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ABSTRACT

This thesis presents a new algorithm for Mixed Integer NonLinear Pro-
gramming, inspired by the Multiplicative Weights Update framework and
relying on a new class of reformulations, called the pointwise reformulations.
The thesis is divided in three main parts: a foreword consisting in Chapter
1, a theoretical foundation of the new algorithm in Chapter 2, and the ap-
plication of this new methodology to two real-world optimization problems,
namely the Mean-Variance Portfolio Selection in Chapter 3, and the Multiple
NonLinear Knapsack Problem in Chapter 4.

Mixed Integer NonLinear Programming is a hard and fascinating topic
in Mathematical Optimization both from a theoretical and a computational
viewpoint. These problems are characterized by nonlinear objective func-
tion and constraints, and continuous and integer decision variables. Many
real-world problems can be cast this general scheme and, usually, are quite
challenging in terms of efficiency and solution accuracy with respect to the
solving procedures. Another very important tool in Mathematical Optimiza-
tion is represented by formulations and reformulations: in particular, we
introduce a new family of reformulations, namely pointwise reformulations,
depending on a given parameter, which are easier to solve than the origi-
nal formulation. A remarkable characteristic we look for in the pointwise
reformulation is exactness, i.e., the existence of a given value of the param-
eter such that a global optimum of the original problem is also a global
optimum for the reformulation. The basic idea to heuristically solve Mixed
Integer NonLinear Problems consists in finding the optimum of the (easier)
exact pointwise reformulation, which immediately yields the corresponding
global optimum of the original problem. We employ the Multiplicative Wei-
ghts Update algorithm in order to identify the correct value of the parameter
for the pointwise reformulation.

In Chapter 1 we give an overview of the mathematical concepts and en-
tities we use in the rest of the thesis. Chapter 2 is devoted to illustrate the
general scheme of the new algorithm, the Multiplicative Weights Update for
Mixed Integer NonLinear Programming, and its main theoretical properties.
Moreover, in this chapter we define several automatic building procedures
to determine the pointwise reformulation of a given Mixed Integer NonLin-
ear Problem for specific, but broad, classes of optimization problems.

In the rest of the thesis we deal with two real-world challenging optimiza-
tion problems: Mean-Variance Portfolio Selection and Multiple NonLinear
Knapsack Problems. In Chapter 3 we give a survey on the models, formula-
tions and reformulations, and exact methods for the single-objective single-
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period Mean-Variance Portfolio Selection problem. Among all the versions
for the portfolio problems proposed in the specialized literature, we choose
the most addressed class, namely cardinality constrained portfolio selection
with semi-continuous variables. We consider also a possibly non-convex non-
concave transaction cost function, with the only hypothesis of separability,
which is quite natural in the context of financial markets. The Multiplicative
Weights Update for Mixed Integer NonLinear Problems behaves sufficiently
better than the benchmarks with respect to the quality of the solution pro-
duced and the number of assets which compose the optimal portfolios. In
general, in fact, minimizing the number of assets in the optimal portfolio is
a second goal for the optimal selection procedures.

Then, in Chapter 4 we consider the Multiple NonLinear Knapsack Prob-
lem, addressed here for the first time in its entirely. We adapt the Multiplica-
tive Weights Updated framework to this problem, proposing a new point-
wise reformulation. Unfortunately, extensive computational experiments
show this algorithmic approach is not well suitable to solve challenging in-
stances of this knapsack problem. Hence, we illustrate a different heuristic
method based on the discretization of the solution space and on the surro-
gate relaxation. The method consists of three phases: we propose a construc-
tive greedy procedure, and two procedures for the feasibility recovering of
the surrogate solution. A local search post-procedure is also implemented in
order to improve the overall quality of the solution produced by the heuris-
tics. Computational experiments indicate that this method prevails over the
benchmarks both in terms of quality of the solution and of total computa-
tional elapsed time.

RESUME

L'objectif de cette these consiste a présenter un nouvel algorithme pour
la programmation non linéaire en nombres entiers, inspirée par la méthode
Multiplicative Weights Update et qui compte sur une nouvelle classe de re-
formulations, appelées les reformulations ponctuelles. La these est divisée
en trois parties principales: une introduction composée par le Chapitre 1,
une définition théorique du nouvel algorithme dans le Chapitre 2 et 'appli-
cation de cette nouvelle méthodologie a deux problémes concrets d’optimisa-
tion, tels que la sélection optimale du portefeuille avec le critere moyenne-
variance dans le Chapitre 3 et le probléme du sac a dos multiple non linéaire
dans le Chapitre 4.

La programmation non linéaire en nombres entiers est un sujet tres diffi-
cile et fascinant dans le domaine de l’optimisation mathématique a la fois
d’un point de vue théorique et computationnel. Ces problemes sont car-
actérisés par une fonction objective et des contraintes non linéaires, ainsi



que des variables de décision continues et entieres. Il est possible de for-
muler de nombreux problemes dans ce schéma général et, habituellement,
ils posent de réels défis en termes d’efficacité et de précision de la solution
obtenue quant aux procédures de résolution. Un autre outil tres important
dans I'optimisation mathématique est représenté par les formulations et re-
formulations. En particulier, nous introduisons une nouvelle famille de refor-
mulations, appelées reformulations ponctuelles, en fonction d'un parametre
donné. Elles sont plus simples a résoudre que la formulation originale. Une
caractéristique remarquable recherchée dans la reformulation ponctuelle est
I'exactitude, c’est-a-dire 1'existence d’une valeur donnée du parameétre telle
que un optimum global du probleme d’origine est aussi un optimum glob-
ale pour la reformulation. L'idée de base pour résoudre heuristiquement
les problemes non linéaires en nombres entiers consiste a trouver 1’optimum
des reformulations ponctuelles exactes (les plus faciles), qui produit immédi-
atement 'optimum global correspondant du probleme d’origine. Nous em-
ployons alors 1’algorithme Multiplicative Weights Update afin d’identifier la
valeur correcte du parametre pour la reformulation ponctuelle.

Dans le Chapitre 1, nous définissons les concepts et les objets mathéma-
tiques utilisés dans le corps de la thése. Le Chapitre 2 est consacré a illustrer
le cadre général du nouvel algorithme, le Multiplicative Weights Update
pour la programmation non linéaire en nombres entiers et ses principales
propriétés théoriques. En outre, dans ce chapitre, nous définissons plusieurs
procédures de construction automatique pour déterminer la reformulation
ponctuelle d’un probleme non linéaire en nombres entiers pour des classes
spécifiques, mais larges, de problemes d’optimisation.

Dans le corps de la these, nous nous occupons de deux problemes d’optimi-
sation difficiles: la sélection du portefeuille moyenne-variance et le prob-
leme du sac a dos multiple non linéaire. Dans le Chapitre 3, nous don-
nons un résumé des modéles, formulations et reformulations, ainsi que les
méthodes spécifiques orientées sur le probleme de la sélection du porte-
feuille moyenne-variance avec un seul objectif et sur une période unique.
Parmi toutes les versions du probleme de portefeuille proposé dans la lit-
térature spécialisée, nous avons choisi la catégorie la plus abordée, appelée
la sélection de portefeuille avec contrainte de cardinalité avec variables semi-
continues. Nous considérons également une fonction de cotit de transaction
non-concave et non-convexe, avec la seule hypothese de séparabilité, ce qui
est tout a fait naturel dans le contexte des marchés financiers. Le Multiplica-
tive Weights Update pour les problemes non linéaires en nombres entiers
fait preuve d'un meilleur comportement par rapport aux autres méthodes
de résolution, notamment en termes de qualité de la solution produite et
du nombre d’actions qui composent le portefeuille optimal. En général, en
fait, la minimisation du nombre d’actions dans le portefeuille optimal est un
deuxiéme objectif pour les procédures optimales de sélection.

xi
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Par conséquent, dans le Chapitre 4, nous considérons le probleme du sac a
dos multiple non linéaire, abordé ici pour la premiere fois dans son intégral-
ité. Nous adaptons la structure du Multiplicative Weights Update a ce prob-
leme, proposant une nouvelle reformulation ponctuelle. Malheureusement,
des expériences computationnelles poussées montrent que cette approche
algorithmique n’est pas bien adaptée pour résoudre les cas difficiles de ce
probléme de sac a dos. Ensuite, nous illustrons une méthode heuristique
différente basée sur la discrétisation de 1’espace de solutions et sur sa relax-
ation agrégée. La méthode consiste en trois phases: nous proposons une
procédure gloutonne constructive et deux algorithmes pour la récupération
de la faisabilité de la relaxation agrégée. Une post-procédure de recherche
locale est également exécutée afin d’améliorer la qualité globale de la solu-
tion produite par les heuristiques. Les expériences de calcul indiquent que
cette méthode prévaut sur les autres tant en termes de qualité de la solution
que de temps total de calcul.
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1 INTRODUCTION

This thesis is devoted to introduce and analyze a new methodology to
solve optimization problems, i.e., a broad class of problems, in which we
want to find the minimum of a single deterministic objective function, in
a finite or infinite set of feasible points, described by a finite number of
inequalities and possibly implicit constraints such as integrality or member-
ship in given polyhedra. In particular, we consider Mixed Integer NonLin-
ear Problems (MINLPs), i.e., optimization problems involving continuous
and discrete decision variables and possibly nonlinear terms in the objective
function and the constraints.

The methodology we employ in this thesis involves three main ingredi-
ents: MultiStart algorithm, Multiplicative Weights Update algorithm, and
reformulations. The MultiStart algorithm is a simple random (heuristic) pro-
cedure to globally solve optimization problems. The Multiplicative Weights
Update algorithm can be explained as a stochastic (heuristic) method for
a decision maker to iteratively take a decision among different choices, by
observing the prediction of a finite number of advisors. Reformulations are
a fundamental tool in optimization both from a theoretical and applicative
viewpoint. The formulation describes the structure of a Mathematical Pro-
gramming (MP). Reformulations change the symbolic structure of a MP for-
mulation while keeping some of its mathematical properties invariant.

This chapter constitutes a foreword to the rest of the thesis: we introduce
the notation and the mathematical entities we will use in the other chapters.
The rest of this chapter is organized as follows. In Section 1.1 we give the
mathematical formal definition of Mixed Integer NonLinear Programming
(MINLP) and we remark its general properties. In Section 1.2 we describe a
general classification for the algorithms for MINLP. In Sections 1.3 and 1.4 we
describe the MultiStart and the Multiplicative Weights Update algorithms,
respectively. In Section 1.5 we present a definition of formulations and re-
formulations of a given optimization problem, and we propose a general
classification, based on the relationship between the original problem and
its reformulated versions. Finally, in Section 1.6 the thesis structure is drawn
with all the complete references from which the others chapters are sourced.
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| INTRODUCTION

1.1 MIXED INTEGER NONLINEAR PROGRAMMING

Let x € R™ be an n-dimensional vector of continuous decision variables
and y € ZP be a p-dimensional vector of integer variables. The general
MINLP is defined as follows:

min f(x,y) (1.12)
st. g(x,y) <0 (1.1b)
x e X (1.10)
yevYNZp, (1.1d)

where f(x,y) : R™P — R and ¢(x,y) : R™*P — R™ represent the objec-
tive function and the constraints, respectively. The sets X C R™ and Y C RP
are two polyhedra of suitable dimensions. Let J be the feasible set of the
MINLP, i.e.,

F:={xy) : glx,y) <0,xe X,y e YNZP}. (1.2)

Moreover, we define projections of the feasible set over the continuous and
discrete variables, respectively:

Fx :={x € X : Fy € YNZP such that g(x,y)

0} (1.3a)
Fy =y € YNZP : Ix € X such that g(x,y) <0

<
< 0} (1.3b)

Definition 1.1.1. With a slight abuse of notation, we say that a MINLP is convex
if f(x,y) and ge(x,y) are convex for all £ € {1,..., m}, otherwise the MINLP is
non-convex. ]

Remark 1.1.2. We emphasize that the continuous relaxation of a convex MINLP,
i.e., the nonlinear problem obtained by removing the integrality requirements of the
variable y, has a convex feasible set. O

Definition 1.1.3. With a slight abuse of notation, we say that a MINLP is strictly
convex if f(x,y) and g¢(x,y) are strictly convex for all € € {1,..., m}. O

If p =0, the MINLP reduces to NonLinear Problem (NLP). If the objective
function and the constraints are linear, the MINLP reduces to Mixed Integer
Linear Problem (MILP). Finally, if p = 0 and the objective function and the
constraints are linear, the MINLP reduces to Linear Problem (LP).

Then we introduce the definitions of neighborhoods of a given point (X, §j) €
R™ x ZP.

Definition 1.1.4. Let (X,7) € R™ x ZP, then

(xy) € R*" xZP : y=7,llx—xllq

{ e} (1.4a)
{(xy) e R" xZP : x =%,[ly —TGllo

1}, (1.4b)

B((x,7);¢) :
(%,9):

where q € N and ¢ > 0. O

<
<



1.1 MIXED INTEGER NONLINEAR PROGRAMMING |

Henceforth, solving a MINLP means finding at least one global solution for
the optimization problem, i.e., a feasible point whose objective value is the
minimum among all the points in the feasible set.

Definition 1.1.5. A point (x*,y*) € J is a global solution of a MINLP if
f(x*,y*) < f(x,y) forall (x,y) € J. O

We introduce also the definition of local optimum of a MINLP.

Definition 1.1.6. A point (x*,y*) € F is a local solution of a MINLP if, for some
e >0, f(x*,y*) < f(x,y) for all x € B((x*,y*);e)NTFx and y € N(x*,y*) N
Fy. O

A global solution is given by the best solution in all the feasible set: this
definition takes into account the global behavior of the objective function
and the entire feasible set. A local solution, on the contrary, is a solution
restricted to a small subset of the feasible set, with respect to which the local
behavior of the objective function is considered.

While a strictly convex NLP has at most one global solution, the same
property does not necessarily hold for strictly convex MINLPs [154, 166].

MINLP is NP-hard because it includes Mixed Integer Linear Programming
(MILP) [102, 139] and Mixed Integer Quadratic Programming (MIQP) [69] as
special cases, when constraints are affine and objective function is linear
or quadratic, respectively. MINLP is, in general, undecidable [130], even for
p = 10, when the objective function is linear and the constraints are polyno-
mial [67]. For a survey on computational complexity of MINLP we refer the
interested reader to Hemmecke et al. [115] and Kdppe [149]. However, if the
MINLP is convex or polyhedra X and Y are bounded, the undecidability is
fortunately avoided.

Usually, solving MINLPs in practice could be extremely difficult, as the
following example shows.

Example 1.1.7. Fermat’s Last Theorem, formulated by Pierre de Fermat in 1637 on
the margin of his copy of Arithmetica by Diophantus of Alexandria and published
by his son Samuel de Fermat in Tolosa in 1670 (see [64, p. 62]) states:

“Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos et generaliter nullam in infinitum ultra quadratum potes-
tatem in duos eiusdem nominis fas est dimidere cuius rei demonstra-

” 1

tionem mirabilem sane detexi. Hanc marginis exiguitas non caperet.”.

This conjecture, finally proved by Wiles [242], asserts the Diophantine equation
x™ +y™ = z" has no integer solution when n € Z N [3,4o00) and x,y,z € Z4 N

Translation: “It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general, any power higher than the second, into two like powers. I have
discovered a truly marvelous proof of this, which this margin is too narrow to contain”. (see

[114, p. 144-145]).

5



6 | INTRODUCTION

[1,+00). Now, Fermat’s conjecture is false if and only if the optimum value of the
following MINLP is zero [198]:

2

X,rg}gn (x"+y"—z") (1.5)
st.x€Z;iN[1,400) (1.6)
yeZ,nl[l,+o00) (1.7)
zeZN[1,4+o0) (1.8)

n e Zni3,+o0). (1.9)

O

For simplicity, from now on, we assume all the optimization problems we
introduce are characterized by lower and upper bounds on the decision vari-
ables, i.e., by constraints such as x € [x,X] and y € [y, ], where the underline
symbol indicates the lower bounds and the upperline symbol indicates the
upper bounds.

1.2 MINLP ALGORITHMS

The algorithms proposed in the literature to solve optimization problems
can be subdivided into two different classes, with respect to the type of
solution produced:

e local algorithms produce local solutions;

e global algorithms produce global solutions.

Optimization algorithms can also be subjected to a further classification:
e exact algorithms;

e heuristic algorithms.

Exact algorithms produce a solution which meets a given optimization cri-
terion which characterized a local or a global solution [30, 94, 201], while
heuristic algorithms produce, in general quickly, a good feasible solution for
the problem. Global algorithms consider the entire feasible set and they
try to explore it in order to find a global optimum, exactly or heuristically.
According to the way they search the feasible set, they can be:

o deterministic methods;
o stochastic methods.

Deterministic methods are such that, if applied several times to the same
instance of the optimization problem, they produce the same output every
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time; instead, stochastic methods are characterized by probabilistic proce-
dures, which may produce different solutions each time the algorithm is
executed on the same input.

