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Résumé

Cette thèse comporte deux volets indépendants mais tous deux motivés par la mo-
délisation mathématique et la simulation numérique de procédés photovoltaïques.

La Partie I traite de systèmes d’équations aux dérivées partielles de diffusion croi-
sée, modélisant l’évolution de concentrations ou de fractions volumiques de plusieurs
espèces chimiques ou biologiques. Nous présentons dans le chapitre 1 une introduction
succincte aux résultats mathématiques connus sur ces systèmes losqu’ils sont définis sur
des domaines fixes. Nous présentons dans le chapitre 2 un système uni-dimensionnel
que nous avons introduit pour modéliser l’évolution des fractions volumiques des diffé-
rentes espèces chimiques intervenant dans le procédé de déposition physique en phase
vapeur (PVD) utilisé pour la fabrication de cellules solaires à couches minces. Dans ce
procédé, un échantillon est introduit dans un four à très haute température où sont
injectées les différentes espèces chimiques sous forme gazeuse, si bien que des atomes
se déposent petit à petit sur l’échantillon, formant une couche mince qui grandit au
fur et à mesure du procédé. Dans ce modèle sont pris en compte à la fois l’évolution
de la surface du film solide au cours du procédé et l’évolution des fractions volumiques
locales au sein de ce film, ce qui aboutit à un système de diffusion croisée défini sur
un domaine dépendant du temps. En utilisant une méthode récente basée sur l’entro-
pie, nous montrons l’existence de solutions faibles à ce système et nous étudions leur
comportement asymptotique dans le cas où les flux extérieurs imposés à la surface du
film sont supposés constants. De plus, nous prouvons l’existence d’une solution à un
problème d’optimisation sur les flux extérieurs. Nous présentons dans le chapitre 3
comment ce modèle a été adapté et calibré sur des données expérimentales.

La Partie II est consacrée à des questions reliées au calcul de la structure élec-
tronique de matériaux cristallins. Nous rappelons dans le chapitre 4 certains résultats
classiques relatifs à la décomposition spéctrale d’opérateurs de Schrödinger périodiques.
Dans le chapitre 5, nous tentons de répondre à la question suivante : est-il possible de
déterminer un potentiel périodique tel que les premières bandes d’énergie de l’opérateur
de Schrödinger associé soient aussi proches que possible de certaines fonctions cibles ?
Nous montrons théoriquement que la réponse à cette question est positive lorsque l’on
considère la première bande de l’opérateur et des potentiels uni-dimensionnels apparte-
nant à un espace de mesures périodiques bornées inférieurement en un certain sens. Nous
proposons également une méthode adaptative pour accélérer la procédure numérique de
résolution du problème d’optimisation. Enfin, le chapitre 6 traite d’un algorithme glou-
ton pour la compression de fonctions de Wannier en exploitant leurs symétries. Cette
compression permet, entre autres, d’obtenir des expressions analytiques pour certains
coefficients de tight-binding intervenant dans la modélisation de matériaux 2D.
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Abstract

This thesis includes two independent parts, both motivated by mathematical mod-
eling and numerical simulation of photovoltaic devices.

Part I deals with cross-diffusion systems of partial differential equations, modeling
the evolution of concentrations or volume fractions of several chemical or biological
species. We present in Chapter 1 a succinct introduction to the existing mathematical
results about these systems when they are defined on fixed domains. We present in
Chapter 2 a one-dimensional system that we introduced to model the evolution of
the volume fractions of the different chemical species involved in the physical vapor
deposition process (PVD) used in the production of thin film solar cells. In this process,
a sample is introduced into a very high temperature oven where the different chemical
species are injected in gaseous form, so that atoms are gradually deposited on the
sample, forming a growing thin film. In this model, both the evolution of the film
surface during the process and the evolution of the local volume fractions within this
film are taken into account, resulting in a cross-diffusion system defined on a time-
dependent domain. Using a recent method based on entropy estimates, we show the
existence of weak solutions to this system and study their asymptotic behavior when
the external fluxes are assumed to be constant. Moreover, we prove the existence of a
solution to an optimization problem set on the external fluxes. We present in Chapter
3 how was this model adapted and calibrated on experimental data.

Part II is devoted to some issues related to the calculation of the electronic structure
of crystalline materials. We recall inChapter 4 some classical results about the spectral
decomposition of periodic Schrödinger operators. In Chapter 5, we try to answer the
following question: is it possible to determine a periodic potential such that the first
energy bands of the associated periodic Schrödinger operator are as close as possible
to certain target functions? We theoretically show that the answer to this question is
positive when we consider the first energy band of the operator and one-dimensional
potentials belonging to a space of periodic measures that are lower bounded in a certain
sens. We also propose an adaptive method to accelerate the numerical optimization
procedure. Finally, Chapter 6 deals with a greedy algorithm for the compression
of Wannier functions into Gaussian-polynomial functions exploiting their symmetries.
This compression allows, among other things, to obtain closed expressions for certain
tight-binding coefficients involved in the modeling of 2D materials.
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Solar Cells

A solar cell converts solar energy into an electric current, using semiconducting mate-
rials. The efficiency of a solar cell therefore relies on the electronic properties of the
semiconducting material. A semiconductor is characterized by a band gap : the differ-
ence between the energy of the conduction band and the energy of the valence band.
Two types of semiconducting materials can be distinguished: semiconductors of type
p, which contain acceptor-type defects leading to the creation of an excess of holes in
the valence band; and semiconductors of type n, which are doped with donor defects,
leading to to the creation of an excess of electrons in the conduction band.

Most photovoltaic (PV) cells consist in a p-type layer (which will be in contact with
the light source) on top of a n-type layer leading to a p-n junction. Thus, the excess holes
(positively charged) of the p-type layer and the excess electrons (negatively charged)
of the n-type layer are attracted to each other. The electronic movement results in
an electric field and forms a depletion zone between the two layers. This region plays
the role of a barrier and prevents the electrons and holes from recombining. When
the sunlight strikes the cell, the photons excite the electrons on the n-type top layer.
Therefore, the electrons leave their original state and become mobile and extra holes
are created. Because of the electric field, the mobile electrons stay in the n-layer but
the holes move to the p-layer. As a consequence, the n-layer contains an extra negative
charge and the p-layer an extra positive charge. Finally, the electrical current is obtained
by connecting the two sides with a circuit. A schematic representation of the working
principle of a solar cell is given in Figure 1. The reader may refer to [PU+16] for further
details on the physics of solar cells.



Figure 1 – Schematic representation of a solar cell, showing the n-type and p-type layers,
with a close-up view of the depletion zone around the junction between the n-type and p-type
layers. Source : Online article of the American Chemical Society: How a Solar Cell Works.
https://www.acs.org/content/acs/en/education/resources/

The most commercially available PV technologies are: the ones based on crystalline
or multi-crystalline silicon technologies (c-Si) and the ones using thin film technologies
(among which the cadmium-telluride (CdTe), amorphous silicon (a-Si) and copper in-
dium gallium diselenide (CIGS) modules). The CIGS-based cells are less efficient than
the c-Si cells. However, this technology still presents several competitive advantages :
a lower production cost, a lower ecological footprint and a better adaptability to light-
weight and flexible substrates [Mol16]. This motivate the many recent efforts for the
study and development of CIGS based solar cells [Kli15, Mol16, PWJ+14, JHW+15,
JWH+16].

The standard CIGS solar cell structure is shown in Figure 2. The cell is basically
composed of a p-type Cu(In,Ga)Se2 layer, which acts as the main light absorber, in
contact with a n-type CdS layer to form a p-n junction. At the frontside, a transparent
electrode generally based on a ZnO/ZnO:Al bilayer, collects the electrons. At the rear-
side, a molybdenum electrode collects the holes. The roles and properties of each layer
are discussed in [Kli15, Mol16]. Let us focus here in the CIGS absorber layer, which
is the object of interest in this thesis. The Cu(In,Ga)Se2 material is a semiconductor
material with a tetragonal chalcopyrite crystalline structure (see Figure 3).

Two main methods are used for the production of the CIGS layer: the selenization
of vacuum-deposited metallic precursors and co-evaporation using the Physical Vapor
deposition (PVD) [Kli15, Mat10]. In the co-evaporation approach, the four constituents
of the absorber layer are simultaneously evaporated in a high temperature vacuum
chamber. As the injected atoms deposit on the substrate, an heterogeneous solid grows
upon it forming thus the CIGS layer. Different evaporation senarii, distinguished by
different evaporation rates and substrate temperatures, have been developed. The three-
stages process (schematically illustrated in Figure 4) allows one to achieve very high
cell efficiencies 20% [Kli15].
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Figure 2 – Typical composition of a standard CIGS based solar cell. Source: [Mol16]

Figure 3 – Unit cell of chalcopyrite Cu(In,Ga)Se2. Source: [Kli15]

Figure 4 – Evaporation and temperature profile for the 3-stage process. The deposition rates
τa,i for every component a = Cu, In,Ga, Se and the temperature of the substrate Ti are given
for the three regimes i = 1, 2, 3. Source: [Kli15]

Outline of the Thesis

This thesis was originally motivated by a collaboration between the CERMICS lab14 and
the IRDEP lab15 aiming to present mathematical approaches for the optimization of the

14CERMICS is the research center in applied mathematics at Ecole des Ponts ParisTech, France
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photovoltaic efficiency of CIGS based solar cells. The last part of the thesis is motivated
by a collaboration with physicists from the physics department of Harvard University
working on the study of the electronic properties of heterogeneous 2D materials.

This manuscript is organized in two parts. The first part concerns cross-diffusion
systems and the second part treats some issues related to electronic structure calcula-
tions.

The first contribution of the present thesis concerns the optimization of the co-
evaporation production process of the CIGS layer. We propose a one-dimensional math-
ematical model for the Physical Vapor Deposition process in which two main phenomena
are taken into account: the evolution of the surface of the layer and the diffusion of the
various species in the bulk, due to the high temperature of the chamber. The proposed
model writes under the form of a system of cross-diffusion PDEs defined on a moving
domain. We present inChapter 1 an introduction to the well-known results about clas-
sical cross-diffusion systems on fixed domains. Chapter 2 gathers the results of [BE16]
and is dedicated to the analysis of our proposed model. We show a global-in-time ex-
istence of weak solution to the system and investigate their long-time behavior in the
case of constant external fluxes. We also formulate an optimization problem set on the
external fluxes, for which we prove the existence of a solution. From a numerical point
of view, we suggest a numerical scheme for the discretization of the model and present
a gradient-based numerical procedure to solve the optimization problem. We finally
present in Chapter 3 some practical improvements of our model and its calibration on
experimental measures.

In the second part of the thesis, we consider periodic Schrödinger operators of the
form A = −∆ + V where V is a real-valued periodic potential. We briefly present in
Chapter 4 the standard mathematical tools used in electronic structure calculations.
We introduce in particular the Bloch-Floquet transform that allows one to characterize
the spectrum of A as the reunion of the spectra of a family of selfadjoint compact
resolvent operators Aq indexed by an element q ∈ Rd called quasi-momentum. The
function that maps q ∈ Rd with the mth eigenvalue of Aq is the so-called mth energy
band associed to A. Then, we focus on the following question: is it possible to determine
a periodic potential V such that the lowest energy bands associated to the periodic
Schrödinger operator A = −∆+V are close to some target functions? InChapter 4, we
gather the results of [BEG17] where we formulate the above question as an optimization
problem set on the space of one-dimensional periodic potentials that are measure-valued
and lower bounded in a certain sense. Moreover, we present an adaptive optimization
method which is faster than the standard gradient-based procedures.

Lastly, we consider Wannier functions, which are localized-in-space functions con-
structed from the Bloch eigenstates of the periodic Schrödinger operator A = −∆ + V .
These functions are used in tight-binding models for heterogeneous 2D materials and
thus play an essential role in the study of the electronic properties of such structures.
In Chapter 6, we report present some results of [BCC+17] where we propose a greedy
procedure for the compression of Wannier functions into symmetry-adapted Gaussian-
polynomials functions. Such a compression has two advantages: i) it allows one to

15IRDEP (Institut de recherche et développement sur l’énergie photovoltaïque) is a research lab
of Chimie ParisTech, CNRS, EDF R&D, France, working on the new generations of photovoltaic
technologies.
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characterize a Wannier function by a small number of parameters rather than by its
values on a (possibly large) gird, ii) it allows one to accelerate the parametrization of
tight-binding Hamiltonians since closed formulas can be obtained for the tight-binding
matrix elements.
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Part I

Cross-diffusion





CHAPTER 1

CROSS-DIFFUSION SYSTEMS ON FIXED DOMAINS

Cross-diffusion models are systems of Partial Differential Equations (PDEs) describing
the time evolution of multicomponent systems. Such models arise naturally in biology,
physics and chemistry. In Section 1.1, we give the general form of cross-diffusion sys-
tems considered in this thesis along with some classical examples. Some mathematical
challenges arising from their analysis are commented in Section 1.2. Section 1.3 will
be devoted to the entropy structure admitted by some cross-diffusion systems which is
a key-ingredient in the proof of the existence of global-in-time solutions. Three main
methods used in the literature to analyze cross-diffusion systems, namely gradient flow
theory, the boundedness-by-entropy method and the duality method are discussed re-
spectively in Section 1.3.1, Section 1.3.2 and Section 1.3.3. Remarks on the uniqueness
of weak solutions to such systems are reported in Section 1.4. Section 1.5 is dedicated
to the long time behavior of the solutions. The contributions of the present thesis to
the study of cross-diffusion systems are summarized in Section 1.6.
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1.1 General Form of Cross-diffusion Systems

Let d ∈ N∗ and let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω. We denote
by n(x) the exterior unit normal vector at x ∈ ∂Ω. Let T > 0 denote a final time. We
are interested in the dynamics of a multicomponent systems evolving in the domain Ω
during the time [0, T ]. We consider two different cases, which we present separately, but
which lead to similar PDE systems, namely the non-volume filling case and the volume
filling case.

Non-volume Filling Case:

Let n ∈ N∗ denote the number of components in the system and let u1, · · · , un be real-
valued functions defined on [0, T ] × Ω such that for all 1 ≤ i ≤ n, t ∈ [0, T ], x ∈ Ω,
ui(t, x) describes the local concentration of the species i at time t and point x. In the
sequel, we denote by u := (u1, · · · , un)T the vector-valued function defined on [0, T ]×Ω.
We assume that the evolution of u is ruled by a system of PDEs of the form

∂tu− div (A(u)∇u) = f(u), for (t, x) ∈ [0, T ]× Ω, (1.1)

u(0, ·) = u0 in Ω, (1.2)

(A(u)∇u) · n = 0, on [0, T ]× ∂Ω, (1.3)

where A : Rn 7→ Rn×n is a matrix-valued application, f : Rn → Rn is a vector-valued
application and the initial condition u0 : Ω→ Rn is a sufficiently smooth vector-valued
function. A system of the form (1.1)-(1.2)-(1.3) is called hereafter a cross-diffusion
system. The application A (respectively f) is called the diffusion matrix (respectively
the reaction term). The boundary condition (1.3) is a no-flux boundary condition whose
justification stems from the fact the system is assumed to be isolated.

For all t ∈ [0, T ], x ∈ Ω and 1 ≤ i ≤ n, ui(t, x) represents the local concentration
of the ith species, it is naturally expected to be non-negative. Thus, the values of u are
expected to lie in Dnon−vf where

Dnon−vf := {z = (z1, · · · , zn), zi > 0, 1 ≤ i ≤ n} = (R∗+)n. (1.4)

Volume Filling Case:

In some applications, the quantities of interest may be the volume fractions of the
different components of the system. We refer to this situation as a volume-filling case.
We assume here that the system is composed on n + 1 different species and denote
respectively by u0(t, x), · · · , un(t, x) their local volume fractions at time t ∈ [0, T ] and
point x ∈ Ω. The evolution of u0, · · · , un can be modeled by a set of PDEs of the
following form : for all 0 ≤ i ≤ n,

∂tui − div




n∑

j=0

Gij(u0, · · · , un)∇uj


 = gi(u0, · · · , un), (1.5)
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where for all 0 ≤ i ≤ n, gi : Rn+1 → R and for all 0 ≤ j ≤ n, Gij : Rn+1 → R, along
with appropriate initial and no-flux boundary conditions.

As u0, · · · , un represent the volume fractions of the different species, it is naturally
expected that they satisfy the following constraints

∀0 ≤ i ≤ n, 0 ≤ ui(t, x) ≤ 1 and
n∑

i=0

ui(t, x) = 1 ∀(t, x) ∈ (0, T )× Ω, (1.6)

In this case, the following hods

u0(t, x) = 1−
n∑

i=1

ui(t, x), for almost all (t, x) ∈ [0, T ]× Ω.

Thus, the evolution of the system with unknown u := (u1, · · · , un)T reads under the
form (1.1)-(1.2)-(1.3) where for all u ∈ Rn, the diffusion matrix A(u) = (Aij(u))1≤i,j≤n
and the reaction term f(u) = (fi(u))1≤i≤n are defined as follows : for all 1 ≤ i, j ≤ n,

Aij(u) = Gi,j

(
1−

n∑

r=1

ur, u1, · · · , un
)
−Gi,0

(
1−

n∑

r=1

ur, u1, · · · , un
)
,

fi(u) = gi

(
1−

n∑

r=1

ur, u1, · · · , un
)
.

It is thus expected that the values of u lie in the set Dvf where

Dvf :=

{
(z1, · · · , zn) ∈ (R∗+)n,

n∑

i=1

zi < 1

}
⊂ [0, 1]n. (1.7)

1.1.1 Examples of Cross-diffusion Systems

Let us give some examples of cross-diffusion systems stemming from several applications.
Unless it is specified, all the systems presented in this section are written under the form
(1.1)-(1.2)-(1.3). The difference between the models lies mainly in the expression of the
diffusion matrix and the reaction term.

Example from population dynamics (non volume filling case)

The most standard example of cross-diffusion systems was introduced by Shigesada,
Kawasaki and Teramoto [SKT79] to study the spatial segregation of two interacting
biological species. In this model of non volume filling type, n = 2 and the evolution
of u = (u1, u2)T is given by the system (1.1)-(1.2)-(1.3) where the diffusion matrix and
the reaction term are respectively given by

A :




Dnon−vf → R2×2

(u1, u2) 7→
(
d1 + 2k11u1 + k12u2 k12u1

k21u1 d2 + k21u1 + 2k22u2

)
(1.8)

and

f :




Dnon−vf → R2

(u1, u2) 7→
(
β1 − b11u1 − b12u2

β2 − b21u1 − b22u2

)
, (1.9)
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where for every 1 ≤ i, j ≤ 2, di, kij , βj and bij are non-negative parameters. For a
given u ∈ Dnon−vf , the diffusion matrix A(u) is in general neither positive definite
nor symmetric. Existence of non-negative global-in-time solutions to the SKT system
remained an open question for many years. Nevertheless, several works investigated
the existence of a solution under suitable assumptions on the diffusion matrix and the
reaction terms.

We cite for example the article [Kim84] where the existence of global-in-time non-
negative weak solutions was shown under the assumption k11 = k22 = 0 and k12 =
k21 = k > 0 and where the initial condition was assumed to satisfy ‖u0‖H1 ≤ M for
some fixed M > 0. Another assumption k21 = 0 was made in [DT15] and allowed to
show existence of global-in-time non-negative weak solutions with initial data satisfying
u0
i ≥ 0, for i = 1, 2 and u0

1 ∈ Lp(Ω) for some p > 1 and u0
2 ∈ L∞(Ω) ∩ H1+p/d(Ω).

When the cross-diffusion coefficients satisfy k12 < 8k11, k21 < 8k22, k12 < 8k21, then
the matrix A(u) is positive semi-definite for any u ∈ Dnon−vf . This latter case was
studied in [Yag93] where the existence and uniqueness of non-negative global-in-time
weak solutions were proved for initial data satisfying u0 ∈ H1+ε(Ω) with ε > 0. Using a
suitable change of variables (entropy variables), Chen and Jüngel showed in [CJ04, CJ06]
a global-in-time existence result for two-components SKT systems under the assumption
that kij > 0 for 1 ≤ i, j ≤ 2. The initial condition was assumed to lie in an Orlicz space
(see the appendix of [CJ04] for a rigorous a definition of the considered Orlicz space)
which corresponds to a bounded entropy initial condition.

Several generalizations of the SKT system have been introduced [ZJ15, Lep17] bring-
ing more difficulties in the existence analysis.

Example From Medical Biology (volume filling case)

In the article [JB02], the authors derived a one-dimensional continuous mechanical
model for the growth of symmetric avascular tumors. This model describes the evolution
of volume fractions of the tumor cells u1, the extracellular matrix u2 and the water
phases u3 = 1 − u2 − u1. The model reads under the form (1.1)-(1.2)-(1.3) where the
diffusion matrix and the reaction term are given by

A :




Dvf → R2×2

(u1, u2) 7→
(

2u1(1− u1)− βθ2u1u
2
2 −2βu1u2(1 + θu1)

−2u1u2 + βθu2
2(1− u2) 2βu2(1− u2)(1 + θu1)

)
(1.10)

and

f :




Dvf → R2

(u1, u2) 7→
(
α1u1(1− u1 − u2)− α2u1

α3u1u2(1− u1 − u2)

)
, (1.11)

where β, θ > 0 are some positive parameters. The solutions to this system, called
the Jackson Byrne tumor growth model, are assumed to satisfy the volume filling con-
straints (1.6). Yet, proving the existence of a global weak solution satisfying these
constraints is not an easy task since the diffusion matrix is in general not positive def-
inite and no maximum/minimum principle applies. The model has nevertheless been
studied in [JS12] where existence of global-in-time bounded weak solutions satisfying
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the volume filling constrains (1.6) were shown under the assumption that 0 ≤ θ ≤ 4/
√
β

and with an initial condition u0 ∈ L1(Ω) satisfying the constraints (1.6).

Example from Physics (volume filling case)

Developed independently by James Clerk Maxwell [Max66] for dilute gases and Josef
Stefan [Ste71] for fluids, the Stefan-Maxwell equations model the diffusive transport of
multicomponent systems such as a mixture of gases. This model is in particular able
to predict the experimental results of Duncan and Toor [DT62] on the uphill diffusion
phenomena. The Stefan-Maxwell equations for u0, · · · , un are given by

∂tui + div Ji = f(ui), ∇ui = −
∑

i 6=j

ujJi − uiJj
kij

, for 0 = 1, · · · , n. (1.12)

where kij = kji > 0 are the cross-diffusion coefficients between components i and j
and where

∑n
i=0 ui = 1. The system is usually supposed to be physically isolated,

thus the reaction term is f = 0. Equations (1.12) can be rewritten under the general
from (1.1)-(1.2)-(1.3). For instance, the diffusion matrix in the case n = 2 is given by

A :




Dvf → R2×2

(u1, u2) 7→ 1

a(u)

(
k22 + (k11 − k22)u1 (k11 − k12)u1

(k11 − k22)u2 k12 + (k11 − k12)u2

)
(1.13)

with a(u) = k12k22(1−u1−u2) +k11(k12u1 +k22u2). Also, in this system, the diffusion
matrix is in general neither symmetric nor positive definite. Thus, it is not obvious to
derive suitable a priori bounds for the solutions.

Giovangigli proved in [Gio12] the existence and uniqueness of global-in-time bounded
smooth solutions but only when the initial datum u0 is sufficiently close to the constant
equilibrium state u∞: when ‖u0 − u∞‖H1(Ω) is sufficiently small. Some results on the
existence and uniqueness of local-in-time classical solutions (in the Lp sense) are given
in [Bot11, HMPW17] for more general initial condition u0 ∈ H2−2/p, p > (d + 2)/2
satisfying the volume filling constraints (1.6). A three components Stefan-Maxwell
system was considered in [BGS12] where it was assumed that the diffusion coefficients
are equal, reducing the system to a heat equation for the first component u1 and an
advection-diffusion equation for the second one u2. In this (simple) situation, existence
and uniqueness of global-in-time classical solutions were proved. These solutions were
moreover shown to satisfy the volume filling constraints (1.6) and the mass conservation
property ‖u(t, ·)‖L1(Ω) = ‖u0‖L1(Ω) for t ∈ [0, T ]. Based on entropy methods, the first
global-in-time existence result of bounded weak solutions (without strong assumptions)
was proved in [JS13] for a multi-component Stefan-Maxwell system with general initial
condition (measurable functions) satisfying the volume filling constraints (1.6).

Example from Chemistry (volume-filling case)

Let us assume that we are interested in the dynamics of the local concentrations of
different chemical species evolving in a cristalline lattice. A model for such a phenomena
can be derived from the formal hydrodynamic limit of a stochastic lattice hopping model
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(see the appendix of Chapter ??) resulting in a cross-diffusion system of the form (1.1)-
(1.2)-(1.3) with zero reaction term. In the case n = 2, the diffusion matrix is given
by

A :




Dvf → R2×2

(u1, u2) 7→
(

(k12 − k10)u2 + k10 −(k12 − k10)u1

−(k21 − k20)u2 (k21 − k20)u1 + k20

)
(1.14)

where kij > 0 for all 0 ≤ i 6= j ≤ 2. The global-in-time existence of bounded weak
solutions to this system is proved in [JZ14] for n = 2 and generalized in [BE16] for
systems with an arbitrary number n ≥ 2 of components with initial condition u0 ∈
L1(Ω) satisfying the volume filling constraints (1.6).

1.2 Limits of Amann’s Theory

In this section, we briefly present and comment the main challenges raising from the
mathematical analysis of cross-diffusion systems of the form (1.1)-(1.2)-(1.3). Some
results that are reported in this section can also be found in [Lep17]. Let us first give
some definitions that are useful in our context.

Let n ∈ N∗ and let A ∈ Rn×n.

Definition 1.1 (Normal ellipticity). The matrix A is said to be elliptic if the determi-
nant of its symmetric part is positive:

∣∣∣∣
1

2
(A+AT )

∣∣∣∣ > 0.

The matrix A is said to be normally elliptic if its eigenvalues have positive real part:

σ(A) ⊂ {z ∈ C, Re(z) > 0}

where σ(A) denotes the spectrum of A.

In the sequel, let D denote the domain where the solutions of the considered systems
are assumed to lie. In the non volume filling case D = Dnon−vf and in the volume filling
case D = Dvf .

Definition 1.2 (Normal parabolicity). A system of the form (1.1) is said to be parabolic
if its diffusion matrix A is elliptic:

∀u ∈ D,
∣∣∣∣
1

2
(A(u) +AT (u))

∣∣∣∣ > 0

and said to be normally parabolic if its diffusion matrix A is normally elliptic:

∀u ∈ D, σ(A(u)) ⊂ {z ∈ C, r(z) > 0}.

The analysis of cross-diffusion systems is a challenging task from a mathematical
point of view [LPR12, Ali79, Kue96, Red89, CJ04, CJ06, DFR08, Jue15a, ZJ15, GR10,
Pie10, JS13, Lep17] for the following reasons:
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• The equations are strongly nonlinearly coupled. As a consequence, standard tools
such as the maximum/minimum principle do not apply in general. Besides, there is
no regularity theory as in the scalar case. Nice counterexamples are given in [SJ95]:
there exist Hölder continuous solutions to certain cross-diffusion systems which are
not bounded, and there exist bounded weak solutions which develop singularities
in finite time.

• The diffusion matrix is in general not elliptic and may be degenerate. Thus, even
the local-in-time existence of solutions is not guaranteed. Consider for instance,
the two-species SKT system (1.8) with d1 = d2 = 1 and k11 = k22 = 0 and
k12 = k21 = k and consider u1, u2 ≥ 0. The determinant of the symmetric part of
A(u) given by

∣∣∣∣
1

2
(A+AT )

∣∣∣∣ = (1 + ku1)(1 + ku2)− k2

4
(u1 + u2)2

may be negative (e.g. u1 = 0, u2 = 1 and k = 5) which means that A(u) is not
elliptic. One can easily check that the SKT diffusion matrix (1.8) satisfies

∀u ∈ D, Tr(A(u)) > 0 and |A(u)| > 0

which fulfills the condition of Definition 1.2. The same verification can be made
for the tumor growth and the Stefan-Maxwell models [Jue15b]. This normal
parabolicity property is exploited in Amann’s works [Ama88, A+90] to prove the
existence and uniqueness of local-in-time classical solutions. Yet, the existence of
global-in-time solutions still represents a challenge.

• The solution u models concentrations, mass fractions, densities,... thus upper
and/or lower bounds must be shown to be satisfied. But, as already mentioned,
the standard tools as maximum/minimum principle do not apply in general.

Several attempts have been proposed to overcome these difficulties and prove global-in-
time existence.

Amann developed a theory of parabolic systems in [Ama88, A+90, Ama89] where
he used the normal parabolicity property to prove existence of local-in-time classical
solutions for initial conditions in W 1,p. He also showed that the existence of global-in-
time solutions is reduced to deriving suitable W 1,p bounds for the local solutions. In
particular, the following alternative holds : either the W 1,p norm of the local-in-time
solutions explodes in finite time, or the global-in-time solutions exist. In several works
on the SKT system, the global-in-time existence is obtained under assumptions on the
cross-diffusion coefficients (kij)1≤i,j≤n. A typical example is to consider lower or upper
triangular diffusion matrices. This gives raise to so-called triangular systems. This kind
of approach is adpoted for instance in [CLY04, Deu87, HNP15, Kim84, LW15, LZ05,
VT08, Wan05].

The question of regularity of the solutions is also a difficult problem. As remarked
in [SJ95, Dun00] and unlike the scalar case, one cannot expect in general that bounded
weak solutions to cross-diffusion systems are Hölder continuous everywhere. For some
particular systems with smooth diffusion matrices, partial regularity results were es-
tablished in [GS82]. The everywhere Hölder continuity was investigated in [JS98] for
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only low dimensional systems d ≤ 2 and in [Wie92] for an arbitrary space dimension
d ∈ N∗ but with rather restrictive structural conditions. The everywhere regularity
of the weak solutions to possibly degenerate systems of the form (1.1)-(1.2)-(1.3) was
investigated in [LN06]. Sufficient conditions for the everywhere Hölder continuity of the
solutions are given for arbitrary space dimension under several structural assumptions
of the diffusion matrix. We refer the reader to [LN06] for the details of these assump-
tions. Roughly speaking, the strategy of the proof consists in introducing for each weak
solution u : (0, T )× Ω→ Rn a set

Σ(u) :=

{
(t, x) ∈ (0, T )× Ω : liminf

R→0

¨
QR(t,x)

|u(τ, y)− u(t, x)|2dydτ > 0

}

with
u(t, x) =

1

|QR(t, x)|

¨
QR(t,x)

u(τ, y)dydτ.

where QR(t, x) = (t − R2, t) × BR(x) with BR(x) being the ball centered at x with
radius R > 0 and then proving that the d−dimensional Hausdorff measure of the set
Σ(u) is zero for every solution u. Roughly speaking, the set Σ(u) contains points
(t, x) ∈ (0, T ) × Ω where the spread of the solution u is positive for arbitrary small
neighborhood of (t, x) meaning that the solution is not continuous at that point.

1.3 Entropy Structure

It appears that several cross-diffusion systems of the from (1.1)-(1.2)-(1.3) admit an
entropy structure that can be exploited to prove existence of global-in-time bounded
weak solutions. Let us first give here a suitable definition of the notion of entropy
in our context. Let D = Dvf if the considered system is of volume filling type and
D = Dnon−vf if the considered system is of non volume filling type.

Definition 1.3 (Entropy). We call a function h : D → R an entropy density associated
to the system (1.1)-(1.2)-(1.3) if

1. h ∈ C2(D;R),

2. h is convex on D,

3. the derivative Dh : D → Rn and the Hessian D2h : D → Rn×n are well defined
and invertible,

4. the matrix D2h(u)A(u) is positive semidefinite for every u ∈ D.

In this case, we define the entropy functional E of the system as follows

E :

{
L∞((0, T )× Ω;D) → R

u 7→
´

Ω h(u)dx
(1.15)

and we introduce the entropy variables w1, · · · , wn as follows

(w1, · · · , wn) = w := Dh(u). (1.16)
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If there exists an entropy functional in the sense of Definition 1.3, then the system under
consideration can be formally rewritten with a gradient flow structure of the form

∂tu− div (B(w)∇w) = f(u), t > 0, u(0, ·) = u0 in Ω (1.17)

where the matrix B : Rn 7→ Rn×n is called the mobility matrix of the system and is
defined for every w ∈ Rn as B(w) = A(u(w))(D2h)−1(u(w)) with, by definition of the
entropy variables, u(w) = Dh−1(w). The terminology "gradient flow" will be justified
in Section 1.3.1.

Systems admitting such a formal gradient flow formulation are said to have an
entropy structure. We will see in the next sections how this property can be exploited
to prove the existence of global-in-time weak solutions and to investigate their long time
behavior. At this point, let us make the following remark: formally, if one assumes in
addition that

∀u ∈ D, f(u) ·Dh(u) ≤ 0, (1.18)

then the entropy functional E is necessarily a Lyapunov functional for the system.
Indeed, a simple calculation using (1.18) and the positivity of the mobility matrix B
leads to the conclusion:

d

dt
E(u) = −

´
Ω∇u ·D2h(u)A(u) · ∇udx+

´
Ω f(u) ·Dh(u)dx

= −
´

Ω∇w ·B(w) · ∇wdx+
´

Ω f(u) ·Dh(u)dx

≤ 0.

(1.19)

This entropy dissipation inequality is a key-point in the analysis of most of the cross-
diffusion systems.

The reader is certainly concerned at this point with the following question: how
can one a priori determine if a system of the from (1.1)-(1.2)-(1.3) admits en entropy
structure and how to identify an associated entropy density h? This adds actually one
more item to our list of mathematical challenges. It is not obvious in the general case to
answer this question. Nevertheless, it is observed that many systems modeling tumor-
growth, gases mixtures, and ion transport with volume filling constraints (1.6) have an
entropy structure induced by the entropy density

u ∈ Dvf 7→ h(u) =

n∑

i=1

ui log ui − ui + ρu log ρu − ρu, with ρu = 1−
n∑

i=1

ui. (1.20)

Note that this function is equvalent (up to the sign minus) to the statistical Boltzmann-
Shannon notion of entropy [Jay57]. In this case, the entropic variables wi can be written
and inverted explicitly for all 1 ≤ i ≤ n:

wi(u) = log

(
ui
ρu

)
, ui(w) =

ewi

1 +
∑n

j=1 e
wj
. (1.21)

We shall now describe three different methods that exploit the entropy structure
to prove the existence of global-in-time weak solutions. Namely, gradient flow theory,
boundedness-by-entropy and duality approach.
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1.3.1 Elements of Gradient Flow Theory

Let us first mention that a short introduction to gradient flows in the general setting of
metric spaces is given in the appendix for the reader’s convenience. The results gathered
in the appendix are mainly extracted from [LAS08, San17].

In summary, one can see the notion of gradient flow as the generalization, to the
framework of metric (functional) spaces, of an ordinary differential equation of the
form u′(t) +∇E(u(t)) = 0, where E : Rn → R is a functional defined on an Euclidian
space, say Rn. Indeed, under suitable smoothness assumptions on ∇E (Lipschitz), the
associated Cauchy problem, with initial condition u(t = 0) = u0 ∈ Rn :

{
u′(t) = −∇E(u(t)) for t > 0,

u(0) = u0.
(1.22)

admits a unique solution u : [0, T ] → Rn. Moreover, this solution can be constructed
from a discretization scheme such as the implicit Euler scheme.

It is shown in [LAS08], that existence and uniqueness results can also be obtained
for Cauchy problems of type (1.22) where the Euclidian space Rn endowed with the
Euclidian distance is replaced by an arbitrary complete metric space M endowed with
a distance dM. In this case, the classical notion of gradient ∇E which can not be
rigorously defined (unlessM is a vector space) is replaced by the notion of descending
slope. When a (the) curve u ∈ [0, T ]→M solution to the gradient system (1.22) in the
metric space (M, dM) exists, we call it a (the) gradient flow associated to the functional
E .

The authors in [LAS08] proposed three different characterizations of gradient flows
in metric spaces. Namely, gradient flows in the EDE sense, gradient flows in the EVI
sense and gradient flows in the GMM sense (see Definitions 1.16, 1.17 and 1.15 of the
appendix).

Without giving details, the main point of gradient flow theory developed in [LAS08]
is that the existence and uniqueness are, in several cases, consequences of the geodesic
λ−convexity, for some λ ∈ R, of the functional E :M→ R with respect to the distance
dM.

Let us now consider a cross-diffusion system of the form (1.1)-(1.2)-(1.3) with f = 0
and assume that it admits an entropy structure given by an entropy functional E defined
as in (1.15) and thus reads under the form (1.17). It was observed [LM13, ZM15]
that such a system is a formal gradient flow. In other words, a solution u to the
problem (1.17) may be seen as a curve of steepest descent, starting from the initial
datum u0, on a manifoldM endowed with a metric dM induced by the mobility matrix
B. More precisely, consider the manifoldM defined by

M = {v ∈ H1(Ω;Rn), v(x) ∈ D, for almost all x ∈ Ω} (1.23)

and for every u, v ∈M, let us define the set of smooth parametric curves that link u to
v as follows

C(u, v) :=
{
γ ∈ C1 ([0, 1];M) , γ : [0, 1]→M, γ(0) = u, γ(1) = v

}
. (1.24)
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Following the same steps as in [LM13], one can introduce the metric induced by the
mobility matrix B using the Benamou-Brenier formulation as follows: for all u ∈ M,
let G(u) : H1(Ω;Rn)→ H1(Ω;Rn) be the linear operator defined by

∀v ∈ H1(Ω;Rn), 〈G(u)v, v〉 = inf

{ˆ
Ω
∇Ψ : B−1(u)∇ΨTdx, div Ψ = v on Ω

}
.

(1.25)
The associated optimal transport metric dM is therefore given by

dM(u, v) :=

(
inf

{ˆ 1

0
〈G(γ(t))γ′(t), γ′(t)〉dt, γ ∈ C(u, v)

})1/2

. (1.26)

The existence/uniqueness of a solution to the cross-diffusion system (1.1)-(1.2)-
(1.3) admitting such an entropy structure is then formally equivalent to the exis-
tence/uniqueness of a gradient flow u : [0, T ]→M associated to the Cauchy problem

{
u′(t) = −div (B(u)∇Dh(u)) for t > 0,

u(0) = u0.
(1.27)

defined on the metric space (M, dM). Thus, the existence/uniqueness of such a solu-
tion can be obtained, in several cases, from the geodesic λ−convexity of the entropy
functional E :M→ R with respect to the metric dM.

In the case of scalar problem (when n = 1), the geodesic λ−convexity can be char-
acterized in terms of optimal transport problems of Monge-Kantorovitch type [LAS08,
OW05, DS08]. Such a tool is no longer at hand in the case of systems (when n ≥ 2). Nev-
ertheless, other approaches based on the differential characterization of the geodesic con-
vexity property were developed in [LM13, DS08]. Several sufficient conditions (mainly
based on the EVI property) are given for E to be geodesically λ−convex for some λ ∈ R.
The analysis carried in [LM13] and later in [ZM15] allows one to handle several exam-
ples. We quote for instance the case of a volume filling type cross diffusion system of n
components proposed in [BDFPS10] that reads under the form (1.17) with a mobility
matrix given by

B(u) =




u1 − u2
1 −u1u2 · · · −u1un

−u1u2 u2 − u2
2 · · · −u2un

...
. . .

...
−u1un −u2un · · · un − u2

n


 (1.28)

driven by the entropy (1.20). The following result is obtained for this system:

Theorem 1.4 (Theorem 4.8 of [LM13]). If Ω ⊂ Rd is bounded, convex and has smooth
boundary ∂Ω. Then, the entropy functional E : M → R defined in the metric space
M (1.23) and given for every u ∈M by E(u) =

´
Ω h(u) where h is defined in (1.20) is

geodesically 0−convex with respect to the distance dM defined in (1.26).

Several other results of this type are given in [LM13] for scalar problems and weakly
coupled reaction-diffusion systems. Proposition 5.3 of [ZM15]1 gives more general con-
ditions on the mobility matrix B for the entropy E to be geodesically convex, allowing

1Proposition 5.3 of [ZM15] is a generalization to the case of systems (n ≥ 2) of the MacCann’s
condition that characterizes the λ−convexity in scalar problems [McC97].
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one to treat other systems. However, it is noticed2 that these conditions are rather
restrictive. Unfortunately, most of the cross-diffusion systems with arbitrary diffusion
coefficients do not satisfy these assumptions and the geodesic convexity property is not
clear in general. To overcome the lack of geodesic convexity, an alternative method
was proposed in [ZM15]. The idea is to use the GMM definition of gradient flows. The
authors showed in particular that the existence of weak solutions (as limits of the GMM
scheme) can still be obtained even if E is not geodesically convex.

In the sequel, we present two recent alternative approaches to show global-in-time
existence of bounded weak solutions: the duality approach and the boundedness-by-
entropy technique. Both methods make use of the entropy structure described below
and allow to handle more general cases than the ones covered by the classical results of
gradient flow theory.

1.3.2 Boundedness-by-Entropy Method

The main idea of the boundedness-by-entropy method is to use the entropy variables w
introduced in (1.21) instead of the classical variables u. To the best of my knowledge, the
first introduction of entropy variables in the context of nonlinear coupled systems was
in [KS88]. Later, the authors of [DGJ97] used the entorpy variblaes to study a coupled
parabolic system describing a multicomponent mixture of charged gases exposed to an
electrical field (modeling the electronic transport in semiconductors). The mathematical
change of variables u 7→ Dh(u) is closely motivated by the physical notion of electro-
chemical potentials. Later, this entropic transformation was used in [CJ04, CJ06] to
analyze the SKT system. The authors in [BDFPS10] employ the entropy structure for
the analysis of a continuum model describing the transport of two types of particles
u1, u2 under the influence of electrical fields V and W :

∂tu1 = div (k1(1− u2)∇u1 + k1u1∇u2 + k1u1(1− u1 − u2)∇V )
∂tu2 = div (k2(1− u1)∇u2 + k2u2∇u1 + k2u2(1− u1 − u2)∇W )

(1.29)

They proved in particular the existence and uniqueness of strong solutions when the ini-
tial data are sufficiently close (in theH2 norm sense) to the constant steady state. More-
over, they proved existence of global-in-time weak bounded solutions for general initial
data (in L2(Ω)). The method was later analyzed, extended and named boundedness-by-
entropy method by Jüngel in [Jue15a].

Let us also point out here that the alternative approach, mentioned in the previous
section, proposed in [ZM15] to overcome the lack of geodesic convexity can be seen
as a particular case of the boundedness-by-entropy method. Indeed, the proofs follow
similar arguments in both cases.

We first present in this section the main result of the boundedness-by-entropy ap-
proach and make some comments on the assumptions together with a brief sketch of the
proof. Then, we discuss some advantages of the approach through the second result of
the method which is more adapted to volume filling cases. We will lastly underline some
limitations and pathological cases where the method is not helping enough. The reader
will find further details in the original paper [Jue15a] and in Chapter 4 of [Jue15b].

2as summarized by the following sentence taken from [ZM15] : "λ−convexity in transportation
metrics is a very rare property"
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Theorem 1.5 (Theorem 2 of [Jue15a]). Let D = (a, b) ⊂ Rn be the domain defined
in (1.7) if the considered system is of volume filling type and in(1.4) if the considered
system is of non volume filling case. Let A : u ∈ D 7→ A(u) := (Aij(u))1≤i,j≤n ∈ Rn×n
be a matrix-valued functional defined on D satisfying A ∈ C0(D;Rn×n) and let f : u ∈
D 7→ (fi(u))1≤1≤n ∈ Rn satisfying f ∈ C0(D;Rn). Assume in addition that

(HE1) there exists a bounded from below convex function h ∈ C2(D,R) such that its
derivative Dh : D → Rn is invertible on Rn;

(HE2) for all 1 ≤ i ≤ n, there exist α∗i > 0 and 1 ≥ mi > 0 such that for all z =
(z1, · · · , zn)T ∈ Rn and u = (u1, · · · , un)T ∈ D,

zTD2h(u)A(u)z ≥
n∑

i=1

αi(ui)z
2
i ,

where either αi(ui) = α∗i (ui − a)mi−1 or αi(ui) = α∗i (b− ui)mi−1.

