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Résumé
Cette thèse porte sur le développement de lois de commande pour la marche des robots
bipèdes. Le sous actionnement engendré par le basculement, volontaire ou involontaire,
du pied en appui sur le sol représente une difficulté majeure. Nous abordons ce problème
par l’étude de robots plans avec pieds ponctuels.

La première partie de la thèse est une compilation des informations issues de la
littérature que nous avons jugées intéressantes. Nous traitons dans un premier temps de
la modélisation adoptée, puis effectuons une revue des différentes méthodes existantes,
et présentons la mise en oeuvre expérimentale de l’une d’entre elle : la méthode HZD.

Dans une deuxième partie, nous procédons à une étude de la dissipation relative de
l’énergie cinétique du robot lorsque le pied impacte le sol. Nous utilisons les résultats
issus de cette étude pour planifier des trajectoires de marche dissipant peu d’énergie. De
telles trajectoires ont a priori le mérite de préserver la structure du robot et de générer
moins de bruit. A contrario, des trajectoires dissipant la majorité de l’énergie du robot
sont utilisées pour un arrêt rapide. Une étude numérique a montré que ces résultats sont
robustes à des incertitudes de modèle.

Enfin, dans une dernière partie, afin de compenser les difficultés liées au sous ac-
tionnement, nous proposons d’utiliser le degré de liberté supplémentaire offert par un
changement de l’échelle de temps dans les équations de la dynamique (Time Scaling) pour
la classe de robots considérée. En utilisant par ailleurs un changement de coordonnées
et de feedback, nous dérivons de nouvelles formes normales exactes et approximatives.

Mots clés : Robot bipède - Planification de trajectoires- Dynamique des zéros -
Impact - Time Scaling

Abstract
This thesis addresses the general problem of the walking control of biped robots. The
foot of the robot in contact with the ground may tip over and cause the robot to be
undercatuated. This is a major difficulty in term of control. This problem is addressed
by considering planar biped robots with point feet.

In a first part, we present a standard way of modeling such systems, a litterature
review of the existing methods, and then report experimental results of the walking
control of a biped robot using the HZD method.

In a second part, we perform an analytic and numeric study of the relative kinetic
energy dissipation when the foot of the robot impacts the ground. Using this study, we
design trajectories with low energy dissipation at impact, which a priori result in gaits
preserving the hardware of the robot and causing less noise. On the contrary, trajectories
dissipating almost all the kinetic energy are used to quickly stop the robot.

Finally, in an attempt to alleviate the burden due to underactuation, we propose to
investigate the additional degree of freedom provided, in the control design, by a change
of time scale in the dynamic equations (Time-Scaling) for the considered class of biped
robots. Using feedback transformations, we derive new exact and approximative normal
forms.

Keywords: Biped Robot - Motion Planning - Zero dynamics - Impact - Time
Scaling
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Preamble

My PhD was funded by Wandercraft, a French startup company founded in 2012,
and headed by three newly graduated engineers1. Today, a team of more than 20
engineers and doctors are working hard for the design, control, and marketing of a
novel medical active lower-limb exoskeleton for rehabilitation. Active lower-limb
exoskeletons are anthropomorphic robotic devices that fit around the legs of its
user. The exoskeleton of Wandercraft aims at recovering the ability to walk for the
people who lost the control of their lower limbs, such as paraplegics or myopathics.
Contrary to the currently existing exoskeletons, it will be able to stabilize and
carry the user at the average human walking speed, without requiring crutches or
stabilizing mechanisms. Originally designed to be used in rehabilitation centers,
the exoskeleton will be next commercialized to individual customers.

When I arrived at Wandercraft, the company had no employees and was located
in a small room in a startup incubator. The faith that the founders had in this
project could have seemed disproportionate. They had strictly no experience,
but were willing to change the life of people with disabilities. Nonetheless, the
appeal and the technical challenges of the project convinced me to join this new
adventure.

It was not possible to define an outline of the work to be done, since we started
from scratch. Obviously, the ultimate goal was to develop a control law for the
exoskeleton. But, at that time, the exoskeleton did not exist, and we did not know
how to achieve this ambitious objective.

As a first step, we decided to look at the rich existing literature on robotic
bipedal locomotion. We believed that these techniques could be applied to the
control of exoskeletons. We especially noticed the method of virtual constraints
and hybrid zero dynamics (HZD method), which clearly and rigorously explains
how to design controllers for underactuated bipedal locomotion. Two of their
main contributors, Professor Jessy Grizzle2 and Christine Chevallereau3 always
kindly answered our questions. In order to gain more experience in this method,
Wandercraft designed a planar robot with point feet4, called VS, an almost replica
of the RABBIT robot, on which the HZD method was successfully tested for the

1Nicolas Simon, Alexandre Boulanger, Matthieu Masselin. Jean-Louis Constanza has recently
joined the head as business manager.

2University of Michigan (USA)
3IRRCyN, Nantes (France)
4Planar means that the robot is equipped with a lateral stabilizing mechanism to facilitate

its control. Then, the controller has to stabilize the robot in the sagittal plane “only” (plane
dividing the robot into left and right halves). Point feet means that the robot has no feet.
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first time in 2002.
I was tasked with the design and the implementation of HZD control laws on

the VS robot. It took 6 months to get a continuous robust walk on the VS robot.
I especially encountered repetitive hardware problems which slowed down the
experiments: cable faults, breakdown of the treadmill on which the robot evolves,
deterioration of the contact sensors in the feet. But finally, successful experiments
were realized.

As for the theoretical work, as a first step, inspired by the HZD method, I
focused on planar robots with point feet, since these models, which are simpler
than tridimensional robots, are well suited for beginning a study on biped robots
and the development of new control strategies. Some new ideas to control this
class of robots are introduced in this manuscript. Unfortunately, due to a lack
of time, I did not implement them on the real VS robot, and I was not able to
exhibit new results for tridimensional biped robots.

Even though this is the core of the project of Wandercraft, the control of a
lower-limb exoskeleton was not explicitly addressed. Firstly, some maturity had to
be gained in the probably simpler problem of controlling a standard biped robot.
Indeed, the problem of the interaction of a user with the exoskeleton is not obvious.
The question raises whether the user will be able to learn how to help to stabilize
the exoskeleton by an appropriate motion of its torso and upper limbs, or if the
exoskeleton will have to compensate for the perturbations exerted by the user.
This may depend on the pathology.

This PhD work was guided by the two-fold goal of being as useful as possible for
the development of Wandercraft, and producing innovative and releasable scientific
results. I am not mincing my words when I say that it was not an easy task to be
innovative in a field that has been researched by brilliant researchers for decades,
and starting from scratch. Most of the results presented in this manuscript were
obtained during the last year of the PhD. At the end of the day, I hope that this
dissertation brings a little contribution to the field.
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Introduction

Context
The general problem under consideration in this thesis is the walking control of
biped robots. Bipedal walking is a way of locomotion that consists in moving
forward the feet alternately so that there is always one foot on the ground. Humans
are generally considered as the most agile biped walkers in the animal world. Human
walking gaits are robust, energy-efficient and dynamic. Robust means that humans
are able to handle perturbations, such as an external push or a slippage of the
foot. Energy-efficient means that the walk consumes little energy. Dynamic means
that human is capable of performing fast walking motions. This is achieved by
the fact that he is falling during a part of the walking cycle. This happens for
instance when the foot rolls on the ground. Actually human walking can be seen
as “controlled falling”.

Robots are machines operating automatically. They are equipped with sensors
to perceive their own state (position and velocity of the joints, absolute orienta-
tion...) and to sense their environment (contact sensor, camera...). The information
provided by the sensors is processed by an algorithm embedded in a computer.
The algorithm makes a decision on the actions that the robot must realize. Orders
are then sent by the computer to the actuators of the robot to perform the desired
task. Biped robots are robots equipped with two actuated legs.

The design and the control of biped robots have raised a strong interest in
the past decades, since it is believed that they will ultimately be able to realize
some tasks that others mobile robots, like wheeled robots, have difficulties to
realize: moving on a rough terrain, crossing an obstacle, climbing a ladder or more
generally evolving in a human environment such as a house. The applications of
robot bipedal locomotion are numerous. Biped robots capable to evolve in real
and unknown environments could assist humans in everyday life. They could work
in hazardous areas such as in a fire disaster or a radioactive place. The use of
anthropomorphic robotic devices that fit around the legs of its user, called lower
limb exoskeletons, could restore the mobility of paraplegics.

Brief State-of-the-art
Researches on biped robots started at the beginning of the 1970s with the works
of Miomir Vukobratovic (Mialjo Pupin Institude, Belgrade) on the design and the
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control of a leg exoskeleton for paraplegics [121]. The exoskeleton was capable of
providing a walking motion to the legs of a user, but the user had to use crutches
to keep balanced. These researches highlighted the important role played by the
center of pressure of the ground reaction forces, called ZMP, in the balance of
bipeds. A necessary condition so that the foot/feet in contact with the ground do
not tip over is that the ZMP stays strictly inside the convex hull of the contact
points with the ground (the support polygon). This lead to the emergence of
a method called flat foot walking, or ZMP walking, that consists in designing a
walking controller constraining the robot to always keep its feet flat on the ground.
Since the feet are flat on the ground and do not slip, the robot is then entirely
actuated, i.e. the number of actuators is greater than or equal to the number of
degrees of freedom, which greatly facilitates its control. But, this requires high
ankle torques. This approach has been successfully implemented for the first time
in 1984 on the japanese robot WL-10RD by Ichiro Kato et al. Later, Kajita et
al. introduced a popular approach for generating flat foot walking gaits online
using the linear inverted pendulum as an approximative model of the robot [59].
The ZMP method has been widely used on humanoid robots (ASIMO [54], HUBO
[123], HRP2 [61], NAO [44]...). Nonetheless, the absence of foot rotation limits the
possibility of getting fast and energy-efficient gaits. Additionally, the robustness
to disturbances of the walk is limited since the robot falls down when the feet tip
over.

Marc Raibert (MIT) pioneered dynamic legged motion in the early 1980s.
He first designed one legged robots. These “hoppers” were kept balanced by
continuously hopping and calculating where to place the leg onto the ground
between hops to maintain their balance. He generalized this new strategy, called
foot placement to multi-legged robots. His robots were able to realize agile motions
such as back flips [94]. Raibert founded the company Boston Dynamics in 1992,
which is known worldwide for its impressive agile quadruped robot BigDog and
humanoid robot ATLAS.

In 1988, Tad McGeer highlighted that biped mechanisms with no actuators
are able to naturally walk down slopes by converging to a periodic walking (limit
cycle walking) thanks to the counteractive action of the gravity (gain of energy)
and of the impact of the feet onto the ground (loss of energy). They are called
passive walkers [73]. Starting from this observation, in the early 2000s, Christine
Chevallereau (IRCCyN, Nantes) and Jessy W. Grizzle (University of Michigan)
introduced a new approach so that actuated biped robots be controlled to converge
to a periodic walking cycle. It is called method of virtual constraints and hybrid
zero dynamics (HZD method) [127]. Contrary to the previous approaches, which
use heuristics and simplified models of the robot, the HZD method uses a complete
model and allows the design of walking trajectories for underactuated robots that
are provably stable. Underactuated means that the robot has more degrees of
freedom than actuators. Then, some degrees of freedom may describe an unstable
trajectory (non minimum phase zero dynamics). The HZD method especially
addresses the control of point foot robots, that is robots with no feet. The use
of point feet robots makes the ZMP heuristics not applicable and requires the
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design of a controller that cope with the underactuation resulting from the non
actuation of the leg contact with the ground. The method was first tested in 2002
on the planar5 robot with point feet RABBIT. It has since then been extended and
successfully tested on real tridimensional biped robots with point feet (MARLO)
and with actuated feet (DURUS).

All these methods do not require to sense the environment to make the robot
walk (blind robot). But, laser range finders or cameras can be used to improve
the performances of the gait. Today, the community of biped robot locomotion
is very active and major improvements have been made over the past few years.
Several biped robots have been tested recently outdoor: ATLAS, ATRIAS, Cassie...
Here are some videos illustrating the current state-of-the-art in robotic bipedal
locomotion:

• ZMP Method. ASIMO robot (HONDA, 2014).
https://www.youtube.com/watch?v=_kzgk4Rnpqc.

• Method of Foot Placement. ATLAS robot (Boston Dynamics, February
2016).
https://www.youtube.com/watch?v=rVlhMGQgDkY.

• HZD Method. DURUS robot (Georgia Tech, July 2016).
https://www.youtube.com/watch?v=1fC7b2LjVW4.

These results are quite impressive, but there is still work to do to get biped
robots walking as well as humans can.

Issues in Robotic Bipedal Locomotion
The control of biped robots is challenging and several issues still have to be
addressed.

A first issue concerns the mecatronical design. The structure of biped robots
is far less advanced than the humans one. While robots are equipped with a
few actuators, hundreds of muscles act together during human walking. Muscles
store and release energy during the walk. As a consequence, humans have greater
power-to-mass ratios and more energy efficient walks than any existing biped robot.
The design of control algorithms for biped robots is constrained by these inherent
physical limitations. Things get even more complicated for commercialized robots,
where the price should be as low as possible.

Additionally, in spite of more than 40 years of research, while walking seems
to be easy and natural for humans, the mechanisms of bipedal locomotion are
not fully understood. The analysis of biped locomotion is rendered difficult by
the fact that the dynamics of biped robots are complex and nonlinear. See the
five pages-length Appendix E of [127] that gives the equations of motion of a (yet

5This means that the robot was equipped with a lateral stabilizing mechanism to facilitate
its control. Then, the controller had to stabilize the robot in the sagittal plane “only” (plane
dividing the robot into left and right halves).
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simple) planar five-link walker with point feet. Additionally, biped robots are
subject to an impact, which adds complexity to the modeling and to the control.
In spite of this, the researches mentioned above highlighted some aspects of biped
locomotion. The dynamics of a biped are similar to those of an inverted pendulum.
The control of the ZMP and a proper placement of the foot on the ground plays an
important role in the balance of bipeds. Walking can be viewed as the convergence
of the walker to a periodic limit cycle. But, to date, no control method unifies
these aspects of biped locomotion.

During walking, the robot may become, voluntarily or involuntarily, under-
actuated. Then, controllers must cope with underactuation. In addition to this
difficulty, the design of such controllers is constrained by the fact that the com-
putational capacities of computers are limited. Thus, for the time being (but
things should change with computer performance improvement), any sophisticated
control algorithm cannot be used, especially to replan online the trajectory of the
robot.

Objectives and Thesis Outline
Since underactuation is inherent to bipedal locomotion and that current controllers
do not result in gaits which are as agile and energy efficient as human gaits, in
this PhD work, we address the control of underactuated biped robots. Following
the HZD method, we especially consider planar one degree underactuated biped
robots with point feet, since this class of system is simpler than tridimensional
underactuated biped robots, but sufficiently complex to embody some problems
due to underactuation in bipedal locomotion. We deemed necessary to begin with
these simpler models, in particular for developing some new ideas. The study of
point feet robots may be confusing, but the results obtained for such robots can be
translated to robots with feet. Indeed, the dynamic behavior of a robot the foot
of which is rolling on the ground is close to the one of a point feet robot. Then, in
this thesis, we address the following issue:

How to design control algorithms for obtaining a robust and
energy efficient walking gait on planar one degree underactuated
biped robots with point feet?

We addressed the problem in three steps:

• Reviewing the literature of robot biped locomotion.

• Testing some existing methods on a real testbed.

• Proposing improvements to the state-of-the-art.

The manuscript follows this approach. In Chapter 1, we present a standard
framework, especially described in [50], to model biped robots as hybrid systems,
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that is systems ruled by continuous and discrete dynamics. Then, in Chapter
2 we give a review of the existing methods for the control of biped robots. We
identified three major methods: the ZMP method, the method of foot placement,
and the method of virtual constraints and hybrid zero dynamics (HZD method).
Some works do not claim to belong to one of these three categories. And many
contributions have been made across the years, which may introduce confusion to
know which approach offers the best performances. We give here our own analysis
of the-state-of-the-art and gather the information that we could find and that we
deemed to be relevant. We especially focus our attention to the HZD method
since we found it is the most documented and rigorous approach for the control of
underactuated robots.

Then, in Chapter 3, we describe how we applied the HZD method, starting
from the experimental reports in [127], to design walking trajectories for a real
planar biped robot with point feet, called robot VS.

We found that the obtained experimental walking trajectories dissipate more
than half of the kinetic energy at impact, causing noise and vibration in the robot.
This may be acceptable for a testbed, but not for an industrial product, especially
for a lower-limb exoskeleton, where the comfort of the user is crucial. In light of
this, in Chapter 4, we study and propose to control the relative kinetic energy
dissipation at impact for biped robots. First, we perform a theoretical study using
the standard rigid impact model introduced by Hurmuzlu in [56]. Then, we apply
our study in simulation to a planar five-link walker with point feet. The control
of the energy dissipation allows for the robot to walk with little energy loss at
impact, or to stop in “one step” by dissipating most of its energy at impact. We
show that our approach is robust to model uncertainties.

In Chapter 5, in an attempt to alleviate the burden due to underactuation, we
propose to investigate the additional degree of freedom provided, in the control
design, by a change of the time scale in the dynamical equations (Time-Scaling) of
planar one degree underactuated biped robots with point feet. It is well known
that the conjoint use of Time-Scaling and coordinate and feedback transformations
may lead to new normal forms [103], that is to dynamic equations written under a
form suitable for the design of control laws. Time-Scaling seems to be especially
appropriate for bipedal locomotion since there generally exist geometric quantities,
functions of the configuration of the robot, evolving strictly monotonically during
a walking step [119]. These quantities, called phase variables in the HZD method,
define a natural choice for a new time scale. Using this particular choice of time
scale and feedback transformations, we derive new normal forms with two and
one-dimensional zero dynamics. Then, using the first order approximation of
the dynamics along a reference trajectory in this new time scale, we design a
linear quadratic regulator under the form of a state feedback controller, that is a
controller depending only on the state and not on the ordinary time t, to stabilize a
walking trajectory. The performances of the controller are evaluated on a numerical
example of a planar five-link walker with point feet.
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Publication
The work described in Section 5.5 of Chapter 5 has been published:

• S. Finet and L. Praly. Feedback Linearization of the Transverse Dynamics
for a Class of One Degree Underactuated Systems. 2015 IEEE 54th Annual
Conference on Decision and Control (CDC 2015), Dec 2015, Osaka, Japan.
pp.7802-7807, Proceedings of the 54th IEEE Conference on Decision and
Control (CDC 2015).

The work realized in Chapter 4 and in the others sections of Chapter 5 will
probably be submitted in a near future.
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Chapter 1

Modeling of Biped Robots

Résumé français Un bon modèle est un prérequis à la synthèse de lois de con-
trôle pour un système. Dans ce premier chapitre, nous introduisons le vocabulaire
usuel de la locomotion bipède. Puis, nous décrivons un modèle standard utilisé
pour la modélisation d’un robot bipède. Un robot bipède est modélisé comme un
système hybride, c’est-à-dire régi par une dynamique continue, et une dynamique
discrète. Cette dernière est désignée aussi sous le terme de dynamique d’impact,
car elle décrit le saut sur l’état lorsque le pied du robot impacte le sol. Elle est
obtenue par l’utilisation d’un modèle standard qui suppose un impact instantané
et un contact rigide avec le sol. Une description complète et détaillée de cette
modélisation se trouve dans [50] et dans les références citées. Nous indiquons aussi
comment procéder pour avoir un modèle plus fidèle à la réalité. Ce chapitre ne
contient aucune nouveauté par rapport à la littérature. Il présente un assemblage
de divers aspects de la modélisation d’un robot bipède et de leur discussion, à
partir de notre propre expérience.

A right model is a prerequisite for the design of control of any system. In this
chapter, we will first introduce some common vocabulary used in biped locomotion.
Then, we will present a standard way of modeling biped robots that we used in
this dissertation. Biped robots will be modeled as hybrid systems, that is systems
ruled by continuous and discrete dynamics. The continuous dynamics are derived
using the method of Lagrange. The discrete dynamics, or impact dynamics, since
they describe the change of state when a leg of the robot hits the ground, are
derived using a standard model assuming an instantaneous and rigid foot-ground
contact. A complete and comprehensive review of this modeling can be found
in [50] and references therein. We will finally present others modeling aspects
useful to have a model closer to the reality. There is absolutely nothing new in
the components of this chapter. Our work consists in the “assembling” of these
components and their discussion, this being based on our experience with using
them for design and testing.
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1.1 Useful Concepts for the Study of Biped
Locomotion

Whether it is for the control of humanoid robots or the control of leg exoskeletons,
human walking has been a source of inspiration and a model. We introduce here
briefly biped walking, and especially human walking, as well as some related
vocabulary.

1.1.1 Biped Locomotion
Bipedal walking is a way of locomotion that consists in the displacement of the
center of mass of the walker along a given direction thanks to a motion of the
legs. During walking, the altitude of the center of mass is always above a certain
value, that is the walker does not fall. The motion of the center of mass is almost
sinusoidal [129]. Human walking has been studied for more than one century. But,
its underlying mechanisms are still misunderstood. Many works agree to say that
human walking results of the optimal motion of the center of mass [67, 106]. Yet,
it is not clear which function cost human walking minimizes [6]. It seems that the
motion of arms plays a role in the reduction of the energetic consumption and of
the risk of slippage of the foot [24].

1.1.2 Vocabulary
Human walking on flat ground is a cyclic motion. Three planes are defined to
describe the motion of a biped (see figure 1.1):

• The sagittal plane divides the body into right and left halves.

• The frontal plane (or coronal plane) is any vertical plane that divides the
body into dorsal and ventral sections.

• The transverse plane divides the body into superior and inferior parts.

Transverse plane

Y

X

Z

Frontal plane

Y

Z

X

Sagittal plane

X

Z

Y

Figure 1.1: The three planes used to describe the motion of a biped walker.
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The motion of walking essentially occurs in the sagittal plane. That’s why the
study of planar robot, as it is done in this PhD thesis, is carried out in the sagittal
plane.

Human walking can be divided into two phases (see figure 1.2):

• The single support phase: only one foot is in contact with the ground.

• The double support phase: both feet are in contact with the ground.

A leg is said to be in stance phase when it is in contact with the ground. It is
said to be in swing phase when off the ground.

During the stance phase, the swing foot first impacts the ground with the heel.
The foot rotates about the heel. Next, the foot lays flat on the ground. Then,
the heel lifts from the ground and the foot rotates about the toe. The stance
phase finishes when the toe lifts from the ground. This behavior seems to play an
important role in human walking.

When the walking speed increases, the duration of the double support phase
diminishes until disappearing. In this latter case, the double support phase is
replaced by the flight phase, during which both legs are off the ground. The biped
is running.

Figure 1.2: The different phases in human walking

1.2 Dynamic Model in Flight Phase
From now, we will present the mathematical models and the notations used in this
dissertation. This is a standard modeling described in [50, 127]. In this section,
we derive the dynamics of the robot in flight phase.

1.2.1 Model Assumptions and Notations
We consider here a general model of biped robots. The robot can be planar or
tridimensional and have feet or not. In this latter case, the robot is said to have
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point feet. The robot is composed of rigid body links forming a Nb degrees of
freedom tree structure. We assume that Na ≤ Nb joints are independently actuated.
One example of such a model is depicted in Figure 1.3. Some others examples are
the planar five-link walker described in Chapter 4 or the models used in [23, 1, 127].
To distinguish between the 2 legs, we label them by the indices “1” and “2”.

Z

O

P

X
b

b

Yb

Z
b

PFoot1

X
Foot1

Y
Foot1

Z
Foot1

Y
O

X
O

O

Figure 1.3: Model of a biped robot and the frames used to describe its configuration.

Let Ro = (O,Xo, Yo, Zo) be a frame attached to the world (world frame). Let
pb ∈ R3 (R2 for a planar model), be1 the cartesian coordinates of a point Pb
attached to the robot and expressed in Ro. Let Rb be a frame attached to the
robot and centered at Pb: Rb = (Pb, Xb, Yb, Zb). Let φb ∈ T3 (= the 3-torus) be
the orientation of Rb relative to Ro. φb corresponds to the Euler angles (roll, pitch,
yaw). For a planar model, φb ∈ T and represents the pitch angle.

The vector (pb, φb) describes the absolute position and orientation of the robot.
Let qb be the vector of the Nb joint angles of the robot in Rb, called body

coordinates. Without loss of generality, we assume that the Na first components
of qb are the actuated joints.

Let N = Nb + 6 (N = Nb + 3 for a planar model). The N-dimensional vector
qe forms a set of generalized coordinates2, i.e. a set of variables that completely
describes the configuration of the robot, in Ro

qe =


qb

pb

φb

 . (1.1)

qe ∈ Qe, where Qe ⊂ RN is the configuration space of the robot and T Qe is
the corresponding tangent bundle, also called state space. Denoting q̇e as the
generalized velocities, the state of the robot is

1Subscript "b" refers to "body".
2“e” stands for “extended”, since we will define further from qe a set of reduced coordinates.
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xe =
qe
q̇e

 ∈ T Qe . (1.2)

1.2.2 Flight Phase Dynamics
Let us assume that the robot is not in contact with the environment (flight phase)
and is only subject to the gravity. We derive here the dynamical equations using
the Lagragian mechanics.

1.2.2.1 Lagrangian Mechanics

Lagrangian mechanics offers a convenient way to derive the dynamical equations of
mechanical systems, and is widely used in Mechanics and Robotics. We introduce
briefly this method. For further details, see [127, 80, 38].

The scalar function L : T Qe → R, defined as the difference between the kinetic
and the potential energy of the system, is called Lagrangian. We have

L = K(qe, q̇e)− V(qe) , (1.3)
where K(qe, q̇e) is the kinetic energy and V(qe) is the potential energy.

The Lagrange’s equations give the dynamical equations of the system

d

dt

∂L
∂q̇e
− ∂L
∂qe

= Γ , (1.4)

where Γ is the vector of the generalized forces and torques.

This expression can be put in a more useful form when the kinetic energy is
quadratic in velocity, that is

K(qe, q̇e) = 1
2 q̇

T
e D(q)q̇e , (1.5)

where D(qe) is a positive definite matrix, called mass matrix. This is the case
for most of mechanical systems, including biped robots. Then, the Lagrange’s
equations become

d

dt

(
D(qe)q̇e

)
− 1

2

(
∂

∂qe

(
q̇Te D(qe)q̇e

))T
− ∂V
∂qe

= Γ , (1.6)

which can be written under the standard form

D(qe)q̈e + C(qe, q̇e)q̇e +G(qe) = Γ , (1.7)
where C(qe, q̇e) is the Coriolis matrix and G(qe) is the vector of the potential
energy. We have
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G(qe) = −∂V
∂qe

(qe) , (1.8)

and

C(qe, q̇e) =
(
∂

∂qe

(
D(qe)q̇e

))
− 1

2

(
∂

∂qe

(
D(qe)q̇e

))T
. (1.9)

The Coriolis matrix is not defined uniquely. But, it is generally defined as

C(qe, q̇e) =
N∑
i=1

1
2

(
∂Dk,j

e

∂qi
+ ∂Dk,i

e

∂qj
− ∂Di,j

e

∂qk

)
q̇i , (1.10)

where Dk,j
e is the kj entry of the matrix De.

The vector of generalized forces and torques Γ defines the contribution of each
external forces and torques on the dynamics of the coordinates qe. It is calculated
using the principle of virtual works, also called the d’Alembert’s principle (see
page 52 in [38]).

More precisely, if a force F is applied on a point of coordinates p(q), the
corresponding generalized force is

ΓF =
(
∂p

∂q
(q)
)T
F . (1.11)

If a torque u is exerted along an axis parameterized by the angle θ(q), the
generalized torque is

Γu =
(
∂θ

∂q
(q)
)T
u . (1.12)

1.2.2.2 Flight phase Dynamics

Using the Lagrange’s equations, the equations of dynamics for the considered
models of biped robots are

De(qe)q̈e + Ce(qe, q̇e)q̇e +G(qe) = Beu , (1.13)
where u ∈ RNa is the vector of inputs (motor torques), G(qe) is the gravity vector,
and Be is a N ×Na matrix defining how the motor torques act on the coordinates
and obtained using (1.12). Since qb corresponds to the joints of the robot, and its
Na first components correspond to the actuated joints, we have

Be =
 INa×Na

0(N−Na)×Na

 . (1.14)

The equations in state-variable form are
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ẋe =
 q̇e

D−1
e (qe)[−Ce(qe, q̇e)q̇e −G(qe) +Beu]

 . (1.15)

They can be written as

ẋe = fe(xe) + ge(xe)u. (1.16)

1.3 Dynamics With Ground Contact
During walking, the robot has one or both feet on the ground. We present here how
to model the foot-ground contact and how to include it in the dynamical equations.
The foot-ground contact is commonly modeled using holonomic constraints, that
is relations under the form η(q) = 0. This provides an easy way to compute the
corresponding ground reaction efforts. This is a standard modeling described in
[?, 127].

1.3.1 Modeling the Foot-Ground Contact
Without loss of generality, let us consider the foot of leg 1. The foot-ground contact
is modeled as a kinematic joint parameterized3 by six degrees of freedom: three of
them describe the foot position, and the three others describe the foot orientation
relative to the ground.

Let pFoot1 ∈ R3 be4 the cartesian coordinates of a point of leg 1, called PFoot1
and expressed in Ro

pFoot1(qe) =
(
pxFoot1(qe); pyFoot1(qe); pzFoot1(qe)

)
, (1.17)

where piFoot1(qe) is the component of pFoot1 along axis i.

LetRFoot1 be a frame attached to the foot and centered at pFoot1. φFoot1 ∈ 0, 2π3

is 5 the orientation of RFoot1 relative to Ro

φFoot1(qe) =
(
φxFoot1(qe); φyFoot1(qe); φzFoot1(qe)

)
, (1.18)

where φiFoot1(qe) the orientation of the frame along axis i.

The vector (pFoot1(qe);φFoot1(qe)) regroups all the possible degrees of freedom of
the joint between the foot and the ground. Depending on the nature of the contact,
some of them are locked. For example, ignoring friction, Figure 1.4 represents the

3For a planar model, it is parameterized by three degrees of freedom: two of them describe
the foot position, and one the foot orientation.

4pFoot1 ∈ R2 for a planar model
5φFoot1 ∈ 0, 2π2 for a planar model.
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Figure 1.4: Foot-ground contact modeled as a pivot. The contact surface is the red
line and the foot is assumed to rotate along this line. The rotation is parameterized
by the angle φyFoot1 .

heel-ground contact modeled as a pivot (only one rotational degree of freedom is
free).

Without loss of generality, let us assume that the nature of the contact locks
kpFoot1 ∈ {1, 3} translational degrees of freedom, and kφFoot1 ∈ {1, 3} rotational
degrees of freedom. By changing, if necessary, the order of its components, pFoot1
can be written as 6

pFoot1(qe) =
(
pfFoot1(qe); plFoot1(qe)

)
, (1.19)

where pfFoot1(qe) is a (3− kpFoot1)-dimensional column vector (resp. plFoot1(qe) is a
kpFoot1-dimensional row vector) corresponding to the free translational degrees of
freedom (resp. translational degrees of freedom locked by the contact with the
ground).

Similarly, we have

φFoot1(qe) =
(
φfFoot1(qe); φlFoot1(qe)

)
, (1.20)

where φfFoot1(qe) is a (3 − kφFoot1)-dimensional column vector (resp. φlFoot1(qe) is
a kφst-dimensional row vector) corresponding to the free rotational degrees of
freedoms (resp. rotational degrees of freedom locked by the contact with the
ground).

The degrees of freedom of foot 1 are subject to kinematic constraints. These
constraints are gathered in the vector of dimension kpFoot1 + kφFoot1

6Indice "f" refers to "free" and "l" to "locked".
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ηFoot1(qe) =
(
plFoot1(qe)− pl∗Foot1; φlFoot1(qe)− φl∗Foot1

)
= 0 , (1.21)

where pl∗Foot1 and φl∗Foot1 are real constants corresponding to the value taken by the
locked degrees of freedom.

ηFoot1(qe) = 0 is a mechanical constraint that only depends on the positions qe.
It is called a holonomic constraint [80].

Remark: In the numerical examples of this thesis, we consider only planar biped
robots with point feet. The contact of a point foot with the ground is modeled as
an ideal (= no friction) revolute joint and is unactuated.

1.3.2 Ground Reaction Wrench on One Foot
The robot is subject to constraint forces ensuring that the holonomic constraints
ηFoot1(qe) = 0 are respected. The interaction between the foot and the ground can
be modeled as a wrench 7 acting on the foot . Let TFoot1 be the wrench exerted
by the ground on foot 1 expressed at PFoot1. TFoot1 is a six-dimensional vector
gathering the ground reaction force FFoot1 and the moment exerted by FFoot1 at
PFoot1, denotedMFoot1

TFoot1 = (FxFoot1; FyFoot1; F zFoot1; Mx
Foot1; My

Foot1; Mz
Foot1) , (1.22)

where F iFoot1 is the component of the ground reaction force FFoot1 along axis i,
andMi

Foot1 is the moment of FFoot1 along axis i at PFoot1.

The joint between the foot and the ground is assumed to be ideal (no friction).
Then, only the components of TFoot1 related to the locked degrees of freedom
plFoot1 and φlFoot1 are generally non zero. Thus, we introduce the (kpFoot1 + kφFoot1)-
dimensional vector

λFoot1 = (F lFoot1; Ml
Foot1) , (1.23)

where F lFoot1 is the column vector of dimension kpFoot1 gathering the components of
the force FFoot1 along the locked degrees of freedom plFoot1. Ml

Foot1 is the column
vector of dimension kφFoot1 gathering the components of the momentMFoot1 about
the axes for which rotations are locked, i.e. rotations parameterized by the locked
degrees of freedom φlFoot1.

In the case where the foot is assumed to be fixed and flat on the ground, all the
degrees of freedom between the foot and the ground are locked, i.e. ηFoot1(qe) =
(pFoot1(qe)− p∗Foot1; φFoot1(qe)− φ∗Foot1), and λFoot1 = (FFoot1; MFoot1).

7A wrench is a mathematical object gathering a force and its corresponding moment. See
page 61 in [80] for further details.
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1.3.3 Dynamic Model With Ground Contact
The previous approach can be applied to the foot of leg 2, by replacing the subscript
“Foot1” by “Foot2” in the equations. The constraints exerted on the two feet are

η(qe) =
ηFoot1(qe)
ηFoot2(qe)

 = 0 . (1.24)

The number of degrees of freedom locked for the two feet, or equivalently the
size of η(qe), is

p = kpFoot1 + kφFoot1 + kpFoot2 + kφFoot2 . (1.25)
We assume that the jacobian of η(qe), a rectangular matrix of size p×N , is

full rank, that is

∂η

∂qe
(qe) is full rank (equal to p) . (1.26)

As we will see later, with this assumption, the holonomic contraints η(qe) = 0
allow for the definition of a reduced set of generalized coordinates.

The non zero components of the ground reaction wrenches exerted on both feet
are put in a vector of size p

λ =
λFoot1
λFoot2

 . (1.27)

λ is also called the vector of Lagrange multipliers [80].

Let us now calculate the equations of motion of the robot in contact with the
ground. The robot is assumed to be subject to the gravity and to the ground
reaction forces. The efforts related to the holonomic contraints are computed using
the principle of virtual works (see (1.11)). The dynamical equations are obtained
using the dynamical equations in flight phase (1.13) to which the ground reaction
efforts are addedDe(qe)q̈e + Ce(qe, q̇e)q̇e +G(qe) = Be(qe)u+

(
∂η

∂qe
(qe)

)T
λ

η(qe) = 0
(1.28)

where u ∈ RNa is the vector of inputs (motor torques).

1.3.3.1 Calculating λ

The non zero component of the contact wrenches are obtained by enforcing the
holonomic constraints to zero and using the equations of motion [80]. Differentiating
(1.24) twice with respect to time gives
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∂η

∂qe
(qe)q̈e + ∂

∂qe

(
∂η

∂qe
(qe)q̇e

)
q̇e = 0p×1 . (1.29)

Then, we have the following equations to solve for λ


De(qe)q̈e + Ce(qe, q̇e)q̇e +G(qe) = Be(qe)u+

(
∂η

∂qe
(qe)

)T
λ

∂η

∂qe
(qe)q̈e = − ∂

∂qe

(
∂η

∂qe
(qe)q̇e

)
q̇e

(1.30)

Given that ∂η
∂qe

(qe) is assumed to be full rank and D−1
e (qe) is positive definite,

∂η
∂qe

(qe)D−1
e (qe)∂η

T

∂qe
(qe) is invertible.

Then

λ =
(
∂η

∂qe
(qe)D−1

e (qe)
∂ηT

∂qe
(qe)

)−1
− ∂

∂qe

(
∂η

∂qe
(qe)q̇e

)
q̇e

+ ∂η

∂qe
(qe)D−1

e (qe)
[
Ce(qe, q̇e)q̇e +Ge(qe)−Beu

].
(1.31)

Hence, the contact wrenches depend on qe, q̇e and u. They are linear with the
input u.

1.3.4 Dynamics in a Reduced Set of Coordinates
The dynamical equations (1.28) are expressed using the coordinates qe of the
configuration manifold Qe. But, due to the p holonomic constraints (1.24), the
system is constrained to move in the submanifold

Qηe = {qe ∈ Qe | η(qe) = 0} ⊂ RN . (1.32)
Then, the generalized coordinates qe are not independent from each other

and we show here that it is possible to find a reduced set of (N − p) generalized
positions, denoted q, for the system. We then express the dynamical equations in
the new set of coordinates (q, q̇), that we call reduced coordinates.

1.3.4.1 A Reduced Set of Coordinates

From a classical result of differential geometry, given that ∂η
∂qe

(qe) is full rank equal
to p, Qηe is a N − p dimensional embedded manifold of Qe . The implicit functions
theorem allows to find a set of N − p independent coordinates q ∈ Qηf ⊂ RN−p,
and p constrained coordinates qc ∈ Qηc ⊂ Rp such that the diffeomorphism
Φη : Qηf ×Qηc → Qe exists. Then, the mapping from a point of Qηf to a point of Qe{

Eη :Qηf → Qηe ⊂ Qe
q → qe = Eη(q)

(1.33)

30



is an embedding, that is Eη(Qη
f) is diffeomorphic to Qη

e . Differently said, the
coordinates (qe; q̇e) can be reconstructed from the reduced coordinates (q; q̇), and
it is possible to use either one or the other set of coordinates on the condition that
η(qe) = 0.

Since Qηf is a manifold of dimension N − p, its corresponding tangent bundle
T Qηf is a manifold of dimension 2(N − p). The state of the robot evolves in the
image of T Qηf under Eη. It corresponds to the tangent bundle of Qη

e , that is
T Qηe = Eη(T Qηf ). Then, we have

T Qηe =

qe
q̇e

 ∈ T Qe | η(qe) = 0, ∂η
∂qe

(qe)q̇e = 0


=

qe
q̇e

 ∈ T Qe | qe = Eη(q), q̇e = ∂Eη

∂q
(q)q̇, (q, q̇) ∈ T Qηf

 .
(1.34)

Hence, the state of the system can be described using the reduced coordinates
(q, q̇), and the study can be performed in the lower dimensional manifold T Qηf .

1.3.4.2 Dynamical Equations in the Reduced Coordinates

The dynamical equations using the reduced coordinates (q, q̇) can be derived using
the method of Lagrange, that is computing the kinetic and potential energies in
these coordinates. More simply, they can also be determined from the dynamic
model in the extended coordinates (qe, q̇e) (1.28). Using the embedding from the
extended coordinates to the reduced coordinates, we have

qe = Eη(q)

q̇e = ∂Eη

∂q
(q)q̇

q̈e = ∂

∂q

(
∂Eη

∂q
(q)q̇

)
q̇ + ∂Eη

∂q
(q)q̈

(1.35)

Replacing the expression of qe and of its time derivatives in the dynamical
equations gives

(
De(qe)

∂Eη

∂q
(q)
)
q̈ +

(
De(qe)

∂

∂q

[∂Eη

∂q
(q)q̇

]
+ Ce(qe, q̇e)

∂Eη

∂q
(q)
)
q̇ +Ge(qe) =

Beu+
(
∂η

∂qe
(qe)

)T
λ ,

(1.36)
To eliminate the Lagrange multipliers λ, we use(

∂Eη

∂q
(q)
)T( ∂η

∂qe
(qe)

)T
=
(
∂η

∂qe
(qe)

∂Eη

∂q
(q)
)T

= 0 , (1.37)
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since ∂η
∂qe

(qe)∂E
η

∂q
(q) = d

dqe

(
η
(
Eη(q)

))
= 0.

Then, multiplying the equations by
(
∂Eη

∂q
(q)
)T

give
((∂Eη

∂q
(q)
)T
De(q)

(∂Eη

∂q
(q)
))
q̈ +

((∂Eη

∂q
(q)
)T(

De(q)
∂

∂q

[∂Eη

∂q
(q)q̇

]
+ Ce(q, q̇)

))
q̇

+
(∂Eη

∂q
(q)
)T
Ge(qe) =

(∂Eη

∂q
(q)
)T
Beu .

(1.38)
Hence, the dynamical equations in the coordinates (q, q̇) can be written under

the classical form

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u , (1.39)
with :



D(q) =
(
∂Eη

∂q
(q)
)T
De

(
Eη(q)

)(
∂Eη

∂q
(q)
)

C(q, q̇) =
(
∂Eη

∂q
(q)
)TCe(qe, q̇e)∂Eη

∂q
(q) +De(E(q)) ∂

∂q

(
∂Eη

∂q

)
G(q) =

(
∂Eη

∂q
(q)
)T
Ge(qe)

B =
(
∂Eη

∂q
(q)
)T
Be

(1.40)

It can be also written under the classical form

ẋ = f(x) + g(x)u , (1.41)

whith x = (q; q̇), f(x) = D(q)−1
(
− C(q, q̇)q̇ −G(q)

)
, and g(x) = D(q)−1B(q)u.

It is usual to use the reduced coordinates (q; q̇), since they define a reduced-order
model for the system. This reduced-order model is equivalent to (1.28).

1.3.5 Domain of Admissibility of the Model
The previously derived dynamic models (1.28) or (1.39) are valid as long as the
holonomic constraints are respected, or differently said, that the nature of the
foot-ground contact is preserved.

For that, the ground reaction wrench(es) must respect some constraints. Let
us consider that the foot-ground contact is described by the set of holonomic
constraints η(qe) = 0. Let us assume that the foot 1 is in contact with the ground
(the case is the same for the foot 2). In order to avoid that the foot lifts off the
ground, the vertical component of the ground reaction force must stay positive

F zFoot1 > 0 . (1.42)
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Furthermore, to avoid slipping, using a simple standard model (the Coulomb
model), the ground reaction force must stay in the cone of friction, i.e.√

(FxFoot1)2 + (FyFoot1)2 < µF zFoot1 , (1.43)
where µ is the Coulomb static friction coefficient. It was taken equal to 0.6 for the
robots RABBIT [127] or MARLO [46]. This corresponds to the friction coefficient
between rubber and dry concrete.

If the ground contact wrench respect these constraints, then the foot does not
translate relatively to the ground.

But, if the size of the feet is non zero, additional constraints on the ground
reaction wrenches must be verified. Especially, if the foot is flat on the ground,
the center of pressure of the ground reaction force must stay inside the convex hull
of the contacting points. Otherwise, the foot can rotate about one of its edges.
This constraint is known as the Zero Moment Point (ZMP) constraint [50].

All these constraints can be gathered into a vector of inequalities that must be
respected by the non zero components of the contact wrenches λ

P η(λ) > 0 . (1.44)
Furthermore, for a robot in flight phase or in single support phase, if the swing

foot impacts the ground, the holonomic constraints are modified and the model is
not valid anymore. Then, the swing foot height must stay strictly greater than
the ground height h

alt(qe) > h , (1.45)
where qe → alt(qe) is the swing foot altitude.

As a result, for a given set of holonomic constraints η(qe) = 0, the domain
of admissibility Dη can be described as bounds on the state and on the contact
wrenches λ, or on the inputs u (see (1.31)), that result on inequality constraints
Hη, called unilateral constraints

Dη =



qe

q̇e

u

 ∈ T Qηe × RNa |Hη(qe, q̇e, u) > 0

 . (1.46)

If the unilateral constraints are violated, the dynamical equations (1.28) with
the constraints η(qe) = 0 are not valid anymore. An other model must be considered.
Especially, if the new foot-ground contact can be described by an other set of
holonomic constraints η̃(qe) = 0, the new model is (1.28) (or (1.39)) with η̃(qe) = 0.

1.4 Impact dynamics
Until now, we derived a continuous dynamical model of the robot using Lagrangian
dynamics, and assuming that the foot-ground contact remains unchanged. We
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modeled the foot-ground contact using holonomic constraints. This implicitly
assumes that no deformation of the foot and of the ground occur during the contact.
This hypothesis is often referred as the rigid ground model.

We focus here on the dynamics when the foot-ground contact is modified, for
instance when the swing leg of the robot hits the ground. When the foot-ground
contact is modified, the holonomic constraints are modified. This modification is of
very short duration, and can be considered as instantaneous. This event is called
an impact. The impact dynamics is the discrete dynamics describing the evolution
of the state when the impact occurs. We assume that the position is continuous
and that the velocity may undergo a discontinuity (or jump) when subject to this
dynamics. The impact dynamics allows to switch between two continuous phases
subject to different sets of holonomic constraints.

Remark: Note that we adopt here a general definition of what an impact is.
Especially, we consider that an impact does not necessarily involve a collision with
the ground, even though this is our main concern.

1.4.1 Derivation of the impact map
We derive here the impact dynamics using the standard approach introduced by
Hurmuzlu [55, 56]. This model is commonly used in bipedal locomotion. It is
especially used in the HZD method to design walking trajectories [127]. The model
considers that the impact of one leg onto the ground is instantaneous and inelastic
(coefficient of restitution equal to 0). Others impact models exist, but they are
more complicated, and less appropriate for an analytical study. See [13, 75, 56]
and references therein for further details.

