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Observers and output regulation are two central topics in nonlinear control system theory. Although many researchers have devoted their attention to these issues for more than 30 years, there are still many open questions.
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namics can be expressed in specific coordinated under the so-called observability canonical form. These observers have also the property that their rate of convergence can be arbitrarily increased by acting on one parameter, called high-gain parameter. Despite the evident benefits of this class of observers, their use in real applications is questionable due to some drawbacks: difficulty in expressing the canonical observability form, numerical problems, the peaking phenomenon and sensitivity to measurement noise.

The purpose of the first part of the thesis is to enrich the theory of high-gain observers with novel techniques to overcome or at least to mitigate the aforementioned problems.

On one hand, we study the possibility of writing an observer for multi-input multioutput observable systems in the original coordinates when the observability form is not known. On the other hand, we propose a novel class of high-gain observers, denoted as "low-power", which allows to overcome numerical problems, to avoid the peaking phenomenon and to improve the sensitivity properties to high-frequency measurement noise.

The second part of the thesis addresses the output regulation problem, namely the scenario in which we want to regulate to zero a given output while keeping all the trajectories of the system bounded even if the system is affected by external signals assumed to belong to a known class of systems and representing a reference to be tracked and/or unknown disturbances. This problem has been solved for linear systems during the 70's by v Francis and Wonham who coined the celebrated "internal model principle". Constructive solutions have also been proposed in the nonlinear framework but under restrictive assumptions that reduce the class of systems to which this methodology can be applied.

In this thesis we focus on the output regulation problem in presence of periodic disturbances and we propose a novel approach which allows to consider a broader class of nonlinear systems. With the proposed design the stabilization problem and the regulation problem are substantially decoupled. Taking advantage of the property that a nonlinear system input-to-state stable, subject to periodic inputs, admits periodic solutions of the same period, we propose a linear internal model embedding linear oscillators for each harmonic frequency of the periodic phenomenon. Forwarding technique is used to stabilize the cascade system. The behavior analysis is based on the Fourier analysis.

The resulting behavior is robust in the sense defined by Francis and Wonham, namely output regulation is achieved in presence of uncertainties or disturbances, as long as the trajectories of the resulting closed-loop system are bounded. vi

Sommario

Gli osservatori e la regolazione dell'uscita sono due temi centrali nella teoria dei sistemi nonlineari. Nonostante molti ricercatori abbiano dedicato la loro attenzione a queste problematiche da più di 30 anni, ci sono ancora molti problemi aperti.

Un osservatore è un sistema dinamico che stima lo stato di un sistema utilizzando la conoscenza della traiettoria dalla sua uscita. Nella teoria degli osservatori un ruolo chiave è giocato dagli osservatori ad alto guadagno. Questi osservatori possono essere utilizzati nel caso in cui la dinamica del sistema può essere espressa in coordinate specifiche, sotto la cosiddetta forma canonica di osservabilità. Questi osservatori hanno anche la proprietà che la loro velocità di convergenza può essere arbitrariamente aumentata agendo su un singolo parametro, chiamato parametro di alto guadagno. Nonostante gli evidenti benefici di questa classe di osservatori, il loro utilizzo in applicazioni pratiche è discutibile a causa di alcuni inconvenienti: difficoltà nell'espressione della forma canonica di osservabilità, problemi numerici, fenomeno del peaking e sensitività al rumore di misura. Lo scopo di questa prima parte della tesi è di arricchire la teoria degli osservatori ad alto guadagno con nuove tecniche che permettono di superare o per lo meno di mitigare i suddetti problemi. Da una parte, studiamo la possibilità di scrivere un osservatore per sistemi osservabili a ingressi multipli e a uscite multiple nelle coordinate originali quando la forma di osservabilità non è conosciuta. Dall'altra, proponiamo una nuova classe di osservatori ad alto guadagno, chiamati "low-power", che permette di superare i problemi numerici, evitare il fenomeno di peaking e migliorare le proprietà di sensitività al rumore di misura ad alta frequenza.

La seconda parte della tesi affronta il problema della regolazione dell'uscita, ovvero lo scenario in cui vogliamo regolare a zero una determinata uscita e allo stesso tempo mantenere le traiettorie del sistema limitate anche se il sistema è influenzato da segnali vii esogeni che si suppone appartengano a una classe conosciuta e che rappresentano un riferimento da seguire e/o dei disturbi sconosciuti. Questo problema è stato risolto per sistemi lineari durante gli anni 70 da Francis e Wonham i quali hanno formulato il celebre "principio del modello interno". Soluzioni costruttive sono state proposte nel contesto nonlineare ma sotto ipotesi restrittive che riducono la classe di sistemi a quali si può applicare questa metodologia. In questa tesi ci concentriamo sul problema di regolazione dell'uscita in presenza di disturbi periodici, e proponiamo un nuovo approccio che permette di considerare una classe più ampia di sistemi nonlineari. Con la sintesi proposta il problema di stabilizzazione e di regolazione sono sostanzialmente disaccoppiati. Traendo beneficio dalla proprietà che un sistema nonlineare stabile ingresso-uscita (input-to-state stable in inglese), alimentato da un ingresso periodico, ammette soluzioni periodiche dello stesso periodo, proponiamo un modello interno lineare che contiene oscillatori lineari per ogni frequenza armonica del fenomeno periodico. La tecnica di forwarding è utilizzata per stabilizzare la cascata. L'analisi del comportamento si base sull'analisi di Fourier. Il comportamento ottenuto è robusto nel senso definito da Francis e Wonham, ovvero la regolazione dell'uscita è mantenuta in presenza di incertezze o disturbi, fintanto che le traiettorie del sistema chiuso in retroazione sono limitate. viii

Résumé

Les observateurs et la régulation de sortie sont deux thèmes centraux de la théorie des système non linéaires. Bien que de nombreux chercheurs ont consacré leur attention à ces questions depuis plus de trente ans, il y a encore de nombreuses questions ouvertes.

Un observateur est un système dynamique qui estime l'état d'un système en utilisant la connaissance de la trajectoire de sa sortie. Dans la théorie des observateurs un rôle clé est joué par les observateurs à grand gain. Ces observateurs peuvent être utilisés lorsque la dynamique du système peut être exprimée dans des coordonnées spécifiques sous une forme canonique dite d'observabilité. Ils ont aussi la propriété que leur vitesse de convergence peut être arbitrairement augmentée en agissant sur un seul paramètre, appelé paramètre de grand gain. Malgré les avantages évidents de cette classe d'observateurs, leur utilisation dans des applications pratiques est douteuse en raison de certains inconvénients: difficultés dans l'expression de la forme canonique d'observabilité, des problèmes numériques, le phénomène de peaking et la sensibilité au bruit de mesure. Le but de la première partie de la thèse est d'enrichir la théorie des observateurs à grand gain avec de nouvelles techniques qui permettent de surmonter ou au moins d'atténuer les problèmes ci-dessus. D'une part, nous étudions la possibilité d'écrire un observateur pour les systèmes observables avec plusieurs entrées et plusieurs sorties dans les coordonnées d'origine lorsque la forme d'observabilité n'est pas connue. D'autre part, nous proposons une nouvelle classe d'observateurs à grand gain, appelé "low-power", qui permet de surmonter les problèmes numériques, d'éviter le phénomène de peaking et d'améliorer les propriétés de sensibilité aux bruit de mesure à haute fréquence.

La deuxième partie de la thèse aborde du problème de la régulation de sortie, c'està-dire le scénario dans lequel nous voulons imposer une sortie donnée de rester nulle et en même temps maintenir les trajectoires de système limitées même si le système est ix influencé par des signaux externes supposées appartenir à une classe connue et représentant une références à suivre et / ou des perturbations inconnues. Ce problème a été résolu pour les systèmes linéaires au cours des années 70, par Francis et Wonham qui ont énoncé le célèbre "principe de modèle interne". Des solutions constructives ont aussi été proposées dans le cadre non linéaire mais sous des hypothèses restrictives qui réduisent la classe des systèmes auxquels cette méthodologie peut être appliquée. Dans la thèse, nous nous concentrons sur le problème de la régulation de sortie en présence de perturbations périodiques, et nous proposons une nouvelle approche qui nous permet de considérer une classe plus large de systèmes non linéaires. Dans la synthèse proposée, le problème de stabilisation et de régulation sont sensiblement découplés. Tirant profit de la propriété qu'un système non linéaire stable entrée-état (input-to-state stable en anglais), alimenté par une entrée périodique, admet des solutions périodiques de même période, nous proposons un modèle interne linéaire qui contient des oscillateurs linéaires pour chacune des fréquence harmoniques du phénomène périodique. La technique d'ajout d'intégrateur (forwarding en anglais) est utilisée pour obtenir un bouclage stabilisant pour la cascade. L'analyse du comportement repose alors sur l'analyse de Fourier. Le comportement obtenu est robuste au sens défini par Francis et Wonham, c'est-à-dire que la régulation de sortie est maintenue en présence d'incertitudes ou de bruit, aussi longtemps que les trajectoires du système en boucle fermée sont limitées.

x spectrum of A, the set of its eigenvalues 0 n×m matrix of dimension n × m whose entries are all zeros I n an n×n identity matrix, also denoted with I when there is no need to emphasize the dimension diag (a 1 , . . . , a n ) an n × n diagonal matrix with a i as its i-th diagonal element col (a 1 , . . . , a n ) column vector with elements (a 1 , . . . , a n )

Hurwitz matrix with all eigenvalues with strictly negative real part prime form a triplet (A, B, C) of dimension n defined as

A = 0 (n-1)×1 I n-1 0 0 1×(n-1) B = 0 (n-1)×1 1 C = 1 0 1×(n-1) L f h(x)
Lie derivative of h(x) along the vector field f (x)

L f h(x) := ∂h ∂x (x)f (x)
sat L (•) saturation function: any bounded continuous function satisfying

sat L (x) = x ∀|x| ≤ L , |sat L (x)| ≤ L ∀x ∈ R n
feedback form a (nonlinear) system possessing a triangular structure:

• non-strict feedback form ẋi = f i (x 1 , . . . , x i , x i+1 , u) i = 1, . . . , n -1 ẋn = f n (x 1 , . . . , x n , u) y = h(x 1 , u)

• strict feedback form

Introduction

O ver the last decades, observers and internal model-based regulators for output regulation have been two of the most interesting and investigated topic in the nonlinear systems community. Although a considerable number of results can be found in the literature, the conventional theoretical approaches presents several drawbacks and are often very hard to be implemented. The purpose of this thesis is to provide novel techniques for the analysis and design of observers and internal model regulators, with a particular attention on a easy-to-implement structure.

In the first part we study the class of nonlinear observers denoted as high-gain observers. In Chapter 1 the reader can find an overview of the theory of high-gain observers for single-input single-output nonlinear systems where the main features and the main drawbacks are highlighted. In Chapter 2, we propose some novel tools of analysis and design which enrich the theory of high-gain observers. Among these, we pay particular attention to the design of high-gain observers in the original coordinates and we give a novel set of sufficient conditions for the existence of a high-gain observer in the multiinput multi-output case. Then, in Chapter 3, we introduce a novel class of high-gain observers, denoted as "low-power". This novel methodology, based on dynamic extension, helps in overcoming (or improving) some of the main drawbacks of the standard high-gain observers. The low-power high-gain observers may be used in place of standard high-gain observers without loss of generality. An example is given at the end of the chapter in order to show the performances of the low-power high-gain observer.

The second part of the thesis is devoted to the problem of robust output regulation for nonlinear systems. In Chapter 4 we recall the basic ingredients of output regulation for linear system and we introduce a design procedure based on forwarding technique.

The proposed approach is instrumental to nonlinear case. Indeed, we show that with the 1 same design-methodology it is possible to solve the practical output regulation problem for multi-input multi-output nonlinear systems which are affine in the input in presence of (small) periodic disturbances. The proposed control law is robust to model uncertainties and the norm of the output can be made arbitrarily small (in a L 2 sense) by enlarging the dimension of the dynamic regulator. In Chapter 5, the same approach is applied to minimum-phase single-input single-output nonlinear systems. We show that with a (non-implementable) regulator of infinite dimension it is possible to solve the structurally robust asymptotic output regulation problem. An example is given at the end of the chapter in order to show the performances of the proposed regulator when implemented with finite dimension.

Part I

Observer Design

3

"Accuracy of observation is the equivalent of accuracy of thinking."

Wallace Stevens

1

Highlights of High-Gain Observers T he problem of designing asymptotic state observers for nonlinear systems is a central topic in the control literature (see [START_REF] Besançon | Nonlinear Observers and Applications[END_REF] or [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] for general surveys on the topic). A special role is played by the so-called high-gain observers in which the error trajectory has an exponential decay rate that can be imposed arbitrarily fast by acting on a design parameter, appearing in the observer structure, typically known as "high-gain parameter" (see for instance the survey [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and references therein). Such observers are routinely used in control contexts where fast observation is useful, such as contexts of nonlinear output feedback stabilization by means of the nonlinear separation principle in which fast observation is required in order to prevent finite escape time of the closed-loop system (see, for instance, [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF] and [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]). After two seminal works appeared in 1992 [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF] and [START_REF] Gauthier | A simple observer for nonlinear systems application to bioreactors[END_REF]), the investigation of high-gain observer in nonlinear theory attracted the attention of many researchers and a huge number of papers have been published on the topic (we refer to [START_REF] Besançon | Nonlinear Observers and Applications[END_REF] and [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and references therein). High-gain observers are successfully applied in problems of estimation (see [START_REF] Besançon | Nonlinear Observers and Applications[END_REF] or [START_REF] Gauthier | Observability and Observers for Nonlinear Systems[END_REF]), output feedback control (see, among the others, Tornambé (1992a), [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF] and [START_REF] Shim | Non-linear output feedback stabilization on a bounded region of attraction[END_REF]) and output regulation (see [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF] or [START_REF] Seshagiri | Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators[END_REF]) although their use in practical applications is made hard by a certain number of drawbacks.

In this chapter we make an overview of the state of art of high-gain observers, highlighting its main features, drawbacks and its application to the output regulation framework. Section 1.1 is devoted to emphasize some important notions about the observability canonical forms and it is motivated by the fact that high-gain observers can be applied to systems having a particular triangular structure, denoted as feedback form. In Sections 1.2 and 1.4 we illustrate the design of high-gain observers for systems in strict feedback form and non strict feedback form. Section 1.3 is devoted to highlight the main drawbacks of this class of nonlinear observers, whereas in Section 1.5 we discuss about the possibility of a design in the original coordinates. Finally, in Section 1.6 we show how the high-gain observer theory can be applied to the framework of nonlinear output regulation. The output feedback stabilization problem by means of high-gain observers is not topic of this work and we refer, among the others, to [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF], (Isidori, 1995, Chapter 9.6), [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and references therein.

The contents of this chapter are a reformulation of the contribution of many authors and contain no novelty. We refer in particular to [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], [START_REF] Isidori | Nonlinear Control Systems[END_REF] and [START_REF] Marconi | Non-resonance conditions for uniform observability in the problem of nonlinear output regulation[END_REF] for Section 1.1, [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] for Sections 1.2 and 1.3, [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] for Section 1.4, [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] for Section 1.5, [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF] for Section 1.6.

Observabilility canonical forms

This section is devoted to present an overview of sufficient conditions for the existence of observability canonical forms for nonlinear systems. These observability forms can be seen as a special cases of a feedback form. As a matter of fact, when the aforementioned sufficient conditions are verified, the nonlinear system is diffeomorphic to a system for which we know how to design an observer (see the forthcoming Section 1.2). For the sake of simplicity we consider the class of single-input single-output nonlinear systems.

The results presented herein cannot be extended to the multi-output multi-input case in a trivial way. It is not the purpose of this section to give a complete picture of the notion of observability in the nonlinear framework, and only a short summary is presented (see books devoted to the subject as [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] or [START_REF] Besançon | Nonlinear Observers and Applications[END_REF] for more details). The contents of this section are a reformulation of the results given in [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], [START_REF] Isidori | Nonlinear Control Systems[END_REF] and [START_REF] Marconi | Non-resonance conditions for uniform observability in the problem of nonlinear output regulation[END_REF].

Canonical flag and observability canonical forms

Consider a nonlinear system of the form

ẋ = f (x, u) , y = h(x, u) , (1.1) 
where the state x ∈ R n , the input u ∈ R and the output y ∈ R. The functions f, g, h are considered smooth enough. Let us define -recursively -a sequence of functions ϕ i , i = 1, . . . , n, as follows ϕ 1 (x, u) := h(x, u) ,

ϕ i (x, u) := ∂ϕ i-1 ∂x (x, u)f (x, u) , (1.2) 
and a sequence of i-vector-valued functions Φ i (x, u) as

Φ i (x, u) :=     ϕ 1 (x, u) . . . ϕ i (x, u)     , ∀ i = 1, . . . , n .
(1.3) Definition 1.1. [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], Definition 2.1, Chapter 2) The canonical flag of (1.1) is a family of n distribution in R n , parametrized by u, defined by

D i (u) : x → ker ∂Φ i ∂x (x,u) , ∀ i = 1, . . . , n ,

Observabilility canonical forms

with the functions Φ i defined by (1.3). The canonical flag is said to be uniform on x ∈ R n if (i) all the D i (u), i = 1, . . . , n, have constant dimension n -i for all u ∈ R and x ∈ R n ("regularity" condition);

(ii) all the D i (u), i = 1, . . . , n, are independent of u ("u-independence" condition), i.e.

∂ u D(u) = 0 .

The canonical flag defines a geometric property of the observation space. If the canonical flag is uniform, then the observation space is independent of the control input and it is possible to find a (local) change of coordinates such that the system (1.1) can be written in the so-called observability canonical form.

Proposition 1.1 [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], Theorem 2.1, Chapter 3). The system (1.1) has a uniform canonical flag if and only if, for all x • ∈ R n there exists a coordinate neighbourhood V x ⊂ R n of x • , such that in these coordinates, (V z , z 1 , . . . , z n ), the system (1.1) can be written as follows

żi = f i (z 1 , . . . , z i , z i+1 , u) , i = 1, . . . , n -1 , żn = f n (z 1 , . . . , z n , u) , y = h(z 1 , u) , (1.4) 
with the functions f i , i = 1, . . . , n -1 and h that fulfil

∂h ∂z 1 (z 1 , u) = 0 , ∂f i ∂z i+1 (z 1 , . . . , z i , z i+1 , u) = 0 , i = 1, . . . , n -1 , for any (z, u) ∈ V z × R.
Notice that the system (1.4) is in non-strict feedback form. If we want to achieve stronger results, namely a global change of coordinates, extra assumptions are needed.

For this, we define the mapping Φ : R n → R n as

Φ(x) := Φ n (x, 0) =        h(x, 0) L f (x,0) h(x, 0) . . . L n-1 f (x,0) h(x, 0)       
.

(1.5)

Theorem 1.1 [START_REF] Marconi | Non-resonance conditions for uniform observability in the problem of nonlinear output regulation[END_REF], Lemma 2). Consider the system (1.1) and suppose that its canonical flag is uniform (according to Definition 1.1) and the mapping Φ(•) defined in (1.5) is a global diffeomorphism. Then the system (1.1) is globally diffeomorphic, via Φ, to a system of the form (1.4) with the functions f i , i = 1, . . . , n -1 and h that fulfil

∂h ∂z 1 (z 1 , u) = 0 , ∂f i ∂z i+1 (z 1 , . . . , z i , z i+1 , u) = 0 , i = 1, . . . , n -1 , for any (z, u) ∈ R n × R.
Consider now an input-affine single-input single-output nonlinear system of the

form ẋ = f (x) + g(x) u y = h(x) (1.6)
where the state x ∈ R n , the input u ∈ R and the output y ∈ R. Let the functions f, g, h be smooth enough and let the functions

ϕ i (x, u) in (1.2), Φ i in (1.
3) and Φ in (1.5) be defined similarly for the system (1.6). For this class of systems the result of Theorem 1.1 can be further specialized, thus obtaining a triangular structure with a well-defined linear part (and therefore in strict feedback form).

Theorem 1.2 [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], Theorem 4.1, Chapter 3). Consider the system

(1.6) and suppose that its canonical flag is uniform (according to Definition 1.1) and the mapping Φ(•) defined in (1.5) is a global diffeomorphism. Then the system (1.6) is globally diffeomorphic, via Φ, to a system of the form

ż =          ż1 ż2 . . . żn-1 żn          =          z 2 z 3 . . . z n a(z)          +          b 1 (z 1 ) b 2 (z 1 , z 2 ) . . . b n-1 (z 1 , . . . , z n-1 ) b n (z 1 , . . . , z n )          u , y = z 1 .
(1.7)

Phase-variable representation

Consider again the class of nonlinear systems (1.1) and let us define -recursively -a new sequence of functions1 ϕ i , i = 1, . . . , n, as follows

ϕ 1 (x, u 0 ) = h(x, u 0 ) , ϕ i (x, u 0 , . . . , u i-1 ) = ∂ϕ i-1 ∂x f (x, u 0 ) + i-2 k=0 ∂ϕ i-1 ∂u k u k+1 . (1.8)
Note that as opposed to the functions ϕ i defined in Section 1.1.1, here we are also differentiating in u. It is immediate to realize that these mappings, if the input u(t) of (1.1) is 1.1. Observabilility canonical forms a C i function of t, are precisely the mappings which express, for each i and at any given time t, the dependence of the i-th derivative y (i) (t) of the output y(t) on the state x(t)

and the input u(t) and its derivative u(t), . . . , u (i) (t). Indeed

y (i) (t) = ϕ i+1 x(t), u(t), . . . , u (i) (t) .
Note that the functions ϕ i (•) defined above coincide with the functions ϕ i (•) defined in (1.2) when u is a constant function. As before, let us also define a sequence of i-vectorvalued functions Φ i (x, u 0 , . . . , u i-1 )2 as follows

Φ i (x, u 0 , . . . , u i-1 ) =     ϕ 1 (x, u 0 ) . . . ϕ i (x, u 0 , . . . , u i-1 )     .
(1.9)

The functions Φ i (•) defined above coincide with the functions Φ i (•) defined in (1.3) when u is constant.

Theorem 1.3. Consider the system (1.1) and suppose the mapping Φ :

R n × R n → R n × R n defined as Φ(x, u 0 , . . . , u n-1 ) =        u 0 . . . u n-1 . . . . . . . . . . . . . . . . . . Φ n (x, u 0 , . . . , u n-1 )       
with Φ n defined in (1.9), is a global diffeomorphism. Then the system (1.1) is globally diffeormophic, via Φ, to a system of the form

żi = z i+1 , i = 1, . . . , n -1 , żn = φ n (z 1 , . . . , z n , u, u, . . . , u (n-1) , u (n) ) , y = z 1 .
(1.10)

Proof. The function Φ is a global diffeomorphism. As a consequence, it admits a (globally defined) inverse mapping Ψ :

R n × R n → R n × R n , defined as Ψ(z, v n ) =    v n . . . . . . . . . Ψ n (z, v n )   
with the notation v i = (u 0 , . . . , u i-1 ), such that

(v n , x) = Ψ(Φ(x, v n )) , x = Ψ n (Φ n (x, v n ), v n ) .
Now let the function ϕ n+1 be defined as

ϕ n+1 (x, v n+1 ) = ∂ϕ n ∂x f (x, u 0 ) + n-1 k=0 ∂ϕ n ∂u k u k+1 ,
with the function ϕ n defined in (1.8). By defining the function φ n as

φ n (z, v n+1 ) = ϕ n+1 (Ψ n (z, v n ), v n+1 ) ,
the result follows by applying the change of coordinates z = Ψ n (x, u, u, . . . , u (n-1) )

to the system (1.1).

The form (1.10) is usually known as phase-variable representation (see, for instance, [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], Section II.2)). In the previous result we considered the case where the system is globally diffemorphic to a system of the form (1.10) with the same dimension n, but this result could be easily generalized by considering an "immersion assumption". It is worth noticing that systems in the phase-variable representation are in strict-feedback form.

1.2. The high-gain construction

The high-gain construction

In the previous section we have shown different observability forms which can be achieved under different observability assumptions. It is worth noticing that all the observability forms introduced above can be gathered in two class of nonlinear systems: systems in strict feedback form and systems in non-strict feedback form. The former recovers the forms (1.7) and (1.10), whereas the latter the form (1.4). In this section we deal with the design of high-gain observers for the class of multi-input single output nonlinear systems in strict feedback form described as

ẋi = x i+1 + ϕ i (x 1 , . . . , x i , u) , i = 1, . . . , n -1 , ẋn = ϕ n (x 1 , . . . , x n , u) , y = x 1 + ν(t) ,
(1.11)

where the state x = (x 1 , . . . , x n ) ∈ R n evolves in a given compact subset X of R n , the input u is any function assumed to be known evolving in a compact subset U of R m and y ∈ R is the measured output. We suppose the functions ϕ i , i = 1, . . . , n are locally Lipschitz. The function t → ν(t) represents a measurement noise assumed to be unknown and bounded. For this class of systems we can design a high-gain observer as follows

ẋi = xi+1 + φi (x 1 , . . . , xi , u) + k i i (y -x1 ) , i = 1, . . . , n -1 , ẋn = φn (x 1 , . . . , xn , u) + k n n (y -x1 ) ,
(1.12)

with state x = (x 1 , . . . , xn ) ∈ R n and where k 1 , . . . , k n are coefficients to be properly chosen. As concern the functions φi , when the functions ϕ i are perfectly known, we can

choose φi (x 1 , . . . , x i , u) = sat ϑ i ϕ i (x 1 , . . . , x i , u) .
with the positive real number ϑ i defined as

ϑ i = max x∈X, u∈U |ϕ i (x 1 , . . . , x i , u)| .
On the contrary, when no information is available, one may choose to pick φi (•) = 0. For the sake of generality, in the following we suppose that the functions φi satisfy

|ϕ i (x 1 , . . . , x i , u) -φi (x 1 , . . . , xi , u)| ≤ L i |(x 1 -x1 , . . . , x j -xj )| + R i (1.13) for all (x, x, u) ∈ X × R n × U , for some L i > 0, representing the Lipschitz constant of ϕ i ,
and R i > 0, representing model uncertainties, for i = 1, . . . , n.

As shown in the forthcoming theorem, the high-gain observer (1.12) solves the problem of semi-global3 estimation for the system (1.11).

Theorem 1.4. Let consider the system (1.11) and suppose x(t) ∈ X and u(t) ∈ U for all t ≥ 0. Consider the observer (1.12) satisfying the bond (1.13) and let k 1 , . . . , k n be chosen such that the roots of the polynomial

λ n + k 1 λ n-1 + . . . + k n-1 λ + k n
have negative real part. Then, there exists a ≥ 1 and strictly positive constants µ i , i = 1, . . . , 4 such that, for any > and for any initial conditions (x(0), x(0)) ∈ X × R n , the following bounds hold

|x i (t) -x i (t)| ≤ µ 1 i-1 exp(-µ 2 t) |x(0) -x(0)| + µ 3 n j=1 i-(j+1) R j + µ 4 i-1 ν(•) ∞ (1.14)
for any t ≥ 0 and for i = 1, . . . , n.

Proof. The forthcoming proof is a rearrangement of the results in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]. We are interested here in giving a detailed proof in order to highlight some interesting properties and introduce some notations which will be used throughout the text. Let us rewrite the system (1.11) and the observer (1.12) in the more compact

form ẋ = Ax + φ(x, u) , y = Cx + ν(t) , ẋ = Ax + φ(x, u) + D K(y -C x) , (1.15)
where the pair (A, C) is in prime form and

φ(•) =     ϕ 1 (•) . . . ϕ n (•)     , φ(•) =     φ1 (•) . . . φn (•)     , D =     . . . n     , K =     k 1 . . . k n     .
The core of the proof relies in the following change of coordinates

xi → ε i := xi -x i i-1 , (1.16)
1.2. The high-gain construction which can be written in the compact form

x → ε := D -1 (x -x) .
By using the following equalities

D -1 AD = A , CD = C .
(1.17) the dynamics of (1.15) are transformed into

ε = (A -KC)ε + D -1 ∆(ε, x, u) + Kν(t)
where

∆(ε, x, u) = φ( -1 D ε + x, u) -φ(x, u) .
The re-scaled error coordinates ε emphasize the effect of the high-gain parameter . While making faster the Hurwitz linear part of the system (A -KC), it helps in rejecting the nonlinearities introduced by ∆(ε, x, u). Intuitively the high-gain parameter has to be large enough in order to overcome the Lipschitz constant introduced by ∆. Furthermore, note that in this framework the triangular structure of the functions ϕ i is fundamental. As a matter of fact, notice that by using (1.13) we get (for any ≥ 1)

D -1 ∆(ε, x, u) ≤ n j=1 1 j-1 φj (ε 1 + x 1 , . . . , j-1 ε j + x j , u) -ϕ j (x 1 , . . . , x j , u) ≤ n j=1 1 j-1 L j |(ε 1 , ε 2 , . . . , k-1 ε k )| + R j ≤ n j=1 L j k-1 j-1 |(ε 1 , . . . , ε k )| + n j=1 1-j R j ≤ n j=1 L j |ε| + n j=1 1-j R j
and therefore, by denoting L = n j=1 L j , we get

D -1 ∆(ε, x, u) ≤ L |ε| + n j=1 1-j R j ∀(ε, x, u) ∈ R n × X × U . (1.18)
Note that if the functions ϕ i had depended on x j , j > i, we would have introduced terms with positive powers of thus making impossible the stabilization of the ε dynamics.

The proof concludes by applying standard Lyapunov arguments that we recall here. First of all, note that as a consequence of the choice of k i , i = 1, . . . , n, the matrix (A -KC) is Hurwitz. Therefore let P = P > 0 be defined as solution of the Lyapunov matrix equation

P (A -KC) + (A -KC) P = -I ,
and let us define the Lyapunov Function V : R n → R ≥0 as

V = √ ε P ε .
By denoting with λ and λ the minimum and the maximum eigenvalue of P we have

λ |ε| ≤ V ≤ λ |ε| .
Note that V is only Lipschitz. As a consequence, when V is not zero, by evaluating the Dini derivative of V along the solutions of ε we get

D + V = 1 √ ε P ε ε P (A -KC)ε + D -1 ∆(ε, x, u) + Kν(t) ≤ - 1 √ ε P ε 2 |ε| 2 + |ε P | √ ε P ε   L |ε| + n j=1 1-j R j + |Kν(t)|   ≤ - 2 -L λ |ε| 2 √ ε P ε + λ √ λ   n j=1 1-j R j + |K|ν  
where we denoted ν = ν(t) ∞ . On the contrary, for V = 0 we get

D + V ≤ λ √ λ   n j=1 1-j R j + |K|ν  
hence the previous expression holds for both cases. Now let = 2L λ. As a consequence, there exists a a 1 > 0 such that, for any > max{ , 1},

V ≤ - a 1 λ V + λ √ λ   n j=1 1-j R j + |K|ν  
and therefore

V (t) ≤ exp - a 1 λ t V (0) + 1 -exp(-a 1 / λt) a 1 / λ λ √ λ   n j=1 1-j R j + |K|ν   As a consequence |ε(t)| ≤ µ 1 exp(-µ 2 t) |ε(0)| + µ 3 n j=1 -j R j + µ 4 ν with µ 1 = √ λ/ √ λ, µ 2 = a 1 / λ, µ 3 = µ 1 λ2 /a 1 and µ 4 = |K|µ 3 .
Finally the claim of the proof follows immediately by noting that for ≥ 1 we have

-(i-1) |x i -xi | ≤ |ε| ≤ |x -x| .
Remarks:

• Global observation can be achieved by the high-gain observer (1.12) only by asking the functions ϕ i to be globally Lipschitz and by selecting φi (•) = ϕ i (•) for all i = 1, . . . , n.

• The high-gain observer (1.12) is characterized by the nice feature of being extremely easy to tune. There are n design-parameters k i , i = 1, . . . , n, to select and one high-gain parameter to be chosen large enough in order to overcome the Lipschitz constants L i of the nonlinear functions ϕ i (•), i = 1, . . . , n. Furthermore, the rate of convergence of the observer can be made arbitrarily fast by increasing the high-gain parameter .

• The presence of R j , j = 1, . . . , n, deteriorates the estimate of the variables xi , i = j + 1, . . . , n, since i-j+1 > 1 for i > j. Evidently, asymptotic estimate can be achieved only when the functions ϕ i are perfectly known, namely R j = 0, j = 1, . . . , n, and when the measurement noise is not present.

• In the case the functions

ϕ i (•) = 1, . . . , n -1 = 0, system (1.11) reduces to ẋi = x i+1 i = 1, . . . , n -1, ẋn = ϕ n (x, u)
For the latter, the observer (1.12) can be designed as

ẋi = xi+1 + i k i (y -x1 ) , i = 1, . . . , n -1, ẋn = n k n (y -x1 )
and it is sometimes referred as "dirty-derivatives-observer" (see [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF] or "differentiator" (see [START_REF] Emal'yanov | Observers and output differentiators for nonlinear systems[END_REF], [START_REF] Vasiljevic | Differentiation with High-Gain Observers the Presence of Measurement Noise[END_REF] or Emal'yanov and [START_REF] Korovin | Observers and output differentiators in uncertain systems[END_REF]). As shown in many works (see, for instance, [START_REF] Teel | A nonlinear small gain theorem for the analysis of control systems with saturation[END_REF] and [START_REF] Atassi | Separation results for the stabilization of nonlinear systems using different highÂŋgain observer designs[END_REF]), this observer can be successfully used in output feedback stabilization problems when ϕ n (0, 0) = 0. In this case the gain has to be chosen large enough to "deal" with the bound ϑ n and not to overcome the Lipschitz constant L n of the nonlinear function ϕ n

Drawbacks of high-gain observers

The high-gain observer design (1.12) and the bound (1.14) introduced in Theorem 1.4 highlight three main drawbacks of this approach:

1. implementation issues, 2. the "peaking phenomenon", 3. sensitivity to measurement noise.

Implementation issues

The high-gain observer (1.12) is characterized by having the gain of the output injection terms which is proportional to , 2 , . . . , n . Furthermore, as shown in the proof of Theorem 1.4, the minimum value of which guarantees asymptotic convergence of the observer, is proportional to the Lipschitz constant of the nonlinear functions ϕ i . As a consequence, if the high-gain parameter or the dimension n of the observed system are large, we need to implement in the observer (1.12) a term n which may be very harmful from a numerical point of view. So a natural question is if this term n is necessary or only sufficient.

Consider for the time an observer for the system (1.11) of the form

ẋi = xi+1 + φi (x 1 , . . . , xi , u) + c 1 (y -x1 ), i = 1, . . . , n -1, ẋn = φn (x 1 , . . . , xn , u) + c n (y -x1 ) ,
where c 1 , . . . , c n are coefficients to be properly chosen. By assuming in this framework that no measurement noise is present, namely ν(t) = 0, and by making the change of

coordinates e i := xi -x i , we get ėi = -c 1 e 1 + êi+1 + φi (e 1 + x 1 , . . . , e i + x i , u) -ϕ i (x 1 , . . . , x i , u), i = 1, . . . , n -1, ėn = -c n e 1 + φn (e 1 + x 1 , . . . , e n + x n , u) -ϕ n (x 1 , . . . , x n , u).
An easy answer to our problem is obtained by considering the case where

ϕ i (x, u) = 0 i = 1, . . . , n -1 , ϕ n (x, u) = L x n .
for some positive real number L. By choosing

φi (x, u) = 0 i = 1, . . . , n -1 , φn (x, u) = L xn .
the closed-loop dynamics reduces to

ė = F e
where we denoted e = (e 1 , . . . , e n ) and

F =             -c 1 1 0 . . . . . . 0 -c 2 0 1 . . . . . . . . . . . . . . . . . . . . . . . . -c n-2 0 . . . 0 1 0 -c n-1 0 . . . . . . 0 1 -c n 0 . . . . . . . . . L             .
Convergence of the observer is guaranteed only if the matrix F is Hurwitz. Its eigenvalues λ are roots of

P(λ) = det             (λ + c 1 ) -1 0 . . . . . . 0 c 2 λ -1 . . . . . . . . . . . . . . . . . . . . . . . . c n-2 0 . . . λ -1 0 c n-1 0 . . . . . . λ -1 c n 0 . . . . . . . . . (λ -L)            
By using the multilinearity of the determinant, we have:

P(λ) = det      (λ + c 1 ) -1 0 . . . . . . 0 c 2 λ -1 . . . . . . . . . . . . . . . . . . . . . . . . c n-2 0 . . . λ -1 0 c n-1 0 . . . . . . λ -1 cn 0 . . . . . . . . . λ      + det      (λ + c 1 ) -1 0 . . . . . . 0 c 2 λ -1 . . . . . . . . . . . . . . . . . . . . . . . . c n-2 0 . . . λ -1 0 c n-1 0 . . . . . . λ 0 cn 0 . . . . . . . . . -L      = λ n + c 1 λ n-1 + . . . + c n-1 λ + c n -L det      λ + c 1 -1 0 . . . 0 c 2 λ -1 . . . . . . . . . . . . . . . . . . 0 c n-2 0 . . . . . . -1 c n-1 0 . . . . . . λ     
and therefore

P(λ) = λ n + (c 1 -L)λ n-1 + (c 2 -c 1 L)λ n-2 + . . . + (c n-1 -c n-2 L)λ + (c n -c n-1 L)
So a necessary condition for stability of the e-dynamics is:

c 1 > L , c 2 > c 1 L , . . . , c n-1 > c n-2 L , c n > c n-1 L
which implies c n > L n . This prove that even in the linear case the last gain of the output injection term must be larger than the Lipschitz constant of the nonlinear term powered up to the state dimension of the system.

These simple arguments show that the choice

c i = i k i
is not restrictive and guarantees an easy tunability for the stability of the closed loop system, by delegating to the choice of k i , i = 1, . . . , n, the stability of the re-scaled error closed loop matrix (A -KC) (see the notation introduced in the proof of Theorem 1.4) defined as

A -KC =             -k 1 1 0 . . . . . . 0 -k 2 0 1 . . . . . . . . . . . . . . . . . . . . . . . . -k n-2 0 . . . 0 1 0 -k n-1 0 . . . . . . 0 1 -k n 0 . . . . . . . . . 0            
and to the choice of the convergence rate of the observer for values large enough (namely for values which overcomes the Lipschitz constant of the nonlinear term ϕ).

It seems clear that if we want to avoid to implement terms , . . . , n in the observer, we need some different strategy, as a nonlinear change of coordinates, the use of non-linear functions, or dynamic extension.

The peaking phenomenon

Convergence of the observer (1.12) has been proved in Theorem 1.4. In absence of measurement noise and of model uncertainties, namely ν(t) = 0 and R i = 0, i = 1, . . . , n, the xi dynamics can be bounded as

|x i (t) -xi (t)| ≤ µ 1 i-1 exp(-µ 2 t) |x(0) -x(0)| .
During the transient the decaying term exp(-µ 2 t) is closed to one. As a consequence the variable xi shows a peak which is proportional to the error in the initial conditions and multiplied by a term i-1 , producing an estimate completely unreliable and which can be very large from a numerical point of view when or i are very large. The inter-action of peaking with nonlinearities can induce finite escape time in output feedback scenarios. In particular in the lack of global growth conditions, high-gain observers can destabilize the closed-loop system as the observer gain is driven sufficiently high.

Though finite escape time can be avoided by introducing saturations (see for instance [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF], [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], [START_REF] Teel | A nonlinear small gain theorem for the analysis of control systems with saturation[END_REF], Tornambé (1992a)) either in the control law, either in the estimate x, prevent or reduce peaking is still a challenge from a numerical point of view. A possible solution to remove peaking is to adopt the strategy which will be proposed in Section 2.2. The main idea consists in adding to the observer-dynamic a "modification term" which makes invariant some given compact set. However, since this design is -dependent and contains powers of which may be larger than n, this solution could not be the optimal choice from a numerical point of view when or n are very large.

The peaking phenomenon has been extensively studied in literature (see for instance [START_REF] Mita | On zeros and responses of linear regulators and linear observers[END_REF], [START_REF] Polotskii | On the maximal errors of an asymptotic state identifier[END_REF], [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF], [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF]) and

different solutions have been proposed, based on re-scaling [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF]),

projections [START_REF] Maggiore | A separation principle for a class of non uniformly completely observable systems[END_REF]), hybrid re-design [START_REF] Prieur | Hybrid high-gain observers without peaking for planar nonlinear systems[END_REF]) or time-varying gain approaches [START_REF] El Yaagoubi | High gain observer: Attenuation of the peak phenomena[END_REF]). Finally, a very recent publication [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF]) proposes an elegant solution based on a nested-saturation design.