(HE3) there exists a∗ > 0 such that for all u ∈ D and 1 ≤ i, j ≤ n for which mj > 1,

|Aij(u)| ≤ a∗|αj(uj)|.

(HE4) there exists a constant Cf > 0 such that

f(u) ·Dh(u) ≤ Cf (1 + h(u)) , ∀u ∈ D.

Let u0 ∈ L1(Ω;D) so that w0 := Dh(u0) ∈ L∞(Ω;Rn). Then, there exists a weak
solution u with initial condition u0 to (1.1)-(1.2)-(1.3) such that for almost all (t, x) ∈
R∗+ × Ω, u(t, x) ∈ D with

u ∈ L2
loc((0, T );H1(Ω,Rn)) and ∂tu ∈ L2

loc((0, T ); (H1(Ω;Rn))′).

Assumptions (HE1) and (HE2) mean that the system under consideration admits
an entropy structure (in the sense of Definition 1.3). This implies in particular that
the matrix D2h(u)A(u) is positive semi-definite for any u ∈ D. Hypothesis (HE3) is
needed to derive uniform bounds for the time derivative ∂tu. Jüngel observed in [Jue15b]
that (HE3) is only technical and not restrictive. The latter assumption (HE4) used
to control the reaction term and guarantee the entropy inequality (1.19) is a common
assumption in the analysis of reaction-diffusion phenomena.

The strategy of the proof follows the following steps:

S1. A regularization term of the form ε((−∆)m + Id) is added to equation (1.17)
where ε > 0,m > d/2. This allows one in particular to work in the Sobolev space
Hm(Ω;Rn) which is embedded in L∞(Ω;Rn).

S2. The weak formulation of the regularized problem is discretized in time using an
implicit Euler scheme with a time step τ = T/N for some N ∈ N∗ and T > 0.

S3. The existence of a discrete regularized weak entropy solution wkε,τ to the following
iterative implicit scheme is proved : w0

ε,τ = Dh(u0) and for all 1 ≤ k ≤ N and
any test function ψ ∈ Hm(Ω;Rn),
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´
Ω

u(wkε,τ )− u(wk−1
ε,τ )

τ
ψ +

´
Ω∇ψB(wkε,τ )∇wkε,τ

+ε
´

Ω

(
∑
|α|=m

Dαwkε,τ ·Dαψ + wkε,τψ

)




=

ˆ
Ω
f(u(wkε,τ )) · ψ (1.30)

This is done in two steps: First, equation (1.30) is linearized, i.e. the term B(wkε,τ )
is replaced by B(g) for some g ∈ Hm(Ω;Rn). The Lax-Millgram lemma is then
sufficient to obtain the existence of a unique solution wkε,τ (g) to the linearized
weak problem. Second, an operator S : Hm(Ω;Rn) → Hm(Ω;Rn) mapping any
function g to the solution wkε,τ (g) is introduced. The operator S is shown to satisfy
the assumptions of the Leray-Shauder fixed point theorem, which allows one to
conclude the existence of the weak solution wkε,τ to the original problem (1.30).

S4. Let wε,τ denote the piecewise constant-in-time interpolation of the sequence
(wkε,τ )1≤k≤N . Suitable uniform bounds for the weak solutions u(wε,τ ) are derived
using the assumptions (HE2),(HE3) and (HE4). Typically, the two following
quantities are controlled uniformly in τ and ε:

‖∇u(wε,τ )‖L2((0,T ),L2(Ω;Rn)) and ‖τ−1 (u(wε,τ )− u(wε,τ )) ‖L2((0,T ),(Hm(Ω;Rn))′)

S5. The final step consists in passing to the limit τ, ε→ 0. The main tool to perform
this limit is a version of the Aubin-Lions lemma proposed in [DJ12].

Remark 1.6. Burger and co-authors adopted another strategy in [BDFPS10]. The
key ingredients are basically the same : regularization, discretization, uniform bounds
using the entropy dissipation property and passing to the limit. The main difference lies
in the discretization step. Indeed, Burger and coauthors left the system continuous in
time and considered space Galerkin discretization instead. This reduces the problem to
proving existence of a solution to a system of ordinary differential equations.

The boundedness-by-entropy method has been successfully used in several works.
In his original paper [Jue15a], Jüngel discussed the applicability of the technique to
several examples. We mention here for instance the tumor growth model (1.10) with
β = θ = 1 which possesses an entropy structure with h defined in (1.20). Moreover, in
this case, assumptions (HE1)-(HE2)-(HE3) are automatically satisfied. Indeed,

zTD2h(u)A(u)z = z1
1 + (1 + u1)z2

2 + u1z1z2

≥ 1

2
z2

1 +

(
1 + u1 −

u2
2

2

)
z2

2

≥ α1(u1)z2
1 + α2(u2)z2

2

with α1(u1) = 1/2 and α2(u2) = (1 − u2)/2. The existence is a direct corollary of
Theorem 1.5 as soon as the assumption (HE4) on the reaction term is satisfied. The
same remarks may be made for the Stefan-Maxwell system. For instance, it is verified for
the case n = 2 that assumption (HE2) is satisfied withm1 = m2 = 0. The generalization
to the case n ≥ 3 is done in [JS13]. It seems that the boundedness-by-entropy method is
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very favorable to the volume filling case. This remark has been explored deeply in [ZJ15]
where generalizations of Theorem 1.5 were proposed to cover more general systems with
diffusion matrices of the form

A(u) :=




∀1 ≤ i ≤ n, Aii(u) = ai(u)bi(u0) + uiai(u)b′i(u0) + uibi(u0)∂iai(u)

∀1 ≤ i 6= j ≤ n, Aij(u) = uiai(u)b′i(u0) + uibi(u0)∂jai(u)
(1.31)

where u = (u1, · · · , un)T and u0 = 1−∑n
i=1 ui. They showed in particular that if there

exists functions β : [0, 1] → R, γ : D → R and a real number η > 0 such that for all
1 ≤ i ≤ n,

β(s) := bi(s) > 0, for s ∈ [0, 1]
β′(s) ≥ ηβ(s), for s ∈ [0, 1]
β(0) = 0,

β ∈ C3([0, 1];R)

(1.32)

and
ai(u) = exp(∂uiγ(u)), for u ∈ D,
γ convex on D,
γ ∈ C3(D;R),

(1.33)

then the system (with zero reaction term f = 0) admits a global-in-time weak solution
u : (0, T )× Ω→ D satisfying in addition

u ∈ L∞((0, T );L∞(Ω,Rn)) and ∂tu ∈ L2((0, T ); (H1(Ω;Rn))′).

The proof of this result follows the same strategy as above with the modified entropy
density

h(u) =
n∑

i=1

ui(log ui − 1) +

ˆ u0

a
log(β(s))ds+ γ(u) + (n− 1). (1.34)

where a ∈ (0, 1] given by

a =

{
1 if β(1) ≤ 1
β−1(1) if β(1) > 1

Note that the SKT system (1.8) is a particular case of (1.31) where ai(u) = kii +
ki1u1 + ki2u2 and bi(u3) = 1 for 1 ≤ i ≤ 2. Additional progress was made in [CDA16]
for multicomponent systems of non volume filling type having diffusion matrices of the
form

Aij(u) = δijai(u) + ui∂iaj(u), ai(u) = ki0 +

n∑

r=1

kiru
m
r (1.35)

where ki0, kij ≥ 0 and m > 0. The main idea of [CDA16] is to introduce the entropy

E(u) =

ˆ
Ω

n∑

i=1

πihm(ui)

where πi > 0 are some well chosen numbers and where hm has the form

hm(z) =





z log z − z + 1 if m = 1
zm −mz
m− 1

+ 1 if s 6= 1
(1.36)
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The system admits an entropy structure (in the sense of Definition 1.3) with the func-
tional E(u) as soon as the numbers πi satisfy the detailed balance property:

πikij = πjkji, ∀1 ≤ i, j ≤ n. (1.37)

Moreover, the mobility matrix is symmetric in this case. The authors observed in partic-
ular that there is a relation between condition (1.37) and the symmetry of the mobility
matrix. This, together with a positiveness assumption on the diagonal coefficients kii
allowed to prove two global-in-time existence results: the first result concerning lin-
ear diffusion rates m = 1 and the second one treats nonlinear diffusion rates when
m > max(0, 1− d/2).

Despite the success of the method, the entropy may sometimes fail to provide the
right gradient estimates. Let us try to clarify this point through an example following
the arguments of [Lep17]. Let us consider a two species system with a diffusion matrix

u ∈ Dnon−vf 7→ A(u) =

(
k1 + a2(u2) u1a

′
2(u2)

u2a
′
1(u1) k2 + a1(u1)

)
, (1.38)

where the coefficients ki and the diffusion rates ai : R+ → R satisfy the condition

ki > 0, a′i > 0
∀(u1, u2) ∈ Dnon−vf , a1(u1)a2(u2)− u1u2a

′
1(u1)a′2(u2) ≥ 0

(1.39)

This condition ensures in particular that the diffusion matrix A is normally elliptic
and allows to show existence of local-in-time solutions. Let us introduce the functions
φ1, φ2 : R+ → R as follows

z ∈ R+ 7→ φi(z) =

ˆ z

0

ˆ x

0

a′i(y)

y
dydx

with
φ′i(z) =

ˆ z

0

a′i(y)

y
dy + C, φ′′i (z) =

a′i(z)

z
+ C

Thus, a possible choice for the entropy density h associated to the diffusion matrix (1.38)
is given by

h(u) = φ1(u1) + φ2(u2).

Introducing the entropy variables

wi = Duih(u) = φ′i(ui) =

ˆ ui

0

a′i(y)

y
dy =

ˆ ui

0
φ′′i (y)dy

allows one to write the system under the gradient flow structure

∂tu = div (B(u(w))∇w)

where the mobility matrix is explicitly given by

B(u) =




α1u1 + a2(u2)u1

a′1(u1)
u1u2

u1u2
α2u2 + a1(u1)u2

a′1(u1)
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and where the gradient of the entropy variables are

∇wi = ∇
(ˆ ui(x)

1
φ′′i (y)dy

)
= φ′′i (ui)∇ui.

The entropy dissipation term
´

Ω(∇w)TB(w)∇w involves gradient terms of the type
ˆ

Ω

a′i(ui)

ui
|∇ui|2. (1.40)

As mentioned previously in the strategy of the proof, the entropy dissipation property
is an essential ingredient to derive uniform estimates for the discrete solutions allowing
one to pass to the limit. It becomes clear that the efficiency of the method is subject to
the control of the terms (1.40) which depend on the expression of the diffusion rates ai.
This remark has been explained by Lepoutre in [Lep17]. In particular, he distinguished
between three main forms of entropy densities and reported the expression of the entropy
variables and the typical gradient terms (1.40) that need to be controlled in the L2 norm.
For the sake of completeness, we report in Table 1.1 the examples given in [Lep17].

case 1 case 2 case 3
ai(ui) ui umi with m > 0 1− exp(−ui)

φi(ui) ui(log ui − 1) + 1
um−1
i −mui +m− 1

m− 1

´ ´ a′i(y)

y
dydui

wi(ui) log ui
um−1
i − 1

m− 1

´ a′i(y)

y
dy

Gradient term
1

ui
|∇ui|2

1

um−2
i

|∇ui|2
exp(−ui)

ui
|∇ui|2

Table 1.1 – Three main cases of entropy structures reported from the literature of population
dynamics models. Case 1 corresponds to the classical SKT system (1.8) where the diffusion
rates are linear [SKT79, Kim84, Jue15a, ZJ15, JZ14, DT15, LM17]. Case 2 corresponds to the
generalized SKT system (1.38) studied in [DLMT15, LM17].

This observation shows the limits of the entropy structure to derive the suitable
gradient estimates adding one more difficulty to the list of mathematical challenges.
This difficulty is not present in several articles using the boundedness-by-entropy tech-
nique because of the logarithmic form of the entropy density (1.20). In the more general
setting such as cases 2 and 3 of Table 1.1, one needs to invoke additional tools. That
brings us to the second method based on duality estimates.

1.3.3 Duality method

The main idea of the duality method is to adapt the a priori duality estimates proved
in [PS00] in order to obtain L2 uniform bounds in addition to the entropy bounds
stemming from the entropy dissipation property. This method was mainly developed
by Desvillettes, Lepoutre, Moussa and collaborators in order to analyze generalized
SKT systems. It is therefore more adapted to the non volume filling case. Let then
D = Dnon−vf in this section where Dnon−vf is defined in (1.4).

Let us assume that system (1.1) can be written under the laplacian formulation

∂tu−∆(Q(u)) = R(u), t > 0, u(0, ·) = u0 in Ω (1.41)

41



with the boundary condition

(∇Q(u)) · n = 0 in ∂Ω (1.42)

where the diffusion term Q and the reaction term R are given respectively by

Q :

{
D → Rn+
u 7→ Q(u) = (qi(u)ui)1≤i≤n

(1.43)

R :

{
D → Rn+
u 7→ R(u) = (ri(u)ui)1≤i≤n

(1.44)

with some measurable functions qi, ri for 1 ≤ i ≤ n whose regularity will be made more
precise later in the assumptions of the existence result.

Note that all the systems of the form (1.1) cannot in general be written under the
laplacian formulation (1.41). However, this is the case for the SKT system which is
treated in [ZJ15, CDA16] with the divergence-gradient formulation (1.1) and in [LM17,
Lep17] with the laplacian formulation (1.41).

The method presented in this section is mainly based on the duality estimates shown
by Pierre and Schmitt in [PS00] for reaction diffusion systems. We give here a version
of their result that is suitable to our context.

Lemma 1.7 (Duality estimate, [PS00, LM17]). Let λ ≥ 0 and let ϕ0 : Ω → R+ be
a measurable nonnegative function and denote by ϕ0 its average on Ω. Consider an
integrable function a : (0, T ) × Ω → R satisfying a(t, x) ≥ ν > 0 for every (t, x) ∈
[0, T ]× Ω. Let ϕ be a smooth solution to the inequation

∂tϕ−∆ [aϕ] ≤ λϕ on (0, T )× Ω
ϕ(0, ·) = ϕ0 on Ω

∂x(aϕ) · n = 0 on [0, T ]× ∂Ω.
(1.45)

Then, the following estimate holds
ˆ T

0

ˆ
Ω
aϕ2 ≤ e2λT

(
‖ϕ0 − ϕ0‖(H1(Ω;R))′ + ϕ0

ˆ T

0

ˆ
Ω
a

)
(1.46)

where (H1(Ω;R))′ denotes the dual space of H1(Ω;R).

The original proof of Pierre and Schmitt is based on a dual formulation of the
problem. Nevertheless, Lepoutre suggests another proof in [Lep17] based on direct
computations: multiply equation (1.45) by aϕ and integrate first in space and then
integrate in time. This direct calculation can be discretized, which is useful in the proof
of the global-in-time existence result that will be stated later.

Roughly speaking, Lemma 1.7 tells us that the solution ϕ can be controlled if we have
suitable controls on the terms involving the function a. This property is employed in the
cross-diffusion system (1.41) as follows. For the sake of simplicity, let us (temporarily)
consider that ri = 0 for all 1 ≤ i ≤ n. Then, summing up all the equations of the
system yields to

∂tϕ−∆[aϕ] = 0, with ϕ :=
n∑

i=1

ui and a :=

∑n
i=1 qi(u)ui

ϕ
.
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Thus, in virtue of Lemma 1.7 and since ϕ ≥ 0 by construction, the following estimate
holds ˆ T

0

ˆ
Ω
aϕ2 ≤ C

(
1 +

ˆ T

0

ˆ
Ω
a

)

where the constant C is given by C := e2λT max
(
‖ϕ0 − ϕ0‖(H1(Ω,R))′ , ϕ

0
)
. The im-

portant point is that C does not depend on the solution ϕ but only on the parameters
T, λ and the initial condition ϕ0. If we assume in addition that the diffusion terms are
continuous, i.e qi ∈ C0(D) for any 1 ≤ i ≤ n, then the following control in obtained (see
the appendix of [LM17]) for the solution u = (ui)1≤i≤n to (1.41):

ˆ T

0

ˆ
Ω

(
n∑

i=1

ui

)(
n∑

i=1

qi(u)ui

)
≤ C (1.47)

where the constant C depends on Ω, T , u0, λ and the diffusion rates qi. This (formal)
estimate is a key-point in the proof of the global-in-time existence of weak solutions to
systems of the form (1.41).

Let us state here a version of the main existence result of the duality method pro-
posed in [LM17]. We comment on the assumptions and give the main arguments of the
proof right after.

Theorem 1.8 (Existence by duality approach, [LM17]). Consider a cross-diffusion
system of the form (1.41)-(1.42) and let D = Dnon−vf be the non volume filling domain
defined in (1.4). Assume that the diffusion rates qi and the reaction terms ri satisfy the
following assumptions:

(HD1) For every 1 ≤ i ≤ n,

qi ∈ C0(D;R+) ∩ C1(D;R+), ri ∈ C0(D;R).

(HD2) There exist positive constants α, λ > 0 such that for every 0 ≤ i ≤ n,

pi ≥ α, and ri ≤ λ.

(HD3) Q is a self-homeomorphism3 on D.

(HD4) There exists an entropy density h (in the sense of Definition 1.3). In addition,

(HD4)’ there exists continuous functions σi : R∗+ → R∗+ such that for every z ∈ Rn
and every u ∈ D,

ztD2h(u)∇Q(u)z ≥ ztDiag(σi(ui))z.

(HD4)” for some CR > 0 and any Z ∈ D, Dh(z) ·R(z) ≤ CR(1 + h(z)).

(HD5) The reaction term R satisfies4

R(z) = o

((
n∑

i=1

qi(z)zi

)(
n∑

i=1

zi

)
+ h(z)

)
as ‖z‖ → ∞

3A homeomorphism Q : E → F between two topological spaces E and F is a continuous bijection
with a continuous inverse. When E = F , Q is called self-homeomorphism

4All the norms being equivalent in Rn, it suffices to choose an arbitrary norm ‖ · ‖.
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Then, for any integrable initial condition u0 : Ω → D, such that h(u0) ∈ L1(Ω),
there exists a weak solution u ∈ L1([0, T ] × Ω;D) to the system (1.41)-(1.42) such
that Q(u), R(u) ∈ L1([0, T ]× Ω;D). Moreover, for every t ∈ [0, T ],

ˆ
Ω
h(u(t, ·))+

ˆ t

0

ˆ
Ω

(∇u(t, ·))T (D2h(u(t, ·))∇Q(u(t, ·)))(∇u(t, ·)) ≤ (1+e2CRT )

ˆ
Ω
h(u0)

Let us make some brief comments on the assumptions of the theorem before we give
the main ideas of the proof. First, the continuity assumption (HD1) is essential in the
proof and the result may fail if this assumption is removed. The bounds in (HD2) allow
one to invoke Lemma 1.7 and it was remarked by the authors that they probably can be
weakened. Hypothesis (HD3), which seems restrictive at a first sight, was investigated
in Section 4 of [LM17] and shown to be a consequence of the entropy structure in several
cases. The structural assumptions (HD4),(HD4)’ and (HD4)” are of the same family
as (HE2),(HE3) and (HE4) appearing in Theorem 1.5. Lastly, hypothesis (HD5) is
a technical assumption that can probably be weakened as well.

The proof of Theorem 1.8 is structured in three main steps : an implicit time
discretization is first introduced, for which existence of (discrete) solutions is shown.
Then, the entropy dissipation property and the duality a priori estimate are exploited
to derive suitable uniform bounds. Lastly, the weak solutions to the continuous system
are obtained as the limit of the discrete ones when the time step goes to zero. More
precisely, The following implicit scheme is introduced. Let N ∈ N∗ and let τ = T/N
and consider the iterative problem, for 1 ≤ k ≤ N

ukτ − uk−1
τ

τ
−∆[Q(ukτ )] = R(uk) on Ω, (1.48)

∇Q(ukτ ) · n = 0 on ∂Ω, (1.49)

with the initialization u0
τ , which is a suitably chosen approximation of the continuous

initial condition u0. The semi-discrete system (1.48)-(1.49) was studied in [DLMT15].
It is proven in Theorem 2.2 of [DLMT15] that, under the assumptions (HD1)-HD2)-
(HD3), there exists a nonnegative sequence (ukτ )1≤k≤N−1 belonging the space L∞(Ω)
solving (1.48)-(1.49). Moreover, the a priori duality estimate (1.47) is preserved in the
discrete level : there exists a constant C > 0 depdending on Ω, u0, Q, λ,N such that

N−1∑

k=0

τ

ˆ
Ω

(
n∑

i=1

ukτ,i

)(
qi(u

k)ukτ,i

)
≤ C, ∀1 ≤ i ≤ n. (1.50)

Using the convex character of the entropy density h and the assumption (HD4)” allows
to obtain a discrete version of the entropy dissipation :

ˆ
Ω

(h(ukτ )− h(uk−1
τ )) + τ

ˆ
Ω

(∇ukτ )TD2h(ukτ )∇Q(ukτ )(∇ukτ ) ≤ τC
(

1 +

ˆ
Ω
h(ukτ )

)

which, together with the assumption (HD4)’, provide suitable L2 uniform bounds. The
passing to the limit is rather technical and uses a non linear variant of the Aubin-Lions
lemma proposed in Proposition 3 of [Mou16].
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1.4 Uniqueness of Solutions

The methods presented in the previous sections do not allow one to obtain uniqueness
of solutions. Other approaches must be employed. Only few uniqueness results can be
found in the literature. To the best of my knowledge, a general uniqueness result, -or
at least a robust method of investigating uniqueness- still remains an open question.
We report in this section some particular cases where uniqueness of the global-in-time
weak solutions can be shown.

1.4.1 Fully Decoupled Systems

The easiest scenario is obviously the fully decoupled case. More precisely, we consider
here systems of the form (1.1)-(1.2)-(1.3) having diagonal diffusion matrices A(u) =
diag[ai(ui)]1≤i≤n and decoupled reaction terms f(u) = (fi(ui))1≤i≤n where ai : R→ R
and fi : R → R are smooth (enough) functions. In this case, the system is reduced to
a set of decoupled reaction diffusion scalar equations

∂tui = div(ai(ui)∇ui) + fi(ui), 1 ≤ i ≤ n. (1.51)

The analysis of such scalar equations has a much longer history. The reader may refer
for example to [Eva98, BCL99, EG02]. As already mentioned in Section 1.3, fully
decoupled cross-diffusion systems having an entropy structure may also be treated with
the gradient flow theory tools [ZM15].

1.4.2 H−1 Method

Consider an isolated (f = 0) cross-diffusion system of the form (1.1)-(1.2)-(1.3) to which
the existence of a global-in-time solution u is proved. Uniqueness of the solution can be
shown if we assume that there exists a function Ψ : Rn → Rn satisfying the monotony
property

∀w, v ∈ D, (Ψ(w)−Ψ(v)) · (w − v) ≥ 0 (1.52)

and such that for every solution u to (1.1)-(1.2)-(1.3), A(u)∇u = Ψ(u). Indeed, consider
two weak solutions u and v with the same initial data u0 and let θ ∈ L2(0, T ;H1(Ω;Rn))
be the weak solution to the Neumann Poisson problem

−∆θ = u− v on Ω,
∇θ · n = 0 on ∂Ω,

(1.53)

which is unique (up to an additive constant). Then, we formally have,

d

dt

ˆ
Ω
|∇θ|2dx = 〈∂t(−∆θ), θ〉

= 〈∂t(u− v), θ〉
= 〈div (∇Ψ(u)−∇Ψ(v)) , θ〉
= −〈∇Ψ(u)−∇Ψ(v),∇θ〉
= −〈Ψ(u)−Ψ(v),−∆θ〉
= −〈Ψ(u)−Ψ(v), u− v〉
≤ 0
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This allows to conclude that θ is constant and thus necessarily u = v. This structural
assumption is rather strong and in general not satisfied. If the cross-diffusion system
admits en entropy structure and reads under the form (1.17), then the following slightly
weaker assumption allows to obtain the uniqueness of the weak solutions using the
same arguments : assume that there exists a function Φ : Rn → Rn such that the
composition Ψ ◦ Dh satisfies the monotony property (1.52) and such that for every
entropy solution w = Dh(u) to (1.1)-(1.2)-(1.3), B(w)∇w = ∇Φ(w). Unfortunately,
even this assumption is rather restrictive in practice.

1.4.3 Gajewski Method

In the volume filling case where the diffusion matrix has the form (1.31) with assump-
tions (1.32)-(1.33) and f = 0, uniqueness can also be shown when the diffusion rates ai
are supposed to be constant and equal to one, i.e. for all 0 ≤ 0 ≤ n, ai = 1. In this
case, every component ui for 0 ≤ i ≤ n solves the equation

∂tui = div(β(u0)∇ui − ui∇β(u0)),

where β is the function coming from assumption (1.32). Summing up all the equations
for i = 1, · · · , n yields to a simple diffusion equation for the last component u0 which,
we recall that from the volume filling constraint, is given by u0 = 1−∑n

i=1 un:

∂tu0 = −∂t
(

n∑

i=1

ui

)

= −
n∑

i=1

div (β(u0)∇ui − ui∇β(u0))

= −div (−β(u0)∇u0 − (1− u0)∇β(u0))

= div (β(u0)∇u0 + (1− u0)∇β(u0))

= div (∇Ψ(u0))

where the non linear function Ψ : [0, 1]→ R is by construction defined for every z ∈ [0, 1]
by Ψ(z) =

´ z
0 β(x) + (1−x)∇β(x)dx. Moreover, It follows from assumption (1.32) that

Ψ is non decreasing on [0, 1]. Thus, the uniqueness of u0 can immediately be obtained
using the arguments of the H−1 method presented previously.

The uniqueness of the remaining solutions u1, · · · , un is shown by the E-monotonicity
method5 proposed firstly by Gajewski in [Gaj94b, Gaj94a] in the context of drift dif-
fusion models for semiconductors and then developed in [ZJ15] for volume filling cross-
diffusion systems. Briefly speaking, let η > 0 be a positive parameter and introduce a
semi-metric6 dη on the space L∞([0, T ]×Ω;Dvf) (denoted simply by L∞ to shorten the

5using the terminology of [Jue15b]
6A semi-metric is a function that satisfies the positiveness, the positive definiteness and the sym-

metry properties but not necessarily the triangular inequality.
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notation) as follows

dη :





L∞ × L∞ → R+

u, v 7→ dη(u, v) =
n∑
i=1

´
Ω

(
hη(ui) + hη(vi)− 2hη

(
ui + vi

2

))
dx

(1.54)
where hη is a regularized entropy defined also on X as follows

hη :

{
L∞ → R
u 7→ hη(u) = (u+ η) log(u+ η)− (u+ η) + 1.

(1.55)

The regularization parameter η > 0 is necessary for the term log ((ui + vi)/2) to be well
defined when the solutions ui and vi vanish. Note first that thanks to the convexity of
the entropy hη, it follows that

dη(u, v) ≥ 0, ∀u, v ∈ X.
Furthermore, using Taylor expansions and the fact that the function [0, 1] 3 z 7→ h′′η(z)
is bounded from below by 1/2 allows one to obtain the following estimate for every
1 ≤ i ≤ n,

hη(ui) + hη(vi)− 2hη

(
ui + vi

2

)
≥ 1

8
(ui − vi)2. (1.56)

Moreover, some elementary algebraic manipulations (we do not report all the details
here but the reader may refer to [ZJ15]) yields:

dη(u, v) = −4

ˆ T

0

n∑

i=1

ˆ
Ω

(
|∇√ui + η|2 + |∇√vi + η|2 − |∇

√
ui + vi + 2η|2

)
β(un+1)dxdt

+ 2

ˆ T

0

n∑

i=1

ˆ
Ω

(
ui

ui + η
− ui + vi
ui + vi + 2η

)√
β(u0)∇

√
β(u0)∇uidxdt

+ 2

ˆ T

0

n∑

i=1

ˆ
Ω

(
ui

vi + η
− ui + vi
ui + vi + 2η

)√
β(u0)∇

√
β(u0)∇vidxdt.

The first integral of the right hand side can be shown to be nonnegative thanks to the
subadditivity property of the Fischer information F (u) :=

´
Ω |∇
√
u|2 (see Lemma 9 of

[ZJ15]). Furthermore, the two remaining integrals of the right hand side tend to zero as
η goes to 0 via the dominated convergence theorem since all the terms of the integrands
are bounded. Hence, it holds that for every 1 ≤ i ≤ n,

hη(ui) + hη(vi)− 2hη

(
ui + vi

2

)
→ 0 a.e. in (0, T )× Ω. (1.57)

Finally, estimate (1.56) together with the limit (1.57) allow to infer (u1, · · · , un) =
(v1, · · · , vn) which concludes the proof of uniqueness. Details of this proof can be found
in [ZJ15]. Unfortunately, the assumption ai = 1 is rather strong and this strategy does
not seem to apply for weaker assumptions on the diffusion rates.

Let us finally mention that other non-general uniqueness results can be obtained in
some particular cases. We mention for example [Bot11, HMPW17] where the uniqueness
of local-in-time solutions to the Stefan-Maxwell system were proved. In [Gio12] and
[BDFPS10] the uniqueness of the global-in-time weak solutions is obtained for initial
condition that is sufficiently close to the constant steady states.
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1.5 Long-time Behavior

The long-time behavior of the solutions is also an important feature in the study of
cross-diffusion systems of the form (1.1)-(1.2)-(1.3). Let us assume in this section that
f = 0. The steady states of such systems are usually given by the constant profiles

u∞i =
1

|Ω|

ˆ
Ω
u0
i (x)dx, ∀1 ≤ i ≤ n. (1.58)

Neverthless, different steady states may co-exist for the same system. This phe-
nomenon is particularly observed in the (different variants of the) SKT system where
several works investigated the question [GQZQXL08, CP04, Wen13, BLMP09]. The
formation of patterns (called Turing patterns and corresponding to non-constant equi-
librium profiles) is for example theoretically studied and numerically characterized in
[BLMP09]. Additional conditions on the cross-diffusion coefficients that lead to the
existence of non-constant steady states bifurcating from the constant ones were given
in [LM14] and assessed numerically.

The authors in [BDFPS10] investigated the convergence of the solutions of the two
species ion transport model (1.29) to the constant steady states (1.58). They showed
in particular a strong L1 convergence but did not give a rate for it. Later, Jüngel and
Zamponi investigated in [ZJ15] the long-time behavior of volume filling systems having
diffusion matrices of the form (1.31) with assumptions (1.32)-(1.33) and f = 0. They
were able to prove an exponential convergence for all the species under the additional
assumptions that β′ is strictly positive and β/β′ is concave on (0, 1).

The mathematical arguments used in [BDFPS10, ZJ15, JS12] are standard argu-
ments in the asymptotic analysis of PDEs solutions. We can summarize the strategy of
the proof by the following points.

• Introduce a suitable relative entropy E(u, u∞) for the system. A suitable choice
of E for cross-diffusion systems that have logarithmic entropy density (1.20) is

E(u, u∞) = E
( u

u∞

)

and different forms may be more convenient in other cases.

• Estimate from below the entropy dissipation term by means of the relative en-
tropy.i.e. find λ > 0 such that,ˆ

Ω
∇wB(w)∇w ≥ λE(u, u∞), with λ > 0, (1.59)

which is equivalent to ˆ
Ω
∇uD2h(u)A(u)∇u ≥ λE(u, u∞).

Obtaining such estimate is subject to the assumptions made for the diffusion
matrix. For instance, when A(u) satisfies hypotheses (HE2) of Theorem 1.5 with
α∗i = mi = 1/2 then the question is reduced to prove that

n∑

i=1

ˆ
Ω
|∇√ui|2dx ≥ λ

n∑

i=1

ˆ
Ω
ui log

(
ui
u∞i

)
dx

which can be easily done via a Logarithmic Sobolev inequality [ABL00].
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• Exploiting the entropy dissipation inequality

d

dt
E(u) +

ˆ
Ω
∇wB(w)∇w ≤ 0

satisfied by the system allows to obtain

d

dt
E(u) + λE(u, u∞) ≤ 0.

Thus, the Gronwall lemma leads to the exponential convergence of the relative
entropy

E(u, u∞) ≤ E(u0, u∞) exp (−λt)

• The Csizár Kullback inequality [ABL00] allows to conclude the proof

‖u− u∞‖L1(Ω) ≤ C exp

(
−λ

2
t

)
.

1.6 Contributions of the Thesis

This section is a summary of our main contributions related to the study of cross-
diffusion systems.

A one-dimensional cross-diffusion system in a moving domain

Consider a multicomponent system composed of n+1 different species (n ≥ 2) and con-
sider functions (φ0, · · · , φn) belonging to L∞loc(R+;Rn+1

+ ), which we refer to in the sequel
as external fluxes. Let e0 > 0 and for every t ∈ R+, let e(t) := e0 +

´ t
0

∑n
i=0 φi(s) ds.

For every 0 ≤ i ≤ n, denote by ui(t, x) the volume fraction of the species i at time t
and point x ∈ (0, e(t)). Consider an initial condition given by the integrable functions
u0

0, · · ·u0
n satisfying the volume filling constraints (1.6). For every 0 ≤ i 6= j ≤ n, let

Kij = Kji > 0 denote the cross-diffusion coefficient between species i and j. Consider
the matrix A : [0, 1]n → Rn×n defined for every u ∈ Dvf by

{ ∀1 ≤ i ≤ n, Aii(u) =
∑

1≤j 6=i≤n
(Kij −Ki0)uj +Ki0,

∀1 ≤ i 6= j ≤ n, Aij(u) = −(Kij −Ki0)ui.
(1.60)

Let us lastly denote by u = (u1, · · · , nn)T and by ϕ = (φ1, · · · , φn)T . The system
that we mainly analyze in the first part of this thesis reads




e(t) = e0 +
´ t

0

∑n
i=0 φi(s) ds, for t ∈ R∗+,

∂tu− ∂x (A(u)∂xu) = 0, for t ∈ R∗+, x ∈ (0, e(t)),
(A(u)∂xu) (t, 0) = 0, for t ∈ R∗+,
(A(u)∂xu) (t, e(t)) + e′(t)u(t, e(t)) = ϕ(t), for t ∈ R∗+,
u(0, x) = u0(x), for x ∈ (0, e0).

(1.61)

Let us mention that we initially introduced this system to model the PVD process used
in the production of thin film solar cells. The function R+ 7→ e(t) models the thickness
of the thin film and the functions R+ 7→ φi(t) model the external atomic fluxes injected
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in the chamber during the process. A formal derivation of the diffusive term from a
stochastic lattice hopping model is given in Section 2.7 of Chapter 2.

For all 0 ≤ i ≤ n, t ≥ 0 and y ∈ (0, 1), we denote by vi(t, y) := ui(t, e(t)y). Thus, u
is a solution to (1.61) if and only if v is a solution to the following system:





e(t) = e0 +
´ t

0

∑n
i=0 φi(s) ds, for t ∈ R∗+,

∂tv − 1
e(t)2∂y (A(v)∂yv)− e′(t)

e(t) y∂yv = 0, for (t, y) ∈ R∗+ × (0, 1),
1
e(t)(A(v)∂yv)(t, 1) + e′(t)v(t, 1) = ϕ(t), for (t, y) ∈ R∗+ × (0, 1),
1
e(t)(A(v)∂yv)(t, 0) = 0, for (t, y) ∈ R∗+ × (0, 1)

v(0, y) = v0(y) := u0(e0y), for y ∈ (0, 1).

(1.62)

This rescaled version, which is equivalent to (1.61) allows to get rid of the moving
boundary. But, the drawback is the presence of the advection term e′(t)

e(t) y∂yv. The sys-
tem (1.62) is a cross-diffusion-advection system with mixed boundary conditions which
does not fall in the classical framework (1.1)-(1.2)-(1.3). To the best of my knowledge,
the presence of such drift terms and boundary conditions has never been considered for
strongly coupled cross-diffusion systems.

Note that in the case where the external fluxes vanish, the system perfectly falls
in the general framework (1.1)-(1.2)-(1.3) and writes in an arbitrary (smooth enough)
domain Ω ⊂ Rd, d ≥ 1, as follows





∂tu− div (A(u)∇u) = 0, for t ∈ R∗+, x ∈ Ω,
(A(u)∇u) · n = 0, for t ∈ R∗+, x ∈ ∂Ω,
u(0, x) = u0(x), for x ∈ Ω.

(1.63)

Existence

As a first preliminary result, we show that the zero-fluxes system (1.63) with the diffu-
sion matrix (1.60) satisfies the assumptions of Theorem 1.5 and admits thus global-in-
time bounded weak solutions. Then, our main result concerns one-dimensional non-zero
fluxes systems of the form (1.62) with an arbitrary diffusion matrix A. The existence
theorem is proved in Section 2.4.2 of Chapter 2.

Long-time Behavior for Constant fluxes

When the external fluxes ϕ are constant-in-time and the entropy density h associated to
the system (1.62) is of the logarithmic form (1.20), we show that the weak solutions to
the system converge (for the L1-norm) in the long-time limit to constant steady profiles
at a rate inversely proportional to the square root of time. This asymptotic result is
proved in Section 2.4.3 of Chapter 2.

Optimization of the external fluxes

Our initial motivation for studying system (1.61) is the control of the external atomic
fluxes injected during a PVD process in order to achieve a certain thickness and cer-
tain final concentration profiles. To this aim, we formulate the following optimization
problem:
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Let T > 0 denote the time duration of the process. Moreover, let F > 0 and
denote by Ξ :=

{
Φ ∈ L∞((0, T );Rn+1

+ ), ‖Φ‖L∞ ≤ F
}
the set of admissible external

fluxes profiles. For each profile Φ := (φ0, · · · , φn) ∈ Ξ, denote by eΦ : t ∈ [0, T ] 7→
e0 +

´ t
0

∑n
i=0 φi(s) ds the time-dependent thickness of the film, and by vΦ a solution

to (1.62) associated with Φ. Let eopt > e0 and vopt ∈ L2((0, 1);D) denote respectively
the target thickness and the target final concentration profiles for the different chemical
species and consider the cost function J : Ξ→ R defined by

∀Φ ∈ Ξ, J (Φ) := |eΦ(T )− eopt|2 + ‖vΦ(T, ·)− vopt‖2L2(0,1). (1.64)

The optimization problem of interest reads

Φ∗ ∈ argmin
Φ∈Ξ

J (Φ). (1.65)

If we assume that for any Φ ∈ Ξ there exists a unique global weak solution vΦ to
system (1.62), then J is well-defined and there exists a minimizer Φ∗ ∈ Ξ to (1.65).
The proof of this result is detailed in Section 2.4.4 of Chapter 2.

Numerical Results

From a numerical point of view, we propose a fully implicit unconditionally stable
scheme for the discretization of the system (1.62) and an iterative procedure based
on an adjoint formulation associated to the discretization scheme for the optimization
problem.

As part of the collaboration work with IRDEP lab, we also propose a few practical
improvements for the model (1.61) taking into account the temperature evolution of
the system and the surface absorption rates of the different chemical species. Then, we
calibrate the adapted model on experimental measures. Details of this work along with
some numerical results are presented in Chapter 3.
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1.7 Appendix: Brief Introduction to Gradient Flows

We give in this appendix a very short introduction to the theory of gradient flows in
metric spaces. For the reader’s convenience, we first recall in Section 1.7.1 some basic
notions of metric spaces that are essential to the remaining sections. We present in
Section 1.7.2 the well-known case of Euclidian spaces. Then, we report in 1.7.3 three
characterizations for gradient flows in metric spaces generalizing the properties satisfied
in the Euclidian case. We mention that all the notions an results gathered in this
appendix are extracted from [LAS08, San17].

1.7.1 Basic Notions in Metric Spaces

Let X be metric space endowed with a distance d. A curve γ : [0, 1]→ X is a continuous
function defined on [0, 1] and valued in the considered metric space (X, d). Note that
the derivative of a curve γ′(t) can be defined only if X is a vector space. Nevertheless,
one can define the modulus |γ′|(t) instead .

Definition 1.9 (Metric derivative, [LAS08]-1.1). The metric derivative of a curve γ :
[0, 1]→ X at time t, is denoted by |γ′|(t) and defined as

|γ′|(t) := lim
h→0

d(γ(t+ h), γ(t))

|h| ,

provided this limit exists.

Definition 1.10 (Absolute continuous curve [LAS08]-1.1). A curve γ : [0, 1] → X is
said to be absolutely continuous whenever there exists a function g ∈ L1([0, 1];R) such
that d(γ(t0), γ(t1)) ≤

´ t1
t0
g(s)ds for every 0 ≤ t0 < t1 ≤ 1. The set of absolutely

continuous curves defined on [0, 1] and valued in X is denoted by AC(X).

The length of an absolute continuous curve γ is denoted by Length(γ) and defined as
follows:

Definition 1.11 (Length of a curve [LAS08]-1.1). For a curve γ : [0, 1]→ X,

Length(γ) := sup

{
n−1∑

k=0

d(γ(tk), γ(tk+1)) : n ≥ 1, 0 = t0 < t1 < · · · < tn = 1

}
.

Some notions involving geodesics are gathered in the following definition:

Definition 1.12 (Geodesics [LAS08]-1.1). A curve γ : [0, 1] → X is said to be a
geodesic between y0 and y1 ∈ X if γ(0) = y0, γ(1) = y1 and

Length(γ) = min{Length(ω) : ω(0) = y0, ω(1) = y1}.
A space (X, d) is said to be a length space if for every y and z we have

d(y, z) = inf{Length(γ) : γ ∈ AC(X), γ(0) = y, γ(1) = z}.
A space (X, d) is said to be a geodesic space if for every y and z we have

d(y, z) = min{Length(γ) : γ ∈ AC(X), γ(0) = y, γ(1) = z},
In a length space, a curve γ : [0, 1] → X is said to be a constant-speed geodesic

between γ(0) and γ(1) ∈ X if it satisfies

d(γ(t), γ(s)) =
|t− s|
t1 − t0

d(γ(t0), γ(t1)) for all t, s ∈ [t0, t1].
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1.7.2 Gradient flows in Euclidean spaces

Let n ∈ N∗ and let us consider the Euclidean space Rn endowed with the standard
Euclidian metric. Let E : Rn → R be a differentiable functional defined on Rn and let
u0 ∈ Rn and T > 0. We consider the following Cauchy problem

{
u′(t) = −∇E(u(t)) for t > 0,

u(0) = u0.
(1.66)

In virtue of the Cauchy Lipschitz theorem, the classical Cauchy problem (1.66) admits
a unique solution if ∇F is Lipschitz continuous. A definition of a gradient flow in this
case is simply given by

Definition 1.13 (Gradient flow as solution of an ODE). We call a (the) gradient flow
associated to E, a (the) solution to the Cauchy problem (1.66). In other words, it is the
curve u : [0, T ] → Rn starting at time t = 0 from a point u0, which moves along the
steepest descent direction.

Let us now relax the differentiability assumption and replace the classical gradient
∇E by the sub-differtiential of E denoted ∂E and defined as follows: for every y ∈ Rn,

∂E(y) := {p ∈ Rn : E(z) ≥ E(y) + p · (z − y) for all z ∈ Rn}. (1.67)

Consider, instead of the classical Cauchy problem (1.66), the following differential in-
clusion: search for an absolutely continuous curve u : [0, T ]→ Rn such that

{
u′(t) ∈ −∂E(u(t)) for a.e. t > 0,

u(0) = u0,
(1.68)

In this case, existence and uniqueness of a solution to (1.68) can be shown under con-
vexity assumptions on F . For instance, when E is supposed to be convex. Indeed, if
we consider two solutions y1 and y2 of (1.68), it suffices to differentiate the quantity
1
2 |y1(t)− y2(t)|2 with respect to t and use the convexity of E to obtain |y1(t)− y2(t)| ≤
|y1(0)− y2(0)| for every time t ∈ [0, T ] which implies in particular the uniqueness of the
solution [San17]. A second, more general case is when E is assumed to be λ-convex for
some λ ∈ R. We recall that E is said to be λ-convex if the function Rn 3 y 7→ E(y)−λ

2 |y|2
is convex. Also in this case and using the same arguments, one can deduce uniqueness
of the solution to (1.68). [San17]. Then, we can immediately extend the Definition 1.13
of gradient flows to the differential inclusion (1.68).

