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Abstract

Observers and output regulation are two central topics in nonlinear control system

theory. Although many researchers have devoted their attention to these issues for more

than 30 years, there are still many open questions.

An observer is a dynamical system which estimates the state of a given system us-

ing the knowledge of the trajectory of its output. In the observer theory a key role is

played by the high-gain observers. These observers may be used when the system dy-

namics can be expressed in specific coordinated under the so-called observability canon-

ical form. These observers have also the property that their rate of convergence can be

arbitrarily increased by acting on one parameter, called high-gain parameter. Despite

the evident benefits of this class of observers, their use in real applications is question-

able due to some drawbacks: difficulty in expressing the canonical observability form,

numerical problems, the peaking phenomenon and sensitivity to measurement noise.

The purpose of the first part of the thesis is to enrich the theory of high-gain observers

with novel techniques to overcome or at least to mitigate the aforementioned problems.

On one hand, we study the possibility of writing an observer for multi-input multi-

output observable systems in the original coordinates when the observability form is

not known. On the other hand, we propose a novel class of high-gain observers, denoted

as “low-power”, which allows to overcome numerical problems, to avoid the peaking

phenomenon and to improve the sensitivity properties to high-frequency measurement

noise.

The second part of the thesis addresses the output regulation problem, namely the

scenario in which we want to regulate to zero a given output while keeping all the trajec-

tories of the system bounded even if the system is affected by external signals assumed to

belong to a known class of systems and representing a reference to be tracked and/or un-

known disturbances. This problem has been solved for linear systems during the 70’s by
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Francis and Wonham who coined the celebrated “internal model principle”. Construc-

tive solutions have also been proposed in the nonlinear framework but under restrictive

assumptions that reduce the class of systems to which this methodology can be applied.

In this thesis we focus on the output regulation problem in presence of periodic distur-

bances and we propose a novel approach which allows to consider a broader class of

nonlinear systems. With the proposed design the stabilization problem and the regula-

tion problem are substantially decoupled. Taking advantage of the property that a non-

linear system input-to-state stable, subject to periodic inputs, admits periodic solutions

of the same period, we propose a linear internal model embedding linear oscillators for

each harmonic frequency of the periodic phenomenon. Forwarding technique is used

to stabilize the cascade system. The behavior analysis is based on the Fourier analysis.

The resulting behavior is robust in the sense defined by Francis and Wonham, namely

output regulation is achieved in presence of uncertainties or disturbances, as long as the

trajectories of the resulting closed-loop system are bounded.
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Sommario

Gli osservatori e la regolazione dell’uscita sono due temi centrali nella teoria dei

sistemi nonlineari. Nonostante molti ricercatori abbiano dedicato la loro attenzione a

queste problematiche da più di 30 anni, ci sono ancora molti problemi aperti.

Un osservatore è un sistema dinamico che stima lo stato di un sistema utilizzando

la conoscenza della traiettoria dalla sua uscita. Nella teoria degli osservatori un ruolo

chiave è giocato dagli osservatori ad alto guadagno. Questi osservatori possono essere

utilizzati nel caso in cui la dinamica del sistema può essere espressa in coordinate speci-

fiche, sotto la cosiddetta forma canonica di osservabilità. Questi osservatori hanno anche

la proprietà che la loro velocità di convergenza può essere arbitrariamente aumentata

agendo su un singolo parametro, chiamato parametro di alto guadagno. Nonostante gli

evidenti benefici di questa classe di osservatori, il loro utilizzo in applicazioni pratiche è

discutibile a causa di alcuni inconvenienti: difficoltà nell’espressione della forma cano-

nica di osservabilità, problemi numerici, fenomeno del peaking e sensitività al rumore

di misura. Lo scopo di questa prima parte della tesi è di arricchire la teoria degli osser-

vatori ad alto guadagno con nuove tecniche che permettono di superare o per lo meno

di mitigare i suddetti problemi. Da una parte, studiamo la possibilità di scrivere un os-

servatore per sistemi osservabili a ingressi multipli e a uscite multiple nelle coordinate

originali quando la forma di osservabilità non è conosciuta. Dall’altra, proponiamo una

nuova classe di osservatori ad alto guadagno, chiamati “low-power”, che permette di su-

perare i problemi numerici, evitare il fenomeno di peaking e migliorare le proprietà di

sensitività al rumore di misura ad alta frequenza.

La seconda parte della tesi affronta il problema della regolazione dell’uscita, ovvero

lo scenario in cui vogliamo regolare a zero una determinata uscita e allo stesso tempo

mantenere le traiettorie del sistema limitate anche se il sistema è influenzato da segnali
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esogeni che si suppone appartengano a una classe conosciuta e che rappresentano un

riferimento da seguire e/o dei disturbi sconosciuti. Questo problema è stato risolto per

sistemi lineari durante gli anni 70 da Francis e Wonham i quali hanno formulato il cele-

bre “principio del modello interno”. Soluzioni costruttive sono state proposte nel con-

testo nonlineare ma sotto ipotesi restrittive che riducono la classe di sistemi a quali si

può applicare questa metodologia. In questa tesi ci concentriamo sul problema di rego-

lazione dell’uscita in presenza di disturbi periodici, e proponiamo un nuovo approccio

che permette di considerare una classe più ampia di sistemi nonlineari. Con la sintesi

proposta il problema di stabilizzazione e di regolazione sono sostanzialmente disaccop-

piati. Traendo beneficio dalla proprietà che un sistema nonlineare stabile ingresso-uscita

(input-to-state stable in inglese), alimentato da un ingresso periodico, ammette soluzioni

periodiche dello stesso periodo, proponiamo un modello interno lineare che contiene

oscillatori lineari per ogni frequenza armonica del fenomeno periodico. La tecnica di

forwarding è utilizzata per stabilizzare la cascata. L’analisi del comportamento si base

sull’analisi di Fourier. Il comportamento ottenuto è robusto nel senso definito da Fran-

cis e Wonham, ovvero la regolazione dell’uscita è mantenuta in presenza di incertezze o

disturbi, fintanto che le traiettorie del sistema chiuso in retroazione sono limitate.
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Résumé

Les observateurs et la régulation de sortie sont deux thèmes centraux de la théorie

des système non linéaires. Bien que de nombreux chercheurs ont consacré leur attention

à ces questions depuis plus de trente ans, il y a encore de nombreuses questions ouvertes.

Un observateur est un système dynamique qui estime l’état d’un système en utilisant

la connaissance de la trajectoire de sa sortie. Dans la théorie des observateurs un rôle clé

est joué par les observateurs à grand gain. Ces observateurs peuvent être utilisés lorsque

la dynamique du système peut être exprimée dans des coordonnées spécifiques sous une

forme canonique dite d’observabilité. Ils ont aussi la propriété que leur vitesse de con-

vergence peut être arbitrairement augmentée en agissant sur un seul paramètre, appelé

paramètre de grand gain. Malgré les avantages évidents de cette classe d’observateurs,

leur utilisation dans des applications pratiques est douteuse en raison de certains incon-

vénients: difficultés dans l’expression de la forme canonique d’observabilité, des prob-

lèmes numériques, le phénomène de peaking et la sensibilité au bruit de mesure. Le

but de la première partie de la thèse est d’enrichir la théorie des observateurs à grand

gain avec de nouvelles techniques qui permettent de surmonter ou au moins d’atténuer

les problèmes ci-dessus. D’une part, nous étudions la possibilité d’écrire un observa-

teur pour les systèmes observables avec plusieurs entrées et plusieurs sorties dans les

coordonnées d’origine lorsque la forme d’observabilité n’est pas connue. D’autre part,

nous proposons une nouvelle classe d’observateurs à grand gain, appelé “low-power”,

qui permet de surmonter les problèmes numériques, d’éviter le phénomène de peaking

et d’améliorer les propriétés de sensibilité aux bruit de mesure à haute fréquence.

La deuxième partie de la thèse aborde du problème de la régulation de sortie, c’est-

à-dire le scénario dans lequel nous voulons imposer une sortie donnée de rester nulle

et en même temps maintenir les trajectoires de système limitées même si le système est
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influencé par des signaux externes supposées appartenir à une classe connue et représen-

tant une références à suivre et / ou des perturbations inconnues. Ce problème a été ré-

solu pour les systèmes linéaires au cours des années 70, par Francis et Wonham qui ont

énoncé le célèbre “principe de modèle interne”. Des solutions constructives ont aussi

été proposées dans le cadre non linéaire mais sous des hypothèses restrictives qui ré-

duisent la classe des systèmes auxquels cette méthodologie peut être appliquée. Dans la

thèse, nous nous concentrons sur le problème de la régulation de sortie en présence de

perturbations périodiques, et nous proposons une nouvelle approche qui nous permet

de considérer une classe plus large de systèmes non linéaires. Dans la synthèse pro-

posée, le problème de stabilisation et de régulation sont sensiblement découplés. Tirant

profit de la propriété qu’un système non linéaire stable entrée-état (input-to-state sta-

ble en anglais), alimenté par une entrée périodique, admet des solutions périodiques de

même période, nous proposons un modèle interne linéaire qui contient des oscillateurs

linéaires pour chacune des fréquence harmoniques du phénomène périodique. La tech-

nique d’ajout d’intégrateur (forwarding en anglais) est utilisée pour obtenir un bouclage

stabilisant pour la cascade. L’analyse du comportement repose alors sur l’analyse de

Fourier. Le comportement obtenu est robuste au sens défini par Francis et Wonham,

c’est-à-dire que la régulation de sortie est maintenue en présence d’incertitudes ou de

bruit, aussi longtemps que les trajectoires du système en boucle fermée sont limitées.
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Notation

R set of real numbers

R≥0 set of non negative real numbers

R>0 set of real numbers larger than zero

N set of non negative integers

N>0 set of integers larger than zero

C set of complex real numbers

`2 space of square-summable sequences

∈ belongs to

⊂ subset

⊃ superset

:= defined as

7→ maps to

� end of proof

|x| Euclidean norm of x, with x ∈ Rn

|x|A inf
y∈A
|x− y|, distance of x from A, with x ∈ Rn and A subset of Rn

‖s(·)‖a lim sup
t→∞

|s(t)|, asymptotic norm of s ∈ Rn, with t 7→ s(t)

‖s(·)‖∞ sup
t∈[0,∞]

|s(t)|, L∞ norm of s ∈ Rn, with t 7→ s(t)

‖s(·)‖2

√
1

T

∫ T

0
|s(t)|2, L2 norm of s ∈ Rn, with t 7→ s(t) and s(t+T ) = s(t)

|A| sup
x∈Rn

{
|Ax|
|x|

}
, induced matrix norm
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A> transpose

A−1 inverse

A > 0 positive definite matrix

A ≥ 0 positive semi-definite matrix

det(A) determinant

rank(A) rank

λ(A) eigenvalue of A

σ(A) spectrum of A, the set of its eigenvalues

0n×m matrix of dimension n×m whose entries are all zeros

In an n×n identity matrix, also denoted with I when there is no need

to emphasize the dimension

diag (a1, . . . , an) an n× n diagonal matrix with ai as its i-th diagonal element

col (a1, . . . , an) column vector with elements (a1, . . . , an)

Hurwitz matrix with all eigenvalues with strictly negative real part

prime form a triplet (A,B,C) of dimension n defined as

A =

(
0(n−1)×1 In−1

0 01×(n−1)

)
B =

(
0(n−1)×1

1

)
C =

(
1 01×(n−1)

)
Lfh(x) Lie derivative of h(x) along the vector field f(x)

Lfh(x) :=
∂h

∂x
(x)f(x)

satL(·) saturation function: any bounded continuous function satisfying

satL(x) = x ∀|x| ≤ L , |satL(x)| ≤ L ∀x ∈ Rn

feedback form a (nonlinear) system possessing a triangular structure:

• non-strict feedback form

ẋi = fi(x1, . . . , xi, xi+1, u) i = 1, . . . , n− 1

ẋn = fn(x1, . . . , xn, u)

y = h(x1, u)

• strict feedback form

ẋi = xi+1 + ϕi(x1, . . . , xi, u) i = 1, . . . , n− 1

ẋn = ϕn(x1, . . . , xn, u)

y = x1 + ν(t)

with state x ∈ Rn, input u ∈ U , output y ∈ R

xvi



Introduction

Over the last decades, observers and internal model-based regulators for output

regulation have been two of the most interesting and investigated topic in

the nonlinear systems community. Although a considerable number of results

can be found in the literature, the conventional theoretical approaches presents several

drawbacks and are often very hard to be implemented. The purpose of this thesis is to

provide novel techniques for the analysis and design of observers and internal model

regulators, with a particular attention on a easy-to-implement structure.

In the first part we study the class of nonlinear observers denoted as high-gain ob-
servers. In Chapter 1 the reader can find an overview of the theory of high-gain observers

for single-input single-output nonlinear systems where the main features and the main

drawbacks are highlighted. In Chapter 2, we propose some novel tools of analysis and

design which enrich the theory of high-gain observers. Among these, we pay particular

attention to the design of high-gain observers in the original coordinates and we give a

novel set of sufficient conditions for the existence of a high-gain observer in the multi-

input multi-output case. Then, in Chapter 3, we introduce a novel class of high-gain

observers, denoted as “low-power”. This novel methodology, based on dynamic exten-

sion, helps in overcoming (or improving) some of the main drawbacks of the standard

high-gain observers. The low-power high-gain observers may be used in place of stan-

dard high-gain observers without loss of generality. An example is given at the end of

the chapter in order to show the performances of the low-power high-gain observer.

The second part of the thesis is devoted to the problem of robust output regulation

for nonlinear systems. In Chapter 4 we recall the basic ingredients of output regulation

for linear system and we introduce a design procedure based on forwarding technique.

The proposed approach is instrumental to nonlinear case. Indeed, we show that with the
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same design-methodology it is possible to solve the practical output regulation problem

for multi-input multi-output nonlinear systems which are affine in the input in pres-

ence of (small) periodic disturbances. The proposed control law is robust to model un-

certainties and the norm of the output can be made arbitrarily small (in a L2 sense) by

enlarging the dimension of the dynamic regulator. In Chapter 5, the same approach is

applied to minimum-phase single-input single-output nonlinear systems. We show that

with a (non-implementable) regulator of infinite dimension it is possible to solve the

structurally robust asymptotic output regulation problem. An example is given at the

end of the chapter in order to show the performances of the proposed regulator when

implemented with finite dimension.
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Part I

Observer Design
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“Accuracy of observation is the equivalent of accuracy

of thinking.”

Wallace Stevens

1
Highlights of High-Gain Observers

The problem of designing asymptotic state observers for nonlinear systems is a

central topic in the control literature (see Besançon (2007) or Gauthier and

Kupka (2004) for general surveys on the topic). A special role is played by the

so-called high-gain observers in which the error trajectory has an exponential decay rate

that can be imposed arbitrarily fast by acting on a design parameter, appearing in the

observer structure, typically known as “high-gain parameter” (see for instance the sur-

vey Khalil and Praly (2014) and references therein). Such observers are routinely used

in control contexts where fast observation is useful, such as contexts of nonlinear out-

put feedback stabilization by means of the nonlinear separation principle in which fast

observation is required in order to prevent finite escape time of the closed-loop system

(see, for instance, Teel and Praly (1994) and Atassi and Khalil (1999)). After two sem-

inal works appeared in 1992 (Esfandiari and Khalil (1992) and Gauthier et al. (1992)),

the investigation of high-gain observer in nonlinear theory attracted the attention of

many researchers and a huge number of papers have been published on the topic (we

refer to Besançon (2007) and Khalil and Praly (2014) and references therein). High-gain

observers are successfully applied in problems of estimation (see Besançon (2007) or

Gauthier and Kupka (1994)), output feedback control (see, among the others, Tornambé

(1992a), Teel and Praly (1994), Atassi and Khalil (1999) and Shim and Seo (2000)) and
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output regulation (see Byrnes and Isidori (2004) or Seshagiri and Khalil (2005)) although

their use in practical applications is made hard by a certain number of drawbacks.

In this chapter we make an overview of the state of art of high-gain observers, high-

lighting its main features, drawbacks and its application to the output regulation frame-

work. Section 1.1 is devoted to emphasize some important notions about the observability
canonical forms and it is motivated by the fact that high-gain observers can be applied to

systems having a particular triangular structure, denoted as feedback form. In Sections

1.2 and 1.4 we illustrate the design of high-gain observers for systems in strict feedback

form and non strict feedback form. Section 1.3 is devoted to highlight the main draw-

backs of this class of nonlinear observers, whereas in Section 1.5 we discuss about the

possibility of a design in the original coordinates. Finally, in Section 1.6 we show how

the high-gain observer theory can be applied to the framework of nonlinear output reg-

ulation. The output feedback stabilization problem by means of high-gain observers is

not topic of this work and we refer, among the others, to Teel and Praly (1994), Atassi

and Khalil (1999), (Isidori, 1995, Chapter 9.6), Khalil and Praly (2014) and references

therein.

The contents of this chapter are a reformulation of the contribution of many authors

and contain no novelty. We refer in particular to Gauthier and Kupka (2004), Isidori

(1995) and Marconi et al. (2004) for Section 1.1, Khalil and Praly (2014) for Sections 1.2

and 1.3, Gauthier and Kupka (2004) for Section 1.4, Deza et al. (1992) for Section 1.5,

Byrnes and Isidori (2004) for Section 1.6.
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Chapter 1. Highlights of High-Gain Observers

1.1 Observabilility canonical forms

This section is devoted to present an overview of sufficient conditions for the existence

of observability canonical forms for nonlinear systems. These observability forms can be

seen as a special cases of a feedback form. As a matter of fact, when the aforementioned

sufficient conditions are verified, the nonlinear system is diffeomorphic to a system for

which we know how to design an observer (see the forthcoming Section 1.2). For the

sake of simplicity we consider the class of single-input single-output nonlinear systems.

The results presented herein cannot be extended to the multi-output multi-input case in

a trivial way. It is not the purpose of this section to give a complete picture of the notion

of observability in the nonlinear framework, and only a short summary is presented (see

books devoted to the subject as Gauthier and Kupka (2004) or Besançon (2007) for more

details). The contents of this section are a reformulation of the results given in Gauthier

and Kupka (2004), Isidori (1995) and Marconi et al. (2004).

1.1.1 Canonical flag and observability canonical forms

Consider a nonlinear system of the form

ẋ = f(x, u) , y = h(x, u) , (1.1)

where the state x ∈ Rn, the input u ∈ R and the output y ∈ R. The functions f, g, h

are considered smooth enough. Let us define - recursively - a sequence of functions ϕi,

i = 1, . . . , n, as follows

ϕ1(x, u) := h(x, u) ,

ϕi(x, u) :=
∂ϕi−1

∂x
(x, u)f(x, u) ,

(1.2)

and a sequence of i-vector-valued functions Φi(x, u) as

Φi(x, u) :=


ϕ1(x, u)

...

ϕi(x, u)

 , ∀ i = 1, . . . , n . (1.3)

Definition 1.1. (Gauthier and Kupka, 2004, Definition 2.1, Chapter 2) The canonical flag
of (1.1) is a family of n distribution in Rn, parametrized by u, defined by

Di(u) : x 7→ ker

[
∂Φi

∂x

]
(x,u)

, ∀ i = 1, . . . , n ,
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1.1. Observabilility canonical forms

with the functions Φi defined by (1.3). The canonical flag is said to be uniform on x ∈ Rn if

(i) all the Di(u), i = 1, . . . , n, have constant dimension n − i for all u ∈ R and x ∈ Rn

(“regularity” condition);

(ii) all the Di(u), i = 1, . . . , n, are independent of u (“u-independence” condition), i.e.
∂uD(u) = 0 .

The canonical flag defines a geometric property of the observation space. If the

canonical flag is uniform, then the observation space is independent of the control input

and it is possible to find a (local) change of coordinates such that the system (1.1) can be

written in the so-called observability canonical form.

Proposition 1.1 (Gauthier and Kupka (2004), Theorem 2.1, Chapter 3). The system (1.1)

has a uniform canonical flag if and only if, for all x◦ ∈ Rn there exists a coordinate neighbour-
hood Vx ⊂ Rn of x◦, such that in these coordinates, (Vz, z1, . . . , zn), the system (1.1) can be
written as follows

żi = fi(z1, . . . , zi, zi+1, u) , i = 1, . . . , n− 1 ,

żn = fn(z1, . . . , zn, u) ,

y = h(z1, u) ,

(1.4)

with the functions fi, i = 1, . . . , n− 1 and h that fulfil

∂h

∂z1
(z1, u) 6= 0 ,

∂fi
∂zi+1

(z1, . . . , zi, zi+1, u) 6= 0 , i = 1, . . . , n− 1 ,

for any (z, u) ∈ Vz × R.

Notice that the system (1.4) is in non-strict feedback form. If we want to achieve

stronger results, namely a global change of coordinates, extra assumptions are needed.

For this, we define the mapping Φ : Rn → Rn as

Φ(x) := Φn(x, 0) =


h(x, 0)

Lf(x,0)h(x, 0)
...

Ln−1
f(x,0)h(x, 0)

 . (1.5)

Theorem 1.1 (Marconi et al. (2004), Lemma 2). Consider the system (1.1) and suppose that
its canonical flag is uniform (according to Definition 1.1) and the mapping Φ(·) defined in
(1.5) is a global diffeomorphism. Then the system (1.1) is globally diffeomorphic, via Φ, to a

8



Chapter 1. Highlights of High-Gain Observers

system of the form (1.4) with the functions fi, i = 1, . . . , n− 1 and h that fulfil

∂h

∂z1
(z1, u) 6= 0 ,

∂fi
∂zi+1

(z1, . . . , zi, zi+1, u) 6= 0 , i = 1, . . . , n− 1 ,

for any (z, u) ∈ Rn × R.

Consider now an input-affine single-input single-output nonlinear system of the

form
ẋ = f(x) + g(x)u

y = h(x)
(1.6)

where the state x ∈ Rn, the input u ∈ R and the output y ∈ R. Let the functions f, g, h

be smooth enough and let the functions ϕi(x, u) in (1.2), Φi in (1.3) and Φ in (1.5) be

defined similarly for the system (1.6). For this class of systems the result of Theorem

1.1 can be further specialized, thus obtaining a triangular structure with a well-defined

linear part (and therefore in strict feedback form).

Theorem 1.2 (Gauthier and Kupka (2004), Theorem 4.1, Chapter 3). Consider the system
(1.6) and suppose that its canonical flag is uniform (according to Definition 1.1) and the
mapping Φ(·) defined in (1.5) is a global diffeomorphism. Then the system (1.6) is globally
diffeomorphic, via Φ, to a system of the form

ż =



ż1

ż2

...

żn−1

żn


=



z2

z3

...

zn

a(z)


+



b1(z1)

b2(z1, z2)
...

bn−1(z1, . . . , zn−1)

bn(z1, . . . , zn)


u ,

y = z1 .

(1.7)

1.1.2 Phase-variable representation

Consider again the class of nonlinear systems (1.1) and let us define - recursively - a new

sequence of functions1 ϕi, i = 1, . . . , n, as follows

ϕ1(x, u0) = h(x, u0) ,

ϕi(x, u0, . . . , ui−1) =
∂ϕi−1

∂x
f(x, u0) +

i−2∑
k=0

∂ϕi−1

∂uk
uk+1 .

(1.8)

Note that as opposed to the functions ϕi defined in Section 1.1.1, here we are also differ-

entiating in u. It is immediate to realize that these mappings, if the input u(t) of (1.1) is

1with abuse of notation with respect to (1.2)

9
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a Ci function of t, are precisely the mappings which express, for each i and at any given

time t, the dependence of the i-th derivative y(i)(t) of the output y(t) on the state x(t)

and the input u(t) and its derivative u̇(t), . . . , u(i)(t). Indeed

y(i)(t) = ϕi+1

(
x(t), u(t), . . . , u(i)(t)

)
.

Note that the functions ϕi(·) defined above coincide with the functions ϕi(·) defined in

(1.2) when u is a constant function. As before, let us also define a sequence of i-vector-

valued functions Φi(x, u0, . . . , ui−1)2 as follows

Φi(x, u0, . . . , ui−1) =


ϕ1(x, u0)

...

ϕi(x, u0, . . . , ui−1)

 . (1.9)

The functions Φi(·) defined above coincide with the functions Φi(·) defined in (1.3) when

u is constant.

Theorem 1.3. Consider the system (1.1) and suppose the mapping Φ : Rn × Rn → Rn × Rn

defined as

Φ(x, u0, . . . , un−1) =


u0
...

un−1
. . . . . . . . . . . . . . . . . .

Φn(x, u0, . . . , un−1)


with Φn defined in (1.9), is a global diffeomorphism. Then the system (1.1) is globally diffeor-
mophic, via Φ, to a system of the form

żi = zi+1 , i = 1, . . . , n− 1 ,

żn = φn(z1, . . . , zn, u, u̇, . . . , u
(n−1), u(n)) ,

y = z1 .

(1.10)

Proof. The function Φ is a global diffeomorphism. As a consequence, it admits a

(globally defined) inverse mapping Ψ : Rn × Rn → Rn × Rn, defined as

Ψ(z, vn) =

 vn
. . . . . . . . .

Ψn(z, vn)



2with abuse of notation with respect to (1.3).
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with the notation vi = (u0, . . . , ui−1), such that

(vn, x) = Ψ(Φ(x, vn)) , x = Ψn(Φn(x, vn), vn) .

Now let the function ϕn+1 be defined as

ϕn+1(x, vn+1) =
∂ϕn
∂x

f(x, u0) +

n−1∑
k=0

∂ϕn
∂uk

uk+1 ,

with the function ϕn defined in (1.8). By defining the function φn as

φn(z, vn+1) = ϕn+1 (Ψn(z, vn), vn+1) ,

the result follows by applying the change of coordinates z = Ψn(x, u, u̇, . . . , u(n−1))

to the system (1.1).

The form (1.10) is usually known as phase-variable representation (see, for instance,

(Gauthier and Kupka, 2004, Section II.2)). In the previous result we considered the case

where the system is globally diffemorphic to a system of the form (1.10) with the same

dimension n, but this result could be easily generalized by considering an “immersion

assumption”. It is worth noticing that systems in the phase-variable representation are

in strict-feedback form.

11
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1.2 The high-gain construction

In the previous section we have shown different observability forms which can be achieved

under different observability assumptions. It is worth noticing that all the observability

forms introduced above can be gathered in two class of nonlinear systems: systems in

strict feedback form and systems in non-strict feedback form. The former recovers the forms

(1.7) and (1.10), whereas the latter the form (1.4). In this section we deal with the design

of high-gain observers for the class of multi-input single output nonlinear systems in

strict feedback form described as

ẋi = xi+1 + ϕi(x1, . . . , xi, u) , i = 1, . . . , n− 1 ,

ẋn = ϕn(x1, . . . , xn, u) ,

y = x1 + ν(t) ,

(1.11)

where the state x = (x1, . . . , xn) ∈ Rn evolves in a given compact subset X of Rn, the

input u is any function assumed to be known evolving in a compact subset U of Rm and

y ∈ R is the measured output. We suppose the functions ϕi, i = 1, . . . , n are locally Lip-

schitz. The function t 7→ ν(t) represents a measurement noise assumed to be unknown

and bounded. For this class of systems we can design a high-gain observer as follows

˙̂xi = x̂i+1 + ϕ̂i(x̂1, . . . , x̂i, u) + ki`
i(y − x̂1) , i = 1, . . . , n− 1 ,

˙̂xn = ϕ̂n(x̂1, . . . , x̂n, u) + kn`
n(y − x̂1) ,

(1.12)

with state x̂ = (x̂1, . . . , x̂n) ∈ Rn and where k1, . . . , kn are coefficients to be properly

chosen. As concern the functions ϕ̂i, when the functions ϕi are perfectly known, we can

choose

ϕ̂i(x1, . . . , xi, u) = satϑi
(
ϕi(x1, . . . , xi, u)

)
.

with the positive real number ϑi defined as

ϑi = max
x∈X, u∈U

|ϕi(x1, . . . , xi, u)| .

On the contrary, when no information is available, one may choose to pick ϕ̂i(·) = 0. For

the sake of generality, in the following we suppose that the functions ϕ̂i satisfy

|ϕi(x1, . . . , xi, u)− ϕ̂i(x̂1, . . . , x̂i, u)| ≤ Li|(x1 − x̂1, . . . , xj − x̂j)|+Ri (1.13)

for all (x, x̂, u) ∈ X ×Rn×U , for some Li > 0, representing the Lipschitz constant of ϕi,

and Ri > 0, representing model uncertainties, for i = 1, . . . , n.

12
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As shown in the forthcoming theorem, the high-gain observer (1.12) solves the problem

of semi-global3 estimation for the system (1.11).

Theorem 1.4. Let consider the system (1.11) and suppose x(t) ∈ X and u(t) ∈ U for all
t ≥ 0. Consider the observer (1.12) satisfying the bond (1.13) and let k1, . . . , kn be chosen
such that the roots of the polynomial

λn + k1λ
n−1 + . . .+ kn−1λ+ kn

have negative real part. Then, there exists a `? ≥ 1 and strictly positive constants µi, i =

1, . . . , 4 such that, for any ` > `? and for any initial conditions (x(0), x̂(0)) ∈ X × Rn, the
following bounds hold

|x̂i(t)− xi(t)| ≤ µ1 `
i−1 exp(−µ2 ` t) |x̂(0)− x(0)| + µ3

n∑
j=1

`i−(j+1)Rj + µ4`
i−1 ‖ν(·)‖∞

(1.14)

for any t ≥ 0 and for i = 1, . . . , n.

Proof. The forthcoming proof is a rearrangement of the results in Khalil and Praly

(2014). We are interested here in giving a detailed proof in order to highlight some

interesting properties and introduce some notations which will be used throughout

the text. Let us rewrite the system (1.11) and the observer (1.12) in the more compact

form
ẋ = Ax+ φ(x, u) ,

y = Cx+ ν(t) ,

˙̂x = Ax̂+ φ̂(x̂, u) +D`K(y − Cx̂) ,

(1.15)

where the pair (A,C) is in prime form and

φ(·) =


ϕ1(·)
...

ϕn(·)

 , φ̂(·) =


ϕ̂1(·)
...

ϕ̂n(·)

 , D` =


`

. . .

`n

 , K =


k1

...

kn

 .

The core of the proof relies in the following change of coordinates

x̂i 7→ εi :=
x̂i − xi
`i−1

, (1.16)

3We refer with semi-global to the fact that the compact sets X ∈ Rn and U ∈ Rm can be taken arbitrarily
large.
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which can be written in the compact form

x̂ 7→ ε := `D−1
` (x̂− x) .

By using the following equalities

D−1
` AD` = `A , CD` = `C . (1.17)

the dynamics of (1.15) are transformed into

ε̇ = `(A−KC)ε+ `D−1
` ∆(ε, x, u) + `Kν(t)

where

∆(ε, x, u) =
[
φ̂(`−1D` ε+ x, u)− φ(x, u)

]
.

The re-scaled error coordinates ε emphasize the effect of the high-gain parameter

`. While making faster the Hurwitz linear part of the system (A − KC), it helps

in rejecting the nonlinearities introduced by ∆(ε, x, u). Intuitively the high-gain

parameter ` has to be large enough in order to overcome the Lipschitz constant

introduced by ∆. Furthermore, note that in this framework the triangular structure

of the functions ϕi is fundamental. As a matter of fact, notice that by using (1.13)

we get (for any ` ≥ 1)

∣∣`D−1
` ∆(ε, x, u)

∣∣ ≤ n∑
j=1

1

`j−1

∣∣∣ϕ̂j(ε1 + x1, . . . , `
j−1εj + xj , u)− ϕj(x1, . . . , xj , u)

∣∣∣
≤

n∑
j=1

1

`j−1

(
Lj |(ε1, `ε2, . . . , `

k−1εk)|+Rj

)
≤

n∑
j=1

Lj
`k−1

`j−1
|(ε1, . . . , εk)|+

n∑
j=1

`1−jRj

≤
n∑
j=1

Lj |ε|+
n∑
j=1

`1−jRj

and therefore, by denoting L =
∑n

j=1 Lj , we get

∣∣`D−1
` ∆(ε, x, u)

∣∣ ≤ L |ε|+ n∑
j=1

`1−jRj ∀(ε, x, u) ∈ Rn ×X × U . (1.18)

Note that if the functions ϕi had depended on xj , j > i, we would have introduced

terms with positive powers of ` thus making impossible the stabilization of the ε

14
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dynamics.

The proof concludes by applying standard Lyapunov arguments that we recall

here. First of all, note that as a consequence of the choice of ki, i = 1, . . . , n, the

matrix (A−KC) is Hurwitz. Therefore let P = P> > 0 be defined as solution of the

Lyapunov matrix equation

P (A−KC) + (A−KC)>P = −I ,

and let us define the Lyapunov Function V : Rn → R≥0 as

V =
√
ε>Pε .

By denoting with λ and λ̄ the minimum and the maximum eigenvalue of P we have√
λ |ε| ≤ V ≤

√
λ̄ |ε| .

Note that V is only Lipschitz. As a consequence, when V is not zero, by evaluating

the Dini derivative of V along the solutions of ε we get

D+V =
1√
ε>Pε

ε>P
[
`(A−KC)ε+ `D−1

` ∆(ε, x, u) + `Kν(t)
]

≤ − 1√
ε>Pε

`

2
|ε|2 +

|ε>P |√
ε>Pε

L |ε|+ n∑
j=1

`1−jRj + `|Kν(t)|



≤ −
(
`

2
− L λ̄

)
|ε|2√
ε>Pε

+
λ̄√
λ

 n∑
j=1

`1−jRj + `|K|ν̄


where we denoted ν̄ = ‖ν(t)‖∞. On the contrary, for V = 0 we get

D+V ≤ λ̄√
λ

 n∑
j=1

`1−jRj + `|K|ν̄


hence the previous expression holds for both cases. Now let `? = 2Lλ̄. As a conse-

quence, there exists a a1 > 0 such that, for any ` > max{`?, 1},

V̇ ≤ −` a1

λ̄
V +

λ̄√
λ

 n∑
j=1

`1−jRj + `|K|ν̄
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and therefore

V (t) ≤ exp
(
−` a1

λ̄
t
)
V (0) +

1− exp(−` a1/λ̄t)

` a1/λ̄

λ̄√
λ

 n∑
j=1

`1−jRj + `|K|ν̄


As a consequence

|ε(t)| ≤ µ1 exp(−` µ2t) |ε(0)|+ µ3

n∑
j=1

`−jRj + µ4 ν̄

with µ1 =
√
λ̄/
√
λ, µ2 = a1/λ̄, µ3 = µ1λ̄

2/a1 and µ4 = |K|µ3. Finally the claim of

the proof follows immediately by noting that for ` ≥ 1 we have

`−(i−1) |xi − x̂i| ≤ |ε| ≤ |x− x̂| .

Remarks:

• Global observation can be achieved by the high-gain observer (1.12) only by asking

the functions ϕi to be globally Lipschitz and by selecting ϕ̂i(·) = ϕi(·) for all i =

1, . . . , n.

• The high-gain observer (1.12) is characterized by the nice feature of being ex-

tremely easy to tune. There are n design-parameters ki, i = 1, . . . , n, to select

and one high-gain parameter ` to be chosen large enough in order to overcome the

Lipschitz constants Li of the nonlinear functions ϕi(·), i = 1, . . . , n. Furthermore,

the rate of convergence of the observer can be made arbitrarily fast by increasing

the high-gain parameter `.

• The presence of Rj , j = 1, . . . , n, deteriorates the estimate of the variables x̂i, i =

j + 1, . . . , n, since `i−j+1 > 1 for i > j. Evidently, asymptotic estimate can be

achieved only when the functions ϕi are perfectly known, namely Rj = 0, j =

1, . . . , n, and when the measurement noise is not present.

• In the case the functions ϕi(·) = 1, . . . , n− 1 = 0, system (1.11) reduces to

ẋi = xi+1 i = 1, . . . , n− 1,

ẋn = ϕn(x, u)

For the latter, the observer (1.12) can be designed as

˙̂xi = x̂i+1 + `iki(y − x̂1) , i = 1, . . . , n− 1,
˙̂xn = `nkn(y − x̂1)
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and it is sometimes referred as “dirty-derivatives-observer” (see Teel and Praly

(1994)) or “differentiator” (see Emal’yanov et al. (1989), Vasiljevic and Khalil (2006)

or Emal’yanov and Korovin (2004)). As shown in many works (see, for instance,

Teel (1996) and Atassi and Khalil (2000)), this observer can be successfully used

in output feedback stabilization problems when ϕn(0, 0) = 0. In this case the gain

` has to be chosen large enough to “deal” with the bound ϑn and not to overcome

the Lipschitz constant Ln of the nonlinear function ϕn
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1.3 Drawbacks of high-gain observers

The high-gain observer design (1.12) and the bound (1.14) introduced in Theorem 1.4

highlight three main drawbacks of this approach:

1. implementation issues,

2. the “peaking phenomenon”,

3. sensitivity to measurement noise.

1.3.1 Implementation issues

The high-gain observer (1.12) is characterized by having the gain of the output injec-

tion terms which is proportional to `, `2, . . . , `n. Furthermore, as shown in the proof of

Theorem 1.4, the minimum value of ` which guarantees asymptotic convergence of the

observer, is proportional to the Lipschitz constant of the nonlinear functions ϕi. As a

consequence, if the high-gain parameter ` or the dimension n of the observed system are

large, we need to implement in the observer (1.12) a term `n which may be very harmful

from a numerical point of view. So a natural question is if this term `n is necessary or

only sufficient.
Consider for the time an observer for the system (1.11) of the form

˙̂xi = x̂i+1 + ϕ̂i(x̂1, . . . , x̂i, u) + c1(y − x̂1), i = 1, . . . , n− 1,
˙̂xn = ϕ̂n(x̂1, . . . , x̂n, u) + cn(y − x̂1) ,

where c1, . . . , cn are coefficients to be properly chosen. By assuming in this framework

that no measurement noise is present, namely ν(t) = 0, and by making the change of

coordinates ei := x̂i − xi, we get

ėi = −c1e1 + êi+1 + ϕ̂i(e1 + x1, . . . , ei + xi, u)− ϕi(x1, . . . , xi, u),

i = 1, . . . , n− 1,

ėn = −cne1 + ϕ̂n(e1 + x1, . . . , en + xn, u)− ϕn(x1, . . . , xn, u).

An easy answer to our problem is obtained by considering the case where

ϕi(x, u) = 0 i = 1, . . . , n− 1 ,

ϕn(x, u) = Lxn .

for some positive real number L. By choosing

ϕ̂i(x̂, u) = 0 i = 1, . . . , n− 1 ,

ϕ̂n(x̂, u) = L x̂n .

18
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the closed-loop dynamics reduces to

ė = F e

where we denoted e = (e1, . . . , en) and

F =



−c1 1 0 . . . . . . 0

−c2 0 1
. . .

...
...

...
. . .

. . .
. . .

...

−cn−2 0 . . . 0 1 0

−cn−1 0 . . . . . . 0 1

−cn 0 . . . . . . . . . L


.

Convergence of the observer is guaranteed only if the matrix F is Hurwitz. Its eigenval-

ues λ are roots of

P(λ) = det



(λ+ c1) −1 0 . . . . . . 0

c2 λ −1
. . .

...
...

...
. . .

. . .
. . .

...

cn−2 0 . . . λ −1 0

cn−1 0 . . . . . . λ −1

cn 0 . . . . . . . . . (λ− L)


By using the multilinearity of the determinant, we have:

P(λ) = det


(λ + c1) −1 0 . . . . . . 0

c2 λ −1
. . .

...

...
...

. . .
. . .

. . .
...

cn−2 0 . . . λ −1 0

cn−1 0 . . . . . . λ −1

cn 0 . . . . . . . . . λ

+ det


(λ + c1) −1 0 . . . . . . 0

c2 λ −1
. . .

...

...
...

. . .
. . .

. . .
...

cn−2 0 . . . λ −1 0

cn−1 0 . . . . . . λ 0

cn 0 . . . . . . . . . −L



=
[
λn + c1λ

n−1 + . . .+ cn−1λ+ cn
]
− L det


λ + c1 −1 0 . . . 0

c2 λ −1
. . .

...

...
...

. . .
. . . 0

cn−2 0
. . .

. . . −1

cn−1 0 . . . . . . λ


and therefore

P(λ) = λn + (c1 − L)λn−1 + (c2 − c1L)λn−2 + . . .+ (cn−1 − cn−2L)λ+ (cn − cn−1L)
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So a necessary condition for stability of the e-dynamics is:

c1 > L , c2 > c1 L , . . . , cn−1 > cn−2 L , cn > cn−1 L

which implies cn > Ln. This prove that even in the linear case the last gain of the output

injection term must be larger than the Lipschitz constant of the nonlinear term powered

up to the state dimension of the system.

These simple arguments show that the choice

ci = `i ki

is not restrictive and guarantees an easy tunability for the stability of the closed loop

system, by delegating to the choice of ki, i = 1, . . . , n, the stability of the re-scaled error

closed loop matrix (A −KC) (see the notation introduced in the proof of Theorem 1.4)

defined as

A−KC =



−k1 1 0 . . . . . . 0

−k2 0 1
. . .

...
...

...
. . .

. . .
. . .

...

−kn−2 0 . . . 0 1 0

−kn−1 0 . . . . . . 0 1

−kn 0 . . . . . . . . . 0


and to the choice of ` the convergence rate of the observer for values large enough

(namely for values which overcomes the Lipschitz constant of the nonlinear term ϕ).

It seems clear that if we want to avoid to implement terms `, . . . , `n in the observer, we

need some different strategy, as a nonlinear change of coordinates, the use of non-linear

functions, or dynamic extension.

1.3.2 The peaking phenomenon

Convergence of the observer (1.12) has been proved in Theorem 1.4. In absence of mea-

surement noise and of model uncertainties, namely ν(t) = 0 and Ri = 0, i = 1, . . . , n, the

x̂i dynamics can be bounded as

|xi(t)− x̂i(t)| ≤ µ1 `
i−1 exp(−µ2 ` t) |x(0)− x̂(0)| .

During the transient the decaying term exp(−µ2`t) is closed to one. As a consequence

the variable x̂i shows a peak which is proportional to the error in the initial conditions

and multiplied by a term `i−1, producing an estimate completely unreliable and which

can be very large from a numerical point of view when ` or i are very large. The inter-
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action of peaking with nonlinearities can induce finite escape time in output feedback

scenarios. In particular in the lack of global growth conditions, high-gain observers

can destabilize the closed-loop system as the observer gain is driven sufficiently high.

Though finite escape time can be avoided by introducing saturations (see for instance

Esfandiari and Khalil (1992), Teel and Praly (1994), Teel (1996), Tornambé (1992a)) ei-

ther in the control law, either in the estimate x̂, prevent or reduce peaking is still a chal-

lenge from a numerical point of view. A possible solution to remove peaking is to adopt

the strategy which will be proposed in Section 2.2. The main idea consists in adding to

the observer-dynamic a “modification term” which makes invariant some given compact

set. However, since this design is `-dependent and contains powers of ` which may be

larger than n, this solution could not be the optimal choice from a numerical point of

view when ` or n are very large.

The peaking phenomenon has been extensively studied in literature (see for instance

Mita (1977), Polotskii (1979), Esfandiari and Khalil (1992), Teel and Praly (1994)) and

different solutions have been proposed, based on re-scaling (Esfandiari and Khalil (1992)),

projections (Maggiore and Passino (2003)), hybrid re-design (Prieur et al. (2012)) or

time-varying gain approaches (El Yaagoubi et al. (2004)). Finally, a very recent publi-

cation (Teel (2016)) proposes an elegant solution based on a nested-saturation design.

1.3.3 Sensitivity to measurement noise

One of the main feature which questions the use of a high-gain observer in applications

is its sensitivity to measurement noise. The bound (1.14) introduced in Theorem 1.12

shows that when Ri = 0, i = 1, . . . , n, the asymptotic estimate is bounded by

lim
t→∞
|xi(t)− x̂i(t)| ≤ µ4`

i−1 ‖ν(·)‖∞ (1.19)

The latter highlights the H∞ bound between the estimate error and the measurement

noise, showing that the estimates x̂i are affected by the noise with a gain which is pro-

portional to `i−1. As a consequence when ‖ν(·)‖∞, n or ` are very large, the estimates

may become completely unreliable, imposing some upper bound on the value of the

high-gain parameter ` if estimation in presence of measurement noise is desired. This

trade-off between the speed of the state estimation and the sensitivity to measurement

noise is a well-known fact in the observer theory. In this respect, high-gain observers

tuned to obtain fast estimation dynamics are necessarily very sensitive to high-frequency

noise (see, for instance, Mahmoud and Khalil (2002)). As reported in Khalil and Praly

(2014), “a sound strategy to achieve fast convergence while reducing the impact of mea-

surement noise at steady state is to use a larger ` during the transient time and then

decrease it at steady state”. Along this idea many techniques which vary the high-gain
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parameter with some scheme have been proposed (see, among others, Ahrens and Khalil

(2009), Boizot et al. (2010), Marino and Santosuosso (2007), Prasov and Khalil (2013),

Sanfelice and Praly (2011)).

In Section 2.4 we propose a new analysis tool which give a more precise bound in

presence of high-frequency measurement noise.
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1.4 High gain observers for systems in non-strict feedback form

In this section we focus on the design of observer for systems in the non-strict feedback
form

ẋi = fi(xxxi, xi+1, u) , 1 ≤ i ≤ n− 1 ,

ẋn = fn(x1, . . . , xn, u) ,

y = h(x1, u) ,

(1.20)

with state x = col(x1, . . . , xn) ∈ Rn, input u ∈ R and output y ∈ R, and where we

used the notation xxxi = col(x1, . . . , xi). Due to the nonlinear structure, the design (1.12)

cannot be applied to this class of systems. As a consequence, in this section we show

how to design a suitable observer under the forthcoming extra assumptions.

