N
N

N

HAL

open science

Cache, process and forward in Information-centric
networking

Leonce Mekinda Mengue

» To cite this version:

Leonce Mekinda Mengue. Cache, process and forward in Information-centric networking. Networking

and Internet Architecture [cs.NI]. Télécom ParisTech, 2016. English. NNT: 2016ENSTO0075 .

01794776

HAL Id: tel-01794776
https://pastel.hal.science/tel-01794776
Submitted on 17 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/tel-01794776
https://hal.archives-ouvertes.fr

Parislech TELECOM

INSTITUT DES SCIENCES ET TECHNOLOGIES P('] I\I HTech

PARIS INSTITUTE OF TECHNOLOGY
= ¥) Pa
Z it

2016-ENST-0075

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité “Informatique et Réseaux”

présentée et soutenue publiquement par

Léonce MEKINDA

le 01/12/2016

Cache, Process and Forward
in Information-Centric Networking

Mécanismes de Cache, Traitement et Diffusion dans
les Reseaux Centrés sur I'Information

Jury

M. Emilio LEONARDI, Professeur, Politecnico di Torino Rapporteur
M. Fabio MARTIGNON, Professeur, Université Paris-Sud Rapporteur
Mme Neiva LINDQVIST, Senior Researcher, Ericsson Examinateur
M. James ROBERTS, Senior Researcher Examinateur
M. Dario ROSSI, Professeur, TELECOM ParisTech Examinateur
M. Alain SIMONIAN, Research Engineer, Orange Labs Examinateur
M. Thomas BONALD, Professeur, TELECOM ParisTech Directeur de these
M. Luca MUSCARIELLO, Principal Engineer, Cisco Systems Co-directeur de thése

TELECOM ParisTech

Ecole de I’'Institut Mines-Télécom - Membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

11

Acknowledgement / Remerciements

Thank you Prof. Emilio Leonardi and Prof. Fabio Martignon to have consented to evalu-
ating this manuscript. I am deeply honoured by the participation of Dr. Neiva Lindqvist,
Dr. James Roberts, Prof. Dario Rossi and Dr. Alain Simonian in my Ph.D. evaluation
committee.

I would thank Luca, who offered me this unique opportunity to fulfill a lifetime accom-
plishment, believed in me and inspired me along this journey. Thanks to Thomas, who
honoured a young scientist in accepting to relentlessly oversee his humble work. I also
hereby praise Giovanna’s brilliance and precious insights.

Deep thanks to Philippe Olivier who kindly reviewed this manuscript. Nabil, Eric, Chris-
tian, Mustapha, Adam, Nancy, Yannick, Felipe, Yassine, Deborah, Claudio, Bruno, Or-
ange TRM team as a whole and beyond, I am definitely indebted to your kindness. To all
LINCS researchers go my immense admiration and gratitude.

To my loving family and Him for all.

ii

il

Abstract

This thesis investigates how making content caching and forwarding latency-aware
can improve data delivery performance in Information-Centric Networks (ICN). We in-
troduce a new very effective contribution to the existing content caching toolset. The
designed mechanism leverages retrieval time observations to decide whether to store an
object in a network cache, based on the expected delivery time improvement. We demon-
strate that our distributed latency-aware caching mechanism, LAC+, outperforms state of
the art proposals and results in a reduction of the content mean delivery time and standard
deviation of LRU caches by up to 60%, along with a fast convergence to these figures.

In a second phase, we conjointly optimize the caching function and the multipath
request forwarding strategies as both coexist in ICN at network level and should rein-
force each other. To this purpose, we introduce the mixed forwarding strategy LB-Perf,
directing the most popular content towards the same next hops to foster egress caches
convergence, while load-balancing the others.

Third, we address ICN fairness to contents. We show that traditional ICN caching,
which favors the most popular objects, does not prevent the network from being globally
fair, content-wise. The incidence of our findings comforts the ICN community momen-
tum to improve LFU cache management policy and its approximations. We demonstrate
that in-network caching leads to content-wise fair network capacity sharing as long as
bandwidth sharing is content-wise fair.

Finally, we contribute to the research effort aiming to help ICN Forwarding Informa-
tion Base scale when confronted to the huge IoT era’s namespace. We propose AFFORD,
a novel view on routing in named-data networking that combines machine learning and
stochastic forwarding. More specifically, we show that compressing the Forwarding In-
formation Base into bitwise trie-indexed Artificial Neural Networks accelerates next hop

lookup and reduces Forwarding Information Base’s size by orders of magnitude.

Keywords: Information-Centric Networks; Performance evaluation; Cache management;

Transport protocol; Forwarding; Machine learning.

Résumé

Ce travail de these s’est tout d’abord attaché a comprendre comment la prise en compte
du temps de téléchargement, autrement dit, de la latence, lors de la mise en cache ou de
la transmission de données pouvait contribuer aux performances du téléchargement dans
les réseaux de caches dont ICN. Nous y introduisons un mécanisme distribué novateur
qui décide de I’opportunité de conserver un objet en considérant que plus il a été long a
télécharger plus intéressant il semble de le soumettre au cache sous-jacent. Nous montrons
que ce nouveau mécanisme surpasse en de nombreux points I’état de 1’art, que ce soit du
point de vue de la réduction du temps moyen de téléchargement a partir de caches LRU, et
de son écart-type (jusqu’a —60%), que de celui de la vitesse de convergence vers ceux-ci.
La grande simplicité dudit mécanisme pourrait permettre son intégration immédiate aux
sein d’architectures réseaux existantes car ne nécessitant aucun amendement de protocole.

Dans une seconde phase, nous avons optimisé conjointement les fonctions de mises
en cache et de distribution multi-chemin de requétes de contenus, qui d’ailleurs coexistent
dorénavant au sein de la couche réseau en ICN, afin qu’elles se renforcent mutuellement.

Troisiemement, nous avons étudié 1’équité vis-a-vis des contenus au sein des réseaux
de caches et plus particulierement, d’ICN. Il en ressort qu’ICN tel quel préfigure un réseau
a-équitable malgré le recours extensif a des algorithmes de gestion de caches qui favo-
risent les contenus les plus populaires. Seule suffit une allocation équitable de la bande
passante entre les contenus pour que 1’équité d’ICN soit complete.

Notre derniere contribution vise a aider au passage a I’échelle d’ICN dans contexte ou
deviennent réalités I’Internet des Objets et son espace de nommage illimité. Nous avons
proposé€ une approche nouvelle au routage dans les réseaux centrés sur I’information,
nommée AFFORD, qui combine apprentissage automatique et diffusion aléatoire. Nous
montrons que comprimer la base d’information de transmission (FIB) ICN, en la segmen-
tant en plusieurs réseaux de neurones indexés par un arbre préfixe, accélere la recherche

de nom et réduit la taille de la structure FIB de plusieurs ordres de grandeur.

Mots-clés : Réseaux Centrés sur I’'Information ; Evaluation de performances ; Gestion de

caches ; Protocoles de transport ; Distribution multi-chemin ; Apprentissage automatique.

Abstract

Résumé

Contents

List of publications

1 Introduction
1.1 Today’s

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

Internet Lo
An architecture that no longer fits itsusage
The rampant threat of host-centric Internet collapse
The dawn of HTTPS-by-default
Excessive latency oL
Weak multipath support L.
A non-nativereliefby CDNs

1.2 5G,an opportunity e e e

1.3 Information-Centric Networking

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7

Content-Centric / Named-Data Networking
NDNoperations i
NDNsecurity o o
NDNrouting e
NDN forwarding,
Mobility inNDN oo
CachinginNDNo oo

1.4 Problem statement e e

vii

iv

1.5

1.6

Our contributionso
1.5.1 LAC/LAC+: Latency-aware caching
1.5.2 FOCAL.: joint Forwarding and Caching with Latency-awareness .
1.5.3 Fairness in Information-Centric Networking
1.5.4 AFFORD: Ask For Directions, machine learning-based routing

Mathematical foundations
1.6.1 Elements of probability theory
1.6.2 Queuing theory fundamentals
1.6.3 Lyapunov optimization
1.6.4 Nonlinear optimization
1.6.5 Cache performance analysis

1.6.6 Performance analysis of Networks of Caches

2 LAC/LAC+: Latency-Aware Caching Strategies in ICN
Can delivery in ICN be faster ¢

2.1
22
23
24

2.5
2.6

Introduction
Related work
Latency-aware heuristics L.
Analysis L
241 ASsumptions e e
242 MiSSTatio e e e e
243 Lowerbound
Simulation

Conclusion and futurework

3 FOCAL: Joint Forwarding and Caching with Latency-awareness in ICN
Can delivery in ICN be much faster ¢

3.1
3.2
33
34

Introduction
Related work L
Problem statement
Optimal algorithmdesign
3.4.1 Optimal algorithm design guidelines through analytic insight . . .

viii

37
39
40
41
42
43
44
47
52
o8

59
61
63
64
66
67

3.5

3.6
3.7

3.8

3.4.2 Numerical solutions 72

3.4.3 Maximizing the hit ratio of dynamic caches through optimal bundling 75

FOCAL e 82
3.5.1 Latency-aware caching strategies 82
3.5.2 Latency-aware forwarding strategies 84
Performance analysis Lo 89
Simulation 97
3.7.1 Linear topology with forwarding branches 99
3.7.2 Fat tree with direct access to content repositories 105
3.7.3 US backbone-like scenario 106
Conclusion L 107

4 On the Fairness of ICN

Can ICN be fair ¢ 111
4.1 Introduction 113
42 Relatedwork 114
4.3 Cache Network Model 115

4.3.1 Modelassumptions 115
43.2 Cachenetwork capacity 118
4.3.3 Problem formulation L. 119
434 Solution e 121
4.4 Toyexamples e e e 125
44.1 Client/Servertandem 125
4.4.2 Client/Cache/Serverbus 126
45 Evaluation e e e 130
4.5.1 Client/Cache/Serverbus 131
452 Asimplenetwork Lo 131
4.6 Conclusion e 135

5 Supervised Machine Learning-based Routing for NDN
Can ICN scale ? 137

5.1

Introduction 139

X

5.2 Relatedwork
5.3 AFFORD e
5.3.1 AFFORD supervised learning
5.3.2 AFFORD forwarding
54 Analysis e e
5.5 Evaluation L
551 Tiny-sizeFIB o
5,52 Medium-size FIB
553 BigsizeFIB
5.6 Conclusion and futurework L Lo
6 Conclusion and future work
Bibliography
Appendices
A ZIMPL Mathematical Programs
A.1 ZIMPL code forsection3.4.2
A.2 ZIMPL code for section3.4.3.0
Appendices
B Résumé étendu
B.1 Information-Centric Networking
B.1.1 Content-Centric / Named-Data Networking
B.1.2 Fonctionnementde NDN
B.1.3 Transmissiondans NDN
B.1.4 CachinginNDN
B.2 Contributions
B.3 LAC/LAC+: Algorithmes de gestion de cache sensibles a la latence
B.3.1 Description
B.3.2 Analyse

155

159

177

177
178
179

179

B.4 FOCAL: Transmission and gestion de cache conjointes et sensibles a la

latence L. 196
B.4.1 Algorithmes de gestion de caches sensibles a la latence 197
B.4.2 Stratégies de transmission sensibles a lalatence 197
B.5 Equité dans les réseaux centrés sur I'information 203
B.5.1 Cache Network Model 203
B.6 AFFORD: Ask For Directions, machine learning-based routing 209

xi

xii

Publications

The content of this thesis was published in two workshop [Carofiglio et al., 2015a] [Carofiglio
et al., 2015b], two conference [Carofiglio et al., 2015¢c] [Mekinda and Muscariello, 2016]
proceedings and a journal [Carofiglio et al., 2016]. A chapter was submitted to a confer-

ence [Bonald et al., 2017]. All are peer-reviewed international venues.

List of publications

Bonald, T., Mekinda, L., and Muscariello, L. (2017). On the Fairness of Information-
Centric Networking. In 36th Annual IEEE International Conference on Computer
Communications, IEEE INFOCOM 2017 (Under review). San Francisco, CA, USA.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2015a). Analysis of latency-aware
caching strategies in information-centric networking. In ACM SIGCOMM CoNEXT
Workshop on Content Caching and Delivery in Wireless Networks. Heidelberg, Ger-

many.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2015b). FOCAL: Forwarding and
caching with latency awareness in information-centric networking. In IEEE Globe-
com 2015 Workshop on Information Centric Network Solutions for Real-World Ap-
plications, IEEE GLOBECOM 2015 ICNS. San Diego, CA, USA.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2015c). LAC: Introducing latency-
aware caching in information-centric networks. In IEEE 40th Conference on Local
Computer Networks, IEEE LCN 2015, pages 422—425. Clearwater Beach, FL, USA.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2016). Joint Forwarding and Caching

in Information-Centric Networking. Computer Networks.

Mekinda, L. and Muscariello, L. (2016). Supervised Machine Learning-based Routing
for Named Data Networking. In IEEE GLOBECOM 2016. Washington, DC, USA.

Chapter 1

Introduction
Contents
1.1 Today’s Internet 8
1.1.1 An architecture that no longer fits its usage 8
1.1.2 The rampant threat of host-centric Internet collapse . . . 8
1.1.3 The dawn of HTTPS-by-default 8
1.1.4 Excessive latency oo oL 9
1.1.5 Weak multipath support 10
1.1.6 A non-native relief by CDNs 11
1.2 5G, anopportunity 000 11
1.3 Information-Centric Networking 12
1.3.1 Content-Centric / Named-Data Networking 12
1.3.2 NDN operations 13
1.3.3 NDNsecurity 14
1.34 NDNrouting 15
1.3.5 NDN forwarding 16
1.3.6 Mobility in NDN 17
1.3.7 Cachingin NDN 18
1.4 Problem statement, 22

1.5 Owur contributions, 22
1.5.1 LAC/LAC+: Latency-aware caching 23
1.5.2 FOCAL: joint Forwarding and Caching with Latency-awareness 23
1.5.3 Fairness in Information-Centric Networking 24

1.5.4 AFFORD: Ask For Directions, machine learning-based

routing 24

1.6 Mathematical foundations 25
1.6.1 Elements of probability theory 25
1.6.2 Queuing theory fundamentals 27
1.6.3 Lyapunov optimization 31
1.6.4 Nonlinear optimization. 31
1.6.5 Cache performance analysis, 32
1.6.6 Performance analysis of Networks of Caches 35

Information-Centric Networking (ICN) [Jacobson et al., 2009b] is an emerging net-
work communication paradigm intended to alleviate the unsustainable growth of the cur-
rent Internet load. As key traits, (i) it replaces inside the network layer the “where” with
the “what”, in achieving routing and forwarding on content names; (ii) it uses exten-
sively in-network caching. While less and less of the IP traffic remains cacheable due
to end-to-end communication channel encryption [Naylor et al., 2014], ICN through, for
example, its NDN [Zhang et al., 2014] implementation offers a promising alternative in
ignoring user identity (no host address) and authenticating content provider from data
packets (digital signature). Therefore, every content item can remain cacheable without
sacrificing user privacy and content verification. This is important because inserting cache
memories across the communication data path between different processing elements has
been demonstrated over time to be a reliable way of improving network performance by
localizing - especially popular - content at network edge and so reducing link load and

retrieval latency.

Such a latency minimization, or building for virtual zero latency as commonly re-
ferred to, is one of the pillars of 5G network architecture design and is currently fostering

research work in this space.

This thesis is a contribution to this effort. It tackles various aspects of NDN: (i) we
propose, analyze and implement two latency-aware caching algorithm LAC and LAC+
that significantly shrink content delivery time; (ii) we propose, analyze and implement
a joint latency-aware caching and forwarding algorithm, FOCAL, aiming at the perfor-
mance enhancement of caching algorithms; (iii) we analyze the fairness of ICN, given
the caching ubiquity it entails; (iv) and we propose an artificial neural network-based

forwarding approach to help NDN’s FIB scale in a global Internet namespace.

The remaining of the chapter will present in more details the Internet as we know it,
with its weaknesses; What are the additional challenges 5G introduces; Where ICN can
help; Then comes a statement of the problems this thesis addresses, an overview of our
contributions and finally a few mathematical prerequisites for understanding the modeling

part of our work.

1.1 Today’s Internet

1.1.1 An architecture that no longer fits its usage

The Internet basically interconnects machines to transfer data in a client-server commu-
nication mode. For this, it relies on the TCP/IP protocol stack, which provides machine
addressing and communication primitives. While this architecture has been successful
in the earlier Internet stages, for remote access (Telnet, SSH), file transfer (FTP), Inter-
net Relay Chat (IRC) sending and fetching e-mails (SMTP, POP3, IMAP4 protocol) or
browsing the textual World Wide Web (HTTP) etc., it no longer fits the Internetwork
actual usage. [Cisco, 2016] reports that the Internet is getting overwhelmingly used for
multimedia content browsing or video downloading/streaming nowadays (more than 80%

of the total traffic), making the host serving content by far less relevant than content itself.

1.1.2 The rampant threat of host-centric Internet collapse

Very few hosts and edge networks would afford the thousands of parallel flows and the
resulting congestion most viral videos generate. Moreover, since [Floyd and Fall, 1999]
urged to curate TCP-unfriendly, unresponsive or bandwidth greedy flows, no definitive
solution has emerged to durably protect the host-centric Internet from congestion collapse
in case of competing congestion control algorithms, best-effort protocols or misbehaving
senders and receivers [Papadimitriou et al., 2011; Habib et al., 2016]. This weakness has
even been the ground for an effective means of cyberwarfare known as Distributed Denial
of Service (DDoS) attacks [Ben-Porat et al., 2013]. They is a worrying increase of such
attacks, predicted to reach 107 a year by 2017. According to [Cisco, 2016], modern DDoS

generates in average ~ 1 Gbps of malicious traffic very few organizations can resist.

1.1.3 The dawn of HTTPS-by-default

A host-centric Internet impedes massive multicast delivery over reliable transport, as a
consequence of resource limitation at content servers but not only. Transport Layer Secu-
rity (TLS)’s point-to-point cryptosystem prevents secure sessions from being replicated
and diffused from the network edge. It is typically a barrier experienced by any ISP who
tries to scale-down some YouTube traffic. Actually, half the World Wide Web traffic is

8

carried over SSL/TLS and major Internet actors like Google, Netflix and Facebook have
defaulted to HTTPS [Naylor et al., 2014]. The same paper emphasizes that HTTPS-as-
unique-vector nullifies value-added services like in-network caching, thus would yield a
minimum 15% traffic increase if a solution is not found. [Paschos et al., 2016] pertinently
objected that the current use of content provider representatives such as caching black-
boxes to handle encryption matters within operators networks might not be satisfactory.
The example of Google Global Cache is illustrative. They leave operators helpless in their
legitimate intend to conduct their own network optimization.

Multi-context TLS (mcTLS) [Naylor et al., 2015] has recently been proposed to recon-
cile TLS with middleboxes, in a way some may not agree with. mcTLS security protocol
grants trusted middleboxes access to the traffic, unencrypted. Not prone to that obvious
privacy exposure is [Sherry et al., 2015]’s BlindBox, which enables Deep Packet Inspec-
tion (DPI) over encrypted traffic. Blindbox HTTPS scans encrypted traffic for encrypted
keywords. For this, during a rather slow HTTPS connection setup, it encrypts its ruleset
without disclosing neither the rules to the endpoints (thanks to oblivious transfer [Naor
and Pinkas, 1999]) nor the private key shared by the communicating endpoints to the
middlebox (thanks to Yao garbled circuits [Yao, 1986]). Its slow minute-scale initializa-
tion restricts the scope of the protocol to persistent secure tunnels. More important for
our study, since BlindBox HTTPS does not provide means for translating the encrypted

payload from one secure session to another, it does not enable caching.

1.1.4 Excessive latency

In an extensive survey, [Briscoe et al., 2014] reviewed the roots of Internet latency in
a broad sense. They identified (i) structural delays like those caused by sub-optimal
routes or name resolution; (i1) processing delays generated by protocol stacks or operating
systems; (iii) physical/link layer-related delays due to medium acquisition, signal prop-
agation, scheduling, queuing, bufferbloats; (iv) those resulting from network/transport
protocol operations like NAT setup, connection initialization and Head-of-Line locking
occurring during packet loss recovery. A few remedies still need to convince a majority
of Internet stakeholders.

Standard TCP algorithms like New Reno and Cubic are prone to unnecessary delay.

These algorithms only react to packet loss, which often occurs at route bottlenecks due

9

to tail drops, i.e., when full transmission buffers start dropping incoming packets. Al-
though a wider adoption of Active Queue Management (AQM) and Explicit Congestion
Notification (ECN) would have prevented packet drops and subsequent retransmissions,
TCP flavours exploiting these techniques, DataCenter TCP (DCTCP) for example, remain
underemployed.

Also, TCP Fast Open (TFO) [Radhakrishnan et al., 2011] offers to save a Round Trip
Time (RTT) in relaxing the three-way handshake by conveying data to applications in an
opening SYN packet, and mitigating security risks with a cryptographic cookie. However,
it cannot detect duplicated connections since a TFO cookie encloses the client’s IP address
the server encrypted and sent during a precedent full handshake.

Quick UDP Internet Connections (QUIC) [Hamilton et al., 2016] seems to gather in-
sights from all previous attempts in turning protocol bootstraps into O-RTT handshakes by
means of a source-address token similar to TFO’s cookie. QUIC conveys Forward Error
Correction (FEC) packets to avoid as much as possible the retransmission of lost packets.
Congestion control may consist of CUBIC (by default) or TCP-Reno or Packet pacing. A
few works have demonstrated that the expected content delivery time improvements only
show up in very lossy networks [Carlucci et al., 2015; Megyesi et al., 2016]. Moreover,
[Lychev et al., 2015] highlighted QUIC’s fundamental vulnerability to rather simple DoS
attacks exploiting source-address token replay, or off-path byte injection attacks dropping
client connections.

Interestingly, [Singla et al., 2014, 2015] pointed out that fiber distance is up to two
times longer than road distance, inflating the latency encountered in upper network layers.
They examine the possibility of deploying nationwide lightspeed microwave networks.
Our work will not address this aspect. We will focus on algorithmic improvements given

physical deployments.

1.1.5 Weak multipath support

Reliable multipath forwarding is unnatural in the current Internet due to the fact that pack-
ets do not mandatorily follow the same paths back and forth. This IP feature, which hap-
pens to be a limitation for multipathing reliable transport protocols like TCP, imposes at
least some tunneling overhead to guarantee a successful merge of subflows into their orig-
inal master flow [He and Rexford, 2008; Qadir et al., 2015]. It appears to be efficient only

10

for long-lasting flows. Such a poor multipath support is rather unfortunate, as multipath
forwarding is an interesting means of exploiting multiple routes for bandwidth aggrega-
tion, load balancing and failover purposes, especially in challenging environments like
those covered by Delay-and-Disruption-Tolerant Networking (DTN) [Cerf et al., 2007].

1.1.6 A non-native relief by CDNs

The precarious situation we portrayed justifies the extensive resort to overlay networks,
CDNs. A Content Delivery Network or CDN consists in content caches and replica spread
closer to the users. They are populated in order to anticipate the users needs and accelerate
the delivery of content of interest. In fact, almost half the Internet traffic crosses CDNs
and [Cisco, 2016] predicts a steady growth to that trend, reaching two-thirds by 2020. It is
thanks to CDNss that the Internet still scale, by the confinement of a significant part of the
traffic near the Internetwork edge. CDNs have somewhat paved the way to Information-
Centric Networking, this thesis’ cornerstone. However, the key difference is that CDNs
are overlay, often commercially-operated networks. They often rely on DNS tricks or IP
anycast to redirect request towards the closer content replica, so unnatural to the IP world

that it inflates network complexity.

1.2 5G, an opportunity

The Fifth Generation Mobile Networks is the next major evolution of mobile systems.
It is envisioned to fulfill unprecedented goal in terms of latency, data rate, number of
devices and energy consumption. Among key requirements were identified [Maternia
and El Ayoubi, 2016]: at least 1 Gbps of user data rate, very low latency : 1-10 ms
end-to-end round trip delay, up to a hundred times more connected devices, 90% less
energy consumption, up to 10 years of battery life and more than 99% availability. Several
research works [Paschos et al., 2016; Augé et al., 2015; Kutscher, 2016] point towards

ICN as candidate technology for sustaining such stringent data rate and latency figures.

11

1.3 Information-Centric Networking

Information-Centric Networking aims at re-engineering the Internet to make it fit its cur-
rent and future challenges. First introduced by [Jacobson et al., 2009b], this new paradigm
advocates the shift from a host-centric layer-3 communication model to a named-content-
centered scheme.

This seminal work acknowledged that, decades ago, networking aimed at sharing
scarce and expensive resources such as high-speed tape drives or supercomputers. Ad-
dressing machines into packet headers to tell the network where to convey them to, made
sense then. The purpose of networking has fundamentally changed since, as computing
power and data storage have been democratized. Nowadays, the Internet shares con-
tent/information and must be told what to deliver.

Whereas the World Wide Web, peer-to-peer (P2P) and CDNs have paved the way
for named-data distribution over the existing Internet, ICN breakthrough dwells in its
ubiquity. ICN ambitions to be run either as an overlay infrastructure like its predecessors
or as a layer-3 protocol, capable of replacing IP wherever IP operates today.

The ICN research community expects that revamping networking with this updated
mindset shall provide intrinsic security, mobility support, as well as enhanced scalability
and robustness.

Among the architectures that adopted this approach, there are Data-Oriented Net-
work Architecture (DONA) [Koponen et al., 2007] and Network of Information (NetInf)
[Ahlgren and al., 2008]. They differ from the two most prominent architectures, CCN and
NDN, in requiring content names to be published and subscribed for into a tree of trusted
Resolution Handlers (DONA) or a Distributed Hash Table (NetInf).

1.3.1 Content-Centric / Named-Data Networking

Content-Centric Networking (CCN) [Jacobson et al., 2009b] and Named-Data Network-
ing (NDN) [Zhang and al., 2010; Zhang et al., 2014] are two prominent and very similar
Information-Centric Networking architectures. NDN started as a fork of CCN’s codebase
CCNx, to be almost entirely redeveloped later on. However, from the architectural point
of view, CCN and NDN have not diverged. In both architectures, content chunks are

identified by unique names, requested via Interests packets and retrieved as Data pack-

12

ets through (inter)faces. Because every packet encloses its name, it can be persisted at
every hop into a Content Store, a cache, and delivered from the local node to subsequent

requesters.

Ubiquitous caching «

Ingress
Data1 served by local
INtErest] mumt——-
Datal
interest2 ﬁ > [fac S,

Data 2
\ '

2l

Stateful data plane

(seamless multicast and multipath)

Data-level security
NDN/CCN node

Figure 1.1 — An NDN/CCN node

1.3.2 NDN operations

As depicted in Fig.1.1, every crossed node, NDN/CCN keeps track in a Pending Interest
Table (PIT) of the faces Interests originate from, the time this occurred and the content
name they request. If a content chunk is found into the Content Store, called a cache hit
event, it is delivered using the state information from the corresponding PIT entry. On the
other hand, if that content chunk is not yet or no longer available in the Content Store, this
event is denoted as a cache miss. Therefore, a Longest Prefix Match of the content name
is looked for into the node’s Forwarding Information Base (FIB). The FIB, populated by
a name-based routing protocol, provides for every routable name prefix, egress faces to
the missing chunk. Then, the Interest packet gets forwarded according to the configured
strategy that might be, for example, Best Route, Broadcast, Load Balancing (LB) or Load
Balancing with Persistent Forwarding (LB-Perf) we analyze in this thesis. When the

13

corresponding Data packet comes back, it is handled by a cache management mechanism
such as LAC+ we advocate in this work, and finally sent back to its sequesters while
the related PIT entry is deleted. Because of their prominence, common fundamentals
and overall operations, both NDN and CCN will be referred to as NDN for conciseness

throughout the document.

1.3.3 NDN security

A raison d’étre of NDN is the need to build next-generation network protocols with secu-
rity in mind. Still, part of the protection brought by NDN is implicit, being a consequence
of its architecture. NDN’s explicit security features are the product of decades of research

and real-world deployments in public-key cryptography.

Implicit security induced by NDN’s architecture

First, NDN flow balance that requires every single Data packets to be requested by a
single matching Interest packet. As a consequence, it mitigates those of Internet DoS that
amplify attackers probes. PIT aggregation and caching also contribute to DoS mitigation
in filtering storms of interests that address the same object. ICN stateful forwarding plane
may help alleviating routing information poisoning in allowing distributed Round-Trip
Time (RTT) or Pending Interest- based forwarding strategies [Carofiglio et al., 2013c].
However, one of the most harmful DoS attack against an ICN router would be flooding
the PIT with unsatisfiable Interests. Since the identity of the attacker is unknown, it may
seem hard to find targeted countermeasures to this threat. Fortunately, NDN allows, by
bounding the number of pending Interests per face and per prefix, and backpropagate a
flooding containment to the faces directly in touch with the attackers [Gasti et al., 2013].
Not carrying source address helps customer’s identity privacy, especially in dense
networks, but does not seals it. The first hop router still able to unambiguously identify

the customer attached to its ingress face.

Explicit security features in NDN

Beyond these features induced by NDN architecture, every data packet’s name and pay-

load are cryptographically signed for three major benefits: Data integrity ensuring that the

14

data has not been altered, Producer authentication verifying the identify of who signed the
packet, Data validation ensuring data is the genuine reply to the expressed Interest.

While the current Internet security model (IPsec, SSL/TLS) secures entire sessions,
ICN applies its data-centric approach to security in securing the data itself. This fine-
grained perspective allows different trustees for different pieces of content. On a Web
page, the tier signing a chart is not necessarily the text writer or the video producer.
Content-centric security also allows every network stakeholder to check signature, not
only communicating endpoints. This, for instance, mitigates the spread of tampered con-
tent since every intermediate router can check what it stores and forwards. Every Data
packet refers to the certificate that signed it. A data packet conveying a public key might
be such a certificate in its own right, being itself signed. The choice of a trust model
is flexible. Examples are the classical Public Key Infrastructure (PKI) [Housley et al.,
2002], or Certification Authority-free alternatives such as PGP’s Web of Trust [Blaze
et al., 1996] or the Simple Public-Key Infrastructure/Simple Distributed Security Infras-
tructure (SPKI/SDSI) [Ellison et al., 1996].

However, it might be argued that per-packet signature verification is impracticable at
high wire speed due to its computational complexity [Ghali et al., 2014]. Merkle hash
trees [Merkle, 1987] offer the ability to sign and verify signature on a group of packets
hashes once, at a parent node. Given that the cost of Public-key algorithms such as RSA-
2048 is, at its best, an order of magnitude higher than the cost of hash functions like
SHA-1 [Jang et al., 2011], the improvement must be striking.

Data confidentiality is not an NDN feature per-se but is of the responsibility of the ap-
plications. However application-led encryption for data confidentiality is to the detriment

of content caching.

1.3.4 NDN routing

NDN can reuse current Internet’s routing protocols such as OSPF or BGP, differing by
advertising name prefixes instead of IP addresses. However, the default NDN routing pro-
tocol is Named-data-based Link State Routing (NLSR) [Hoque et al., 2013]. In NLSR,
every router pulls, via Interest packets, routing updates encapsulated in signed Data pack-
ets, in conformance with NDN conversational model. By extending Dijstra’ shortest path

algorithm, NLSR supports multiple next-hops per prefix while OSPF can only compute

15

single paths. Moveover, NLSR restricts the synchronization of link state information with
neighbours only to minimize the dissemination cost.

While NLSR ultimately makes every router aware of every prefix, [Hemmati and
Garcia-Luna-Aceves, 2015] recently proposed for scalability purpose, the Link State Con-
tent Routing protocol (LSCR). LSCR’s key innovation is to restrict the awareness of each
router to the nearest prefix replica.

An interesting alternative being explored is hyperbolic routing [Kleinberg, 2007]. The
argument is that due to its heterogeneity and strong clustering, NDN namespace has an
underlying hyperbolic topology, like the World Wide Web and various complex networks
[Krioukov et al., 2010]. Hyperbolic routing maps nodes and prefixes onto an hyperbolic
metric space and proposes to route packets towards the neighbour that is the closest to
the prefix, only by distance calculation between two hyperbolic (radius, angle) coordinate
pairs. Instead of updating every router with the whole network topology (nodes, pre-
fixes and link states), routers just maintain a list of their neighbours coordinates, a list of
prefixes coordinates for deducing next hops. The expected benefit is much less routing
information updates, since coordinates do not change upon network conditions or topol-
ogy changes and because of NDN forwarding plane ability to dynamically select alternate
hops. A weakness of this approach is that the best hyperbolic distance might be much
longer than the shortest path. Moreover, this type of coordinate-based greedy forwarding
still not guarantees content delivery as there might be local minima cases where none of
a node’s neighbours is closer to the destination than the node itself. [Papadopoulos et al.,
2010] sees a solution to this last issue in forwarding trapped packets to the closest-to-the-

destination node among the least visited neighbours.

1.3.5 NDN forwarding

An IP router has no visibility on the receiver’s flow-control window and sender’s conges-
tion windows. It can not regulate ongoing TCP sessions that are end-to-end by design.
The specificity of NDN forwarding plane is its stateful nature. The innovative PIT struc-
ture keeps track, hop-by-hop, of pending Interests and their incoming faces i.e., every
ongoing transfer. Every Data packet takes the exact reverse path of the route their Interest
counterpart took. Since a nonce field uniquely identifies Interest packets addressing the

same object, the PIT structure can detect and drop looping Interests.

16

Given these architectural assets, every NDN node provides one on more forwarding
algorithms within what is called a strategy layer.

Two types of algorithms essentially operate in that layer: a receiver-located controller,
often of the Additive-Increase-Multiplicative-Decrease (AIMD) kind; and hop-by-hop In-
terest shapers or, when multiple egress faces exist for a given prefix: load balancers,
broadcasters or best route selectors.

The purpose of a receiver-located controller is to fully use the available bandwidth by
managing a global congestion window. It might be complemented by some Active Queue
Management to sense forthcoming capacity exhaustion and decrease the congestion win-
dow with a per-route probability that is proportional to a smoothed Round-Trip Delay
[Carofiglio et al., 2013c].

Thanks to the Interest/Data perfect symmetry, flow and congestion control are feasi-
ble at each hop by means of Interest shaping. Hop-by-hop Interest shaping leverage rapid
and distributed decision making on bursty traffic [Carofiglio et al., 2012; Wang et al.,
2013b]. Observe that it is more convenient to buffer Interest packets than Data consid-
ering their incomparable size difference. Moreover, NDN’s native multipath support can
balance traffic load over several egress faces or adaptively choose different delivery paths

on events such as congestion or link failure [Carofiglio et al., 2013c].

1.3.6 Mobility in NDN

User mobility in IP is complex because a wireless link failure may disrupt ongoing TCP
sessions. Part of the problem is the lack of native multipath support in TCP, that would
have allowed mobiles to connect simultaneously to several networks for a seamless han-
dover [Raiciu et al., 2011]. Conversely, NDN possesses some native multipath support.
This owes to its connection-less conversational model, made reliable and symmetric by
the hop-by-hop states maintained in the PIT.

Producer mobility is becoming a stringent need in today’s Internet where applica-
tions like Facebook Live and Periscope have democratized video streaming from mobiles.
Whereas content producer mobility in IP relies on tunnels to anchors, in NDN, anchor-less
mobility has been proven feasible [Augé et al., 2015]. It exploits ICN ubiquitous caching
to alleviate producer temporary unavailability, and a Temporary FIB at every router on

the path to the producer’s former location to reroute traffic.

17

1.3.7 Caching in NDN

[Imbrenda et al., 2014] demonstrated by means of real traces that a negligible amount of
cache space in customer premises (100MB) may reduce the load within Fiber-To-The-
Home (FTTH) networks by 25%, whereas a 100GB cache downstream a backhaul link
might offload it by 35%. Once questioned, it reinforces on-path in-network caching in
its legitimacy. It makes clear that it would be useless to deport all caching memory to
the very edge of the network, as suggested in [Fayazbakhsh et al., 2013; Garcia-Luna-
Aceves et al., 2014], due to existing-but-insufficient redundancy within the traffic at that
stage. The multistage approach of on-path caching combines exploiting intra-customer’s
traffic redundancy, with inter-customer/ inter-domain redundancy that traffic aggregation
unveils. From the architectural viewpoint, NDN matches what [Paschos et al., 2016]
foresees for next-generation wireless networks, advocating the penetration of CDN within
the Radio Access Network (RAN), spanning mobile devices and base stations, to track any
form of traffic redundancy.

Hence, while IP routers are incapable of serving buffered packets to a session other
than the one that requested them, cached packets in NDN are entirely reusable since
they are uniquely named. Caches are expected to be in every single NDN node. They
are a key part of the architecture. Even if caches are supposed to be much bigger than
today’s routers packet buffers, they remain obviously finite. A management policy must
decide about the items to keep in the Content Store and those to evict. First-In-First-
Out, (evict the) Least Frequently Used (LFU) or various enhancements to the (evict the)
Least Recently Used policy (p-LRU, LRU+LCD) [Laoutaris et al., 2004] have often been
appointed to that office.

