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Abstract

We are living in a big data world, where data is being generated in high volume, high velocity and high variety. Big data brings enormous values and bene ts, so that data analytics has become a critically important driver of business success across all sectors. However, if the data is not analyzed fast enough, the bene ts of big data will be limited or even lost.

Despite the existence of many modern large-scale data analysis systems, data preparation which is the most time-consuming process in data analytics has not received sufcient attention yet. In this thesis, we study the problem of how to accelerate data preparation for big data analytics. In particular, we focus on two major data preparation steps, data loading and data cleaning.

As the rst contribution of this thesis, we design DiNoDB, a SQL-on-Hadoop system which achieves interactive-speed query execution without requiring data loading. Modern applications involve heavy batch processing jobs over large volume of data and at the same time require e cient ad-hoc interactive analytics on temporary data generated in batch processing jobs. Existing solutions largely ignore the synergy between these two aspects, requiring to load the entire temporary dataset to achieve interactive queries. In contrast, DiNoDB avoids the expensive data loading and transformation phase. The key innovation of DiNoDB is to piggyback on the batch processing phase the creation of metadata, that DiNoDB exploits to expedite the interactive queries.

The second contribution is a distributed stream data cleaning system, called Bleach. Existing scalable data cleaning approaches rely on batch processing to improve data quality, which are very time-consuming in nature. We target at stream data cleaning in which data is cleaned incrementally in real-time. Bleach is the rst qualitative stream data cleaning system, which achieves both real-time violation detection and data repair on a dirty data stream. It relies on e cient, compact and distributed data structures to maintain the necessary state to clean data, and also supports rule dynamics.

We demonstrate that the two resulting systems, DiNoDB and Bleach, both of which achieve excellent performance compared to state-of-the-art approaches in our experii ii CHAPTER 0. ABSTRACT mental evaluations, and can help data scientists signi cantly reduce their time spent on data preparation.

Résumé

Nous vivons dans un monde de big data, où les données sont générées en grand volume, grande vitesse et grande variété. Le big data apportent des valeurs et des avantages énormes, de sorte que l'analyse des données est devenue un facteur essentiel de succès commercial dans tous les secteurs. Cependant, si les données ne sont pas analysées assez rapidement, les béné ces de big data seront limités ou même perdus.

Malgré l'existence de nombreux systèmes modernes d'analyse de données à grande échelle, la préparation des données est le processus le plus long de l'analyse des données, n'a pas encore reçu su samment d'attention. Dans cette thèse, nous étudions le problème de la façon d'accélérer la préparation des données pour le big data d'analyse. En particulier, nous nous concentrons sur deux grandes étapes de préparation des données, le chargement des données et le nettoyage des données.

Comme première contribution de cette thèse, nous concevons DiNoDB, un système SQLon-Hadoop qui réalise l'exécution de requêtes à vitesse interactive sans nécessiter de chargement de données. Les applications modernes impliquent de lourds travaux de traitement par lots sur un grand volume de données et nécessitent en même temps des analyses interactives ad hoc e caces sur les données temporaires générées dans les travaux de traitement par lots. Les solutions existantes ignorent largement la synergie entre ces deux aspects, nécessitant de charger l'ensemble des données temporaires pour obtenir des requêtes interactives. En revanche, DiNoDB évite la phase coûteuse de chargement et de transformation des données. L'innovation importante de DiNoDB est d'intégrer à la phase de traitement par lots la création de métadonnées que DiNoDB exploite pour accélérer les requêtes interactives.

La deuxième contribution est un système de ux distribué de nettoyage de données, appelé Bleach. Les approches de nettoyage de données évolutives existantes s'appuient sur le traitement par lots pour améliorer la qualité des données, qui demandent beaucoup de temps. Nous ciblons le nettoyage des données de ux dans lequel les données sont nettoyées progressivement en temps réel. Bleach est le premier système de nettoyage qualitatif de données de ux, qui réalise à la fois la détection des violations en temps réel et la réparation des données sur un ux de données sale. Il s'appuie sur des structures iv CHAPTER 0. RÉSUMÉ de données e caces, compactes et distribuées pour maintenir l'état nécessaire pour nettoyer les données et prend également en charge la dynamique des règles.

Nous démontrons que les deux systèmes résultants, DiNoDB et Bleach, ont tous deux une excellente performance par rapport aux approches les plus avancées dans nos évaluations expérimentales, et peuvent aider les chercheurs à réduire considérablement leur temps consacré à la préparation des données. 

Context

We live in the era of data deluge, where vast amounts of data are being generated. The data brings enormous values and bene ts, not only in scienti c domains like astronomy or biology, but also in domains which are closely relevant to our daily lives, such as Ecommerce and transportation. Companies can use their collected data to support human decisions, discover customer needs and build new business models. With the technological improvement over the last decades, massive datasets can be stored at low costs. Therefore, more and more companies start to store as much data as they could collect. However, converting the data into valuable insights is still a challenging task.

Relational Database Management Systems (Relational DBMSs) were believed to be the one-size-ts-all tools for data analytics in the last century [START_REF] Stonebraker | one size ts all": an idea whose time has come and gone[END_REF]. In their relational model, all data is represented in terms of tuples, grouped into a set of tables which are related to each other. Each table has a prede ned schema which all the tuples in the table must follow. Over the years, Relational DBMSs successfully supported a large number of datacentric applications with quite di erent features and requirements.

However, as we enter the 21st century, the traditional DBMS becomes a poor t in many application scenarios. One of the main reasons why the traditional DBMS is out of date is the exponential increase of the data. Google, as a data-driven company, processes more than 3.5 billion requests per day and stores more than 10 exabytes of data. Facebook collects 600 terabytes of data per day, including 4.3 billion pieces of content, 5.75 billion "like" and 350 million photos. Some estimates suggest that overall at least 2.5 quintillion bytes of data is produced every day and 40 zettabytes of data will be in existence by 2020 [START_REF]Facts and Stats About The Big Data Industry[END_REF]. Such huge amounts of data are far beyond the capacity of any traditional DBMS. New e cient and powerful data analytics tools are required to cope with the big data challenge.

CHAPTER 1. INTRODUCTION

This need has drawn considerable attention from both academia and industry. Hence, in recent years, modern large-scale data analysis systems have ourished, which bring enormous innovative techniques and optimizations. These systems aim at speeding up the data analysis procedures for large datasets. However, as reported by many data scientists [START_REF] Deng | The data civilizer system[END_REF], only 20% of their time is spent doing the desired data analysis tasks. Data scientists need to spend 80% of time, sometimes even more, on data preparation which is a slow, di cult and tedious process. Nevertheless, data preparation, the essential step before performing data analysis, has not received su cient attention despite its importance.

Data Preparation

Data preparation, which is also called data preprocessing, focuses on determining what the data is, improving data quality, standardizing how data is de ned and structured, collecting and consolidating data, and transform data to make it useful, particularly for analysis [START_REF]Improving Data Preparation for Business Analytics[END_REF]. In a nutshell, data preparation increases the value of data analysis. It includes the steps of accessing, searching, aggregating, enriching, transforming, cleaning and loading data.

Without proper data preparation, data analytics may generate misleading results if underlying datasets are dirty. One analysis project may fail due to issues with security and privacy, if its dataset is carelessly prepared without hiding sensitive information. Modern data analysis systems all require data preparation as the preliminary step, as they are not capable to retrieve insights from raw data unless data is in proper formats or loaded in the systems. Therefore, data preparation is particularly crucial for the success of data analytics.

In many organizations, data preparation requires manual e orts using processes which are di cult to share or even repeat. More and more data scientists spend too much time on data preparation and are unable to have enough time for solving other challenging data problems. Hence, the biggest problem with data preparation is that it is very timeconsuming and costly.

As we are living in a big data world, with the increasing volume and variety of data in recent years, data preparation has grown more demanding and become more timeconsuming. In the meanwhile, data also keeps being generated at a higher velocity. Business needs start to demand shorter and shorter intervals between the time when data is collected and the time when the results of analyzing the data are available for manual or algorithmic decision making. Data scientists desire the ability to analyze datasets as soon as possible, e.g, a few seconds after datasets have been collected. When the raw data is generated continuously from a data stream, data scientists may even 1.2. DATA PREPARATION want to perform their data analysis incrementally in real-time, rather than wait for all the data to be acquired. Being able to make timely decisions has become increasingly crucial.

Clearly, the slow but indispensable data preparation process becomes the obstacle to achieve timely decision making. To overcome this obstacle, in this thesis, we study the problem of how to accelerate data preparation for big data analytics. In particular, we focus on two kinds of costly data preparation operations, data loading and data cleaning.

Data Loading

Data loading is the process of copying and loading data from a data source to a data warehouse or any other target storage system. It was already a popular concept in the 1970s, as the last step of the well-known ETL (Extract, Transform, Load) process in database usage. Data loading may also include applying the veri cation of constraints de ned in the database schema, such as uniqueness, referential integrity and mandatory elds. Nowadays, data loading not only is an operation existing in traditional databases but also becomes a primary step in many modern data analysis systems. To load the raw data, these systems often convert the data into some speci c data formats, such as a column-based data format, or fully load the data into memory. Apart from changing the data layout, data loading process may also generate additional cumulative informations, such as data statistics and indexes, which can be used to optimize subsequent query executions. Although some systems claim to have the ability to process data in situ without loading, their performance is unsatisfactory. This is because without any useful metadata or optimizing the data layout, these systems can only process the raw data in a brute-force manner, e.g., repeatedly scanning entire les for every query.

As now data scientists want to analyze datasets as soon as possible, the slow data loading becomes a bottleneck in data analytics. In particular, when we are analyzing temporary datasets, which will be simply dropped after executing a few queries, data loading is not suitable. Clearly, we need an approach which avoids the slow data loading but is capable to achieve e cient query execution.

Data Cleaning

As we step into a data-driven world, enforcing and maintaining the data quality become critical tasks. According to an industry survey [START_REF] Swartz | Gartner warns rms of 'dirty data[END_REF], more than 25% of the critical data in the world's top companies is awed. Without proper data cleaning, issues with data quality can lead to misleading analysis outcomes on the "garbage in, garbage out" basis. For example, InsightSquared [START_REF] Insightsquared | Webpage[END_REF] predicts that dirty data across businesses and the government costs the U.S. economy 3.1 trillion dollars a year.

Data cleaning, also called data cleansing or data scrubbing, is the process of detecting and correcting, or removing, corrupt or inaccurate data records from a dataset. Recently, two major trends in data cleaning have emerged. The rst is a quantitative approach, called quantitative data cleaning, which is largely used for outlier detection by employing statistical methods to identify abnormal behaviors and errors. The second is a logical approach, called qualitative data cleaning. Qualitative data cleaning, on the other hand, relies on specifying patterns or rules of a legal data instance. It consists of two phases, violation detection which is to identify the data which violate the de ned patterns or rules as errors, and violation repair which is to nd a minimal set of changes that x the detected errors.

Data cleaning is considered as the most time-consuming task in data preparation, mainly because it often involves costly computations, such as enumerating pairs of tuples and handling inequality joins, which are di cult to scale to big datasets. Most of existing data cleaning solutions have focused on batch data cleaning, by processing static data stored in data warehouse, which discourage data scientists from having their timely data analysis. It has become an urgent task to develop new innovative data cleaning solutions which are fast and also e ective.

Contributions

The goal of this thesis is to develop advanced systems to accelerate the time-consuming data preparation process for big data analytics. In particular, we focus on data loading and data cleaning. As contributions, we design and implement two systems, DiNoDB, an interactive-speed query engine for ad-hoc queries on temporary data which avoids data loading by seamlessly integrating with batch processing systems, and Bleach, a novel stream data cleaning system, that aims at e cient and accurate data cleaning under real-time constraints.

DiNoDB: an Interactive-speed Query Engine for Temporary Data

The rst contribution consists in the design of DiNoDB, a SQL-on-Hadoop system which achieves interactive-speed query execution without requiring data loading. Modern applications involve heavy batch processing jobs over large volumes of data and at the 1.3. CONTRIBUTIONS same time require e cient ad-hoc interactive analytics on temporary data. Existing solutions, however, typically focus on one of these two aspects, largely ignoring the need for synergy between the two. Consequently, interactive queries require to load the entire dataset that may provide meaningful return on investment only when data is queried over a long period of time.

In contrast, DiNoDB avoids the expensive loading and transformation phase that characterizes both traditional DBMSs and current interactive analytics solutions. It is particularly tailored to modern work ows found in use cases such as machine learning and data exploration, which often involve iterations of cycles of batch and interactive analytics on data that is typically useful for a narrow processing window. The key innovation of DiNoDB is to piggyback on the batch processing phase the creation of metadata that DiNoDB exploits to expedite the interactive queries.

Our detailed experimental analysis both on synthetic and real-life datasets, demonstrates that DiNoDB signi cantly reduces time-to-insight and achieves very good performance compared to state-of-the-art distributed query engines, such as Hive, Stado, Spark SQL and Impala.

Bleach: a Distributed Stream Data Cleaning System

The second contribution is a distributed stream data cleaning system, called Bleach. Existing scalable data cleaning approaches have focused on batch data cleaning, which are quite time-consuming. As most data sources now come in streaming fashion, such as log les generated in web servers and online purchases, we target at performing data cleaning directly on data streams. Despite the increasing popularity of stream processing systems, no qualitative stream data cleaning techniques have been proposed so far.

In this thesis, we bridge this gap by addressing the problem of rule-based stream data cleaning, which sets stringent requirements on latency, rule dynamics and ability to cope with the continuous nature of data streams.

We design Bleach, a stream data cleaning system which achieves real-time violation detection and data repair on a dirty data stream. Bleach relies on e cient, compact and distributed data structures to maintain the necessary state to repair data. Additionally, it supports rule dynamics and uses a "cumulative" sliding window operation to improve cleaning accuracy.

We evaluate Bleach using both synthetic and real data streams and experimentally validate its high throughput, low latency and high cleaning accuracy, which are preserved even with rule dynamics. In the absence of an existing comparable stream-cleaning baseline, we compared Bleach to a baseline system built on the micro-batch paradigm, and experimentally show the superior performance of Bleach.

Thesis Outline

The thesis is organized as follows. We give the background knowledge of the thesis in Chapter 2, in which we introduce modern large-scale data analysis systems and streaming data processing. Chapter 3 presents our rst contribution, DiNoDB, with its detailed design and experimental analysis. In Chapter 4, we describe our stream data cleaning systems, Bleach, introduce the related challenges and also give the experimental evaluation. Finally, in Chapter 5 we conclude the thesis and discuss some future work.

Chapter 2

Background and Preliminaries

In this chapter, we present the necessary background material of the thesis. First, we introduce a few representative modern large-scale analysis systems which will help us introduce and discuss requirements in terms of data preparation. Then, we cover data streams, and give the basis of two popular stream processing frameworks, Apache Storm [START_REF]Webpage[END_REF], on top of which we build our stream data cleaning system, Bleach, and Spark Streaming [START_REF]Spark Streaming[END_REF].

Large-scale Data Analysis Systems

Over the last decade, numerous large-scale data analysis systems have emerged to address the big data challenge. Unlike the traditional DBMS which runs in a single machine, these systems run in a cluster with a collection of machines (nodes) in a Shared Nothing Architecture [START_REF] University | The case for shared nothing[END_REF] where all machines are connected with a high-speed network and each has its own local disk and local main memory [START_REF] Pavlo | A comparison of approaches to large-scale data analysis[END_REF], as shown in Figure 2.1. To achieve parallel processing, these systems divide datasets to be analysed into partitions which are distributed on di erent machines.

Structured Query Language (SQL) is the declarative language most widely used for analyzing data in large-scale data analysis systems. Users can specify an analysis task using an SQL query, and the system will optimize and execute the query. To clarify, we focus on systems for large-scale analysis, namely, the eld that is called Online Analytical Processing (OLAP) in which the workloads are read-only, as opposed to Online Transaction Processing (OLTP).

We classify these systems into two categories, Parallel DBMSs and SQL-on-Hadoop Systems, based on their storage layers: Parallel DBMSs store their data inside their database 

Parallel DBMSs

Parallel DBMSs are the earliest systems to make parallel data processing available to a wide range of users, in which each node in the cluster is a database instance. Many of these systems are inspired by the research work Gamma [START_REF] Dewitt | Gamma -a high performance data ow database machine[END_REF] and Teradata [START_REF] Teradata | Webpage[END_REF]. They achieve high performance and scalability by distributing the rows of a relational table across the nodes of the cluster. Such a horizontal partitioning scheme enables SQL operators like selection, aggregation, join and projection to be executed in parallel over di erent partitions of tables located in di erent nodes. Many commercial implementations are available, including Greenplum [START_REF] Greenplum | Webpage[END_REF], Netezza [START_REF] Netezza | Webpage[END_REF], Aster nCluster [START_REF]Webpage[END_REF] and DB2 Parallel Edition [START_REF] Baru | An overview of db2 parallel edition[END_REF], as well as some open source projects such as MySQL Cluster [START_REF]MySQL cluster[END_REF], Postgres-XC [START_REF]Postgres-XC[END_REF] and Stado [START_REF] Stado | Webpage[END_REF].

Some other systems like Amazon RedShift [START_REF] Redshift | Webpage[END_REF], ParAccel [START_REF]Webpage[END_REF], Sybase IQ [START_REF] Macnicol | Sybase iq multiplex -designed for analytics[END_REF] and Vertica [START_REF] Lamb | The vertica analytic database: C-store 7 years later[END_REF], vertically partition tables by collocating entire columns together instead of collocating rows with a horizontal partitioning scheme. When executing user queries, such systems can more precisely access the data they need rather than scanning and discarding unwanted data in rows. These column-oriented systems have been shown to use CPU, memory and I/O resources more e ciently compared to row-oriented systems in large-scale data analytics.

For parallel DBMSs, data preparation is always a mandatory and time-consuming step. Data cleaning must be performed in advance to guarantee the quality of data. As parallel DBMSs are built on traditional DBMSs, they all require data to be loaded before executing
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any queries. Each datum in the tuples must be parsed and veri ed so that data conform to a well-de ned schema. For large amounts of data, this loading procedure may take a few hours, even days, to nish, even with parallel loading across multiple machines. Moreover, to better bene t from a number of technologies developed over the past 30 years in DBMSs, parallel DBMSs provide optimizations like indexing and compression, which also necessitate the phase of data preprocessing.

SQL-on-Hadoop Systems

A milestore in the big data research is the MapReduce framework [START_REF] Dean | MapReduce: Simpli ed Data Processing on Large Clusters[END_REF], which is the most popular framework for processing vast datasets in clusters of machines, mainly because of its simplicity. The open-source Apache Hadoop implementation of MapReduce has contributed to its widespread usage both in industry and academia. Hadoop consists of two main parts: the Hadoop distributed le system (HDFS) and MapReduce for distributed processing. Instead of loading data into the DBMSs, Hadoop users can process data in any arbitray format in situ as long as data is stored in the Hadoop distributed le system.

Hadoop Basics: The MapReduce programming model [START_REF] White | Hadoop: The De nitive Guide[END_REF] consists of two functions: map(k 1 , v 1 ) and reduce(k 2 , list(v 2 )). Users implement their processing logic by specifying customized map and reduce functions. The map(k ) from the map output, and outputs zero or more key-value pairs of the form [k 3 , v 3 ] as the nal results. The transferring data from mappers to reducers is called the shu e phase, in which users can also specify a partition(k 2 ) function for controlling how the map output key-value pairs are partitioned among the reduce tasks. HDFS is designed be resilient to hardware failures and focuses on high throughput of data access. A HDFS cluster employs a master-slave architecture consisting of a NameNode (the master) and multiple DataNodes (the slaves). The NameNode manages the le system namespace and regulates client access to les, while the DataNodes serve read and write requests from the clients. In HDFS, a le is split into one or more blocks which are replicated to achieve fault tolerance and stored in a set of DataNodes.

SQL query processing for data analytics over Hadoop has recently gained signi cant traction, as many enterprise data management tools rely on SQL, and many users prefer writing high level SQL scripts rather than writing complex MapReduce programs. As a consequence, the number of SQL-on-Hadoop systems has increased signi cantly, which all use HDFS as the underlying storage layer. Next, we present several popular SQL-on-Hadoop systems which are widely used by companies.

Hive [START_REF]Webpage[END_REF] is the rst native Hadoop system built on top of Hadoop to process SQL-like statements. Queries submitted to Hive are parsed, compiled and optimized to produce a query execution plan. The plan is a Directed Acyclic Graph (DAG) of MapReduce tasks which is either executed through the MapReduce framework or through the Tez framework [START_REF] Tez | Webpage[END_REF]. Similar to Hadoop, Hive lacks e cient indexing mechanism. Hence, Hive consumes data by performing sequential scan. Hive also supports columnar data organization, typically in the ORC le format, which helps to improve the performance. But transforming data layout as data preparation brings additional cost.

HadoopDB [START_REF] Abouzeid | HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads[END_REF] is a hybrid of the parallel DBMS and Hadoop approaches to data analysis, aiming to exploit the best features from both parallel DBMSs and Hadoop. The basic idea is to install a database system on each Hadoop datanode and use Hadoop MapReduce to coordinate execution of these independent database systems. To harvest all the ben ts of query optimization provided by the local DBMSs, HadoopDB pushes as much as possible of the query processing work into the local DBMSs. Nevertheless, before performing any query processing, HadoopDB needs to load data from HDFS to its local DBMSs. This is achieved by one of its components, the data loader, which also globally repartitions data based on a speci ed partiton key.

Impala [START_REF] Kornacker | Impala: A modern, open-source sql engine for hadoop[END_REF] is an open-source SQL engine architected from the ground up for the Hadoop data processing environment. As MapReduce focuses more on batch processing rather than interactive use by users, Hadoop jobs su er the overhead incurred from task scheduling. Therefore, to reduce latency, Impala avoids utilizing MapReduce and implements a distributed architecture based on daemon processes that are responsible for all aspects of query execution. These daemon processes run on the same machines as the HDFS infrastructure. Impala also accepts input data in columnar data organization, typically in the Parquet le format [START_REF] Parquet | Webpage[END_REF], that the user needs to create a Parquet 

Streaming Data Processing

Streaming data is a sequence of data tuples that is unbounded in size and generated continuously from potentially thousands of data sources. Streaming data includes a wide variety of data such as log les generated in web servers, online purchases, player activities in online games, information from social networks and telemetry from sensors, etc [START_REF]Streaming Data[END_REF]. Due to the unbounded nature, streaming data can not be processed after all data is collected as in the batch processing. Streaming data processing needs to be sequential and incremental as the event occurs in real-time or near real-time.

Streaming data processing represents challenges in terms of performance, scalability, robustness and fault-tolerance. Traditionally, custom coding has been used for streaming data processing [START_REF] Stonebraker | The 8 requirements of real-time stream processing[END_REF]. But this approach su ers from its in exibility, high cost of development and maintenance, and slow response time to new feature requests. In recent year, many modern distributed stream processing frameworks have emerged. Upon these frameworks, users can easily build their own stream processing applications. These frameworks fall roughly into two categories. The rst category, called realtime streaming data processing systems, includes Apache S4 [START_REF]Webpage[END_REF], Apache Storm [START_REF]Webpage[END_REF], Apache Samza [START_REF] Samza | Webpage[END_REF] and Apache Flink [START_REF] Flink | Webpage[END_REF]. Such systems process the streaming data on a tuple-by-tuple basis in which every tuple is processed as it arrives. In contrast, the systems from the second category, such as Spark Streaming [START_REF]Spark Streaming[END_REF], collect data in certain time intervals and process them in batches. These systems are called micro-batch streaming data processing systems. Micro-batch systems tend to have higher throughput than real-time systems, especially when using large batches. However, large batches in micro-batch systems incur high processing latencies, which prohibit real-time processing in streaming data.

Next, we particularly introduce two frameworks, Apache Storm, on top of which our real-time stream data cleaning system, Bleach, is built, and Spark Streaming, on top of which we build a baseline system to evaluate Bleach.

Apache Storm

Apache Storm aims at providing a framework for real-time stream processing, which also achieves scalability and fault-tolerance. Similar to Hadoop, Storm relies on a cluster of heterogeneous machines. In a Storm cluster, there are two kinds of nodes, the master node and the worker nodes. The master node runs a daemon called Nimbus that is responsible for distributing code around the cluster, assigning tasks to machines, and monitoring for failures. Each worker node runs a daemon called Supervisor that listens for work assigned to its machine and controls worker processes based on instructions from Nimbus. All coordination between Nimbus and the Supervisors is done through a Zookeeper cluster, which provides a distributed, open-source coordination service for distributed applications. Additionally, the Nimbus daemon and Supervisor daemons are fail-fast and stateless; all state is kept in Zookeeper or on local disk.

A stream in Storm is an unbounded sequence of tuples, which is created and processed in parallel in a distributed fashion. Each stream is de ned with a schema, like a table in databases. Users create topologies in Storm to process streaming data 1 . A topology is a graph of computation in which each node is a primitive provided by Storm to transform data streams. Each topology includes many worker processes which spread across machines in the cluster. There are two basic primitives in Storm, spouts and bolts. A spout is a source of streams in a topology, that reads data from external data sources and emits them into the topology. All processing in topologies is done in bolts, which possibly emit new streams and often cooperate with each other to nish complex stream transformations. Both spouts and bolts can emit more than one streams. A Storm topology example can be found in Figure 2.2. In Storm, a task performs the actual data processing. To achieve high throughput, each spout or bolt that users implement in their code executes as many tasks across the cluster. The links between nodes (spouts or bolts) in a topology indicate how data streams are passed around between nodes. For each stream received by a bolt, users need to specify a stream grouping which de nes how that stream should be partitioned among the bolt's tasks.

Storm guarantees that every spout tuple will be fully processed by the topology with atleast-once semantics [START_REF]Webpage[END_REF]. It does this by tracking the tree of tuples triggered by every spout tuple and determining when that tree of tuples has been successfully completed through acknowledgements. If Storm fails to detect that a spout tuple has been completed within a timeout, then it fails the tuple and replays it later. 

Spark Streaming

Spark Streaming is an extension of the core Spark API that enables scalable, highthroughput, fault-tolerant stream processing of live data streams [START_REF]Spark Streaming[END_REF]. Unlike Apache Storm that processes tuples in streams one-at-a-time, Spark Streaming processes tuples in streams in a micro-batch fashion. Namely, as shown in Figure 2.3, Spark Streaming receives input data streams and divides the data into batches, which are then processed by the Spark engine to generate the nal result stream which is also in batches. Each batch contains data from a certain time interval.