Assumption 1.1. Each of the maps fi(·), i = 1, . . . , n, is globally Lipschitz with respect to xxxi,
uniformly with respect to u and xi+1, namely there exists a L > 0 such that for all xxxi ∈ Ri,
xxx′i ∈ Ri, xi+1 ∈ R and u ∈ R, the following holds

|fi(xxxi, xi+1, u)− fi(xxx′i, xi+1, u)| ≤ L |xxxi − xxx′i| , 1 ≤ i ≤ n− 1 ,

|fn(xxxn, u)− fn(xxx′n, u)| ≤ L |xxxn − xxx′n| .

Assumption 1.2. There exist two positive constants 0 < α ≤ β < ∞, such that for all
(x, u) ∈ Rn × R the following bounds hold

α ≤
∣∣∣∣∂h(x1, u)

∂x1

∣∣∣∣ ≤ β , α ≤
∣∣∣∣∂fi(xxxi, xi+1, u)

∂xi+1

∣∣∣∣ ≤ β , 1 ≤ i ≤ n− 1 .

Within this framework the main result proposed in Gauthier and Kupka (2004) is a

systematic design of a high-gain observer that takes the form

˙̂xi = fi(x̂xxi, x̂i+1, u) + `i ki (y − h(x̂1, u)) , 1 ≤ i ≤ n− 1 ,

˙̂xn = fn(x̂xxn, u) + `n kn (y − h(x̂1, u)) ,
(1.21)

where x̂ = (x̂1, . . . , x̂n)> is the estimate state, with the notation x̂xxi = (x̂1, . . . , x̂i)
>. With

respect to the high-gain observer (1.12) we can emphasise a substantial difference. While

the effect of the high-gain parameter ` is the same, i.e. speed up the dynamics of the

observer, the coefficients ki, i = 1, . . . , n cannot be chosen in the same trivial way. In

particular, as highlighted in Gauthier and Kupka (2004), a more sophisticated design is

needed, summarized in the forthcoming technical lemma.
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Lemma 1.1 (Gauthier and Kupka (2004), Lemma 2.1, Chapter 6). Let A(t) ∈ Rn×n and
C(t) ∈ R1×n be time-varying matrices defined as

A(t) =


0 ψ2(t) 0 · · · 0

0 0 ψ3(t) · · · 0

· · · · ·
0 0 0 · · · ψn(t)

0 0 0 · · · 0

 ,

C(t) =
(
ψ1(t) 0 0 · · · 0

)
,

in which ψi(t) are continuous function satisfying

α ≤ ψi(t) ≤ β ∀ t ≥ 0 , 1 ≤ i ≤ n , (1.22)

for some constants α ∈ R, β ∈ R. Then there exist a λ > 0, a vector K = col(k1, . . . , kn), and
a symmetric positive definite matrix P ∈ Rn×n such that

(A(t)−KC(t))>P + P (A(t)−KC(t)) ≤ −λ I .

Under the previous assumptions the observer (1.21) can be tuned in order to obtain

a global estimate of the state of (1.20).

Theorem 1.5 (Gauthier and Kupka (2004), Theorem 2.2, Chapter 6). Consider the system
(1.20) under the Assumptions 1.1 and 1.2. Let the coefficients k1, . . . , kn of the observer (1.21)

be chosen according to Lemma 1.1 with α, β given by Assumption 1.2. There exist a `? ≥ 1

and positive constants µ1 and µ2 such that for all ` > `? and for all (x(0), x̂(0)) ∈ Rn × Rn

the following bound holds

|x̂i(t)− xi(t)| ≤ µ1 `
i−1 exp(−µ2` t) |x̂(0)− x(0)| .

Note that the globally Lipschitz condition in Assumption 1.1 is motivated by the fact

that in Theorem 1.5 we look for a global observer. In case the state of the system ranges

in a fixed known compact set, the condition of Assumption 1.1 can be weakened by

asking the functions fi(·) to be only locally Lipschitz with respect to xxxi. In this case the

design of the observer (1.21) may follow the same design of observer (1.12), for instance

by saturating the nonlinear functions fi(·) outside the domain of interest.
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1.5 Design in the original coordinates

This chapter concludes by illustrating some difficulties that may arise by following the

prescriptions of Sections 1.1 and 1.2. As shown in Section 1.1 input-affine nonlinear

systems of the form

ẋ = f(x) + g(x)u , y = h(x) , (1.6 revisited)

can be put, by means of the (nonlinear) change of coordinates

Φ(x) = col
(
h(x) Lfh(x) · · · Ln−1

f h(x)
)

in the strict feedback form (1.7) that we rewrite here by using the compact notation

ż = Az + φ(z, u) , y = Cz , (1.7 revisited)

with

φ(z, u) =


0
...

0

a(z)

+



b1(z1)
...

bi(z1, . . . , zi)
...

bn(z1, . . . , zn)


u .

Once the system is put in the coordinates (1.7), it is possible to design an asymptotic

convergent observer by following the design proposed in Section 1.2. The observer (1.12)

achieves asymptotic estimation of the system (1.7) and by applying the inverse mapping

x̂ = Φ−1(ẑ) it is possible to recover an estimate of the system (1.6).

However, the main obstacle of this procedure is that we need to know the inverse

mapping of Φ(x), which may be very difficult to compute in explicit way. By follow-

ing the intuition of Deza et al. (1992) and Ciccarella et al. (1993), this problem can be

overcame by implementing the high-gain observer in the original coordinates: instead

of changing the coordinates for the original system and then designing the observer, it

is possible to go in the opposite direction, namely to “bring-back” in the original coor-

dinates the observer. The high-gain observer can be thus implemented as

˙̂x = f(x̂) + g(x̂)u+

(
∂Φ

∂x
(x̂)

)−1

D`K(y − h(x̂))

where we denote D` = diag(`, . . . , `n)4 with ` ≥ 1 the high-gain parameter, and K is a

4We use the same notation introduced in the proof of Theorem 1.4.
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n × 1 matrix to be chosen such that there exists a positive definite symmetric matrx P

satisfying

P (A−KC) + (A−KC)> = −I .

It is not hard to see that, by applying the change of coordinates ẑ = Φ(x̂), the proposed

observer transforms as

˙̂z = Aẑ + φ(ẑ, u) +D`K(y − Cẑ) .

The latter coincides with the observer design proposed in (1.12). However, if the func-

tion φ(ẑ, u) does not satisfy the bound (1.13) Theorem 1.4 can not apply. As opposed to

the design procedure illustrated in Section 1.2 for the functions ϕ̂i, the main issue here

relies on the fact that we are not able (in a systematic way) to design a modified version

of the functions f , g such that in the z-coordinates, the function φ(ẑ, u) (implicitly im-

plemented in the observer in the original coordinates) is bounded in the strict feedback

coordinates and well-defined outside of some compact set of interest. This problem has

been solved, for instance, in Maggiore and Passino (2003) by using projection. An other

possibility, which will be investigated in Section 2.2, is to modify the previous observer

such that its state x̂ remains invariant on some compact subset of Rn.
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1.6 Application to output regulation

The problem of output regulation for nonlinear systems, beginning with the work Isidori

and Byrnes (1990), has been addressed by several authors and a corpus of results has

been developed, the majority of which address the problem in question for single-input

single-output minimum-phase systems (see for instance Byrnes et al. (1997), Isidori et al.

(2003) Huang (2007), Pavlov et al. (2006) and references therein). For the class of sys-

tems in question, output regulation amounts to making a compact attractor, on which

some regulated variables are zero, asymptotically stable. The distinguishing feature of

the framework is that the attractor is not invariant for the original uncontrolled plant

and has internal dynamics governed by the dynamics of an autonomous exogenous sys-

tem (the so-called exosystem) whose state is not measurable. This, in turn, asks for the

design of regulators that include an appropriate copy of the exosystem dynamics able

to make the desired attractor invariant and leads to the celebrated internal model-based

design strategy.

Starting with the contribution in Isidori and Byrnes (1990), many improvements

have been proposed in the output regulation literature in the last twenty years or so

with the aim of making the framework where internal model-based regulators could be

systematically designed even more general (see, among others, Huang and Lin (1994a),

Serrani et al. (2001), Marconi et al. (2007), Marconi and Praly (2008)). Related to the

design methodology presented in this section, an interesting framework has been pro-

posed in Byrnes and Isidori (2004) in which the so-called “friend", which is the ideal

steady state input able to make the desired attractor invariant, and a certain number of

its time derivatives are assumed to fulfil a regression law. The important observation

made in Byrnes and Isidori (2004) is that, in this framework, tools typically adopted in

the field of nonlinear high-gain observers can be successfully adopted in order to de-

sign internal model-based regulators. This observation opened an interesting research

direction in which a high-gain observer can be used for the design of the internal model.

The same framework has been also taken in Isidori et al. (2012) in order to design adap-

tive linear regulators, namely regulators with adaptive mechanisms able to cope with

uncertainties in the exosystem. The fact that design methodologies typically used in

the design of nonlinear observers could be successfully employed in the design of inter-

nal models has been further investigated and developed in Delli Priscoli et al. (2006) in

which the theory of adaptive (not necessarily high-gain) nonlinear observers has been

proposed for this purpose.

The presentation of this section has been strongly inspired by Astolfi et al. (2017)

and the contents are well-known results that can be found in Byrnes and Isidori (2004),

Marconi et al. (2007) and Isidori et al. (2012).
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1.6.1 The framework of output regulation

In this section we recall briefly the framework considered by Byrnes and Isidori (2004)

where the aforementioned high-gain methodology applies. We consider the class of sys-

tems in normal form with unitary relative degree5 described by

ż = f(w, z, e)

ė = q(w, z, e) + b(w, z, e)u
(1.23)

in which (z, e) ∈ Rn × R is the state, u ∈ R is the control input and w ∈ Rρ is a an

exogenous variable that, in the context of output regulation, is thought of as generated

by an autonomous system (typically referred to as exosystem) of the form

ẇ = s(w) (1.24)

whose state ranges in a compact invariant set W ⊂ Rρ. The state component e represents

the measured output and the regulation error to be steered to zero. It is assumed that

f(·), q(·), b(·), s(·) are smooth enough functions and that the function b(·) is bounded

from below, i.e. there exists a strictly positive real numbers b such that

b(w, z, e) ≥ b ∀ (w, z, e) ∈ Rρ × Rn × R . (1.25)

The initial initial condition of the system (1.23) is assumed to range in an arbitrary but

known compact set Z × E ⊂ Rn × R. Within this framework the problem of output

regulation amounts to designing a controller of the form

ξ̇ = ψ(ξ, e)

u = γ(ξ, e)
(1.26)

with initial conditions in a compact set Ξ, such that the trajectories of the closed-loop

system originating from W × Z × E × Ξ are bounded and

lim
t→∞

e(t) = 0 (1.27)

uniformly in the initial conditions. Very often asymptotic regulation is difficult to achieve

in a general nonlinear context and it thus makes sense to relax (1.27) into a practical reg-

ulation objective, namely to ask that lim
t→∞

sup |e(t)| ≤ ε with ε a small positive number.

The previous problem is addressed under a number of assumptions that we briefly

recall. The first regards the existence of the solution of the so-called regulator equations.

5Notice that the case with a relative degree higher than one can be reduced to the unitary relative degree
case by means of a change of variables (see, among the others, Byrnes and Isidori (2004)).
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In this framework, in particular, we assume the existence of a differentiable function

π : Rρ → Rn solution of

Lsπ(w) = f(w, π(w), 0) ∀w ∈W .

This assumption guarantees that the set A ⊂W × Rn, defined as

A = {(w, z) ∈W × Rn : z = π(w)} ,

is invariant for the zero dynamics of the system (1.23) with input u and output e that are

described by
ẇ = s(w)

ż = f(w, z, 0) .
(1.28)

The second assumption asks that system (1.23) is also minimum-phase. In our frame-

work the minimum-phaseness assumption is formalised as follows.

Assumption 1.3. The set A is asymptotically and locally exponentially stable for the system
(1.28) with a domain of attraction of the form W ×D where D is an open set of Rn such that
Z ⊂ D.

The local exponential stability requirement in the previous assumption is written

just for sake of simplicity and it can be removed by properly adapting the design of the

regulator presented in the following (see, for instance, Byrnes and Isidori (2004), Mar-

coni et al. (2007),Isidori (2010)). In the design of the regulator solving the problem of

output regulation, a crucial role is played by the so-called ”friend”, which is the function

c : W → R defined as

c(w) := − q(w, π(w), 0)

b(w, π(w), 0)
. (1.29)

By bearing in mind (1.23), it turns out that such a function represents the ideal steady

state input needed to keep the regulation error identically zero, namely the control in-

put that must be applied to (1.23) to make the set A × {0} invariant. In the following

construction we do not assume a specific structure for c(·) as typically done, through

the so-called immersion assumption, in most of the work on the subject (Byrnes and

Isidori (2004), Isidori (2010) and references therein). Rather, the internal model-based

regulator designed in the following relies on the knowledge of an integer d > 0 and of a

function ϕ : Rd → R fulfilling

Ldsc(w) = ϕ
(
c(w), Ls c(w), . . . , Ld−1

s c(w)
)

+ ν(w) ∀w ∈W (1.30)

for some (unknown) function ν : W → R. In case the previous relation is fulfilled with
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ν ≡ 0 asymptotic regulator will be achieved. Practical regulation, with an asymptotic

error that is upper bounded by a function of supw∈W |ν(w)|, is otherwise obtained. The

previous framework allows one to regard the parameter d as a degree-of-freedom by

which the designer can tradeoff the dimension of the regulator (and thus its complexity)

and the bound on the asymptotic error. As a matter of fact, larger values of d allow, in

general, to identify a ϕ(·) that makes relation (1.30) fulfilled with a smaller bound of the

residual term |ν(·)|, by thus obtaining a regulator able to guarantee smaller asymptotic

errors.

In the remaining part of the section we illustrate the main framework under which

a regulator can be designed (see Byrnes and Isidori (2004)), by highlighting how the

theory of nonlinear observers, and in particular the one of high-gain observers, turns

out to be useful in the regulator construction. The fact of dealing with regulated plant

that are affine in the input suggests to consider regulator structures of the same kind,

namely regulators of the form

ξ̇ = φ(ξ) + Ψ v ξ ∈ Rm

u = γ(ξ) + v

v = −κe
(1.31)

where φ(·) and γ(·) are smooth functions, Ψ is a column vector, and κ is a design pa-

rameter, all to be designed. The resulting closed-loop system, has a normal form that,

having defined the change of variables

ξ 7→ χ := ξ −Ψ

∫ e

0

1

b(w, z, s)
ds ,

reads as
ẇ = s(w)

ż = f(w, z, e)

χ̇ = φ(χ)−Ψ

(
γ(χ) +

q(w, z, e)

b(w, z, e)

)
+ ∆(w, z, χ, e)

ė = q(w, z, e) + b(w, z, e)γ(χ) + b(w, z, e)v + L(w, z, χ, e)

(1.32)

where ∆(·) and L(·) are properly defined functions such that ∆(w, z, χ, 0) = 0 and

L(w, z, χ, 0) = 0 for all (w, z, χ) ∈ W × Rn × Rm. This system, regarded as a system

with input v and output e, has still unitary relative degree and, as an easy computation
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shows, zero dynamics described by

ẇ = s(w)

ż = f(w, z, 0)

χ̇ = φ(χ)−Ψ

(
γ(χ) +

q(w, z, e)

b(w, z, e)

)
.

(1.33)

Note that these dynamics have a cascade structure with system (1.28) driving the system

with state χ. In the following we denote by X ⊂ Rm the compact set of initial conditions

for the new variable χ. The problem of output regulation is then reformulated as a

problem of output feedback stabilisation of system (1.32). In particular the problem at

hand is solved if one is able to prove the existence of a compact set of Rρ×Rn×Rm×R, on

which the regulation error e is identically zero, that is asymptotically stable for system

(1.32) with a domain of attraction containing the set of initial conditions. To this purpose

high-gain design paradigms for minimum-phase systems can be successfully adopted

(Byrnes and Isidori (2004)). In particular, the following two requirements play a role in

the design of the stabiliser:

a) there exists a set B ⊂ Rρ×Rn×Rm that is asymptotically and locally exponentially

stable for system (1.33) with a domain of attraction of the form W ×De with De ⊂
Rn × Rm an open set fulfilling Z ×X ⊂ De.

b) the following holds

q(w, z, 0) + b(w, z, 0)γ(χ) = 0 ∀ (w, z, χ) ∈ B .

Requirement (a), in turn, asks that system (1.32), regarded as a system with input v

and output e, is minimum-phase. On the other hand, requirement (b) asks that the

coupling term between the zero dynamics (1.33) and the error dynamics is vanishing

on B × {0}, namely that the latter set is invariant for 1.32 with v = 0. That properties,

in turn, make system (1.32) fitting into frameworks of stabilisation of minimum-phase

nonlinear systems in which the choice v = −κe, with κ sufficiently large, succeeds in

asymptotically stabilising the set B × {0}. This is formalised in the next theorem whose

proof can be found in Marconi et al. (2007).

Theorem 1.6. Assume that the requirements (a) and (b) specified before are fulfilled for some
compact set B. Then, there exists a κ? > 0 such that for all κ ≥ κ? the set B × {0} is
asymptotically and locally exponentially stable for system (1.23)-(1.24) controlled by (1.31)

with a domain of attraction of the formW ×Dcl withDcl ⊂ Rn×Rm×R an open set fulfilling
Z ×X × E ⊂ Dcl.
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The high-gain paradigm is indeed robust in case requirement (a) above is only achieved

practically rather than asymptotically. More specifically, requirement (a) above can be

relaxed to the requirement (a’) specified in the following at the price of achieving just

practical instead of asymptotic regulation as claimed in the next Theorem 2.

a’) There exists a set B ⊂ Rρ × Rn × Rm such that the trajectories of system (1.33)

originating from W × Z ×X fulfil

|(w(t), z(t), χ(t))|B ≤ max
{
c1exp(−c2t)|(w(0), z(0), χ(0))|B , ε

}
(1.34)

for some positive constants c1, c2 and ε.

Theorem 1.7. Assume that the requirements (a’) and (b) specified before are fulfilled for some
compact set B and positive constants c1, c2 and ε. Then, there exist a κ? > 0 and a c > 0,
such that for all κ ≥ κ? the trajectories of the resulting closed-loop (1.23)-(1.24) and (1.31)

originating from the compact set of initial conditions W × Z ×X × E are bounded and

lim
t→∞

sup |e(t)| ≤ c

κ
ε .

The previous considerations shift the focus of the design on system (1.33) and, in

particular, on the design of the triplet (φ(·), ψ, γ(·)) fulfilling the requirements (a’) and

(b). In the next section the problem in question is solved by using the high-gain observer

theory.

1.6.2 High-gain observers for the internal-model design

The problem of fulfilling requirement (a’) and (b) introduced at the end of the previous

section is now addressed by using design tools that are adopted in the literature of high-

gain observers, by recalling the results presented in Byrnes and Isidori (2004). To this

end, let the dimension of the regulator (1.31) be taken as m = d and, by bearing in mind

the definition in (1.29), let τ : W → Rd be defined as

τ(w) := col
(
c(w) Lsc(w) . . . Ld−1

s c(w)
)
,

and the triplet (φ(·),Ψ, γ(·)) be taken as

φ(ξ) := col
(
ξ2 · · · ξd−1 ϕ̂(ξ)

)
, Ψ := col

(
` k1 · · · `d kd

)
, γ(ξ) := ξ1

(1.35)

where ` is a design parameter, the ki’s are coefficients of an Hurwitz polynomial, and

ϕ̂(·) is a bounded function that agrees with ϕ(·) on τ(W ). Then, we have the follow-
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ing proposition whose proof can be obtained by slightly generalising the arguments in

Byrnes and Isidori (2004) and can be found in Isidori et al. (2012).

Proposition 1.2. Let c(·) in (1.29) be fulfilling (1.30) and let the triplet (φ(·),Ψ, γ(·)) be
taken as in (1.35). Then there exist a `? > 0 such that for all ` ≥ `? requirements (a’) and (b)

of Section 1.6.1 are fulfilled with

B = {(w, z, χ) ∈W × Rn × Rd , z = π(w) , χ = τ(w)}

and the ε in (1.34) of the form
ε =

r

`d
sup
w∈W

|ν(w)|

with r a positive number.

By joining the result of Theorem 1.7 and the previous proposition it is then imme-

diately concluded that there exists a κ? (dependent on `) such that for all κ ≥ κ? the

regulator (1.31)) with (φ(·),Ψ, γ(·)) taken as in (1.35) guarantees that the trajectories of

the closed-loop systems originating from the given compact sets are bounded and

lim
t→∞

sup |e(t)| ≤ r′

κ`d
sup
w∈W

|ν(w)| (1.36)

for some positive constant r′. In particular, if the integer d and the function ϕ(·) can be

taken so that relation (1.30) is fulfilled with ν(·) = 0, the proposed controller guarantees

asymptotic regulation. Otherwise, just practical regulation is achieved with the bound

on the asymptotic error that can be arbitrarily decreased by increasing κ or `d.
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“When it is obvious that the goals cannot be reached,

don’t adjust the goals, adjust the action steps.”

Confucius

2
Tools for High-Gain Observers

The topic of this chapter is the enrichment of the high-gain observer theory with

new tools of design and analysis. The first section presents a novel observability

form for single-input single-output non-input affine nonlinear systems. Neces-

sary conditions under which this general class of nonlinear systems is diffeomorphic to

a system having a strict feedback form are given. For the latter, the knowledge of the

derivative of the input is needed. In Section 2.2 we propose a new design tool, based on

a gradient technique, which may be applied to constrain the state of the observer in some

given compact set. The proposed technique is coordinates independent, provided a con-

vexity assumption holds. This tool can be successfully applied to the design of a high-

gain observer in the original coordinates, or to prevent the peaking phenomenon (see

Section 1.3.2). Carrying on the idea of the design in the original coordinates, in Section

2.3 we propose a novel set of sufficient conditions for the existence of an observer in the

multi-input multi-output case. Some simple examples illustrate the main result. Finally,

in Section 2.4, we propose a new analysis methodology which allows to characterize the

steady-state behaviour of a high-gain observer in presence of high-frequency measure-

ment noise. This chapter contains novel results published in Astolfi et al. (2013b) (Sec-

tion 2.1), Astolfi and Praly (2013) (Section 2.2), Astolfi and Praly (2016-17) (Section 2.3)

and Astolfi et al. (2016a) (Section 2.4).
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2.1 Strict feedback form for non-input-affine systems

In Section 1.1 we showed that for input-affine nonlinear systems of the form

ẋ = f(x) + g(x)u

y = h(x)
(1.6 revisited)

we can find a change of coordinates in which the system has a strict feedback form

żi = zi+1 + bi(z1, . . . , zi)u , i = 1, . . . , n− 1 ,

żn = a(z) + bn(z1, . . . , zn)u ,

y = z1 ,

(1.7 revisited)

namely a linear part characterized by a sort of “chain of integrators” . From an observer-

design perspective, the form (1.7) is easy to handle with respect to the form1

żi = fi(z1, . . . , zi, zi+1, u) , i = 1, . . . , i− 1 ,

żn = fn(z1, . . . , zn, u) ,

y = h(z1, u) ,

(1.4 revisited)

Thus, one may wonder if a similar result can be achieved also for the general class of

nonlinear systems (1.1)
ẋ = f(x, u) ,

y = h(x, u) ,
(1.1 revisited)

which we know be, under some conditions, diffeomorphic to the form (1.4). As stated in

the forthcoming theorem, under stronger assumptions, one may find a suitable change

of coordinates by which the system (1.1) has the form (1.7) with the difference that the

system is affine with respect to the input-derivative. The following result is an adapta-

tion to the diffemorphic case of a more general result given in Astolfi et al. (2013b).

Theorem 2.1. Consider the system (1.1) and suppose the mapping Γ : Rn × R → Rn × R
defined as

Γ(x, u) :=

(
u

Φn(x, u)

)
with Φn : Rn × R→ Rn defined as2

Φn(x, u) := col
(
h(x, u) Lf(x,u)h(x, u) · · · Ln−1

f(x,u)h(x, u)
)

1see Sections 1.2 and 1.4
2See (1.3)
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Chapter 2. Tools for High-Gain Observers

is a global diffeomorphism. Then, the system (1.1) is globally diffemorphic, via Φn, to a system
of the form

ż =



ż1

ż2

...

żn−1

żn


=



z2

z3

...

zn

a(u, z)


+



b1(u, z1)

b2(u, z1, z2)
...

bn−1(u, z1, . . . , zn−1)

bn(u, z)


u̇ ,

y = z1 .

(2.1)

Proof. This result is a special case of a more generic result given in Astolfi et al.

(2013b). Therefore, for the kind of completeness, we give all the proof. Let us add

an integrator to system (1.1), namely

ẋ = f(x, u) ,

u̇ = v ,

y = h(x, u) ,

that is regarded as a system with input v, output y and state ξ = col(u, x). By letting

F (ξ) = col(f(x, u), 0), G = col(0, 1), H(ξ) = h(x, u), the previous system can be

compactly rewritten as

ξ̇ = F (ξ) +Gv

y = H(ξ)

In the new coordinates we get

Φn(x, u) =


H(ξ)

LF (ξ)H(ξ)

· · ·
Ln−1
F (ξ)H(ξ)

 .

The variable z = Φn(x, u) is governed by the dynamics

ż1 = z2 + g̃1(ξ)v
...

żn−1 = zn + g̃n−1(ξ)v

żn = f̃(ξ) + g̃n(ξ)v
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2.1. Strict feedback form for non-input-affine systems

where f̃(ξ) = LnF (ξ)H(ξ) and g̃i(ξ) = LGL
i−1
F (ξ)H(ξ), i = 1, . . . , n. By assumption the

function Γ(x, u) is a global diffeomorphism so there exists a C1 function Υ : Rn+1 →
Rn+1 defined as

Υ(u, x) =

(
u

Ψn(x, u)

)
such that

ξ = Υ(Γ(ξ)) , z = Γ(Υ(z)) ,

for all ξ ∈ Rn+1 and for all z ∈ Rn+1, where we use the notation z = col(u, z). Now

let bi : Rn+1 → R, i = 1, . . . , n, be the continuous function defined as

bi(z) = g̃i(Υ(z)) .

For all k = 1, . . . , n, and each pair za = (u, za) and zb = (u, zb) in Rn+1 satisfying zai =

zbi for all i = 1, . . . , k, we have bk(za) = bk(z
b). This fact follows by an elementary

adaptation of the arguments in (Gauthier and Kupka, 2004, Theorem 4.1, chapter 3)

we write here just for the case k = 1.

Let u∗ ∈ R, xa∗ ∈ Rn and xb∗ ∈ Rn be such that ξa∗ = (u∗, x
a
∗) and ξb∗ = (u∗, x

b
∗)

satisfy H(ξa∗) = H(ξb∗) or equivalently za∗0 = zb∗0, with za∗ = Γ(ξa∗) and zb∗ = Γ(ξb∗).

Assume we have

b1(u∗, z
a
∗) 6= b1(u∗, z

b
∗)

i.e.
LGH(ξa∗) = g̃1(ξa∗) 6= g̃1(ξb∗) = LGH(ξb∗) .

By continuity there exist neighbourhoods N a and N b ⊂ R × Rn of ξa0 and ξb0 such

that

LGH(ξa) 6= LGH(ξb) ∀ (ξa, ξb) ∈ N a ×N b .

Consider now the system

ẋa = f(xa, u) , ẋb = f(xb, u) , u̇ = v1

with output ỹ = h(xa, u)− h(xb, u) and input v1 taken as the feedback

v1 =
LF (ξa)H(ξa)− LF (ξb)H(ξb)

LGH(ξa)− LGH(ξb)
.

It is motivated by the fact that it gives ˙̃y = 0. And it is as many times differentiable

as needed as long as (ξa, ξb) is inN a×N b. Let (ξa(t), ξb(t)) be its solution with initial
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value (ξa∗ , ξ
b
∗). There exists a T > 0 such that for all t ∈ [0, T ) (ξa(t), ξb(t)) ∈ N a×N b

and, as a consequence, the components xa(t) and xb(t) are in cX and u(t) is in cU

for all t ∈ [0, T ). Furthermore, since t 7→ ỹ(t) is constant on [0, T ) and ỹ(0) = 0,

it is zero on the whole interval. So the same holds for its n first derivatives. By

definition of the function Φn and by denoting uuui(t) = (u(t), u(1)(t), . . . , u(i−1)(t)), we

get Φn(xa(t),uuun(t)) = Φn(xb(t),uuun(t)) and thus

xa(t) = Ψn(Φn(xa(t),uuun(t)),uuun(t))

= Ψn(Φn(xb(t),uuun(t)),uuun(t))

= xb(t) ∀t ∈ [0, T ) ,

This yields in particular xa∗ = xb∗. So we have ξa∗ = ξb∗ and thus g̃1(ξa∗) = g̃1(ξb∗).

This is a contradiction. In this way, we have shown that, for each pair za = (u, za)

and zb = (u, zb) in R × Rn satisfying za0 = zb0 , we have b1(za) = b1(zb). Similar

arguments, can be used by induction for k = 1, . . . , n, with an appropriate choice

of the input derivative u(k+1). From the above, it follows that the functions bi(z)

presents a triangular structure in the zi components of z. Finally, by defining

a(z, u) = f̃(Υ(z)) ,

with these functions we do have obtained the form (2.1).

Notice that the form (2.1) is in the strict-feedback form (1.11) introduced in Section

1.2. As a consequence, if the inverse of the diffeomorphism Γ(x, u) and the derivative of

the input u are known3, one can implement an observer for the system (1.1) by following

the procedure of Section 1.2, thus resulting in a simpler design with respect to the one

proposed in Section 1.4.

3For instance, when the control input u is obtained via a backstepping design, see Astolfi and Praly
(2013).
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2.2 Imposing state constrains in high-gain observers

In this section we present a design tool, based on a gradient technique, which can be

applied to high-gain observers in order to constrain the state of the latter in a desired

compact set. This tools results very effective for the observer design in the original coor-

dinates introduced in Section 1.5, although it may be applied also to the standard design

in the feedback coordinates (1.11) or (1.20) in order to remove the peaking phenomenon.

For the sake of compactness, we are going to present the tool as an application for the

original coordinates design, adding some remarks at the end of this section. The main

contents of this section have been published in Astolfi and Praly (2013).

We consider here multi-input single-output input-affine nonlinear systems of the

form
ẋ = f(x) + g(x)u

y = h(x)
(2.2)

where the state x belongs to an open subsetX of Rn, the input evolve in a compact subset

U of Rm and y ∈ R is the measured output. The functions f, g, h are smooth enough and

the system (2.2) satisfies the forthcoming assumptions4. Comments on the following

assumptions are given at the end of this section.

Assumption 2.1. There exists a diffeomorphism Φ : X → Rn such that the system (2.2) is
transformed, via z = Φ(x), into a system in strict-feedback form, namely

ż = Az + φ(z, u) , y = Cz , (2.3)

where (A,C) is a pair in prime form and φ : Z × R → Rn, with Z = Φ(X ), is a locally
Lipschitz function possessing a triangular structure, namely φ = (ϕ1, . . . , ϕn)> with

ϕi(z, u) = ϕi(z1, . . . , zi, u) , 1 ≤ i ≤ n .

Assumption 2.2. Given the set X and the diffeomorphism Φ of Assumption 2.1, for any
compact subset X of X , there exists a C1 function h2 : Rn → R≥0 satisfying:

H1. the set C0 = {x ∈ X : h2(x) ≤ 0} contains X and has a non empty interior;

H2. the set {x ∈ Rn : h2(x) < 1} is a subset of X ;

H3. the function x 7→ h2(x)∣∣∣ ∂h2∂x (x)
∣∣∣ is continuous on X ;

4Necessary conditions under which Assumption 2.1 is satisfied in the single-input case (m = 1) are given
in Theorem 1.2.
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H4. for any real number s in [0, 1] and any x1 and x2 in X satisfying h2(x1) ≤ s and
h2(x2) ≤ s we have h2(x) ≤ s for all x which satisfies for some λ in [0, 1]:

Φ(x) = λΦ(x1) + (1− λ)Φ(x2) .

This means nothing but the fact that, for any non negative real number s the image by
Φ of the set {x ∈ Rn : h2(x) ≤ s} is convex.

H5. the set C 1
2

= {x ∈ Rn : h2(x) ≤ 1
2} is compact.

The point H1 of the previous assumption motivates us for introducing a dummy

measured output

y2 = h2(x)

and to consider that its measured value is always 0, namely the state x evolves in X for

all t ≥ 0. With this, we can proposed the following observer in the original coordinates

˙̂x = f(x̂) + g(x̂)u+

(
∂Φ

∂x
(x̂)

)−1

D`K(y − h(x̂)) +M(x̂, y, u) (2.4)

with state x̂ ∈ Rn and where D` = diag(`, . . . , `n) with ` ≥ 1 the high-gain parameter,

andK is a n×1 matrix chosen such that there exists a positive definite symmetric matrix

P satisfying

P (A−KC) + (A−KC)> = −I . (2.5)

The “modification term”M is defined as

M(x̂, y, u) = −τ`(x̂, y, u) `−1

(
∂Φ

∂x
(x̂)

)−1

D`P
−1D`

(
∂Φ

∂x
(x̂)

)−1T ∂h2

∂x
(x̂)>h2(x̂) (2.6)

where τ` : Rn×R×Rm → R≥0 is a locally Lipschitz function to be chosen large enough.

The function M is an extra output injection term that acts only when the state x̂ goes

outside the set X , and guarantees the set C 1
2

to be forward invariant for the observer

(2.4), as stated by the forthcoming theorem.

Theorem 2.2. Consider the system (2.2) under Assumptions 2.1 and 2.2 and suppose that
x(t) ∈ X and u(t) ∈ U for all t ≥ 0. Consider the observer (2.4) - (2.6) with initial conditions
x̂(0) ∈ C 1

2
. There exist a function τ` : Rn × R × Rm → R≥0, strictly positive real numbers

`? ≥ 1 and µ1, µ2, such that for any ` > `?

(i) the set C 1
2

is forward invariant for the observer (2.4) - (2.6),

(ii) |x̂(t)− x(t)| ≤ µ1 `
n−1 exp(−µ2` t) |x̂(0)− x(0)| .
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Proof. We start by proving the point (i). Note that

∂h2

∂x
(x̂) ˙̂x = R(x̂, y, u)− τ`(x̂, y, u)

∣∣∣∣∣D`P
− 1

2

(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>

∣∣∣∣∣
2

h2(x̂)

where we have let

R(x̂, y, u) =
∂h2

∂x
(x̂)

[
f(x̂) + g(x̂)u+

(
∂Φ

∂x
(x̂)

)−1

D`K(y − h(x̂))

]
.

This motivates us for choosing τ` satisfying

τ`(x̂, y, u) ≥ 8R(y, u, x̂) h2(x̂)2∣∣∣∣∣D`P
− 1

2

(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>

∣∣∣∣∣
2

which can be computed on-line. Thanks to H2, the function x 7→ τ`(x) defined this

way is continuous on X . It implies that the derivative of h2(x̂) along the solutions

is non positive when h2(x̂) is strictly larger than 1
2 . This implies that, for each s in

[1
2 , 1] the set {x̂ : h2(x̂) ≤ s} is forward invariant and so is the compact set C 1

2
.

In order to prove (ii), let for the time ignore the modification termM(x̂) in the

observer (2.4). Let V : X × X → R≥0 be the Lyapunov function defined as

V = ` (Φ(x̂)− Φ(x))> D−1
` P D−1

` ` (Φ(x̂)− Φ(x)) .

Its derivative along the solution is given by

V̇ = 2`D−1
` (Φ(x̂)− Φ(x))>PD−1

` `
[
AΦ(x̂) +D`K(CΦ(x)− CΦ(x̂))

+ φ(Φ(x̂), u)−AΦ(x)− φ(Φ(x), u)
]

Let L be a strictly positive real number satisfying

|φ(Φ(x̂), u)− φ(Φ(x), u)| ≤ L |Φ(x̂)− Φ(x)| ,

∀ (x̂, x) ∈ ,C 1
2
× C 1

2
∀ u ∈ U .

By denoting e = `D−1
` (Φ(x̂)− Φ(x)) and by using (1.17) and (2.5), we get

V̇ ≤ −`|e|2 + 2L |P | |e|2 .
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With a straightforward application of the same arguments used in the proof of the

Theorem 1.4, we can prove that there exists a `? ≥ 1 and strictly positive real num-

bers m1, m2 such that

|e(t)| ≤ m1 `
n−1 exp(−m2 ` t)|e(0)| ,

and therefore, by using the fact that for any ` ≥ 1

|e| ≤ |Φ(x̂)− Φ(x)| ≤ `n−1 |e|

we get

|Φ(x̂(t))− Φ(x(t))| ≤ m1 `
n−1 exp(−m2 ` t) |Φ(x̂(0))− Φ(x(0))| ,

for all ` > `?. Now, recall that Φ is a diffeomorphism on X . As a consequence for

any compact set in X , and in particular for C 1
2
, there exist positive real numbers LΦ

and LΦ−1 satisfying

|x̂− x| = |Φ−1(Φ(x̂))− Φ−1(Φ(x))| ≤ LΦ−1 |Φ(x̂)− Φ(x)|

|Φ(x̂)− Φ(x)| ≤ LΦ|x̂− x|

for any (x̂, x) ∈ C 1
2
× C 1

2
. The proof completes by defining µ1 = m1LΦ−1LΦ and

µ2 = m2.

Note that the additional termM(x̂) does not destroy the aforementioned asymp-

totic properties. This can be proved by noting that when it is acting, it augments the

derivative of the Lyapunov function V with

−τ`(y, u, x̂) [Φ(x̂)− Φ(x)]>
(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>h2(x̂) .

Recall that by definition a convex function f satisfies (see Boyd and Vandenberghe

(2011))

f(x) ≥ f(y) + f ′(y)(x− y) =⇒ f ′(y)(y − x) ≥ f(y)− f(x) .

Furthermore the properties H3 and H4 of the Assumption 2.2 imply that the func-

tion h2 is monotonic and the image of the set {x ∈ X : h2(x) ≤ s} is convex. As

a consequence, when h2(x) is zero, which is the case when the model state x re-

mains in X , and when h2(x̂) is in [0, 1], and in particular C 1
2
, the convexity property
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aforementioned of h2 gives

∂h2

∂x
(x̂)

(
∂Φ

∂x
(x̂)

)−1

[Φ(x̂)− Φ(x)] ≥ h2(x̂)− h2(x) ≥ h2(x̂) ≥ 0

By recalling that h2(x̂) ≥ 0 and τ`(·) > 0 for any x̂ ∈ C 1
2

we get

0 ≤ τ`(x̂, y, u) [Φ(x̂)− Φ(x)]>
(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>h2(x̂)

We conclude that, that the derivative of V remains negative and the bound claimed

in the theorem holds as long as x ∈ X and x̂ in {x ∈ X : h2(x) ≤ 1} and so in C 1
2
.

Remarks

• There is a systematic way to define the function h2 when, given the compact set X

we know the existence of a positive definite symmetric matrixQ and a real number

R satisfying

Φ(X) ⊆
{
z ∈ Rn : z>Qz ≤ R

}
⊂
{
z ∈ Rn : z>Qz ≤ R+ 1

}
⊂ Φ(X ) .

In this case we the function h2 can be chosen as

h2(x) = max
{

Φ(x)>QΦ(x)−R , 0
}2

.

It is easy to check that with this choice Properties H1 and H2 are satisfied:

{x ∈ X : h2(x) ≤ 0} =
{
x ∈ X : Φ(x)>QΦ(x) ≤ R

}
⊇ Φ(X)

{x ∈ X : h2(x) < 1} =
{
x ∈ X : Φ(x)>QΦ(x) < R+ 1

}
⊂ Φ(X )

The function claimed by H3 is given by

h2(x)∣∣∣∣∂h2

∂x
(x)

∣∣∣∣ =
max

{
Φ(x)>QΦ(x)−R, 0

}2∣∣∣∣4 max
{

Φ(x)>QΦ(x)−R , 0
}

Φ(x)>Q
∂Φ

∂x
(x)

∣∣∣∣
≤ max

{
Φ(x)>QΦ(x)−R
|Φ(x)>Q|

, 0

} ∣∣∣∣∣
(
∂Φ

∂x
(x)

)−1
∣∣∣∣∣

which is continuous on X because Φ(x) is a diffeomorphism (and therefore its Ja-

cobian is always non singular for all x ∈ X ). In order to prove property H4, recall
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that since Q is a positive definite symmetric matrix the following holds

z>1 Qz2 = z>2 Qz1 , 2z>1 Qz2 ≤ z>1 Qz1 + z>2 Qz2 ,

for any z1 ∈ Rn and z2 ∈ Rn. Now let s ∈ [0, 1] be fixed. Let x1 and x2 in X
satisfying h1(x1) ≤ s, h2(x) ≤ s. By denoting z1 = Φ(x1) and z2 = Φ(x2) we have

z1Qz1 ≤
√
s+R , z2Qz2 ≤

√
s+R

Now let consider any z = Φ(x) of the form

z = λz1 + (1− λ)z2

for any λ ∈ [0, 1]. We have

z>Qz = (λz1 + (1− λ)z2)>Q(λz1 + (1− λ)z2)

= λ2z>1 Qz1 + (1− λ)2z>2 Qz2 + 2λ(1− λ)z>1 Qz2

≤ λ2z>1 Qz1 + (1− λ)2z>2 Qz2 + λ(1− λ)(z>1 Qz1 + z>2 Qz2)

≤ λz>1 Qz1 + (1− λ)z>2 Qz2

≤ λ(
√
s+R) + (1− λ)(

√
s+R)

≤ (
√
s+R)

proving that also H4 holds.

• We may dislike the convexity property mentioned in H4 above. Unfortunately it

is in some sense necessary. Indeed our objective with the modification M is to

preserve the high-gain paradigm. This means in particular that we choose to keep

an Euclidean distance in the image by Φ as a Lyapunov function for the error.

Also we need an infinite gain margin, as defined in Definition 2.8 in Sanfelice

and Praly (2012), since the correction term must dominate all the other ones in

the expression of ˙̂x when h2 becomes too large. Then, as proved in Lemma 2.7

of Sanfelice and Praly (2012), with such constraints, the convexity assumption is

necessary. This implies that, if we want to remove the convexity assumption, we

have to find another class of observers.
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• As shown in Astolfi and Praly (2013), the proposed technique can be easily ex-

tended to the class of nonlinear systems

ẋ = f(x, u) , y = h(x, u) ,

by exploiting the results of Theorem 2.1 presented in the Section 2.1. In this case

the knowledge of the input-derivative is needed and the function h2 claimed in

Assumption 2.2 is in general u-dependent. In an output feedback scenario, we can

always suppose the input-derivative u̇ is known by making a backstepping design.

• Clearly the proposed tool can be applied to the high-gain observer (1.12) in order

to prevent the peaking phenomenon. For instance, we can take the function h2 as

h2(x) = max
{
x>Qx−R , 0

}2

for some Q = Q> > 0 and R > 0, and the modification term (2.6) as

M(x̂, y, u) = −τ`(y, u, x̂) `−1D`P
−1D`

∂h2

∂x
(x̂)>h2(x̂)

with τ` : R × Rm × Rn → R>0 a locally Lipschitz function to be chosen (large

enough) according to the analysis made in the proof of Theorem 2.2. As a conse-

quence, if the set

C0 = {x ∈ Rn : x>Qx ≤ R}

is invariant for the system (1.11), the set

C 1
2

= {x ∈ Rn : x>Qx ≤ R+ 1
2}

becomes invariant for the observer (1.12), thus removing the annoying peaking

phenomenon.
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2.3 High-gain observer for multi-output nonlinear systems

The contents of this section have been published in Astolfi and Praly (2016-17). We focus

in particular on the high-gain observer design for input affine multi-input multi-output

nonlinear systems of the form

ẋ = f(x) + g(x)u

y = h(x)
(2.7)

with state x ∈ Rn, input u ∈ Rm and output y ∈ Rp. The problem of observation with

high-gain tools is strongly related to the existence of suitable triangular coordinates, and

to the existence of a diffeomorphism Φ which puts the system (2.7) in the aforementioned

form. As shown in Tornambé (1992b), a typical expression for Φ is

Φ(x) =


Φ1(x)
...

Φp(x)

 , Φi(x) =


hi(x)

Lfhi(x)
...

Lqi−1
f hi(x)

 ,

where hi is the i-th component of h, qi are integers called “observability indexes” and∑p
i=1 qi = n. The dynamics of the system (2.7) expressed in the new coordinates reads

ż = Az +Bψ(z) + ϕ(z)u

y = Cz
(2.8)

where
A := blckdiag

(
A1, . . . , Ap

)
∈ Rn×n

B := blckdiag
(
B1, . . . , Bp

)
∈ Rn×p

C := blckdiag
(
C1, . . . , Cp

)
∈ Rp×n

where (Ai, Bi, Ci) is a triplet in prime form of dimension qi and

ψ(z) = col
(
ψ1(z) · · · ψp(z)

)
,

ψi(z) := Lqif hi(x)
∣∣∣
x=Φ−1(z)

, i = 1, . . . , p ,

ϕ(z) = col
((
ϕ1

1(z) · · · ϕq11 (z)
)
· · ·

(
ϕ1
p(z) · · · ϕ

qp
p (z)

))
,

ϕji (z) := LgL
j−1
f hi

∣∣∣
x=Φ−1(z)

, i = 1, . . . , p, j = 1, . . . , qi .
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Sometimes the notions of observability indexes and relative degree indexes5 coincide,

namely when

LgL
j−1
f hi(x) = 0 i = 1, . . . , p, j = 1, . . . , qi − 1 .

