertebral discs from 3D CT images. To do so, they exploited information in axial planes.

Labelling is initiated by finding the anchor T12 vertebra. Mathematical morphology was also used in the work of (Dinesh [START_REF] Kumar | Automatic estimation of orientation and position of spine in digitized X-rays using mathematical morphology[END_REF], targeting vertebrae orientation and location in sagittal radiographs of the cervical spine. [START_REF] Moura | Automatic Vertebra Detection in X-Ray Images[END_REF] performed spinal column isolation by image intensity profile analysis and vertebral body detection and labelling by developing an iterative thresholding pipeline on whole spine frontal radiographs. To narrow the search area and capture global spinal column orientation in sagittal cervical X-rays (C3-C7), [START_REF] Al Arif | Global Localization and Orientation of the Cervical Spine in X-ray Images[END_REF] use a coarse-tofine approach, integrating structured forest features from (Dollar andZitnick, 2015, 2013) into a RF classification framework. The coarse searching phase aims to detect vertebrae instances in cervical radiographs, and to accumulate the detected patches into a single patch representing the spinal column.

The fine searching phase uses multiple patches with different sizes and orientations to refine the first detected region. For the spinal column orientation, they reported a mean error of 3.6°, which is not sufficient for spine alignment analysis. Recently, convolutional neural networks have become very popular in spine vertebral body detection and identification applications. [START_REF] Aubert | Convolutional Neural Network and In-Painting Techniques for the Automatic Assessment of Scoliotic Spine Surgery from Biplanar Radiographs[END_REF][START_REF] Aubert | Automatic spine and pelvis detection in frontal X-rays using deep neural networks for patch displacement learning[END_REF] for instance, presented a vertebral body detection and labelling CNN-based regression approaches to accurately predict spine vertebrae and pelvis locations and orientations. The obtained information was aimed to be incorporated in the fine adjustment process of an existing initial reconstructed 3D statistical shape model (SSM) given from the algorithm in (Humbert et al., 2009a). In their algorithm,

FOV was required to include the pelvis origin, as it was used to position the statistical shape model.

-1.2. Segmentation Approaches in Spine Image Analysis

For the spine, due to clinical relevance and importance, segmentation tasks have mostly been focused on vertebrae, pedicles, discs, and spinal cord. Vertebrae segmentation can guide physicians in the diagnosis of vertebral disorders, such as osteophytes, various fractures and scoliosis, by computation of vertebrae alignment, and spine curvature determination [START_REF] Samuvel | A Mask Based Segmentation Algorithm for Automatic Measurement of Cobb Angle from Scoliosis X-Ray Image[END_REF]. Pedicle segmentation can be used to increase accuracy and safety in spinal fusion surgery, as for instance in (Jongwon [START_REF] Lee | Automated Segmentation of the Lumbar Pedicle in CT Images for Spinal Fusion Surgery[END_REF], or to facilitate the refinement stage of 3D spine model reconstruction [START_REF] Cunha | Pedicle Detection in Planar Radiographs Based on Image Descriptors[END_REF].

Some works, mostly using MR datasets, were dedicated to disc segmentation to assess problems such as disc bulging or herniation [START_REF] Alomari | Lumbar Spine Disc Herniation Diagnosis with a Joint Shape Model[END_REF]. Some works also describe methods for spinal cord segmentation on MR images, to measure for example the amount of atrophy [START_REF] De Leener | Robust, accurate and fast automatic segmentation of the spinal cord[END_REF].

Segmentation. Segmentation methods from the literature can be categorized in four main groups: [START_REF]Visual Feature Extraction Set up[END_REF] deformable parametric (such as snake) and geometric (such as level sets) models; (2) shape constrained deformable models such as ASM and AAM; (3) graph-based methods such as graph cuts [START_REF] Boykov | Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[END_REF] and normalized cuts [START_REF] Shi | Normalized cuts and image segmentation[END_REF]; ( 4) and methods that use simpler heuristic image processing technics such as watershed and GHT. Various segmentation methods are designed to capture specific characteristics of the desired anatomical structure. These characteristics can be based on local visual information such as colour, texture, intensity, or are boundary-based as with gradient or Laplacian information. Neighbouring structures can contribute in defining the object to segment. Also, the object shape, for example via statistical models, can be incorporated as a priori knowledge to constrain the segmentation. In the following section, we review some of these methods, applied for the segmentation of different parts of the spine. [START_REF] Klinder | Automated model-based vertebra detection, identification, and segmentation in CT images[END_REF]) developed an automated model-based vertebra detection, identification, and segmentation pipeline, applied on 64 CT-scan volumes that was applicable to arbitrary images with even limited FOVs. The identification and segmentation procedures are performed using appearance models and adapt triangulated meshes via a shape-constrained deformable model. They reported a mean point-to-surface segmentation error of 1.12 mm and identification accuracy around 70%.

However; their approach was not suited for clinical routine in terms of required processing time (36.5 min for identification of T1-T12). [START_REF] Kadoury | Spine Segmentation in Medical Images Using Manifold Embeddings and Higher-Order MRFs[END_REF] proposed a full vertebrae segmentation method in CT and MR images using manifold-based higher order Markov Random Field, where the vertebrae shape constraints were dependent on the global spine curvature. The identification process requires a reference manual click point inside the L5 vertebral body and a fixed FOV (T1-L5). In 3D

CT, they reported a Dice coefficient of 92.5% and mean difference to ground truth of 1.6 ± 0.6 mm for segmentation accuracy evaluated on 21 patients. (Szu-Hao [START_REF] Huang | Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI[END_REF] applied an iterative normalized-cut segmentation approach initialized with previously detected vertebrae on 2D MR images. They achieved an average Dice accuracy of 96% on 52 vertebrae. However, as they did not perform vertebrae identification, clinical parameters could not be determined from their outcomes. By integrating Willmore flow energy function and prior shape model into a level set segmentation method [START_REF] Lim | Introducing Willmore Flow Into Level Set Segmentation of Spinal Vertebrae[END_REF] introduced a 3D segmentation approach that improved robustness against occlusion and weak edges, which globally maintained better capture range and surface smoothness, though the focus of their work was to segment individual manually identified lumbar vertebrae (L1-L5). A detailed evaluation of the algorithm was reported for 20 normal 3D CT scans, with overall Dice coefficient of 89% and a Hausdorff distance of 14 ± 1.4 mm. From an initial set of interactively placed rectangles along the spinal curve, [START_REF] Neubert | Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models[END_REF] developed an automated intervertebral disc and vertebral body detectionsegmentation method based on active shape modelling and grey level models of intensity profiles as the deformation driving force, which was tested on 28 asymptomatic thoracolumbar spine volumetric MR images acquired from axial planes. However, clinical routine mainly relies on 2D Turbo Spin Echo (TSE) in the sagittal plane. Dice scores of 89% and 91% and mean absolute surface distances of 0.6 ± 0.2 mm and 0.7 ± 0.2 mm were achieved for inter-vertebral discs (IVD) and vertebral body (VB) volumes respectively. [START_REF] Ma | Hierarchical segmentation and identification of thoracic vertebra using learningbased edge detection and coarse-to-fine deformable model[END_REF]) introduced a hierarchical coarse-to-fine deformable surface-based thoracic segmentation and identification approach that used steerable gradient features for a learning-based edge detection. They reported a point-to-surface error of 0.95 ± 0.91 mm on 40 CT thoracic volumes. In their approach, mean shape model of each thoracic vertebra was used for the identification task, which enabled 73.1% success rate for one vertebra and above 95% for more than 7 vertebrae. [START_REF] Bromiley | Localisation of Vertebrae on DXA Images Using Constrained Local Models with Random Forest Regression Voting[END_REF] developed a segmentation method based on a constrained local model (CLM), and a RF regression voting scheme, which was applied on ten vertebral levels in 320 dual-energy X-ray absorptiometry (DXA) vertebral fracture assessment (VFA) spinal images at levels: T7-T12 and L1-L4. In their approach, for each vertebra of interest, a model consisting the neighbouring vertebrae was generated. Initialization was performed by manually determining vertebrae centres. Results were compared with the AAM-based approach in [START_REF] Roberts | Automatic location of vertebrae on DXA images using random forest regression[END_REF] and showed a slightly better performance. [START_REF] Benjelloun | A framework of vertebra segmentation using the active shape model-based approach[END_REF] proposed an ASM-based segmentation method on sagittal radiographs of the cervical spine (C3-C7).

In their study, ROI was limited using two manual inputs that are incorporated in the labelling process and model initialization. From 75 training and 100 evaluation sets, they obtained a mean segmentation error of 0.6 mm. To study spinal disorders [START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF] used GHT to localize and segment cervical vertebrae (C3-C7) in sagittal X-rays. Constrained ROI from two manually clicked points assist the localization process. From the detected vertebrae centres, using GHT-based parametric representation of the template model, they perform rigid vertebra segmentation. The resulting segmented vertebrae provided enough knowledge to approximate three clinically relevant spinal curve parameters. They reported an average angular mean square error of 6.7°. [START_REF] Chevrefils | Texture Analysis for Automatic Segmentation of Intervertebral Disks of Scoliotic Spines From MR Images[END_REF][START_REF] Chevrefils | Watershed Segmentation of Intervertebral Disk and Spinal Canal from MRI Images[END_REF] presented an automatic IVD segmentation approach for 2D MR images of scoliotic subjects. The closed regions representing IVD candidates are obtained using a watershed segmentation method.

Then a combination of statistical and spectral texture features is exploited to skim positive IVDs from existing candidates. Labelling is performed manually and they reported an overall Dice score of 85% for a dataset of 11 scoliotic patients. The segmentation method of [START_REF] Chu | Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method[END_REF] was developed to be adaptable to both CT and MR volumes. A learning-based regressionclassification strategy is followed to generate coarse-to-fine localization and segmentation. Specialized contextual features for the classification and a multi-atlas fusion-based graph-cut method are integrated to provide an automated fine segmentation pipeline. They achieved a Dice score of 91% and a mean surface distance of 1.9 mm on CT volumes of lumbar vertebrae (L1-L5) gathered from 10 different patients. (Zhang et al., 2010a[START_REF] Zhang | Snake-based approach for segmenting pedicles in radiographs and its application in three-dimensional vertebrae reconstruction[END_REF] explored pedicle segmentation in frontal radiographs and its application in patientspecific vertebrae 3D reconstruction. They employ elliptical shape constrained priors in the deformations of a gradient vector flow (GVF) snake. In [START_REF] Zhang | Snake-based approach for segmenting pedicles in radiographs and its application in three-dimensional vertebrae reconstruction[END_REF] they showed better segmentation results when compared with a conventional GVF. In a similar approach [START_REF] Kumar | Semiautomatic Method for Segmenting Pedicles in Vertebral Radiographs[END_REF] applied a GVF deformable model to segment pedicles in frontal radiographs. They suggested to first enhance the radiographs using a mathematical morphology approach, and then apply the GVF model to the preprocessed radiographs. They reported better segmentation results from the enhanced radiographs. Similarly, also for frontal radiographs, [START_REF] Doré | Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients[END_REF]) use a level-set deformable model segmentation approach. In all the above pedicle segmentation frameworks, centres were approximated and applied to measure vertebrae rotations. Nevertheless, for segmentation initialization all methods required a manual pedicle localization process at each vertebral level.

-1.3.

Spine Shape Modelling

There is a high interest for 3D whole-body imaging as it provides an explicit visualization of skeletal deformities required for diagnosing various pathologies and planning for therapeutic operations.Whole-body 3D skeletal images can be acquired by CT-scans, which gives detailed information. However, due to the patient's radiation dose and image acquisition position, CT is not the ideal imaging modality. To address these issues, biplanar ultra-low dose imaging devices such as EOS™ system were developed to provide 1:1 scale and simultaneous sagittal and frontal radiographs, while patients are imaged in an upward, weight-bearing position. From the acquired orthogonal planar X-rays, 3D modelling of the human skeletal system is performed. In the literature, there are various methods for 3D spine reconstruction from biplanar radiographs that are reviewed here. (Humbert et al., 2009a) developed a method based on a parametric model of the whole spine using longitudinal and transversal inferences obtained from geometrical characteristics of one vertebra and its relation with the other vertebrae. The method is composed of two different reconstruction levels.

The first one is fast and just requires some limited interactive manual inputs for 3D model reconstruction. The second reconstruction level, provides high precision via fine model adjustments.

In [START_REF] Kadoury | Personalized X-Ray 3-D Reconstruction of the Scoliotic Spine From Hybrid Statistical and Image-Based Models[END_REF], using calibrated frontal and sagittal spine radiographs, personalized 3D models are generated by integrating statistical and image-based models. From the patient's spine centre line, first a statistical shape model is approximated, and then using image intensity distribution and edge potential alignment, the model's geometrical features and landmarks are refined. User-based fine adjustments are eventually performed to ensure high precision. [START_REF] Moura | Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model[END_REF] proposed a statistical model to perform 3D spine reconstruction for scoliotic biplanar radiographs. Their method uses 7 manual inputs to model the spinal shape. The spine is modelled as an articulated structure to take geometrical inferences on location, orientation, and size into account in the reconstructed model. [START_REF] Zhang | 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform[END_REF] developed a deformation-tolerant GHT method to best match their spine model constructed from limited sets of manual inputs with the vertebral edge contours on biplanar X-rays.

Their method aims to accurately capture general orientation and location of vertebrae. [START_REF] Kumar | 3D reconstruction of spine from partial biplanar radiographic image data[END_REF] introduced a 3D reconstruction method based on vertebrae angles from uncalibrated biplanar radiographs. Different angles are extracted from multiple image processing technics including GVF deformable models and mathematical morphology filtering. The computed generic model of the spine is fitted along the spine midline and then retro-projected to sagittal and frontal planes. The model deformation is carried out until the projected angles match with the radiographs angles.

Further details regarding the presented methods are listed in Table 6 andTable 7. 

Conclusion

This chapter summarized a very diverse range of image analysis methods which were developed to address the need for finding different anatomies and interpreting their unique characteristics required for making diagnosis and therapy planning.