Spark Streaming

Input data stream batches of input data

Spark Engine batches of output data

Figure 2.3 -Spark Streaming processing example

Spark Streaming provides a high-level abstraction called discretized stream or DStream [START_REF] Zaharia | Discretized Streams: Fault-tolerant Streaming Computation at Scale[END_REF], which represents a continuous stream of data. DStreams can be created either from input data streams from external sources or by applying high-level operations on other DStreams. Internally, a DStream is represented as a sequence of RDDs, and any operation applied on a DStream translates to operations on the underlying RDDs. Spark Streaming provides users a high-level API which hides most of the details of DStream operations for convenience.

To be resilient to failures unrelated to the application logic (e.g., system failures, JVM crashes, etc.), Spark Streaming provides checkpointing mechanism to keep enough information periodically in a fault-tolerant storage system (e.g., HDFS), such that it can recover from failures.

Chapter 3

DiNoDB: an Interactive-speed Query Engine for Temporary Data

Introduction

In recent years, modern large-scale data analysis systems have ourished. For example, systems such as Hadoop and Spark [START_REF]Webpage[END_REF][START_REF]Webpage[END_REF] focus on issues related to fault-tolerance and expose a simple yet elegant parallel programming model that hides the complexities of synchronization. Moreover, the batch-oriented nature of such systems has been complemented by additional components (e.g., Storm and Spark streaming [START_REF]Webpage[END_REF][START_REF] Zaharia | Discretized Streams: Fault-tolerant Streaming Computation at Scale[END_REF]) that o er (near) real-time analytics on data streams. The communion of these approaches is now commonly known as the "Lambda Architecture" (LA) [START_REF]The Lambda Architecture[END_REF]. In fact, LA is split into three layers, i) the batch layer (based on e.g., Hadoop/Spark) for managing and preprocessing append-only raw data, ii) the speed layer (e.g., Storm/Spark streaming) tailored to analytics on recent data while achieving low latency using fast and incremental algorithms, and iii) the serving layer (e.g., Hive [START_REF]Webpage[END_REF], Spark SQL [START_REF]Webpage[END_REF], Impala [START_REF] Kornacker | Impala: A modern, open-source SQL engine for hadoop[END_REF]) that exposes the batch views to support ad-hoc queries written in SQL, with low latency.

The problem with such existing large scale analytics systems is twofold. First, combining components (layers) from di erent stacks, though desirable, raises performance issues and is sometimes not even possible in practice. For example, companies who have expertise in, e.g., Hadoop and traditional SQL-based (distributed) DBMSs, would arguably like to leverage this expertise and use Hadoop as the batch processing layer and DBMSs in the serving layer. However, this approach requires an expensive transform/load phase to, e.g., move data from Hadoop's HDFS and load it into a DBMS [START_REF] Lefevre | Miso: Souping up big data query processing with a multistore system[END_REF], which might be impossible to amortize, in particular in scenarios with a narrow processing window, i.e., when working on temporary data which may be simply dropped after executing a few queries.
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Second, although many SQL-on-Hadoop systems emerged recently, they are not well designed for (short-lived) ad-hoc queries, especially when the data remains in its native, uncompressed, format such as text-based CSV les. To achieve high performance, these systems [START_REF] Floratou | Sql-on-hadoop: Full circle back to sharednothing database architectures[END_REF] prefer to convert data into their speci c column-based data format, e.g., ORC [START_REF]Apache Hive -ORC Files[END_REF] and Parquet [START_REF] Parquet | Webpage[END_REF]. This works perfectly when both data and analytic queries (that is, the full workload) are in their nal production stage. Namely, these self-describing, optimized data formats play an increasing role in modern data analytics, and this especially becomes true once data has been cleaned, queries have been well designed, and analytics algorithms have been tuned. However, when users perform data exploration tasks and algorithm tuning, that is when the data is temporary, the original data format typically remains unchanged -in this case, premature data format optimization is typically avoided, and simple text-based formats such as CSV and JSON les are preferred. In this case, current integrated data analytics systems can under-perform. Notably, they often fail to leverage decades old techniques for optimizing the performance of (distributed) DBMSs, e.g., indexing, that is usually not supported.

In summary, contemporary data scientists face a wide variety of competing approaches targeting the batch and the serving layer. Nevertheless, we believe that these approaches often have overly strict focus, in many cases ignoring one another, thus failing to explore potential bene ts from learning from each other.

In this chapter, we propose DiNoDB, an interactive-speed query engine that addresses the above issues. Our approach is based on a seamless integration of batch processing systems (e.g., Hadoop MapReduce and Apache Spark) with a distributed, fault-tolerant and scalable interactive query engine for in-situ analytics on temporary data. DiNoDB integrates the batch processing with the serving layer, by extending the ubiquitous Hadoop I/O API using DiNoDB I/O decorators. This mechanism is used to create, as an additional output of batch processing, a wide range of metadata, i.e., auxiliary data structures such as positional maps and vertical indexes, that DiNoDB uses to speed-up the interactive data analysis of temporary data les for data exploration and algorithm tuning. Our solution e ectively brings together the batch processing and the serving layer for big data work ows, while avoiding any loading and data (re)formatting costs. While, clearly, no data analytics solution can t all big data use cases, when it comes to ad-hoc interactive queries with a narrow processing window, DiNoDB outperforms state-of-the-art distributed query engines, such as Hive, Stado, Spark SQL and Impala.

In summary, our main contributions in this chapter include:

• The design of DiNoDB, a distributed interactive query engine. DiNoDB leverages modern multi-core architectures and provides e cient, distributed, fault-tolerant and scalable in-situ SQL-based querying capabilities for temporary data. DiNoDB (Distributed NoDB) is the rst distributed and scalable instantiation of the NoDB paradigm [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF], which was previously instantiated only in centralized systems.

• Proposal and implementation of the DiNoDB I/O decorators approach to interfacing batch processing and interactive query serving engines in a data analytics system. DiNoDB I/O decorators generate, as a result of the batch processing phase, metadata that aims to facilitate and expedite subsequent interactive queries.

• Detailed performance evaluation and comparative analysis of DiNoDB versus state-of-the-art systems including Hive, Stado, Spark SQL and Impala.

The rest of the chapter is organized as follows. In Section 3.2, we further motivate our approach and the need for a system such as DiNoDB. In Section 3.3, we describe the highlevel design of DiNoDB. In Section 3.4, we introduce how DiNoDB integrates the batch processing with its query engine. Section 3.5 covers the design of DiNoDB interactive query engine. In Section 3.6 we give our experimental results based on both synthetic and real-life datasets. Section 3.7 overviews related work. Section 3.8 concludes the chapter.

Applications and use cases

In this section, we overview some of the contemporary uses cases which span both batch processing and interactive analytics in the data analytics ows. These use cases include machine learning (Section 3.2.1) and data exploration (Section 3.2.2). For each of these use cases we discuss: i) how better communication between the batch processing and the serving layer that DiNoDB brings may help, and ii) the applicability of our temporary data analytics approach.

Machine learning

In the rst use case -which we evaluate in Section 3.6 -we take the perspective of a user (e.g., a data scientist) focusing on a complex data clustering problem. Speci cally, we consider the task of learning topic models [START_REF] Blei | Latent Dirichlet Allocation[END_REF], which amounts to automatically and jointly clustering words into "topics", and documents into mixtures of topics. Simply stated, a topic model is a hierarchical Bayesian model that associates with each document a probability distribution over "topics", which are in turn distributions over words. Thus, the output of a topic modeling data analysis can be thought of as a (possibly very large) matrix of probabilities: each row represents a document, each column a topic, and the value of a cell indicates the probability for a document to cover a particular topic.

In such a scenario, depicted in Figure 3.1, the user typically faces the following issues: i) topic modeling algorithms (e.g., Collapsed Variational Bayes (CVB) [START_REF] Teh | A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation[END_REF]) require parameter tuning, such as selecting an appropriate number of topics, the number of unique features to consider, distribution smoothing factors, and many more; and ii) computing TEMPORARY DATA "modeling quality" typically requires a trial-and-error process whereby only domainknowledge can be used to discern a good clustering from a bad one. In practice, such a scenario illustrates a typical "development" work ow which requires: a batch processing phase (e.g., running CVB), an interactive query phase on temporary data (i.e., on data interesting in relatively short periods of time), and several iterations of both phases until algorithms are properly tuned and nal results meet users' expectations.

DiNoDB explicitly tackles such "development" work ows. Unlike current approaches, which generally require a long and costly data loading phase that considerably increases the data-to-insight time, DiNoDB allows querying temporary data in-situ, and exposes a standard SQL interface to the user. This simpli es query analysis and reveals the main advantage of DiNoDB in this use case, that is the removal of the temporary data loading phase, which today represents one of the main operational bottlenecks in data analysis. Indeed, the traditional data loading phase makes sense when the workload (i.e., data and queries) is stable in the long term. However, since data loading may include creating indexes, serialization and parsing overheads, it is reasonable to question its validity when working with temporary data, as in our machine learning use case.

The key design idea behind DiNoDB is that of shifting the part of the burden of a traditional load operation to the batch processing phase of a "development" work ow. While batch data processing takes place, DiNoDB piggybacks the creation of distributed posi- tional maps and vertical indexes (see Section 3.4 for details) to improve the performance of interactive user queries on the temporary data. Interactive queries operate directly on temporary data les produced by the batch processing phase, which are stored on a distributed le system such as HDFS [START_REF] Shvachko | The Hadoop Distributed File System[END_REF].

Data exploration

In this section, we discuss another prominent use case -which we also evaluate in Section 3.6 -and which is another important motivation for our work. Here we consider a user involved in a preliminary, yet often fundamental and time-consuming, data exploration task. Typically, the user collects data from di erent sources (e.g., an operational system, a public API) and stores it on a distributed le system such as HDFS for subsequent processing. However, before any useful processing can happen, data needs to be cleaned and studied in detail.

Data exploration generally requires visualization tools, that assist users in their preliminary investigation by presenting the salient features of raw data. Current state-ofthe-art architectures for data exploration can be summarized as in Figure 3.2. A batch processing phase ingests dirty data to produce temporary data; such data is then loaded TEMPORARY DATA into a database system that supports an interactive query phase, whereby a visualization software (e.g., Tableau Software) translates user-de ned graphical representations into a series of queries that the database system executes. Such queries typically "reduce" data into aggregates, by ltering, selecting subsets satisfying predicates and by taking representative samples (e.g., by focusing on top-k elements).

In the scenario depicted above, DiNoDB reduces the data-to-insight time, by allowing visualization software or users to directly interact with the raw representation of temporary data, without paying the cost of the load phase that traditional database systems require, nor data format transformation overheads. In addition, the metadata that DiN-oDB generates by piggybacking on the batch processing phase (while data is cleaned), substantially improves query performance, making it a sensible approach for applications where interactivity matters.

DiNoDB high-level design

In this section, we present the high-level architecture design of DiNoDB. DiNoDB is designed to provide a seamless integration of batch processing systems such as Hadoop MapReduce and Spark, with a distributed solution for in-situ data analytics on large volumes of temporary, raw data les. First, in Section 3.4 we explain how DiNoDB extends the ubiquitous Hadoop I/O API using DiNoDB I/O decorators, a mechanism that generates a wide range of auxiliary metadata structures to speed-up the interactive data analysis using the DiNoDB query engine. Then, in Section 3.5 we describe the DiNoDB query engine, which leverages the metadata generated in the batch processing phase to achieve interactive-speed query performance.

The batch processing phase (e.g., in the machine learning and data exploration use cases outlined previously) typically involves the execution of (sophisticated) analysis algorithms. This phase might include one or more batch processing jobs, whereby output data is written to HDFS.

The key idea behind DiNoDB is to leverage batch processing as a preparation phase for future interactive queries. Namely, DiNoDB enriches the Hadoop I/O API with DiNoDB I/O decorators. Such mechanism piggybacks the generation of metadata by pipelining the output tuples produced by the batch engine into a series of specialized decorators that store auxiliary metadata along with the original output tuples. We further detail DiNoDB I/O decorators and metadata generation in Section 3.4.

In addition to the metadata generation, DiNoDB capitalizes on data preprocessing by keeping output data in-memory. To be more speci c, we con gure Hadoop to store output data and metadata in RAM, using the ramfs le system as an additional mount point for HDFS. 1 Our DiNoDB prototype supports both ramfs and disk mount points for HDFS, a design choice that allows supporting queries on data that cannot t in RAM.

Both the output data and metadata are consumed by the DiNoDB interactive query engine. As we detail in Section 3.5, the DiNoDB interactive query engine is a massively parallel processing engine that orchestrates several DiNoDB nodes. Each DiNoDB node is an optimized instance of PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF], a variant of PostgreSQL tailored to querying temporary data les produced in the batch processing phase. To ensure high performance and low query execution times, we co-locate DiNoDB nodes and HDFS DataNodes, where the two share data through HDFS, and in particular through its in-memory, ramfs mount.

In the remaining of this chapter we assume that both the raw and the temporary data ingested and produced by the batch processing phase, and used in the query serving phase are in a structured textual data format (e.g., comma-separated value les).

DiNoDB I/O decorators

DiNoDB piggybacks the generation of auxiliary metadata on the batch processing phase using DiNoDB I/O decorators. DiNoDB I/O decorators are designed to be a non-intrusive mechanism, that seamlessly integrates systems supporting the classical Hadoop I/O API, such as Hadoop MapReduce and Apache Spark. DiNoDB I/O decorators operate at the end of the batch processing phase for each nal task that produces output tuples, as shown in Figure 3.5. Instead of writing output tuples to HDFS directly, using the standard Hadoop I/O API, the tasks use DiNoDB I/O decorators, which build a metadata generation pipeline, where each decorator iterates over streams of output tuples and compute the various kinds of metadata.

Next, we introduce metadata currently supported in our prototype, and outline the implementation of our decorators to generate positional maps [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF], vertical indexes, statistics and data samples. To keep the size of the generated positional map relatively small to the size of a data le, the positional map decorator implements uniform sampling, to store positions only for a subset of the attributes in a le. The positional map decorator implements sampling, to store positions only for a subset of the attributes in a le. The user can either provide a sampling rate so that the positional map decorator will perform uniform sampling, or directly indicate which attributes are sampled.

Positional maps

Algorithm 1 demonstrates how the positional map decorator generate positional maps:

The positional map decorator is initialized by opening a positional map le stream pmstream (line 1-3); the decorator continuously receives tuples from which lists of attributes can be extracted (line 5); for each tuple, the decorator constructs string tuplestring by iterating through all attributes (line 7-13); during string construction, the o sets of sampled attributes are written to pmstream (line 8-11); when tuplestring is fully formed, its length is also written to pmstream (line 14-15); then the original tuple and its tuplestring is passed to the next decorator (line [START_REF]Webpage[END_REF][START_REF] Tez | Webpage[END_REF]; when all tuples are processed, pmstream is closed so that the positional map le is nalized (line [START_REF]Webpage[END_REF][START_REF] Samza | Webpage[END_REF][START_REF] Flink | Webpage[END_REF].

An approximate positional map can still provide tangible bene ts: indeed, if the requested attribute is not part of the sampled positional map, a nearby attribute position is used to navigate quickly to the requested attribute without signi cant overhead. In Section 3.6.2.5, we show the e ect of di erent sampling rates in the query execution performance.

Vertical indexes

The positional map can reduce the CPU processing cost associated with parsing and tokenizing data; to provide the performance bene t of an index-based access plan, DiNoDB uses a vertical index decorator that accommodates one or more key attributes for which vertical indexes are created at the end of the batch processing phase. Such vertical indexes can be used to quickly search and retrieve data without having to perform a full scan on the temporary output le.

Figure 3.4 shows the in-memory data structure of a vertical index. An entry in the vertical index has two elds for each record of the output data: the key attribute value and the record row o set value. As such, every key attribute value is associated with a par-TEMPORARY DATA ticular row o set in the data le, which DiNoDB nodes use to quickly access a speci c row of a le. As decorators generate metadata in a single pass, the key attribute values are not required to be unique or sorted. Each time when the vertical index decorator receives a tuple, it generates the index entry for this tuple which is output to a vertical index le.

Algorithm 2 Vertical indexes generation. close vistream 20: end procedure Algorithm 2 gives the details of how the vertical index decorator works. To initialize, the vertical index decorator opens a vertical index le stream vistream and sets a global variable of f set to 0 (line 1-4); the decorator continuously receives tuples from which lists of attributes can be extracted (line 6); for each tuple, the decorator writes the value of the key attribute and the current line of f set to vistream (line 7-14); the of f set is updated by accumulating the string length of each attribute and each eld delimiter (line 7-16).

Statistics

Modern database systems rely on statistics to choose e cient query execution plans. Query optimization requires knowledge about the nature of processed data that helps ordering operators such as joins and selections; however, such statistics are available only after loading the data or after a preprocessing phase. Currently DiNoDB I/O deco-rators can compute the number of records and the number of distinct values for speci c attributes from the batch processing phase as the statistics of the output data. To achieve this, our statistics decorator uses the near-optimal probabilistic counting algorithm Hy-perLogLog [START_REF] Flajolet | HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm[END_REF].

The detailed algorithm can be found in Algorithm 3, in which the number of records and the number of distinct values for each attribute is written to a statistics le stream statsstream. When multiple statistics decorator instances are used (e.g., each with a reducer in a Hadoop job), each decorator instance generates the statistics for a single data partition (e.g., outputted from a reducer). In order to compute the number of distinct values of attributes in the entire dataset, DiNoDB generates a global variable max_zeros by keeping the max integer for each element from all generated variables max_zeros. With the global max_zeros, DiNoDB can calculate the total number of distinct values for each attribute.

Statistics on attribute cardinality are used by DiNoDB to improve the quality of the query plans for complex queries, e.g., involving join operations. Other kinds of statistics (e.g, skew in the distribution of values per attribute) can be easily supported by DiNoDB I/O decorators as long as there exist a one-pass algorithm to generate them.

Data samples

When the volume of raw data produced by the batch processing phase is very large, it is often a requirement to work, e.g., for visualization purposes, on a concise yet representative subset of the preprocessing output. Therefore, the data samples decorator is designed to piggyback the creation of a sampled version of the raw data, that is stored alongside the output of batch processing. By using the Reservoir Sampling algorithm [START_REF]Webpage[END_REF], the our data samples decorator can randomly choose a data sample of xed size in one pass without requiring the data to be t in memory. As such, DiNoDB can query the sampled raw data and expose increased interactivity to visualization software.

Implementation details

DiNoDB I/O decorators are designed to be a non-intrusive mechanism, that seamlessly integrates systems supporting the classical Hadoop I/O API, such as Hadoop MapReduce and Apache Spark. DiNoDB I/O decorators operate at the end of the batch processing phase for each nal task that produces output tuples, as shown in Figure 3.5. Instead of writing output tuples to HDFS directly, using the standard Hadoop I/O API, the tasks use DiNoDB I/O decorators, which build a metadata generation pipeline, where each decorator iterates over streams of output tuples and compute the various kinds of metadata described above. TEMPORARY DATA Algorithm 3 Statistics generation. h ← hash(attr)

13:

bucket ← h & (num_buckets -1)

14: bucket_hash ← h >> k 15: max_zeros[index_attr][bucket] ← max(max_zeros[index_attr][bucket], _ (bucket_hash)) 16: 
index_attr ← index_attr + 1 statsstream.write(max_zeros)

33:

for i ← 0 to len(max_zeros) -1 do Discussion. Although currently DiNoDB focuses on textual data format, the same idea of generating metadata could also be applied to other data formats, like binary les. Depending on di erent input data format, generated metadata may be di erent. For example, if the data is in FITS [START_REF] Fits | Webpage[END_REF] data format, positional map is not needed anymore because each tuple and attribute is usually located in a well-known location. However, vertical indexes and statistics would still help.

... ... ... 

The DiNoDB interactive query engine

At a high level (see Figure 3.6), the DiNoDB interactive query engine consists of a set of DiNoDB nodes, orchestrated using a massively parallel processing (MPP) framework. In our prototype implementation, we use the Stado MPP framework [START_REF] Stado | Webpage[END_REF], which nicely integrates PostgreSQL-based database engines. DiNoDB ensures data locality by colocating DiNoDB nodes with HDFS DataNodes.

In the following sections, we rst describe the DiNoDB client (Section 3.5.1) and the DiNoDB nodes (Section 3.5.2). Then, we describe how DiNoDB achieves fault-tolerance (Section 3.5.3).

DiNoDB clients

A DiNoDB client serves as entry point for DiNoDB interactive queries. It provides a standard shell command interface, hiding the network layout and the distributed system architecture from the users. As such, applications can use DiNoDB just like a traditional DBMS.
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DiNoDB clients accept application requests (queries), and communicate with DiNoDB nodes. When a DiNoDB client receives a query, it fetches the metadata for the "tables" (output les of the batch phase) indicated in the query, using the MetaConnector module. The MetaConnector (see Figure 3.6) operates as a proxy between DiNoDB and the HDFS NameNode, and is responsible for retrieving HDFS metadata information like partitions and block locations of raw data les. Using HDFS metadata, the MetaConnector guides the DiNoDB clients to query the DiNoDB nodes that hold raw data les relevant to the user queries. Additionally, the MetaConnector remotely con gures DiNoDB nodes so that they can build the mapping between "tables" and the related HDFS blocks, including all data le blocks and metadata blocks, e.g., positional map blocks and vertical index blocks. In summary, the anatomy of a query execution is as follows: i) using the MetaConnector, a DiNoDB client learns the location of every raw le block and pushes the query to the respective DiNoDB nodes; ii) the DiNoDB nodes process the query in parallel; and nally, iii) the DiNoDB client aggregates the result.

Note that, since the DiNoDB nodes are co-located with the HDFS DataNodes, DiNoDB inherits fault-tolerance from HDFS replication. If a DiNoDB client detects a failure of a DiNoDB node, or upon the expiration of a timeout on DiNoDB node's responses, the DiNoDB client will issue the same query to another DiNoDB node holding a replica of the target HDFS blocks. We discuss DiNoDB fault-tolerance in more details in Section 3.5.3.

DiNoDB nodes

The DiNoDB nodes are based on PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF], a query engine optimized for in-situ querying. In the following, we rst brie y recall how PostgresRaw di ers from native PostgreSQL and then explain all the details behind DiNoDB nodes, and di erences with respect to PostgresRaw.

PostgresRaw. PostgresRaw is a centralized instantiation of the NoDB paradigm [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF],

and is a variant of PostgreSQL that avoids the data loading phase and executes queries directly on data les. PostgresRaw adopts in-situ querying instead of loading and preparing the data for queries. To accelerate query execution, PostgresRaw tokenizes only necessary attributes and parses only quali ed tuples. Moreover, PostgresRaw incrementally builds a positional map, which contains relative positions of attributes in a line, and updates it during the query execution: as such, the more queries are executed, the more complete and useful (for performance) the positional map will be.

From PostgresRaw to DiNoDB nodes. DiNoDB nodes instantiate customized Post-gresRaw databases which execute user queries, and are co-located with HDFS DataNodes. In the vanilla PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF] implementation, a "table" maps to a single data le. Since the HDFS les are instead split into multiple blocks, DiNoDB nodes use a new le reader mechanism that can access data on HDFS and maps a "table" to a list of data le blocks. In addition, the vanilla PostgresRaw implementation is a multiple-process server, which forks a new process for each new client session, with individual metadata and data cache per process. Instead, DiNoDB nodes place metadata and data in shared memory, such that user queries -which are sent through the DiNoDB client -can bene t from them across multiple sessions.

DiNoDB nodes can take advantage of the fact that data is naturally partitioned into HDFS blocks to leverage modern multi-core processors. Hence, data and the associated metadata can be easily accessed by multiple instances of PostgresRaw, to allow node level parallelism. DiNoDB users can selectively indicate whether raw data les are placed on disk or in memory. Hence, DiNoDB nodes can seamlessly bene t from a memorybacked le system to dramatically improve query execution times.

Exploiting metadata. DiNoDB nodes leverage positional map les generated in the preprocessing phase when executing queries, instead of only populating them incrementally as in PostgresRaw. In the case of the approximate positional maps, DiNoDB nodes use the sampled attributes as anchor points, to retrieve nearby attributes within the same row, required to satisfy a query. When vertical indexes are available, DiNoDB nodes use them to speed up queries with low selectivity, by employing an index-based access plan as a replacement for a full sequential scan. Both the positional map and the vertical index les are loaded by a DiNoDB node when the rst query requires them. As our performance evaluation shows (see Section 3.6), the metadata loading time is almost negligible, when compared to the execution time of the query.

Data update. If new data is injected to an existing table without using DiNoDB I/O

decorators (e.g., manually upload), there is no associated metadata pre-generated. In this case, DiNoDB nodes can still exploit the available metadata and do not require new metadata for the newly added data to process queries. Partially-available metadata can still accelerate query execution. HDFS is an immutable lesystem, which means that both data and metadata can not be modi ed after being written. If part of data is deleted, the associated metadata needs to be deleted as well.

Fault tolerance

In a nutshell, the key idea behind DiNoDB fault tolerance is to exploit HDFS n-way replication, in which every HDFS block on a given node is replicated to n-1 other nodes. As DiNoDB nodes co-locate with HDFS DataNodes, user queries can be directed to multiple nodes: in case one node is not available, DiNoDB clients automatically forward queries to other nodes with replicas of the data. By virtue of pro-active request redirection, DiNoDB can address the issues related to latency-tail tolerance [START_REF] Dean | The tail at scale[END_REF]. However, the default HDFS replication mechanism is not suited for DiNoDB: indeed, HDFS does not guarantee data and metadata generated by DiNoDB I/O decorators to be replicated on the same nodes. For example, some blocks assigned to DataNode D 1 may be replicated across DataNodes D 2 and D 3 , whereas other blocks assigned to D 1 might be replicated di erently, e.g., on DataNodes D 4 and D 5 .

We thus proceed with the design of a new replication mechanism for HDFS that is tailored to DiNoDB, which achieves two objectives: (i) it co-locates data blocks with the corresponding metadata blocks and (ii) it allows selecting di erent "storage levels" for replicas, to save on cluster resources. To address data/metadata co-location, our DiNoDB prototype implements a per-node n-way replication. Every block assigned to a given DataNode D i is systematically replicated across the same DataNodes D j and D k . We are aware that, on the long run, such simple approach may lead the HDFS subsystem to be poorly balanced. An alternative approach that we are currently considering is to create a new Hadoop Output Format that, similarly to Apache Parquet [START_REF] Parquet | Webpage[END_REF], supports "containers" that include data and metadata. Finally, DiNoDB supports di erent storage levels across replicas: as such, a "primary" replica can be tagged to be stored in the HDFS ramfs mount point, while "secondary" replicas are instead stored in an HDFS disk-based mount point [START_REF] Krish | hatS: A Heterogeneity-Aware Tiered Storage for Hadoop[END_REF].