In this case the system (2.8) reads as

ż = Az +B(ψ(z) + ϕq(z)u)

y = Cz
(2.9)

with ϕq : Rn → Rp×m defined as

ϕq(z) = col
(
ϕq11 (z) · · · ϕ

qp
p (z)

)
, ϕqii := LgL

qi−1
f hi(x)

∣∣∣
x=Φ−1(z)

, i = 1, . . . , p .

When ψ(·) and ϕ(·) are locally Lipschitz functions a high-gain observer for the class of

nonlinear systems (2.8) can be designed as

˙̂z = Aẑ +Bψ̂(ẑ) + ϕ̂(ẑ)u+D`K(y − Cẑ)

where ψ̂(·) and ϕ̂(·) are bounded functions that agrees with ψ(·) and ϕ(·) on some do-

main, and

K = blckdiag(K1, . . . ,Kp) Ki = col(ki1, . . . , k
i
qi)

D` = blckdiag(D1(`), . . . , Dp(`)) Di(`) = blckdiag(`δi , . . . , `qiδi)

with Ki designed so that (Ai −KiCi) is Hurwitz for any i = 1, . . . , p, and where δi > 0

are some indexes which depends on the structure of the nonlinearities. Similarly, a high-

gain observer for the class of nonlinear systems (2.9) can be taken as

˙̂z = Aẑ +B(ψ̂(ẑ) + ψ̂q(ẑ)u) +D`K(y − Cẑ)

Furthermore, in an output stabilization frameworks (see, for instance, Seshagiri and

Khalil (2005)) the latter can be even reduced to

˙̂z = Aẑ +D`K(y − Cẑ)

when ϕ(0) = 0 and u = α(z), with α : Rn → Rm a stabilizing feedback law satisfying

α(0) = 0.

5See the Chapter 5 of Isidori (1995)
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As extensively studied in literature, the functions ψ(·) and ϕ(·) may not have the

triangular structure we like for the design of a high-gain observer. As already discussed

in the proof of Theorem 1.4, in the single-input single-output case a necessary condition

is
∂ϕi
∂zj

= 0 i = 1, . . . , n− 1, ∀ j ≥ i .

However this condition is in general not sufficient in the multi-input multi-output case

because variables coming from other blocks may introduce “bad terms” multiplied by

powers too large of the high-gain parameter. It is worth noticing that these condi-

tions are coordinates-dependent: choosing a different diffeomorphism Φ(·) may lead

to “right” triangular structures. Conditions under which we do get the triangular de-

pendence for the functions ψ(·) and ϕ(·) have been studied for instance in Bornard and

Hammouri (1991) and Hammouri et al. (2010). Anyhow, it is worth noticing that in or-

der to check the above conditions it is needed not only an expression for Φ, but also the

knowledge of Φ−1.

Again, by following the intuition of writing the observer in the original coordinates,

we give in this section alternative conditions, for which the inverse of Φ is not needed,

under which we do have an appropriate structure for an observer design.

Sufficient conditions

In the following we consider systems of the form (2.7) and we suppose the state x belongs

to an open set X ⊂ Rn and the input u evolves in a compact set U ⊂ Rm.

Assumption 2.3. There exist a C1 function Φ : X → Rn, sequences of matrices L` ∈ Rn×n,
M` ∈ Rn×n and N` ∈ Rp×p, a matrix C ∈ Rp×n, matrix functions u ∈ U 7→ K(u) ∈ Rn×p

and u ∈ U 7→ A(u) ∈ Rn×n, and a positive definite symmetric matrix P ∈ Rn×n and real
numbers γ > 0 and d > 0, such that

O1) the function Φ is a diffeomorphism on the set X ,

O2) C Φ(x) = h(x) ,

O3) the matrices A(u),K(u), P, C satisfy, for any u ∈ U ,

P (A(u)−K(u)C) + (A(u)−K(u)C)>P ≤ −2γP ,

A(u)L` = L`M`A(u) , N`C L` = C ,

O4) the matrix M` is such that M`P
−1 is symmetric and satisfies

lim
`→+∞

λmin(M`P
−1) = +∞ ,
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2.3. High-gain observer for multi-output nonlinear systems

O5) λmax

(
L`M`P

−1L>`

)
≤ λmin (M`P

−1)d ,

1 ≤ λmin

(
L`M`P

−1L>`

)
λmin (M`P

−1)d .

Moreover, for any compact set C and Ĉ satisfying C ⊂ Ĉ ⊂ X there exists a sequence of positive
real numbers c` such that

O6) lim
`→+∞

c` = 0 ,

O7) the function B : Rn×m → Rn defined as

B(Φ(x), u) = LfΦ(x) + LgΦ(x)u−A(u) Φ(x) ,

satisfies, for all xa ∈ C, xb ∈ Ĉ and u ∈ U ,∣∣∣P 1
2M−1

` L−1
` [B(Φ(xa), u)−B(Φ(xb), u)]

∣∣∣ ≤ c`

∣∣∣P 1
2L−1

` [Φ(xa)− Φ(xb)]
∣∣∣ .

Remarks:

• As shown in the forthcoming Theorem 2.3, the existence of a high-gain observer for

the system (2.7) is guaranteed if Assumption 2.3 holds. In particular the properties

O1, O2, O3, O6 and O7 guarantee the existence of a converging observer in the

original coordinates whereas properties O4 and O5 assure its tunability property.

• We remark that these conditions can be checked without need of finding formally

the inverse mapping Φ−1. In particular, given a system and a candidate diffeomor-

phism Φ satisfying O2 (linear dependence of the diffeomorphism on the output),

it is possible to fix the degrees of freedom K(u), M`, N`, L`, P which properly

defines the high-gain observer (see (2.10)) according to O3 (which guarantees the

convergence of the observer) and check the Lipschitz condition in O7.

• As introduced before, sometimes the nonlinear terms B(Φ(x, u), u) can be disre-

garded in the high gain observer design (usually also called dirty derivative ob-

server). In this case, these nonlinear terms act through their bound and not their

Lipschitzness. Unfortunately then a very specific structure is needed because oth-

erwise the gain between these nonlinear terms and some estimation error is in-

creasing with the observer gain. Here we intend to consider a broader class of

systems and thus we do need to have these terms present in the observer.

Further clarifications about the formal conditions imposed by Assumption 2.3 will be

given through some examples after stating the main result of this section.
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Observer design

By following the same route of Section 2.2 the high-gain observer in the original coordi-

nates is designed under Assumption 2.2 as

˙̂x = f(x̂) + g(x̂)u+

(
∂Φ

∂x
(x̂)

)−1

L`M`K(u)N`

(
y − h(x̂)

)
+M(x̂, y, u) (2.10)

with

M(x̂, y, u) = −τ`(x̂, y, u)

(
∂Φ

∂x
(x̂)

)−1

L`M`P
−1
` L>`

(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>h2(x̂)

(2.11)

with τ` : Rn × Rp × Rm → R≥0 a functions to be chosen large enough. The modification

term M is an extra output injection term that acts only when the state x̂ goes outside

a given set X ⊂ X , and guarantees the set C 1
2

to be forward invariant for the observer

(2.10) as stated by the forthcoming theorem.

Theorem 2.3. Consider system (2.7) with u(t) ∈ U and x(t) ∈ X for all t ≥ 0 where X is
a compact subset of ⊂ X . Suppose Assumptions 2.2 and 2.3 hold and consider the observer
(2.10)-(2.11) with initial conditions x̂(0) ∈ C 1

2
. There exist a function τ` : Rn × Rp × Rm →

R≥0, strictly positive real numbers µ1, µ2 and `? ≥ 1 such that, for any ` > `?

(i) the set C 1
2

is forward invariant for the observer (2.10), (2.11),

(ii) by defining a(`) = λmin(M`P
−1) we have

|x̂(t)− x(t)| ≤ µ1 a(`)d exp(−µ2a(`) t) |x̂(0)− x(0)| .

Proof. First we observe that

∂h2

∂x
(x̂) ˙̂x = R(x̂, y, u)− τ`(x̂, y, u)

∣∣∣∣∣(M`P
−1)

1
2L>`

(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>

∣∣∣∣∣
2

h2(x̂)

where we have let

R(x̂, y, u) =
∂h2

∂x
(x̂)

[
f(x̂) + g(x̂)u+

(
∂Φ

∂x
(x̂)

)−1

L`M`K(u)N`[y − h(x̂)]

]
.
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This motivates us for choosing τ` satisfying

τ`(x̂, y, u) ≥ 8h2(x̂)2 R(x̂, y, u)∣∣∣∣∣(M`P−1)
1
2L>`

(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>

∣∣∣∣∣
2

which can be computed on-line. Thanks to H2, the function x̂ 7→ τ`(x̂, y, u) defined

this way is continuous on X . So we can use τ` as long as x̂ is in X . It implies that the

derivative of h2(x̂) along the solutions is non positive when h2(x̂) is strictly larger

than 1
2 . This implies that, for each s in [1

2 , 1] the set {(x̂) : h2(x̂) ≤ s} is forward

invariant and so is the compact set Ĉ 1
2

in particular.

Now consider the following change of coordinates

x 7→ z := Φ(x) , x̂ 7→ ẑ := Φ(x̂) ,

by which systems (2.7) and (2.10) are transformed in

ż = A(u)z +B(z, u) ,
˙̂z = A(u)ẑ +B(ẑ, u) + L`M`K(u)N`C(z − ẑ) ,

By using property O4, consider the candidate Lyapunov function

U =
1

2
(ẑ − z)>(L`M`P

−1L>` )−1(ẑ − z) . (2.12)

Now suppose the modification termM is not present. We get

U̇ = (ẑ − z)>L−>` PM−1
` L−1

`

(
(A(u)− L`M`K(u)N`C)(ẑ − z)

+B(ẑ, u)−B(z, u)
)

= (L−1
` (ẑ − z))>PM−1

` L−1
`

(
(A(u)L` − L`M`K(u)N`CL`)L

−1
` (ẑ − z)

+B(ẑ, u)−B(z, u)
)

Furthermore, by applying properties O3 and O7 of Assumption 2.3,

U̇ = (L−1
` (ẑ − z))>

(
P (A(u)−K(u)C)L−1

` (ẑ − z)

+PM−1
` L−1

`

(
B(ẑ, u)−B(z, u)

))
≤ −γ|P

1
2L−1

` (ẑ − z)|2 + c`|P
1
2L−1

` (ẑ − z)|2
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As a consequence, by using O6, there exists a `? such that, for any ` ≥ `? we have

U̇ ≤ −γ
2

(ẑ − z)>L−>` PL−1
` (ẑ − z)

Since we have

P ≥ λmin(P )

M` P
−1 ≥ λmin(M`P

−1)
=⇒ P ≥ λmin(P )λmin(M`P

−1)PM−1
`

we obtain

U̇ ≤ −γ λmin(P )λmin(M`P
−1)

1

2
(ẑ − z)>L−>` PM−1

` L−1
` (ẑ − z)

≤ −γ λmin(P )λmin(M`P
−1) U

and therefore

U(t) ≤ exp(−γ λmin(P ) a(`) t)U(0) .

Note that by definition of U we have

1

λmax(L`M`P−1L>` )
|ẑ − z|2 ≤ U ≤ 1

λmin(L`M`P−1L>` )
|ẑ − z|2

Furthermore, by using O5 we have

λmax(L`M`P
−1L>` )

λmin(L`M`P−1L>` )
≤ a(`)2d

As a consequence we get

|ẑ(t)− z(t)| ≤ a(`)d exp(−γ λmin(P ) a(`) t) |ẑ(0)− z(0)| .

Because Φ is a diffeomorphism defined on X , for any compact subset C and Ĉ of X ,

there exist positive real numbers LΦ and LΦ−1 satisfying

|x̂− x| = |Φ−1(Φ(x̂))− Φ−1(Φ(x))| ≤ LΦ−1 |Φ(x̂)− Φ(x)|

|Φ(x̂)− Φ(x)| ≤ LΦ|x̂− x|

for any (x̂, x) ∈ C 1
2
× C 1

2
. The bound (ii) of the theorem would complete by defining

µ1 = LΦ−1LΦ and µ2 = γ λmin(P ). On the other hand, the modificationM augments
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U̇ in (2.12) with

−τ`(x̂) [Φ(x̂)− Φ(x)]>
(
∂Φ

∂x
(x̂)

)−1> ∂h2

∂x
(x̂)>h2(x̂) .

But, when h2(x) is zero which is the case when the model state x remains in X and

when h2(x̂`) is in [0, 1], the convexity property of h2 in H4 gives

0 ≤ [Φ(x̂)− Φ(x)]>
(
∂Φ

∂x
(x̂`)

)−1> ∂h2

∂x
(x̂)>h2(x̂) .

proving that the bound (ii) still holds.

Examples

In this section we show three example where the conditions of Assumption 2.3 are ful-

filled.

Example 1 (single-input single-output input-affine systems):

The conditions of Assumption 2.3 are satisfied for systems of the form

ẋ = f(x) + g(x)u

y = h(x)
(1.6 revisited)

satisfying Theorem 1.2 (or Assumption 2.1) with

Φ(x) =


h(x)
...

Ln−1
f h(x)

 , A(u) =


0 1
...

. . .

0 1

0 · · · 0

 , C =


1

0
...

0


>

B(Φ(x), u) =


0
...

Lnfh(x)

+


Lgh(x)

...

Ln−1
f Lgh(x)

u

L` = diag (1, `, . . . , `n−1) , M` = ` I , N` = 1 , d = 2n , c` =
1

`
,

and K(u) = K chosen such that (A − KC) is Hurwitz. We recover the observer (2.4)

with D` = L`M`N` under the Assumption 2.2.
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Example 2 (a single-input single-output non triangular case):

In Assumption 2.3, A(u) is allowed to be input-dependent to allow a broader class of

nonlinear systems. Consider for instance the following input-affine nonlinear system

ẋ1 = x2

ẋ2 = u
y = −x1 + x2 + x2

2 (2.13)

where x ∈ R2 the state, u ∈ R the control input, y ∈ R the measured output. The condi-

tions of Assumption 2.3 are satisfied with X = R2, U any compact subset of (−∞, 1
2),

Φ(x) =

(
−x1 + x2 + x2

2

−x2

)
, A(u) =

(
0 1− 2u

0 0

)
, B(Φ(x), u) =

(
u

−u

)

C =
(

1 0
)
, K =

(
k1

k2

)
, M` =

(
` 0

0 `

)
, L` =

(
1 0

0 `

)
, N` = 1 ,

d = 4, c` =
1

`
with k1 > 0, k2 > 0. Note that by computing the inverse mapping of Φ

Φ(x) =

(
−x1 + x2 + x2

2

−x2

)
, Φ−1(z) =

(
−z1 − z2 + z2

2

−z2

)
,

system (2.13) is transformed via z = Φ(x)

ż1 = z2(1− 2u) + u

ż2 = u
y = z1

which is not in the feedback form (1.11) and does not satisfies Assumption 2.1.

Example 3 (a multi-input multi-output case):

As an illustration of a multi-input multi-output nonlinear we consider a simplified

model of the longitudinal dynamics of a fixed-wing vehicle flying at high speed, given

(see Poulain and Praly (2010)) by

v̇ = e− g sin(γ)

γ̇ = £ v sin(θ − γ)− g cos(γ)

v
θ̇ = q

(2.14)

where v is the modulus of the speed, γ is the path angle, θ is the pitch angle, q is the pitch

rate, g is the standard gravitational acceleration and £ is an aerodynamic lift coefficient.
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This model makes sense for v strictly positive only. In practical application the problem

is to regulate γ at 0, with v remaining close to a prescribed cruise speed v0, using the

pitch rate q and the thrust e as controls, and with γ and θ as only measurements. Here we

want to show that system (2.14) satisfies the conditions of Assumption 2.3 and therefore

it is possible to design an observer of the form (2.10). By defining

x =

vγ
θ

 , y =

(
θ

γ

)
u =

(
q

e

)

systems (2.14) reads in the more compact form

ẋ = f(x) + g(x)u

y = h(x)

with

f(x) =

f1(x)

f2(x)

f3(x)

 =


−g sin(x2)

£x1 sin(x3 − x2)− g cos(x2)

x1

0

 ,

g(x) =

g1(x)

g2(x)

g3(x)

 =

1 0

0 0

0 1

 , h(x) =

(
h1(x)

h2(x)

)
=

(
x3

x2

)
.

The model (2.14) makes sense only when x is in the open set Xe defined as

Xe = (0,+∞)×
(
−π

2
,
π

2

)
×
(
−π

2
,
π

2

)
⊂ R3 .

We can check that the conditions of Assumptions 2.3 are satisfied by choosing

Φ(x) =

 h1(x)

h2(x)

Lfh2(x)

 :=

 x3

x2

f2(x)

 .

The function Φ is diffeomorphism on the open set

X =

{
(x1, x2, x3) ∈ Xe : x1 <

√
g

£

cos(x2)

sin(|x3 − x2|)
if x3 − x2 < 0

}
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which is the set satisfying
∂f2

∂x1
(x) > 0 ∀ x ∈ X .

Furthermore, A, B, C, L`, M`, N` and c` are defined as

C =

(
1 0 0

0 1 0

)
, A =


0 0 0

0 0 1

0 0 0

 ,

L` = diag(1, 1, `) ,

M` = diag(`, `, `) ,

N` = diag(1, 1) ,

c` =
1

`
,

B(Φ(x), u) =


u1

0
∂f2

∂x1
(x)(−g sin(x2) + u2) +

∂f2

∂x2
(x)f2(x) +

∂f2

∂x3
(x)u1

 .

Finally, for any strictly positive number γ, we can define P as symmetric positive definite

matrix of the form

P =


∗ ∗ ∗
∗ ∗ p23

∗ p23 p33


where 2p23 ≤ −γp33. Note that there exists a real number ρ such that we have

PA+A>P − ρ C>C ≤ −γP

implying the existence of a real number γ
ρ

such that, for any γρ ≥ γρ, with

K = γρP
−1C>

assumptions O3 is satisfied. With the functions above it is easy to check that also prop-

erties O1, O2, O4, O5, O6 and O7 are satisfied for any input u ∈ U , with U a compact

subset of R2. Finally, in order to implement an observer of the form (2.10) for the system

(2.14) we need to design the function h2. For this, let us define the following open set 6

of Φ(X )

Ξ =
{
z ∈ R3 : z1 ∈

(
−π

2
;
π

2

)
, z2 ∈

(
−π

2
;
π

2

)
, z3 < −2

√
g£|z1 − z2| if (z1 − z2) ≤ 0

}
.

It can be checked that any compact set of Ξ is in the image of Φ(X ) by noting that when

(x1, x2, f2(x)) ∈ Ξ then
∂f2

∂x1
> 0. As a consequence the function h2(x) can be defined as

h2(x) = h1
2(x) + h2

2(x) + h3
2(x) + h4

2(x)

6We use |z1 − z2| to upper bound cos z2 sin(z1 − z2).
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Figure 2.2: Design of the functions h32 , h
4
2 .

h1
2(x) = max

{
4x2

3

π2
− ε1; 0

}2

, h2
2(x) = max

{
4x2

2

π2
− ε2; 0

}2

,

h3
2(x) = max

{
ε3 (x3 − x2)− f2(x)− ε4; 0

}2
, h4

2(x) = max

{
f2(x)

f2 max
− ε5; 0

}2

,

where ε1, ε2, ε3, ε4, ε5 and f2 max are positive constants to be properly chosen. The func-

tions h2,1 and h2,2 take care respectively of x3 and x2 to stay in the set Ξ as showed in

Figure 2.1, whereas functions h2,3 and h2,4 take care of f2(x) as in Figure 2.2.

58



Chapter 2. Tools for High-Gain Observers

2.4 Asymptotic behaviour in presence of measurement noise

As already introduced in Section 1.3.3, one of the main feature which questions the use

of a high-gain observer in applications is its sensitivity to measurement noise. Attempts

of analysis have been done but only H∞ bounds of the form (1.19) have been charac-

terised (see, for instance, Ball and Khalil (2009), or Vasiljevic and Khalil (2008)). As

already noticed in Vasiljevic and Khalil (2006), the H∞ analysis is too conservative and

fails to catch the “low-pass” filtering characteristics of the high-gain observer when ` is

fixed to some (eventually large) value.

In this section we focus on the effect of the measurement noise on the steady state of

the high-gain observer estimate. We propose a novel technique, which may be eventually

applied to other frameworks, to analyse the error estimate steady-state behaviour of

the high-gain observer in presence of high-frequency measurement noise, based on the

approximation of a solution of a partial differential equation modelling the steady state

of the estimate. For the sake of simplicity in the analysis, we consider system in the strict

feedback form (1.11) satisfying

ϕi(x1, . . . , xi, u) = 0 i = 1, . . . , n− 1,

ϕn(x1, . . . , xn, u) = ϕ(x),

with ϕ(x) any known locally Lipschitz function. This class of systems can be compactly

written with the notation
ẋ = Ax+Bϕ(x)

y = Cx+ ν(t)
(2.15)

where (A,B,C) is a triplet in prime form of dimension n. For such nonlinear systems we

consider the standard high-gain observer (1.12) that is implemented in this particular

framework as
˙̂x = Ax̂+Bϕs(x̂) +G(y − Cx̂) (2.16)

where x̂ = col(x̂1, . . . , x̂n) ∈ Rn is the estimated state, (A,B,C) denotes as before a

triplet in prime form of dimension n,

G := col
(
`k1 · · · `nkn

)
,

and ϕs(·) is a locally Lipschitz bounded function that agrees with ϕ(·) on a bounded

set Xδ ⊃ X , namely there exists a ϕ̄ > 0 such that |ϕs(x)| ≤ ϕ̄ for all x ∈ Rn and

ϕs(x) = ϕ(x) for all x ∈ Xδ. By considering the change of coordinates

x̂ 7→ e := x̂− x
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2.4. Asymptotic behaviour in presence of measurement noise

it turns out that system (2.16) transforms as

ė = Fe+B∆ϕ(e, x) +Gν(t) (2.17)

where

F := (A−GC) =



−`k1 1 · · · 0

−`2k2 1
...

. . .

−`n−1kn−1 1

−`nkn 0 · · · 0


,

and ∆ϕ(e, x) is the locally Lipschitz function defined as

∆ϕ(e, x) := ϕs(e+ x)− ϕ(x) . (2.18)

By applying the results of Theorem 1.4 it can be shown that for a generic bounded mea-

surement noise, the observer guarantees bounded trajectories with a linear asymptotic

gain. The asymptotic gain of the i-th state estimates depends on `i−1 thus tending to be

worst as long as “higher" components in (2.17) are considered.

The goal of this section is to better characterise the asymptotic gain in presence of

high-frequency noise with ` that is fixed in order to have the above mentioned ISS prop-

erty. Towards this end we model the measurement noise as

εẇ = Sw , ν = Pw , (2.19)

where S is a neutrally stable matrix, P is a row vector, and ε ∈ (0, 1) is a parameter

that will be taken small in the forthcoming analysis. System (2.19) can be conveniently

seen as generator of ϑ > 0 harmonics at frequencies ωi/ε > 0, i = 1, . . . , ϑ, namely, the

matrices S and P take the form

S = blkdiag(S1, . . . , Sϑ) , Si =

(
0 ωi

−ωi 0

)

and P = ((0 1) (0 1) · · · (0 1)). In the following we assume that w ranges in a compact

invariant set W .

As a preparatory step towards the nonlinear analysis, it is instructive to consider

the linear case, namely the case in which ϕ(x) = Φx with Φ a row vector. In this case

the observer (2.16) can be taken7 with ϕs(x̂) = Φx̂, thus resulting in an error system

7Because of linearity boundedness of the function ϕs(x) is not needed.
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(2.17)-(2.19) given by
εẇ = Sw

ė = (F +BΦ)e+GPw

with the matrix F + BΦ that is Hurwitz for ` sufficiently large. Using the fact that S

is neutrally stable and that F + BΦ is Hurwitz it follows that the state of the previous

system reaches a steady state fully described by the state of the noise generator. In

particular, denoting by Πε the matrix solution of the Sylvester equation

ΠεS = ε(F +BΦ)Πε + εGP

it turns out that

lim
t→∞

(e(t)−Πεw(t)) = 0 . (2.20)

The solution of the previous Sylvester equation can be characterised at high-frequency

(namely for small value of ε) to have more insight about how the gain between the mea-

surement noise and the j-th estimation error is affected by `. In particular, using the fact

that S is not singular, it is easy to check that

Πε = εGPS−1 + ε2Π̄ε

with

Π̄ε :=

∞∑
k=2

εk−2(F +BΦ)k−1GPS−k ,

is a solution of the Sylvester equation. In particular, the series defining Π̄ε is convergent

as long as ε is taken sufficiently small8. Namely, there exist ε?1(`) > 0 and π̄(`) > 0 such

that |Π̄ε| ≤ π̄(`) for all positive ε ≤ ε?1(`). By bearing in mind how ` enters in G, and

denoting by Πi the i-th row of Πε, i = 1, . . . , n, we have

|Πi| ≤ ε `iki|PS−1|+ ε2|Π̄ε|

As a consequence, by choosing a positive ε?2(`) ≤ ε?1(`) satisfying

ε?2(`) ≤ max{ki}
|PS−1|
|Π̄ε|

we have that for all positive ε ≤ ε?2(`) the following holds

lim
ε→0
|Πi| ≤ µ ε `i

8Observe that the term (F + BΦ)k−1 grows polynomially in `.
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2.4. Asymptotic behaviour in presence of measurement noise

where µ is a positive constant. From this, using (2.20) and the fact that W is compact,

we can then conclude that for all positive ε ≤ ε?2(`) the following holds

lim
t→∞

sup |ei(t)| ≤ µ ε `i ‖w(·)‖∞ .

The previous relation clearly shows the “low-pass" filtering properties of the high-gain

observer, namely

lim
ε→0

lim
t→∞

sup |ei(t)| = 0 ,

and the fact that the asymptotic gain of the i-th error component at high-frequency

depends on `i (whereas the H∞ bound is proportional to `i−1, as shown by (1.19)).

Nonlinear Analysis

By compactly writing the system dynamics (2.15) as

ẋ = f(x)

the overall dynamics given by the observed system (2.15) , the observer error dynamics

(2.17) and the noise generator (2.19) read as

εẇ = Sw

ẋ = f(x)

ė = Fe+B∆ϕ(e, x) +GPw .

(2.21)

Having tuned the parameters ki, i = 1, . . . , n, and ` according to Theorem 1.4, the trajec-

tories of this system are bounded. The system in question, thus, has a well-defined

steady state that can be characterised with the tools proposed in Isidori and Byrnes

(2008). More specifically, the triangular structure of the system (with the x and w sub-

system driving the e subsystem) implies the existence (recall thatW andX are compact)

of a possibly set-valued function πε : W ×X ⇒ Rn such that the set

graph(πε) =
{

(w, x, e) ∈W ×X × Rn : e ∈ πε(w, x)
}

is asymptotically stable for (2.21). Furthermore, the properties of the high-gain observer

when the measurement noise is absent (i.e. when w = 0) show that

πε(0, x) = {0} ∀ x ∈ X .

The following technical lemma provides an arbitrarily accurate approximation of a con-

tinuous selection of πε(·, ·).
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Lemma 2.1. Consider system (2.17) with ` fixed and let r be an arbitrary positive number.
There exist continuous functions ψ̄j,i : W × X → R, j = 1, . . . , n, i = 1, . . . , r, such that
having defined

Ψj(w, x) :=

r∑
i=1

`j+i−1ψ̄j,i(w, x) εi

Ψε(w, x) := col
(

Ψ1(w, x) · · · Ψn(w, x)
)
.

and

Eε(w, x) := ε−1∂Ψε(w, x)

∂w
Sw+

∂Ψε(w, x)

∂x
f(x)−FΨε(w, x)−GPw−B∆ϕ(Ψε(w, x), x) ,

the following holds

lim
ε→0+

Eε(w, x)

εr−1
= 0 , ∀ (w, x) ∈W ×X ,

Eε(0, x) = 0 ∀ (ε, x) ∈ [0, 1]×X

Proof. First of all consider the case where w = 0. By recalling the definition of

∆ϕ(·, ·) in (2.18) it is easy to verify that Ψε(0, x) = 0 makes Eε(0, x) = 0. As a con-

sequence in the following we will show that Ψε(w, x) can be chosen as a continuous

function in w satisfying Ψε(0, x) = 0. Now let

ψj,i(w, x) := `j+i−1ψ̄j,i(w, x)

so that

Ψj(w, x) =

r∑
i=1

ψj,i(w, x) εi . (2.22)

Since w and x range in bounded sets and the function ψj,i(·, ·) are continuous, we

have that

lim
ε→0+

Ψε(w, x) = 0 ∀ (w, x) ∈W ×X .

Expanding ∆ϕ(Ψε, x) by Taylor around Ψε = 0 we obtain

∆ϕ(Ψε, x) =

r∑
i=1

ϕi(x)[Ψε]
i + ρr(Ψε, x)
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in which ϕi(·), i = 1, . . . , r, are continuous functions to be made precise, ρr(·, ·) is a

continuous remainder function, and the [Ψε]
i are monomials of the form

[Ψε]
i =

n∏
j=1

Ψ
κj
j ,

n∑
j=1

κj = i .

By replacing Ψj with the expressions (2.22) and grouping the terms with the same

power of ε, the Taylor expansion of ∆ϕ(·, ·) can be rewritten as

∆ϕ(Ψε, x) =
r∑
i=1

εiφi(w, x) + εr+1Rε(w, x) (2.23)

where the functions φi(·, ·), i = 1, . . . , r, and Rε(·, ·) are appropriately defined con-

tinuous functions satisfying φi(0, x) = 0, Rε(0, x) = 0 and Rε(·, ·) is bounded on

W × X for any ε ∈ [0, 1]. As far as the φi’s are concerned, in particular, we ob-

serve that, because the Ψj are polynomials in ε and the [Ψε]
i are polynomials in the

Ψj , only the coefficients of power smaller or equal to i in ε in the Ψj can be in φi.

Namely, φi(·, ·) depends only on ψj,k with k ≤ i, for all i = 1, . . . , r and j = 1, . . . , n.

Let us now define Eε(·, ·) with components E1(·, ·), . . ., En(·, ·) as

E1(w, x) = Ψ̇1 + `k1Ψ1 −Ψ2 − `k1Pw
...

En(w, x) = Ψ̇n + `nknΨ1 −∆ϕ(Ψε, x)− `nknPw

where, for sake of compactness, we omitted the argument (w, x) from the functions

Ψj , j = 1, . . . , n, and Ψε. By embedding (2.22) and (2.23) in the previous expres-

sions, the following is obtained

Ej(w, x) =
r∑
i=1

[
Lfψj,i +

1

ε
LSψj,i

]
εi + `jkj

r∑
i=1

ψ1,i ε
i −

r∑
i=1

ψj+1,iε
i − `jkjPw

=
[
LSψj,1 − `jkjPw

]
+

r∑
i=1

εi
[
Lfψj,i + LSψj,i+1 + `jkjψ1,i − ψj+1,i

]
for j = 1, . . . , n− 1 and

En(w, x) =
r∑
i=1

[
Lfψn,i +

1

ε
LSψn,i

]
εi + `nkn

r∑
i=1

ψ1,iε
i

−
r∑
i=1

φiε
i − εr+1Rε(w, x)− `nknPw
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= [LSψn,1 − `nknPw]− εr+1Rε(w, x)

+

r∑
i=1

εi [Lfψn,i + LSψn,i+1 + `nknψ1,i − φi]

in which ψj,r+1 := 0, j = 1, . . . , n, and

ψ̇j,i = Lfψj,i + LSψj,i :=
∂ψj,i(w, x)

∂x
f(x) +

∂ψj,i(w, x)

∂w
Sw .

The idea now is to iteratively select the functions ψj,i+1(·, ·) to annihilate, in the

previous expressions, the terms in εi, i = 0, . . . , r − 1, j = 1, . . . , n. We start by

considering the terms of order 0 in ε which are all annihilated by taking

ψj,1(w, x) = `j kj P S
−1w := `j ψ̄j,1(w, x) , j = 1, . . . , n ,

solving LSψj,1 − `jkjPw = 0. We observe that ψ̄j,1(w, x), and thus ψj,1(w, x), j =

1, . . . , n, are polynomials in w of order 1 with constant coefficients and such that

ψ̄j,1(0, x) = 0. Furthermore since φ1(·, ·) depends only on ψj,1, we assume that φ1(·, ·)
is a polynomial in w of order 1 satisfying φ1(0, x) = 0.

We proceed now by induction by assuming that all the functions ψj,k(·, ·), k =

1, . . . , i, j = 1, . . . , n have been fixed in the form

ψj,k(w, x) = `j+k−1 ψ̄j,k(w, x)

for some continuous ψ̄j,k(w, x) that are polynomials in w of order k with coefficients

dependent on x, so that to annihilate the terms in εk−1 in Ej . Furthermore, since

φi(·, ·) only depends on ψj,k with k ≤ i, j = 1 . . . , n, we assume that φi(·, ·) is a

polynomial in w of order i with coefficients dependent on x. In this case we see that

the terms of order i in ε are annihilated if ψj,i+1(·, ·) can be chosen so that

−LSψj,i+1 = Lfψj,i + `jkjψ1,i − ψj+1,i j = 1, . . . , n− 1 ,

−LSψn,i+1 = Lfψn,i + `nknψ1,i − φi .

Using the induction assumptions on the functions ψj,i(·, ·), j = 1, . . . , n, and φi(·, ·),

and the fact that S is invertible, it is easy to see that the previous PDEs admit solu-

tions of the form

ψj,i+1(w, x) = `j+i ψ̄j,i+1(w, x)

j = 1, . . . , n, for some ψ̄j,i+1(w, x) which, in turn, are polynomials in w of order i+ 1

with coefficients that are continuous functions of x and satisfying ψj,i+1(0, x) = 0.
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The induction iteration can be then used to choose ψj,i(·, ·), j = 1, . . . , n, i =

1, . . . , r, of the form

ψj,i(w, x) = `j+i−1 ψ̄j,i(w, x)

where ψ̄j,i(w, x) are polynomial functions in w of order i with coefficients that are

continuous functions of x. By embedding those functions in the expressions of

Ej(·, ·), j = 1, . . . , n, and bearing in mind the definition of Rε(·, ·), it is readily seen

that
Ej(w, x) = εr[Lfψj,r + `jkjψ1,r − ψj+1,r]

En(w, x) = εr[Lfψn,r + `nknψ1,r − φr] + εr+1|w|R̄ε(w, x)

where R̄ε(·, ·) is an appropriately defined continuous function, by which the claim

of the lemma immediately follows.

The previous lemma is instrumental to the proof of the next proposition which is

the main result of the section. As in the linear case, the low-pass filter properties of the

nonlinear high-gain observer are highlighted.

Proposition 2.1. Consider system (2.21) with x(t) ∈ X and w(t) ∈ W for all t ≥ 0 with
X and W bounded compact sets. Let the function ϕs(·) embedded in ∆ϕ(·, ·) be chosen so
that it is locally Lipschitz and it agrees with ϕ(·) on a set Xδ ⊃ X . Let ` be fixed so that
system (2.17) is ISS with respect to the input ν. Then, there exists a ε?(`) > 0 such that for
all positive ε ≤ ε?(`) the following holds

lim
t→∞

sup |ei(t)| ≤ µ ε `i ‖w(·)‖∞ i = 1, . . . , n

with µ a positive constant.

Proof. Let consider the change of variables

e 7→ ẽ := e−Ψε(w, x)

with Ψε(·, ·) introduced in the previous lemma with an r > 1 and observe that, by

bearing in mind the definition of Eε(·, ·), we have

Ψ̇ε = FΨε +B∆ϕ(Ψε, x) +GPw + Eε(w, x) .

In the new coordinates we get

˙̃e = F ẽ+B∆̄(ẽ,Ψε, x)− Eε(w, x) , (2.24)
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with

∆̄(ẽ,Ψε, x) = ∆ϕ(e, x)−∆ϕ(Ψε(w, x), x)

= ∆ϕ(ẽ+ Ψε(w, x), x)−∆ϕ(Ψε(w, x), x)

= ϕs(ẽ+ Ψε(w, x) + x)− ϕ(x)− (ϕs(Ψε(w, x) + x)− ϕ(x))

= ϕs(ẽ+ Ψε(w, x) + x)− ϕs(Ψε(w, x) + x)

Observe that the function ϕs is bounded and agrees with ϕ on Xδ and therefore the

Lipschitz constant of ∆̄(ẽ,Ψε, x) coincides with that of ∆ϕ(e, x) for any (ẽ, w, x, ε) ∈
Rn ×W ×X × [0, 1]. As a consequence the same values of ` that make system (2.17)

ISS with respect to the input ν(t) make also system (2.24) ISS with respect to the

input Eε(·, ·). In particular, there exists a positive constant µ0 such that

lim
t→∞

sup |ẽ(t)| = lim
t→∞

sup |e(t)−Ψε(w(t), x(t))|

≤ µ0 lim
t→∞

sup |Eε(w(t), x(t))|

≤ µ0 ‖Eε(w(·), x(·))‖∞

Using the fact that, for any r ≥ 1, Eε(w, x) is a term in εr, it follows that there exists

a positive constant µ1 such that

lim
t→∞

sup |ẽ(t)| ≤ µ1ε
r ‖w(·)‖∞ .

Consider now the the expressions of the components Ψi(·, ·), i = 1, . . . , n, of Ψε(·, ·)
introduced in the previous lemma. It turns out that there exist a positive ε?1(`) ∈
(0, 1) and a positive constant µ2 such that

|Ψi(w, x)| ≤ µ2 ε `
i |w|

for all i = 1, . . . , n, for all positive ε ≤ ε?1(`) and for all (w, x) ∈W ×X . From this,

lim
t→∞

sup |ej(t)| = lim
t→∞

sup |ẽj(t) + Ψj(w(t), x(t))|

≤ lim
t→∞

sup |ẽj(t)|+ lim
t→∞

sup |Ψj(w(t), x)(t)|

≤ lim
t→∞

sup |ẽj(t)|+ ‖Ψj(w(·), x(·))‖∞

≤ µ1ε
r ‖w(·)‖∞ + µ2ε`

j ‖w(·)‖∞

by which the result follows by taking an appropriate ε?(`) ≤ ε?1(`).

67



2.4. Asymptotic behaviour in presence of measurement noise

68



“There are three principal means of acquiring knowl-

edge available to us: observation of nature, reflection,

and experimentation. Observation collects facts; re-

flection combines them; experimentation verifies the

result of that combination. Our observation of nature

must be diligent, our reflection profound, and our ex-

periments exact.”

Denis Diderot

3
Low-Power High-Gain Observers

Hhigh-gain observers have been extensively used in nonlinear control for their

tunability property, namely the fact that the rate of convergence of the ob-

server can be tuned by acting with one single high-gain parameter `. This

important feature is motivated by the use of observers in output feedback control and

it has been proved (see, among the others, the milestones Atassi and Khalil (1999) and

Teel and Praly (1994)) that this tunability property plays a key role in establishing a

nonlinear separation principle. However, as already highlighted in Chapter 1, this class

of observer has several drawbacks when used in real applications. Mainly:

(i) the maximum gain to implement is increasing polynomially with the system di-

mension n, i.e. we need to implement a term `n, where ` is the high-gain parame-

ter. When nonlinear systems are considered, the value of the gain has to be taken

large enough to dominate the nonlinear terms and, therefore, if the Lipschitz con-

stant is very large, or the system dimension is high, the term `n can be numerically

harmful in computations (see Section 1.3.1);

(ii) during the transient the variables present a peaking phenomenon which grows

polynomially in `, i.e. the value of the variables have an order of magnitude

O(`n−1) (see Section 1.3.2);
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(iii) high-gain observers are typically characterized by high sensitivity to measurement

noise by thus making their use practically impossible in a realistic noisy environ-

ment (see Section 1.3.3).

Motivated by these considerations, in this chapter we propose a new class of nonlin-

ear high-gain observers, denoted as “low-power high-gain observers”, that preserves the

same high-gain features but which substantially overtakes the aforementioned draw-

backs. The proposed structure solves the implementation problems (i), having a gain

that grows up only to power two, regardless the dimension of the system. The new

structure is characterized by a state-dimension which is larger than n. As a matter of

fact, the relative degree between the measurement and the state estimates is increased

with respect to standard high-gain observer, thus reflecting better sensitivity properties

with respect to high-frequency gain and improving (iii). Finally, the presence of addi-

tional saturations helps in avoiding the peaking phenomenon (ii).

The contents of this chapter provides a novel “low-power methodology”, based on

dynamic extension, complementary to classical “high-gain one”. The first two sections

illustrate that the new low-power construction can be used without loss of generality in

place of the standard high-gain construction, by showing its application to systems in

the strict feedback form (1.11) (Section 3.1) and in the non strict feedback form (1.20)

(Section 3.2). In Section 3.3 we show how to modify the construction presented in Sec-

tion 3.1 in order to remove the annoying peaking phenomenon. In Section 3.4, we apply

the novel methodology introduced in Section 2.4 to analyse the performances of the new

low-power high-gain observer in presence of high-frequency measurement noise, high-

lighting the effects of the relative degree on the steady-state behaviour. In Section 3.5

the new low-power high-gain observer is successfully applied to the output regulation

framework as a design tool for robust internal models. Simulations are proposed in Sec-

tion 3.6 to show the performances of the new observer. We remark that Appendices A

and B provides some technical lemmas which are essentials for the design of the new

class of observers.

The results of Section 3.1 appeared on Astolfi and Marconi (2015) and have been suc-

cessfully applied to the output feedback stabilization framework in Wang et al. (2015).

Section 3.2 presents results that have been published in Wang et al. (2016-17) in col-

laboration with one of the co-authors (Lei Wang). The results of Section 3.3 were pro-

duced under the co-supervision of professor Andrew Teel and will appear on Astolfi

et al. (2016b). Section 3.4 is the extension of the work proposed in Astolfi et al. (2016a)

whereas the results proposed in Section 3.5 will appear in Astolfi et al. (2017) and have

been written under the co-supervision of Alberto Isidori.

70



Chapter 3. Low-Power High-Gain Observers

Basic ingredients of the low-power construction

In this brief introduction we present the main idea of the low-power construction. Con-

sider a system of dimension n = 2 of the form

ẋ1 = x2

ẋ2 = ϕ(x)

where (x1, x2) evolves in a compact set on which ϕ(·) is bounded. Suppose to implement

the following dirty-derivative observer

˙̂x1 = η1 + `c11(y − x̂1)

˙̂x2 = `2c12(y − x̂1)

where x̂1 is the estimate of x1 and x̂2 is the estimate of x2. Its transfer function is shown

in Figure 3.1.

y - `2c12s

s2 + `c11s+ `2c12

- x̂2

Figure 3.1: Dirty derivative observer of dimension 2 for a system in strict feedback
form of dimension 2.

As shown in Section 1.2, this observer provides a “rough” estimate of x1 and x2,

namely

lim
t→∞
|x̂1(t)− x1(t)|+ |x̂2(t)− x2(t)| ≤ µ

`
max
x∈X
|ϕ(x)| ,

for some constant µ. Evidently, by augmenting ` we can increase the precision of the

estimate. Now consider a system of dimension n = 3

ẋ1 = x2

ẋ2 = x3

ẋ3 = ϕ(x)

y = x1

and suppose to put in cascade of the previous observer a second dirty-derivative high-

71



y - `2c12s

s2 + `c11s+ `2c12

- η1
- `2c22s

s2 + `c21s+ `2c22

- η2

Figure 3.2: Cascade of two dirty derivative observers of dimension 2 for a system in
strict feedback form of dimension 3.

gain observer driven by η1 (see Figure 3.2), namely to design the following observer

˙̂x1 = η1 + `c11(y − x̂1)

η̇1 = `2c12(y − x̂1)

˙̂x2 = x̂3 + `c21(η1 − x̂2)

˙̂x3 = `2c22(η1 − x̂2)

where x̂1 represents an estimate of x1, η1 and x̂2 an estimate of x2, and η2 an estimate of

x3. The (x̂2, η2) dynamics are driven by η1. It is not hard to see that (x̂2, η2) provide a

“rough” estimate of η1 and η̇1. But since η1 is an estimate of x2, we get that the second

high-gain observer provides a “rough” estimate of x2 and x3, namely

lim
`→∞

lim
t→∞
|x̂1(t)− x1(t)|+ |η1(t)− x2(t)|+ |x̂2(t)− x2(t)|+ |x̂3(t)− x3(t)| = 0 .

Clearly the scheme above can be generalized by building a cascade of n dirty-derivative
observers to get an estimate of a system of dimension n of the form

ẋi = xi+1 i = 1, . . . , n− 1 ,

ẋn = ϕ(x)

by implementing an observer of dimension 2n − 2 with a high-gain parameter which is

raised up to power 2.