The most common action required to be performed in the images is to determine the region of interest (ROI) that includes targeted anatomical structures. As it can be performed very easily without significant knowledge-based manual intervention, we see many literatures that perform manual ROI selection mostly by two or several manual clicks.

After determining ROI either manually or automatically, localization of anatomical structures is the most common task, which is a preliminary step for further processing. This job is mainly performed with the aid of learning-based methods and requires using some feature descriptors that best describe the characteristics of the targeted structure. Variability among subjects, noise and occlusion are among challenges that have to be dealt with, and particularly the design of feature descriptors and the refinement strategy can highly affect the detection accuracy.

Identification is particularly required when we are dealing with anatomies with articulated structures such as spine that is composed of various vertebrae in different spine levels. This task can be performed by the mean of one or multiple manual inputs, which play the role of reference, where the identification task will be commenced. On the other hand, the extracted ROI can also play the same role for the identification task. There are also methods that rely on subject specific detectors in the images.

However, the presence of that anatomy for labelling is always necessary. Lastly, some methods apply some graphical models to robustly determine appropriate labels. Overall, most of the preliminary studies require some level of user interaction for the identification process, which sometimes involves tedious and time consuming manual intervention.

Segmentation serves to represent and describe the interest structures. Various clinical data can be obtained from a segmented structure. Information such as the anatomy shape, position, and orientation can assist in determining disorders and abnormalities. As most segmentation approaches require an initialization step, one more time we can highlight the localization importance. In the literature, we commonly see an integrated statistical shape a priori in structure of various segmentation frameworks that act as a deformation constraint. However, the defined shape constraint parameters can have negative impact on the final segmentation outcome, particularly when dealing with pathologies and abnormalities which were not represented in the training datasets. To tackle the problem, integrating the information from the surrounding structures into the designed algorithm can assist in improving the performance.

In the last part, we focused on some of the existing methods for spine 3D reconstruction from biplanar radiograph. To the best of our knowledge, the only one which is used in routine clinics and extensively validated is the one proposed by (Humbert et al., 2009a), that was developed and recently improved in the Institute (Laville et al, unpublished data). This method is organized in two steps, first initialization which is quite rapid (from 2 to 3 minutes) and then retroprojection of the 3D model on the planar radiographs and manual adjustments:

Figure 29 illustrates various levels of the spine reconstruction method in (Humbert et al., 2009a). As in Table 6 the results after the first fast reconstruction level are very promising (mean point-to-surface error: 1.3 ± 3.6 mm), although there are still some image inconsistencies (see blue contours in Figure 29(c)). Therefore, in finer analysis or research oriented studies a second fine manual adjustment step is also required to achieve mean point-to-surface error of 1 ± 2.7 mm, hence, higher accuracy in the measured clinical parameters. The work in the following chapters is aimed to make those adaptations fully automatic, with an accuracy near to the results after interactive fine manual adjustment.

Although this method provides highly reliable 3D models of the spine [START_REF] Dubousset | Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk[END_REF][START_REF] Ilharreborde | Angle Measurement Reproducibility Using EOSThree-Dimensional Reconstructions in Adolescent Idiopathic Scoliosis Treated by Posterior Instrumentation[END_REF][START_REF] Rehm | 3Dmodeling of the spine using EOS imaging system: Inter-reader reproducibility and reliability[END_REF], it still requires some level of manual interventions as fine model adjustments or model initialization. As in general, manual intervention is a source of uncertainty and it is time consuming, there are lots of image processing related research opportunities to tackle this limitation of the spine modelling approach. In practice, this PhD is defined to contribute in improving the performance of such method by introducing image processing-based extra information applicable to the structure of the existing framework. The following three chapters are trying to bring an answer to the defined goal of this PhD. The presented method in Chapter 3 contributes to this aim by an accurate localization of vertebral corners in the cervical and lumbar spine sagittal radiographs.

Vertebral corners in (Humbert et al., 2009a) are among the control points that highly contribute in vertebral model generation and involve valuable information regarding the shape and orientation of each vertebra. In Chapter 4, we also explore the localization of thoracolumbar pedicles in frontal radiographs. The vertebral pedicle centres are also among the control points required for vertebrae model reconstruction. Therefore, accurate pedicle localization can also assist in an automated model

-1. Abstract

-1.1. Purpose

Quantitative measurements of spine shape parameters on planar X-ray images is critical for clinical applications, but remains tedious and with no fully-automated solution demonstrated on the whole spine. This study aims to limit manual input, while demonstrating precise vertebrae corners positioning and shape parameter measurements from sagittal radiographs of the cervical and lumbar regions, exploiting novel dedicated visual features and specialized classifiers.

-1.2. Method

A database of manually annotated X-ray images is used to train specialized Random Forest classifiers for each spine regions and corner types. An original combination of local gradient characteristics, Haar-like features, and contextual features based on patch intensity and contrast is used as visual features.

-1.3. Results

The proposed method is trained and evaluated on 109 sagittal X-rays of asymptomatic and pathological subjects, from multiple imaging sites, and with a large age range (6 -69 years old).

Performance is first evaluated for positioning a 2D spine shape model, where precisely detected corners enable to adjust the model via an original multilinear statistical regression. Root-mean square errors (RMSE) of corners localization and vertebra orientations are reported, demonstrating state-of-the-art precision compared to existing methods, but with minimal manual input. The method is then evaluated for the extraction of additional vertebrae shape characteristics, such as centre positioning, endplate centres positioning and endplate length measures, rarely studied in previous literature.

-1.4. Conclusion

The proposed method enables, with minimal initialization, fast and precise individual vertebrae delineations on sagittal radiographs on normal and pathological cases, with a level of precision and robustness required for objective support for diagnosis and therapy decision making.

Keywords: Spine, X-ray, Vertebrae corner detection, Random Forest, Visual features, Shape modelling

-2. Introduction

Spine misalignment directly affects life quality of individuals and impacts health-related quality of life (HRQoL) scores (Boissière et al., 2017;[START_REF] Hasegawa | Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects[END_REF]. While three-dimensional (3D) imaging modalities such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are used to assess acute and chronic spine injuries, upright radiography remains the modality of reference to evaluate scoliosis and lordosis. Compared to CT and MRI which are only readily available in wellequipped and advanced imaging centres, planar X-ray is available in most medical centres. More importantly, unlike CT and MRI, planar X-ray images, as used in this study, are acquired in upward standing position, which enables visualizing spine deformities in weight-bearing conditions.

Computer-assisted analysis of the spine on sagittal radiographs provides objective support for scoliosis diagnosis and therapy decision making. Lumbar lordosis is of particular importance, especially in analysis of lower spine irregularities and causes of lower back pain. Cervical parameters, on the other hand, are essential not only for determining pathology and trauma but also because of their intrinsic value for diagnosis of cervical spine disorders and their relevance in analysis of compensatory mechanisms [START_REF] Amabile | Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years[END_REF].

Some tools can provide detailed morphological parameters related to vertebrae shapes, positions, and orientations, following manual keypoint localization on individual vertebrae [START_REF] Champain | Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies[END_REF], which are more adapted for research purpose than for clinical routine. On the other hand, some tools are available for surgical planning, that require minimal user supervision but only provide global parameters such as the spinal curve [START_REF] Duong | Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs[END_REF] or few isolated morphological parameters [START_REF] Lafage | Validation of a new computer-assisted tool to measure spino-pelvic parameters[END_REF]. However, both global and local spine shape parameters are essential in clinical practice. While the overall spine line is sufficient to measure inclination, tilt, curvature and Cobb angle, individual vertebral body centres and orientations allow to detect local abnormalities of clinical value [START_REF] Champain | Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies[END_REF]. Endplate length and position can help in sizing implants such as cages or disk prosthesis, or investigating possible slippage between two vertebrae [START_REF] Tournier | Total disc arthroplasty: Consequences for sagittal balance and lumbar spine movement[END_REF].

Methods for automated vertebrae segmentation on three-dimensional supine imaging techniques such as MRI and CT were investigated (e.g. [START_REF] Klinder | Automated model-based vertebra detection, identification, and segmentation in CT images[END_REF][START_REF] Lim | Introducing Willmore Flow Into Level Set Segmentation of Spinal Vertebrae[END_REF][START_REF] Neubert | Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models[END_REF][START_REF] Yao | A multi-center milestone study of clinical vertebral CT segmentation[END_REF] but not evaluated at the precision level achievable with X-rays, and hence do not focus on precise corner localization.

Regarding the specific task of precise landmark detection in X-ray spine images, which is the focus of our work, the following papers have been published. For the particular problem of vertebrae corner detection on sagittal X-rays, [START_REF] Benjelloun | A framework of vertebra segmentation using the active shape model-based approach[END_REF] proposed a semi-automated method to localize cervical spine for initialization of an active shape model (ASM). Harris corner detector [START_REF] Harris | A Combined Corner and Edge Detector[END_REF]) and a posteriori filtering were used to localize the anterior corners of cervical vertebrae (C3-C7) but the precision of the detection was not reported. [START_REF] Lecron | Points of interest detection in cervical spine radiographs by polygonal approximation[END_REF]) developed a method using polygonal approximation to extract the anterior corners of the cervical spine. Later in [START_REF] Lecron | Fully Automatic Vertebra Detection in X-Ray Images Based on Multi-Class SVM[END_REF], they used a multiclass support vector machine (SVM) to categorize corners detected from their previous polygonal approximation approach, and incorporated scale-invariant feature transform (SIFT) features [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] Harris-based corner detector with comparable results. Vertebra shape variability among subjects was reported as the main source of error, and their approach requires manual identification of individual vertebrae. Overall, all these approaches require demanding manual input to either localize a specific spine region (e.g. C3-C7), which limits the scope, or individual vertebrae, which is time consuming and source of uncertainty. In addition, none has been evaluated on both lumbar and cervical regions.

This study is designed to address these issues.

For this purpose, instead of a tedious manual landmark selection at each vertebral level, we propose to exploit a 2D statistical shape model of the spine initiated with only seven manual inputs. This spine shape model provides an approximate knowledge about vertebrae positions (heights, depths, and orientations along the spinal line), which is then refined via a proposed fully-automated corner localization method, involving dedicated random forest classifiers and specialized visual features.

Random forest (RF) [START_REF] Breiman | Random forests[END_REF]) is a well-regarded machine learning tool, widely used for anatomical structures localization and identification in medical images [START_REF] Glocker | Vertebrae localization in pathological spine CT via dense classification from sparse annotations[END_REF][START_REF] Glocker | Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[END_REF].

We elaborate on the previous work of [START_REF] Ebrahimi | Lumbar spine posterior corner detection in Xrays using Haar-based features[END_REF] which introduced a competitive posterior lumbar corner detection and categorization framework based on Haar-like features. In this work, RF Pixel size varies between 0.17940.1794 mm 2 and 0.18320.1832 mm 2 . The Field of view (FOV)

includes the superior tip of the odontoid bone, all cervical (C1 to C7), thoracic (T1 to T12) and lumbar (L1 to L5) vertebrae and the superior endplate of the sacrum bone.

The population includes asymptomatic and scoliotic spines with characteristics and compositions detailed in Table 8.

-3.1.2. Initialization with a 2D Spine Shape Model

Surgeons willing to perform quantitative radiographic measures on biplanar X-rays for surgical planning have currently two options: positioning and manually correcting a full 2D or 3D spine shape model with commercial software tools such as sterEOS from EOS imaging or manually extracting a subset of localized geometric features as with the Surgimap Spine software tool [START_REF] Lafage | Validation of a new computer-assisted tool to measure spino-pelvic parameters[END_REF]. Academic groups are actively working on improving the robustness and precision of 3D spine shape model reconstruction from X-rays (Humbert et al., 2009a;[START_REF] Korez | Sparse and multi-object pose+shape modeling of the three-dimensional scoliotic spine[END_REF][START_REF] Zhang | 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform[END_REF], but have not yet reached fully-automated solutions that are precise enough. Even full-automation of the extraction of the spinal curve on X-rays remains challenging for scoliotic cases [START_REF] Duong | Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs[END_REF].

In this context, we exploit an in-house 2D shape model positioning to initialize our processing pipeline.

For each sagittal radiograph, an operator first defines seven points (Figure 32(a)), used to position the superior sacrum endplate, T12 inferior and C7 superior endplates, and the tip of the odontoid bone, which sets the upper limit of the spine. This information, which takes less than 1 minute to enter, is sufficient to draw an approximate mid-line of the vertebral bodies. Inspired from the work presented in (Humbert et al., 2009a), a 2D model of the spine is built (Figure 32(b)), inferring the size and Images are denoised using a 55 Wiener filter (with a noise variance parameter inferred via averaging local estimated variances), and then enhanced using a same size median filter, making the interior parts of the vertebrae more homogeneous while maintaining the contrast at the vertebral borders. The filter sizes are selected empirically following common practice in image processing. We then use the contrast limited adaptive histogram equalization (CLAHE) method [START_REF] Zuiderveld | Contrast Limited Adaptive Histogram Equalization[END_REF] to locally

improve contrast and attenuate intensity variations across the field of view (due, for example, to varying thickness of surrounding tissues). Finally we generate an edge map using the Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF].

-3.3. Corner Point Candidate Extraction

Following the method and parameters described in the study of [START_REF] Ebrahimi | Lumbar spine posterior corner detection in Xrays using Haar-based features[END_REF], we convert the edge map into a set of connected edge segments using the polyline simplification method introduced in [START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF] and discard points placed along flat edges. This leads to a subset of edge points that are considered as corner point candidates (magenta points in Figure 37(f&g)).

-3.3.1. Definition of Vertebral Geometric Features and Ground-Truth

As illustrated in Figure 33 
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These features are based on subtractions of edge and corner features computed at 0 and 45

orientations. The feature values are largest for 0 and 45 oriented corners (either positive or negative signs) and smallest for corners oriented at ±22.5. These features, therefore, refine the encoding of the corner orientation.

