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Chapter 1: Introduction 
Résumé 

Dans ce chapitre les simulations géostatistiques sont présentées dans un 
cadre général.  Les applications des simulations géostatistiques sont possibles dans 
plusieurs domaines notamment pour la modélisation des gisements dans les 
industries minière et pétrolière. La différence entre l’estimation et la simulation est 
discutée. 

1.1  General context of geostatistical simulations 
Geostatistical simulations provide a framework to address a wide range of 

problems related to natural resources. The common application of geostatistical 
simulations consists in generating realistic realizations of a spatial or a spatio-
temporal phenomenon and using these to evaluate some response functions. In this 
context, geostatistical simulations are used as part of Monte Carlo methods. 
Applications of geostatistical simulations can be found in such industries as mining, 
petroleum, meteorology and in ecological monitoring.  

A classical problem for which geostatistical simulations are applied is modeling 
the fluid flow through a heterogeneous reservoir. This is one of the principal modeling 
problems for petroleum industry (where the fluids are oil, water and gas), but this 
problem can also arise in other contexts, such as modeling the groundwater-travel 
times from a nuclear repository to the surface (Goovaerts et al. 1997). Prediction 
methods do not provide realistic results for modeling the heterogeneities in petroleum 
reservoirs since they do not reproduce correctly the spatial variability of such 
parameters as porosity and permeability due to the interpolation smoothing effects.  
Only the simulation approach enables to reproduce the realistic spatial variability and 
thus enables to derive more realistic models of the subsurface. 

Algorithms for geostatistical simulation described in the literature mostly deal 
with regular grids – grids composed of identical blocks. A new generation of geology 
modeling tools deals with unstructured grids – the grids composed of blocks of 
various shapes and sizes, the most usual types of blocks being Voronoï polygon 
prisms, tetrahedrons and triangular prisms. Unstructured grids enable building 
models with adaptive resolution – the blocks of the model can be smaller in the 
regions of particular practical interest and coarser in the less important regions. For 
instance, a petroleum reservoir can be modeled with fine blocks in the vicinity of the 
wells in order to solve more accurately the flow equations, whereas the aquifier can 
be modeled with lower resolution in order to reduce the computation time. This new 
generation of the subsurface models based on unstructured grids requires 
specialized methods for geostatistical simulations, since the classical methods 
designed for regular grids either cannot be applied at all or do not reproduce correctly 
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the statistical properties of the model. This thesis provides a solution to the problem 
of geostatistical simulation on unstructured grids with change of support effect. 

1.2  Describing random fields 
A complete description of a random field (RF) consists in defining all of its 

finite-dimensional distributions, which can be done by means of the multivariate 
cumulative distribution functions (CDF). Thus, in order to describe the RF 𝑍(𝑥), for 
every 𝑛 and every set of points 𝑥1, … 𝑥𝑛 ∈ 𝐷 the finite-dimensional CDF should be 
given 

 𝐹𝑥1,…𝑥𝑛(𝑧1, … , 𝑧𝑛) =  𝑃(𝑍(𝑥1) ≤ 𝑧1, … ,𝑍(𝑥𝑛) ≤ 𝑧𝑛) (1.1) 

In practice defining a complete set of finite-dimensional CDFs is almost never 
possible, except for the few known analytical models such as multivariate Gaussian 
RF. For that reason, the random fields in geostatistics are often characterized only 
with respect to the first and second order moments. Thus, defining a RF reduces to 
defining the marginal distribution 𝐹𝑥(𝑧) = 𝑃(𝑍(𝑥) ≤ 𝑧) at every point 𝑥 ∈ 𝐷 and 
defining the covariance function 𝐶(𝑥, 𝑥′) =  𝑐𝑜𝑣�𝑍(𝑥),𝑍(𝑥′)� for all pairs of points 
(𝑥, 𝑥′) ∈ 𝐷. Certainly, it is necessary to assume the existence of the first and second 
order moments for 𝑍(𝑥).  This definition through the marginal distribution and 
covariance in the general case does not determine a random field in a unique 
manner. Chilès and Lantuéjoul (2005) demonstrate three different random set models 
with the same bivariate and even trivariate distributions. Moreover, there is no 
general criterion which verifies if a random field with a given marginal distribution and 
covariance exists or not, although it is known that certain marginal distributions and 
covariance functions are not compatible. For example,  as demonstrated by 
Matheron (1989), lognormal distribution is not compatible with a spherical covariance 
function. More precisely, RF 𝑍(𝑥), such that 𝑌(𝑥) = ln𝑍(𝑥) is multivariate Gaussian 
cannot have a spherical covariance function. To conclude, when random fields are 
considered only with regards to marginal distribution and covariance functions, 
classes of equivalence of random fields are considered. 

1.3  Formal definition of geostatistical simulation 
The characterization of the random field has direct implications on the 

definition of the geostatistical simulation. As noted by Chilès and Delfiner (2012), two 
definitions can be used for unconditional geostatistical simulation: 

Definition 1 
Simulation of RF 𝑍(𝑥) is a realization of any RF 𝑆(𝑥) with the same multivariate 
distribution as 𝑍(𝑥). 

Definition 2 
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Simulation of RF 𝑍(𝑥) is a realization of any RF 𝑆(𝑥) with the same marginal 
distribution 𝐹(𝑧) and covariance function 𝐶(𝑥, 𝑥′). 

For both definitions of unconditional simulations, conditioning to known data  
{(𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} results in retaining from the realizations of 𝑆(𝑥) only those, 
which coincide with the known values of at the data locations (Journel & Huijbregts 
1978): 

 𝑆(𝑑𝑖) =  𝑧𝑖, 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎 (1.2) 

The applicable definition of the geostatistical simulation depends on the 
manner in which the target RF is characterized. In rare cases when all the finite-
dimensional CDF of 𝑍(𝑥) are known analytically, as for multivariate Gaussian RF, the 
simulation goal can be reproduction of the multivariate distributions of 𝑍(𝑥), and 
Definition 1 can be used. 

Another case when Definition 1 is applied is when dealing with simulations 
with a training image. Considering that the training image coupled with the simulation 
algorithm are able to characterize the complete multivariate distribution of 𝑍(𝑥) 
enables simulating more complicated spatial features of random fields, than those 
which can be defined only with marginal distribution and covariance (Guardiano & 
Srivastava 1993; Strebelle 2002). The recent advances in the theory of simulations 
with training image enable taking into account additional constraints and simulating 
non-stationary random fields which are more complex than those defined only 
through a covariance function and marginal distribution (Chugunova & Hu 2008; Hu 
& Chugunova 2008; Mariethoz & Caers 2014). 

When 𝑍(𝑥) is defined only through the first and second moments, Definition 2 
should be used. This definition is less restrictive than Definition 1, which implies that 
different models of random fields can be used for simulating 𝑍(𝑥) as long as they 
respect first and second order moments of 𝑍(𝑥). For instance, direct sequential 
simulation algorithms (Oz et al. 2003; Soares 2001) and algorithms based on the 
normal score transform, such as sequential Gaussian simulation (SGS), Cholesky  
decomposition, spectral simulation and turning bands (Chilès & Delfiner 2012; 
Goovaerts 1997) represent two classes of algorithms based on different RF models 
which both aim at simulating random fields with given marginal distribution and 
covariance function.  

This thesis focuses on simulating random fields that are characterized through 
the marginal distribution and a covariance function, thus, Definition 2 is used for 
geostatistical simulations.   
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1.4  Data analysis 
A brief mention of the geostatistical data analysis methods is necessary, since 

it is from data analysis that the inputs for geostatistical simulations are obtained. In 
addition, many assumptions of geostatistics originate from the necessity of 
performing the data analysis on a small amount of available samples and these 
assumptions in turn have impact on the description of the random field under 
investigation.  

In practice the description of random fields in geostatistics is often even more 
restrictive than defining the marginal distribution 𝐹𝑥(𝑧) and the covariance function 
𝐶(𝑥, 𝑥′) due to the fact that these inputs are stemming from a data analysis of a 
relatively small number of observed samples {(𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎}. These data do 
not enable deriving a point-dependent marginal distribution  𝐹𝑥(𝑧) at every point 
𝑥 ∈ 𝐷. Instead, a single marginal distribution  𝐹(𝑧) in the region 𝐷 is imposed, and for 
the purpose of data analysis the known data values  {𝑧𝑖, 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} are often 
treated as independent realizations of RV 𝑍 with a CDF 𝐹(𝑧). From analysis of the 
histogram of these data the empirical density function and empirical CDF of 𝑍 are 
derived.  

 Another assumption related to the small quantity of available data is the 
second order stationarity for 𝑍(𝑥), see Chilès and Delfiner (2012); Journel and 
Huijbregts (1978); Lantuejoul (2002). It imposes that the covariance function 𝐶(𝑥, 𝑥′) 
depends only on the separation vector ℎ�⃗ = 𝑥′ − 𝑥. This assumption is absolutely of 
practical importance since in the general case it is the only way to obtain a sufficient 
amount of data to estimate 𝐶(𝑥, 𝑥′). Under the assumption of second order 
stationarity for all data points �𝑑𝑖,𝑑𝑗� which are separated by the same vector ℎ�⃗ , the 
data values at these points �𝑧𝑖 , 𝑧𝑗� are considered to be realizations of random 

vectors �𝑍(𝑑𝑖),𝑍�𝑑𝑗�� with the same first and second order moments. The following 
formula (Journel & Huijbregts 1978) gives an estimate for the covariance function for 
any two points, separated by the vector  ℎ�⃗ : 

 �̂��ℎ�⃗ � =
1
𝑁ℎ

� 𝑧𝑖𝑧𝑗
𝑑𝑖−𝑑𝑗≈ℎ��⃗

−  𝑚2, (1.3) 

where 𝑚 is the estimated mean value of 𝑍(𝑥) and 𝑁ℎ is the number of pairs of data 
separated by the vector ℎ�⃗ . In practice, a certain degree of tolerance is introduced into 
the estimation procedure in order to increase the number of samples. This tolerance 
depends on the nature of the problem under investigation and is usually a subjective 
choice of the person who conducts the data analysis. Introducing the tolerance 
corresponds to using the sign “approximately equal” in Eqn. (1.3). An analytical 
covariance function model is usually fitted for the estimated covariance function �̂��ℎ�⃗ �. 
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As it is noted in Journel and Huijbregts (1978), the estimator in Eqn. (1.3)  is biased 
since the mean 𝑚 is also estimated from the available data. In the general case it is 
more advantageous to estimate the variogram 𝛾�ℎ�⃗ � = 1

2
𝑉𝑎𝑟 �𝑍�𝑥 + ℎ�⃗ � − 𝑍(𝑥)� 

through the formula 

 𝛾��ℎ�⃗ � =
1

2𝑁ℎ
� �𝑧𝑖 − 𝑧𝑗�

2

𝑑𝑖−𝑑𝑗≈ℎ��⃗

, (1.4) 

fit the analytical model to it and use the theoretical relation (Chilès & Delfiner 2012) 
between the variogram and the covariance: 

 𝐶�ℎ�⃗ � = 𝜎2 − 𝛾(ℎ�⃗ ), (1.5) 

where 𝜎2 is the variance of 𝑍(𝑥). Applying formula (1.5) is only possible when 𝑍(𝑥) is 
second order stationary. 

The data analysis procedures described above impose that the distribution of 
the random field 𝑍(𝑥) is characterized by the marginal CDF 𝐹(𝑧) which is unique for 
all points 𝑥 ∈ 𝐷 and a covariance function 𝐶(ℎ�⃗ ) which depends only on the separation 
vector between two points: ℎ�⃗ = 𝑥′ − 𝑥. We assume the second order stationarity 
assumption for testing the algorithms presented in this work since it simplifies the 
approach of modeling the covariance function 𝐶(𝑥, 𝑥′) = 𝐶(ℎ�⃗ ). However, this 
assumption is not mandatory and to underline this fact, the general notation 𝐶(𝑥, 𝑥′) 
is used for covariance functions.  

The empirical CDF is a step function, which often does not reflect the 
continuous nature of the physical parameters simulated such as porosity and 
permeability. There are two practically used approaches to smoothen the empirical 
CDF function. The first approach is CDF-based: it results in direct smoothing of the 
empirical CDF 𝐹�(𝑧), or interpolating between the steps in order to obtain the CDF 
𝐹(𝑧) which corresponds to a continuous property. Another approach is density-
based; it consists in finding a smooth density function which approximates the 
empirical density. In the density-based approach the CDF 𝐹(𝑧) is derived through 
integration of the fitted (usually even analytical) smooth density function. The density-
based approach is often preferred in the industry, since it enables working in terms of 
relative frequency of samples, rather than in terms of probability of exceeding some 
threshold.  

The data analysis procedures are schematically illustrated on Figure 1-1 for a 
synthetic data set which consists of 100 measurements of porosity on a territory of 
10 × 10 𝑘𝑚2, see Figure 1-1(a). The histogram of the sample data is given at Figure 
1-1(c) and a smooth density model is fitted. The variogram analysis with a fitted 
spherical covariance model is demonstrated on Figure 1-1(d). Finally, a conditional 
simulation of a random field which respects the data at sample locations and the 
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fitted distribution is depicted of Figure 1-1(b). The blue circles indicate the sample 
locations.  

  
a) b) 

  
c) d) 

Figure 1-1. Elements of geostatistical simulation workflow a) a set of 100 samples b) 
conditional simulation c) fitting a smooth density model d) fitting a smooth variogram 

model variogram analysis 

For the purpose of geostatistical simulation and prediction, it is often assumed 
that the investigated RF 𝑍(𝑥) with a covariance function 𝐶(𝑥, 𝑥′) is a transformation of 
a multivariate Gaussian RF 𝑌(𝑥) with a covariance function 𝜌(𝑥, 𝑥′): 𝑍(𝑥) = 𝜑(𝑌(𝑥)), 
where 𝜑(𝑧) is the normal score transform function (Chilès & Delfiner 2012). In that 
case it is common to perform data analysis for 𝜌(𝑥, 𝑥′) with the methods described 
above. This thesis uses extensively the hypothesis that 𝑍(𝑥) is a transform of a 
multivariate Gaussian RF 𝑌(𝑥) and hereafter we consider that 𝜌(𝑥, 𝑥′) was derived 
from the data analysis workflow. 

1.5  Problem statement 
We consider the problem of simulating a random field (RF) 𝑍(𝑥) with a 

marginal distribution 𝐹(𝑧) and a covariance function 𝐶(𝑥, 𝑥′) defined in the region 
𝐷 ∈ 𝑅𝑑, 𝑑 =  1,2,3 on an unstructured grid. If the values of 𝑍(𝑥) are known at some 
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points of 𝐷 (i.e. 𝑍(𝑑𝑖) = 𝑧𝑖, 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎), we say that the random field  𝑍(𝑥) is 
conditioned to data {(𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎}. An unstructured grid can be defined as a 
finite number 𝑁𝑏 of non-overlapping blocks {𝑣𝑝,𝑝 = 1 …𝑁𝑏} on 𝐷.   

The goal of geostatistical simulation on unstructured grid is to simulate a 

random vector �𝑍�𝑣𝑝� =  1
|𝑣𝑝|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝

, 𝑝 = 1 …𝑁𝑏� of average values of 𝑍(𝑥) over 

the blocks of the grid which respects two conditions: 

1) Correctly reproduces the marginal distribution – the marginal distribution of 
each component 𝑍(𝑣𝑝) should coincide with the marginal distribution of 
1

|𝑣𝑝|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝
. This property is referred to as volume support effect, since 

the distribution of 𝑍(𝑣𝑝) is a function of the block 𝑣𝑝.  
2) The covariance between each pair of components 𝑍(𝑣𝑝) and 𝑍(𝑣𝑞)  should 

coincide with the covariance between two stochastic integrals 
1

|𝑣𝑝|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝
 and 1

|𝑣𝑞|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑞
. 

The definition of the conditional simulation on unstructured grids is given only in the 
terms of first and second order statistics, which means that the distribution of the 
random vector �𝑍�𝑣𝑝�, 𝑝 = 1 …𝑁𝑏� is not defined in a unique manner. One could also 
remark that this definition does not mention the conditioning data {(𝑑𝑖, 𝑧𝑖), 𝑖 =
1 …𝑁𝑑𝑎𝑡𝑎}. In fact, the conditioning to data is included in this definition implicitly, since 
the RF 𝑍(𝑥) respects the data 𝑧𝑖 at locations 𝑑𝑖,as stated in the beginning of the 
sections. 

1.6  Related research 
Simulations on unstructured grid can be performed by simulating on a fine 

scale regular grid followed by upscaling. Any type of simulation method on regular 
grids can be applied in this case, such as SGS, Cholesky  decomposition, spectral 
simulation and others (Chilès & Delfiner 2012; Goovaerts 1997). This approach is 
detailed in Chapter 2. 

Algorithms based on the direct sequential simulation (DSS) approach can be 
applied for simulations on unstructured grids. In this work we investigate two DSS 
algorithms: DSS-1 proposed by Soares (2001) and DSS-HR (direct sequential 
simulation with histogram reproduction) proposed by (Oz et al. 2003). Application of 
DSS-HR to the problem of simulations on unstructured grids was proposed by 
Manchuk et al. (2005). DSS algorithms are also discussed in Chapter 2. 

This thesis proposes a theoretical framework for geostatistical simulations on 
unstructured grids based on the discrete Gaussian model (DGM). Previously DGM 
was applied to geostatistical simulations on regular grids (Emery 2009; Emery & Ortiz 
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2011), where DGM was used for conditional simulation and co-simulation. Another 
application of DGM for geostatistical simulations can be found in Brown et al. (2008), 
where the DGM is conditional simulation of Cox process on a regular grid with 
samples defined on various supports. The generalization of the DGM for unstructured 
grids in this thesis was derived independently of (Brown et al. 2008) and is deemed 
to be applied in a different context – on unstructured grids and with congruent 
samples defined on quasi-point support. 

1.7  Thesis contributions 
The main contributions of this thesis are: 

1) Investigating the properties of DSS algorithms and providing simulation 
parameters for which DSS algorithms fail reproducing expected statistical 
properties. 

2) Proposing two theoretical models (DGM 1 and DGM 2) based on DGM for 
geostatistical simulations of a continuous variable. 

3) Investigating the theoretical difference between DGM 1 and DGM 2 and 
demonstrating this difference through a simulation test on a synthetic 
dataset. 

4) Demonstrating that DGM-based simulation algorithms are not restricted to 
utilization of the sequential simulation paradigm and enable robust 
reproduction of marginal distribution and covariance. 

5) Formalizing the problem of simulating discrete variables on unstructured 
grids and proposing a new theoretical model generalizing the pluri-
Gaussian simulation model for facies on unstructured grids. 

6) Investigating the problem of computing the block to block covariance on 
unstructured grids and demonstrating the advantage of Monte Carlo 
integration methods over other approaches. This research can be applied 
in a more general scope than geostatistical simulations, in particular, to the 
problem of prediction through block kriging. 
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Chapter 2: Geostatistical simulation methods for 
unstructured grids 
Résumé 

Différentes méthodes existantes de simulation géostatistique sur les maillages 
non-structurés sont analysées. Les deux approches principales peuvent être 
appliquées – la simulation sur un maillage fin régulier suivi par l’upscaling et la 
simulation «directe» - sans la transformation à l’échelle Gaussienne. Les propriétés 
de ces méthodes et leurs inconvénients sont examinées.  

This chapter summarizes various geostatistical methods that can be applied 
for simulations on unstructured grids. Two main classes of algorithms are considered 
– fine scale simulations followed by upscaling, and direct block simulations on 
unstructured grids. We refer to the fine scale simulation approach as “conventional”, 
since it requires little additional development relative to the geostatistical algorithms 
on regular grids. The direct block simulation algorithms do not use intermediate 
regular fine scale grids, and operate directly on the blocks of the target unstructured 
grid.  

2.1  Conventional approach to simulations on unstructured grids 
The straightforward approach for simulating on an unstructured grid is to use 

an auxiliary regular fine scale grid to perform a point support simulation on it and to 
upscale subsequently the results to the target unstructured grid.  The classical inputs 
to a geostatistical simulation in petroleum industry are point data of a petrophysical 
property, the corresponding histogram and a covariance model. A number of 
simulation algorithms exist, whose implementation requires various additional 
theoretical assumptions. 

The classical and the most commonly used assumption about the spatial 
structure of the random field to be simulated is the multivariate Gaussian assumption, 
which states that  𝑍(𝑥) is a (usually non-linear) transform of a multivariate Gaussian 
random field 𝑌(𝑥). Thus, 𝑍(𝑥) =  𝜑(𝑌(𝑥)), where 𝜑(𝑦) is the Gaussian anamorphosis 
function (Chilès & Delfiner 2012). The assumption of multigaussianity enables  to 
simulate the Gaussian random field using  numerous existing techniques like 
sequential Gaussian simulation (SGS), see Goovaerts (1997) for details and turning 
bands (Chilès & Delfiner 2012), among others. The above-mentioned methods 
provide simulations of a random field which is only approximately multivariate 
Gaussian due to assumptions used. A spectral simulation method for accurate 
generation multivariate Gaussian random fields on regular grids in 1D, 2D and 3D 
was proposed by Pardo-Iguzquiza and Chica-Olmo (1993). The final result of the 
simulation is obtained by transforming the simulated Gaussian field to the original 
scale using the anamorphosis 𝜑. 



13 

 

Another approach to the simulation of random fields given a histogram and a 
covariance is provided by a family of direct sequential simulation (DSS) algorithms. In 
that case no explicit assumption about the multivariate distribution of 𝑍(𝑥) is done, 
but a set of conditional distributions is explicitly provided.  Different algorithms 
suggest using different local CDF in the sequential simulation procedure (Oz et al. 
2003; Soares 2001). The ability of the direct sequential simulation approach to 
reproduce the target histogram and covariance was illustrated  by  Robertson et al. 
(2006). This approach has the advantage of avoiding the transformation to a 
Gaussian variable, although it raises problems concerning the internal consistency of 
the model used. For example, even though it is proven mathematically that a 
spherical covariance model is not compatible with a multivariate-lognormal random 
field (Matheron 1989), it is possible to perform a simulation using the DSS algorithm 
with such a construction. Obviously, in this case, the simulated random field will not 
correspond to the input parameters.  

In the general case not every chain of local CDF defines a valid multivariate 
distribution function. Theoretical conditions for defining a valid multivariate distribution 
function from a set of conditional CDFs are provided by Cressie and Wikle (2011). In 
practice, it is not possible to verify these conditions; however, they form a valuable 
theoretical result. 

After performing a simulation of the target random field 𝑍(𝑥) on a fine scale 
grid whose cells can be considered as point support, the results are upscaled on the 
target unstructured grid. The approach of using a fine scale grid for simulations has 
the advantage of avoiding assumptions about the change of support law for the 
random field 𝑍(𝑥) as well as assumptions about spatial distribution of the block 
average values 𝑍(𝑣). The fine scale simulations are especially efficient for simulating 
the variables that do not average linearly over the volume, such as permeability. In 
that case, the results of fine scale simulation can be upscaled on an unstructured grid 
using one of the numerical methods (Farmer 2002). The simulation algorithms which 
operate directly on blocks have to introduce additional assumptions and transform 
permeability to a variable that averages linearly. 

From the practical point of view, using fine scale grids and upscaling on an 
unstructured grid does not always seem an optimal solution. This approach has a set 
of disadvantages such as creating and storing an auxiliary fine scale grid, increasing 
the number of locations at which the random field should be simulated and 
transferring the results from the fine regular to the unstructured grid – a process 
which can be time demanding and results in artifacts if the chosen refinement level 
was not sufficient for the given problem. When dealing with fine scale regular grids it 
remains a subjective decision which level of refinement should be chosen. It is clear 
that the size of the blocks in the fine scale regular grid should be at least as small as 
the smallest block in the target unstructured grid (otherwise there will not be any 
simulated values for the smallest block of the unstructured grid). This consideration 
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leads to necessity of using fine scale grids with several millions of blocks even if the 
target unstructured grid has a relatively small number of blocks, but high variability in 
the block sizes. 

  

2.2  Direct sequential simulation on blocks 
The goal of geostatistical simulation on block support is to avoid point support 

simulations and subsequent upscaling, and rather to simulate a random vector 
{𝑍(𝑣𝑖), 𝑖 = 1 …𝑁}, where 𝑍(𝑣) denotes the average value of 𝑍(𝑥) over  a grid block 𝑣. 
The classical multigaussian formalism is not applicable on the block support, since 
the data do not average linearly after the normal score transform.  

The family of DSS algorithms does not use the normal score transform and 
could be applied to simulations directly on the block support by merely replacing the 
kriging step of the SGS algorithm by a block kriging step. From the theoretical 
standpoint DSS is based on two mathematical methods: sequential simulation 
(Goovaerts 1997) and simple kriging principle (Journel 1993). The sequential 
simulation paradigm states that the simulation of a multivariate random vector can be 
done in a sequential manner. It is based on the well-known decomposition  
P(A1,A2,…,AN) = P(A1)P(A2 | A1)P(AN | A1,…AN-1) where P is a probability measure 
and (A1,A2,…AN) is any family of events (Shiryaev 1996). It can be applied whenever 
all conditional distributions of a variable given all previously simulated variables are 
known. This decomposition is the basis for the classical SGS algorithm, in which the 
full conditional distribution is usually approximated by a conditional distribution using 
only the nearest previously simulated points. The simple kriging principle states that a 
sequential simulation procedure is able to reproduce the target covariance model as 
soon as the mean and variance of the conditional distribution at the iterations of the 
algorithm are determined by simple kriging. It is the simple kriging principle that 
enables correct reproduction of the covariance relations between blocks determined 
by the point-to-point covariance model 𝐶(ℎ). The possibility of applying two DSS 
algorithms DSS 1 (Soares 2001) and DSS-HR (Oz et al. 2003) for geostatistical 
simulations on unstructured grids is considered below. When the simulated variable 
𝑍(𝑥) has a Gaussian marginal distribution DSS 1 and DSS-HR coincide with the 
classical SGS. Therefore one should examine the applicability of these algorithms for 
simulating distributions which depart from the Gaussian assumption, such as strongly 
skewed or heavy tailed distributions.   

For testing purpose, consider a random field 𝑍(𝑥) following a lognormal 
distribution with logarithmic mean 0 and logarithmic variance 1. Its variance is thus 
𝜎2 = 𝑒(𝑒 − 1). Since one of the key requirements to a geostatistical simulation 
algorithm on an unstructured grid is the correct reproduction of block to block 
covariance, it is necessary to verify that the simulation algorithm follows the simple 
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kriging principle, which ensures that the covariance is reproduced. In the case of a 
lognormal random field, the normal score transform 𝑦 = 𝜑−1(𝑧) = ln 𝑧 for 𝑍(𝑥) is 
known analytically. An analytical verification for DSS 1 is easily done within these 
settings. The algorithm DSS 1, as originally presented in Soares (2001), proceeds as 
follows: 

1) Simple kriging is performed at location x, conditional on surrounding values, 
thus yielding a kriging prediction 𝑧∗(𝑥), and a kriging variance, 𝜎𝑠𝑘2 (𝑥). 

2) The kriging prediction is then transformed to a normal score 𝑦∗(𝑥) =
𝑙𝑛 (𝑧∗(𝑥 )). 

3) A Gaussian random variable Y ∼  G � y∗(x), σsk
2 (x)
σ2

� is drawn. 

4) The simulated value at point 𝑧(𝑥) is then set equal to 𝑒𝑌. 

Thus, 𝑍(𝑥) is lognormal with logarithmic mean 𝑙𝑛�𝑧∗(𝑥 )� and shape parameter 
𝜎𝑠𝑘
2 (𝑥)
𝜎2

. The mean and variance of the local CDF at location 𝑥 can be determined 

 𝐸𝑍(𝑥) =  𝑒𝑙𝑛�𝑧
∗(𝑥 )�+

𝜎𝑠𝑘
2 (𝑥)
2𝜎2 =  𝑧∗(𝑥 ) × 𝑒

𝜎𝑠𝑘
2 (𝑥)
2𝜎2 , (2.1) 

 
𝑉𝑎𝑟 𝑍(𝑥) = �𝑒  

𝜎𝑠𝑘
2 (𝑥)
𝜎2 − 1 � 𝑒2𝑙𝑛�𝑧

∗(𝑥 )�+
𝜎𝑠𝑘
2 (𝑥)
𝜎2  

=  𝑧∗(𝑥 )2 × 𝑒  
 𝜎𝑠𝑘
2 (𝑥)
𝜎2 �𝑒  

 𝜎𝑠𝑘
2 (𝑥)
𝜎2 − 1�. 

 

 

(2.2) 

Obviously, both mean and variance  (𝐸𝑍(𝑥),𝑉𝑎𝑟 𝑍(𝑥)) are significantly 
different from the simple kriging mean and variance (𝑧∗(𝑥 ), 𝜎𝑠𝑘2 (𝑥)), so the 
conditions of the simple kriging principle are not satisfied and the reproduction of the 
covariance is not guaranteed.  Moreover, the variance is proportional to the squared 
kriging prediction at the given point, which is explained by the proportional effect 
inherent to a lognormal variable (Chilès & Delfiner 2012). Summarizing this results, 
the DSS 1 algorithm does not respect the simple kriging principle (Journel 1993) on 
which it is based.  

In contrast to DSS 1, the simulation algorithm DSS-HR (Oz et al. 2003), 
respects by construction the simple kriging principle, which guarantees the block-to-
block covariance reproduction.  As in the case of DSS 1, DSS-HR assumes that the 
local CDFs of 𝑍(𝑥) depend only on the simple kriging mean and variance at a 
specific location. The algorithm consists in building a table of conditional CDF for 
𝑍(𝑥) in a constructive manner presented in (Oz et al. 2003), indexing this family of 
distributions by their mean and variance and using the distribution with correct mean 
and variance at every step of the sequential simulation.  By construction, the indexed 
table of local distributions of 𝑍(𝑥) is congruent with a table of Gaussian distributions.  
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When transferring the data from point to block support, it is expected that the 
mean value of the block is determined by the mean value of the point-support 
random field and the variance is determined by the point-support covariance and the 
block geometry (in the absence of conditioning data). DSS-HR is proven to preserve 
the mean of the simulated property and to reproduce the correct block-to-block 
covariance, despite the fact that the constructive manner of generating the set of 
conditional CDFs has certain theoretical drawbacks. DSS-HR implies marginal 
distributions for grid blocks which are not necessarily compatible with a random field 
distributed on point support. Thus, for any spatial random field 𝑍(𝑥) with a covariance 
function 𝐶(𝑥, 𝑥′) and with a finite integral range 𝐴 = ∫ 𝐶(𝑥, 𝑥′)𝑅3 𝑑𝑥𝑑𝑥′  due to the 
central limit theorem (CLT) the distribution of the average 𝑍(𝑣) of the block 𝑣 tends to 
a Gaussian distribution with mean equal to the global mean, and variance 
1

|𝑣|2 ∫ ∫ 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′𝑣𝑣  which decreases as the block size becomes larger. This 

property of the average value is often expected by the practitioners; the general proof 
of this statement goes beyond the scope of the present work. The compatibility with 
the CLT for DSS-HR does not follow straightforward from the simulation algorithm. In 
order to test the compatibility of DSS-HR with the CLT, one should investigate the 
dependence of the marginal distribution of a block depending on the size of this 
block.  Algorithm DSS-HR implicitly assumes by construction that the unconditional 
marginal distribution of every block is contained in the pre-computed CDF table along 
with conditional distributions. It is also assumed that this marginal distribution is 
determined solely by the global mean and the variance of the block and this fact is 
used in the first step of the sequential simulation procedure. 

When performing multiple unconditional simulations of a reservoir model with 
a given CDF table, one can expect that the marginal distribution of a given block 
coincides with the distribution from the CDF table which corresponds to the global 
mean and unconditional variance of that block only if the table of conditional 
distributions defines a valid multivariate distribution function. For the test it is 
assumed that the corresponding distribution from the table is observed. In practice, 
the observed distribution depends on implementation details, particularly regarding 
the neighborhood used for the computation of the kriging predictor and the kriging 
variance. The marginal distribution predicted by DSS-HR for a given block is now 
investigated. It should be noted that, when simulating a single block, the conditional 
CDF table always defines a valid multivariate distribution function. In this particular 
case, the assumption above is valid. 

Consider a simulation of a RV with a point-support marginal distribution 
defined by a CDF at Figure 2-1(a).  This function is selected for the test, since it has 
a marked difference in behavior in the neighborhood of (6, 0.25), the abscissa of 
which corresponds to the mean of the RV defined by this CDF. The mean and 
variance of the CDF at Figure 2-1 (a) are equal to 6 and 4 respectively. The 
distribution under concern enables to illustrate how the properties of the input CDF 
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are preserved by DSS-HR for all the generated distributions. It should be noted that 
the covariance model is not important for this test, since the block marginal 
distributions provided by DSS-HR and DGM can be parameterized if the block mean 
and variance are known.  Figure 2-1(b) illustrates the CDF for a block with the 
variance 0.4 implied by DSS-HR for the point-support distribution from Figure 2-1(a) 
compared to CDF implied by DGM and to the normal distribution.  

 
(a) (b) 

Figure 2-1. Marginal distributions for (a) point support and (b) selected block support 
for DSS-HR, DGM 2 (see Chapter 3) and Gaussian distribution.  

Figure 2-1(b) shows that even for a variance reduction factor 10 (ratio of the 
point-support variance to the block-support variance) the block marginal distribution 
proposed by DSS-HR preserves the shape of the input distribution in the 
neighborhood of (6, 0.25) and does not converge to the normal distribution. This 
behavior can be explained by the constructive manner of generating the table of 
CDFs. This effect is less noticeable for smooth CDF functions. 

DGM 2
DSS-HR
Normal
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(a) (b) 

  
Figure 2-2. Scatter plot of pairs (mean, variance) for (a) Gaussian distributions and 

(b) corresponding local distributions generated by DSS-HR algorithm 

A table of conditional distributions was generated for this test according to the 
DSS-HR algorithm.  Figure 2-2 illustrates the link between the space of the Gaussian 
distributions and the space of the distributions constructed for the test. The example 
provided on Figure 2-1(a-b) shows that the applicability of DSS-HR should be tested 
in every particular problem and that it is unlikely that the proposed constructive 
algorithm could be used as a change of support model in the general case, especially 
for random fields with a non smooth CDF. In addition to this, DSS-HR is limited by 
the sequential simulation principle and suffers from the weakness of all the sequential 
simulation algorithms – necessity of using a limited neighborhood in the simulation. 
As it is demonstrated in Chapter 3, using local neighborhoods in the sequential 
simulation leads to underestimation of the theoretical covariance between the blocks. 
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Chapter 3: Discrete Gaussian model for 
Unstructured Grids 
Résumé 

Une nouvelle méthode de simulation sur les maillages non-structurés est 
présentée – la simulation avec le modèle Gaussien discret. Deux versions théoriques 
de ce modèle sont décrites – DGM 1 et DGM 2, la différence entre ces deux versions 
étant démontrée de façon analytique et avec un exemple synthétique de gisement. 
Une solution au problème de conditionnement des simulations est proposée, les 
aspects avancés des simulations géostatistiques sont discutés – à savoir le 
traitement des variables non-additives et des variables co-régionalisées. 