The scheme proposed above however can guarantee asymptotic estimation only for

`→∞ because it misses the “consistency” terms which provide the correct steady-state

values. As a consequence, let consider again a system of dimension three and suppose

to modify the previous dirty derivative observer as shown in the Figure 3.3, namely we
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y - ˙̂x1 = η1 + `c11(y − x̂1)
η̇1 = x̂3 + `2c12(y − x̂1)

- x̂1

�

η1

-

x̂3

˙̂x2 = x̂3 + `c21(η1 − x̂2)
˙̂x3 = ϕ(·) + `2c22(η1 − x̂2) � ϕ(·)�x̂2, x̂3

Figure 3.3: Low-power high-gain observer for a system in strict feedback form of di-
mension 3.

implement the forthcoming observer

˙̂x1 = η1 + `c11(y − x̂1)

η̇1 = x̂3 + `2c12(y − x̂1)

˙̂x2 = x̂3 + `c21(η1 − x̂2)

˙̂x3 = ϕ̂(x̂1, x̂2, x̂3) + `2c22(η1 − x̂2)

with ϕ̂(·) a bounded function which agrees with ϕ onX . Now the derivative of η1, which

is the estimate of x2, is fed by x̂3 which is the estimate of x3. This scheme is “consistent”

with the dynamics of the observed plant and it is not hard to prove that, for ` <∞ large

enough, we get

lim
t→∞
|x̂1(t)− x1(t)|+ |η1(t)− x2(t)|+ |x̂2(t)− x2(t)|+ |x̂3(t)− x3(t)| = 0 ,

namely the proposed observer provides an asymptotic estimate of the plant for finite

values of `. In the forthcoming sections we will exploit this structure in order to design

an observer for a system in feedback form of dimension n which involves powers of `

up to order 2 regardless the dimension of the system n. Furthermore, we will show how

the redundancy of the observer can be used in order to provide other benefits (higher

relative degree between measurement noise and state estimates and removal of the peak-

ing).

73



3.1. The low-power construction

3.1 The low-power construction

Let consider nonlinear systems of the form (1.11), i.e.

ẋi = xi+1 + ϕi(x1, . . . , xi, u) , i = 1, . . . , n− 1 ,

ẋn = ϕn(x1, . . . , xn, u) ,

y = x1 + ν(t) ,

(3.1)

where the state x = (x1, . . . , xn) ∈ Rn evolves in a given compact subset X of Rn, the

input u is any function assumed to be known evolving in a compact subset U of Rm and

y ∈ R is the measured output. Furthermore, we suppose the functions ϕi are locally

Lipschitz. The function t 7→ ν(t) represents a bounded unknown measurement noise.

The proposed low-power high-gain observer is

˙̂x1 = η1 + ϕ̂1(x̂1, u) + c11`(y − x̂1)

η̇1 = η2 + ϕ̂2(x̂1, x̂2, u) + c12`
2(y − x̂1)

...
˙̂xi = ηi + ϕ̂i(x̂1, . . . , x̂i, u) + ci1`(ηi−1 − x̂i)
η̇i = ηi+1 + ϕ̂i+1(x̂1, . . . , x̂i+1, u) + ci2`

2(ηi−1 − x̂i)
...

˙̂xn−2 = ηi + ϕ̂n−2(x̂1, . . . , x̂n−2, u) + c(n−2)1`(ηn−3 − x̂n−2)

η̇n−2 = x̂n + ϕ̂n−1(x̂1, . . . , x̂n−1, u) + c(n−2)2`
2(ηn−3 − x̂n−2)

˙̂xn−1 = ηn−1 + ` c(n−1)1 (satn−1(ηn−2)− x̂n−1)

η̇n−1 = satn+1(ϕ̂(x̂, u)) + `2 c(n−1)2(satn−1(ηn−2)− x̂n−1)
˙̂xn = satn+1(ϕ̂(x̂, u)) + ` cn(satn(ηn−1)− x̂n)

(3.2)

where (x̂, η) ∈ R2n−2 is the state of the observer, with x̂ = col(x̂1, . . . , x̂n) ∈ Rn and

η = col(η1, . . . , ηn−2) ∈ Rn−2 and (ci1, ci2), i = 1, . . . , n− 1 are coefficients to be properly

chosen. As concern the functions ϕ̂i, by following the precepts of Section 1.2, when the

functions ϕi are perfectly known, we can choose

ϕ̂i(x1, . . . , xi, u) = satϑi
(
ϕi(x1, . . . , xi, u)

)
.

with the positive real number ϑi defined as

ϑi = max
x∈X, u∈U

|ϕi(x1, . . . , xi, u)| .
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On the contrary, when no information is available, one may choose to pick ϕi(·) = 0. As

a consequence, in the following we suppose that the functions ϕ̂i, i = 1, . . . , n satisfy

|ϕi(x1, . . . , xi, u)− ϕ̂i(x̂1, . . . , x̂i, u)| ≤ Li|(x1 − x̂1, . . . , xi − x̂i)|+Ri (3.3)

for all (x, x̂, u) ∈ X × Rn × U and for some Li > 0 and Ri > 0.

Theorem 3.1. Consider system (3.1) and the observer (3.2). It is possible to choose the coeffi-
cients (ci1 ci2) such that there exist a `? ≥ 1 and strictly positive constants µ1, µ2 and µ3 such
that, for any ` > `? and for any initial conditions (x(0), ξ(0)) ∈ X × R2n−2, the following
bound holds

|x̂i(t)− xi(t)| ≤ µ1 `
i−1 exp(−µ2 ` t)π + µ3

n∑
j=1

`i−(j+1)Rj + µ4`
i−1 ‖ν(·)‖∞ ,

i = 1, . . . , n ,

|ηi(t)− xi+1(t)| ≤ µ1 `
i exp(−µ2 ` t)π + µ3

n∑
j=1

`i−jRj + µ4`
i ‖ν(·)‖∞ ,

i = 1, . . . , n− 2 ,

(3.4)

where

π =
n∑
i=1

|x̂i(0)− xi(0)|+
n−2∑
i=1

|ηi(0)− xi+1(0)| . (3.5)

as long as x(t) ∈ X and u(t) ∈ U .

Proof. By using the notation

ξi = col(ξi1, ξi2) := col(x̂i, ηi) i = 1, . . . , n− 2,

ξn−1 = col(ξ(n−1)1, ξ(n−1)2) := col(x̂n−1, x̂n)

the observer (3.2) can be written in the compact form

ξ̇1 = Aξ1 +Nξ2 + φ1 +D2(`)K1 (y − Cξ1) ,

ξ̇i = Aξi +Nξi+1 + φi +D2(`)Ki (B>ξi−1 − Cξi) , i = 2, . . . , n− 2 ,

ξ̇n−1 = Aξn−1 + φn−1 +D2(`)Ki (B>ξn−2 − Cξn−1) ,

(3.6)

where (A,B,C) is a triplet in prime form of dimension 2,

Ki := col(ci1, ci2) , N := BB> , D2(`) := diag
(
`, `2

)
,
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and

φi :=

(
ϕ̂i(x̂1, . . . , x̂i, u)

ϕ̂i+1(x̂1, . . . , x̂i+1, u)

)
, i = 1, . . . , n− 1 .

Consider now the change of variables

ξi 7→ ξ̃i := ξi − col (xi, xi+1) i = 1, . . . , n− 1 ,

by which the latter is transformed into

˙̃
ξ1 = H1 ξ̃1 +N ξ̃2 + ∆1 +D2(`)K1ν(t) ,

˙̃
ξi = Hi ξ̃i +Nξ̃i+1 +D2(`)KiB

> ξ̃i−1 + ∆i , i = 2, . . . , n− 2,

˙̃
ξn−1 = Hn−1 ξ̃n−1 +D2(`)Kn−1B

> ξ̃n−2 + ∆n−1

where Hi = A−D2(`)KiC and

∆i :=

(
ϕ̂i(x̂1, . . . , x̂i, u)− ϕi(x1, . . . , xi, u)

ϕ̂i+1(x̂1, . . . , x̂i+1, u)− ϕi+1(x1, . . . , xi+1, u)

)
, i = 1, . . . , n− 1 .

By following the rescaling (1.16) and the property (1.17) used in the proof of Theo-

rem 1.4, rescale now the variables ξ̃i as follows

ξ̃i 7→ εi := `2−iD2(`)−1 ξ̃i i = 1, . . . , n− 1 ,

which is, in compact notation,

ξ̃ 7→ ε := `D−1
` ξ̃

with ε = col(ε1 . . . εn−1) and

D` = blckdiag
(
D2(`) , `D2(`), . . . , `n−2D2(`)

)
.

An easy calculation shows that

ε̇ = `Mε+ `D−1
` ∆(ε, x, u) + ` K̄ν(t)
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with M defined in the Appendix A, (A.1), K̄ = col(K1, 0, . . . , 0) and ∆(ε, x, u) :=

col(∆1, . . . ,∆n−1) that in the new coordinates read as

∆i =

(
ϕ̂i(Cε1 + x1, . . . , `

i−1Cεi + xi, u)− ϕi(x1, . . . , xi, u)

ϕ̂i+1(Cε1,+x1, . . . , `
iCεi+1 + xi+1, u)− ϕi+1(x1, . . . , xi+1u)

)
,

for i = 1, . . . n− 2, and

∆n−1 =

(
ϕ̂n−1(Cε1 + x1, . . . , `

n−2Cεn−1 + xn−1, u)− ϕn−1(x1, . . . , xn−1, u)

ϕ̂n(Cε1,+x1, . . . , `
n−1B>εn−1 + xn, u)− ϕn(x1, . . . , xnu)

)
.

Note that as in the case of the standard high-gain observer (see Section 1.2), if the

matrix M is Hurwitz, we get a stable linear system disturbed by the non-linearity

∆(ε, x, u). Furthermore, the gain ` can be arbitrarily increased in order to prove

stability in the ε-coordinates. Evidently, from now on, we use the same arguments

used in the proof Theorem 1.4. In particular, analogously to the bound (1.18) and

by using (3.3), we get (for any ` ≥ 1)∣∣`D−1
` ∆(ε, x, u)

∣∣
≤

n−1∑
j=1

1

`j−2
D2(`)−1∆i

≤
n−1∑
j=2

2

`j−1

∣∣∣ϕ̂j(Cε1 + x1, . . . , `
j−1Cεj + xj , u)− ϕj(x1, . . . , xj , u)

∣∣∣
+

1

`n−1
|ϕ̂n(Cε1,+x1, . . . , `

n−1B>εn−1 + xn, u)− ϕn(x1, . . . , xnu)|

+ |ϕ̂1(Cε1 + x1, u)− ϕ1(x1, u)|

≤
n−1∑
j=2

2

`j−1

(
Lj |(Cε1, `Cε2, . . . , `

k−1Cεk)|+Rj

)
+ L1|Cε1|+R1

+
1

`n−1

(
Ln|(Cε1, `Cε2, . . . , `

n−2Cεn−1, `
n−1B>εn−1)|+Rn

)
≤ L1|ε|+ 2

n−1∑
j=2

Lj |ε|+ Ln|ε|+R1 + 2

n−1∑
j=2

1

`j−1
Rj +

1

`n−1
Rn

and therefore, by denoting

L = L1 + 2

n−1∑
j=2

Lj + Ln ,
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we have

∣∣`D−1
` ∆(ε, x, u)

∣∣ ≤ L |ε|+ 2

n∑
j=1

`1−jRj ∀(ε, x, u) ∈ R2n−1 ×X × U .

Now let the coefficients (ci1, ci2), i = 1, . . . , n−1, be chosen according to Lemma A.1

such that the matrix M is Hurwitz. As a consequence there exists a positive definite

matrix P solution of the Lyapunov equation

PM +M>P = −I .

By following the proof of Theorem 1.4, let consider the Lyapunov Function V :

R2n−2 → R≥0 defined as

V =
√
ε>Pε .

By denoting with λ and λ̄ the minimum and the maximum eigenvalue of P we have√
λ |ε| ≤ V ≤

√
λ̄ |ε| .

Observe that V is only Lipschitz. As a consequence, when V is not zero, by evaluat-

ing the Dini derivative of V along the solutions of ε we get

D+V =
1√
ε>Pε

ε>P
(
`Mε+ `D−1

` ∆(ε, x, u) + `K̄ν(t)
)

≤ − 1√
ε>Pε

`

2
|ε|2 +

|ε>P |√
ε>Pε

L |ε|+ 2
n∑
j=1

`1−jRj + `|K̄ν(t)|


≤ −

(
`

2
− L λ̄

)
|ε|2√
ε>Pε

+
λ̄√
λ

2

n∑
j=1

`1−jRj + `|K̄|ν̄


where we denoted ν̄ = ‖ν(·)‖∞. On the contrary, for V = 0 we get

D+V ≤ λ̄√
λ

2
n∑
j=1

`1−jRj + `|K̄|ν̄


hence the previous expression holds for both cases. Now let `? = 2`λ̄. As a conse-

quence, there exists a a1 > 0 such that, for any ` > max{`?, 1},

V̇ ≤ −` a1

λ̄
V +

λ̄√
λ

2

n∑
j=1

`1−jRj + `|K̄|ν̄
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and therefore

V (t) ≤ exp
(
−` a1

λ̄
t
)
V (0) +

1− exp(−` a1/λ̄t)

` a1/λ̄

λ̄√
λ

2

n∑
j=1

`1−jRj + `|K̄|ν̄

 .

From this we get

|ε(t)| ≤ µ1 exp(−` µ2t) |ε(0)|+ µ3

n∑
j=1

`−jRj + µ4 ν̄

with µ1 = 1/
√
λ, µ2 = a1/λ̄, µ3 = 2λ̄2/(

√
λa1) and µ4 = |K̄|µ3. By noting that for

` ≥ 1 we have

|ε| ≤ |ξ̃| ≤
n∑
i=1

|xi − x̂i|+
n−2∑
i=1

|xi+1 − ηi| ,

the proof concludes by using (3.5) and the following bounds

`−(i−1) |xi − x̂i| ≤ |ε| i = 1, . . . , n ,

`−i |xi+1 − ηi| ≤ |ε| i = 1, . . . , n− 2 .

Remarks

• The bounds (3.4) shows that the new low-power structure guarantees asymptotic

bounds which are comparable with the bounds (1.14) provided by the standard

high-gain observer (1.12). The main difference relies in the fact that the high-gain

observers (1.12) has a state dimension n with the high-gain parameter ` powered

up to n, whereas the new low-power structure has dimension 2n− 2 with the gain

` powered up to 2. In view of the considerations introduced in Section 1.3.1, it is

worth noticing that we are completely solving the implementation issues related

to the gain `n when ` or n are very large.

• As already explicated at the end of Section 1.2, the same kind of considerations

can be made about the bounds (3.4). In particular asymptotic estimation can be

achieved only when Ri = 0, i = 1, . . . , n and when there is no measurement noise.

• Despite the low-power high-gain observer (3.2) presents no terms with powers of

` larger than 2, the estimates x̂i, i = 1, . . . , n are affected by the peaking phe-

nomenon as the standard high-gain observer. As shown in Section 3.3, a more

sophisticated design is needed to solve this problem, namely by introducing satu-

rations functions. It is interesting to note that also the gain from the estimate x̂i
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and the measurement noise is multiplied by a term `i−1. However, as studied in

Section 3.4, the noise is affecting only the first two variables x̂1 and η1: the relative

degree between ν(t) and x̂i, i > 1 is always larger than one, thus resulting in better

sensitivity to high-frequency noise.
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3.2 The case of non-strict feedback form

While in Section 3.1 we have presented the novel low-power high-gain observer design

for the class of systems in strict feedback form, in this section we deal with the case of

systems in non-strict feedback form. In particular, by following the same design philos-

ophy, we want to show that the high-gain observer (1.21) of Section 1.4 can be modified

in order to design an observer with a high-gain term powered up to two regardless the

dimension n of the system by substantially overtaking the problem of having the high-

gain parameter powered to the order n. The results of Section 3.2 have been published

in Wang et al. (2016-17) and the work has been done with the help of the co-author Lei

Wang.

Consider a system in the non-strict feedback form (1.20) that we recall here

ẋi = fi(x1, . . . , xi, xi+1, u) , 1 ≤ i ≤ n− 1 ,

ẋn = fn(x1, . . . , xn, u) ,

y = h(x1, u) ,

(1.20 revisited)

with state x ∈ Rn, input u ∈ R and measured output y ∈ R. Without loss of generality

with respect to the proposed design (1.21), we suppose that Assumptions 1.1, 1.2 hold.

By mimicking the structure of the low-power high-gain observer presented in Section

3.1, the structure of the observer has the following form

˙̂x1 = f1(x̂1, η1, u) + c11`(y − x̂1)

η̇1 = f2(x̂1, x̂2, η2, u) + c12`
2(y − x̂1)

...
˙̂xi = fi(x̂1, . . . , x̂i, ηi, u) + ci1`(ηi−1 − x̂i)
η̇i = fi+1(x̂1, . . . , x̂i+1, ηi+2, u) + ci2`

2(ηi−1 − x̂i)
...

˙̂xn−2 = fn−2(x̂1, . . . , x̂n−2, ηn−2, u) + c(n−2)1`(ηn−3 − x̂n−2)

η̇n−2 = fn−1(x̂1, . . . , x̂n−1, x̂n, u) + c(n−2)2`
2(ηn−3 − x̂n−2)

˙̂xn−1 = fn−1(x̂1, . . . , x̂n−1, x̂n, u) + c(n−1)1`(ηn−2 − x̂n−1)
˙̂xn = fn(x̂1, . . . , x̂n, u) + c(n−1)2`

2(ηn−2 − x̂n−1)

(3.7)

where (x̂, η) ∈ R2n−2 is the state, x̂ = col(x̂1, . . . , x̂n) ∈ Rn and η = col(η1, . . . , ηn−2) ∈
Rn−2, ` is the high-gain parameter and the coefficients (ci1, ci2), i = 1, . . . , n − 1 have

to be properly chosen. In Section 1.4 we showed that the coefficients ki, i = 1, . . . , n,

of the observer (1.21) need to be chosen according to Lemma 1.1. Similarly, a special

design procedure is needed for the observer (3.7). We refer to the Lemma B.1 given in
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the Appendix B for the technicalities.

Theorem 3.2. Consider the system (1.20) satisfying Assumptions 1.1 and 1.2 and the ob-
server (3.7). There exists a choice of the coefficients (ci1, ci2) such that there exist a `? ≥ 1 and
strictly positive real numbers µ1 and µ2 such that, for all ` > `?, the following bound holds

|x̂i(t)− xi(t)| ≤ µ1 `
i−1 exp(−µ2`t)π ,

with π =
n∑
i=1

|x̂i(0)− xi(0)|+
n−2∑
i=1

|ηi(0)− xi+1(0)| , for all (x(0), η(0)) ∈ Rn×R2n−2 and

for all t ≥ 0.

Proof. Throughout the proof we denote B := (0, 1)>, C := (1, 0). Furthermore we

will use the compact notation xxxi = (x1, . . . , xi) and x̂xxi = (x̂1, . . . , x̂i). By using the

notation

ξi = col(ξi1, ξi2) := col(x̂i, ηi) i = 1, . . . , n− 2,

ξn−1 = col(ξ(n−1)1, ξ(n−1)2) := col(x̂n−1, x̂n)

the observer (3.2) can be written in the compact form

ξ̇1 =

(
f1(x̂xx1, B

>ξ1, u) + `c11(y − Cξ1)

f2(x̂xx2, B
>ξ2, u) + `2c12(y − Cξ1)

)

ξ̇i =

(
fi(x̂xxi, B

>ξi, u) + `ci1(B>ξi−1 − Cξi)
fi+1(x̂xxi+1, B

>ξi+1, u) + `2ci2(B>ξi−1 − Cξi)

)
i = 2, . . . , n− 2 ,

ξ̇n−1 =

(
fn−1(xxxn−1, B

>ξn−1, u) + `c(n−1)1(B>ξn−2 − Cξn−1)

fn(xxxn−1, B
>ξn−1, u) + `2c(n−1)2(B>ξn−2 − Cξn−1)

)

Consider now the change of variable

ξi 7→ ξ̃i := ξi − col (xi, xi+1) i = 1, . . . , n− 1 , (3.8)

We first start from ξ̃1 dynamics. By using the mean value theorem, one can get

˙̃
ξ11 = f1(x̂xx1, B

>ξ1, u)− f1(xxx1, x2, u)− ` c11 (y − x̂1)

= f1(x̂xx1, B
>ξ1, u)− f1(xxx1, B

>ξ1, u) + f1(xxx1, B
>ξ1, u)

−f1(xxx1, x2, u)− ` c11 (h(Cξ1, u)− h(x1, u))

=
∂f1

∂x2
(xxx1(t), δ1(t), u(t))ξ̃12 − `c11

∂h

∂x1
(δ0(t), u(t))ξ̃11

+f1(x̂xx1, B
>ξ1, u)− f1(xxx1, B

>ξ1, u)
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˙̃
ξ12 = f2(x̂xx2, B

>ξ2, u)− f2(xxx2, x3, u)− `2 c12 (y − x̂1)

= f2(x̂xx2, B
>ξ2, u)− f2(xxx2, B

>ξ2, u) + f2(xxx2, B
>ξ2, u)

−f2(xxx2, x3, u)− `2 c12 (h(Cξ1, u)− h(x1, u))

=
∂f2

∂x3
(xxx2(t), δ2(t), u(t))ξ̃22 − `2c12

∂h

∂x1
(δ0(t), u(t))ξ̃11

+f2(x̂xx2, B
>ξ2, u)− f2(xxx2, B

>ξ2, u)

for some δ0(t) and δ1(t). For the sake of compactness, we set

a1(t) =
∂f1

∂x2
(xxx1(t), δ1(t), u(t)) , a2(t) =

∂f2

∂x3
(xxx2(t), δ2(t), u(t)) ,

and b1(t) =
∂h

∂x1
(δ0(t), u(t)), to obtain

˙̃
ξ11 = a1(t)ξ̃12 − `c11b1(t)ξ̃11 + f̄1(t) ,
˙̃
ξ12 = a2(t)ξ̃22 − `2c12b1(t)ξ̃11 + f̄2(t) ,

where
f̄1(t) = f1(x̂xx1, B

>ξ1, u)− f1(xxx1, B
>ξ1, u) ,

f̄2(t) = f2(x̂xx2, B
>ξ2, u)− f2(xxx2, B

>ξ2, u) .

Hence, we get the ξ̃1 dynamics, described by

˙̃
ξ1 = H1(t)ξ̃1 +N2(t)ξ̃2 + F̄1(t)

with

H1(t) =

(
−`c11b1(t) a1(t)

−`2c12b1(t) 0

)
, F̄1(t) =

(
f̄1(t)

f̄2(t)

)
, N2(t) =

(
0 0

0 a2(t)

)
.

Applying the same arguments to ξ̃i-dynamics for 2 ≤ i ≤ n− 2, yields

˙̃
ξi1 = ai(t)ξ̃i2 − `ci1ξ̃i1 + `ci1ξ̃i−1,2 + f̄i(t) ,

˙̃
ξi2 = ai+1(t)ξ̃i+1,2 − `2ci2ξ̃i1 + `2ci2ξ̃i−1,2 + f̄i+1(t) ,

where, for compactness, we have defined

ai+1(t) =
∂fi+1

∂xi+2
(xxxi+1(t), δi+1(t), u(t)) ,

f̄i(t) = fi(x̂xxi(t), B
>ξi(t), u(t))− fi(xxxi(t), B>ξi(t), u(t)) ,

f̄i+1(t) = fi+1(x̂xxi+1(t), B>ξi+1(t), u(t))− fi+1(xxxi+1(t), B>ξi+1(t), u(t)) ,
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for some δi+1(t). Thus, we get the ξ̃i dynamics

˙̃
ξi = Hi(t)ξ̃i +Ni+1(t)ξ̃i+1 +D2(`)Qiξ̃i−1 + F̄i(t)

with

Hi(t) =

(
−`ci1 ai(t)

−`2ci2 0

)
, F̄i(t) =

(
f̄i(t)

f̄i+1(t)

)
,

D2(`) = diag(`, `2) and Qi defined as in (B.1). Applying the same trick to ξ̃n−1

dynamics, yields

˙̃
ξn−1,1 = an−1(t)ξ̃n−1,2 − `cn−1,1ξ̃n−1,1 + `cn−1,1ξ̃n−2,2 + f̄n−1(t) ,

˙̃
ξn−1,2 = −`2cn−1,2ξ̃n−1,1 + `2cn−1,2ξ̃n−2,2 + f̄n(t) ,

where we have defined

f̄n−1(t) = fn−1(x̂xxn−1, B
>ξn−1, u)− fn−1(xxxn−1, B

>ξn−1, u) ,

f̄n(t) = fn(x̂xxn−1, B
>ξn−1, u)− fn(xxxn−1, xn, u) .

Further, the ξ̃n−1 dynamics can be rewritten into the compact form

˙̃
ξn−1 = Hn−1(t)ξ̃n−1 +D2(`)Qn−1ξ̃n−2 + F̄n−1(t) ,

in which

Hn−1(t) =

(
−`cn−1,1 an−1(t)

−`2cn−1,2 0

)
, F̄n−1(t) =

(
f̄n−1(t)

f̄n(t)

)
.

Note that for each element of F̄i(t), being Lipschitz by Assumption 1.1, one can find

that f̄i(t) satisfy

|f̄i(t)| ≤ L|x̂xxi − xxxi| , 1 ≤ i ≤ n .

Rescale now the variables ξ̃i as follows

εi = `2−iD2(`)−1ξ̃i , i = 1, 2, . . . , n− 1 .

By setting ε = col(ε1, . . . , εn−1), an easy calculation shows that

ε̇ = `M(t)ε+ F̄`(t) (3.9)

in which the time varying block tridiagonal matrixM(t) is defined as in (B.1), where
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ai(t) for 1 ≤ i ≤ n−1 and b1(t) are bounded from below and from above for all t ≥ 0

by Assumption 1.1, bi(t) = 1 for 2 ≤ i ≤ n− 1 and the vector F̄`(t) is defined by

F̄`(t) = D`F̄ (t)

with D` and F̄ (t) defined by

D` = blckdiag
(
D2(`) , . . . , `n−2D2(`)

)
,

F̄ (t) = col (F̄1, F̄2(t), . . . , F̄n−1(t)) .

Inspection on the each element of F̄` shows that, for ` > 1

|`1−if̄i(t)| ≤ L|ε| , i = 1, 2, . . . , n ,

thus yielding that there exists a real number L̄ > 0, independent of `, such that

|F̄`| ≤ L̄|ε|. Now let the coefficients (ci1, ci2) be chosen according to Lemma B.1 for

a given matrix P and positive constant λ. Therefore we can choose the Lyapunov

candidate as W (ε) = ε>Pε, whose time derivative along the trajectories of system

(3.9) is given by
Ẇ (ε) = `ε>(PM +M>P )ε+ 2ε>PF̄`

≤ −(`λ− 2L̄|P |)|ε|2 .

Choosing `? =
2L̄|P |
λ

, one can conclude that for any ` > `?, there exists a positive

constant α1 such that

Ẇ ≤ −α1`|ε|2 .

Recalling the fact that there exist positive constants σ̄ and σ such that

σ |ε|2 ≤ W (ε) ≤ σ̄ |ε|2 ,

it can be further deduced that

|ε(t)| ≤ µ1 exp(−µ2`t) |ε(0)|

for some positive constants µ1 and µ2, independent of `. Finally the claim of the

proof follows immediately by noting that for ` ≥ 1 we have

`−(i−1) |x̂i − xi| ≤ |ε| ≤ |ξ̃| ≤
n∑
i=1

|x̂i − xi|+
n−2∑
i=1

|ηi − xi+1| .
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3.3 Peaking-free design

In Section 3.1 we illustrated the main features of the new low-power approach. One

advantage with respect to the standard high-gain observer (1.12) comes from an imple-

mentation with the power of the gain ` which is raised only up to power 2 regardless the

dimension of the system. However, it can be easily seen that the design (3.2) does not

solve the problem of peaking during the transient. In this section we propose a modi-

fication of the observer (3.2) which solves completely the problem of peaking without

loosing its main characteristics. Basically saturations functions are added at various lev-

els: they prevent the peaking phenomenon during the transients and do not “act” during

the asymptotic behaviour which coincides with the nominal one. Furthermore, one ex-

tra dynamics is added at the bottom of the chain in order to preserve the removal of the

peaking at any step. As a matter of fact, the proposed observer is a modification of the

one introduced in Astolfi et al. (2016b). Note that the same “saturation design” can be

adopted also for the class of observer (3.7).

We consider here, for the sake of simplicity in the analysis, the class of nonlinear

system (3.1) when

ϕi(x1, . . . , xi, u) = 0 i = 1, . . . , n− 1,

ϕn(x1, . . . , xn, u) = ϕ(x, u),

with ϕ(x) any locally Lipschitz function, namely the system

ẋi = xi+1 , i = 1, . . . , n− 1 ,

ẋn = ϕ(x, u) ,

y = x1 ,

(3.10)

where the state x = (x1, . . . , xn)> evolves in a compact subset X of Rn, the input u is

assumed to be known and evolves in some compact set U ⊂ Rm and the output y ∈ R.

In the following we define the values ϑi > 0 as follows

ϑi := max
x∈X
|xi| i = 1, . . . , n,

ϑn+1 := max
x∈X,u∈U

|ϕ(x, u)|

From the results of Theorem 3.1 we know that the variables x̂i during the transient shows

a peak of order `i−1, whereas the variables ηi shows a peak of order `i. As a consequence
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the proposed “peaking-free low-power high-gain observer” reads as

˙̂x1 = η1 + ` c11 (y − x̂1)

η̇1 = sat3(η2) + `2 c12(y − x̂1)
...

˙̂xi = ηi + ` ci1 (sati(ηi−1)− x̂i)
η̇i = sati+2(ηi+1) + `2 ci2 (sati(ηi−1)− x̂i)

...
˙̂xn−1 = ηn−1 + ` c(n−1)1 (satn−1(ηn−2)− x̂n−1)

η̇n−1 = satn+1(ϕ̂(x̂, u)) + `2 c(n−1)2(satn−1(ηn−2)− x̂n−1)
˙̂xn = satn+1(ϕ̂(x̂, u)) + ` cn(satn(ηn−1)− x̂n)

(3.11)

where (x̂, η) ∈ R2n−1 is the state of the observer, with x̂ = col(x̂1, . . . , x̂n) ∈ Rn and

η = col(η1, . . . , ηn−1) ∈ Rn−1. The coefficients (ci1, ci2), i = 1, . . . , n− 1 and cn have to be

properly chosen as detailed later, ϕ̂ is any bounded Lipschitz function satisfying

|ϕ(x, u)− ϕ̂(x̂, u)| ≤ L|x− x̂|+R ∀ (x, x̂) ∈ X × Rn

for some L > 0 and R > 0, and the functions sati are defined as

sati(·) := satri(·) , i = 1, . . . , n+ 1 ,

with the saturations level ri chosen as

ri := ϑi + % ,

with % a small positive real number to be defined. It can be proved that the observer

(3.11) has the same asymptotic properties of the observer (3.2) and moreover that the

variables x̂i(t) are bounded for all t ≥ 0 by a number which is independent on the high-

gain parameter `, whereas the variables ηi(t) shows a peak of order `.

With respect to the choice required in Theorem 3.1 in which the parameters (ci1, ci2),

i = 1, . . . , n − 1 were just asked to make the matrix M defined in (A.1) Hurwitz (see

Lemma A.1), in this case the presence of saturation functions asks the parameters also

fulfil additional “small-gain” conditions. We refer to Appendix A for the technicalities

and in particular to Definition A.1.
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Theorem 3.3. Consider system (3.10) and the observer (3.11). There exists a choice of
(ci1 ci2), i = 1, . . . , n − 1 and cn such that, for any compact sets X ⊂ Rn, X̂ ⊂ Rn and
E ⊂ Rn−1, and for any % > 0, there exist µ1 > 0, µ2 > 0, µ3 > 0, δi > 0, i = 1, . . . , n, γi, i =

1, . . . , n− 1 and `? ≥ 1 such that, for any ` > `? and for any (x(0), x̂(0), η(0)) ∈ X × X̂ ×E,
the following bounds hold

|x̂i(t)− xi(t)| ≤ min
{
`i−1µ1 exp(−` µ2t)π +

µ3

`n−(i−1)
R , δi

}
|ηi(t)− xi+1(t)| ≤ min

{
`iµ1 exp(−` µ2t)π +

µ3

`n−i)
R , γi `

} (3.12)

with

π =

n∑
i=1

|x̂i(0)− xi(0)|+
n−1∑
i=1

|ηi(0)− xi+1(0)| ,

for all t ≥ 0 such that x(t) ∈ X , u(t) ∈ U .

Proof. The proof is divided in two parts. First we prove the asymptotic convergence

of the observer by proving that after some time the saturations are no more “work-

ing”. In this proof we get a conservative bound. Then, we make a more detailed

analysis to show that this bound can be refined and that, indeed, the estimates x̂i
are “peaking-free” whereas the variables ηi peak with an order of magnitude which

grows with `.

In the following (A,B,C) denotes a triplet of dimension 2 in prime form, and

D2(`) = diag(`, `2). Also, we use the same notation introduced in Section 3.1 for the

matrices Bi, Ki, Ei, Q̄i and Mi. We define the following changes of variables

(x̂, η) 7→ ξ ,


ξi1 := x̂i , i = 1, . . . , n− 1 ,

ξi2 := ηi , i = 1, . . . , n− 1 ,

ξn := x̂n ,

(3.13)

ξ 7→ ε ,


εi1 := `−(i−1)(ξi1 − xi) , i = 1, . . . , n− 1 ,

εi2 := `−i(ξi2 − xi+1) , i = 1, . . . , n− 1 ,

εn := `−(n−1)(ξn − xn) ,

(3.14)

ξ 7→ ζ ,


ζi1 := (ξi1 − xi) , i = 1, . . . , n− 1 ,

ζi2 := `−1(ξi2 − xi+1) , i = 1, . . . , n− 1 ,

ζn := ξn − xn ,
(3.15)
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with

ξ = (ξ1, . . . , ξn−1, ξn) ∈ R2n−1, ξi = (ξi1, ξi2) ∈ R2, i = 1, . . . , n− 1, ξn ∈ R

ε = (ε1, . . . , εn−1, εn) ∈ R2n−1, εi = (εi1, εi2) ∈ R2, i = 1, . . . , n− 1, εn ∈ R,

ζ = (ζ1, . . . , ζn−1, ζn) ∈ R2n−1, ζi = (ζi1, ζi2) ∈ R2, i = 1, . . . , n− 1, ζn ∈ R,

Finally, we define the variables vi, i = 1, . . . , n− 1 as

vi := sati+2(ηi+1)− xi+2 ∀ i = 1, . . . , n− 2

vn−1 := satn+1(ϕ̂(x̂, u))− ϕ(x, u) .

Recall that by definition

|vi(t)| ≤ ϑi+2 +Ri+2 ∀ i = 1, . . . , n− 1 , ∀ t ≥ 0 . (3.16)

Exit from saturation and convergence

Case i = 1. Consider the change of coordinates (3.13) and its first variable ξ1 ∈ R2.

Its dynamics is given by

ξ̇1 = Aξ1 +B sat3(Bξ2) +D2(`)K1(y − Cξ1) .

By using the change of coordinates (3.14) the latter is transformed into

ε̇1 = `E1ε1 + `−1Bv1

Since E1 is Hurwitz, there exists a P1 = P>1 > 0 solution of

P1E1 + E>1 P1 = −I .

As a consequence we can apply Lemma A.4 for any T1 > 0 with r = 1 to get a `1
satisfying

|` ε1(t)| ≤ % ∀ t ≥ T1 ,

for all ` ≥ `1. By noting that (for any ` ≥ 1)

`−1|ξ12 − x2| ≤ |ε12| ≤ |ε1|

|ξ12| ≤ |ξ12 − x2|+ |x2|
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we get

|ξ12(t)| ≤ `|ε1|+ |x2| ≤ %+R2 ≤ ϑ2

for any ` ≥ `1 and for all t ≥ T1. With this in mind, we have that sat2η1(t) = η1(t)

for all t ≥ T1.

General Case i > 1. After time Ti−1 > 0 we get satj+1ηj(t) = ηj(t) for j = 1, . . . , i−1

and, as a consequence, Bvj = Nξj+1 for all j = 1, . . . , i − 2. With the change of

coordinates (3.13) in mind, consider the cascade system made by the first i elements

of ξi,
ξ̇1 = Aξ1 +N ξ2 +D2(`)K1(y − Cξ1)

...

ξ̇i−1 = Aξi−1 +B sati+1ηi +D2(`)Ki−1(B>ξi−2 − Cξi−1)

ξ̇i = Aξi +B sati+2ηi+1 +D2(`)Ki−1(B>ξi−1 − Cξi)

By using the change of coordinates (3.14) the latter is transformed into(
ε̇εεi−1

ε̇i

)
= `

(
Mi−1 0

Q̄i Ei

)(
εεεi−1

εi

)
+

1

`i

(
B2(i−1) 0

0 B

)(
` vi−1(t)

vi(t)

)

with the notation εεεk = (ε1, . . . , εk)
>. Note that

vi−1(t) = sati+1(Bηi)− xi+1

= sati+1(`iεi2 + xi+1)− xi+1

By the Lipschitz mean-value theorem, for each t sufficiently large, there exists a

continuous function ρ(t) ∈ [0, 1] such that

vi−1(t) = ρ(t) `iεi2 .

As a consequence we get

ε̇εεi = `Λi(t)εεεi +
1

`i
B2ivi(t)

where Λi(t) is defined as

Λi(t) :=

(
Mi−1 ρ(t)N̄i−1

Q̄i Ei

)
. (3.17)
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By applying Lemma A.3 we know the existence of a Pi = P>i > 0 satisfying

PiΛi(t) + Λi(t)
>Pi ≤ −I

for all t ≥ Ti−1. As a consequence we can apply Lemma A.4 with some Ti > 0 and

r = i to get a `i ≥ `i−1 satisfying

|`iεεεi(t)| ≤ % ∀ t ≥ T1 ,

By recalling (for any ` ≥ 1)

`−i|ξi2 − xi+1| ≤ |εi2| ≤ |εεεi|

|ξi2| ≤ |ξi2 − xi+1|+ |xi+1| ≤ |`iεi2|+ |xi+1| ≤ |`iεεεi|+ |xi+1|

we get

|ηi(t)| = |ξi2(t)| ≤ `i|εεεi|+ |xi+1| ≤ %+Ri+1 ≤ ϑi+1

for any ` ≥ `i and for all t ≥ Ti. This prove that for t ≥ Ti also sati+1ηi = ηi and

therefore the dynamics of system εεεi read as

ε̇εεi = `Miεεεi +
1

`i
Bivi(t)

Overall convergence. After time Tn−1 > 0 we get satj+1ηj(t) = ηj(t) for j =

1, . . . , n − 1. As a consequence the observer (3.11) in the ε coordinates (3.14) reads

as (
ε̇εεn−1

ε̇n

)
= `

(
Mn−1 0

q̄n −cn

)(
εεεn−1

εn

)
+

1

`n−1

(
B2n−2

1

)
vn−1(t)

where q̄n = (0, . . . , 0, cn). Now let the matrix Mn be defined as

Mn :=

(
Mn−1 0

q̄n −cn

)
B̄ =

(
B2n−2

1

)
.

It is Hurwitz for any cn > 0. Therefore we can define the matrix Pn = P
>
n > 0

solution of

PnMn +M
>
nPn = −I .

Note that

|vn−1| = |satn+1ϕ̂(x̂, u)− ϕ(x, u)| ≤ L|x̂− x|+R ≤ L `n−1 |ε|+R .
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By applying standard arguments used in the proofs of Theorems 1.4 and 3.1 it is

easy to get

|ε(t)| ≤ µ1 exp(−` µ2t) |ε(0)|+ µ3

`n
R

for some positive µ1, µ2 and µ3. Finally, by using (for ` ≥ 1)

`−(i−1) |xi − x̂i| ≤ |ε| ≤
n∑
i=1

|xi − x̂i|+
n−1∑
i=1

|xi+1 − ηi|

`−i |xi+1 − ηi| ≤ |ε| ≤
n∑
i=1

|xi − x̂i|+
n−1∑
i=1

|xi+1 − ηi|

we get

|xi(t)− x̂i(t)| ≤ `i−1µ1 exp(−` µ2t)π +
µ3

`n−(i−1)
R , (3.18)

|xi+1(t)− ηi(t)| ≤ `iµ1 exp(−` µ2t)π +
µ3

`n−i)
R (3.19)

with π defined as in the statement of the theorem. In the next part of the proof we

show that the latter are too conservative and we show how to get (3.12).

Bound Estimate

Let consider again the ξ dynamics at time 0. Using the change of coordinates ζi
defined in (3.15), we get

ζ̇1 = `E1ζ1 + `−1Bv1(t)

ζ̇i = `Eiζi + `−1Bvi(t) + `Ki−1satiηi−1 i = 2, . . . , n− 1

ζ̇n = −`cnζn + vn−1(t) + `cn satnηn−1

Now let consider the Lyapunov functions Vi defined as

Vi := ζ>i Si ζi , i = 1, . . . , n− 1 , Vn :=
1

2cn
ζ2
n

with Si given by

SiEi + E>i Si = −I .

We get

V̇1 ≤ −`|ζ1|2 + 2|ζ1||Si|`−1v1
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V̇i ≤ −`|ζi|2 + 2|ζi||Si|(`−1vi + `Ki−1 satiηi−1) i = 2, . . . , n− 1,

V̇n ≤ −`|ζn|2 + c−1
n ζn vn−1 + ` ζn satnηn−1

By using (3.16), standard Lyapunov arguments show that there exist positive con-

stants aij , j = 1, . . . , 4, such that, if ` is taken sufficiently large, we get

|ζ1(t)| ≤ a11 exp(−a12` t)|ζ1(0)|+ a13

`2
(R3 + ϑ3)

|ζi(t)| ≤ ai1 exp(−ai2` t)|ζi(0)|+ ai3
`2

(Ri+2 + ϑi+2) + ai4|Ki−1|ϑi

i = 2, . . . , n− 1 ,

|ζn(t)| ≤ an1 exp(−an2` t)|ζi(0)|+ an3

`
(Rn+1 + ϑn+1) + ai4cnϑn

Furthermore, by recalling (for any ` ≥ 1)

|xi − x̂i| ≤ |ζi| ≤ |xi − x̂i|+ |xi+1 − ηi| ,
1

`
|xi+1 − ηi| ≤ |ζi| ≤ |xi − x̂i|+ |xi+1 − ηi| ,

and by using the notation

πi = max
x∈X, x̂∈X̂, η∈E

|xi − x̂i|+ |xi+1 − ηi| , i = 1, . . . , n− 1

πn = max
x∈X, x̂∈X̂

|xn − x̂n| ,

we get the following set of bounds for x̂i

|x1(t)− x̂1(t)| ≤ a11 exp(−a12`t)π1 +
a13

`2
(R3 + ϑ3) ,

|xi(t)− x̂i(t)| ≤ ai1 exp(−ai2`t)πi +
ai3
`2

(Ri+2 + ϑi+2) + ai4|Ki−1|ϑi ,

i = 2, . . . , n− 1

|xn(t)− x̂n(t)| ≤ an1 exp(−an2`t)πn +
an3

`
(Rn+1 + ϑn+1) + an4cnϑn ,

and for ηi,

|ηi(t)| ≤ ai1` exp(−ai2`t)πi +
ai3
`

(Ri+2 + ϑi+2) + ai4`|Ki−1|ϑi ,

for i = 1, . . . , n− 1. Now let δi > 0, i = 1, . . . , n be defined as

δ1 = a11 π1 + a13(R3 + ϑ3) ,
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δi = ai1 πi + ai3(Ri+2 + ϑi+2) + ai4|Ki−1|ϑi , i = 2, . . . , n− 1

δn = an1 πn + an3(Rn+1 + ϑn+1) + an4cnϑn .

As a consequence, for any ` ≥ 1 we get

|x̂i(t)− xi(t)| ≤ δi ∀ t ≥ 0 . (3.20)

Furthermore, by letting γi > 0, i = 1, . . . , n− 1, be defined as

γi = ai1 πi + ai3(Ri+2 + ϑi+2) + ai4|Ki−1|ϑi ,

we also get

|ηi(t)− xi+1(t)| ≤ γi ` ∀ t ≥ 0 (3.21)

for any ` ≥ 1. The proof concludes by combining (3.20)-(3.21) with (3.18)-(3.19).
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3.4 Asymptotic behaviour in presence of measurement noise

Aim of this section is to characterize the behaviour in presence of measurement noise of

the low-power high-gain observer presented in this chapter. By following the same ar-

guments used in Section 2.4, we consider in this section the class of autonomous systems

described by
ẋ = Anx+Bnϕ(x) , x ∈ Rn ,
y = Cnx+ ν(t) , y ∈ R

(3.22)

where (An, Bn, Cn) is a tripled in prime form, ϕ is a locally Lipschitz function, x is as-

sumed to evolve in some given compact set X ⊂ Rn and the output is affected by a

bounded noise ν(t). The low-power high-gain observer (3.2) for the system (3.22) has

the form (by using the same compact notation of (3.6))

ξ̇1 = Aξ1 +N ξ2 +D2(`)Ki (y − Cξ1)

ξ̇i = Aξi +N ξi+1 +D2(`)Ki (B>ξi−1 − Cξi) i = 1, . . . , n− 2 ,

ξ̇n−1 = Aξn−1 +B ϕs(x̂) +D2(`)K(n−1) (B>ξn−2 − Cξn−1)

(3.23)

where (A,B,C) is a triplet in prime form of dimension 2, ϕs is a bounded locally Lips-

chitz function that agrees with ϕ on the set X , the matrix D` = diag(`, . . . , `n) with ` the

high-gain parameter to be chose large enough (to “overcome” the Lipschitz constant of

ϕ), Ki = colci1, ci2 are coefficients which can be chosen according to Lemma A.1 and

x̂ := Γξ, Γ := blkdiag (C2, . . . , C2︸ ︷︷ ︸
(n−2) times

, I2) .