One of the first general heuristic methods for global optimization problems,
i.e., mathematical programs in which we want to find the global minimum, is
the Pure Random Search (PRS) algorithm. The PRS (see Algorithm 1) is
based on a simple restart procedure: at each iteration a new (feasible) point
is generated (Step 3) and it is valued with respect to the objective function, if
the current point has a better objective function value, the current returned
point is updated (Steps 4-8).

Algorithm 1 Pure Random Search
1: Initially set t=1, (x§,y3) = (x0,Yo) and U := f(xo,yo)
2: while termination condition is not met do
3:  generate a feasible point (x{,y{)

if f(x{,y;) < U then

4:
5: set xi :=xy, yi :=yi, U:= f(x},y})
6: else

7: set X{ :==X{_ 1, Yi = Yi_;4

8 end if

90 ti=t+1

10: end while
11: return point (xj_;,y;_;) and upper bound U.

Step 3 can be implemented in many different ways from pure systematic
generation to pure randomization procedure [183]. The termination condi-
tion is, in general, given by the maximum number of iterations or, in the
case the global minimum value is known, the distance between the current
function value and the global one [220].

Remark 1.2.1. Although Algorithm 1 is quite simple, the implementation of this
method cannot be a trivial task, since generating points in a feasible set is generally
a non easy operation. One possible implementation is to generate a point in a box
containing the feasible set and accept the point only if it is feasible.

Assumption 1.2.2. We assume the feasible set is defined only by lower and upper
bounds constraints: in this case Step 3 can be implemented in a pure randomization
fashion, i.e., the current point is generated according to a uniform distribution over
the feasible set. O

Proposition 1.2.3. Let Assumption 1.2.2 hold, and {(xt,y+)} be a sequence of uni-
formly random distributed points on the feasible set J of the optimization problem.
Let Zy ={(x1,Y1),..., (xt,yt)}. Then, for all subset A C F with strictly positive
Lebesgue measure,

lim P (Z¢NA#0)=1. (1.10)

t—o0

7
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Proof. Let meas(A) denote the Lebesgue measure of set A. p = meas(A)/
meas(J) € (0,1) is the probability that a point sampled in J belongs to A.
Therefore, we have:

P(ZiNA#D) =1—(1—p)". (1.11)

The statement follows. O

Proposition 1.2.3 guarantees the entire feasible set is covered by the se-
quence of random points: no part of the feasible set remains unexplored.
The following proposition states that the Algorithm 1 converges to the global
optimum in probability as the number of iterations goes to infinity.

Proposition 1.2.4. Let Assumption 1.2.2 hold and suppose the problem is feasible.
Let {(x},y3)} be a sequence of points generated by the Algorithm 1. Then, for any
e > 0, we have

Jim P (O, ye) e{xy) €T fhoy) <P Hel) =1, (1.12)

where * is the optimal value of the optimization problem.

Proof. Let A = {(x,y) € F : f(x,y) < f* +¢}. The statement follows by
invoking Proposition 1.2.3. O

The serious drawback of Algorithm 1 consists in the fact that, in order to
reach a point in the neighborhood of the global solution of the optimization
problem, many iterations may be necessary: in the worst case the number
of iterations is infinite. The probability of finding a point (x¢,y¢) such that
f(xe,yt) < f* + ¢ is ¢/meas(F) and the probability of finding such point in
N iterations is

. N
1= <] - meas(fr")) ' (1.13)

In order to produce a point in the neighborhood of the optimal solution of

the problem with a confidence level «, i.e., such that 1 — (1 — m) N =
o, we need

B log (1 — )

N log(1 —¢/meas(J))

(1.14)

iterations. Therefore, as pointed out by Locatelli and Schoen [165], if the
optimization problem is pure continuous, i.e., p = 0, the feasible set J is
a unit box, and the neighborhood of the global minimum is a box of edge
length {, the number of iterations needed is

log(1—o) 1
et ~° () "
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1.3 THE MULTISTART ALGORITHM

In order to speed up Algorithm 1 a local search phase can be also imple-
mented, defining the MultiStart (MS) algorithm: at Step 4 in Algorithm 2 a
local algorithm is applied to the randomly generated point. Obviously, in
practical implementation, this local phase is crucial for the computational
behavior of the algorithm since it is, in general, much more expensive than
the global one [158].

Remark 1.3.1. Note that, when the mathematical program is a non-convex NLP,
Step 4 is NP-hard [95, 2041, however it is practically fast. Moreover, we can consider
local NLP optimization as tractable as long as we limit ourselves to constraints
involving only factorable functions over a simple operator alphabet such as +, —, *,

/, log, exp.

Algorithm 2 MultiStart Algorithm

1: Initially set t := 1, (x§,y3) := (x0,Yo) and U := f(xo,yo)

2: while termination condition is not met do

32 generate a feasible point (x{,y{)
4  apply alocal algorithm from (x{,y;), obtaining point (x{’,yy{’)
5. if f(x{,y{) < U then
6 set xi :=x{, yi :=yy, W:=f(x},y7)
7. else
8 *
9

set Xt 1= X{_1, Yt =Yy
end if
100  ti=t+1
11: end while
12: return point (xj_,;,y;_;) and upper bound U.

In order to avoid too many local minimization procedures, variants of
Algorithm 2 have been proposed: in particular, the local phase could be per-
formed only if the randomization phase produces a better point in terms of
the objective function [158].

Moreover, a population of points could be randomly generated in the ran-
domization phase and a certain subset of points could be selected by means
of clustering techniques (see [22, 158, 222]) and local minimizations can be
performed, considering the selected points as starting points [158]. In other
versions of the MS, an escaping strategy is also implemented in order to avoid
local minima: for instance, Simulated Annealing [145] (see also [189, 43, 144,
68, 164]) is considered in the context of non-convex MINLP by Cardoso et
al. [40] and Tabu Search [103, 104, 105] is applied to non-convex MINLP by
Munawar et al. [197] (see also [160, 196]).

Finally, the generation of the random points can be implemented by means
of non uniform distributions [230], such as in Simulated Annealing: in this

9



10

| INTRODUCTION

case the following proposition guarantees the convergence of the algorithm
in probability.

Proposition 1.3.2. (Solis and Wets [230]) Let meas(A) be the Lebesgue measure
of set A. Let {m¢(-)} be a sequence of probability measures such that, for all (Borel)
subset A C F with meas(A) > 0,

o0
(1—m¢(A)) =0. (1.16)
t=1
Then, if f is a Lebesgue-measurable function and § C R™ is a Lebesgue-measurable
set, the sequence of random point (x§,y;) generated by the algorithm is such that

Jim P ((x¢,yt) € {xy) €T : fhoy) < +ef) =1, (1.17)

where € > 0.

1.4 THE MULTIPLICATIVE WEIGHTS UPDATE ALGORITHM

The Multiplicative Weights Update (MWU) algorithm is a “meta-algorithm”,
i.e., it could be adapted to many different settings, with a broad application
in Optimization, Machine Learning, and Game Theory. In particular, we
point out the Plotkin-Shmoys-Tardos Algorithm [206] for fractional pack-
ing and covering LPs, which can be derived by the MWU framework. The
Plotkin-Schmoys-Tardos Algorithm is connected with the Lagrangian relax-
ation approach, in which several “complicated constraints” are relaxed. Let
A€ R™™ x,b € R"™ and P be a convex subset of suitable dimension. The
Plotkin-Schmoys-Tardos Algorithm solves the following feasibility problem:

IxeP:Ax>D (1.18)

in which x € P represent the “easy constraints”, while Ax > b indicate the
“complicated constraints”. The Algorithm calls repetitively a sub-procedure
(Oracle) which deals with the following feasibility problem:

IxeP:pTAx=>p'y, (1.19)

where p is a vector of suitable dimensions. Arora et al. [3] show that, if
the sub-procedure is an (¢, p)-bounded Oracle, then there exists an algorithm
which solves the problem (1.18) up to an additive error ¢ or derives that the
problem (1.18) is infeasible. The algorithm calls the Oracle only O(£plog(m)/
e?) times.

For a general explanation of MWU we refer the reader to the excellent
survey by Arora et al. [3], from which we borrow the following example.

In a very simple stock market with just one stock characterized by two
possible daily price movements (up and down), an investor has the possi-
bility to observe the prediction of q experts. The investor wants to gain as



1.5 FORMULATIONS AND REFORMULATIONS \

much as possible in terms of overall return, according to the prediction of
the best expert which, however, is of course not known a priori. The first
(trivial) algorithm one could think about consists in operating in the market,
selling or buying the stock, according to the majority opinion of the experts.
Nevertheless, the experts could be correlated or even not really experts in
finance, so the majority opinion could be systematically wrong.

The MWU algorithm (see Algorithm 3) corrects the trivial one: the in-
vestor chooses his/her financial strategy according to the weighted majority
opinion of the experts. Initially all the experts have the same weights w;
(i < q) (Step 1), but, as the time goes on, the algorithm gives a gain to the
experts who made the correct prediction, and gives a cost to ones who made
a wrong prediction (Step 4). For technical reasons the costs/gains must be
in [—1,1]. If this is not the case, a step to suitably scale the costs/gains has
to be implemented. The weight of each expert is updated in a multiplica-
tive fashion (Step 5). At each iteration, the investor chooses on the basis of
the predictions in a random way according to the probability distribution
induced by the weights (Step 3).

Algorithm 3 Multiple Weights Update Algorithm
1: Initially set t:=1, 1 < % and wi =1 foralli<q
2: while termination condition is not met do
32 sample i < q from the distribution pt ~ (Wi : 1< q).
4 each decision incurs a cost/gain P € [—1,1]9.
50 update weights wi 11 1= Wit(1 —MPi ).
6
7

t:=t+1.
: end while

Even though the MWU is a quite simple strategy, it is possible to show an
upper bound for the overall expected cost } ;1 pt+.

Theorem 1.4.1 (Arora et al. [3]). Let T be the number of iterations, i € [—1,1],
foralli € qand t < T, be the cost/gain associated to expert i at time t and n < %

The MWU Algorithm guarantees an overall expected cost

. Inq
Eviwu ==Y bepe < min D Witn) Wi |+ Y (1.20)

t<T t<T t<T

1.5 FORMULATIONS AND REFORMULATIONS

Intuitively a formulation is a way to write down a given optimization
problem. Specific types of formulation are, for instance, required by the
implemented solvers in order to address a specific type of problems, such as
LPs, NLPs, MILPs, and MINLPs. Formulations can be:

11



12

| INTRODUCTION

e flat formulations;
o structured formulations.

In the objective and constraints of structured formulations, quantifiers, such
as ¥V, ) , [ [, appear; in flat formulations no quantifier is present. When a
formulation P is cast into another formulation Q, we say that Q is a reformu-
lation of P.

Several definitions for reformulation have been proposed (see, e.g., Audet
et al. [5] and Sherali [227]). Generally, reformulations are defined in such a
way that several properties of the original formulation are preserved, such as
the set of the optimal solutions or the set of the feasible points. A systematic
theory for reformulations is presented in Liberti [157], which proposes the
following classification.

Definition 1.5.1. A reformulation Q of a formulation P is a relaxation if its feasible
set contains the feasible set of P.

Definition 1.5.2. A reformulation Q of a formulation P is exact if it shares all the
optimization properties (local optima, global optima, feasible set) with P.

Moreover, in the next chapters we will consider also bounding reformula-
tions [187].

Definition 1.5.3. A reformulation Q of a formulation P is bounding if, when
solved to optimality, produces a lower bound for P and its feasible set contains the
feasible set of P.

Remark 1.5.4. Note that all the relaxations are also bounding reformulations.

1.6 THESIS STRUCTURE

This thesis is based on several published papers, namely [187, 188], and
other working papers [185, 186] submitted to the international refereed jour-
nals Computers & Operations Research and International Transactions in
Operational Research, respectively. In particular, Chapter 2 is sourced from
[187], Chapter 3 from [185], and Chapter 4 from [186, 188].

Beside the introductory section, the thesis is structured in two main parts:
a theoretical part (Chapter 2), and an applicative one (Chapters 3 and 4). In
the theoretical part we introduce a new algorithm to solve MINLP, and we ex-
plain its fundamental steps and its theoretical properties. In the second part
we apply the methodology to two different optimization problems, namely
the Mean-Variance Portfolio Selection and the Multiple NonLinear Knap-
sack Problems, both modeled as MINLPs and difficult to solve in practice.
We will see that for the first problem the algorithm performs quite well with
respect to the benchmarks, while this is not the case for the second problem.


https://www.journals.elsevier.com/computers-and-operations-research
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-3995
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-3995
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Hence, for the sake of completeness, we describe a constructive heuristic
procedure to find good solutions in a reasonable amount of computational
time.
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2 THE MWU ALGORITHM FOR MINLP

2.1 INTRODUCTION

The MWU algorithm can be described as a special case of the MS algo-
rithm to solve MINLPs. The MS algorithm is composed of two main steps:
the choice of a random starting point, and a local optimization procedure,
meaning we solve the problem with a local solver (for instance, we can
heuristically solve non-convex problems by means of a solver which solves
convex problems exactly). In the MWU algorithm for MINLPs we follow
the same structure of the MS, but we introduce a strategy for generating
promising points for the objective function and for the constraints. It is quite
clear what “promising point” means in terms of objective function: if we
consider a minimization problem and two feasible points, the one with the
lowest objective function value is more promising than the other. Intuitively,
being a “promising point” for the constraints corresponds to a sufficiently
little violation of the constraints in terms of the difference between the value
of the left hand side of the constraint and the value of the right hand side.

Moreover, since in the MWU algorithm for MINLPs we generate “promis-
ing points” according to the problem formulation, in order to guarantee low
objective function values and low violation of the constraints, we say that
MWU algorithm for MINLPs is a matheuristic [171], i.e., a heuristic algorithm
based on the MP formulation. In other words, we generate the promising
point by solving an auxiliary formulation of the original problem, where
several terms are fixed to the values given by the MWU, we call a point-
wise reformulation. The solution we obtain is the starting point for a local
optimization procedure. Then, we iterate the two steps (solving the point-
wise reformulation and applying a local procedure) for a given number of
iterations or until a given optimality criterion is satisfied. If the pointwise
reformulation is built in such a way that there exists a value of the parameter
for which the reformulation has the same optimum as the original one, i.e.,
the pointwise reformulation is exact, then we only need to guess the correct
value of the parameter and solve the simpler reformulation. If the pointwise
reformulation is bounding, at each iteration we obtain a lower bound for the
optimal value of the original formulation, by simply solving the reformu-
lated problem.

The rest of this chapter is organized as follows. In Section 2.2 we formally
introduce the pointwise reformulation, describing its theoretical properties
and characterizations. In Section 2.3 we illustrate several examples of auto-
matic procedures to build the pointwise reformulation for specific classes of

17
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MINLPs. Finally, in Section 2.4 a complete description of the MWU algo-
rithm for MINLPs is specified.

2.2 POINTWISE REFORMULATIONS

Definition 2.2.1. Given a MINLP P as in (1.1), a pointwise reformulation R® =

ptw (P) is a family of MINLP formulations, depending on a parameter 0 =
t«t'(0)
(05 | s < 1), which are obtained by replacing terms tq,...,t. in P by corresponding

parametrized terms t.(0s) (for s < 7). O

Given a MINLP P as in (1.1), a term of P is a symbolic expression in its ex-
pression tree, i.e., it is represented by a set of adjacent nodes in its expression
tree. The expression tree of a MINLP is a way to computationally represent
the problem in a tree, having as leaves the variables and the constants of
the problem and as the other nodes the logical operators (+, x, /, sin, etc.)
linking variables and constants [54].

Both the original terms t and the substituting ones t’ are functions of the
decision variables x and y; furthermore, the substituting terms t’ are also
functions of the parameters 0: hence, we extensively indicate the substituted
terms as t(x,y) and the substituting terms as t’(x, y; 0).

Definition 2.2.2. Given a MINLP P and R® = ptw (P), both defined on a vector
t<—t'(0)
x of continuous decision variables in R™ and a vector y of discrete decision variables

in ZP:

(a) For every replaced term ts (for s < v) in Definition 2.2.1, let D be the range
of ts(x,y), where the term is interpreted as a function of the decision variables
x and y of P ranging in the respective domains.

(b) For every replacement term t's (for s < r) in Definition 2.2.1, let D} (6)
be the range of t's(x,y; 0s) when the term is interpreted as a function of the
decision variables x and y of P ranging in the respective domains.

(c) For s < v, let Og be the range of the corresponding parameter O, and let
O=(0O;|s<T). O

Finally, given a parameter 0 € © and a function ¢, we indicate with ¢°
the function obtained by replacing the terms ts(x,y) with t/(x,y;0) (s < 7).
Let X® and Y® be the sets obtained by replacing the terms ts(x,y) into the
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inequalities defining sets X and Y, respectively. With the previous notation,
we rewrite the pointwise reformulation as follows:

min O (x,y) (2.1a)
s.t. g%(x,y) <0 (2.1b)
x e X° (2.10)
yevYnzr' (2.1d)

Remark 2.2.3. The number of the constraints in the pointwise reformulation (2.1)
is the same as in the original formulation (1.1); however, since in the pointwise
reformulation (2.1) several terms are substituted by means of parameters 0, the
number of variables could be different from the one of the original formulation (1.1).