The performance of a Named-Data Network bears a clear dependency upon the chosen

cache management policy. We hereafter describe a few.

Least Frequently Used policy

LFU consists in evicting the object that has accounted the least downloads during the
last time window. This way, only the most popular objects of that period remain into the
cache. Assuming stationary popularity distribution i.e., that content popularity does not
change over time, this is among the most effective policies for load reduction. However,

it suffers from two weaknesses:

18

(i) Insensitivity to the network state. LFU handles every content it sees only
based of its local popularity. It simply ignores the true purpose of caching, improving the

user Quality of Experience (QoE).

Example 1.3.7.1. Consider a Gigabit Ethernet home network, hosting a Network-
Attached Storage (NAS). The NAS allows the family to share their favourite music,
pictures and videos. From their subnetwork, while half the kids would like to browse
the NAS, the other half is captivated by the latest viral videos on the Internet. LFU
on the kids NDN router will treat both content categories the exact
same way and equally populate its Content Store with material from the NAS, and

hard-to-retrieve Internet videos from saturated servers. This is clearly suboptimal.

(ii) Delayed reaction to popularity variations. LFU needs to collect statistics
during a relatively long time frame to hold meaningful popularity figures about every
content. For this reason, it performs excellently when there exists a stationary content
popularity distribution. In that case, the long-term average of a given content’s ratio
of downloads is the probability that any given download conveys it. The latter condition
characterizes the Independent Reference Model (IRM) for cache performance analysis we
will develop later in this chapter. Under the IRM hypothesis, no surprise that LFU is often
regarded as the ultimate blueprint [Martina et al., 2013]. However Shot Noise Models
(SNM) [Leonardi and Torrisi, 2015; Olmos et al., 2015] where objects are published and
end up perishing offer more realistic but less tractable alternatives that do not favor LFU.

We address both shortcomings with the Latency-Aware Caching + policy (LAC+) we

introduce in the next section.

First-In-First-Out policy

Here, the oldest content in the cache is evicted first. Requesting an object and finding it in
the cache (what is called a hit event) does not change its fate as it leaves the cache unmod-
ified. Such a behaviour does not exploit content popularity to the fullest, since the cache
has no means of marking solicited objects by altering its state accordingly. However, a
content’s hit ratio in a FIFO cache still reflects that content’s popularity. Popular objects
still have higher hit ratio because of the slow down of the eviction dynamics due to more

frequent hits and more frequent insertion after miss events.

19

A FIFO cache is often implemented as a queue: every new insertion shifts other ob-
jects one position to the cache exit. Its simplicity makes it the default cache management
policy in NDN. Moreover, from an engineering standpoint, chunk lookup has lower com-
plexity in chunk-oriented queues thanks to less fragmentation: packet retransmissions

leave a sequence of chunks, contiguous.

Least Recently Used policy

The Least Recently Used policy evicts the object whose last access is the oldest. A simple
implementation of this policy consists in moving an object found in a FIFO cache, to
its front. This is referred to as the Move-To-Front (MTF) algorithm [Starobinski and
Tse, 2001]. The MTF mechanism confers a much better hit ratio on LRU than FIFO’s
thanks to a more efficient popularity sampling. The most popular objects tend to stay
longer in the cache owing to a sort of Time-To-Live reset on object access unveiled by
[Choungmo Fofack et al., 2012]. LRU seamless adaptation to popularity changes and its
simplicity makes it a much better real-world alternative to LFU, explaining somehow why
it has been so often studied [Jelenkovi¢ and Kang, 2008; Fricker et al., 2012; Leonardi
and Torrisi, 2015]. LRU’s main drawback remains its lower hit ratio, asymptotically

e? ~ 1.78 times away from LFU, where ~ is Euler’s constant. [Jelenkovi¢, 1999].

LRU and Leave-a-Copy-Probabilistically policy (p-LRU)

Take an LRU cache and decide, instead of always inserting every newly downloaded ob-
ject on a miss event, to do so with a fixed probability p. This is the p-LRU policy. As
surprising as is may seem, doing so, voluntarily by computationally enforcing that proba-
bilistic insertion with the assistance of a Pseudo-Random Number Generator (PRNG), or
due to some involuntary data corruption [Bianchi et al., 2013], increases cache hit ratio.
In fact, the closer to zero p, the closer to LFU the p-LRU system [Martina et al., 2013].
This is an important result that drove the design of our policies LAC and LAC+.

However, as p tends to zero, so few items get stored that p-LRU, p — 0 can only work

under the stationary popularity assumption.

20

LRU and Leave-a-Copy-Down policy (LRU+LCD)

Consider that every downloaded objects crosses a sequence of LRU caches. A policy
that consists in storing an object only if it does not come from farther than the preceding
cache is called Leave-a-Copy-Down. In other words, if the download path of content %
traverses caches 1,--- ,n, LCD is the slight alteration to LRU that inserts content & in
cache n (after a miss event) only if the search for that content in cache n — 1 resulted in a
hit event [Laoutaris et al., 2004]. When gathered inside the same machine, a sequence of
k LRU+LCD caches form what is called an LRU-£ cache. However, in LRU-£, the first
k — 1 caches just store object identifiers, not actual content.

Theory predicts that LRU+LCD converges to LFU as n grows large [Martina et al.,
2013]. In practice, the convergence is quite fast: we observed in most cases that n = 4
suffices to persist the most popular items in the n'* cache. LCD works as a multistage
filter where the most popular objects make it through all stages.

Nevertheless, there are two main weaknesses to the LRU+LCD algorithm:

(i) It does not support traffic split. LCD filtering is jeopardized if upstream
caches do not contain the same set of objects. It means that the content popularity distri-
bution of the miss traffic reaching every egress cache must be identical for LCD to work
properly. The reason of this limitation is that every path will isolate the most popular
subset of a subset of the catalog, but the union of both subsets inside the cache where
the split occurred is not guaranteed to be the most popular subset of the whole catalog.
The only multipath forwarding strategy that is LCD-compliant is a content-blind Load
Balancing. Later in this thesis, it will be observed that LRU+LCD underperforms under

our Persistent forwarding. It owes to the present limitation.

(ii) It does not support content split. Consider a cascade of LRU caches op-
erating at content level, whereas the traffic consists of content chunk. LRU+LCD will
fail unless we extend the download path by a factor equaling, approximately, the average
number of chunks per content. This limitation can be observed when trying to sample
content popularity from data packets by means of an LRU-£ filter. The solution that con-
sists in identifying some content with one of its chunks, chunk 0, for example, is not

satisfactory. Indeed, this does not cope with packet retransmission or partial transfers.

21

RANDOM policy

RANDOM is probably the simplest eviction policy to implement: choose randomly into
the cache the content to replace. All objects in the cache have equal probability to be
evicted. [Gallo et al., 2012] demonstrated that the policy still offers some traffic reduc-
tion and is even suitable for high speed routers. However, its hit ratio per content is
significantly less than LRU’s but equal to FIFO’s [Gelenbe, 1973] under the Independent

Reference Model (IRM) assumption we will describe later in the chapter.

1.4 Problem statement

This thesis aims at providing answers to the following questions:

1. Can content delivery in ICN be faster ?
2. Can content delivery in ICN be fair ?

3. Can ICN Forwarding Information Base (FIB) scale ?

In a nutshell, our answers to these questions are:

1. Yes ICN can even be 60% faster, by using for example our joint caching and for-

warding mechanism, FOCAL.
2. Yes ICN can be fair, just share bandwidth fairly between contents.

3. Yes ICN’s FIB can scale, for example using our AFFORD mechanism that intro-

duces Artificial Neural Networks into the content forwarding realm.

We will elaborate on these problems and propose solutions throughout the document,

starting from the next section with an brief introduction on our contributions.

1.5 Our contributions

The contribution of this thesis is fourfold:

22

1.5.1 LAC/LAC+: Latency-aware caching

We designed a family of randomized dynamic cache management policies leveraging in-
network retrieval latency for cache insertion. The locally monitored metric is the time
elapsing at a given node between request forwarding and corresponding packet recep-
tion. The cache management mechanisms LAC and LAC+ [Carofiglio et al., 2015a,c] we
propose consist in the following: every time an object is received from the network, it
is stored into the cache with an overall low probability that significantly increases if the
content exhibits an exceptional retrieval latency. As such, it is an add-on laying on top
of an LRU cache and feeding it at a regulated pace. This way, it implicitly prioritizes
popular and long-to-retrieve objects, instead of caching every object regardless. The un-
derlying trade-off such a caching mechanism tackles is between a limited cache size and
delivery time minimization. As caching intrinsically aims to relieve the fallouts of net-
work distance or traffic congestion, it must be aware of both popularity and delay factors
to efficiently handle that cache size / delivery time tradeoff. An overall low probability
of insertion samples popular objects whereas data retrieval latency is a simple, locally
measurable and consistent metric for revealing either haul distance or traffic congestion.

The applicability of our latency-aware cache management policy is broad: Information-
Centric Networking networks, data centers, content-distribution networks or multiproces-
sor server optimization.

We authored two C++ implementations of LAC and LAC+, one for the CCN Packet
Level Simulator (CCNPL-Sim ') and another for the NS-3 -based NDN Simulator (NDNSim)
that shares code with the NDN Forwarding Daemon.

Chapter 2 substantiates LAC and LAC+ algorithms.

1.5.2 FOCAL: joint Forwarding and Caching with Latency-

awareness

Caching needs to be supported by proper packet forwarding [Rossini and Rossi, 2014;
Dehghan et al., 2015] as the performance of the first is driven by the request arrival pro-
cess the second is responsible for. At the same time, the traffic to be forwarded is the

miss traffic of the local cache. From this observation it appears clearly that caching and

Thttp://systemx.enst.fr/cecnpl-sim.html

23

http://systemx.enst.fr/ccnpl-sim.html

forwarding must be jointly optimized.

It is the purpose of FOCAL [Carofiglio et al., 2015b, 2016]. It adopts LAC+ caches,
fed by a novel forwarding strategy LB-Perf that persistently directs the most popular
objects through the same interfaces, regularly making sure they can afford it, while load
balancing the rest of the traffic.

Chapter 3 substantiates FOCAL. It shows how FOCAL is deduced from the optimal
solution of a latency minimization problem. Moreover, we analyze FOCAL stability,
thoroughly evaluate its CCNPL-Sim C++ implementation on various network topologies

and analyze its sensitivity to various settings.

1.5.3 Fairness in Information-Centric Networking

Chapter 4 investigates the fairness of content throughput allocation when caching be-
comes ubiquitous throughout a network [Bonald et al., 2017]. As caching the most pop-
ular objects is the trend our own caching algorithms enforce, will there be a severe dis-
tortion to fairness caching algorithms have to be designed to resorb ? It turns out that
ensuring the most popular objects occupy storage, as LFU does, is the caching side of the
solution to a-fair throughput allocations problems. a-fair content-level packet scheduling
is the complementary part of the solution.

In other words, caching policies do not need to be designed for fairness as previous
work suggested. Not focusing on cache hit ratio but on the throughput fairness, show that
a-fairness in ICN can be handled in a similar way as in traditional networks, through

packet scheduling.

1.5.4 AFFORD: Ask For Directions, machine learning-based

routing

The last contribution of this thesis addresses the prohibitive cost of performing a Longest
Prefix Match over a huge FIB. Indeed, considering the unlimited namespace of the an-
ticipated Internet of Everything, it would be hard to forward packets at every node based
on an exact knowledge of paths to destinations. With Ask For Directions (AFFORD)
[Mekinda and Muscariello, 2016], we propose to train a trie of small Artificial Neural

Networks in the control plane and fast-interrogate them in the data plane for the most

24

probable next hops.
Chapter 5 substantiates the novel AFFORD routing approach.

1.6 Mathematical foundations

Little introduction or reminder on a few mathematical concepts should ease the reading

of this document.

1.6.1 Elements of probability theory

A stochastic process {X (¢)}:>o is a sequence of random variables X (¢) on the same

probability space, indexed by time instants ¢ [Tucker, 2013].

Continuous-Time Markov Chain

Also known as Markov process, a CTMC [Bertsekas et al., 1992] is a stochastic process

{X(t) }+er,, , taking values from a countable state space S = {i,, : n € N}, and such that:
1. The time 7; the process spends in every state ¢ € S is such that T; ~ Exp(y;).

2. The process leaves every state ¢ € S to enter another state j with probability F;;
such that) _; P = 1.

Let ¢;; = v;P;j and p; = lim,_,oo P[X(t) = j|X(0) = 4]. p;, in the special case of
regular CTMC (almost sure finite number of transitions over any finite time interval),

exists and is independent of the initial state .

The global balance equations for a CTMC are:

pj Z 450 = ZPi%’j,VJ‘-
i=0 i=0

The detailed balance equations for a CTMC, which hold for birth-death processes,

are:
Piqji = Pi4ij, Vi, j.

25

Note that birth-death processes are Markov processes where ¢;; = 0 for |i — j| > 1.
Let j = i + 1, ¢;; is called a birth rate and g¢;; is called a death rate. If Vi, q;; = 0, the
process is called a pure birth process.

Counting Process

A counting process { X (¢) }+> is a stochastic process whose sample path is a non-decreasing,
right-continuous step function taking nonnegative integer values i.e., X(¢) € N and
(s <t = X(s) < X(t). Also, X(0) = 0a.s.. Since X(-) increases by jumps only,

occurring at specific times called jump times, it is a kind of jump process.

Renewal Process

A renewal process [Cinlar, 2013] {S,, },en- is a stochastic process where:
1. S, is elapsed time up to the n jump of a companion counting process { X (¢)}+>o.
Sy, Vn, are called renewal times.
2. the sojourn or holding times, i.e., the inter-jump times 7;,, of its companion count-
ing process are independent and identically distributed with mean m.

Theorem 1.1 (Elementary Renewal Theorem). For a renewal process,

X(t 1
lim L = — a.s. by the Strong Law of Large Numbers and
t—oo ¢ m
lim —E[X<t)] = i
t—oo t m

Poisson Process

A stochastic process { X (¢) };+>¢ is a Poisson process with intensity (or rate) v if

1. {X(t)}+>0 is a counting process.
2. The number of arrivals that occur in disjoint time intervals are independent.

3. The number of arrivals in any interval of length 7 is said to be Poisson distributed

with parameter v7 i.e.,

VnEN,T>O,IP[X(t+T)—X(t):n]:(e .

26

Then, inter-arrival times 7}, are exponentially distributed with parameter v i.e.,
Vr>0,P[T, <7]=1—¢"".
This distribution is memoryless, in the sense that P[T,, > 7 + t|T,, > t| = P[T,, > 7.

Due to its exponential sojourn times 7;, and non-decreasing states, a Poisson process
is a pure birth process with constant birth rates. The arrival times of a Poisson process
i.e., the sums of the X () sojourn times form a renewal process.

A Poisson process, defined earlier as a counting process may also be interpreted
through its increments during time intervals. As such, it is an homogeneous (or station-
ary) Poisson point process defined on the real line. It is said to be stationary because of
its constant intensity v, which implies that the distribution of points does not depend on
the interval position on the real line. As such, it is translation-invariant. Otherwise, the

process is called an inhomogeneous Poisson point process.

1.6.2 Queuing theory fundamentals

Throughout this thesis, our usage of the latency owes to queuing delays. It is the time
an object (packet or flow), also referred to as customer, spends in the queuing system
[Bertsekas et al., 1992; Médard, 2008].

A queuing system is characterized by a stochastic process { NV (t) };>¢ giving the num-

ber of customers in the system at time ¢.

Parameters

The queue has two main parameters, the number of customer arrivals resp. departure
up to time ¢, «(t) , resp. [(t). We usually consider known the long-term arrival rate
A = lim; o, a(t)/t and the service time random variable X such that the mean service
rate 1 = (E[X])~1.

Properties

We will be interested in knowing:

27

The long-term average number of customers in the system. We denote it

Provided that the system is assumed ergodic, the long-term average number of cus-
tomers equals the mean number of customers as t — oo : N = lim,_,, E[N(¢)]. Further-
more, the long-term arrival rate equals the long-term departure rate i.e.,

p(t)

A=l =
The long-term average of the time spent waiting in the queue denoted .

The long-term average of the time spent in the system. Denoted T, itis the
also known as the long-term average delay encountered by any customer waiting in the
queue, then being served. it is also called mean sojourn time. Let T}, be the time spent in
the system by a given customer k. The cumulative time spent by all the customers in the

system divided the total number of arrivals at the infinity gives T i.e.,

The steady-state probability of finding n customers in the system is

assumed to exist and equals

pn = lim P[N(t) = n].

t—o00

Theorem 1.2 (Little’s theorem). The long-term average number of customers in

the system equals
N = \T.

Thanks to its broad applicability, Little’s theorem also holds for the long-term average

number of customers waiting in the queue, or those being served. Furthermore, it holds

28

for a given class of customers.

Kendall’s notation

Queues are classified according to the following compound expression:
<Arrival type>/<Service Type>/<Number of servers>[/<Buffer size>][-<Discipline>].
Arrival and service types may be, for example, Markov or Memoryless, which implies
exponential inter-arrival times, or Deterministic or General.
By default, the buffer size is deemed infinite. Among service disciplines, there are First-
In-First-Out (FIFO) the default discipline handling customers sequentially, or Processor

Sharing (PS) handling all customers simultaneously.

FIFO service discipline

M/G/1/co-FIFO. 1In M/G/1, customers arrive according to a Poisson process but
the service times obey to a law that is not necessarily exponential. The Pollaczek-Khinchin

formula is a key result for understanding such a system.

Theorem 1.3 (Pollaczek-Khinchin formula). Let W be the long-term average time
spent by a customer waiting in the queue. Define the load of the queue p = A/ p.
The waiting time of an M /G /1 queue is

- NE[X?
W = —[] .
2(1-p)

The related delay/sojourn time follows by adding the mean service time:

AE[X?]

T=31-0)

+E[X].

By Little’s theorem,

A2E[X?]

N=21-9

+ p.

The Pollaczek-Khinchin formula is the general framework for expressing the first-

moments of more specific queues.

29

M/M/1/0o-FIFO. 1InM/M/1, X ~ Exp(u). The second moment of X is E[X?] = 2/
It follows that

P

_ 1 N P A
p—A

W = T=——1; = .
=N 1—p pu—2A

The same results could have been derived by modeling the M /M /1 queue as a Continuous-
Time Markov Chain, observing from the detailed balance equations that its steady-state
measure is a geometric probability mass function. This second way remains the easiest

way to obtain the queue’s stationary distribution.
pn=p"(1—p).

M/D/1/0o-FIFO. InM/D/1,X = 1/u a.s. The second moment of X is E[X?] = 1/p>.
It follows that

= P _ 5 1 ' v _ A
Sy Tty N

Processor sharing service discipline

The Egalitarian Processor Sharing discipline (PS) consists in serving the n customers
in the system with equal rates ;/n. As such, it is an idealization of the Round-Robin
scheduling algorithm. Customers are served immediately upon arrival. The PS discipline
is known to be insensitive to the distribution of the service time X beyond the mean. This
implies that the system’s first-order properties will simply depend on mean values such as
E[X].

PS insensitivity is clear from the following M /G /1-PS mean properties, which by the
way coincide with those of M /M /1-FIFO:

_ 1 - A
T=——: N=——
= A = A
Processor sharing queues have proven to be useful models for performance analysis
of fluid approximations of the traffic, under fair bandwidth sharing. TCP sessions whose
arrival is assumed to follow a Poisson process have been modeled this way [Fredj et al.,

2001].

30

1.6.3 Lyapunov optimization

As in [Georgiadis et al., 2006], we verify the stability of a queuing network under some
optimization policy by use of a Lyapunov function. A Lyapunov function is a nonnegative
scalar measure on a vector representing the state of the system at a given time. In our
context, that state is the vector process of all queue backlogs (or unfinished work). The
expected change in the Lyapunov function between two consecutive epochs is called the
Lyapunov drift. It is aimed to be bounded by a small negative value whenever the sum
of queue backlogs grows sufficiently large, to ensure the system stability. The minimiza-
tion of a quadratic Lyapunov function drift in a queuing network is demonstrated to be

throughput optimal and leads to the backpressure algorithm.

1.6.4 Nonlinear optimization

In this thesis, we tackle nonlinear optimization problems, either featuring a nonlinear
objective function to be minimized or maximized, or encompassing nonlinear constraints.

Such problems are of the following form:

(
Minimize f(x)

subject to :
g:(x)<0 i=1,--- N
gi(x)=0 j=N+1,--- M.

\

where f and ¢;,7 = 1,--- , M are continuously differentiable functions from R" to R
[Bertsekas, 1999].

Define the function £(x,\) = f(x) + M, \igi(x) called the Lagrangian of the
problem. A = ();) is a vector of the so-called Lagrangian multipliers. Define x* as a

local minimum and A* = (\}) as the vector of optimal multipliers.

Definition 1.1. Vectorx* is said to be reqular, if the constraint gradients V g;(x*), Vi

are linearly independent.

The Karush-Kuhn-Tucker (KKT) Necessary Conditions state that, under the assump-

31

tion that x* is regular, there exists a unique vector of multipliers A* such that
VR L(x*,*) = 0. (stationarity condition)
Furthermore, the primal feasibility conditions hold:

g:(x)<0 i=1,--- N
gi(x")=0 j=N+1,--- M.

The dual feasibility conditions also hold:
AP>0 i=1,--- M
as well as the complementary slackness conditions:
ANgi(x*)=0 i=1,---,M.

The complementary slackness conditions aim at enforcing that at any local minimum,

every constraint 7 is either saturated, (meaning that g;(x*) = 0) or inactive (meaning that
A =0).
Definition 1.2 (Convex set). A convez set within an Fuclidean space is a region

such that a line segment joining any pair of points lies entirely in that region.

Definition 1.3 (Convex function). A twice continuously differentiable function is
convex on a convex set iif its Hessian matriz is positive semi-definite on the interior

of that convex set.

If the Lagrangian function is convex on its domain, KKT optimality conditions are
also sufficient; hence x* is also a global minimum.
To tackle a maximization problem, just replace f(x) by —f(x) to convert it into its

minimization counterpart where the above KKT conditions pertain.

1.6.5 Cache performance analysis

A substantial part of our work involves modeling caches. In this section, we present the

fundamentals of cache performance analysis.

32

The IRM hypothesis

The Independent Reference Model (IRM) assumes an immutable set of independent content-
k request processes, Vk, that must all be homogeneous Poisson processes [Martina et al.,
2013]. As the superposition of independent Poisson processes, the aggregate request traf-
fic itself follows a Poisson process. This stationary traffic model, though simple and
incapable of accounting for any temporal locality, has been effective on real ISP traffic
at short timescale (~ 24 hours) [Imbrenda et al., 2014]. Authors found discrete Weibull
with shape 0.24 to better fit the empirical popularity distribution than the usual Zipf law
with skewness 0.7 < o < 0.85.

At a longer scale, documents get published and perish, resulting in catalog dynam-
ics that only more sophisticated models can capture. Thus, Shot Noise Models (SNM)
[Traverso et al., 2013; Olmos et al., 2014] have been introduced to render the reality
of time-varying content popularity, at the cost of a diminished tractability. In SNM, a
Poisson cluster request process aggregates independent content-%£ request processes, Vk,
which are inhomogeneous Poisson processes of rising-and-vanishing intensities.

In this thesis, similarly to recent works in the field, [Garetto et al., 2015, 2016], our
models assume stationary traffic. Nevertheless, whereas others use some form of renewal
traffic (general or ON-OFF-modulated homogeneous Poisson processes), we assume ex-

ponentially distributed inter-request times i.e., IRM, reasonable at short timescale.

Che’s approximation

Some exact cache performance analysis exist, based on the stationary distribution of a
Markov process [Gelenbe, 1973]; but they are impeded by their intractable computa-
tional complexity that grows exponentially with the cache and the catalog size [Dan and
Towsley, 1990]. A prominent approach for taming the complexity of cache analysis, in-
troduced in [Che et al., 2006], is referred to as Che’s approximation.

Under IRM and according to Che’s approximation of the LRU cache hit ratio content

k hit probability in a cache of size z is
hi(1p) =1 — e %=,

Here g is content k popularity and 7, is the cache Characteristic Time. It is deemed

33

the maximum time before object eviction under normalized content arrival rate. It can be

interpreted as the time for the arrival of x distinct content requests.

The approximation consists in considering that 7, is constant and the solution of the

equation:
> hi(m) =,
k

This is actually an approximation for two reasons. First, a miss event for any content
k occurs after a duration necessary to witness the arrival of requests for x distinct content
items other than content k. Hence, 7,, should depend on £ and be 7, ;. However a unique
7, can be assumed as long as Vk, g, <). ¢;. Second, assuming Zipf content popularity
distribution and for a sufficiently large catalog, 7, is a Gaussian variable that tends to its

mean almost surely when x — oo [Jelenkovi¢ and Kang, 2008; Fricker et al., 2012].

Che’s approximation has showed to hold in case of chunk-oriented caches, not-so-
large cache sizes [Fricker et al., 2012], Poisson cluster (Shot Noise) traffic [Leonardi and
Torrisi, 2015; Olmos et al., 2015], renewal traffic and even for other eviction policies like
FIFO and RANDOM ([Fricker et al., 2012; Martina et al., 2013]. It has been a widely
adopted approach to cache performance analysis because it decouples distinct contents
dynamics, making each content’s hit ratio only depend on its own request process and on

a unique cache property, namely, its Characteristic Time.

Scale invariance

Under IRM and Che’s approximation, the hit ratio of every object in an LRU cache does
not depend on the intensity of the request arrival process A > 0. The request arrival
process is the superposition of independent content-£ request processes of intensity A\, =
qrA. Let 7, be the Characteristic Time of the cache under this Poisson request arrival.

Define T}, content k’s sojourn time in the cache. Content £ hit ratio writes
hi(7e) = P[Ty < 7] =1 — e M,

34

By Che’s approximation, 7, is the solution of

D h(fe) =) (1 — e W) =g

k

Observe, this is strictly equivalent to solving

72:]0 = Tx/>\7
S(1—e %) = .

k

Hence,

~

hi(Fp) = 1 — e /A = hy (7).

This is rather intuitive. Scaling up the arrival rate of all content requests by the same
factor simply scales down the cache Characteristic Time by that factor, but results in the
same hit ratios since the relative dynamics of objects in the cache remains unchanged.
Conversely, scaling down the data arrival process (that occurs after cache misses and
subsequent data downloads) significantly changes the relative dynamics of the objects in
cache. It is the rationale behind the p-LRU algorithm. Less popular contents, more prone
to miss events, get recursively deprived, while increasing the hit ratio of the most popular
objects. In the next chapter, our LAC and LAC+ algorithms exploit such an asymmetrical

filtering, following in that p-L.RU footsteps.

1.6.6 Performance analysis of Networks of Caches

Networks of caches are hard to analyze because the IRM assumption no longer holds
after the first-level caches [Kurose, 2014]. Indeed, the miss traffic, flowing through a
cache’s egress faces carries time correlations. The IRM hypothesis allows two consecutive
exogenous requests to address the same content, they are deemed totally independent.
Conversely, within cache miss streams, two consecutive requests are not likely to address
the same content since the first would have triggered a cache hit event for the second.
In absence of connectivity issues, PIT entry aggregation, which mitigates the forwarding

of Pending Interest packet duplicates, makes same-content consecutive misses much less

35

probable.

In case of LRU caches for example, the Characteristic Time dictates the minimum time
interval between two same-content consecutive misses. Thus, the miss traffic essentially
carries queries for distinct content per Characteristic time. Clearly, within the miss traffic,
the number of requests for any content k& does not follow a Poisson process, as their inter-
arrival time does not follow an exponential distribution.

[Jelenkovi¢ and Kang, 2008] demonstrates that inadequacy of the Poisson assumption
and suggests to model the miss traffic as a superposition of asymptotically independent
(when cache size x tends to infinity) renewal processes instead. Intuitively, observe that
for the low popularity objects, those from popularity rank x, x — oo, which are the main
constituents of the miss traffic, the time-spacing effect induced by the cache is indistin-
guishable from their intrinsic scarcity, leading to independent renewal intervals.

The correlation within the miss traffic makes the analysis of network of caches much
harder than the analysis of Jackson queuing networks for example, the latter benefiting,
thanks to Jackson’s theorem from Poisson arrivals at every queue. Nevertheless, on dense
networks, the aggregation of miss streams coming from a large number of caches might

recover some Poisson characteristics.

36

Chapter 2

LAC/LAC+: Latency-Aware
Caching Strategies in ICN

Can delivery in ICN be faster ?

Summary. 5G has loudly ambitioned to achieve extremely low latency in mobile
networks. To this aim, we have recently introduced two novel latency-aware caching
heuristics, LAC" and LAC+ and we showed through simulations in Information-
Centric Networks their good performance figures. In this chapter, we present an
insight on their operations: a mathematical analysis of these caching systems led us
to nowvel results that we validate in simulation. The advantages of these algorithms
come (i) on one side from the fact they are distributed and lightweight and (ii)
from the ability to quickly adapt to content popularity and network congestion, with
no signaling nor explicit coordination between the network nodes. In this chapter
we provide analytical bounds of latency aware caching policies and evaluate their
performance by network simulations. The proposed mechanisms can halve the mean
and standard deviation of content delivery time with respect to approximations of
LFU as leave a copy probabilistically.

Keyword: Information-Centric Networks; stochastic modeling; caching.

37

Contents

2.1
2.2
2.3

2.4

2.5
2.6

Introduction 00000 39
Related work oo 40
Latency-aware heuristics 41
Analysis o o e e e 42
2.4.1 Assumptionso 43
242 Missratio Lo 44
243 Lowerbound 47
Simulation. 00000 52
Conclusion and future work 58

38

2.1 Introduction

Latency reduction objectives, currently emphasized as 5G requirements, imply to solve
a number of technical challenges requiring novel solutions in the whole communication
network: the physical layer, the MAC as well as the network backhaul and core. In this

chapter we focus on one specific aspect of the communication path, i.e., caching systems.

Information-Centric Networking (ICN) is a network architecture that embeds caching
functions natively. We focus on the Named-Data Networking architecture (NDN) and we
summarize its characteristics here. A detailed description of the system can be found in
[Zhang et al., 2014].

Users retrieve named Data using a pull flow control protocol based on subsequent
packet queries, triggering Data packets delivery. Name-based routing and forwarding
guarantee that queries are properly routed towards a repository, where a permanent copy
of the content is stored, following one or multiple paths. Network nodes maintain three
major data structures: Content Store (CS), Pending Interest Table (PIT), and Forwarding
Information Base (FIB). The CS caches Data packets received, which can be potentially
useful to satisfy future Interest packets. The PIT stores Interests that have been forwarded
and waiting for matching Data packets to return. The FIB is similar to IP routing table
and is maintained by a name-based routing protocol. A strategy module defines the pol-
icy for output interface(s) selection at each FIB entry. For each arriving Data packet, a
router finds the entry in the PIT that matches the data name and forwards the data to all
downstream interfaces listed in the PIT entry. It then removes that PIT entry, and caches
the Data in the CS. Indeed, Data may come from the repository, or from any intermediate
cache along the path with a temporary copy of the Data packet. Packets of the same con-
tent can therefore be retrieved in a multi-path fashion. This means that data packet follow
the reverse path build by the queries. This allows fine-grained monitoring of the response
delay at any intermediate node in the communication path.

Intrinsic to ICN design are content authentication, multipath forwarding, affordable
multicast and ubiquitous caching. Caches must store some valuable objects and evict
some others by optimizing some objective in a scalable and fast way. Several con-
tent eviction policies have been designed in many technical areas such as First-In-First-
Out (FIFO), Random, (evict the) Least-Frequently-Used (LFU) and several (evict the)
Least-Recently-Used (LRU) derivatives like ARC [Megiddo and Modha, 2003] and CAR

39

[Bansal and Modha, 2004]. A policy optimizes a specific objective and most maximize
the average hit ratio.

In our work, we consider low network latency objectives that can be met with the help
of two novel LRU derivatives, LAC and LAC+. LAC, and its improved version LAC+, are
designed on the simple idea that upon content arrival, the larger the retrieval latency, the
more favorable the caching decision. Latency includes processing, queuing, transmission
and propagation delays.

In this chapter, we characterize their miss ratio. Then a quantitative evaluation to
corroborate the analysis is provided by means of ICN simulations. Quite impressive re-
sults are highlighted in terms of latency reduction under the assumption of a simple, fully
distributed approach that self-adapts to varying network conditions. More precisely, we
show that our solution outperforms state-of-the-art proposals by achieving significant re-
duction of content delivery time mean value and standard deviation up to 50%, along with

a very fast convergence to these figures.

2.2 Related work

There is a huge literature on caching systems as a means to accelerate the data path of
computing systems like ARC [Megiddo and Modha, 2003] and CAR [Bansal and Modha,
2004]. Some more recent literature has considered web caching to reduce access latency
and scale content distribution [Laoutaris et al., 2004]. In the present work we focus on
ICN systems like Named-Data Networking [Zhang et al., 2014] that embeds caching in
the data plane of a network layer where congestion and latency are experienced by the
transport protocol managing content retrieval. In particular we focus on algorithms that
are distributed and lightweight so as to have a feasible implementation at high speed.

Among the fastest approximations of LFU we cite Leave a Copy Probabilistically
(LCP) that keeps an object in a node’s cache in a data path with probability p. [Bianchi
et al., 2013] analyzes the p-LRU (LCP + LRU) replacement policy under renewal traffic.
The probability p, of keeping an object in the cache after retrieval, is a positive constant
smaller than 1. Our contribution extends LCP to dynamic cases, which simply refers to
algorithms where p follows a stochastic process.

Much closer to our work, [Jelenkovi¢ and Radovanovi¢, 2004] derives through math-

ematical arguments a dynamically randomized heuristic for LRU caches. The objective is

40

to optimize the storage of variable size documents. A common implementation of LRU,
referred to as Move-To-Front algorithm (MTF) consists in moving the most recently used
object to the front of a FIFO memory. Though they randomized that MTF rule according
to the document size and retrieval cost, they kept it symmetric, i.e., triggering it with the
same probability for both hit and miss events. As they ended up providing mathematical
justification for a mechanism previously proposed in [Starobinski and Tse, 2001], we re-
fer to this implementation as Starobinski-Tse-Jelenkovi¢-Radovanovi¢’s (STJR). On the
contrary, our approach may quoted by asymmetric as a MTF probability is only consid-
ered when a document is freshly inserted into the cache i.e., in case of a miss event. If the
document was already in the cache i.e., in case of a hit event, the MTF rule is deterministic

as it is applied with probability 1.

2.3 Latency-aware heuristics

In this work, we analyze two distributed algorithms, LAC [Carofiglio et al., 2015c] and
LAC+ [Carofiglio et al., 2015b], that aim at minimizing the overall average delivery time
in information-centric networks without any coordination among the caches and no sig-
naling overhead. Note that fine grained latency measurements are available in ICN as
requests sent across an interface pull down data from the same interface. Network-wide,
this enables symmetric routing and latency measurement of the upstream network.

Both algorithms work in the following way: When a client requests at time t a rank-k
object, k € IC, that object is either in a cache along the path and consequently returned
to the requester, or that cache will download it, then insert it in its local storage with
probability pi(t) or not, with a probability 1 — p;(t) and finally return that object to the
requester. We refer to p;, as the decision probabilities.

In LAC, the probability of inserting the rank-k object into the cache at time ¢ is:

B
pi(t) = min (e?((tt))y ,1) : (2.1)

In LACH+, the decision probability p; (¢) combines two terms:

pic (1) = pe(t) + (1 = pi(1))Ok(t) (2.2)

41

where T}, (t) refers to the monitored latency for content k up to time ¢ and T} (t), T'(t) to
respectively the temporal average for content k£ and for all cached contents computed up
to time ¢. Averages are estimated using Exponential Moving Average (EMA) filters. We
satisfactory configured the weight of filters past values to 0.9.

e is a small positive real number. [and ~ are intensity parameters used in LAC to
cleave probabilities between low and high latency retrievals. Higher latency objects will
be picked early. Low latencies will get very small decision probabilities but should be
eventually picked if the object is popular. For LAC+, since it has a separated latency
outlier tracking function ©(-), we usually set 5 and 7 to 1.

Let p; and o, be the average and standard deviation of all Ti(t),W € K, at a given
node. We define the 2! quantile as follows:

Q-(t) = + 204 (2.3)

This allows to unfold p;” second term. ©y(t) is the quantitative indicator at time ¢ that the

rank-k object is a latency outlier:

(L h-Q
Oult) = (supie,cmm} Q.0 O) ' (24)

We satisfactorily use the first quantile (z = 1) throughout the rest of the chapter.
To wrap up, LAC+ draws into the cache highly popular objects sampled using p;’ (t)first

term or outliers thanks to p; (t) second term.