One last feature is computed as the local average intensity at each candidate point (filter size 1515 pixels). We end-up with a 16-dimensional Haar-like feature vector.

-3.4.3. Contextual Features

We include a novel configuration of contextual features to capture visual characteristics (intensity and contrast) of neighbouring structures, which enable us to add robustness in the identification of corners and their types. Contextual features were also exploited in [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF][START_REF] Glocker | Vertebrae localization in pathological spine CT via dense classification from sparse annotations[END_REF][START_REF] Glocker | Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[END_REF] with different formulations. As illustrated in Figure 36, we define a large set of contextual patches around each candidate point, with small to large patch sizes (3 to 13 pixels) and small to large translations (6 to 36 pixels). Upper values were selected to limit computational time to a reasonable value. Patch height and width take every possible combination of the following values: {3, 5, 7, 9, 11, 13} pixels. Patches are created with any dimension and shifted away from the candidate point position by forming a circle of regularly-positioned patches at distances of {6, 12, 19, 27, 36} pixels. In our implementation, a total number of 3,636 contextual patches is considered for each candidate point. To accelerate pixel summations over all subregions encompassed by the aforementioned patches we use the integral image of [START_REF] Viola | Robust real-time face detection[END_REF], which provides the outcome with just three sum operations.

We generate two sets of contextual features at each candidate point for every size of contextual patches: (1) the average intensity value inside each contextual patch, and ( 2) the difference between average intensities inside the central patch and its corresponding contextual patches.

-3.6. Training Misclassification and Feature Importance Analysis

To document the performance of our RF classifier at the training stage, the following out-of-bag classification errors, as introduced in [START_REF] Breiman | Random forests[END_REF], are computed: ( 1 

-3.7. Final Adjustment of Corner Points

Local decisions are made in the neighbourhood of the initial corner point positions, exploiting the a priori knowledge given by the approximate 2D shape model of the spine. At this stage, detected corners in the lumbar region are mapped back to the original X-ray image via upscaling of their coordinate by a factor of 2, as they were obtained on downsampled images. We define a circular search area around each approximate corner positions and then preserve the detected points encompassed in the search area. We set the search area radius to 23 pixels, which is approximately half the height of a vertebra. The following processing is then applied:

(1) If there are multiple points labelled at a corner position, their coordinates are averaged to lead to a single corner point.

(2) If there is no point labelled at a corner position, a regression model is used to infer the position of the missing corner based on surrounding corner points, as follows.

We apply the strategy introduced in [START_REF] Albrecht | Posterior shape models[END_REF]) that provides a closed-form formula for the conditional distribution of a statistical shape model given partial data. This strategy enables us to estimate the position of the missing corner points given the localized ones. The model uses an uncertainty parameter on corner coordinates which was set to 10 pixels in our work. The regression step is based on a generic statistical position model built with the manually annotated corner points from the training set. For each subject, the 2D coordinates of the four corner points of vertebrae C3 to C7 and L1 to L5 are extracted. We express coordinates in a frame where the odontoid summit, manually identified earlier, is the origin, and the and axis are the natural image axis. The coordinates are concatenated in a line vector, and a principal component analysis (PCA) is applied to each region individually, computing the mean model and the principal components (eigenvectors of the 50 largest eigenvalues of the covariance matrix). This framework enables us to infer a missing corner position (2D coordinates) by adding to the mean model a linear combination of its principle components according to the formula + . The closed formula for is given in [START_REF] Albrecht | Posterior shape models[END_REF].

The regression model is used twice in our algorithm. The first run updates the search area where we collect corner points detected by RF classifiers. The second run enables to fill the remaining missing corners.

From the four corners of a vertebra we are capable to extract the following vertebral geometric features: Vertebra centre, superior and inferior endplate lengths and centres, and vertebra orientation (Figure 33).

-4. Results

We first test the performance of the RF classifiers when trained with individual feature types (CF, HOG, or Haar) or the combination of the three types (All). We report in Table 9 sensitivity and precision measures of corners detected within a radius of 1.4 mm from the manually-selected ground truth positions. Obtained from the work [START_REF] Ebrahimi | Lumbar spine posterior corner detection in Xrays using Haar-based features[END_REF], this radius value corresponds to the uncertainty on the manual identification of corner points. Detection performance is reported on corner points detected by RF classifiers but not adjusted with the final shape model regression. We observe that precision with the combination of features performs best for both regions. Sensitivity with only

Haar features is the highest, but is systematically associated with poorest precision. It also appears that CF features contribute to a great improvement of the precision in the lumbar region, performing almost as well when used as single feature type than when combined. But, overall, combining the three feature types improves precision while slightly decreasing sensitivity compared to the Haar features when used alone. Visual inspection also confirmed that the three feature types complement each other's for challenging corners when one individual type returns a weak response. Regarding computation time for these features, each spine region contains between 400 and 800 candidate points after edge extraction and simplification. Feature extraction on 800 candidate points takes about 0.5 seconds for Haar, 7 seconds for HOG, and 7 seconds for CF, when implemented without specific optimization in Matlab© and running on a PC with a 2.4GHz processor and 8Gb of RAM. Given the complementarity of these features and the low computational times, we choose to work with the combination of the three. The overall computational pipeline with this combination takes less than 2 minutes to process the 10 vertebrae (C3-C7 and L1-L5). To assess the precision of our framework, we then compare the outcome of our proposed method with the gold standard, obtained manually by an expert. Average localization root-mean square errors (RMSE) are computed for corner positions, vertebrae centres, and vertebrae endplate centres. The reported error value for the vertebra endplate centre is the average over the superior and inferior endplate centres. The endplate length signed differences between the ground truth and the algorithm outcome, as well as, the vertebra orientation signed differences are also reported. A summary of the computed errors for all three groups is provided in Table 10. Population statistics for these five error measures are further detailed in Figure 38 and Figure 39, distinguishing the following subgroups of subjects:

• G1 (N=15): Adolescents and young adults with no or moderate scoliosis. Used as the reference group;

• G2 (N=18): Severe AIS;

• G3 (N=16): Old adults.

A Wilcoxon signed-rank test was performed to assess possible statistical significant differences of errors between the reference group (G1) and the diseased groups (G2 and G3). This test was run grouping measures from C3-C7 and from L1-L5 (hence two tests per error measurement).

Results in Table 10 show that RMSE positions errors and length differences are always smaller in the cervical than in the lumbar region, but median values all remain within the manual uncertainty range of 1.4 mm. On the other hand, orientation differences are larger in the cervical region. As depicted in Regarding endplate length differences in Figure 39(a), group-means (bias) are all below 0.2 mm in the cervical region while they reach 1.1 mm in the lumbar spine, with the G1 group showing sometimes larger errors than G2 or G3. Overall, spreads of errors then to be larger in the lumbar region. As for orientation differences (Figure 39(b)), G1 has the smallest values both in the lumbar and cervical spine, with respective values of -0.4 ± 2.3 and -1.4 ± 2.8 while highest values are found in G2 and G3, reaching -1.6 ± 3.6 in the cervical spine in G3. Among all vertebrae, L1-L3 exhibit the smallest error levels and ranges, for all groups. Overall, we observe a trend of larger errors in the lumbar region for point localization and length measurements and of smaller errors for orientation measures in L1-L3.

The Wilcoxon signed-rank test showed no significant differences of error measures between the reference group and the two disease groups (p=0.001) for all measures except two: cervical corners and endplate centres localization errors of G1 versus G3.

Finally, few outliers (up to 5 per vertebra) appear for some measures, and correspond to cases with strong visual ambiguity regarding the corner shape.

-5. Discussion and Conclusion

A novel processing pipeline for the task of vertebrae corner detection on sagittal X-rays is presented which provides an efficient compromise between computational time and accuracy. The proposed framework is based on initial information that requires minimal user input, taking less than 1 minute to complete. Indeed, only seven "clicks" are needed to define three vertebral endplates and the top of the odontoid. From that, an approximate spine shape model is built for ROI selection, and an accurate localization of corners is tackled by the proposed image processing and statistical modelling pipeline.

Most existing works on vertebrae corner detection reported only corner detection rate without analysing the accuracy of the corner positions. Compared to the previously published semi-automated methods for vertebral corner localization, listed in Table 11, this study provides a more extensive evaluation, reporting errors in corner localization, derived end-plate positions and orientations.

Moreover, our study encompasses results on both cervical and lumbar vertebrae, while most of the advanced methods toward automation of vertebrae corner detection from X-rays have been evaluated

on only one of these two regions. Such extensive coverage of the spine was enabled by requesting seven manual input points to initialize a spine shape model. Manual positioning of these input points does not need high precision, since our method was designed to detect corners within large search areas. Among the literature that focuses on vertebrae corner detection and reports detection precision, [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF], 2015a, 2015b) provided these values on the cervical region (C3-C7). In (Al Arif et al., 2015a) they reported average RMSE values of 3.033.08 mm. In [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF], a mean corner localization error of 2.01 mm was reported using a Hough forest classifier with mixed intensity and contrast Haar-like features and a rectangular ROI. In [START_REF] Ebrahimi | Lumbar spine posterior corner detection in Xrays using Haar-based features[END_REF] an RMSE error of 1.20.8 mm on lumbar posterior corners was reported. In this work, using the same metrics, we obtained average corner localization RMSE values of 0.90.7 mm for the cervical region, and 1.71.2 mm for the lumbar region. Our results agree with Al Arif's observation of a slight increase in average corner localization errors from C3 to C7.

Regarding the spine orientation [START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF] reported an average RMSE of 6.7 for cervical vertebrae (C3-C7 with min = 5.55 & max = 8.22). In this study, we report a mean (bias) ± Std. for orientation differences of -0.1 ± 2.9 in the lumbar region, and -2.1 ± 3.1 in the cervical region.

Variability of manual landmark localization at each vertebral level was evaluated in [START_REF] Champain | Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies[END_REF] but on shape parameters different that the ones evaluated in our study. However, it seems that our orientation errors are slightly higher than manual uncertainty in asymptomatic subjects, while in pathologic cases they are similar. A major contribution of our proposed methodology is the design of our pool of image features, composed of three complementary types. Although the number of Haarlike and HOG features is smaller than the CF ones, all three types contribute as predictive features for the RF classifiers. HOG features have proven their efficiency in encoding robust local visual characteristics. The tailored Haar-like features provide specific discriminative power for corner detection and determining the corner types. Feature importance analysis of our proposed and tested

Haar-like features shows that the features in Equation 5 are among the strongest predictive features (best descriptors being and ). This category of Haar-like features is novel and was not exploited in previously published papers. However, in general the spatial range of Haar-like features is limited.

Adding some contextual features lets us explore large neighbouring regions around the candidate points, which leads to a reinforced discrimination against false positives. Reported results show that the combination of these three feature types improves the precision of the detected corner positions.

Regarding contextual features (CF), while various types have been developed and used in previous studies, our study presents an original design tuned for the given detection task of precise vertebrae corner localization and identification on X-ray images.

Although the pool of features is very large, its generation is not computationally demanding. Choosing Random Forest classifiers for learning the characteristics of the corner points while mixing asymptomatic and pathologic subjects in the training set was shown to work efficiently with limited computational efforts and parameter tuning. Computational resources allow nowadays the exploitation of large feature dimensions and RF classifiers are designed to handle very large sets of features, which has driven our methodological approach. Also, contextual features are in essence large if we want to exploit a dense set of neighbourhood patches.

In this study, separate classifiers are trained for each vertebral corner and spine regions. We see the following advantages in training one classifier per corner type, as proposed in (Al Arif et al., 2015b), rather than a single classifier for all vertebrae corners: First, it enables us to train the classifiers on more specialized classification tasks, which makes the learning and training process easier and better defined. In particular, given the asymmetry of frontal versus dorsal spine structures, contextual features are likely less complex to learn if done per corner type. A second argument is that visual patterns and disease patterns differ between corner types, so it is beneficial to enable trained RF classifiers to exploit different features for different corner types. Third, if one corner type appears to be more difficult to detect, it has no consequence on the detection of the other ones during the training phase. Fourth, knowing a candidate point corner type within a search area facilitates false positive removal. Indeed, in some cases, our search areas (defined to cope with the uncertainty in manual inputs) include candidate points from other corner class types. A single-class classification framework would not provide any clue to detect these a priori false positive candidate points. Such approach requires a priori knowledge of corner type on the candidate corner points, which was enabled by our initialization with the spine shape model.

Another original contribution is the design of a refinement step (Section 3 -3.7) via statistical shape modelling, that contributes in limiting the method's sensitivity to inaccurate manual inputs.

Results show best overall performance for the test group with asymptomatic or moderate AIS (G1).

This was expected as deformities of the spines are minimal, and consequently there exists less ambiguity at corner regions. In the group of severe AIS subjects (G2), we deal with highly deformed spines in the lumbar region. This causes superimposition of bone signal at the corner areas, and affects the algorithm precision. In such group, even the reproducibility of manual annotations considerably decreases. However, in contrast with the thoracolumbar region, the spine deformities in the cervical spine remain limited, and in this region our results are similar to those in G1. Non-scoliotic old patients (G3) have osteophytes and cervical deformities. As a result, in the cervical region we observe the largest average error differences when comparing to G1, while in the lumbar region average error levels are comparable. This also might be the consequence of not including any old subject in our training dataset. Despite smaller localization errors in the cervical region, orientation errors are higher in this region, likely due to the smaller size of cervical vertebrae. Focusing on mean orientation differences, in relation with a possible bias, values are -2.1 in the cervical spine, and closer to 0 (-0.1) in the lumbar region. Higher bias in the cervical region may be due to corner shape ambiguities and probable pathologies such as osteophytes. In practice, since the bias represents a systematic error, this issue could be addressed by adding a potential post-correction of the cervical corner positions with respect to the known orientation bias.

