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Résumé

Le but de cette thèse est de montrer comment certaines méthodes d’optimisation récentes
permettent de résoudre des problèmes d’estimation di�ciles posés par l’étude d’évènements
aléatoires dans le temps. Alors que le cadre classique de l’apprentissage supervisé traite les
observations comme une collection de couples indépendants de covariables et de labels, les
modèles d’évènements s’intéressent aux temps d’arrivée, à valeurs continues, de ces évène-
ments et cherchent à extraire de l’information sur la source de donnée. Ces évènements datés
sont liés par la chronologie, et ne peuvent dès lors être considérés comme indépendants. Ce
simple constat justiÆe l’usage d’un outil mathématique particulier, appelé processus ponctuel,
pour apprendre une structure à partir de ces évènements.

Deux exemples de processus ponctuels sont étudiés dans cette thèse. Le premier est le
processus ponctuel sous-jacent au modèle de Cox à risques proportionnels : son intensité
conditionnelle permet de déÆnir le ratio de risque, une quantité fondamentale dans la littéra-
ture de l’analyse de survie. Le modèle de régression de Cox relie la durée avant l’apparition
d’un évènement, appelé défaillance, aux covariables d’un individu. Ce modèle peut être re-
formulé à l’aide du cadre des processus ponctuels. Le second est le processus de Hawkes qui
modélise l’impact des évènements passés sur la probabilité d’apparition d’évènements futurs.
Le cas multivarié permet d’encoder une notion de causalité entre les di�érentes dimensions
considérées.

Cette thèse est divisée en trois parties. La première s’intéresse à un nouvel algorithme
d’optimisation que nous avons développé. Il permet d’estimer le vecteur de paramètre de
la régression de Cox lorsque le nombre d’observations est très important. Notre algorithme
est basé sur l’algorithme SVRG et utilise une méthode MCMC pour approcher la direction
de descente. Nous avons prouvé des vitesses de convergence pour notre algorithme et avons
montré sa performance numérique sur des jeux de données simulées et issues du monde
réel. La deuxième partie montre que la causalité au sens de Hawkes peut être estimée de
manière non-paramétrique grâce aux cumulants intégrés du processus ponctuel multivarié.
Nous avons développé deux méthodes d’estimation des intégrales des noyaux du processus de
Hawkes, sans faire d’hypothèse sur la forme de ces noyaux. Nos méthodes sont plus rapides
et plus robustes, vis-à-vis de la forme des noyaux, par rapport à l’état de l’art. Nous avons
démontré la consistance statistique de la première méthode, et avons montré que la deuxième
peut être réduite à un problème d’optimisation convexe. La dernière partie met en lumière les
dynamiques de carnet d’ordre grâce à la première méthode d’estimation non-paramétrique
introduite dans la partie précédente. Nous avons utilisé des données du marché à terme
EUREX, déÆni de nouveaux modèles de carnet d’ordre (basés sur les précédents travaux de
Bacry et al.) et appliqué la méthode d’estimation sur ces processus ponctuels. Les résultats
obtenus sont très satisfaisants et cohérents avec une analyse économétrique. Un tel travail
prouve que la méthode que nous avons développée permet d’extraire une structure à partir
de données aussi complexes que celles issues de la Ænance haute-fréquence.

v



Abstract

The aim of this thesis is to show how recent optimization methods help solving tough es-
timation problems based on the event models. While the classical framework of supervised
learning treats the observations as a collection of covariate and label independent pairs, event
models only focus on the arrival dates of these events and then seek to extract information
about the data source. These timestamped events are ordered chronologically and can not
therefore be considered independent. This simple fact justiÆes the use of a particular mathe-
matical tool called point process to learn some structure from these events.

Two examples of point processes are studied in this thesis. The Ærst is the underlying point
process in the Cox model with proportional hazards: its conditional intensity allows to deÆne
the risk ratio, a fundamental quantity in the literature of the survival analysis. The Cox
regression model links the duration before the occurrence of an event, called failure, to an
individual’s covariates. This model can be reformulated using the framework of point pro-
cesses. The second is the Hawkes process, which models the impact of past events on the
probability of future events. The multivariate case makes it possible to encode a notion of
causality between the di�erent dimensions considered.

This thesis is divided into three parts. The Ærst focuses on a new optimization algorithm we
have developed. It allows to estimate the parameter vector of the Cox regression when the
number of observations is very important. Our algorithm is based on the Stochastic Variance
Reduced Gradient (SVRG) algorithm and uses a Monte Carlo Markov Chain (MCMC) method
to approximate the descent direction. We have proved convergence rates for our algorithm
and have shown its numerical performance on simulated and real world data sets. The
second part shows that the Hawkes causality can be estimated in a non-parametric way by the
integrated cumulants of the multivariate point process. We have developed two methods for
estimating the integrals of the kernels of the Hawkes process, without making any hypothesis
about the shape of these kernels. Our methods are faster and more robust, with respect to the
shape of the kernel, compared to the state-of-the-art. We have demonstrated the statistical
consistency of the Ærst method, and have shown that the second method can be reduced to a
convex optimization problem. The last part highlights the dynamics of the order book thanks
to the Ærst non-parametric estimation method introduced in the previous section. We used
EUREX futures data, deÆned new order book models (based on previous work by Bacry et al.)
and applied the estimation method on these point processes. The results obtained are very
satisfactory and consistent with an econometric analysis. This work proves that the method
that we have developed makes it possible to extract a structure from data as complex as those
resulting from high-frequency Ænance.
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Introduction

The guiding principle of this thesis is to show how the arsenal of recent optimization methods
can help solving challenging new estimation problems on events models. While the classical
framework of supervised learning [HTF09] treat the observations as a collection of indepen-
dent couples of features and labels, events models focus on arrival timestamps to extract
information from the source of data. These timestamped events are chronologically ordered
and can’t be regarded as independent. This mere statement motivates the use of a particular
mathematical object called point process [DVJ07] to learn some patterns from events. Let us
begin by presenting and motivating the questions on which we want to shed some light in this
thesis.

Motivations

The amount of data being digitally collected and stored is vast and expanding rapidly. The
use of predictive analytics that extract value of this data, often referred as the data revo-
lution, has been successfully applied in astronomy [FB12], retail sales [MB+12] and search
engines [CCS12], among others. Healthcare institutions are now also relying on data to build
customized and personalized treatment models using tools from survival analysis [MD13].
Medical research often aims at uncovering relationships between the patient’s covariates and
the duration until a failure event (death or other adverse e�ects) happen. The information
that some patients did not die during the study is obviously relevant, but can’t be casted in
a regression problem where one would need to observe the lifetime for all patients. This has
been circumvented in [Dav72], one of the most cited scientiÆc paper of all time [VNMN14],
with its proportional hazards model that is regarded as a regression that can also extract in-
formation from censored data, i.e. patients whose failure time is not observed. An estimation
procedure of the parameter vector of the regression without any assumption on the baseline
hazard, regarded sometimes as a nuisance parameter, was introduced in [Cox75] and is done
via the maximization of the partial likelihood of the model. Such procedure can e�ciently
handle high-dimensional covariates, which happens with biostatistics data, by adding penal-
ization terms to the criterion to minimize [Goe10, Tib96]. However, algorithms to maximize
Cox partial likelihood does not scale well when the number of patients is high, on the con-
trary to most algorithms that enabled the data revolution. We might thus ask ourselves the
following question:

1



Introduction

Question 1. How to adapt Cox proportional hazards model regression parameter estimation algo-
rithm to the large-scale setting ?

Few years before the twentieth century, the French sociologist Durkheim already argued that
human societies were like biological systems in that they were made up of interrelated com-
ponents [Dur97]. Now that our technology enabled us to be remotely connected, plenty of
Æelds involve networks, like social networks, information systems, marketing, epidemiology,
national security, and others. A better understanding of those large real-world networks and
processes that take place over them would have paramount applications in the mentioned
domains [Rod13]. The observation of networks often reduces to noting when nodes of the
network send a message, buy a product or get infected by a virus. We often observe where
and when but not how and why messages are sent over a social network. Event data from
multiple providers can however help uncovering the joint dynamics and revealing the un-
derlying structure of a system. One way to recover the inØuence structure between di�erent
sources is to use a kind of point process named Hawkes process [Haw71b, Haw71a], whose
arrival rate of events depend on the past events. Hawkes processes have been succesfully
applied to model the mutual inØuence between earthquakes with di�erent times and magni-
tudes [Oga88]. Namely, it encodes how an earthquake increases the occurence’s probability of
new earthquakes in the form of aftershocks, via the use of Hawkes kernels. Hawkes processes
also enable measuring what we call Hawkes causality i.e. the average number of events of
type i that are trigerred by events of type j . Hawkes process have been succesfully applied
in a broad range of domains, the two main applications model interactions within social
networks [BBH12, ZZS13, ISG13] and Ænancial transactions [BMM15]. However, usual estima-
tion of Hawkes causality is done by making strong assumptions on the shape of the Hawkes
kernels to simplify the inference algorithm [ZZS13]. A common assumption is the monotonic
decreasing shape of the kernels (exponential or power-law), meaning that an event impact
is always instantly maximal, which is non-realistic since in practice there may exist a delay
before the maximal impact. This leads to the following question:

Question 2. Can we retrieve Hawkes causality without parametrizing the kernel functions ?

To answer positively to the second question, we developed two new nonparametric estimation
methods for Hawkes causality, faster and which scales better with a large number of nodes.
In this part, we only focus on the Ærst one, for which we have proved a consistency result.
Since Bowsher’s pioneering work [Bow07], who recognized the Øexibility and the simplicity
of using Hawkes processes in order to model the joint dynamics of trades and mid-price
changes of the NYSE, Hawkes processes have steadily gained in popularity in the domain of
high frequency Ænance, see [BMM15] for a review. Indeed, taking into account the irregular
occurences of transaction data requires to consider it as a point process. Besides, in the
Ænancial area, plenty of features that summarize empirical Ændings are already known. For
instance, the Øow of trades is known to be autocorrelated and cross-correlated with price
moves. Such features called stylized facts, from the economist Nicholas Kaldor [Kal57] who
referred to statistical trends that need to be taken into account despite a possible lack of
microscopic understanding. These stylized facts can advantageously be captured using the
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notion of Hawkes causality. Understanding the order book dynamics is one of the core ques-
tion in Ænancial statistics, and previous nonparametric representations of order books with
multivariate Hawkes processes were low-dimensional because of their estimation method’s
complexity. The nonparametric estimation of Hawkes causality introduced in the second part
of this thesis is fast and robust to kernel functions’ shape, and it is natural to wonder what
kind of stylized facts it can uncover from order book timestamped data.

Question 3. Can we draw a more precise picture of order book Øows dynamics using Hawkes
causality’s nonparamatric estimation introduced in the second part ?

Outline

Each question presented above corresponds to a part of the thesis.

In Part I, we answer Question 1 by introducing a new stochastic gradient descent algorithm
applied to the maximization of regularized Cox partial-likelihood, see details below. Indeed,
the regularized Cox partial log-likelihood writes as a sum of subfunctions which depend on
varying length sequences of observation, on the contrary to the usual empirical risk minimiza-
tion framework where subfunctions depend on one observation. Classical stochastic gradient
descent algorithms are less e�ective in our case. We adapt the algorithm SVRG [JZ13] [XZ14]
by adding another sampling step: each subfunction’s gradient is estimated using a Monte
Carlo Markov Chain (MCMC). Our algorithm achieves linear convergence once the number
of MCMC iterations is bigger than an explicit lower bound. We illustrate the outperformance
of our algorithm on survival datasets.

Answers to Question 2 lie in Part II where we study two nonparametric estimation procedures
for Hawkes causality. Both methods are based on the computation of the integrated cumulants
of the Hawkes process and taking advantage of relations between the integrated cumulants
and the Hawkes causality matrix. The Ærst approach relies on matching the second and third
order empirical integrated cumulants with their theoretical counterparts. This is done via
the minimization of the squared norm of the di�erence between the two terms, which can be
viewed as a Generalized Method of Moments [Hal05]. However, the optimization problem to
solve is non-convex providing thus an approximate solution to the exact initial problem. This
second approach is based on the completion of the Hawkes causality matrix using the Ærst and
second integrated cumulants. The relaxation of the exact problem writes as a convex opti-
mization problem which enables us to provide the exact solution of this approximate problem.

Finally, in Part III, we apply the Ærst method developed in Part II to high-frequency order book
data from the EUREX exchange. We apply the procedure to Æt a 12-dimensional Hawkes order
book model for a single asset and estimate the inØuence of the di�erent events on each other.
Such order book model is a natural extension of the 8-dimensional model studied in [BJM16].
We then scale the dimension so as to account for events of two assets simultaneously and
discuss the joint dynamics and the cross-asset e�ects. Usual nonparametric methods [BM14b]
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[RBRGTM14] focus on the estimation of the kernel functions, and prevent order book model’s
dimension from being too large and/or the dataset from being too heavy. Our nonparametric
method only estimates kernels’ integral, involves a lighter computation and then scales better
with a large number of nodes or large number of events. We also show that the Hawkes
causality matrix provides a very rich summary of the system interactions. It can thus be a
valuable tool in understanding the underlying structure of a system with many type of events.

Let us now rapidly review the main results of this thesis.

1 Part I: Large-scale Cox model

Many supervised machine learning problems can be cast into the minimization of an ex-
pected loss over a data distribution. Following the empirical risk minimization principle, the
expected loss is approximated by an average of losses over training data, and a major success
has been achieved by exploiting the sum-structure to design e�cient stochastic algorithms
[Bot10]. Such stochastic algorithms enable a very e�cient extraction of value from massive
data. Applying this to large-scale survival data, from biostatistics or economics, is of course
of great importance.

In Chapter I, we review the recent advances in convex optimization with Stochastic Gradient
Descent (SGD) algorithms, from the pioneering work of [RM51] to the recent variants with
variance reduction [DBLJ14] [XZ14] [SSZ13] [RSB12]. We then introduce the notion of Point
Process [DVJ07] which provides key tools for modeling events i.e. timestamps and/or locations
data. We Ænally introduce the Cox proportional hazards model [Dav72] that relates the time
that passes before some event occurs to one or more covariates via the notion of hazard rate.
In Chapter II, we introduce our new optimization algorithm to help Ætting large-scale Cox
model.

1.1 Background on SGD algorithms, Point Processes and Cox proportional
hazards model

In this chapter, we review the classic results behind Stochastic Gradient Descent algorithms
and its variance reduced adaptations. We then introduce Cox proportional hazards model.

1.1.1 Stochastic Gradient Descent algorithms

SGD algorithms from a general distribution A variety of statistical and machine learning
optimization problems writes

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = Eª[`(µ,ª)],

where f is a goodness of Æt measure depending implicitly on some observed data, h is a reg-
ularization term that imposes structure to the solution and ª is a random variable. Typically,
f is a di�erentiable function with a Lipschitz gradient, whereas h might be non-smooth -
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1. Part I: Large-scale Cox model

typical examples include sparsity inducing penalty - such as the `
1

penalization.

First-order optimization algorithms are all variants of Gradient Descent (GD), which can be
traced back to Cauchy [Cau47]. Starting at some initial point µ0, this algorithm minimizes a
di�erentiable function f by iterating the following equation

µt+1 = µt °¥
t

r f (µt

). (1)

where r f (µ) stands for the gradient of f evaluated at µ and (¥
t

) is a sequence of step sizes.
Stochastic Gradient Descent (SGD) algorithms focus on the case where r f is intractable or at
least time-consuming to compute. Noticing that r f (µ) writes as an expectation, one idea is
to approximate the gradient in the update step (1) with a Monte Carlo Markov Chain [AFM17].
For instance, replacing the exact gradient r f (µ) with its MCMC estimate has enabled a sig-
niÆcant step forward in training Undirected Graphical Models [Hin02] and Restricted Boltz-
mann Machines [HS06]. This Ærst form of Stochastic Gradient Descent is called Contrastive
Divergence in the mentionned contexts.

SGD Algorithms from the uniform distribution Most machine learning optimization
problems involve a data Ætting loss function f averaged over sample points because of the
empirical risk minimization principle [Vap13]. Namely, the objective function writes

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = 1

n

nX

i=1

f

i

(µ),

where n is the number of observations, and f

i

is the loss associated to the i

th observation.
In that case, instead of running MCMC to approximate r f , one uniformly samples a ran-
dom integer i between 1 and n and replace r f (µ) with r f

i

(µ) in the update step (1). In
the large-scale setting, computing r f (µ) at each update step represents the bottleneck of the
minimization algorithm, and SGD helps decreasing the computation time. Assuming that
the computation of each r f

i

(µ) costs 1, the computation of the full gradient r f (µ) costs n,
meaning that SGD’s update step is n times faster than GD’s one.

The comparison of the convergence rates is however di�erent. Consider f twice di�erentiable
on Rd , µ-strongly-convex, meaning that eigenvalues of the Hessian matrix r2

f (µ) are greater
than µ> 0 for any µ 2Rd , and L-smooth, meaning that the same eigenvalues are smaller than
L > 0. Convergence rates with other assumptions on the function f can be found in [B+15].
We denote µ§ its minimizer and deÆne the condition number as ∑ = L/µ. The convergence
rate is deÆned for iterative methods as a tight upper bound of a pre-deÆned error, and is
regarded as the speed at which the algorithm converges. Denoting µt the iterate after t steps
of an iterative algorithm and considering the di�erence E f (µt

)° f (µ§) as error, Gradient De-
scent’s convergence rate is O(e

°t/∑
), while Stochastic Gradient Descent’s one is O(∑/t ). A

convergence rate of the form O(e

°Æt

) with Æ > 0 is called linear convergence rate since the
error decrease after one iteration is at worst linear. Equivalently, convergence rates can be
phrased as the total complexity to reach a Æxed accuracy i.e. the number of iterations after
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which the di�erence E f (µt

)° f (µ§) becomes smaller than ≤> 0 multiplied by the complexity
per iteration. The algorithm Gradient Descent will reach the accuracy ≤ after O

°
∑ log

1

≤

¢
iter-

ations resulting in a O

°
nd∑ log

1

≤

¢
complexity, while Stochastic Gradient Descent reachs such

accuracy after O

°
∑
≤

¢
iterations and then a O

≥
d∑
≤

¥
complexity.

Recently, di�erent works improved Stochastic Gradient Descent using variance reduction
techniques from Monte Carlo methods. The idea is to add a control variate term to the descent
direction to improve the bias-variance tradeo� in the approximation of the real gradient
r f (µ). Those variants also enjoy linear convergence rates, and then smaller complexities (to
reach accuracy ≤) than Gradient Descent since the complexity per iteration of those algorithms
is O(d) versus O(nd) for Gradient Descent. Those typically typically enjoy complexity of the
form O

°
(n +∑)d log

1

≤

¢
in the strongly-convex case, see [SLRB17, JZ13, DBLJ14, SSZ13].

1.1.2 Point processes

Point process is a useful mathematical tool to describe phenomena occuring at random loca-
tions and/or times. A point process is a random element whose values are point patterns on
a set S. We present here the useful results when the set S is the interval [0,T ), and points are
timestamps of events; this special case is sometimes called temporal point process. The book
[DVJ07] is regarded as the main reference on point processes’ theory.

Every realization of a point process ª can be written as ª = P
n

i=1

±
t

i

where ± is the Dirac
measure, n is an integer-valued random variable and t

i

’s are random elements of [0,T ). It
can be equivalently represented by a counting process N

t

=
R

t

0

ª(s)d s =P
n

i=1

1
{t

i

∑t }

. The usual
characterization of temporal point process is done via the conditional intensity function, which
is deÆned as the inÆnitesimal rate at which events are expected to occur after t , given the
history of N

s

prior to t :

∏(t |F
t

) = lim

h!0

P(N

t+h

°N

t

= 1|F
t

)

h

,

where F
t

is the Æltration of the process that encodes information available up to (but not
including) the time t . The most simple temporal point process is the Poisson process which
assumes that the events arrive at a constant rate, which corresponds to a constant instensity
function ∏

t

= ∏ > 0. Note that temporal point processes can also be characterized by the
distribution of interevent times i.e. the duration between two consecutive events. We remind
that the distribution of interevent times of a Poisson process with intensity ∏ is an exponential
distribution of parameter ∏. See the Page 41 of [DVJ07] for four equivalent ways of deÆning a
temporal point process.

Two examples of temporal point process are treated in this thesis. The Ærst is the point process
behind Cox proportional hazards model: its conditional intensity function allows to deÆne
the hazard ratio, a fundamental quantity in survival analysis literature, see [ABGK12]. The
Cox regression model relates the duration before an event called failure to some covariates.
This model can be reformulated in the framework of point processes [ABGK12]. The second

6



1. Part I: Large-scale Cox model

is the Hawkes process which models how past events increase the probability of future events.
Its multivariate version enables encoding a notion of causality between the di�erent nodes.
We introduce below the Cox proportional hazards model, and the Hawkes processes in Part
II.

1.1.3 Cox proportional hazards model

Survival analysis focuses on time-to-event data, such as the death in biological organisms and
failure in mechanical systems, and is now widespread in a variety of domains like biometrics,
econometrics and insurance. The variable we study is the waiting time until a well-deÆned
event occurs, and the main goal of survival analysis is to link the covariates, or features, of a
patient to its survival time T .

Following the theory of point processes, we deÆne the intensity as the conditioned probability
that a patient dies immediately after t , given that he was alive before t :

∏(t ) = lim

h!0

P(t ∑ T ∑ t +h|t ∑ T )

h

.

The most popular approach, for some reasons explained below, is Cox proportional hazards
model [Dav72]. The Cox model assumes a semi-parametric form for the hazard ratio at time
t for the patient i , whose features are encoded in the vector x

i

2Rd :

∏
i

(t ) =∏
0

(t )exp(x

>
i

µ),

where ∏
0

(t ) is a baseline hazard ratio, which can be regarded as the hazard ratio of a patient
whose covariates are x = 0. One estimation approach considers ∏

0

as a nuisance and only
estimates µ via maximizing a partial likelihood [Dav72]. This way of estimating suits clinical
studies where physicians are only interested in the e�ects of the covariates encoded in x

on the hazard ratio. This can be done with computing the ratio of hazard ratios from two
di�erent patients:

∏
i

(t )

∏
j

(t )

= exp((x

i

°x

j

)

>µ)

For that reason, Cox model is said to be a proportional hazards model.

However, maximizing this partial likelihood is a hard problem when we deal with large-scale
(meaning a large number of observations n) and high-dimensional (meaning large d ) data.
To tackle the high-dimensionality, sparse penalized approaches have been considered in the
literature [Tib96] [T+97] [Goe10]. The problem is now to minimize the negative of the partial
log-likelihood f (µ) = °`(µ) with a penalization h(µ) that makes the predictor µ to become
sparse and then select variables. We will discuss this approach and the di�erent models in
Chapter II. On the contrary, approaches to tackle the large-scale side of the problem do not
yet exist.
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1.2 SVRG beyond Empirical Risk Minimization

Survival data (y

i

, x

i

,±
i

)

npat

i=1

contains, for each individual i = 1, . . . ,npat, a features vector x

i

2
Rd , an observed time y

i

2 R+, which is a failure time if ±
i

= 1 or a right-censoring time if
±

i

= 0. If D = {i : ±
i

= 1} is the set of patients for which a failure time is observed, if n = |D|
is the total number of failure times, and if R

i

= { j : y

j

∏ y

i

} is the index of individuals still at
risk at time y

i

, the negative Cox partial log-likelihood writes

°`(µ) = 1

n

X

i2D

h
°x

>
i

µ+ log

≥ X

j2R

i

exp(x

>
j

µ)

¥i
(2)

for parameters µ 2Rd . Each gradient of the negative log-likelihood then writes as two nested
expectations: one from an uniform distribution over D , the other over a Gibbs distribution,
see Chapter II for details.

Our minimization algorithm is doubly stochastic in the sense that gradient steps are done
using stochastic gradient descent (SGD) with variance reduction, and the inner expectations
are approximated by a Monte Carlo Markov Chain (MCMC) algorithm. We derive conditions
on the MCMC number of iterations guaranteeing convergence, and obtain a linear rate of
convergence under strong convexity and a sublinear rate without this assumption.

2 Part II: Uncover Hawkes causality without parametrization

In Chapters III and IV, we study two methods to uncover causal relationships from a multi-
variate point process. We focus on one approach per chapter.

2.1 Hawkes processes

In order to model the joint dynamics of several point processes (for example timestamps of
messages sent by di�erent users of a social network), we will consider the multidimensional
Hawkes model, introduced in 1971 in [Haw71a] and [Haw71b], with cross-inØuences between
the di�erent processes. By deÆnition a family of d point processes is a multidimensional
Hawkes process if the intensities of all of its components write as linear regressions over the
past of the d processes:

∏i

t

=µi +
DX

k=1

Z
t

0

¡i j

(t ° s)d N

j

s

.

Another way to construct Hawkes processes is to consider the following population represen-
tation, see [HO74]: individuals of type i , 1 ∑ i ∑ d , arrive as a Poisson process of intensity
µi . Every individual can have children of all types and the law of the children of type i of an
individual of type j who was born or migrated in t is an inhomogeneous Poisson process of
intensity ¡i j

(·° t ).
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2. Part II: Uncover Hawkes causality without parametrization

This construction is nice because it yields a natural way to deÆne and measure the causality
between events in the Hawkes model, where the integrals

g

i j =
Z+1

0

¡i j

(u) du ∏ 0 for 1 ∑ i , j ∑ d .

weight the directed relationships between individuals. Namely, introducing the counting func-
tion N

i√ j

t

that counts the number of events of i whose direct ancestor is an event of j , we
know from [BMM15] that

E[d N

i√ j

t

] = g

i jE[d N

j

t

] = g

i j§ j

d t , (3)

where we introduced §i as the intensity expectation, satisfying E[d N

i

t

] =§i

d t . However in
practice, the Hawkes kernels are not directly measurable from the data and these measures
of causality between the di�erent kinds of events are thus inaccessible.

In the literature, there are main two classes of estimation procedures for Hawkes kernels: the
parametric one and the nonparametric one. The Ærst one assumes a parametrization of the
Hawkes kernels, the most usual assumes the kernels are decaying exponential, and estimate
the parameter via the maximization of the Hawkes log-likelihood, see for example [BGM15]
or [ZZS13]. The second one is based either on the numerical resolution of Wiener-Hopf
equations which links the Hawkes kernels to its correlation structure [BM14b] (or equivalently
on the approximation of the Hawkes process as an Autoregressive model and the resolution
of Yule-Walker equations [EDD17]), or on a method of moments via the minimization of the
contrast function deÆned in [RBRGTM14].

In Chapters III and IV, we propose two new nonparametric estimation methods to infer the
integrals of the kernels using only the integrated moments of the multivariate Hawkes process.

For all estimation procedures mentionned above, including ours, we need the following sta-
bility condition so that the process admits a version with a stationary intensity:

Assumption 1. The spectral norm of G = [g

i j

] satisÆes ||G || < 1.

2.2 Generalized Method of Moments approach

A recent work [JHR15] proved that the integrated cumulants of Hawkes processes can be
expressed as functions of G = [g

i j

], and provided the constructive method to obtain these
expressions. The Ærst approach we developed in this part is a moment matching method that
Æts the second-order and the third-order integrated cumulants of the process. To that end, we
have designed consistent estimators of the integrated Ærst, second and third cumulants of the
Hawkes process. Their theoretical counterparts are polynomials of R = (I °G)

°1, as shown in

9



Introduction

[JHR15]:

§i =
dX

m=1

R

i mµm

C

i j =
dX

m=1

§m

R

i m

R

j m

K

i j k =
dX

m=1

(R

i m

R

j m

C

km +R

i m

C

j m

R

km +C

i m

R

j m

R

km °2§m

R

i m

R

j m

R

km

).

Once we observe the process N
t

for t 2 [0,T ], we compute the empirical integrated cumulants
on windows [°H

T

, H

T

], and minimize the squared di�erence L
T

between the theoretical cu-
mulants and the empirical ones. We have proven the consistency of our estimator in the limit
T !1, once the sequence (H

T

) satisÆes some conditions. Our problem can be seen as a
Generalized Method of Moments [Hal05].

To prove the consistency of the empirical integrated cumulants, we need the following as-
sumption:

Assumption 2. The sequence of integration domain’s half-length satisÆes H

T

!1 and H

2

T

/T !
0.

We prove in Chaper III the following theorem of consistency.

Result 1. Under Assumptions 1 and 2, the sequence of estimators deÆned by the minimization of
L

T

(R) converges in probability to the true value G :

bG
T

= I °
µ
argmin

R2£
L

T

(R)

∂°1

P°°°°!
T!1

G

The numerical part, on both simulated and real-world datasets, gives very satisfying results.
We Ærst simulated event data, using the thinning algorithm of [Oga81], with very di�erent ker-
nel shape - exponential, power law and rectangular - and recover the true value of G for each
kind of kernel. Our method is, to the best of our knowledge, the most robust with respect
to the shape of the kernels. We then ran our method on the 100 most cited websites of the
MemeTracker database, and on Ænancial order book data: we outperformed state-of-the-art
methods on MemeTracker and extracted nice and interpretable features from the Ænancial
data. Let also mention that our method is signiÆcantly faster (roughly 50 times faster) since
previous methods aim at estimating functions while we only focus on their integrals.

The simplicity of the method, that maps a list of list of timestamps to a causality map between
the nodes, and its statistical consistency, incited us to design new point process models of
order book and capture its dynamics. The features extracted using our method have very
insightful economic interpretation. This is the main purpose of the Part III.
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3. Part III: Capture order book dynamics with Hawkes processes

2.3 Constrained optimization approach

The previous approach based on the Generalized Method of Moments need the Ærst three
cumulants to obtain enough information from the data to recover the d

2 entries of G . Assum-
ing that the matrix G has a certain structure, we can get rid of the third order cumulant and
design another estimation method using only the Ærst two integrated cumulants. Plus, the
resulting optimization problem is convex, on the contrary to the minimization of L

T

above,
which enables the convergence to the global minimum. The matrix we want to estimate min-
imize a simple criterion f convex, typically a norm, while being consistent with the Ærst two
empirical integrated cumulants.

We formulate our problem as the following constrained optimization problem:

min

G
f (G)

s.t. C = (I °G)

°1L(I °G>
)

°1

||G || < 1

g

i j ∏ 0

where f (G) is a norm that provides a particular structure to the solution. Every matrix G
satisfying C = (I °G)

°1L(I °G>
)

°1 equals I ° L1/2MC°1/2 with M an orthogonal matrix.
Instead of the previous problem, we now focus on its convex relaxation, we split the variables
G and M , and solve the problem with the Alternating Direction Method of Multipliers algorithm,
see [GM75] and [GM76]:

min

G ,M
f (G)+ B(M)+ B(G)+ Rd£d

+
(G)

s.t. G = I °L1/2 M C°1/2

,

where B (resp. B) is the open (resp. closed) unit ball w.r.t. the spectral norm. The closed
unit ball w.r.t. the spectral norm is indeed the convex hull of the orthogonal group.

On the contrary to the optimization problem of the previous chapter, the problem just stated
is convex. We test this procedure on numerical simulations of various Hawkes kernels and
real order book data, and we show how the criterion f impact the matrices we retrieve.

3 Part III: Capture order book dynamics with Hawkes processes

Chapter V focus on the estimation of Hawkes kernels’ integrals on Ænancial data, using the
estimation method introduced in Chapter III. This in turn allowed us to have a very precise
picture of the high frequency order book dynamics. We used order book events associated
with 4 very liquid assets from the EUREX exchange, namely DAX, EURO STOXX, Bund and
Bobl future contracts.

11



Introduction

3.1 A single asset 12-dimensional Hawkes order book model

As a Ærst application of the procedure described in Chapter III, we consider the following 12-
dimensional point process, a natural extension of the 8-dimensional point process introduced
in [BJM16]:

N
t

= (T

+
t

,T

°
t

,L

+
t

,L

°
t

,C

+
t

,C

°
t

,T

a

t

,T

b

t

,L

a

t

,L

b

t

,C

a

t

,C

b

t

)

where each dimension counts the number of events before t :

• T

+ (T °): upwards (downward) mid-price move triggered by a market order.

• L

+ (L°): upwards (downward) mid-price move triggered by a limit order.

• C

+ (C°): upwards (downward) mid-price move triggered by a cancel order.

• T

a (T b ): market order at the ask (bid) that does not move the price.

• L

a (Lb ): limit order at the ask (bid) that does not move the price.

• C

a (C b ): cancel order at the ask (bid) that does not move the price.