Experimental evaluation

We now present a detailed experimental evaluation of DiNoDB using both real and synthetic datasets. We compare DiNoDB against state-of-the-art data analytics systems, including Impala, Spark SQL, Hive on Tez and Stado. Stado, an MPP system based on PostgreSQL, needs to load the data before executing queries, while Hive on Tez executes queries directly on data les stored in HDFS. Impala and Spark SQL can execute queries either directly on data les or after creating a copy of data in a new le format such as Parquet. Additionally, Spark SQL provides functionality to cache data les in memory as Resilient Distributed Dataset (RDD) [START_REF] Zaharia | Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing[END_REF].

Our goal here is to perform a comparative analysis across all systems showing the aggregate query execution time, which accounts for the total time to execute a certain number of queries on temporary output data of the batch processing phase. Additionally, we highlight the merits and applicability of metadata generated by the DiNoDB I/O decorators.

Experimental Setup

All the experiments are conducted in a cluster of 9 machines, with 4 cores, 16 GB RAM and 1 Gbps network interface each. The underlying distributed le system is HDFS.

Eight machines are con gured as worker nodes (DataNode), while the remaining one is acting as a coordinator (NameNode) in HDFS. To avoid disk bottlenecks, all the datasets are stored in HDFS with a ramfs mount point on each DataNode.

We In our experiments, we evaluate Spark SQL in two ways: i) by caching the entire table in memory as RDD before query execution (we label this variant of Spark SQL as SparkSQLc); and ii) the "normal" execution without caching (labeled as SparkSQL). Similarly, we evaluate Impala in two ways: i) by converting the dataset from text format to Parquet format before query execution (labeled as ImpalaP); and ii) the "normal" execution without converting (labeled as ImpalaT). A brief comparison among these systems can be found in Table 3.1.

Experiments with synthetic data

In this section, we use a synthetic dataset of 70 GB containing 5 * 10 7 tuples. Each tuple has 150 attributes with integers uniformly distributed in the range [0-10 9 ). The DiNoDB I/O decorators already produce a 3.5 GB positional map le (with 1/10 sampling rate) and a 1.1 GB vertical index le, where we choose the rst attribute as the key attribute.

We use as input a sequence of SELECT PROJECT SQL queries that e ectively simulate the kind of workload in a data exploration use case, which involves mainly ltering and selecting subsets of data. We discuss the exact queries in more detail in each experiment. 

Random queries (stressing PM)

In this experiment, we show the bene t of using positional maps in DiNoDB. We use as input a sequence of 10 SELECT PROJECT SQL queries of the following template: select ax from table where ay < 100000. Attributes ax and ay are randomly selected and the selectivity is 0.1‰. We examine two categories of systems that evaluate queries i) directly on data les and ii) on loaded data. Speci cally, Hive on Tez, SparkSQL, ImpalaT and DiNoDB execute queries directly, without any data loading process. ImpalaP and Stado require to load the data before querying, while SparkSQLc uses the rst query to load the data in a memory-backed RDD (lazy loading). Figure 3.7 plots the query execution time of the 10 queries. For queries over loaded data we also report the required loading time. Considering the aggregate query execution time for the 10 queries, DiNoDB is more than three times faster than the second fastest system, ImpalaT. Additionally, when it comes to individual query times DiNoDB consistently outperforms systems executing queries on data les. DiNoDB achieves that by exploiting the positional map that is generated by the DiNoDB I/O decorators to reduce the CPU cost of accessing data les (parsing and tokenizing). On the other hand, Spark-SQLc, ImpalaP, and Stado achieve shorter query execution times only after spending 150, 155 and 2352 seconds, respectively, for data loading. In Section 3.6. 

Key attribute based queries (stressing VI)

In this experiment, we demonstrate the impact of exploiting the vertical indexes in DiN-oDB. We use as input a sequence of 10 SELECT PROJECT SQL queries following the template: select ax from table where akey < 100000. The attribute in the WHERE clause is no longer a random attribute, but the attribute which we set as the key attribute by an appropriate con guration of the DiNoDB I/O decorators. The selectivity is again 0.1‰. Figure 3.8 shows the query execution time of the query sequence. DiNoDB signi cantly bene ts from exploiting the generated VI le to perform index scan access to the data (saving CPU and I/O cost). Overall, the average query cost of DiNoDB is less than 1 second. On the other hand, Hive on Tez, SparkSQL and ImpalaT that do not have an indexing mechanism, have similar performance as in the random query experiment above. Since Stado uses PostgreSQL as the local database system in our experiments, it supports index scan on data. However, it needs an additional 9 seconds delay for the index building phase, so in total (including the data loading phase), Stado needs about 2350 seconds before it is able to execute any queries.

Vertical indexes dramatically accelerate query execution in DiNoDB if queries hit the key attribute. In this experiment, DiNoDB's query execution time is competitive compared to Stado, ImpalaP and SparkSQLc (besides the rst query which is very slow for SparkSQLc). However, unlike those systems, DiNoDB does not require any data loading phase. Again, considering the aggregate query execution time for 10 queries, DiNoDB is more than 10 times faster than the second fastest system we study, ImpalaT.

Break-even point

In the previous experiments we show that for a relatively low number of queries, DiN-oDB outperforms other distributed systems. In this experiment, we are interested in nding the break-even point, that is the number of queries DiNoDB can execute before its performance becomes equal or worse than the alternative systems. To this end, we use the same dataset and the same query patterns as in Section 3.6.2.1, for a sequence of 200 queries. We compare DiNoDB with SparkSQLc and ImpalaP.

The results, shown in Figure 3.9, indicate that for this workload, 100 queries represent the break-even point. If users execute less than 100 queries on temporary data, DiNoDB outperforms alternative approaches. For more than 100 queries, ImpalaP and Spark-SQLc perform better than DiNoDB. In this case, the cost of converting the initial dataset to Parquet and RDD, respectively, is amortized. Clearly, a large number of queries on temporary output data as part of the illustrative exploratory use cases we consider in this work, is unlikely, making DiNoDB a sensible choice. 

Impact of data format

In the previous experiments we compared di erent data analytics systems assuming native, uncompressed, data format such as text-based CSV (or JSON). For Impala, in particular, we considered the transformation from text-based to the columnar Parquet format (ImpalaP) as the "loading" phase of ImpalaP. Although we expect our assumption of raw, text-based input to be reasonable for temporary data of various applications (with such temporary data being the focus of this chapter and DiNoDB), one may argue that the comparison to ImpalaP has not been entirely "fair" so far -as a user may write the output of a Hadoop job directly in Parquet format making it ready for ImpalaP and hence avoiding the need for loading/conversion phase.

Here, we compare the raw performance of ImpalaP (with data already in Parquet format) and DiNoDB (with data in text-based CSV format), with ImpalaT (using also text format) as a reference. We run a sequence of SELECT PROJECT queries, varying the number of projected attributes from 1 to 150 (i.e., all attributes, where the query boils down to a "select * from table where ax < 100000" query), while keeping the 0.1‰ selectivity and running 50 queries per experiment. Figure 3.10 shows the average query latency with standard deviation against the number of projected attributes. This experiment shows that ImpalaP and DiNoDB consistently outperform ImpalaT, but that the comparison between ImpalaP and DiNoDB is not conclusive. ImpalaP outperforms DiNoDB for a relatively small number of projected attributes (i.e., less than 30 attributes), whereas DiNoDB has the edge when the number of projected attributes is larger. We can also observe that the performance of DiNoDB is relatively constant with respect to the number of projected attributes, which makes it suitable for a wide range of ad-hoc queries. Besides pre-generated metadata, another advantage of DiNoDB comes from the feature inherited from PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF] called selective parsing: DiNoDB delays the binary transformation of projected attributes until it knows that the selectivity condition is satis ed for the given tuple. Since the selectivity of queries is very low, DiNoDB signi cantly reduces the CPU processing costs compared with ImpalaT and ImpalaP.

Impact of approximate positional maps

As we described in Section 3.4, we use a uniform sampling technique to keep PM metadata small. We investigate how di erent sampling rates of PM in uence query execution cost. We use the same dataset and query sequence as in Section 3.6.2.1. We vary the sampling rate of PM from 1/10, 1/25, 1/50, 1/75, 0 (only containing the length of row) to no PM at all. The results, shown in Figure 3.11, illustrate the trade-o between query execution time and space constraints. With more positions kept in the PM, DiNoDB achieves lower query execution times, but the metadata le of PM is larger. If a user is more sensitive to query execution time, she can choose a more aggressive sampling rate of PM. Otherwise, if cluster resources are limited, users can choose lower sampling rates, which result in smaller PM les. Besides pre-generated PM metadata, DiNoDB also incrementally generates PM during query execution. Therefore, as shown in Figure 3.11, the di erence in query execution time is more signi cant in the rst few queries when PM is not detailed enough.

Scalability

In this section, we study the scalability of DiNoDB, compared to ImpalaT. Both systems perform a sequential scan operation (i.e., in case DiNoDB uses the positional map but not the vertical index).

Scaling the number of attributes. In this experiment, we x the number of records (rows) of the synthetic dataset, but we vary the number of attributes in the range between 25 and 200 attributes (dataset size from 12 GB to 96 GB). For each of these datasets, we execute a sequence of 50 SELECT PROJECT SQL queries in the same template as in Section 3.6.2.1. The average query execution time with standard deviation of DiNoDB and ImpalaT are shown in Figure 3.12(a). DiNoDB average query execution time is almost constant when the number of attributes grows thanks to PM metadata; clearly, PM metadata size grows with the number of attributes in the data. Instead, ImpalaT scales linearly with the number of attributes since it needs to parse every attribute (or byte) in a row: hence, it needs more CPU cycles when there are more attributes. ImpalaT has roughly the same performance as DiNoDB when there are 25 attributes. However, if the number of attributes exceeds 50, which is often the case the data analytics scenarios of our use cases, ImpalaT needs much more time to execute a query than DiNoDB.

Scaling the dataset size. In this experiment, we keep constant the number of attributes to 100, and vary the number of records (rows) in the synthetic dataset. We compare DiNoDB and ImpalaT when dataset size ranges between 25 and 100 GB, by executing 50 SELECT PROJECT SQL queries on each dataset. The average query execution time with standard deviation is shown in Figure 3.12(b). We observe that both ImpalaT and DiNoDB average query latency scale linearly with the dataset size. However, the slope for DiNoDB is less steep than that of ImpalaT.

Discussion. The DiNoDB I/O decorators that generate PMs are crucial for the performance of DiNoDB, especially for datasets with many attributes. Note, that our prototype implementation of DiNoDB does not enjoy many of the important optimizations that are available for Impala, such as e cient data type handlers, just-in-time compilation and so on. 

Experiments with real life data

In this section, we give two examples of use cases we describe in Section 3.2 using real life data. One is a topic modeling use case and the other is a data exploration use case.

In both examples, we show the query performance in di erent systems as well as the overhead of DiNoDB I/O decorators in the batch processing phase.

Experiment on machine learning

Here, we focus on a topic modeling use case, described in Section 3.2.1. We use a 40 GB dataset collected by Symantec2 , consisting of roughly 55 million emails (in JSON format) tagged as spam by their internal ltering mechanism. To better understand the features of these spam emails, data scientists in Symantec often try to discover topics that occur in these collections of emails. In this experiment, we rst play the role of a data scientist involved in topic modeling, and use Apache Mahout (version 0.11), a scalable machine learning library for Hadoop MapReduce. The CVB algorithm is iterative, and thus consists of multiple Hadoop MapReduce jobs with many intermediate data outputs. Since users are usually only interested in the nal output, we instruct our DiNoDB I/O decorators to generate metadata solely in the last stage, upon algorithm termination, in which the distribution of documents and topics is nalized.

DiNoDB I/O decorators overhead. First, we compare the Mahout topic modeling job to the one assembled with our DiNoDB I/O decorators, to study the overhead that it may impose on the preprocessing phase. In general, machine learning algorithms executed on large datasets take quite a long time to complete. Topic modeling is not an exception; in our experiments, we set the two most important parameters of CVB to 20 topics and 5 iterations 3 Query performance. In this experiment, we query the output of the topic-modeling phase: the output data le is a "doc-topic" table, in which each row consists in a document identi er and the probability that such document belongs to each of the 20 topics. Hence, the output data le has one INT attribute (docid, which also serves as the key attribute) and 20 FLOAT attributes (probabilities). In order to understand if spam emails are well assigned to di erent topics, we would like to know which subset of emails have the highest probability to be in each topic. Therefore, the queries we execute with DiN-oDB choose the top-10 spam emails per topic, sorted by probability measure: select docid, p_topic_x from table order by p_topic_x desc limit 10, where docid is document (email) id and p_topic_x is the probability of that document belonging to topic_x. Note that, since the queries are not based on the selectivity of the key attribute (docid), DiNoDB does not use VI, and solely relies on the PM le to improve performance.

The result of a 10-query sequence for each system is shown in Figure 3 this sequence of queries, being only slightly slower only from ImpalaP and ImpalaT even though the overhead from batch processing was taken into account. Notice that if the overhead of DiNoDB I/O decorators in the batch processing phase is not considered in the query execution time, DiNoDB achieves the shortest execution time. Like in Section 3.6.2 SparkSQLc, ImpalaP and Stado have very short single query execution cost, which is less than 1 second, but they all need to rst load data. Note that, if we compare the loading time of SparkSQLc and ImpalaP with their loading time in section 3.6.2, we nd that Impala has a better support for data type FLOAT than Spark SQL.

Experiment on data exploration

In this section, we focus on the data exploration use case, described in Section 3.2.2. We use a trace le which is the result of merging all the log les of Ubuntu One5 servers for 30 days (773 GB of CSV text). Now, let's assume that a user is interested in knowing the features of les stored in Ubuntu One. To better analyze this trace, this user lters out unnecessary information like server's RPC logs and creates a new data le called "FileObject" in which original trace is reorganized based on les. So, this user chooses to write Hadoop programs to preprocess the trace le. Query performance. In this experiment, we compare the performance of the aforementioned systems when quering the result data le, "FileObject". The queries 6 we use in this experiment compute, for example, the number of distinct le extensions that users of the Ubuntu One service store, how many times the most popular le is downloaded, etc. The result of a 10-query sequence is shown in Figure 3 queries executed in this experiment are more complex, by selecting more attributes and using operators like group by and aggregation. DiNoDB outperforms alternative systems except ImpalaT when considering total query execution time including DiNoDB I/O decorators overhead.

We note that, in this experiment as well as the respective experiment in Section 3.6.3.1, ImpalaT query performance is on par with that of DiNoDB (without DiNoDB I/O decorators overhead). This is because when there are not many attributes (e.g., 20), the advantage of DiNoDB is not that obvious, as we demonstrated in Section 3.6.2.6.

Impala with DiNoDB I/O decorators

Metadata generated by DiNoDB I/O decorators in the batch processing phase can also be bene cial to other systems: they are not con ned to be used in conjunction with DiNoDB. In this section, we present how Impala performs when we implant the DiNoDB I/O decorators in the work ow.

In this experiment, an Impala user operates on the output data generated by a batch processing phase on the Ubuntu One server logs described previously. Let's assume the user wants to compute the number of times that les of a particular type, which are stored on the Ubuntu One service, are downloaded during a given period of time. In this case, in addition to the "FileObject" output le, a "DownloadRecord" output le is also produced in the batch processing phase. In "DownloadRecord" le, each record Next, we compare Impala in three situations: i) executing queries without statistics, ii) executing queries after generating statistics using the built-in command "Compute Statistics" and iii) executing queries with statistics generated by DiNoDB I/O decorators during the batch processing phase 7 . We execute 4 queries in each case and we show the results in Figure 3.18 where the overhead of statistics decorator is also included. In the rst case, without statistics, Impala cannot choose an optimal query plan for the join operator, so the query execution time is the longest. In the second case, the query latency is quite short, but Impala needs to spend more than 1 minute to generate statistics before it can execute the queries. With DiNoDB I/O decorators, Impala achieves the lowest execution time even with the overhead from batch processing: this demonstrates the exibility of our approach, and validates the design choice of piggybacking costly operations in the batch processing phase. TEMPORARY DATA 

Related work

Several research works and commercial products complement the batch processing nature of Hadoop/MapReduce [START_REF] Dean | MapReduce: Simpli ed Data Processing on Large Clusters[END_REF][START_REF]Webpage[END_REF] with systems to query large-scale data at interactive speed using a SQL-like interface. Examples of such systems include HadoopDB [START_REF] Abouzeid | HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads[END_REF] and Vertica [START_REF] Vertica | Webpage[END_REF]. These systems require data to be loaded before queries can be executed: in workloads for which data-to-query time matters, for example due to the ephemeral nature of the data at hand, the overheads due to the load phase, crucially impact query performance. In [START_REF] Abouzied | Invisible loading: Access-driven data transfer from raw les into database systems[END_REF] the authors propose the concept of "invisible loading" for HadoopDB as a technique to reduce the data-to-query time; with invisible loading, the loading to the underlying DBMS happens progressively and on demand during the rst time we need to access the data. In contrast to such systems, DiNoDB avoids data loading and is tailored for querying raw data les leveraging metadata. Such les are built in DiNoDB with a lightweight piggybacking mechanism for workloads involving a preliminary data processing phase such as machine learning and data exploration use cases.

Shark [START_REF] Xin | Shark: SQL and Rich Analytics at Scale[END_REF] presents an alternative design: it relies on a novel distributed shared memory abstraction called Resilient Distributed Datasets (RDDs) [START_REF] Zaharia | Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing[END_REF] to perform most computations in memory while o ering ne-grained fault tolerance. Shark builds on Hive [START_REF]Webpage[END_REF] to translate SQL-like queries to execution plans running on the Spark system [START_REF]Webpage[END_REF], hence marrying batch and interactive data analysis. Recently, Spark SQL [START_REF] Armbrust | Spark sql: Relational data processing in spark[END_REF] was announced as the Shark replacement in the Spark stack, as the new SQL engine for Spark designed from ground-up. The main characteristic of Spark SQL is that, just like Shark, it works with Spark's RDDs. Hence, both Spark SQL and Shark require a variant of data loading, to transform the raw HDFS data le and bring it into the RDD representation, in order to bene t fully from the Spark's in-memory low-latency processing. In contrast, DiNoDB achieves low latency while working on raw les, entirely avoiding data loading.

Impala [START_REF] Kornacker | Impala: A modern, open-source SQL engine for hadoop[END_REF] is a state-of-the-art massively parallel processing (MPP) SQL query engine that runs in Hadoop. As such, Impala is probably the closest system to DiNoDB. However, while co-located with Hadoop, Impala does not leverage the possible synergy between batch processing of Hadoop and analytics power of a MPP SQL query engine. In this chapter, we exactly propose such a synergy, and build DiNoDB to validate our approach. Namely, in DiNoDB batch processing generates metadata (e.g., positional maps and vertical indexes) that helps expedite SQL analytical queries. In this work, we demonstrate that the synergy between batch processing and query engines is bene cial for the analytical phase.

SCANRAW [START_REF] Cheng | Parallel in-situ data processing with speculative loading[END_REF][START_REF] Cheng | Scanraw: A database meta-operator for parallel in-situ processing and loading[END_REF] is proposed as a novel database physical operator, which loads data speculatively using available I/O bandwidth. PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF] is a centralized DBMS that avoids data loading and transformation prior to queries. DiNoDB leverages Post-gresRaw as a building block to obtain DiNoDB nodes, which are to be seen as enhanced version of PostgresRaw (see Section 3.5.2 for detailed comparison between DiNoDB nodes and PostgresRaw). A critical di erence between DiNoDB and these works is that, DiNoDB is a distributed, massively parallel system for large-scale data analytics integrated with Hadoop batch processing framework, whereas PostgresRaw and SCANRAW are centralized database solutions. Dremel [START_REF] Melnik | Dremel: Interactive analysis of web-scale datasets[END_REF] and GLADE [START_REF] Cheng | Glade: Big data analytics made easy[END_REF] adopt multi-level aggregation to overcome single node bottleneck. This approach could be applied to DiNoDB to improve its scalability in future work.

Finally, DiNoDB shares some similarities with several research work that focuses on improving Hadoop performance. For example, Hadoop++ [START_REF] Dittrich | Hadoop++: making a yellow elephant run like a cheetah (without it even noticing)[END_REF] modi es the data format to include a Trojan Index so that it can avoid full le sequential scan. Furthermore, CoHadoop [START_REF] Eltabakh | CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop[END_REF] co-locates related data les in the same set of nodes so that a future join task can be done locally without transferring data in network. However, these systems require users to write speci c Hadoop program, which could be complex and hard. Therefore, neither Hadoop++ nor CoHadoop are suitable for interactive raw data analytics, like DiNoDB is.

To conclude, we compare our current version of DiNoDB with a preliminary version, presented in [START_REF] Tian | DiN-oDB: E cient large-scale raw data analytics[END_REF]. The preliminary version of DiNoDB used HadoopDB to orchestrate DiNoDB nodes, which su ered from the inherent overhead of the HadoopDB framework when it came to interactive queries. Therefore, we replaced HadoopDB with a massively parallel architecture, but had to address fault tolerance of such an architecture. Moreover, our current version of DiNoDB introduces DiNoDB I/O decorators, which are easy to implement and help couple batch layer and serving layer more seamlessly. As a result, our current version of DiNoDB outperforms state-of-the-art analytics systems such as Spark SQL and Impala, for temporary data.

Conclusion

Parallel data processing systems such as Hadoop MapReduce have received increasing attention, for their promise to analyze any amount or kind of data. However, with such systems, users had to move and load the data produced in the batch processing phase into a fast relational database, to achieve interactive-speed data manipulation. The specter of "leaving something important behind" related to data movement and adaptation has led academics and the industry to designing new systems that would expose a standard, interactive way to manipulate data, while being fully integrated in a growing ecosystem of data processing tools.

In this work, we presented the architecture of DiNoDB, a distributed system tuned for interactive-speed queries on temporary data les generated by large-scale batchprocessing frameworks. As shown by our extensive experimental evaluation, for the use-cases DiNoDB targets -ad hoc queries on a narrow processing window, our system outperforms current SQL-on-Hadoop solutions. DiNoDB uses a decorator mechanism that enhances the standard Hadoop I/O API and piggybacks the creation of auxiliary metadata required for interactive-speed query performance. In addition, DiNoDB I/O decorators seamlessly integrate with existing frameworks and distributed storage systems.

Our experimental evaluation, that we do on both synthetic and real-world datasets, highlights the key bene ts of DiNoDB in a number of prominent use cases, making it suitable for a wide range of ad-hoc analytical workloads.

Chapter 4

Bleach: a Distributed Stream Data Cleaning System

Introduction

Today, we live in a world where decisions are often based on analytics applications that process continuous streams of data. Typically, data streams are combined and summarized to obtain a succinct representation thereof: analytics applications rely on such representations to make predictions, and to create reports, dashboards and visualizations [START_REF]Spark Summit 2015 Use Case[END_REF][START_REF] Recordedfuture | Webpage[END_REF][START_REF] Gdeltproject | Webpage[END_REF]. All these applications expect the data, and their representation, to meet certain quality criteria. Data quality issues interfere with these representations and distort the data, leading to misleading analysis outcomes and potentially bad decisions.

As such, a range of data cleaning techniques were proposed recently [START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF]127,128]. However, most of them focus on "batch" data cleaning, by processing static data stored in data warehouses, which are quite time-consuming. They neglect the important class of streaming data. In this chapter, we address this gap and focus on stream data cleaning.

The challenge in stream cleaning is that it requires both real-time guarantees as well as high accuracy, requirements that are often at odds.

A naïve approach to stream data cleaning, as shown in Figure 4.1(a), is to include simple static lters to process dirty records, but its cleaning ability is quite limited. Another naïve approach, as shown in Figure 4.1(b), could simply extend existing batch techniques, by bu ering data records in a temporary data store and cleaning it periodically before feeding it into downstream components. Although likely to achieve high accuracy, such a method clearly violates real-time requirements of streaming applications. The problem is exacerbated by the volume of data cleaning systems need to process, which prohibits In this chapter, we focus on qualitative data cleaning, whereby a set of domain-speci c rules de ne how data should be cleaned: in particular, we consider functional dependencies (FDs) and conditional functional dependencies (CFDs). Our system, called Bleach, proceeds in two phases: violation detection, to nd rule violations, and violation repair, to repair data based on such violations. Bleach relies on e cient, compact and distributed data structures to maintain the necessary state (e.g., summaries of past data) to repair data, using an incremental equivalence class algorithm.

We further address the complications due to the long-term and dynamic nature of data streams: the de nition of dirty data could change to follow such dynamics. Bleach supports dynamic rules, which can be added and deleted without requiring idle time. Additionally, Bleach implements a sliding window operation that trades modest additional storage requirements to temporarily store cumulative statistics, for increasing cleaning accuracy.

Our experimental performance evaluation of Bleach is two-fold. First, we study the performance, in terms of throughput, latency and accuracy, of our prototype and focus on the impact of its parameters. Then we compare Bleach to an alternative baseline system, which we implement using a micro-batch streaming architecture. Our results indicate the bene ts of a system like Bleach, which hold even with rule dynamics. Despite extensive work on rule-based data cleaning [START_REF] Fan | Incremental detection of inconsistencies in distributed data[END_REF][START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF][START_REF] Dallachiesa | Nadeef: A commodity data cleaning system[END_REF][START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF][START_REF] Bohannon | Conditional functional dependencies for data cleaning[END_REF][START_REF] Chen | Repairing functional dependency violations in distributed data[END_REF][START_REF] Kolahi | On approximating optimum repairs for functional dependency violations[END_REF][START_REF] Abedjan | Temporal rules discovery for web data cleaning[END_REF], we are not aware of any other stream data cleaning system.

Preliminaries

Next, we introduce basic notation we use throughout the chapter, then we de ne the problem statement we consider.