Let us now present (at a formal level) three properties satisfied by gradient flows in
the sense of Definition 1.13. The reader may refer to [San17, LAS08] for rigorous justifi-
cation of the calculations. The interest of these properties is that they involve quantities
that have counterparts in metric spaces. The generalization of these properties serves
as characterizations of the notion of gradient flows in metric spaces.

Minimizing Movement

Let us fix a small time step τ > 0 and look for a sequence (uτk)k∈N∗ defined through the
iterative Minimizing Movement scheme:

uτk+1 ∈ argminu∈Rn

[
E(u) +

|u− uτk|2
2τ

]
. (1.69)
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It results, in particular, from the first optimality condition that for every k ∈ N,

uτk+1 ∈ argmin

[
E(u) +

|u− uτk|2
2τ

]
⇒ ∇E(uτk+1) = −u

τ
k+1 − uτk

τ
,

which is equivalent to discretize the Cauchy problem (1.66) using an Euler scheme.
Thus, one can interpret the sequence (uτk)k∈N∗ as the values of the curve u(t) at the
discrete times t = 0, τ, 2τ, . . . , kτ, . . . , T . This gives a constructive way to obtain the
gradient flow u. Moreover, in this case, even weaker assumptions of E allow to show
the existence of solutions for small enough τ . It suffices for example to suppose that E
is lower semi-continuous and is lower bounded : for every y ∈ Rn, E(y) ≥ C1 − C2|y|2
for some C1, C2 ∈ R. See [San17].

Energy Dissipation Equality

Let E : Rn → R be a differentiable functional defined on Rn and let u : [0, T ]→ Rn be
a differentiable curve. For every t ∈ [0, T ], we have d

dtE(u(t)) = u′(t)∇F (u(t)). Thus,
for any 0 ≤ s < t ≤ T , the following holds 7

E(u(s))− E(u(t)) = − (E(u(t))− E(u(s)))

=

ˆ t

s
−∇E(u(r)) · u′(r) dr

≤
ˆ t

s
|∇E(u(r))||u′(r)| dr

≤
ˆ t

s

(
1

2
|u′(r)|2 +

1

2
|∇E(u(r))|2

)
dr.

Note that the first inequality is an equality if and only if there exists α < 0 such that
u′(r) = −α∇E(u(r)) for almost every r, and the second inequality is an equality if and
only if |∇E(u(r))| = |u′(r)| for almost every r. Consequently, when u is a solution to
the Cauchy problem (1.66), the following condition, called EDE (Energy Dissipation
Equality), is satisfied.

E(u(s))− E(u(t)) ≤
ˆ t

s

(
1

2
|u′(r)|2 +

1

2
|∇E(u(r))|2

)
dr, ∀0 ≤ s < t ≤ T. (1.70)

Evolution Variational Inequality

Let E : Rn → R be a functional defined on Rn (not necessarily differentiable) and let
u : [0, T ] → Rn be differentiable curve. Let λ ∈ R and assume that E is λ-convex. In
the one hand, for any y ∈ Rn, from the definition of the sub-differential of E(y), the
following holds for every p ∈ ∂E(y),

E(z) ≥ E(y) +
λ

2
|y − z|2 + p · (z − y) for all z ∈ Rn,

which implies

p · (z − y) ≤ E(z)− E(y)− λ

2
|y − z|2 for all z ∈ Rn. (1.71)

7Young inequality is used in the last line : 2ab ≤ a2 + b2, for any a, b ∈ R+ which is an equality if
a = b.
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In the other hand, the following holds for any curve u(t) and any vector z ∈ Rn,

d

dt

1

2
|u(t)− z|2 = (u′(t)) · (u(t)− z) = (z − u(t)) · (−u′(t)). (1.72)

As a result, if u is a solution to the differential inclusion Cauchy problem (1.68), then
(1.71) and (1.72) imply the following property, called Evolution Variational Inequality,

d

dt

1

2
|u(t)− z|2 ≤ E(z)− E(u(t))− λ

2
|u(t)− z|2, ∀z ∈ Rn (1.73)

1.7.3 Gradient Flows in Metric Spaces

Let (X, d) be a metric space endowed with a distance d. Let us consider a functional
F : X → R∪{+∞} defined on X and a point u0 ∈ X. We would like to give a suitable
sense to the following formal Cauchy problem

{
u′(t) = −∇E(u(t)) for t > 0,

u(0) = u0.
(1.74)

whose solution u : [0, T ]→ X is a curve valued in the metric space X. Note first, that
unless X is a vector space (which is not assumed to be true in general) the classical
notion of the gradient ∇E must be adapted. We call upper gradient every function
g : X → R such that, for every Lipschitz curve u : [0, 1]→ R, we have

|E(u(0))− E(u(1))| ≤
ˆ 1

0
g(u(t))|u′|(t)dt.

A suitable choice of the upper gradient which is adapted to lower semi-continuous
functionals is the descending slope8 proposed in [LAS08, San17] and abusively denoted
by ∇E :

∇E(u) := lim sup
z→u

[E(u)− E(z)]+
d(u, z)

(1.75)

Let us now give a suitable generalization to the notion of λ−convexity in order to
be able to reproduce the arguments of the Euclidian case. The appropriate notion in
metric spaces is the geodesic convexity which can only be defined in a geodesic metric
spaces. On such a space, we have the following definition:

Definition 1.14 (Geodesic convexity [LM13]). Let λ ∈ R. A functional E : X →
R∪{+∞} is said to be geodesically λ-convex with respect to the metric d if an only if :
for every geodesic γ : [t0, t1]→ X with constant speed and every θ ∈ [0, 1], the following
holds

E(γ((1− θ)t0 + θt1)) ≤ (1− θ)E(γ(t0)) + θE(γ(t1))− λθ(1− θ)
2

d2(t0, t1). (1.76)

where 0 ≤ t0 < t1 ≤ T .
8Other choices are possible if we assume more regularity on E . For instance, if the functional E is

assumed to be Lipschitz continuous, then a possible choice fo the upper gradient is the local Lipschitz
constant [San17]. Nevertheless, the notion of descending slope offers the "most" general framework
since the only assumption on E is a lower semi continuity.
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We have now all the ingredients needed to "define" or characterize the notion of
gradient flows in metric spaces. In the theory, mainly developed in [LAS08], three main
characterizations are proposed to define a gradient flow in a metric space : gradient
flow as a limit (when the time step goes to 0) of the discrete solutions to a minimizing
movement scheme of the form (1.69), gradient flow as a curve satisfying the Energy Dis-
sipation Equality (1.70), gradient flow as a curve satisfying the Evolutional Variational
Inequality (1.73). Let us give a brief description and comments for each case.

Gradient Flow as a Generalized Movement Scheme

Let E : X → R ∪ {+∞} be a functional defined on the metric space (X, d) and assume
that E is lower semi-continuous. Let u0 ∈ X and consider the iterative problem

uτk+1 ∈ argminu∈X

[
E(u) +

d(u, uτk)2

2τ

]
(1.77)

together with the piecewise constant interpolation

uτ (t) := uτk for every t ∈](k − 1)τ, kτ ]. (1.78)

This approximation scheme was introduced by De Giorgi [DG93] as a generalization
of the minimizing movement (1.69). In particular, the limit of uτ (when the time
step τ goes to 0) is shown [LAS08, San17] to solve the gradient system (1.74). Thus,
a first definition of gradient flows in metric spaces is given thorough the Generalized
Minimizing Movement (1.77) as follows:

Definition 1.15 (Gradient Flow in the GMM sense, [San17, DG93]). Let E : X →
R ∪ {+∞} be a lower semi-continuous functional on the metric space (X, d). A curve
u : [0, T ] → X is called Generalized Minimizing Movements (GMM) associate to E if
there exists a sequence of time steps τj → 0 such that the sequence of curves uτj defined
in (1.78) using the iterated solutions of (1.77) uniformly converges to u in [0, T ]. In
this case we say that u is a gradient flow associated to E.

Gradient Flow in the EDE Sense

Let E : X → R ∪ {+∞} be a functional defined on the metric space (X, d) and as-
sume that E is lower semi-continuous and let u0 ∈ X. Consider the formal Cauchy
problem (1.74) where ∇E is defined by the descending slope (1.75). A second definition
of gradient flows in metric spaces can be obtained from the formal equality (that was
shown to be satisfied in the Euclidian case): if u : [0, T ]→ X solves (1.74) then

E(u(s))− E(u(t)) ≤
ˆ t

s

(
1

2
|u′(r)|2 +

1

2
|∇E(u(r))|2

)
dr, ∀0 ≤ s < t ≤ T. (1.79)

Definition 1.16 (Gradient Flow in the EDI sense). Let E : X → R∪{+∞} be a lower
semi-continuous functional on the metric space (X, d). A curve u : [0, T ]→ X is called
gradient flow in the EDE sense starting at u0 ∈ X if u ∈ AC(X) and u satisfies the
EDE property (1.79) with |∇F | defined in (1.75).
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Gradient Flow in the EVI Sense

If we assume in addition that the entropy is geodesically λ−convex for some λ ∈ R, then
we can give an additional characterization to the associated gradient flow in terms of the
foraml inequality (that was shown to be satisfied in the Euclidian case): if u : [0, T ]→ X
solves (1.74) then

d

dt

1

2
|u(t)− z|2 ≤ E(z)− E(u(t))− λ

2
|u(t)− z|2, ∀z ∈ Rn (1.80)

Definition 1.17 (Gradient Flow in the EVI sense, ). Let E : X → R ∪ {+∞} be a
lower semi-continuous functional on the metric space (X, d). A curve u : [0, T ]→ X is
called gradient flow in the EDE sense starting at u0 ∈ X if y ∈ AC(X) and u satisfies
the EVI property (1.80) with |∇F | defined as in (1.75).
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CHAPTER 2

CROSS-DIFFUSION SYSTEMS IN A MOVING DOMAIN

We report in this chapter the results of [BE16] obtained with Virginie Ehrlacher.

Abstract. We propose and analyze a one-dimensional multi-species cross-diffusion
system with non-zero-flux boundary conditions on a moving domain, motivated by the
modeling of a Physical Vapor Deposition process. Using the boundedness by entropy
method introduced and developped in [BDFPS10, Jue15a], we prove the existence of a
global weak solution to the obtained system. In addition, existence of a solution to an
optimization problem defined on the fluxes is established under the assumption that the
solution to the considered cross-diffusion system is unique. Lastly, we prove that in the
case when the imposed external fluxes are constant and positive and the entropy density
is defined as a classical logarithmic entropy, the concentrations of the different species
converge in the long-time limit to constant profiles at a rate inversely proportional to
time. These theoretical results are illustrated by numerical tests.
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2.1 Introduction

The aim of this work is to propose and analyze a mathematical model for the description
of a Physical Vapor Deposition (PVD) process, the different steps of which are described
in details for instance in [Mat10]. Such a technique is used in several contexts, for
instance for the fabrication of thin film crystalline solar cells. The procedure works as
follows: a wafer is introduced in a hot chamber where several chemical elements are
injected under a gaseous form. As the latter deposit on the substrate, an heterogeneous
solid layer grows upon it. Two main phenomena have to be taken into account: the first
is naturally the evolution of the surface of the film; the second is the diffusion of the
various species in the bulk, due to the high temperature conditions. Experimentalists
are interested in controlling the external gas fluxes that are injected into the chamber,
so that, at the end of the process, the spatial distributions of the concentrations of the
diverse components inside the new layer are as close as possible to target profiles.

In this article, a one-dimensional model which takes into account these two factors is
studied. We see this work as a preliminary step before tackling more challenging models
in higher dimensions, including surfacic diffusion effects for instance. This will be the
object of future work. Our main motivation for the study of such a model concerns the
optimization of the external fluxes injected in the chamber during a PVD process.

More precisely, let us assume that at a time t ≥ 0, the solid layer is composed of
n+1 different chemical species and occupies a domain of the form (0, e(t)) ⊂ R+, where
e(t) > 0 denotes the thickness of the film. The evolution of e(t) is determined by the
fluxes of atoms that are absorbed at the surface of the layer. At time t > 0 and point
x ∈ (0, e(t)), the local volumic fractions of the different species are denoted respectively
by u0(t, x), · · · , un(t, x). Let us point out that if the molar volume of the solid is uniform
in the thin film layer and constant during all the process, then ui(t, x) is also equal (up
to a multiplicative constant) to the local concentration of the ith species at time t > 0
and point 0 ≤ x ≤ e(t). Up to some renormalization condition, it is natural to expect
that these functions are non-negative and satisfy a volumic constraint which reads as
follows:

∀0 ≤ i ≤ n, ui(t, x) ≥ 0 and
n∑

i=0

ui(t, x) = 1. (2.1)

Because of the constraint (2.1), it holds that u0(t, x) = 1−∑n
i=1 ui(t, x) for all t > 0 and

x ∈ (0, e(t)). Thus, the knowledge of the n functions u1, · · · , un is enough to determine
the dynamics of the whole system. Replacing u0 by 1−∑n

i=1 ui, and denoting by u the
vector-valued function (u1, · · · , un), the evolution of the concentrations inside the bulk
of the solid layer is modeled through a system of cross-diffusion equations of the form

∂tu− ∂x (A(u)∂xu) = 0, for t > 0, x ∈ (0, e(t)), (2.2)
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with approriate boundary and initial conditions, where A : [0, 1]n → Rn×n is a matrix-
valued function encoding the cross-diffusion properties of the different species.

Such systems have received much attention from the mathematical community in the
case when no-flux boundary conditions are imposed on a fixed domain [LS67, Ama89,
LN06, GR10]. Then, in arbitrary dimension d ∈ N∗, the system reads

∂tu− divx (A(u)∇xu) = 0, for t > 0, x ∈ Ω,

for some fixed bounded regular domain Ω ⊂ Rd and boundary conditions

(A(u)∇xu) · n = 0 on ∂Ω and t ≥ 0,

where n denotes the outward normal unit vector to Ω.
Such systems appear naturally in the study of population’s dynamics in biology, and

in chemistry, for the study of the evolution of chemical species concentrations in a given
environment [Pai09, HP09]. The analysis of these systems is a challenging task from a
mathematical point of view [LPR12, Ali79, Kue96, Red89, CJ04, CJ06, DFR08]. Indeed,
the obtained system of parabolic partial differential equations may be degenerate and the
diffusion matrix A is in general not symmetric and/or not positive definite. Besides, in
general, no maximum principle can be proved for such systems. Nice counterexamples
are given in [SJ95]: there exist Hölder continuous solutions to certain cross-diffusion
systems which are not bounded, and there exist bounded weak solutions which develop
singularities in finite time.

It appears that some of these cross-diffusion systems have a formal gradient flow
structure. Recently, an elegant idea, which consists in introducing an entropy density
that appears to be a Lyapunov functional for these systems, has been introduced by
Burger et al. in [BDFPS10]. This analysis strategy, which was later extended by Jüngel
in [Jue15a] and named boundedness by entropy technique, enables to obtain the existence
of global in time weak solutions satisfying (2.1) under suitable assumptions on the
diffusion matrix A. It was successfully applied in several contexts (see for instance [JS13,
JS12, ZJ15, JZ14]).

However, there are very few works which focus on the analysis of such cross-diffusion
systems with non zero-flux boundary conditions and moving domains. To our knowl-
edge, only systems containing at most two different species have been studied, so that
n = 1 and the evolution of the concentrations inside the domain are decoupled and
follow independent linear heat equations [PP08].

The one-dimensional model (2.2) we propose and analyze in this paper describes the
evolution of the concentration of n+1 different atomic species, with external flux bound-
ary conditions, in the case when the diffusion matrix A satisfies similar assumptions to
those needed in the no-flux boundary conditions case studied in [Jue15a].

The article is organized as follows: the results of [Jue15a] in the case of no-flux
boundary conditions in arbitrary dimension are recalled in Section 2.2. We illustrate
them on a prototypical example of diffusion matrix A, which is introduced in Sec-
tion 2.2.1.

Our results in the case of a one-dimensional moving domain with non-zero flux
boundary conditions are gathered in Section 2.3. We prove the existence of a global
in time weak solution to (2.2) with appropriate boundary conditions and evolution law
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for e(t) in Section 2.3.2. The long time behaviour of a solution is analyzed in the case
of constant external absorbed fluxes in 2.3.2 and an optimization problem is studied
in 2.3.2. The proofs of these results are gathered in Section 5.3.

A numerical scheme used to approximate the solution of such systems is described
in Section 5.4 and our theoretical results will be illustrated by several numerical tests.

2.2 Case of no-flux boundary conditions in arbitrary di-
mension

In Section 2.2.1, a particular cross-diffusion model on a fixed domain with no-flux bound-
ary conditions is presented. The latter is a prototyical example of the systems of equa-
tions considered in this paper. Its formal gradient flow structure is highlighted in Sec-
tion 2.2.1. Using slight extensions of results of [ZJ15, JZ14], it can be seen that this sys-
tem can be analyzed using the theoretical framework developped in [Jue15a, BDFPS10],
which is recalled in Section 2.2.2.

Throughout this section, let us denote by d ∈ N∗ the space dimension, Ω ⊂ Rd the
regular bounded domain occupied by the solid. The local concentrations at time t > 0
and position x ∈ Ω of the n+ 1 different atomic species entering in the composition of
the material are respectively denoted by u0(t, x), · · · , un(t, x). We also denote by n the
normal unit vector pointing outwards the domain Ω.

2.2.1 Example of cross-diffusion system

Presentation of the model

As mentioned above, we have one particular example of system of cross-diffusion equa-
tions in mind, which is used to illustrate more general theoretical results. This system,
with no-flux boundary conditions, reads as follows : for any 0 ≤ i ≤ n,




∂tui − divx

(
∑

0≤j 6=i≤n
Kij(uj∇xui − ui∇xuj)

)
= 0, for (t, x) ∈ R∗+ × Ω,

(
∑

0≤j 6=i≤n
Kij(uj∇xui − ui∇xuj)

)
· n = 0, for (t, x) ∈ R∗+ × ∂Ω,

(2.3)

where for all 0 ≤ i 6= j ≤ n, the positive real numbers Kij satisfy Kij = Kji > 0.
They represent the cross-diffusion coefficients of atoms of type i with atoms of type j.
This set of equations can be formally derived from a discrete stochastic lattice hopping
model, which is detailed in the Appendix.

The initial condition (u0
0, · · · , u0

n) ∈ L1(Ω;Rn+1) of this system is assumed to satisfy:

∀0 ≤ i ≤ n, u0
i (x) ≥ 0,

n∑

i=0

u0
i (x) = 1 and ui(0, x) = u0

i (x) a.e. in Ω. (2.4)

The relationship
∑n

i=0 u
0
i (x) = 1 is a natural volumic constraint which encodes the fact

that each site of the crystalline lattice of the solid has to be occupied (vacancies being
treated as a particular type of atomic species).
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Summing up the n+1 equations of (2.3), we observe that a solution (u0, · · · , un) must
necessarily satisfy ∂t (

∑n
i=0 ui) = 0. It is thus expected that the following relationship

should hold:

∀0 ≤ i ≤ n, ui(t, x) ≥ 0,

n∑

i=0

ui(t, x) = 1, a.e. in R∗+ × Ω. (2.5)

Plugging the expression u0(t, x) = 1 −∑n
i=1 ui(t, x) in (2.3), it holds that for all

1 ≤ i ≤ n,

0 = ∂tui − divx


 ∑

1≤j 6=i≤n
Kij (uj∇xui − ui∇xuj)




− divx


Ki0




1−

∑

1≤j 6=i≤n
uj − ui


∇xui − ui∇x


1−

∑

1≤j 6=i≤n
uj − ui








= ∂tui − divx


 ∑

1≤j 6=i≤n
(Kij −Ki0) (uj∇xui − ui∇xuj) +Ki0∇xui


 .

Thus, the system can be rewritten as a function of u := (u1, · · · , un)T as follows




∂tu− divx (A(u)∇xu) = 0, for (t, x) ∈ R∗+ × Ω,
(A(u)∇xu) · n = 0, for (t, x) ∈ R∗+ × ∂Ω,
u(0, x) = u0(x), for x ∈ Ω,

(2.6)

where u0 := (u0
1, · · · , u0

n)T and the matrix-valued application

A :

{
[0, 1]n → Rn×n

u := (ui)1≤i≤n 7→ (Aij(u))1≤i,j≤n

is defined by
{ ∀1 ≤ i ≤ n, Aii(u) =

∑
1≤j 6=i≤n

(Kij −Ki0)uj +Ki0,

∀1 ≤ i 6= j ≤ n, Aij(u) = −(Kij −Ki0)ui.
(2.7)

Despite their importance in chemistry or biology, it appears that the mathematical
analysis of systems of the form (2.6), taking into account constraints (2.5), is quite
recent [BDFPS10, GR10, Jue15a, LM13]. Let us point out here that the non-negativity
of the solutions to (2.6) through time is a mathematical issue, linked to the absence of
a maximum principle for such systems.

At least up to our knowledge, the first proof of existence of global weak solutions
of (2.6) satisfying constraints (2.5) with non-identical cross-diffusion coefficients is given
in [BDFPS10] for n = 2 with coefficients Kij such that Ki0 > 0 for i = 1, 2 and
K12 = K21 = 0. These results were later extended in [JZ14] to a general number of
species n ∈ N∗ with cross-diffusion coefficients satisfying Ki0 > 0 and Kij = 0 for all
1 ≤ i 6= j ≤ n; the authors of the latter article proved in addition the uniqueness
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of such weak solutions. In [ZJ15], the case n = 2 with arbitrary positive coefficients
Kij > 0 is covered, though no uniqueness result is provided. The main difficulty of
the mathematical analysis of such equations relies in the bounds (2.5), which are not
obvious since no maximum principle can be proved for these systems in general. In
all the articles mentioned above, the analysis framework used by the authors is the
so-called boundedness by entropy method. The main idea of this technique is to write
the above system of equations as a formal gradient flow and derive estimates on the
solutions (u0, · · · , un) using the decay of some well-chosen entropy functional. We
present in Section 2.2.1 the formal gradient flow structure of (2.6) and recall the results
of [Jue15a] in Section 2.2.2.

Remark 2.1. This model is linked to the so-called Stefan-Maxwell model, studied
in [JS13, BGS12]. Indeed, the model considered in the latter paper reads





∂tu− divx
(
A(u)−1∇xu

)
= 0, for (t, x) ∈ (0, T ]× Ω,

(A(u)∇xu) · n = 0, for (t, x) ∈ (0, T ]× ∂Ω,
u(0, x) = u0(x), for x ∈ Ω,

(2.8)

where A is defined by (2.7).

Formal gradient flow structure of (2.6)

We detail in this section the formal gradient flow structure of the system (2.6).
Let D ⊂ Rn be defined by

D :=

{
(u1, · · · , un) ∈ (R∗+)n,

n∑

i=1

ui < 1

}
⊂ (0, 1)n. (2.9)

Let us introduce the classical entropy density h (see for instance [BDFPS10], [Jue15a],
[JZ14] and [LM13])

h :





D −→ R

u := (ui)1≤i≤n 7−→ h(u) =
n∑
i=1

ui log ui + (1− ρu) log(1− ρu),
(2.10)

where ρu :=
∑n

i=1 ui. Some properties of h can be easily checked:

(P1) the function h belongs to C0(D) ∩ C2(D); consequently, h is bounded on D;

(P2) the function h is strictly convex on D;

(P3) its derivative

Dh :

{ D −→ Rn

(ui)1≤i≤n 7→
(

log ui
1−ρu

)
1≤i≤n

,

is invertible and its inverse is given by

(Dh)−1 :

{
Rn −→ D

(wi)1≤i≤n 7→ ewi
1+

∑n
j=1 e

wj .
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In the following, we denote by D2h the Hessian of h. The entropy functional E is
defined by

E :

{
L∞(Ω;D) −→ R

u 7−→ E(u) :=
´

Ω h(u(x)) dx.
(2.11)

Throughout the article, for all u ∈ L∞(Ω;D), we shall denote by DE(u) the measurable
vector-valued function defined by

DE(u) :

{
Ω → Rn
x 7→ Dh(u(x)).

The system (2.6) can then be formally rewritten under the following gradient flow
structure





∂tu− divx (M(u)∇xDE(u)) = 0, for (t, x) ∈ R∗+ × Ω,
(M(u)∇xDE(u)) · n = 0, for (t, x) ∈ R∗+ × ∂Ω,
u(0, x) = u0(x), for x ∈ Ω,

(2.12)

where M : D → Rn×n is the so-called mobility matrix of the system defined for all
u ∈ D by

M(u) := A(u)(D2h(u))−1.

More precisely, it holds that for all u ∈ D, M(u) = (Mij(u))1≤i,j≤n where for all
1 ≤ i 6= j ≤ n,

Mii(u) = Ki0(1− ρu)ui +
∑

1≤j 6=i≤n
Kijuiuj and Mij(u) = −Kijuiuj . (2.13)

2.2.2 Existence of global weak solutions by the boundedness by en-
tropy technique

The formal gradient flow formulation of a system of cross-diffusion equations is a key
point in the boundedness by entropy technique. In the example presented in Sec-
tion 2.2.1, it implies in particular that E is a Lyapunov functional for the system
(2.6) [BDFPS10, Jue15a]. However, the mobility matrix obtained for these systems
is not a concave function of the densities, so that standard gradient flow theory ar-
guments (such as the minimizing movement method) cannot be applied in this con-
text [ZM15, DNS09, JKO98, LM13]. However, the existence of a global weak solu-
tion to (2.6) can still be proved. Let us recall here a simplified version of Theorem 2
of [Jue15a] which is adapted to our context.

Theorem 2.2 (Theorem 2 of [Jue15a]). Let D ⊂ Rn be the domain defined by (2.9).
Let A : u ∈ D 7→ A(u) := (Aij(u))1≤i,j≤n ∈ Rn×n be a matrix-valued functional defined
on D satisfying A ∈ C0(D;Rn×n) and the following assumptions:

(H1) There exists a bounded from below convex function h ∈ C2(D,R) such that its
derivative Dh : D → Rn is invertible on Rn;

(H2) There exists α > 0, and for all 1 ≤ i ≤ n, there exist 1 ≥ mi > 0, such that for
all z = (z1, · · · , zn)T ∈ Rn and u = (u1, · · · , un)T ∈ D,

zTD2h(u)A(u)z ≥ α
n∑

i=1

u2mi−2
i z2

i .
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Let u0 ∈ L1(Ω;D) so that w0 := Dh(u0) ∈ L∞(Ω;Rn). Then, there exists a weak
solution u with initial condition u0 to

{
∂tu = divx(A(u)∇xu), for (t, x) ∈ R∗+ × Ω,
(A(u)∇xu) · n = 0, for (t, x) ∈ R∗+ × ∂Ω,

(2.14)

such that for almost all (t, x) ∈ R∗+ × Ω, u(t, x) ∈ D with

u ∈ L2
loc(R+;H1(Ω,Rn)) and ∂tu ∈ L2

loc(R+; (H1(Ω;Rn))′).

Lemma 2.3 states that the prototypical example presented in Section 2.2.1 falls into
the framework of Theorem 2.2. The proof of the latter is given Section 2.4.1 for the
sake of completeness, and relies on ideas introduced in [JZ14].

Lemma 2.3. Let D ⊂ Rn be the domain defined by (2.9) and A : u ∈ D 7→ A(u) :=
(Aij(u))1≤i,j≤n ∈ Rn×n be the matrix-valued function defined by (2.7). Then, A ∈
C0(D;Rn×n) and satisfies assumptions (H1)-(H2) of Theorem 2.2, with h given by
(2.10), α = min1≤i 6=j≤nKij and mi = 1

2 for all 1 ≤ i ≤ n.

The existence of global weak solutions to (2.6) is then a direct consequence of The-
orem 2.2 and Lemma 2.3.

Let us point out that the uniqueness of solutions to general systems of the form
(2.14) remains an open theoretical question, at least up to our knowledge. It can be
obtained in some particular cases. When the diffusion matrix A is defined by (2.7) and
when all the diffusion coefficients Kij are identically equal to some constant K > 0, the
uniqueness of the solution can be trivially obtained since the system boils down to a set
of n decoupled heat equation for the evolution of the density of each species.

2.3 Case of non-zero flux boundary conditions and moving
domain

In the sequel, we restrict the study to the case when d = 1. In this section, we propose
a model for the description of a PVD process and present theoretical results whose
proofs are postponed to Section 5.3. The global existence of a weak solution is proved.
The long-time behaviour of such a solution is studied in the case of constant external
fluxes. Lastly, under the assumption that the coefficients Kij are chosen so that there is
a unique solution to the system, we prove the existence of a solution to an optimization
problem.

2.3.1 Presentation of the model

For the sake of simplicity, we assume that non-zero fluxes are only imposed on the
right-hand side of the domain occupied by the solid. At some time t > 0, this domain
is denoted by Ωt := (0, e(t)) where e(t) > 0 models the thickness of the layer. Initially,
we assume that the domain Ω0 occupied by the solid at time t = 0 is the interval (0, e0)
for some initial thickness e0 > 0.

The evolution of the thickness of the film e(t) is determined by the external fluxes of
the atomic species that are absorbed at its surface. More precisely, let us assume that
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Figure 2.1 – Illustration of the composition of the film layer at time t in the case n = 2

there are n+ 1 different chemical species composing the solid layer and let (φ0, · · · , φn)
belong to L∞loc(R+;Rn+1

+ ). For all 0 ≤ i ≤ n, the function φi(t) represents the flux of
the species i absorbed at the surface at time t > 0 and is assumed to be non-negative.
In this one-dimensional model, the evolution of the thickness of the solid is assumed to
be given by

e(t) := e0 +

ˆ t

0

n∑

i=0

φi(s) ds. (2.15)

In the following, we will denote by ϕ := (φ1, · · · , φn)T (see Figure 2.1).

For all t ≥ 0 and 0 ≤ i ≤ n, the local concentration of species i at time t and point
x ∈ (0, e(t)) is denoted by ui(t, x). The evolution of the vector u := (u1, · · · , un) is
given by the system of cross-diffusion equations

∂tu− ∂x (A(u)∂xu) = 0, for t ∈ R∗+, x ∈ (0, e(t)), (2.16)

where A : D → Rn×n is a well-chosen diffusion matrix satisfying (H1)-(H2).

We consider that for every t > 0, the system satisfies the following conditions on
the boundary ∂Ωt:

(A(u)∂xu) (t, 0) = 0 and (A(u)∂xu) (t, e(t)) + e′(t)u(t, e(t)) = ϕ(t). (2.17)

An easy calculation shows that these boundary conditions, in addition to (2.15)
and (2.16), ensure that, for all 0 ≤ i ≤ n,

d

dt

(ˆ
Ωt

ui(t, x) dx

)
= φi(t).
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Indeed, it holds that

d

dt

(ˆ
Ωt

u(t, x) dx

)
=

ˆ e(t)

0
∂tu(t, x) dx+ e′(t)u(t, e(t)),

=

ˆ e(t)

0
∂x (A(u)∂xu) + e′(t)u(t, e(t)),

= (A(u)∂xu)(t, e(t)) + e′(t)u(t, e(t))− (A(u)∂xu)(t, 0),

= ϕ(t).

The calculation for the 0th species reads:

d

dt

(ˆ
Ωt

u0(t, x) dx

)
=

d

dt

(
|Ωt| −

n∑

i=1

ˆ
Ωt

ui(t, x) dx

)

= e′(t)−
n∑

i=1

d

dt

(ˆ
Ωt

ui(t, x) dx

)

=
n∑

i=0

φi(t)−
n∑

i=1

φi(t) = φ0(t).

To sum up, the final system of interest reads:




e(t) = e0 +
´ t

0

∑n
i=0 φi(s) ds, for t ∈ R∗+,

∂tu− ∂x (A(u)∂xu) = 0, for t ∈ R∗+, x ∈ (0, e(t)),
(A(u)∂xu) (t, 0) = 0, for t ∈ R∗+,
(A(u)∂xu) (t, e(t)) + e′(t)u(t, e(t)) = ϕ(t), for t ∈ R∗+,
u(0, x) = u0(x), for x ∈ (0, e0),

(2.18)

where u0 ∈ L1(0, e0) is an initial condition satisfying u0(x) ∈ D for almost all x ∈ (0, e0).
We assume in addition that w0 := Dh(u0) belongs to L∞((0, e0);Rn).

Rescaled version of the model

We introduce here a rescaled version of system (2.18). For all 0 ≤ i ≤ n, t ≥ 0 and
y ∈ (0, 1), let us denote by vi(t, y) := ui(t, e(t)y). It holds that

∂tv(t, y) = ∂tu(t, e(t)y) + e′(t)y∂xu(t, e(t)y) and ∂yv(t, y) = e(t)∂xu(t, e(t)y),

where v := (v1, · · · , vn). Thus, u is a solution of (2.18) if and only if v is a solution to
the following system:





e(t) = e0 +

ˆ t

0

n∑

i=0

φi(s) ds, for t ∈ R∗+,

∂tv − 1
e(t)2∂y (A(v)∂yv)− e′(t)

e(t) y∂yv = 0, for (t, y) ∈ R∗+ × (0, 1),
1
e(t)(A(v)∂yv)(t, 1) + e′(t)v(t, 1) = ϕ(t), for (t, y) ∈ R∗+ × (0, 1),
1
e(t)(A(v)∂yv)(t, 0) = 0, for (t, y) ∈ R∗+ × (0, 1)

v(0, y) = v0(y), for y ∈ (0, 1),

(2.19)
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where v0(y) := u0(e0y).
Proving the existence of a global weak solution to (2.18) is equivalent to proving the

existence of a global weak solution to (2.19).

Actually, it can be seen that the entropy of the system (2.19) satisfies a formal
inequality at the continuous level which is at the heart of the proof of our existence
result. Indeed, let us denote by

E(t) :=

ˆ 1

0
h(v(t, y)) dy,

where v is a solution to (2.19). Then, formal calculations yield that

dE
dt

(t) =

ˆ 1

0
∂tv(t, y) ·Dh(v(t, y)) dy

=
1

e(t)2

ˆ 1

0
∂y (A(v(t, y))∂yv(t, y)) ·Dh(v(t, y)) dy

+
e′(t)

e(t)

ˆ 1

0
y∂yv(t, y) ·Dh(v(t, y)) dy

= − 1

e(t)2

ˆ 1

0
∂yv(t, y) ·D2h(v(t, y))A(v(t, y))∂yv(t, y) dy

+
1

e(t)2
(A(v(t, 1))∂yv(t, 1)) ·Dh(v(t, 1)) +

e′(t)

e(t)

ˆ 1

0
y∂y(h(v(t, y))) dy

= − 1

e(t)2

ˆ 1

0
∂yv(t, y) ·D2h(v(t, y))A(v(t, y))∂yv(t, y) dy

+
1

e(t)

(
ϕ(t)− e′(t)v(t, 1)

)
·Dh(v(t, 1))

+
e′(t)

e(t)
h(v(t, 1))− e′(t)

e(t)

ˆ 1

0
h(v(t, y)) dy.

Denoting by f(t) := ϕ(t)
e′(t) , it holds that f(t) ∈ D for all t > 0. Besides, using assumption

(H2), we obtain that

−
ˆ 1

0
∂yv(t, y) ·D2h(v(t, y))A(v(t, y))∂yv(t, y) dy ≤ 0,

which yields that

dE
dt

(t) ≤ e′(t)

e(t)

[
h(v(t, 1) +Dh(v(t, 1)) ·

(
f(t)− v(t, 1)

)
−
ˆ 1

0
h(v(t, y)) dy

]
.

Using the convexity of h, we obtain that h(v(t, 1) + Dh(v(t, 1)) ·
(
f(t)− v(t, 1)

)
≤

h(f(t)), so that
dE
dt

(t) ≤ e′(t)

e(t)

[
h(f(t))−

ˆ 1

0
h(v(t, y)) dy

]
. (2.20)

Inequality (2.20) is not an entropy dissipation inequality in the sense that the quantity
E(t) may increase with time. However, using the fact e′ ∈ L∞loc(R+;R+) and assumption
(H3), it implies that the quantity E(t) cannot blow up in finite time, which is sufficient
for our purpose.
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2.3.2 Theoretical results

Global in time existence of weak solutions

Our first result deals with the global in time existence of bounded weak solutions to
(2.19) (and thus to (2.18)).

Theorem 2.4. Let D := {(u1, · · · , un)T ∈ (R∗+)n,
∑n

i=1 ui < 1} ⊂ (0, 1)n. Let A :
D → Rn×n be a matrix-valued functional satisfying A ∈ C0(D;Rn×n) and assumptions
(H1)-(H2) of Theorem 2.2 for some well-chosen entropy density h : D → R. We assume
in addition that

(H3) h ∈ C0(D).

Let e0 > 0, u0 ∈ L1((0, e0);D) so that w0 := (Dh)−1(u0) ∈ L∞((0, e0);Rn) and
(φ0, · · · , φn) ∈ L∞loc(R+;Rn+1

+ ). Let us define for almost all y ∈ (0, 1), v0(y) := u0(e0y)
and ϕ := (φ1, · · · , φn)T . Then, there exists a weak solution v with initial condition v0

to (2.19) such that for almost all (t, y) ∈ R∗+ × (0, 1), v(t, y) ∈ D. Besides,

v ∈ L2
loc(R+;H1((0, 1);Rn)) and ∂tv ∈ L2

loc(R+; (H1((0, 1);Rn))′).

In particular, v ∈ C0(R+;L2((0, 1);Rn)).

Let us point out that the example described in Section 2.2.1 satisfies all the assump-
tions of Theorem 2.4 since the entropy density h defined by (2.10) belongs to C0(D).
Let us also point here that the form of (2.19) is different from the system considered
in [Jue15a] through i) the boundary conditions and ii) the existence of the drift term
e′(t)
e(t) y∂yv.

The strategy of proof developped in [BDFPS10, Jue15a] is still adapted to our
case though, because a discrete entropy inequality can still be obtained. The proof of
Theorem 2.4 is given in full details in Section 2.4.2.

Long-time behaviour for constant fluxes

In the case when the fluxes are constant in time, we obtain long-time asymptotics for
the functions vi, provided that the entropy density h is given by (2.10). More precisely,
the following result holds:

Proposition 2.5. Under the assumptions of Theorem 2.4, let us make the following
additional hypotheses:

(T1) for all 0 ≤ i ≤ n, there exists φi > 0 so that φi(t) = φi, for all t ∈ R+;

(T2) for all u ∈ D, the entropy density h can be chosen so that h(u) =
∑n

i=1 ui log ui +
(1− ρu) log(1− ρu), where ρu = 1−∑1≤i≤n ui.

For all 0 ≤ i ≤ n, let us define f i := φi∑n
j=0 φj

and by f := (f i)1≤i≤n ∈ D. Let us also

denote by

h :

{
D 7→ R
u 7→ h(u)− h(f)−Dh(f)(u− f)
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the relative entropy associated to h and f . Then, there exists a global weak solution v
to (2.19) and a constant C > 0 such that

ˆ 1

0
h (v(t, y)) dy ≤ C

t+ 1
, (2.21)

and

∀1 ≤ i ≤ n, ‖vi(t, ·)− f i‖L1(0,1) ≤
C√
t+ 1

and
∥∥(1− ρv(t,·)

)
− f0

∥∥
L1(0,1)

≤ C√
t+ 1

.

(2.22)

The proof of Proposition 2.5 is given in Section 2.4.3. Numerical results presented in
Section 5.4 illustrate the rate of convergence of the rescaled concentrations to constant
profiles in O

(
1
t

)
.

Let us comment here on assumption (T2). For the sake of simplicity, we chose to
restrict ourselves to the case of logarithmic entropy density in Proposition 2.5. Actually,
Proposition 2.5 can be easily generalized provided that the relative entropy density h
satisfies a generalized Csizar-Kullback type inequality [AUT00].

The central ingredient of the proof is the following formal entropy inequality. In
the case when h is given by (2.10), it can be easily seen that h is also a valid entropy
density for the diffusion coefficient A in the sense that h also satisfies assumptions
(H1)-(H2)-(H3). Thus, inequality (2.20) holds with h instead of h so that

dE
dt

(t) ≤ e′(t)

e(t)

[
h(f)−

ˆ 1

0
h(v(t, y)) dy

]
=
e′(t)

e(t)

[
h(f)− E(t)

]
,

where for all t > 0, E(t) :=
´ 1

0 h(v(t, y)) dy. Denoting by V :=
∑n

i=0 φi, it holds that
e′(t) = V and e(t) = e0 + V t for all t ≥ 0. Finally, using the fact that h ≥ 0 and that
h(f) = 0, we obtain that

(e0

V
+ t
) dE
dt

(t) + E(t) =
d

dt

((e0

V
+ t
)
E(t)

)
≤ 0.

This inequality implies that there exists a constant C > 0 such that for all t ≥ 0,

E(t) ≤ C

t+ 1
.

The rates on the L1 norm of the solutions are then obtained using the Csizàr-Kullback
inequality.

Let us finally point out that the quantity
´ 1

0 h(v(t, y)) dy = 1
e(t)

´ e(t)
0 h(u(t, x)) dx

can be seen as an average entropy. In particular, the result of Propositon 2.5 does not
imply in general the convergence of u(t, x) to a constant vector L1

loc(R+) for instance.
Whether such a convergence may hold true remains an open question.
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Optimization of the fluxes

As mentioned in the introduction, our main motivation for studying this system is the
control of the gazeous fluxes injected during a PVD process. It is assumed here that
the wafer remains in the hot chamber where the different atomic species are injected
during a time T > 0. The cross-diffusion phenomena occur in the bulk of the thin
film layer because of the high temperatures that are imposed during the process. Once
the wafer is taken out of the chamber, the composition of the film is freezed and no
diffusion phenomena take place anymore. The profiles of the local volumic fractions of
the different chemical species in the film thus remain unchanged after the time T . It is
of practical interest to adapt the fluxes through time so that these final concentration
profiles are as close as possible to target functions chosen a priori.

Let e0 > 0 be the initial thickness of the solid. In practice, the maximal value
of the fluxes which can be injected is limited due to device constraints. Let F > 0
and let us then denote by Ξ :=

{
Φ ∈ L∞((0, T );Rn+1

+ ), ‖Φ‖L∞ ≤ F
}
. For all Φ :=

(φ0, · · · , φn) ∈ Ξ, we denote by eΦ : t ∈ [0, T ] 7→ e0 +
´ t

0

∑n
i=0 φi(s) ds the time-

dependent thickness of the film, and by vΦ a solution to (2.19) associated with the
external fluxes Φ.

Let us point out here the uniqueness of a solution to (2.18) (or (2.19)) remains
an open problem in general. When the diffusion matrix A is defined by (2.7), the
only case for which uniqueness of a global solution can be obtained is the trivial case
where the cross-diffusion coefficients Kij are identical to some constant K > 0 for all
0 ≤ i 6= j ≤ n. Indeed, in this case, it can be seen that the system (2.19) can be
written as a set of n independent advection-diffusion PDEs on each of the rescaled
concentration profiles vi (1 ≤ i ≤ n). Thus, we will have to make some assumption on
the cross-diffusion coefficients (Kij)0≤i 6=j≤n in the general case.

We make the following assumption on the diffusion matrix A:

(C1) For any Φ ∈ Ξ, there exists a unique global weak solution vΦ to system (2.19) so
that for almost all (t, y) ∈ R∗+ × (0, 1), vΦ(t, y) ∈ D.