We then use the causal interpretation of Hawkes processes to interpret our solution as a
measure of the causality between events. This application of the method to this new model
revealed the di�erent interactions that lead to the high-frequency price mean reversion, and
those between liquidity takers and liquidity makers.

For instance, one observes the e�ects of T

+ events on other events on Figure A.1 (in the Ærst
columnn on the left). The most relevant interactions are the T

+ ! L

+ and T

+ ! L

°: the
latter is more intense and related to the mean-reversion of the price. Indeedn when a market
order consumes the liquidity available at the best ask, two main scenarios can occur for the
mid-price to change again, either the consumed liquidity is replaced, reverting back the price
(mean-reverting scenario, highly probable) or the price moves up again and a new best bid is
created.

3.2 A multi-asset 16-dimensional Hawkes order book model

The nonparametric estimation method introduced in Chapter III allows a fast estimation for
a nonparametric methodology. We then scale up the model so as to account for events on
two assets simultaneously and unveil a precise structure of the high-frequency cross-asset
dynamics. We consider a 16-dimensional model, made of two 8-dimensional models of the
form

N
t

= (P

+
t

,P

°
t

,T

a

t

,T

b

t

,L

a

t

,L

b

t

,C

a

t

,C

b

t

)

where the dimension P

+ (P°) counts upwards (downward) mid-price move triggered by any
order.

We compared two couples of assets that share exposure to the same risk factors. The main
empirical result of this study concerned the couple (DAX, EURO STOXX) for which price

12



3. Part III: Capture order book dynamics with Hawkes processes

Figure .1: Kernel norm matrix G estimated for the DAX future with H = 1s.

changes and liquidity changes on the DAX (small tick) mainly inØuence liquidity on the EURO
STOXX (large tick), while price changes and liquidity changes on the EURO STOXX tend to
trigger price moves on the DAX. We ran the estimation procedure on the 16-dimensional
model, we focus our discussion on the two non-diagonal 8£8 submatrices on Figure A.2 that
correspond to the interaction between the assets - the subscript D stands for DAX and X for
EURO STOXX.

The most striking feature emerging from Figure A.2 is the very intense relation between
same-sign price movements on the two assets. Another notable aspect is the di�erent e�ects
of price moves and liquidity changes of one asset on events on the other asset. Price moves
on the DAX have also an e�ect on the Øow of limit orders on EURO STOXX (P+

D

! L

b

X

and P

+
D

!C

a

X

), whereas EURO STOXX price moves triggers mainly DAX price moves in the
same direction (P+

X

! P

+
D

). An important aspect for understanding this result is the di�erent
perceived tick sizes on the two assets. Note that the e�ects observed above can be explained
with the notion of latent price [RR10], see Chapter V for further details.
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Introduction

Figure .2: Submatrices of the Kernel norm matrix G corresponding to the e�ect of DAX events
on EUROSTOXX STOXX events (left) and vice versa (right).
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Large-scale Cox model
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CHAPTER I

Background on SGD algorithms, Point
Processes and Cox proportional hazards

model

1 SGD algorithms

Objectives that are decomposable as a sum of a number of terms come up often in applied
mathematics and scientiÆc computing. They are particularly prevalent in machine learning
applications, where one wants to minimize the average loss function over all observations.
In the last two decades research on optimisation problems with a summation structure has
focused more on the stochastic approximation setting, where the summation is assumed to
be over an inÆnite set of terms [NJLS09, DS09, BCN16, Bot98]. The Ænite sum case has seen
a resurgence in recent years after the discovery that there exist fast stochastic incremental
gradient methods whose convergence rates are better deterministic Ærst order methods. We
provide a survey of fast stochastic gradient methods in the later parts of this section.

1.1 DeÆnitions

In this work, we particularly focus on problems that have convex objectives. This is a major
restriction, and one at the core of much of modern optimization theory. The primary rea-
sons for targeting convex problems are their widespread use in applications and their relative
ease of solving them. For convex problems, we can almost always establish theoretical re-
sults giving a practical bound on the amount of computation time required to solve a given
convex problem [NN94]. Convex optimisation is still of interest when addressing non-convex
problems though: many algorithms that were developed for convex problems, motivated by
their provably fast convergence have later been applied to non-convex problems with good
empirical results [GBC16].

We denote r f the gradient of f , r2

f its Hessian matrix and ||·|| the Eucliean norm. Let now
deÆne some useful notions.
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I. Background on SGD algorithms, Point Processes and Cox proportional hazards model

DeÆnition 1. A function f is L-smooth with L > 0 if f is di�entiable and its gradient is Lipschitz
continuous, that is

8µ,µ0 2Rd

, ||r f (µ)°r f (µ0)||∑ L||µ°µ0||.

If the function f is twice di�erentiable, the deÆnition can be equivalently written:

8µ 2Rd

, |eigenvalues[r2

f (µ)]|∑ L.

The other assumption we will sometimes make is that of strong convexity.

DeÆnition 2. A function f is µ-strongly convex if:

8µ,µ0 2Rd

,8t 2 [0,1], f (tµ+ (1° t )µ0) ∑ t f (µ)+ (1° t ) f (µ0)° t (1° t )

µ

2

||µ°µ0||2.

If f is di�erentiable, the deÆnition can be equivalently written:

8µ,µ0 2Rd

, f (µ0) ∏ f (µ)+r f (µ)

>
(µ0 °µ)+ µ

2

||µ0 °µ||2.

If the function f is twice di�erentiable, the deÆnition can be equivalently written:

8µ 2Rd

, |eigenvalues[r2

f (µ)]|∏µ.

Gradient descent based algorithms can be easily extended to non-di�erentiable objectives F

if they write F (µ) = f (µ)+h(µ) with f convex and di�erentiable, and h convex and non-
di�erentiable whose proximal operator is easy to compute.

DeÆnition 3. Given a convex function h, we deÆne its proximal operator as

prox
h

(x) = argmin

y

∑
h(y)+ 1

2

||x ° y ||2
∏

,

which is well-deÆned because of the strict convexity of the `
2

-norm.

The proximal operator can be seen as a generalization of the projection. Indeed, if h = 0

on C and h = 1 on ¯C , prox
h

is exactly the projection over C . The computation of the
proximal operator is also an optimization problem, but when the function h is simple enough,
the proximal operator has a closed form solution. Using these proximal operators, most
algorithms enjoy the same theoretical convergence rates as if the objective was di�erentiable
(i.e. F (µ) = f (µ)).

1.2 SGD algorithms from a general distribution

A variety of statistical and machine learning optimization problems writes

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = Eª[`(µ,ª)],
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1. SGD algorithms

where f is a goodness of Æt measure depending implicitly on some observed data, h is a
regularization term that imposes structure to the solution and ª is a random variable. Typi-
cally, f is a di�erentiable function with a Lipschitz gradient, whereas h might be non-smooth
(typical examples include sparsity inducing penalty).

First-order optimization algorithms are all variants of Gradient Descent (GD), which can be
traced back to Cauchy [Cau47]. Starting at some initial point µ0, this algorithm minimizes
a di�erentiable function by iterating steps proportional to the negative of the gradient, as
explained in Algorithm 1.

Algorithm 1 Gradient Descent (GD)

initialize µ
while not converged do

µ√ µ°¥r f (µ)

end while
return µ

Stochastic Gradient Descent (SGD) algorithms focus on the case where r f is intractable or at
least time-consuming to compute. Noticing that r f (µ) writes as an expectation like f , one
idea is to approximate the gradient in the update step in Algorithm 1 with a Monte Carlo
Markov Chain [AFM17]. Replacing the exact gradient r f (µ) with its MCMC estimate is a
general approach that enabled a signiÆcant step forward in training Undirected Graphical
Models [Hin02] and Restricted Boltzmann Machines [HS06]. This form of Stochastic Gradi-
ent Descent is called Contrastive Divergence in the mentionned context.

Approximating the gradient of an expectation, sometimes named the score function [CH79], is
a recurrent task for many other problems. Among them, we can cite posterior computation in
variational inference [RMW14], value function and policy learning in reinforcement learning
[PB11], derivative pricing [BG96], inventory control in operation research [Fu06] and optimal
transport theory [GM98].

1.3 SGD algorithms from a uniform distribution

Most machine learning optimization problems involve a data Ætting loss function f averaged
over the uniform distribution, for instance when f is the average loss function over each
observation of the data set. Namely, the optimization problem to solve writes

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = 1

n

nX

i=1

f

i

(µ),

where n is the number of observations, and f

i

is the loss associated to the i

th observation.
In that case, instead of running MCMC to approximate r f , one uniformly samples a random
integer i between 1 and n and replace r f (µ) with r f

i

(µ) in the update step, as shown in
Algorithm 2. In the litterature, Stochastic Gradient Descent implicitly refers to the uniform
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I. Background on SGD algorithms, Point Processes and Cox proportional hazards model

distribution case. In the large-scale setting, computing r f (µ) at each update step represents
the bottleneck of the minimization algorithm, and SGD helps decreasing the computation
time.

Algorithm 2 Stochastic Gradient Descent (SGD)

initialize µ as the zero vector
while not converged do

pick i ªU [n]

µ√ µ°¥r f

i

(µ)

end while
return µ

Assuming the computation of each r f

i

(µ) costs 1, the computation of the full gradient r f (µ)

costs n, meaning SGD’s update step is n times faster than GD’s one.

The comparison of the convergence rates is however di�erent. Consider f L-smooth and con-
vex and denote µ§ its minimizer. We deÆne the condition number ∑= L/µ. The convergence
rate is measured via the di�erence f (µt

)° f (µ§). Using the algorithm Gradient Descent with
¥= 1/L, the convergence rates are:

f (µt

)° f (µ§) ∑O

µ
1

t

∂
,

f (µt

)° f (µ§) ∑O

°
e

°t/∑¢ if f is µ-strongly convex.

The latter convergence rate which geometrically decrease the error is called linear convergence
rate since the error decrease after one iteration is at worst linear. The convergence (in
expectation) of the sequence (µt

) produced by the algorithm Stochastic Gradient Descent
need the step sizes to decrease to zero a speciÆc way, see [RM51] for a general characterization.
The convergence rate of stochastic algorithms is measured via the di�erence E f (µt

)° f (µ§).
Assuming each function f

i

is L-Lipschitz (and not L-smooth) and f is convex, denoting
µ

t = 1

t

P
t

u=1

µu , the convergence rates of Stochastic Gradient Descent are:

E f (µt

)° f (µ§) ∑O

µ
1

p
t

∂
with ¥

t

= 1

L

p
t

,

E f (µt

)° f (µ§) ∑O

≥∑
t

¥
with ¥

t

= 1

µt

if f is µ-strongly convex.

Convergence rates with other assumptions on the function f can be found in [B+15]. Recently,
di�erent works improved Stochastic Gradient Descent using variance reduction techniques
from Monte Carlo methods. The idea is to add a control variate term to the descent direction
to improve the bias-variance tradeo� in the approximation of the real gradient r f (µ). Those
variants also enjoy linear convergence rates with constant step-sizes.
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1. SGD algorithms

1.4 SGD with Variance Reduction

The control variable is a variance reduction technique used in Monte Carlo methods [Gla13].
Its principle consists in estimating the population mean E(X ) while reducing the variance of
sample of X by using a sample from another variable Y with known expectation. We deÆne
a family of estimators

ZÆ =Æ(X °Y )+E(Y ) Æ 2 [0,1],

whose expectation and variance equal

E(Z

a

) =ÆE(X )+ (1°Æ)E(Y ),

V(Z

a

) =Æ2

[V(X )+V(Y )°2cov(X ,Y )].

The case Æ= 1 provides an unbiased estimator, while 0 <Æ< 1 implies ZÆ to be biased with
reduced variance. This control variates is particularly useful when Y is positively correlated
with X .

The authors of [JZ13] observed that the variance induced by SGD’s descent direction can only
decrease to zero if decreasing step sizes are used, which prevents from linear convergence
rate. In their work, they propose a variance reduction approach on the descent direction
so as to use constant step sizes and obtain a linear convergence rate. The algorithms SAG
[RSB12, SLRB17], SVRG [JZ13, XZ14], SAGA [DBLJ14] and SDCA [SSZ13] can be phrased with
the variance reduction approach described above. Update steps of SAG, SAGA and SVRG
with i ªU [n] respectively write this way:

(SAG) µ√ µ°¥
√
r f

i

(µ)° y

i

n

+ 1

n

nX

j=1

y

j

!

,

(SAGA) µ√ µ°¥
√

r f

i

(µ)° y

i

+ 1

n

nX

j=1

y

j

!

,

(SVRG) µ√ µ°¥
√

r f

i

(µ)°r f

i

(

˜µ)+ 1

n

nX

j=1

r f

j

(

˜µ)

!

.

From the control variate interpreation, we observe that SAG’s descent direction is a biased
estimate (Æ= 1/n) of the gradient r f (µ), while SAGA’s and SVRG’s ones are unbiased (Æ= 1).

Stochastic Average Gradient (SAG) At each iteration, the algorithm SAG [RSB12] com-
putes one gradient r f

i

with the up-to-date value of µ, like SGD, and then descend in the
direction of the average of the most recently computed gradients r f

j

with equals weights, see
Algorithm 3. Even though some gradients in the summation haven’t been updated recently,
the algorithm enjoys a linear convergence rate in the strongly-convex case. SAG can be re-
garded as a stochastic version of Incremental Average Gradient [BHG07], which has the same
update with a di�erent constant factor, and with cyclic computation of the gradient instead of
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I. Background on SGD algorithms, Point Processes and Cox proportional hazards model

randomised. The convergence rates in the convex and strongly-convex cases with ¥= 1/(16L)

respectively involves the average iterate µ
t

and the iterate µt :

E f (µ
t

)° f (µ§) ∑O

µ
1

t

∂

E f (µt

)° f (µ§) ∑O

≥
e

°t

°
1

8n

^ 1

16∑

¢¥
if f is µ-strongly convex.

The algorithm SAG is adaptative to the level of convexity of the problem, as it may be used
with the same step size on both convex and strongly convex problems.

Algorithm 3 Stochastic Average Gradient (SAG)

initialize µ as the zero vector, y

i

=r f

i

(µ) for each i

while not converged do
µ√ µ° ¥

n

P
n

j=1

y

j

pick i ªU [n]

y

i

√r f

i

(µ)

end while
return µ

Stochastic Variance Reduced Gradient (SVRG) The SVRG algorithm [XZ14, JZ13] is a
recent stochastic gradient algorithm with variance reduction with linear convergence rate,
given in Algorithm 4. Unlike SAG and SAGA, there is another parameter m to tune, which
controls the update frequency of the control variate ˜µ. The algorithm S2GD [KR13] was
developed at the same time, and has the same update as SVRG. The di�erence lies in the
update of the control variate ˜µ:

• Option I: ˜µ is the average of the µ values from the last m iterations, used in [JZ13].

• Option II: ˜µ is a randomly sampled µ from the last m iterations, used for S2GD [KR13].

Consider f µ-strongly convex, a step size ¥ < 1/(2L), and assume m is su�cently large so
that

Ω = 1

µ¥(1°2L¥)m

+ 2L¥

1°2L¥
< 1,

then the SVRG algorithm has a linear convergence rate if t is a multiple of m:

E f (

˜µt

)° f (µ§) ∑O

°
Ωt/m

¢
.

Let us mention that SVRG does not require the storage of full gradients, on the contrary to
SDCA, SAG and SAGA. The algorithm just stores the gradient r f (

˜µ) and re-evaluates the
gradient r f

i

(

˜µ) at each iteration.
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1. SGD algorithms

Algorithm 4 Stochastic Variance Reduced Gradient (SVRG)

initialize µ and ˜µ as zero vectors, t as zero
while not converged do

pick i ªU [n]

µ√ µ°¥(r f

i

(µ)°r f

i

(

˜µ)+r f (

˜µ))

t √ t +1

if t is a multiple of m then
update ˜µ with option I or II

end if
end while
return µ

SAGA The algorithm SAGA [DBLJ14], described in Algorithm 5, enjoys a linear convergence
rate in the strongly convex case, like SAG and SVRG, but it has the advantage with respect
to SAG that it allows non-smooth penalty terms such as `

1

regularization. The proof of the
convergence rate is easier as well, especially because SAG’s descent direction is a biased esti-
mate of the gradient, while SAGA’s one is unbiased. As SAG, the algorithm SAGA maintains
the current iterate µ and a table of historical gradients.

The convergence rate of the algorithm SAGA writes:

E f (µt

)° f (µ§) ∑O

≥
n

t

¥
with ¥= 1

3L

,

E||µt °µ§||2 ∑O

≥
e

° t

2(n+∑)

¥
with ¥= 1

2(µn +L)

if f is µ-strongly convex.

Algorithm 5 SAGA

initialize µ as the zero vector, y

i

=r f

i

(µ) for each i

while not converged do
pick i ªU [n]

µ√ µ°¥
≥
r f

i

(µ)° y

i

+ 1

n

P
n

j=1

y

j

¥

y

i

√r f

i

(µ)

end while
return µ

Composite case In the paragraphs above, we gave the convergence rates of the algorithm
in the smooth case i.e. when the objective function to minimize is a smooth function. When
the objective function is not smooth, one writes it as the sum of its smooth part f (µ) and
its non-smooth part h(µ). One can easily adapt the previous algorithms by computing the
gradient of the smooth part f and then project the iterate using the proximal operator of the
non-smooth part h. This adds a projection step µ√ prox

h

(µ) at the end of each iteration.
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I. Background on SGD algorithms, Point Processes and Cox proportional hazards model

Fortunately, the convergence rates stay the same, except for the algorithm [SLRB17], for which
the authors haven’t proved the convergence rate.

2 Point Processes

Point processes are useful to describe phenomena occurring at random locations and/or times.
A point process is a random element whose values are point patterns on a set S. We present
here the deÆnitions and the useful results from point processes’ theory. For further details,
the book [DVJ07] is regarded as the main reference in the area of point processes.

2.1 DeÆnitions

Let S be a locally compact metric space equipped with its Borel æ-algebra B. Let X

S

be
the set of locally Ænite counting measures on S, and N

S

the smallest æ-algebra on X

S

such
that all point counts f

B

: X

S

! N, ! 7! #(!\B) are measurable for B relatively compact in
B. A point process on S is a measurable map ª from a probability space (≠,F ,P) to the
measurable space (X

S

,N
S

).

Every realization of a point process ª can be written as ª = P
n

i=1

±
X

i

where ± is the Dirac
measure, n is an integer-valued random variable and X

i

’s are random elements of S. A point
process can be equivalenty represented by a counting process: N (B) :=

R
B

ª(x)d x, which basi-
cally is the number of events in each Borel subset B 2 B. The mean measure M of a point
process ª is a measure on S that assigns to every B 2B the expected number of events of ª
in B , i.e., M(B) := E[N (B)] for all B 2B.

For inhomogeneous Poisson process, M(B) =
R

B

∏(x)d x, where the intensity function ∏(x) yields
a positive measurable function on S. Intuitively speaking, ∏(x)d x is the expected number of
events in the inÆnitesimal d x. For the most common type of point process, a homogeneous
Poisson process, ∏(x) =∏ and M(B) =∏|B |, where | · | is the Lebesgue measure on (S,B). More
generally, we deÆne Cox point processes - also known as doubly stochastic Poisson processes - as
a generalization of Poisson processes where the intensity ∏(x) is itself a stationary stochastic
process. Then, conditional on ∏, the doubly stochastic Poisson process is simply an inho-
mogenous Poisson process with intensity ∏(x).

2.2 Temporal Point Processes

A particular interesting case of point processes is given when S is the time interval [0,T ),
which we will call a temporal point process. Here, a realization is simply a set of time points:
ª = P

n

i=1

±
t

i

. With a slight notation abuse we will write ª = {t

1

, . . . , t

n

} where each t

i

is a
random time before T , and we deÆne N

t

= P
ø2ª1ø∑t

the associated counting process. The
conditional intensity function is the usual way to characterize temporal point processes where
the present depends on the past. It is deÆned as the expected inÆnitesimal rate at which
events are expected to occur after t , given the history of the counting process N

t

prior to t .
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Namely,

∏(t |F
t

) = lim

d t!0

P(N

t+d t

°N

t

= 1|F
t

)

d t

,

where F
t

is the natural Æltration of the process, it represents the information available up
to (but not including) the time t . The conditional intensity function is sometimes denoted
∏§

(t ). The most simple temporal point process is the homogeneous Poisson process which as-
sumes that the events arrive at a constant rate, which corresponds to a constant intensity
function ∏(t |F

t

) = ∏§
(t ) = ∏ > 0. More generally, we deÆne the inhomogeneous Poisson pro-

cess for which the conditional intensity function depends on t but not on the history i.e.
∏(t |F

t

) =∏§
(t ) =∏(t ).

The conditional intensity turns out to be interesting for multiple reasons. First, it is a conve-
nient characterization of a temporal point process since it describes what is locally happening
at t and is easy to interpret as an instantaneous probability. Secondly, the conditional in-
tensity can be used for simulating a temporal point process: the basic idea is to simulate
a Poisson process and use the cumulative conditional intensity to time scale the interevent
times [Oga81]. Thirdly, the likelihood function can be expressed on closed form using the
conditional intensity: if the point process is deÆned on [0,T ), then the likelihood and the
log-likelihood functions are given by

L(ª) =
√

nY

i=1

∏§
(t

i

)

!

exp

µ
°

Z
T

0

∏§
(s)d s

∂
, logL(ª) =

nX

i=1

log∏§
(t

i

)°
Z

T

0

∏§
(s)d s.

Finally, the conditional intensity function is useful for many other purposes, like a goodness-
of-Æt test known as residual analysis for point processes [Oga88], or the conditional distri-
bution of interevent times between events [DVJ07]. We can also deÆne the compensator §(t )

of the point process, with respect to F
t

, as the integral of the conditional intensity function:
§(t ) =

R
t

0

∏§
(s)d s. We remind that N

t

°§(t ) is then a F
t

-martingale.

We remind that the distribution of interevent times of a Poisson process with intensity ∏ is
an exponential distribution of parameter ∏. More generally, we denote f

§
(t ) the conditional

probability density function of the interevent time, t

n

the last event that occured and T the
random next one, F

§
(t ) = P(t

n

∑ T ∑ t |F
t

) the conditional cumulative density function, and
S

§
(t ) = 1°F

§
(t ) =P(T ∏ t |F

t

) the survival function. Now,

∏§
(t ) = lim

h!0

P(t ∑ T ∑ t +h|T ∏ t )

h

= lim

h!0

1

h

P(t ∑ T ∑ t +h)

P(T ∏ t )

= lim

h!0

µ
1

h

f

§
(t )h

S

§
(t )

+o(1)

∂

= f

§
(t )

1°F

§
(t )

.
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Conversely, we can write the likelihood function of the next event using the conditional
intensity function:

f

§
(t ) =∏§

(t )exp

µ
°

Z
t

t

n

∏§
(s)d s

∂
.

This last formula enables writing a point process’s realization’s likelihood, already introduced
above.

3 Cox proportional hazards model

3.1 Survival analysis

Survival analysis focuses on time-to-event data, such as the death in biological organisms and
failure in mechanical systems, and is now widespread in a variety of domains like biometrics,
econometrics and insurance [ABGK12]. The variable we study is the waiting time until a
well-deÆned event occurs, and the main goal of survival analysis is to link the covariates, or
features, of a patient to its survival time. We denote T the random variable of the time of
death, we deÆne the survival function as:

S(t ) =P(t ∑ T ).

However, and fortunately, not all a�ected patients die during a medical study and some pa-
tients can also leave the study before its end: we say that these observations are right-censored,
in the sense that for some units the event of interest has not occured at the time the data are
analyzed. The information about censored individual is incomplete, but it is still an informa-
tion because one knows that an individual survived at least until the date he left the study.
We will only study this kind of censoring in this part 1. Let us now consider the probabilistic
formulation for our framework: let T be a non-negative random variable representing the
waiting time until the occurrence of an event (we will refer to this event as failure and to
this waiting time as failure time). However, we don’t always observe the random variable T

since the patient can leave the study - before its death - at time C called the censoring time.
Actually, we do observe T ^C and we know if the patient died or left the study i.e. we know
±=

{T∑C }

. We also assume that T and C are independent. We can now describe the model
using counting processes.

Let (≠,F ,P) be a probability space and (F
t

)

t∏0

a Æltration satisfying the usual conditions.
Let N be a point process with compensator § with respect to (F

t

)

t∏0

so that N °§ is a
(F

t

)

t∏0

-martingale. We denote (T

1

, ...,T

n

) i .i .d . copies of the random variable of interest T ,
corresponding to n di�erent patients of a medical study for instance, (C

1

, ...,C

n

) i .i .d . copies
of the censoring variable C and we deÆne for each patient i : ±

i

=
{T

i

∑C

i

}

, the counting
process N

i

(t ) = ±
i {T

i

^C

i

∑t }

, and Y

i

(t ) =
{T

i

^C

i

∏t }

, which is a predictable process. To under-
stand the behavior of the counting process N

i

(t ), we introduce its intensity Æ
i

(t ) deÆned as
1There are other types of censoring. For instance, left-censoring means the patient died or left the study

before being observed : neglecting left-censoring will lead to overestimation of the survival time.
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3. Cox proportional hazards model

the conditional probability that the patient i dies immediately after t , given that he was alive
before t :

Æ(t ) = lim

h!0

P(t ∑ T ∑ t +h|t ∑ T )

h

=°S

0
(t )

S(t )

Since the process can jump only once, the intensity of N

i

(t ) takes the form Æ
i

(t ) =∏
i

(t )Y

i

(t ),
where ∏

i

(t ) is called the hazard ratio. We also introduce the cumulative hazard §
i

(t ) =R
t

0

∏
i

(s)d s, which can be seen as the sum of the risks faced from 0 to t . Survival analysis
generally aims at estimating either S(t ) or ∏(t ) (or §(t )) given the observations of n indi-
viduals. Many approachs exist: the parametric one, which assumes that the functions can
be described with a Ænite and small number of parameters, the nonparametric one, which
assumes that the function of interest belongs to a certain class of smooth functions and the
semi-parametric one, that has parametric and non-parametric components. The most pop-
ular approach, for some reasons explained below, is Cox proportional hazards model. The
Cox model [Dav72] assumes a semi-parametric form for the hazard ratio at time t for the
patient i , whose features are encoded in the vector x

i

2Rd :

∏
i

(t ) =∏
0

(t )exp(x

>
i

µ)

where ∏
0

(t ) is a baseline hazard ratio, which can be regarded as the hazard ratio of a patient
whose covariates x = 0. Two estimation approachs exist: either estimating ∏

0

and µ which
can be done via maximizing the full likelihood of the model [RZ11] [She15], or considering ∏

0

a nuisance and only estimating µ via maximizing a partial likelihood L(µ) [Dav72]. This way
of estimating suits clinical studies where physicians are only interested in the e�ects of the
covariates encoded in x on the hazard ratio. This can be done with computing the ratio of
hazard ratios from two di�erent patients:

∏
i

(t )

∏
j

(t )

= exp((x

i

°x

j

)

>µ)

For that reason, Cox model is said to be a proportional hazards model.

However, maximizing such functions is a hard problem when we deal with large-scale (mean-
ing large n) and high-dimensional (meaning large d ) data. To tackle to high-dimensionality,
sparse penalized approaches have been considered in the literature [Tib96] [T+97] [Goe10].
The problem is now to minimize the negative of the partial log-likelihood °`(µ) with a pe-
nalization that make the predictor µ become sparse and then select variables. We will discuss
further this approach and the di�erent models. On the contrary, approaches to tackle the
large-scale side of the problem do not yet exist. We give an answer to this question in the
following chapter.

3.2 Existing methods

The maximization of the partial likelihood L

P

(µ) introduced in [Dav72] enables the estimation
of µ - without the estimation of ∏

0

. The partial likelihood writes:

L

P

(µ) =
nY

i=1

√
exp(x

>
i

µ)

P
j2R

i

exp(x

>
j

µ)

!±
i

(1)
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I. Background on SGD algorithms, Point Processes and Cox proportional hazards model

We prove in appendix that the negative of the partial log-likehood is convex, then the issue of
Ænding the µ that match our data can be expressed as a classical convex optimization problem.
We will consider the problem of maximizing the partial likelihood of the Cox model in the
rest of this chapter.

However, in case of large-scale (meaning large n) and high-dimensional (meaning large p)
data, this function becomes hard to maximize. To tackle to high-dimensionality, sparse
penalized approaches have been considered in the literature. The problem is now to minimize
the negative of the partial log-likelihood °`(µ)+pen(µ) i.e.

1

n

nX

i=1

±
i

"

°x

>
i

µ+ log

√
X

j2R

i

exp(x

>
j

µ)

!#

+pen(µ)

where pen(µ) is a penalization term that make the predictor µ become sparse and then select
variables. For instance, the sparse penalties Lasso [Tib96] [T+97], Elastic-Net [SFHT11] [YZ12],
SCAD [FL01], Adaptative Lasso [Zou06], Graphical Lasso [FHT08], SLOPE [BvdBS+15] and
others.

Indeed, the Lasso penalty [Tib96]

penlasso(µ) =∏||µ||
1

can be used to obtain a penalized partial likelihood estimator bµ [Goe10]. The lasso penalty
tends to select only a few nonzero coe�cients and does not handle well very correlated pre-
dictors: it will pick one and ignore the other.

Another well-known penalty called Ridge penalty penridge(µ) = ∏
2

||µ||2
2

tends to shrink all
coe�cients to zero and give equal weights to very correlated predictors. Zhou and Hastie
[SFHT11] combined the strengths of the two approaches with the Elastic-Net penalty, where
Æ 2 [0,1] controls the behavior of the penalty:

pene-net(µ) =∏

µ
Æ||µ||

1

+ 1

2

(1°Æ)||µ||2
2

∂

The authors of [GTPV14] studied electronic medical records and used a sparse penalty which
encodes the a priori relationship between predictors i and j : A

i j

= 1 if predictors i and j

share a temporal or well-known relation, A

i j

= 0 otherwise.

pen(µ) =∏
1

||µ||
1

+ 1

2

∏
2

X

i , j

A

i j

(µ
i

°µ
j

)

2

These methods handle the high-dimensional side of the dataset, but don’t look relevant
when the number of patients n is large. Indeed, the higher the number of examples n, the
higher the time to compute the sum of loss functions (here, the negative of the penalized
log-likelihood) and time can be the limiting factor when one envisions very large datasets.
In the next chapter, we introduce a new stochastic algorithm with variance reduction that
enables a faster minimization of the negative partial likelihood of the Cox model.
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CHAPTER II

Large-scale Cox model

Abstract

We introduce a doubly stochastic proximal gradient algorithm for optimizing a Ænite
average of smooth convex functions, whose gradients depend on numerically expensive
expectations. Indeed, the e�ectiveness of SGD-like algorithms relies on the assumption
that the computation of a subfunction’s gradient is cheap compared to the computation
of the total function’s gradient. This is true in the Empirical Risk Minimization (ERM)
setting, but can be false when each subfunction depends on a sequence of examples. Our
main motivation is the acceleration of the optimization of the regularized Cox partial-
likelihood (the core model in survival analysis), but other settings can be considered as
well.

The proposed algorithm is doubly stochastic in the sense that gradient steps are
done using stochastic gradient descent (SGD) with variance reduction, and the inner
expectations are approximated by a Monte-Carlo Markov-Chain (MCMC) algorithm. We
derive conditions on the MCMC number of iterations guaranteeing convergence, and
obtain a linear rate of convergence under strong convexity and a sublinear rate without
this assumption.

We illustrate the fact that our algorithm improves the state-of-the-art solver for reg-
ularized Cox partial-likelihood on several datasets from survival analysis.

Keywords. Convex Optimization, Stochastic Gradient Descent, Monte Carlo Markov Chain,
Survival Analysis, Conditional Random Fields

1 Introduction

During the past decade, advances in biomedical technology have brought high dimensional
data to biostatistics and survival analysis in particular. Today’s challenge for survival anal-
ysis lays in the analysis of massively high dimensional (numerous covariates) and large-scale
(large number of observations) data, see in particular [MD13]. Areas of application outside
of biostatistics, such as economics (see [EL14]), or actuarial sciences (see [Ric12]) are also
concerned.