Sensitivity to measurement noise

One of the main feature which questions the use of a high-gain observer in applications is its sensitivity to measurement noise. The bound (1.14) introduced in Theorem 1.12 shows that when R i = 0, i = 1, . . . , n, the asymptotic estimate is bounded by

lim t→∞ |x i (t) -xi (t)| ≤ µ 4 i-1 ν(•) ∞ (1.19)
The latter highlights the H ∞ bound between the estimate error and the measurement noise, showing that the estimates xi are affected by the noise with a gain which is proportional to i-1 . As a consequence when ν(•) ∞ , n or are very large, the estimates may become completely unreliable, imposing some upper bound on the value of the high-gain parameter if estimation in presence of measurement noise is desired. This trade-off between the speed of the state estimation and the sensitivity to measurement noise is a well-known fact in the observer theory. In this respect, high-gain observers tuned to obtain fast estimation dynamics are necessarily very sensitive to high-frequency noise (see, for instance, [START_REF] Mahmoud | Robustness of high-gain observer-based nonlinear controllers to unmodeled actuators and sensors[END_REF]). As reported in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], "a sound strategy to achieve fast convergence while reducing the impact of measurement noise at steady state is to use a larger during the transient time and then decrease it at steady state". Along this idea many techniques which vary the high-gain parameter with some scheme have been proposed (see, among others, [START_REF] Ahrens | High-gain observer in the presence of measurement noise: a switched-gain approach[END_REF], [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], [START_REF] Marino | Nonlinear control in the year 2000, volume 2, chapter[END_REF], [START_REF] Prasov | A Nonlinear High-Gain Observer for Systems With Measurement Noise in a Feedback Control Framework[END_REF], [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF]).

In Section 2.4 we propose a new analysis tool which give a more precise bound in presence of high-frequency measurement noise.

High gain observers for systems in non-strict feedback form

In this section we focus on the design of observer for systems in the non-strict feedback

form ẋi = f i (x x x i , x i+1 , u) , 1 ≤ i ≤ n -1 , ẋn = f n (x 1 , . . . , x n , u) , y = h(x 1 , u) ,
(1.20)

with state x = col(x 1 , . . . , x n ) ∈ R n , input u ∈ R and output y ∈ R, and where we used the notation x x x i = col(x 1 , . . . , x i ). Due to the nonlinear structure, the design (1.12) cannot be applied to this class of systems. As a consequence, in this section we show how to design a suitable observer under the forthcoming extra assumptions.

Assumption 1.1. Each of the maps f i (•), i = 1, . . . , n, is globally Lipschitz with respect to x x x i , uniformly with respect to u and x i+1 , namely there exists a L > 0 such that for all x x x i ∈ R i ,

x x x i ∈ R i , x i+1 ∈ R and u ∈ R, the following holds |f i (x x x i , x i+1 , u) -f i (x x x i , x i+1 , u)| ≤ L |x x x i -x x x i | , 1 ≤ i ≤ n -1 , |f n (x x x n , u) -f n (x x x n , u)| ≤ L |x x x n -x x x n | .
Assumption 1.2. There exist two positive constants 0 < α ≤ β < ∞, such that for all (x, u) ∈ R n × R the following bounds hold

α ≤ ∂h(x 1 , u) ∂x 1 ≤ β , α ≤ ∂f i (x x x i , x i+1 , u) ∂x i+1 ≤ β , 1 ≤ i ≤ n -1 .
Within this framework the main result proposed in [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] is a systematic design of a high-gain observer that takes the form

ẋi = f i (x x x i , xi+1 , u) + i k i (y -h(x 1 , u)) , 1 ≤ i ≤ n -1 , ẋn = f n (x x x n , u) + n k n (y -h(x 1 , u)) , (1.21) 
where x = (x 1 , . . . , xn ) is the estimate state, with the notation x x x i = (x 1 , . . . , xi ) . With respect to the high-gain observer (1.12) we can emphasise a substantial difference. While the effect of the high-gain parameter is the same, i.e. speed up the dynamics of the observer, the coefficients k i , i = 1, . . . , n cannot be chosen in the same trivial way. In particular, as highlighted in [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], a more sophisticated design is needed, summarized in the forthcoming technical lemma.

Lemma 1.1 [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], Lemma 2.1, Chapter 6). Let A(t) ∈ R n×n and C(t) ∈ R 1×n be time-varying matrices defined as

A(t) =         0 ψ 2 (t) 0 • • • 0 0 0 ψ 3 (t) • • • 0 • • • • • 0 0 0 • • • ψ n (t) 0 0 0 • • • 0         , C(t) = ψ 1 (t) 0 0 • • • 0 , in which ψ i (t) are continuous function satisfying α ≤ ψ i (t) ≤ β ∀ t ≥ 0 , 1 ≤ i ≤ n , (1.22)
for some constants α ∈ R, β ∈ R. Then there exist a λ > 0, a vector K = col(k 1 , . . . , k n ), and a symmetric positive definite matrix P ∈ R n×n such that

(A(t) -KC(t)) P + P (A(t) -KC(t)) ≤ -λ I .
Under the previous assumptions the observer (1.21) can be tuned in order to obtain a global estimate of the state of (1.20).

Theorem 1.5 [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], Theorem 2.2, Chapter 6). Consider the system

(1.20) under the Assumptions 1.1 and 1.2. Let the coefficients k 1 , . . . , k n of the observer (1.21) be chosen according to Lemma 1.1 with α, β given by Assumption 1.2. There exist a ≥ 1 and positive constants µ 1 and µ 2 such that for all > and for all (x(0), x(0)) ∈ R n × R n the following bound holds

|x i (t) -x i (t)| ≤ µ 1 i-1 exp(-µ 2 t) |x(0) -x(0)| .
Note that the globally Lipschitz condition in Assumption 1.1 is motivated by the fact that in Theorem 1.5 we look for a global observer. In case the state of the system ranges in a fixed known compact set, the condition of Assumption 1.1 can be weakened by asking the functions f i (•) to be only locally Lipschitz with respect to x x x i . In this case the design of the observer (1.21) may follow the same design of observer (1.12), for instance by saturating the nonlinear functions f i (•) outside the domain of interest.

Design in the original coordinates

This chapter concludes by illustrating some difficulties that may arise by following the prescriptions of Sections 1.1 and 1.2. As shown in Section 1.1 input-affine nonlinear systems of the form

ẋ = f (x) + g(x)u , y = h(x) , (1.6 revisited)
can be put, by means of the (nonlinear) change of coordinates

Φ(x) = col h(x) L f h(x) • • • L n-1 f h(x)
in the strict feedback form (1.7) that we rewrite here by using the compact notation

ż = Az + φ(z, u) , y = Cz , (1.7 revisited) with φ(z, u) =        0 . . . 0 a(z)        +           b 1 (z 1 ) . . . b i (z 1 , . . . , z i ) . . . b n (z 1 , . . . , z n )           u .
Once the system is put in the coordinates (1.7), it is possible to design an asymptotic convergent observer by following the design proposed in Section 1.2. The observer (1.12) achieves asymptotic estimation of the system (1.7) and by applying the inverse mapping x = Φ -1 (ẑ) it is possible to recover an estimate of the system (1.6).

However, the main obstacle of this procedure is that we need to know the inverse mapping of Φ(x), which may be very difficult to compute in explicit way. By following the intuition of [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] and [START_REF] Ciccarella | A Luenberger-like observer for nonlinear systems[END_REF], this problem can be overcame by implementing the high-gain observer in the original coordinates: instead of changing the coordinates for the original system and then designing the observer, it is possible to go in the opposite direction, namely to "bring-back" in the original coordinates the observer. The high-gain observer can be thus implemented as

ẋ = f (x) + g(x)u + ∂Φ ∂x (x) -1 D K(y -h(x))
where we denote D = diag( , . . . , n ) 4 with ≥ 1 the high-gain parameter, and K is a 1.5. Design in the original coordinates n × 1 matrix to be chosen such that there exists a positive definite symmetric matrx P satisfying P (A -KC) + (A -KC) = -I .

It is not hard to see that, by applying the change of coordinates ẑ = Φ(x), the proposed observer transforms as

ż = Aẑ + φ(ẑ, u) + D K(y -C ẑ) .
The latter coincides with the observer design proposed in (1.12). However, if the function φ(ẑ, u) does not satisfy the bound (1.13) Theorem 1.4 can not apply. As opposed to the design procedure illustrated in Section 1.2 for the functions φi , the main issue here relies on the fact that we are not able (in a systematic way) to design a modified version of the functions f , g such that in the z-coordinates, the function φ(ẑ, u) (implicitly implemented in the observer in the original coordinates) is bounded in the strict feedback coordinates and well-defined outside of some compact set of interest. This problem has been solved, for instance, in [START_REF] Maggiore | A separation principle for a class of non uniformly completely observable systems[END_REF] by using projection. An other possibility, which will be investigated in Section 2.2, is to modify the previous observer such that its state x remains invariant on some compact subset of R n .

Application to output regulation

The problem of output regulation for nonlinear systems, beginning with the work Isidori and [START_REF] Isidori | Output regulation of nonlinear systems[END_REF], has been addressed by several authors and a corpus of results has been developed, the majority of which address the problem in question for single-input single-output minimum-phase systems (see for instance [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF], [START_REF] Isidori | Robust Autonomous Guidance -An Internal Model Approach[END_REF][START_REF] Huang | Nonlinear Output Regulation Theory and Applications[END_REF], [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: a Convergent Dynamics Approach[END_REF] and references therein). For the class of systems in question, output regulation amounts to making a compact attractor, on which some regulated variables are zero, asymptotically stable. The distinguishing feature of the framework is that the attractor is not invariant for the original uncontrolled plant and has internal dynamics governed by the dynamics of an autonomous exogenous system (the so-called exosystem) whose state is not measurable. This, in turn, asks for the design of regulators that include an appropriate copy of the exosystem dynamics able to make the desired attractor invariant and leads to the celebrated internal model-based design strategy.

Starting with the contribution in [START_REF] Isidori | Output regulation of nonlinear systems[END_REF], many improvements have been proposed in the output regulation literature in the last twenty years or so with the aim of making the framework where internal model-based regulators could be systematically designed even more general (see, among others, Huang and Lin (1994a), [START_REF] Serrani | Semiglobal nonlinear output regulation with adaptive internal model[END_REF], [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF], [START_REF] Marconi | Uniform Practical Output Regulation[END_REF]). Related to the design methodology presented in this section, an interesting framework has been proposed in [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF] in which the so-called "friend", which is the ideal steady state input able to make the desired attractor invariant, and a certain number of its time derivatives are assumed to fulfil a regression law. The important observation made in [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF] is that, in this framework, tools typically adopted in the field of nonlinear high-gain observers can be successfully adopted in order to design internal model-based regulators. This observation opened an interesting research direction in which a high-gain observer can be used for the design of the internal model.

The same framework has been also taken in Isidori et al. (2012) in order to design adaptive linear regulators, namely regulators with adaptive mechanisms able to cope with uncertainties in the exosystem. The fact that design methodologies typically used in the design of nonlinear observers could be successfully employed in the design of internal models has been further investigated and developed in Delli [START_REF] Delli Priscoli | Adaptive Observers as Nonlinear Internal Models[END_REF] in which the theory of adaptive (not necessarily high-gain) nonlinear observers has been proposed for this purpose.

The presentation of this section has been strongly inspired by [START_REF] Astolfi | Honour of Laurent Praly, chapter "Output regulation via low-power construction[END_REF] and the contents are well-known results that can be found in [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF] and Isidori et al. (2012).

The framework of output regulation

In this section we recall briefly the framework considered by [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF] where the aforementioned high-gain methodology applies. We consider the class of systems in normal form with unitary relative degree5 described by 

ż = f (w, z, e) ė = q(w, z, e) + b(w, z, e)u (1.23) in which (z, e) ∈ R n × R is the state, u ∈ R
(w, z, e) ≥ b ∀ (w, z, e) ∈ R ρ × R n × R . (1.25)
The initial initial condition of the system (1.23) is assumed to range in an arbitrary but The previous problem is addressed under a number of assumptions that we briefly recall. The first regards the existence of the solution of the so-called regulator equations.

known compact set Z × E ⊂ R n × R.
In this framework, in particular, we assume the existence of a differentiable function π : R ρ → R n solution of

L s π(w) = f (w, π(w), 0) ∀ w ∈ W .
This assumption guarantees that the set A ⊂ W × R n , defined as

A = {(w, z) ∈ W × R n : z = π(w)} ,
is invariant for the zero dynamics of the system (1.23) with input u and output e that are described by ẇ = s(w)

ż = f (w, z, 0) .
(1.28)

The second assumption asks that system (1.23) is also minimum-phase. In our framework the minimum-phaseness assumption is formalised as follows.

Assumption 1.3. The set A is asymptotically and locally exponentially stable for the system

(1.28) with a domain of attraction of the form W × D where D is an open set of R n such that Z ⊂ D.

The local exponential stability requirement in the previous assumption is written just for sake of simplicity and it can be removed by properly adapting the design of the regulator presented in the following (see, for instance, [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF], [START_REF] Isidori | Perspectives in Mathematical System Theory, Control, and Signal Processing, chapter[END_REF]). In the design of the regulator solving the problem of output regulation, a crucial role is played by the so-called "friend", which is the function c : W → R defined as c(w) := -q(w, π(w), 0) b(w, π(w), 0) .

(1.29)

By bearing in mind (1.23), it turns out that such a function represents the ideal steady state input needed to keep the regulation error identically zero, namely the control input that must be applied to (1.23) to make the set A × {0} invariant. In the following construction we do not assume a specific structure for c(•) as typically done, through the so-called immersion assumption, in most of the work on the subject [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Isidori | Perspectives in Mathematical System Theory, Control, and Signal Processing, chapter[END_REF] In the remaining part of the section we illustrate the main framework under which a regulator can be designed (see [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF]), by highlighting how the theory of nonlinear observers, and in particular the one of high-gain observers, turns out to be useful in the regulator construction. The fact of dealing with regulated plant that are affine in the input suggests to consider regulator structures of the same kind, namely regulators of the form

ξ = φ(ξ) + Ψ v ξ ∈ R m u = γ(ξ) + v v = -κe (1.31)
where φ(•) and γ(•) are smooth functions, Ψ is a column vector, and κ is a design parameter, all to be designed. The resulting closed-loop system, has a normal form that, having defined the change of variables where ∆(•) and L(•) are properly defined functions such that ∆(w, z, χ, 0) = 0 and L(w, z, χ, 0) = 0 for all (w, z, χ) ∈ W × R n × R m . This system, regarded as a system with input v and output e, has still unitary relative degree and, as an easy computation shows, zero dynamics described by ẇ = s(w) w, z, e) .

ξ → χ := ξ -Ψ
ż = f (w, z, 0) χ = φ(χ) -Ψ γ(χ) + q(w, z, e) b(
(1.33)

Note that these dynamics have a cascade structure with system (1.28) driving the system with state χ. In the following we denote by X ⊂ R m the compact set of initial conditions for the new variable χ. The problem of output regulation is then reformulated as a problem of output feedback stabilisation of system (1.32). In particular the problem at hand is solved if one is able to prove the existence of a compact set of R ρ ×R n ×R m ×R, on which the regulation error e is identically zero, that is asymptotically stable for system

(1.32) with a domain of attraction containing the set of initial conditions. To this purpose high-gain design paradigms for minimum-phase systems can be successfully adopted [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF]). In particular, the following two requirements play a role in the design of the stabiliser: a) there exists a set B ⊂ R ρ ×R n ×R m that is asymptotically and locally exponentially stable for system (1.33) with a domain of attraction of the form

W × D e with D e ⊂ R n × R m an open set fulfilling Z × X ⊂ D e .
b) the following holds q(w, z, 0) + b(w, z, 0)γ(χ) = 0 ∀ (w, z, χ) ∈ B .

Requirement (a), in turn, asks that system (1.32), regarded as a system with input v

and output e, is minimum-phase. On the other hand, requirement (b) asks that the coupling term between the zero dynamics (1.33) and the error dynamics is vanishing on B × {0}, namely that the latter set is invariant for 1.32 with v = 0. That properties, in turn, make system (1.32) fitting into frameworks of stabilisation of minimum-phase nonlinear systems in which the choice v = -κe, with κ sufficiently large, succeeds in asymptotically stabilising the set B × {0}. This is formalised in the next theorem whose proof can be found in [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF].

Theorem 1.6. Assume that the requirements (a) and (b) specified before are fulfilled for some compact set B. Then, there exists a κ > 0 such that for all κ ≥ κ the set B × {0} is asymptotically and locally exponentially stable for system (1.23)-(1.24) controlled by (1.31)

with a domain of attraction of the form

W ×D cl with D cl ⊂ R n ×R m ×R an open set fulfilling Z × X × E ⊂ D cl .
The high-gain paradigm is indeed robust in case requirement (a) above is only achieved practically rather than asymptotically. More specifically, requirement (a) above can be relaxed to the requirement (a') specified in the following at the price of achieving just practical instead of asymptotic regulation as claimed in the next Theorem 2.

a') There exists a set B ⊂ R ρ × R n × R m such that the trajectories of system (1.33) (1.34) for some positive constants c 1 , c 2 and .

originating from W × Z × X fulfil |(w(t), z(t), χ(t))| B ≤ max c 1 exp(-c 2 t)|(w(0), z(0), χ(0))| B ,
Theorem 1.7. Assume that the requirements (a') and (b) specified before are fulfilled for some compact set B and positive constants c 1 , c 2 and . Then, there exist a κ > 0 and a c > 0,

such that for all κ ≥ κ the trajectories of the resulting closed-loop (1.23)-(1.24) and (1.31) originating from the compact set of initial conditions W × Z × X × E are bounded and

lim t→∞ sup |e(t)| ≤ c κ .
The previous considerations shift the focus of the design on system (1.33) and, in particular, on the design of the triplet (φ(•), ψ, γ(•)) fulfilling the requirements (a') and (b). In the next section the problem in question is solved by using the high-gain observer theory.

High-gain observers for the internal-model design

The problem of fulfilling requirement (a') and (b) introduced at the end of the previous section is now addressed by using design tools that are adopted in the literature of highgain observers, by recalling the results presented in [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF]. To this end, let the dimension of the regulator (1.31) be taken as m = d and, by bearing in mind the definition in (1.29), let τ : W → R d be defined as

τ (w) := col c(w) L s c(w) . . . L d-1 s c(w) ,
and the triplet (φ(•), Ψ, γ(•)) be taken as

φ(ξ) := col ξ 2 • • • ξ d-1 φ(ξ) , Ψ := col k 1 • • • d k d , γ(ξ) := ξ 1 (1.35)
where is a design parameter, the k i 's are coefficients of an Hurwitz polynomial, and φ(•) is a bounded function that agrees with ϕ(•) on τ (W ). Then, we have the follow-ing proposition whose proof can be obtained by slightly generalising the arguments in [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF] and can be found in Isidori et al. (2012).

Proposition 1.2. Let c(•) in (1.29) be fulfilling (1.30) and let the triplet (φ(•), Ψ, γ(•)) be taken as in (1.35). Then there exist a > 0 such that for all ≥ requirements (a') and (b)

of Section 1.6.1 are fulfilled with 

B = {(w, z, χ) ∈ W × R n × R d , z = π(w) , χ = τ (w)}

Strict feedback form for non-input-affine systems

In Section 1.1 we showed that for input-affine nonlinear systems of the form

ẋ = f (x) + g(x)u y = h(x) (1.6 revisited)
we can find a change of coordinates in which the system has a strict feedback form

żi = z i+1 + b i (z 1 , . . . , z i )u , i = 1, . . . , n -1 , żn = a(z) + b n (z 1 , . . . , z n )u , y = z 1 , (1.7 revisited)
namely a linear part characterized by a sort of "chain of integrators" . From an observerdesign perspective, the form (1.7) is easy to handle with respect to the form

1 żi = f i (z 1 , . . . , z i , z i+1 , u) , i = 1, . . . , i -1 , żn = f n (z 1 , . . . , z n , u) , y = h(z 1 , u) ,
(1.4 revisited)

Thus, one may wonder if a similar result can be achieved also for the general class of nonlinear systems (1.1) ẋ = f (x, u) , y = h(x, u) , (1.1 revisited) which we know be, under some conditions, diffeomorphic to the form (1.4). As stated in the forthcoming theorem, under stronger assumptions, one may find a suitable change of coordinates by which the system (1.1) has the form (1.7) with the difference that the system is affine with respect to the input-derivative. The following result is an adaptation to the diffemorphic case of a more general result given in Astolfi et al. (2013b).

Theorem 2.1. Consider the system (1.1) and suppose the mapping Γ :

R n × R → R n × R defined as Γ(x, u) := u Φ n (x, u) with Φ n : R n × R → R n defined as 2 Φ n (x, u) := col h(x, u) L f (x,u) h(x, u) • • • L n-1 f (x,u) h(x, u)
is a global diffeomorphism. Then, the system (1.1) is globally diffemorphic, via Φ n , to a system of the form

ż =          ż1 ż2 . . . żn-1 żn          =          z 2 z 3 . . . z n a(u, z)          +          b 1 (u, z 1 ) b 2 (u, z 1 , z 2 ) . . . b n-1 (u, z 1 , . . . , z n-1 ) b n (u, z)          u , y = z 1 .
(2.1)

Proof. This result is a special case of a more generic result given in Astolfi et al. (2013b). Therefore, for the kind of completeness, we give all the proof. Let us add an integrator to system (1.1), namely

ẋ = f (x, u) , u = v , y = h(x, u) ,
that is regarded as a system with input v, output y and state ξ = col(u, x). By letting

F (ξ) = col(f (x, u), 0), G = col(0, 1), H(ξ) = h(x, u
), the previous system can be compactly rewritten as

ξ = F (ξ) + Gv y = H(ξ)
In the new coordinates we get

Φ n (x, u) =       H(ξ) L F (ξ) H(ξ) • • • L n-1 F (ξ) H(ξ)       . The variable z = Φ n (x, u) is governed by the dynamics ż1 = z 2 + g1 (ξ)v . . . żn-1 = z n + gn-1 (ξ)v żn = f (ξ) + gn (ξ)v where f (ξ) = L n F (ξ) H(ξ) and gi (ξ) = L G L i-1 F (ξ) H(ξ), i = 1, . . . , n.
By assumption the function Γ(x, u) is a global diffeomorphism so there exists a C 1 function Υ : R n+1 → R n+1 defined as

Υ(u, x) = u Ψ n (x, u) such that ξ = Υ(Γ(ξ)) , z = Γ(Υ(z)) ,
for all ξ ∈ R n+1 and for all z ∈ R n+1 , where we use the notation z = col(u, z). Now let b i : R n+1 → R, i = 1, . . . , n, be the continuous function defined as

b i (z) = gi (Υ(z)) .
For all k = 1, . . . , n, and each pair z a = (u, z a ) and

z b = (u, z b ) in R n+1 satisfying z a i = z b i for all i = 1, . . . , k, we have b k (z a ) = b k (z b
). This fact follows by an elementary adaptation of the arguments in (Gauthier and Kupka, 2004, Theorem 4.1, chapter 3) we write here just for the case k = 1.

By continuity there exist neighbourhoods N a and

N b ⊂ R × R n of ξ a 0 and ξ b 0 such that L G H(ξ a ) = L G H(ξ b ) ∀ (ξ a , ξ b ) ∈ N a × N b . Consider now the system ẋa = f (x a , u) , ẋb = f (x b , u) , u = v 1 with output ỹ = h(x a , u) -h(x b , u) and input v 1 taken as the feedback v 1 = L F (ξ a ) H(ξ a ) -L F (ξ b ) H(ξ b ) L G H(ξ a ) -L G H(ξ b ) .
It is motivated by the fact that it gives ẏ = 0. And it is as many times differentiable as needed as long as

(ξ a , ξ b ) is in N a ×N b . Let (ξ a (t), ξ b (t)) be its solution with initial value (ξ a * , ξ b * ).
There exists a T > 0 such that for all t ∈ [0, T ) (ξ a (t), ξ b (t)) ∈ N a × N b and, as a consequence, the components x a (t) and x b (t) are in c X and u(t) is in c U for all t ∈ [0, T ). Furthermore, since t → ỹ(t) is constant on [0, T ) and ỹ(0) = 0, it is zero on the whole interval. So the same holds for its n first derivatives. By definition of the function Φ n and by denoting u u u

i (t) = (u(t), u (1) (t), . . . , u (i-1) (t)), we get Φ n (x a (t), u u u n (t)) = Φ n (x b (t), u u u n (t)) and thus x a (t) = Ψ n (Φ n (x a (t), u u u n (t)), u u u n (t)) = Ψ n (Φ n (x b (t), u u u n (t)), u u u n (t)) = x b (t) ∀t ∈ [0, T ) , This yields in particular x a * = x b * . So we have ξ a * = ξ b * and thus g1 (ξ a * ) = g1 (ξ b * )
. This is a contradiction. In this way, we have shown that, for each pair z a = (u, z a )

and z b = (u, z b ) in R × R n satisfying z a 0 = z b 0 , we have b 1 (z a ) = b 1 (z b
). Similar arguments, can be used by induction for k = 1, . . . , n, with an appropriate choice of the input derivative u (k+1) . From the above, it follows that the functions b i (z) presents a triangular structure in the z i components of z. Finally, by defining

a(z, u) = f (Υ(z)) ,
with these functions we do have obtained the form (2.1).

Notice that the form (2.1) is in the strict-feedback form (1.11) introduced in Section 1.2. As a consequence, if the inverse of the diffeomorphism Γ(x, u) and the derivative of the input u are known3 , one can implement an observer for the system (1.1) by following the procedure of Section 1.2, thus resulting in a simpler design with respect to the one proposed in Section 1.4.

Imposing state constrains in high-gain observers

In this section we present a design tool, based on a gradient technique, which can be applied to high-gain observers in order to constrain the state of the latter in a desired compact set. This tools results very effective for the observer design in the original coordinates introduced in Section 1.5, although it may be applied also to the standard design in the feedback coordinates (1.11) or (1.20) in order to remove the peaking phenomenon.

For the sake of compactness, we are going to present the tool as an application for the original coordinates design, adding some remarks at the end of this section. The main contents of this section have been published in Astolfi and Praly (2013).

We consider here multi-input single-output input-affine nonlinear systems of the

form ẋ = f (x) + g(x)u y = h(x) (2.2)
where the state x belongs to an open subset X of R n , the input evolve in a compact subset U of R m and y ∈ R is the measured output. The functions f, g, h are smooth enough and the system (2.2) satisfies the forthcoming assumptions4 . Comments on the following assumptions are given at the end of this section.

Assumption 2.1. There exists a diffeomorphism Φ : X → R n such that the system (2.2) is transformed, via z = Φ(x), into a system in strict-feedback form, namely

ż = Az + φ(z, u) , y = Cz , (2.3)
where (A, C) is a pair in prime form and φ :

Z × R → R n , with Z = Φ(X ), is a locally
Lipschitz function possessing a triangular structure, namely φ = (ϕ 1 , . . . , ϕ n ) with

ϕ i (z, u) = ϕ i (z 1 , . . . , z i , u) , 1 ≤ i ≤ n .
Assumption 2.2. Given the set X and the diffeomorphism Φ of Assumption 2.1, for any compact subset X of X , there exists a C 1 function h 2 : R n → R ≥0 satisfying:

H1. the set C 0 = {x ∈ X : h 2 (x) ≤ 0}
contains X and has a non empty interior;

H2. the set {x ∈ R n : h 2 (x) < 1} is a subset of X ; H3. the function x → h 2 (x) ∂h 2 ∂x (x)
is continuous on X ;

H4. for any real number s in [0, 1] and any x 1 and x 2 in X satisfying h 2 (x 1 ) ≤ s and h 2 (x 2 ) ≤ s we have h 2 (x) ≤ s for all x which satisfies for some λ in [0, 1]:

Φ(x) = λΦ(x 1 ) + (1 -λ)Φ(x 2 ) .
This means nothing but the fact that, for any non negative real number s the image by

Φ of the set {x ∈ R n : h 2 (x) ≤ s} is convex. H5. the set C 1 2 = {x ∈ R n : h 2 (x) ≤ 1 2 } is compact.
The point H1 of the previous assumption motivates us for introducing a dummy measured output

y 2 = h 2 (x)
and to consider that its measured value is always 0, namely the state x evolves in X for all t ≥ 0. With this, we can proposed the following observer in the original coordinates

ẋ = f (x) + g(x)u + ∂Φ ∂x (x) -1 D K(y -h(x)) + M(x, y, u) (2.4)
with state x ∈ R n and where D = diag( , . . . , n ) with ≥ 1 the high-gain parameter, and K is a n×1 matrix chosen such that there exists a positive definite symmetric matrix P satisfying

P (A -KC) + (A -KC) = -I .
(2.5)

The "modification term" M is defined as

M(x, y, u) = -τ (x, y, u) -1 ∂Φ ∂x (x) -1 D P -1 D ∂Φ ∂x (x) -1T ∂h 2 ∂x (x) h 2 (x) (2.6)
where τ : R n × R × R m → R ≥0 is a locally Lipschitz function to be chosen large enough.

The function M is an extra output injection term that acts only when the state x goes outside the set X, and guarantees the set C 1 2 to be forward invariant for the observer (2.4), as stated by the forthcoming theorem.

Theorem 2.2. Consider the system (2.2) under Assumptions 2.1 and 2.2 and suppose that x(t) ∈ X and u(t) ∈ U for all t ≥ 0. Consider the observer (2.4) -(2.6) with initial conditions

x(0) ∈ C 1 2 . There exist a function τ : R n × R × R m → R ≥0 , strictly positive real numbers ≥ 1 and µ 1 , µ 2 , such that for any > (i) the set C 1 2 is forward invariant for the observer (2.4) -(2.6), (ii) |x(t) -x(t)| ≤ µ 1 n-1 exp(-µ 2 t) |x(0) -x(0)| .
Proof. We start by proving the point (i). Note that

∂h 2 ∂x (x) ẋ = R(x, y, u) -τ (x, y, u) D P -1 2 ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) 2 h 2 (x)
where we have let

R(x, y, u) = ∂h 2 ∂x (x) f (x) + g(x)u + ∂Φ ∂x (x) -1 D K(y -h(x)) .
This motivates us for choosing τ satisfying

τ (x, y, u) ≥ 8R(y, u, x) h 2 (x) 2 D P -1 2 ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) 2
which can be computed on-line. Thanks to H2, the function x → τ (x) defined this way is continuous on X . It implies that the derivative of h 2 (x) along the solutions is non positive when h 2 (x) is strictly larger than 1 2 . This implies that, for each s in

[ 1 2 , 1] the set {x : h 2 (x) ≤ s} is forward invariant and so is the compact set C 1 2 .
In order to prove (ii), let for the time ignore the modification term M(x) in the observer (2.4). Let V : X × X → R ≥ 0 be the Lyapunov function defined as

V = (Φ(x) -Φ(x)) D -1 P D -1 (Φ(x) -Φ(x)) .
Its derivative along the solution is given by

V = 2 D -1 (Φ(x) -Φ(x)) P D -1 AΦ(x) + D K(CΦ(x) -CΦ(x)) + φ(Φ(x), u) -AΦ(x) -φ(Φ(x), u)
Let L be a strictly positive real number satisfying

|φ(Φ(x), u) -φ(Φ(x), u)| ≤ L |Φ(x) -Φ(x)| , ∀ (x, x) ∈ , C 1 2 × C 1 2 ∀ u ∈ U .
By denoting e = D -1 (Φ(x) -Φ(x)) and by using (1.17) and (2.5), we get

V ≤ -|e| 2 + 2L |P | |e| 2 .
With a straightforward application of the same arguments used in the proof of the Theorem 1.4, we can prove that there exists a ≥ 1 and strictly positive real numbers m 1 , m 2 such that

|e(t)| ≤ m 1 n-1 exp(-m 2 t)|e(0)| ,
and therefore, by using the fact that for any ≥ 1

|e| ≤ |Φ(x) -Φ(x)| ≤ n-1 |e| we get |Φ(x(t)) -Φ(x(t))| ≤ m 1 n-1 exp(-m 2 t) |Φ(x(0)) -Φ(x(0))| ,
for all > . Now, recall that Φ is a diffeomorphism on X . As a consequence for any compact set in X , and in particular for C 1 2

, there exist positive real numbers

L Φ and L Φ -1 satisfying |x -x| = |Φ -1 (Φ(x)) -Φ -1 (Φ(x))| ≤ L Φ -1 |Φ(x) -Φ(x)| |Φ(x) -Φ(x)| ≤ L Φ |x -x| for any (x, x) ∈ C 1 2 × C 1 2
. The proof completes by defining

µ 1 = m 1 L Φ -1 L Φ and µ 2 = m 2 .
Note that the additional term M(x) does not destroy the aforementioned asymptotic properties. This can be proved by noting that when it is acting, it augments the derivative of the Lyapunov function V with

-τ (y, u, x) [Φ(x) -Φ(x)] ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) h 2 (x) .
Recall that by definition a convex function f satisfies (see [START_REF] Boyd | Convex Optimization[END_REF])

f (x) ≥ f (y) + f (y)(x -y) =⇒ f (y)(y -x) ≥ f (y) -f (x) .
Furthermore the properties H3 and H4 of the Assumption 2.2 imply that the function h 2 is monotonic and the image of the set {x ∈ X : h 2 (x) ≤ s} is convex. As a consequence, when h 2 (x) is zero, which is the case when the model state x remains in X, and when h 2 (x) is in [0, 1], and in particular C 1 aforementioned of h 2 gives

∂h 2 ∂x (x) ∂Φ ∂x (x) -1 [Φ(x) -Φ(x)] ≥ h 2 (x) -h 2 (x) ≥ h 2 (x) ≥ 0 By recalling that h 2 (x) ≥ 0 and τ (•) > 0 for any x ∈ C 1 2 we get 0 ≤ τ (x, y, u) [Φ(x) -Φ(x)] ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) h 2 (x)
We conclude that, that the derivative of V remains negative and the bound claimed in the theorem holds as long as x ∈ X and x in {x ∈ X : h 2 (x) ≤ 1} and so in C 1 2 .

Remarks

• There is a systematic way to define the function h 2 when, given the compact set X we know the existence of a positive definite symmetric matrix Q and a real number R satisfying

Φ(X) ⊆ z ∈ R n : z Qz ≤ R ⊂ z ∈ R n : z Qz ≤ R + 1 ⊂ Φ(X ) .
In this case we the function h 2 can be chosen as

h 2 (x) = max Φ(x) Q Φ(x) -R , 0 2 .
It is easy to check that with this choice Properties H1 and H2 are satisfied:

{x ∈ X : h 2 (x) ≤ 0} = x ∈ X : Φ(x) Q Φ(x) ≤ R ⊇ Φ(X) {x ∈ X : h 2 (x) < 1} = x ∈ X : Φ(x) Q Φ(x) < R + 1 ⊂ Φ(X )
The function claimed by H3 is given by

h 2 (x) ∂h 2 ∂x (x) = max Φ(x) Q Φ(x) -R, 0 2 4 max Φ(x) Q Φ(x) -R , 0 Φ(x) Q ∂Φ ∂x (x) ≤ max Φ(x) Q Φ(x) -R |Φ(x) Q| , 0 ∂Φ ∂x (x) -1
which is continuous on X because Φ(x) is a diffeomorphism (and therefore its Jacobian is always non singular for all x ∈ X ). In order to prove property H4, recall that since Q is a positive definite symmetric matrix the following holds

z 1 Qz 2 = z 2 Qz 1 , 2z 1 Qz 2 ≤ z 1 Qz 1 + z 2 Qz 2 , for any z 1 ∈ R n and z 2 ∈ R n . Now let s ∈ [0, 1] be fixed. Let x 1 and x 2 in X satisfying h 1 (x 1 ) ≤ s, h 2 (x) ≤ s. By denoting z 1 = Φ(x 1 ) and z 2 = Φ(x 2 ) we have z 1 Qz 1 ≤ √ s + R , z 2 Qz 2 ≤ √ s + R Now let consider any z = Φ(x) of the form z = λz 1 + (1 -λ)z 2 for any λ ∈ [0, 1]. We have z Qz = (λz 1 + (1 -λ)z 2 ) Q(λz 1 + (1 -λ)z 2 ) = λ 2 z 1 Qz 1 + (1 -λ) 2 z 2 Qz 2 + 2λ(1 -λ)z 1 Qz 2 ≤ λ 2 z 1 Qz 1 + (1 -λ) 2 z 2 Qz 2 + λ(1 -λ)(z 1 Qz 1 + z 2 Qz 2 ) ≤ λz 1 Qz 1 + (1 -λ)z 2 Qz 2 ≤ λ( √ s + R) + (1 -λ)( √ s + R) ≤ ( √ s + R)
proving that also H4 holds.

• We may dislike the convexity property mentioned in H4 above. Unfortunately it is in some sense necessary. Indeed our objective with the modification M is to preserve the high-gain paradigm. This means in particular that we choose to keep an Euclidean distance in the image by Φ as a Lyapunov function for the error.

Also we need an infinite gain margin, as defined in Definition 2.8 in Sanfelice and Praly (2012), since the correction term must dominate all the other ones in the expression of ẋ when h 2 becomes too large. Then, as proved in Lemma 2.7

of [START_REF] Sanfelice | Convergence of Nonlinear Observers on R n with a Riemannian Metric (Part I)[END_REF], with such constraints, the convexity assumption is necessary. This implies that, if we want to remove the convexity assumption, we have to find another class of observers.

• As shown in Astolfi and Praly (2013), the proposed technique can be easily extended to the class of nonlinear systems

ẋ = f (x, u) , y = h(x, u) ,
by exploiting the results of Theorem 2.1 presented in the Section 2.1. In this case the knowledge of the input-derivative is needed and the function h 2 claimed in Assumption 2.2 is in general u-dependent. In an output feedback scenario, we can always suppose the input-derivative u is known by making a backstepping design.

• Clearly the proposed tool can be applied to the high-gain observer (1.12) in order to prevent the peaking phenomenon. For instance, we can take the function h 2 as

h 2 (x) = max x Q x -R , 0 2 
for some Q = Q > 0 and R > 0, and the modification term (2.6) as

M(x, y, u) = -τ (y, u, x) -1 D P -1 D ∂h 2 ∂x (x) h 2 (x)
with τ : R × R m × R n → R >0 a locally Lipschitz function to be chosen (large enough) according to the analysis made in the proof of Theorem 2.2. As a consequence, if the set

C 0 = {x ∈ R n : x Qx ≤ R}
is invariant for the system (1.11), the set

C 1 2 = {x ∈ R n : x Qx ≤ R + 1 2 }
becomes invariant for the observer (1.12), thus removing the annoying peaking phenomenon.