Overall, the performance of our proposed method compares favourably to previously published approaches in terms of precision and level of manual supervision. Nevertheless, our method has two main limitations. First, the thoracic part was not investigated, since the visual quality of sagittal Xrays in this region is lower, and since the major interest for clinical analysis is on lumbar and cervical spine regions. However, with the output refined shape models of the lumbar and cervical regions, the applied regression algorithm recalculates the position of model's elements on the thoracic region as

well, leading to a potential global improvement of the model precision which will be evaluated in a future study. The second limitation is that the precision of the localized corners, especially in asymptomatic or moderately scoliotic subjects, can be lower than reported by methods exploiting more manual supervision. Extension of the method could consider adding a level of confidence to the detected corners, so that the user is pointed to corners that need manual verification and correction.

This study contributes to a solution for fast and extensive shape modelling of the whole spine on sagittal X-rays. Extension to the thoracic region will require a dedicated image enhancement preprocessing step. Automated localization of additional spine bone landmarks, such as pedicles and spinous processes, constitutes ongoing efforts from our group. Preliminary results confirm that the combination of the three visual features is beneficial over a single type when using a Random Forest classifier for the detection, in particular the HOG type being critical for pedicles detection.

-1. Abstract

-1.1. Purpose

Quantitative analysis of spine parameters is a prerequisite for diagnosis and treatment planning in spine-related diseases. In this study, among structures of interest, we aim at detecting pedicles in the thoracic and lumbar regions from frontal (coronal) X-rays, using machine learning and visual features extraction. Pedicle localization provides significant knowledge about vertebrae position and orientation.

-1.2. Method

Regions of interest are selected from a 2D shape model roughly positioned on the X-ray images, where we explore pedicle instances. Random Forest classifiers are trained and tested via leave-one-out crossvalidation, exploiting a database of 57 manually annotated patients. The specialized classifiers exploit:

(1) customized HOG features, and (2) contextual features. A novel classification and score voting scheme is introduced to limit the number of false positive detections. Finally, through multilinear regression, we refine the pedicles detections.

-1.3. Results

Results are given on all thoracic and lumbar vertebrae for different classifiers incorporating individual features or their combination. The used database is gathered for a range of subjects from normal cases to severe scoliotic ones. Comparing to a manually-annotated ground truth, root-mean-square errors (RMSE) and orientation differences are computed respectively for pedicle localization and orientation.

For the best classifier, which uses the combination of features, the average pedicle localization RMSE returns a mean ± standard deviation (Std.) = 1.2 ± 1.2 mm, an average frontal orientation difference of 2.4° ± 2.6°, and an average axial rotation error of 2.0º ± 2.8º. These results compare favourably to other state-of-the-art solutions found in the literature on pedicle detection.

-1.4. Conclusion

By jointly incorporating machine learning and a priori spine shape modelling, we are able to robustly detect and localize pedicles on frontal X-rays, leading to an accurate spine model estimation with minimal user intervention.

Keywords: Spine, X-ray, Vertebrae pedicle detection, Random Forest, Visual features, Shape modelling

-2. Introduction

Scoliosis is a three-dimensional deformity of the spine, which can lead to pulmonary and cardiovascular impairment or locomotor disability if left untreated. It is usually diagnosed with a clinical exam where an abnormal curvature of the spine in the frontal plane is observed. Severity of the scoliosis can be determined with a frontal X-ray radiograph, where the Cobb angle can be measured but which does not take into account the 3D nature of the pathology. Indeed, 2D Cobb angle measurement is affected by projection bias, and the patient's transverse plane is neglected [START_REF] Illés | The horizontal plane appearances of scoliosis: what information can be obtained from top-view images?[END_REF]. It has been recently shown that vertebral and intervertebral axial rotations are potential markers of progressive scoliosis [START_REF] Skalli | Early Detection of Progressive Adolescent Idiopathic Scoliosis[END_REF]. Recent advancements in low-dose stereo-radiography and the development of 3D reconstruction methods (Humbert et al., 2009a) allow reliable measurement of 3D clinical parameters of the spine. These methods are based on an initial manual localization of few anatomical landmarks, which are fed into a statistical spine shape model yielding a first estimate of the spine geometry, and of its associated clinical parameters. Then, the operator can manually move, rotate and deform each vertebra to fit its projection on the frontal and lateral radiographs.

During this fine adjustment phase, vertebral pedicles are important visual landmarks giving the operator an insight on vertebral shapes and orientations. For example, [START_REF] Stokes | Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity[END_REF] has proposed a method to estimate vertebral axial rotation from the position of pedicles and vertebral body on frontal radiographs. Beyond 2D application, automated identification of pedicles could help improving the initial estimates of a 3D spine reconstruction algorithm.

Pedicles have very specific visual characteristics on frontal radiographs, and therefore have the potential of being automatically detected using image processing techniques. Among previous works, [START_REF] Doré | Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients[END_REF] proposed a deformable model based method for pedicle segmentation. Pedicle centres were then extracted from the segmentations and used to compute vertebral frontal rotations.

Their approach requires manual selection of points inside each of the thoracic and lumbar pedicles. (Zhang et al., 2010a[START_REF] Zhang | Snake-based approach for segmenting pedicles in radiographs and its application in three-dimensional vertebrae reconstruction[END_REF] proposed a gradient vector flow (GVF) deformable model [START_REF] Xu | Snakes, shapes, and gradient vector flow[END_REF]) that was controlled with an elliptical shape constraint to limit the deformations. Here again, individual fine manual initialization was required to initialize pedicle segmentation. To achieve better segmentation results, [START_REF] Kumar | Semiautomatic Method for Segmenting Pedicles in Vertebral Radiographs[END_REF] proposed to apply a GVF-based deformable model to preprocessed radiographs, which were enhanced by a mathematical morphology-based filtering approach. They reached high-quality segmentation results, but manual initialization of the contours was again necessary at each vertebral level. In a different approach, [START_REF] Cunha | Pedicle Detection in Planar Radiographs Based on Image Descriptors[END_REF] developed a pedicle detection method based on SVM classifier and a set of feature descriptors to detect the lower end of left pedicles in L1, L2, and L3. They reported a HOG-based classifier as the most successful option with an accuracy of 47.6%.

In this study, a quasi-automated pedicle detection method in frontal radiographs is presented. First, the spinal curve and eight landmarks were selected throughout the spine, taking less than one minute of operator time. These landmarks were used to compute a 2D spine shape model, from which the regions of interest (ROIs) were determined. Then, using specialized Random Forest (RF) classifiers, trained for pedicle detection, the selected ROIs were explored for pedicle instances. This operation was completely automated and there was no need for manual intervention. In order to refine the detections, a mathematical morphology-based (MM) clustering of detected points was proposed, combined with a heuristic score computed on the obtained clusters. Consequently, for each pedicle the cluster with the highest scores was retained, and score-weighted averages were used to define pedicle centres. In the final step a regression method was applied to predict the position of missing pedicles. The proposed method was validated by comparing manually-traced pedicles with those detected by the algorithm, and by measuring differences in vertebral axial and frontal rotations calculated with the Stokes method from manually and automatically identified pedicles.

-3. Materials and Methods

-3.1. Data

A first database of 92 radiographs (EOS™ system, EOS imaging, Paris, France) of scoliotic patients (Cobb angles: 3° -93°, mean ± Std.: 42° ± 24°) was built from retrospectively collected data (image resolution: 0.1794 mm 2 ). 3D reconstructions of the spine were performed for these patients (Humbert et al., 2009a). This database was used to statistically infer the candidate initial position of the pedicles, and to infer the position of pedicles for which the automated detection failed, as explained later.

A second database of 57 frontal radiographs (EOS™ system, EOS imaging, Paris, France), with image resolution: 0.1794 mm 2 , of healthy and scoliotic subjects obtained from a retrospective multi-centric data collection, with an approved protocol from the centres' ethical committees and with written consent from the patients' (or his/her parents), was built for training and validation. Patients' characteristics are reported in Table 12. 

-3.4. Pedicles Detection

Manually defined pedicle centres from the training set were fed as positive instances for the three classifiers, which were trained using a RF structure with 500 trees and the Gini metric (all parameters are similar to the configuration used in Chapter 3). Negative instances were sampled in equal proportion from random pixels outside the pedicles. RF performance was evaluated via leave-one-out cross-validation.

2D initialization and statistical shape model were used to define a coarse bounding box (BB) around each pedicle from the thoracic T1 to the lumbar L5 (Figure 42) levels. A grid of 26x24 candidate points (pixels) was automatically defined within the bounding box (Figure 45), and these points were fed to the classifiers. The classifiers associated to each point a probability of its membership to a pedicle.

However, as shown in Figure 45, because of the complex visual information of the ROI, especially in the thoracic region, some detected points were wrongly classified as belonging to a pedicle. In order to remove these false positives (FP), a mathematical morphology closing operator was first applied to fill the space between the detected points, and form clusters from connected components.

This procedure also helps in discarding isolated detected points, thus reducing false positive (FP) rate.

Then, in the case of more than two clusters detected for a vertebra, the two largest ones were kept as the most probable pedicles. A score metric was developed to quantify the probability of each final candidate cluster to be a true positive (TP), based on the probabilities assigned by the classifier and the cluster size. In Equation 6 the score computation formulation is shown, based on the size and point score characteristics of a cluster.

= ( log ) × ∑ -+ = (6)
where is the number of points in the cluster and is the probability of the point i being a true positive. A threshold = .

is used to avoid any division by zero. Point probabilities contribute equally, as exponential weights, and the cluster size contributes via a log operator.

For each pedicle, the cluster with the highest score was selected, and the other ones (if available) were discarded (Figure 45(d)). The pedicle's centre , for a selected cluster was calculated as the weighted mean of the cluster points' coordinates: Figure 46(a) illustrates some automatically detected pedicle's centres. In previous studies [START_REF] André | Effect of radiographic landmark identification errors on the accuracy of three-dimensional reconstruction of the human spine[END_REF], a 2 mm accuracy was reported for manual localizations. In Table 13 the detection rate within a 2 mm confidence interval is reported for the single and combined-features (hybrid) classifiers. The estimator provided in this method is quasi-unbiased (bias lower than 0.2 mm in absolute value)

-3.5. Refinement Stage

and has a reasonable uncertainty with about 85% of the detected centres within a range of 2 mm to the ground truth. In Table 15 we report the vertebral frontal rotation errors by comparing the algorithm-derived values to the manual ground-truth. Errors are reported for three vertebral regions (T1-T7, T8-T12, L1-L5)

and for the whole spine. The total signed error (-0.2º ± 3.5º) demonstrates that there is no considerable systematic error (bias) with the proposed method. The average absolute frontal rotation error is 2.4º ± 2.6º.

In Table 16 we report the vertebral axial rotation errors by comparing the algorithm derived values to the manual reference. The errors are reported for individual vertebrae and for the whole spine. Again, the signed error (-0.2º ± 3.4º) shows a very small systematic error. The average absolute axial rotation error for all thoracolumbar vertebrae is 2.0º ± 2.8º. In the literature, two different approaches have been studied: some articles focus on landmark localization, while others focus on pedicle contour segmentation. In all segmentation approaches, pedicle centres are extracted and used to measure vertebrae orientations. For instance in the pedicle segmentation method of [START_REF] Doré | Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients[END_REF], centres are extracted from the segmented pedicles, and the line passing through the two centres is used to measure the frontal rotation. These authors tested their approach on T1-L4 vertebrae of 5 scoliotic patients. Twenty-five out of 160 pedicles were discarded because of radiopaque markers or poor visibility of pedicles due to severe spine axial rotations. From the remaining 135 pedicles, 101 pedicles (74%) were segmented successfully. They reported a 2.3º mean difference for frontal rotation values between their semi-automated method and the ground truth. Another example is the work of (Zhang et al., 2010a), in which a GVF-based segmentation method was tested on 156 vertebrae from T4-L4. Two metrics from Stokes and Drerup were used to compute axial vertebral rotation angles. They reported a mean difference to ground truth of less than 2º and 4º respectively. To the best of our knowledge, our method has been more extensively validated than the methods available in the literature by considering each thoracic and lumbar vertebra on a reasonable sized cohort including pathologic subjects. In addition, the cited methods were based on an extensive manual initialization of each pedicle location.

Regarding visual descriptors, [START_REF] Cunha | Pedicle Detection in Planar Radiographs Based on Image Descriptors[END_REF] tested various features with a SVM classifier and, among all the tested features, reported HOG as the best feature descriptor with 47.6% sensitivity within a 2.4 mm confidence interval. In this study, HOG classifier reached 54.9% sensitivity within a 2 mm confidence interval (Table 13) which is in good agreement with [START_REF] Cunha | Pedicle Detection in Planar Radiographs Based on Image Descriptors[END_REF]. In our work, we have shown in Table 13, that our proposed hybrid features perform better than HOG features alone.

Finally, the integrated spine modelling regression method in Section 4 -3.5 is capable to reliably estimate missing pedicle centres and discard probable false positive leading to an overall better outcome. Such approach was not reported in the literature.

Our pedicle detections in the lumbar region are very robust, returning most of the times just one cluster of points per pedicle. This is due to the fact that shape complexity is low, and axial rotation does not hugely affect the pedicle shape in this region. The thoracic region is more challenging to deal with. In this region, anatomical structure superimpositions generate pseudo pedicles or poor pedicle contrast.

Axial rotation caused by scoliosis also greatly affects the pedicles appearance in frontal radiographs, which sometimes makes them invisible. The lack of detection can typically come from non-visible signal or misplacement of the search area during initialization. However, our proposed refinement strategy helps in coping with this problem.

Overall, the proposed framework provides a strong tool for fine landmark detection, which can be adapted to other anatomical structures in the spine, currently localized manually in X-rays. This research area is one of the perspectives for our future work. Combining HOG and CF features enabled us to benefit from both local and regional intensity and gradient information, which ultimately results in a better performance of the algorithm. Although there might be some erroneous detections, they have minor impact on the overall performance of the algorithm. In the future, we are aiming to extend the current framework to full pedicle segmentation, with application in spine 3D model reconstruction.

-1. Abstract

-1.1. Purpose

Quantitative analysis of spine parameters is required in routine diagnosis or treatment planning.