The goal of the optimization problem consists in the identification of optimal time-
dependent non-negative functions Φ ∈ Ξ so that the final thickness of the film eΦ(T )
and the (rescaled) concentration profiles for the different chemical species vΦ(T, ·) at
the end of the fabrication process are as close as possible to desired targets denoted by
eopt > e0 and vopt ∈ L2((0, 1);D).

The real-valued functional J : Ξ→ R defined by

∀Φ ∈ Ξ, J (Φ) := |eΦ(T )− eopt|2 + ‖vΦ(T, ·)− vopt‖2L2(0,1), (2.23)

is the cost function we consider here. More precisely, we have the following result, which
is proved in Section 2.4.4.

Proposition 2.6. Under the assumptions of Theorem 2.4, let us make the additional
assumption (C1). Then, the functional J is well-defined and there exists a minimizer
Φ∗ ∈ Ξ to the minimization problem

Φ∗ ∈ argmin
Φ∈Ξ

J (Φ). (2.24)

Of course, uniqueness of such a solution Φ∗ is not expected in general.
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2.4 Proofs

2.4.1 Proof of Lemma 2.3

Let us prove that the matrix-valued function A defined in (2.7) satisfies the assumptions
of Theorem 2.2 with the entropy functional h given by (2.10).

As mentioned in Section 2.2.1, the entropy density h belongs to C0(D;R)∩C2(D;R)
(thus is bounded on D), is strictly convex on D, and its derivative Dh : D → Rn is
invertible. As a consequence, h satisfies assumption (H1) of Theorem 2.2.

Let us now prove that assumption (H2) of Theorem 2.2 is satisfied with mi = 1
2

for all 1 ≤ i ≤ n. To this aim, we follow the same strategy of proof as the one used
in [JZ14]. Let us prove that there exists β > 0 such that for all u ∈ D,

H(u)A(u) ≥ βΛ(u), (2.25)

where H(u) := D2h(u), Λ(u) := diag

((
1

ui

)

1≤i≤n

)
and β := min

0≤i 6=j≤n
Kij .

This inequality implies (H2) with α = β and mi = 1
2 for all 1 ≤ i ≤ n.

Let u ∈ D. We have for all 1 ≤ i, j ≤ n,

Hii(u) =
1

ui
+

1

1− ρu
and Hij(u) =

1

1− ρu
if i 6= j.

Introducing P (u) := (Pij(u))1≤i,j≤n, where for all 1 ≤ i, j ≤ n,
Pii(u) = 1− ui and Pij(u) = −ui if i 6= j,

it holds that H(u)P (u) = Λ(u). Thus, H(u)A(u) − βΛ(u) = H(u)(A(u) − βP (u)).
It can be easily checked that A(u) − βP (u) = Ã(u) + βD(u), where Ã(u) has the
same structure as A(u) but with diffusion coefficients Kij − β instead of Kij , and
D(u) := (Dij(u))1≤i,j≤n where Dij(u) = ui for all 1 ≤ i ≤ n.

On the one hand, H(u)D(u) = 1
1−ρuZ where Z is the n × n matrix whose all

coefficients are identically equal to 1. Since the matrix Z is a semi-definite positive
matrix, so is H(u)D(u).

On the other hand, since h is strictly convex on D, H(u)Ã(u) is semi-definite positive
if and only if M̃(u) := Ã(u)H(u)−1 is semi-definite positive. Indeed, for all z ∈ Rn,
we have zTH(u)Ã(u)z = (H(u)z)T

(
Ã(u)H(u)−1

)
(H(u)z). It can be observed that

M̃(u) = (M̃ij(u))1≤i,j≤n, where for all 1 ≤ i, j ≤ n,
M̃ii(u) = (Ki0−β)(1−ρu)ui+

∑

1≤j 6=i≤n
(Kij−β)uiuj and M̃ij(u) = −(Kij−β)uiuj if j 6= i.

For all z = (z1, · · · , zn)T ∈ Rn, we have

zT M̃(u)z =
n∑

i=1

(Ki0 − β)(1− ρu)uiz
2
i +

n∑

i=1

∑

1≤j 6=i≤n
(Kij − β)uiuj(z

2
i − zizj),

=
n∑

i=1

(Ki0 − β)(1− ρu)uiz
2
i +

∑

1≤i 6=j≤n
(Kij − β)uiuj

(
1

2
z2
i +

1

2
z2
j − zizj

)
,

≥ 0.
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The matrix M̃(u) is indeed a semi-definite positive matrix. Hence we have proved
inequality (2.25), which yields the desired result.

2.4.2 Proof of Theorem 2.4

For the sake of simplicity, we will prove the existence of a solution v on the finite time
interval [0, T ] where T > 0 is an arbitrary positive constant. Actually, the proof can be
easily adapted to obtain the existence of a global solution for an infinite time horizon.

The proof follows similar lines as the proof of Theorem 2 of [Jue15a] and is divided
in three main steps. Firstly, an approximate time-discrete problem is introduced for
which uniform bounds are proved in a second step. Lastly, passing to the limit in this
approximate problem using the obtained bounds enables to obtain the existence of a
weak solution.

Step 1 : Approximate time-discrete problem

Let us first assume at this point that φ0, · · · , φn belong to C0([0, T ]).

Let N ∈ N, τ = T
N and ε > 0. For all k ∈ N∗ so that kτ ≤ T , let us denote by

ek := e(kτ), e′k := e′(kτ) and ϕk = (φ1,k, · · · , φn,k)T := ϕ(kτ). Let us also define

fk :=

{
ϕk
e′k

if e′k > 0,

0 otherwise,
(2.26)

so that fk ∈ D and ϕk = e′kfk.
By assumption, w0(y) := Dh(v0(y)) belongs to L∞((0, 1);Rn). In the rest of the

proof, for any w ∈ Rn, we denote by v(w) := (Dh)−1(w) = (vi(w))1≤i≤n and by
B(w) := M(v(w)).

Let us already mention at this point that the (formal) weak formulation of (2.19)
reads as follows: for all ψ ∈ L2((0, T );H1((0, 1);Rn)),

ˆ T

0

ˆ 1

0
∂tv ·ψ+

ˆ T

0

ˆ 1

0
∂y

1

e2
ψ ·(A(v)∂yv)+

ˆ T

0

ˆ 1

0

e′

e
(v ·ψ+yv ·∂yψ) =

ˆ T

0

1

e
ϕ ·ψ(·, 1).

Let us first prove the following lemma.

Lemma 2.7. Assume that φ0, · · · , φn ∈ C0([0, T ]). Then, for all k ∈ N∗ such that
kτ ≤ T , there exists wk ∈ H1((0, 1);Rn) solution of

1

τ

ˆ 1

0

(
v(wk)− v(wk−1)

)
· ψ +

1

e2
k

ˆ 1

0
∂yψ · (B(wk)∂yw

k) + ε

ˆ 1

0
(∂yw

k · ∂yψ + wk · ψ)

(2.27)

+
e′k
ek

ˆ 1

0
(v(wk) · ψ + yv(wk) · ∂yψ) =

1

ek
ϕk · ψ(1),
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for all ψ ∈ H1((0, 1);Rn). Besides, the following discrete inequality holds for all k ∈ N∗
such that kτ ≤ T ,

1

τ

ˆ 1

0
h(v(wk)) + ε

ˆ 1

0

(
|∂ywk|2 + |wk|2

)
+

1

e2
k

ˆ 1

0
∂yw

k · (B(wk)∂yw
k) (2.28)

≤ 1

τ

ˆ 1

0
h(v(wk−1)) +

e′k
ek

(
h(fk)−

ˆ 1

0
h(v(wk))

)
.

The proof of this lemma is postponed until Section 2.4.2. Let us point out the
following fact: from (2.28), we obtain

(
1

τ
+
e′k
ek

)ˆ 1

0
h(v(wk)) + ε

ˆ 1

0
(|∂ywk|2 + |wk|2) +

1

e2
k

ˆ 1

0
∂yw

k ·B(wk)∂yw
k (2.29)

≤ 1

τ

ˆ 1

0
h(v(wk−1)) +

e′k
ek
‖h‖L∞(D),

which implies

1

τ

ˆ 1

0
h(v(wk)) + ε

ˆ 1

0
(|∂ywk|2 + |wk|2) +

1

e2
k

ˆ 1

0
∂yw

k ·B(wk)∂yw
k (2.30)

≤ 1

τ

ˆ 1

0
h(v(wk−1)) + 2

e′k
ek
‖h‖L∞(D).

Step 2: Uniform bounds

For all 0 ≤ i ≤ n, let (φi,p)p∈N be a sequence of non-negative functions of C0([0, T ])
which weakly-* converges to φi in L∞(0, T ) as p goes to infinity, and for all p ∈ N,

‖φi,p‖L∞(0,T ) ≤ ‖φi‖L∞(0,T ).

Let us define

ϕp := (φ1,p, · · · , φn,p)T , and ep(t) := e0 +

ˆ t

0

n∑

i=0

φi,p(s) ds.

It holds that (ep)p∈N∗ strongly converges to e in L∞(0, T ). Indeed, let ε > 0. Since
e is continuous on [0, T ], it is uniformly continuous, and there exists η > 0 so that
for all t, t′ ∈ [0, T ] satisfying |t − t′| ≤ η, then |e(t) − e(t′)| ≤ ε/2. Let M ∈ N∗ and
0 = s0 < s1 < · · · < sM = T so that for all 0 ≤ j ≤ M − 1, |sj − sj+1| ≤ η. Then, it
holds that

max
0≤j≤M

|ep(sj)− e(sj)| −→
p→+∞

0,

because of the weak-* convergence in L∞[0, T ] of (φi,p)p∈N∗ to φi for all 0 ≤ i ≤ n.
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Thus, there exists p0 ∈ N∗ large enough such that for all p ≥ p0, max
0≤j≤M

|ep(sj) −
e(sj)| ≤ ε/2. Besides, the non-negativity of the functions φi and φi,p implies that e and
ep are non-decreasing functions, so that for all 0 ≤ j ≤M − 1 and all p ∈ N∗,

∀s ∈ [sj , sj+1], e(sj) ≤ e(s) ≤ e(sj+1) and ep(sj) ≤ ep(s) ≤ ep(sj+1).

As a consequence, for all p ≥ p0, all 0 ≤ j ≤M − 1 and all s ∈ [sj , sj+1],

|e(s)− ep(s)| ≤ max (|e(sj+1)− ep(sj)|, |ep(sj+1)− e(sj)|)
≤ max (|e(sj+1)− e(sj)|+ |e(sj)− ep(sj)|, |ep(sj+1)− e(sj+1)|+ |e(sj+1)− e(sj)|)
≤ ε.

Hence, for all p ≥ p0, ‖e − ep‖L∞(0,T ) ≤ ε, which yields the strong convergence of the
sequence (ep)p∈N∗ to e in L∞(0, T ).

For all k ∈ N∗ such that kτ ≤ T , we denote by wk,p a solution to (2.27) associated
to the fluxes (φi,p)0≤i≤n. The time-discretized associated quantities are denoted (using
obvious notation) by ϕk,p, ek,p and e′k,p.

Let us define the piecewise constant in time functions w(ε,τ,p)(y, t), v(ε,τ,p)(y, t),
στv

(ε,τ,p)(y, t), e(τ,p)(t) and ed(τ,p)(t) as follows: for all k ≥ 1 such that kτ ≤ T ,
(k − 1)τ < t ≤ kτ and almost all y ∈ (0, 1),

w(ε,τ,p)(y, t) := wk,p(y), v(ε,τ,p)(y, t) := Dh(wk,p(y)), στv
(ε,τ,p)(y, t) = Dh(wk−1,p(y)),

e(τ,p)(t) = ek,p, ed(τ,p)(t) := e′k,p, ϕ(τ,p) := ϕk,p.

Besides, let us set w(ε,τ,p)(0, ·) = Dh(v0) and v(ε,τ,p)(0, ·) = v0. Let us also denote by
(v

(ε,τ,p)
1 , · · · , v(ε,τ,p)

n ) the n components of v(ε,τ,p).

Then, the following system holds for all piecewise constant in time functions ψ :
(0, T )→ H1((0, 1);Rn),

1

τ

ˆ T

0

ˆ 1

0

(
v(ε,τ,p) − στv(ε,τ,p))

)
· ψ dy dt+

ˆ T

0

1

e2
(τ,p)

ˆ 1

0
∂yψ · (B(w(ε,τ,p))∂yw

(ε,τ,p)) dy dt

(2.31)

+ ε

ˆ T

0

ˆ 1

0
(∂yw

(ε,τ,p) · ∂yψ + w(ε,τ,p) · ψ) dy dt+

ˆ T

0

ed(τ,p)

e(τ,p)

ˆ 1

0
v(w(ε,τ,p)) · ψ

+ yv(w(ε,τ,p)) · ∂yψ) dy dt

=

ˆ T

0

1

e(τ,p)
ϕ(τ,p) · ψ(1) dt.

The set of piecewise constant functions in time ψ : (0, T )→ H1((0, 1);Rn) is dense in
L2((0, T );H1((0, 1);Rn)), so that (2.31) also holds for any ψ ∈ L2((0, T );H1((0, 1);Rn)).
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Using the fact that A satisfies assumption (H2) of Theorem 2.2 and the fact that
∂yw

k,p = D2h(vk,p)∂yv
k,p, we obtain for all k ∈ N∗ such that kτ ≤ T ,

ˆ 1

0
∂yw

k,p · (B(wk,p)∂yw
k,p) =

ˆ 1

0
∂yv(wk,p) ·

[
D2h(v(wk,p))A(v(wk,p))∂yv(wk,p)

]
dy

≥
n∑

i=1

ˆ 1

0
α
∣∣∣vi(wk,p)

∣∣∣
2mi−2

|∂yvi(wk,p)|2 dy

=
n∑

i=1

ˆ 1

0
|∂yGi(vi(wk,p))|2 dy

=

ˆ 1

0
|∂yG(v(wk,p))|2 dy,

where Gi(s) :=
√
α

mi
|s|mi for all s ∈ (0, 1) and G(z) = (Gi(zi))1≤i≤n for all z :=

(zi)1≤i≤n ∈ (0, 1)n. It follows from (2.30) that for all k ∈ N∗ such that kτ ≤ T ,
ˆ 1

0
h(v(wk,p)) + τ

ˆ 1

0
|∂yα̃(v(wk,p))|2

+ ετ

ˆ 1

0

(
|∂ywk,p|2 + |wk,p|2

)
≤ 2τ‖h‖L∞(D)

e′k,p
ek,p

+

ˆ 1

0
h(v(wk−1,p)).

Summing these inequalities yields, for k ∈ N∗ so that kτ ≤ T ,
ˆ 1

0
h(v(wk,p)) + τ

k∑

j=1

ˆ 1

0
|∂yG(v(wj,p))|2 + ετ

k∑

j=1

ˆ 1

0
(|∂ywj,p|2 + |wj,p|2) (2.32)

≤ 2τ‖h‖L∞(D)

k∑

j=1

e′j,p
ej,p

+

ˆ 1

0
h(v0),

≤ 2‖h‖L∞(D)

1

e0

k∑

j=1

τe′j,p +

ˆ 1

0
h(v0),

≤ 2‖h‖L∞(D)

(n+ 1)‖Φ‖L∞(0,T )

e0
T +

ˆ 1

0
h(v0).

In the sequel, C will denote an arbitrary constant, which may change along the
calculations, but remains independent on ε, τ , p and Φ. We are deliberately keeping
here the explicit dependence of the constants on ‖Φ‖L∞(0,T ) in view of the proof of
Proposition 2.6. It then holds that

‖ed(τ,p)‖L∞(0,T ) ≤ C‖Φ‖L∞(0,T ) and 0 < e0 ≤ ‖e(τ,p)‖L∞(0,T ) ≤ C‖Φ‖L∞(0,T ).

We also obtain from (2.32) and the fact that ‖Gi‖L∞(0,1) ≤
√
α

mi
for all 1 ≤ i ≤ n that

‖G(v(ε,τ,p))‖L2((0,T );H1(0,1)n) ≤ C
(
1 + ‖Φ‖L∞(0,T )

)
(2.33)
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and √
ε‖w(ε,τ,p)‖L2((0,T );H1(0,1)n) ≤ C

(
1 + ‖Φ‖L∞(0,T )

)
. (2.34)

Since for all 1 ≤ i ≤ n, mi ≤ 1, this implies that

‖∂yv(ε,τ,p)
i ‖L2((0,T );L2(0,1)) =

∥∥∥∥∥∥∥

∣∣∣v(ε,τ,p)
i

∣∣∣
1−mi

mi
∂y

(
|v(ε,τ,p)
i |mi

)
∥∥∥∥∥∥∥
L2((0,T );L2(0,1))

(2.35)

=

∥∥∥∥∥∥∥

∣∣∣v(ε,τ,p)
i

∣∣∣
1−mi

√
α

∂yGi(v
(ε,τ,p)
i )

∥∥∥∥∥∥∥
L2((0,T );L2(0,1))

≤ C‖∂yGi(v(ε,τ,p)
i )‖L2((0,T );L2(0,1)) ≤ C

(
1 + ‖Φ‖L∞(0,T )

)
.

Besides,
∥∥∥A(v(ε,τ,p)∂yv

(ε,τ,p)
∥∥∥
2

L2((0,T );L2(0,1)n)
≤
∥∥∥A(v(ε,τ,p))

∥∥∥
2

L∞((0,T );L∞(0,1)n×n)

∥∥∥∂yv(ε,τ,p)
∥∥∥
2

L2((0,T );L2(0,1)n)

(2.36)

≤ C
(
1 + ‖Φ‖L∞(0,T )

)
,

using the fact that A ∈ C0(D;Rn×n).

This yields that for all ψ ∈ L2((0, T );H1((0, 1);Rn)),

1

τ

∣∣∣∣∣

ˆ T

τ

ˆ 1

0

(v(ε,τ,p) − στv(ε,τ,p)) · ψ dy dt
∣∣∣∣∣ ≤

1

e20
‖A(v(ε,τ,p)∂yv

(ε,τ,p)‖L2((0,T );L2(0,1)n)‖∂yψ‖L2((0,T );L2(0,1)n)

+ ε‖w(ε,τ,p)‖L2((0,T );H1(0,1)n)‖ψ‖L2((0,T );H1(0,1)n)

+ 2
‖ed(τ,p)‖L∞(0,T )

e0
‖v(ε,τ,p)‖L2((0,T );H1(0,1)n)‖ψ‖L2((0,T );H1(0,1)n)

+
1

e0
‖Φ‖L∞(0,T )‖ψ‖L2((0,T );H1(0,1)n),

≤ C
(

1 + ‖Φ‖L∞(0,T )

)
‖ψ‖L2((0,T );H1(0,1)n).

This last inequality shows that

1

τ
‖v(ε,τ,p) − στv(ε,τ,p)‖L2((τ,T );(H1(0,1)n)′) ≤ C

(
1 + ‖Φ‖L∞(0,T )

)
. (2.37)

Step 3: The limit p→ +∞ and ε, τ → 0

For all p ∈ N∗, the functions e′p and ep are continuous on [0, T ], and hence are uniformly
continuous. As a consequence, there exists τp > 0 small enough so that for any t, t′ ∈
[0, T ] satisfying |t − t′| ≤ τp, then |e′p(t) − e′p(t′)| ≤ 1

p and |ep(t) − ep(t′)| ≤ 1
p . This

implies in particular that

‖ed(τp,p) − e
′
p‖L∞(0,T ) ≤

1

p
and ‖e(τp,p) − ep‖L∞(0,T ) ≤

1

p
.
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These inequalities, together with the fact that (e′p)p∈N∗ weakly-* converges to e′ in
L∞(0, T ) (respectively that (ep)p∈N∗ strongly converges to e in L∞(0, T )), imply that
the sequence

(
ed(τp,p)

)
p∈N∗

(respectively
(
e(τp,p)

)
p∈N∗) also weakly-* converges to e′ in

L∞(0, T ) (respectively strongly converges to e in L∞(0, T )).

In the following, we consider such a subsequence (τp)p∈N∗ . The uniform estimates
(2.37) and (2.35) allow us to apply the Aubin lemma in the version of Theorem 1
of [DJ12]. Up to extracting a subsequence which is not relabeled, there exists v =
(vi)1≤i≤n ∈ H1((0, T ); (H1((0, 1);Rn))′)∩L2((0, T );H1((0, 1);Rn)) so that as p goes to
infinity and ε goes to 0,

v(ε,τp,p) −→
p→+∞,ε→0

v,





strongly in L2((0, T );L2((0, 1);Rn)),
weakly in L2((0, T );H1((0, 1);Rn)),
and a.e. in (0, T )× (0, 1),

1

τp

(
v(ε,τp,p) − στpv(ε,τp,p)

)
⇀

p→+∞,ε→0
∂tv weakly in L2((0, T ); (H1((0, 1);Rn))′).

Because of the boundedness of v(ε,τp,p) in L∞((0, T );L∞((0, 1);Rn)), the convergence
even holds strongly in Lq((0, T );Lq((0, 1);Rn)) for any q < +∞, which is a conse-
quence of the dominated convergence theorem. The latter theorem, together with
A ∈ C0(D;Rn×n) implies also that the convergence A(v(ε,τp,p))−→A(v) holds strongly
in Lq((0, T );Lq((0, 1);Rn×n)). Moreover, using (2.36) and (2.34), up to extracting an-
other subsequence, there exists V ∈ L2((0, T );L2((0, 1);Rn)) so that

A(v(ε,τp,p))∂yv
(ε,τp,p) ⇀ V weakly in L2((0, T );L2((0, 1);Rn)),

εw(ε,τp,p) −→ 0 strongly in L2((0, T );H1((0, 1);Rn)).

The strong convergence of A(v(ε,τp,p)) in Lq((0, T );Lq((0, 1);Rn)) and the weak conver-
gence of ∂yv(ε,τp,p) in L2((0, T );L2((0, 1);Rn)) implies necessarily that V = A(v)∂yv.

We are now in position to pass to the limit ε → 0 and p → +∞ in (2.31) with
τ = τp and ψ ∈ L2((0, T );H1((0, 1);Rn)). Let us recall that

(
e(τp,p)

)
p∈N∗ (respec-

tively
(
ed(τp,p)

)
p∈N∗

) converges strongly (respectively weakly-*) to e (respectively e′) in

L∞(0, T ). We obtain that v is a solution to
ˆ T

0

ˆ 1

0
∂tv · ψ dy dt+

ˆ T

0

1

e(t)2

ˆ 1

0
∂yψ · (A(v)∂yv) dy dt (2.38)

+

ˆ T

0

e′(t)

e(t)

ˆ 1

0
(v · ψ + yv · ∂yψ) dy dt =

ˆ T

0

1

e(t)
ϕ · ψ(1) dt,

yielding the result.

Proof of Lemma 2.7

Proof of Lemma 2.7. We prove Lemma 2.7 by induction using the Leray-Schauder fixed-
point theorem. Let z ∈ L∞((0, 1);Rn) and δ ∈ [0, 1]. We consider the following linear
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problem: find w ∈ H1((0, 1);Rn) solution of

∀ψ ∈ H1((0, 1);Rn), az(w,ψ) = lδ,z(ψ), (2.39)

where

az(w,ψ) :=
1

e2
k

ˆ 1

0
∂yψ ·B(z)∂yw + ε

ˆ 1

0
(∂yw · ∂yψ + w · ψ)

and

lδ,z(ψ) := − δ
τ

ˆ 1

0
(v(z)− v(wk−1)) · ψ +

δ

ek
ϕk · ψ(1)− δ e

′
k

ek

ˆ 1

0
(v(z) · ψ + yv(z) · ∂yψ).

As a consequence of (H2), the matrix B(z) is positive semi-definite for any z ∈ Rn.
Thus, the bilinear form az is coercive and continuous on H1((0, 1);Rn), and it holds
that

∀ψ ∈ H1((0, 1);Rn), az(ψ,ψ) ≥ ε‖ψ‖2H1(0,1). (2.40)

Since v(z) ∈ L∞((0, 1);Rn) and ‖v(z)‖L∞(0,1) ≤ 1, the linear form lδ,z is continuous.
From the Agmon inequality, there exists C > 0 independent of Φ := (φ0, · · · , φn), ε or
τ such that for all ψ ∈ H1((0, 1);Rn),

|lδ,z(ψ)| ≤
(

2

τ
+ C ‖Φ‖L∞(0,T )

)
‖ψ‖H1(0,1), (2.41)

where ‖Φ‖L∞(0,T ) = max
i=0,··· ,n

‖φi‖L∞(0,T ). It immediately follows from the Lax-Milgram

theorem that there exists a unique solution w ∈ H1((0, 1);Rn) to (2.39).

We define the operator S : [0, 1]×L∞((0, 1);Rn)→ L∞((0, 1);Rn) as follows. For all
δ ∈ [0, 1] and χ ∈ L∞((0, 1);Rn), S(δ, χ) is the unique solution w ∈ H1((0, 1);Rn) ↪→
L∞((0, 1);Rn) of (2.39). We are going to prove that there exists a fixed-point wk ∈
H1((0, 1);Rn) of the equation S(1, wk) = wk using the Leray-Schauder fixed-point the-
orem (Theorem 2.8 in the Appendix). This will end the proof of Lemma 2.7 since such
a fixed-point wk is a solution of (2.27).

Let us check that all the assumptions of Theorem 2.8 are satisfied:

(A1) For all χ ∈ L∞((0, 1);Rn), S(0, χ) = 0;

(A2) Let us prove that S is a compact map. To this aim, let us first prove that it is
continuous. Let (δn)n∈N and (χn)n∈N be sequences in [0, 1] and L∞((0, 1);Rn)
respectively, δ ∈ [0, 1] and χ ∈ L∞((0, 1);Rn) so that δn −→

n→+∞
δ and χn −→

n→+∞
χ

strongly in L∞((0, 1);Rn). For all n ∈ N, let wn := S(δn, χn). From assump-
tion (H1) and the global inversion theorem, h : D → Rn is a C2-diffeomorphism.
Thus, together with the fact that A ∈ C0(D;Rn×n), it holds that the applications
z ∈ Rn 7→ v(z) = (Dh)−1(z) and z ∈ Rn 7→ B(z) = A(v(z))D2h((Dh)−1(z)) =
A(v(z)D

(
Dh−1

)
(z) are continuous. Hence, v(χn) −→

n→+∞
v(χ) andB(χn) −→

n→+∞
B(χ)

strongly in L∞((0, 1);Rn) and L∞((0, 1);Rn×n) respectively.

Besides, the uniform coercivity and continuity estimates (2.40) and (2.41) im-
ply that (wn)n∈N is a bounded sequence in H1((0, 1);Rn). Thus, up to the
extraction of a subsequence which is not relabeled, (wn)n∈N weakly converges
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to some w in H1((0, 1);Rn). Passing to the limit n → +∞ in (2.39) implies
that w = S(δ, χ). The uniqueness of the limit yields that the whole sequence
(wn)n∈N weakly converges to S(δ, χ) inH1((0, 1);Rn). The convergence thus holds
strongly in L∞((0, 1);Rn) because of the compact embedding H1((0, 1);Rn) ↪→
L∞((0, 1);Rn). This proves the continuity of the map S and its compactness
follows again from the compact embedding H1((0, 1);Rn) ↪→ L∞((0, 1);Rn).

(A3) Let δ ∈ [0, 1] and w ∈ L∞((0, 1);Rn) so that S(δ, w) = w. It holds that (taking
ψ = w as a test function in (2.39) with χ = w),

1

e2
k

ˆ 1

0
∂yw · (B(w)∂yw) + ε

ˆ 1

0
(|∂yw|2 + |w|2) = (2.42)

− δ

τ

ˆ 1

0
(v(w)− v(wk−1)) · w +

δ

ek
ϕk · w(1)− δ e

′
k

ek

ˆ 1

0
(v(w) · w + yv(w) · ∂yw).

(2.43)

Let us consider separately the different terms appearing in (2.43). First, by con-
vexity of h, and using the fact that w = Dh(v(w)), it holds that

δ

τ

ˆ 1

0

(v(w)−v(wk−1))·w =
δ

τ

ˆ 1

0

(v(w)−v(wk−1))·Dh(v(w)) ≥ δ

τ

ˆ 1

0

(h(v(w))−h(v(wk−1))).

(2.44)
Besides, using an integration by parts,

δ
e′k
ek

ˆ 1

0
(v(w) · w + yv(w) · ∂yw) = δ

e′k
ek

(
v(w)(1) · w(1)−

ˆ 1

0
yw · ∂yv(w)

)
,

= δ
e′k
ek

(
v(w)(1) ·Dh(v(w)(1))−

ˆ 1

0
yDh(v(w)) · ∂yv(w)

)
,

= δ
e′k
ek

(
v(w)(1) ·Dh(v(w)(1))−

ˆ 1

0
y∂y(h(v(w)))

)
,

= δ
e′k
ek

(
v(w)(1) ·Dh(v(w)(1))− h(v(w)(1)) +

ˆ 1

0
h(v(w))

)
. (2.45)

Using (2.26), we obtain

δ

ek
ϕk · w(1) = δ

e′k
ek
fk ·Dh(v(w)(1)). (2.46)

Finally, using (2.43), (2.44), (2.45) and (2.46), and again the convexity of h, we
obtain

δ

τ

ˆ 1

0

h(v(w)) + ε

ˆ 1

0

(|∂yw|2 + |w|2) +
1

e2k

ˆ 1

0

∂yw · (B(w)∂yw) (2.47)

≤ δ

τ

ˆ 1

0

h(v(wk−1)) + δ
e′k
ek

(
(fk − v(w)(1)) ·Dh(v(w)(1)) + h(v(w)(1))−

ˆ 1

0

h(v(w))

)

=
δ

τ

ˆ 1

0

h(v(wk−1)) +
e′k
ek

(
h(fk)−

ˆ 1

0

h(v(w))

)
.
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This inequality implies that

ε‖w‖2H1((0,1);Rn) ≤
(

2

τ
+ C‖Φ‖L∞(0,T )

)
‖h‖L∞(D),

for some constant C > 0 independent of ε, τ of Φ.
All the assumptions of the Leray-Schauder fixed-point theorem are thus satisfied.

This yields the existence of a fixed-point solution wk ∈ H1((0, 1);Rn) to S(1, wk) = wk.
Besides, using (2.47) with δ = 1, we have the discrete entropy inequality (2.28).

2.4.3 Proof of Proposition 2.5

Let us define by V :=
∑n

i=0 φi ∈ R∗+, ϕ := (φ1, · · · , φn)T and f := ϕ
V . From (T1), the

vector f :=
(
f i
)

1≤i≤n obviously belongs to the set D.
If h defined by (2.10) is an entropy density for which A satisfies assumptions (H1)-

(H2)-(H3), then A satisfies the same assumptions with the entropy density

h :

{ D → R
u 7→ h(u)− h(f)−Dh(f)(u− f).

Indeed, for all u ∈ D, Dh(u) = Dh(u) + g, where g := Dh(f) is a constant vector in Rn
and D2h(u) = D2h(u). Moreover, the entropy density h has the following interesting
property: f is a minimizer of h on D so that h(u) ≥ h(f) = 0 for all u ∈ D. In the rest
of the proof, for all w ∈ Rn, we will denote by v(w) = (vi(w))1≤i≤n := (Dh)−1(w) =

Dh−1(w − g).

Let
(
wε,k

)
k∈N be a sequence of solutions to the regularized time-discrete problems

(2.27) defined in Lemma 2.7 with the constant fluxes (φ0, · · · , φn) and the entropy
density h. The entropy inequality (2.28) then reads

1

τ

ˆ 1

0
h(v(wε,k)) + ε

ˆ 1

0
(|∂ywε,k|2 + |wε,k|2) +

1

e2
k

ˆ 1

0
∂yw

ε,k ·B(wε,k)∂yw
ε,k (2.48)

≤ 1

τ

ˆ 1

0
h(v(wε,k−1)) +

e′k
ek

(
h(f)−

ˆ 1

0
h(v(wε,k))

)
.

In our particular case, for all k ∈ N, e′k = V , ek = e0 + V kτ and h(f) = 0, so that we
obtain

e0 + V (k + 1)τ

τ

ˆ 1

0
h(v(wε,k))− e0 + V kτ

τ

ˆ 1

0
h(v(wε,k−1)) ≤ 0.

This implies that for all k ∈ N and ε > 0,

(e0 + V (k + 1)τ)

ˆ 1

0
h(v(wε,k)) ≤ (e0 + V τ)

ˆ 1

0
h(v(w0)). (2.49)

Let us denote by w(ε,τ) : R∗+ → H1((0, 1);Rn) the piecewise constant in time function
defined by

for a.a. y ∈ (0, 1), w(ε,τ)(t, y) = wε,k(y) if (k − 1)τ < t ≤ kτ.
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Let T > 0 and ξ ∈ L1(0, T ) such that ξ ≥ 0 a.e. in (0, T ). Inequality (2.49) and Fubini’s
theorem for integrable functions implies that

ˆ T

0

ˆ 1

0

[
(e0 + V (k + 1)τ)h(v(w(ε,τ)))− (e0 + V τ)h(v(w0))

]
ξ(t) dy dt ≤ 0.

From the proof of Theorem 2.4, we know that up to the extraction of a subsequence
which is not relabeled,

(
v(w(ε,τ))

)
ε,τ>0

converges strongly in L2
loc(R∗+;L2((0, 1);Rn))

and a.e. in R∗+ × (0, 1) as ε and τ go to zero to a global weak solution v to (2.19).
Using Lebesgue dominated convergence theorem, and passing to the limit ε, τ → 0 in
the above inequality yields

ˆ T

0

ˆ 1

0

[
(e0 + V t)h(v)− e0h(v(w0))

]
ξ(t) dy dt ≤ 0,

which implies that there exists C > 0 such that for almost all t > 0,

(e0 + V t)

ˆ 1

0
h(v) ≤ C, (2.50)

which yields inequality (2.21). In the rest of the proof, C will denote an arbitrary
positive constant independent on the time t > 0.

Furthermore, since v ∈ H1((0, T ); (H1((0, 1); Rn))′) ∩ L2((0, T );H1((0, 1);Rn)),
it holds that v ∈ C0((0, T );L2((0, 1);Rn)) from [LM12], and the Lebesgue dominated
convergence theorem implies that t ∈ R∗+ 7→

´ 1
0 h(v(t, y)) dy is a continuous function.

Inequality (2.50) then holds for all t > 0.
For all 0 ≤ i ≤ n, let us denote by vi(t) :=

´ 1
0 vi(t, y) dy. By convention, we define

v0(t, y) := 1− ρv(t,y) and f0 := 1− ρf . It can be checked from the weak formulation of
(2.27) that ˆ 1

0
vi

(
wε,k

)
=
kφiτ + e0

´ 1
0 v

0
i

e0 + V (k + 1)τ
.

Passing to the limit ε, τ → 0 using the Lebesgue dominated convergence theorem, we
obtain that for almost all t > 0,

vi(t) =
e0

´ 1
0 v

0
i (y) dy + tφi
e0 + V t

,

so that |vi(t)− f i| ≤
C

e0 + V t
. The continuity of vi implies that this equality holds for

all t > 0.
The Csizàr-Kullback inequality states that for all t > 0,

‖vi(t, ·)− vi(t)‖2L1(0,1) ≤ 2

ˆ 1

0
vi(t, y) log

vi(t, y)

vi(t)
dy

= 2

ˆ 1

0
vi(t, y) log

vi(t, y)

f i
dy + 2

ˆ 1

0
vi(t, y) log

f i
vi(t)

dy.
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Thus,
n∑

i=0

∥∥vi(t, ·)− f i
∥∥
L1(0,1)

≤
n∑

i=0

‖vi(t, ·)− vi(t)‖L1(0,1) + |f i − vi(t)|

≤
√

2

ˆ 1

0
h(v) +

n∑

i=0

[√
2

∣∣∣∣log
vi(t)

f i

∣∣∣∣+ |f i − vi(t)|
]

≤
√

C

e0 + V t
.

Hence inequality (2.22) and the result.

2.4.4 Proof of Proposition 2.6

Let (Φm)m∈N ⊂ Ξ be a minimizing sequence for J i.e such that

lim
m→+∞

J (Φm) = inf
Φ∈Ξ
J (Φ).

By definition of the set Ξ, the sequence (Φm)m∈N is bounded in L∞(0, T ). Thus, up to
a non relabeled extraction, it weakly-* converges to some limit Φ∗ ∈ Ξ in L∞(0, T ). As
a consequence,

(
d
dteΦm

)
m∈N (respectively (eΦm)m∈N) converges weakly-* (respectively

strongly) in L∞(0, T ) to d
dteΦ∗ (respectively eΦ∗).

For each m ∈ N, let vΦm be the unique global weak solution to (2.19) associated to
the fluxes Φm. Its uniqueness is a consequence of assumption (C1). From the bounds
obtained in the proof of Theorem 2.4 and the boundedness of (Φm)m∈N in L∞(0, T ),
it holds that the sequences ‖∂tvΦm‖L2((0,T );(H1(0,1))′ , ‖A(vΦm)∂yvΦm‖L2((0,T );L2(0,1)) and
‖∂yvΦm‖L2((0,T );L2(0,1)) are also uniformly bounded in m.

Thus, up to the extraction of a subsequence which is not relabeled, using
the compact injection of L2((0, T );H1((0, 1);Rn)) ∩ H1((0, T ); (H1((0, 1);Rn))′) into
C((0, T );L2((0, 1);Rn)) (see [LM12]), there exists v∗ ∈ L2((0, T );H1((0, 1);Rn)) ∩
H1((0, T ); (H1((0, 1);Rn))′) and V∗ ∈ L2((0, T );L2((0, 1);Rn)) so that

vΦm⇀v∗ weakly in L2((0, T );H1((0, 1);Rn)) ∩H1((0, T ); (H1((0, 1);Rn))′),

vΦm −→ v∗ strongly in C((0, T );L2((0, 1);Rn)) and a.e. in (0, T )× (0, 1),

A(vΦm)∂yvΦm⇀V∗ weakly in L2((0, T );L2((0, 1);Rn)).

Using similar arguments as in the proof of Theorem 2.4, we also obtain that V∗ is
necessarily equal to A(v∗)∂yv∗. Passing to the limit m → +∞, we obtain that for all
ψ ∈ L2((0, T );H1((0, 1);Rn)),

ˆ T

0

ˆ 1

0
∂tv∗ · ψ dt dy +

ˆ T

0

ˆ 1

0

1

eΦ∗(t)2
∂yψ · (A(v∗)∂yv∗) dt dy

+

ˆ T

0

d
dteΦ∗(t)

eΦ∗(t)

ˆ 1

0
(v∗ · ψ + yv∗ · ∂yψ) dt dy =

ˆ T

0

1

eΦ∗(t)
ϕ∗(t) · ψ(1) dt.
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Assumption (C1) yields v∗ = vΦ∗ . The above convergence results then imply that

J (Φm) −→
m→+∞

J (Φ∗),

and hence Φ∗ is a minimizer of problem (2.24). Hence the result.

2.5 Numerical tests

In this section, we present some numerical tests illustrating the results of Section 2.3
on the prototypical example of Section 2.2.1. In Section 2.5.1, we present the numerical
scheme used in our simulations to compute an approximation of a solution of (2.19). In
Section 2.5.2 and Section 2.5.3, some numerical tests which illustrate Proposition 2.5
and Proposition 2.6 are detailed.

2.5.1 Discretization scheme

In view of the optimization problem (2.24) we are aiming at, it appears that a fully
implicit unconditionally stable scheme is needed to allow the use of reasonably large
time steps.

We present here the numerical scheme used for the discretization of (2.19), for the
particular model presented in Section 2.2.1. We do not provide a rigorous numerical
analysis for this scheme here.

Let M ∈ N∗ and ∆t := T
M . We define for all 0 ≤ m ≤M , tm := m∆t. The discrete

external fluxes are characterized for every 0 ≤ i ≤ n by vectors φ̂i :=
(
φ̂mi

)
1≤m≤M

∈
RM+ , where φ̂mi =

´ tm
tm−1

φi(s) ds. For every 1 ≤ m ≤ M , the thickness of the thin film
and it derivative at time tm are approximated respectively by

em := e0 +
m∑

p=1

n∑

i=0

φ̂pi∆t ≈ e(tm), and edm :=
n∑

i=0

φ̂mi ≈ e′(tm).

In addition, let Q ∈ N∗ and ∆y := 1
Q and yq := (q − 0.5)∆y. For all 0 ≤ i ≤ n,

1 ≤ q ≤ Q and 0 ≤ m ≤M , we denote by vm,qi the finite difference approximation of vi
at time tm and point yq ∈ (0, 1). Here again, we use the convention that v0 = 1− ρv.

We use a centered second-order finite difference scheme for the diffusive part of the
equation, and a first-order upwind scheme for the advection part, together with a fully
implicit time scheme. Assuming that the approximation

(
vm−1,q
i

)
0≤i≤n,1≤q≤Q

is known,

one computes (ṽm,qi )0≤i≤n, 1≤q≤Q as solutions of the following sets of equations.
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For all 0 ≤ i ≤ n and 2 ≤ q ≤ Q− 1,
(
ṽm,qi − vm−1,q

i

)

∆t
=
edm
em

yq

(
ṽm,q+1
i − ṽm,qi

∆y

)
(2.51)

+
∑

0≤j 6=i≤n

Kij

e2
m

ṽm,qj

(
ṽm,q+1
i + ṽm,q−1

i − 2ṽm,qj

2∆y2

)

−
∑

0≤j 6=i≤n

Kij

e2
m

ṽm,qi

(
ṽm,q+1
j + ṽm,q−1

j − 2ṽm,qj

2∆y2

)

together with boundary conditions which reads for all 0 ≤ i ≤ n,
∑

0≤j 6=i≤n

Kij

em

[
ṽm,1j

(
ṽm,2i − ṽm,1i

∆y

)
− ṽm,1i

(
ṽm,2j − ṽm,1j

∆y

)]
= 0, (2.52)

∑

0≤j 6=i≤n

Kij

em

[
ṽm,Qj

(
ṽm,Q−1
i − ṽm,Qi

∆y

)
− ṽm,Qi

(
ṽm,Q−1
j − ṽm,Qj

∆y

)]
= −edmṽm,Qi + φ̂mi .

(2.53)

The nonlinear system of equations (2.51)-(3.6)-(2.53), whose unknowns are (ṽm,qi )0≤i≤n,1≤q≤Q

is solved using Newton iterations with initial guess
(
vm−1,q
i

)
0≤i≤n,1≤q≤Q

. The obtained

solution does not satisfy in general the desired non-negativeness and volumic constraints.
This is the reason why an additional projection step is performed. For all 0 ≤ i ≤ n
and 1 ≤ q ≤ Q, we define

vm,qi :=
[ṽm,qi ]+∑n
j=0[ṽm,qj ]+

,

so that

vm,qi ≥ 0 and
n∑

j=0

vm,qj = 1.

We numerically observe that this scheme is unconditionally stable with respect to
the choice of discretization parameters ∆t and ∆y.

A standard practice in the production of thin film CIGS (Copper, Indium, Gallium,
Selenium) solar cells by means of PVD process is to consider piecewise-constant external
fluxes. In the following numerical tests, we consider time-dependent functions of the
form

φi(t) =





αi1 0 < t ≤ τ i1,
αi2 τ i1 < t ≤ τ i2,
αi3 τ i2 < t ≤ T,

(2.54)

where 0 < τ i1 < τ i2 < T and (αi1, α
i
2, α

i
3) ∈ (R+)3 are non-negative constants for all

0 ≤ i ≤ n. Besides, we consider initial condition of the form

v0
i (y) =

wi(y)∑n
j=0wj(y)

∀0 ≤ i ≤ n, (2.55)
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where wi : [0, 1]→ R+ are functions which will be precised below. In the whole section,
system (2.19) is simulated with four species (i.e. n = 3).

In Figure 2.2 are plotted the results obtained for the simulation of (2.19) with the
following parameters :

• T = 200, M = 200, Q = 100, ∆t = 1, ∆y = 0.01, e0 = 1.