High-gain observer for multi-output nonlinear systems

The contents of this section have been published in [START_REF] Astolfi | Integral Action in Output Feedback for multi-input multioutput nonlinear systems[END_REF]. We focus in particular on the high-gain observer design for input affine multi-input multi-output nonlinear systems of the form

ẋ = f (x) + g(x)u y = h(x) (2.7) with state x ∈ R n , input u ∈ R m and output y ∈ R p .
The problem of observation with high-gain tools is strongly related to the existence of suitable triangular coordinates, and to the existence of a diffeomorphism Φ which puts the system (2.7) in the aforementioned form. As shown in Tornambé (1992b), a typical expression for Φ is

Φ(x) =     Φ 1 (x) . . . Φ p (x)     , Φ i (x) =        h i (x) L f h i (x) . . . L q i -1 f h i (x)       
, where h i is the i-th component of h, q i are integers called "observability indexes" and p i=1 q i = n. The dynamics of the system (2.7) expressed in the new coordinates reads

ż = Az + Bψ(z) + ϕ(z)u y = Cz (2.8)
where

A := blckdiag A 1 , . . . , A p ∈ R n×n B := blckdiag B 1 , . . . , B p ∈ R n×p C := blckdiag C 1 , . . . , C p ∈ R p×n where (A i , B i , C i ) is a triplet in prime form of dimension q i and ψ(z) = col ψ 1 (z) • • • ψ p (z) , ψ i (z) := L q i f h i (x) x=Φ -1 (z) , i = 1, . . . , p , ϕ(z) = col ϕ 1 1 (z) • • • ϕ q 1 1 (z) • • • ϕ 1 p (z) • • • ϕ qp p (z) , ϕ j i (z) := L g L j-1 f h i x=Φ -1 (z) , i = 1, . . . , p, j = 1, . . . , q i .
Sometimes the notions of observability indexes and relative degree indexes5 coincide, namely when

L g L j-1 f h i (x) = 0 i = 1, . . . , p, j = 1, . . . , q i -1 .
In this case the system (2.8) reads as

ż = Az + B(ψ(z) + ϕ q (z)u) y = Cz (2.9)
with ϕ q : R n → R p×m defined as

ϕ q (z) = col ϕ q 1 1 (z) • • • ϕ qp p (z) , ϕ q i i := L g L q i -1 f h i (x) x=Φ -1 (z) , i = 1, . . . , p .
When ψ(•) and ϕ(•) are locally Lipschitz functions a high-gain observer for the class of nonlinear systems (2.8) can be designed as

ż = Aẑ + B ψ(ẑ) + φ(ẑ)u + D K(y -C ẑ)
where ψ(•) and φ(•) are bounded functions that agrees with ψ(•) and ϕ(•) on some domain, and

K = blckdiag(K 1 , . . . , K p ) K i = col(k i 1 , . . . , k i q i ) D = blckdiag(D 1 ( ), . . . , D p ( )) D i ( ) = blckdiag( δ i , . . . , q i δ i ) with K i designed so that (A i -K i C i )
is Hurwitz for any i = 1, . . . , p, and where δ i > 0

are some indexes which depends on the structure of the nonlinearities. Similarly, a highgain observer for the class of nonlinear systems (2.9) can be taken as

ż = Aẑ + B( ψ(ẑ) + ψq (ẑ)u) + D K(y -C ẑ)
Furthermore, in an output stabilization frameworks (see, for instance, [START_REF] Seshagiri | Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators[END_REF]) the latter can be even reduced to

ż = Aẑ + D K(y -C ẑ)
when ϕ(0) = 0 and u = α(z), with α : R n → R m a stabilizing feedback law satisfying α(0) = 0.

As extensively studied in literature, the functions ψ(•) and ϕ(•) may not have the triangular structure we like for the design of a high-gain observer. As already discussed in the proof of Theorem 1.4, in the single-input single-output case a necessary condition

is ∂ϕ i ∂z j = 0 i = 1, . . . , n -1, ∀ j ≥ i .
However this condition is in general not sufficient in the multi-input multi-output case because variables coming from other blocks may introduce "bad terms" multiplied by powers too large of the high-gain parameter. It is worth noticing that these conditions are coordinates-dependent: choosing a different diffeomorphism Φ(•) may lead to "right" triangular structures. Conditions under which we do get the triangular dependence for the functions ψ(•) and ϕ(•) have been studied for instance in [START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF] and [START_REF] Hammouri | High-Gain Observer for Structured Multi-Output Nonlinear Systems[END_REF]. Anyhow, it is worth noticing that in order to check the above conditions it is needed not only an expression for Φ, but also the knowledge of Φ -1 .

Again, by following the intuition of writing the observer in the original coordinates, we give in this section alternative conditions, for which the inverse of Φ is not needed, under which we do have an appropriate structure for an observer design.

Sufficient conditions

In the following we consider systems of the form (2.7) and we suppose the state x belongs to an open set X ⊂ R n and the input u evolves in a compact set U ⊂ R m .

Assumption 2.3. There exist a C 1 function Φ :

X → R n , sequences of matrices L ∈ R n×n , M ∈ R n×n and N ∈ R p×p , a matrix C ∈ R p×n , matrix functions u ∈ U → K(u) ∈ R n×p
and u ∈ U → A(u) ∈ R n×n , and a positive definite symmetric matrix P ∈ R n×n and real numbers γ > 0 and d > 0, such that

O1) the function Φ is a diffeomorphism on the set X , O2) C Φ(x) = h(x) , O3 
) the matrices A(u), K(u), P, C satisfy, for any u ∈ U ,

P (A(u) -K(u)C) + (A(u) -K(u)C) P ≤ -2γP , A(u) L = L M A(u) , N C L = C , O4) the matrix M is such that M P -1 is symmetric and satisfies lim →+∞ λ min (M P -1 ) = +∞ , O5) λ max L M P -1 L ≤ λ min (M P -1 ) d , 1 ≤ λ min L M P -1 L λ min (M P -1 ) d .
Moreover, for any compact set C and C satisfying C ⊂ C ⊂ X there exists a sequence of positive real numbers c such that

O6) lim →+∞ c = 0 , O7) the function B : R n×m → R n defined as B(Φ(x), u) = L f Φ(x) + L g Φ(x)u -A(u) Φ(x) , satisfies, for all x a ∈ C, x b ∈ C and u ∈ U , P 1 2 M -1 L -1 [B(Φ(x a ), u) -B(Φ(x b ), u)] ≤ c P 1 2 L -1 [Φ(x a ) -Φ(x b )] .
Remarks:

• As shown in the forthcoming Theorem 2.3, the existence of a high-gain observer for the system (2.7) is guaranteed if Assumption 2.3 holds. In particular the properties O1, O2, O3, O6 and O7 guarantee the existence of a converging observer in the original coordinates whereas properties O4 and O5 assure its tunability property.

• We remark that these conditions can be checked without need of finding formally the inverse mapping Φ -1 . In particular, given a system and a candidate diffeomorphism Φ satisfying O2 (linear dependence of the diffeomorphism on the output), it is possible to fix the degrees of freedom K(u), M , N , L , P which properly defines the high-gain observer (see (2.10)) according to O3 (which guarantees the convergence of the observer) and check the Lipschitz condition in O7.

• As introduced before, sometimes the nonlinear terms B(Φ(x, u), u) can be disregarded in the high gain observer design (usually also called dirty derivative observer). In this case, these nonlinear terms act through their bound and not their Lipschitzness. Unfortunately then a very specific structure is needed because otherwise the gain between these nonlinear terms and some estimation error is increasing with the observer gain. Here we intend to consider a broader class of systems and thus we do need to have these terms present in the observer.

Further clarifications about the formal conditions imposed by Assumption 2.3 will be given through some examples after stating the main result of this section.

By following the same route of Section 2.2 the high-gain observer in the original coordinates is designed under Assumption 2.2 as

ẋ = f (x) + g(x)u + ∂Φ ∂x (x) -1 L M K(u)N y -h(x) + M(x, y, u) (2.10) with M(x, y, u) = -τ (x, y, u) ∂Φ ∂x (x) -1 L M P -1 L ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) h 2 (x)
(2.11) with τ : R n × R p × R m → R ≥0 a functions to be chosen large enough. The modification term M is an extra output injection term that acts only when the state x goes outside a given set X ⊂ X , and guarantees the set C 1 2 to be forward invariant for the observer (2.10) as stated by the forthcoming theorem.

Theorem 2.3. Consider system (2.7) with u(t) ∈ U and x(t) ∈ X for all t ≥ 0 where X is a compact subset of ⊂ X . Suppose Assumptions 2.2 and 2.3 hold and consider the observer

(2.10)-(2.11) with initial conditions x(0) ∈ C 1 2 . There exist a function τ : R n × R p × R m → R ≥0 , strictly positive real numbers µ 1 , µ 2 and ≥ 1 such that, for any > (i) the set C 1 2
is forward invariant for the observer (2.10), (2.11),

(ii) by defining a( ) = λ min (M P -1 ) we have

|x(t) -x(t)| ≤ µ 1 a( ) d exp(-µ 2 a( ) t) |x(0) -x(0)| .
Proof. First we observe that

∂h 2 ∂x (x) ẋ = R(x, y, u) -τ (x, y, u) (M P -1 ) 1 2 L ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) 2 h 2 (x)
where we have let

R(x, y, u) = ∂h 2 ∂x (x) f (x) + g(x)u + ∂Φ ∂x (x) -1 L M K(u)N [y -h(x)] .
This motivates us for choosing τ satisfying τ (x, y, u) ≥ 8h 2 (x) 2 R(x, y, u)

(M P -1 ) 1 2 L ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) 2
which can be computed on-line. Thanks to H2, the function x → τ (x, y, u) defined this way is continuous on X . So we can use τ as long as x is in X . It implies that the derivative of h 2 (x) along the solutions is non positive when h 2 (x) is strictly larger than 1 2 . This implies that, for each s in [ 1 2 , 1] the set {(x) : h 2 (x) ≤ s} is forward invariant and so is the compact set C 1 2 in particular. Now consider the following change of coordinates

x → z := Φ(x) , x → ẑ := Φ(x) ,
by which systems (2.7) and (2.10) are transformed in

ż = A(u)z + B(z, u) , ż = A(u)ẑ + B(ẑ, u) + L M K(u)N C(z -ẑ) ,
By using property O4, consider the candidate Lyapunov function

U = 1 2 (ẑ -z) (L M P -1 L ) -1 (ẑ -z) .
(2.12)

Now suppose the modification term M is not present. We get

U = (ẑ -z) L -P M -1 L -1 (A(u) -L M K(u)N C)(ẑ -z) +B(ẑ, u) -B(z, u) = (L -1 (ẑ -z)) P M -1 L -1 (A(u)L -L M K(u)N CL )L -1 (ẑ -z) +B(ẑ, u) -B(z, u)
Furthermore, by applying properties O3 and O7 of Assumption 2.3,

U = (L -1 (ẑ -z)) P (A(u) -K(u)C)L -1 (ẑ -z) +P M -1 L -1 B(ẑ, u) -B(z, u) ≤ -γ|P 1 2 L -1 (ẑ -z)| 2 + c |P 1 2 L -1 (ẑ -z)| 2
As a consequence, by using O6, there exists a such that, for any ≥ we have

U ≤ - γ 2 (ẑ -z) L -P L -1 (ẑ -z)
Since we have

P ≥ λ min (P ) M P -1 ≥ λ min (M P -1 ) =⇒ P ≥ λ min (P )λ min (M P -1 )P M -1
we obtain

U ≤ -γ λ min (P ) λ min (M P -1 ) 1 2 (ẑ -z) L -P M -1 L -1 (ẑ -z) ≤ -γ λ min (P ) λ min (M P -1 ) U and therefore U (t) ≤ exp(-γ λ min (P ) a( ) t) U (0) .
Note that by definition of U we have

1 λ max (L M P -1 L ) |ẑ -z| 2 ≤ U ≤ 1 λ min (L M P -1 L ) |ẑ -z| 2
Furthermore, by using O5 we have

λ max (L M P -1 L ) λ min (L M P -1 L ) ≤ a( ) 2d
As a consequence we get

|ẑ(t) -z(t)| ≤ a( ) d exp(-γ λ min (P ) a( ) t) |ẑ(0) -z(0)| .
Because Φ is a diffeomorphism defined on X , for any compact subset C and Ĉ of X , there exist positive real numbers L Φ and L Φ -1 satisfying

|x -x| = |Φ -1 (Φ(x)) -Φ -1 (Φ(x))| ≤ L Φ -1 |Φ(x) -Φ(x)| |Φ(x) -Φ(x)| ≤ L Φ |x -x| for any (x, x) ∈ C 1 2 × C 1 2
. The bound (ii) of the theorem would complete by defining µ 1 = L Φ -1 L Φ and µ 2 = γ λ min (P ). On the other hand, the modification M augments U in (2.12) with

-τ (x) [Φ(x) -Φ(x)] ∂Φ ∂x (x) -1 ∂h 2 ∂x (x) h 2 (x) .
But, when h 2 (x) is zero which is the case when the model state x remains in X and when h 2 (x ) is in [0, 1], the convexity property of h 2 in H4 gives

0 ≤ [Φ(x) -Φ(x)] ∂Φ ∂x (x ) -1 ∂h 2 ∂x (x) h 2 (x) .
proving that the bound (ii) still holds.

Examples

In this section we show three example where the conditions of Assumption 2.3 are fulfilled.

Example 1 (single-input single-output input-affine systems):

The conditions of Assumption 2.3 are satisfied for systems of the form

ẋ = f (x) + g(x) u y = h(x) (1.6 revisited)
satisfying Theorem 1.2 (or Assumption 2.1) with

Φ(x) =     h(x) . . . L n-1 f h(x)     , A(u) =        0 1 . . . . . . 0 1 0 • • • 0        , C =        1 0 . . . 0        B(Φ(x), u) =     0 . . . L n f h(x)     +     L g h(x) . . . L n-1 f L g h(x)     u L = diag (1, , . . . , n-1 ) , M = I , N = 1 , d = 2n , c = 1 ,
and K(u) = K chosen such that (A -KC) is Hurwitz. We recover the observer (2.4)

with D = L M N under the Assumption 2.2.
Example 2 (a single-input single-output non triangular case):

In Assumption 2.3, A(u) is allowed to be input-dependent to allow a broader class of nonlinear systems. Consider for instance the following input-affine nonlinear system

ẋ1 = x 2 ẋ2 = u y = -x 1 + x 2 + x 2 2 (2.13) where x ∈ R 2 the state, u ∈ R the control input, y ∈ R the measured output. The condi- tions of Assumption 2.3 are satisfied with X = R 2 , U any compact subset of (-∞, 1 2 ), Φ(x) = -x 1 + x 2 + x 2 2 -x 2 , A(u) = 0 1 -2u 0 0 , B(Φ(x), u) = u -u C = 1 0 , K = k 1 k 2 , M = 0 0 , L = 1 0 0 , N = 1 , d = 4, c = 1 with k 1 > 0, k 2 > 0. Note that by computing the inverse mapping of Φ Φ(x) = -x 1 + x 2 + x 2 2 -x 2 , Φ -1 (z) = -z 1 -z 2 + z 2 2 -z 2 , system (2.13) is transformed via z = Φ(x) ż1 = z 2 (1 -2u) + u ż2 = u y = z 1
which is not in the feedback form (1.11) and does not satisfies Assumption 2.1.

Example 3 (a multi-input multi-output case):

As an illustration of a multi-input multi-output nonlinear we consider a simplified model of the longitudinal dynamics of a fixed-wing vehicle flying at high speed, given (see [START_REF] Poulain | Robust asymptotic stabilization of nonlinear systems by state feedback[END_REF]) by

v = e -g sin(γ) γ = £ v sin(θ -γ) - g cos(γ) v θ = q (2.14)
where v is the modulus of the speed, γ is the path angle, θ is the pitch angle, q is the pitch rate, g is the standard gravitational acceleration and £ is an aerodynamic lift coefficient. This model makes sense for v strictly positive only. In practical application the problem is to regulate γ at 0, with v remaining close to a prescribed cruise speed v 0 , using the pitch rate q and the thrust e as controls, and with γ and θ as only measurements. Here we want to show that system (2.14) satisfies the conditions of Assumption 2.3 and therefore it is possible to design an observer of the form (2.10). By defining

x =    v γ θ    , y = θ γ u = q e systems (2.14) reads in the more compact form ẋ = f (x) + g(x)u y = h(x) with f (x) =    f 1 (x) f 2 (x) f 3 (x)    =      -g sin(x 2 ) £x 1 sin(x 3 -x 2 ) - g cos(x 2 ) x 1 0      , g(x) =    g 1 (x) g 2 (x) g 3 (x)    =    1 0 0 0 0 1    , h(x) = h 1 (x) h 2 (x) = x 3
x 2 .

The model (2.14) makes sense only when x is in the open set X e defined as

X e = (0, +∞) × - π 2 , π 2 × - π 2 , π 2 ⊂ R 3 .
We can check that the conditions of Assumptions 2.3 are satisfied by choosing

Φ(x) =    h 1 (x) h 2 (x) L f h 2 (x)    :=    x 3 x 2 f 2 (x)    .
The function Φ is diffeomorphism on the open set

X = (x 1 , x 2 , x 3 ) ∈ X e : x 1 < g £ cos(x 2 ) sin(|x 3 -x 2 |) if x 3 -x 2 < 0 which is the set satisfying ∂f 2 ∂x 1 (x) > 0 ∀ x ∈ X .
Furthermore, A, B, C, L , M , N and c are defined as

C = 1 0 0 0 1 0 , A =      0 0 0 0 0 1 0 0 0      , L = diag(1, 1, ) , M = diag( , , ) , N = diag(1, 1) , c = 1 , B(Φ(x), u) =     u 1 0 ∂f 2 ∂x 1 (x)(-g sin(x 2 ) + u 2 ) + ∂f 2 ∂x 2 (x)f 2 (x) + ∂f 2 ∂x 3 (x)u 1     .
Finally, for any strictly positive number γ, we can define P as symmetric positive definite matrix of the form

P =     * * * * * p 23 * p 23 p 33    
where 2p 23 ≤ -γp 33 . Note that there exists a real number ρ such that we have

P A + A P -ρ C C ≤ -γP
implying the existence of a real number γ ρ such that, for any γ ρ ≥ γ ρ , with

K = γ ρ P -1 C
assumptions O3 is satisfied. With the functions above it is easy to check that also properties O1, O2, O4, O5, O6 and O7 are satisfied for any input u ∈ U , with U a compact subset of R 2 . Finally, in order to implement an observer of the form (2.10) for the system (2.14) we need to design the function h 2 . For this, let us define the following open set6 of Φ(X )

Ξ = z ∈ R 3 : z 1 ∈ - π 2 ; π 2 , z 2 ∈ - π 2 ; π 2 , z 3 < -2 g£|z 1 -z 2 | if (z 1 -z 2 ) ≤ 0 .
It can be checked that any compact set of Ξ is in the image of Φ(X ) by noting that when

(x 1 , x 2 , f 2 (x)) ∈ Ξ then ∂f 2 ∂x 1 > 0.
As a consequence the function h 2 (x) can be defined as

h 2 (x) = h 1 2 (x) + h 2 2 (x) + h 3 2 (x) + h 4 2 (x) E x 3 T x 2 s h 1 2 (x) = 0 C h 1 2 (x) = 0 d d d d d d d d d d d d Figure 2.1: Design of the functions h 1 2 , h 2 2 . E (x 3 -x ) T f 2 (x) a a -π π d d d d d d Figure 2.2: Design of the functions h 3 2 , h 4 2 . h 1 2 (x) = max 4x 2 3 π 2 -ε 1 ; 0 2 , h 2 2 (x) = max 4x 2 2 π 2 -ε 2 ; 0 2 , h 3 2 (x) = max ε 3 (x 3 -x 2 ) -f 2 (x) -ε 4 ; 0 2 , h 4 2 (x) = max f 2 (x) f 2 max -ε 5 ; 0 2 ,
where ε 1 , ε 2 , ε 3 , ε 4 , ε 5 and f 2 max are positive constants to be properly chosen. The functions h 2,1 and h 2,2 take care respectively of x 3 and x 2 to stay in the set Ξ as showed in Figure 2.1, whereas functions h 2,3 and h 2,4 take care of f 2 (x) as in Figure 2.2.

Asymptotic behaviour in presence of measurement noise

As already introduced in Section 1.3.3, one of the main feature which questions the use of a high-gain observer in applications is its sensitivity to measurement noise. Attempts of analysis have been done but only H ∞ bounds of the form (1.19) have been characterised (see, for instance, [START_REF] Ball | High-gain observer tracking performance in the presence of measurement noise[END_REF], or [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF]). As already noticed in [START_REF] Vasiljevic | Differentiation with High-Gain Observers the Presence of Measurement Noise[END_REF], the H ∞ analysis is too conservative and fails to catch the "low-pass" filtering characteristics of the high-gain observer when is fixed to some (eventually large) value.

In this section we focus on the effect of the measurement noise on the steady state of the high-gain observer estimate. We propose a novel technique, which may be eventually applied to other frameworks, to analyse the error estimate steady-state behaviour of the high-gain observer in presence of high-frequency measurement noise, based on the approximation of a solution of a partial differential equation modelling the steady state of the estimate. For the sake of simplicity in the analysis, we consider system in the strict feedback form (1.11) satisfying

ϕ i (x 1 , . . . , x i , u) = 0 i = 1, . . . , n -1, ϕ n (x 1 , . . . , x n , u) = ϕ(x),
with ϕ(x) any known locally Lipschitz function. This class of systems can be compactly written with the notation ẋ = Ax + Bϕ(x)

y = Cx + ν(t) (2.15)
where (A, B, C) is a triplet in prime form of dimension n. For such nonlinear systems we consider the standard high-gain observer (1.12) that is implemented in this particular framework as

ẋ = Ax + Bϕ s (x) + G(y -C x) (2.16) where x = col(x 1 , . . . , xn ) ∈ R n is the estimated state, (A, B, C) denotes as before a triplet in prime form of dimension n, G := col k 1 • • • n k n ,
and ϕ s (•) is a locally Lipschitz bounded function that agrees with ϕ(•) on a bounded set X δ ⊃ X, namely there exists a φ > 0 such that |ϕ s (x)| ≤ φ for all x ∈ R n and ϕ s (x) = ϕ(x) for all x ∈ X δ . By considering the change of coordinates

x → e := x -x it turns out that system (2.16) transforms as

ė = F e + B∆ ϕ (e, x) + Gν(t) (2.17)
where

F := (A -GC) =          -k 1 1 • • • 0 -2 k 2 1 . . . . . . -n-1 k n-1 1 -n k n 0 • • • 0         
, and ∆ ϕ (e, x) is the locally Lipschitz function defined as

∆ ϕ (e, x) := ϕ s (e + x) -ϕ(x) .
(2.18)

By applying the results of Theorem 1.4 it can be shown that for a generic bounded measurement noise, the observer guarantees bounded trajectories with a linear asymptotic gain. The asymptotic gain of the i-th state estimates depends on i-1 thus tending to be worst as long as "higher" components in (2.17) are considered.

The goal of this section is to better characterise the asymptotic gain in presence of high-frequency noise with that is fixed in order to have the above mentioned ISS property. Towards this end we model the measurement noise as

ε ẇ = Sw , ν = P w , (2.19)
where S is a neutrally stable matrix, P is a row vector, and ε ∈ (0, 1) is a parameter that will be taken small in the forthcoming analysis. System (2.19) can be conveniently seen as generator of ϑ > 0 harmonics at frequencies ω i /ε > 0, i = 1, . . . , ϑ, namely, the matrices S and P take the form

S = blkdiag(S 1 , . . . , S ϑ ) , S i = 0 ω i -ω i 0 and P = ((0 1) (0 1) • • • (0 1)).
In the following we assume that w ranges in a compact invariant set W .

As a preparatory step towards the nonlinear analysis, it is instructive to consider the linear case, namely the case in which ϕ(x) = Φx with Φ a row vector. In this case the observer (2.16) can be taken7 with ϕ s (x) = Φx, thus resulting in an error system

(2.17)-(2.19) given by ε ẇ = Sw ė = (F + BΦ)e + GP w with the matrix F + BΦ that is Hurwitz for sufficiently large. Using the fact that S is neutrally stable and that F + BΦ is Hurwitz it follows that the state of the previous system reaches a steady state fully described by the state of the noise generator. In particular, denoting by Π ε the matrix solution of the Sylvester equation

Π ε S = ε(F + BΦ)Π ε + εGP it turns out that lim t→∞ (e(t) -Π ε w(t)) = 0 . (2.20)
The solution of the previous Sylvester equation can be characterised at high-frequency (namely for small value of ε) to have more insight about how the gain between the measurement noise and the j-th estimation error is affected by . In particular, using the fact that S is not singular, it is easy to check that

Π ε = εGP S -1 + ε 2 Πε with Πε := ∞ k=2 ε k-2 (F + BΦ) k-1 GP S -k ,
is a solution of the Sylvester equation. In particular, the series defining Πε is convergent as long as ε is taken sufficiently small8 . Namely, there exist ε 1 ( ) > 0 and π( ) > 0 such that | Πε | ≤ π( ) for all positive ε ≤ ε 1 ( ). By bearing in mind how enters in G, and denoting by Π i the i-th row of Π ε , i = 1, . . . , n, we have

|Π i | ≤ ε i k i |P S -1 | + ε 2 | Πε | As a consequence, by choosing a positive ε 2 ( ) ≤ ε 1 ( ) satisfying ε 2 ( ) ≤ max{k i } |P S -1 | | Πε |
we have that for all positive ε ≤ ε 2 ( ) the following holds

lim ε→0 |Π i | ≤ µ ε i
where µ is a positive constant. From this, using (2.20) and the fact that W is compact, we can then conclude that for all positive ε ≤ ε 2 ( ) the following holds

lim t→∞ sup |e i (t)| ≤ µ ε i w(•) ∞ .
The previous relation clearly shows the "low-pass" filtering properties of the high-gain observer, namely lim

ε→0 lim t→∞ sup |e i (t)| = 0 ,
and the fact that the asymptotic gain of the i-th error component at high-frequency depends on i (whereas the H ∞ bound is proportional to i-1 , as shown by (1.19)).

Nonlinear Analysis

By compactly writing the system dynamics (2.15) as

ẋ = f (x)
the overall dynamics given by the observed system (2.15) , the observer error dynamics

(2.17) and the noise generator (2.19) read as

ε ẇ = Sw ẋ = f (x) ė = F e + B∆ ϕ (e, x) + GP w .
(2.21)

Having tuned the parameters k i , i = 1, . . . , n, and according to Theorem 1.4, the trajectories of this system are bounded. The system in question, thus, has a well-defined steady state that can be characterised with the tools proposed in [START_REF] Isidori | Steady-State Behaviors in Nonlinear Systems with an Application To Robust Diturbance Rejection[END_REF]. More specifically, the triangular structure of the system (with the x and w subsystem driving the e subsystem) implies the existence (recall that W and X are compact) of a possibly set-valued function π

ε : W × X ⇒ R n such that the set graph(π ε ) = (w, x, e) ∈ W × X × R n : e ∈ π ε (w, x)
is asymptotically stable for (2.21). Furthermore, the properties of the high-gain observer when the measurement noise is absent (i.e. when w = 0) show that

π ε (0, x) = {0} ∀ x ∈ X .
The following technical lemma provides an arbitrarily accurate approximation of a con-

tinuous selection of π ε (•, •).
Lemma 2.1. Consider system (2.17) with fixed and let r be an arbitrary positive number. There exist continuous functions ψj,i : W × X → R, j = 1, . . . , n, i = 1, . . . , r, such that having defined

Ψ j (w, x) := r i=1 j+i-1 ψj,i (w, x) ε i Ψ ε (w, x) := col Ψ 1 (w, x) • • • Ψ n (w, x) .
and

E ε (w, x) := ε -1 ∂Ψ ε (w, x) ∂w Sw + ∂Ψ ε (w, x) ∂x f (x) -F Ψ ε (w, x) -GP w -B∆ ϕ (Ψ ε (w, x), x) ,
the following holds

lim ε→0 + E ε (w, x) ε r-1 = 0 , ∀ (w, x) ∈ W × X , E ε (0, x) = 0 ∀ (ε, x) ∈ [0, 1] × X Proof.
First of all consider the case where w = 0. By recalling the definition of

∆ ϕ (•, •) in (2.18) it is easy to verify that Ψ ε (0, x) = 0 makes E ε (0, x) = 0.
As a consequence in the following we will show that Ψ ε (w, x) can be chosen as a continuous function in w satisfying Ψ ε (0, x) = 0. Now let

ψ j,i (w, x) := j+i-1 ψj,i (w, x) so that Ψ j (w, x) = r i=1 ψ j,i (w, x) ε i . (2.22)
Since w and x range in bounded sets and the function ψ j,i (•, •) are continuous, we have that lim

ε→0 + Ψ ε (w, x) = 0 ∀ (w, x) ∈ W × X . Expanding ∆ ϕ (Ψ ε , x) by Taylor around Ψ ε = 0 we obtain ∆ ϕ (Ψ ε , x) = r i=1 ϕ i (x)[Ψ ε ] i + ρ r (Ψ ε , x)
in which ϕ i (•), i = 1, . . . , r, are continuous functions to be made precise, ρ r (•, •) is a continuous remainder function, and the [Ψ ] i are monomials of the form

[Ψ ε ] i = n j=1 Ψ κ j j , n j=1 κ j = i .
By replacing Ψ j with the expressions (2.22) and grouping the terms with the same power of ε, the Taylor expansion of ∆ ϕ (•, •) can be rewritten as

∆ ϕ (Ψ ε , x) = r i=1 ε i φ i (w, x) + ε r+1 R ε (w, x) (2.23)
where the functions φ i (•, •), i = 1, . . . , r, and R ε (•, •) are appropriately defined con-

tinuous functions satisfying φ i (0, x) = 0, R ε (0, x) = 0 and R ε (•, •) is bounded on W × X for any ε ∈ [0, 1].
As far as the φ i 's are concerned, in particular, we observe that, because the Ψ j are polynomials in ε and the [Ψ ε ] i are polynomials in the Ψ j , only the coefficients of power smaller or equal to i in ε in the Ψ j can be in φ i .

Namely, φ i (•, •) depends only on ψ j,k with k ≤ i, for all i = 1, . . . , r and j = 1, . . . , n.

Let us now define

E ε (•, •) with components E 1 (•, •), . . ., E n (•, •) as E 1 (w, x) = Ψ1 + k 1 Ψ 1 -Ψ 2 -k 1 P w . . . E n (w, x) = Ψn + n k n Ψ 1 -∆ ϕ (Ψ , x) -n k n P w
where, for sake of compactness, we omitted the argument (w, x) from the functions Ψ j , j = 1, . . . , n, and Ψ ε . By embedding (2.22) and (2.23) in the previous expressions, the following is obtained

E j (w, x) = r i=1 L f ψ j,i + 1 ε L S ψ j,i ε i + j k j r i=1 ψ 1,i ε i - r i=1 ψ j+1,i ε i -j k j P w = L S ψ j,1 -j k j P w + r i=1 ε i L f ψ j,i + L S ψ j,i+1 + j k j ψ 1,i -ψ j+1,i for j = 1, . . . , n -1 and E n (w, x) = r i=1 L f ψ n,i + 1 ε L S ψ n,i ε i + n k n r i=1 ψ 1,i ε i - r i=1 φ i ε i -ε r+1 R ε (w, x) -n k n P w = [L S ψ n,1 -n k n P w] -ε r+1 R ε (w, x) + r i=1 ε i [L f ψ n,i + L S ψ n,i+1 + n k n ψ 1,i -φ i ]
in which ψ j,r+1 := 0, j = 1, . . . , n, and

ψj,i = L f ψ j,i + L S ψ j,i := ∂ψ j,i (w, x) ∂x f (x) + ∂ψ j,i (w, x) ∂w Sw .
The idea now is to iteratively select the functions ψ j,i+1 (•, •) to annihilate, in the previous expressions, the terms in ε i , i = 0, . . . , r -1, j = 1, . . . , n. We start by considering the terms of order 0 in ε which are all annihilated by taking ψ j,1 (w, x) = j k j P S -1 w := j ψj,1 (w, x) , j = 1, . . . , n , solving L S ψ j,1 -j k j P w = 0. We observe that ψj,1 (w, x), and thus ψ j,1 (w, x), j = 1, . . . , n, are polynomials in w of order 1 with constant coefficients and such that ψj,1 (0, x) = 0. Furthermore since φ 1 (•, •) depends only on ψ j,1 , we assume that φ 1 (•, •) is a polynomial in w of order 1 satisfying φ 1 (0, x) = 0.

We proceed now by induction by assuming that all the functions ψ j,k (•, •), k = 1, . . . , i, j = 1, . . . , n have been fixed in the form

ψ j,k (w, x) = j+k-1 ψj,k (w, x)
for some continuous ψj,k (w, x) that are polynomials in w of order k with coefficients dependent on x, so that to annihilate the terms in ε k-1 in E j . Furthermore, since φ i (•, •) only depends on ψ j,k with k ≤ i, j = 1 . . . , n, we assume that φ i (•, •) is a polynomial in w of order i with coefficients dependent on x. In this case we see that the terms of order i in ε are annihilated if ψ j,i+1 (•, •) can be chosen so that

-L S ψ j,i+1 = L f ψ j,i + j k j ψ 1,i -ψ j+1,i j = 1, . . . , n -1 , -L S ψ n,i+1 = L f ψ n,i + n k n ψ 1,i -φ i .
Using the induction assumptions on the functions ψ j,i (•, •), j = 1, . . . , n, and

φ i (•, •),
and the fact that S is invertible, it is easy to see that the previous PDEs admit solutions of the form ψ j,i+1 (w, x) = j+i ψj,i+1 (w, x) j = 1, . . . , n, for some ψj,i+1 (w, x) which, in turn, are polynomials in w of order i + 1

with coefficients that are continuous functions of x and satisfying ψ j,i+1 (0, x) = 0.

The induction iteration can be then used to choose ψ j,i (•, •), j = 1, . . . , n, i = 1, . . . , r, of the form

ψ j,i (w, x) = j+i-1 ψj,i (w, x)
where ψj,i (w, x) are polynomial functions in w of order i with coefficients that are continuous functions of x. By embedding those functions in the expressions of E j (•, •), j = 1, . . . , n, and bearing in mind the definition of

R ε (•, •), it is readily seen that E j (w, x) = ε r [L f ψ j,r + j k j ψ 1,r -ψ j+1,r ] E n (w, x) = ε r [L f ψ n,r + n k n ψ 1,r -φ r ] + ε r+1 |w| Rε (w, x)
where Rε (•, •) is an appropriately defined continuous function, by which the claim of the lemma immediately follows.

The previous lemma is instrumental to the proof of the next proposition which is the main result of the section. As in the linear case, the low-pass filter properties of the nonlinear high-gain observer are highlighted.

Proposition 2.1. Consider system (2.21) with x(t) ∈ X and w(t) ∈ W for all t ≥ 0 with X and W bounded compact sets. Let the function ϕ s (•) embedded in ∆ ϕ (•, •) be chosen so that it is locally Lipschitz and it agrees with ϕ(•) on a set X δ ⊃ X. Let be fixed so that system (2.17) is ISS with respect to the input ν. Then, there exists a ε ( ) > 0 such that for all positive ε ≤ ε ( ) the following holds

lim t→∞ sup |e i (t)| ≤ µ ε i w(•) ∞ i = 1, . . . , n
with µ a positive constant.

Proof. Let consider the change of variables

e → ẽ := e -Ψ ε (w, x)
with Ψ ε (•, •) introduced in the previous lemma with an r > 1 and observe that, by bearing in mind the definition of E ε (•, •), we have

Ψε = F Ψ ε + B∆ ϕ (Ψ ε , x) + GP w + E ε (w, x) .
In the new coordinates we get

ė = F ẽ + B ∆(ẽ, Ψ ε , x) -E ε (w, x) , (2.24) with ∆(ẽ, Ψ ε , x) = ∆ ϕ (e, x) -∆ ϕ (Ψ ε (w, x), x) = ∆ ϕ (ẽ + Ψ ε (w, x), x) -∆ ϕ (Ψ ε (w, x), x) = ϕ s (ẽ + Ψ ε (w, x) + x) -ϕ(x) -(ϕ s (Ψ ε (w, x) + x) -ϕ(x)) = ϕ s (ẽ + Ψ ε (w, x) + x) -ϕ s (Ψ ε (w, x) + x)
Observe that the function ϕ s is bounded and agrees with ϕ on X δ and therefore the

Lipschitz constant of ∆(ẽ, Ψ ε , x) coincides with that of ∆ ϕ (e, x) for any (ẽ, w, x, ε) ∈ R n × W × X × [0, 1].
As a consequence the same values of that make system (2.17) ISS with respect to the input ν(t) make also system (2.24) ISS with respect to the input E ε (•, •). In particular, there exists a positive constant µ 0 such that

lim t→∞ sup |ẽ(t)| = lim t→∞ sup |e(t) -Ψ ε (w(t), x(t))| ≤ µ 0 lim t→∞ sup |E ε (w(t), x(t))| ≤ µ 0 E ε (w(•), x(•)) ∞
Using the fact that, for any r ≥ 1, E ε (w, x) is a term in ε r , it follows that there exists a positive constant µ 1 such that

lim t→∞ sup |ẽ(t)| ≤ µ 1 ε r w(•) ∞ .
Consider now the the expressions of the components

Ψ i (•, •), i = 1, . . . , n, of Ψ ε (•, •)
introduced in the previous lemma. It turns out that there exist a positive ε 1 ( ) ∈ (0, 1) and a positive constant µ 2 such that

|Ψ i (w, x)| ≤ µ 2 ε i |w|
for all i = 1, . . . , n, for all positive ε ≤ ε 1 ( ) and for all (w, x) ∈ W × X. From this,

lim t→∞ sup |e j (t)| = lim t→∞ sup |ẽ j (t) + Ψ j (w(t), x(t))| ≤ lim t→∞ sup |ẽ j (t)| + lim t→∞ sup |Ψ j (w(t), x)(t)| ≤ lim t→∞ sup |ẽ j (t)| + Ψ j (w(•), x(•)) ∞ ≤ µ 1 ε r w(•) ∞ + µ 2 ε j w(•) ∞
by which the result follows by taking an appropriate ε ( ) ≤ ε 1 ( ).

"There are three principal means of acquiring knowledge available to us: observation of nature, reflection, and experimentation. Observation collects facts; reflection combines them; experimentation verifies the result of that combination. Our observation of nature must be diligent, our reflection profound, and our experiments exact."

Denis Diderot

3

Low-Power High-Gain Observers H high-gain observers have been extensively used in nonlinear control for their tunability property, namely the fact that the rate of convergence of the observer can be tuned by acting with one single high-gain parameter . This important feature is motivated by the use of observers in output feedback control and it has been proved (see, among the others, the milestones [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF] and [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF]) that this tunability property plays a key role in establishing a nonlinear separation principle. However, as already highlighted in Chapter 1, this class of observer has several drawbacks when used in real applications. Mainly:

(i) the maximum gain to implement is increasing polynomially with the system dimension n, i.e. we need to implement a term n , where is the high-gain parameter. When nonlinear systems are considered, the value of the gain has to be taken large enough to dominate the nonlinear terms and, therefore, if the Lipschitz constant is very large, or the system dimension is high, the term n can be numerically harmful in computations (see Section 1.3.1);

(ii) during the transient the variables present a peaking phenomenon which grows polynomially in , i.e. the value of the variables have an order of magnitude O( n-1 ) (see Section 1.3.2);

(iii) high-gain observers are typically characterized by high sensitivity to measurement noise by thus making their use practically impossible in a realistic noisy environment (see Section 1.3.3).

Motivated by these considerations, in this chapter we propose a new class of nonlinear high-gain observers, denoted as "low-power high-gain observers", that preserves the same high-gain features but which substantially overtakes the aforementioned drawbacks. The proposed structure solves the implementation problems (i), having a gain that grows up only to power two, regardless the dimension of the system. The new structure is characterized by a state-dimension which is larger than n. As a matter of fact, the relative degree between the measurement and the state estimates is increased with respect to standard high-gain observer, thus reflecting better sensitivity properties with respect to high-frequency gain and improving (iii). Finally, the presence of additional saturations helps in avoiding the peaking phenomenon (ii).

The contents of this chapter provides a novel "low-power methodology", based on 

Basic ingredients of the low-power construction

In this brief introduction we present the main idea of the low-power construction. Consider a system of dimension n = 2 of the form

ẋ1 = x 2 ẋ2 = ϕ(x)
where (x 1 , x 2 ) evolves in a compact set on which ϕ(•) is bounded. Suppose to implement the following dirty-derivative observer

ẋ1 = η 1 + c 11 (y -x1 ) ẋ2 = 2 c 12 (y -x1 )
where x1 is the estimate of x 1 and x2 is the estimate of x 2 . Its transfer function is shown in Figure 3.1.

y E 2 c 12 s s 2 + c 11 s + 2 c 12 E x2
Figure 3.1: Dirty derivative observer of dimension 2 for a system in strict feedback form of dimension 2.