Background and De nitions

In this thesis, we assume that a stream data cleaning system ingests a data stream and outputs a cleaned data stream. We consider an input data stream instance D in with schema S(A 1 , A 2 , ..., A m ) where A j is an attribute in schema S. We assume the existence of unique tuple identi ers for every tuple in D in : thus given a tuple t i , id(t i ) is the identi er of t i . In general we de ne a function id(e) which returns the identi er (ID) of e where e can be any element. A list of IDs [id(e 1 ), id(e 2 ), ..., id(e n )] is expressed as id(e 1 , e 2 , ..., e n ) for brevity. The output data stream instance D out complies with schema S and has the same tuple identi ers as in D in , i.e., with no tuple loss or duplication. The basic unit, a cell c i,j , is the concatenation of a tuple id, an attribute and the projection of the tuple on the attribute: c i,j = (id(t i ), A j , t i (A j )). Note that t i (A j ) is the value of c i,j , which can also be expressed as v(c i,j ). Sometimes, we may simply express c i,j as c i when the cell attribute is not relevant to the discussion. In our work, when we point at a speci c tuple t i , we also refer to this tuple as the current tuple. Tuples appearing earlier than t i in the data stream are referred to as earlier tuples and those appearing after t i are referred to as later tuples. To perform data cleaning, a set of rules Σ = [r 1 , ..., r n ] are de ned. Each rule has a unique rule identi er id(r k ).

A FD rule, r k , is represented as (X → A), in which X ⊆ S and A ∈ S. X and A are respectively referred to as a set of left-hand side (LHS) attributes and right-hand side (RHS) attribute: LHS(r k ) = X, RHS(r k ) = A. 1 A data stream instance D satis es r k , denoted by D |= r k , when for every pair of tuples t 1 and t 2 , if t 1 (B) = t 2 (B) for all B ∈ X, then t 1 (A) = t 2 (A). In other words, if there exist any two tuples, t 1 and t 2 , that have the same values for LHS attributes X, but di erent values for RHS attribute A, then there must be some errors in t 1 or t 2 . Cells of LHS (RHS) attributes are also referred to as LHS (RHS) cells.

As an extension of FD rules, a CFD rule, r m , is represented by (X → A, cond(Y )), in which cond(Y ) is a boolean function on a set of attributes Y where Y ⊆ S. Y is referred to as a set of conditional attributes. For a data stream instance D, if there exists a pair of tuples t 1 and t 2 satisfying condition cond(t 1 (Y )) = cond(t 2 (Y )) = true where t 1 (B) = t 2 (B) for all B ∈ X but t 1 (A) = t 2 (A), then we say t 1 and t 2 violate against r m . If there is no such pairs of tuples violating against r m , then the data stream instance 1 When the rule is clear in the context, we omit r k so that LHS = X, RHS = A. 

Challenges and Goals

An ideal stream data cleaning system should accept a dirty input stream D in and output a clean stream D out , in which all rule violations in D in are repaired (D out |= Σ). However, this is not possible in reality due to:

• Real-time constraint: As the data cleaning is incremental, the cleaning decision for a tuple (repair or not repair) can only be made based on itself and earlier tuples in the data stream, which is di erent from data cleaning in data warehouses where the entire dataset is available. In other words, if a dirty tuple only has violations with later tuples in the data stream, it can not be cleaned. A late update for a tuple in the output data stream cannot be accepted.

• Dynamic rules: In a stream data cleaning system, the rule set is not static. A new rule may be added or an obsolete rule may be deleted at any time. A processed data tuple can not be cleaned again with an updated rule set. Reprocessing the whole data stream whenever the rule set is updated is not realistic.

• Unbounded data: A data stream produces an unbounded amount of data, that cannot be stored completely. Thus, stream data cleaning can not a ord to perform cleaning on the full data history. Namely, if a dirty tuple only has violations with tuples that appear much earlier in the data stream, it is likely that such a tuple will not be cleaned.

Consider the example in Figure 4.2, which is a data stream of on-line shopping transactions. Each tuple represents a purchase record, which contains a purchased item (item), the category of that item (category), a client identi er (clientid), the city of the client (city) and the zip code of that city (zipcode). In the example, we show an extract of ve data tuples of the data stream, from t Note that when a stream data cleaning system receives tuple t 1 , no violation can be detected as in our example t 1 only has violations with later tuples t 3 and t 5 . Thus, no modi cation can be made to t 1 . Furthermore, delaying the cleaning process for t 1 is not a feasible option, not only because of real-time constraints, but also because it is di cult to predict for how long this tuple should be bu ered for it to be cleaned. Therefore, stream data cleaning must be incremental: whenever a new piece of data arrives, the data cleaning process starts immediately. Although performing incremental violation detection seems straightforward, incremental violation repair is much more complex to achieve. Coming back to the example in Figure 4.2, assume that the stream cleaning system receives tuple t 5 and successfully detects the violation v 3 between t 5 and t 1 . Such detection is not su cient to make the correct repair decision, as the tuple t 1 also con icts with another tuple, t 3 . An incremental repair in stream data cleaning system should also take the violations among earlier tuples into account.

To account for the intricacies of the violation repair process, we use the concept of violation graph [START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF]. A violation graph is a data structure containing the detected violations, in which each node represents a cell. If some violations share a common cell, they will be grouped into a single subgraph. Therefore, the violation graph is partitioned into smaller independent subgraphs. A single cell can only be in one subgraph. If two subgraphs share a common cell, they need to merge. The repair decision of a tuple is only relevant to the subgraphs in which its cells are involved. A violation graph for our example can be seen in Figure 4.3. Given this violation graph, to make the repair decision for tuple t 5 , the cleaning system can only rely on the upper subgraph which consists of violation v 1 and v 3 with the common cell t 1 (city). We now give our problem statement as following.

Problem statement: Given an unbounded data stream with an associated schema2 and a dynamic set of rules, how can we design an incremental and real-time data cleaning system, including violation detection and violation repair mechanisms, using bounded computing and storage resources, to output a cleaned data stream?

In the following sections, we overview the Bleach architecture and provide details about its components. As shown in Figure 4.15, the input data stream rst enters the detect module (Sections 4.3), which reveals violations against de ned rules. The intermediate data stream is enriched with violation information, which the repair module (Section 4.4) uses to make repair decisions. Finally, the system outputs a cleaned data stream. The rule controller module, is discussed in Section 4.5. We discuss the windowing operation in Section 4.6. In Section 4.7, we discuss the dependency relations between rules. Section 4.8 presents our experimental results. Section 4.9 overviews related work and Section 4.10 concludes.

Violation Detection

The violation detection module aims at nding input tuples that violate rules. To do so, it stores the tuples in-memory, in an e cient and compact data structure that we call the data history. Input tuples are thus compared to those in the data history to detect violations. 

The Ingress Router

The role of the ingress router is to partition and distribute incoming tuples to DWs. As discussed in Section 4.2, only a subset of the attributes of an input tuple are relevant when verifying data validity against a given rule. For example, a FD rule only requires its LHS and RHS attributes to be veri ed, ignoring the rest of the input tuple attributes.

Therefore, when the ingress router receives an input tuple, it partitions the tuple based on the current rule set, and only sends the relevant information to each DW in charge of each speci c rule. As such, an input tuple is broken into multiple sub-tuples, which all share the same identi er of the corresponding input tuple. Note that some attributes of an input tuple might be required by multiple rules: in this case, sub-tuples will contain redundant information, allowing each DW to work independently. An example of tuple partitioning can be found in Figure 4.5, where we reuse the input data schema and the rules from Section 4.2.

The Detect Worker

Each DW is assigned a rule, and receives the relevant sub-tuples stemming from the input stream. For each sub-tuple, a DW performs a lookup operation in the data history, and emits a message to downstream components when a rule violation is detected.

To achieve e ciency and performance, lookup operations need to be fast, and the intermediate data stream should avoid redundant information. Next, we describe how the data history is represented and materialized in memory; then, we describe the output messages a DW generates, and nally outline the DW algorithm. The structure3 of the data history is illustrated in Figure 4.6. First, to speed-up the lookup process, sub-tuples are grouped by the value of the LHS attribute used by a given rule: we call such group a cell group ( ). Thus, a stores all RHS cells whose sub-tuples share the same LHS value. The identi er of a cell group cg l is the combination of the rule assigned to the DW, and the value of LHS attributes, expressed as id(cg l ) = (id(r k ), t(LHS)) where r k is the rule assigned to the DW.

Next, to achieve a compact data representation, all cells in a sharing the same RHS value are grouped into a super cell ( ): sc m = [c 1,j , c 2,j , ..., c n,j ]. From Section 4.2, recall that a cell is made of a tuple ID, an attribute and a value: (id(t i ), A j , t i (A j )). Therefore, a super cell can be compressed as a list of tuple IDs, an attribute and their common value: sc m = (id(t 1 , t 2 , ..., t n ), A j , t(A j )) where t(A j ) = t 1 (A j ) = ... = t n (A j ). Hence, within an individual DW, sub-tuples whose cells are compressed in the same sc are equivalent, as they have the same LHS attributes value (the identity of the cell group) and the same RHS attribute value (the value of super cell). A cell group cg l now can be expressed as: cg l = ((id(r k ), t(LHS)), [sc 1 , sc 2 , ...]) including an identi er and a list of super cells. In summary, the lookup process for a given input sub-tuple is as follows. Cell groups are stored in a hash-map using their identi ers as keys: therefore the DW rst nds the corresponding to the current sub-tuple. Cells in the corresponding are the only cells that might be in con ict with the current cell. Overall, the complexity of the lookup process for a sub-tuple is O(1).

Violation messages. DWs generate an intermediate data stream of violation messages,

which help downstream components to eventually repair input tuples. The goal of the DW is to generate as few messages as possible, while allowing e ective data repair.

When the lookup process reveals the current tuple does not violate a rule, DWs emit a non-violation message (msg nvio ). Instead, when a violation is detected, a DW constructs a message with all the necessary information to repair it, including: the ID of the cell group corresponding to the current tuple and the RHS cells of the current and earlier tuples in data history: msg vio = (id(cg l ), c cur , c old ). Now, to reduce the number of violation messages, the DW can use a super cell in place of a single cell (c old ) in con ict with the current tuple. In addition, recall that a single can contain multiple super cells, thus possibly requiring multiple messages for each group. However, we observe that two cells in the same must also con ict with each other, as long as their values are di erent. Since the data repair module in Bleach is stateful, it is safe to omit some violation messages.

Algorithm details. Next, we present the DW violation algorithm details, as illustrated in Algorithm 4. The algorithm starts by treating FD rules as a special case of CFD rules (line 1). Then, when a DW receives a sub-tuple t i satisfying the rule condition (line 2), it performs a lookup in the data history to check if the corresponding cell group cg l exists (line 3). If yes, it determines the number of contained in the cg l (line 4). If there is only one sc old , violation detection works as follows. If the RHS cell of the current sub-tuple, if ∃id(cg l ) = (id(r), t i (X)) then if v(sc old ) = t i (A j ) then Add c cur to cg l 18: end procedure c cur , has the same value as sc old , it emits a non-violation message (line 5-6). Otherwise, a violation has been detected: the DW emits a complete violation message, containing both the current cell and the old cell (line 8). If the contains more than one , the DW emits a single append-only violation message, which only contains the cell of the current sub-tuple (line 11). Such compact messages omit the from the data history, since they must be contained in earlier violation messages. Finally, if the lookup procedure (line 3) fails, the DW creates a new cell group and emits a non-violation message (line [START_REF] Stado | Webpage[END_REF][START_REF] Redshift | Webpage[END_REF]. At this point, the current cell c cur is added to the corresponding group cg l (line 17), either in an existing sc, or as a new distinct cell. It is worth noticing that, following Algorithm 4, a DW emits a single message for each input sub-tuple, no matter how many tuples in the data history it con icts with.

The Egress Router

The egress router gathers (violation or non-violation) messages for a given data tuple, as received from all DWs, and sends them downstream to the repair module.

... 

Violation Graph

Violation Repair

The goal of this module is to take the repair decisions for dirty data tuples, based on an intermediate stream of violation messages generated by the detect module. To achieve this, Bleach uses a data structure called violation graph. Violation messages contribute to the creation and dynamics of the violation graph, which essentially groups those cells that, together, are used to perform data repair. Figure 4.7 sketches the internals of the repair module: it consists of an ingress router, the repair workers (RW), and an aggregation component that emits clean data. An additional component, called the coordinator, steers violation graph management, with the contribution of RWs.

The Ingress Router

The ingress router broadcasts all incoming violation messages to all RWs. As opposed to its counterpart in the detect module, it does not perform data partitioning. Although each RW receives all violation messages, a cell in a violation message will only be stored in one RW with the goal of creating and maintaining the violation graph.

The Repair Worker

Next, we describe the operation of a RW. First, we focus on the violation graph and the data repair algorithm. Then, we move to the key challenge that RWs address, that is how to maintain a distributed violation graph. As such, we focus on graph partitioning and maintenance. Due to violation graph dynamics, coordination issues might arise in a distributed setting: such problems are addressed by the coordinator component.

The repair algorithm. Current data repair algorithms use a violation graph to repair dirty data based on user-de ned rules. A violation graph is a succinct representation of cells (both current and historical) that are in con ict according to some rules. A violation graph is composed of subgraphs. As incoming data streams in, the violation graph evolves: speci cally, its subgraphs might merge or split, depending on the contents of violation messages.

Using the violation graph, several algorithms can perform data cleaning, such as the equivalence class algorithm [START_REF] Bohannon | A cost-based model and e ective heuristic for repairing constraints by value modi cation[END_REF] or the holistic data cleaning algorithm [START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF]. Currently, Bleach uses an incremental version of the equivalence class algorithm, that supports streaming input data, although alternative approaches can be easily plugged in our system. The idea of the equivalence class algorithm is to group all elements which should be equivalent to each other, and then to decide an unique value for elements in the same group. Thus, a subgraph in the violation graph can be interpreted as an equivalence class, in which all cells are supposed to have the same value.

The Bleach violation graph is built using violation messages output by the detect module. We say that a subgraph sg intersects with a violation message msg vio , denoted by msg vio ∩ sg = ∅, either when any of the current or old cells encapsulated in msg vio are already contained in sg or when sg has cells which are in the same cell group as any of the cells in msg vio . When there is only one RW, upon receiving a violation message msg vio , the RW checks if there is a subgraph intersecting with msg vio . If such sg exists, the RW adds msg vio to sg, denoted by msg vio add -→ sg, by adding both cells in msg vio .

If none of the subgraphs intersects with msg vio , a new subgraph will be created with the two cells in msg vio , denoted by msg vio add -→ null. If more than one such subgraphs exist, Bleach merges these subgraphs to a single subgraph, and then adds msg vio to it: msg vio add -→ (sg 1 , sg 2 , ...) merged .

We de ne a subgraph identi er id(sg k ) to be the list of cell group IDs comprised in msg vio : id(cg 1 , cg 2 , ...).

A subgraph can be expressed as sg k = (id(cg 1 , cg 2 , ...), [sc 1 , sc 2 , ...]): it consists of a group of , stored in compressed format, as shown in Section 4.3.2. Note that when two subgraphs merge, their identi ers are also merged by concatenating both ID lists. To make the subgraph ID clear, sg k can be presented as sg id(cg 1 ,cg 2 ,...) . However, unlike for DWs, the partitioning scheme can not be simply rule based, because a cell may violate multiple rules, creating issues related to coordination and load balancing. More generally, no partitioning scheme can guarantee that cells from a single violation message or a single subgraph to be placed in a single RW. Therefore, Bleach partitions the violation graph based on cells using cells tuple IDs (e.g., hash partitioning). Since violation messages are broadcasted to all RWs, a violation message msg vio is partially added to a subgraph sg in each RW, denoted by msg vio p_add ---→ sg, such that only cells matching the partitioning scheme are added in sg. Hence, a subgraph spans several RWs, each storing a fraction of the cells comprised in the subgraph. We use the subgraph identi er to recognize partitions from the same subgraph.

An illustrative example is in order. Let's assume there are two RWs, rw1 and rw2, and the current violation graph consists in two subgraphs sg id(cg 1 ) , containing cells c 1 , c 2 , c 3 , and sg id(cg 2 ) , containing cells c 4 , c 5 . In our example, the violation graph is partitioned as in Figure 4.8(a): both RWs have a portion of cells of every subgraph.

The Coordinator

The problem we address now stems from violation graph dynamics, which evolves as new violation messages stream into the repair module. As each subgraph is partitioned among all RWs, subgraph partitions must be identi ed by the same ID.

Continuing with the example from Figure 4.8(a), suppose a new violation message {id(cg 3 ), c 6 , c 1 } is received by both RWs. Now, in rw1, the new violation is added to subgraph sg id(cg 1 ) since both the message and the subgraph share the same cell c 1 : as such, the new subgraph becomes sg id(cg 1 ,cg 3 ) . Instead, in rw2, the new violation triggers the creation of a new subgraph sg id(cg 3 ) , since no common cells are shared between the message and existing subgraphs in rw2. The violation graph becomes inconsistent, as shown in Figure 4.8(b): this is a consequence of the independent operation of RWs. Instead, the repair algorithm requires the violation graph to be in a consistent state, as shown in Figure 4.8(c), where both RWs use the same subgraph identi er for the same equivalence class.

To guarantee the consistency of the violation graph among independent RWs, Bleach uses a stateless coordinator component that helps RWs agree on subgraph identi ers. In what follows we present three variants of the simple protocol RWs use to communicate with the coordinator. Send a repair proposal to the aggregator 16: end procedure RW-basic. Algorithm 5 demonstrates how RWs work with the coordinator in the RWbasic approach. When a RW receives violation messages for a tuple, it adds the cells in the messages to the violation graph, according to its local state and the partitioning Clearly, such a simple approach to coordination harms Bleach performance. Indeed, the RW-basic scheme requires one round-trip message for every incoming data tuple, from all RWs.

However, we note that it is not necessarily true that the coordination is always needed for every tuple. For example, when every cell violates at most one rule, every subgraph would only have a single ID. Thus, coordination is not necessary. More generally, given violation messages for a tuple, coordination is only necessary when there is a complete violation message containing an old cell which already exists in the violation graph because of a di erent violation rule. Then, two violation messages, {id(cg 1 ), c 6 , null} and {id(cg 2 ), c 6 , null}, are received. Cell c 6 is a current cell contained in the current tuple. Obviously sg id(cg 1 ) and sg id(cg 2 ) should merge into sg id(cg 1 ,cg 2 ) . This can be accomplished without coordination by both repair workers, as shown in Figure 4.9(b). Indeed, each RW is aware that c 6 is involved in two subgraphs, although c 6 is only stored in rw2 because of the partitioning scheme.

Next, we use the above observations and propose two variants of the coordination mechanism that aim at bypassing the coordinator component to improve performance.

RW-dr.

In RW-dr, the coordination is only conducted if it is necessary, and the repair worker sends a merge proposal to the coordinator and waits for the merge decision. for i ← 0 to k -1 do end for 27: end procedure However, this approach is not exempt from drawbacks: it may cause some data tuples in the stream to be delivered out of order. This is because the repair worker wait for the merge decision in a non-blocking way. The violation messages of a tuple which do not require coordination may be processed in the coordination gap of an earlier tuple.

RW-ir.

With this variant, no matter if the violation messages of a tuple require coordination or not, a RW immediately updates its local subgraphs, executes the repair algorithm and emits a repair proposal downstream to the aggregator component. Then, if necessary, the RW lazily executes the coordination protocol. Clearly, this approach caters to system performance and avoids tuples to be delivered out of order, but might harm cleaning accuracy. Indeed, individual data repair proposals from a RW are based on a local view prior to nishing all necessary merge operations on subgraphs, which has a direct impact on equivalence classes.

The Aggregator

With the consistent distributed violation graph, each RW emits a data repair proposal, which includes the candidate values and their frequency computed in a local subgraph partition. In case there are too many candidate values, we only send the top-k values, where k = 5. To avoid sorting all candidate values whenever a new cell is added in a subgraph, RWs uses Algorithm 6 to update the top-k candidate values e ciently. Note that the frequencies of candidate values are already updated in Algorithm 6. The complexity of updating top-k values is O(n) instead of O(n 2 ) which is the complexity of resorting all the candidate values.

The aggregator component collects all repair proposals and selects the candidate value to repair a given cell as the one having the highest aggregate frequency. Finally, the aggregator modi es the current data tuple and outputs a clean data stream.

Note that the aggregator only modi es current tuples in the output stream. Instead, cells stored in the violation graph are not modi ed regardless of the repair decision: this allows to update frequency counts as new data streams into the system, thus steering the aggregator to make di erent repair decisions as the violation graph evolves. To avoid potential bottlenecks, Bleach can have multiple coordinators and aggregators, so that their workload can be distributed based on current tuple IDs.

Dynamic rule management

In stream data cleaning the rule set is usually not immutable but dynamic. Therefore, we now introduce a new component, the rule controller, shown in Figure 4.15, which allows Bleach to adapt to rule dynamics. The rule controller accepts rule updates as input and guides the detect and the repair module to adapt to rule dynamics without stopping the cleaning process and without loosing state. Rule updates can be of two types: one for adding a new rule and one for deleting an existing rule.

Detect. In the detect module, the addition of a rule triggers the instantiation of a new DW, as input tuples are partitioned by rule. The new DW starts with no state, which is built upon receiving new input tuples. As such, violation detection using past tuples cannot be achieved, which is consistent with the Bleach design goals. Instead, the deletion of an existing rule simply triggers the removal of a DW, with its own local data history.

Repair. In the repair module, the addition of a new rule is not problematic with respect to violation graph maintenance operations. Instead, the removal of a rule implies violation graph dynamics (subgraphs might shrink or split) which are more challenging to address. Thus, in a subgraph, we further group cells by cell groups. A subgraph now can also be expressed as: sg k = (id(cg 1 , cg 2 , ...), [cg 1 , cg 2 , ...]), where each cell group gathers super cells. To facilitate the access of subgraphs and their cell groups, the hash indexing mechanism is also used in the violation graph. Figure 4.10 shows the structure of the violation graph stored in a repair worker. Note that a subgraph with multiple cell groups is indexed by every cell group ID in its subgraph ID. Some cells might span multiple groups, as they may violate multiple rules. We label such peculiar cells as hinge cells. For each hinge cell, the subgraph keeps the IDs of its connecting cell groups: c * i = (c i , id(cg i 1 , cg i 2 , ...)). Although a hinge cell exists in multiple cell groups, it is counted only once for its value. Thus, we can compute the cell frequency of a value v in a subgraph with m cell groups and n hinge cells as following:

val_cnt(v) = m k=0 val_cnt cg k (v) - n i=0 (|c * i | -1).
where val_cnt(v) stands for the cell frequency of value v, val_cnt cg k (v) is the count from cell group cg k and |c * i | is the number of cell groups which hinge cell c * i with value v belongs to. The frequency is accumulated from all cell groups without duplicated counts. Hinge cells with the same value and the same connecting cell groups can also be compressed into super cells.

With the new organization of cells in subgraphs, the violation graph updates as following upon the removal of a rule. If a subgraph contains a single cell group related to the deleted rule, RWs are simply instructed to remove it. If a subgraph contains multiple end if 33: end procedure cell groups, RWs remove the cell groups related to the deleted rule and update the hinge cells. With the remaining hinge cells, RWs check the connectivity of the remaining cell groups in the subgraph and decide to split the subgraph or not. A detailed algorithm can is shown in Algorithm 7.

For each subgraph in the violation graph, we are given the cell groups [cg 1 , cg 2 , ...] and the hinge cells [c * 1 , c * 2 , ...] (line 1-3). When a rule is deleted, the relevant cell groups are removed (line 5). If no is removed, this subgraph remains the same, the procedure ends (line 6-8). Then, the hinge cells are updated that hinge cells which connect only one single after removing cell groups are also removed (line 9). Next, the RW starts to construct a subgraph ID list sid_list for sg from the hinge cells and the cell groups (line 10-25). All subgraph IDs in sid_list should not share any ID with each other. An example of a split operation can be seen in Figure 4.11. The initial state of a subgraph is shown in Figure 4.11(a): the subgraph is sg id(cg 1 ,cg 2 ,cg 3 ) , and its contents are three cell groups. Cell c 1 and c 7 are hinge cells, which work as bridges, connecting di erent cell groups together. Now, as a simple case, assume we want to remove the rule pertaining to cg 2 : the subgraph should become sg id(cg 1 ,cg 3 ) , as shown in Figure 4.11(b). Note that cell c 7 looses its status of hinge cell. A more involved case arise when we delete the rule pertaining to cg 3 instead of the rule pertaining to cg 2 . In this case, the subgraph should not become sg id(cg 1 ,cg 2 ) as shown in Figure 4.11(c). Indeed, removing cg 2 eliminates all existing hinge cells connecting the remaining cell groups. Thus, the subgraph must split in two separate subgraphs sg id(cg 1 ) and sg id(cg 2 ) as shown in Figure 4.11(d).

Windowing

Bleach provides windowed computations, which allow expressing data cleaning over a sliding window of data. Despite being a common operation in most streaming systems, window-based data cleaning addresses the challenge of the unbounded nature of streaming data: without windowing, the data structures Bleach uses to detect and repair a dirty stream would grow inde nitely, which is unpractical.

In this section, we discuss two windowing strategies: a basic, tuple-based windowing strategy and an advanced strategy that aim at improving cleaning accuracy.

Basic Windowing

The underlying idea of the basic windowing strategy is to only use tuples within the sliding window to populate the data structures used by Bleach to achieve its tasks. Next, we outline the basic windowing strategy for both DWs and RWs operation.

Windowed Detection. We now focus on how DWs maintain their local data history.

Clearly, the data history only contains cells that fall within the current window. When the window slides forward, DWs update the data history as follows: i) if a cell group ends up having no cells in the new window, DWs simply delete it; ii) for the remaining cell groups, DWs drop all cells that fall outside the new window, and update accordingly the remaining super cells.

Note that, if implemented naively, the rst operation above can be costly as it involves a linear scan of all cell groups. To improve the e ciency of data history updates, Bleach uses the following approach. It creates a FIFO queue of k lists, which store cell groups. In case the sliding step is half the window size, k = 2; more generally, we set k to be the window size divided by the sliding step. Any new cell group from the current window enters the queue in the k-th list. Any cell group updates, e.g. due to a new cell added to the cell group, "promotes" it from list j to list k. As the window slides forward, the queue drops the list (and its cell groups) in the rst position and acquires a new empty list in position k + 1.

Windowed Repair. Now we focus on how to maintain the violation graph in RWs.