3.1  Introduction 
The Discrete Gaussian Model was originally proposed by Matheron (1976a) as 

a solution for approximate computation of transfer functions (conditional laws of 
blocks within a panel). The problem considered by Matheron (1976a) was of practical 
importance for the mining industry – each block within a panel is dispatched either to 
waste or to the mill. In order to predict the future production, It is important to assess 
the number and the average grade of the blocks within a panel whose grade is higher 
than the selected cut-off grade value. Emery (2007) investigates the properties of the 
DGM along with other change of support models (Hermitian, Laguerrian) and 
provides a simplified method for deriving the change of support coefficient and 
covariance between the transformed variables. 

The application of DGM to geostatistical simulations is due to (Emery 2009; 
Emery & Ortiz 2011). In their papers authors apply DGM in the form stated in (Emery 
2007) to the problem of geostatistical simulations on regular grids. As demonstrated 
by authors, DGM enables reducing the problem of geostatistical simulation of a 
continuous parameter on a regular grid with change of support effect to a problem of 
simulating a multivariate Gaussian random field and applying appropriate 
transformation functions. The main difference in application of DGM in (Emery 2009) 
and (Emery & Ortiz 2011) consists in using either turning bands or spectral simulation 
for generating the multivariate Gaussian random vectors. In this thesis we separate 
the theoretical model for geostatistical simulations on unstructured grids from the 
implementation of the simulation algorithm. The theoretical models developed in this 
thesis rely on the multivariate Gaussian random fields and thus the simulation 
algorithm requires simulating realizations of multivariate Gaussian random vectors. 
As it is demonstrated further in this chapter, various methods can be used as 
subroutines for simulating multivariate Gaussian random vectors which leads to 
different accuracy for the reproduction of the desired statistics. 
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A generalization of DGM for samples of different sizes was given in Brown et 
al. (2008), which presents a theoretical framework for incorporating multiple scale 
samples data on a regular grid. In Brown et al. (2008),  an approach based on 
graphical models representation for grid blocks and samples and on the DGM variant 
from  Emery (2007) is proposed. An extended version of the conditional 
independence assumption is then used to derive the covariance matrix between the 
block-transformed variables.  This approach is deemed to be applicable in the mining 
industry, whereas this thesis proposes an approach for incorporating point-support 
distribution and spatial variation information on geological models with varying block 
size which is a common problem in petroleum reservoir engineering. 

This thesis presents a generalization for unstructured grids of the classical 
DGM in the form given in (Chilès & Delfiner 2012). The random field 𝑍(𝑥) =  𝜑(𝑌(𝑥)) 
with covariance function 𝐶(𝑥, 𝑥′) is considered to be an anamorphosis (i.e., a strictly 
monotonic transform) of a Gaussian random field 𝑌(𝑥) with covariance function 
𝜌(𝑥, 𝑥′). Let {𝜑𝑖, 𝑖 = 0 …∞} denote the coefficients of decomposition of 𝜑(𝑦) in the 
basis of normalized Hermite polynomials {𝜒𝑖(𝑦), 𝑖 = 0 …∞} 

 𝜑(𝑦) =  � 𝜑𝑖𝜒𝑖(𝑦)
∞

𝑖=0
, (3.1) 

The covariance functions 𝐶(𝑥, 𝑥′) and 𝜌(𝑥, 𝑥′) are related through Eqn.(3.2), 
see (Chilès & Delfiner 2012) 

 𝐶(𝑥, 𝑥′) =  �𝜑𝑖2𝜌(𝑥, 𝑥′)𝑖
∞

𝑖=1

 
(3.2) 

 

A subscript 𝑥 will further denote a uniformly distributed randomized location of 
a point in the block 𝑣 containing this point. For 𝑥 belonging to a specific block 𝑣𝑝, the 
random variable 𝑌(𝑥) is denoted 𝑌𝑝.  

The key assumption of the generalized DGM is that the average values of the 
blocks �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� are block-dependent transforms of random variables with 
standard Gaussian distribution 

 𝑍�𝑣𝑝� =  𝜑𝑣𝑝(𝑌𝑣𝑝), 𝑝 =  1 …𝑁. (3.3) 

A positive real number 𝑟𝑝  called the block change of support coefficient is 
associated with each block  𝑣𝑝. By definition 𝑟𝑝 is the correlation coefficient between 
𝑌𝑣𝑝 and 𝑌𝑝 

 𝑟𝑝 = 𝑐𝑜𝑣(𝑌𝑣𝑝 ,𝑌𝑝). (3.4) 

The success of applying the DGM to the problem of geostatistical simulations 
on unstructured grids is due to the high quality of reproduction of the true marginal 
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distributions of the block values 𝑍(𝑣) = 1
|𝑣|∫ 𝑍(𝑥)𝑑𝑥𝑣 . As demonstrated analytically by 

Matheron (1985), DGM provides a second order accurate approximation of the 
density of the average value 𝑍(𝑣) in the case of a multigaussian diffusion-type 
random fields, when the support 𝑣 is constant throughout the domain.  

The advantage of DGM relative to DSS algorithms is the compatibility with the 
central limit theorem (CLT). Indeed, when the change of support coefficient 𝑟𝑣 for a 
block 𝑣 is small, the block transformation function 𝜑𝑣(𝑦) can be written in the 
following form (Chilès & Delfiner 2012) 

 𝜑𝑣(𝑦) =  𝜑0 + 𝜑1𝑟𝑣𝑦 +  ∆(𝑟𝑣), (3.5) 

where ∆(𝑟𝑣) is small relative to 𝑟𝑣. And thus for small values of 𝑟𝑣 

 𝑍(𝑣) ≈ 𝜑0 + 𝜑1𝑟𝑣𝑌𝑣. (3.6) 

We start presentation of two generalizations (DGM 1 and DGM 2)  of DGM 
from considering unconditional simulations. The additional assumptions required for 
conditioning will be considered after. 
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3.2  Discrete Gaussian model 1 
In order to derive the theoretical model for the unconditional simulation 

�𝑍�𝑣𝑝�, 𝑝 = 1 …𝑁𝑏� of a random field 𝑍(𝑥) with marginal distribution 𝐹(𝑧) and 
covariance function 𝐶(𝑥, 𝑥′) on an unstructured grid �𝑣𝑝,𝑝 = 1 …𝑁𝑏�, assumption 

about existence of underlying Gaussian random vector �𝑌𝑣𝑝 ,𝑝 = 1 …𝑁𝑏� is done as 
on Eqn. (3.3). The first generalized Discrete Gaussian Model (DGM 1) requires two 
main hypotheses, which are sufficient to produce unconditional simulations on 
unstructured grids that respect marginal and bivariate distributions: 

i. The vector (𝑌𝑣1 , …𝑌𝑣𝑁𝑏) is stationary multivariate Gaussian; 

ii. For every block 𝑣𝑝 the joint distribution of 𝑌𝑣𝑝 and the value at the random 
point within the block 𝑌𝑝 is bivariate Gaussian with correlation coefficient 𝑟𝑝. 

It is shown below, that the above assumptions are sufficient to convert the 
initial problem to a problem of generating unconditional Gaussian fields and deriving 
all the unknown parameters. Using Cartier’s relation (Chilès & Delfiner 2012) p. 441 

 𝐸�𝑍�𝑥��𝑍(𝑣)] = 𝑍(𝑣) (3.7) 

assumption (ii) enables the derivation of the block-specific transform functions 𝜑𝑣𝑝(𝑦) 
for every block 𝑣𝑝  

 𝜑𝑣𝑝(𝑦) =  � 𝜑𝑖𝑟𝑣𝑝
𝑖 𝜒𝑖(𝑦)

∞

𝑖=0
, (3.8) 

where {𝜒𝑖(𝑦), 𝑖 = 0 …∞} is the basis of normalized Hermite polynomials.  This 
decomposition of 𝜑𝑣𝑝(𝑦) in the Hilbertian basis allows deriving the change of support 
coefficients for blocks. Indeed, since {𝜒𝑖(𝑦), 𝑖 = 0 …∞} are orthogonal with respect to 
the scalar product induced by the density of the normal distribution 𝑔(𝑦), one can 
derive it using the point-support covariance 𝐶(𝑥, 𝑥′) of 𝑍(𝑥) and properties of 
isofactorial models (Chilès & Delfiner 2012; Rivoirard 1994) 

 𝑉𝑎𝑟 �𝑍𝑣𝑝� =  
1

|𝑣�|2
� � 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′ =  � 𝜑𝑖2𝑟𝑝2𝑖

∞

𝑖=0𝑣𝑣
, (3.9) 

which leads to a polynomial equation on 𝑟𝑝. 

Assumption (i) permits to derive the covariance matrix for the random vector 
(𝑌𝑣1 , …𝑌𝑣𝑁 ). Indeed, the covariance 𝑅𝑝𝑞 between any two variables 𝑌𝑣𝑝 and 𝑌𝑣𝑞 can 
be determined through the following identity in the same manner as in Eqn. (3.9) 

 𝑐𝑜𝑣 �𝑍𝑣𝑝 ,𝑍𝑣𝑞� =
1

|𝑣𝑝�||𝑣𝑞�|
� � 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

𝑣𝑞𝑣𝑝
=  �𝜑𝑖2𝑟𝑝𝑖𝑟𝑞𝑖𝑅𝑝𝑞𝑖

∞

𝑖=1

. (3.10) 
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The equations above enable the determination of the change of support 
coefficients �𝑟𝑝,𝑝 = 1 …𝑁𝑏� and of the correlation coefficients �𝑅𝑝𝑞 ,𝑝 = 1 …𝑁𝑏 , 𝑞 =
1 …𝑁𝑏}. This converts the problem of generating a non-stationary random vector 
{𝑍(𝑣𝑖), 𝑖 = 1 …𝑁𝑏} to a classical problem of generating a multivariate Gaussian 
random vector {𝑌𝑣𝑝 ,𝑝 = 1. .𝑁𝑏} with a given covariance matrix which can be solved by 
classical methods for simulating multivariate Gaussian random vectors (e.g. SGS). 
Application of block-specific transformation functions 𝜑𝑣𝑝(𝑦) provides a realization of 

{𝑍�𝑣𝑝�, 𝑝 = 1 …𝑁𝑏}.  

The accuracy of reproduction of the correct marginal distribution was 
demonstrated analytically for small change of support (Matheron 1985). For practical 
applications, results of numerous Monte Carlo simulations are available (Chilès 2014; 
Chilès & Delfiner 2012). The advantage of DGM 1 is the correct reproduction of the 
covariance between different blocks. Indeed, using the block-specific transformation 
functions and covariance between the components of the Gaussian vector derived 
above leads to the theoretically correct block to block covariance defined by the 
covariance function 𝐶(𝑥, 𝑥′)  

 𝑐𝑜𝑣 �𝑍𝑣𝑝 ,𝑍𝑣𝑞� =
1

|𝑣𝑝�||𝑣𝑞�|
� � 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

𝑣𝑞𝑣𝑝
, (3.11) 

by the construction method of covariance table {𝑅𝑝𝑞,𝑝 = 1 …𝑁𝑏 , 𝑞 = 1 …𝑁𝑏}. 
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3.3  Discrete Gaussian model 2 
This model is a generalization of another version of  the DGM presented in  

(Emery 2007; Rivoirard 1994). At the cost of a third, more restrictive, assumption 
which will be detailed below, it provides a simpler approach for computing the change 
of support coefficients and covariance relations as compared to DGM 1. Since adding 
a more restrictive assumption implies that the model is less likely to fit the data, the 
price to pay is in some cases less accuracy in reproducing the histogram of the 
simulated property (Chilès 2014; Chilès & Delfiner 2012). There are also some 
theoretical consistency drawbacks that will be discussed. The additional assumption 
characterizing DGM 2 is:  

iii. for any block 𝑣 and two independent randomized locations 𝑥 and 𝑥′ within 𝑣, 
the joint distribution of 𝑌(𝑥) and 𝑌(𝑥′) is bivariate Gaussian.  

One can derive from assumption (iii) the following relation for 𝑌𝑣 and 𝑌(𝑣) =
1

|𝑣|∫ 𝑌(𝑥)𝑑𝑥𝑣  for every block (Chilès & Delfiner 2012; Emery 2007) 

 𝑌(𝑣) = 𝑟𝑣𝑌𝑣, (3.12) 

which provides a simple formula for computing the change-of-support coefficient 𝑟𝑣 
for every block 𝑣 (Emery 2007) 

 𝑉𝑎𝑟�𝑌(𝑣)� =
1

|𝑣||𝑣|
��𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

𝑣𝑣
= 𝑟𝑣2. (3.13) 

In an analogous manner, for any blocks 𝑣𝑝 and 𝑣𝑞, the covariance 𝑅𝑝𝑞 
between 𝑌𝑣𝑝 and 𝑌𝑣𝑞  is 

 𝑅𝑝𝑞 =  
1
𝑟𝑝𝑟𝑞

𝑐𝑜𝑣 �𝑌�𝑣𝑝�,𝑌�𝑣𝑞�� =  
1
𝑟𝑝𝑟𝑞

1
�𝑣𝑝��𝑣𝑞�

� � 𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣𝑞𝑣𝑝

. (3.14) 

Using covariance matrix {𝑅𝑝𝑞 ,𝑝 = 1 …𝑁𝑏 ,𝑞 = 1 …𝑁𝑏} an unconditional 
realization of vector  (𝑌𝑣1 , …𝑌𝑣𝑁𝑏  )  can be generated.  

The theoretical cost of the additional assumption of DGM 2 is relatively high. It 
is not obvious, whether there exists a random field 𝑌(𝑥) for which the joint distribution 
of the values at two random locations �𝑌�𝑥�,𝑌�𝑥′�� is bivariate Gaussian.  Even in 
the case of a multivariate Gaussian 𝑌(𝑥), the joint distribution of the vector  
�𝑌�𝑥�,𝑌�𝑥′�� is a mixture of bivariate Gaussian distributions with different correlation 
coefficients, which is known to be non-Gaussian, but Hermitian bivariate distribution. 
Indeed, suppose 𝑥 and 𝑥′ belong to the same block 𝑣. Due to the uniform distribution 
and to the independence of the randomized locations, it follows 
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𝑃�𝑌�𝑥� ≤ 𝑦1,𝑌�𝑥′� ≤ 𝑦2�

=
1

|𝑣|2 � �𝑃(𝑌(𝑥) ≤ 𝑦1,𝑌(𝑥′) ≤ 𝑦2)𝑑𝑥𝑑𝑥′
𝑣𝑣

= ∫ 𝐺𝜌(𝑦1,𝑦2)𝜔(𝑑𝜌), 

(3.15) 

where 𝐺𝜌denotes the bivariate standard Gaussian distribution with correlation 

coefficient 𝜌 and 𝜔(𝑑𝜌) denotes the density of 𝜌. This formula proves that the joint 

distribution of  �𝑌�𝑥�,𝑌�𝑥′��  is a mixture of standard Gaussian distributions with 
different correlation coefficients, which, according to (Matheron 1976b) is a Hermitian 
law with coefficients �𝑇𝑖 = ∫ 𝜌𝑖𝜔 �𝑑𝜌� , 𝑖 = 0 … + ∞ �. In DGM 2 these coefficients are 

approximated as �𝑇𝑖 ≈ 𝑟𝑣2𝑖, 𝑖 = 0 … + ∞� with the block change of support coefficient  
𝑟𝑣. 

Moreover, for every block 𝑣 DGM 2 provides two different methods for 
computing the change of support coefficient 𝑟𝑣, using Eq. (3.9) and Eq. (3.13), which 
in general provide different results (Chilès 2014). Whether the simpler approach for 
determining the model parameters of DGM 2 leads to a correct reproduction of the 
correlation between blocks was theoretically investigated. The following result was 
obtained. 

Proposition 1  
The covariance between the block average values 𝑍(𝑣𝑝) and 𝑍�𝑣𝑞� computed 

with DGM 2 is biased relative to the theoretical covariance 1
|𝑣𝑝�||𝑣𝑞�|

∫ ∫ 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′𝑣𝑞𝑣𝑝
 

between blocks 𝑣𝑝 and 𝑣𝑞.  

The proof of this proposition is provided in Appendix A. The bias is introduced 
due to the additional theoretical assumptions of DGM 2.  In Emery (2009), the author 
presents an algorithm for geostatistical simulations on regular grids using DGM 2.  
The result provided in Appendix A evaluates the bias in covariance implied by this 
algorithm in the particular case of two identical blocks on a regular grid. The above-
mentioned bias is illustrated in the following section. However, in the practical 
applications of petroleum industry, the range of the covariance function is usually 
significantly larger than the grid block size along different dimensions (in the area of 
main interest at least). Hence, the accuracy of DGM 2 can be considered as 
sufficient.  

  



26 

 

3.4 Model testing 
In order to demonstrate the application of DGM 1 and DGM 2 to geostatistical 

simulations on unstructured grids, a two-dimensional Voronoï polygon grid of 20x20 
km2 is studied. The grid consists of 3,546 Voronoï polygon cells and includes 10 local 
grid refinement regions (LGR) in the areas of potential wells placement locations, the 
bounding box size for the smallest and the biggest blocks sizes are 36x42 and 
1,035x1,052 m respectively. Figure 3-1 illustrates the studied grid highlighting the 
volumetric differences between the blocks. 

 

Figure 3-1. The volume distribution of the studied grid. 4 blocks near the right border 
were excluded from computations; their volume is set to 0. White points indicate the 

wells locations. 

A simulation of a lognormal variable 𝑍(𝑥) =  𝜑(𝑌(𝑥)) with logarithmic 
parameters (0, 1) on the block support is considered using DGM 1, DGM 2 as well as 
conventional simulation on a fine regular grid with upscaling approaches. The 
covariance  𝜌(ℎ�) of the normal score transform variable 𝑌(𝑥) is considered to be 
known. For this test the isotropic spherical covariance with a small range of 250 m 
was used in order to test the accuracy of DGM 1 and DGM 2 for a variety of ratios 
between covariance range and block size. The covariance 𝐶(ℎ�) of 𝑍(𝑥) is computed 
numerically through formula (3.2).  

Realization both of a conventional simulation and of a simulation with a DGM 
are illustrated on Figure 3-2(a-b). SGS was used for simulating the multivariate 
Gaussian random vectors. The results for DGM 1 and DGM 2 are visually similar, 
only the result for DGM 2 is provided. Based on 50,000 unconditional simulations, the 
observed distributions of the block values as well as the descriptive statistics of the 
simulated values were analyzed. The results obtained demonstrate satisfactory 
accuracy in approximating the real distribution of the average block values with DGM 
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1 and DGM 2 predicted densities. For small blocks the densities provided by DGM 1 
and DGM 2 are undistinguishable on the plot. For the largest block in the model the 
comparison is given on Figure 3-3. 

a) 

 
b) 

 
Figure 3-2. Simulation of a lognormal variable on a Voronoï polygon grid for spherical 
𝜌(ℎ) with range 250m. a) using fine scale regular grid and upscaling. b) using DGM 2 
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Figure 3-3. Observed density for the value of the largest block in the grid, compared 
to theoretical predictions of DGM 1 and DGM 2, based on 50,000 simulations 

Investigating the descriptive statistics of the block values enables to highlight 
the practical difference between application of DGM 1 and DGM 2. The variance of 
every block in the model was estimated from the sample and compared to the 
theoretical value of the block variance. Figure 3-4 demonstrates the mismatch 
�𝐶(𝑣, 𝑣) − �̂�(𝑣, 𝑣)� of the estimated variance from the theoretical variance depending 
on the block volume. 

As can be seen on Figure 3-4, the difference between the estimated and 
theoretical variance for the realizations produced by DGM 1 approach oscillates 
around 0, whereas DGM 2 approach demonstrates a bias in the variance which is 
derived analytically in Appendix A. It should be noted that the relative value of the 
bias does not exceed 5% of the a priori variance of 𝑍(𝑥). When the covariance range 
exceeds significantly the block dimensions, which is often encountered in practical 
applications, the difference between DGM 1 and DGM 2 can be neglected. A 
realization of the previous test with a covariance function range of 8 km is given on 
Figure 3-5(a-b). 
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Figure 3-4. Mismatch of the estimated variance from the theoretical variance of the 
block defined by 𝐶(ℎ�) 

a) 
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b) 

 
Figure 3-5. Simulation with a spherical covariance 𝜌(ℎ) with range 8 km using a) fine 

scale regular grid and upscaling b) DGM 2 

Let us consider a more rigorous test for unconditional simulations on 
unstructured grids with DGM. Let us consider that the grid on Figure 3-1 is a 3D grid 
with the thickness of 40 meters (in order to introduce complexity into covariance 
computations), see Figure 3-6.  

 

Figure 3-6. 3D grid with 10 local refinement zones. Vertical zoom factor 20. 

The reproduction of all block to block theoretical covariances 𝐶�𝑣𝑝 , 𝑣𝑞� can be 
tested. We use 3 different input covariance models 𝜌�ℎ�� in 3D for the Gaussian 
variable 𝑌(𝑥) which is a normal score transform of 𝑍(𝑥): 

1) Short range 𝜌1(ℎ�) - spherical covariance with ranges (250m, 250m, 
10m); 
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2) Long range 𝜌2(ℎ�) - spherical covariance with ranges (5km, 5km, 0.2km); 
3) Double structure 𝜌3(ℎ�) – 0.75 Sph (250m, 250m, 10m) + 0.25 Sph(5km, 

5km, 0.2km). 

Case 3 represents a mixture of cases 1 and 2. The normalized to unit 
covariance functions  𝜌1(ℎ) and 𝜌3(ℎ) as well as the corresponding 𝐶1(ℎ) and 𝐶3(ℎ) 
are depicted on Figure 3-7.    

 

Figure 3-7. Normalized covariance functions 𝜌1(ℎ�), 𝜌3(ℎ�) (left axis) and 𝐶1(ℎ),𝐶3(ℎ) 
(right axis)  used for the test.. 

For each input covariance 𝜌𝑖�ℎ��, 𝑖 = 1,2,3 of 𝑌(𝑥), the corresponding 
covariance 𝐶𝑖(ℎ) of 𝑍(𝑥) is computed. Given 𝐶𝑖(ℎ) the full matrix of the block to block 
covariance 𝐶�𝑣𝑝, 𝑣𝑞�,𝑝 = 1 …𝑁𝑏 , 𝑞 = 1 …𝑁𝑏 is computed and stored (since the matrix 
is symmetric and sparse, only pertinent values are stored). Multiple simulations are 
produced with DGM 1 and the covariance between each pair of blocks is estimated. 
The Gaussian random vector �𝑌𝑝,𝑝 = 1 …𝑁𝑏� is produced with SGS, taking 50 closest 
neighbors for the small range covariance 𝐶1(𝑥, 𝑥′) and 200 neighbors for the other 
two cases. For case 1 – small range covariance 50000 simulations were produced, 
for cases 2 and 3, due to use of a significantly larger simulation neighborhood the 
number of produced realizations was reduced to 20000.  Three different realizations 
produced with DGM 1 for small range, long range and double structure input 
covariance model are demonstrated on Figure 3-8.  

The expected spatial behavior of the model is visually reproduced on Figure 
3-8(a-c). Figure 3-8a,c demonstrate more spatial variation in refinement zones and 
less variation in the zones of large blocks. Spatial features of the expected size (5 × 5 
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km) are visible on Figure 3-8b,c. Figure 3-8c reproduces both the fine scale 
variations in the refinement zones and the large scale heterogeneities.  

  
a) b) 

 
c) 

Figure 3-8. Simulations on an unstructured 3D grid for a) covariance with small range 
𝐶1(ℎ) b) covariance with long range 𝐶2(ℎ) and c) double structure covariance 𝐶3(ℎ) 

The scatter plots of the estimated covariance values versus the theoretical are 
demonstrated on Figure 3-9a-c (zero theoretical covariances are ignored). It is visible 
that the DGM 1 – based simulation method reproduces the block to block covariance 
for all 3 types of input covariance functions. For the purpose of this test, all block to 
block covariances were computed through approximating each block of the cell with 
50 Sobol’ quasi-random points (see Chapter 5). Figure 3-9b,c shows that the 
dispersion covariance of the estimates increases with the increase of the theoretical 
covariance value. This behavior is in line with the theoretical model used – the most 
correlated blocks on the grid are the smallest ones, for which the simulated values 
are more dispersed.  

The different neighborhood sizes (20 for small range and 200 for other cases) 
for this test were chosen by a trial method. It was observed that for a small range 
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covariance 𝐶1(ℎ�) using 20 neighbors is sufficient in order to reproduce block to block 
covariances, whereas significantly larger neighborhood is required for the long range 
covariance functions. Figure 3-10 illustrates the scatter plot of the observed block 
variances versus theoretical block variances for 𝐶3(ℎ�). The results are obtained from 
20,000 unconditional simulations.  Figure 3-10a shows that when 20 neighbors are 
used for the double structure covariance, the block variance is systematically 
underestimated. Since by construction of the theoretical model DGM 1 respects the 
block to block covariance, the source of underestimation is the SGS procedure which 
was used to simulate multivariate Gaussian random vectors. This underestimation 
can be corrected with increasing the neighborhood size; indeed, Figure 3-10b shows 
that when 200 neighbors are used the underestimation diminishes. However, it 
remains noticeable, especially for large values of block variance. 

  
a) b) 

 
c) 

Figure 3-9. DGM 1. Scatter plots of observed covariance versus theoretical 
covariance for a) covariance with small range 𝐶1(ℎ�)b) covariance with long range 

𝐶2(ℎ�) and c) double structure covariance 𝐶3(ℎ�) 

This problem arises due to the fact that only a limited number of neighbors 
were used in SGS. Although the number of neighbors used (200) is relatively large 
for this type of problems (it is common to use less than 50 neighbors in practical 
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applications of petroleum industry, and sometimes only the cells which share a 
common side are used as neighbors), a systematic deviation from the theoretical 
values can be observed. The destructive effect for the model statistics due to the 
limited SGS neighborhood was noted in Emery (2004b) for the case of spherical 
variogram in 2D. As demonstrated in the same paper, increasing the neighborhood 
size improves the quality of the simulation. Except for special cases, such as 
simulating with exponential covariance function (Chilès & Delfiner 2012), there does 
not exist a theoretical relationship between the size of the neighborhood which 
should be used in SGS and the type of the simulated covariance model. The impact 
of the limited simulation neighborhood can be assessed as proposed by Emery and 
Peláez (2011).  

  
a) b) 

 
c) 

Figure 3-10. Scatter plots of sample variance versus theoretical for 𝐶3(ℎ�) for a) SGS 
with 20 neighbors b) SGS with 200 neighbors c) Gibbs Propagation algorithm with 50 

scans. 

This deviation from the theoretical values of block variance can be eliminated 
if a more reliable method for generating Gaussian random vector �𝑌𝑝,𝑝 = 1 …𝑁𝑏� is 
used. One of the alternatives of the SGS for simulating multivariate Gaussian random 
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vectors with a given correlation matrix is using iterative algorithms based on Markov 
chains, such as Gibbs Sampler (Geman & Geman 1984). A particularly useful 
implementation of a Gibbs Sampler was proposed by Lantuéjoul and Desassis (2012) 
– the Gibbs Propagation algorithm. This implementation of Gibbs Sampler does not 
require any matrix inversions and is very optimal in terms of memory consumption. 
The Gibbs Propagation algorithm performs a number 𝑀 of scans, at each scan 
iterating through all 𝑁𝑏 components of the simulated Gaussian random vector. For 
our tests we use 𝑀 = 50, which gives a good quality of statistics reproduction. A 
discussion of the required number of scans can be found in (Lantuéjoul & Desassis 
2012). As demonstrated by the authors, the number of scans 𝑀 can be further 
significantly reduced (up to a factor 4) by grouping the components of the simulated 
vector in blocks and updating the resulting blocks instead of individual components. 
Use of the Gibbs Propagation algorithm enables to abandon the problem of the 
simulation neighborhood of the SGS algorithms, since all components of the 
simulated vector are taken into account. A simulation produced with Gibbs 
Propagation algorithm is presented on Figure 3-11. In this test both for the Gibbs 
Propagation algorithm and for the SGS the computation time required to generate a 
single realization is around 1 minute. 

 

Figure 3-11. Simulation for double structure covariance 𝐶3(𝑥, 𝑥′) produced with 
𝑀 = 50 scans of Gibbs Propagation algorithm. 

As it is seen on Figure 3-10c, using the Gibbs Propagation algorithm with 50 
scans provides robust reproduction of the block to block covariance. Practical 
application of Gibbs Propagation algorithm for industrial size models (𝑁𝑏 > 106) is a 
challenging task. However, geostatistics is often applied in industries where the 
computational resources are abundant, as in mining, petroleum, weather forecasting 
and other industries. A decent programming implementation of the Gibbs 
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Propagation algorithm coupled with sufficient computational resources can lead to a 
robust and practical method for simulating random fields of large sizes. In addition, 
the fact that any suitable method can be applied for generating a multivariate 
Gaussian random vector when performing geostatistical simulations with DGM 
demonstrates the universality of the DGM-based simulation approach since it is not 
linked to the sequential simulation paradigm in contrast to DSS algorithms.  

In order to demonstrate the reproduction of the marginal block distribution in 
the case of 3D simulations, a mini-model simulation for a single block is performed. 
We choose a medium – sized block from the grid with dimensions [550, 530, 40]m 
(see Figure 3-12) and perform mini-models simulations for this block for the case of 
the double structure covariance 𝐶3(ℎ�).  

 

Figure 3-12. Extracted block for mini-model tests. Block dimensions [550, 530, 40]m. 

The bounding box of the block is discretized with a regular grid with steps 
15 × 15 × 1𝑚 and 10000 simulations with SGS are performed on this regular grid 
with input standard lognormal distribution and covariance function 𝐶3(ℎ�) (see Figure 
3-13). The total number of blocks in the fine scale regular grid is 170*230*40 = 
1,564,000 blocks. Each of 10000 fine scale simulations is upscaled and the 
histogram of the observed 𝑍(𝑣) is computed. The theoretical block density is also 
computed with DGM 1 and DGM 2, where for the purpose of covariance computation 
the block is approximated with 50 Sobol’ quasi-random points (see Chapter 5:  5). 
The difference between the DGM1 and DGM2 results is visually negligible, so only 
the results for DGM 1 are shown. The empirical distribution of 𝑍(𝑣) produced by the 
mini-model simulations is compared with the distribution obtained in the previous test 
when simulating with DGM 1 on the full grid with covariance 𝐶3(ℎ�). For DGM 1 
simulations the Gaussian random field is generated with SGS with 200 closest 
neighbors. In order to have the same number of simulated values in both 
approaches, only first 10,000 of previously simulated 20,000 DGM1 realizations are 
considered.   



37 

 

 
a) 

  
b) c) 

Figure 3-13. Different mini-model realizations for the selected block. The 
discretization steps are 15 × 15 × 1𝑚. The white line indicates the contour of the 

Voronoï polygon block. 

The observed empirical density of the 𝑍(𝑣) produced with mini models and 
with DGM 1 are compared on Figure 3-14. A perfect reproduction of the block 
distribution with DGM is observed; both mini-model and DGM 1 honor the 
theoretically predicted density function (which is undistinguishable for DGM 1 and 
DGM 2). 
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Figure 3-14. Observed empirical density for mini-model and DGM1 simulations. Black 
line indicates the theoretical (DGM1 and DGM 2) density function. 

Closer analysis of results on Figure 3-14 reveals some fluctuations in the 
observed statistics. The mean and variance of 𝑍(𝑣) produced with mini-models are 
equal 1.61 and 0.84 respectively. Mean and variance observed for DGM 1 
simulations are 1.64 and 0.76 respectively, the change of support coefficient for the 
block is 𝑟 = 0.5. The theoretical mean and variance when approximating this block 
with 50 Sobol’ points is 1.64 and 0.79. In case of approximating with 1000 Sobol’ 
points, these values are 1.64 and 0.74 respectively; 𝑟 = 0.49. The observed small 
difference of the variance produced with mini-models is explained with the low quality 
of approximating the block through a regular mesh (see Chapter 5) and 
imperfectness of the SGS simulation algorithm. 
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3.5 Conditioning the simulations on unstructured grids 
Although it is possible to develop a DGM-based theoretical model for 

conditional simulations, separating the problem into unconditional simulation followed 
by conditioning to data procedure enables to give simpler workflow presentation. 
Unconditional simulations generated with DGM1 and DGM2 can be conditioned with 
kriging. Conditioning with kriging is well known for the regular grids (Chilès & Delfiner 
2012; de Fouquet 1994; Journel & Huijbregts 1978) and can be used for unstructured 
grids without significant modifications.  

Formally, a geostatistical simulation on an unstructured grid �𝑍�𝑣𝑝�,𝑝 =
1 …𝑁𝑏� is just a random vector with 𝑁𝑏 components which have predefined marginal 
distributions and covariance. In order to speak about conditioning of the simulation 
on point support, one should assume the existence of some point support RF 
𝑍(𝑥) = 𝜑�𝑌(𝑥)�, which corresponds to this random vector i.e. 

𝑍�𝑣𝑝� = 1
|𝑣𝑝|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝

, 𝑝 = 1 …𝑁𝑏.  In that case, conditioning of �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� 

on points {(𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} can be understood as conditioning of 𝑍(𝑥) and re-
computing 𝑍�𝑣𝑝� = 1

|𝑣𝑝|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝
,𝑝 = 1 …𝑁𝑏 from the conditioned 𝑍(𝑥). In practice, 

however, no re-computing is needed, since all operations can be performed directly 
on block support since the kriging predictions are averaged linearly over volume  
(Goovaerts 1997). Given an unconditional simulation �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� on blocks of 
an unstructured grid �𝑣𝑝,𝑝 = 1 …𝑁𝑏� and the conditioning data {(𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎}, 
a conditional simulation can be generated. For that, following the conditioning by 
kriging approach, the values of the unconditional simulation at the data points 
{𝑍(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} should be known. It is clear that given only the simulated 

average values of the blocks �𝑍�𝑣𝑝� = 1
|𝑣𝑝|∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝

, 𝑝 = 1 …𝑁𝑏�, one cannot exactly 

derive the values of {𝑍(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎}, and approximation techniques should be 
used.  