As shown in Section 1.2, this observer provides a "rough" estimate of x 1 and x 2 , namely lim

t→∞ |x 1 (t) -x 1 (t)| + |x 2 (t) -x 2 (t)| ≤ µ max x∈X |ϕ(x)| ,
for some constant µ. Evidently, by augmenting we can increase the precision of the estimate. Now consider a system of dimension n = 3

ẋ1 = x 2 ẋ2 = x 3 ẋ3 = ϕ(x) y = x 1
and suppose to put in cascade of the previous observer a second dirty-derivative high-

y E 2 c 12 s s 2 + c 11 s + 2 c 12 E η 1 E 2 c 22 s s 2 + c 21 s + 2 c 22 E η 2 Figure 3
.2: Cascade of two dirty derivative observers of dimension 2 for a system in strict feedback form of dimension 3.

gain observer driven by η 1 (see Figure 3.2), namely to design the following observer

ẋ1 = η 1 + c 11 (y -x1 ) η1 = 2 c 12 (y -x1 ) ẋ2 = x3 + c 21 (η 1 -x2 ) ẋ3 = 2 c 22 (η 1 -x2 )
where x1 represents an estimate of x 1 , η 1 and x2 an estimate of x 2 , and η 2 an estimate of x 3 . The (x 2 , η 2 ) dynamics are driven by η 1 . It is not hard to see that (x 2 , η 2 ) provide a "rough" estimate of η 1 and η1 . But since η 1 is an estimate of x 2 , we get that the second high-gain observer provides a "rough" estimate of x 2 and x 3 , namely

lim →∞ lim t→∞ |x 1 (t) -x 1 (t)| + |η 1 (t) -x 2 (t)| + |x 2 (t) -x 2 (t)| + |x 3 (t) -x 3 (t)| = 0 .
Clearly the scheme above can be generalized by building a cascade of n dirty-derivative observers to get an estimate of a system of dimension n of the form

ẋi = x i+1 i = 1, . . . , n -1 , ẋn = ϕ(x)
by implementing an observer of dimension 2n -2 with a high-gain parameter which is raised up to power 2.

The scheme proposed above however can guarantee asymptotic estimation only for → ∞ because it misses the "consistency" terms which provide the correct steady-state values. As a consequence, let consider again a system of dimension three and suppose to modify the previous dirty derivative observer as shown in the Figure 3.3, namely we implement the forthcoming observer

y E ẋ1 = η 1 + c 11 (y -x1 ) η1 = x3 + 2 c 12 (y -x1 ) E x1 ' η 1 E x3 ẋ2 = x3 + c 21 (η 1 -x2 ) ẋ3 = ϕ(•) + 2 c 22 (η 1 -x2 ) ' ϕ(•) ' x2 , x3
ẋ1 = η 1 + c 11 (y -x1 ) η1 = x3 + 2 c 12 (y -x1 ) ẋ2 = x3 + c 21 (η 1 -x2 ) ẋ3 = φ(x 1 , x2 , x3 ) + 2 c 22 (η 1 -x2 )
with φ(•) a bounded function which agrees with ϕ on X. Now the derivative of η 1 , which is the estimate of x 2 , is fed by x3 which is the estimate of x 3 . This scheme is "consistent" with the dynamics of the observed plant and it is not hard to prove that, for < ∞ large enough, we get

lim t→∞ |x 1 (t) -x 1 (t)| + |η 1 (t) -x 2 (t)| + |x 2 (t) -x 2 (t)| + |x 3 (t) -x 3 (t)| = 0 ,
namely the proposed observer provides an asymptotic estimate of the plant for finite values of . In the forthcoming sections we will exploit this structure in order to design an observer for a system in feedback form of dimension n which involves powers of up to order 2 regardless the dimension of the system n. Furthermore, we will show how the redundancy of the observer can be used in order to provide other benefits (higher relative degree between measurement noise and state estimates and removal of the peaking).

The low-power construction

Let consider nonlinear systems of the form (1.11), i.e.

ẋi = x i+1 + ϕ i (x 1 , . . . , x i , u) , i = 1, . . . , n -1 , ẋn = ϕ n (x 1 , . . . , x n , u) , y = x 1 + ν(t) , (3.1) 
where the state x = (x 1 , . . . , x n ) ∈ R n evolves in a given compact subset X of R n , the input u is any function assumed to be known evolving in a compact subset U of R m and y ∈ R is the measured output. Furthermore, we suppose the functions ϕ i are locally

Lipschitz. The function t → ν(t) represents a bounded unknown measurement noise.

The proposed low-power high-gain observer is

ẋ1 = η 1 + φ1 (x 1 , u) + c 11 (y -x1 ) η1 = η 2 + φ2 (x 1 , x2 , u) + c 12 2 (y -x1 ) . . . ẋi = η i + φi (x 1 , . . . , xi , u) + c i1 (η i-1 -xi ) ηi = η i+1 + φi+1 (x 1 , . . . , xi+1 , u) + c i2 2 (η i-1 -xi ) . . . ẋn-2 = η i + φn-2 (x 1 , . . . , xn-2 , u) + c (n-2)1 (η n-3 -xn-2 ) ηn-2 = xn + φn-1 (x 1 , . . . , xn-1 , u) + c (n-2)2 2 (η n-3 -xn-2 ) ẋn-1 = η n-1 + c (n-1)1 (sat n-1 (η n-2 ) -xn-1 ) ηn-1 = sat n+1 ( φ(x, u)) + 2 c (n-1)2 (sat n-1 (η n-2 ) -xn-1 ) ẋn = sat n+1 ( φ(x, u)) + c n (sat n (η n-1 ) -xn ) (3.2)
where (x, η) ∈ R 2n-2 is the state of the observer, with x = col(x 1 , . . . , xn ) ∈ R n and η = col(η 1 , . . . , η n-2 ) ∈ R n-2 and (c i1 , c i2 ), i = 1, . . . , n -1 are coefficients to be properly chosen. As concern the functions φi , by following the precepts of Section 1.2, when the functions ϕ i are perfectly known, we can choose

φi (x 1 , . . . , x i , u) = sat ϑ i ϕ i (x 1 , . . . , x i , u) .
with the positive real number ϑ i defined as

ϑ i = max x∈X, u∈U |ϕ i (x 1 , . . . , x i , u)| .
On the contrary, when no information is available, one may choose to pick ϕ i (•) = 0. As a consequence, in the following we suppose that the functions φi , i = 1, . . . , n satisfy

|ϕ i (x 1 , . . . , x i , u) -φi (x 1 , . . . , xi , u)| ≤ L i |(x 1 -x1 , . . . , x i -xi )| + R i (3.3)
for all (x, x, u) ∈ X × R n × U and for some L i > 0 and R i > 0.

Theorem 3.1. Consider system (3.1) and the observer (3.2). It is possible to choose the coefficients (c i1 c i2 ) such that there exist a ≥ 1 and strictly positive constants µ 1 , µ 2 and µ 3 such that, for any > and for any initial conditions (x(0), ξ(0)) ∈ X × R 2n-2 , the following bound holds

|x i (t) -x i (t)| ≤ µ 1 i-1 exp(-µ 2 t) π + µ 3 n j=1 i-(j+1) R j + µ 4 i-1 ν(•) ∞ , i = 1, . . . , n , |η i (t) -x i+1 (t)| ≤ µ 1 i exp(-µ 2 t) π + µ 3 n j=1 i-j R j + µ 4 i ν(•) ∞ , i = 1, . . . , n -2 , (3.4) 
where

π = n i=1 |x i (0) -x i (0)| + n-2 i=1 |η i (0) -x i+1 (0)| . (3.5)
as long as x(t) ∈ X and u(t) ∈ U .

Proof. By using the notation

ξ i = col(ξ i1 , ξ i2 ) := col(x i , η i ) i = 1, . . . , n -2, ξ n-1 = col(ξ (n-1)1 , ξ (n-1)2 ) := col(x n-1 , xn )
the observer (3.2) can be written in the compact form

ξ1 = A ξ 1 + N ξ 2 + φ 1 + D 2 ( ) K 1 (y -Cξ 1 ) , ξi = A ξ i + N ξ i+1 + φ i + D 2 ( ) K i (B ξ i-1 -Cξ i ) , i = 2, . . . , n -2 , ξn-1 = A ξ n-1 + φ n-1 + D 2 ( ) K i (B ξ n-2 -Cξ n-1 ) , (3.6)
where (A, B, C) is a triplet in prime form of dimension 2,

K i := col(c i1 , c i2 ) , N := BB , D 2 ( ) := diag , 2 ,
and

φ i := φi (x 1 , . . . , xi , u) φi+1 (x 1 , . . . , xi+1 , u) , i = 1, . . . , n -1 .
Consider now the change of variables

ξ i → ξi := ξ i -col (x i , x i+1 ) i = 1, . . . , n -1 ,
by which the latter is transformed into

ξ1 = H 1 ξ1 + N ξ2 + ∆ 1 + D 2 ( )K 1 ν(t) , ξi = H i ξi + N ξi+1 + D 2 ( ) K i B ξi-1 + ∆ i , i = 2, . . . , n -2, ξn-1 = H n-1 ξn-1 + D 2 ( ) K n-1 B ξn-2 + ∆ n-1
where

H i = A -D 2 ( ) K i C and 
∆ i := φi (x 1 , . . . , xi , u) -ϕ i (x 1 , . . . , x i , u) φi+1 (x 1 , . . . , xi+1 , u) -ϕ i+1 (x 1 , . . . , x i+1 , u) , i = 1, . . . , n -1 .
By following the rescaling (1.16) and the property (1.17) used in the proof of Theorem 1.4, rescale now the variables ξi as follows

ξi → ε i := 2-i D 2 ( ) -1 ξi i = 1, . . . , n -1 , which is, in compact notation, ξ → ε := D -1 ξ with ε = col(ε 1 . . . ε n-1 ) and D = blckdiag D 2 ( ) , D 2 ( ), . . . , n-2 D 2 ( ) .
An easy calculation shows that

ε = M ε + D -1 ∆(ε, x, u) + Kν(t)
with M defined in the Appendix A, (A.1), K = col(K 1 , 0, . . . , 0) and ∆(ε, x, u) := col(∆ 1 , . . . , ∆ n-1 ) that in the new coordinates read as

∆ i = φi (Cε 1 + x 1 , . . . , i-1 Cε i + x i , u) -ϕ i (x 1 , . . . , x i , u) φi+1 (Cε 1 , +x 1 , . . . , i Cε i+1 + x i+1 , u) -ϕ i+1 (x 1 , . . . , x i+1 u) ,
for i = 1, . . . n -2, and

∆ n-1 = φn-1 (Cε 1 + x 1 , . . . , n-2 Cε n-1 + x n-1 , u) -ϕ n-1 (x 1 , . . . , x n-1 , u) φn (Cε 1 , +x 1 , . . . , n-1 B ε n-1 + x n , u) -ϕ n (x 1 , . . . , x n u) .
Note that as in the case of the standard high-gain observer (see Section 1.2), if the matrix M is Hurwitz, we get a stable linear system disturbed by the non-linearity ∆(ε, x, u). Furthermore, the gain can be arbitrarily increased in order to prove stability in the ε-coordinates. Evidently, from now on, we use the same arguments used in the proof Theorem 1.4. In particular, analogously to the bound (1.18) and by using (3.3), we get (for any ≥ 1)

D -1 ∆(ε, x, u) ≤ n-1 j=1 1 j-2 D 2 ( ) -1 ∆ i ≤ n-1 j=2 2 j-1 φj (Cε 1 + x 1 , .
. . , j-1 Cε j + x j , u) -ϕ j (x 1 , . . . , x j , u)

+ 1 n-1 | φn (Cε 1 , +x 1 , . . . , n-1 B ε n-1 + x n , u) -ϕ n (x 1 , . . . , x n u)| + | φ1 (Cε 1 + x 1 , u) -ϕ 1 (x 1 , u)| ≤ n-1 j=2 2 j-1 L j |(Cε 1 , Cε 2 , . . . , k-1 Cε k )| + R j + L 1 |Cε 1 | + R 1 + 1 n-1 L n |(Cε 1 , Cε 2 , . . . , n-2 Cε n-1 , n-1 B ε n-1 )| + R n ≤ L 1 |ε| + 2 n-1 j=2 L j |ε| + L n |ε| + R 1 + 2 n-1 j=2 1 j-1 R j + 1 n-1 R n
and therefore, by denoting

L = L 1 + 2 n-1 j=2 L j + L n ,
we have

D -1 ∆(ε, x, u) ≤ L |ε| + 2 n j=1 1-j R j ∀(ε, x, u) ∈ R 2n-1 × X × U .
Now let the coefficients (c i1 , c i2 ), i = 1, . . . , n -1, be chosen according to Lemma A.1 such that the matrix M is Hurwitz. As a consequence there exists a positive definite matrix P solution of the Lyapunov equation

P M + M P = -I .
By following the proof of Theorem 1.4, let consider the Lyapunov Function V :

R 2n-2 → R ≥0 defined as V = √ ε P ε .
By denoting with λ and λ the minimum and the maximum eigenvalue of P we have

λ |ε| ≤ V ≤ λ |ε| .
Observe that V is only Lipschitz. As a consequence, when V is not zero, by evaluating the Dini derivative of V along the solutions of ε we get

D + V = 1 √ ε P ε ε P M ε + D -1 ∆(ε, x, u) + Kν(t) ≤ - 1 √ ε P ε 2 |ε| 2 + |ε P | √ ε P ε   L |ε| + 2 n j=1 1-j R j + | Kν(t)|   ≤ - 2 -L λ |ε| 2 √ ε P ε + λ √ λ   2 n j=1 1-j R j + | K|ν  
where we denoted ν = ν(•) ∞ . On the contrary, for V = 0 we get

D + V ≤ λ √ λ   2 n j=1 1-j R j + | K|ν  
hence the previous expression holds for both cases. Now let = 2 λ. As a consequence, there exists a a 1 > 0 such that, for any > max{ , 1},

V ≤ - a 1 λ V + λ √ λ   2 n j=1 1-j R j + | K|ν   V (t) ≤ exp - a 1 λ t V (0) + 1 -exp(-a 1 / λt) a 1 / λ λ √ λ   2 n j=1 1-j R j + | K|ν   .
From this we get

|ε(t)| ≤ µ 1 exp(-µ 2 t) |ε(0)| + µ 3 n j=1 -j R j + µ 4 ν with µ 1 = 1/ √ λ, µ 2 = a 1 / λ, µ 3 = 2 λ2 /( √ λ a 1
) and µ 4 = | K|µ 3 . By noting that for

≥ 1 we have |ε| ≤ | ξ| ≤ n i=1 |x i -xi | + n-2 i=1 |x i+1 -η i | ,
the proof concludes by using (3.5) and the following bounds

-(i-1) |x i -xi | ≤ |ε| i = 1, . . . , n , -i |x i+1 -η i | ≤ |ε| i = 1, . . . , n -2 .

Remarks

• The bounds (3.4) shows that the new low-power structure guarantees asymptotic bounds which are comparable with the bounds (1.14) provided by the standard high-gain observer (1.12). The main difference relies in the fact that the high-gain observers (1.12) has a state dimension n with the high-gain parameter powered up to n, whereas the new low-power structure has dimension 2n -2 with the gain powered up to 2. In view of the considerations introduced in Section 1.3.1, it is worth noticing that we are completely solving the implementation issues related to the gain n when or n are very large.

• As already explicated at the end of Section 1.2, the same kind of considerations can be made about the bounds (3.4). In particular asymptotic estimation can be achieved only when R i = 0, i = 1, . . . , n and when there is no measurement noise.

• Despite the low-power high-gain observer (3.2) presents no terms with powers of larger than 2, the estimates xi , i = 1, . . . , n are affected by the peaking phenomenon as the standard high-gain observer. As shown in Section 3.3, a more sophisticated design is needed to solve this problem, namely by introducing saturations functions. It is interesting to note that also the gain from the estimate xi and the measurement noise is multiplied by a term i-1 . However, as studied in Section 3.4, the noise is affecting only the first two variables x1 and η 1 : the relative degree between ν(t) and xi , i > 1 is always larger than one, thus resulting in better sensitivity to high-frequency noise.

The case of non-strict feedback form

While in Section 3.1 we have presented the novel low-power high-gain observer design for the class of systems in strict feedback form, in this section we deal with the case of systems in non-strict feedback form. In particular, by following the same design philosophy, we want to show that the high-gain observer (1.21) of Section 1.4 can be modified in order to design an observer with a high-gain term powered up to two regardless the dimension n of the system by substantially overtaking the problem of having the highgain parameter powered to the order n. The results of Section 3.2 have been published

in [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] and the work has been done with the help of the co-author Lei

Wang.

Consider a system in the non-strict feedback form (1.20) that we recall here

ẋi = f i (x 1 , . . . , x i , x i+1 , u) , 1 ≤ i ≤ n -1 , ẋn = f n (x 1 , . . . , x n , u) , y = h(x 1 , u) ,
(1.20 revisited)

with state x ∈ R n , input u ∈ R and measured output y ∈ R. Without loss of generality with respect to the proposed design (1.21), we suppose that Assumptions 1.1, 1.2 hold.

By mimicking the structure of the low-power high-gain observer presented in Section 3.1, the structure of the observer has the following form

ẋ1 = f 1 (x 1 , η 1 , u) + c 11 (y -x1 ) η1 = f 2 (x 1 , x2 , η 2 , u) + c 12 2 (y -x1 ) . . . ẋi = f i (x 1 , . . . , xi , η i , u) + c i1 (η i-1 -xi ) ηi = f i+1 (x 1 , . . . , xi+1 , η i+2 , u) + c i2 2 (η i-1 -xi ) . . . ẋn-2 = f n-2 (x 1 , . . . , xn-2 , η n-2 , u) + c (n-2)1 (η n-3 -xn-2 ) ηn-2 = f n-1 (x 1 , . . . , xn-1 , xn , u) + c (n-2)2 2 (η n-3 -xn-2 ) ẋn-1 = f n-1 (x 1 , . . . , xn-1 , xn , u) + c (n-1)1 (η n-2 -xn-1 ) ẋn = f n (x 1 , . . . , xn , u) + c (n-1)2 2 (η n-2 -xn-1 ) (3.7) where (x, η) ∈ R 2n-2 is the state, x = col(x 1 , . . . , xn ) ∈ R n and η = col(η 1 , . . . , η n-2 ) ∈ R n-2
, is the high-gain parameter and the coefficients (c i1 , c i2 ), i = 1, . . . , n -1 have to be properly chosen. In Section 1.4 we showed that the coefficients k i , i = 1, . . . , n, of the observer (1.21) need to be chosen according to Lemma 1.1. Similarly, a special design procedure is needed for the observer (3.7). We refer to the Lemma B.1 given in the Appendix B for the technicalities.

Theorem 3.2. Consider the system (1.20) satisfying Assumptions 1.1 and 1.2 and the observer (3.7). There exists a choice of the coefficients (c i1 , c i2 ) such that there exist a ≥ 1 and strictly positive real numbers µ 1 and µ 2 such that, for all > , the following bound holds

|x i (t) -x i (t)| ≤ µ 1 i-1 exp(-µ 2 t) π , with π = n i=1 |x i (0) -x i (0)| + n-2 i=1 |η i (0) -x i+1 (0)| , for all (x(0), η(0)) ∈ R n × R 2n-2
and for all t ≥ 0.

Proof. Throughout the proof we denote B := (0, 1) , C := (1, 0). Furthermore we will use the compact notation x x x i = (x 1 , . . . , x i ) and x x x i = (x 1 , . . . , xi ). By using the notation

ξ i = col(ξ i1 , ξ i2 ) := col(x i , η i ) i = 1, . . . , n -2, ξ n-1 = col(ξ (n-1)1 , ξ (n-1)2 ) := col(x n-1 , xn )
the observer (3.2) can be written in the compact form

ξ1 = f 1 (x x x 1 , B ξ 1 , u) + c 11 (y -Cξ 1 ) f 2 (x x x 2 , B ξ 2 , u) + 2 c 12 (y -Cξ 1 ) ξi = f i (x x x i , B ξ i , u) + c i1 (B ξ i-1 -Cξ i ) f i+1 (x x x i+1 , B ξ i+1 , u) + 2 c i2 (B ξ i-1 -Cξ i ) i = 2, . . . , n -2 , ξn-1 = f n-1 (x x x n-1 , B ξ n-1 , u) + c (n-1)1 (B ξ n-2 -Cξ n-1 ) f n (x x x n-1 , B ξ n-1 , u) + 2 c (n-1)2 (B ξ n-2 -Cξ n-1 )
Consider now the change of variable

ξ i → ξi := ξ i -col (x i , x i+1 ) i = 1, . . . , n -1 , (3.8) 
We first start from ξ1 dynamics. By using the mean value theorem, one can get

ξ11 = f 1 (x x x 1 , B ξ 1 , u) -f 1 (x x x 1 , x 2 , u) -c 11 (y -x1 ) = f 1 (x x x 1 , B ξ 1 , u) -f 1 (x x x 1 , B ξ 1 , u) + f 1 (x x x 1 , B ξ 1 , u) -f 1 (x x x 1 , x 2 , u) -c 11 (h(Cξ 1 , u) -h(x 1 , u)) = ∂f 1 ∂x 2 (x x x 1 (t), δ 1 (t), u(t)) ξ12 -c 11 ∂h ∂x 1 (δ 0 (t), u(t)) ξ11 +f 1 (x x x 1 , B ξ 1 , u) -f 1 (x x x 1 , B ξ 1 , u) ξ12 = f 2 (x x x 2 , B ξ 2 , u) -f 2 (x x x 2 , x 3 , u) -2 c 12 (y -x1 ) = f 2 (x x x 2 , B ξ 2 , u) -f 2 (x x x 2 , B ξ 2 , u) + f 2 (x x x 2 , B ξ 2 , u) -f 2 (x x x 2 , x 3 , u) -2 c 12 (h(Cξ 1 , u) -h(x 1 , u)) = ∂f 2 ∂x 3 (x x x 2 (t), δ 2 (t), u(t)) ξ22 -2 c 12 ∂h ∂x 1 (δ 0 (t), u(t)) ξ11 +f 2 (x x x 2 , B ξ 2 , u) -f 2 (x x x 2 , B ξ 2 , u)
for some δ 0 (t) and δ 1 (t). For the sake of compactness, we set

a 1 (t) = ∂f 1 ∂x 2 (x x x 1 (t), δ 1 (t), u(t)) , a 2 (t) = ∂f 2 ∂x 3 (x x x 2 (t), δ 2 (t), u(t)) ,
and b

1 (t) = ∂h ∂x 1 (δ 0 (t), u(t)), to obtain ξ11 = a 1 (t) ξ12 -c 11 b 1 (t) ξ11 + f1 (t) , ξ12 = a 2 (t) ξ22 -2 c 12 b 1 (t) ξ11 + f2 (t) , where f1 (t) = f 1 (x x x 1 , B ξ 1 , u) -f 1 (x x x 1 , B ξ 1 , u) , f2 (t) = f 2 (x x x 2 , B ξ 2 , u) -f 2 (x x x 2 , B ξ 2 , u) .
Hence, we get the ξ1 dynamics, described by

ξ1 = H 1 (t) ξ1 + N 2 (t) ξ2 + F1 (t)
with

H 1 (t) = -c 11 b 1 (t) a 1 (t) -2 c 12 b 1 (t) 0 , F1 (t) = f1 (t) f2 (t) , N 2 (t) = 0 0 0 a 2 (t) .
Applying the same arguments to ξi -dynamics for

2 ≤ i ≤ n -2, yields ξi1 = a i (t) ξi2 -c i1 ξi1 + c i1 ξi-1,2 + fi (t) , ξi2 = a i+1 (t) ξi+1,2 -2 c i2 ξi1 + 2 c i2 ξi-1,2 + fi+1 (t) ,
where, for compactness, we have defined

a i+1 (t) = ∂f i+1 ∂x i+2 (x x x i+1 (t), δ i+1 (t), u(t)) , fi (t) = f i (x x x i (t), B ξ i (t), u(t)) -f i (x x x i (t), B ξ i (t), u(t)) , fi+1 (t) = f i+1 (x x x i+1 (t), B ξ i+1 (t), u(t)) -f i+1 (x x x i+1 (t), B ξ i+1 (t), u(t)) ,
for some δ i+1 (t). Thus, we get the ξi dynamics

ξi = H i (t) ξi + N i+1 (t) ξi+1 + D 2 ( )Q i ξi-1 + Fi (t)
with

H i (t) = -c i1 a i (t) -2 c i2 0 , Fi (t) = fi (t) fi+1 (t) , D 2 ( ) = diag( , 2
) and Q i defined as in (B.1). Applying the same trick to ξn-1 dynamics, yields

ξn-1,1 = a n-1 (t) ξn-1,2 -c n-1,1 ξn-1,1 + c n-1,1 ξn-2,2 + fn-1 (t) , ξn-1,2 = -2 c n-1,2 ξn-1,1 + 2 c n-1,2 ξn-2,2 + fn (t) ,
where we have defined

fn-1 (t) = f n-1 (x x x n-1 , B ξ n-1 , u) -f n-1 (x x x n-1 , B ξ n-1 , u) , fn (t) = f n (x x x n-1 , B ξ n-1 , u) -f n (x x x n-1 , x n , u) .
Further, the ξn-1 dynamics can be rewritten into the compact form

ξn-1 = H n-1 (t) ξn-1 + D 2 ( )Q n-1 ξn-2 + Fn-1 (t) ,
in which

H n-1 (t) = -c n-1,1 a n-1 (t) -2 c n-1,2 0 , Fn-1 (t) = fn-1 (t)
fn (t) .

Note that for each element of Fi (t), being Lipschitz by Assumption 1.1, one can find that fi (t) satisfy

| fi (t)| ≤ L|x x x i -x x x i | , 1 ≤ i ≤ n .
Rescale now the variables ξi as follows

ε i = 2-i D 2 ( ) -1 ξi , i = 1, 2, . . . , n -1 .
By setting ε = col(ε 1 , . . . , ε n-1 ), an easy calculation shows that

ε = M (t)ε + F (t) (3.9)
in which the time varying block tridiagonal matrix M (t) is defined as in (B.1), where a i (t) for 1 ≤ i ≤ n -1 and b 1 (t) are bounded from below and from above for all t ≥ 0 by Assumption 1.1, b i (t) = 1 for 2 ≤ i ≤ n -1 and the vector F (t) is defined by

F (t) = D F (t)
with D and F (t) defined by

D = blckdiag D 2 ( ) , . . . , n-2 D 2 ( ) , F (t) = col ( F1 , F2 (t), . . . , Fn-1 (t)) .
Inspection on the each element of F shows that, for > 1

| 1-i fi (t)| ≤ L|ε| , i = 1, 2, . . . , n ,
thus yielding that there exists a real number L > 0, independent of , such that | F | ≤ L|ε|. Now let the coefficients (c i1 , c i2 ) be chosen according to Lemma B.1 for a given matrix P and positive constant λ. Therefore we can choose the Lyapunov candidate as W (ε) = ε P ε, whose time derivative along the trajectories of system (3.9) is given by

Ẇ (ε) = ε (P M + M P )ε + 2ε P F ≤ -( λ -2 L|P |)|ε| 2 . Choosing = 2 L|P | λ
, one can conclude that for any > , there exists a positive constant α 1 such that Ẇ ≤ -α 1 |ε| 2 .

Recalling the fact that there exist positive constants σ and σ such that

σ |ε| 2 ≤ W (ε) ≤ σ |ε| 2 ,
it can be further deduced that

|ε(t)| ≤ µ 1 exp(-µ 2 t) |ε(0)|
for some positive constants µ 1 and µ 2 , independent of . Finally the claim of the proof follows immediately by noting that for ≥ 1 we have

-(i-1) |x i -x i | ≤ |ε| ≤ | ξ| ≤ n i=1 |x i -x i | + n-2 i=1 |η i -x i+1 | .

Peaking-free design

In Section 3.1 we illustrated the main features of the new low-power approach. One advantage with respect to the standard high-gain observer (1.12) comes from an implementation with the power of the gain which is raised only up to power 2 regardless the dimension of the system. However, it can be easily seen that the design (3.2) does not solve the problem of peaking during the transient. In this section we propose a modification of the observer (3.2) which solves completely the problem of peaking without loosing its main characteristics. Basically saturations functions are added at various levels: they prevent the peaking phenomenon during the transients and do not "act" during the asymptotic behaviour which coincides with the nominal one. Furthermore, one extra dynamics is added at the bottom of the chain in order to preserve the removal of the peaking at any step. As a matter of fact, the proposed observer is a modification of the one introduced in Astolfi et al. (2016b). Note that the same "saturation design" can be adopted also for the class of observer (3.7).

We consider here, for the sake of simplicity in the analysis, the class of nonlinear system (3.1) when where the state x = (x 1 , . . . , x n ) evolves in a compact subset X of R n , the input u is assumed to be known and evolves in some compact set U ⊂ R m and the output y ∈ R.

ϕ i (x 1 , . . . , x i , u) = 0 i = 1, . . . , n -1, ϕ n (x 1 , . . . , x n , u) = ϕ(x, u),
In the following we define the values ϑ i > 0 as follows

ϑ i := max x∈X |x i | i = 1, . . . , n, ϑ n+1 := max x∈X,u∈U |ϕ(x, u)|
From the results of Theorem 3.1 we know that the variables xi during the transient shows a peak of order i-1 , whereas the variables η i shows a peak of order i . As a consequence the proposed "peaking-free low-power high-gain observer" reads as

ẋ1 = η 1 + c 11 (y -x1 ) η1 = sat 3 (η 2 ) + 2 c 12 (y -x1 ) . . . ẋi = η i + c i1 (sat i (η i-1 ) -xi ) ηi = sat i+2 (η i+1 ) + 2 c i2 (sat i (η i-1 ) -xi ) . . . ẋn-1 = η n-1 + c (n-1)1 (sat n-1 (η n-2 ) -xn-1 ) ηn-1 = sat n+1 ( φ(x, u)) + 2 c (n-1)2 (sat n-1 (η n-2 ) -xn-1 ) ẋn = sat n+1 ( φ(x, u)) + c n (sat n (η n-1 ) -xn ) (3.11)
where (x, η) ∈ R 2n-1 is the state of the observer, with x = col(x 1 , . . . , xn ) ∈ R n and η = col(η 1 , . . . , η n-1 ) ∈ R n-1 . The coefficients (c i1 , c i2 ), i = 1, . . . , n -1 and c n have to be properly chosen as detailed later, φ is any bounded Lipschitz function satisfying

|ϕ(x, u) -φ(x, u)| ≤ L|x -x| + R ∀ (x, x) ∈ X × R n
for some L > 0 and R > 0, and the functions sat i are defined as sat i (•) := sat r i (•) , i = 1, . . . , n + 1 , with the saturations level r i chosen as

r i := ϑ i + ,
with a small positive real number to be defined. It can be proved that the observer (3.11) has the same asymptotic properties of the observer (3.2) and moreover that the variables xi (t) are bounded for all t ≥ 0 by a number which is independent on the highgain parameter , whereas the variables η i (t) shows a peak of order .

With respect to the choice required in Theorem 3.1 in which the parameters (c i1 , c i2 ), i = 1, . . . , n -1 were just asked to make the matrix M defined in (A.1) Hurwitz (see Lemma A.1), in this case the presence of saturation functions asks the parameters also fulfil additional "small-gain" conditions. We refer to Appendix A for the technicalities and in particular to Definition A.1.

Theorem 3.3. Consider system (3.10) and the observer (3.11). There exists a choice of (c i1 c i2 ), i = 1, . . . , n -1 and c n such that, for any compact sets X ⊂ R n , X ⊂ R n and E ⊂ R n-1 , and for any > 0, there exist µ 1 > 0, µ 2 > 0, µ 3 > 0, δ i > 0, i = 1, . . . , n, γ i , i = 1, . . . , n -1 and ≥ 1 such that, for any > and for any (x(0), x(0), η(0)) ∈ X × X × E, the following bounds hold

|x i (t) -x i (t)| ≤ min i-1 µ 1 exp(-µ 2 t) π + µ 3 n-(i-1) R , δ i |η i (t) -x i+1 (t)| ≤ min i µ 1 exp(-µ 2 t) π + µ 3 n-i) R , γ i (3.12) with π = n i=1 |x i (0) -x i (0)| + n-1 i=1 |η i (0) -x i+1 (0)| , for all t ≥ 0 such that x(t) ∈ X, u(t) ∈ U .
Proof. The proof is divided in two parts. First we prove the asymptotic convergence of the observer by proving that after some time the saturations are no more "working". In this proof we get a conservative bound. Then, we make a more detailed analysis to show that this bound can be refined and that, indeed, the estimates xi are "peaking-free" whereas the variables η i peak with an order of magnitude which grows with .

In the following (A, B, C) denotes a triplet of dimension 2 in prime form, and D 2 ( ) = diag( , 2 ). Also, we use the same notation introduced in Section 3.1 for the matrices B i , K i , E i , Qi and M i . We define the following changes of variables

(x, η) → ξ ,      ξ i1 := xi , i = 1, . . . , n -1 , ξ i2 := η i , i = 1, . . . , n -1 , ξ n := xn , (3.13) ξ → ε ,      ε i1 := -(i-1) (ξ i1 -x i ) , i = 1, . . . , n -1 , ε i2 := -i (ξ i2 -x i+1 ) , i = 1, . . . , n -1 , ε n := -(n-1) (ξ n -x n ) , (3.14) ξ → ζ ,      ζ i1 := (ξ i1 -x i ) , i = 1, . . . , n -1 , ζ i2 := -1 (ξ i2 -x i+1 ) , i = 1, . . . , n -1 , ζ n := ξ n -x n , (3.15) with ξ = (ξ 1 , . . . , ξ n-1 , ξ n ) ∈ R 2n-1 , ξ i = (ξ i1 , ξ i2 ) ∈ R 2 , i = 1, . . . , n -1, ξ n ∈ R ε = (ε 1 , . . . , ε n-1 , ε n ) ∈ R 2n-1 , ε i = (ε i1 , ε i2 ) ∈ R 2 , i = 1, . . . , n -1, ε n ∈ R, ζ = (ζ 1 , . . . , ζ n-1 , ζ n ) ∈ R 2n-1 , ζ i = (ζ i1 , ζ i2 ) ∈ R 2 , i = 1, . . . , n -1, ζ n ∈ R,
Finally, we define the variables v i , i = 1, . . . , n -1 as

v i := sat i+2 (η i+1 ) -x i+2 ∀ i = 1, . . . , n -2 v n-1 := sat n+1 ( φ(x, u)) -ϕ(x, u) .
Recall that by definition

|v i (t)| ≤ ϑ i+2 + R i+2 ∀ i = 1, . . . , n -1 , ∀ t ≥ 0 . (3.16)

Exit from saturation and convergence

Case i = 1. Consider the change of coordinates (3.13) and its first variable

ξ 1 ∈ R 2 .
Its dynamics is given by

ξ1 = Aξ 1 + B sat 3 (Bξ 2 ) + D 2 ( )K 1 (y -Cξ 1 ) .
By using the change of coordinates (3.14) the latter is transformed into

ε1 = E 1 ε 1 + -1 Bv 1
Since E 1 is Hurwitz, there exists a P 1 = P 1 > 0 solution of

P 1 E 1 + E 1 P 1 = -I .
As a consequence we can apply Lemma A.4 for any T 1 > 0 with r = 1 to get a

1 satisfying | ε 1 (t)| ≤ ∀ t ≥ T 1 ,
for all ≥ 1 . By noting that (for any ≥ 1)

-1 |ξ 12 -x 2 | ≤ |ε 12 | ≤ |ε 1 | |ξ 12 | ≤ |ξ 12 -x 2 | + |x 2 | we get |ξ 12 (t)| ≤ |ε 1 | + |x 2 | ≤ + R 2 ≤ ϑ 2
for any ≥ 1 and for all t ≥ T 1 . With this in mind, we have that sat 2 η 1 (t) = η 1 (t) for all t ≥ T 1 .

General Case i > 1. After time T i-1 > 0 we get sat j+1 η j (t) = η j (t) for j = 1, . . . , i-1

and, as a consequence, Bv j = N ξ j+1 for all j = 1, . . . , i -2. With the change of coordinates (3.13) in mind, consider the cascade system made by the first i elements

of ξ i , ξ1 = A ξ 1 + N ξ 2 + D 2 ( )K 1 (y -Cξ 1 ) . . . ξi-1 = A ξ i-1 + B sat i+1 η i + D 2 ( ) K i-1 (B ξ i-2 -Cξ i-1 ) ξi = A ξ i + B sat i+2 η i+1 + D 2 ( ) K i-1 (B ξ i-1 -Cξ i )
By using the change of coordinates (3.14) the latter is transformed into

ε ε ε i-1 εi = M i-1 0 Qi E i ε ε ε i-1 ε i + 1 i B 2(i-1) 0 0 B v i-1 (t) v i (t) with the notation ε ε ε k = (ε 1 , . . . , ε k ) . Note that v i-1 (t) = sat i+1 (Bη i ) -x i+1 = sat i+1 ( i ε i2 + x i+1 ) -x i+1
By the Lipschitz mean-value theorem, for each t sufficiently large, there exists a

continuous function ρ(t) ∈ [0, 1] such that v i-1 (t) = ρ(t) i ε i2 .
As a consequence we get

ε ε ε i = Λ i (t)ε ε ε i + 1 i B 2i v i (t)
where Λ i (t) is defined as

Λ i (t) := M i-1 ρ(t) Ni-1 Qi E i .
(3.17)

By applying Lemma A.3 we know the existence of a P i = P i > 0 satisfying

P i Λ i (t) + Λ i (t) P i ≤ -I for all t ≥ T i-1 .
As a consequence we can apply Lemma A.4 with some T i > 0 and r = i to get a i ≥ i-1 satisfying

| i ε ε ε i (t)| ≤ ∀ t ≥ T 1 ,
By recalling (for any ≥ 1)

-i |ξ i2 -x i+1 | ≤ |ε i2 | ≤ |ε ε ε i | |ξ i2 | ≤ |ξ i2 -x i+1 | + |x i+1 | ≤ | i ε i2 | + |x i+1 | ≤ | i ε ε ε i | + |x i+1 | we get |η i (t)| = |ξ i2 (t)| ≤ i |ε ε ε i | + |x i+1 | ≤ + R i+1 ≤ ϑ i+1
for any ≥ i and for all t ≥ T i . This prove that for t ≥ T i also sat i+1 η i = η i and therefore the dynamics of system ε ε ε i read as

ε ε ε i = M i ε ε ε i + 1 i B i v i (t)
Overall convergence. After time T n-1 > 0 we get sat j+1 η j (t) = η j (t) for j = 1, . . . , n -1. As a consequence the observer (3.11) in the ε coordinates (3.14) reads

as ε ε ε n-1 εn = M n-1 0 qn -c n ε ε ε n-1 ε n + 1 n-1 B 2n-2 1 v n-1 (t)
where qn = (0, . . . , 0, c n ). Now let the matrix M n be defined as

M n := M n-1 0 qn -c n B = B 2n-2 1 .
It is Hurwitz for any c n > 0. Therefore we can define the matrix P n = P n > 0

solution of P n M n + M n P n = -I . Note that |v n-1 | = |sat n+1 φ(x, u) -ϕ(x, u)| ≤ L|x -x| + R ≤ L n-1 |ε| + R .
By applying standard arguments used in the proofs of Theorems 1.4 and 3.1 it is easy to get

|ε(t)| ≤ µ 1 exp(-µ 2 t) |ε(0)| + µ 3 n R
for some positive µ 1 , µ 2 and µ 3 . Finally, by using (for ≥ 1)

-(i-1) |x i -xi | ≤ |ε| ≤ n i=1 |x i -xi | + n-1 i=1 |x i+1 -η i | -i |x i+1 -η i | ≤ |ε| ≤ n i=1 |x i -xi | + n-1 i=1 |x i+1 -η i | we get |x i (t) -xi (t)| ≤ i-1 µ 1 exp(-µ 2 t) π + µ 3 n-(i-1) R , (3.18) |x i+1 (t) -η i (t)| ≤ i µ 1 exp(-µ 2 t) π + µ 3 n-i) R (3.19)
with π defined as in the statement of the theorem. In the next part of the proof we show that the latter are too conservative and we show how to get (3.12).