We will consider that the impact makes the transition between the two following
phases. Any quantities related to the model before impact (resp. after impact)
will be superscripted by "-" (resp. "+"). The derivation must be performed in a set
of coordinates that is valid before and after impact. Hence, we use the extended
coordinates (qe; q̇e).

Let us consider that the robot is subject to p− holonomic constraints η−(qe) = 0
before impact. Then, the configuration space is a (N − p−)-dimensional embedded
manifold of Qe

Qη−e = {qe ∈ Qe | η−(qe) = 0} . (1.47)
The state evolves in the tangent bundle T Qη−e and the dynamical equations

are De(qe)q̈e + Ce(qe, q̇e) +Ge(qe) = Beu+
(
∂η−

∂qe
(qe)

)T
λ

η−(qe) = 0
(1.48)

Let us consider that the phase after impact is defined by p+ holonomic con-
straints η+(qe) = 0. The configuration space is a (N − p+)-dimensional embedded
manifold of Qe

34



Qη+

e = {qe ∈ Qe | η+(qe) = 0} . (1.49)
The state evolves in the tangent bundle T Qη+

e and the dynamical equations
are De(qe)q̈e + Ce(qe, q̇e) +Ge(qe) = Beu+

(
∂η+

∂qe
(qe)

)T
λ

η+(qe) = 0
(1.50)

We will consider that a switch between (4.2) and (4.4), that is an impact,
occurs when the state evolving in T Qη−e crosses the impact surface

Sη−→η+ =
{
xe := (qe; q̇e) ∈ T Qη

−

e | η+(qe) = 0
}
, (1.51)

and therefore η−(qe) = 0 and η+(qe) = 0.

Qe
η -

Impact

Figure 1.5: Geometrical interpretation of the impact dynamics. A jump on the
velocity (from q̇−e to q̇+

e ) may be necessary so that the state after impact be in
T Qη+

e . The impact map can be viewed as a jump from the tangent bundle T Qη−e
to the tangent bundle T Qη+

e .

1.4.1.1 The Impact Map: a Jump From T Qη−e to T Qη+
e

Let x−e = (q−e ; q̇−e ) be the state just before the impact, and x+
e = (q+

e ; q̇+
e ) be the

state just after the impact. The impact map is the function mapping a point from
Sη−→η+ to a point of T Qη+

e∆ :Sη−→η+ → T Qη+

e

x−e → x+
e = ∆(x−e )

(1.52)

By assumption the position qe is continuous at impact: q+
e = q−e = qe. On

the contrary, the velocity may undergo a jump. Indeed, prior to the impact, the
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position of the robot evolves in the manifold Qη−e and its velocity is tangent to
this manifold. At impact, the position intersects Qη+

e . But, the velocity is not
necessarily tangent to Qη+

e

∂η+

∂qe
(q−e )q̇e− 6= 0 . (1.53)

Hence, so that the position remains in Qη+
e , the velocity must undergo a jump

to become tangent to Qη+
e . The velocity after impact must verify

∂η+

∂qe
(q+
e )q̇e+ = 0 . (1.54)

Hence, geometrically, as illustrated in figure 1.5, the impact map is a jump
from the tangent bundle T Qη−e to the tangent bundle T Qη+

e , with q−e = q+
e .

1.4.1.2 Derivation of the Impact Map ∆

Let us now derive the impact map. We assume that the constraints η+(qe) = 0 are
verified “during” the impact. Then, using (1.6) the dynamical equations “during”
the impact are

d

dt

(
D(qe)q̇e

)
− 1

2

(
∂

∂qe

(
q̇Te D(qe)q̇e

))T
− ∂V
∂qe

=
(
∂η+

∂qe
(qe)

)T
λ+Beu . (1.55)

The integration of the dynamical equations (1.55) over the impact duration
gives

D(qe)q̇+
e −D(qe)q̇−e −

1
2

∫ t−

t+

(
∂

∂qe

(
q̇Te D(qe)q̇e

))T
dt− (V (q+

e )− V (q−e ))

=
∫ t−

t+

(
∂η+

∂qe
(qe)

)T
λ dt+Be

∫ t−

t+
u dt ,

(1.56)

where t+ (resp. t−) is the end (resp. beginning) of the impact.

Assuming that inputs cannot generate impulses, there exits Mu ∈ R+ such that∣∣∣∣ ∫ t−

t+
u dt

∣∣∣∣ ≤ (t− − t+)Mu . (1.57)

Since (qe, q̇e)→ ∂
∂qe

(
q̇Te D(qe)q̇e

)
is a continuous function, then there exists M

such that ∣∣∣∣12
∫ t−

t+

(
∂

∂qe

(
q̇Te D(qe)q̇e

))T
dt
∣∣∣∣ ≤ (t− − t+)M . (1.58)

Then, reducing to zero the duration of the impact, that is setting t− = t+ gives
what is called the equation of conservation of momentum
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D(qe)q̇+
e −D(qe)q̇−e =

(
∂η+

∂qe
(qe)

)T
I , (1.59)

where I = limt−→t+
∫ t+
t− λ dt is called the ground reaction impulse.

Actually, the following derivation of the equation of conservation of momentum,
even though intuitive, is not rigorous. The reader can find a more complex, but
correct presentation, using the theory of distributions, chapter 1 of [13].

Under the hypothesis on the continuity of the position, we know that q+
e =

q−e = qe. The equation of conservation of momentum gives N equations with
N +p+ unknowns (q̇+

e and I). But, the constraint stating that q̇+
e belongs to T Qη+

e

(1.54) brings p+ additional equations. This allows to solve for q̇+
e and I. We have

De(qe)q̇+
e −De(qe)q̇−e =

(
∂η+

∂qe
(qe)

)T
I

∂η+

∂qe
(qe)q̇e+ = 0p+×1

(1.60)

Assuming that ∂η+

∂qe
(qe) is full rank, and solving for the system (1.60) , we get{

q̇+
e = ∆q̇e(qe)q̇−e
I = ∆I(qe)q̇−e

(1.61)

with

∆I(qe) = −
∂η+

∂qe
(qe)D−1

e (qe)
(
∂η+

∂qe
(qe)

)T−1
∂η+

∂qe
(qe) (1.62)

∆q̇e(qe) = I(N+6)×(N+6) +De(qe)−1
(
∂η+

1
∂qe

(qe)
)T

∆I(qe) (1.63)

And the impact map is {
q+
e = q−e
q̇+
e = ∆q̇e(qe)q̇−e

(1.64)

1.4.2 Validity of The Impact Model
The impact model is not necessarily valid. Indeed, it was built assuming that the
holonomic constraints η+(qe) = 0 are verified “during” the impact. Then, several
hypotheses on the ground reaction impulse I and on the post-impact velocity q̇+

e

(1.61) must be checked.
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1.4.2.1 Conditions on the Ground Reaction Impulse I

The impulsive contact wrench I must satisfy the same hypotheses as the standard
ground reaction wrenches, such as the no slipping and the no take off conditions
(see 1.3.5).

Especially, let us assume that the foot 1 is in contact with the ground during
the impact and immobile. Let

IjFoot1 = limt−→t+

∫ t+

t−
F jFoot1 dt (1.65)

be the component of the ground reaction impulse associated to the ground reaction
force along axis j exerted on the foot 1 during the impact, and denoted F jFoot1.
Then, so that the foot does not take off, one must have

IzFoot1 > 0 . (1.66)
Furthermore, to avoid slipping, using the standard Coulomb model, the ground

reaction impulse must stay in the friction cone, i.e.√
(IxFoot1)2 + (IyFoot1)2 < µIzFoot1 . (1.67)

Additionally, the ZMP conditions must be checked.

1.4.2.2 Conditions on the Post-Impact Velocity

The post-impact velocity q̇+
e must be consistent with the assumed foot-ground

contact η+(qe) = 0. For instance, if the robot is assumed to be in single support
phase after impact, the vertical velocity of the former stance leg must be upward
after impact.

1.4.2.3 Impact Model Hypotheses

The hypotheses of the impact model presented above can be formulated as con-
straints on the state of the robot before impact (q−e , q̇−e ), and gathered into the
vector of constraints

Cη+

∆ (q−e , q̇−e ) ≥ 0 . (1.68)

1.4.2.4 Determining the Correct Foot-Ground Contact After Impact

Note that there exist several possible phases after impact. For instance, the
robot may be in single support phase, or in double support phase after impact.
Actually, for a given set of holonomic constraints, η−(qe) = 0, and a state x−e
before impact, the nature of the foot-ground contact after impact, described by
the set of holonomic constraints η+(qe) = 0, is not known a priori.

Finding the proper phase is an iterative process, as explained in [56]. A model
under the form (1.61) is derived for each possible set of holonomic constraints
η+(qe) = 0. The set of holonomic constraints satisfying the model hypotheses
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(1.68) is selected as the good one. This process cannot be done analytically, but
numerically.

But, there is no guarantee that a single set of holonomic constraints after
impact η+(qe) = 0 satisfy (1.68). Then, if none or several of them verify the impact
model hypotheses, the impact model does not allow to conclude on the behavior
of the robot after impact. This is a limitation of the model. For instance, Mu and
Wu [78] showed that there exist states for which the impact model predict both a
single and a double support phase for the planar five-link walker with point feet.

Remarks:

• In the particular case where ∂η+

∂qe
(qe)q̇−e = 0, that is when the holonomic

constraints are modified without collision, then there is no jump on the
velocity (q̇+

e = q̇−e ). Additionally, ∆I(qe)q̇−e = 0, and therefore I = 0. Hence,
q̇+
e and I are consistent with the holonomic constraints after impact. They
describe a correct foot-ground contact after impact.

• The impact dynamics was derived on the impact surface Sη−→η+ . But, since
no particular property of this surface was used, this derivation is valid in the
whole state space T Qη−e . This is useful since the impact may occur at any
state, as it may happen when the robot evolves on a rough terrain.

1.4.3 Kinetic Energy Variation at Impact
The mechanical energy of the robot Ee, is the sum of the kinetic energy Ke and
the potential energy Ve. We assume that the potential energy Ve depends only on
the position qe. This is generally the case for biped robots. Then

Ee(qe, q̇e) = Ke(qe, q̇e) + Ve(qe) , (1.69)
with

Ke(qe, q̇e) = 1
2 q̇

T
e De(qe)q̇e . (1.70)

At impact, given that the position qe is assumed to be preserved, the potential
energy is unchanged. Then, the mechanical energy variation at impact is equal to
the kinetic energy variation

Ee(qe, q̇+
e )− Ee(qe, q̇−e ) = 1

2 q̇
+T
e De(qe)q̇+

e −
1
2 q̇
−T
e De(qe)q̇−e . (1.71)

Multiplying the equation of conservation of momentum (1.59) by q̇+
e and q̇−e ,

and using (1.54) gives
q̇+T
e De(qe)q̇+

e − q̇+T
e De(qe)q̇−e = q̇+T

e

(
∂η+

∂qe
(qe)

)T
I = 0

q̇−Te De(qe)q̇+
e − q̇−Te De(qe)q̇−e = q̇−Te

(
∂η+

∂qe
(qe)

)T
I

(1.72)
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Adding the 2 equations leads to

Ke(qe, q̇−e )−Ke(qe, q̇−e ) = 1
2 q̇
−T
e

(
∂η

∂qe
(qe)

)T
I

= 1
2

(
d

dt

(
η+(qe)

))T
I

(1.73)

Hence, without surprise, the kinetic energy variation is proportional to the
“work” of the impulse I.

Using the expression of I in (1.62), the kinetic energy variation is

VarKe(q−e , q̇−e ) =

− 1
2 q̇
−T
e

(∂η+

∂qe
(qe)

)T∂η+

∂qe
(qe)De(qe)−1

(
∂η+

∂qe
(qe)

)T−1
∂η+

∂qe
(qe)

q̇−e . (1.74)

Since
(
∂η+

∂qe
(qe)

)
De(qe)−1

(
∂η+

∂qe
(qe)

)T
is positive definite

VarKe(q−e , q̇−e ) ≤ 0 . (1.75)
Then, the kinetic energy level cannot increase at impact, it can only remain

constant or decrease, which is physically consistent.

1.4.3.1 Expression of the variation of energy in the reduced coordi-
nates.

Instead of using the set of positions qe that are not independent each others due to
the p− holonomic constraints η−(qe) = 0, one can use a set of N − p− coordinates
q ∈ Qη

−

f ⊂ RN−p− (see Section 1.3.4.1). The mapping between q and qe is given
by the embedding E

η− : Qη
−

f → Qη
−

e

q → qe = Eη−(q)
(1.76)

We have Eη−(Qη
−

f ) = Qη−e , and (q, q̇) defines a set of 2(N − p−) independent
coordinates for the system subject to the holonomic constraints η−(qe) = 0.

From (1.5), and using the the embedding, the expression of the kinetic energy
in the reduced coordinates (q, q̇) ∈ T Qη

−

f is

K(q, q̇) = 1
2 q̇

TD(q)q̇ , (1.77)

where

D(q) =
(
∂Eη−

∂q
(q)
)T
De(qe)

(
∂Eη−

∂q
(q)
)
, (1.78)
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with qe = Eη−(q).

From (1.74), the expression of the variation of energy in the reduced coordinates
is

VarK(q, q̇) := 1
2 q̇

TA(q)q̇ , (1.79)

where

A(q) =−
(
∂Eη−

∂q
(q)
)T(∂η+

∂qe
(qe)

)T∂η+

∂qe
(qe)D−1

e (qe)
(
∂η+

∂qe
(qe)

)T−1

×
(
∂η+

∂qe
(qe)

)(∂Eη−

∂q
(q)
)
,

(1.80)

with qe = Eη−(q).

1.4.3.2 Discussion

From (1.74), one can easily remark that there is no energy dissipation at impact if
and only if

∂η+

∂qe
(qe)q̇−e = 0 . (1.81)

This is in agreement with the analysis performed in Section 1.4.1.1, where we
explained that a jump on the velocity was necessary when ∂η+

∂qe
(qe)q̇−e 6= 0.

Note that

v = d

dt

(
η+(qe)

)
= ∂η+

∂qe
(qe)q̇e , (1.82)

is the velocity of the degrees of freedom which are locked after impact. Hence, an
other point of view, is to say that there is no dissipation of energy if and only if
this velocity is equal to zero just before the impact. For example, a biped with
a flat foot walk dissipates no energy at impact if and only if it lays its foot flat
down on the ground with no velocity.

1.5 Modeling Biped Robots as Hybrid Systems
From the modeling that we adopted, a biped robot is ruled by continuous dynamics
and discrete dynamics. It is an hybrid system [104]. The discrete dynamics allows
to make the transition between the continuous models.

The hybrid model of the robot is:
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Δ 1 2

Δ 2 1

η q e( )= 0
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η q e( )= 0
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Figure 1.6: Diagram representing the two phases of a walk with an instantaneous
double support phase for a planar biped with point feet. The two phases are: “leg
1 is the stance leg (η1(qe) = 0)” and “leg 2 is the stance leg (η2(qe) = 0)”.

If xe ∈ Dηi : De(qe)q̈e + Ce(qe, q̇e) +Ge(qe) = Beu+ (∂ηi
∂qe

(qe))Tλ

ηi(qe) = 0
(1.83)

If xe ∈ Sηi→ηj :

x+
e = ∆ηi→ηj(xe) , j ∈ J ⊂ N , (1.84)

where the set {ηj(qe) = 0, j ∈ J ⊂ N} corresponds to all the holonomic constraints
the system may switch to.

Figure 1.6 illustrates the hybrid model of a walk composed of two phases: leg 1
flat on the ground and leg 2 flat on the ground. In this case, two continuous and
two discrete models decribe the dynamics of the system. Considering only these
two phases is a common choice in the HZD method (see next chapter). In the
case where the legs of the robot are symmetric, the model of the robot when the
two continuous models can be deduced from each other by a simple coordinates
relabeling: leg 1 → leg 2, leg 2 → leg 1. Then, the hybrid model can be written
as one continuous and one discrete dynamics (see [127] for further details){

ẋe = fe(xe) + ge(xe)u, x /∈ S
x+
e = ∆(xe), xe ∈ S

(1.85)

where S is the impact surface, and ∆ the impact map. The hybrid model can also
be derived in the reduced coordinates.

1.6 Considering the Inertia of a Rigid
Mechanical Transmission System

An other modeling aspect to be taken into account for practical applications is
the consideration of the inertia of the mechanical transmission systems in the
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dynamical equations. In this section, we discuss this issue. Generally, actuators
are not directly mounted on the joints of robots. Mechanical components, named
mechanical transmission system or drivetrain, are placed between the motor rotor
shaft and the joint for 2 reasons:

• To transfer the motion from the actuator to the joint, when mechanical
design constraints prevent from mounting the actuator directly on the joint.

• To increase the torque produced by the actuator by means of components
such that gear reducers or pulley belt systems.

The ratio between the output speed and the input speed of the mechanical
transmission system is called transmission ratio or gear ratio. We will assume that
the elasticity of the components is negligible (rigid transmission), and the mechan-
ical backlash too. Under these assumptions, for most of mechanical transmission
systems, the transmission ratio is constant. From now on, we will consider that
this is the case.

We show here that the transmission inertia cannot be neglected in the case of
a high transmission ratio. We then present the exact and approximate ways of
proceeding to consider it in the dynamical equations. Adding the transmission
inertia times the square of the transmission ratio to the diagonal terms of the mass
matrix is generally enough.

1.6.1 Why Considering the Inertia of a Mechanical
Transmission System?

We highlight the importance of considering the Inertia of a mechanical transmis-
sion system using the example of a simple joint. Let us consider a mechanical
transmission system assumed to be fixed in the world frame. See for example figure
1.7. Let qM be the actuator position (input of the mechanical transmission system),
and q be the joint position (output of the mechanical transmission system). We
denote Iload the inertia of the load attached to the joint and IT the sum of the
inertia of the mechanical components of the transmission. The transmission ratio
is denoted r. Then, we have

q̇M = rq̇ and u = ruM , (1.86)
where u is the joint torque and uM is the actuator torque. Note that if r > 1, the
mechanical transmission system diminishes the velocity, but increases the torque
by the same factor.

Since the mechanical transmission system is assumed to be in an inertial frame,
the kinetic energy of the system is

K = 1
2ILoadq̇

2 + 1
2IT ˙qM 2

= 1
2
(
ILoad + r2IT

)
q̇2 .

(1.87)
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The quantity

Ieq = ILoad + r2IT (1.88)
is called the reflected inertia to joint. This is the inertia viewed from the joint,
that is the inertia felt by an operator when moving the load. Note that the inertia
of the transmission is multiplied by a factor r2.

Generally, the inertia of the transmission components IT is small compared
to ILoad. Then, common sense would incite us to neglect IT . However, from the
expression of the reflected joint inertia (1.88), when the transmission factor r is
large, the effects of the transmission on the kinetic energy, and so on the dynamics,
cannot be neglected. They may even dominate the effects of the load inertia!

Motor

  Pulleys

      + 

    Belt

Encoder LoadReducer

g

Figure 1.7: Example of a mechanical transmission system.

The dynamical equations of the load with the mechanical transmission system
are obtained using the Lagrange’s equations

Ieq q̈ = u+ Γe , (1.89)
where Γe is the vector of the torques exerted on the system (gravity, friction,...).
Then, for this simple case, modeling the effects of the transmission consists in
adding the term r2IT in the expression of the (scalar) mass matrix ILoad.

1.6.2 How to Consider the Mechanical Transmission
System ?

We have highlighted the importance of considering the inertia of a transmission
system in case of a high transmission factor. An illustration was given for the simple
case of a mechanical transmission system fixed in the inertial frame. Unfortunately,
for more complex systems, like for biped robots, this hypothesis is not true anymore,
and modeling exactly the effects of the transmission is harder. We explain here
how to consider it exactly and by making some classical approximations. One can
both use the extended or the reduced coordinates. For the sake of simplicity, we
will use the reduced coordinates.
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1.6.2.1 Direct drive model

As a preliminary, we introduce the model that does not take into account the
dynamics of the transmission, sometimes called direct drive model. In this case,
the mechanical transmission system is assumed to be rigidly fixed to the link to
which the actuator is attached. Thus, the kinetic energy due to the rotationnal
motion of the transmission system is not considered. The dynamical equations are
obtained using the equations of Lagrange. Thus

D(q)q̈ + C(q, q̇) +G(q) = Bu . (1.90)

1.6.2.2 Considering the Transmission Mechanical System Exactly

The derivation of the exact dynamical equations considering the transmission inertia
is described using the Lagrangian formalism and the Newton Euler’s formalism
in [127] ((B.222) page 434), [71] and [18]. Each mechanical component (rotor
of the motor, transmission components) is considered as a separate entity. For
the Lagrangian formalism, the kinetic and potential energy for each component
are calculated. This allows to compute the Lagrangian and to get the equations
of motion using the Lagrange’s equations. The advantage of this approach is to
make no approximations. But, it results in more complex dynamics equations,
increasing the computation cost when they are numerically integrated. That’s why
an approximated model is often used in practice.

1.6.2.3 Considering the Transmission Mechanical System
Approximately

Given that the exact model leads to complex equations, a common assumption is
to neglect the coupling effects between the transmission and the link motion (page
201 of [64]). Thus, it is assumed that the mechanical transmission system is in an
inertial frame. Under this assumption, we fall into the simple case presented before.
Then, the kinetic energy of the transmission is 1

2r
2IT q̇

2. No proof of validity of
this approximation has been found in the litterature. But, it is commonly used
and considered valid in case of high transmission ratio. This model was especially
used for the robot RABBIT (page 218 in [127]). [18] compares the exact model
with the approximate model for a specific model of robot and conclude that the
approximate model is satisfactory.

Then, the new model is obtained from the direct drive model by adding the
reflected transmission inertia to joint

Ieq =


Ieq,1 0 · · · 0

0 Ieq,2 · · · 0
... ... . . . ...
0 0 · · · Ieq,n

 , (1.91)

where Ieq,i is the reflected transmission inertia to the joint parameterized by qi,
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the ith component of vector q.

Hence, the dynamical equations are

D̃(q)q̈ + C(q, q̇) +G(q) = Bu , (1.92)
with

D̃(q) = D(q) + Ieq . (1.93)
If qi is an actuated coordinate, Ieq,i is

Ieq,i = r2
i IT,i , (1.94)

where IT,i is the inertia of the transmission for the joint parameterized by qi, and
ri is the transmission factor.

If qi is an unactuated coordinate

Ieq,i = 0. (1.95)

1.6.3 Decoupling Effect of High Transmission Ratios
We show here that mechanical transmission systems have the interesting property
of approximately decoupling the actuated dynamics.

To show this, we partition the generalized positions q into the actuated positions
qa and the unactuated positions qu, i.e. q = (qa; qu). The dynamics expressed in
joint level can be written as

D11(q) + r2IT D12(q)
D21(q) D22(q)

q̈a
q̈u

+
C1,1(q, q̇) C1,2(q, q̇)
C2,1(q, q̇) C2,2(q, q̇)

q̇a
q̇u

+
G1(q)
G2(q)


=
ruM

0

+
Γf,1

Γf,2

 ,

(1.96)
where Γf is the vector of the generalized efforts corresponding to the perturbations
exerted on the system (joint friction, external force,...), uM (u = ruM ) is the vector
of motor torques, IT is a diagonal matrix gathering the transmission inertia for
each transmission chain expressed at motor level, and r ∈ N∗ is the transmission
reduction factor. For the sake of clarity, we assume here that the reduction factor
is the same for each joint.

The equations of motion give


IT q̈a + D11(q)

r2 q̈a + D12(q)
r2 q̈u + C1,1(q, q̇)

r2 q̇a + C1,2(q, q̇)
r2 q̇u + G1(q)

r2

= uM
r

+ Γf,1
r2 .

D21(q)q̈a +D22(q)q̈u + C2,1(q, q̇)q̇a + C2,2(q, q̇)q̇u +G2(q) = Γf,2 .

(1.97)
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Considering that the system describes a given motion t→ (q(t), q̇(t)) with the
motor torques t→ uM(t), we have

uM ∼ rIT q̈a as r →∞ . (1.98)
This motivates the approximative dynamic model

{
r2IT q̈a = u

D21(q)q̈a +D22(q)q̈u + C2,1(q, q̇)q̇a + C2,2(q, q̇)q̇u +G2(q) = Γf,2 .
(1.99)

Therefore, the dynamics of the actuated coordinates are approximately decou-
pled. The time-varying nonlinear inertia of the load, and the external perturbations
are neglictible in comparison to the time-invariant inertia of the transmission r2IT .

This property is interesting for the design of controllers. This especially proves
that the use of a decoupled controller like a high gain PD controller on the actuated
coordinates may give good stabilization results. See Section 2.4.7.2 for further
details.

1.7 Others Modeling Aspects
In this dissertation, we used the previous modeling to derive control laws in theory
and to test them in simulation. Actually, this is a “simplified modeling”, since it
ignores some modeling aspects that may be not negligible, such as the compliance
of the ground, joint friction, or mechanical backlash. Considering these aspects
complicates the model and slows down simulations.

Then, it is preferable to investigate a posteriori their influence on the results
obtained using the “simplified modeling” in simulation. If the numerical results
obtained using the “sophisticated model” are close to those obtained the with
“simplified model”, then the latter model is enough. This is the approach used in
this dissertation. We especially investigated the effects of the compliance of the
ground, and joint friction. Especially, see Sections 3.4 and 4.4.5.1.

1.7.1 A Compliant Ground Model
The previous modeling assumes that the foot-ground contact is rigid. Under this
assumption, an expression of the ground reaction wrenches can be obtained by
differentiating the holonomic constraints. This model has the advantage to be
simple and to give an analytical expression of the ground reaction wrenches (see
(1.31)). But, in reality, the foot-ground contact is compliant, that is the foot and
the ground are being slightly deformed due to the contact.

To be closer to the reality, a compliant ground model, introduced by Plestan et
al. [88], can be used. In the compliant ground model, there is no assumption on
the equivalent kinematic link modeling the foot-ground contact. Then, holonomic
constraints are not used anymore, and with this compliant model, the system is
modeled as a continuous and not as an hybrid system.
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We consider here only the case of a planar biped robot with point feet. See
[16] for a more general case. The dynamics of the robot is

De(qe)q̈e +Ce(qe, q̇e)q̇e +G(qe) = Beu+
(
∂p1

∂qe
(qe)

)T
F1 +

(
∂p2

∂qe
(qe)

)T
F2 , (1.100)

where F1 = (FN
1 ;F T

1 ) (resp. F2 = (FN
2 ;F T

2 )) is the vector gathering the normal
(overscript “N” ) and tangential (overscript “T”) components of the ground reaction
force acting on the end of leg 1 P1 (resp. leg 2 P2). p1 (resp. pi) is the vector of
the cartesian position of the extremity of the leg 1 (resp. 2).

The foot ground-contact interactions are assumed to be as those of a mass
spring damper system. The ground reaction forces are calculated in the following
way. Let zG be the penetration depth, i.e. the altitude of one foot relative to the
altitude of the non deformed ground. The ground reaction force F = (FN ;F T )
acting on the foot is zero when zG > 0 and is given by the following formula when
zG ≤ 0 {

FN = −λv|zG|nżG + k|zG|n

FT = −µ(d, v)|FN |
(1.101)

µ(d, v) is the coefficient of friction. A possible model for it is obtained by
integrating the differential equation (LuGre model)

ḋ = v − |v|σh0

αh0
d

µ(v, d) = σh0d+ σh1ḋ+ αh2v
(1.102)

where v is the horizontal velocity of the foot relative to the ground, and d is an
internal state. For the robot RABBIT, the friction coefficient was saturated to 0.7
to allow the foot to slip. The parameters of the model depend on the geometry
of the feet and the type of material used for the feet and the ground. For the
simulations presented in this dissertation, they were first taken from the model of
the robot RABBIT [88], and then adjusted to obtain a behavior close to the one
observed experimentally for the robot VS

λv = 9 000 000 , k = 6 000 000 , n = 1.5 ,
σh0 = 260 , σh1 = 0.6 , αh0 = 0.285 , αh2 = 0.18 .

(1.103)

Note that this model does not allow to obtain an analytical expression of the
ground reaction forces, since a differential equation has to be integrated. This
model requires more computer resources than the rigid ground model. Then, it is
not suited for motion planning and control design. But, it can be used a posteriori
to evaluate the performances of the controllers obtained with the rigid ground
model, prior to an experimental implementation.
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1.7.2 Joint Friction
Due to the interaction between the mechanical components of the mechanical
transmission system, friction phenomena appear. A complete review on the friction
models can be found in [85, 12]. Friction phenomena can be modeled as a friction
torque at the joint level. A standard model for the joint friction torque in robotics
is

Γf = −Fssign(q̇)− Fv q̇ , (1.104)
where Fs > 0 is the Coulomb static friction term, Fv > 0 is the viscous friction
term, and q̇ is the joint velocity [63]. Friction compensation is commonly realized
by identifying the model (1.104) [113].

1.7.3 Mechanical Backlash and Joint Flexibility
Phenomena of mechanical backlash and elasticity may exist in the mechanical
transmission system, that is the actuator can move without moving the corre-
sponding joint, and vice versa. If these phenomena are too important, the relations
(1.86) are uncorrect. A modeling of joint flexibly can be found in [122].
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Chapter 2

Literature on the Control of
Biped Robots

Résumé français Ce chapitre fait une revue des approches les plus utilisées
pour le contrôle de robots bipèdes. Nous en avons recensé trois :

• La méthode de "marche pied plat" ou "marche ZMP" [59].

• La méthode dite de "Foot placement" [94, 92] .

• La méthode des contraintes virtuelles et de la dynamique des zéros hybride
(méthode HZD) [127].

Chacune de ces méthodes utilise certaines propriétés caractéristiques de la
marche humaine. La méthode de "marche pied plat" utilise le fait que durant
une partie de la phase d’appui, l’humain a le pied posé à plat au sol, et est donc
entièrement actionné. Cette méthode utilise des modèles de type pendule inverse
pour planifier des trajectoires de marche en ligne. La méthode de "Foot placement"
utilise aussi de tels modèles pour planifier en ligne où le robot doit placer son pied
de vol au sol pour garder son équilibre. Il est en effet bien connu que le placement
du pied joue un rôle crucial dans la locomotion bipède. Enfin, la méthode HZD
utilise le fait que la marche sur sol plat est un mouvement périodique, et que
les bipèdes ont la propriété de converger naturellement vers un cycle de marche
périodique (limit cycle walking).

De nombreuses contributions ont été réalisées ces dernières années, ce qui peut
rendre difficile de savoir quelle approche offre les meilleures performances. Nous
donnons ici notre propre analyse de l’état de l’art, et rassemblons les informations
que nous avons jugées pertinentes. Nous nous attardons en particulier sur la
méthode HZD, puisque nous avons trouvé que c’est la méthode la plus documentée
et la plus rigoureuse pour le contrôle des robots bipèdes.

2.1 Introduction
This chapter presents a review on the most popular approaches for the control of
biped robots. We identified three main methods for the control of biped robots:
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• Flat foot walking or ZMP walking [59].

• Foot Placement [94, 92] .

• The method of virtual constraints and hybrid zero dynamics (HZD method)
[127].

Each of these three methods focuses on some specific properties of human
walking. Flat foot walking uses the fact that during a period of the stance phase,
human has the foot flat on the ground and is then an entirely actuated system. It
also exploits the inverted pendulum-like dynamics of human to realize online motion
planning. Foot placement uses inverted pendulum-like models to online estimate
where the robot should place its swing foot to preserve its balance. Actually,
the placement of the foot plays a crucial role in biped locomotion, especially for
preventing a fall. Finally, the HZD method exploits the fact that walking on flat
ground is a periodic motion and that bipeds have the natural property to converge
to periodic limit cycles (limit cycle walking).

Note that this classification may be somewhat arbitrary, since some works do
not claim to belong to one of these three categories. Additionally, recent works
[25, 27] blur the line between them. Actually, these three methods, even though
exploiting different aspects of human walking, do not exclude each other. Unifying
them is probably a good way to get agile and versatile biped robots.

Many contributions have been made across the years, which may introduce
confusion to know which approach offer the best performances. We give here our
own analysis of the-state-of-the-art and gather the information that we could find
and that we judged to be relevant. We especially focus our attention to the HZD
method since we found it is the most documented and rigorous approach for the
control of underactuated robots.

Remark: A classical framework commonly used in Automation consists in
dividing the problem of the control of a system into 2 steps:

• Motion planning. Motion planning consists in finding a trajectory that
the system must follow to achieve a desired behavior, for example going
from point A to point B, walking without falling... Ideally, motion planning
should be realized online, which may greatly improve the reactiveness and
robustness of the system. But, due to the computational burden, this not
always possible, especially for complex systems like biped robots. Motion
planning is generally the hardest step and solved online.

• Trajectory stabilization. Trajectory stabilization consists in designing a
controller that stabilizes the system around the planned trajectory, even in
the presence of disturbances and modeling errors. It is realized online.

This framework is used in the method of ZMP and of foot placement. We will
see that the HZD method does not exactly follow this approach.

51



2.2 Flat Foot Walking or ZMP Walking
Flat foot walking, also called ZMP walking, consists in designing a walking
controller constraining the robot to always keep its feet flat on the ground. Since
the feet are flat on the ground, the system is then entirely actuated which greatly
facilitates its control. This approach has been successfully implemented for the
first time in 1984 on the japanese robot WL-10RD by Ichiro Kato et al. of the
Waseda University. Since then, it has become a popular approach and has been
widely used on humanoid robots (ASIMO [54], HUBO [123], HRP2 [61], NAO
[44]...).

2.2.1 The Zero Moment Point
A sufficient, but not necessary, condition to keep the feet of the robot flat on
the ground, is that the center of pressure of the ground reaction forces, called
ZMP (Zero Moment Point) be strictly in the convex hull of the contact points
with the ground. The convex hull is called support polygon (see figure 2.1). If the
ZMP reaches the boundary of the support polygon, the feet may risk to rotate
around its edges. This was first highlighted by M. Vukobratovic in 1968 [120]. The
denomination Zero Moment Point comes from the fact that this is the point on
the floor where the horizontal components of the moment of the ground reaction
forces is zero.

The ZMP condition is less restrictive than the condition of static balance that
was used for the first humanoid robots and for toys. A robot is said to be statically
balanced if the projection of its center of mass onto the ground is always strictly
inside the support polygon. Then, the robot does not fall if it suddenly stops.

Assuming that the biped is moving on an horizontal ground, from Wieber et al.
(Chapter 48 in [128]), the following dynamic equation gives the relation existing
between the ZMP and the center of mass of the robotx

y

− z

z̈ + g

ẍ
ÿ

+ 1
m(z̈ + g)

−L̇y
L̇x

 = 1∑
i f

z
i

∑
i

f zi

pxi
pyi

 , (2.1)

where (x; y; z) is the position of the center of mass of the robot, (Lx;Ly) is the
vector of the horizontal components of the angular momentum of the robot,
pi = (pxi ; p

y
i ; 0) are the contact points of the robot with the ground, and f zi is the

vertical component of the ground reaction forces exerted on pi. The right hand
side of the equation is the center of pressure of the ground reaction forces, or ZMP.
Since f zi ≥ 0, it corresponds to the barycenter of the contact points pi weighted by
f zi , and so necessarily belongs to the convex hull of the contact points, i.e. to the
support polygon.

2.2.2 Designing Flat Foot Walking Gaits
The literature is rich on how to generate offline and online walking gaits that
respect the ZMP condition. But, it is not always clear on how the experimental
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Top view of the support polygon

Figure 2.1: Illustration of the support polygon for a biped robot in double support
phase. When the robot is immobile, the ZMP and the projection of the center of
mass onto the support polygon are the same. But, when the acceleration of the
robot is not zero, their locations are generally different.

gaits are achieved. A simplified model of the robot is generally used to generate
walking gaits online [105, 62, 60, 115]. It is often based on the dynamics of an
inverted pendulum.

2.2.2.1 Flat foot walking using the method of Kajita

Desired ZMP trajectory

Center of mass trajectory

Forward directionLeft Footstep

Right Footstep

(a) Illustration of a desired ZMP trajectory.
p x

x
.

z
c

O

g

.

(b) The cart table model.

Figure 2.2: (a) : Illustration of a desired ZMP trajectory and a trajectory for
the center of mass obtained using the cart-table model [59]. (b) : The cart-table
model.

A commonly used approach, that is implemented on the humanoid robot HRP2,
was introduced by Kajita et al. in 2003 [59]. It follows the current methodology.

Step 1: Footstep and ZMP planning In a first step, the location of the feet
on the floor is planned by possibly taking into account the environment such as
obstacles. A desired trajectory of the ZMP is then derived from the footstep
locations. It simply consists in drawing a line on the ground which stays inside

53



the support polygon defined by the footstep locations. The ZMP stays under
the support in single support phase, and switches feet in double support phase.
Generally, to maximize the robustness of the walk, the ZMP trajectory is chosen
such that the ZMP is at any time as far as possible from the edges of the support
polygon. The duration of each step, of the single and the double support phases
are chosen. This defines the travel speed of the ZMP trajectory. All this process
can be done by hand tuning or using software to easily adapt the ZMP trajectory
to a change of parameters.

Step 2: Generation of a trajectory for the center of mass of the robot
It is not obvious to directly track the ZMP trajectory using the actuators of the
robot. Then, Kajita proposed to design a trajectory for the center of mass of the
robot compatible with the desired ZMP trajectory. Indeed, the dynamics of the
ZMP and of the center of mass of the robot are coupled (see (2.1)). Additionally,
the center of mass can be easily controlled via the actuators by inverse dynamics 1.

The exact coupling of the ZMP and the center of mass is complicated (see
(2.1)). This equation can be simplified by assuming that the altitude of the center
of mass z is kept constant and that the angular momentum of the robot is constant
(L̇x = L̇y = 0). Using these hypotheses (2.1) gets

ẍ = g

zc
(x− p) , (2.2)

where p is the position of the ZMP, zc is the (constant) altitude of the cart and g is
the gravitational constant. The center of mass of the robot is generally assumed to
be located at the hip. This dynamic system is called the "linear inverted pendulum
model" or "cart table model" and depicted in Figure 2.2.

The cart-table model corresponds to a cart translating on a table at a fixed
altitude zc. The cart represents the center of mass of the robot, and the table foot
represents the support polygon of the robot. The table is not necessarily statically
stable, since the projection of the center of mass of the cart on the ground may be
outside the table foot. But, the table can be kept balanced (the table foot stays
flat on the ground) through the acceleration of the cart. The dynamics (2.2) can
be written under the standard form{

ż = Az +Bu

y = Cz
(2.3)

1Efficient inverse dynamics software exist to compute torques online: pinocchio [17], mujoco
[117],...
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where 

z =


x

ẋ

ẍ



A =


0 1 0
0 0 1
0 0 0

 , B =


0
0
1

u
C =

(
1 0 − z

gc

)
(2.4)

Note that the output y is the ZMP

y = p , (2.5)

and the input is the derivative of the acceleration, called jerk

u = ...
x . (2.6)

To generate a trajectory for the center of mass, a standard linear quadratic
problem is solved with the cost function minimizing the tracking error of the ZMP
and the jerk

J =
∫ t=T

t=0
Q
(
p(s)− pref (s)

)2
+Ru2(s) ds , (2.7)

where Q and R are positive weight matrices, yref is the reference trajectory for
the ZMP, and T is the duration of the motion.

Step 3: Modification of the trajectory of the center of mass to com-
pensate for the mismatch between the real model and the cart-table
model The trajectory of the center of mass generated using this model may not
exactly result in the desired ZMP trajectory when the hypotheses of the cart table
model are not respected. Using the full model (2.1), the error on the ZMP can be
computed: ∆p = p− pref . Then, solving once again the quadratic problem of the
previous paragraph (step 2), allows to find the corrections on the trajectory of the
center of mass to get the desired ZMP. In practice, this dramatically increases the
performances of the tracking of the desired ZMP.

Step 4: Computing the joint torques for tracking the trajectory of the
center of mass The joint torques for tracking the center of mass are computed by
inverse dynamics. Since the robot has generally more actuators than the dimension
of x, the solution is not unique. Then, constraints can be added. Especially, to
be closer to the cart-table model, it is preferable to constrain the altitude of the
center of mass of the robot, generally assumed to be located at the hip, to be close
to the altitude zc. If the robot must accomplish some tasks, such as grasping or
crossing a constrained environment, the tasks are translated into constraints on
the state of the robot and are included into the inverse dynamics problem (see
[32] and references therein).
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2.2.2.2 Some Others Methods

To increase the robustness of the gait [4, 112] modify online the ZMP reference
trajectory during a step. Nishiwaki and Kagami [83] propose to adjust the ZMP
by using three strategies: changing the ZMP reference, changing the position of
the next step, or changing the duration of the step. This allows the robot to
walk through complex terrain. It is worth mentioning [126] that, contrary to the
previously mentioned works, uses the HZD method (see section 2.4) to plan offline
flat foot walking gaits using the full model of the robot and rigorously prove the
stability of the gait.

2.3 Foot Placement
The placement of the swing leg on the ground has a strong influence on the balance
of biped robots. Foot placement strategies use simple control laws, based on a
simplified model of the robot, to estimate online where to place the swing foot to
achieve the desired behavior. This general philosophy has been utilized in many
ways for the control of biped robots.

Marc Raibert was a pioneer in legged locomotion and in developing this
approach. In the late 1980s, his 2D and 3D hoppers were able to walk, run and
jump in a robust way [94]. Since 2005, Boston Dynamics, a company founded
by Marc Raibert, has unveiled impressive robots such as BigDog, PETMAN,
ATLAS which are capable to robustly walk in real environments and to perform
numerous tasks [95],[107]. ATLAS is probably the most advanced humanoid robot.
Unfortunately, the rare publications on these robots do not explain in details how
they are controlled.

Foot placement strategies have also been developed on several others biped
robots: M2V2 (Jerry Pratt et al. in 2007) [92], Tulip (2008) [11], the DLR biped
(2011) [33]). Since 2015, the heavily underactuated robot ATRIAS of the team
of Jonathan Hurst has demonstrated robust humanlike gaits outdoor using the
natural mass-spring dynamics of the robot [101].

2.3.1 An Intuitive and Decoupled Control
Foot placement strategies decouple the task of walking or running in several
decoupled and simple tasks. The control of running for the Marc Raibert’s planar
hoppers is divided into three decoupled tasks: control of the body height, control
of the forward speed by proper foot placement, control of the posture of the robot.
The same strategy with little modifications proved successful on his 3D hoppers.

Jerry Pratt et al. used a controller for the swing leg and a controller for the
stance leg [92]. Each controller is divided into subcontrollers achieving a given task
(swing foot trajectory generation, control of the center of pressure, maintaining
robot posture...). Virtual Model Control is used to maintain the posture of the
robot. This empirical approach consists in using virtual components such as springs
and dampers connected between the robot and the environment, and in generating
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the corresponding joint torques [91]. A vertical spring-damper "granny-walker" is
especially used to control the center of mass height. Denoting q as the joint angles,
the joint torques u are computed using the principle of virtual works

u = J(q)TF , (2.8)
where F is the force exerted by the virtual components and acting on the point of
coordinates p, and J = ∂p

∂q
(q).

The robot ATRIAS was designed to maximally embody a reduced-order model
derived from a spring-mass model. For that purpose, the robot has lightweight legs
with springs. Rezazadeh et al. used this reduced-order model to design control
laws for the robot [101]. They highlighted that the lateral and frontal plane control
are of the same nature and approximately decoupled for the reduced-order model.
Hence, they proposed to independently control the neutral lengths of the springs in
the legs, the swing foot position and the rotational motion (attitude) of the robot.
The control laws are derived using the reduced-order model, and are directly used
for the control of the actuators of the real robot. The robot has 6 actuators (3 per
leg). Two actuators of the swing leg are used to control its horizontal position. One
actuator per leg is used to control the spring neutral position. The two remaining
actuators are used to control the rotational degrees of freedom of the robot. The
swing foot controller is detailed in the next paragraph.

2.3.2 Simple Models to Estimate Swing Foot Placement
Biological studies showed that human, and more generally animal walking and
running, is similar to the dynamics of a spring-mass model, i.e. a point mass
attached to a massless spring [10]. This inspired the use of simple models to
estimate swing foot placement. Raibert introduced the “neutral point”, which
is the point on the ground leading to a symmetric walk [94]. It was estimated
empirically. Pratt et al. introduced the theory of capturability and used capture
points to control the robot M2V2 [29]. Capture points are the points on the
grounds making the center of mass come to rest over the stance foot (i.e. come
to a complete stop) if the swing foot is placed on one of them. Their location is
estimated on models derived from the 3D Linear Inverted Pendulum Model and
introduced by Kajita [60]. The robot PETMAN of Boston Dyncamics utilized
both capture points and Virtual Model Control [107].

The foot placement location of the robot ATRIAS [101] is calculated using a
modified PID discrete controller

PSF = KP (ξ̇ − vd) +KD(ξ̇ − ξ̇n−1) +KI(ξ − vdt) +Kv ξ̇ , (2.9)
where ξ is the 2D-horizontal-plane location of the center of mass of the robot with
respect to a stationary point on the ground, ξ̇n−1 is the velocity in the previous
step (either at the end, or the average velocity), vd is the desired horizontal velocity
of the center of mass, and PSF is the desired 2D-horizontal-plane location of the
swing foot. This control law was validated on a reduced order-model derived from
the spring mass model. It works for small velocities. For lager velocities, since the
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energy dissipation is higher, the neutral length of the springs is modified to inject
energy after midstance. This control law works on the real robot.

2.3.3 Concluding Remarks
The theory of foot placement does not provide a rigorous theory for controlling any
biped robots. It is essentially based on intuition and approximative models. Yet,
impressive results could be showed off on some platforms. Unfortunately, these
works are either poorly documented (the robot ATLAS of Boston Dynamics), or
cannot be directly implemented on others robots, as is the case for ATRIAS, which
was designed to maximally embody a simple reduced-order model.