2.4 Analysis

The dynamics of the network system are complex to capture in a simple model due to
the tight coupling between delivery performance and caching functions: the former is
certainly affected by network conditions, while clearly the network load is a result of
caching performance and vice-versa. This is why we focused on the single cache case in
developing analytically some performance bounds expressed in terms of the cache miss
ratio. In a nutshell, we contribute in showing that the asymmetric design embodied by
LAC and LAC+ outperforms previously known mechanisms, typically STJR. LAC and

LAC+ are of the asym-LRU kind as opposed to alternative systems where insertion/re-

42

placement operations are symmetrically driven by the same probability (sym-LRU). LCP
is a special case of asymmetric mechanism where the insertion into the cache is deter-
mined by a constant probability p. Refer to Table 2.1 for the notation used throughout the

chapter. Variables might be later tagged with the current algorithm in superscript.

t Instant a retrieval occurs.
x Local cache size in number of objects.
Ta Characteristic time threshold for filling a cache of size z.
A Total request rate.
Ak Request rate of the rank-k object, k € K.
qk Popularity of the rank-k object. g, = Ax/A\.
DT Probability of receiving at least one request for the rank-k object during 7 seconds.
M;, Asymptotic miss ratio for the rank-k object.
{VRTTy }:>0 || Stochastic process modeling the retrieval latency of the rank-k object.
{Pr,t}t>0 Caching decision process of the rank-k object.
P Random caching probability such that p 4 Dk.t, Vk,t under i.i.d. assumption.
{7kt }e>0 Miss probability process for the rank-k object.
{Mi.1}i>0 Miss counting process for the rank-k object.
It is expected to increase every 1/my, cycle with my, = E[my 4.

Table 2.1 — Notation.

2.4.1 Assumptions

We consider the smallest set of assumptions to have a simple and feasible analytic repre-

sentation.

e Zipf-like popularity: We assume that object popularity follows a generalized Zipf
law. Thus Vk € K, qr = ck=® with 1/c = > i~* and skewness a > 0. This
i€k
assumption is widely accepted in the literature [Breslau et al., 1999; Mitra et al.,
2011].

e Poisson requests: We assume that clients request objects according to a Poisson
process of intensity A > 0, similarly to [Carofiglio et al., 2013b; Badov et al.,
2014].

e [ndependent Reference Model: Temporal correlation between object requests are
neglected here like in [Starobinski and Tse, 2001] and [Fricker et al., 2012]. It is

nevertheless foreseen in future extensions of this work.

43

e LRU replacement policy: we focus on the widely adopted LRU replacement policy
whose common implementation consists in moving the most recently served object
to the front of a list. This allows to study Move-To-Front algorithm as an LRU

scheme [Jelenkovié¢ and Radovanovié, 2004].

e Same object size: For the sake of simplicity, we assume that, like in [Che et al.,
2006], all retrieved objects have the same size. The model will later be improved to

encompass more fine-grained features such as variable object size.
e VRTT;,, Vt > 0 are strictly positive, independent and identically distributed (i.i.d.).
e pi: €]0,1],Vk,t > 0 are also i.i.d. Hence Jp L Pk, and 7y, ., Vt are also i.i.d..

e The characteristic time (“Che’s”) approximation [Che et al., 2006] as extended by
[Fricker et al., 2012] is a key tool in this work. It states that for LRU caches, the

object eviction time is well approximated by a unique constant 7.

2.4.2 Miss ratio

Let 7+ be the rank-% object miss probability at time ¢ and ¢y, . be the probability of

receiving at least one request for a rank-k object during 7 seconds.

Proposition 2.1. If we restrict to a countable set of caching decision probabili-
ties, and assuming Che’s approzimation holds, the miss ratio M**™ of asymmetric
algorithms such as LAC and LAC+ for the rank-k object is:

1- Pk,
MP9™ = Plp=u e 2.5
= 2
7. being the root of Z(l — M) = . (2.6)
kek

Proof. First, we characterize the arrival process to the front of the LRU cache. Given
the random insertion probability p, the Move-to-Front probability during the time

window 7 starting at ¢, for object k equals:

Fit(17) = (1 — Mg t) + TaD) Pror
=1 =1 —=p)Trst) Prr-

44

That Move-to-Front probability leads to the cache miss probability in the following
way. Under Che’s approximation, the rank-k£ object miss probability for a cache

under stochastic caching decision satisfies:

Fk,t(Tx) =1- Pk’t[ﬁMTF > I]
= (1= (1 —=p)Trt)Pr.r,-

fMTF denotes the number of distinct objects moved to the cache front. Also,

Fk,t(Tx) = 1 — 7Tk‘,t'

Hence,
1— @k,
Myt = o , 2.7
S R G) 27)
and
Efmy] = / L=0en ippy <y (2.8)
0,0] 1 — Pk (1 —u)
= M.

E[mg] is the expectation of the random miss probability for content k. However, only
the miss ratio Mj, i.e., long-term average of a miss counter M, can be effectively
measured. Since the cache is always supposed much smaller than the catalog, 1/my
is finite. Thus, the elementary renewal theorem holds and the asymptotic miss ratio

for the rank-£ object writes:

1
M, = lim ;Mk,t =my a.s. (2.9)

t—o00
L]

Note that ¢y, ., = 1 — e ™ under Poisson object arrivals.
Accounting for all values of p in Eq.(2.6) might not be computationally tractable. The
following proposition shows that all values of p can be effectively replaced by its expected

value.

Proposition 2.2. Assuming Poisson request arrivals, the cache miss ratio M "™

45

is well approximated using the expected value IE[p] of a unique decision probability p
when IE[p] is very small or when the object popularity is very small or the cache is

very large:

NS A 1— Ph,e
k

T 1— g, (1- Elp)) (210)

This result is important as it establishes achievable conditions for asymptotic equiv-
alence between the use of a variable decision probability p and the use of its expected
value p = E[p]. However, the operational drawback of a constant and small P is that it
postpones considerably the time popular objects are first stored in the cache. LCP suffers

from this phenomenon because the expected time to enter the cache is +~-. Consequently,

Akp’
LCP overall object delivery time converges slowly. LAC+ brings a solution in adequately

varying p in order to cache valuable objects earlier.

Proof. We define the function f; of a couple of real variables u, v such that

e—)xkrw(v)
Sl (1 —e @) (1 —)’

fr(u,v) (2.11)
fr is content k miss probability given a cache characteristic time 7,(v) and decision

probabilities u and v. It is a convex function of u as
82 2 (6)‘167-13(1)) —]_)2

wfk(u, v) = (Lt () — 1)) > 0. (2.12)

Hence, by Jensen’s inequality,

Elfr(p,p)] > fu(IEp], p). (2.13)

Let define Dy (z,p) = E[fe(p, p)] — fx(IE[p], p).

As p is a strictly positive random variable, Markov’s inequality holds and p % 0

46

as E[p] | 0. Therefore, lim Dy(z,p) =0, as

[p]—0

lm E[fy(p,p)] =lm [fi(u,p)dP[p < u]

p20 p50J10,1]

= / lim fy(u, p)ddo(u) by dominated convergence,
[0

1] p50

where 0 is the Dirac measure

= lim f.(0, p)

p—0

= lim fi(IE[p],p) by continuity.
Efp]—o

To conclude this first part, as IE[p] | 0, Che’s approximation yields

> f(Eplp) =z =) fi(Ep], E[p), (2.14)

making E[fi(p, p)] = fi(E[p], E[p]) as E[p] | 0 follow.
Secondly, as x 1 oo implies that My = 0,Vk and 7, 1T oo,

lim Dy(z,p) = 0. (2.15)
Tr—00

Also,
lim Dy(z,p) = 0. (2.16)
Ar—0

Using the fact that Dy is differentiable on its domain and non-negative, it gets mini-
mal as either IE[p] | 0 or x 1 0o or A, | 0. It means that Eq.(2.10)’s underestimation

of rank-%£ content miss ratio shrinks under these conditions. O

2.4.3 Lower bound

Providing a closed-form approximation for asym-LRU miss ratio and its characteristic
time 70°™ is hard. Instead, we demonstrate its superiority over the analytically tractable
sym-LRU mechanism. With some loss of generality, «, the exponent of the Zipf law,

also referred to as its skewness parameter, is assumed greater than one. Let us consider

47

the symmetric mechanism sym-LRU where the MTF rules are conditioned by the same
probability in both hit and miss cases. By contrast in asym-LRU the MTF decision is

taken in case of miss only.

Proposition 2.3. Assuming VRT Ty, Vk,t are i.i.d. and large catalog and cache,
the steady-state miss probability of symmetric LRU algorithms, for the rank-k object,

approximates to:

sym x
Mky :exp{—m}, (2].7)

where I'(+) is the Gamma function.

Proof. Let p = E[py.), Vk € K at steady state.
Let §k denote the number of times a rank-k object is moved to the cache front

during a time interval. The mean number of distinct objects moved to the front of
the LRU cache during 7, as |K| T oo and 7 1 00, is:

Y E[Lgsg] = Y (1= ™) ~ (Arep)eT (1 - 1) (2.18)

«

in virtue of Lemma 5 of [Jelenkovi¢ and Radovanovié, 2004]. Hence, the power of
a-magnified mean number of distinct objects moved to the front of the LRU cache

during characteristic time 7,9

1\ 1\ “
z® = AV cpl (1 — —) = 7" = 2%(\cp)'T (1 — —) . (2.19)

(% (%

Recall that c is the normalization constant of the Zipf distribution. The rest follows

by using the exponential inter-arrival distribution for an object with rank k. O]

The closed-form expression of Proposition 2.3 is intrinsically the same as LRU’s in

[Carofiglio et al., 2013b]. This observation yields the next corollary.

Corollary 2.3.1. Assuming VRTT},,Vk,t are i.i.d.,
MY™ = MERU
i.e., sym-LRU behaves in stationary regime like LRU.

48

0.5

Density function © -
—— Mean
<
o
© 4
@ |
z° E)
@ @
5 S <
O o | a
o
— a
e
g o
T T T T
0 5 10 15 0.0 0.2 0.4 0.6 0.8 1.0
VRTT Decision probability
(a) VRTT (LAC) (b) Decision prob.(LAC)
o)
= —— Density function © 7
— Mean
< |
o
© -
@
R z
2 2 o
[j
[a N a
o
— N
S
g o
T T T 1 T T T T T 1
0 5 10 15 0.0 0.2 0.4 0.6 0.8 1.0
VRTT Decision probability
(c) VRTT (LAC+) (d) Decision prob.(LAC+)

Figure 2.1 — Single cache: latency and decision probability distributions.

asym-LRU consequently outperforms sym-LRU thanks to its convergence to the
Least Frequently Used replacement policy [Martina et al., 2013]. This leads to Propo-
sition 2.4 which relies on e-permanent accommodation, a notion to be introduced first.

Definition 2.1. An object is e-permanently accommodated if its miss ratio is less

than a small value €.

In that context, let 7,,cchanism b€ the number of most popular objects e- permanently

accommodated thanks to a caching mechanism.

49

5 08 °
£ g
—D ~—
= 0.6 Models =
S LAC + 15
S04t LAC+ x4 3
& 3 LCP b
= 02 / LACsym © i s .,
’){ LAC+sym x b= o LAC+ sym —>—
0 4 . LRU o 0 . LRU —o—
0 5 10 15 20 0 5 10 15 20
Object rank k Object rank k
(a) Miss ratio validates models (b) Deliv. time vs rank
2 = 9 — ‘
5 g ,
2 N S
15+ a ! AgEEEEE 1
) L
g 2 © P |
1 > Rk
g 47 ‘ VIV
= 3
0.5 LAC e LAC sym —&—] a 2 LAC sym —&— .
LACH - LAC+ sym —*— O LAC+sym —»— |
o L_LCP - ~ LRU —— g, ~ LRU —o—
(=}
0 20 40 60 80 100 120 © 60 80 100 120
Time [h] Time [h]

(¢) Mean deliv.time vs time

(d) Deliv.time stddev vs time

Figure 2.2 — Single cache: LAC and LAC+ decrease LRU delivery time by 30% and

outperform LCP on convergence.

Proposition 2.4. As decision probability’s expected value goes small, asym-LRU

allows to accommodate e- permanently more of the most popular objects than sym-

LRU i.e.,

Nasym > Nsym -

Proof. Let the miss ratio of all permanently stored objects admit a sufficiently small

20

value € as upper bound. Then:

Q=

\eTasym
Nasym = CTT . and (2.20)
log (1 + m (; - 1))
T
Noym = (2.21)

L1 2)(~loge)s

Since a first-order Taylor series expansion of € for asym-LRU, when E[p] | 0, yields:

o [r (1 - é) E[p] log (1 + ﬁ (% _ 1))‘1}]) , (2.92)

we have

. Nasym 1
lim —— > (—loge)= > 1. 2.23
e > (—loge) (2.23)

Let L Aasym denote LRU equipped for asymmetric latency-aware stochastic caching
decision (LAC and LAC+) and let L Asym denote LRU modified for symmetric latency-
aware stochastic MTF decision (STIR).

Corollary 2.4.1. As decision probability’s expected value goes small,

dk 2 1: TLAasym Z RTL Asym - (224)

This typically means that the performance of LRU caches equipped with LAC or
LAC+ can exceed beyond a given factor x that of sym-LRU, then LRU studied analyti-
cally and extensively in previous works [Carofiglio et al., 2013b]. Numerous simulations
backed these mathematical results, where often x > 2 unleashes tremendous content de-

livery time decreases.

51

2.5 Simulation

We evaluate LAC and LAC+ against three state-of-the-art caching management mech-
anisms: LRU + Leave-Copy-Everywhere (LRU), LRU + Leave-Copy-Probabilistically
(LCP) and LRU + Leave-Copy-Down (LCD)[Laoutaris et al., 2004]. This is carried out
by means of the packet-level NDN simulator CCNPL-Sim (the code of the simulator
as well as the input files to run the scenarios presented in this chapter can be found at
http://systemx.enst.fr/ccnpl-sim) (i) on a single cache topology, (ii) then
on a complex network where core caches are located along a ring. While in (i) the work-
load is IRM and Zipf skewness o > 1, in (i1) we injected some time locality and set v < 1

to investigate situations closer to the real world.

Single cache topology

The following results are achieved in a simulated ICN with a single caching node between
the object consumers and the publishing server. The whole simulation setup is available
online. Here are the main configuration parameters. Cache sizes are equal to 80kB. The
Poisson process for generating content requests is characterized by a rate of 1 object/s.
Objects are requested over a catalog of 20, 000 items, according to a Zipf-like popularity
distribution of parameter &« = 1.7. This value of « is still realistic [Mitra et al., 2011].
The two FIFO links from the consumers up to the content publisher have a capacity of
200Kbps and of 30Kbps, respectively. The size of every object conveyed through these
links is 10kB, that we also take as fixed packet size. About LAC parameters, ¢ = 1 while
B = ~ = 4.5 to pick latency outliers and leave quickly delivered objects to popularity
sampling. The function f is the mean latency of all ever-cached objects. LAC+ is config-
ured with € = 0.05 and § = « = 1, relying on its adjunct outlier tracking function O (-).
We report the simulation results in Fig.2.2.

First, it appears clearly in Fig.2.1 that the decision probability values are predomi-
nantly small. The mean decision probability equals 0.1 for both LAC and LAC+. This is
what drives their joint popularity sampling / latency screening capabilities. Secondly, we
can observe from the plots in Fig.2.2 that LAC and LAC+ converge to the same steady
state as LCP, which approximates the optimal LFU behavior. LCP, LAC and LAC+ miss
probabilities coincide even though to the exception of the former, they are based on tem-

poral measurements of residual latency, so adapting over time based on the sensed varia-

52

http://systemx.enst.fr/ccnpl-sim

tions in terms of experienced latency. Thirdly, we observe how much LAC/LAC+ latency-
aware technique reduces both delivery time mean and standard deviation. It is striking to
see how quickly they converge, compared to classical LCP. Observe that LAC+ is so effi-
cient that, even in its symmetric implementation, it captured early the highest popular con-
tent and made the delivery time drop. Conversely, the constant decision probability used
in LCP is the average of all latency-aware decision probabilities (p = 0.1) and this nega-
tively impacts the convergence and the system reactivity to temporal variations of latency,
as opposed to our LAC and LAC+ proposals. Finally, we observe that L Asym and LRU
miss ratio curves coincide in steady state as predicted in [Jelenkovi¢ and Radovanovié,
2004]. A symmetric filtering of objects to put in and to move to the cache front has
the only effect of slowing down convergence while not modifying the dynamics of the

underlying Markov chain.

Line topology network

i—) -
/i, 300Kbps 200Kbps 200Kbps 30Kbps

i Consumers Producer

y

Figure 2.3 — Simulated line topology.

First, we consider the setting in Fig. 2.3, with three caching nodes in-line between the
users and the publishing server. The four links from the consumers up to the publisher
have capacities equal to 300Kbps, 200Kbps, 200Kbps and 30Kbps respectively. Cache
sizes are equal to 80kB. Each object has an average size of 10kB, that we also take as
fixed packet size. LCP is parametrized with the probability p = 0.1 and corresponds
to the lowest mean latency-aware caching decision probability, Cache 3’s. We configure
LAC with 8 = v = 5 to stress the rejection of quickly delivered objects. Related results

are reported in Fig. 2.4. The resulting link load p on downlinks from the repository to the

23

users is respectively : (0.5, 0.01, 0.03, 0.27) under LRU, (0.27, 0.02, 0.02, 0.27) under
LCP and (0.22, 0.04, 0.06, 0.27) under LAC.

1
¥ |
! 2 S
e -
s 08¢ s 081 e
= = P e/
S 06 £ 06 bt
o o Pow ‘ # /
8 8 i H £
S04 S04 —fF Loy
2 2] ' LAC1 - e
= onl = ool ok LAC2
’ LRU overall —e— ’ LAC3 ---m---
o Ls ‘ LCP overall 0 ' LAC overall —<—
0 5 10 15 20 0 5 10 15 20
Object rank k Object rank k
(a) LRU and LCP miss probability (b) LAC miss probability
14 [LRU — _ 14
= 12 1% 5 12 s o-e-o-g
o 10 g 1
£ =
> 8 5 o8 L
o 6 < 06
= H,—(HHHHHHH =]
[5) 4 o s =] 04
A r"’(MMHHHHHHH 3 ’ LRU —o—
2 A1) & s 02 LCP
0 5 10 15 20 0 2 4 6 8 10 12
Object rank k Time [h]
(c) Delivery time vs content rank (d) Evolution of the mean delivery time
ET o
z LRU —e—
2 g lLce
A LAC ——
E
> S5 oo
>
AT e
(S
>
g
RS 0

0 2 4 6 8 10 12
Time [h]
(e) Evolution of the delivery time standard

deviation

Figure 2.4 — Line topology simulation: LAC decreases LRU delivery time by 50%
and outperforms LCP on convergence.

Clearly, the expensive traffic to the publisher decreases significantly with LAC, while

o4

very little increase can be observed on the other links. The tremendous gain in delivery
time (50% of LRU’s) can be appreciated in both its first and second moments. Such a
delivery time standard deviation decrease plays a central role in stabilizing customers

quality of experience.

Tree topology network

The next results are those achieved in the ICN setting in Fig. 2.5, spanning a binary tree
topology whose seven caching nodes are spread over three network levels, between the
users and the repository (publishing server). In this configuration, cache sizes are SMB.
Object size is taken equal to IMB. Downlink capacities from the users up to the repository
are 30Mbps-capable, except the last one toward the repository, which is 9Mbps. Each
packet has an average size of 10kB, making every object equal to 100 packets in size.
Caches are equipped for LAC decision, with 5 = v = 3. Cache 4 is on the first layer
(the closest to the consumers), Cache 8 on the second layer and Cache 10 on the third (the
farthest to the users). LCP’s p = 0.03. That corresponds to LAC’s mean latency-aware
caching decision probability. We report the related charts in Fig. 2.6.

Producer

Consumers

Figure 2.5 — Simulated tree topology

The observed link load p on downlinks from the repository to the users is respectively:
(0.7,0.31, 0.18, 0.6) under LRU, 0.7, 0.07, 0.33, 0.6) under LCP and (0.7, 0.12, 0.23, 0.6)

under LAC. Again, our LAC mechanism allows to lower maximum and average link load

95

— 1
u, o gk R
n MR
s 08 ok v - 08
e 06 < 2 06
=} el
< >4 <
S04t S04
£ £ LAC 4
L L LACS
0.2 LRU overall —e— 0.2 LAC 10
0 LCP overall 0 LAC overall
0 5 10 15 20 0 5 10 15 20
Object rank k Object rank k
(a) LRU and LCP miss probability (b) LAC miss probability
1 ; 1 ;
O MRU —— 0 LCP
LAC LAC
= 8 = 8
Y y
£ 6 £ 6
> >
=z 4 sz 4
= | =
2 L] oy anen s -
0= 0
0 5 10 15 20 0 5 10 15 20
Object rank k Object rank k
(c) Delivery time vs content rank (vs (d) Delivery time vs content rank (vs
LRU) LCP)
1 Z 0 —
_ 2 LRU —o—
@ ke LCP
2 08 [®%cgoo oo 2 8iLac
E o
= 06 £ 6
E B
T 04 S 4
=] ﬁ f‘@—()ﬂ—e—e-@‘e
§ (p|LRU —o— 8 | e
s “ [Lcp ol
LAC g
0 : : S ot ‘ ‘
0 2 4 6 8 10 12 N 0 2 4 6 8 10 12
Time [h] Time [h]

(e) Evolution of the mean delivery time (f) Evolution of the delivery time stan-
dard deviation

Figure 2.6 — Tree topology simulation: LAC decreases LRU delivery time by 30%

and outperforms LCP on convergence.

over the network. So, even though LAC reduces by half LRU’s load between layer 3 and

layer 2 caches, it still relies on caching delegation, which implies some inter-cache traffic.

Finally, we observe as a general rule that implementing LAC decreases the overall

cache miss probability i.e., the probability that all solicited caches fail to serve the re-

o6

quested object. It also decreases and stabilizes the overall object delivery time. Indeed,
the mean delivery time and the 95% confidence interval around the average, both decrease
by up to 50%. Note also that this overall improvement is not achieved to the detriment
of the convergence speed, unlike LCP. The latter, indeed, exhibits tremendously slow

convergence and extremely high delivery time standard deviation.

Ring topology

64

/»—v—r ~—F
32
- 16
Access link capacities = 500Mbps Q 8
P) E 4 XN PVEVE VS VST IV x--x" ¢ x._x_x,x.x
E x"'x
] 2 B TEEEnEEEEEEE
B gaade HEEHE
B I . e e G e e e T e e N I
E 1 Eﬁrgsgw-&-******
s 0.5 [Ex*
*
0.25 LRU —+— LCD o
’ LAC -reeoeeee LCP-0.001
0125 | LACH =
0O 5 10 15 20 25 30 35 40 45 50
Object ID

(b) Mean delivery time vs ID

= [LAC —
> r LAC+ —
3 L LCD —
g LCP-0.001
2 L
el
g L
g |
z |||].||I|||I|I|.“|l||”|-n.
5 T |
E L
9 202 S 4,9 65
Z//Qj)ds?/ox‘gif///\/‘)\26‘/‘//‘99‘0‘ \7/\70:\’\ ‘6‘//»(9‘/00:\? 5
Time [h] Link

(c) Delivery time vs Time (d) Load reduction x loadiry

Figure 2.7 — Ring topology with non-stationary workload

In this section, we evaluate the consistency of our algorithms in a network scenario

where eleven interconnected core nodes form a ring. Every link at the network core offers

o7

a 80Mbps capacity. Among the core nodes, three are content producers. Each offers
20,000 Zipf-ranked objects from its own catalog. Objects from the producer at Node 4
are given the prefix /Netflix/, /Orange/ for those from Node 8 and /Youtube/ for those
originating from Node 10. Each object is conveyed in chunks of 3kB and has a total
size of 2MB. Each node cache can accomodate up to 40 objects. While the skewness of
the Zipf-like popularity distribution, «, remains 0.9 for the whole simulation, we inject
some time locality in shuffling every object rank every ten hours. Clients connect to their
closest core node to send interests and retrieve data over dedicated S00Mbps links. Client
requests reaching every core node follow a Poisson process with intensity A = 2 objects/s.
Clients are equally interested in every catalog, so that any of them addresses every catalog
with probability 1/3. Routing is single path. Fig.2.7(a) depicts the network setup. LAC+
and e-LCP share a common value of ¢ = 0.001. LAC exploits a different ¢ = 1 but keeps
intensity parameters 3 and y equal to 1.

The striking results in Fig.2.7(b) show LAC+ decreasing LRU mean delivery time
by up to two orders of magnitude. LAC+ clearly outperforms LAC and LCP in ensur-
ing a content delivery at least twice faster. Moreover, as witnessed by Fig.2.2(c) and
Fig.2.2(d), LRU equipped with the Leave-Copy-Down algorithm denoted by LCD is sur-
passed. LAC+ heuristic minimizes the highest link load in a dynamic way (Fig.2.7(d)).
Thanks to its reactivity to congestion, LAC+ reduces by 30% the mean delivery time
inducted by LCD and by 50% the related standard deviation.

2.6 Conclusion and future work

Throughout the chapter, we characterized, bounded and evaluated the performance of
latency-aware LRU caches. The theoretical contribution extends the state-of-the-art of
probabilistic caching analysis. The novel idea behind ubiquitous latency-awareness is
simple, fully distributed and demonstrated powerful by means of extensive simulations.
By fully distributed, we highlight the fact that latency-awareness blasting performance
is free of any form of signaling. Actually, making early caching decisions based on the
latency of retrieved objects will sound increasingly intuitive, especially in the forthcoming
5G era. The task of accurately modeling networks of such caches in order to capture their

dynamics is still ongoing.

o8

Chapter 3

FOCAL: Joint Forwarding and
Caching with Latency-awareness
in ICN

Can delivery in ICN be much faster ?

Summary. Research on 5G has recently promoted latency minimization from a crit-
ical network optimization criterion to an architectural cornerstone. Information-
Centric Networking (ICN) appears a promising candidate technology for building an
agile communication model that reduces latency via a fully distributed and adap-
tive delivery approach coupling in-network caching and forwarding. In the chapter,
we theoretically and empirically investigate the role of latency awareness on multi-
path ICN delivery performance and analyze FOCAL, an approach combining novel
caching and forwarding strategies to reduce end-user experienced latency without any

network signaling nor coordination between routers.

FOCAL gathers a latency-proportional probabilistic caching policy, with a load-
aware dynamic forwarding strateqy, that preferentially routes popular content re-
quests through a single path (set of caches), while globally achieving minimum net-
work load and user content delivery time, thus delay minimization. By means of I[CN
simulation, we assess the advantages of FOCAL over existing alternatives given by

the combinations of known caching policies and forwarding strategies. FOCAL dras-

29

tically improves end-user delivery performance as it reduces by up to 60% the mean
and variance of content delivery time. It also results in a faster convergence to
these figures, even under the varying network conditions induced by non-stationary
content popularity distributions.

Keywords: Information-Centric Networking; Caching; Adaptative Forwarding,

Network Performance Analysis.

Contents
3.1 Imtroduction00, 61
3.2 Related work, 63
3.3 Problem statement0.0.00.0 .. 64
3.4 Optimal algorithm design 66

3.4.1 Optimal algorithm design guidelines through analytic insight 67
3.4.2 Numerical solutions 72

3.4.3 Maximizing the hit ratio of dynamic caches through opti-

mal bundling 75

3.5 FOCAL ittt e e 82
3.5.1 Latency-aware caching strategies 82
3.5.2 Latency-aware forwarding strategies 84

3.6 Performance analysis 89
3.7 Simulation. 00000 oo 97
3.7.1 Linear topology with forwarding branches 99
3.7.2 Fat tree with direct access to content repositories 105
3.7.3 US backbone-like scenario L. 106

3.8 Conclusiono, 107

60

3.1 Introduction

If latency minimization is already an important traffic engineering criterion in current
networks, it is anticipated to be a founding principle for the architectural design of 5G
networks. An efficient orchestration of edge caching, wire-speed packet processing and
traffic load-balancing appears essential to relieve congestion and to accommodate QoE
(Quality of Experience) requirements of latency-sensitive applications.

Research on ICN has recently highlighted the benefits of content-centric over host-
centric communication in terms efficient data delivery [Katsaros et al., 2014], but also
of optimized use of network resources [Llorca et al., 2013] [Imbrenda et al., 2014], sim-
plified management of mobility [Augé et al., 2015] and embedded security [Ion et al.,
2013].

In ICN atight coupling exists by definition between distributed forwarding and caching
operations: the use of hop-by-hop dynamic forwarding determines the arrival process at
in-network caches, where the persistence of content can be locally optimized. To close
the loop, the resulting hit/miss performance affects link loads and forwarding decisions to
achieve overall performance optimization. Therefore, latency reduction can be achieved,
in ICN, via both in-network caching and hop-by-hop distributed forwarding. The goal of
this chapter is to further investigate the impact of latency-awareness on caching decisions
alone, then to study the interaction with different dynamic forwarding strategies and to
propose a combined approach. Previous studies focused on the definition of ICN caching
and forwarding strategies with the aim of minimizing a network cost function, very few of
them considered latency. This chapter is, to the best of our knowledge, the first theoreti-
cal and empirical study of latency awareness on multipath ICN data delivery performance
under dynamic bandwidth sharing and network congestion. Herein, latency encompasses
processing, queuing, transmission and propagation delays.

The key elements to understand how latency-awareness improves caching are that: (i)
it makes the cache focus on a smaller catalog subset, the few objects retrieved along a path
whose bottleneck is upstream the node; (i1) it implicitly accelerates convergence towards
a dynamic LFU as latency-aware caches would store new objects until congestion drop,
which indicates that latency-generating objects, potentially the most popular, have just
been cached. This is particularly interesting in case of dynamic catalog, non-stationary

content popularity distribution or mobility. Schematically, latency-awareness improves

61

forwarding as it prevents from overloading congested routes.

Concretely, we recapitulate and extend the work started in an initial proposal of Latency-
Aware Caching (LAC)[Carofiglio et al., 2015c], enhanced later to strengthen latency de-
pendency in probabilistic caching decisions (LAC+)[Carofiglio et al., 2015a]. If the ben-
efits brought by LAC+ were clear on a single cache or a system of caches working under
random request forwarding, the interaction with smart forwarding strategies was the sec-
ond step for the definition of FOCAL we introduced in [Carofiglio et al., 2015b]. We
consider as starting point the optimal load-balancing (LB) solution derived in [Carofiglio
et al., 2013c] to achieve load minimization by distributed and dynamic monitoring of the
residual round trip time behind output interfaces. Intuitively, such a content-agnostic fine-
granularity forwarding strategy does not help differentiate the arrival process at caches
along different paths and hence realizes implicit latency-aware cache coordination. To this
aim, we present and analyze a novel load-balancing strategy, LB-Perf that locally moni-
tors the most popular content requests and persists in routing them through a single path,
while applying the agnostic LB approach to the aggregate of less popular requests. In this
chapter, we provide mathematical grounds for FOCAL, read the combination of LAC+
and LB-Perf. Its performance is evaluated by means of ICN simulation experiments in
various parameter settings and network scenarios to show its robustness and the consistent
benefits w.r.t existing alternatives. These consist in combinations of known caching poli-
cies (LRU, probabilistic caching, Leave-a-Copy-Down) and forwarding strategies (ran-
dom, load-balancing, load-balancing with persistent forwarding). Promising results are
obtained in terms of reduced end-user delivery time average and variance by up to 60%.
Furthermore, we observed faster convergence to these figures, even under the varying
network conditions induced by non-stationary content popularity distributions.

Our approach to Information-Centric Networking definitely owes to the Named-Data
Networking (NDN) architecture, a fork of Content-Centric Networking (CCN) , in terms
of data structures and work-flow. However, the genericity of our models and algorithms
makes them pertain beyond the NDN/CCN realm, wherever caches operate and forward-
ing decisions must be made.

The remainder of the chapter is organized as follows.

Sec.3.2 describes related work. Sec.3.3 formalizes the problem. Sec.3.4 provides
guidelines for optimal joint caching and forwarding algorithm design. They are grounded

in a mathematical analysis of the optimum, complemented by the solutions a state-of-the-

62

art solver computed. In Sec.3.5, we derive the FOCAL heuristics and present latency-
aware caching and forwarding strategies. In Sec.3.6 we provide a mathematical proof
of the algorithm stability. The evaluation results are gathered in Sec.3.7. They essen-
tially highlight, given the Remote Adaptive Active Queue Management (RAAQM) con-
gestion/rate controller [Carofiglio et al., 2013c], the improvements in content delivery
time mean and standard deviation w.r.t. popularity ranks and elapsed simulation time. Fi-
nally, Sec.3.8 concludes the chapter, complemented by number of appendices that provide

proofs to lemma and mathematical propositions.

3.2 Related work

In the context of ICN research, we identify two categories of related work: proposals in-
troducing enhancements of classical cache management policies for a given cost function

and studies focusing on forwarding strategies to optimize request-to-cache routing.

Latency-aware caching

Within the panoply of cache management proposals, some leverage content placement
(e.g. [Yuetal, 2015; Li and Simon, 2011]) while others deal with caching mechanisms
based on selective insertion and replacement in cache (e.g. [Psaras et al., 2012; Badov
et al., 2014; Ioannou and Weber, 2014; Ming et al., 2012]). The first class of approaches
is appropriate for small-scale controlled environments like a CDN (Content Delivery Net-
work), where topology and content catalog are known a priori. Either [Yu et al., 2015]
and [Li and Simon, 2011] deals with video streaming in ICN and orchestrate caching and
scheduling of requests to caches in order to create a cluster of caches with a number of
guaranteed replicas. Unlike these approaches, our previous ([Carofiglio et al., 2015c¢])
and current work on latency-aware caching belong to the second class of caching solu-
tions by defining a decentralized solution that automatically adapts to changes in content
popularity, network variations etc. by leveraging content insertion in cache. We share
the same objective as in [Badov et al., 2014], where authors propose a congestion-aware
caching mechanism for ICN, based on estimation of local congestion, of popularity and of
bottleneck position. Differently from our work, their congestion estimate does not differ-

entiate content items in terms of latency. More recently, [Nguyen et al., 2015] proposed

63

a new caching policy that consists in solving a knapsack of congestion prices. That study
assumed single-path content delivery. Similar considerations hold for other related ap-
proaches: the ProbCache work in [Psaras et al., 2012], using the same cache probability
for every content item at a given node and the cooperative caching mechanism in [Ioannou

and Weber, 2014; Ming et al., 2012] exploiting overall popularity and distance-to-server.

Caching and Forwarding Interaction

The search for an optimal interplay between in-network caching and forwarding has
drained effort in ICN research, as driven by different user or network performance objec-
tives. The optimal cache placement and forwarding problem applied to ICN was tackled
in [Wang et al., 2013a]. Unlike our approach to forwarding, bandwidth sharing is not
taken into account by such formulation, leading to results that are more appropriate for
network dimensioning purposes than for end-user latency minimization. Among the con-
tributions that focus on cache-aware forwarding strategies, [Eum et al., 2012] proposes an
Interests-to-neighbor forwarding aiming at maximizing a difference of potentials, whose
strength decreases with the distance to the content location. Similarly, in [Sourlas et al.,
2014], authors suggest to forward Interests to the neighboring node that advertised the
highest hit probability for the requested content object. A closer work to ours is [Yeh
et al., 2014], where an optimization framework is defined to jointly handle backpressure-
based forwarding and LFU-like content placement. The work designs a control plane that
feeds the actual chunk-level data plane with flow rates and queue sizes in order to operate
optimal content placement and request forwarding. Nodes must advertise their own queue
states to their neighbors. Our solution differs in that it does not require signaling and does
fully-distributed and dynamic cache insertion/replacement without requiring optimal con-
tent placement a priori. The latter aspect is important to guarantee self-adaptiveness to

varying network/traffic conditions.

3.3 Problem statement

The problem of improving end-user delivery performance can be formulated as the min-
imization of the overall average delivery time for all users in the network and over all

requested objects.

64

Take gy, ,, as the normalized request rate of object & from user u (namely, the popularity
function at user u), and W, , = (Wkur)kex as a vector whose every component is the
probability to download object £ from route r. In conformity with the BASS model
[Carofiglio et al., 2013a], we assume that the significant latency originates from the route’s
bottleneck link. Hence, h,, . = (...)rex denotes a vector whose every component is the
probability that object k is served by a cache along route r but downstream its bottleneck
(between the user and the bottleneck). The total cache budget along route 7 is limited to

T, Objects.

E[T, (W, h,,)] is the average latency i.e., the round-trip time to retrieve object
k on route r. We assume that bottleneck links are crossed by a single route. The set
of routes available to user u is identified by R,. Content items can follow any of the
available routes. Read “user” as a group of content consumers that share caches and

routes. Another assumption is that such groups can not share neither caches nor routes.