One of the core models of survival analysis is the Cox model (see [Dav72]) for which
we propose, in the present paper, a novel scalable optimization algorithm tuned to handle
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II. Large-scale Cox model

massively high dimensional and large-scale data. Survival data (y

i

, x

i

,±
i

)

npat

i=1

contains, for
each individual i = 1, . . . ,npat, a features vector x

i

2 Rd , an observed time y

i

2 R+, which is a
failure time if ±

i

= 1 or a right-censoring time if ±
i

= 0. If D = {i : ±
i

= 1} is the set of patients
for which a failure time is observed, if n = |D| is the total number of failure times, and if
R

i

= { j : y

j

∏ y

i

} is the index of individuals still at risk at time y

i

, the negative Cox partial
log-likelihood writes

°`(µ) = 1

n

X

i2D

h
°x

>
i

µ+ log

≥ X

j2R

i

exp(x

>
j

µ)

¥i
(1)

for parameters µ 2 Rd . This model can be regarded as a regression of the n failure times,
using information from the npat patients that took part to the study. With high-dimensional
data, a regularization term is added to the partial likelihood to automatically favor sparsity in
the estimates, see [T+97] and [SFHT11] for a presentation of Lasso and elastic-net penaliza-
tions, see also the review paper by [WT09] for an exhaustive presentation. Several algorithms
for the Cox model have been proposed to solve the regularized optimization problem at hand,
see [PH07, SKJP09, Goe10] among others. These implementations use Newton-Raphson iter-
ations, i.e. large matrices inversions, and can therefore not handle large-scale data. Cyclical
coordinate descent algorithms have since been proposed and successfully implemented in R
packages coxnet and fastcox, see [SFHT11, YZ12]. More recently [MMCB13] adapted the
column relaxation with logistic loss algorithm of [ZO00] to the Cox model. The fact that
all these algorithms are of cyclic coordinate descent type solve the problem, supported by
Newton-Raphson type algorithms, of large matrices inversions.

Yet another computationnally costly problem, speciÆc to the Cox model, has not been fully
addressed: the presence of cumulative sums (over indices j 2 R

i

) in the Cox partial likelihood.
This problem was noticed in [MMCB13], where a numerical workaround exploiting sparsity
is proposed to reduce the computational cost. The cumulative sum prevents from success-
fully applying stochastic gradient algorithms, which are however known for their e�ciency
to handle large scale generalized linear models: see for instance SAG by [SLRB17], SAGA
by [DBLJ14], Prox-SVRG by [XZ14] and SDCA by [SSZ12] that propose very e�cient stochastic
gradient algorithms with constant step-size (hence achieving linear rates), see also Catalyst
by [LMH15] that introduces a generic scheme to accelerate and analyze the convergence of
those algorithms.

Such recent stochastic gradient algorithms have shown that it is possible to improve upon
proximal full gradient algorithms for the minimization of convex problems of the form

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = 1

n

nX

i=1

f

i

(µ), (2)

where the functions f

i

are gradient-Lipschitz and h is prox-capable. These algorithms take
advantage of the Ænite sum structure of f , by using some form of variance-reduced stochastic
gradient descent. It leads to algorithms with a much smaller iteration complexity, as compared
to proximal full gradient approach (FG), while preserving (or even improving) the linear
convergence rate of FG in the strongly convex case. However, such algorithms are relevant
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2. Comparison with previous work

when gradients r f

i

have a numerical complexity much smaller than r f , such as for linear
classiÆcation or regression problems, where r f

i

depends on a single inner product x

>
i

µ

between features x

i

and parameters µ.
In this paper, motivated by the important example of the Cox partial likelihood (1), we

consider the case where gradients r f

i

can have a complexity comparable to the one of r f .
More precisely, we assume that they can be expressed as expectations, under a probability
measure ºi

µ
, of random variables G

i

(µ), i.e.,

r f

i

(µ) = EG

i

(µ)ªºi

µ
[G

i

(µ)]. (3)

This paper proposes a new doubly stochastic proximal gradient descent algorithm (2SVRG),
that leads to a low iteration complexity, while preserving linear convergence under suitable
conditions for problems of the form (2) + (3).

Our main motivation for considering this problem is to accelerate the training-time of the
the penalized Cox partial-likelihood. The function °`(µ) is convex (as a sum of linear and
log-sum-exp functions, see Chapter 3 of [BV04], and Æts in the setting (2) + (3). Indeed, Æx
i 2 D and introduce

f

i

(µ) =°x

>
i

µ+ log

≥ X

j2R

i

exp(x

>
j

µ)

¥
,

so that
r f

i

(µ) =°x

i

+
X

j2R

i

x

j

ºi

µ( j )

where

ºi

µ( j ) =
exp(x

>
j

µ)

P
j

02R

i

exp(x

>
j

0µ)

, 8 j 2 R

i

.

This entails that r f

i

(µ) satisÆes (3) with G

i

(µ) a random variable valued in {°x

i

+ x

j

: j 2 R

i

}

and such that
P(G

i

(µ) =°x

i

+x

j

) =ºi

µ( j )

for j 2 R

i

. Note that the numerical complexity of r f

i

can be comparable to the one of r f ,
when y

i

is close to min

i

y

i

(recalling that R

i

= { j : y

j

∏ y

i

}). Note also that a computational
trick allows to compute r f (µ) with a complexity O(nd). Indeed, once all data points are
sorted, the sum can be computed recursively. This makes this setting quite di�erent from the
usual case of empirical risk minimization (linear regression, logistic regression, etc.), where
all the gradients r f

i

share the same low numerical cost.

2 Comparison with previous work

SGD techniques. Recent proximal stochastic gradient descent algorithms by [DBLJ14], [XZ14], [SSZ12]
and [SLRB17] build on the idea of [RM51] and [KW+52]. Such algorithms are designed to
tackle large-scale optimization problems (n is large), where it is assumed implicitly that the
r f

i

(smooth gradients) have a low computational cost compared to r f , and where h is
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II. Large-scale Cox model

eventually non-di�erentiable and is dealt with using a backward or projection step using its
proximal operator.

The principle of SGD is, at each iteration t , to sample uniformly at random an index
i ªU [n], and to apply an update step of the form

µt+1 √ µt °∞
t

r f

i

(µt

).

This step is based on an unbiased but very noisy estimate of the full gradient r f , so the
choice of the step size ∞

t

is crucial since it has to be decaying to curb the variance introduced
by random sampling (excepted for averaged SGD in some particular cases, see [BM13]). This
tends to slow down convergence to a minimum µ? 2 argminµ2Rd

f (µ). Gradually reducing the
variance of r f

i

for i ªU [n] as an approximation of r f allows to use larger – even constant
– step sizes and to obtain faster convergence rates. This is the underlying idea of two recent
methods - SAGA and SVRG respectively introduced in [DBLJ14], [XZ14] - that use updates of
the form

w

t+1 √ µt °∞
≥
r f

i

(µt

)°r f

i

(

˜µ)+ 1

n

nX

j=1

r f

j

(

˜µ)

¥
,

and µt+1 √ prox∞h

(w

t+1

). In [XZ14], ˜µ is fully updated after a certain number of iterations,
called phases, whereas in [DBLJ14], ˜µ is partially updated after each iteration. Both meth-
ods use stochastic gradient descent steps, with variance reduction obtained via the centered
control variable °r f

i

(

˜µ)+ 1

n

P
n

j=1

r f

j

(

˜µ), and achieve linear convergence when F is strongly-

convex, namely EF (µk

) ° min2Rd

F (x) = O(Ωk

) with Ω < 1, which make these algorithms
state-of-the-art for many convex optimization problems. Some variants of SVRG [XZ14] also
approximate the full gradient 1

n

P
n

j=1

r f

j

(

˜µ) using mini-batchs to decrease the computing
time of each phase, see [LJ17, HAV+15].

Numerically hard gradients. A very di�erent, nevertheless classical, “trick” to reduce the
complexity of the gradient computation, is to express it, whenever the statistical problem
allows it, as the expectation, with respect to a non-uniform distribution ºµ, of a random
variable G(µ), i.e., r f (µ) = EG(µ)ªºµ

[G(µ)]. Optimization problems with such a gradient have
generated an extensive literature from the Ærst works by [RM51], and [KW+52]. Some al-
gorithms are designed to construct stochastic approximations of the sub-gradient of f +h,
see [NJLS09, JN+11, Lan12, DHS11]. Others are based on proximal operators to better exploit
the smoothness of f and the properties of h, see [HPK09, Xia10, AFM17]. In this paper,
we shall focus on the second kind of algorithms. Indeed, our approach is closer to the one
developed in [AFM17], though, as opposed to ours, the algorithm developed in this latter work
is based on proximal full gradient algorithms (not doubly stochastic as ours) and does not
guarantee a linear convergence.

Contrastive divergence. The idea to approximate the gradient using MCMC already ap-
peared in the litterature of Undirected Graphical Models under the name of Contrastive
Divergence, see [Mur12, Hin02, CPH05]. Indeeed, for this class of model, the gradient of
the log-likelihood r f (µ) can be written as the di�erence of two expectations: one - tractable
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3. A doubly stochastic proximal gradient descent algorithm

- with respect to the data discrete distribution X, the other - intractable - with respect to
the model-dependent distribution p(·,µ). The idea of Contrastive Divergence relies in the
approximation of the intractable expectation using MCMC, with few iterations of the chain.
However, in the framework of Cox model, and also Conditional Random Fields (see Sec-
tion 6 below), this is the gradient r f

i

(µ) that writes as an time-consuming expectation, see
Equation 3.

Our setting. The setting of our paper is original in the sense that it combines both previous
settings, namely stochastic gradient descent and MCMC. As in the stochastic gradient setting,
the gradient can be expressed as the sum of n components, where n can be very large.
However, since these components are time-consuming to compute directly, following the
expectation based gradient computation setting, they are expressed as averaged values of
some random variables. More precisely, the gradient r f

i

(µ) is replaced by an approximation
br f

i

(µ) obtained by an MCMC algorithm. Our algorithm is, to the best of our knowledge,
the Ærst one to propose a combination of two stochastic approximations in this way, hence
the name doubly stochastic, which allow to deal with both, eventual large values for n and the
inner complexity of each gradient r f

i

computation.
The idea to mix SGD and MCMC has also been raised recently in the very di�erent

setting of implicit stochastic gradient descent, see [TA14]. Note also that in our approach we
make two stochastic approximations to the gradient using random training points, while the
doubly stochastic approach from [DXH+14] performs two stochastic approximations to the
gradient using random training points and random features for kernel methods.

3 A doubly stochastic proximal gradient descent algorithm

Our algorithm 2SVRG is built upon the algorithm SVRG via an approximation function
ApproxMCMC. We Ærst present the meta-algorithm without specifying the approximation
function, and then provide two examples for ApproxMCMC.

3.1 2SVRG: a meta-algorithm

Following the ideas presented in the previous section, we design a doubly stochastic proximal
gradient descent algorithm (2SVRG), by combining a variance reduction technique for SGD
given by Prox-SVRG [XZ14], and a Monte-Carlo Markov-Chain algorithm to obtain an ap-
proximation of the gradient r f

j

(µ) at each step. Thus, in the considered setting the full
gradient writes

r f (µ) = EiªU
[r f

i

(µ)] = EiªU EG

i

(µ)ªºi

µ
[G

i

(µ)],

where U is the uniform distribution on {1, . . . ,n}, so our algorithm contains two levels of
stochastic approximation: uniform sampling of i (the variance-reduced SGD part) for the Ærst
expectation, and an approximation of the second expectation w.r.t ºi

µ
by means of Monte-

Carlo simulation. The 2SVRG algorithm is described in Algorithm 6.
Following Prox-SVRG by [XZ14], this algorithm decomposes in phases: iterations within a

phase apply variance reduced stochastic gradient steps (with a backward proximal step, see
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II. Large-scale Cox model

Algorithm 6 Doubly stochastic proximal gradient descent (2SVRG)
1: Require: Number of phases K ∏ 1, phase-length m ∏ 1, step-size ∞> 0, MCMC number of itera-
tions per phase (N

k

)

K

k=1

, starting point µ0 2Rd

2: Initialize: ˜µ√ µ0 and compute r f

i

(

˜µ) for i = 1, . . . ,n

3: for k = 1 to K do
4: for t = 0 to m °1 do
5: Pick i ªU [n]

6: br f

i

(µt

) √ApproxMCMC(i ,µt

, N

k

)

7: d

t = br f

i

(µt

)°r f

i

(

˜µ)+ 1

n

P
n

j=1

r f

j

(

˜µ)

8: !t+1 √ µt °∞d

t

9: µt+1 √prox∞h

(!t+1

)

10: end for
11: Update ˜µ√ 1

m

P
m

t=1

µt , µ0 √ ˜µ, ˜µk √ ˜µ

12: Compute r f

i

(

˜µ) for i = 1, . . . ,n

13: end for
14: Return: ˜µK

lines 7 and 8 in Algorithm 6). At the end of a phase, a full-gradient is computed (lines 10,
11) and used in the next phase for variance reduction. Within a phase, each inner iteration
samples uniformly at random an index i (line 4) and obtains an approximation of the gradient
r f

i

at the previous iterate µt by applying N

k

iterations of a Monte-Carlo Markov-Chain
(MCMC) algorithm.

Intuitively, the sequence N

k

should be increasing with the phase number k, as we need
more and more precision as the iterations goes on (this is conÆrmed in Section 4). The
important point of our algorithm resides precisely in this aspect: very noisy estimates can be
used in the early phases of the algorithm, hence allowing for an overall low complexity as
compared to a full gradient approach.

3.2 Choice of ApproxMCMC

We focus now on two implementations of the function ApproxMCMC based on two famous
MCMC algorithms: Metropolis-Hastings and Importance Sampling.

3.2.1 Independent Metropolis-Hastings

When the ºi

µ
are Gibbs probability measures, as for the previously described Cox partial log-

likelihood (but for other models as well, such as Conditional Random Fields, see [LMP+01]),
one can apply Independent Metropolis-Hastings (IMH), see Algorithm 7 below, to obtain ap-
proximations br f

i

of the gradients. In this case the produced chain is geometrically uniformly
ergodic, see [Rob04], and therefore meets the general assumptions required in our results (see
Proposition 1 below). The IMH algorithm uses a proposal distribution Q which is independent
of the current state j

l

of the Markov chain.
In the case of the Cox partial log-likelihood, at iteration t of phase k of Algorithm 6, we set

º= ºi

µt

, and Q to be the uniform distribution over the set R

i

. We implemented two versions
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3. A doubly stochastic proximal gradient descent algorithm

Algorithm 7 Independent Metropolis-Hastings (IMH) estimator (for the Cox model)

Require: Proposal distribution Q = U {R

i

}, starting point j

0

2 R

i

, stationary distribution
º=ºi

µt

for l = 0, . . . , N

k

°1 do
1. Generate: j

0 ªQ .
2. Update: Æ= min

≥
º( j

0
)Q( j

l

)

º( j

l

)Q( j

0
)

,1

¥
= min

°
exp((x

j

0 °x

j

l

)

>µt

),1

¢
.

3. Take: j

l+1

=
(

j

0 with probability Æ

j

l

otherwise.
end for
Return: °x

i

+ 1

N

k

P
N

k

l=1

x

j

l

of Algorithm 6 with IMH: one with a uniform proposal Q , the other one with an adaptative
proposal e

Q . When we want to approximate r f

i

(µ), we can consider the adaptative proposal
e

Q =ºi

˜µ
, where ˜µ is the iterate we have computed at the end of the previous phase, see Line 10

of Algorithm 6. Since we compute the full gradient only once every phase, the probabilities
ºi

˜µ
( j ) are computed at the same time, which means that the use of an adaptative proposal

adds no computational e�ort. Morever, the theoretical guarantees given in Section 4 make
no di�erence between the two versions aformentionned, but a strong di�erence is observed
in practice.

3.2.2 Importance Sampling

To choice of the adaptative proposal above reduces the variance of the estimator given by Ap-
proxMCMC. The idea of sampling with e

Q =ºi

˜µ
can also be used in an Importance Sampling

estimator as well.

r f

i

(µ) = EG

i

(µ)ªºi

µ
[G

i

(µ)] = EG

i

(µ)ª e
Q

"

G

i

(µ)

ºi

µ
(G

i

(µ))

e
Q(G

i

(µ))

#

Since the ratio ºi

µ
(G

i

(µ))/

e
Q(G

i

(µ)) still contains an expensive term to compute, we can divide
the term above with E e

Q

£
ºi

µ
(G

i

(µ))/

e
Q(G

i

(µ))

§
= 1 and approximate the resulting term. This

trick provides an estimator called Normalized Importance Sampling estimator, which writes
like this in the case of Cox partial likelihood:

b
J

N

=
NX

k=1

(x

j

k

°x

i

)

ºi

µ
( j

k

)

e
Q( j

k

)

,
NX

k=1

ºi

µ
( j

k

)

e
Q( j

k

)

, with j

k

ª e
Q

=°x

i

+
NX

k=1

exp((µ° ˜µ)

>
x

j

k

)

P
N

l=1

exp((µ° ˜µ)

>
x

j

l

)

x

j

k

, with j

k

ª e
Q

Section 4 below gives theoretical guarantees for Algorithm 6: linear convergence under
strong-convexity of F is given in Theorem 1, and a convergence without strong convexity
is given in Theorem 2. This improves the proximal stochastic gradient method of [AFM17],
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II. Large-scale Cox model

Algorithm 8 Normalized Importance Sampling (NIS) estimator of r f

i

(µ) (for the Cox model)

Require: Proposal distribution e
Q =ºi

˜µ
, stationary distribution ºi

µ
, V = 0 2Rd

,S = 0 2R
for l = 1, . . . , N

k

do
1. Generate: j

l

ª e
Q(·).

2. Update: V √V +exp((µ° ˜µ)

>
x

j

l

)x

j

l

.
3. Update: S √ S +exp((µ° ˜µ)

>
x

j

l

).
end for
Return: °x

i

+V /S

where the best case rate is O(1/k

2

) using Fista (see [BT09]) acceleration scheme. Numerical
illustrations are given in Section 5, where a fair comparison between several state-of-the-art
algorithms is proposed.

4 Theoretical guarantees

DeÆnitions. All the functions f

i

and h are proper convex lower-semicontinuous on Rd .
The norm k · k stands for the Euclidean norm on Rd . A function f : Rd ! R is L-smooth if
it is di�erentiable and if its gradient is L-Lipschitz, namely if kr f (x)°r f (y)k ∑ Lkx ° yk for
all x, y 2Rd . A function f :Rd !R is µ-strongly convex if f (x + y) ∏ f (x)+r f (x)

>
y + µ

2

kyk2

for all x, y 2 Rd i.e. if f ° µ
2

k ·k2 is convex. The proximal operator of h : Rd ! R is uniquely
deÆned by prox

h

(x) = argmin

y2Rd

{h(y)+ 1

2

kx ° yk2

}.

Notations. We denote by i

t

the index randomly picked at the t

th iteration, see line 4 in
Algorithm 6. We introduce the error of the MCMC approximation ¥t = br f

i

t

(µt°1

)°r f

i

t

(µt°1

)

and the Æltration F
t

= æ(µ0

, i

1

,µ1

, . . . , i

t

,µt

). In order to analyze the descent steps, we need
di�erent expectations: E

t

the expectation w.r.t the distribution of the pair (i

t

,

br f

i

t

(µt°1

)) con-
ditioned on F

t°1

, and E the expectation w.r.t all the random iterates (i

t

,µt

) of the algorithm.
We also denote µ§ = argminµ2Rd

F (µ).

Assumptions.

Assumption 1. We consider F = f + h where f = 1

n

P
n

i=1

f

i

, with each f

i

being convex and
L

i

-smooth, L

i

> 0, and h a lower semi-continuous and closed convex function. We denote L =
max

1∑i∑n

L

i

. We assume that there exists B > 0 such that the iterates µt satisfy sup

t∏0

kµt °µ§k ∑
B .

Assumption 2. We assume that the bias and the expected squared error of the Monte Carlo
estimation can be bounded in the following way:

kE
t

¥tk ∑ C

1

N

k

and E
t

k¥tk2 ∑ C

2

N

k

(4)
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for the iterations t belonging to the k-th phase, where N

k

is the number of iterations of the Markov
chain used for the computation of br f

i

t

(µt

) during phase k (see line 5 of Algorithm 6), and where
C

1

and C

2

are positive constants.

Let us point out that Proposition 1 below gives a su�cient condition for Assumption 2 to
hold.

Theorems. The theorems below provide upper bounds on the distance to the minimum in
the strongly convex case, see Theorem 1 and in the convex case, see Theorem 2.

Theorem 1. Suppose that F = f +h is µ-strongly convex. Consider Algorithm 6, with a phase
length m and a step-size ∞ 2 (0,

1

16L

) satisfying

Ω = 1

m∞µ(1°8L∞)

+ 8L∞(1+1/m)

1°8L∞
< 1. (5)

Then, under Assumption 1 and Assumption 2, we have:

E[F (

˜µK

)]°F (µ§) ∑ ΩK

≥
F (µ0

)°F (µ§)+
KX

l=1

D

Ωl

N

l

¥
, (6)

where D = 3∞C

2

+BC

1

1°8L∞ .

In Theorem 1, the choice N

k

= k

ÆΩ°k with Æ> 1 gives

E[F (

˜µK

)]°F (µ§) ∑ D

0ΩK

where D

0 = F (µ0

)°F (µ§)+D

P
k∏1

k

°Æ and D > 0 is a numerical constant. This entails that
2SVRG achieves a linear rate under strong convexity.

Remark 1 (An important remark). The number N

k

of MCMC iterations is growing quickly with
the phase number k . So, we use in practice an hybrid version of 2SVRG called HSVRG: 2SVRG
is used for the Ærst phases (usally 4 or 5 phases in our experiments), and as soon as N

k

exceeds
n, we switch to a mini-batch version of Prox-SVRG (SVRG-MB), see [Nit14]. A precise description
of HSVRG is given in Algorithm 9 from Section 5 below. Note that overall linear convergence of
HSVRG is still guaranteed, since both 2SVRG and SVRG-MB decrease linearly the objective from
one phase to the other.

Theorem 2. Consider Algorithm 6, with a phase length m and a step-size ∞ 2 (0,

1

8L(2m+1)

). Then,
under Assumption 1 and Assumption 2, we have:

E[F (

¯µK

)]°F (µ§) ∑ D

1

K

+ D

2

K

K+1X

k=1

1

N

k

, (7)

where D

1

and D

2

depend on the constants of the problem, and where ¯µK is the average of iterates
˜µk until phase K .
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II. Large-scale Cox model

In Theorem 2, the choice N

k

= k

Æ with Æ> 1 gives

E[F (

¯µK

)]°F (µ§) ∑ D

3

K

for a constant D

3

> 0. This result is an improvement of the Stochastic Proximal Gradient
algorithm from [AFM17] since it is not necessary to design a weighted averaged but just a
simple average to reach the same convergence rate. Also, it provides a convergence guarantee
for the non-strongly convex case, which is not proposed in [XZ14].

Theorems 1 and 2 show a trade-o� between the linear convergence of the variance-
reduced stochastic gradient algorithm and the MCMC approximation error. The next propo-
sition proves that Algorithm 7 satisÆes Assumption 2 under a general assumption on the
proposal and the stationary distribution.

Proposition 1. Suppose that there exists M > 0 such that the proposal Q and the stationary
distribution º satisfy º(x) ∑ MQ(x), for all x in the support of º. Then, the error ¥t obtained by
Algorithm 7 satisÆes Assumption 2.

Remark 2 (SpeciÆcs for the Cox partial likelihood). Note that the assumptions required in Propo-
sition 1 are met for the Cox partial likelihood: in this case, a simple choice is M = n max

x2supp(º)

º(x),
and the Monte Carlo error ¥t induced by computing the gradient of f

i

at phase k using Algorithm 7
satisÆes (4) with

C

1

= 2

|R
i

| max

j2R

i

ºi

µt°1

( j )

C

2

= 36C
2

C

2

1

(1+C

1

)max

j2R

i

kx

j

k2

2

,

where C
2

is the Rosenthal constant of order 2, see Proposition 12 in [FM+03].

5 Numerical experiments

We compare several solvers for the minimization of the objective given by an elastic-net
penalization of the Cox partial likelihood

F (µ) =°`(µ)+∏
≥
Ækµk

1

+ 1°Æ
2

kµk2

2

¥
,

where we recall that the partial likelihood ` is deÆned in Equation (1) and where ∏ > 0 and
Æ 2 [0,1] are tuning parameters.

A fair comparison of algorithms. The doubly stochastic nature of the considered al-
gorithms makes it hard to compare them to batch algorithms in terms of iteration num-
ber or epoch number (number of full passes over the data), as this is usually done for
SGD-based algorithm. Hence, we proceed by plotting the evolution of F (

˜µ)°F (µ§) (where
µ§ 2 argmin

u2Rd

F (u) and ˜µ is the current iterate of a solver) as a function of the number of
inner products between a feature vector x

i

and µ, e�ectively computed by each algorithm, to
obtain the current iterate ˜µ. This gives a fair way of comparing the e�ective complexity of all
algorithms.
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5. Numerical experiments

Figure II.1: Convergence of Cocktail and L-BFGS-B on Lymphoma dataset. Top: the starting
point is µ0 =0 2Rd . Bottom: the starting point is µ0 = bµ(l ) (solution to the same objective with
a slightly larger ∏). This illustrates the fact that Cocktail cannot minimize directly a single
objective (with a Æxed ∏) and requires to compute the full path of solution to converge.

About the baselines speciÆc to the Cox model. State-of-the-art algorithms to Æt the
elastic-net penalized Cox partial likelihood are cocktail by [YZ12] and coxnet, by [SFHT11].
Both algorithms are combining the ideas of coordinate descent and majoration-minimization.
Full convergence results for these algorithms have not yet been established, although Cocktail
has a coordinate-wise descent property.

These algorithms however need a good starting point (near the actual minimizer) to
achieve convergence (this fact is due to a diagonal approximation of the Hessian matrix,
see [HT90], Chapter 8.). They are therefore tuned to provide good path of solutions while
varying by small steps the penalization parameter ∏. Indeed in this case, this starting point
is naturally set at the minimizer at the previous value of ∏, when minimizing along a path
but cannot be guessed outside of a path. We illustrate this fact on Figure II.1, where the
convergence of Cocktail and L-BFGS-B algorithms are compared for two starting points µ

0

.
Even when the starting point is set to the previous minimizer (second case in Figure II.1,

cocktail’s convergence is slower than the one of L-BFGS-B. As a consequence, we decided
that no fair comparison could be conducted with cocktail and coxnet algorithms.

Hybrid SVRG algorithm Since N

k

exponentially increases, the 2SVRG’s complexity is
higher than SVRG’s original complexity. However, the algorithm 2SVRG is very e�cient
during the Ærst phases: we introduce an hybrid solver that begins with 2SVRG and switches
to SVRG with mini-batchs (denoted SVRG-MB). Mini-batching simply consists in replacing
single stochastic gradients r f

i

by an average over a subset B of size nmb uniformly selected
at random. This is useful in our case, since we can use a computational trick (recurrence
formula) to compute mini-batched gradients. In our experiments, we used nmb = 0.1n or
nmb = 0.01n, a constant step-size ∞ designed for each dataset, and switched from 2SVRG to
SVRG-MB after K

S

= 5 phases. We set N

k

= n

k/(K

S

+2) so that N

k

never exceeds n.

Baselines. We describe in this paragraph the algorithm that we put in competition in our
experiments.
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II. Large-scale Cox model

Algorithm 9 Hybrid SVRG (HSVRG)
1: Require: Number of phases before switching K

S

∏ 1, total number of phases K ∏ K

S

, phase-length
m ∏ 1, step-size ∞> 0, MCMC number of iterations per phase (N

k

)

K

k=1

, starting point µ0 2Rd

2: Initialize: ˜µ√ µ0 and compute r f

i

(

˜µ) for i = 1, . . . ,n

3: for k = 1 to K

S

do
4: for t = 0 to m °1 do
5: Pick i ªU [n]

6: br f

i

(µt

) √ApproxMCMC(i ,µt

, N

k

)

7: d

t = br f

i

(µt

)°r f

i

(

˜µ)+ 1

n

P
n

j=1

r f

j

(

˜µ)

8: !t+1 √ µt °∞d

t

9: µt+1 √prox∞h

(!t+1

)

10: end for
11: Update ˜µ√ 1

m

P
m

t=1

µt , µ0 √ ˜µ, ˜µk √ ˜µ

12: Compute r f

i

(

˜µ) for i = 1, . . . ,n

13: end for
14: for k = K

S

+1 to K do
15: for t = 0 to mmb°1 = b(m °1)/nmbc do
16: Pick a set of random indices B ª (U [n])

nmb

17: d

t =r fB(µt

)°r fB(

˜µ)+ 1

n

P
n

j=1

r f

j

(

˜µ)

18: !t+1 √ µt °∞d

t

19: µt+1 √prox∞h

(!t+1

)

20: end for
21: Update ˜µ√ 1

mmb

P
mmb
t=1

µt , µ0 √ ˜µ, ˜µk √ ˜µ

22: end for
23: Return: ˜µK

FISTA This is accelerated proximal gradient from [BT09] with backtracking linesearch. In-
ner products necessary inside the backtracking are counted as well.

L-BFGS-B A state-of-the-art quasi-Newton solver which provides a usually strong base-
line for many batch optimization algorithms, see [LN89]. We use the original im-
plementation of the algorithm proposed in python’s scipy.optimize module. Non-
di�erentiability of the `

1

-norm in the elastic-net penalization is dealt with the standard
trick of reformulating the problem, using the fact that |a| = a++a° for a 2R.

HSVRG-UNIF-IMH This is Algorithm 9 where ApproxMCMC is done via Algorithm 7 with
uniform proposal Q .

HSVRG-ADAP-IMH This is Algorithm 9 where ApproxMCMC is done via Algorithm 7
with adaptative proposal Q =º·

˜µ
.

HSVRG-AIS This is Algorithm 9 where ApproxMCMC is done via Algorithm 8, that is
Adaptative Importance Sampling.

SVRG-MB Mini-Batch Prox-SVRG described in [Nit14], which can be seen as Algorithm 9
(see below) with K

S

= 0. This is a simply stochastic algorithm, since there is no MCMC
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6. Conclusion

approximation of the gradients r f

i

. The question of mini-batch sizing is critical and is
adressed in Section 10. We used nmb = 0.1n or nmb = 0.01n in our experiments.

The “simply stochastic” counterpart SVRG-MB is way slower than the corresponding
doubly stochatic versions, since they rely on many computations of stochastic gradients r f

i

,
which are numerically costly, as explained above. The same settings are used throughout all
experiments, some of them being tuned by hand: steps size for the variants of HSVRG are
taken as ∞

t

= ∞
0

2 {10

°2

,10

°3

,10

°4

} where ∞
0

depends on the dataset, the phase length m is
equal to the number n of failures of each datasets as suggested in [KLRT16]. As mentionned
above, the doubly stochastic algorithms use di�erent verions of ApproxMCMC.

Datasets We compare algorithms on the following datasets. The Ærst three are standard
benchmarks in survival analysis, the fourth one is a large simulated dataset where the number
of observations n exceeds the number of features d . This di�ers from supervised gene
expression data: such a large-scale setting happens for longitudinal clinical trials, medical
adverse event monitoring and business data minings tasks.

• NKI70 contains survival data for 144 breast cancer patients, 5 clinical covariates and
the expressions from 70 gene signatures, see [VDVHVV+02].

• Luminal contains survival data for 277 patients with breast cancer who received the
adjuvant tamoxifen, with 44,928 expressions measurements, see [LHKD+07].

• Lymphoma contains 7399 gene expressions data for 240 lymphoma patients. The data
was originally published in [AED+00].

• We generated a Gaussian features matrix X with n = 10,000 observations and d = 500

predictors, with a Toeplitz covariance and correlation equal to 0.5. The failure times
follow a Weibull distribution. See Section 9 for details on simulation in this model.

We compare in Figures II.2 and II.3 all algorithms for ridge penalization, namely Æ = 0

and ∏= 1/

p
n. Experiences with other values of Æ and ∏ are given in Section (including the

Lasso penalization for instance).

Conclusions. The experiments Ærst show that the solvers HSVRG-ADAP-IMH and HSVRG-
AIS give better results than HSVRG-UNIF-IMF. However, the HSVRG solvers behave partic-
ularly well during the Ærst phases where the gradients can be noisy - due to a small number
of iterations of the MCMC - and still point a decent descent direction.

