A. Assad, Models for rail transportation Transportation Research Part A: General, pp.205-220, 1980.

L. Barbosa and M. Friedman, Deterministic Inventory Lot Size Models???A General Root Law, Management Science, vol.24, issue.8, pp.819-826, 1978.
DOI : 10.1287/mnsc.24.8.819

E. Barrena, D. Canca, L. Coelho, and G. Laporte, Exact formulations and algorithm for the train timetabling problem with dynamic demand, Computers & Operations Research, vol.44, pp.66-74, 2014.
DOI : 10.1016/j.cor.2013.11.003

M. Ben-akiva and M. Bierlaire, Discrete Choice Methods and their Applications to Short Term Travel Decisions, Handbook of Transportation Science, vol.23, pp.5-33, 1999.
DOI : 10.1007/978-1-4615-5203-1_2

URL : http://rosowww.epfl.ch/mbi/handbook-final.pdf

M. Ben-akiva and S. Lerman, Discrete choice analysis: theory and application to travel demand, 1985.

D. Bertsimas, Joint Network Pricing and Resource Allocation, 2002.

J. , M. Bront, I. Méndez-díaz, and G. Vulcano, A column generation algorithm for choice-based network revenue management, Operations Research, vol.57, issue.3, pp.769-784, 2009.
DOI : 10.1287/opre.1080.0567

URL : http://archive.nyu.edu/bitstream/2451/27726/2/OM-2007-6.pdf

L. Brotcorne, F. Cirinei, P. Marcotte, and G. Savard, An exact algorithm for the network pricing problem, Discrete Optimization, vol.8, issue.2, pp.246-258, 2011.
DOI : 10.1016/j.disopt.2010.09.003

URL : https://hal.archives-ouvertes.fr/inria-00638444

L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard, Joint Design and Pricing on a Network, Operations Research, vol.56, issue.5, pp.1104-1115
DOI : 10.1287/opre.1080.0617

URL : https://hal.archives-ouvertes.fr/hal-01255555

R. Michael, T. Bussieck, . Winter, T. Uwe, and . Zimmermann, Discrete optimization in public rail transport, Mathematical Programming, pp.415-444, 1997.

V. Cacchiani, A. Caprara, and P. Toth, A column generation approach to train timetabling on a corridor, 4OR, vol.2, issue.2, pp.125-142, 2008.
DOI : 10.1007/s10288-007-0037-5

V. Cacchiani, A. Caprara, and P. Toth, Non-cyclic train timetabling and comparability graphs, Operations Research Letters, vol.38, issue.3, pp.179-184, 2010.
DOI : 10.1016/j.orl.2010.01.007

V. Cacchiani and P. Toth, Nominal and robust train timetabling problems, European Journal of Operational Research, vol.219, issue.3, pp.727-737, 2012.
DOI : 10.1016/j.ejor.2011.11.003

X. Cai, C. J. Goh, and A. Mees, Greedy heuristics for rapid scheduling of trains on a single track, IIE Transactions, vol.16, issue.5, pp.481-493, 1998.
DOI : 10.1016/0305-0548(94)90099-X

A. Caprara, M. Fischetti, and P. Toth, Modeling and Solving the Train Timetabling Problem, Operations Research, vol.50, issue.5, pp.851-861, 2002.
DOI : 10.1287/opre.50.5.851.362

URL : http://www.or.deis.unibo.it/alberto/ttp_rev.ps

M. Carey, Ex ante heuristic measures of schedule reliability, Transportation Research Part B: Methodological, vol.33, issue.7, pp.473-494, 1999.
DOI : 10.1016/S0191-2615(99)00002-8

J. Cordeau, P. Toth, and D. Vigo, A Survey of Optimization Models for Train Routing and Scheduling, Transportation Science, vol.32, issue.4, pp.380-404, 1998.
DOI : 10.1287/trsc.32.4.380

R. Cordone and F. Redaelli, Optimizing the demand captured by a railway system with a regular timetable, Transportation Research Part B: Methodological, vol.45, issue.2, pp.430-446, 2011.
DOI : 10.1016/j.trb.2010.09.001

R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, On the LambertW function, Advances in Computational Mathematics, vol.1, issue.6, pp.329-359, 1996.
DOI : 10.5186/aasfm.1983.0805

A. F. De-kort, Advanced railway planning using (max,+) algebra, WIT Transactions on The Built Environment, vol.50, 2000.

D. Walter-erwin, Alternative characterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming, Generalized Concavity in Optimization and Economics, pp.51-93, 1981.

D. Dooly, S. Goldman, and S. Scott, TCP dynamic acknowledgment delay (extended abstract), Proceedings of the thirtieth annual ACM symposium on Theory of computing , STOC '98, pp.389-398, 1998.
DOI : 10.1145/276698.276792

A. Erdelyi and H. Topaloglu, Using decomposition methods to solve pricing problems in network revenue management, Journal of Revenue and Pricing Management, vol.46, issue.3, pp.325-343, 2011.
DOI : 10.1287/mnsc.46.3.375.12063

M. Fischetti, F. Glover, and A. Lodi, The feasibility pump, Mathematical Programming, pp.91-104, 2005.
DOI : 10.1007/BFb0120691

M. Fischetti, D. Salvagnin, and A. Zanette, Fast Approaches to Improve the Robustness of a Railway Timetable, Transportation Science, vol.43, issue.3, pp.321-335, 2009.
DOI : 10.1287/trsc.1090.0264

URL : http://www.dei.unipd.it/~salvagni/pdf/tt.pdf

R. Goverde, The max-plus algebra approach to railway timetable design, WIT Transactions on The Built Environment, vol.37, 1998.