One way to obtain the values {𝑍(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} from the simulated on block 
support unconditional random field is using the assumption (ii) of the DGM 1 and 
DGM 2. Consider a block 𝑣𝑝 which contains one conditioning point (𝑑1, 𝑧1). Let the 
corresponding normal score transform for this conditioning point be (𝑑1,𝑦1). 
Following assumption (ii), one can derive for a randomized point 𝑌�𝑥� = 𝑌𝑝 within 
block 𝑣𝑝: 

 𝑌𝑝 =  𝑟𝑝𝑌𝑣𝑝 + �1−𝑟𝑝2𝜉𝑝, (3.16) 

where 𝜉𝑝  is a standard Gaussian RV with mean 0 and variance 1, since the joint 
distribution of 𝑌𝑝 and 𝑌𝑣𝑝 is bivariate Gaussian. The value 𝑌𝑝 can be then identified 
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with the value 𝑌(𝑑1) of the Gaussian RF 𝑌(𝑥) = 𝜑−1(𝑍(𝑥)) at point 𝑑1. In this 
approximation, the value at the fixed location 𝑑1 is considered to be equivalent to the 
value at the randomized location 𝑥 within block 𝑣𝑝 (which is an approximation). The 
value 𝑍(𝑑1) can then be obtained: 𝑍(𝑑1) =  𝜑�𝑌(𝑑1)�. 

Obtaining the values of the point-support random field through Eqn. (3.16) is 
an approximation, since the value 𝑌(𝑑1) at fixed location 𝑑1 is approximated with the 
value at a randomized point. The quality of this approximation increases when the 
size of the block 𝑣𝑝 containing the conditioning point (𝑑1, 𝑧1) is small relative to the 
covariance range. For the applications of petroleum industry, the hard conditioning 
data are represented by well cores and core plugs and it is common to make a local 
grid refinement in the areas of wells. In that case, identifying the fixed and the 
randomized locations for conditioning data can give sufficient accuracy for obtaining 
a reservoir model conditioned to wells data. It should be noted that when a block 𝑣𝑝 
contains several samples, the variables 𝜉𝑝 in (3.16) can be drawn independently for 
each sample. This corresponds to a conditional independence hypothesis: given the 
average value of the block 𝑌𝑣𝑝, the sample values are independent.  It should be 
noted that the conditional independence does not imply independence of the data – 
the samples remain correlated. The hypothesis of conditional independence is, 
certainly, a strong approximation and discussing its accuracy is out of the scope of 
this thesis. An extended discussion on the conditional independence can be found in 
Rue and Held (2005). 

Let us consider that the value 𝑌𝑝 obtained through Eqn.(3.16) corresponds to a 
value of RV 𝑌(𝑑1). This value can be transformed from the Gaussian scale to the 
scale of the variable 𝑍: 𝑍(𝑑1) =  𝜑�𝑌(𝑑1)�. The value 𝑍(𝑑1) can be seen as 
consistent with the unconditional simulation �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏�. The consistency in 
this context means that both 𝑍(𝑑1) and �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� originate from the same 
realization of a point-support RF 𝑍(𝑥) in 𝐷, for which 𝑍�𝑣𝑝� = ∫ 𝑍(𝑥)𝑑𝑥𝑣𝑝

.  

Having the conditioning data (𝑑𝑖, 𝑧𝑖), 𝑖 = 𝑖…𝑁𝑑𝑎𝑡𝑎, with consistent 
unconditional block simulation �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� and point-support values 
{𝑍(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎}, one can use simple kriging to obtain a conditional simulation 
�𝑇(𝑣𝑝),𝑝 = 1 …𝑁𝑏� in the following manner: 

 𝑇�𝑣𝑝� = 𝑍�𝑣𝑝� +  𝛴𝑖=1
𝑁�𝑣𝑝�𝜆𝑖�𝑧𝑖 − 𝑍(𝑑𝑖)�,  (3.17) 

where 𝑁(𝑣𝑝) is the number of the closest data is points to the block 𝑣𝑝 given by the 
neighborhood selection strategy, the weights �𝜆𝑖, 𝑖 = 1 …𝑁�𝑣𝑝�� are the solution of 
the block-kriging system: 
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 �
𝐶(𝑑1,𝑑1) ⋯ 𝐶 �𝑑1,𝑑𝑁(𝑣𝑝)�

⋮ ⋱ ⋮
𝐶 �𝑑1,𝑑𝑁(𝑣𝑝)� ⋯ 𝐶 �𝑑𝑁(𝑣𝑝),𝑑𝑁(𝑣𝑝)�

��
𝜆1
⋮

𝜆𝑁�𝑣𝑝�
� =  �

𝐶�𝑣𝑝 ,𝑑1�
⋮

𝐶 �𝑣𝑝,𝑑𝑁(𝑣𝑝)�
�  (3.18) 

This approach for conditioning guarantees that the covariance of the 
conditional simulation �𝑇�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� coincides with the covariance of the 
unconditional RF, although, the spatial distribution is not preserved in the general 
case (de Fouquet 1994). The marginal distribution of the blocks is corrected only 
locally within the range of covariance from the conditioning data. It should be noted 
that this conditioning method does not require any additional assumptions to those of 
the DGM 1, however, it can rarely be applied in practice since conditioning through 
(3.17) can lead to values of 𝑍(𝑣𝑝) which are not compatible with the marginal 
distribution of 𝑍(𝑥). For instance, negative values can be obtained for a simulated 
positive parameter. A more practical solution is to perform the conditioning to data for 
random vector �𝑌𝑣𝑝 ,𝑝 = 1 …𝑁𝑏� instead of �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏�. In this case the 
resulting conditioned random field is always consistent with the marginal distribution 
of 𝑍(𝑥). This approach is detailed below. 

For conditioning purpose only, one can assume that the assumption (iii) of 
DGM 2 holds for 𝑌(𝑥). In this case, it is possible to use Eqn. (3.12) in order to link RV 
𝑌𝑣𝑝 with the volumetric averages of the underlying Gaussian random field: 𝑌�𝑣𝑝� =
𝑟𝑝𝑌𝑣𝑝. Note that using assumption (iii) only at conditioning step is different from using 
it from the beginning, since the conditioning procedure modifies the unconditional 
simulation only locally.  

 Eqn. (3.16) enables us obtaining a set of Gaussian point-support values 
{𝑌(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} which can be seen as consistent with the set of Gaussian 

averages �𝑌�𝑣𝑝� = 1
�𝑣𝑝�

∫ 𝑌(𝑥)𝑑𝑥𝑣𝑝
, 𝑝 = 1 …𝑁𝑏� that correspond to the unconditional 

simulation �𝑍�𝑣𝑝�, 𝑝 = 1 …𝑁𝑏�. The consistency, as mentioned previously, indicates 
that both the Gaussian averages and the point-support values can be seen as 
originating from the same unconditional point-support RF 𝑌(𝑥). In this case the 
conditioning by kriging can be done directly in the Gaussian scale for the variable 
𝑌(𝑥) using (𝑑𝑖,𝑦𝑖) =  �𝑑𝑖,𝜑−1(𝑧𝑖)�, 𝑖 = 𝑖…𝑁𝑑𝑎𝑡𝑎 - the normal score transform of the 
given hard data: 

 𝑆�𝑣𝑝� = 𝑌(𝑣𝑝) +  𝛴𝑖=1
𝑁�𝑣𝑝�𝜆𝑖�𝑦𝑖 − 𝑌(𝑑𝑖)�, (3.19) 

where 𝑁(𝑣𝑝) is the number of the closest data points to the block 𝑣𝑝 given by the 
neighborhood selection strategy, the weights �𝜆𝑖, 𝑖 = 1 …𝑁�𝑣𝑝�� are the solution of 
the block-kriging system in the Gaussian scale: 
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�
𝜌(𝑑1,𝑑1) ⋯ 𝜌�𝑑1,𝑑𝑁(𝑣𝑝)�

⋮ ⋱ ⋮
𝜌 �𝑑1,𝑑𝑁(𝑣𝑝)� ⋯ 𝜌 �𝑑𝑁(𝑣𝑝),𝑑𝑁(𝑣𝑝)�

��
𝜆1
⋮

𝜆𝑁�𝑣𝑝�
� =  �

𝜌�𝑣𝑝, 𝑑1�
⋮

𝜌 �𝑣𝑝,𝑑𝑁(𝑣𝑝)�
� . (3.20) 

Since the RF 𝑌(𝑥) has a multivariate Gaussian distribution, and �𝑌�𝑣𝑝�,𝑝 =
1 …𝑁𝑏� and {𝑌(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎}  are considered to originate from this field (due to 
the consistency assumption), the spatial distribution of �𝑆�𝑣𝑝�,𝑝 = 1 …𝑁𝑑𝑎𝑡𝑎� remains 
multivariate Gaussian. This is a strong property for the result, but it is based on 
assumption (iii) of DGM 2 as well as on identification of the fixed and randomized 
locations for the conditioning data. The final result of the conditional simulation 𝑇�𝑣𝑝� 
is obtained through the transformation to the scale of the variable 𝑍: 

 𝑇�𝑣𝑝� =  𝜑𝑣𝑝 �
𝑆�𝑣𝑝�
𝑟𝑝

�. (3.21) 

It should be noted that dividing by 𝑟𝑝 in (3.21) does not pose a problem since 
only values 𝑟𝑝 > 0 are considered. The two methods described above for conditioning 
call for a strong assumption of identifying the value of the RF 𝑌(𝑥) at a randomized 
location with the value at a fixed location. It is possible to avoid this assumption in the 
direct form, considering that the conditioning data (𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎 are given 
directly at randomized locations within the blocks. This assumption seems to make 
little difference from the previous one, but it has certain theoretical implications for the 
conditioning procedure. Instead of identifying the randomized sample 𝑌𝑝  in (3.16) 
with fixed location sample 𝑌(𝑑1), one can consider that all the points {𝑑𝑖, 𝑖 =
1 …𝑁𝑑𝑎𝑡𝑎} of the conditioning dataset are randomized within the blocks, which contain 
these data. In this case, it is considered that the conditioning data from the very 
beginning were defined on randomized locations. This method for obtaining the 
values on point support given the values on block support is used in (Emery 2009; 
Emery & Ortiz 2011).  

The difference of considering the conditioning data to be defined on 
randomized locations from the fixed locations approximation is that the data-to-data 
and the data-to-block covariance is now defined through averaging the point-support 
covariance over the blocks which contain the data. Consider two randomized 
locations 𝑥 and 𝑥′ within blocks 𝑣𝑝 and 𝑣𝑞. In that case 

 
𝑐𝑜𝑣 �𝑌�𝑥�,𝑌�𝑥′�� = 𝑐𝑜𝑣 �𝑌�𝑥�,𝑌�𝑣𝑞�� = 1

�𝑣𝑝��𝑣𝑞�
∫ ∫ 𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′𝑣𝑞𝑣𝑝

=

𝜌(𝑣𝑝,𝑣𝑞), 
(3.22) 

which is different from 𝑐𝑜𝑣�𝑌(𝑥),𝑌(𝑥′)� = 𝜌(𝑥, 𝑥′) in the case of using the fixed 
locations. The variance of a randomized sample 𝑌�𝑥� is 
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 𝑉𝑎𝑟 �𝑌�𝑥�� =  𝑐𝑜𝑣 �𝑌�𝑥�,𝑌�𝑥�� =
1
�𝑣𝑝�

� 𝜌(𝑥, 𝑥)𝑑𝑥
𝑣𝑝

= 1. (3.23) 

By analogy, for the randomized samples in the scale of RV 𝑍(𝑥),  𝑐𝑜𝑣 �𝑍�𝑥�,𝑍�𝑥′�� =

𝐶�𝑣𝑝, 𝑣𝑞� and  𝑉𝑎𝑟 �𝑍�𝑥�� = 1
�𝑣𝑝�

∫ 𝐶(𝑥, 𝑥)𝑑𝑥𝑣𝑝
= 𝐶(0). Using the randomized locations 

leads to following two methods of conditioning – one in the scale of the variable 𝑍(𝑥) 
and the second in the Gaussian scale.  

The point-support data at randomized locations {𝑍(𝑑𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} 
corresponding to the unconditional simulation �𝑍�𝑣𝑝�,𝑝 = 1 …𝑁𝑏� can be obtained 
through Eqn. (3.16), transforming the Gaussian values 𝑌(𝑥) to the scale of variable 
𝑍: 𝑍�𝑥� = 𝜑(𝑌(𝑥)). Given the conditioning data (𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎 defined on 
randomized locations, the unconditional block simulation can be conditioned through 
Eqn.(3.17), but the simple kriging weights �𝜆𝑖, 𝑖 = 1 …𝑁�𝑣𝑝�� in this case are a 
solution to the system of equations (3.24). Let us denote by 𝑣(𝑑𝛼) the block of the 
unstructured grid which contains the conditioning point (𝑑𝛼, 𝑧𝛼). Then the simple 
kriging system for the weights �𝜆𝑖, 𝑖 = 1 …𝑁�𝑣𝑝�� is the following: 

⎝

⎛
𝐶(0) ⋯ 𝐶 �𝑣(𝑑1),𝑣 �𝑑𝑁(𝑣𝑝)��
⋮ ⋱ ⋮

𝐶 �𝑣(𝑑1), 𝑣(𝑑𝑁(𝑣𝑝))� ⋯ 𝐶(0) ⎠

⎞�
𝜆1
⋮

𝜆𝑁�𝑣𝑝�
�

=  

⎝

⎛
𝐶 �𝑣𝑝, 𝑣(𝑑1)�

⋮
𝐶 �𝑣𝑝, 𝑣 �𝑑𝑁(𝑣𝑝)��⎠

⎞ 

(3.24) 

This approach to conditioning has the advantage of not using the additional 
assumption that the value at randomized location 𝑌�𝑥� obtained through Eqn. (3.16) 
coincides with the value at a fixed location, but considers that the data were originally 
defined on the randomized locations, so that the information about their exact 
locations is ignored from the beginning. It is visible, that the systems of equations 
(3.18) and (3.24) are similar and the system (3.24) tends to system (3.18) when the 
size of the blocks that contain the data values tend to 0. Indeed, 𝐶�𝑣(𝑑𝛼), 𝑣𝑞� =

1
�𝑣𝑝��𝑣𝑞�

∫ ∫ 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′𝑣𝑞𝑣𝑝
 →  𝐶�𝑑𝛼 , 𝑣𝑞� when �𝑣𝑝� → 0. Thus, the difference between 

using the randomized locations and the fixed locations approaches for conditioning 
diminishes with the decrease of the sizes of the blocks that contain the conditioning 
data. 

The randomized location approach can also be used for conditioning the 
realizations of DGM 2 in the Gaussian scale. Conditioning is done with Eqn. (3.19), 
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and the kriging weights �𝜆𝑖, 𝑖 = 1 …𝑁�𝑣𝑝��  originate from the following system of 
equations: 

⎝

⎛
1 ⋯ 𝜌�𝑣(𝑑1),𝑣 �𝑑𝑁�𝑣𝑝���
⋮ ⋱ ⋮

𝜌 �𝑣(𝑑1),𝑣(𝑑𝑁(𝑣𝑝))� ⋯ 1 ⎠

⎞�
𝜆1
⋮

𝜆𝑁�𝑣𝑝�
�

=  

⎝

⎛
𝜌 �𝑣𝑝, 𝑣(𝑑1)�

⋮
𝜌 �𝑣𝑝, 𝑣 �𝑑𝑁�𝑣𝑝���⎠

⎞ 

(3.25) 

The final result of the conditional simulation on the unstructured grid is 
obtained through Eqn. (3.21). In the similar way for the conditioning in the scale of 
RV Z, the results of conditioning on randomized locations in the Gaussian scale tend 
to the results of conditioning on fixed locations when the sizes of the blocks that 
contain the conditioning data decrease. 

3.6  Properties of conditional simulations 
Let us study the mean value of the conditional simulations introduced in the 

previous chapter. We start from the case when the conditioning is performed in the 
scale of RV 𝑍(𝑥). Let us reformulate Eqn. (3.17) in a different way: 

 𝑇�𝑣𝑝� =  𝛴𝑖=1
𝑁�𝑣𝑝�𝜆𝑖𝑧𝑖 +  �𝑍�𝑣𝑝� −  𝛴𝑖=1

𝑁�𝑣𝑝�𝜆𝑖𝑍(𝑑𝑖)� (3.26) 

In this form it is easy to see that the conditional expectation of 𝑇�𝑣𝑝� given the 
data (𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁�𝑣𝑝� is equal to the simple kriging prediction of block 𝑣𝑝 given 
these data: 

 

𝐸�𝑇�𝑣𝑝��𝑍(𝑑𝑖) = 𝑧𝑖, 𝑖 = 1 …𝑁�𝑣𝑝��

= 𝐸 �𝛴𝑖=1
𝑁�𝑣𝑝�𝜆𝑖𝑧𝑖�𝑍(𝑑𝑖)�

+ 𝐸 � �𝑍(𝑣𝑝) −  𝛴𝑖=1
𝑁�𝑣𝑝�𝜆𝑖𝑍(𝑑𝑖)� �𝑍(𝑑𝑖)� =  𝛴𝑖=1

𝑁�𝑣𝑝�𝜆𝑖𝑧𝑖 

(3.27) 

The same situation holds when the conditioning is done on randomized 
locations, the only difference is that the kriging weights in that case originate from 
system (3.24). In case if conditioning is done in the Gaussian scale either on fixed or 
randomized locations, the expected mean value of the conditional simulations is 
different. The following theorem provides an analytical expression for the mean of 
simulations, when the conditioning is done in the Gaussian scale. 
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Theorem 
The block mean value of the conditional simulation when the conditioning is 
performed in the Gaussian scale is given with the following formula 

 𝐸[𝑇(𝑣)|{𝑧𝑖}] =  ∑ 𝜑𝑖𝑟𝑖∞
𝑖=0 �1 − 𝜎𝑠𝑘

2

𝑟2
�
𝑖
𝜒𝑖

⎝

⎜
⎛ 𝑌∗(𝑣)

𝑟�1−
𝜎𝑠𝑘
2

𝑟2 ⎠

⎟
⎞

, (3.28) 

where 𝑟 is the change of support coefficient for block 𝑣𝑝,  𝑌∗(𝑣) is the simple kriging 
prediction for the block 𝑣 in the Gaussian scale, 𝜎𝑠𝑘2  is the variance of the simple 
kriging prediction. 

Proof 
For simplicity of notations, we will consider that the conditioning of the 

unconditional value 𝑌(𝑣) for block 𝑣 is done with respect to prior information 𝑌1 =
𝑦1, … ,𝑌𝑁(𝑣) = 𝑦𝑛 which can be considered either on fixed or on randomized locations 
𝑑1 …𝑑𝑁(𝑣). 

𝐸[𝑇(𝑣)|{𝑧𝑖}] = 𝐸 �𝜑𝑣 �
𝑆(𝑣)
𝑟
� �{𝑦𝑖}� =  𝐸 ��𝜑𝑖𝑟𝑖𝜒𝑖 �

𝑆(𝑣)
𝑟
�

∞

𝑖=0

�{𝑦𝑖}�

=  �𝜑𝑖𝑟𝑖𝐸 �𝜒𝑖 �
𝑆(𝑣)
𝑟
� �{𝑦𝑖}�

∞

𝑖=0

 

In the general case, computing 𝐸 �𝜒𝑖 �
𝑆(𝑣)
𝑟
� �{𝑦𝑖}� is problematic. However, by 

the cost of introducing an additional assumption about joint multigaussianity of the 
vector (𝑌(𝑣),𝑌1, …𝑌𝑁(𝑣)) for a given block 𝑣, one can derive an analytical formula for 
𝐸[𝑇(𝑣)|{𝑧𝑖}]. In case if the conditioning is done on fixed locations, this assumption is 
valid since the RF 𝑌(𝑥) has a multivariate Gaussian distribution. For conditioning on 
randomized locations, this assumption is an approximation and it is not obvious, how 
restrictive it is. 

In the theoretical model considered and under the given assumptions, the 
conditional  distribution of 𝑆(𝑣)

𝑟
  given {𝑌𝑖, 𝑖 = 1 …𝑁(𝑣)} is Gaussian with parameters 

�𝑌
∗(𝑣)
𝑟

, 𝜎𝑠𝑘
2

𝑟2
�. Indeed, 

𝑆(𝑣) = 𝑌(𝑣) +  𝛴𝑖=1
𝑁(𝑣)𝜆𝑖�𝑦𝑖 − 𝑌(𝑑𝑖)� =  𝛴𝑖=1

𝑁(𝑣)𝜆𝑖𝑦𝑖 +  �𝑌(𝑣) −  𝛴𝑖=1
𝑁(𝑣)𝜆𝑖𝑌(𝑑𝑖)� ⇒ 

𝐸[𝑆(𝑣)|𝑦𝑖] =  𝛴𝑖=1
𝑁(𝑣)𝜆𝑖𝑦𝑖 =  𝑌∗(𝑣) 

𝑉𝑎𝑟(𝑆(𝑣)|𝑦𝑖) = 𝐸 ��𝑌(𝑣) −  𝛴𝑖=1
𝑁(𝑣)𝜆𝑖𝑌(𝑑𝑖)��

2
=  𝜎𝑠𝑘2  
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Thus using a formula from the Appendix of (Chilès & Delfiner 2012), one can derive 

𝐸 �𝜒𝑖 �
𝑆(𝑣)
𝑟
� �{𝑦𝑖}� =  � 𝜒𝑖 �

𝑌∗(𝑣)
𝑟

+
𝜎𝑠𝑘
𝑟
𝑥�

+∞

−∞
𝑔(𝑥)𝑑𝑥 = �1 −

𝜎𝑠𝑘2

𝑟2
�
𝑖

𝜒𝑖

⎝

⎛ 𝑌∗(𝑣)

𝑟�1 − 𝜎𝑠𝑘2
𝑟2 ⎠

⎞, 

which gives the desired result. ■ 

It is clear that the mean of conditional simulations when conditioning in the 
Gaussian and in the 𝑍 scales is different. Formulas (3.27) and (3.28) can be used to 
perform the quality check of the simulation procedures. 

3.7 Discussion 
Conditional simulations with both DGM 1 and DGM 2 require the conditional 

independence assumption in order to deal with the multiple samples inside a block. 
As noted by Xavier Emery in personal correspondence, the conditional independence 
assumption leads to the same DGM 2 equation as assumption (iii). Indeed, for a 
block 𝑣 with change of support coefficient 𝑟  and two randomized locations 𝑥 and 
𝑥′ ≠ 𝑥 within 𝑣, from the conditional independence (3.16) follows 

 𝑐𝑜𝑣 �𝑌�𝑥�,𝑌�𝑥′�� = 𝑐𝑜𝑣 �𝑟𝑌𝑣 + �1 − 𝑟2𝜉1, 𝑟𝑌𝑣 + �1 − 𝑟2𝜉2� = 𝑟2𝑣𝑎𝑟(𝑌𝑣), (3.29) 

where 𝜉1 and 𝜉2 are two independent standard Gaussian random variables. On the 
other hand, due to linearity of covariance 

 𝑐𝑜𝑣 �𝑌�𝑥�,𝑌�𝑥′�� = 𝑣𝑎𝑟�𝑌(𝑣)�. (3.30) 

 From (3.29) and (3.30) using 𝑣𝑎𝑟(𝑌𝑣) = 1 and since 𝑌𝑣 is standard Gaussian, 
one derives Eqn. (3.12) 𝑌(𝑣) = 𝑟𝑌𝑣, which is the basis of DGM 2. As a consequence, 
it follows that the conditional independence assumption and assumption (iii) are 
closely related, and applying the conditional independence assumption for 
conditioning the DGM 1 realizations is similar to applying locally the assumption (iii) 
for the blocks containing the data samples.  

Table 3.1 summarizes the assumptions and properties of DGM 1 and DGM 2 
for generating unconditional simulations. Table 3.2 summarizes the properties of 
various conditioning methods. 
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Table 3.1 Summary of DGM 1 and DGM 2 for unconditional simulations 

Model DGM 1 DGM 2 

Assumptions (i), (ii) (i), (ii), (iii) 

Advantages 
Correct reproduction of covariance in the Z 
scale for all blocks, internal consistency of 

the model. 

Simplified formulas and computations (no 
need to solve 3.9 and 3.10), the covariance 

matrix of the Gaussian vector is always 
positive semi-definite (if a valid covariance 

function was used). 

Disadvantages 
Additional computations required (solving 
3.9 and 3.10), the covariance matrix of the 

Gaussian random vector can be not 
positive semi-definite. 

Covariance between the block values in the 
Z scale is biased. 
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Table 3.2 Summary of conditioning methods 

Method Required Assumptions Advantages Disadvantages 

R
an

do
m

iz
ed

 lo
ca

tio
ns

 Z 
sc

al
e Conditional independence, 

input samples are given on 
randomized locations. 

The least restricting set of 
assumptions. 

Computing covariance 
between samples requires 

computing the block to block 
covariance, obtained after 
conditioning values can be 

out of range of validity for RV 
Z. 

Y 
sc

al
e 

Conditional independence, 
input samples are given on 
randomized locations, (iii)  

for blocks correlated with the 
data samples. 

Assumption (iii) is used only 
locally, gives a consistent 
model for simulations, the 

obtained values are always 
in range of validity for Z. 

Computing covariance 
between samples requires 

computing the block to block 
covariance, using (iii), 

although locally. 

Fi
xe

d 
lo

ca
tio

ns
 

Z 
sc

al
e Conditional independence, 

correspondence between a 
randomized sample and a 

fixed location sample.  

Fixed locations do not 
require computing integrals 

over blocks, the input 
samples are treated "as is", 

information about their 
locations is not lost, requires 

less assumptions than  Y 
scale conditioning. 

The obtained after 
conditioning values can be 

out of range for RV Z, 
reduced accuracy when the 
blocks with conditioning data 

are large relative to 
covariance range. 

Y 
sc

al
e 

Conditional independence, 
correspondence between a 
randomized sample and a 
fixed location sample,   (iii) 

for the blocks correlated with 
the data samples. 

Fixed locations do not 
require computing integrals 

over blocks, the input 
samples are treated "as is", 

information about their 
locations is not lost, 

Obtained values always in 
range.  

Requires (iii) locally, reduced 
accuracy when the blocks 
with conditioning data are 

large relative to covariance 
range. 
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3.8 Testing the conditioning methods 
Conditioning of the DGM-based simulations for a standard lognormal variable 

is considered for the unstructured grid in 3D with 10 local grid refinements from 
Figure 3-6. The grid dimensions are 20km x 20km x 40m, it is composed of 3,546 
Voronoï polygon cells and includes 10 local grid refinement regions. The bounding 
box size for the smallest and the biggest blocks sizes are 36x42x8 m and 1,035 x 
1,052 x 8 m respectively. Since the values of the lognormal random variable are 
always positive, the method of conditioning the simulations with block kriging in the 
scale of the RV 𝑍(𝑥) is not applicable – although it preserves the block to block 
covariance, negative values can be produced, which is unacceptable for a lognormal 
distribution. In this series of tests we compare the conditioning in the Gaussian scale 
with fixed and with randomized locations for the support point samples. We start from 
a simple dataset of 10 samples on standard lognormal distribution placed in the 
centers of the local grid refinement zones Figure 3-15. 

 

Figure 3-15. Point support samples placed in the well refinement zones. Values after 
the normal score transform shown. 

For the first test a long range spherical covariance function 𝜌 with ranges 
(5,5,0.2)𝑘𝑚 was used.  Figure 3-16a demonstrates an unconditional simulation 
generated with DGM 1 for the given inputs and simple block kriging prediction 
obtained from the sampled data in the scale of RV 𝑍 (Figure 3-16b). The 
corresponding conditional realizations obtained with conditioning on fixed and 
randomized locations in the Gaussian scale are depicted on Figure 3-16c,d. It is 
visible, that local patches were applied to the unconditional realization in order to 
honor the data samples. The results obtained with the two conditioning methods are 
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visually close, although some difference can be noticed and the origin of this 
difference will be discussed below. 

  
a) b) 

  
c) d) 

Figure 3-16. Conditioning for spherical covariance function 𝜌 with ranges (5,5,0.2)𝑘𝑚. 
a) unconditional realization b) simple kriging block predictions from sample data in Z 

scale c) conditioning on fixed locations d) conditioning on randomized locations. 

The simple kriging predictions for the block values 𝑌(𝑣) in the Gaussian scale 
for fixed and randomized locations as well as the simple kriging variance are depicted 
on Figure 3-17a-b. Although visually the kriging predictions and variance are equal, 
one can still observe a small decrease of the kriging variance when fixed locations 
are used.  The origin of this behavior is in the kriging system used for conditioning. 
For the given inputs the covariance values 𝜌 �𝑣𝑝 , 𝑣(𝑑𝛼)� in the right side of (3.24) are  

lower than the corresponding covariance 𝜌�𝑣𝑝,𝑑𝛼� in (3.20), which leads to higher 
prediction variance in the case of randomized locations and, as a consequence, a 
weaker impact of samples on the block predictions. This effect will be better 
demonstrated in the next test. 
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a) b) 

  
c) d) 

Figure 3-17. Block kriging predictions and kriging variance in the Gaussian scale a) 
kriging with fixed locations b) kriging with randomized locations. c ) kriging variance 

for fixed locations d) kriging variance for randomized locations. 

Since the range of the covariance function is significantly larger than the block 
sizes in the grid, the block kriging variance on Figure 3-17b,c visually depends only 
on the distance from the samples, so the impact of the size of the block on the 
prediction variance is not clearly observed. In order to demonstrate the block volume 
impact, a covariance function 𝜌 with shorter range (2𝑘𝑚, 2𝑘𝑚, 40𝑚) is used for 
simulation with conditioning on the same dataset of samples. This covariance choice 
provides visual spatial continuity in horizontal direction coupled with noticeable 
change of support effect. The unconditional and conditioned realizations with fixed 
and randomized location realizations are depicted on Figure 3-18, the corresponding 
kriging predictions in the Gaussian scale and kriging variance are depicted on Figure 
3-19.  
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a) b) 

  
c) d) 

Figure 3-18. Conditioning for spherical covariance function 𝜌 with ranges 
(2,2,0.04)𝑘𝑚. a) unconditional realization b) simple kriging block predictions from 

sample data in Z scale c) conditioning on fixed locations d) conditioning on 
randomized locations. 

The observed behavior of the kriging variance for the short range covariance 
(Figure 3-19c,d) is different from those in the previous test. It is visible on Figure 
3-19c,d that the prediction variance decreases not only in the vicinity of the data 
samples, but also in the regions of large blocks even though those are distanced 
from the samples (as in the left top corner on Figure 3-19c). In this case the impact of 
the block size on the kriging variance map is observed. Also, the kriging variance 
maps on Figure 3-19c,d demonstrate more clearly the difference between using fixed 
and randomized locations for kriging – in the vicinity of the data samples prediction 
variance for fixed locations is lower.  
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a) b) 

  
c) d) 

Figure 3-19. Block kriging predictions and kriging variance in the Gaussian scale a) 
kriging with fixed locations b) kriging with randomized locations. c ) kriging variance 

for fixed locations d) kriging variance for randomized locations. 

Let us consider a test in 3D on a grid with multiple layers for conditioning a 
DGM-based simulation with multiple data samples inside each block. The same grid 
geometry is used for the test, but now the grid contains 5 layers of thickness 8𝑚 each 
(see Figure 3-21). The dataset depicted on Figure 3-20 consists of 10 vertical wells, 
with samples located every 50𝑐𝑚. The sample data was simulated with standard 
lognormal distribution and covariance function 𝜌 with ranges (2𝑘𝑚, 2𝑘𝑚, 10𝑚) using 
the Cholesky decomposition approach. As in previous tests, we start from 
demonstrating an unconditional simulation, kriging in the scale of RV 𝑍 and 
conditioned to data simulations on Figure 3-22. 
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Figure 3-20. Samples in 3D. 

 
a) 

 
b) 

Figure 3-21. Samples locations relative to the grid. a) top view b) lateral view. 

The considered dataset has a total number 800 of samples and kriging can 
still be performed in a unique neighborhood. Unfortunately, this approach is not 
general, since in the industrial applications it is not uncommon to have many 
thousands of conditioning data points (or blocks) and in that case only a limited 
number of closest samples are usually taken into account. The prediction quality 
when local neighborhood is used can remain high due to the screening effect – the 
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closest samples “screen out” other samples which justifies this method. A 
fundamental work on the screening effect can be found in (Stein 2002) where the 
author proves the existence of the screening effect and provides the conditions under 
which it is observed.   

Taking a limited number of neighboring samples however leads to 
discontinuities in the kriging prediction maps and abnormal kriging weights, the effect 
of which was extensively discussed in literature (Babak & Deutsch 2008; Chilès & 
Delfiner 2012). Numerous solutions were proposed for producing continuous kriging 
maps, such as successive augmentation of the kriging neighborhood (Babak & 
Deutsch 2008), applying kernel smoothing functions on the kriging weights (Gribov & 
Krivoruchko 2004) and considering the outermost data samples in the neighborhood 
spoiled with a random error (Rivoirard & Romary 2011).  In our work we apply the 
approach proposed by Rivoirard and Romary (2011) - the samples in the local 
neighborhood of each block are selected for kriging (the size of the neighborhood is 
linked to the covariance ranges) and the kriging  weights of the outermost samples in 
the local neighborhood are forced to tend to zero. This is achieved by adding to the 
diagonal elements of the simple kriging matrix (3.20) or (3.22)  penalty terms which 
vary from 0 for the close samples to infinity for the samples approaching the 
boundary of the neighborhood, the details can be found in Rivoirard and Romary 
(2011). Comparison of kriging in unique neighborhood with kriging in local 
neighborhoods in this case does not demonstrate any significant differences.   

  
a) b) 
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c) d) 

Figure 3-22. Conditioning on a multiple layers for spherical covariance function 𝜌 with 
ranges (2𝑘𝑚, 2𝑘𝑚, 10𝑚):  a) unconditional realization b) simple kriging in the 𝑍 scale 

c) conditioning on fixed locations d) conditioned on randomized locations. 

Careful analysis of Figure 3-22 demonstrates that the unconditional simulation 
was corrected in order to fit the sample data. Since the modifications were done by 
simple kriging, the covariance structure of the simulated random field is preserved. 
Conditioning on fixed and randomized locations is almost undistinguishable visually.  

In order to demonstrate the effect of conditioning in the vicinity of the wells, a 
vertical cross-section of the model was done (see Figure 3-23). The position of the 
cross-section in the reservoir is marked on Figure 3-22b with white dashed line. 
Figure 3-23 demonstrates the simple kriging prediction results in the vicinity of the 
wells, unconditional and conditioned simulations. It is visible, that the wells data are 
respected in both variants of conditioning.  

a)  

 

b)  
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c)  

 

d)  

 

Figure 3-23. Grid cross-section a) kriging in 𝑍 scale b) unconditional simulation c) 
conditioning on fixed locations d) conditioning on randomized locations. 