2.4 The Method of Virtual Constraints and
Hybrid Zero Dynamics

The previously introduced two methods (ZMP walking and foot placement) are
popular approaches for the control of biped robots. But, they have some limitations.
They use a simplified model of the robot (inverted pendulum) and are rather
empirical. Furthermore, flat foot walking does not allow anthropomorphic walking,
given that it constrains the robot to keep its feet flat on the ground.

Then, in the early 2000s, a new approach was introduced to generate dynamic
motions using the full model of the robot that are provably stable, to explicitly
and rigorously take into account the underactuaction of the robot, and ultimately
to understand the mathematical principles governing biped locomotion. It started
from the observation that passive biped mechanisms, called passive walkers, are
able to walk down a slope by naturally converging to a periodic limit cycle [130],
and proposed to explore the ways of constraining the nonactuated dynamics of
underactuated biped robots so that they converge to a limit cycle. This phenomenon
is called limit cycle walking.

Two major contributors of this new approach are Jessy W. Grizzle (University
of Michigan) and Christine Chevallereau (IRCCyN, Nantes) [49, 127]. The method
was first successfully implemented on a planar five-link robot with one degree of
underactuation in single support phase, named RABBIT in 2002 [20]. This robot
had the particularity of having no feet. It necessarily fell when in single support
phase. Using such a robot was a way to get free of the flat foot walking paradigm.
Later, in 2009, the compliant planar robot MABEL was able to walk, run and
negotiates some obstacles [111]. Since 2014, MARLO, a 3D point feet biped robot
with several degrees of underactuation has been able to walk indoor [15]. And
recently, using the latest improvement of the method, MARLO is able to walk
outdoor on grassfields and parklots [47]. The method also proved to be successful
for robots with actuated ankles [125], especially for the humanoid robot DURUS
of the team of Aaron Ames (AMBERLab, Georgia Tech) [97].

58



1

2

3 ...

Impact

Limit cycle
y y

z

z

Hybrid Zero Dynamics Manifold

.

.
,

Jump

Figure 2.3: Illustration of a limit cycle in the hybrid zero dynamics manifold.
The feedback law is used to constrain the system to evolve into the hybrid zero
dynamics manifold (depicted in green). A correct choice of the virtual constraints
(=outputs) allows the hybrid zero dynamics, i.e. the dynamics restricted to the
hybrid zero dynamics manifold, to converge to a limit cycle.

2.4.1 Overview of the HZD Method
For the sake of brevity, we will call the approach “HZD method”, as it is sometimes
done in the literature. But, we warn the reader that this name is probably too
restrictive and misleading.

The method is based on the use of two major tools: virtual constraints and
hybrid zero dynamics. Virtual constraints are relations on the state components of
a mechanical system imposed through feedback control. They are called outputs
in the field of control theory.

The hybrid zero dynamics is an extension of the so called zero dynamics to
hybrid systems. It defines an exact reduced-dimensional dynamics of the model
describing the dynamics of the robot when it is constrained to evolve into the
submanifold described by the virtual constraints. This submanifold is called hybrid
zero dynamics manifold. Then, this approach is generally called virtual constraints
and hybrid zero dynamics method.

The HZD method consists in finding a set of virtual constraints such that
the hybrid zero dynamics asymptotically converges to a periodic orbit with some
desired properties. See the illustration in figure 2.3. For that purpose, the virtual
constraints, or equivalently the hybrid zero dynamics manifold, are parameterized
by a polynomial. The coefficients of the polynomial are selected by solving a
nonlinear programming problem, such that the hybrid zero dynamics is asymp-
totically stable to a periodic orbit, the model hypotheses are respected, and the
corresponding walking trajectory has some desired properties. This design is
performed offline. Then, a control law is computed online to constrain the robot
to evolve into the hybrid zero dynamics manifold.
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Hence, the HZD method does not follow the standard approach of motion
planning and trajectory stabilization described in the remark at the beginning
of this Chapter, and used by the ZMP method and the foot placement method.
Instead of designing and stabilizing a reference trajectory, it seeks to design a
submanifold of the state space, which is generally multidimensional, in which the
dynamics asymptotically converge to a periodic orbit. Then, it is enough to design
a feedback law to stabilize the robot into this submanifold to get a periodic walking
trajectory. There is no need to design a feedback law that stabilizes the reference
walking trajectory, i.e. that stabilizes all the state components of the robot.

2.4.2 Considered Mathematical Model
The HZD method uses the modeling described in Chapter 1. We consider here a
biped robot with N degrees of freedom and Na independently actuated degrees of
freedom. The robot is assumed to be subject to p holonomic constraints due to
the foot-ground contact. Then, the robot has

Np = N − p (2.10)
degrees of freedom. For the sake of brevity, but without loss of generality, we
assume that the hybrid model is made of a single phase, as in the example in
section 1.5.

We assume that the equations of motion can be written using the reduced
coordinates 2 q ∈ Q ⊂ Rn, i.e. in a set of independent coordinates that take into
account the p holonomic constraints exerted on the robot (see 1.3.4). We assume
moreover that the generalized positions q = (qa; qu) have been selected such that qa
are actuated, and qu are unactuated, that is the right hand side in the Lagrange’s
equations is zero

d

dt

∂L
∂q̇u
− ∂L
∂qu

= 0 . (2.11)

The continuous dynamic model is

D(q)q̈ +H(q, q̇) = B(q)u , (2.12)
The hybrid model is {

ẋ = f(x) + g(x)u, x /∈ S
x+ = ∆(x), x ∈ S

(2.13)

where S is the impact surface, i.e. the surface when impact occurs, ∆ is the impact
map, f(x) = −D(q)−1H(q, q̇), and g(x) = D(q)−1B.

2It is generally true for the considered class of robots when in single support phase. The
hybrid zero dynamics could also be written in the extended coordinates, i.e. with coordinates
that are not all independent. But, this makes things more complex and so makes the use of the
hybrid zero dynamics less interesting. That’s why it is preferable to use a model written in the
reduced coordinates.
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2.4.3 Virtual Constraints
Physical constraints under the form h(x) = 0, such that constraints exerted by
the environment or a physical mechanism, constrain the state x of the robot to
evolve in a lower dimensional manifold (see 1.3.4).

The evolution of the state can also be “artificially” constrained in a lower
dimensional manifold by the use of a feedback law zeroing the output

y : x→ h(x) . (2.14)
In this case, the constraints h(x) = 0 are said to be virtual, since they are

not induced by a physical mechanism. Virtual constraints are relations on the
state components of a mechanical system imposed through feedback control. They
have the strong interest to be reprogrammable on the fly without any physical
modification.

2.4.3.1 Holonomic Virtual Constraints.

Holonomic virtual constraints correspond to outputs depending on the positions
only

y = h(q) . (2.15)
Differentiating twice the vector of outputs and using (2.13) gives

ÿ = L2
fh+ (LgLfh)u , (2.16)

where 
L2
fh = −∂h

∂q
(q)D−1(q)H(q, q̇) + ∂

∂q

[
∂h

∂q
(q)q̇

]
q̇

LgLfh = ∂h

∂q
(q)D−1(q)B

(2.17)

The notation Lfh corresponds to the Lie derivative of h relative to f [3], i.e.
Lfh(x) = ∂h

∂x
(x)f(x).

Since the acceleration q̈ appears only in the second derivative of y, via (2.12) it
is the same for the inputs. Then, the relative degree of the outputs is at least two.

2.4.3.2 Nonholonomic Virtual Constraints.

Nonholonomic virtual constraints are outputs depending both on the position and
on the velocity

y = h(q, q̇) . (2.18)
Due to the dependence on the velocity q̇, such outputs have generally a relative

degree equal to one. But, it is possible to get a relative degree two by introducing
the momenta conjugate to qu [46]

61



σ = ∂L
∂q̇u

(q, q̇) , (2.19)

where L is the Lagrangian of the system.
From (2.11), we have

d

dt
σ = ∂L

∂qu
(q, q̇) . (2.20)

Then, the components of σ have a relative degree at least equal to two. Hence,
outputs under the form

y = h(q, σ)
=: h̃(q, q̇) ,

(2.21)

have a relative degree at least equal to two. Such nonholonomic virtual constraints
were recently introduced in the HZD method and proved to outperform holonomic
virtual constraints.

2.4.4 An Exact Reduced-Order Model: The Hybrid Zero
Dynamics

Since Na is the number of actuators of the robot, Na virtual constraints can be
generated by the actuators. Denoting r as the vector relative degree of the corre-
sponding outputs y, the state is constrained to evolve in a (2Np − r)-dimensional
manifold, called hybrid zero dynamics manifold. This defines an exact reduced-
order for the model, called hybrid zero dynamics. The higher the vector relative
degree of y is, the smaller the dimension of the hybrid zero dynamics is. But, it is
unclear whether getting the smallest dimension is the best.

Generally, the HZD method uses outputs with a relative degree equal to two
[127, 111, 47]. In this case, the hybrid zero dynamics of dimension 2(Np − Na).
Robust walking cycles could be generated for both planar and tridimensional biped
robots.

The choice of the virtual constraints has a strong influence on the hybrid
zero dynamics, and especially on the convergence of the hybrid zero dynamics
to a limit cycle. To facilitate the selection of virtual constraints leading to a
limit cycle behavior, the HZD method proposes to restrict the study to the exact
reduced-order model defined by the hybrid zero dynamics. Actually, the hybrid
zero dynamics is the extension to hybrid systems of one key concept of control
theory, called the zero dynamics [3].

2.4.4.1 The Zero Dynamics

Virtual constraints define an output vector y = h(x) of dimension Na. Let r be
the sum of the relative degrees of each components of y. Then, denoting η = (y, ẏ),
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and assuming that the decoupling matrix LgLfh(x) is invertible (see Appendix
G), the dynamics can be written{

η̇ = fη(η, z) + gη(η, z)u
ż = fzero(η, z)

(2.22)

When the virtual constraints are perfectly tracked, i.e. when η is zero, the
dynamics ż = fzero(0, z) are called the zero dynamics [3]. The zero dynamics
are of dimension 2(Np − r). The zero dynamics manifold Z is defined as the
submanifold of the state space where the state is constrained to evolve due to the
virtual constraints

Z =
{
x ∈ T Q | η(x) = 0r×1

}
. (2.23)

Deriving the Zero Dynamics for Virtual Holonomic Constraints. We
consider here the particular case of virtual holonomic constraints, that is of outputs
depending on the positions only 3

y = h(q) . (2.24)
Then, the relative degree of each components is at least two 4. We assume that

the vector relative degree of the output is (2, 2, ..., 2).

The zero dynamics manifold is

Z =
{
x ∈ T Q | y = h(q), ẏ = ∂h

∂q
(q)q̇ = 0

}
, (2.25)

and the dimension of the zero dynamics is of dimension 2(Np −Na).

Now, let us derived the equations of the zero dynamics as in [49, 127]. In Z,
from the implicit function theorem, there exists Np −Na independent coordinates
qf ∈ Qf ⊂ RNp−Na such that (qc, qf) is a set of generalized coordinates for the
robot. Let F : Qf → Q be the embedding from Qf to Q, that is the mapping that
allows to reconstruct q from qf

q = F (qf ) . (2.26)
Mutliplying the equations of motion (2.12) by B⊥, a full rank (Np −Na)×Na

matrix, such that B⊥B = 0(n−Na)×1, and using (2.26) gives

[
B⊥D(q) ∂F

∂qf
(qf )

]
|q=F (qf )

q̈f +B⊥
[
D(q) ∂

∂qf

(
∂F

∂qf
(qf )q̇f

)
q̇f +H(q, q̇)

]
|q=F (qf )

= 0(n−Na)×1 .
(2.27)

3This can be easily generalized to nonholonomic virtual constraints.
4At least two derivations with respect to the time are required to get the acceleration q̈, and

so the vector of inputs u in the expression.
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We assume that F is chosen such that the matrix
[
B⊥D(q) ∂F

∂qf
(qf)

]
|q=F (qf )

is

invertible. Then, letting z = (qf ; q̇f ), the zero dynamics is

ż =

 q̇f

−
[
B⊥D(q) ∂F

∂qf
(qf )

]−1

|q=F (qf )
B⊥

[
D(q) ∂

∂qf

(
∂F
∂qf

(qf )q̇f
)
q̇f +H(q, q̇)

]
|q=F (qf )


= fzero(z) .

(2.28)
Actually, the process of derivation of the zero dynamics is close to the one used

to write the equations of motion of a system subject to mechanical holonomic
constraints in a set of reduced coordinates (see Section 1.3.4). Here, mechanical
holonomic constraints are replaced by virtual constraints. And the input u plays
the role of the generalized forces associated to the mechanical holonomic constraints
λ. The input (2.51) allows to maintain the system into the zero dynamics manifold
Z.

Remark: Note that the zero dynamics depends on F , and so on the choice of
the virtual constraints y = h(q).

2.4.4.2 The Hybrid Zero Dynamics

The zero dynamics is a useful concept in the sense that it defines a lower dimen-
sional dynamics that is more convenient to study. Indeed, the evolution of the
complementary dynamics η = 0r×1 is entirely known and controlled by the input u.
But, additional care must be taken so that the study of the dynamics of a biped
robot may be reduced to the zero dynamics. Indeed, the input (2.51) ensures that
the state remains in Z during the continuous phase, but not during the discrete
phase, i.e. when the state jumps when it crosses the impact surface S. If the zero
dynamics manifold Z is not preserved by the impact, it is not possible to restrict
the study to it. The property of impact invariance is then necessary and defined
as follows. The zero dynamics manifold Z is said to be impact invariant when

∆
(
Z ∩ S

)
⊂ Z , (2.29)

where ∆ is the impact map. This means that the action of the impact map ∆
is to send back a state in the hybrid zero dynamics manifold to the hybrid zero
dynamics manifold.

When Z is both continuous and impact invariant, the nonlinear system with
impulse effects can be defined{

ż = fzero(z), z /∈ S ⊂ Z
z+ = ∆zero(z), z ∈ S ⊂ Z

(2.30)

where ∆zero is the restriction of the impact map ∆ to the hybrid zero dynamics
manifold.

64



(2.30) is called the hybrid zero dynamics, and defines an exact reduced-order
model. Restricting the study of the robot to the hybrid zero dynamics reduces
the complexity of the problem. For a planar five-link walker with point feet, as
depicted in figure 2.4, we have Na = 4 and Np = 5. Then, the hybrid zero dynamics
is of dimension 2(Np −Na) = 2, while the full dynamics is of dimension 2Np = 10.

The asymptotic stability of the limit cycle in the hybrid zero dynamics
is equivalent to the stability of the full system. The design of periodic
orbits can be realized by restricting the study to the hybrid zero dynamics. Because
the hybrid zero dynamics is made invariant by a proper choice of the input, any
solution inside the hybrid zero dynamics is a solution of the overall (closed-loop)
system. Then, periodic orbits for the hybrid zero dynamics correspond to periodic
orbits for the full dynamics [127] (Theorem 5.5 page 134). Hence, the hybrid zero
dynamics is an exact reduced-order model that facilitates analytical studies and
reduces the computation cost when integrating the equations of motion of the
robot. See an illustration of a limit cycle in the hybrid zero dynamics manifold
depicted in figure 2.3.

The exponential stability of the hybrid zero dynamics is studied by using the
so called method of Poincaré sections. See Appendix A for further details on this
method. The Poincaré map is restricted to the hybrid zero dynamics to leverage
the computation cost.

Achieving impact invariance. We address now the problem of how to achieve
the impact invariance (2.29). For one degree underactuated robots, like RABBIT
or VS, this is not a difficulty. It was proved in [127] (Theorem 5.2 page 126)
that if there exists at least one point of Z ∩ S that is impact invariant, then the
manifold is impact invariant, i.e. ∆

(
Z ∩ S

)
⊂ Z. This means that if a walking

trajectory, i.e. a periodic orbit, exists for a given set of virtual constraints, then
the corresponding zero dynamics manifold Z is impact invariant5.

This property is not true anymore for several degrees underactuated robots.
More precisely, no surface was found to have this property. Thus, [77] introduced
a systematic way to locally modify the virtual constraints (or equivalently the
outputs) after impact such that η be zero after impact, thus achieving impact
invariance. More especially, for an output yi = hi(x) of relative degree r, it consists
in defining the new output

ỹi = h̃i(y+
i , ẏ

+
i , ..., y

(r−1)+
i , x) , (2.31)

where (y+
i , ẏ

+
i , ..., y

(r−1)+
i ) are the values of the output and its derivatives just after

impact. ỹi is designed such that its value and its time derivatives just after impact
(ỹ+
i , ˙̃y+

i , ..., ỹ
(r−1)+
i ) be zero, and yi = ỹi from a point during the step, typically

from the middle of the step. This is done online by using polynomial interpolations
to smoothly join h̃i to hi. This technique is sometimes called deadbeat hybrid
extension.

5Indeed, due to the existence of the periodic orbit in Z, one point of Z is impact invariant.
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2.4.5 Virtual Constraints Used in the HZD Method
We have just presented the general concepts of virtual constraints and hybrid zero
dynamics, which are the two key concepts used in the HZD method. The choice of
virtual constraints is large, but only some peculiar classes of virtual constraints
are used in the HZD method. Their use is motivated by physical intuition.

2.4.5.1 Introducing a Curvilinear Abscissa: the Phase Variable

Synchronizing the Actuated Dynamics with the Nonactuated Dynam-
ics. Usually, in robotics and more generally in the control of systems, reference
trajectories are parameterized by the ordinary time t. Nonetheless, controlling an
underactuated system using a time parameterization may be tricky, especially if
the motion is computed offline as it is the case for the HZD method.

To be convinced of that, let us consider a one degree underactuated point
feet biped robot, like the robot VS or RABBIT and depicted in figure 2.4. A
set of generalized positions is q = (qa; θ), where qa = (q1; q2; q3; q4) is the vector
of the actuated coordinates. The angle θ is called the virtual stance leg angle,
and is not actuated. It describes the orientation of the robot in the sagittal
plane. Assuming that the four actuators are used to control the four actuated
joints qa = (q1; q2; q3; q4), and given that the foot-ground contact is not actuated,
the dynamics of (θ; θ̇) are not directly controlled. They correspond to the zero
dynamics and are of dimension two.

The evolution of (θ; θ̇) depend on the initial conditions and on the perturbations
exerted on the robot. Then, the rotating motion of the robot around its stance leg is
likely to be different than the one obtained during the offline trajectory generation.
So, using time-parameterized trajectories computed offline, and ignoring the
information on the evolution of the zero dynamics risk to lead to a too early or too
late impact of the swing leg onto the ground, and to the fall of the robot. Actually,
it seems better that the actuated degrees of freedom of the robot be synchronized
with the nonactuated dynamics.

Phase Variable. Due to the aforementioned reasons, the HZD method uses
time-independent reference trajectories. Instead of time, the trajectories are
parameterized by a generalized position of the hybrid zero dynamics, called phase
variable, and playing the role of a curvilinear abscissa. The phase variable must
evolve strictly monotonically during one step. Indeed, bijectivity with the time is
necessary, otherwise the parameterization would be ambiguous: several points of
the reference trajectory would correspond to a single value of the phase variable.

A common choice for the phase variable is the virtual stance leg angle θ (see
figure 2.4), which was found to evolve strictly monotonically for humans and
containing information on the evolution of the underactuated dynamics in the
sagittal plane.

Then, holonomic virtual constraints on the actuated degrees are defined as
follows

66



Figure 2.4: In the HZD method, the gait phase variable θ is generally chosen as
the virtual stance leg orientation relative to the vertical. The virtual stance leg is
the red dotted line.

y = qa − qa,ref (θ) =: h(q) , (2.32)
where q are the generalized positions of the robot, qa are the actuated degrees of
freedom 6, and θ → qa,ref (θ) is the vector of the reference trajectory for qa.

2.4.5.2 Parameterization of the Reference Trajectory for qa
The virtual constraints (2.32) have been used for a long time in the HZD method.
But, they have some limitations and it may be sometimes preferable to use others
types of virtual constraints.

Holonomic virtual constraints Considering the holonomic virtual constraints
(2.32) is satisfactory for planar biped robots with point feet with one single degree
of underactuation, like for RABBIT or the robot VS. In this case, the virtual
constraints define a unique path in the configuration space. Indeed, for a given
value of the phase variable θ, the holonomic virtual constraints define a unique
configuration q = (qa,ref (θ), θ).

But, if the degree of underactuation is greater than one, the path described
by the virtual constraints is not unique anymore. To be convinced of that, let
us consider the example of a point feet 3D biped robot as described in [22], and
depicted in figure 2.5. In single support phase, the robot has two degrees of
underactuation: the orientation in the sagittal plane θ (pitch) and in the frontal
plane φ (roll). The orientation in the transverse plane (yaw) is assumed to be
locked. A set of generalized positions is q = (qa; θ;φ). The holonomic constraints
(2.32) do not define a unique configuration, since they are independent of the roll
angle.

6The subscript a stands for “actuated”.
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Then, if φ is not as expected, the robot risks impacting prematurely the ground
and falling (see figure 2.5). Hence, virtual constraints, and so the phase variable,
should also depend on φ. A good parameterization must partition the configuration
space such that the aforementioned problem does not occur anymore [16]. This is
still an open problem.

To compensate for the bad parameterization offered by the virtual stance leg
θ, [15] proposed a new choice of virtual constraints that couple θ and φ in ways
that cannot be found through intuition. That new choice of outputs comes to add
a dependance of the virtual constraints to the roll angle φ, that is considering
virtual constraints under the form

y = qa − qa,ref (θ, φ) . (2.33)
See Section 2.4.6.4 for further details.

Nonholonomic virtual constraints. Recently, the use of the nonholonomic
virtual constraints proved to offer a wider parameterization that outperforms
the holonomic virtual constraints, especially in term of the size of the basin of
attraction of the limit cycle in the hybrid zero dynamics manifold [47]. Especially,
the use of σ, the momenta conjugate to qu (2.19), in the parametrization results
in the nonholonomic virtual constraints

y = qa − qa,ref (θ, σ)
=: h(q, q̇) .

(2.34)

Actually, the reference for qa should ideally depend on all the coordinates of
the hybrid zero dynamics manifold (qu; q̇u)

y = qa − qa,ref (qu, q̇u) , (2.35)
or assuming that (qu;σ) forms a valid set of coordinates for this manifold

y = qa − qa,ref (qu, σ) . (2.36)
This offers the widest possibilities for the actuated degrees of freedom to adapt

to the current dynamic state of the robot. Differently said, it a priori offers more
freedom to design an hybrid zero dynamics manifold containing a periodic orbit
with a large basin of attraction. Surprisingly, to the best of our knowledge, virtual
constraints (2.36) have not been considered in the HZD method.

2.4.6 Offline Design of the Virtual Constraints
Virtual constraints are designed so that the hybrid zero dynamics asymptotically
converges to a periodic orbit, and the corresponding walking cycle has some desired
properties.
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Figure 2.5: Illustration of the importance of taking into account the roll angle
φ into the virtual constraints. For one given value of the absolute orientation in
the sagittal plane θ, the roll angle angle of the robot may take any value. Not
considering φ may lead to a too early or too late impact, even though the virtual
constraints are perfectly tracked.

2.4.6.1 Designing Virtual Constraints by Solving a Parametric Opti-
mization Problem

A set of virtual constraints is designed by solving a nonlinear optimization problem.
The virtual constraints are parameterized as polynomial functions. Then, in the
general case, virtual constraints (2.14) are searched under the form

y = h(x, β) , (2.37)
where β is the vector of the coefficients of the polynomials

More especially, when considering the peculiar class of virtual constraints (2.32)
and (2.34), we have

h(q) = qa − hd(θ, β) , (2.38)
or

h(q) = qa − hd(θ, σ, β) , (2.39)
where qa are the actuated joints, and hd is the vector of the polynomials 7.

The coefficients of the polynomials β and an initial condition in the hybrid
zero dynamics manifold are taken as the parameters P ∈ P to optimize. Then,

7Bézier polynomials are generally used, since each coefficients has a local influence on the
shape of the polynomial.
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assuming that the holonomic constraints are of vector relative degree (2, ..., 2), and
that each polynomial has k coefficients, then kNa polynomial coefficients and a
vector of 2(Np −Na) coordinates in the hybrid zero dynamics have to be found.
This number of optimization parameters can be reduced by using some of the
constraints that we mention next, such the constraint of periodicity.

The desired properties of the walking cycle generated by the virtual constraints
can be formulated with a set of equality Ce(x, u) = 0, inequality constraints
Ci(x, u) ≤ 0, and using a cost function J(x, u).

Hence, designing walking trajectories comes to solve the nonlinear parametric
optimization problem:

minP∈P J(x, u)
s.t. Ce(x, u) = 0
Ci(x, u) ≤ 0 .

(2.40)

2.4.6.2 Constraints

The motion must satisfy a minimum set of equality Ce(x, u) = 0 and inequality
constraints Ci(x, u) ≤ 0 that we divide into four categories:

Constraints to have an asymptotic stable periodic orbit 8:

• Periodicity of the trajectory.

• Stability of the trajectory: eigenvalues of the Poincaré map inside the unit
circle (see Section 2.4.4.2 and Appendix A).

Constraints due to the model hypotheses (see Sections 1.3.5 and
1.4.2):

• No slippage of the stance foot.

• No take off of the stance foot.

• Swing foot strictly above the ground during a step.

• Impact model hypotheses respected.

Constraints due to the physical limits of the robot:

• Joint limits.

• Actuator bounds (velocity, torque).

User’s defined constraints:
8From Section 2.4.4.2, it is enough to check these properties on the hybrid zero dynamics

only.
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• Mean walking speed.

• Step length.

• Maximum torso inclination.

• ...

2.4.6.3 Cost Function

The sum of the square torques is generally chosen as a cost function [127]

J(x, u) =
( 1
L(x)

∫ T (x)

0
||u(t)||2 dt

)
, (2.41)

where L(x) is the step length, and T (x) the step duration. This function ap-
proximates the consumption due to the Joule effect in the motors. Furthermore,
minimizing torques leaves the possibility for the robot to use more torques without
saturating actuators when subject to disturbances.

To design a motion robust to disturbances, such as an external force, or
terrain height disturbances, [45] introduced in the cost function an additional term
penalizing the deviations induced by the disturbances

Ji(x, u) =
∫ T (x)

0

θ − θ+

(θ− − θ+)2

(
||δx(t)||2 + ||δu(t)||2

)
dt , (2.42)

where δx(t) is the state deviation and δu(t) is the input derivation relative to the
reference, obtained when integrating the motion when subject to the disturbances.
The weighting term θ−θ+

(θ−−θ+)2 gives more importance to deviations at the end of
the step, since it is crucial for the robot to be as close as possible to the reference
at the end of a step.

The cost function becomes

J(x, u) =
( 1
L(x)

∫ T (x)

0
||u(t)||2 dt

)
+

M∑
i=1

Ji(x, u) , (2.43)

where M is the number of scenarios with disturbances considered. This means
that at each iteration of the optimization, the dynamics of the robot is integrated
M + 1 times.

Solving the optimization problem. There exist many methods and software
available to solve nonlinear programming problems. But, due to the complexity of
the probleme, the design of the virtual constraints online is not feasible. Then, this
design is performed offline. In the HZD method, the MATLAB function fmincon is
generally used and offers good results [127, 16, 116]. More recently, [53] presented
a methodology that allows for solving faster the nonlinear parametric optimization
problem using a direct collocation framework.
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Remark: The equations of motion of the robot must be integrated at each
iteration of the optimization problem. As seen above, to alleviate the computation
cost, only the hybrid zero dynamics may be integrated. But, it is also possible to
work with the full model.

2.4.6.4 Treating the Asymptotic Stability A Posteriori:
Selection of the Virtual Constraints

For the case of a one degree underactuated planar robot with point feet, like
RABBIT or the robot VS, and considering outputs of relative degree two, the
hybrid zero dynamics is of dimension two. Then, the Poincaré map restricted to
the hybrid zero dynamics is scalar. Due to the simplicity of the Poincaré map,
analytic algebraic criteria for the existence and stability of a periodic orbit in the
hybrid zero dynamics can be exhibited, and directly included in the nonlinear
programming problem (2.40) [127] (Theorem 5.3 page 129). More specifically, a
periodic orbit is stable if and only if the angular momentum of the robot juste
after impact is strictly less than the angular momentum just before impact. In
practice, this is generally the case and periodic orbits are generally exponentially
stable.

But things get more complex for several degree underactuated robots, for which
checking the asymptotic stability of the periodic orbit in the hybrid zero dynamics
may dramatically slow down the resolution of the nonlinear programming problem
(2.40). In this case, the Poincaré map restricted to the hybrid zero dynamics is
multidimensional and no analytic algebraic criteria could be found to check for
the stability. Then, the numerical computation of the eigenvalues of the jacobian
of the Poincaré map must be performed. It is time consuming (see Appendix A).

That’s why it may be preferred to remove the property of asymptotic stability
from the nonlinear programming problem (2.40). Thus, the resolution of the
problem gives a periodic orbit O described by the system in the state space. But,
it is not necessarily asymptotically stable. In a second step, the virtual constraints
are modified to design a new hybrid zero dynamics manifold such that the system
asymptotically converges to O when it is constrained to evolve into this manifold.

Indeed, several choices of virtual constraints can be made to control some
components of one periodic orbit O. It has been especially shown that, for a
given periodic orbit, the hybrid zero dynamics depends on the choice of the virtual
constraints 9 when the degree of underactuation is greater or equal than two (see
equation (35) in [22]).

How to select the virtual constraints? The selection of the virtual con-
straints to design an hybrid zero dynamics manifold asymptotically stable to a
given periodic orbit has only been done for the holonomic constraints (2.32).

The selection of the virtual constraints can be realized by intuition. Considering
a new virtual constraint as the distance between the swing leg end and the center

9Of vector relative degree (2,..,2).

72



of mass along the frontal plane direction rendered periodic orbits asymptotically
stable for a 3D biped robot with two degrees of underactuation [22].

In [16] a systematic selection of the outputs by solving a BMI problem is
proposed. A family of virtual constraints preserving the orbit O is considered

y = H(ξ)(q − qd(θ)) , (2.44)
where the Na × Np selection matrix H(ξ) is parametrized by the parameters ξ,
and θ → qd(θ) is the reference motion for the generalized positions q.

Let ξ∗ be the parameters corresponding to the nominal choice of the virtual
constraints (2.32) used in the nonlinear programming problem (2.40). A Taylor
expansion of the jacobian of the Poincaré map is

∂P

∂x
(x∗, ξ) ≈ A0 +

n∑
i=1

Ai(ξi − ξ∗i ) , (2.45)

where x∗ is the nominal point of the periodic orbit on the Poincaré surface.
∆ξi = ξi − ξ∗i is then chosen by optimization such that the eigenvalues of ∂P

∂x
(x∗, ξ)

are inside the unit circle.
In practice, only the parameters ξ introducing the roll angle φ in the virtual

constraints are varied. This is motivated by the intuition that if the virtual con-
straints vary with the roll angle, the robot will be able to compensate appropriately
when its roll deviates from the nominal orbit (see Section 2.4.5.2). The method
resulted in asymptotic stable walking trajectories which were tested experimentally
with success [15].

2.4.7 Stabilization of the System into the Hybrid Zero Dy-
namics Manifold

The previous Section explained how the HZD method proposes to come up with the
problem of finding a walking trajectory with some desired properties by designing
a set of virtual constraints. The virtual constraints are designed such that they
define an embedded manifold of the state space, called hybrid zero dynamics
manifold, in which there exists an asymptotically stable periodic orbit. Due to this
property, it is enough for the system to be stabilized into the hybrid zero dynamics
manifold. This means that the virtual constraints must be tracked sufficiently
accurately. This Section addresses the design of feedback laws achieving this goal.

For the sake of brevity, without loss of generality, we will consider the case of
holonomic virtual constraints, that is

y = h(q) , (2.46)
of vector relative degree (2,...,2). This case is generally considered in the HZD
method. The results can be easily extended to the others types of virtual con-
straints.
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2.4.7.1 An Input-Output Linearizing Controller

Enforcing the virtual constraints can be performed using the standard technique
of input-output linearization [3]. More specifically, derivating twice the output
relative to the time gives

ÿ = L2
fh+ (LgLfh)u , (2.47)

where: 
L2
fh = −∂h

∂q
(q)D−1(q)H(q, q̇) + ∂

∂q

[
∂h

∂q
(q)q̇

]
q̇

LgLfh = ∂h

∂q
(q)D−1(q)B

(2.48)

The notation Lfh corresponds to the Lie derivative of h relative to f [3].
Assuming that the decoupling matrix LgLfh is invertible 10, one can define the

feedback transformation

u(x) = (LgLfh(x))−1(−L2
fh(x) + v(x)) , (2.49)

where v(x) is the new input. This creates a linear relationship between the inputs
and the outputs

ÿ = v . (2.50)
Thus, a controller under the form (2.49) is called an input-ouput linearizing

controller. The term
u∗ = −(LgLfh(x∗))−1L2

fh(x∗) , (2.51)
where x∗ is the state on the periodic orbit is called the feedforward term. It
corresponds to the input that must be applied to the system so that the state
remains in the zero dynamics manifold Z (see Section 2.4.4.1).

Choice of v. Several choices of v can be made to exponentially stabilize the
outputs (y, ẏ) to zero. Since nothing guarantees a priori that the periodic orbit is
exponentially stable in the hybrid zero dynamics when the outputs are not zero,
attention must be paid to the stabilizing property of v. See Section 5.5 in [127] for
further details.

[76, 127] proved that when using the PD controller

v(y, ẏ) = −1
ε
KDẏ −

1
ε2
KPy , (2.52)

where KD and KP are diagonal positive definite matrices, for ε > 0 sufficiently
small, an exponentially stable periodic orbit of the hybrid zero dynamics is also
an exponentially stable periodic orbit of the full-order model. This means that
the periodic orbit is exponentially stable if the outputs converge sufficiently fast
to zero.

The resulting input-ouput linearizing controller with a PD controller is
10Meeting this condition is not difficult in practice.
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u(x) = (LgLfh(x))−1
(
− L2

fh(x)− 1
ε
KDẏ −

1
ε2
KPy

)
, (2.53)

with y = h(x) and ẏ = Lfh(x).

Remark: From now on, for the sake of brevity, we denote KD = 1
ε
KD and

KP = 1
ε2
KP .

2.4.7.2 Approximate Controllers Derived From the Input-Output Lin-
earizing Controller

The input-ouput linearizing controller (2.49) is known to be sensitive to dynamics
parameters uncertainties [16]. Then, approximated versions of this controller, and
especially of (2.53), are used in practice and offer good tracking performances.

A PD + feedforward controller. [16, 111] and references therein proposed
the following PD + feedforward controller

u(x) = −(LgLfh(x∗))−1L2
fh(x∗)− T−1(KDẏ −KPy) , (2.54)

where x∗ is the state on the periodic orbit when the phase variable is θ = θ(x).
The feedforward term −(LgLfh(x∗))−1L2

fh(x∗) is computed regressing the
torques of the simulated model along the periodic trajectory, or regressing the
experimental torques obtained when using a high gain PD controller (see the next
paragraph). The constant matrix T approximates the decoupling matrix. It is not
reported how it is determined in [16], but it is taken equal to the identity matrix
in [111].

A High Gain PD controller. In practice, many biped robots are controlled
using a high gain Proportionnal Derivative (PD) controller [127, 68, 100, 37, 132]

u = −KPy −KDẏ . (2.55)
This type of controller is easy to implement, easy to tune, requires little

computer resources and offers good tracking performance for robots with a high
transmission ratio. The simplicity of this controller may leave in doubt. We explain
here why it gives good tracking results.

We remind that high transmission ratios approximately decouple the dynamics
of the robot (see Section 1.6.3). The approximated dynamics of the actuated joint
coordinates qa are

Ieq q̈a = u , (2.56)
The actuated coordinates qa are chosen to be directly controlled by the actuators.

Let y = qa − qa,ref be the vector of outputs, where qa,ref is the reference. Using an
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input-output linearization, and the approximated dynamics (2.56), the dynamics
of the output is

ÿ = (Ieq)−1u− q̈a . (2.57)
where Ieq is the transmission inertia reflected to joint. The input-output linearizing
controller with a PD feedback is 11

u = −KPy −KDẏ + q̈a . (2.58)
The PD controller

u = −KPy −KDẏ (2.59)
ensures a practical convergence of the output to zero, that is for all ε > 0, there
exists KP and KD such that limt→∞|y(t)| ≤ ε. In other words, when the higher
the gains of the PD controller are, the more negligible q̈a become, and the smaller
ε is.

But, when setting the gains too high, the torques tend to reach their bounds
and to saturate. Additionally, in practice, phenomena of chattering appear due to
noise measurement. Then, a compromise has to be found when setting the gains.
See Section 3.4.4 for further details on the experimental performances of a high
gain PD controller on the planar biped robot VS.

2.4.7.3 The Peaking Phenomenon

Attention must be paid when stabilizing the output with a high gain feedback
controller. Actually, a fast stabilization of the output may cause large transient
peaks that may disturb the hybrid zero dynamics. Hence, a fast convergence of
the output (= a fast stabilization of the system into the hybrid zero dynamics
manifold) may eject the system out of the basin of attraction of the periodic
orbit. This is called the peaking phenomenon. To the best of our knowledge, this
phenomenon has not been investigated in the HZD method. For instance, in the
Theorem 5.5 in [127], the variation of the size of the basin of attraction when the
feedback gains are changed is not considered. For further details on the peaking
phenomenon, see Section 4.5 in [108].

To cope with this phenomenon, a solution is to stabilize all the state components
of the periodic orbit, as it is done in Section 5.7.1 of this manuscript.

2.4.8 Latest Improvements and Perspectives of the HZD
Method

One of the main drawback of the HZD method is to require the design of trajec-
tories offline. But, recent works go into the direction of online trajectory design,

11For the sake of brevity, KP and KD include the constant term (Ieq)−1.
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using walking gait primitivess to design online trajectories respecting a set of con-
straints [26, 82]. The use of supervised learning for deciding a transition between
precomputed gaits seems to be promising [28].

Additionally, [96] exhibited a class of holonomic constraints, called symmetric
virtual constraints, which when enforced by controllers ensure the existence of
periodic orbits. This interesting property is a step towards the robust and versatile
control of biped robots without requiring offline and online search for periodic
orbits.

2.4.9 Summary
The HZD method proposes to design virtual constraints defining a submanifold in
the state space which is both continuous and impact invariant, and called hybrid
zero dynamics manifold. The virtual constraints are selected by solving a nonlinear
programming problem such that the hybrid zero dynamics manifold asymptotically
converges to a periodic orbit and the corresponding walking trajectories has some
desired properties.

There is no unique choice for the class of virtual constraints used to control
the robot. Actually, this choice may depend on the platform, and especially on
the degrees of underactuation. As far as we understood, using the nonhlonomic
virtual constraints (2.21) and the cost function (2.43) offers the best performances.

In this dissertation, we will consider only planar biped robots with one degree
of underactuation. We will use holonomic virtual constraints since they proved to
give satisfactory results for this class of systems.

2.5 Literature on the Control of Lower-Limb
Exoskeletons for Rehabilitation

Active lower limb exoskeletons are anthropomorphic robotic devices that fit around
the legs of its user. They are especially designed for performance augmentation
(assistance for soldiers or workers in the industry) and for the rehabilitation of
persons with physical impairments. A complete review of the state-of-the-art
on lower limb exoskeletons can be found in [131, 30]. The control design of an
exoskeleton strongly depends on its application and on the physical abilities of
its user. We will focus here only on the control strategies that are currently used
on lower limb exoskeletons like the exoskeleton of Wandercraft, i.e. aiming at
recovering the ability to walk for the people who lost the control of their lower
limbs such as paraplegics or myopathics.

The control of such robots is still in its fancy and little progress has been made
since the rehabilitation exoskeleton of Vukobratovic et al. (beginning of the 1970s)
[121]. Nonetheless, rehabilitation exoskeletons have been available on the market
since 2012. The exoskeleton REX is the only exoskeleton able to stabilize impaired
patients [9]. But, it is bulk and offers a static gait with a reported mean walking
speed of 3 meters per minute (0.05 km/h)! The exoskeleton EKSO and ReWalk
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provide a faster gait (≈ 3 km/h), but they are not self stabilized. Users have to
use crutches to partially support their weight and to preserve balance [8, 98].

Many researches are currently done to improve those performances [36, 81, 65,
109, 66]. To date, like EKSO and ReWalk, most of exoskeletons are only actuated
in the sagittal plane and simply replay trajectories recorded on unimpaired subjects.
A finite state machine is used to switch between the different walking phases. The
decision of when to make the transition between states is critical. Actually, it
seems preferable that the user may decide when to make the next step. Then, a
remote control is used for REX and ReWalk, and foot sensors are used to detect
the position of the center of pressure, allowing the user to control the exoskeleton
by transferring its weight with torso movements [114]. [70] uses the hip angle
measurement to estimate when the swing foot touches the ground without foot
sensor.

Some more elaborated strategies were tested. The exoskeleton XoR realizes a
real-time balance recovery strategy in the sagittal plane using a Spring-Loaded
Flywheel model [31]. The Vanderbilt exoskeleton uses electric stimulations of some
muscles so that the joints are actuated by both motors and muscles [51]. The
MINDWALKER exoskeleton uses a step width adjustment algorithm based on the
extrapolated center of mass to modify online the walking trajectory [124]. But,
the controller is not efficient enough to self stabilize impaired people.

Then, almost everything remains to be done in that field. And even if the
cutting edge techniques used for the control of biped robots are probably a good
starting point, the control of exoskeletons rises new challenges. Among them are:

• Designing trajectories that are "human friendly", i.e. ensuring the comfort of
the user.

• Properly dividing the control between the human and the robot to allow
online interaction and a robust walk.

2.6 Discussion
Today, the community of biped robot locomotion is very active and major im-
provements have been made over the past few years. In spite of all those intensive
years of researches, there is still work to reach the ultimate goal of designing biped
robots as agile as humans and consuming little energy.

We found that the HZD method is the most documented and rigorous approach
to design controllers for underactuated biped robots. Hence, to get practical
experience, we decided to implement this method on a real planar biped robot.
This is the object of the next chapter.
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Chapter 3

Design and Implementation of a
HZD Controller For a Planar
Biped Robot

Résumé français Dans ce chapitre, nous présentons la synthèse et l’implémentation
de trajectoires de marche pour le robot 5 liens plan de Wandercraft, appelé VS,
en utilisant la méthode des contraintes virtuelles et de la dynamique des zéros
hybride (méthode HZD). Ce chapitre se structure de la manière suivante. Dans
la section 3.2, nous donnons une description du robot VS et expliquons comment
nous l’avons modélisé. Puis, dans la section 3.3, nous présentons l’algorithme
utilisé à partir de la méthode HZD, et les trajectoires de marche obtenues en simu-
lation. Dans la section 3.4, nous expliquons comment nous avons implémenté ce
contrôleur expérimentalement. Nous comparons ensuite les résultats de simulation
et expérimentaux. La robustesse des trajectoires à des perturbations modérées est
illustrée expérimentalement.

Ce chapitre apporte peu de contributions, puisque la méthode HZD a déjà
été implémentée avec succès sur plusieurs robots plans (RABBIT, ERNIE, MA-
BEL, NAO, AMBER-1, AMBER-2, DURUS-2D) et tridimensionnels (MARLO
et DURUS). Voir [58], [57] et [5] pour des vidéos et des publications. Le robot
VS est semble-t-il le dixième robot à marcher en utilisant cette méthode. Mais il
semblerait qu’il soit le premier robot à marcher avec un mécanisme de stabilisation
latérale dont la configuration n’est pas invrariante par translation. De plus, nous
reportons, probablement pour la première fois, la possibilité pour un robot de
marcher, même en présence de perturbations modérées, sans l’usage de capteur
pour détecter le contact du pied avec le sol.

3.1 Introduction
In this chapter, we will present the design and the implementation of walking
trajectories for the planar five-link biped robot with point feet of Wandercraft,
called VS, using the method of virtual constraints and hybrid zero dynamics (HZD
method).
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The outline of this chapter is as follows. In section 3.2, we will introduce the
robot VS and its modeling. In section 3.3 we will describe the path planning
algorithm based on the HZD method and walking trajectories obtained using
this algorithm. Next, in section 3.4 we will explain how we implemented the
controller in practice. We will make comparisons between the simulation and the
experimental results. We will try to explain as much as possible the differences
observed. The experimental robustness of the walk to moderate disturbances will
then be illustrated on various scenarios.

This work brings few contributions, since the method has already been im-
plemented with success on several planar (RABBIT, ERNIE, MABEL, NAO,
AMBER-1, AMBER-2, DURUS-2D) and tridimensional robots (MARLO and
DURUS). See [58], [57] and [5] for videos and publications. VS is yet an other
robot walking with the HZD method. More specifically, it must be the tenth
robot. But, to the best of our knowledge, this is the first robot walking with a
lateral stabilizing mechanism whose configuration is not translational invariant.
Furthermore, we also report, probably for the first time, the possibility for a biped
robot to walk, even in the presence of moderate perturbations, without using
sensors to detect the contact of the feet with the ground.

3.2 The VS Robot

3.2.1 Hardware description
3.2.1.1 Experimental setup

VS robot (see figure 3.1) is a planar biped robot with point feet designed by
Thibault Gayral 1 to test control algorithms for biped robots. It is an almost
replica of RABBIT, the first robot to walk with the HZD method [21]. The robot
has four independently actuated joints (hip and knee joints). Since the robot has
no feet, the foot-ground contact is unactuated. Then, in single support phase,
the robot has one degree of underactuation. The motion of the robot is planar,
constrained to the sagittal plane, i.e. the robot cannot move laterally.

For reason of space, a boom system constraining the robot to follow a circular
path as used for most of the planar biped robots [127, 132, 111] could not be used.
Instead, a 2 bars mechanism is used and the robot walks on a treadmill. The
stabilizing system only provides lateral stabilization. It does not prevent the robot
from falling down, forward or backward. This mechanism has the drawback of
rendering the system not translational invariant, which complicated the control
design. See 3.2.2.5 for a discussion.

The robot is surrounded by a base frame on which the lateral stabilizing
mechanism is fixed. The base frame is also used to prevent the robot from going
out the treadmill, touching the control interface of the treadmill, and defines an
area where nobody should go during the experiments.