• Cross-diffusion coefficients Kij

j = 0 j = 1 j = 2 j = 3

i = 0 0 0.1141 0.0776 0.0905
i = 1 0.1141 0 0.0646 0.0905
i = 2 0.0776 0.0646 0 0.0905
i = 3 0.0905 0.0905 0.0905 0

• External fluxes of the form (2.54) with τ i1 = 66 and τ i2 = 132 for every 0 ≤ i ≤ n
and with

i = 0 i = 1 i = 2 i = 3

αi1 0.9 2 0.2 0.7
αi2 1.4 1.5 1.2 0.3
αi3 0.9 2 0.2 0.7

• Initial concentrations v0
i of the form (2.55) with w0(y) = y, w1(y) = 2y, w2(y) =√

y and w3(y) = 0.

The profile of the external fluxes is plotted in Figure 2.2-(a). In Figure 2.2-(b) and
Figure 2.2-(c) are given respectively the the initial and the final concentrations of the
four species.

2.5.2 Long-time behaviour results

In this section is given a numerical illustration of Proposition 2.5. We consider time-
dependent functions of the form

φi(t) = βi, ∀0 ≤ t ≤ T. (2.56)

where (βi)0≤i≤n ∈ (R∗+)n+1. In Figure 2.3 are plotted the results obtained for the the
simulation of (2.19) with the following parameters :

• T = 2000, M = 2000, Q = 100, ∆t = 1, ∆y = 0.01, e0 = 1.

• Cross-diffusion coefficients Kij

j = 0 j = 1 j = 2 j = 3

i = 0 0 0.1141 0.0776 0.0905
i = 1 0.1141 0 0.0646 0.0905
i = 2 0.0776 0.0646 0 0.0905
i = 3 0.0905 0.0905 0.0905 0
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Figure 2.2 – Simulation of (2.19).

• External fluxes of the form (2.56) with

i=0 i=1 i=2 i=3
βi 0.9 0.8 1.7 0.5

• Initial concentrations v0
i of the form (2.55) with

w0(y) = exp

(
−(y − 0.5)2

0.04

)
, w1(y) = y2, w2(y) = 1−w0(y), w3(y) = | sin(πy)|.

For all 0 ≤ i ≤ n, let v̄i := βi/
∑n

j=0 βj . We consider the time-dependent quantity

γ(t) =
1

h(v(t, ·))

where the relative entropy h is defined in (2.21). We also consider the quantities

ηi(t) =
1

‖vi(t, ·)− v̄i‖2L1(0,1)
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and
η(t) =

1
n∑
i=0
‖vi(t, ·)− v̄i‖2L1(0,1)

In Figure 2.3-(a) and 2.3-(b) are plotted respectively the initial and the final con-
centration profiles.

The evolution of (ηi(t))0≤i≤n (respectively η(t) and γ(t)) with respect to t is shown
in Figure 2.3-(c) (respectively 2.3-(d) and 2.3-(e)). We numerically observe that these
quantities are affine functions of t in the asymptotic regime which illustrates the theo-
retical result of Proposition 2.5.

2.5.3 Optimization of the fluxes

The optimization problem (2.24) is solved in practice using an adjoint formulation
associated to the discretization scheme described in Section 2.5.1. We refer the reader
to Chapter 3 for more details and comparisons between our model and experimental
results obtained in the context of thin film CIGS solar cell fabrication. To illustrate
Proposition 2.6, we proceed as follows: first, we perform a simulation of (2.19) with
external fluxes Φsim for a duration T to obtain a final thickness eΦsim(T ) and final
concentrations vΦsim(T, ·), then, we solve the minimization problem (2.24) to obtain
optimal fluxes Φ∗ where the target concentrations are

vopt(y) = vΦsim(T, y) ∀ y ∈ (0, 1)

and the target thickness is
eopt = eΦsim(T ).

Lastly, we perform another simulation of (2.19) with the obtained optimal fluxes Φ∗

and compare the final concentrations vΦ∗ and the final thickness eΦ∗ to the target
concentrations vopt and the target thickness eopt.

In Figures 2.4-(a), 2.5-(a), 2.6-(a) and 2.7-(a) are plotted the final concentration
profiles vΦsim(T, ·) resulting from the simulation of (2.19) with the following parameters
:

• T = 120, M = 120, Q = 100, ∆t = 1, ∆y = 0.01, e0 = 1.

• Cross-diffusion coefficients Kij

j = 0 j = 1 j = 2 j = 3

i = 0 0 0.1141 0.0776 0.0905
i = 1 0.1141 0 0.0646 0.0905
i = 2 0.0776 0.0646 0 0.0905
i = 3 0.0905 0.0905 0.0905 0

• External fluxes Φsim of the form (2.54) with

i = 0 i = 1 i = 2 i = 3

αi1 0.9 2 0.2 0.7
αi2 1.4 1.5 1.2 0.3
αi3 0.9 2 0.2 0.7
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Figure 2.3 – Long-time behavior in the case of non negative constant external fluxes.
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• Initial concentrations v0
i of the form (2.55) with w0(y) = y, w1(y) = 2y, w2(y) =√

y and w3(y) = 0.

We use a quasi-Newton iterative gradient algorithm for the resolution of the minimiza-
tion problem. At each iteration of the algorithm, the approximate hessian is updated
by means of a BFGS procedure and the optimal step size is the solution of a line search
subproblem. More details on the numerical optimization algorithms can be found in
[JBS06]. The initial guess Φ0 is taken of the form (2.56) where βi = 1 for all 0 ≤ i ≤ n.

The algorithm is run until one of the following stopping criterion is reached : either
(J (Φ) ≤ ε) or (‖∇ΦJ (Φ)‖L2 ≤ ν) with ε = 10−5 and ν = 10−5.
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Figure 2.4 – Reconstruction of the final concentration of the species i = 0.
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Figure 2.5 – Reconstruction of the final concentration of the species i = 1.

In Figure 2.8-(a) we plot the evolution of the value of the cost J (Φ) with respect
to the number of iterations.

We numerically observe that all the concentrations are well reconstructed and that
the value of the optimal thickness eΦ∗ = 483.4022 is close to the target thickness eΦsim =
483.4. Unlike the external fluxes Φsim, the optimal fluxesΦ∗ are not piecewise constant.
These tests show that the uniqueness of a solution to the optimization problem (2.24)
can not be expected in general.
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Figure 2.6 – Reconstruction of the final concentration of the species i = 2.
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Figure 2.7 – Reconstruction of the final concentration of the species i = 3.
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Figure 2.8 – Convergence of the BFGS gradient descent algorithm for the minimization prob-
lem (2.24).
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2.6 Conclusion

In this work, we propose and analyze a one-dimensional model for the description of a
PVD process. The evolution of the local concentrations of the different chemical species
in the bulk of the growing layer is described via a system of cross-diffusion equations
similar to the ones studied in [BDFPS10, Jue15a]. The growth of the thickness of the
layer is related to the external fluxes of atoms that are absorbed at the surface of the
film.

The existence of a global weak solution to the final system using the boundedness
by entropy method under assumptions on the diffusion matrix of the system close to
those needed in [Jue15a] is established. In addition, the entropy density h is required
to be continuous (hence bounded) on the set D =

{
u = (ui)1≤i≤n ∈ Rn+,

∑n
i=1 ui ≤ 1

}
.

We prove the existence of a solution to an optimization problem under the assump-
tion that there exists a unique global weak solution to the obtained system, whatever
the value of the external fluxes.

Lastly, in the case when the entropy density is defined by h(u) =
∑n

i=1 ui log ui +
(1 − ρu) log(1− ρu), we prove in addition that, when the external fluxes are constant
and positive, the local concentrations converge in the long time to a constant profile at
a rate which scales like O

(
1
t

)
.

A discretization scheme, which is observed to be unconditionnaly stable, is intro-
duced for the discretization of (2.19). This scheme enables to preserve constraints (2.5)
at the discretized level.

We see this work as a preliminary step before tackling related problems in higher
dimension, including surfacic diffusion effects. Besides, the proof of assumption (C1)
remains an open question in general at least to our knowledge. Lastly, a nice theoretical
question which is not tackled in this paper, but will be the object of future research, is
the characterization of the set of reachable concentration profiles.
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2.7 Appendix

2.7.1 Formal derivation of the diffusion model (2.3)

We present in this section a simplified formal derivation of the cross-diffusion model
(2.3) from a one-dimensional microscopic lattice hopping model with size exclusion, in
the same spirit than the one proposed in [BDFPS10].
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We consider here a solid occupying the whole space R and discretize the domain
using a uniform grid of step size ∆x > 0. At any time t ∈ [0, T ], we denote by uk,ti the
number of atoms of type i (0 ≤ i ≤ n) in the kth interval [k∆x, (k+ 1)∆x) (k ∈ Z). Let
∆t > 0 denote a small enough time step. We assume that during the time interval ∆t,
an atom i located in the kth interval can exchange its position with an atom of type j
(j 6= i) located in one of the two neighbouring intervals with probability pij = pji > 0.
In average, we obtain the following evolution equation for uk,ti :

uk,t+∆t
i − uk,ti =

∑

0≤j 6=i≤n
pij

(
uk+1,t
i uk,tj + uk−1,t

i uk,tj − u
k,t
i uk+1,t

j − uk,ti uk−1,t
j

)

=
∑

0≤j 6=i≤n
pij

[
uk,tj

(
uk+1,t
i + uk−1,t

i − 2uk,ti

)
− uk,ti

(
uk+1,t
j + uk−1,t

j − 2uk,tj

)]
.

This yields that

uk,t+∆t
i − uk,ti

∆t
=

2∆x2

∆t

∑

0≤j 6=i≤n
pij

[
uk,tj

uk+1,t
i + uk−1,t

i − 2uk,ti
2∆x2

− uk,ti
uk+1,t
j + uk−1,t

j − 2uk,tj
2∆x2

]
.

Choosing ∆t and ∆x so that these quantities satisfy a classical diffusion scaling 2∆x2

∆t =
α > 0, denoting by Kij := αpij and letting the time step and grid size go to 0, we
formally obtain the following equation for the evolution of ui on the continuous level:

∂tui =
∑

0≤j 6=i≤n
Kij (uj∆xui − ui∆xuj) ,

which is identical to the system of equations (2.3) introduced in the first section. Of
course, this formal argument can be easily extended to any arbitrary dimension.

2.7.2 Leray-Schauder fixed-point theorem

Theorem 2.8 (Leray-Schauder fixed-point theorem). Let B be a Banach space and
S : B × [0, 1]→ B be a continuous map such that

(A1) S(x, 0) = 0 for each x ∈ B;

(A2) S is a compact map;

(A3) there exists a constant M > 0 such that for each pair (x, σ) ∈ B × [0, 1] which
satisfies x = S(x, σ), we have ‖x‖ < M .

Then, there exists a fixed-point y ∈ B satisfying y = S(y, 1).
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CHAPTER 3

SIMULATION OF CIGS LAYER PRODUCTION PROCESS

In this chapter, we report some results of our collaboration work with the IRDEP lab.

Abstract. The one-dimensional model proposed and theoretically analyzed in
Chapter 2 is extended to take into account the evolution of the temperature during
the production process of CIGS thin film layer. An Arrhenius law is introduced in or-
der to take into account the temperature dependence of the cross-diffusion coefficients
and additional surface absorption rates are introduced in order to have a more realistic
simulation of the co-evaporation process. Lastly, an inverse problem is proposed for
the calibration of the values of the diffusion coefficients and the absorption rates from
experimental measures. The numerical method used to solve the inverse problem is
described and some numerical results are presented.

Contents
3.1 Présentation du modèle . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Discrétisation du système d’EDP . . . . . . . . . . . . . . . . 99

3.3 Post-traitement des données expérimentales . . . . . . . . . 101

3.4 Calibration du modèle . . . . . . . . . . . . . . . . . . . . . . 102

3.4.1 Formulation du problème inverse. . . . . . . . . . . . . . . . . 102

3.4.2 Calcul du gradient par approche duale . . . . . . . . . . . . . 102

3.4.3 Résultats numériques . . . . . . . . . . . . . . . . . . . . . . 105

3.1 Présentation du modèle

Rappelons d’abord de manière succincte, le procédé de déposition de la couche CIGS par
le procédé Physical Vapor Deposition [Mat10]. Une couche de molybdène est d’abord
déposée sur un substrat de verre. Le "wafer" obtenu est ensuite introduit dans un four
plasma dans lequel sont injectées sous forme gazeuse les différentes entités atomiques qui
vont former la couche de CIGS (à savoir le Cuivre, l’Indium, le Gallium et le Sélénium).
Voir la Figure 3.1.



Figure 3.1 – Le procédé de co-évaporation pour la fabrication de cellules solaires à couches
minces de type CIGS. En haut, une vraie image du four plasma (photos prise lors d’une
visite à l’IRDEP en juin 2015). En bas, un schéma explicatif du procédé. Source :
https://www.azonano.com

Le film mince de CIGS croît au fur et à mesure que les atomes des différentes es-
pèces chimiques injectées se déposent sur le substrat. De plus, comme la température
de l’échantillon est maintenue au cours du procédé à un niveau très élevé, les atomes
des différentes espèces chimiques diffusent à l’intérieur du film ainsi formé. Les deux
phénomènes suivants doivent donc être pris en compte : la diffusion inter-espèce due à
la température élevée du système et la croissance du film due à la déposition des atomes
au cours du temps. Notre modèle proposé et analysé théoriquement dans le Chapitre 2
permet de prendre en compte ces deux phénomènes mais sous les hypothèses simpli-
ficatrices suivantes : la diffusion inter-espèce est indépendante de la température et
toutes les espèces sont absorbées par le film de la même manière. Ces deux hypothèses
ne permettent pas de reproduire fidèlement les résultats des expériences. Rappelons,
pour mémoire, les équations de notre modèle avant de présenter les extensions qui per-
mettront de l’améliorer et ainsi reproduire plus fidèlement les résultats expérimentaux
obtenus par l’IRDEP.

On note T > 0 la durée totale du procédé de fabrication et A l’ensemble des dif-
férentes espèces chimiques mises en présence lors de la croissance du film, qui sont dans
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notre cas : le cuivre (Cu), l’indium (In), le gallium (Ga), le sélénium (Si) et le molyb-
dène (Mo). Les atomes de sélénium sont situés sur un sous sous-réseau cristallin et
ne diffusent pas avec les autre espèces chimiques. Aussi, on peut considérer seulement
l’ensemble A := {Cu, In, Ga, Mo}. Pour tout t ∈ (0, T ), nous notons e(t) l’épaisseur

Figure 3.2 – Schéma simplifié du procédé PVD pour la fabrication de la couche CIGS.

du film mince à l’instant t. De plus, pour tout x ∈ (0, e(t)) et tout A ∈ A, nous notons
cA(x, t) la concentration en l’espèce A à l’instant t et à la profondeur x de l’échantillon.

On suppose qu’à l’instant t = 0 (correspondant au début du procédé), le film occupe
un domaine (0, e0) avec e0 > 0 (typiquement e0 = 1µm représente la couche de molyb-
dène déposée en début de fabrication), et que les profils de concentration à l’instant
initial sont connus. Pour tout x ∈ (0, e0) et A ∈ A, c0

A(x) désigne la concentration à
l’instant t = 0 en l’entité A localement au point x ∈ (0, e0). On suppose de plus que
ces profils initiaux vérifient les conditions suivantes:

∀x ∈ (0, e0), cA(0, x) = c0
A(x) avec c0

A(x) ≥ 0 et
∑

A∈A
c0
A(x) = 1.

Pour tout t ∈ (0, T ), et pour tout A ∈ A, on note φA(t) la valeur du flux de l’espèce
A imposé à l’instant t lors de la croissance du film. On suppose que φA : (0, T ) → R+

est à valeurs positives. Enfin, notons KAB le coefficient de diffusion des atomes de
l’espèce A avec les atomes de l’espèce B pour chaque couple d’espèce (A,B) ∈ A2.
L’ensemble des équations qui régissent la dynamique de notre système, en fonction des
flux, de l’épaisseur initiale et des profils de concentrations est donnée par





e(t) = e0 +
´ t

0 ΣA∈AφA(s) ds, t ∈ (0, T ),
∂tcA = divxJA(t, x, c), (t, x) ∈ (0, T )× (0, e(t)),
JA(t, 0, c) = 0, t ∈ (0, T ),
JA(t, e(t), c) + e′(t)cA(t, e(t)) = φA(t), t ∈ (0, T ),
cA(0, x) = c0

A(x), x ∈ (0, e0),

(3.1)

où le flux JA : (0, T )× (0, e(t)) 7→ R est défini par

JA(t, x, c) =
∑

B∈A, B 6=A
KAB (cB∇xcA − cA∇xcB) (3.2)
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Introduisons maintenant les trois extensions que nous ajoutons au modèle (3.1) afin
qu’il soit plus descriptif.

1. La température : Notons par θ : (0, T ) 7→ R∗+ le profil de température à l’intérieur
du film au cours du temps, que l’on suppose homogène pour simplifier.

2. Les coefficients de diffusion : Considérons que la dépendance des coefficients de
diffusion inter-espèces en la températeure est donnée par une loi d’Arrhénius.
Plus précisément, la valeur du coefficient KAB entre l’espèce A et l’espèce B en
fonction de la température θ(t) de l’échantillon est supposée être de la forme

KAB(θ(t)) = DAB exp

(
− EAB
κθ(t)

)

où κ est la constante de Boltzmann1, DAB et EAB sont des constantes positives
à déterminer pour chaque couple (A,B) ∈ A2.

3. Les taux d’absorption : Lors du procédé d’évaporation, les taux d’absorption des
différentes espèces chimiques par la surface le film en formation ne sont pas for-
cément égaux (les atomes de cuivre sont par exemple mieux absorbés que ceux
de l’indium ou du gallium). On introduit donc pour chaque espèce A ∈ A un
paramètre λA ∈ R+ qui modélise le taux d’absorption des atomes de type A à la
surface du film en cours de formation. Ceux-ci, pour simplifier, sont supposés être
indépendats de la tempéréture de l’échantillon.

Le nouveau système d’équations prenant en comptes ces extensions s’écrit alors:




e(t) = e0 +
´ t

0 ΣA∈AλAφA(s) ds, t ∈ (0, T ),
∂tcA = divxJA(t, x, c), (t, x) ∈ (0, T )× (0, e(t)),
JA(t, 0, c) = 0, t ∈ (0, T ),
JA(t, e(t)c) + e′(t)cA(e(t), t) = λAφA(t), t ∈ (0, T ),
cA(0, x) = c0

A(x), x ∈ (0, e0)

(3.3)

avec le flux JA donné par

JA(t, x, c) =
∑

B∈A, B 6=A
KAB(θ(t)) (cB∇xcA − cA∇xcB) (3.4)

Bien que les résultats produits par ce modèle simple soient satisfaisants, il est im-
portant de signaler ici quelques limitations de ce modèle.

D’une part, les effets de géométrie 3D (rugosité de surface, inhomogénéités lon-
gitudinales,...) ne sont pas pas pris en compte dans ce modèle 1D. D’autre part, la
formation et la propagation de défauts dans la structure cristalline du film ne sont pas
prises en compte. Toutefois, l’évolution des défauts de types lacunes ou impuretés peut
être décrite par ce modèle en considérant ces défauts comme des espèces chimiques
supplémentaires. Enfin, lors du dépôt des atomes dans le four à haute température,
il se trouve que des réactions chimiques peuvent avoir lieu entre les différentes espèces
comme par exemple la réaction CuInSe2 � Cu + In + 2Se. Ces éventuelles réactions
chimiques sont également ignorées.

1κ = 1, 38064852× 10−23m2kgs−2K−1.
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3.2 Discrétisation du système d’EDP

Cette section est dédiée au schéma numérique utilisée pour lé résolution du système (3.3).
Le schéma présenté ici a déjà été partiellement décrit dans la Section 2.5.1 du chapitre
précédent. Cela dit, pour des raisons de clarté et dans le but de fixer les notations
qu’on utilisera dans la suite, nous allons rappeler brièvement la dérivation du schéma.
A l’aide du changement de variables y = x

e(t) , les équations (3.3) sont reformulées afin
de se ramener à un domaine de référence (0, 1) qui ne dépend plus du temps. Le système
suivant d’inconnues uA : (0, T ) × (0, 1) 3 (t, y) 7→ uA(t, y) ∈ R pour A ∈ A est ainsi
obtenu





e(t) = e0 +
´ t

0 ΣA∈AλAφA(s) ds, t ∈ (0, T ),

∂tuA = e′(t)
e(t) y∂yuA + 1

e2(t)
divyJA(t, y, u), (t, y) ∈ (0, T )× (0, 1),

1
e(t)JA(t, 0, u) = 0, t ∈ (0, T ),
1
e(t)JA(t, 1, u) + e′(t)uA(t, 1) = λAφA(t), t ∈ (0, T ),

uA(0, y) = u0
A(y), y ∈ (0, 1),

(3.5)

Afin de résoudre numériquement le système (3.5)-(3.4), on introduit les grilles de
discrétisation uniformes en temps et en espace suivantes {0 = t0, t1, · · · , tN = T} et
{0 = y0, y1, · · · , yI = 1} où tn := n∆t pour 1 ≤ n ≤ N et yi := i∆y pour 1 ≤ i ≤ I
avec δt = T

N et δy = 1
I pour des valeurs N, I ∈ N∗ choisies. Le profil de température

ainsi que les flux sont discrétisés comme suit

Φn
A ≈

ˆ tn

tn−1

φA(s)ds, θn ≈
ˆ tn

tn−1

θ(s)ds, ∀A ∈ A, ∀1 ≤ n ≤ N.

Notons e0 = e0 l’épaisseur initiale de l’échantillon. Pour tout 1 ≤ n ≤ N , l’épaisseur de
la couche ainsi que sa dérivée sont approchées respectivement par

en = e0 +
n∑

k=1

∑

A∈A
λAΦk

A∆t ≈ e(tn), edn =
∑

A∈A
λAΦn

A ≈ e′(tn).

L’approximation par des différences finies de la solution continue uA à l’instant
tn ∈ (0, T ) au point yi ∈ (0, 1) sera notée ui,nA . On approche le terme de diffusion
par une différence finie d’ordre deux et le terme d’advection par une différence finie
d’ordre un décentrée en les points y1 ≤ yi ≤ yI−1 et centrée en le point yI . On
utilise un schéma d’Euler implicite pour la discrétisation en temps. Supposons que
l’approximation (ui,n−1

A )A∈A soit connue, alors (ũi,nA )A∈A est obtenue comme solution
du système suivant : Pour tout A ∈ A et 2 ≤ i ≤ I − 1,

(
ũi,nA − u

i,n−1
A

)

∆t
=
edn
en
yi

(
ũi+1,n
A − ũi,nA

∆y

)

+
∑

B 6=A

KAB(θn)

e2
n

ũi,nB

(
ũi+1,n
A + ũi−1,n

A − 2ũi,nA
2∆y2

)

−
∑

B 6=A

KAB(θn)

e2
n

ũi,nA

(
ũi+1,n
B + ũi−1,n

B − 2ũi,nB
2∆y2

)
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avec des conditions au bords qui s’écrivent pour tout A ∈ A comme

∑

B 6=A

KAB(θn)

en

(
ũ1,n
B

(
ũ2,n
A − ũ

1,n
A

∆y

)
− ũ1,n

A

(
ũ2,n
B − ũ

1,n
B

∆y

))
= 0 (3.6)

∑

B 6=A

KAB(θn)

en

(
ũI,nB

(
ũI−1,n
A − ũI,nA

∆y

)
− ũI,nA

(
ũI−1,n
B − ũI,nB

∆y

))
= −ednũI,nA + λAφ

n
A.

(3.7)

L’ensemble de ces équations peut s’écrire de manière équivalente sous forme matricielle:
pour tout A ∈ A et tout 1 ≤ n ≤ N :

(
ũnA − un−1

A

)

∆t
=
edn
en
MunA + PnA +

∑

B 6=A

KAB(θn)

e2
n

(ũnB �DũnA − ũnA �DũnB) (3.8)

où pour chaque 1 ≤ n ≤ N et chaque A ∈ A, on pose ũnA = (ũ1,n
A , · · · , ũI,nA ) et où les

matrices PnA ∈ RI , M ∈ RI×I et D ∈ RI×I sont données par

∀1 ≤ i ≤ I, (PnA)i = δiI
φnA

2∆yen

∀1 ≤ j ≤ I; 1 ≤ i ≤ I − 1, (M)i,j = δi,j
−yi
∆y

+ δi+1,j
yi+1

∆y
,

(M)I,I−1 =
−yi
∆y

,

(M)I,I =
yi

∆y
− yi

∆y
et

∀1 ≤ i, j ≤ I − 1, (D)i,j = δi,j
−2

2∆y2
+ δi+1,j

1

2∆y2
+ δi,j+1

1

2∆y2
,

(D)1,1 = (D)I,I =
−1

2∆y2
,

(D)1,2 = (D)I−1,I =
1

2∆y2
.

Le produit de Hadamard noté � étant défini pour toutes matrices A,B ∈ Rm×n comme
suit

∀1 ≤ i ≤ m , 1 ≤ j ≤ n, (A�B)i,j := (A)i,j(B)i,j .

Le système non linéaire (3.8) d’inconnus (ũnA)1≤i≤I , pour A ∈ A est en pratique
résolu par une méthode itérative de Newton prenant un−1

A comme point initial. Cepen-
dant, les solutions obtenues ne satisfont en général pas les contraintes de positivité et de
renormalisation souhaitées. Aussi, on applique une étape de projection pour garantir
l’obtention de concentration comprises entre 0 et 1, dont la somme vaut 1. Pour tout
A ∈ A et 1 ≤ i ≤ I, on pose

ui,nA =
f(ũi,nA )

∑
B∈A f(ũi,nB )

, où f :

{
R → [0, 1]
x 7→ f(x) = max(0,min(1, x)).

Cette dernière étape du schéma numérique permet d’assurer que pour tout 1 ≤ i ≤ I,
pour tout 1 ≤ n ≤ N et pout tout A ∈ A

0 ≤ ui,nA ≤ 1 et
∑

A∈A
ui,nA = 1.
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3.3 Post-traitement des données expérimentales

Dans cette étude nous avons considéré un ensemble de M profils expérimentaux fournis
par l’équipe de l’IRDEP. A chacune des M expériences, une cellule photovoltaïque de
type CIGS a été fabriquée selon le procédé de co-évaporation. Les concentrations finales
des différentes entités chimiques ont été ensuite mesurées pour chaque cellule.

Pour chaque expérience 1 ≤ m ≤ M , on récupère l’épaisseur finale de la cellule
em(Tm) et les valeurs des concentrations en des points spécifiques sur une grille uniforme
e1 = y1 < y2 < y3 < ... < yI = em(Tm) où e1 = 85nm. Les mesures ne peuvent pas être
faites sur toute l’épaisseur du film en raison de contraintes techniques.

L’évaporation des atomes s’effectue en plusieurs étapes : d’abord, l’Indium et le
Gallium sont évaporés sous une température T1 pendant un temps t1 ensuite le Cuivre
sous une température T2 pendant un temps t2, et après un temps de repos ∆τ , l’Indium
et le Gallium sont évaporés de nouveau sous la température T3 = T2 et pendant un
temps t3. Le solide est finalement retiré du four et laissé (refroidir) à la température
ambiante pendant un temps t4. Voir le schéma à la Figure 3.3.

Figure 3.3 – Profils de température et des flux utilisés dans le production des couches minces
de CIGS pour cette étude. Le protocole expérimental est détaillé dans la thèse [Kli15]

Pour chaque expérience 1 ≤ m ≤ M , les durées {tm1 , tm2 , tm3 , tm4 ,∆τm} et les tem-
pératures {θm1 ; θm2 ; θm3 } de chaque régime ainsi que les valeurs {φIn,m, φGa,m, φCu,m} des
flux injectés au cours du temps sont récupérés. Comme les mesures de concentrations
sont faites seulement à partir de l’épaisseur e1 et que le sélénium n’est pas considéré
dans le modèle, on renormalise les flux de sorte que la relation de conservation de masse
suivante soit vérifiée

N∑

n=1

Tm
N

(φGa,m + φIn,m + φCu,m) = em(Tm)− em(0) (3.9)

où Tm := (tm1 + tm2 + tm3 + t4 + ∆τm)/N est le temps total de l’expérience. L’épaisseur
initiale e0 = 1µm est la même pour chaque expérience car le substrat est recouvert
initialement d’une couche de 1µm de Molybdène pur.
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3.4 Calibration du modèle

Nous expliquons dans cette section, comment les valeurs optimales pour les pré-facteurs
DAB, les énergies d’activation EAB et les taux d’absorption λA sont identifées à partir
de données expérimentales. Il s’agit de résoudre un problème inverse de calibration de
paramètres.

3.4.1 Formulation du problème inverse.

Pour chacune des expériences 1 ≤ m ≤ M , on note (ziA,m)1≤i≤I =: zA,m ∈ RI le profil
mesuré de concentration finale de l’espèce A. On note Tm le temps total de l’expérience
et em(Tm) l’épaisseur finale du film produit.

Pour alléger les notations, on introduit l’ensemble Ω := R2|A| × R2|A| × [0, 1]|A|.
Considérons la fonction J : Ω 3 (D,E, λ) 7→ J (D,E, λ) =

∑M
m=1 Jm((D,E, λ)) ∈ R+

avec pour chaque 1 ≤ m ≤M ,

Jm(D,E, λ) :=
∑

A∈A

I∑

i=1

∆y
(
ui,NA − ziA,m

)2

où uNA,m := (ui,NA,m)1≤i≤I est la solution au temps final tN du système (3.3) par le schéma
numérique décrit dans la Section 3.2 avec les valeurs (D,E, λ). L’objectif est donc de
résoudre le problème d’optimisation sous contraintes suivant

(D∗, E∗, λ∗) ∈ argmin(D,E,λ)∈Ω J (D,E, λ), (3.10)

1 ≤ m ≤M, e0 +
∑

A∈A

N∑

k=1

λAφ
k
A,m = em(Tm). (3.11)

Ce problème est en pratique résolu par une méthode de gradient itérative adaptée
aux problèmes d’optimisation sous contraintes: l’optimisation quadratique successive
(SQP)[NW06, GMSW17].

Remarque. La même expression de la fonction de coût est utilisée pour trouver le profil
de température optimal ainsi que les profils de flux optimaux permettant d’atteindre
des concentrations finales cibles. De plus, les arguments théoriques présentés dans le
Chapitre 2 pour prouver l’existence de solutions au problème d’optimisation des flux
sont applicables au problème d’optimisation du profil de température.

3.4.2 Calcul du gradient par approche duale

Dans cette section, nous présentons le calcul du gradient de la fonctionnelle de coût par
rapport aux différentes variables η ∈ {(DAB, EAB, λA} ∈ Ω. L’indice m sera omis dans
la suite afin d’alléger les notations.

D’abord, une simple application des règles de dérivations donne

∂ηJ (η) = 2
∑

A∈A
∆y〈uNA − zA, ∂ηuNA 〉
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où la notation 〈zNA , zA〉 désigne le produit scalaire usuel
∑I

i=1 u
i,N
A ziA entre les vecteur

uNA ∈ RI et zA ∈ RI . Le terme ∂ηunA est calculé par approche duale comme suit :

Etape 1: dynamique de ∂ηu
n
A. En dérivant les termes de l’équation (3.8) par

rapport à la variable η, on obtient la dynamique suivante vérifiée par ∂ηũnA pour tout
1 ≤ n ≤ N .

∂ηũ
n
A = ∂ηu

n−1
A

+ ∆t∂ηP
n
A

+ ∆t∂η

(
edn
en

)
MũnA + ∆t

(
edn
en

)
M∂ηũ

n
A

+ ∆t
∑

B∈A,B 6=A
∂η

(
KAB(θn)

e2
n

)
(ũnB �DũnA − ũnA �DũnB)

+ ∆t
∑

B∈A,B 6=A

(
KAB(θn)

e2
n

)
(∂ηũ

n
B �DũnA)

+ ∆t
∑

B∈A,B 6=A

(
KAB(θn)

e2
n

)
(ũnB �D∂ηũnA)

+ ∆t
∑

B∈A,B 6=A

(
KAB(θn)

e2
n

)
(−ũnA �D∂ηũnB)

+ ∆t
∑

B∈A,B 6=A

(
KAB(θn)

e2
n

)
(−∂ηũnA �DũnB) .

Reformulé autrement,

∂ηũ
n
A = ∂ηu

n−1
A +Hn

A +
∑

B∈A
GnAB∂ηũ

n
B (3.12)

où pour tout A,B ∈ A, les matrices HA ∈ RI et GAB ∈ RI×I sont données par

Hn
A = ∂ηP

n
A + ∆t∂η

(
edn
en

)
MũnA + ∆t

∑

B∈A,B 6=A
∂η

(
KAB(θn)

e2n

)
(ũnB �DũnA − ũnA �DũnB) .

et

GnAB =





∆t
(
edn
en
M
)

+ ∆t
∑

B′∈A,B′ 6=A

(
KAB′ (θ

n)
e2n

)
(Ψn

B′ − diag(DũnB′)) , si A = B,

∆t
(
KAB(θn)

e2n

)
(diag(DũnA)−Ψn

A) , si A 6= B

avec les matrices (ΨA)A∈A ∈ RI×I définies pour tous 1 ≤ i, j ≤ I par (Ψn
A)i,j = Di,j ũ

i,n
A .

Notons maintenant par Ũn := (ũnA)A∈A ∈ RI×|A| et par Hn := (Hn
A)A∈A ∈ RI×|A|

et définissons par blocs la matrice On ∈ R(I×|A|)×(I×|A|) comme suit

OnAB =





I −GnAA, si A = B,

−GnAB , si A 6= B.
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La dynamique (3.12) s’écrit alors de manière équivalente comme

∂ηŨ
n = (On)−1∂ηU

n−1 + (On)−1Hn(ũ).

Rajoutons maintenant l’étape de projection. Pour ce faire on introduit la matrice
Wn ∈ R(I×|A|)×(I×|A|) de sorte à obrenir la relation

Wn∂ηŨ
n = ∂ηU

n.

Pour tout 1 ≤ n ≤ N , la matrice Wn ∈ R(I×|A|)×(I×|A|) est définie par blocs :

Wn :=




ΓnAA ΓnAB ΓnAC · · ·
ΓnBA ΓnBB ΓnBC · · ·
ΓnCA ΓnCB ΓnCC · · ·
· · · · · · · · · · · ·


 .

Finalement, la dynamique de ∂ηUn s’écrit

∂ηU
n − ∂ηUn−1

∆t
=

(I −Wn(On)−1)

∆t
∂ηU

n−1 +
Wn(On)−1Hn

∆t
=: Ln∂ηU

n−1 +Xn.

Etape 2: problème dual. On cherche la solution Qn ∈ RI×|A| pour 1 ≤ n ≤ N
au problème suivant

QNA = 2
∑

A∈A
∆y(uNA − zA) (3.13)

Qn−1 = Qn + ∆t(Ln)TQn. (3.14)

Les equations (3.13) et (3.14) définissent un problème adjoint (car il fait intervenir les
solutions unA du problème direct) et backward en temps car la solution à chaque instant
n− 1 est donnée en fonction de la solution à l’instant n. Il faut donc d’abord résoudre
le problème direct pour obtenir les solutions unA, ensuite résoudre le problème dual par
récurrence inversée.

Etape 3: l’expression du gradient. On a maintenant tous les ingrédients néces-
saires pour évaluer le gradient ∇ηJ à l’aide du calcul suivant :

N∑

n=1

〈−Q
n +Qn−1

∆t
, ∂ηU

n−1〉 =
N∑

n=1

〈(Ln)TQn, ∂ηU
n−1〉

=
N∑

n=1

〈Qn, Ln∂ηUn−1〉

=
N∑

n=1

〈Qn, ∂ηU
n − ∂ηUn−1

∆t
〉 −

N∑

n=1

〈Qn, Xn〉.

104



Ainsi

N∑

n=1

〈Qn, Xn〉 =
N∑

n=1

〈Qn, ∂ηU
n − ∂ηUn−1

∆t
〉 −

N∑

n=1

〈−Q
n +Qn−1

∆t
, ∂ηU

n−1〉

=
1

∆t

N∑

n=1

〈Qn, ∂ηUn〉 − 〈Qn, ∂ηUn−1〉+ 〈Qn, ∂ηUn−1〉 − 〈Qn−1, ∂ηU
n−1〉

=
1

∆t
〈QN , ∂ηUN 〉 − 〈Q0, ∂ηU

0〉

=
2

∆t

∑

A∈A
∆y〈(uNA − zA), ∂ηu

N
A 〉.

En conclusion, on a

∂ηJ (η) = ∆t
N∑

n=1

〈Qn, Xn〉.

3.4.3 Résultats numériques

Dans cette section nous présentons quelques résultats numériques obtenus en utilisant
le logiciel de calcul scientifique MATLAB.

Les valeurs optimales obtenues pour les pré-facteurs D∗AB, les énergies d’activation
E∗AB ainsi que les taux d’absorption λ∗A sont données respectivement dans les Ta-
bles 3.2, 3.1 et 3.3. Les paramètres numériques utilisés sont les suivants :

• Les données : M = 12 (calibration sur 12 profils expérimentaux).

• Point initial de la minimisation : pour tout A,B ∈ {Cu, In,Ga,Mo},

D0
AB = 10−3 × (1− δAB) µm2min−1,

E0
AB = 10−1 × (1− δAB) eV,
λ0
A = 1.

• Taille des grilles en temps et en espace : ∆t = 0.5 et I = 50.

Pour illustrer le résulat de la calibration, nous prenons une des M expériences dont
les profils de flux et de température au cours du temps sont tracés sur la Figure 3.4. Les
concentrations finales des espèces chimiques mesurées expérimentalement ainsi que les
concentrations finales obtenue comme solution du système (3.3) en utilisant les valuers
optimales des Tables 3.2, 3.1, 3.3 sont tracées sur la Figure 3.5.

Cu In Ga Mo
Cu 0 1.03 0.99 1.11
In 1.03 0 1.01 1.00
Ga 1.11 1.01 0 1.00
Mo 1.11 1.00 1.00 0

Table 3.1 – Valeurs optimales des énergies d’activation E∗[10−1eV]
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Cu In Ga Mo
Cu 0 8.243 2.837 0.012
In 8.243 0 0.016 0.010
Ga 2.837 0.016 0 0.010
Mo 0.012 0.010 0.010 0

Table 3.2 – Valeurs optimales des préfacteurs D∗[10−2cm2s−1]

Cu In Ga Mo
1.20 0.44 0.90 0

Table 3.3 – Valeurs optimales des paramètres (λA)A∈A.
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Figure 3.4 – Profils de flux et de température associés à l’une des M expériences utilisées pour
la calibration.

106



0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

épaisseur

C
oc

en
tra

tio
n 

fin
al

e

 

 

Cu (modèle)
In (modèle)
Ga (modèle)
Mo (modlèle) 
 Somme (modèle)
Cu (mesures)
In (mesures)
Ga (mesures)
Mo (mesures)
Somme (mesures) 

Figure 3.5 – Comparaison entre les concentrations issues des mesures expérimetales de l’une des
M expériences et les concentrations finales associées au flux de la Figure 3.4 obtenues comme
solution du système (3.3) en utilisant les valeurs optimales des Tables 3.2, 3.1 et 3.3.
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Part II

Electronic Structure





CHAPTER 4

ELECTRONIC STRUCTURE OF PERFECT CRYSTALS

Abstract. Many electrical and optical properties of crystalline materials can be ex-
plained in terms of their electronic structures. The aim of this chapter is to present
a concise overview of the standard mathematical tools used in electronic structure cal-
culations.
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A perfect crystal is a solid material composed of an infinite number of nuclei that
are periodically arranged in space (see the schematic representation in Figure 4.1). Let
d ∈ N∗ denote the space dimension of the crystal and let R denote the associated
periodic lattice on Rd. In quantum mean-field models, the electronic structure of the
considered crystal is characterized by the spectral properties of a periodic Schrödinger
operator (called the Hamiltonian of the crystal) of the form

A = −∆ + V

acting on L2(Rd;C) where V is a real-valued R−periodic potential. In Density Func-
tional Theory (DFT), the potential V is obtained as a solution of some nonlinear self-
consistent equation [CLBM06].



Figure 4.1 – A schematic representation of a perfect crystal in 3D.

Under some assumptions on the potential V , the operator A is self-adjoint and its
spectral decomposition can be characterized using the so-called Bloch-Floquet transform
presented hereafter. This chapter is organized as follows: Section 4.1 is dedicated to
classical results concerning direct integrals of Hilbert spaces, Bloch-Floquet theory and
the spectral decomposition of periodic Schrödinger operators. Inverse spectral problems
are discussed in Section 4.2 together with a summary of our contributions to these
problems. Section 4.3 is devoted to the presentation of classical results on Wannier
functions along with a brief summary of our contribution.

4.1 Spectral Properties of Periodic Schrödinger Operators

4.1.1 Direct Integrals of Hilbert Spaces

The notion of direct integrals of Hilbert spaces was first introduced in 1949 by John
Von Neumann in his paper on ring operators [Neu49] and has later become a key-tool
in the Bloch-Floquet theory. Only the main definitions and results are gathered in this
section. The reader is referred to [RS78b, Pan, Wil70] for a deeper analysis. Let d ∈ N∗
denote the space dimension and consider a Borelian setM⊂ Rd.

Definition 4.1 (Direct integral [RS78b] §III.16). Let (Hq)q∈M be a family of separable
Hilbert spaces. The vector space denoted by

´ ⊕
MHqdq and defined as follows

ˆ ⊕
M
Hqdq :=

{
ψ = (ψq)q∈M

∣∣ ∀q ∈M, ψq ∈ Hq,
´
M ‖ψq‖2Hqdq <∞

}
(4.1)

is called the direct integral of the spaces (Hq)q∈M. A vector of this space is denoted
by ψ =

´ ⊕
M ψqdq.

Endowed with the inner product

∀φ, ψ ∈ H, 〈φ|ψ〉 :=

ˆ
M
〈φq|ψq〉Hqdq,

the space
´ ⊕
MHqdq is a Hilbert space.

Let us recall here some well-known notions about the decomposition of operators on
Hilbert spaces that are isomorphic to direct integrals of fiber spaces.
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Definition 4.2 (Direct decomposition of operators [RS78b] §III.16). Let H be a separa-
ble Hilbert space and let

´ ⊕
MHqdq be the direct integral of the family (Hq)q∈M. Consider

an isometric isomorphism1 U : H →
´ ⊕
MHqdq. Then,

1- a bounded operator T ∈ L(H) is said to be decomposable by U if for almost all
q ∈M there exists a bounded operator Tq ∈ L(Hq) and with essup

q∈M
‖Tq‖L(Hq) <∞

such that, for all φ ∈ H, (U(Tφ))q = Tq(Uφ)q.

2- a self-adjoint operator T is said to be decomposable by U if the (bounded) operator
(T − i)−1 is decomposed by U .

The notation T = U−1
(´ ⊕
M Tqdq

)
U is used when T ∈ L(H) is decomposable by U

and the operators (Tq)q∈M are sometimes called the fibers of T . Moreover, the following
holds

‖T‖L(H) = ess sup
q∈M

‖Tq‖L(Hq).

The characterization given in Proposition 4.3 is used to decompose self-adjoint opera-
tors, which are of particular interest in our context.

Proposition 4.3 (Decomposition of self-adjoint operators [RS78b] §III.16). A self-
adjoint operator T acting on the separable Hilbert space H with domain D(T ) is decom-
posed by U if and only if for almost all q ∈ M, there exists a self-adjoint operator Tq
acting on Hq with domain D(Tq) such that:

1. the function q ∈M 7→ ‖(Tq + i)−1‖L(Hq) is measurable;

2. D(T ) =
{
φ ∈ H

∣∣ (Uφ)q ∈ D(Tq) a.e and
´
M ‖Tq(Uφ)q‖2Hqdq <∞

}
;

3. for all φ ∈ D(T ), Tφ = U−1
(´
M Tq(Uφ)qdq

)
.