Put together, we obtain the formulation:

(Minimize Z Qk,uwk,u,r‘(l - hk,u,r>]E[Tu,r (Wu,m hu,r)] (31)
h:z; well keK,reR,
subject to:
Z Rk = Tuy,s Yu,r (3.2)
k
D Wiy =1, Yk, u (3.3)
0 < wpa, <1, VEk,u,r (3.4)
(0 < hpur <1 Yk, u,r. (3.5)

Similarly to [Carofiglio et al., 2013a], we model bottleneck links as M /G /1-PS queues,

making the mean latency depend on the number of content downloads in progress. Hence,

-1

E[Tu,r(wu,ra hu,r)] ~ [ﬂu,r — A Z Qk,uwk,u,r(l - hk,u,?‘) ’ (36)
k

where A is the content demand rate at the user and ., is the mean service rate at route

65

cacf’;e\"

by,
on rougg fef Bottlengcy n

Figure 3.1 — The problem is depicted: find the optimal content hit ratios and route
weights minimizing the mean content delivery latency.

r’s bottleneck. The objective in Eq.3.1 can be simplified to:

-1
Minimize Y [p;,i(wu,r,hu,r)—1] (3.7)

Wi u,r

hk,u,T ueu,TERu

with the additional constraint that p,, (W, h,) < 1. (3.8)

Pur Wy) = Au;} > & Qb uWhour (1 — R o) denotes the load at route 7’s bottleneck.
We thereby reformulated the mean latency minimization problem, by Little’s theorem, as
minimizing the sum of mean numbers of active flows. Fig.3.1 depicts the network system

the optimization problem formalizes.

3.4 Optimal algorithm design

This section articulates, via mathematical analysis, guidelines shaping optimal caching
and forwarding algorithms. They are later confirmed by the numerical experiments led
using the SCIP [Achterberg, 2009] nonlinear optimization suite. In addition, as a sub-
problem, we draw attention to the fact that the optimal performance of popularity-aware

egress caches requires an optimal split of the forwarded traffic.

66

3.4.1 Optimal algorithm design guidelines through analytic
insight

We indicate below that i) maximizing the hit ratio of a unique copy of the most popular
objects downstream the bottleneck, and ii) single-path forwarding of the most popular
object while load-balancing with latency-awareness the others are optimal traits. Both
guidelines are cornerstones to the distributed FOCAL algorithm we introduce in the next

section.

Store downstream bottlenecks a unique copy of the most popular objects

Maximizing the hit ratio of the most popular content items is optimal. Moreover, it is not
suitable to maintain multiple instances of the same object across paths. The following

proposition is an argument to this claim.

Proposition 3.1 (Optimal caching). Assume a catalog of size K, a cache budget
x spread over R routes downstream their respective bottleneck and a Zipf content
popularity distribution q with parameter o = 1. For minimizing the miss traffic,
the optimal cache management policy satisfying the following conditions consists in
ensuring the mazimum hit ratio h™**, 0 < b < 1, to the (¢/pmaz)-most popular

items as:
Vh:[1, K] x [1, R] — [0, h™**] a caching policy’s hit ratio such that

K
H(K)=hm* +/ Zh(v,r)dv = and Zh(v,r) <1,Vu,
1 T T

/K 1—T[.(1 = h(v, T))dv < hmaT |og (3.9)

v hmaz :

Proof. We aim to prove that the miss traffic whatever the policy characterized by
a hit ratio h, is always larger than the result of maximizing the hit ratio of the

(% /pmaz)-most popular content objects. Let A the content arrival rate, formally, it

67

writes as follows:

z/pmaz K K
A [(1 — pmar) /1 q(v)dv + / q(v)dv] <\ /1 [= rw,r)g(v)dv

/hrnam

K1 1—h
26/ [1.((w))dv < pras g
1

v Jmaz '

Holding from the definition of any hit function h:

HK H(K)/pmaz
H(K) = 2 & b log) _ jmaa / = e log
1 (%

hmaz hmaz :

Define H(u)/pmaz = v. By u-substitution,

KS™ h(u,r) x
hmax T ? d — hmaxl
lﬁ H(w) ™ >

hmazx :

Hence, as H(u) <wand 1 —[[(1 — h(u,r)) <> h(u,r),

K J— J—
/ 1 Hr(]' h(u’r»du S hmax 10g
1

U hmaz '

]

Single-path forwarding of the most popular but load-balancing the others

We adopt the framework of non-linear optimization to capture additional traits optimal
algorithms must comply with. They are, at least, necessary to solution optimality. The

following lemma strengthens them.

Lemma 3.1 (Convex regime). Assuming that |KC| = 1, the latency minimization

objective is convexr under the condition on the content demand rate that

1 Moy 1 . Mo,
— ’ — < A<inf ’ .
2“m{wmA1—m%»}+z 1“{wmA1—m%»}

Whenever for a given value of |K| such a condition exists and is fulfilled, it has a

68

radical impact on the problem. As constraints are either affine or convex, the KKT condi-
tions we invoke below are both necessary and sufficient in that regime, leading to strong

optimal algorithm design guidelines.

Proof. With || = 1, the objective reformulated in Eq.3.7 is a sum of terms whose

Hessian matrix is:

3 |A B
HE) = (pay — Awrp (1= hay)) ™ 5 ol (3.10)
with
A =2Xp w0l (3.11)
B =—)\lflu,r (,ul,u + wl,u,r<1 - hl,u,r))) (312)
C =22ty (1 — By)?. (3.13)
The Hessian i.e., the determinant of H{, is positive iif AC > B2
~ 4/\4M12L,rwiu,r(1 - h17u17’>2 >)‘2Mi,r (:ul,u + wl,u,T(l - hLU,T))Q
& (20w 4, (1 — hLu,’r‘))Z > (fur + Wi (1 — hLW))Q. It follows that:
1 J 1 _ Hos,r
= : — < A < inf : . 3.14
2 SHp {wl,u,r<1 - hl,u,r) } * 2 o {wl,u,r(l - hl,u,r) } ()
If Eq.3.14 is verified at the candidate-optimum vector (w7 ,, ., ki,)ur, as the leading

principal minor A is also positive, the Hessian matrix Hq(fz* at that vector is defi-
nite positive in virtue of Sylvester’s criterion. It further implies that the objective

function is convex. O

The observation below highlights the importance of capacity (probed using retrieval

latency) and popularity awareness in optimal caching and forwarding algorithms.

Observation 3.1 (Capacity and popularity awareness). Assuming a content object
k is forwarded through multiple routes, always cached but not permanently, caching
and forwarding algorithms that are characterized by ratios of the route weight over
content k miss probability made proportional to the product of content popularity

and the route’s bottleneck link capacity, comply with necessary optimality conditions.

69

Their solution vector verifies:

*
wk,u,r

1—h

kyu,r

OC Qo flus, - (3.15)

This analytic insight indicates that the most popular objects are affected near-one hit
ratios, whereas the least popular content items end up with near-zero hit ratios and pre-
dominantly higher path weights on higher capacity routes.

Context. Define two vectors of decision variables w = (wg,,) and h = (hgy,). The

Lagrangian of the problem, L(w, h, 1), is:

Z [(p;,qlﬂ(wu,r’ hu,r) - 1)_1 - 19(51)" (1 - pu,r(wu,ra hu,r))} (3'16>

= 0+ > I s (3.17)
u,r u,k,r

S [0 — 0] (318
u,k r

> W (1= W) (3.19)
w,k,r

~ N9 hpu(1—h 2
Z ku,r k7u1T(kﬂh’r) (3 0)
u,k,r

with 93, -, 0% ... 99 e R, vu e U, Vk € K and Vr € R, the related

» Yk kyau,r
multipliers and ¢ their vector. According to KK'T optimality conditions, the gradient
of the Lagrangian at optimal vectors w* = (wj,) and h* = (hy) is zero given

the vector of optimal multipliers ¥*. It writes:
VurL(w*, h*,9%) = 0.

70

Thus,

A u,rqk,u h*ur
fasr Gk, (1 o) 2:193 191({:41”
(/J“u,r — A Zj Qj,uw;‘:u,r(l - h;ur>>

*
)\,Uu,qu,uwkﬂ,,?r

2wy, — 1),Vk,u,r (3.21)

5 =9+ 90" (2h) ., — 1), Vhou,r (3.22)
<MU,7” —A Zj qjvuw;':u,r(h;u r))

Furthermore, the complementary slackness conditions impose that:

Z Wpwr =0, Vku,r (3.23)

Z wi,,—1=0, Vku,r (3.24)

ﬂé“iiwz,u,x —wi,) =0, O, 20 Vkur (3.25)

D (1= B) = 0, 000 > 0,9k, u,r (3.26)

and by stability condition, 19u62,* =0, VYu,r. (3.27)

It follows that:

(1= hir) (02 + 000 @iy = 1)) = wi, (950 = 00, 20, = 1)

Assume that Constraints (3.4) and (3.5) are not saturated. Content objects this
applies to are multipath-forwarded and not perfectly cached. Previous equation

simplifies to:

* (2)x*
Wy, JU,T 19u r
- = (3.28)

At this point, we learn that the content miss ratio on a route divided by the route
weight for that content equals to 19555‘, a property of that content divided by 920",

a property of the route. The following relation also hold:

* (1 T hz,u,r)ﬂu%?"* (3)x* % (2)*
Zwk’,u,r = Z 19(3)* =1l ﬂk,u = Z(hkzur)ﬁur (329)
T T k,u T

71

It suffices to choose 19&22* proportional to route r’s route’s bottleneck link capacity
and 192331* inversely proportional to content k’s popularity.
As a consequence to this substitution, in Eq.3.29 a content having, whatever

route capacities, a low hit ratio should be of low popularity. O]

3.4.2 Numerical solutions

We numerically solved problem (3.1) using SCIP 3.2.1 [Achterberg, 2009] + IPOPT
3.12.4 [Wichter and Biegler, 2006] + PARDISO 5.0.0 [Kuzmin et al., 2013; Schenk et al.,
2007, 2008], a Mixed Integer Non-Linear Program (MINLP) optimization suite. A.1 is
the corresponding mathematical program tuned to cope with the ZIMPL modeling lan-
guage [Koch, 2004] restrictions. An easy way to run it without installing the suite is via
the NEOS Server? free internet service. We investigated two schemes related to whether

traffic characteristics are perfectly known a priori or not:

Static caching (or replica placement) Assume an oracle reveals the content pop-
ularity distribution. Then, optimal caching consists in ensuring a perfect hit ratio of 1 to
the (>, x,,)-most popular content items. The optimal forwarding for these most popular
objects is single-path whereas the remaining traffic can be load balanced across available

routes.

Example 3.4.2.1. Consider the topology in Fig.3.1 with a 10-objects-per-route
cache budget. Some content might be permanently stored, meaning that their hit
ratio might be 1. We intend to optimize the sum of the mean numbers of active
flows across the 3 routes separating the user to a repository of 1000 objects. Objects
popularity follows a Zipf distribution with skewness parameter o« = 1. The object
demand rate is 10 objects/s whereas route bottlenecks can respectively achieve 5, 3
and 2 objects/s downlink service rates. These are also the default parameter settings
of the mathematical program in A.1 we submitted to the SCIP solver.

Here is the optimal solution: as depicted in Fig.3.2, up to rank 30, objects are
cached with a hit ratio of 1 and single-path forwarded. From rank 30, none is cached
since there is no more slot available. At this point, forwarding balance objects across

routes, splitting flows like content 32 if needed. Optimal link loads end up at 0.55

2http://www.neos-server.org/neos/solvers/go:scip/MPS.html

72

http://www.neos-server.org/neos/solvers/go:scip/MPS.html

0.2

Popularity
o
|_\
N
o,
Q
1
=

oo
(o]
T T T I

Route weight
o
(o))

Route 1
i ifiiRoute?2
P i]liRoute3d e

Hit ratio
o
oo

10 20 30 40 50 900 950 1000
Object rank k

Figure 3.2 — Static caching optimum per popularity rank: 3 routes, 10-objects-per-
route cache budget and a catalog of 1000 objects. Observe load balancing and the
end of caching right after rank 30.

for the highest-capacity bottleneck, 0.42 for the medium-capacity one and 0.29 for
the lowest-capacity link. The exercise results in a sum of mean numbers of active

flows equal to 2.42 at the optimum.

In the vast majority of applications, content popularity distribution has to be inferred
from ongoing traffic. Caching policies dynamically react to non-stationary content arrival
and infer decision parameters such as content popularity on-the-fly. However, state-of-
the-art traffic models are so approximate that opportunistic caching can not guarantee
perfect hit ratios of 1 [Leonardi and Torrisi, 2015]. In this mode, a portion of the most
popular traffic will always leak through the bottleneck links. We take into account real-
world cache performance by defining for Constraint (3.5) a hit ratio’s upper bound A™** <
1. Surprisingly, as reported by Fig.3.3, the previous algorithm is still optimal in this case.
Even with A% = 1/5 optimal caching does not consist in duplicating objects over
several routes. On the contrary, at the optimum, the number of popular objects cached

50% of the time equals twice the cache budget and single-path forwarding still prevails.

73

0.2

Zipf a=1

Popularity
o
=

Route weight
o

(o)) =

T T T T I

1

-

' i Route 3 erreeree
0 I H i H H

10 20 30 40 50 60 70 8 90 100
Object rank k

oo
a1
T T T]
i

:

-

i |

.

Hit ratio
o
w

Figure 3.3 — Opportunistic caching optimum per popularity rank: h™* = 1/, 3
routes, 10-objects-per-route cache budget and a catalog of 100 objects. Observe load
balancing and the end of caching right after rank 60.

Opportunistic caching

Example 3.4.2.2. Consider the same setup as in the previous example, but with
a 100-object catalog, a demand rate of 15 objects/s and cache performance upper
bounded by h"™** = 1/9. In conformity with Proposition 3.1, SCIP solver finds the
optimal solution depicted in Fig.3.3 where up to rank 60, objects are cached with
hit ratio 1/9 and single-path forwarded. Note that the objects concerned are those
whose rank is less than h™**x total cache budget. Beyond rank 60, typically for
content 61 and 79, we experienced load balancing even though number of flows get
just single-path forwarded due to their scarcity. Finally, optimal link loads end up at
0.85 for the highest-capacity bottleneck, 0.81 for the medium-capacity one and 0.76
for the lowest-capacity one. At the optimum, the sum of the mean numbers of active

flows reaches 13.4, its minimal value.

Up to now, the optimal content hit ratios have been set into the caching systems, as
fixed targets to achieve. However, number of caching systems are autonomously governed

by an insertion/eviction policy aiming to cope with the fact that their capacity is much

4

smaller than the size of catalog they address. Hence, a content hit ratio becomes an
outcome to the policy operation, then no longer a given. Below, we take the single-
path forwarding guideline further. We advocate that there exists some selection of the
flows single-path forwarded towards a common egress cache, referred to as bundling, that

maximizes dynamic caches hit ratio.

3.4.3 Maximizing the hit ratio of dynamic caches through
optimal bundling

Take for instance caches ruled by the (evict the) Least Recently Used (LRU) policy. They
are not just passive storage handling content objects independently. Their dynamics and
performance depend on the relative popularity of content objects they deal with. This has
to be taken into consideration when the most popular flows are single-path forwarded in
accordance with guideline 3.4.1.0. A bundle denotes the set of flows sent in a single-path
way to the same egress cache whereas bundling is composing that set. That bundle-
dependent performance claim holds from solving, at every node n, the following opti-

mization sub-problem.

Definition 3.1. Let T'"(n, k) be the set of egress caches for content k at node n.
We assume homogeneous routing in the sense that every content can be forwarded to
any of the egress caches. Therefore, it is enough to define for each node n a content
agnostic set of egress caches Tt (n) =T*(n,k),Vk € K.

The sub-problem, sketched in Fig.3.4, consists in finding the best combination {ij :
b eIt (n),k € K} of content objects for each cache in order to maximize the overall hit
probability. The egress traffic is split so that the number of distinct objects sent to every

cache b can not exceed a real factor 7, times the cache size xy.

75

Figure 3.4 — The sub-problem is depicted: find the optimal flow bundling maximizing
egress LRU caches hit ratio.

(
Maximize > aeikphrn(iv = (ivg, - i) (3.30)
bel't(n),kek
subject to:
irp € {0,1}, VEk, b (3.31)
> i <1, vk (3.32)
bel+(n)
Z ik,b S My, Vb. (333)
| kek

The Independent Reference Model (IRM) assumes that the content request process
is a sequence of independent random variables with a common probability distribution
[Roberts and Sbihi, 2013]. So, under IRM and according to Che’s approximation of the
LRU cache hit ratio [Che et al., 2006], content £ hit probability in cache b is hy (i) =
1 — e~wtc(b) Here, to(iy, b) shortened as to (i), is egress cache b Characteristic Time.

It is deemed the time before object eviction.

Analytic insight

The proposition below gives a necessary criterion for the hit probability to be maximal
assuming LRU caches. It is clarified by an illustrative corollary that tackles the case of
same-size LRU caches and flow bundles. In a nutshell, we state that it complies with
necessary optimality conditions to forward the union of a suitably small compact subset

of the highest popularity ranks and a subset of the lowest popularity ranks to the same

76

egress LRU cache, as long as the cumulative popularities of the resulting bundles follow

the same order as those of the popular subsets.

Consider this preliminary lemma:

Lemma 3.2 (Characteristic time w.r.t. content activation). Under IRM , forward-
ing a new content to an LRU cache decreases its Characteristic Time. That negative

slope is the ratio of the content hit probability over the cache miss probability.

Proof. We inherit from Che’s approximation the relation:

Fip,te(in) = Y gy (1— e @) — g, =0, Wb eI (n). (3.34)
kel

We relax Eq.3.34 by assuming that iy, €]0,1]. Then, we apply the Implicit Function
Theorem to Eq.3.34. It gives:

Otc(ip) OF (ip, tc(iv)) (aF(ibatC(ib)))_17 vk € K, Wb € T* (n)

Diry g Oto(iy)
~1
= — (1 — e_qktc(ib)) (Z Qi be—mtc(ib)>
lex
= —hk’b(?b) <0,
Mb(lb)

where hy;(-) denotes content k hit probability in cache b and M,(-) the cache overall
miss probability. O

We exploit this result to derive an optimal egress flow bundling.

Proposition 3.2 (Optimal forwarding towards LRU caches). We assume that the
content objects k that can be harmlessly discarded from caches are those for which
k is large. Assuming that IRM holds and that node n’s egress nodes a € I'"(n)
are equipped with x4-size LRU caches, any optimal flow bundling, which mazimizes
cache hit ratios, is such that any permutation of some converged cache characteristics

would be detrimental to the hit ratios. Formally, Ya € I'"(n), e}, -

77

<Y i o Mfpert oy £ (1= (1= hap(@5)) %5 + €6 ap) Pas(i) }

. , (3.35)
T () 7
with 47 = (My (i) ™" quifb and lim € ., =0. (3.36)
’ ko1t P

lek

We demonstrate it below, as well as this illustrative corollary.

Define x;, as the capacity of an egress LRU cache b € T'"(n).

Define BZ as the flow bundle forwarded to cache b at iteration step j.

B)=o.LetS C K\ U, Bl. Atiterationstep j + 1, B = B} U S.

Let g, be content k popularity.

Define Pg = > g as the cumulative popularity of bundle b at step j.
keB]

Corollary 3.2.1. Merging into the same bundle a suitably small compact subset of
the highest popularity ranks with lower popularity ranks, such that bundles cumula-
tive popularity strict ordering is preserved, complies with Proposition 3.2°s optimality

criterion.

By suitably small compact subsets of the highest popularity ranks, we mean |7,z |-
size subsets of the most popular contents, 7, < 1, such that each subset is an arithmetic
sequence with common difference 1, e.g.,{1,2,3},{4,5,6,7,8}.

Preserving the cumulative popularity strict ordering means ensuring that, Va,b &€
I't(n), P/ < PI = P/™ < Pi*'. For example, assume a Zipf popularity distribution
with skewness a = 1. Since {1, 2,3} U{9} has strictly bigger cumulative popularity than
{4,5,6,7,8}U{10}, such an iteration is said to preserve prior cumulative popularity strict

ordering.

78

Proof. The Lagrangian of that sub-problem is:

Lo(in,d) = > qrigy (1—e) 43" Sk (iky — 1)

bel'+(n),kek b,k
- Z o) <Z Uk — 1) - Z o5 (Z Ukb — Ub$b>
k b b k
with ¢,(€17,3, (b,(f), 1(73) € R,,Vk € K,Vb € T't(n), the related multipliers and ¢ their

vector. I't(n) stands for the set of node n egress nodes.
Karush-Kuhn-Tucker optimality condition V;, L(if, ¢*) = 0, yields:

o [Ote(i})
—qrto (i) C\% Sk
1+ e teth <—(%Z,b E Qg 1)]

+ o (2ir, — 1) — o — ¢ = 0,k,b. (3.37)

qk

Lemma 3.2’s argument makes this equation equivalent to:
oo (i7) (1= (1= b (0)) 95) + 0y (207, — 1) = 67" = 9" =0, Vb (3.38)
(A Eb\ %)) Vb kb \Llkp k b)) .

where 7} = (Mb(z'Z))*1 > ek @il is a constant typical to the optimal setup of every
cache b.

Then, we characterize the content objects k that are not cached at all at the
optimum, those for which Vb € T'*(n), i}, = 0. This means that gb,(f)* = 0 since the

matching constraint is not saturated, and
P (35) (1= (1= by (35)) 5) — 4" — 64" =0, b (3.39)
qrnEp\1y Eb\Tp)) Vo kb b , . .

Therefore, as content objects that can be ignored are those for which k 1 oo, valid
values for multipliers in Eq.3.39 are such that (gb;clg*, gb,()g)*) ¢t 1 (0,0) as k | 1,Vb.

Let us characterize the contents k that are cached at the optimum, those for
which Ja € I'(n) : i, = 1 and Vb € ' (n) \ {a}, 7}, = 0:

aihia(in) (1= (1= heai5) 72) + 0 — 6" — 6" =0,
qehip(iy) (1 — (1 — hep(ip)) 75) — ¢1(ch B gbf)* B ¢£3)* _o

79

Removing gb,(:)* positive terms yields the following inequalities:

—awhna(iy) (1= (1= (i) 72) + 67 + ¢<3>
AWl (i) (1= (1= hup(i7))) = 67" = 617" >

Finally, the sum of both lines gives:

hk,a(iZ) < I (1 - hk b<ZZ)) 7;: + 67; ,a,b
hip(ip) = 1= (1= haali)ve

with € ,, = <¢a - gzﬁl()?’)*) g, " and lim_,;+ €rap — 0. By summing over all the

(3.40)

content objects that share cache a, it follows that:

., o i o 0y {(1 = (1= hap (i) % + €5 0) Pan (i) }
2 habialit) =10 <) L= (1~ heali) |

k

This concludes Proposition 3.2’s proof.

Corollary 3.2.1 claims that inserting into the same bundle a suitably small com-
pact subset of the highest popularity ranks , then adding lower popularity ranks
such that bundles cumulative popularity strict ordering is preserved, obeys to the
optimality condition stated by Eq.3.35. Indeed, upon such a bundling, except for
one cache a, it exists a cache | = arg inf,{-} : 7% > 77 and hy (i) > hgo(i) VE in
cache a due to a lower cumulative content popularity in [and Lemma 3.2. Thus,
L— (1= hea(i7) v > 1= (1 = hga(i)) vE. As [may not exist When a is the cache
accommodating the lowest popularity items, choose multipliers (bb = 0 except for
that cache. 0

Numerical solutions

We computationally solved this MINLP, formulated as the mathematical program in A.2,
under a local SCIP installation.

Default formulation The original version of the problem possesses an intuitive opti-
mum that creates bundles of the same size as the target cache. Optimal bundles contain the

80

most popular content objects. Whether they are conveyed towards one cache or another
does not matter. Indeed, the LRU caches never evict anything, ensuring an overall hit ra-
tio of 1. Unfortunately, the solution is not practical since implementing such a forwarder

assumes a perfect a priori knowledge of content popularity and egress cache sizes.

Formulation with fixed and over-sized bundles We change Constraint (3.33)
to an equality to investigate the more realistic case where bundle sizes are arbitrarily fixed
and made bigger than the target cache. Such a MINLP, as a nonlinear 0-1 equality mul-
tiple knapsack problem, is harder than its inequality counterpart, which is already harder
than the NP-hard nonlinear 0-1 knapsack problem [Hochbaum, 2007]. Moreover, Che’s
approximation defines the characteristic time as an implicit function expensive to evalu-
ate. Hence, the few successfully solved instances had tiny number of objects, tiny and
different cache sizes and fixed bundle size equaling cache size + 1. Still, the optimal solu-
tion consists in bundles merging a suitably small compact subset of the highest popularity
ranks with lower popularity ranks, such that bundles cumulative popularity strict ordering

is preserved.

Example 3.4.3.1. Consider a tiny catalog of 14 objects ranked according to a
Zipf law. The popularity skewness is 1. We aim to split the traffic into two bun-
dles of 6 and 7 flows for feeding two egress LRU caches. The caches can accom-
modate up to 5 and 6 objects. These are the default parameter settings of A.2.
The optimal solution, which gives an overall hit ratio of 0.91, places content ranks
By ={1,2,3,10,11,12} in bundle 1 and content ranks By = {4,5,6,7,8,9,13} in
bundle 2. Observe that By = {1,2,3} U{10,11,12} and By = {4,5,6,7,8,9} U {13}
and cumulative popularity 1 +1/9 +1/3+1/19+1/11 + 1/190 = 2.107 > 1.072 =
Vg+1/s+1/g4+1/74+1/g+1/g+1/13 in full compliance with Corollary 3.2.1.

In the next section, we derive distributed algorithms from these guidelines that try
to minimize the objective function Eq.(3.1) by obtaining wy, ,, and hy,, without any
coordination among the nodes and no signaling. That optimal objective can be heuristi-
cally generalized to every node n in the network by substituting E[T, .(W,, h,)] with
E[T, (W, h,,)](n) the local virtual residual round-trip time (VRTT) on route .

Hence we set the probability to store an object £ at a given node n, proportional

to the popularity and latency locally observed at node n. A globally optimal strategy

81

performed in each node would heuristically prefer to cache locally popular content having

high retrieval latency.

Forwarding will be single-path for the most popular content items and multipath for
the others, with a route weight inversely proportional to the number of pending interests
per content and per route. As shown in [Carofiglio et al., 2013c], such a weight estimation

reflects link capacity.

3.5 FOCAL

3.5.1 Latency-aware caching strategies

Taking into account latency awareness into cache management, can improve alone the de-
livery time of latency-sensitive applications and on average the global delivery time per-
ceived by user, as prescribed by Proposition 3.1 and shown in [Carofiglio et al., 2015a].
Before considering the joint effect of latency-aware caching and forwarding, we present a
novel stochastic caching mechanism, exploiting monitored latency information for cache
insertion decisions and not involving cache coordination. The novel latency-aware caching
policy is named LAC+ and builds upon the LAC proposal in [Carofiglio et al., 2015c]
that we summarize below. The enhancement of LAC+ consists in strengthening latency-
dependency in probabilistic cache decisions w.r.t. LAC, based on an online monitoring

and estimation of the second-order moment of latency distribution.

LAC

In ICN, when a requested content object is not available in cache, a cache miss event
occurs and the Interest is forwarded up to the first hitting cache where the corresponding
Data is retrieved and sent downstream to the client. On the reverse path to the client, every
cache decides whether or not storing the object, at the cost of triggering the eviction of

another object due to finite storage space constraints.

According to LAC, at time ¢, the decision to store object k is positive with a given

probability py(¢) and negative otherwise (with probability 1 — py(t)). As a special case of

82

a prior proposal from [Carofiglio et al., 2015c], we characterize py(t) as

pi(t) = min <e?f((f)) : 1) (3.41)
where T}, (t) refers to content k& monitored latency at time ¢, T}, (¢), T'(t) respectively to the
temporal averages for content k and for all cached contents computed up to time . T'(¢)
and T}, (t) are estimated using Exponentially Weighted Moving Averages (EWMA), with
a weight associated to the historical value of average latency set to & = 0.9. The cache
insertion probability, py(t) results from the product of a small factor, ¢, modulated by the
ratio of its retrieval latency over the average latency of cached objects. A first assessment
of LAC performance suggested that further benefits may result from strengthening the
latency-awareness contribution by highlighting second order moment characteristics of

monitored latency. This is the rationale behind LAC+ proposal.

LACH

LAC may suffer from the slow convergence of any other probabilistic approach (see e.g.
[Psaras et al., 2012]), due to the small ¢ factor. In simulations, we observe a non negligi-
ble time for even very popular objects to be persistently cached. We recall that the ideal
behavior of a cache should be to capture the most valuable objects (according to a defined
cost function), while avoiding unnecessary replication across network of caches. Unnec-
essary replication is typically object replication below a bottleneck or the lack of implicit
coordination between neighboring caches. LAC+ achieves such objective by supplement-
ing LAC with an outlier tracking function, meant to estimate second order moment of
observed latency distribution. The outlier tracking function, denoted as Oy, significantly
increases cache insertion probability for those exhibiting an exceptionally high devia-
tion in comparison the other content objects. Such outliers correspond to significantly
higher-than-average latency items, that is important to cache even when not very popular.
According to LAC+, at time ¢, the decision to store object £ is positive with a given prob-
ability p; () and negative otherwise (with probability 1 — p;' (¢)). We define p; (¢) as the

linear combination of two terms:
pr(t) = pr(t) + (1 — pi(t))Ok(t). (3.42)

83

Let 1; and o; be the average and standard deviation of all Ti(t), Vi € K, at a given node.
The 2" quantile being Q. (t) = p; + 20y, it follows that

(L h-Q
Oxlt) = (supie,c{w} Q.0 O) ' (3.43)

pi (t) inherits its first term from LAC. Its added value dwells in the second term, that
allows to account for objects with a sensibly higher-than-average latency, in order to cache
them even when not very popular (namely, when not selected by the filtering embedded in
the first term). Its purpose is to strengthen the latency dependency of the caching decision
to favor, by means of Oy, a positive caching decision for those objects whose retrieval
can be very costly: e.g. long distance to the hitting cache, upstream congestion or severe
bandwidth limitations. Oy (t) is defined as the probability that object k& average latency at

time ¢ is an outlier.

3.5.2 Latency-aware forwarding strategies

Latency reduction can be also achieved via smart hop-by-hop request forwarding strate-
gies trying to minimize i) distance to the first hitting cache, ii) congestion status of the
network. To such extent, the presence of multiple paths is clearly essential. Using as
baseline for comparison the uniform random forwarding approach that blindly selects
with equal probability output interfaces in FIB, our focus is on the family of distributed,
dynamic load-balancing approaches whose objective is to split content requests over time
and through the available output interfaces such as to minimize i)-ii) on average. In
[Carofiglio et al., 2013c], a load balancing scheme is derived from a joint optimization
of end-user rate/congestion control and multipath forwarding under the objective of min-
imizing the maximum link load network-wide. The minimization of the maximum link
load implicitly leads to a significant reduction of the overall average latency as it can be
appreciated in the simulated scenarii. Hereinafter we refer to such an approach simply as
Load balancing (LB). LB selects available output interfaces per FIB entry randomly ac-
cording to computed weights. At the beginning, each interface has the same weight equal
to one and the randomized forwarding process is uniform over available output interfaces.
This allows to probe all available interfaces and to monitor the average number of out-

standing Pending Interests (PI) per FIB entry and per interface. Such a metric reflects

84

the residual latency due to first hitting cache distance and congestion status. After this
initial phase, the computation of the weights driving interface selection simply consists in
taking the average number of PI per FIB entry and per output interface normalized to the
total average number of PI per FIB entry (so that weights are comprised between 0 and
1). Ideally, LB works on per-content FIB entries enabling a fine granular load-balancing
at flow scale. However, a feasible approximation that keeps limited FIB state replaces
per-content with per-prefix entries aggregating all content names behind the same prefix
(FIB lookup is assumed to be Longest-Prefix Match). Note that in our simulations we
adopt a per-content LB approach with the objective to quantify its best performance.

LB may achieve significant improvement of overall end-user throughput/latency over uni-
form random forwarding via load-aware utilization of multiple paths. However, it is not
capable of realizing implicit cache coordination for caches along different paths, as a con-
sequence of its randomized weighted split, that load-balances Interest for the same content
over all output interfaces according to the weights. To understand this issue, let us con-
sider the case of three output interfaces available for a given content k& with associated
weights, wq, ws, w3. At each incoming request for content &, LB splits the Interest arrival
process over time into three output processes, with rate respectively w;, ws, w3 of the to-
tal, without selecting the same output interface for a given chunk request. As a result, the
arrival process at caches along the three paths has the same characteristics (except for the
rate) of the original one, leading to caches operating independently and storing the same
items.

Intuitively such a behavior advantages most popular objects cached with high prob-
ability over all available paths, but reduces overall caching benefits due to lack of cache
coordination. Instead, splitting Interests in a way to persist the selection of one or few
single output interfaces over time on a per-content basis, (while keeping per-prefix load-
balancing according to LB weights) would differentiate the arrival process at caches along
the three paths, so realizing implicit cache coordination and better overall performance.
This idea, grounded in Proposition 3.1, Proposition 3.2 and Corollary 3.2.1, inspires our
proposal for an enhanced load balancing scheme, that we name LB-Perf (Load Balancing
with Persistent Forwarding).

In an initial phase, LB-Perf computes per-prefix weights to associate to available out-
put interfaces as in LB case. FOCAL is also equipped by a popularity sampler which

continuously monitors the most popular objects and store their name locally. The method

85

Algorithm 1: The most popular content items are sampled in PopularFiles.
Create flow bundles, one per FIB entry, based on observed interest volume and
associate persistent faces to popular content items.

At update time (every AT);
Faces are ranked every ATy > AT}
T+ T+ AT ;
IsPersistentDisabled = FALSE;
foreach FileName in PopularFiles do
prefix <— GetFIBPrefix(FileName) ;
OuputFaces < GetOutputFaces(prefix) ;
FlowBundle < GetFlowBundle(prefix) ;
Face < OuputFaces.Begin();
Sort(FlowBundle by InterestCounter) ;
if (T > AT)then
Sort(FaceRecord by weight) ;
T+ 0;
end
CumSum « 0 ;
foreach (FlowRecord in FlowBundle) do
CumSum <+ CumSum + FlowRecord.Popularity() ;
while (Face # OuputFaces.End()) do
if (CumSum < Face.weight) then
FlowRecord.SetFace(Face);
break ;
else
CumSum < CumSum + FlowRecord.Popularity() ;
Face <~ OuputFaces.Next();
end

end

end
end

86

Algorithm 2: Popularity based persistent face selection.

At Interest I arrival with name /p/file._name/chunk name ;
I matches name prefix /p in the FIB ;
OuputFaces < GetOutputFaces(prefix = /p) ;
if (IsPersistentDisabled) then
LoadBalancing.Update(OuputFaces.weights) ;
FacelD <+ LoadBalancing.SelectFrom(OuputFaces) ;
else
PopularitySampler.Insert(I) ;
if (PopularitySampler.Find(FileName(I))) then

‘ PopularFiles.ManageHit(I) ;
end
if (PopularFiles.IsPopular(FileName(I))) then
FlowRecord < FlowBundle.Find(FileName(I)) ;
FlowRecord.Interest Counter++ ;
FlowBundle.Norm-++ ;
FacelD < FlowRecord.GetFace() ;
if (FacelD isEmpty) then

‘ FacelD <+ LoadBalancing.GetFace(OuputFaces) ;
end

else

‘ FacelD < LoadBalancing.GetFace(OuputFaces) ;
end

end
DoSendInterest (I, FaceID) ;

function ManageHit (Interest = I)

prefix <— GetFIBPrefix(FileName(I)) ;

FlowBundle < GetFlowBundle(prefix) ;

if PopularitySampler.IsPopular(Filename(I)) then
FlowRecord < FlowBundle.Find(FileName(I)) ;
if FlowRecord isEmpty then

‘ FlowBundle.Insert(FileName(I)) ;
end

end
end

87

Ingress

flow k1

flow kn

1 .
kn load balanced Wi X EWMA(pending;) .

N
A+

Figure 3.5 — The face selection algorithm is depicted: Load balancing with persistent
face selection for popular content.

to perform online popularity estimation is out of scope of this chapter, but in our simu-
lation we have used the a k-LRU filter [Martina et al., 2013]. In our simulations, we set
each sub k-LRU cache equal to 50 objects (in the first simple scenario) or to 160 (in the
other scenarii). Objects found in the last sub-cache are considered high popularity and get
every of their chunk hit counted for precise flow sizing. By essence flow sizing is volatile.
To stabilize it, we assume normalized flow sizes follow an unknown power law. To infer
the parameters of that law, we compute the logarithm of the normalized flow sizes and fit
the obtained linear model using ordinary least squares. In a more general implementation
of our mechanism, we do not suggest to use k-LRU which, while being simple, requires k
to be very large when popularity is measured in terms of observed traffic and not in terms
of number of content item requests. However a content item (object or file) request is
difficult to be identified in practice, as different clients can request the same object using

distinct permutations of the chunks sequence numbers.