Again, the violation graph only stores cells within the current window. When the window slides forward, RWs update the violation graph as follows:

• If a subgraph has no cells in the new window, RWs delete the subgraph; window [START_REF] Pavlo | A comparison of approaches to large-scale data analysis[END_REF][START_REF] Redshift | Webpage[END_REF] sg(vc 3 )

(b)
Figure 4.12 -tuple-based windowing example

• For the remaining subgraphs, if a cell group has no cells in the new window, RWs delete the cell group;

• RWs also delete hinge cells that are outside of the new window. This could require subgraphs to split, as they could miss a "bridge" cell to connect its cell groups;

• For the remaining cell groups, RWs drop all cells outside of the new window, and update the remaining super cells accordingly.

For e ciency reasons, Bleach uses the same k-list approach described for DWs to manage violation graph updates due to a sliding window. For simplicity, we assume in this example that the tuple id of cell c i is i. When the tuple window is (0, 10], there are two subgraphs, sg id(cg 1 ,cg 2 ,cg 3 ) and sg id(cg 4 ) . But when the window slides to [START_REF] Pavlo | A comparison of approaches to large-scale data analysis[END_REF][START_REF] Redshift | Webpage[END_REF], sg id(cg 4 ) is dropped because it does not have any cells in the new window. Likewise, the cell group cg 2 is deleted in sg id(cg 1 ,cg 2 ,cg 3 ) . But instead of shrinking to sg id(cg 1 ,cg 3 ) , sg id(cg 1 ,cg 2 ,cg 3 ) is split into two subgraphs, sg id(cg 1 ) and sg id(cg 3 ) , since the two remaining cell groups do not have any common cells as hinge cells within the new window.

Bleach Windowing

The basic windowing strategy only relies on the data within the current window to perform data cleaning, which may limit the cleaning accuracy. We begin with a motivating example, then describe the Bleach windowing strategy, that aims at improving cleaning accuracy. Note that here we only focus on the repair module and its violation graph, since Bleach windowing does not modify the operation of the detect module. described in Section 4.4, t 4 (B) remains unchanged in the violation graph. Now, when tuple t 5 arrives, the window moves to cover tuples [START_REF]Facts and Stats About The Big Data Industry[END_REF][START_REF] Ilyas | Trends in cleaning relational data: Consistency and deduplication[END_REF], even though t 6 has yet to arrive. With only three tuples in the current window, the algorithm determines t 5 (B) is correct, because now the majority of tuples have value c. The output stream produced using basic windowing is shown in Figure 4.13(b). Clearly, cleaning accuracy is sacri ced, since it is easy to see that t 5 (B) should have been repaired to value b, which is the most frequent value overall. Hence, we need a di erent windowing strategy to overcome such problems.

Bleach windowing relies on an extension of a super cell, which we call a cumulative super cell. The idea is for the violation graph to accumulate past state, to complement the view Bleach builds using tuples from the current window. Hence, a cumulative super cell is represented as a super cell, with an additional eld that stores the number of occurrences of cells with the same RHS value, including those that have been dropped because they fall outside the sliding window boundaries.

When using Bleach windowing, RWs maintain the violation graph by storing cumulative super cells instead of super cells. When the window slides forward, RWs update the violation graph as follows. The rst two steps are equivalent to those for the basic strategy. The last two steps are modi ed as follows:

• For the remaining subgraphs, RWs delete hinge cells that do not bridge cell groups anymore because of the update. Also, RWs split subgraphs according to the remaining hinge cells;

• For the remaining cell groups and hinge cells, RWs update cumulative super cells, " ushing" cells which fall outside the new window while keeping their count. Now, going back to the example in Figure 4.13(a), when tuple t 5 arrives, Bleach stores two cumulative super cells: csc 1 (id(t) = [START_REF]Facts and Stats About The Big Data Industry[END_REF], value = 'b', count = 3) and csc 2 (id(t) = [START_REF] University | The case for shared nothing[END_REF][START_REF] Pavlo | A comparison of approaches to large-scale data analysis[END_REF], value = 'c', count = 2). Although t 1 and t 2 have been deleted because they are outside the sliding window, they still contribute to the count eld in csc 1 . Therefore, tuple t 5 (B) is correctly repaired to value b, as shown in Figure 4.13(c).

Discussion

When using cumulative super cells, Bleach keeps tracks of candidate values to be used in the repair algorithm as long as cell groups remain. By using cumulative super cells for hinge cells, subgraphs only split if some cell groups are removed when the window moves forward. Note that the introduction of cumulative super cells does not interfere with dynamic rule management: in particular, when deleting a rule, subgraphs update correctly when hinge cells use the cumulative format. Overall, to compute the count of a candidate value in a subgraph, cumulative super cells accumulate the counts of relevant cumulative super cells from all cell groups, taking into account any duplicate contributions from hinge cells.

Obviously, Bleach windowing requires more storage than basic windowing, as cumulative super cells store additional information, and because of the " ush" operation described earlier, which keeps a super cell structure, even when it has an empty cell list. Section 4.8 demonstrates that such additional overhead is well balanced by superior cleaning accuracy, making Bleach windowing truly desirable.

Rule Dependency

Until now, we discussed how Bleach performs data cleaning, especially when rules may share the same RHS attribute. However, we did not discuss the case in which the RHS attribute of a rule can be at the same time the LHS attribute of another rule. For clarity, we give the notion of rule dependency that rule r 2 is dependent on rule r 1 , r 

Multi-Stage Bleach

We design a variant of Bleach, Multi-Stage Bleach, to cope with the rule dependency. In Multi-Stage Bleach, the cleaning process consists of multiple stages. Each stage includes both violation detection and violation repair, but only corresponding to a subset of violation rules. The rules are divided into multiple subsets, [ruleset 0 , ruleset 1 , ...], according to rule dependency: The rules in the rst rule set ruleset 0 are not dependent on any other rules; Other rules in rule set ruleset i are dependent on at least one of the rules in ruleset i-1 . If a rule r is not dependent on any rule in a rule set ruleset i , then ruleset i dep ← --r.

We give an example in which a dirty data stream with schema S(A, B, C, D) is to be cleaned and four FD rules are de ned: r 0 = (A → B), r 1 = (B → C), r 2 = (A, C → D) and r 3 = (B → D). These four rules are divided into three rule sets as shown in Each stage is an independent Bleach instance, although they share the same computation resources (the detect module and the repair module). In each stage, the LHS attributes are immutable as in the example of Figure 4.14, the cells of attribute B and C can only be modi ed in stage 0 and stage 1 respectively. Thus, any modi cation of tuples in a stage will not cause any new violation in the preceding stages.

Consider a special example where there is a dirty data stream with schema S(A, B, C, D) and three de ned FD rules, r 4 = (A → B), r 5 = (B → C) and r 6 = (C → A). Clearly, r 5 is dependent on r 4 , r 6 is dependent on r 5 and r 4 is dependent on r 6 , as shown in There is a circular dependency among these three rules that no rule that is not dependent on any other rule. In this case, Multi-Stage Bleach groups these rules into the same stage. A better solution is in the plan of our future work, although this situation is quite rare.

Dynamic Rule Management

Multi-Stage Bleach also supports dynamic rule management. The particular task is to update the binding between rules and stages. When a rule is added to a stage or deleted, other rules may also need to be reorganized, migrating from one stage to another. Therefore, in Multi-Stage Bleach, not only rules but also stages are dynamic. Since the detect and repair modules are shared by all stages, the dynamic resource management is not mandatory in Multi-Stage Bleach.

In Bleach, a rule is associated with states including cell groups and subgraphs, which provides Bleach the ability to perform accurate incremental data cleaning. Unfortunately, states in di erent stages are not compatible with each other, because data streams in di erent stages are not identical:

• Data streams in di erent stages are unsynchronized that preceding stages process more tuples than succeeding stages;

• Tuples in di erent stages are inconsistent that tuples with the same tuple ID may have di erent attribute values.

As a consequence, Multi-Stage Bleach processes migrating rules as newly added rules that their states in the old stages are just deleted. To summarize, when a rule is updated, Multi-Stage Bleach reassigns all rules to stages, only keeping the states of the rules which belong to the same stage before and after the reassignment. 

Evaluation

We built Bleach prototype implementation using Apache Storm [START_REF]Webpage[END_REF]. 4 Input streams, including both the data stream and rule updates, are fed into Bleach using Apache Kafka [120]. We conducted all experiments in a cluster of 18 machines, with 4 cores, 8 GB RAM and 1 Gbps network interface each.

We evaluate Bleach using both synthetic and real-life datasets. The synthetic dataset is generated from TPC-DS (with scale factor 100 GB) where we join a fact table store_sales with its dimension tables to build a single table (288 million tuples). We manually design six CFD rules, from r 0 to r 5 , as shown in Table 4.1. Among these rules, r 4 and r 5 have the same RHS attribute s_store_name. We generate a dirty data stream as follows: we modify the values of RHS attributes with probability 10% and replace the values of LHS attributes with NULL with probability 10%. 5 The real-life dataset we use is the result of merging all the log les of Ubuntu One servers [START_REF]Dissecting ubuntuone: Autopsy of a global-scale personal cloud back-end[END_REF] for 30 days (773 GB of CSV text). Instead of modifying any values, the dataset already contains dirty records. We design a CFD rule, r 6 , as shown in Table 4.1. With rule r 6 , the dirty data percentage of the dataset is roughly 7 * 10 -3 %. By exporting the datasets to Kafka, we simulate "unbounded" data streams. In all the experiments, we use Bleach windowing as the default windowing strategy and set the window size to 2M tuples and the sliding step to 1M tuples, unless otherwise speci ed. The synthetic dataset is used in all experiments except in our last battery of experiments, where the real-life dataset is used.

Our goal is to demonstrate that Bleach achieves e cient stream data cleaning under realtime constraints. Our evaluation uses throughput, latency and dirty ratio as performance metrics. We express the dirty ratio as the fraction of dirty data remaining in the data stream: the smaller the dirty ratio, the higher the cleaning accuracy. The processing latency is measured from uniformly sampled tuples (1 per 100). In this experiment we compare the three RW approaches discussed in Section 4.4, according to our performance metrics, as shown in Figure 4.18: RW-basic requires coordination among repair workers for each tuple; RW-dr omits coordination for tuples when possi-ble; RW-ir is similar to RW-dr, but allows repair decisions to be made before nishing coordination. RW-basic has the highest processing latency, on average 364 ms. The processing latency of RW-ir is on average 316 ms. RW-dr average latency is slightly higher, about 323 ms. This di erence is due again to the additional round-trip-messages required by coordination: with RW-ir, RWs make their repair proposals without waiting for coordination to complete, therefore the small processing latency. Figure 4.18(c) illustrates the cleaning accuracy. All three approaches lower the ratio of dirty data signi cantly to at most 0.5% (even 0% for rule r 3 and r 4 ). For the rst ve rules, the three approaches achieve similar cleaning accuracy. Instead, for rule r 5 the RW-ir method su ers and the dirty ratio is larger. Indeed, for rule r 5 whose cleaning accuracy is heavily linked to rule r 4 , RW-ir fails to correctly update some of its subgraphs because it eagerly emits repair proposals without waiting for coordination to complete.

Comparing Coordination Approaches

In the following experiments, we use the RW-dr as the default mechanism.

Comparing Windowing Strategies

In this experiment, we compare the performance of the basic and Bleach windowing strategies. Additionally, for stress testing, we increase the input dirty data ratio by modifying the values of RHS attributes with probability 50% for data in the interval from 40M to 42M tuples.

As shown in Figure 4.20 and Figure 4.21, the two windowing strategies are essentially equivalent in terms of throughput and latency: this is good news, as it implies the requirement for cumulative super cells is a negligible toll on performance. Next, we focus on a detailed view of the cleaning accuracy, which is shown in Figure 4.19. Bleach windowing achieves superior cleaning accuracy: in general, the dirty ratio is one order of magnitude smaller than that of basic windowing. This advantage is kept also in presence of a dirty ratio spike in the input data. In particular, for rules r 3 and r 4 , Bleach windowing achieves 0% dirty ratio, irrespectively of the dirty ratio spike.

Overall, Bleach windowing reveals that keeping state from past windows can indeed dramatically improve cleaning accuracy, with little to no performance overhead. 

Comparing Di erent Window sizes

In this experiment, we evaluate Bleach with di erent window sizes. We set the window size as 200K, 500K, 1M and 2M respectively (the sliding step is half of the window size), and the experiment result is as shown in Figure 4.22 and Figure 4.23. We see that Bleach has a higher chance to clean the data stream with more tuples in the window. 

Dynamic Rule Management

Next, we study the performance of Bleach in presence of rule dynamics, as shown in Figure 4.24. To do this, we initially use the same input data stream and rule set as in Section 4.8.1. However, while Bleach is cleaning the input stream, we delete rule r 5 and add two new rules r 7 (ss_ticket_num → c_email_addr, (ss_ticket_num = null)) and r 8 (ss_customer_sk → c_email_addr, (ss_customer_sk = null)), as indicated in the 4.24(a) shows that rule dynamics can result in an increase in throughput. Indeed, removing r 5 (at the 60M tuple) implies that Bleach needs to manage fewer rules; in addition, r 4 becomes simpler to manage, as there are no more intersections with r 5 . Similarly, Figure 4. 24(b) shows that also latency decreases upon r 5 removal. When rules r 7 and r 8 are added (at the 90M tuple), the throughput drops and the latency grows, as Bleach has more rules to manage and because the new rules have intersecting attributes, requiring more work from RWs. Figure 4.24(c), shows the latency distribution computed from output tuple samples. While the average latency is roughly 320 ms, we notice a tail in the distribution, indicating that some (few) tuples experience latencies up to seconds. This has been observed across all our experiments, and is due to the sliding window mechanism, which imposes computationally demanding operations when updating the violation graph, resulting also in rather low-level garbage collection problems.

Overall, we conclude that Bleach supports dynamic rule management seamlessly, with essentially no impact on performance, and no system restart required. 

Comparing Bleach to a Baseline Approach

We conclude our evaluation with a comparative analysis of Bleach and a baseline approach, which is based on the micro-batch streaming paradigm (that we refer to as micro-batch cleaning). Essentially, micro-batch cleaning bu ers input data records and performs batch data cleaning periodically, as determined by a sliding window. Our im- plementation uses Spark Streaming in which window processing is time-based and not tuple-based. 7 To demonstrate the performance of micro-batch cleaning and compare it to Bleach, we perform a series of experiments whereby we increase the sliding window size. We use the stream data input from the Ubuntu One trace le and its violation rule r 6 . We feed the input stream at a constant throughput of 1317 tuples/second, which is the average speed of the generation of the trace le. Thus, we focus on performance analysis expressed only in terms of latency and dirty ratio. Instead of consuming all the tuples in the input stream which will take 30 days, each experiment lasts 24 hours. Figure 4.25 illustrates the performance of both systems. As expected, for the microbatch cleaning, the average latency is proportional to the window size: larger sliding windows entail higher latencies. Indeed, since the data in the input stream is uniformly distributed, the average latency equals the sum of half of the window size and the average execution time for cleaning data in each window. As for the cleaning accuracy, intuitively, the larger the sliding window, the more accurate micro-batch cleaning gets, hence a smaller output stream dirty ratio. Although the tuple-based window in Bleach contains roughly the same amount of tuples as the time-based window of 25 minutes in micro-batch cleaning, Bleach achieves better cleaning accuracy because of its cumulative statistics. In particular, we notice that to achieve the same cleaning accuracy as Bleach, micro-batch cleaning requires the sliding window to be larger than 45 minutes, which incurs in an average latency larger than 22 minutes. Instead, in Bleach, the average latency is less than 200 ms.

CHAPTER 4. BLEACH: A DISTRIBUTED STREAM DATA CLEANING SYSTEM

Related work

Many approaches to data cleaning [START_REF] Fan | Incremental detection of inconsistencies in distributed data[END_REF][START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF][START_REF] Dallachiesa | Nadeef: A commodity data cleaning system[END_REF][START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF][START_REF] Bohannon | Conditional functional dependencies for data cleaning[END_REF][START_REF] Chen | Repairing functional dependency violations in distributed data[END_REF][START_REF] Kolahi | On approximating optimum repairs for functional dependency violations[END_REF][START_REF] Abedjan | Temporal rules discovery for web data cleaning[END_REF] tackle the problem of detecting and repairing dirty data in a database based on prede ned data quality rules. Next, we discuss a number of representative approaches. Kolahi et al. [START_REF] Kolahi | On approximating optimum repairs for functional dependency violations[END_REF] focus on repairing an inconsistent database that violates a set of functional dependencies by making the smallest possible value modi cations. They de ne an optimum repair as a database that satis es the rules, and minimizes a distance measure that depends on the number of corrections made. In the paper, it is proven that checking the existence of a repair within a certain distance of a database is NP-complete and nding a constant-factor approximation for the optimum repair is NP-hard. Hence, they propose an approximation algorithm to produce a repair whose distance is within a constant factor of the optimum repair distance. With the approximation algorithm, the new violations caused by resolving initial violations are xed by assigning distinct variables to tuples. NADEEF [START_REF] Dallachiesa | Nadeef: A commodity data cleaning system[END_REF] is an extensible and generic data cleaning system, providing an end-toend o -the-shelf solution to automate both the detection and the repairing of violations with respect to a set of heterogeneous quality rules. The main design of NADEEF is to separate a programming interface which allows users to de ne their quality rules, and a core that implements algorithms to repair dirty data by treating all kinds of rules holistically. Two algorithms are implemented in NADEEF, including a variable-weighted MAX-SAT solver based algorithm and an equivalence class based algorithm.

The holistic data cleaning algorithm [START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF], proposed by Chu et al., can also be used in the core of NADEEF. In the holistic data cleaning algorithm, all types of quality rules are generalized in one type of rules, Denial Constraints (DCs) rules. The subset of data which does not conform to the de ned DC rules are encoded in a con ict hypergraph, in which a node is a cell (an attribute in a tuple) and a hyperedge represents a violation. By modifying the values of cells in the minimum vertex cover to satisfy DC rules, the dataset is cleaned.

As nowadays data often grows beyond a single machine's capacity, distributed databases becomes more and more popular. Chen et al. [START_REF] Chen | Repairing functional dependency violations in distributed data[END_REF] focus on repairing functional dependency violations in a horizontally partitioned database. In particular, they study data repairing with equivalence classes in the distributed setting. They implement distributed equivalence classes by combing the disjoint-set forest data structure with the linked list technique. Their cleaning algorithms are typically designed to minimize data shipment among between multiple sites and parallel computation time.

BigDansing [START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF] is a distributed version of NADEEF, which also tackles e ciency, scalability, and ease-of-use issues in data cleaning. The system can run on top of common data processing platforms, such as Apache Hadoop and Apache Spark. It rst generates the violation graph as a hypergraph containing the detected violations and their possible xes. Then, to determine the nal xes, BigDansing partitions the violation graph into multiple connected components so that each can be processed independently in a single machine. Some works also consider that the data stored in databases can be dynamic, i.e., frequently updated. Since it is prohibitively expensive to recompute the entire violations when the database is updated, Fan et al. [START_REF] Fan | Incremental detection of inconsistencies in distributed data[END_REF][START_REF] Fan | Incremental detection of inconsistencies in distributed data[END_REF] propose incremental algorithms to detect violations in a distributed database when database is updated, which is similar to the violation detection in Bleach. With the proposed algorithms, both the communication cost and computation cost of violation detection process are linear in the size of database updates and the changes to violations, independent of the size of the base relation. Rather than repairing static data by static quality rules, continuous data cleaning [START_REF] Volkovs | Continuous data cleaning[END_REF] considers repairing both quality rules (FDs) and the data with user intervention in a more dynamic environment, in which data may be updated and quality rules may evolve. This is achieved through a probabilistic classi er that predicts the type of repair (data, FDs, or a hybrid of both) needed to resolve an inconsistency, and that learns from past user repair preferences to recommend more accurate repairs in the future.

All the works introduced above focus on cleaning data stored in data warehouses by batch processing, which achieves high accuracy but su ers high latency. In contrast, stream processing [START_REF] Lin | Scalable distributed stream join processing[END_REF][START_REF] Akidau | The data ow model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing[END_REF][START_REF] Fernandez | Liquid: Unifying nearline and o ine big data integration[END_REF] requires to be real-time, a challenge that has drawn increasing attention from researchers. Nevertheless, stream data cleaning approaches are still in their infancy. Many of them simply employ smoothing lters and can only work when the data is a sequence of numerical values, while Bleach focuses on more general cases where data can be both numerical and categorical.

Je ery et al. [START_REF] Je Ery | Adaptive cleaning for r d data streams[END_REF] focus on cleaning RFID data streams which su er from low read rates, frequently failing to read tags that are present. Rather than using static smoothing lters that interpolate for lost readings, they propose SMURF, a declarative, adaptive smoothing lter for RFID data. SMURF does not require the application to set a smoothing window size, as it automatically adapts its window size based on the characteristics of the underlying data stream. However, smoothing lters may seriously alter the data without preserving the original information. With the minimum change principle in data cleaning, those originally clean data should not be changed in the data cleaning process.

SCREEN [START_REF] Song | SCREEN: stream data cleaning under speed constraints[END_REF] is a constraint-based approach for cleaning stream data, which is based on the widely existing constraints on the speed of data changes, such as fuel consumption per hour or daily limit of stock prices. To support online stream computation, SCREEN achieves the local optimum in a window rather than the global optimum over the entire data stream. Sequential data cleaning [START_REF] Zhang | Sequential data cleaning: A statistical approach[END_REF] is statistical based cleaning method, which models the likelihood of a repair by observing its speed changes. The paper shows that the speed constraint-based approach either does not precisely repair large spike errors or simply ignore small errors. The motivation of this work is that the speed constraint-based approach either does not precisely repair large spike errors or simply ignore small errors. Since the speed of data changes should not change signi cantly in a time point, the likelihood-based cleaning aims to maximize the likelihood of speed changes, instead of minimizing the changes as in the speed constraint-based cleaning.

In Spark Streaming [START_REF]Spark stream cleaning[END_REF], a data stream can be cleaned by joining it with precomputed information. However, precomputed information is not always available nor su cient for accurate data cleaning. To the best of our knowledge, Bleach is the rst stream data cleaning system based on data quality rules providing both high accuracy and low latency.

There are many other research work about data cleaning. For example, [START_REF] Wang | Crowd-based deduplication: An adaptive approach[END_REF] and [START_REF] Chu | Katara: A data cleaning system powered by knowledge bases and crowdsourcing[END_REF] are about how to perform data cleaning via knowledge base and crowdsourcing. BART [START_REF] Arocena | Messing up with bart: error generation for evaluating datacleaning algorithms[END_REF] is a dirty data generator for evaluating data-cleaning algorithms. [START_REF] Abedjan | Temporal rules discovery for web data cleaning[END_REF] studies the problem of temporal rules discovery for dirty web data. All such works are orthogonal to ours.

Conclusion

This work introduced Bleach, a novel stream data cleaning system, that aims at e cient and accurate data cleaning under real-time constraints.

First, we have introduced the design goals and the related challenges underlying Bleach, showing that stream data cleaning is far from being a trivial problem. Then we have illustrated the Bleach system design, focusing both on data quality (e.g., Bleach dynamic rule sets and stateful approach to windowing) and on systems aspects (e.g., data partitioning and coordination), which are required by the distributed nature of Bleach. We also have provided a series of optimizations to improve system performance, by using compact and e cient data structures, and by reducing the messaging overhead.

Finally, we have evaluated a prototype implementation of Bleach: our experiments showed Bleach achieves low-latency and high cleaning accuracy, while absorbing a dirty data stream, despite rule dynamics. We also have compared Bleach to a baseline system built on the micro-batch paradigm, and explained Bleach superior performance.

Our plan for future works is to support a more varied rule set and to explore alternative repair algorithms, that might require revisiting the inner data structures we use in Bleach.

Chapter 5 Conclusion and Future Work

In this thesis, we studied the problem of how to accelerate data preparation process for big data analytics, and provided e cient techniques. Due to the complexity of data preparation, we targeted two main steps in data preparation, data loading and data cleaning, and respectively designed and implemented two systems, DiNoDB and Bleach, both of which can help data scientists signi cantly reduce their time spent on data preparation.

First, we introduced DiNoDB, a distributed system tuned for interactive-speed queries on data les generated by large-scale batch processing frameworks. DiNoDB avoids data loading without loosing e ciency. It seamlessly integrates batch processing systems with a distributed, fault-tolerant and scalable interactive query engine. It uses a decorator mechanism that enhances the standard Hadoop I/O API and piggybacks the creation of auxiliary metadata required for interactive-speed query performance. Our extensive experimental evaluation demonstrated that DiNoDB outperforms other SQLon-Hadoop solutions for a wide range of ad-hoc analytical workloads. In addition, the decorator mechanism can also be leveraged by other systems besides DiNoDB, which demonstrates that this is a general idea for accelerating data preparation.

Second, we presented Bleach, a novel stream data cleaning system. Unlike other data cleaning systems which mainly focus on batch data cleaning, Bleach performs data cleaning directly on data streams without waiting for all the data to be acquired. Bleach aims to achieve e cient and accurate qualitative data cleaning under real-time constraints. It relies on e cient, compact and distributed data structures to maintain the necessary state to repair data, using an incremental version of the equivalence class algorithm. Our evaluation showed the superior performance of Bleach compared with a baseline system built on the micro-batch paradigm, which indicates that streaming data cleaning is e ective in accelerating data preparation.

CHAPTER 5. CONCLUSION AND FUTURE WORK

Future Work

In this Section, taking our existing works as starting points, we discuss two interesting on-going works which also aim at optimizing the data preparation process.

Stream Holistic Data Cleaning

Besides equivalence class algorithm, other existing data cleaning algorithms can also be plugged in our stream data cleaning system. As the future work, we plan to use a stream version of the holistic data cleaning algorithm in Bleach to support a more varied rule set. To avoid ambiguity, we refer to Bleach with stream holistic data cleaning algorithm as Bleach-hd, while Bleach with stream equivalence class algorithm is still referred to as Bleach. We rst give some background knowledge about the holistic data cleaning algorithm and then discuss the basic design and the optimization challenges in Bleachhd.