As demonstrated in this chapter, DGM-based simulations can be effectively 
conditioned through simple kriging in order to respect sample data defined on quasi-
point support. When conditioning on quasi-point support, a choice should be done 
between conditioning in the Gaussian scale or in the scale of RV 𝑍, as well as 
between conditioning on fixed or randomized samples. Conditioning in the scale of 
RV 𝑍, although this preserves the covariance of the simulated random field, possibly 
leads to negative values which is often incompatible with the simulated distribution, 
which makes utilization of conditioning in Gaussian scale a more general solution. 
From the point of view of DGM, the randomized location approach for conditioning is 
theoretically better justified, since the method of obtaining the point-support values of 
the unconditional block-support random field through (3.16) is coherent with samples 
defined on randomized locations. On the other hand, for a practitioner it might be 
unacceptable to lose the information about the exact location of the sample data in 
order to ensure the theoretical integrity of the model. In addition, conditioning on 
randomized locations requires more extensive numerical computations – covariance 
between two randomized samples requires computing the covariance between the 
blocks, containing these samples, which is a problem of computing multidimensional 
integrals.  

The main difficulty of conditioning the block-support simulations to quasi – 
point sample data is the derivation of the coherent point-support values at the data 
locations for the unconditional block support simulation.  In case of DGM-based 
simulations, this problem is solved through the theory of randomized samples in the 
blocks and assumption of conditional independence of the samples within a single 
block given the average value of this block.  

An alternative solution to the problem of conditioning a block support 
simulation on quasi-point samples was proposed  by Journel and Huijbregts (1978) 
for simulations on regular grid. In their approach instead of deriving a coherent point-
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support data, the authors propose deriving the conditioning block support samples 
from the given point-support data in the following form: 

 𝑧𝑣′(𝑑𝛼) = 𝑧𝑣𝐾∗ (𝑑𝛼) + 𝜀𝑣 (3.31) 

Where 𝑧𝑣𝐾∗ (𝑥𝛼) is the kriging value of block 𝑣 given the sample data 
{𝑧(𝑑𝛼),𝛼 = 1 …𝑁𝑑𝑎𝑡𝑎} and 𝜀𝑣 is the variance correction terms. This approach can also 
be used for conditioning of DGM-based simulations. 

 As it can be seen from numerous tests in this section (Figure 3-19 for 
instance), conditioning on quasi-point samples is not “exact” in the sense that the 
value of the block, containing a single sample is not equal to the value of this sample. 
This behavior of conditioning procedure is reasonable since in the general case 
correlation between a fixed or randomized quasi-point sample and the average value 
of the block in the general case remains inferior 1. In case if the values at the blocks, 
containing sample data should not have any variability (which appears sometimes in 
practical applications), conditioning should be performed directly on block support. 
For that the sample data should first be upscaled to the block support in order to be 
used for conditioning the simulation. Conditioning can be performed with simple block 
kriging in Gaussian scale or in the 𝑍 scale, the implementation is straightforward. 

The final choice of the conditioning strategy depends on the case study and on 
the choice of the software user. If the user considers that the blocks which contain 
the well data should not exhibit any variation but reproduce exactly the known 
average values, the strategy of conditioning on blocks can be selected. However, 
even having a large number of sample points in a block does not imply that the 
average value of the block is known exactly and considering this uncertainty effect 
can increase the overall quality of the modeling workflow. In the case when the size 
of the block with well data is small relative to the covariance range one can expect 
that different conditioning methods provide similar results.  



59 

 

3.9 Simulating non-additive variables 
Geostatistical simulations on unstructured grids considered in this thesis 

assume that the equivalent block value 𝑍(𝑣) for a point – support field {𝑍(𝑥),𝑥 ∈ 𝑣} is 
expressed as a volumetric average of this field: 𝑍(𝑣) = 1

|𝑣|∫ 𝑍(𝑥)𝑑𝑥𝑣 , so that the 

simulated variable averages linearly over the volume. In practice this property does 
not hold for an important range of physical parameters.  

 One of such parameters, being of exceptional importance in petroleum 
applications is permeability, which does not average linearly over the blocks of the 
reservoir models (following the convention, we denote permeability as 𝐾(𝑥)). Indeed, 
the equivalent permeability of the block can be defined as such a value of 
permeability for the block, which enables correct reproduction of the fine scale flow 
behavior (see Wu et al. (2002) for a similar definition). A more formal definition of the 
equivalent block permeability can be derived from (Farmer 2002). According to this 
author, upscaling is approximating one system of partial differential equations with 
another system, often of the same form, which can be solved with fewer resources. 
Following this definition of upscaling, the equivalent block permeability for a point – 
support field {𝐾(𝑥), 𝑥 ∈ 𝑣} is the corresponding permeability 𝐾𝑣 in the approximating 
flow equation on the scale of blocks. It should be noted that this equivalent value 
depends not only on the fine scale permeability field, but also on the flow equations 
considered, the classical example of this dependence being the type of the boundary 
conditions used when dealing with the steady state flow equation.  

The equivalent permeability of a block 𝐾𝑣  generally cannot be expressed 
analytically from the fine scale values 𝐾(𝑥).  However, approximate solutions exist. 
One of the commonly used approximations is the power transform, which assumes 
that the equivalent permeability 𝐾𝑣 can be derived from the fine scale values through 
the following relationship for some fixed factor 𝜔 

 𝐾𝑣 = �
1

|𝑣|
�𝐾(𝑥)𝜔𝑑𝑥
𝑣

�

1
𝜔

. (3.32) 

This approach was justified through the theory of the stochastic differential 
equations by Noetinger and Haas (1996). In their paper, the authors also give an 
explicit formula for the power 𝜔 which should be used for the transform. An important 
implication of their paper is that the power 𝜔 can be considered to depend only on 

the global anisotropy ratio 𝜆 = �𝑘𝑣
𝑘ℎ

𝐿ℎ
𝐿𝑣

, where 𝑘𝑣
𝑘ℎ

 is the vertical to horizontal 

permeability ratio in the domain of investigation, 𝐿ℎ and 𝐿𝑣 denote the horizontal and 
vertical covariance ranges respectively. This, in turn, implies that the parameter 𝜔 in 
transformation (3.32) does not depend on the block 𝑣 considered. Certainly, this 
assumption is a rough approximation which, following the authors, is based on the 
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hypothesis that the permeability variance is small and the domain of investigation is 
large with respect to the correlation lengths of the medium. 

A fundamental double inequality bounding 𝐾𝑣 is known: 𝐾𝑣 is bounded by the 
harmonic average of 𝐾(𝑥) on the left and arithmetic average of 𝐾(𝑥) on the right  
(Matheron 1984). The homogenization method through formula (3.32) is coherent 
with this fundamental inequality, since harmonic and arithmetic mean correspond to 
choices 𝜔 =  −1 and 𝜔 = 1 respectively. Three different analytical formulas for 
computing equivalent permeability, including that of form (3.32) were proposed in 
(Matheron 1967; Matheron 1993). In practice, it is not uncommon in the petroleum 
industry to use for upscaling permeability in horizontal plane 𝜔 = 1 (arithmetic 
average) and in the vertical plane 𝜔 =  −1 (harmonic average). In the general case, 
when formula (3.32) is used, selection of 𝜔 should be done for every case study 
independently. 

Another argument for applying upscaling formula (3.32) for geostatistical 
simulations can be found in the work (De Lucia et al. 2009). These authors compare 
several analytical and numerical methods for upscaling absolute permeability on a 2D 
Voronoï polygon grid populated with stochastic medium. Although power averaging in 
the form (3.32) was not tested in this paper, a similar analytical method proposed by 
Matheron (1967) was considered 

 𝐾𝑣 = �𝜇𝑎𝜇ℎ, (3.33) 

where 𝜇𝑎 and 𝜇ℎ denote arithmetic and harmonic mean of 𝐾(𝑥) respectively.  An 
important conclusion of (De Lucia et al. 2009) is that the upscaling method has 
significantly less impact on the flow behavior than the structure of the hydrodynamic 
grid used for flow simulation and the spatial variability of the medium.  

The advantage of formula (3.32) for determining the equivalent permeability is 
that it enables one to shift from the problem of simulating a vector of equivalent block 
permeability 𝐾𝑣 on a grid {𝑣𝑖 , 𝑖 = 1 …𝑁𝑏} to problem of simulating of a vector of block 

averages � 1
�𝑣𝑝�

∫ 𝐾(𝑥)𝜔𝑑𝑥𝑣𝑝
,𝑝 = 1 …𝑁𝑏� for a new RV 𝐾(𝑥)𝜔 followed by application of 

a post – processing procedure. The simulation can proceed in the following manner: 

1) Define a new RF 𝑆(𝑥) = 𝐾𝜔(𝑥) and derive the density and covariance 
function for 𝑆(𝑥) 

2) Simulate with a DGM – based method a random vector 

�𝑆(𝑣𝑖) = 1
�𝑣𝑝�

∫ 𝑆(𝑥)𝑑𝑥𝑣𝑝
,𝑝 = 1 …𝑁𝑏�  - the average values of 𝑆(𝑥) over the 

blocks. 
3) Apply a post-simulation transformation to derive the vector {𝐾𝑣𝑝 ,𝑝 = 1 …𝑁𝑏}: 

𝐾𝑣𝑝 = 𝑆�𝑣𝑝�
1
𝜔  
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Let us consider the first step of this algorithm.  Let the fine scale permeability 
𝐾(𝑥) be defined by the Gaussian anamorphosis 𝐾(𝑥) = 𝜑�𝑌(𝑥)�, and let 𝐶(𝑥, 𝑥′) be 
the covariance function of 𝐾(𝑥) and 𝜌(𝑥, 𝑥′) be the covariance function of 𝑌(𝑥). In 
that case,  𝑆(𝑥) = 𝐾(𝑥)𝜔 = 𝜑𝜔�𝑌(𝑥)� = 𝜓(𝑌(𝑥)) defines the Gaussian anamorphosis 
function for 𝑆(𝑥). From the said above, one derives 𝜓(𝑦) = 𝜑𝜔(𝑦) and 𝑆(𝑥) has the 
same covariance 𝜌(𝑥, 𝑥′) in the Gaussian scale as 𝐾(𝑥).The covariance 𝐶𝜔(𝑥, 𝑥′) of  
𝑆(𝑥) can be derived from 𝜌(𝑥, 𝑥′) and from the decomposition of the transformation 
function 𝜓(𝑦) into Hermite polynomials. Given the Gaussian anamorphosis 𝜓(𝑦) and 
covariance function 𝜌(𝑥, 𝑥′), DGM-based simulation on an unstructured grid can be 
performed with a DGM 1 or DGM 2 based algorithm. 

It is convenient when a simulation algorithm on an unstructured grid is 
designed as a “black box” which produces simulations given the inputs and hides the 
implementation details from the user. It is more preferable when the “black box” takes 
as input the CDF or PDF of the simulated RV and not the Gaussian anamorphosis 
(users of the geostatistical software are rarely used to working with the anamorphosis 
functions). In order to match the input format of the simulation “black box”, let us 
derive the CDF and PDF of 𝑆(𝑥). The distribution of 𝑆(𝑥) can be found analytically 
from those of 𝐾(𝑥). For positive 𝜔 one has 

 𝐻(𝑧) =  𝑃(𝑆(𝑥) ≤ 𝑧) = 𝑃(𝐾𝜔 ≤ 𝑧) =  𝑃 �𝐾 ≤ 𝑧
1
𝜔� = 𝐹 �𝑧

1
𝜔�, (3.34) 

where  𝐹(𝑧) is the CDF of 𝐾(𝑥). For 𝜔 < 0: 

 𝐻(𝑧) =  𝑃(𝑆(𝑥) ≤ 𝑧) = 𝑃(𝐾𝜔 ≤ 𝑧) =  𝑃 �𝐾 > 𝑧
1
𝜔� = 1 − 𝐹 �𝑧

1
𝜔�, (3.35) 

 then the PDF of 𝑆(𝑥) can be derived, denoting 𝑠𝑖𝑔𝑛(𝜔) the sign of 𝜔: 

 
𝜕𝐻(𝑧)
𝜕𝑧

=
𝑠𝑖𝑔𝑛 (𝜔) 𝜕𝐹 �𝑧

1
𝜔�

𝜕𝑧
= 𝑠𝑖𝑔𝑛 (𝜔)

𝜕𝐹 �𝑧
1
𝜔�

𝜕𝑧
1
𝜔

𝜕𝑧
1
𝜔

𝜕𝑧

= 𝑠𝑖𝑔𝑛 (𝜔)
1
𝜔
𝑧
1−𝜔
𝜔 𝐹′ �𝑧

1
𝜔�   

(3.36) 

Formula (3.36) enables preparing easily the standard inputs for a DGM – 
based simulation algorithm when applying the power transform averaging hypothesis 
for the simulated variable. 
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3.10 Simulation of co-regionalization 
The DGM-based simulation algorithms can easily be generalized for the case 

of simulating co-regionalized variables (Emery & Ortiz 2011). Generalization of DGM 
2 approach seems to be more practical and is presented below for the case of co-
simulating two variables. Consider a pair of RV 𝑍1(𝑥) and 𝑍2(𝑥) defined through their 
Gaussian anamorphosis functions 𝜑1(𝑦) and 𝜑2(𝑦) respectively 

 �𝑍1
(𝑥)

𝑍2(𝑥)� = �
𝜑1�𝑌1(𝑥)�
𝜑2�𝑌2(𝑥)�

�. (3.37) 

The random variables 𝑌1(𝑥) and 𝑌2(𝑥) are dependent in the case of co-
regionalization and one of the approaches for simulating these dependent variables 
is decomposing them into a composition of independent variables. This can be 
achieved in several manners, including principal component analysis (Davis 1987; 
Wackernagel et al. 1989), min/max autocorrelation factors (Desbarats & 
Dimitrakopoulos 2000) or applying a linear model of co-regionalization (Chilès & 
Delfiner 2012). Here we consider the linear model of co-regionalization approach 
(LMC).  

For the random vector �𝑌1(𝑥),𝑌2(𝑥)� a linear model of co-regionalization (LMC) 
can be fitted (Chilès & Delfiner 2012) 

 �
𝑌1(𝑥)
𝑌2(𝑥)� =  � 𝐴𝑘

𝑀

𝑚=1

�
𝑌1𝑚(𝑥)
𝑌2𝑚(𝑥)�. (3.38) 

Where 𝐴𝑘 is a 2 × 2 matrix with known coefficients, 𝑀 is the number of 
structures in LMC, the covariance function for each Gaussian RF 𝑌𝑖𝑚(𝑥), 𝑖 = 1,2 𝑚 =
1 …𝑀 is 𝜌(𝑚)(𝑥, 𝑥′). The random fields for different sets of indices 𝑌𝑖𝑚(𝑥) are 
independent. In that case the covariance matrix of random vector �𝑌1(𝑥),𝑌2(𝑥)� is 
expressed as follows 

 𝑅(𝑥, 𝑥′) =  �𝜌11
(𝑥, 𝑥′) 𝜌12(𝑥, 𝑥′)

𝜌21(𝑥, 𝑥′) 𝜌22(𝑥, 𝑥′)� = ∑ 𝐴𝑘𝑀
𝑚=1 𝐴𝑘𝑇 𝜌(𝑚)(𝑥, 𝑥′). (3.39) 

Fitting LMC for the data is often a challenging task, fortunately, it is thoroughly 
discussed in literature, see Chilès and Delfiner (2012), among others. Once LMC is 
fitted for the given covariance matrix 𝑅(𝑥, 𝑥′), independent univariate Gaussian 
random fields 𝑌𝑖𝑚(𝑥), 𝑖 = 1,2 𝑚 = 1 …𝑀 with covariance functions 𝜌(𝑚)(𝑥, 𝑥′) can be 
simulated on a given grid with any suitable method (SGS, Gibbs Propagation and 
others), then random fields 𝑌1(𝑥) and 𝑌2(𝑥) can be derived through the composition 
of the previously simulated independent fields through (3.38). The unconditional 
simulation of (𝑌1(𝑥),𝑌2(𝑥)) can then be conditioned to data by co-kriging with 
covariance matrix 𝑅(𝑥, 𝑥′). In case of simulation on an unstructured grid composed of 
blocks  {𝑣𝑖 , 𝑖 = 1 …𝑁𝑏}, the algorithm proceeds as follows: 
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1) Derive the Gaussian anamorphosis functions 𝜑1(𝑦), 𝜑2(𝑦) for 𝑍1(𝑥), 𝑍2(𝑥) 
repsectively. 

2) Fit LMC for the Gaussian random vector �𝑌1(𝑥),𝑌2(𝑥)� as in (3.38) 
3) Compute the covariance matrix 𝑅(𝑥, 𝑥′) which corresponds to fitted LMC on 

step 2. 
4) On grid �𝑣𝑝,𝑝 = 1 …𝑁𝑏� simulate independently for each component 

𝑌𝑖𝑚(𝑥), 𝑖 = 1,2 𝑚 = 1 … .𝑀 with covariance function  𝜌(𝑚)(𝑥, 𝑥′)  Gaussian 

random vector {𝑌𝑖𝑚�𝑣𝑝� = 1
�𝑣𝑝�

∫ 𝑌𝑖𝑚(𝑥)𝑑𝑥𝑣𝑝
, 𝑝 = 1 …𝑁𝑏}  with any appropriate 

simulation method for multivariate Gaussian random vectors (such as SGS or 
Gibbs Propagation algorithm). 

5) Derive unconditional simulation results for �𝑌1�𝑣𝑝�,𝑌2�𝑣𝑝�� ,𝑝 = 1 …𝑁𝑏 from 
the random fields simulated on step 4 through (3.38). 

6) For each block 𝑣𝑝 of the model derive change of support coefficients 𝑟1𝑝 and 
𝑟2𝑝 for RV 𝑍1(𝑥) and 𝑍2(𝑥) through (3.13) and block-dependent transform 
functions 𝜑1(𝑣,𝑦) and 𝜑2(𝑣, 𝑦). 

7) Derive the quasi-point support values for 𝑌1(𝑥) and 𝑌2(𝑥) through (3.16). 
8) Condition the unconditional realization of �𝑌1�𝑣𝑝�,𝑌2�𝑣𝑝�� on the samples 

using cross-covariance matrix 𝑅(𝑥, 𝑥′) through block co-kriging using fixed or 
randomized samples approach. 

9) Derive the final result �𝑍1�𝑣𝑝�,𝑍2�𝑣𝑝�� = �𝜑1 �𝑣𝑝, 𝑌1�𝑣𝑝�
𝑟1𝑝

� ,𝜑2 �𝑣𝑝, 𝑌2�𝑣𝑝�
𝑟2𝑝

�� ,𝑝 =

1 …𝑁𝑏. 
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Chapter 4: Facies simulation 
Résumé 

Le problème de simulation de variables discrètes, comme des faciès 
géologiques est discuté. Une généralisation de ce problème pour les maillages non-
structurés est proposée. L’auteur propose de simuler les vecteurs de proportion de 
faciès pour chaque cellule du maillage. L’avantage de cette approche par rapport à la 
simulation directe des faciès est démontré. Une généralisation de simulation pluri-
Gaussienne avec le modèle Gaussien discret pour le problème de simulations des 
faciès sur les maillages non-structurés est présentée. 

Applications of geostatistics to natural resources estimation and simulation 
often require dealing with discrete (categorical) variables. Discrete variables can be 
used to distinguish ore and waste in the mining pit, or the distribution of different 
facies in the reservoir, such as different types of sands and shales. Various methods 
for simulating discrete variables are described in the literature including sequential 
indicator simulation (SIS, see Alabert (1989)),  iterative methods based on Markov 
chains (Chilès & Delfiner 2012), truncated Gaussian simulation (TGS) see (Matheron 
et al. 1987; Matheron et al. 1988), and pluri-Gaussian simulations (PGS), see (Galli 
et al. 1994).  

When the volume support effect is taken into account for unstructured grids, 
simulating discrete variables can lead to a loss of important information. Consider for 
instance a simulation of ore/waste parameter over the blocks of an unstructured grid. 
Assigning every block a discrete variable ore/waste is less informative than attributing 
a proportion vector (𝑜𝑟𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛,𝑤𝑎𝑠𝑡𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛). The same logic applies 
directly to a simulation of facies – a vector of facies proportions within the block 
provides more information than a single categorical variable “facies”. In this work we 
consider that “facies simulation” on unstructured grids corresponds to a simulation of 
facies proportion vector for every block of the grid. In order to keep the terminology 
consistent with the conventionally used, we still refer to the process as “facies 
simulation”. 

Building a theoretical model for facies simulations on unstructured grids is a 
challenging task. A natural approach to this problem would be constructing a 
generalization of one of the algorithms used for regular grids – SIS, TGS or PGS. 
Although widely used in the petroleum industry for simulating reservoir facies, the SIS 
algorithm is subject to serious critics from the research community. Thus Emery 
(2004a) demonstrates that the reproduction of the input statistics is ensured only 
under very restrictive conditions. The covariance is reproduced only for the case of 
pure nugget effect in n-dimensional space and exponential input covariance function 
in 1D. The author demonstrates that even if all previously simulated nodes were 
taken into account for sequential simulation, the resulting multivariate distribution 
depends on the visiting sequence, which makes the visiting sequence of the nodes 
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itself a parameter of the multivariate distribution simulated. Emery (2004a) derives a 
conclusion that the multivariate distributions of the SIS are “baseless” and should be 
considered as “undefined”. Another characteristics of SIS (as noted by Chilès and 
Delfiner (2012)) is the ability to perform simulations even if the inputs are inconsistent 
and do not correspond to any random field. Another family of algorithms share this 
property – DSS (Oz et al. 2003) algorithms, for which there is exists no practical way 
to check the model consistency. 

Considering the strong critics from the scientific community, attempting to 
generalize the SIS algorithm for simulations on unstructured grids does not seem 
reasonable. It is not clear how a random field model without any underlying 
multivariate distribution can be transferred from a regular to an irregular grid. 
Fortunately the situation is different for TGS and PGS where the simulated 
categorical RV has underlying multivariate Gaussian distribution. Another advantage 
of TGS and PGS is that in addition to the reproduction of covariance between the 
blocks, the simulation algorithms enable simulating contacts between different facies, 
which is used for modeling realistic geological features. This chapter provides an 
attempt to generalize the PGS simulation model for regular grids to geostatistical 
simulations on unstructured grids which consider the change of support effect. The 
chapter starts by describing the formalism of the pluri-Gaussian model and 
formulating the corresponding problem statement for unstructured grids. 
Generalization of TGS, which is a particular case of PGS, is straightforward.  

4.1 Pluri-Gaussian model for facies 
A model of 𝐾 facies in the compact region 𝐷 is considered. Let 𝑌1(𝑥) ∼ 𝐺(0,1) 

be a standard multivariate Gaussian random field with covariance function 𝜌1(𝑥, 𝑥′), 
𝑌2(𝑥) ∼ 𝐺(0,1) be standard multivariate Gaussian RF with covariance function 
𝜌2(𝑥, 𝑥′). The random fields 𝑌1(𝑥) and 𝑌2(𝑥) are independent: 𝑌1(𝑥) ⊥ 𝑌2(𝑦) ∀(𝑥,𝑦) ∈
𝐷2 = 𝐷 × 𝐷. 

Consider also a partition of the plane 𝑅2 into non – intersecting rectangles (with 
possible infinite boundaries): 

𝑅2 = ∪𝑖=1…𝐾 (∆𝑡𝑖1 × ∆𝑡𝑖2), 𝜇 �(∆𝑡𝑖1 × ∆𝑡𝑖2) ∩ �∆𝑡𝑗1 × ∆𝑡𝑗2�� = 0  𝑓𝑜𝑟 𝑖 ≠ 𝑗 

Where 𝜇 is the Lebesgue measure on the plane. Let  𝑍(𝑥) be a discrete RF 
defined in region  𝐷 as “facies at point 𝑥”. Then 𝑍(𝑥), following the pluri-Gaussian 
model can be defined through 𝑌1(𝑥) and 𝑌2(𝑥) and the truncation diagram {(Δ𝑡𝑖1 ×
Δ𝑡𝑖2), 𝑖 = 1 …𝐾}. 

Definition 1 
The facies at point 𝑥,  𝑍(𝑥), is defined as follows: 
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 𝑍(𝑥) = { 𝑖  𝑖𝑓 𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2 𝑖 = 1 …𝐾} (4.1) 

Corollary 1 
The indicators of facies 𝑖 coincides with the indicators of the random vector 

�𝑌1(𝑥),𝑌2(𝑥)� 

 𝐼𝑖(𝑥) =𝑑𝑒𝑓  𝐼{𝑍(𝑥) = 𝑖} =  𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2} (4.2) 

Corollary 2 
The (cross-) covariance of the facies indicators coincides with the (cross-) 

covariance of the indicators of �𝑌1(𝑥),𝑌2(𝑥)�: 

 
𝐶𝑖𝑗(𝑥, 𝑥′) =𝑑𝑒𝑓  𝑐𝑜𝑣(𝐼{𝑍(𝑥) = 𝑖}, 𝐼{𝑍(𝑥′) = 𝑗}) =  

𝑐𝑜𝑣� 𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2}, 𝐼�𝑌1(𝑥′) ∈ ∆𝑡𝑗1,𝑌2(𝑥′) ∈ ∆𝑡𝑗2�� 
(4.3) 

So, basically, the PGM on regular grids reduces the problem of facies 
simulation to a problem of simulating two multivariate Gaussian random fields 𝑌1(𝑥) 
and 𝑌2(𝑥) and applying a 2D truncation diagram defined by a partition of the plane 
𝑅2 = ∪𝑖=1…𝐾 (∆𝑡𝑖1 × ∆𝑡𝑖2). 
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4.2 Problem statement for unstructured grids 
For an unstructured grid {𝑣𝑝,𝑝 = 1 …𝑁𝑏} the volumes of the blocks can vary 

significantly, and characterizing a given block 𝑣𝑝 with a categorical variable “facies 
type” may be too simplistic. Indeed, given a large block, e.g. 1 × 1𝑘𝑚2, characterizing 
it as either shales or sands seems unrealistic. A better solution would be describing 
the compound of the block with proportions of the different facies contained in this 
block. This consideration leads to the problem statement of simulating proportions of 
facies on unstructured grids. 

Definition 2 
The proportion of facies 𝑖 in block  𝑣 is a continuous random variable defined by the 
equation 

 𝑃𝑖(𝑣) =
1

|𝑣|
�𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2}𝑑𝑥
𝑣

 (4.4) 

Remark 
Obviously, from the definition 𝑃𝑖(𝑣) satisfies the constraint 𝛴𝑖=1𝐾 𝑃𝑖(𝑣) = 1. 

Definition 2 can be interpreted in the following way: the proportion of facies 𝑖 in 
block 𝑣 is the frequency of occurrence of facies 𝑖 in this block. Given the definition of 
𝑃𝑖(𝑣), the problem of PGS on unstructured grids can be formulated. For given inputs: 

• Unstructured grid  {𝑣𝑝, 𝑝 = 1 …𝑁𝑏}  
• Covariance function 𝜌1(𝑥, 𝑥′)  of  𝑌1(𝑥) ∼ 𝐺(0,1)  
• Covariance function 𝜌2(𝑥, 𝑥′)  of  𝑌2(𝑥) ∼ 𝐺(0,1) 
• Truncation diagram {(Δ𝑡𝑖1 × Δ𝑡𝑖2), 𝑖 = 1 …𝐾}, which links 𝑌1(𝑥) and 𝑌2(𝑥) to 

facies 𝑍(𝑥) through formula (4.1). 
• Conditioning data {(𝑑𝑖, 𝑧𝑖), 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎} 

Simulate a set of 𝑁𝑏 random vectors ��𝑃1�𝑣𝑝�, …𝑃𝐾�𝑣𝑝�� ,𝑝 = 1 …𝑁𝑏�, which 
respect the theoretical covariance and cross-covariance between proportions of 
different facies in blocks and the marginal distributions.  The simulations should also 
respect the conditioning data.  

Let us make clear what respecting the (cross-) covariance between 
proportions means. For any pair of blocks 𝑣𝑝 and 𝑣𝑞 and facies 𝑖 and 𝑗 in case of 
unconditional simulation, the covariance between simulated 𝑃𝑖(𝑣𝑝) and 𝑃𝑗(𝑣𝑞) should 
be 

 𝑐𝑜𝑣 � 𝑃𝑖�𝑣𝑝�,𝑃𝑗�𝑣𝑞�� = 𝐶𝑖𝑗�𝑣𝑝, 𝑣𝑞�, (4.5) 
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where 𝐶𝑖𝑗 is defined in (4.3). The marginal distribution of 𝑃𝑖(𝑣𝑝) should coincide with 

the marginal distribution of 1
|𝑣|∫ 𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2}𝑑𝑥𝑣 . For conditional 

simulation the same definition holds, but the facies indicators 𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈
∆𝑡𝑖2} should be considered conditional to the data. 

The problem of simulating proportions of facies on unstructured grid is 
significantly more complicated than the simulation of a continuous variable, since for 
each block a random vector of proportions satisfying (4.5) should be simulated, and 
in addition a linear constraint is applied to simulation – the sum of facies proportions 
in every block is equal to 1. 

A non-linear geostatistics solution based on DGM for this problem is studied 
below. Our results demonstrate that the DGM-based approach can be applied for an 
approximate reproduction of the block-to-block covariance, but the reproduction of 
marginal distributions is ensured only for a limited number of configurations of a 
truncation diagram {(Δ𝑡𝑖1 × Δ𝑡𝑖2), 𝑖 = 1 …𝐾}. 
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4.3 PG-DGM: generalization of PGM for unstructured grids 
Let us assume, that 𝑃𝑖(𝑣) - proportion of facies 𝑖 in block 𝑣  is a block-

dependent transform of a block-dependent pair of standard Gaussian RVs 𝑌𝑣1  and 
𝑌𝑣2, for which  𝑌𝑣1 ⊥ 𝑌𝑣2 

 𝑃𝑖(𝑣) = 𝜓𝑣,𝑖(𝑌𝑣1,𝑌𝑣2) (4.6) 

Let, as previously, 𝑥 denote a uniformly distributed random point within block 
𝑣. The following assumptions are done for pairs �𝑌1�𝑥�,𝑌𝑣1� and �𝑌2�𝑥�,𝑌𝑣2� 

 
�𝑌1�𝑥�,𝑌𝑣1� ∼ 𝛣(𝑟1) 

�𝑌2�𝑥�,𝑌𝑣2� ∼ 𝛣(𝑟2) 
(4.7) 

-joint distributions are bivariate Gaussian with some correlation coefficients 𝑟1 and 𝑟2. 
Let us at the moment consider the correlation coefficients 𝑟1 and 𝑟2 to be known (the 
problem of determining these coefficients will be considered later). We demonstrate 
here that assumption (4.7) is sufficient to determine the block-dependent 
transformation function 𝜓𝑣,𝑖(𝑦1,𝑦2) in (4.6). 

As stated in (4.2), the indicator of facies 𝑖 can be expressed through indicators 
of 𝑌1(𝑥) and 𝑌2(𝑥). Let 𝜑𝑖 (𝑦1,𝑦2) denote the bivariate indicator of two Gaussian 
random fields 𝑌1(𝑥) and 𝑌2(𝑥), i.e.  𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2} = 𝜑𝑖 �𝑌1(𝑥),𝑌2(𝑥)�. This 
function can be decomposed in the basis of bivariate normalized Hermite polynomials 
�𝜒𝑛,𝑚(𝑦1,𝑦2),𝑛 = 0 …∞,𝑚 = 0 …∞�, see Appendix B for details: 

 
𝐼𝑖(𝑥) =  𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2} = 𝜑𝑖 �𝑌1(𝑥),𝑌2(𝑥)�

= 𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝜑(𝑖,𝑛,𝑚)𝜒𝑛,𝑚�𝑌1(𝑥),𝑌2(𝑥)�, 
(4.8) 

where 𝜑(𝑖, 𝑛,𝑚) are the coefficients of decomposition of 𝜑𝑖 (𝑦1,𝑦2). The block 
transformation function 𝜓𝑣,𝑖(𝑦1,𝑦2) can also be expressed in the same basis of 
normalized bivariate Hermite polynomials: 

 𝜓𝑣,𝑖(𝑦1,𝑦2)  = 𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝜓(𝑣, 𝑖,𝑛,𝑚)𝜒𝑛,𝑚(𝑦1,𝑦2) (4.9) 

Applying Cartier’s relation (Chilès & Delfiner 2012) 

 𝐸�𝜑𝑖�𝑌1�𝑥�,𝑌2(𝑥)��𝑃𝑖(𝑣)� = 𝑃𝑖(𝑣), (4.10) 

leads to an explicit expression for 𝜓𝑣,𝑖 (𝑦1,𝑦2) through 𝜑𝑖(𝑦1,𝑦2) in the basis of 
bivariate Hermite polynomials. The coefficients of the decomposition of 𝜓𝑣,𝑖(𝑦1,𝑦2)  
before the basis element 𝜒𝑛,𝑚 are  

 𝜓(𝑣, 𝑖,𝑛,𝑚) =  𝜑(𝑖,𝑛,𝑚)𝑟1𝑛−𝑚𝑟2𝑚. (4.11) 
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Complete derivation of (4.11) is given in Appendix B. To conclude, given the 
decomposition of the bivariate Gaussian indicator  𝜑𝑖(𝑦1,𝑦2) decomposed in the 
basis of bivariate normalized Hermite polynomials �𝜒𝑛,𝑚(𝑦1,𝑦2),𝑛 = 0 …∞,𝑚 =
0 …∞} and correlation coefficients (𝑟1, 𝑟2), one is able to derive the block 
transformation function 𝜓𝑣,𝑖(𝑦1,𝑦2) for any proportion of facies 𝑖 = 1 … 𝑘. 

In practice it is not possible to use the infinite number of Hermite polynomials 
to decompose the indicator function – the decomposition should be truncated on 
some finite number of polynomials 𝑁𝑏𝑎𝑠𝑖𝑠. A comparison of indicator decompositions 
for various values of 𝑁𝑏𝑎𝑠𝑖𝑠 can be found in Chilès and Delfiner (2012). Fortunately, 
as demonstrated in Appendix B.4, modeling the transformation function 𝜓(𝑣, 𝑖,𝑛,𝑚) 
can be done in an analytical manner, avoiding the Hermite polynomials. 