O

We introduce the following classification for the pointwise reformulations.
Definition 2.2.4. Given a MINLP P and its pointwise reformulation R®:

(a) RY is spanning if, for any x € R™ and y € ZP, there are values of 0 such
that evaluating the functions of P and of R® at (x,y) determines the same
value, i.e., such that

Vs<r D C U D/(es) A ts(xy;0s) = ts(x,y) (2.2)
0:,€0;,

(b) RO is exact if, for each globally optimal solution (x*,y*) of P, there is at least
one vector 8’ € © such that (x*,y*) is also an optimal solution of RY';

(c) RY is efficient if there is a polynomial-time algorithm for approximately solv-
ing R (for © € ©) to within a given & > 0 approximation factor.

O
Lemma 2.2.5. Let P be a MINLP cast in form (1.1) and R® = ptw(P) be a spanning
te—t’
reformulation, then we have:
feas(P U feas(R9). (2.3)

0€®
where feas(P) is the feasible set of problem P.

Proof. Let (x',y’) € feas(P). Given that R® is spanning, there exists a param-
eter & € O such that ts(x/,y’) = ts(x/,y’; &) for each s < r. Hence it follows
gf(x*,y*) = g¢(x*,y*) for all £ < m. Note (x/,y’) € feas(P), ge(x’,y’) <0
for all { < m, therefore (x/,y’) is also feasible for R%. Since for all £ € ©
feas(R%) is a subset of Uoseco feas(R?), the statement follows. O

Lemma 2.2.6. Let P be a given formulation and R® be a spanning pointwise refor-
mulation, then there exists & € © such that R is a bounding reformulation of
P.
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Proof. In the proof of Lemma 2.2.5 we saw that, if £ € O is such that
ts(x*,y*) = ts(x*,y*; &) for all s < 1, then (x*,y*) € feas(R%). Analogously,
it is possible to prove f&(x*,y*) = f(x*,y*), and therefore:

val(R®) < f5(x*,y*) = f(x*,y*) = val(P), (2.4)

where val(P) indicates the value of the optimal solution of P. The statement
of the theorem follows. O

2.3 GENERATING POINTWISE REFORMULATIONS

2.3.1 A First-Order Reformulation

In this section we derive a pointwise linear reformulation for a general
non-convex MINLP. We assume functions f and g, ({ < m) are at least once
continuously differentiable. Moreover, we suppose without loss of general-
ity that the objective functions of the original problem P and of its pointwise
reformulation R® are the same, i.e., f9 = f. If this is not the case, we add a
dummy variable y € R to P, and we consider the following exact reformula-
tion, in the sense of [157], of the original MINLP problem:

min y (2.5a)
s.t. fix,y) <vy (2.5b)
gx,y) <0 (2.5¢)

x e X (2.5d)
yeynzr. (2.5€)

We assume all the inequalities describing sets X and Y are included on
inequalities g(x,y) < 0 with g(x,y) : R**P — RR™. We replace each non-
convex multivariate function in (2.5) with an affine approximation, i.e., with
a first-order approximation at a given point (X, jj):

min y (2.6a)
Xx—%X

Voo + V1 T< ~><v (2.6b)
00 0 y—1

m+wﬂ< e ) <0 Wi<m (2.60)
y—3

y € ZP. (2.6d)

Remark 2.3.1. In the pointwise reformulation (2.6), the parameter © is the matrix
(% g)T,VOkT,wkT) (k € {0,...,m}), whose dimensions are (n+p) x (2m +
3). O

For simplicity of notation, in the rest of this subsection, we set go(x,y) :=
f(x,y).

Lemma 2.3.2. The pointwise reformulation (2.6) is spanning.
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Proof. For each k € {0,...,m}, we note that the replacement term voi +
Vik (x—% y—17)" and the replaced term gy (x,y) have the same value for
all values of 0 such that (X,7) = (x,y) and vox = gk (X, y). O

The previous approach to generate a pointwise reformulation has been
successfully applied to a special class of the Hydro Unit Commitment (HUC)
problems arising in energy industry in the paper [187].

2.3.2 Polynomial MINLPs

In this section, we consider polynomial MINLPs, i.e., formulations (1.1)
where functions f and g; (¢ < m) are polynomials of (x,y). For simplicity
in this section we assume p = 0. All the results, except where explicitly
indicated, are valid also in case discrete decision variables are present.

A Trivial Pointwise MILP Reformulation

A trivial method to derive a pointwise MILP reformulation for any poly-
nomial MINLP P consists in turning every variable but one to a parameter
in every monomial of P. For two integer sequences h = (hy,...,h¢) and

d= (d1,...,dt), let
d_ d;
Hh = Hxhj
st
be a monomial occurring in P. Let us see the MILP pointwise reformulation
first:

1. introduce new parameters 61, ...,0y;

2. for each monomial uﬂ in P:
a) choose{ < tasl= argminj gt{di}

b) replace u by the linear term a,xy,,, where

— gde—1 dj
ap =05 JTew
i#t

Since every monomial is reduced to a linear term, but the rest of the con-
straints remains unchanged, it is immediate to show that the formulation
obtained by the above procedure is a pointwise MILP reformulation of P.

We point out that, if, with respect to the monomial uﬂ, there exists an
index k < t, such that dx = 1, because of the rule (a), we do not introduce
Onr, in the pointwise reformulation keeping the number of the parameters
as low as possible.

Remark 2.3.3. By construction, the previous pointwise reformulation is spanning
since, for each feasible xq, the replaced term \ is always equal to the replacement

- d; .
term xheﬁﬂﬁ ! [Tz O for On; =xn; G < B O
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2.3.3 Bilinear MINLPs

The trivial pointwise MILP reformulation appears particularly well suited
to the case of bilinear MINLPs where the incident graph corresponding to
the matrix of the quadratic form is bipartite, i.e., polynomial MINLPs of
degree 2 where the variables can be partitioned into two sets I and ] such
that every monomial x;x; has i € I and j € J. Then the procedure reduces
to choose I (resp. J) and replace x; with 0; (resp. x; with 0;) for all i € I

(resp.j €]).

2.3.4 Quadratic MINLPs

Consider MINLPs involving quadratic terms only and assume without
loss of generality p = 0:

min x' Q% + ¢°x (2.7a)
st xT Q%+ q'x < by Vi<m (2.7b)

Let L be the set of indices in {0, ..., m} such that Q' is indefinite. For each
¢ € L, we look for two matrices A¢, B¢ such that:

(i) Alis positive semidefinite;

(i) B%is sparse;

(iii) A*+B* = Q"
Next, we rewrite x ' Q%x + q*x as x " A +xTB*x + g%, introduce as many
parameters 0 as there are variables x, and define the pointwise reformulation
by replacing every term x' B¢x by 6" B*. This yields a pointwise convex
Mixed Integer Quadratic Problem (MIQP) reformulation, since all the non-
convex terms x ' B{x have been turned into linear terms. Thereby, given the

indefinite matrix Q*, we aim the following optimization problem to recover
A! > 0 and B%:

min ||BY|o (2.8a)
st. A' =0 (2.8b)
A+ B = QY (2.8¢)

A convex relaxation of (2.8) can be obtained by replacing, in the objective
function, the {p-norm with {;-norm, namely

min [[B||; (2.92)
st. AL =0 (2.9b)
At +BY=Q% (2.9¢)

Remark 2.3.4. Let Ayin be the minimum eigenvalue of QY, and 1, xn indicate the
identity matrix of order m. BY = AminTInxn S a good solution for both (2.8) and
(2.9) (see Section 4 in [97]). O
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Remark 2.3.5. By construction, the pointwise convex MIQP reformulation previ-
ously introduced is spanning for all © = x. O

2.4 MWU ALGORITHM FOR MINLPS

The pseudocode of the MWU algorithm for MINLPs is shown in Algo-
rithm 4. It takes a MINLP formulation P as input and produces a local solu-
tion as output. In the next sections we analyze in more detail the steps of
the algorithm.

Algorithm 4 MWU Algorithm for MINLPs
1: assign weights wy := 1, incumbent (x*,y*) := (0o, 00) and t := 1
2: whilet < T do
32 sample 6; from the distribution p¢ ~ (Wi |1 < q)
4 solve R% = ptw (P), get solution (x¢,y¢)
tt'(0¢)
optionally refine (x¢,y) (e.g. using local descent)
if (x¢,yt¢) is better than the incumbent, set (x*,y*) = (x¢,yt)

5
6:
70 (x¢,Y¢) yields decision costs P € [—1,1]9
8

q)i,t )

update weights for next iteration: wi 1 < wi (1 —
9: increase t.
10: end while
11: return (x*,y*)

2.4.1  Sampling

In MWU, a weight is maintained for each advisors. In this case we want to
estimate parameters 0: hence, we have to take q decisions at each step, not
only one. In Step 3 we randomly select r values for the parameters accord-
ing to the distribution of the weights: we have one weight, and therefore one
expert, for each decision.

In general, the number r of the parameters and the dimension q of the
weights w could be different. Techniques of aggregation, if r < ¢, or disag-
gregation, if, on the contrary, v > q, must be implemented before the sam-
pling step. For instance, in [187] an example of disaggregation methodology
is given for the Euclidian Distance Geometry Problem (DGP).

2.4.2 Solution and Refinement

Usually, solving the pointwise reformulation is not an easy task if the re-
formulation is not efficient. However, if the reformulation is good and easier
to solve than the original formulation, the proposed methodology can be
successfully exploited. This is the case, for instance, when the original prob-
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lem P is a non-convex MINLP and the reformulation is a convex MINLP or
even a MILP.

Remark 2.4.1. In order to obtain an upper bound, we do not need to solve the
pointwise reformulation exactly, but we can use any heuristic we like. Several
termination criteria can be considered, such as the number of iterations or the opti-
mality gap. O

The refinement procedure (Step 5) is not expressly needed to guarantee
the upper bound on the cumulative error of MWU algorithm. Nevertheless,
computational experiments show it is necessary in practice to speed up the
algorithm. Moreover, if we consider Algorithm 4 as a special case of the
two-phase MS algorithm, the refinement step coincides with a local phase in
which we locally improve the initial solution.

2.4.3 Computing MWU Costs/Gains

This is the most critical step of the MWU algorithm, since it can influ-
ence the performance guarantee. It has basically two requirements: (a) each
cost vector ¢ should have components in [—1,1]; (b) if 6 replaces several
terms in the original formulation, \{; reflects the contribution of its value to
optimality and feasibility. Requirement (a) is necessary for the MWU perfor-
mance guarantee to hold, while requirement (b) tries to correlate Eyywy (see
(1.20)) to suboptimality and infeasibility.

Hence, Vi + consists of a scaled contribution « to the error of (xi,yi) from
the suboptimality of (x¢,y¢) in P and of 3 from its infeasibility. Since it is
not necessary to reward “better feasibility”, we consider (3 belonging to
[o,1].

Let f9(x,y) and gf (x,y) < 0 (¢ < m) be respectively the objective function
and the constraints of R°.

After Steps 4-5, we can evaluate the current solution (x,y¢) in the orig-
inal formulation P by computing f(x,y¢) and g¢(x¢,y¢) for each €. We
let oy be proportional to fO(x¢,yt) — f(x¢,yt) and By = (Ber : ¢ < m) to
(max(g?(xt),O) : £ < m). These quantities have, however, to be scaled in
order to guarantee 1y = [—1,1]9. For simplicity, in the rest of the Section,
we assume the original problem is continuous, i.e., p = 0. Formally, here is
how 1 is computed:

1. for t = 1, let ap = sgn(fO(x¢) — f(x¢)) and Bt = sgn(max(ge(xt),0))
for all £
2. foreach t > 1 let:

- 0 (x¢) — f(x¢) max(ge(xt),0)
t m<a€<|f9(xs)—f(xs)| r?gg(maX(gz(xs),O))

X S

and Bt =
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for all £;
3. Y = (o +eZ Bet);

<m

Its (xt, yt) — te(xe, Yy O4)]
. for each s < rlet =V $ .
4 Wt = Hax(ts (xe, U], It (xe, e 0el)

Remark 2.4.2. Wy could be the result of many different ways to combine of o and
the P+ depending from the specific application. O

[ti(xt, yie) — t{ (xe, Y; 01 € [0,1]
max([ti(x¢, y)l, [t (xt, Yt; 0tl) T
we have Py € [—1,1]. O

Remark 2.4.3. Since ¥y € [—1,1] and

2.5 CONCLUSIONS

In this chapter we have given a theoretical insight with regard to the MWU
algorithm for MINLPs. In particular we have introduced the pointwise refor-
mulation of a given MP formulation and we have stated its main properties.
Moreover, we have drawn several building procedures for the pointwise re-
formulations with respect to several classes of MINLPs. Finally, we have
discussed in detail the main steps of the MWU algorithm.
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3 MEAN-VARIANCE PORTFOLIO
SELECTION PROBLEM

3.1 INTRODUCTION

The first milestone in modern single-period portfolio selection theory is
undoubtedly Harry Markowitz’s 1952 seminal paper [177] (for an historic
perspective, see also [214] and surveys [241, 55, 80]), in which the mean-
variance portfolio optimization model was proposed for the first time. Al-
though several ideas and results are already introduced by de Finetti [65]
(see [7] for the English translation of the first chapter “The problem in a sin-
gle accounting period”), the contribution of the Italian mathematician was
discovered only recently by the financial international community (see [213,
212, 209]) and was acknowledged by Harry Markowitz himself [175].

The mean-variance approach is based on the fundamental observation
that, according to what Markowitz states in [177], the investors should try to
increase their portfolio return and contemporaneously to decrease, as much
as possible, its volatility or its risk (see also [178, 180]). The portfolio vari-
ance is the most widely used measurement of the portfolio volatility; other
possible risk measurements are reported, for instance, in [48, 120, 173]. If
the expected returns of the assets follow a Gaussian distribution [112] or the
investor’s utility function is quadratic [41], then the mean-variance criterion
is theoretically compatible with the expected utility hypothesis originally in-
troduced by Bernoulli [15] (see [232] for the English translation and see also
[93, 121, 240] for more modern approaches). As pointed out by Markowitz
in [176, 179], the previous assumptions are sufficient, but not necessary con-
ditions. However, the assumption of Gaussian asset returns might be un-
realistic: the probability distribution for the expected returns is generally
leptokurtic [191].

The resulting mathematical program might not represent completely the
problem solved nowadays by the practitioners, but it can be enriched with
various constraints to model the different characteristics of the modern finan-
cial markets. Moreover, the mean-variance approach considers only the first-
and second-order moments of the probability distribution of the returns:
consequently, in specific situations, this approach might lead to counterintu-
itive or even paradoxical solutions [56].

Kallberg and Ziemba [137] compare the effects of different utility functions
with respect to the optimal portfolios when the distribution of the expected
returns is Gaussian, and show empirically that utility functions with similar
absolute risk aversion indices — defined by Arrow [4] and Pratt [208], but

29



30

| MEAN-VARIANCE PORTFOLIO SELECTION PROBLEM

originally introduced by de Finetti [66] (see also [41, 194]) — give rise to sim-
ilar optimal portfolios.

The reminder of the chapter is organized into two parts. In the first part
we survey convex MIQP approaches to solve the Mean-Variance Portfolio Se-
lection (MVPS) problem: in the next section we present the mathematical
formulation of the portfolio problem with quadratic risk measure according
to Markowitz [177] and we analyze its main disadvantages; Sections 3.3, 3.4,
and 3.5 provide several ways to enrich the original formulation in order to
overcome its drawbacks; several equivalent mathematical reformulations for
the mean-variance probabilistic portfolio problem are described in Section 3.6;
finally, in Section 3.7 we summarize exact methods proposed in the literature
to solve MVPS problems.

In the second part of the chapter, in Section 3.8, we choose a specific fam-
ily of portfolio problems with cardinality constraint and transaction costs
and we apply the MWU algorithm to this class of uncountable many MVPS
problems. The aim of this part consists in a computational study of the
performances of MWU, with a particular focus on the behavior of MWU
depending on the degree of nonlinearity of the cost function. We propose a
promising pointwise reformulation for this class of problems and a proce-
dure to compute costs/gains in the MWU framework. Computational exper-
iments show that the algorithm outperforms the benchmarks with respect to
the quality of the solution produced. A summary of the main notation used
throughout the chapter is reported in the Appendix A.

Sections 3.3.2 and 3.4.1-3.4.3 are entirely based on the papers by Bonami
and Lejeune [26] and Lejeune [152]. Section 3.6.1 is completely based on [26],
while Sections 3.6.2-3.6.3 on [89].