6 Conclusion

We have proposed a doubly stochastic gradient algorithm to extend SGD-like algorithms be-
yond the empirical risk minimization setting. The algorithm we proposed is the result of two
di�erent ideas: sampling from uniform distribution to avoid the computation of a large sum,
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II. Large-scale Cox model

Figure II.2: Distance to optimum of all algorithms on NKI70 (left) and Lymphoma (right) with
ridge penalization (Æ= 0 and ∏= 1/

p
n)

Figure II.3: Distance to optimum of all algorithms on Luminal (left) and on the simulated
dataset (right) with ridge penalization (Æ= 0 and ∏= 1/

p
n)

and sampling using MCMC methods to avoid the computation of a more complicated expec-
tation. We have also provided theoretical guarantees of convergence for both the convex and
the strongly-convex setting.

This doubly stochastic gradient algorithm is very e�cient during the early phases. The
hybrid version of our algorithm, at the crossing of simply and doubly stochastic gradient
algorithms, signiÆcantly outperforms state-of-the-art methods.

In a future work, we intend to extend our algorithm to Conditional Random Fields (CRF),
where each subfunction’s gradient takes the form

r f

i

(µ) =r(° log(p(y

i

|x
i

,µ)) =
X

Y 2Y
i

e

H(X

i

,Y )

>µ

P
Y

02Y
i

e

H(X

i

,Y

0
)

>µ
(H(X

i

,Y )°H(X

i

,Y

i

)),

for a certain function H (see Page 2 in [SBA+15]). Notice that the Cox negative partial
likelihood can be seen as a particular case of CRF by setting X

i

= [x

j

]

j2R

i

2 Rd£|R
i

|, Y

i

=
[

j2R

i

]

j2R

i

2 {0,1}

|R
i

|, H(X ,Y ) = X Y and Y
i

= {[

j=k

]

j2R

i

: k 2 R

i

}.
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7. Proofs

7 Proofs

7.1 Proof of Proposition 1

We Ærst prove Proposition 1 that ensures that Algorithm 7 provides the bounds of Assump-
tion 2.

Proof. Since there exists M > 0 such that the proposal Q and the stationary distribution º

satisfy º(x) ∑ MQ(x), for all x in the support of º, the Theorem 7.8 in [Rob04] states that
the Algorithm 7 produces a geometrically ergodic Markov kernel P with ergodicity constants
uniformly controlled:

kP

k

(x, ·)°ºk
T V

∑ 2

µ
1° 1

M

∂
k

, (8)

where P

k is the kernel of the k

th iteration of the algorithm and k ·k
T V

is the total variation
norm. Since br f

i

t

(µt°1

) is computed as the mean of the iterates of the Markov chain, a simple
computation enables us to bound the bias of the error and Proposition 12 from [FM+03] gives
the upper bound for the expected squared error:

kE
t

¥tk ∑ C

1

N

k

and E
t

k¥tk2 ∑ C

2

N

k

(9)

where C

1

and C

2

are some Ænite constants, and N

k

the number of iterations of the Markov
chain. It can be shown that C

1

= 2M and that C

2

is related to a constant from the Rosenthal’s
inequality. Á

7.2 Preliminaries to the proofs of Theorems 1 and 2

In what follows, the key lemmas for the proofs of Theorems 1 and 2 are stated and proved
when not directly borrowed from previous articles.

Lemma 1. For ¢t

:= br f

i

t

(µt°1

)°r f

i

t

(

˜µ)+r f (

˜µ)°r f (µt°1

), we have:

E
t

k¢tk2 ∑ 8L[F (µt°1

)°F (µ§)

+F (

˜µ)°F (µ§)]+3E
t

k¥tk2

.

The proof of Lemma 1 uses Lemma 1 in [XZ14].

Lemma 2. [JZ13, XZ14] Consider F satisfying Assumption 1. Then,

1

n

nX

i=1

kr f

i

(µ)°r f

i

(µ§)k2 ∑ 2L[F (µ)°F (µ§)]

Proof of Lemma 1. For the sake of simplicity, we now denote d

t

i

=r f

i

(µt°1

)°r f

i

(

˜µ) and d

t =
r f (µt°1

)°r f (

˜µ), so that one gets ¢t = d

t

i

t

°d

t +¥t . Then, using the expectation introduced
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in Section 4, we repeatedly use the identity E
t

kªk2 = E
t

kª°E
t

ªk2 +kE
t

ªk2. First with ª= ¢t

(since E
t

d

t

i

t

= d

t , one gets E
t

ª= E
t

¥t ) :

E
t

k¢tk2 = E
t

kd

t

i

t

+¥t °
°
d

t +E
t

¥t

¢
k2 +kE

t

¥tk2

then, successively with ª= d

t

i

t

+¥t , ª= d

t +¥t and Ænally ª= ¥t :

E
t

k¢tk2 = E
t

kd

t

i

t

+¥tk2 +kE
t

¥tk2 °kd

t +E
t

¥tk2

= E
t

kd

t

i

t

+¥tk2 +kE
t

¥tk2

°
°
E

t

kd

t +¥tk2 °E
t

k¥t °E
t

¥tk2

¢

= E
t

kd

t

i

t

+¥tk2 +E
t

k¥tk2 °E
t

kd

t +¥tk2

.

Now we remark that E
t

kd

t +¥tk2 ∏ 0, and the identity ka +bk2 ∑ 2kak2 + 2kbk2 gives the
majoration

E
t

k¢tk2 ∑ 2E
t

kd

t

i

t

k2 +3E
t

k¥tk2

.

Now rewriting d

t

i

t

=r f

i

t

(µt°1

)°r f

i

t

(µ§)+r f

i

t

(µ§)°r f

i

t

(

˜µ), the same identity leads to

E
t

k¢tk2 ∑ 4E
t

kr f

i

t

(µt°1

)°r f

i

t

(µ§)k2

+4E
t

kr f

i

t

(

˜µ)°r f

i

t

(µ§)k2 +3E
t

k¥tk2

.

The desired result follows applying twice Lemma 2. Á

When F is µ-strongly convex, the next Lemma (Lemma 3 in [XZ14]) provides a key lower
bound.

Lemma 3. [XZ14] Consider F = f +h satifying Assumption 1, where f is L

f

-smooth, L

f

> 0,
f is µ

f

-strongly convex, µ
f

∏ 0, h is µ
h

-strongly convex, µ
h

∏ 0. For any x, v 2 Rd , we deÆne
x

+ = prox∞h

(x °∞v), g = 1

∞ (x °x

+
), where ∞ 2 (0,

1

L

f

]. Then, for any y 2Rd :

F (y) ∏ F (x

+
)+ g

>
(y °x)+ ∞

2

kgk2 +
µ

f

2

ky °xk2

+ µ
h

2

ky °x

+k2 + (v °r f (x))

>
(x

+° y). (10)

Remark 3. Note that in Lemma 3, one can freely choose µ
f

and µ
h

(in particular one can take
µ

f

= 0 or µ
h

= 0), as long as µ
f

+µ
h

=µ.

The following Lemma comes from [AFM17] (Lemma 14):

Lemma 4. [AFM17] Consider F = f + h satifying Assumption 1, where f is L

f

-smooth, and
T∞ : x 7! prox∞h

[x °∞r f (x)] with ∞ 2 (0,2/L

f

]. Let x, y 2Rd , we have:

kT∞(x)°T∞(y)k ∑ kx ° yk
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7.3 Proof of Theorem 1

Proof. The proof begins with the study of the distance kµt °µ§k2 between the phases k°1 and
k . To ease the reading, when staying between these two phases, we write ˜µ instead of ˜µk°1.
Introducing g

t = 1

∞ (µt°1 °µt

), we may write:

kµt °µ§k2 = kµt°1 °∞g

t °µ§k2

= kµt°1 °µ§k2 °2∞(g

t

)

>
(µt°1 °µ§)

+∞2kg

tk2

.

To upper bound the term °2∞(g

t

)

>
(µt°1°µ§)+∞2kg

tk2, we apply the Lemma 3 with x = µt°1,
x

+ = µt and y = µ§. With again ¢t = br f

i

t

(µt°1

)°r f

i

t

(

˜µ)+r f (

˜µ)°r f (µt°1

), we obtain

°(g

t

)

>
(µt°1 °µ§)+ ∞

2

kg

tk2

∑ F (µ§)°F (µt

)°
µ

f

2

kµt°1 °µ§k2

° µ
h

2

kx

t °µ§k2 ° (¢t

)

>
(µt °µ§),

and

kµt °µ§k2 ∑ kµt°1 °µ§k2 +2∞[F (µ§)°F (µt

)]

°2∞(¢t

)

>
(µt °µ§). (11)

We now concentrate on the quantity °2∞(¢t

)

>
(µt ° µ§). Introducing ∫t = prox∞h

[µt°t1 °
∞r f (µt°1

)] 2F
t°1

i.e. the vector obtained from µt°1 after an exact proximal gradient descent
step, we get

°2∞(¢t

)

>
(µt °µ§)

=°2∞(¢t

)

>
(µt °∫t

)°2∞(¢t

)

>
(∫t °µ§)

∑ 2∞k¢tk ·kµt °∫tk°2∞(¢t

)

>
(∫t °µ§)

where the inequality follows from the Cauchy-Schwartz inequality. Now the non-expansiveness
property of proximal operators kprox∞h

(x)°prox∞h

(y)k ∑ kx ° yk leads to

°2∞(¢t

)

>
(µt °µ§)

∑ 2∞k¢tk ·k{µt°1 °∞(¢t +r f (µt°1

))}

° {µt°1 °∞r f (µt°1

)}k°2∞(¢t

)

>
(∫t °µ§)

∑ 2∞2k¢tk2 °2∞(¢t

)

>
(∫t °µ§).

Reminding that ∫t 2F
t°1

, we derive:

°2∞E
t

(¢t

)

>
(µt °µ§)

∑ 2∞2E
t

k¢tk2 °2∞(E
t

¢t

)

>
(∫t °µ§)

∑ 2∞2E
t

k¢tk2 +2∞kE
t

¢tk ·k∫t °µ§k,
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II. Large-scale Cox model

the last inequality comes from the Cauchy-Schwartz inequality. Since µ§ is the minimum of
F = f +h, it satisÆes µ§ = prox∞h

[µ§ °∞r f (µ§)]. Thus, the Lemma 4 and the Assumption 1
on the sequence (µt

) give us k∫t °µ§k ∑ kµt°1 °µ§k ∑ B . We also remark that E
t

¢t = E
t

¥t .
For all t between phases k °1 and k, we Ænally apply Lemma 1 to obtain:

°2∞E
t

(¢t

)

>
(µt °µ§)

∑ 16∞2

L[F (µt°1

)°F (µ§)+F (

˜µ)°F (µ§)]

+6∞2E
t

k¥tk2 +2∞BkE
t

¥tk. (12)

Taking the expectation E
t

on inequation (11) and combining with previous inequality leads to

E
t

kµt°µ§k2 ∑ kµt°1 °µ§k2 +2∞[F (µ§)°F (µt

)]

+16∞2

L[F (µt°1

)°F (µ§)+F (

˜µ)°F (µ§)]

+6∞2E
t

k¥tk2 +2∞BkE
t

¥tk.

With the notation of Algorithm 6, ˜µ = ˜µk°1 = µ0. Now, applying iteratively the previous
inequality over t = 1,2, . . . ,m and taking the expectation E over i

1

,µ1

, i

2

,µ2

, . . . , i

m

,µm , we
obtain:

Ekµm °µ§k2 +2∞[EF (µm

)°F (µ§)]

+2∞(1°8L∞)

m°1X

t=1

[EF (µt

)°F (µ§)]

∑ kµ0 °µ§k2 +16L∞2

[F (µ0

)°F (µ§)+m(F (

˜µ)

°F (µ§))]+6∞2

mX

t=1

Ek¥tk2 +2∞B

mX

t=1

EkE
t

¥tk.

Now, by convexity of F and the deÆnition ˜µk = 1

m

P
m

t=1

µt , we may write F (

˜µk

) ∑ 1

m

P
m

t=1

F (µt

).
Noticing that 2∞(1°8L∞) < 2∞ leads to

2∞(1°8L∞)m[EF (

˜µk

)°F (µ§)]

∑ k ˜µ°µ§k2 +16L∞2

(m +1)[F (

˜µ)°F (µ§)]

+6∞2

mX

t=1

Ek¥tk2 +2∞B

mX

t=1

kE¥tk.

Under the Assumption 2, we have

6∞2

mX

t=1

Ek¥tk2 +2∞B

mX

t=1

kE¥tk

∑ (6∞2

C

2

+2∞BC

1

)

m

N

k

whereas the µ-strong convexity of F implies k ˜µk°1 °µ§k2 ∑ 2

µ [F (

˜µk°1

)°F (µ§)]. This leads to

EF (

˜µk

)°F (µ§) ∑ Ω
≥
EF (

˜µk°1

)°F (µ§)

¥
+ D

N

k

for D and Ω as deÆned in the theorem. Applying the last inequality recursively leads to the
result. Á
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7. Proofs

7.4 Proof of Theorem 2

Proof. As at the begining of the proof of Theorem 1, we consider that we stand between phase
k °1 and phase k of Algorithm 6 and consequently µ0 = ˜µk°1. We use the same arguments
until (11), with the di�erence that, in this non-strongly convex case, we have µ

f

= µ
h

= 0. We
obtain for all t between phases 1 and m

F (µt

)°F (µ§) ∑ 1

2∞
(kµt°1 °µ§k2 °kµt °µ§k2

)

° (µt °µ§)

>¢t

.

Summing over t = 1, . . . ,ø (for ø∑ m) leads to

øX

t=1

[F (µt

)°F (µ§)] ∑ 1

2∞
(

ø°1X

t=0

kµt °µ§k2

°
øX

t=1

kµt °µ§k2

)°
øX

t=1

(µt °µ§)

>¢t

. (13)

We now use Equation (13) (with ø= m) and the convexity of k ·k2 with ˜µk = 1

m

P
m

t=1

µt to write

mX

t=1

[F (µt

)°F (µ§)]

∑ 1

2∞

√
m°1X

t=0

kµt °µ§k2 °mk ˜µk °µ§k2

!

°
mX

t=1

(µt °µ§)

>¢t

. (14)

Starting from Equation (13) again but now summing over l = 1, . . . , t , we get

1

2∞
(kµ0 °µ§k2°kµt °µ§k2

)°
tX

l=1

(µl °µ§)

>¢l

∏
tX

l=1

[F (µl

)°F (µ§)]

∏ 0, (15)
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II. Large-scale Cox model

where the last inequality follows from the deÆnition of µ§. In (14), we now substitute kµt °µ§k2

by the upper bound derived from (15) to write (noticing that µ0 = ˜µk°1):

mX

t=1

[F (µt

)°F (µ§)]

∑ m

2∞
(k ˜µk°1 °µ§k2 °k ˜µk °µ§k2

)

°
m°1X

t=1

tX

l=1

(µl °µ§)

>¢l °
mX

t=1

(µt °µ§)

>¢t

∑ m

2∞
(k ˜µk°1 °µ§k2 °k ˜µk °µ§k2

)

°
mX

t=1

(m +1° t )(µt °µ§)

>¢t

.

As in the proof of Theorem 1 (see Equation (12)), each term °E
t

(µt °µ§)

>¢t is upper bounded
by 8∞L[F (µt°1

)°F (µ§)+F (

˜µk°1

)°F (µ§)]+ 3∞E
t

||¥t ||2 +B ||E
t

¥t ||. Now with m + 1° t ∑ m

and Assumption 2, we obtain:

1

m

mX

t=1

E[F (µt

)°F (µ§)]

∑ 1

2∞
(k ˜µk°1 °µ§k2 °Ek ˜µk °µ§k2

)

+8L∞
© mX

t=1

[EF (µt°1

)°F (µ§)]+F (µ§)°E[F (µm

)]

+ (m +1)[E[F (

˜µk°1

)]°F (µ§)]

™
+m

3∞C

2

+BC

1

N

k

.

By deÆnition of ∞, we have 8Lm∞< 1, and we can use the convexity of F to lower bound the
left hand side. With the inequality E[F (µm

)]°F (µ§) ∏ 0, one has:

(1°8L∞m)

h
E[F (

˜µk

)]°F (µ§)

i

∑ 1

2∞

≥
k ˜µk°1 °µ§k2 °Ek ˜µk °µ§k2

¥

+8L∞(m +1)

h
E[F (

˜µk°1

)]°F (µ§)

i

+m

3∞C

2

+BC

1

N

k

We now take the expectation E on all iterates of the algorithm i.e. on the iterates i

1

,µ1

, i

2

,µ2

, . . . , i

m

,µm

from the Ærst phase. Introduce the notations A

k = E[F (

˜µk

)]°F (µ§) and a = (8L∞(m+1))/(1°
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8. Supplementary experiments

8Lm∞) < 1 , last inequality leads to:

A

k °a A

k°1

∑ 1

2∞(1°8Lm∞)

≥
Ek ˜µk°1 °µ§k2 °Ek ˜µk °µ§k2

¥

+ D

N

k

,

where D is deÆned in the theorem. Summing over the phases k = 1,2, . . . ,K + 1 and lower
bounding A

K+1 with 0, we obtain:

(1°a)

KX

k=1

A

k

∑ a A

0 + 1

2∞(1°8Lm∞)

k ˜µ0 °µ§k2 +
K+1X

k=1

D

N

k

The last argument is the use of the convexity of F . Remark the explicit forms of the constants
in the theorem:

D

1

= a

1°a

A

0 + 1

1°a

k ˜µ0 °µ§k2

2∞(1°8Lm∞)

and D

2

= D

1°a

. Á

8 Supplementary experiments

We have tested all algorithms with other settings for the penalization. Namely, we considered:

High lasso. We take Æ= 1 and ∏= 1/

p
n and illustrate our results in Figure II.5.

Low lasso. We take Æ= 1 and ∏= 1/n and illustrate our results in Figure II.4.

High ridge. We take Æ = 0 and ∏ = 1/

p
n and illustrate our results in Figures II.2 and Fig-

ures II.3.

Low ridge. We take Æ= 0 and ∏= 1/n and illustrate our results in Figure II.6.

9 Simulation of data

With Cox model, the hazard ratio for the failure time T

i

of the i

th patient takes the form:

∏
i

(t ) =∏
0

(t )exp(x

>
i

µ),

where ∏
0

(t ) is a baseline hazard ratio, and x

i

2Rd the covariates of the i

th patient.
We Ærst simulate the feature matrix X 2Rn£d as a Gaussian vector with a Toepliz covariance,
where the correlation between features j and j

0 is equal to Ω| j° j

0|, for some Ω 2 (0,1).
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II. Large-scale Cox model

Figure II.4: Distance to optimum of all algorithms on NKI70, Lymphoma, Luminal and on
the simulated dataset (respectively from top to bottom) for Low-ridge penalization

Figure II.5: Distance to optimum of all algorithms on NKI70, Lymphoma, Luminal and on
the simulated dataset (respectively from top to bottom) for High-lasso penalization

52



9. Simulation of data

Figure II.6: Distance to optimum of all algorithms on NKI70, Lymphoma, Luminal and on
the simulated dataset (respectively from top to bottom) for Low-lasso penalization

We want now to simulate the observed time y

i

that corresponds to x

i

. We denote the
cumulative hazard function §(t ) =

R
t

0

∏(s)d s. Using the deÆnition ∏(t ) = f (t )

1°F (t )

, we know that
§(t ) =° log(1°F (t )), where f is the p.d.f. and F is the c.d.f. of T .
It is easily seen that §(T ) has distribution Exp(1) (Exponential with intensity equal to 1): since
§ is an increasing function, we have

P(§(T ) ∏ t ) =P(T ∏§°1

(t )) =
Z1

§°1

(t )

f (s)d s

= 1°F (§°1

(t ))

= exp(°§(§°1

(t )))

= exp(°t ),

so that simulating failure times is simply achieved by using T

i

=§°1

(E

i

) where E

i

ª Exp(1).
To compute §, we should have a parametric form for ∏

0

. We assume that T follows the
Weibull distribution W (1,∫) (when x

i

= 0). This choice is motivated by the following facts:

• Its cumulative hazard function is easy to invert. Indeed the hazard ratio is given by

∏
0

(t ) = ∫t

∫°1

e

°t

∫

1°(1°e

°t

∫
)

= ∫t

∫°1, so that §°1

(y) =
≥

y

exp(x

>
i

µ)

¥
1/∫

.

• It enables two di�erent trends - increasing or decreasing – for the baseline hazard ratio
that correspond to two typical behaviours in the medical Æeld.

– decreasing: after taking a treatment, time before a side-e�ect’s appearence
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II. Large-scale Cox model

– increasing: no memory process and patient’s health is worsening

This method enables us to simulate n failures times T

1

,T

2

, . . . ,T

n

.
Then, we simulate C

1

,C

2

, . . . ,C

n

with exponential distribution. This Ænally gives us a set of
observed times (y

i

)

n

i=1

= (T

i

^C

i

)

n

i=1

and a set of censoring indicators (±
i

)

n

i=1

= (

{T

i

^C

i

}

)

n

i=1

.

10 Mini-batch sizing

The mini-batch sizing question is essential since it is a natural trade-o� between comput-
ing time and precision. We know that computing r f

i

(µ) needs the computation of |R
i

| 2
{1, . . . ,npat} inner products. One proves easily that computing a mini-batch (1/nmb)r fB(µ) -
where B is the set of nmb index randomly picked - only needs max

i2B |R
i

| inner products. A
simple probability exercise gives us a key insight about the mini-batch size.
Let’s assume that censoring is uniform over the set {1,2, . . . ,npat} meaning that |R

i

| = ci with
c > 1. Then, we denote u

1

,u

2

, . . . ,u

nmb ªU [n] the indices independently sampled to compute
the mini-batch i.e. B = {u

i

}

nmb
i=1

. Now we study the c.d.f. of max

1∑i∑nmb u

i

: for k 2 {1,2, . . . ,n},

P

µ
max

1∑i∑nmb
u

i

∑ k

∂
=

nmbY

i=1

P(u

i

∑ k) =
µbkc

n

∂
nmb

,

P

µ
max

i2B
|R

i

|∑ ck

∂
=

µbkc
n

∂
nmb

,

P

µ
max

i2B
|R

i

|∏ a

∂
= 1°

µba/cc
n

∂
nmb

, for a < npat

The third equation leads us to consider 1 ø nmb ø n to prevent both max

i2B |R
i

| and |B|
from being too large. This is why we used nmb = 0.1n or nmb = 0.01n, depending of the size
n of the dataset.
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Part II

Uncover Hawkes causality
without parametrization
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CHAPTER III

Generalized Method of Moments approach

Abstract

We design a new nonparametric method that allows one to estimate the matrix of
integrated kernels of a multivariate Hawkes process. This matrix not only encodes the
mutual inØuences of each node of the process, but also disentangles the causality rela-
tionships between them. Our approach is the Ærst that leads to an estimation of this
matrix without any parametric modeling and estimation of the kernels themselves. As a con-
sequence, it can give an estimation of causality relationships between nodes (or users),
based on their activity timestamps (on a social network for instance), without knowing or
estimating the shape of the activities lifetime. For that purpose, we introduce a moment
matching method that Æts the second-order and the third-order integrated cumulants of
the process. A theoretical analysis allows us to prove that this new estimation technique
is consistent. Moreover, we show, on numerical experiments, that our approach is indeed
very robust with respect to the shape of the kernels and gives appealing results on the
MemeTracker database and on Ænancial order book data.

Keywords. Hawkes Process, Causality Inference, Cumulants, Generalized Method of Mo-
ments

1 Introduction

In many applications, one needs to deal with data containing a very large number of irregular
timestamped events that are recorded in continuous time. These events can reØect, for
instance, the activity of users on a social network, see [SAD+16], the high-frequency variations
of signals in Ænance, see [BMM15], the earthquakes and aftershocks in geophysics, see [Oga98],
the crime activity, see [MSB+11] or the position of genes in genomics, see [RBS10]. The
succession of the precise timestamps carries a great deal of information about the dynamics
of the underlying systems. In this context, multidimensional counting processes based models
play a paramount role. Within this framework, an important task is to recover the mutual
inØuence of the nodes (i.e., the di�erent components of the counting process), by leveraging
on their timestamp patterns, see, for instance, [BM16, LV14, LM11, ZZS13, GRLS13, FWR+15,
XFZ16].
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III. Generalized Method of Moments approach

Consider a set of nodes I = {1, . . . ,d}. For each i 2 I , we observe a set Z

i of events, where
each ø 2 Z

i labels the occurrence time of an event related to the activity of i . The events of
all nodes can be represented as a vector of counting processes N

t

= [N

1

t

· · ·N

d

t

]

>, where N

i

t

counts the number of events of node i until time t 2R+, namely N

i

t

=P
ø2Z

i

{ø∑t }

. The vector
of stochastic intensities ∏

t

= [∏1

t

· · ·∏d

t

]

> associated with the multivariate counting process N
t

is deÆned as

∏i

t

= lim

d t!0

P(N

i

t+d t

°N

i

t

= 1|F
t

)

d t

for i 2 I , where the Æltration F
t

encodes the information available up to time t . The co-
ordinate ∏i

t

gives the expected instantaneous rate of event occurrence at time t for node i .
The vector ∏

t

characterizes the distribution of N
t

, see [DVJ07], and patterns in the events
time-series can be captured by structuring these intensities.

The Hawkes process introduced in [Haw71a] corresponds to an autoregressive structure
of the intensities in order to capture self-excitation and cross-excitation of nodes, which is
a phenomenon typically observed, for instance, in social networks, see for instance [CS08].
Namely, N

t

is called a Hawkes point process if the stochastic intensities can be written as

∏i

t

=µi +
dX

j=1

Z
t

0

¡i j

(t ° t

0
)d N

j

t

0 ,

where µi 2 R+ is an exogenous intensity and ¡i j are positive, integrable and causal (with
support in R+) functions called kernels encoding the impact of an action by node j on the
activity of node i . Note that when all kernels are zero, the process is a simple homogeneous
multivariate Poisson process.

Most of the litterature uses a parametric approach for estimating the kernels. With no
doubt, the most popular parametrization form is the exponential kernel ¡i j

(t ) =Æ
i j

Ø
i j

e

°Ø
i j

t

because it deÆnitely simpliÆes the inference algorithm (e.g., the complexity needed for com-
puting the likelihood is much smaller). When d is large, in order to reduce the number
of parameters, some authors choose to arbitrarily share the kernel shapes across the di�er-
ent nodes. Thus, for instance, in [YZ13, ZZS13, FWR+15], they choose ¡i j

(t ) = Æ
i j

h(t ) with
Æ

i j

2R+ quantiÆes the intensity of the inØuence of j on i and h(t ) a (normalized) function that
characterizes the time-proÆle of this inØuence and that is shared by all couples of nodes (i , j )

(most often, it is chosen to be either exponential h(t ) = Øe

°Øt or power law h(t ) = Øt

°(Ø+1)).
Both approaches are, most of the time, highly non-realistic. On the one hand there is a priori
no reason for assuming that the time-proÆle of the inØuence of a node j on a node i does
not depend on the pair (i , j ). On the other hand, assuming an exponential shape or a power
law shape for a kernel arbitrarily imposes an event impact that is always instantly maximal
and that can only decrease with time, while in practice, there may exist a latency between an
event and its maximal impact.

In order to have more Øexibility on the shape of the kernels, nonparametric estimation
can be considered. Expectation-Maximization algorithms can be found in [LM11] (for d = 1)
or in [ZZS13] (d > 1). An alternative method is proposed in [BM16] where the nonparametric
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1. Introduction

estimation is formulated as a numerical solving of a Wiener-Hopf equation. Another nonpara-
metric strategy considers a decomposition of kernels on a dictionary of function h

1

, . . . ,h

K

,
namely ¡i j

(t ) =P
K

k=1

a

i j

k

h

k

(t ), where the coe�cients a

i j

k

are estimated, see [HRBR+15, LV14]

and [XFZ16], where group-lasso is used to induce a sparsity pattern on the coe�cients a

i j

k

that is shared across k = 1, . . . ,K .
Such methods are heavy when d is large, since they rely on likelihood maximization or

least squares minimization within an over-parametrized space in order to gain Øexibility on
the shape of the kernels. This is problematic, since the original motivation for the use of
Hawkes processes is to estimate the inØuence and causality of nodes, the knowledge of the
full parametrization of the model being of little interest for causality purpose.

Our paper solves this problem with a di�erent and more direct approach. Instead of
trying to estimate the kernels ¡i j , we focus on the direct estimation of their integrals. Namely,
we want to estimate the matrix G = [g

i j

] where

g

i j =
Z+1

0

¡i j

(u) du ∏ 0 for 1 ∑ i , j ∑ d . (1)

As it can be seen from the cluster representation of Hawkes processes ([HO74]), this integral
represents the mean total number of events of type i directly triggered by an event of type
j , and then encodes a notion of causality. Actually, as detailed below (see Section 2.1), such
integral can be related to the Granger causality ([Gra69]).

The main idea of the method we developed in this paper is to estimate the matrix G
directly using a matching cumulants (or moments) method. Apart from the mean, we shall
use second and third-order cumulants which correspond respectively to centered second and
third-order moments. We Ærst compute an estimation cM of these centered moments M(G)

(they are uniquely deÆned by G ). Then, we look for a matrix bG that minimizes the L

2 error
kM(

bG)°cMk2. Thus the integral matrix bG is directly estimated without making hardly any
assumptions on the shape the involved kernels. As it will be shown, this approach turns out to
be particularly robust to the kernel shapes, which is not the case of all previous Hawkes-based
approaches that aim causality recovery. We call this method NPHC (Non Parametric Hawkes
Cumulant), since our approach is of nonparametric nature. We provide a theoretical analysis
that proves the consistency of the NPHC estimator. Our proof is based on ideas from the the-
ory of Generalized Method of Moments (GMM) but requires an original technical trick since
our setting strongly departs from the standard parametric statistics with i.i.d observations.
Note that moment and cumulant matching techniques proved particularly powerful for latent
topic models, in particular Latent Dirichlet Allocation, see [PBLJ15]. A small set of previous
works, namely [DFZ14, ASCDL10], already used method of moments with Hawkes processes,
but only in a parametric setting. Our work is the Ærst to consider such an approach for a
nonparametric counting processes framework.

The paper is organized as follows: in Section 2, we provide the background on the
integrated kernels and the integrated cumulants of the Hawkes process. We then introduce
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the method, investigate its complexity and explain the consistency result we prove. In Section
3, we estimate the matrix of Hawkes kernels’ integrals for various simulated datasets and for
real datasets, namely the MemeTracker database and Ænancial order book data. We then
provide in Section 4 the technical details skipped in the previous parts and the proof of our
consistency result. Section 5 contains concluding remarks.

2 NPHC: The Non Parametric Hawkes Cumulant method

In this Section, we provide the background on integrals of Hawkes kernels and integrals of
Hawkes cumulants. We then explain how the NPHC method enables estimating G .

2.1 Branching structure and Granger causality

From the deÆnition of Hawkes process as a Poisson cluster process, see [JHR15] or [HO74],
g

i j can be simply interpreted as the average total number of events of node i whose direct
ancestor is a given event of node j (by direct we mean that interactions mediated by any
other intermediate event are not counted). In that respect, G not only describes the mutual
inØuences between nodes, but it also quantiÆes their direct causal relationships. Namely,
introducing the counting function N

i√ j

t

that counts the number of events of i whose direct
ancestor is an event of j , we know from [BMM15] that

E[d N

i√ j

t

] = g

i jE[d N

j

t

] = g

i j§ j

d t , (2)

where we introduced §i as the intensity expectation, namely satisfying E[d N

i

t

] =§i

d t . Note
that §i does not depend on time by stationarity of N

t

, which is known to hold under the
stability condition kGk < 1, where kGk stands for the spectral norm of G . In particular, this
condition implies the non-singularity of Id °G .

Since the question of a real causality is too complex in general, most econometricians
agreed on the simpler deÆnition of Granger causality [Gra69]. Its mathematical formulation
is a statistical hypothesis test: X causes Y in the sense of Granger causality if forecasting future
values of Y is more successful while taking X past values into account. In [EDD17], it is
shown that for N

t

a multivariate Hawkes process, N

j

t

does not Granger-cause N

i

t

w.r.t N
t

if
and only if ¡i j

(u) = 0 for u 2R+. Since the kernels take positive values, the latter condition is
equivalent to

R1
0

¡i j

(u)du = 0. In the following, we’ll refer to learning the kernels’ integrals as
uncovering causality since each integral encodes the notion of Granger causality, and is also
linked to the number of events directly caused from a node to another node, as described
above at Eq. (2).