The holistic data cleaning algorithm, proposed in [START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF], is designed to have a uni ed cleaning approach. It supports a general kind of rule, Denial Constraints, in which FD and CFD rules are both covered. DCs provide a declarative speci cation of violation rules. A DC ϕ on a schema R is de ned as: ∀t α , t β , t γ , ... ∈ R, ¬(P 1 ∧ ... ∧ P m ), where each predicate P i is of the form v 1 θv 2 or v 1 θc with v 1 , v 2 ∈ t x .A, x ∈ α, β, γ, ..., A ∈ R, c is a constant in the domain of A, and θ ∈ =, <, >, =, ≤, ≥. A relation instance I of R is said to satisfy a DC ϕ, denoted by I |= ϕ, if for every ordered list of tuples ∀t α , t β , t γ , ... ∈ I, at least one of P i is false [START_REF] Ilyas | Trends in cleaning relational data: Consistency and deduplication[END_REF].

As an example, given a data stream with schema S(A, B, C, D), a FD rule r 1 : (A → B) can be expressed with the following DC:

r 1 : ¬(t, t , (t(A) = t (A)), (t(B) = t (B))).
The holistic data cleaning algorithm builds a violation graph called Con ict Hypergraph (CH) to present all the detected violations from the dataset. Each node is a cell involved in at least one violation and each hyperedge presents a violation including a set of cells participating in this violation. A cell participating in multiple violations is contained in multiple hyperedges. Then, the minimum vertex cover for the con ict hypergraph, which contains the cells that are mostly likely to be wrong, is found. With the repair requirements of these cells, the cleaning system modi es the values of these cells so that all the violations will be resolved.

Bleach-hd, to achieve stream data cleaning, keeps the dynamic con ict hypergraph in the repair module. Similar to the violation graph in Bleach, the con ict hypergraph in Bleach-hd is designed as a distributed stream data cleaning system to process large amounts of data. Hence, the con ict hypergraph is partitioned in all repair workers (RWs) in the repair module. Unlike Bleach, Bleach-hd distributes the con ict hypergraph based on subgraphs that each subgraph is only stored in one RW. Bleach-hd uses a component called dispatcher to distribute violation messages to the RWs. The dispatcher keeps two mappings. One is between cells and subgraph IDs, the other is between subgraph IDs and RWs. With these two mapping, the dispatcher chooses the correct RW to send the violation message if the RW has the subgraph which intersects with the violation message. If more than one subgraphs in di erent RWs intersect with the violation message, these subgraphs need to be merged into a single subgraph and the violation message is added to the merged subgraph. We de ne a subgraph to be in the blocking state if the dispatcher noti es that the subgraph needs to merge with other subgraphs to process a speci ed violation message. The subgraph leaves the blocking state when it has merged with all necessary subgraphs. A subgraph in the blocking state can neither be used to make the repair decision nor migrate to other RWs. 1) The dispatcher chooses sg dest as the subgraph that msg vio is added to so that sg m1 and sg m2 should be merged into sg dest . Then, the dispatcher updates its local mappings.

2) Next, the dispatcher sends to rw1 a message including the violation message msg vio , the ID of the subgraph to add msg vio , id(sg dest ), and the IDs of the other subgraphs to be merged, id(sg m1 , sg m2 ); also, the dispatcher sends messages to rw2 (rw3) instructing that the subgraph sg m1 (sg m2 ) should be merged into sg dest in rw1.

3) After merging sg dest with received sg m1 and sg m2 , rw1 makes the repair decision for the current cells contained in msg vio .

The Optimizations are required to improve the performance of Bleach-hd. As the subgraphs may be transferred among RWs, it is essential to compact the con ict hypergraph.

Besides the windowing operation which prevents the con ict hypergraph to grow innitely, we plan to support the super cell optimization, in which the cells con ict with the same set of cells would be compressed into a super cell. The challenge is that the super cells are also dynamic: a current cell might be added to a super cell when it has con icts with the same set of cells as the other cells in the super cell, and a super cell should be split if any of its compressed cells are detected to have more violations than others.

Uni ed Stream Decorators

Our DiNoDB I/O decorators currently support batch processing systems such as Apache Hadoop and Apache Spark. To accelerate the analysis of the output data from these systems, DiNoDB I/O decorators piggyback the generation of auxiliary metadata, e.g., indexes and statistics. All algorithms used in the DiNoDB I/O decorators to generate additional metadata must be one-pass algorithms so that the overhead of the DiNoDB I/O decorators remain negligible in the batch jobs.

Considering another important category of data sources, data streams, we nd that it is also possible to implement the idea of DiNoDB I/O decorators in stream processing systems, building stream metadata decorators. Due to the nature of data stream, stream processing systems process data in one single pass, that perfectly matches the requirement of the DiNoDB I/O decorators. Therefore, as the future work, we plan to extend the DiNoDB I/O decorators in streaming systems.

All kinds of DiNoDB I/O decorators we discussed in Chapter 3 can be developped in streaming systems, so that metadata streams including indexes, statistics and data samples can also be produced along with the output data stream of the stream processing systems by the stream metadata decorators.. As well as the metadata les produced in decorators in batch processing, the metadata streams can also be used later to accelerate the process of data analysis. Note that the statistics decorator in the batch pro-
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Cleaned Data Stream cessing output the nal statistics until all the data is processed. Nevertheless, in the stream processing, the data in data streams can never be completely processed because a data stream produce an unbounded amount of data. Hence, the statistics decorator in streaming system output the statistics periodically, reporting for the data processed so far. When the windowing operations exist in the stream processing system, the statistics decorator can also output statistics for data divided in each window.

Since it is a general idea that the generation of the metadata streams can be piggybacked in stream data processing systems, we plan to implement stream metadata decorators in multiple stream processing systems, e.g., Apache Storm, Apache Flink and even Apache Kafka with its new feature, Kafka Streams. De toute évidence, le processus de préparation de données lent mais indispensable devient l'obstacle pour prendre des décisions en temps opportun. Pour surmonter cet obstacle, dans cette thèse, nous étudions le problème de l'accélération de la préparation des données pour la grande analyse des données. En particulier, nous nous concentrons sur deux sortes d'opérations coûteuses de préparation de données, de chargement de données et de nettoyage de données.

A.1.2.1 Chargement des Données

Le chargement des données consiste à copier et à charger des données d'une source de données vers un entrepôt de données ou tout autre système de stockage cible. C'était déjà un concept populaire dans les années 1970, comme la dernière étape du procédé ETL (Extract, Transform, Load) bien connu dans l'utilisation de la base de données. Le chargement des données peut également inclure l'application de la véri cation des contraintes dé nies dans le schéma de la base de données, telles que l'unicité, l'intégrité référentielle et les champs obligatoires.

De nos jours, le chargement des données n'est pas seulement une opération existant dans les bases de données traditionnelles Mais devient également une étape principale dans de nombreux systèmes d'analyse de données modernes. Pour charger les données brutes, ces systèmes convertissent souvent les données en certains formats de données spéciques, comme un format de données basé sur une colonne, ou chargent complètement les données en mémoire. Outre la modi cation de la disposition des données, le processus de chargement des données peut également générer des informations cumulatives supplémentaires, telles que les statistiques et les index des données, qui peuvent être utilisés pour optimiser les exécutions de requêtes ultérieures. Bien que certains systèmes prétendent avoir la capacité de traiter des données in situ sans chargement, leur performance n'est pas satisfaisante. C'est parce qu'aucune métadonnée utile ou l'optimisation de la disposition des données ne sont possibles, ces systèmes ne peuvent traiter que les données brutes d'une force brute, par exemple, la numérisation à plusieurs reprises de chiers entiers pour chaque requête. 

A.2.5.2 Noeuds DiNoDB

Les noeuds DiNoDB sont basés sur PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF], un moteur de requête optimisé pour les requêtes in situ. Noeuds DiNoDB instancent des bases de données personnalisées PostgresRaw qui exécutent des requêtes d'utilisateurs, et sont localisés avec des DataNodes HDFS. Dans la mise en oeuvre de la vanilla PostgresRaw [START_REF] Alagiannis | NoDB: e cient query execution on raw data les[END_REF], une " table " correspond à un seul chier de données. Étant donné que les chiers HDFS sont divisés en plusieurs blocs, les noeuds DiNoDB utilisent un nouveau mécanisme de lecture de chiers qui peut accéder à des données sur HDFS et mappe une " table " à une liste de blocs de chiers de données. En outre, l'implémentation vanilla PostgresRaw est un serveur à processus multiples, qui forge un nouveau processus pour chaque nouvelle session client, avec des métadonnées individuelles et un cache de données par processus. Au lieu de cela, noeuds DiNoDB place les métadonnées et les données dans shared memory, de sorte que les requêtes des utilisateurs -qui sont envoyées via le client DiNoDBpeuvent en béné cier dans plusieurs sessions.

Noeuds DiNoDB peut pro ter du fait que les données sont naturellement partitionnées en blocs HDFS pour tirer parti des processeurs multi-core modernes. Par conséquent, les données et les métadonnées associées peuvent être facilement accessibles par plusieurs instances de PostgresRaw, pour permettre le parallélisme au niveau des noeuds. Les utilisateurs DiNoDB peuvent indiquer sélectivement si les chiers de données brutes sont placés sur le disque ou en mémoire. Par conséquent, les noeuds DiNoDB peuvent béné cier de manière transparente d'un système de chiers sauvegardé par mémoire pour améliorer considérablement les temps d'exécution des requêtes. Noeuds DiNoDB peut pro ter du fait que les données sont naturellement partitionnées en blocs HDFS pour tirer parti des processeurs multi-core modernes. Par conséquent, les données et les métadonnées associées peuvent être facilement accessibles par plusieurs instances de PostgresRaw, pour permettre le parallélisme au niveau des noeuds. Les utilisateurs DiNoDB peuvent indiquer sélectivement si les chiers de données brutes sont placés sur le disque ou en mémoire. Par conséquent, les noeuds DiNoDB peuvent béné cier de manière transparente d'un système de chiers sauvegardé par mémoire pour améliorer considérablement les temps d'exécution des requêtes.
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Une approche naïve du nettoyage des données est d'inclure des ltres statiques simples pour traiter des enregistrements sales, mais sa capacité de nettoyage est assez limitée. Une autre approche naïve pourrait simplement étendre les techniques de lot existantes, en tamponnant les enregistrements de données dans un magasin de données temporaire et en le nettoyant périodiquement avant de l'alimenter en composants descendants. Bien que susceptible d'atteindre une grande précision, une telle méthode viole clairement les exigences en temps réel des applications en continu. Le problème est exacerbé par le volume de systèmes de nettoyage de données qui doivent être traités, ce qui interdit les solutions centralisées. Par conséquent, notre objectif est de concevoir un système de nettoyage de données de ux distribué, qui réalise un nettoyage e cace et précis en temps réel.

Dans ce section, nous nous concentrons sur le nettoyage qualitatif des données, dans lequel un ensemble de règles spéci ques au domaine dé nit la façon dont les données doivent être nettoyées: en particulier, nous considérons les dépendances fonctionnelles (FD) et les dépendances fonctionnelles conditionnelles (CFD). Notre système, appelé Bleach, se déroule en deux phases: violation detection, pour trouver des violations de règles et violation repair, pour réparer les données en fonction de ces violations. Bleach s'appuie sur des structures de données e caces, compactes et distribuées pour maintenir l'état nécessaire (par exemple, résumés des données passées) pour réparer les données, en utilisant un algorithme de classe d'équivalence incrémentale.

Nous abordons également les complications dues à la nature à long terme et dynamique des ux de données: la dé nition des données sales pourrait changer pour suivre une telle dynamique. Bleach prend en charge les règles dynamiques, qui peuvent être ajoutées et supprimées sans nécessiter de temps d'inactivité. En outre, Bleach implémente une opération de fenêtre coulissante qui détermine des exigences de stockage modestes supplémentaires pour stocker temporairement des statistiques cumulatives, pour augmenter la précision de nettoyage.

Notre évaluation de performance expérimentale de Bleach est double. Tout d'abord, nous étudions la performance, en termes de débit, de latence et de précision, de notre prototype et nous concentrons sur l'impact de ses paramètres. Ensuite, nous comparons Bleach à un système de base alternatif, que nous mettons en oeuvre en utilisant une architecture de micro-émission par lots. Nos résultats indiquent les avantages d'un système comme Bleach, qui tient même avec la dynamique des règles. Malgré un travail approfondi sur le nettoyage des données fondées sur des règles [START_REF] Fan | Incremental detection of inconsistencies in distributed data[END_REF][START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF][START_REF] Dallachiesa | Nadeef: A commodity data cleaning system[END_REF][START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF][START_REF] Bohannon | Conditional functional dependencies for data cleaning[END_REF][START_REF] Chen | Repairing functional dependency violations in distributed data[END_REF][START_REF] Kolahi | On approximating optimum repairs for functional dependency violations[END_REF][START_REF] Abedjan | Temporal rules discovery for web data cleaning[END_REF], nous ne connaissons aucun autre système de nettoyage de données de ux. • Contrainte en temps réel: Comme le nettoyage des données est incrémental, la décision de nettoyage d'un tuple (réparer ou ne pas réparer) ne peut être faite que sur la base de ses propres tuples dans le ux de données, ce qui est di érent du nettoyage de données dans les entrepôts de données où l'ensemble de données est disponible. En d'autres termes, si un tuple sale n'a que des violations avec des tuples ultérieurs dans le ux de données, il ne peut pas être nettoyé. Une mise à jour tardive pour un tuple dans le ux de données de sortie ne peut être acceptée.

• Dynamic rules: Dans un système de nettoyage de données de ux, l'ensemble de règles n'est pas statique. Une nouvelle règle peut être ajoutée ou une règle obsolète peut être supprimée à tout moment. Un tuple de données traité ne peut pas être nettoyé à nouveau avec un jeu de règles mis à jour. Le retraitement de l'ensemble du ux de données chaque fois que le jeu de règles est mis à jour n'est pas réaliste.

• Données non consolidées: Un ux de données produit une quantité illimitée de données, qui ne peuvent pas être stockées complètement. Ainsi, le nettoyage des données de ux ne peut se permettre d'e ectuer un nettoyage sur l'historique complet des données. À savoir, si un tuple sale n'a que des violations avec des tuples qui apparaissent beaucoup plus tôt dans le ux de données, il est probable qu'un tel tuple ne soit pas nettoyé. Un DW accumule des sous-tuples d'entrée pertinents dans une structure de données compacte qui permet un processus de recherche e cace, ce qui le rend similaire à un mécanisme d'indexation traditionnel. Tout d'abord, pour accélérer le processus de recherche, les sous-tuples sont regroupés par la valeur de l'attribut LHS utilisé par une règle donnée: nous appelons un tel groupe a groupe de cellules ( ). Ensuite, pour obtenir une représentation de données compacte, toutes les cellules d'un partageant la même valeur RHS sont regroupées en super cell ( ). Les groupes de cellules sont stockés dans une carte de hash en utilisant leurs identi ants comme clés: donc, le DW trouve d'abord le correspondant au sous-tuple actuel. Les cellules dans les correspondants sont les seules cellules pouvant être en con it avec la cellule actuelle. Dans l'ensemble, la complexité du processus de recherche pour un sous-tuple est O(1).

Considérons l'exemple dans la

DW génère un ux de données intermédiaire de messages de violation, qui aide les composants en aval pour éventuellement réparer les tuples d'entrée. L'objectif du DW est de générer autant de messages que possible, tout en permettant une réparation e cace des données. Lorsque le processus de recherche révèle que le tuple actuel ne viole pas une règle, les DW émettent un message de non-violation. Au lieu de cela, lorsqu'une violation est détectée, un DW construit un message avec toutes les informations nécessaires History Maintenant, pour réduire le nombre de messages de violation, le DW peut utiliser une super cellule à la place d'une seule cellule en con it avec le tuple actuel. En outre, rappelez qu'un seul peut contenir plusieurs super cellules, ce qui nécessite éventuellement plusieurs messages pour chaque groupe. Cependant, nous observons que deux cellules dans le même doivent également entrer en con it les unes avec les autres, dans la mesure où leurs valeurs sont di érentes. Étant donné que le module de réparation de données dans Bleach est à l'état, il est prudent d'omettre certains messages de violation.

A.3.4 Réparation de violation

L'objectif de ce module est de prendre les décisions de réparation pour les tuples de données sales, en fonction d'un ux intermédiaire de messages de violation générés par le module de détection. Pour ce faire, Bleach utilise une structure de données appelée violation graph. Les messages de violation contribuent à la création et à la dynamique du graphe de violation, qui regroupe essentiellement les cellules qui, ensemble, sont utilisées pour e ectuer une réparation de données. Les algorithmes actuels de réparation de données utilisent un graphique de violation pour réparer les données sales en fonction des règles dé nies par l'utilisateur. Un graphique de violation est une représentation succincte des cellules (à la fois actuelle et historique) qui sont en con it selon certaines règles. Un graphique de violation est composé de sous-graphes. En tant que ux de données entrants, le graphique de violation évolue: en particulier, ses sous-graphiques peuvent fusionner ou diviser, en fonction du contenu des messages de violation.

En utilisant le graphique de violation, plusieurs algorithmes peuvent e ectuer un nettoyage de données, tel que l'algorithme de classe d'équivalence [START_REF] Bohannon | A cost-based model and e ective heuristic for repairing constraints by value modi cation[END_REF] ou l'algorithme holistique de nettoyage de données [START_REF] Chu | Holistic data cleaning: Putting violations into context[END_REF]. Actuellement, Bleach utilise une version incremental de l'algorithme de classe d'équivalence, qui prend en charge les données d'entrée en continu, bien que des approches alternatives puissent être facilement connectées à notre système. L'idée de l'algorithme de classe d'équivalence est de regrouper tous les éléments qui doivent être équivalents les uns aux autres, puis de décider d'une valeur unique pour les éléments du même groupe. Ainsi, un sous-graphe dans le graphique de violation peut être interprété comme une classe d'équivalence, dans laquelle toutes les cellules sont censées avoir la même valeur.

Le composant agrégateur regroupe toutes les propositions de réparation de RW et sélectionne la valeur candidate pour réparer une cellule donnée comme celle ayant la plus grande fréquence agrégée. En n, l'agrégateur modi e le tuple de données actuel et produit un ux de données propre.

A.3.5 Conclusion

Ce travail a introduit Bleach, un nouveau système de nettoyage de données de ux, qui vise à un nettoyage de données e cace et précis en contraintes en temps réel. 
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 32 Figure 3.2 -A typical data exploration architecture.

Figure 3 . 4 -

 34 Figure 3.4 -DiNoDB vertical indexes

34 :Figure 3 . 5 -

 3435 Figure 3.5 -DiNoDB I/O decorator overview.
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 36 Figure 3.6 -Architecture of the DiNoDB interactive query engine.

  compare DiNoDB with Impala (version 1.4), Spark SQL (version 1.1.0), Hive (version 0.13.1) on Tez (version 0.4.1) and PostgreSQL-based Stado. For DiNoDB, we assign 3 out of 4 cores to a DiNoDB node and we balance the data of the underlying HDFS le system across the 3 cores. The fourth core acts as a server and coordinates the three client-sessions of PostgresRaw. All the other systems also fully utilize CPU resources, either by multithreading (Impala and Spark SQL) or by multiprocessing (Hive on Tez and PostgreSQL-based Stado).
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 37 Figure 3.7 -DiNoDB vs. other distributed systems: Positional map reduces the cost of accessing data les.

  Figure3.7 plots the query execution time of the 10 queries. For queries over loaded data we also report the required loading time. Considering the aggregate query execution time for the 10 queries, DiNoDB is more than three times faster than the second fastest system, ImpalaT. Additionally, when it comes to individual query times DiNoDB consistently outperforms systems executing queries on data les. DiNoDB achieves that by exploiting the positional map that is generated by the DiNoDB I/O decorators to reduce the CPU cost of accessing data les (parsing and tokenizing). On the other hand, Spark-SQLc, ImpalaP, and Stado achieve shorter query execution times only after spending 150, 155 and 2352 seconds, respectively, for data loading. In Section 3.6.2.3, we further investigate the trade-o between initially investing time to prepare the data for querying versus quickly accessing the data on les.
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 38 Figure 3.8 -DiNoDB vs. other distributed systems: Vertical indexes signi cantly improve DiNoDB's performance.
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  Figure 3.12 -DiNoDB vs. ImpalaT: Scalability.

  Figure 3.13 -The processing time of the last stage of topic modeling with Mahout.

  .14. For a fair comparison, we penalize DiNoDB by adding the 16 seconds overhead of DiNoDB I/O decorators (as seen in Figure3.13) to the query execution time of DiNoDB, although we believe that users are much more sensitive to the latency in interactive analytics than the latency in batch processing. With the help of positional map le generated by the DiNoDB I/O decorators, DiNoDB still achieves one of the shortest execution times for TEMPORARY DATA
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 314 Figure 3.14 -Query execution time in machine learning use case (Symantec dataset).

  Figure 3.15 -The batch processing time in data exploration use case (Ubuntu One dataset)

  .[START_REF]Webpage[END_REF]. For a fair comparison the 20 seconds overhead of DiNoDB I/O decorators (as seen in Figure3.15) is added to the query execution time of DiNoDB. We nd that query execution time of SparkSQLc, ImpalaP and Stado is much longer than in the previous experiments. That's because the TEMPORARY DATA
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 316 Figure 3.16 -Query execution time in data exploration use case (Ubuntu One dataset).

  Figure 3.17 -DiNoDB I/O decorators overhead to generate statistics.
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 3 Figure 3.18 -DiNoDB I/O decorators can be bene cial to other systems (e.g., Impala).
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 41 Figure 4.1 -Existing stream data cleaning
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 4 BLEACH: A DISTRIBUTED STREAM DATA CLEANING SYSTEM D satis es r m , expressed as D |= r m . Note that a FD rule can be seen as a special case of CFD rule where cond(Y ) is always true and Y is ∅. If D satis es a set of rules Σ, denoted D |= Σ, then D |= r k for ∀r k ∈ Σ. If D does not satisfy Σ, D is a dirty data stream instance. We refer to an attribute as an intersecting attribute if it is involved in multiple rules.
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 43 Figure 4.3 -An example of a violation graph, derived from our running example.

Figure 4 .

 4 5 illustrates the internals of the detect module: it consists of an ingress router, an egress router and multiple detect workers (DW). Bleach maps
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 46 Figure 4.6 -The structure of the data history in a detect worker
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 4 BLEACH: A DISTRIBUTED STREAM DATA CLEANING SYSTEM Algorithm 4 Violation Detection 1: given rule r = (X → A j , cond(Y )) 2: procedure R (sub-tuple t i ) cond(t i (Y )) = true 3:
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 47 Figure 4.7 -The repair module
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 48 Figure 4.8 -Violation graph build example
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  Figure 4.9 -Example of violation graph built without coordination
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 4 Figure 4.9 gives an example, where the initial state (Figure 4.9(a)) is the same as in Figure 4.8(a).Then, two violation messages, {id(cg 1 ), c 6 , null} and {id(cg 2 ), c 6 , null}, are received. Cell c 6 is a current cell contained in the current tuple. Obviously sg id(cg 1 ) and sg id(cg 2 ) should merge into sg id(cg 1 ,cg 2 ) . This can be accomplished without coordination
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 4 BLEACH: A DISTRIBUTED STREAM DATA CLEANING SYSTEM Algorithm 6 Update Top-k values 1: State in a subgraph partition: 2: values -a sorted array of top-k values 3: val_cnt -a map keeping the cell count of every candidate value 4: procedure U (Cell c)
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 410 Figure 4.10 -The structure of violation graph
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 411 Figure 4.11 -Subgraph split example
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 4 Figure 4.12 gives an example about how the violation graph is updated when a tuplebased window slides. For simplicity, we assume in this example that the tuple id of cell c i is i. When the tuple window is (0, 10], there are two subgraphs, sg id(cg 1 ,cg 2 ,cg 3 ) and sg id(cg 4 ) . But when the window slides to[START_REF] Pavlo | A comparison of approaches to large-scale data analysis[END_REF][START_REF] Redshift | Webpage[END_REF], sg id(cg 4 ) is dropped because it does not
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 4413 Figure 4.13(a) illustrates a data stream of two-attribute tuples. Assume we use a single FD rule (A → B), a window size of 4 tuples, a sliding step of 2 tuples, and the basic windowing strategy. When t 4 arrives, the window covers tuples[START_REF] Stonebraker | one size ts all": an idea whose time has come and gone[END_REF][START_REF] University | The case for shared nothing[END_REF]. According to the repair algorithm, Bleach repairs t 4 (B) and sets it to the value b. Note that as we
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 4 Figure 4.14, because r 0 dep ← --r 1 dep ← --r 2 and r 0 dep ← --r 3 . Each rule set is binded to a cleaning stage in Multi-Stage Bleach, where only violations of rules in this rule set are detected and repaired.
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 4 Figure 4.15 gives the overview of Multi-Stage Bleach, where the initial input stream is the input stream of the rst stage and the stage i + 1 accepts the cleaned output stream of stage i as the input data stream. The last stage outputs the nal output stream.Each stage is an independent Bleach instance, although they share the same computation resources (the detect module and the repair module). In each stage, the LHS attributes are immutable as in the example of Figure4.14, the cells of attribute B and C can only be modi ed in stage 0 and stage 1 respectively. Thus, any modi cation of tuples in a stage will not cause any new violation in the preceding stages.
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 44164 Figure 4.15 -The Overview of Multi-Stage Bleach
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 4 Figure 4.17 gives an example how violation rules in Multi-Stage Bleach are reorganized when updating rules. The initial six rules from r 7 to r 12 are divided into three stages, as shown in Figure 4.17(a) with their dependency relationship. Assume that rule r 8 is deleted and a new rule, r 13 , is added. The rules will be reorganized as shown in Figure 4.17(b). Rule r 9 is moved to stage 0, since it is not depend on any other rules now. The new rule r 13 is added in a new stage, stage 3, as it is depend on rule r 12 in stage 2.
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 417 Figure 4.17 -Motivating example: Basic vs. Bleach windowing.
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 418 Figure 4.18 -Comparison of coordination mechanisms: RW-basic, RW-dr and RW-ir.
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 4 Figure 4.18(a) shows how Bleach throughput evolves with processed tuples. The throughput with both RW-dr and RW-ir is around 15K tuples/second, whereas RW-basic achieves roughly 13K tuples/second. The inferior performance of RW-basic is due to the large number of coordination messages required to converge to global subgraph identiers, while RW-dr and RW-ir only require 7% coordination messages in RW-basic. Figure 4.18(b) shows the CDF of the tuple processing latency for the three RW approaches. RW-basic has the highest processing latency, on average 364 ms. The processing latency
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 4421422423 Figure 4.22 shows that the throughput decreases as the size of window increases. With a larger window, there are more tuples to be detected for violations in the data history. Hence, more violations are detected and sent to the repair module. The violation graph in the RWs will be larger. As a consequence, any subgraph operations including merging and split will take more time to nish. With our implementation the throughput drops 23% when the window size increases 10 times. In contrast, Figure4.23 demonstrates that
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 4 Figure 4.24(a) and Figure 4.24(b) show the evolution in time of throughput and latency, whereas Figure 4.24(c) gives the CDF of the processing latency.Figure4.24(a) shows that rule dynamics can result in an increase in throughput. Indeed, removing r 5 (at the 60M tuple) implies that Bleach needs to manage fewer rules; in addition, r 4 becomes simpler to manage, as there are no more intersections with r 5 . Similarly, Figure4.24(b) shows that also latency decreases upon r 5 removal. When rules r 7 and r 8 are added (at the 90M tuple), the throughput drops and the latency grows, as Bleach has more rules to manage and because the new rules have intersecting attributes, requiring more work from RWs. Figure4.24(c), shows the latency distribution computed from output tuple samples. While the average latency is roughly 320 ms, we notice a tail in the distribution, indicating that some (few) tuples experience latencies up to seconds. This has been observed across all our experiments, and is due to the sliding window mechanism, which imposes computationally demanding operations when updating the violation graph, resulting also in rather low-level garbage collection problems.
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 51 Figure 5.1 -An example with the repair module in Bleach-hd
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 5 Figure 5.1 gives an example where the violation message msg vio intersects three subgraphs sg dest , sg m1 and sg m2 which are in three di erent RWs rw1, rw2 and rw3, respectively. The procedure is as following:
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  data reuse in a broad range of applications by allowing users to persist intermediate results in memory. RDDs achieve fault tolerance through a notion of lineage: if a RDD partition is lost, Spark can rebuid this RDD partition from the information kept in that RDD about how it was derived from other RDDs.Spark SQL[START_REF] Armbrust | Spark sql: Relational data processing in spark[END_REF] is the SQL processing module in Spark, which provides a DataFrame API which can perform relational operations on both external data sources and Spark's builtin distributed collections. It introduces a new extensible optimizer, called Catalyst, which is able to add new data sources, optimization rules and user-de ned data types. Similar to Impala, Spark SQL also supports Parquet le format. To improve the performance, Spark SQL can also cache entire tables in memory to avoid disk I/O bottleneck, which is similar to the loading procedure in parallel DBMSs.

table and to load data into the Parquet table. Before executing any queries with Impala, the user should run the COMPUTE STATS <table> statement, which instructs Impala to gather statistics on the table. Those statistics will be used later for query optimization.