3.2 PORTFOLIO OPTIMIZATION

We consider 1 possibly risky assets characterized by a mean return vector
K € R". Let x € R be the vector, whose generic entry j (j = 1,...,7)
represents the fraction of the portfolio value invested in asset j. For the
moment, following Markowitz [177], we assume that the entries of [t and of
the covariance return matrix £ € R"™" are known precisely. In the mean-
variance approach, we aim to minimize the portfolio variance x ' £x under
the constraint that the portfolio return is at least equal to a given level R > 0.
Therefore, the problem we aim to solve can be stated as follows:

min x ' Ix (3.1a

st x>R (3.1b
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where 1, € R" is the all-one vector. Then, by repeatedly solving problem
(3.1) for different values of return R, we can compute the efficient frontier,
i.e., the set of the non-dominated portfolios in the sense of Pareto optimality.
In several cases (see, e.g., [26]) an additional non-risky asset with mean |1,
and zero variance is also considered, in order to algorithmically derive the
efficient frontier (see Section 3.4.8). Several papers (see, e.g., [61]) consider
an equality version for the return constraint (3.1b), namely it x = R.

Constraint (3.1c) ensures that the whole capital available is invested in the
portfolio and in several papers (see, e.g., [38]) is substituted by

1rTx <. (3.2)

Constraint (3.1d) prevents short selling, i.e., the possibility for the investor
to sell financial assets not already in his/her portfolio. This financial op-
eration is generally performed with speculative intents when the investor
expects a bearish trend in the financial stock market. In case short selling
is allowed, (3.1¢) can be replaced by the constraint 1, ' x = 0, which defines
the so-called dollar neutral portfolio, by requiring the exposure on long part
of the portfolio to be equal to the one on the short part. Several authors con-
sider the case where the decision variables x represent the absolute amount
invested per asset so that the inequality (3.1c) becomes 1, ' x < B, where B
is the investor’s total initial budget.

In [37], Buchheim et al. introduce the budget constraint:
vix <B, (33)

where the decision variables x are the units of financial asset held in the
investor’s portfolio and v € R, is the vector of the costs per unit of corre-
sponding asset.

Problem (3.1) is a convex continuous linearly constrained quadratic pro-
gram, because, by definition, matrix £ is symmetric and positive semidef-
inite; hence, we have a computationally tractable problem. However, the
main drawback of this model consists in the sensitivity of the optimal solu-
tions with respect to the input parameters (expected returns and covariance
matrix), which are clearly unknown in real-world applications (see, e.g., [35,
36, 42, 50, 86, 131, 136, 132, 190]). Furthermore, when I is estimated start-
ing from empirical measurements, it might happen that semidefiniteness is
not directly satisfied and some ad-hoc procedures are required (see [60, 117,
222]).

Chopra [52] empirically analyzes the effects of slight differences in the es-
timate. Best and Grauer [19] conduct a theoretically rigorous analysis with
computational results about the sensitivity of mean-variance efficient portfo-
lios with respect to possible changes in asset means.
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Several papers study the instability and ill-conditioning of problem (3.1):
for instance, Kallberg and Ziemba [138] consider estimation errors in the in-
vestor’s utility function and the mean vector and covariance matrix of the
return distribution for normally distributed portfolio selection problems and
observe that errors in mean vector give rise to significant problems. Chopra
and Ziemba [53] show that the estimating errors with respect to the expected
return means is generally one order of magnitude larger than the one cor-
responding to estimating errors in asset variances or covariances, assuming
negative exponential utility function with joint normal distribution of re-
turns.

3.3 ROBUST AND PROBABILISTIC APPROACHES

3.3.1  Robust Approaches

The robust version of the mean-variance problem (3.1) has been consid-
ered in quite recent works (see the surveys [81, 101]). It consists in assuming
that the expected returns are uncertain and their expected values and vari-
ances belong to a given set. By supposing that the unknown input param-
eters belong to a given uncertainty set (see [13, 14, 77, 79]), it is possible to
show some theoretical results: for instance, Goldfarb and Iyengar [106] and
Titlincti and Koenig [237] established the robust portfolio selection problem
can be formulated as a Second-Order Cone Problem (SOCPs) (see [1, 12, 31,
163]) for ellipsoidal and box uncertain sets, respectively.

Under the assumption that the return mean belongs to a convex polytope,
whose vertices are known, Costa and Paiva [57] prove that program (3.1) can
be formulated as a Linear Matrix Inequalities (LMI) problem (see [32, 200]).
Moreover, El Ghaoui et al. [78] show that, when the mean and the covariance
are unknown, but bounded, the worst-case mean-variance portfolio selection
problem can be reformulated as a Semidefinite Program (SDP) (see [12, 200,

217, 238]).

Finally, Ye et al. [246] introduce uncertain sets both for the mean vector
and the second moment matrix of the returns, showing the connection be-
tween the fully robust portfolio selection problem with box uncertain set for
the mean and ellipsoid uncertain set for the second moment of the returns
and SOCP, SDP, and Semi-Infinite Programming (see [247]).

3.3.2 Probabilistic Approach

Bonami and Lejeune [26] take into account the uncertainty in the expected
assets returns by dealing with a probabilistic problem and by introducing a
probabilistic constraint, which imposes that the expected return of the op-
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timal portfolio should be not less than a given return level R with a high
probability p > 0.

Let & be the random vector representing the expected returns of the r risky
assets. We assume that the random vector & admits a probability density
function and the density function of &"x is strictly positive. Moreover, let
LeR"withpu=E[§]and L = [(&— (& — u)T} be the mean and the co-

variance matrix for the r-variate distribution of &, respectively. Formulation

min x' Ix (3.4a)
s.t. IP (éT X = R) =>p (3.4b)
PTx=1 (3-40)

x>0 (3.4d)

is usually referred to as the probabilistic Markowitz formulation and its
deterministic equivalent defines a NLP (see [26, 89, 90, 153]). Let { =
(T x—p' x)/VxT Zx be the standardized random variable representing the
normalized portfolio return. Equation (3.4b) can be equivalently rewritten,
as follows:

R—pu'x R—nulx
IP(E,TX>R>:]P<¢>):1_F < , _
Z  Tra (x) Ty (3-5)
where F(y) (+) is the cumulative distribution of the standardized portfolio
return. We assume that Fy) (-) is a continue strictly increasing function.
Moreover, we point out that the analytic form of the probability distribu-

tion F depends on the portfolio weights x. It follows that the probabilistic
constraint (3.5) becomes

1oF (R X)) S 1—p>Fo (R X
T\ AT ) TP T TP T AT (3.6)
—=pu x+F' (1—p)VXTIx >R,

where FEJ) (-) is the inverse of the cumulative distribution F(, (-) and FEJ) (1
is the (1 —p)-quantile of F(y) (-). Therefore, the deterministic equivalent of
optimization problem (3.4) corresponds to the following NLP [141]:

min x ' Ix (3.7a)
stop’ x+F ] (T—p)VxTZx >R (3.7b)
1, x=1 (3.7¢)
x>0 (3.7d)

In the following, we survey for which classes of probability distributions
the problem can be reformulated as a SOCP. We thus recall several defini-
tions in probability theory and convex optimization.
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Definition 3.3.1. (Serfling [225]) Let & € R" be a random variable, whose prob-
ability density function is f : R" — R. If f(§—0) = f(0 — &), then & has a
distribution that is centrally symmetric about ® € R".

Definition 3.3.2. (Boyd and Vandenberghe [31]) Let x € R™ be the decision
variables and A; € RMi=1*" H ¢ RP*" and h,c; € R", p; € R™ T, g € RP,
di € R (Vi € {1,...,n}) be the parameters of a given convex continuous opti-
mization problem and || - ||, indicates the Euclidean norm. If a convex continuous
optimization problem can be (equivalently) rewritten as follows,

min h' x
st [Ax+Billz <ci',x+di, i=1,...n (SOCP)
Hx =g,

then it is an SOCP. A constraint is a Second-Order Cone Constraint (SOCC) of
dimension ny, if it can be equivalently rewritten as

[Ax+ Bill2 < i ' x+ di. (SOCC)

Remark 3.3.3. (Boyd and Vandenberghe [31]) Observe that SOCP generalizes
Quadratically Constrained Programming, i.e., the case when c¢; = 0 for all 1 =
1,...,n: a Quadratically Constrained Problem can be obtained by squaring the
constraints. SOCP generalizes also Liner Programming (LP), i.e., the case when
instead Ay = O(n,—1)xr foralli=1,...,m, where 0(y,_1)x, is the zero matrix of
suitable dimensions. O

Definition 3.3.4. (Lobo et al. [163]) A convex set C C R" is SOC-representable
if it is equivalent to the intersection of a finite number of SOCC, i.e., there exist
parameters A; € RO=Dx(r+m) g, ¢ RM—1 ¢; € R™™, and d; € R such
that

x€C«=JycR™: HA1<:>+(51

<ci| <X> +d; i=1,...,mn.
2 Y

Moreover, a given function f : R™ — R is SOC-representable if the set {(x,t) :
f(x) < t}is SOC-representable.

Ultimately, given an objective function f : R"™ — R and a feasible convex
set C C R", which are SOC-representable, then the corresponding convex
optimization program, i.e.,

min f(x)

(SOQ)
s.t. x € C,

can be dealt with as a SOCP by means of efficient interior point methods
(see, for instance, [98, 199, 200, 207, 244]), characterized by polynomial time
computational complexity [108, 200]. Bonami and Lejeune [26] showed some
convexity results for problem (3.7) that we briefly discuss in the following
for the sake of completeness.
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Theorem 3.3.5. (Bonami and Lejeune [26]) Let p € [0.5,1). If the probability
distribution of & x is centrally symmetric, then the deterministic constraint (3.7b),
equivalent to (3.5), is a SOCC.

Therefore, optimization problem (3.4) is an SOCP because its objective
function is convex quadratic and its feasible region is described by the in-
tersection of a second-order cone and several linear constraints. Constraint
u'x > R— Fix ! ) (1=p) VxTZx ensures that the expected portfolio return is
greater than the given return plus a penalty term, which is function of the
portfolio variance and is increasing with the confidence level p [89].

We recall also the definition of the skewness of a multi-variate distribution
of a real-valued random variable & with mean p and standard deviation o
[6]: ,
Ee_wl 68)
The skewness is basically an asymmetry index of the distribution: perfectly
symmetric distributions have zero skewness.

skew (&) =

Definition 3.3.6. (Bonami and Lejeune [26]) A probability distribution of an
r-variate real-valued random vector & with mean w and median m has positive
skewness if

PO>¥)>P(m>P) < F () <0, «<05,
where E ] = E [ —u] =0and Fry) (m) =P (m > 1) =0.5.

Theorem 3.3.7. (Bonami and Lejeune [26]) Let p € [0.5,1). If the skewness
of the probability distribution of E,T x is positive, then the deterministic constraint
(3.7b), equivalent to (3.5), is a SOCC.

The exact value of the (1 —p)-quantile, F(,, (1 —p), is known only for few
probability distributions. If we assume, for example, that the distribution
of the expected returns is Gaussian, which is a quite restrictive assumption
(see, for example, [84, 85, 170, 210]), but rather common in several theo-
retical frameworks (see [112, 137, 194]), then the numerical values of quan-
tiles F&l) (1 —p) of the normalized portfolio return 1\ are computationally
known.

3-4 ADDITIONAL CONSTRAINTS

Beyond the ill-conditioning of problem (3.1), the other serious drawback of
Markowitz’s original proposal is represented by the mismatch with the prob-
lems faced by practitioners in real-world applications (see, e.g., [60, 220]).
Nevertheless, we can consider additional constraints to problems (3.1) or
(3.4), which describe the most common restrictions observed in real-world
financial markets (see [82, 146, 153, 162, 173]). However, this kind of con-
straints could make the efficient frontier discontinuous and more challeng-
ing to compute [133].
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3.4.1  Buy-in Thresholds

Generally, investors avoid extremely small long positions in their portfo-
lios, because, on one side, they have a limited impact on the return value
of the portfolio and, on the other side, they could be quite expensive with
respect to finance fees and monitoring costs [219]. Long positions not be-
longing to a given range [zj,ij] C [0,1] of the total initial budget B can be
prevented by the simple range constraint

Several authors (see, e.g., [44, 49, 97, 133]) require x to be a semi-continuous
variable [234], i.e., they require x; € @j,ij] U{0}forallj =1,...,r: they intro-
duce extra binary variables 6 € {0, 1}" such that, forallj =1,...,1, 8; = 1 if
the investor holds the asset j, i.e. if x; > 0, and add the following constraints
avoiding too small or huge holding positions:

Lcjéj < x5 < X595, j=1,...,1 (3.10)

Note that constraints (3.10) directly imply 0 < x; < 9; forallj =1,...,r.

3.4.2 Round Lot Purchasing

Usually, investors manage only given lots of shares and other financial
agreements, because of the facility in monitoring and purchasing/selling
operations. Furthermore, for small private investors, splitting a large lot in-
volves a premium, that has to be paid to the broker. The higher the cost of
splitting large batch in single shares, the greater the impact of this kind of
cost with respect to the optimal portfolios. Round lot purchasing constraints
prescribe that investors hold, for the risky assetj (j = 1,..., 1), batches or lots
of §; stocks.

Let us define y € Z, as a vector of general integer variables. We require
that the number of the shares of asset j (j = 1,...,7), namely n; € Z,, is an
integer multiple of the lot-size S;:

n=vS;,  j=1...m (3.11)

Let q; be the market value of asset j (j = 1,...,7) held in portfolio, then
we have n; = x;B/q; and constraint (3.12) can be equivalently rewritten as
follows, s

xj:%, ji=1,...,1 (3.12)

The reader is referred to [26] for further discussion.

Mansini and Speranza [174] have shown that finding a feasible solution of
problem (3.1) with round lot constraints (3.11), upper bound on vj, i.e., the
number (j = 1,...,7) of minimum lots, and bound constraints with respect
to the total portfolio expenditure is NP-complete.
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3.4.3 Sector Diversification

Generally, either there exist law limitations about the risk exposure (this is
the case, for instance, of pension funds) or investors try to hold a represen-
tative portion of their portfolio in a prescribed number of asset categories or
industrial sectors. However, in general, optimal portfolios for problem (3.1)
are not well-diversified [109]. Usually, given are lower bound on the frac-
tion of portfolio value held in specific sets of shares. For classical empirical
analysis about financial benefits of a well-diversified portfolio, we refer the
reader to [56, 83, 231].

Let us assume that every asset can be allocated to a specific financial cate-
gory and let Cy (k = 1,...,n) be the index set of all risky assets connected
with the category k. Moreover, we suppose that sets Cy define a partition
of {1,...,r}. We introduce a binary variable (x € {0,1} for each financial
category, such that (x =1 if and only if the investment in financial category
k(k=1,...,n)is above a prescribed minimum level s:

sCk < Z Xj <8+ (1 —5)Ck. (3-13)
jeCx

Moreover, we have to consider an additional constraint in order to satisfy
the diversification prescription [26], which requires to hold portions of assets
in at least n > 0 categories:

Z Ck = n. (3.14)

k=1

3-4.4 Cardinality Constraints

Beyond diversification requirements, asset managers (for instance in index
tracking funds) wish to replicate as accurately as possible a market index
with a limited number of financial agreements, namely K > 0. This can be
modeled through the following cardinality constraint:

.
lIx[lo = ngnUXjU < K. (3.15)
=1

By introducing additional decision variables §;, already presented for con-
straints (3.10), we can straightforwardly reformulate the previous constraint
in the following equivalent form [153]:

T
Z § <K (3.16)
=1

Bienstock [20] (see also [226]) shows that problem (3.1) with cardinality
constraint (3.16) is NP-hard, even when r = 3. Several authors (see, e.g., [49,
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70, 87, 229, 243]) consider an equality version for cardinality constraint (3.16)
and propose mainly heuristic methods to solve the corresponding problem:

> 5=K 617
j=1

Moreover, finding the K assets that should be included in the optimal port-
folio is, in general, an NP-hard problem [195].

Using the theoretical results in [224, 236] and extending [45, 46, 47], Ce-
sarone et al. [44] have shown that the problem (3.1) with cardinality con-
straints (3.16) has the same optimal solution of problem (3.1) with equality
cardinality constraints (3.17) and reduce this kind of programs to Standard
Quadratic Programming Problem (see [23, 24]), avoiding to explicitly intro-
duce binary variables and considering an exact tailored solving procedure,
called Increasing Set Algorithm. The Standard Quadratic Programming
Problem is an NP-hard problem when the Hessian matrix of the objective
function is indefinite, i.e., if the Hessian matrix of the objective function is
neither positive nor negative semidefinite [23].

Di Gaspero et al. [71] consider an “interval” version for the cardinality
constraint (3.16): K < er:] §; < K, where K and K are such that 1 < K < K <
r. Cardinality constraints are closely related to buy-in threshold constraints
[133]. Finally, in several papers (see, e.g., [44, 49, 133]) it is observed that
the problem (3.1), with cardinality constraints (3.16) and with minimum and
maximum buy-in thresholds (3.10) can be straightforwardly reformulated as
a convex MIQP.

3.4.5 Sector Capitalization

Sector capitalization constraints are introduced by Soleimani et al. [229],
in order to mathematically formulate the behavior of investors generally in-
clined to hold assets in financial sectors with higher capitalization value to
reduce the total portfolio risk.