2.2 Integrated cumulants of the Hawkes process

A general formula for the integral of the cumulants of a multivariate Hawkes process is
provided in [JHR15]. As explained below, for the purpose of our method, we only need to
consider cumulants up to the third order. Given 1 ∑ i , j ,k ∑ d , the Ærst three integrated
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cumulants of the Hawkes process can be deÆned as follows thanks to stationarity:

§i

d t = E(d N

i

t

) (3)
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i j
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i

t

d N

j

t+ø)°E(d N
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i

t

)

¥
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(5)

where Eq. (3) is the mean intensity of the Hawkes process, the second-order cumulant (4)
refers to the integrated covariance density matrix and the third-order cumulant (5) measures
the skewness of N

t

. Using the martingale representation from [BM16] or the Poisson cluster
process representation from [JHR15], one can obtain an explicit relationship between these
integrated cumulants and the matrix G . If one sets

R = (Id °G)

°1

, (6)

straightforward computations (see Section 4) lead to the following identities:

§i =
dX

m=1

R

i mµm (7)

C

i j =
dX

m=1

§m

R

i m

R

j m (8)

K

i j k =
dX

m=1

(R

i m

R

j m

C

km +R

i m

C

j m

R

km +C

i m

R

j m

R

km °2§m

R

i m

R

j m

R

km

). (9)

Equations (8) and (9) are proved in Section 4. Our strategy is to use a convenient subset of
Eqs. (3), (4) and (5) to deÆne M , while we use Eqs. (7), (8) and (9) in order to construct the
operator that maps a candidate matrix R to the corresponding cumulants M(R). By looking
for bR that minimizes R 7! kM(R)°cMk2, we obtain, as illustrated below, good recovery of the
ground truth matrix G using Equation (6).

The simplest case d = 1 has been considered in [HB14], where it is shown that one can
choose M = {C

11

} in order to compute the kernel integral. Eq. (8) then reduces to a simple
second-order equation that has a unique solution in R (and consequently a unique G ) that
accounts for the stability condition (kGk< 1).

Unfortunately, for d > 1, the choice M = {C

i j

}

1∑i∑ j∑d

is not su�cient to uniquely de-
termine the kernels integrals. In fact, the integrated covariance matrix provides d(d +1)/2

independent coe�cients, while d

2 parameters are needed. It is straightforward to show that
the remaining d(d°1)/2 conditions can be encoded in an orthogonal matrix O, reØecting the
fact that Eq. (8) is invariant under the change R !OR , so that the system is under-determined.

Our approach relies on using the third order cumulant tensor K = [K

i j k

] which contains
(d

3 +3d

2 +2d)/6 > d

2 independent coe�cients that are su�cient to uniquely Æx the matrix
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G . This can be justiÆed intuitively as follows: while the integrated covariance only contains
symmetric information, and is thus unable to provide causal information, the skewness given
by the third order cumulant in the estimation procedure can break the symmetry between past
and future so as to uniquely Æx G . Thus, our algorithm consists of selecting d

2 third-order
cumulant components, namely M = {K

i i j

}

1∑i , j∑d

. In particular, we deÆne the estimator of R
as bR 2 argminRL (R), where

L (R) = (1°∑)kK c
(R)° cK ck2

2

+∑kC (R)° bCk2

2

, (10)

where k ·k
2

stands for the Frobenius norm, K c = {K

i i j

}

1∑i , j∑d

is the matrix obtained by the
contraction of the tensor K to d

2 indices, C is the covariance matrix, while cK c and bC are
their respective estimators, see Equations (12), (13) below. It is noteworthy that the above mean
square error approach can be seen as a particular Generalized Method of Moments (GMM),
see [Hal05]. This framework allows us to determine the optimal weighting matrix involved
in the loss function. However, this approach is unusable in practice, since the associated
complexity is too high. Indeed, since we have d

2 parameters, this matrix has d

4 coe�cients
and GMM calls for computing its inverse leading to a O(d

6

) complexity. In this work, we use
the coe�cient ∑ to scale the two terms, as

∑=
kcK ck2

2

kcK ck2

2

+kbCk2

2

,

see Section 4.4 for an explanation about the link between ∑ and the weighting matrix. Finally,
the estimator of G is straightforwardly obtained as

bG = Id ° bR°1

,

from the inversion of Eq. (6). Let us mention an important point: the matrix inversion in the
previous formula is not the bottleneck of the algorithm. Indeed, its has a complexity O(d

3

)

that is cheap compared to the computation of the cumulants when n = max

i

|Z i |¿ d , which is
the typical scaling satisÆed in applications. Solving the considered problem on a larger scale,
say d ¿ 10

3, is an open question, even with state-of-the-art parametric and nonparametric
approaches, see for instance [ZZS13, XFZ16, ZZS13, BM16], where the number of components
d in experiments is always around 100 or smaller. Note that, actually, our approach leads
to a much faster algorithm than the considered state-of-the-art baselines, see Tables 1–4 from
Section 3 below.

2.3 Estimation of the integrated cumulants

In this section we present explicit formulas to estimate the three moment-based quantities
listed in the previous section, namely, §, C and K . We Ærst assume there exists H > 0 such
that the truncation from (°1,+1) to [°H , H ] of the domain of integration of the quantities
appearing in Eqs. (4) and (5), introduces only a small error. In practice, this amounts to
neglecting border e�ects in the covariance density and in the skewness density that is a good
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approximation if the support of the kernel ¡i j

(t ) is smaller than H and the spectral norm
kGk satisÆes kGk< 1.
In this case, given a realization of a stationary Hawkes process {N

t

: t 2 [0,T ]}, as shown in
Section 4, we can write the estimators of the Ærst three cumulants (3), (4) and (5) as
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(13)

Let us mention the following facts.

Bias. While the Ærst cumulant ˆ§i is an unbiased estimator of §i , the other estimators b
C

i j

and b
K

i j k introduce a bias. However, as we will show, in practice this bias is small
and hardly a�ects numerical estimations (see Section 3). This is conÆrmed by our
theoretical analysis, which proves that if H does not grow too fast compared to T , then
these estimated cumulants are consistent estimators of the theoretical cumulants (see
Section 2.6).

Complexity. The computations of all the estimators of the Ærst, second and third-order cu-
mulants have complexity respectively O(nd), O(nd

2

) and O(nd

3

), where n = max

i

|Z i |.
However, our algorithm requires a lot less than that: it computes only d

2 third-order
terms, of the form b

K

i i j , leaving us with only O(nd

2

) operations to perform.

Symmetry. While the values of §i

,C

i j and K

i j k are symmetric under permutation of the in-
dices, their estimators are generally not symmetric. We have thus chosen to symmetrize
the estimators by averaging their values over permutations of the indices. Worst case is
for the estimator of K c , which involves only an extra factor of 2 in the complexity.

2.4 The NPHC algorithm

The objective to minimize in Equation (10) is non-convex. More precisely, the loss function
is a polynomial of R of degree 6. However, the expectations of cumulants § and C deÆned
in Eq. (4) and (5) that appear in the deÆnition of L (R) are unknown and should be replaced
with b§ and bC . We denote fL (R) the objective function, where the expectations of cumulants
§i and C

i j have been replaced with their estimators in the right-hand side of Eqs. (8) and
(9):

fL (R) = (1°∑)kRØ2 bC>+2[R Ø (

bC °RbL)]R>° cK ck2

2

+∑kRbLR>° bCk2

2

(14)
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As explained in [CHM+15], the loss function of a typical multilayer neural network with
simple nonlinearities can be expressed as a polynomial function of the weights in the net-
work, whose degree is the number of layers. Since the loss function of NPHC writes as
a polynomial of degree 6, we expect good results using optimization methods designed to
train deep multilayer neural networks. We used the AdaGrad from [DHS11], a variant of the
Stochastic Gradient Descent with adaptive learning rates. AdaGrad scales the learning rates
coordinate-wise using the online variance of the previous gradients, in order to incorporate
second-order information during training. The NPHC method is summarized schematically
in Algorithm 10.

Algorithm 10 Non Parametric Hawkes Cumulant method

1: Input: N
t

2: Output: bG
3: Estimate b§i , b

C

i j

,

b
K

i i j from Eqs. (11, 12, 13)
4: Design fL (R) using the computed estimators.
5: Minimize numerically fL (R) so as to obtain bR
6: Return bG = Id ° bR°1.

Our problem being non-convex, the choice of the starting point has a major e�ect on the
convergence. Here, the key is to notice that the matrices R that match Equation (8) writes
C 1/2OL°1/2, with L = diag(§) and O an orthogonal matrix. Our starting point is then simply
chosen by setting O = Id in the previous formula, leading to nice convergence results. Even
though our main concern is to retrieve the matrix G , let us notice we can also obtain an
estimation of the baseline intensities’ from Eq. (3), which leads to bµ = bR°1 b§. An e�cient
implementation of this algorithm with TensorFlow, see [AAB+16], is available on GitHub:
https://github.com/achab/nphc.

2.5 Complexity of the algorithm

Compared with existing state-of-the-art methods to estimate the kernel functions, e.g., the
ordinary di�erential equations-based (ODE) algorithm in [ZZS13], the Granger Causality-
based algorithm in [XFZ16], the ADM4 algorithm in [ZZS13], and the Wiener-Hopf-based
algorithm in [BM16], our method has a very competitive complexity. This can be understood
by the fact that those methods estimate the kernel functions, while in NPHC we only estimate
their integrals. The ODE-based algorithm is an EM algorithm that parametrizes the kernel
function with M basis functions, each being discretized to L points. The basis functions are
updated after solving M Euler-Lagrange equations. If n denotes the maximum number of
events per component (i.e. n = max

1∑i∑d

|Z i |) then the complexity of one iteration of the
algorithm is O(Mn

3

d

2 +ML(nd +n

2

)). The Granger Causality-based algorithm is similar to
the previous one, without the update of the basis functions, that are Gaussian kernels. The
complexity per iteration is O(Mn

3

d

2

). The algorithm ADM4 is similar to the two algorithms
above, as EM algorithm as well, with only one exponential kernel as basis function. The
complexity per iteration is then O(n

3

d

2

). The Wiener-Hopf-based algorithm is not iterative,
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on the contrary to the previous ones. It Ærst computes the empirical conditional laws on many
points, and then invert the Wiener-Hopf system, leading to a O(nd

2

L +d

4

L

3

) computation.
Similarly, our method Ærst computes the integrated cumulants, then minimize the objective
function with Niter iterations, and invert the resulting matrix bR to obtain bG . In the end, the
complexity of the NPHC method is O(nd

2+Niterd
3

). According to this analysis, summarized
in Table III.1 below, one can see that in the regime n ¿ d , the NPHC method outperforms all
the other ones.

Table III.1: Complexity of state-of-the-art methods. NPHC’s complexity is very low , especially
in the regime n ¿ d .

Method Total complexity

ODE [ZZS13] O(NiterM(n

3

d

2 +L(nd +n

2

)))

GC [XFZ16] O(NiterMn

3

d

2

)

ADM4 [ZZS13] O(Nitern
3

d

2

)

WH [BM16] O(nd

2

L+d

4

L

3

)

NPHC O(nd

2 +Niterd
3

)

2.6 Theoretical guarantee: consistency

The NPHC method can be phrased using the framework of the Generalized Method of Mo-
ments (GMM). GMM is a generic method for estimating parameters in statistical models. In
order to apply GMM, we have to Ænd a vector-valued function g (X ,µ) of the data, where
X is distributed with respect to a distribution Pµ

0

, which satisÆes the moment condition:
E[g (X ,µ)] = 0 if and only if µ = µ

0

, where µ
0

is the “ground truth” value of the parame-
ter. Based on i.i.d. observed copies x

1

, . . . , x

n

of X , the GMM method minimizes the norm of
the empirical mean over n samples, k 1

n

P
n

i=1

g (x

i

,µ)k, as a function of µ, to obtain an estimate
of µ

0

.

In the theoretical analysis of NPHC, we use ideas from the consistency proof of the GMM,
but the proof actually relies on very di�erent arguments. Indeed, the integrated cumulants
estimators used in NPHC are not unbiased, as the theory of GMM requires, but asymptotically
unbiased. Moreover, the setting considered here, where data consists of a single realization
{N

t

} of a Hawkes process strongly departs from the standard i.i.d setting. Our approach is
therefore based on the GMM idea but the proof is actually not using the theory of GMM.

In the following, we use the subscript T to refer to quantities that only depend on the
process (Nt ) in the interval [0,T ] (e.g., the truncation term H

T

, the estimated integrated
covariance bC

T

or the estimated kernel norm matrix bG
T

). In the next equation, Ø stands
for the Hadamard product and Ø2 stands for the entrywise square of a matrix. We denote
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G
0

= Id °R°1

0

the true value of G , and the R2d£d valued vector functions
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K c °RØ2C>°2[R Ø (C °RL)]R>
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Using these notations, fL
T

(R) can be seen as the weighted squared Frobenius norm of b
g

T

(R).
Moreover, when T ! +1, one has b

g

T

(R)

P! g

0

(R) under the conditions of the following
theorem, where P! stands for convergence in probability.

Theorem 1 (Consistency of NPHC). Suppose that (Nt ) is observed on R+ and assume that

1. g

0

(R) = 0 if and only if R = R
0

;

2. R 2£, where £ is a compact set;

3. the spectral radius of the kernel norm matrix satisÆes kG
0

k< 1;

4. H

T

!1 and H

2

T

/T ! 0.

Then
bG

T

= Id °
µ
argmin

R2£
fL

T

(R)

∂°1

P!G
0

.

The proof of the Theorem is given in Section 4.5 below. Assumption 3 is mandatory for
stability of the Hawkes process, and Assumptions 3 and 4 are su�cient to prove that the es-
timators of the integrated cumulants deÆned in Equations (11), (12) and (13) are asymptotically
consistent. Assumption 2 is a very mild standard technical assumption allowing to prove con-
sistency for estimators based on moments. Assumption 1 is a standard asymptotic moment
condition, that allows to identify parameters from the integrated cumulants.

3 Numerical Experiments

In this Section, we provide a comparison of NPHC with the state-of-the art, on simulated
datasets with di�erent kernel shapes, the MemeTracker dataset (social networks) and the
order book dynamics dataset (Ænance).

Simulated datasets. We simulated several datasets with Ogata’s Thinning algorithm [Oga81]
using the open-source library tick1, each corresponding to a shape of kernel: rectangular,
exponential or power law kernel, see Figure III.1 below.

The integral of each kernel on its support equals Æ, 1/Ø can be regarded as a characteristic
time-scale and ∞ is the scaling exponent for the power law distribution and a delay parameter

1
https://github.com/X-DataInitiative/tick
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Figure III.1: The three di�erent kernels used to simulate the datasets.

for the rectangular one. We consider a non-symmetric block-matrix G to show that our
method can e�ectively uncover causality between the nodes, see Figure III.2. The matrix G
has constant entries Æ on the three blocks - Æ= g

i j = 1/6 for dimension 10 and Æ= g

i j = 1/10

for dimension 100 -, and zero outside. The two other parameters’ values are the same for
dimensions 10 and 100. The parameter ∞ is set to 1/2 on the three blocks as well, but we
set three very di�erent Ø

0

, Ø
1

and Ø
2

from one block to the other, with ratio Ø
i+1

/Ø
i

= 10

and Ø
0

= 0.1. The number of events is roughly equal to 10

5 on average over the nodes. We
ran the algorithm on three simulated datasets: a 10-dimensional process with rectangular
kernels named Rect10, a 10-dimensional process with power law kernels named PLaw10 and
a 100-dimensional process with exponential kernels named Exp100.

MemeTracker dataset. We use events of the most active sites from the MemeTracker
dataset2. This dataset contains the publication times of articles in many websites/blogs
from August 2008 to April 2009, and hyperlinks between posts. We extract the top 100
media sites with the largest number of documents, with about 7 million of events. We use
the links to trace the Øow of information and establish an estimated ground truth for the
matrix G . Indeed, when an hyperlink j appears in a post in website i , the link j can be
regarded as a direct ancestor of the event. Then, Eq. (2) shows g

i j can be estimated by
N

i√ j

T

/N

j

T

= #{links j ! i }/N

j

T

.

Order book dynamics. We apply our method to Ænancial data, in order to understand the
self and cross-inØuencing dynamics of all event types in an order book. An order book is a list
of buy and sell orders for a speciÆc Ænancial instrument, the list being updated in real-time
throughout the day. This model has Ærst been introduced in [BJM16], and models the order
book via the following 8-dimensional point process: N

t

= (P

(a)

t

,P

(b)

t

,T

(a)

t

,T

(b)

t

,L

(a)

t

,L

(b)

t

,C

(a)

t

,C

(b)

t

),
where P

(a) (resp. P

(b)) counts the number of upward (resp. downward) price moves, T

(a) (resp.
T

(b)) counts the number of market orders at the ask3 (resp. at the bid) that do not move the
price, L

(a) (resp. L

(b)) counts the number of limit orders at the ask4 (resp. at the bid) that do

2
https://www.memetracker.org/data.html

3i.e. buy orders that are executed and removed from the list
4i.e. buy orders added to the list
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not move the price, and C

(a) (resp. C

(b)) counts the number of cancel orders at the ask5 (resp.
at the bid) that do not move the price. The Ænancial data has been provided by QuantHouse
EUROPE/ASIA, and consists of DAX future contracts between 01/01/2014 and 03/01/2014.

Baselines. We compare NPHC to state-of-the art baselines: the ODE-based algorithm
(ODE) by [ZZS13], the Granger Causality-based algorithm (GC) by [XFZ16], the ADM4 al-
gorithm (ADM4) by [ZZS13], and the Wiener-Hopf-based algorithm (WH) by [BM16].

Metrics. We evaluate the performance of the proposed methods using the computing time,
the Relative Error

RelErr(A,B ) = 1

d

2

X

i , j

|ai j °b

i j |
|ai j | {a

i j 6=0}

+|bi j |
{a

i j=0}

and the Mean Kendall Rank Correlation

MRankCorr(A,B ) = 1

d

dX

i=1

RankCorr([a

i•
], [b

i•
]),

where RankCorr(x, y) = 2

d(d°1)

(Nconcordant(x, y) ° Ndiscordant(x, y)) with Nconcordant(x, y) the
number of pairs (i , j ) satisfying x

i

> x

j

and y

i

> y

j

or x

i

< x

j

and y

i

< y

j

and Ndiscordant(x, y)

the number of pairs (i , j ) for which the same condition is not satisÆed.
Note that RankCorr score is a value between °1 and 1, representing rank matching, but

can take smaller values (in absolute value) if the entries of the vectors are not distinct.

Figure III.2: On Exp100 dataset, estimated bG with ADM4 (left), with NPHC (middle) and the
ground-truth matrix G (right). Both ADM4 and NPHC estimates recover the three blocks.
However, ADM4 overestimates the integrals on two of the three blocks, while NPHC gives the
same value on each blocks.

5i.e. the number of times a limit order at the ask is canceled: in our dataset, almost 95% of limit orders are
canceled before execution.
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Figure III.3: Estimated bG via NPHC on DAX order book data.

Table III.2: Metrics on Rect10: comparable rank correlation, strong improvement for relative
error and computing time.

Method ODE GC ADM4 WH NPHC

RelErr 0.007 0.15 0.10 0.005 0.001
MRankCorr 0.33 0.02 0.21 0.34 0.34
Time (s) 846 768 709 933 20

Table III.3: Metrics on PLaw10: comparable rank correlation, strong improvement for relative
error and computing time.

Method ODE GC ADM4 WH NPHC

RelErr 0.011 0.09 0.053 0.009 0.0048
MRankCorr 0.31 0.26 0.24 0.34 0.33
Time (s) 870 781 717 946 18

Discussion. We perform the ADM4 estimation, with exponential kernel, by giving the exact
value Ø = Ø

0

of one block. Let us stress that this helps a lot this baseline, in comparison to
NPHC where nothing is speciÆed on the shape of the kernel functions. We used M = 10

basis functions for both ODE and GC algorithms, and L = 50 quadrature points for WH. We
did not run WH on the 100-dimensional datasets, for computing time reasons, because its
complexity scales with d

4. We ran multi-processed versions of the baseline methods on 56
cores, to decrease the computing time.

Our method consistently performs better than all baselines, on the three synthetic datasets,
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III. Generalized Method of Moments approach

Table III.4: Metrics on Exp100: comparable rank correlation, strong improvement for relative
error and computing time.

Method ODE GC ADM4 NPHC

RelErr 0.092 0.112 0.079 0.008
MRankCorr 0.032 0.009 0.049 0.041
Time (s) 3215 2950 2411 47

Table III.5: Metrics on MemeTracker: strong improvement in relative error, rank correlation
and computing time.

Method ODE GC ADM4 NPHC

RelErr 0.162 0.19 0.092 0.071
MRankCorr 0.07 0.053 0.081 0.095
Time (s) 2944 2780 2217 38

on MemeTracker and on the Ænancial dataset, both in terms of Kendall rank correlation and
estimation error. Moreover, we observe that our algorithm is roughly 50 times faster than all
the considered baselines.

On Rect10, PLaw10 and Exp100 our method gives very impressive results, despite the fact
that it does not uses any prior shape on the kernel functions, while for instance the ADM4
baseline do. On Figure III.2, we observe that the matrix bG estimated with ADM4 recovers
well the block for which Ø= Ø

0

, i.e. the value we gave to the method, but does not perform
well on the two other blocks, while the matrix bG estimated with NPHC approximately reaches
the true value for each of the three blocks. On these simulated datasets, NPHC obtains a
comparable or slightly better Kendall rank correlation, but improves a lot the relative error.

On MemeTracker, the baseline methods obtain a high relative error between 9% and 19%
while our method achieves a relative error of 7% which is a strong improvement. Moreover,
NPHC reaches a much better Kendall rank correlation, which proves that it leads to a much
better recovery of the relative order of estimated inØuences than all the baselines. Indeed, it
has been shown in [ZZS13] that kernels of MemeTracker data are not exponential, nor power
law. This partly explains why our approach behaves better.

On the Ænancial data, the estimated kernel norm matrix obtained via NPHC, see Fig-
ure III.3, gave some interpretable results (see also [BJM16]):

1. Any 2£2 sub-matrix with same kind of inputs (i.e. Prices changes, Trades, Limits or
Cancels) is symmetric. This shows empirically that ask and bid have symmetric roles.

2. The prices are mostly cross-excited, which means that a price increase is very likely to
be followed by a price decrease, and conversely. This is consistent with the wavy prices
we observe on Ænancial markets.

3. The market, limit and cancel orders are strongly self-excited. This can be explained
by the persistence of order Øows, and by the splitting of meta-orders into sequences of
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smaller orders. Moreover, we observe that orders impact the price without changing it.
For example, the increase of cancel orders at the bid causes downward price moves.

4 Technical details

We show in this section how to obtain the equations stated above, the estimators of the
integrated cumulants and the scaling coe�cient ∑ that appears in the objective function. We
then prove the theorem of the paper.

4.1 Proof of Equation (8)

We denote ∫(z) the matrix

∫i j

(z) =L
z

≥
t !

E(d N

i

u

d N

j

u+t

)

dud t

°§i§ j

¥
,

where L
z

( f ) is the Laplace transform of f , and √
t

= P
n∏1

¡(?n)

t

, where ¡(?n)

t

refers to the
n

th auto-convolution of ¡
t

. Then we use the characterization of second-order statistics, Ærst
formulated in [Haw71a] and fully generalized in [BM16],

∫(z) = (Id +L°z

(™))L(Id +L
z

(™))

>
,

where Li j =§i±i j with ±i j the Kronecker symbol. Since Id +L
z

(™) = (Id °L
z

(©))
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z = 0 in the previous equation gives
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)
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,
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,

which gives us the result since the entry (i , j ) of the last equation gives C
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m

§m

R
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.

4.2 Proof of Equation (9)

We start from [JHR15], cf. Eqs. (48) to (51), and group some terms:
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Using the relations L
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) = R
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°±mn and C
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j m

, proves Equation (9).

73



III. Generalized Method of Moments approach

4.3 Integrated cumulants estimators

For H > 0 let us denote ¢
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. Let us Ærst remark that, if one restricts
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The estimators (11) and (12) are then naturally obtained by replacing the expectations by their
empirical counterparts, notably
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For the estimator (13), we shall also notice that
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We estimate the last integral with the remark above.

4.4 Choice of the scaling coe�cient ∑

Following the theory of GMM, we denote m(X ,µ) a function of the data, where X is dis-
tributed with respect to a distribution Pµ

0

, which satisÆes the moment conditions g (µ) =
E[m(X ,µ)] = 0 if and only if µ = µ
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, the parameter µ
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being the ground truth. For x
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where µ
1

is a constant vector. Instead of computing the inverse weighting matrix, we rather
use its projection on {ÆId :Æ 2 R}. It can be shown that the projection choses Æ as the mean
eigenvalue of c

W
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). We can easily compute the sum of its eigenvalues:
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In our case, b
g (R) =

h
vec[

cK c °K c
(R)],vec[

bC °C (R)]

i>
2 R2d

2

. Considering a block-wise

weighting matrix, one block for cK c ° K c
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Dividing this function by
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), we
obtaind the loss function given in Equation (10).

4.5 Proof of the Theorem

The main di�erence with the usual Generalized Method of Moments, see [Han82], relies in
the relaxation of the moment conditions, since we have E[

b
g

T

(µ
0

)] = m

T

6= 0. We adapt the
proof of consistency given in [NM94].

We can relate the integral of the Hawkes process’s kernels to the integrals of the cumulant
densities, from [JHR15]. Our cumulant matching method would fall into the usual GMM
framework if we could estimate - without bias - the integral of the covariance on R, and the
integral of the skewness on R2. Unfortunately, we can’t do that easily. We can however estimate
without bias
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can be considered a proxy to the distance to the classical GMM. This distance has to go to zero
to make the rest of GMM’s proof work: the estimator b

C

i j ,(T ) is then asymptotically unbiased
towards C

i j when T goes to inÆnity.

4.5.1 Notations

We observe the multivariate point process (N
t

) on R+, with Z

i the events of the i

th compo-
nent. We will often write covariance / skewness instead of integrated covariance / skewness.
In the rest of the document, we use the following notations.
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4.5.2 Consistency

First, let’s remind a useful theorem for consistency in GMM from [NM94].

Theorem 2. If there is a function Q
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We can now prove the consistency of our estimator.
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in the article.
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3. the spectral radius of the kernel norm matrix satisÆes ||©||§ < 1,
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Proof that kbL °Lk P°! 0

The estimator of L is unbiased so let’s focus on the variance of bL.
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4. Technical details

Then, the variance involves the integration towards the di�erence of moments µr,s,t ,u°µr,sµt ,u .
Let’s write it as a sum of cumulants, since cumulants density are integrable.

µr,s,t ,u °µr,sµt ,u = ∑r,s,t ,u +∑r,s,t∑u
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)(∑t ,u +∑t∑u

)

= ∑r,s,t ,u

+∑r,s,t∑u +∑u,r,s∑t +∑t ,u,r∑s +∑s,t ,u∑r

+∑r,t∑s,u +∑r,u∑s,t

+∑r,t∑s∑u +∑r,u∑s∑t +∑s,t∑r∑u +∑s,t∑r∑u
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Proof that kcK c (T ) °K ck P°! 0

The scheme of the proof is similar to the previous one. The upper bounds of the integrals
involve the same kind of terms, plus the new term (F

T

)

2

/T that goes to zero thanks to the
assumption 5 of the theorem.
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5. Conclusion

5 Conclusion

In this paper, we introduce a simple nonparametric method (the NPHC algorithm) that leads
to a fast and robust estimation of the matrix G of the kernel integrals of a Multivariate
Hawkes process that encodes Granger causality between nodes. This method relies on the
matching of the integrated order 2 and order 3 empirical cumulants, which represent the
simplest set of global observables containing su�cient information to recover the matrix G .
Since this matrix fully accounts for the self- and cross- inØuences of the process nodes (that
can represent agents or users in applications), our approach can naturally be used to quantify
the degree of endogeneity of a system and to uncover the causality structure of a network.

By performing numerical experiments involving very di�erent kernel shapes, we show that
the baselines, involving either parametric or non-parametric approaches are very sensible to
model misspeciÆcation, do not lead to accurate estimation, and are numerically expensive,
while NPHC provides fast, robust and reliable results. This is conÆrmed on the MemeTracker
database, where we show that NPHC outperforms classical approaches based on EM algo-
rithms or the Wiener-Hopf equations. Finally, the NPHC algorithm provided very satisfying
results on Ænancial data, that are consistent with well-known stylized facts in Ænance.
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CHAPTER IV

Constrained optimization approach

Abstract

We want to estimate the Hawkes causality matrix i.e. the matrix of Hawkes kernels’
integral from the mean, the integrated covariance and the minimization of a criterion.
We show in this document the inference can be naturally turned into ADMM problem
form.

Keywords: Hawkes processes, convex relaxation, ADMM, compressed sensing.

1 Introduction

The previous approach based on the Generalized Method of Moments need the Ærst three
cumulants to obtain enough information from the data to recover the d

2 entries of G . In-
deed, we want to recover d

2 independent coe�cients - the entries of G - and the Ærst two
integrated cumulants give d +d(d +1)/2 independent terms since the integrated covariance
C is a symmetric matrix. Assuming the matrix G has a certain structure, we can get rid of
the third order cumulant and design another estimation procedure using only the Ærst two
integrated cumulants. The advantage of such approach lies in the convexity of the related
optimization problem, on the contrary to the minimization of L

T

from the previous chapter.
The matrix we want to estimate minimize a simple criterion f convex, typically a norm, while
being consistent with the Ærst two empirical integrated cumulants.

2 Problem setting

We start from the relation between the integrated covariance C and the matrix R introduced
in the previous chapter, from [JHR15] and many other references:

C = RLR>
.
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IV. Constrained optimization approach

Our purpose is still to approximate G = I°R°1 from the information encoded in the integrated
cumulants. The previous equation in R admits a set of roots of that is isomorphocic to
orthogonal group O

n

(R), and then:

G = I °L1/2MC°1/2 with M 2O

n

(R) i.e. L°1/2

(I °G)C 1/2 2O

n

(R). (1)

The previous expression only comes from the relation on the covariance. However, two clas-
sic assuptions on the Hawkes kernel norm matrix are not yet encoded. The Ærst one concerns
the positivity of the kernels, and then the positivity of their integrals: g

i j ∏ 0 for i , j 2 [d ].
Some variants of Hawkes processes allow the possibility of modeling inhibition through neg-
ative valued kernels [PSCR11], with nonlinear Hawkes processes for instance [BM96], but the
closed formulas of the cumulants [JHR15] no longer stand with those variants. The other
well-known assumption is linked to the stationarity of the process. The counting process N

t

has asymptotically stationary increments if the spectral norm of the kernel norm matrix is
smaller than one: ||G || < 1.

We Ænally encode the structure of the matrix G via the minimization of a criterion f subject
to some constraints. For the problem to be easy to solve, the criterion f will be a convex
function whose proximal operator is explicit. The Æt to the data encoded in Equation (1), and
the two assumptions above will be regarded as constraints of our optimization problem.

All together, we formulate our problem as the following constrained optimization problem
Constrained optimization problem:

min

G
f (G)

s.t. L°1/2

(I °G)C 1/2 2O

n

(R)

||G || < 1

g

i j ∏ 0

The problem above involves easy constraints on two di�erent matrices: G and M = L°1/2

(I °G)C 1/2.
Our Ærst idea is to relax the previous problem to turn it into a convex optimization problem.

The objective f is convex, and the constraints ||G || < 1 and g

i j ∏ 0 correspond to convex sets.
The constraint that involves the orthogonal group is trickier and is not classic. We prove in
Section 6 that the convex hull of the orthogonal group O

n

(R) is the closed unit ball w.r.t. the
`

2

norm. In the rest of the chapter, we denote B (resp. B
2

) the open (resp. closed) unit ball
w.r.t the spectral norm (resp. the `

2

norm).

Instead of the previous problem, we split the variables G and M , meaning that we focus on
the minimization problem both on G and M . Such minimization problem on two variables
x and z linked via an equation of the form Ax +B z = c can be e�ciently solved with the
Alternating Direction Method of Multipliers algorithm [GM75, GM76] detailed in Section 3.
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3. ADMM

The minimization problem we Ænally aim at solving writes:

min

G ,M
f (G)+ B

2

(M)+ B(G)+ Rd£d

+
(G) (2)

s.t. L°1/2G +M C°1/2 = L°1/2

,

On the contrary to the optimization problem of the previous chapter, the problem just stated
is convex. We test this procedure on numerical simulations of various Hawkes kernels and
real order book data, and we show how the criterion f impact the matrices we retrieve.