R. Goverde, Punctuality of Railway Operations and Timetable Stability Analysis. Trail, 2005.
DOI : 10.1016/j.trb.2006.02.003

V. Guihaire and J. Hao, Transit network design and scheduling: A global review. Transportation Research Part A: Policy and Practice, pp.1251-1273, 2008.
DOI : 10.1016/j.tra.2008.03.011

URL : http://www.info.univ-angers.fr/pub/hao/papers/TRPA08.pdf

S. Hallowell and P. Harker, Predicting on-time performance in scheduled railroad operations: methodology and application to train scheduling. Transportation Research Part A: Policy and Practice, pp.279-295, 1998.
DOI : 10.1016/s0965-8564(97)00009-8

P. Hetrakul and C. Cirillo, A latent class choice based model system for railway optimal pricing and seat allocation, Transportation Research Part E: Logistics and Transportation Review, vol.61, pp.68-83, 2014.
DOI : 10.1016/j.tre.2013.10.005

A. Higgins and E. Kozan, Modeling Train Delays in Urban Networks, Transportation Science, vol.32, issue.4, pp.346-357, 1998.
DOI : 10.1287/trsc.32.4.346

D. Huisman, L. Kroon, R. Lentink, and M. Vromans, Operations Research in passenger railway transportation, Statistica Neerlandica, vol.30, issue.4, pp.467-497, 2005.
DOI : 10.1287/trsc.30.3.181

URL : http://publishing.eur.nl/ir/repub/asset/1941/ei200516.pdf

T. Huisman, J. Richard, and . Boucherie, Running times on railway sections with heterogeneous train traffic, Transportation Research Part B: Methodological, vol.35, issue.3, pp.271-292, 2001.
DOI : 10.1016/S0191-2615(99)00051-X

L. Ingolotti, A. Lova, F. Barber, and P. Tormos, Miguel Angel Salido, and Montserrat Abril. New heuristics to solve the CSOP railway timetabling problem, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp.400-409, 2006.

A. King and T. Rockafellar, Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming, Mathematics of Operations Research, vol.18, issue.1, pp.148-162, 1993.
DOI : 10.1287/moor.18.1.148

URL : http://www.math.washington.edu/~rtr/papers/rtr-AsymptoticEstimation.pdf

A. Kleywegt, A. Shapiro, and T. Mello, The Sample Average Approximation Method for Stochastic Discrete Optimization, SIAM Journal on Optimization, vol.12, issue.2, pp.479-502, 2002.
DOI : 10.1137/S1052623499363220

URL : http://edoc.hu-berlin.de/series/speps/1999-3/PDF/3.pdf

F. G. , L. Kroon, D. Wagner, F. Geraets, and C. Zaroliagis, Algorithmic Methods for Railway Optimization, 2006.

L. Kroon, R. Dekker, and M. Vromans, Cyclic Railway Timetabling: A Stochastic Optimization Approach, Algorithmic Methods for Railway Optimization, pp.41-66, 2007.
DOI : 10.1007/978-3-540-74247-0_2

L. Kroon, D. Huisman, E. Abbink, P. Fioole, M. Fischetti et al., The New Dutch Timetable: The OR Revolution, Interfaces, vol.39, issue.1, pp.6-17, 2009.
DOI : 10.1287/inte.1080.0409

URL : http://homepages.cwi.nl/~lex/files/Interfaces.pdf

L. Kroon and G. Maróti, Stochastic improvement of cyclic railway timetables, Transportation Research Part B: Methodological, vol.42, issue.6, pp.553-570, 2008.
DOI : 10.1016/j.trb.2007.11.002

URL : https://repub.eur.nl/pub/8291/ERS-2006-067-LIS.pdf

L. Kroon and L. Peeters, A Variable Trip Time Model for Cyclic Railway Timetabling, Transportation Science, vol.37, issue.2, pp.198-212, 2003.
DOI : 10.1287/trsc.37.2.198.15247

R. Larson and A. Odoni, Urban Operations Research, 1981.

P. Lederer, A Competitive Network Design Problem with Pricing, Transportation Science, vol.27, issue.1, pp.25-38, 1993.
DOI : 10.1287/trsc.27.1.25

V. Lehoux-lebacque, N. Brauner, G. Finke, and C. Rapine, Scheduling chemical experiments, 37th International Conference on Computers and Industrial Engineering, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00179120

C. Liebchen, Finding Short Integral Cycle Bases for Cyclic Timetabling, European Symposium on Algorithms, pp.715-726, 2003.
DOI : 10.1007/978-3-540-39658-1_64