Let £ be the number of economic sectors and suppose, without loss of
generality, that they are sorted in non-increasing way according to their
capitalization value. Define L; as the set of assets for economic sector 1
(Le{1,...,1}). We introduce additional binary variables y; such that

1

MZsj Syu<M) & le{l,... 0 (3.18a)
jely jely

D Emr(-y)= ) W le{l.. -1} (3-18b)

jely jE€L141

where M € IRy is a sufficiently large positive number. The “big-M” con-
straints (3.18) ensure that the assets belonging to the sectors with higher
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capitalization values have basically higher probability to be in the optimal
portfolios than the ones belonging to sectors with less capitalization values.

3-4.6 Turnover and Trading

Frequently, investors already hold a portfolio x(°) and, because of muta-
tions in the financial market or others, they want to change their portfolio,
by considering the new financial environment and by limiting, however, the
variations with respect to the portfolio already held [205].

Crama and Schyns [61] propose to introduce restrictions on purchasing
and selling variations. In particular, let P; and S; be respectively the max-
imum purchasing and selling levels for asset j (j = 1,...,7), turnover con-
straints can be stated as follows:

max {x; —xj(o),O} < P; j=1,...,7r (3.19a)
max {XJFO) —x3,0} <S5 j=1,...,m (3.19b)

Because of fixed transaction costs (see Section 3.4.1), additional constraints
are, generally, introduced in order to prevent small variations between port-
folios. Let P;j and S; be respectively the minimum purchasing and selling
levels for asset j, trading disjunctive constraints can be stated as follows,

(5 =%")V (5 < +P) V(x5 <% =S

; ; : S;) forallj=1,...,7.

3.4.7 Benchmark Constraints

Often, investors want to obtain a portfolio which is as close as possible to
a benchmark (or target) portfolio xP [17]. With respect to economic sector
diversified investments, Bertsimas and Shioda [18] introduce the following
additional constraints in order to bound variances between the optimal and
the target portfolios:

< g 1=1,...,L (3.20)

jeEST

3.4.8 Collateral Constraints

Di Gaspero et al. [73] (see also [127]) discuss the following legal constraints
for short selling portfolios imposed by US Regulation T, a set of US laws
concerning the margin requirements for the collateral agreement. The com-
plete text of the regulation is available at https://www.ecfr.gov/cgi-bin/
text-idx?tpl=/ecfrbrowse/Titlel2/12cfr220_main_02.tpl. In particular,
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they introduce a free-risk asset with mean [ty and zero variance, the so-called
collateral agreement, such that

X = —a Z min{0, x;} (3.21a)
j=1
T
3 hl<2 (21b)
j=0

where a € N, is the security level for the collateral agreement. In this case
the decision variables x are not constrained to be positive, since short-selling
is allowed, and variables § defined in (3.10) are replaced by ternary variables
z € {~1,0,1}7, such that, foreach j (j = 1,...,71), z; = 1 if the investor bought
the asset j, i.e.,, if x; > 0, z; = —1 if the investor sold the asset j, i.e., if
xj < 0, and z; = 0 if the investor does not hold asset j. Therefore, cardinality
constraint (3.16) becomes Z].T:1 Izl < K.

3.5 OBJECTIVE FUNCTIONS

Besides (3.1a), several different objective functions have been proposed in
the literature in order to make problems (3.1) and (3.4) simpler with respect
to computational tractability or to better model real behaviors of investors
and money savers. We consider only objective functions involving quadratic
risk measure, namely portfolio variance (for an exhaustive survey on ap-
proaches proposed for portfolio selection problem with linear risk measures
we refer the interested reader to the paper [173] and to the recent book [172]).

3.5.1 Penalty Functions

In order to define an unconstrained NLP, Bartholomew-Biggs and Kane
[8] introduce the following penalty function for problem (3.1) with minimum
buy-in threshold constraints (3.9) with x; := x and X; := 1 forallj € {1,...,7},

_Ax(% —x)

(b(xj)_T/ j:],...,T (3‘22)

which is non negative when x; < 0 or x; > x. Moreover, —1 < ¢(x;) < 0

when x; € (0,x), so that additional constraint (3.9) can be replaced by the
following continuous one:

Ox) >0, j=T,...m (3.23)

Therefore, an unconstrained NLP can be easily defined, by introducing ad-
ditional continuous variables s € R", such that x; = sj2 forallj =1,...,r
and considering the resulting objective function, adjoint with three penalty
terms, one replacing each set of constraints:

—T 2 T
XTEx+p(1 —1,Tx)2 + "(LLRX - 1) Y G062 G
j=1
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where p and T are suitable positive parameters and «;(x;j) := min{0, ¢(x;)}
forallj=1,...,1.

A similar approach is stated also for the round lot purchasing constraints
(3.11) or (3.12), that can be replaced by the following constraints:

- (-3 (- (G-[5) - -
K](X)) (qj a % % 3 j S, T

(3.25)
where |v] denotes the integer part of v € R.

However, round lot purchasing constraints (3.11) might make impossi-
ble satisfy at the same time request (3.1¢): consequently, the following new
quadratic risk measure [192] is considered:

x T Ix
[FRRE (520
leading to an alternative definition of (3.24):
x ' Ix _ 2 nhx 2 g
PRNP: +p(min{0, 1 — 1, "x})" + p(uR — 1) +1) )% (G27)
j=1

Bartholomew-Biggs and Kane [8] apply a DIRECT (DIviding RECTangles)
type global algorithm (see [91, 99, 100, 134, 135]) to the previous uncon-
strained NLPs (3.24) and (3.27).

3.5.2 Balanced Objective Functions

Mean-variance portfolio selection problems (3.1) and (3.4) are naturally
multi-objective optimization programs since usually investors want to gain
the maximum profit at the minimum risk: these are, of course, conflicting
targets, that have to be considered at the same time.

Several authors (see, e.g., [49]) use standard (linear) scalarization tech-
niques such as the Weighted Sum approach (see, for example, [76]). Namely,
they consider the “balanced” objective function

Ax"Ix) = (1T=A) (" x), (3.28)

where A € [0,1] is a parameter which represents investor’s risk aversion.
Let 01,0, € R be two parameters, a more general variant is proposed by
Schaerf [218]:

01 (x ' Zx)+ 6, max{0,x" x —R}. (3.29)

Bertsimas and Shioda [18] (see also [17]) introduce an extended “balanced”
objective function, considering also trading and turnover requirements with
respect to a given initial portfolio x(®):

1 += . 2
EXTZX— uTx+ZL5 (x5 —xj(o)) , (3.30)
=1
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where 1; > 0 is a coefficient for asset j which models the symmetric purchas-
ing/selling impact with respect to the stock price. Finally, Tadonki and Vial
[235] and Shaw et al. [226] consider respectively constant and linear trans-
action costs embedded in a quadratic “balanced” objective function, namely
respectively

MxTIX) =M (E x)+c' 8 (3.31)
AMxTIX) = A2(E" %) +cTx, (3-32)

where A1 € Ry and A, € Ry are two positive scalars, c € R, is a vector,
whose entries represent the transaction costs for the portfolio assets and
d € R" is the binary vector defined in constraints (3.10).

36 COMPACT REFORMULATIONS

In this section we present several different possible reformulations and
approximations for the mean-variance portfolio optimization problem.

3.6.1 SOCC Inner Approximations

As observed in Section 3.3.2, given a probability distribution on the port-
folio returns, it is not always possible to write the problem (3.7) in a closed
form: the exact value for the quantile Fgg) (T —p) is known only for spe-
cial distributions (e.g., normal distribution, Student distribution, uniform
distribution on an ellipsoid). However, if the probability distribution of the
expected returns is only partially known, the value of its quantiles can be
approximately computed using several well-known probability inequalities
[153], such as, e.g., Cantelli [26], Chebyshev [26], and Camp-Meidell [152]
inequalities (see also [113, 125, 161, 181]).

Theorem 3.6.1. (Bonami and Lejeune [26]) Assume the first and the second
moment of the probability distribution of the portfolio return are finite. The SOCC

uwa/%vxTD@ R (3-33)

is an approximation of the chance constraint (3.4b).

Theorem 3.6.2. (Bonami and Lejeune [26]) Assume the first and the second
moment of the probability distribution of the portfolio return are finite and the dis-
tribution is symmetric. The SOCC

/ 1 ——
HT X — 2(]7—1)) XTZX 2 R (3.34)

is an approximation of the chance constraint (3.4b).
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Theorem 3.6.3. (Lejeune [152]) Assume the first and the second moment of the
probability distribution of the portfolio return are finite and the distribution is sym-
metric and unimodal. The SOCC

uTx—4/9(ﬂ_p)vXTZx>l? (3:35)

is an approximation of the chance constraint (3.4b).

Remark 3.6.4. (Bonami and Lejeune [26]) The approximation given by Theorem
3.6.2 for a symmetric probability distribution is tighter than the one given by The-
orem 3.6.1 and that the approximation given by Theorem 3.6.3 for a symmetric
unimodal probability distribution is tighter than the one given by Theorem 3.6.2.

3.6.2 Variance Reformulation

Given the symmetric positive definite matrix £, we consider its Cholesky
decomposition £ = CCT, where C € R"™ T is a lower triangular matrix. From
a computational viewpoint, the Cholesky decomposition is twice faster and
more stable than LU factorization or Gauss elimination method (see [143,
184, 233]) and it is implemented in High Performance Computing numerical
software libraries (see [2, 21, 75]).

Note that Cholesky decomposition exists and is unique if matrix I is
positive definite (see [107, 114]) and this property is verified by variance-
covariance matrix, if we exclude the case of exact collinearity of the random
variables, i.e., we assume that none of the risky asset can be exactly repli-
cated by a linear combination of the other ones. The hypotheses to apply
Cholesky decomposition to positive semidefinitive matrices are identified in
[116, 114, 193] and error analysis is instead formally stated in [193] for idem-
potent matrices and in [116] for the general case.

By assuming positive definiteness for covariance matrix £ and introducing
non negative decision variable h € R, we obtain the following problem,
equivalent to (3.7):

min | C7 /I3 (3.362)
st.u' x—R>h (3.36b)
Foo (1=p)ICT x[l2 > —h (3.36¢)
1, x=1 (3-36d)
x>0, h>0. (3.36€)

Theorem 3.6.5. (Filomena and Lejeune [89]) Program (3.36) is equivalent to the
following NLP:

min h
x,h

s.t. (3.36b), (3.36¢), (3.36d), (3.36€).

(3-37)
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3.6.3 Period-separable Reformulation

As pointed out by Filomena and Lejeune [89], the variance of the portfo-
lio can be reformulated as the Euclidean norm of a vector, whose number
of components T corresponds to the number of data points, by using the
following preliminary result:

Theorem 3.6.6. (Konno and Suzuki [147]) Let v;¢ be the (observed) return of
asset j at time t and introduce the extra variables by = Z;ﬂ (Vit — uj)x5 (t =
1,...,T). The variance of the portfolio return can be rewritten as

1
2
x Xx = =||bll5.

Therefore, the probabilistic Markowitz portfolio model (3.4) can be refor-
mulated as the following convex NLP:

R I
min f||sz (3-38a)
st.u'x—R>h (3.38b)
—1
1—p)
) (=P
bl = —h .38¢
N [bll2 (3-38¢)
T
be— ) (vie—w)x =0, t=1,...,T (3.38d)
j=1
1 x =1 (3-38¢)
x>0, h>0. (3-381)

Furthermore, Filomena and Lejeune [89] observe that in order to mathe-
matically compute the variance in problems (3.4) and (3.37) the estimate of
only r(r+ 1)/2 covariance terms is needed: this situation can lead to several
coherence problems for the covariance matrix (see Section 3.1). Moreover,
the approach described in this section does not require any assumption on
matrix X. Finally, we can consider the corresponding equivalent epigraph
formulation of problem (3.38):

min h
x,h,b

s.t. (3.38b), (3.38¢), (3.38d), (3.38¢), (3.38f).

3.7 EXACT ALGORITHMS

Mean-variance portfolio selection problem with the constraints introduced
in Section 3.4 gives rise to a convex MIQP, which is at least as difficult as
NP-hard, because it includes MILP as special case [139, 102]. Nowadays,
MIQPs can be solved via commercial and open-source solvers (see, e.g., [25,
62, 239]). In this section we overview specialized and more efficient compu-
tational procedures recently proposed in literature.
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In [20] Bienstock proposes a tailored Branch-and-Cut (BC) procedure to
solve the cardinality constrained portfolio problem, where (3.16) is replaced
with the “surrogate” constraint

T

Yy D<Kk (339)

%
j=1"

Several types of cutting planes, namely mixed-integer rounding inequali-
ties, knapsack cuts, intersection cuts, and disjunctive cuts are also considered
in the same paper.

Bertsimas and Shioda [18] develop a BC algorithm where at each node
of Branch-and-Bound (BB) tree the convex continuous relaxation of problem
(3.1) with cardinality (3.16) and buy-in (3.10) constraints is solved by means
of Lemke’s method [58]. The portfolio problem with objective function (3.31)
and cardinality (3.16) and buy-in (3.10) constraints was solved by Tadonki
and Vial [235] with BB techniques together with a Bender decomposition
approach.

Lee and Mitchell [151] describe a parallel BB framework for the cardinality
constrained portfolio selection problem, in which each node is approximated
by means of Sequential Quadratic Programming (SQP) and each quadratic
subproblem is solved via interior-point method (see, e.g., [199, 200]).

Frangioni and Gentile [97] solve problem (3.1) with minimum and maxi-
mum buy-in thresholds additional constraints (3.10) with a BC method im-
proved by using Perspective Cuts (see also [96]), a family of valid inequal-
ities, related to the perspective function (see [118, 119]) and to the convex
envelope of the objective function (see [110]).

Zheng et al. [251] propose a difference of convex functions approach to
the cardinality constrained quadratic program, by replacing the cardinality
constraint (3.15) with the following piecewise linear approximation:

T

i <||x||1 — ); max{xj — w, 0} + max{—x; — w, O}) <0, (3.40)
where w > 0 is a given parameter. Non-smooth approximation (3.1) with
constraint (3.40) is solved by means of Successive Convex Approximation
method. This algorithm determines a Karush-Kuhn-Tucker (KKT) point or
defines a sequence of points converging to a KKT point for the w-parametrized
approximation. Moreover, the authors show that, letting w — 07, the opti-
mal value of the approximate problem approaches the optimal value of the
original problem.

Shaw et al. [226] solve cardinality constrained portfolio problem under the
assumption that vector 1t of assets returns can be decomposed according to
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a multiple factor model [41], i.e., f = =f +u, where 1’ represents the num-
ber of different factors, = € R™ " is the sensitivity-factor matrix, f € R is
the factor-return vector, and u € IR" is the asset-specific (non-factor) returns
vector. A Lagrangian relaxation of the problem is then solved by means of
sub-gradient procedure [211] and embedded in a BB framework.

In [26] Bonami and Lejeune deal with the deterministic equivalent (3.7)
of the probabilistic portfolio selection problem with buy-in threshold (3.10),
round lot purchasing (3.12), and diversification (3.13)-(3.14) constraints, by
proposing a Nonlinear BB algorithm [11] with two specific branching rules:

1. Idiosyncratic Risk Branching, consisting in selecting the fractional vari-
able 6; or yj, which corresponds to the asset with the highest expected
return;

2. Portfolio Risk Branching: consisting in selecting the fractional variable
8; or vj, whose integer fixing has the highest impact on the objective
function (3.1a).

Buchheim et al. [37] consider portfolio selection problem with objective
function (3.28), constraints (3.1d) and (3.3) and integrality requirement on
the decision variables, i.e.,

xeZ', (3.41)

which represents the units of assets held in the investor’s portfolio. They
introduce a new BB algorithm where the continuous relaxation is solved
through an efficient Frank-Wolfe type method with non-monotone Armijo
line-search.

Burdakov et al. [38] deal with the cardinality constrained portfolio prob-
lem, by introducing a NLP reformulation, whose global minima are the same
of the ones of the original problem. The NLP is solved via a sequence of reg-
ularized programs (see [140]).

We end this section with Table 1 that summarizes the main characteristics
of the papers described above. In particular, the columns report the authors,
the year of publication of the paper, the objective function and constraints of
the tackled problem, the proposed algorithm, the competitors employed as
benchmarks, and the instances that were used for the computational experi-
ments.

1 Available at URL http://miplib.zib.de/

2 Available at URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
3 Available at URL http://www.di.unipi.it/optimize/Data/MV.html
4 Available at URL http://w3.uniromal.it/tardella/datasets.html
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38 MWU FOR A CLASS OF MVPS PROBLEMS

The portfolio problem we are interested in can be formulated as follows.
Let x € RY be the decision variables representing the fraction of asset
j € {1,...,71} held in the portfolio. Each asset j is characterized by a mean
expected return 1 (j € {1,.. .,7}) and a non negative, possibly non-convex
non-concave, cost function Cj(x;) : Ry — Ry (j € {1,...,1}). The goal
consists in maximizing the overall return of the portfolio in presence of car-
dinality constraint, risk constraint, and no-short-selling constraint. The risk
of the portfolio is represented by its total variance xTZx, where £ € R™ 7 is
the covariance matrix of the return distribution of the assets. The portfolio
problem reads:

max i x — C(x) (3.42a)
st.o1, ! x=1 (3.42b)
x'Ix< o (3-42¢)

[x[lo < K (3.42d)

x € [x,x] U{0}, (3.42€)

where C(x) := 2;21 Cj(xj), and o and K are the maximum levels of risk and
sparsity we aim for our portfolio, respectively.