3 ADMM

3.1 The ADMM algorithm

The Alternating Direction Methods of Multipliers (ADMM) is a widely-used minimization method
to solve constrained problems of the form

min

x,z

f (x)+ g (z) (3)

s.t. Ax +B z = c.

The objective function is separable in (x, z) with g and h two convex functions. The constraint
involves two matrices A and B , and a constant vector c . The algorithm ADMM was originally
introduced in [GM76] and [GM75], and focuses on the augmented Lagrangian [Hes69, Pow67]
associated to problem (3), that is:

LΩ(x, z, y) := g (x)+h(z)+ y

>
(Ax +B z ° c)+ Ω

2

||Ax +B z ° c||2
2

, (4)

with Ω > 0 and solves the problem

min

x,z

max

y

LΩ(x, z, y) (5)

instead of the initial one. The method of multipliers [Hes69, Pow67] (analysis in [Ber14])
applied to this problem would alternate an exact minimization step on the primal variable
(x, z) and a gradient ascent step on the dual variable y . Instead of the exact minimization
step on the couple (x, z), we do one pass of a Gauss-Seidel method [GVL12] and split the
joint minimization into two partial minimization steps: one over x with z Æxed, the other over
z with x Æxed. These two minimization steps can be done simultaneously, from the same
initial points, or in the case of ADMM, one after the other, with an update between. Namely,
ADMM algorithm iterates the following update steps:

x

t+1 = argmin

x

LΩ(x, z

t

, y

t

),

z

t+1 = argmin

z

LΩ(x

t+1

, z, y

t

),

y

t+1 = y

t +Ω(Ax

t+1 +B z

t+1 ° c).
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IV. Constrained optimization approach

3.2 Convergence results

The convergence results of ADMM hold under the following two assumptions:

• The functions f and g are convex, proper1 and closed2.

• The (unaugmented) Lagrangian L

0

has a saddle point i.e. there exist (x

§
, z

§
, y

§
) for

which
L

0

(x

§
, z

§
, y) ∑ L

0

(x

§
, z

§
, y

§
) ∑ L

0

(x, z, y

§
) for all x, y, z.

Under these two assumptions, the ADMM iterates satisfy the following convergences (a proof
is given in [BPC+11]):

• Residual convergence: r

t = Ax

t +B z

t ° c ! 0 as t ! 1 i.e. the iterates approaches
feasibility.

• Objective convergence: f (x

t

)+ g (z

t

) ! min

x,z

{ f (x)+ g (z)} as t ! 1 i.e. the objective
function approaches its optimal value.

• Dual variable convergence: y

t ! y

§ as t !1, where y

§ is a dual optimal point.

3.3 Examples

The ADMM method is quite general and plenty of optimization problems can be solved with
it. We show here two usual tricks to turn an optimization problem into a relevant ADMM
form. The Ærst is to introduce indicator functions and concerns for instance optimization
problem constrained on a set C :

min

x

f (x)

s.t. x 2C .

This problem can be equivalenty written:

min

x,z

f (x)+ g (z)

s.t. x ° z = 0

with g to be indicator of C i.e. to equal zero on C and 1 outside.

The other trick is to introduce a variable z being equal to a linear transformation of x. We
consider the problem called total variation denoising [ROF92]:

min

x

||x °b||2
2

+∏
d°1X

i=1

|x
i+1

°x

i

|.

1A proper convex function f is a convex function taking values on the extended real line such that f (x) >°1
for all x and f (x) <+1 for at least one x.

2A proper convex function is closed if and only if it is lower semi-continuous.
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Denoting F = (F

i j

) with F

i j

=1
j=i+1

°1
j=i

, the previous problem can be written as:

min

x,z

||x °b||2
2

+∏||z||
1

s.t. F x ° z = 0.

Such problem can be e�ciently solved using the ADMM algorithm, since each update step of
the algorithm has a closed form using proximal operators of the `

2

and `
1

norms.

4 Numerical results

In the previous sections, we only assumed f was a convex criterion whose proximal operator
can be easily computed. Now, we exhibit three di�erent choices for f and present the results
obtained with these choices for both simulated and real-world dataset. The criteria we con-
sider are the `

1

-norm ||·||
1

, the squared `
2

-norm ||·||2
2

and the nuclear norm ||·||§. In the rest
of the section, we refer as Problem I the minimization problem written in Equation (2) with
f = || · ||

1

, Problem II when f = || · ||2
2

and Problem III for the case f = || · ||§. We solve those
minimization problem using the ADMM algorithm whose update steps are written above. The
explicit update steps are provided in Section 6.

4.1 Simulated data

We simulated multivariate Hawkes point processes with the procedure already explained
in the previous chapter, and implemented in the open-source library tick. As previously,
we simulated three datasets generated from three di�erent Hawkes kernels: the exponential
kernel, the power-law kernel and the rectangular one. The mean vector and the integrated
covariance matrix are computed using estimators provided in the previous chapter. We then
used ADMM algorithm to solve the problems I , I I and I I I , and observed the same patterns
for the three kernels. To ease the reading, we only show the results for the exponential kernel
in dimension 100. The results from the Figure IV.1 and the Table IV.1 are consistent and
shows that the solution to Problem I is the closest to the ground-truth matrix G . Moreover,
according the Figure IV.1 one observes that the solutions to the two other problems are
symmetric matrices, while the ground-truth matrix is not.

Table IV.1: The solution of Problem I has the smallest relative error.

Problem I I I I I I

RelErr 0.093 0.130 0.131

4.2 Order book data

The numerical experiments on simulated data incites us to focus on Problem I if the matrix
G we want to uncover is not symmetric. Such non-symmetric relationships are for instance
highlighted in [RBL17], where the authors studied the interplay between orders of di�erent
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IV. Constrained optimization approach

Figure IV.1: From the left to the right: solution of Problem I, solution of Problem II, solution of
Problem III, and the ground-truth matrix G . Only the solution to Problem I recovers the three
blocks. The two other problems outputed symmetric matrices, while the ground-truth matrix
is not.

sizes. Indeed, a large trade is more likely to be followed by smaller trades than the opposite.

We use the same data as the authors of [RBL17] i.e. high-frequency order book data of fu-
tures traded at EUREX, that are also used in the numerical part of the previous chapter, see
this section for details about the dataset. Here, we use the trades’ timestamps of Bund futures.

We consider here unsigned trades i.e. we do not distinguish between buyer initiated trades and
seller initiated ones. The di�erent dimensions of the multivariate point process correspond to
di�erent intervals of volumes: each transaction falls into only one component. We denote N

a

t

the number of transactions whose volume equals a that occured before t , N

a:b

t

the number of
transactions whose volume is between a and b (included), and N

a:

t

the number of transactions
whose volume is greater or equal than a. We then consider the following multivariate point
processes, and solve the Problem I for these timestamped events:

A
t

= (N

1

t

, N

2:3

t

, N

4:20

t

, N

21:

t

), B
t

= (N

1

t

, N

2

t

, N

3

t

, N

4:7

t

, N

8:20

t

, N

21:

t

), C
t

= (N

1

t

, . . . , N

20

t

, N

21:

t

).

Figure IV.2: Solutions of Problem I for the multivariate point process A
t

(left) and B
t

(right).
We observe a strong self-excitation. These solutions are consistent with the estimated kernel
norm matrix in [RBL17].
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Figure IV.3: Solution of Problem I for the multivariate point process C
t

. This solution is
consistent with estimtates in lower dimension.

The solutions we found share the same patterns. We observe that self-excitation is prepon-
derant, followed in importance by the excitation from large volumes. The excitation from
large volumes is however lighter when we increase the dimension, this may be a consequence
of the `

1

norm minimization which aims at Ænding sparse solutions. Our observations are
consistent with the results obtained in [RBL17], see this reference for Ænancial interpretations
of the results. Note that kernel norm matrix of 21-dimensional model who have been very
long to estimate with the Wieher-Hopf based method used in [RBL17], while our method has
way lower complexity (comparable to the NPHC’s one, see the previous chapter for a full
comparison).
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5 Conclusion

The approach consisting of minimizing a criterion instead of extracting the information from
the third integrated cumulant seems promising. The convexity of the optimization problem
is a real advantage compared to the non-convex problem one has to solve to estimate the
Hawkes kernel norm matrix using NPHC, see Chapter III. The method developed in this
chapter however lacks theory, especially for the choice of the criterion to minimize.

As shown in the numerical part, the solution to the Problem I seems to provide better so-
lutions, compared to the two other problems. Such statement could be explained by the
similarity between Problem I and the `

1

minimization of the compressing sensing problem

min

x

||x||
1

s.t. Ax = b.

One can indeed prove the exact recovery of the vector x under some assumptions [Don06].

6 Technical details

6.1 Convex hull of the orthogonal group

The convex hull of the orthogonal group is the unit ball for the `
2

norm. This is a nice
exercise that can be solved using simple tools of linear algebra. A proof can be found in
[GGT04] for instance.

6.2 Updates of ADMM steps

6.2.1 Notations

We Ærst denote the functions used in 2: f

1

(X ) = f (X ), f

2

(X ) = Rd£d

+
(X ), f

3

(X ) = B(X ) and
f

4

(X ) = B
2

(X ). We also denote A = C = L°1/2 and B = C°1/2. After splitting to the right
number of variables (so that the update steps of ADMM algorithm for problem 2 write with
closed formula), the problem 2 becomes:

min

X

1

,X

2

,X

3

,X

4

,Y

1

,Y

2

f

1

(X

1

)+ f

2

(X

2

)+ f

3

(X

3

)+ f

4

(X

4

)

s.t. Y

1

+Y

2

=C

X

1

°X

2

= 0

X

3

°X

2

= 0

A

°1

Y

1

°X

1

= 0

Y

2

B

°1 °X

4

= 0
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6.2.2 Update steps

Now, the update steps of ADMM algorithm (using the scaled dual form, see [BPC+11]) write:

X

t+1

1

= argmin

X

1

f

1

(X

1

)+ (Ω/2)||X
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6.2.3 Proximal operators

The previous update steps can be written using proximal operators of the functions f
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6.2.4 Final algorithm
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Part III

Capture order book dynamics with
Hawkes processes
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CHAPTER V

Analysis of order book dynamics using a
nonparametric estimation of the branching

ratio matrix

Abstract

We introduce a new non parametric method that allows for a direct, fast and e�cient
estimation of the matrix of kernel norms of a multivariate Hawkes process, also called
branching ratio matrix. We demonstrate the capabilities of this method by applying it
to high-frequency order book data from the EUREX exchange. We show that it is able
to uncover (or recover) various relationships between all the Ærst level order book events
associated with some asset when mapped to a 12-dimensional process. We then scale up
the model so as to account for events on two assets simultaneously and we discuss the
joint high-frequency dynamics.
Keywords. Hawkes Process, Non-parametric estimation, GMM method, Order books,
Market Microstructure

1 Introduction

With the large number of empirical studies devoted to high frequency Ænance, relying on
datasets of increasing size and quality, many progresses have been made during the last
decade in the modelling and understanding the microstructure of Ænancial markets. Within
this context, as evidenced by this special issue, Hawkes processes have become a very popular
class of models. The main reason is that they allow one to account for the mutual inØuence
of various types of events in a simple and parsimonious way through a conditional intensity
vector. Hawkes processes have been involved in many di�erent problems of high frequency
Ænance ranging from the simple description of the temporal occurrence of market orders or
price changes ([Bow07, HB14, FS12]), to the complex modelling of the arrival rates of various
kinds of events in a full order book model ([Lar07, Tok11, JA13]). We refer to [BMM15] for a
recent review.

A multivariate Hawkes model of dimension d is characterized by a d£d matrix of kernels,
whose elements ¡i j

(t ) account for the inØuence, after a lag t , of events of type j on the arrival
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V. Order book dynamics

rate of events of type i . The challenging issue of the statistical estimation of the shape of
these excitation kernels has been addressed by many authors and various solutions have been
proposed whose performances (accuracy and computational complexity) strongly depend on
the empirical situation one considers. Indeed, if non-parametric methods like e.g. the EM
method ([LM11]), the Wiener-Hopf method ([BM14a, BM16, BJM16]) or the contrast function
method ([RBRGTM14]) can be applied in low dimensional situations with a large number
of events, one has to consider parametric penalized alternatives (like e.g., in [ZZS13, YZ13])
when one has to handle a system of very large dimension with a relative low number of
observed events (as, e.g., when studying events associated with the node activities of some
social networks).

As far as (ultra) high frequency Ænance is concerned, the overall number of events can
be very large. These events occur in a very correlated manner (with long-range correlations)
and the system dimensionality can vary from low to moderately high. In a series of recent
papers, Bacry et al. have shown that the non parametric Wiener-Hopf method provides
reliable estimations in order to describe, within a multivariate Hawkes model, various aspects
of level-I order book Øuctuations: the coupled dynamics of mid-price changes, market and
limit order arrivals ([BM14a, BJM16]), the impact of market orders ([BILL15]) or the interplay
between book orders of di�erent sizes ([RBL17]). However, if one wants to account for systems
of larger dimensionality by considering for instance a wider class of event types or the book
events associated with a basket (e.g. a couple) of assets, then the Wiener-Hopf method (or any
other similar non-parametric method) may reach its limits as respect to both computational
cost and estimation accuracy. On the other hand, a parametric approach can lead to strong
bias in the estimated inØuences between components.

For this reason, in the present paper, we propose to estimate Hawkes models of order
book data using the faster and simpler non-parametric approach introduced in [ABG+17].
This method focuses only on the global properties of the Hawkes process. More precisely,
it aims at estimating directly the matrix of the kernel norms (also called the branching ratio
matrix) without paying attention to the precise shape of these kernels. As recalled in the next
section, this matrix does not bring all the information about the process dynamics, but is
su�cient to disentangle the complex interactions between various type of events and estimate
the magnitude of their self- and cross- excitations. Moreover, it allows one to estimate the
amplitude of Øuctuations of endogenous origin as compared to those of exogenous sources.
The method we propose can be considered as the multivariate extension of the approach
pioneered by [HB14] that proposed to estimate the kernel norm of a one-dimensional Hawkes
model directly from the integral of the empirical correlation function. Unfortunately their
approach cannot be immediately extended to a multivariate framework because it does not
bring a su�cient number of constraints as compared to the number of unknown parameters.
The method of [ABG+17] circumvents this di�culty by taking into account the Ærst three
integrated cumulant tensors of Hawkes process.

The paper is organized as follows: in Section 2 we provide the main deÆnitions and
properties of multivariate Hawkes processes and we introduce the main notations we use
all along the paper. The cumulant method of Achab et al. is described and illustrated in
Section 3. In Section 4 we estimate the matrix of kernel of Hawkes models for level-I book
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events associated with 4 di�erents very liquid assets, namely DAX, Euro-Stoxx, Bund and Bobl
future contracts. We Ærst consider the 8-dimensional model proposed in [BJM16] in order to
compare our method to the former results obtained with a computationally more complex
Wiener-Hopf method. We then show that the cumulant approach can easily be extended to
a 12-dimensional model where all types of level-I book events are considered. Within this
model, we uncover all the relationships between these types of events and we study the daily
amplitude variations of exogenous intensities. In Section 5 we investigate the correlation
between two assets by considering the events of their order book within a 16-dimensional
model. This allows us to discuss the inØuence of both their tick size and their degree of
reactivity with respect to the impact of their book events on each other. Section 6 contains
concluding remarks while some technical details are provided in Appendix.

2 Hawkes processes: deÆnitions and properties

In this section we provide the main deÆnitions and properties of multivariate Hawkes pro-
cesses and set the notations we need all along the paper.

2.1 Multivariate Hawkes processes and the branching ratio matrix G

A multivariate Hawkes process of dimension d is a d-dimensional counting processes N
t

with
a conditional intensity vector ∏t that is a linear function of past events. More precisely,

∏i

t

=µi +
dX

j=1

Z
t

°1
¡i j

(t ° s) d N

j

s

(1)

where µi represents the baseline intensity while the kernel ¡i j

(t ) quantiÆes the excitation rate
of an event of type j on the arrival rate of events of type i after a time lag t . In general it
is assumed that each kernel is causal and positive, meaning that Hawkes processes can only
account for mutual excitation e�ects since the occurrence of some event can only increase the
future arrival intensity of other events. In order to consider the possibility of inhibition e�ects,
one can allow kernels to take negative values. In that case, we have to consider expression
(1) only when it provides a positive result while the conditional intensity is assumed to be
zero otherwise. Rigorously speaking, such non-linear variant of Eq. (1) cannot be handled as
simply as the original Hawkes process ([BM96]) but, as empirically shown in e.g. [RBRGTM14]
or [BM16], if the probability that ∏i

t

< 0 is small enough, one can safely consider the model
as linear so that all standard expressions provide accurate results. In the following we will
suppose that we are in this case and we don’t necessarily impose that the kernels ¡i j

(t ) are
positive functions.

Let us deÆne the matrix G as the matrix whose coe�cients are the integrals of the kernels
¡i j

(t ) (that are supported by R+):

G

i j =
Z+1

0

¡i j

(t )d t . (2)

99



V. Order book dynamics

Let us remark that, as it can directly be seen from the cluster representation of Hawkes
processes ([HO74]), G

i j represents the mean total number of events of type i directly triggered
by an event of type j . For that reason, in the literature, the matrix G is also referred to as the
branching ratio matrix ([HB14]). Notice that since the kernels ¡i j

(t ) are not necessarily non
negative functions, G

i j does not in general correspond to the L

1 norm of ¡i j . For the sake
of simplicity, though this is not technically correct, we shall often refer to the matrix G as the
“matrix of kernel norms" or more simply the “norm matrix".

If kGk stands for the largest eigenvalue of G , it is well known that a su�cient condition
for the intensity process ∏t to be stationary is that kGk< 1. In the following we will always
consider this condition satisÆed. One can then deÆne the matrix R as:

R = (Id °G)

°1

, (3)

where Id denotes the identity matrix of dimension d .
Let § denote the mean intensity vector:

§= E(∏t ) , (4)

so that the ratio µi

§i

represents the fraction of events of type i that are of exogenous origin.
One can easily prove that § and µ are related as:

§= R µ (5)

If one deÆnes the matrix ™ as:

™=GR = R ° Id , (6)

then ™i j represents the average number of events of type i triggered (directly or indirectly)
by an exogenous event of type j . When one analyzes empirical data within the framework of
Hawkes processes, the previous remarks allow one to quantify causal relationships between
events in the sense of Granger, i.e., within a well deÆned mathematical model. In that
respect, the coe�cients of the matrices G or™ can be read as (Granger-)causality relationships
between various types of events and used as a tool to disentangle the complexity of the
observed Øow of events occurring in some experimental situations ([EDD17]). Let us emphasize
that such causal implications are just a matter of interpretation of data within a speciÆc model
(namely a Hawkes model) and should simply be considered as a convenient and parsimonious
way to represent that data. They should not, in any way, be understood as a “physical"
causality reØecting their “real nature”.

2.2 Integrated Cumulants of Hawkes Process

The NPHC algorithm developed in [ABG+17] and described in Sec. 3 below, enables the
direct estimation of the matrix G from a single or several realizations of the process. It relies
on the computation of low order cumulant functions whose expressions are recalled below.

100



3. The NPHC method

Given 1 ∑ i , j ,k ∑ d , the Ærst three integrated cumulants of the Hawkes process can be,
thanks to stationarity, deÆned as follows:

§i

d t = E(d N
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where Eq. (7) is the mean intensity of the Hawkes process, the second-order cumulant (8)
refers to the integrated covariance density matrix and the third-order cumulant (9) mea-
sures the skewness of N

t

. Using the martingale representation ([BM16]) or the Poisson cluster
process representation ([JHR15]), one can obtain an explicit relationship between these inte-
grated cumulants and the matrix R (and therefore the matrix G thanks to Eq. (3)). Some
straightforward computations (see [ABG+17]) lead to the following identities:

§i =
dX

m=1

R

i mµm (10)

C

i j =
dX

m=1

§m

R

i m
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j m (11)

K
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(R

i m
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j m
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km +R

i m

C

j m

R

km +C

i m

R

j m

R

km °2§m

R

i m

R

j m

R

km

). (12)

3 The NPHC method

In this section we brieØy recall the main lines of the recent non parametric method proposed
in [ABG+17] that leads to a fast and robust direct estimation of the branching ratio matrix G
without estimating the shape of the kernel functions. This method is based on the remark that,
as shown in [JHR15] and as it can be seen in Eqs. (10), (11) and (12), the integrated cumulants
of a Hawkes process can be explicitly written as functions of R . The NPHC method is a
moment method that consists in directly exploiting these equations to recover R and thus G .

3.1 Estimation of the integrated cumulants

Let us Ærst introduce explicit formulas to estimate the three moment-based quantities listed in
the previous section, namely, §, C and K . In what follows, we assume there exists H > 0 such
that the truncation from (°1,+1) to [°H , H ] of the domain of integration of the quantities
appearing in Eqs. (8) and (9) introduces only a small error. This amounts to neglecting tail
e�ects in the covariance density and in the skewness density, and it corresponds to a good
approximation if (i ) each kernel ¡i j

(t ) is essentially supported by [0, H ] and (i i ) the spectral
norm kGk is less than 1.
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In this case, given a realization of a stationary Hawkes process {N
t

: t 2 [0,T ]}, as shown in
[ABG+17], we can write the estimators of the Ærst three cumulants (7), (8) and (9) as
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In practice, the Æltering parameter H is selected by (i ) computing estimates of the co-
variance density at several points t

1, (i i ) assessing the characteristic time ø
c

after which the
covariance density is negligible, and (i i i ) setting a multiple of ø

c

for H , for instance H = 5ø
c

.

3.2 The NPHC algorithm

The covariance C only provides d(d + 1)/2 independent coe�cients and is therefore not
su�cient to uniquely identify the d

2 coe�cients of the matrix G . In order to set a su�cient
number of constraints, the NPHC approach relies on using all the covariance C along with
a restricted number of the (d

3 +3d

2 +2d)/6 third-order independent cumulant components,
namely the d

2 coe�cients K c = {K

i i j

}

1∑i , j∑d

. Thus, we deÆne the estimator of R as bR 2
argminRL (R), where

L (R) = (1°∑)kK c
(R)° cK ck2

2

+∑kC (R)° bCk2

2

, (16)

where k ·k
2

stands for the Frobenius norm, while cK c and bC are the respective estimators of
C and K c as deÆned in Equations (14), (15) above. It is noteworthy that the above mean
square error approach can be seen as a particular instance of Generalized Method of Mo-
ments (GMM), see [Hal05], [Han82]. Though this framework allows to determine the optimal
weighting matrix involved in the loss function, in practice this approach is unusable, as the
associated complexity is too high. Indeed, since we have d

2 parameters, this matrix has d

4

coe�cients and GMM calls for computing its inverse leading to a O(d

6

) complexity. Thus,
instead, we choose to use the loss function (16) in which, so as to be of the same order, the two
terms are rescaled using ∑= kcK ck2

2

/(kcK ck2

2

+kbCk2

2

). We refer to Appendix 1 for an explanation
of how ∑ is related to the weighting matrix. Finally the estimator of G is straightforwardly
obtained as

bG = Id ° bR°1

,

from the inversion of Eq. (2). The authors of [ABG+17] proved the consistency of the so-
obtained estimator bG , i.e. the convergence in probability to the true value, when the observa-
tion time T goes to inÆnity.

1the pointwise covariance density at t can be estimated with 1
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(b) Power-law kernel on log-log scale

Figure V.1: The two di�erent kernels used to simulate the datasets.

Let us mention that, when applied to Ænancial time-series, the number of events is gen-
erally large as compared with d (i.e., n = max

i

|Z i | ¿ d ), thus the matrix inversion in the
previous formula is not the bottleneck of the algorithm. Indeed, it has a complexity O(d

3

)

which is cheap as compared with the computation of the cumulants which is O(nd

2

). Thus,
assuming the loss function (16) is minimized after Niter iterations, the overall complexity of
the algorithm is O(nd

2+Niterd
3

). The authors of [ABG+17] compared the complexity of their
algorithm with other state-of-the-art methods’ ones, namely the ordinary di�erential equa-
tions based (ODE) algorithm in [ZZS13], the Sum of Gaussians based algorithm in [XFZ16], the
ADM4 algorithm in [ZZS13], and the Wiener-Hopf-based algorithm in [BM16]. The complex-
ity of NPHC is smaller, because the algorithm NPHC directly estimates the kernels’ integrals
while other methods go through the estimation of the kernel functions themselves.

3.3 Numerical experiments

As mentioned above, the NPHC algorithm is non parametric and provides an estimation of
the integral of the kernels regardless of their shapes. In order to illustrate the stability of
our method with respect to the shape of the kernels, we simulated two datasets with Ogata’s
Thinning algorithm introduced in [Oga81] using the open-source library tick2. Each dataset
corresponds to a di�erent kernel shape (but with the same norm), a rectangular kernel and a
power-law kernel, both represented in Figure V.1:

rectangular kernel: ¡(t ) =ÆØ
[0,1/Ø]

(t °∞) (17)

power law kernel: ¡(t ) =ÆØ∞(1+Øt )

°(1+∞) (18)

In both cases, Æ corresponds the integral of the kernel, 1/Ø can be regarded as a charac-
teristic time-scale, and ∞ corresponds to the scaling exponent for the power law kernel and a
delay parameter for the rectangular one. We consider a non-symmetric 10-dimensional block-
matrix G with 3 non-zero blocks, and where the parameters Æ = 1/6 and ∞ = 1/2 take the

2
https://github.com/X-DataInitiative/tick
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same constant values on these blocks. Three di�erent Ø
0

, Ø
1

and Ø
2

are used in the di�erent
blocks, with Ø

2

/Ø
1

= Ø
1

/Ø
0

= 10 and Ø
0

= 0.1. The number of events is roughly equal to 10

5

on average over the nodes. We thus obtain two datasets, the Ærst one referred to as Rect10
corresponding to the rectangular kernels and the second one referred to as PLaw10 corre-
sponding to the power law kernels. We run on these two datsets the NPHC algorithm and the
ADM4 algorithm from [ZZS13], which calibrates a single exponential kernel t !ÆØe

°Øt with
constant Ø, and for which we provided the intermediate true value Ø = Ø

1

. The results are
shown in Figure V.2. These Ægures clearly illustrate that parametric methods can lead to very
poor results when the parametrization does not represent well the data, while NPHC method
gives better solutions without knowing scaling parameters Ø.

Figure V.2: Estimated matrices G with our NPHC algorithm and the ADM4 algorithm from
[ZZS13] on the two datasets Rect10 and PLaw10. NPHC shows signiÆcantly better results on
these two datasets.

4 Single-asset model

In this section we apply the NPHC method to high-frequency Ænancial data. First we describe
our dataset, then we compare the results of the NPHC method with those obtained with the
Wiener-Hopf method of [BM16] on the 8-dimensional model of single asset level-I book order
events proposed in [BJM16]. We Ænally discuss the NPHC estimation of the norm matrix
associated with a “complete version” (i.e. 12-dimensional) of this model.

4.1 Data

In this paper we use level-I order book data provided by QuantHouse EUROPE/ASIA3 for
four future contracts traded on the Eurex exchange, namely the futures on the DAX and
Euro Stoxx 50 equity indices, and the Bund and Bobl futures. The DAX and Euro Stoxx
50 indices track the largest stock by market capitalization in Germany and the Euro area
respectively, while the Bund and Bobl are German interest rate futures on the 8.5 -10.5 years
and the 4.5-5.5 years horizon respectively. The data span a period of 338 trading days from
July 2013 to October 2014. For each asset, a line with the current status of the Ærst levels
of the order book is added to the database every time there is a change (price, volume or
both). Moreover, an additional line is added in the case the change is caused by a market

3
http://www.quanthouse.com
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4. Single-asset model

T

+
T

°
L

+
L

°
C

+
C

°
T

a

T

b

L

a

L

b

C

a

C

b

DAX 11.9 11.9 21.8 21.9 10.1 10.1 11.6 11.7 80.0 79.5 97.3 96.1
ESXX 2.6 2.6 3.5 3.6 0.9 0.9 16.4 16.5 176.0 174.7 172.4 170.8
Bund 3.2 3.2 4.0 4.0 0.8 0.8 14.5 14.7 125.4 125.0 111.5 110.7
Bobl 1.1 1.1 1.5 1.5 0.5 0.5 6.1 6.1 86.5 86.8 81.6 81.4

Table V.1: Average number of events in thousands per type in a trading day (from open at
08:00 to closing at 22:00 Frankfurt time) for the four assets considered.

order and a trade is generated. It is therefore possible to obtain a list of the orders that
were submitted complete with their time, type (limit, cancel or market order), volume and
price. The timestamp precision is one microsecond and the timestamps are set directly by
the exchange.

In this work we are interested in disentangling the interactions of di�erent types of events
occurring at the Ærst level of the order book. To this end, we will distinguish the following
event types:

• T

+ (T °) : upwards (downwards) mid price movement triggered by a market order;

• L

+ (L°) : upwards (downwards) mid price movement triggered by a limit order;

• C

+ (C°) : upwards (downwards) mid price movement triggered by a cancel order;

• T

a (T b ) : market order at the ask (bid) that does not move the mid price;

• L

a (Lb ) : limit order at the ask (bid) that does not move the mid price;

• C

a (C b ) : cancellation order at the ask (bid) that does not move the mid price.

Additionally, we introduce the symbols P

+ (P°) to denote an upwards (downwards) mid price
movement irrespectively of its origin. In Table V.1 we report the average number of events
per day (from 08:00 am to 10:00 pm) for each asset and each type. We remark that all four
assets are extremely active securities with an average of more than 300.000 events per day.

One characteristic that strongly inØuences the order book dynamics at short time scales
is the tick size to average spread ratio. When this ratio is close to one (resp. much smaller
than one), the asset is said to be a “large tick asset” (resp. a “small tick asset”) (see, e.g.,
[DR15]). In our dataset, all assets are large-tick assets (the spread is equal to one tick in more
than 95% of the times) except for the DAX future, which is a small-tick one. As evidenced by
Table V.1, the price changes much less frequently on large tick assets. One can also remark
that the quantity available at the best quotes tends do be proportionally much larger on large
tick assets. These microstructural characteristics will be reØected by our analysis.
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V. Order book dynamics

4.2 Revising the 8-dimensional mono-asset model of [BJM16] : A sanity
check

In [BM14a, BM16], the authors outlined a method for non-parametric estimation of the Hawkes
kernel functions based the inÆnitesimal covariance density and the numerical solution of a
Wiener-Hopf system of integral equations that links the covariance matrix and the kernel
matrix. Their method has been applied to high-frequency Ænancial data in [BM14a, BJM16],
and [RBL17].

The aim of this section is to compare the newly proposed NPHC methodology with the
Wiener-Hopf method mentioned above in order to assess the reliability of the new NPHC
method. To this end, we reproduce the results obtained in [BJM16].

As it was done there, we consider the DAX and Bund futures data4 and for each asset we
separate Level-I order book events into 8 categories as deÆned above: P

+, P

°, T

a , T

b , L

a , L

b ,
and C

a , C

b . Note that here a price move can be of any type. We then consider the timestamp
associated with all events as a realization of a 8-dimensional Hawkes process and we use both
the NPHC method outlined in Section 3 and the Wiener-Hopf method of [BM16] to estimate
the integrated kernel interaction matrix G from the data. For the Wiener-Hopf method, we
follow the same procedure as [BJM16] and in particular we estimate the covariance density up
to a maximum lag of º 1000s using a log-linear spaced grid5, while for the NPHC method we
follow the steps outlined in Section 3 and we Æx H = 500s so to be on a comparable scale with
the Wiener-Hopf method. Let us note that this scale is several orders of magnitude larger
than the typical inter-event time. Indeed, on the assets considered median inter-event times
are of the order of 300µs (the mean being º 50ms), with minimum time distances in the tens
of microseconds.

In Figure V.3, we compare the kernel integral matrices G obtained with the NPHC method
(left) with those obtained with the Wiener-Hopf approach (right) on the DAX future. Although
the precise values of the matrix entries di�er somewhat, as it is di�cult to tune the estimation
parameters of the two methods as to produce the exact same numerical results, we note that
the two methods produce very consistent results. Indeed, they recover the same interaction
structure and thus lead to the same interpretation of the underlying system dynamics. In our
view, this represents a good sanity check for the proposed NPHC methodology. Analogous
results are obtained for the Bund future. Let us also point out that the small asymmetries
between symmetric interactions (such as e.g. T

+ ! T

° and T

° ! T

+) can be used get a rough
measure of the estimation error. In the case presented here, the average absolute di�erence
between symmetric interactions kernels is 0.03, which means relative error of a few percent
on the most relevant interactions.