 It should be noted that the (cross-) covariance between two facies indicators 
𝐼𝑖(𝑥)  and 𝐼𝑗(𝑥′) can also be decomposed into a series: 

 
𝐶𝑖𝑗(𝑥, 𝑥′) = 𝑐𝑜𝑣 �𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2}, 𝐼�𝑌1(𝑥′) ∈ ∆𝑡𝑗1,𝑌2(𝑥′) ∈ ∆𝑡𝑗2��

=  𝛴𝑛=1+∞ 𝛴𝑚=0𝑛−1𝜑(𝑖,𝑛,𝑚)𝜑(𝑗, 𝑛,𝑚)𝜌1𝑛−𝑚 (𝑥, 𝑥′)𝜌2𝑚 (𝑥, 𝑥′) 
(4.12) 

Proposition 1 
This method of modeling the proportions guarantees that the sum of proportions in 
every block is 1. 

The proof of this proposition is given in Appendix B. 

4.4 Derivation of correlation coefficients  
As in the case of classical DGM we refer to (𝑟1, 𝑟2) as “change of support 

coefficients”. Similar to the use of DGM 1 and DGM 2 for simulations of continuous 
variables, there exist two ways for determining the change of support coefficients 
(𝑟1, 𝑟2) for a block. Let us start from the simpler approach of adding an additional 
assumption in the theoretical model. 

Adding assumption (4.13), leads to a simple formula for determining the 
change of support coefficients 𝑟1 and 𝑟2. Let 𝑥 and 𝑥′ be two independent uniformly 
distributed in block 𝑣 random points. Then assume that the following distributions are 
bivariate Gaussian 

 
�𝑌1�𝑥�,𝑌1�𝑥′�� ∼ 𝛣 

�𝑌2�𝑥�,𝑌2�𝑥′�� ∼ 𝛣 
(4.13) 

As in case of DGM 2, the bivariate distributions of the randomized points in the 
studied domain are approximated with bivariate Gaussian distribution. In this case, 
exactly as in DGM 2,  𝑌𝑣1 = 1

𝑟1

1
|𝑣|∫ 𝑌1(𝑥)𝑑𝑥𝑣 = 1

𝑟1
𝑌1(𝑣)  and 𝑌𝑣2 = 1

𝑟2

1
|𝑣|∫ 𝑌2(𝑥)𝑑𝑥𝑣 =
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1
𝑟2
𝑌2(𝑣)  which leads directly to formula (4.14) for the change of support coefficients. 

The proof can be found in (Chilès & Delfiner 2012; Emery 2007). Let 𝑡ℎ𝑒 𝑏𝑎𝑟 on top 
of the function denote a double volumetric integral over the given volumes 
normalized by the multiplication of these volumes. 

 �
𝑟12  = 𝜌1(𝑣, 𝑣)
𝑟22 = 𝜌2(𝑣, 𝑣)

�. (4.14) 

In a similar manner, for two blocks 𝑣𝑝 and 𝑣𝑞 with change of support 
coefficients (𝑟1,𝑝 , 𝑟2,𝑝) and (𝑟1,𝑞 , 𝑟2,𝑞), the covariance between pairs of variables 

�𝑌𝑣𝑝
1 ,𝑌𝑣𝑞

1 � and �𝑌𝑣𝑝
2 ,𝑌𝑣𝑞

2 �   can be found:  

 �
𝑟1,𝑝𝑟1,𝑞𝑐𝑜𝑣 �𝑌𝑣𝑝

1 ,𝑌𝑣𝑞
1 � = 𝜌1(𝑣𝑝,𝑣𝑞)

𝑟2,𝑝𝑟2,𝑞𝑐𝑜𝑣 �𝑌𝑣𝑝
2 ,𝑌𝑣𝑞

2 � = 𝜌2(𝑣𝑝, 𝑣𝑞)
�, (4.15) 

the derivation of which is straightforward. 

As in the case of DGM2, introducing an additional assumption (4.13) into the 
model provides a significant simplification for deriving the change of support 
coefficients. The disadvantage of this approach is that the derivation of (𝑟1, 𝑟2) does 
not ensure the correct reproduction of 𝑉𝑎𝑟 �𝑃𝑖(𝑣)�.  However, it is possible to derive 
the change of support coefficients without assumption (4.13) in a manner similar to 
DGM1 in order to ensure the reproduction of 𝑉𝑎𝑟 �𝑃𝑖(𝑣)�. For that one should notice 
that for block 𝑣 the variance of the proportion of facies 𝑖 in this block can be 
expressed in two forms: through 𝐶𝑖𝑖(𝑥, 𝑥′) - the covariance function of 𝐼𝑖(𝑥) and 
through the change of support coefficients (𝑟1, 𝑟2). Indeed: 

 𝑉𝑎𝑟�𝑃𝑖(𝑣)� =𝑑𝑒𝑓  𝐶�̅�𝑖(𝑣, 𝑣) = 𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 𝜑2(𝑖, 𝑛,𝑚)𝑟1
2(𝑛−𝑚)𝑟22𝑚.  (4.16) 

Equation (4.16) should hold for any facies 𝑖 = 1 …𝐾. Expressed in this way, 
finding the change of support coefficients (𝑟1, 𝑟2) is equivalent to solving an 
optimization problem for parameters (𝑟1, 𝑟2): 

 �� 𝐶�̅�𝑖(𝑣, 𝑣) − 𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 𝜑2(𝑖, 𝑛,𝑚)𝑟1
2(𝑛−𝑚)𝑟22𝑚�

2
→ 𝑚𝑖𝑛.

𝐾

𝑘=1

 (4.17) 

This approach is examined in details in Appendix B. As explained in Appendix 
B, equations (4.14) and (4.15) can be also derived with this approach as approximate 
solutions of the optimization problem (4.17). 

The proposed theoretical model enables reducing the problem of simulating 𝑁𝑏 
random vectors ��𝑃1�𝑣𝑝�, …𝑃𝐾�𝑣𝑝�� ,𝑝 = 1 …𝑁�  with given covariance and cross-
covariance to a problem of simulating two appropriate multivariate discrete Gaussian 
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random vectors {𝑌𝑣𝑝
1 ,𝑝 = 1 …𝑁𝑏} and {𝑌𝑣𝑝

2 ,𝑝 = 1 …𝑁𝑏} and applying block-dependent 
transformation functions. The applicability of the proposed model should generally be 
tested for given inputs. The tests provided in the following section demonstrate that 
PG-DGM gives a good approximation for block to block covariance, however, in the 
general case the obtained marginal distributions differ from those provided by using 
PGM on a fine scale and upscaling. 

4.5 Conditioning of PG-DGM simulations 
Conditioning of PG-DGM simulations can be performed with kriging. For that, it 

is sufficient to condition the simulated unconditional multivariate Gaussian random 
vectors {𝑌𝑣𝑝

1 ,𝑝 = 1 …𝑁𝑏} and {𝑌𝑣𝑝
2 ,𝑝 = 1 …𝑁𝑏} to the given input point-support data 

{𝑌1(𝑑𝛼) = 𝑦1(𝑑𝛼),𝑌2(𝑑𝛼) = 𝑦2(𝑑𝛼),𝛼 = 1 …𝑁𝑑𝑎𝑡𝑎}. It should be noted, that the 
transformed to Gaussian scale conditioning data should be obtained from the 
discrete data (𝑧𝑖, 𝑖 = 1 …𝑁𝑑𝑎𝑡𝑎) using the Gibbs sampler, see Lantuejoul (2002) for 
details. 

For that, for every conditioning data location 𝑑𝛼, we derive the point support 
samples coherent with the unconditional block simulation using (4.7). Let 𝑑𝛼 ∈ 𝑣𝑝, 
then 

 
𝑌1 �𝑑𝛼� =  𝑟1,𝑝𝑌𝑣𝑝

1 + �1 − 𝑟1,𝑝
2 𝜉𝛼1,  𝑤ℎ𝑒𝑟𝑒 𝜉𝛼1 ∼ 𝑁(0,1) 

𝑌2 �𝑑𝛼� =  𝑟2,𝑝𝑌𝑣𝑝
2 + �1 − 𝑟2,𝑝

2 𝜉𝛼2,  𝑤ℎ𝑒𝑟𝑒 𝜉𝛼2 ∼ 𝑁(0,1). 
(4.18) 

If we identify, for the purpose of conditioning, 𝑑𝛼  and 𝑑𝛼, then the covariance 

between �𝑌1(𝑑𝛼),𝛼 = 1 …𝑁𝑝� if defined by function 𝜌1(ℎ). The covariance between 

𝑌𝑣𝑞
1  and 𝑌1(𝑑𝛼)  can be easily found assuming 𝑌𝑣𝑞

1 = 𝑌1�𝑣𝑞�
𝑟1,𝑞

 

 �
𝑟1,𝑞𝑐𝑜𝑣 �𝑌1(𝑑𝛼),𝑌𝑣𝑞

1 � = 𝜌1(𝑑𝛼, 𝑣𝑞)

𝑟2,𝑞𝑐𝑜𝑣 �𝑌2(𝑑𝛼),𝑌𝑣𝑞
2 � = 𝜌2(𝑑𝛼, 𝑣𝑞)

� (4.19) 

It should be noted that the proposed approach for conditioning does not 
require any modifications if several data points belong to the same block of the grid. 
In this case the conditional independence hypothesis is applied – given the block 
value the sample values are independent and can be derived through (4.18). After all 
the sample to sample and sample to block covariances are derived, RF 𝑌1(𝑥) and 
𝑌2(𝑥) can be independently conditioned to data {𝑦1(𝑑𝛼),𝛼 = 1 …𝑁𝑑𝑎𝑡𝑎}  and 
{𝑦2(𝑑𝛼),𝛼 = 1 …𝑁𝑑𝑎𝑡𝑎} respectively through conditioning kriging (de Fouquet 1994). 
Applying transformation (4.6) leads to a conditioned simulation. As in the case of 
DGM 1 and DGM 2, it is possible to avoid the assumption that 𝑑𝛼   and 𝑑𝛼 are 
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identical. In this case the input samples should be considered as randomized inside 
the blocks from the beginning. The resulting covariances in this case are derived in 
the same way as for DGM 1 and DGM 2.  
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4.6 Comparing with mini-models 
Let us compare the marginal distributions of proportions implied by PG-DGM 

with the observed distributions produced by Monte Carlo mini-model simulation on 
regular grids followed by upscaling for a single 3D block of an unstructured grid. One 
categorical variable “facies” is simulated on the blocks of the mini-model. This can be 
considered as simulating the proportion vectors for which one of the proportions is 
equal to 1 and the others are 0. The block selected for the test is a Voronoï polygon-
based prism which is depicted on the Figure 4-2 inscribed in its bounding box. The 
bounding box dimensions are 88 × 97 × 4 m.  

For the purpose of convenience instead of defining the truncation diagram on 
the plane 𝑅2 = ∪𝑖=1…𝐾 (∆𝑡𝑖1 × ∆𝑡𝑖2) it is common to define the truncation diagram on 
[0,1]2, so that [0,1]2 = ∪𝑖=1…𝐾 (∆𝑠𝑖1 × ∆s𝑖2). The advantage of this definition is that 
𝐸𝐼𝑖(𝑥) is equal to the area of rectangle ∆𝑠𝑖1 × ∆s𝑖2. The conversion between two 
representations is straightforward. Two truncation diagrams defined on [0,1]2 
demonstrated on Figure 4-1 were selected for the test. 

 A spherical covariance function with geometric anisotropy is used for the 
marginal distribution reproduction test. For all tests 𝜌1(𝑥, 𝑥′) = 𝜌2(𝑥, 𝑥′) = 𝜌(𝑥, 𝑥′). 
Three sets of parameters are tested 

1) Short range of 𝜌(𝑥, 𝑥′) is (50,50,1)𝑚 
2) Medium range of 𝜌(𝑥, 𝑥′) is (100,100,2)𝑚 
3) Long range of 𝜌(𝑥, 𝑥′) is (150,150,3)𝑚 

  
a) b) 

Figure 4-1. Truncation diagrams a) diagram 1 b) diagram 2. 

The marginal distribution of 𝑃𝑖(𝑣), 𝑖 = 0,1,2 turns out to be very sensitive to the 
simulation method – we were not able to obtain decent quality of statistics 
reproduction with SGS applied for mini-models. For the purpose of this test the mini-
model simulation is performed with the Cholesky decomposition simulation method. 
Figure 4-2 demonstrates two realizations of mini-model for truncation diagram 2 for 
short and medium ranges of 𝜌(𝑥, 𝑥′).  

FAC 0
P=0.2

FAC 1
P=0.4

FAC 2
P=0.4

FAC 0
P=0.2

FAC 1
P=0.4

FAC 2
P=0.4
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a) b) 

Figure 4-2. Mini-model simulation for a single Voronoï polygon block (diagram 2). The 
boundary of the block is shown with blue line. Vertical zoom factor 2. a) short range 

b) medium range. 

The comparison of the marginal distribution of 𝑃𝑖(𝑣), 𝑖 = 0,1,2 implied by PG-
DGM with the value observed from Monte Carlo simulations for a small covariance 
function range is shown on Figure 4-3 and Figure 4-4; the results for medium and 
large ranges can be found in Appendix B. It is observed, that for truncation diagram 
1, the distributions provided by PG-DGM differ significantly from the distributions 
obtained with Monte Carlo for facies 1, which is bounded by facies 0 on the left and 
facies 2 on the right on the truncation diagram. On the other hand, for truncation 
diagram 2, Figure 4-4 demonstrates a fairly good reproduction of the marginal 
distribution. Our tests indicate that the marginal distribution of 𝑃𝑖(𝑣) is not reproduced 
if on the truncation diagram facies 𝑖 was bounded by other facies on both sides. This 
effect limits significantly the range of applicability of PG-DGM. On the other hand, for 
truncation diagrams as on Figure 4-1b, where no facies is bounded from both sides, 
PG-DGM gives good approximations for marginal distributions. 
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a) 

  
b) c) 

Figure 4-3. Block marginal distribution for truncation diagram 1 (small 
covariance range case). a) 𝑃0(𝑣) b) 𝑃1(𝑣) c) 𝑃2(𝑣). Histogram demonstrates the 
observed distribution from Monte Carlo simulations, blue curve indicates the 
predicted by PG-DGM density.   
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a) 

  
b) c) 

Figure 4-4. Block marginal distribution for truncation diagram 2 (small covariance 
range case). a) 𝑃0(𝑣) b) 𝑃1(𝑣) c) 𝑃2(𝑣). Histogram demonstrates the observed 

distribution from Monte Carlo simulations, blue curve indicates the predicted by PG-
DGM density.  
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4.7 Unconditional simulation with PG-DGM 
Since the marginal distributions for truncation diagram 1 are not reproduced, 

only truncation diagram 2 is considered further. For truncation diagram 2 
unconditional realizations produced with PG-DGM for a 1-layer 3D grid are 
demonstrated on Figure 4-5 and Figure 4-6. For Figure 4-5 a spherical covariance 
with range (300,300,1)𝑚 is used, while for Figure 4-6 a spherical covariance with 
range (800,400,1)𝑚 and azimuth 45 degrees is used. 

  
a) b) 

  
c) d) 

Figure 4-5. Unconditional realizations produced with PG-DGM. a) 𝑃0(𝑣) b) 𝑃1(𝑣) c) 
𝑃2 (𝑣) d) dominant facies map. 
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a) b) 

  
c) d) 

Figure 4-6. Unconditional realizations produced with PG-DGM. a) 𝑃0(𝑣) b) 𝑃1(𝑣) c) 
𝑃2 (𝑣) d) dominant facies map. 

We verify if PG-DGM reproduces correctly the block to block covariance. A 
test for spherical covariance with range (300,300,1)𝑚 is provided below. Given the 
indicator covariance function 𝐶00(𝑥, 𝑥′) for facies 0, the covariance 𝐶00(𝑣𝑝, 𝑣𝑞) 
between any pair of blocks (𝑣𝑝, 𝑣𝑞) can be computed. It is the theoretical value of 
block to block covariance which should be respected by a facies proportion 
simulation algorithm on unstructured grids, as indicated in (4.5). When PG-DGM is 
applied, as mentioned in the model derivation section, the values of the block to 
block covariance are reproduced only approximately. The 𝑐𝑜𝑣 �𝑃0�𝑣𝑝�,𝑃0�𝑣𝑞�� 
implied by PG-DGM does not coincide with the theoretical value 𝐶00(𝑣𝑝, 𝑣𝑞), see Eqn. 
(B.31) in Appendix B. Figure 4-7 gives a cross-plot of implied by PG-DGM covariance 
𝐶00(𝑣𝑝, 𝑣𝑞) versus the theoretical values. 
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Figure 4-7. PG-DGM block to block covariance versus theoretical. 

It is seen from Figure 4-7 that PG-DGM does not respect exactly the block to 
block covariance, but only approximates it with visible systematic underestimation. 
The error of this approximation relative to point support variance 𝜎002 = 𝐶00(0,0) is 

𝛿𝑐 = 𝐶00�𝑣𝑝,𝑣𝑞�−𝐶00𝐷𝐺𝑀(𝑣𝑝,𝑣𝑞) 
𝜎002

∗ 100% ≤ 3%, while the classical relative error 𝛿𝑟 =

 𝐶00�𝑣𝑝,𝑣𝑞�−𝐶00𝐷𝐺𝑀(𝑣𝑝,𝑣𝑞) 
𝐶00�𝑣𝑝,𝑣𝑞�

∗ 100% is high and reaches 20% (mean 𝛿𝑟 is 5.5%). Although the 

relative block to block covariance is high, the general structure of the block to block 
covariance matrix is reproduced. Analyzing these results, one should take into 
account that the change of support effect in this test is very high – the maximal 
change of support coefficients for a block are only 𝑟1 = 𝑟2 = 0.42. As demonstrated in 
the mini-model tests, even for stronger change of support effect PG-DGM provides a 
good approximation for the marginal distributions. Although the block to block 
covariance implied by PG-DGM underestimates the theoretical covariance 
𝐶00�𝑣𝑝, 𝑣𝑞�, it is questionable whether in practice any other simulation method based 
on a sequential simulation principle is able to produce better results for the same 
inputs. Application of SGS on a fine regular grid followed by upscaling for these 
inputs did not lead to any satisfactory results in reproduction of marginal distributions 
and covariance even if large simulation neighborhood of 400 previously simulated 
nodes was considered. Moreover, as mentioned before, SGS followed by upscaling 
does not reproduce the marginal distribution even for mini-model Monte Carlo 
simulations, which explains the use of Cholesky decomposition.   



81 

 

4.8 Conclusion 
The problem of simulating discrete variables such as facies was generalized in 

order to take into account the change of support effect. As demonstrated in this 
chapter, when the change of support effect is considered, proportions of facies 
should be simulated. The problem of simulating proportions of facies on an 
unstructured grid proves to be significantly more complicated than the problem of 
simulating without change of support and than the problem of simulating continuous 
variables on unstructured grids. The above-mentioned complexity arises from the 
necessity of respecting the cross-covariance relations between the blocks as well as 
ensuring that the sum of proportions in every block equals to 1.  

A generalization of the PGS algorithm based on the DGM formalism was 
presented. Author is not aware of any previous attempts to generalize the PGS for 
simulations on unstructured grids with the volume support effect. Previous 
generalizations of PGS include the work of Emery and Gálvez (2012), where the 
authors propose a generalization of PGM for simulations of regionalized 
compositions. Both PG-DGM and the model proposed by Emery and Gálvez (2012)  
permit simulating a set of random vectors with correlated components under the 
constraints of non-negativity and fixed sum of the components of each vector. The 
models have significant theoretical differences, applications of the algorithm 
proposed by Emery and Gálvez (2012) to the simulations on unstructured grids were 
not investigated. PG-DGM has a limited scope of application – in particular, the 
marginal distributions are not reproduced correctly for TGS-style truncation diagrams. 
On the other hand, as demonstrated through the mini-model Monte Carlo tests, for 
the “open” flags the PG-DGM reproduced the marginal distributions of proportions.   

When PG-DGM is not applicable to the facies simulation on an unstructured 
grid, another simulation algorithm should be applied. One solution is using fine scale 
simulations on a regular grid followed by upscaling on the target unstructured grid. 
This approach has the disadvantage of using very fine regular grids. A more elegant 
constructive solution to this problem was proposed by Gross and Boucher (2015) 
which is a generalization of the previously presented algorithm for regular grids 
(Boucher & Dimitrakopoulos 2009). The authors present a sequential simulation 
algorithm on unstructured grids, which can be applied for facies simulation, in 
particular to PGM. The algorithm simulates block after block and uses upscaling 
inside each block instead of analytical transform functions such as PG-DGM. 
Simulations inside each block should be performed on a set of discretizing points in 
the Gaussian scale, conditional to hard data and to the previously simulated block 
values. In the next chapter we contribute the results of (Gross & Boucher 2015) by 
demonstrating that a set of Sobol’ quasi-random points is a good choice for 
discretizing each block in this algorithm.  Through the algorithm of Gross and 
Boucher (2015) is able to reproduce the marginal distributions of facies proportions, a 
disadvantage of this algorithm is that it is linked to the sequential simulation principle 
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and is subject to the weakness of all sequential simulation algorithms – necessity of 
using a limited neighborhood for simulations, which can have a negative impact on 
resulting statistics. As demonstrated in Chapter 3 in the testing DGM section, it is not 
always possible to reproduce rigorously statistics with sequential simulation methods. 
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Chapter 5: Covariance computations 
Résumé  

Le calcul de covariance entre les blocs est une des parties principales de tous 
les algorithmes de simulation pour les maillages non-structurés. Ce chapitre compare 
les différentes approches à ce problème – l’utilisation de discrétisations régulières, 
les quadratures Gaussiennes et les méthodes de Monte Carlo.   L’avantage des 
méthodes de Monte Carlo, notamment l’utilisation des suites à discrépance  faible, 
sur les méthodes déterministes est illustré. 

5.1 Introduction 
One of the crucial problems when performing geostatistics on unstructured 

grids is the problem of computing the block to block covariance.  

 𝐶�𝑣𝑝, 𝑣𝑞� =
1

�𝑣𝑝�|𝑣𝑞|
� � 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

𝑣𝑞𝑣𝑝
, (5.1) 

The computation of the block to block covariance is essential for determining 
the change of support coefficients for the blocks as well as the covariance between 
the Gaussian variables 𝑌𝑣 corresponding to the block average values 𝑍(𝑣𝑝). When 
the blocks on the unstructured grid are defined in 3 dimensions, which is often the 
case in practice, the above-mentioned double volumetric integral leads to a 
computation of a sextuple integral, and its computation becomes indeed a 
challenging task.  

According to Press et al. (1996), computation of multidimensional integrals is 
“not easy”, and in the general case, facing the problem of such a computation, one 
should try to avoid it when possible  by reducing the dimension of the problem. 
Computing the integral (5.1) is further complexified by the shape of the boundary of 
the blocks 𝑣𝑝 and 𝑣𝑞. Indeed, when the problem of computing 𝐶�𝑣𝑝, 𝑣𝑞� is considered 
in one dimension, the blocks are defined simply as closed intervals: 𝑣𝑝 = [𝑙𝑝, 𝑟𝑝], 
𝑣𝑞 = [𝑙𝑞, 𝑟𝑞] and the computation of (5.1) reduces to 

 𝐶�𝑣𝑝 , 𝑣𝑞� =
1

�𝑟𝑝 − 𝑙𝑝�(𝑟𝑞 −  𝑙𝑞)
� � 𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

𝑟𝑞

𝑙𝑞

𝑟𝑝

𝑙𝑝

, (5.2) 

which can be solved with any classical method of numerical integration as trapezoidal 
quadrature, Simpson’s rule, Gaussian quadrature or other, see Press et al. (1996) for 
an extensive methods review. When the problem is considered is two dimensions, 
the boundary of the blocks 𝑣𝑝 and 𝑣𝑞 cannot be represented in a simple form like in 
(5.2). In order to compute 𝐶(𝑣𝑝, 𝑣𝑞), the cross-sections of  𝑣𝑝 should be represented 
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in a functional form, for instance, one might derive a representation for a cross-
section of 𝑣𝑝 with a fixed 𝑥 coordinate: 𝑣𝑝(𝑥) =  [𝑙𝑝(𝑥), 𝑟𝑝(𝑥)], see Figure 5-1. 

 

Figure 5-1. Functional representation of the block cross-sections in 2D. 

Given that the 𝑥 boundaries for 𝑣𝑝 and 𝑣𝑞 are (𝑥𝑙𝑝,𝑥𝑟𝑝) and (𝑥𝑙𝑞 , 𝑥𝑟𝑞) 
respectively, the integral (5.1) can be written in the following form: 

 𝐶�𝑣𝑝, 𝑣𝑞� =
1

�𝑣𝑝�|𝑣𝑞|
� � � � 𝐶[(𝑥,𝑦), (𝑥′,𝑦′)]𝑑𝑥𝑑𝑦𝑑𝑥′𝑑𝑦′

𝑦𝑟𝑞(𝑥′)

𝑦𝑙𝑞(𝑥′)

𝑥𝑟𝑞

𝑥𝑙𝑞

𝑦𝑟𝑝(𝑥)

𝑦𝑙𝑝(𝑥)

𝑥𝑟𝑝

𝑥𝑙𝑝

 (5.3) 

The volume |𝑣𝑝| in formula (5.3) should also be computed with integration, but 
we avoid writing this explicitly for the sake of simplicity. In fact finding the cross-
section functions 𝑦𝑙𝑝(𝑥) and 𝑦𝑟𝑝(𝑥) is also a complicated task, which hardly has a 
general solution for arbitrary shaped blocks. This task can be simplified when the 
integration domain has some “good” properties, for instance if it is convex, or even 
better, if it is a convex polygon in two dimensions or a convex polyhedron in three 
dimensions. In that case the cross-section functions can be efficiently found. 
Following the logic of the 2D case, the integration formula in 3D has the following 
form: 

𝐶�𝑣𝑝, 𝑣𝑞� = 

1
�𝑣𝑝�|𝑣𝑞|

� � � � � � 𝐶[(𝑥, 𝑦, 𝑥), (𝑥′,𝑦′, 𝑧′)]𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑥′𝑑𝑦′𝑑𝑧′

𝑧𝑟𝑞(𝑥′,𝑦′)

𝑧𝑙𝑞(𝑥′,𝑦′)

𝑦𝑟𝑞(𝑥′)

𝑦𝑙𝑞(𝑥′)

𝑥𝑟𝑞

𝑥𝑙𝑞

𝑧𝑟𝑝(𝑥,𝑦)

𝑧𝑙𝑝(𝑥,𝑦)

𝑦𝑟𝑝(𝑥)

𝑦𝑙𝑝(𝑥)

𝑥𝑟𝑝

𝑥𝑙𝑝

. 
(5.4) 

Due to the necessity of finding the boundary functions 𝑙𝑝(𝑥), 𝑦𝑟𝑝(𝑥), 𝑧𝑙𝑝(𝑥,𝑦) 
and 𝑧𝑟𝑝(𝑥,𝑦), we make an assumption that our cells are all convex polyhedrons in 
3D. This assumption is very reasonable, since the flow simulation grids in the 
petroleum industry are often composed of convex polyhedrons, such as tetrahedron, 
triangular prisms, Voronoï  polygon – based prisms, cubes and octahedrons. But 
even in the case of convex polyhedrons in 3D, the problem of finding the boundary 
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functions remains rather complicated. The method of modeling convex polygons in 
3D is described in the following section. 

5.2 Modeling grid blocks 
The advantage of using the convex polyhedrons in 3D (and convex polytopes 

in general case) is that they can be represented as a system of linear inequalities - 
the intersection of a final number of half – spaces (Grünbaum & Shephard 1969). For 
any convex polytope 𝑣 one can write 

 𝑣 =  �
𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 ≤ 𝑏1

⋮
𝑎𝑚1𝑥 + 𝑎𝑚2𝑦 + 𝑎𝑚3𝑧 ≤ 𝑏𝑚

�, (5.5) 

where 𝑚 is the number of faces of the block 𝑣. Although the representation (5.5) can 
be easily derived from the set of faces of block 𝑣 and the directions of the outward 
normals to these faces, this representation itself is not sufficient to derive the cross-
section functions for 𝑣, but it can be further converted to a form compatible with Eqn. 
(5.4). When the block 𝑣 is a convex polyhedron, the boundary functions are 
piecewise-linear, and any integral of a continuous function over the block 𝑣 can be 
represented as a sum of integrals with linear boundaries. For instance, for the volume 
of block 𝑣, one has 

 |𝑣| = � � � � 1𝑑𝑥𝑑𝑦𝑑𝑧

𝑏𝑧𝑖+𝑏𝑧𝑥𝑖 𝑥+𝑏𝑧𝑦𝑖 𝑦

𝑎𝑧𝑖 + 𝑎𝑧𝑥𝑖 𝑥+𝑎𝑧𝑦𝑖 𝑦

𝑏𝑦𝑖 +𝑏𝑦𝑥𝑖 𝑥

𝑎𝑦𝑖 +𝑎𝑦𝑥𝑖 𝑥

𝑏𝑥𝑖

𝑎𝑥𝑖

𝑁𝐿(𝑣)

𝑖=1

, (5.6) 

where 𝑁𝐿(𝑣) is the number of regions in 𝑣 with linear boundaries. Transforming the  
system (5.5) to the form suitable for integration is not a simple task, but it can 
efficiently be solved with the algorithm proposed by Korenblit and Shmerling (2006). 
The algorithm transforms the system (5.5) into the following form 

 𝑣 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�

𝑎𝑥1 ≤ 𝑥 ≤ 𝑏𝑥1 
𝑎𝑦1 + 𝑎𝑦𝑥1 𝑥 ≤ 𝑦 ≤ 𝑏𝑦1 + 𝑏𝑦𝑥1 𝑥

𝑎𝑧1 +  𝑎𝑧𝑥1 𝑥 + 𝑎𝑧𝑦1 𝑦 ≤ 𝑧 ≤ 𝑏𝑧1 + 𝑏𝑧𝑥1 𝑥 + 𝑏𝑧𝑦1 𝑦
�

                                                         ⋮

�
𝑎𝑥
𝑁𝐿(𝑣) ≤ 𝑥 ≤ 𝑏𝑥

𝑁𝐿(𝑣) 
𝑎𝑦
𝑁𝐿(𝑣) + 𝑎𝑦𝑥

𝑁𝐿(𝑣)𝑥 ≤ 𝑦 ≤ 𝑏𝑦
𝑁𝐿(𝑣) + 𝑏𝑦𝑥

𝑁𝐿(𝑣)𝑥

𝑎𝑧
𝑁𝐿(𝑣) +  𝑎𝑧𝑥

𝑁𝐿(𝑣)𝑥 + 𝑎𝑧𝑦
𝑁𝐿(𝑣)𝑦 ≤ 𝑧 ≤ 𝑏𝑧

𝑁𝐿(𝑣) + 𝑏𝑧𝑥
𝑁𝐿(𝑣)𝑥 + 𝑏𝑧𝑦

𝑁𝐿(𝑣)𝑦

�

�, (5.7) 

which gives explicit formulas for the boundary functions and enables computing 
integrals like (5.4) and (5.6) over the blocks. It should be noted, that the algorithm of 
Korenblit and Shmerling (2006) also guarantees that the linear systems of equations 
in (5.7) are mutually exclusive, which makes the summation in formula (5.6) correct. 
The system of equations resulting from the decomposition algorithm can be 
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effectively stored and used for computations. Figure 5-2 illustrates the result of 
decomposing a Voronoï polygon-based prism into representation (5.7). 

 
 

 

a) b) 
Figure 5-2. Decomposition of a convex polyhedron into blocks with linear boundaries. 

a) top view b) side view. 

Figure 5-2 demonstrates that the polyhedron is decomposed into a number of 
non-overlapping SOI (system of inequalities), which determine convex polyhedrons 
with linear (and not piecewise-linear, as for the original block) boundaries. This 
decomposition enables one to derive the boundary functions for equation (5.4). Given 
these boundary functions, various methods can be considered for numerical 
integration in order to compute the block to block covariance. We further extensively 
study the problem of computing the variance of a block – its covariance with itself, 
since this problem is more complicated from the numerical point of view. Indeed, 
computing the variance of a single block includes summation over both large and 
small values of covariance function, whereas computing the covariance between two 
distinct blocks in general only refers to the values corresponding to non-zero 
separation vectors. 
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5.3 Computing with regular discretization 
As suggested by Goovaerts (1997) for regular grids, in order to compute the 

block to block covariance, each block should be discretized with some finite number 
𝑁 of points and the block to block covariance should be computed as an arithmetic 
mean of the point to point covariances. Then for block 𝑣 one has: 

 𝑉𝑎𝑟(𝑣) = 𝐶(𝑣, 𝑣) ≈
1
𝑁2��𝐶(𝑥𝑖, 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 (5.8) 

In case of regular grids, the blocks are rectangular parallelepipeds and the 
discretization can be simply derived using regular spacing on the sides of the 
parallelepiped. On the other hand, creating a discretization for a block of a general 
form is less obvious. Representation (5.7) enables one to build the same type of 
discretization as for rectangular parallelepipeds for convex polyhedrons. This type of 
discretization can be intuitively considered as building a fine scale regular grid that 
discretizes block 𝑣. The discretization is built for each SOI composing the block 
independently, so the points are aligned only inside each SOI with linear boundaries, 
in addition, we always include the points on the sides of the polyhedron, in order to 
keep the summation formula (5.8) closed (the same open-closed notations as for 
quadratures is used). Figure 5-3 illustrates a regular discretization built for a Voronoï 
polygon-base block 𝑣 in 3D. 

  
a) b) 

Figure 5-3. Regular discretization of a 3D Voronoï polygon-based block. The points 
are placed regularly within each SOI, boundary points are always included. a) top 

view b) side view. 

One of the advantages of using a regular discretization is that in order to 
compute 𝑉𝑎𝑟(𝑣) it is not necessary to compute independently the integral part of 
(5.1) and the volume. Indeed, let 𝑣 be discretized into 𝑁 equal blocks 𝜎𝑖, identical up 
to a translation to a small block 𝜎. Then 
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𝑉𝑎𝑟(𝑣) =
1

|𝑣|2 � �𝐶(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣𝑣

=
1

� 𝑙𝑖𝑚
|𝜎|→0

∑ |𝜎𝑖|𝑁
𝑖=1 �

2 𝑙𝑖𝑚|𝜎|→0
��𝐶�𝑥𝑖 , 𝑥𝑗�|𝜎𝑖|�𝜎𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

= 𝑙𝑖𝑚
|𝜎|→0

∑ ∑ 𝐶�𝑥𝑖, 𝑥𝑗�|𝜎|2𝑁
𝑗=1

𝑁
𝑖=1

𝑁2|𝜎|2 
= 𝑙𝑖𝑚

𝑁→+∞
 

1
𝑁2��𝐶�𝑥𝑖, 𝑥𝑗�

𝑁

𝑗=1

𝑁

𝑖=1

. 