88

For a given prefix, the sample most popular items are grouped into flow bundles as
reported in Algorithm 1. Each bundle contains items with consecutive popularity up to
the face weight, hence the size of each bundle depends on the face weight as reported
in Algorithm 1. Thus, for more popular items a single output interface is persistently
selected by selecting less congested interfaces (with higher weights) first. For all other
items, face selection obeys to standard LB rule, see Algorithm 2. Every AT' seconds, the
most popular items are reassigned to flow bundles according to face weights which are,

on the other hand, updated independently.

3.6 Performance analysis

nenN ICN node identifier. N' C N.

te Ry Instant a content retrieval occurs.

kel Content popularity rank.

The one ranking first is the most popular,

while rank || indicates the least popular object.

I'~(n) Set of node n’s ingress nodes.

' (n) Set of node n’s egress nodes.

Qknp(t) | Size of the Pending Interest Queue for content k on link (n,b) at time ¢.
Uenb(t) | Data rate for content k on link (b,n) at time ¢.

Ak (t) Exogenous interest rate for content £ at node n at time ¢.
1, Indicator function.

h’nk(t) IL{content k is in cache n at t}-

v Long-term average of v. v might be either @, u, A or h.
Ch.n, Link (b,n) capacity in chunks/s.

Table 3.1 — Notation.

In this section, we establish bounds to the stability region of FOCAL. Then we prove
its throughput-optimal i.e., that FOCAL stabilizes an ICN network whose exogenous
interest rate vector is within this region. To this aim, we follow a methodology that was
first introduced in [Tassiulas and Ephremides, 1992] and previously applied to ICN in
[Yeh et al., 2014]. Refer to Table 3.1 for the notation used hereinafter. Let define a
Pending Interest Queue (PIQ) size as the number of pending interests per content and per
face. An interest queued in a PIQ is served when the matching data packet comes back.

The time evolution upper bound of the PIQ size of content & for egress nodes b € T'*(n)

89

at node n follows:

ka’b(()) = O,Vb € F*(n) and (344)
S Quaslt +0t) < max{ ST (@unnlt) = s ()5) ,o} 4 An(8)0t
bel+(n) ber+(n)
+ (L=Ta(t)) D Hkan(t)ot. (3.45)
a€l~(n)

The service rate (i (t) of the PIQ is the data rate for content & on link (b, a). A, x(t) is
the exogenous interest rate for content & at node n.

Model assumptions

e The stochastic processes { i n5(t) }o<t<rs {1knp(t) bo<t<r and {h, k() }o<i<r are
independent.

e The network routes a single prefix.
e Same chunk size.

First of all, we need a fundamental building block defining what it means for a PIQ to be
strongly stable.

Lemma 3.3 (PIQ Stability). Let the PIQ size at time t be a sequence of i.i.d.

random variables. We name {Q(t) }o<i<r this stochastic process. A PIQ is strongly
stable if:

lim * TQ(t)dt = lim @ =0 a.s. (3.46)

T—o00 T2 0 T—oo T

In other words, a PIQ is strongly stable 7i f its size’s time average Q(-) is asymptoti-

cally dominated by the elapsed time.

Proof. Recall the strong queue stability definition in [Georgiadis et al., 2006]:

1
lim sup —
T—o0 T ;

E[Q(t)] < . (3.47)

Eq.3.47 holds éif it exists a finite non-negative constant M:

1 T-1 1 [T—1 T
limsup — Y E[Q()] = limsup —E | Y " Q(t)| = M
T—o00 T =0 T—o0 T =0
1 [] 1
< | 200 =0= A F = o]

given any measure o on any subset S C [0, 7] such that o(S) = T. The counting
measure on the discrete subset [0, T]NN belongs here. So does the Lebesgue measure

on [0,7]. By Lebesgue’s Dominated Convergence Theorem, as

1 TO(T)
ﬁ/SQdJS T < 00,

. 1 o1
%EISOE{E/SQM] _]ELll_rgoﬁ/SQda} =0.

Because the term inside the expectation is non-negative, we conclude that:

1
lim —/Qda:() a.s.
S

T—o0 T2

]

We can deduce a definition of the network-wide stability. It does not differ from

previous work view of the same concept.

Definition 3.2 (ICN Network Stability). An ICN network is called stable if every
PIQ) within is stable.

FOCAL stability region indicates the rate at which a Pending Interest Queue can admit
packets and still ensures service. Beyond this region we establish upper bounds of i.e., its

closure, PIQs grow infinitely until (parts of) the network collapse(s).

Proposition 3.3 (FOCAL Stability Region). The stability region for the FOCAL
algorithm is characterized by the closure A of the set of all long-term average interest

rates (Ank)nen ke Where:

91

k< Z ,uknb_ Z (1_B:,k)ﬂk,a,na (348)

bel't(n) a€l—(n)
Con > Z fiknp, VbeTT(n). (3.49)
kel

B,J;k is the long-term cache hit ratio at node n for content k under LB-Perf,
fik.ap is content k’s long-term download rate on link (b, a),

Chn 1s link (b,n) capacity.

Proof. We first reorganize terms in the queue evolution described by Eq.4.1:

Qk n, b t + 6t) - Qk,n,b(t)
Z ot <)\”k Z ,uknb

bel+(n) -~ s belt (n)

Qk,n,b(t)
+ Z HE.a, n
ael(n)

Through the invocation of the Fundamental Theorem of Calculus, we have:

Ill—I)Eoﬁ/ anb dt< hm —/ / nk dudt

bel'+(n
- 5 [[st
bel+(n)

+ Z Ylggoﬁ/ / 1_ nk ,Ukan()dUdt
acl'—

= Z anb <)\nk_ Z ,U/knb—i_ Z ,U/kan

T—>oo
bel'*t(n bel'+(n) acl’~

From Lemma 3.3, PIQ instability occurs if the above ratio of the long-term

average of PIQ size over the elapsed time is strictly positive, meaning that:

j\n,k:_ Z /Lknb+ Z [Lkan>0-

bel+(n) a€l'—(n)

92

Conversely and consequently, PIQ stability requires that:

nk < Z ,uknb - Z (1 - Bn,k)ﬂk,a,n- (350)

bel'+(n) a€l'=(n)

However, the proof is not complete since FOCAL forwards the most popular

contents in a single-path manner at long-term average rate fi*'. In formal terms,

VneN,3IK € K:Vk <K,

I eTH(n): A ST, — Y (1= hg) ik an- (3.51)

a€l'—(n)

Thus, it remains to show that FOCAL’s Eq.3.51 preserves the stability region defined

in Eq.3.50:
Do hkmy <>, Gy is the total data rate satisfying node n’s egress
belF(n) k bel+(n)
traffic. Simply by the associative and commutative properties of addition in R, we

rearrange the Lh.s into bundles By such that 3K € K : {B,,Vb € I'"(n)} forms
a partition of {1,--- K} ie, |J By={l,---,K}and () B, = & while

bel't+(n) bel+(n)

Vb e TH(n), > fyny < Con, as follows:
keBy

> Z“k”b—z > ﬁ‘knb—z > Nlmb+z Z Pk, b

bel't(n k bel't(n k<K bel't(n k>K bel't+(n
E § § :uk n,l + E § :uk n,b
bel+(n) k€By €T+ (n) k>K bel't(n
—perf
beF+ (n) keBy k>K bel't(n
Perf E

We see that FOCAL’s forwarding strategy, denoted LB-Perf, rearranges a few
egress flows within bundles and load-balances others by achieving optimal rates
() in a way that fully preserves the flow conservation constraints [Carofiglio
et al., 2013c].

Furthermore, as stated in Lemma 3.2, any cache’s hit ratio ank increases when

the size of the catalog seen by node n decreases. Precisely, Persistent Forwarding

93

reduces the size of the catalog seen by every node, increasing the hit ratio to sz =

P + €n gy €ng > 0. It follows that,

Iy =0 Mgty < Y ks — Y (1= A ke, (3.53)
bel't(n) a€l~(n)
which completes the proof of FOCAL stability. O]

In practice, FOCAL’s persistent forwarding does not know link capacities C, ;. It
rather exploits egress face weights w,,; estimated from related counters of pending in-
terests, and considers it equals to normalized link capacities é’n,b. However, w,; get
overestimated for higher capacity links as the egress load increases. This is because these
weights reflect average round-trip times [Carofiglio et al., 2013c]. To better understand

this bias, observe that:

w _ Zlel’”r(n)(zk Qk,n,l>_1 ~ Cb,n - Mn
n,b = = ~
>k Qrnd Zlel”r(n)(olﬂ — My)

after approximating per-face sets of PIQs with M /G /1-PS queues (like a per-face PIT),
where M, < inflem(n){C’l’n} is the egress (miss) traffic rate on node n. It is clear that
Wy p ~ C“n,b as M,, | 0. On the other hand, since

Ow,y T (0)|Chn + 3 iers () Cin
oM, 2
(Zler+(n)(ol,n - Mn)>

ny

the bigger M,, and the link capacity the bigger the weight inflation. Such a bias results in
over-provisioned flow bundles on the most capacited links and congestion. As FOCAL’s
caching mechanism, LAC+, is capable by design of alleviating congestion by driving the
oversize bundle’s items into the cache, so it does. Nevertheless, this somewhat tactical
solution uses caching (LAC+) to fix a forwarding issue (LB-Perf weight estimation). It is
by far better to design the weight estimation such that LB-Perf conforms autonomously to
the model in Proposition 3.3. Again, assuming the M /G /1-PS queuing model holds, we
can remove the bias on the weight estimation made from the number of pending interests
just by adding 1 to the latter’s inverse. No knowledge of the egress traffic rate M, is

necessary. Hence, while load balancing weights remain w,, , as estimates of the available

94

throughput, the unbiased persistent forwarding weights become:

wperf _ Cb,n (Zk Qk n b)
n,b .
ZleF+ Cin ZleF+ (n) ((Zk Qk,n,l) - + 1)

(3.54)

The following proposition states that, as long as the exogenous interest rates are within
the closure A, FOCAL dynamically stabilizes the whole ICN network whenever some
PIQ grows too large by offloading it. The argument lies in the Lyapunov drift analysis

technique.

Proposition 3.4 (FOCAL Throughput Optimality). Under FOCAL, assuming er-
godic data rates and hit ratios over time, and within the stability region defined in
Proposition 3.3, there exists a couple of strictly positive constants B and €, such that
the Lyapunov drift over the vector process of PIQ sizes Q(t) = (Qunb(t))perc nen ber+ (n)
AQH)<B—¢ > Qraslt). (3.55)

neN,kek,bel't+(n)

This means that the above drift becomes negative beyond a given cumulative PIQ size,

leading to overall stability.

Proof. Choose the Lyapunov function

Q=5 3 | Y Q| - (356)

neN ke | bel+(n)

By following the steps sketched in [Georgiadis et al., 2006], the Lyapunov drift is:

A(Q(t)) = E[L(Q(E+ 1)) — £L(Q(1)) | Q(t)] (3.57)
< B+ Z Ak Z Qrmp(t Z Qrmp(t)
neN,kek bel'+(n) neN,kek,bel't(n)

XE | Y prng(®) = (L=B10) D prin(t) | Q1) (3.58)

jert(n) 1€~ (n)

95

with B = = Z[(3 Cbn> (D Aue+2 > Cra)

n bel't(n kel a€l~(n)

+ 2 Z Cna Z Cbn-

a€l'~(n) belt (n)

(3.59)

Since the random variables within the conditional expectation’s brackets are from
ergodic processes and independent of PIQ sizes, we can replace the conditional
expectation term in Eq.3.58 with Eq.3.53 , which defines FOCAL’s stability region.

To complete the proof, we choose € = 1n£ ’C{e e O
neN ke

Corollary 3.4.1. Proposition 3.4 holding, mean PI(Q) sizes are upper bounded as
follows:

. B

lim sup —/ E[Qpnp(t))dt < —

€

T=o0 e kek, b€F+

(3.60)

Proof.

S /EQW i < 57— [2@+ D) - BEQU))

neN,kek,bel+(n

_pr- [BlCQ)d + [i@

1

_pr- [ELQ))d + [B

T

< BT+ /01 E[L(Q(t))]dt.

Since the Lyapunov function L is zero at Q(0) = 0 and its increase is bounded in a

finite time slot,

B
lim sup —/ E[Qk.ns(t) S?.

=00 en kek, beF+

Observation 3.2 (FOCAL Complexity). FOCAL average complexity is

O(PopularFiles.Size()).

96

Find a wider landscape in Table 3.2. To reduce LAC+ space complexity in a worst case

’ Algorithm \ Complexity ‘
Uniform forwarding Constant.
LB forwarding Constant using a hash table.

LB-Perf forwarding O(PopularFiles.Size()).

LCE, LCP, LCD, LAC | Constant in average using a hash table.
LAC+ Constant in average using a hash table.
Catalog size in worst case, when the
biggest outlier’s mean latency decreases.

Table 3.2 — Algorithmic complexity per packet.

scenario, the number of content items whose average latency is tracked might be upper
bounded by k™ < |K|. In that way, when the hash table of average latencies reaches its
maximum size, items k& whose mean latencies T} (t) are less than the z** quantile Q. (t)

might be deleted. Their mean latency will be assumed to equal the average ;.

3.7 Simulation

In this section we assess the performance of FOCAL by means of ICN simulations in
three different scenarii and against existing forwarding and caching alternatives given by

the combination of the following known caching policies:

e LRU, Least Recently Used: deterministic cache insertion of every item arriving at

the cache coupled with LRU replacement,

e ¢-LCP, Leave a Copy Probabilistically: a probabilistic cache insertion with proba-
bility € (¢ = 10~® where not specified) coupled with LRU replacement,

e LCD, Leave a Copy Down: a content object retrieved at [— th cache along a path is
cached at (I — 1)-th cache only, rather that in all caches from 1 to [— 1 ([Laoutaris
et al., 2000)),

e LAC, Latency-Aware Caching: the approach proposed in [Carofiglio et al., 2015c¢],

e LAC+, enhanced LAC: our approach presented in Sec.3.5.1.0. The default quantile

zis 1.

97

and forwarding strategies:

e Uniform: uniform selection performed on per-packet basis of output interfaces

stored in FIB entries aggregated per-prefix;

e LB, Load-Balancing: load-aware selection performed on nearly per-packet basis of

output interfaces stored in FIB entries as designed in [Carofiglio et al., 2013c].

e LB-Perf, Load-Balancing with Persistent forwarding: our approach presented in
Sec.3.5.2. The approach combining LB-Perf with LAC+ caching is denoted as
FOCAL.

j' Access link capacities = 500 Mbps

‘).l g

(b) Fat tree with direct links to reposito- (¢) Abilene-like topology.

Hes: Figure 3.6 — Network topologies used in the evaluation.

98

To this purpose, we implement FOCAL and its alternatives in the packet-level NDN
simulator CCNPL-Sim (http://systemx.enst.fr/ccnpl-sim). It benefits for
congestion/rate control from Remote Adaptive Active Queue Management (RAAQM)
thoroughly described in [Carofiglio et al., 2013c]. Three topologies are considered: a
linear topology with forwarding branches, a hierarchical fat tree with direct access to

content repositories and a non-hierarchical meshed topology (Abilene-like).

3.7.1 Linear topology with forwarding branches

Forwarding Uniform LB LB-Perf

Caching Avg StdDev T,, Avg StdDev T,, Avg StdDev T,

LRU 098 153 20nh 0.78 0.77 3nh 0.57 0.57 10h

p-LCP 0.43 0.84 >55nh <0.4 0.6 >55h 0.32 0.43 >55h

LCD 0.5 1 4 048 082 3h 04 0.7 3h

LAC 0.47 0.92 >55h <0.4 0.65 >55h 0.31 0.42 >55h

LAC+ 051 093 12n 0.47 065 9Sh | 0.31 0.37 9h

FOCAL

Figure 3.7 — Linear topology with forwarding branches, cache cap. = 10: Steady
state values.

We simulate the simple topology in Fig.3.6(a) to show: i) the improvement of latency-
aware caching policies in presence of random forwarding, i.e., without latency-awareness
in link selection; ii) the interaction with forwarding strategies and overall superiority of
FOCAL. The tests consist in a branched network of ICN nodes capable of storing up to 10
content items per cache. We simulate a 55-hour traffic involving a single content producer
that serves a catalog of 20,000 objects. Popularity is Zipf-like distributed with parameter
a = 0.9. It implies that the ten most popular items weight 19% of the traffic. Each

content item is conveyed in chunks of 3kB and has a total size of 2MB (the same size is

99

http://systemx.enst.fr/ccnpl-sim

used in all scenarios presented in the chapter). In all simulations reported in the chapter,
data retrieval is managed by an implementation of the transport protocol presented in
[Carofiglio et al., 2013c].

Link capacities are limited to C;=600Mbps, Co=60Mbps, C5=20Mbps, Cy = 100Mbps,
C5=30Mbps, Cs=300Mbps, C7=50Mbps. The object request process feeding node 1 is as-
sumed to be Poisson with rate parameter A = 3 objects/s. The maximum long term link
load in the network does not exceed 50% of utilization. In Fig.3.8(a), we neglect the
impact of forwarding, by considering a uniform selection of the three output interfaces
at node 1. All caching policies aim in a more or less effective way at caching the most
popular items on the first cache, the following ones in terms of more popular items at the

second level of caches (2,4,6).

14 14
12
w
& 1
E
> o8
&
=
T 06
©
g op g
X
; LRU —+— LACH = |
02 gged* LCP-0.001 LAC
O L \LCD\ *\ L L L L i L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Object rank k Object rank k
(a) Uniform: cache capacity = 10. (b) Load Balanced (LB): cache cap. = 10.

Figure 3.8 — Linear topology with forwarding branches: (a)-(b) Mean delivery time
w.r.t content rank.

Except for LRU which under-performs, the other policies show similar results. Clearly,
the second level caches work independently under uniform forwarding, because they re-
ceive the same arrival process sampled at 1/3 of the total request rate. This still happens in
presence of LB forwarding (Fig.3.8(b)) due to the blind load-aware forwarding of packets
over the three interfaces. The benefits in terms of latency reduction deriving from load
distribution across the three paths appear to be negligible compared to the lack of implicit
cache coordination. A significant reduction up to 40% in average delivery time over the
entire catalog can be observed under LB-Perf w.r.t. uniform forwarding and particularly

for FOCAL (LAC+ with LB-Perf) as shown in Fig.3.15(c). When we dig a little more

100

into FOCAL internals at Node 1, we observe, as depicted in Fig.3.15(d), that the loga-
rithm of normalized forwarded interest count decreases linearly with the logarithm of the
rank. The slope is the local popularity skewness. In the top of that figure, we see that the
resulting popularity estimation and face weight estimations are stable enough for FOCAL
to persistently forward a majority of flows through the same faces.

Overall, the values reported in Fig.3.7 allow to quantify in 48% the gains brought by
caching alone (LAC+) in terms of average delivery time reduction and in another 40%
reduction via LB-Perf. FOCAL also achieves the lowest variance with good convergence

time when compared to other approaches (absolute values of convergence are due to the
slow request rate considered in simulations).

Impact of cache capacity on LB-Perf

mwe—mvv 130
120 W==mm Mo,
—_— 5 .’"M.
2 100 g uor o Tt
J , 2 100
= 90 2 o L
) LRU —— 3 o T 1
£ 80 | LCP 3 8L e]
: T LCD =mmnmms S
& 70 RS LAC+ @ | e e,]
N s LAC = 60 +
z @, T ., >
B0 ™, e & 5ol LRU
5 o s e « = | lop g
s I = [LCD =mmmnes B,
0 SR - KRR © 0 [LACH e
LAC i
40 L L L 20 L L L L L L L L
004 006 008 01 012 014 016 018 02 004 006 008 01 012 014 016 018 02
Cache capacity [% Catalog size] Cache capacity [% Catalog size]
(a) LB-Perf: Mean vs cache capacity. (b) LB-Perf: Stddev vs cache capacity.

Figure 3.9 — Linear topology with forwarding branches: Normalized delivery time
vs cache capacity.

We evaluate LB-Perf under various cache capacities: 5, 10, 15, 25, 40 objects. Per-
popularity ranks results can be found in Fig.3.15. Obviously, the larger the cache, the
smaller the mean delivery time thanks to less evictions from caches. Ultimately, when the
cache capacity reaches 40 objects, which is 0.2% of the catalog size, the egress traffic from
the closest cache to the client node becomes so undifferentiated that it gets merely load
balanced. Overall results in Fig.3.9 complement the picture. They are normalized to help
infer more general knowledge from the observations. On the x-axis, the cache capacity is

expressed as a percentage of the whole catalog (20, 000 objects), ranging from 0.025% to

101

0.2% of the catalog. The mean delivery time and standard deviation are expressed on y-
axes as percentages of those achieved by the basic LRU algorithm. It is remarkable that up
to 0.2% of the catalog size, FOCAL increasingly reduce LB-Perf+LRU’s mean delivery
time by 35% to 50%. In the meantime the larger the cache, the smaller the normalized
delivery time standard deviation (up to 72% reduction). It instills the idea that designing a
proper tandem of caching and forwarding algorithms like FOCAL is extremely rewarding

unless one can afford prodigal cache budgets.

Impact of the popularity skewness on LB-Perf

105 ; ; ; ; ; 130 g——
| LRU ——
100 1201 e, LCP f
= 1 — =) “u, LCD =mmmimms
2 23 ________________ l Z 10} LACH wwone]
3 o 2 10 B A -+
‘E‘ 85 = B
E 8 g 07
‘; &\I & o
5 75 - o B o 80 ¥+,
= 0 =) | E
T Oy . S
65 L pwe="" LRU —— | 5}
g ¥ LcP 2 el
s 60f .a LCD ==mmmes 1 z w,
55 Ml LACH wowunn | 50 el
50 ! &cl I I I I 40 I L | | |
0.8 1 12 14 16 0.8 1 12 14 16
Popularity skewness a Popularity skewness a
(a) LB-Perf: Mean vs popularity skewness. (b) LB-Perf: Stddev vs popularity skewness.
14 —— 140 ‘ ; ;
a=1.7 —+— 0o=L11 ke a=0.7 a=17 ——
12 a=13 0=0.9 B 130 a=1.3
' a a=1.1 Weeere
- T 120 a=0.9 B
o 1 s a=0.7
£ i 110
% 0.8 £ 10004 & & 8 8 8 - -
o] =
g o6 g
= R oY breens
5 0.4 T B0 B S T A S R |
= . X
§ 10
0.2 = \ ——t
60 Yt
0 S 50
0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14
Object rank k Time[h]
(c) FOCAL: Mean vs Rank. (d) FOCAL: Mean vs Time.

Figure 3.10 — Linear topology with forwarding branches: Impact of popularity skew-
ness on content delivery time.

We evaluated LB-Perf under the following Zipf-like e parameter values: 0.7, 0.9, 1.1,

102

1.3 and 1.7. This parameter characterizes the skewness of the content popularity distribu-
tion. Obviously, content mean delivery time decreases as popularity skewness increases:
see FOCAL’s case in Fig.3.10(d). This is because the weight of the most popular contents,
which are quickly available since often in cache, increases with the popularity skewness.
While comparing caching algorithms in Fig.3.10(a), it appears clearly that LAC+ outper-
forms others, particularly at 0.9 < « < 1.1 where FOCAL cuts by 50% LB-Perf+LRU’s
mean delivery time. As the popularity skewness increases, the competitive advantage of
FOCAL becomes its ability to stabilize the delivery time, quantified in Fig.3.10(b) by its

minimization of the delivery time standard deviation.

Impact of the quantile z on FOCAL

120 T T ; ; 120

=1]

T
N
L 15| + 115 |
& %)
< <
3 =
S 10t S 10]
2 105 [fY B 105 /]
2 : £
= : S
S X 100 M-2.6-8-8-5-&-8-8-8-5-8-5-8-8-8-8-8-8-8-8-81
5 100 fri 8@ g @ B 588 5-8-5 5885888 § " T
= g . ° 3 - L ek - ’ :.'u‘"”"'vww."‘..
95 ‘ TR AR R et we ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
Time [h] Time [h]
(a) FOCAL: Mean vs Time. (b) FOCAL: Stddev vs Time.

Figure 3.11 — Linear topology with forwarding branches: Impact of LAC+ quantile
z on FOCAL normalized delivery time evolution.

In LAC+, the probability to store an object into the cache relies on how far the object
latency is from the 2" quantile of the distribution of average content latencies. We led
a sensitivity analysis on this parameter z. Five z-values have been evaluated: 0, 0.5, 1
(the default), 1.96 and 3.090. The non-zero z-values assuming a Gaussian distribution
of average content latencies represent 38%, 68%, 95% and 99.8% of the content items.
Setting z = 0 means to calculate the probability that an object is an outlier from its
distance to distribution mean. The results depicted in Fig.3.11 show that z = 0 is by
far the worst choice as it fails to capture exceptional events. It degrades reference figures,

z = 1, by 10%. Conversely z = 1 is the best compromise between delivery time reduction

103

and convergence speed. The latter is actually critical in case of time locality. Otherwise,

when the workload is stationary, z = 1.96 might be considered, as it improves LAC+ by

5%.

Impact of the VRTT hash table size on FOCAL

120

— 0.1% catalog —+— = 0.1% —t— R
=2 0.25% catalog 1 S 0.25% o
ko 0.5% catalog T 1us5; .
g full catalog & 1 [$]
= 1% catalog =
= 5% catalog @« | S 1or
=) half catalog =@« s,
% g 105
2 7]
]
> £ 100 -
= (o £
3 g] >
5 W g 2 ot
s Wam‘.‘,;@w B wnflpnnBiind 8
1 1 90 1 1 1 1 1
20 25 30 0 5 10 15 20 25 30
Time [h] Time[h]
(a) FOCAL: Mean vs Time. (b) FOCAL: Stddev vs Time.

Figure 3.12 — Linear topology with forwarding branches: Impact of LAC+ mean
VRTT hash table size on FOCAL.

Observation 3.2 deals with the complexity of the caching and forwarding algorithms
we study in this chapter. As LAC+’s mean VRTT container may be implemented using
an hash table, it implies a constant complexity (in average) of accessing mean VRTTs.
However, the algorithm requires the search for the supremum of mean VRTTs, which is
of constant complexity as long as the current supremum’s mean value does not decrease.
Indeed, the simplest way to catch it is to compare the most recently updated mean VRTT
with the current supremum and to make it the new supremum if greater. On the other
hand, when an update to that supremum decreases it, it might no longer be the biggest
outlier. Then a full search into the whole hash table becomes mandatory. Hence, the size
of the hash table becomes critical as it drives LAC+ worst case complexity.

This test evaluates several hash table sizes to appreciate FOCAL sensitivity to trun-
cated hash tables of mean VRTTs. Results are depicted in Fig.3.12. They show that
implementing LAC+ over a hash table of mean VRTTs whose maximum size is 5% of the
whole catalog initially degrades FOCAL mean delivery time by only 10%, then converges

to the full catalog performance. In general, it is not suitable to size hash tables to less than

104

1% of the full catalog. Another interesting observation is that the delivery time standard
deviation measured after hash table truncation, even though degraded at mean delivery

time convergence, does not exceed 1.2 times the full catalog figure.

3.7.2 Fat tree with direct access to content repositories

We include this scenario to study FOCAL behavior in hierarchical networks with several
paths with or without in-path caching opportunities. We consider the fat tree topology in
Fig.3.6(b), with caches in every node storing 40 objects each. Content requests follow a
Poisson process with intensity A = 1 object/s. They uniformly address two repositories
(Node 13 and 14 in Fig.3.6(b)), each one hosting a distinct catalog of 20, 000 objects, un-
der the prefixes /Orange/ and /YouTube/, ranked according to the same Zipf distribution.
Two popularity profiles are considered in independent simulation runs: Zipf’s skewness
a1 = 0.9 and ay = 1.1. LB-Perf is performed without popularity log-log linear fitting. To
appreciate the impact on forwarding/caching, under Zipf’s o , the 400 most popular con-
tent items account for 50% of the traffic. This number drops to 30 with ay. The presence
of 10Mbps direct links to the repositories enriches the set of available paths, by making
caching opportunistic: a node may choose not to forward Interests through the network
of caches, rather to use the auxiliary direct link. Such configuration permits to understand
whether and for which part of the catalog, in-network caching can be important to reduce
end-user latency.

We report performance measures for this scenario in Fig.3.13. In this setting, FOCAL
proves to outperform all other mechanisms under different metrics: it provides the best
delivery time in average and standard deviation, attained within few hours. Such time
scale is a typical busy period in access networks where caching performance would be
mostly solicited in practice.

FOCAL is also robust to different workloads (here represented by two « factors) in
contrast to other mechanisms like e-LCP that fail to provide an acceptable performance
bound. Indeed, when av = 1.1 the average delivery time of e-LCP converges two times
slower to an almost two times higher value than that achieved by FOCAL. When o =
0.9, e-LCP provides more than two times higher latency than FOCAL, with very poor
convergence time. On the other hand, looking at the way content items are managed by

the different mechanisms, we observe a significant performance improvement for highly

105

14
12 +
=
2 | i
B 08 []
g . T T e SRR T S R S R R S
3 0.6 [B
g e T B O O O O O O -
s 0.4
02 1 LRU —+— LACH s
: LCP-0.001 LAC
LCD Worror
O L L L L L L 0 L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25
Object rank k + Time [h]
(a) Mean vs Rank,a. (b) Mean vs Time, o;.
2
= :
) g]
£ 2
> £
E IS BB B G B B B B B B
2 g
E " >
S 04 B 3
§ - ***Haﬁagalii*ﬁ**ﬂ********** o
BB
= HEBBoRppoRDEnEEEE. a
0.2 LRU —+— LAC+ w1 § LRU —+— LACH e
LCP-0.001 LAC N LAC
0 LCD‘ oo ‘ ‘ B ‘ ‘
0 5 10 15 20 25 10 15 20 25
Time [h] Time[h]
(c) Mean vs Time, as. (d) Stddev vs Time, a;.

Figure 3.13 — Fat tree topology, oy = 0.9, a5 = 1.1

popular items, attaining gaims of a factor 5 when o = 0.9 as reported in Fig.3.13(a).

3.7.3 US backbone-like scenario

A backbone-like topology is made of core nodes which are access gateways to all clients
attached to it (we build upon Abilene topology). Routing is much less hierarchical when
compared to previous scenarios and Interest/Data traffic can flow in any direction. In
such a setup, node cache size is equal to 40 content objects. Links in the access are set
to 5S00Mbps, and from 15Mbps to 100Mbps in the core. In this scenario we use three
content repositories, each containing 20, 000 objects. We give objects at Repository 4 the

prefix /Netflix/, Repository 8 the prefix /Orange/ and Repository 10 /YouTube/. Clients are

106

equally interested in every catalog, i.e., every client addresses every catalog with proba-
bility 1/3. Client requests follow a Poisson process with intensity A = 2 objects/s. Each
repository (also referred to as producer) is queried by clients following a Zipf-distributed
workload with skewness parameter equal to 0.9. Fig.3.6(c) summarizes the details of the
network setup. While the content ranks have been so far fixed for the whole simulation, in
this set of simulations, we confront the algorithms to a non-stationary content popularity
distribution to introduce time locality. This is obtained by shuffling popularity rank every
ten hours for every object in a given catalog. Every content’s popularity rank changes
over time while ranks remain Zipf-distributed. Note that this is far from being unrealis-
tic. It widely pertains to real-world traffic where per-time-slot content popularity prevails
[Imbrenda et al., 2014]. LB-Perf is performed without popularity log-log linear fitting.
FOCAL clearly outperforms other algorithms with or without temporal locality in
the request workload. From Fig.3.14(b) to 3.14(d), delivery time performance results
demonstrate that it improves LCD and e-LCP (¢ = 10~%) almost as much as they improved
the basic LRU policy. More striking, FOCAL reduces LB-Perf + LRU average delivery
time by 50% and stabilizes the delivery time in reducing its standard deviation by 60%. By
comparing Fig.3.14(a) to Fig.3.14(b) we observe that FOCAL catches temporal locality
very well. This is due to the fact that the mechanism adapts very fast to new conditions

both in terms of popularity and network congestion.

3.8 Conclusion

The chapter explores ICN techniques for end-user delay minimization via latency-aware
forwarding and caching strategies. Based on the insights on latency-aware caching alone
and on the interplay with load balancing forwarding, we introduce FOCAL, an approach
combining novel caching and forwarding strategies to jointly reduce end-user experienced
latency with no network signaling nor coordination between routers. FOCAL combines a
latency-proportional probabilistic caching policy, with a load-aware dynamic forwarding
strategy, that preferentially routes popular content requests through a single path (set of
caches), while globally achieving minimum load, thus delay minimization. By means of
NDN/CCN simulations, we show that our proposal may achieve significant latency reduc-
tion (e.g. up to 60% average/variance delay reduction over LRU with LB-Perf in Abilene-

like scenario), coupled with faster convergence w.r.t. solutions based on probabilistic

107

Mean delivery time [g]

0 5 10 15 20 25 30 35 40 45 50

Object rank k Object rank k

(a) Mean vs Rank, stationary. (b) Mean vs Rank, non stationary.
=
— o}
) 3
£ 2
= £
g i
= e
3 2
D
8 fa
= g
NS

Time[h] Time[h]
(¢) Mean vs Time, non stationary. (d) Stddev vs Time, non stationary.

Figure 3.14 — Abilene-like topology with stationary (s) and non-stationary (ns) work-
load.

caching approaches. In presence of non-stationary phenomena, FOCAL outperforms all
other approaches, demonstrating high self-adaptiveness to varying traffic/network condi-

tions.

108

14
1-2 o
o 08 14
12 8 06 1-6
- = 04
e 02 I I
S o8 0 .
> v LB 5 10 15 20 25 30 35 40
2 6 Object rank k
- 2
5 5
$ o4 2
02 X LRU —+— LACH o | s
o LCP-0.001 LAC ? Measurement
0 ‘ ‘ LCD - ‘ ‘ ‘ ‘ < 001 Least Mean Square estimate
0 5 10 15 20 25 30 35 40 45 50] 2 4 8 16 32
Object rank k Local rank
(a) LB-Perf: cache capacity = 5. (b) FOCAL egress traffic: cache cap. = 5.
1
14 08 10—
o O 1-4
12 g8 06 16
- = 04
z &
2 02 I
S 08 0
> LB 5 10 15 20 25 30 35 40 45 50
> .
5 06 Object rank k
° 2
] B
g o4]
02 | 8
’ g M easurement "
0 S 001 Least Mean Square estimate
0 5 10 15 20 25 30 35 40 45 50 T 2 4 8 16 32
Object rank k Local rank
(¢) LB-Perf: cache capacity = 10. (d) FOCAL egress traffic: cache cap. = 10.
14 ——— —
LRU —+— LAC+ 1-2 e—
LCP-0.001 LAC -% 1-4
12 LCD ot 8 1-6
D =
> 1 & I
£ n n
g 08 LB 5 15 20 25 30 35 40 45 55
2 o | Object rank k
T 06 - IR L e A >
e 'Snl x 4 il =
8 o4 e L et Rl e & = s sssss
= 7 X o 3 le2 —
ﬂ . ‘ o 8
02 [i mette ©
= i g M easurement "
0 ‘ ‘ ‘ S 1o Least Mean Square estimate
0 5 10 15 20 25 30 35 40 45 50 1 2 4 8 16 32
Object rank k Local rank
(e) LB-Perf: cache capacity = 25. (f) FOCAL egress traffic: cache cap. = 25.
14 ; 1
LRU —+— 0.8 1-2 —
LCP-0.001 .% : 1-4
12 LCD oot 1 B o6 1-6
- Z o4
A &
: o2
> 08
EE LB 5
T Object rank k
© 2]
&
é B le2
g .
§ Measurement
Least Mean Square estimate
0 - les =
0 5 10 15 20 25 30 35 40 45 50jn 1 2 4 8 16 32

Object rank k

(g) LB-Perf: cache capacity = 40.

Local rank
(h) FOCAL egress traffic: cache cap. = 40.

Figure 3.15 — Linear topology with forwarding branches: (a),(c),(e),(g) Mean deliv-
ery time w.r.t content rank. (b),(d),(f),(h) Node 1 egress traffic under FOCAL.

110

Chapter 4

On the Fairness of ICN

Can ICN be fair ¢

Summary. Cache networks are cornerstones to today’s Internet, helping it to scale
by an extensive resort to Content Delivery Networks (CDN). Inheriting from CDN'’s
successful insights, ubiquitous caching through Information-Centric Networks (ICN)
s increasingly regarded as a premier future Internet architecture contestant. How-
ever, the use of in-network caches seems to cause a distortion in the fairness of
resource sharing among contents. Indeed, in legacy communication networks, link
buffers were the principal resources to be shared. Under max-min flow-wise fair
bandwidth sharing [Massoulié and Roberts, 1999/, content throughput was not tied
to content popularity. Including caches in this ecosystem raises mew issues Since
common cache management policies such as (p-)LRU or even more, LF'U, may look
detrimental to low popularity objects, even though they significantly decrease the
overall link load [Carofiglio et al., 2013a]. In this chapter, we demonstrate that, as
surprising as it may seem, globally achieving LFU is a first stage to content-wise
fairness. Indeed, any investigated content-wise a-fair allocation permanently stores
the most popular contents in network caches by ensuring them a cache hit ratio of 1.
As ICN caching traditionally pursues LEU objectives, content-wise fairness specifics
remain only a matter of fair bandwidth sharing, keeping the cache management in-
tact.