Remark 3.8.1. We assume both the mean vector [t and the covariance matrix ¥ are
perfectly known or coherently estimated from historical data measurements. O

Problem (3.42) generalizes the usual portfolio problem with concave trans-
action costs already considered in the literature (see, e.g., Konno and Wi-
jayanayake [148] and Xue et al. [245]). To the best of our knowledge, this is
the first time this kind of portfolio problems is addressed in its entirely.

The previous MVPS problem is NP-hard (see Section 3.4.4) and can be
exactly reformulated, in the sense explained in [157], by introducing extra
binary variables & € {0, 1}" as follows:

max t' x — C(x) (3-43a)
st1, x=1 (3-43b)
x'Ix< o (3.43¢)

1, 5 <K (3.43d)
§Tx<x<8'x (3-43€)

5 {01} (3-431)

3.8.1  Pointwise Reformulation

A pointwise reformulation for problem (3.43) can be obtained by replacing
each function Cj(x;) with the term (1 + x;) 0; parametrized by 0;. The only



’)’8 MWU FOR A CLASS OF MVPS PROBLEMS |

part of the problem, where the substituting terms appear, is the objective

function:
.

Ex—) (14%)0;=(E—0)"x—1,"9, (3-44)
j=1

which becomes an affine function of the continuous decision variables x;
(G €11,...,7}). Thus, the pointwise reformulation is:

—1, 0+ max (E—0) x (3.45a)
st 1, x =1 (3-45b)

x'Ix<o (3.45¢0)

1, 5§ <K (3-45d)

§Tx <x<6'%. (3-45€)

Remark 3.8.2. The pointwise reformulation (3.45) is spanning: the replacement
Cj(x)

X]j—l-%

{1,...,7). By Lemma 2.2.6, there exist values of © which make (3.45) a bounding

reformulation for the original problem (3.42). O

terms ©; perfectly matches the replaced terms at each feasible point x; (j €

Example 3.8.3. The pointwise reformulation (3.45) is not exact. For instance, we
consider a portfolio problem with v = 2 stocks, £ =1, K =2, x =0, x = 0.55 and
o = 1, i.e.,, an essentially unconstrained portfolio problem, apart from the budget
constrained x1 +x» = 1. Let t = (1, 0.40)T and C(x) = (Cq1(x1), Cz(xz))T =
(x1,0)". Forallj €{1,2},0; = ]i;j and, hence, ©5 = [C;(x)/(1+%), C;(x)/(1+
x)]. For the example, we have ©1 = [0, 0.55] and ©; = {0}. The objective function
of the original formulation (3.42) is simply max(0.40x2) and its global optimum
is x* = (0.45,0.55)". The objective function of the pointwise reformulation is
max((1—071)x71 +0.50x2 —07). Now, x* = (0.45, 0.55)T is a global optimum
of the pointwise reformulation if and only if (1 —061) < 0.40, i.e., if and only if
01 > 0.60: however, these values of 01 do not belong to the set ©1. O

Remark 3.8.4. The pointwise reformulation (3.45) is not efficient (see Section
3.4.4). However, since convex MIQPs can be solved nowadays with reasonable
efficiency, certainly more efficiently than non-convex non-concave MINLPs, the pro-
posed reformulation is good.

The previous approach can be easily extended to cardinality constrained
portfolio selection problem with cost functions and fixed transaction costs,
i.e., when a term Z]T:1 cjd; is added to the objective function: in these prob-
lems the investor has to pay a fixed amount ¢; (j € {1,...,r}) of money if
he/she decided to buy a certain asset j (j € {1,...,7}). Moreover, since the
previous strategy consists essentially in substituting each single term in the
separable function with an affine function depending on a given parameter,
it can be extended to general MINLPs with separable non-convexities and
non-concavities.
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3.8.2 Computing MWU Costs/Gains

Since the substituting terms appear only in the objective function, we do
not need to address feasibility issues in computing MWU costs/gains. In
particular, we define, at each iteration t < T, a r-dimensional vector o €
[—1,1]" whose components are:

o = G0 — (X5 +1) 05
T max(ICi (x50l [(x,c + 1) 05.4))

Ge{l,...,m},t<T). (3.46)

Remark 3.8.5. Each component o represents the scaled cost/gain determined
by each asset j (j € {1,...,7}). In other words, each «; takes into account the
contribution of the fraction of each asset held in the portfolio to the overall cost
function. O

Remark 3.8.6. We define o« to be a vector, instead of a scalar as described in
Section 2.4.3, because this definition is more effective in presence of separable non-
convexities and non-concavities: it allows us to better follow the numerical behavior
of each single cost function C;(x;) forall j € {1,...,7}

In order to define the costs/gains, we simply set:

Pie=oe  Ge{l,...,1Ht<T). (3.47)

3.8.3 Computational Experiments

The test-bed set with respect to which we analyze our algorithm and
the benchmarks consists in the 20 real-world instances described by Chang
et al. [49] publicly available through the OR-Library (see Beasley [9] and
Beasley [10]) on the web site http://www.brunel.ac.uk/~mastjjb/jeb/info.
html. Each instance is characterized by the number n of assets and the value
of the risk level 0. We impose, as in Chang et al. [49], x = 0.01, X = 1 and
K =10.

Transaction Cost Functions

One of the aims of the computational experiments, in addition to analyze
the behavior of the MWU algorithm against other methods to solve MVPS
problems, consists in empirically evaluating the performances of the MWU
algorithm depending from the nonlinearity of the replaced transaction cost
functions. In particular, we consider the following five univariate functions
(see Figure 1):

(a) Cj(x)) = —H;In (%) for all j € {1,...,7}: this cost function

. . . ) .
is increasing, concave and “almost linear”.

(b) Cilx;) = —jIn (“* = 5apnrra ) for all j € {1,...,7): this cost

function is increasing, concave, and replicates the behavior of the trans-
action cost function described in Konno and Wijayanayake [148].
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(©) Cjlx;3) = 1(4x; +0.12sin(40x;)) for all j € {1,...,r}: this cost function
has a sinusoidal behavior similar to a step function.

(d) Cj(x5) = 1j(4xy +0.3sin(40x;)) for all j € {1,..., 7} this cost function
is similar to the one in (c) but with a “stronger nonlinear behavior”.

(e) Cj(x;3) = 15(0.5%; +sin(50%;)) for all j € {1,...,}: this is the “most non-
linear” transaction cost function among which we tested the methods.

Remark 3.8.7. We want to emphasize that the definition of nonlinearity of a given
transaction cost function was not given in rigorous mathematical terms, but it is
mostly qualitative: in fact, we carefully use quotes around each nonlinearity char-
acterization. However, since our aim consists in empirically analyzing the behavior
of the MWL algorithm with respect to a given cost function, we trust most readers
will agree with our categorization, by inspection of Figure 1.

Computational Environment

Since for the MVPS problem we consider in this section there are no tai-
lored exact or heuristic methods to solve it and since the MWU algorithm is
essentially a MS algorithm with a special strategy to choose the more promis-
ing initial points both in terms of feasibility and optimality, we compare the
MWU with the MS.

We used T = 20 iterations for both MWU and MS. We adopted Bonmin
[29] as local MINLP solver: since Bonmin exactly solve convex MINLPs,
it is a reliable heuristic for non-convex MINLPs. In particular, we employ
Bonmin’s native Branch-and-Bound (B-BB) algorithm (see Bonami et al. [28]
and Gupta and Ravindran [111]), since it is generally more stable for non-
convex MINLPs. We used Cplex [124] as the convex MIQP solver for the
pointwise reformulation (3.45), with a 600 seconds time limit, using only
one thread. All of the computational experiments were performed on an
Intel Xeon CPU E5649, 2.53 GHz, using only one processor.

Localization of the MS Subsolver

Since we want to compare MWU against MS and MS is essentially a pro-
cedure composed by two steps: a random choice of a starting point, and a
local descend method, we would like that Bonmin BB-B behaves like a local
solver. From preliminary tests, however, the behavior of Bonmin BB-B was
mostly similar to a global solver: Bonmin BB-B sets a cut-off value for the
optimum based on the starting point and for our test-bed it found almost
always the same solution point. In order to turn Bonmin B-BB into a truly
local solver, we consider an adding local branching constraint (see Fischetti
and Lodi [92]) for the original formulation, which basically defines an upper
bound |vn|, where v € [0, 1], on the number of flips of binary variables o:

Z o5 + Z“ =&)< [vn], (3.48)

i<r j<r
§/=0 5/=1
) )
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O | | | | 0 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Xi Xi
(a) Easy concave transaction costs. (b) Hard concave transaction costs.
4t g 4t ]
31 : 3 .
o2y : G 2r ,
1h : T .
O | | | | 0 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Xi Xi
(c) Easy trigonometric transaction costs. (d) Medium trigonometric transaction
costs.

(e) Hard trigonometric transaction costs.

Figure 1: Examples of transaction cost functions.
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where b’ is the starting point. The spirit of the constraints (3.48) consists
in enforcing a local exploration in the combinatorial neighborhood of the
starting point 5’. After several computational experiments we decided to set
v = 0.96, since lower values made the instance infeasible excessively often.

Tables 2-6 report the computational results for each transaction cost func-
tion. Their columns are as follows:

instance name;

maximum risk level o;

number r of assets quoted on the financial market;
objective value for the MWU algorithm;

CPU time (in seconds) for the MWU algorithm;

objective value for the MWU algorithm with the local branching con-
straint;

CPU time (in seconds) for the MWU algorithm with the local branching
constraint;

objective value for the MS algorithm with the local branching con-
straint;

CPU time (in seconds) for the MS algorithm with the local branching
constraint;

relative objective value improvement from MS to MWU computed as

_ val(MWU) —val(MS)
= al(MS)] ; (3-49)

time improvement ratio from MS to MWU:

cpu(MS)

- cpu(MWU)’ (3:50)

relative objective value improvement from MS to MWU with the local
branching constraint (see Equation (3.49));

time improvement ratio A from MS to MWU with the local branching
constraint (see Equation (3.50)).

Computational Results

The comparison metrics are summarized in the last three lines with the
sum ()_), average (avg), and the standard deviation (std) across all 20 in-
stances. For the CPU time we reported also the geometrical mean among all
the instances.
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MWU MWU+LB MS MWU vs. MS MWU+LB vs. MS
Instance o n objective CPU x* objective CPU [[x*[lo objective CPU x* r A r A
port-orlibl_000 0.0047755010 31 1.0742596 292.556 1 1.0742596 314.918 1 1.0742596 31.203 1 0.000% 0.107 0.000% 0.099
port-orlib1_050 0.0021522075 31 1.0742596 268.278 1 1.0742596 212.915 1 1.0742596 31.469 1 0.000% 0.117 0.000% 0.148
port-orlibl_100 0.0010585969 31 1.0592082 13.587 3 1.0592082 12.915 3 1.0592082 13.180 3 0.000% 0.970 0.000% 1.021
port-orlib1l_150 0.0007158421 31 1.0180977 11.998 5 1.0180977 12.391 5 1.0180977 11.764 5 0.000% 0.980 0.000% 0.949
port-orlib2_000 0.0028352430 85 1.8750415 16000.371 1 1.8750415 18516.395 1 1.8750415 1339.651 1 0.000% 0.084 0.000% 0.072
port-orlib2_050 0.0004953237 85 1.8741070 330.941 3 1.8741070 196.865 3 1.8741070 182.681 3 0.000% 0.552 0.000% 0.928
port-orlib2_100 0.0002704062 85 1.8587348 7038.599 5 1.8587348 5745.031 5 1.8587348 7183.440 5 0.000% 1.021 0.000% 1.250
port-orlib2_150 0.0001663200 85 1.7828905 214.691 9 1.7828905 384.026 9 1.7828905 425.750 9 0.000% 1.983 0.000% 1.109
port-orlib3_000 0.0015166351 89 2.3898574 18019.824 1 2.3898574 17862.785 1 2.3898574 1396.067 1 0.000% 0.077 0.000% 0.078
port-orlib3_050 0.0005849758 89 2.3892174 2831.204 2 2.3892246 213.402 2 2.3892174 333.062 2 0.000% 0.118 0.000% 1.561
port-orlib3_100 0.0003215941 89 2.3622650 743.189 8 2.3622650 173.656 8 2.3645800 490.434 7 -0.098% 0.660 -0.098% 2.824
port-orlib3_1560 0.0002239117 89 2.2652696 3329.717 10 2.2645169 4405.874 10 2.2677086 3238.561 10 -0.108% 0.973 -0.141% 0.735
port-orlib4_000 0.0029387241 98 2.9234597 29875.539 1 2.9234597 26538.931 1 2.9234600 4777167 1 0.000% 0.160 0.000% 0.180
port-orlib4_050 0.0006828450 98 2.9200045 210.979 3 2.9200045 192.266 3 2.9200045 742.838 3 0.000% 3.521 0.000% 3.864
port-orlib4_100 0.0003059553 98 2.9067690 6997.871 5 2.9065884 6364.984 4 2.9073338 11884.665 5 -0.019% 1.698 -0.026% 1.867
port-orlib4_150 0.0001613979 98 2.8526192 895.863 10 2.8526192 754.278 10 2.8526192 6461.036 10 0.000% 7.212 0.000% 8.566
port-orlib5_000 0.0016485224 225 4.6677119 3478.872 2 4.6677119 5288.969 2 4.6673823 5736.267 4 0.007% 1.649 0.007% 1.085
port-orlib5_050 0.0005150277 225 4.6668554 5652.420 3 4.6668554 4949.565 3 4.6668554 10932.209 3 0.000% 1.934 0.000% 2.209
port-orlib5_100 0.0003918260 225 4.6577793 3451.980 4 4.6577793 3640.422 4 4.6577793 9833.002 4 0.000% 2.849 0.000% 2.701
port-orlib5_150 0.0003272876 225 4.6264568 7934.132 8 4.6228591 9564.905 9 4.6264568 10684.629 8 0.000% 1.347 -0.078% 1.117
> 51.2448641 107592.611 85 51.2403402 105345.493 85 51.2498536 75729.075 86 -0.218% 28.011 -0.335% 32.362
avg 2.5622432 5379.631 4.250 2.5620170 5267.275 4.250 2.5624927 3786.454 4.300 -0.011% 1.401 -0.017% 1.618
std (1.2414709) (7721.167) (63.143) (1.2411631) (7478.113) (3.210) (1.2413996) (4287.608) (3.045) (0.032%) (1.672) (0.040%) (1.928)
geo (CPU) 1324.256 1090.151 909.83
Table 2: MVPS, comparative results of MS and MWU for the transaction cost function (a).
MwWU MWU+LB MS MWU vs. MS MWU+LB vs. MS
Instance o n objective CPU x* objective CPU [[x*o objective CPU 0 r A r A
port-orlibl_000 0.0047755010 31 0.3283893 1.502 1 0.3283893 1.295 1 0.3283893 4.896 1 0.000% 3.260 0.000% 3.781
port-orlibl_ 050 0.0021522075 31 0.3268002 1.698 2 0.3268002 1.488 2 0.3268555 5.310 1 -0.017% 3.127 -0.017% 3.569
port-orlibl 100 0.0010585969 31 0.3264242 1.807 3 0.3264242 1.977 3 0.3264242 5.493 3 0.000% 3.040 0.000% 2.778
port-orlibl_ 150 0.0007158421 31 0.3255758 2.890 6 0.3255758 3.002 6 0.3255758 5.649 6 0.000% 1.955 0.000% 1.882
port-orlib2_000 0.0028352430 85 0.5696578 7.404 1 0.5696578 7.059 1 0.5696578 43.570 1 0.000% 5.885 0.000% 6.172
port-orlib2_050 0.0004953237 85 0.5677078 19.638 5 0.5677075 11.335 8 0.5677077 52.401 5 0.000% 2.668 0.000% 4.623
port-orlib2_100 0.0002704062 85 0.5671808 611.424 8 0.5671809 776.712 10 0.5671812 35.439 10 0.000% 0.058 0.000% 0.046
port-orlib2_1560 0.0001663200 85 0.5668838 568.841 10 0.5668838 1560.205 10 0.5668838 1737.240 10 0.000% 3.054 0.000% 1.113
port-orlib3_000 0.0015166351 89 0.7248280 10.288 1 0.7248280 13.463 1 0.7248280 37.717 1 0.000% 3.666 0.000% 2.802
port-orlib3_050 0.0005849758 89 0.7234229 19.936 3 0.7234556 19.177 2 0.7234556 46.714 2 -0.005% 2.343 0.000% 2.436
port-orlib3.100 0.0003215941 89 0.7229391 17.926 7 0.7229391 1210.131 7 0.7229587 651.578 7 -0.003% 36.348 -0.003% 0.538
port-orlib3_150 0.0002239117 89 0.7225929 1165.350 10 0.7225928 3643.605 10 0.7225929 2864.165 10 0.000% 2.458 0.000% 0.786
port-orlib4_000 0.0029387241 98 0.8862800 11.850 1 0.8862800 29.022 1 0.8862800 50.988 1 0.000% 4.303 0.000% 1.757
port-orlib4_050 0.0006828450 98 0.8846300 28.928 2 0.8846300 50.449 2 0.8846300 61.230 2 0.000% 2.117 0.000% 1.214
port-orlib4_100 0.0003059553 98 0.8840668 1005.380 7 0.8840668 44.561 7 0.8840702 681.456 9 0.000% 0.678 0.000% 15.293
port-orlib4_150 0.0001613979 98 0.8836949 3778.496 10 0.8836945 4306.084 10 0.8836971 4254.159 10 0.000% 1.126 0.000% 0.988
port-orlib5_000 0.0016485224 225 1.4120658 211.948 2 1.4120658 117.720 2 1.4120587 381.806 3 0.001% 1.801 0.001% 3.243
port-orlib5_050 0.0005150277 225 1.4112207 4895.417 5 1.4112207 3055.888 5 1.4112207 892.922 5 0.000% 0.182 0.000% 0.292
port-orlib5.100 0.0003918260 225 1.4109834 4291.445 7 1.4109834 2450.898 7 1.4109834 777.179 7 0.000% 0.181 0.000% 0.317
port-orlib5_150 0.0003272876 225 1.4108196 755.727 7 1.4108195 2242.568 7 1.4108196 1368.145 7 0.000% 1.810 0.000% 0.610
> 15.6561636 17407.895 98 15.6561956 19546.639 102 15.6562699 13958.057 101 -0.024% 80.060 -0.020% 54.240
avg 0.7828082 870.395 4.900 0.7828098 977.332 5.100 0.7828135 697.903 5.050 -0.001% 4.003 -0.001% 2.712
std (03736084)  (1542.238) (3243) | (0:3736081)  (1406.957) (3478) | (0:3736038)  (1121.600) (3517) | (0.004%)  (7.751) | (0.004%) 3-380
geo (CPU) 71.630 87.557 127.168