Although some tools exist, they commonly require manual intervention at some levels. Attempts towards automation of the whole procedure, have mainly focused on vertebral bodies, whereas other regions like the posterior arch bear considerable amount of useful information. In this study, we develop a segmentation and identification method suited for spinous process viewed on sagittal radiographs.

-1.2. Method

We combine contextual-based visual features with a multi-class Random Forest classifier to perform a pixel-wise segmentation of spinous processes of the cervical spine (C1-C7).

-1.3. Results

Segmentation results are evaluated on 62 datasets, comparing to manual tracing. Correct identification is obtained for all subjects and segmentation return mean  Std. values of: Dice coefficient = 88  8%;

Hausdorff distance = 2.1  1.4 mm and; average Hausdorff distance = 0.6  0.4 mm. Spinous processes geometric centres and axis of inertia are also computed and compared with the ground truth.

-1.4. Conclusion

Our proposed multi-class classification and dedicated contextual features enable segmentation and identification of spinous process in the cervical region. The derived geometric parameters can be used to reduce the amount of manual intervention needed for spine model computation or to measure clinical indices.

Keywords: Spine X-ray, Vertebrae spinous process, Multi-class Random Forest, Visual features, Segmentation, Identification

-2. Introduction

Each year, millions of people develop spine-related diseases, and are referred to specialists for treatment. In many circumstances, patients are instructed to get an X-ray for further assessment. X-ray imaging, either standard or biplanar, is the gold standard for 2D and 3D spine shape modelling and quantitative spine analysis since radiation dose is minimal and images are acquired in weight-bearing positions that preserve the spine pose and orientation for further analysis. All tools currently available for spine modelling require user intervention to determine some landmarks on the X-rays images [START_REF] Champain | Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies[END_REF][START_REF] Lafage | Validation of a new computer-assisted tool to measure spino-pelvic parameters[END_REF]. A rich literature exists describing the extraction of landmarks automatically or with minimal user involvement, such as the works in [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF][START_REF] Ebrahimi | Vertebral Corners Detection on Sagittal X-rays based on Shape Modeling, Random Forest Classifiers and Dedicated Visual Features[END_REF][START_REF] Lecron | Fully Automatic Vertebra Detection in X-Ray Images Based on Multi-Class SVM[END_REF] for vertebrae corners or the works in [START_REF] Doré | Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients[END_REF]Zhang et al., 2010a) for pedicles segmentation. However, automation remains very limited for structure localization or landmark detection in the spine posterior arch, while we know that this region is of great interest, especially in acquiring useful information regarding spine alignment and assessing some disorders or injuries. In spine analysis, physicians commonly assess the four following curves:

(1) Anterior vertebral curve; (2) Posterior vertebral curve; (3) Spinolaminar junction curve; [START_REF]Mathematical Morphology-Based Clustering[END_REF] Posterior spinous curve [START_REF] Yochum | Essentials of Skeletal Radiology[END_REF]. Any misalignment in these curves might be an evidence of injury or fracture. Among the literature focusing on this domain, we can cite the work of [START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF], which developed a semi-automated vertebra identification-segmentation method based on generalized Hough transform (GHT) [START_REF] Ballard | Generalizing the Hough transform to detect arbitrary shapes[END_REF] and K-means clustering, from which three landmarks are extracted, which are required for approximating the anterior vertebral curve, posterior vertebral curve and the spinolaminar curve from high resolution sagittal radiographs of cervical spine (C3-C7), aiming at being used for diagnosis of irregularities in the region. Occlusion and changes in the test database are reported as the main sources of errors. Likewise, to assess some disorder in the cervical region, [START_REF] Narang | Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine[END_REF] proposed a semi-automated method to extract the spinolaminar curve over the entire cervical spine region, having vertebral bodies segmented either manually or by an image processing algorithm, and a point manually positioned at the spinolaminar junction. Although they have examined the sensitivity of their method only with respect to the placement of the manual point, their method seems to be also dependent on the quality of the chosen vertebral body segmentation method. For a same purpose, [START_REF] Xu | Automatic segmentation of cervical vertebrae in X-ray images[END_REF], developed an active appearance model-based (AAM) [START_REF] Cootes | Active appearance models[END_REF] framework to model vertebral bodies and spinous processes by extracting some landmarks. For the initialization, they used an AdaBoost learning [START_REF] Freund | A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[END_REF] algorithm with Haar-like features. However, the proposed method seems

-3.3. Refinements

We use mathematical morphology closing to eliminate probable false positives and to fill the gaps between subsampled image points. To this end, we first build a binary map of the detections, then using a closing operator with a disk-shaped structuring element ( = pixels), the inter distance between the detected points is filled. Connected components (CC) smaller than 100 pixels are removed. In order to further refine the obtained connected components, a bounding hull approach [START_REF] Duckham | Efficient generation of simple polygons for characterizing the shape of a set of points in the plane[END_REF] is used to build a non-convex enclosure on the set of detected boundary points.

As a result, probable boundary gaps are encompassed and high boundary smoothness is achieved.

After this step, the resulting connected components (CC) are identified and assigned a label, according to the following section.

-3.4. Identification

Although we have labels for each spinous process, our experiments show that these class labels are highly reliable only in C1 and C2 spinous processes, given their particular shape and neighbourhood.

Therefore, in practice we consider C2 as the reference reliable label, and other spinous processes are labelled accordingly. To this end, first a large probability threshold ( = . ) is applied on C2 class labels to filter points with smaller membership probabilities. The geometrical average over the selected points coordinates provides the approximate location of C2 in the image. The obtained C2 point serves as an anchor to locate other spinous processes. From the refined connected components in Section 5 -3.3 we measure each geometrical CC centre and use a dedicated iterative labelling process based on position and orientation of CC centres with respect to C2-to assign labels to remaining CC (Figure 52 and Figure 53).

Table 18

Spinous processes segmentation evaluation using different metrics 

-5. Discussion and Conclusion

In this study, we presented an automated framework for cervical spine spinous process detection, identification, and segmentation. To do so, we used a leave-one-out cross validation approach to train and test a multi-class RF classifier that utilizes specialized dedicated contextual features as predictors.

Considering the huge variety in shapes, sizes, orientations, and even contrast of the spinous processes, validations results demonstrate very promising outcomes.

Despite the critical importance of assessing the spine posterior arch, such as the spinolaminar curve and the tip of spinous processes to clinically analyse the spine state and its probable abnormalities [START_REF] Yochum | Essentials of Skeletal Radiology[END_REF], or to do morphological modelling of the spine for injury risk anticipation [START_REF] Laniece | Influence of Morphology Cervical Spine Injuries Due to Rugby-Like Impacts. A Numerical Study[END_REF], only few works have dealt with this problem by determining one or some landmarks on spinous processes. In [START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF][START_REF] Narang | Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine[END_REF] for example they detect a landmark on or close to the spinolaminar curve and approximate it via point interpolation. While there are many works addressing vertebral body detection, segmentation, and identification [START_REF] Glocker | Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[END_REF][START_REF] Klinder | Automated model-based vertebra detection, identification, and segmentation in CT images[END_REF][START_REF] Huang | Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI[END_REF], to the best of our knowledge we introduce for the first time a minimally-supervised method for spinous process detection, segmentation, and identification on sagittal X-rays of the cervical spine. Dice, HD and AHD metrics evaluations confirmed the efficiency of the proposed algorithm in accurately segmenting spinous processes. Dice coefficient in C1 spinous process is a bit lower than in the others, which is understandable, as the C1 spinous process is much smaller than the other ones and minor surface differences can cause a noticeable decrease in Dice coefficients. In terms of shape characteristics, drastic differences between subjects make RF classification challenging in this region. Regarding the orientation evaluation, C1 and C2 are not very robust, the reason being that they are circular rather than ellipsoid, which makes the ellipse fitting uncertain, while in the other spinous processes from C3-C7 the structures are more elongated. The mean orientation error for C3-C7 (3.6  3.3) demonstrates a reliable performance for those regions, with high potential in being applied in the spine 3D model reconstruction procedure.

Though we see minor differences between various spinous processes for localization precision, C7

shows a slightly higher error which is not surprising as in many subjects, C7 is partially hidden by other anatomical structures leading to more misdetections and false positives.

From a classification point of view, labelling is more robust in C1, C2, C3, C6, and C7. In these regions, we believe that the obtained labels can robustly be utilized as references for vertebrae identification. Although RF classification is highly robust in detecting C4 and C5 spinous processes (as shown in the evaluation), labels are sometimes not correctly assigned. The reason seems to be the similarity between adjacent spinous processes in terms of shape, intensity and neighbourhood. To tackle this limitation, other robustly identified spinous process centroids should be exploited.

Whilst the variability of structures in the cervical spine and especially the spinous processes, our results

show that a pixel-wise object identification is achievable using contextual visual features incorporated in a trained multi-class RF classifier. In the literature, a variety of contextual features has been designed

and implemented for variety of tasks dealing with detection, segmentation and identification. Our proposed formulation for arranging contextual features proved to be highly discriminative while not computationally demanding. The feature patch-based normalization step, while simple, is crucial for the stability of the results. Overall, the presented framework has great potential for being integrated in clinical routine, since the algorithm is robust to shape deformities and rotations.

General Conclusion

The aim of this PhD was to provide new image analysis, machine learning and spine shape model adjustment tools to contribute toward improving automation and precision of existing 3D reconstruction algorithms from biplanar radiographs.

In Chapter 2, we presented a novel vertebrae corner detection algorithm on sagittal radiographs by integrating a supervised classifier, original hybrid visual features, and a statistical shape model adjustment based on regression. We demonstrated that the proposed framework is capable to handle images of patients acquired in different medical centres, with diverse age, and harbouring various types of pathologies. Unlike previous works that were limited to the cervical region, our results, against a manually annotated ground-truth, demonstrated high localization precision on both lumbar and cervical spine regions. We also extended the evaluation to vertebrae location and orientation that can be exploited in the framework of the current semi-automated spine 3D reconstruction algorithms.

In Chapter 3, we proposed an accurate and quasi-automated pedicle localization method on frontal radiographs. Pedicles localized in frontal planes can provide important information on vertebrae's positions and rotations (axial and frontal), which have clinical value to assess the spine deformity in diseases such as scoliosis. We evaluated our results with a manually annotated ground-truth and demonstrated high accuracy of the detections.

In Chapter 4, we introduced an integrated pixel-wise detection, identification, and segmentation approach for spinous processes in sagittal cervical spine (C1-C7). Although highly relevant clinical information such as the spinolaminar curve and the posterior spinous curve can be obtained from the segmentation of spinous processes, previous works have rarely addressed this problem. To assess spinal disorders, few preliminary works have reported on spinal curve extraction by determining some landmarks on spinous processes. Presented results, against a manually annotated ground-truth, not only demonstrate that appropriate spinal curves can be obtained, but also that correct individual spinous process alignments are obtained.

Overall, in this PhD work, we explored a generic formulation for various landmark detection tasks with flexible adaptation to the shape and visual appearance characteristics of the spine structure of interest. We demonstrated promising high localization precision, on a cohort of EOS radiographs for the following spine structures in different spine regions: vertebrae corner localizations in sagittal views, pedicle localizations in frontal views and spinous processes full segmentation in sagittal views.

While the first two methods focused on landmark localization, the third one further investigated potentials of the generic framework in performing identification and segmentation tasks. The proposed framework can jointly work with existing 2D/3D statistical shape modelling approaches to highly reduce manual intervention requirements. It can also be used as a standalone tool to assess spinerelated disorders with high robustness and accuracy in measured parameters. Besides, the mentioned positive characteristics, the designed frameworks are fast and computationally cost effective.

Short-term perspectives from this PhD work include the generalization of the framework toward the spine thoracic region in sagittal radiographs that has poor visibility due to the superimposition of various anatomical structures. Extension of the framework to other bone structures such as the lower limb for femoral head localization and segmentation is also considered. Our segmentation algorithm for spinous processes could also be exploited for morphological risk analysis of injury in highly physical sports such as rugby.

From an image processing perspective, the studied spinous processes (C1-C7) are very diverse in terms of visual appearance, shape, and orientation. Our experiments suggest that the proposed framework combining image enhancement, contextual features and multi-class RF classification is highly discriminative in discarding all structures within the ROI from spinous processes. Confirming such hypothesis could pave the way toward extensions beyond bone structures visualized on radiographs.

In a long-term perspective, we aim to integrate the algorithm-derived results within our 3D spine shape reconstruction tool and assess the amount of optimization. Success in increasing the accuracy of the 3D spine shape model with limited user-supervision will be a critical step forward toward automation of the process for routine clinical use. Regarding pedicle localization, we need to further investigate the accordance of our computed axial rotations from the [START_REF] Stokes | Measurement of axial rotation of vertebrae in scoliosis[END_REF]) 2D method, with ground truth values obtained from 3D analysis of the spine. High correlation between these values would enable inexpensive scoliosis diagnosis and treatment planning. 
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Mathematical Morphology-Based Clustering

As illustrated in Figure 45, we can have several candidates for each pedicle. By looking closely, we see that the points form one or multiple clusters corresponding to pedicle-like structures in each ROI.

It is really challenging for the classifiers not to associate a positive flag to some unwanted pedicle-like structures, as they are mostly very close to the objects of interest, especially at thoracic region. To tackle this issue, we use mathematical morphology closing to first connect detected points. Then, we keep the two biggest connected components (CC) that most probably represent the pedicle we are looking for. The structuring element is a circle with a radius of 5 pixels, proportional to the distance between points in the input grids. Now that we have at most two candidate clusters. Selecting the best cluster and computing the pedicle centres are achieved by the Equations ( 6) & ( 7) in Section 4 -3.4

of Chapter 4.