111

Keywords: Information-Centric Networks; Caching;, Queuing; Fairness.

Contents
4.1 Introduction 000000 113
4.2 Relatedwork 00000, 114
4.3 Cache Network Model 115
4.3.1 Model assumptions 115
4.3.2 Cache network capacity 118
4.3.3 Problem formulation 0. 119
4.3.4 Solutiono 121
44 Toyexamples v v 125
4.4.1 Client/Server tandem 125
4.4.2 Client/Cache/Server bus 126
4.5 Evaluation. 0000000000, 130
4.5.1 Client/Cache/Server bus 131
4.5.2 Asimplenetworko 131
46 Conclusion e, 135

112

4.1 Introduction

Today’s Internet owes its scalability to caching. Indeed, most of Internet contents cross
Content Delivery Networks and significant research is pushing for a better recourse,
Information-Centric Networks. In ICN, and more specifically Named-Data Networking
(NDN) or Content-Centric Networking (CCN), two leading ICN architectures, content ob-
jects are identified by their unique name. At every node/router, content Data packets are
requested via matching Interest packets through egress faces. Interests and their satisfy-
ing Data counterparts follow rigorously the same path. This feature would be achievable
without the Pending Interest Table (PIT) structure that keeps track of every requesting
face and the requested content. Data packet names permits to store them, on every tra-
versed node, in a finite memory referred to as Content Store (CS) or cache, managed by
an eviction policy.

Caches and their eviction or management policies are the disruption that drives this
chapter. Traditionally, networks are modeled as interconnected queues, fair schedulers
operate on. The penetration of caching into the network layer clearly favors a few content
objects, the most popular ones in case of the (evict the) Least Frequently Used manage-
ment policy (LFU) and its approximations such as (p-)LRU or Leave-Copy-Down + LCD
[Martina et al., 2013]. Filling caches steadily with the most popular items, meaning keep-
ing their hit ratio to their maximum i.e., one and letting others hit ratio at zero, entails
the sacrifice of less popular objects [Carofiglio et al., 2013a]. This is at least a view com-
forted by state-of-art contributions on content-wise cache fairness [Tortelli et al., 2011]
[Dehghan et al., 2016]. These works observe the hit ratio on a single cache or a network
of caches and prescribe to adapt the cache management policy to fairness motives. For
example, in [Dehghan et al., 2016], content-wise max-min fairness is only achievable if
the hit ratios are forced to be equal for all content objects. In the same vein, proportional
fairness impose to make content hit ratio proportional to popularity. A consequence of
this is that ICN cannot be fair to contents without revising its caching algorithms. For
them, LFU is definitely unfair. Remember flow-wise fairness as allocating resources such
that every flow/route gets its fair share. By content-wise fairness, we denote allocating
resources in such a way every content gets its fair share. This is the type of fairness this

chapter analyses.

This chapter analyzes the fairness of content delivery throughput in accounting for

113

both cache hit ratio and link service rates, and comes up with different and optimistic
conclusion. ICN’s traditional caching leads to fairness as-is. The better the convergence
to LFU, the better the feasible fairness. It remains that content-wise fairness just has to
be implemented at the packet scheduling stage in ICN, similarly to flow-wise fairness
in other networks [Kelly et al., 1998]. Our seemingly counter-intuitive results owe to
the link service to others that balances the remnant cache presence of a few. Moreover,
that persistence frees a maximal upstream link capacity to convey less popular objects.
Another striking insight we get, is that a throughput-optimal content delivery network
ends up being autonomous caches that never forward their miss traffic. Such a network
would not be committed to locally satisfy requests.

The main contributions of this chapter are: (i) it unifies caches and network queues
into a single content service rate model; (ii) it tackles for the first time content throughput
fairness in ICN in formulating that as a tractable nonlinear optimization problem; (iii) it
provides closed-form expressions of a-fair hit ratios and link service rates; (iv) it indicates
that today’s LFU-approximating caches policies do not need to be replaced for ICN to be-
come fair. We articulate these contributions throughout the chapter as follows: Sec.4.2 re-
capitulates previous contributions on fairness in the context of cache networks. In Sec.4.3,
we model the per-content throughput in unifying cache and network link contributions.
Then we formalize a-fair allocations and key properties such as their Pareto-efficiency
and LFU being the a-fair cache management policy, an important result. To ground the
theory, a few trivial examples are analyzed in Sec.4.4. There are followed in Sec.4.5 with
numerical evaluations that confirmed by means of a nonlinear problem solver our analytic

insights.

4.2 Related work

Very few papers tackle the issue of fairness in networks of caches. In a paper [Tortelli
et al., 2011] dedicated to the subject some time ago, authors analyze the fairness in
Content-Centric Networks from the point of view of object dissemination across the net-
work. Content-wise fairness was expressed as the total space content occupy with respect
to their popularity. This study concluded that medium-popularity content were favored
as they spread linearly with their popularity whereas the most popular item spread sub-

linearly. This approach is definitely useful to map the asymptotic replica spatial distri-

114

bution. However, it does not capture the fairness that really matters from a user point of
view, the throughput fairness. [Shah and de Veciana, 2014] and [Shah and de Veciana,
2015] tackle the impact of fairness on delivery time in large scale CDN but ignores the
cache specifics. This work models cache networks as classical networks of file-serving
queues. Files are assumed pre-fetched and their long-term popularity is not taken into
account.

Quite recently, [Dehghan et al., 2016] reverse-engineered popular LRU and LFU pol-
icy and found the utility function both policies optimize. These utility functions achieve
various classes of single-cache storage a-fairness. They provided algorithms for adapting
TTL-based caches to given a-fair objectives. Rapidly, [Neglia et al., 2016] applied this
work’s reverse engineering approach to a special case of a novel class of latency-aware
(LAC) policies previously introduced by [Carofiglio et al., 2015c]. In [Neglia et al., 2016],
authors show that LAC converges to the solution of a fractional knapsack problem (LFU)
when their latency exponent tends to infinity.

The existing literature on the subject, because of its focus on hit ratio, concluded
that caching policies had to adapt to the content-wise fair objective. Our contribution
is disruptive because it joins cache and link queue occupation in order to analyze the
throughput fairness. We show that cache networks, and ICN in particular, can be a-fair,
for any v > 0, as soon as they couple the classical highest popularity content persistence

i.e., the global LFU cache management policy, with a proper a-fair packet scheduler.

4.3 Cache Network Model

First we present a mathematical model that captures the dynamics of the entire network.
The model views it as a network of queues where caches contribute to increase the service
rate. We aim at maximizing a utility function of the admissible exogenous traffic rate.

Refer to Table 4.1 for the notation and to 4.1 for the model used hereinafter.

4.3.1 Model assumptions

e The stochastic processes {\;n5(t) fo<t<r as exogenous rates, {fun.s(t) Jo<i<r as

service rates and {h,, x(t) fo<t<7 as hit ratios are independent.

115

Figure 4.1 — Network conveying content k£ through cache n.

e The network routes a single prefix.
e Same object sizes.

e Cache size is never zero.

e Content servers are not clients.

e The exogenous traffic on a given node is the one that is the one generated by a local

application that is not satisfied by the local cache.

e We assume hop-by-hop congestion control i.e., interests are sent in average at a rate

equivalent to the service rate of the link.

Let define a Pending Interest Queue (PIQ) size as the number of pending interests per
content and per face. An interest queued in a PIQ is served when the matching data packet
comes back.

Let Q.n(t) be the size of the Pending Interest Queue for content £ at time ¢ for link
(n,0). hyi(t) = L4k in cache n at 1} indicates whether content £ was found in cache n at time

t. The time evolution upper bound of the PIQ size of content & for egress nodes b € I'*(n)

116

n € N || ICN node identifier. N' C N.

t € Ry || Instant a content retrieval occurs.

kek Content popularity rank. The one ranking first is the most popular,
while rank |K| indicates the least popular object.

I'"(n) || Set of node n’s ingress nodes.

[T (n) | Set of node n’s egress nodes.

b Long-term average of the service rate for content & on link (b, n)

An Long-term average of exogenous interest rate at node n.

Ak Long-term interest rate for content k£ at node n.

qk Content k£ popularity. It is the probability that a requested content
is content k. It is strictly ordered: qr4+1 < gk.

1.y Indicator function.

Ak Upper bound for the long-term average of exogenous interest rate for content k£ at node n .

s(k) Set of content k servers.

R ke hit ratio of content k£ at node n

Chon Link (b,n) capacity in chunks/s.

Tn Cache n capacity in objects.

Table 4.1 — Notation.

at node n follows:

Qrnp(0) =0,Vb € I'"(n) and

> L Qunslt) < huslt)

bel't(n)
+(1_hn’k<t>> Z]l{Qk,a,n(t)>0}Mk,a,n(t>
acl'=(n)
Z L4Qu ()0} b b () (4.1)
bel't (n)

The service rate jux . 5(t) of the PIQ is the data rate for content & on link (b, a) at time ¢.

Ani(t) = qeAn(t) is the exogenous interest rate for content & at node n at time ¢. After

some algebra (Proposition 3.3), the maximal admissible rate A, ;, is given by:

A k= Z ,uknb Z Hkana k (42)

bel'+(n acl'—(n)

117

constrained by the following bounds:

Z Pkan < Cn,m Vn,a € I'” (n) (4'3>
kek
Z BM =T, Vn (4.4)
ke
0<h,p <1, Vn,k (4.5)
fran >0, Vn,k,ael (n) (4.6)
j\n,k S /_\n,ky VTL, k‘ (47)

We ignore throughout the chapter constraint (4.7) that imposes a lower bound to the con-
tent service rate. It means that the network will not guarantee that some content requested

on a given node will be satisfied. This will entirely depend on the optimality of serving it.

4.3.2 Cache network capacity

The network provides a content delivery service through the coupling of disseminated
caches and the links interconnecting them. The following expression unifies in a single
expression the maximum service rate the network can deliver given cache hit ratios and

link capacities.

It arises by first summing all maximum admissible rates at node n:

Z/_\”v’f - Z [Z [k — (1= hng) Z ﬂk,a,n:|

k belt (n) a€l'—(n)

- Z :U’knb - Z (1 - }_l”vk”]k’“’”'

k,bel'+(n) k,a€l’'—(n)

Define i, as the ingress rate matrix (fijq.n)x.0 and h, as the column vector (A, 1)
It follows that

Z b = B Fally < [1Rl

k,ael'—(n)
< Sup{ Z ﬂk,a,n}ﬂsn,

k acl'—(n)

118

where ‘fi is the transpose of the ingress rate matrix and ||’z ||; is the operator norm
[Boyd and Vandenberghe, 2004] associated to the Banach space /' i.e., (Rl || ||1), ap-
plied to the ingress rate matrix.

Then we sum all maximum admissible rates. Rates that are both egress to a node and

ingress to another one cancel. We obtain:

Z /_\mk S Z ﬁkm,,b + Z Sllip { Z lak,a,n}‘rn
n,k n

k,bes(k) a€l'~(n)
nel = (b)
< Chn + Z sup { Z ﬂk@,n}xn. (4.8)
beUxe(k) n F o aer-()
nel~ (b)

4.3.3 Problem formulation

We now plug the admissible rate into a fair utility function U (-). Define the network wide

allocated rate for content k as

Ok = Z Apj = Z kepn + Z P e s (4.9)

neN beUs(k) neN
nel ™ (b) a€l'™ (n)

The problem’s objective is to find the optimal link service rates and hit ratios that

maximize Y~ qxU(¢r/qi), (4.10)
R ek

given the a-fair utility function U(-). Weighted a-fairness was first introduced in [Mo
and Walrand, 2000], and later adapted for cache allocation by [Dehghan et al., 2016].
However, as expressed in Eq.4.10, we advocate for a formulation of weighted a-fairness
that operates on rates per weight unit. The reason for this is its convergence to weighted
max-min fairness as & — 0o, whereas the original Mo and Walrand’s weighted formula-
tion decays into max-min fairness [Mo and Walrand, 2000]. Interestingly, as shown later
in the chapter, our formulation gives solutions that are independent of «, shaping as such,

just fair allocations.

(De/an)' ™ _ o i ”
1—« Ml—a

Since ¢, U (dr/qr) = qi a#1,

119

the objective simplifies to

Maximize
fih
> @ U(n), if o #1
keK (4.11)
> qrlog(ow/ar), otherwise.
kek

Special cases this weighted a-fairness framework encompasses are:

e for a = 1, the objective is then said to be weighted-proportional fair [Kelly et al.,
1998].

e for an infinite value of o, the objective is weighted max-min fair i.e., max min(¢y, /qx)
[Radunovi¢ and Boudec, 2007].

In the rest of the document, the attribute weighted will be implied when ommitted. Define
the vectors of decision variables & = (figyp,,) and h = (]_lnk) Also, define the vector

of multipliers v = (y.(i) > O) where (7) identifies the constraint. The Lagrangian of the
problem is

+ 3 v ik an- (4.12)

Although U(+) is non-decreasing and concave, as ¢ is non-concave, the Karush-
Kuhn-Tucker (KKT) conditions are simply necessary for optimality.

The first-order KKT conditions command that

v)

T
>
)
=
. *
>
- *
AN
N
Il
=

(4.13)

where V; 5 £ is the gradient of function £ with respect to vectors g and h. " = (B bon)s

h* = (_;*1 p), V= (I/.(i)*> are the optimal counterparts of the aforementioned vectors.

4.3.4 Solution

General a-fair allocation

For any o« > 0, the Lagrangian expands as follows:

£, h,v) =
1— + Z n k,uk a n]
k beUgs(k) neN
nel~ (b) a€l'~ (n)
- Z (1)|:Z/1'kan_ na}
n,a€l'~(n)

— Z v, [Z h k .Tn]

- Z vyr R (e = 1)
n,k

+ Z V]Slg’n,ak,a,n-

n,a,k

The first property of content-wise a-fair allocations in cache networks is their Pareto effi-
ciency. An allocation is said to be Pareto efficient if any attempt to increase one content’s
share decreases the share of another content. In our optimization problem, it translates

into link capacity being fully allocated.

Property 4.1 (Pareto efficiency for any o > 0). The a-fair bandwidth allocation
is Pareto efficient as the optimal resource allocation uses the whole link capacities

to serve content items i.e.,

Zukan: na, Yn €N, VaeT (n). (4.14)

kel

121

Proof. The partial derivatives with respect to the ingress capacities jix q,, give:

e

hr, = 2t~ Ve gy -
n,k (k/¢k) n,a < ()

As the sum of local hit ratio equals the size of the cache,

e S ()| [()] =i o

qk

As 1/,(11()1* is strictly positive since the cache size is. By the complementary slackness
conditions of the convex optimization framework, the related constraint must be
saturated. That translates into Eq.4.14.

Moreover, first derivatives with respect to the server’s ingress capacities pi ,.p

give:

(%)a + % = 07 5 0,9k, b € s(k),n € T=(b).
k

The multipliers being strictly positive, the corresponding constraints must be satu-

rated. It makes Eq.4.14 hold and Pareto efficiency follow. O]

Then comes our main result. It established that ICN, in adopting the Least Frequency
Used as the caching policy maximizing content hit ratio, has de facto adopted the optimal

caching for content throughput fairness.

Proposition 4.1 (LFU leads to a-fairness). LFU is a cache management policy for

a network seeking content-wise throughput a-fairness, for any a > 0.

Proof. Let f(-) be the a-fair objective function. The increase of f with regards to

an increase of content k’s ingress rate is

Of (i an) _

k,a,n
Let €(ar) be the increase of the a-fair objective function induced by an increase

122

of content 1’s rate and the equivalent decrease of content k’s rate, k 1 oo.

G(Oé) = dfﬂl,a,n - kh~>ngo dfﬂk,a,n
R, — lim R (qk/¢k)a] dji. (4.15)

n1 k—oo nk Q1/¢1

We aim at proving that VT(L3]): > 0,Vn,k. By KKT complementary slackness

conditions, it would imply that BZ,k € {0,1},Vn, k. The partial derivatives w.r.t.

cache hit ratios give

Z Mkan:(

acel'~ r

As stated in Eq.4.14, per-content services rates cumulatively equal the downlink
capacity. This helps getting rid of the link service rate in the above expression and
obtain that:

Z u’i;a,n = Z <¢k> [+ 00 2R - 1)

k,ael'~ x

Z Ch.a, V0.

ael~(n)

Then we substantiate the pivotal multiplier

YO [Z (ﬁ)a} e v,
k

gk
PR\ (3)x
where C,, = Cha — <) v, (Qh —1).
aGFZ(n) g r g

By contradiction, suppose VT(IB,): = 0. It entails

» (65 /ax)°
— = Vo>
2 Fhan R

a€l’=(n)
—& fora =0 and a — oo
KJ '
However, by Eq.4.15, Va > 0, E;‘;J = 1 and B:},k = 0,k T oo yield €(a) > 0.
Consequently, as Vr(f]l* = 0 does not lead to a maximum, VT(;’,)C* > (0 and l_ljihk € {0,1}.

]

This result is important as it shows that the LFU algorithm and its heuristics (LRU,
p-LRU, LRU-k, LRU+LCD) can lead to a-fair networks, Vo > 0. Packet schedulers
would be in charge of the other part of the optimal solution, a bandwidth sharing fair to
contents. We refer to the latter as content-wise a-fair bandwidth sharing. It is mathemati-
cally tractable thanks to the concavity of the problem, given binary hit ratios, as concavity
is a sufficient condition for the existence of a global optimum. Furthermore, content-wise
a-fair bandwidth sharing is practically achievable within the ICN paradigm as packets are
uniquely named after the content they carry.

We may also emphasize the novelty of this result, since previous works [Dehghan
et al., 2016] reached very different conclusions. This is because they only looked at
isolated caches, found that fairness required fractional hit ratios for each value of the
fairness parameter « greater than zero, and suitably designed algorithms for TTL-based
caches. Their caching algorithms consist in adjusting every content Time-To-Live (TTL)
via gradient descent.

To wrap up, the following algorithm (Alg.3, Alg.4) is an example of distributed
content-wise weighted max-min fairness implementation. It relies on a Deficit Round-
Robin scheduler [Shreedhar and Varghese, 1995] to achieve content-wise max-min fair

bandwidth allocation, given the LFU caching substrate.

Algorithm 3: Content-wise a-fair allocation in ICN
Input: Data packet, «
Cache.Insert(packet, Policy::LFU);
FairQueuing.Shape(packet, a);

124

Algorithm 4: Content-wise weighted max-min fair bandwidth sharing

function FairRate.Shape (Data packet, o)
FairQueuing.Queue|packet.ContentName()].Push(packet);

if @ == oco then
‘ FairQueuing.SendData(Policy:: DEFICIT_ROUND__ROBIN);
end

end

4.4 Toy examples

We analyze two trivial cases to foster some intuition on the preceding results, and preclude
limit case quandaries. We tackle the case of a connected client/server tandem then we

illustrate the fairness problem on a client/cache/server bus.

4.4.1 Client/Server tandem

Figure 4.2 — Client/server topology.

A communication link conveys some exogenous traffic from a client node numbered
1 to a content server numbered 2. There is no cache in between. The a-fair objective

writes:
Maximize
Z llk,1,2
s l—«
The optimal allocation for every content k, whatever a > 0, is

Mk 12 = QkC2,1-

125

4.4.2 Client/Cache/Server bus

27N ka2 Hk,2,3
e =
N ,/ — —

i A Aok

¥ 1,k —
hok

’

Figure 4.3 — Client/Cache/Server bus topology.

In this toy scenario, exogenous traffic at a client node 1 is conveyed towards a content

server 3 through an intermediate cache 2.

Proportional fairness

The related objective writes

Maximize

ho kitk1,2 + [k 23
Z qx log .
A qk

Assume that [i;,03 = 0 , i.e., the server’s egress link capacity is zero. Then, the

following two concave terms have to be independently maximized:
ha g k1,2
> agelog ==+ gplog ==
A 4k . dk
The optimal solutions are Bgﬁk = qrr2 and [iy = ¢z Co 1.

In case [iz23 > 0 we are in a situation where the server can deliver data through its
ingress link. The following demonstration shows LFU is the cache heuristics that always
finds the unique optimum if any. By the way, this claim is later confirmed numerically in
Sec.4.5.1.

e Assuming that the optimal hy, € {0, 1}, we can deduce the optimal link services

rates.

126

To that aim, first define the two sets K; = {k € K : hoy =i}, Vi € {0,1}. Ky is the

set of objects that are not stored in the cache, IC; is the set of object that are permanently
cached. As such, |K;| = z3. So, the concave objective yields

Maximize

key Ik ke Tk

Define [as an optimal multiplier tied to the constraint upon the capacity of the link
to the server. The KKT conditions holding,

fikas = %,Vk € Ky, and

_ q _
Hk23 = Ek - ,Uk71,2,V/£ e K.
As

Zﬂk,z,z& = (39 = %[Z qr + Z Qk} - Z k1,2,
k

kelo keky ke
we obtain

1
3 = U35+ Z fri2 < Cs0+ Coy.

kex,

Hence, the optimal rates satisfy

Hk,2,3 = Gk [03,2 + Z ﬂk,1,2i| ,VEk € Ko,

(4.17)
ke,
P12 + k23 = Gk [03,2 +Y) /ij,l,Q} k€ Ky (4.18)
ke

e We insert that solution into Eq.4.16 to explicit the sets ;. At the optimum, the

127

objective function reaches its supremum

S= SUP{ log(Cs2 + Z fk1,2) :
K kel

[K1| = 22 and Z P2 < 02,1}. (4.19)

ke,

Define the network capacity k = C5; + C32. The upper bound of S, denoted as S™*
equals log k. As illustrated in Fig.4.4, a greedy algorithm finds the supremum S < Sjax
in piggybacking the x,-most popular objects in ;. LFU is this greedy heuristics. As
such, it greedily chooses the most popular contents as those worth being stored into the
cache. Optimally, that also implies sharing the entire cache’s ingress link capacity among

these contents. The following observations can be made:

K1 KO

20bj.
y.4 AN
y A \
f \

Figure 4.4 — Example of greedy resolution of Eq.4.19 with x5 = 2. Piggybacking
into Ky the two most significant contents, as LFU does, is optimal.

Observation 4.1 (Maximal solution existence). The greedy algorithm finds a cache

allocation and fair service rates such that the objective function equals its upper
T2

bound S™* iif > qp > Ca1/k.
k=1

This happens when the cumulative fair service rate for the objects in cache exceeds the
capacity of the link to that cache. Even if that solution might not be unique, (for example,
in case of C3 ; /k being too small), whenever S™ is reachable, the greedy algorithm finds

a solution achieving it.

Observation 4.2 (Maximal solution uniqueness). There exists a unique combina-
tion of cache allocation and fair service rates such that the objective function equals
its upper bound S™** if Zi;l Gk + Quyt1 < Cao1 /K.

128

Indeed, if one can not replace the least popular object stored in the cache by some
other and get a fair service rate exceeding the capacity of the cache’s ingress link, then
the LFU-provided cache configuration is the unique optimum.

Conversely, if the cumulative fair service rate of the z9-most popular objects remains
lower than the capacity of the cache’s ingress link, , i, Mk1,2 < Ca1. This happens
when the cache’s ingress link (2, 1) is over-provisioned. Consequently, the link service
rates of never-cached objects & € Ko, fu,12 > 0, and the fair objective function can not
reach its upper bound S™** as the network carries some miss traffic.

e To conclude, remember sz was assumed to equal either 0 or 1. We show that S™*
is also the upper bound of the general objective function we denote f, for any hy . € [0, 1].
Indeed, as the objective function increases with any of the decision variables, any attempt
to increase S™™ to S™ + ¢, Ve > 0, necessarily increases some zero hit ratio by Sh >0

and decreases a hit ratio of one by the same amount.

e [0
oh

0f(h)

= k1,2
> oh = —
ha =0 oh

B _02,1 + Cs9 ‘

FLM:J

As € < 0, the solution provided through LFU caching is the optimum for any h, € [0, 1].

General a-fairness

Here the objective consists in the following:

Maximize

(07

qk 7 — — 11—«
E h
1 a(2,k Bk, 12 + [ik2,3)

As demonstrated previously, the optimal h, , belong to {0, 1}. It allows to reuse the
aforementioned definition of the sets K;. We can calculate the optimal link services rates,

owing to the concave objective function

ql? — -« q’? - = -«
—t —r . 4.20
T o (2s) ™+ > T o ke + o) (4.20)

ke ke,

The KKT conditions yield

129

P23 = %,Vk € Ko, and

/j'k7273 = % - /jk,l,Q;Vk € ,Cl.

It follows that

Zﬂk,z,s =30 = #[Z qx + Z C_Ik:] - Z Fike,1,2
k

ke’CQ keky keky

gives the following optimal rates:

[ik23 = Gk [02,1 +) ﬂk,l,Q} ,VEk € Ko

ke

fie12 + k23 = Qk [02,1 + Z ﬂk,l,Q} ,VE € Ky,
ke

making the optimal allocation identical to the proportional fairness case we presented

earlier.

4.5 Evaluation

We numerically solved problem (4.10) using SCIP 3.2.1 [Achterberg, 2009] a Mixed In-
teger Non-Linear Program (MINLP) optimization suite. It actually performs branch-cut-
and-price on mixed integer problems and invokes the Interior Point Optimizer [POPT
3.12.5 [Wichter and Biegler, 2006] to solve relaxed nonlinear instances. IPOPT itself
relies on PARDISO 5.0.0 [Kuzmin et al., 2013; Schenk et al., 2007, 2008] for tacking
large-scale linear systems of equations when needed. We did not used SCIP’s Mixed In-
teger Programming features since all our decision variables are real. It has essentially
been used as an interpreter to the ZIMPL mathematical language [Koch, 2004] and a
programming interface for [IPOPT.

130

4.5.1 Client/Cache/Server bus

Consider the same bus topology as in Sec.4.4.2 above. Consider that exogenous requests
address a catalog size of 80 objects. The content popularity follows a Zipf distribution
of parameter 1. The cache budget is 10 objects. The link capacity from the cache to
the client is 10 objects/s while the one from the server to the cache has a 20 objects/s
capacity. Fig.4.5 depicts the results. LFU is clearly the proportionally fair caching policy.
Also, observe that link capacities are shared proportionally to the content popularity. For
instance, as anticipated by Eq.4.18, the sum of the ingress rates for content 1 is 2.94-3.1 =
6 =q1 X (C21+ Cs2) = 0.2 x (10 + 20).

©
N

Zipf a=1

Popularity
o
'_\

Ingress rate
o
Ok OFRLNWA,OIOOO
] J-I-F’l-_}...l... 1)
(@)
c
59
=Q

Hit ratio
0O«
O

0 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80
Object rank k

Figure 4.5 — Bus topology: proportionally fair allocation.

4.5.2 A simple network

Next, we evaluate a network of 3 cache-equipped routers/nodes and one server (Fig.4.6).
The computational complexity of this nonconcave problem prevents the investigation of
bigger instances. However, this setup suffices for characterizing the optima.

We set the total routers ingress link rates to respectively 10,15 and 20 objects/s. The

capacity of the link to the content server is 30 objects/s. Cache capacities at every content

131

Figure 4.6 — Simple network topology.

router is b, 6 and 7 objects. The content server is viewed as a node with a cache capacity
that equals the catalog size.

The key insight is that every tractable instance entails an optimal caching consisting
in the long-term storage of number of the most popular objects. This indicates that an
LFU caching policy leads to content-wise a-fairness. Another implication is that at the
optimum, the network does not convey any miss traffic. In other words, optimally, no
interest crosses the nearest cache. Hence, the optimal network is a set of autonomous
clusters centered on caches surrounded by their clients. Remember that such an optimum

does not aim to guarantee interest satisfaction. We detail our observations below.

(v = 0)-fairness

In the very particular case of zero-fairness, we consider a catalog of 2000 Zipf-ranked
objects. The trivial optimum in Fig.4.7 depicts the whole network capacity being allocated
to a single content, the most popular one. However, multiple optima exist, including a
bandwidth allocation proportional to content popularity, as the problem turns out to be

unweighted.

Proportional fairness

Proportional fairness first translates into ensuring a hit ratio of 1 to a majority of the most
popular content. It is distinctive in Fig.4.8 where the Zipf skewness is 1 and Fig.4.9 fea-
turing a Zipf parameter that equals 0.7. Given that persistent caching, fairness is actually
enforced by an adequate link capacity sharing. The throughput fair share follows a curve
matching content popularity, pointing out proportionality.

This is a strong result as it decouples caching and scheduling in the pursuit of content-

wise fairness. Cache network fairness simplifies into legacy but content-wise queuing

132

o
H

Popularity

Zipf a=1

Ingress rate
|_\
a1
3 o b s 1 s 1
z
o
Q.
@
N
(@)
c
3
=4

Hit ratio

O e e

10 20 30 40 50 60 70 80
Object rank k

Figure 4.7 — Simple network: A zero-fair allocation for every content k at every
cache n.

network fairness, given a few additional content servers formally known as caches.

> 0.2
£ |
32 01F Zipf a=1
o
0
8 C
b B Node 1
8 L Node 2
<) r Node 3 e
i I B
o
E
i' - r— e ———— . — -
10 20 30 40
Obiject rank k

Figure 4.8 — Simple network: proportionally fair allocation for every content k at
every cache n.

133

> 02
£ |)
8_ 01+ lef a=0.7
&
0
10 F
8 8r
% 6 | Node 1 Server
@ S Node 2 Cumul
5 g __lf Nodg 3 e
= 2l ey
l H -
S 0Bp|E tiii
B 06| fiii]
= 04 r R R
= 02 r HEEE R
0F:..:...-.'..L:.... whades ...-....-I...--'. I
10 20 30 40
Object rank k

Figure 4.9 — Simple network: proportionally fair allocation with less skewed popu-
larity distribution.

(o = 2)-fairness

Even when o = 2, fairness remains consistent with the previous observations. There is
no fractional hit ratio. As a consequence, content-wise 2-fairness in a cache network does
not require shared-time cache occupancy. The optimal link capacity share in this case
is proportional to g where ¢y is the probability that a requested object is of popularity
rank k. It shows once more that the packet scheduler is entirely in charge of content-wise

fairness.

Max-min fairness

We evaluate numerically max-min fairness as a-fairness with & = 9. Computational
limitations prevented us from exceeding this value. Although this is a quite loose approx-
imation of an infinite «, the insight we get remains eloquent. As before, the recipe to
fairness turns out to be persistent caching and a content-wise bandwidth fair sharing on
top of the classical client-server network infrastructure. Observe that, as predicted analyt-
ically, fair resource sharing remains insensitive to . The max-min fair share, just like in

proportional fair sharing or any other case, are proportional to content popularity.

134

0.2

01 b Zipf a=1

Popularity

Ingress rate

Hit ratio

o
IS
T T T T T

10 40
Object rank k

Figure 4.10 — Simple network: (a = 2)-fair allocation for every content k at every
cache n.

4.6 Conclusion

Cache networks, and more specifically Information-Centric Networks (ICN), are promi-
nent solutions for communication infrastructure offloading. Early in the Internet history,
cache engines have been inserted between the content consumers and the delivery servers
to confine the recurrent traffic of very popular objects close the network edge. Nowadays,
ICN, FemtoCaching [Golrezaei et al., 2012] and Fog-RAN [Sengupta et al., 2016; Shi
et al., 2015] have furthered the ongoing caching penetration.

Throughout this chapter, we show that a resource allocation a-fair to content items,
whatever a > 0, can solely tackle the design of fair packet schedulers while ensuring
that the most popular objects get permanently cached. In contrast to previous works, that
focused on isolated caches, it appears that no fractional content hit ratios is necessary for
the sake of fairness.

As a strong consequence, our analytic contribution suggests that content-wise fair
allocation in cache network can be formulated within the existing frameworks pertaining
to queuing networks [Massoulié and Roberts, 1999] in viewing as regular popular content

servers caches equipped with LFU-approximating caching policies like p-LRU, LRU and

135

Ingress rate Popularity

Hit ratio

Figure 4.11 — Simple network: Approaching max-min fairness with («

o
[V}

0.1

Zipf a=1 ——

allocation for every content k at every cache n.

: Node 1 Server
Ll by Node2 ----===s=- Cumul
R, Node 3 e
Li B,
Pl Lt
i
3 i
10 20 30
Object rank k

40

9)-fair

Leave-Copy-Down heuristics or LAC+ [Carofiglio et al., 2015a]. To sum up, ICN can be

a-fair, as long as the link service rate allocation is.

136

Chapter 5

Supervised Machine
Learning-based Routing for NDN

Can ICN scale ?

Summary. Named Data Networking (NDN) ambitions the rank of Future Internet
Architecture in uniquely addressing content items by their name. In NDN, routers
forward Interests for content after finding Longest-Prefix Matches (LPM) of con-
tent names in their Forwarding Information Base (FIB). However, the scalability of
this structure is challenged by the huge global Internet namespace. In this chapter,
we propose a novel approach to interest forwarding that compresses the FIB data
structure into Artificial Neural Networks (ANNs). A bitwise trie splits the names-
pace and indexes ANNs. ANNs are offline trained by the control plane from the
Routing Information Base and matching Interests. Then, they are made available
to the data plane for interrogation. We demonstrate that this approach accelerates
packet forwarding by several order of magnitude. Noteworthily, leveraging ANNs as
memory and processor for directing packets towards next hops reminds of Asking For
Directions to people in the street, incurring similar reliability regards.

Keywords: Information-Centric Networking; Scalable Forwarding; Machine

Learning.

Contents

5.1 Introduction @ ¢ i i i i i i i i e e e e e e e 139

5.2 Related work @ i i i i i e e e e e e e 141

53 AFFORD @ ittt iiien 142
5.3.1 AFFORD supervised learning 143
5.3.2 AFFORD forwarding 147

5.4 Analysis i e e e e e e e e e 148

55 Evaluation. 0000 149
5.5.1 Tiny-size FIB 150
5.5.2 Medium-size FIB o0 152
553 Bigsize FIB. oo 152

5.6 Conclusion and future work 153

138

5.1 Introduction

Information-Centric Networking (ICN) concentrates significant research effort to bring
it to maturity. The elegance of the architecture and its adequateness to today’s Internet
usage makes it a prominent candidate to the next generation of network paradigms. This
chapter is a contribution to its quest for scalability in presence of the global Internet
namespace. As such, even if the enclosed proposal pertains to various implementations of
ICN, we intend to emphasize the named content prerequisite in referring to Named Data
Networking (NDN) [Zhang et al., 2014].

In NDN, users emit Interests for content items and retrieve data along the reverse path.
Every traversed node maintains three major data structures: a Content Store (CS), which
is a packet cache, a Pending Interest Table (PIT) making the NDN data plane stateful,
and a Forwarding Information Base (FIB). More precisely, Interest packets that have been
forwarded and waiting for matching Data packets to return have priorly been registered
into the PIT, along with the requesting (inter)faces. The FIB contains prefixes and iden-
tified egress faces. It is kept up-to-date by a name-based routing plane. Its counterpart in
the IP world might be the IP routing table. Upon an Interest arrival, a forwarding strat-
egy identifies the corresponding egress faces from the content name by finding its longest
matching prefix in the FIB. This operation is expensive and rather impossible to execute at
wire speed without thorough optimization [Melazzi et al., 2013]. Several techniques have
been investigated so far, most of them breaking names into logical components probed by
means of hash tables [So et al., 2013; Fukushima et al., 2013], hierarchical hash tables
[Yuan and Crowley, 2015] or distributed Bloom filters [Perino et al., 2014]. Such a hierar-
chical name assumption limits the scope of ICN to current DNS-like URLSs and excludes
the possibility of flat names. More recently, [Song et al., 2015] proposed to compress the
FIB into a binary Patricia trie as the BSD kernel has done for IP addresses, and advocates

for a speculative data plane.

Our work takes a radically new approach we call AFFORD (Ask For Directions). It
considers every name n as a whole and lets Artificial Neural Networks (ANNs) learn,
construct a function f to quickly compute, for every egress face, a probability of rele-
vance. ANNSs, recently revived by Deep Learning [Deng and Yu, 2014], have regained
some particular attention thanks to the tremendous computing power unleashed by mod-

ern CPUs and General-purpose Processing on Graphics Processing Units (GPGPU). The

139

broad range of machine learning applications might include packet forwarding as sug-
gested throughout the chapter. An Artificial Neural Network mimics brains in consisting
of interconnected nodes called neurons. A singular type of ANNs we hereafter manipulate
is the multilayer perceptron (MLP), a feedforward ANN, which gathers artificial neurons

into interconnected layers.