The MapReduce programming model is too restrict to support some applications that reuse a working set of data across multiple parallel operations, such as iterative machine learning jobs. Therefore, a new framework, called Apache Spark

[START_REF]Webpage[END_REF]

, is designed for these applications, which also provides similar scalability and fault tolerance properties as MapReduce. Similar to Hadoop, Spark also runs on top of HDFS infrastructure. Spark provides a more exible data ow-based execution model that can express a wide range of data access and communication patterns, rather than only specifying map and reduce functions as in MapReduce. The main abstraction in Spark is that of a resilient distributed dataset (RDD), which is a read-only data structure partitioned across a set of machines. RDDs support a rich set of operators, such as map, lter and groupByKey, and enable e cient

  consists of key attr 0 and value [attr 1 , attr 2 , • • • , attr n ]

	1: procedure
	2:	row_count ← 0
	3:	k ← 8
	4:	num_buckets ← 2 k
	5:	initialize a two-dimensional integer array max_zeros[num_attr][num_buckets]
	6: end procedure
	7: procedure	(tuple)
	8:	
	9:	row_count ← row_count + 1
	10:	index_attr ← 0

tuple 11: for attr ∈ [attr 0 , attr 1 , attr 2 , • • • , attr n ] do 12:

Table 3 .

 3 1 -Comparison of Systems

	Systems	DiNoDB ImpalaT ImpalaP SparkSQL SparkSQLc Hive on Tez Stado
	Loading							
	requirement	no	no	yes	no	yes	no	yes
	Indexing			column-				
	support	yes	no	oriented	no	no	no	yes

  1 to t 5 . Now, assume we are given two FD rules and one CFD rule stating how a clean data stream should look like: (r 1 ) the same items can only belong to the same category; (r 2 ) two records with the same clientid must have the same city; (r 3 ) two records with the same non-null zip code must have the same city:

		item	category	clientid city	zipcode
		…	…	…	…	…
	t 1	MacBook	computer 11111	France 75001
	t 2	bike	sports	33333	Lyon	null
	t 3	Interstellar movies	22222	Paris	75001
	t 4	bike	toys	44444	Nice	06000
	t 5	Titanic	movies	11111	Paris	null
		…	…	…	…	…

(r 1 ) item → category (r 2 ) clientid → city time Figure 4.2 -Illustrative example of a data stream consisting of on-line transactions.

(r 3 ) zipcode → city, zipcode = null In our example, there are three violations of rules r 1 , r 2 and/or r 3 : (v1) t 1 and t 3 have the same non-null zip code (t 1 (zipcode) = t 2 (zipcode) = null) but di erent city names (t 1 (city) = t 2 (city)); (v2) t 2 claims bikes belong to category sports while t 4 classi es bikes as toys (t 2 (item) = t 4 (item), t 2 (category) = t 4 (category)); and (v3) t 1 and t 5 have the same clientid but di erent city names (t 1 (clientid) = t 5 (clientid), t 1 (city) = t 5 (city)).

  Emit msg vio (id(cg l ), c cur , sc old )

	6:	Emit msg nvio	
	7:	else	
	8:		
	9:	end if	
	10:	else	
	11:	Emit msg vio (id(cg l ), c cur , null)	
	12:	end if	
	13:	else	
	14:	Create cg l	Create a new cell group
	15:	Emit msg nvio	
	16:	end if	
	17:		

  Merge subgraphs [sg i 1 , sg i 2 , ...] such that id((sg i 1 , sg i 2 , ...) merged ) = id(sg i )

	Algorithm 5 RW-basic	
	1: procedure R	([msg vio1 , msg vio2 , ...])
	2:	Initialize a merge proposal mp
	7:	end for	
	8:	Send mp to the coordinator
	9: end procedure	
	10: procedure R	(md)	merge decision
	11: for (A 13:	
	14:	end for	
	15:		

3:

for msg vioi in [msg vio1 , msg vio2 , ...] do

4:

Find [sg i 1 , sg i 2 , ...] where msg vioi ∩ sg i j = ∅ 5:

msg vioi p_add ---→ (sg i 1 , sg i 2 , ...) merged 6:

Add (Attr(msg vioi ), id((sg i 1 , sg i 2 , ...) merged )) to mp i , id(sg i )) in md do 12:

Find [sg i 1 , sg i 2 , ...] where id(sg i j ) ⊆ id(sg i )

  4.9 -Example of violation graph built without coordination scheme. Note that in Algorithm 5 (line 4-6) (sg i 1 , sg i 2 , ...) merged is a general case including when there is none or only one intersecting subgraph. Then, the RW creates a merge proposal containing the subgraph IDs for each con icting attribute, and sends it to the coordinator. Once the coordinator receives merge proposals from all RWs, it merges subgraph IDs for each attribute from the various merge proposals and produces a merge

decision which is sent back to all RWs. With the merge decision, RWs merge their local subgraphs and converge to a globally consistent state. Then, RWs are ready to generate repair proposals (more details in Section 4.4.4).

Table 4 .

 4 1 -Example rule sets used in our experiments.r 0 : ss_item_sk → i_brand, (ss_item_sk = null) r 1 : ss_item_sk → i_category, (ss_item_sk = null) r 2 : ca_state, ca_city → ca_zip, (ca_state, ca_city = null) r 3 : ss_promo_sk → p_promo_name, (ss_promo_sk = null) r 4 : ss_store_sk → s_store_name, (ss_store_sk = null) r 5 : ss_ticket_num → s_store_name, (ss_ticket_num = null) r 6 : f ile_extension → mime_type, (f ile_extension = null)

  milliards de demandes par jour et stocke plus de 10 exabytes de données. Facebook collecte 600 téraoctets de données par jour, dont 4,3 milliards de contenus, 5,75 milliards "like" et 350 millions de photos. Certaines estimations suggèrent que globalement au moins 2,5 quintiles d'octets de données sont produits tous les jours et 40 zettabytes de données existent d'ici 2020[START_REF]Facts and Stats About The Big Data Industry[END_REF]. De telles quantités énormes sont bien au-delà de la capacité de tout SGBD traditionnel. Nouvelles données e caces et puissantes des outils d'analyse sont nécessaires pour faire face au grand dé de données.Ce besoin a attiré l'attention du milieu universitaire et de l'industrie. Par conséquent, ces dernières années, les systèmes modernes d'analyse de données à grande échelle se sont développés, qui apportent d'énormes techniques innovantes et des optimisations. Ces systèmes visent à accélérer les procédures d'analyse de données pour les grands ensembles de données. Cependant, tel que rapporté par de nombreux scienti ques de données[START_REF] Deng | The data civilizer system[END_REF], seulement 20% de leur temps est passé à e ectuer les tâches d'analyse de données souhaitées. Les scienti ques de données doivent passer 80% du temps, parfois même plus, sur préparation de données qui est un processus lent, di cile et fastidieux. Néanmoins, la préparation des données, étape essentielle avant d'e ectuer l'analyse des données, n'a pas reçu su samment d'attention malgré son importance.Sans la préparation appropriée des données, l'analyse des données peut générer des résultats trompeurs si les ensembles de données sous-jacents sont sales. Un projet d'analyse peut échouer en raison de problèmes liés à la sécurité et à la con dentialité, si son ensemble de données est négligemment préparé sans cacher des informations sensibles. Les systèmes d'analyse de données modernes exigent tous la préparation des données comme étape préliminaire car ils ne sont pas capables de récupérer des informations à partir de données brutes, à moins que les données ne contiennent des formats appropriés ou chargé dans les systèmes. Par conséquent, la préparation des données est particulièrement cruciale pour le succès de l'analyse des données. Dans de nombreuses organisations, la préparation des données nécessite des e orts manuels en utilisant des processus di ciles à partager ou même répétés. De plus en plus de scienti ques de données consacrent trop de temps à la préparation des données et ne peuvent pas avoir su samment de temps pour résoudre d'autres problèmes de données di ciles. Par conséquent, le plus gros problème avec la préparation des données est qu'il coûte beaucoup de temps et coûte cher.Comme nous vivons dans un grand monde des données, avec le volume croissant et la variété des données ces dernières années, la préparation des données est devenue plus exigeante et devient plus longue. Pendant ce temps, les données continuent d'être générées à une vitesse plus élevée. Les besoins commerciaux doivent commencer à exiger des intervalles plus courts et plus courts entre le moment où les données sont collectées et le moment où les résultats de l'analyse des données sont disponible pour la prise de décision manuelle ou algorithmique. Les chercheurs de données souhaitent avoir la possibilité d'analyser des jeux de données dès que possible, par exemple, quelques secondes après la collecte des jeux de données. Lorsque les données brutes sont générées en continu à partir d'un ux de données, les scienti ques de données peuvent même vouloir e ectuer leur analyse de données de façon incrémentale en temps réel, plutôt que d'attendre que toutes les données soient acquises. Être capable de prendre des décisions en temps opportun est devenu de plus en plus crucial.
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	3,5 A.1.2 Data Preparation	
	La préparation des données, également appelée prétraitement des données, se concen-
	tre sur la détermination des données, l'amélioration de la qualité des données, la stan-
	dardisation de la dé nition et de la structuration des données, collecter et consolider
	des données, et transformer les données pour qu'elles soient utiles, en particulier pour
	l'analyse [30]. En bref, la préparation des données augmente la valeur de l'analyse des
	données. Il comprend les étapes d'accès, de recherche, d'agrégation, d'enrichissement,
	de transformation, de nettoyage et de chargement des données.

  Comme maintenant, les scienti ques veulent analyser les ensembles de données dès que possible, le chargement lent des données devient un goulet d'étranglement dans l'analyse des données. En particulier, lorsque nous analysons des ensembles de données temporaires, qui seront simplement abandonnés après l'exécution de quelques requêtes, le chargement des données ne convient pas. De toute évidence, nous avons besoin d'une approche qui évite le chargement lent des données, mais qui soit capable d'assurer une exécution e cace des requêtes.A.1.2.2 Nettoyage des DonnéesÀ mesure que nous entrons dans un monde axé sur les données, l'application et le maintien de la qualité des données deviennent des tâches critiques. Selon un sondage auprès de l'industrie[START_REF] Swartz | Gartner warns rms of 'dirty data[END_REF], plus de 25% des données critiques dans les meilleures entreprises du monde sont viciées. Sans un nettoyage correct des données, les problèmes liés à la qualité des données peuvent conduire à des résultats d'analyse trompeurs sur la base des «ordures dans les ordures ménagères». Par exemple, InsightSquared[START_REF] Insightsquared | Webpage[END_REF] prédit que des données sales entre les entreprises et le gouvernement couvre l'économie américaine de 3,1 billions de dollars par an.Le nettoyage des données, également appelé nettoyage de données ou lavage de données, est le processus de détection, de correction ou de suppression, de données de données corrompues ou inexactes à partir d'un ensemble de données. Récemment, deux tendances majeures dans le nettoyage des données sont apparues. La première est une approche quantitative, appelée nettoyage quantitatif de données, qui est largement utilisé pour la détection des valeurs aberrantes en employant des méthodes statistiques pour identi er les comportements anormaux et les erreurs. La seconde est une approche logique, appelée nettoyage qualitatif des données. Le nettoyage qualitatif des données, d'autre part, repose sur la spéci cation des modèles ou des règles d'une instance de données légales. Il se compose de deux phases, une détection de violation qui consiste à identi er les données qui violent les motifs ou règles dé nis comme des erreurs, et une réparation de violation qui consiste à trouver un ensemble minimal de modi cations qui corrigent les erreurs détectées.Le nettoyage des données est considéré comme la tâche la plus longue dans la préparation des données, principalement parce qu'il implique souvent des calculs coûteux, tels que l'énumération de paires de tuples et la gestion des unions d'inégalité, qui sont diciles à mettre à l'échelle des grands ensembles de données. La plupart des solutions de nettoyage de données existantes se sont concentrées sur le nettoyage de données par lots, en traitant des données statiques stockées dans un entrepôt de données, qui découragent les scienti ques de données d'avoir leur analyse de données en temps opportun. Il est devenu urgent d'élaborer de nouvelles solutions innovantes de nettoyage de données qui sont rapides et e caces. 'objectif de cette thèse est de développer des systèmes avancés pour accélérer le processus de préparation de données qui nécessite beaucoup de temps pour les grandes analyses de données. En particulier, nous nous concentrons sur le chargement et le nettoyage des données. En tant que contributions, nous concevons et mettons en oeuvre deux systèmes, DiNoDB, un moteur de requête à vitesse interactive pour les requêtes ad hoc sur des données temporaires qui évite le chargement de données en intégrant de manière transparente les systèmes de traitement par lots, et Bleach, un nouveau système de nettoyage de données de ux, qui vise à un nettoyage de données e cace et précis en contraintes en temps réel.La première contribution consiste à concevoir DiNoDB, un système SQL-on-Hadoop qui réalise une exécution de requête à vitesse interactive sans nécessiter de chargement de données. Les applications modernes impliquent de gros travaux de traitement par lots sur de gros volumes de données et, en même temps, nécessitent des analyses interactives ad hoc e caces sur des données temporaires. Les solutions existantes, cependant, se concentrent généralement sur l'un de ces deux aspects, ignorant largement le besoin de synergie entre les deux. Par conséquent, les requêtes interactives nécessitent de charger l'ensemble de données qui ne peuvent fournir un retour d'investissement signi catif que lorsque les données sont interrogées sur une longue période de temps.En revanche, DiNoDB évite la phase de chargement et de transformation coûteuse qui caractérise à la fois les SGBD traditionnels et les solutions d'analyse interactive courante. Il est particulièrement adapté aux ux de travail modernes trouvés dans les cas d'utilisation tels que l'apprentissage machine et l'exploration de données, qui impliquent souvent des itérations de cycles d'analyse par lots et interactifs sur des données qui sont généralement utiles pour une fenêtre de traitement étroite. L'innovation clé de DiNoDB consiste à transférer sur la phase de traitement par lot la création de métadonnées que DiNoDB exploite pour accélérer les requêtes interactives.Notre analyse expérimentale détaillée, tant sur les bases de données synthétiques que sur la vie réelle, démontre que DiNoDB réduit considérablement le temps de vision et atteint de très bonnes performances par rapport aux moteurs de requêtes distribués à la ne pointe de la technologie, tels que Hive, Stado, Spark SQL et Impala.A.1.3.2 Bleach: un système de nettoyage de données de ux distribué La deuxième contribution est un système de nettoyage de données de ux distribué, appelé Bleach. Les approches de nettoyage de données évolutives existantes se sont concentrées sur le nettoyage des données par lot, qui nécessite beaucoup de temps. Comme la plupart des sources de données sont désormais di usées, comme les chiers journaux générés dans les serveurs Web et les achats en ligne, nous nous e orçons d'e ectuer le nettoyage des données directement sur les ux de données. En dépit de la popularité croissante des systèmes de traitement des courants, aucune technique de nettoyage de données qualitatives n'a été proposée jusqu'ici. Dans cette thèse, nous comblons cette lacune en abordant le problème du nettoyage de données de ux basé sur des règles, qui dé nit des exigences strictes en termes de latence, de dynamique des règles et de capacité à faire face à la nature continue des ux de données.Nous concevons Bleach, un système de nettoyage de données de ux qui réalise une détection de violation en temps réel et une réparation de données sur un ux de données sale. Bleach s'appuie sur des structures de données e caces, compactes et distribuées pour maintenir l'état nécessaire pour réparer les données. En outre, il prend en charge la dynamique des règles et utilise une opération de fenêtre coulissante "cumulative" pour améliorer la précision de nettoyage.Nous évaluons Bleach à l'aide de ux de données synthétiques et réels et validons expérimentalement son débit élevé, sa faible latence et sa haute précision de nettoyage, qui sont préservés même avec une dynamique de règles. En l'absence d'une ligne de base de nettoyage de ux comparable existante, nous avons comparé Bleach à un système de base fondé sur le paradigme du micro-lot, et montrent expérimentalement les performances supérieures de Bleach.Au cours des dernières années, les systèmes modernes d'analyse de données à grande échelle se sont développés. Par exemple, des systèmes tels que Hadoop et Spark[START_REF]Webpage[END_REF][START_REF]Webpage[END_REF] se concentrent sur les problèmes liés à la tolérance aux pannes et exposent un modèle de programmation parallèle simple mais élégant qui cache les complexités de la synchronisation. De plus, la nature orientée vers le lot de ces systèmes a été complétée par des composants supplémentaires (par exemple, Storm et Spark streaming[START_REF]Webpage[END_REF][START_REF] Zaharia | Discretized Streams: Fault-tolerant Streaming Computation at Scale[END_REF]) qui o rent des analyses (proches) en temps réel sur les ux de données. La communion de ces approches est maintenant connue sous le nom de "Lambda Architecture" (LA)[START_REF]The Lambda Architecture[END_REF]. En fait, LA est divisée en trois couches, i) le batch layer (basé sur, par exemple, Hadoop / Spark) pour la gestion et le prétraitement des données brutes ajoutées uniquement, ii) le speed layer (par exemple, Storm/Spark streaming) adapté aux analyses sur les données récentes tout en obtenant une faible latence en utilisant des algorithmes rapides et incrémentaux, et iii) le serving layer (par exemple, Hive[START_REF]Webpage[END_REF], Spark SQL[START_REF]Webpage[END_REF], Impala[START_REF] Kornacker | Impala: A modern, open-source SQL engine for hadoop[END_REF]) qui expose les vues par lots pour prendre en charge les requêtes ad hoc écrites en SQL, avec une faible latence.Le problème avec de tels systèmes d'analyse existants à grande échelle est double. Tout d'abord, la combinaison de composants (couches) de di érentes piles, bien que souhaitable, soulève des problèmes de performance et n'est parfois même pas possible dans la pratique. Par exemple, les entreprises qui possèdent une expertise dans, par exemple, Hadoop et les SGBD traditionnels (distribués) basés sur SQL, voudraient peutêtre exploiter cette expertise et utiliser Hadoop comme couche de traitement par lots et SGBD dans la couche de service. Cependant, cette approche nécessite une phase de transformation/charge coûteuse, par exemple, déplacer des données de HDFS de Hadoop et la charger dans un SGBD[START_REF] Lefevre | Miso: Souping up big data query processing with a multistore system[END_REF], ce qui pourrait être impossible à amortize, en particulier dans les scénarios avec une fenêtre de traitement étroite, i.e., lorsque vous travaillez sur données temporaires qui peuvent être simplement abandonnées après l'exécution de quelques requêtes.Deuxièmement, bien que de nombreux systèmes SQL-on-Hadoop aient émergé récemment, ils ne sont pas bien conçus pour les requêtes ad-hoc (à courte durée de vie), en particulier lorsque les données restent dans son format natif, non compressé, tel que les chiers CSV basés sur le texte. Pour atteindre des performances élevées, ces systèmes[START_REF] Floratou | Sql-on-hadoop: Full circle back to sharednothing database architectures[END_REF] préfèrent convertir les données en leur format de données spéci que en colonne, par exemple ORC[START_REF]Apache Hive -ORC Files[END_REF] et Parquet[START_REF] Parquet | Webpage[END_REF]. Cela fonctionne parfaitement lorsque les données et les requêtes analytiques (c'est-à-dire la charge de travail complète) sont dans leur phase nale de production. À savoir, ces formats de données auto-décrivant et optimisés jouent un rôle croissant dans l'analyse de données moderne, et cela devient particulièrement vrai une fois que les données ont été nettoyées, que les requêtes ont bien été conçues et que les algorithmes d'analyse ont été réglés. Cependant, lorsque les utilisateurs e ectuent des tâches d'exploration de données et un réglage d'algorithme, c'est-à-dire lorsque les données sont temporaire, le format de données d'origine reste généralement inchangé -dans ce cas, l'optimisation prématurée du format de données est généralement évitée, les formats basés sur les formats CSV et JSON sont préférés. Dans ce cas, les systèmes d'analyse de données intégrés actuels peuvent sous-performer. Notamment, ils ne parviennent souvent pas à utiliser des techniques anciennes pour optimiser la performance des SGBD (distribués), e.x., indexation, qui n'est généralement pas prise en charge. En résumé, les scienti ques de données contemporains font face à une large variété d'approches concurrentes ciblant le batch et la couche serving. Néanmoins, nous pensons que ces approches ont souvent une orientation trop stricte, souvent ignorées, ce qui ne permet pas d'explorer les avantages potentiels de l'apprentissage mutuel. Dans cette section, nous proposons DiNoDB, un moteur de requête à vitesse interactive qui répond aux problèmes ci-dessus. Notre approche repose sur une intégration transparente des systèmes de traitement par lot (par exemple, Hadoop MapReduce et Apache Spark) avec un moteur de requête interactif réparti, tolérant aux pannes et évolutif pour les analyses in-situ sur les données temporary. DiNoDB intègre le traitement par lot avec la couche de service, en étendant l'ubiquité Hadoop I/O API en utilisant DiNoDB I/O décorateurs. Ce mécanisme est utilisé pour créer, en tant que sortie supplémentaire du traitement par lots, une large gamme de structures de données auxiliaires metadata, ie, telles que les cartes de position et les index verticaux, que DiNoDB utilise pour accélérer l'analyse de données interactives des chiers de données temporary pour l'exploration de données et l'ajustement d'algorithme. Notre solution regroupe e cacement le traitement par lots et la couche de service pour les grands ux de données, tout en évitant tout chargement et données des coûts de mise en forme. Bien que, clairement, aucune solution d'analyse de données ne puisse correspondre à tous les grands cas d'utilisation de données, lorsqu'il s'agit de requêtes interactives ad hoc avec une fenêtre de traitement étroite, DiNoDB surpasse les moteurs de requêtes distribués à la ne pointe de la technologie, tels que Hive, Stado, Spark SQL et Impala. Dans le cas d'utilisation, nous prenons la perspective d'un utilisateur (par exemple, un scienti que de données) axé sur un problème de cluster de données complexe. Plus précisément, nous considérons la tâche d'apprendre topic models [79], ce qui équivaut à regrouper automatiquement et conjointement des mots en "topics", et des documents en mélanges de sujets. Simplement dit, un modèle de sujet est un modèle bayésien hiérarchique qui associe à chaque document une distribution de probabilité sur "topics", qui sont à leur tour des distributions par mots. Ainsi, la sortie d'une analyse de données de modélisation de sujet peut être considérée comme une matrice de probabilités (éventuellement très grande): chaque ligne représente un document, chaque colonne d'un sujet et la valeur d'une cellule indique la probabilité qu'un document puisse couvrir un sujet particulier. Dans un tel scénario, représenté dans la Figure A.1, l'utilisateur se heurte généralement aux problèmes suivants: i) les algorithmes de modélisation de sujets (par exemple, Collapsed Variational Bayes (CVB) [78]) nécessitent un réglage de paramètres, tel que En sélectionnant un nombre approprié de sujets, le nombre de fonctionnalités uniques Contrairement aux approches actuelles, qui nécessitent généralement une phase de chargement de données longue et coûteuse qui augmente considérablement le temps de données à la perspicacité, DiNoDB permet d'interroger des données temporaires in situ et expose une interface SQL standard à l'utilisateur. Cela simpli e l'analyse des requêtes et révèle le principal avantage de DiNoDB dans ce cas d'utilisation, c'est-à-dire la suppression de la phase de chargement données temporaires, qui représente aujourd'hui l'un des principaux goulets d'étranglement opérationnels dans l'analyse des données. En e et, la phase de chargement de données traditionnelle est logique lorsque la charge de travail (c'està-dire les données et les requêtes) est stable à long terme. Cependant, comme le chargement des données peut inclure la création d'index, la sérialisation et l'analyse des frais généraux, il est raisonnable de remettre en question sa validité lorsque vous travaillez avec des données temporaires, comme dans notre cas d'utilisation d'apprentissage machine. A.2. DINODB: UN MOTEUR DE REQUÊTE À VITESSE INTERACTIVE POUR LES DONNÉES TEMPORAIRES 103 L'idée de conception clé derrière DiNoDB est celle de déplacer la partie du fardeau d'une opération de chargement traditionnelle vers la phase de traitement par lots d'un ux de travail "développement". Pendant le traitement des données par lots, DiNoDB accroche la création de cartes positionnelles réparties et d'index verticaux pour améliorer les performances des requêtes utilisateur interactives sur les données temporaires. Les requêtes interactives fonctionnent directement avec des chiers de données temporaires générés par la phase de traitement par lots, qui sont stockés sur un système de chiers distribué tel que HDFS [43]. A.2.3 DiNoDB conception de haut niveau Dans cette section, nous présentons la conception d'architecture de haut niveau de DiN-oDB. DiNoDB est conçu pour assurer une intégration transparente des systèmes de traitement par lots tels que Hadoop MapReduce et Spark, avec une solution distribuée pour l'analyse de données in situ sur de grands volumes de chiers de données temporaires et brutes. Tout d'abord, nous expliquons comment DiNoDB étend Hadoop I/O API omniprésente en utilisant DiNoDB I/O decorators, un mécanisme qui génère une large gamme de structures de métadonnées auxiliaires pour accélérer l'analyse de données interactive à l'aide du moteur de requête DiNoDB. Ensuite, nous décrivons le moteur de requêtes DiNoDB, qui tire parti des métadonnées générées dans la phase de traitement par lot pour obtenir des performances de requête à vitesse interactive. 'idée clé derrière DiNoDB est de tirer parti du traitement par lots en tant que phase de préparation pour les futures requêtes interactives. À savoir, DiNoDB enrichit Hadoop I/O API avec DiNoDB I/O decorators. Un tel mécanisme accroche la génération de métadonnées par pipelining les tuples de sortie produits par le moteur batch dans une série de decorators spécialisés qui stockent des métadonnées auxiliaires ainsi que les tuples de sortie d'origine. En plus de la génération de métadonnées, DiNoDB capitalise sur le prétraitement des données en conservant les données de sortie dans la mémoire. Pour être plus précis, nous con gurons Hadoop pour stocker les données de sortie et les métadonnées dans la RAM, en utilisant le système de chiers ramfscomme point de montage supplémentaire pour HDFS. 1 Notre prototype DiNoDB prend en charge les deux ramfs et les points de montage sur disque pour HDFS, un choix de conception qui permet de répondre aux requêtes sur des données qui ne peuvent pas correspondre à la RAM . Les données de sortie et les métadonnées sont consommées par le moteur de requêtes interactif DiNoDB. Le moteur de requête interactif DiNoDB est un moteur de traitement massivement parallèle qui orchestré plusieurs noeuds DiNoDB. Chaque noeud DiNoDB est une instance optimisée de PostgresRaw [41], une variante de PostgreSQL adaptée à l'interrogation de chiers de données temporaires produits dans la phase de traitement par lots. Pour assurer des performances élevées et des temps d'exécution de requêtes faibles, nous co-localisons DiNoDB noeuds et HDFS DataNodes, où les deux partagent des données à travers HDFS, et en particulier grâce à sa mémoire, ramfs monter. Dans le reste de ce section, nous supposons que les données brutes et les données temporaires ingérées et produites par la phase de traitement par lots et utilisées dans la phase de service de la requête sont dans un format de données textuelles structurées (par exemple, une valeur séparée par des virgules des dossiers). DiNoDB piggybacks la génération de métadonnées auxiliaires sur la phase de traitement par lots en utilisant DiNoDB I/O decorators. DiNoDB I/O decorators sont conçus pour être un mécanisme non intrusif, qui intègre parfaitement les systèmes prenant en charge Hadoop I/O API classique, comme Hadoop MapReduce et Apache Spark. DiNoDB I/O decorators opère à la n de la phase de traitement par lots pour chaque tâche nale qui produit des tuples de sortie, comme le montre la Figure A.2. Au lieu d'écrire des tuples de sortie vers HDFS directement, en utilisant Hadoop I/O API standard, les tâches utilisent DiNoDB I/O decorators, qui créent un pipeline de génération de métadonnées, où chaque décorateur itère sur des ux de tuples de sortie et calculent les di érents types de métadonnées. Actuellement, notre prototype prend en charge quatre types de métadonnées, positional maps [41], vertical indexes, statistiques et samples de données. DiNoDB I/O decorators sont conçus pour être un mécanisme non intrusif, qui intègre parfaitement les systèmes prenant en charge Hadoop I/O API classique, comme Hadoop MapReduce et Apache Spark. DiNoDB I/O decorators opèrent à la n de la phase de traitement par lot pour chaque tâche nale qui produit des tuples de sortie, comme le montre la Figure A.2. Au lieu d'écrire des tuples de sortie sur HDFS directement, en utilisant Hadoop I/O API standard, les tâches utilisent DiNoDB I/O decorators, qui créent un pipeline de génération de métadonnées, où chaque décorateur itère sur des ux de tuples de sortie et calculent les di érents types de métadonnées décrites ci-dessus. Un client DiNoDB sert de point d'entrée pour les requêtes interactives DiNoDB. Il fournit une interface de commande shell standard, cachant la disposition du réseau et l'architecture du système distribué à partir des utilisateurs. En tant que tel, les applications peuvent utiliser DiNoDB comme un SGBD traditionnel. DiNoDB clients acceptent les requêtes d'application (requêtes) et communiquent avec les noeuds DiNoDB. Lorsqu'un client DiNoDB reçoit une requête, il récupère les métadonnées pour les "tables" ( chiers de sortie de la phase de lot) indiqués dans la requête en utilisant le module MetaConnector. Le MetaConnector (voir la gure A.3) fonctionne comme un proxy entre DiNoDB et le NameNode HDFS et est responsable de la récupération des informations de métadonnées HDFS comme des partitions et des emplacements de blocs de chiers de données brutes. En utilisant les métadonnées HDFS, MetaConnector guide les clients DiNoDB pour interroger les noeuds DiNoDB qui contiennent des chiers de données brutes en rapport avec les requêtes des utilisateurs. En outre, Meta-Connector con gure à distance les noeuds DiNoDB a n qu'ils puissent créer le mappage entre les "tables" et les blocs HDFS connexes, y compris tous les blocs de chiers de données et blocs de métadonnées, par exemple, les blocs de positional maps et les blocs de A.2. DINODB: UN MOTEUR DE REQUÊTE À VITESSE INTERACTIVE POUR LES DONNÉES TEMPORAIRES 107 vertical indexes. En résumé, l'anatomie d'une exécution de requête est la suivante: i) en utilisant MetaConnector, un client DiNoDB apprend l'emplacement de chaque bloc de chier brut et pousse la requête aux noeuds DiNoDB respectifs; ii) les noeuds DiNoDB traitent la requête en parallèle; et en n, iii) le client DiNoDB agrège le résultat.
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Ldiscutons: i) comment une meilleure communication entre le traitement par lots et la couche de service que DiNoDB apporte peut aider, et ii) l'applicabilité de notre approche d'analyse données temporaires. à considérer, les facteurs de lissage de la distribution et beaucoup plus; et ii) le calcul de la «qualité de modélisation» nécessite généralement un processus d'essai et d'erreur selon lequel seuls les connaissances de domaine peuvent être utilisés pour discerner un bon regroupement d'un mauvais. En pratique, un tel scénario illustre un ux de travail typique de "développement" qui nécessite: a phase de traitement par lots (e.x., en cours d'exécution CVB), et phase de requête interactive sur des données temporaires (c'est-à-dire sur des données intéressantes Dans des périodes relativement courtes), et plusieurs itérations des deux phases jusqu'à ce que les algorithmes soient correctement réglés et les résultats naux répondent aux attentes des utilisateurs. DiNoDB s'attaque explicitement à ces ux de travail "développement". La phase de traitement par lot (par exemple, dans les cas d'apprentissage par machine et d'exploration de données décrits précédemment) implique généralement l'exécution d'algorithmes d'analyse (sophistiqués). Cette phase peut inclure un ou plusieurs travaux de traitement par lot, de sorte que les données de sortie sont écrites sur HDFS. LA.2.4 DiNoDB I/O decorators Pour utiliser DiNoDB I/O decorators, les utilisateurs de Hadoop doivent remplacer la classe Vanova Hadoop OutputFormat par un nouveau module appelé DiNoD-BOutputFormat. Notre prototype supporte actuellement la sous-classe TextOut-putFormat, qui permet à DiNoDB de fonctionner sur des formats de données textuels. Plus précisément, le module DiNoDBTextOutputFormat implémente une nouvelle classe DiNoDBArrayWritable qui est utilisée pour générer à la fois les données de sortie et ses métadonnées associées. Si les utilisateurs travaillent avec Spark, avant de sauvegarder leur résultat RDD sur HDFS (par méthode saveAsTextFile), ils doivent d'abord lancer ce résultat RDD dans un DiNoDBRDD, qui utilise en interne DiNoDBOutputFormat comme classe OutputFormat. DiNoDB I/O decorators sont con gurés en passant un chier de con guration à chaque travail de traitement par lot dans Hadoop ou en dé nissant des paramètres de DiNoD-BRDD dans Spark. Les utilisateurs spéci ent les métadonnées à générer et indiquent des paramètres tels que le taux d'échantillonnage à utiliser pour la génération de cartes de position et les attributs clés pour la génération d'index verticaux.