Bound Estimate

Let consider again the ξ dynamics at time 0. Using the change of coordinates ζ i defined in (3.15), we get

ζ1 = E 1 ζ 1 + -1 Bv 1 (t) ζi = E i ζ i + -1 Bv i (t) + K i-1 sat i η i-1 i = 2, . . . , n -1 ζn = -c n ζ n + v n-1 (t) + c n sat n η n-1
Now let consider the Lyapunov functions V i defined as

V i := ζ i S i ζ i , i = 1, . . . , n -1 , V n := 1 2c n ζ 2 n with S i given by S i E i + E i S i = -I .
We get

V1 ≤ -|ζ 1 | 2 + 2|ζ 1 ||S i | -1 v 1 Vi ≤ -|ζ i | 2 + 2|ζ i ||S i |( -1 v i + K i-1 sat i η i-1 ) i = 2, . . . , n -1, Vn ≤ -|ζ n | 2 + c -1 n ζ n v n-1 + ζ n sat n η n-1
By using (3.16), standard Lyapunov arguments show that there exist positive constants a ij , j = 1, . . . , 4, such that, if is taken sufficiently large, we get

|ζ 1 (t)| ≤ a 11 exp(-a 12 t)|ζ 1 (0)| + a 13 2 (R 3 + ϑ 3 ) |ζ i (t)| ≤ a i1 exp(-a i2 t)|ζ i (0)| + a i3 2 (R i+2 + ϑ i+2 ) + a i4 |K i-1 |ϑ i i = 2, . . . , n -1 , |ζ n (t)| ≤ a n1 exp(-a n2 t)|ζ i (0)| + a n3 (R n+1 + ϑ n+1 ) + a i4 c n ϑ n
Furthermore, by recalling (for any ≥ 1)

|x i -xi | ≤ |ζ i | ≤ |x i -xi | + |x i+1 -η i | , 1 |x i+1 -η i | ≤ |ζ i | ≤ |x i -xi | + |x i+1 -η i | ,
and by using the notation

π i = max x∈X, x∈ X, η∈E |x i -xi | + |x i+1 -η i | , i = 1, . . . , n -1 π n = max x∈X, x∈ X |x n -xn | ,
we get the following set of bounds for xi

|x 1 (t) -x1 (t)| ≤ a 11 exp(-a 12 t) π 1 + a 13 2 (R 3 + ϑ 3 ) , |x i (t) -xi (t)| ≤ a i1 exp(-a i2 t) π i + a i3 2 (R i+2 + ϑ i+2 ) + a i4 |K i-1 |ϑ i , i = 2, . . . , n -1 |x n (t) -xn (t)| ≤ a n1 exp(-a n2 t) π n + a n3 (R n+1 + ϑ n+1 ) + a n4 c n ϑ n ,
and for η i ,

|η i (t)| ≤ a i1 exp(-a i2 t) π i + a i3 (R i+2 + ϑ i+2 ) + a i4 |K i-1 |ϑ i ,
for i = 1, . . . , n -1. Now let δ i > 0, i = 1, . . . , n be defined as

δ 1 = a 11 π 1 + a 13 (R 3 + ϑ 3 ) , δ i = a i1 π i + a i3 (R i+2 + ϑ i+2 ) + a i4 |K i-1 |ϑ i , i = 2, . . . , n -1 δ n = a n1 π n + a n3 (R n+1 + ϑ n+1 ) + a n4 c n ϑ n .
As a consequence, for any ≥ 1 we get

|x i (t) -x i (t)| ≤ δ i ∀ t ≥ 0 . (3.20)
Furthermore, by letting γ i > 0, i = 1, . . . , n -1, be defined as

γ i = a i1 π i + a i3 (R i+2 + ϑ i+2 ) + a i4 |K i-1 |ϑ i ,
we also get 

|η i (t) -x i+1 (t)| ≤ γ i ∀ t ≥ 0 (3.

Asymptotic behaviour in presence of measurement noise

Aim of this section is to characterize the behaviour in presence of measurement noise of the low-power high-gain observer presented in this chapter. By following the same arguments used in Section 2.4, we consider in this section the class of autonomous systems described by

ẋ = A n x + B n ϕ(x) , x ∈ R n , y = C n x + ν(t) , y ∈ R (3.22)
where (A n , B n , C n ) is a tripled in prime form, ϕ is a locally Lipschitz function, x is assumed to evolve in some given compact set X ⊂ R n and the output is affected by a bounded noise ν(t). The low-power high-gain observer (3.2) for the system (3.22) has the form (by using the same compact notation of (3.6))

ξ1 = A ξ 1 + N ξ 2 + D 2 ( ) K i (y -Cξ 1 ) ξi = A ξ i + N ξ i+1 + D 2 ( ) K i (B ξ i-1 -Cξ i ) i = 1, . . . , n -2 , ξn-1 = A ξ n-1 + B ϕ s (x) + D 2 ( ) K (n-1) (B ξ n-2 -Cξ n-1 ) (3.23)
where (A, B, C) is a triplet in prime form of dimension 2, ϕ s is a bounded locally Lipschitz function that agrees with ϕ on the set X, the matrix D = diag( , . . . , n ) with the high-gain parameter to be chose large enough (to "overcome" the Lipschitz constant of ϕ), K i = colc i1 , c i2 are coefficients which can be chosen according to Lemma A.1 and

x := Γξ, Γ := blkdiag (C 2 , . . . , C 2 (n-2) times , I 2 ) .
By making the following change of coordinates

ξ i → ξi := ξ i -col (x i , x i+1 ) i = 1, . . . , n -1 ,
the observer (3.23) transforms as

ξ1 = H 1 ξ1 + N ξ2 + G 1 ν(t) . . . ξi = Q i ξi-1 + H i ξi + N ξi+1 . . . ξn-1 = Q n-1 , ξn-2 + H n-1 ξn-1 + B ∆ ϕ ( ξ, x)
which can be written in the more compact form

ξ = F ξ + B∆ ϕ ( ξ, x) + Gν(t) (3.24)
where

F =          H 1 N Q 2 H 2 N . . . . . . . . . Q n-2 H n-2 N Q n-1 H n-1          G =        G 1 0 . . . 0        B =        0 0 . . . B        . H i := A -D 2 ( ) K i C ∀ i = 1, . . . , n -1 , Q i := D 2 ( ) K i B T ∀ i = 2, . . . , n -1 , G 1 := D 2 ( )K 1 P , N := BB and ∆ ϕ (η, x) := ϕ s (Γ η + x) -ϕ(x) . (3.25)
If is taken sufficiently large then system (3.24) is input-to-state stable with respect to the input ν. In particular, standard Lyapunov arguments can be used to prove the existence of positive constants µ 1 , µ 2 and µ 3 such that the following bounds hold

|e j (t)| ≤ max µ 1 j-1 exp(-µ 2 t) | ξ(0)| , µ 3 j-1 | ν(•) ∞ (3.26)
where e ∈ R n , e = Γ ξ, for all t ≥ 0, j = 1, . . . , n. The goal of this note is to better characterise the asymptotic gain in presence of high-frequency noise as already done for the standard high-gain observer in Section 2.4. Towards this end we model the measurement noise as

ε ẇ = Sw , w ∈ R m ν = P w , (3.27)
where S ∈ R m×m is a neutrally stable matrix, P is a row vector, and ε ∈ (0, 1) is parameter that will be taken small in the forthcoming analysis. System (3.27) can be conveniently seen as generator of m > 0 harmonics at frequencies ω i /ε > 0, i = 1, . . . , m, namely, the matrices S and P take the form S = blkdiag(S 1 , . . . , S m ) , S i = 0 ω i -ω i 0 and P = ((0 1) (0 1) • • • (0 1)). In the following we assume that w ranges in a compact invariant set W .

As a preparatory step towards the nonlinear analysis, it is instructive to consider the linear case, namely the case in which ϕ(x) = Φx with Φ a row vector. In this case the observer (3.23) can be taken1 with ϕ s (x) = Φx. By observing that with Π ε the n×m matrix defined as Π ε := Γ Πε The expression of Π ε can be characterised at high-frequency (namely for small value of ε) to have more insight about how the gain between the measurement noise and the j-th estimation error is affected by . In particular, using that the fact that S is not singular, it is easy to check that

ΦΓη

Π ε = ∞ k=1 ε k Π k with Π k := Γ(F + BΦΓ) k-1 GP S -k , k = 1, . . . , ∞ .
In particular, the series defining Π ε is convergent as long as ε is taken sufficiently small.

Namely, for all k > 0 there exist ε > 0 and π > 0 such that ∞ k=k ε k Π k ≤ π for all positive ε ≤ ε . By bearing in mind the expressions of F and G and how those in which the M j,i , are appropriately defined row vectors that are constant or dependent on as clear from the notation. That is, the j-th element, j = 1, . . . , n, of Π k , k = 1, . . . , n+1 2 , which is denoted by Π k j , is given by

Π k j = 0 j = k + 1, . . . n -k + 1 Π k k = 2k-1 M k,k k ≤ n+1 2 Π k j = M k,j k = 2, . . . , n+1 2 -1, j = n -k + 2
in which the specified M k,j are constant row vectors, and the elements of Π k not specified in the previous formulae that are generic ( dependent) row vectors. From this, using (3.28) and the fact that W is compact, we can then conclude that for all j = 1, . . . , n, there exists a ε ( ) > 0 such that for all ε ≤ ε ( ) the following holds

lim t→∞ sup |e j (t)| ≤ µ ε j 2j-1 w(•) ∞ , j = 1, . . . , n+1 2 lim t→∞ sup |e j (t)| ≤ µ ε n-j+2 w(•) ∞ , j = n+1 2 + 1, . . . , n
for some positive constant µ. The previous relation clearly shows the "low-pass" filtering properties of the low-power high-gain observer, namely

lim ε→0 lim t→∞ sup |e j (t)| = 0 .
In addition, the remarkable feature of the low-power observer is to have an asymptotic gain that is affected by ε powered at a value that increases as long as "higher" components of the errors are considered. This is consequence of the fact that the relative degree between the measurement noise and the j-th error component increases with j. This fact shows that the actual observer behaves better than standard high-gain observers as far as sensitivity to measurement noise is concerned. As a matter of fact, the results presented in Section 2.4 have shown that, in case of standard high-gain observers, the asymptotic gain between the measurement noise and the j-th error component depends on ε regardless the value of j. This is immediate consequence of the fact that the relative degree between the measurement noise and the j-th error component in standard highgain observers is always one regardless the value of j.

Furthermore, the previous analysis reveals how the high-gain parameter affects the asymptotic gain of the j-th error component at high-frequency. In particular, it is worth noting that for the first n+1 2 error components the gain increases with according to a term of the form 2j-1 , namely the effect of the high-gain parameter on the sensitivity to measurement noise becames worst as long as "higher" components of the error (namely higher values of j) are considered. On the other hand, the asymptotic gain for the "lower" component, namely for the components e j for j = n+1 2 + 1, . . . , n, depends on no matter which j is considered. In this respect it is interesting to observe that, in case of standard high-gain observer, the analysis in Section 2.4 revealed that the asymptotic gain between the measurement noise and the j-th error component is affected by the highgain parameter by a term of the form j . The new low-power observer, thus, behaves better for the sensitivity of the error e j for j = n+1 2 + 1, . . . , n, while it is worst for the first n+1 2 + 1 components.

In the next section we present the theoretical tool that allows one to get the same kind of result also in the nonlinear setting.

Nonlinear Analysis

By compactly writing the system dynamics (3.22) as

ẋ = f (x)
the overall dynamics given by the observed system (3.22) , the observer error dynamics (3.23) and the noise generator (3.27) read as

ε ẇ = Sw ẋ = f (x) ξ = F ξ + B∆ ϕ ( ξ, x) + GP w .
(3.29)

Having tuned the parameters c i1 , c i2 , i = 1, . . . , n-1, and as said before, the trajectories of this system are bounded. The system in question, thus, has a well-defined steady state that can be characterised with the tools proposed in [START_REF] Isidori | Steady-State Behaviors in Nonlinear Systems with an Application To Robust Diturbance Rejection[END_REF].

More specifically, the triangular structure of the system (with the x and w subsystem driving the e subsystem) implies that the existence of a possibly set-valued function

π ε : X × W ⇒ R 2n-2 such that the set graph(π ε ) = (w, x, e) ∈ W × X × R n : ξ ∈ π ε (w, x)
is asymptotically stable for (3.29). Furthermore, the properties of the high-gain observer when the measurement noise is absent (i.e. when w = 0) show that

π ε (0, x) = {0} ∀ x ∈ X .
The following technical lemma provides an arbitrarily accurate approximation of a continuous selection of π ε (•, •). The Lemma refers to a number of functions that enter in definition of the approximation. In order to keep compact the claim of the Lemma, we introduce those functions beforehand. In particular, let

υ := n 2 , m := n + 1 2
and let r be an arbitrary number satisfying r ≥ m. Observe that for any n we have m ≥ υ.

The approximation, of order r, of the steady state is then a function

Ψ ε : W ×X → R 2n-2
defined as

Ψ ε (w, x) := col Ψ 1 (w, x) Λ 1 (w, x) Ψ 2 (w, x) Λ 2 (w, x) • • • Ψ n-1 (w, x) Λ n-1 (w, x)
in which

Ψ j (w, x) := r i=r j ψ j,i (w, x) ε i , j = 1, . . . , n -1 Λ j (w, x) := r i=p j λ j,i (w, x) ε i , j = 1, . . . , n -1 (3.30)
where the r j and p j are defined as

r j = j , j = 1, . . . , υ , r j = n -j + 2 , j = υ + 1, . . . , n -1 , p j = j , j = 1, . . . , υ , p j = n -j + 1 , j = υ + 1, . . . , n -1 , (3.31) with ψ j,i : X × W → R, j = 1, . . . , n -1, i = r j , . . . , r λ j,i : X × W → R, j = 1, . . . , n -1, i = p j , . . . , r
appropriately defined continuous functions. We have then the following result.

Lemma 3.1. Consider system (3.23) and the notations introduced before. There exist continuous functions ψ j,i (•, •) and λ ji (•, •) such that, having defined

E ε (w, x) := ε -1 ∂Ψ ε (w, x) ∂w Sw + ∂Ψ ε (w, x) ∂x f (x) -F Ψ ε (w, x) -GP w -B∆ ϕ (Ψ ε (w, x), x)
the following holds

lim ε→0 + E ε (w, x) ε r-1 = 0 , ∀ (w, x) ∈ W × X , E ε (0, x) = 0 ∀ (ε, x) ∈ [0, 1] × X
Furthermore, there exist continuous functions ψj,j (•, •), and λj,j (•, •), such that

ψ j,r j (w, x) := 2j-1 ψj,r j (w, x), j = 1, . . . , m, ψ r j (w, x) := ψj,r j (w, x), j = m + 1, . . . , n -1, λ n-1,2 (w, x) := λn-1,2 (w, x),
Proof. First of all consider the case where w = 0. By recalling the definition of ∆ ϕ (•, •) in (3.25) it is easy to verify that Ψ ε (0, x) = 0 makes E ε (0, x) = 0. As a consequence in the following we will show that Ψ ε (w, x) can be chosen as a continuous function in w satisfying Ψ ε (0, x) = 0. Now, since w and x range in bounded sets and the function ψ j,i (•, •) and λ j,i (•, •)

are continuous, we have that

lim ε→0 + Ψ ε (w, x) = 0 ∀ (w, x) ∈ W × X .
Let us denote Ψ ε = Γ Ψ ε and let denote with Ψ j the j-th element of Ψ ε . Expanding ∆ ϕ (Ψ ε , x) by Taylor around Ψ ε = 0 we obtain

∆ ϕ (Ψ ε , x) = r i=1 ϕ i (x)[ Ψ ε ] i + ρ r (Ψ ε , x)
in which ϕ i (•), i = 1, . . . , r, are properly defined continuous functions, ρ r (•, •) is a properly defined continuous remainder function, and the [ Ψ ε ] i are monomials of the form

[ Ψ ε ] i = n-1 j=1 Ψ k j j , n-1 j=1 k j = i .
By replacing the Ψ j in the definition of Ψ j with the expression (3.30) and grouping the terms with the same power of ε, the Taylor expansion of ∆ ϕ (•, •) can be rewritten as

∆ ϕ (Ψ ε , x) = r i=1 ε i φ i (w, x) + ε r+1 R ε (w, x) (3.32)
where the functions φ i (•, •), i = 1, . . . , r, and R ε (•, •) are appropriately defined continuous functions satisfying φ i (0, x) = 0 and R ε (0, x) = 0. As far as the φ i 's are concerned, in particular, we observe that, because the Ψ j are polynomials in ε and the [ Ψ ε ] i are polynomials in the Ψ j , only the coefficients of power smaller or equal to i in ε in the Ψ j can be in φ i . Namely φ i (•, •) depends only on ψ j,k and on λ n-1,k with k ≤ i for all i = 1, . . . r and j = 1, . . . , n -1.

Consider now the expression of E ε (•, •) and, by letting

E ε (•, •) := E 1 (•, •) Ξ 1 (•, •) E 2 (•, •) Ξ 2 (•, •) • • • E n-1 (•, •) Ξ n-1 (•, •)
note that

E 1 = Ψ1 + c 11 Ψ 1 -Λ 1 -c 11 P w Ξ 1 = Λ1 + 2 c 12 Ψ 1 -Λ 2 -2 c 12 P w . . . E j = Ψj + c j1 Ψ j -Λ j -c j1 Λ j-1 Ξ j = Λj + 2 c j2 Ψ j -Λ j+1 -2 c j2 Λ j-1 . . . E n-1 = Ψn-1 + c (n-1)1 Ψ n-1 -Λ n-1 -c (n-1)1 Λ n-2 Ξ n-1 = Λn-1 + 2 c (n-1)2 Ψ n-1 -∆ ϕ (Ψ ε , x) -2 c (n-1)2 Λ n-2
where, for the sake of compactness, we omitted the argument (w, x) from the functions Ψ j , Λ j , j = 1, . . . , n -1 and Ψ ε . By embedding (3.30) and (3.32) in the previous expressions, the following is obtained

E 1 = r i=1 L f ψ 1,i + 1 ε L S ψ 1,i ε i + c 11 r i=1 ψ 1,i ε i - r i=1 λ 1,i ε i -c 11 P w Ξ 1 = r i=1 L f λ 1,i + 1 ε L S λ 1,i ε i + 2 c 12 r i=1 ψ 1,i ε i - r i=2 λ 2,i ε i -2 c 12 P w E j = r i=r j L f ψ j,i + 1 ε L S ψ j,i ε i + c j1 r i=r j ψ j,i ε i - r i=p j λ j,i ε i -c j1 r i=p j-1 λ j-1,i ε i Ξ j = r i=p j L f λ j,i + 1 ε L S λ j,i ε i + 2 c j2 r i=r j ψ j,i ε i - r i=p j+1 λ j+1,i ε i -2 c j2 r i=p j-1 λ j-1,i ε i for j = 2, . . . , n -2 and E n-1 = r i=r n-1 L f ψ n-1,i + 1 ε L S ψ n-1,i ε i + c (n-1)1 r i=r n-1 ψ n-1,i ε i - r i=2 λ n-1,i ε i -c (n-1)1 r i=p n-2 λ n-2,i ε i Ξ n-1 = r i=2 L f λ n-1,i + 1 ε L S λ n-1,i ε i + 2 c (n-1)2 r i=r n-1 ψ n-1,i ε i - r i=1 ε i φ i -ε r+1 R ε -2 c (n-1)2 r i=p n-2 λ n-2,i ε i in which L f ψ j,i := ∂ψ j,i (w, x) ∂x f (x), L S ψ j,i := ∂ψ j,i (w, x) ∂w S , L f λ j,i := ∂λ j,i (w, x) ∂x f (x), L S λ j,i := ∂λ j,i (w, x) ∂w Sw.
The idea now is to iteratively select the functions ψ j,i+1 (•, •), λ j,i+1 (•, •) to annihilate, in the previous expressions the terms in ε of order i, with i = 0, . . . , r -1, for j = 1, . . . , n. We start by considering the term of order 0 in ε in the expression of E 1 and Ξ 1 which are annihilated by taking

ψ 1,1 (w, x) = c 11 P S -1 w , λ 1,1 (w, x) = 2 c 12 P S -1 w . (3.33)
We observer that ψ 1,1 (w, x), λ 1,1 (w, x), are polynomials in w of order 1 with constant coefficients. Since r j = p j = j for j = 1, . . . , υ, having fixed the terms ψ 1,1 and λ 1,1 it is possible, iteratively, to select all the functions ψ j,j (w, x) and λ j,j (w, x) for j = 2, . . . , υ -1 to annihilate the terms in ε of order j -1 in E j and Ξ j by solving the following PDEs -L S ψ j,j = c j1 λ j-1,j-1

-L S λ j,j = 2 c j2 λ j-1,j-1
Using the fact that S is invertible the previous PDEs admit a solution which is polynomial in w of order 1 with constant coefficients. With this we have fixed the terms ψ j,j and λ j,j for j = 1, . . . , υ -1. Once the terms above have been fixed, it is possible to repeat the selection process for i = 1, . . . , υ -1 from the top in order to select the functions ψ j,j+i and λ j,j+i for j = 1, . . . , υ -i -1, to annihilate the terms in ε of order j + i -1 in E j and Ξ j , by solving the following PDEs

-L S ψ 1,1+i = c 11 ψ 1,i -λ 1,i -L S λ 1,1+i = 2 c 12 ψ 1,i -λ 2,i and -L S ψ j,j+i = c j1 (ψ j,j+i-1 -λ j-1,j+i-1 ) -λ j,j+i-1 -L S λ j,j+i = 2 c j2 (ψ j,j+i-1 -λ j-1,j+i-1 ) -λ j+1,j+i-1
for j = 2, . . . , υ -i -1. Again, using the fact that S is invertible the previous PDEs admit a solution which is polynomial in w of order 1 with constant coefficients. With this we have assigned all the terms ψ j,k and λ j,k for j = 1, . . . , υ -1 and k = j, . . . , υ.

Now let us consider the terms E j and Ξ j for j = υ + 1, . . . , n -1 by starting from the bottom. Observer that φ 1 (•, •) only depends on ψ 1,1 . Hence we can assume that φ 1 (w, x) is a polynomial in w of order 1 with coefficients dependent on x and vanishing when w = 0. As a consequence the terms in ε of order 1 in Ξ n-1 and the term in ε of order 2 in E n-1 are annihilated if λ n-1,2 and ψ n-1,3 can be chosen such that

L S ψ n-1,3 = λ n-1,2 L S λ n-1,2 = φ 1 (3.34)
Using the fact that S is invertible and function φ 1 is a polynomial in w the previous PDEs admit a solution which is polynomial of order 1 in w with coefficients which depends on x. Recall that for i = υ+1, . . . , n-1 we have p i > p i+1 . As a consequence, once the term λ n-1,2 has been fixed we can proceed iteratively in order to select (from the bottom) all the functions ψ j,r j (w, x) and λ j,p j (w, x) for j = υ + 1, . . . , n -2 by annihilating the terms in ε of order r j -1 in E j and of order p j -1 in Ξ j by solving the following PDEs L S ψ j,r j = λ j,p j L S λ j,p j = λ j+1,p j+1

Using the fact that S is invertible the previous PDEs admit a solution which is polynomial of order 1 in w with coefficients which depends on x. With this we have fixed all the terms ψ j,r j and λ j,p j for j = υ + 1, . . . , n -1. Now consider the term of order 3 in ε in Ξ n-1 and of order 4 in in E n-1 . We observe that the function φ 2 depends only on the terms ψ j,i , j = 1, . . . , n -1, and λ n-1,i with powers of ε smaller (or equal) to two, namely i ≤ 2, and therefore on the functions ψ 1,1 , ψ 1,2 , ψ 2,2 and λ n-1,2 which have already been fixed. More in general the term φ i depends on the terms ψ j,k , with j ∈ [1, n -1] such that r j ≤ i and λ n-1,k , with k ≤ i. As a consequence, we can proceed iteratively for i = 1, . . . , υ -2 from the bottom, in order to select all the functions ψ j,r j +i (w, x) and λ j,p j +i (w, x) for j = υ + i, . . . , n -1 by annihilating the terms in ε of order r j + i -1 in E j and of order p j + i -1 in Ξ j by solving the following PDEs

L S ψ n-1,r j +i = λ n-1,p j +i -c (n-1)1 λ n-2,p j +i-1 L S λ n-1,p j +i = φ i+1 (x) -2 c (n-1)2 λ n-2,p j +i-1
for j = n -1 and L S ψ j,r j +i = λ j,p j +i -c j1 λ j-1,p j +i-1 L S λ j,p j +i = λ j+1,p j+1 +i-1 -2 c j2 λ j-1,p j +i-1 for j = υ + i, . . . , n -2, and where we considered

λ j,i = 0 if i < p j .
Using the fact that S is invertible and function φ i is a polynomial in w of order i the previous PDEs admit a solution which is polynomial in w with coefficients which depends on x. With this we have fixed all the terms ψ j,i and λ j,k for j = υ + 1, . . . , n -1, i = r j , . . . , υ, k = p j , . . . , υ.

As far as the terms Ξ υ and E υ are concerned, we have that its structure changes whether υ is even or odd. Anyhow, by letting λ j,i = 0 if i < p j , consider the terms in ε of order υ -1. We can select the functions ψ υ,rυ and λ υ,pυ by solving the following PDEs

-L S ψ υ,υ = -c υ1 λ υ-1,υ-1 -L S λ υ,υ = -2 c υ2 λ υ-1,υ-1 -λ υ+1,p υ+1
Since the term λ υ+1,p υ+1 has been already fixed by the previous procedure, by using the fact that S is invertible and functions λ υ-1,υ-1 and λ υ+1,p υ+1 are polynomial in w, the previous PDEs admit a solution which is polynomial of in w with coefficients which may depends on x. With this we have finally assigned all the terms ψ j,i , λ j,i for j = 1, . . . , n -1 and i = 1, . . . , υ. The forthcoming scheme can be helpful in understanding how the recursive procedure is held. Note that if n is odd we get

Ψ 1 = ε + ε 2 + ε 3 + . . . + ε υ-1 + ε υ + . . . Λ 1 = ε + ε 2 + ε 3 + . . . + ε υ-1 + ε υ + . . . Ψ 2 = ε 2 + ε 3 + . . . + ε υ-1 + ε υ + . . . Λ 2 = ε 2 + ε 3 + . . . + ε υ-1 + ε υ + . . . . . . . . . Ψ υ-1 = ε υ-1 + ε υ + . . . Λ υ-1 = ε υ-1 + ε υ + . . . Ψ υ = ε υ + . . . Λ υ = ε υ + . . . Ψ υ+1 = ε υ Λ υ+1 = ε υ-1 + ε υ + . . . . . . . . . Ψ n-1 = ε 3 + . . . + ε υ-1 + ε υ + . . . Λ n-1 = ε 2 + ε 3 + . . . + ε υ-1 + ε υ + . . .
where denotes a term ψ j,i or λ j,i , whereas in case n is even, we have

Ψ υ-1 = ε υ-1 + ε υ + ε υ+1 + . . . Λ υ-1 = ε υ-1 + ε υ + ε υ+1 + . . . Ψ υ = ε υ + ε υ+1 + . . . Λ υ = ε υ + ε υ+1 + . . . Ψ υ+1 = ε υ+1 + . . . Λ υ+1 = ε υ + ε υ+1 + . . .
Once the terms ψ j,i , λ j,i for j = 1, . . . , n -1 and i = 1, . . . , υ, have been assigned, the iterative procedure may be lead similarly in order to select all the remaining terms ψ j,i+1 , λ j,i+1 for j = 1, . . . , n -1 and i = υ, . . . , r by annihilating at each step the terms in ε of order i which depends on the terms ψ j,i , λ j,i which have already been fixed in the previous iterative process.

Finally, by embedding those functions in the expressions of

E j (•, •), Ξ j (•, •), j = 1, . . . , n -1 and bearing in mind the definition of R ε (•, •), it is readily seen that E 1 (w, x) = ε r [L f ψ 1,r + c 11 ψ 1,r -λ 1,r ] E j (w, x) = ε r [L f ψ j,r + c j1 ψ j,r -λ j,r -c j1 λ j-1,r ] for j = 2, . . . , n -1 and Ξ 1 (w, x) = ε r [L f λ 1,r + 2 c 12 ψ 1,r -λ 2,r ] . . . Ξ j (w, x) = ε r [L f λ j,r + 2 c j2 ψ j,r -λ j+1,r -2 c j2 λ j-1,r ] . . . Ξ n-1 (w, x) = ε r [L f λ n-1,r + 2 c (n-1)2 ψ n-1,r -2 c (n-1)2 λ n-2,r -φ r ] +ε r+1 |w| Rε (w, x)
where Rε (•, •) is an appropriately defined continuous function. By using the previous expressions and the fact that ψ j,i (0, x) = 0, λ j,i (0, x) = 0 for any j = 1, . . . , n -1 and i = 1, . . . , r, the first part of the lemma immediately follows. Now, by using (3.33), we have for j = 1

ψ 1,1 (w, x) := c 11 P S -1 w = ψ1,1 (w, x) ,
For j = 2, . . . , m -1 we have p j-1 < p j . As a consequence the term ψ j,r j (w, x) is computed a solution of of the PDE

L S ψ j,r j := c j1 λ j-1,p j-1
namely it depends on the λ j-1,p j-1 . Again, by using (3.33), we have that λ 1,1 is choosen as λ 1,1 (w, x) = 2 c 12 P S -1 w := 2 λ1,1 (w, x) .

For j = 2, . . . , m -1, since p j-1 < p j+1 , the λ j,p j are computed as solution of

L S λ j,p j = 2 c j2 λ j,p j-1
With this in mind, we can always select functions ψj,j (w, x) and λj,j (w, x) such that

ψ j,r j (w, x) := 2j-1 ψj,r j (w, x) λ j,p j (w, x) := 2j λj,p j (w, x) j = 1, . . . , m -1.
Now let start from the bottom by computing λ n-1,2 and ψ j,r j for j = m + 1, . . . , n -1. Observe that λ n-1,2 is chosen as solution of (3.34). As a consequence, since φ 1 depends only on ψ 1,1 which is a function in , we can deduce that also λ n-1,2 can be written as λ n-1,2 (w, x) := λn-1,2 (w, x) .

Also, for j = m + 1 . . . , n -1 we have that p j < p j-1 . As a consequence the functions ψ j,r j are chosen as solution of L S ψ j,r j = λ j,p j Therefore we need to compute before the terms λ j,p j . For j = n -1, λ n-1,2 is a term in . For j = m + 1, . . . , n -2 we can compute λ j,p j as solution of L S λ j,p j = λ j+1,p j+1 because p j+1 < p j-1 . As a consequence the λ j,p j are all functions of λ n-1,2 which is a term in . As a consequence we have

ψ j,r j (w, x) = ψj,r j (w, x) λ j,p j (w, x) = λj,p j (w, x) j = m + 1, . . . , n -1
for some ψj,r j (w, x) and λj,p j (w, x). It remains to fix the terms ψ m,rm , λ m,pm .

If n is odd we have r 2 m-1 < r 2 m . As a consequence ψ m can be computed as solution of

L S ψ m,rm = c m1 λ m-1,p m-1
But being λ m-1,p m-1 a term in 2(m-1) we get that ψ m,rm (x, w) := 2m-1 ψm,rm (x, w)

for some ψm,rm (x, w).

If n is even we have p m+1 < p m = p m-1 . As a consequence λ m,pm is chosen as solution of

L S λ m,pm = λ m+1,p m+1
resulting in a term in , whereas ψ m,rm is chosen as solution of

L S ψ m,rm = c m1 λ m-1,p m-1 + λ m,pm
But since λ m,pm is a term in whereas λ m-1,p m-1 is a term in 2(m-1) we get again

ψ m,rm (x, w) := 2m-1 ψm,rm (x, w)
for some ψm,rm (x, w). This concludes the proof.

The previous lemma is instrumental to the proof of the next proposition which is the main result of this section.

Proposition 3.1. Consider system (3.29) with x(t) ∈ X and w(t) ∈ W for all t ≥ 0 with X and W compact bounded sets. Let the function ϕ s (•) embedded in ∆ ϕ (•, •) be chosen so that it is locally Lipschitz and it agrees with ϕ(•) on a set X δ ⊃ X. Let be fixed so that system (3.24) is ISS with respect to the input ν. Then, there exists a ε ( ) > 0 such that for all positive ε ≤ ε ( ) the following holds

lim t→∞ sup |e j (t)| ≤ µ ε j 2j-1 w(•) ∞ j = 1, . . . , m lim t→∞ sup |e j (t)| ≤ µ ε n-j+2 w(•) ∞ j = m + 1, . . . , n
with µ a positive constant.

Proof. Let consider the change of variables

ξ → η := ξ -Ψ ε (w, x) ,
with Ψ ε (•, •) introduced in the previous lemma with an r > 1 and note that, by bearing in mind the definition of E ε (•, •),

Ψε = F Ψ ε + B∆ ϕ (Ψ ε , x) + GP w + E ε (w, x) .
Furthermore, note that

∆ ϕ ( ξ, x) -∆ ϕ (Ψ ε (w, x), x) = ∆ ϕ (η + Ψ ε (w, x), x) -∆ ϕ (Ψ ε (w, x), x) = ϕ s (η + Ψ ε (w, x) + x) -ϕ(x) -(ϕ s (Ψ ε (w, x) + x) -ϕ(x)) = ϕ s (η + Ψ ε (w, x) + x) -ϕ s (Ψ ε (w, x) + x) = ∆ ϕ (η, Ψ ε + x) .
Note that there exists a ε 1 ( ) ∈ (0, 1] such that for all positive (the value of ε depends, besides other, on the choice of the set X δ on which ϕ s (•) coincides with ϕ(

•)) ε ≤ ε 1 ( ) ∆ ϕ (0, Ψ ε (w, x) + x) = 0 ∀ (w, x) ∈ W × X .
By the previous facts the error dynamics in the new coordinates can be easily com-

puted as η = F η + B∆ ϕ (η, Ψ ε (w, x) + x) + E ε (w, x) . (3.35)
Since the Lipschitz constant of ∆ ϕ (•, •) is not affected by the value of the arguments, the same values of that make system (3.24) ISS with respect to the input ν(t) make also system (3.35) ISS with respect to the input E ε (•, •). In particular, there exists a positive constant µ 0 such that

lim t→∞ sup |η(t)| = lim t→∞ sup | ξ(t) -Ψ ε (w(t), x(t))| ≤ µ 0 lim t→∞ sup |E ε (w(t), x(t))| ≤ µ 0 ∈ E ε (w(•), x(•)) ∞
Using the fact that, for any r ≥ m, E ε (w, x) is a term in ε r , it follows that there exists a positive constant µ 1 such that

lim t→∞ sup |η(t)| ≤ µ 1 ε r w(•) ∞ .
Consider now the the expressions of the components

Ψ j (•, •), j = 1, . . . , n -1 and Λ n-1 , of Ψ ε (•, •) introduced in Lemma 3.1.
It turns out that there exist a positive ε 2 ( ) ≤ ε 1 ( ) and a positive constant µ 2 such that

|Ψ j (w, x)| ≤ µ 2 ε j 2j-1 |w| j = 1, . . . , m, |Ψ j (w, x)| ≤ µ 2 ε |w| j = m + 1, . . . , n -1,
for all positive ε ≤ ε 2 ( ) and for all (w, x) ∈ W × X. From this, for all j = 1, . . . , m, we have lim

t→∞ sup |e j (t)| = lim t→∞ sup |η j (t) + Ψ j (w(t), x(t))| ≤ lim t→∞ sup |η j (t)| + Ψ j (w(•), x(•)) ∞ ≤ µ 1 ε r w(•) ∞ + µ 2 ε j 2j-1 w(•) ∞ for j = m + 1, . . . , n -1 lim t→∞ sup |e j (t)| = lim t→∞ sup |η j (t) + Ψ j (w(t), x(t))| ≤ lim t→∞ sup |η j (t)| + Ψ j (w(•), x(•)) ∞ ≤ µ 1 ε r w(•) ∞ + µ 2 ε r 1 j w(•) ∞ ≤ µ 1 ε r w(•) ∞ + µ 2 ε n-j+2 w(•) ∞
and finally for j = n we have

lim t→∞ sup |e n (t)| = lim t→∞ sup |η n (t) + Λ n-1 (w(t), x(t))| ≤ lim t→∞ sup |η n (t)| + Λ n-1 (w(•), x(•)) ∞ ≤ µ 1 ε r w(•) ∞ + µ 2 ε 2 w(•) ∞
by which the result follows by taking an appropriate ε ( ) ≤ ε 2 ( ) and µ.

Remark The same kind of noise analysis for the observer (3.2) in presence of measurement noise, still holds for the observer (3.11) if the saturation levels are chosen large enough. In particular, if asymptotically the saturations functions in (3.11) are no more acting (namely the effect of the noise is not too large) then we can apply off-the shelf all the arguments presented in this section where we showed the benefits related to the increase of the relative degree. Simulation results are given in the last section of this chapter.

Low-power tools in output regulation

The main criticisms that can be done to the high-gain design methodology for internal models introduced in Section 1.6.2 is the same mentioned above in the context of observation, namely the fact that the power of the high-gain parameter is raised up to the order of the internal model, with the latter than can be large to eventually have the friend and its time derivatives fulfilling the regression law said before. Motivated by this, in this section, we adapt the tools presented in Section 3.1 to develop a "low-power" methodology for the design of internal models. The content of this section is part of a book written in honour of Laurent Praly: [START_REF] Astolfi | Honour of Laurent Praly, chapter "Output regulation via low-power construction[END_REF].