By making the following change of coordinates

ξi 7→ ξ̃i := ξi − col (xi, xi+1) i = 1, . . . , n− 1 ,

the observer (3.23) transforms as

˙̃
ξ1 = H1 ξ̃1 +N ξ̃2 +G1ν(t)

...
˙̃
ξi = Qi ξ̃i−1 +Hi ξ̃i +Nξ̃i+1

...
˙̃
ξn−1 = Qn−1, ξ̃n−2 +Hn−1 ξ̃n−1 +B∆ϕ(ξ̃, x)
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3.4. Asymptotic behaviour in presence of measurement noise

which can be written in the more compact form

˙̃
ξ = F ξ̃ +B∆ϕ(ξ̃, x) +Gν(t) (3.24)

where

F =



H1 N

Q2 H2 N

.. .
. . .

. . .

Qn−2 Hn−2 N

Qn−1 Hn−1


G =


G1

0
...

0

 B =


0

0
...

B

 .

Hi := A−D2(`)KiC ∀ i = 1, . . . , n− 1 ,

Qi := D2(`)KiB
T ∀ i = 2, . . . , n− 1 ,

G1 := D2(`)K1P ,

N := BB>

and

∆ϕ(η̃, x) := ϕs(Γ
′η̃ + x)− ϕ(x) . (3.25)

If ` is taken sufficiently large then system (3.24) is input-to-state stable with respect

to the input ν. In particular, standard Lyapunov arguments can be used to prove the

existence of positive constants µ1, µ2 and µ3 such that the following bounds hold

|ej(t)| ≤ max
{
µ1 `

j−1 exp(−µ2` t) |ξ̃(0)| , µ3 `
j−1| ‖ν(·)‖∞

}
(3.26)

where e ∈ Rn, e = Γξ̃, for all t ≥ 0, j = 1, . . . , n. The goal of this note is to better char-

acterise the asymptotic gain in presence of high-frequency noise as already done for the

standard high-gain observer in Section 2.4. Towards this end we model the measurement

noise as
εẇ = Sw , w ∈ Rm

ν = Pw ,
(3.27)

where S ∈ Rm×m is a neutrally stable matrix, P is a row vector, and ε ∈ (0, 1) is pa-

rameter that will be taken small in the forthcoming analysis. System (3.27) can be con-

veniently seen as generator of m > 0 harmonics at frequencies ωi/ε > 0, i = 1, . . . ,m,

namely, the matrices S and P take the form

S = blkdiag(S1, . . . , Sm) , Si =

(
0 ωi

−ωi 0

)
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and P = ((0 1) (0 1) · · · (0 1)). In the following we assume that w ranges in a compact

invariant set W .

As a preparatory step towards the nonlinear analysis, it is instructive to consider the

linear case, namely the case in which ϕ(x) = Φx with Φ a row vector. In this case the

observer (3.23) can be taken1 with ϕs(x̂) = Φx̂. By observing that

ΦΓη − Φx = ΦΓξ̃

the resulting error system (3.23) -(3.27) is thus given by

εẇ = Sw
˙̃
ξ = (F +BΦΓ)ξ̃ +GPw

with the matrix F + BΦΓ that is Hurwitz for ` sufficiently large. Using the fact that S

is neutrally stable and that F + BΦΓ is Hurwitz it follows that the state of the previous

system reaches a steady state fully described by the state of the noise generator. In

particular, denoting by Π̄ε the (2n− 2)×m matrix solution of the Sylvester equation

Π̄εS = ε(F +BΦΓ′)Π̄ε + εGP

it turns out that

lim
t→∞

(ξ̃(t)− Π̄εw(t)) = 0 . (3.28)

From this it follows that

lim
t→∞

(e(t)−Πεw(t)) = 0

with Πε the n×mmatrix defined as Πε := ΓΠ̄ε The expression of Πε can be characterised

at high-frequency (namely for small value of ε) to have more insight about how the

gain between the measurement noise and the j-th estimation error is affected by `. In

particular, using that the fact that S is not singular, it is easy to check that

Πε =
∞∑
k=1

εkΠk

with

Πk := Γ(F +BΦΓ)k−1GPS−k , k = 1, . . . ,∞ .

In particular, the series defining Πε is convergent as long as ε is taken sufficiently small.

Namely, for all k? > 0 there exist ε? > 0 and π̄ > 0 such that
∑∞

k=k? ε
kΠk ≤ π̄ for

all positive ε ≤ ε?. By bearing in mind the expressions of F and G and how those

1Because of linearity boundedness of the function ϕs(x) is not needed.
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matrices depend on `, easy computations reveal that the expressions of the Πk, for k =

1, . . . , dn+1
2 e have the following structure

Π1 =



`M1,1

0

0

0
...

0

0

0


, Π2 =



M2,1(`)

`3M2,2

0

0
...

0

0

`M2,n


, Π3 =



M3,1(`)

M3,2(`)

`5M3,3

0
...

0

`M3,n−1

M3,n(`)


, Π4 =



M4,1(`)

M4,2(`)

M4,3(`)

`7M4,4

...

`M4,n−2

M4,n−1(`)

M4,n(`)


, . . .

in which the Mj,i, are appropriately defined row vectors that are constant or dependent

on ` as clear from the notation. That is, the j-th element, j = 1, . . . , n, of Πk, k =

1, . . . , dn+1
2 e, which is denoted by Πk

j , is given by

Πk
j = 0 j = k + 1, . . . n− k + 1

Πk
k = `2k−1Mk,k k ≤

⌈
n+1

2

⌉
Πk
j = `Mk,j k = 2, . . . ,

⌈
n+1

2

⌉
− 1, j = n− k + 2

in which the specifiedMk,j are constant row vectors, and the elements of Πk not specified

in the previous formulae that are generic (` dependent) row vectors. From this, using

(3.28) and the fact that W is compact, we can then conclude that for all j = 1, . . . , n,

there exists a ε?(`) > 0 such that for all ε ≤ ε?(`) the following holds

lim
t→∞

sup |ej(t)| ≤ µ εj `2j−1 ‖w(·)‖∞ , j = 1, . . . ,
⌈
n+1

2

⌉
lim
t→∞

sup |ej(t)| ≤ µ εn−j+2 ` ‖w(·)‖∞ , j =
⌈
n+1

2

⌉
+ 1, . . . , n

for some positive constant µ. The previous relation clearly shows the “low-pass" filtering

properties of the low-power high-gain observer, namely

lim
ε→0

lim
t→∞

sup |ej(t)| = 0 .

In addition, the remarkable feature of the low-power observer is to have an asymptotic

gain that is affected by ε powered at a value that increases as long as "higher" components

of the errors are considered. This is consequence of the fact that the relative degree

between the measurement noise and the j-th error component increases with j. This

fact shows that the actual observer behaves better than standard high-gain observers as
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far as sensitivity to measurement noise is concerned. As a matter of fact, the results

presented in Section 2.4 have shown that, in case of standard high-gain observers, the

asymptotic gain between the measurement noise and the j-th error component depends

on ε regardless the value of j. This is immediate consequence of the fact that the relative

degree between the measurement noise and the j-th error component in standard high-

gain observers is always one regardless the value of j.

Furthermore, the previous analysis reveals how the high-gain parameter ` affects the

asymptotic gain of the j-th error component at high-frequency. In particular, it is worth

noting that for the first dn+1
2 e error components the gain increases with ` according to a

term of the form `2j−1, namely the effect of the high-gain parameter on the sensitivity to

measurement noise becames worst as long as “higher" components of the error (namely

higher values of j) are considered. On the other hand, the asymptotic gain for the “lower"

component, namely for the components ej for j = dn+1
2 e + 1, . . . , n, depends on ` no

matter which j is considered. In this respect it is interesting to observe that, in case of

standard high-gain observer, the analysis in Section 2.4 revealed that the asymptotic gain

between the measurement noise and the j-th error component is affected by the high-

gain parameter by a term of the form `j . The new low-power observer, thus, behaves

better for the sensitivity of the error ej for j = dn+1
2 e+ 1, . . . , n, while it is worst for the

first dn+1
2 e+ 1 components.

In the next section we present the theoretical tool that allows one to get the same

kind of result also in the nonlinear setting.

Nonlinear Analysis

By compactly writing the system dynamics (3.22) as

ẋ = f(x)

the overall dynamics given by the observed system (3.22) , the observer error dynamics

(3.23) and the noise generator (3.27) read as

εẇ = Sw

ẋ = f(x)
˙̃
ξ = F ξ̃ +B∆ϕ(ξ̃, x) +GPw .

(3.29)

Having tuned the parameters ci1, ci2, i = 1, . . . , n−1, and ` as said before, the trajectories

of this system are bounded. The system in question, thus, has a well-defined steady

state that can be characterised with the tools proposed in Isidori and Byrnes (2008).

More specifically, the triangular structure of the system (with the x and w subsystem
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3.4. Asymptotic behaviour in presence of measurement noise

driving the e subsystem) implies that the existence of a possibly set-valued function

πε : X ×W ⇒ R2n−2 such that the set

graph(πε) =
{

(w, x, e) ∈W ×X × Rn : ξ̃ ∈ πε(w, x)
}

is asymptotically stable for (3.29). Furthermore, the properties of the high-gain observer

when the measurement noise is absent (i.e. when w = 0) show that

πε(0, x) = {0} ∀ x ∈ X .

The following technical lemma provides an arbitrarily accurate approximation of a con-

tinuous selection of πε(·, ·). The Lemma refers to a number of functions that enter in

definition of the approximation. In order to keep compact the claim of the Lemma, we

introduce those functions beforehand. In particular, let

υ :=
⌈n

2

⌉
, m :=

⌈
n+ 1

2

⌉
and let r be an arbitrary number satisfying r ≥ m. Observe that for any nwe havem ≥ υ.

The approximation, of order r, of the steady state is then a function Ψε : W×X → R2n−2

defined as

Ψε(w, x) := col
(

Ψ1(w, x) Λ1(w, x) Ψ2(w, x) Λ2(w, x)

· · · Ψn−1(w, x) Λn−1(w, x)
)

in which

Ψj(w, x) :=

r∑
i=rj

ψj,i(w, x) εi , j = 1, . . . , n− 1

Λj(w, x) :=
r∑

i=pj

λj,i(w, x) εi , j = 1, . . . , n− 1

(3.30)

where the rj and pj are defined as

rj = j , j = 1, . . . , υ ,

rj = n− j + 2 , j = υ + 1, . . . , n− 1 ,

pj = j , j = 1, . . . , υ ,

pj = n− j + 1 , j = υ + 1, . . . , n− 1 ,

(3.31)

with
ψj,i : X ×W → R, j = 1, . . . , n− 1, i = rj , . . . , r

λj,i : X ×W → R, j = 1, . . . , n− 1, i = pj , . . . , r
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appropriately defined continuous functions. We have then the following result.

Lemma 3.1. Consider system (3.23) and the notations introduced before. There exist contin-
uous functions ψj,i(·, ·) and λji(·, ·) such that, having defined

Eε(w, x) := ε−1∂Ψε(w, x)

∂w
Sw+

∂Ψε(w, x)

∂x
f(x)− FΨε(w, x)−GPw−B∆ϕ(Ψε(w, x), x)

the following holds

lim
ε→0+

Eε(w, x)

εr−1
= 0 , ∀ (w, x) ∈W ×X ,

Eε(0, x) = 0 ∀ (ε, x) ∈ [0, 1]×X

Furthermore, there exist continuous functions ψ̄j,j(·, ·), and λ̄j,j(·, ·), such that

ψj,rj (w, x) := `2j−1 ψ̄j,rj (w, x), j = 1, . . . ,m,

ψrj (w, x) := ` ψ̄j,rj (w, x), j = m+ 1, . . . , n− 1,

λn−1,2(w, x) := ` λ̄n−1,2(w, x),

Proof. First of all consider the case where w = 0. By recalling the definition of

∆ϕ(·, ·) in (3.25) it is easy to verify that Ψε(0, x) = 0 makes Eε(0, x) = 0. As a con-

sequence in the following we will show that Ψε(w, x) can be chosen as a continuous

function in w satisfying Ψε(0, x) = 0.

Now, since w and x range in bounded sets and the function ψj,i(·, ·) and λj,i(·, ·)
are continuous, we have that

lim
ε→0+

Ψε(w, x) = 0 ∀ (w, x) ∈W ×X .

Let us denote Ψε = Γ′Ψε and let denote with Ψj the j-th element of Ψε. Expanding

∆ϕ(Ψε, x) by Taylor around Ψε = 0 we obtain

∆ϕ(Ψε, x) =

r∑
i=1

ϕi(x)[ Ψε]
i + ρr(Ψε, x)

in which ϕi(·), i = 1, . . . , r, are properly defined continuous functions, ρr(·, ·) is a

properly defined continuous remainder function, and the [ Ψε]
i are monomials of

the form

[ Ψε]
i =

n−1∏
j=1

Ψ
kj
j ,

n−1∑
j=1

kj = i .
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By replacing the Ψj in the definition of Ψj with the expression (3.30) and grouping

the terms with the same power of ε, the Taylor expansion of ∆ϕ(·, ·) can be rewritten

as

∆ϕ(Ψε, x) =

r∑
i=1

εiφi(w, x) + εr+1Rε(w, x) (3.32)

where the functions φi(·, ·), i = 1, . . . , r, and Rε(·, ·) are appropriately defined con-

tinuous functions satisfying φi(0, x) = 0 and Rε(0, x) = 0. As far as the φi’s are

concerned, in particular, we observe that, because the Ψj are polynomials in ε and

the [ Ψε]
i are polynomials in the Ψj , only the coefficients of power smaller or equal

to i in ε in the Ψj can be in φi. Namely φi(·, ·) depends only on ψj,k and on λn−1,k

with k ≤ i for all i = 1, . . . r and j = 1, . . . , n− 1.

Consider now the expression of Eε(·, ·) and, by letting

Eε(·, ·) :=
(
E1(·, ·) Ξ1(·, ·) E2(·, ·) Ξ2(·, ·) · · · En−1(·, ·) Ξn−1(·, ·)

)>
note that

E1 = Ψ̇1 + `c11Ψ1 − Λ1 − `c11Pw

Ξ1 = Λ̇1 + `2c12Ψ1 − Λ2 − `2c12Pw
...

Ej = Ψ̇j + `cj1Ψj − Λj − `cj1Λj−1

Ξj = Λ̇j + `2cj2Ψj − Λj+1 − `2cj2Λj−1

...

En−1 = Ψ̇n−1 + `c(n−1)1Ψn−1 − Λn−1 − `c(n−1)1Λn−2

Ξn−1 = Λ̇n−1 + `2c(n−1)2Ψn−1 −∆ϕ(Ψε, x)− `2c(n−1)2Λn−2

where, for the sake of compactness, we omitted the argument (w, x) from the func-

tions Ψj , Λj , j = 1, . . . , n−1 and Ψε. By embedding (3.30) and (3.32) in the previous

expressions, the following is obtained

E1 =
r∑
i=1

[
Lfψ1,i +

1

ε
LSψ1,i

]
εi + `c11

r∑
i=1

ψ1,iε
i −

r∑
i=1

λ1,iε
i − `c11Pw

Ξ1 =

r∑
i=1

[
Lfλ1,i +

1

ε
LSλ1,i

]
εi + `2c12

r∑
i=1

ψ1,iε
i −

r∑
i=2

λ2,iε
i − `2c12Pw
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Ej =
r∑

i=rj

[
Lfψj,i +

1

ε
LSψj,i

]
εi + `cj1

r∑
i=rj

ψj,iε
i −

r∑
i=pj

λj,iε
i − `cj1

r∑
i=pj−1

λj−1,iε
i

Ξj =
r∑

i=pj

[
Lfλj,i +

1

ε
LSλj,i

]
εi + `2cj2

r∑
i=rj

ψj,iε
i −

r∑
i=pj+1

λj+1,iε
i − `2cj2

r∑
i=pj−1

λj−1,iε
i

for j = 2, . . . , n− 2 and

En−1 =
r∑

i=rn−1

[
Lfψn−1,i +

1

ε
LSψn−1,i

]
εi + `c(n−1)1

r∑
i=rn−1

ψn−1,iε
i

−
r∑
i=2

λn−1,iε
i − `c(n−1)1

r∑
i=pn−2

λn−2,iε
i

Ξn−1 =
r∑
i=2

[
Lfλn−1,i +

1

ε
LSλn−1,i

]
εi + `2c(n−1)2

r∑
i=rn−1

ψn−1,iε
i

−
r∑
i=1

εiφi − εr+1Rε − `2c(n−1)2

r∑
i=pn−2

λn−2,iε
i

in which

Lfψj,i :=
∂ψj,i(w, x)

∂x
f(x), LSψj,i :=

∂ψj,i(w, x)

∂w
S ,

Lfλj,i :=
∂λj,i(w, x)

∂x
f(x), LSλj,i :=

∂λj,i(w, x)

∂w
Sw.

The idea now is to iteratively select the functions ψj,i+1(·, ·), λj,i+1(·, ·) to annihilate,

in the previous expressions the terms in ε of order i, with i = 0, . . . , r − 1, for j =

1, . . . , n. We start by considering the term of order 0 in ε in the expression of E1 and

Ξ1 which are annihilated by taking

ψ1,1(w, x) = `c11PS
−1w ,

λ1,1(w, x) = `2c12PS
−1w .

(3.33)

We observer that ψ1,1(w, x), λ1,1(w, x), are polynomials in w of order 1 with constant

coefficients. Since rj = pj = j for j = 1, . . . , υ, having fixed the terms ψ1,1 and

λ1,1 it is possible, iteratively, to select all the functions ψj,j(w, x) and λj,j(w, x) for

j = 2, . . . , υ − 1 to annihilate the terms in ε of order j − 1 in Ej and Ξj by solving

the following PDEs
−LSψj,j = `cj1λj−1,j−1

−LSλj,j = `2cj2λj−1,j−1

Using the fact that S is invertible the previous PDEs admit a solution which is poly-

nomial in w of order 1 with constant coefficients. With this we have fixed the terms
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ψj,j and λj,j for j = 1, . . . , υ− 1. Once the terms above have been fixed, it is possible

to repeat the selection process for i = 1, . . . , υ − 1 from the top in order to select the

functions ψj,j+i and λj,j+i for j = 1, . . . , υ − i − 1, to annihilate the terms in ε of

order j + i− 1 in Ej and Ξj , by solving the following PDEs

−LSψ1,1+i = `c11ψ1,i − λ1,i

−LSλ1,1+i = `2c12ψ1,i − λ2,i

and
−LSψj,j+i = `cj1(ψj,j+i−1 − λj−1,j+i−1)− λj,j+i−1

−LSλj,j+i = `2cj2(ψj,j+i−1 − λj−1,j+i−1)− λj+1,j+i−1

for j = 2, . . . , υ − i − 1. Again, using the fact that S is invertible the previous PDEs

admit a solution which is polynomial inw of order 1 with constant coefficients. With

this we have assigned all the terms ψj,k and λj,k for j = 1, . . . , υ− 1 and k = j, . . . , υ.

Now let us consider the terms Ej and Ξj for j = υ + 1, . . . , n − 1 by starting

from the bottom. Observer that φ1(·, ·) only depends on ψ1,1. Hence we can assume

that φ1(w, x) is a polynomial in w of order 1 with coefficients dependent on x and

vanishing when w = 0. As a consequence the terms in ε of order 1 in Ξn−1 and the

term in ε of order 2 in En−1 are annihilated if λn−1,2 and ψn−1,3 can be chosen such

that
LSψn−1,3 = λn−1,2

LSλn−1,2 = φ1

(3.34)

Using the fact that S is invertible and function φ1 is a polynomial in w the previous

PDEs admit a solution which is polynomial of order 1 in w with coefficients which

depends on x. Recall that for i = υ+1, . . . , n−1 we have pi > pi+1. As a consequence,

once the term λn−1,2 has been fixed we can proceed iteratively in order to select

(from the bottom) all the functions ψj,rj (w, x) and λj,pj (w, x) for j = υ+ 1, . . . , n− 2

by annihilating the terms in ε of order rj−1 inEj and of order pj−1 in Ξj by solving

the following PDEs
LSψj,rj = λj,pj
LSλj,pj = λj+1,pj+1

Using the fact that S is invertible the previous PDEs admit a solution which is poly-

nomial of order 1 in w with coefficients which depends on x. With this we have fixed

all the terms ψj,rj and λj,pj for j = υ+1, . . . , n−1. Now consider the term of order 3

in ε in Ξn−1 and of order 4 in in En−1. We observe that the function φ2 depends only

on the terms ψj,i, j = 1, . . . , n − 1, and λn−1,i with powers of ε smaller (or equal) to
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two, namely i ≤ 2, and therefore on the functions ψ1,1, ψ1,2, ψ2,2 and λn−1,2 which

have already been fixed. More in general the term φi depends on the terms ψj,k,

with j ∈ [1, n − 1] such that rj ≤ i and λn−1,k, with k ≤ i. As a consequence, we

can proceed iteratively for i = 1, . . . , υ − 2 from the bottom, in order to select all

the functions ψj,rj+i(w, x) and λj,pj+i(w, x) for j = υ + i, . . . , n − 1 by annihilating

the terms in ε of order rj + i − 1 in Ej and of order pj + i − 1 in Ξj by solving the

following PDEs

LSψn−1,rj+i = λn−1,pj+i − `c(n−1)1λn−2,pj+i−1

LSλn−1,pj+i = φi+1(x)− `2c(n−1)2λn−2,pj+i−1

for j = n− 1 and

LSψj,rj+i = λj,pj+i − `cj1λj−1,pj+i−1

LSλj,pj+i = λj+1,pj+1+i−1 − `2cj2λj−1,pj+i−1

for j = υ + i, . . . , n− 2, and where we considered

λj,i = 0

if i < pj . Using the fact that S is invertible and function φi is a polynomial in w

of order i the previous PDEs admit a solution which is polynomial in w with coef-

ficients which depends on x. With this we have fixed all the terms ψj,i and λj,k for

j = υ + 1, . . . , n− 1, i = rj , . . . , υ, k = pj , . . . , υ.

As far as the terms Ξυ and Eυ are concerned, we have that its structure changes

whether υ is even or odd. Anyhow, by letting

λj,i = 0

if i < pj , consider the terms in ε of order υ−1. We can select the functions ψυ,rυ and

λυ,pυ by solving the following PDEs

−LSψυ,υ = −`cυ1λυ−1,υ−1

−LSλυ,υ = −`2cυ2λυ−1,υ−1 − λυ+1,pυ+1

Since the term λυ+1,pυ+1 has been already fixed by the previous procedure, by using

the fact that S is invertible and functions λυ−1,υ−1 and λυ+1,pυ+1 are polynomial in

w, the previous PDEs admit a solution which is polynomial of in w with coefficients

which may depends on x. With this we have finally assigned all the terms ψj,i, λj,i
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for j = 1, . . . , n − 1 and i = 1, . . . , υ. The forthcoming scheme can be helpful in

understanding how the recursive procedure is held. Note that if n is odd we get

Ψ1 = ε? + ε2? + ε3? + . . . + ευ−1? + ευ? + . . .

Λ1 = ε? + ε2? + ε3? + . . . + ευ−1? + ευ? + . . .

Ψ2 = ε2? + ε3? + . . . + ευ−1? + ευ? + . . .

Λ2 = ε2? + ε3? + . . . + ευ−1? + ευ? + . . .
...

. . .

Ψυ−1 = ευ−1? + ευ? + . . .

Λυ−1 = ευ−1? + ευ? + . . .

Ψυ = ευ? + . . .

Λυ = ευ? + . . .

Ψυ+1 = ευ?

Λυ+1 = ευ−1? + ευ? + . . .
... . .

.

Ψn−1 = ε3? + . . . + ευ−1? + ευ? + . . .

Λn−1 = ε2? + ε3? + . . . + ευ−1? + ευ? + . . .

where ? denotes a term ψj,i or λj,i, whereas in case n is even, we have

Ψυ−1 = ευ−1? + ευ? + ευ+1? + . . .

Λυ−1 = ευ−1? + ευ? + ευ+1? + . . .

Ψυ = ευ? + ευ+1? + . . .

Λυ = ευ? + ευ+1? + . . .

Ψυ+1 = ευ+1? + . . .

Λυ+1 = ευ? + ευ+1? + . . .

Once the terms ψj,i, λj,i for j = 1, . . . , n− 1 and i = 1, . . . , υ, have been assigned, the

iterative procedure may be lead similarly in order to select all the remaining terms

ψj,i+1, λj,i+1 for j = 1, . . . , n − 1 and i = υ, . . . , r by annihilating at each step the

terms in ε of order i which depends on the terms ψj,i, λj,i which have already been

fixed in the previous iterative process.

Finally, by embedding those functions in the expressions of Ej(·, ·), Ξj(·, ·), j =

1, . . . , n− 1 and bearing in mind the definition of Rε(·, ·), it is readily seen that

E1(w, x) = εr[Lfψ1,r + `c11ψ1,r − λ1,r]

Ej(w, x) = εr[Lfψj,r + `cj1ψj,r − λj,r − `cj1λj−1,r]
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for j = 2, . . . , n− 1 and

Ξ1(w, x) = εr[Lfλ1,r + `2c12ψ1,r − λ2,r]
...

Ξj(w, x) = εr[Lfλj,r + `2cj2ψj,r − λj+1,r − `2cj2λj−1,r]
...

Ξn−1(w, x) = εr[Lfλn−1,r + `2c(n−1)2ψn−1,r − `2c(n−1)2λn−2,r − φr]
+εr+1|w|R̄ε(w, x)

where R̄ε(·, ·) is an appropriately defined continuous function. By using the previ-

ous expressions and the fact that ψj,i(0, x) = 0, λj,i(0, x) = 0 for any j = 1, . . . , n− 1

and i = 1, . . . , r, the first part of the lemma immediately follows.

Now, by using (3.33), we have for j = 1

ψ1,1(w, x) := `c11PS
−1w = `ψ̄1,1(w, x) ,

For j = 2, . . . ,m − 1 we have pj−1 < pj . As a consequence the term ψj,rj (w, x) is

computed a solution of of the PDE

LSψj,rj := `cj1λj−1,pj−1

namely it depends on the λj−1,pj−1 . Again, by using (3.33), we have that λ1,1 is

choosen as

λ1,1(w, x) = `2c12PS
−1w := `2λ̄1,1(w, x) .

For j = 2, . . . ,m− 1, since pj−1 < pj+1, the λj,pj are computed as solution of

LSλj,pj = `2cj2λj,pj−1

With this in mind, we can always select functions ψ̄j,j(w, x) and λ̄j,j(w, x) such that

ψj,rj (w, x) := `2j−1ψ̄j,rj (w, x)

λj,pj (w, x) := `2j λ̄j,pj (w, x)
j = 1, . . . ,m− 1.

Now let start from the bottom by computing λn−1,2 and ψj,rj for j = m+ 1, . . . , n−
1. Observe that λn−1,2 is chosen as solution of (3.34). As a consequence, since φ1

depends only on ψ1,1 which is a function in `, we can deduce that also λn−1,2 can be

written as

λn−1,2(w, x) := `λ̄n−1,2(w, x) .
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Also, for j = m+ 1 . . . , n−1 we have that pj < pj−1. As a consequence the functions

ψj,rj are chosen as solution of

LSψj,rj = λj,pj

Therefore we need to compute before the terms λj,pj . For j = n− 1, λn−1,2 is a term

in `. For j = m+ 1, . . . , n− 2 we can compute λj,pj as solution of

LSλj,pj = λj+1,pj+1

because pj+1 < pj−1. As a consequence the λj,pj are all functions of λn−1,2 which is

a term in `. As a consequence we have

ψj,rj (w, x) = `ψ̄j,rj (w, x)

λj,pj (w, x) = `λ̄j,pj (w, x)
j = m+ 1, . . . , n− 1

for some ψ̄j,rj (w, x) and λ̄j,pj (w, x). It remains to fix the terms ψm,rm , λm,pm .

If n is odd we have r2
m−1 < r2

m. As a consequence ψm can be computed as solution

of

LSψm,rm = `cm1λm−1,pm−1

But being λm−1,pm−1 a term in `2(m−1) we get that

ψm,rm(x,w) := `2m−1ψ̄m,rm(x,w)

for some ψ̄m,rm(x,w).

If n is even we have pm+1 < pm = pm−1. As a consequence λm,pm is chosen as

solution of

LSλm,pm = λm+1,pm+1

resulting in a term in `, whereas ψm,rm is chosen as solution of

LSψm,rm = `cm1λm−1,pm−1 + λm,pm

But since λm,pm is a term in ` whereas λm−1,pm−1 is a term in `2(m−1) we get again

ψm,rm(x,w) := `2m−1ψ̄m,rm(x,w)

for some ψ̄m,rm(x,w). This concludes the proof.

The previous lemma is instrumental to the proof of the next proposition which is the

main result of this section.
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Proposition 3.1. Consider system (3.29) with x(t) ∈ X and w(t) ∈ W for all t ≥ 0 with X
and W compact bounded sets. Let the function ϕs(·) embedded in ∆ϕ(·, ·) be chosen so that
it is locally Lipschitz and it agrees with ϕ(·) on a set Xδ ⊃ X . Let ` be fixed so that system
(3.24) is ISS with respect to the input ν. Then, there exists a ε?(`) > 0 such that for all positive
ε ≤ ε?(`) the following holds

lim
t→∞

sup |ej(t)| ≤ µ εj `2j−1 ‖w(·)‖∞ j = 1, . . . ,m

lim
t→∞

sup |ej(t)| ≤ µ εn−j+2 ` ‖w(·)‖∞ j = m+ 1, . . . , n

with µ a positive constant.

Proof. Let consider the change of variables

ξ̃ 7→ η := ξ̃ −Ψε(w, x) ,

with Ψε(·, ·) introduced in the previous lemma with an r > 1 and note that, by

bearing in mind the definition of Eε(·, ·),

Ψ̇ε = FΨε +B∆ϕ(Ψε, x) +GPw + Eε(w, x) .

Furthermore, note that

∆ϕ(ξ̃, x)−∆ϕ(Ψε(w, x), x) = ∆ϕ(η + Ψε(w, x), x)−∆ϕ(Ψε(w, x), x)

= ϕs(η + Ψε(w, x) + x)− ϕ(x)

−(ϕs(Ψε(w, x) + x)− ϕ(x))

= ϕs(η + Ψε(w, x) + x)− ϕs(Ψε(w, x) + x)

= ∆ϕ(η,Ψε + x) .

Note that there exists a ε?1(`) ∈ (0, 1] such that for all positive (the value of ε? de-

pends, besides other, on the choice of the set Xδ on which ϕs(·) coincides with ϕ(·))

ε ≤ ε?1(`)

∆ϕ(0,Ψε(w, x) + x) = 0 ∀ (w, x) ∈W ×X .

By the previous facts the error dynamics in the new coordinates can be easily com-

puted as

η̇ = Fη +B∆ϕ(η,Ψε(w, x) + x) + Eε(w, x) . (3.35)

Since the Lipschitz constant of ∆ϕ(·, ·) is not affected by the value of the arguments,

the same values of ` that make system (3.24) ISS with respect to the input ν(t) make

also system (3.35) ISS with respect to the input Eε(·, ·). In particular, there exists a
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positive constant µ0 such that

lim
t→∞

sup |η(t)| = lim
t→∞

sup |ξ̃(t)−Ψε(w(t), x(t))|

≤ µ0 lim
t→∞

sup |Eε(w(t), x(t))|

≤ µ0 ∈ ‖Eε(w(·), x(·))‖∞

Using the fact that, for any r ≥ m, Eε(w, x) is a term in εr, it follows that there exists

a positive constant µ1 such that

lim
t→∞

sup |η(t)| ≤ µ1ε
r ‖w(·)‖∞ .

Consider now the the expressions of the components Ψj(·, ·), j = 1, . . . , n − 1 and

Λn−1, of Ψε(·, ·) introduced in Lemma 3.1. It turns out that there exist a positive

ε?2(`) ≤ ε?1(`) and a positive constant µ2 such that

|Ψj(w, x)| ≤ µ2 ε
j `2j−1 |w| j = 1, . . . ,m,

|Ψj(w, x)| ≤ µ2 ε ` |w| j = m+ 1, . . . , n− 1,

for all positive ε ≤ ε?2(`) and for all (w, x) ∈ W ×X . From this, for all j = 1, . . . ,m,

we have
lim
t→∞

sup |ej(t)| = limt→∞ sup |ηj(t) + Ψj(w(t), x(t))|

≤ lim
t→∞

sup |ηj(t)|+ ‖Ψj(w(·), x(·))‖∞

≤ µ1ε
r ‖w(·)‖∞ + µ2ε

j`2j−1 ‖w(·)‖∞
for j = m+ 1, . . . , n− 1

lim
t→∞

sup |ej(t)| = lim
t→∞

sup |ηj(t) + Ψj(w(t), x(t))|

≤ lim
t→∞

sup |ηj(t)|+ ‖Ψj(w(·), x(·))‖∞

≤ µ1ε
r ‖w(·)‖∞ + µ2ε

r1j ` ‖w(·)‖∞

≤ µ1ε
r ‖w(·)‖∞ + µ2ε

n−j+2` ‖w(·)‖∞
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and finally for j = n we have

lim
t→∞

sup |en(t)| = lim
t→∞

sup |ηn(t) + Λn−1(w(t), x(t))|

≤ lim
t→∞

sup |ηn(t)|+ ‖Λn−1(w(·), x(·))‖∞

≤ µ1ε
r ‖w(·)‖∞ + µ2ε

2` ‖w(·)‖∞

by which the result follows by taking an appropriate ε?(`) ≤ ε?2(`) and µ.

Remark The same kind of noise analysis for the observer (3.2) in presence of measure-

ment noise, still holds for the observer (3.11) if the saturation levels are chosen large

enough. In particular, if asymptotically the saturations functions in (3.11) are no more

acting (namely the effect of the noise is not too large) then we can apply off-the shelf

all the arguments presented in this section where we showed the benefits related to the

increase of the relative degree. Simulation results are given in the last section of this

chapter.
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3.5 Low-power tools in output regulation

The main criticisms that can be done to the high-gain design methodology for inter-

nal models introduced in Section 1.6.2 is the same mentioned above in the context of

observation, namely the fact that the power of the high-gain parameter is raised up to

the order of the internal model, with the latter than can be large to eventually have

the friend and its time derivatives fulfilling the regression law said before. Motivated by

this, in this section, we adapt the tools presented in Section 3.1 to develop a “low-power"

methodology for the design of internal models. The content of this section is part of a

book written in honour of Laurent Praly: Astolfi et al. (2017).

Our main goal is to show that the “low-power" tools introduced in Section 3.1 can be

successfully adopted in order to design the triplet (φ(·),Ψ, γ(·)) of the regulator (1.31)

fulfilling the requirements (a’) and (b) of Section 1.6.1. It is argued that it is known a

positive d > 0 and a function ϕ(·) fulfilling (1.30) for some (unknown) function ν(·). As

a consequence, by following the observer design (3.6), let

m = 2d− 2

and, let

φ(ξ) :=


φ1(ξ)

φ2(ξ)
...

φd−1(ξ)

 , Ψ :=


Ψ1

Ψ2

...

Ψd−1

 , γ(ξ) := ξ11 , (3.36)

where

ξ = col(ξ1, . . . , ξd−1) ∈ R2d−2 , ξi = col(ξi1, ξi2) ∈ R2 ,

the functions φi : R2d−2 → R2, i = 1, . . . , d− 1, are defined as

φ1(ξ) :=

(
ξ12

ξ22

)
, φi(ξ) :=

(
ξi2 + ` ci1 (ξ(i−1)2 − ξi1)

ξ(i+1)2 + `2 ci2 (ξ(i−1)2 − ξi1)

)
, (3.37)

for i = 2, . . . , d− 2,

φd−1(ξ) :=

(
ξ(d−1)2 + ` c(d−1)1 (ξ(d−2)2 − ξ(d−1)1)

ϕ̂(Γξ) + `2 c(d−1)2 (ξ(d−2)2 − ξ(d−1)1)

)
(3.38)
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in which

Γ := blkdiag
((

1 0
) (

1 0
)
· · ·

(
1 0

) (
1 1

))
, (3.39)

(ci1, ci2), i = 1, . . . , d− 1, are coefficients to be appropriately chosen, and the vectors Ψi,

i = 1, . . . , d− 1 are defined as

Ψ1 :=

(
` c11

`2 c12

)
, Ψi :=

(
0

0

)
, i = 2, . . . , d− 1 .

It will be shown that the previous choice of the triplet (φ(·),Ψ, γ(·)) makes the require-

ments (a) and (b’) fulfilled provided that the coefficients (ci,1, ci,2), i = 1, . . . , d − 1, are

appropriately chosen and ` is taken sufficiently large. As a matter of fact, it is not hard

to see that with this choice the regulator (1.31) in the χ-coordinates (1.32) reads as a low-

power high-gain observer (3.2) driven by an the (disturbed) input c(w), as detailed in the

proof of the forthcoming proposition in which we refer to the function τe : W → R2d−2

defined as

τe(w) :=


τe,1(w)

τe,2(w)
...

τe,d−1(w)

 , τe,i =

(
τe,i1

τe,i2

)
:=

(
Li−1
s c(w)

Lisc(w)

)
, i = 1, . . . , d− 1 .

Proposition 3.2. Let c(·) in (1.29) be fulfilling 1.30 and let the triplet (φ(·),Ψ, γ(·)) be taken
as in (3.36)-(3.38). There exist a choice of the coefficients (ci,1, ci,2), i = 1, . . . , d − 1, such
that there exist a `? > 0 so that for all ` ≥ `? requirements (a’) and (b) of Section 1.6.1 are
fulfilled with

B = {(w, z, χ) ∈W × Rn × R2d−2 , z = π(w) , χ = τe(w)}

and the ε in (1.34) of the form
ε =

r

`d
sup
w∈W

|ν(w)|

with r a positive number.

Proof. By the indicated choices of the triplet (φ(·),Ψ, γ(·)) in (3.36)-(3.38), it turns

113



3.5. Low-power tools in output regulation

out that the χ subsystem in (1.33) reads as

χ̇1 = Aχ1 +N χ2 +D2(`) c1 (c(w) + δ(w, z)− C χ1)

χ̇i = Aχi +N χi+1 +D2(`) ci (B> χi−1 − C χi) , i = 2, . . . , d− 2

χ̇d−1 = Aχd−1 +B ϕ̂(Γχ) +D2(`) cd−1 (B> χd−2 − C χd−1)

where (A,B,C) is a triplet in prime form of dimension 2, ci = col(ci1, ci2), D2(`) =

diag(`, `2), and N = diag(0, 1), and

δ(w, z) :=
q(w, z, 0)

b(w, z, 0)
− c(w) .

By recalling that c(w) satisfies (1.30), the previous system can be re-written in the

form

χ̇1 = Aχ1 +N χ2 +D2(`) c1 (y − C χ1)

χ̇i = Aχi +N χi+1 +D2(`) ci (B> χi−1 − C χi) , i = 2, . . . , d− 2

χ̇d−1 = Aχd−1 +B ϕ̂(Γχ) +D2(`) cd−1 (B> χd−2 − C χd−1)

(3.40)

where the measured output y is generated by the system

ż = Adz +Bd(ϕ(z) + v(w)) ,

y = Cdz + δ(w, z) ,
zi(0) := Li−1

s c(w(0)) , i = 1, . . . , d ,

where z ∈ Rd and (Ad, Bd, Cd) is a triplet in prime form of dimension d. The system

(3.40) coincides with the low-power high-gain observer (3.2) written in the coordi-

nates (3.6). As a consequence the Theorem 3.1 can be applied off the shelf to show

the existence of constants µ1 > 0, µ2 > 0, r > 0 and `? > 0 such that

|χi1(t)− τe,i1(w(t))| ≤ µ1`
i−1 exp(−µ2 ` t) +

r

`i−1
|ν(w)|∞ + `i−1|δ(w, z)|∞

|χi2(t)− τe,i2(w(t))| ≤ µ1`
i exp(−µ2 ` t) +

r

`i
|ν(w)|∞ + `i|δ(w, z)|∞

for any ` > `?, and for all i = 1, . . . , n−1. The proof completes by using the fact that

|δ(w, z)|∞ = 0 and by using

lim
t→∞
|χ11(t)− c(w(t))| ≤ r

`d
sup
w∈W

|ν(w)|
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In view of Theorem 1.7, similarly to the standard high-gain design presented in the

Section 1.6.2, the regulator (1.31) with (φ(·),Ψ, γ(·)) obtained from (3.36)-(3.38) guar-

antees asymptotic regulation if the function ϕ(·) fulfils (1.30) with ν(·) = 0. Otherwise

just practical regulation is achieved with a bound on the asymptotic error that can be

arbitrarily decreased by increasing κ or `d. With respect to the previous case, however,

the remarkable feature of the proposed regulator is that the high-gain parameter ` is

powered just up to the order 2 by making the design possible even in presence of large

values of d. Note, in particular, that the asymptotic gain relating the term ν(·) to the reg-

ulation error is still proportional to 1/`d notwithstanding the regulator is implemented

only with terms proportional to ` and `2. As a last remark, note that without loss of

generality the peaking-free design of Section 3.3 can be adopted in this framework for

the functions (φ(·),Ψ, γ(·)).
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3.6 Simulation results

In this last section we show an example of application of the peaking-free low-power

high-gain observer introduced in Section 3.3. We consider as example an uncertain

forced harmonic oscillator described as

s̈+ ω2 s = u(t) , y = s+ ν(t)

where ω is the unknown frequency, u(t) is an input belonging to an open bounded set

U ⊂ R and assumed to be known, and y is the measured output. We suppose that the

output may be affected by high-frequency measurement noise ν(t). The purpose is to

estimate the state s, ṡ and the unknown frequency ω > 0 from the output y. This system

can be described in the state space by

ż1 = z2

ż2 = −z3z1 + u

ż3 = 0

y = z1 + ν(t)

(3.41)

living in the open bounded subset of R3

Z =
{

(z1, z2, z3) ∈ R× R× R : d1 < z2
1 + z2

2 < d2 , d3 < z3 < d4

}
with 0 < d1 < d2 and 0 < d3 < d4, forced by the input u ∈ U . In the state-space

representation (3.41) z1 coincides with s, z2 with ṡ, and z3 with ω2. By following the

results in Astolfi et al. (2013b), we consider the mappings

ϕ0(z) := z1 , ϕ1(z) := z2 , ϕ2(z, v0) := −z1z3 + v0 , ϕ3(z, v1) := −z2z3 + v1 ,

and

Φ4(z, v0, v1) := col (ϕ0, ϕ1, ϕ2, ϕ3) .

It turns out that the function Ψ4 : Φ4(Z × V)→ Z defined as

Ψ4(·) :=


ϕ0

ϕ1

(v0 − ϕ2)ϕ0 + (v1 − ϕ3)ϕ1

ϕ2
0 + ϕ2

1


is such that

z = Ψ4(Φ4(z, v), v)
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for any (z, v) ∈ Z × V , with v = (v0, v1), and V = U × R. As a consequence we get that

the system (3.41) can be immersed, via the mapping

T (z) := col (z1 , z2 , −z1z3 , −z2z3)

into the following system in strict feedback form

ẋ1 = x2

ẋ2 = x3 + u

ẋ3 = x4

ẋ4 = −$(x)x3 +$(x)u

y = x1 + ν(t)

(3.42)

defined on R4 and where the function $ : R4 → R is defined as

$(x) :=
x1x3 + x2x4

max{d1, x2
1 + x2

2}
.

Numerical simulations can be used to verify that

‖x1(·)‖∞ < 4 , ‖x2(·)‖∞ < 5.5 , ‖x3(·)‖∞ < 12 , ‖x4(·)‖∞ < 16 .

for any initial condition in the set Φ4(Z,U , 0) with d1 = 0.5, d2 = 2, d3 = 0.5, d4 = 3

and U = (−3, 3). By following prescriptions of Section 3.3 we implement the low-power

peaking free high-gain observer (3.11) for the system (3.42) as follows

˙̂x1 = η1 + ` c11 (y − x̂1)

η̇1 = sat3(η2) + u+ `2 c12(y − x̂1)
˙̂x2 = η2 + u+ ` c21 (sat2(η1)− x̂2)

η̇2 = sat4(η3) + `2 c22 (sat2(η1)− x̂2)
˙̂x3 = η3 + ` c31 (sat3(η2)− x̂3)

η̇3 = sat5($(x̂) (u− x̂3)) + `2 c32(sat3(η2)− x̂3)
˙̂x4 = sat5($(x̂) (u− x̂3)) + ` c4(sat4(η3)− x̂4)

ω̂ =
√
|$(x̂)|

(3.43)

The coefficients (ci1, ci2), i = 1, . . . , 4 are chosen as in Table A.1 (see the case n = 4) and

c4 = c31 and the saturations level are fixed to r1 = 5, r2 = 6, r3 = 14, r4 = 18, r5 = 55.
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We compared the observer (3.43) with a standard high-gain observer designed as

˙̂x1 = x̂2 + ` c1 (y − x̂1)
˙̂x2 = x̂3 + u+ `2 c2 (y − x̂1)
˙̂x3 = x̂4 + `3 c3 (y − x̂1)
˙̂x4 = sat5($(x̂)(u− x̂3)) + `4 c4(y − x̂1)

ω̂ =
√
|$(x̂)|

(3.44)

with c1 = 5.99, c2 = 13.1778, c3 = 12.6034, c4 = 4.4156 so that the roots of λ4 + c1λ
3 +

c2λ
2 + c3λ+ c4 are in (−1,−1.33,−1.66,−2).