D

  'un point de vue informatique, cette thèse propose des outils de traitement d'images compétitifs et rapides, nécessitant une initialisation manuelle minimale, tout en étant robustes à la sévérité de la scoliose. D'un point de vue clinique, nos résultats montrent pour la première fois une validation étendue sur de multiples paramètres morphologiques, qui sont essentiels pour le diagnostic et la planification de la thérapie. Dans l'ensemble, ce travail de cette thèse visait à aller au-delà des solutions existantes, principalement axées sur la recherche d'ensembles limités de points de repères dans une région spécifique et pour un seul paramètre morphologique. L'exploitation d'un cadre de calcul général unique, présente un grand potentiel d'intégration dans les outils de modélisation de formes statistiques 2D/3D qui sont actuellement commercialisés. Cela pourrait améliorer la qualité des reconstructions et limiter drastiquement le post-traitement manuel supplémentaire.
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 22222 ont proposé un algorithme basé sur les forêts de Hough pour la détection des coins des vertèbres cervicales (C3-C7). Dans leur approche, ils ont utilisé des régions d'intérêt (Region of Interest -ROI) trapézoïdales et rectangulaires, et une procédure d'agrégation de votes multi-patchs. Ils ont introduit un nouveau descripteur reflété aléatoire (RMF) et l'ont évalué avec d'autres descripteurs personnalisés. La variabilité de la forme des vertèbres chez les sujets a été rapportée comme la principale source d'erreur, et leur approche nécessite une identification manuelle de chaque vertèbre dans la ROI. Globalement, toutes ces approches nécessitent une entrée manuelle pour soit localiser une région spinale spécifique (par exemple C3-C7), ce qui limite la portée, soit localiser des vertèbres individuelles, ce qui est source d'incertitude et prend du temps. De plus, aucune des méthodes présentées n'a été évaluée sur la région lombaire. Dans cette étude, visant une solution plus générique pour l'imagerie radiographique, nous proposons une méthode originale associant la modélisation de forme, des descripteurs visuels dédiés et une classification par RF pour la localisation précise des coins vertébraux. Matériels et Méthodes R -2 -2 -1 Base de données Notre base de données est composée de 109 sujets asymptomatiques et scoliotiques (âgés de 6 à 69 ans), avec une radiographie sagittale acquise avec un système d'imagerie basse dose EOS (EOS Imaging, Paris, France), et collectée auprès des divers hôpitaux et centres d'imagerie médicale. La base de données est une cohorte clinique, acquise dans le contexte du diagnostic clinique standard et de la planification du traitement, et a été obtenue dans le cadre d'un protocole approuvé par les comités d'éthique des centres avec le consentement écrit des patients. Initialisation avec un modèle 2D de la colonne vertébrale Pour chaque radiographie sagittale, un opérateur définit d'abord sept points (Figure R-1(a)), utilisés pour positionner le plateau supérieur du sacrum, le plateau inférieur du T12, le plateau supérieur du C7, et le sommet de l'odontoïde, qui définit la limite supérieure de la colonne vertébrale. Grâce à une méthode de régression multilinéaire, un modèle 2D de la colonne vertébrale est positionné (Figure R-1(b)). En particulier, ce modèle 2D fournit des positions approximatives des coins vertébraux qui sont ensuite affinées avec le pipeline de traitement proposé. Nous utilisons cette solution initiale de forme 2D de la colonne vertébrale pour définir deux ROIs : la région cervicale (C3 -C7) et la région lombaire (L1 -L5) qui sont traitées séparément (Figure R-1(c)&(d)). sur les centres des plateaux vertébraux supérieure et inférieure. Les différences signées de longueurs des plateaux vertébraux entre la référence absolue et le résultat de l'algorithme, ainsi que, les différences signées d'orientation des vertèbres sont également rapportées. Un résumé des erreurs calculées pour l'ensemble de base de données de validation est fourni dans le
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 31351 Les erreurs VAR calculées sur les 57 sujets de validation en utilisant la métrique de Stokes. (Manuel vs. Quasi-Automatisé) Discussion et Conclusion Dans ce travail, nous avons présenté une méthode de classification RF qui a été intégrée à la modélisation de forme statistique pour l'objectif de la localisation des centres de pédicules. Alors que d'importants efforts sont consacrés à la détection et à la segmentation automatisées des corps vertébraux, un intérêt plus limité a été porté à la détection de pédicules qui pourtant fourni des informations essentielles pour évaluer la rotation axiale des vertèbres. La méthode peut être utilisée comme un outil 2D autonome ou peut être combinée avec d'autres algorithmes de reconstruction 3D qui nécessitent un deuxième niveau fin et manuel de localisation de points de repère. Dans la méthode proposée, hormis une rapide phase d'identifications manuelles, les autres étapes sont complètement automatisées. Nos résultats sur les erreurs de rotations frontales et axiales se comparent favorablement aux études précédentes. Par exemple, dans la méthode de segmentation de pédicule de (Doré et al., 2007), des centres sont extraits des pédicules segmentés, et la ligne passant par les deux centres est utilisée pour mesurer la rotation frontale. Ces auteurs ont testé leur approche sur les vertèbres T1-L4 de 5 patients scoliotiques et après avoir éliminé 16% des pédicules car ils étaient invisibles, 75% des pédicules Dans cette étude, nous nous intéressons à la segmentation de l'apophyse épineuse sur les radiographies sagittales. L'arc postérieur, dont l'apophyse épineuse fait partie, a relativement été peu étudié dans la littérature sur le traitement d'images médicales alors que cette région peut permettre l'acquisition de données utiles sur l'alignement rachidien. Dans l'analyse du rachis, les médecins évaluent parfois les quatre courbes suivantes : (1) Courbe vertébrale antérieure ; (2) Courbe vertébrale postérieure ; (3) courbe de jonction spinolaminaire ; (4) Courbe épineuse postérieure

Figure R- 13 -

 13 Figure R-13 -Disposition des patchs, positionnés autour de chaque pixel candidat.

(

  [START_REF] Duong | Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs[END_REF] proposed an automatic method for spinal curve extraction by training specialized SVM classifiers with multiple texture features derived from image patch samples. Based on their evaluation, even an automated spinal line extraction in radiographs remains challenging in scoliotic patients.

  to describe local characteristics of the points. Both methods seem vulnerable to the edge map quality and require ad-hoc distance threshold settings to obtain the posterior corners. Focusing exclusively on the cervical vertebrae (C3-C7),(Al Arif et al., 2015b) developed a semi-automated multiscale patch-based Hough forest-based corner detection method, which provides both anterior and posterior cervical vertebrae corners. They improved the performance of their algorithm by additional intensity and gradient information through tailored Haarlike features to a learned spatial prior probability distribution(Al Arif et al., 2015a). In their recent work[START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF], they further improved their algorithm performance by exploiting trapezoidal and rectangular regions of interest (ROI), and a refined vote aggregation procedure from multiple patches. Using the improved framework, performance of a novel random mirrored feature (RMF) along with some other customized feature vectors was evaluated. They also introduced a novel

  , four corner types are defined: (1) anterior superior (AS), (2) anterior inferior (AI), (3) posterior inferior (PI), and (4) posterior superior (PS).

Figure 33 -

 33 Figure 33 -Geometrical features measured per vertebra: corner points ( , , , and ), endplate lengths ( , ), endplate centres ( , ), posterior and anterior wall centres ( , ), midline connecting the two wall centres ( ), vertebra orientation with respect to the horizontal image axis, and centre point .

  ) misclassification probability on out-of-bag (OOB) data (i.e. training data not used in some individual trees) and (2) feature importance estimates for individual features, obtained by randomly perturbing feature values in the training data and testing classification on OOB data, with correct feature values. Prediction errors areaveraged over all trees in the ensemble and divided by the standard deviation of this measure over the entire ensemble of trees. A feature is considered to have a "positive importance" if the prediction error increases after perturbation. In this study, a prediction error increase greater than 0.1 has been used to identify positive predictive features.

Figure 38 ,

 38 Figure 38, the lowest average localization errors are achieved on the reference group G1. Lowest mean ± Std corner localization errors are equal to 0.8 ± 0.5 mm (cervical region in G1) and 1.5 ± 1.1 mm (lumbar region in G1). Highest mean ± Std corner localization errors are equal to 1.1 ± 0.9 mm (cervical region in G3) and 1.8 ± 1.3 mm (lumbar region in G2). With respect to vertebrae centre localization errors, all mean ± Std. values are below 1 ± 0.5 mm except for lumbar spine in G2 and G3 where it reaches 1.1 ± 0.8 mm. Endplates and vertebrae centre localization errors show very similar patterns in terms of ranges of values and evolutions of error distributions across spine levels.

Figure 44 -

 44 Figure 44 -CF features obtained for 4 different bounding box (BB) sizes: (a) 33, (b) 77, (c) 37, and (d) 73 pixels. For each BB, we compute the average intensity and differences with the central box. Results are concatenated to form our contextual-based features.

Figure 45 -

 45 Figure 45 -Pedicle localization procedure. Candidates points are illustrated in red, and detected pedicle points are illustrated in green (right) and blue (left). For better visualization, vertebrae T3-T6 are zoomed in (b-d). (a) The red candidate points within bounding boxes are examined seeking pedicle instances. (b) RF outputs. (c) Using mathematical morphology closing, in each bounding box, detected points are grouped in a maximum of two clusters (two largest clusters are kept in multiple cluster instances). (d) In each bounding box, the cluster with the highest score ( ) is kept.

A

  refinement stage was designed to pick the most robust detections and handle missing pedicle centres. Reliability of the detections was assessed by comparing each detected pedicle centre with the position inferred from the statistical database of 3D reconstructions. In particular, a detected pedicle was flagged as a false positive if two adjacent pedicles were too close to each other, vertically or laterally. Moreover, a pedicle was flagged as false positive if the inter-pedicular segment formed an angle with the local tangent of the manually defined 2D spine curve (cf. Figure 24(b)) outside the range of [80° -100°].

Figure 46 -

 46 Figure 46 -Final pedicle centres outcomes using the hybrid RF classifier. (a) Outcomes of the pedicle detection and centre computation stages. (b) Final results after the refinement stage used for missing pedicle recovery and false positive elimination.

  Pedicle detections within the confidence interval range (2 mm to the ground truth) for the different RF classifiers

  Discussion and ConclusionIn this work, we presented a RF-based classification method integrated with statistical shape modelling for the aim of pedicle centre localization. While major efforts are dedicated to more automated vertebrae detection and segmentation, local structures like pedicles are still manually delineated.The aim of our work is to minimize the manual intervention task toward more automation. The method can be used as a stand-alone tool or can be combined with other 2D/3D model reconstruction algorithms that require a manual second level of fine landmark localization. In the proposed method, apart from a fast quasi-automated 2D shape model initialization, other localization steps are completely automated, and the algorithm outcomes have a precision comparable with manually-drawn landmarks.In several ways, the proposed algorithm is unique compared to other works regarding pedicle detection or segmentation. The original formulation of dedicated hybrid feature descriptors used with a Random Forest classifier is proved to be very efficient in performing pedicle detection. Dedicated clustering and cluster score computation made the algorithm robust to false detections. The joint application of a statistical 2D shape model providing a priori knowledge for ROI selection, false positive elimination, and missing pedicles estimation, Random Forest classification and post refinement enabled to eliminate the need for precise manual pedicle initialization. Indeed, our overall pipeline only requires a very rough search area around each pedicle to extract pedicles from T1-L5 vertebrae.
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  Table R-1. En général, les résultats dans le Table R-1 montrent que les erreurs RMSE de position et les différences de longueur sont toujours plus petites dans la région cervicale que dans la région lombaire. D'autre part, les différences d'orientation sont plus petites dans la région lombaire.

Table R - 1

 R1 Mesures d'erreur sur toute la base de données de test que nous rapportons dans la même région. En ce qui concerne l'orientation de la colonne vertébrale,[START_REF] Larhmam | Vertebra identification using template matching modelmp and K-means clustering[END_REF] ont rapporté une moyenne RMSE de 6.7 pour les vertèbres cervicales (C3-C7 avec min = 5,55 et max = 8,22). Dans cette étude, pour les différences d'orientation, nous rapportons une moyenne (biais) ± Std. de -0,1 ± 2,9 dans la région lombaire et de -2,1 ± 3,1 dans la région cervicale. D'autre part, nous avons obtenu des erreurs de localisation de Une contribution majeure de notre méthodologie est la conception d'un ensemble de descripteurs, composé de trois types complémentaires. Les caractéristiques HOG ont prouvé leur efficacité dans tridimensionnelles d'une simple radiographie frontale, bidimensionnelle, par le calcul des rotations axiales. Par exemple,[START_REF] Stokes | Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity[END_REF] a proposé une méthode pour estimer la rotation axiale de vertèbre à partir de la position des pédicules et des corps vertébraux sur les radiographies frontales. En particulier, cette méthode est très utilisée pour évaluer la rotation axiale de la vertèbre apicale. Une détection automatique des pédicules sur la radiographie frontale permettrait donc aux cliniciens d'évaluer la rotation axiale de manière quasi-automatique. D'autre part, les récentes avancées en stéréoradiographie à faible dose et le développement de méthodes de reconstruction 3D(Humbert et al., 2009a) permettent une mesure fiable des paramètres cliniques 3D de la colonne vertébrale, en particulier les rotations axiales. Dans cette méthode, un opérateur qualifié doit notamment recaler manuellement les modèles de vertèbres sur le signal des

	coin de 0,9 ± 0,7 mm et 1,7 ± 1,2 mm pour les régions cervicales et lombaires respectivement. Les
	résultats sur la région cervicale qui est particulièrement étudiée dans la plupart des études précédentes,
	montrent que notre algorithme se compare favorablement aux autres.	
	Régions	Moyenne	Médian	Ecart-type
			RMSE de position de coin (mm)	
	Cervicale	0,9	0,8	0,7
	Lombaire	1,7	1,4	1,2
		RMSE de position du centre vertébral (mm)
	Cervicale	0,5	0,4	0,4
	Lombaire	1	0,8	0,7
		RMSE de position du centre plateau vertébral (mm)
	Cervicale	0,7	0,6	0,5
	Lombaire	1,2	1	0,8
		Différence de longueur du plateau vertébral (mm)
	Cervicale	0,2	0,2	1,2
	Lombaire	0,7	0,8	2
			Différence globale d'orientation (∘)	
	Cervicale	-2,1	-1,8	3,1
	Lombaire	-0,1	-0,5	2,9

R -2 -4 Discussion et Conclusion

Un nouveau pipeline de traitement pour la tâche de détection de coin de vertèbres sur les rayons X sagittaux est présenté qui fournit un compromis efficace entre le temps de calcul et la précision. Le cadre proposé est basé sur des informations initiales qui nécessitent une intervention minimale de l'utilisateur, ce qui prend moins d'une minute.