Our main goal is to show that the "low-power" tools introduced in Section 3.1 can be successfully adopted in order to design the triplet (φ( 

φ(ξ) :=        φ 1 (ξ) φ 2 (ξ) . . . φ d-1 (ξ)        , Ψ :=        Ψ 1 Ψ 2 . . . Ψ d-1        , γ(ξ) := ξ 11 , (3.36) where ξ = col(ξ 1 , . . . , ξ d-1 ) ∈ R 2d-2 , ξ i = col(ξ i1 , ξ i2 ) ∈ R 2 ,
the functions φ i : R 2d-2 → R 2 , i = 1, . . . , d -1, are defined as

φ 1 (ξ) := ξ 12 ξ 22 , φ i (ξ) := ξ i2 + c i1 (ξ (i-1)2 -ξ i1 ) ξ (i+1)2 + 2 c i2 (ξ (i-1)2 -ξ i1 ) , (3.37) for i = 2, . . . , d -2, φ d-1 (ξ) := ξ (d-1)2 + c (d-1)1 (ξ (d-2)2 -ξ (d-1)1 ) φ(Γξ) + 2 c (d-1)2 (ξ (d-2)2 -ξ (d-1)1 ) (3.38)
in which

Γ := blkdiag 1 0 1 0 • • • 1 0 1 1 , (3.39) (c i1 , c i2 ), i = 1, . . . , d -1
, are coefficients to be appropriately chosen, and the vectors Ψ i , i = 1, . . . , d -1 are defined as

Ψ 1 := c 11 2 c 12 , Ψ i := 0 0 , i = 2, . . . , d -1 .
It will be shown that the previous choice of the triplet (φ(•), Ψ, γ(•)) makes the requirements (a) and (b') fulfilled provided that the coefficients (c i,1 , c i,2 ), i = 1, . . . , d -1, are appropriately chosen and is taken sufficiently large. As a matter of fact, it is not hard to see that with this choice the regulator (1.31) in the χ-coordinates (1.32) reads as a lowpower high-gain observer (3.2) driven by an the (disturbed) input c(w), as detailed in the proof of the forthcoming proposition in which we refer to the function τ e : W → R 2d-2 defined as out that the χ subsystem in (1.33) reads as

τ e (w) :=        τ e,1 (w) τ e,2 (w) . . . τ e,d-1 (w)        , τ e,i = τ e,i1 τ e,i2 := L i-1 s c(w) L i s c(w) , i = 1, . . . , d -1 .
χ1 = A χ 1 + N χ 2 + D 2 ( ) c 1 (c(w) + δ(w, z) -C χ 1 ) χi = A χ i + N χ i+1 + D 2 ( ) c i (B χ i-1 -C χ i ) , i = 2, . . . , d -2 χd-1 = A χ d-1 + B φ(Γχ) + D 2 ( ) c d-1 (B χ d-2 -C χ d-1 )
where

(A, B, C) is a triplet in prime form of dimension 2, c i = col(c i1 , c i2 ), D 2 ( ) = diag( , 2
), and N = diag(0, 1), and

δ(w, z) := q(w, z, 0) b(w, z, 0) -c(w) .
By recalling that c(w) satisfies (1.30), the previous system can be re-written in the form

χ1 = A χ 1 + N χ 2 + D 2 ( ) c 1 (y -C χ 1 ) χi = A χ i + N χ i+1 + D 2 ( ) c i (B χ i-1 -C χ i ) , i = 2, . . . , d -2 χd-1 = A χ d-1 + B φ(Γχ) + D 2 ( ) c d-1 (B χ d-2 -C χ d-1 ) (3.40) 
where the measured output y is generated by the system

ż = A d z + B d (ϕ(z) + v(w)) , y = C d z + δ(w, z) , z i (0) := L i-1 s c(w(0)) , i = 1, . . . , d ,
where z ∈ R d and (A d , B d , C d ) is a triplet in prime form of dimension d. The system (3.40) coincides with the low-power high-gain observer (3.2) written in the coordinates (3.6). As a consequence the Theorem 3.1 can be applied off the shelf to show the existence of constants µ 1 > 0, µ 2 > 0, r > 0 and > 0 such that

|χ i1 (t) -τ e,i1 (w(t))| ≤ µ 1 i-1 exp(-µ 2 t) + r i-1 |ν(w)| ∞ + i-1 |δ(w, z)| ∞ |χ i2 (t) -τ e,i2 (w(t))| ≤ µ 1 i exp(-µ 2 t) + r i |ν(w)| ∞ + i |δ(w, z)| ∞
for any > , and for all i = 1, . . . , n -1. The proof completes by using the fact that |δ(w, z)| ∞ = 0 and by using 

Simulation results

In this last section we show an example of application of the peaking-free low-power high-gain observer introduced in Section 3.3. We consider as example an uncertain forced harmonic oscillator described as

s + ω 2 s = u(t) , y = s + ν(t)
where ω is the unknown frequency, u(t) is an input belonging to an open bounded set U ⊂ R and assumed to be known, and y is the measured output. We suppose that the output may be affected by high-frequency measurement noise ν(t). The purpose is to estimate the state s, ṡ and the unknown frequency ω > 0 from the output y. This system can be described in the state space by

ż1 = z 2 ż2 = -z 3 z 1 + u ż3 = 0 y = z 1 + ν(t) (3.41) living in the open bounded subset of R 3 Z = (z 1 , z 2 , z 3 ) ∈ R × R × R : d 1 < z 2 1 + z 2 2 < d 2 , d 3 < z 3 < d 4
with 0 < d 1 < d 2 and 0 < d 3 < d 4 , forced by the input u ∈ U. In the state-space representation (3.41) z 1 coincides with s, z 2 with ṡ, and z 3 with ω 2 . By following the results in Astolfi et al. (2013b), we consider the mappings

ϕ 0 (z) := z 1 , ϕ 1 (z) := z 2 , ϕ 2 (z, v 0 ) := -z 1 z 3 + v 0 , ϕ 3 (z, v 1 ) := -z 2 z 3 + v 1 , and Φ 4 (z, v 0 , v 1 ) := col (ϕ 0 , ϕ 1 , ϕ 2 , ϕ 3 ) .
It turns out that the function

Ψ 4 : Φ 4 (Z × V) → Z defined as Ψ 4 (•) :=      ϕ 0 ϕ 1 (v 0 -ϕ 2 )ϕ 0 + (v 1 -ϕ 3 )ϕ 1 ϕ 2 0 + ϕ 2 1      is such that z = Ψ 4 (Φ 4 (z, v), v)
for any (z, v) ∈ Z × V, with v = (v 0 , v 1 ), and V = U × R. As a consequence we get that the system (3.41) can be immersed, via the mapping

T (z) := col (z 1 , z 2 , -z 1 z 3 , -z 2 z 3 )
into the following system in strict feedback form

ẋ1 = x 2 ẋ2 = x 3 + u ẋ3 = x 4 ẋ4 = -(x) x 3 + (x)u y = x 1 + ν(t) (3.42)
defined on R 4 and where the function : R 4 → R is defined as

(x) := x 1 x 3 + x 2 x 4 max{d 1 , x 2 1 + x 2 2 }
.

Numerical simulations can be used to verify that

x 1 (•) ∞ < 4 , x 2 (•) ∞ < 5.5 , x 3 (•) ∞ < 12 , x 4 (•) ∞ < 16 .
for any initial condition in the set Φ 4 (Z, U, 0) with d 1 = 0.5, d 2 = 2, d 3 = 0.5, d 4 = 3

and U = (-3, 3). By following prescriptions of Section 3.3 we implement the low-power peaking free high-gain observer (3.11) for the system (3.42) as follows

ẋ1 = η 1 + c 11 (y -x1 ) η1 = sat 3 (η 2 ) + u + 2 c 12 (y -x1 ) ẋ2 = η 2 + u + c 21 (sat 2 (η 1 ) -x2 ) η2 = sat 4 (η 3 ) + 2 c 22 (sat 2 (η 1 ) -x2 ) ẋ3 = η 3 + c 31 (sat 3 (η 2 ) -x3 ) η3 = sat 5 ( (x) (u -x3 )) + 2 c 32 (sat 3 (η 2 ) -x3 ) ẋ4 = sat 5 ( (x) (u -x3 )) + c 4 (sat 4 (η 3 ) -x4 ) ω = | (x)| (3.43)
The coefficients (c i1 , c i2 ), i = 1, . . . , 4 are chosen as in Table A.1 (see the case n = 4) and c 4 = c 31 and the saturations level are fixed to r 1 = 5, r 2 = 6, r 3 = 14, r 4 = 18, r 5 = 55. 117

Simulation results

We compared the observer (3.43) with a standard high-gain observer designed as

ẋ1 = x2 + c 1 (y -x1 ) ẋ2 = x3 + u + 2 c 2 (y -x1 ) ẋ3 = x4 + 3 c 3 (y -x1 ) ẋ4 = sat 5 ( (x)(u -x3 )) + 4 c 4 (y -x1 ) ω = | (x)| (3.44)
with c 1 = 5.99, c 2 = 13.1778, c 3 = 12.6034, c 4 = 4.4156 so that the roots of

λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 are in (-1, -1.33, -1.66, -2).
In the simulation the initial conditions of the system (3.41) are (s(0), ṡ(0)) = (1, 0)

and ω = 1.58 (namely z 3 = 2.5). The the time-varying signal u(t) is generated as

p + p + 20p 3 = 0 , (p(0), ṗ(0)) = (1, 0), u(t) = ṗ(t) ,
and the initial conditions of the two observers coincide with the origin. First we simulated the nominal behaviours of the two observer in absence of meausrement noise, namely ν(t) = 0. The Table 3.1 shows the maximum peaking values of the state (x, η)

of the low-power peaking free high-gain observer (3.43) and the time needed to convergence to an error sufficiently small, i.e. the time T such that

|s(t) -x1 (t)| 2 + | ṡ(t) -x2 (t)| 2 < ∀ t ≥ T ,
for different values of . The Table 3.1 shows the maximum peaking values of the state x of the standard high-gain observer (3.44) and the time needed to convergence to an error sufficiently small for the same values of . Then we simulated the behaviour of the two observers when the measurement noise is chosen as ν(t) = 0.05 sin(200t) and the high-gain parameter is fixed to = 10. The Figure 3.4 and the Table 3.3 compare the the low-power peaking free high-gain observer (3.43) and the standard high-gain observer (3.44) showing the transient and the asymptotic norm of the errors.

From the tables it can be seen that despite the eigenvalues of the low-power high-gain observer (3.43) and the standard high-gain observer (3.44) are in the same range (namely between -1 and -2) the rate of convergence of the observer (3.44) is faster when the gain is not to high. This phenomenon is caused by the largest dimension of the low-power construction. On the contrary, when the high-gain parameter is very large, the effect of the saturations helps in achieving faster convergence. With the novel observer we obtain numerical advantages (we do not have to implement a term 4 but only 2 ), the peaking phenomenon is completely overcome and it can be noticed a remarkable improvement of the sensitivity to high-frequency measurement noise.

Low-power peaking-free high-gain observer Low-power peaking free Standard high-gain observer high-gain observer

x1 (•) -x 1 (•) a = 0.016 x1 (•) -x 1 (•) a = 0.016 x2 (•) -x 2 (•) a = 0.024 x2 (•) -x 2 (•) a = 0.360 ω(•) -ω a = 0.034 ω(•) -ω a = 2.406
Table 3.3: Comparison between the behaviours of low-power peaking-free high-gain observer (3.43) and the standard high-gain observer (3.44) with = 10 and measurement noise chosen as ν(t) = 0.05 sin(200t). 

0 1 2 3 -1 0 1 a) 0 1 2 -6 -4 -2 0 2 b) 0 1 2 3 -6 -4 -2 0 2 c) 0 1 2 -20 -10 0 

Conclusion

T he first part of the dissertation has been devoted to the design of nonlinear observers which relies on high-gain techniques. The contribution of this work is twofold: on one hand the development of techniques which allow the design of a high-gain observer in the original coordinates; on the other hand the introduction of a new design methodology of fast estimation based on dynamic extension and that allows a "low-power" implementation.

Chapter 2 is mainly devoted to the design of high-gain observers in the original coordinates. This approach is particularly useful in those contexts in which the computation of the triangular coordinates (feedback form), in which standard high-gain observers may be applied, is not trivial. Though these coordinates are guaranteed to exist under an observability assumption, the computation of this observability form may be extremely complicated. The design of the observer in the original coordinates is made possible by modifying its dynamics so that its trajectories remain in some desired compact set. If the trajectories of the observed system remain in the same compact set, asymptotic fast estimation is achieved. The main restriction of the proposed approach is a convexity assumption which is necessary if we want to preserve the high-gain paradigm. The same technique is then applied to multi-input multi-output nonlinear systems. A novel set of sufficient conditions for the existence of an observer in the original coordinates is given.

With respect to other conditions studied in literature, the proposed ones may be verified in the original coordinates and the computation of the inverse of a nonlinear mapping is not needed.

In Chapter 3 a novel low-power methodology for the design of high-gain observers is introduced. The main motivations of the new structure is that of overcoming the drawbacks which make questionable the use of high-gain observers in practical applications. The new class of low-power high-gain observers may be applied to all those contexts where standard high-gain observers apply. They can be used for the estimation of systems in feedback form and they are characterized by having a high-gain term which is powered up to two regardless the dimension of the system, introducing evident numerical benefits in the implementation. By using dynamic extension and saturations it is possible to design an exponential tunable convergent observer which guarantees the same performances of the standard high-gain observer, and moreover prevents the peaking phenomenon, beside the aforementioned numerical advantages. Furthermore, with respect to high-gain observers, the relative degree between the measure and the estimates is augmented thus reflecting in better sensitivity properties in presence of high-frequency measurement noise. The main drawback of the new class of observer is that of having a dimension which is larger than the system dimension. An application to the output regulation framework by means of high-gain tools is proposed.

A full general framework for the novel class of low-power high-gain observers has been developed. Further possible improvements in this direction are the implementation of an observer in the original coordinates with a low-power implementation, or the implementation of an adaptive low-power high-gain observer (for instance when the Lipschitz constant of the nonlinear functions are unknown).

Finally, two novel analysis tools are proposed. A new set of sufficient conditions under which a single-input single-output nonlinear systems can be put in strict-feedback coordinates is proposed (see Section 2.1). In the new coordinates the systems is characterized by being affine with respect to the derivative of the input. This transformations make easier the design of the observer and can be applied when the derivative of the control input is known (for instance, when a step of backstepping is made). The second analysis tool introduced in this work is the analysis of the steady-state behaviour of the observer in presence of high-frequency measurement noise. This methodology allows to catch the low-pass filter properties of the observer that cannot be shown by a H ∞ analysis. The novel analysis is successfully applied to standard high-gain observers (Section 2.4) and to the new class of low-power high-gain observers (Section 3.4).

to generate inputs corresponding to the trajectories of the system, but also a number of higher order nonlinear deformations. For example, in the case of a cubic nonlinearity with unknown coefficient and sinusoidal reference output, the internal model must generate the sinusoid in question and its third harmonic. In particular Huang and Lin, appealing to concept of "regulation of order k" (namely, regulation up to a steady-state error which is infinitesimal of order k with respect to the amplitude of the disturbance input) introduced in an earlier paper [START_REF] Huang | An approximation method for the nonlinear servomechanism problems[END_REF], provided in Huang and Lin (1994b) a methodology for the design of a controller which, regardless of small parameter perturbations, achieves regulation of order k. This methodology was proven [START_REF] Huang | Internal model principle and robust control of nonlinear systems[END_REF] to yield exact regulation, regardless of small parameter variations, for some relevant classes of nonlinear systems, by designing an internal model which generates all the exogenous inputs as well all higher harmonics, up to order k. By denoting the "friend" as the right steady-state input which makes the regulated output constantly equal to zero, Delli [START_REF] Priscoli | Robust tracking for polynomial plants[END_REF] arrived at the similar conclusion that structurally stable regulation is possible if the family of all possible friends (which depends on a certain set of plant-parameters) can be seen as a subset of the set of all possible solutions of a fixed ordinary differential equation. More details can be found in [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF] where a survey on the problem is given.

Inspired by the design and analysis philosophy recently proposed in [START_REF] Poulain | Robust asymptotic stabilization of nonlinear systems by state feedback[END_REF], we propose a novel method to solve the problem of structurally robust output regulation in presence of periodic disturbances. We show that the proposed methodology is robust in the sense of [START_REF] Francis | The internal model principle of control theory[END_REF], namely (asymptotic/approximate) output regulation is achieved in presence of uncertainties or disturbances, as long as the resulting closed-loop system has bounded trajectories. The result is based on the property that a nonlinear ISS (Input-to-State Stable) system driven by a periodic input admits periodic solutions of the same period (see [START_REF] Agrachev | Nonlinear and Optimal Control Theory, chapter "Input to state stability: Basic concepts and results[END_REF]) and the analysis is strongly driven by Fourier analysis.

This chapter is organized as follows. In Section 4.1 we give some highlights on the linear robust output regulation problem. A constructive design based on forwarding techniques is given. The linear case is instrumental to the main results of the subsequent sections where the same forwarding philosophy is applied to nonlinear systems and in particular to the class of input-affine multi-input multi-output (possibly nonsquare) nonlinear systems. After introducing the main ideas (Section 4.2) we deal with the design of the internal model (Section 4.3) and the stabilizer (Section 4.4) and we

show the main results on structurally robust output regulation. The results given in this chapter hold in case of small-disturbances.

Robust output regulation for linear systems via forwarding

The problem of output regulation in the linear framework has been completely solved in the 70's in the celebrated work "The internal model principle of control theory" of [START_REF] Francis | The internal model principle of control theory[END_REF]. In the first part of this section, we make a review of some of the most relevant facts. The presentation is strongly inspired by [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF], Chapter 1) and (Isidori et al., 2003, Sections 1.3, 1.4). Then, in the second part of this section we provide a constructive solution for the robust output regulation problem based on forwarding techniques with a certain number of technical lemmas that, as far as we know, are novel in the literature of linear output regulation. for every initial condition (x(0), ξ(0), w(0)).

The linear framework

The problem of robust output regulation for linear plants subject to parameter uncertainties can be setted in the following framework: the set of matrices {A, B, C, P, Q} which characterize (4.1) can be viewed as an element of a space of parameters

P = R n×n × R n×m × R p×n × R n×r × R p×r .
As a consequence, uncertainties on the values of these parameters can be simply expressed by allowing the set of uncertain parameters { Ã, B, C, P , Q} to range on a given neighbourhood P of a fixed element {A, B, C, P, Q} of P. In this set-up, we refer to the problem of robust output regulation as the problem of finding a feedback law of the form The problem of robust output regulation can be solved under a certain number of assumptions, some of which are trivially necessary and some of which can be proven to be necessary if certain additional design goals are to to be obtained.

Assumption 4.1. The pair (A, B) is stabilizable and the pair (C, A) is detectable.

This is a very first well-known necessary and sufficient conditions for the existence of matrices F, G, H such that the closed-loop matrix

J = A BH GC F
has all eigenvalues with negative real part. Thus, this is a necessary condition for the fulfilment of requirement (a) of the output regulation problem and need not to be discussed further.

Assumption 4.2. The exosystem (4.2) is neutrally stable.

We refer to neutral stability as the fact that all eigenvalues of S have zero real part and multiplicity one in the minimal polynomial. As a consequence, in suitable coordinates, S can be always be expressed as a skew-symmetric matrix. If this assumption holds, all trajectories of the exosystem (4.2) are bounded in backward and forward time and none of them decays to zero as t → ∞. Boundedness of the trajectories of w guarantees that, if requirement (a) of the design problem is fulfilled, then, for any (x(0), ξ(0), w(0))

the trajectories of the forced closed-loop system (4.4) are bounded, since x(t), ξ(t) can be viewed as the response of an asymptotically stable linear system to a bounded input. The non-existence of trajectories of (4.2) which decay to zero as t → ∞ on the other hand, singles-out non-interesting trajectories w(t) for which the fulfilment of requirement (b) would be trivially implied by the fulfilment of requirement (a).

As a very first trivial result we have the forthcoming lemma which provides a basic necessary condition for the existence of solutions to the output regulation problem.

Lemma 4.1 [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF], Corollary 1.5). Consider the plant (4.1) with exosystem (4.2) and suppose Assumption 4.2 holds. There exists a controller which solves the problem of output regulation only if there exists matrices Π and Ψ satisfying

ΠS = AΠ + BΨ + P 0 = CΠ + Q (4.5)
We usually refer to (4.5) as the regulator equations. In this context x = Πw represents the right-steady state on which the regulated output is zero, whereas u = Ψw, usually referred as the "friend", represents the right steady-state of the input.

As a consequence of Lemma 4.1, the regulator equations (4.5) must have a solution for any perturbed set of parameters { A, B, C, P , Q} in P. In particular, the equations

ΠS = AΠ + BΨ + P 0 = CΠ + Q (4.6)
must have a solution for every P , Q such that {A, B, C, P , Q} is in P. But since the set of matrices {A, B, C, P, Q} is an interior point of P and (4.6) are linear equations, it follows the that the equations in question must have a solution for all

( P , Q) ∈ R n×r × R p×r .
This observation lends itself to the characterization of a basic necessary condition for the existence of a solution to the robust output regulation problem. To this end, it suffices to recall the following important result (see, for instance, [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF]) about the linear matrix equations of the form (4.6).

Lemma 4.2 [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF], Proposition 1.6). The linear equations (4.6) have a solu-tion Π, Ψ for all P , Q if and only if the matrix

A -λI B C 0 (4.7)
has independent rows for each λ which is an eigenvalue of S.

Motivated by this result, it is completely natural to add the following new assumption, usually known as non-resonance condition.

Assumption 4.3. The matrix A -λI B C 0 has independent rows for each λ which is an eigenvalue of S.

We remark that the previous assumption is asking that none of the eigenvalues of S the exosystem (4.2) is a transmission zero of the unforced open-loop system (4.1), i.e.

ẋ = Ax + Bu e = Cx
It has been proved (see [START_REF] Francis | The internal model principle of control theory[END_REF], [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF]) that under the previous assumptions the robust output regulation problem does have a solution. In the forthcoming section we provide a constructive design based on forwarding techniques.

The internal model principle and forwarding design

The solution to the robust output regulation problem leads to the celebrated internal model principle, claiming that the controller (4.3) solving the problem necessarily embeds suitable copies of the exosystem. In rough words the recipe for designing the controller follows the following two steps: first add p copies of the exosystem processing the errors, one for each error e, which represent the internal model of the exosystem and then stabilize the resulting cascade system with w = 0. In more precise term, the dynamic regulator is consisting of two parts, as shown in Figure 4.1:

(1) an internal model unit which processes the regulated output e;

(2) a stabilizer unit which stabilizes the cascade system plantinternal model unit. The internal model unit can be designed as η = Φη + Γe with η ∈ R r×p , where (Φ, Γ) is a controllable pair and Φ is a "copy" of the matrix S. For instance we can select

Φ =          0 I p 0 • • • 0 0 0 I p 0 . . . . . . . . . . . . 0 0 • • • I p -s 0 I p -s 1 I p -s 2 I p • • • -s r-1 I p          (r×p)×(r×p) Γ =        I p 0 . . . 0        (r×p)×p
where the real numbers s 0 , . . . , s r-1 denote the coefficients of the minimal polynomial of the matrix S.

Once and then implement the feedback law u = Kx + Lη.

Though the design of the matrices K and L can be done by a pole -assignment, we are interested here into a methodology which may be extended to the nonlinear framework.

For this, notice that system (4.8) is in feedforward form. As a consequence a possible strategy consists in adopting forwarding technique to design the stabilizing unit. For this we note that if A is not Hurwitz, under Assumption 4.1 it is possible to design a preliminary state feedback u = Kx + v with K chosen so that the matrix Ā = (A + BK)

is Hurwitz. Then, in place of (4.8), we consider the extended system

ẋ = Āx + Bv η = Φx + ΓCx
Recall that stabilizability and detectability are preserved by a state-feedback. Furthermore, a state-feedback does not change the zero-transmission of a system. We conclude that, under Assumptions 4.1 and 4.3, the pair ( Ā, B) is stabilizable, the pair (C, Ā) is detectable, and the non-resonance condition of the triplet ( Ā, B, C, ) holds. As a consequence, without loss of generality, in the following we assume that the matrix A is Hurwitz.

Now let the matrix M be defined as the solution of M A = ΦM + ΓC (4.9)

Note that since the intersection of the spectrum of A (which is Hurwitz) and Φ (which is neutrally stable) is empty, the matrix M is uniquely defined. Now consider the Lyapunov

function V = x Rx + (η -M x) T (η -M x)
where the matrices R = R > 0, T = T > 0 are solutions of

RA + A R = -I , T Φ + Φ T = 0 .
Note that the matrix Φ can always be expressed in suitable coordinates as a skew-symmetric matrix. As a consequence, if Φ is a skew-matrix, T can be always chosen as the identity Now let -λ be an eigenvector of Φ and suppose the pair (B M , Φ) is not observable, namely there exists v satisfying

Φv = -λv , B M v = 0 ,
and therefore v Φ = λv . Since Φ and S have the same spectrum, there exists a w = 0 satisfying

Sw = λw .
As a consequence, by pre-multiplying (4.12) by v and by post-multiplying (4.12) by w we get

v (M Π)Sw = v Φ(M Π)w + v (M P -ΓQ + M BΨ)w v (M Π)λw = λv (M Π)w + v (M P -ΓQ + M BΨ)w (4.13)
and therefore

v (M P -ΓQ + M BΨ)w = 0 =⇒ v (M P -ΓQ)w = 0 . which is j,k, v j M j,k P k, w - j,k, v j Γ j,k Q k, w = 0 .
By differentiating the previous equality with respect to P , and to Q k, we obtain

∂ ∂P ,   j,k, v j M j,k P k, w - j,k, v j Γ j,k Q k, w   = j,k, v j M j,k w = 0 , ∀ k, ∂ ∂Q k,   j,k, v j M j,k P k, w - j,k, v j Γ j,k Q k, w   = j,k, v j Γ j,k w = 0 , ∀ k,
Now let be such that w = 0. From the previous expressions we get

v M = 0 , v Γ = 0 .
By using the fact that v Φ = λv we have

v Γ ΦΓ • • • Φ (r×p)-1 Γ = v Γ λΓ • • • λ (r×p)-1 Γ = 0
which contradicts the fact that the pair (Φ, Γ) is controllable.

The interest of the previous lemma is that we have an alternative condition for the existence of the regulator equations for which we do not need to check the non-resonance conditions (Assumption 4.3). Moreover, note that, from a computational point of view, it is simpler to check the condition in Lemma 4.5 than Assumption 4.3. Finally, by collecting all the previous results we have the following theorem. 

The issue of structural robustness in the nonlinear case

As shown in Section 4.1, the solution of the robust output regulation problem in the linear framework is made of two main ingredients (see also Figure 4.1):

(1) an internal model unit which processes the regulated output e;

(2) a stabilizer unit which stabilizes the cascade system plant-internal model unit.

In this regard, we want to point out a substantial difference in the internal model unit design between the approach used in the linear framework and the one commonly adopted in the nonlinear framework. In the linear case (see Section 4.1) the internal model is chosen as a copy of the exosystem thus resulting not "model-based", i.e. its design depends on the matrix S but not on the matrices {A, B, C, P, Q} characterizing the plant. On the contrary, in most of the solutions proposed for nonlinear systems (see, among others, [START_REF] Isidori | Robust Autonomous Guidance -An Internal Model Approach[END_REF], [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF], [START_REF] Seshagiri | Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators[END_REF], [START_REF] Memon | Output regulation of nonlinear systems using conditional servocompensators[END_REF] and more recently Astolfi et al.

( 2017)) the internal model unit plays the role of an observer for the "friend", i.e. the correct steady state of the input which makes the error identically zero. As a consequence, the design of the internal mode unit in the nonlinear case results is model-dependent.

This fact reflects in three main considerations.

The first aspect regards the issue of robustness. As commonly explained (see (Isidori, 1995, Chapter 8.5)), by considering the uncertain parameters as part of the state of the exosystem, we can gain robustness with respect to constant disturbances, providing parameter robustness; nevertheless when model errors (namely in the modelled functions) are present we can not guarantee any more the asymptotic properties of the regulator, thus loosing in robustness. We refer to this second property as structural robustness, to stress the robustness property of the regulator with respect to errors model that can be non-constant.

The second consideration regards the "circular loop" which may happen between the internal model design and the stabilizer design, namely the issue of being able to design the two units independently and robustly, such that minimum perturbations of the plant model do not destroy the stability properties of the closed-loop system. In this respect it is not completely clear how to break this loop in which the friend to be observed may depend on the stabilizer design and the internal model unit design may depend on the stabilizer (see Isidori and Marconi (2012)).

Finally, we want to stress that most of the proposed techniques in the literature relies on a certain number of additional assumptions which are not necessary in the linear framework: relative degree and normal form which are not affected by the presence of the exogenous disturbance and minimum-phaseness (i.e. zero-dynamics which are asymptotically stable) are commonly assumed (see [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF], [START_REF] Seshagiri | Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators[END_REF], [START_REF] Memon | Output regulation of nonlinear systems using conditional servocompensators[END_REF], [START_REF] Li | On the steady-state error of a nonlinear regulator[END_REF]) making restrictive the class of nonlinear systems to which the approach applies. All these assumptions make also difficult the extension to the multi-input multi-output case, as confirmed in the effort made in Astolfi et al. (2013a) and also previously noticed in Isidori and Marconi (2012).

These issues motivates an introduction of a new methodology to deal with the problem of output regulation. In the new approach we are driven by two main facts (i) a nonlinear ISS (Input-to-State Stable) system, driven by a periodic input, admits periodic solutions of the same period (see [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF] or more recently [START_REF] Agrachev | Nonlinear and Optimal Control Theory, chapter "Input to state stability: Basic concepts and results[END_REF]), though it may contain a number of higher frequencies [START_REF] Khalil | Robustness servomechanism output feedback controllers for a class of feedback linearizable systems[END_REF], [START_REF] Huang | Internal model principle and robust control of nonlinear systems[END_REF][START_REF] Priscoli | Robust tracking for polynomial plants[END_REF][START_REF] Priscoli | Sufficient conditions for robust tracking in nonlinear systems[END_REF]);

(ii) the cascade plantinternal model unit is in feedforward form and therefore forwarding tools can be applied in the design of the stabilizer unit;

and we have as a final goal (a) a design which can be applied to multi-input multi-output (possibly non-square) nonlinear systems and in absence of normal forms;

(b) a design which is structurally robust (in a rigorous sense to be defined).

In the forthcoming two subsections we exploit (i) and (ii) showing how to merge these facts in order to obtain a novel design for the output regulation problem. In particular, in Section 4.3 we show how to design the internal model unit starting from (i), whereas Section 4.4 is devoted to the design of a stabilizer for the cascade plant -internal model unit.

Internal model design

The contents of this section are an extension to the multi-input multi-output case of the results presented in Astolfi et al. (2015).

Motivated by (i) we restrict ourselves to the class of disturbances/references which are T -periodic and we consider, for the sake of simplicity, multi-input multi-output input-affine nonlinear systems of the form

ẋ = f (x, w) + g(x, w)u e = h(x, w) (4.14)
with state x ∈ R n , control inputs u ∈ R m and regulated outputs e = (e 1 , . . . , e p ) ∈ R p , with1 m ≥ p and exogenous signal w ∈ R r which satisfies w(t + T ) = w(t). Also we suppose the functions f, g, h are smooth enough and f (0, 0) = 0, h(0, 0) = 0 and g(0, 0) = 0. If e(t + T ) = e(t), then it can be expressed by a Fourier Series. We denote by c j,k the k-th Fourier coefficient of the j-th component of e, i.e. with state η = (η 0 , η 1 , . . . , η L ) ∈ R p(1+2L) , η 0 ∈ R p , η k ∈ R 2p for k = 1, . . . , L, and where the matrices Φ k , Γ k , for any k ∈ {1, . . . , L}, are defined as

Φ k = blckdiag φ k • • • φ k 2p×2p Γ k = blckdiag Γ • • • Γ 2p×p with φ k = k φ , φ = 0 ω -ω 0 , Γ = 0 1 .
By construction, the i-th component of η 0 is an integrator processing the i-th component of the outuput e, i.e. ηi 0 = e i , whereas the i-th component of η k , k ≥ 1, is an oscillator at frequency kω processing the i-th component of the output e, namely

ηi k = k φ η i k + Γe i .
By using the a complex notation the internal model (4.16) can be also written as

η0 = e , η 0 ∈ C p , ηk = i kω η k + e , η k ∈ C p , k ∈ {1, . . . , L} , η = (η 0 , . . . , η L ) ∈ C L+1 .
Both representations are equivalent, and throughout the text we will use indifferently the real notation or the complex one in order to simplify the expressions.

Now suppose that we are able to design a control law u such that the cascade (4.14)-(4.16) has bounded trajectories. The following result states that, as already observed above, if the η k are T -periodic, then necessarily the Fourier coefficients of the output e associated to the frequencies embedded in the internal model are equal to zero. Furthermore, if the internal model is "rich" enough, i.e. its dimension is large enough, then the L 2 norm of the error will be small enough. In this regard, the number L of oscillators is considered as a design-parameter.

Proposition 4.1. Let (x(t), η(t)) be a bounded trajectory of the cascade (4.14)-(4.16) corresponding to some bounded input u(t) such that η k (t + T ) = η k (t) for all t ≥ 0 and all k = 0, 1, . . . , L. Then necessarily c 0 j,k = 0 , ∀ k = 0, 1, . . . , L, ∀ j = 1, . . . , p .

Moreover, if t → u(t) and t → w(t) are C 1 , for any compact set C x ⊂ R n , for any d 1 > 0,

d 2 > 0, ū > 0 and > 0 such that x(t) ∈ C x for all t ≥ 0, w(•) ∞ ≤ d 1 , ẇ(•) ∞ ≤ d 2 and u(•) ∞ ≤ ū, there exists L ≥ 1 such that, if L ≥ L then e(t) 2 = 1 T T 0 |e(t)| 2 dt ≤ .
Proof. Consider the internal model unit (4.16). The component η i k of its solution satisfies When f, g, h are C 1 , w(t) and u(t) are C 1 functions of time, so is e(t). So let H 1 , F 0 and D 1 be the real numbers defined as 

η j k (t + T ) = exp(-ikωT ) η j k (t) +
H j = sup x∈Cx,
e j (t) = ∞ k=0 c j,k exp(i kωt) , ėj (t) = ∞ k=0 i kωc j,k exp(i kωt) = ∞ k=0 c j,k exp(i kωt) ,
where c j,k = i kωc j,k . By using Parseval's identity we get

1 T T 0 | ėj (s)| 2 ds = 2 ∞ k=0 c j,k 2 ≤ H j F 0 + D j .
From the previous result we know that c j,k = 0 for all k ∈ {0, 1, . . . L}. As a consequence (and by using the definition of c j,k ) we get

ω 2 (L + 1) 2 ∞ k=L+1 (c j,k ) 2 ≤ ∞ k=L+1 (kω c j,k ) 2 ≤ (H j F 0 + D j ) 2 2 .
Again, by using Parseval's identity, we get

1 T T 0 |e j (s)| 2 ds ≤ (H j F 0 + D j ) 2 ω 2 (L + 1) 2 .
Finally by using

1 T T 0 |e(s)| 2 ds ≤ p j=1 1 T T 0 |e j (s)| 2 ds ≤ p j=1 (H j F 0 + D j ) ω(L + 1)
the proof completes by setting

L * =     p j=1 (H j F 0 + D j )T 2π    
.

The previous proposition proves that when we add an oscillator at a certain frequency in the internal model unit, we are able to make zero the correspondent Fourier coefficient of the regulated output. Also, by enlarging the dimension of the internal model, i.e. by adding more and more oscillators at higher frequencies, we can reduce the L 2 norm of the output. As a consequence, we may need an internal model unit of infinite dimension (an infinite number of oscillator) to regulate e to zero. A number large enough of oscillator guarantees in any case an error on the regulated output small enough, i.e. practical output regulation is achieved.

We stress that the design of the internal model unit (4.16) does not depend on the functions f, g, h. As a consequence the results of Proposition 4.1 hold for any set of functions f, g, h and C 1 bounded control input u(t) which guarantees bounded trajectories of the cascade (4.14)-(4.16) and η(t) = η(t + T ), i.e. structurally robust (practical) output regulation is achieved.

Finally we remark that the internal model (4.16) could be considerably generalized.

As already noticed in [START_REF] Astolfi | Integral Action in Output Feedback for multi-input multioutput nonlinear systems[END_REF] for the pure integrator case, the inter-

Forwarding design

In this section we focus on the design of a (state-feedback) control law u for the cascade system (4.14)-(4.16) which ensure bounded trajectories for the closed-loop system. As already explained in the linear case (see Section 4.1), since this cascade is in strict feedforward form, a forwarding design may be applied for the stabilizer unit (see Figure 4.1). The forwarding techniques have been widely studied in the last 20 years and the contents of this section are well-known. See, for a detailed overview, chapter 6.2 of [START_REF] Sepulchre | Constructive Nonlinear Control[END_REF]. The main results of this Section (Lemma 4.6 and Propositions 4.2 and 4.3) are an adaptation of the results in [START_REF] Mazenc | Stabilisation de trajectories, ajout d'intégration, commandes saturées[END_REF].

Let consider the unforced cascade system (4.14) -(4.16), namely the system

ẋ = f (x, 0) + g(x, 0)u η0 = h(x, 0) η1 = Φ 1 η 1 + Γ 1 h(x, 0) . . . ηL = Φ L η L + Γ L h(x, 0) (4.18)
As already introduced, we are interested in the design of a function α(x, η 0 , η 1 , . . . , η L )

such that the origin of the closed-loop systems is asymptotically stable and locally exponentially stable. As in the linear case (see Section 4.1) a certain number of assumptions is needed. Evidently, a necessary condition for the solvability of the problem is the controllability of the unforced system ẋ = f (x, 0) + g(x, 0)u . (4.19)

We suppose we know a function β : R n → R m such that the origin of

ẋ = f (x, 0) + g(x, 0)β(x)
is an asymptotically and locally exponentially stable equilibrium point with S ⊂ R n as a domain of attraction. By using the converse Lyapunov theorem from [START_REF] Kurzweil | On the inversion of Lyapunov's second theorem on stability of motion[END_REF], there exists a C 1 function V : S → R + which is positive definite and proper on S such that the function W defined as

W (x) = - ∂V ∂x (f (x, 0) + g(x, 0)β(x)) (4.20)
is positive definite on S. Note that if V is known from the design of β, it may not be They are solution of

∂M 0 ∂x (x)f (x, 0) = h(x, 0) , ∂M k ∂x (x)f (x, 0) = Φ k M k (x) + Γ k h(x, 0) (4.22)
Furthermore, the pair (B M k , Φ) is observable, where we denote, for any k ∈ N,

M k = ∂M k ∂x (0) .
Proof. Let simplify the notations in

f (x) := f (x, 0) , h(x) := h(x, 0) ,
and consider the following system

żk = Φ k z k + Γ k h(x) ẋ = f (x)
with Φ k , Γ k defined in (4.16) and where x = 0 is asymptotically stable and locally exponentially stable for ẋ = f (x) with x ∈ S. The solution of z k is given by

Z k ((x, z k ), t) = exp(Φ k t)z k + t 0 exp(Φ k (t -s)) Γ k h(X(x, s)) ds
Because of the exponential stability of the x-dynamics and the neutral stability of Φ, the origin has a stable manifold. It is the set of pairs (x, z k ) such that we have

lim t→∞ Z k ((x, z k ), t) = 0 .
and therefore satisfying

z k = -lim t→∞ t 0 exp(Φ k s) Γ k h(X(x, s)) ds
We conclude that the function M k (x) defined in (4.21) as around the origin

M k (x) = lim
M k A = Φ k M k + Γ k C
and by noting that the assumptions of Lemma 4.4 are satisfied.

Under the previous assumptions and with the previous lemma in mind, we are able to design a state-feedback law for the unforced extended open-loop system (4.18). This result is completely analogous to the linear result of Lemma 4.3. Also, it can be noticed that the forthcoming proposed regulator (4.23) is a nonliner version of the linear regulator (4.10).

Proposition 4.2. Consider the system (4.18). Let L ∈ N be fixed and suppose Assumptions 4.4 and 4.5 holds. For any ū > 0 (maybe infinite), the origin of (4.18) in closed loop with

u = α(x, η), α(x, η) = min{ū , |α 0 (x, η)| } α 0 (x, η) |α 0 (x, η)| α 0 (x, η) = - ∂V ∂x (x)g(x, 0) - L k=0 (η k -M k (x)) ∂M k ∂x (x)g(x, 0) (4.23)
is asymptotically stable and locally exponentially stable with S × R p(1+2L) as domain of attraction.

Proof. With Assumption 4.4 let U be the Lyapunov Function defined as

U (x, z) = V (x) + 1 2 L k=0 (η k -M k (x)) (η k -M k (x))
where V satisfies (4.20). The function U is positive definite, proper on S × R p(1+2L)

and its derivative along the solutions satisfies

U (x, η) ≤ -W (x) + ∂V ∂x (x)g(x, 0)u + L k=0 (η k -M k (x)) Φ k η k + Γ k h(x, 0) - ∂M k ∂x (x)f (x, 0) - ∂M k ∂x (x)g(x, 0)u
Recall that M k satisfies (4.22). As a consequence we have

Φ k η k + Γ k h(x, 0) - ∂M k ∂x (x)f (x, 0) = Φ k (η k -M k (x)) .
Furthermore, by noting that Φ + Φ = 0 we get

U (x, η) ≤ -W (x) + ∂V ∂x (x) g(x, 0) - L k=0 (η k -M k (x)) ∂M k ∂x (x)g(x, 0) u
with the choice u = α(x, η), with α defined as in (4.23), we obtain

U (x, η) ≤ -W (x) -min ū |α 0 (x, η)|, |α 0 (x, η)| 2 .
Applying La Salle theorem we conclude that the origin is stable and the largest in-

variant set I contained in (x, η) ∈ R n × C p(L+1) : W (x) = 0 , α 0 (x, η) = 0
is attractive. By using the fact that W (x) = 0 if and only if x = 0, ∂V ∂x (0) = 0 and moreover M k (0) = 0, the previous set reduces to

(x, η) ∈ R n × C p(L+1) : x = 0 , B M k η k = 0 .
By using the fact that the pair (B M , Φ) is observable (see Lemma 4.6) we conclude that the set I is reduced to the origin. Therefore the origin is asymptotically stable with a domain of attraction S × R p (1+2L) . By noting that around the origin we have u = α 0 (x, η), we conclude that the origin is also locally exponentially stable.

The solution proposed in the previous proposition relies on the knowledge of the function M k (x), solution of the partial differential equation (4.22). As shown in Lemma 4.6 the solution always exists, but formally it can be very hard to find. Therefore in the forthcoming proposition we propose a simpler design based on the linearization of (4.22).

Proposition 4.3. Consider the system (4.18). Let L ∈ N be fixed and suppose Assumptions 4.4 and 4.5 holds. For any ū > 0, the origin of (4.18) in closed loop with u = α(x, η),

α(x, η) = min{ū , |α 1 (x, η)| } α 1 (x, η) |α 1 (x, η)| α 1 (x, η) = -   (V (x)) ∂V ∂x (x)g(x, 0) - L k=0 (η k -M k x) 1 + L k=0 |η k -M k x| 2 M k g(x, 0)   (4.24)
with : R ≥0 → R ≥0 a C 1 function with strictly positive derivative to be chosen large enough (see [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF]), is asymptotically stable and locally exponentially stable with S × R p(1+2L) as domain of attraction.