1Head of the Wandercraft “robotics mechanical design” team.
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Figure 3.1: Photo of VS’s experimental setup. A 2 bars mechanism constrains the
robot to evolve in the sagittal plane. For safety, a threaded rod fixed on the torso
touches the base frame when the robot falls. During walking, the rod is not in
contact with the base frame. No mechanism stabilizes the robot in the sagittal
plane.
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The kinematic and dynamic parameters of the robot can be found in Appendix
B.

3.2.1.2 Sensors and actuators

The four joints are actuated by brushless motors MOOG BN34-35EU-02LH. The
mechanical transmission system, depicted figure 1.7, whose goal is to transmit the
power from the motor to the joint, is made of a pulley belt transmission and a
high gear ratio reducer. Harmonic Drive gearing HFUS 25-100-2SO are used for
the knees (reduction factor equal to 101) and PLE 80-100 for the hips (reduction
factor equal to 100). The transmission can deliver a joint torque2 up to 120 Nm
and a joint velocity up to 300°/s.

17 bits multi-turn absolute encoders Kübler Sendix absolu F3683 are mounted
on the motor shaft. They are used to measure the position and to estimate the
velocity of the motor. There is no encoder mounted on the joints. Then, joint
position and velocity are deduced from the motor position and velocity assuming
no mechanical backlash in the mechanical transmission system. Encoders are
mounted on the joints of the 2 bars mechanism to measure the absolute orientation
of the torso of the robot. Initially, Force Resistive Sensors (FSR) Tekscan flexiforce
A301 were mounted on each foot to detect impacts with the ground. We ended up
using them since they deteriorated fast during the experiments. Then, as explained
later, we used no sensor to detect the contact of the feet with the ground.

Motor controllers are Elmo Gold Solo Twitter digital servo drives. They servo
the motor current to the desired value sent by the control algorithm. They are
also used to estimate the motor velocity from encoder measurements.

The computer, that is not embedded but that could, is an Axiomtek PICO
880. For real-time control, the real-time operating system QNX is used [93].
The communication protocol used to transfer data between the servo drives and
the computer is EtherCAT [35]. The embedded software, developped by the
Wandercraft “embedded sofware team”, is coded in C++.

3.2.2 Modeling
We adopt the modeling described in chapter 1. We will consider walking trajectories
with instantaneous double support phases, as it is commonly done in the HZD
method for robots with point feet [127, 50]. Then, we will only focus on the
dynamics of the robot in single support phase. This means that we will consider
two continuous phases, and the two corresponding transient (impact) dynamics.
The modeling corresponds to the diagram figure 1.6.

3.2.2.1 Notations and Generalized Coordinates

As in chapter 1, to differentiate between the two legs, one leg is called “leg 1” and
the other “leg 2”. When the robot is in single support and the leg 1 (resp. 2) is

2By taking into account the efficiency of the reducers indicated by the manufacturer.
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Figure 3.2: Kinematic model of the robot VS. Angles are measured in the trigono-
metric sense, i.e. positive is counterclockwise.

the stance leg, the phase is called “SS1” (resp. “SS2”). A kinematic model of VS
in the phase SS1 is depicted figure 3.2.

The hip and knee joint angles of the leg 1 (resp. leg 2) are parameterized
by q1 and q3 (resp q2 and q4). The torso orientation relative to the vertical is q5.
The treadmill velocity, assumed to be constant, is VT . The angles of the bars
are parameterized by α4 and α5. The point A, that corresponds to the point of
attachment of the upper bar to the world, is fixed in the world frame (0,X,Z).
The point P1 (resp. P2) corresponds to the extremity of the leg 1 (resp. 2). Its
cartesian coordinates expressed in the world frame are p1 = (px1 ; pz1). A set of
generalized positions for the system is

qe = (q1; q2; q3; q4; q5; px1 ; pz1;α4;α5) ∈ Qe ⊂ R9 . (3.1)
The state is xe = (qe; q̇e) ∈ T Qe. The dynamical parameters can be found in

figure B.1.

3.2.2.2 Dynamics in Single Support Phase

In single support phase, only one leg of the robot is in contact with the ground.
Let i be the subscript of the stance leg (i = 1 or 2). The extremity of the stance leg
is assumed to be pinned on the ground. This means that the foot-ground contact
is modeled as an ideal pivot joint. The foot cannot translate but can only rotate
without friction relative to the treadmill. All these hypotheses are commonly used
in the HZD method [127]. The system is subject to four holonomic constraints,
due to the foot-ground contact and due to the non mobility of the point A

83



ηi(qe, t) =


pxi
pzi
pxA
pzA

−

px,0i − VT t

0
px∗A
pz∗A

 =


0
0
0
0

 , (3.2)

where px∗A , pz∗A are real constant, and represent the cartesian coordinates of A in
the world frame (0,X,Z). px,0i is the horizontal position of the extremity of the
stance leg i in the world frame at t = 0, the instant when the leg i hit the ground.

Note that since P1 is moving with the treadmill, one holonomic constraint
depends on the time.

The equations of motion are derived using the method of Lagrange (see 1.3.3)De(qe)q̈e + Ce(qe, q̇e)q̇e +G(qe) = Be(qe)u+
(
∂ηi
∂qe

(qe, t)
)T
λ

ηi(qe, t) = 0
(3.3)

with u ∈ R4 is the vector of inputs (joint torques) and λ are the efforts related to
the holonomic constraints. From the principle of virtual works (or d’Alembert’s
principle), the time dependance of the holonomic constraints does not modify the

expression of the generalized force
(
∂ηi
∂qe

(qe, t)
)T
λ (see [39] page 52).

The calculation of λ can be performed differentiating twice the holonomic
constraints relative to the time. Since the treadmill velocity is assumed to be
constant, then ∂ηi

∂t
(qe, t) is a constant, and the expression of λ is the same as (1.31).

The model is valid if and only if the swing leg j is above the ground, the stance
leg i does not take off and slip. We assume that the friction coefficient is equal to
0.6. Then, the domain of admissibility of the model is

Dηi =



qe

q̇e

u

 ∈ T Qηie × R5 | pzj(qe) > 0, F z
i (qe, q̇e, u) > 0,

∣∣∣∣F x
i

F z
i

(qe, q̇e, u)
∣∣∣∣ < 0.6

 ,

(3.4)
where F x

i (resp. F z
i ) is the horizontal (resp. vertical) component of the ground

reaction force acting on the stance leg i.
If the stance leg slips or takes off, the model is not valid anymore, and the

simulation results are not considered. After the swing leg j hits the ground, that is

xe = (qe; q̇e) ∈ Sηi→ηj =
{
xe = (qe; q̇e) | pzj(qe) = 0,

∂pzj
∂qe

(qe)q̇e < 0
}
, (3.5)

the model with the leg j is the stance leg is considered (SSj). This model is
initialized using the impact map ∆i→j.
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3.2.2.3 Impact Map

When the swing leg of the robot hits the ground, an impact occurs. Without loss
of generality, we assume that before impact the robot is in the phase SSi (subject
to the holonomic constraints ηi(qe) = 0), and after impact in the phase SSj (subject
to the holonomic constraints ηj(qe) = 0). The impact map ∆i→j maps a point of
Sηi→ηj to T Q

ηj
e .

As we saw, the impact dynamics is assumed instantaneous and is modeled as
a jump on the generalized velocities q̇e, whereas qe is unchanged. But, contrary
to the common case, VS is moving on a treadmill. Consequently, the expression
(1.64) is not valid anymore. Indeed, due to the treadmill, VS is subject to a
time-dependent honolomic constraint (rheonomic constraint). Then, an additional
term appears in the expression of the time derivative of the holonomic constraints
after impact ηj(qe, t) = 0

d

dt

(
ηj(qe, t)

)
= ∂ηj
∂qe

(qe, t)q̇e + ∂ηj
∂t

(qe, t) = 0 . (3.6)

From (3.2) and given that the treadmill velocity is constant, then ∂ηj
∂t

(qe, t) =
∂ηj
∂t

(qe) (no time dependance of the jacobian).

Using the same approach as in 1.4, the impact map becomes



qe = q−e = q+
e

q̇+
e = ∆q̇e(qe, q̇−e ) = q̇e

− −D−1
e (qe)

(
∂ηj
∂qe

(qe)
)T∂ηj

∂qe
(qe)D−1

e (qe)
(
∂ηj
∂qe

(qe)
)T−1

×

∂ηj
∂t

(qe) + ∂ηj
∂qe

(qe)q̇e−


I = −
(∂ηj

∂qe
(qe)

)
D−1
e (qe)

(
∂ηj
∂qe

(qe)
)T−1∂ηj

∂t
(qe) + ∂ηj

∂qe
(qe)q̇−e


(3.7)

where x+
e = (q+

e ; q̇+
e ) (x−e = (q−e ; q̇−e )) is the state after impact (resp. before), and

I is the ground reaction impulse.
Due to the time-dependent holonomic constraints, equations are affine but

not linear anymore in the velocity before impact q̇−e , as it was in (1.64). Not
surprisingly, when setting ∂ηj

∂t
(q+
e ) = 0 (no dependance in time), one gets (1.64).

The impact map is valid if and only if the former stance leg, i.e. the leg i, lifts
off the ground without interaction, and the leg that impacts the ground (leg j)
does not take off and slip “during” the impact
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∂pzi
∂qe

(qe)q̇+
e > 0

Ix > 0∣∣∣∣IxIz
∣∣∣∣ < 0.6

(3.8)

Ix (resp. Iz) is the horizontal (resp. vertical) component of the impulse. If one
of these hypotheses is not verified, the model is not valid and the simulation is
stopped.

3.2.2.4 Taking Into Account the Transmission Inertia

Since the transmission ratio is high (∼ 100), the inertia of the transmission
mechanical system is taken into account as explained in 1.6.

The reflected transmission inertias to the joint are added to the diagonal terms
of the mass matrix. This comes to add the following term to the mass matrix
De(qe)  Ieq 05×4

04×5 04×4

 , (3.9)

with

Ieq =



Ieq,hip 0 0 0 0
0 Ieq,hip 0 0 0
0 0 Ieq,knee 0 0
0 0 0 Ieq,knee 0
0 0 0 0 0


, (3.10)

where Ieq,hip (resp. Ieq,knee) is the reflected inertia transmission to the hip joint
(resp. knee joint). From now, we will denote De(qe) as the mass matrix considering
the transmission inertia.

3.2.2.5 Additional Remarks

Influence of the 2 bars mechanism. The configuration of the 2 bars mech-
anism depends on the absolute position of the stance foot of the robot on the
treadmill. Then, the problem is not translationnal invariant. More specifically, we
noticed that the 2 bars mechanism tends to pull back the robot when the robot is
located in front of the treadmill (on the right in figure 3.2). This is probably due
to the moment exerted by the gravity on the upper bar that increases when the
robot moves forward. By comparing a model with and without the mechanism in
simulation, we noted that the influence of the mechanism cannot be neglected .
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Possibility of using a reduced set of coordinates. Due to the holonomic
constraints, the generalized positions qe are not independent each other. The
reduced set of independent coordinates (q; q̇), with q = (q1; q2; q3; q4; q5) ∈ Qηie ,
may be used. But, the 2 bars mechanism complicates the task of finding the
embedding from Qηie to Qe. We remind that the embedding maps the reduced
set of coordinates to the full set of coordinates (see 1.3.4). Actually, after some
calculations, the expression of α4 and α5 as a function of q can be found. But,
several cases must be considered, and even though it is possible, we found that
implementing the model in the reduced coordinates (q; q̇) is not easy. That’s why
we finally preferred working with the full coordinates (qe; q̇e). The drawback when
using the full coordinates is that one cannot reduce the study to the hybrid zero
dynamics, and use some of its properties for the design of walking trajectories.
Hopefully, restricting the study to the hybrid zero dynamics is not compulsory in
the HZD method. In practice, it is mainly a way to speed up calculations. We did
not encounter difficulties to find walking trajectories with the full model.

3.3 Designing Walking Trajectories For VS
We present here how we designed walking trajectories for the planar five-link walker
VS using the HZD method. See 2.4 for a presentation of this method. We remind
that the method consists in finding virtual constraints to be imposed by the control
and such that the constrained dynamics (the hybrid zero dynamics) admits an
asymptotically stable periodic orbit associated with a satisfactory periodic walking.
The design of the virtual constraints is achieved by solving offline a nonlinear
parametric optimization problem under constraints. Since the robot has only one
degree of underactuation, there is no need to realize a selection of the virtual
constraints a posteriori to asymptotically stabilize the obtained periodic orbit, as
described in 2.4.6.4.

Walking hypotheses As explained before, the walking gait is assumed to be
composed of a single support phase, and an instantaneous double support phase
(during the impact). The gait is assumed to be symmetric, i.e. the left and the
right leg simply swap their respective motion when a change of stance leg occurs.
Then, the planning is realized for one step. The motion of the second step is
deduced by symmetry.

Gait phasing variable The gait phasing variable, which plays the role of the
curvilinear abscissa of the cycle, is chosen as the virtual stance leg angle relative
to the vertical. See figure 3.3. This is a common choice [127, 50]. Since the shin
and thigh have the same length, the gait phasing variable can be expressed as a
linear combination of the generalized positions. When leg 1 is the stance leg, the
gait phasing variable is
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θ = −q1 −
q3

2 − q5 , (3.11)

and when leg 2 is the stance leg

θ = −q2 −
q4

2 − q5 . (3.12)

θ

Virtual stance leg

Figure 3.3: The gait phasing variable θ is chosen as the virtual stance leg orientation
relative to the vertical. The virtual stance leg is the red dotted line.

Motion planning algorithm We used the virtual holonomic constraints (2.32)
as it is generally done in the HZD method. They were designed using the motion
planning algorithm described in Section 2.4.6.1.

Since the robot has four independent actuators, we define four virtual constraints
for the actuated coordinates

yi = qi − hi,d(θ) , i ∈ {1, ..., 4} . (3.13)
The functions θ → hi,d(θ) are parameterized by a 6 degree Bézier polynomial 3

hi,d(s) = a0i(1− s)6 + 6a1is(1− s)5 + 15a2is
2(1− s)4 + 20a3is

3(1− s)3

+ 15a4is
4(1− s)2 + 6a5is

5(1− s) + a6is
6 ,

(3.14)

where
s = θ − θ+

θ− − θ+ , (3.15)

is the normalized gait phasing variable. θ+ (resp. θ−) is the value of θ at the begin-
ning ( = right after impact) and at the end (= right before impact) of a step. Bézier

3The degree of the polynomial was chosen sufficiently "high" to have a large space of search.
A degree of 6 proved to be sufficient.
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polynomials are often used in the HZD method, since they allow local modifica-
tions of the curve when changing one coefficient. This is convenient for hand tuning.

The optimization parameters are the 4×7 = 28 Bézier coefficients, the treadmill
velocity VT , and the phase variable velocity θ̇− at the end of a step. For the
optimization, the stance foot absolute position at the beginning of a step is kept
constant at a value corresponding to the middle of the treadmill. But, it could
have also been included in the optimization parameters. That corresponds to a
set of 30 parameters. This set is reduced to 30− 8 = 22 parameters (removal of
a0i and a1i) using the constraint of periodicity on the state. More specifically, the
constraint of periodicity in position, and the assumption on symmetry give

q+
2 = q−1 ⇔ a0,2 = a6,1 ,

q+
1 = q−2 ⇔ a0,1 = a6,2 ,

q+
4 = q−3 ⇔ a0,4 = a6,3 ,

q+
3 = q−4 ⇔ a0,3 = a6,4 .

(3.16)

After completing a step, the velocities after impact are computed using the rigid
impact model (3.7) : q̇+

e = ∆q̇e(q−e , q̇−e ). Periodicity in velocity and the assumption
on symmetry impose that the image of a swing joint (knee or hip) velocity at
the end of a step by the impact map be equal to the stance joint velocity at the
beginning of a step, and vice versa. These four constraints give 4



a1,1 = a0,1 + (θ− − θ+)
6θ̇+

q̇+
2 ,

a1,2 = a0,2 + (θ− − θ+)
6θ̇+

q̇+
1 ,

a1,3 = a0,3 + (θ− − θ+)
6θ̇+

q̇+
4 ,

a1,4 = a0,4 + (θ− − θ+)
6θ̇+

q̇+
3 .

(3.17)

Note that these relations only guarantee the periodicity for the actuated states,
but not for the unactuated state components q5 and q̇5 (or equivalently θ and θ̇).

The optimization parameters are found by solving the nonlinear parametric
optimization problem:

Given a vector of unknown P = (a2,1, ..., a6,4, VT , θ̇
−) ∈ R22 ,

find minPJ(x, u) , subject to:
Ce(x) = 0
Ci(x) ≤ 0

(3.18)

4Knowing a5i, a6i and θ̇− gives access to q−, q̇−, and so to q̇+ by using the impact map.
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The cost function is the sum of the square torques divided by the step length
over a step

J(x, u) = 1
L(x)

∫ T (x)

0
||u(t)||2 dt . (3.19)

We enumerate now the constraints Ce(x) = 0, and Ci(x) ≤ 0 used for the
parametric optimization and some of their typical corresponding thresholds. Note
that depending on the kind of desired trajectory, some threshold values were
changed.

Constraints to have a periodic orbit:

• Periodicity of the trajectory : θ and θ̇ periodic.

Constraints due to the model hypotheses:

• No take off of the stance foot: F z > 150N .

• No slippage of the stance foot: |Fx
F z
| < 0.5.

• Swing foot strictly above the ground during a step: the swing foot altitude
profile must be above a parabola with a height of 9 cm. (?)

• Vertical velocity of the swing leg strictly positive at the beginning of the
step.

• No take off of the leg that impacts the ground: Iz > 0.

• No slipping of the leg that impacts the ground: | Ix
Iz
| < 0.5.

Constraints due to the physical limits of the robot:

• Joint limits. q1, q2 ∈ [π2 ,
3π
2 ] and q3, q4 ∈ [−3π

5 , 0].

• Maximum joint torque: 60 Nm. (??)

• Maximum joint velocity: 2 rad/s.

User’s defined constraints:

• Mean walking speed between 0.3 m/s and 0.7 m/s.

• Step length between 0.25 m and 0.6 m.

• Torso inclination q5 inferior to 0.15 rad.

• Torso movement inferior to 0.2 rad.

• Robustness to perturbations: Minimum kinetic energy level during a step
superior to 2 J. (? ? ?)
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(?) It is important that the swing foot be not close to the ground during a
step, otherwise the robot may impact the ground too early (foot scuffing) if the
trajectory tracking is not perfect or in case of irregular terrain. For that, we impose
that the swing foot altitude profile be always above a parabola. We remarked that
imposing such a behavior increases the torque consumption.

(??) Having torque reserve for quickly converging to the desired motion, espe-
cially when the robot is subject to disturbances is important. Otherwise, when
the torque reaches its bounds, it is saturated for safety reasons. Consequently, the
tracking of the virtual constraints is deteriorated and may be not good enough:
the motion of the robot gets jerky and the robot may fall. We especially remind
that joint friction is not modeled. Then, experimental joint torque is necessarily
higher than the torque computed in simulation. That’s why the maximum torque
threshold taken in the optimization is inferior to the theoretical 5 maximum torque
(120 Nm). We did the same for the velocity.

(? ? ?) The walking trajectory must be robust to perturbations, i.e. the size
of the basin of attraction of the periodic orbit of the hybrid zero dynamics (θ; θ̇)
must be "large".

The risk is that if the robot loses too much kinetic energy, then it falls backward,
i.e. θ̇ zeros and changes sign. More precisely, during the first phase of a step,
the altitude of the center of mass of the robot increases, i.e. its kinetic energy
is converted into potential energy. If the reserve of kinetic energy is enough, the
robot crosses the potential energy barrier, then its altitude decreases and its kinetic
energy increases until impacting the ground, and so on.

Actually, the hybrid zero dynamics of a planar one degree underactuated robot
is energy conservative and so similar to those of an inverted pendulum model
subject to the gravity (page 160 of [127]). Inspired by this 6, we define a minimum
level of kinetic energy that the robot may never cross during a nominal step.
Choosing a sufficiently high level guarantees that the robot at the beginning of one
step has a kinetic energy reserve high enough to continue to walk without falling
backward, and even in the presence of moderate perturbations, i.e. the basin of
attraction of the orbit is "large". We remarked that increasing the mininum kinetic
energy level tends to increase torque consumption. The threshold is increased until
a good compromise between robustness and torque consumption is found.

The stability of the walking trajectory is checked a posteriori by modifying
manually the state of the robot at the beginning of a step (= right before impact),

5This theoretical torque is computed using the average yield given by the manufacturers of
the reducers. We do not know in what extend this data represents reality. It is then preferable
to be far from this bound

6[127] (Theorem 5.3) defines algebraic criteria for the existence and the stability of a periodic
orbit in the hybrid zero dynamics. These criteria also quantify the quantity of energy that may
be removed to the robot without it falls. Given that we work with the full system (see 3.2.2.5),
and we do not restrict the study to the hybrid zero dynamics, we cannot directly apply these
results.
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especially the value of θ̇, and integrating the dynamical equations to see if the
robot converges to the walking cycle. This is roughly a Poincaré analysis.

Actually, as explained in Section 2.4.7, the stability of the hybrid zero dynamics
is not difficult to obtain when the degree of underactuation is equal to one.

Solver used and performances. The optimization problem is solved using
fmincon() of MATLAB. Integration of the full dynamics is performed using ode45.
The initialization of fmincon() is done using a randomly chosen anthropomorphic
trajectory designed by hand, or using trajectories found for a planar five-link walker
without the 2 bars mechanism, since we worked with such a model previously.
After some iterations, i.e. taking as a new initial condition the trajectory returned
by fmincon(), and adding, modifying the constraints, stable walking trajectories
respecting all the constraints (if it is possible to meet them) are found. All this
process roughly takes between 5 and 30 minutes using a laptop with an 1.3 GHz
Intel core i5. The same optimization performed on the planar five-link walker
without the stabilizing mechanism, and integrating only the hybrid zero dynamics,
is roughly 3 times faster.

Results A walking trajectory solution of (F.1) is depicted in Figures 3.4, 3.5,
3.6, 3.7, 3.8 and 3.9. Bézier coefficients and some of the properties of the walking
trajectory are gathered in table 3.1. An input-output linearizing controller (see
2.4.7) is used to enforce the virtual constraints. The treadmill velocity is set to 0.61
m/s. Actually, the robot converges to a periodic motion for a treadmill velocity
comprised between 0.4 and 0.8 m/s. When exceeding these bounds, the robot goes
out the treadmill. Note in figure 3.5 the jump on the swing knee velocity due to
the impact on the ground (for example, t = 21.51 s for the left sagittal knee). For
the others joints, the jump is smaller.

a0i a1i a2i a3i a4i a5i a6i

Stance hip 3.6104 3.5858 3.5847 3.2598 3.1704 3.1411 3.1386
Stance knee -0.6784 -0.6600 -0.6324 -0.4932 -0.5060 -0.5799 -0.6519
Swing hip 3.1386 3.1519 3.2439 3.3928 3.6124 3.6158 3.6104
Swing knee -0.6519 -0.7326 -0.8219 -1.1873 -0.8422 -0.7758 -0.6784

θ− θ+ θ̇+ Mean walking Speed Step length Cost
(rad) (rad) (rad/s) (m/s) (m) (Nm2s/m)
-2.906 -3.359 0.954 0.61 0.34 5 503

Table 3.1: Bézier coefficients and some properties of the walking trajectory.
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Figure 3.4: Simulated joint position evolutions for a walking trajectory obtained
with the HZD method. The simulation uses a rigid ground model.
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Figure 3.5: Simulated joint velocity evolutions for a walking trajectory obtained
with the HZD method. Note the big jump on the knee joint velocity. Not
surprisingly, it happens when the corresponding shin hits the ground. The jumps
on the others joints is smaller.
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Figure 3.6: Simulated joint torque evolutions using input-output linearization for
a walking trajectory obtained with the HZD method. Note that the maximum
absolute value of the joint torques is smaller than 60 Nm, a bound used in the
motion planning algorithm.
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Figure 3.7: Simulated ground reaction forces evolutions for a walking trajectory
obtained with the HZD method. Note that the normal ground reaction force FN
is greater than 150 Nm, and that | FT
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| ≤ 0.5, as imposed in the motion planning

algorithm.
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Figure 3.8: Simulated evolution of θ̇ for a walking trajectory obtained with the
HZD method.
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Figure 3.9: Simulated phase portrait of the hybrid zero dynamics (θ, θ̇) for a
walking trajectory obtained with the HZD method.
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3.4 Experimental Implementation
We report here the method, the observations, and the experimental choices that
we used to implement the walking trajectories designed in simulation on the real
robot VS.

3.4.1 Methodology
We tried to be as methodic and rigorous as possible to achieve a stable walk as
predicted by the theory. For that, we proceeded step by step to facilitate the
identification of the problems that we might have encountered (software problems,
hardware problems, errors of modeling,...). We proceeded as follows:

• 1. Robot on air: Tracking time-parameterized trajectories for one and several
joints.

• 2. Robot on air: Tracking virtual constraints for one and several joints.

• 3. Robot on the ground: Tracking virtual constraints to achieve one step
with the treadmill off.

• 4. Robot on the ground: Tracking virtual constraints to achieve several steps
and walking.

For each steps, we compared the simulation and experimental results. We
endeavored to explain the differences that we noticed. We always tried to implement
the simplest solutions to maximize the robustness and facilitate debugging.

3.4.2 Effects of Joint Friction
The first experiments with the robot on air aimed at getting familiar with the
testbed and to have insights into the tracking performances achievable on the
robot VS. As depicted in Figure 3.10 (upper plots), when setting the gains of a
classical PD controller on the robot, we noticed a phase shift between the measure
and the reference of the joint position, clipping on both the measured position
and velocity, and jittering on the measured velocity. We remarked that the phase
shift and clipping almost disappeared when using sufficiently high gains for the
PD controller.

Since we did not obtain such a behavior in simulation, we added the joint
friction model (1.104). We obtained the bottom plots of figure 3.10. The friction
parameters were tuned by hand to obtain a behavior similar to the experiments.
We noticed that the phase shift is due to the viscous term, and that clipping
is due to the static term that brakes the joint at low velocity. Hence, these
two phenomena are due to joint friction. When adding a discrete control (the
control law is updated at 500 Hz) in the simulation, jittering appears. Then, this
phenomenon is due to the use of a discrete control in presence of friction.

Since the effects of friction could be strongly attenuated by increasing the gains
of the PD controller (see Section 3.4.4), we did not feel the necessity of identifying
and compensating for friction in the experiments.
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Figure 3.10: Illustration of the effects of joint friction.
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3.4.3 Estimation of the Phase Variable θ and of its Velocity
θ̇

A good estimation of the phase variable θ and of its time derivative θ̇ are important,
since they are used to evaluate the virtual constraints, and so to generate the
motion of reference for the joints. The phase variable is the virtual stance leg. It
is defined as a linear combination of three generalized positions (see (3.11) and
(3.12)). θ and θ̇ are calculated using the estimation of q and q̇. See Appendix C
for further details on how the state of the robot is estimated.

3.4.3.1 Estimation of θ̇ and Effects of the Compliance of the Ground

The experimental estimation of θ̇, noted ˆ̇θ, for a few walking steps is depicted in
figure 3.11. Even though the global shape is the same, there are some differences
with the evolution in simulation for a rigid ground model (see figure 3.8). More
specifically, the shape is oscillatory and a big peak follows the impact. ˆ̇θ even
sometimes takes negative values.

Actually, a similar behavior can be obtained in simulation using the compliant
ground model described in 1.7.1. See the bottom plot of figure 3.11. In the
simulation, peaks are smaller, and the maximum value of θ̇ is higher, even when
changing the stiffness and the damping of the model, but the shape is the same.
When ignoring oscillations, the minimum and maximum values reached by θ̇ are
similar in simulation and in reality.

We realized the experiments using ˆ̇θ. But, it would be probably better to use
an estimator that suppress the big peaks and diminish the oscillations. Indeed,
the peak after impact tends to cause a peak on the torques. A reduced-order
Luenberger observer as used in [47] may give interesting results .
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(b) Simulated evolution of θ̇ using the com-
pliant ground model described in 1.7.1.

Figure 3.11: Comparison of θ̇ during five steps between experiments and simulations
using a compliant ground. The shape is the same. Peaks just after impact and
oscillations are due to the compliant nature of the foot-ground contact.
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3.4.3.2 Effect of the Mechanical Backlash

It is worth noting that during the first experiments, the motion of the robot was
a bit jerky when the left leg was in stance phase. It appeared that there was a
mechanical backlash in the left hip. When blocking the motor shaft, the joint
angle could be slightly moved by hand. Once the mechanical backlash removed,
oscillations almost disappeared. The mechanical backlash probably disturbed the
estimation of the phase variable and of its velocity, since no encoders are mounted
on the joints.

3.4.4 Performances of a High Gain PD Controller
The high gain PD controller (2.55) was tested on simulation for walking trajectories,
using a rigid and a compliant ground model (see 1.7.1). It demonstrated good
results.

The experimental tracking performances are very similar. Experimental joint
tracking position errors are always inferior or equal to 0.04 rad during the continuous
phase. They are inferior to 0.01 rad at impact (see figure 3.15). Figure 3.16 depicts
the velocity tracking performances. Joint velocity tracking is less accurate than
position tracking, and especially for the knees (tracking errors are up to 0.4 rad/s
for the hips and to 2 rad/s for the knees). Note the peaks on the velocity of
reference of the knee after impact (see for example the left knee velocity figure
3.16 at t = 47.51 s and t = 48.52 s). They are due to the peaks of the estimation
of θ̇. This corresponds to the times when the knee switches from the stance phase
to the swing phase.

The gains of the controller KP and KD were tuned by trial and errors both in
simulation and in reality.

3.4.5 Choosing When to Switch the Legs
When the swing leg hits the ground, that is at impact, the role of the legs must
switch, and the definition of the phase variable changes (see (3.11) and (3.12)).
Then, the embedded controller needs to know when this event occurs.

Force Sensitive Resistors (FSR) sensors were first used to detect the contact
of the swing leg with the ground. These sensors allowed to correctly detect the
impacts. But, we had some troubles when using them. The impact detection
thresholds drifted during the experiments (after a few dozens minutes) and sensors
progressively deteriorated due to the repetitive impacts (see figure 3.12). We
observed that when the impact detection threshold was not set correctly, impact
detection might occur too late. This caused the robot to have an asymmetric walk.
In the worst cases, this lead to a fall after a few steps.

Due to the aforementioned hardware problems, we tried not to use FSR, and
not to detect an impact with the ground. For that, we tested a kinematic switch
condition that simply consists in switching the role of the legs when the gait
phasing variable exceeds a given threshold. Surprisingly, it works well on flat
ground and in the presence of obstacles. Actually, the use of a gait phasing variable
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Figure 3.12: Comparison between a FSR sensor deteriorated after some experiments
(above), and a new FSR (bottom).

to switch between gait phases for humans is highlighted in [119, 79]. To the best
of our knowledge, this is the first time that an actuated biped robot is reported
to walk without sensors detecting the contact with the ground. This highlights
once again the interest of using virtual constraints in robotic bipedal locomotion,
since they synchronize the motion of the robot. Then, if the tracking of the virtual
constraints is good enough, the impact always occurs roughly at the same value of
the virtual stance leg angle θ.

It is important to correctly set the threshold values. But, contrary to FSR,
we noticed that these thresholds do not drift during the experiments. We also
remarked that it is not necessary to modify them when changing the walking
trajectory. We found better not to choose the same thresholds for the two legs.
The thresholds values of the normalized gait phasing variable s were set equal to
0.92 for the left leg, and 0.98 for the right leg (in theory, the impact should occur
when s = 1). This is maybe due to an asymmetry between the 2 legs.

All the reported walking experiments in this chapter were realized using no
sensor to detect the contact with the ground.

3.4.6 Defining a Correct Motion of Reference
Virtual constraints are defined only for the nominal evolution of the phase variable
θ, i.e. for θ ∈ [θ+, θ−], or equivalently for s ∈ [0, 1]. The theoretical bounds of
evolution of θ were used for the experiments. But, experimentally, due to tracking
errors or modeling errors, the phase variable may be out of its theoretical bounds,
i.e. s may be inferior to 0 (at the beginning of a step, just after legs swapping) or
greater than 1 (at the end of a step).

When s > 1, we saturate s to 1, i.e hi,d(s) = hi,d(1) as in [127].
When s < 0, the saturation of s to 0, i.e hi,d(s) = hi,d(0) is realized in [127].

But, this does not solve all the problems. First, if the saturation of s goes too
long, the robot loses its momentum and is then more likely to fall backward.
Furthermore, at the beginning of a new step, the definition of the phase variable
changes (see (3.11) and (3.12)). Consequently, if the tracking before impact is not
good, or if the robot encounters an obstacle, due to the change of definition of the
phase variable, tracking errors may suddently be important after impact, causing
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high peak torques.
To avoid this, we use modify online locally the virtual constraints so that the

output and its time derivative be zero at the beginning of a step. This is called a
deadbeat hybrid extension [77]. The formulas that we used to modify the virtual
constraints can be found in Appendix D. We saw in 2.4.4.2 that deadbeat hybrid
extension was introduced to design a hybrid zero dynamics. It is also used in
practice to avoid the aforementioned problems [111, 22]. Since the estimation of θ̇
quickly changes just after impact (see figure 3.11), it is difficult to define the time
derivative of the output: y′(θ+)θ̇+. Therefore, we recompute virtual constraints
using only position measurements, i.e. the new virtual constraints zero the output
y+ after impact, but not its time derivative ẏ+. In spite of this simplification,
experimental results are satisfactory.

Another possibility is to proceed as in [47]. They design motions robust to
uneven ground, and so define virtual constraints offline for a phase variable beyond
its bounds.

3.4.7 Some Additional Details on the Controller
Note that no experimental identification of the dynamic parameters of the robot
was performed. The values used in the simulations were taken from the CAD
model of the robot. We do not know in what extend these data describe reality.

The control loop runs at a sampling rate of 500 Hz. Data are recorded at 1kHz.
For safety reasons, motor torques are strutted. This causes the joint torques to be
saturated at 110. Motors are stopped when tracking errors for at least one joint
exceed 0.3 radians.

3.5 Experimental Results
We report here the performances of the walking trajectories that we implemented.
We first discuss the experimental results obtained for the walking trajectory
described in table 3.4. Then, we present others walking trajectories.

3.5.1 Starting the Robot
For starting the motion, a person gives a push to the robot, and switches on the
treadmill. This allows to place the robot in the basin of attraction of the limit
cycle of the hybrid zero dynamics. A “slight” push is enough. Its magnitude does
not need to be accurately controlled. The velocity of the treadmill is set until
the mean absolute position of the robot stays constant. If the velocity is too low,
the following behavior is observed. First, the robot goes forward. Secondly, due
to the 2 bars mechanism that exerts a force to the back, the robot slows down.
Thirdly, either the robot has no kinetic energy enough and reaches the rear of the
treadmill, or the robot continues to walk and speeds up to reach again the front
of the treadmill, and so on. If the velocity of the treadmill is too high, the robot
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reaches the rear of the treadmill. When the robot reaches the rear of the treadmill,
the 2 bars mechanism strikes the base frame of the platform. This prevents the
robot to go out the treadmill. When the speed of the treadmill is correctly set, it
takes the robot only a few steps to converge to a periodic walking.

3.5.2 Walking on Flat Ground
The motion is smooth and almost symmetric. Figure 3.14 depicts a snapshot
of the walk. Experimental curves are depicted figure 3.15, 3.16, 3.17, 3.18 and
3.13. The robot converges to a periodic walking when the treadmill velocity is set
between 0.4 and 0.64 m/s. For larger velocities, tracking errors at impact become
too important (> 0.04 rad) causing an asymmetric walk. Many experiments were
realized. The robot could walk until battery depletion (≈ 1 hour).

Joint tracking position errors are always inferior or equal to 0.04 rad during
the continuous phase and to 0.01 rad at impact when legs switch their roles. We
noticed that it is important to have low tracking error at impact, otherwise the
walk is asymmetric and may be unstable. We achieved this by a proper tuning of
the high gain PD controller. Joint velocity tracking is less accurate, and especially
for the knees (up to 0.4 rad/s for the hips and to 2 rad/s for the knees). The phase
variable saturates at the beginning of each step (see figure 3.18), but this is not a
problem, especially since we use a deadbeat hybrid extension.
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Figure 3.13: Experimental phase portrait for the walk on flat ground. It corresponds
to the limit cycle of the hybrid zero dynamics. The spike and the oscillatory
behavior is due to the compliance of the foot-ground contact interaction. The
experimental behavior is similar to the behavior obtained with simulations on a
compliant ground (see 3.4.3.1).
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Figure 3.14: Snapshot of a step realized by VS for the walking trajectory described
in table 3.1.
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(b) Joint position evolution in simulation with a compliant ground model.

Figure 3.15: Comparison of the joint position tracking performances between
simulation and reality for the walk on flat ground. A high gain PD controller is
used. Experimental tracking is similar but not as good as in simulations. Joint
friction is probably the cause of this difference.
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Figure 3.16: Comparison of the joint velocity tracking performances between
simulation and reality for the walk on flat ground. A high gain PD controller is
used. Both evolutions are similar.
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Figure 3.17: Experimental joint torques for the walk on flat ground. Note that
the behavior for the left and right hip is not exactly symmetric. This is maybe
due to the fact that the motor is not the same for each leg. The left motor broke
down and was replaced by an other model.
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Figure 3.18: Experimental normalized gait phasing variable s for the walk on flat
ground. Note that s saturates at the beginning of a step. This issue is addressed
by modifying locally the virtual constraints right after impact (see 3.4.6). The
role of the legs is switched (“impact detection”) when the normalized gait phasing
variable reaches a given threshold (see 3.4.5). We found that using a different
threshold for each leg gave better results.
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3.5.3 Walking in Presence of Disturbances
Some experiments were realized by exerting perturbations on the robot to test
its robustness. The HZD method is known to be robust to perturbations such as
moderate terrain variations and to dynamical parameters uncertainties [127]. For
the next experiments, the controller is exactly the same as on flat ground.

3.5.3.1 Obstacles

The robot is able to negotiate obstacles such as notepads, pieces of wood thick of
25 mm, and even ... a French baguette. After encountering the obstacle, it takes 2
steps for the robot to converge again to the walking cycle. See figure 3.19. We
remarked that if the stance leg slips on the obstacle, the robot falls.

Figure 3.19: VS negociating several types of obstacles with success.

3.5.3.2 Rising slope

The robot is able to walk continuously on a 5 % slope. It can negotiate a slope up
to 8 %, but the walk is asymmetric and the robot falls during some experiments.

Additionnal masses on the torso A mass of 5 kg was added at the end of
the torso. This additional mass represents roughly 30 % of the mass of the torso.
The robot walks continuously, but at a lower speed (0.5 m/s). The walk is a bit
asymmetric. When adding supplementary masses, the robot makes a few steps and
falls backward. Due to the additional masses, the robot has not enough kinetic
energy to complete the next step.

3.5.4 Others Walking Trajectories
Others walking trajectories were successfully implemented. A trajectory with the
knees more extended is depicted figure 3.20 and a trajectory with smaller steps
figure 3.21.
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Figure 3.20: Snapshot of a second walking trajectory (knees are more extended).
The treadmill velocity is 0.64 m/s.

Figure 3.21: Snapshot of a third walking trajectory (smaller steps). The treadmill
velocity is 0.33 m/s.
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3.6 Conclusion
This chapter presented the design and the implementation of walking trajectories
for a planar five-link walker, called VS, using the HZD method. The robot is able
to walk continuously and is robust to moderate perturbations. Important features
are: a) VS walks with a lateral stabilizing mechanism which is not translational
invariant and has a huge influence on the zero dynamics of the robot. Due to
this mechanism, we found that the derivation of the hybrid zero dynamics was
not easy. Then, we preferred to find a periodic orbit for the full model. This is
not exactly in the spirit of the HZD method which proposes to find a periodic
orbit for the hybrid zero dynamics only. b) walking is obtained without using any
sensors to detect the contact with the ground, even in the presence of moderate
perturbations. Instead of keeping using the fragile contact sensors, we preferred
using the measure of the phase variable to decide when the robot should switch
the role of the legs.

The experimental behavior is close to the simulations, and the differences be-
tween the theory and the practice were explained. More specifically, we highlighted
the effects of joint friction on the tracking of the virtual constraints, and the effects
of the compliance of the ground on the estimation of θ̇.

Even though the results are fully satisfactory, we see three improvements that
may be realized. First, it would be interesting to improve the estimation of θ̇, i.e.
removing the peaks right after impact and the oscillations, to allow the use of the
velocity measurement to locally modify the virtual constraints right after impact
(see Apendix D). Secondly, a deeper investigation of the difference of behavior
obtained without and with the use of sensors to detect the contact with the ground
is to be done. This requires finding sensors more robust than FSR or/and to
find a better design of the feet, which is the third improvement. Especially, more
rigid feet may render the foot-ground contact interaction closer to the rigid model
resulting in less oscillations of θ̇.
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Chapter 4

A Study on the Relative Kinetic
Energy Dissipation at Impact for
Biped Robots

Résumé français Les trajectoires expérimentales du robot VS (voir chapitre 3)
sont bruyantes. L’impact du pied de vol sur le sol cause des vibrations dans la
structure du robot, et le tapis roulant est tombé en panne plusieurs fois à cause des
impacts répétés. En réalité, d’après les simulations, il s’avère que plus de la moitié
de l’énergie cinétique du robot est dissipée à l’impact. Il vient alors la question
de la possibilté de faire la syntèse de trajectoires qui dissipent moins d’énergie
à l’impact, et de manière plus générale de l’utilité de contrôler la dissipation
d’énergie. Ce chapitre s’intéresse à cette problématique.

Nous ne sommes pas les premiers à nous intéresser à ce problème. Miossec et
Aoustin [74] ont fait la synthèse de trajectoires de marche qui ne dissipent aucune
énergie cinétique à l’impact. Pour cela, ils imposent le pied de vol du robot à
atterrir à une vitesse nulle au sol. Nous généralisons ici cette approche en proposant
de contrôler, à n’importe quelle valeur, la dissipation relative d’énergie cinétique.
Nous proposons deux applications pratiques : la génération de trajectoires avec
une faible consommation de couple et une faible dissipation d’énergie à l’impact; la
génération de trajectoires dissipant la majorité de l’énergie du robot pour l’arrêter
rapidement.

Dans la section 4.2, nous calculons la dissipation relative d’énergie à l’impact en
utilisant le modèle d’impact standard rigide introduit par Hurmuzlu (voir section
1.4.1). Nous montrons que l’étude revient à résoudre un problème aux valeurs
propres généralisé sous contraintes, les contraintes étant les hypothèses du modèle
d’impact. Nous étudions de manière analytique le problème aux valeurs propres
généralisé (sans les contraintes), et mettons en évidence des conditions suffisantes
sur le contact pied-sol avant et après impact telles qu’il existe des états juste avant
impact qui engendrent une dissipation nulle ou totale de l’énergie cinétique du
robot à l’impact. Nous vérifions dans un second temps si les contraintes sont
respectées sur un modèle numérique.

Dans la section 4.3, nous considérons un robot bipède avec au plus un degré
de sous actionnement, et expliquons comment faire la synthèse de mouvements
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qui amènent le robot à l’impact avec une dissipation relative d’énergie désirée en
modifiant légèrement l’algorithme d’optimisation de la méthode HZD (see Section
2.4.6.1).

La section 4.4 est une application des sections précédentes. Nous comparons les
résultats théoriques de la section 4.2 avec les résultats numériques obtenus avec un
modèle 5 liens plan avec pieds ponctuels. Nous faisons la synthèse de trajectoires
qui dissipent peu d’énergie à l’impact, et qui dissipent près de 80% de l’énergie
pour arrêter le robot "en un pas". Enfin, nous mettons en évidence la robustesse du
contrôle de l’énergie via une étude en simulation utilisant un modèle (plus réaliste)
de sol compliant [88], et introduisant des incertitudes sur les paramètres du robot
(masse, inertie, position du centre de masse des membres...), et en considérant des
erreurs de suivi de trajectoire.

4.1 Introduction
The experimental walking trajectories of the robot VS (see Chapter 3) are noisy.
The impact of the swing leg onto the ground causes vibrations in the base frame,
and the treadmill broke down several times. As a matter of fact, from simulations,
it was found that the experimental walking trajectories dissipate more than a half
of the kinetic energy of the robot at impact.

Hence, the trajectories have the drawback to be noisy, to deteriorate the
hardware and do not seem to be suited for the comfort of an exoskeleton user.
Then comes the question on the possibility of designing walking trajectories that
dissipate less energy at impact, and more generally on the utility of controlling
the energy dissipation. This is the core topic of this chapter.

We are not the first to address this problem. Miossec and Aoustin [74] designed
walking trajectories with no dissipation of energy at impact for a planar five-link
walker. They imposed the swing foot to land on the ground at zero velocity. We
generalize this approach by proposing to control any value of the relative kinetic
energy dissipation at impact, and propose practical applications.

From now on, for the sake of brevity, the term “energy” will refer to the
kinetic energy. First, in Section 4.2, considering a standard hybrid model of biped
robot described in Chapter 1, we will investigate the relative energy dissipation
at impact using the standard rigid impact model introduced by Hurmuzlu (see
Section 1.4.1). Actually, the theoretical study and the numerical examples in
this chapter will motivate the study of the relative energy variation instead of
the energy variation for control purposes. We will show that investigating the
relative energy dissipation comes to solve a generalized eigenvalue problem under
constraints, the constraints being the hypotheses of the impact model. We will
analytically study the corresponding generalized eigenvalue problem without the
constraints and exhibit sufficient conditions on the foot-ground contact before and
after impact so that there exist states right before impact causing no dissipation
of energy (relative energy dissipation equal to 0), or a full dissipation of the energy
(relative energy dissipation equal to −1). The verification of the constraints will
be left as a second step on a numerical particular example. Next, in Section 4.3,
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we will consider a biped robot with maximally one degree of underactuation and
explain how to design motions bringing the robot at impact with a desired relative
energy dissipation by using virtual constraints and solving a slightly modified
version of the nonlinear programming problem used in the HZD method (see
Section 2.4.6.1).