In the simulation the initial conditions of the system (3.41) are (s(0), ṡ(0)) = (1, 0)

and ω = 1.58 (namely z3 = 2.5). The the time-varying signal u(t) is generated as

p̈+ p+ 20p3 = 0 , (p(0), ṗ(0)) = (1, 0), u(t) = ṗ(t) ,

and the initial conditions of the two observers coincide with the origin. First we sim-

ulated the nominal behaviours of the two observer in absence of meausrement noise,

namely ν(t) = 0. The Table 3.1 shows the maximum peaking values of the state (x̂, η)

of the low-power peaking free high-gain observer (3.43) and the time needed to conver-

gence to an error sufficiently small, i.e. the time Tε such that√
|s(t)− x̂1(t)|2 + |ṡ(t)− x̂2(t)|2 < ε ∀ t ≥ Tε ,

for different values of `. The Table 3.1 shows the maximum peaking values of the state

x̂ of the standard high-gain observer (3.44) and the time needed to convergence to an

error sufficiently small for the same values of `. Then we simulated the behaviour of the

two observers when the measurement noise is chosen as ν(t) = 0.05 sin(200t) and the

high-gain parameter is fixed to ` = 10. The Figure 3.4 and the Table 3.3 compare the the

low-power peaking free high-gain observer (3.43) and the standard high-gain observer

(3.44) showing the transient and the asymptotic norm of the errors.

From the tables it can be seen that despite the eigenvalues of the low-power high-gain

observer (3.43) and the standard high-gain observer (3.44) are in the same range (namely

between−1 and−2) the rate of convergence of the observer (3.44) is faster when the gain

` is not to high. This phenomenon is caused by the largest dimension of the low-power

construction. On the contrary, when the high-gain parameter is very large, the effect of

the saturations helps in achieving faster convergence. With the novel observer we obtain

numerical advantages (we do not have to implement a term `4 but only `2), the peaking

phenomenon is completely overcome and it can be noticed a remarkable improvement

of the sensitivity to high-frequency measurement noise.

118



Chapter 3. Low-Power High-Gain Observers

Low-power peaking-free high-gain observer

` = 5 ` = 10 ` = 100 ` = 1000

T0.01 4.154 1.437 0.062 0.009
‖x̂1(·)‖∞ 1.46 1.46 1.48 1.57
‖x̂2(·)‖∞ 5.05 5.55 5.79 6.26
‖x̂3(·)‖∞ 6.52 6.52 6.41 6.49
‖x̂4(·)‖∞ 9.95 15.1 13.9 14.0
‖η1(·)‖∞ 6.62 12.9 128 1308
‖η2(·)‖∞ 14.0 27.0 443 5080
‖η3(·)‖∞ 9.15 16.1 158 1727

Table 3.1: Behaviour of the low-power peaking-free high-gain observer (3.43) when
ν(t) = 0 for different values of `.

Standard high-gain observer

` = 5 ` = 10 ` = 100 ` = 1000

T0.01 2.265 0.934 0.122 0.015
‖x̂1(·)‖∞ 1.46 1.46 1.51 1.56
‖x̂2(·)‖∞ 9.11 18.4 193 1.89 ·103

‖x̂3(·)‖∞ 38.3 153 1.63 ·104 1.56 ·106

‖x̂4(·)‖∞ 65.1 504 5.37 ·105 5.09 ·108

Table 3.2: Behaviour of the standard high-gain observer (3.44) when ν(t) = 0 for differ-
ent values of `.

Low-power peaking free Standard
high-gain observer high-gain observer

‖x̂1(·)− x1(·)‖a = 0.016 ‖x̂1(·)− x1(·)‖a = 0.016

‖x̂2(·)− x2(·)‖a = 0.024 ‖x̂2(·)− x2(·)‖a = 0.360

‖ω̂(·)− ω‖a = 0.034 ‖ω̂(·)− ω‖a = 2.406

Table 3.3: Comparison between the behaviours of low-power peaking-free high-gain
observer (3.43) and the standard high-gain observer (3.44) with ` = 10 and measure-
ment noise chosen as ν(t) = 0.05 sin(200t).
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Figure 3.4: Comparison between the behaviours of low-power peaking-free high-gain
observer (3.43) and the standard high-gain observer (3.44) with ` = 10 and measure-
ment noise chosen as ν(t) = 0.05 sin(200t). Plot a): behaviour of e1(t) = x̂1(t)− s(t) for
the low-power high-gain observer (3.43). Plot b): behaviour of e1(t) = x̂1(t) − s(t) for
the standard high-gain observer (3.44). Plot c): behaviour of e2(t) = x̂2(t)− ṡ(t) for the
low-power high-gain observer (3.43). Plot d): behaviour of e2(t) = x̂2(t) − ṡ(t) for the
standard high-gain observer (3.44). Plot e): behaviour of ω̂ (red line) for the low-power
high-gain observer (3.43) and value of ω (black line). Plot f): behaviour of ω̂ (red line)
for the standard high-gain observer (3.44) and value of ω (black line).
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Conclusion

The first part of the dissertation has been devoted to the design of nonlinear ob-

servers which relies on high-gain techniques. The contribution of this work is

twofold: on one hand the development of techniques which allow the design of

a high-gain observer in the original coordinates; on the other hand the introduction of a

new design methodology of fast estimation based on dynamic extension and that allows

a “low-power” implementation.

Chapter 2 is mainly devoted to the design of high-gain observers in the original coor-

dinates. This approach is particularly useful in those contexts in which the computation

of the triangular coordinates (feedback form), in which standard high-gain observers may

be applied, is not trivial. Though these coordinates are guaranteed to exist under an

observability assumption, the computation of this observability form may be extremely

complicated. The design of the observer in the original coordinates is made possible by

modifying its dynamics so that its trajectories remain in some desired compact set. If

the trajectories of the observed system remain in the same compact set, asymptotic fast

estimation is achieved. The main restriction of the proposed approach is a convexity as-

sumption which is necessary if we want to preserve the high-gain paradigm. The same

technique is then applied to multi-input multi-output nonlinear systems. A novel set of

sufficient conditions for the existence of an observer in the original coordinates is given.

With respect to other conditions studied in literature, the proposed ones may be verified

in the original coordinates and the computation of the inverse of a nonlinear mapping is

not needed.

In Chapter 3 a novel low-power methodology for the design of high-gain observers

is introduced. The main motivations of the new structure is that of overcoming the

drawbacks which make questionable the use of high-gain observers in practical appli-

cations. The new class of low-power high-gain observers may be applied to all those
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contexts where standard high-gain observers apply. They can be used for the estima-

tion of systems in feedback form and they are characterized by having a high-gain term

which is powered up to two regardless the dimension of the system, introducing evident

numerical benefits in the implementation. By using dynamic extension and saturations

it is possible to design an exponential tunable convergent observer which guarantees

the same performances of the standard high-gain observer, and moreover prevents the

peaking phenomenon, beside the aforementioned numerical advantages. Furthermore,

with respect to high-gain observers, the relative degree between the measure and the

estimates is augmented thus reflecting in better sensitivity properties in presence of

high-frequency measurement noise. The main drawback of the new class of observer is

that of having a dimension which is larger than the system dimension. An application

to the output regulation framework by means of high-gain tools is proposed.

A full general framework for the novel class of low-power high-gain observers has

been developed. Further possible improvements in this direction are the implemen-

tation of an observer in the original coordinates with a low-power implementation, or

the implementation of an adaptive low-power high-gain observer (for instance when the

Lipschitz constant of the nonlinear functions are unknown).

Finally, two novel analysis tools are proposed. A new set of sufficient conditions un-

der which a single-input single-output nonlinear systems can be put in strict-feedback

coordinates is proposed (see Section 2.1). In the new coordinates the systems is charac-

terized by being affine with respect to the derivative of the input. This transformations

make easier the design of the observer and can be applied when the derivative of the

control input is known (for instance, when a step of backstepping is made). The second

analysis tool introduced in this work is the analysis of the steady-state behaviour of the

observer in presence of high-frequency measurement noise. This methodology allows to

catch the low-pass filter properties of the observer that cannot be shown by a H∞ anal-

ysis. The novel analysis is successfully applied to standard high-gain observers (Section

2.4) and to the new class of low-power high-gain observers (Section 3.4).
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Part II

Robust Regulation
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“Far better an approximate answer to the right ques-

tion, which is often vague, than an exact answer to the

wrong question, which can always be made precise.”

John Tukey

4
Structurally Robust Output

Regulation

The problem of regulating desired outputs to some references while rejecting

other external signals is generically known as output regulation problem. Reg-

ulation in the linear (multi-input multi-output) framework has been completely

solved by Francis and Wonham (1976) during the 70’s. In this contribution the authors

made also clear what is the internal model principle, i.e. the fact that output regulation

property is insensitive to plant parameter variations “only if the controller utilizes feed-

back of the regulated variable, and incorporates in the feedback path a suitably redu-

plicated model of the dynamic structure of the exogenous signals which the regulator is

required to process”.

Regulation in the nonlinear case, however, is somehow still an open problem due to

the difficulties of extending the linear paradigm to a more general framework. Equiv-

alent formulation of the regulation problem and the internal model principle in the

nonlinear case has been developed during the 80’s and especially in the 90’s by many

authors (see, among the others, Byrnes et al. (1997)). A breakthrough in the direction

of solving the problem of output regulation for uncertain nonlinear systems was the

crucial observation made in Khalil (1992) (and independently in Huang and Lin (1993),

Delli Priscoli (1993) and Delli Priscoli (1997)) that internal models must not only be able
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to generate inputs corresponding to the trajectories of the system, but also a number of

higher order nonlinear deformations. For example, in the case of a cubic nonlinearity with

unknown coefficient and sinusoidal reference output, the internal model must generate

the sinusoid in question and its third harmonic. In particular Huang and Lin, appeal-

ing to concept of “regulation of order k” (namely, regulation up to a steady-state error

which is infinitesimal of order k with respect to the amplitude of the disturbance in-

put) introduced in an earlier paper Huang and Rugh (1992), provided in Huang and Lin

(1994b) a methodology for the design of a controller which, regardless of small parame-

ter perturbations, achieves regulation of order k. This methodology was proven Huang

and Lin (1993) to yield exact regulation, regardless of small parameter variations, for

some relevant classes of nonlinear systems, by designing an internal model which gen-

erates all the exogenous inputs as well all higher harmonics, up to order k. By denoting

the “friend” as the right steady-state input which makes the regulated output constantly

equal to zero, Delli Priscoli (1993) arrived at the similar conclusion that structurally sta-

ble regulation is possible if the family of all possible friends (which depends on a certain

set of plant-parameters) can be seen as a subset of the set of all possible solutions of a

fixed ordinary differential equation. More details can be found in Byrnes et al. (1997)

where a survey on the problem is given.

Inspired by the design and analysis philosophy recently proposed in Poulain and

Praly (2010), we propose a novel method to solve the problem of structurally robust out-

put regulation in presence of periodic disturbances. We show that the proposed method-

ology is robust in the sense of Francis and Wonham (1976), namely (asymptotic/approx-

imate) output regulation is achieved in presence of uncertainties or disturbances, as long

as the resulting closed-loop system has bounded trajectories. The result is based on the

property that a nonlinear ISS (Input-to-State Stable) system driven by a periodic input

admits periodic solutions of the same period (see Agrachev et al. (2007)) and the analysis

is strongly driven by Fourier analysis.

This chapter is organized as follows. In Section 4.1 we give some highlights on the

linear robust output regulation problem. A constructive design based on forwarding

techniques is given. The linear case is instrumental to the main results of the subse-

quent sections where the same forwarding philosophy is applied to nonlinear systems

and in particular to the class of input-affine multi-input multi-output (possibly non-

square) nonlinear systems. After introducing the main ideas (Section 4.2) we deal with

the design of the internal model (Section 4.3) and the stabilizer (Section 4.4) and we

show the main results on structurally robust output regulation. The results given in this

chapter hold in case of small-disturbances.
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4.1 Robust output regulation for linear systems via

forwarding

The problem of output regulation in the linear framework has been completely solved

in the 70’s in the celebrated work “The internal model principle of control theory” of

Francis and Wonham Francis and Wonham (1976). In the first part of this section, we

make a review of some of the most relevant facts. The presentation is strongly inspired

by (Byrnes et al., 1997, Chapter 1) and (Isidori et al., 2003, Sections 1.3, 1.4). Then, in

the second part of this section we provide a constructive solution for the robust output

regulation problem based on forwarding techniques with a certain number of technical

lemmas that, as far as we know, are novel in the literature of linear output regulation.

The linear framework

Consider a linear system of the form

ẋ = Ax+Bu+ Pw

e = Cx+Qw
(4.1)

with the state x ∈ Rn, control input u ∈ Rm and regulated output y ∈ Rp. In order

to have a well-posed problem we suppose the number m of inputs is larger or equal

than the number p of regulated output (see, for instance, Isidori et al. (2003) for further

details), i.e. m ≥ p. The plant (4.1) is affected by an exogenous signal w ∈ Rr which

may represent disturbances to reject or references to track and it is generated by an

autonomous exosystem of the form

ẇ = Sw . (4.2)

We refer to the problem of output regulation as the problem of finding an output feedback

law
ξ̇ = Fξ +Gy

u = Hξ
(4.3)

such that

(a) the equilibrium (x, ξ) = (0, 0) of the unforced closed-loop system

ẋ = Ax+BHξ

ξ̇ = Fξ +GCx

is asymptotically stable
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(b) the trajectories of the forced closed-loop system

ẇ = Sw

ẋ = Ax+BHξ + Pw

ξ̇ = Fξ +GCx+GQw

(4.4)

are bounded and such that

lim
t→∞

e(t) = 0

for every initial condition (x(0), ξ(0), w(0)).

The problem of robust output regulation for linear plants subject to parameter un-

certainties can be setted in the following framework: the set of matrices {A,B,C, P,Q}
which characterize (4.1) can be viewed as an element of a space of parameters

P = Rn×n × Rn×m × Rp×n × Rn×r × Rp×r .

As a consequence, uncertainties on the values of these parameters can be simply ex-

pressed by allowing the set of uncertain parameters {Ã, B̃, C̃, P̃ , Q̃} to range on a given

neighbourhood P̃ of a fixed element {A,B,C, P,Q} of P . In this set-up, we refer to the

problem of robust output regulation as the problem of finding a feedback law of the form

(4.3) such that

(i) the requirements (a) and (b) are satisfied for the plant characterized by the nominal

set of parameters {A,B,C, P,Q},

(ii) the requirements (a) and (b) are satisfied for each perturbed set of parameters

{Ã, B̃, C̃, P̃ , Q̃}.

The problem of robust output regulation can be solved under a certain number of as-

sumptions, some of which are trivially necessary and some of which can be proven to be

necessary if certain additional design goals are to to be obtained.

Assumption 4.1. The pair (A,B) is stabilizable and the pair (C,A) is detectable.

This is a very first well-known necessary and sufficient conditions for the existence

of matrices F,G,H such that the closed-loop matrix

J =

(
A BH

GC F

)

has all eigenvalues with negative real part. Thus, this is a necessary condition for the

fulfilment of requirement (a) of the output regulation problem and need not to be dis-

cussed further.
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Assumption 4.2. The exosystem (4.2) is neutrally stable.

We refer to neutral stability as the fact that all eigenvalues of S have zero real part and

multiplicity one in the minimal polynomial. As a consequence, in suitable coordinates,

S can be always be expressed as a skew-symmetric matrix. If this assumption holds,

all trajectories of the exosystem (4.2) are bounded in backward and forward time and

none of them decays to zero as t → ∞. Boundedness of the trajectories of w guarantees

that, if requirement (a) of the design problem is fulfilled, then, for any (x(0), ξ(0), w(0))

the trajectories of the forced closed-loop system (4.4) are bounded, since x(t), ξ(t) can be

viewed as the response of an asymptotically stable linear system to a bounded input. The

non-existence of trajectories of (4.2) which decay to zero as t → ∞ on the other hand,

singles-out non-interesting trajectories w(t) for which the fulfilment of requirement (b)

would be trivially implied by the fulfilment of requirement (a).

As a very first trivial result we have the forthcoming lemma which provides a basic

necessary condition for the existence of solutions to the output regulation problem.

Lemma 4.1 (Byrnes et al. (1997), Corollary 1.5). Consider the plant (4.1) with exosystem
(4.2) and suppose Assumption 4.2 holds. There exists a controller which solves the problem of
output regulation only if there exists matrices Π and Ψ satisfying

ΠS = AΠ +BΨ + P

0 = CΠ +Q
(4.5)

We usually refer to (4.5) as the regulator equations. In this context x = Πw represents

the right-steady state on which the regulated output is zero, whereas u = Ψw, usually

referred as the “friend”, represents the right steady-state of the input.

As a consequence of Lemma 4.1, the regulator equations (4.5) must have a solution

for any perturbed set of parameters {Ã, B̃, C̃, P̃ , Q̃} in P̃ . In particular, the equations

ΠS = AΠ +BΨ + P̃

0 = CΠ + Q̃
(4.6)

must have a solution for every P̃ , Q̃ such that {A,B,C, P̃ , Q̃} is in P̃ . But since the set of

matrices {A,B,C, P,Q} is an interior point of P̃ and (4.6) are linear equations, it follows

the that the equations in question must have a solution for all (P̃ , Q̃) ∈ Rn×r × Rp×r.
This observation lends itself to the characterization of a basic necessary condition for the

existence of a solution to the robust output regulation problem. To this end, it suffices

to recall the following important result (see, for instance, Byrnes et al. (1997)) about the

linear matrix equations of the form (4.6).

Lemma 4.2 (Byrnes et al. (1997), Proposition 1.6). The linear equations (4.6) have a solu-
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tion Π,Ψ for all P̃ , Q̃ if and only if the matrix(
A− λI B

C 0

)
(4.7)

has independent rows for each λ which is an eigenvalue of S.

Motivated by this result, it is completely natural to add the following new assump-

tion, usually known as non-resonance condition.

Assumption 4.3. The matrix (
A− λI B

C 0

)
has independent rows for each λ which is an eigenvalue of S.

We remark that the previous assumption is asking that none of the eigenvalues of S

the exosystem (4.2) is a transmission zero of the unforced open-loop system (4.1), i.e.

ẋ = Ax+Bu

e = Cx

It has been proved (see Francis and Wonham (1976), Byrnes et al. (1997)) that under the

previous assumptions the robust output regulation problem does have a solution. In the

forthcoming section we provide a constructive design based on forwarding techniques.

The internal model principle and forwarding design

The solution to the robust output regulation problem leads to the celebrated internal model
principle, claiming that the controller (4.3) solving the problem necessarily embeds suit-

able copies of the exosystem. In rough words the recipe for designing the controller

follows the following two steps: first add p copies of the exosystem processing the er-

rors, one for each error e, which represent the internal model of the exosystem and then

stabilize the resulting cascade system with w = 0. In more precise term, the dynamic

regulator is consisting of two parts, as shown in Figure 4.1:

(1) an internal model unit which processes the regulated output e;

(2) a stabilizer unit which stabilizes the cascade system plant - internal model unit.
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Figure 4.1: Robust Output Regulation Scheme

The internal model unit can be designed as

η̇ = Φη + Γe

with η ∈ Rr×p, where (Φ,Γ) is a controllable pair and Φ is a “copy” of the matrix S. For

instance we can select

Φ =



0 Ip 0 · · · 0

0 0 Ip 0
...

...
. . .

...

0 0 · · · Ip

−s0Ip −s1Ip −s2Ip · · · −sr−1Ip


(r×p)×(r×p)

Γ =


Ip

0
...

0


(r×p)×p

where the real numbers s0, . . . , sr−1 denote the coefficients of the minimal polynomial

of the matrix S.

Once the internal model unit has been designed, we have to design a stabilizer unit for

the unforced extended open-loop system

ẋ = Ax+Bu

η̇ = Φη + ΓCx
(4.8)

Considering for the time begin the state x is measured, we are left with design a static

state feedback law of the form

u = Kx+ Lη

with K and L chosen such that the unforced closed-loop system

ẋ = (A+BK)x+BLη
η̇ = Φη + ΓCx
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is asymptotically stable. Existence of such matrices K, L is always guaranteed under

the Assumptions 4.1, 4.3 when the numbers of inputs m is larger than the number of

outputs p. To go from the state feedback above to the desired output feedback, we can

design an observer of the form

˙̂x = Ax̂+Bu+ L(y − Cx̂)

and then implement the feedback law u = Kx̂+ Lη.

Though the design of the matricesK andL can be done by a pole - assignment, we are

interested here into a methodology which may be extended to the nonlinear framework.

For this, notice that system (4.8) is in feedforward form. As a consequence a possible

strategy consists in adopting forwarding technique to design the stabilizing unit. For

this we note that if A is not Hurwitz, under Assumption 4.1 it is possible to design a

preliminary state feedback u = Kx+ v with K chosen so that the matrix Ā = (A+BK)

is Hurwitz. Then, in place of (4.8), we consider the extended system

ẋ = Āx+Bv

η̇ = Φx+ ΓCx

Recall that stabilizability and detectability are preserved by a state-feedback. Further-

more, a state-feedback does not change the zero-transmission of a system. We conclude

that, under Assumptions 4.1 and 4.3, the pair (Ā, B) is stabilizable, the pair (C, Ā) is

detectable, and the non-resonance condition of the triplet (Ā, B,C, ) holds. As a con-

sequence, without loss of generality, in the following we assume that the matrix A is

Hurwitz.

Now let the matrix M be defined as the solution of

MA = ΦM + ΓC (4.9)

Note that since the intersection of the spectrum of A (which is Hurwitz) and Φ (which is

neutrally stable) is empty, the matrixM is uniquely defined. Now consider the Lyapunov

function

V = x>Rx+ (η −Mx)>T (η −Mx)

where the matrices R = R> > 0, T = T> > 0 are solutions of

RA+A>R = −I , TΦ + Φ>T = 0 .

Note that the matrix Φ can always be expressed in suitable coordinates as a skew-symmetric

matrix. As a consequence, if Φ is a skew-matrix, T can be always chosen as the identity
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matrix. In the following, for the sake of simplicity, we will make this choice, recalling

that Φ + Φ> = 0. Hence, the derivative of V is given by

V̇ = 2x>R(Ax+Bu) + 2(η −Mx)>(Φη + ΓCx−M(A+Bu))

= −|x|2 + 2x>RBu+ 2(η −Mx)>(Φη − ΦMx+ ΦMx+ ΓCx−MAx−MBu)

= −|x|2 + 2x>RBu+ 2(η −Mx)>[Φ(η −Mx)−MBu]

= −|x|2 + 2(x>R− (η −Mx)>M)Bu

and by taking

u = −B>Rx+B>M>(η −Mx) (4.10)

we get

V̇ = −|x|2 − u>u .

By using La Salle’s arguments, we can prove that the state of the system (4.8) in closed

loop with (4.10) converges to the largest invariant set contained in

{(x, η) ∈ Rn × Rr×p : x = 0, u = 0} = {0} × {B>M>η = 0}

The forthcoming lemma gives a sufficient condition for the asymptotic stability of the

closed-loop system (4.8)-(4.10).

Lemma 4.3. Under Assumption 4.1 the unforced closed-loop system

ẋ = Ax+Bu

η̇ = Φη + ΓCx

u = −B>Rx+B>M>(η −Mx)

is asymptotically stable if the pair (B>M>,Φ) is observable.

Proof. By using the previous arguments we can prove that x converges to zero and

that η converges to the set

B>M>η = 0

where its dynamics reduces to

η̇ = Φη .

Since the pair (B>M>,Φ) is observable, η(t) identically zero for all t ≥ 0 is the

only admissible solution. This prove that the solutions converge to the origin and

therefore the closed-loop system is asymptotically stable.
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4.1. Robust output regulation for linear systems via forwarding

By using the previous lemma we can see that the solution to output regulation prob-

lems boils down in proving that the pair (B>M>,Φ) is observable. As shown in the

forthcoming Lemma, this is always guaranteed under the non-resonance conditions.

Lemma 4.4. LetM be solution of (4.9). If Assumptions 4.1 and 4.3 hold, the pair (B>M>,Φ)

is observable.

Proof. Let −λ be an eigenvalue of Φ and let v be its associated eigenvector, i.e.
−λv = Φv. Since Φ is skew-symmetric also λ is an eigenvalue of Φ. Furthermore,

Φ = −Φ>. As a consequence

(−λv)> = (Φv)> = v>Φ> = −v>Φ =⇒ λv> = v>Φ

Now pre-multiply equation (4.9) by v>. We get

v>MA = v>ΦM + v>ΓC =⇒ v>M(λI −A) + v>ΓC = 0 .

Let assume that v is the in right-kernel of M>B>, i.e.

B>M>v = 0 =⇒ v>MB = 0 .

By collecting the previous relations we get

(
v>M v>Γ

)(λI −A B

C 0

)
= 0

But this contradicts the Assumption 4.3. As a consequence there is no non-zero

vector v satisfying (
λI − Φ

B>M>

)
v = 0

and therefore the PBH observability test

rank

[
λI − Φ

B>M>

]
= n ∀ λ ∈ σ(Φ)

where σ(Φ) denotes the spectrum of Φ, is satisfied, concluding the proof.

The observability of the pair (B>M>,Φ) is strictly connected to the existence of the

regulator equations (4.5), as shown in the forthcoming lemma.

Lemma 4.5. Under the Assumption 4.1, the pair (B>M>,Φ) is observable if and only if there
exist matrices Π,Ψ solution of the regulator equations (4.5) for any matrices P,Q.
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Proof. The proof is divided in two parts. First we prove that if the pair (B>M>,Φ)

is observable then a solution to the regulator equations do exist. Then, we prove the

converse. In the following we denote with J the matrix

J =

(
(A−BB>R−BB>M>M) BB>M>

ΓC Φ

)
. (4.11)

By using Lemma 4.3, if the pair (B>M>,Φ) is observable then the matrix J defined

is Hurwitz. As a consequence, since the spectrum of S and J are distinct, there

always exist Π and Σ solution of the Sylvester equation(
Π

Σ

)
S = J

(
Π

Σ

)
+

(
P

ΓQ

)

The second equation in particular reads

ΣS = ΦΣ + Γ(CΠ +Q) .

By noting that S and Φ have the same eigenvalues and that the pair (Φ,Γ) is control-

lable we get CΠ +Q = 0 (see Theorem 1.7 and pages 24-26 of Byrnes et al. (1997)).

The first part of the proof concludes by setting

Ψ = −B>(R+M>M>)Π +B>M>Σ .

Now assume a solution to the regulator equations (4.5) exists. By pre-multiplying

by M the first equation we get

MΠS = MAΠ +MBΨ +MP

0 = CΠ +Q

By using (4.9) we get

MΠS = (ΦM + ΓC)Π +MBΨ +MP

0 = CΠ +Q

and therefore, by multiplying the second equation by Γ we get

(MΠ)S = Φ(MΠ) + (MP − ΓQ+MBΨ) . (4.12)
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Now let −λ be an eigenvector of Φ and suppose the pair (B>M>,Φ) is not observ-

able, namely there exists v satisfying

Φv = −λv , B>M>v = 0 ,

and therefore v>Φ = λv>. Since Φ and S have the same spectrum, there exists a

w 6= 0 satisfying

Sw = λw .

As a consequence, by pre-multiplying (4.12) by v> and by post-multiplying (4.12)

by w we get

v>(MΠ)Sw = v>Φ(MΠ)w + v>(MP − ΓQ+MBΨ)w

v>(MΠ)λw = λv>(MΠ)w + v>(MP − ΓQ+MBΨ)w
(4.13)

and therefore

v>(MP − ΓQ+MBΨ)w = 0 =⇒ v>(MP − ΓQ)w = 0 .

which is ∑
j,k,`

vjMj,k Pk,`w` −
∑
j,k,`

vj Γj,kQk,`w` = 0 .

By differentiating the previous equality with respect to P`,` and to Qk,` we obtain

∂

∂P`,`

∑
j,k,`

vjMj,k Pk,`w` −
∑
j,k,`

vj Γj,kQk,`w`

 =
∑
j,k,`

vjMj,kw` = 0 , ∀ k, `

∂

∂Qk,`

∑
j,k,`

vjMj,k Pk,`w` −
∑
j,k,`

vj Γj,kQk,`w`

 =
∑
j,k,`

vj Γj,k w` = 0 , ∀ k, `

Now let ` be such that w` 6= 0. From the previous expressions we get

v>M = 0 , v> Γ = 0 .

By using the fact that v>Φ = λv> we have

v>
[
Γ ΦΓ · · · Φ(r×p)−1Γ

]
= v>

[
Γ λΓ · · · λ(r×p)−1Γ

]
= 0

which contradicts the fact that the pair (Φ,Γ) is controllable.
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The interest of the previous lemma is that we have an alternative condition for the

existence of the regulator equations for which we do not need to check the non-resonance

conditions (Assumption 4.3). Moreover, note that, from a computational point of view,

it is simpler to check the condition in Lemma 4.5 than Assumption 4.3. Finally, by

collecting all the previous results we have the following theorem.

Theorem 4.1. Consider the nominal plant

ẋ = Ax+Bu+ Pw

e = Cx+Qw

and suppose Assumptions 4.2, 4.1 and 4.3 hold. Then the regulator

η̇ = Φη + Γe

u = −B>Rx+B>M>(η −Mx)

with M , R solution of

MA = ΦM + ΓC , RA+A>R = −I ,

solves the robust output regulation problem.

Proof. By collecting the results of Lemma 4.3 and 4.4 we know that the matrix J

defined as in (4.11) is Hurwitz. As a consequence there exists Π, Σ solution of(
Π

Σ

)
S = J

(
Π

Σ

)
+

(
P

ΓQ

)

The second equation in particular reads

ΣS = ΦΣ + Γ(CΠ +Q) .

By noting that S and Φ have the same eigenvalues and that the pair (Φ,Γ) is control-

lable we get CΠ +Q = 0 (see Theorem 1.7 and pages 24-26 of Byrnes et al. (1997)).

Now, by applying the change of coordinates

x 7→ x̃ , x̃ := x−Πw , η 7→ η̃ , η̃ := η − Σw

137



4.1. Robust output regulation for linear systems via forwarding

the closed-loop system reads(
˙̃x

˙̃η

)
= J

(
x̃

η̃

)
, e = Cx̃ .

Since J is Hurwitz the system is stable. As a consequence

lim
t→∞

x̃(t) = 0 , lim
t→∞

η̃(t) = 0 , =⇒ lim
t→∞

e(t) = lim
t→∞

Cx̃(t) = 0 ,

by which we conclude the output regulation problem is solved. Finally, in order to

prove the robustness, we define P̃ as the neighbourhood of (A,B,C, P,Q) such that

(Ã, B̃, C̃, P̃ , Q̃) ∈ P̃ satisfies Assumptions 4.1 and 4.3 and the matrix J̃ defined as

J̃ =

(
(Ã− B̃B>R− B̃B>M>M) B̃B>M>

ΓC̃ Φ

)

is Hurwitz. By applying the same arguments it is possible to prove lim
t→∞

e(t) = 0.
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4.2 The issue of structural robustness in the nonlinear case

As shown in Section 4.1, the solution of the robust output regulation problem in the

linear framework is made of two main ingredients (see also Figure 4.1):

(1) an internal model unit which processes the regulated output e;

(2) a stabilizer unit which stabilizes the cascade system plant-internal model unit.

In this regard, we want to point out a substantial difference in the internal model
unit design between the approach used in the linear framework and the one commonly

adopted in the nonlinear framework. In the linear case (see Section 4.1) the internal

model is chosen as a copy of the exosystem thus resulting not “model-based”, i.e. its

design depends on the matrix S but not on the matrices {A,B,C, P,Q} characterizing

the plant. On the contrary, in most of the solutions proposed for nonlinear systems

(see, among others, Isidori et al. (2003), Byrnes and Isidori (2004), Marconi et al. (2007),

Seshagiri and Khalil (2005), Memon and Khalil (2010) and more recently Astolfi et al.

(2017)) the internal model unit plays the role of an observer for the “friend”, i.e. the cor-

rect steady state of the input which makes the error identically zero. As a consequence,

the design of the internal mode unit in the nonlinear case results is model-dependent.

This fact reflects in three main considerations.

The first aspect regards the issue of robustness. As commonly explained (see (Isidori,

1995, Chapter 8.5)), by considering the uncertain parameters as part of the state of the

exosystem, we can gain robustness with respect to constant disturbances, providing pa-
rameter robustness; nevertheless when model errors (namely in the modelled functions)

are present we can not guarantee any more the asymptotic properties of the regulator,

thus loosing in robustness. We refer to this second property as structural robustness, to

stress the robustness property of the regulator with respect to errors model that can be

non-constant.

The second consideration regards the “circular loop” which may happen between the

internal model design and the stabilizer design, namely the issue of being able to design

the two units independently and robustly, such that minimum perturbations of the plant

model do not destroy the stability properties of the closed-loop system. In this respect

it is not completely clear how to break this loop in which the friend to be observed may

depend on the stabilizer design and the internal model unit design may depend on the

stabilizer (see Isidori and Marconi (2012)).

Finally, we want to stress that most of the proposed techniques in the literature re-

lies on a certain number of additional assumptions which are not necessary in the linear

framework: relative degree and normal form which are not affected by the presence of the
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4.2. The issue of structural robustness in the nonlinear case

exogenous disturbance and minimum-phaseness (i.e. zero-dynamics which are asymptoti-

cally stable) are commonly assumed (see Byrnes and Isidori (2004), Marconi et al. (2007),

Seshagiri and Khalil (2005), Memon and Khalil (2010), Li and Khalil (2013)) making re-

strictive the class of nonlinear systems to which the approach applies. All these assump-

tions make also difficult the extension to the multi-input multi-output case, as confirmed

in the effort made in Astolfi et al. (2013a) and also previously noticed in Isidori and Mar-

coni (2012).

These issues motivates an introduction of a new methodology to deal with the prob-

lem of output regulation. In the new approach we are driven by two main facts

(i) a nonlinear ISS (Input-to-State Stable) system, driven by a periodic input, ad-

mits periodic solutions of the same period (see Yoshizawa (1966) or more recently

Agrachev et al. (2007)), though it may contain a number of higher frequencies

(Khalil (1992), Huang and Lin (1993), Delli Priscoli (1993), Delli Priscoli (1997));

(ii) the cascade plant - internal model unit is in feedforward form and therefore for-

warding tools can be applied in the design of the stabilizer unit;

and we have as a final goal

(a) a design which can be applied to multi-input multi-output (possibly non-square)

nonlinear systems and in absence of normal forms;

(b) a design which is structurally robust (in a rigorous sense to be defined).

In the forthcoming two subsections we exploit (i) and (ii) showing how to merge these

facts in order to obtain a novel design for the output regulation problem. In particular,

in Section 4.3 we show how to design the internal model unit starting from (i), whereas

Section 4.4 is devoted to the design of a stabilizer for the cascade plant - internal model

unit.
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4.3 Internal model design

The contents of this section are an extension to the multi-input multi-output case of the

results presented in Astolfi et al. (2015).

Motivated by (i) we restrict ourselves to the class of disturbances/references which

are T -periodic and we consider, for the sake of simplicity, multi-input multi-output

input-affine nonlinear systems of the form

ẋ = f(x,w) + g(x,w)u

e = h(x,w)
(4.14)

with state x ∈ Rn, control inputs u ∈ Rm and regulated outputs e = (e1, . . . , ep) ∈
Rp, with1 m ≥ p and exogenous signal w ∈ Rr which satisfies w(t + T ) = w(t). Also

we suppose the functions f, g, h are smooth enough and f(0, 0) = 0, h(0, 0) = 0 and

g(0, 0) 6= 0. If e(t+ T ) = e(t), then it can be expressed by a Fourier Series. We denote by

cj,k the k-th Fourier coefficient of the j-th component of e, i.e.

cj,k =
1

T

∫ T

0
ej(t) exp (i k ω t) dt , ω =

2π

T
. (4.15)

We remark that if ηj,k is a T -periodic solution of

η̇j,k = −i k ωηj,k + ej(t)

then

ηj,k(0) = ηj,k(T ) = ηj,k(0) +

∫ T

0
exp(−i k ω t) ej(t) dt

meaning that the Fourier coefficients cj,k is zero. Motivated by this consideration we

design the internal model unit as a set of p integrators plus a bunch of L oscillators

whose frequency are ω and its multiples, namely

η̇0 = e

η̇1 = Φ1η1 + Γ1 e
...

η̇L = ΦLηL + ΓL e

(4.16)

with state η = (η0, η1, . . . , ηL) ∈ Rp(1+2L), η0 ∈ Rp, ηk ∈ R2p for k = 1, . . . , L, and where

1This conditions is necessary in the linear case. As a consequence we make the same assumption in this
nonlinear framework without loss of generality.
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the matrices Φk, Γk, for any k ∈ {1, . . . , L}, are defined as

Φk = blckdiag
(
φk · · · φk

)
2p×2p

Γk = blckdiag
(

Γ · · · Γ
)

2p×p

with

φk = k φ , φ =

(
0 ω

−ω 0

)
, Γ =

(
0

1

)
.

By construction, the i-th component of η0 is an integrator processing the i-th component

of the outuput e, i.e.
η̇i0 = ei ,

whereas the i-th component of ηk, k ≥ 1, is an oscillator at frequency kω processing the

i-th component of the output e, namely

η̇ik = k φ ηik + Γei .

By using the a complex notation the internal model (4.16) can be also written as

η̇0 = e , η0 ∈ Cp ,
η̇k = i kω ηk + e , ηk ∈ Cp , k ∈ {1, . . . , L} ,

η = (η0, . . . , ηL) ∈ CL+1 .

Both representations are equivalent, and throughout the text we will use indifferently

the real notation or the complex one in order to simplify the expressions.

Now suppose that we are able to design a control law u such that the cascade (4.14)-

(4.16) has bounded trajectories. The following result states that, as already observed

above, if the ηk are T -periodic, then necessarily the Fourier coefficients of the output e

associated to the frequencies embedded in the internal model are equal to zero. Further-

more, if the internal model is “rich” enough, i.e. its dimension is large enough, then the

L2 norm of the error will be small enough. In this regard, the number L of oscillators is

considered as a design-parameter.

Proposition 4.1. Let (x(t), η(t)) be a bounded trajectory of the cascade (4.14)-(4.16) cor-
responding to some bounded input u(t) such that ηk(t + T ) = ηk(t) for all t ≥ 0 and all
k = 0, 1, . . . , L. Then necessarily

c0
j,k = 0 , ∀ k = 0, 1, . . . , L, ∀ j = 1, . . . , p .

Moreover, if t 7→ u(t) and t 7→ w(t) are C1, for any compact set Cx ⊂ Rn, for any d1 > 0,
d2 > 0, ū > 0 and ε > 0 such that x(t) ∈ Cx for all t ≥ 0, ‖w(·)‖∞ ≤ d1, ‖ẇ(·)‖∞ ≤ d2 and
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‖u(·)‖∞ ≤ ū, there exists L? ≥ 1 such that, if L ≥ L? then

‖e(t)‖2 =

√
1

T

∫ T

0
|e(t)|2dt ≤ ε .

Proof. Consider the internal model unit (4.16). The component ηik of its solution

satisfies

ηjk(t+ T ) = exp(−ikωT ) ηjk(t) +

∫ T+t

t
exp(−ikω(T + t− s)) ej(s) ds .

Since ηjk is T -periodic, without loss of generality we pick t = 0 and therefore

0 =

∫ T

0
exp(ikωs) ej(s) ds ,

and by using definition (4.15) we get cj,k = 0 for any k ∈ {0, 1, . . . , L}. The same

argument can be used for any i ∈ {1, . . . , p} to complete the first part of the proof.

When f, g, h are C1, w(t) and u(t) are C1 functions of time, so is e(t). So let H1,

F0 and D1 be the real numbers defined as

Hj = sup
x∈Cx, |w|≤d1

{
∂hj
∂x

(x,w)

}
,

F0 = sup
x∈Cx, |w|≤d1, |u|≤ū

{f(x,w) + g(x,w)u} ,

Dj = sup
x∈Cx, |w|≤d1

d2

{
∂hj
∂w

(x,w)

}
.

(4.17)

It follows that |ėj(t)| ≤ HjF0 + Dj for all t ≥ 0. Moreover, along any solution,

the function t 7→ (ej(t), ėj(t)) is continuous and thus square integrable on [0, T ]. It

follows that ej(t) and ėj(t) can be expressed by a Fourier Series

ej(t) =
∞∑
k=0

cj,k exp(i kωt) ,

ėj(t) =

∞∑
k=0

i kωcj,k exp(i kωt) =

∞∑
k=0

c′j,k exp(i kωt) ,
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where c′j,k = i kωcj,k. By using Parseval’s identity we get

√
1

T

∫ T

0
|ėj(s)|2 ds =

√√√√2
∞∑
k=0

(
c′j,k

)2
≤ HjF0 +Dj .

From the previous result we know that cj,k = 0 for all k ∈ {0, 1, . . . L}. As a conse-

quence (and by using the definition of c′j,k) we get

ω2(L+ 1)2
∞∑

k=L+1

(cj,k)
2 ≤

∞∑
k=L+1

(kω cj,k)
2 ≤ (HjF0 +Dj)

2

2
.

Again, by using Parseval’s identity, we get

1

T

∫ T

0
|ej(s)|2ds ≤ (HjF0 +Dj)

2

ω2(L+ 1)2
.

Finally by using√
1

T

∫ T

0
|e(s)|2ds ≤

p∑
j=1

√
1

T

∫ T

0
|ej(s)|2ds ≤

p∑
j=1

(HjF0 +Dj)

ω(L+ 1)

the proof completes by setting L∗ =


p∑
j=1

(HjF0 +Dj)T

2π ε

.

The previous proposition proves that when we add an oscillator at a certain fre-

quency in the internal model unit, we are able to make zero the correspondent Fourier

coefficient of the regulated output. Also, by enlarging the dimension of the internal

model, i.e. by adding more and more oscillators at higher frequencies, we can reduce

the L2 norm of the output. As a consequence, we may need an internal model unit of

infinite dimension (an infinite number of oscillator) to regulate e to zero. A number

large enough of oscillator guarantees in any case an error on the regulated output small

enough, i.e. practical output regulation is achieved.

We stress that the design of the internal model unit (4.16) does not depend on the

functions f, g, h. As a consequence the results of Proposition 4.1 hold for any set of func-

tions f, g, h and C1 bounded control input u(t) which guarantees bounded trajectories

of the cascade (4.14)-(4.16) and η(t) = η(t + T ), i.e. structurally robust (practical) output
regulation is achieved.

Finally we remark that the internal model (4.16) could be considerably generalized.

As already noticed in Astolfi and Praly (2016-17) for the pure integrator case, the inter-
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nal model unit can be taken as

η̇0 = γ0(η, x, e)

η̇1 = Φ1η1 + γ1(η, x, e)
...

η̇L = ΦLηL + γL(η, x, e)

where γ0, γ1, . . . , γL are C1 functions satisfying

0 = γ0(η, x, e) =⇒ 0 = e ,

0 =

∫ T

0
exp(ikωs) γk(η(s), x(s), e(s)) ds =⇒ 0 =

∫ T

0
exp(ikωs) e(s) ds .

In the next subsection we exploit the fact (ii) showing how to design with forwarding

techniques the stabilizer unit for the extended system (4.14)-(4.16).
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4.4 Forwarding design

In this section we focus on the design of a (state-feedback) control law u for the cascade

system (4.14)-(4.16) which ensure bounded trajectories for the closed-loop system. As

already explained in the linear case (see Section 4.1), since this cascade is in strict feedfor-
ward form, a forwarding design may be applied for the stabilizer unit (see Figure 4.1). The

forwarding techniques have been widely studied in the last 20 years and the contents of

this section are well-known. See, for a detailed overview, chapter 6.2 of Sepulchre et al.

(1997). The main results of this Section (Lemma 4.6 and Propositions 4.2 and 4.3) are

an adaptation of the results in Mazenc (1996).

Let consider the unforced cascade system (4.14) - (4.16), namely the system

ẋ = f(x, 0) + g(x, 0)u

η̇0 = h(x, 0)

η̇1 = Φ1η1 + Γ1 h(x, 0)
...

η̇L = ΦLηL + ΓL h(x, 0)

(4.18)

As already introduced, we are interested in the design of a function α(x, η0, η1, . . . , ηL)

such that the origin of the closed-loop systems is asymptotically stable and locally expo-

nentially stable. As in the linear case (see Section 4.1) a certain number of assumptions

is needed. Evidently, a necessary condition for the solvability of the problem is the con-

trollability of the unforced system

ẋ = f(x, 0) + g(x, 0)u . (4.19)

We suppose we know a function β : Rn → Rm such that the origin of

ẋ = f(x, 0) + g(x, 0)β(x)

is an asymptotically and locally exponentially stable equilibrium point with S ⊂ Rn as

a domain of attraction. By using the converse Lyapunov theorem from Kurzweil (1956),

there exists a C1 function V : S → R+ which is positive definite and proper on S such

that the function W defined as

W (x) = −∂V
∂x

(f(x, 0) + g(x, 0)β(x)) (4.20)

is positive definite on S. Note that if V is known from the design of β, it may not be
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proper on S. As a consequence, to make it proper, we first define $ as

$ = inf
x 6∈S

V (x)

and then we replace V (x) by
V (x)

$ − V (x)
, see Teel and Praly (1995). Unfortunately, in

doing so, the domain of definition of this new function V may be a strict subset of S.

In the following we still call S this domain on which V is proper. Furthermore, by

following the “linear recipe” of Section 4.1 (see Assumption ??), we suppose that the

pre-state feedback u = β(x) is already applied to system (4.19). We call with abuse of

notation the function f(x, 0) as f(x, 0) + g(x, 0)β(x) and the following assumption is

made.

Assumption 4.4. There exist a C1 function V : S → R≥0 which is positive definite and
proper on S and a positive definite function W : S → R≥0 such that

∂V

∂x
(x)f(x, 0) ≤ −W (x)

for all x ∈ S.