Proof. First of all note that the matrix

M k = ∂M k ∂x (0) is solution of M k F = Φ k M k + Γ k H
With Assumption 4.4 in mind let U be the Lyapunov Function defined as

U (x, z) = (V (x)) + 1 + L k=0 |η k -M k x| 2 -1
where V satisfies (4.20) and is a function to be chosen large enough. The function U is positive definite, proper on S ×R p(1+2L) and its derivative along solutions satisfies

U (x, η) ≤ -(V (x))W (x) + (V (x)) ∂V ∂x (x)g(x, 0)u + L k=0 (η k -M k (x)) 1 + L k=0 |η k -M k (x)| 2 Φ k η k + Γ k h(x, 0) -M k f (x) + g(x, 0)u
By adding e subtracting the term ∂M k ∂x (x)f (x), by defining

∆(x) = M k - ∂M k ∂x (x) f (x) ,
and by recalling (4.22) we get

U (x, η) ≤ -(V (x))W (x) + (V (x)) ∂V ∂x (x)g(x)u - L k=0 (η k -M k (x)) 1 + L k=0 |η k -M k (x)| 2 (∆(x) + M k g(x, 0)u)
With the choice u = α(x, η) we obtain

U (x, η) ≤ -(V (x))W (x) + ∆(x) -min ū |α 1 (x, η)|, α 1 (x, η) 2 .
By choosing the function such that

2|∆(x)| ≤ (V (x))W (x) ∀ x ∈ S ,
and by applying the same arguments used in the proof of Proposition 4.2 we conclude that to conclude that the origin is asymptotically stable and locally exponentially stable with S × R p(1+2L) as domain of attraction.

The goal of this section was to show that forwarding techniques can be applied in order to design a stabilizing feedback law for the system (4.18). Nevertheless we recall that the literature on forwarding techniques is wide and many other different (and simpler) designs can be adopted. See, among others, [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF], [START_REF] Teel | A nonlinear small gain theorem for the analysis of control systems with saturation[END_REF], [START_REF] Sepulchre | Constructive Nonlinear Control[END_REF]. Finally, we remark that the system (4.18) falls exactly in the same framework considered by [START_REF] Kaliora | A simple design for the stabilization of a class of cascaded nonlinear systems with bounded control[END_REF] and [START_REF] Kaliora | Nonlinear control of feedforward systems with bounded signals[END_REF] and that their techniques can be directly applied under Input-to-State Stability assumptions.

Weak output regulation

In this section we combine the results of Sections 4.3 and 4.4 to show that the proposed regulator achieve structurally robust weak practical output regulation. We refer with weak the fact that the bound on the disturbance may depend on the dimension of the internal model and could shrink to zero when augmenting the number of oscillators to infinity.

In Chapter 5 we will show a case where this phenomenon does not happen, namely the bound on the disturbance is independent on the number of oscillators, thus achieving structurally robust practical output regulation. To summarize the results, we consider the class of system (4.14) described as As a consequence of Proposition 4.2 and results on local exponential stability, we have that when w is small enough, the closed-loop system (4.14),(4.25) admits a unique periodic trajectory which is asymptotically stable. The proof of this proposition is a direct application of well-known results on local exponential stability, local input-to-state stability and existence of periodic solution under small perturbations. See, for instance [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF] or more recently [START_REF] Agrachev | Nonlinear and Optimal Control Theory, chapter "Input to state stability: Basic concepts and results[END_REF]. Note that by augmenting L we add poles on the imaginary axis. Consequently the stability margin of the closed loop system may decrease with L and so the bound d 1 may decrease with augmenting L. In Chapter 5 we will show a case where this phenomenon does not happen. By combining the previous proposition with Proposition 4.1 we get the following theorem claiming that weak practical output regulation is achieved. 

ẋ = f (x, w) + g(x, w)u e = h(x, w) (4.14) with x ∈ R n , u ∈ R m , y ∈ R p ,
(x, u, 0) -[f (x, 0) + g(x, 0)u]| + |ζ(x, u, 0) -h(x, 0)| ≤ δ ∀(x, u) ∈ C x × U (4.27) and     ∂ξ ∂x (x, u, 0) ∂ξ ∂u (x, u, 0) ∂ζ ∂x (x, u, 0) ∂ζ ∂u (x, u, 0)     -     ∂f ∂x (0, x) + ∂g ∂x (x, 0)u g(x, 0) ∂h ∂x (x, 0) 0     ≤ δ (4.28) for all (x, u) ∈ C x × U , where U = α(C),
= (x, η 0 , . . . , η L ), ϕ m (X , w) =          f (x, w) + g(x, w)u Γ 0 h(x, w) Φ 1 η 1 + Γ 1 h(x, w) . . . Φ L η L + Γ L h(x, w)          , ϕ p (X , w) =          ξ(x, u, w) Γ 0 ζ(x, u, w) Φ 1 η 1 + Γ 1 ζ(x, u, w) . . . Φ L η L + Γ L ζ(x, u, w)         
, and Γ 0 = I with u = α(x, η), we see that 

|ϕ p (X , 0) -ϕ m (X , 0)| ≤ |ξ(x, α(x, η), 0) -[f (x, 0) + g(x, 0)α(x, η)]| + L k=0 |Γ k ζ(x, α(x, η), 0) -Γ k h(x, 0)| ≤ (L + 1) |ξ(x, α(x, η), 0) -[f (x, 0) + g(x, 0)α(x, η)]| +(L + 1) |ζ(x, α(x, η), 0) -h(x, 0)| ≤ (L + 1) δ 155 4.5. Weak output regulation Moreover ∂ϕ p ∂X (X , 0) - ∂ϕ m ∂X (X , 0) ≤                    ∂ξ ∂x +
Γ 0 ∂h ∂x 0 Γ 1 ∂h ∂x Φ 1 . . . . . . Γ L ∂h ∂x Φ L                  w=0
By recalling that α is C 1 and by using the compact notation

∆ pm =     ∂ξ ∂x ∂ξ ∂u ∂ζ ∂x ∂ζ ∂u     -     ∂f ∂x + ∂g ∂x u g ∂h ∂x 0     w=0 ∆ α = sup (x,η)∈C ∂α ∂x + ∂α ∂η we get ∂ϕ p ∂X (X , 0) - ∂ϕ m ∂X (X , 0) ≤ (1 + L)∆ α ∆ pm ≤ (1 + L)∆ α δ
We conclude that the conditions (C.5) and (C.6) are verified for 

δ = (1 + L) δ max{∆ α , 1} . Finally,
A = ∂ξ ∂x X e , B = ∂ξ ∂u X e , C = ∂ζ ∂x X e , D = ∂ζ ∂u X e ,
with the equilibrium X e given by Lemma 4.7.

Proof. The proof follows by the exponential stability of the equilibrium X e given by Lemma 4.7 and by checking that the conditions of Theorem 4.2 are satisfied.

We want to stress that even if all the feedback-design has been highlighted for the state-feedback case, the results can be rephrased in the output feedback case without loss of generality. An example of this methodology is given in [START_REF] Astolfi | Integral Action in Output Feedback for multi-input multioutput nonlinear systems[END_REF] where the internal model reduces to an integrator. Output feedback results in our practical output regulation problem can be achieved by using the dynamic regulator (4.25) and by replacing x by an estimate x which is provided a suitable tunable stateobserver. The latter can be designed with any desired technique and for example with the high-gain observer presented in Section 2.3. The results of Chapter 4.5 applies to a very generic class of systems, that is inputaffine multi-input multi-output nonlinear systems. As a consequence the results we are able to show are weak in the sense that they apply only when the disturbances are small.

The main limitations of this approach rely on the theoretical tools used in the proof, mainly existence of periodic solutions under locally input-to-state stability condition.

The latter is provided by the local exponential stability guaranteed by the forwarding design for the unforced system in cascade with the internal model. As a consequence the allowed magnitude of the disturbance depends on the dimension of the closed-loop system, which is n + p(2L + 1) (where n is the dimension of the system, p is the dimension of the regulated output and 2L + 1 the dimension of the internal model). As a matter of fact, by augmenting the dimension of the internal model we may reduce the L 2 norm of the regulated output, but we may also need to reduce the allowed disturbance magnitude.

In this section we want to apply the proposed approach to single-input single-output minimum-phase nonlinear systems which possesses a well-defined relative degree. As in Section 1.6.1 we consider systems with unitary relative degree, knowing that the extension to the case in which the relative degree is larger than one, can be easily handled by means of high-gain tools, as shown for instance in (Isidori, 1999, Section 12.1). For this class of system we are able to show results which are much more stronger than the ones proposed in Section 4.5. In particular structurally robust asymptotic output regulation is achieved and moreover the allowed disturbance magnitude is not affected by the dimension of the internal model.

We denote with η = (η k ) k∈N and we suppose the initial conditions of η( 0 

v = ∞ k=0 M k (η k -M k e) u = -g (e -v)
(5.5)

where g ≥ 1 is a high-gain parameter to be chosen large enough, and M 0 ∈ R and the matrices M k ∈ R 2 , k ∈ N >0 , are defined as solutions of

-M 0 g = 1 -M k g = kφM k + Γ .
(5.6)

Note that with respect to the internal model unit proposed in Section 4.3 we are not using the M(•) proposed in Lemma 4.6 which would be computed as solution of ∂M k ∂e (e) -ge + q(0, 0, e) = kφ M k (e) + Γ e but we are making an approximation computing M k as solution of ∂M k ∂e (e) -ge = kφ M k (e) + Γ e namely we decide to ignore the Lipschitz term q(0, 0, e), which is dominated by the term g e when g is chosen large enough.

The aim of this section is to prove that the dynamic regulator (5.4)-(5.5) solves the structurally robust asymptotic output regulation problem for the class of system (5.1), namely lim t→∞ e(t) = 0 uniformly in the initial conditions (z(0), e(0)) ∈ Z × E, η(0) ∈ 2 and in w(t) and for any pair of functions satisfying the assumptions above.

Note that under the Assumption 5.1 the non-resonance conditions (see Assumption 4.5) are automatically fulfilled (see in particular the remark at the end of this section) by definition of the zero-dynamics (see [START_REF] Isidori | Nonlinear Control Systems[END_REF]). As a consequence the conditions of Theorem 4.2 and Lemma 4.8 are satisfied, namely structurally robust weak practical output regulation is guaranteed when considering an internal model of finite dimension.

However, due to the structure of system (5.1) a stronger result is achieved. In particu-lar, the forthcoming theorem states that the regulator (5.4)-(5.5) solves the structurally robust output regulation problem for the system (5.1) with an internal model of infinite dimension.

Theorem 5.1. Consider the system (5.1) and suppose Assumption 5.1 holds. Then the regulator (5.4)-(5.5) solves the Structurally Robust Output Regulation Problem, namely there exist a g ≥ 1 such that, for any g > g the trajectories of the closed-loop system (5.1)-(5.4)-(5.5)

starting from a point (w(0), z(0), e(0), η(0)) ∈ W × Z × E × {0}, are bounded (eventually in 2 sense) and lim t→∞ e(t) = 0.

In order to prove the theorem we need to introduce some technical results. First of all note that the matrices M k are solutions of (5.6) and can be computed as

M k = -(kφ + Ig) -1 Γ = - g kω -kω g -1 0 1 which is M 0 = - 1 g , M k = 1 (kω) 2 + g 2 kω -g . (5.7) Lemma 5.1. There exists a real number M > 0 such that ∞ k=0 M k M k ≤ M .
for any g ≥ 1.

Proof. The result follows by computing

∞ k=0 M j M j = 1 g 2 + ∞ k=1 1 (kω) 2 + g 2 = 1 g 2 ∞ k=0 1 ( kω g ) 2 + 1 ≤ 1 g 2 ∞ 0 1 s 2 + 1 ds = 1 g 2 arctan(s) ∞ 0 = 1 g 2 π 2
and by setting M = π 2 .

The second technical lemma we need concerns the so called "friend". In particular, in order to solve the output regulation problem, for any particular periodic solution (w, π(w)) in W × B we must find a corresponding input, the "friend", such that the output e is constantly equal to zero, namely 0 = q(w, π(w), 0) + u .

As a consequence of Assumption 5.1, the friend, denoted as ψ : R r → R, is well-defined, and is computed as ψ(w(t)) := -q(w(t), π(w(t)), 0) .

(5.8)

Since the mapping t → w(t) is C 1 and T -periodic, and q is C 1 , so is t → ψ(w(t)). As a consequence it can be expressed by a Fourier series. In the forthcoming lemma we show that our dynamic regulator (5.4) is able to generate any possible T -periodic friend.

Lemma 5.2. For any T -periodic C 1 function t → w(t) there exists a positive real number µ such that, for any g ≥ 1, there exist a real number σ

• 0 ∈ R and a set of vectors σ • k ∈ R 2 , k ∈ N >0 , σ • = (σ • k ) k∈N ∈ 2 , that satisfy σ 2 0 + ∞ k=1 (σ • k ) (σ • k ) ≤ µ , (5.9) σ0 = 0 , σ 0 (0) = σ • 0 , σk = k φ σ k , σ k (0) = σ • k , ψ(w(t)) = g M 0 σ 0 + g ∞ k=1 M k σ k (t) .
(5.10) with M k defined by (5.7) and ψ defined as in (5.8).

Proof. Since t → w(t) is a C 1 T -periodic function and q is C 1 , also t → ψ(w(t))

is a T -periodic C 1 function. As a consequence it can be written in terms of Fourier series. In particular we have that

ψ(t) = ψ 0 + ∞ k=1 ψ c k cos(kω t) + ψ s k sin(kω t)
For constant term we have σ 0 = -ψ 0 . For k > 0 we denote ψ k = (ψ c k , ψ s k ) . The solution σ k (t) of (5.10) is given by

σ k (t) = exp(kφ t)σ k (0) = σ c k (0) cos(kω t) + σ s k (0) sin(kω t) -σ s k (0) cos(kω t) + σ c k (0) sin(kω t)
where we set σ k (0) = (σ c k (0), σ s k (0)) . Also we have

M k σ k (t) = g σ c k (0)kω -σ s k (0)g (kω) 2 + g 2 cos(kω t) + g σ c k (0)g + σ s k (0)kω (kω) 2 + g 2 sin(kω t) .
By identifying all the terms of the two series ψ(w(t)) and g M k σ k (t) we get

g σ c k (0)kω -σ s k (0)g (kω) 2 + g 2 = ψ c k , g σ c k (0)g + σ s k (0)kω (kω) 2 + g 2 = ψ s k ,
which can be written in the compact notation

g (kω) 2 + g 2 kω -g g kω σ c k (0) σ s k (0) = ψ c k ψ s k .
As a consequence we see that the σ • k claimed in the statement are given by

σ • k = 1 g kω g -g kω ψ k
In order to prove that σ • ∈ 2 and that the bound is independent of µ, note that

∞ k=1 |σ • k | 2 ≤ ∞ k=1 1 g 2 kω g -g kω 2 |ψ k | 2 ≤ 2 ∞ k=1 kω g 2 + 1 |ψ k | 2 Since t → ψ(w(t)) is C 1 , dψ(w(t))
dt is square integrable and there exists real numbers

d 1 > 0, d 2 > 0 such that ∞ k=1 |ψ k | 2 ≤ d 1 ∞ k=1 k 2 |ψ k | 2 ≤ d 2 Therefore we can claim there exists a µ > 0 such that ∞ k=1 |σ • k | 2 ≤ 2 ∞ k=1 kω g 2 + 1 |ψ k | 2 ≤ 2 ω g 2 d 2 + 2d 1
The result follows by choosing µ

= ψ 2 0 + 2(d 1 + ω 2 d 2 ).
Finally, we recall the following converse Lyapunov theorem formulated in [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF]. In the following theorem we use the notation

|p| B/D = 1 + 1 |p| ∂ cl D |p| B .
Theorem 5.2 [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF], Theorem 4). Under Assumption 5.1, there exists a continuous function V : W × D → R satisfying the following properties (a) there exists class-K ∞ functions α(•) and ᾱ(•) such that

α(|(w, z)| B/D ) ≤ V ((w, z)) ≤ ᾱ(|(w, z)| B/D ) ∀ (w, z) ∈ W × D (b) there exists d > 0 such that D + V ((w, z)) ≤ -d V ((w, z)) ∀ (w, z) ∈ W × D (5.11) (c) for all a > 0 there exists L a > 0 such that for all (w 1 , z 1 ), (w 2 , z 2 ) ∈ W × D such that |(w 1 , z 1 )| B/D ≤ α and |(w 2 , z 2 )| B/D ≤ α, the following holds |V (w 1 , z 1 ) -V (w 2 , z 2 )| ≤ L α |(w 1 , z 1 ) -(w 2 , z 2 )| .
If B is also locally exponentially stable for (5.2), then property (a) holds with α(•) and ᾱ(•) linear near the origin.

With the above tools at hand, we are now in the position to give the proof of the Theorem 5.1.

Proof. Pick any C 1 T -periodic function t → w(t) in W and let π(w) be defined by Assumption 5.1 and σ k (t) be defined according to Lemma 5.2. Consider now the following change of coordinates

ξ k := η k -M k e -σ k
by which we obtain the following closed-loop system

ż = F (z) + N (w, z, e) ξk = kφ ξ k -M k q(z, e) -g M k y ė = q(z, e) -g (e -y)
(5.12)

Now let suppose z and w evolve in some given compact. As a consequence we have and (5.14) holds for all w 0 , we get Now let the function κ be defined as

|p z (z)| = |q(w, z, 0) -q(w, π(t), 0)| ≤ L q |z -π(w(t))| ≤ L q |z -π(w 0 )| + |π(w 0 ) -π(w(t))| ∀w 0 ∈ W ≤ L q |z -π(w 0 )| + L π |w 0 -w(t)| ∀w 0 ∈ W which gives |p z (z)| ≤ L q (1 + L π ) |z -π(w 0 )| + |w 0 -w(t)| ∀w 0 ∈ W (5.14) Moreover, since |(w, z)| B = inf w 0 ∈W |z -π(w 0 )| + |w -w 0 |
|p z (z, t)| ≤ L q (1 + L π )|(w, z)| B
κ(x) := β 2 (α -1 ( √ x)) x .
Since the function α is linear around the origin we can denote with a the real number defined as a := dα(x) dx x=0 .

As a consequence the function κ is C 1 and well defined around the origin since

lim x→0 + κ(x) = lim x→0 + β 2 (α -1 ( √ x)) x = b 2 a 2
With d the positive real number given by Theorem 5.2, let γ : R → R ≥0 be a class-K function satisfying

γ (0) ≥ 2 b 2 d a 2 , γ (|x|) ≥ 2 d κ(|x|) ∀ x ∈ R
Now let V be the function given by Theorem 5.2 and let c be the positive real number such that W × Z ⊂ V -1 ([0, c]). This number always exists in view of property (a) of Theorem 5.2. Finally consider the Lyapunov function U defined as

U (w, z, e, ξ k ) := γ(V 2 (w, z)) + e 2 + k ξ k ξ k .
For any a > 0, we denote with Ω a the corresponding Lyapunov sub-level set of U , namely

Ω a := {(w, z, e, ξ k ) ∈ R n × R × 2 : γ(V 2 (w, z)) + e 2 + k ξ k ξ k ≤ a} . By construction (W × Z × E × Ξ) ⊂ Ω ĉ with ĉ := γ(c 2 ) + (2M + 1)ê 2 + μ. Let L q , n
and L V be the positive real number such that

|p e (z, e)| ≤ L q |e| ∀ (z, e) ∈ Ω ĉ , |N (z, e)| ≤ n|e| ∀ (z, e) ∈ Ω ĉ , |V (w 1 , z 1 ) -V (w 2 , z 2 )| ≤ L V |(w 1 , z 1 ) -(w 2 , z 2 )| ∀ (w 1 , z 1 ), (w 2 , z 2 ) ∈ Ω ĉ , (5.15) 
Now consider any solution (w(t), z(t), e(t), ξ k (t)) starting from a point in (W × Z × E × Ξ) and let [0, T 1 ] be its right maximal interval of definition when restricted to take values in the open set int (Ω ĉ). Note that

D + V (w, z, e) ≤ nL V |e| -dV (w, z) .
As a consequence, by taking the Dini derivatives of U along the solution w(t), z(t), e(t), ξ k (t)) we get

D + U ≤ -2d γ (V 2 (w, z))V 2 (w, z) + 2γ (V 2 (w, z))V (w, z)nL V |e| +2e(q(z, e) + gy -ge) + 2 k ξ k (kφξ k -M k (q(z, e) + gy)) ≤ -2d γ (V 2 (w, z))V 2 (w, z) + 2γ (V 2 (w, z))V (w, z)nL V |e| +2ep z (z) + 2ep e (z, e) -2g e 2 + 2ge y -2gy 2 -2p z (z) y -2p e (z, e)y
where we obtain, after completing the squares,

D + U ≤ - 1 2 d γ (V 2 (w, z))V 2 (w, z) -g e 2 + P 1 (w, z) + P 2 (e) + P 3 (y)
where

P 1 (w, z) = -dγ (V 2 (w, z))V 2 (w, z) + 2p z (w, z) 2 P 2 (e) = - 1 2 g -1 -3L q -2γ n2 L 2 V d e 2 P 3 (y) = -(g -1 -L q ) y 2 with γ := max (w,z)∈Ω ĉ γ (V 2 (w, z)) .
By definition of the function γ we have P 1 (z) ≤ 0 for all z ∈ Ω ĉ. Indeed, by construction we have

dγ (V 2 (w, z))V 2 (w, z) ≥ dγ (α 2 (|w, z| B/D )) α 2 (|w, z| B/D ) ≥ 2β 2 (|w, z| B/D ) ≥ 2|p z (z)| 2
for all w, z ∈ W × Ω ĉ. Concerning the terms P 2 and P 3 we get that P 2 (e) ≤ 0 and P 3 (y) ≤ 0 for all e, y ∈ R by choosing any g ≥ g with

g := 2 + 6L q + 4γ n2 L 2 V d .
With g fixed above, pick any g ≥ g . As a consequence we get

D + U ≤ - 1 2 d V 2 (w, z) -g e 2 which implies U (t) ≤ U (0) ∀ t ∈ [0, T 1 ] .
This says that the solution (w(t), z(t), e(t), ξ k (t)) remains in Ω ĉ. So, from its definition T 1 is infinite. Note that by construction any sub-level set Ω a with a ≤ ĉ is compact and bounded. As a consequence the solution is bounded (eventually in 2 sense) for all t ≥ 0. The above gives, along solutions The structural robustness property of regulator (5.5) is a direct consequence of the fact that the asymptotic regulation is achieved for any particular periodic solution w(t) and the design is structurally independent on it.

Remarks

• We stress that the proposed regulator (5.5) is structurally robust in the sense that it solves the asymptotic output regulation problem for a whole family of functions satisfying the previous assumptions. It is worth noticing in fact that the only information of the plant required for the design of the dynamic regulator (5.5) is the knowledge of ω, and the only degree of freedom is the high-gain parameter g, which is the key point for the sake of robustness. In this regard, with respect to the design procedures commonly proposed in literature (see Isidori et al. (2012[START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF], [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Seshagiri | Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators[END_REF], [START_REF] Memon | Output regulation of nonlinear systems using conditional servocompensators[END_REF]), the internal-model does not need to be re-designed if the functions f, q change structure.

• A key point for the issue of robustness, as already highlighted in the linear framework in Section 4.1, is the non-resonance condition. In the linear framework this is stated by Assumption 4.3. whereas in the more general nonlinear framework considered in Section 4.4 this is stated by Assumption 4.4 by considering the linearization of the system around the origin. The latter condition is sufficient as long as the periodic solution is close to zero.

In this chapter the non-resonance condition is verified under Assumption 5.1. To show this, consider the system ż = f (w(t), z, δ(t))

(5.16)

where δ(t) is any C 1 T -periodic function satisfying 1 T T 0 |δ(t)| 2 dt = 1 and is a small real number. When = 0, for any C 1 T -periodic function w(t) ∈ W , the system (5.16) admits a T -periodic solution π(w(t)) which is exponentially stable.

As a consequence, by combining the results of Theorem 1.1 in [START_REF] Hauser | Converse Lyapunov functions for exponentially stable periodic orbits[END_REF][START_REF] Hauser | Converse Lyapunov functions for exponentially stable periodic orbits[END_REF]the Theorems 8.4.1 and8.4.2 in Miller and[START_REF] Miller | Ordinary Differential Equations[END_REF] one can show that system (5.16) has an (asymptotically stable) periodic solution for any | | small enough, namely the non-resonance condition is verified.

• With respect to result of Chapter 4 we do not ask for any restriction on the magnitude of the exogenous signal w(t) introduced at the beginning of this section (in particular, the minimum value of g depends on the set W where w(t) evolves, which may be arbitrarily large, provided that the Assumption 5.1 holds).

In conclusion, we have been able to show that it is possible to solve, with the proposed design, the semi-global structurally robust asymptotic output regulation problem for a class of minimum phase nonlinear systems, under the same assumptions commonly made in literature (see, in this respect, Theorem 3 in [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF]).

Simulation Results

We consider the following minimum-phase nonlinear systems ż = f (w, z, e) ė = q(w, z, e) + u

(5.17) wtth z ∈ R, e ∈ R, u ∈ R and nominal functions f (0, z, e) = -z + z 2 e , q(0, z, e) = z + e .

The control law is chosen as

u = -ge + gv v = L k=0 M k (η k -M k e)
(5.18)

In the simulations we considered the case in which g = 4 and the initial conditions are chosen as (z(0), e(0)) = (-√ 2, √ 2). The exogenous signal w is generated as with the friend defined as π(t) = f (w, π(t), 0) ψ(w) = -q(w(t), π(t), 0)

w(t) = sinh
Evidently, we cannot implement the regulator of Theorem 5.1 but we can implement only dynamic regulators with finite dimension (namely a finite number L of oscillators).

It has been verified that with g ≥ 1 fixed the trajectories of the closed-loop system re-main bounded for any choice of L (numerical simulations have been done up to L = 50). 

Conclusion

T he structurally robust output regulation problem in presence of periodic disturbance/references for nonlinear systems has been investigated. The purpose of the novel methodology introduced in Chapter 4 is to extend the linear design proposed by Francis and Wonham in the 70's to nonlinear systems. A crucial observation is that in the nonlinear case the internal model must not only be able to generate inputs corresponding to the trajectories of the system, but also a number of higher order nonlinear deformations. As a consequence the main idea of the proposed approach is to process the regulated output with a bench of linear oscillators whose frequencies correspond with the basic frequency of the disturbance and its multiples. Forwarding technique is proposed as design tool to stabilize the cascade system -internal model.

This design is made for the unforced nominal system (namely when the disturbance is not acting and in absence of parameter uncertainties) and guarantees the origin to be locally exponentially stable. As a consequence, if the disturbance is small enough, the trajectories of the forced nominal closed loop system (namely when the disturbance is acting) are uniquely defined, bounded and periodic with the same period of the disturbance. It has been shown that the effect of each oscillator is to annihilate, in the output's spectrum, the Fourier coefficient corresponding to the oscillator frequency. By adding enough oscillators it is then possible to make arbitrarily small the L 2 norm of the regulated output and thus obtaining practical output regulation. Since by adding oscillators in the internal model we are increasing the number of poles in the imaginary axes, we may reduce the robustness margin with respect to the disturbance. As a consequence the maximum disturbance magnitude allowed may decrease while increasing the number of oscillators. We refer to this phenomenon by saying that we solve the weak practical output regulation problem.

The proposed approach require the knowledge of the unforced nominal model, but because of exponential stability, persistence of equilibrium under model uncertainties of the unforced closed loop system is preserved. As a consequence also existence of periodic solutions for the forced perturbed closed loop system is guaranteed and structurally robust weak practical output regulation is achieved. The proposed methodology can be applied to multi-input multi-output (with a number of regulated outputs smaller or equal than the number of control inputs) nonlinear systems, is robust to structural uncertainties, and does not require any additional (restrictive) assumption such as minimumphase, relative degree of normal form.

In Chapter 5 this approach is specialized to a single-input single-output nonlinear system with unitary relative degree which is strongly minimum-phase namely its zerodynamics are exponentially stable. It has been shown that with an internal model (not implementable) embedding an infinite number of oscillators, structurally robust asymptotic output regulation is achieved. Evidently, when the number of oscillators is finite, only practical regulation is achieved. A general framework where these assumptions are relaxed (for instance by considering the class of minimum-phase nonlinear systems with a relative degree possibly higher than one) is a first extension to be studied.

The research along this novel methodology is far from being concluded and only a first step has been done. The lack of the existence of a control Lyapunov function with forwarding technique does not help in understanding the aforementioned phenomenon of reducing of disturbance magnitude when augmenting the number of oscillators, although the minimum-phase case showed that under stronger conditions this phenomenon can be avoided. An interesting development is the case of periodic disturbances uncertain in the period. Adaptive techniques could be adopted in this framework in order to design an internal model which embeds a bench of oscillators with a basic frequency that may be adapted to the nominal one in order to reduce the norm of the error. We denote with σ(P M (λ)) the spectrum of the characteristic polynomial P(λ). We denote with σ i (P M (λ)) the i-th eigenvalue of the characteristic polynomial P M (λ).

B Technical Lemmas for Time-Varying Block Tridiagonal Matrices

The following appendix is devoted to the study of stability of time-varying matrices possessing a particular block tridiagonal structure. We define the matrices E i (t) ∈ R 2×2 , Q i ∈ R 2×2 , and N i (t) ∈ R 2×2 as

E i (t) = -c i1 b i (t) a i (t) -c i2 b i (t) 0 , Q i = 0 c i1 0 c i2 , N i (t) = 0 0 0 a i (t) ,
for 1 ≤ i ≤ n -1, where a i (t) and b i (t) are positive for all 1 ≤ i ≤ n -1 and t ≥ 0, and (c i1 , c i2 ) are positive coefficients to be chosen. We define recursively the matrices M i (t) ∈ R (2i)×(2i) as

M 1 (t) = E n-1 (t) , M i+1 (t) = E n-i-1 (t) Nn-i (t) Qn-i M i (t) , i = 1, . . . , n -2 ,
where Nn-i (t) ∈ R 2×2i and Qn-i ∈ R 2i×2 are defined as

Nn-1 (t) = N n-1 (t) , Nn-i (t) = N n-i (t) 0 . . . 0 ,

Qn-1 = Q n-1 , Qn-i = Q n-i 0 . . . 0 .
Finally the the block-tridiagonal matrix M (t) ∈ R (2n-2)×(2n-2) is defined as for some positive α and β. There exist coefficients (c i1 , c i2 ), i = 1, . . . , n -1, a symmetric positive definite matrix P and a positive constant λ, such that, for all t ≥ 0 the following holds P M (t) + M (t) P ≤ -λI .

M (t) =               E 1 (t) N 2 (t) 0 • • • • • • 0 Q 2 E 2 (t
(B.

3)

The proof of Lemma B.1 immediately comes by the forthcoming two lemmas. The idea of the proof is to iterate a small-gain theorem by starting from the block of M 1 (t) on the bottom. This result has been published in [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] and we thank Lei

Wang for his valuable help in the proofs.

Lemma B.2. Consider the matrix M 1 (t). There exist coefficients c n-1,1 and c n-1,2 and a positive definite symmetric matrix P 1 such that

P 1 M 1 (t) + M 1 (t)P 1 ≤ -λ 1 I ,
for some positive constant λ 1 .

the system (C.2) has an equilibria in the interior of C.

Proof. To prove the existence of an equilibria we use (Hale, 1980, Theorem 8.2) which says that a forward invariant set which is homeomorphic to the closed unit ball of R n contains an equilibrium. As a consequence of asymptotic stability we know the existence of a forward invariant set by using a converse Lyapunov theorem.

It may not be homeomorphic to the closed unit ball. Therefore our first task is to show the existence of such set satisfying the required properties.

The equilibrium of (C.1) being asymptotically attractive and interior to C which is forward invariant, C is attractive. It is also stable due to the continuity of solutions with respect to initial conditions uniformly on compact time subsets of the domain of definition. So it is asymptotically stable with the same domain of attraction A as the equilibrium. It follows from (Wilson, 1969, Theorem 3.2) that there exist C ∞ we have, for all x in {x ∈ A : V(x) = α(ρ)} ∂V ∂x (x)ϕ p (x) ≤ -1 2 V(x) .

This implies the compact sublevel set {x : V(x) ≤ α(ρ)} is homeomorphic to the closed unit ball and forward invariant for the system (C.2). With (Hale, 1980, Theorem 8.2), we conclude that this sublevel set contains an equilibrium of this system.

Lemma C.2. Let a C 1 function ϕ m : R n → R n be given such that the origin is an exponentially stable equilibrium point of (C.1) with A as domain of attraction. For any compact sets C and C, the latter being forward invariant for the above system, which satisfy and therefore

x Πϕ p (x) ≤ -a 16

x Πx , ∀x : x Πx = p 0 6 .

In this condition, it follows from [START_REF] Hale | Ordinary Differential Equations[END_REF] Note also that we have 

Résumé

Les observateurs et la régulation de sortie sont deux thèmes centraux de la théorie des systèmes non linéaires. Bien que nombreux chercheurs ont consacré leur attention à ces questions depuis plus de trente ans, il y a encore de nombreuses questions ouvertes. 
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Abstract

Observers and output regulation are two central topics in nonlinear control system theory. Although many researchers have devoted their attention to these issues for more than 30 years, there are still many open questions.

In the observer theory a key role is played by the so called high-gain observers. The purpose of this first part of the thesis is to study novel techniques which allow to overcome or at least to mitigate some of the main drawbacks characterizing this class of observers. We propose a novel class of highgain observers, denoted as «low-power», which allows to overcome numerical problems, to avoid the peaking phenomenon and to improve the sensitivity properties to high-frequency measurement noise.

The second part of the thesis addresses the output regulation problem, solved for linear systems during the 70's by Francis and Wonham who coined the celebrated «internal model principle». Constructive solutions have also been proposed in the nonlinear framework but under restrictive assumptions that reduce the class of systems to which this methodology can be applied. IN this thesis we focus on the output regulation problem in presence of periodic disturbances and we propose a novel approach we allows to consider a broader class of nonlinear systems. The resulting design is robust in the sense defined by Francis and Wonham.
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  and references therein). Rather, the internal model-based regulator designed in the following relies on the knowledge of an integer d > 0 and of a function ϕ : R d → R fulfilling L d s c(w) = ϕ c(w), L s c(w), . . . , L dsome (unknown) function ν : W → R. In case the previous relation is fulfilled with ν ≡ 0 asymptotic regulator will be achieved. Practical regulation, with an asymptotic error that is upper bounded by a function of sup w∈W |ν(w)|, is otherwise obtained. The previous framework allows one to regard the parameter d as a degree-of-freedom by which the designer can tradeoff the dimension of the regulator (and thus its complexity) and the bound on the asymptotic error. As a matter of fact, larger values of d allow, in general, to identify a ϕ(•) that makes relation (1.30) fulfilled with a smaller bound of the residual term |ν(•)|, by thus obtaining a regulator able to guarantee smaller asymptotic errors.

  (w, z, e) χ = φ(χ) -Ψ γ(χ) + q(w, z, e) b(w, z, e) + ∆(w, z, χ, e) ė = q(w, z, e) + b(w, z, e)γ(χ) + b(w, z, e)v + L(w, z, χ, e)(1.32)

  dynamic extension, complementary to classical "high-gain one". The first two sections illustrate that the new low-power construction can be used without loss of generality in place of the standard high-gain construction, by showing its application to systems in the strict feedback form (1.11) (Section 3.1) and in the non strict feedback form (1.20) (Section 3.2). In Section 3.3 we show how to modify the construction presented in Section 3.1 in order to remove the annoying peaking phenomenon. In Section 3.4, we apply the novel methodology introduced in Section 2.4 to analyse the performances of the new low-power high-gain observer in presence of high-frequency measurement noise, highlighting the effects of the relative degree on the steady-state behaviour. In Section 3.5 the new low-power high-gain observer is successfully applied to the output regulation framework as a design tool for robust internal models. Simulations are proposed in Section 3.6 to show the performances of the new observer. We remark that Appendices A and B provides some technical lemmas which are essentials for the design of the new class of observers.The results of Section 3.1 appeared onAstolfi and Marconi (2015) and have been successfully applied to the output feedback stabilization framework in[START_REF] Wang | Output stabilization for a class of nonlinear systems via high-gain observer with limited gain power[END_REF]. Section 3.2 presents results that have been published in[START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] in collaboration with one of the co-authors (Lei Wang). The results of Section 3.3 were produced under the co-supervision of professor Andrew Teel and will appear onAstolfi et al. (2016b). Section 3.4 is the extension of the work proposed inAstolfi et al. (2016a) whereas the results proposed in Section 3.5 will appear in[START_REF] Astolfi | Honour of Laurent Praly, chapter "Output regulation via low-power construction[END_REF] and have been written under the co-supervision of Alberto Isidori.
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 33 Figure3.3: Low-power high-gain observer for a system in strict feedback form of dimension 3.

  with ϕ(x) any locally Lipschitz function, namely the system ẋi = x i+1 , i = 1, . . . , n -1 ,

-

  Φx = ΦΓ ξ the resulting error system (3.23) -(3.27) is thus given by ε ẇ = Sw ξ = (F + BΦΓ) ξ + GP w with the matrix F + BΦΓ that is Hurwitz for sufficiently large. Using the fact that S is neutrally stable and that F + BΦΓ is Hurwitz it follows that the state of the previous system reaches a steady state fully described by the state of the noise generator. In particular, denoting by Πε the (2n -2) × m matrix solution of the Sylvester equation Πε S = ε(F + BΦΓ ) Πε + εGP it turns out that lim t→∞ ( ξ(t) -Πε w(t)) = 0 . (3.28) From this it follows that lim t→∞ (e(t) -Π ε w(t)) = 0

  •), Ψ, γ(•)) of the regulator (1.31) fulfilling the requirements (a') and (b) of Section 1.6.1. It is argued that it is known a positive d > 0 and a function ϕ(•) fulfilling (1.30) for some (unknown) function ν(•). As a consequence, by following the observer design (3.6), let m = 2d -2 and, let

Proposition 3. 2 .

 2 Let c(•) in (1.29) be fulfilling 1.30 and let the triplet (φ(•), Ψ, γ(•)) be taken as in(3.36)-(3.38). There exist a choice of the coefficients (c i,1 , c i,2 ), i = 1, . . . , d -1, such that there exist a > 0 so that for all ≥ requirements (a') and (b) of Section 1.6.1 are fulfilled withB = {(w, z, χ) ∈ W × R n × R 2d-2 , z = π(w) , χ = τ e (w)} and the in (1.34) of the form By the indicated choices of the triplet (φ(•), Ψ, γ(•)) in (3.36)-(3.38), it turns

Figure 3

 3 Figure 3.4: Comparison between the behaviours of low-power peaking-free high-gain observer (3.43) and the standard high-gain observer (3.44) with = 10 and measurement noise chosen as ν(t) = 0.05 sin(200t). Plot a): behaviour of e 1 (t) = x1 (t) -s(t) for the low-power high-gain observer (3.43). Plot b): behaviour of e 1 (t) = x1 (t) -s(t) for the standard high-gain observer (3.44). Plot c): behaviour of e 2 (t) = x2 (t) -ṡ(t) for the low-power high-gain observer (3.43). Plot d): behaviour of e 2 (t) = x2 (t) -ṡ(t) for the standard high-gain observer (3.44). Plot e): behaviour of ω (red line) for the low-power high-gain observer (3.43) and value of ω (black line). Plot f): behaviour of ω (red line) for the standard high-gain observer (3.44) and value of ω (black line).

  Consider a linear system of the form ẋ = Ax + Bu + P w e = Cx + Qw (4.1) with the state x ∈ R n , control input u ∈ R m and regulated output y ∈ R p . In order to have a well-posed problem we suppose the number m of inputs is larger or equal than the number p of regulated output (see, for instance, Isidori et al. (2003) for further details), i.e. m ≥ p. The plant (4.1) is affected by an exogenous signal w ∈ R r which may represent disturbances to reject or references to track and it is generated by an autonomous exosystem of the form ẇ = Sw . (4.2) We refer to the problem of output regulation as the problem of finding an output feedback law ξ the equilibrium (x, ξ) = (0, 0) of the unforced closed-loop system ẋ = Ax + BHξ ξ = F ξ + GCx is asymptotically stable (b) the trajectories of the forced closed-loop system ẇ = Sw ẋ = Ax + BHξ + P w ξ = F ξ + GCx + GQw

  the requirements (a) and (b) are satisfied for the plant characterized by the nominal set of parameters {A, B, C, P, Q}, (ii) the requirements (a) and (b) are satisfied for each perturbed set of parameters { A, B, C, P , Q}.