(5.9) 

5.4 Computing with Gaussian quadratures 
With regards to the representation of the convex polyhedron block 𝑣 in the 

form (5.7), multidimensional integrals over 𝑣 can be computed by applying 
successive one-dimensional integrations. Let us consider the problem of computing  
the volume of block 𝑣, for which 𝑁𝐿(𝑣) = 1 in (5.7), which means the block is 
determined with one SOI in a form suitable for integration (we use this assumption 
only to simplify the formulas). 

 |𝑣| = � � � 1𝑑𝑥𝑑𝑦𝑑𝑧

𝑏𝑧+𝑏𝑧𝑥𝑥+𝑏𝑧𝑦𝑦

𝑎𝑧+𝑎𝑧𝑥𝑥+𝑎𝑧𝑦𝑦

𝑏𝑦+𝑏𝑦𝑥𝑥

𝑎𝑦+𝑎𝑦𝑥𝑥

𝑏𝑥

𝑎𝑥

= � 𝐹𝑥(𝑥)𝑑𝑥

𝑏𝑥

𝑎𝑥

, (5.10) 

where 𝐹𝑥(𝑥) = ∫ ∫ 1𝑑𝑦𝑑𝑧𝑏𝑧+𝑏𝑧𝑥𝑥+𝑏𝑧𝑦𝑦
𝑎𝑧+𝑎𝑧𝑥𝑥+𝑎𝑧𝑦𝑦

𝑏𝑦+𝑏𝑦𝑥𝑥
𝑎𝑦+𝑎𝑦𝑥𝑥

 is only a function of 𝑥. In a similar manner 

one can write 

 𝐹𝑥(𝑥) = � 𝐹𝑦(𝑦)𝑑𝑦

𝑏𝑦+𝑏𝑦𝑥𝑥

𝑎𝑦+𝑎𝑦𝑥𝑥

, (5.11) 

with 𝐹𝑦(𝑦) =  ∫ 1𝑑𝑧𝑏𝑧+𝑏𝑧𝑥𝑥+𝑏𝑧𝑦𝑦
𝑎𝑧+𝑎𝑧𝑥𝑥+𝑎𝑧𝑦𝑦

. This representation through univariate integrals 

enables computing |𝑣| by means of classical one-dimension integration techniques. 
Thus, in order to compute |𝑣|, the one-dimensional integral of 𝐹𝑥(𝑥) should be 
computed; the function 𝐹𝑥(𝑥) can also be computed through one-dimensional 
integration and so on. We propose applying this principle for computing the variance 
of block 𝑣, and in the general case the covariance between the blocks  (5.1). 

One of the methods to compute numerically the integral in one dimension is 
the utilization of the Gauss-Legendre quadrature (Golub & Welsch 1969; Kahaner et 
al. 1989; Stoer & Bulirsch 2013).  With this method, the integral is approximated with 
a finite sum of 𝑛 terms (see Stoer and Bulirsch (2013)  for details) 
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 �𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 ≈  �𝑤𝑖𝑓(𝑥𝑖)
𝑛

𝑖=1

, (5.12) 

where the points 𝑥𝑖 are the roots of the Legendre polynomial of degree 𝑛 on (𝑎, 𝑏) 
and the values 𝑤𝑖 are the associated weights which can be found through Theorem 
3.6.21 in (Stoer & Bulirsch 2013).  The Gaussian-Legendre quadrature has two 
additional degrees of freedom relative to the integration through the regularly spaced 
points such as trapezoidal rule (Press et al. 1996). First, we are not restricted to 
computing the integrand in the regular spaced points, and second – we are able to 
find optimal weighting factors for each computed value of the integrand. The number 
𝑛 of terms in (5.12) is called the degree of the quadrature. It is worth mentioning the 
well-known result that the Gaussian quadrature of degree 𝑛 is exact for polynomials 
of order up to 2𝑛 − 1 inclusive. This property can be used for parameter optimization, 
since some of geostatistics covariance functions, such as the spherical, are defined 
with polynomials of small degree.  

The error of approximation in (5.12) is given by the following formula  from 
(Kahaner et al. 1989) 

 (𝑏−𝑎)2𝑛+1(𝑛!)4

(2𝑛+1)[(2𝑛)!]3
𝑓(2𝑛)(𝜉), 𝑤ℎ𝑒𝑟𝑒 𝑎 <  𝜉 < 𝑏.   (5.13) 

Assessing the asymptotic behavior of the error of the Gauss-Legendre 
quadrature is a complicated task, which refers to complex analysis (Chawla & Jain 
1968). The asymptotic behavior was also studied for the case of multiple integration 
(Elliott et al. 2011). We will limit ourselves to practical comparison of the rate of 
convergence for different methods for computing 𝑉𝑎𝑟 �𝑍(𝑣)�. 

When using Gauss-Legendre quadrature it is not possible to avoid computing 
|𝑣| as it was in the case of regular discretization due to irregular spacing of the 
integration points.  Figure 5-4 depicts the placement of Gauss-Legendre integration 
points for 𝑣. Placement of points is performed when recursive integration in one 
dimension with a Gauss-Legendre quadrature of degree 3 is called successively on  
𝑥,𝑦 and 𝑧. The integration is performed one SOI after another. 
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a) b) 

Figure 5-4. Placement of integration points for Gauss-Legendre integration. a) top 
view b) side view. 

The pattern of points is strongly irregular, and it is not obvious to see the three 
points placed in each direction. The figure below explains the placement inside a 
selected SOI for integration on variables 𝑥 and 𝑦. 

 
Figure 5-5. Integration points for a Gauss-Legendre quadrature of degree 3. Black 
dotted lines indicate the boundaries of the SOI; filled area corresponds to the SOI 

selected for demonstration; green dashed lines indicate the projections of the 
selected points on the coordinate axis.  

Careful inspection of Figure 5-5 shows that each SOI is indeed filled with 9 
points placed with the recursive integration procedure first on 𝑥 and then on 𝑦. 

x

y

x1 x2 x3

y1

y2

y3

SOI
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5.5 Monte Carlo methods 
Instead of applying subsequently integration in one dimension, computation of 

multidimensional integrals can be effectively performed with Monte Carlo integration 
techniques. The covariance 𝐶(𝑣𝑝, 𝑣𝑞) in (5.1) can be represented in the following form  

 𝐶�𝑣𝑝, 𝑣𝑞� =  ∫ ∫ 𝐶(𝑥, 𝑥′) 𝑣𝑞𝑣𝑝
𝑑𝑥
�𝑣𝑝�

𝑑𝑥′
�𝑣𝑞�

= 𝐸[𝐶(𝑋,𝑋′)]  (5.14) 

Where 𝑋 and 𝑋′ are uniform randomly distributed random points in 𝑣𝑝 and 𝑣𝑞 
respectively. Using (5.14) the value of 𝐶�𝑣𝑝, 𝑣𝑞� can be estimated with a number 𝑁 of 
pairs of points (𝑋𝑖,𝑋𝑖′) ∈ 𝑣𝑝 × 𝑣𝑞 , 𝑖 = 1 …𝑁 sampled from the uniform distribution 
within these blocks 

 �̂��𝑣𝑝, 𝑣𝑞� =
1
𝑁
�𝐶(𝑋𝑖,𝑋𝑖′)
𝑁

𝑖=1

. (5.15) 

It is easy to see that such an estimate is unbiased, and to compute its 
variance: 

 𝐸��̂��𝑣𝑝, 𝑣𝑞�� =
1
𝑁
𝑁� � 𝐶(𝑥, 𝑥′)

𝑣𝑞𝑣𝑝
 
𝑑𝑥
�𝑣𝑝�

𝑑𝑥′
�𝑣𝑞�

= 𝐶�𝑣𝑝, 𝑣𝑞�, (5.16) 

 𝑉𝑎𝑟��̂��𝑣𝑝, 𝑣𝑞�� = 1
𝑁
𝑉𝑎𝑟�𝐶(𝑋,𝑋′)�,  (5.17) 

where 𝑉𝑎𝑟�𝐶(𝑋,𝑋′)� is an unknown constant, which can be further expanded into 
integrals. Following (Press et al. 1996), one can write for a sufficiently large 𝑁: 

 𝐶�𝑣𝑝, 𝑣𝑞� ≈
1
𝑁
∑ 𝐶(𝑋𝑖,𝑋𝑖′)𝑁
𝑖=1 ± �𝑉𝑎𝑟�𝐶(𝑋,𝑋′)�

𝑁
   (5.18) 

Multidimensional integration Monte Carlo methods enable obtaining the value 
of  𝐶�𝑣𝑝, 𝑣𝑞� with significantly less computations as compared to subsequent 
application of deterministic methods. The problem of the classical Monte Carlo is its 
rate of convergence: from formula (5.18) it is clear that the computation error declines 

as 𝑁−12 which is significantly slower than for deterministic methods. It turns out that 
this parameter can be significantly improved up to by means of quasi-random 
sequences (see Press et al. (1996) for a review).  

We apply Sobol’ quasi-random sequences (Sobol' 1967) for computations of 
𝐶(𝑣𝑝, 𝑣𝑞) in (5.1). Since the integration space 𝑣𝑝 × 𝑣𝑞 has 6 dimensions, Sobol’s 
sequences on [0,1]6 are used. Application of Sobol’ sequence in a 6 dimensional 

space provides the rate of decline (ln𝑁)6

𝑁
 for the error which is almost as fast as 1

𝑁
, see 

Press et al. (1996). These sequences fill the space in a more optimal manner relative 
to sampling from the normal distribution, avoid clustering and produce successively 
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finer and finer sets of discretizing points. Fast generation of Sobol’ sequences can be 
performed with the method of Antonov and Saleev (1979). Figure 5-6 below 
demonstrates the top view on block 𝑣 sampled with 1000 pseudo-random points with 
the standard Java random number generator and with Sobol’ quasi-random 
sequence. 

  
a) b) 

Figure 5-6. Sampling 1000 pseudo-random points in 𝑣, top view with a) standard 
Java random uniform random number generator and b) Sobol’ quasi-random 

sequences. 

Although the difference between two sampling methods is not obvious from 
the first sight, the Sobol’ quasi-random sequence proves its advantage further in the 
section devoted to the testing results. 

The Monte Carlo approach to computing the block to block covariance 
requires an additional subroutine - sampling random (or quasi-random) sequences 
inside the block. There are two common approaches to this problem, and both of 
these use the bounding boxes 𝐷𝑝 of 𝑣𝑝 and 𝐷𝑞 of 𝑣𝑞. These approaches are 
described below: 

1) Extend the integrand function 𝐶(𝑥, 𝑥′) to the region 𝐷𝑝 × 𝐷𝑞: 

 𝐶(𝑥, 𝑥′) =  �𝐶(𝑥, 𝑥′) 𝑖𝑓 (𝑥, 𝑥′) ∈ 𝑣𝑝 × 𝑣𝑞
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (5.19) 

and perform Monte Carlo on integration on 𝐷𝑝 × 𝐷𝑞. 

2) Rejection sampling - the sampling is done in 𝐷𝑝 × 𝐷𝑞, and the generated 
pseudo-random points are accepted only if they belong to 𝑣𝑝 × 𝑣𝑞. 
Otherwise, the experiment is repeated until the desired points in the interior 
are found. 

The first option does not reject the generated pseudo-random points, but 
increases the variance of the result due to considering the points outside 𝑣𝑝 × 𝑣𝑞 (see 
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Press et al. (1996) for discussion). The second option has an additional computation 
penalty for finding the points in the interior of 𝑣𝑝 × 𝑣𝑞 but enables to reduce the 
variance of the result. In our computations we use the second option.  

Both approaches to sampling described above require testing the condition 
whether the pseudo-random point belongs to the block. Testing this condition for the 
arbitrary-shaped blocks is a complex problem, and we use the fact that the blocks are 
modeled as convex polyhedrons. For a convex polyhedron, representation (5.5) 
enables to test the desired condition. Indeed, if all 𝑚 conditions in (5.5) are satisfied 
for a point, it is in the interior of 𝑣. In turns out that a testing algorithm based on 
representation (5.5) has a non-optimal (“pessimistic”) behavior when the point is in 
the interior of 𝑣 (which is the most desired situation in the sampling process). Indeed, 
in order to verify that all the 𝑚 inequalities are satisfied, one should perform 𝑚 times 
3 multiplications, 2 additions and 1 comparison. Since the number 𝑚 of faces of a 
convex polyhedron in practice can be more than 8 as on Figure 5-2b, the testing 
operation slows down the computation of the integral.  

It turns out that the performance of the testing algorithm can be improved with 
the representation (5.7) of the block 𝑣. Suppose that the block 𝑣 is represented with 
𝑁𝐿(𝑣) mutually exclusive systems of inequalities. Let [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] be a projection of 
𝑣 onto the coordinate axis 𝑥; then 𝑁𝐿(𝑣) systems in (5.7) define the following  
decomposition: [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] = ∪𝑖=1

𝑁𝐿(𝑣) [𝑥𝑚𝑖𝑛𝑖 , 𝑥𝑚𝑎𝑥𝑖], see Figure 5-7 below. Figure 
5-7 depicts the block 𝑣, its bounding box 𝐷𝑣 and the projections of SOI of the block 
onto the 𝑥 axis. In order to check if a simulated pseudo-random point 𝑋 =  (𝑥𝑟 ,𝑦𝑟 , 𝑧𝑟) 
belongs to block 𝑣 it is sufficient to find the interval [𝑥𝑚𝑖𝑛𝑖 , 𝑥𝑚𝑎𝑥𝑖] which contains 𝑥𝑟 
and to check if the corresponding SOI from system (5.7) contains 𝑋. Later can be 
done by checking the validity of two double inequalities – one for 𝑦𝑟 and one for 𝑧𝑟, 
which can be done with 6 multiplications, 6 additions and 4 comparisons. It is 
possible to find the interval [𝑥𝑚𝑖𝑛𝑖 , 𝑥𝑚𝑎𝑥𝑖] containing 𝑥𝑟 with binary search which 
requires ⌊log2 𝑁𝐿(𝑣)⌋+ 1 comparisons. The total number of operations for checking if 
the random point 𝑋 is inside 𝑣 is then 6 multiplications, 6 additions and ⌊log2 𝑁𝐿(𝑣)⌋ +
5 comparisons versus 3𝑚 multiplications, 2𝑚 additions and 𝑚 comparisons for the 
previous test. Let us compare the total number of operations required to check if the 
simulated point is inside the block 𝑣, which top view is depicted on Figure 5-7. For 
this block 𝑚 = 8, 𝑁𝐿(𝑣) = 5. The first approach then requires 24 + 16 +  8 = 48 
operations, whereas the second test requires 12 + 7 = 19 operations, which is 2.5 
times less.  
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Figure 5-7. Projections of the SOI composing 𝑣 onto 𝑥 axis. The filled area 
corresponds to the bounding box 𝐷𝑣 of 𝑣. 

The proposed method for validating the point inside polyhedral condition 
enables to reduce significantly the time of computation of (5.1) with Monte Carlo 
methods. 
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5.6 Testing methodology 
The performance of the four computation methods applied to the problem of 

computing 𝑉𝑎𝑟�𝑍(𝑣)� is compared:  

1) Averaging of regularly placed points (5.8). 
2) Successive application of Gaussian quadratures (5.12). 
3) Monte Carlo integration with pseudo-random points produced by the 

standard Java uniform random number generator (5.15). 
4) Monte Carlo integration with Sobol’ quasi – random sequences using (5.15). 

 The block 𝑣 that serves as the integration domain is depicted on Figure 5-8 
with its dimensions. Many important applications of geostatistics include strong 
anisotropy in horizontal and vertical directions. Thus, it is not uncommon that the 
dimensions of the block 𝑣 in horizontal and vertical directions differ by factor 10 and 
more. The exact dimensions of the selected block  𝑣 for the test are 90 × 95 × 4 units 
(see Figure 5-8). Due to strong anisotropy, the images of 𝑣 are done with scaling 
factor 10 on the 𝑧 axis. 

 
 

 
a) b) 

Figure 5-8. Dimensions of the block 𝑣. Scaling factor on 𝑧 is 10. 

Let us now discuss the integrand in (5.1) which we use to compute  𝑉𝑎𝑟�𝑍(𝑣)�. 
The covariance function 𝐶(𝑥, 𝑥′) is modeled through the geometric anisotropy 
approach (Chilès & Delfiner 2012; Leuangthong et al. 2011; Srivastava & Carter 
1983). Following this approach the covariance function 𝐶(𝑥, 𝑥′) is fully determined by 
three ranges 𝑅𝑥,𝑅𝑦,𝑅𝑧, two rotation angles 𝛼 and 𝜃 and a function 𝑔(ℎ),ℎ ∈ [0,1]: 

 𝐶(𝑥, 𝑥′) = 𝑔(|𝐴(𝑥′ − 𝑥)|), (5.20) 

where 𝐴 is a matrix defining a composition of rotation on angles 𝛼 and 𝜃 and scaling 
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 𝐴 =

⎝

⎜
⎜
⎜
⎛

1
𝑅𝑥

0 0

0
1
𝑅𝑦

0

0 0
1
𝑅𝑦⎠

⎟
⎟
⎟
⎞

�
𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛼
−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0

−𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 −𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
�. (5.21) 

In order to perform our tests in a more realistic setting, we assume strong 
anisotropy ratio between the horizontal and vertical ranges of covariance. We explore 
4 basic scenarios for the covariance function 𝐶(𝑥, 𝑥′) and theirs variations. 

1) 𝜌1(ℎ�⃗ ) - spherical covariance with ranges (100, 100, 4) with sill 1 
2) 𝜌2(ℎ�⃗ ) - exponential covariance with ranges (100, 100, 4) with sill 1 
3) 𝜌3(ℎ�⃗ ) - double structure covariance with ranges (100, 100, 4) with sill 1. 

The composition is 0.25 Sph (100, 100, 4) +  0.75 Sph �100
3

, 100
3

, 4
3
 �. 

4) 𝜌4(ℎ�⃗ ) - spherical covariance with ranges (100, 30, 4) with sill 1 and azimuth 
𝛼 = π/4 

Figure 5-9 illustrates the covariance functions 𝑔(ℎ) scaled to range 1 which 
correspond to the above listed four scenarios. 

 
Figure 5-9. Scaled covariance functions 𝑔(ℎ) used for the tests. 

This four basic scenarios correspond approximately to the situation when the 
correlation range is equal to the sizes of the block 𝑣. For each of these basic 
scenarios we consider the sub-scenarios when the vector of ranges �𝑅𝑥,𝑅𝑦,𝑅𝑧� is 

multiplied by a coefficient 𝑘 = 1
5

, 2
5

, 3
5

, 4
5

, 1,2,3,4,5. This way, for each of the four 

scenarios we are testing the computation of 𝑉𝑎𝑟�𝑍(𝑣)� for the covariance ranges 
varying approximately from 1

5
 to 5 times the size of the block. 
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The algorithms are advancing in the following manner in order to approach the 
true value of 𝑉𝑎𝑟(𝑍(𝑣)): 

1) Regular discretization for covariance with ranges 𝑅 =  �𝑅𝑥,𝑅𝑦,𝑅𝑧� starts 

with discretization steps 𝑆1 = 1
2

(100,100,4). Due to the strong geometrical 
anisotropy of 𝑣, it is not possible to use equal steps in all directions. 
Taking the steps proportional to the dimensions of the block seems to be 
an appropriate solution. At the next iteration the discretization steps 𝑆 are 
reduced proportionally: 𝑆𝑖 = 𝑆𝑖−1/1.2. A total of 20 iterations are done. 

2) Gaussian quadrature method starts with 𝑁 = 2 integration points allowed 
for each of the six integration variables. The next step 𝑁 is increased by 1 
for all variables simultaneously. Computation proceeds up to 𝑁 = 20. 

3) Monte Carlo methods (both with pseudo-uniform points and Sobol’ quasi-
random sequence) start from sampling 𝑁6 = 100 pairs of points in 𝑣 × 𝑣 on 
first iteration. At the next iteration this number is increased by 100. 
Computation proceeds up to 𝑁6 = 100,000. 

5.7 Test results 
In this section we present the most essential results of comparing the four 

presented above computation techniques for determining the value of 𝑉𝑎𝑟 �𝑍(𝑣)�. 
For the sake of clarity here we only present the results for scenario 1 (Spherical 
covariance) and scenario 4 (Spherical covariance with azimuth). The complete 
results for all four scenarios can be found in Appendix C.  

In order to estimate the quality of each computation method, the dependence 
of the computed value of 𝑉𝑎𝑟�𝑍(𝑣)� on the number of covariance function 
computations done by the method is plotted. This approach is useful, since all four 
methods have different parameters: regular discretization – the steps used, Gaussian 
quadrature – number of points placed, Monte Carlo method – number of pairs of 
points simulated. Indeed, Gaussian quadrature with 𝑁 = 10 in 6D makes 106 
computations of the covariance between points, whereas Monte Carlo with 𝑁6 =
 10 makes only 10. That explains the usage of the number of covariance 
computations as a parameter for comparing the method convergence. 

Figure 5-10 and Figure 5-11 demonstrate the results for the 3 most 
representative cases: 𝑘 = 1

5
 corresponds to a small covariance range relative to the 

block, 𝑘 = 1 corresponds to covariance range of the size of the block and 𝑘 = 5 
corresponds to the covariance range significantly larger than the size of the block. In 
order to make the graphs comparable, the size of the ordinate axis is always set to 
0.1. Each plot contains the true value of the covariance which is indicated by a thick 
gray horizontal line. We consider the final value computed by the Gaussian 
quadrature method to be the true value of 𝑉𝑎𝑟�𝑍(𝑣)�. As it is seen from Figure 5-10 
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and Figure 5-11,  the Monte Carlo methods require significantly less computations in 
order to converge to the correct answer. Amongst the Monte Carlo methods, Sobol’ 
quasi-random sequence demonstrates the fastest convergence rate and the lowest 
dispersion as compared to independent uniform sampling. 

Scenario 1 – Spherical covariance 
a) 

 

b) 
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c)  

 
Figure 5-10.  Computing 𝑉𝑎𝑟�𝑍(𝑣)� for 𝜌1(ℎ). Abscissa axis indicates the number of 

covariance computations done; the ordinate axis indicates the integral value for 
a)𝑘 = 1

5
  b) 𝑘 = 1 c) 𝑘 = 5. 

Scenario 4 – Spherical covariance with azimuth  𝝅
𝟒
. 

a)  

 



100 

 

b)  

 
c) 

 
Figure 5-11. Computing 𝑉𝑎𝑟�𝑍(𝑣)� for 𝜌4(ℎ). Abscissa axis indicates the number of 

covariance computations done; the ordinate axis indicates the integral value for 
a)𝑘 = 1

5
  b) 𝑘 = 1 c) 𝑘 = 5 
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5.8 Problem of approximation with set of points 
Certain algorithms for geostatistical simulations on unstructured grids do not 

simulate directly on blocks, but simulate on a set of points inside a block and perform 
upscaling (Boucher & Dimitrakopoulos 2009; Gross & Boucher 2015). This approach 
raises the problem of placing a “sufficient” number of points in order to discretize the 
block (the discretization pattern can be irregular).The term “sufficient” can be made 
precise – since the simulation goal is to reproduce the first and second order 
moments of the spatial distribution, one can consider the system of discretizing points 
{𝑥𝑖 ∈ 𝑣, 𝑖 = 1 …𝑁} to be “sufficiently good”, if approximating the value 𝑍(𝑣) with 
1
𝑁
∑ 𝑍(𝑥𝑖)𝑁
1  leads to a correct reproduction of variance. The formal problem statement 

is the following: find a set of points {𝑥𝑖 ∈ 𝑣, 𝑖 = 1 …𝑁} such that 

  𝑉𝑎𝑟 �
1
𝑁
�𝑍(𝑥𝑖)
𝑁

1

� =
1
𝑁2��𝑐𝑜𝑣 �𝑍(𝑥𝑖),𝑍�𝑥𝑗��

𝑁

𝑗=1

𝑁

𝑖=1

≈ 𝑉𝑎𝑟�𝑍(𝑣)�. (5.22) 

We contribute the results (Boucher & Dimitrakopoulos 2009; Gross & Boucher 
2015) demonstrating that using Sobol’ quasi-random sequence-based discretization 
provides a good quality approximation in (5.22).  

 It is not hard to see that in the general case the problem of finding of such a 
system of points in the general case is different from the problem of computing the 
value of 𝑉𝑎𝑟�𝑍(𝑣)�.  Indeed, verifying condition (5.22) for a set of 𝑁 points requires 
significantly more computations than computing the integral value with Monte Carlo in 
(5.15). Also, the value of 𝑉𝑎𝑟�𝑍(𝑣)� can be accurately found with Gaussian 
quadrature methods, as demonstrated in the previous section; meanwhile an attempt 
to use the Gaussian quadrature integration points {𝑥𝑖 ∈ 𝑣, 𝑖 = 1 …𝑁} for 
approximating the value of  𝑉𝑎𝑟�𝑍(𝑣)� with 1

𝑁2
∑ ∑ 𝑐𝑜𝑣 �𝑍(𝑥𝑖),𝑍�𝑥𝑗��𝑁

𝑗=1
𝑁
𝑖=1  leads to 

poor results (see Figure 5-12). 

The poor quality of approximating the block variance with Gaussian 
quadrature integration points through (5.22) is due to the fact that the pattern and 
density of these points in a block is very irregular and in the original Gaussian 
quadrature method different weights for these points are used (see  (5.12)), but 
(5.22) attributes each of these points the same weight, which leads to a serious 
mismatch with the real value of 𝑉𝑎𝑟�𝑍(𝑣)�.  
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Figure 5-12. Approximating 𝑉𝑎𝑟�𝑍(𝑣)� with Gaussian quadrature integration points 

through (5.22). Real value is shown with grey line. 

For the four scenarios presented in the previous section, the quality of 
approximating 𝑉𝑎𝑟 �𝑍(𝑣)� with (5.22) was verified for placing regularly spaced points, 
classical Monte Carlo random points and Sobol’ quasi-random sequence in 3D 
points.  The exact value of 𝑉𝑎𝑟�𝑍(𝑣)� computed in the previous tests was used for 
reference. Figure 5-13 demonstrates a typical result of approximating 𝑉𝑎𝑟�𝑍(𝑣)� with 

𝑉𝑎𝑟 �1
𝑁
∑ 𝑍(𝑥𝑖)𝑁
1 �. 

  
a) b) 

Figure 5-13. Approximating the block variance with a set of points for a ) spherical 
covariance 𝜌1(ℎ) b) exponential covariance function 𝜌2(ℎ). 

The corresponding absolute error plots for the Monte Carlo methods are 
depicted of Figure 5-14. 
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a) b) 

Figure 5-14. Monte Carlo methods absolute error for approximating the block 
variance with a set of points for a) spherical covariance 𝜌1(ℎ) b) exponential 

covariance function 𝜌2(ℎ). 

5.9 Conclusion 
Test results enable us to conclude that Monte Carlo methods are the solution 

of choice for computing the value of 𝑉𝑎𝑟�𝑍(𝑣)�. As expected, the Sobol’ sequence-
based Monte Carlo shows faster convergence to the true value of 𝑉𝑎𝑟�𝑍(𝑣)� and 
smaller error variance than the classical Monte Carlo. The worst quality of 
approximation is given by the regular sampling method. 

It is reasonable to ask what is the desired accuracy for computing the 
covariance between the blocks of 𝑉𝑎𝑟�𝑍(𝑣)�. To answer this question an appropriate 
measure of accuracy should be determined.  Let 〈𝑉𝑎𝑟�𝑍(𝑣)�〉 indicate the computed 

value. The classical measures of accuracy are relative error 𝛿𝑟 = �〈𝑉𝑎𝑟�𝑍(𝑣)�〉−𝑉𝑎𝑟�𝑍(𝑣)��
𝑉𝑎𝑟�𝑍(𝑣)�

 

and absolute error 𝛿𝑎 = �𝑉𝑎𝑟�𝑍(𝑣)� − 〈𝑉𝑎𝑟�𝑍(𝑣)�〉�. In practical geostatistical 
applications when computing the covariance value between the points or blocks the 
relative error 𝛿𝑟 is rarely an appropriate accuracy measure since if the true value of 
the block variance 𝑉𝑎𝑟�𝑍(𝑣)� = 0.01, and the value computed by numerical 
integration is  〈𝑉𝑎𝑟�𝑍(𝑣)�〉 = 0.02   then 𝛿𝑟 = 1 which corresponds to a 100% relative 
error. On the other hand, in the majority of practical applications there is no difference 
between block variance 0.01 and 0.02. In this case the absolute error  𝛿𝑎 = 0.01 
could indicate that the error is small. But in fact in order to state that 𝛿𝑎 = 0.01 is 
small as a computation error, it is reasonable to compare this value to the range of 
values of the function 𝐶(𝑥, 𝑥′), and in particular to the sill 𝜎2 of 𝐶(𝑥, 𝑥′). This 
consideration gives another accuracy measure: 𝛿𝑐 = 𝛿𝑎

𝜎2
  - the error relative to the 

unconditional point-support variance, which seems to be the most appropriate in the 
context of computing the covariance between the blocks. In all our tests  𝜎2 = 1, so 
𝛿𝑐 =  𝛿𝑎. From the practical experience the accuracy of covariance computations in 
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practical applications of geostatistics with 1% accuracy (𝛿𝑐 = 0.01) is more than 
sufficient. It is very rare that the other parts of the geostatistical workflow like 
distribution and covariance fitting give the same level of accuracy.  

One of the problems which arise when Monte Carlo methods are used for 
computing the block to block covariance is that the resulting covariance matrix can be 
not positive semi-definite due to the introduced error. In particular such matrices can 
arise when a covariance between two small blocks 𝑣1 and 𝑣2 (relative to covariance 
range) which are adjacent is computed. In this case the Monte Carlo methods do not 
guarantee that the Cauchy-Schwarz inequality holds 

 

𝑐𝑜𝑣 �
1

|𝑣1|2 � � 𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣1𝑣1

,
1

|𝑣2|2 � � 𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣2𝑣2

�

≤  �𝑣𝑎𝑟 �
1

|𝑣1|2 � � 𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣1𝑣1

� 𝑣𝑎𝑟 �
1

|𝑣2|2 � � 𝜌(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣2𝑣2

�. 
(5.23) 

Since the matrix is not positive semi-definite, the corresponding multivariate 
Gaussian random vector does not exist and SGS would fail producing a realization of 
this vector due to the matrix inversion problems. In order to overcome this difficulty 
regularization methods for the covariance matrix should be used. One of the 
solutions which were applied in this thesis to regularize the kriging matrices in the 
SGS procedure is the diagonal increments method as described in (Sarra 2014). In 
the diagonal increments method a small increment 𝜖 > 0 is selected and the kriging 
matrix 𝐾 is substituted with the matrix 𝐾 + 𝜖𝐼, where 𝐼 stands for the identity matrix. It 
can be shown that for a small 𝜖 the solutions of the initial and modified systems of 
linear equations are close, but the modified matrix is better conditioned than the 
original. The parameter 𝜖 is adjusted iteratively until the kriging system could be 
solved. Resulting simulations demonstrate satisfactory for practical applications 
statistics reproduction (although, less robust than the Gibbs Propagation algorithm). 
In order to avoid the problem of the not positive semi-definite matrices, it is 
advantageous to use the average value of a set of Sobol’ quasi-random points 
placed in a block to approximate the average value of this block. This approach is 
more computation demanding but avoids the problem of the non-positive semi-
definite matrices. Indeed, if for a given set of blocks {𝑣𝑖 , 𝑖 = 1 …𝑁𝑏} the average value 
of each block in the Gaussian scale 𝑌(𝑣𝑖) = 1

|𝑣𝑖|
∫ 𝑌(𝑥)𝑑𝑥𝑣𝑖

 is approximated with a 

linear combination of point values �𝑌�𝑥𝑖𝑗�, 𝑗 = 1 …𝑛𝑗� within the block 𝑣𝑖: 𝑌(𝑣𝑖) ≈
1
𝑛𝑖
∑ 𝑌(𝑥𝑖𝑗)𝑛𝑖
𝑗=1 , the resulting covariance matrix 𝐾 = �𝑐𝑜𝑣 �𝑌(𝑣𝑖) ,𝑌�𝑣𝑗�� , 𝑖 = 1 …𝑁𝑏 , 𝑗 =

1 …𝑁𝑏� is always positive semi-definite, since the set of RV � 1
𝑛𝑖
∑ 𝑌�𝑥𝑖𝑗�
𝑛𝑖
𝑗=1 , 𝑖 =

1 …𝑁𝑏� has a multivariate Gaussian distribution (Hajek 2015). For any set of 
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discretizing points the elements of the covariance matrix 𝐾 can be computed through 
(5.8). 

Test results show that all four methods converge to the same value (even 
though the regular discretization method does not always reach the limit, one can 
hope that it would converge if the discretization step is further reduced). In real life we 
are limited in time for the problems of covariance computations and the fastest and 
the most accurate solution should be adopted. Our tests indicate that the Sobol’ 
Monte Carlo method almost surely reaches the accuracy 𝛿𝑐 = 0.01 for the number of 
drops 𝑁6 = 100, and always for 𝑁6 = 200. In fact, in the total of 36 experiments done 
(4 scenarios, 9 experiments each), only one experiment gives 𝛿𝑐 > 0.01 for 𝑁6 = 100, 
this situation is depicted on Figure 5-15a and, obviously, can be neglected, since the 
violation is minor. Our tests indicate that for 𝑁6 = 500 the accuracy of Sobol’ Monte 
Carlo computation 𝛿𝑐 < 0.005.  

In our hardware setting, computing Sobol’ Monte Carlo integration for 𝑁6 =
1000 takes less than 𝑡 = 1 milliseconds. Although that seems fast, let us consider a 
practical problem of simulating with SGS on a grid with 𝑁𝑏 = 106 blocks. Suppose 
that we have a multiprocessor computer which is able to compute the matrix of block 
to block covariance with the same time 𝑡 as one block to block covariance (we use 
this approach in practice) and that we recomputed the covariances at every step of 
the simulation (this is also realistic – it is not that simple to store the 𝑁𝑏 × 𝑁𝑏 
covariance matrix even if it is sparse and symmetric). In that case the simulation time 
only due to the covariance computations is 𝑡 ∗ 106 ≈ 16.5 minutes which is already a 
significant amount of time. Further code optimizations should be used to reduce the 
computation time. 
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a) 

 
b) 

 
Figure 5-15. Error 𝛿𝑐 (signed) of Monte Carlo methods depending on the number of 

point drops (in 6D) for a)  worst case, scenario 4, 𝑘 = 2 and b) medium case, 
scenario 1, 𝑘 = 1. Horizontal lines indicate ±1% and ±0.5% boundaries for absolute 

error. 
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Chapter 6: Navigation on unstructured grids 
Résumé  

A cause de ses structures irrégulières les maillages non-structurés requièrent 
des méthodes adaptées   pour déterminer les voisinages des cellules. Dans ce 
chapitre on décrit l’utilisation de structure de données sur arbre k-d permettant 
d’effectuer la recherche efficace de voisinages sur les maillages non-structurés. 