We conclude this section by a major result on the characterization of the spectrum of a
self-adjoint decomposable operator using the spectra of its fibers. This characterization
used in conjunction with the Bloch-Floquet decomposition discussed in Section 5.2.1,
is an essential tool for the characterization of the spectrum of periodic Schrödinger
operators.

Proposition 4.4 (Spectrum of decomposed self-adjoint operators [RS78b] §III.16). Let
T = U−1

(´ ⊕
M Tqdq

)
U be a self-adjoint operator on H decomposed by U . We denote by

σ(T ) the spectrum of T and by σp(T ) ⊂ σ(T ) its point spectrum. Then, the following
statements hold

λ ∈ σ(T ) ⇔ |{q ∈M, (λ− ε, λ+ ε) ∩ σ(Tq) 6= ∅}| > 0, ∀ε > 0,
λ ∈ σp(T ) ⇔ |{q ∈M, λ ∈ σp(Tq)}| > 0.

1We use the same terminology as in [RS78a]. See Chapter III, page 71.
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4.1.2 Bloch-Floquet Transform

The Bloch-Floquet transform was first introduced by the mathematician Gaston Floquet
[Flo83] for the study of differential equations with periodic coefficients and then by the
physicist Felix Bloch [Blo29] in the context of electronic structure. This transform is
strongly linked to the symmetry properties of the crystalline materials. Let us first
recall some basic notions of crystallography. Let (a1, · · · ,ad) be a basis of Rd. The
Bravais lattice R associated to the basis (a1, · · · ,ad) is defined by

R :=



R ∈ Rd, R =

d∑

j=1

njaj | nj ∈ Z, 1 ≤ j ≤ d



 . (4.2)

An admissible unit cell of R is given by

Γ :=





d∑

j=1

αjaj , −1/2 ≤ αj < 1/2, 1 ≤ j ≤ d



 . (4.3)

Let (a∗1, · · · ,a∗d) be the dual basis associated to (a1, · · · ,ad). These vectors are uniquely
defined through the relations

a∗j · ai = 2πδij , ∀1 ≤ i, j ≤ d.

The dual lattice R∗ of R is then defined by

R∗ :=



K ∈ Rd, K =

d∑

j=1

mja
∗
j | mj ∈ Z, 1 ≤ j ≤ d



 . (4.4)

The first Brillouin zone Γ∗ of the lattice R is defined as the Wigner-Seitz cell of the
dual lattice R∗, that is the set of points of Rd that are closer to the origin than to any
other point of R∗. More precisely,

Γ∗ :=
{
q ∈ Rd, |q| ≤ |q −K|, ∀K ∈ R∗

}
. (4.5)

In the remaining sections, unless there is an ambiguity, we use the notation L2 for
the Hilbert space L2(Rd;C). The Bloch-Floquet decomposition relies on the theory of
direct integrals. There are two equivalent versions of the Bloch-Floquet decomposition
(Theorem 4.5 and Theorem 4.6) that show how to decompose L2 into a direct inte-
gral of two different families of fiber spaces. Before we state the two versions of the
decomposition, let us introduce the definition of the involved spaces. Let s ∈ N∗,

L2
per :=

{
u ∈ L2

loc | u is R-periodic
}
,

Hs
per := {u ∈ Hs

loc | u is R-periodic} . (4.6)

It is classically known that the spaces L2
per and Hs

per endowed respectively with the
inner products

∀v, w ∈ L2
per, 〈v, w〉L2

per
=
´

Γ vw,

∀v, w ∈ Hs
per, 〈v, w〉Hs

per
=

∑
α∈Nd,|α|≤s

〈∂αv, ∂αw〉L2
per

(4.7)
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are Hilbert spaces. Moreover, we define for every q ∈ Γ∗ the following spaces

L2
q :=

{
ψ ∈ L2

loc | Rd 3 x 7→ ψ(x)e−iq·x ∈ L2
per

}
,

Hs
q :=

{
ψ ∈ Hs

loc | Rd 3 x 7→ ψ(x)e−iq·x ∈ Hs
per

}
,

(4.8)

which, respectively endowed with the following inner products,

∀ψ, φ ∈ L2
q , 〈ψ, φ〉L2

q
:=

ˆ
Γ
ψφ,

∀ψ, φ ∈ Hs
q , 〈ψ, φ〉Hs

q
:=

∑

α∈Nd,|α|≤s

〈∂αψ, ∂αφ〉L2
q

are also Hilbert spaces. We are now in position to give the two versions of the Bloch-
Floquet decomposition.

Theorem 4.5 (First Bloch-Floquet decomposition, [RS78b]). We consider the direct
integral space H given by

H =
1

|Γ∗|

ˆ ⊕
Γ∗
L2
qdq.

Then,

1. the linear map B̃ from C∞c (Rd;C) to H defined for every φ ∈ C∞c (Rd;C) by :

∀(q, x) ∈ Γ∗ × Γ, (B̃φ)q(x) :=
∑

R∈R
φ(x+ R)e−iq·R (4.9)

can be continuously extended to a unique isometric isomorphism from L2 onto H.

2. the inverse of B̃ is given for all ψ ∈ L2 by:

(B̃−1ψ)(x) =
1

|Γ∗|

ˆ
Γ∗
ψq(x)dq, for a.e x ∈ Γ. (4.10)

Theorem 4.6 (Second Bloch-Floquet decomposition, [RS78b]). We consider the direct
integral H given by

H =
1

|Γ∗|

ˆ ⊕
Γ∗
L2

perdq.

Then,

1. the linear map B from C∞c (Rd;C) to H defined for every φ ∈ C∞c (Rd;C) by :

∀(q, x) ∈ Γ∗ × Γ, (Bφ)q(x) = (B̃φ)q(x)e−iq·x =
∑

R∈R
φ(x+ R)e−iq·(R+x)

can be continuously extended to a unique isometric isomorphism from L2 onto H.

2. the inverse of B is given for all ψ ∈ L2 by :

(B−1ψ)(x) =
1

|Γ∗|

ˆ
Γ∗
ψq(x)eiq·xdq, for a.e x ∈ Γ.
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A proof of Theorem 4.5 is presented in [Pan]. Theorem 4.6 is a direct corollary of
Theorem 4.5. However, the second decomposition is more advantageous in the context
of periodic Schrödinger operators. Indeed it leads to a family of fiber operators with
the same domain unlike the first decomposition where the domains depend on q.

Let us finally underline the close link between the symmetries of the lattice R and
the Bloch-Floquet decomposition. To this aim, let us define for each lattice vector
R ∈ R, a translation operator τR defined by

τR :

{
L2 → L2

φ 7→ φ(·+ R)
. (4.11)

Proposition 4.7 (Link between the symmetries of the lattice and Bloch-Floquet trans-
form, [RS78b]). Any linear bounded operator T ∈ L(L2) which commutes with τR for
every R ∈ R is decomposed by B and B̃. Similarly, any self-adjoint operator acting on
L2 which commutes with τR for every R ∈ R is also decomposed by B and B̃.

4.1.3 Spectral Decomposition of Periodic Schrödinger Operators

Let V be a real-valued periodic potential belonging to the space Lpper with p = 2 if
d ≤ 3 and p > d/2 if d ≥ 4. Then, the periodic Schrödinger operator A = −∆ + V on
L2 is selfadjoint with domain H2(Rd,C) and is bounded from below. Furthermore, the
following properties are satisfied (proofs can be found in [RS78b, Pan]):

1. The operator A is decomposed by B and by B̃.

2. Furthermore,

A = B−1

(ˆ ⊕
Γ∗
Aq

1

|Γ∗|dq
)
B and A = B̃−1

(ˆ ⊕
Γ∗
Ãq

1

|Γ∗|dq
)
B̃

where for every q ∈ Γ∗,

• the operator Ãq acting on L2
q with domain D(Ãq) = H2

q is defined by

∀ψq ∈ D(Ãq), Ãqψq = −∆ψq + V ψq;

• the operator Aq acting on L2
per with domain D(Aq) = H2

per is defined by

∀uq ∈ D(Aq), Aquq = | − i∇+ q|2uq + V uq.

3. For each q ∈ Γ∗, both operators Aq and Ãq are bounded from below, self-adjoint,
have compact resolvent and are unitary equivalent. Therefore, they share the
same spectrum. Thus, for each q ∈ Γ∗, there exists

• a non-decreasing sequence (εVq,n)n∈N∗ going to +∞;

• an orthonormal basis (ψVq,n)n∈N∗ of L2
q and an orthonormal basis (uVq,n)n∈N∗

of L2
per,

such that for all n ∈ N∗,

Ãqψq,n = εVq,nψq,n, Aquq,n = εVq,nuq,n, uq,n(x) = ψq,n(x)e−iq·x.
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4. For all n ∈ N∗, the function q 7→ εVq,n can be extended to a continuous R∗-periodic
function on Rd, so that

σ(A) =

∞⋃

n=1

[min
q∈Γ∗

εVq,n,max
q∈Γ∗

εVq,n].

5. The spectrum of A is absolutely continuous real spectrum

σ(A) = σac(A), and σsg(A) = σp(A) = ∅.

The function Rd 3 q 7→ εVq,n is called the nth energy band associated to the potential
V . The term dispersion relation is sometimes used to refer to the complete set of
energy bands. Let us mention that the energy bands (in arbitrary dimension d) satisfy
the following symmetry properties for every n ∈ N∗, every q ∈ Γ∗ and every K ∈ R∗

εVq,n = εV−q,n and εVq+K,n = εVq,n. (4.12)

For the sake of completeness, we present in the appendix one of the most popular
methods for the numerical approximation of the energy bands, namely the plane-wave
discretization method.

4.2 Inverse Spectral Problems

Inverse spectral problems consist in recovering operators from their spectral charac-
teristics. Such problems often appear in mathematics, physics and materials science
[FY01].

4.2.1 Classical Inverse Problems

One of the most studied situations is the inverse Sturm-Liouville problem. The aim
in this problem is to recover the potential function V ∈ L2(0, 1) appearing in the one-
dimensional elliptic eigenvalue problem

−u′′(x) + V (x)u(x) = εu(x), for 0 ≤ x ≤ 1,

with the impedance boundary conditions

u′(0)− lu(0) = 0, and u′(1) + Lu(1) = 0, (4.13)

where l and L are given real numbers, from the knowledge of some spectral data. It is
known that the complete spectrum (εVn )n∈N∗ is not sufficient to reconstruct (uniquely)
the potential V ; additional data are needed [PT87]. Let us quote from the literature a
few versions where existence and uniqueness of a solution to the inverse Sturm-Liouville
problem were proved and refer the reader to [W.R92, FY01, PT87] for a more com-
plete introduction to the subject. There are two cases where the (only) knowledge of
(εVn )n∈N∗ is sifficient to the unique reconstruction of V : i) when V is assumed to have
the symmetry V (x) = V (1 − x) for 0 ≤ x ≤ 1 and ii) when some a priori informa-
tion on V is provided (for instance, when V is known on half of the interval [0, 1])
[PT87, G.B46, H.H76]. Besides, the unique recovery is also possible if, in addition to
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(εVn )n∈N∗ , a second complete spectrum (µVn )n∈N∗ is provided corresponding to different
boundary conditons (the value of L is changed to L′ 6= L) [G.B46]. Several numerical
techniques were suggested to solve these questions [W.R92]. In most of the methods,
the Sturm-Liouville operator is discretized using finite differences, fintie elements or
Numerov’s scheme [And04]. The inverse (continuous) problem is then transformed to
an inverse (discrete) eigenvalue problem. Asymptotic correction terms are usually in-
troduced to reduce the discretization error [GCH13].

The periodic framework also attracted mathematician’s attention for decades. In
this case, the aim is to recover the real-valued R-periodic potential V appearing in
the periodic Schrödinger operator A = −∆ + V from the knowledge of the dispersion
relation (the set of energy bands). Several partial answers were proposed. One of the
first contributions in the one-dimensional case is due to Borg [G.B46] where necessary
and sufficient conditions were given on the dispersion relation for the potential V to be
constant.

Let us introduce the complex Bloch variety B(V ) containing all points that can
possibly be reached by analytic continuation of any energy band. In particular, the
graph of any energy band q ∈ Rd 7→ εVq,n is a subset of B(V ). The generalization of
Borg’s result to arbitrary dimension gives raise to the following conjecture:

Conjecture 4.8 (Borg’s conjecture, [AS78, Kuc16]). The potential V is constant if and
only if there exists an entire function f : Cd → C such that the Bloch variety B(V ) is
the union of the graph of f and its translates under R∗.

One can think of the dispersion relation associated to the 2πZ-periodic potential
V ≡ 0 which is given by Z−translations of the graph of the function R 3 q 7→ q2 (see
Figure 4.2).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 4.2 – Dispersion relation of the one-dimensional periodic Schrödinger operator −d/dx2+
V with the lattice R = 2πZ and where V ≡ 0.

This conjecture was proved for d = 2 by Knörrer and Trubowitz [KT90] and to the
best of my knowledge, the proof in higher dimension is still an open question.
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Another point of view consists in the characterization of the isospectral sets which
are the sets of potentials associated to the same energy bands. Two real-valued poten-
tials V and W are said to be Floquet isospectral when

σ(AVq ) = σ(AWq ), ∀q ∈ Γ∗,

where σ(AVq ) denotes the discrete spectrum of the Bloch operator AVq at q ∈ Γ∗ (see
Section 4.1.3). The potentials V and W are said to be isospectral if σ(AV0 ) = σ(AW0 ).
Some particular cases can be immediately determined. It is clear for instance that
any potential V is Floquet isospectral to all its translated versions V (· − τ), τ ∈ Rd.
The question of interest in the general case is : what is the set of potentials that
are isospectral to a given real-valued peridodic potential V ? Numerous results can
be found in [PT87] for the one-dimensional setting. The multi-dimensional case was
investigated in [Esk89, ERT84a, ERT84b]. The authors showed in particular that if
two one-dimensional smooth periodic potentials R 3 x 7→ Ṽ (x) and R 3 x 7→ W̃ (x) are
isospectral and if δ ∈ Rd is a vector such that δ · R ∈ Z for every R ∈ R then, the
d-dimensional periodic potentials Rd 3 x 7→ V (x) := Ṽ (x ·R) and Rd 3 x 7→ W (x) :=
W̃ (x ·R) are also isospectral. Another interesting result that we report from the review
[Kuc16] is the following:

Theorem 4.9 (Floquet Isospectrality). Assume that the lattice R satisfies the following
property for every R1,R2 ∈ R:

(|R1| = |R2|)⇒ (R1 = ±R2) .

Consider two R−periodic potentials V,W ∈ C∞per. If there exists q0 ∈ Γ∗ such that
cos(2πq0 ·R) 6= 0 for all R ∈ R and σ(AVq0) = σ(AWq0 ), then the potentials V and W
are Floquet isospectral.

This result points out that, when the potential is smooth, the spectrum of one Bloch
operator at a particular q-point q0 ∈ Γ∗ holds the complete information on the whole
dispersion relation. Furthermore, the following (strong) property is conjectured to hold,
which allows one to focus only on one open branch of a single energy band :

Conjecture 4.10 (Conjecture 5.17 [Kuc16]). Let V be a real valued R-periodic potential
belonging to Lpper with p = 2 if d ≤ 3 and p > d/2 if d ≥ 4. Then, for any level n ∈ N∗
and any open set Ω ⊂ Rd, the branch Ω 3 q 7→ εq,n of the nth energy band determines
uniquely the full energy band dispersion.

This conjecture is proven in the one and two dimensional cases in [KT90]. To the
best of my knowledge, the proof in higher dimension still remains open.

Let us finally mention the works by Veliev gathered in [Vel15] concerning smooth
potentials. In the same spirit as [ERT84a, ERT84b], Veliev introduced a family of
quantities (that he called spectral invariants) which can be constructed using the given
energy bands. Then, explicit expressions relating these invariants to the Fourier co-
efficients of the unknown potential are provided. The class of potentials that can be
recovered by Veliev’s method is shown to be dense in Hs

per with s ≥ 6(3d(d+ 1)2) + d.
This density argument allows to conclude that: a smooth potential V ∈ Hs

per can be
uniquely determined (up to translations x 7→ x+τ with τ ∈ Rd and inversions x 7→ −x)
from the knowledge of the whole set of its associated energy bands Γ∗ 3 q → εVq,n for
n ∈ N∗.
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4.2.2 Contributions of the Thesis (Inverse Hill’s problem)

The approaches presented above use the knowledge of the asymptotic behavior of the
high-energy bands for the reconstruction of the potential, and therefore are unsuitable
for practical purpose. Indeed, in practice only the low-energy bands of the crystal
(more precisely, the conduction and the valence bands for physicists) are of interest.
For applications, it is therefore interesting to know how to construct a potential such
that only its lowest energy bands are close to some given target functions without
additional information on the high energy bands. We adopt in this thesis a viewpoint
which is different from the classical inverse problems presented above : we recast the
problem as an optimization problem. More precisely, the following question is considered
: given a family of M functions b1, · · · , bM : Γ∗ → Rd, does there exist a real-valued
R-periodic potential V such that the associated first energy bands εVq,1, · · · , εVq,M , are as
close as possible (in some sense) to the target functions b1, · · · , bM ?. In Chapter 5,
we report the results of [BEG17] obtained with Virginie Ehrlacher (Université Paris
Est, CERMICS (ENPC), Inria, Paris, France) and David Gontier (Université Paris-
Dauphine, CEREMADE, France), where a theoretical answer to the above question
is given for one target function M = 1 in the one-dimensional space and where an
algorithm is proposed to answer the question numerically for an arbitrary number of
target functions M ∈ N∗.

More precisely, in the case d = 1, we consider the space of non-negative 2π−periodic
regular Borel measures on R that we denote byM+

per. It holds in particular thatM+
per

is compactly embedded in the set H−1
per and that to each ν ∈M+

per corresponds a unique
real-valued potential Vν ∈ H−1

per defined by duality. Then, for a fixed constant B ∈ R,
we consider the set of B-bounded from below potentials

VB :=
{
V ∈ H−1

per|V is real-valued, ∃ν ∈M+
per, V = Vν −B

}
.

The following partial result is proved in Section 5.3.2 of Chapter 5:

Proposition 4.11. Let B ∈ R and let (Vn)n∈N∗ ⊂ VB. For all n ∈ N∗, let νn ∈ M+
per

such that Vn := Vνn − B and such that νn(Γ) −→
n→+∞

+∞. Assume that the sequence
(
εVnq=0,1

)
n∈N∗

is bounded. Then, up to a (non relabeled) subsequence, there exists ε ≥
1
4 −B such that

max
q∈[0,1/2]

∣∣∣εVnq,1 − ε
∣∣∣ −−−→
n→∞

0. (4.14)

Conversely, for all ε ≥ 1
4−B, there is a sequence (Vn)n∈N∗ ⊂ VB such that (4.14) holds.

Roughly speaking, this result indicates that the first energy band associated to a
unbounded sequence of potentials in VB becomes flat.

Introduce now the set

T :=
{
b ∈ C0(Γ∗), b is even and b is increasing on [0, 1/2]

}
(4.15)

of admissible target functions. Note that the first energy band of any real-valued peri-
odic potential V ∈ VB belongs to the set T . For each b ∈ T , we consider the functional
Jb : VB → R defined by

∀V ∈ VB, Jb(V ) :=

ˆ 1/2

0
|b(q)− εVq,1|2 dq. (4.16)
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The quantity Jb(V ) measures the error (in the L2-norm) between the first energy band
εVq,1 associated to the potential V and the target function b ∈ T . Note that by virtue
of the symmetry property εVq,1 = εV−q,1, it is possible to consider the problem in half of
the Brillouin zone only.

Our main theoretical result is the following

Theorem 4.12. Let b ∈ T , and denote by b∗ :=
ffl

Γ∗ b(q) dq ∈ R. Then, for all B >
1/4− b∗, there exists a solution Vb,B ∈ VB to the minimization problem

Vb,B ∈ argminV ∈VB Jb(V ). (4.17)

The proof of this theorem is based on the Proposition 4.11 and is reported in Sec-
tion 5.3.3 of Chapter 5.

From a numerical point of view, the problem is addressed with several target func-
tions b1, · · · , bM defined on [0, 1/2] that are assumed to be continuous and such that
bm is increasing when m is odd and decreasing when m is even. A uniform grid Γ∗Q of
size Q is considered on the interval [0, 1/2] and the Bloch eigenvalues (εV,sq,m)1≤m≤M are
computed for every q ∈ Γ∗Q by the plane-wave method (see the appendix) in a Fourier
space of dimension 2s + 1 for some cutoff value s ∈ N∗. Moreover, for p ∈ N∗, a set
Yp of real-valued periodic potentials having 2p + 1 Fourier coefficients in their Fourier
series is introduced to approximate the search space. Eventually, the following discrete
minimization problem is considered

V s,p := argminV ∈Yp


 1

Q

∑

q∈Γ∗Q

M∑

m=1

|bm(q)− εV,sq,m|2

 .

A standard gradient iterative procedure is first proposed to solve the problem. In this
(naive) method, the numerical parameters p and s are chosen a priori at the beginning
of the algorithm and kept fixed throughout the procedure. Although the method gives
satisfactory numerical optimizers, it presents a major limitation: the computational
time grows quickly with the values of the parameters p and s. In order to improve
the efficiency of the numerical optimization procedure, an adaptive search algorithm is
proposed. The idea of the adaptive approach is to start the optimization with small
values of p and s and increase them (if necessary) during the optimization process. The
adaptive search algorithm relies on the use of

i) an a posteriori error estimator for the approximation of the eigenvalues, which
rules the choice of the discretization parameter s,

ii) a heuristic criterion used to determine the choice of the parameter p.

The numerical tests revealed that the adaptive approach is usually faster (in terms
of the computational time) than the naive one even if it requires more iterations to
converge. A detailed description of the algorithms along with several numerical tests
are presented in Section 5.4 of Chapter 5.

Let us finally mention that the a posteriori error estimator used in the adaptive
algorithm is based on a work done in collaboration with Damiano Lombardi (INIRA
Paris, France) aiming to develop a certified and sharp a posteriori estimator for (more
general) Hermitian eigenvalue problems. A preliminary version of this work can be
found in [BL17].
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4.3 Wannier functions

Wannier functions (WF) were introduced in 1937 by Gregory Wannier [Wan37] and have
become a powerful tool in solid state physics. They are localized-in-space functions
constructed from the eigenfunctions of the Bloch operators (Aq)q∈Γ∗ . Thus, Wannier
functions can be seen as the solid-state equivalent of localized molecular orbitals. They
provide intuition on the chemical bonding and play an essential role for several approx-
imations such as the tight binding Hamiltonians [MSV03].

4.3.1 Theoretical Aspects

Let {Rd 3 q 7→ εq,n}n≥1 be the energy bands associated to the periodic Shcrödinger
operator A = −∆+V on L2, where V is an R-periodic potential belonging to the space
V ∈ Lpper with p = 2 if d ≤ 3 and p > d/2 if d ≥ 4.

Definition 4.13 (Isolated bands). The periodic Schrödinger operator A is said to have
a set of N ≥ 1 bands isolated from the rest of the spectrum if there exist two continuous
R-valued R-periodic functions q 7→ µ−(q) and q 7→ µ+(q) such that µ−(q) < µ+(q),
µ±(q) /∈ σ(Aq) and tr

(
1[µ−(q),µ+(q)](Aq)

)
= N for all q ∈ Rd.

To lighten the notation, we denote by εq,1, · · · , εq,N the eigenvalues of Aq lying in
the energy window [µ−(q), µ+(q)] for each q ∈ Rd. The reader should keep in mind that
these bands do not necessarily correspond to the lowest N bands of the operator.

We recall from the Bloch Floquet theory (see Section 5.2.1) that, for each q-point
q ∈ Rd, there exists an orthonormal basis (uq,n)n∈N∗ of L2

per such that

Aquq,n := | − i∇+ q|2uq,n + V uq,n = εq,nuq,n, ∀n ∈ N∗.

Assume that the periodic Schrödinger operator A has an isolated set of N ≥ 1
bands and consider a transformation U , which we refer to in the sequel as a gauge
transformation, that associates a unitary matrix U q to each q-point:

U :

{
Rd → UN
q 7→ U q

(4.18)

where UN ⊂ CN×N denotes the space of complex-valued unitary matrices. For each
q ∈ Rd and each 1 ≤ n ≤ N , we introduce the following generalized Bloch wave

ψ̃q,n =
N∑

m=1

U qmnuq,n. (4.19)

We denote by G = {U : Rd → UN} the set of gauge transformations.

Definition 4.14 (Composite Wannier Functions). Composite Wannier functions {wR,n}R∈R,1≤n≤N
associated to an isolated set of N bands are obtained by the following formula

∀x ∈ Rd, w0,n(x) =
1

|Γ∗|

ˆ
Γ∗
ψ̃q,n(x)eiq·xdq (4.20)

and
∀(x,R) ∈ Rd ×R, wR,n(x) = w0,n(x−R).
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The Wannier functions {wR,n}R∈R,1≤n≤N form a complete orthonormal basis of
the subspace of L2 associated to the isolated set of bands. Note that there is a gauge
freedom in Definition 4.14 meaning that the Wannier functions are not uniquely deter-
mined. This originates form the arbitrary choice of the unitary transformation U in the
definition of the generalized Bloch waves (4.19).

Let us now briefly discuss a few questions related to the construction of Wannier
functions and give some relevant references.

The first question concerns the possibility of building Wannier functions that are ex-
ponentially decaying. As discussed in [Kun, MMY+12, MSV03], the localization of the
Wannier functions is determined by the periodicity and the regularity of the generalized
Bloch waves ψ̃q,n as functions of q ∈ Rd. It turns out, in dimension d ≥ 2, that the
existence or non-existence of exponentially localized Wannier functions is a topological
characteristic of the bands [Kun]. The first answer to the question of existence of expo-
nentially localized Wannier functions was given by Kohn [Koh73] for one-dimensional
systems in the case of a single isolated band for a centrosymmetric potential. A proof of
existence of exponentially localized Wannier functions in higher dimensions (also in the
case of a single isolated band) is given in [DC64b, DC64a, Nen83]. The generalization
to multiple bands is not straightforward. This has been investigated in [BPC+07] for
two-dimensional and three-dimensional insulators (i.e, systems having a set of isolated
bands). The authors first observed that the Chern numbers (see [BPC+07] for their rig-
orous definition) vanish for insulators with a real-valued potential. Then the following
equivalence is proven : exponentially decaying Wannier functions can be constructed if
and only if all of the Chern numbers are zero. Roughly speaking, the difference between
single and multiple bands lies in the Abelian (commutative multiplication of numbers)
or non-Abelian (non-commutative multiplication of matrices) character of the respective
gauge transformations [MSV03, BPC+07].

The generalized Bloch waves are in general complex-valued functions. What about
Wannier functions? A simple criterion to ensure existence of real-valued Wannier func-
tions is given in [BPC+07]. The Wannier functions are real-valued if the gauge trans-
formation U satisfies [U−q]∗ = U q for every real q ∈ Rd. Moreover, it is conjectured
in [MV97] that the Wannier functions of real Hamiltonians obtained by the spread-
minimization method (presented in Section 4.3.2) are real-valued up to some general
phase. To the best of my knowledge, the theoretical proof of this conjecture remains an
open question.

Another interesting question is : is there any link between the symmetry of the
crystal and the properties of the Wannier functions ? This question was first discussed by
des Cloizeaux [DC63] from the view point of group theory. Basically, a Wannier function
centered at some point A ∈ Γ can be chosen to satisfy the symmetries of an irreducible
representation of the point-group GA (which is a subgroup of the total space group
of the crystal) that leaves A invariant. There have been numerous other theoretical
and numerical works considering symmetry-adapted Wannier functions [DC63, Koh73,
VBC79, Krü87, SB94, SE05, PBMM02, CZWP06].
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4.3.2 Numerical Construction

Let us now describe briefly the Marzari-Vanderbilt (MV) method proposed in [MV97]
for the practical construction of maximally localized Wannier functions (MLWF). The
MV procedure searches (iteratively) for a gauge transformation that leads to Wannier
functions with minimal spreads around their centers. More precisely, assume that the
periodic Schrödinger operator has an isolated set of N bands (in the sense of Defini-
tion 4.14) and consider the functional

Ω :




G → R

U 7→ Ω(U) =
N∑
n=1

´
R3 |xw0,n(x)|2 dx−

(´
Rd w0,n(x)xdx

)2 (4.21)

which measures the quadratic spreads of the Wannier functions around their centers.
Recall that the dependence on the transformation U is hidden in the definition of w0,n

(see (4.19) and (4.20)). The functional Ω can be decomposed into a sum of a gauge-
dependent part Ω](U) and a gauge-independent part Ω⊥ where

Ω](U) =

N∑

n=1

∑

R∈R

N∑

m=1

∣∣∣∣
ˆ
Rd
xwR,m(x)w0,n(x)dx

∣∣∣∣
2

.

Given a set of Bloch waves associated to the isolated energy bands, the aim in the MV
algorithm is to find the choice of U that minimizes the value of Ω](U). An expres-
sion for the gradient of Ω with respect to an infinitesimal variation δU of the gauge
transformation is provided. We refer the reader to the original paper [MV97] and to
[MSV03, Kun] for further details of the computation. Finally, the functional Ω] can be
minimized by a sequence of gauge transformations obtained from an iterative gradient
procedure. The MV algorithm is theoretically analyzed in [PP13] where it was proven
that the minimizers of Ω do exist for d ≤ 3. Moreover, under the assumption that the
system has an isolated set of N bands, which together with the assumption that the
potential is real-valued imply that the Chern numbers vanish, the exponential decay of
the MV minimizers is shown in three different cases: i) N = 1 and 1 ≤ d ≤ 3, ii) N ≥ 1
and 1 ≤ d ≤ 2, iii) 2 ≤ N ≤ 3 and d = 3.

The MV algorithm has become a standard tool for Wannier functions construction
since its implementation as Wannier90 computer program. However (like any local
optimization approach) it suffers from two problems : how to determine a good initial
guess ? and how to avoid non-global minima? Finding a good initial guess for the MV
algorithm requires to find a continuous gauge transformation, which is a mathematically
non-trivial task. The authors in [CLPS17] showed that the issue of “false local minima”
occurs when the initial guess corresponds to a gauge transformation with vortex-like
discontinuities, which may prevent the convergence of the MV optimization algorithm.
Moreover, they proposed an algorithm based on the theoretical works [CHN16, FMP16]
which is easy to implement. Supported by numerical tests, the algorithm in [CLPS17]
is conjectured to produce continuous gauge transformation, but no theoretical proof
of this conjecture is available yet. Moreover, the resulting Wannier functions are only
algebraically decaying (and not exponentially). Nevertheless, in practice, the algorithm
of [CLPS17] provides a good initial guess for the MV procedure.

Let us lastly point out that the MV algorithm does not exploit the symmetries of
the crystal [SMV01, THJ05]. A constructive procedure to obtain symmetry-adapted
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MLWFs has been proposed by Sakuma [Sak13], based on the theoretical works by
des Cloizeaux. Sakuma’s procedure consists in minimizing the functional Ω under
suitable symmetry constraints on the transformation U . This algorithm was recently
implemented in Wannier90.

4.3.3 Applications

The Wannier functions are widely used in several contexts. We discuss here briefly
some aspects related to their use in tight-binding approximations and refer the reader
to [MMY+12] for an exhaustive list of applications.

The tight-binding method (TB) is an approximation method to calculate electronic
band structures and other interesting properties. It is similar to the "classical" method
of Linear Combination of Atomic Orbitals (LCAO) used by chemists to construct molec-
ular orbitals. It often produces accurate results for complicated structures for which
the first-principles calculations are too costly.

From a physical point of view, the main assumption in TB models is that electrons
are tightly bound to the atomic sites. From a mathematical point of view, a TB model
can be seen as the approximation of the Bloch states by a combination of localized
functions. One particular choice for these localized functions is Wannier functions.

One particular example of application of Wannier functions is the study of the en-
ergy bands of heterogenuous structures composed of multiple (stacked) layers of 2D
materials as shown in Figure 4.3. Due to the loss of periodicity caused by the twist
angles between the different layers, the Bloch Floquet theory does not apply in general.
Other methods involving super cells may require large calculation times. A reasonable
TB approximation was recently proposed in [FK16] to study the electronic structure
of such heterogeneous stacked layers. The idea is to consider each monolayer inde-
pendently : build its Wannier functions and compute the TB matrix elements. Then,
explicit expressions are proposed to model the interlayer couplings. These expressions
involve empirical parameters and depend on geometrical parameters such as the dis-
tance between the layers and twist angles. This model allows one to study the variation
of the energy bands (and other physically interesting quantities) as a function of the
geometrical parameters.

The TB matrix elements are obtained from the evaluation of integrals involving
Wannier functions. It is crucial to rapidly and efficiently compute these integrals in
order to be able to investigate a large number of configurations (varying the number of
layers, the types of materials, the relative distances and the twist angles). In practice,
these integrals are approximated numerically since the Wannier functions (generated
by Wannier90) are provided on grids. The computation cost of such a numerical
integration is of order M3 where M is the number of grid points.

4.3.4 Contribution of the Thesis (Wannier Compression)

Our contribution consists in the development of a greedy algorithm for the compression
of Wannier functions into Gaussian-polynomials type orbitals. Our procedure takes into
account the symmetry of the Wannier function (if any) and allows one to store only a
small number of parameters instead of storing all the M values of the Wannier function
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Figure 4.3 – Visualization of a 2D heterostructure. From top to bottom : hBN, Graphene,
Graphene, MoS2, Phosphorene. Courtesy of Paul Cazeaux (Department of Mathematics, Uni-
versity of Kansas, Lawrence, USA).

on a grid, where M is the number of grid points. A second added value of the compres-
sion using Gaussian-type functions is to allow one to derive closed formulas for several
quantities that involve Wannier functions such as tight-binding matrix elements. This
aims in particular at accelerating electronic structure calculations for 2D heterogeneous
layers, and thus allowing one to explore a larger number of configurations.

More precisely, we consider that we are given a real-valued Wannier function W :
R3 → R centered at a point A ∈ Γ and assume that A corresponds to a one-dimensional
representation of a symmetry point-group GA leaving A invariant. Thus, W satisfies
the property

∀Θ ∈ GA, (ΘW )(r) = χ(Θ)W (r), ∀r ∈ R3 (4.22)

where χ is the character of this one-dimensional representation. Consider symmetry-
adapted Gaussian-type orbitals (SAGTO) of the form

φSA
α,σ,Λ(r) =

1

|GA|
∑

Θ∈GA

χ(Θ) (Θϕα,σ,Λ)(r) =
1

|G1|
∑

Θ∈G1

χ(Θ)ϕα,σ,Λ(Θ−1r), (4.23)

where |GA| is the order of the group GA, and where

ϕα,σ,Λ(r) =


 ∑

(nx,ny ,nz)∈I

λnx,ny ,nz(rx − αx)nx(ry − αy)ny(rz − αz)nz

 exp

(
− 1

2σ2
|r−α|2

)

is a Gaussian-polynomial function centered at α ∈ R3 with standard deviation σ > 0.
The set I is a subset of

{
(nx, ny, nz) ∈ N3 | nx + ny + nz ≤ L, L ∈ N∗

}
determined

by the symmetries of W .
The goal is to approximate the Wannier function W by a function W̃ which is a

finite sum of SAGTOs W̃ (r) =
∑p

n=1 φ
SA,(n)
α,σ,Λ (r) so that the Hs error ‖W − W̃‖Hs(R3)

is minimized. To do so, we use a greedy algorithm that allows us to (iteratively) con-
struct a sequence of approximations W̃0, W̃1, W̃2, · · · such that the error ‖W − W̃p‖Hs

tends to 0 as p goes to +∞. We implemented our algorithm in the Fourier space
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so that we can minimize the Hs error for any value of s. This work is the topic of
the paper [BCC+17] written in collaboration with Eric Cancès (Université Paris Est,
CERMICS (ENPC), INRIA Paris), Paul Cazeaux (Department of Mathematics, Uni-
versity of Kansas, Lawrence, USA), Shiang Fang and Efthimios Kaxiras (Department
of Physics, Harvard University, Cambridge, USA). As a preview result, we show in
Figure 4.4 a comparison between a Wannier function obtained with Wannier90 and
its approximation by a finite sum of SAGTOs where the H1 error is minimized. The
content of [BCC+17] is reported in Chapter 6.

c

b

c

baa

c

b

c

baa

Figure 4.4 – Wannier function of single-layer hBN generated by Wannier90 (top), and its com-
pression into SAGTOs (bottom). Positive and negative iso-surfaces corresponding to 15% of
the maximum value are plotted. Visualization using VESTA [MI08].
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4.4 Appendix : Numerical Approximation of the Band
Structure

We present here one of the most popular numerical methods for the approximation of
the spectrum of periodic Schrödinger operators: the plane-wave discretization. The
periodic Schrödinger operator A = −∆ + V on L2 is characterized by the spectra of
the Bloch operators Aq = −(i∇+ q)2 + V for q ∈ Γ∗ acting on L2

per with domain H2
per

and form domain H1
per. Each operator Aq is self-adjoint and has compact resolvent and

thus admits only discrete eigenvalues. The goal of this appendix is to show how to
numerically solve the family of eigenvalue problems

Aquq = εVq uq, and ‖uq‖L2
per

= 1, q ∈ Γ∗ (4.24)

For every q ∈ Γ∗, the eigenvalue problem (4.24) can be written under the variational
form : find (uq, ε

V
q ) ∈ H1

per × R such that

aq(w, uq) = εVq 〈w, uq〉 ∀w ∈ H1
per and ‖uq‖L2

per
= 1. (4.25)

where the bilinear form aq is defined for every w, v ∈ H1
per ×H1

per by

aq(w, v) =

ˆ
Γ

[
(∇+ iq)w

]
· [(∇+ iq)v] +

ˆ
Γ
V wv.

The plane-wave method is a Galerkin approximation of the variational problem (4.25)
in the Fourier space. More precisely, for all k ∈ R∗, let ek(x) := |Γ|−1/2eik·x denote the
plane-wave associated with the wave-vector k ∈ R∗. For a given s > 0, let us define the
finite dimensional space Xs ⊂ H1

per as follows

Xs := Span
{
ek| k ∈ R∗, |k|2 ≤ s

}
(4.26)

and denote by Ns its dimension and by ΠXs : L2
per → Xs the L2

per orthogonal projector
onto Xs.

Problem (4.25) is approximated by the discrete version : find (usq, ε
V,s
q ) ∈ Xs × R

such that
aq(w, u

s
q) = εV,sq 〈w, usq〉 ∀w ∈ Xs and ‖usq‖L2

per
= 1. (4.27)

where for every x ∈ Rd,

usq(x) = (ΠXsuq)(x) :=
∑

k∈Zd,|k|2≤s

ûsq,n,k ek(x) with
∑

k∈Zd,|k|2≤s

|ûsq,n,k|2 = 1.

We denote by U sq ∈ CNs the vector of Fourier coefficients (ûsq,n,k)|k|2≤s and introduce
the Hamiltonian matrix Hsq ∈ CNs×Ns as follows

(
Hsq
)
k,l

:= apq(el, ek) =

{
|k + q|2 + V̂0 if k = l,

V̂k−l if k 6= l.
(4.28)

Finally, Problem (4.27) can be written as the matrix eigenvalue problem: find (U sq , ε
V,s
q ) ∈

CNs × R such that
HsqU sq = εV,sq U sq ‖usq‖2 = 1 (4.29)
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It suffices lastly to compute the eigenvalues εV,sq,n and normalized eigenvectors U sq,n for
1 ≤ n ≤ Ns of the Hermitian matrix Hsq. Several numerical methods allow to do
this efficiently [Saa03]. To illustrate the method, let us calculate the low-energy bands
associated to a two-dimensional real-valued 2πZ2−periodic potential. The result is
given in Figure 4.5.
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Figure 4.5 – Numerical computation of a 2D band structure with the plane-wave discretization.
The first Brillouin zone [− 1

2 ,
1
2 ]2 is uniformly discretized using 41 × 41 points. The dimension

of the used approximation space Xs is Ns = 81.
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CHAPTER 5

RECONSTRUCTION OF THE FIRST BAND(S) IN AN
INVERSE HILL’S PROBLEM

We report in this chapter the results of [BEG17] obtained with Virginie Ehrlacher and
David Gontier.

Abstract. This paper concerns an inverse band structure problem for one dimen-
sional periodic Schrödinger operators (Hill’s operators). Our goal is to find a potential
for the Hill’s operator in order to reproduce as best as possible some given target bands,
which may not be realisable. We recast the problem as an optimisation problem, and
prove that this problem is well-posed when considering singular potentials (Borel mea-
sures). We then propose different algorithms to tackle the problem numerically.
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5.1 Introduction

The aim of this article is to present new considerations on an inverse band structure
problem for periodic one-dimensional Schrödinger operators, also called Hill’s oper-
ators. A Hill operator is a self-adjoint, bounded from below operator of the form
AV := − d2

dx2 + V , acting on L2(R), and where V is a periodic real-valued potential.
Its spectrum is composed of a reunion of intervals, which can be characterised using
Bloch-Floquet theory as the reunion of the spectra of a family of self-adjoint compact
resolvent operators AVq , indexed by an element q ∈ R called the quasi-momentum or
k-point (see [?, Chapter XIII] and Section 5.2.1). The mth band function associated to a
periodic potential is the function which maps q ∈ R to the mth lowest eigenvalue of AVq .
The properties of these band functions are well-known, especially in the one-dimensional
case (see e.g. [RS78b, Chapter XIII]).

The inverse band structure problem is an interesting mathematical question of prac-
tical interest, which can be roughly formulated as follows: is it possible to find a potential
V so that its first bands are close to some target functions?

A wide mathematical literature answers the question when the target functions are
indeed the bands of some Hill’s operator, corresponding to some Vref . In this case, we
need to recover a potential V that reproduces the bands of Vref . We refer to [Esk89,
ERT84a, ERT84b, PT87, FY01, Vel15] for the case when Vref is a regular potential,
and to [HM03a, HM04a, HM04b, HM03b, HM06] when Vref is singular (see also the
review [Kuc16]). The main ideas of the previous references are as follows. First, the
band structure of a Hill’s operator can be seen as the transformation of an analytic
function. In particular, the knowledge of any band on an open set is enough to recover
theoretically the whole band structure. A potential is then reconstructed from the high
energy asymptotics of the bands.

The previous methods use the knowledge of the behaviour of the high energy bands,
and therefore are unsuitable for practical purpose (material design) since we usually
have no accurate and numerically stable information about these high energy bands.
Moreover, in practice, only the low energy bands are usually of interest. The fact that
there exists no explicit characterisation of the set of the first band functions associated
to a given admissible set of periodic potentials is an additional numerical difficulty. For
applications, it is therefore interesting to know how to construct a potential such that
only its first bands are close to some given target functions, which may not be realisable
(for instance not analytic). In this present work, we therefore adopt a different point
of view, which, up to our best knowledge, has not been studied: we recast the inverse
problem as an optimisation problem.

The outline of the paper is as follows. In Section 5.2, we recall basic properties about
Hill’s operators with singular potentials. and we state our main result (Theorem 5.3).
Its proof is given in Section 5.3. Finally, we present in Section 5.4 some numerical tests
and propose an adaptive optimisation algorithm, which is observed to converge faster
than the standard one. This adaptive algorithm relies on the use of an a posteriori
error estimator for discretised eigenvalue problems, whose computation is detailed in
the Appendix.
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5.2 Spectral decomposition of periodic Schrödinger opera-
tors, and main results

In this section, we recall some properties of Hill’s operators with singular potentials. El-
ementary notions on the Bloch-Floquet transform [RS78b] are gathered in Section 5.2.1.
The spectral decomposition of one-dimensional periodic Schrödinger operators with sin-
gular potentials is detailed in Section 5.2.2, building on the results of [Kat72, HM01,
GZ06, MM08, DJP16]. We state our main results in Section 5.2.3.