We do not comment here the features emerging from the kernel norm matrices presented
in this section since they have been already discussed at length in [BJM16] and some of them
will be further discussed in the next sections. Instead, here we highlight that the results of
this section provide a strong case for the use of the NPHC method over the Wiener-Hopf

4Note that we use the very same dataset as in [BJM16]
5As was done in [BJM16], for the estimation of the covariance density we take a linearly spaced grid at short

time lags (until a lag of 1ms) and we switch to a log-spaced one for longer time lags. This allows to estimate the
covariance on several orders of magnitude in time.
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4. Single-asset model

Figure V.3: Kernel norm matrix G estimated with the NPHC method for the DAX future (left)
and with the Wiener-Hopf method of [BM16] (right) when the 8-dimensional model described
in Section 4.2 is considered.

method when the focus is solely on the kernel interaction matrix. Indeed, in order to estimate
the kernel norm matrix with the Wiener-Hopf method, the full kernel functions have to be
estimated Ærst and then numerically integrated. The NPHC method thus represents a much
faster alternative, as it does not require the estimation of d

2 functions but directly estimates
their integrals. Besides the speed gain, the gain in complexity allows NPHC to scale much
better when increasing the dimension, i.e., when using more detailed models.

4.3 A 12-dimensional mono-asset model

By estimating directly the norm of the kernels and not the whole kernel function, the NPHC
method can be used to investigate systems of greater dimension. In this section we extend the
model of Section 4.2 to 12 dimensions by separating the type of events that lead to a price
move. The 12 even types we consider are thus T

+ (T °), L

+ (L°), C

+ (C°), T

a (T b ), L

a (Lb ), C

a

(C b ). We then apply the NPHC algorithm to estimate the branching ratio matrix. When not
otherwise speciÆed, we set H = 500s. To further assess the validity of our methodology and
the impact of time-of-day e�ects, we Ærst estimate the model using di�erent time slots within
the trading day. In Section 4.3.2 we also check the robustness of our results as respect to the
choice of the parameter H .

4.3.1 Kernel stability during the trading day

We ran our method for the DAX future on the 12-dimensional point process detailed above
on di�erent subintervals of the trading day. More precisely, we divided each trading day into
7 slots with edges at 08:00 am, 10:00 am, 12:00 am, 02:00 pm, 04:00 pm, 06:00 pm and 10:00
pm. We then estimated the 12-dimensional model described above on each slot separately,
averaging over all 338 trading days available in our dataset.
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V. Order book dynamics

Figure V.4: Kernel norm matrix G for the DAX future estimated (using NPHC) at three
di�erent times: between 08:00 and 10:00 (left), between 12:00 and 14:00 (middle) and between
16:00 and 18:00 (right).

In Figure V.4 we show the estimated branching ratio matrix G on three di�erent slots.
The results are remarkable in that the kernel norm matrix appears to be very stable during
the trading day. (we checked that this is also true if we set H = 1s).

The NPHC method outputs the estimated matrix bR (and then bG ) from which one can
obtain an estimate of µ using the relation (5) that links R and the mean intensity §, namely
bµ= bR°1 b§.

In the right panel of Figure V.5 we plot the values of bµ as obtained using the above
relation for the T

a/b , L

a/b and C

a/b components. We consider the kernel norm matrix
as constant in each two hours slot and we estimate the average intensity on 15 minutes
non-overlapping windows. Moreover, for each type of events we show the average of the
bid/ask components. For comparison, in the left panel of Figure V.5 we show the empirical
intraday pattern obtained for each component. We remark that the values of µ obtained with
our procedure vary during the day and roughly follow the intraday curve of the respective
components. Let us notice that µi

/§i , the fraction of exogenous events, is of the order of a
few percent. This is fully consistent with what was found in [BJM16] and means, within the
Hawkes framework, that most of the observed order book dynamics is strongly endogenous.
For the price moving components the values of § are of the order of 1s°1, while results for µ
are more noisy, similarly to those of T

a/b .
This analysis conÆrms the result formerly observed in [BM14a] that the kernels are stable

during the day, and that time-of-day e�ects are well captured by the baseline intensity, at least
as long as we are mainly concerned with the high frequency dynamics on a very liquid asset
as is the case here.

4.3.2 Analysis of the G matrix: Unveiling mutual interactions between book events

Having established that the estimated kernel matrix is stable with respect to time of the day
e�ects, we now examine more in-depth its structure. In Figure V.6 is represented the result of
the estimation of the matrix G over the whole trading day for the DAX future. The branching
ratio matrix on the left panel is estimated with H = 1s while the right panel corresponds to
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4. Single-asset model

H = 500s. Let us recall that both horizons are several orders of magnitude larger than the
typical inter-event time.

Concerning the di�erences between the two matrices, we note that certain inhibitory
e�ects that are visible for H = 1s are less intense or disappear when H = 500s is used. This
most notably happens for the elements T

+ ! T

+ and T

+ ! T

° and similarly for L

+ ! L

+/°

and C

+ !C

+/°, which suggests that when we look at longer scale correlation the self-exciting
behavior (i.e. trades are followed by more trades) tends to prevail on the high frequency mean
reverting e�ect.

Apart from these di�erences, we can make some observations that are valid in both cases.
In particular, we note that two main interaction blocks stand out. The Ærst is the upper left
corner which concerns interactions between price-moving events, where two anti-diagonal
bands are prominent. The second is the bottom right corner, which has a strong diagonal
structure. The blocks involving interactions between price-moving and non-price moving
events present instead much smaller values. In what follows, we Ærst discuss more in depth
the e�ects of price movements on other events, then those of non-price-moving ones. We also
remark that the spectral norm of the estimated matrices G is close to 1 while being inferior
(e.g. 0.98 for the DAX with H = 500s). This is in line with what was found in [BJM16], and the
criticality of Ænancial markets highlighted in [HBB13].

Before entering into more details, let us remark that in both cases the expected symmetry
up/down (+/°) and bid-ask (b/a) is well recovered in our results. Therefore, to make notation
lighter and facilitate the exposition, we will comment only on one side. More precisely, when
discussing the e�ects of price moves we will refer only to the upwards ones (T +

/L

+
/C

+) and
when discussing e�ects of liquidity changes we will focus on ask side events (T a

/L

a

/C

a ).

E�ect of price-moving events As we noted above, the most relevant interactions involving
T

+ are the T

+ ! L

+ and T

+ ! L

° ones, the mean reverting one (T + ! L

°) being more intense.

Figure V.5: Estimation of the baseline intensities of each event type within a trading day for
the DAX future using 15 min slots. Left panel: Empirical intraday pattern measured using
market, limit and cancel orders that do not move the price. Right panel: µ values estimated
using the NPHC method. All quantities are expressed in s

°1.
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V. Order book dynamics

When a market order consumes the liquidity available at the best ask, two main scenarios can
occur for the mid price to change again, either the consumed liquidity is replaced, reverting
back the price (mean-reverting scenario, highly probable) or the price moves up again and a
new best bid is created.

Market orders that move the mid price have also an inhibitory e�ects at short time scales
on subsequent price-moving trades (T + ! T

+ is negative for H = 1s). Indeed, once a market
order consumes the liquidity available at the best quote, it is unlikely that the price will be
moved in the same direction by other market orders as the price becomes more unfavorable.
We also note a generally inhibitory e�ect of T

+ on price-moving cancel orders which can be
linked to a mechanical e�ect, liquidity that has been consumed by the market order cannot
be canceled anymore.

The same kind of dynamics is at play also in the interactions L

+ ! T

+ and L

+ ! T

°

with the roles inverted. Again, the mean reverting e�ect L

+ ! T

° appears to be much more
probable. A strong mean-reverting e�ect is found in the block L

+ !C

°. This is possibly the
signature of high-frequency strategies whereby agents place limit orders in the spread and
cancel them shortly thereafter.

Concerning C

+ events, the main feature lies in the block C

+ ! L

°, where we notice
the same anti-diagonal dominance found for the block L

+ !C

°. Again, we can suppose that
when a limit order in the spread is removed it is often quickly replaced by market participants.

Finally, the e�ect of price moving events on non-price moving ones can be summarized in
two main e�ects. The Ærst is a trend-following/order splitting e�ect by which e.g. trades at the
ask are likely to be followed by more trades in the same direction (T + ! T

a ) and similarly for
limit (L+ ! L

b ) and cancel (C+ !C

a ) orders. The second is the shift in liquidity triggered by
a price change. A trade at the ask that moves upward the mid price triggers limit orders on
the opposite side (T + ! L

b ). This can be understood using a latent price argument ([RR10]),
as it is well known that there are more limit orders far from the latent price. Right after the
mid price goes up, the latent price is expected to be closer to the newly best ask price than to
the best bid price, thus limit order Øow is expected to be higher at best bid than at best ask.

E�ect of non-price-moving events For all events T

a , L

a and C

a the most visible feature
is the strong self-exciting interaction. This has been conÆrmed in several works ([BJM16],
[RBL17]) and can be traced to order-splitting strategies and herding behaviors. Signatures
of typical trading patterns can be seen also in the kernels L

a ! C

a , L

a ! C

b , where the
positive value of the kernel arises form agents canceling and replacing their limit orders with
or without switching sides.

We also note the positive e�ects T

a ! T

+, L

a ! T

° and C

a ! T

+. All these e�ects, as
well as the analogous ones on C

+/°
/L

+/°, reØect the fact that changes in the imbalance have
an inØuence on the probability of a subsequent price move. So when the queue at the best
ask decrease an upward price move becomes more likely and vice-versa. These e�ects are
much more relevant on a small tick asset (DAX) than on a large tick asset (Bund) where, the
size of the queues being larger, their inØuence is marginal.

We performed the same analysis on the Bund (see Figure V.7). The main di�erences as
compared to the DAX are that the e�ects between events that move the price are much more
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4. Single-asset model

Figure V.6: Kernel norm matrix G estimated with the NPHC method for the DAX future with
H = 1s (left) and H = 500s (right).

Figure V.7: Kernel norm matrix G estimated with the NPHC method for the Bund future with
H = 1s (left) and H = 500s (right).

intense while the e�ects of events that do not move the price on those that do move the price
(and vice-versa) are much less pronounced, indeed they are barely visible in Figure V.7. This
can be basically seen as a simple consequence of the Bund future being large tick assets,
while the DAX is a small tick one. Therefore, price movements on the former are much less
frequent but when they happen their e�ects are more marked.

4.3.3 Analysis of the ™ matrix: the Ængerprint of meta-orders

As discussed in Section 2, the elements of the matrix ™ quantiÆes the total e�ect, direct and
indirect, of an event of type j on events of type i . More precisely, thanks to the branching
process structure, we can interpret √i j as the mean number of events of type i generated by
a single exogenous ancestor of type j . We plot the estimated matrices ™ for the DAX and
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V. Order book dynamics

Figure V.8: ™ matrix of eq. (6) estimated with the NPHC method for the DAX future (left)
and the Bund future (right) with H = 500s.

Bund futures in Figure V.8. The main feature that appears for both assets is the set of strong
values found in the bottom right corner, namely in the columns and lines associated with
L

a/b and C

a/b . We note that an exogenous limit or cancel event generates a large number of
limit and cancel events and, to a lesser extent, trade events. This can be read as the signature
of meta-orders. Indeed, if an agent wants to sell a large number of contracts6, he will place
a meta-order, i.e., he will optimize the overall cost by dividing this large order into several
smaller orders. The overall optimization will result in many limit/cancel sell orders L

a

,C

a

and, as less as possible, of sell market orders T

b (the cost of a market order is on average
higher than that of a limit order). The same description can be applied to understand why an
exogenous sell market order T

b generates mainly limit and cancel sell orders L

a

,C

a as well
as other sell market orders T

b .
Due to the much lower values of the exogenous intensities for price moving events, the left

part of the ™ matrix is more noisy. Nevertheless, at least in the DAX case, we note also for
the price moving components the prevalence of the L

+ ! L

+ and L

+ ! C

° elements, which
are the price-moving counterparts of the e�ect described for L

a .
Finally, we also remark that although we noted several inhibition e�ects in the matrices

G , the elements of ™ are non negative. This suggests that most inhibition e�ects are short
lived and the e�ect of an event arrival is towards an increase of the overall intensity. This is
in line with what was found in [BJM16] and [RBL17], where the inhibitions e�ects were shown
to be mostly concentrated around the typical market reaction time.

Within the branching ratio representation of Hawkes processes, µ j

§i

√i j represents the
fraction of events of type i that has a type j as primary ancestor. Along the same line, we
can estimate the fraction of aggressive orders (i.e. all T ), as opposed to passive orders (L or

6Let us recall that, in our discussion, we only address half of the matrix coe�cients since the discussion on
the other half can be obtained using the symmetries ask/bid, buy/sell, price up/price down. Following these lines,
we only consider here the case of a selling meta-order.
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C ), that is ultimately generated by another aggressive order, as:

1

P
i={T

+/°
,T

a/b

}

§i

X

j={T

+/°
,T

a/b

}

X

i={T

+/°
,T

a/b

}

√i jµ j

. (19)

We Ænd that for both assets this fraction is about 10%, which means that the large majority
of market orders have a “passive order" (L or C ) oldest ancestor. We compute the analogous
fraction for passive orders and we Ænd that for both assets more than 96% of the passive
orders (L or C ) have an oldest ancestor that is itself a passive (L or C ) order. This fact is
in line with the idea that meta-orders would be at the origin of most of the trading activity
within the order book.

5 Multi-asset model

Studying and quantifying the interactions and comovements within a basket of assets is an
important topic in Ænance. Most of these studies focus on the return correlations properties
in relationship with portfolio theory. At very high frequency, the discrete nature of price
variations and the asynchronous occurrence of price change events make the correlation
analysis trickier and, in order to avoid well known bias (like the Epps e�ect) one has to use
speciÆc techniques like the estimator proposed by [HY+05]. Hawkes processes, being naturally
deÆned in continuous time, can represent a complementary tool for the investigation of high-
frequency cross-asset dynamics.

The idea of capturing the joint dynamic of multiple assets via Hawkes processes has only
been considered in few recent papers. Let us mention the work proposed by [BCT+15] which
models the simultaneous cojumps of di�erent assets using a one-dimensional Hawkes process,
and a more recent work ([DFZ17]) which focuses on the correlation and lead-lag relationships
between the price changes of two assets, in the spirit of [BDHM13].

In this section, we aim at unveiling a more precise structure of the high-frequency cross-
asset dynamics by pushing further the dimensionality of the model to include simultaneously
events on two assets. We Ærst consider the pair DAX-EURO STOXX and then the one Bobl-
Bund. The pairs of assets considered here are tightly related, as they share exposure to the
same risk factors and, in the case of DAX-EURO STOXX, also because the underlying indices
actually share a signiÆcant part of their components. This is conÆrmed also by Table V.2
where we report 5 minutes return correlations among the considered assets.

In this section we consider the same kind of events as in Section 4.2 and we have therefore
a 16-dimensional model (2£8) corresponding to 256 possible interactions. Let us point out
that this is quite a large dimension value for a non parametric methodology.

5.1 The DAX - EURO STOXX model

In the following, we will denote the events of the DAX order book with the subscript D

while we will use the subscript X for the events of EURO STOXX order book. The obtained
branching ratio matrix is displayed in Figure V.9. We observe that the mono-asset submatrices
(the two 8£ 8 block matrices along the diagonal), which present the most relevant e�ects,
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V. Order book dynamics

DAX ESXX Bobl Bund

DAX 1.00 0.89 -0.18 -0.22
ESXX 0.89 1.00 -0.19 -0.22
Bobl -0.18 -0.19 1.00 0.85
Bund -0.22 -0.22 0.85 1.00

Table V.2: Five minutes return correlation coe�cients for the examined assets.

have the same structure as the ones which have already been commented on in detail in
Section 4.2. Consequently, in this section, we shall focus our discussion on the non diagonal
8£ 8 submatrices that correspond to the interactions between the two assets. These two
submatrices are shown in Figure V.10. Note that colors have been rescaled to highlight their
structure. To keep the notation lighter, we will comment only on e�ect of upwards price
moves and ask events as it was done in the previous section, since we Ænd the symmetries
+/° and a/b to be well respected. The most striking feature emerging from Figure V.10 is the
very intense relation between same-sign price movements on the two assets. Albeit present
in both directions, the norms P

+
X

! P

+
D

attain larger values.
Another notable aspect is the di�erent e�ects of price moves and liquidity changes of one

asset on events on the other asset. Price moves on the DAX have also an e�ect on the Øow of
limit orders on EURO STOXX (P+

D

! L

b

X

and P

+
D

!C

a

X

), whereas EURO STOXX price moves
triggers mainly DAX price moves in the same direction (P+

X

! P

+
D

). An important aspect for
understanding this result is the di�erent perceived tick sizes on the two assets.

In the following, whenever it is convenient, we shall place the discussion withing the
framework of latent price models (e.g., [RR10]). Within this framework, the latent price refers
to an underlying e�cient price representing at any time some average opinion of market
participants about the value of the asset. As noted in Section 4.1, the DAX future is a small-
tick asset, while the EURO STOXX future is a large-tick one ([EBK12]). As a consequence, an
upward move in the DAX price (P+

D

), while signaling that the market latent price has moved
slightly upwards, is not su�cient to move the EURO STOXX price by a full tick. However,
this move can be perceived in the EURO STOXX through the L

b

X

and C

a

X

Øows that are
increasing. Indeed, as already mentioned in Section 4.2, it is well known ([RR10]) that there
are more limit orders far from the latent price. The latent price went up, so it is now closer
to the best ask, and hence the Øow of the limit (resp. cancel) orders on the best bid (resp. ask)
is increasing.

In the opposite direction, a change in EURO STOXX price is perceived as “large" and
triggers price changes in the same direction on the DAX. Interestingly, we can also note that
changes in the latent price on the EURO STOXX triggers price movements on the DAX. For
instance, a shift of liquidity at the bid, namely an increase of the arrival Øow of limit orders
at the bid, that signals that the latent price has moved upwards, has a direct e�ect on upward
price moves on the DAX. This can be seen from the interactions T

a

X

! P

+
D

, L

b

X

! P

+
D

and
C

a

X

! P

+
D

.
We can summarize our results by saying that price changes and liquidity changes on the
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DAX mainly inØuence liquidity (latent price) on the EURO STOXX, while price changes and
liquidity changes on the EURO STOXX tend to trigger price moves on the DAX.

Finally, let us note that the above e�ects are even more pronounced when we estimate
the interaction matrices with a smaller H . In particular the e�ects of DAX price movements
on T,L,C on the EURO STOXX become more relevant compared with those on prices. At
the same time, while the e�ect of EURO STOXX price moves on DAX’s ones is still strong,
the e�ect of liquidity movements on DAX price movements is comparatively stronger with
smaller H . This suggests that these e�ects are mainly localized at short time scales, while the
P

+ ! P

+ ones have much slower decay in time.

5.2 Bobl - Bund

We perform the same analysis on the asset pair Bobl-Bund futures. Here both assets are large
tick assets, however the Bund is much more actively traded than the Bobl in the sense that
all the order Øows are of higher intensity. The cross-asset submatrices are depicted in Figure
V.11. As in the previous case, we remark that the elements P

+
L

! P

+
M

and P

+
M

! P

+
L

reØect the
strong correlation observed between the two assets. Price changes in the Bund have also a
noticeable e�ect on limit/cancel order Øows in the Bobl, while price changes in the Bobl have
little to no e�ect on the Bund except for the mentioned P

+
M

! P

+
L

interaction. At the same
time, T

a

,L

a

,C

a events on the Bobl impact prices on the Bund, while the corresponding event
on the Bund have little e�ect.

Comparing this with the case of the DAX-EURO STOXX pair, we can liken the e�ect of
the Bund on the Bobl to that of the DAX over the EURO STOXX and vice-versa. We argue
that the di�erence in trading frequency between the Bobl and Bund contracts has a similar
e�ect of that of a di�erent tick size that we observed in the previous case. As before, we have
an asset, the Bund, which is more “reactive” (the limit/cancel order Øows are higher than those
of the Bobl) than the Bobl, thus a price change of the Bund indicating a change of the latent
price impacts the limit/cancel Øows of the Bobl. In the previous case, the higher “reactivity”
of the DAX was due to its smaller tick size.

6 Conclusion and prospects

In the context of Hawkes processes, the estimation of the matrix kernel norms is essential,
as it gives a clear overview of the dependencies involved in the underlying dynamics. In
the context of high-frequency Ænancial time-series non-parametric estimation of the matrix
kernel norms has already shown to be very fruitful ([BM14a, BJM16]), since it provides a very
rich summary of the system interactions, and it can thus be a valuable tool in understanding
a system where many di�erent types of events are present. However, its estimation is a com-
putationally demanding process since these estimations are computed from a non-parametric
pre-estimation of the kernels themselves, i.e., their entire shape and not only their norm. The
resulting complexity prevents the estimations from being performed when the dataset is too
heavy or (more important) when the dimension of the Hawkes process (i.e., the number of
considered di�erent event types) is too large.
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Figure V.9: Hawkes kernel norm matrix obtained when the DAX and EURO STOXX futures
are considered simultaneously in a 16D model. DAX events are denoted with the D subscript,
EURO STOXX ones with the X subscript.

Figure V.10: Submatrices of the Kernel norm matrix G corresponding to the e�ect of DAX
events on EUROSTOXX STOXX events (left) and vice versa (right). These two submatrices
correspond to the ones lying on the antidiagonal on the Figure V.9
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In this work, we presented the newly developed NPHC algorithm ([ABG+17]) that allows to
directly estimate non-parametrically the kernel norms matrix of a multidimensional Hawkes
process, that is without going through the kernel shapes pre-estimation step. As of today, it
is the only direct non-parametric estimation procedure available in the academic literature.
This method can be seen as a Generalized Method of Moments (GMM) that relies on second-
order and third-order integrated cumulants. This paper shows that this method successfully
reveals the various dynamics between the di�erent (Ærst level) order Øows involved in order
books. In a context of a single-asset 8-dimensional Hawkes process, we have shown (as a
“sanity check”) that it is able to reproduce former results obtained using “indirect” methods.
Moreover, the so-obtained gain in complexity allowed us to run a much more detailed analysis
(increasing the dimension to 12), separating the di�erent types of events that lead to a mid-
price move. This in turn allowed us to have a very precise picture of the high frequency
order book dynamics, revealing, for instance, the di�erent interactions that lead to the high-
frequency price mean reversion or those between liquidity takers and liquidity makers as
well as the inØuence of the tick-size of these dynamics. Not the least, through the analysis
of the matrix ™ we also detected the signature of meta-orders. We have also successfully
used the NPHC algorithm in a multi-asset 16-dimensional framework. It allowed us to unveil
very precisely the high-frequency joint dynamics of two assets that share exposure to the
same risk factors but that have di�erent characteristics (e.g., di�erent tick sizes or di�erent
degrees of reactivity). It is noteworthy that our methodology can e�ciently highlight these
types of dynamics, especially since cross-asset e�ects are second order e�ects compared to
mono-asset’s.

We conclude by noting that our study left out some relevant information such as the
volume of the orders and the size of the jumps in the mid-price. This will be the objective
of future works. Moreover, within the methodology presented in this paper, an analysis of
baskets of assets (with more than two assets) as well as multi-agent high-frequency interactions
are currently under progress.
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1 Origin of the scaling coe�cient ∑

Following the theory of GMM, we denote m(X ,µ) a function of the data, where X is dis-
tributed with respect to a distribution Pµ

0

, which satisÆes the moment conditions g (µ) =
E[m(X ,µ)] = 0 if and only if µ = µ

0

, the parameter µ
0

being the ground truth. For x

1

, . . . , x

N

observed copies of X , we denote b
g

i

(µ) = m(x

i

,µ), the usual choice of weighting matrix is
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where µ
1

is a constant vector. Instead of multiplying by the inverse weighting matrix, we have
decided to divide by the sum of its eigenvalues, which is easily computable:
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We compute the previous terms with R
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= 0. All together, the objective function to minimize
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which equals the loss function given in 16, up to a constant.
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Figure V.11: Submatrices of the Kernel norm matrix G corresponding to the e�ect of Bund (L)
events on Bobl (M ) events (left) and vice-versa (right).
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APPENDIX A

Résumé des contributions

Cette thèse cherche à montrer comment certaines méthodes d’optimisation récentes permet-
tent de résoudre des problèmes d’estimation di�ciles liés aux modèles d’évènements. Alors
que le cadre classique de l’apprentissage supervisé [HTF09] traite les observations comme
une collection de couples indépendants de covariables et de labels, les modèles d’évènements
s’intèressent aux temps d’arrivée d’un évènement et cherchent alors à extraire de l’information
de la source de donnée. Ces évènements datés sont ordonnés par la chronologie et ne peu-
vent dès lors être considérés comme indépendants. Ce simple constat motive l’utilisation d’un
outil mathématique particulier appelé processus ponctuel [DVJ07] pour apprendre une struc-
ture à partir de ces évènements. Nous allons dans un premier temps présenter et motiver les
problématiques que nous voulons aborder dans cette thèse.

Motivations

La quantité de données collectées et stockées de façon électronique est très importante, et
ne cesse de croître. L’utilisation d’outils d’analyse prédictive pour extraire de la valeur de
ces données, qui est le coeur de ce que l’on appelle la data révolution, a fait ses preuves en
astronomie [FB12], dans le e-commerce [MB+12], pour les moteurs de recherche [CCS12] et
bien d’autres domaines. Les institutions de santé se basent aujourd’hui aussi sur l’utilisation
de données pour créer des modèles de traitement personnalisé grâce aux outils de l’analyse
de survie [MD13]. Une part importante de la recherche médicale cherche à comprendre
les relations entre les covariables d’un patient et la durée avant l’occurence d’un évènement
appelé défaillance (souvent la mort ou l’apparition d’une maladie). Le fait que tous les patients
ne meurent pas lors de l’étude est toujours intéressant d’un point de vue statistique, mais
ces données ne peuvent pas être utilisée dans un problème de régression classique pour
lequel il faudrait observer l’évènement défaillance pour tous les individus. La di�culté a été
contournée par D.R. Cox [Dav72], dans l’un des articles scientiÆques les plus cités de tous les
temps [VNMN14] avec le modèle à risque proportionnel qui permet d’extraire de l’information
de données censurées, i.e. de patients pour lesquels le temps de défaillance n’est pas observé.
La procédure d’estimation du vecteur de paramètre de la régression, sans aucune hypothèse
sur le risque de base considéré comme un paramètre de bruit, a été introduite dans [Cox75]
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et revient à maximiser la vraisemblance partielle du modèle. Cette procédure permet de gérer
e�cacement les covariables de grande dimension, ce qui est courant avec les données de
biostatistique, en ajoutant un terme de pénalisation au critère à minimiser [Goe10, Tib96].
Cependant, les algorithmes de maximisation de la vraisemblance partielle ne passent pas à
l’échelle lorsque le nombre de patients devient très grand, contrairement à la plupart des
algorithmes qui ont permis la data révolution. On peut dès lors se poser la question suivante :

Question 4. Comment adapter l’algorithme d’estimation de la régression de Cox lorsque le nombre
de patients devient très grand ?

Quelques années avant le vingtième siècle, le sociologue français Durkheim a�rmait déjà
que les sociétés humaines sont faites de composantes interconnectées, comme les systèmes
biologiques [Dur97]. Maintenant que notre technologie nous permet même d’être connecté
à distance, la notion de réseau concerne de très nombreux domaines : réseaux sociaux,
systèmes d’information, marketing, épidémiologie, sécurité nationale et tant d’autres. Une
meilleure compréhension de ces larges réseaux et des processus qui s’y passent aurait des
applications majeures dans les domaines déjà cités [Rod13]. L’observation des réseaux se ré-
duit souvent à l’enregistrement des instants où les noeuds du réseau envoient un message,
achètent un produit ou sont infectés par un virus. Nous observons souvent où et quand mais
pas comment et pourquoi les messages sont envoyés via un réseau social. L’obtention de ces
données pour plusieurs noeuds du réseau permet de retrouver la dynamique jointe et révéler
la structure sous-jacente au système. Une des approches permettant d’estimer l’inØuence
entre ces di�érentes sources est d’utiliser un processus ponctuel appelé processus de Hawkes
[Haw71b, Haw71a], dont le taux d’arrivée des évènements dépend des évènements passés. Les
processus de Hawkes ont été appliqués avec succès pour modéliser l’inØuence réciproque entre
les tremblements de terre de di�érentes magnitudes et rapprochés dans le temps [Oga88]. Plus
précisement, ce processus quantiÆe l’augmentation de la probabilité d’observer de nouveaux
tremblements de terre, appelés répliques, après en avoir observé un premier, via l’utilisation
de fonctions appelés noyaux. Les processus de Hawkes permettent aussi de mesurer la causal-
ité au sens de Hawkes, qui correspond au number moyen d’évènements de type i engendrés par
un évènement de type j . Outre l’exemple originel des tremblements de terre, les deux autres
domaines majeurs où sont utilisés les processus de Hawkes sont l’étude des réseaux sociaux
[BBH12, ZZS13, ISG13] et l’étude des transactions Ænancières [BMM15]. L’estimation habituelle
de la causalité au sens de Hawkes demande cependant de faire quelques hypothèses sur la
formes des noyaux pour simpliÆer l’algorithme d’inférence [ZZS13]. Une hypothèse courante
est la décroissance monotone des noyaux (exponentiels ou en loi du puissance), ce qui signiÆe
que l’impact d’un événement est toujours instantanément maximal, ce qui n’est pas réaliste
puisqu’en pratique il peut exister un délai avant l’impact maximal. Ces remarques nous
conduisent à soulever la question suivante :

Question 5. Est-il possible de mesurer la causalité au sens de Hawkes sans faire d’hypothèse sur
les fonctions noyaux ?

AÆn de répondre positivement à la deuxième question, nous avons développé deux nouvelles
méthodes d’estimation non paramétriques pour la causalité de Hawkes, plus rapides et qui
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passent à l’échelle lorsque le nombre de noeuds est élevé. Dans cette partie, nous ne nous
concentrons que sur la première, pour laquelle nous avons prouvé un résultat de consistence.
Depuis le travail pionnier de Bowsher [Bow07], qui a reconnu la Øexibilité et la simplicité
d’utilisation des processus Hawkes aÆn de modéliser la dynamique conjointe des transactions
et des changements de prix moyens du NYSE, les processus Hawkes n’ont pas cessé de gagner
en popularité dans le domaine de la Ænance à haute fréquence, voir [BMM15] pour une revue.
En e�et, pour prendre en compte des données transactionnelles irréguliers espacées dans le
temps, il est naturel de les considérer comme un processus ponctuel. Aussi, dans le domaine
Ænancier, de nombreuses caractéristiques résumant les résultats empiriques sont déjà connues.
Par exemple, le Øux des transactions est connu pour être auto-corrélé et inter-corrélé avec
les mouvements de prix. Ces caractéristiques, appelées faits stylisés, de l’économiste Nicholas
Kaldor [Kal57], faisaient référence à des tendances statistiques qui doivent être prises en
compte malgré un possible manque de compréhension microscopique. Ces faits stylisés peu-
vent être facilement capturés à l’aide de la notion de causalité de Hawkes. La compréhension
de la dynamique du carnet d’ordre est l’une des questions centrales des statistiques Ænan-
cières, et les représentations non-paramétriques antérieures des carnets d’ordre à l’aide de
processus de Hawkes multivariés étaient de faible dimension en raison de la complexité de
leur méthode d’estimation. L’estimation non-paramétrique de la causalité de Hawkes intro-
duite dans la deuxième partie de cette thèse est rapide et robuste à la forme des fonctions
noyaux, et il est donc naturel de se demander quel type de fait stylisé peut être découvert à
partir des données horodatées du carnet d’ordre.

Question 6. La méthode d’esimation de la causalité de Hawkes, introduite précédemment, peut-elle
nous permettre d’avoir une compréhension plus précise de la dynamique d’un carnet d’ordre ?

Plan

Chacune des questions posée ci-dessus correspond à une partie de cette thèse.