Section 4.4 is an application of the previous sections. We will compare the
theoretical results of Section 4.2 with the numerical results obtained using a
planar five-link walker with point feet, especially by checking if the impact model
hypotheses are verified. We will also design motions bringing the robot with a
desired energy dissipation at impact. Two practical applications of the control
of the relative energy dissipation are proposed: the design of walking trajectories
that dissipate little energy at impact, and the design of motions dissipating more
than 80% of the energy to stop the robot “in one step”. Finally, we will highlight
the robustness of the control of the relative energy dissipation by using a standard
(more realistic) compliant ground model [88], introducing a mismatch in the
dynamic parameters (mass, inertia, position of the center of mass of the links...),
and considering tracking inaccuracy.

4.2 Theoretical Study on the Relative Energy
Variation at Impact

We will consider the impact model described in Section 1.4.1. We remind that
we consider that the robot is subject to p− holonomic constraints η−(qe) = 0
before impact. Then, the configuration space is a (N − p−)-dimensional embedded
manifold of Qe

Qη−e = {qe ∈ Qe | η−(qe) = 0} . (4.1)
The state evolves in the tangent bundle T Qη−e and the dynamical equations

are De(qe)q̈e + Ce(qe, q̇e) +Ge(qe) = Beu+
(
∂η−

∂qe
(qe)

)T
λ

η−(qe) = 0
(4.2)

The phase after impact is defined by p+ holonomic constraints η+(qe) = 0. The
configuration space is a (N − p+)-dimensional embedded manifold of Qe

Qη+

e = {qe ∈ Qe | η+(qe) = 0} . (4.3)
The state evolves in the tangent bundle T Qη+

e and the dynamical equations
are De(qe)q̈e + Ce(qe, q̇e) +Ge(qe) = Beu+

(
∂η+

∂qe
(qe)

)T
λ

η+(qe) = 0
(4.4)
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The impact describes the jump of the state from T Qη−e and T Qη+
e .

4.2.1 Kinetic Energy Variation at Impact
We remind that the kinetic energy variation at impact in the extended coordinates
(qe; q̇e) ∈ T Qη−

e ⊂ R2N is

VarKe(qe, q̇e) =

− 1
2 q̇

T
e

(∂η+

∂qe
(qe)

)T∂η+

∂qe
(qe)De(qe)−1

(
∂η+

∂qe
(qe)

)T−1
∂η+

∂qe
(qe)

q̇e . (4.5)

In the reduced coordinates (q; q̇) ∈ T Qη
−

f ⊂ R2(N−p−)

VarK(q, q̇) = 1
2 q̇

TA(q)q̇ , (4.6)

where

A(q) =−
(
∂Eη−

∂q
(q)
)T(∂η+

∂qe
(qe)

)T∂η+

∂qe
(qe)D−1

e (qe)
(
∂η+

∂qe
(qe)

)T−1

×
(
∂η+

∂qe
(qe)

)(∂Eη−

∂q
(q)
)
.

, (4.7)

with qe = Eη−(q), and Eη−(q) is the embedding from Qη−

f to Qη−
e .

4.2.2 Investigating the Relative Energy Dissipation
4.2.2.1 The Relative Energy Dissipation is a Suitable Indicator

In the study of the mapping (qe, q̇e)→ VarKe(qe, q̇e) on T Qη−e , i.e. of the influence
of the state before impact on the dissipation of energy, only the geometry is of
interest, since it is quadratic relative to the velocity q̇e. Yet, it is more interesting
to know if there exist some non trivial values of the state, such that the kinetic
energy of the robot is totally dissipated. This comes to study the ratio of energy
dissipated at impact, and so to study the relative energy dissipation

VarKe(qe, q̇e)
Ke(qe, q̇e)

. (4.8)

Note that since the impact dissipates energy (1.75), and since we study a
relative variation, necessarily

− 1 ≤ VarKe(qe, q̇e)
Ke(qe, q̇e)

≤ 0 . (4.9)
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4.2.2.2 Parameters Dependency of the Relative Energy Dissipation

From (4.5) and (4.8), the relative energy dissipation depends on three parameters

• The nature of the foot-ground contact after impact η+(qe) = 0. It defines in
particular how the ground reaction acts on the robot during the impact.

• The configuration of the robot before impact qe.

• The direction of the velocity of the robot before impact q̇e.

The nature of the foot-ground contact before impact η−(qe) = 0 constrains the
state before impact to evolve in an embedded manifold T Qη−e of T Qe. Then, the
robot cannot reach any position and velocity just before impact, restricting the
possibility of dissipating energy.

4.2.2.3 A Generalized Eigenvalue Problem Under Constraints

We are interested in the values of the relative energy variation, and in highlighting
the influence of the parameters presented above.

For that purpose, we propose to consider a given foot-ground contact before
impact, corresponding to p− holonomic constraints η−(qe) = 0. This allows to
define a reduced set of coordinates for the robot before impact (q; q̇) ∈ T Qη

−

f as
explained above. In addition, the two first parameters of the previous section, that
is the foot-ground contact after impact and the configuration right before impact
impact, are chosen a priori.

Proceeding this way facilitates the study. Indeed, this comes to investigate the
values of the relative energy variation on the tangent space TqQη

−

f , that is of the
mapping

TqQη
−

f → [0, 1]

q̇ → VarK(q, q̇)
K(q, q̇) = q̇TA(q)q̇

q̇TD(q)q̇ ,
(4.10)

where D(q) is positive definite and A(q) is symmetric negative.
We are especially interested in finding the extremal values of the relative energy

variation

min
q̇∈TqQη

−
f

q̇TA(q)q̇
q̇TD(q)q̇ . (4.11)

We will see in the next section that this is equivalent to solve a generalized eigen-
value problem.

Since (4.8) was derived using the rigid impact model described in 1.4.1, the
impact model hypotheses (1.68) must be verified. Then, finding the admissible

114



values of the relative energy variation comes to solve the generalized eigenvalue
problem under constraints

min
q̇∈TqQη

−
f

q̇TA(q)q̇
q̇TD(q)q̇ ,

s.t. Cη+

∆

(
Eη−(q), ∂E

η−

∂q
(q)q̇

)
≥ 0 ,

(4.12)

where qe = Eη−(q).

Several approaches can be used to solve (4.12). We decided to consider the
following approach.

Step 1: Solving (4.11) analytically. In a first step, we chose not to consider
the constraints (1.68). Indeed, these constraints are model dependent, that is
depend on the values of the dynamic parameters (mass, length, inertias...), which
complicates an analytical resolution. Hence, we analytically investigate (4.10) and
(4.11). This problem is addressed in Sections 4.2.3, 4.2.4 and 4.2.5.

Step 2: Checking numerically the impact model hypotheses (1.68). In
a second step, to properly use the obtained results for a particular model of robot,
one numerically verifies if the constraints (1.68) are verified. This is done in 4.4.2
for the model of the planar five link walker.

4.2.3 Relative Energy Variation and Generalized Eigen-
value Problem

We show here that the study of the mapping (4.10) and of (4.11) are equivalent to
the resolution of a generalized eigenvalue problem.

4.2.3.1 Generalized eigenvalue problem

A generalized eigenvalue problem consists in finding the roots of the characteristic
polynomial

det[P − λQ] , (4.13)
where P and Q are square matrices of same dimension, and λ ∈ R is the variable of
the polynomial. A value of λ zeroing the polynomial is called generalized eigenvalue
of P and Q. A vector v of the kernel of P − λQ, that is verifying Pv = λQv, is
called a generalized eigenvector associated to λ. Note that the standard eigenvalue
problem corresponds to the case where Q is the identity matrix.

It can be proved that the solutions of the generalized eigenvalue problem are the
stationary points of the function x→ xTPx

xTQx
, if Q is positive definite. xTPx−λxTQx

is sometimes called a pencil of quadratic forms. For further details, see for example
the chapter 15 in [86] and [42].
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4.2.3.2 Relative energy variation and generalized eigenvalue problem.

Values of the mapping (4.10). The resolution of a generalized eigenvalue
problem gives information on the values of the mapping (4.10) and the solutions
of (4.11). More especially, if λ is a generalized eigenvalue of A(q) and D(q), that
is a root of

det[A(q)− λD(q)] , (4.14)
then it is a stationary value of the relative energy dissipation (4.10).

Additionally, from [42] (theorem 8 page 310), the characteristic polynomial
(4.14) has N − p− real roots

λ1 ≤ λ2 ≤ ... ≤ λN−p− . (4.15)
And it follows from [42] (equation (70) page 318) that we have

λ1 ≤
q̇TA(q)q̇
q̇TD(q)q̇ ≤ λN−p− on TqQη

−

f . (4.16)

The corresponding generalized eigenvectors, vi,i∈{1,N−p−} (Avi = λiDvi) can
be chosen such that they are orthonormal with the scalar product defined by the
mass matrix D(q), that is

vTi D(q)vj = δji , (4.17)
where

δji = 1 if i = j, else 0. (4.18)

Decomposition of the tangent space TqQη
−

f . From (4.17), the tangent space
TqQη

−

f can be decomposed as the direct sum of the subspaces generated by the
generalized eigenvectors

TqQη
−

f = Vect(v1)⊕ Vect(v2)...⊕ Vect(vN−p−) , (4.19)
where Vect(vi) is the subspace generated by vi.

Hence, any velocity q̇ ∈ TqQη
−

f can be written as a linear combination of the
generalized eigenvectors vi. Additionally, from [42] (Theorem 11 page 319), for
1 ≤ d ≤ N − p−, any velocity belonging to the subspace

Vect(vd)⊕ Vect(vd+1)...⊕ Vect(vN−p−) , (4.20)
corresponds to a relative energy dissipation comprised between λd and λN−p− .

As a result, studying the relative energy dissipation comes to compute, for each
position q ∈ Qη

−

f , generalized eigenspaces in TqQη
−

f .
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4.2.3.3 A Deeper Investigation of λ1 and λN−p−

We have just seen that the relative energy dissipation, without considering the
constraints imposed by the impact model, is comprised between λ1 and λN−p− .
From (4.9), we have

− 1 ≤ λ1 ≤ λN−p− ≤ 0 . (4.21)
We will investigate now in the two next sections, under which conditions on

the foot-ground contact, and on the configuration at impact, λN−p− = 0 (no
dissipation) and λ1 = −1 (total dissipation of the energy), that is under which
conditions the relative energy dissipation ratio at impact can take any value. We
will also determine the corresponding states before impact.

As a first step, in 4.2.4, we will investigate the problem on T Qe, that is in the
case where the robot is subject to no constraints before impact (flight phase). Next,
in 4.2.5, we will consider the more restrictive cases where the robot is subject to
holonomic constraints before impact due to the foot-ground contact, constraining
the reachable states before impact and the values of the relative energy dissipation.

During this study, we will assume that ∂η−

∂qe
(qe) and ∂η+

∂qe
(qe) are full rank. Hence

rank
(
∂η−

∂qe
(qe)

)
= p−

rank
(
∂η+

∂qe
(qe)

)
= p+

rank
(
∂Eη−

∂q
(q)
)

= N − p−

(4.22)

4.2.4 The Particular Case of Flight Phase Before Impact
We consider here that the robot is in flight phase before impact, i.e. the robot
is not in contact with the ground (p− = 0). Such a phase is met in the case of
running. Then, any state is theoretically reachable before impact, and the study
is performed on the entire manifold T Qe, i.e. q = qe and Eη− is the identity.
After impact, it is assumed that the robot is subject to p+ holonomic constraints
η+(qe) = 0.

We prove here that the generalized eigenvalues of (4.14) are necessarily −1 or 0.
Then, a robot in flight phase, with an appropriate choice of state, can theoretically1

land on the ground by dissipating between 0 and 100 % of its kinetic energy at
impact. This particular case will be useful to treat the case of the robot in contact
with the ground before impact.

1Actually, the actuator limits and the validity of the impact model have to be also considered.
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4.2.4.1 No Dissipation of Energy

Let V η+

0 be the generalized eigenspace associated to the generalized eigenvalue 0.
The relative energy dissipation is zero if and only if the energy dissipation is zero.
Then, from 1.4.3.2, we have

V η+

0 = Ker
(
∂η+

∂qe
(qe)

)
, (4.23)

where ∂η+

∂qe
(qe) is a p+ ×N matrix and is full rank by hypothesis. We deduce from

the nullity rank theorem that

dim(V η+

0 ) = N − p+. (4.24)

4.2.4.2 Total Dissipation of Energy

Let V η+

−1 be the eigenspace associated to the generalized eigenvalue −1 (100% of
the energy is dissipated). Let qe ∈ Qe, we look for v ∈ TqeQe such that

(∂η+

∂qe
(qe)

)T(∂η+

∂qe
(qe)

)
D−1
e (qe)

(
∂η+

∂qe
(qe)

)T−1(
∂η+

∂qe
(qe)

)v = De(qe)v ,

(4.25)
or equivalently

D−1
e (qe)

(∂η+

∂qe
(qe)

)T(∂η+

∂qe
(qe)

)
D−1
e (qe)

(
∂η+

∂qe
(qe)

)T−1(
∂η+

∂qe
(qe)

)v = v .

(4.26)
Let v be obtained as

v = D−1
e (qe)

(
∂η+

∂qe
(qe)

)T
w , (4.27)

with

w ∈ Rp+
. (4.28)

Then, we get

D−1
e (qe)

(∂η+

∂qe
(qe)

)T(∂η+

∂qe
(qe)

)
D−1
e (qe)

(
∂η+

∂qe
(qe)

)T−1(
∂η+

∂qe
(qe)

)v
= D−1

e (qe)
(
∂η+

∂qe
(qe)

)T
w .

(4.29)

So any such v is solution. This shows that
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Im

D−1
e (qe)

(
∂η+

∂qe
(qe)

)T ⊂ V η+

−1 . (4.30)

Additionnally, since ∂η+

∂qe
(qe) is full rank by hypothesis , and D−1

e (qe) is a positive
definite matrix, then

dim

Im(D−1
e (qe)

(
∂η+

∂qe
(qe)

)T) = p+. (4.31)

As a result, from (4.19), we have

p+ ≤ dim(V η+

−1 ) ≤ N − dim(V η+

0 ) . (4.32)
Then, using (4.24) gives

dim(V η+

−1 ) = p+. (4.33)
This proves that the subspace of the velocities resulting in a total dissipation

of energy is

V η+

−1 = Im

D−1
e (qe)

(
∂η+

∂qe
(qe)

)T . (4.34)

This is a vector space of dimension p+.

4.2.4.3 Summary for the Case of Flight Phase Before Impact

We proved the following result:

Let a model of biped robot in flight phase be as described in Chapter 1.
The state space T Qe is of dimension 2N . The foot-ground contact during and
after impact is modeled with p+ holonomic constraints η+(qe) = 0. For any
configuration qe ∈ Qe, if ∂η+

∂qe
(qe) is full rank, and the hypotheses of the impact

model are respected (see Section 1.4.2), then there exist velocities q̇e ∈ TqeQe
such that the energy dissipation at impact is zero, and velocities such that the
dissipation of energy is total. Specifically:

• V η+

0 = Ker
(
∂η+

∂qe
(qe)

)
is the set of velocities q̇e ∈ T Qe such that the dissipa-

tion of energy is zero. It is a vector space of dimension N − p+.

• V η+

−1 = Im
(
D−1
e (qe)

(
∂η+

∂qe
(qe)

)T)
is the set of velocities q̇e ∈ T Qe such that

the dissipation of energy is total. It is a vector space of dimension p+.

• The tangent space can be partitionned as:
TqeQe = Ker

(
∂η+

∂qe
(qe)

)
⊕ Im

(
D−1
e (qe)

(
∂η+

∂qe
(qe)

)T)
.
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4.2.4.4 Remarks

Remark 1. Only the kinematics of the robot plays a role in the definition of
V η+

0 . On the contrary, both the kinematics and the dynamics appear in V η+

−1 . The
dynamics contribution is only due to the presence of the mass matrix De(qe).

The physical meaning of V η+

0 is quite straightforward. See Section 1.4.3.2.
The physical meaning of V η+

−1 is less clear. We do not know how to interpret
the term De(qe)−1, and could not relate this set with a particular behavior of the
swing foot such as the orientation of the velocity along a given direction. But, we
can remark that its dimension is equal to the rank of η+(qe), i.e. to the number
of degrees of freedom locked by the feet-ground contact during and after impact.
Actually, the ground reaction impulse works only along these locked degrees of
freedom, see (1.73).

Remark 2. Actually, we have that the only generalized eigenvalues are 0 and 1.
This is consistent with the fact that

P = De(qe)−1

(∂η+

∂qe
(qe)

)T(∂η+

∂qe
(qe)

)
De(qe)−1

(
∂η+

∂qe
(qe)

)T−1(
∂η+

∂qe
(qe)

)
(4.35)

is an idempotent matrix, i.e. P 2 = P .

4.2.5 A More General Case: Robot Subject to Holonomic
Constraints Before Impact

We consider now that the robot is in contact with the ground before impact.
The foot-ground contact is described by p− holonomic constraints η−(qe) = 0
and constrains the configuration of the robot to evolve in a N − p− dimensional
submanifold Qη−e of Qe. The state is then constrained to evolve in a 2(N − p−)
dimensional embedded manifold T Qη−e of T Qe.

The key point is that now only the velocities in the image of ∂Eη
−

∂q
(q) (see

(1.76)), that is under the form

q̇e = ∂Eη−

∂q
(q)q̇ , (4.36)

where q ∈ Qη
−

f ⊂ RN−p− , and q̇ ∈ TqQη
−

f , are reachable. We figure out here under
which conditions there exist such velocities resulting in no dissipation, or a total
dissipation of the energy, that is belonging respectively to V η+

0 and V η+

−1 .

4.2.5.1 No Dissipation of Energy

From (4.23), for a given configuration q ∈ Qη
−

f , we know that q̇ ∈ TqQη
−

f dissipates
no energy if and only if
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q̇e = ∂Eη−

∂q
(q)q̇ ∈ Ker

∂η+

∂qe

(
Eη−(q)

) . (4.37)

Hence ∂η+

∂qe

(
Eη−(q)

)
∂Eη−

∂q
(q)
q̇ = 0 . (4.38)

Therefore, the nullspace of ∂η+

∂qe

(
Eη−(q)

)
∂Eη

−

∂q
(q) is the set of the velocities that

dissipate no energy at impact. Let us investigate now the dimension of this space.

From classical results of linear algebra gathered in Appendix E, we have


rank

∂η+

∂qe

(
Eη−(q)

)
∂Eη−

∂q
(q)
 ≤ min

rank(∂η+

∂qe

(
Eη−(q)

))
, rank

(
∂Eη−

∂q
(q)
).

rank

∂η+

∂qe

(
Eη−(q)

)+ rank

∂Eη−

∂qe
(q)
−N ≤ rank

∂η+

∂qe

(
Eη−(q)

)
∂Eη−

∂q
(q)
.

(4.39)
From (4.22), we get

p+ − p− ≤ rank

∂η+

∂qe

(
Eη−(q)

)
∂Eη−

∂q
(q)
 ≤ min

(
p+, N − p−

)
. (4.40)

Then, from the rank-nullity theorem

N − p− −min(p+, N − p−) ≤ dim

Ker(∂η+

∂qe

(
Eη−(q)

)
∂Eη−

∂q
(q)
) ≤ N − p+.

(4.41)
There are two possibilities, depending on the sign of the left-hand side of this

last inequality.

Case 1. If N−p−−min(p+, N−p−) > 0, this is equivalent tomin(p+, N−p−) =
p+, and so to N − p− > p+. Then

0 < N − p− − p+ ≤ dim

Ker(∂η+

∂qe

(
Eη−(q)

)
∂Eη−

∂q
(q)
) ≤ N − p+ . (4.42)

There exist velocities resulting in no energy dissipation at impact. This case
is encountered for most of biped robots. As a matter of fact, the inequality
N − p− > p+ implies that it is possible for the robot to dissipate no energy at
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impact if it has enough degrees of freedom. For that, N must be “large”, or p−
“small”. This is the case for the planar five-link robot in single support phase before
impact and for more complex models. But, this is not the case for the compass
walker.

Case 2. If N − p− −min(p+, N − p−) ≤ 0, one cannot conclude, except when2

p+ = N . In this latter case, there exist no velocity that result in no dissipation of
energy at impact.

4.2.5.2 Total Dissipation of Energy

Let a configuration qe ∈ Qη
−
e . Due to the holonomic constraints, the velocity

q̇e ∈ TqeQη
−
e verifies

q̇e ∈ Ker(
∂η−

∂qe
(qe)) . (4.43)

And from (4.34), we know that q̇e results in a total dissipation of the energy if
and only if there exists v ∈ Rp+ such that

q̇e =
(
D−1
e (qe)

∂η+T

∂qe
(qe)

)
v . (4.44)

This implies
(
∂η−

∂qe
(qe)D−1

e (qe)
∂η+T

∂qe
(qe)

)
v = 0 . (4.45)

The converse is trivially true: (4.45) ⇒ { (4.44) + (4.43) }.

Hence, the problem lies on computing the null space of
(
∂η−

∂qe
(qe)D−1

e (qe)∂η
+T

∂qe
(qe)

)
,

a matrix of dimension p− × p+.

Using the nullity-rank theorem, we have

dim

Ker(∂η−
∂qe

(qe)D−1
e (qe)

∂η+T

∂qe
(qe)

) = p+−rank

∂η−
∂qe

(qe)D−1
e (qe)

∂η+T

∂qe
(qe)

.
(4.46)

And using classical results of linear algebra in Appendix E gives


rank

∂η−
∂qe

(qe)D−1
e (qe)

∂η+T

∂qe
(qe)

 ≤ min

rank(∂η−
∂qe

(qe)
)
, rank

(
D−1
e (qe)

∂η+T

∂qe
(qe)

)
rank

(
∂η−

∂qe
(qe)

)
+ rank

(
D−1
e (qe)

∂η+T

∂qe
(qe)

)
−N ≤ rank

∂η−
∂qe

(qe)D−1
e (qe)

∂η+T

∂qe
(qe)


(4.47)

2Necesssarlily, p+ ≤ N . Indeed p+ is the rank of ∂η
+

∂qe
(qe), and this matrix has N rows.
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Given that De(qe)−1 is positive definite

rank
(
D−1
e (qe)

∂η+T

∂qe
(qe)

)
= rank

(
∂η+T

∂qe
(qe)

)
. (4.48)

Thus, (4.47) gives

p− + p+ −N ≤ rank

∂η−
∂qe

(qe)D−1
e (qe)

∂η+T

∂qe
(qe)

 ≤ min
(
p+, p−

)
. (4.49)

And from (4.46)

p+ −min(p+, p−) ≤ dim

Ker(∂η−
∂qe

(qe)D−1
e (qe)

∂η+T

∂qe
(qe)

) ≤ N − p−. (4.50)

There are two possibilities.

Case 1. If p+ − min(p+, p−) > 0. This is equivalent to p+ > p−. Then, the
dimension of the null space is greater or equal to p+ − p−. Said differently, if more
degrees of freedom between the feet and the ground are locked after impact than
before, then there exist velocities that lead to a total dissipation of the energy.

Case 2. If p+ −min(p+, p−) ≤ 0, or equivalently p+ ≤ p−, (4.50) does not allow
to conclude3.

4.2.6 Main result
In this section we proved the following result:

Let a model of biped robot be such as described in Chapter 1 and be subject to
p− holonomic constraints η−(qe) = 0. Let qe ∈ Qη

−
e ⊂ RN be a set of generalized

positions, and q̇e ∈ TqeQη
−
e be the generalized velocities. The foot-ground contact

during and after the impact is modeled with p+ holonomic constraints η+(qe) = 0.
For any configuration qe ∈ Qe, if ∂η+

∂qe
(qe) and ∂η−

∂qe
(qe) are full rank, and the

hypotheses of the impact model are respected (see 1.4.2), then:

• V η+

0,η− = Ker(∂η+

∂qe
(qe))∩Ker(∂η

−

∂qe
(qe)) is the set of velocities q̇e that dissipate

no energy at impact.

• V η+

−1,η− = Im
(
D−1
e (qe)∂η

+T

∂qe
(qe)

)
∩ Ker(∂η−

∂qe
(qe)), is the set of velocities q̇e

that dissipate all the energy at impact.
3The case where N − p− = 0 has no interest, since it means that all the degree of freedom of

the robot are locked before impact.
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Furthermore

N − p− −min(p+, N − p−) ≤ dim(V η+

0,η−) ≤ N − p+ . (4.51)

p+ −min(p+, p−) ≤ dim(V η+

−1,η−) ≤ N − p− . (4.52)
Hence

• N − p− − p+ > 0 is a sufficient condition for the existence of velocities that
dissipate no energy at impact.

• p+ > p−, that is more degrees of freedom are locked by the foot-ground
contact after impact than before, is a sufficient condition for the existence of
velocities that dissipate all the energy at impact.

Answering the question of the existence of such velocities for the other cases is
still an open problem.

Note that Miossec and Aoustin [74] designed walking trajectories with no
dissipation of energy at impact for a planar five-link walker. For that purpose,
they imposed the swing foot to land on the ground at zero velocity. This is exactly
the same as imposing the velocity q̇e to be in Vη+

0,η− at impact.

4.3 Using the Relative Energy Dissipation for
Motion Planning

In this section, we consider the problem of designing motions bringing the robot
at impact with a given relative energy dissipation at impact. We see two practical
interests of designing such motions. A walking cycle with a small relative energy
dissipation is likely to result in less noise and vibration at impact in the structure.
A motion with a high relative energy dissipation can be used to stop the robot in
“one step”. The theoretical framework introduced above will be useful to facilitate
the design of such motions.

We use virtual constraints for parameterizing the motion (see Section 2.4.3).
Indeed, the use of virtual constraints has some interests for the problem that we
consider. As seen in Section 2.4.5.2, virtual constraints define a unique path in the
configuration space for biped robots with maximally one degree of underactuation.
In such a case, we will see that the relative energy dissipation at impact is
independent of the travel speed of this path. This facilitates both the motion
planning algorithm, and the control of the energy dissipation at impact in practice.

4.3.1 Virtual Constraints Define a Unique Relative
Energy Dissipation

Let us consider the case of biped robots whose joints are independently actuated
(no passive joints), and such that the foot-ground contact has maximally one
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degree of freedom. In others words, the degree of underactuation does not exceed
one. A biped robot in single support phase with the stance foot flat on the ground
(no underactuation), or a planar biped robot with point feet in single support
phase (one degree of underactuation) are some examples.

Let θ be a phase variable4, that is a geometrical quantity used to parameterize
the motion. Let the virtual constraints for the actuated coordinates qa be

y = qa − hd(θ) , (4.53)
where θ → hd(θ) is the motion of reference of the actuated coordinates. Assuming
that the output y is zero, and since the degree of underactuation does not exceed
one, then the generalized positions q are only a function of θ

q = f(θ) , (4.54)
and

q̇ = f
′(θ)θ̇ . (4.55)

From (4.8), the relative energy dissipation is

f
′(θ)TA

(
f(θ)

)
f
′(θ)

f ′(θ)TD
(
f(θ)

)
f ′(θ)

. (4.56)

This quantity is independent of the velocity θ̇. Therefore, the energy dissi-
pation depends only on the position along the path in the configuration space
parameterized by θ. This proves that correctly following the virtual constraints
ensures a given relative energy dissipation at impact, if the impact occurs for the
same value of θ = θ−, as for the case of a walk on flat ground. Note that this is
not true anymore for several degree underactuated robots, since the path defined
by the virtual constraints is not unique.

4.3.2 Imposing a Relative Energy Dissipation in Virtual
Constraints

Using (4.56), one can easily shape the virtual constraints to have a desired relative
energy dissipation at impact if the robot has maximally one degree of underac-
tuation. Let us consider that the virtual constraints bring the robot at a given
configuration at impact q−. The phase variable is equal to θ = θ−. Let r be
the desired relative energy dissipation at impact. From (4.16), r must verify
λ1 ≤ r ≤ λN−p− . From (4.56), imposing r is equivalent to impose f ′(θ−).

4.3.2.1 Computing f ′(θ−) to Get the Desired Relative Energy Dissipa-
tion at Impact r

We propose to proceed the following way by considering 3 cases.
4If the robot is fully actuated, the ordinary time t can also be used. The real interest of using

a phase variable is when the robot is underactuated.
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Case 1. If r = λ1 or r = λN−p− , then f ′(θ−) is taken as a linear combination of
the corresponding generalized eigenvector(s) of A and D.

Case 2. If λ1 < r < λN−p− , and r 6= λi, i ∈ {1, N − p−}, the velocity f ′(θ−) is
chosen in the vector subspace

Vect(vd)⊕ Vect(vd+1)...⊕ Vect(vN−p−) , (4.57)
where λd < r < λd+1. Hence

f ′(θ−) = αdvd + αd+1vd+1 + ...+ αN−p−vN−p− , αi ∈ R, i ∈ {d,N − p−} . (4.58)

Since the eigenvectors are orthogonal to each other (see (4.17)), the relative
energy dissipation is

f
′(θ−)TA

(
f(θ−)

)
f
′(θ−)

f ′(θ−)TD
(
f(θ−)

)
f ′(θ−)

=

N−p−∑
i=d

α2
iλi

N−p−∑
i=d

α2
i

. (4.59)

Leaving free αi,i∈{d+1,N−p−}, so that the relative energy dissipation be equal to
r, αd must verify

α2
d =

N−p−∑
i=d+1

α2
i

(
λi − r

)
r − λd

. (4.60)

This equation has necessarily one solution, since the right-hand side of the
equation is positive by construction.

Case 3. If λ1 < r < λN−p− , and there exits d ∈ {2, N−p−−1} such that r = λd,
the velocity f ′(θ−) is chosen as a combination of the corresponding eigenvectors,
and of the eigenvectors associated to the eigenvalue 0 (if they exist).

Remarks: The orientation of f ′(θ−) does not modify the relative energy dissi-
pation. This sign is chosen to be in accordance with the conditions under which
an impact occurs. For instance, the vertical velocity of the swing leg must be
downward if it is assumed that the impact occurs when the swing leg hits the
ground.

There exist other ways to construct f ′(θ−), but proceeding like this was enough
for the numerical example of the five-link waker given in the next section.
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4.3.2.2 Shaping the Virtual Constraints such that q̇− = f
′(θ−)θ̇−

The motion of reference hd(θ) must verify

(h′d(θ−); 1) = f
′(θ−) , (4.61)

for one degree underactuated robots or

h
′

d(θ−) = f
′(θ−) , (4.62)

for fully actuated robots.

4.3.3 Motion Planning Algorithm
We use the HZD method to design virtual constraints bringing the robot at impact
with a desired relative energy dissipation and respecting some constraints (friction
cone constants, torque limits,...). We solve the corresponding parametric nonlinear
optimization problem (see Section 2.4.6.1) that we adapt for our problem, especially
by using the results of Section 4.3.2.

With this approach, the motion of reference hd(θ) is parameterized by polyno-
mials. Then, from (4.61) or (4.62), one can derive explicit relations which must
be verified by the coefficients of the polynomials, reducing the size of the search
space of the optimization. Hence, the relative energy dissipation can be directly
imposed by a proper choice of the polynomial coefficients.

This method is applied in the next section for the particular case of a planar
five-link walker. Further details can be found in Appendix F.

4.4 Application to a Planar Five-Link Walker
As an illustration, we apply the previous study realized in Section 4.2 and 4.3 to
a planar five-link walker with point feet. First, we present this model. Then, we
perform a numerical exploration on the configuration space of the robot. For each
position explored, the generalized eigenvalue problem is solved, and the results are
compared to the theoretical result of Section 4.2.6. We especially investigate in
what extend the hypotheses of the impact model are verified, as it was assumed in
these theorems. Next, using Section 4.3, we generate motions bringing the robot
with a low or high relative energy dissipation at impact, and discuss the practical
interest of such motions.

4.4.1 Model of the Planar Five-Link Walker
The planar five-link walker with point feet has seven degrees of freedom. It is
made of two articulated legs and of one torso. A description of the model can be
found in [127].

The robot has four independently actuated joint angles qb = (q1; q2; q3; q4). Its
absolute position is parameterized by the Cartesian position of the foot of one
leg, called leg 1. This position is denoted p1 = (px1 ; pz1). The Cartesian position

127



of the other leg, called leg 2, is p2 = (px2 ; pz2). The absolute orientation of the
robot is parameterized by q5. Then, a set of (extended) coordinates for the robot
qe ∈ Qe ⊂ R7 is

qe = (q1; q2; q3; q4; q5; px1 ; pz1) . (4.63)
The robot in single support phase is depicted figure 4.1. In single support

phase, the stance leg is assumed to be pinned onto the ground. The foot-ground
contact is unactuated and is modeled as an ideal revolute joint. Then, the robot is
subject to the two-dimensional holonomic constraints

ηi(qe) =
pxi (qe)− px∗i
pzi (qe)− pz∗i

 =
0

0

 , (4.64)

where i = 1, if the stance foot is the leg 1, or i = 2, if the stance foot is the leg 2,
px∗i and pz∗i are real constants.

Hence, the absolute orientation of the robot q5 is unactuated and the robot
has one degree of underactuation. A set of independent coordinates (reduced
coordinates) is

q = (q1; q2; q3; q4; q5) ∈ Qηif ⊂ R5 . (4.65)
The equations of motion were generated using the method of Lagrange. The

Lagrange’s equations were derived using the MATLAB’s symbolic toolbox. The
dynamic parameters of the model are given in figure 4.2. Note that they are the
same as for the robot VS, except that, for simplicity, we do not consider the 2 bars
stabilizing mechanism.

Figure 4.1: The planar five-link walker with measurements conventions. The red
dotted line is called the virtual stance leg.
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(a) The planar five-link walker.

Torso

lb 820 mm
pb 95 mm
Mb 15.43 kg
Icomb 0.8567 kg.m2

Thigh

lf 400 mm
pf 201 mm
Mf 5.42 kg
Icomf 0.1230 kg.m2

Shin

lt 400 mm
pt 215 mm
Mt 2.25 kg
Icomt 0.029 kg.m2

Transmission ratio rknee 101
rhip 100

Transmission inertia Iknee 1.89 kg.m2

Ihip 1.46 kg.m2

(b) Dynamic parameters of the planar five-
link walker. pi gives the position of the cen-
ter of mass of the link i. Icomi is the inertia
of the link i expressed at the center of mass
of the link i.

Figure 4.2: Dynamic parameters and notations used for the planar five-link walker.
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4.4.2 Validity of the Impact Model
We consider that before the impact, the robot is either in flight phase or in single
support phase. The impact occurs when at least one leg hits the ground. When
and after impacting the ground, the robot can be either in single support phase or
in double support phase. The determination of the phase after impact is made by
checking if the impulsive contact wrench I and the behaviour of the former stance
leg are compatible with the new phase. See 1.4.2 for further details.

We denote Ixi (resp. Izi ) the horizontal (resp. vertical) ground reaction impulse
exerted on the leg i, and µ the Coulomb static friction. From [55, 78, 127], the
hypotheses to verify for the validity of the impact model are the following ones.

4.4.2.1 Single Support Phase After Impact

The robot is in single support phase after impact if the leg that impacts the
ground does not take off (a), does not slip (b), and the former stance leg lifts the
ground without interaction (c). Without loss of generality, we assume that the leg
impacting the ground is leg 2. Then, we have

Iz2 > 0 (a)∣∣∣∣Ix2Iz2
∣∣∣∣ < µ (b)

∂pz1
∂qe

(qe)q̇+
e ≥ 0 (c)

(4.66)

4.4.2.2 Double Support Phase After Impact

The robot is in double support phase after impact if both legs do not take off (d),
(f), and do not slide (e), (g) 

Iz1 > 0 (d)∣∣∣∣Ix1Iz1
∣∣∣∣ < µ (e)

Iz2 > 0 (f)∣∣∣∣Ix2Iz2
∣∣∣∣ < µ (g)

(4.67)

4.4.2.3 Checking the Hypotheses of the Impact Model for the Gener-
alized Eigenvalues

Since I is linear in the velocity q̇e (see (1.61)), then the no slipping conditions
(b), (e), and (g) do not depend on the norm of q̇e, but only of the direction of q̇e.
Likewise, the no take off conditions (a), (d), and (f) depend only on the orientation
of the velocity q̇e. Then, it is sufficient to check the hypotheses on the normalized
eigenvector obtained from vd, and whose orientation is chosen such that the swing
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leg velocity has a decreasing altitude at impact. If this vector verifies the impact
model hypotheses, then it is the case for kvd, k ∈ R+∗.

We remind that in the particular case where ∂η+

∂qe
(qe)q̇−e = 0, as it is the case

for the generalized eigenvectors associated to the eigenvalue 0, there is no impact.
Then, there is no need to check the impact model hypotheses.

4.4.3 Numerical exploration in the Configuration Space at
Impact

To check numerically the theoretical results of Section 4.2.6, we perform here a
numerical exploration in the set of the configurations of the robot at impact, and
assuming a flat ground. As we saw, before impact, the robot may be either in
flight phase, or in single support phase. After impact, it may be either in single
support phase or in double support phase. Then, we consider four cases:

• Transition from a flight phase to a single support phase.

• Transition from a flight phase to a double support phase.

• Transition from a single support phase to a single support phase.

• Transition from a single support phase to a double support phase.

For each of these cases, we discretize the set of the configurations at impact. See
the algorithm 1.For each point of the discretized space, the generalized eigenvalue
problem (4.14) is solved. In particular, we investigate if the hypotheses of the
impact model (4.66) and (4.67) are not violated for the generalized eigenvectors.
Indeed, as explained before, the validity of them were not taken into account in
our analytical study, since they are model-dependent and cannot be guaranteed a
priori to be true. As explained in 4.4.2.3, it is enough to check the hypotheses on
the normalized eigenvectors. The orientation of the eigenvectors is selected such
that the leg(s) that impact the ground have a decreasing altitude (otherwise the
leg(s) do(es) not impact the ground).

We ignore some configurations that we consider as not "anthropomorphic"
(absolute torso angle q5 is greater than π

4 in absolute value, knee under the ground,
step length inferior to 0.1 m) and such that the swing leg is behind the stance leg
at impact5. Note that the problem is translational invariant, i.e. independent of
the coordinate px1 .

4.4.3.1 Flight Phase Before Impact

We assume here that prior to the impact, the robot is in flight phase, i.e is not
in contact with the ground (p− = 0). Then, the configuration space of the model
before impact Qη−e = Qe is a 7-dimensional manifold. The resolution of the
generalized eigenvalue problem gives seven generalized eigenvectors

− 1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ 0 . (4.68)
5The robot is assumed to move from the left to the right
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1: for each configuration q of the grid do
2: if the configuration is “anthropomorphic” then
3: Compute the generalized eigenspaces of A(q) and D(q)
4: for each generalized eigenvector vd do
5: vd ← −vd if the corresponding swing foot altitude is increasing.
6: if (4.66) is true and (4.67) is false then
7: The robot is in single support phase after impact when

x− = (q; vd).
8: The corresponding relative energy dissipation is the generalized

eigenvalue λ associated to vd.
9: end if
10: end for
11: Store the results
12: end if
13: end for

Algorithm 1: Numerical exploration in the configuration space at impact of
the relative energy dissipation assuming a transition from flight phase to single
support phase.

Single support phase after impact We consider here that the robot is in
single support phase after impact. We have

N = 7
p− = 0
p+ = 2

(4.69)

Without loss of generality, we assume that an impact occurs when leg 2 hits
the ground. We remind (see Section 4.4.1) that the Cartesian position of leg 2 is
denoted p2 = (px2 ; pz2). Then, the configurations at impact are

DA =
{
qe ∈ Qe | pz2(qe) = 0

}
. (4.70)

DA is discretized, considering the translational invariance of the problem: 10790
"anthropomorphic" configurations are investigated.

After impact, the system is subject to two holonomic constraints

η+(qe) =
px2(qe)− px∗2

pz2(qe)

 =
0

0

 , (4.71)

where px∗2 is a real constant. ∂η+

∂qe
(qe) is full rank6on Qe.

According to the theoretical result of Section 4.2.6, the set of velocities that
dissipate no energy at impact (generalized eigenvalue equal to 0) is of dimension

6We have p2(qe) = p1 + fp2(q). Then, ∂η+

∂qe
(qe) =

(
∂f2
∂q (q) I2×2

)
. Hence, the rank of the

(2×N) jacobian matrix is two.
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N−p+ = 7−2 = 5, and the set of velocities that dissipate all the energy (generalized
eigenvalue equal to -1) is of dimension p+ = 2. This is in agreement with the
obtained numerical results: for each configuration q explored, we numerically found
five generalized eigenvalues equal to 0 and two equal to -1.

Over the 26914 configurations investigated, 4656 configurations have at least
one eigenvector associated to the eigenvalue −1 and respecting the hypotheses
(4.66) of the impact model. Some of these configurations are depicted figure 4.3.

λ
1
=−1.000000

−1 0 1 2

λ
1
=−1.000000

−1 0 1 2

λ
1
=−1.000000

−1 0 1 2

λ
1
=−1.000000

−1 0 1 2

Figure 4.3: Transition from a flight phase to a single support phase. Some
configurations with at least one eigenvector associated to the eigenvalue −1 (total
dissipation of the energy at impact) that respect the hypotheses of the impact
model.

Double support phase after impact The robot is assumed to be in double
support phase after impact. We have

N = 7
p− = 0
p+ = 4

(4.72)

The set of configurations at impact is

DB =
{
qe ∈ Qe | pz1(qe) = 0, pz2(qe) = 0

}
. (4.73)

DB is discretized, considering the translational invariance of the problem: 33393
"anthropomorphic" configurations are explored.

After impact, the system is subject to four holonomic constraints

η+(qe) =


px1(qe)− px∗1

pz1(qe)
px2(qe)− px∗2

pz2(qe)

 =


0
0
0
0

 , (4.74)

where px∗1 and px∗2 are real constant values. ∂η+

∂qe
(qe) is full rank7, except when

7 Since p2(qe) = p1 + fp2(q), then ∂η+

∂qe
(qe) =

(
02×5 I2×2
∂f2
∂q (q) I2×2

)
. Hence, ∂η

+

∂qe
(qe) is full rank if

and only if the rank of ∂f2
∂q (q) is two. It was checked that this is the case on Qη

−

f , except when
q1 = q2 = q3 = q4 = q5 = 0.
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q1 = q2 = q3 = q4 = q5 = 0.

The theoretical result of Section 4.2.6 says that the set of velocities that
dissipate no energy at impact (λ = 0) is of dimension N −p+ = 7−4 = 3, and that
the set of velocities that dissipate all the energy (λ = 1) is of dimension p+ = 4.
This is in agreement with the obtained numerical results: for each configuration q
explored, we numerically found three generalized eigenvalues equal to 0 and four
equal to -1.

Over the 33393 configurations, 4123 configurations have at least one eigenvector
associated to the eigenvalue −1, and respecting the hypotheses of the impact model.
Some of these configurations are depicted figure 4.4.
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Figure 4.4: Transition from a flight phase to a double support phase. Some
configurations with at least one eigenvector associated to the eigenvalue −1 (total
dissipation of the energy at impact) that respect the hypotheses of the impact
model (4.67).

4.4.3.2 Single Support Phase Before Impact

Before impact, the robot is now assumed to be in single support phase. Without
loss of generality, we assume that leg 1 is the stance leg. Then, the robot before
impact is subject to two holonomic constraints

η−(qe) =
px1 − px∗1

pz1

 =
0

0

 , (4.75)

where px∗1 is a real constant.
The configuration manifold of the model before impact isQη−e , a five-dimensional

manifold. We use the reduced coordinates q = (q1; q2; q3; q4; q5) ∈ Qη
−

f ⊂ R5.
To define the mapping between the extended coordinates and the reduced

coordinates, an embedding is defined (see 1.3.4). The embedding Eη− , mapping
an element q ∈ Qη

−

f to an element qe ∈ Qη
−
e , is trivial, and defined as follows

qe = Eη−(q) =


q

px∗1
0

 . (4.76)

The resolution of the generalized eigenvalue problem (4.14) gives five generalized
eigenvectors
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− 1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ 0 . (4.77)
An impact occurs when leg 2 hits the ground. Then, the set of configurations

at impact is8

DC =
{
q ∈ Qη

−

f | pz1
(
Eη−(q)

)
= 0, pz2

(
Eη−(q)

)
= 0

}
. (4.78)

The number of “anthropomorphic” configurations explored on this discretized
domain, and considering the translational invariance of the problem, is equal to 33
393.

Single support phase after impact After impact, the robot is assumed to be
in single support phase with leg 2 pinned on the ground. Thus, after impact, the
system is subject to the two holonomic constraints

η+(qe) =
px2(qe)− px∗2

pz2(qe)

 =
0

0

 , (4.79)

where px∗2 is a real constant. For the same reason as before, η+(qe) is full rank onQe.

We have 
N = 7
p− = 2
p+ = 2

(4.80)

Hence, from the theoretical result of 4.2.6, we know that for a given con-
figuration q ∈ Qη

−

f , the subspace of TqQη
−

f that corresponds to no dissipation
of energy at impact is a vector space whose dimension is comprised between
N − p− − p+ = 7 − 2 − 2 = 3 and N − p+ = 7 − 2 = 5. Numerically, we
found three eigenvalues equal to zero for each configuration of the grid, i.e.
λ3 = λ4 = λ5 = 0. We checked that the associated eigenvectors respectively
belong to Ker

(
∂η+

∂qe

(
Eη−(q)

)
∂Eη

−

∂q
(q)
)
and Ker

(
∂η−

∂qe
(qe)D−1

e (qe)∂η
+T

∂qe
(qe)

)
.

Let us focus now on the two others eigenvalues λ1 and λ2. Since p+ = p−, the
theoretical result of Section 4.2.6 says nothing on the existence of velocities that
dissipate all the energy at impact (eignevalue equal to −1). From our numerical
study, see figure 4.5, we see that such velocities do not exist, even though the lowest
eigenvalue λ1 is sometimes very close to −1. Figure 4.6 depicts some configurations
whose eigenvectors associated to λ1 respect the hypotheses of the impact model.