Table 3: MVPS, comparative results of MS and MWU for the transaction cost function (b).
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MWU MWU+LB MS MWU vs. MS MWU+LB vs. MS

Instance o n objective CPU | 0 objective CPU 0 objective CPU [[x*lo r A r A
port-orlibl 000 0.0047755010 31 0.0217170 1.877 6 0.0395563 14.952 10 0.0487432 43.180 10 -124.447% 23.005 -23.225% 2.888
port-orlib1l_050 0.0021522075 31 0.0469337 3.138 10 0.0476659 56.161 10 0.0488171 37.351 10 -4.013% 11.903 -2.415% 0.665
port-orlibl 100 0.0010585969 31 0.0432059 2.984 10 0.0413710 4.962 10 0.0498939 58.515 10 -15.479% 19.610 -20.601% 11.793
port-orlib1l_150 0.0007158421 31 0.0399172 2.588 9 0.0376060 6.172 9 0.0388779 6.757 9 2.604% 2.611 -3.382% 1.095
port-orlib2_000 0.0028352430 85 0.0136601 10.510 4 0.0133721 8.726 3 0.0184047 375.738 10 -34.734% 35.751 -37.635% 43.060
port-orlib2_050 0.0004953237 85 0.0383876 39.267 7 0.0387789 33.822 6 0.0186861 522.376 10 51.323% 13.303 51.814% 15.445
port-orlib2_100 0.0002704062 85 0.0283756 4226.211 10 0.0166890 4382.785 10 0.0207083 524.517 10 27.021% 0.124 -24.083% 0.120
port-orlib2_150 0.0001663200 85 0.0315010 3642.877 10 0.0307374 3989.962 10 0.0268662 1599.415 10 14.713% 0.439 12.594% 0.401
port-orlib3_000 0.0015166351 89 0.0116564 9.548 2 0.0029338 22.035 8 0.0234077 240.592 10 -100.814% 25.198 -697.857% 10.919
port-orlib3_050 0.0005849758 89 0.0347923 19.026 8 0.0348732 102.802 8 0.0239912 441.404 10 31.044% 23.200 31.204% 4294
port-orlib3.160 0.0003215941 89 0.0342867 903.586 9 0.0392775 2142.790 10 0.0188460 719.657 10 45.034% 0.796 52.018% 0.336
port-orlib3_150 0.0002239117 89 0.0284570 15650.882 10 0.0269692 11231.379 10 0.0255798 5050.864 10 10.111% 0.323 5.152% 0.450
port-orlib4_000 0.0029387241 98 0.0130890 4.641 2 0.0123611 66.034 10 0.0233697 432.908 10 -78.545% 93.279 -89.058% 6.556
port-orlib4_050 0.0006828450 98 0.0583659 32.832 10 0.0541541 91.192 10 0.0239543 272.405 10 58.958% 8.297 55.766% 2.987
port-orlib4_100 0.0003059553 98 0.0135301 1082.307 10 0.0078843 696.938 10 0.0248876 513.718 10 -83.943% 0.475 -215.660% 0.737
port-orlib4_150 0.0001613979 98 0.0236738 15929.002 10 0.0260514 24604.167 10 0.0252765 5982.823 10 -6.770% 0.376 2.974% 0.243
port-orlib5_000 0.0016485224 225 0.0326302 1448.934 6 0.032836 788.687 6 0.0017349 5513.344 10 94.683% 3.805 94.717% 6.991
port-orlib5_050 0.0005150277 225 0.0031309 302.041 9 0.0073133 370.425 10 0.0018351 350.660 9 41.386% 1.161 74.907% 0.947
port-orlib5_.100 0.0003918260 225 0.0078564 5516.043 7 0.0035668 4774.516 8 0.0103946 1525.448 10 -32.308% 0.277 -191.430% 0.319
port-orlib5_150 0.0003272876 225 0.0143170 968.684 10 0.0143169 730.436 10 0.0143170 913.920 10 0.000% 0.943 0.000% 1.251
> 0.5394835 49796.978 159 0.5283151 54118.943 178 0.4885919 25125.592 198 -104.177% 264.875 -924.200% 111.494
avg 0.0269742 2489.849 7.950 0.0264158 2705.947 8.900 0.0244296 1256.280 9.900 -5.209% 13.244 -46.210% 5.575
std (0.0145719)  (4819.775) (2685) | (0.0155312)  (5846.227) (1917) | (0.0135588)  (1891.435) (0308) | (56.991%)  (21.729) | (172.079%) 9.900
geo (CPU) 135.816 247.786 426.464

Table 6: MVPS, comparative results of MS and MWU for the transaction cost function (e).
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While with transaction costs (a) and (b) MS performs better than MWU,
with transaction costs (c) and (e) MWU overcomes MS: we can reasonably
imply that MWU behaves better with respect to “high nonlinear” transaction
cost functions. In particular, for the geometric average values, the relative
improvement we obtain is considerably high.

A secondary observation is about the number of assets, which composed
the optimal portfolios. In MVPS problems, defining a portfolio with few
assets could be a secondary goal, since for each asset we have several costs,
such as transaction costs, monitoring costs, and brokerage fee (see Di Lorenzo
et al. [74]). MWU algorithm produces small values of the number of assets
compared to MS algorithm.

Finally, for the geometric mean for the CPU time, the MS defeats MWU
only for the cost function (a), in all the other cases MWU overcomes MS.

3.0 CONCLUSIONS

In this chapter we dealt with the Mean-Variance Portfolio Selection prob-
lem. At the beginning, we have illustrated the mathematical models pro-
posed in the literature with a survey about the possible objective functions
and constraints. Then, we have adapted the MWU algorithm to the real-
world portfolio problem with separable transaction cost with respect to the
strategy to define the pointwise reformulation and to compute the costs/-
gains necessary for the algorithm. Computational experiments on real-world
instances allow us to observe that the MWU algorithm performs better than
the MS algorithm for “heavily nonlinear” instances.
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4 MULTIPLE NONLINEAR KNAPSACK
PROBLEMS

4.1 INTRODUCTION

Let x be an m x n array of non negative real variables x = [xi;] (i =
1,...,m,j =1,...,n) and define M = {1,...,m} and N = {1,...,n}. We
consider a multiple nonlinear knapsack problem in which

o the objective function and the capacity constraints are expressed by
separable, continuously differentiable functions f;j(xi;) and g;(xy;) (i €
M, jeN);

o the values of f and g do not depend on 1, ie., fj(xij) = fj(xxj) and
gj(xij) = gj(xij) when x5 = xyj forj € Nand i,k € M;

o f;(xij) and g;(xi;) are nonlinear non negative non-decreasing functions
forje Nand i€ M;

e for each j € N, the total value of xij over all i € M cannot exceed a
given upper bound u;;

e integrality requirements may be imposed on part of the variables.

Remark 4.1.1. Note that there is no further assumption on f;(xi;) and gj(xij)
which, in general, can be non-convex and non-concave.

The Multiple NonLinear (Separable) Knapsack Problem (MNLKP) is:

max Z Z fj(xy5) (4.1)

ieEMjeN

s.t. Z g;(xy5) <cq ieM (4.1b)
jEN
Z Xij < Yj jeN (4.10)
ieM
Xij >0 ieM,jeN (4.1d)
xij integer ieM,jeENCN, (4.1e)

which can be informally described as follows. We are given m knapsacks
and n items. Each item j has a profit function f;(xi;) and a weight function
gj(xyj) (i € M), and each knapsack i has a capacity ci. For each item j
we want to assign xij quantities (some restricted to integer values) to the
knapsacks so that

e the overall assigned profit is maximized, see (4.1a);
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e for each knapsack i the overall assigned weight does not exceed the
corresponding capacity, see (4.1b);

o for each item j the overall assigned quantity does not exceed the corre-
sponding upper bound, see (4.1¢).

The MNLKP generalizes the classical o-1 Multiple Linear Knapsack Prob-
lem (MLKP) (see, e.g., Martello and Toth [182] and Kellerer et a. [142]): in
the MLKP xi; are binary decision variables, i.e., xi; € {0, 1} for all i € M and
j € N, and the profit and the weight functions are linear, i.e., fj(xij) = pjxi;
and gj(xij) = wjxij, and u; =1 for all j € N.

It follows that MNLKP is, at least, strongly NP-hard. Moreover, the MIN-
LKP generalizes also the (single) NonLinear Knapsack Problem (NLKP) [63]:
MNLKP reduces to NLKP when m = 1 and, consequently, objective func-
tion (4.1a) and constraints (4.1b) read ) ;cn fj(xij) and 3 jcn g5(xi5) < 1,
respectively.

The nonlinear knapsack structure arises in many different real-world prob-
lems, such as portfolio selection, capacity and production planning, and re-
source allocation (see, e.g., Ibaraki and Katoh [123], Bretthauer and Shetty
[33], and Li and Sun [156]). For instance, we assume we have m different
economical resources and n products and we want to subdivide a certain
amount of advertising budget c; related to resource i in order to maximize
the overall expected sales for all resources. Obviously, the profit is increas-
ing with the advertising investment since more and more buyers happened
to find out our advertisement. However, at some point, a saturation effect
occurs when, despite we further increase the investments, no more buyers
are interested in our products. In this example the profit function happens
to be non-convex non-concave with a shape represented in Figure 3 where
the advertisement cost could be linear, i.e., gj(xij) = xij, if a constant unit
cost is assumed or nonlinear if economies of scale are considered, i.e., unit
costs decrease with size.

To the best of our knowledge no tailored exact methods or heuristics have
been proposed for the MNLKP. Zhang and Hua [250] proposed an exact
method for the minimization version of the convex continuous NLKP, i.e.,
when all the profit and weight functions are convex, and all variables are
continuous, i.e., N = (). Zhang and Chen [249] described exact and heuristic
methods for the pure integer version of same problem, i.e., when N = N.

The rest of the chapter consists of three other sections. In Section 4.2
we apply the MWU algorithm for MNLPs, by specializing its main steps,
namely the construction of the pointwise reformulation and the definition
of costs/gains, to the MINLKP. Since this method does not fit very well this
kind of optimization problems, we propose also other heuristic procedures.
First of all we introduce the surrogate and Lagrangian relaxations for MN-
LKPs in Section 4.3, while in Section 4.4 we discuss a constructive solution
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Figure 3: Example of profit function.

approach, whose main aspects are a greedy heuristic, two other heuristics
based on the feasibility recovery of the solution produced by the surrogate
relaxation, and a local search procedure to improve the quality of the heuris-
tic solution. Extensive computational experiments are conducted both for
the MWU heuristic and for the constructive one, with respect to challenging
instances.

4.2 MWU FOR THE MNLKP

4.2.1  Pointwise Reformulation

In order to define a pointwise reformulation for the MNLKP, we replace
the “complicated” non-convex non-concave terms g;(xi;) with affine terms
in xyj, i.e., with terms 0;;x;; foralli € M and j € N:

max Z Z fj(xi) (4.2a)

iEMJEN
s.t. Z eijxij < ¢y ieM (42b)
jEN
Z Xij < Wy jeN (4.2C)
ieM
xi5 =0 ieM,jeN (4.2d)
xij integer ieM,jeENCN, (4.2€)

Remark 4.2.1. The pointwise reformulation (4.2) is spanning, since the replacement
terms 03 correspond to the replaced terms 9)( i) foralli € Mandj € N. By
Lemma 2.2.6, there exist values of © which make the pointwise reformulation (4.2) a
bounding reformulation for the original problem (4.1). O
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Remark 4.2.2. The pointwise reformulation (4.2) is not efficient. Nevertheless, the
feasible set of the reformulation (4.2) is polyhedral. We note that the problem (4.1)
is always feasible since the zero solution, i.e., xi; = 0 foralli € Mand j € N, is
always a feasible point for the problem. O

The approach, we have adopted in this section, is quite similar to the one
we followed for the MVPS problem with univariate cost functions: essen-
tially we substitute the nonlinear non-convex non-concave terms with affine
terms in the decision variables.

4.2.2 Computing MWU Costs/Gains

Since the replaced terms appear only in the constraint (4.2b), we do not
take into account optimality issues in defining MWU costs/gains. In partic-
ular, at each iteration t < T, we implement the following strategy. We define
a profit-to-weight ratio for each item x;; for i € M and j € N, as the ratio
between its profit and weigh function values, representing the profitability
of filling the knapsack i (i € M) with x;; units of item j (j € N), as follows:

fj(xi5,¢)
9j (xij,¢)
Then, we compute the feasibility costs/gains Bi+ (i € N, t < T) as the

scaled difference from the left hand side and the right hand side of constrains
(4.1b) calculated on the current point x; (see Section 2.4.3):

ieM,jeN, t<T). (4-3)

Tijt =

B maX(Z]’gN gj (x4j,t) —ci, 0)
maxs<t(max()_jen 9j(xij,s) —¢i), 0)
Finally, we need to spread the previous feasibility cost/gain to the item j

(G € N). We simply scale the feasibility cost/gain with respect to the profit-
to-weight ratio, defining in this way our MWU costs/gains for the MNLKP:

Bit AeM, t<T). (44

T.. . .
Vi = Bit Z”" ieM,jeN, t<T). (4-5)
Tij,t

JEN

We choose the profit-to-weight ratio since in heuristic methods for NLKP
it is used to sort the items (see D’Ambrosio and Martello [63]). The items
with a greater ratio are more promising in terms of the trade-off represented
by the objective function we want to maximize and the amount we have to
pay in order to fill the knapsacks with those items. In the heuristic method
proposed by D’Ambrosio and Martello [63] for the NLKP, they select the
item with the best profit-to-ratio at first and then fill as much as possible the
knapsack with that item.

4.2.3 Computational Experiments

The MWU method was experimentally compared with the MS algorithm.
We use Ipopt [126] with its default options: Ipopt is an exact solver for con-
vex NLPs, hence it can be used as local solvers for non-convex NLPs. The
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number of iterations was set to T := 10 both for the MWU and MS. Moreover,
we compare the MWU with Ipopt with one starting point and Couenne [59],
which is an open-source global solver for MINLPs.