Parmi la littérature portant sur la détection des coins vertébraux et la précision de la détection,

[START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF] 

ont fourni les meilleures valeurs sur la région cervicale (C3-C7). Ils ont signalé une erreur moyenne de localisation de coin de 2,01 mm en utilisant un classifieur forêt de Hough avec des caractéristiques pseudo-Haar et une ROI rectangulaire. L'erreur rapportée y est presque deux fois plus élevée que celle l'encodage robustes de descripteurs visuels locales. Les caractéristiques pseudo-Haar fournissent un pouvoir discriminant spécifique pour la détection des coins et la détermination des types de coins, mais leur portée spatiale est limitée. L'ajout de certaines caractéristiques contextuelles nous permet d'explorer de grandes régions voisines autour des points candidats, ce qui conduit à une discrimination renforcée contre les faux positifs. Bien qu'un grand nombre de descripteurs soient calculés, sa génération n'est pas exigeante en termes de calcul. Le choix de classifieurs RF pour apprendre les caractéristiques des points d'intérêts tout en mélangeant des sujets asymptomatiques et pathologiques dans l'ensemble d'apprentissage a montré qu'il fonctionnait efficacement. Dans l'ensemble, la performance de notre méthode proposée se compare favorablement aux approches précédemment publiées en termes de précision et de niveau de supervision manuelle. Néanmoins, notre méthode a deux limitations principales. Tout d'abord, la partie thoracique n'a pas été étudiée, puisque la qualité visuelle des rayons X sagittaux dans cette région est plus faible, et que l'intérêt majeur pour l'analyse clinique est sur les régions du rachis lombaire et cervical. Cependant, avec les modèles de forme affinés sur des régions lombaire et cervicale, l'algorithme de régression appliquée recalcule également la position des éléments du modèle sur la région thoracique, conduisant à une amélioration globale de la précision du modèle qui sera évaluée dans une étude ultérieure. La deuxième limitation est que la précision des coins localisés, en particulier chez les sujets asymptomatiques ou modérément scoliotiques, peut être inférieure à celle rapportée par les méthodes exploitant une supervision manuelle. L'extension de la méthode pourrait envisager d'ajouter un niveau de confiance aux coins détectés, de sorte que l'utilisateur est dirigé vers les coins qui nécessitent une vérification et une correction manuelle. informations pédicules sur la radiographie frontale. Au-delà de la simple application 2D, l'identification automatisée des pédicules pourrait donc aider à améliorer les estimations initiales d'un algorithme de reconstruction 3D de la colonne vertébrale. Les pédicules ont des caractéristiques visuelles très spécifiques sur les radiographies frontales, et ont donc le potentiel d'être détectés automatiquement en utilisant des techniques de traitement d'image.

4 -2 -1 Caractéristiques contextuelles

  Dans cette étude, 62 radiographies sagittales du système à basse dose EOS™ (imagerie EOS, Paris, France) sont utilisées. Elles ont été collectées à partir de différents centres de recherche et d'imagerie.

	Il existe une grande variété d'âge, de sexe et de pathologie parmi les sujets. Le protocole
	d'expérimentation a été approuvé par les comités d'éthique des centres et les consentements écrits des
	patients ont été acquis.
	Les images radiographiques sont prétraitées avec des filtrages de Wiener et Médian, suivi de
	l'égalisation adaptative d'histogramme CLAHE (Zuiderveld, 1994) pour améliorer la qualité tout en
	préservant de netteté d'image. Ce prétraitement a déjà été exploité dans nos travaux précédents. La
	seule intervention manuelle consiste à extraire grossièrement la région d'intérêt.
	Dans cette étude, seuls les descripteurs CF ont été utilisés. Nous présentons ici des caractéristiques
	contextuelles spécifiques qui agissent de façon pixel-près, permettant une détection, une segmentation
	et une identification simultanées de l'objet d'intérêt.

et l'algorithme des k-moyennes. Grâce à cette méthode, trois repères sont extraits afin d'approcher la courbe vertébrale antérieure, la courbe vertébrale postérieure et la courbe spinolaminaire des radiographies sagittales haute résolution de la colonne cervicale (C3-C7), visant à diagnostiquer des irrégularités dans la région. L'occlusion et variabilité dans l'ensemble des données de validation sont signalées comme les principales sources d'erreurs. De même, pour évaluer certains troubles de la région cervicale, (Narang et al., 2015) ont proposé une méthode semiautomatisée pour extraire la courbe spinolaminaire sur toute la région du rachis cervical, avec des corps vertébraux segmentés manuellement ou par un algorithme de traitement d'image, et un point positionné manuellement à la jonction spinolaminaire. Leur méthode semble dépendre de la qualité de segmentation du corps vertébral. Pour le même but, (Xi Xu et al., 2012) ont développé un cadre basé sur un modèle d'apparence active (AAM) (Cootes et al., 2001) pour modéliser les corps vertébraux et les processus épineux en extrayant certains points de repère. Pour l'initialisation, ils ont utilisé un algorithme d'apprentissage AdaBoost (Freund et Schapire, 1997) avec des caractéristiques pseudo-Haar. Cependant, la méthode proposée semble vulnérable à l'initialisation du modèle, en particulier pour les processus épineux. Dans cette étude, nous visons à segmenter automatiquement le processus épineux de la colonne cervicale en exploitant des caractéristiques contextuelles spécialisées avec un classifieur multi-classes RF. Pour l'évaluation, nous avons comparé nos résultats aux processus épineux segmentés manuellement. R -4 -2 Matériels et Méthodes R -

Table 5

 5 Popular visual features & descriptors

	Feature name	Type of information
	GHT	(Generalized Hough Transform) Object detector by mapping from edge map orientation to the shape reference point
	Gist	Image semantic context by image response computation to a Gabor filter bank
	CF	(Contextual Features) Object contextual information aggregating local and regional visual features.
	SIFT	(Scale Invariant Feature Transform) Keypoint descriptor by computing multi-scale oriented gradient histograms
	SURF	(Speeded-Up Robust Features) Intensity pattern by obtaining the sum of Haar wavelet responses
	HOG	(Histogram of Oriented Gradients) Object shape by capturing its gradient orientation occurrence
	Haar	Intensity patterns based on regional intensity differences
	LBP	(Local Binary Patterns) Image texture encoder
	Harris	Object corner detector

Table 6 Validation details for the reviewed 3D spine shapes reconstruction methods

 6 

				(Kumar et al., 2015)						(Zhang et al., 2013)						(Moura et al., 2011)						(Kadoury et al., 2009)	(Humbert et al., 2009a)	Paper
				Not available				3 min	Computation:	2 min	intervention:	Manual	1 min 50	Severe scoliosis:	1 min 30	scoliosis:	Moderate	2 min 32	10 min	2nd level:	2 min 30	1st level:	time	Reconstruction
	radiographs	Cobb angles and spinal cord from	Ground truth: manually computed	10 scoliotic patients	reconstructed using CT	vertebrae which were scanned and	15 scoliotic patients (Cobb=16˚-41˚) and a 1 spine model+17 individual	al., 1997) with 1.3 mm accuracy	reconstruction method in (Aubin et	Ground truth: a validated 3D	moderate/20 severe)	30 scoliotic patients (10	reconstructions	Ground truth: 3D MR	2) 2 scoliotic patients	of pedicles and endplates	1) 60 patients (Cobb=15˚-40˚) Ground truth: manual intervention	moderate/20 severe)	patients (20 asymptomatic/20	For reproducibility: 60 scoliotic	reconstructions	Ground truth: 3D CT	For accuracy: 11 patients	Datasets
	2.72 ± 2.56 mm	curves:	points from PA and LAT	between the vertebral	Mean Euclidean distance			✗							✗						2.2 ± 0.9 mm	endplates	2 ± 1.5 mm	Pedicles:	RMSE:	✗	annotations	Comparison with manual
				Not available					RMSSD: Orientation: 1.4˚ ± 2.8˚ Location: 1.2 ± 2.4 mm	3.5 ± 0.4 mm	Pedicles (severe cases):		4 ± 0.9 mm	Pedicles (moderate cases):		2 ± 0.3 mm	Endplates:	RMSE:	1.2 ± 1.1 mm	On thoracic vertebrae:	Mean Point-to-Surface error	2nd level: 1 ± 2.7 mm	1st level: 1.3 ± 3.6 mm	Mean Point-to-Surface error	Accuracy
				✗					Inter-operator variability: Orientation: 1.0˚-2.3˚ RMSSD Location: 0.7-2.1 mm RMSSD		Intra-operator variability: Orientation: 0.8˚-1.7˚ RMSSD Location: 0.5-1.5 mm RMSSD				✗						✗	2nd level: 0.9 mm	1st level: 1.05 mm	RMSSD:	Reproducibility

Table 7 Technical details for the reviewed 3D spine shapes reconstruction methods Paper Calibration Manual Input
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	Adjustments Method

Table 8

 8 Training and testing datasets characteristics

			Number of cases	Age (year)	Cobb angle (∘)
			female male total	range	mean	range	Ave.
	Asymptomatic set	Group_A1 Group_A2 Group_A3	16 3 6	15 3 10	31 6 16	19 -60 11 -35 49 -69	26 26 55	---	---
		Group_S1	4	1	5	11 -17	13	9 -16	12.8
	Scoliotic	Group_S2	20	4	24	6 -17	13	21.8 -93	51
	set	Group_S3	8	1	9	10 -13	12	7.1 -19.7	14.6
		Group_S4	18	-	18	11 -17	13	21.7 -71.9	38.1

Table 9

 9 Performance of RF classifiers with different feature types, reported for corner detection within the confidence interval. (CF: Contextual Features, HOG:Regarding feature importance analysis, we report results obtained on the RF trained for AS corner classification task on the cervical spine. A misclassification probability on OOB data of 0.01 was measured for the whole ensemble of trees being trained, which is very low. Regarding the selection of

		Histograms of Orientated Gradients, Haar: Haar-like features, All: combination of
		the 3 feature types				
	Region		All (%)	CF (%)	HOG (%)	Haar (%)
	Cervical	Sensitivity Precision	81 88	81 86	81 83	82 77
	Lumbar	Sensitivity Precision	67 60	66 59	54 58	72 48

positive predictive features, we found that 81% of Haar-like features, 44% of HOG and 9% of contextual features are predictive. Within the whole pool of features being input, 10% are predictive, including 90% of CF and 10% for the combined HOG and Haar-like features. Similar results were obtained for the other RF classifiers, while identifying different features as predictive within each category.

Table 10

 10 Error measurements over all test datasets (All Groups).

	Region	Mean	Median	Std.

Table 11

 11 Overview of state of the art approaches for vertebra corner detection on planar X-ray images. NA: Not available, C: Cervical, L: Lumbar

	Orientation	error		NA			NA			NA			6.7		NA	NA	NA				NA	C: -2.1 ± 3.1	L: 1.7 ± 1.2
	Localization	RMSE		NA			NA			NA			NA		4.41 ± 4.14 mm	3.03 ± 3.08 mm	1.2 ± 0.8 mm				Best result for:	Haar-like features	mean= 2.01 mm	C: 0.9 ± 0.7 mm	L: 1.7 ± 1.2 mm
	Dataset	# (training/testing)	cross-validation	NHANES II	(75/100)	NHANES II	(-/NA)	NHANES II	(49/1)	leave-one-out	NHANES II +	Hospital	(25/66)	(96/10)	10-fold	(80/10)	10-fold	Hospital(s)	(-/21)	Features (1-5):	(80/10)	10-fold	Feature (6):	(80/10)	leave-one-out	5 Hospitals	(60/49)
		Pathology			NA			NA			NA			No		Yes	Yes	Yes				Yes	Yes
		Region			C3-C7			C3-C7			C3-C7			C3-C7		C3-C7	C3-C7	L1-L5				C3-C7	C3-C7 & L1-L5
		Method		Harris features+active shape	model		Polygonal approximation			SIFT features+SVM classifier			GHT+K-means		Hough Forest	Hough Forest+Haar like	features	Haar-like	features+Thresholding	1. Intensity and gradient	2. Haar-like features	3. Random mirrored features	4. CNN features	5. Structured forest features	6. multi scale Harris corner	detection	Haar-like +HOG+CF	features+Random Forest
		Manual Input		2 clicks for	cervical ROI	selection	2 clicks for	cervical ROI	selection	2 clicks for	cervical ROI	selection	2 clicks for	cervical ROI	selection	5 vertebrae	centres	5 vertebrae	centres	1 point click as	reference				5 vertebrae	centres	7 point clicks for	2D shape model
		Publication			(Benjelloun et al., 2011)			(Lecron et al., 2010)			(Lecron et al., 2012)			(Larhmam et al., 2014)		(Al Arif et al., 2015a)	(Al Arif et al., 2015b)	(Ebrahimi et al., 2016)				(Al Arif et al., 2017)	Proposed method

Table 14

 14 Performance of the pedicle detection method by region in terms of biases in / positions, (mean ± Std.), RMSE (mean ± Std.) in mm, and sensitivity.