5.2.1 Bloch-Floquet transform

We need some notation. Let D′ denotes the Schwartz space of complex-valued distri-
butions, and let D′per ⊂ D′ be the space of distributions that are 2π-periodic. In the
sequel, the unit cell is Γ := [−π, π), and the reciprocal unit cell (or Brillouin zone) is
Γ∗ := [−1/2, 1/2]. For u ∈ D′per and k ∈ Z, the kth normalised Fourier coefficient of u
is denoted by û(k). For s ∈ R, we denote by

Hs
per :=

{
u ∈ D′per, ‖u‖2Hs

per
:=
∑

k∈Z
(1 + |k|2)s|û(k)|2 < +∞

}

the complex-valued periodic Sobolev space, which is a Hilbert space when endowed with
its natural inner product. We write Hs

per,r for the real-valued periodic Sobolev space,
i.e.

Hs
per,r :=

{
u ∈ Hs

per, ∀k ∈ Z, û(−k) = û(k)
}
.

We also let L2
per := Hs=0

per . From our normalisation, it holds that

∀v, w ∈ L2
per, 〈v, w〉L2

per
=

ˆ
Γ
vw and ∀v, w ∈ H1

per, 〈v, w〉H1
per

=

ˆ
Γ

dv

dx

dw

dx
+

ˆ
Γ
vw.

Lastly, we denote by C0
per the space of 2π-periodic continuous functions, and by C∞c

the space of C∞ functions over R, with compact support.

To introduce the Bloch-Floquet transform, we let H := L2(Γ∗, L2
per). For any ele-

ment f ∈ H, we denote by fq(x) its value at the point (q, x) ∈ Γ∗ × Γ. The space H is
an Hilbert space when endowed with its inner product

∀f, g ∈ H, 〈f, g〉H :=

ˆ
Γ∗

ˆ
Γ
fq(x)gq(x)dx dq.

The Bloch-Floquet transform is the map B : L2(R)→ H defined, for smooth functions
ϕ ∈ C∞c (R), by

φq(x) := (Bϕ)q (x) :=
∑

R∈Z
ϕ(x+R)e−iq(R+x).

It is an isometry from L2(R) to H, whose inverse is given by

(
B−1φ

)
(x) :=

ˆ
Γ∗
φq(x)eiqx dq = ϕ(x).

The Bloch theorem states that if A is a self-adjoint operator on L2(R) with domain
D(A) that commutes with Z-translations, then BAB−1 is diagonal in the q-variable.
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More precisely, there exists a unique family of self-adjoint operators (Aq)q∈Γ∗ on L2
per

such that for all ϕ ∈ L2(R) ∩D(A),

(Aϕ)(x) =

ˆ
Γ∗

(Aqφq)(x) dq.

In this case, we write

A =

ˆ ⊕
Γ∗
Aqdq.

5.2.2 Hill’s operators with singular potentials

Giving a rigorous mathematical sense to a Hill’s operator of the form − d2

dx2 + V on
L2(R), when the potential V is singular is not an obvious task. In the present paper,
we consider V ∈ H−1

per,r, which is a case that was first tackled in [Kat72] (see also [HM01,
DJP16, GZ06, MM08] for recent results).

The results which are gathered in this section are direct corollaries of results which
were proved in these earlier works, particularly in [HM01].

Proposition 5.1. [Theorem 2.1 and Lemma 3.2 of [HM01]] For all V ∈ H−1
per,r, there

exists σV ∈ L2
per and κV ∈ R such that

V = σ′V + κV in D′per. (5.1)

Moreover, if aV : H1(R)×H1(R)→ C is the sesquilinear form defined by

∀v, w ∈ H1(R), aV (v, w) =

ˆ
R

dv

dx

dw

dx
+

ˆ
R
κV vw −

ˆ
R
σV

(
dv

dx
w + v

dw

dx

)
, (5.2)

then aV is a symmetric, continuous sesquilinear form on H1(R)×H1(R), which is closed
and bounded from below. Besides, aV is independent of the choice of σV ∈ L2

per and
κV ∈ R satisfying (5.1).

Remark 5.2. The expression (5.2) makes sense whenever v, w ∈ H1(R). This can be
easily seen with the Cauchy-Schwarz inequality, and the embedding H1(R) ↪→ L∞(R).
It is not obvious how to extend this result to higher dimension.

A direct consequence of Proposition 5.1 is that one can consider the Friedrichs
operator on L2(R) associated to aV , which is denoted by AV in the sequel. The operator
AV is thus a densely defined, self-adjoint, bounded from below operator on L2(R), with
form domain H1(R) and whose domain is dense in L2(R). Formally, it holds that

AV = − ∂2

∂x2
+ V.

The spectral properties of the operator AV can be studied (like in the case of regular
potentials) using Bloch-Floquet theory.

The previous result, together with Bloch-Floquet theory, allows to study the oper-
ator AV via its Bloch fibers

(
AVq
)
q∈Γ∗

. For q ∈ Γ∗, it holds that AVq is the self-adjoint
extension of the operator ∣∣∣∣−i

d

dx
+ q

∣∣∣∣
2

+ V.

134



It holds that AVq is a bounded from below self-adjoint operator acting on L2
per, whose

form domain is H1
per, and with associated quadratic form aVq , defined by (recall that

H1
per is an algebra)

∀v, w ∈ H1
per, aVq (v, w) :=

ˆ
Γ

[(
−i d
dx

+ q

)
v

(
−i d
dx

+ q

)
w

]
+ 〈V, vw〉H−1

per,H1
per
.

(5.3)
In other words, we have

AV =

ˆ ⊕
Γ∗
AVq dq.

The fact that L2
per is compactly embedded in H1

per implies that AVq is compact-
resolvent. As a consequence, there exists a non-decreasing sequence of real eigenvalues(
εVq,m

)
m∈N∗ going to +∞ and a corresponding orthonormal basis (uVq,m)m∈N∗ of L2

per

such that
∀m ∈ N∗, AVq u

V
q,m = εVq,mu

V
q,m. (5.4)

The map Γ∗ 3 q 7→ εVq,m is called the mth band. Since the potential V is real-valued,
it holds that AV−q = AVq , so that εV−q,m = εVq,m for all q ∈ Γ∗ and m ∈ N∗. This implies
that it is enough to study the bands on [0, 1/2]. Actually, we have

σ(AV ) =
⋃

q∈[0,1/2]

⋃

m∈N∗
{εVq,m}.

In the sequel, we mainly focus on the first band. We write εVq := εVq,1 for the sake of
clarity. Thanks to the knowledge of the form domain of AVq , we know that

εVq := min
v∈H1

per

‖v‖
L2

per
=1

aVq (v, v). (5.5)

This characterisation will be the key to our proof. When the potential V is smooth
(say V ∈ L2

per), then the map Γ∗ 3 q 7→ εVq,m is analytic on (−1/2, 1/2). Besides, it is
increasing on [0, 1/2] if m is odd, and decreasing if m is even (see e.g. [RS78b, Chapter
XIII]).

5.2.3 Main results

The goal of this article is to find a potential V so that the bands of the corresponding
Hill’s operator are close to some given target functions. In order to do so, we recast the
problem as a minimisation one, of the form

V ∗ ∈ argminV ∈V J (V ).

Unfortunately, we were not able to consider the full setting where the minimisation
set V is the whole set H−1

per,r. The problem was that we were unable to control the
negative part of V . To bypass this difficulty, we chose to work with potentials that
are bounded from below. Such a distribution is necessary a measure (see e.g. [LL01]).
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Hence measure-valued potentials provide a natural setting for band reconstruction. We
recall here some basic properties about measures.

We denote byM+
per the space of non-negative 2π−periodic regular Borel measures

on R, in the sense that for all ν ∈ M+
per, and all Borel set S ∈ B(R), it holds that

ν(S) = ν(S + 2π) ≥ 0, and ν(Γ) < ∞. For all ε > 0, from the Sobolev embedding
H

1/2+ε
per ↪→ C0

per, we deduce thatM+
per ↪→ H

−1/2−ε
per ↪→ H−1

per, where the last embedding is
compact. For ν ∈ M+

per, we denote by Vν ∈ H−1
per,r the unique corresponding potential,

which is defined by duality through the relation:

∀φ ∈ H1
per,

ˆ
Γ
φdν = 〈Vν , φ〉H−1

per,H1
per
.

For B ∈ R, we define the set of B-bounded from below potentials

VB :=
{
V ∈ H−1

per,r| ∃ν ∈M+
per, V = Vν −B

}
⊂ H−1

per,r.

This will be our minimisation space for our optimisation problem. Note that VB1 ⊂ VB2

for B1 ≥ B2.

We now introduce the functional J to minimise. First, we introduce the set T of
allowed target functions:

T :=
{
b ∈ C0(Γ∗), b is even and b is increasing on [0, 1/2]

}
. (5.6)

Of course, for all V ∈ H−1
per,r, it holds that Γ∗ 3 q 7→ εVq ∈ T . Finally, in order to

quantify the quality of reconstruction of a band b ∈ T , we introduce the error functional
Jb : H−1

per,r → R defined by

∀V ∈ H−1
per,r, Jb(V ) :=

1

2

ˆ
Γ∗
|b(q)− εVq |2 dq =

ˆ 1/2

0
|b(q)− εVq |2 dq. (5.7)

The main result of the present paper is the following.

Theorem 5.3. Let b ∈ T , and denote by b∗ :=
ffl

Γ∗ b(q) dq ∈ R. Then, for all B >
1/4− b∗, there exists a solution Vb,B ∈ VB to the minimisation problem

Vb,B ∈ argminV ∈VB Jb(V ). (5.8)

The proof of Theorem 5.3 relies on the following proposition, which is central to our
analysis. Both the proofs of Theorem 5.3 and Proposition 5.4 are provided in the next
section.

Proposition 5.4. Let B ∈ R and let (Vn)n∈N∗ ⊂ VB. For all n ∈ N∗, let νn ∈ M+
per

such that Vn := Vνn − B. Let us assume that the sequence
(
εVn0

)
n∈N∗

is bounded and

such that νn(Γ) −→
n→+∞

+∞. Then, up to a subsequence (still denoted n), the functions

q 7→ εVnq converge uniformly to a constant function ε ∈ R, with ε ≥ 1
4 − B. In other

words, there is ε ≥ 1
4 −B such that

max
q∈[0,1/2]

∣∣εVnq − ε
∣∣ −−−→
n→∞

0. (5.9)

Conversely, for all ε ≥ 1
4 − B, there is a sequence (Vn)n∈N∗ ⊂ VB such that (5.9)

holds.
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This result implies that the first band of the sequence of operators
(
AVn

)
n∈N∗ , where

(Vn)n∈N∗ satisfies the assumptions of Proposition 5.4, becomes flat.

Remark 5.5. Here we have a sequence of first bands
(
εVnq
)
n∈N∗ that converges uni-

formly to a constant function. However, as the first band of any Hill’s operator must be
increasing and analytic, the limit is not the first band of a Hill’s operator.

5.3 Proof of Theorem 5.3 and Proposition 5.4

5.3.1 Preliminary lemmas

We first prove some intermediate useful lemmas before giving the proof of Proposi-
tion 5.4 and Theorem 5.3. We start by recording a spectral convergence result.

Proposition 5.6. [Theorem 4.1 [HM01]] Let (Vn)n∈N∗ ⊂ H−1
per,r be a sequence such that

(Vn)n∈N∗ converges strongly in H−1
per to some V ∈ H−1

per,r. Then,

∀m ∈ N∗, max
q∈[0,1/2]

∣∣εVnq,m − εVq,m
∣∣ −−−→
n→∞

0.

In our case, since we are working with potentials that are measures, we deduce the
following result.

Proposition 5.7. Let B ∈ R and (Vn)n∈N∗ ⊂ VB be a bounded sequence, in the sense

sup
n∈N
〈Vn,1Γ〉H−1

per,H1
per

<∞.

For all n ∈ N∗, let νn ∈M+
per such that Vn = Vνn−B. Then, there exists ν ∈M+

per such
that, up to a subsequence (still denoted n), (νn)n∈N converges weakly-* to ν in Mper,
and (Vn)n∈N∗ converges strongly in H−1

per to V := Vν −B ∈ VB. Moreover, it holds that

∀m ∈ N∗, max
q∈[0,1/2]

∣∣εVnq,m − εVq,m
∣∣ −−−→
n→∞

0.

Proof. The fact that we can extract from the bounded sequence (νn)n∈N∗ a weakly-*
convergent sequence inM+

per is the Prokhorov’s theorem applied in the torus Γ∗. The
second part comes from the compact embedding Mper ↪→ H−1

per. The final part is the
direct application of Proposition 5.6.

Remark 5.8. This proposition explains our choice to consider measure-valued poten-
tials. Note that a similar result does not hold in the L1

per setting for instance.

We now give a lemma which is standard in the case of regular potentials V (see [Eva98]).

Lemma 5.9. Let V ∈ VB for some B ∈ R. The first eigenvector uVq=0 ∈ H1
per of AVq=0

is unique up to a global phase. It can be chosen real-valued and positive.

Proof. We use the min-max principle (5.5), and the fact that, for u ∈ H1
per, the following

holds ∣∣∣∣
d

dx
|u|
∣∣∣∣ ≤

∣∣∣∣
d

dx
u

∣∣∣∣ a.e.
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We see that if u is an eigenvector corresponding to the first eigenvalue, then so is |u|.
We now consider a non-negative eigenvector u ≥ 0, and prove that it is positive. The
usual argument is Harnack’s inequality. However, it is a priori unclear that it works
in our singular setting. To prove it, we write V = Vν − B for ν ∈ M+

per, and consider
the repartition function Fν of ν: Fν(x) := ν((0, x]). This function is not periodic,
but the function fν(x) := Fν(x) − ν(Γ) x

|Γ| is. Since Fν is an non decreasing, right-
continuous function, we deduce that fν ∈ L∞per. Moreover, it holds, in the H−1

per sense,
that f ′ν = Vν − |Γ|−1ν(Γ) = V + B − |Γ|−1ν(Γ). As a result, we see that u is solution
to the minimisation problem

u ∈ argmin v∈H1
per,r

‖v‖
L2

per
=1

{ˆ
Γ

∣∣∣∣
dv

dx

∣∣∣∣
2

+

(
ν(Γ)

|Γ| −B
)
− 2

ˆ
Γ
fν

(
v
dv

dx

)}
.

There exists λ ∈ R so that the corresponding Euler-Lagrange equations can be written
in the weak-form:

divF (x, u, u′) +B(x, u, u′) = 0,

with
F (x, u, p) = p− fνu and B(x, u, p) = fνp+ λu.

We are now in the settings of [Tru67, Theorem 1.1], and we deduce that u > 0. The
rest of the proof is standard.

5.3.2 Proof of Proposition 5.4

We now prove Proposition 5.4. Let B ∈ R and let Vn = Vνn −B ∈ VB with νn ∈M+
per,

be a sequence such that the sequence
(
εVnq=0

)
n∈N∗

is bounded and νn(Γ) goes to +∞.

Since
(
εVn0

)
n∈N∗

is bounded, then up to a subsequence (still denoted by n), there exists

ε ∈ R such that εVn0 converges to ε. Our goal is to prove that the convergence also holds
uniformly in q ∈ Γ∗.

Let uVn0 ∈ H1
per be the L2

per-normalised positive eigenvector of AVn0 associated to the
eigenvalue εVn0 (see Lemma 5.9). We denote by αn := minx∈Γ u

Vn
0 (x) > 0. Let us first

prove that the following convergences hold:

αn

ˆ
Γ
uVn0 dνn −−−−−→

n→+∞
0 and α2

nνn(Γ) −−−−−→
n→+∞

0. (5.10)

From the equality
ˆ

Γ

∣∣∣∣
d

dx

(
uVn0

)∣∣∣∣
2

+

ˆ
Γ
|uVn0 |2dνn = εVn0 +B,

we get

α2
nνn(Γ) ≤ αn

ˆ
Γ
uVn0 dνn ≤

ˆ
Γ
|uVn0 |2dνn ≤ εVn0 +B. (5.11)

As the right-hand side is bounded, and νn(Γ)→ +∞ by hypothesis, this implies αn → 0.
Moreover, we have

0 ≤
ˆ

Γ
uVn0 dνn = aVn0 (uVn0 ,1Γ) +B

ˆ
Γ
uVn0 = (εVn0 +B)

ˆ
Γ
uVn0 ≤ (εVn0 +B)|Γ|1/2,
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where we used the Cauchy-Schwarz inequality for the last part. As a result, we deduce
that the sequence

(´
Γ u

Vn
0 dνn

)
n∈N∗

is bounded. The first convergence of (5.10) follows.

The second convergence is a consequence of the first inequality in (5.11).

Let xn ∈ Γ = [0, 2π) be such that αn = uVn0 (xn). The fact that αn → 0 implies that
ln := ‖uVn0 (xn + ·)− αn‖2L2

per
→ 1 and we can thus define for n large enough

vn :=
uVn0 (xn + ·)− αn

‖uVn0 (xn + ·)− αn‖L2
per

.

It holds that vn ∈ H1
per, ‖vn‖L2

per
= 1. Besides, it holds that vn(0) = 0. For q ∈ Γ∗, we

introduce the function vq,n defined by:

∀x ∈ R, vq,n(x) := vn(x)e−iq[x], where we set [x] := x mod 2π.

Thanks to the equality vn(0) = 0, it holds that vq,n ∈ H1
per, and that ‖vq,n‖L2

per
= 1.

This function is therefore a valid test function for our min-max principle1.

From the min-max principle (5.5) and the expression (5.3), we obtain

B + εVnq ≤ B + aVnq (vq,n, vq,n)

=

ˆ
Γ

∣∣∣∣
(
−i d
dx

+ q

)
vq,n

∣∣∣∣
2

+

ˆ
Γ
|vq,n|2 dνn =

ˆ
Γ

∣∣∣∣
dvn
dx

∣∣∣∣
2

+

ˆ
Γ
|vn|2 dνn

=
1

ln

(ˆ
Γ

∣∣∣∣
d

dx

(
uVn0 (xn + ·)

)∣∣∣∣
2

+

ˆ
Γ
|uVn0 (xn + ·)− αn|2 dνn

)

=
1

ln

(ˆ
Γ

∣∣∣∣
d

dx

(
uVn0

)∣∣∣∣
2

+

ˆ
Γ
|uVn0 |2 dνn − 2αn

ˆ
Γ
uVn0 dνn + α2

nνn(Γ)

)

=
1

ln

(
B + εVn0 − 2αn

ˆ
Γ
uVn0 dνn + α2

nνn(Γ)

)
.

We infer from these inequalities, and from (5.10) that

0 ≤ max
q∈Γ∗

∣∣∣εVnq − εVn0

∣∣∣ ≤
(
B + εVn0

)( 1

ln
− 1

)
+

1

ln

(
−2αn

ˆ
Γ
uVn0 dνn + α2

nνn(Γ)

)
−−−−−→
n→+∞

0.

This already proves the convergence (5.9).

To see that ε ≥ 1
4 −B, we write, for V = Vν −B with ν ∈M+

per that

∀q ∈ [−1/2, 1/2], AVq =

∣∣∣∣−i
d

dx
+ q

∣∣∣∣
2

+ Vν −B ≥
∣∣∣∣−i

d

dx
+ q

∣∣∣∣
2

−B ≥ q2 −B,

where we used the fact that the lowest eigenvalue of
∣∣∣∣−i

d

dx
+ q

∣∣∣∣
2

is q2 for q ∈ [−1/2, 1/2]

(this can be seen with the Fourier representation of the operator). As a consequence,
for q = 1

2 , we obtain that for all V ∈ VB, εVq=1/2 ≥ 1
4 −B. The result follows.

1This construction only works in one dimension. We do not know how to construct similar test
functions in higher dimension.
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To prove the converse, we exhibit an explicit sequence of measures (νn)n∈N∗ ⊂M+
per

such that εVνnq → 1
4 . The general result will follow by taking sequences of the form

Vn = Vνn +
(
ε− 1

4

)
− B. We denote by δx the Dirac mass at x ∈ R, and consider, for

λ > 0, the measure
νλ := λ

∑

k∈Z
δ2πk ∈M+

per. (5.12)

From the first part of the Proposition, it is enough to check the convergence for q = 0.
We are looking for a solution to (we denote by ω2

λ := ε
Vνλ
0 ≥ 0 for simplicity)

− u′′ + λδ0u(0) = ω2
λu, u ≥ 0, u(2π) = u(0). (5.13)

On (0, 2π), u satisfies the elliptic equation −u′′ = ω2
λu, hence is of the form

u(x) = Ceiωλx +De−iωλx,

for some C,D ∈ R. The continuity of u at 2π implies Ce2iπωλ + De−2iπωλ = C + D.
Moreover, integrating (5.13) between 0− and 0+ leads to the jump of the derivative
−u′(0) + u′(2π) + λu(0) = 0, or

iωλ (D − C) + iωλ
(
Ce2iπωλ −De−2iπωλ

)
+ λ(C +D) = 0.

We deduce that (C,D) is solution to the 2× 2 matrix equation
(

1− e2iπωλ 1− e−2iπωλ

−iωλ
(
1− e2iπωλ

)
+ λ iωλ

(
1− e−2iπωλ

)
+ λ

)(
C
D

)
=

(
0
0

)
.

The determinant of the matrix must therefore vanish, which leads to

1 = cos(2πωλ) +
λ

2

sin(2πωλ)

ωλ
.

As λ→∞, one must have ωλ → 1/2, or equivalently εVνλ0 → 1/4. The result follows.

5.3.3 Proof of Theorem 5.3

We are now in position to give the proof of Theorem 5.3. Let b ∈ T and B > 1/4− b∗
where b∗ :=

ffl
Γ∗ b(q) dq. Let Vn = Vνn − B ⊂ VB be a minimising sequence associated

to problem (5.8).

Let us first assume by contradiction that νn(Γ)→∞. Then, according to Proposi-
tion 5.4, up to a subsequence (still denoted by n), there exists ε ≥ 1

4 −B such that εVnq
converges uniformly in q ∈ Γ∗ to the constant function ε. Also, from the second part of
Proposition 5.4, the fact that B > 1

4 − b∗ and the fact that b∗ is the unique minimiser
to

inf
c∈R
Kb(c), (5.14)

where Kb(c) :=
´

[0,1/2] |b(q)− c|2 dq for all c ∈ R, it must hold that ε = b∗.

We now prove that

inf
V ∈VB

Jb(V ) 6= inf
c∈R
Kb(c) = Kb(b∗).

140



To this aim, we exhibit a potential W ∈ VB such that Jb(W ) < Kb(b∗). Since b is
continuous and increasing on [0, 1/2], there exists a unique q∗ ∈ (0, 1/2) such that
b(q∗) = b∗. We choose δ > 0 small enough such that 0 < q∗− δ < q∗+ δ < 1/2, and set

ηext :=

ˆ q∗−δ

0
|b(q)− b∗|2 dq +

ˆ 1/2

q∗+δ
|b(q)− b∗|2 dq and ηint :=

ˆ q∗+δ

q∗−δ
|b(q)− b∗|2 dq,

so that Kb(b∗) = ηext + ηint. Since b is increasing and continuous, it holds that ηint > 0
and ηext > 0, and that b(q∗ − δ) < b∗ < b(q∗ + δ).

We now choose a constant σ > 0 such that

0 < σ < min

{
ηint

8δ
,B + b∗ − 1

4
, b∗ − b(q∗ − δ), b(q∗ + δ)− b∗

}
.

Let νn be the measure defined in (5.12) for λ = n ∈ N, and let

W̃n := Vνn + b∗ − 1

4
.

Since εW̃n
q converges to b∗ uniformly in Γ∗, there exists n0 ∈ N∗ large enough such that

∀q ∈ Γ∗,

∣∣∣∣ε
W̃n0
q − b∗

∣∣∣∣ < σ/2.

We then define

W := W̃n0 + b∗ − εW̃n0
q∗ = Vνn +

[(
B + b∗ − 1

4

)
−
(
ε
W̃n0
q∗ − b∗

)]
−B.

Since σ < B + b∗ − 1/4, it holds that W ∈ VB. Moreover, it holds that b∗ − σ < εWq <

b∗ + σ for all q ∈ Γ∗. Finally, for q = q∗, we have εWq∗ = b∗.

Let us evaluate Jb(W ). We get

Jb(W ) =

ˆ q∗−δ

0
|b(q)− εWq |2 dq +

ˆ q∗+δ

q∗−δ
|b(q)− εWq |2 dq +

ˆ 1/2

q∗+δ
|b(q)− εWq |2 dq.

For the first part, we notice that for 0 ≤ q < q∗ − δ, we have

b(q) < b(q∗ − δ) < b∗ − σ < εWq < εWq∗ = b∗.

This yields that

∀ 0 ≤ q < q∗ − δ, |b(q)− εWq | = εWq − b(q) < b∗ − b(q) = |b(q)− b∗|.

Integrating this inequality leads to
ˆ q∗−δ

0
|b(q)− εWq |2 dq <

ˆ q∗−δ

0
|b(q)− b∗|2 dq.

Similarly, we obtain that
ˆ 1/2

q∗+δ
|b(q)− εWq |2 dq <

ˆ 1/2

q∗+δ
|b(q)− b∗|2 dq.
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Lastly, for the middle part, we have

ˆ q∗+δ

q∗−δ
|b(q)− εWq |2 dq < 2δ

[
εWq∗+δ − εWq∗−δ

]
≤ 4δσ ≤ ηint

2
<

ˆ q∗+δ

q∗−δ
|b(q)− b∗|2 dq.

Combining all these inequalities yields that Jb(W ) < Kb(b∗). This contradicts the
minimising character of the sequence (Vn)n∈N∗ .

Hence the sequence (νn(Γ))n∈N∗ is bounded. The proof of Theorem 5.3 then follows
from Proposition 5.7.

5.4 Numerical tests

In this section, we present some numerical results obtained on different toy inverse
band structure problems. We propose an adaptive optimisation algorithm in which
the different discretisation parameters are progressively increased. Such an approach,
although heuristic, shows a significant gain in computational time on the presented test
cases in comparison to a naive optimisation approach.

In Section 5.4.1, we present the discretised version of the inverse band problem for
multiple target bands. We present the different optimisation procedures used for this
problem (direct and adaptive) in Section 5.4.2. Numerical results on different test cases
are given in Section 5.4.3. The reader should keep in mind that although the proof
given in the previous section only works for the reconstruction of the first band, it is
possible to numerically look for methods that reproduce several bands.

5.4.1 Discretised inverse band structure problem

For k ∈ Z, we let ek(x) := 1√
2π
eikx be the k-th Fourier mode. For s ∈ N∗, we define by

Xs := Span {ek, k ∈ Z, |k| ≤ s} (5.15)

the finite dimensional space of L2
per consisting of the Ns := 2s+1 lowest Fourier modes.

We denote by ΠXs : L2
per → Xs the L2

per orthogonal projector onto Xs. In prac-
tice, the solutions of the eigenvalue problem (5.4) are approximated using a Galerkin
method in Xs. We denote by εV,sq,1 ≤ · · · ≤ εV,sq,Ns the eigenvalues (ranked in increasing
order, counting multiplicity) of the operator AV,sq := ΠXsA

V
q Π∗Xs . We also denote by

(uV,sq,1 , · · · , uV,sq,Ns) an orthonormal basis of Xs composed of eigenvectors associated to
these eigenvalues so that

∀1 ≤ j ≤ Ns, AV,sq uV,sq,j = εV,sq,j u
V,s
q,j . (5.16)

An equivalent variational formulation of (5.16) is the following:

∀1 ≤ j ≤ Ns, ∀v ∈ Xs, aVq

(
uV,sq,j , v

)
= εV,sq,j

〈
uV,sq,j , v

〉
L2

per

.

As s goes to +∞, it holds that εV,sq,m −→s→+∞
εVq,m.
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In order to perform the integration in (5.7), we discretise the Brillouin zone. We
use a regular grid of size Q ∈ N∗, and set

Γ∗Q :=

{
−1

2
+
j

Q
, j ∈ {0, · · · , Q− 1}

}
.

We emphasise that since the maps q 7→ εq,m are analytic and periodic, the discretisation
error coming from the integration will be exponentially small with respect to Q. In
practice, we fix Q ∈ N∗.

Let M ∈ N∗ be a desired number of targeted bands and b1, · · · , bM ∈ C0
per be real-

valued even functions, and such that bm is increasing when m is odd and decreasing
when m is even. Our cost functional is therefore J : H−1

per,r → R, defined by

∀V ∈ H−1
per,r, J (V ) :=

1

Q

∑

q∈Γ∗Q

M∑

m=1

|bm(q)− εVq,m|2.

Its discretised version, when the eigenvalues problems are solved with a Galerkin ap-
proximation, is

∀s ∈ N∗, ∀V ∈ H−1
per,r, J s(V ) :=

1

Q

∑

q∈Γ∗Q

M∑

m=1

|bm(q)− εV,sq,m|2.

Recall that our goal is to find a potential V ∈ H−1
per,r which minimise the functional

J s. In practice, an element V ∈ H−1
per,r is approximated with a finite set of Fourier

modes. For p ∈ N∗, we denote by

Yp := Span





∑

k∈Z, |k|2≤p

V̂kek, ∀k ∈ Z, |k| ≤ p, V̂−k = V̂k



 . (5.17)

Altogether, we want to solve

V s,p := argminV ∈Yp J s(V ).

5.4.2 Algorithms for optimisation procedures

Naive algorithm

We first present a naive optimisation procedure, using a gradient descent method, where
the parameters s and p are fixed beforehand. We tested three different versions of
the gradient descent algorithm: steepest descent (SD), conjugate gradient with Polak
Ribiere formula (PR) and quasi Newton with the Broyden-Fletcher-Goldfarb-Shanno
formula (BFGS). We do not detail here these classical descents and corresponding line
search routines for the sake of conciseness and refer the reader to [?, NW06].

For all V ∈ H−1
per,r, there exists real-valued coefficients

(
cVk
)
k∈N and

(
dVk
)
k∈N∗ such

that

V (x) = cV0 +
∑

k∈N∗
cVk cos(kx)+dVk sin(kx), and

∑

k∈N∗
(1+|k|2)−1

(
|cVk |2 + |dVk |2

)
< +∞.
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For all k ∈ N (respectively k ∈ N∗), we can express the derivative ∂cVk J
s(V ) (respec-

tively ∂dVk
J s(V )) exactly in terms of the Bloch eigenvectors uV,sq,m. Indeed, it holds

that

∂cVk
J s(V ) =

1

Q

∑

q∈Γ∗Q

M∑

m=1

2
(
εV,sq,m − bm(q)

)
∂cVk

(
εV,sq,m

)
.

On the other hand, from the Hellman-Feynman theorem, it holds that

∂cVk

(
εV,sq,m

)
=
〈
uV,sq,m, ∂cVk

AVq , u
V,s
q,m

〉
= 〈uV,sq,m, cos(k·)uV,sq,m〉L2

per
.

Similarly, for all k ∈ N∗,

∂dVk

(
εV,sq,m

)
=
〈
uV,sq,m, ∂dVk

AVq , u
V,s
q,m

〉
= 〈uV,sq,m, sin(k·)uV,sq,m〉L2

per
.

In the rest of the article, for all p ∈ N∗, we will denote by ∇J s(V )|Y p the 2p + 1-
dimensional real-valued vector so that

∇J s(V )
∣∣
Y p

=
(
∂dVp J

s(V ), ∂dVp−1
J s(V ), · · · , ∂dV1 J

s(V ), ∂cV0
J s(V ), ∂cV1

J s(V ), · · · , ∂cVp J
s(V )

)
.

In order for the reader to better compare our adaptive algorithm with this naive
one, we provide its pseudo-code below (Algorithm 1).

Input:
p, s ∈ N∗;
W0 ∈ Yp : initial guess;
ε > 0: prescribed global precision;
ν > 0: tolerance for the norm of the gradient;

Output:
W∗ ∈ Yp such that ‖∇J s(W∗)

∣∣
Yp
‖ ≤ ν;

Instructions:
n = 0, W = W0;
while ‖∇J s(W )

∣∣
Yp
|‖ > ν do

compute a descent direction D ∈ Yp at J s(W ) (using SD / PR / BFGS);
choose t ∈ R so that t ∈ argmin

t∈R
J s(W + tD);

set W ←W + tD;
end
return W∗ = W .

Algorithm 1: Naive optimisation algorithm
Although this method gives satisfactory numerical optimisers as shown in Sec-

tion 5.4.3, its computational time grows very quickly with the discretisation parameters
p and s. Besides, it is not clear how these parameters should be chosen a priori, given
some target bands. This motivates the design of an adaptive algorithm.
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Adaptive algorithm

In order to improve on the efficiency of the numerical optimisation procedure, we propose
an adaptive algorithm, where the discretisation parameters s or p are increased during
the optimisation process. To describe this procedure, we introduce two criteria to
determine whether s or p need to be increased during the algorithm.

As the parameter s is increased, the approximated eigenvalues εV,sq,m becomes more
accurate, and the discretised cost functional J s gets closer to the true one J . Our
criterion for s relies on the use of an a posteriori error estimator for the eigenvalue
problem (5.16). More precisely, assume we can calculate at low numerical cost an
estimator ∆V,s

q,m ∈ R+ such that

|εVm,q − εV,sm,q| ≤ ∆V,s
q,m,

(see Appendix 5.5), then we would have that

|J (V )− J s(V )| =

∣∣∣∣∣∣
1

Q

∑

q∈Γ∗Q

M∑

m=1

(
|bm(q)− εVq,m|2 − |bm(q)− εV,sq,m|2

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

Q

∑

q∈Γ∗Q

M∑

m=1

(
2bm(q)− εVq,m − εV,sq,m

) (
εV,sq,m − εVq,m

)
∣∣∣∣∣∣

≤ 1

Q

∑

q∈Γ∗Q

M∑

m=1

(
2
∣∣bm(q)− εV,sq,m

∣∣+ ∆V,s
q,m

)
∆V,s
q,m =: SsV .

The quantity SsV estimates the error between J (V ) and J s(V ) and therefore gives
information on the necessity to adapt the value of the discretisation parameter s.

We now derive a criterion for the parameter p. When this parameter is increased, the
minimisation space Yp gets larger. A natural way to decide whether or not to increase
p is therefore to consider the gradient of J s, at the current minimisation point W ∈ Yp,
but calculated on a larger subspace Yp′ ⊃ Yp with p′ > p.

In practice, the natural choice p′ = p + 1 is inefficient. This is not a surprise, as
there is no reason a priori to expect a sudden change at exactly the next Fourier mode.
We therefore took the heuristic choice p′ = 2p. More specifically, we define

PpV :=
∥∥∥∇V J s(V )

∣∣
Y2p

∥∥∥ .

Note that this estimator needs to be computed only when V is a local minimum of
J s on Yp. When this estimator is larger than some threshold, we increase p so that
the new space Yp contains the Fourier mode which provides the highest contribution in
(∇V J s(V ))

∣∣
Y2p

.
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The adaptive procedure we propose is described in details in Algorithm 2:

Input:
p0, s0 ∈ N∗ : initial discretisation parameters;
W0 ∈ Yp0 : initial guess;
η > 0: global discretisation precision;
ν > 0: gradient norm precision;

Output:
p ≥ p0, s ≥ s0 : final discretisation parameters;
W∗ ∈ Yp such that ‖∇J s(W∗)

∣∣
Yp
‖ ≤ ν, SsW∗ ≤ η and PpW∗ ≤ η;

Instructions:
n = 0, W = W0;
while ‖∇J s(W )

∣∣
Yp
‖ > ν or SsW > η or PpW > η do

while ‖∇J sp (W )
∣∣
Yp
‖ > ν do

compute a descent direction D ∈ Yp at J s(W ) (using SD / PR /
BFGS);

choose t ∈ R so that t ∈ argmint∈R J s(W + tD);
set W ←W + tD;

end
if SsW > η then

set s← s+ 1;
end
else if PpW > η then

set p← argmaxp<p≤2p max
(∣∣∣∂dVp J

s(W )
∣∣∣ ,
∣∣∣∂cVp J

s(W )
∣∣∣
)
;

end
end
return W∗ = W .

Algorithm 2: Adaptive optimisation algorithm

5.4.3 Numerical results

In this section, we illustrate the different algorithms presented above.

We consider the case where the target functions come from a target potential Vt ∈
Ypt , whose Fourier coefficients are randomly chosen for some pt ∈ N∗. We therefore take
bm(q) := εVt,st

q,m , and try to recover the first M functions bm. The numerical parameters
are M = 3, Q = 25, ν = 10−5, η = 10−6 and st = 20. The initial guess is W0 = 0. The
naive algorithms are run with s = st and p = pt, while the adaptive algorithms start
with s0 = p0 = 1. In addition, the a posteriori estimator is obtained with sref = 250 and
θ = 0.01 (see Appendix 5.5). All tests are done with the naive and adaptive algorihms,
with steepest descent (SD), conjugate gradient with Polak Ribiere formula (PR) and
quasi Newton with the Broyden-Fletcher-Goldfarb-Shanno formula (BFGS).

In our first test, we try to recover a simple shifted cosine function (i.e. pt = 1).
Results are shown in Figure 5.1. We observe that the bands and the potential are
well reconstructed. We also notice that the adaptive algorithm takes more iterations to
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converge. However, as we will see later, most iterations are performed for low values
of the parameters s and p, and therefore are usually faster in terms of CPU time (see
Table 5.1 below).
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Figure 5.1 – Recovery of the cosine potential.

In the second test case, we try to recover a more complex potential with pt = 8 (see
Figure 5.2). In this case, all the algorithms reproduce well the first bands, but fail to
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recover the potential. Actually, we see how different methods can lead to different local
minima for the functional J . This reflects the complex landscape of this function.
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Figure 5.2 – Recovery of an oscillating potential.
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We end this section by reporting results obtained with the different algorithms, and
for different target potential Vt ∈ Ypt with pt = 1, 4, 8, 12 (see Table 5.1). In this table,
N denotes the number of iterations, sN and pN are the values of the parameters s and
p at the last iteration (in particular, for the naive algorithms, we have sN = st = 20
and pN = pt). Lastly, for each algorithm algo, we define a relative CPU time

τalgo =
talgo

tSD
,

where talgo is the CPU time consumed by the algorithm algo and tSD is the CPU time
consumed by the classical steepest descent. In particular, τSD = 1.

pt
- BFGS PR SD
- naive adaptive naive adaptive naive adaptive

1
τ 0.259 1.176 0.929 1.320 1 1.255
N 8 31 21 154 24 90
sN 20 3 20 4 20 3
pN 1 3 1 2 1 3

4
τ 0.070 0.009 0.464 0.281 1 0.259
N 54 1424 1927 7091 8453 19095
sN 20 8 20 7 20 5
pN 4 5 4 3 4 3

8
τ 0.470 0.151 1.090 0.144 1 0.519
N 553 1041 1023 1515 7326 26783
sN 20 6 20 7 20 6
pN 8 4 8 4 8 4

12
τ 0.007 0.001 0.054 0.004 1 0.044
N 765 2474 2413 2727 50312 34865
sN 20 9 20 9 20 9
pn 12 8 12 8 12 8

Table 5.1 – Results for recovery test with different algorithms. Red values are reference values.

We notice that although the adaptive approach requires more iterations to converge,
it is usually faster than the naive one. As we already mentioned, this is due to the fact
that most of the iterations are performed with small values of p and s, and are therefore
faster. Moreover, we notice that the adaptive algorithms tend to find an optimised
potential which pN ≤ pt, i.e. a less oscillatory potential than the target one.
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5.5 Appendix: A posteriori error estimator for the eigen-
value problem

We present in this appendix the a posteriori error estimator for eigenvalue problems
that we use in Section 5.4.3. More details about this estimator are given in [BL17].

Let H be a finite dimensional space of size Nref and let A be a self-adjoint operator
on H. In our case, H is some Xsref

(see definition (5.15)) for some large sref � 1, and
A = AV,sref

q . The eigenvalues of A, counting multiplicities are denoted by ε1 ≤ ε2 ≤
· · · ≤ εNref

.

For N � Nref , we consider XN a finite dimensional subspace of H. We denote by
ΠXN the orthogonal projection on XN , and by AN := ΠXNAΠ∗XN . The eigenvalues
of AN are denoted by εN1 ≤ εN2 ≤ · · · ≤ εNN . Let us also denote by

(
uNm
)

1≤j≤N a
corresponding orthogonal basis of XN , so that

∀1 ≤ m ≤ N, ANuNm = εNmu
N
m.

We recall that, from the min-max principle, it holds that εm ≤ εNm. A certified a
posteriori error estimator for the m-th eigenvalue is a non-negative real number ∆N

m ∈
R+ such that

εNm − εm ≤ ∆N
m.

We also require that the expression of ∆N
m only involves the approximated eigenpair εNm

and uNm (and not εm).

Proposition 5.10. Assume that εm (resp. εNm) is a non-degenerate eigenvalue of A
(resp. AN ), and that

0 < εNm − εm < dist
(
εNm, σ(A) \ {εm}

)
. (5.18)

Let λm < εm. Then there exists δm > 0 such that, for all 0 ≤ δ < δm, we have

εNm − εm ≤
〈
rNm, (A− cδ)−1 (A− dδ) (A− cδ)−1 rNm

〉
, (5.19)

where we set cδ := εNm + δ, dδ := λm + δ, and where rNm :=
(
A− εNm

)
uNm is the residual.

Proof. Assumption (5.18) implies that εNm /∈ σ (A), so that
(
A− εNm

)
is invertible. From

the fact that 〈uNm, AuNm〉 = εNm, and the definition of the residual, it holds that

εNm − εm =
〈
rNm,

(
A− εNm

)−1
(A− εm)

(
A− εNm

)−1
rNm

〉
. (5.20)

Thus, a sufficient condition for (5.19) to hold is that

(A− cδ)−1 (A− dδ) (A− cδ)−1 ≥
(
A− εNm

)−1
(A− εm)

(
A− εNm

)−1
.

Thanks to the spectral decomposition of A, this is the case if and only if,

∀1 ≤ m̃ ≤ Nref ,
εm̃ − dδ

(εm̃ − cδ)2 ≥
εm̃ − εm

(εm̃ − εNm)2 .

Denoting by η := dist
(
εNm, σ(A) \ {εm}

)
−
(
εNm − εm

)
, this holds true as soon as δ ≤

δm := min (εm − λm, η). The result follows.
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In order to use the left-side of (5.19) as an a posteriori estimator, we need to choose
λm < εm and δm > 0. For the choice of λm, we follow [WS80], and notice that

εm ≥ λm := µ−
(
Nref −m− 1

m+ 1

)1/2

σ,

where we set
µ :=

1

Nref
TrA and σ2 :=

1

Nref
TrA2 − µ2.

For the choice of δm, we chose the simple rule

δm = θ
(
εNm − κ

)
with 0 < θ � 1 and κ ∈ R independent of m.

The real number κ is chosen to be an a priori lower bound of the lowest eigenvalue ε1 of
A. This choice is heuristic in the sense that we cannot guarantee that the assumptions
of Proposition 5.10 are satisfied. However, the encouraging numerical results we obtain
below motivated our choice to use such an estimator (see Section 5.5).

Numerical test To illustrate the efficiency of our heuristic, we tested it to compute
the first bands of the Hill’s operator AV with

V (x) =
3∑

k=−3

V̂kek, where V̂0 = 2 and V̂−1 = V̂−2 = V̂1 = V̂2 = 1 + 0.5 i.