The term “navigation” in this work is applied to describe the number of 
searching operations applied to unstructured grids which arise in several different 
contexts. Although DGM-based theoretical models for simulation do not mention 
these methods explicitly, assembling a simulation algorithm without them seems 
unrealistic. The following list mentions some important searching operations required 
by a simulation algorithm on unstructured grids:  

a) determining for each conditioning data point the block of the grid that 
contains this point (which is required by conditioning procedures) 

b) determining the closest data points for every block (required by conditioning 
through kriging) 

c) determining the neighborhood for every block (required by SGS procedure) 
d) determining all blocks which are correlated with a given block (required for 

optimization of computing the block to block covariance matrix, used for 
Gibbs Propagation algorithm). 

In the general case, one cannot determine the neighborhood of a given block 
on an unstructured grid from the index of this block (as in the case of regular 𝐼𝐽𝐾 
grids), so the algorithms used on regular grids, such as spiral search are not 
applicable to unstructured grids. It is also evident that direct lookup through all the 
(𝑁𝑏 − 1) blocks of the grid in order to determine the closest 𝑚 neighbors of a 
selected block 𝑣𝑝 is extremely inefficient. Indeed, determining the closest 𝑚 
neighbors for every block by direct lookup is a 𝑂�𝑁𝑏2� in time. This result can be 
significantly improved with the use of k-d trees (Bentley 1975; Friedman et al. 1977), 
which enable searching for closest neighbors  in proven 𝑂(log𝑁𝑏) time. Application of 
k-d tree to the problem described above (determining the closest 𝑚 neighbors for 
each block of the grid) leads to a 𝑂(𝑁𝑏 log𝑁𝑏) algorithm, which is a significant 
improvement compared to the direct lookup through all the blocks.  

Search trees were applied for navigation problems on regular and 
unstructured grids in geostatistical context (Boisvert & Deutsch 2010) for a similar to 
range of problems as discussed above. For searching problems in which the set of 
nodes on which the search is performed remains fixed (such as searching of the 
kriging neighborhoods), application of the optimal k-d tree (Bentley 1975) is the 
solution of choice. As demonstrated by Boisvert and Deutsch (2010), it outperforms 
the superblock search approach (Deutsch & Journel 1992).  The situation is different 
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when the neighborhood search is applied to a set of blocks which is changing in time, 
as in the problem of finding the closest previously simulated blocks in the SGS 
procedure. Boisvert and Deutsch (2010) propose using k-d tree for the problem of 
SGS neighborhood search, organizing all 𝑁𝑏 blocks in the tree, but marking the 
previously simulated nodes as “informed”, and performing the search only through 
the “informed” nodes. The disadvantage of this approach is that on the first iterations 
of SGS the k-d tree contains mostly “non-informed” nodes, and many of them have to 
be scanned in order to find the desired neighborhood.  We propose an alternative 
solution to this problem – constructing the k-d tree dynamically from the previously 
simulated nodes. In the proposed approach, on the first iteration of SGS the k-d 
search tree is empty, and every time a new grid block is simulated, it is inserted into 
the k-d search tree (the insertion operation is 𝑂(𝑡𝑟𝑒𝑒 ℎ𝑖𝑔ℎ𝑡) in complexity). The 
construction by this way may not be optimal in the sense of  Bentley (1975), but it 
contains only the “informed nodes”.  

The proposed method of using the dynamic tree construction for the 
neighborhood search problem in SGS on an unstructured grid is compared to the 
method of building the optimal tree and using only the “informed” nodes. In our 
testing workflow we denote the approach of “informed” nodes as “dead leaves” 
approach, since we use the tree structure presented in (Friedman et al. 1977), where 
all the grid blocks correspond to the leaves of the k-d tree. The following testing 
methodology is proposed: a random grid of 𝑁𝑏 =  106 nodes is generated in  3D, on 
this grid SGS is performed 2500 times with different random paths, the nearest 25 
neighbors are searched. Average tree operation times (searching, or searching and 
insertion) are computed for each iteration of SGS. The average tree operation time 
for the first 150,000 iterations of SGS is depicted of Figure 6-1, the results for direct 
search are given for comparison (and as an example of a poor algorithm design).  
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Figure 6-1. Dependence of the average time (ms) of the neighborhood search on a 

grid of 106 blocks from the SGS iteration number. 

Our tests show that the dynamic construction approach demonstrates 
significantly better performance than the “dead leaves” approach for the first 
iterations of SGS. In our test the search time in the dynamically constructed and the 
“dead leaves” k-d trees become equivalent around iteration 500,000 of SGS, and 
further the “dead leaves” solution becomes more efficient. However, the high costs of 
the first 500,000 iterations of the “dead leaves” approach makes an important 
contribution to the total time required to perform the 106  iterations of SGS, and in our 
tests the dynamic tree construction requires in average almost twice less time to 
perform SGS on the full grid of 106 blocks than the “dead leaves” approach (see 
Figure 6-2 for average cumulative time).  
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Figure 6-2. Average cumulative time (min) for direct search, “dead leaves” and 
dynamic k-d tree construction. 

In the tests considered in this thesis the number of blocks in the grid rarely 
exceeds 𝑁𝑏 = 3 × 106 and we use the dynamic tree construction approach in the 
algorithm. The behavior of the “dead leaves” and dynamically constructed k-d trees in 
the SGS enables to propose a more optimal hybrid approach – for the big grids 
(𝑁𝑏 > 106) the search tree should be constructed dynamically and optimized at given 
periods of time. In the hybrid approach the k-d tree will contain only the pertinent 
nodes at the given iteration of SGS nodes, and will always be close to an optimally 
balanced k-d tree. 

The cumulative time result on Figure 6-2 is also important since it gives a 
lower bound for the time of SGS on an unstructured grid of 106 nodes. Only the 
neighborhood searching time in this procedure takes 4.7 minutes. 
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Chapter 7: Case Study – Field X 
Résumé 

Ce chapitre est consacré à une application des méthodes de simulation avec 
le modèle Gaussien discret présenté dans cette thèse appliquée au cas d’étude réel 
– champ X – un gisement de gaz offshore avec un maillage tartan. La méthode de 
simulation avec DGM est comparée à la méthode de simulation classique, qui ignore 
l’effet du volume dans la simulation.  Les résultats de comparaison des méthodes 
développées dans cette thèse par rapport aux méthodes classiques sont analysés.    

Field X is an offshore gas reservoir. The reservoir model covers a large 
subsurface region with dimensions 140𝑘𝑚 × 200𝑘𝑚 × 350𝑚. Due to the enormous 
area covered by the model, it uses irregular meshing with grid refinement in the most 
important areas (see Figure 7-1). The refinement step in the horizontal direction 
varies from 250𝑚 to 4𝑘𝑚.The type of meshing used for field X is referred to as tartan 
meshing. The resulting model is not unstructured, since one can introduce an IJK 
coordinate system on it and will be able to use the IJK coordinates of the blocks in 
order to retrieve their neighbors. The dimensions of the grid in the IJK coordinate 
system are 132 × 220 × 31. The grid remains irregular since it is composed of blocks 
of varying size.  
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Figure 7-1. Field X reservoir model. 

The goal of this case study is demonstrating the difference between the 
classical approach to geostatistical simulations and the proposed DGM-based 
approach which considers the change of support effect. For both approaches quasi-
point support distribution and covariance function are used as initial inputs, the 
simulations are unconditional. The modeled petrophysical parameter is porosity with 
beta distribution on [0.01,0.28] with parameters 𝛼 = 2.15 𝛽 = 2.1 (see Figure 7-2) and 
a spherical covariance function 𝜌 in the Gaussian scale with ranges 3𝑘𝑚 × 3𝑘𝑚 ×
30𝑚.  

 

Figure 7-2. Average block porosity distribution. 

 The classical approach for the tartan grids consists in performing the 
simulation in the IJK space and transferring the results to the original space. The IJK 
formalism is useful since it simplifies the algorithmic part of simulation (neighborhood 
queries), enables applying simulation methods for regular meshes (i.e. spectral 
simulation) and the most important – ensures the continuity of the simulated 
parameter along the geological layers of the model. In order to make the classical 
simulation the point support inputs are upscaled to the “average support” of the 
model and the upscaled inputs are used. For the field X the block of the average size 
has dimensions 1𝑘𝑚 × 900𝑚 × 12𝑚. The input beta distribution was upscaled with 
DGM 2 in order to obtain the distribution of the average block (Figure 7-2). Figure 7-2 
illustrates also the average porosity distribution of the smallest and the biggest blocks 
in the model for given inputs. The drawback of the classical approach is that it 
ignores the volumetric differences between the blocks which can lead to incorrect 
filling of the reservoir model. 
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In order to challenge the classical approach, we apply a DGM 2 simulation 
algorithm backed with Gibbs propagation algorithm for simulating the multivariate 
Gaussian random vector.  The simulation algorithm cannot be applied directly to the 
original grid from Figure 7-1 since in that case the continuity of the simulated property 
along the geological layers would not be respected. In order to respect the continuity 
along the geological layers, the simulation should be performed in the depositional 
space which corresponds to the input geometry. The depositional space was derived 
as proposed in Mallet (2014). The reservoir model in the depositional space for field 
X is depicted on Figure 7-3. For this test we consider that the input point-support 
covariance function 𝜌 is the covariance function of porosity in the depositional space.  

 

Figure 7-3. Depositional space reservoir model for field X. 

The reservoir model in the depositional space preserves the mesh structure of 
the original model, which enables treating the volume support effect in the simulation. 
In addition to providing the continuity of the simulated property along the geological 
layers of the model, an argument for the idea of simulating in depositional space is 
that it is the space in which the hypothesis of the stationarity of the simulated physical 
parameter seems to be less invalid. Indeed, some similarity in the spatial structure of 
the studied physical parameter in two different regions of the reservoir is more likely 
to be expected if the depositional process took place in the same moment of time in 
the past. 
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The simulation results in the IJK space with classical approach (SGS with 50 
neighbors) and in the depositional space with DGM 2 are demonstrated on Figure 
7-4.  

 

  
a) b) 

 
Figure 7-4. Simulation result (top view) a) in IJK space simulated with SGS b) in 

depositional space simulated with DGM 2. 

The mesh on Figure 7-4 is not appropriate since it obstructs the image 
analysis. As expected, for the simulation in the IJK space the volume support 
information was lost and the same character of variations is observed everywhere in 
the model. For the simulation in the depositional space the refinement area 
demonstrates high variations of simulated porosity with an abundance of small 
porosity values (black) and large values (red). When approaching the corners of the 
model with the coarse blocks, the amount of extreme variations of porosity 
diminishes and less variation is observed. After simulation in the IJK and depositional 
spaces, the results are transferred to the original grid (Figure 7-5). 
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a) 

 
b) 
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Figure 7-5. Simulation results. a) Classical approach b) DGM 2 approach. Vertical 

zoom factor 30. 

 

 
Figure 7-6. Vertical cross-section through the center of the model for the DGM 2 

simulation. Vertical zoom factor 50. 

It is visible on Figure 7-5a that the result provided by the classical approach is 
strongly impacted by the mesh structure and the desired continuity of the porosity 
field is not reproduced. Transferring the results from the IJK to the original space in 
this case can be considered as “stretching” the cells of the IJK model so that they get 
the desired shape. The effect of this “stretching” is visible on Figure 7-5a  in the 
refinement zones. Although a stationary covariance function 𝜌 was used for 
simulation, the resulting image does not demonstrate the patterns typical for 
stationary covariance models.  On the other hand the DGM 2 simulation provides the 
desired model behavior. Transferring the simulation result from the depositional 
space to the original grid does not cause any artifacts. The refinement zone of 
reservoir demonstrates high variations of porosity whereas the coarse block regions 
look smooth. Figure 7-6 demonstrates a cross-section of the DGM 2 simulated model 
from Figure 7-5b. It is visible that the simulated porosity demonstrates continuity 
along the geological layers of the model. The example of case study X demonstrate 
that ignoring the volume support effect can lead to incorrect result for a geostatistical 
simulation on a reservoir model. 
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Chapter 8: Conclusions  
Résumé 

Les propriétés des méthodes de simulations géostatistiques sur les maillages 
non-structurés sont  discutées. L’intégration de l’effet de volume dans les simulations 
et les algorithmes correspondants développés dans cette thèse  ont permis 
d’améliorer la qualité de la modélisation.  Le point est fait sur les étapes principales 
de la construction des algorithmes proposés et  des améliorations possibles sont 
suggérées. 

Classical geostatistical simulation algorithms reproduce correctly the spatial 
structure of the simulated natural phenomenon only on grids composed of identical 
blocks. When the block shape (the support) varies within the simulation domain, 
classical algorithms such as SGS, even though applicable on irregular lattices, do not 
reproduce correctly the marginal distributions of the block average values 𝑍(𝑣) and 
the covariance between them due to ignoring the change of support effect (see case 
study X).  

8.1 Contributions summary 
The new approach for geostatistical simulation on unstructured grids 

presented in this thesis enables including the change of support effect implicitly in the 
simulation routine. Based on the simulation of multivariate Gaussian vectors, the 
proposed approach enables constructing a coherent theoretical model for 
geostatistical simulations in the presence of varying supports. Two generalizations of 
DGM for simulations on unstructured grids (DGM 1 and DGM 2) were presented. The 
difference between these models was demonstrated both analytically and through 
numerical tests in Chapter 3.  Various methods for conditioning the simulations were 
presented and demonstrated. One of the main advantages of the simulation model 
developed in this thesis is that it is not restricted to application of the sequential 
simulation principle as the previously published solutions (Oz et al. 2003; Soares 
2001) and enables using other sub-routines for simulating the random vectors, such 
as the Gibbs Propagation algorithm (Lantuéjoul & Desassis 2012). It was 
demonstrated in Chapter 3 that using the Gibbs Propagation algorithm provides 
better results in terms of reproducing the model statistics than the SGS algorithm. 
These results were published in several journal and conference papers, including 
(Zaytsev et al. 2016) and (Zaytsev et al. 2015). 

The subject of simulating facies on unstructured grids was addressed. A 
formalization of the facies simulation problem on unstructured grids was proposed 
and a theoretical model for constructing pluri-Gaussian simulations on unstructured 
grids with DGM was presented. It was demonstrated that the resulting model has a 
limited scope of application, and alternative solutions, such as the algorithm of Gross 
and Boucher (2015), were discussed. 
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The application of methods for representing the convex polygons (Korenblit & 
Shmerling 2006) to the problem of geostatistical simulation on unstructured grids was 
demonstrated. Representing the convex blocks of unstructured grids as unions of 
mutually exclusive systems of inequalities enables constructing algorithms for 
computing the covariance between the blocks. The advantage of applying the Sobol’ 
quasi-random sequence to the problem of computing the volumetric integrals of the 
covariance function was demonstrated with an extensive set of tests.  

A case study demonstrates the application of the methods proposed in this 
thesis. Case study X presents a comparison of the classical approach to 
geostatistical simulations (simulation in the IJK space) with the proposed method of 
simulating in the depositional space considering the change of support effect. This 
test demonstrates that ignoring the change of support effect may lead to disastrous 
impact on the simulation result.  

8.2 Perspectives 
The methods proposed in this thesis depend on the subroutine that simulates 

the multivariate Gaussian random vectors.  Further research in the area of simulating 
the multivariate Gaussian vectors can improve the performance of simulations on 
unstructured grids with DGM. Often in the practical applications the covariance matrix 
of the simulated multivariate Gaussian random vector is sparse and applying 
specialized methods adapted for sparse matrices (band-Cholesky factorization, 
multifrontal supernodal Cholesky factorization) enable improving significantly the 
algorithm performance (Rue & Held 2005).  

 Generalizations of other change of support models, such as Discrete 
Laguerrian Model (DLM, see Emery (2007)) for geostatistical simulations on 
unstructured grids can be considered. In DLM the point-support variable 𝑍(𝑥) =
𝜑�𝑌(𝑥)� is a transformation of a variable 𝑌(𝑥) with a gamma univariate distribution. 
Since the commonly applied geostatistical simulation methods (SGS, spectral 
simulation, Cholesky decomposition, turning bands) assume that 𝑌(𝑥) is multivariate 
Gaussian, considering the DLM can extend the available class of simulation 
methods. 
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Appendix A: DGM 
A.1 Hermite polynomials basis 

Let 𝑔(𝑦) denote the density of standard Gaussian distribution. The Hermite 
polynomial 𝐻𝑛(𝑦) of degree 𝑛 = 1 …∞ is defined by the formula 

 𝐻𝑛(𝑦)𝑔(𝑦) =
𝑑𝑛

𝑑𝑦𝑛
𝑔(𝑦), 𝑦 ∈ 𝑅 (A.1) 

By definition, 𝐻0(𝑦) = 1. Normalized Hermite  polynomial of degree 𝑛 = 0 … + ∞ are 
defined as follows 

 𝜒𝑛(𝑦) =
1
√𝑛!

𝐻𝑛(𝑦), 𝑦 ∈ 𝑅 (A.2) 

with 0!  =  1 by convention. Let us consider the space 𝐿2(𝑔) of piecewise-continuous 
functions 𝑓:𝑅 → 𝑅, for which  

 ∫ 𝑓(𝑦)2𝑔(𝑦)𝑑𝑦 <  +∞+∞
−∞ . (A.3) 

In that space we define a scalar product of two functions as follows 

 (𝑓1,𝑓2) =  ∫ 𝑓1(𝑦)𝑓2(𝑦)𝑔(𝑦)+∞
−∞ 𝑑𝑦. (A.4) 

Statement 

The set of functions {𝜒𝑗(𝑦) =  1
�𝑗!

𝐻𝑗(𝑦), 𝑗 = 0 …∞} form an orthonormal Hilbert 

basis in the space 𝐿2(𝑔). We further refer to this basis as “Hermite polynomials 
basis”. A more detailed introduction in the subject can be found in (Chilès & Delfiner 
2012). 

The DGM-based geostatistical methods require decomposition of 𝜑(𝑦) in the 
Hermite polynomials basis. In this basis 𝜑(𝑦) is decomposed in the following manner: 

 𝜑(𝑦) =  ∑ 𝜑𝑗∞
𝑗=0 𝜒𝑗(𝑦), (A.5) 

where the coefficients {𝜑𝑖, 𝑖 = 0 …∞} are the coordinates of 𝜑(𝑦) in the given basis. 

A.2 Covariance approximation implied by DGM 2 

This section demonstrates that simulations produced with generalized DGM 2 
are biased in terms of covariance relative to the theoretically expected result. The 
theoretical expression of the covariance between 𝑍(𝑣𝑝) and 𝑍(𝑣𝑞) for two blocks 𝑣𝑝 
and 𝑣𝑞can be expressed as follows 
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𝑐𝑜𝑣 �𝑍�𝑣𝑝 �,𝑍�𝑣𝑞�� =
1

�𝑣𝑝��𝑣𝑞�
� � 𝐶(𝑥 − 𝑥′)𝑑𝑥𝑑𝑥′

𝑣𝑞𝑣𝑝

=  
1

�𝑣𝑝�|𝑣𝑞|
�𝜑𝑖2 � � 𝜌𝑖(𝑥 − 𝑥′)𝑑𝑥𝑑𝑥′

𝑣𝑞𝑣𝑝
.

∞

𝑖=1

 

 

(A.6) 

For DGM 2 the block to block covariance is equal to 

 

𝑐𝑜𝑣 �𝑍�𝑣𝑝�,𝑍(𝑣𝑞)� = 𝑐𝑜𝑣 �𝜑𝑣𝑝 �𝑌𝑣𝑝� ,𝜑𝑣𝑞 �𝑌𝑣𝑞� �

=  �𝜑𝑖2𝑟𝑝𝑖𝑟𝑞𝑖𝑐𝑜𝑣 �𝑌𝑣𝑝 ,𝑌𝑣𝑞�
𝑖

∞

𝑖=1

=  �𝜑𝑖2𝑟𝑝𝑖𝑟𝑞𝑖 �
1

�𝑣𝑝��𝑣𝑞�𝑟𝑝𝑟𝑞
� � 𝜌(𝑥 − 𝑥′)

𝑣𝑞𝑣𝑝
𝑑𝑥𝑑𝑥′�

𝑖∞

𝑖=1

=  �𝜑𝑖2 �
1

�𝑣𝑝��𝑣𝑞�
� � 𝜌(𝑥 − 𝑥′)

𝑣𝑞𝑣𝑝
𝑑𝑥𝑑𝑥′�

𝑖

,
∞

𝑖=1

 

(A.7) 

 

which does not coincide with the expected theoretical result. The difference Δ 
between the theoretical and implied by DGM 2 covariance values is 

 

𝛥 =   �𝜑𝑖2 �
1

�𝑣𝑝��𝑣𝑞�
� � 𝜌𝑖(𝑥 − 𝑥′)

𝑣𝑞𝑣𝑝
 𝑑𝑥𝑑𝑥′

∞

𝑖=2

−  �
1

�𝑣𝑝��𝑣𝑞�
� � 𝜌(𝑥 − 𝑥′)

𝑣𝑞𝑣𝑝
𝑑𝑥𝑑𝑥′�

𝑖

 � , 

(A.8) 

which finalizes the proof. 
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A.3 Modeling transformation functions 

The method used for modeling transform functions depends on the 
representation which is used for the input distribution 𝐹(𝑧) and for the transform 
function 𝜑(𝑦). Since we are generally simulating properties with a physical meaning, 
we can consider that these properties do not take infinitely big values. Let us 
consider that the transform function 𝜑(𝑦) is piecewise-linear on a closed and 
bounded interval [𝑦0,𝑦𝑁] ⊂ ℛ, which is divided into 𝑁 intervals ∆𝒊= [𝑦𝑖−1,𝑦𝑖], 𝑖 =
1 …𝑁 and that it is constant outside this interval: 

 𝜑(𝑦) =  �
𝑧0,𝑦 < 𝑦0

∑ 𝐼{𝑥 ∈ ∆𝑖}𝑁
𝑖=1 (𝑎𝑖 +  𝑏𝑖𝑦)

𝑧𝑁 ,𝑦 > 𝑦𝑁 
� ,𝑦 ∈ [𝑦0,𝑦𝑁]. (A.9) 

A.3.1 Modeling with Hermite polynomials 

In order to find the change of support coefficient 𝑟 for a block 𝑣 and to model 
the block transformation functions 𝜑𝑣(𝑦) as required by DGM, the decomposition 
(A.5) of 𝜑(𝑦) in the basis of Hermite polynomials should be determined. This section 
gives the necessary equations for the decomposition coefficients. 

 

𝜑𝑗 =  � 𝜑(𝑦) 𝜒𝑗
+∞

− ∞
(𝑦)𝑔(𝑦)𝑑𝑦

= � 𝑧0𝜒𝑗(𝑦)𝑔(𝑦)𝑑𝑦
𝑦0

−∞

+  � ��𝐼{𝑥 ∈ ∆𝑖}
𝑁

𝑖=1

∗ (𝑎𝑖 +  𝑏𝑖𝑦)�  𝜒𝑗
𝑦𝑁

𝑦0
(𝑦)𝑔(𝑦)𝑑𝑦

+  � 𝑧𝑁𝜒𝑗(𝑦)𝑔(𝑦)𝑑𝑦
+∞

𝑦𝑁

= 𝑧0 � 𝜒𝑗(𝑦)𝑔(𝑦)𝑑𝑦
𝑦0

−∞
+   �� (𝑎𝑖 + 𝑏𝑖𝑦) 𝜒𝑗

∆𝑖
(𝑦)𝑔(𝑦)𝑑𝑦

𝑁

𝑖=1

+  𝑧𝑁 � 𝜒𝑗(𝑦)𝑔(𝑦)𝑑𝑦
+∞

𝑦𝑁

=  𝑧0 � 𝜒𝑗(𝑦)𝑔(𝑦)𝑑𝑦
𝑦0

−∞
+  𝑧𝑁 � 𝜒𝑗(𝑦)𝑔(𝑦)𝑑𝑦

+∞

𝑦𝑁

+  �𝑎𝑖 �  𝜒𝑗
∆𝑖

(𝑦)𝑔(𝑦)𝑑𝑦 +  �  𝑏𝑖 � 𝑦 𝜒𝑗
∆𝑖

(𝑦)𝑔(𝑦)𝑑𝑦
𝑁

𝑖=1

𝑁

𝑖=1

 

(A.10) 
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The first three integrals in the sum above can be easily computed (Chilès & 
Delfiner 2012):  

 �  𝜒𝑗
∆𝑖

(𝑦)𝑔(𝑦)𝑑𝑦 =  �
𝐺(𝑦)�|∆𝑖   𝑖𝑓 𝑗 =  0

1
�𝑗!

𝐻𝑗−1(𝑦)𝑔(𝑦) �|∆𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
� (A.11) 

The last integral ∫ 𝑦 𝜒𝑗∆𝑖
(𝑦)𝑔(𝑦)𝑑𝑦 is a bit more complicated. Let us use the 

following identity for the Hermite polynomials for 𝑛 ≥ 1: 

 𝐻𝑛+1(𝑦) = −𝑦𝐻𝑛(𝑦) − 𝑛𝐻𝑛−1(𝑦). (A.12) 

From this one can find: 𝑦𝐻𝑛(𝑦) =  −𝐻𝑛+1(𝑦) − 𝑛𝐻𝑛−1(𝑦), 𝑛 ≥ 1. So, for 𝑗 ≥ 1 

 

� 𝑦 𝜒𝑗
∆𝑖

(𝑦)𝑔(𝑦)𝑑𝑦 =  
1
�𝑗!

� 𝑦 𝐻𝑗
∆𝑖

(𝑦)𝑔(𝑦)𝑑𝑦

=   
1
�𝑗!

� (−𝐻𝑗+1(𝑦) − 𝑗𝐻𝑗−1(𝑦))
∆𝑖

𝑔(𝑦)𝑑𝑦

= −
1
�𝑗!

� 𝐻𝑗+1(𝑦)
∆𝑖

𝑔(𝑦)𝑑𝑦 −  
𝑗
�𝑗!

� 𝐻𝑗−1(𝑦)
∆𝑖

𝑔(𝑦)𝑑𝑦

=   �−
1
�𝑗!

 �𝐻𝑗(𝑦) +  𝑗 ∗  �
𝐺(𝑦),                𝑖𝑓 𝑗 = 1
𝐻𝑗−2(𝑦)𝑔(𝑦), 𝑖𝑓 𝑗 > 1

���
∆𝑖

  

(A.13) 

The case 𝑗 = 0 should be treated separately 

 ∫ 𝑦 𝜒0∆𝑖
(𝑦)𝑔(𝑦)𝑑𝑦 =  ∫ 𝑦 ∆𝑖

𝑔(𝑦)𝑑𝑦 =  −∫ 𝑔′(𝑦)∆𝑖
𝑑𝑦 =  −𝑔(𝑦) �|∆𝑖 (A.14) 

Finally, one can write the result: 

 

𝜑0 = 𝑧0𝐺(𝑦0) + 𝑧𝑁�1− 𝐺(𝑦𝑁)� +   ��𝑎𝑖𝐺(𝑦) −  �𝑏𝑖𝑔(𝑦) 
𝑁

𝑖=1

𝑁

𝑖=1

�
∆𝑖

=  𝑧0𝐺(𝑦0) +  𝑧𝑁�1 − 𝐺(𝑦𝑁)� + ���𝑎𝑖𝐺(𝑦) − 𝑏𝑖𝑔(𝑦)�
𝑁

𝑖=1

�
∆𝑖

 

(A.15) 



123 

 

 

𝜑1 = −𝑧0𝑔(𝑦0) −  𝑧𝑁𝑔(𝑦𝑁)

+   ��𝑎𝑖𝐻0(𝑦)𝑔(𝑦) −  𝑏𝑖[𝐻1(𝑦)𝑔(𝑦) +  𝐺(𝑦)]
𝑁

𝑖=1

�
∆𝑖

= −𝑧0𝑔(𝑦0) −  𝑧𝑁𝑔(𝑦𝑁) +  ��𝑎𝑖 −  𝑏𝑖𝐻1(𝑦)�𝑔(𝑦) −  𝑏𝑖𝐺(𝑦)
𝑁

𝑖=1

=  −𝑧0𝑔(𝑦0) −  𝑧𝑁𝑔(𝑦𝑁) + ��𝑎𝑖 −  𝑏𝑖𝜒1(𝑦)�𝑔(𝑦) −  𝑏𝑖𝐺(𝑦)
𝑁

𝑖=1

 

(A.16) 
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𝜑𝑗 = −
1
�𝑗!

�𝑧0𝐻𝑗−1(𝑦0)𝑔(𝑦0) +  𝑧𝑁𝐻𝑗−1(𝑦𝑁)𝑔(𝑦𝑁)�

+ � 1
�𝑗!

�𝑎𝑖𝐻𝑗−1(𝑦)𝑔(𝑦)
𝑁

𝑖=1

−  𝑏𝑖�𝐻𝑗(𝑦)𝑔(𝑦) +  𝑗 𝐻𝑗−2(𝑦)𝑔(𝑦)� �
∆𝑖

 

= −
1
�𝑗!

�𝑧0𝐻𝑗−1(𝑦0)𝑔(𝑦0) + 𝑧𝑁𝐻𝑗−1(𝑦𝑁)𝑔(𝑦𝑁)�

+  �
1
�𝑗!

�𝑔(𝑦)�𝑎𝑖𝐻𝑗−1(𝑦) −  𝑏𝑖�𝐻𝑗(𝑦) +  𝑗 𝐻𝑗−2(𝑦)�� 
𝑁

𝑖=1

�
∆𝑖

=  −
�𝑗 − 1!

�𝑗!�𝑗 − 1!
�𝑧0𝐻𝑗−1(𝑦0)𝑔(𝑦0) +  𝑧𝑁𝐻𝑗−1(𝑦𝑁)𝑔(𝑦𝑁)�

+  ��𝑔(𝑦)�𝑎𝑖
1

�𝑗 − 1! ∗ 𝑗
𝐻𝑗−1(𝑦)

𝑁

𝑖=1

−  𝑏𝑖 �
1
�𝑗!

𝐻𝑗(𝑦) +  
𝑗

�𝑗 − 2! ∗ (𝑗 − 1) ∗ 𝑗
 𝐻𝑗−2(𝑦)�� �

∆𝑖

 

= −
1
�𝑗

�𝑧0𝜒𝑗−1(𝑦0)𝑔(𝑦0)

+ 𝑧𝑁𝜒𝑗−1(𝑦𝑁)𝑔(𝑦𝑁)� + �  �𝑔(𝑦)�𝑎𝑖
1
�𝑗

𝜒𝑗−1(𝑦)
𝑁

𝑖=1

−  𝑏𝑖 �𝜒𝑗(𝑦) +  �
𝑗

𝑗 − 1
𝜒𝑗−2(𝑦)�� �

∆𝑖

𝑓𝑜𝑟 𝑗 ≥ 2 

 

(A.17) 

Let us select the order of the truncation of the basis at degree 60 and demonstrate, 
how the anamorphosis function 𝜑𝑣(𝑦) evolves depending on the change of support 
coefficient 𝑟. The function 𝜑(𝑦) = 𝑒𝑦 selected for the test is the Gaussian anamorphosis 
function for a standard lognormal random variable. The visible deviation from the exponent 
for 𝑟 = 1 is due to the small number 60 of Hermite polynomials used. In practice at least 
120 Hermite polynomials should be used to model accurately this function (the modeling 
quality can be assessed comparing the known variance from the input distribution 
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𝑉𝑎𝑟 𝑍(𝑥)  with the 𝑉𝑎𝑟 𝜑�𝑌(𝑥)� obtained after approximating 𝜑(𝑦) with Hermite 
polynomials). 

 
Figure A-1. Evolution of the anamorphosis function modeled with Hermite 

polynomials depending on the change of support coefficient  𝑟. The deviation from 𝑒𝑦 
is due to the small number 60 of polynomials used. 

A.3.2 Exact modeling 

In case when 𝜑(𝑦) is piecewise-linear, the transformation function 𝜑𝑣(𝑦) for a 
given 𝑟 can be computed analytically as a consequence of Cartier’s relation. 

Let us compute the change of support function 𝜑𝑣(𝑦) for the given block 𝑣 with 
a change of support coefficient 𝑟:  

 𝜑𝑣(𝑦) =  � 𝜑 �𝑟𝑦 + �1 − 𝑟2𝑡� 𝑔(𝑡)𝑑𝑡
+∞

−∞
 (A.18) 

Let 𝜏 = 𝑟𝑦 + √1 − 𝑟2𝑡. Then from (A.18) and definition of 𝜑(𝑦) 
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𝜑𝑣(𝑦) =
1

√1 − 𝑟2
� 𝜑(𝜏)𝑔 �

𝜏 − 𝑟𝑦
√1 − 𝑟2

� 𝑑𝜏
+∞

−∞

=  
1

√1 − 𝑟2
� 𝑧0𝑔 �

𝜏 − 𝑟𝑦
√1 − 𝑟2

� 𝑑𝜏
𝑦0

−∞

+  
1

√1 − 𝑟2
�� (𝑎𝑖 + 𝑏𝑖𝜏)𝑔 �

𝜏 − 𝑟𝑦
√1 − 𝑟2

�𝑑𝜏
𝑦𝑖

𝑦𝑖−1

𝑁

𝑖=1

+
1

√1 − 𝑟2
� 𝑧𝑁𝑔 �

𝜏 − 𝑟𝑦
√1 − 𝑟2

� 𝑑𝜏
+∞

𝑦𝑁
  

(A.19) 

Now, make the back transform: 𝑡 =  𝜏−𝑟𝑦
√1−𝑟2

,  and, for sake of simplicity, introduce an 

auxiliary variable 𝑦ı� =  𝑦𝑖−𝑟𝑦
√1−𝑟2

. 