Again, by following the linear results of Section 4.1, the following non-resonance

condition, completely equivalent to Assumption 4.3, is supposed.

Assumption 4.5. The non-resonance condition holds, i.e. the matrix(
A− λI B

C 0

)

has independent rows for each λ = ikω, k ∈ {0, 1, . . . , L}, where

A =
∂f

∂x
(0, 0) , B = g(0, 0) , C =

∂h

∂x
(0, 0) .

By mimicking the linear case, in the forthcoming lemma we define a functionMk(x)

which is the nonlinear extension of the matrix M defined in (4.9). As shown below, this

functionMk(x) plays a key role in the design of a stabilizer for the system (4.18). In this

section we will use the real notation for the internal model unit (4.16).
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Lemma 4.6. Under Assumptions 4.4 and 4.5, for any k ∈ N the following expressions define
properly C2 functionsM0 : Rn → Rp,Mk : Rn → R2p, k > 0,

M0(x) = lim
t→∞

∫ t

0
h(x(s), 0) ds ,

Mk(x) = lim
t→∞

∫ t

0
exp(Φks) Γk h(x(s), 0) ds .

(4.21)

They are solution of

∂M0

∂x
(x)f(x, 0) = h(x, 0) ,

∂Mk

∂x
(x)f(x, 0) = ΦkMk(x) + Γk h(x, 0)

(4.22)

Furthermore, the pair (B>M>k ,Φ) is observable, where we denote, for any k ∈ N,

Mk =
∂Mk

∂x
(0) .

Proof. Let simplify the notations in

f(x) := f(x, 0) , h(x) := h(x, 0) ,

and consider the following system

żk = Φk zk + Γkh(x)

ẋ = f(x)

with Φk, Γk defined in (4.16) and where x = 0 is asymptotically stable and locally

exponentially stable for ẋ = f(x) with x ∈ S. The solution of zk is given by

Zk((x, zk), t) = exp(Φk t)zk +

∫ t

0
exp(Φk(t− s)) Γk h(X(x, s)) ds

Because of the exponential stability of the x-dynamics and the neutral stability of Φ,

the origin has a stable manifold. It is the set of pairs (x, zk) such that we have

lim
t→∞

Zk((x, zk), t) = 0 .
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and therefore satisfying

zk = − lim
t→∞

∫ t

0
exp(Φks) Γk h(X(x, s)) ds

We conclude that the functionMk(x) defined in (4.21) as

Mk(x) = lim
t→∞

∫ t

0
exp(Φks) Γk h(X(x, s)) ds

is well defined. The same arguments hold for the case k = 0 completing the first

part of the proof. Observability of the pair (B>M>k ) follows by linearizing (4.22)

around the origin

MkA = ΦkMk + Γk C

and by noting that the assumptions of Lemma 4.4 are satisfied.

Under the previous assumptions and with the previous lemma in mind, we are able

to design a state-feedback law for the unforced extended open-loop system (4.18). This

result is completely analogous to the linear result of Lemma 4.3. Also, it can be no-

ticed that the forthcoming proposed regulator (4.23) is a nonliner version of the linear

regulator (4.10).

Proposition 4.2. Consider the system (4.18). Let L ∈ N be fixed and suppose Assumptions
4.4 and 4.5 holds. For any ū > 0 (maybe infinite), the origin of (4.18) in closed loop with
u = α(x, η),

α(x, η) = min{ū , |α0(x, η)| } α0(x, η)

|α0(x, η)|

α0(x, η) = −

[
∂V

∂x
(x)g(x, 0)−

L∑
k=0

(ηk −Mk(x))>
∂Mk

∂x
(x)g(x, 0)

]> (4.23)

is asymptotically stable and locally exponentially stable with S × Rp(1+2L) as domain of at-
traction.

Proof. With Assumption 4.4 let U be the Lyapunov Function defined as

U(x, z) = V (x) +
1

2

L∑
k=0

(ηk −Mk(x))>(ηk −Mk(x))

where V satisfies (4.20). The function U is positive definite, proper on S × Rp(1+2L)
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and its derivative along the solutions satisfies

U̇(x, η) ≤

−W (x) +
∂V

∂x
(x)g(x, 0)u +

L∑
k=0

(ηk −Mk(x))>
(

Φk ηk + Γk h(x, 0)− ∂Mk

∂x
(x)f(x, 0)− ∂Mk

∂x
(x)g(x, 0)u

)

Recall thatMk satisfies (4.22). As a consequence we have

Φk ηk + Γk h(x, 0)− ∂Mk

∂x
(x)f(x, 0) = Φk(ηk −Mk(x)) .

Furthermore, by noting that

Φ + Φ> = 0

we get

U̇(x, η) ≤ −W (x) +

[
∂V

∂x
(x) g(x, 0)−

L∑
k=0

(ηk −Mk(x))>
∂Mk

∂x
(x)g(x, 0)

]
u

with the choice u = α(x, η), with α defined as in (4.23), we obtain

U̇(x, η) ≤ −W (x)−min
{
ū |α0(x, η)|, |α0(x, η)|2

}
.

Applying La Salle theorem we conclude that the origin is stable and the largest in-

variant set I contained in{
(x, η) ∈ Rn × Cp(L+1) : W (x) = 0 , α0(x, η) = 0

}
is attractive. By using the fact that W (x) = 0 if and only if x = 0,

∂V

∂x
(0) = 0 and

moreoverMk(0) = 0, the previous set reduces to{
(x, η) ∈ Rn × Cp(L+1) : x = 0 , B>M>k ηk = 0

}
.

By using the fact that the pair (B>M>,Φ) is observable (see Lemma 4.6) we conclude

that the set I is reduced to the origin. Therefore the origin is asymptotically stable

with a domain of attraction S × Rp(1+2L). By noting that around the origin we have

u = α0(x, η), we conclude that the origin is also locally exponentially stable.

The solution proposed in the previous proposition relies on the knowledge of the

functionMk(x), solution of the partial differential equation (4.22). As shown in Lemma
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4.6 the solution always exists, but formally it can be very hard to find. Therefore in

the forthcoming proposition we propose a simpler design based on the linearization of

(4.22).

Proposition 4.3. Consider the system (4.18). Let L ∈ N be fixed and suppose Assumptions
4.4 and 4.5 holds. For any ū > 0, the origin of (4.18) in closed loop with u = α(x, η),

α(x, η) = min{ū , |α1(x, η)| } α1(x, η)

|α1(x, η)|

α1(x, η) = −

`′(V (x))
∂V

∂x
(x)g(x, 0)−

L∑
k=0

(ηk −Mkx)>√
1 +

∑L
k=0 |ηk −Mkx|2

Mkg(x, 0)

>
(4.24)

with ` : R≥0 → R≥0 a C1 function with strictly positive derivative to be chosen large enough
(see Mazenc and Praly (1996)), is asymptotically stable and locally exponentially stable with
S × Rp(1+2L) as domain of attraction.

Proof. First of all note that the matrix Mk =
∂Mk

∂x
(0) is solution of

MkF = ΦkMk + ΓkH

With Assumption 4.4 in mind let U be the Lyapunov Function defined as

U(x, z) = `(V (x)) +

√√√√1 +
L∑
k=0

|ηk −Mk x|2 − 1

where V satisfies (4.20) and ` is a function to be chosen large enough. The functionU

is positive definite, proper on S×Rp(1+2L) and its derivative along solutions satisfies

U̇(x, η) ≤

−`′(V (x))W (x) + `′(V (x))
∂V

∂x
(x)g(x, 0)u +∑L

k=0 (ηk −Mk(x))>√
1 +

∑L
k=0 |ηk −Mk(x)|2

(
Φk ηk + Γk h(x, 0)−Mk

(
f(x) + g(x, 0)u

))

By adding e subtracting the term
∂Mk

∂x
(x)f(x), by defining

∆(x) =

(
Mk −

∂Mk

∂x
(x)

)
f(x) ,
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and by recalling (4.22) we get

U̇(x, η) ≤ −`′(V (x))W (x) + `′(V (x))
∂V

∂x
(x)g(x)u

−
∑L

k=0 (ηk −Mk(x))>√
1 +

∑L
k=0 |ηk −Mk(x)|2

(∆(x) +Mkg(x, 0)u)

With the choice u = α(x, η) we obtain

U̇(x, η) ≤ −`′(V (x))W (x) + ∆(x)−min
{
ū |α1(x, η)|, α1(x, η)2

}
.

By choosing the function ` such that

2|∆(x)| ≤ `′(V (x))W (x) ∀ x ∈ S ,

and by applying the same arguments used in the proof of Proposition 4.2 we con-

clude that to conclude that the origin is asymptotically stable and locally exponen-

tially stable with S × Rp(1+2L) as domain of attraction.

The goal of this section was to show that forwarding techniques can be applied in

order to design a stabilizing feedback law for the system (4.18). Nevertheless we recall

that the literature on forwarding techniques is wide and many other different (and sim-

pler) designs can be adopted. See, among others, Mazenc and Praly (1996), Teel (1996),

Sepulchre et al. (1997). Finally, we remark that the system (4.18) falls exactly in the same

framework considered by Kaliora and Astolfi (2001) and Kaliora and Astolfi (2004) and

that their techniques can be directly applied under Input-to-State Stability assumptions.

152



Chapter 4. Structurally Robust Output Regulation

4.5 Weak output regulation

In this section we combine the results of Sections 4.3 and 4.4 to show that the proposed

regulator achieve structurally robust weak practical output regulation. We refer with weak
the fact that the bound on the disturbance may depend on the dimension of the internal

model and could shrink to zero when augmenting the number of oscillators to infinity.

In Chapter 5 we will show a case where this phenomenon does not happen, namely the

bound on the disturbance is independent on the number of oscillators, thus achieving

structurally robust practical output regulation. To summarize the results, we consider the

class of system (4.14) described as

ẋ = f(x,w) + g(x,w)u

e = h(x,w)
(4.14)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, and the dynamic regulator given by

η̇0 = e

η̇1 = Φ1η1 + Γ1 e
...

η̇L = ΦLηL + ΓL e

u = α(x, η)

(4.25)

with η = (η0, . . . , ηL) ∈ Rp(1+2L) and where α can be designed for instance as shown in

Section 4.4.

As a consequence of Proposition 4.2 and results on local exponential stability, we

have that when w is small enough, the closed-loop system (4.14),(4.25) admits a unique

periodic trajectory which is asymptotically stable.

Proposition 4.4 (Existence of periodic solutions). Consider the system (4.14) under As-
sumption 4.5, and suppose the origin of the closed-loop system (4.14)-(4.25) is an asymp-
totically and locally exponentially stable equilibrium point with domain of attraction A =

S × Rp(1+2L) when w = 0. Then, for any compact set Cxη ⊂ A, containing the origin,
there exists a real number d1 > 0 such that, for any T -periodic function t 7→ w(t) satisfy-
ing ‖w(·)‖∞ ≤ d1, there exists a unique T -periodic trajectory (x?(t), η?(t)) ∈ Cxη which is
asymptotically stable and locally exponentially stable with B as domain of attraction, with
Cxη ⊂ B ⊂ A.
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The proof of this proposition is a direct application of well-known results on local

exponential stability, local input-to-state stability and existence of periodic solution un-

der small perturbations. See, for instance Yoshizawa (1966) or more recently Agrachev

et al. (2007). Note that by augmenting L we add poles on the imaginary axis. Conse-

quently the stability margin of the closed loop system may decrease with L and so the

bound d1 may decrease with augmenting L. In Chapter 5 we will show a case where

this phenomenon does not happen. By combining the previous proposition with Propo-

sition 4.1 we get the following theorem claiming that weak practical output regulation is

achieved.

Theorem 4.2 (Weak practical output regulation problem). Consider the system (4.14) un-
der Assumptions 4.4, 4.5, and suppose the origin of the closed-loop system (4.14)-(4.25) is an
asymptotically and locally exponentially stable equilibrium point with domain of attraction
A = S×Rp(1+2L) when w = 0. Then the regulator (4.25) solves the problem of weak practical
output regulation for the system (4.14), namely given a compact set Cx ⊂ S and real numbers
ū > 0 and d2 > 0, for any ε > 0 there exists L? > 0 and, for any L ≥ L?, there exists a
d1 > 0 such that, for any initial condition (x(0), η(0)) ∈ Cx × {0} and for any C1 function
t 7→ w(t) T -periodic with ‖w(·)‖∞ ≤ d1 and ‖ẇ(·)‖∞ ≤ d2, the solutions of the closed-loop
system (4.14)-(4.25) are bounded, T -periodic and such that

(i) c0
i,k = 0 for all i = 1, . . . , p and k ≤ L;

(ii) ‖e(t)‖2 ≤ ε.

The proof of the theorem follows by direct application of Proposition 4.1 and 4.4. As

already noticed in the proof of Proposition 4.4 the bound d1 may shrink when augment-

ing L. As a consequence, given Cx, ū > 0, and d2 > 0, one may implement an optimal

recursive algorithm to find the smallest L and the largest d1 which satisfies ‖e(t)‖2 ≤ ε.

With the previous theorems, we can prove that the regulator (4.25) is structurally
robust, namely the weak practical output regulation problem is solved for all the systems

ẋ = ξ(x, u, w)

e = ζ(x, u, w)
(4.26)

“close enough” to (4.14). In order to state the result on output regulation, we need first to

introduce the forthcoming technical Lemma, claiming persistence of the equilibrium for

the closed loop system (4.26)-(4.25). This lemma relies on Lemma C.2 given in Appendix

C.
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Lemma 4.7 (Persistence of equilibrium). For any compact sets C and C, the latter being
forward invariant for the closed-loop system (4.14)-(4.25), which satisfy

{0} $ C $ C $ A ,

and for any open neighborhood NC of C, contained in A, there exists a strictly positive real
number δ̄ such that to any pair (ξ, ζ) of C1 functions which satisfies

|ξ(x, u, 0)− [f(x, 0) + g(x, 0)u]|+ |ζ(x, u, 0)− h(x, 0)| ≤ δ̄ ∀(x, u) ∈ Cx ×U (4.27)

and ∣∣∣∣∣∣∣∣

∂ξ

∂x
(x, u, 0)

∂ξ

∂u
(x, u, 0)

∂ζ

∂x
(x, u, 0)

∂ζ

∂u
(x, u, 0)

−

∂f

∂x
(0, x) +

∂g

∂x
(x, 0)u g(x, 0)

∂h

∂x
(x, 0) 0


∣∣∣∣∣∣∣∣ ≤ δ̄ (4.28)

for all (x, u) ∈ Cx × U , where U = α(C), we can associate a point Xe = (xe, ηe) which is an
exponentially stable equilibrium point of (4.26)-(4.25) whose basin of attraction B contains
C.

Proof. The result follows by direct application of Lemma C.2. In particular the

conditions of Lemma C.2 are satisfied if (4.27) and (4.28) implies (C.5) and (C.6). By

using the notation X = (x, η0, . . . , ηL),

ϕm(X , w) =



f(x,w) + g(x,w)u

Γ0 h(x,w)

Φ1η1 + Γ1 h(x,w)
...

ΦLηL + ΓL h(x,w)


, ϕp(X , w) =



ξ(x, u, w)

Γ0 ζ(x, u, w)

Φ1η1 + Γ1 ζ(x, u, w)
...

ΦLηL + ΓL ζ(x, u, w)


,

and Γ0 = I with u = α(x, η), we see that

|ϕp(X , 0)− ϕm(X , 0)| ≤ |ξ(x, α(x, η), 0)− [f(x, 0) + g(x, 0)α(x, η)]|

+

L∑
k=0

|Γkζ(x, α(x, η), 0)− Γkh(x, 0)|

≤ (L+ 1) |ξ(x, α(x, η), 0)− [f(x, 0) + g(x, 0)α(x, η)]|
+(L+ 1) |ζ(x, α(x, η), 0)− h(x, 0)|

≤ (L+ 1)δ̄
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Moreover∣∣∣∣∂ϕp∂X
(X , 0)− ∂ϕm

∂X
(X , 0)

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∂ξ

∂x
+
∂ξ

∂u

∂α

∂x

∂ξ

∂u

∂α

∂η

Γ0

(
∂ζ

∂x
+
∂ζ

∂u

∂α

∂x

)
0

Γ1

(
∂ζ

∂x
+
∂ζ

∂u

∂α

∂x

)
Γ1
∂ζ

∂u

∂α

∂η
+ Φ1

...
...

ΓL

(
∂ζ

∂x
+
∂ζ

∂u

∂α

∂x

)
ΓL

∂ζ

∂u

∂α

∂η
+ ΦL



−



∂f

∂x
+
∂g

∂x
α+ g

∂α

∂x
g
∂α

∂η

Γ0
∂h

∂x
0

Γ1
∂h

∂x
Φ1

...
...

ΓL
∂h

∂x
ΦL



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
w=0

By recalling that α is C1 and by using the compact notation

∆pm =

∣∣∣∣∣∣∣∣

∂ξ

∂x

∂ξ

∂u

∂ζ

∂x

∂ζ

∂u

−

∂f

∂x
+
∂g

∂x
u g

∂h

∂x
0


∣∣∣∣∣∣∣∣
w=0

∆α = sup
(x,η)∈C

(∣∣∣∣∂α∂x
∣∣∣∣+

∣∣∣∣∂α∂η
∣∣∣∣)

we get ∣∣∣∣∂ϕp∂X
(X , 0)− ∂ϕm

∂X
(X , 0)

∣∣∣∣ ≤ (1 + L)∆α∆pm ≤ (1 + L)∆αδ̄

We conclude that the conditions (C.5) and (C.6) are verified for

δ = (1 + L) δ̄ max{∆α, 1} .

Finally, by combining the results of Theorem 4.2 and the Lemma 4.7 we can show

that the structurally robust weak practical output regulation problem is solved, as stated

in the forthcoming lemma. It can be seen as a generalization (but in the state-feedback

case) of Proposition 3 of Astolfi and Praly (2016-17)
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Lemma 4.8 (Structurally robust weak practical output regulation problem). The dynamic
regulator (4.25) solves the problem of structurally robust weak practical output regulation for
the system (4.14), namely it solves the weak practical output regulation problem for any pair
(ξ, ζ) of C1 functions satisfying the assumptions of Lemma 4.7 and such that the matrix(

A− λI B

C D

)

has independent rows for each λ = ikω, k ∈ {0, 1, . . . , L}, where

A =
∂ξ

∂x

∣∣∣∣
Xe

, B =
∂ξ

∂u

∣∣∣∣
Xe

, C =
∂ζ

∂x

∣∣∣∣
Xe

, D =
∂ζ

∂u

∣∣∣∣
Xe

,

with the equilibrium Xe given by Lemma 4.7.

Proof. The proof follows by the exponential stability of the equilibrium Xe given

by Lemma 4.7 and by checking that the conditions of Theorem 4.2 are satisfied.

We want to stress that even if all the feedback-design has been highlighted for the

state-feedback case, the results can be rephrased in the output feedback case without

loss of generality. An example of this methodology is given in Astolfi and Praly (2016-

17) where the internal model reduces to an integrator. Output feedback results in our

practical output regulation problem can be achieved by using the dynamic regulator

(4.25) and by replacing x by an estimate x̂ which is provided a suitable tunable state-

observer. The latter can be designed with any desired technique and for example with

the high-gain observer presented in Section 2.3.
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“You cannot always control what goes on outside. But

you can always control what goes on inside.”

Wayne Dyer

5
Structurally Robust Output

Regulation for Minimum Phase
Systems

The results of Chapter 4.5 applies to a very generic class of systems, that is input-

affine multi-input multi-output nonlinear systems. As a consequence the results we are

able to show are weak in the sense that they apply only when the disturbances are small.

The main limitations of this approach rely on the theoretical tools used in the proof,

mainly existence of periodic solutions under locally input-to-state stability condition.

The latter is provided by the local exponential stability guaranteed by the forwarding

design for the unforced system in cascade with the internal model. As a consequence

the allowed magnitude of the disturbance depends on the dimension of the closed-loop

system, which is n + p(2L + 1) (where n is the dimension of the system, p is the di-

mension of the regulated output and 2L + 1 the dimension of the internal model). As a

matter of fact, by augmenting the dimension of the internal model we may reduce the L2

norm of the regulated output, but we may also need to reduce the allowed disturbance

magnitude.

In this section we want to apply the proposed approach to single-input single-output

minimum-phase nonlinear systems which possesses a well-defined relative degree. As
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in Section 1.6.1 we consider systems with unitary relative degree, knowing that the ex-

tension to the case in which the relative degree is larger than one, can be easily handled

by means of high-gain tools, as shown for instance in (Isidori, 1999, Section 12.1). For

this class of system we are able to show results which are much more stronger than the

ones proposed in Section 4.5. In particular structurally robust asymptotic output regula-
tion is achieved and moreover the allowed disturbance magnitude is not affected by the

dimension of the internal model.
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5.1 Asymptotic regulation in the infinite dimensional case

By following a very standard framework of output regulation we consider in this section

nonlinear systems with unitary relative degree, i.e. that can be written as

ż = f(w, z, e)

ė = q(w, z, e) + u
(5.1)

with state z ∈ Rn, control input u ∈ R and regulated output e ∈ R. The initial conditions

(z(0), e(0)) of the system range in a given compact set Z×E ⊂ Rn×R and f and q are C1

functions. We suppose the exogenous signal w evolves in a given compact set W ⊂ Rr

and that t 7→ w(t) is a T -periodic C1 function. As commonly assumed in literature (see

for instance, Byrnes and Isidori (2003), Byrnes and Isidori (2004), Marconi et al. (2007)),

the exogenous signal w can be viewed as generated by an autonomous nonlinear system

of the form

ẇ = s(w)

which is neutrally stable, though this is not really needed in this framework. We suppose

also that the system is strongly minimum phase in the sense defined by the following

assumption.

Assumption 5.1. There exists a C1 function π : Rr → Rn such that for the system

ẇ = s(w)

ż = f(w, z, 0)
(5.2)

the set
B := {(w, z) ∈W × Rn : z = π(w)} (5.3)

is asymptotically stable and locally exponentially stable with a domain of attraction W × D
with Z ⊂ D.

In this chapter we want to show that we can solve the robust output regulation prob-

lem for the class of systems described above by following the “recipe” of Chapter 4, but

with a dynamic regulator of infinite dimension. First of all we extend the system (5.1)

with a bunch of an infinite number of oscillators

η̇0 = e η0 ∈ R
η̇k = kφ ηk + Γe ηk ∈ R2 ∀ k ∈ N>0

(5.4)

where

φ =

(
0 ω

−ω 0

)
, ω =

2π

T
, Γ =

(
0

1

)
.
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5.1. Asymptotic regulation in the infinite dimensional case

We denote with η = (ηk)k∈N and we suppose the initial conditions of η(0) are in `2,

namely

√√√√ ∞∑
k=0

|ηk(0)|2 < ∞ . Note that a trivial choice is ηk(0) = 0 for all k ∈ N. The

proposed regulator based on the forwarding techniques presented in Section 4.4, is

v =
∞∑
k=0

M>k (ηk −Mke)

u = −g (e− v)

(5.5)

where g ≥ 1 is a high-gain parameter to be chosen large enough, and M0 ∈ R and the

matrices Mk ∈ R2, k ∈ N>0, are defined as solutions of

−M0g = 1

−Mk g = kφMk + Γ .
(5.6)

Note that with respect to the internal model unit proposed in Section 4.3 we are not

using theM(·) proposed in Lemma 4.6 which would be computed as solution of

∂Mk

∂e
(e)
(
− ge+ q(0, 0, e)

)
= kφMk(e) + Γ e

but we are making an approximation computingMk as solution of

∂Mk

∂e
(e)
(
− ge

)
= kφMk(e) + Γ e

namely we decide to ignore the Lipschitz term q(0, 0, e), which is dominated by the term

g e when g is chosen large enough.

The aim of this section is to prove that the dynamic regulator (5.4)-(5.5) solves the

structurally robust asymptotic output regulation problem for the class of system (5.1), namely

lim
t→∞

e(t) = 0

uniformly in the initial conditions (z(0), e(0)) ∈ Z ×E, η(0) ∈ `2 and in w(t) and for any

pair of functions satisfying the assumptions above.

Note that under the Assumption 5.1 the non-resonance conditions (see Assumption

4.5) are automatically fulfilled (see in particular the remark at the end of this section)

by definition of the zero-dynamics (see Isidori (1995)). As a consequence the conditions

of Theorem 4.2 and Lemma 4.8 are satisfied, namely structurally robust weak practical
output regulation is guaranteed when considering an internal model of finite dimension.

However, due to the structure of system (5.1) a stronger result is achieved. In particu-
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lar, the forthcoming theorem states that the regulator (5.4)-(5.5) solves the structurally
robust output regulation problem for the system (5.1) with an internal model of infinite

dimension.

Theorem 5.1. Consider the system (5.1) and suppose Assumption 5.1 holds. Then the regula-
tor (5.4)-(5.5) solves the Structurally Robust Output Regulation Problem, namely there exist
a g? ≥ 1 such that, for any g > g? the trajectories of the closed-loop system (5.1)-(5.4)-(5.5)

starting from a point (w(0), z(0), e(0), η(0)) ∈W ×Z ×E×{0}, are bounded (eventually in
`2 sense) and limt→∞ e(t) = 0.

In order to prove the theorem we need to introduce some technical results. First of

all note that the matrices Mk are solutions of (5.6) and can be computed as

Mk = −(kφ+ Ig)−1Γ = −

(
g kω

−kω g

)−1(
0

1

)

which is

M0 = −1

g
, Mk =

1

(kω)2 + g2

(
kω

−g

)
. (5.7)

Lemma 5.1. There exists a real number M > 0 such that

∞∑
k=0

M>k Mk ≤ M .

for any g ≥ 1.

Proof. The result follows by computing

∞∑
k=0

M>j Mj =
1

g2
+
∞∑
k=1

1

(kω)2 + g2

=
1

g2

∞∑
k=0

1

(kωg )2 + 1

≤ 1

g2

∫ ∞
0

1

s2 + 1
ds =

1

g2

[
arctan(s)

]∞
0

=
1

g2

π

2

and by setting M =
π

2
.

The second technical lemma we need concerns the so called “friend”. In particular,

in order to solve the output regulation problem, for any particular periodic solution
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5.1. Asymptotic regulation in the infinite dimensional case

(w, π(w)) in W × B we must find a corresponding input, the “friend”, such that the

output e is constantly equal to zero, namely

0 = q(w, π(w), 0) + u .

As a consequence of Assumption 5.1, the friend, denoted as ψ : Rr → R, is well-defined,

and is computed as

ψ(w(t)) := −q(w(t), π(w(t)), 0) . (5.8)

Since the mapping t 7→ w(t) is C1 and T -periodic, and q is C1, so is t 7→ ψ(w(t)). As a

consequence it can be expressed by a Fourier series. In the forthcoming lemma we show

that our dynamic regulator (5.4) is able to generate any possible T -periodic friend.

Lemma 5.2. For any T -periodic C1 function t 7→ w(t) there exists a positive real number
µ such that, for any g ≥ 1, there exist a real number σ◦0 ∈ R and a set of vectors σ◦k ∈ R2,
k ∈ N>0, σ◦ = (σ◦k)k∈N ∈ `2, that satisfy

σ2
0 +

∞∑
k=1

(σ◦k)
>(σ◦k) ≤ µ , (5.9)

σ̇0 = 0 , σ0(0) = σ◦0 ,

σ̇k = k φ σk , σk(0) = σ◦k ,

ψ(w(t)) = gM0 σ0 + g
∞∑
k=1

M>k σk(t) .

(5.10)

with Mk defined by (5.7) and ψ defined as in (5.8).

Proof. Since t 7→ w(t) is a C1 T -periodic function and q is C1, also t → ψ(w(t))

is a T -periodic C1 function. As a consequence it can be written in terms of Fourier

series. In particular we have that

ψ(t) = ψ0 +
∞∑
k=1

ψck cos(kω t) + ψsk sin(kω t)

For constant term we have σ0 = −ψ0. For k > 0 we denote ψk = (ψck, ψ
s
k)
>. The

solution σk(t) of (5.10) is given by

σk(t) = exp(kφ t)σk(0) =

(
σck(0) cos(kω t) + σsk(0) sin(kω t)

−σsk(0) cos(kω t) + σck(0) sin(kω t)

)
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where we set σk(0) = (σck(0), σsk(0))>. Also we have

M>k σk(t) = g

(
σck(0)kω − σsk(0)g

(kω)2 + g2

)
cos(kω t) + g

(
σck(0)g + σsk(0)kω

(kω)2 + g2

)
sin(kω t) .

By identifying all the terms of the two series ψ(w(t)) and gM>k σk(t) we get

g
σck(0)kω − σsk(0)g

(kω)2 + g2
= ψck , g

σck(0)g + σsk(0)kω

(kω)2 + g2
= ψsk ,

which can be written in the compact notation

g

(kω)2 + g2

(
kω −g
g kω

)(
σck(0)

σsk(0)

)
=

(
ψck
ψsk

)
.

As a consequence we see that the σ◦k claimed in the statement are given by

σ◦k =
1

g

(
kω g

−g kω

)
ψk

In order to prove that σ◦ ∈ `2 and that the bound is independent of µ, note that

∞∑
k=1

|σ◦k|2 ≤
∞∑
k=1

1

g2

∣∣∣∣∣
(
kω g

−g kω

)∣∣∣∣∣
2

|ψk|2 ≤ 2

∞∑
k=1

((
kω

g

)2

+ 1

)
|ψk|2

Since t → ψ(w(t)) is C1, dψ(w(t))
dt is square integrable and there exists real numbers

d1 > 0, d2 > 0 such that

∞∑
k=1

|ψk|2 ≤ d1

∞∑
k=1

k2 |ψk|2 ≤ d2

Therefore we can claim there exists a µ > 0 such that

∞∑
k=1

|σ◦k|2 ≤ 2

∞∑
k=1

((
kω

g

)2

+ 1

)
|ψk|2 ≤ 2

(
ω

g

)2

d2 + 2d1

The result follows by choosing µ = ψ2
0 + 2(d1 + ω2d2).

Finally, we recall the following converse Lyapunov theorem formulated in Marconi

et al. (2007). In the following theorem we use the notation

|p|B/D =

(
1 +

1

|p|∂ clD

)
|p|B .

165



5.1. Asymptotic regulation in the infinite dimensional case

Theorem 5.2 (Marconi et al. (2007), Theorem 4). Under Assumption 5.1, there exists a
continuous function V : W ×D → R satisfying the following properties

(a) there exists class-K∞ functions α(·) and ᾱ(·) such that

α(|(w, z)|B/D) ≤ V ((w, z)) ≤ ᾱ(|(w, z)|B/D) ∀ (w, z) ∈W ×D

(b) there exists d > 0 such that

D+V ((w, z)) ≤ −d V ((w, z)) ∀ (w, z) ∈W ×D (5.11)

(c) for all a > 0 there exists La > 0 such that for all (w1, z1), (w2, z2) ∈ W × D such that
|(w1, z1)|B/D ≤ α and |(w2, z2)|B/D ≤ α, the following holds

|V (w1, z1)− V (w2, z2)| ≤ Lα|(w1, z1)− (w2, z2)| .

If B is also locally exponentially stable for (5.2), then property (a) holds with α(·) and ᾱ(·)
linear near the origin.

With the above tools at hand, we are now in the position to give the proof of the

Theorem 5.1.

Proof. Pick any C1 T -periodic function t 7→ w(t) in W and let π(w) be defined by

Assumption 5.1 and σk(t) be defined according to Lemma 5.2. Consider now the

following change of coordinates

ξk := ηk −Mke− σk

by which we obtain the following closed-loop system

ż = F (z) +N(w, z, e)

ξ̇k = kφ ξk −Mkq̃(z, e)− gMk y

ė = q̃(z, e)− g (e− y)

(5.12)
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where

F (z) := f(w, z, 0) ,

N(z, e) := f(w, z, e)− f(w, z, 0) ,

q̃(z, e) := q(w, z, e) + g
∑

kM
>
k σk = q(w, z, e)− q(w, π(t), 0) ,

y :=
∑

kM
>
k ξk ,

(5.13)

Note that
N(z, e) = 0 ∀ (z, e) ∈ D × {0} ,

q̃(z, e) = 0 ∀ (z, e) ∈ B × {0} .

Moreover, we can write

q̃(z, e) = pe(z, e) + pz(z) ,

pe(z, e) = q(w, z, e)− q(w, z, 0) , pe(z, e) = 0 ∀ (z, e) ∈ D × {0},

pz(z) = q(w, z, 0)− q(w, π(t), 0) , pz(z) = 0 ∀ (z, e) ∈ B.

The initial conditions (z(0), x(0), ξk(0)) now ranges in a compact set Z×E×Ξ where

Ξ has to be defined. For this, let ê and q̂ be the positive real numbers defined as

ê := max
e∈E
|e| , q̂ := max

w∈W, z∈Z
|q(w, z, 0)| .

In view of Lemma 5.2, for any q̂ we can find a positive real number µ̂ such that

max
{σk∈`2 : g

∑
kM

>
k σk ≤ q̂}

∣∣∣∣∣
∞∑
k=0

σ>k σk

∣∣∣∣∣ ≤ µ̂ .

Therefore, for any g ≥ 1, by construction the initial conditions of ξk(0) ranges inside

the compact set Ξ defined as

Ξ := {ξk ∈ `2 :
∑
k

ξ>k ξk ≤ 2(Mê2 + µ̂)} .
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5.1. Asymptotic regulation in the infinite dimensional case

Now let suppose z and w evolve in some given compact. As a consequence we have

|pz(z)| = |q(w, z, 0)− q(w, π(t), 0)|

≤ Lq|z − π(w(t))|

≤ Lq
(
|z − π(w0)|+ |π(w0)− π(w(t))|

)
∀w0 ∈W

≤ Lq
(
|z − π(w0)|+ Lπ|w0 − w(t)|

)
∀w0 ∈W

which gives

|pz(z)| ≤ Lq(1 + Lπ)
(
|z − π(w0)|+ |w0 − w(t)|

)
∀w0 ∈W (5.14)

Moreover, since

|(w, z)|B = inf
w0∈W

|z − π(w0)|+ |w − w0|

and (5.14) holds for all w0, we get

|pz(z, t)| ≤ Lq(1 + Lπ)|(w, z)|B

As a consequence there exists a a class-K function β, linear around the origin, which

satisfies

|p(z)| ≤ β(|(w, z)|B/D) , ∀ (w, z) ∈W ×D .

Moreover, we denote with b positive real number defined as

b :=
dβ(x)

dx

∣∣∣∣
x=0

.

Now let the function κ be defined as

κ(x) :=
β2(α−1(

√
x))

x
.

Since the function α is linear around the origin we can denote with a the real number

defined as

a :=
dα(x)

dx

∣∣∣∣
x=0

.

As a consequence the function κ is C1 and well defined around the origin since

lim
x→0+

κ(x) = lim
x→0+

β2(α−1(
√
x))

x
=

b2

a2
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With d the positive real number given by Theorem 5.2, let γ : R→ R≥0 be a class-K
function satisfying

γ′(0) ≥ 2 b2

d a2
, γ′(|x|) ≥ 2

d
κ(|x|) ∀ x ∈ R

Now let V be the function given by Theorem 5.2 and let c be the positive real number

such that W × Z ⊂ V −1([0, c]). This number always exists in view of property (a) of

Theorem 5.2. Finally consider the Lyapunov function U defined as

U(w, z, e, ξk) := γ(V 2(w, z)) + e2 +
∑
k

ξ>k ξk .

For any a > 0, we denote with Ωa the corresponding Lyapunov sub-level set of U ,

namely

Ωa := {(w, z, e, ξk) ∈ Rn × R× `2 : γ(V 2(w, z)) + e2 +
∑
k

ξ>k ξk ≤ a} .

By construction (W × Z × E × Ξ) ⊂ Ωĉ with ĉ := γ(c2) + (2M + 1)ê2 + µ̂. Let Lq, n̂

and LV be the positive real number such that

|pe(z, e)| ≤ Lq|e| ∀ (z, e) ∈ Ωĉ ,

|N(z, e)| ≤ n̂|e| ∀ (z, e) ∈ Ωĉ ,

|V (w1, z1)− V (w2, z2)| ≤ LV |(w1, z1)− (w2, z2)| ∀ (w1, z1), (w2, z2) ∈ Ωĉ ,

(5.15)

Now consider any solution (w(t), z(t), e(t), ξk(t)) starting from a point in (W × Z ×
E × Ξ) and let [0, T1] be its right maximal interval of definition when restricted to

take values in the open set int (Ωĉ). Note that

D+V (w, z, e) ≤ n̂LV |e| − dV (w, z) .

As a consequence, by taking the Dini derivatives of U along the solution w(t), z(t),
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5.1. Asymptotic regulation in the infinite dimensional case

e(t), ξk(t)) we get

D+ U ≤ −2d γ′(V 2(w, z))V 2(w, z) + 2γ′(V 2(w, z))V (w, z)n̂LV |e|

+2e(q̃(z, e) + gy − ge) + 2
∑

k ξ
>
k (kφξk −Mk (q̃(z, e) + gy))

≤ −2d γ′(V 2(w, z))V 2(w, z) + 2γ′(V 2(w, z))V (w, z)n̂LV |e|

+2epz(z) + 2epe(z, e)− 2g e2 + 2ge y

−2gy2 − 2pz(z) y − 2pe(z, e)y

where we obtain, after completing the squares,

D+U ≤ −1

2

(
d γ′(V 2(w, z))V 2(w, z)− g e2

)
+ P1(w, z) + P2(e) + P3(y)

where
P1(w, z) = −dγ′(V 2(w, z))V 2(w, z) + 2pz(w, z)

2

P2(e) = −
(

1

2
g − 1− 3Lq − 2γ̂

n̂2 L2
V

d

)
e2

P3(y) = − (g − 1− Lq) y2

with

γ̂ := max
(w,z)∈Ωĉ

∣∣γ′(V 2(w, z))
∣∣ .

By definition of the function γ we have P1(z) ≤ 0 for all z ∈ Ωĉ. Indeed, by con-

struction we have

dγ′(V 2(w, z))V 2(w, z) ≥ dγ′(α2(|w, z|B/D)) α2(|w, z|B/D)

≥ 2β2(|w, z|B/D)

≥ 2|pz(z)|2

for all w, z ∈ W × Ωĉ. Concerning the terms P2 and P3 we get that P2(e) ≤ 0 and

P3(y) ≤ 0 for all e, y ∈ R by choosing any g ≥ g? with

g? := 2 + 6Lq + 4γ̂
n̂2 L2

V

d
.

170



Chapter 5. Structurally Robust Output Regulation for Minimum Phase Systems

With g? fixed above, pick any g ≥ g?. As a consequence we get

D+U ≤ −1

2

(
d V 2(w, z)− g e2

)
which implies

U(t) ≤ U(0) ∀ t ∈ [0, T1] .

This says that the solution (w(t), z(t), e(t), ξk(t)) remains in Ωĉ. So, from its defi-

nition T1 is infinite. Note that by construction any sub-level set Ωa with a ≤ ĉ is

compact and bounded. As a consequence the solution is bounded (eventually in `2

sense) for all t ≥ 0. The above gives, along solutions

lim
T→∞

∫ T

0

1

2

(
d V 2(w(t), z(t)) + g e(t)2

)
dt ≤ U(0)

On the left hand side each term in the integrand is a function with non negative

values and since e(t) and z(t) remain in a bounded compact set, they are uniformly

continuous. Hence by applying Barbalat’s lemma we get

lim
t→∞
|e(t)| = 0 , lim

t→∞
|(w(t), z(t))|B/D = 0 ,

which concludes the proof.

The structural robustness property of regulator (5.5) is a direct consequence of the

fact that the asymptotic regulation is achieved for any particular periodic solution

w(t) and the design is structurally independent on it.

Remarks

• We stress that the proposed regulator (5.5) is structurally robust in the sense that

it solves the asymptotic output regulation problem for a whole family of functions

satisfying the previous assumptions. It is worth noticing in fact that the only in-

formation of the plant required for the design of the dynamic regulator (5.5) is

the knowledge of ω, and the only degree of freedom is the high-gain parameter g,

which is the key point for the sake of robustness. In this regard, with respect to the

design procedures commonly proposed in literature (see Isidori et al. (2012), Mar-

coni et al. (2007), Byrnes and Isidori (2004), Seshagiri and Khalil (2005), Memon

and Khalil (2010)), the internal-model does not need to be re-designed if the func-

tions f, q change structure.

• A key point for the issue of robustness, as already highlighted in the linear frame-

work in Section 4.1, is the non-resonance condition. In the linear framework this
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5.1. Asymptotic regulation in the infinite dimensional case

is stated by Assumption 4.3. whereas in the more general nonlinear framework

considered in Section 4.4 this is stated by Assumption 4.4 by considering the lin-

earization of the system around the origin. The latter condition is sufficient as long

as the periodic solution is close to zero.

In this chapter the non-resonance condition is verified under Assumption 5.1. To

show this, consider the system

ż = f(w(t), z, ε δ(t)) (5.16)

where δ(t) is any C1 T -periodic function satisfying 1
T

∫ T
0 |δ(t)|

2dt = 1 and ε is a

small real number. When ε = 0, for any C1 T -periodic function w(t) ∈ W , the

system (5.16) admits a T -periodic solution π(w(t)) which is exponentially stable.

As a consequence, by combining the results of Theorem 1.1 in Hauser and Chung

(1994) and the Theorems 8.4.1 and 8.4.2 in Miller and Michel (1982) one can show

that system (5.16) has an (asymptotically stable) periodic solution for any |ε| small

enough, namely the non-resonance condition is verified.

• With respect to result of Chapter 4 we do not ask for any restriction on the mag-

nitude of the exogenous signal w(t) introduced at the beginning of this section

(in particular, the minimum value of g depends on the set W where w(t) evolves,

which may be arbitrarily large, provided that the Assumption 5.1 holds).

In conclusion, we have been able to show that it is possible to solve, with the proposed

design, the semi-global structurally robust asymptotic output regulation problem for

a class of minimum phase nonlinear systems, under the same assumptions commonly

made in literature (see, in this respect, Theorem 3 in Marconi et al. (2007)).
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5.2 Simulation Results

We consider the following minimum-phase nonlinear systems

ż = f(w, z, e)

ė = q(w, z, e) + u
(5.17)

wtth z ∈ R, e ∈ R, u ∈ R and nominal functions

f(0, z, e) = −z + z2e ,

q(0, z, e) = z + e .

The control law is chosen as

u = −ge+ gv

v =
L∑
k=0

M>k (ηk −Mke)
(5.18)

In the simulations we considered the case in which g = 4 and the initial conditions are

chosen as (z(0), e(0)) = (−
√

2,
√

2). The exogenous signal w is generated as

w(t) = sinh

(
4∑
i=1

ai sin(ωit+ φi)

)

with
a1 = 0.25 , ω1 = ω , φ1 = 0.1 ,

a2 = 0.25 , ω2 = 2ω , φ2 = 0.2 ,

a3 = 0.25 , ω3 = 3ω , φ3 = −0.4 ,

a4 = 0.25 , ω4 = 5ω , φ4 = 0.3 ,

and ω = 1. The functions f and q are chosen as

f(w, z, e) = −z + z2e+ w − wz ,
q(w, z, e) = z + e− w + 0.3w2 .

with the friend defined as

π̇(t) = f(w, π(t), 0)

ψ(w) = −q(w(t), π(t), 0)

Evidently, we cannot implement the regulator of Theorem 5.1 but we can implement

only dynamic regulators with finite dimension (namely a finite number L of oscillators).

It has been verified that with g ≥ 1 fixed the trajectories of the closed-loop system re-
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main bounded for any choice of L (numerical simulations have been done up to L = 50).

Figure 5.1 a) shows the spectrum of the friend ψ(t). It contains harmonics at frequen-

cies f = 0Hz, 1Hz, 2Hz, 3Hz, 4Hz, 5Hz and higher harmonics. Figure 5.1 b) shows the

spectrum of the output e when the internal model is disconnected, namely v = 0. As

expected it contains harmonics at all frequencies of the friend. Figure 5.1 c) shows the

spectrum of the output e in presence of an internal model with L = 2. As expected by

the result of Proposition 4.1 the frequencies f = 0Hz, 1Hz, 2Hz disappear from the spec-

trum. The Figure 5.2 shows a) the steady-state behaviour of the control input u(t) when

the internal model is not present, b) when L = 2, and c) when L = 5. It can be easily

seen that by augmenting the number of harmonics the control input u(t) approximates

better and better the correct steady-state behaviour of the friend ψ(t). Finally in Table

5.1 we show how the L2 norm and the L∞ norm of the error change in the aforemen-

tioned cases. Table 5.1 confirms the result of Proposition 4.1, namely by augmenting

the number of oscillators, the L2 norm of the output reduces. In conclusion, the simula-

tions suggest that by implementing an internal model of infinite dimension, asymptotic

regulation is achieved, as expected by Theorem 5.1.
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0

0.02

0.04
c)

Figure 5.1: Plot a) shows the spectrum of the friend ψ(t). Plot b) shows the spectrum
of the output steady-state e(t) when there is no internal model (namely v = 0). Plot c)
shows the spectrum of the output steady-state e(t) when the dimension of the internal
model is L = 2.