In a nutshell, we investigate the consequences of routers being trained to “guess”
paths. We qualify the information retrieval via ANN-FIBs as guessing because of the
unpredictable nature of the query outcome. Experiments show that ANN-FIBs, the FIB
subsets implemented into ANNs are orders of magnitude smaller and faster, with accurate
egress face guess. Conversely, it appears that supervised learning, which refers to the
expensive process of presenting content names i and matching bitmaps of egress faces
b to ANNS, has to be carried out offline, preferably inside the control plane. To this
aim, the control plane would access the PIT for actual names, find their longest match-
ing prefix in the Routing Information Base (RIB) populated by a named-based routing
protocol and find, via a bitwise trie, the ANN-RIB in charge. Then it would train that
ANN-RIB with pertaining 1 and the target bitmap b until a quadratic error ||b — f (i) |2
gets minimal. This procedure involves a backpropagation algorithm [Rumelhart et al.,
1985] that utilizes the well-known gradient descent technique. ANN-RIBs and their trie
will be eventually copied as ANN-FIBs into the data plane for fast interrogation. As the
namespace will grow, the accuracy of ANN-RIBs will decrease and the learning time will
certainly increase. This is why instead of training always bigger ANN-RIBs, we propose
a mechanism to dynamically split the namespace into tractable subsets by means of a

bitwise trie.

The remainder of the chapter is organized as follows. Sec.5.2 describes related work.
It sketches the recent community effort to mitigate the expensive FIB lookup. Then,
Sec.5.3.1 and Sec.5.3.2 introduce our proposal, respectively AFFORD learning and for-
warding algorithms. In Sec. 5.4 we analyze some intrinsic properties of our forwarding
strategy and demonstrate it guarantees content delivery under no timeout assumption and
mitigates flooding. AFFORD is evaluated in Sec.5.5. We investigate a diversity of sce-
narios to point out where AFFORD pertains. Then Sec.5.6 concludes the chapter and

suggests perspectives.

140

5.2 Related work

Research on ICN has been prolific in pushing the limits of forwarding engines perfor-
mance, aiming to help them sustain traffic at wire speed, regardless of the namespace
size. Indeed in operation, it is likely that some ICN router will be required to fetch into
103-entries FIBs [So et al., 2013].

We can group contributions that mitigate huge FIB lookup cost into two categories.
Those requiring hierarchical names and those capable of alleviating flat name forwarding

as well. The majority belongs to the first category.

Hierarchical name forwarding

In this group, the iterative concatenation of an increasing number of name components
(the maximum number denoted as d) allows to transform the Longest-Prefix Match (LPM)
procedure into an O(d) exact match at most. Among notable achievements is the imple-
mentation of a content router by [Perino et al., 2014], which queries a hash table-based
FIB after probing contiguous Bloom filters (PBF) for prefix presence. Interestingly, their
PBF (Prefix Bloom Filter) exploits the hierarchical name structure to the fullest. They
compute a hash of a name component to identify the Bloom filter in charge. The com-
ponent is either the first or subsequently another one to mitigate false positives in case of
exceeded filter capacity.

[So et al., 2013] adopted a similar stance regarding hash table-based FIB while deem-
ing Bloom filters less effective without hardware support. They offer to compensate the
lack for hardware relief by innovating at the lookup phase. Thus, instead of looking for
the longest-prefix first, which is vulnerable to DoS, the search starts from an intermediate
component. This component’s position M is a parameter that equals the component count
of most FIB prefixes. Their solution expands the FIB with virtual prefixes whose purpose
is to signal the existence of longer-than- A/ matches.

In a similar objective, [Fukushima et al., 2013] proposes a link layer protocol mod-
ification where routers convey within every Interest packet the component position they
found a match at. Egress routers, likely to have similar prefixes in FIB, would greatly
benefit from this information, number of them would realize O(1) lookups. On the other
hand, it means that every suffix in the FIB has to be expanded and labeled with its count

of child suffixes (i.e., the parent suffix and additional components). This is because a

141

protocol-advised FIB prefix is unambiguously the longest match only if that count is zero.
The method in [Yuan and Crowley, 2015] decreases the worst-case complexity of
hash-based lookups to O(log(d)), in designing FIB as a binary tree of hash tables. d is the
number of component in the name to process. Authors propose to store prefixes having
the same number of components into the same hash table.
Whereas the above works did not use tries, [Wang et al., 2012] conducts longest-prefix

match on a trie of compressed name components.

Name component-agnostic forwarding

Our proposal differs in that it does not require names to consist in sequences of com-
ponents, even though some structure in the name, obvious or subtle, should improve the
neural network performance.

Closer to our work, [Song et al., 2015] recently proposed to store the FIB into a
compact binary Patricia trie [Morrison, 1968]. They do not assume any name structure.
For sake of scalability, they also introduce a Speculative Binary Patricia (sBP) to conduct
Longest-Prefix Classification (LPC) as a replacement of the conventional LPM. sBP stores
in nodes the bit position to check for choosing the left or right child, in place of a token.
Due to the resulting false positives increase, authors advocate for a speculative forwarding

plane that could relieve FIB shortcomings.

5.3 AFFORD

Ask for Direction, abbreviated AFFORD, is a novel stochastic forwarding mechanism for
named-object networking. In AFFORD, the probability to send an Interest to an egress
face is calculated by ANN-FIBs, which are Artificial Neural Networks substituting regular
FIBs. This contribution arises in times when content names are becoming network layer’s
first-class citizens, intended to make every single connected stakeholder reachable, from
“things” to supercomputers. The number and length of these strings of characters referred
to as names is deemed unlimited. Networked objects must be ready to cope with this
unprecedented immensity. This perspective instills reservations about the perpetuation of
current deterministic routing/forwarding models, exhaustively aware of the direction to

every destination.

142

Trie
1

RIB ANN-RIB 0
() 0 .
c_CU Prefix Egress
E‘ /orange/cloud/ 1,2
9 Supervised learning
=
c
@]
@) [cisco/ 1,3 Copy
Q Name
c
i | lice.j
o /orange/cloud/alice.jpg Face probability
S o
o /
[ciscolvisual_index 0
PIT ANN-FIB 0
Trie

Figure 5.1 — The forwarding information management is depicted: the Artificial
Neural Network is trained offline and made available to the data plane for online
face selection.

Stochastic forwarding is an alternative we analyze below. For every object name, ev-
ery egress face is affected a probability. This way, we relax the constraint of knowing
the proper next hop with precision, hence the mandate to keep this information accu-
rately. Stochastic forwarding is an unreliable forwarding but as demonstrated in Sec.5.4,

unreliability and guaranteed delivery can coexist.

AFFORD operates in two parallel phases: the supervised learning phase that takes
place inside the control plane, and the actual forwarding phase conducted inside the data

plane.

5.3.1 AFFORD supervised learning

In machine learning, supervised learning is the training of a learning system with input
signals and the target outputs. We choose in this chapter multilayer perceptrons (MLP) as

learning systems.

143

Multilayer perceptrons

A MLP is an artificial neural network that organizes neurons into an input, one or several
hidden layers and an output layer. Neurons from every layer feed those of the next one via
synapses. A MLP works as follows: internally, it computes a value at every upper layer
neuron that is the weighted sum of every input synapse, transformed by a nonlinear acti-
vation function. The logistic function is commonly adopted as activation function. That
owes in part to its derivative, which only involves the function itself. This characteristic
simplifies the implementation of the backward propagation of learning errors (backprop-
agation). Details about the backpropagation algorithm can be found in [Riedmiller, 1994;
Rumelhart et al., 1985].

Layer setup

Define T'" as the set of egress faces in the router. In AFFORD, a MLP reads on its input
layer a signal consisting in an ASCII-encoded object name like n = (ascii(’/’),...)
and computes on its output layer a vector of probabilities p = (p1,p2, - ,pi, -+). The
probability position i € '™ in the vector is also the identifier of the corresponding face.
The output vector components belong to [0, 1], which is the codomain of the logistic
activation function and, fortunately convenient for probabilities.

Note that only a single vector component can be read from or written in a neuron.
Therefore, the number of input neurons is imposed by the maximal name length and the
number of output neurons is |I'"|. The number of hidden layers a MLP should have is
hard to determine, as well as the maximum number of training samples it must remember.
In Sec.5.5, we successfully made a 3-layers and 35 neuron- MLP render the egress faces

of a thousand names.

Learning purpose

Supervised learning aims at constructing a function f : N — [0, 1]‘F+| that assumes a
maximal name length m. f must:

(i) render with the highest fidelity the training set in mapping accurately training sam-
ple names with the egress face bitmap;

(ii) estimate every face probability from longer names. We call this second role Vir-
tual Longest-Prefix Match (VLPM). VLPM outputs a vector of probabilities that must

144

approximate to the face bitmap a LPM would have produced.

Learning procedure

The supervised learning of a MLP is an expensive process. It must be carried out period-
ically inside the control plane on the so-called ANN-RIBs, as soon as a routing protocol
has updated the RIB. Each of the so-called ANN-RIBs runs in its own thread.

Since the learning time drastically increases with both MLP and dataset sizes, we
propose to split the namespace with a bitwise trie. Every bottom level trie node references
the ANN-RIB in charge of the subset of the namespace prefixed by its path in the trie.

Define I'f C I'* as the subset of egress faces ensuring the delivery of named-content
ii. The target ANN-RIB output is a bitmap b = (1.4 (i));cr+ indicating with certainty
the egress faces for that name 1. 1,(-) is the usual inaicator function such that:

, 1 if7 e Fg,
Tp+ (Z) =
? 0 otherwise.

An ANN-RIB behaves as a function f; at training time t. The sequence f; is expected
to converge pointwise to f. During the training phase, RIB prefix vectors are iteratively
injected into the ANN-RIB in charge according to the bitwise trie. Then the ANN-RIB
computes the error b — f:(1) with respect to the target bitmap and backpropagates it to
every lower layer neuron. Right after that, we do the same with PIT entries read from a
PIT log and LPMatched with the RIB entries to obtain the target egress faces. RIB and
PIT injection into ANN-RIBs are conducted iteratively until the following end conditions

get fulfilled. Algorithm 5 summarizes all this.

Learning end

Let V = {(fi,b) € N™ x {0,1}/""!} be a training set of (name, interface bitmap) pairs.

Definition 5.1 (Mean rendering error). We define the mean rendering error e(¢)
at training time ¢ as the mean absolute error between every target probability (in
{0,1}) and the rendered probability (in [0, 1]), averaged over the whole training set.
It measures the accuracy of a ANN-RIB output with regard to the target bitmaps,

145

Algorithm 5: Perform supervised learning inside the control plane using RIB
and PIT extracts. ANN-RIBs are trained to match names with egress faces
and periodically copied into the data plane as ANN-FIBs.

At update time (every AT);

RIB.Update();

ANN-RIBs.Trie.Update();

repeat

foreach RIBEntry in RIB do
egressFaces «<— RIBEntry.EgressFaces();
ANN-RIB +- ANN-RIBs.Trie.Find(RIBEntry.Prefix());
ANN-RIB.Learn(RIBEntry.Prefix(), egressFaces);

end

foreach PITEntry in PIT do
RIBEntry < RIB.LPMatchEntry(PITEntry.Name());
egressFaces «<— RIBEntry.EgressFaces();
ANN-RIB «+ ANN-RIBs.Trie.Find(RIBEntry.Prefix());
ANN-RIB.Learn(PITEntry.Prefix(), egressFaces);

end

until ANN-RIBs. Trained();

ANN-FIBs +~ ANN-RIBs;

when given exact names from the training set. Formally,

e(t) = (VIIT)™ D b= fulsd)l. (5.1)

(8,b)eV

Synapse weights, updated by backpropagation, are only saved when e(t) decreases.
Learning stops when a maximum number of iterations is reached or when, given a param-
eter s,

e(t) > k x inf{e(l),l < t}. (5.2)

We set in this work x to 1.5. If the end condition (5.2) is fulfilled, e(¢) likely reached
its global minimum. Therefore, the ANN-RIB must restore the weights it saved at e(t)
minimum.

As soon as an ANN-RIB’s configured capacity exceeds (for instance, a maximum of
1000 entries to render), add a new level of nodes to the bitwise trie. Then, move and
duplicate the ANN-RIBs attached the parent nodes into the child nodes. Finally, re-train
the ANN-RIBs for them to focus on the smaller namespace prefixed by their path into the

146

trie.

In parallel, inside the data plane, ANN-RIBs lighter copies, the ANN-FIBs will be
interrogated for fast forwarding decisions. By lighter copies, we mean that a few internal
MLP fields like the propagated errors or the synapse weight differentials used by the
backpropagation algorithm during the learning phase are irrelevant in the data plane and

should not be copied.

5.3.2 AFFORD forwarding

Algorithm 6: Use the Artificial Neural Networks ANN-FIBs jointly as for-
warding information memories and longest-prefix match processors.

Input: Interest packet, s

ANN-FIB + ANN-FIBs.Trie.Find(Interest.Name());

egressFaces <~ ANN-FIB.Query(Interest.Name());

egressFaces.SortByProbability();

rank < 1;

foreach face in egressFaces do
if rank / egressFaces.Size() < s then

face.SetProbability(ceil(face.GetProbability()));

rank—++;
end
if rand() / RAND_MAX < face.GetProbability() then
| Forwarder.Forward(face.ID(), Interest);
end

end

The actual forwarding in AFFORD is straightforward. As summarized in Algorithm
6, it obeys to the following few steps:

e Use the name carried in the Interest packet to locate, by means of the bitwise trie,
the ANN-FIB in charge.

e Interrogate the ANN-FIB in charge of that namespace segment and retrieve a vector

of face probabilities.

e Set to 1 a fraction s of the highest probabilities. This is to ensure content delivery

in a single attempt through the corresponding faces.

e Send the Interest towards interface ¢ with probability p;.

147

5.4 Analysis

Figure 5.2 — Forwarding under unreliable information: diffuse with probability € in-
terests along low probability paths and deterministically convey interests along high
probability paths. Diffusion along low probability paths eventually fades, bounding
flooding.

Asking for directions supposes some level of unreliability in the response. This is
also true with Artificial Neural Networks, which by design render learned samples with
an imperfect accuracy. We show in this section that forwarding under unreliable informa-
tion still guarantees delivery in a finite mean number of attempts. This holds under the
assumption that there is no PIT timeout.

Let R;. be the set of routes from the user to content k provider. A route r € Ry is
a sequence of nodes n. Define py ., as the ANN-calculated probability that content % is
delivered through node n’s successor along route r. At each node, the top fraction s of

egress routes see their py, . , rounded to 1.

Proposition 5.1 (Guaranteed delivery). AFFORD guarantees content k delivery
in a single attempt along at least (s***I"l x 100)-percent of the routes and in average

in less than ([] prrn)~" attempts along every route r.
ner

148

Proof. The maximum route length from the user to the content k provider is L =
sup{|r|,r € Ri}. Define route R such that |R| = L. Therefore, the fraction of the
crossed routes r 5 n,n € R having their probability rounded to 1 = [py,.,] is at

least [] s = s*.
neR
In a worst case scenario where the ANN locally assigns some route a weak prob-

ability, the lowest probability that an interest gets eventually satisfied through such

a route r is [prrn. Inverting the latter gives a lower bound to the mean number
ner
of necessary attempts.]

AFFORD may assign non-zero probability to unfeasible routes as a computational
artifact. The following corollary ensures that delivery attempts through such routes should

ultimately fade, limiting network flooding.

Corollary 5.1.1 (Unfeasible route fading). Stochastic forwarding through routes

comprising low probabilities €, < 1 fades as

lim €krn = 0. (5.3)
|r|—o0 ner

5.5 Evaluation

In this section we experimentally verify the feasibility of AFFORD. We aim at check-
ing for potential gains in replacing of the regular FIB structure with an Artificial Neural
Network (ANN-FIB). For this purpose, we based our implementation on a free Multi-
layer Perceptron written in C++ and available under MIT license at https://github.
com/sylbarth/mlp. The enclosed activation function is the logistic function A(z) =
(1+e77®)~1 where its steepness 7 is set to 0.2. The backpropagation algorithm relies on a
gradient descent configured with learning rate 7 set to 0.25. We modified its backpropaga-
tion algorithm to alleviate an encountered inertia. That inertia was due to a non-standard
dependency of new weight updates on the old ones. ANN’s input is every name character
and its output is a vector of egress face probabilities. For example, the ASCII code of each
character in (/,O,r,a,n,g,e,/,c, 1, 0,u,d, /) padded with zeros is given to a neuron in
the input layer and (0, 1,0,0,0,0,0,0,0,0) is the target output vector meaning "forward

to face 2 with certainty".

149

https://github.com/sylbarth/mlp
https://github.com/sylbarth/mlp

Content popularity follows a Zipf distribution with skewness parameter « = 1. Names
are randomly generated and consist of alphanumeric characters, “_" and “-” . Still, some
structure is enforced. One third of the name characterizes its producer identifier, one
third is the actual content name and the last part is a chunk identifier. All names are
deemed inserted into the router’s FIB. We compare ANN-FIB interrogations to regular
FIB’s character-by-character longest-prefix match, for the lookup to be name component
agnostic. For all indicated figures to be easily reproducible, we chose to run these tests on
off-the-shelf hardware equipped with an Intel Core 15 2.5GHz quad-core CPU with 3MB
L3 cache and 4GB of DDR3 SDRAM. Fig.5.3, Fig.5.4 and Fig.5.5 depict the results.

5.5.1 Tiny-size FIB

We first evaluate ANN-FIB performance under a tiny catalog of 100 objects (or chunks).
ANN-FIB has to be interrogated for forwarding each Interest through one among 10
egress faces. Name are 20 characters length maximum. We first configure a 3-layer
perceptron. The first layer, the input one, contains 20 neurons. The third layer, the out-
put one, consists in 10 neurons. The middle layer, which is the hidden one, consists in
(204-10)/2 = 15 neurons. After training ANN-RIB for 22s, it provides a rendering accu-

racy of about 1073, Fig.5.4 reports that the mean absolute error of the rendering is rapidly

s VLPM, catalog size = 10°

04 r
02

Mean VLPM error

10 20 30 40 50 60 70 8 9 100

05 VLPM, catalog size = 10°

06 |
04 |
02
0 1 m 1l

0 100 200 300 400 500 600 700 800 900 1000
Prefix 1D

Mean VLPM error

Figure 5.3 — Evaluation results: accurate Virtual Longest-Prefix Match.

150

Mean rendering error

Mean rendering error

0.005 ‘

e(t)L catélog s"ze = 10° —_—
0.004
0.003
\
0.002
\\\
0.001
0

0 2 4 6 8 10 12 14 16 18 20 22
Time[s

(a) Error vs Learning Time, catalog = 10? objects

0.02 ‘ ; ———
g(t), catalog size= 10" ———
0.015
0.01
0.005 \\
\
0
0 200 400 600 800 1000

Time[s|

(b) Error vs Learning Time, catalog = 10 objects

Figure 5.4 — Evaluation results: Low mean rendering error e(t).

satisfactory. Define the Virtual Longest-Prefix Match (VLPM) error as the mean absolute
error between every training sample’s output probability vector and 10* output probabil-
ity vectors of the same training sample padded with random characters. Fig.5.3 reports
a mean Virtual Longest-Prefix Match error of almost zero. It shows that the ANN-FIB

correctly maps prefixes and complementing names towards the same egress faces. 107 in-

151

terrogations using ANN-FIB take 655 whereas the longest-prefix match on a regular FIB
only takes 41s. Both FIB and ANN-FIB sizes are approximately 2KB. We observe here

that in spite of its remarkable accuracy, ANN-FIB does not demonstrate any clear benefit.

5.5.2 Medium-size FIB

Second, we evaluate ANN-FIB performance under a medium-size catalog of a thousand
objects (or chunks). Like previously, ANN-FIB is a 3-layer perceptron. Layers consist-
ing respectively of 20, 15 and 10 neurons. After training ANN-RIB for 1098s, it renders
egress faces with an average accuracy lower than 1072, As showed in Fig.5.3 by the
very low mean Virtual Longest-Prefix Match error, an ANN-FIB is generally capable of
performing accurate LPM without being taught the actual LPM algorithm. 107 interro-
gations using ANN-FIB still take 655 whereas the longest-prefix match on a regular FIB
takes 566s. ANN-FIB sizes is still 2KB whereas FIB size is now 10 times bigger. ANN-
FIB exhibits striking scalability in being approximately one order of magnitude smaller

and faster than a regular FIB structure.

5.5.3 Big-size FIB

Finally, we consider a catalog of 10° objects. We enter a domain where the namespace
has to be split for efficiency. The bitwise trie indexes 96 ANN-FIBs. ANN-FIBs remain
3-layer perceptrons. Layers gather respectively of 20, 15 and 10 neurons. 107 interroga-
tions using ANN-FIBs take pretty much the same time as in the medium-size evaluation
whereas the longest-prefix match on a classical FIB takes 1.4 day. ANN-FIB total size
approximates to 200KB whereas FIB size is 10 times bigger. ANN-FIBs exhibits here
also remarkable scalability in being more than 3 orders of magnitude (i.e., a thousand
times) faster than a regular FIB structure. To be fair, this comparison should have consid-
ered an improved, trie-indexed distributed FIB instead of a monolithic FIB. It would have
significantly reduced the number of entries to perform longest-prefix match on. In doing

so, comparative results would have fallen back to those of the medium-size scenario.

152

600

ANN-FIB oo
FIB
500 r i
= 400 r i
(]
E
= 300 .
)
)]
>
O 200t 1
100 r i
0 e
100 1000
Catalog size [objects]
(a) Query time vs catalog size
22 ‘
ANN-FIB
20 | FIB == g
18 i
_ 16} i
2 14]
& 12 i
g 10 B .
S - i
S 8
6 i
4 r i
2 S —— o
0 [] [
100 1000
Catalog size [objects]

(b) Model size vs catalog size

Figure 5.5 — Evaluation results: ANN-FIB size and speed outperform regular FIB.

5.6 Conclusion and future work

FIB scalability is a major impediment to future NDN adoption. This chapter proposes a
novel research direction: replacing the FIB table with Artificial Neural Networks, ANN-
FIBs, offline trained inside the control plane. We call this new forwarding scheme AF-

FORD after similar procedure in streets where human brains store, process and forward

153

inquiries. The accuracy, speed and size of the ANN-FIB outperforming conventional FIB
by orders of magnitude, are particularly promising. Possible applications might dwell
in core network ICN routers. The control plane supervising ANN-RIB learning might
be local or centralized within an SDN controller. Future work includes speeding up the
learning process by GPGPU and improving the estimation accuracy by investigating vari-
ous types of neural networks and activation functions. Ultimately, we target the challenge

of replacing billion-entries FIB with this solution.

154

Chapter 6
Conclusion and future work

In this thesis we have demonstrated the benefits of equipping LRU caches with a latency-
aware add-on. Indeed, making an early caching decision using the latency of retrieved
objects, on the purpose to minimize content delivery time, is as effective as intuitive.
The LAC+ mechanism is, to the best of our knowledge, the first recipe for fast p-LRU
convergence towards LFU. ICN being increasingly regarded as a 5G forwarding plane
candidate, [Kutscher, 2016] sees in our fully-distributed latency-aware caching algorithms
advances in the quest for 5G ultra-low latency objective.

Multipath forwarding commands a joint caching and forwarding optimization because
of their interdependence. This is why we elaborate FOCAL, a latency-aware joint caching
and forwarding scheme that combines LAC+, single-path forwarding for the most popular
objects (Perf) and load balancing (LB) for the others. We analyzed it theoretically and
through extensive simulations. FOCAL is able to quickly adapt to network conditions
and traffic characteristics and cuts by more than half the mean delivery time achieved by
LRU, typically on Abilene-like scenarios (Sec.3.7.3).

We have analyzed ICN fairness from the viewpoint of the throughput allocation to
contents. We have demonstrated that ICN is ready for a-fair content delivery inspite of
caching algorithms that utterly favor the most popular objects. We identified the sub-
system where a-fairness should be enforced to remain, as in traditional networks, the

network schedulers.

These works simplify the modeling of ICN by capturing in the same equation cache

and communication links contributions to the dynamics of local Interest packet backlogs,

155

being aligned with [Yeh et al., 2014]. To the best of our knowledge, no other work has
evaluated both theoretically and empirically networks of caches under bandwidth con-
straints.

We have contributed to the research effort towards FIB scalability in proposing AF-
FORD, a supervised machine learning-based routing scheme. Supervised machine learn-
ing algorithm and parameter selection being test-driven [Kotsiantis et al., 2007; Amancio
et al., 2014], more artificial neural networks, hardware infrastructures, learning algorithms
remain to be investigated. We believe such an example of dealing with imprecise rout-
ing information, to be one of the few sustainable paths towards the forthcoming named
Internet-of-Everything era, due to its unlimited namespace.

Yes, we believe in-network caching to be here to stay. Number of next-generation
networking use cases, including pervasive video, tactile Internet or high mobility over
heterogeneous networks, will require it. Cached content will need to be fetched and
trusted. So far, we can not figure out any way to proceed other than naming data and
cryptographically binding name, data and producer through signature. Reliable multipath
and multicast native support must definitely become a basic network service. Eventually,
that network may not be called ICN, but the lessons learned from the current research
effervescence about ICN shall end up in an heir technology.

Significant efforts remain to be put into off-path caching investigation. Intuitively, a
wealth of inter-domain traffic would be saved if a node could find the nearest replica to sat-
isfy an Interest instead of being limited to on-path caches. Whereas [Fayazbakhsh et al.,
2013] doubts it is worth the routing overhead (probably due to the lack of coordination
among caches in their experiments), [Saino et al., 2013] reported about 30% inter-domain
traffic reduction by spreading content objects across intra-domain caches and routing to
them, both using hash values. By measuring data retrieval latency, LAC+ is able to rule
out those coming from intra-domain caches and to perform implicit coordination. The
challenge is to keep nodes updated about the nearest replica. Can we rely on the con-
trol plane for this, considering the transient nature of cached objects? An idea would
be to only advertise those having the highest hit ratio. Updates might be less frequent
assuming that, at some timescale, cache dynamics reach a steady-state. Optionally, AF-
FORD would learn egress faces towards content replicas and the corresponding hit ratios.
Stochastic forwarding would diffuse interests according to either advertised hit ratios or

Artificial Neural Network-rendered probabilities.

156

Another concern is whether popularity can be learned from deeper in the access net-
work, considering content churn. [Elayoubi and Roberts, 2015] proposed to prefetch
objects instead of caching them reactively, exploiting for this the knowledge gathered
closer to the network core where traffic aggregation provides the most relevant popularity
figures. More recently, [Leconte et al., 2016] took a similar stance, advocating learning
about popularity in clusters of correlated caches and pre-fetching local LRU caches by
faking Interest for the globally-identified most popular objects. Interestingly, they pointed
out that caching content’s first chunks deeper into the access network suffices to decrease
latency, hence to improve user QoE. The relevance of such global popularities for very lo-
cal interests must be questioned. While this problem was demonstrated in [Leconte et al.,
2016], authors do not give any practical way to identify the local caches to cluster on how
good they correlate under Shot Noise traffic. Moreover, both works command centralized
approaches requiring controllers, management and explicit signaling. We observed that,
in a signaling-free way, LAC+ quickly picks and firmly holds globally popular objects
that are locally meaningful, based on how delivery time drops when they are stored in
cache.

These are, in our opinion, research directions it would be interesting to explore ex-
perimentally by means of real traffic over real NDN testbeds. The source of latency, real
traffic characteristics, the complexity of the interaction between flows and the role of con-
gestion control, might command adjustments or re-design. NDN will certainly mature
being used and confronted to reality, as it has been for the TCP/IP stack (i.e., the Internet

protocol suite) for more than three decades.

157

158

Bibliography

Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation, 1(1):1-41. http://mpc.zib.de/index.php/MPC/

article/view/4.

Ahlgren, B. and al. (2008). Design considerations for a network of information. In Proc.
of ACM CoNEXT.

Amancio, D. R., Comin, C. H., Casanova, D., Travieso, G., Bruno, O. M., Rodrigues,
F. A., and da Fontoura Costa, L. (2014). A systematic comparison of supervised
classifiers. PloS one, 9(4):e94137.

Augé, J., Carofiglio, G., Grassi, G., Muscariello, L., Pau, G., and Zeng, X. (2015).
Anchor-less Producer Mobility in ICN. In Proceedings of the 2nd International
Conference on Information-Centric Networking, pages 189—190. ACM.

Badov, M., Seetharam, A., Kurose, J., Firoiu, V., and Nanda, S. (2014). Congestion-
aware caching and search in information-centric networks. In Proceedings of the 1st

International Conference on Information-centric Networking, ICN * 14, pages 37-46,
New York, NY, USA. ACM.

Bansal, S. and Modha, D. S. (2004). CAR: Clock with adaptive replacement. In Proceed-
ings of the 3rd USENIX Conference on File and Storage Technologies, FAST *04,
pages 187-200, Berkeley, CA, USA. USENIX Association.

Ben-Porat, U., Bremler-Barr, A., and Levy, H. (2013). Vulnerability of network mecha-
nisms to sophisticated ddos attacks. IEEE Transactions on Computers, 62(5):1031-
1043.

159

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.

Bertsekas, D. P., Gallager, R. G., and Humblet, P. (1992). Data networks, volume 2.

Prentice-Hall International New Jersey.

Bianchi, G., Detti, A., Caponi, A., and Blefari Melazzi, N. (2013). Check before stor-
ing: What is the performance price of content integrity verification in LRU caching?
SIGCOMM Comput. Commun. Rev., 43(3):59-67.

Blaze, M., Feigenbaum, J., and Lacy, J. (1996). Decentralized trust management. In
Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages 164—
173. IEEE.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Breslau, L., Cao, P, Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and zipf-
like distributions: Evidence and implications. In INFOCOM’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, volume 1, pages 126—134. IEEE.

Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros, D., Tsang, J., Gjessing, S.,
Fairhurst, G., Griwodz, C., and Welzl, M. (2014). Reducing internet latency: A

survey of techniques and their merits.

Carlucci, G., De Cicco, L., and Mascolo, S. (2015). HTTP over UDP: an experimen-
tal investigation of QUIC. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, pages 609—614. ACM.

Carofiglio, G., Gallo, M., and Muscariello, L. (2012). Joint hop-by-hop and receiver-
driven interest control protocol for content-centric networks. In proc. of ACM Sig-

comm ICN workshop.

Carofiglio, G., Gallo, M., and Muscariello, L. (2013a). Bandwidth and Storage Shar-
ing Performance in Information Centric Networking. Elsevier Science, Computer
Networks Journal, Vol.57, Issue 17.

160

Carofiglio, G., Gallo, M., and Muscariello, L. (2013b). On the performance of bandwidth
and storage sharing in information-centric networks. Comput. Netw., 57(17):3743—
3758.

Carofiglio, G., Gallo, M., Muscariello, L., Papalini, M., and Wang, S. (2013c). Opti-
mal Multipath Congestion Control and Request Forwarding in Information-Centric
Networks. In Proc. of IEEE ICNP.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2015a). Analysis of Latency-Aware
Caching Strategies in Information-Centric Networking. In Proc. of ACM CoNEXT,
CCDWN Workshop.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2015b). FOCAL: Forwarding and
Caching with Latency awareness in Information-Centric Networking. In Proc. of
IEEE GLOBECOM (WKSHPS), ICNS.

Carofiglio, G., Mekinda, L., and Muscariello, L. (2015¢). LAC: Introducing latency-

aware caching in information-centric networks. In Proc. of IEEE LCN.

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and Weiss,
H. (2007). Delay-tolerant networking architecture. Technical report, IETF.

Che, H., Tung, Y., and Wang, Z. (2006). Hierarchical web caching systems: Modeling,
design and experimental results. /IEEE J.Sel. A. Commun., 20(7):1305-1314.

Choungmo Fofack, N. E., Nain, P., Neglia, G., and Towsley, D. (2012). Analysis of
TTL-based Cache Networks. In ValueTools - 6th International Conference on Per-
formance Evaluation Methodologies and Tools - 2012, Cargese, France. RR-7883 :
http://hal.inria.fr/hal-00676735/.

Cinlar, E. (2013). Introduction to stochastic processes. Courier Corporation.
Cisco, V. N. L. (2016). The zettabyte era—trends and analysis. Cisco white paper.

Dan, A. and Towsley, D. (1990). An approximate analysis of the Iru and fifo buffer
replacement schemes. Proc of. SIGMETRICS.

161

Dehghan, M., Massoulie, L., Towsley, D., Menasche, D., and Tay, Y. (2016). A utility
optimization approach to network cache design. arXiv preprint arXiv:1601.06838.

Dehghan, M., Seetharam, A., Jiang, B., He, T., Salonidis, T., Kurose, J., Towsley, D., and
Sitaraman, R. (2015). On the complexity of optimal routing and content caching in
heterogeneous networks. In Computer Communications (INFOCOM), 2015 IEEE
Conference on, pages 936-944. IEEE.

Deng, L. and Yu, D. (2014). Deep learning: Methods and applications. Found. Trends
Signal Process., T(3–4):197-387.

Elayoubi, S.-E. and Roberts, J. (2015). Performance and cost effectiveness of caching
in mobile access networks. In Proceedings of the 2nd International Conference on
Information-Centric Networking, pages 79-88. ACM.

Ellison, C. et al. (1996). Establishing identity without certification authorities. In USENIX
Security Symposium, pages 67-76.

Eum, S., Nakauchi, K., Murata, M., Shoji, Y., and Nishinaga, N. (2012). CATT: Potential
Based Routing with Content Caching for ICN. In Proc. of ACM SIGCOM ICN
Workshop.

Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., Ng,
K., Sekar, V., and Shenker, S. (2013). Less pain, most of the gain: Incrementally
deployable icn. In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, pages 147-158, New York, NY, USA. ACM.

Floyd, S. and Fall, K. (1999). Promoting the use of end-to-end congestion control in the
internet. IEEE/ACM Transactions on Networking (ToN), 7(4):458—472.

Fredj, S. B., Bonald, T., Proutiere, A., Régnié, G., and Roberts, J. W. (2001). Statis-
tical bandwidth sharing: a study of congestion at flow level. In ACM SIGCOMM
Computer Communication Review, volume 31, pages 111-122. ACM.

Fricker, C., Robert, P., and Roberts, J. (2012). A versatile and accurate approximation
for LRU cache performance. In Proceedings of the 24th International Teletraffic
Congress, ITC ’12, pages 8:1-8:8. International Teletraffic Congress.

162

Fukushima, M., Tagami, A., and Hasegawa, T. (2013). Efficiently looking up non-
aggregatable name prefixes by reducing prefix seeking. In Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on, pages 340-344.
IEEE.

Gallo, M., Kauffmann, B., Muscariello, L., Simonian, A., and Tanguy, C. (2012). Perfor-
mance evaluation of the random replacement policy for networks of caches. CoRR,
abs/1202.4880.

Garcia-Luna-Aceves, J., Dabirmoghaddam, A., and Mirzazad-Barijoug, M. (2014). Un-
derstanding optimal caching and opportunistic caching at" the edge" of information-
centric networks. In Proceedings of the 1st international conference on Information-

centric networking.

Garetto, M., Leonardi, E., and Martina, V. (2016). A unified approach to the performance
analysis of caching systems. ACM Transactions on Modeling and Performance Eval-

uation of Computing Systems, 1(3):12.

Garetto, M., Leonardi, E., and Traverso, S. (2015). Efficient analysis of caching strategies
under dynamic content popularity. In 2015 IEEE Conference on Computer Commu-
nications (INFOCOM), pages 2263-2271. IEEE.

Gasti, P, Tsudik, G., Uzun, E., and Zhang, L. (2013). Dos and ddos in named data
networking. In 2013 22nd International Conference on Computer Communication
and Networks (ICCCN), pages 1-7. IEEE.

Gelenbe, E. (1973). A unified approach to the evaluation of a class of replacement algo-
rithms. IEEE Transactions on Computer, 22(6):611-618.

Georgiadis, L., Neely, M. J., and Tassiulas, L. (2006). Resource allocation and cross-layer

control in wireless networks. Now Publishers Inc.

Ghali, C., Tsudik, G., and Uzun, E. (2014). Network-layer trust in named-data network-
ing. ACM SIGCOMM Computer Communication Review, 44(5):12—19.

Golrezaei, N., Shanmugam, K., Dimakis, A. G., Molisch, A. F,, and Caire, G. (2012).
Femtocaching: Wireless video content delivery through distributed caching helpers.
In INFOCOM, 2012 Proceedings IEEE, pages 1107-1115. IEEE.

163

Habib, S., Qadir, J., Ali, A., Habib, D., Li, M., and Sathiaseelan, A. (2016). The past,
present, and future of transport-layer multipath. arXiv preprint arXiv:1601.06043.

Hamilton, R., Iyengar, J., Swett, 1., and Wilk, A. (2016). QUIC: A UDP-based secure and
reliable transport for HTTP/2. IETF, draft-tsvwg-quic-protocol-02.

He, J. and Rexford, J. (2008). Toward internet-wide multipath routing. IEEE network,
22(2):16-21.

Hemmati, E. and Garcia-Luna-Aceves, J. (2015). A new approach to name-based link-
state routing for information-centric networks. In Proceedings of the 2nd Interna-

tional Conference on Information-Centric Networking, pages 29-38. ACM.

Hochbaum, D. S. (2007). Complexity and algorithms for nonlinear optimization prob-
lems. Annals of Operations Research, 153(1):257-296.