  Figure 4.1: Robust Output Regulation Scheme

  the internal model unit has been designed, we have to design a stabilizer unit for the unforced extended open-loop system ẋ = Ax + Bu η = Φη + ΓCx (4.8) Considering for the time begin the state x is measured, we are left with design a static state feedback law of the form u = Kx + Lη with K and L chosen such that the unforced closed-loop system ẋ = (A + BK)x + BLη η = Φη + ΓCx is asymptotically stable. Existence of such matrices K, L is always guaranteed under the Assumptions 4.1, 4.3 when the numbers of inputs m is larger than the number of outputs p. To go from the state feedback above to the desired output feedback, we can design an observer of the form ẋ = Ax + Bu + L(y -C x)

Theorem 4. 1 .

 1 Consider the nominal plant ẋ = Ax + Bu + P w e = Cx + Qw and suppose Assumptions 4.2, 4.1 and 4.3 hold. Then the regulatorη = Φη + Γe u = -B Rx + B M (η -M x) with M , R solution of M A = ΦM + ΓC , RA + A R = -I ,solves the robust output regulation problem.Proof. By collecting the results of Lemma 4.3 and 4.4 we know that the matrix J defined as in (4.11) is Hurwitz. As a consequence there exists Π, Σ solution of in particular readsΣS = ΦΣ + Γ(CΠ + Q) .By noting that S and Φ have the same eigenvalues and that the pair (Φ, Γ) is controllable we get CΠ + Q = 0 (see Theorem 1.7 and pages 24-26 of[START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF]). Now, by applying the change of coordinatesx → x , x := x -Πw , η → η , η := η -Σwthe closed-loop system reads conclude the output regulation problem is solved. Finally, in order to prove the robustness, we define P as the neighbourhood of (A, B, C, P, Q) such that ( A, B, C, P , Q) ∈ P satisfies Assumptions 4.1 and 4.3 and the matrix J defined asJ = ( A -BB R -BB M M ) BB M Γ C Φis Hurwitz. By applying the same arguments it is possible to prove lim t→∞ e(t) = 0.

  if η j,k is a T -periodic solution of ηj,k = -i k ωη j,k + e j (t) then η j,k (0) = η j,k (T ) = η j,k (0) + T 0 exp(-i k ω t) e j (t) dt meaning that the Fourier coefficients c j,k is zero. Motivated by this consideration we design the internal model unit as a set of p integrators plus a bunch of L oscillators whose frequency are ω and its multiples, namely η0 = e η1 = Φ 1 η 1 + Γ 1 e . . . ηL = Φ L η L + Γ L e (4.16)

  ikω(T + t -s)) e j (s) ds . Since η j k is T -periodic, without loss of generality we pick t = 0 and therefore 0 = T 0 exp(ikωs) e j (s) ds , and by using definition (4.15) we get c j,k = 0 for any k ∈ {0, 1, . . . , L}. The same argument can be used for any i ∈ {1, . . . , p} to complete the first part of the proof.

Lemma 4. 6 .

 6 Under Assumptions 4.4 and 4.5, for any k ∈ N the following expressions define properly C 2 functions M 0 : R n → R p , M k : R n → R 2p , k > 0, k s) Γ k h(x(s), 0) ds .

  k s) Γ k h(X(x, s)) ds is well defined. The same arguments hold for the case k = 0 completing the first part of the proof. Observability of the pair (B M k ) follows by linearizing (4.22)

  and the dynamic regulator given byη0 = e η1 = Φ 1 η 1 + Γ 1 e . . . ηL = Φ L η L + Γ L e u = α(x, η) (4.25) with η = (η 0 , . . . , η L ) ∈ R p(1+2L) and where α can be designed for instance as shown in Section 4.4.

  Proposition 4.4 (Existence of periodic solutions). Consider the system (4.14) under Assumption 4.5, and suppose the origin of the closed-loop system (4.14)-(4.25) is an asymptotically and locally exponentially stable equilibrium point with domain of attraction A = S × R p(1+2L) when w = 0. Then, for any compact set C xη ⊂ A, containing the origin, there exists a real number d 1 > 0 such that, for any T -periodic function t → w(t) satisfying w(•) ∞ ≤ d 1 , there exists a unique T -periodic trajectory (x (t), η (t)) ∈ C xη which is asymptotically stable and locally exponentially stable with B as domain of attraction, with C xη ⊂ B ⊂ A.

Theorem 4. 2 (

 2 Weak practical output regulation problem). Consider the system (4.14) under Assumptions 4.4, 4.5, and suppose the origin of the closed-loop system (4.14)-(4.25) is an asymptotically and locally exponentially stable equilibrium point with domain of attractionA = S × R p(1+2L) when w = 0. Then the regulator (4.25) solves the problem of weak practical output regulation for the system (4.14), namely given a compact set C x ⊂ S and real numbers ū > 0 and d 2 > 0, for any > 0 there exists L > 0 and, for any L ≥ L , there exists ad 1 > 0 such that, for any initial condition (x(0), η(0)) ∈ C x × {0} and for any C 1 function t → w(t) T -periodic with w(•) ∞ ≤ d 1 and ẇ(•) ∞ ≤ d 2 ,the solutions of the closed-loop system (4.14)-(4.25) are bounded, T -periodic and such that (i) c 0 i,k = 0 for all i = 1, . . . , p and k ≤ L; (ii) e(t) 2 ≤ . The proof of the theorem follows by direct application of Proposition 4.1 and 4.4. As already noticed in the proof of Proposition 4.4 the bound d 1 may shrink when augmenting L. As a consequence, given C x , ū > 0, and d 2 > 0, one may implement an optimal recursive algorithm to find the smallest L and the largest d 1 which satisfies e(t) 2 ≤ . With the previous theorems, we can prove that the regulator (4.25) is structurally robust, namely the weak practical output regulation problem is solved for all the systems ẋ = ξ(x, u, w) e = ζ(x, u, w) (4.26) "close enough" to (4.14). In order to state the result on output regulation, we need first to introduce the forthcoming technical Lemma, claiming persistence of the equilibrium for the closed loop system (4.26)-(4.25). This lemma relies on Lemma C.2 given in Appendix C. Lemma 4.7 (Persistence of equilibrium). For any compact sets C and C, the latter being forward invariant for the closed-loop system (4.14)-(4.25), which satisfy {0} C C A , and for any open neighborhood N C of C, contained in A, there exists a strictly positive real number δ such that to any pair (ξ, ζ) of C 1 functions which satisfies |ξ

  ) are in 2 , namely ∞ k=0 |η k (0)| 2 < ∞ . Note that a trivial choice is η k (0) = 0 for all k ∈ N. The proposed regulator based on the forwarding techniques presented in Section 4.4, is

  As a consequence there exists a a class-K function β, linear around the origin, which satisfies |p(z)| ≤ β(|(w, z)| B/D ) , ∀ (w, z) ∈ W × D . Moreover, we denote with b positive real number defined as b := dβ(x) dx x=0 .

  (w(t), z(t)) + g e(t) 2 dt ≤ U (0)On the left hand side each term in the integrand is a function with non negative values and since e(t) and z(t) remain in a bounded compact set, they are uniformly continuous. Hence by applying Barbalat's lemma we getlim t→∞ |e(t)| = 0 , lim t→∞ |(w(t), z(t))| B/D = 0 ,which concludes the proof.

  and ω = 1. The functions f and q are chosen as f (w, z, e) = -z + z 2 e + w -wz , q(w, z, e) = z + e -w + 0.3w 2 .
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 551 Figure 5.1 a) shows the spectrum of the friend ψ(t). It contains harmonics at frequencies f = 0Hz, 1Hz, 2Hz, 3Hz, 4Hz, 5Hz and higher harmonics. Figure 5.1 b) shows the spectrum of the output e when the internal model is disconnected, namely v = 0. As expected it contains harmonics at all frequencies of the friend. Figure 5.1 c) shows the spectrum of the output e in presence of an internal model with L = 2. As expected by the result of Proposition 4.1 the frequencies f = 0Hz, 1Hz, 2Hz disappear from the spectrum. The Figure 5.2 shows a) the steady-state behaviour of the control input u(t) when the internal model is not present, b) when L = 2, and c) when L = 5. It can be easilyseen that by augmenting the number of harmonics the control input u(t) approximates better and better the correct steady-state behaviour of the friend ψ(t). Finally in Table5.1 we show how the L 2 norm and the L ∞ norm of the error change in the aforementioned cases. Table5.1 confirms the result of Proposition 4.1, namely by augmenting the number of oscillators, the L 2 norm of the output reduces. In conclusion, the simulations suggest that by implementing an internal model of infinite dimension, asymptotic regulation is achieved, as expected by Theorem 5.1.
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 52 Figure 5.2: Behaviours of the friend and the control input. Black line: steady-state of the friend ψ(t). Red line: steady-state of the control input u(t) when a) there is no internal model (namely v = 0), b) the dimension of the internal model is L = 2 , c) the dimension of the internal model is L = 5 .

  exp(-λ k T )|x(0)| = 0 for any T > 0, the proof concludes by choosing k satisfying k r µ exp(-λ k T ) max x∈X We give here some examples in which we assign the coefficients according to Lemma A.1. The numerical results are computed by using the matlab code given at the end of Section A.1. It can be verified that these coefficients are also admissible according to Definition A.1. n dim(M ) σ i (P M (λ)) i = 1, . . . , 2n -2 (c i1 , c i2 )

  functions V : A → R ≥0 and U : A → R ≥0 which are proper on A and a classK ∞ function α satisfying α(|x|) ≤ V (x) , V (0) = 0 , α(d(x, C)) ≤ U (x) , U (x) = 0 ∀ x ∈ C , ∂V ∂x (x) ϕ m (x) ≤ -V (x) ∀ x ∈ A , ∂U ∂x (x) ϕ m (x) ≤ -U (x) ∀ x ∈ A .Since C is compact and N ∂C is a neighbourhood of its boundary, there exists a real number ρ > 0 such that the set{ x ∈ A : d(x, C) ∈ (0, ρ ] } is a subset of N ∂C .Then, with the notationsū = sup x∈A: d(x,C) ≤ ρ V (x) , γ = α(ρ) 2ū ,and since α is of class K ∞ , we obtain the implicationsU (x) + γV (x) = α(ρ) =⇒ α(d(x, C)) ≤ U (x) ≤ α(ρ) , =⇒ d(x, C) ≤ ρ , =⇒ V (x) ≤ ū .

x

  strictly positive real number δ such that, for any C 1 function ϕ p : R n → R n which satisfies:|ϕ p (x) -ϕ m (x)| ≤ δ , ∀ x ∈ C,exponentially stable equilibrium point of (C.2) the basin of attraction of which contains the compact set C. Proof. From the arguments used in Lemma C.1, we know there exists a strictly positive real number δ such that if (C.5) holds with δ, then the system (C.2) has at least one equilibrium when δ is sufficiently small. It remains to show that this equilibrium is unique and asymptotically and locally exponentially stable. Let Π be a positive definite symmetric matrix and a a strictly positive real num-Π ≤ -aΠ , λ min (Π) = 1 , where λ max and λ min respectively stand for max and min eigenvalues. By continuity there exists a strictly positive real number p 0 such that we have, for all x satisfying x Πx ≤ p 0 , Let ϕ p : R n → R n be any C 1 function satisfying |ϕ p (x) -ϕ m (xΠϕ p (x) = x Πϕ m (x) + x Π [ϕ p (x) -ϕ m (x)] ≤ x Πϕ m (x(x) -ϕ m (x)] Π [ϕ p (x) -ϕ m (x)]

[

  x e + s(x -x e )] Π[x e + s(x -x e )] ≤ p 0 , ∀(x, x e , s) : s ∈ [0, 1] , x e Πx e ≤ ϕ p (x) = ϕ p (x) -ϕ p (x e ) = + s(x -x e )) ds[x -x e ] and (C.8), we get, for all x satisfying X ΠX ≤ p 0 3 ,[x -x e ] Πϕ p (x) = 1 0 [x -x e ] Π ∂ϕ p ∂x (x e + s(x -x e ))[x -x e ] ds ≤ -a 4 [x -x e ] Π[x -x e ] . Let δ 1 = min a 4 p 0 12λ max (Π) , a 8λ max (Π) ,and reduce p 0 if necessary to have that x satisfying (x e ) Πx e ≤ p 0 is in C. Then (C.5) and (C.6) with δ = δ 1 implies (C.7) and therefore (C.8). We have established that the system (C.2) has an exponentially stable equilibrium with basin of attraction containing the compact set {x ∈ R n : x Πx ≤ p 0 3 }. Now, with ρ and V(x) = U (x) + γV (x) as defined in the proof of Lemma C.1, we let u > 0 be a real number such that we havex Πx ≤ p 0 3 ∀x ∈ A : V(x) ≤ u . (C.10) Let also C = {x ∈ A : u ≤ V(x) , d(x, C) ∈ [ 0, ρ ] } .It is a compact subset of N C ⊂ A. By mimicking the same steps as in the proof of Lemma C.1, we can obtain that, if ϕ p satisfies|ϕ p (x) -ϕ m (x)| ≤ inf x∈C V(x)This implies the compact set {x ∈ A : V(x) ≤ u} is asymptotically stable for the system (C.2) with basin of attraction B containing the compact set {x ∈ A : V(x) ≤ α(ρ)} which contains C. Since, with (C.10), we have {x ∈ A : V (x) ≤ u} ⊂ x ∈ R n : x Πx ≤ p 0 3 .

  is the control input and w ∈ R ρ is a an

	exogenous variable that, in the context of output regulation, is thought of as generated
	by an autonomous system (typically referred to as exosystem) of the form	
	ẇ = s(w)	(1.24)
	whose state ranges in a compact invariant set W ⊂ R ρ . The state component e represents
	the measured output and the regulation error to be steered to zero. It is assumed that
	f (•), q(•), b(•), s(•) are smooth enough functions and that the function b(•) is bounded
	from below, i.e. there exists a strictly positive real numbers b such that	
	b	

Table 3

 3 

	.1: Behaviour of the low-power peaking-free high-gain observer (3.43) when
	ν(t) = 0 for different values of .			
		Standard high-gain observer	
		= 5	= 10	= 100	= 1000
	T 0.01	2.265	0.934	0.122	0.015
	x1 (•) ∞	1.46	1.46	1.51	1.56
	x2 (•) ∞	9.11	18.4	193	1.89 •10 3
	x3 (•) ∞	38.3	153	1.63 •10 4 1.56 •10 6
	x4 (•) ∞	65.1	504	5.37 •10 5 5.09 •10 8
	Table 3.2: Behaviour of the standard high-gain observer (3.44) when ν(t) = 0 for differ-
	ent values of .				

  |w|≤d 1It follows that | ėj (t)| ≤ H j F 0 + D j for all t ≥ 0. Moreover, along any solution, the function t → (e j (t), ėj (t)) is continuous and thus square integrable on [0, T ]. It follows that e j (t) and ėj (t) can be expressed by a Fourier Series

			∂h j ∂x	(x, w) ,
	F 0 =	sup x∈Cx, |w|≤d 1 , |u|≤ū		{f (x, w) + g(x, w)u} ,	(4.17)
	D j =	sup x∈Cx, |w|≤d 1	d 2	∂h j ∂w	(x, w) .

  by combining the results of Theorem 4.2 and the Lemma 4.7 we can show that the structurally robust weak practical output regulation problem is solved, as stated in the forthcoming lemma. It can be seen as a generalization (but in the state-feedback case) of Proposition 3 of[START_REF] Astolfi | Integral Action in Output Feedback for multi-input multioutput nonlinear systems[END_REF] Lemma 4.8 (Structurally robust weak practical output regulation problem). The dynamic regulator (4.25) solves the problem of structurally robust weak practical output regulation for the system (4.14), namely it solves the weak practical output regulation problem for any pair

	(ξ, ζ) of C 1 functions satisfying the assumptions of Lemma 4.7 and such that the matrix
	A -λI B
	C	D
	has independent rows for each λ = ikω, k ∈ {0, 1, . . . , L}, where

  "You cannot always control what goes on outside. But you can always control what goes on inside."

	Wayne Dyer
	5
	Structurally Robust Output
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 5 1: L 2 norm and L ∞ norm of the error.

  Table A.1: Examples of coefficients.

  , Theorem 8.2) that, for each function ϕ p satisfying (C.7), there exits a point x e satisfying ϕ p (x e ) = 0, (x e ) Πx e ≤In this case, we have, for all x satisfying x Πx ≤ p 0 ,

													p 0 6	.	(C.8)
		Assume further that ϕ p satisfies
				∂ϕ p ∂x	(x) -	∂ϕ m ∂x	(x) ≤	a 8λ max (Π)	,	∀x : x Πx ≤ p 0 .	(C.9)
	Π	∂ϕ p ∂x	(x) +	∂ϕ p ∂x	(x) Π =		∂ϕ p ∂x	(x) -	∂ϕ m ∂x	(x) Π
						≤ -	a 4	Π .	+ Π	∂ϕ m ∂x	(x) +	∂ϕ m ∂x	(x) Π + Π	∂ϕ p ∂x	(x) -	∂ϕ m ∂x	x)

  Dans la théorie des observateurs un rôle clé est joué par les observateurs à grand gain. Le but de la première partie de la thèse est d'étudier nouvelles techniques qui permettent de surmonter ou au moins d'atténuer les principaux problèmes qui caractérisent cette classe d'observateurs. Nous proposons une nouvelle classe d'observateurs à grand gain, appelé «low-power», qui permet de surmonter les problèmes numériques, d'éviter le phénomène de peaking et d'améliorer les propriétés de sensibilité aux bruit de mesure à haute fréquence. La deuxième partie de la thèse aborde du problème de la régulation de sortie, qui a été résolu pour les systèmes linéaires au cours des années 70, par Francis et Wonham qui ont énoncé le célèbre «principe de modèle interne». Des solutions constructives ont aussi été proposées dans le cadre non linéaire mais sous des hypothèses restrictives qui réduisent la classe des systèmes auxquels cette méthodologie peut être appliquée. Dans la thèse, nous nous concentrons sur le problème de la régulation de sortie en présence de perturbations périodiques et nous proposons une nouvelle approche qui nous permet de considérer une classe plus large de systèmes non linéaires. La technique obtenue est robuste au sens définit par Francis et Wonham.

with abuse of notation with respect to (1.2)

with abuse of notation with respect to (1.3).

We refer with semi-global to the fact that the compact sets X ∈ R n and U ∈ R m can be taken arbitrarily large.

We use the same notation introduced in the proof of Theorem 1.4.

Notice that the case with a relative degree higher than one can be reduced to the unitary relative degree case by means of a change of variables (see, among the others,[START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF]).

see Sections 1.2 and 1.4

See (1.3) 

For instance, when the control input u is obtained via a backstepping design, seeAstolfi and Praly (2013).

Necessary conditions under which Assumption 2.1 is satisfied in the single-input case (m = 1) are given in Theorem 1.2.

, the convexity property

See the Chapter 5 of[START_REF] Isidori | Nonlinear Control Systems[END_REF] 

We use |z1 -z2| to upper bound cos z2 sin(z1 -z2).

Because of linearity boundedness of the function ϕs(x) is not needed.

Observe that the term (F + BΦ) k-1 grows polynomially in .

Because of linearity boundedness of the function ϕs(x) is not needed.

This conditions is necessary in the linear case. As a consequence we make the same assumption in this nonlinear framework without loss of generality.

Acknowledgements

In view of Theorem 1.7, similarly to the standard high-gain design presented in the Section 1.6.2, the regulator (1.31) with (φ(•), Ψ, γ(•)) obtained from (3.36)-(3.38) guarantees asymptotic regulation if the function ϕ(•) fulfils (1.30) with ν(•) = 0. Otherwise just practical regulation is achieved with a bound on the asymptotic error that can be arbitrarily decreased by increasing κ or d . With respect to the previous case, however, the remarkable feature of the proposed regulator is that the high-gain parameter is powered just up to the order 2 by making the design possible even in presence of large values of d. Note, in particular, that the asymptotic gain relating the term ν(•) to the regulation error is still proportional to 1/ d notwithstanding the regulator is implemented only with terms proportional to and 2 . As a last remark, note that without loss of generality the peaking-free design of Section 3.3 can be adopted in this framework for the functions (φ(•), Ψ, γ(•)).

Part II

Robust Regulation

123 "Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise."

John Tukey

Structurally Robust Output Regulation

T he problem of regulating desired outputs to some references while rejecting other external signals is generically known as output regulation problem. Regulation in the linear (multi-input multi-output) framework has been completely solved by [START_REF] Francis | The internal model principle of control theory[END_REF] during the 70's. In this contribution the authors made also clear what is the internal model principle, i.e. the fact that output regulation property is insensitive to plant parameter variations "only if the controller utilizes feedback of the regulated variable, and incorporates in the feedback path a suitably reduplicated model of the dynamic structure of the exogenous signals which the regulator is required to process".

Regulation in the nonlinear case, however, is somehow still an open problem due to the difficulties of extending the linear paradigm to a more general framework. Equivalent formulation of the regulation problem and the internal model principle in the nonlinear case has been developed during the 80's and especially in the 90's by many authors (see, among the others, [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF]. A breakthrough in the direction of solving the problem of output regulation for uncertain nonlinear systems was the crucial observation made in [START_REF] Khalil | Robustness servomechanism output feedback controllers for a class of feedback linearizable systems[END_REF] (and independently in [START_REF] Huang | Internal model principle and robust control of nonlinear systems[END_REF],

Delli [START_REF] Priscoli | Robust tracking for polynomial plants[END_REF] and Delli [START_REF] Priscoli | Sufficient conditions for robust tracking in nonlinear systems[END_REF]) that internal models must not only be able matrix. In the following, for the sake of simplicity, we will make this choice, recalling that Φ + Φ = 0. Hence, the derivative of V is given by

and by taking

By using La Salle's arguments, we can prove that the state of the system (4.8) in closed loop with (4.10) converges to the largest invariant set contained in

The forthcoming lemma gives a sufficient condition for the asymptotic stability of the closed-loop system (4.8)-(4.10).

Lemma 4.3. Under Assumption 4.1 the unforced closed-loop system

is asymptotically stable if the pair (B M , Φ) is observable.

Proof. By using the previous arguments we can prove that x converges to zero and that η converges to the set B M η = 0

where its dynamics reduces to η = Φη .

Since the pair (B M , Φ) is observable, η(t) identically zero for all t ≥ 0 is the only admissible solution. This prove that the solutions converge to the origin and therefore the closed-loop system is asymptotically stable.

By using the previous lemma we can see that the solution to output regulation problems boils down in proving that the pair (B M , Φ) is observable. As shown in the forthcoming Lemma, this is always guaranteed under the non-resonance conditions.

Lemma 4.4. Let M be solution of (4.9). If Assumptions 4.1 and 4.3 hold, the pair (B M , Φ) is observable.

Proof. Let -λ be an eigenvalue of Φ and let v be its associated eigenvector, i.e.

-λv = Φv. Since Φ is skew-symmetric also λ is an eigenvalue of Φ. Furthermore, Φ = -Φ . As a consequence

Now pre-multiply equation (4.9) by v . We get

Let assume that v is the in right-kernel of M B , i.e.

By collecting the previous relations we get

But this contradicts the Assumption 4.3. As a consequence there is no non-zero

and therefore the PBH observability test

where σ(Φ) denotes the spectrum of Φ, is satisfied, concluding the proof.

The observability of the pair (B M , Φ) is strictly connected to the existence of the regulator equations (4.5), as shown in the forthcoming lemma.

Lemma 4.5. Under the Assumption 4.1, the pair (B M , Φ) is observable if and only if there exist matrices Π, Ψ solution of the regulator equations (4.5) for any matrices P, Q.

Proof. The proof is divided in two parts. First we prove that if the pair (B M , Φ)

is observable then a solution to the regulator equations do exist. Then, we prove the converse. In the following we denote with J the matrix

By using Lemma 4.3, if the pair (B M , Φ) is observable then the matrix J defined is Hurwitz. As a consequence, since the spectrum of S and J are distinct, there always exist Π and Σ solution of the Sylvester equation

ΓQ

The second equation in particular reads

By noting that S and Φ have the same eigenvalues and that the pair (Φ, Γ) is controllable we get CΠ + Q = 0 (see Theorem 1.7 and pages 24-26 of [START_REF] Byrnes | Output Regulation of Uncertain Nonlinear Systems[END_REF]).

The first part of the proof concludes by setting In the next subsection we exploit the fact (ii) showing how to design with forwarding techniques the stabilizer unit for the extended system (4.14)-(4.16).

proper on S. As a consequence, to make it proper, we first define as

and then we replace V (x) by V (x) -V (x) , see [START_REF] Teel | Tools for semi-global stabilization by partial state and output feedback[END_REF]. Unfortunately, in doing so, the domain of definition of this new function V may be a strict subset of S.

In the following we still call S this domain on which V is proper. Furthermore, by following the "linear recipe" of Section 4.1 (see Assumption ??), we suppose that the pre-state feedback u = β(x) is already applied to system (4.19). We call with abuse of notation the function f (x, 0) as f (x, 0) + g(x, 0)β(x) and the following assumption is made.

Assumption 4.4. There exist a C 1 function V : S → R ≥0 which is positive definite and proper on S and a positive definite function

for all x ∈ S.

Again, by following the linear results of Section 4.1, the following non-resonance condition, completely equivalent to Assumption 4.3, is supposed.

Assumption 4.5. The non-resonance condition holds, i.e. the matrix

has independent rows for each λ = ikω, k ∈ {0, 1, . . . , L}, where

By mimicking the linear case, in the forthcoming lemma we define a function

which is the nonlinear extension of the matrix M defined in (4.9). As shown below, this function M k (x) plays a key role in the design of a stabilizer for the system (4.18). In this section we will use the real notation for the internal model unit (4.16).

Asymptotic regulation in the infinite dimensional case

By following a very standard framework of output regulation we consider in this section nonlinear systems with unitary relative degree, i.e. that can be written as

with state z ∈ R n , control input u ∈ R and regulated output e ∈ R. The initial conditions (z(0), e(0)) of the system range in a given compact set Z ×E ⊂ R n ×R and f and q are C 1 functions. We suppose the exogenous signal w evolves in a given compact set W ⊂ R r and that t → w(t) is a T -periodic C 1 function. As commonly assumed in literature (see for instance, Byrnes and Isidori (2003), [START_REF] Byrnes | Nonlinear Internal Models for Output Regulation[END_REF], [START_REF] Marconi | Robust Stabilization via Nonlinear Luenberger Observer[END_REF]), the exogenous signal w can be viewed as generated by an autonomous nonlinear system of the form ẇ = s(w)

which is neutrally stable, though this is not really needed in this framework. We suppose also that the system is strongly minimum phase in the sense defined by the following assumption.

Assumption 5.1. There exists a C 1 function π : R r → R n such that for the system ẇ = s(w)

the set

is asymptotically stable and locally exponentially stable with a domain of attraction W × D with Z ⊂ D.

In this chapter we want to show that we can solve the robust output regulation problem for the class of systems described above by following the "recipe" of Chapter 4, but with a dynamic regulator of infinite dimension. First of all we extend the system (5.1) with a bunch of an infinite number of oscillators

where

where

Moreover, we can write q(z, e) = p e (z, e) + p z (z) , p e (z, e) = q(w, z, e) -q(w, z, 0) , p e (z, e) = 0 ∀ (z, e) ∈ D × {0},

The initial conditions (z(0), x(0), ξ k (0)) now ranges in a compact set Z ×E ×Ξ where Ξ has to be defined. For this, let ê and q be the positive real numbers defined as

In view of Lemma 5.2, for any q we can find a positive real number μ such that

Therefore, for any g ≥ 1, by construction the initial conditions of ξ k (0) ranges inside the compact set Ξ defined as

Appendices

A Technical Lemmas for Block Tridiagonal Matrices

The following appendix is devoted to the study of stability of matrices possessing a particular block tridiagonal structure. Throughout this section we will use the following notation. The matrices

, and C ∈ R 1×2 are defined as

Given the coefficients c i1 and c i2 , i > 0 we define the matrix K i = (c i1 , c i2 ) and the following matrices

We define in a recursive manner the matrices M i as

We denote with M the matrix M i of dimension 2n -2.

A.1 Eigenvalues assignment

Lemma A.1. Let P(λ) = λ 2n-2 + m 1 λ 2n-3 + ... + m 2n-3 λ + m 2n-2 be an arbitrary Hurwitz polynomial. There exists a choice of positive (c i1 , c i2 ), i = 1, . . . , n -1, such that the characteristic polynomial of M coincides with P(λ).

Proof. The proof of this Lemma is done givin a constructive procedure, namely we show a procedure to assign the eigenvalues of M given an arbitrary Hurwitz polynomial for the characteristic polynomial of M .

Procedure to assign the eigenvalues of M Consider the matrices M i ∈ R 2i-2 × R 2i-2 recursively defined as

. . , n -1, and N are defined as in the definition of M . Note that M = M n-1 and, by letting

2i-2 the characteristic polynomials of M i and M i-1 , and we use the notation

The characteristic polynomial of P M i (λ) can be deduced by decomposing (λI -M i ) as follows

.

By expanding the determinant with respect to the last column we obtain

Hence, simple, although lengthy, computations show that the coefficients

where v 1 ∈ R 2i-2 is the zero vector with a 1 in the first position, and F is the zero matrix with the identity matrix I 2i-3 in the lower left block, namely

Note that (I 2i-2 + c i1 F ) is invertible for all c i1 . Hence, from the first equation of (A.2), one obtains

where

which, embedded in the second and in the third of (A.2), yields the relations

in which v 2 ∈ R 2i-2 is the zero vector with a 1 in the last position. We observe that σ 1 (•, •) is a polynomial in c i1 of odd order 2i -1. As a consequence, for any m i

there always exists at least one real c i1 fulfilling σ 1 (m i [1,2i-1] , c i1 ) = 0. The previous results can be used to set up a "basic assignment algorithm" that is then used iteratively to solve the eigenvalues assignment of the matrix M .

Basic assignment algorithm. Let Pi (λ) = λ 2i + mi 1 λ 2i-1 + . . . + mi 2i be an arbitrary polynomial. Then, there exist a real Ki = (c i1 , ci2 ) T and a polynomial Pi-1 (λ) = λ 2i-1 + mi-1

As a matter of fact, by letting mi [1,2i-1] the coefficients of Pi (λ), it is possible to take ci1 as a real solution of σ 1 ( mi

), and to take the coefficients mi-1

With the previous algorithm in hand, the design of K 1 , . . . , K n-1 to assign an arbitrary characteristic polynomial to M , can be then immediately done by the following steps:

1) With Pn-1 (λ) the desired characteristic polynomial of M , compute ( Kn-1 , Pn-2 (λ))

by running the basic assignment algorithm with i = n -1.

2) Compute iteratively ( Ki , Pi-1 (λ)) by running the basic assignment algorithm for i = n -2, . . . , 2.

3

The procedure is summarized in the forthcoming Matlab code.

%% LOW POWER HIGH GAIN OBSERVER %Procedure to find the coefficients of the observer, %given a chosen set of eigenvalues. %INITIALIZATION n = ; %Dimension of the system. Set n>1. dim = 2 * n-2; %Dimension of the observer. lambda_M = zeros(dim,1); %Eigenvalues of the observer. c = zeros(dim,1); %Coefficients of the observer. ell = 1; %High-gain parameter. Put 1 as default %EXAMPLE TO SET THE EIGENVALUES (SKIP IF OTHER CHOICE IS MADE) %In the following code we set all the eigenvalues %between v_min and v_max with a constant step. v_min = -1; % set a negative number v_max = -1.9; % set a negative number smaller then v_min step = (abs(v_max)-abs(v_min))/(dim-1); lambda_M(1) = v_min; for j = 2: dim lambda_M(j) = lambda_M(j-1)-step; end %PROCEDURE TO FIND COEFFICIENTS p = poly(lambda_M); m = zeros(dim,1); for j = 1 : dim m(j) = p(j+1); end for j = 1 : dim m(j) = p(j+1); end if n == 2 c(1) = m(1); c(2) = m(2); elseif n > 2 for iter = 1: n-2; k = dim-2 * iter+2; pp = zeros(k,1); pp(1) = 1; for j = 2 : k pp(j) = (-1)^(j-1) * m(j-1); end r = roots(pp); c(k-1)=0; epsilon = 1e-4; for j=1:k-1 if abs(imag(r(j))) < epsilon c(k-1) = r(j); end end c(k) = c(k-1) * m(k)/m(k-1); if iter < n-2 t = c(k-1); T = eye(k-2); for j=2:k-2 T_j = [zeros(j-1,k-2); eye(k-1-j) zeros(k-1-j,j-1)]; T = T + (-1)^(j-1) * t^(j-1) * T_j; ([ell, ell^2]); N2 = [0 0; 0 1]; K = zeros(2,n-1); Q = zeros(2,dim); E = zeros(2,dim); M = zeros(dim,dim); %Fill the matrices K,E,Q for j = 1 : n-1 K(:,j) = [c(2 * j-1); c(2 * j)]; E(:,2 * j-1:2 * j) = A2 -D2 * K(:,j) * C2; Q(:,2 * j-1:2 * j) = D2 * K(:,j) * H2; end %Fill the matrix M for j = 1 : n-1 M(2 * j-1:2 * j,2 * j-1:2 * j) = E(:,2 * j-1:2 * j); if j< n-1 M(2 * j-1:2 * j,2 * (j+1)-1:2 * (j+1)) = N2; end if j> 1 M(2 * j-1:2 * j,2 * (j-1)-1:2 * (j-1)) = Q(:,2 * j-1:2 * j); end end

A.2 Admissible coefficients

Let G i (iω) and H i (iω) be the transfer functions defined as

and let γ i and β i their H ∞ gains, namely

(A.4)

Definition A.1. The coefficients (c i1 , c i2 ), i = 1, . . . , n -1, are said to be admissible if

The set of admissible coefficients is denoted by G a .

Lemma A.2. The set G a is non-empty.

We show constructively a recursive procedure to assign the coefficients c i1 , c i2 which satisfies the Definition A.1.

i=1) Let c 11 and c 12 be any positive real numbers.

i>1) For i > 1, let c i1 = c (i-1)1 , and let c i2 > 0 be chosen such that c i2 < c i1 γ i-1 , with γ i-1 defined as (A.4).

Proof. To verify that this choice satisfies the Definition A.1 let consider first the case i = 1. By choosing c 11 > 0 and c 12 > 0 the matrix E 1 is Hurwitz, and so is M 1 . Now consider the case i > 1 and the following two systems

and let denote x i = (x i-1 , z i ). Let assume the matrix M i-1 is Hurwitz and note that the matrix E i is Hurwitz for any choice of positive real numbers c i1 , c i2 . The previous systems can be represented by their transfer functions (A.3) with H ∞ gains (A.4). Note that

By interconnecting the two subsystems with u i-1 = y i and u i = y -1 , we obtain a closed loop system described by

The choice of c i2 of the Step i satisfies the small-gain theorem (see, for instance,

and therefore the interconnection (x i-1 , z i ) is asymptotically stable and M i is Hurwitz.

Note that, by using MATLAB, the values of γ i can be easily calculated with the following command:

, n be admissible according to Definition

A.1 and let the matrix Λ i (t) be defined as

with ρ(t) ∈ [0, 1] any continuous function for all t ≥ 0. Then, for any i = 1, . . . , n -1, the origin of the system

is exponentially stablle.

Proof. The system (A.5) can be described as the interconnection of the system

The H ∞ gain of the first system is given by ρ(t)γ i-1

whereas the H ∞ gain of the second system is given by β i . By assumptions we have

and therefore the proof concludes by applying the small-gain theorem in [START_REF] Dragan | A small gain theorem for time-varying systems[END_REF].

Lemma A.4. Let consider the system

with x ∈ R n and for some r ≥ 0 and any k ≥ 1. Suppose that (i) the origin of the system ẋ(t) = A(t)x(t) is globally exponentially stable;

Then for any compact set X ⊂ R n , real numbers T > 0 and > 0 there exists k ≥ 1 such that, for any k ≥ k and for any initial condition x(0

Proof. Let denote with Φ(t, s) the transition matrix of A(t). As consequence of assumption (i) there exist (see Theorem 6.7, [START_REF] Rugh | Linear System Theory[END_REF]) µ > 0 and λ > 0 satisfying

for any t ≥ 0, t 0 ≥ 0. Let denote Φ k (t, s) the transition matrix of kA(t). We have

The solution of (A.6) is given by

and therefore the solution x(t) starting from t 0 = 0 satisfies (B.4) in which ξ 1 = col(ξ 11 , ξ 12 ) ∈ R 2 . Let Θ(r) be the matrix having the form

for all r ∈ R, and then consider the following change of variables

with γ 1 > 0 to be chosen. As a consequence, the system (B.4) in the new coordinates can be rewritten as (from now on we omit the time-dependence in the variables for the purpose of compactness)

Now choose the Lyapunov function

whose time derivative is given by

By coming back in the ξ 1 -coordinates and by using Young's inequality, the above equality can be rewritten as

Given any positive γ 1 , and choosing c n-1,1 > 2γ 1 β α , we can conclude that

with λ 1 = min{2γ 2 1 (c n-1,1 α -2γ 1 β), γ 1 α}. In other words, given P 1 = Θ(γ 1 ) Θ(γ 1 ), the inequality P 1 M 1 (t) + M 1 (t) P 1 ≤ -λ 1 I holds, which completes the proof of Lemma B.2.

Lemma B.3. Assume there exist a symmetric positive definite matrix P i and a positive constant λ i such that P i M i (t) + M i (t) P i ≤ -λ i I. Then there exist coefficients c n-i-1,1 and c n-i-1,2 and a positive definite symmetric matrix P i+1 such that

for some positive constant λ i+1 .

Proof. Consider the interconnected system

where ξ i+1 = col(ξ i+1,1 , ξ i+1,2 ) ∈ R 2 and χ i = col(ξ 1 , . . . , ξ i ) ∈ R 2i . Let's make the following linear coordinate change for the state ξ i+1 in (B.6)

where Θ(γ i+1 ) has the form (B.5) and γ i+1 is a positive constant to be chosen. The system (B.6) in the new coordinates can be rewritten as (again, from now on we omit the time-dependence in the variables for the purpose of compactness)

where Γ i = col(c n-i,1 , c n-i,2 , 0, . . . , 0).

Let us take c

First consider the positive definite function V i = χ i P i χ i , whose time derivative is given by Vi

for some positive δ 1 , independent of γ i+1 and c n-i-1,1 . Next consider the positive definite function

whose time derivative is given by

Then consider the Lyapunov function V i + W i+1 . By choosing γ i+1 such that

and consider the positive definite function

That is,

which completes the proof of Lemma B.3.

C Total Stability Theorems

In this chapter we study how the stability properties of a given model described by

are propagated to a process described by ẋ = ϕ p (x) (C.2) when they are close enough. First, in Lemma C.1, we show the the persistence of equilibria under small perturbations. Then, in Lemma C.2 we show that this equilibria is also unique under stronger conditions. The forthcoming results combine total stability and hyperbolicity and are a variation of (Poulain and Praly, 2010, Theorem 6). They are published in [START_REF] Astolfi | Integral Action in Output Feedback for multi-input multioutput nonlinear systems[END_REF]. All this implies that V is a Lyapunov Function for (C.1) on A in the sense of (Wilson, 1967, Page 324) and that the sublevel set {x ∈ A : V(x) ≤ α(ρ)} is contained in N ∂C ∪ C. It follows from (Wilson, 1967, Corollary 2.3) (thanks to the contribution of [START_REF] Freedman | The topology of four-dimensional manifolds[END_REF] and Perelman [START_REF] Morgan | Ricci Flow and the Poincaré Conjecture[END_REF] the restriction on the dimension is not needed) that the level set {x ∈ A : V(x) = α(ρ)} is homeomorphic to the unit sphere. But, with the fact that the origin is asymptotically stable and the arguments used in the proof of [START_REF] Wilson | The structure of the level surfaces of a Lyapunov function[END_REF]