Figure 4.7 depicts the relationship between the step length and λ1, for the
configurations whose eigenvectors associated to λ1 respect impact hypothesis. We
remark that the configurations offering the lowest relative energy dissipation, i.e.

8Actually, DB and DC are the same set. But, since we use two different sets of coordinates to
describe them, we give them a different name.
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the closest to −1, correspond to large step lengths.

Finally, it is important to remark that among the 33 393 configurations explored,
only 1982 have the eigenvector associated to the lowest eigenvalue λ1 that respects
the hypotheses of the impact model. And 12 013 configurations have the eigenvector
associated to the second lowest eigenvalue λ2 that respect them (see figure 4.5).
This illustrates the necessity of checking these hypotheses, especially when the
relative energy dissipation is close to −1.
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(a) Considering all the configurations.
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(b) Considering only the configurations that
respect the hypotheses of the impact model.

Figure 4.5: Transition from a single support phase to a single support phase.
Distribution of the lowest eigenvalue λ1 and λ2 assuming the robot is in single
support phase after impact.
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Figure 4.6: Transition from a single support phase to a single support phase. Some
configurations such that the eigenvector associated to the lowest eignevalue λ1
respect the hypotheses of the impact model (4.66).

Double support phase after impact The robot is assumed to be in double
support phase after impact. Thus, after impact, the system is subject to four
holonomic constraints

η+(qe) =


px1(qe)− px∗1

pz1(qe)
px2(qe)− px∗2

pz2(qe)

 , (4.81)
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Figure 4.7: Transition from a single support phase to a single support phase. Rela-
tionship between the step length and the relative energy dissipation λ1. Only the
configurations whose eigenvectors associated to λ1, and respecting the hypotheses
of the impact model (4.66) are considered.
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Figure 4.8: Transition from a single support phase to a double support phase.
Some configurations such that the eigenvector associated to the eigenvalue −1
(total dissipation of energy at impact) respect the hypotheses of the impact model
(4.67). All of them correspond to large step lengths (between 1.1 and 1.4 m).

where px∗2 are px∗2 are real constants.

For the same reasons as before, ∂η+

∂qe
(qe) is full rank, except when q1 = q2 =

q3 = q4 = q5. We have 
N = 7
p− = 2
p+ = 4

(4.82)

From the theoretical result of Section 4.2.6, we know that, for a given con-
figuration q ∈ Qη

−

f , the subspace of TqQη
−

f that corresponds to no dissipation
of energy at impact is a vector space whose dimension is comprised between
N − p− − p+ = 7− 2− 4 = 1 and N − p+ = 7− 4 = 3. Numerically, we find three
eigenvalues equal to zero for each configuration of the grid, i.e. λ3 = λ4 = λ5 = 0.

Since p+ > p−, i.e the number of degrees of freedom locked by the foot-ground
contact is greater for the model after impact than for the model before impact,
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then there exist velocities that dissipate all the energy at impact. The vector space
of such velocities has a dimension comprised between p+ − p− = 4− 2 = 2, and
N − p− = 7− 2 = 5. We numerically observed that it is of dimension two for any
configuration at impact, i.e. λ1 = λ2 = −1. On the 33 393 configurations explored,
only 93 have at least one eigenvector associated to the eigenvalue −1 that respects
the hypotheses of the impact model. Some of them are depicted figure 4.8. All of
them correspond to large step lengths (between 1.1 and 1.4 m). As previously, this
illustrates the difficulty of not slipping and not taking off when the dissipation of
energy is high.

4.4.3.3 Discussion

The numerical study is in accordance with the theoretical result of Section 4.2.6.
Since these theorems do not say nothing about the fact that the constraints
imposed by the foot-ground contact are satisfied, an extra check of the hypotheses
of the impact model has to be down.

The study especially showed that many states with a relative energy dissipation
close to −1 do not respect some of these hypotheses. As a matter of fact, it seems
intuitive that the higher the energy relative dissipation is, the more likely it is that
the foot impacting the ground slips or takes off.

The configurations at impact with a relative energy dissipation close to −1
and respecting the hypotheses of the impact model generally correspond to a large
step.

4.4.4 Controlling the Energy Dissipation at Impact
We design here motions for the planar five-link walker with a desired relative
energy dissipation at impact. For that purpose, we design virtual constraints using
the motion planning algorithm described in Section 4.3.3. The standard phase
variable θ corresponding to the virtual stance leg angle, and depicted in figure 4.1,
is used to parameterize the motions.

First, we generate walking trajectories with a small relative energy dissipation
at impact. As explained in the introduction of this chapter, such trajectories
minimize a priori vibrations in the structure of the robot and the noise. This is an
important point, especially for preserving the hardware or for the comfort of an
exoskeleton user. Next, we design motions with a high relative energy dissipation
at impact. We show that they can be used to stop the robot in “one step”.

4.4.4.1 Designing Walking Trajectories with Little Energy Loss at
Impact

We address here the problem of designing walking trajectories with little energy loss
at impact. We are not the first to address this problem. As explained previously,
Miossec and Aoustin [74] designed walking trajectories with no dissipation of
energy at impact for a planar five-link walker by imposing the swing foot to land
on the ground at zero velocity. This is exactly the same as imposing the velocity q̇e
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to be in Ker(∂η+

∂qe
(qe)) at impact (see the theoretical result of Section 4.2.6). The

trajectory was composed of both a single and a non instantaneous double support
phase.

Instead, we seek here motions with an instantaneous double support phase
that dissipate little energy at impact, and not necessarily zero energy. Indeed,
generating a motion with a non instantaneous double support phase require more
efforts in simulation and in implementation, since one supplementary phase (the
double support phase) has to be considered.

Walking trajectories with an instantaneous double support phase and
no energy dissipation. We designed walking trajectories with an instantaneous
double support phase and no energy dissipation at impact. Since the robot is in
single support phase before impact, we saw that, for any configuration at impact,
there are 3 eigenvectors λ2, λ3, λ4 associated to the eigenvalue 0. In the motion
planning algorithm, the velocity at impact is then chosen in Vect(v3, v4, v5).

The walking trajectories appeared to be weakly robust to joint tracking errors
and to terrain variations. Especially, a high gain PD controller (see (2.55)) does
not offer sufficient tracking accuracy to get a stable walk. Additionally, they
require significative amount of torque. One such trajectory is depicted in figure
4.9 using an input-output linearizing controller (see Section 2.4.7) to track the
virtual constraints. The properties of the trajectory are gathered in figure 4.10 (see
trajectory 7). Note that due to numerical errors, the relative energy dissipation is
not zero, but of the order of 1e-7.

[74] explained the high torque consumption by the fact that braking the swing
foot to get a null velocity at impact requires power. They also showed the crucial
role of the double support phase on the stability of walking trajectories with no
energy dissipation. Hence, trajectories with an instantaneous double support phase
and no energy dissipation do not seem to be feasible in practice. Then, we focus
now on the design of trajectories with little, but non zero, energy dissipation at
impact.

Walking trajectories with little energy dissipation at impact. We design
here walking trajectories with little relative energy dissipation at impact. We
noticed that, combined with constraints on the maximal joint velocities of the
robot, imposing a relative energy dissipation close to zero results in trajectories
with little energy dissipation.

The desired relative energy dissipation r is imposed as explained in 4.3.2. More
specifically, we select the velocity before impact in the four-dimensional vector
subspace generated by the eigenvectors associated to the four largest eigenvalues:
Vect(v2, v3, v4, v5). Indeed, we saw that three eigenvalues are 0, i.e. λ3 = λ4 =
λ5 = 0. Then, (4.60) gets
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Figure 4.9: Stick animation and evolution of the kinetic energy and joint torques
for a walking trajectory with an instantaneous double support phase and no energy
dissipation at impact (trajectory 7 in figure 4.10 ) .

α2
2 =

r
5∑
i=3

α2
i

λ2 − r
, (4.83)

which always have solutions if λ2 < r. Since we work with values of relative energy
dissipation r close to zero, and that generally λ2 is generally found to be smaller
than −0.3, this condition is met.

The configuration of the robot at impact is fixed during the optimization.
Indeed, we noticed that leaving it free results in poorer results. Several configura-
tions at impact were tested. They were randomly chosen from anthropomorphic
configurations. Further details on the motion planning algorithm can be found in
F.1.

Let us compare now these trajectories to walking trajectories obtained using
the standard HZD method, i.e. without constraining the energy losses at impact.
See figure 4.10. The walking trajectories were obtained using different constraint
thresholds on the step length and on the mean walking speed. First, we notice
that the walking trajectories obtained using the standard HZD method have a
relative energy dissipation far from 0. It is smaller than −0.4 for the most optimal9

9We recall that the sum of the square torques is the cost function of the optimization algorithm.
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Trajectories by not
imposing the relative
energy dissipation

Trajectory label 0 1 2 3
Cost (Nm2s/m) 14 768 3590 1818 1013

Relative Energy dissipation -0.27 -0.62 -0.45 -0.53
Dissipated Energy (J) 6.6 29.6 10.4 17.3

Mean walking speed (m/s) 0.6 1 0.73 0.75
Step length (m) 0.22 0.52 0.41 0.48

Euclidian norm of swing foot velocity 0.87 2.73 1.17 1.94

(a) Walking trajectories obtained by not imposing a relative energy dissipation (standard
HZD method).

Trajectories by
imposing the relative
energy dissipation

Trajectory label 4 5 6 7
Cost (Nm2s/m) 20 270 7112 13 885 13 439

Relative Energy dissipation -0.1 -0.15 -0.08 4e-7
Dissipated Energy (J) 3 3 1.7 1e-6

Mean walking speed (m/s) 1.12 0.73 0.79 0.40
Step length (m) 0.41 0.35 0.27 0.36

Euclidian norm of swing foot velocity 0.48 0.45 0.34 1.4e-3

(b) Walking trajectories obtained by imposing a relative energy dissipation close to zero.

Figure 4.10: Walking trajectories obtained by not imposing and by imposing a
relative energy dissipation close to zero.

trajectories, meaning that about half of the kinetic energy of the robot is dissipated
at impact. For these trajectories, impact losses increase with the mean walking
speed.

On the contrary, trajectories designed by imposing a relative energy dissipation
close to zero result in an important diminution of impact losses. See figure 4.11 that
depicts comparative plots between trajectory 2 and trajectory 5. The counterpart
is that the maximum torque is larger. It was noticed that the closer to zero r is,
the higher is the maximum torque. Thus, low torque consumption and low impact
losses seem to be contradictory, and a trade off has to be found. Not surprisingly,
one remarks that impact losses are related to the magnitude of the swing foot
velocity at impact. The higher the velocity is, the higher the losses are.

We checked that all these trajectories are stable in simulation using a high gain
PD controller tracking the virtual constraints.
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Figure 4.11: Stick animation and evolution of the kinetic energy, joint torques
and ground reaction forces for two walk trajectories with the same mean walking
speed.
Left : Trajectory 5 (obtained by imposing a relative energy dissipation equal to
-0.1. Cost = 7812 Nm2s/m).
Right : Trajectory 2 (obtained without constraints relative energy dissipation.
Cost = 1818 Nm2s/m).
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4.4.4.2 Stopping the Robot in “One Step” by Dissipating its Kinetic
Energy at Impact

We are now interested in the design of motions with a relative energy dissipation
at impact close to −1. We show that such motions exist and can be used to stop
the robot in “one step”10. This can be especially useful when the robot must stop
in emergency.

As an illustration, we design a motion that starts from a walking cycle and
bring the robot at impact with a high relative energy dissipation. To achieve a
complete stop, the robot is then servoed to its standstill position (configuration at
impact). The resulting back and forth rocking motion dissipates the remaining
kinetic energy. We investigate a transition from a single support phase to a single
support phase. Actually, the best would be to bring the robot in a state at impact
that dissipates all its kinetic energy, i.e. with a relative energy dissipation equal to
−1. But, reaching such states appeared to be too demanding in joint torques and
velocities. Then, we scaled down our ambitions, and found that it was simpler to
bring the robot at impact with a relative energy dissipation roughly equal to −0.8,
and considering a single support phase after impact.

Important Features of the Motion Planning Algorithm. Details on the
motion planning algorithm that we used can be found in Appendix F.2. Important
features are that, contrary to the design of walking trajectories with little energy
dissipation, the configuration at impact is varied during the optimization. We
restrict the velocity before impact to be in the subvector space generated by the
second lowest generalized eigenvalue, that is

q̇− ∈ Vect(v2). (4.84)
Indeed, we found that when restricting the velocity to the subvector space

generated by the lowest eigenvalue λ1, i.e. for which the relative energy dissipation
is the most important, it was difficult to find motions respecting torque constraints
and the condition of no slipping. Then, we preferred working in Vect(v2). This
choice gave satisfying results, even though working in the plane Vect(v1, v2) may
lead to richer results.

In addition to the usual constraints (friction cone constraints, torque limits...),
we especially used the following equality constraints:

• The robot reaches the desired configuration at impact. (�)

• The relative energy dissipation is equal to the desired one r. (��)

And the following inequality constraint is used:

• K− ≤ K−Max, where K− is the kinetic energy right before impact, and K−Max

is the maximum kinetic energy allowed right before impact. (� � �)
10We use quotation marks since the robot may slightly rock back and forth, or slip after

impact.
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(�) We found useful to add this constraint, since the robot tends to impact the
ground before reaching the desired configuration at impact to diminish the torque
consumption.

(��) Even though the value of λ2 was found to be generally inferior to −0.5, it
may take any value, depending on the configuration at impact. Then, we impose
the algorithm to find a configuration such that λ2 = r, where r is the desired
relative energy dissipation. Since we want that a high amount of kinetic energy be
dissipated, motions were designed with values of r comprised between -0.99 and -0.8.

(� � �) We noticed that the demand in torque and in velocity increases when r
is decreased. Actually, when not constraining the kinetic energy before impact, it
can reach up to 50 J, which is quite important (for comparison, the kinetic energy
level at impact is roughly equal to 20 J for a walk). Then, we added a constraint
on the maximum level of kinetic energy before impact to diminish the violence of
the impact. Similarly, the demand in torque and in velocity increases when the
level of maximum kinetic energy before impact is decreased. This is maybe due to
the fact that braking the robot requires more energy.

The motion is started from a walking cycle obtained with the HZD method at
the beginning of the step.

Results. Motions with a relative energy dissipation rate comprised between −0.8
and −0.9 were found. Fgure 4.12 illustrates the case where the relative energy
dissipation is equal to −0.82. After impact, the robot slightly rocks back and forth,
and the multiple impacts with each leg dissipate the remaining energy. During this
last phase the no slipping condition of the stance leg is violated: the robot slips.
Then, one cannot rigorously conclude that the robot stops since the hypotheses of
the model are violated. But, in 4.4.5.1, we use a more realistic compliant ground
model allowing to properly confirm that the robot slips for a short duration (≈
0.6 s) until a complete stop.

Discussion. This study showed the possibility to stop the robot in “one step” by
dissipating its kinetic energy at impact. Actually, since all the kinetic energy is not
dissipated in one step, the robot stops for two reasons. First, because the majority
of its kinetic energy is dissipated. Second, because the robot is servoed to a fixed
configuration, that is statically stable and requiring energy to tip forward. The
obtained configuration at impact correspond to relatively large steps. Actually, it
is well known that a large step diminishes the velocity of a biped during the next
step (see [90] and [118] (chapter 7)). Such configurations were naturally obtained
with the motion planning algorithm.

The strategy that we proposed to stop a robot is novel. Others methods
exist to stop a robot. See the theory of capturability in 2.3. This method uses
approximative models of the robot and does not take the impact dynamics into
account. Zutven et al. proposed an extension using the full model of the robot
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[87, 118]. Westervelt et al. proposed to use an event-based PI control to slow
down the robot RABBIT until it does not have enough energy to make a step (see
8.3.1.2, Experiment 6 in [127]). The robot needed five steps to slow down, and
then rocked back and forth several times until its remaining kinetic energy was
dissipated. On the contrary, our strategy allows to stop faster. But, obviously,
it is more violent and may deteriorate the hardware. It would be interesting to
investigate if a high relative energy dissipation at impact is also involved when
humans stop in one step.

4.4.5 Robustness To Model Uncertainties
The results on the relative dissipation of energy at impact were obtained using
an approximative model. As a matter of fact, the impact is not instantaneous.
Furthermore, the parameter dependency (mass, length, inertia,...) has to be taken
into account to conclude on the practical interest of our study. We investigate
here the robustness to structural and parameter mismatch of our approach.

For that, we investigate the behavior of the motions previously obtained using
the (more realistic) compliant ground model (non zero restitution coefficient)
described in Section 1.7.1. Furthermore, we study the effects of using a set of
dynamic parameters for the model used in simulation that is different from for the
one used for the motion planning. The obtained results are close to the ideal case
of a rigid ground model with a perfect knowledge of the dynamic parameters, that
is to the results presented above.

4.4.5.1 Simulations Using a Compliant Ground Model

We present here a comparative study of the energy evolution between the rigid
and the compliant ground model for some of the walking cycles described in figure
4.10. We use a high gain PD controller to track the virtual constraints in both
cases. The results are depicted figure 4.13. It is not easy to estimate accurately
the amount of kinetic energy dissipated when the swing foot hits the ground in the
case of a compliant ground, since it is difficult to identify when the impact begins
and stops. But, we notice that the shape of the kinetic energy is very similar in
both cases. This supports the use of the rigid ground model for an analysis of the
dissipation of kinetic energy at impact.

The scenario to stop the robot “in one step” is tested with a compliant ground
model. See Figures 4.14 and 4.15. The behavior is also close to the case of a rigid
ground model. After the step supposed to dissipate 82% of the kinetic energy at
impact, the robot slips for 0.4 second on a distance of 3.4 cm until a complete
stop. The slipping of the robot dissipates the remaining kinetic energy. Note that,
contrary to the rigid ground model, the robot does not rock back and forth.

4.4.5.2 Robustness to Dynamic Parameters Uncertainties

Until now, simulations were performed assuming a perfect knowledge of the dynamic
parameters of the robot. To investigate the robustness to variations of the dynamic
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parameters, we multiply some of them by a scaling factor. It appears that, for
one given state at impact, the relative energy variation depends little on these
parameters. See figure 4.16, for which the mass, inertia, position of the center of
the mass of the links of the robot, and the inertia of the mechanical transmission
system are multiplied by the same scaling factor. Varying independently some
dynamics parameters also gave similar results. Note that when changing only the
dynamic parameters of the links, and so keeping the inertia of the mechanical
transmission system unchanged, the relative energy variation changes more, see
figure 4.17. But, the robustness is still relatively good.

Contrary to the variation of energy at impact (see the bottom plots in figure
4.16 and 4.17), the relative energy variation is robust to parameter mismatch.
This is an additional reason that supports the use of the relative energy variation
instead of the energy variation for control purposes.

4.5 Conclusion
In this chapter we studied the relative dissipation of kinetic energy at impact
for biped robots. We first performed a theoretical study using a standard rigid
impact model introduced by Hurmuzlu [56]. We formulated the problem as a
generalized eigenvalue problem under constraints (= the impact model hypotheses).
Ignoring the constraints of the generalized eigenvalue problem, we found that, for
any configuration at impact, the sets of the velocities that dissipate either no, or
the totality of the kinetic energy of the robot are vector subspaces of the tangent
space. We gave sufficient conditions on the foot-ground contact before and after
impact allowing the existence of such velocities. These results are only valid if the
hypotheses of the impact model are verified. Next, we explained how to design
motions bringing a maximally one degree underactuated robot at a desired value
of relative energy variation at impact. The use of virtual constraints facilitate the
problem, since a set of virtual constraints for one degree underactuated systems
define a unique relative energy dissipation at impact, whatever the traveling
velocity of the path they define in the configuration space.

This theoretical study was applied on a planar five-link walker with point feet.
Using the HZD method, and our study, walking trajectories with a relative energy
dissipation close to zero were designed. Contrary to walking trajectories obtained
by minimizing the torque consumption without constraints on the relative energy
dissipation, they have the interest of dissipating little energy at impact. This
is an important point for the preservation of the structure of the robot, or to
reduce the noise. But, this is at the expense of a higher torque consumption. We
also showed that it was possible to design motions dissipating more than 80%
of the kinetic energy at impact. Especially, we used the dissipative motion to
stop the robot in “one step”. Finally, we compared the previous results with
a more realistic modeling. We used a compliant ground model, a high gain
PD controller to track the virtual constraints, and introduced a mismatch in
the dynamic parameters. This highlighted the robustness of the relative energy
dissipation. This also supported the use of the standard rigid ground model for
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estimating the dissipation of energy at impact.
This work showed that the relative energy dissipation offers interesting prop-

erties compared to the energy dissipation: possibility to analytically exhibit the
states right before impact dissipating little or a lot of energy, easy control via the
use of virtual constraints, and robustness to dynamic parameters uncertainties.

The presented results are promising. Here are some improvements for future
works. First, our theoretical study does not always to conclude on the existence of
states corresponding to a relative energy dissipation equal to 0 (no dissipation of
energy) and -1 (total dissipation of energy) (see the theoretical result of Section
4.2.6). It would be interesting to refine the results. Then, the physical meaning of
the vector subspaces of the states corresponding to a relative energy dissipation
equal to -1 is abstruse. Maybe an other point of view may help to better under-
stand this meaning. A better achievement is to analytically solve the generalized
eigenvalue problem under constraints (4.12).

As for the control of the relative energy dissipation, it would be interesting to
address the problem of robots with several degrees of underactuation. An example
of a model with feet has also to be considered. Also, there exist maybe others
practical interests for the control of the relative energy dissipation at impact. For
instance, it would be interesting to investigate if the shape of the relative energy
dissipation along a walking trajectory, around the nominal point of impact with
the ground, has an influence on the robustness of the walk on uneven ground.

We proposed here to diminish the energy dissipation by the use of a feedback
law. An other strategy to reduce impact losses is to design the robot with a
mechanical compliance, for instance with passive springs at the end of each legs as
for the DURUS robot [97]. The conjoint use of mechanical and control design may
diminish further impact losses.

Finally, an experimental validation is still to be done. Unfortunately, we did not
realize it on the VS robot, due to a lack of time, and since the two bars stabilizing
mechanism makes the relative energy variation dependent on the position of the
robot on the treadmill. This makes harder the design of motions bringing the
robot at a given relative energy dissipation at impact.
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Figure 4.12: Illustration of a motion to stop the robot in “one step” from a walking
cycle. The simulation uses a rigid ground model. Virtual constraints are tracked
using a high gain PD controller. The robot walks three steps (0 s ≤ t ≤ 1.94 s).
The fourth step corresponds to a step with a relative energy motion at impact
equal to -0.82 (1.94 s ≤ t ≤ 2.58 s). Then, the robot is regulated to its standstill
position (t ≥ 2.58 s). Note that the robot slightly rocks back and forth and slips
(| FT
FN
| > 0.6) during this last phase. For the sake of clarity, the stick diagram (top

figure) represents only the step with a relative energy dissipation at impact equal
to -0.82 (1.94 s ≤ t ≤ 2.58 s). 148
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Figure 4.13: Comparison of the kinetic energy evolution for walking cycles using
the rigid ground model (left), and the (more realistic) compliant ground model
(right). The behavior is close for the two models. The biggest difference is seen for
the trajectory 6. Note the existence of an offset on the upper and lower bounds of
the kinetic energy between the two models.
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Figure 4.14: Simulation results using the compliant ground model to stop the
robot in “one step”. Joint positions, velocities and torques. Torques are saturated
at 100 Nm. The robot walks three steps (0 s ≤ t ≤ 2.05 s). The fourth step
corresponds to a step with a relative energy motion at impact equal to -0.82 for a
rigid ground model (2.05 s ≤ t ≤ 2.8 s). In spite of tracking errors, especially for
the joint velocity, the robot is capable to stop in “one step” (see figure 4.15).
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Figure 4.15: Simulation results using the compliant ground model to stop the
robot in “one step”. The robot walks three steps (0 s ≤ t ≤ 2.05 s). The fourth
step corresponds to a step with a relative energy motion at impact equal to -0.8 for
a rigid ground model (2.05 s ≤ t ≤ 2.8 s). The leg 1 hits the ground at t = 2.8 s.
The relative energy dissipation is about to −0.82 as predicted by the rigid ground
model (see figure 4.12). The leg slips over a distance of 3.4 cm for about 0.6 s
(2.8 s ≤ t ≤ 3.4 s), dissipating the remaining kinetic energy. The robot is then
completely stopped.
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Figure 4.16: Evolution of the relative energy variation and of the variation of
energy at impact when multiplying the mass, inertia, position of the center of mass
of the links of the robot, and the transmission inertia, by a scaling factor. Left:
For the state before impact used to stop the robot in “one step”. Right: For the
state before impact of the walking trajectory 5. Contrary to the energy variation,
the relative energy variation remains approximately constant when the dynamic
parameters are changed.
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Figure 4.17: Evolution of the relative energy variation and of the variation of
energy at impact when multiplying the mass, inertia, position of the center of
mass of the links of the robot by a scaling factor. Contrary to figure 4.16,
the transmission inertia is left unchanged. Left: For the state before impact
used to stop the robot in “one step”. Right: For the state before impact of the
walking trajectory 5. The relative energy variation is less modified than the energy
variation when the dynamic parameters are unchanged. Especially, it remains
almost unmodified when the values of the dynamic parameters are higher than
expected.
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Chapter 5

Changing the Time Scale in the
Equations of Motion: Application
to Planar One Degree
Underactuated Biped Robots
With Point Feet

Résumé français Il peut être intéressant de modifier la forme des équations
de la dynamique d’un système. En effet, certaines "formes normales" sont plus
appropriées pour la planification de mouvement et la synthèse de contrôleurs. Il est
généralement considéré que transformer, sans approximation, les équations sous la
forme d’un système linéaire et controllable est la transformation la plus aboutie,
puisque la littérature sur le contrôle des systèmes linéaires est riche. Quand obtenir
une telle forme s’avère trop compliqué, des formes normales aussi linéaires que
possibles sont dérivées. La dérivation de formes normales pour les robots bipèdes
a été étudiée en particulier dans [48, 127] et les références qui y sont incluses.

En 1986, Sampei et Furuta ont montré que la technique dite de "Time-Scaling",
qui consiste à changer l’échelle de temps dans les équations de la dynamique, peut
modifier les conditions de linéarisation par feedback [103]. Ainsi, le Time-Scaling
offre des nouvelles possibilités pour obtenir de nouvelles formes. Par exemple,
[102] a construit une échelle de temps dans laquelle le compas est linéarisable par
feedback. Il semblerait que cela soit la seule étude effectuée sur l’utilisation du
Time-Scaling pour les robots bipèdes.

Pourtant, changer l’échelle de temps dans les équations de la dynamique des
robots bipèdes semble d’autant plus intéressant que des travaux ont montré que
le temps usuel t n’était pas forcément une bonne échelle de temps pour l’étude
des robots bipèdes. Le succès de la méthode HZD repose sur le fait qu’elle utilise
des contraintes virtuelles pour synchroniser les articulations du robots avec un
paramètre géométrique qui joue le rôle d’un nouveau temps (appelé variable
de phase, voir section 2.4.5). Ainsi, il semble cohérent d’utiliser ce paramètre
géométrique comme échelle temps dans les équations de la dynamique.
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Ce chapitre explore l’utilisation du "Time-Scaling" pour obtenir de nouvelles
formes pour les robots bipèdes à un degré de sous actionnement et à pieds ponctuels,
et son utilité pour la planification de trajectoires et la synthèse de contrôleurs. La
section 5.2 présente la technique de Time-Scaling. Dans la section 5.3, nous dérivons
les équations du mouvement pour les modèles considérés dans une nouvelle échelle
de temps. Puis, dans les sections 5.4 et 5.5, nous dérivons des formes normales
avec une dynamique des zéros de dimension deux et une. Nous n’avons pas réussi à
linéariser de manière exacte les équations (dynamique des zéros de dimension nulle).
Finalement, nous considérons le linéarisé des équations le long d’une trajectoire,
mais dans une nouvelle échelle de temps. La forme obtenue est utilisée pour faire la
synthèse d’un contrôleur linéaire quadratique dont les performances sont présentées
en simulation sur un robot 5 liens plan.

5.1 Introduction
For control design purposes, it may be interesting to transform the shape of
dynamical equations. Some shapes, or normal forms, are better suited for motion
planning and stabilization applications. Actually, it is generally considered that
transforming, without approximation, the equations into linear and controllable
ones is the best achievement, since the literature on the control of linear systems
is rich and accomplished. When this is not possible, normal forms as linear as
possible are derived. The derivation of normal forms for biped robots has been
especially studied in [48, 127] and the references therein.

In 1986, Sampei and Furuta showed that Time-Scaling, that is changing the
time scale in the dynamical equations, leads to non trivial changes in terms of
control, such that the conditions of feedback equivalence to a linear and controllable
system [103]. Then, Time-Scaling offers opportunities to derive new normal forms.
Especially, [102] designed a time scale in which the compass walker is statically
feedback equivalent to a linear and controllable form. To the best of our knowledge,
this is the only study performed on the use of Time Scaling for biped robots.

Yet, changing the time scale in the dynamical equations of biped robots seems
to be all the more interesting as previous works showed that the ordinary time t
does not seem to be an appropriate time scale for the study and control of biped
locomotion. The success of the HZD method lies on the use of virtual constraints
synchronizing the joints of the robot with a geometric parameter playing the role of
a new time, and called phase variable (see Section 2.4.5). In the same idea, studies
found that human joint patterns are best parameterized by a time-independent
geometric variable than by the time (see [119] and the references therein). Then,
it seems to be consistent to use this geometric variable as new time scale.

This chapter investigates the use of Time-Scaling to derive new normal forms
for one degree underactuated biped robots with point feet and discusses their
usefulness in terms of motion planning and trajectory stabilization. In Section 5.2,
we present the concept of Time-Scaling. In section 5.3, we derive the equations
of motion of one degree underactuated biped robots with point feet in a new
time scale. Then, in Section 5.4, we derive normal forms with a two-dimensional
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zero dynamics using a set of relative degree two outputs and a static feedback
transformation. In Section 5.5, we derive a normal form with a one dimensional
zero dynamics using outputs of relative degree two, one output of relative degree
three, and a dynamic feedback transformation. We did not find a set of outputs
resulting in a normal form with an empty zero dynamics (linear and controllable
form). Exhibiting one output of relative degree four would allow to obtain such a
form. The only result that we obtained on this research is presented in Section 5.6.
We explain that there probably exists no time scale for which the antiderivative
of the angular momentum σ is of relative degree four, except for the compass
walker. Finally, after having considered exact normal forms, we consider the first-
order approximation of the dynamics along a reference trajectory. This normal
form is used to design a linear quadratic regulator under the form of a state
feedback controller, that is a controller depending only on the state and not on t,
to stabilize a walking trajectory. The performances of the controller are evaluated
on a numerical example of a planar five-link walker.

5.2 Time-Scaling
Let us assume that the equations of motion are{

ẋ = f(x) + g(x)u
ṫ = 1

(5.1)

with x ∈ χ ⊂ Rn is the vector of states, f and g are C1 vector fields on χ and
u ∈ Rm is the vector of control inputs. Since we are to change the time scale, we
consider the time as an additional state component and add its (trivial) dynamics.
Nonetheless, due to the peculiar role of t and due to the common usage, we will
keep to continue to abusively call x as the state. To remove any ambiguity, we
will precise when necessary if the term “state” stands for x or for (x, t).

Given an input t→ u(t), defined in open or closed loop, let{
x(t) = Φ(t)
t = t

(5.2)

be a solution of (5.1).

Let x → s(x) ∈]0,∞[ be a continuous function, called time scaling function.
Let τ(t) be a solution of

dτ

dt
= 1
s(x(t)) , (5.3)

i.e.

τ =
∫ t

t0

dt

s(x) + τ0 , (5.4)
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where τ0 is the value of τ when t = t0.

τ is strictly monotonic and defines a new time scale, i.e. it can replace the actual
time t. Thus, there exists a C1 function satisfying x(t) = X(τ(t)). Integrating
(5.3) gives the one-to-one mapping between τ and t

t = T (τ) = t0 +
∫ τ

τ0
s(X(τ))dτ. (5.5)

Let us derive now the equations of motion for this new time scale. The solution
of (5.1) written in the new time scale is (X(τ), T (τ)). Differentiating this solution
with respect to the time t gives{

ẋ = f(x) + g(x)u = X ′(τ)τ̇
1 = s(x)τ̇

(5.6)

Since X ′(τ) = dx
dτ

and s(x) 6= 0, we get
dx

dτ
= s(x)

(
f(x) + g(x)u

)
dt

dτ
= s(x)

(5.7)

Therefore, (5.7) are the equations of the dynamical system written in the new
time scale τ . (5.1) and (5.7) are the equations of motion of the same dynamical
system, but written in different time scales. They have the same solutions if and
only if the new time scale does not go backward against the actual time t (s(x) > 0).
s(x) < 0 is not valid, otherwise the system would evolve in the backward direction.

Remark 1: We can give a geometric interpretation for this derivation. Con-
sidering the time t as an additional state component boils down to work in the
time-space χ × R. The function t → Φ(t) defines a curve in this space and the
equation x = Φ(t) is a cartesian representation of the solution. The new time
scale τ corresponds to a curvilinear abscissa of the curve and allows to define a
parametric representation of the solution.

Remark 2: Even though Time-Scaling has been introduced for continuous sys-
tems, it is also applicable to hybrid systems like biped robots. The only difference
is that the time derivative of the time scale τ , i.e. the time scaling function s(x),
may undergo a jump when the discrete dynamics is invoked. But τ is continuous.

Remark 3: It may be fruitful to consider the time scaling function s as a new
input v ∈ R to the system, i.e. to let

dt

dτ
= v. (5.8)
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Remark 4: We insist on the fact that it is preferable to add the actual time
t as a state component when using Time-Scaling. Indeed, we are interested to
reconstruct the solutions t→ x(t) of the dynamical equations in the time scale t
from the solutions found in the new time scale τ : τ → X(τ). For that, we need to
know the mapping between τ and t, i.e. τ → T (τ), that is obtained by integrating
the quantity dt

dτ
.

Additionally, not considering the time t as a state component could lead to a
misunderstanding of what the change of time scale really does. For example, let us
consider the one dimensional system without input ẋ = f(x) and the time scaling
function (5.8). Choosing v = v2

f(x) , where v2 ∈ R is the new input, results in

dx

dτ
= v2. (5.9)

One could believe that the system is now entirely controllable with this feedback
linearization. But, this is illusory. One cannot both control here the dynamics of
x and of τ . The dynamics of the time scale τ , that is not trivial anymore due to
the change of feedback, must be considered

dt

dτ
= − v2

f(x) . (5.10)

Especially, the strict positivity of dt
dτ

must be checked.

5.3 Time-Scaling for Planar One Degree
Underactuated Biped Robots

The modeling of a biped robot is described in Chapter 1. We remind here some
useful notations and properties of the considered class of robots. We consider a
biped robot with point feet in single support phase. The robot forms a tree structure
pinned on the ground. It has n independent degrees of freedom, n− 1 of them, the
joints of the robot, are independently actuated. We use the reduced coordinates.
We denote q ∈ Q ⊂ Rn the generalized positions and x = (q; q̇) ∈ T Q ⊂ R2n the
state of the robot. Whithout loss of generality, we assume that the generalized
positions are chosen such that the (n− 1) first components of q = (q1; q2; ...; qn)
are the (actuated) joint coordinates of the robot. The last component qn is the
absolute orientation of the robot (not actuated). The actuated coordinates are
denoted

qa = (q1; q2; ...; qn−1) . (5.11)
The equations of motion can be written under the form

D(q)q̈ +H(q, q̇) = Bu , (5.12)
where u ∈ Rn−1 is the vector of joint torques, H(q, q̇) is a vector containing the
Coriolis term and the gravity vector
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H(q, q̇) = C(q, q̇)q̇ +G(q) , (5.13)
and

B =
I(n−1)×(n−1)

01×(n−1)

 . (5.14)

A property that will be used next is that the unactuated position qn is a cyclic
coordinate. This means that the mass matrix D is independent of qn

∂D

∂qn
(q) = 0 . (5.15)

See proposition B.8 in [127] for a proof.

The equations under the state space form are

ẋ =
q̇
q̈

 =
 ω

D−1(q)[−H(q, ω) +Bu]

 . (5.16)

For the sake of brevity, we let

l(q, ω, u) = D−1(q)[−H(q, ω) +Bu] . (5.17)
From (5.7), the dynamical equations in the new time scale τ are

dx

dτ
=


dq
dτ
dq̇
dτ
dt
dτ

 =


s(q, ω)ω

s(q, ω)l(q, ω, u)
s(q, ω)

 , (5.18)

where s(q, ω) is the time scaling function. The Lagrange’s equations (5.12) become

1
s(q, ω)D(q)dω

dτ
+ C(q, ω)ω +G(q) = Bu+ Γf . (5.19)

The equations are valid in the subspace

T Qs>0 = {x := (q;ω) ∈ T Q | s(q, ω) > 0}. (5.20)
From now on, we will denote the τ -derivative of x

x̊ = dx

dτ
. (5.21)

Remark: Actually, the modeling hypotheses that we adopt here correspond to
the more general class of one degree underactuated mechanical systems, the mass
matrix of which does not depend on the unactuated position.
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5.3.1 Illustration on the Effect of a Change of Time Scale
We illustrate here the effect that a change of time scale may have on the properties
of convergence of the hybrid zero dynamics of a planar one degree underactuated
robot with point feet, and more precisely on the convergence of the square of the
angular momentum of the robot σ2.

5.3.1.1 The Angular Momentum σ

The angular momentum of the robot σ expressed at the point of contact with the
ground has a strong physical meaning. It quantifies the rotating motion of the
system about this point. We remind that the generalized positions introduced to
describe the configurations of the robot are (q1, q2, .., qn), where qn is the unactuated
coordinate. Let us consider the generalized (or conjugate) momentum associated
to qn, that is to the angle of the pivot between the stance foot and the ground [43]

σ = ∂L
∂q̇n

, (5.22)

with L = K − V, where L is the Lagrangian of the system, K = 1
2 q̇
TD(q)q̇ the

kinetic energy, and V = V (q) the potential energy. We obtain

σ = B⊥D(q)q̇ , (5.23)

where B⊥ is a (1× n) matrix such that

B⊥B = 01×m . (5.24)

Due to the expression of B (see (5.14)), we have

B⊥ =
(
01×(n−1) 1

)
. (5.25)

Let us compute the time derivative of σ. We remind that the Lagrange’s
equations can be written under the form (see (1.6))

d

dt

(
D(q)q̇

)
− 1

2

(
∂

∂q

(
q̇TD(q)q̇

))T
+G(q) = Bu . (5.26)

By multipling the equations by B⊥, and since qn is a cyclic coordinate, that is
∂D
∂qn

(q) = 0n×n, we have

B⊥
(
∂

∂q

(
q̇TD(q)q̇

))T
= 0 . (5.27)

Then, we get from (5.26)

σ̇ = −B⊥G(q) . (5.28)
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Figure 5.1: Evolution and convergence of σ2

2 to a limit cycle. To allow a better
comparison of the curves, the time t is reinitialized at zero at each beginning of a
step in the above plot. One clearly remarks that over a step, σ2

2 diverges from the
limit cycle along the time, while it is marginally stable along θ.

5.3.1.2 Convergence of σ2

2 to a Limit Cycle

Let us consider a walking trajectory with an instantaneous double support phase
designed with the HZD method for the planar five-link walker with point feet
described in Section 4.4.1. A set of outputs for the actuated coordinates qa under
the form

y = qa − qa,ref (θ) , (5.29)
where θ is the phase variable and θ → qa,ref(θ) is the motion of reference, is
imposed via a feedback controller. Then, the robot is constrained to evolve in
the hybrid zero dynamics manifold. This manifold is parameterized by (θ, θ̇), or
equivalently by (θ, σ2

2 ) as long as θ̇ > 0. Since θ̇ > 0, then a new time scale τ can
be defined as dt

dτ
= 1

θ̇
.

By design, the hybrid zero dynamics converges to a limit cycle. Let t→ σ2
ref,t(t)

2

be the limit cycle parameterized by the ordinary time t, and let θ → σ2
ref,θ(θ)

2 be
the same limit cycle, but parameterized by θ. Figure 5.1 depicts the evolution of
σ2

2 along the time, and along θ. The shape of the convergence of σ2

2 to the limit
cycle is clearly different. σ2

2 diverges from the limit cycle t→ σ2
ref,t(t)

2 during each
step: the error relative to the limit cycle increases, while the error is constant
relative to θ → σ2

ref,θ(θ)
2 (marginal stability).
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The marginal stability of σ2

2 can be proved analytically. In the time scale τ the
error relative to the limit cycle θ → σ2

ref,θ(θ) is

eθ = σ2

2 −
σ2
ref,θ(θ)

2 . (5.30)

By definition, when the system evolves in the hybrid zero dynamics, q is only
function of θ, i.e. under the form q = hd(θ). Then, the dynamics of σ2

2 in time
scale τ is

︷̊ ︷
σ2

2 = −B⊥G(hd(θ))B⊥D(hd(θ))h
′

d(θ) . (5.31)

This quantity depend only on θ. Hence
︷̊ ︷
σ2

2 =
˚︷ ︷

σ2
ref,θ(θ)

2 and

e̊θ = 0 . (5.32)
This proves that the error is constant during one step in the time scale τ (bottom
plot in figure 5.1).

On the contrary, in the ordinary time t, the error relative to the limit cycle
t→ σ2

ref,t(t) is

et = σ2

2 −
σ2
ref,t(t)

2 . (5.33)

Its time derivative is

ėt = − 1
B⊥D(q)h′d(θ)

B⊥G(hd(θ))B⊥D(hd(θ))h
′

d(θ)σ−σ
′

ref,t(t)σref,t(t) 6= 0 (5.34)

Then, the error relative to the limit cycle evolves during one step.

This illustrates the non obvious effects that a change of time scale (= of clock)
may engender.

5.4 Static Feedback Equivalence to a Partial
Linear System

In the following sections, we use feedback transformations. A brief presentation of
these techniques can be found in Appendix G.

5.4.1 Static Feedback Equivalence in the Ordinary Time t
It is well known that the actuated dynamics of a mechanical system can be input-
output linearized. The resulting normal form has been widely used for the study
of underactuated mechanical systems [110, 84, 48, 99].
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More precisely, for one degree underactuated planar robots with point feet,
y = qa defines a vector of outputs with a vector relative degree equal to (2, ...2),
and the dynamics is globally static feedback equivalent to the following normal
form 

q̇a = ωa

q̇n = ωn

ω̇a = v

ω̇n = fn(q, ω, v)

(5.35)

where v is the new input and fn is a smooth vector field.

A set of outputs containing the unactuated coordinate can also be input-output
linearized under certain conditions [110]. More precisely, let qc be n − 1 linear
combinations of the joint coordinates q and qu be a linear combination of the joint
coordinates such that (qc; qu) defines a set of generalized positions. We have

qc = Mcq , qu = Muq , (5.36)
where Mc is a constant (n − 1) × n dimensional matrix and Mu is a constant
n-dimensional row vector. Since (qc; qu) defines a set of generalized coordinates,
then

q = Ncqc +Nuqu , (5.37)
withNc, a constant n×(n−1) dimensional matrix, andNu, a constant n-dimensional
column vector, such that

NcMc +NuMu = In×n. (5.38)
If the decoupling matrix

McD(q)−1B (5.39)
is locally invertible, then the output y = qc has a vector relative degree equal to
(2, ..., 2) and the static change of feedback

v = McD(q)−1(−H(q, q̇) +Bu) (5.40)
results in the following normal form

q̇c = ωc

q̇u = ωu

ω̇c = v

ω̇u = fu(q, ω, v)

(5.41)

where fu is a smooth vector field. The normal form is made of n − 1 chains of
integrators (the dynamics of q̇c = v), and of a two-dimensional zero dynamics. One
component of the zero dynamics is linear (q̇u = ωu). In this section, we generalize
this result to any time scale τ .
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5.4.2 Generalization to a Time Scale τ
To get the normal form (5.41) in a new time scale, we perform a change of
coordinates as a first step. Indeed, the dynamics in the ordinary time t, and in the
coordinates formed of the generalized positions and velocities (q;ω), is naturally
made of n linear equations (q̇ = ω). See (5.16). But, as we can see in (5.18),
changing the time scale breaks this structure. For obtaining the same structure as
in the ordinary time t, and especially so that one component of the zero dynamics
be linear, the dynamical equations should be written in the coordinates (q; q̊).

In section 5.4.3, we investigate the conditions on the time scale so that (q; q̊)
defines a valid set of coordinates and derive the normal form (5.41) with the
additional dynamics of t, in these coordinates. In Section 5.4.4, we treat the
particular case where the time scale is a linear function of the generalized positions.
This is an important case, since the phase variables used in the HZD method, which
are generally defined as a linear combination of the generalized positions, define
naturally a time scale in the neighborhood of the trajectories they parameterize
(see Section 2.4.5). For this particular case, the set of coordinates (q; q̊) is not
valid. We introduce an other set of coordinates, and derive a normal form with a
two-dimensional zero dynamics, which is close to (5.41).

5.4.3 A state Under the Form (q; q̊).
From now on, we denote

$ = q̊ = s(q, ω)ω . (5.42)
We would like (q;$) to define a set of coordinates, or equivalently the mapping

Φ between the original coordinates (q;ω) and (q;$) to be a local diffeomorphism
q

$

t

 =


q

s(q, ω)ω
t

 = Φ(q, ω) . (5.43)

A standard result in differential geometry states that a necessary and sufficient
condition is that the jacobian matrix of the transformation is invertible. The
jacobian of Φ is

∂Φ
∂x

(q, ω) =
 In×n 0n×n
∂s
∂q

(q, ω)ω ω ∂s
∂ω

(q, ω) + s(q, ω)In×n

 . (5.44)

Then, it is clear that the change of coordinates is valid if and only if

ω
∂s

∂ω
(q, ω) + s(q, ω)In×n (5.45)

is an invertible matrix.
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We make the assumption that this property is verified in an open set U of
T Qs>0 and restrict our study to U .