The reference operator is A := AV,sref
q with sref = 250, and the first three bands are

computed on the space Xs defined in 5.15 with s = 6. We plot in Figure 5.3 the true
error εV,sq,m − εV,sref

q,m for m = 1, 2, 3, and the corresponding a posteriori error with κ = 0
and different values of θ (namely θ = 0.1, 0.5, 1). We observe that our estimator is sharp
for a large range of θ.
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Figure 5.3 – Numerical validation of the a posteriori error estimator proposed in Appendix 5.5.
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CHAPTER 6

COMPRESSION OF WANNIER FUNCTIONS INTO
GAUSSIAN-TYPE ORBITALS

The work presented in this chapter is done in collaboration with Eric Cancès, Paul
Cazeaux, Shiang Fang and Efthimios Kaxiras. It is part of the article [BCC+17]

Abstract. We propose a greedy algorithm for the compression of Wannier functions
into Gaussian-polynomials orbitals. The so-obtained compressed Wannier functions can
be stored in a very compact form, and can be used to efficiently parameterize effective
tight-binding Hamiltonians for multilayer 2D materials for instance. The compression
method preserves the symmetries (if any) of the original Wannier function. Algorithmic
details are provided, and the performance of our implementation are illustrated on
several examples (graphene, hexagonal boron-nitride, single-layer FeSe, diamond-phase
silicon)
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6.1 Introduction

Since their introduction in 1937 [Wan37], Wannier functions have become a widely used
tool in solid state physics and materials science. Theses functions provide insights on



chemical bonding in crystalline material [MMY+12], they play an essential role in the
modern theory of polarization [KSV93], and they can be used to parametrized tight-
binding Hamiltonians for the calculation of electronic properties [FKDS+15]. Other
applications of Wannier functions are presented in the review paper [MMY+12].

Maximally localized Wannier functions (MLWFs) were introduced by Marzari and
Vanderbilt [MV97] and are obtained by minimizing some spread functional [MV97,
SMV01, MMY+12]. Several algorithms for generating MLWFs are implemented in the
Wannier90 computer program [MYL+08]. In the general case, MLWFs obtained by
the standard Marzari-Vanderbilt procedure are not centered at high-symmetry points
of the crystal (typically atoms or centers of chemical bonds), and do not fulfill any
symmetry properties [SMV01, THJ05], which complicates their physical interpreta-
tion. Symmetry-adapted Wannier functions (SAWFs) are Wannier functions centered
at high-symmetry points and are associated with irreducible representations of a non-
trivial subgroup of the space group of the crystal (precise definitions are given in Ap-
pendix). They can be seen as the solid-state counterparts of symmetry-adapted molec-
ular orbitals [Lad16] fruitfully used in quantum chemistry. SAWFs were investigated
in [DC63, Koh73, VBC79, Krü87, SB94, ES12, SU01, SE05, PBMM02, CZWP06] from
both theoretical and numerical points of view. An algorithm for generating maximally-
localized SAWFs was recently proposed by Sakuma [Sak13]; it allows one to enforce
the center and symmetries of the Wannier functions during the spread minimization
procedure. It is now implemented in the Wannier90 computer program.

In this work, we propose a numerical method for compressing Wannier functions into
a finite sum of Gaussian-polynomial functions (referred to as Gaussian-type orbitals -
GTOs - in the sequel), which preserves the centers and the possible symmetries of the
original Wannier functions. Such compressed representations enable the characteriza-
tion of a Wannier function by a small number of parameters (the shape parameters of
the Gaussians and the polynomial coefficients) rather than by its values on a poten-
tially very large grid. In addition, they can be used to accelerate the parameterization
of tight-binding Hamiltonians or more advanced reduced models from Wannier func-
tions computed from Density Functional Theory. Indeed, matrix elements of effective
Hamiltonians can be computed very efficiently for GTOs; this fundamental remark by
Boys [Boy50] was instrumental for the development of numerical methods for quantum
chemistry. Gaussian-type approximate Wannier functions should be particularly use-
ful for simulating multilayer two-dimensional materials [JM13, FK16], especially when
Fock exchange terms are considered, which is the case for hybrid functionals.

This article is organized as follows. In Section 6.2, we describe our approach for
compressing a given symmetry-adapted Wannier function W into a finite sum of GTOs
W̃p sharing the same center and symmetries asW . Note that our procedure is also valid
if the Wannier function has no symmetry (in the case, the symmetry group is reduced to
the identity matrix). The main idea is to construct a sequence W̃0, W̃1, W̃2, · · · of better
and better approximations of W (for the relevant metric, see Section 6.2.1), by means
of an orthogonal greedy algorithm [Tem08, TZ11]. The basics of greedy algorithms and
symmetry-adapted Wannier functions are briefly recalled in Sections 6.2.2 and 6.2.3
respectively. An overall description of our algorithm is given in Section 6.2.4 and im-
plementation details are provided in Section 6.2.5. We strongly believe that greedy
methods are very well adapted to the compressing problem under consideration; on the
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other hand, we do not claim that our implementation is optimal: many variants of the
numerical scheme described in Section 6.2.5 can be considered, and there is clearly room
for improvement to reduce the number of GTOs necessary to reach a given accuracy.
The purpose of this contribution is to assess the efficiency of greedy methods in this
setting, and to stimulate further work in this direction. The performance of our current
implementation is illustrated in Section 6.3 on four examples: three two-dimensional
materials, namely graphene, hexagonal boron-nitride (hBN), and FeSe, and bulk silicon
(in the diamond phase).

6.2 Theory

6.2.1 Error control

Consider a real-valued Wannier function W : R3 → R, which we would like to approx-
imate by a finite sum of well-chosen Gaussian-polynomial functions. First, we have to
specify the norm with which the error between W and its approximation W̃ will be
measured. We will consider here the L2 and H1 norms respectively defined by

‖u‖L2 =

(ˆ
R3

|u(r)|2 dr
)1/2

and

‖u‖H1 =

(ˆ
R3

|u(r)|2 dr +

ˆ
R3

|∇u(r)|2 dr
)1/2

. (6.1)

Requesting that ‖W−W̃‖H1 is small is far more demanding than simply requesting that
‖W − W̃‖L2 is small, since in the former case, both ‖W − W̃‖L2 and ‖∇W −∇W̃‖L2

must be small. In the perspective of using approximate Wannier functions to calibrate
tight-binding models, it is important to request ‖W − W̃‖H1 to be small. Indeed, while
the errors on the overlap integrals can be controlled by L2-norms:
∣∣∣∣
ˆ
R3

Wi(r)Wj(r) dr−
ˆ
R3

W̃i(r)W̃j(r) dr

∣∣∣∣ ≤ ‖Wi‖L2‖Wi−W̃i‖L2 +‖W̃i‖L2‖Wj−W̃j‖L2 ,

the errors on the kinetic energy integrals appearing in effective one-body Hamiltonians
matrix elements

〈Wi|H|Wj〉 =
1

2

ˆ
R3

∇Wi(r) · ∇Wj(r) dr +

ˆ
R3

V(r)Wi(r)Wj(r) dr

are controlled by the L2-norms of the gradients, hence by the H1-norms of the functions.
The H1-norm also allows one to control the errors on the potential integrals, even in
presence of Coulomb singularities.

Note that the L2 and H1-norms are particular instances of the Sobolev norms Hs,
s ∈ R, defined on the Solobev spaces

Hs(R3) =

{
u : R3 → R s.t.

ˆ
R3

(1 + |k|2)s|û(k)|2 dk <∞
}
,

where û is the Fourier transform of u, by

‖u‖Hs :=

(ˆ
R3

(1 + |k|2)s|û(k)|2 dk
)1/2

. (6.2)
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The L2-norm corresponds to s = 0, due to the isometry property of the Fourier trans-
form: ˆ

R3

|û(k)|2 dk =

ˆ
R3

|u(r)|2 dr.

Likewise, definition (6.2) agrees with definition(6.1) for s = 1 since
ˆ
R3

|k|2|û(k)|2 dk =

ˆ
R3

|ikû(k)|2 dk =

ˆ
R3

∣∣∣∇̂u(k)
∣∣∣
2
dk =

ˆ
R3

|∇u(r)|2 dr.

It can be useful to consider other kinds of Sobolev norms in some particular applications.
For instance, ‖W − W̃‖H1 being small does not guarantee that the pointwise values of
the function (W − W̃ ) are small. On the other hand, if ‖W − W̃‖H2 is small, then
|W (r)− W̃ (r)| is small for each r ∈ R3.

Our greedy algorithm has been implemented in the Fourier representation, and can
therefore minimize the error between the Wannier function W and its GTO represen-
tation for any value of the Sobolev exponent s. In the numerical examples reported in
Section 6.3, we will consider the cases s = 0 and s = 1.

6.2.2 Greedy algorithms in a nutshell

Greedy algorithms [Tem08, TZ11] are iterative algorithms allowing one, among other
things, to construct sequences of approximations W̃0, W̃1, W̃2, ... of some target function
W ∈ Hs(R3), with the following properties:

• each approximate function W̃p is a sum of p "simple" functions belonging to some
prescribed dictionary D ⊂ Hs(R3):

W̃p(r) =

p∑

j=1

φ
(p)
j (r),

with φ
(p)
j ∈ D. In our case, D will be a set of symmetry-adapted Gaussian-

polynomial functions;

• the errors ‖W − W̃p‖Hs decay to 0 when p→∞.

Greedy algorithms therefore provide systematic ways to approximate a given function
W ∈ Hs(R3) by a finite sum of simple functions with an arbitrary accuracy. Of course,
the setD of elementary functions cannot be any subsetHs(R3) (for instanceD cannot be
chosen as the set of radial functions since only radial functions can be well approximated
by finite sums of radial functions). The convergence property ‖W − W̃p‖Hs → 0 is
guaranteed provided the set D is a dictionary of Hs(R3), that is a family of functions
Hs(R3) satisfying the following three conditions:

1. D is a cone, that is if φ ∈ D, then tφ ∈ D for any t ∈ R;

2. Span(D) is dense in the Sobolev space Hs(R3). This means that any function
W ∈ Hs(R3) can be approximated with an arbitrary accuracy ε > 0 by a finite
linear combination of functions of D, and therefore by a finite sum of functions
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of D since D is a cone: for any ε > 0, there exists a finite integer p ∈ N∗, and p
functions φ(p)

1 , ... φ(p)
p in D such that

∥∥∥∥∥∥
W −




p∑

j=1

φ
(p)
j



∥∥∥∥∥∥
Hs

≤ ε.

Greedy algorithms provide practical ways to construct such approximations;

3. D is weakly closed in Hs(R3). This technical assumption ensures the convergence
of the greedy algorithm [Tem08].

Given a dictionary D, the greedy method then consists in

• initializing the algorithm with (for instance) W̃0 = 0;

• constructing iteratively a sequence W̃1, W̃2, W̃3, · · · of more and more accurate
approximations of the target Wannier function W of the forms

W̃p(r) =

p∑

j=1

φ
(p)
j (r), (6.3)

where φ(p)
j are functions of the dictionary D;

• stopping the iterative process when ‖W − W̃p‖Hs ≤ ε, where ε > 0 is the desired
accuracy (for the chosen Hs-norm).

We will use here the so-called orthogonal greedy algorithm for constructing W̃p+1 from
W̃p, which is defined as follows.

Algorithm 6.1 (Orthogonal greedy algorithm).

Step 1: Compute the residual at iteration p:

Rp(r) = W (r)− W̃p(r);

Step 2: find a local minimizer φp+1 to the optimization problem

min
φ∈D

Jp(φ), where Jp(φ) := ‖Rp − φ‖2Hs ; (6.4)

Step 3: solve the unconstrained quadratic optimization problem

(c
(p+1)
j )1≤j≤p+1 ∈ argmin





∥∥∥∥∥∥
W −



p+1∑

j=1

cjφ
(p)
j + cp+1φp+1



∥∥∥∥∥∥

2

Hs

, (cj)1≤j≤p+1 ∈ Rp+1



 ;

(6.5)

Step 4: set φ(p+1)
j = c

(p+1)
j φ

(p)
j , 1 ≤ j ≤ p, and φ(p+1)

p+1 = c
(p+1)
p+1 φp+1.

Note that Step 3 is easy to perform since (6.5) is nothing but a least square problem
in dimension (p+ 1) (p is of the order of 10 to 103 in practice). Step 2 will be described
in detail in Sections 6.2.4 and 6.2.5. The next section is concerned with the choice of
the dictionary D.
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6.2.3 Symmetry-adapted Wannier functions and Gaussian-type or-
bitals

For the reader’s convenience, the basics of the theory of symmetry-adapted Wannier
functions we make use of in this section are recalled in Appendix.

We assume from now on that we are dealing with a periodic material with space
group G = R o Gp, where R is a Bravais lattice embedded in R3, and Gp a finite
point group (a finite subgroup of the orthogonal group O(3)). The Bravais lattice R is
two-dimensional for 2D materials such as graphene or hBN, and three-dimensional for
usual 3D crystals.

We also assume that we are given a symmetry-adapted Wannier functionW centered
at a high-symmetry point q ∈ R3 of the crystalline lattice, and corresponding to a one-
dimensional representation of the subgroup

G0
q := {Θ ∈ Gp | Θq ∈ q +R}

of Gp. Note that our method can straightforwardly be extended to the case of two-
dimensional irreducible representations of G0

q. We now translate the origin of the
Cartesian frame to point q. Setting G0 := G0

q to simplify the notation, the function W
satisfies in this new frame the invariance property

∀Θ ∈ G0, (ΘW )(r) = W (Θ−1r) = χ(Θ)W (r), (6.6)

where χ is the character of this one-dimensional representation.

Our goal is to approximate the Wannier function W by a finite sum of GTOs. In
order to reduce the number of GTOs necessary to obtain the desired accuracy, while
enforcing the symmetries of the approximate Wannier functions W̃p, we use a dictionary
consisting of symmetry-adapted Gaussian-type orbitals (SAGTOs) of the form

φSA
α,σ,Λ(r) =

1

|G0|
∑

Θ∈G0

χ(Θ) (Θϕα,σ,Λ)(r) =
1

|G0|
∑

Θ∈G0

χ(Θ)ϕα,σ,Λ(Θ−1r), (6.7)

where |G0| is the order of the group G0, and where

ϕα,σ,Λ(r) =


 ∑

(nx,ny ,nz)∈I

λnx,ny ,nz(rx − αx)nx(ry − αy)ny(rz − αz)nz

 exp

(
− 1

2σ2
|r−α|2

)

is a Gaussian-polynomial function centered at α ∈ R3 with standard deviation σ >
0. The set I is a carefully chosen subset of

{
(nx, ny, nz) ∈ N3 | nx + ny + nz ≤ L

}

(total degree lower or equal to L) determined by the symmetries of the SAWF. Note
that for 2D materials laying in the xy plane, it is more appropriate to chose I ⊂{

(nx, ny, nz) ∈ N3 | nx + ny ≤ L‖, nz ≤ L⊥
}
.

Any function φSA
α,σ,Λ of the dictionary thus satisfies the same symmetry property

∀Θ ∈ G0, (ΘφSA
α,σ,Λ)(r) = φSA

α,σ,Λ(Θ−1r) = χ(Θ)φSA
α,σ,Λ(r)

as the Wannier function W to be approximated.
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6.2.4 A greedy algorithm for compressing SAWF into SAGTO

It can be shown that the set

DSA :=
{
φSA
α,σ,Λ, α ∈ R3, σ ∈ [σmin, σmax], Λ ∈ RIα

}
, (6.8)

where 0 < σmin < σmax < ∞ are given parameters (chosen by the user), and Iα is a
carefully chosen nonempty subset of N3 depending on the center α of the SAGTO, is a
dictionary for the closed subspace

Hs,SA(R3) :=
{
f ∈ Hs(R3) | ∀Θ ∈ G0, (Θf)(r) = f(Θ−1r) = χ(Θ)f(r)

}

of Hs(R3) for any s ∈ R+.
For example, in the case of Graphene and hBN (see Section 6.3), we use the same

set for each α ∈ R3:

Iα = {(0, 0, 1), (0, 0, 3), (0, 0, 5)}, ∀α ∈ R3.

More refine strategies will be considered in future works.

The main practical difficulty in Algorithm 6.1 is the computation of a local minimum
to Problem (6.4). This problem can be formulated in our case as

min
α∈R3, σ∈[σmin,σmax], Λ∈RI

Jp(α, σ,Λ), where Jp(α, σ,Λ) := ‖Rp − φα,σ,Λ‖2Hs . (6.9)

The above minimization problem can in turn be written as:

min
α∈R3, σ∈[σmin,σmax]

J̃p(α, σ), (6.10)

where
J̃p(α, σ) = min

Λ∈RI
Jp(α, σ,Λ). (6.11)

Since the map Λ 7→ Jp(α, σ,Λ) is quadratic in Λ, problem (6.11) can be solved explicitly
at a very low computational cost, and the gradient of J̃p(α, σ) with respect to both α
and σ can be easily computed from the solution of problem (6.11) by the chain rule.

We can then use an off-the-shelf constrained optimization solver to find a local
minimizer to the four-dimensional optimization problem (6.10).

6.2.5 Algorithmic details

Construction of MLWFs

TheWannier functions considered in this work are MLWFs constructed using VASP [KF96a,
KF96b] and Wannier90 [MYL+08]. Let us briefly describe the construction procedure.

First, the Bloch energy bands and wave-functions of the periodic Kohn-Sham Hamil-
tonian are obtained using VASP with pseudo-potentials of the Projector Augmented
Wave (PAW) type [Blö94], the PBE exchange-correlation functional [PBE96], a plane-
wave energy cutoff Ec and a grid Q of the Brillouin zone Γ∗. For 2D materials, the
height η of the supercell is chosen sufficiently large to eliminate the spurious interactions
between the material and its periodic images.
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Next, the Bloch eigenfunctions belonging to the energy bands of interest are com-
bined into a basis of MLWFs using the Marzari-Vanderbilt algorithm [MV97] as imple-
mented in the Wannier90 computer program [MYL+08]. The final output is a set of
Wannier functions which are known to be localized at a certain point and exponentially
decaying for materials which suitable topological properties such as the ones considered
in Section 6.3 (see [PP13]). In practice, one chooses a sufficiently large rectangular box,

Ω := [xmin, xmax]× [ymin, ymax]× [zmin, zmax] ⊂ R3,

such that we can safely neglect the exponentially vanishing values of the Wannier func-
tion under consideration outside the box. The numerical values of the Wannier function
W are given on a Cartesian gridM spanning the box and containing M = MxMyMz

points.
Note that the Wannier functions obtained in this manner are in general not perfectly

symmetry-adapted. Indeed, the classical Marzari-Vanderbilt algorithm does not take
symmetries into account. The current implementation of Sakuma’s method in Wan-
nier90 being not compatible with the outputs of VASP, we were not able to use it for
our simulations. However, in practice, the MLWFs we generated are close enough to
SAWFs so that it was possible to identify a high-symmetry center and an associated
point group. To test our compression method, we symmetrize the MLWFs according to
the identified point group before applying the greedy procedure.

Optimization Procedure in the Discrete Setting

Let us now focus on the practical implementation of the second step of the greedy
algorithm presented above. We present in this section the discrete formulation of prob-
lem (6.11). The discrete data representing the Wannier function W centered at q ∈ R3

are composed of: i) the symmetry group G0 and ii) the point values (W (r))r∈M at each
point of the cartesian gridM.

Because we seek to minimize in particular the H1-norm of the residual, we introduce
an auxiliary Fourier representation of the data. Indeed, computing gradients is a fast
(diagonal) operation in momentum space. The Fast Fourier Transform algorithm (FFT)
can be used to efficiently transform data from position to momentum space. In partic-
ular, we obtain the unnormalized discrete representation of the Fourier transform û of
any function u as point values (û(k))k∈K on a secondary Cartesian momentum-space
grid that we denote by K, containing the same number of points as the real-space grid,
i.e |K| = |M| = M . Let us recall that the FFT algorithm requires Mx, My and Mz to
be even numbers so that the momentum grid K is centered at zero. The Hs–norm (6.2)
of u then has a discrete approximation given by

‖u‖2Hs ≈ |Ω|
M2

∑

k∈K

(
1 + |k|2

)s |û(k)|2 . (6.12)

At every greedy iteration p ≥ 0, the exact cost functional Jp is approximated in the
discrete setting by the functional JMp defined as:

JMp (α, σ,Λ) :=
|Ω|
M2

∑

k∈K

(
1 + |k|2

)s ∣∣∣R̂p(k)− φ̂α,σ,Λ(k)
∣∣∣
2
, (6.13)
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where we recall that the residual Rp is computed from the approximation W̃p at step p
of the target Wannier function W ,

Rp(r) = W (r)− W̃p(r).

Note that while the Fourier transform of the SAGTO function φα,σ,Λ which appears in
this expression can be analytically computed, it is faster and more consistent to evaluate
directly the Fourier transform of the residual numerically using the FFT algorithm.

Let us now focus on the implementation of the minimization problem (6.10) with the
discrete error functional (6.13). As mentioned above, we use an off-the-shelf constrained
optimization solver to find a local minimizer to the non-convex minimization problem

min
α∈Ω, σ∈[σmin,σmax]

J̃Mp (α, σ), (6.14)

the minimization over the coefficients Λ of the SAGTO being performed explicitly for
fixed α, σ by solving the least-square problem

J̃Mp (α, σ) = min
Λ∈RI

JMp (α, σ,Λ). (6.15)

We tested both the Sequential Quadratic Programming (SQP) and the Interior-Point
(IP) specializations of the fmincon optimization routine implemented in the Matlab
Optimization Toolbox [MAT16]. To accelerate the computation, the gradient (but not
the Hessian matrix) is also provided to the optimizer routine. Note that it is straight-
forward to compute explicitely the gradient by the chain rule in the case of the discrete
error functional in (6.14) from the solution of the inner problem in (6.15); however its
expression is quite cumbersome and will be omitted here for the sake of conciseness.
The iterative procedure is stopped when one of the following two convergence criteria
is met: (i) the norm of the gradient is smaller than δ = 10−10; (ii) the relative step
size between two successive iterations is smaller than τmin = 10−12. In practice, our nu-
merical tests show that both optimization routines (SQP or IP) provide similar results,
with the IP method being slightly faster.

As usual with non-convex optimization problems, it is very important to provide
a suitable initial guess for the parameters, namely here the center of the Gaussian
α0 ∈ Ω and its variance σmin ≤ σ0 ≤ σmax. We propose here the following initialization
procedure. First, the initial center position α0 is chosen as a maximizer of the absolute
value of the residual Rp:

α0 ∈ argmax
r∈Ω

|Rp(r)|. (6.16)

Next, two different heuristic guesses are proposed to determine a suitable initial value
σ0, assuming that the function |Rp| resembles locally a Gaussian function centered at
α0,

|Rp(r)| ≈ |Rp(α0)| exp

(
−|r−α0|2

2σ2

)
. (6.17)

A first guess for σ0 is obtained by a local data fit,

σ0
1 = argmin

σ>0

∑

r∈M∩B(α0)

(
1

2σ2

∣∣r−α0
∣∣2 + log

∣∣∣∣
Rp(r)

Rp(α0)

∣∣∣∣
)2

,
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where B(α0) is a cubic box centered at α0 of side length 2rcutoff , with rcutoff a user-
defined parameter. This is in fact a linear least-squares fit, yielding the explicit formula:

σ0
1 =




∑

r∈M∩B(α0)

∣∣r−α0
∣∣4

−2
∑

r∈M∩B(α0)

∣∣r−α0
∣∣2 log

∣∣∣∣
Rp(r)

Rp(α0)

∣∣∣∣




1/2

. (6.18)

A second guess is provided by a property linking the variance of the standard nor-
malized Gaussian g(r) = (2πσ2)−1/2 exp

(
− 1

2σ2 |r|2
)
to its full width at half maximum,

denoted ωh:
ωh[g]

σ
= 2
√

2 log 2.

The full width at half maximum is not well defined for arbitrary (non-radial) functions.
We choose here to sample the full-width at half maximum along one-dimensional slices
in all three directions x, y, z around α0 and retain the smallest value. For an arbitrary
function u assumed to have its maximum magnitude at the origin, we let:

ωh[u] := min
d∈{x,y,z}

inf

{
|γ+ − γ−| : γ− < 0 < γ+ and

∣∣∣∣
u (γ±ed)

u (0)

∣∣∣∣ ≤
1

2

}
,

where ed is the standard unit vector in the direction d ∈ {x, y, z}. This leads to a
second initial guess for the variance:

σ0
2 =

ωh

[
Rp(· −α0)

]

2
√

2 log 2
. (6.19)

In practice, we project the values σ0
1 given by (6.18) and σ0

2 given by (6.19) on the
interval [σmin, σmax] and choose

σ0 = argmin
i=1,2

Jp(α0, σ0
i ,Λ

0). (6.20)

Again, we do not claim that this procedure is optimal; it however gives satisfactory
results for all the test cases we ran.

6.3 Numerical results

Our greedy algorithm allows us to compress a SAWF defined on a cartesian grid with
M = MxMyMz points into a sum of SAGTOs parameterized by p(4+ |I|) real numbers,
where p is the number of SAGTOs in the expansion

W̃ SA
p (r) =

p∑

j=1

φSA
αj ,σj ,Λj (r),

and where each φSA
αj ,σj ,Λj

is characterized by (4+ |I|) real parameters. The compression
gains for the four numerical examples detailed below, namely three 2D materials (single-
layer graphene, hBN, and FeSe), and one bulk crystal (diamond-phase silicon), are
collected in Table 6.1. The numerical parameters used in the construction of the original
Wannier functions (as described in Section 6.2.5) are given in Table 6.2 for the sake of
completeness.
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Material M |I| ε p p(4 + |I|) Compression ratio

Graphene 3237696 3
0.1 115 805 4022
0.02 1036 7252 446

hBN 4021248 3
0.1 137 959 4193
0.03 1500 10500 383

Si 110592 3
0.1 424 2968 38
0.02 1500 10500 10

FeSe 4032000 2
0.1 133 798 5052
0.02 1610 9660 417

Table 6.1 – Compression gains obtained with our implementation of the orthogonal greedy
minimizing the H1-norm of the residual for Wannier functions of graphene, hBN, FeSe, and
bulk silicon, for different tolerance levels ε.

Material Ec[eV ] Q η [Å] M
Graphene 500 25× 25× 1 20 168× 132× 146

hBN 500 25× 25× 1 20 192× 154× 136
FeSe 500 19× 19× 1 25 120× 120× 280
Si 300 7× 7× 7 − 48× 48× 48

Table 6.2 – Numerical parameters used for the construction of the original Wannier functions
using VASP and Wannier90.

6.3.1 Graphene and single-layer hBN

The space groups of graphene and single-layer hBN are respectively

G = Dg80 := Ro D6h, (space group of graphene),
G = P6m2 := Ro D3h, (space group of single-layer hBN),

where R is the 2D Bravais lattice embedded in R3 defined as

R = Za



√

3/2
1/2
0


+ Za




0
1
0


 , (6.21)

where a > 0 is the lattice parameter (which takes different values for graphene and
hBN). The group D6h is a group of order 24, and has 12 irreducible representations,
while the group D3h is a group of order 12, and has 6 irreducible representations.

The points O, A, B and C represented in Figure 6.1 are high-symmetry points of
graphene (left) and hBN (right); their symmetry groups are respectively

GO ≡ D6h, GA ≡ D3h, GB ≡ D3h, GC ≡ D2h, (graphene),
GO ≡ D3h, GA ≡ D3h, GB ≡ D3h, GC ≡ D1h, (single-layer hBN).

Let σh be the reflection operator with respect to the horizontal plane containing the
graphene sheet. The two irreducible representations of the subgroup Cs = (E, σh) of
D6h and D3h give rise to the decomposition of L2(R3) as

L2(R3) = L2
+(R3)⊕ L2

−(R3),
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O

C
A

B

O

C
A

B

Figure 6.1 – The honeycomb lattices of graphene (left) and hBN (right). The black dots
represent carbon atoms, the red dots boron atoms, and the green dots nitrogen atoms. The
blue dots O, A, B, and C represent some high-symmetry points.

D3h E 2C3 (z) 3C′2 σh (xy) 2S3 3σv linear quadratic cubic
functions functions functions

A′′2 +1 +1 -1 -1 -1 +1 z - z3, z(x2 + y2)

Table 6.3 – Character of the A”2 representation of the group D3h

where
L2

+(R3) = Ker(σh − 1), L2
−(R3) = Ker(σh + 1).

The bands associated with L2
+(R3) are the σ bands, the ones associated with L2

−(R3)
the π bands. The bands of interest for graphene and single-layer hBN are the valence
and conduction bands closer to the Fermi level. For graphene, these are the π bands
originating from the 2pz orbitals of the carbon atoms.

The SAWF functions for graphene and single-layer hBN considered here are centered
at point A and are transformed according to the (one-dimensional) A′′2 representation
of D3h, whose character is given in Table 6.3.

Graphical representations of the original Wannier functions generated by Wannier90
and of their compressions into Gaussian orbitals obtained with the VESTA visualization
package [MI08], are displayed in Figures 6.2 (graphene) and 6.3 (hBN). The decays of
the L2 and H1-norms of the residuals along the iterations of our implementation of
the orthogonal greedy algorithm aiming at minimizing the H1-norm of the residual, are
plotted in Figure 6.4.

6.3.2 Single-layer SeFe

The space group of single-layer FeSe is

G = P4/nmm := Ro D4h,

where R is the 2D square lattice of R3 defined as

R = Za




1
0
0


+ Za




0
1
0


 , (6.22)
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Figure 6.2 – Wannier function of graphene generated with VASP and Wannier90 (left), and its
compression into Gaussian orbitals (right). Positive and negative iso-surfaces corresponding to
15% of the maximum value are plotted. .

(a) (b)

Figure 6.3 – Wannier function of single-layer hBN generated with VASP and Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces corre-
sponding to 15% of the maximum value are plotted.

where a > 0 is the lattice parameter. The groupD4h is of order 16 and has 10 irreducible
representations. The symmetry group of the high-symmetry point A represented in
Figure 6.5 is GA = C2v.

The Wannier function considered here corresponds to a d−type orbital on an Fe
atom centered at point A and is transformed according to the one-dimensional A1

representation of C2v, whose character is given in Table 6.4. Graphical representations
of the original Wannier function and of its compression into Gaussian orbitals are given
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Figure 6.4 – Decays of the L2 and H1-norms of the residual for our implementation of the
orthogonal greedy algorithm minimizing the H1-norm of the residual (left: graphene, right:
hBN)

(a) side view (b) top view

Figure 6.5 – Crystalline structure of FeSe (2D layer with a finite thickness). The brown balls
represent Fe atoms and the green balls represent Se atoms. The spotted point A corresponds
to the high-symmetry point at which the Wannier function is centered.

in Figure 6.6. The decays of the L2 and H1-norms of the residual along the iterations
of our implementation of the orthogonal greedy algorithm minimizing the H1-norm of
the residual are plotted in Figure 6.9.

6.3.3 Diamond-phase silicon

The space group of diamond-phase silicon is

G = Fd3m := RoOh

where R is the Bravais lattice of R3 defined as

R = Za




1
0
1


+ Za




1
1
0


+ Za




0
1
1


 , (6.23)
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C2v E C2 (z) σv(xz) σv(yz) linear quadratic cubic
functions functions functions

A1 +1 +1 +1 +1 z x2, y2, z2 z3, x2z, y2z

Table 6.4 – Character of the A1 representation of the group C2v.

(a) (b)

Figure 6.6 – Wannier function of single-layer FeSe generated with VASP and Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces corre-
sponding to 12% of the maximum value are plotted.

where a > 0 is the lattice parameter. The group Oh is of order 48 and has 10 irreducible
representations. The Wannier function considered here corresponds a py−type orbital
centered at the high-symmetry point A represented in Figure 6.7 whose symmetry group
is GA = C2v.

It is transformed according to the one-dimensional irreducible representation A1

of the group C2v. Let us mention the following point : since the basis x̂ = (1, 0, 1),
ŷ = (1, 1, 0) and ẑ(0, 1, 1) is not orthonormal in R3, the symmetry operators C2(z),
σv(xz) and σv(yz) must be adapted to this geometry. Indeed, the two-fold rotation C2

is about the axis of direction (0, 1, 1) and the two reflexions σv are defined with respect
to the planes P1 and P2 of cartesian equations x + z = 0 and y + z = 0 respectively.
Graphical representations of the original Wannier function and of its compression into
Gaussian orbitals are given in Figure 6.8. The decays of the L2 and H1-norms of the
residual along the iterations of our implementation of the greedy algorithm aiming at
constructingH1-norm approximations of the Wannier function are plotted in Figure 6.9.
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Figure 6.7 – Crystalline structure of Silicon. The brown balls represent Si atoms and the spotted
point A corresponds to the high-symmetry point where the Wannier function is centered.

(a) (b)

Figure 6.8 – Wannier function of bulk Silicon (diamond phase) generated by Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces corre-
sponding to 10% of the maximum value are plotted.

Appendix: symmetry-adapted Wannier functions

A.1 Space group of a periodic material

Consider a periodic material with M nuclei of charges z1, · · · , zM per unit cell. The
nuclear charge distribution in the material is of the form

ν =
∑

R∈R

M∑

m=1

zmδRm+R,

where R is the Bravais lattice of the crystal (embedded in R3 if the material is a 2D
material), δa the Dirac mass at point a ∈ R3, and R1, · · · ,RM ∈ R3 the positions of
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Figure 6.9 – Decays of the L2 and H1-norms of the residual for our implementation of the or-
thogonal greedy algorithm minimizing the H1-norm of the residual (left: FeSe, right: diamond-
phase sillicon)

the nuclei laying in the unit cell. The space group G = R o Gp of the crystal is the
semidirect product of R and a finite point group Gp (a finite subgroup of O(3)). Recall
that the composition law in RoGp is defined as

∀g1 = (R1,Θ1), g2 = (R2,Θ2), g1g2 = (Θ1R2 + R1,Θ1Θ2),

and that the natural representation of G in R3 is given by

∀g = (R,Θ) ∈ G, ∀r ∈ R3, ĝr = (̂R,Θ)r = Θr + R.

Note that

∀g = (R,Θ) ∈ G, g−1 = (−Θ−1R,Θ−1) and ∀r ∈ R3, ĝ−1r = Θ−1(r−R).

The space group of the crystal is the largest group (for an optimal choice of the origin
of the Cartesian frame) leaving ν invariant:

∀g ∈ G, ĝν :=
∑

R∈R

M∑

m=1

zmδĝ(Rm+R) = ν.

The group G has a natural unitary representation Π = (Πg)g∈G on L2(R3) defined
by

∀g = (R,Θ) ∈ G, (Πgψ)(r) = ψ(ĝ−1r) = ψ(Θ−1(r−R)).

Denoting by E the identity matrix of rank 3, and by τ = (τa)a∈R3 the natural unitary
representation on R3 on L2(R3) defined by

∀a ∈ R3, ∀φ ∈ L2(R3), (τaφ)(r) = φ(r− a),

we have Π(R,E) = τR for all R ∈ R, so that (τR)R∈R is an abelian subgroup of Π.
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A.2 Bloch transform

Let us now recall the basics of Bloch theory. We denote by Γ a unit cell of the Bravais
lattice R, by

L2
per(Γ) :=

{
u ∈ L2

loc(R3,C), u R-periodic
}
, 〈u|v〉L2

per
:=

ˆ
Γ
u(r) v(r) dr,

the Hilbert space of locally square-integrableR-periodic functions C-valued functions on
R3, by R∗ the dual lattice of R and by Γ∗ the first Brillouin zone. The Bloch transform
associated with R (see e.g. [RS78c, Section XIII.16]) is the unitary transform

L2(R3,C) 3 φ 7→ (φk)k∈Γ∗ ∈ H =

 ⊕
Γ∗
L2

per(Γ) dk

where
ffl

Γ∗ is a notation for the normalized integral |Γ∗|−1
´

Γ∗ , where H is endowed with
the inner product

〈(φk)k∈Γ∗ |(ψk)k∈Γ∗〉H =

 
Γ∗
〈φk|ψk〉L2

per
dk,

and where, for a smooth fast decaying function φ, the periodic function φk is given by

φk(r) =
∑

R∈R
φ(r + R)e−ik·(r+R).

The original function φ is recovered from its Bloch transform using the inversion formula

φ(r) =

 
Γ∗
φk(r) eik·r dk.

Consider a one-body Hamiltonian

H = −1

2
∆ + Vper, Vper ∈ L2

per(Γ),

describing the electronic properties of the material (we ignore spin for simplicity). In
the absence of symmetry breaking, H commutes with all the unitary operators in Π =
(Πg)g∈G. In particular, H commutes with the translations τR, R ∈ R, and is therefore
decomposed by the Bloch transform:

H =

 
Γ∗
Hk dk,

meaning that there exists a family (Hk)k∈Γ∗ of self-adjoint operators on L2
per(Γ) such

that for any φ in the domain of H, φk is almost everywhere in the domain of Hk and

(Hφ)k = Hkφk.

It is well-known that

Hk =
1

2
(−i∇+ k)2 + Vper = −1

2
∆− ik · ∇+

1

2
|k|2 + Vper.
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The operator Hk can in fact be defined for any k ∈ R3, and it holds

∀k ∈ R3, ∀K ∈ R∗, Hk+K = VKHkV
∗
K, (6.24)

where VK is the unitary operator on L2
per(Γ) defined by

∀u ∈ L2
per(Γ), (VKu)(r) = e−iK·ru(r).

As a consequence, for all k ∈ R3 and K ∈ R∗, Hk and Hk+K are unitary equivalent, and
therefore have the same spectrum. Not every Πg a priori commutes with the translation
operators τR, R ∈ R. The operator Πg is therefore not in general decomposed by the
Bloch transform. On the other hand, denoting by U = (UΘ)Θ∈Gp the natural unitary
representation of Gp in L2

per(Γ) defined by

∀Θ ∈ Gp, ∀u ∈ L2
per(Γ), (UΘu)(r) = u(Θ−1r),

the Bloch representation of the operator Πg, g = (R,Θ) ∈ G, has a simple form:

[Π(R,Θ)]k,k′ = e−ik·RUΘδk′,Θ−1k,

that is:
[Π(R,Θ)φ]k(r) = e−ik·RφΘ−1k(Θ−1r).

Since H commutes with all the Πg’s, this implies that the family (Hk)k∈Γ∗ satisfies the
covariance relation

∀k ∈ Rd, ∀Θ ∈ Gp, HΘk = UΘHkU
∗
Θ.

For each k ∈ R3, the operator Hk is self-adjoint on L2
per(Γ) and is bounded below. If

R is a three-dimensional lattice (3D crystal), then Hk has a compact resolvent and its
spectrum is purely discrete. If R is a two-dimensional lattice (2D material), then the
essential spectrum of Hk is a half-line [Σk,+∞).

A.3 Symmetry-adapted Wannier functions

We assume here that H has a finite number n ≥ 1 of bands isolated from the rest
of the spectrum, that is that there exist two continuous R-valued R-periodic func-
tions k 7→ µ−(k) and k 7→ µ+(k) such that µ−(k) < µ+(k), µ±(k) /∈ σ(Hk) and
tr
(
1[µ−(k),µ+(k)](Hk)

)
= n for all k ∈ R3. We denote by ε1,k ≤ ε2,k ≤ · · · ≤ εn,k

the eigenvalues of Hk laying in the range [µ−(k), µ+(k)] (counting multiplicities). The
functions k 7→ εn,k are Lipschitz continuous, and, in view (6.24), are also R-periodic.

A generalized Wannier function associated to these n bands is a function of the form

∀r ∈ R3, W (r) =

 
Γ∗
uk(r) eik·r dk, uk ∈ Ran(1[µ−(k),µ+(k)](H)), ‖uk‖L2

per
= 1.

Let q be a site of the unit cell of the crystalline lattice1. We denote by

Gq = {g = (R,Θ) ∈ G | ĝq = Θq + R = q}
1Here the lattice is not in general a Bravais lattice. For graphene and hBN, this is a honeycomb

lattice.
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the finite subgroup of G leaving q invariant. The point q is called a high-symmetry
point if Gq is not trivial. Setting RΘ = q−Θq, we have

Gq =
{
g = (RΘ,Θ), Θ ∈ G0

q

}
,

where G0
q is a subgroup of Gp.

A symmetry-adapted Wannier function centered at a high-symmetry point q is a
Wannier function W such that

1. the finite-dimensional space

HW,q := Span (ΠgW, g ∈ Gq)

is Πg-invariant for any g ∈ Gq;

2. (Πg|HW,q)g∈Gq defines an irreducible unitary representation β of Gq.

Let nβ := dim(HW,q) be the dimension of this representation and (W
(β)
i,1 )1≤i≤nβ be a

basis of HW,q such that W (β)
1,1 = W . Let (dβ(Θ))Θ∈G0

q
∈ (Cnβ×nβ )nq be the matrix

representation of the group G0
q in

H0
W,q := Span

(
ΠΘτ−qW, Θ ∈ G0

q

)
, where ΠΘ := Π(0,Θ).

We therefore have

∀Θ ∈ G0
q, ΠΘ

(
τ−qW

(β)
i,1

)
=

nβ∑

i′=1

d
(β)
i′,i (Θ)

(
τ−qW

(β)
i′,1

)
,

so that

∀(RΘ,Θ) ∈ Gq, Π(RΘ,Θ)W
(β)
i,1 =

nβ∑

i′=1

d
(β)
i′,i (Θ)W

(β)
i′,1 .

If the representation β is one-dimensional (nβ = 1), then (dβ(Θ))Θ∈G0
q
is the character

of the corresponding representation of G0
q ⊂ Gp in H0

W,q.

Let J = |Gp|/|Gq| ∈ N∗. Then, there exist (gj)1≤j≤J ∈ GJ such that

G =

J∑

j=1

∑

R∈R
(R|E)gjGq.

More precisely, there exist (gj)1≤j≤J ∈ GJ such that

• for each 1 ≤ j ≤ J , qj := ĝjq ∈ Γ;

• any g ∈ G can be decomposed in a unique way as

g = (R|E)gjgq

for a unique triplet (R, j, gq) ∈ R× |[1, J ]| ×Gq.
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For each 1 ≤ i ≤ nβ , 1 ≤ j ≤ J and R ∈ T , we set

W
(β)
i,j,R = Π(R|E)gjW

(β)
i,1 ,

and we then define

HW = Span
(
W

(β)
i,j,R, 1 ≤ i ≤ nβ, 1 ≤ j ≤ J, R ∈ R

}
.

In other words, HW is the closure of the vector space generated by the mother SAWF
W and all the SAWFs obtained by letting the elements of G act on W .

The space HW ⊂ H2(R3) is both H-invariant and Π-invariant, and for any g ∈ G,
the action of Πg on W

(β)
i,j,R can be computed as follows. Let (R′, j′, g′q) the unique

element of R× |[1, J ]| ×Gq such that g(R|E)gj = (R′|E)gj′g
′
q. We have

ΠgW
(β)
i,j,R = ΠgΠ(R|E)gjW

(β)
i,1 = Πg(R|E)gjW

(β)
i,1 = Π(R′|E)gj′g

′
q
W

(β)
i,1

= Π(R′|E)gj′
Πg′qW

(β)
i,1 = Π(R′|E)gj′

( nβ∑

i′=1

d
(β)
i′,i (Θ

′
q)W

(β)
i′,1

)

=

nβ∑

i′=1

d
(β)
i′,i (Θ

′
q)W

(β)
i′,j′,R′ .

The index j′ is the unique integer in the range |[1, J ]| such that

ĝ(qj + R) ∈ qj′ +R.

The explicit expressions of R′ and Θ′q as functions of (R, j) and g = (R,Θ) are the
following

Θ′q = Θ−1
j′ ΘΘj , R′ = ĝqj − qj′ + ΘR.

Constructing a basis of SAWFs for the n bands defined by the functions µ− and µ+

amounts to finding s ∈ N∗ high-symmetry points q1, · · · ,qs, and s SAWFs Wannier
functions W1, · · · ,Ws respectively centered at the points q1, · · · ,qs, such that

 ⊕
Γ∗

Ran
(
1[µ−(k),µ+(k)](H)

)
dk = HW1 ⊕ · · · ⊕ HWs .

This is the purpose of the numerical method introduced in [Sak13].
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