174



Chapter 5. Structurally Robust Output Regulation for Minimum Phase Systems
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Figure 5.2: Behaviours of the friend and the control input. Black line: steady-state of
the friend ψ(t). Red line: steady-state of the control input u(t) when a) there is no
internal model (namely v = 0), b) the dimension of the internal model is L = 2 , c) the
dimension of the internal model is L = 5 .

v = 0 ‖e‖2 = 1.0266 ‖e‖∞ = 0.0864

L = 2 ‖e‖2 = 0.6030 ‖e‖∞ = 0.0224

L = 5 ‖e‖2 = 0.1536 ‖e‖∞ = 0.0021

Table 5.1: L2 norm and L∞ norm of the error.
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Conclusion

The structurally robust output regulation problem in presence of periodic distur-

bance/references for nonlinear systems has been investigated. The purpose of

the novel methodology introduced in Chapter 4 is to extend the linear design

proposed by Francis and Wonham in the 70’s to nonlinear systems. A crucial observa-

tion is that in the nonlinear case the internal model must not only be able to generate

inputs corresponding to the trajectories of the system, but also a number of higher or-

der nonlinear deformations. As a consequence the main idea of the proposed approach

is to process the regulated output with a bench of linear oscillators whose frequencies

correspond with the basic frequency of the disturbance and its multiples. Forwarding

technique is proposed as design tool to stabilize the cascade system - internal model.

This design is made for the unforced nominal system (namely when the disturbance is

not acting and in absence of parameter uncertainties) and guarantees the origin to be

locally exponentially stable. As a consequence, if the disturbance is small enough, the

trajectories of the forced nominal closed loop system (namely when the disturbance is

acting) are uniquely defined, bounded and periodic with the same period of the distur-

bance. It has been shown that the effect of each oscillator is to annihilate, in the output’s

spectrum, the Fourier coefficient corresponding to the oscillator frequency. By adding

enough oscillators it is then possible to make arbitrarily small the L2 norm of the regu-

lated output and thus obtaining practical output regulation. Since by adding oscillators

in the internal model we are increasing the number of poles in the imaginary axes, we

may reduce the robustness margin with respect to the disturbance. As a consequence

the maximum disturbance magnitude allowed may decrease while increasing the num-

ber of oscillators. We refer to this phenomenon by saying that we solve the weak practical
output regulation problem.
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The proposed approach require the knowledge of the unforced nominal model, but

because of exponential stability, persistence of equilibrium under model uncertainties

of the unforced closed loop system is preserved. As a consequence also existence of peri-

odic solutions for the forced perturbed closed loop system is guaranteed and structurally
robust weak practical output regulation is achieved. The proposed methodology can be ap-

plied to multi-input multi-output (with a number of regulated outputs smaller or equal

than the number of control inputs) nonlinear systems, is robust to structural uncertain-

ties, and does not require any additional (restrictive) assumption such as minimum-

phase, relative degree of normal form.

In Chapter 5 this approach is specialized to a single-input single-output nonlinear

system with unitary relative degree which is strongly minimum-phase namely its zero-

dynamics are exponentially stable. It has been shown that with an internal model (not

implementable) embedding an infinite number of oscillators, structurally robust asymp-
totic output regulation is achieved. Evidently, when the number of oscillators is finite,

only practical regulation is achieved. A general framework where these assumptions are

relaxed (for instance by considering the class of minimum-phase nonlinear systems with

a relative degree possibly higher than one) is a first extension to be studied.

The research along this novel methodology is far from being concluded and only

a first step has been done. The lack of the existence of a control Lyapunov function

with forwarding technique does not help in understanding the aforementioned phe-

nomenon of reducing of disturbance magnitude when augmenting the number of os-

cillators, although the minimum-phase case showed that under stronger conditions this

phenomenon can be avoided. An interesting development is the case of periodic distur-

bances uncertain in the period. Adaptive techniques could be adopted in this framework

in order to design an internal model which embeds a bench of oscillators with a basic

frequency that may be adapted to the nominal one in order to reduce the norm of the

error.
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A
Technical Lemmas for Block

Tridiagonal Matrices

The following appendix is devoted to the study of stability of matrices possessing a

particular block tridiagonal structure. Throughout this section we will use the following

notation. The matrices A ∈ R2×2, B ∈ R2×1, Bi ∈ Ri×1, and C ∈ R1×2 are defined as

A :=

(
0 1

0 0

)
, B :=

(
0

1

)
, C :=

(
1 0

)
, Bi :=

(
0 0 . . . 0 1

)>
Given the coefficients ci1 and ci2, i > 0 we define the matrix Ki = (ci1, ci2)> and the

following matrices Ei ∈ R2×2, Qi ∈ R2×2 and N ∈ R2×2 as

Ei := A−KiC =

(
−ci1 1

−ci2 0

)
, Qi := KiB

> =

(
0 ci1

0 ci2

)
, N := BB> =

(
0 0

0 1

)
.

We define in a recursive manner the matrices Mi as

M1 := E1 , Mi :=

(
Mi−1 N̄i

Q̄i Ei

)
, i > 1,
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A.1. Eigenvalues assignment

with N̄i := B2(i−1)B
>, Q̄i := KiB

>
2(i−1). The matrices Mi are characterized by a block-

tridiagonal structure

Mi :=



E1 N 0 . . . . . . 0

Q2 E2 N
.. .

...

0
. . .

. . .
. . .

. . .
...

...
. . . Qj Ej N

.. .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qi−1 Ei−1 N

0 . . . . . . . . . 0 Qi Ei


. (A.1)

We denote with M the matrix Mi of dimension 2n− 2.

A.1 Eigenvalues assignment

Lemma A.1. Let P(λ) = λ2n−2 + m1λ
2n−3 + ... + m2n−3λ + m2n−2 be an arbitrary Hur-

witz polynomial. There exists a choice of positive (ci1, ci2), i = 1, . . . , n − 1, such that the
characteristic polynomial of M coincides with P(λ).

Proof. The proof of this Lemma is done givin a constructive procedure, namely

we show a procedure to assign the eigenvalues of M given an arbitrary Hurwitz

polynomial for the characteristic polynomial of M .

Procedure to assign the eigenvalues of M Consider the matrices Mi ∈ R2i−2 ×
R2i−2 recursively defined as

M1 = E1 , Mi =

(
Mi−1 N̄i

Q̄i Ei

)
, i = 2, . . . , n− 1

where N̄i = col(02(i−2)×2, N), Q̄i = (02(i−2)×2, Qi) and Ei, i = 1, . . . , n − 1, Qi,

i = 2, . . . , n − 1, and N are defined as in the definition of M . Note that M =

Mn−1 and, by letting Ki = (ci1 ci2)T , note that Qi and Ei depend on Ki, while Mi

depends on K1, . . . ,Ki. We let PMi(λ) = λ2i + mi
1λ

2i−1 + . . . + mi
2i−1λ + mi

2i and

PMi−1(λ) = λ2i−2 +mi−1
1 λ2i−3 + . . .+mi−1

2i−3λ+mi−1
2i−2 the characteristic polynomials

of Mi and Mi−1, and we use the notation mi
[1,j] = col(mi

1, . . . ,m
i
j) ∈ Rj , mi−1

[1,k] =

col(mi−1
1 , . . . ,mi−1

k ) ∈ Rk for some j ≤ 2i and k ≤ 2i− 2.

The characteristic polynomial of PMi(λ) can be deduced by decomposing (λI −Mi)
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as follows

PMi(λ) = det



λI −Mi−2
0 0

0 −1

0 −c(i−1)1

0 −c(i−1)2

λ+ c(i−1)1 −1

c(i−1)2 λ

0 0

0 −1

0 −ci1
0 −ci2

λ+ ci1 −1

ci2 λ


.

By expanding the determinant with respect to the last column we obtain

PMi(λ) = λ(λ+ ci1)PMi−1(λ)

+ci2
[
PMi−1(λ)− λ(λ+ c(i−1)1)PMi−2(λ)

]
.

Hence, simple, although lengthy, computations show that the coefficients mi
[1,2i] of

PMi(λ) and mi−1
[1,2i−2] of PMi−1(λ) are related as follow

mi
[1,2i−2] = (I2i−2 + ci1F )mi−1

[1,2i−2] + ci1 v1

mi
2i−1 = ci1m

i−1
2i−2

mi
2i = ci2m

i−1
2i−2

(A.2)

where v1 ∈ R2i−2 is the zero vector with a 1 in the first position, and F is the zero

matrix with the identity matrix I2i−3 in the lower left block, namely

F =

(
01×(2i−3) 0

I2i−3 0(2i−3)×1

)
(2i−2)×(2i−2)

.

Note that (I2i−2 + ci1F ) is invertible for all ci1. Hence, from the first equation of

(A.2), one obtains

mi−1
[1,2i−2] = Λ(mi

[1,2i−2], ci1)

where

Λ(mi
[1,2i−2], ci1) = (I2i−2 + ci1F )−1 (mi

[1,2i−2] − ci1 v1 ) ,

which, embedded in the second and in the third of (A.2), yields the relations

σ1(mi
[1,2i−1], ci1) = 0 , ci2 = σ2(mi

[1,2i], ci1)
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A.1. Eigenvalues assignment

where
σ1(mi

[1,2i−1], ci1) = ci1 vT2 Λ(mi
[1,2i−2], ci1)−mi

2i−1

σ2(mi
[1,2i], ci1) =

mi
2i

vT2 Λ(mi
[1,2i−2], ci1)

in which v2 ∈ R2i−2 is the zero vector with a 1 in the last position. We observe that

σ1(·, ·) is a polynomial in ci1 of odd order 2i− 1. As a consequence, for any mi
[1,2i−1]

there always exists at least one real ci1 fulfilling σ1(mi
[1,2i−1], ci1) = 0.

The previous results can be used to set up a "basic assignment algorithm" that is

then used iteratively to solve the eigenvalues assignment of the matrix M .

Basic assignment algorithm. Let P̄i(λ) = λ2i + m̄i
1λ

2i−1 + . . . + m̄i
2i be an arbitrary

polynomial. Then, there exist a real K̄i = (c̄i1, c̄i2)T and a polynomial P̄i−1(λ) =

λ2i−1 + m̄i−1
1 λ2i−2 + . . .+ m̄i−1

2i−2 such that

Ki = K̄i

PMi−1 = P̄i−1(λ)
⇒ PMi(λ) = P̄i(λ) .

As a matter of fact, by letting m̄i
[1,2i−1] the coefficients of P̄i(λ), it is possible to take

c̄i1 as a real solution of σ1(m̄i
[1,2i−1], ci1) = 0, c̄i2 = σ2(m̄i

[1,2i], c̄i1), and to take the

coefficients m̄i−1
[1,2i−2] of the polynomial P̄i−1(λ) as m̄i−1

[1,2i−2] = Λ(m̄i
[1,2i−2], c̄i1).

With the previous algorithm in hand, the design of K1, . . . ,Kn−1 to assign an arbi-

trary characteristic polynomial to M , can be then immediately done by the following

steps:

1) With P̄n−1(λ) the desired characteristic polynomial ofM , compute (K̄n−1, P̄n−2(λ))

by running the basic assignment algorithm with i = n− 1.

2) Compute iteratively (K̄i, P̄i−1(λ)) by running the basic assignment algorithm for

i = n− 2, . . . , 2.

3) Compute K̄1 = (c̄i1, c̄i2)T so that λ2 + ci1λ+ ci2 = P̄1(λ).

The procedure is summarized in the forthcoming Matlab code.
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%% LOW POWER HIGH GAIN OBSERVER

%Procedure to find the coefficients of the observer,

%given a chosen set of eigenvalues.

%INITIALIZATION

n = ; %Dimension of the system. Set n>1.

dim = 2*n-2; %Dimension of the observer.

lambda_M = zeros(dim,1); %Eigenvalues of the observer.

c = zeros(dim,1); %Coefficients of the observer.

ell = 1; %High-gain parameter. Put 1 as default

%EXAMPLE TO SET THE EIGENVALUES (SKIP IF OTHER CHOICE IS MADE)

%In the following code we set all the eigenvalues

%between v_min and v_max with a constant step.

v_min = -1; % set a negative number

v_max = -1.9; % set a negative number smaller then v_min

step = (abs(v_max)-abs(v_min))/(dim-1);

lambda_M(1) = v_min;

for j = 2: dim

lambda_M(j) = lambda_M(j-1)-step;

end

%PROCEDURE TO FIND COEFFICIENTS

p = poly(lambda_M);

m = zeros(dim,1);

for j = 1 : dim

m(j) = p(j+1);

end

for j = 1 : dim

m(j) = p(j+1);

end

if n == 2

c(1) = m(1);

c(2) = m(2);

elseif n > 2

for iter = 1: n-2;

k = dim-2*iter+2;

pp = zeros(k,1);

pp(1) = 1;

for j = 2 : k

pp(j) = (-1)^(j-1)*m(j-1);

end

r = roots(pp);

c(k-1)=0;

epsilon = 1e-4;

for j=1:k-1

if abs(imag(r(j))) < epsilon

c(k-1) = r(j);

end
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end

c(k) = c(k-1)*m(k)/m(k-1);

if iter < n-2

t = c(k-1);

T = eye(k-2);

for j=2:k-2

T_j = [zeros(j-1,k-2); eye(k-1-j) zeros(k-1-j,j-1)];

T = T + (-1)^(j-1)*t^(j-1)*T_j;

end

new_m = T*(m(1:k-2,1)-[c(k-1); zeros(k-3,1)]);

m = new_m;

else

c(k-3) = m(1)-c(k-1);

c(k-2) = m(2) - c(k-1)*c(k-3);

end

end

end

%END PROCEDURE TO FIND COEFFICIENTS

%CONSTRUCTION OF THE MATRIX M

%Initialization

A2 = [0 1; 0 0];

C2 = [1 0];

H2 = [0 1];

D2 = diag([ell, ell^2]);

N2 = [0 0; 0 1];

K = zeros(2,n-1);

Q = zeros(2,dim);

E = zeros(2,dim);

M = zeros(dim,dim);

%Fill the matrices K,E,Q

for j = 1 : n-1

K(:,j) = [c(2*j-1); c(2*j)];

E(:,2*j-1:2*j) = A2 - D2*K(:,j)*C2;

Q(:,2*j-1:2*j) = D2*K(:,j)*H2;

end

%Fill the matrix M

for j = 1 : n-1

M(2*j-1:2*j,2*j-1:2*j) = E(:,2*j-1:2*j);

if j< n-1

M(2*j-1:2*j,2*(j+1)-1:2*(j+1)) = N2;

end

if j> 1

M(2*j-1:2*j,2*(j-1)-1:2*(j-1)) = Q(:,2*j-1:2*j);

end

end
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A.2 Admissible coefficients

Let Gi(iω) and Hi(iω) be the transfer functions defined as

Gi(iω) := B>i (iωI2i −Mi)
−1Bi ,

Hi(iω) := B>(iωI2 − Ei)−1Ki .
(A.3)

and let γi and βi their H∞ gains, namely

γi := max
ω∈R
|Gi(iω)| ,

βi := max
ω∈R
|Hi(iω)| .

(A.4)

Definition A.1. The coefficients (ci1, ci2), i = 1, . . . , n− 1, are said to be admissible if

• Mi is Hurwitz for any i = 1, . . . , n− 1;

• γi · βi+1 < 1, for i = 1, . . . , n− 2.

The set of admissible coefficients is denoted by Ga.

Lemma A.2. The set Ga is non-empty.

We show constructively a recursive procedure to assign the coefficients ci1, ci2 which

satisfies the Definition A.1.

i=1) Let c11 and c12 be any positive real numbers.

i>1) For i > 1, let ci1 = c(i−1)1, and let ci2 > 0 be chosen such that ci2 <
ci1
γi−1

, with

γi−1 defined as (A.4).

Proof. To verify that this choice satisfies the Definition A.1 let consider first the

case i = 1. By choosing c11 > 0 and c12 > 0 the matrix E1 is Hurwitz, and so is M1.

Now consider the case i > 1 and the following two systems ẋi−1

yi−1

=

=

Mi−1xi−1 +B2(i−1)ui−1

B>2(i−1)xi−1 żi

yi

=

=

Eizi +Kiui

B>zi

and let denote xi = (xi−1, zi). Let assume the matrix Mi−1 is Hurwitz and note

that the matrix Ei is Hurwitz for any choice of positive real numbers ci1, ci2. The

previous systems can be represented by their transfer functions (A.3) withH∞ gains
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(A.4). Note that

Hi(iω) =
iωci2

(iω)2 + ci1iω + ci2
, βi =

ci2
ci1

.

By interconnecting the two subsystems with ui−1 = yi and ui = y−1, we obtain a

closed loop system described by

ẋi = Mixi .

The choice of ci2 of the Step i satisfies the small-gain theorem (see, for instance,

Isidori (1999))

γi−1 · βi < 1

and therefore the interconnection (xi−1, zi) is asymptotically stable and Mi is Hur-

witz.

Note that, by using MATLAB, the values of γi can be easily calculated with the fol-

lowing command:

getPeakGain

Lemma A.3. Let the coefficients ci1, ci2, i = 1, . . . , n be admissible according to Definition
A.1 and let the matrix Λi(t) be defined as

Λi(t) :=

(
Mi−1 ρ(t)N̄i−1

Q̄i Ei

)

with ρ(t) ∈ [0, 1] any continuous function for all t ≥ 0. Then, for any i = 1, . . . , n − 1, the
origin of the system

ẋ = Λi(t)x (A.5)

is exponentially stablle.

Proof. The system (A.5) can be described as the interconnection of the system

ẋi−1 = Mi−1xi−1 + ρ(t)B2(i−1)ui−1

yi−1 = B>2(i−1)xi−1

with
żi = Eizi +Kiui

yi = B>zi

when ui−1 = yi and ui = y−1. The H∞ gain of the first system is given by ρ(t)γi−1
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whereas the H∞ gain of the second system is given by βi. By assumptions we have

ρ(t)γi−1 βi < 1

and therefore the proof concludes by applying the small-gain theorem in Dragan

(1993).

Lemma A.4. Let consider the system

ẋ = kA(t)x+
1

kr
Bu(t) . (A.6)

with x ∈ Rn and for some r ≥ 0 and any k ≥ 1. Suppose that

(i) the origin of the system ẋ(t) = A(t)x(t) is globally exponentially stable;

(ii) ‖u(·)‖∞ <∞ .

Then for any compact set X ⊂ Rn, real numbers T > 0 and ε > 0 there exists k ≥ 1 such
that, for any k ≥ k and for any initial condition x(0) ∈ X

|kr x(t)| ≤ ε ∀ t ≥ T .

Proof. Let denote with Φ(t, s) the transition matrix of A(t). As consequence of

assumption (i) there exist (see Theorem 6.7, Rugh (1996)) µ > 0 and λ > 0 satisfying

|Φ(t, t0))| ≤ µ exp(λ (t0 − t))

for any t ≥ 0, t0 ≥ 0. Let denote Φk(t, s) the transition matrix of kA(t). We have

Φk(t, s) = Φ(t, s)k , |Φk(t, t0))| ≤ µ exp(λ k (t0 − t)) .

The solution of (A.6) is given by

x(t) = Φk(t, t0)x(t0) +
1

kr

∫ t

t0

Φk(t, s)Bu(s)ds

and therefore the solution x(t) starting from t0 = 0 satisfies

|x(t)| ≤ µ exp(−λ k t)|x(0)|+ 1

kr

∫ t

0
Φk(t, s)Bu(s)ds

≤ µ exp(−λ k t)|x(0)|+ 1

kr

∫ t

0
µ exp(−λk(t− s)) ds B ‖u(·)‖∞
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≤ µ exp(−λ k t)|x(0)|+ 1

kr
µ

λk
B ‖u(·)‖∞

By noting that

lim
k→∞

kr µ exp(−λ k T )|x(0)| = 0

for any T > 0, the proof concludes by choosing k satisfying

kr µ exp(−λ k T ) max
x∈X
|x(0)| < ε

2
,

µ

λ k
|B| ‖u(·)‖∞ <

ε

2

A.3 Examples

We give here some examples in which we assign the coefficients according to Lemma

A.1. The numerical results are computed by using the matlab code given at the end of

Section A.1. It can be verified that these coefficients are also admissible according to

Definition A.1.

n dim(M)
σi(PM (λ))

i = 1, . . . , 2n− 2

(ci1, ci2)

i = 1, . . . , n− 1

3 4 −(0.4 + 0.2 (i− 1))
ci1 = 1.4

ci2 =
{

0.88, 0.2182
}

3 4 −(1 + (i− 1))
ci1 = 5

ci2 =
{

10, 2.4
}

4 6 −(1 + 0.2 (i− 1))
ci1 = 3

ci2 =
{

6.4, 2.131, 0.7095
}

5 8 −(1 + 0.2(i− 1))

ci1 = 3.4

ci2 =
{

10.72, 4.0137,

1.7810, 0.6667
}

6 10 −(1 + 0.1 (i− 1))

ci1 = 2.9

ci2 =
{

10.1, 4.0387,

2.0187, 1.0090, 0.4035
}

Table A.1: Examples of coefficients. We denote with σ(PM (λ)) the spectrum of the
characteristic polynomial P(λ). We denote with σi(PM (λ)) the i-th eigenvalue of the
characteristic polynomial PM (λ).
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B
Technical Lemmas for Time-Varying

Block Tridiagonal Matrices

The following appendix is devoted to the study of stability of time-varying matrices

possessing a particular block tridiagonal structure. We define the matrices Ei(t) ∈ R2×2,

Qi ∈ R2×2, and Ni(t) ∈ R2×2 as

Ei(t) =

(
−ci1bi(t) ai(t)

−ci2bi(t) 0

)
, Qi =

(
0 ci1

0 ci2

)
, Ni(t) =

(
0 0

0 ai(t)

)
,

for 1 ≤ i ≤ n − 1, where ai(t) and bi(t) are positive for all 1 ≤ i ≤ n − 1 and t ≥ 0,

and (ci1, ci2) are positive coefficients to be chosen. We define recursively the matrices

Mi(t) ∈ R(2i)×(2i) as

M1(t) = En−1(t) ,

Mi+1(t) =

(
En−i−1(t) N̄n−i(t)

Q̄n−i Mi(t)

)
, i = 1, . . . , n− 2 ,
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where N̄n−i(t) ∈ R2×2i and Q̄n−i ∈ R2i×2 are defined as

N̄n−1(t) = Nn−1(t) , N̄n−i(t) =
(
Nn−i(t) 0 . . . 0

)
,

Q̄n−1 = Qn−1 , Q̄n−i =
(
Q>n−i 0 . . . 0

)>
.

Finally the the block-tridiagonal matrix M(t) ∈ R(2n−2)×(2n−2) is defined as

M(t) =



E1(t) N2(t) 0 · · · · · · 0

Q2 E2(t) N3(t)
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qn−2 En−2(t) Nn−1(t)

0 · · · · · · 0 Qn−1 En−1(t)


, (B.1)

Lemma B.1. Consider the matrix M(t) in (B.1) with ai(t) and bi(t) continuous functions
fulfilling

α ≤ ai(t) ≤ β ,

α ≤ bi(t) ≤ β ,
∀ 1 ≤ i ≤ n− 1 , t ≥ 0 , (B.2)

for some positive α and β. There exist coefficients (ci1, ci2), i = 1, . . . , n − 1, a symmetric
positive definite matrix P and a positive constant λ, such that, for all t ≥ 0 the following
holds

PM(t) +M(t)>P ≤ −λI . (B.3)

The proof of Lemma B.1 immediately comes by the forthcoming two lemmas. The

idea of the proof is to iterate a small-gain theorem by starting from the block of M1(t)

on the bottom. This result has been published in Wang et al. (2016-17) and we thank Lei

Wang for his valuable help in the proofs.

Lemma B.2. Consider the matrix M1(t). There exist coefficients cn−1,1 and cn−1,2 and a
positive definite symmetric matrix P1 such that

P1M1(t) +M>1 (t)P1 ≤ −λ1I ,

for some positive constant λ1.
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Proof. Consider the system

ξ̇1 = En−1(t)ξ1 , (B.4)

in which ξ1 = col(ξ11, ξ12) ∈ R2. Let Θ(r) be the matrix having the form

Θ(r) =

(
r 0

−r 1

)
(B.5)

for all r ∈ R, and then consider the following change of variables

η1 = Θ(γ1)ξ1 i.e. η11 = γ1ξ11 , η12 = ξ12 − γ1ξ11 ,

with γ1 > 0 to be chosen. As a consequence, the system (B.4) in the new coordinates

can be rewritten as (from now on we omit the time-dependence in the variables for

the purpose of compactness)

η̇11 = − [cn−1,1bn−1,1 − γ1an−1] η11 + γ1an−1η12 ,

η̇12 = −
[
(γ−1

1 cn−1,2 − cn−1,1)bn−1,1 + γ1an−1

]
η11 − γ1an−1η12 .

By taking γ1 satisfying cn−1,2 = γ1cn−1,1, we get

η̇11 = −(cn−1,1bn−1,1 − γ1an−1)η11 + γ1an−1η12 ,

η̇12 = −γ1an−1η11 − γ1an−1η12 .

Now choose the Lyapunov function

V1 = |η1|2 = ξ1Θ(γ1)>Θ(γ1)ξ1 ,

whose time derivative is given by

V̇1 = −2(cn−1,1bn−1,1 − γ1an−1)η2
11 − 2γ1an−1η

2
12

By coming back in the ξ1-coordinates and by using Young’s inequality, the above

equality can be rewritten as

V̇1 ≤ −2γ2
1(cn−1,1bn−1,1 − 2γ1an−1)ξ2

11 − γ1an−1ξ
2
12

≤ −2γ2
1(cn−1,1α− 2γ1β)ξ2

11 − γ1αξ
2
12
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Given any positive γ1, and choosing cn−1,1 > 2γ1
β
α , we can conclude that

V̇1 ≤ −λ1|ξ1|2

with λ1 = min{2γ2
1(cn−1,1α− 2γ1β), γ1α}. In other words, given P1 = Θ(γ1)>Θ(γ1),

the inequality P1M1(t) + M1(t)>P1 ≤ −λ1I holds, which completes the proof of

Lemma B.2.

Lemma B.3. Assume there exist a symmetric positive definite matrix Pi and a positive con-
stant λi such that PiMi(t) + Mi(t)

>Pi ≤ −λiI . Then there exist coefficients cn−i−1,1 and
cn−i−1,2 and a positive definite symmetric matrix Pi+1 such that

Pi+1Mi+1(t) +M>i+1(t)Pi+1 ≤ −λi+1I , 1 ≤ i ≤ n− 2

for some positive constant λi+1.

Proof. Consider the interconnected system

ξ̇i+1 = En−i−1(t)ξi+1 + N̄n−i(t)χi ,

χ̇i = Mi(t)χi + Q̄n−iξi+1 ,
(B.6)

where ξi+1 = col(ξi+1,1, ξi+1,2) ∈ R2 and χi = col(ξ1, . . . , ξi) ∈ R2i. Let’s make the

following linear coordinate change for the state ξi+1 in (B.6)

ηi+1 := col(ηi+1,1, ηi+1,2) = Θ(γi+1)ξi+1 ,

where Θ(γi+1) has the form (B.5) and γi+1 is a positive constant to be chosen. The

system (B.6) in the new coordinates can be rewritten as (again, from now on we omit

the time-dependence in the variables for the purpose of compactness)

η̇i+1,1 = − [cn−i−1,1bn−i−1,1 − γi+1an−i−1] ηi+1,1 + γi+1an−i−1ηi+1,2 ,

η̇i+1,2 = −[(γ−1
i+1cn−i−1,2 − cn−i−1,1)bn−i−1,1 + γi+1an−i−1]ηi+1,1

−γi+1an−i−1ηi+1,2 + N̄n−iχi ,

χ̇i = Mi(t)χi + Γi(ηi+1,2 + ηi+1,1) ,

where Γi = col(cn−i,1, cn−i,2, 0, . . . , 0).
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Let us take cn−i−1,2 = γi+1cn−i−1,1, thus yielding

η̇i+1,1 = − [cn−i−1,1bn−i−1,1 − γi+1an−i−1] ηi+1,1 + γi+1an−i−1ηi+1,2 ,

η̇i+1,2 = −γi+1an−i−1ηi+1,1 − γi+1an−i−1ηi+1,2 + N̄n−iχi ,

χ̇i = Mi(t)χi + Γi(ηi+1,2 + ηi+1,1) .

First consider the positive definite function Vi = χ>i Piχi, whose time derivative is

given by
V̇i = 2χ>i Pi[Mi(t)χi + Γi(ηi+1,2 + ηi+1,1)]

≤ −λi|χi|2 + 2χ>i PiΓiξi+1,2

≤ −1
2λi|χi|

2 + δ1ξ
2
i+1,2

for some positive δ1, independent of γi+1 and cn−i−1,1. Next consider the positive

definite function

Wi+1 = |ηi+1|2 = ξi+1Θ(γi+1)>Θ(γi+1)ξi+1 ,

whose time derivative is given by

Ẇi+1 = −2 [cn−i−1,1bn−i−1,1 − γi+1an−i−1] η2
i+1,1 − 2γi+1an−i−1η

2
i+1,2

+2ηi+1,2N̄n−iχi

≤ −2 [cn−i−1,1bn−i−1,1 − γi+1an−i−1] η2
i+1,1 − γi+1an−i−1η

2
i+1,2

+ β2

αγi+1
|χi|2

≤ −2γ2
i+1 [cn−i−1,1bn−i−1,1 − 2γi+1an−i−1] ξ2

i+1,1

−3
4γi+1an−i−1ξ

2
i+1,2 + β2

αγi+1
|χi|2

≤ −2γ2
i+1 [cn−i−1,1α− 2γi+1β] ξ2

i+1,1 − 3
4γi+1αξ

2
i+1,2 + β2

αγi+1
|χi|2 .

Then consider the Lyapunov function Vi +Wi+1. By choosing γi+1 such that

γi+1 = max

{
2δ1

α
,
4β2

λiα

}
,

and cn−i−1,1 satisfying

cn−i−1,1 > 2γi+1
β

α
.

we get

V̇i + Ẇi+1 ≤ −λi
4
|χi|2 −

1

4
γi+1αξ

2
i+1,2 − 2γ2

i+1 [cn−i−1,1α− 2γi+1β] ξ2
i+1,1 .
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Therefore, set χi+1 = col(ξi+1, χi) and

Pi+1 = blckdiag(Θ(γi+1)>Θ(γi+1), Pi) ,

and consider the positive definite function Vi+1,1 = χ>i+1Pi+1χi+1. Its time derivative

satisfies

V̇i+1 ≤ −λi+1|χi+1|2

in which

λi+1 = min

{
λi
4
, 2γ2

i+1(cn−i−1,1α− 2γi+1β),
1

4
γi+1α

}
.

That is,

Pi+1Mi+1(t) +Mi+1(t)>Pi+1 ≤ −λi+1I ,

which completes the proof of Lemma B.3.
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C
Total Stability Theorems

In this chapter we study how the stability properties of a given model described by

ẋ = ϕm(x) (C.1)

are propagated to a process described by

ẋ = ϕp(x) (C.2)

when they are close enough. First, in Lemma C.1, we show the the persistence of equi-

libria under small perturbations. Then, in Lemma C.2 we show that this equilibria is

also unique under stronger conditions. The forthcoming results combine total stability

and hyperbolicity and are a variation of (Poulain and Praly, 2010, Theorem 6). They are

published in (Astolfi and Praly, 2016-17).

Lemma C.1. Let a C1 function ϕm : Rn → Rn be given such that the origin is an asymptoti-
cally stable equilibrium point of (C.1), with A as domain of attraction. Let C be an arbitrary
compact subset of A which admits the equilibrium as an interior point and is forward invari-
ant for the system (C.1). For any open neighbourhood N∂C of the boundary set ∂C, contained
in A, there exists a strictly positive real number δ such that, for any C1 function ϕp satisfying

|ϕm(x)− ϕp(x)| ≤ δ ∀ x ∈ N∂C , (C.3)
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the system (C.2) has an equilibria in the interior of C.

Proof. To prove the existence of an equilibria we use (Hale, 1980, Theorem 8.2)

which says that a forward invariant set which is homeomorphic to the closed unit

ball of Rn contains an equilibrium. As a consequence of asymptotic stability we

know the existence of a forward invariant set by using a converse Lyapunov theorem.

It may not be homeomorphic to the closed unit ball. Therefore our first task is to

show the existence of such set satisfying the required properties.

The equilibrium of (C.1) being asymptotically attractive and interior to C which

is forward invariant, C is attractive. It is also stable due to the continuity of solutions

with respect to initial conditions uniformly on compact time subsets of the domain

of definition. So it is asymptotically stable with the same domain of attraction A as

the equilibrium. It follows from (Wilson, 1969, Theorem 3.2) that there exist C∞

functions V : A → R≥0 and U : A → R≥0 which are proper on A and a class K∞
function α satisfying

α(|x|) ≤ V (x) , V (0) = 0 ,

α(d(x,C)) ≤ U(x) , U(x) = 0 ∀x ∈ C ,

∂V

∂x
(x)ϕm(x) ≤ −V (x) ∀x ∈ A ,

∂U

∂x
(x)ϕm(x) ≤ −U(x) ∀x ∈ A .

Since C is compact and N∂C is a neighbourhood of its boundary, there exists a

real number ρ > 0 such that the set {x ∈ A : d(x,C) ∈ (0, ρ ] } is a subset of N∂C.

Then, with the notations

ū = sup
x∈A: d(x,C)≤ ρ

V (x) , γ =
α(ρ)

2ū
,

and since α is of class K∞, we obtain the implications

U(x) + γV (x) = α(ρ) =⇒ α(d(x,C)) ≤ U(x) ≤ α(ρ) ,

=⇒ d(x,C) ≤ ρ ,

=⇒ V (x) ≤ ū .
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With our definition of γ, this yields also

α(ρ)− γ V (x) = U(x) =⇒ 0 <
α(ρ)

2
≤ U(x) ,

=⇒ 0 < d(x,C) ≤ ρ ,

=⇒ x ∈ N∂C \ C .

On the other hand, with the compact notation

V(x) = U(x) + γV (x) ,

we have
∂V

∂X
(x)ϕm(x) < −V(x) ∀x ∈ A .

All this implies that V is a Lyapunov Function for (C.1) onA in the sense of (Wilson,

1967, Page 324) and that the sublevel set {x ∈ A : V(x) ≤ α(ρ)} is contained in

N∂C ∪ C. It follows from (Wilson, 1967, Corollary 2.3) (thanks to the contribution

of Freedman Freedman (1982) and Perelman Morgan and Gang (2007) the restric-

tion on the dimension is not needed) that the level set {x ∈ A : V(x) = α(ρ)} is

homeomorphic to the unit sphere. But, with the fact that the origin is asymptoti-

cally stable and the arguments used in the proof of (Wilson, 1967, Theorem 1.2),

this implies that the sublevel set {x ∈ A : V(x) ≤ α(ρ)} is homeomorphic to the

closed unit ball. Then, since the set

C = {x ∈ N∂C : d(x,C) ∈ [ 0, ρ ] }

is a compact subset of N∂C ⊂ A, the real number

G = sup
x∈C

∣∣∣∣∂V∂x (x)

∣∣∣∣ (C.4)

is well defined and strictly positive. We get, for all x in C,

∂V

∂x
(x)ϕp(x) =

∂V

∂x
(x)ϕm(x) +

∂V

∂x
(x)[ϕp(x)− ϕm(x)] ,

≤ −V(x) +G sup
x∈C
|ϕp(x)− ϕm(x)| .

So, if ϕp satisfies (C.3), with δ given by

δ =
infx∈C V(x)

2G
,
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we have, for all x in {x ∈ A : V(x) = α(ρ)}

∂V

∂x
(x)ϕp(x) ≤ −1

2
V(x) .

This implies the compact sublevel set {x : V(x) ≤ α(ρ)} is homeomorphic to the

closed unit ball and forward invariant for the system (C.2). With (Hale, 1980, The-

orem 8.2), we conclude that this sublevel set contains an equilibrium of this system.

Lemma C.2. Let a C1 function ϕm : Rn → Rn be given such that the origin is an exponen-
tially stable equilibrium point of (C.1) with A as domain of attraction. For any compact sets
C and C, the latter being forward invariant for the above system, which satisfy

{0} $ C $ C $ A ,

there exists a strictly positive real number δ such that, for any C1 function ϕp : Rn → Rn

which satisfies:

|ϕp(x)− ϕm(x)| ≤ δ , ∀ x ∈ C, (C.5)∣∣∣∣∂ϕp∂x
(x)− ∂ϕm

∂x
(x)

∣∣∣∣ ≤ δ , ∀ x ∈ C, (C.6)

there exists an exponentially stable equilibrium point of (C.2) the basin of attraction of which
contains the compact set C.

Proof. From the arguments used in Lemma C.1, we know there exists a strictly

positive real number δ such that if (C.5) holds with δ, then the system (C.2) has

at least one equilibrium when δ is sufficiently small. It remains to show that this

equilibrium is unique and asymptotically and locally exponentially stable.

Let Π be a positive definite symmetric matrix and a a strictly positive real num-

ber satisfying

Π
∂ϕm
∂x

(0) +
∂ϕm
∂x

(0)>Π ≤ −aΠ , λmin(Π) = 1 ,

where λmax and λmin respectively stand for max and min eigenvalues. By continuity

there exists a strictly positive real number p0 such that we have, for all x satisfying

x>Πx ≤ p0 ,

Π
∂ϕm
∂x

(x) +
∂ϕm
∂x

(x)>Π ≤ −a
2

Π
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and

X>Πϕm(x) ≤ −a
4
x>Πx.

Let ϕp : Rn → Rn be any C1 function satisfying

|ϕp(x)− ϕm(x)| ≤ a

4

√
p0

12λmax(Π)
, ∀x : x>Πx =

p0

6
. (C.7)

We obtain

x>Πϕp(x) = x>Πϕm(x) + x>Π [ϕp(x)− ϕm(x)]

≤ x>Πϕm(x) +
a

8
x>Πx+

2

a
[ϕp(x)− ϕm(x)]>Π [ϕp(x)− ϕm(x)]

and therefore

x>Πϕp(x) ≤ − a

16
x>Πx , ∀x : x>Πx =

p0

6
.

In this condition, it follows from (Hale, 1980, Theorem 8.2) that, for each function

ϕp satisfying (C.7), there exits a point xe satisfying

ϕp(xe) = 0, (xe)
>Πxe ≤

p0

6
. (C.8)

Assume further that ϕp satisfies∣∣∣∣∂ϕp∂x
(x)− ∂ϕm

∂x
(x)

∣∣∣∣ ≤ a

8λmax(Π)
, ∀x : x>Πx ≤ p0 . (C.9)

In this case, we have, for all x satisfying x>Πx ≤ p0,

Π
∂ϕp
∂x

(x) +
∂ϕp
∂x

(x)>Π =

[
∂ϕp
∂x

(x)− ∂ϕm
∂x

(x)

]>
Π

+ Π
∂ϕm
∂x

(x) +
∂ϕm
∂x

(x)>Π + Π

[
∂ϕp
∂x

(x)− ∂ϕm
∂x

x)

]
≤ −a

4
Π .

Note also that we have

[xe + s(x− xe)]>Π[xe + s(x− xe)] ≤ p0 ,

∀(x, xe, s) : s ∈ [0, 1] , x>e Πxe ≤
p0

6
, x>Πx ≤ p0

3
.
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Then, with

ϕp(x) = ϕp(x)− ϕp(xe) =

∫ 1

0

∂ϕp
∂x

(xe + s(x− xe)) ds[x− xe]

and (C.8), we get, for all x satisfying X>ΠX ≤ p0
3 ,

[x− xe]>Πϕp(x) =

∫ 1

0

(
[x− xe]>Π

∂ϕp
∂x

(xe + s(x− xe))[x− xe]
)

ds

≤ −a
4

[x− xe]>Π[x− xe] .

Let

δ1 = min

{
a

4

√
p0

12λmax(Π)
,

a

8λmax(Π)

}
,

and reduce p0 if necessary to have that x satisfying (xe)
>Πxe ≤ p0 is in C. Then (C.5)

and (C.6) with δ = δ1 implies (C.7) and therefore (C.8). We have established that

the system (C.2) has an exponentially stable equilibrium with basin of attraction

containing the compact set {x ∈ Rn : x>Πx ≤ p0
3 }.

Now, with ρ and V(x) = U(x) + γV (x) as defined in the proof of Lemma C.1, we

let u > 0 be a real number such that we have

x>Πx ≤ p0

3
∀x ∈ A : V(x) ≤ u . (C.10)

Let also

C = {x ∈ A : u ≤ V(x) , d(x,C) ∈ [ 0, ρ ] } .

It is a compact subset of NC ⊂ A. By mimicking the same steps as in the proof of

Lemma C.1, we can obtain that, if ϕp satisfies

|ϕp(x)− ϕm(x)| ≤ infx∈C V(x)

2G
, ∀x ∈ C , (C.11)

we have
∂V

∂x
(x)ϕp(x) ≤ −1

2
V(x) ∀x ∈ C .

This implies the compact set {x ∈ A : V(x) ≤ u} is asymptotically stable for the

system (C.2) with basin of attraction B containing the compact set {x ∈ A : V(x) ≤
α(ρ)} which contains C. Since, with (C.10), we have

{x ∈ A : V (x) ≤ u} ⊂
{
x ∈ Rn : x>Πx ≤ p0

3

}
.
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with (C.7), (C.9), and (C.11) we have established our result with δ given as

δ = min


a

4

√
p0

12λmax(Π)
,

a

8λmax(Π)
,

inf
x∈C

V (x)

2 sup
x∈C

∣∣∣∣∂V∂x (x)

∣∣∣∣
 .
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Résumé 
 
Les observateurs et la régulation de sortie 
sont deux thèmes centraux de la théorie des 
systèmes non linéaires. Bien que nombreux 
chercheurs ont consacré leur attention à ces 
questions depuis plus de trente ans, il y a 
encore de nombreuses questions ouvertes. 
Dans la théorie des observateurs un rôle clé 
est joué par les observateurs à grand gain. Le 
but de la première partie de la thèse est 
d’étudier nouvelles techniques qui permettent 
de surmonter ou au moins d’atténuer les 
principaux problèmes qui caractérisent cette 
classe d’observateurs. Nous proposons une 
nouvelle classe d’observateurs à grand gain, 
appelé «low-power», qui permet de surmonter 
les problèmes numériques, d’éviter le 
phénomène de peaking et d’améliorer les 
propriétés de sensibilité aux bruit de mesure 
à haute fréquence.  
La deuxième partie de la thèse aborde du 
problème de la régulation de sortie, qui a été 
résolu pour les systèmes linéaires au cours 
des années 70, par Francis et Wonham qui 
ont énoncé le célèbre «principe de modèle 
interne». Des solutions constructives ont 
aussi été proposées dans le cadre non 
linéaire mais sous des hypothèses restrictives 
qui réduisent la classe des systèmes 
auxquels cette méthodologie peut être 
appliquée. Dans la thèse, nous nous 
concentrons sur le problème de la régulation 
de sortie en présence de perturbations 
périodiques et nous proposons une nouvelle 
approche qui nous permet de considérer une 
classe plus large de systèmes non linéaires. 
La technique obtenue est robuste au sens 
définit par Francis et Wonham.  
 
 
 

Mots Clés 
 
Systèmes non linéaires, observateurs non-
linéaires, observateurs grand gain, régulation 
de sortie robuste, modèle interne, control non 
linéaire 

 

Abstract 
 
Observers and output regulation are two 
central topics in nonlinear control system 
theory. Although many researchers have 
devoted their attention to these issues for 
more than 30 years, there are still many open 
questions.  
In the observer theory a key role is played by 
the so called high-gain observers. The 
purpose of this first part of the thesis is to 
study novel techniques which allow to 
overcome or at least to mitigate some of the 
main drawbacks characterizing this class of 
observers. We propose a novel class of high-
gain observers, denoted as «low-power», 
which allows to overcome numerical 
problems, to avoid the peaking phenomenon 
and to improve the sensitivity properties to 
high-frequency measurement noise.  
The second part of the thesis addresses the 
output regulation problem, solved for linear 
systems during the 70’s by Francis and 
Wonham who coined the celebrated «internal 
model principle». Constructive solutions have 
also been proposed in the nonlinear 
framework but under restrictive assumptions 
that reduce the class of systems to which this 
methodology can be applied. IN this thesis we 
focus on the output regulation problem in 
presence of periodic disturbances and we 
propose a novel approach we allows to 
consider a broader class of nonlinear 
systems. The resulting design is robust in the 
sense defined by Francis and Wonham. 
 
 
 
 
 
 
 

Keywords 
 
Nonlinear systems, nonlinear observers, high-
gain observers, robust output regulation, 
internal model, nonlinear control 

 


	Abstract
	Notation
	Introduction
	I Observer Design
	Highlights of High-Gain Observers
	Observabilility canonical forms
	The high-gain construction
	Drawbacks of high-gain observers
	High gain observers for systems in non-strict feedback form
	Design in the original coordinates
	Application to output regulation

	Tools for High-Gain Observers
	Strict feedback form for non-input-affine systems
	Imposing state constrains in high-gain observers
	High-gain observer for multi-output nonlinear systems
	Asymptotic behaviour in presence of measurement noise

	Low-Power High-Gain Observers
	The low-power construction
	The case of non-strict feedback form
	Peaking-free design
	Asymptotic behaviour in presence of measurement noise
	Low-power tools in output regulation
	Simulation results

	Conclusion

	II Robust Regulation
	Structurally Robust Output Regulation
	Robust output regulation for linear systems via forwarding
	The issue of structural robustness in the nonlinear case
	Internal model design
	Forwarding design
	Weak output regulation

	Structurally Robust Output Regulation for Minimum Phase Systems
	Asymptotic regulation in the infinite dimensional case
	Simulation Results

	Conclusion

	Appendices
	Technical Lemmas for Block Tridiagonal Matrices
	Eigenvalues assignment
	Admissible coefficients
	Examples

	Technical Lemmas for Time-Varying Block Tridiagonal Matrices 
	Total Stability Theorems

	Bibliography