Dans la partie I, nous répondons à la question 4 en introduisant un nouvel algorithme de
descente de gradient stochastique appliquée à la minimisation de la vraisemblance partielle
de Cox. En e�et, la log-vraisemblance partielle de Cox s’écrit comme une somme de sous-
fonctions dépendant chacune d’une séquence d’observations, séquences de longueur variable,
contrairement au cas classique de la minimisation du risque empirique où les sous-fonctions
dépendent d’un nombre Æxe d’observations, une en général. Les algorithmes classiques de
descente de gradient stochastique sont moins e�caces dans notre cas. Nous avons adapté
l’algorithme SVRG [JZ13] [XZ14] en rajoutant une nouvelle étape d’échantillonage : chaque
sous-fonction est approximée par une méthode de Monte Carlo par chaînes de Markov
(MCMC), son calcul exact étant coûteux. Notre algorithme jouit d’un taux de convergence
linéaire, une fois que le nombre d’itération de la chaîne de Markov est plus grand qu’une
borne inférieure explicite. Nous illustrons la surperformance de notre algorithme sur des jeux
de données issus de l’analyse de survie.
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Les réponses à la question 5 se trouvent dans la partie II où nous étudions deux algorithmes
d’estimation non-paramétrique de l’estimation de la causalité de Hawkes. Ces deux méthodes
se basent sur le calcul des cumulants intégrés du processus de Hawkes multivarié et tirent
parti des relations polynomiales entre ces cumulants intégrés et la matrice de causalité de
Hawkes. La première approche repose sur la correspondance entre l’écriture théorique et
le calcul empirique des cumulants du deuxième et troisième ordre. Cela se fait par la min-
imisation de la norme quadratique de la di�érence entre les deux termes, ce qui peut être
vu comme un cas de Méthode des Moments Généralisée [Hal05]. Cependant, le problème
d’optimisation à résoudre est non-convexe, le résultat est donc une solution approchée au
problème exact. La seconde approche est basée sur la complétion de la matrice de causalité
de Hawkes à l’aide des premiers et second cumultants intégrés. La relaxation de ce problème
s’écrit comme un problème d’optimisation convexe, ce qui nous permet donc d’obtenir une
solution exacte au problème approché.

Finalement, dans la partie III, nous appliquons la première méthode développée dans la
partie II à des données de transactions haute-fréquence issues du carnet d’ordre du marché
à terme Eurex aÆn de répondre à la question 6. La méthode est utilisée pour estimer les
paramètres d’un processus de Hawkes 12-dimensionnel modélisant un actif et pour compren-
dre l’inØuence que les di�érents évènements peuvent avoir les uns sur les autres. Ce modèle
de carnet d’ordre est une extension naturelle du modèle 8-dimensionnel étudié dans [BJM16].
Nous augmentons ensuite la dimension du problème pour prendre en compte les évènements
de deux actifs simultanément et discutons la dynamique jointe de ces deux actifs. Les méth-
odes non-paramétriques usuelles [BM14b] [RBRGTM14] cherchent à estimer les noyaux, ce qui
restreint la dimension du modèle de carnet d’ordre pour des raisons de complexité. Notre
méthode non-paramétrique estime seulement l’intégrale des noyaux, nécessite des calculs
moins coûteux and passe mieux à l’échelle pour un nombre de noeuds plus grand ou un
nomdre d’évènements plus important. Nous montrons aussi que la matrice de causalité de
Hawkes fournit un résumé très riche des intéractions au sein du système, et peut donc devenir
un outil puissant pour comprendre la structure sous-jacente d’un système présentant plusieurs
types d’évènements.

Nous avons maintenant assez d’éléments pour résumer les résultats principaux de cette thèse.

1 Part I: Modèle de Cox à grande échelle

De nombreux problèmes d’apprentissage statistique supervisé s’écrivent comme la minimisa-
tion d’une perte moyenne sur une distribution de données. D’après le principe de la minimi-
sation du risque empirique, la perte moyenne est approchée par une moyenne des pertes sur
les données observées, et un succès majeur a été de pouvoir exploiter la structure de somme
pour concevoir des algorithmes stochastiques e�caces [Bot10]. De tels algorithmes stochas-
tiques permettent une extraction très e�cace de la valeur des données massives. L’application
de cette méthode aux données de survie à grande échelle, qu’il s’agisse de biostatistiques ou
d’économie, est évidemment d’une grande importance.
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1. Part I: Modèle de Cox à grande échelle

Dans le chapitre I, nous passons en revue les progrès récents de l’optimisation convexe avec les
algorithmes SGD (Stochastic Gradient Descent), du travail pionnier de [RM51] aux variantes
récentes avec réduction de variance [DBLJ14] [XZ14] [SSZ13] [RSB12]. Nous introduisons ensuite
la notion de processus ponctuel [DVJ07] qui fournit des outils clés pour la modélisation des
événements i.e. horodatés et/ou des données de localisation. Nous introduisons enÆn le
modèle à risques proportionnels de Cox [Dav72] qui relie la durée qui précède la réalisation
d’un événement à une ou plusieurs covariables via la notion de taux de risque. Dans le chapitre
II, nous présentons notre nouvel algorithme d’optimisation pour aider à ajuster le modèle de
Cox à grande échelle.

1.1 Contexte sur les algorithmes SGD, les processus ponctuels et le modèle
des risques proportionnels de Cox

Dans ce chapitre, nous passons en revue les résultats classiques derrière les algorithmes de
descente du gradient stochastique et ses adaptations à variance réduite. Nous introduisons
ensuite le modèle des risques proportionnels de Cox.

1.1.1 Algorithmes de Descente de Gradient Stochastique

Algorithmes SGD pour une distribution quelconque De nombreux problèmes d’estimation
dans le cadre de l’apprentissage statistique s’écrivent

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = Eª[`(µ,ª)],

où f est un terme d’attache dépendant implicitement des données observées,h est un terme
de régularisation qui impose une structure à la solution et ª est une variable aléatoire. Typ-
iquement, f est une fonction di�érentiable avec un gradient Lipschitz, alors que h pourrait ne
pas être lisse - des exemples typiques incluent une pénalité induisant une pénalité - comme
la pénalisation `

1

.

Les algorithmes d’optimisation du premier ordre sont tous des variations de la Descente de
Gradient (GD), dont l’origine remonte à Cauchy [Cau47]. A partir d’un point initial µ0, cet
algorithme minimise une fonction di�érentiable f en appliquant itérativement la mise à jour
suivante

µt+1 = µt °¥
t

r f (µt

). (1)

où r f (µ) représente le gradient de f évalué à µ et (¥
t

) est une séquence de tailles de pas.
Les algorithmes de descente de gradient stochastique (SGD) se concentrent sur le cas où r f

prend beaucoup de temps à calculer, voire est incalculable. En remarquant que r f (µ) s’écrit
comme une moyenne, une idée est d’approximer le gradient dans l’étape de mise à jour (1)
avec une méthode Monte Carlo par chaîne de Markov [AFM17]. Par exemple, le remplacement
du gradient exact r f (µ) par son estimation MCMC a permis de faire un grand pas en avant
dans l’entraînement des modèles graphiques non dirigés [Hin02] et des machines Boltzmann
restreintes [HS06]. Cette première forme de descente de gradient stochastique est appelée
Divergence Contrastive dans les contextes mentionnés.
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Algorithmes SGD pour une distribution uniforme La plupart des problèmes d’apprentissage
statistique de la forme (1) font intervenir comme fonction d’attache aux données f une
moyenne sur des points observés, en vertu du principe empirique de minimisation des risques
[Vap13]. Plus précisément, la fonction objectif écrit

min

µ2Rd

F (µ) = f (µ)+h(µ) with f (µ) = 1

n

nX

i=1

f

i

(µ),

où n est le nombre d’observations, et f

i

est la perte associée à l’observation i

th . Dans ce cas,
au lieu d’exécuter MCMC pour approcher r f , on échantillonne uniformément un entier aléa-
toire i entre 1 et r f (µ) et remplace r f (µ) par r f

i

(µ) dans l’étape de mise à jour (1). Dans la
conÆguration à grande échelle, le calcul de r f (µ) à chaque étape de mise à jour représente le
goulot d’étranglement de l’algorithme de minimisation, et SGD permet de diminuer le temps
de calcul. En supposant que le calcul de chaque r f

i

(µ) coûte 1, le calcul du gradient complet
r f (µ) coûte n, ce qui signiÆe que l’étape de mise à jour de SGD est n fois plus rapide que
celle de GD.

La comparaison des taux de convergence est toutefois di�érente. Soit f deux fois di�éren-
tiable sur Rd , µ-fortement convexe, ce qui signiÆe que les valeurs propres de la matrice
hessienne r2

f (µ) sont supérieures à µ> 0 pour tout µ 2 Rd , et L-lisse, ce qui signiÆe que les
valeurs propres sont inférieures à L > 0. Les taux de convergence avec d’autres hypothèses
sur la fonction f se trouvent dans [B+15]. On note µ§ son minimiseur et on déÆnit le nombre
de condition comme ∑ = L/µ. Le taux de convergence est déÆni pour les méthodes itéra-
tives comme une limite supérieure serrée d’une erreur prédéÆnie et est considéré comme
la vitesse à laquelle l’algorithme converge. En notant µt l’itération après les étapes t d’un
algorithme itératif et considérant la di�érence E f (µt

)° f (µ§) comme erreur, le taux de con-
vergence de la Descente de Gradient est O(e

°t/∑
), tandis que celui de la Descente de Gradient

Stochastique est O(∑/t ). Un taux de convergence de la forme O(e

°Æt

) avec Æ> 0 est appelé
taux de convergence linéaire puisque la diminution de l’erreur après une itération est au pire
linéaire. De même, les taux de convergence peuvent être formulés comme la complexité totale
pour atteindre une précision Æxe, c’est-à-dire le nombre d’itérations après lequel la di�érence
E f (µt

)° f (µt

)° f (µ§) devient plus petit que ≤ > 0 multiplié par la complexité par itération.
L’algorithme Descente de Gradient atteindra la précision ≤ après O

°
∑ log

1

≤

¢
itérations résul-

tant en une complexité de O

°
nd∑ log

1

≤

¢
, tandis que la Descente de Gradient Stochastique

atteint une telle précision après O

°
∑
≤

¢
itérations et donc une complexité en O

≥
d∑
≤

¥
.

Récemment, di�érents travaux ont amélioré la descente du gradient stochastique en utilisant
les techniques de réduction de variance des méthodes de Monte Carlo. L’idée est d’ajouter
un terme de contrôle à la direction de descente pour améliorer le compromis biais-variance
dans l’approximation du gradient réel r f (µ). Ces variantes bénéÆcient également de taux
de convergence linéaire, puis de complexités plus petites (pour atteindre la précision ≤) que
la descente de gradient puisque la complexité par itération de ces algorithmes est de O(d)

contre O(nd) pour Gradient Descent. Celles-ci atteignent typiquement une complexité de la
forme O

°
(n +∑)d log

1

≤

¢
dans le cas fortement convexe, voir [SLRB17, JZ13, DBLJ14, ?].
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1. Part I: Modèle de Cox à grande échelle

1.1.2 Processus ponctuels

Le processus ponctuel est un outil mathématique utile pour décrire les phénomènes qui se
produisent à des endroits et/ou à des moments aléatoires. Un processus de points est un
élément aléatoire dont la valeur est une liste de points sur un ensemble S. Nous présentons
ici les résultats utiles lorsque l’ensemble S est l’intervalle [0,T ), et les points sont des événe-
ments datés; ce cas spécial est parfois appelé processus de point temporel. Le livre [DVJ07] est
considéré comme la référence principale sur la théorie des processus ponctuels.

Chaque réalisation d’un processus de points ª peut être écrit comme ª=P
n

i=1

±
t

i

où ± est la
mesure Dirac, n est une variable aléatoire à valeur entière et t

i

’s sont des éléments aléatoires
de [0,T ). Il peut être représenté de manière équivalente par un processus de comptage N

t

=R
t

0

ª(s)d s = P
n

i=1

1
{t

i

∑t }

. La caractérisation habituelle du processus de point temporel se fait
par la fonction intensité conditionnelle, qui est déÆnie comme la vitesse inÆnitésimale à laquelle
les événements sont censés se produire après t , étant donné l’historique de N

s

avant t :

∏(t |F
t

) = lim

h!0

P(N

t+h

°N

t

= 1|F
t

)

h

,

où F
t

est la Æltration du processus qui code les informations disponibles jusqu’au temps t . Le
processus ponctuel temporel le plus simple est le processus Poisson qui suppose que les événe-
ments arrivent à un taux constant, ce qui correspond à une fonction d’intensité constante
∏

t

= ∏ > 0. Notez que les processus ponctuels temporels peuvent aussi être caractérisés par
la distribution des temps d’intervalle i.e. la durée entre deux événements consécutifs. Nous
rappelons que la distribution des temps d’intervalle d’un processus de Poisson avec intensité
∏ est une distribution exponentielle du paramètre ∏. Voir la page 41 de [DVJ07] pour quatre
façons équivalentes de déÆnir un processus ponctuel temporel.

Deux exemples de processus ponctuels temporels sont traités dans cette thèse. Le premier
est le processus ponctuel derrière le modèle proportionnel des risques de Cox : sa fonction
d’intensité conditionnelle permet de déÆnir le hazard ratio, une quantité fondamentale dans la
littérature d’analyse de survie, voir [ABGK12]. Le modèle de régression de Cox relie la durée
avant un événement appelé échec à certaines covariables. Ce modèle peut être reformulé
dans le cadre de processus ponctuels [ABGK12]. Le second est le processus de Hawkes qui
modélise comment les événements passés augmentent la probabilité d’événements futurs. Sa
version multivariée permet d’encoder une notion de causalité entre les di�érents nœuds. Nous
présentons ci-dessous le modèle des risques proportionnels de Cox et les processus de Hawkes
dans la partie II.

1.1.3 Modèle des risques proportionnels de Cox

L’analyse de survie étudie la durée qui précède l’arrivée d’un évènement particulier, tel que
la mort dans les organismes biologiques et les défaillances dans les systèmes mécaniques, et
est maintenant répandue dans une variété de domaines comme la biométrie, l’économétrie et
l’assurance. La variable que nous étudions est le temps d’attente jusqu’à ce qu’un événement
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Introduction

bien déÆni se produise, et l’objectif principal de l’analyse de survie est de lier les covariables,
ou caractéristiques, d’un patient à son temps de survie T .

Suivant la théorie des processus ponctuels, nous déÆnissons l’intensité comme la probabilité
conditionnée qu’un patient meurt immédiatement après t , étant donné qu’il était vivant avant
t :

∏(t ) = lim

h!0

P(t ∑ T ∑ T ∑ t +h|t ∑ T )

h

.

L’approche la plus populaire, pour certaines raisons expliquées ci-dessous, est le modèle
des risques proportionnels de Cox [Dav72]. Le modèle de Cox prend une forme semi-
paramétrique pour le ratio de risque au temps t pour le patient i , dont les caractéristiques
sont codées dans le vecteur x

i

2Rd :

∏
i

(t ) =∏
0

(t )exp(x

>
i

µ),

où ∏
0

(t ) est un ratio de risque de base, qui peut être considéré comme le ratio de risque
d’un patient dont les covariables sont x = 0. Une approche d’estimation considère ∏

0

comme
une nuisance et estime seulement µ en maximisant une vraisemblance partielle [Dav72]. Cette
façon d’estimer convient aux études cliniques où les médecins ne s’intéressent qu’aux e�ets
relatifs des covariables codées en x sur le ratio de risque. Pour ce faire, on peut calculer le
rapport des rapports de risque de deux patients di�érents :

∏
i

(t )

∏
j

(t )

= exp((x

i

°x

j

)

>µ)

Pour cette raison, on dit que le modèle de Cox est un modèle de risques proportionnels.

Cependant, maximiser cette vraisemblance partielle est un problème di�cile lorsqu’il s’agit
de données à grande échelle (c’est-à-dire un grand nombre d’observations n) et à haute di-
mension (c’est-à-dire un grand d ). Pour s’attaquer à la dimensionnalité élevée, des approches
pénalisées et parcimonieuses ont été envisagées dans la littérature [Tib96] [T+97] [Goe10]. Le
problème est maintenant de minimiser l’opposé du logarithme de la vraisemblance partielle
f (µ) = °`(µµ) avec une pénalisation h(µ) qui fait que le prédicteur µ devient parcimonieux
et sélectionne des variables. Nous discuterons de cette approche et des di�érents modèles
dans le chapitre II. Il n’existe cependant pas encore d’approches pour répondre au problème
à grande échelle.

1.2 SVRG au delà de la Minimisation du Risque Empirique

Les données utilisées en analyse de survie de la forme (y

i

, x

i

, x

i

,±
i

)

i=1

i=1

npat contiennent, pour
chaque individu i = 1, . . . ,npat, un vecteur de caractéristiques x

i

2 Rd , un temps observé
y

i

2R+ qui correspond au temps de l’échec si ±
i

= 1 ou à un temps censuré à droite si ±
i

= 0.
Si D = {i : ±

i

= 1} est l’ensemble des patients pour lesquels un temps d’échec est observé, si
n = |D| est le nombre total de temps d’échec, et si R

i

= { j ... : y

j

∏ y

i

} est l’indice des individus
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2. Part II: Découvrir la causalité de Hawkes sans paramétrage

toujours à risque au moment où y

i

, l’opposé du logarithme de la vraisemblance partielle de
Cox s’écrit :

°`(µ) = 1

n

X

i2D

h
°x

>
i

µ+ log

≥ X

j2R

i

exp(x

>
j

µ)

¥i
(2)

pour les paramètres µ 2Rd . Chaque gradient de la probabilité logarithmique négative s’écrit
alors comme deux espérances imbriquées : l’une d’une distribution uniforme sur D , l’autre
sur une distribution de Gibbs, voir le chapitre II pour plus de détails.

Notre algorithme de minimisation est doublement stochastique dans le sens où les étapes de
gradient sont faites en utilisant la descente stochastique de gradient (SGD) avec réduction
de variance, et les espérances internes sont approximées par un algorithme de la chaîne
de Monte Carlo Markov (MCMC). Nous dérivons des conditions sur le nombre d’itérations
MCMC garantissant la convergence, et obtenons un taux de convergence linéaire sous forte
convexité et un taux sublinéaire sans cette hypothèse.

2 Part II: Découvrir la causalité de Hawkes sans paramétrage

Dans les Chapitres III et IV, nous étudions deux méthodes permettant de retrouver les re-
lations de causalité à partir d’un processus ponctuel multivarié. Nous développons une ap-
proche par chapitre.

2.1 Processus de Hawkes

AÆn de modéliser la dynamique commune de plusieurs processus ponctuels (par exemple
l’horodatage des messages envoyés par di�érents utilisateurs d’un réseau social), nous al-
lons considérer le modèle multi-dimensionnel de Hawkes, introduit en 1971 dans [Haw71a] et
[Haw71b], avec des inØuences croisées entre les di�érents processus. Par déÆnition, une famille
de d processus ponctuels est un processus de Hawkes multi-dimensionnel si les intensités de
toutes ses composantes s’écrivent comme des régressions linéaires sur le passé des processus
d :

∏i

t

=µi +
DX

k=1

Z
t

0

¡i j

(t ° s)d N

j

s

.

Une autre façon de construire les processus de Hawkes est de considérer la représentation
branchante suivante, voir [HO74] : les individus de type i , 1 ∑ i ∑ d , arrivent comme un
processus de Poisson d’intensité µi . Chaque individu peut avoir des enfants de tous types et
la loi des enfants de type i d’un individu de type j qui est né ou a migré en t est un processus
de Poisson inhomogène d’intensité ¡i j

(·° t ).

Cette construction permet en outre de déÆnir et de mesurer la causalité entre noeuds d’un
modèle de Hawkes, où les intégrales

g

i j =
Z+1

0

¡i j

(u) du ∏ 0 pour 1 ∑ i , j ∑ d .
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Introduction

pondèrent les relations entre individus. Plus précisément, l’introduction du processus de
comptage N

i√ j

t

qui compte le nombre d’événements de i dont l’ancêtre direct est un événe-
ment de j , on sait d’après [BMM15] que :

E[d N

i√ j

t

] = g

i jE[d N

j

t

] = g

i j§ j

d t , (3)

où §i correspond à l’intensité moyenne, satisfaisant E[d

i

t

] =§i

d t . Cependant, dans la pra-
tique, les noyaux de Hawkes ne sont pas directement mesurables à partir des données et ces
mesures de causalité entre les di�érents types d’événements sont donc inaccessibles.

Dans la littérature, il existe deux principales classes de procédures d’estimation pour les noy-
aux de Hawkes : la paramétrique et la non paramétrique. La première suppose une paramétri-
sation des noyaux de Hawkes, la plus courante suppose que les noyaux sont en décomposition
exponentielle, et estime le paramètre via la maximisation de la log-vraisemblance de Hawkes,
voir par exemple [BGM15] ou [ZZS13].La seconde est basée soit sur la résolution numérique
des équations de Wiener-Hopf qui relie les noyaux de Hawkes à sa structure de corrélation [?]
(ou de manière équivalente sur l’approximation du processus de Hawkes en tant que modèle
autorégressif et la résolution des équations de Yule-Walker [EDD17]), soit sur une méthode de
moments via la minimisation de la fonction de contraste déÆnie dans [RBRGTM14].

Dans les Chapitres III et IV, nous proposons deux méthodes d’estimation non-paramétrique
permettant d’estimer les intégrales des noyaux de Hawkes à l’aide des intégrales des moments
du processus.

Pour toutes les procédures d’estimation mentionnées ci-dessus, y compris la nôtre, nous avons
besoin de la condition de stabilité suivante aÆn que le processus admette une version avec
une intensité stationnaire :

Assumption 1. La norme spectrale of G = [g

i j

] satisfait ||G || < 1.

2.2 Approche par Méthode des Moments Généralisée

Un travail récent [JHR15] a prouvé que les cumulants intégrés des processus de Hawkes peu-
vent être exprimés en fonctions de G = [g

i j

], et a fourni la méthode constructive pour obtenir
ces expressions. La première approche que nous avons développée dans cette partie est
une méthode d’appariement des moments sur les cumulants intégrés de deuxième et de
troisième ordre du processus. À cette Æn, nous avons conçu des estimateurs cohérents des
premier, deuxième et troisième cumulants intégrés du processus de Hawkes. Leurs contrepar-
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2. Part II: Découvrir la causalité de Hawkes sans paramétrage

ties théoriques sont des polynômes de R = (I °G)

°1, comme indiqué dans [JHR15] :

§i =
dX

m=1

R

i mµm

C

i j =
dX

m=1

§m

R

i m

R

j m

K

i j k =
dX

m=1

(R

i m

R

j m

C

km +R

i m

C

j m

R

km +C

i m

R

j m

R

km °2§m

R

i m

R

j m

R

km

).

Une fois que nous observons le processus N
t

pour t 2 [0,T ], nous calculons les cumulants
intégrés empiriques sur les fenêtres [°H

T

, H

T

], et minimisons la di�érence quadratique L
T

entre les cumulants théoriques et les cumulants empiriques. Nous avons prouvé la consistence
de notre estimateur dans la limite T !1, une fois que la séquence (H

T

) satisfait à certaines
conditions. Notre problème peut être considéré comme une méthode généralisée des mo-
ments [Hal05].

Pour prouver la consistence des cumulants intégrés empiriques, nous avons besoin de l’hypothèse
suivante :

Assumption 2. Le moitié de la taille du support du domaine d’intégration satisfait H

T

!1 et
H

2

T

/T ! 0.

Nous prouvons dans le chapitre III le théorème de consistence suivant :

Result 2. Sous les hypothèses 1 et 2, la séquence d’estimateurs déÆnis par la minimisation deL
T

(R)

converge en probabilité vers la vraie valeur G :

bG
T

= I °
µ
argmin

R2£
L

T

(R)

∂°1

P°°°°!
T!1

G

La partie numérique, à la fois sur des ensembles de données simulées et réelles, donne
des résultats très satisfaisants. Nous avons d’abord simulé des données d’événements, en
utilisant l’algorithme de thinning de [Oga81], avec des formes de noyaux très di�érentes -
exponentielle, loi de puissance et rectangulaire - et récupérons la valeur réelle du symbole
G pour chaque type de noyau. Notre méthode est, à notre connaissance, la plus robuste en
ce qui concerne la forme des noyaux. Nous avons ensuite appliqué notre méthode sur les
100 sites Web les plus cités de la base de données MemeTracker et sur les données du carnet
d’ordres Ænanciers : nous avons surpassé les méthodes de pointe appliquée à MemeTracker et
nous avons extrait des caractéristiques intéressantes et interprétables des données Ænancières.
Mentionnons également que notre méthode est signiÆcativement plus rapide (environ 50 fois
plus rapide) puisque les méthodes précédentes visaient à estimer des fonctions alors que nous
nous concentrons uniquement sur leurs intégrales.

La simplicité de la méthode, qui associe une liste de temps à une carte de causalité en-
tre les nœuds, et sa cohérence statistique, nous a incité à concevoir de nouveaux modèles
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de processus ponctuels de carnet d’ordres et pour mieux comprendre sa dynamique. Les
caractéristiques extraites à l’aide de notre méthode ont une interprétation économique très
naturelle. C’est le but principal de la Partie III.

2.3 Approche par optimisation sous contraintes

L’approche précédente basée sur la méthode généralisée des moments a besoin des trois
premiers cumulants pour obtenir su�samment d’informations à partir des données pour
récupérer les entrées d

2 de G . En supposant que la matrice G a une certaine structure,
nous pouvons nous débarrasser du cumulant du troisième ordre et concevoir une autre méth-
ode d’estimation en utilisant seulement les deux premiers cumulants intégrés. De plus, le
problème d’optimisation qui en résulte est convexe, au contraire de la minimisation de L

T

ci-dessus, ce qui permet la convergence vers le minimum global. La matrice que nous voulons
estimer minimise un critère simple f convexe, typiquement une norme, tout en étant cohérent
avec les deux premiers cumulants intégrés empiriques.

Notre problème se formule comme un problème d’optimisation sous contraintes :

min

G
f (G)

s.t. C = (I °G)

°1L(I °G>
)

°1

||G || < 1

g

i j ∏ 0

où f (G) est une norme qui donne une certaine structure à la solution. Toute matrice G
satisfaisant C = (I °G)

°1L(I °G>
)

°1 s’écrit I °L1/2MC°1/2 avec M une matrice orthogonale.
Au lieu d’étudier le problème précédent, nous nous focalisons sur sa relaxation convexe, we
séparons les variables G et M , et résolvons le problème avec l’algorithme Alternating Direction
Method of Multipliers, voir [GM75] et [GM76]:

min

G ,M
f (G)+ B(M)+ B(G)+ Rd£d

+
(G)

s.t. G = I °L1/2 M C°1/2

,

où B (resp. B) est la boule unitaire ouverte (resp. fermée) par rapport à la norme spectrale.
La boule unitaire fermée par rapport à la norme spectrale est en e�et l’enveloppe convexe du
groupe orthogonal.

Contrairement au problème d’optimisation du chapitre précédent, le problème qui vient d’être
énoncé est convexe. Nous testons cette procédure sur des simulations numériques de divers
noyaux Hawkes et des données du carnet d’ordres réels, et nous montrons comment le critère
f a�ecte les matrices que nous récupérons.
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3. Partie III: Capter la dynamique d’un carnet d’ordres à l’aide de processus de Hawkes

3 Partie III: Capter la dynamique d’un carnet d’ordres à l’aide
de processus de Hawkes

Le chapitre V s’intéresse à l’estimation des intégrales des noyaux de Hawkes sur des données
Ænancières, à l’aide de la méthode d’estimation introduite dans le chapitre III. Cela nous a
permis d’avoir une image très précise de la dynamique du carnet d’ordres à haute fréquence.
Nous avons utilisé les événements du carnet de commandes associés à 4 actifs très liquides
de la bourse EUREX, à savoir DAX, EURO STOXX, Bund et les contrats à terme Bobl.

3.1 Modèle 12-dimensionnel du carnet d’ordres d’un actif

Comme première application de la procédure décrite au chapitre III, nous considérons le
processus ponctuel à 12 dimensions suivant, une extension naturelle du processus ponctuel à
8 dimensions introduit dans [BJM16] :

N
t

= (T

+
t

,T

°
t

,L

+
t

,L

°
t

,C

+
t

,C

°
t

,T

a

t

,T

b

t

,L

a

t

,L

b

t

,C

a

t

,C

b

t

)

où chaque dimension compte le nombre d’évènements antérieurs au temps t :

• T

+ (T °): mouvement du mid-price à la hausse (baisse) due à un ordre de marché.

• L

+ (L°): mouvement du mid-price à la hausse (baisse) due à un ordre limite.

• C

+ (C°): mouvement du mid-price à la hausse (baisse) due à un ordre d’annulation.

• T

a (T b ): ordre de marché à l’ask (au bid) sans modiÆcation du mid-price.

• L

a (Lb ): ordre limite à l’ask (au bid) sans modiÆcation du mid-price.

• C

a (C b ): ordre d’annulation à l’ask (au bid) sans modiÆcation du mid-price.

Nous utilisons ensuite l’interprétation causale des processus de Hawkes pour interpréter notre
solution comme une mesure de la causalité entre les événements. Cette application de la
méthode à ce nouveau modèle a révélé les di�érentes interactions qui conduisent au retour à
la moyenne des prix à haute fréquence, et celles entre les preneurs de liquidité et les faiseurs
de liquidité.

Par exemple, on observe les e�ets des événements T

+ sur d’autres événements sur la Figure
A.1 (dans la première colonne de gauche). Les interactions les plus pertinentes sont le T

+ !
L

+ et T

+ ! L

° : ce dernier est plus intense et lié au retour à la moyenne du prix. En e�et,
lorsqu’un ordre de marché consomme la liquidité disponible à la meilleure demande, deux
scénarios principaux peuvent se produire pour que le prix moyen change à nouveau, soit la
liquidité consommée est remplacée, en retournant le prix (scénario de retour à la moyenne,
hautement probable) ou le prix monte de nouveau et une nouvelle meilleure o�re est créée.
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Figure A.1: Matrice d’intégrales des noyaux G estimée pour le DAX avec H = 1s.

3.2 Modèle 16-dimensionnel du carnet d’ordres de deux actifs

La méthode d’estimation non paramétrique introduite au chapitre III permet une estimation
rapide pour une méthodologie non paramétrique. Nous passons ensuite à l’échelle le mod-
èle aÆn de tenir compte des événements sur deux actifs simultanément et de dévoiler une
structure précise de la dynamique des actifs croisés à haute fréquence. Nous considérons un
modèle à 16 dimensions, composé de deux modèles à 8 dimensions de la forme.

N
t

= (P

+
t

,P

°
t

,T

a

t

,T

b

t

,L

a

t

,L

b

t

,C

a

t

,C

b

t

)

où les dimensions P

+ et P

° comptent les mouvements du mid-price à la hausse (baisse) due
à ordre quelconque.

Nous avons comparé deux couples d’actifs qui partagent les mêmes facteurs de risque. Le
principal résultat empirique de cette étude concerne le couple (DAX, EURO STOXX) pour
lequel les variations de prix et les variations de liquidité sur le DAX (petite tick) inØuencent
principalement la liquidité sur l’EURO STOXX (grande tique), tandis que les variations de prix
et les variations de liquidité sur l’EURO STOXX tendent à déclencher des mouvements de
prix sur le DAX. Nous avons exécuté la procédure d’estimation sur le modèle 16-dimensionnel,
nous concentrons notre discussion sur les deux sous-matrices non diagonales 8£8 sur la Fig-
ure A.2, qui correspondent à l’interaction entre les actifs - l’indice D représente DAX et X

pour EURO STOXX.
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3. Partie III: Capter la dynamique d’un carnet d’ordres à l’aide de processus de Hawkes

Figure A.2: Sous-matrice d’intégrales des noyaux G correspondant à l’e�et des évènements
du DAX sur ceux de l’EUROSTOXX STOXX (gauche) et vice versa (droite).

La caractéristique la plus frappante qui ressort de la Ægure A.2 est la relation très intense
entre les mouvements de prix de même signe sur les deux actifs. Un autre aspect notable
est l’e�et di�érent des mouvements de prix et des variations de liquidité d’un actif sur des
événements sur l’autre actif. Les mouvements de prix sur le DAX ont également un e�et sur le
Øux des ordres limites sur EURO STOXX (P+

D

! L

b

X

et P

+
D

!C

a

X

), alors que les mouvements de
prix EURO STOXX déclenchent principalement des mouvements de prix DAX dans la même
direction (P+

X

! P

+
D

). Un aspect important pour comprendre ce résultat est la di�érence de
taille des tick perçues sur les deux actifs. Notez que les e�ets observés ci-dessus peuvent être
expliqués avec la notion de prix latent [RR10], voir chapitre V pour plus de détails.
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