C. Liebchen, Symmetry for Periodic Railway Timetables, Electronic Notes in Theoretical Computer Science, vol.92, pp.34-51, 2004.
DOI : 10.1016/j.entcs.2003.12.021

URL : https://doi.org/10.1016/j.entcs.2003.12.021

C. Liebchen and R. Möhring, A Case Study in Periodic Timetabling, Electronic Notes in Theoretical Computer Science, vol.66, issue.6, pp.18-31, 2002.
DOI : 10.1016/S1571-0661(04)80526-7

URL : https://doi.org/10.1016/s1571-0661(04)80526-7

D. Luce, Individual choice behavior: A theoretical analysis, Courier Corporation, 2005.
DOI : 10.1037/14396-000

K. Nachtigall, A branch and cut approach for periodic network programming, Inst. für Mathematik, 1994.

K. Nachtigall, Periodic network optimization with different arc frequencies, Discrete Applied Mathematics, vol.69, issue.1-2, pp.1-17, 1996.
DOI : 10.1016/0166-218X(95)00073-Z

URL : https://doi.org/10.1016/0166-218x(95)00073-z

K. Nachtigall, Periodic network optimization and fixed interval timetables, 1999.

K. Nachtigall and S. Voget, A genetic algorithm approach to periodic railway synchronization, Computers & Operations Research, vol.23, issue.5, pp.453-463, 1996.
DOI : 10.1016/0305-0548(95)00032-1

M. Odijk, A constraint generation algorithm for the construction of periodic railway timetables, Transportation Research Part B: Methodological, vol.30, issue.6, pp.455-464, 1996.
DOI : 10.1016/0191-2615(96)00005-7

M. Odijk, Railway timetable generation, 1997.

M. Pacheco, S. Sharif-azadeh, and M. Bierlaire, A new mathematical representation of demand using choice-based optimization method, 16th Swiss Transport Research Conference, 2016.

E. Petersen and A. Taylor, A Structured Model for Rail Line Simulation and Optimization, Transportation Science, vol.16, issue.2, pp.192-206, 1982.
DOI : 10.1287/trsc.16.2.192

T. Robenek, S. Sharif-azadeh, Y. Maknoon, and M. Bierlaire, Hybrid cyclicity: Combining the benefits of cyclic and non-cyclic timetables, Transportation Research Part C: Emerging Technologies, vol.75, pp.228-253, 2017.
DOI : 10.1016/j.trc.2016.12.015

P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu, Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters, Production and Operations Management, vol.43, issue.3, pp.2023-2039, 2014.
DOI : 10.1287/trsc.1090.0262

P. Rusmevichientong, D. Shmoys, and H. Topaloglu, Assortment optimization with mixtures of logits, 2010.

A. Schrijver and A. Steenbeek, Timetable construction for railned, CWI, 1994.

P. Serafini and W. Ukovich, A Mathematical Model for Periodic Scheduling Problems, SIAM Journal on Discrete Mathematics, vol.2, issue.4, pp.550-581, 1989.
DOI : 10.1137/0402049

A. Shapiro, D. Dentcheva, and A. R. Ruszczy´nski, Lectures on stochastic programming: modeling and theory, 2009.
DOI : 10.1137/1.9780898718751

URL : http://epubs.siam.org/doi/pdf/10.1137/1.9780898718751.fm

A. Shapiro and T. Mello, On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs, SIAM Journal on Optimization, vol.11, issue.1, pp.70-86, 2000.
DOI : 10.1137/S1052623498349541

K. Talluri and G. Van-ryzin, The theory and practice of revenue management, 2006.
DOI : 10.1007/b139000

K. Train, Discrete choice methods with simulation, 2003.

A. Tversky, Elimination by aspects: A theory of choice., Psychological Review, vol.79, issue.4, p.281, 1972.
DOI : 10.1037/h0032955

A. Van-ackere, The principal/agent paradigm: Its relevance to various functional fields, European Journal of Operational Research, vol.70, issue.1, pp.83-103, 1993.
DOI : 10.1016/0377-2217(93)90234-E

M. Voorhoeve, Rail scheduling with discrete sets The Netherlands, 1993.

M. Vromans, R. Dekker, and L. Kroon, Reliability and heterogeneity of railway services, European Journal of Operational Research, vol.172, issue.2, pp.647-665, 2006.
DOI : 10.1016/j.ejor.2004.10.010

URL : https://repub.eur.nl/pub/1076/ERS%202003%20090%20LIS.pdf

M. Vromans, R. Dekker, and L. Kroon, Reliability and heterogeneity of railway services, European Journal of Operational Research, vol.172, issue.2, 2006.
DOI : 10.1016/j.ejor.2004.10.010

URL : https://repub.eur.nl/pub/1076/ERS%202003%20090%20LIS.pdf

J. Yuan, Stochastic modelling of train delays and delay propagation in stations, 2006.
DOI : 10.1061/40932(246)641

X. Zhou and M. Zhong, Bicriteria train scheduling for high-speed passenger railroad planning applications, European Journal of Operational Research, vol.167, issue.3, pp.752-771, 2005.
DOI : 10.1016/j.ejor.2004.07.019