For the profit and the weight functions, we used the ones proposed in
D’Ambrosio and Martello [63]. In particular, the profits were always ob-

tained from c
j

1+ b).e*‘lj(xijerj)

f(xi5) = (4.6)
by uniformly randomly generating a; in [0.1,0.2], b; and c; in [0, 100], and
d; in [-100,0]. These functions replicate the sigmoid shape of the profit
function depicted in Figure 3. The upper bounds on the variables x; were
set to u; := 100 for all j € N. For the weight, we adopted the concave
increasing functions:

95 (xi5) = /PiXij + 45 — /45 (4.7)

Moreover, we define two sets of instances depending on the way we gen-
erated the capacities. In order to obtain challenging instances, we adopted
the numerical methods described in Chapter 6 of Martello and Toth [182]:

Similar capacities

. . n . u. n . u. .
¢i uniformly random in [O.4; 95l ]),0.6; 93;]) i=1,...,m—1),
j= j=

m
(4.8)
and Dissimilar capacities

n i—1
¢i uniformly random in [O, <O.SZ gj(u5) — Z Ck)] i=1,...,m—1).
j=1

k=1
(4-9)
In both cases, the m-th capacity was set to:
n m—1
cm =05 Z g;j(u5) — Z Ci. (4.10)

j=1 i=1

The value of the number of items n varied in the set {10, 20, 50}, while the
value of the number of knapsacks m varied in the set {2,5, 10}. For each com-
bination of (n, m) 20 real instances, i.e., with N = () are generated. The total
number of instance we tested was 360. All instances are available at http://
or.dei.unibo.it/library/multiple-nonlinear-knapsack-problem. If the
pointwise reformulation was not solved within the time limit, we set its so-
lution to zero.

All the experiments were performed on an Intel Xeon, CPU 3220, 2.4 GHz,
using only one processor. The local method (Ipopt), the global algorithm
(Couenne), and the MWU were run with a time limit of one CPU hour per
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problem.

Tables 7 and 9 report the average solution values for the group of instances
with similar and dissimilar capacities, respectively. The entries give:

e number of knapsacks;
e number of items;

¢ average values produced by MWU, Ipopt with a single starting point
(Ipopt_1), MS, i.e., Ipopt with ten starting points (Ipopt_10), and Couenne;

Tables 8 and 10 report the average CPU times (in seconds) for instances
with similar and dissimilar capacities, respectively.

Tables 7 and 9 show that generally the solution produced by the MWU
heuristic was better than the ones produced by Ipopt_1 and worse than the
ones produced by Ipopt_10. For the bigger continuous similar instances, Ta-
ble 7 shows the MWU algorithm was on average completely outperformed
by Ipopt for all the instances with m = 5 and for the instances with m = 10
and n = 20. For the similar instances there is only one case in which the
MWU algorithm is better than Ipopt_10: the dissimilar instances with m = 2
and n = 50.

Moreover, Tables 8 and 10 clearly indicate the average CPU times for
MWU was one order of magnitude larger than the ones of Ipopt_10 and
around two orders of magnitude larger than the ones of Ipopt_1.

We point out all the knapsack problems were solved to optimality within
the time limit.

From the previous observations, we can argue that the MWU method was
in general outperformed by the heuristic methods available for the MNLKDPs
both in terms of quality of the solution found and of CPU times needed. The
behavior of the proposed heuristic was not satisfying, and this is the reason
why in the next sections we will introduce a different approach to heuristi-
cally solve MINLKDPs relying on the discretization of the solution space and
on the surrogate relaxation.

4.3 RELAXATIONS

In this section we introduce some relevant relaxations of MNLKP.

Let (7t7,...,7m) be an m-dimensional vector of non negative multipliers.
By multiplying the i-th constraints (4.1b) and summing up all the new ca-



Table 7: MNLKP, nonlinear weights, similar capacities.

over 20 instances.

4.3 RELAXATIONS |

Average solution values

Real Variables

m n MWU Ipopt_1 Ipopt_.io  Couenne
2 10 326.57 313.50 351.70 362.63
2 20 622.24 569.20 635.35 593.43(12)
2 50 177783 1,714.74  1,799.78  n/a(20)
2 total 2,726.64 2,597.44 2,786.83 -
5 10 266.09 271.61 312.63  299.06(5)
5 20 677.78 687.95 733.25 n/a(20)
5 50 1,705.66 1,705.86  1,782.99 n/a(20)
5 total 2,649.53 2,65542 @ 2,828.87 -
10 10 195.08 187.40 218.59  212.07(2)
10 20 658.91 664.58 702.21 n/a(20)
10 50 1,873.94 1,864.39 1,927.13 n/a(20)
10 total 2,727.93 2,716.37  2,847.93 -
total total 8,104.10 7,979.23  8,463.63 -

Table 8: MNLKP, nonlinear weights, similar capacities. Average CPU times over 20

instances.
Real Variables

m n MWU Ipopt_1 Ipopt_10 Couenne

2 10 1.48 0.05 0.51 1,113.88

2 20 8.08 0.10 1.18  3,601.81(12)

2 50  33.01 0.34 3.45 n/a(20)

2 total 42.57 0.49 5.14 -

5 10 8.75 0.16 1.72  3,600.61(5)

5 20 22.82 0.32 3.57 n/a(20)

5 50 68.97 1.17 11.76 n/a(20)

5 total 100.54 1.65 17.05 -

10 10 15.88 0.39 3.78  3,600.54(2)
10 20  43.02 0.93 8.57 n/a(20)
10 50 122.74 3.35 30.70 n/a(20)
10 total 181.64 4.67 43.05 -
total total 324.75 6.81 65.24 -
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Table 9: MNLKP, nonlinear weights, dissimilar capacities. Average solution values
over 20 instances.

Real Variables
m n MWU Ipopt_1 Ipopt_.io  Couenne
2 10 311.18 298.24 339.50 355.19
2 20 600.98 547.68 610.20  564.65(9)
2 50 1,766.38 1,619.80  1,737.00 n/a(20)
2 total 2,678.54 2,465.72  2,686.70 -
5 10 288.27 285.28 318.68  329.51(1)
5 20 688.35 670.57 717.91  659.84(17)
5 50 1,654.93 1,614.39 1,723.24 n/a(20)
5 total 2,631.55 2,570.24  2,759.83 -
10 10 316.10 314.88 345.18 354.52
10 20 687.13 678.59 741.04 699.31(11)
10 50 1,825.00 1,807.00 1,909.65 n/a(20)
10 total 2,828.23 2,800.47 2,995.87 -

total total 8,138.32 7,836.43  8,442.40 -

Table 10: MNLKP, nonlinear weights, dissimilar capacities. Average CPU times
over 20 instances.

Real Variables
m n MWU Ipopt_1 Ipopt_10 Couenne
2 10 1.84 0.05 0.53 794.39
2 20 8.59 0.11 1.14  3,307.95(9)
2 50  33.88 0.34 3.36 n/a(20)
2 total 4431 0.50 5.03 -
5 10 9.27 0.14 1.53  2,790.28(1)
5 20 24.62 0.34 3.23 3,600.18(17)
5 50  68.75 1.16 10.25 n/a(20)
5 total 102.64 1.64 15.01 -
10 10 16.06 0.31 2.62 2,266.36
10 20  42.70 0.79 6.10 3,599.61(11)
10 50 126.30 2.89 23.01 n/a(20)
10 total 185.06 3.99 31.73 -

total total 332.01 6.13 51.77 -
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pacity constraints obtained, we define the surrogate relaxation, S(MNLKD,7),
of the MNLKP:

max Z Z f;(x45) (4.112)

ieMjeN

s.t. Z T Z gj(xij) < Z T Cq (4.11b)
ieM  jeN ieM
Z Xij < Yj j €N (4.110)
ieM
xi5 =0 ieM,jeN (4.11d)
xij integer i€eM,jENCN. (4.11€)

Let val(S(MNLKP,7)) denote the optimal value of (4.11) under given mul-
tipliers 7. The surrogate dual problem
min{val(S(IMNLKP,m))} (4.12)
=0
consists in finding the optimal vector of multipliers, i.e., the one produc-

ing the minimum optimal value for the surrogate relaxation, and hence the
tighter upper bound for the MNLKP.

Remark 4.3.1. While the surrogate relaxation of the o-1 MLKP has strong duality
property, i.e., the vector of multipliers which produced the minimum value for the
surrogate relaxation is iy = k for all i € M [182], the same result does not hold for
the MINLKP, as the following example shows. Let m =2, n =1, u; =100, ¢c1 =
10, ¢a = 2, and, for i € {1,2}, f1(xi1) = xi1, g1 (x11) = 80/(1+50e 10 (x1-10)),
For my = my = 1 the optimal solution to S(MNLKP,T) is x11 = x21 =~ 24 (with
g1(x11) = g1(x21) =~ 6) and has value ~ 48. For m;y = 1 and my = 2 such
solution violates (4.11b) and the optimal solution is x11 ~ 26 and x21 ~ 18 (with
g1(x11) ~7.2and g1(x21) =~ 3.4), of value ~ 44. O

Even though the optimal surrogate multipliers are not known a priori,
good multipliers can heuristically found (see Section 4.4.5) and, from the sur-
rogate solution, a feasible solution can be easily defined (see Section 4.4.2).

Let (A1,...,Am) be an m-dimensional vector of non negative multipliers, a
possible Lagrangian relaxation, LIMNLKPA), of the MNLKP can be obtained
by relaxing (4.1b):

Z Aici + max Z Z (f5 (xi5) — Aigj(xi5)) (4.13a)

ieM ieMjeN
s.t. Z Xij < Yj jEeN (4.13b)
ieM
xij = 0 ieM,jeN (4.13¢)
xij integer ieM,jeNCN. (4.13d)

Remark 4.3.2. The Lagrangian relaxation (4.13) can be decomposed into n inde-
pendent subproblems, one for each item j, with nonlinear objective functions. Other
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| MULTIPLE NONLINEAR KNAPSACK PROBLEMS

Lagrangian relaxations can be obtained by multiplying the upper bound constraints
(4.1¢) by a vector of non negative multipliers or relaxing both the constraints (4.1b)
and (4.1c). Preliminary computational experiments have shown that the solutions
produced by the Lagrangian relaxations are generally worse than the ones produced
by the surrogate relaxation. O

4.4 CONSTRUCTIVE HEURISTICS

In this section we describe two different kinds of heuristic algorithms for
the MINLKP: the first type of heuristic is represented by a constructive pro-
cedure based on the discretization of the solution space; the second one,
instead, is based on feasibility recovery strategies to restore the feasibility of
the surrogate solutions with respect to the relaxed constraints.

4.4.1 Discretization Heuristic

The constructive procedure extends the heuristic method proposed by
D’Ambrosio and Martello [63] for the NLKP to the MNLKP.

We assume without loss of generality that the knapsacks are preliminary
sorted in non-increasing order according to their capacities, i.e., c1 > ¢z >

- = cm. The algorithm is based on the discretization of the solution
space. Let s be the number of sampling and 6; = u;/s for j € N (or
§; = max(1, [uj/s]) if j € N) be the sampling step. We consider the profit-to-
weight ratio, meaning the ratio between the profit functions and the weight
functions evaluated over the sampling points:

f;(kd;)

Tip = ——" GeNk=1,...,s). .1

Moreover, we assume without loss of generality that the items are sorted
in non-increasing order according to their maximum profit-to-weight ratios
Wy =argmaxy_y (i, e, Ty 2120, 200 2 T,

We apply the same strategy as in [63] by considering one single knapsack
at each iteration. We take the first two items and we try to fill the knapsack
as much as possible with the first one (see Procedure Construct(i)). We cal-
culate the higher sampling point fi; such that the ratio of the first item is
greater than the ratio of the second one (Step 5), we fill the current knap-
sack with {1181 units of the first item (Steps 6) and we update the remaining
upper bound and the residual capacity (Step 7). Assume by the moment
that the sampling points corresponding to p, and p3 remain feasible. At the
second iteration, the second item is taken into account and the knapsack is
filled with [i;6, units, where fi, is the analogue of fi; for the second item
and, again, the upper bound and the capacity are updated, and so on. If in-
stead (Step 8) for at least one of the next two items, say 2 and 3, the sampling
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point corresponding to p, or p3 is infeasible, an update of the p values is per-
formed on items 2, 3, ... (and, consequently, the item order might change).

Remark 4.4.1. Note that, whenever a partial solution x; is determined, the ratios
of all the unscanned items might be re-calculated, but it is not necessary to re-sort
all the items: in fact, the algorithm only needs the items with the first and the second
best ratio, which can be found in linear time. O

The algorithm stops when only one element remains unscanned and, in
this case, tries to fill the current knapsack with the last item as much as pos-
sible (Step 12).

Algorithm 5 Procedure Construct(i).

1: Ci ‘= Cy,
Wy =y,
ji=1
while j <n and ¢; > 0 do
Ay == max{k : Tjx = T(j11)p,, 1 S K< sE
Xij == I 6)','
1y := 15 —Xij, €t = Ci — gj(x4j);
if (gj+1(15+18541) > Ci or gj2(Hj+285+2) > Ci) then update p for
items j+1,j+2,... (and possibly update their order);
o0 j=j+1;
10: end while
11: if ¢; > 0 then {comment: fill the residual capacity with item n}
120 Xin :=min(gy"(Ci), Un);
13: Un =Un —Xin, Ci =€ — gn(xin)}
14: end if

We simply assume that the weight functions gj are strictly increasing and
continuous, so that the inverse 9;1 exists (Step 12). If it is not the case, we
consider the pseudo-inverse of g; with the largest value of the pre-image.
In order to compute this value, we only need to calculate the zeros of the
function g;(xij) — ¢, which can be evaluated in a CPU time bounded by a
constant independent from the instance size.

The algorithm can be improved through a refined search for {i;. Once it
has been obtained (at Step 5), the interval [fij, fij41] can be searched with
a smaller sampling step and new, more precise, profit-to-weight ratios for
item j can be computed. In this way a more precise point fi; is obtained, and
the process can be iterated by further decreasing the sampling step.

Steps 5—9 are iterated at most n times. At each time we have to determine
the items with the first and the second best ratio, which can be calculated in
O(n), and the (pseudo-)inverse of the function g;, which can be effectuated,
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as said before, in a computational time bounded by a constant. The main
loop is executed up to n times (Step 4). If the refinement parameters, i.e., the
number of sampling step and the number of the refinements are bounded by
a constant (as usual in practice), the time complexity of Construct(i) is O(n?).

Procedure Construct(i) is therefore executed for each knapsack i by con-
sidering, at each iteration, only those items whose quantities are still smaller
than the upper bound (see Procedure Constructive). At the end, a greedy
heuristic is applied to fill the knapsack as much as possible with the current
item (Step 5). The overall time complexity of Procedure Constructive(i) is
O(mn?).

Algorithm 6 Procedure Constructive.

1: fori:=1to m do Construct(i) {comment: optionally include the refined
search};
2: fori:=1tomdo

3 if ¢; > O then

4 for j := 1 to n do {comment: increase x;; as much as possible}
5 Xij i= x4j +min(g; " (i), Tj);

6: lf] € N then Xij == {Xijj;

7 Uj = U5 — ) kem Xkjs Ci 7= Ci— X ken 9 (Xik);

8 end for

9: endif

10: end for

4.4.2 Surrogate Heuristics

In this section we introduce two different heuristic procedures based on
the feasibility recovery of the solution of the surrogate relaxation (4.11). Let
us first consider the problem of determining good surrogate multipliers .
A series of preliminary experiments was performed on the benchmark in-
stances adopted for the computational experiments of Section 4.4.5, with

(i) i uniformly random in [0.0,3.0] for all i € M;
(ii) 7ty uniformly random in [0.8,1.2] for all i € M;
(iii) 7ty uniformly random in [0.9,1.1] for all i € M,
and
(iv) my =1 for alli e M.

It turned out that the surrogate solutions produced by (i) were dominated
by the other generations, those produced by (ii) and (iii) had about the same
quality, and those produced by (iv) were, on average, clearly the best ones.
Additional tests were performed using (easier) convex and concave objective
functions, globally obtaining the same results. It was thus decided to always
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adopt option (iv). In Section 4.3 we have shown that identical multipliers
(optimal solution of the surrogate dual for the linear case) are not necessary
optimal for the nonlinear case. It is worth observing that they appear to be
a good choice for such case too, at least for the objective functions we con-
sidered.

Let xjj be the surrogate solution. We assume, as in Section 4.4.1, that the
knapsacks are sorted in non-increasing order according to their capacities
and the items are sorted in non-increasing order according to the profit-to-
weight ratios evaluated over the surrogate solution, i.e.,

2iem fi(x55)

=V Ve i eN). .
S ien 9 0) G eN) (4.15)

T‘j =

The first heuristic (see Procedure Surrogate-feas-1(x*)) starts with a zero

solution — note that this solution is always feasible for the MNLKP - and is
divided into two main phases.

Algorithm 7 Procedure Surrogate-feas-1(x™).

1 forj:=1ton do 4y :=uy;
2: fori:=1to mdo

3: Ci =CcCi;

4 forj:=1tondoxi =0;

5. end for

6: fori:=1to m do

72 forj:=1tondo

8 if gj(xfj) < ¢ then x5 :=x
9 end for

10: end for

11: 1= argmax;pn{Ci}, Cmax = Ci, Umax = Maxjen{lj};
12: while Cmax > 0 and Timax > 0 do

13 forj:=T1ton do

* A, oe— . . 1. e— 1. .
ijy G = i —Gj (Xij)/ Uy = Uy — Xy,

0 if = 0
B fj(m1n(x1]+uj,max(0,Lg;1(él+gj(xij))J))) e . _
s Tj *= 9 gj(min(xg+aj,max(0,[g; ' (€e+gj(x5))]))) if