	ROI	T1-T7	T8-T12	L1-L5	Ave: T1-L5
	(mm)	-0.1 ± 1.3	-0.2 ± 1.2	0.1 ± 1.2	-0.1 ± 1.2
	(mm)	-0.1 ± 1.2	-0.1 ± 1.1	-0.1 ± 1.2	-0.1 ± 1.2
	RMSE (mm)	1.2 ± 1.3	1.2 ± 1.2	1.2 ± 1.2	1.2 ± 1.2
	Sensitivity (%)	83.8	85.6	86.3	85.1

Table 15

 15 Frontal rotation errors for 57 test subjects

	Signed rotation errors

Table 16

 16 Axial rotation errors computed over the 57 test subjects using the Stokes metric
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restants ont été segmentés avec succès. Ils ont signalé une erreur moyenne absolue de 2,3° pour les valeurs de rotation. Un autre exemple est le travail de(Zhang et al., 2010a), dans lequel une méthode de segmentation basée sur le modèle déformable de GVF a été testée sur 156 vertèbres de T4-L4. Sur des données in vitro limitées, ils ont rapporté une erreur moyenne de rotation axiale calculé par la méthode de Stokes entre 1,5°  1,1° et 1,6°  1,4º selon l'opérateur. Cependant, toutes ces approches de segmentation nécessitaient des initialisations manuelles considérables à chaque pédicule de la ROI, et validaient leurs méthodes sur un nombre limité de sujets. De plus la justesse de la méthode de(Zhang et al., 2010a) n'a pas été valide sur des données in vivo. Dans cette étude, en utilisant la méthode de Stokes, nous avons obtenu une différence VAR moyenne de 2,0º ± 2,8º entre la méthode quasiautomatisée et la référence manuelle. D'autre part, nous avons obtenu une erreur moyenne de rotation frontale 2,4º ± 2,6º sur les 57 sujets de validation, sans éliminer les pédicules invisibles ou ceux avec des signaux de faible qualité.Dans l'ensemble, le cadre proposé fournit un outil solide pour la détection fine de points de repère, qui peut être adaptée à d'autres structures anatomiques de la colonne vertébrale. La combinaison des descripteurs HOG et CF nous a permis de bénéficier à la fois de l'intensité locale et régionale et des informations de gradient, ce qui aboutit finalement à une meilleure performance de l'algorithme. Bien qu'il puisse y avoir des détections erronées, elles ont un impact mineur sur les performances globales

-1. Spinal Image AnalysisSpinal image analysis literature aims for two general goals. First, anatomical structure localization and second, anatomy characterization via clinical parameter computation. The first goal can be divided into three main tasks of anatomy detection, identification and segmentation. In the literature, we see an ensemble of methods designed for specific applications, and on images with different specifications including: 2D/3D, imaging modality, spatial resolution, regions of interest (ROIs), etc. In the following sections, we elaborate on different image processing methods relevant to the scope of this PhD and their contribution in providing clinical information. At the end, we present some clinical tools developed for clinical parameter computation and discuss how their limitations can be dealt with from an image processing perspective.In automated medical image analysis approaches, a first common step is the determination of ROIs in the images. Most spine-specific methods perform the ROI selection task manually, but few works proposed an automated ROI determination. In[START_REF] Al Arif | Global Localization and Orientation of the Cervical Spine in X-ray Images[END_REF], they presented an approach for determination of the global cervical spine localization and orientation, while in[START_REF] Duong | Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs[END_REF], they use an approximate specification of the spinal line. The anatomy detection and labelling step is performed in the predefined ROIs. The detectionlabelling task of spine vertebrae or landmarks, is commonly performed using various machine learning algorithms, including Random Forest (RF) as in[START_REF] Glocker | Vertebrae localization in pathological spine CT via dense classification from sparse annotations[END_REF][START_REF] Glocker | Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[END_REF], support vector machine (SVM) as in[START_REF] Lecron | Fully Automatic Vertebra Detection in X-Ray Images Based on Multi-Class SVM[END_REF], AdaBoost as in (Szu-Hao[START_REF] Huang | Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI[END_REF], and recently convolutional neural networks (CNN) as in[START_REF] Aubert | Convolutional Neural Network and In-Painting Techniques for the Automatic Assessment of Scoliotic Spine Surgery from Biplanar Radiographs[END_REF]. Non-machine-learning based methods include the use of mathematical morphology (MM) for instance, as in[START_REF] Naegel | Using mathematical morphology for the anatomical labeling of vertebrae from 3D CT-scan images[END_REF].The detection phase, can sometimes involve the introduction of a segmentation task. In many instances, segmentation methods require an initialization close to the structure of interest. Thus, here the role of object localization will become critical. For example, when using deformable models or active shape models (ASM) as in[START_REF] Doré | Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients[END_REF] and[START_REF] Benjelloun | A framework of vertebra segmentation using the active shape model-based approach[END_REF] respectively,
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Regarding the length and orientation, if and are two corners defining the two ends of an endplate, and the pairs , and , are landmarks coordinates. The endplate length ( ) and orientation ( ) are computed as below:

To define our ground-truth and generate a training set for the RF classifiers, we manually labelled the candidate points selected from the edge map as either AS, AI, PI, PS corner type or non-corner. To facilitate the manual annotation procedure and handle the large uncertainty in manual selection of corner candidates, the operator was asked to click candidate corner points on the original radiograph, visualizing the candidate points selected from the edge map. The operation was repeated separately for each corner type. All candidate points within manual uncertainty range of 1.4 mm, as well as the clicked point were preserved as instances of the desired corner class. The operator added corner points at regions where no candidate was present. This might happen in case of noise, occlusion, and poor contrast at corner regions that affect the edge map quality from which the candidates are obtained.

-3.4. Visual Features Extraction

We extract three types of visual features (HOG, Haar-like features, and contextual features) which are detailed below.

-3.4.1. HOG Features

Histograms of oriented gradients (HOG) were introduced in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. We use square patches of size 1515 pixels centred on each of the candidate points. Patches are divided into 33 cells, and histograms use 12 orientation bins. This leads to a HOG feature vector of length 108 (=129), for each candidate point. The chosen HOG patch size, which needs to be odd, is set close to the average intervertebral space dimension (16 pixels), enabling to capture local information without interfering with the neighbouring corners. Regarding the feature selection, using 33 blocks of size 66 pixels was recommended in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], via extensive evaluation of the effect of different block and cell sizes on a similar object detection task. In our study, we adapted these values (33 blocks of * Corresponding author: Shahin EBRAHIMI
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-3.7. Analysis

Performance of the three RF classifiers from Section 4 -3.4 are reported in Table 13. Centre positions of detected pedicles were compared to the position of the manually selected ones; a distance lower than 2 mm [START_REF] André | Effect of radiographic landmark identification errors on the accuracy of three-dimensional reconstruction of the human spine[END_REF] was considered as a true positive ( ), while a higher distance was considered a false negative ( ). Sensitivity / + × % and precision / + × % were calculated for each classifier.

-4. Results

The algorithm was evaluated on 57 subjects from vertebrae T1 through L5 (a total number of 969 vertebrae, or 1938 pedicles). Both sensitivity and precision of pedicle detection (77.2% and 88.1% respectively) were higher with the hybrid RF classifier that combines CF and HOG features. CF-based classifier sensitivity was considerably higher than with the HOG-based classifier, while precision was slightly lower. The refinement stage in Section 4 -3.5 was only performed on the best-performing hybrid RF classifier outputs.

After the refinement process, Table 14 reports the bias evaluation on horizontal and vertical pedicle centre positions. Furthermore, RMSE of distances to the ground truth were computed, as well as the sensitivity defined as the percentage of detected centres within a range of 2 mm to the ground truth out of the total number of detected centres.

our hybrid visual features outperform individual HOG and CF features. Furthermore, we exploited an efficient heuristic probability and population based filtering approach to discard false positives from our detections. Similar to the corner localization work, integrating the framework with our 3D reconstruction algorithm seems beneficial (Figure 48). Although such approach still requires an extensive validation phase, particularly for severe scoliosis, it appears really promising both for standalone frontal X-rays processing and for automated improvement of a spine 3D reconstruction.

Chapter 5

Spinous Process Segmentation on Sagittal X-

Rays

Automatic Segmentation and Identification of Spinous Processes on Sagittal X-rays based on Random Forest Classification and Dedicated Contextual Features
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vulnerable to model initialization, especially for the spinous processes.

In this study, we aim at segmenting spinous process of the cervical spine exploiting dedicated contextual features together with a multi-class Random Forest (RF) classifier. The algorithm seeks for spinous process instances in sagittal X-rays in a pixel-wise manner. The output of the proposed algorithm are spinous process pixels with assigned labels and scores, determining to which spinous process (C1-C7) the pixels belong to and with what probability. Classification results are then refined.

For the evaluation, we compared to manually segmented spinous processes. Segmented spinous processes can be used for direct clinical parameter extraction or be applied as an extra guide in shape model reconstruction tools.

-3. Material and Method

In this study 62 sagittal X-rays of EOS ultra-low dose system (EOS imaging, Paris, France) are used, which are collected from different research and imaging centres (image resolution = 0.1794 mm 2 ).

There exists a wide variety of age, sex, and pathology among the subjects. The experimental protocol has been approved by centres' ethical committees and written patient consents have been acquired.

X-ray images are pre-processed with Wiener and median filtering, followed by contrast limited adaptive histogram equalization (CLAHE) [START_REF] Zuiderveld | Contrast Limited Adaptive Histogram Equalization[END_REF] to enhance image quality while preserving boundaries. This pre-processing was previously exploited in [START_REF] Ebrahimi | Vertebral Corners Detection on Sagittal X-rays based on Shape Modeling, Random Forest Classifiers and Dedicated Visual Features[END_REF][START_REF] Ebrahimi | Lumbar spine posterior corner detection in Xrays using Haar-based features[END_REF],

where it was shown to be practical yet simple to run.

-3.1.

Contextual Features Extraction

Patch-based Haar-like and contextual features have been developed for various object or landmark detection purposes [START_REF] Al Arif | Patch-based corner detection for cervical vertebrae in X-ray images[END_REF][START_REF] Ebrahimi | Vertebral Corners Detection on Sagittal X-rays based on Shape Modeling, Random Forest Classifiers and Dedicated Visual Features[END_REF][START_REF] Glocker | Vertebrae localization in pathological spine CT via dense classification from sparse annotations[END_REF]. They can capture intensity and gradient information not only locally but also from remote locations. In this study, we present a dedicated patch-based contextual feature that acts in a pixel-wise manner enabling simultaneous detection, segmentation, and identification of the objects of interest. As illustrated in Figure 50, a pool of features is obtained from [3 ] patches that are localized around a candidate pixel in different layers with radii and intra-layer distances , which can be formulated as below:

where = . , = . , and the distances are in pixels. From above, the number of boxes in each layer is equal to: = / . The designed descriptor aggregates mean and variance of intensities inside patches. Moreover, the mean intensity difference between each patch and the central one is computed and added to the aggregated list, leading to 1,522 features for each pixel. Each of the mean, variance and contrast term values are normalized to unit -norm to increase stability of the features against intensity variation across the image.

-3.2.

RF Classification

For our aimed detection, segmentation and identification task, using a leave-one-out cross validation approach, we train and test our multi-class RF classification with parameters reported in Table 17.

means higher overlap between the two sets and consequently better segmentation performance.

-Hausdorff distance (HD) is calculated between the ground truth and the algorithm outcome. The HD distance between two sets and is measured by:

where , is a distance metric such as the Euclidean distance. he HD is sensitive to outliers.

-The average Hausdorff distance (AHD), is defined as:

where and are the number of surface points in and respectively.

While similar to HD, and also a directed distance metric, it is less sensitive to outliers. Smaller AHD means better segmentation accuracy.

-4. Results

We evaluate the performance of our algorithm on 62 cervical spine radiographs consisting of 434 spinous processes. All spinous processes were detected and identified correctly. Segmentations are quantitatively evaluated using errors on spinous process centroid position ( ), and orientations (

), as well as segmentation dissimilarities measures via Dice, HD, and AHD.

In Table 18 mean, median and standard deviation ( .) values are reported for individual and all spinous processes. Overall, we obtained a mean Dice coefficient of 88  8%, mean HD of 2.1  1.4 mm and mean AHD of 0.6  0.4 mm. For different spinous processes, the segmentation performance is quite similar but the Dice coefficient is a bit lower in C1, while HD and AHD are higher in C7.

Spinous process centroids positioning mean error is below 1 mm in C1-C6. Orientation differences return the best precision for C3-C7 with respective mean, median, and Std. of 3.6, 2.8, and 3.3.

Orientation values in C1 and C2, were not reported in Table 18 as these structures are often roundshaped with no dominant orientation.

Figure 53 illustrates the algorithm performance together with the ground truth on some of the subjects in the test dataset.

PART C

List of Figures, Tables , andReferences PART D

APPENDICES

Appendix A

Detailed Materials and Methods in Chapter 4

In this appendix, we provide some details regarding the Section 4 -3 (Materials and Methods) of Chapter 4.

Visual Feature Extraction Set up

In Chapter 4, we presented a hybrid classifier with a pool of features consisting of the following feature descriptors:

(1) Histograms of oriented gradients (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] (2) A specific configuration of contextual features (CF) introduced in Chapter 3.

The spine is split to 3 different regions (T1-T7 & T8-T12 & L1-L5) which share similarities in pedicles shapes and sizes, and complexity of surrounding areas. To have approximately uniform pedicle sizes in pixels, X-rays in the regions T8-T12 and L1-L5 are downsampled by a factor of 2, while we keep the original resolution (0.1794 mm 2 ) for the region T1-T7.

HOG Features

In our work, we accommodate the HOG to suit our goal of pedicle detection. HOG features are computed for a patch size of [42 54] pixels around a pixel of interest. In our configuration block size is set to [3 3] and cell size is set to [6 6] pixels. The number of orientation histogram bins is set to 9, and the block overlap is defined as: ÷ . Figure 43 shows its application on a pedicle.

The total number of HOG features ( ) is 2,835, which are obtained from the patch including the object of interest.

2. CF Features

In Chapter 4, the CF features presented in Chapter 3 are tailored for the specified purpose of pedicle detection. In the new formulation, we reduced the number of box sizes, and increased the offset radius