To define the dynamics in these new coordinates, we must calculate the τ
derivative of $. We have

d$

dτ
= d

dτ

(
s(q, ω)ω

)
=
d
(
s(q, ω)

)
dτ

ω + s(q, ω)dω
dτ

= 1
s(x)

[
∂s

∂q
(x)$ + ∂s

∂ω
(.)l(., u)s(.)

]
$ + s2(x)l(x, u) , using (5.18)

= 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
l(x, u) ,

(5.46)

where, for the sake of brevity, the argument x stands for (q;ω).

Hence, in U , from the definition of $, the dynamical equations written in the
coordinates (q;$) have n linear equations

q̊ = $

$̊ = 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
l(x, u)

t̊ = s(x)

(5.47)

Remark: It is clear that the change of coordinates (q,$) is valid on T Qs>0 if
the time scaling function s(q, ω) does not depend on the velocity. Note that the
ordinary time t corresponds to the particular case where s(q, ω) = 1.

5.4.3.1 A Normal Form With a Two-Dimensional Zero Dynamics

The dynamical equations (5.47) have the same structure as in the ordinary time t.
We follow here the approach initially introduced by Spong [110] to derive a normal
form with a two-dimensional zero dynamics.

In the coordinates (qc, qu, $c, $u, t), the dynamical equations become



q̊c = $c

q̊u = $u

$̊c = Mc

( 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
l(x, u)

)
$̊u = Mu

( 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
l(x, u)

)
t̊ = s(x)

(5.48)

164



where x stands for (qc, qu, $c, $u, t).

Assuming that the (n− 1)× (n− 1) decoupling matrix

Mc

( 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
D−1(q)B

)
(5.49)

is invertible, the regular static feedback transformation

u = ψ−1(x, v) =
(
Mc

( 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
l(x, u)

))−1

×
(
H(x) + v

)
.

(5.50)
gives



q̊c = $c

q̊u = $u

$̊c = v

$̊u = Mu

( 1
s(x)

[
∂s

∂q
(x)$

]
$ +

[
$
∂s

∂ω
(x) + s2(x)In×n

]
l
(
x, ψ−1(x, v)

))
t̊ = s(x)

(5.51)

The form is made of n − 1 chains of integrators of dimension two, and of a
two-dimensional zero dynamics (ignoring the dynamics of t). Note that the form
introduced by Spong in the time scale t [110] is a particular case of (5.51), obtained
when setting s(x) = 1.

5.4.4 Treating the Particular Case τ ∼Mθq.
The choice of the time scale is an additional degree of freedom for the control of a
dynamic system. But, it is not obvious how to choose this time scale. Nonetheless,
in bipedal locomotion, there exist some geometric quantities, such as the virtual
stance leg angle, which generally evolve strictly monotonically during one step.
They can be used to parameterize the motion instead of the time t, and are called
phase variables in the HZD method (see Section 2.4.5). Then, a natural choice is
to choose as a new time scale a phase variable θ.

This choice is also motivated by the fact that the standard stability analysis
of periodic walking trajectories is performed via the use of a Poincaré map (see
Appendix A). This analysis is not based on the time t, since the state of the
system is sampled when it crosses an hypersurface in the state space (the Poincaré
surface). There are many ways of defining this surface. One possibility is to
choose this surface as the set of all the states corresponding to a given value of the
phase variable. In this case, the phase variable θ is the clock used for the stability
analysis. Hence, for the sake of consistency, it seems more appropriate to use this

165



same clock in the equations of motion.

Phase variables are generally chosen as a linear combination of the generalized
positions. In this section, we address this particular case. In that case, we see here
that the time scaling function s(q, ω) derived from the phase variable does not
verify the condition (5.45) and the coordinates (q,$) cannot be used (see (5.57)).
Then, we introduce a valid set of coordinates for this particular choice of time scale
and such that the dynamical equations have n− 1 linear equations. We derive a
normal form with a two-dimensional zero dynamics in these new coordinates.

5.4.4.1 A Linear Combination of the Positions as a New Phase
Variable.

Let θ be a linear combination of the positions

θ = Mθq, θ̇ = ωθ = Mθω , (5.52)
where Mθ is a constant n-dimensional row vector (see for example (3.11) or [127]).

Let us consider a motion realized by the robot, for instance a walking trajectory.
Let us assume that θ̇ > 0 in a neighborhood of this motion 1. We carry out the
study in this neighborhood. Then, using the term used in the HZD method, θ can
play the role of a phase variable, i.e. it can be used to parameterize the motion
instead of the time t. Additionally, θ is a natural candidate for defining a time
scale τ as follows

dt

dτ
= 1
Mθω

= 1
θ̇
. (5.53)

This is a valid choice as long as θ̇ > 0.

Thus

τ =
∫
θ̇ dt. (5.54)

Note that τ and θ are equal up to an additive constant. In the case of a periodic
walking motion, the additive constant increases at each step. Then, the value of τ
during the nth step is

τ = (θ − θn) + τn , (5.55)
where τn (resp. θn) is the value of τ (resp. θ) at the beginning of the nth step.

Even though they are closely related, we insist that τ and θ have not the
same meaning. The phase variable θ is a geometric parameter and is bounded

1The strict monotonicity of θ can be imposed through the use of a constraint in the motion
planning algorithm described in Section 2.4.6. Otherwise, Mθ can be searched such that Mθ q̇ 6= 0
along the considered motion.
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to evolve in a given interval [θ+, θ−] since it undergoes a jump at each step (see
the case of the VS robot, and especially (3.11) and (3.12)). On the contrary, like
the ordinary time t, τ is continuous and strictly monotonic. This is the “only”
difference between τ and θ. That’s why we denote τ ∼ θ. Even if it is not fully
rigorous, reasoning with τ = θ may help to better understand what follows.

5.4.4.2 Using the Coordinates (qc; θ;$c;ωθ)

The time scaling function is

s(q, ω) = 1
Mθω

= 1
ωθ
. (5.56)

With this time scaling function, (q,$) is not a valid set of coordinates. The
problem comes from the fact that ω cannot be reconstructed from $ = ω

Mθω
.

Indeed, this latter quantity is independent of the norm of ω. Then, $ cannot be
used as coordinates anywhere.

This can also be seen using the jacobian of the coordinates transformation
(5.43). The jacobian is invertible if and only if

1
Mθω

(
− ωMθ

Mθω
+ In×n

)
(5.57)

is invertible. Remarking that ω belongs to the kernel of this latter matrix, one
deduces that it is never invertible.

Then, to address this issue, we introduce the datum ωθ in the coordinates.
Additionally, to get n−1 chains of integrators q̊c = $c, we introduce the generalized
coordinates (qc; θ), with

qc = Mcq , (5.58)
where Mc is a constant (n − 1) × n dimensional matrix, and such that q is
diffeomorphic to (qc; θ). Then, we have

q = Ncqc +Nθθ , (5.59)
withNc, a constant n×(n−1) dimensional matrix, andNθ, a constant n-dimensional
column vector, verifying

NcMc +NθMθ = In×n . (5.60)
Letting ωc = Mcq and $c = ωc

ωθ
, one can easily see that

(qc; θ;$c;ωθ) , (5.61)
defines a valid set of coordinates on T Qs>0. The key point is that we keep ωθ in
the coordinates instead of $θ, which is trivially equal to 1.

Using (5.46), the dynamical equations in the coordinates (qc; θ;$c;ωθ; t) are
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q̊c = $c

θ̊ = 1

$̊c = 1
ω2
θ

(
Mc −$cMθ

)
l(x, u)

ω̊θ = Mθ

ωθ
l(x, u)

t̊ = 1
ωθ

(5.62)

where x stands for (qc, θ,$c, ωθ) and

l(x, u) = D(q)−1[−H(q, ω) +Bu] . (5.63)
Note that the dynamical system is made of n− 1 linear equations and of n+ 2

nonlinear equations. Compared to (5.51), the additional nonlinear equation is
θ̊ = 1. Interestingly, this dynamics is trivial. This is the dynamics of the time
scale τ ∼ θ and is the equivalent of the trivial dynamics in the ordinary time t
(ṫ = 1).

5.4.4.3 A Normal Form With a Two-Dimensional Zero Dynamics

Assuming that the decoupling matrix

1
ω2
θ

(
Mc −$cMθ

)
D−1(q)B (5.64)

is invertible, the regular static feedback

u = ψ−1(x, v) =
( 1
ω2
θ

(
Mc−$cMθ

)
D−1(q)B)

)−1(
v+ 1

ω2
θ

[Mc−$cMθ]D−1(q)H(x)
)

(5.65)
transforms the equations (5.62) into

q̊c = $c

θ̊ = 1
$̊c = v

ω̊θ = Mθ

ω2
θ

l
(
x, ψ−1(x, v)

)
t̊ = 1

ωθ

(5.66)

As in the coordinates (q,$), the form is made of n − 1 chains of integrators of
dimension two, and of a two-dimensional zero dynamics (ignoring the dynamics of
t).
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5.4.5 Using the Normal Forms With a Two-Dimensional
Zero Dynamics For Motion Planning and Stabiliza-
tion

We investigate here the potential applications of the normal forms with a two-
dimensional zero dynamics (5.51) and (5.66).

5.4.5.1 Motion Planning

Formulating the motion planning problem as a parametric optimization problem
under constraints has proven to be useful for the control of biped robots. The
HZD method uses the normal form with a two-dimensional zero dynamics (5.51)
in the ordinary time t to find motions parameterized by the geometrical parameter
θ = Mθq (virtual constraints) (see Section 2.4.3).

With the forms (5.51) or (5.66), one can easily formulate the motion plan-
ning algorithm using the same time scale τ in the dynamical equations and for
parameterizing the motion. Actually, even though it is another way to proceed,
we see no fundamental difference with the approach used in the HZD method.
The performances of the motion planning should be exactly identical for τ ∼Mθq.
Note that the selection of the time scale discriminates the motions that do not
respect its strict monotonicity dt

dτ
> 0. Then, the obtained trajectory may depend

on the choice of τ .

5.4.5.2 Design of Controllers

The normal forms (5.51) and (5.66) are suited for designing controllers stabilizing
the controlled coordinates (qc, $c). In the ordinary time scale t, an input-output
feedback linearizing controller is commonly used (see Section 2.4.7 and [3, 110]).
This controller can be trivially generalized to a new time scale τ . It consists
in derivating a set of outputs, equal to the number of inputs, until the input u
appears, and then using a change of feedback to impose the desired behavior on
the output.

Let τ → qc,ref(τ) be a reference trajectory for qc. We define the vector of
outputs

y = qc − qc,ref (τ) . (5.67)
The relative degree of this output is two. We have

˚̊y = v − q′′c,ref (τ) . (5.68)
Setting

v = q
′′

c,ref (τ)−KDẙ −KPy , (5.69)
where KP and KD are positive definite diagonal matrices, linearizes the dynamics
of ˚̊y. The original input u is obtained using the static feedback transformation
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(5.50) or (5.65).

This input-output controller is valid as long as the feedback transformation is
non singular.

5.5 Dynamic Feedback Equivalence to a Partial
Linear System

We introduced previously normal forms made of a 2(n − 1)-dimensional linear
and controllable system, and of a two-dimensional zero dynamics (ignoring the
dynamics of t). The presented forms were derived using a set of n− 1 outputs of
relative degree two. To decrease the dimension of the zero dynamics, outputs with
a higher relative degree must be used (see Appendix G). But, we did not find such
outputs using a static feedback transformation.

We derive here a normal form with a one dimensional zero dynamics using a
dynamic feedback transformation when the time scale is a linear combination of
the positions τ ∼ θ = Mθq. For that purpose, from the angular momentum σ, we
design an output of relative degree three relative to one input.

5.5.1 Introducing σ in the Coordinates
It is well known that the angular momentum σ forms an output of relative degree
three in the actual time scale t, i.e. the input does not appear in the first and
second derivatives of σ relative to t, but does in the third derivative. Due to its
properties, [48, 127, 84] introduced the angular momentum in the coordinates of
mechanical systems to facilitate analysis and feedback design.

We will construct a relative degree three output from the angular momentum
σ. Then, as a first step, we introduce here σ in the coordinates of the system.

The expression of σ in the coordinates (qc, θ,$c, ωθ, t) is

σ = B⊥D(q)(Ncωc +Nθωθ) = B⊥D(q)(Nc$c +Nθ)ωθ. (5.70)

This shows that when

σ 6= 0 , (5.71)
or equivalently 2 that when

B⊥D(q)(Nc$c +Nθ) 6= 0 , (5.72)
σ can be used as a coordinate replacing ωθ. Note that this is equivalent to say
that the sign of σ remains unchanged

εσ > 0 , (5.73)
2Since ωθ 6= 0 by assumption
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where ε = 1 or ε = −1 depending on which subset of the state space the study is
performed.

The dynamical equations in the coordinates (qc, θ,$c, σ, t) are

q̊c = $c

θ̊ = 1
$̊c = v

σ̊ = −B
⊥G(q)
σ

[B⊥D(q)(Nc$c +Nθ)]

t̊ = B⊥D(q)(Nc$c +Nθ)
σ

(5.74)

Remark: Since only a change of coordinates has been performed, the feedback
transformation (5.65) remains unchanged.

5.5.2 Building a Relative Degree Three Output
We saw that the angular momentum σ has a relative degree three using the ordinary
time scale t (see Section 5.3.1.1). But, in the time scale τ = θ, its first derivative is

σ̊ = −B
⊥G(q)
σ

(
B⊥D(q)[Nc$c +Nθ]

)
. (5.75)

Then, due to the presence of $c, using the expression of $̊c, the relative degree
of σ is only two if

1
ω2
θ

B⊥G(q)B⊥D(q)Nc(Mc −$cMθ)D(q)−1B 6= 0 . (5.76)

Nonetheless, we see here that one can build from σ a relative degree three
output y1 relative to one input component, that we call v2. We also investigate
under what conditions, y1, its first, second and third derivatives in τ ∼ θ can
replace some coordinates of the system. It is important to verify this latter point,
otherwise the output cannot be used to change the shape of the equations.

To define a relative degree three output relative to one input component, we
extract 3 a specific component from qc, called qc2 . We call qc1 the n− 2 remaining
components of qc. Mc is chosen such that qc2 is the last component of qc. More
specifically, we define

Mc =
Mc1

Mc2

 (5.77)

3 As we shall see later, a proper choice of qc2 may influence the domain of validity of the form
that we present here.
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with Mqc1 , a (n− 2)× (n− 1) constant matrix, and Mqc2 , a (n− 1)-dimensional
constant row vector verifying qc1

qc2

 =
Mc1

Mc2

 qc , (5.78)

and such that there exist Nqc1 a (n − 1) × (n − 2) matrix and Nqc2 a (n − 1)-
dimensional column vector satisfying

Nc1Mc1 +Nc2Mc2 = I(n−2)×(n−2) . (5.79)
With this, we have

qc =
(
Nc1 Nc2

)qc1

qc2

 . (5.80)

We reorder $c as $c1

$c2

 =
Mc1

Mc2

$c , (5.81)

and the input v as v1

v2

 =
Mc1

Mc2

 v . (5.82)

(qc1 , qc2 , θ,$c1 , $c2 , σ, t) defines a new set of coordinates. In these coordinates,
the expression of σ̊ becomes

σ̊ = −B
⊥G(q)
σ

[B⊥D(q)
(
Nc(Nc1$c1 +Nc2$c2) +Nθ

)
] , (5.83)

or equivalently, since σ was assumed to be non zero (see (5.71)),

︷̊ ︷
σ2

2 = −B⊥G(q)[B⊥D(q)(Nc(Nc1$c1 +Nc2$c2) +Nθ)] . (5.84)

Here the argument q stands for (qc1 , qc2 , θ). Under (5.76), σ
2

2 is of relative degree
two relative to the entire input v. To get a relative degree three output relative to
the scalar input 4 v2, one should remove the term −(B⊥G(q)B⊥D(q)NcNc2)$c2

on the right hand side. For that, we replace σ2

2 by the equivalent coordinate

y1 = σ2

2 +
∫ qc2

0
(B⊥G(q)B⊥D(q)NcNc2) dl . (5.85)

In this expression, the argument q appearing in the integrand represents
(qc1 , l, θ), with l the dummy version of qc2 . Under the assumption that

y1 >
∫ qc2

0
(B⊥G(q)B⊥D(q)NcNc2) dl , (5.86)

4Ignoring the dependance to v1.
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and since we assumed that the sign of σ is constant (see (5.73)), we have

σ = ε

√
2
(
y1 −

∫ qc2

0
(B⊥G(q)B⊥D(q)NcNc2) dl

)
, (5.87)

where ε = 1 or ε = −1 depending on which subset of the state space the study is
performed.

Then, under (5.86), y1 can be used as a coordinate instead of σ.

The derivative of y1 relative to τ , called y2 is

y2 =ẙ1

=−B⊥G(q)[B⊥D(q)(Nc(Nc1$c1 +�����Nc2$c2) +Nθ)] +
((((

((((
(((

(((

B⊥G(q)B⊥D(q)NcNc2$c2

+
∫ qc2

0

[
(NcNc2)T

(
∂

∂qc1

(
B⊥G(q)B⊥D(q)

)T
$c1 + ∂

∂θ

(
B⊥G(q)B⊥D(q)

)T)]
dl

= − (NcNc1$c1 +Nθ)T (B⊥G(q)B⊥D(q))T

+
∫ qc2

0

[
(NcNc2)T

(
∂

∂qc1

(
B⊥G(q)B⊥D(q)

)T
$c1 + ∂

∂θ

(
B⊥G(q)B⊥D(q)

)T)]
dl

= f2(qc1 , qc2 , θ,$c1).
(5.88)

Hence, we do obtain that ẙ1 depends on qc2 , but not on $c2 . Then, the relative
degree of y1 is at least equal to three relative to v2, since $̊c2 = v2. Moreover,
according to the implicit function theorem, the coordinate qc2 can be replaced by
y2 if and only if we have

∂f2

∂qc2

(qc1 , qc2 , $c1 , θ) 6= 0 , (5.89)

with

∂f2

∂qc2

(qc1 , qc2 , θ,$c1) =

− (NcNc1$c1 +Nθ)T
∂

∂qc2

(B⊥G(q)B⊥D(q))T

+ (NcNc2)T
(

∂

∂qc1

(
B⊥G(q)B⊥D(q)

)T
$c1 + ∂

∂θ

(
B⊥G(q)B⊥D(q)

)T)
.

(5.90)

Then, under this assumption, we work now with the coordinates (qc1 ; θ;$c1 ;$c2 ; y1; y2; t).

The derivative of y2 with respect to τ , called y3, is

y3 =˚̊y1 = ẙ2 = ∂f2

∂qc1

$c1 + ∂f2

∂qc2

$c2 + ∂f2

∂θ
+ ∂f2

∂$c1

v1

= f3(qc1 , qc2 , θ,$c1 , $c2 , v1) .
(5.91)
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If
∂f2

∂qc2

6= 0 , (5.92)

then $c2 can be replaced by y3

$c2 = 1
∂f2
∂qc2

(
y3 −

∂f2

∂$c1

$c1 −
∂f2

∂$c1

v1 −
∂f2

∂θ

)
. (5.93)

But this involves the inputs v1. Then, to properly define the substation of $c2

with y3 in the coordinates, we need to add v1 in the state. This comes to perform
a dynamic extension by adding an integrator to vc1 .

5.5.3 Performing a Dynamic Extension
To cope with the fact that v1 appears in˚̊y1, we perform a dynamic extension by
adding the (n− 2)-dimensional vector of inputs v1 to the state components, and
we consider its derivative w1 = v̊1 as the new input. Then, we define the dynamic
extension as

w =
w1

w2

 =
v̊1

v2

 . (5.94)

The extended dynamical system is of dimension (2n+ 1) + (n− 2) = 3n− 1.
The coordinates are (qc1 , qc2 , θ,$c1 ;$c2 , v1, t). It has (n− 1) inputs w.

Under (5.92),$c2 can be replaced by y3. Hence, the coordinates (qc1 ; θ;$c1 ; y1; y2; y3; v1; t)
define a new set of coordinates for the extended dynamical system. The derivative
of y3 relative to τ gives

˚̊̊y1 = ẙ3 = ∂f3

∂qc1

$c1 + ∂f3

∂qc2

$c2 + ∂f3

∂θ
+ ∂f3

∂$qc1

v1 + ∂f3

∂$qc2

w2

+ ∂f3

∂v1
w1.

And the extended dynamics in these new coordinates are



q̊c1 = $c

θ̊ = 1
$̊c1 = vc1

ẙ1 = y2

ẙ2 = y3

ẙ3 = ∂f3

∂qc1

$c1 + ∂f3

∂qc2

$c2 + ∂f3

∂θ
+ ∂f3

∂$qc1

v1 + ∂f3

∂$qc2

w2 + ∂f3

∂vc1

w1

v̊1 = w1

t̊ = f̊t(qc1 , qc2 , θ,$c1 , $c2 , v1)

(5.95)
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5.5.4 A Linear and Controllable Transverse Dynamics
The transverse coordinates are (qc1 , $c1 , y1, y2, y3, v1) and the transverse dynamics
are



q̊c1 = $c1

$̊c1 = v1

ẙ1 = y2

ẙ2 = y3

ẙ3 = ∂f3

∂qc1

$c1 + ∂f3

∂qc2

$c2 + ∂f3

∂θ
+ ∂f3

∂$qc1

v1 + ∂f3

∂$qc2

w2 + ∂f3

∂v1
w1

v̊1 = w1

(5.96)

The output

z1 =
qc1

y1

 (5.97)

is of vector relative degree (3, ..., 3) with respect to the input w and

˚̊̊z1 =
(
I(n−2)×(n−2) 0(n−2)×1

∂f3
∂vc1

∂f3
∂$c2

)(w1w2

)
+
( 0(n−2)×1
∂f3
∂qc1

$c1 + ∂f3
∂qc2

$c2 + ∂f3
∂θ

+ ∂f3
∂$qc1

v1

)
.

(5.98)

On the condition that the decoupling matrix
I(n−2)×(n−2) 0(n−2)×1

∂f3
∂vc1

∂f3
∂$c2

 is invert-

ible, i.e. ∂f3
∂$c2

6= 0, the dynamics of z1 is rendered linear via the static feedback

w =−
I(n−2)×(n−2) 0(n−2)×1

∂f3
∂vc1

∂f3
∂$c2

−1 0(n−2)×1
∂f3
∂qc1

$c1 + ∂f3
∂qc2

$c2 + ∂f3
∂θ

+ ∂f3
∂$qc1

vc1


+
I(n−2)×(n−2) 0(n−2)×1

∂f3
∂vc1

∂f3
∂$c2

−1

Γ.

(5.99)

This gives

˚̊̊z1 = Γ. (5.100)

5.5.4.1 Conditions of Existence of the Normal Form

We recapitulate the conditions required to get the normal form with a linear
transverse dynamics on an open subset V of the state space T Q

• Condition 1. The time scaling function is strictly positive
1

Mθω
> 0 .
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• Condition 2. The decoupling matrix

1
ω2
θ

(
Mc −

(Mcω

ωθ

)
Mθ

)
D−1(q)B

is invertible.

• Condition 3. The angular momentum

σ = B⊥D(q)ω

has a constant sign.

• Condition 4. y1 is such that

y1 − (B⊥G(q)B⊥D(q)NcNc2) dl > 0 .

• Condition 5. The scalar

− (NcNc1$c1 +Nθ)T
∂

∂qc2

(B⊥G(q)B⊥D(q))T+

(NcNc2)T
(

∂

∂qc1

(
B⊥G(q)B⊥D(q)

)T
$c1 + ∂

∂θ

(
B⊥G(q)B⊥D(q)

)T)
,

is non zero and so has a constant sign, with qc1 = Mc1Mcq, qc2 = Mc2Mcq,
$c1 = Mc1Mcω

Mθω
and θ = Mθq.

Remark 1: The condition 4 is trivially verified when going from the original
coordinates (q, ω, t) to the coordinates (qc1 , $c1 , y1, y2, y3, vc1 , t).

Remark 2: The choice of the selection matrices Mc, Mc1 , Mc2 , Nc, Nc1 , Nc2 ,
Mθ, Nθ a priori influences the validity of these conditions on a given set. Then, a
careful choice of them must be made.

5.5.5 Main result
We proved the following result:

Theorem 1. Let a one degree underactuated mechanical system with n degrees of
freedom, and such that the mass matrix does not depend on the unactuated variable
(cyclic variable). In such a case, the time derivative of the generalized momentum
σ associated to the cycle variable is under the form (5.28). The time scale τ is
assumed to be a linear combination of the positions, i.e. τ ∼Mθq. The dynamical
equations of the system are (5.62). Let V be an open subset of the state space
T Q such that the conditions (C1), (C2), (C3), (C4) hold. Then, the (2n+ 1)-
dimensional dynamical system (5.62) is dynamically feedback equivalent to the
(3n− 1)-dimensional dynamical system expressed in the coordinates (z1, z2, z3, θ, t)
on V
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z̊1 = z2

z̊2 = z3

z̊3 = Γ
θ̊ = 1
t̊ = f̊t(z1, z2, z3, θ)

(5.101)

Γ is the (n− 1)-dimensional vector of inputs and f̊t is a non linear function of
the state. (z1, z2, z3) are called the transverse coordinates.

Remark: The complete dynamics is made of a 3(n−1)-dimensional linear system
and a one-dimensional trivial zero dynamics (ignoring the dynamics of t). Ignoring
t and θ, i.e. keeping only the transverse coordinates, we get a linear and controllable
system. Actually, the form obtained when ignoring t corresponds to what [69] call
a time-augmented linear system, except that this form is obtained using a dynamic,
and not a static feedback transformation.

5.5.5.1 Related Works

Actually, the derivation and the obtained normal form are similar to what is
presented in [48] (section III.C). But, we see three differences. First, we work
in a new time scale. The time scale that we use does not depend explicitly on
the ordinary time t. Then, t cannot be even taken as a particular case in our
approach. Secondly, the relative degree three output that we introduce is different
than those previously used in the literature. This means that we use a new set
of coordinates. Thirdly, the form we exhibit is suited for working with virtual
constraints. Indeed, the form in [48] can be used for tracking an equilibrium point
or time parameterized trajectories. But, it cannot be used for virtual constraints
since the output formed of the difference between the relative degree three output
and a virtual constraint parameterized by the phase variable θ is only of relative
degree two. The second derivative of θ is actually a function of the input. On
the contrary, since in our case τ ∼ θ, our form is suited for tracking trajectories
parameterized by θ, but not for tracking trajectories parameterized by the ordinary
time t.

An other point is that the transverse dynamics of the normal form that we
introduce is a linear and controllable system. Let us define the term of transverse
dynamics. For a system whose trajectories can be parameterized by a scalar
coordinate θ, the coordinates of the system, excluding the coordinate θ (and
implicitly the time t), are called the transverse coordinates. Their dynamics are
called transverse dynamics [7]. Generalizing this definition to dynamical systems
written in a time scale τ ∼ θ, we call transverse coordinates the coordinates of the
system removing the time scales θ and t, and transverse dynamics the dynamics
of these coordinates.

The transverse dynamics have already been used to stabilize one degree under-
actuated mechanical systems like point-foot robots. But, an approximate linearized
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transverse dynamics along the motion of reference is used. This method is called
transverse linearization [41, 72]. On the contrary, the form that we propose is
exact and independent of any motion of reference. It can then be used both for
planning or stabilization applications.

5.5.5.2 Using the Normal Form for Motion Planning

A motion algorithm formulated as an optimization problem under constraints as
used in the HZD method (see Section 2.4.6.1) can be used. The interest of using
the normal form (5.101) is that the zero dynamics is of dimension one and is trivial
(θ̊ = 1). Then, contrary to the case where (5.51) or (5.66) are used, there is no
need to integrate the zero dynamics and to check its stability. From the knowledge
of τ → z1(τ), the coordinates (z1, z2, z3) are easily deduced by derivations.

In others words, the transverse dynamics of the system is flat [40].Then, if one
chooses to take τ → z1(τ) under the form of polynomial functions, the coefficients
of the polynomials, and the initial condition on θ, are the degrees of freedom of the
motion planning algorithm. In some cases, the property of flatness allows, by an
appropriate hand tuning of z1(τ), to easily make sure that the constraints during
the motion are respected. That’s what makes the flatness theory so powerful,
since it allows to trivialize the motion planning problem for some systems (see the
examples in [40]).

But, in our case, the physical meaning of z1 is abstruse, which makes difficult
the formulation of kinematic constraints such as the step length or the maximum
altitude of the foot during swing. Additionally, we did not manage to express
some constraints, like the no take off and no slipping conditions, in the coordinates
(z1, z2, z3, θ, t). Then, we have to come back to the original coordinates (q, ω) to
evaluate the constraint. As a consequence, we cannot take advantage of the flatness
of the transverse dynamics. Note also that the dynamics of t must be integrated if
one is interested in knowing the duration of the motion.

We implemented the previously described motion planning algorithm to find
walking cycles for the five-link walker described in 4.4.1. We encountered singularity
problems when choosing Mqc2

= (0 0 0 1) and Mqc1
= (I3×3 03×1). We did not test

an other choice of selection matrices, since we noticed that coming back to the
original coordinates was a major drawback5. Hence, the use of the normal form
with a two-dimensional zero dynamics (5.66) is easier and leads to a faster motion
planning algorithm.

5.5.5.3 Using the Normal Form for Stabilization

The normal form with a one-dimensional zero dynamics (5.101) may be powerful
for stabilization, since the dynamics of all the state components is linear and
controllable, except θ. The design must take into account the constraints on the
state gathered in Section 5.5.4.1.

Contrary to the case of motion planning, the physical meaning of the coordinates
(z1, z2, z3) has little importance, since the motion is already computed.

5It requires to solve the implicit function y2 = f2(qc1 , qc2 , θ,$c1). This is time consuming.
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5.6 On The Design of a Relative Degree Four
Output From the Angular Momentum σ in
a New Time Scale

In the previous sections, we derived normal forms using outputs with a relative
degree two or three. Actually, using one output of relative degree four and (n− 2)
outputs of relative degree two would result in a normal form with an empty zero
dynamics, that is an exact linear and controllable form (see Appendix G). [102]
designed a time scale in which the antiderivative of the angular momentum is a
relative degree four output for the compass walker. We explain here that there
probably exists no time scale such that this property can be generalized to the
others planar one degree underactuated biped robots. This is the only result that
we could exhibit on the equivalence of the dynamics of one degree undercactuated
biped robots with point feet to a normal form with an empty zero dynamics.

5.6.1 On the Relative Degree of σ.
We give here sufficient conditions on the time scaling function s(q, ω) so that the
angular momentum be of relative degree 3. From Section 5.3.1.1, the derivative of
the angular momentum relative to τ is

σ̊ = −B⊥G(q)s(q, ω) , (5.102)

B⊥ =
(
01×(n−1) 1

)
. (5.103)

Then

˚̊σ = −B⊥∂G
∂q

(q)s2(q, ω)ω −B⊥G(q)
[∂s
∂q

(q, ω)s(q, ω)ω + ∂s

∂ω
(q, ω)s(q, ω)ω̇

]
.

(5.104)
Since s(q;ω) > 0 by hypothesis, and B⊥G(q) is generally non zero, the necessary

and sufficient condition so that the relative degree of σ be at least 3 is

∂s

∂ω
(q, ω)D−1(q)B = 01×m. (5.105)

Then, a sufficient condition is

∂s

∂ω
(q, ω) = 01×n , (5.106)

that is s does not depend on the velocity. Under this assumption, we have

˚̊σ = −B⊥
[∂G
∂q

(q)s(q) +G(q)∂s
∂q

]
s(q)ω . (5.107)

Hence, σ is of relative degree 3 when s depends on the position only6.
6Except for the particular case s(q) = λ

B⊥G(q) , λ ∈ R, where˚̊σ = 0.
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5.6.2 Conditions on the Existence of an Antiderivative of
σ

We just saw that the relative degree of σ is equal to 3 when the time scaling
function depends on the position only. We investigate here the conditions that the
time scaling function s(q) must verify so that the antiderivative of σ may exist.
In this case, the antiderivative of σ would allow define a relative degree four output.

Let f(q) be an antiderivative of σ. By definition, it must verify

d(f(q))
dτ

= s(q, ω)∂f
∂q

(q)ω = B⊥D(q)ω. (5.108)

Equivalently, we have

1
s(q)M(q) = ∂f

∂q
(q) , (5.109)

with M(q) = B⊥D(q).

We denote the n-dimensional row vector M(q) as

M(q) = (M1(q) M2(q) ...Mn(q)) . (5.110)
Note that from (5.103), M(q) is the last row of the mass matrix D(q). Then,
Mn(q) 6= 0.

(5.109) corresponds to the set of n equations

1
s(q)Mi(q) = ∂f

∂qi
(q) , i ∈ {1, n} . (5.111)

From a standard theorem on differential forms, sometimes called the Poincaré’s
lemma, (5.111) has a solution if and only if the equality of mixed partials is verified,
that is

∂2f

∂qi∂qj
(q) = ∂2f

∂qj∂qi
(q) , (i, j) ∈ {1, n}2, i 6= j . (5.112)

Derivating (5.109) gives the set of n(n−1)
2 equations

∂Mj

∂qi
(q)− ∂Mi

∂qj
(q) = Mj(q)µi −Mi(q)µj , (i, j) ∈ {1, n}2, i < j , (5.113)

where µi = 1
s(q)

∂s
∂qi

(q).

The problem consists now in finding if there exist a set of µi which satisfy
(5.113).
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Figure 5.2: The planar two-link (or compass) walker.

5.6.3 Dimension 2
In dimension two, the biped model is the compass walker depicted in Figure 5.2.
A description of this model and the corresponding equations can be found in [127]
(page 67). Since q2 is a cyclic coordinate, ∂M1

∂q2
(q) = 0. Then, (5.113) gives

∂M2

∂q1
(q) = M2(q)µ1 −M1(q)µ2 . (5.114)

Since M2(q) 6= 0 
µ1 = 1

M2(q)
∂M2(q)
∂q1

µ2 = 0
(5.115)

is a solution of (5.114). From the definition of µ1, we have s(q) = M2(q). Hence,
an antiderivative of σ exists for this choice of s(q).

The expression of the antiderivative is obtained by solving (5.109)
∂f

∂q1
= M1

M2
∂f

∂q2
= 1

(5.116)

Hence

f(q) = q2 +
∫ q1

0

M1

M2
(l) dl . (5.117)

This is the same integral primitive as found in [102].

5.6.4 Dimension 3
5.6.4.1 The three-link planar walker.

The three-dimensional case corresponds to the three-link planar walker (a compass
walker with an additional torso) depicted figure 5.3. A description of this model
and the corresponding equations can be found in [127] (page 64). We have

M1 = a+ b cos(q1 − q2) + c cos(q1)
M2 = d+ b cos(q1 − q2)
M3 = 2c cos(q1) + b cos(q1 − q2) + e

(5.118)
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Figure 5.3: The planar three-link walker.

where a, b, c, d, e are strictly positive constants that depend only of the dynamical
parameters (length, mass and inertia) of the model.

(5.113) gives the three following equations

(i, j) = (1, 2) : ∂M2

∂q1
− ∂M1

∂q2
= M2µ1 −M1µ2

(i, j) = (1, 3) : ∂M3

∂q1
= M3µ1 −M1µ3

(i, j) = (2, 3) : ∂M3

∂q2
= M3µ2 −M2µ3

(5.119)

Or written under a matrix form
∂M2
∂q1
− ∂M1

∂q2
∂M3
∂q1
∂M3
∂q2

 =


M2 −M1 0
M3 0 −M1

0 M3 −M2



µ1

µ2

µ3

 . (5.120)

One remarks that

(
−M3 M2 −M1

)
M2 −M1 0
M3 0 −M1

0 M3 −M2

 = 01×3 . (5.121)

Then, a necessary condition so that solutions µi exist is

(
−M3 M2 −M1

)
∂M2
∂q1
− ∂M1

∂q2
∂M3
∂q1
∂M3
∂q2

 (5.122)

or

∂(M2
M3

)
∂q1

=
∂(M1

M3
)

∂q2
. (5.123)

This is a sufficient condition, since when this condition is verified and choosing
s(q) = 1

M3(q) , (5.111) gives
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∂f

∂q1
= M1

M3
,
∂f

∂q2
= M2

M3
,
∂f

∂q3
= 1 . (5.124)

This set of equations have a solution from the Poincaré’s theorem.

Using the dynamic equations (5.118), it appears that the condition (5.123)
cannot be verified in the neighborhood of any point of the configuration space.
Hence, the antiderivative of the angular momentum does not exist for the three-link
walker.

5.6.5 Dimension 4 and Higher Dimensions
In dimension 4 (four-link walker), (5.113) gives

∂M2
∂q1
− ∂M1

∂q2
∂M3
∂q1
− ∂M1

∂q3
∂M4
∂q1

∂M3
∂q2
− ∂M2

∂q3
∂M4
∂q2
∂M4
∂q3


=



M2 −M1 0 0
M3 0 −M1 0
M4 0 0 −M1

0 M3 −M2 0
0 M4 0 −M2

0 0 M4 −M3




µ1

µ2

µ3

µ4

 . (5.125)

Since we have


0 0 0 −M4 M3 −M2

0 −M4 M3 0 0 −M1

−M4 0 M2 0 −M1 0





M2 −M1 0 0
M3 0 −M1 0
M4 0 0 −M1

0 M3 −M2 0
0 M4 0 −M2

0 0 M4 −M3


= 03×6 ,

(5.126)
then


0 0 0 −M4 M3 −M2

0 −M4 M3 0 0 −M1

−M4 0 M2 0 −M1 0





∂M2
∂q1
− ∂M1

∂q2
∂M3
∂q1
− ∂M1

∂q3
∂M4
∂q1

∂M3
∂q2
− ∂M2

∂q3
∂M4
∂q2
∂M4
∂q3


= 03×1 . (5.127)

This gives
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∂(M1
M4

)
∂q3

=
∂(M3

M4
)

∂q1

∂(M2
M4

)
∂q1

=
∂(M1

M4
)

∂q2

∂(M2
M4

)
∂q3

=
∂(M3

M4
)

∂q2

(5.128)

We did not derive the dynamical equations of the four-link walker. Nonetheless,
it can be expected that, as for the three-link walker, these conditions are never
met. For higher dimensions, a similar derivation can be performed, and it is also
likely that the resulting conditions are never met.

5.7 Linearization Along a Reference Trajectory
The previous section illustrates the difficulty of obtaining a full exact linear form
for one degree underactuated robots. Instead of attempting to get such a form, a
standard approach consists in deriving an approximative linear form. To stabilize
a reference trajectory, the dynamics of the system is linearized along the reference
trajectory (first-order approximation) and a feedback controller is designed from
the obtained approximative dynamics. More especially, let us consider a dynamical
system in the time scale τ  x̊ = f(x, u, τ)

t̊ = s(x) .
(5.129)

Let τ →
(
xref (τ), tref (τ), uref (τ)

)
be a reference trajectory with the correspond-

ing input, parameterized in the same time scale τ . The first-order approximation
of the dynamics along the reference is

︷̊ ︷
δx = A(τ)δx+B(τ)δu︷̊︷
δt = ∂s

∂x
(xref (τ)) ,

(5.130)

where δx = x−xref (τ), δu = u−uref (τ), δt = t−tref (τ), A(τ) = ∂f
∂x

(
xref (τ), uref (τ), τ

)
,

and B(τ) = ∂f
∂u

(
xref (τ), uref (τ), τ

)
.

The obtained normal form is a τ -varying linear system. Then, using this form
naturally leads to τ -varying feedback controllers. We propose here to design a
Linear Quadratic Regulator (LQR) to stabilize a walking trajectory.
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5.7.1 Designing a Linear Quadratic Regulator (LQR) For
Biped Robots

5.7.1.1 Linear Quadratic Control

A complete description of the linear quadratic control can be found in [14]. Note
that the choice of the time scale τ does not modify the way of solving this problem,
as long as the time scale is the same as the one used for parameterizing the
reference. We consider that the reference is defined over a finite time interval:
τ ∈ [τ+, τ−], describing for instance a step that the robot must realize. Then, we
solve here a finite horizon LQR problem.

Since stabilizing the instants for which the robot reaches a given configuration
has little interest in the case of walking, we ignore the dynamics of δt. Only
the errors on the state are stabilized, that is we consider the following first-oder
approximation

︷̊ ︷
δx = A(τ)δx+B(τ)δu . (5.131)

We search to minimize the cost

J = 1
2
(
δx−

)T
Sf
(
δx−

)
+ 1

2

∫ τ−

τ+

(
δxTRδx+ δuTQδu

)
dτ , (5.132)

where R et Sf are symmetric positive matrices, Q is a symmetric definite positive
matrix and τ+ (resp. τ−) corresponds to the value of τ at the beginning (resp.
end) of the motion of reference. Q corresponds to the weights on the control effort
and R on the tracking error. The final weight Sf increases the importance of
having low tracking errors at the end of the motion.

The optimal control law is

δu = −Q−1BT (τ)S(τ)δx , (5.133)
where S(τ) is the solution of a Riccati differential equation


d

dτ
S(τ) = −S(τ)A(τ) + S(τ)B(τ)Q−1BT (τ)S(τ)−R− AT (τ)S(τ)

S(τ) = Sf

(5.134)

Note that, as it is formulated, the LQR does not seek to minimize the input
u, but the deviation relative to the reference on the input δu = u− uref (τ). This
choice is motivated by the fact that the ground reaction forces exerted on a biped
robot are a function of u (see (1.31)). Then, keeping the input u close to its
reference diminishes the risk of violating the contact constraints 7 (no take off and
no slipping of the stance leg).

7Assuming that the reference trajectory (xref (τ), uref (τ)) respects these constraints.
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5.7.1.2 Choice of the Time Scale

Generally, the time scale used for LQ control is the ordinary time, that is τ = t.
Nonetheless, a t-varying controller u = φ(x, t) is not always desirable, especially
for the control of biped robots. Indeed, the underactuated dynamics may evolve
slower or faster than expected by the motion planner, and a t-dependent controller
may result in poor performances in such cases (see Section 2.4.5).

The use of the first-order approximation using a time scale τ independent of
t, that is depending only on the state x, τ = τ(x), can be used to derive a state
feedback controller to stabilize the motion of reference.

We saw in 5.4.4 that a natural choice of time scale τ is a phase variable θ
expressed as a linear combination of the generalized positions: τ ∼ θ = Mθq.
The reference is parameteried by the phase variable, i.e. θ → xref(θ), where
θ ∈ [θ+, θ−], −∞ < θ+ < θ− < +∞. Then, using (5.55), the reference expressed
in the time scale τ is

τ → xref (τ − τn + θn) (5.135)
where τn and θn are constants updated at the beginning of each step. If τ − τn + θn
goes out of the nominal bounds [θ+, θ−], it is saturated at the bounds.

5.7.1.3 Choice of the Normal Form

We choose to use the normal form (5.74), that is

q̊c = $c

θ̊ = 1
$̊c = v

σ̊ = −B
⊥G(q)
σ

[B⊥D(q)(Nc$c +Nθ)]

(5.136)

to derive the first-order approximation (5.131).
This normal form is chosen since it is partially feedback linearized. Then, the

feedback linearized components in the first-order approximation are exact and not
approximative. Only the dynamics of σ is approximative. Also, it includes the
angular momentum σ. This quantity has a strong physical meaning and plays an
important role in biped locomotion (see Section 5.3.1.1).

5.7.1.4 Differences Between LQ Control and the HZD Method

The HZD method and the LQR provide two different types of state feedback
controllers. In the HZD method (see Section 2.4.4.2), the coordinates (qc;$c) are
controlled to stabilize the system into a two-dimensional manifold: the hybrid zero
dynamics (parameterized by (θ;σ)). The reference for these state components is
chosen such that the hybrid zero dynamics asymptotically converges to a periodic
orbit.

On the contrary, the LQR stabilizes one more coordinate: σ. Then, contrary to
the HZD method, the LQR stabilizes the full periodic orbit. There is no hybrid zero

186



dynamics anymore and so no requirement on the existence of an asymptotically
stable periodic orbit into this submanifold. Additionally, such a controller allows
to cope with the peaking phenomenon (see Section 2.4.7.3).

5.7.2 Application to the Planar Five-Link Walker

Figure 5.4: The planar five link walker. In the HZD method, the phase variable θ
is the virtual stance leg orientation relative to the vertical. The virtual stance leg
is the red dotted line.

We illustrate the previous derivation on the planar-five link walker described
in 4.4.1 and depicted in figure 5.4. We compare the performances of the LQR
with a high gain PD controller used to track the virtual constraints defined for qc.
This last controller is used in the HZD method to constrain the system to evolve
in the hybrid zero dynamics (see Section 2.4.7). We remind (see (2.59)) that the
expression of the high gain PD controller is

u = −KPy −KDẏ , (5.137)
where y = qc − qc,ref (θ) and qc,ref (θ) is the motion of reference for qc.

The walking trajectory to stabilize was designed using the motion planning
algorithm of the HZD method (see Section 2.4.6). Then, an asymptotically periodic
orbit exists in the hybrid zero dynamics.

5.7.2.1 Choice of Coordinates and Time Scale

We remind that the planar five-link walker has four actuated degrees of freedom:
q1, q2, q3 and q4. For this specific example, we have

x = (q1; q2; q3; q4; q5;$1;$2;$3;$4;σ) , (5.138)
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qc = (q1; q2; q3; q4) , (5.139)

$c = ($1;$2;$3;$4) , (5.140)

Nc =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −1

2 0


, Nθ =



0
0
0
0
−1


, B⊥ =

(
0 0 0 0 1

)
. (5.141)

The time scale τ is defined as

dt

dτ
= θ̇ , (5.142)

where θ is the standard phase variable used in the HZD method for the planar
five-link walker, that is the virtual stance leg angle (see figure 5.4). θ is a linear
combination of the positions q = (q1, q2, q3, q4, q5)

θ = Mθq = −q1 −
q3

2 − q5 . (5.143)

Then, we have τ ∼ θ.