  Figure A.4 -Exemple illustratif d'un ux de données composé de transactions en ligne.A.3.2 Dé s et butsUn système de nettoyage de données de ux idéal devrait accepter un ux d'entrée sale D in et produire un ux propre D out , dans lequel tous violations de règles dans D in sont réparés (D out |= Σ). Cependant, cela n'est pas possible en réalité en raison de:

	time	item …	category …	clientid city … …	zipcode …
	t 1	MacBook	computer 11111	France 75001
	t 2	bike	sports	33333	Lyon	null
	t 3	Interstellar movies	22222	Paris	75001
	t 4	bike	toys	44444	Nice	06000
	t 5	Titanic	movies	11111	Paris	null
		…	…	…	…	…

  A.4, qui est un ux de données de transactions en ligne. Chaque tuple représente un enregistrement d'achat, qui contient un article acheté (item), la catégorie de cet élément (category), un identi ant de client (clientid), la ville A.[START_REF]Facts and Stats About The Big Data Industry[END_REF]. BLEACH: UN SYSTÈME DE NETTOYAGE DE DONNÉES DE FLUX DISTRIBUÉ 111 du client (city) et le code postal de cette ville (zipcode). Dans l'exemple, nous montrons un extrait de cinq tuples de données du ux de données, de t 1 à t 5 . Maintenant, supposons que nous recevons deux règles FD et une règle CFD indiquant comment un ux de données propre devrait ressembler: (r 1 ) les mêmes éléments ne peuvent appartenir qu'à la même catégorie; (r 2 ) deux enregistrements avec le même clientid doivent avoir la même ville; (r 3 ) deux enregistrements avec le même code postal non nul doivent avoir la même ville: (r 1 ) item → category (r 2 ) clientid → city (r 3 ) zipcode → city, zipcode = null Dans notre exemple, il y a trois violations des règles r 1 , r 2 et/ou r 3 : (v1) t 1 et t 3 ont le même code postal non nul (t 1 (zipcode) = t 2 (zipcode) = null) mais di érents noms de villes (t 1 (city) = t 2 (city)); (v2) t 2 les virements bancaires appartiennent à la catégorie sports alors que t 4 classe les vélos comme jouets (t 2 (item) = t 4 (item), t 2 (category) = t 4 (category)); et (v3) t 1 et t 5 ont le même clientid mais di érents noms de villes (t 1 (clientid) = t 5 (clientid), t 1 (city) = t 5 (city)). Notez que lorsque un système de nettoyage de données de ux reçoit un tuple t 1 , aucune violation ne peut être détectée, comme dans notre exemple t 1 n'a que des violations avec des tuples ultérieurs t 3 et t 5 . Ainsi, aucune modi cation ne peut être faite sur t 1 . En outre, le retard de la procédure de nettoyage pour t 1 n'est pas une option possible, non seulement en raison de contraintes en temps réel, mais aussi parce qu'il est dicile de prévoir la durée pendant laquelle ce tuple doit être mis en mémoire tampon pour qu'il soit nettoyé. Par conséquent, le nettoyage des données du ux doit être progressif: chaque fois qu'une nouvelle donnée arrive, le processus de nettoyage des données démarre immédiatement. Bien que l'exécution d'une détection de violation incrémentielle semble simple, la réparation de la violation progressive est beaucoup plus complexe à réaliser. Revenons à l'exemple de la Figure A.4, Supposons que le système de nettoyage de ux reçoit un tuple t 5 et qu'il détecte avec succès la violation v 3 entre t 5 et t 1 . Une telle détection n'est pas su sante pour prendre une décision de réparation correcte, car le tuple t 1 est également en con it avec un autre tuple t 3 . Une réparation supplémentaire dans le système de nettoyage de données de ux devrait également tenir compte des violations entre les tuples antérieurs. Pour tenir compte des subtilités du processus de réparation des infractions, nous utilisons le concept de violation graph [99]. Un graphique de violation est une structure de données contenant les violations détectées, dans lesquelles chaque noeud représente une cellule. Si certaines violations partagent une cellule commune, elles seront regroupées en un seul sous-graphique. Par conséquent, le graphique de violation est divisé en petits sous-graphes indépendants. Une seule cellule ne peut être qu'un sous-graphe. Si deux Figure A.5 -Un exemple d'un graphique de violation, dérivé de notre exemple en cours d'exécution. sous-graphes partagent une cellule commune, ils doivent fusionner. La décision de réparation d'un tuple n'est pertinente qu'aux sous-graphes dans lesquelles ses cellules sont impliquées. Un graphique de violation pour notre exemple peut être vu dans la Figure A.5. Compte tenu de ce graphique de violation, pour prendre la décision de réparation pour le tuple t 5 , le système de nettoyage ne peut se baser sur le sous-graphe supérieur qui consiste en violation v 1 et v 3 avec la cellule commune t 1 (city). Nous donnons maintenant notre déclaration de problème comme suit. Statement du problème: Compte tenu d'un ux de données illimité avec un schéma associé 2 et un ensemble de règles dynamique, comment concevoir un système de nettoyage de données incremental et en temps réel, y compris des mécanismes de détection de violation et de réparation de violation, en utilisant des ressources informatiques et de stockage délimitées, pour produire un ux de données nettoyé? Dans ce qui suit, nous examinons l'architecture Bleach et fournissons des détails sur ses composants. Comme le montre la Figure A.6, le ux de données d'entrée entre d'abord dans module de détection, ce qui révèle des violations par rapport à des règles dé nies. Le ux de données intermédiaire est enrichi d'informations de violation, que le module de réparation utilise pour prendre des décisions de réparation. En n, le système produit un ux de données nettoyé. A.3.3 Détection de violation Le module de détection de violation vise à trouver des tuples d'entrée qui enfreignent les règles. Pour ce faire, il stocke les tuples dans la mémoire, dans une structure de données e cace et compacte que nous appelons le historique des données. Les tuples d'entrée sont donc comparés à ceux de l'historique des données pour détecter les violations. La Figure A.7 illustre les éléments internes du module de détection: il consiste en A.3. BLEACH: UN SYSTÈME DE NETTOYAGE DE DONNÉES DE FLUX DISTRIBUÉ 113
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  Tout d'abord, nous avons introduit les objectifs de conception et les dé s liés au blanchiment, ce qui montre que le nettoyage des données du ux est loin d'être un problème trivial. Ensuite, nous avons illustré la conception du système Bleach, en nous concentrant à la fois sur la qualité des données (par exemple, les ensembles de règles dynamiques de Bleach et l'approche étatique des fenêtres) et sur les aspects systèmes (par exemple, partitionnement et coordination), requis par la nature distribuée de Bleach. Nous avons également fourni une série d'optimisations pour améliorer les performances du système, en utilisant des structures de données compactes et e caces, et en réduisant les frais généraux de messagerie.En n, nous avons évalué une implémentation prototype de Bleach: nos expériences ont montré que Bleach réalise une faible latence et une précision de nettoyage élevée, tout en absorbant un ux de données sale, malgré la dynamique des règles. Nous avons également comparé Bleach à un système de base fondé sur le paradigme micro-lot et expliqué Bleach performance supérieure.Notre plan pour les travaux futurs est de soutenir un ensemble de règles plus varié et d'explorer d'autres algorithmes de réparation, qui pourraient nécessiter de revoir les structures internes de données que nous utilisons dans Bleach.Dans cette thèse, nous avons étudié le problème de la façon d'accélérer le processus de préparation des données pour la grande analyse des données et fourni des techniques e caces. En raison de la complexité de la préparation des données, nous avons ciblé deux étapes principales dans la préparation des données, le chargement des données et le nettoyage des données, et avons conçu et mis en place deux systèmes, DiNoDB et Bleach, qui peuvent aider les scienti ques à réduire considérablement leur temps consacré à la préparation des données. . Tout d'abord, nous avons introduit DiNoDB, un système distribué pour les requêtes de vitesse interactive sur les chiers de données générés par les cadres de traitement à grande échelle. DiNoDB évite le chargement des données sans perte d'e cacité. Il intègre parfaitement les systèmes de traitement par lots avec un moteur de requêtes interactif distribué, tolérant aux pannes et évolutif. Il utilise un mécanisme de décoration qui améliore Hadoop I/O API standard et permet de créer des métadonnées auxiliaires requises pour la performance de requêtes à vitesse interactive. Notre vaste évaluation expérimentale a démontré que DiNoDB surpaste les autres solutions SQL-on-Hadoop pour une large gamme de charges de travail analytiques ad hoc. En outre, le mécanisme du décorateur peut également être exploité par d'autres systèmes en plus de DiNoDB, ce qui démontre qu'il s'agit d'une idée générale pour accélérer la préparation des données.Deuxièmement, nous avons présenté Bleach, un nouveau système de nettoyage de données de ux. Contrairement à d'autres systèmes de nettoyage de données qui se concentrent principalement sur le nettoyage des données par lot, Bleach e ectue le nettoyage des données directement sur les ux de données sans attendre que toutes les données soient acquises. Bleach vise à assurer un nettoyage qualitatif e cace et précis des données en cas de contraintes en temps réel. Il s'appuie sur des structures de données e caces, compactes et distribuées pour maintenir l'état nécessaire pour réparer les données, en utilisant une version incrémentale de l'algorithme de classe d'équivalence. Notre évaluation a montré les performances supérieures de Bleach par rapport à un système de base construit sur le paradigme micro-lot, ce qui indique que le nettoyage des données en continu est e cace pour accélérer la préparation des données.

A.4 Conclusion

This technique has been independently considered for inclusion in a recent patch to HDFS[START_REF]Discardable Distributed Memory: Supporting Memory Storage in HDFS[END_REF] and in a recent in-memory HDFS alternative called Tachyon[START_REF] Li | Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks[END_REF]. Finally it is now added in the latest version of Apache Hadoop[START_REF] Archivalstorage | Webpage[END_REF] 

Symantec: www.symantec.com

These parameters have been discussed with domain experts, who require a reasonable number of topics for manual inspection.

Native Mahout outputs results of topic modeling in binary through SequenceFileOutputFormat class and needs command vectordump to transform data to text format. In contrast, in our experiment we let Mahout output results in text format directly by replacing SequenceFileOutputFormat class with TextOut-putFormat class (without DiNoDB I/O decorators) or DiNoDBTextOutputFormat class (with DiNoDB I/O decorators)

h p://en.wikipedia.org/wiki/Ubuntu_One

www.eurecom.fr/~tian/dinodb/ubuntuone.html provides details on the dataset schema and the queries we used in our experiments.

Statistics metadata can be passed to Impala by injecting them into the Impala metastore

Note that although we restrict the data stream to have a xed schema in this work, it is easy to extend our work to support a dynamic schema.

The techniques we use are similar to the notion of partitions and compression introduced in Nadeef[START_REF] Dallachiesa | Nadeef: A commodity data cleaning system[END_REF].

Nothing prevents Bleach to be built using alternative systems such as Apache Flink, for example.

In our experiments we also used BART[START_REF] Arocena | Messing up with bart: error generation for evaluating datacleaning algorithms[END_REF], which is a well accepted dirty data generator. However, BART fails to scale to hundreds of millions of tuples due to memory reasons. Thus, we present results obtained using our custom process, which mimics that of BART but scales to large data streams.

The cleaning accuracy of rule r 3 and r 4 is not shown in Figure4.23, as their cleaning accuracy is all 100% with four di erent window sizes.

For our experiment, the performance di erence between the two is negligible.

Besides generating metadata, we also consider to make the stream decorators have more functionalities, such as data cleaning. As we discussed in Chapter 4 through the example of Bleach, stream data cleaning can achieve high cleaning accuracy under real-time constraints, dramatically reducing the latency from data capture to data analysis. It would be very interesting to integrate the stream cleaning system, with the stream metadata decorators. Namely, given a data source in data stream, we plan to build a model of uni ed stream decorators as shown in Figure5.2, which will not only output a cleaned data stream after performing stream data cleaning, but also generate metadata streams including metadata which could be used later in data analysis.

Cette technique a été considérée de manière indépendante pour inclusion dans un patch récent à HDFS[START_REF]Discardable Distributed Memory: Supporting Memory Storage in HDFS[END_REF] et dans une alternative HDFS en mémoire récente appelée Tachyon[START_REF] Li | Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks[END_REF]. En n, il est maintenant ajouté dans la dernière version d'Apache Hadoop[START_REF] Archivalstorage | Webpage[END_REF] 

Aujourd'hui, nous vivons dans un monde où les décisions sont souvent basées sur des applications analytiques qui traitent des ux continus de données. En règle générale, les ux de données sont combinés et résumés pour obtenir une représentation succincte de ceux-ci: les applications analytiques s'appuient sur de telles représentations pour faire des prédictions et pour créer des rapports, des tableaux de bord et des visualisations[START_REF]Spark Summit 2015 Use Case[END_REF][START_REF] Recordedfuture | Webpage[END_REF][START_REF] Gdeltproject | Webpage[END_REF]. Toutes ces applications s'attendent à ce que les données et leur représentation respectent certains critères de qualité. Les problèmes de qualité des données interfèrent avec ces représentations et faussent les données, entraînant des résultats d'analyse trompeuse et des décisions potentiellement mauvaises.En tant que tel, une gamme de techniques de nettoyage de données ont été proposées récemment[START_REF] Khayyat | Bigdansing: A system for big data cleansing[END_REF]127,128]. Cependant, la plupart d'entre eux se concentrent sur le nettoyage de données "batch", en traitant des données statiques stockées dans des entrepôts de données, qui prennent beaucoup de temps. Ils négligent la classe importante de données en continu. Dans ce section, nous abordons cette lacune et nous nous concentrons sur ux de données de ux. Le dé dans le nettoyage des ux est qu'il nécessite des garanties en temps réel ainsi que des exigences accuracy élevées, des exigences qui sont souvent en désaccord.

Notez que bien que nous limitions le ux de données pour avoir un schéma xe dans ce travail, il est facile d'étendre notre travail pour prendre en charge un schéma dynamique.
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A.2.5 Le moteur de requête interactif DiNoDB À un niveau élevé (voir la gure A.3), le moteur de requêtes interactif DiNoDB se compose d'un ensemble de noeuds db, orchestrés à l'aide d'un cadre de traitement parallèle massivement (MPP). Dans notre implémentation de prototype, nous utilisons le framework MPD de Stado [14], qui intègre bien les moteurs de base de données PostgreSQL. DiNoDB assure la localisation des données en co-localisant DiNoDB noeuds avec DataNodes HDFS. Dans ce qui suit, nous décrivons d'abord le client DiNoDB et les noeuds DiNoDB.
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Appendix A Summary in French

A.1 Introduction

A.1.1 Contexte

Nous vivons à l'ère du déluge de données, où de vastes quantités de données sont générées. Les données apportent d'énormes valeurs et avantages, non seulement dans des domaines scienti ques comme l'astronomie ou la biologie, mais aussi dans des domaines qui sont étroitement liés à notre vie quotidienne, comme le commerce électronique et le transport. Les entreprises peuvent utiliser leurs données collectées pour prendre en charge les décisions humaines, découvrir les besoins des clients et créer de nouveaux modèles commerciaux. Avec l'amélioration technologique au cours des dernières décennies, des ensembles de données massifs peuvent être stockés à faible coût. Par conséquent, de plus en plus d'entreprises commencent à stocker autant de données qu'ils pourraient collecter. Cependant, la conversion des données en connaissances précieuses est encore une tâche di cile.

Les systèmes de gestion de base de données relationnelle (SGBD relationnels) étaient les outils de taille unique pour l'analyse de données au siècle dernier [START_REF] Stonebraker | one size ts all": an idea whose time has come and gone[END_REF]. Dans leur modèle relationnel, toutes les données sont représentées en termes de tuples, regroupées en un ensemble de tables qui sont liées les unes aux autres. Chaque table a un schéma prédé ni que tous les tuples de la table doivent suivre. Au l des ans, les SGBD relationnels ont soutenu avec succès un grand nombre d'applications centrées sur les données avec des fonctionnalités et des exigences très di érentes.

Cependant, au moment où nous entrons au 21ème siècle, le SGBD traditionnel devient un ajustement médiocre dans de nombreux scénarios d'application. L'une des principales raisons pour lesquelles le SGBD traditionnel est obsolète est l'augmentation exponentielle des données. Google, en tant qu'entreprise basée sur les données, traite plus de

A.2.6 Conclusion

Dans ce travail, nous avons présenté l'architecture de DiNoDB, un système distribué pour les requêtes de vitesse interactive sur les chiers de données temporaires générés par des cadres de traitement par lots à grande échelle. Comme le montre notre évaluation expérimentale approfondie, pour les caisses d'utilisation DiNoDB-requêtes ad hoc sur une fenêtre de traitement étroite, notre système surpasse les solutions actuelles SQLon-Hadoop. DiNoDB utilise un mécanisme de décorateur qui améliore Hadoop I/O API standard et permet de créer des métadonnées auxiliaires requises pour la performance des requêtes à vitesse interactive. De plus, DiNoDB I/O decorators s'intègre parfaitement aux cadres existants et aux systèmes de stockage distribués.

Notre évaluation expérimentale, que nous faisons à la fois sur les bases de données synthétiques et sur le monde réel, souligne les principaux avantages de DiNoDB dans un certain nombre de cas d'utilisation importants, ce qui le rend adapté à une large gamme de charges de travail analytiques ad hoc.

A.3 Bleach: un système de nettoyage de données de ux distribué

A.3.1 Introduction

Data Stream

Ingress Router Egress Router