 

𝜑𝑣(𝑦) =  � 𝑧0𝑔(𝑡)𝑑𝑡
𝑦0�

−∞
+  �� �𝑎𝑖 + 𝑏𝑖 �𝑟𝑦 + �1 − 𝑟2𝑡�� 𝑔(𝑡)𝑑𝑡

𝑦𝚤�

𝑦�𝑖−1

𝑁

𝑖=1

+ � 𝑧𝑁𝑔(𝑡)𝑑𝑡
+∞

𝑦�𝑁
 

= 𝑧0𝐺(𝑦�0) +   ���(𝑎𝑖 + 𝑏𝑖𝑟𝑦)𝐺(𝑡)|𝑦�𝑖−1
𝑦𝚤� + 𝑏𝑖�1 − 𝑟2  � 𝑡𝑔(𝑡)𝑑𝑡

𝑦𝚤�

𝑦�𝑖−1
�  

𝑁

𝑖=1

+  𝑧𝑁�1 − 𝐺(𝑦�𝑁)� 

=   𝑧0𝐺(𝑦�0) +   ���(𝑎𝑖 + 𝑏𝑖𝑟𝑦)𝐺(𝑡) � − 𝑏𝑖�1 − 𝑟2𝑔(𝑡)�
𝑦�𝑖−1

𝑦�𝑖
 

𝑁

𝑖=1

+  𝑧𝑁�1 − 𝐺(𝑦�𝑁)� , 

(A.20) 

which gives an explicit formula for the anamorphosis function for a given 𝑟. The same 
result as (A.20) can be found in (Emery 2009). 

Let us verify, that the derived 𝜑𝑣(𝑦) →  𝜑(𝑦) when 𝑟 → 1 −.   Consider some 

fixed 𝑦. For the 𝑖 − 𝑡ℎ term, ��𝑠𝑖 =  (𝑎𝑖 + 𝑏𝑖𝑟𝑦)𝐺(𝑡) � − 𝑏𝑖√1 − 𝑟2𝑔(𝑡)�
𝑦�𝑖−1

𝑦�𝑖  we have: 

If 𝑦 < 𝑦𝑖−1: 

 𝑦�𝑖 →  +∞,𝑦�𝑖−1 → +∞ ⇒ 𝑠𝑖 =  (𝑎𝑖 + 𝑏𝑖𝑟𝑦) (1 − 1) −  𝑏𝑖√1 − 𝑟2(0 − 0) = 0. 

If 𝑦 > 𝑦𝑖: 

 𝑦�𝑖 →  −∞,𝑦�𝑖−1 → −∞ ⇒  𝑠𝑖 =  (𝑎𝑖 + 𝑏𝑖𝑟𝑦) (0 − 0) −  𝑏𝑖√1 − 𝑟2(0 − 0) = 0.  
If 𝑦 ∈ [𝑦𝑖−1,𝑦𝑖]: 

 𝑦�𝑖 →  +∞,𝑦�𝑖−1 → −∞ ⇒  𝑠𝑖 =  (𝑎𝑖 + 𝑏𝑖𝑟𝑦) (1 − 0) −  𝑏𝑖√1 − 𝑟2(0 − 0) =  𝑎𝑖 + 𝑏𝑖𝑟𝑦 =
 𝜑(𝑦). 



127 

 

If 𝑦 < 𝑦0,   then      𝑧0𝐺(𝑦�0) → 𝑧0𝐺(+∞) = 𝑧0, otherwise 𝑧0𝐺(𝑦�0) → 0 

If 𝑦 > 𝑦𝑁,   then      𝑧𝑁�1− 𝐺(𝑦�𝑁)� → 𝑧𝑁(1 − 𝐺(−∞)) = 𝑧𝑁,  

otherwise 𝑧𝑁�1 − 𝐺( 𝑦�𝑁)� → 0.  

Summarizing, we have for 𝑟 → 1 −: 

𝜑𝑣(𝑦) →   

⎩
⎪
⎨

⎪
⎧

𝑧0,𝑦 < 𝑦0

�𝐼{𝑥 ∈ ∆𝑖}
𝑁

𝑖=1

(𝑎𝑖 +  𝑏𝑖𝑦)

𝑧𝑁 ,𝑦 > 𝑦𝑁 

� ,𝑦 ∈ [𝑦0,𝑦𝑁] =  𝜑(𝑦) 

Let us demonstrate how the anamorphosis function evolves depending on the 
change of support coefficient 𝑟 when this modeling approach is used. 

 
Figure A-2. Evolution of the anamorphosis function modeled with Hermite 

polynomials depending on change of support coefficient  𝑟.  
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Appendix B:  PG-DGM 
B.1 Hermite polynomials on the plane 

A bivariate Hermite polynomial of degree 𝑛 = 0 … + ∞ and index 𝑚 = 0 …𝑛 is defined 
as follows 

 𝐻𝑛,𝑚(𝑥,𝑦) = 𝐻𝑛−𝑚(𝑥)𝐻𝑚(𝑦)       ∀(𝑥,𝑦) ∈ 𝑅2 (B.1) 

A normalized bivariate Hermite polynomial of degree 𝑛 = 0 … + ∞ and index 𝑚 =
0 …𝑛 is defined by 

 𝜒𝑛,𝑚(𝑥,𝑦)  =  
1

�(𝑛 −𝑚)!𝑚!
𝐻𝑛,𝑚(𝑥, 𝑦)       ∀(𝑥,𝑦) ∈ 𝑅2 (B.2) 

Let us derive some properties of �𝜒𝑛,𝑚(𝑥,𝑦),𝑛 = 0 … + ∞,𝑚 = 0 …𝑛� : 

Property 1 
Let 𝐺(𝑥, 𝑦) = 𝐺(𝑥)𝐺(𝑦) denote the joint distribution of two independent 

standard Gaussian RVs. Let 𝐿2(𝐺) denote the space of functions 𝑓 for which 

 � �𝑓2(𝑥,𝑦)𝑔(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝑅𝑅

<  +∞   (B.3) 

Then the set of bivariate polynomials �𝜒𝑛,𝑚(𝑥,𝑦), 𝑛 = 0 … + ∞,𝑚 = 0 …𝑛 � 
forms a Hilbert basis in the space 𝐿2(𝐺) with the scalar product 

 < 𝑓1,𝑓2 > = � �𝑓1(𝑥,𝑦)𝑓2(𝑥,𝑦)𝑔(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝑅𝑅

       𝑤ℎ𝑒𝑟𝑒 𝑓1, 𝑓2 ∈ 𝐿2(𝐺) (B.4) 

Indeed,  

< 𝜒𝑛1,𝑚1 ,𝜒𝑛2,𝑚2 > =  � �𝜒𝑛1−𝑚1(𝑥)𝜒𝑚1(𝑦)𝜒𝑛2−𝑚2(𝑥)𝜒𝑚2(𝑦)𝑔(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝑅𝑅

= �𝜒𝑛1−𝑚1(𝑥)𝜒𝑛2−𝑚2(𝑥)𝑔(𝑥)𝑑𝑥
𝑅

× �𝜒𝑚1(𝑦)𝜒𝑚2(𝑦)𝑔(𝑦)𝑑𝑦
𝑅

= 𝛿𝑛1−𝑚1,𝑛2−𝑚2𝛿𝑚1,𝑚2 =  �1 𝑖𝑓 𝑚1 = 𝑚2,𝑛1 = 𝑛2
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

(B.5) 

In probabilistic terms, for independent standard Gaussian 𝑌1(𝑥) and 𝑌2(𝑥), Eqn.(B.33) 
means  

 𝐸�𝜒𝑛1,𝑚1�𝑌1(𝑥),𝑌2(𝑥)� 𝜒𝑛2,𝑚2�𝑌1(𝑥),𝑌2(𝑥)� � =  �1 𝑖𝑓 𝑚1 = 𝑚2,𝑛1 = 𝑛2
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�. (B.6) 

Also,  
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𝐸�𝜒𝑛1,𝑚1�𝑌1(𝑥),𝑌2(𝑥)� � = � �𝜒𝑛1−𝑚1(𝑥)𝜒𝑚1(𝑦)𝑔(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝑅𝑅

=  �𝜒𝑛1−𝑚1(𝑥)𝑔(𝑥)𝑑𝑥
𝑅

× �𝜒𝑚1(𝑦)𝑔(𝑦)𝑑𝑦
𝑅

 

= � 1 𝑖𝑓 𝑚1 = 0,𝑛1 = 0
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

(B.7) 

For �𝑌1(𝑥),𝑌1(𝑥′)� ∼ Β�𝜌1(𝑥, 𝑥′)� and �𝑌2(𝑥),𝑌2(𝑥′)� ∼ Β(𝜌2(𝑥, 𝑥′)), 𝑌1(𝑥) ⊥
 𝑌2(𝑥) ∀𝑥: 

 

𝐸�𝜒𝑛1,𝑚1�𝑌1(𝑥),𝑌2(𝑥)�  𝜒𝑛2,𝑚2�𝑌1(𝑥′),𝑌2(𝑥′)� � =

∫ 𝜒𝑛1,𝑚1(𝑥1,𝑦1)𝑅4 𝜒𝑛2,𝑚2  (𝑥2,𝑦2)𝑔𝜌1(𝑥1,𝑥2)𝑔𝜌2(𝑦1,𝑦2)𝑑𝑥1𝑑𝑥2𝑑𝑦1𝑑𝑦2 =

 ∫ 𝜒𝑛1−𝑚1(𝑥1)𝜒𝑛2−𝑚2(𝑥2)𝑔𝜌1(𝑥1,𝑥2)𝑑𝑥1𝑑𝑥2𝑅2 ×

∫ 𝜒𝑚1(𝑦1)𝜒𝑚2(𝑦2)𝑔𝜌2(𝑦1,𝑦2)𝑑𝑦1𝑑𝑦2𝑅2 =

𝛿𝑛1−𝑚1,𝑛2−𝑚2𝜌1
𝑛1−𝑚1  (𝑥, 𝑥′)𝛿𝑚1,𝑚2𝜌2

𝑚1  (𝑥, 𝑥′) =

 �𝜌1
𝑛1−𝑚1  (𝑥, 𝑥′)𝜌2

𝑚1  (𝑥, 𝑥′)  𝑖𝑓 𝑚1 = 𝑚2 > 0,𝑛1 = 𝑛2 > 0
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�. 

 

(B.8) 

B.2 Decomposition into bivariate Hermite polynomials 

Let us find the coefficients of decomposition of a function 𝑓(𝑥,𝑦) in the basis 
�𝜒𝑛,𝑚(𝑥,𝑦),𝑛 = 0 … + ∞,𝑚 = 0 …𝑛�. The representation of 𝑓(𝑥,𝑦) in the basis of 
bivariate Hermite polynomials is the following 

 𝑓(𝑥,𝑦) = 𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝑓𝑛,𝑚𝜒𝑛,𝑚(𝑥,𝑦) (B.9) 

Due to the orthonormality property (B.5),  the coefficient 𝑓𝑛,𝑚 can then be found 
through taking a scalar product of 𝑓 with 𝜒𝑛,𝑚 

 < 𝑓,𝜒𝑛,𝑚 > = 𝑓𝑛,𝑚 =  � 𝑓(𝑥,𝑦)𝜒𝑛,𝑚(𝑥,𝑦)𝑔(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝑅2

 (B.10) 

When 𝑓 is a bivariate indicator function that can be decomposed into a product of 
univariate indicators 

 𝑓(𝑥,𝑦) =  𝐼{𝑥 ∈ ∆1,𝑦 ∈ ∆2} =  𝐼{𝑥 ∈ ∆1} 𝐼{𝑦 ∈ ∆2}, (B.11) 

and the decompositions of the above-mentioned univariate indicators in the 
univariate Hermite polynomials basis are known 

 𝐼{𝑥 ∈ ∆𝑡} = 𝛴𝑛=0+∞ 𝑐(𝑡,𝑛)𝜒𝑛(𝑥),𝑓𝑜𝑟  𝑡 = 1,2, (B.12) 
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the decomposition coefficient 𝑓𝑛,𝑚 in the basis of bivariate polynomials can be easily 
derived through the decomposition coefficients {𝑐(1,𝑛),𝑛 = 0 … + ∞} and {𝑐(2,𝑛),𝑛 =
0 … + ∞} in the univariate polynomials basis 

 
𝑓𝑛,𝑚 = � 𝐼{𝑥 ∈ ∆1}𝜒𝑛−𝑚(𝑥)𝑔(𝑥)𝑑𝑥 ×   �𝐼{𝑦 ∈ ∆2}𝜒𝑚(𝑦)𝑔(𝑦)𝑑𝑦

𝑅𝑅

= 𝑐(1,𝑛 −𝑚) × 𝑐(2,𝑚). 
(B.13) 

So, in order to determine the decomposition of the indicator 𝐼{𝑌1(𝑥) ∈
∆𝑡𝑖1,𝑌2(𝑥) ∈ ∆𝑡𝑖2} with independent 𝑌1(𝑥) and 𝑌2(𝑥) it is sufficient to know the 
decomposition of indicators  𝐼{𝑌1(𝑥) ∈ ∆𝑡𝑖1} and 𝐼{𝑌2(𝑥) ∈ ∆𝑡𝑖2} into univariate Hermite 
polynomials. This decomposition is given by the following formula (Chilès & Delfiner 
2012) 

𝐼{𝑦 ≤ 𝑌(𝑥) ≤ 𝑦′}

= �𝐺(𝑦′) − 𝐺(𝑦)� +  �
�𝜒𝑖−1(𝑦′)𝑔(𝑦′) − 𝜒𝑖−1(𝑦)𝑔(𝑦)�

√𝑖
𝜒𝑖�𝑌(𝑥)�

+∞

𝑖=1

 
(B.14) 
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B.3 Transformation function for facies proportion  

Cartier’s relation (4.10) leads to an explicit expression for 𝜓𝑣,𝑖 (𝑦1,𝑦2) through 
𝜑𝑖(𝑦1,𝑦2). Here, we recall the following  property of normalized univariate Hermite 
polynomials from (Chilès & Delfiner 2012): if (𝑌,𝑌′) ∼ Β(𝜌) and 𝑌′′ ∼ 𝐺(𝜌𝑦, 1 −
𝜌2 ) then 

 𝐸[𝜒𝑛(𝑌′)|𝑌 = 𝑦] = 𝐸[𝜒𝑛(𝑌′′)] = 𝜌𝑛𝜒𝑛(𝑦) (B.15) 

Using (B.15), from Cartier’s relation (4.10) one derives 

 

𝐸�𝐼�𝑌1�𝑥� ∈ ∆𝑡𝑖1,𝑌2�𝑥� ∈ ∆𝑡𝑖2��(𝑌𝑣1,𝑌𝑣2) = (𝑦1,𝑦2)� 

= 𝐸 �𝛴𝑛=0+∞ 𝛴𝑚=0
𝑛 𝜑(𝑖,𝑛,𝑚)𝜒𝑛−𝑚 �𝑌1�𝑥�� 𝜒𝑚 �𝑌2�𝑥��  | (𝑌𝑣1,𝑌𝑣2) = (𝑦1,𝑦2)�

=  𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝜑(𝑖,𝑛,𝑚)𝐸[𝜒𝑛−𝑚(𝜉1)𝜒𝑚(𝜉2)]

=   𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝜑(𝑖,𝑛,𝑚)𝐸[𝜒𝑛−𝑚(𝜉1)] 𝐸[𝜒𝑚(𝜉2)]

=  𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝜑(𝑖,𝑛,𝑚)𝑟1𝑛−𝑚𝑟2𝑚𝜒𝑛−𝑚(𝑦1)𝜒𝑚(𝑦2), 

(B.16) 

where 𝜉𝑖 ∼ 𝐺(𝑟𝑖𝑦𝑖, 1 − 𝑟𝑖2), 𝜉1 ⊥ 𝜉2. Comparing (B.16) with (4.9) gives the desired 
decomposition coefficients in (4.11). 

 

B.4 Modeling the indicator transformation functions 

When a bivariate indicator functions 𝜑𝑖(𝑦1,𝑦2) =  𝐼{𝑦1 ∈ ∆𝑡𝑖1,𝑦2 ∈ ∆𝑡𝑖2} =
𝐼{𝑦1 ∈ ∆𝑡𝑖1} 𝐼{𝑦2 ∈ ∆𝑡𝑖2} can be factorized with respect to 𝑦1 and 𝑦2, the Cartier’s 
relation can be simplified 

𝜓𝑣,𝑖 (𝑦1,𝑦2) =  𝐸�𝐼�𝑌1�𝑥� ∈ ∆𝑡𝑖1,𝑌2�𝑥� ∈ ∆𝑡𝑖2��(𝑌𝑣1,𝑌𝑣2) = (𝑦1,𝑦2)�

= � � 𝜑𝑖 �𝑟1𝑦1 + �1 − 𝑟12𝜏1, 𝑟2𝑦2
𝑅𝑅

+ �1 − 𝑟22𝜏2�𝑔(𝜏1)𝑔(𝜏2)𝑑𝜏1𝑑𝜏2 

= � 𝐼 �𝑟1𝑦1 + �1 − 𝑟12𝜏1 ∈ ∆𝑡𝑖1�
𝑅

𝑔(𝜏1) 𝑑𝜏1

× � 𝐼 �𝑟2𝑦2 + �1 − 𝑟22𝜏2 ∈ ∆𝑡𝑖2�
𝑅

𝑔(𝜏2) 𝑑𝜏2

= 𝐼1(𝑦1, 𝑟1) × 𝐼2(𝑦2, 𝑟2) 

(B.17) 

 

  



132 

 

Since univariate indicator functions are piecewise-linear, analytical 
expressions for 𝐼1(𝑦1, 𝑟1) and 𝐼2(𝑦2, 𝑟2) can be found with Appendix A. Let ∆𝑡𝑖1 =
[𝛿1𝑙 , 𝛿1𝑟],∆𝑡𝑖2 = [𝛿2𝑙 , 𝛿2𝑟]  and 𝑥�(𝑟,𝑦) =  𝑥−𝑟𝑦

√1−𝑟2
. Then for 𝑞 = 1,2 

 𝐼𝑞�𝑦𝑞 , 𝑟𝑞� = �𝐺 �𝛿𝑞𝑟��𝑟𝑞 ,𝑦𝑞�� −  𝐺 �𝛿𝑞𝑙��𝑟𝑞 ,𝑦𝑞��� (B.18) 

This equation demonstrate that for modeling the transformation functions of bivariate 
indicators required by PG-DGM it is possible to avoid using decompositions in 
Hermite polynomial basis. 
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B.5 Proof of proposition 1 

Let us prove that the facies proportions modeled with PG-DGM always sum up 
to 1 for every block. It is sufficient to show that Σ𝑖=1

𝑘 𝜓𝑣,𝑖(𝑦1,𝑦2) = 1 for any 𝑦1 and 𝑦2. 
Indeed, we know that Σ𝑖=1

𝑘 𝐼𝑖(𝑥) = 1 which, expressed in bivariate Hermite 
polynomials, means 

 𝛴𝑛=0+∞ 𝛴𝑚=0
𝑛 𝛴𝑖=1𝑘 [𝜑(𝑖,𝑛,𝑚)]𝜒𝑛,𝑚�𝑌1(𝑥),𝑌2(𝑥)� = 1. (B.19) 

Let us consider this expression at 𝑌1(𝑥) = 𝑦1,𝑌2(𝑥) = 𝑦2 and take a scalar product of 
both parts with 𝜒𝑛� ,𝑚� (𝑦1,𝑦2) ≠ 1. Due to orthogonality, we have 

 𝛴𝑖=1𝑘 𝜑(𝑖,𝑛�,𝑚�) = 0 (B.20) 

Now, if we consider Σ𝑖=1𝑘 𝜓𝑣,𝑖(𝑦1,𝑦2) 

 
𝛴𝑖=1𝑘 𝜓𝑣,𝑖(𝑦1,𝑦2) =  𝛴𝑛=0+∞ 𝛴𝑚=0𝑛 𝛴𝑖=1𝑘 [𝜑(𝑖,𝑛,𝑚)]𝑟1𝑛−𝑚𝑟2𝑚𝜒𝑛,𝑚(𝑦1,𝑦2)

=  1 + 𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 0 × 𝑟1𝑛−𝑚𝑟2𝑚𝜒𝑛,𝑚(𝑦1,𝑦2) = 1, 
(B.21) 

which proves the statement. 
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B.6 Derivation of the change of support coefficients  

Let us consider the theoretical variance of 𝑃𝑖(𝑣) - proportion of facies 𝑖 over 
the block. From the problem statement of facies simulations on an unstructured grid, 
the value of 𝑉𝑎𝑟�𝑃𝑖(𝑣)� is defined through the integral of the covariance function 
𝐶𝑖𝑖(𝑥, 𝑥′) of 𝐼𝑖(𝑥). 

 

𝑉𝑎𝑟�𝑃𝑖(𝑣)� =
1

|𝑣|2 � �𝑐𝑜𝑣 (𝐼𝑖(𝑥), 𝐼𝑖(𝑥′))𝑑𝑥𝑑𝑥′
𝑣𝑣

=  
1

|𝑣|2 � �𝐶𝑖𝑖(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣𝑣

=𝑑𝑒𝑓 𝐶𝑖𝑖(𝑣)

=  
1

|𝑣|2 � �𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 𝜑2(𝑖,𝑛,𝑚)𝜌1𝑛−𝑚 (𝑥, 𝑥′)𝜌2𝑚 (𝑥, 𝑥′)
𝑣

𝑑𝑥𝑑𝑥′
𝑣

 

(B.22) 

On the other hand due to the representation (4.11) 

 
𝑃𝑖(𝑣) = 𝜓𝑣,𝑖(𝑌𝑣1,𝑌𝑣2) ⇒ 𝑉𝑎𝑟�𝑃𝑖(𝑣)� =  𝛴𝑛=2+∞ 𝛴𝑚=1𝑛−1𝜓2(𝑣, 𝑖,𝑛,𝑚)

=  𝛴𝑛=1+∞ 𝛴𝑚=0
𝑛 𝜑2(𝑖,𝑛,𝑚)𝑟1

2(𝑛−𝑚)𝑟22𝑚 
(B.23) 

If we want to reproduce the variance of every proportion within the block, for any 
𝑖 = 1 …𝐾 the following identity should take place 

 𝑉𝑎𝑟�𝑃𝑖(𝑣)� =  
1

|𝑣|2 � �𝐶𝑖𝑖(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
𝑣𝑣

=  𝛴𝑛=1+∞ 𝛴𝑚=0
𝑛 𝜑2(𝑖,𝑛,𝑚)𝑟1

2(𝑛−𝑚)𝑟22𝑚 (B.24) 

Using (B.22), (B.23) and (B.24), the following system of 𝐾 equations for two variables 
𝑟1 and 𝑟2 is obtained 

 
𝛴𝑛=1+∞ 𝛴𝑚=0

𝑛 𝜑2(𝑖,𝑛,𝑚) �
1

|𝑣|2 � �𝜌1𝑛−𝑚 (𝑥, 𝑥′)𝜌2𝑚 (𝑥, 𝑥′)
𝑣

𝑑𝑥𝑑𝑥′
𝑣

− 𝑟1
2(𝑛−𝑚)𝑟22𝑚�

= 0       ∀𝑖 = 1 …𝐾 
(B.25) 

Obviously, in the general case the solution to system (B.25) does not exist. 
The best thing which can be done in this case is trying to solve the following 
optimization problem in order to minimize the error of the covariance reproduction 

 �� 𝐶�̅�𝑖(𝑣, 𝑣) − 𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 𝜑2(𝑖, 𝑛,𝑚)𝑟1
2(𝑛−𝑚)𝑟22𝑚�

2
→ 𝑚𝑖𝑛.

𝐾

𝑘=1

 (B.26) 

Optimization problem (B.26) can be solved with any classical method and we 
do not detail this approach further here. Instead of really solving the optimization 
problem, an approximation for solution of (B.26) can be found under certain 
assumptions. Notice that the system of 𝐾 equations (B.25) has a solution if the 
following infinite system of equations has a solution relative to  (𝑟1, 𝑟2). For   ∀𝑛 =
1 … + ∞,𝑚 = 0 …𝑛 
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 1
|𝑣|2 � �𝜌1𝑛−𝑚 (𝑥, 𝑥′)𝜌2𝑚 (𝑥, 𝑥′)

𝑣
𝑑𝑥𝑑𝑥′

𝑣
− 𝑟1

2(𝑛−𝑚)𝑟22𝑚 = 0 .    (B.27) 

Obviously, it is not possible to find the exact solution to this infinite system, but 
we can consider the most significant part of this infinite system of equations is 
“concentrated” in equations with indices (𝑛,𝑚) = (1,0), (1,1).  In this case we have 
two equations (ℎ𝑎𝑡 on top of the function denotes double volumetric integral over the 
given volumes normalized by the volume squared) 

 �
𝑟12  = 𝜌1(𝑣, 𝑣)
𝑟22 = 𝜌2(𝑣, 𝑣)

�, (B.28) 

which coincides with (4.14).  

Choosing (𝑟1, 𝑟2) as a solution of (B.25) we approximately reproduce the 
variance of all proportions inside a block.  

 

B.7 Derivation of the block to block covariance  

Consider two blocks 𝑣𝑝 and 𝑣𝑞. Let us determine the covariance between 𝑌𝑣𝑝
1  

and 𝑌𝑣𝑞
1  and between 𝑌𝑣𝑝

2  and 𝑌𝑣𝑞
2 . From the problem statement of facies simulation on 

unstructured grids 

 
𝑐𝑜𝑣 �𝑃𝑖�𝑣𝑝�,𝑃𝑗�𝑣𝑞�� = 𝐶𝑖𝑗�𝑣𝑝, 𝑣𝑞� =

1
�𝑣𝑝�|𝑣𝑞|

� � 𝑐𝑜𝑣 �𝐼𝑖(𝑥), 𝐼𝑗(𝑥′)�𝑑𝑥𝑑𝑥′
𝑣𝑞𝑣𝑝

=
1

�𝑣𝑝�|𝑣𝑞|
� � 𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 𝜑(𝑖, 𝑛,𝑚)𝜑(𝑗,𝑛,𝑚)𝜌1𝑛−𝑚 (𝑥, 𝑥′)𝜌2𝑚 (𝑥, 𝑥′) 𝑑𝑥𝑑𝑥′

𝑣𝑞𝑣𝑝
 

(B.29) 

On the other hand, from the decomposition into Hermite polynomials 

 
𝑐𝑜𝑣 �𝑃𝑖�𝑣𝑝�,𝑃𝑗�𝑣𝑞�� = 𝑐𝑜𝑣 �𝜓𝑣𝑝,𝑖 �𝑌𝑣𝑝

1 ,𝑌𝑣𝑝
2 � ,𝜓𝑣𝑞,𝑗 �𝑌𝑣𝑞

1 ,𝑌𝑣𝑞
2 ��

=  𝛴𝑛=1+∞ 𝛴𝑚=0
𝑛 𝜓�𝑣𝑝, 𝑖,𝑛,𝑚�𝜓�𝑣𝑞 , 𝑗,𝑛,𝑚�𝑐𝑜𝑣𝑛−𝑚 (𝑌𝑣𝑝

1 ,𝑌𝑣𝑞
1 )𝑐𝑜𝑣𝑚 (𝑌𝑣𝑝

2 ,𝑌𝑣𝑞
2 )  

(B.30) 

In this case we have 𝐾2 equations (B.25) for 𝑖 = 1 …𝐾, 𝑗 = 1 …𝐾. Since (B.29) should 
be equal to (B.25), in order to determine 𝑐𝑜𝑣(𝑌𝑣𝑝

1 ,𝑌𝑣𝑞
1 ) and 𝑐𝑜𝑣(𝑌𝑣𝑝

2 ,𝑌𝑣𝑞
2 ) an 

optimization problem similar to (B.26) should be solved. Here we only give an 
approximate solution to this problem in the same style as it was done in previous 
section: 

 
𝛴𝑛=1+∞ 𝛴𝑚=0𝑛 𝜑(𝑖,𝑛,𝑚)𝜑(𝑗,𝑛,𝑚) �𝜌1𝑛−𝑚𝜌2𝑚�𝑣𝑝, 𝑣𝑞�

−  𝑟1,𝑝
𝑛−𝑚𝑟1,𝑞

𝑛−𝑚 𝑟2,𝑝
𝑚 𝑟2,𝑞

𝑚 𝑐𝑜𝑣𝑛−𝑚 �𝑌𝑣𝑝
1 ,𝑌𝑣𝑞

1 � 𝑐𝑜𝑣𝑚 �𝑌𝑣𝑝
2 ,𝑌𝑣𝑞

2 �� = 0 
(B.31) 
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The system (B.31) can be satisfied in case if for  ∀𝑛 = 1. . +∞,𝑚 = 0 …𝑛 the following 
identity takes place 

𝜌1𝑛−𝑚𝜌2𝑚�𝑣𝑝, 𝑣𝑞� −  𝑟1,𝑝
𝑛−𝑚𝑟1,𝑞

𝑛−𝑚 𝑟2,𝑝
𝑚 𝑟2,𝑞

𝑚 𝑐𝑜𝑣𝑛−𝑚 �𝑌𝑣𝑝
1 ,𝑌𝑣𝑞

1 � 𝑐𝑜𝑣𝑚 �𝑌𝑣𝑝
2 ,𝑌𝑣𝑞

2 � = 0    (B.32) 

Consider the part of this infinite system of equations for (𝑛,𝑚) = (1,0), (1,1). From 
these two equations, one derives 

 �
𝑟1,𝑝𝑟1,𝑞𝑐𝑜𝑣 �𝑌𝑣𝑝

1 ,𝑌𝑣𝑞
1 � = 𝜌1(𝑣𝑝, 𝑣𝑞)

𝑟2,𝑝𝑟2,𝑞𝑐𝑜𝑣 �𝑌𝑣𝑝
2 ,𝑌𝑣𝑞

2 � = 𝜌2(𝑣𝑝, 𝑣𝑞)
, � (B.33) 

which is equivalent to (4.15). 
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B.8 Mini-model tests for PG-DGM 

 

 
a) 

  
b) c) 

Figure B-1. Flag 1 Medium range. a) Distribution of 𝑃0(𝑣) b) Distribution of 𝑃1(𝑣) c) 
Distribution of 𝑃2(𝑣) 
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a) 

  
b) c) 

Figure B-2. Flag 1 Long range. a) Distribution of 𝑃0(𝑣) b) Distribution of 𝑃1(𝑣) c) 
Distribution of 𝑃2(𝑣) 
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a) 

  
b) c) 

Figure B-3. Flag 2 Medium range. a) Distribution of 𝑃0(𝑣) b) Distribution of 𝑃1(𝑣) c) 
Distribution of 𝑃2(𝑣) 
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a) 

  
b) c) 

Figure B-4. Flag 2 Long range. a) Distribution of 𝑃0(𝑣) b) Distribution of 𝑃1(𝑣) c) 
Distribution of 𝑃2(𝑣) 
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a) b) 

  
c) d) 

  
e) f) 

Figure B-5. Approximation of block to block covariance implied by PG-DGM. a)𝐶00 b) 
𝐶01 c) 𝐶02 d) 𝐶11 e) 𝐶12 f) 𝐶22. 
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Appendix C: Variance computation sensitivity tests 
C.1  Spherical covariance 
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Figure C-1. Comparing the accuracy of different numerical methods for computing 

the theoretical variance of block average value 𝑉𝑎𝑟�𝑍(𝑣)� for various ranges of input 
covariance.  
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C.2 Exponential covariance 
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Figure C-2. Comparing the accuracy of different numerical methods for computing 

the theoretical variance of block average value 𝑉𝑎𝑟�𝑍(𝑣)� for various ranges of input 
covariance. 
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C.3 Double structure covariance 
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Figure C-3. Comparing the accuracy of different numerical methods for computing 

the theoretical variance of block average value 𝑉𝑎𝑟�𝑍(𝑣)� for various ranges of input 
covariance. 
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C.4 Spherical covariance with azimuth 
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Figure C-4. Comparing the accuracy of different numerical methods for computing 

the theoretical variance of block average value 𝑉𝑎𝑟�𝑍(𝑣)� for various ranges of input 
covariance. 
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Résumé 
 
La simulation des phénomènes physiques 
exige souvent l’utilisation d’une discrétisation 
du milieu sous forme de maillage. Un 
exemple  de ce type de situation est la 
simulation d’écoulement de fluides et la 
simulation du stress géomécanique  pour les 
gisements pétroliers. Dans ces cas, le milieu 
étudié n’est pas homogène et l'hypothèse sur 
l’homogénéité de ce milieu peut mener à des 
résultats incorrects. C’est pourquoi la 
simulation des hétérogénéités est  très 
importante pour ce genre de problèmes.  
Cette thèse est consacrée à la simulation 
géostatistique des hétérogénéités sur les 
maillages non-structurés par les méthodes 
géostatistiques non-linéaires.  Le but de cette 
thèse est la création d’algorithmes de 
simulation des hétérogénéités directement 
sur les maillages non-structurés, sans utiliser 
les maillages fins réguliers intermédiaires et 
de l’upscaling. On présente deux modèles 
théoriques pour les simulations des variables 
continues sur les maillages non-structurés qui 
sont les deux versions différentes du modèle 
Gaussien discret (DGM) - DGM 1 et DGM 2. 
Le modèle théorique utilisé dans cette thèse 
permet de convertir le problème de simulation 
sur un maillage non-structuré en un problème 
de simulation d’un vecteur Gaussien 
multivarié et l’application de fonctions de 
transformation adaptées pour chaque 
élément du vecteur. La simulation de faciès 
est aussi envisagée en utilisant une 
généralisation des modèles pluri-Gaussiens 
et Gaussien tronqués pour les maillages non-
structurés. 
L’application des méthodes développées est 
illustrée sur un gisement pétrolier - le cas 
d’étude X (gisement du gaz offshore). 
 

 

 

Mots Clés 
Maillage non-structuré, simulations des 
hétérogénéités, géostatistiques non-linaire, 
modèle Gaussien discret 

 

 
 
 
 
 

Abstract 
 
Simulations of physical phenomenon often 
require discretizing the medium with a mesh. 
An example of this type of simulation is the  
simulation of fluid flow through a porous 
medium and the evaluation of the 
geomechanical stress in the petroleum 
reservoir. The studied medium is often not 
homogeneous and applying a homogeneity 
hypothesis can lead to incorrect simulation 
results. That makes simulation of 
heterogeneities important for this kind of 
problems. 
This thesis is devoted to geostatistical 
simulations of heterogeneities on 
unstructured grids using methods of non-
linear geostatistics. The objective of this work 
is the development of algorithms for 
simulating heterogeneities directly on 
unstructured grids without using intermediate 
fine scale regular grids and upscaling. We 
present two theoretical models for 
geostatistical simulations of continuous 
parameters on unstructured grids which are 
different generalizations of the Discrete 
Gaussian model (DGM) – DGM 1 and DGM 2. 
The proposed theoretical models enable 
converting the problem of geostatistical 
simulation on an unstructured grid into the 
well-studied problem of simulating 
multivariate Gaussian random vectors 
followed by application of block-dependent 
transformation functions. The problem of 
simulating facies is also addressed in this 
work, for which generalizations of pluri-
Gaussian and truncated Gaussian simulation 
models for unstructured grids are proposed.  
An application of the proposed methods is 
demonstrated on a case study X, which is an 
offshore gas reservoir with a tartan-meshed 
grid. 
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Unstructured grids, heterogeneities 
simulation, non-linear geostatistics, discrete 
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