5.7.2.2 Details on the implementation.

The expressions of A(τ) and B(τ) are analytically computed. The state xref and
the input uref corresponding to one step8 of the walking trajectory are interpolated
by a 6 degree Bézier polynomial in θ. The Riccati equation (5.134) is solved
backwards in the time scale τ using the solver ode45 of Matlab. The resolution
takes about one second on a laptop with an 1.3 GHz Intel core i5. The expression
of the solution S is obtained on a discretized interval [θ+, θ−]. It is stored in an
array. During the simulation, the expression of S corresponding to the closest
value of θ is taken from the array to compute the control law

v = vref (θ)−Q−1BT (θ)S(θ)δx . (5.144)
The vector of the joint torques u is then obtained using the static feedback

transformation (5.65).

An issue to be addressed is the action to perform when θ is out of its nominal
interval of evolution [θ+, θ−]. For such values, no reference trajectory is defined.
We simply decided to saturate θ at its bounds for the computation of S and of

8Since the walk is symmetric, the motion of reference is deduced by swapping the role of the
legs.
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the reference position. The reference velocity is set to zero. This proved to be
acceptable, even though it sometimes cause torque peaks at the beginning or at
the end of a step. Torques are saturated at 100 Nm.

5.7.2.3 Simulation results.

We considered five scenarios to compare the controllers:

1. Walking on flat ground without disturbances.

2. Walking on uneven ground. The altitude of the ground is varied randomly.

3. Walking on flat ground with an horizontal backward push applied on the
hip of the robot during the second step.

4. Walking on flat ground with an horizontal forward push applied on the hip
of the robot during the second step.

5. Walking on flat ground using a set of dynamical parameters for the design
of the controller that is different than the one used for simulating the robot.

Each test is considered successful if the robot manages to walk fifty steps.

Several sets of weighting matrices for the LQR were tested by trial and error.
Two sets of them were selected: W1 and W2. They are gathered in table 5.1. W1
corresponds to high weights on the actuated positions qc and velocities $c errors
and a low gain on the angular momentum error. Then, it correspond to a PD +
feedforward controller (see 2.54). W2 has a high weight on the angular momentum
error and on the actuated positions qc. The motivation of such a choice is to get a
controller stabilizing the angular momentum without deviating too much from the
reference trajectory.

The performances of the high gain PD controller and of the LQR with these
two sets of gains are given in table 5.2. Without surprise, the performances of
W1 and of the high gain PD controller are very similar. W2 stabilizes better the
angular momentum than W1 and the PD controller. It allows a better recovery to
backward pushes (scenario 3). Figure 5.5 depicts simulation results for a backward
push of 12 N. With W2, the swing leg quickly moves forward to compensate for the
loss of angular momentum due to the push. This is a quite human-like behavior.
[72] also noticed this behavior for the compass walker. The counterpart is that
since joint tracking performance is deteriorated, the swing leg may impact the
ground before midstance (the middle of the step), leading to a fall of the robot
during the next step. This behavior was especially noticed when the angular
momentum (its sign is negative) is inferior to its reference, i.e. when the robot
moves forward too quickly. That’s why W2 is less robust than the two others
controllers on uneven ground and for forward pushes.

The fifth scenario aims at testing the robustness of the controllers to dynamical
parameters uncertainties by introducing a parameter mismatch between the design
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model and the “actual” model. Changing the dynamical parameters used to design
the LQR and to estimate the angular momentum during the simulation while
not changing those of the simulated robot showed that the PD controller and
the LQR with W1 are robust to dynamical parameter uncertainties. On the
contrary, the LQR with W2 is less robust. As a matter of fact, since the angular
momentum depends on the dynamical parameters (see (5.23)), the bigger is the
mismatch between the dynamical parameters, the greater is the difference between
the angular momentum and its reference. Due to large errors, the robot deviate
from its nominal trajectory in an attempt to stabilize its angular momentum. The
consequence is that it does not impact the ground in the configuration of reference,
causing the slippery of the impacting leg or a fall during the next step.

PD
KP = diag(3600, 3600, 3600, 3600)
KD = diag(600, 600, 600, 600)

W1
R = diag(103, 103, 103, 103, 102, 102, 102, 102, 10−4)

Sf = 4R
Q = diag(1, 1, 1, 1)

W2
R = diag(5.104, 5.104, 5.104, 5.104, 10−1, 10−1, 10−1, 10−1, 100)

Sf = 4R
Q = diag(1, 1, 1, 1)

Table 5.1: Gains of the high gain PD controller on the actuated coordinates
(q1, q2, q3, q4) and the two sets of weights used for the LQR. diag stands for diagonal
matrix. W1 corresponds to high gains on the actuated coordinates errors and
offers similar performances to the high gain PD controller. A higher gain on the
angular momentum error is set on W2. Gains on the position error are high too,
so that the robot may not deviate too much from the reference walking trajectory.
Higher weights are used for the final weight tracking errors matrix Sf since we
consider that it is important for the robot to be close to the reference trajectory
at the instant of impact. Nonetheless, the weights in Sf were not set too high,
otherwise we noticed that torque peaks appear at the end of a step, leading to a
risk of slipping of the stance leg.

5.7.2.4 Discussion

We are not the first to design a t-invariant LQR. Manchester et al. [72] designed a
LQR using the linearization of the transverse dynamics written in the ordinary
time t along a trajectory. The resulting optimal gains of the controller are time-
dependent. But, to eliminate this time dependence, they evaluate the gains at the
"new time" s = argtmin||x− x∗(t)||, where x is the state of the robot and x∗(t) is
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Figure 5.5: Simulation results for the scenario 4 (backward push) using the LQR
with W2 (high weight on the angular momentum). The robot is pushed backward
by a force of 12 N during the entire second step. The stick animation diagram
(above) represents the 2 first steps of the robot (stance leg: red, swing leg: green,
torso: blue). The first step is not disturbed. It corresponds to the walking motion.
The push is applied during the second step. The robot quickly moves forward its
swing leg to increase its angular momentum. See the difference of evolution of the
angular momentum using a high gain PD controller (left bottom figure) and using
a LQR with W2 (right bottom figure). The LQR better stabilizes the angular
momentum. The contact constraints are respected (FN > 0 and

∣∣∣ FT
FN

∣∣∣ < 0.6, idem
for the impulses at impact).
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PD W1 W2
1. Walking on flat ground Same performances

2. Walking on uneven ground ± 2.5 cm ± 2.5 cm ± 1.5 cm
3. Magnitude of a push forward 75 N 75 N 6 N
4. Magnitude of a push backward 12 N 8 N 20 N

5. Dynamical parameters uncertainties -99 % / + 200 % -99 % / + 200 % +10 % / - 10 %

Table 5.2: Performances of the high gain PD controller, the LQR using W1 and
the LQR using W2 for the five scenarios. For the scenario 2, the terrain is varied
randomly. The table contains the maximum allowable deviation of ground altitude.
For the scenario 5, the dynamical parameters (mass and inertia of the links) are
multiplied by the same scaling factor. The transmission inertia is kept unchanged.

the time parameterized trajectory to track. Even though the obtained results are
satisfactory for the compass walker, is maybe not a proper way to do. Especially,
the choice of the norm to define s is not obvious. On the contrary, our approach
simply and properly defines an (ordinary time)-invariant LQR without requiring
any projection. But, contrary to [72], our approach is only valid when the time
scale τ does not go backward in time.

Improvements to get a better stabilization of the angular momentum while
avoiding too early impacts are an automatic search of the weighting matrices by
solving an optimization problem taking into account various disturbances as in
[45]. An other idea could be to control directly the swing leg altitude, by using for
example coordinates that include this quantity. .

The LQR could be tested to stabilize walking trajectories that are not stable
while using a PD controller on the actuated coordinates. This may be especially
the case for walking trajectories of several degree underactuated 3D biped robots
[22] (unstable hybrid zero dynamics ) or when replaying recorded trajectories on
an leg exoskeleton carrying a mobility-impaired person. Finally, especially due
to a lack of time, we did not implement this controller on a real robot. As [72]
noticed when working with the compass walker, the implementation of a LQR is
more difficult than the one of a high gain PD controller. Indeed, a LQR requires
a control of the joint torques. It would be interesting to further investigate how
much more difficult the implementation is.

5.8 Conclusion
New normal forms for planar one degree underactuated biped robots with point
feet were derived in this chapter using Time-Scaling. The phase variables used
in the HZD method were used as new time scales. It is unclear if these forms
can provide motion planning and stabilization techniques outperforming those
derived from the standard forms in the ordinary time t. The normal form with
a one dimensional zero dynamics (5.101) seems to be appealing. But, it has the
drawback to use a set of coordinates with an abstruse physical meaning, and is
not necessarily valid on the entire state space. The derivation of a LQR from the
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first-order approximation along a trajectory allows to stabilize a walking cycle.
But, this controller does not outperform a HZD controller, except in the case
where the robot lost angular momentum.

As a matter of fact, this chapter should be viewed as a first step towards the
use of Time-Scaling for the control of biped robots. Many issues are still to be
addressed. The research of time scales with nice properties, such that a strict
monotonicity in the entire state space was not addressed. The property of feedback
equivalence to a linear system in a new time scale is still an open problem. A
deeper investigation on the potentialities offered by the normal forms that we
derived is to be done. Also, all the derivations that we presented are valid if and
only if the time scale is strictly monotonic in the ordinary time t. A strategy to
adopt when the time scale goes backward in time has to be found. Finally, after
gaining maturity, it would be interesting to generalize this approach to the case of
tridimensional robots, and especially to investigate if Time-Scaling may help to
cope with the problem of the robust stabilization of several underactuated biped
robots.
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Conclusion and Perspectives

In this thesis, we addressed the design of robust and energy-efficient walking gaits
for one degree underactuated biped robots with point feet. We found that the
HZD method was the most appropriate for this study, since it is well documented
and rigorous.

Following the experimental reports in [127], we implemented the HZD method
on a real planar robot with point feet. For the considered robot, we found that
the computation of the hybrid zero dynamics was not easy. Then, we preferred
to find a periodic orbit for the full model. This is not exactly in the spirit of the
HZD method which proposes to find a periodic orbit for the hybrid zero dynamics
only. The simulation results were in accordance with experiments. But, while
the literature reports the use of contact sensors to detect the impact of the swing
leg onto the ground, we ended up not using such sensors since they deteriorated
quickly during experiments. Instead, we preferred using the measure of the phase
variable to decide when the robot should switch the role of the legs.

From these experiments, we noticed that more than a half of the kinetic energy
of the robot was dissipated when the leg impacted the ground, causing noise,
vibration and the deterioration of the hardware. This motivated us to introduce
a strategy to control the relative kinetic energy dissipated at impact in Chapter
4, using the standard rigid impact model of Hurmuzlu [56]. Numerical results
obtained on a planar five-link walker with point feet showed that minimizing the
energy dissipation is contradictory with the minimization of the torque consumption
during the walk. This explains why trajectories that dissipate so much energy at
impact are obtained when one seeks to minimize the torque consumption only.
Then, a compromise has to be found to find energy-efficient walking trajectories
with moderate energy losses at impact. On the opposite, we also designed motions
dissipating most of the kinetic energy and showed that they can be used to stop
the robot in “one step”.

Underactuation renders the design of robust walking gaits challenging [127].
Since a change of time scale in the dynamic equations (Time-Scaling) is known
to offer new control design opportunities [103], in Chapter 5, we investigated the
opportunities offered by Time-Scaling for planar one degree underactuated biped
robots with point feet. We chose to use the phase variables introduced in the
HZD method as new time scales. Then, using coordinate and feedback transfor-
mations, we derived new exact normal forms with a two and a one-dimensional
zero dynamics. We also designed a linear quadratic regulator under the form of a
state feedback controller using the linearization of the dynamics along a reference
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trajectory. The controller was tested in simulation on a planar five link walker
with point feet. It is capable of tracking a periodic walking trajectory, but it
appeared to be less robust than a controller stabilizing the robot into an hybrid
zero dynamics manifold asymptotically stable to a periodic orbit (HZD method).

Chapters 4 and 5 bring some new partial guidelines for the design of robust
and energy efficient walking gaits for one degree underactuated biped robots with
point feet. Chapters 4 highlights the importance of not only taking into account
energy-efficiency, but also impact losses to preserve the hardware. Chapter 5
investigates a new way for the design of walking controllers. But, it is still un-
clear to us if this approach will result in controllers outperforming the existing ones.

As a conclusion, we present some future works that we could not investigate
further:

• Experimental validation of the walking trajectories and controllers derived
in Chapters 4 and 5, and investigation of their robustness.

• Investigating further the opportunities offered by the new normal forms
derived in Chapter 5 for the design of controllers, especially the normal form
with a one-dimensional zero dynamics (5.101).

• Investigating further the property of feedback equivalence to a linear and
controllable normal form for planar one degree underactuated biped robots,
which is still an open problem (except for the compass walker).

• Generalization of the study performed in Chapters 4 and 5 for tridimensional
underactuated biped robots.

More generally, here are some ideas related to the HZD method:

• In Section 2.4.5.2, we remarked that the use of virtual constraints being
functions of the complete state of the robot have never been used in the
HZD method for tridimensional biped robots. Using such a parameterization,
for instance virtual constraints under the form y = qa − qa,ref (qu, σ), where
qa are the actuated coordinates, qa,ref is the reference trajectory for qa and
(qu;σ) are the coordinates used to parameterize the hybrid zero dynamics
manifold, may give more robust walking gaits. Indeed, in this case, the
reference trajectory qa,ref would change and adapt to any error relative to the
reference periodic orbit in the hybrid zero dynamics. It would be interesting
to compare the robustness of walking gaits using these virtual constraints
with the performances obtained when using the standard virtual constraints.

• The HZD method has recently been used for the design of walking gaits
for a system {lower limb exoskeleton + user} in simulation [2]. New issues
appear for the control of such a system compared to a standard biped robot.
Among them are the uncertainties on the model of the user (length, mass,
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inertia) and on the motion of the torso. Inspired by [2] and [47], we propose
to design walking gaits robust to these uncertainties and disturbances using
the cost function (2.43) and the virtual constraints mentioned just above
(y = qa − qa,ref(qu, σ)). It can be hoped that formulating the problem as a
direct collocation problem as used for the DURUS robot [97] and in [2] will
give robust walking gaits in a moderate computation time (maximally a few
hours), which could be replayed online on the real system.
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Appendix A

The Method of Poincaré Sections

The method of Poincaré sections allows for the study of existence and the stability
of periodic orbits. The method allows to translate the search of periodic orbits for
a continuous system in the full state space to the study of a discrete application
(the Poincaré map) on a lower dimensional space. This greatly simplify things. We
give here a short description of the method. A complete and rigorous presentation
can be found in [52, 127, 89].

Let us consider a periodic orbit O for the system (1.85) that transversally
intersects an hypersurface SP , called the Poincaré section, at the point x∗. Without
loss of generality, we take the Poincaré section as the impact map, that is SP = S.
When slightly perturbating the orbit, we assume that the system still crosses the
surface S. More specifically, let x0 ∈ S in the neighborhood of x∗ and t→ Φ(x0, t)
be the flow of the hybrid system, i.e. the solution of (1.85) starting from x0 at
the time t = 0. We assume that the flow crosses S at the time TI(x0) > 0. The
Poincaré map P : S → S is the application mapping x0 to x1 = Φ(x0, TI(x0)). An
illustration is given figure A.1.

It can be proved that the existence of periodic orbits is equivalent to the
existence of fixed points for the Poincaré map, i.e. P (x∗) = x∗. And the periodic
orbit is locally exponentially stable if and only if the eigenvalues of the Jacobian
of the Poincaré map ∂P

∂x
(x∗) have a modulus stricly inferior to one. In practice,

the Poincaré map and its jacobian can only be computed numerically.
Since, as we saw above, the existence of periodic orbits for the hybrid zero

dynamics is equivalent to the existence of periodic orbits for the full system, the
Poincaré map can be computed only in the hybrid zero dynamics, reducing the
computation cost.

The method of Poincaré allows only to study the local stability of periodic
orbits. Estimating the global stability and the size of the basin of attraction for
an orbit is still an open problem.
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Figure A.1: Illustration of the Poincaré map.
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Appendix B

Dynamic Parameters of VS

lb

p
b

p
f

p
t

lf

lt

p
b1

p
b2

lb1

lb2

2 bars stabilizing

mechanism
2 bars lateral 

stabilizing mechanism

Torso

lb 820 mm
pb 95 mm
Mb 15.43 kg
Icomb 0.8567 kg.m2

Thigh

lf 400 mm
pf 201 mm
Mf 5.42 kg
Icomf 0.1230 kg.m2

Shin

lt 400 mm
pt 215 mm
Mt 2.25 kg
Icomt 0.029 kg.m2

Transmission rknee 101
ratio rhip 100

Transmission Ieq,knee 1.89 kg.m2

inertia Ieq,hip 1.46 kg.m2

Bar 1

lb1 500 mm
pb1 246 mm
Mb1 2.25 kg
Icomb1 0.056 kg.m2

Bar 2

lb2 978 mm
pb2 494 mm
Mb2 3.36 kg
Icomb2 0.32 kg.m2

Figure B.1: Dynamical parameters of the VS robot (from CAD files). The
transmission inertia is the reflected transmission inertia to the joint (see 1.6).
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Appendix C

Estimation of the Positions q and
Velocities q̇ for the VS Robot

Multi-turn absolute encoders are mounted on the hip, the knee motor shafts, and
on the joint angles of the 2 bars mechanism (to estimate the absolute orientation of
the robot q5). The servo drives are used to estimate the position and velocity of the
encoder shaft. Unfortunately, the estimator used by the servo drive is not reported
by the manufacturer. These data, expressed in counts and counts/s are sent to
the embedded computer. The embedded computer computes the joint position
and velocities from this data. We explain here how we proceeded to calibrate the
encoders.

C.1 Brief Description of How Absolute Encoders
Operate

Multi-turn absolute encoders encode the absolute position of a shaft. They keep
in memory the number of revolutions performed. For the encoders mounted on
the robot VS, a revolution of the encoder is equally divided in N segments, and
each segment is encoded by a unique value. The shaft position qenc, expressed in
radian, is

qenc = qenc,0 + 2π
N

(c− c0) , (C.1)

where c0 (resp. c) is the value returned by the encoder (in counts) when the
position of the shaft is qenc,0 (resp. qenc).

For the knees and the hips, assuming no mechanical backlash and flexibility in
the mechanical transmission system, the joint position is

qj = qj,0 + 1
r

(qenc − qenc,0) , (C.2)

where q0 is the joint position when the position of the shaft is qenc,0 and r is the
transmission ratio of the mechanical transmission system.
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The higher the resolution N is, the better the accuracy of the measure is. But
the more expensive the sensor is. Interestingly, the accuracy of the measure of the
joint position is r times higher than the measure of the corresponding motor shaft
position.

Since the encoders are directly mounted on the joints of the lateral stabilizing
mechanism, qenc = qj for the joints of the mechanism.

C.2 Calibration of the Encoders
From (C.1), to decode the values sent by the encoder, the embedded computer
needs to know the correspondence between one particular shaft position and
one encoded value. In others words, the three values c0, qenc,0 and qj,0 must be
determined. Then, a calibration is necessary. Since the robot has no hard stop that
could have been used as a position of reference for the calibration, we temporarily
attached a low cost IMU to the links of the robot to measure. This allowed to get
the joint position qj,0.

But, IMU have biases that were not estimated. So, we do not know how
this calibration method is accurate. We did not try to improve it, since we did
not need to tune the parameters of the walking trajectory found in simulation
(Bézier coefficients, lower and upper bounds of θ) for a successful experimental
implementation.

C.3 Estimation of the Joint Position and Veloc-
ity

The embedded computer computes the joint positions using (C.3) and the joint
velocities with the relation

q̇j = 1
r
q̇enc . (C.3)

The obtained estimated hip and knee joint positions and velocities are directly
used for the computation of the feedback law.

C.4 Estimation of the Absolute Orientation q5
and q̇5

The torso absolute orientation q5 can be reconstructed by measuring the three
joint angles of the 2 bars mechanism α3, α4 and α5

q5 = α3 + α4 + α5 − π . (C.4)
Using (C.1) gives a smooth estimate of q5. But, using (C.3), the estimate of q̇5

is noisy. Indeed, contrary to the hip and knee, the encoders mounted on the 2 bars
mechanism do not benefit of the transmission ratio that increases the accuracy
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of the estimation of q5. The estimation of the encoder position is not accurate
enough so that the estimator of the servo drives return a smooth estimation of the
encoder velocity.

Therefore, we use a linear regressor from the position measurements q5 to
estimate the velocity. The estimator runs at 1 kHz on the embedded computer. It
performs a linear regression on the last 15 position measurements. The derivative
of the regression line is taken as the estimate in velocity. Results are depicted in
figure C.1. The estimation is smooth and is almost not delayed compared to the
estimation computed by the servo drives.

49.6 49.8 50 50.2 50.4 50.6 50.8 51 51.2

−1

−0.5

0

0.5

1

Time (s)

Estimation of q̇5 (rad/s)

 

 

ˆ̇q5 raw

ˆ̇q5 with a linear regression

Figure C.1: Online experimental estimation of q̇5 using a linear regressor (in red).
In blue is the estimation obtained using the servo drives reading the encoders of
the bars.
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Appendix D

Online Local Modifications of the
Virtual Constraints for the VS
Robot

This appendix presents the deadbeat hybrid extension that we implemented on
VS (see chapter 3). An illustration is depicted figure D.1. Since the measure of
the derivative of the phase variable θ̇ oscillates after impact, it is not taken into
account and only the measure of the input after impact y+ is considered. Virtual
constraints are then locally modified so that the resulting new input after impact
be zero. This prevents peaks of torques.

Let h∗i,d(s) be the nominal virtual constraint, i.e. computed offline. The
normalized curvilinear abscissa is defined as

s = θ − θ∗+

θ∗− − θ∗+
, (D.1)

where θ∗+ and θ∗− are the nominal values of θ at the beginning and the end of a step.

The virtual constraint with the hybrid deadbeat extension is

hi,d(s) = h∗i,d(s) + hi,c(θ, y+
i , θ

+) , (D.2)
where hi,c(θ, y+

i , θ
+) is the corrective term using the measure of the output y+

i and
of the phase variable θ+ just after impact.

The corrective term is used to join the position after impact to the reference
trajectory on the position at the middle of the step, i.e. s = 1

2 . We choose
hi,c(θ, y+

i , θ
+) as a degree 4 Bézier polynomial
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If si,bis ∈ [0, 1] :
hi,c(si,bis) = a0i(1− si,bis)4 + 4a1isi,bis(1− si,bis)3 + 6a2is

2
i,bis(1− si,bis)2

+ 4a3is
3
i,bis(1− si,bis) + a4is

4
i,bis .

If si,bis > 1 :
hi,c(si,bis) = 0 ,

(D.3)
where

si,bis = θ − θ0
θ∗++θ∗−

2 − θ0
. (D.4)

The polynomial must verify the following equalities



hi,c(0) = y+
i . The corrective term zeroes the output after impact.

hi,c(1) = 0. The corrective term vanishes at the middle of the step.
∂hi,c
∂si,bis

(0) = 0. The derivative of the corrective term does not change the

derivative of the output after impact.
∂hi,c
∂si,bis

(1) = 0. The derivative of the corrective term vanishes at the middle

of the step.
(D.5)

Then, we get 

If si,bis ∈ [0, 1] :
hi,c(si,bis) = y+

i

[
(1− s4

i,bis + 4s(1− si,bis)3
]
.

If si,bis > 1 :
hi,c(si,bis) = 0 .

(D.6)
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Figure D.1: Illustration of the deadbeat hybrid extension.
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Appendix E

Classical Results of Linear
Algebra

The rank-nullity theorem If A is a matrix with m rows and n columns, then

rank(A) + dim(Ker(A)) = n . (E.1)

The Sylvester’s rank inequality If A is an m×n matrix and B is n×k, then

rank(A) + rank(B)− n ≤ rank(AB) . (E.2)

Inequality on the rank of a matrix product If A is an m× n matrix and
B is n× k, then

rank(AB) ≤ min(rank(A), rank(B)) . (E.3)
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Appendix F

Details on the Motion Planning
Algorithms Used to Control the
Relative Energy Dissipation at
Impact

This Appendix refers to Section 4.3.3. The motions are obtained using the HZD
method (see Section 2.4.6.1) and the results established in Section 4.3.2. The
optimization parameters are found by solving the nonlinear parametric optimization
problem:

Given a vector of unknown P ,
find minPJ(x, u) , subject to:

Ce(x) = 0
Ci(x) ≤ 0

(F.1)

The cost function is the sum of the square torques divided by the step length
over a step

J(x, u) = 1
L(x)

∫ T (x)

0
||u(t)||2 dt . (F.2)

Since the robot has four independent actuators, we define four virtual constraints
for the actuated coordinates

yi = qi − hi,d(θ) , i ∈ {1, ..., 4} . (F.3)
The functions θ → hi,d(θ) are parameterized by a 6 degree Bézier polynomial 1

hi,d(s) = a0i(1− s)6 + 6a1is(1− s)5 + 15a2is
2(1− s)4 + 20a3is

3(1− s)3

+ 15a4is
4(1− s)2 + 6a5is

5(1− s) + a6is
6 ,

(F.4)

1The degree of the polynomial was chosen sufficiently "high" to have a large space of search.
A degree of 6 proved to be sufficient.
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where
s = θ − θ+

θ− − θ+ , (F.5)

is the normalized gait phasing variable. θ+ (resp. θ−) is the value of θ at the
beginning ( = right after impact) and at the end (= right before impact) of a step.
The original set of optimization parameters is equal to 29: the 4× 7 = 28 Bézier
coefficients and the velocity of the phase variable at the beginning of the step θ̇+.

The optimization problem is solved using the Matlab function fmincon(). The
dynamical equations are integrated using ode45.

F.1 Design of Walking Trajectories with Little
Energy Losses

F.1.1 Set of Optimization Parameters
The set of optimization parameters can be reduced by deriving some explicit
relations between the Bézier coefficients from some constraints that the motion
must verify.

F.1.1.1 The Configuration at Impact is not Optimized

The configuration of the robot at impact is fixed during the optimization. Indeed,
we noticed that leaving it free results in poorer results. Several configurations at
impact were tested. They were randomly chosen from anthropomorphic configura-
tions.

Then, a01, a02, a03 and a04 are removed of the set of optimization parameters.
Additionally, from the constraint of periodicity, we have

q+
2 = q−1 ⇔ a0,2 = a6,1 ,

q+
1 = q−2 ⇔ a0,1 = a6,2 ,

q+
4 = q−3 ⇔ a0,4 = a6,3 ,

q+
3 = q−4 ⇔ a0,3 = a6,4 .

(F.6)

Then, a61, a62, a63 and a64 are also removed.

F.1.1.2 Imposing the Relative Energy Dissipation

The desired relative energy dissipation r is imposed as explained in Section 4.3.2.
More specifically, we select the direction of the velocity before impact f ′(θ−) in the
four-dimensional vector subspace generated by the eigenvectors associated to the
four largest eigenvalues: Vect(v2, v3, v4, v5). Indeed, we saw that three eigenvalues
are 0, i.e. λ3 = λ4 = λ5 = 0. Then, (4.60) gets

α2
2 =

r
5∑
i=3

α2
i

λ2 − r
, (F.7)
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which always have solutions if λ2 < r. Since we work with values of relative energy
dissipation r close to zero, and that generally λ2 is generally found to be smaller
than −0.3, this condition is met.

To get the desired f ′(θ−), the Bézier coefficients must verify

a5i = a6i −
(θ− − θ+)

6θ̇−
f
′(θ−) , i ∈ {1, 4} , (F.8)

where f ′i (θ−) is the ith component of f ′(θ−).
Then , a51, a52, a53 and a54 are removed from the optimization parameters. And

α2, α3, α4 are added instead.

Hence, 29− 8− 4 + 3 = 20 optimization parameters are used in the motion
planning algorithm

P = (a11, a21, a31, a41, a12, a22, a32, a42, a13, a23, a33, a43, a14, a24, a34, a44, α3, α4, α5, θ̇
+) .

(F.9)

F.1.2 Constraints
We enumerate now the constraints Ce(x) = 0, and Ci(x) ≤ 0 used for the para-
metric optimization and some of their typical corresponding thresholds. Note that
depending on the kind of desired trajectory, some threshold values were changed.

Constraints to have a periodic orbit:

• Periodicity of the trajectory : θ and θ̇ periodic.

Constraints due to the model hypotheses:

• No take off of the stance foot: F z > 150N .

• No slippage of the stance foot: |Fx
F z
| < 0.5.

• Swing foot strictly above the ground during a step: the swing foot altitude
profile must be above a parabola with a height of 6 cm. (?)

• Vertical velocity of the swing leg strictly positive at the beginning of the
step.

• No take off of the leg that impacts the ground: Iz > 0.

• No slipping of the leg that impacts the ground: | Ix
Iz
| < 0.45.

Constraints due to the physical limits of the robot:

• Joint limits. q1, q2 ∈ [π2 ,
3π
2 ] and q3, q4 ∈ [−3π

5 , 0].

• Maximum joint torque: 100 Nm. (??)
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• Maximum joint velocity: 2.5 rad/s.

User’s defined constraints:

• Mean walking speed between 0.3 m/s and 0.7 m/s.

• Step length between 0.25 m and 0.6 m.

• Torso inclination q5 inferior to 0.15 rad.

• Torso movement inferior to 0.2 rad.

• Robustness to perturbations: Minimum kinetic energy level during a step
superior to 1 J. (? ? ?)

See Section 3.3 for further details on (?), (??) and (? ? ?).

The stability of the walking trajectory is checked a posteriori by modifying the
state of the robot at the beginning of a step (= right before impact), especially the
value of θ̇, and integrating the dynamical equations to see if the robot converges
to the walking cycle. This is roughly a Poincaré analysis.

Actually, as explained in Section 2.4.7, the stability of the hybrid zero dynamics
is not difficult to obtain when the degree of underactuation is equal to one.

F.2 Design of a Motion to Stop the Robot in
“One Step”

We design here a motion bringing the robot at impact with a relative energy
dissipation close to −1 (high dissipation of energy). The motion starts from the
beginning of a given walking trajectory (beginning of a step).

F.2.1 Set of Optimization Parameters
The set of optimization parameters can be reduced by deriving some explicit
relations between the Bézier coefficients from some constraints that the motion
must verify.

F.2.1.1 The State of the Robot at the Beginning of the Motion is
Imposed

Since the motion starts from a given given walking trajectory a01, a02, a03, a04
and a11, a12, a13, a14 and θ̇+ are imposed and removed from the optimization
parameters.
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F.2.1.2 Imposing the Relative Energy Dissipation

The desired relative energy dissipation r is imposed as explained in 4.3.2. More
specifically, we select the direction of the velocity before impact f ′(θ−) in the
one-dimensional vector subspace generated by the eigenvectors associated to the
second lowest eigenvalue: Vect(v2).

To get the desired f
′(θ−), the Bézier coefficients must verify (F.8). Then ,

a51, a52, a53 and a54 are removed from the optimization parameters.

Hence, 29−9−4 = 16 optimization parameters are used in the motion planning
algorithm

P = (a2i, a3i, a4i, a6i) , i ∈ {1, 4} . (F.10)

F.2.2 Constraints
We enumerate now the constraints Ce(x) = 0, and Ci(x) ≤ 0 used for the para-
metric optimization and some of their typical corresponding thresholds. Note that
depending on the kind of desired trajectory, some threshold values were changed.

Constraints due to the model hypotheses:

• No take off of the stance foot: F z > 150N .

• No slippage of the stance foot: |Fx
F z
| < 0.5.

• Swing foot strictly above the ground during a step: the swing foot altitude
profile must be above a parabola with a height of 6 cm. (?)

• Vertical velocity of the swing leg strictly positive at the beginning of the
step.

• No take off of the leg that impacts the ground: Iz > 0.

• No slipping of the leg that impacts the ground: | Ix
Iz
| < 0.45.

Constraints due to the physical limits of the robot:

• Joint limits. q1, q2 ∈ [π2 ,
3π
2 ] and q3, q4 ∈ [−3π

5 , 0].

• Maximum joint torque: 100 Nm. (??)

• Maximum joint velocity: 2.5 rad/s.

User’s defined constraints:

• Mean walking speed between 0.3 m/s and 0.7 m/s.

• Step length between 0.25 m and 0.6 m.
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• Torso inclination q5 inferior to 0.15 rad.

• Torso movement inferior to 0.2 rad.

• Robustness to perturbations: Minimum kinetic energy level during a step
superior to 1 J. (? ? ?)

• The robot reaches the desired configuration at impact. (�).

• The relative energy dissipation is equal to the desired one r. (��).

• K− ≤ K−Max, where K− is the kinetic energy right before impact, and K−Max

is the maximum kinetic energy allowed right before impact. (� � �).

See Section 3.3 for further details on (?), (??) and (? ? ?) and Section 4.4.4.2
for further details on (�), (��) and (� � �).
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Appendix G

Deriving Normal Forms Using
Feedback Equivalence

Normal forms for dynamical systems can be derived by applying both a transfor-
mation on the coordinates and on the input. This defines a feedback equivalence
relation between the original system and the normal form [34]. This Appendix
gives a brief presentation of the feedback equivalence and explains how it can be
used to derive exact partial or full linear normal forms.

We will consider two dynamical systems. The first one is

ẋ = F (x) +G(x)u , (G.1)

where x ∈ χ ⊂ Rn is the state, u ∈ U ⊂ Rm is the m-dimensional vector of inputs,
x→ F (x) and x→ G(x) are C∞ vector fields on χ.

The second one is

˙̃x = F̃ (x̃) + G̃(x̃)ũ , (G.2)
where x̃ ∈ χ̃ ⊂ Rn is the state, ũ ∈ Ũ ⊂ Rm is the m-dimensional vector of inputs,
x̃→ F̃ (x̃), x̃→ G̃(x̃) are C∞ vector fields on χ̃.

G.1 Static Feedback Equivalence
Following the definition of [34], the system (G.1) is statically feedback equivalent
to the system (G.2) if there exists a diffeomorphism{

x̃ = φ(x)
ũ = ψ(x, u)

(G.3)

such that if (x(t), u(t)) is a solution of (G.1), then
(
φ(x(t)), ψ(x(t), u(t))

)
is a

solution of (G.2). This is equivalent to
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 F̃ (φ(x)) + G̃(φ(x))ψ(x, u) = ∂φ

∂x
(x)[F (x) +G(x)u]

s̃(φ(x)) = s(x)
(G.4)

Differently said, two systems are feedback equivalent if and only if there exist
regular transformations on the coordinates and on the input allowing to switch
from one system to the other.

G.1.1 Dynamic Feedback Equivalence
A dynamic feedback consists in adding a dynamics to some inputs, defining
a dynamic feedback transformation This additional dynamics, generally called
dynamic compensator, is defined as{

κ̇ = a(x, κ,w)
u = k(x, κ,w)

(G.5)

where κ ∈ P ⊂ Rp, p ∈ N∗, w ∈W ⊂ Rm is the new input, (x, κ,w)→ a(x, κ,w)
and (x, κ,w)→ k(x, κ,w) are regular functions on χ× P ×W . Note that κ may
be of any dimension.

As a matter of fact, κ is an additional state component. The new state is
x = (x;κ). The extended system is the set of equations describing the dynamics of
the extended state x, that is the set of the (n+ p) equations (G.1) and (G.5) ẋ = F (x) +G(x)k(x, κ,w)

ξ̇ = a(x, κ,w)
(G.6)

or

ẋ = F
(
x,w

)
(G.7)

with F (x,w) =
(
F (x) +G(x)k(x, ξ,w) ; a(x, ξ,w)

)T
.

Let us define an other (n+ p)-dynamical system

˙̃x = F̃ (x̃, w̃) (G.8)
where x̃ ∈ χ̃ ⊂ Rn+p is the state, w̃ ∈ W̃ ⊂ Rm is the m-dimensional vector of
inputs, x̃→ F̃ (x̃), x̃→ G̃(x̃) are C∞ vector fields on χ̃.

The system (G.1) will be said to be dynamically feedback equivalent to (G.8)
if there exits a regular dynamic compensator for (G.1) such that the extended
system (G.7) is static feedback equivalent to (G.8).
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G.2 Feedback Equivalence to a (Partial) Linear
System

We consider here the particular case of feedback equivalence to a (partial) linear
system. We especially describe the process used to transform a nonlinear system
into a (partial) linear and controllable system. We present some concepts used
to formalize this process, such as the concepts of output, relative degree and zero
dynamics [3].

In the particular case where the nonlinear system is feedback equivalent to
a (partial) linear system, we will use the term feedback equivalence to a (partial)
linear system. This is also designed under the term exact feedback linearization
(see [19, 3] and references therein). But, we will prefer to use the name feedback
equivalent to a (partial) linear system, since the term “linearization” is misleading.
Indeed, it could lead to the belief that the transformed system is an approximation
of the original one. It has been intensively researched over the past 40 years if
various classes of nonlinear systems are feedback equivalent to a (partial) linear
system.

G.2.1 Output and Relative Degree
Let y1 = h1(x) be a C∞ function of the state, and called output. The time
derivative of the output is

ẙ1 = LFh1 + (LGh1)u . (G.9)
where LFh1 is the Lie derivative of the output h1 along the vector field F

LFh1 = ∂h1

∂x
F . (G.10)

The symbol L2
Fh1 means LF (LFh1) and LkFh1 means applying LF k-times. We

have L0
Fh1 = h1. LF (LGh1) is simply denoted as LFLGh1. The interest of the Lie

derivative is that it allows compact notations. The kth derivative of the output is

yk1 = LkFh1 + LGL
k−1
F h1 . (G.11)

The output y1 is said to be of relative degree r at x = x0 if the input u appears
for the first time in the rth derivative of y1, that is{

LGL
k
Fh1 = 0, k = 1, ..., r − 1

LGL
r
Fh1 6= 0

(G.12)

for all x in a neighborhood of x0.

These definitions can be generalized to a vector of m outputs
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y = h(x) =


h1(x)

:
hm(x)

 . (G.13)

The vector relative degree of the vector of outputs y is (r1, ..., rm) at a point
x = x0 if for all 1 ≤ k ≤ ri− 1, for all 1 ≤ i ≤ m, for all x in a neighborhood of x0

LGL
k
Fhi(x) = 0 (G.14)

, and the decoupling matrix 
LGL

r1
F h1(x) = 0

:
LGL

rm
F hm(x) = 0

 , (G.15)

is nonsingular at x = x0.

G.2.2 Building a new set of coordinates from the output
We consider here a m-dimensional vector of outputs, m being the number of inputs,
whose vector relative degree is (r1, ..., rm) at x = x0. Let ξi be the ri-dimensionnal
vector containing the output yi and its first ri − 1 derivatives, we have

ξi =


hi

LFhi

...

Lri−1
F hi

 . (G.16)

Let r = (r1 + ...+ rm) and ξ be the r-dimensional vector

ξ =


ξ1

:
ξm

 . (G.17)

Then, from Proposition 5.2 in [3], r ≤ n and there exists a (n− r)-dimensional
vector z such that (ξ, z, t) is a new set of coordinates for the system (G.1). In
these coordinates, the dynamics become
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ḣ1 = LFh1

:
˙︷ ︷

Lr1−1
F h1 = α1(ξ, z) + β1(ξ, z)u

:
ḣm = LFhm

:
˙︷ ︷

Lrm−1
F hm = αm(ξ, z) + βm(ξ, z)u

ż = fzero(ξ, z, u)

(G.18)

where (ξ, z, u)→ fzero(ξ, z, u) is a smooth r-dimensional vector field, (ξ, z) = φ(x)
is the coordinate transformation, (ξ, z)→ αi(ξ, z) and (ξ, z)→ βi(ξ, z) are smooth
functions.

G.2.3 A Static Change of Feedback to Get a (Partial)
Linear System.

Let

α(ξ, z) =


α1(ξ, z)

:
αm(ξ, z)

 , (G.19)

and

β(ξ, z) =


β1(ξ, z)

:
βm(ξ, z)

 , (G.20)

where β(ξ, z) is a (m ×m) matrix, called decoupling matrix. If the decoupling
matrix is invertible near x = x0, then the static change of feedback

v = ψ(x, z, u) = α(x, z) + β(x, z)u , (G.21)
is invertible and transforms (G.18) into
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ḣ1 = LFh1

:
˙︷ ︷

Lr1−1
F h1 = v1

:
ḣm = LFhm

:
˙︷ ︷

Lrm−1
F hm = vm

ż = fzero
(
ξ, z, ψ−1(ξ, z, v)

)

(G.22)

where vi is the ith component of v. Then, the system is made of m chains of
integrators 

ḣi = LFhi

:
˙︷ ︷

Lri−1
F hi = vi

(G.23)

of dimension ri, i ∈ {1,m}, of a (n − r)-dimensional nonlinear dynamics ż =
fzero(ξ, z, u), and of the dynamics of the ordinary time t.

Each output yi = ξi is controlled by the new input vi through a chain of ri
integrators. The system can be written under the more compact form ξ̇ = Aξ +Bv

ż = fzero
(
ξ, z, ψ−1(ξ, z, v)

) (G.24)

The system Aξ +Bv is under the so-called Brunovsky form, that is under the
form of chains of integrators. It is a linear and controllable system.

G.2.3.1 The Zero Dynamics

When the output y is maintained at zero, that is when ξ = 0r×1, the nonlinear
(n− r)-dimensional dynamics

ż = fzero
(
0, z, ψ−1(0, z, v)

)
, (G.25)

is called zero dynamics. Its solutions are the solutions of the dynamics (G.24)
when zeroing the output.

We will say that (G.1) is feedback equivalent to a partial linear system if it is
feedback equivalent to a system under the form (G.24) with a non empty zero
dynamics. If the zero dynamics is empty (ignoring the dynamics of t), (G.1) will
be said to be feedback equivalent to a linear system.
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G.2.4 Finding a Set of Outputs With the Highest Vector
Relative Degree

To achieve feedback equivalence to a linear system, a set of m outputs with a
vector relative degree (r1, ..., rm) such that r1 + ...+ rm = n must be found, with
m also to be chosen. The existence of such outputs is restrictive (Lemma 5.2.2 in
[3]). Additionally, if they exist, these outputs are generally difficult to find since
a set of partial differential equations must be solved. Then, intuition, trial and
error are generally used in practice to find outputs with the highest vector relative
degree.

G.2.4.1 Using Dynamics Extension for Increasing the Relative Degree

It’s worth noting that using a dynamic feedback transformation as defined in G.1.1
may be helpful to increase the relative degree of an output. This property is
especially used in this dissertation (see Section 5.5).

For instance, there exist sometimes outputs yi with a relative degree ri relative
to p < m inputs. Let v1,p be these inputs and vp+1,m be the m− p inputs that do
not appear in y(ri)

i . Adding in the state the inputs v1,p and defining the new vector
of inputs as

w = (v̇1,p, vp+1,m) , (G.26)
makes the relative degree of yi greater or equal than ri + 1 for the extended system.
For further details, see Chapter 5 (section 4) in [3].
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Résumé 
 

Cette thèse porte sur le développement de 

lois de commande pour la marche des robots 

bipèdes. Le sous actionnement engendré par 

le basculement, volontaire ou involontaire, du 

pied en appui sur le sol représente une 

difficulté majeure. Nous abordons ce 

problème par l’étude de robots plans avec 

pieds ponctuels. 

La première partie de la thèse est une 

compilation des informations issues de la 

littérature que nous avons jugées 

intéressantes. Nous traitons dans un premier 

temps de la modélisation adoptée, puis 

effectuons une revue des différentes 

méthodes existantes, et présentons la mise 

en œuvre expérimentale de l’une d’entre 

elles : la méthode HZD. 

Dans une deuxième partie, nous procédons à 

une étude de la dissipation relative d’énergie 

cinétique du robot lorsque le pied impacte le 

sol. Nous utilisons les résultats issus de cette 

étude pour planifier des trajectoires de 

marche dissipant peu d’énergie. De telles 

trajectoires ont a priori le mérite de préserver 

la structure du robot et de générer moins de 

bruit. A contrario, des trajectoires dissipant la 

majorité de l’énergie du robot sont utilisées 

pour un arrêt rapide. Une étude numérique a 

montré que ces résultats sont robustes à des 

incertitudes de modèle. 

Enfin, dans une dernière partie, afin de 

compenser les difficultés liées au sous 

actionnement, nous proposons d’utiliser le 

degré de liberté supplémentaire offert par un 

changement de l’échelle de temps dans les 

équations de la dynamique (Time Scaling) 

pour la classe de robots considérée. En 

utilisant par ailleurs un changement de 

coordonnées et de feedback, nous dérivons 

de nouvelles formes exactes et 

approximatives. 

 

Mots Clés 
Robot bipède, planification de trajectoires, 

dynamique des zéros, impact, Time Scaling 

 

Abstract 
 

This thesis addresses the general problem of 

the walking control of biped robots. The foot 

of the robot in contact with the ground may tip 

over and cause the robot to be 

underactuated. This a major difficulty in term 

of control. This problem is addressed by 

considering planar biped robots with point 

feet. 

In a first part, we present a standard way of 

modeling such systems, a literature review of 

the existing methods, and then report 

experimental results of the walking control of 

a planar biped robot using the HZD method. 

In a second part, we perform an analytic and 

numerical study of the relative kinetic energy 

dissipation when the foot of the robot impacts 

the ground. Using this study, we design gaits 

with low energy dissipation at impact, which a 

priori result in a better preservation of the 

hardware and a reduction of the noise. And 

trajectories dissipating almost all the kinetic 

energy are used to quickly stop the robot. 

Finally, in an attempt to alleviate the burden 

due to underactuation, we propose to 

investigate the additional degree of freedom 

provided in the control design, by a change of 

time scale in the dynamic equations (Time 

Scaling) for the considered class of biped 

robots. Using feedback transformation, we 

derive new exact and approximative normal 

forms. 
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