Hoque, A., Amin, S. O., Alyyan, A., Zhang, B., Zhang, L., and Wang, L. (2013). Nilsr:
named-data link state routing protocol. In Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking, pages 15-20. ACM.

Housley, R., Polk, W., Ford, W., and Solo, D. (2002). Internet x. 509 public key infras-

tructure certificate and certificate revocation list (crl) profile. Technical report.

Imbrenda, C., Muscariello, L., and Rossi, D. (2014). Analyzing Cacheable Traffic in ISP
Access Networks for Micro CDN Applications via Content-centric Networking. In
Proc. of ACM ICN.

Ioannou, A. and Weber, S. (2014). Towards on-path caching alternatives in information-
centric networks. In Proc. of IEEE LCN (Poster).

Ion, M., Zhang, J., and Schooler, E. M. (2013). Toward content-centric privacy in icn:
Attribute-based encryption and routing. In Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking, pages 39—40. ACM.

Jacobson, V., Smetters, D., Thornton, J., and al. (2009a). Networking named content. In
Proc. of ACM CoNEXT.

164

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. E., Briggs, N. H., and Braynard,
R. L. (2009b). Networking named content. In Proceedings of the 5th International

Conference on Emerging Networking Experiments and Technologies, CONEXT ’09,
pages 1-12, New York, NY, USA. ACM.

Jang, K., Han, S., Han, S., Moon, S. B., and Park, K. (2011). Sslshader: Cheap ssl

acceleration with commodity processors. In NSDI.

Jelenkovié, P. R. (1999). Asymptotic approximation of the move-to-front search cost
distribution and least-recently used caching fault probabilities. Annals of Applied
Probability, pages 430—464.

Jelenkovié, P. R. and Kang, X. (2008). Characterizing the miss sequence of the Iru cache.
In in Proc. of ACM SIGMETRICS, MAMA Workshop.

Jelenkovi¢, P. R. and Radovanovi¢, A. (2004). Optimizing LRU caching for variable
document sizes. Comb. Probab. Comput., 13(4-5):627-643.

Katsaros, K. V., Chai, W. K., Wang, N., Pavlou, G., Bontius, H., and Paolone, M. (2014).
Information-centric networking for machine-to-machine data delivery: a case study
in smart grid applications. IEEE Network, 28(3):58-64.

Kelly, F. P., Maulloo, A. K., and Tan, D. K. (1998). Rate control for communication net-

works: shadow prices, proportional fairness and stability. Journal of the Operational
Research society, 49(3):237-252.

Kleinberg, R. (2007). Geographic routing using hyperbolic space. In IEEE INFOCOM
2007-26th IEEE International Conference on Computer Communications, pages
1902-1909. IEEE.

Koch, T. (2004). Rapid Mathematical Prototyping. PhD thesis, Technische Universitit

Berlin.

Koponen, T., Chawla, M., Chun, B., Ermolinskiy, A., Kim, K., Shenker, S., and Stoica,
I. (2007). A data-oriented (and beyond) network architecture. In Proc. of ACM
SIGCOMM.

165

Kotsiantis, S. B., Zaharakis, 1., and Pintelas, P. (2007). Supervised machine learning: A

review of classification techniques.

Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., and Bogund, M. (2010). Hyper-
bolic geometry of complex networks. Physical Review E, 82(3):036106.

Kurose, J. (2014). Information-centric networking: The evolution from circuits to packets
to content. Computer Networks, 66:112—120.

Kutscher, D. (2016). It’s the network: Towards better security and transport performance
in 5g. In 2016 IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), pages 656-661.

Kuzmin, A., Luisier, M., and Schenk, O. (2013). Fast methods for computing selected ele-
ments of the greens function in massively parallel nanoelectronic device simulations.
In Wolf, E., Mohr, B., and Mey, D., editors, Euro-Par 2013 Parallel Processing, vol-
ume 8097 of Lecture Notes in Computer Science, pages 533-544. Springer Berlin
Heidelberg.

Laoutaris, N., Che, H., and Stavrakakis, I. (2006). The LCD interconnection of LRU

caches and its analysis. Elsevier Science, Performance Evaluation.

Laoutaris, N., Syntila, S., and Stavrakakis, 1. (2004). Meta algorithms for hierarchical web
caches. In Performance, Computing, and Communications, 2004 IEEE International

Conference on, pages 445-452.

Leconte, M., Paschos, G., Gkatzikis, L., Draief, M., Vassilaras, S., and Chouvardas, S.
(2016). Placing dynamic content in caches with small population. In Computer
Communications (INFOCOM), 2016 IEEE Conference on.

Leonardi, E. and Torrisi, G. L. (2015). Least recently used caches under the Shot Noise
Model. In Computer Communications (INFOCOM), 2015 IEEE Conference on,
pages 2281-2289. IEEE.

Li, Z. and Simon, G. (2011). Time-shifted tv in content centric networks: The case for
cooperative in-network caching. In Communications (ICC), 2011 IEEE International

Conference on, pages 1-6. IEEE.

166

Llorca, J., Tulino, A. M., Guan, K., Esteban, J., Varvello, M., Choi, N., and Kilper,
D. C. (2013). Dynamic in-network caching for energy efficient content delivery. In
INFOCOM, 2013 Proceedings IEEE, pages 245-249. IEEE.

Lychev, R., Jero, S., Boldyreva, A., and Nita-Rotaru, C. (2015). How secure and quick
is QUIC? provable security and performance analyses. In 2015 IEEE Symposium on
Security and Privacy, pages 214-231. IEEE.

Martina, V., Garetto, M., and Leonardi, E. (2013). A unified approach to the performance
analysis of caching systems. CoRR, abs/1307.6702.

Massoulié, L. and Roberts, J. (1999). Bandwidth sharing: objectives and algorithms.
In INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1395-1403. IEEE.

Maternia, M. and El Ayoubi, S. E. (2016). 5G-PPP use cases and performance evaluation
models. SG-PPP.

Médard, M. (2008). Delay Models and Queueing. EECS, MIT.

Megiddo, N. and Modha, D. S. (2003). ARC: A self-tuning, low overhead replacement
cache. In Proceedings of the 2Nd USENIX Conference on File and Storage Tech-
nologies, FAST ’03, pages 115-130, Berkeley, CA, USA. USENIX Association.

Megyesi, P., Krimer, Z., and Molndr, S. (2016). How quick is QUIC?

Melazzi, N. B., Detti, A., and Pomposini, M. (2013). Scalability measurements in an
information-centric network. In Measurement Methodology and Tools, pages 81—

106. Springer.

Merkle, R. C. (1987). A digital signature based on a conventional encryption function.
In Conference on the Theory and Application of Cryptographic Techniques, pages
369-378. Springer.

Ming, Z., Xu, M., and Wang, D. (2012). Age-based cooperative caching in information-
centric networks. In Proc. of IEEE INFOCOM NOMEN Workshop.

167

Mitra, S., Agrawal, M., Yadav, A., Carlsson, N., Eager, D., and Mahanti, A. (2011).
Characterizing web-based video sharing workloads. ACM Trans. Web, 5(2):8:1-
8:27.

Mo, J. and Walrand, J. (2000). Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking (ToN), 8(5):556-567.

Morrison, D. R. (1968). PATRICIA- practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM (JACM), 15(4):514-534.

Naor, M. and Pinkas, B. (1999). Oblivious transfer with adaptive queries. In Annual
International Cryptology Conference, pages 573-590. Springer.

Naylor, D., Finamore, A., Leontiadis, 1., Grunenberger, Y., Mellia, M., Munafo, M., Pa-
pagiannaki, K., and Steenkiste, P. (2014). The cost of the s in https. In Proceedings
of the 10th ACM International on Conference on emerging Networking Experiments
and Technologies, pages 133—-140. ACM.

Naylor, D., Schomp, K., Varvello, M., Leontiadis, 1., Blackburn, J., Lépez, D. R., Pa-
pagiannaki, K., Rodriguez Rodriguez, P., and Steenkiste, P. (2015). Multi-context
tls (mctls): Enabling secure in-network functionality in tls. In ACM SIGCOMM
Computer Communication Review, volume 45, pages 199-212. ACM.

Neglia, G., Carra, D., Feng, M., Janardhan, V., Michiardi, P., and Tsigkari, D. (2016).

Access-time aware cache algorithms. PhD thesis, Inria Sophia Antipolis.

Nguyen, D., Sugiyama, K., and Tagami, A. (2015). Congestion price for cache manage-
ment in information-centric networking. In Computer Communications Workshops
(INFOCOM WKSHPS), 2015 IEEE Conference on, pages 287-292. IEEE.

Olmos, F., Graham, C., and Simonian, A. (2015). Cache miss estimation for non-

stationary request processes. arXiv preprint arXiv:1511.07392.

Olmos, F., Kauffmann, B., Simonian, A., and Carlinet, Y. (2014). Catalog dynamics:
Impact of content publishing and perishing on the performance of a lru cache. In
Teletraffic Congress (ITC), 2014 26th International, pages 1-9. IEEE.

168

Papadimitriou, D., Welzl, M., Scharf, M., and Briscoe, B. (2011). Open research issues

in internet congestion control. Technical report.

Papadopoulos, E., Krioukov, D., Boguna, M., and Vahdat, A. (2010). Greedy forwarding
in dynamic scale-free networks embedded in hyperbolic metric spaces. In INFO-
COM, 2010 Proceedings IEEE, pages 1-9. IEEE.

Paschos, G., Bastug, E., Land, I., Caire, G., and Debbah, M. (2016). Wireless caching:
technical misconceptions and business barriers. IEEE Communications Magazine,
54(8):16-22.

Perino, D., Varvello, M., Linguaglossa, L., Laufer, R., and Boislaigue, R. (2014). Caesar:
a content router for high-speed forwarding on content names. In Proceedings of the

tenth ACM/IEEE symposium on Architectures for networking and communications
systems, pages 137-148. ACM.

Psaras, 1., Chai, W. K., and Pavlou, G. (2012). Probabilistic in-network caching for
information-centric networks. In Proceedings of the Second Edition of the ICN
Workshop on Information-centric Networking, ICN 12, pages 55-60, New York,
NY, USA. ACM.

Qadir, J., Ali, A, Yau, K.-L. A., Sathiaseelan, A., and Crowcroft, J. (2015). Exploit-
ing the power of multiplicity: a holistic survey of network-layer multipath. /EEE
Communications Surveys & Tutorials, 17(4):2176-2213.

Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., and Raghavan, B. (2011). Tcp fast open.
In Proceedings of the Seventh COnference on emerging Networking EXperiments
and Technologies, page 21. ACM.

Radunovié¢, B. and Boudec, J.-Y. L. (2007). A unified framework for max-min and min-
max fairness with applications. [IEEE/ACM Transactions on Networking (TON),
15(5):1073-1083.

Raiciu, C., Niculescu, D., Bagnulo, M., and Handley, M. J. (2011). Opportunistic mobility
with multipath tcp. In Proceedings of the sixth international workshop on MobiArch,
pages 7-12. ACM.

169

Riedmiller, M. (1994). Advanced supervised learning in multi-layer perceptrons-from
backpropagation to adaptive learning algorithms. Computer Standards & Interfaces,
16(3):265-278.

Roberts, J. and Sbihi, N. (2013). Exploring the memory-bandwidth tradeoff in an
information-centric network. CoRR, abs/1309.5220.

Rossini, G. and Rossi, D. (2014). Coupling caching and forwarding: Benefits, anal-
ysis, and implementation. In Proceedings of the Ist international conference on

Information-centric networking, pages 127-136. ACM.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal represen-

tations by error propagation. Technical report, DTIC Document.

Saino, L., Psaras, I., and Pavlou, G. (2013). Hash-routing schemes for information centric
networking. In Proceedings of the 3rd ACM SIGCOMM workshop on Information-
centric networking, pages 27-32. ACM.

Schenk, O., Bollhofer, M., and Romer, R. A. (2008). On large-scale diagonalization
techniques for the anderson model of localization. SIAM Rev., 50(1):91-112.

Schenk, O., Wichter, A., and Hagemann, M. (2007). Matching-based preprocessing al-
gorithms to the solution of saddle-point problems in large-scale nonconvex interior-
point optimization. Computational Optimization and Applications, 36(2-3):321-
341.

Sengupta, A., Tandon, R., and Simeone, O. (2016). Cloud RAN and edge caching: Fun-
damental performance trade-offs,. In Proc. IEEE International workshop on Signal

Processing advances in Wireless Communications (SPAWC).

Shah, V. and de Veciana, G. (2014). Performance evaluation and asymptotics for content
delivery networks. In INFOCOM, 2014 Proceedings IEEE, pages 2607-2615. IEEE.

Shah, V. and de Veciana, G. (2015). Impact of fairness and heterogeneity on delays in
large-scale content delivery networks. In Proceedings of the 2015 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer Systems,
pages 375-387. ACM.

170

Sherry, J., Lan, C., Popa, R. A., and Ratnasamy, S. (2015). Blindbox: Deep packet
inspection over encrypted traffic. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 213-226. ACM.

Shi, Y., Zhang, J., Letaief, K. B., Bai, B., and Chen, W. (2015). Large-scale convex
optimization for ultra-dense cloud-ran. IEEE Wireless Communications, 22(3):84—
91.

Shreedhar, M. and Varghese, G. (1995). Efficient fair queueing using deficit round robin.
ACM SIGCOMM Computer Communication Review, 25(4):231-242.

Singla, A., Chandrasekaran, B., Godfrey, P., and Maggs, B. (2014). The internet at the
speed of light. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks,
page 1. ACM.

Singla, A., Chandrasekaran, B., Godfrey, P., and Maggs, B. (2015). Towards a speed of
light internet. arXiv preprint arXiv:1505.03449.

So, W., Narayanan, A., and Oran, D. (2013). Named data networking on a router: fast and
DoS-resistant forwarding with hash tables. In Proceedings of the ninth ACM/IEEE
symposium on Architectures for networking and communications systems, pages
215-226. IEEE Press.

Song, T., Yuan, H., Crowley, P., and Zhang, B. (2015). Scalable name-based packet
forwarding: From millions to billions. In Proceedings of the 2nd International Con-

ference on Information-Centric Networking, pages 19-28. ACM.

Sourlas, V., Flegkas, P., and Tassiulas, L. (2014). A novel cache aware routing scheme

for information-centric networks. Elsevier Science, Computer Networks, 59:44-61.

Starobinski, D. and Tse, D. (2001). Probabilistic methods for web caching. Perform.
Eval., 46(2-3):125-137.

Tassiulas, L. and Ephremides, A. (1992). Stability properties of constrained queueing sys-
tems and scheduling policies for maximum throughput in multihop radio networks.
Automatic Control, IEEE Transactions on, 37(12):1936-1948.

171

Tortelli, M., Cianci, L., Grieco, L., Boggia, G., and Camarda, P. (2011). A fairness analysis
of content centric networks. In Network of the Future (NOF), 2011 International
Conference on the, pages 117-121. IEEE.

Traverso, S., Ahmed, M., Garetto, M., Giaccone, P., Leonardi, E., and Niccolini, S.

(2013). Temporal locality in today’s content caching: why it matters and how to
model it. ACM SIGCOMM Computer Communication Review, 43(5):5-12.

Tucker, H. G. (2013). A graduate course in probability. Courier Corporation.

Wichter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25-57.

Wang, Y., He, K., Dai, H., Meng, W., Jiang, J., Liu, B., and Chen, Y. (2012). Scal-
able name lookup in ndn using effective name component encoding. In Distributed
Computing Systems (ICDCS), 2012 IEEE 32nd International Conference on, pages
688-697. IEEE.

Wang, Y., Li, Z., Tyson, G., Uhlig, S., and Xie, G. (2013a). Optimal cache allocation for
content-centric networking. In Proc. of IEEE ICNP.

Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., and Rhee, 1. (2013b). An improved
hop-by-hop interest shaper for congestion control in named data networking. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 55-60. ACM.

Yao, A. C.-C. (1986). How to generate and exchange secrets. In Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162—-167. IEEE.

Yeh, E., Ho, T., Cui, Y., Burd, M., Liu, R., and Leong, D. (2014). VIP: A Framework for
Joint Dynamic Forwarding and Caching in Named Data Networks. In Proc. of ACM
ICN, pages 117-126.

Yu, Y.-T., Bronzino, F., Fan, R., Westphal, C., and Gerla, M. (2015). Congestion-aware
edge caching for adaptive video streaming in information-centric networks. In Proc.
of IEEE CCNC Conference.

172

Yuan, H. and Crowley, P. (2015). Reliably scalable name prefix lookup. In Proceedings
of the Eleventh ACM/IEEE Symposium on Architectures for networking and commu-
nications systems, pages 111-121. IEEE Computer Society.

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P., Papadopoulos,
C., Wang, L., and Zhang, B. (2014). Named data networking. SIGCOMM Comput.

Commun. Rev., 44(3):66-73.

Zhang, L. and al. (2010.). Named Data Networking (NDN) Project. http://
named-data.net/ndn-proj.pdf.

173

http://named-data.net/ndn-proj.pdf
http://named-data.net/ndn-proj.pdf

174

Appendices

175

Appendix A

ZIMPL Mathematical Programs

177

A.1 ZIMPL code for section 3.4.2

#HdfhdHAH A A A A F AR H A ES MAIN PROBLEM ###f####d## #4444 E44##44444
set K = {1 .. 1000}; # Content ranks
set R = {1 .. 3}; # Routes
set A := {<k,r> in K % R}; # Ranks x routes
param alpha = 1; # Zipf skewness.
param lambda := 10;# Demand rate. Test values: 0.5,1,2,5,7,10,20
param c := sum <k> in K: exp(-1ln(k) x alpha);
param g[<k> in K] := exp(-1n(k) % alpha)/c; # Zipf popularity;
param mu[R] = <1> 5, <2> 3, <3> 2; # Bottleneck link rate
param x[R] = <1> 10, <2> 10, <3> 10;# Cache budget
param epsilon := 0.001; # Lower bound
defset contents(r) := {<k,r> in A}; # Route r’s contents
defset routes (k) := {<k,r> in A}; # Content k’s routes

To be optimized:
var w[A] real >= 0 <= 1; # Route weights
var h[A] real >= 0 <= 1; # Content hit ratios.

Test

max values: 0.8, 0.5
var rho[R] real >= epsilon <= 1; # Bottleneck link loads
var 1nN[R] real >= ln(epsilon); # Log of mean number

of active transfers
minimize latency: sum<r> in R: exp(lnN[r]); # Objective

Constraints:
subto cl: # Cache budget
forall <r> in R: sum<k,r> in contents(r): hlk,r] == x[r];
subto c2: # Mandatory delivery
forall <k> in K: sum<k,r> in routes(k): wlk,r] == 1;
subto c3: # Link load formula
forall <r> in R do
rho[r] == sum<k,r> in contents(r): gl[k] * wl[k,r] * (1 - hlk,r]) =*

lambda / mulr];

subto c4: # Log of M/G/1-PS E[N]
forall <r> in R: 1nN[r] == In(rho[r]) - 1In(l - rholr]);

178

A.2 ZIMPL code for section 3.4.3.0

BHAHHAH AR AR A AR AF A F R A S S LRU SUB-PROBLEM ########FHHHAHH#FHFHHHEHH

set K = {1 .. 14}; # Content ranks
set R = {1 .. 2}; # Routes

set A := {<k,r> in K % R}; # Ranks x routes
param alpha = 1; # Zipf skewness.
param cC := sum <k> in K: exp(-1ln(k) = alpha);

param g[<k> in K] := exp(—-1n(k) =* alpha)/c; # Zipf popularity;
param x[R] := <1> 5, <2> 6; # Cache size

#param n[R] = <1> 1, <2> 1; Flow bundle’s factor

defset contents(r)

#
{<k,r> in A}; # Route r’s contents
defset routes (k) #

{<k,r> in A}; Content k’s routes

To be optimized:

var i[A] binary; # Indicator of content
presence
var h[A] real; # Content hit ratio
var H[A] real; # Content hit ratio x
popularity
var T[R] real; # Cache Characteristic Time
maximize hit: sum<k,r> in A: H[k,r]; # Objective
Constraints:
subto cl: # Unicity
forall <k> in K: sum<k,r> in routes(k): i[k,r] <= 1;
subto c2: # Flow bundle size is limited
forall <r> in R: sum<k,r> in contents(r): i[k,r] == x[r] + 1;
#forall <r> in R: sum<k,r> in contents(r): i[k,r] == n[r] * x[r];
subto c3: # Weighting hit ratio
forall <k, r> in A: H[k,r] == glk] * hlk,r];
subto c4: # Compute hit ratio
forall <k,r> in A: hlk,r] == i[k,r] » (1 - exp(-glk] * T[r]));
subto cb5: # Compute Characteristic Time
forall <r> in R: sum<k,r> in contents(r): hlk,r] == x[r];

179

180

Appendix B

Résumé étendu

181

Les Réseaux Centrés sur I’Information (ICN) [Jacobson et al., 2009a] constituent un
paradigme de communication émergent visant a pallier la croissance effrénée du traffic a
travers 1’Internet d’aujourd’hui. Comme caractéristique principale, (i) ICN remplace au
sein de la couche réseau le "ou" par le "quoi", en acheminant les paquets sur la base de
noms de contenus. (ii) ICN utilise extensivement la fonction de mise en cache au niveau
de la couche réseau. Tandis que de moins en moins de trafic IP demeure cachable du
fait du chiffrement de bout-en-bout des canaux de communication, [Naylor et al., 2014],
ICN, a travers, par example, son implémentation NDN [Zhang and al., 2010] offre une
alternative prometteuse en ignorant I’identité des utilisateurs (pas d’adresse de la machine
hote) et en authentifiant les fournisseurs de contenus a partir de 1q signature numérique
contenue dans chaque paquet de données. De ce fait, chaque contenu peut étre conservé
en cache sous pour cela sacrifier toute confidentialité ou toute capacité a vérifier la prove-
nance desdits contenus. Ceci trouve son importance dans le fait que la mise en place de
mémoires-caches a travers les liens acheminant des données entre noeuds de communi-
cation s’est avérée étre un moyen reconnu d’amélioration des performances du réseau en
retenant a la périphérie de celui-ci un certain nombre de contenus, principalement les plus
populaires. Ceci contribue a réduire la charge du réseau et la latence des téléchargements.

Une telle minimisation de la latence est un pilier de I’architecture des réseaux 5G, qui
par ailleurs draine une quantité considérable d’efforts de recherche.

Cette these est une contribution a cet effort. Nous y abordons divers aspects de NDN:
(i) Nous proposons, analysons et implémentons deux mécanismes de mise en cache sen-
sibles a la latence LAC et LAC+ qui réduisent de maniere significative le temps de
téléchargement des contenus;

(ii) Nous proposons, analysons et implémentons un algorithme conjoint de mise en
cache et de diffusion sensible a la latence nommé FOCAL, visant a I’amélioration des
performances des algorithmes de gestion de caches;

(iii) Nous analysons I’équité dans les réseaux ICN, étant donné 1’ubiquité des caches
dans de tels réseaux;

(iv) Finalement, nous proposons une approche de diffusion de paquets basée sur des
réseaux de neurones dans 1’optique d’aider au passage a 1’échelle du FIB (Forward Infor-
mation Base) NDN au sein d’un espace de nommage Internet illimité.

Dans ce résumé, nous procédons de la maniere suivante. Nous y présentons ICN du

point de vue de la gestion de caches et de la diffusion de paquets. Ensuite nous énongons

182

les problemes que cette these traite conjointement a un condensé des contributions scien-

tifiques qui y répondent.

B.1 Information-Centric Networking

Les réseaux-centrés sur I’Infornation visent a repenser 1’Internet afin de le mettre en
adéquation avec ses défis actuels et futurs. Introduit par [Jacobson et al., 2009b], ce
nouveau paradigme propose le passage au niveau de la couche réseau, d’un modele de

communication orienté machines a une schéma centrés sur des contenus nommés.

Ce travail séminal reconnait qu’il y a plusieurs décennies, les réseaux visaient a
partager des ressources aussi rares que cheres telles que des lecteurs rapides de bandes ou
des supercalculateurs. A cette époque, insérer des adresses-machine source et destination
dans les paquets afin d’indiquer au réseau vers oiut les transférer faisait sens. Le but des
réseaux a significativement changé depuis, ceci di a la démocratisation de la puissance
de calcul et des larges capacités de stockage. De nos jours I’Internet sert majoritairement
a transporter des contenus/informations et pour ce faire, nécessite qu’on lui indique quoi

fournir.

Alors que le World Wide Web, les réseaux pair- a-pair (P2P) et les réseaux de diffusion
de contenus (CDNs) ont introduit la diffusion de données nommées a travers 1’Internet,
I’originalité d’ICN réside dans son ubiquité. ICN peut a la fois etre exécuté comme un
réseau overlay comme ses prédécesseurs ou comme un protocole de couche 3 capable de

remplacer IP partout ou IP régne aujourd’hui.

La communauté scientifique tablant sur ICN est persuadé que de réinventer 1’ Internet
de la sorte devrait intrinsequement en améliorer la sécurité , le passage a 1’échelle et la

robustesse.

Parmi les architectures ayant adopté cette approche, on compte Data-Oriented Net-
work Architecture (DONA) [Koponen et al., 2007] et Network of Information (NetInf)
[Ahlgren and al., 2008]. Elles différent des deux architectures les plus adoptées, CCN
and NDN, par le fait qu’elles reposent sur un modele de type publier-souscrire dans un ar-
bre de Resolution Handlers de confiance (DONA) ou dans une table de hachage distribuée
(NetInf).

183

B.1.1 Content-Centric / Named-Data Networking

Content-Centric Networking (CCN) [Jacobson et al., 2009b] et Named-Data Networking
(NDN) [Zhang and al., 2010; Zhang et al., 2014] sont deux architectures majeures et tres
similaires de réseaux centrés sur I’information. NDN commenca en tant que branche du
code de CCN, CCNx, avant d’étre entierement redéveloppé. En revanche, d’un point de
vue architectural, CCN et NDN n’ont pas divergé. Dans les deux architectures, chaque
morceau de contenus est identifié par un nom unique, requis via des paquets dits Intéréts
et rapportés encapsulés dans des paquets de Données, a travers des (inter)faces. Parce
que chaque paquet encapsule aussi son nom, il peut €tre persisté a chaque saut dans un

Content Store, un cache, et livré du noeud local a tous ceux qui I’on requis.

B.1.2 Fonctionnement de NDN

Comme dépeint par Fig.1.1, a chaque noeud traversé, NDN/CCN conserve dans une struc-
ture de données nommée Pending Interest Table (PIT), une trace des faces d’ou provient
I’intérét, I’instant de son passage et le nom du contenu souhaité.

Si un morceau de contenu est trouvé dans le Content Store, il s’agit d’'un éveénement
nommé hit. La donnée est alors acheminée en utilisant les informations d’états contenus
dans I’entrée du PIT correspondante.

Par contre, si le morceau de contenu n’est pas trouvé dans le Content Store, il s’agit
d’un évenement miss. Des lors, le plus long préfixe incluant le nom du contenu est recher-
ché dans la Forwarding Information Base (FIB) du noeud. La FIB est remplie par un
protocole de routage orienté nom et renvoie, pour chaque préfixe routable, les faces de
sortie pour les morceaux de contenus manquants.

Ensuite, I’intérét est transmis selon la stratégie de diffusion configurée qui peut-Etre
par exemple, Meilleure route, diffusion large, équilibrage de charge (LB), équilibrage de
charge (LB) avec transmission persistante, que nous analysons dans cette these.

Lorsque le paquet de données correspondant revient, il est pris en charge pas un al-
gorithme de gestion de cache tel que LAC+ que nous proposons dans ce document. Fi-
nalement, ce paquet est renvoyé aux clients et I’entrée correspondante est supprimée de
la PIT.

Du fait de leur importance, de leurs fondamentaux communs et opérations globale-

ment identiques, NDN et CCN sont désignés par NDN dans ce document afin d’étre bref.

184

B.1.3 Transmission dans NDN

Un routeur IP n’a de visibilité ni sur la fenétre de controle de flux du receveur, ni sur la
fenétre de controle de congestion de 1’émetteur. Il ne peut donc influer sur les sessions

TCP en cours, qui sont congues pour étre de bout-en-bout.

La spécificité du plan de données NDN est qu’il n’est pas sans état. Les PIT enreg-

istrent, saut apres saut les intéréts non satisfaits et les faces d’ou ils proviennent.

Chaque paquet de données suit le chemin inverse de celui de 1’intérét correspondant.
Puisque un nonce identifie de maniere unique les intéréts portant sur les mémes morceaux

de contenus, la PIT peut détecter et éliminer ceux d’entre eux qui bouclent.

Etant donné ces qualités architecturales, chaque noeud NDN met & disposition un ou
plusieurs algorithmes de transmission au sein de ce qu’il convient de nommer sa couche

stratégie.

Essentiellement deux types d’algorithmes operent au niveau de cette couche: les
contrdleurs coté récepteur, souvent de type Incrément augmentation-retrait multiplicatif
(AIMD); et les régulateurs d’intéréts saut-par-saut ou, lorsque de multiples interfaces de
sortie existent pour un préfixe donné: équilibreurs de charge, diffuseurs ou sélecteurs du

meilleur chemin.

Le but d’un contrdleur coté récepteur est d’utiliser toute la capacité disponible grace
a une fenétre de congestion globale; Il peut étre complété par de la gestion active de
file afin d’anticiper toute pénurie de capacité et décrémenter la fenétre de congestion en
conséquence. Cette fenétre de congestion sera décrémentée avec une probabilité propor-

tionnelle au temps d’aller-retour lissé [Carofiglio et al., 2013c].

Grace a une symétrie parfaite entre paquet Intérét et paquet de Données, le controle de
flux et de congestion sont réalisables a chaque saut par le biais de la régulation d’intéréts.
La régulation d’intéréts saut-par-saut présente I’avantage d’une prise de décision rapide et
répartie en présence de trafic irrégulier [Carofiglio et al., 2012; Wang et al., 2013b]. Il est
par ailleurs intéressant de noter que la mise en tampon des intéréts prend bien moins de
place que celle des paquets de données. En outre, le support natif du multi-chemin dans
NDN autorise I’équilibrage de charge a travers plusieurs interfaces de sorties. De plus, il
permet de choisir entre différents chemins lorsque surviennent congestions ou coupures
de lien [Carofiglio et al., 2013c].

185

B.1.4 Caching in NDN

[Imbrenda et al., 2014] a démontré grace a des captures de trafic réel que des caches de
taille négligeable (100Mo), placés chez I’usager pouvait réduire la charge de 25% dans
les réseaux d’acces fibre. Il a par ailleurs montré que placer des caches de 100Go en aval
d’un lien de backhaul pouvait décharger de 35% ledit lien. Parfois remis en cause, 1’usage
de caches dans le réseaux, en travers des chemins, se voit ainsi conforté dans sa légitimité.
Ce travail établit qu’il n’est aucunement nécessaire de déployer toute la mémoire cache
en bordure du réseau, comme le suggérait pourtant [Fayazbakhsh et al., 2013; Garcia-
Luna-Aceves et al., 2014] qui arguait I'insuffisante redondance dans le trafic émanant de

chaque usager.

Lapproche multi-niveau que constitue la mise en cache en travers des chemins com-
bine I’exploitation de la redondance au sein du trafic généré par chaque usager, avec celle

de plusieurs usagers et groupe d’usagers.

Du point de vue architectural, NDN correspond a ce que [Paschos et al., 2016] prévoit
pour les réseaux sans fil de prochaine génération, préconisant la pénétration de CDN dans
le réseau RAN (Radio Access Network), couvrant les périphériques mobiles et les stations

de base, pour exploiter toute forme de redondance du trafic.

Par conséquent, alors que les routeurs IP sont incapables de servir des paquets en
tampon a toute autre session, les paquets mis en cache dans NDN sont entierement réu-
tilisables car ils sont nommés de maniere unique. Il est prévu que chaque n?ud NDN
contiennent un cache. En cela, les caches font partie intégrante de 1’architecture. Méme
si les caches sont censés étre beaucoup plus grands que les tampons de paquets des rou-
teurs d’aujourd’hui, ils restent néanmoins finis. Un algorithme de gestion de cache doit
décider des objets a conserver et de ceux a expulser. Sont souvent évoqués : Premier
arrivé- Premier servi (FIFO), expulse le moins utilisé (LFU) ou diverses améliorations a
la politique LRU visant a expulser le moins récemment utilisé (p -LRU, LRU + LCD)
[Laoutaris et al., 2004].

Les performances d’un réseau de données nommées (NDN) dépendent clairement de

la politique de gestion de cache choisie. Nous décrivons ci-apres quelques-unes.

186

L’algorithme Least Frequently Used

LFU consiste a expulser 1’objet qui a enregistré le moins de téléchargements lors de la
derniere fenétre de temps. De cette facon, seuls les objets les plus populaires de cette
période demeurent en cache. En supposant la distribution de popularité stationnaire,
c’est-a-dire que la popularité du contenu ne change pas avec le temps, LFU est parmi
les politiques les plus efficaces pour ce qui est de la réduction de la charge. Cependant, il

souffre de deux faiblesses:

(i) L’insensibilité a ’état du réseau. LFU gere tous les contenus uniquement
en fonction de leur popularité locale. Il ignore simplement le véritable but de la mise en

cache, qui est I’amélioration de la qualité d’expérience de I’utilisateur (QoE).

(ii) Réaction tardive aux variations de popularité. LFU doit recueillir des
statistiques pendant un délai relativement long s’il entend prendre en compte tous les con-
tenus de popularité significative. Pour cette raison, il fonctionne parfaitement lorsqu’il
existe une distribution de popularité de contenu stationnaire. Dans ce cas, la moyenne
a long terme du ratio de téléchargement d’un contenu donné est la probabilité qu’un
téléchargement quelconque le transmette. Cette derniere condition caractérise le modele
de référence indépendant (IRM) pour I’analyse de la performance du cache, nous utilisons
dans nos travaux. Dans le cadre strict de I’hypothese IRM, LFU est I’algorithme optimal
[Martina et al., 2013]. Cependant, les modeles a bruit de tir (SNM) [Leonardi and Torrisi,
2015; Olmos et al., 2015] dans lesquels les objets sont publiés puis périssent offrent des
alternatives plus réalistes mais moins calculables qui elles, ne favorisent pas LFU.

Nous proposons de remédier a ces deux faiblesses grace a la politique Latence-Aware

Caching+ (LAC+) que nous présentons dans la section suivante.

L’algorithme First-In-First-Out

Selon FIFO, le contenu le plus ancien dans le cache est le premier évacué. Requérir un
objet et le trouver dans le cache (qualifié d’événement succes ou hit) ne change rien a son
sort car il laisse le cache non modifié. Un tel fonctionnement n’exploite pas pleinement
la popularité des contenus, car le cache n’a aucun moyen de marquer des objets sollicités

en modifiant leur état en conséquence. Cependant, il convient de noter que le taux de

187

hits d’un contenu dans un cache FIFO reflete toujours la popularité de ce contenu. Les
objets populaires ont un taux d’acces bien plus élevé en raison du ralentissement de la
dynamique d’éviction due a des hits plus fréquents et a une insertion plus fréquente apres
les événements de type miss (qui sont le contraire des hits).

Un cache FIFO est souvent implémenté par une file d’attente: chaque nouvelle in-
sertion décale les objets déja présents d’une place en direction de la sortie du cache. Sa
simplicité en fait la politique de gestion de cache par défaut dans NDN. De plus, du point
de vue ingénierie, la recherche de morceaux de contenus possede une complexité moindre
dans les files d’attente orientées en morceaux; ceci grace a une moindre fragmentation du
cache. En effet, par dela les retransmissions de paquets, les morceaux d’un méme contenu

restent contigué dans le cache.

L’algorithme Least Recently Used

La politique LRU expulse 1’objet dont le dernier acces est le plus ancien. Une implémen-
tation simple de cette politique consiste a déplacer un objet trouvé dans un cache FIFO,
a I’avant de ce dernier. Cette implémentation est nommée algorithme Move-To-Front
(MTF) [Starobinski and Tse, 2001]. Le mécanisme MTF possede un meilleur taux de hits
que FIFO grace a un échantillonnage de popularité plus efficace. Les objets les plus pop-
ulaires ont tendance a rester plus longtemps dans les caches LRU en raison d’une sorte de
ré-initialisation de leur temps-de-vie (TTL), propriété identifiée par [Choungmo Fofack
et al., 2012]. L’adaptation sans heurts de LRU aux changements de popularité et sa sim-
plicité en font une alternative beaucoup plus réaliste a LFU, expliquant en quelque sorte
pourquoi il a été fréquemment €étudié [Jelenkovi¢ and Kang, 2008; Fricker et al., 2012;
Leonardi and Torrisi, 2015]. Le principal inconvénient de LRU reste son plus bas taux
de hits, asymptotiquement e¢” ~ 1,78 fois loin de LFU, ou y est la constante d’Euler.
[Jelenkovié, 1999].

L’algorithme LRU avec insertion aléatoirement d’une copie (p-LRU)

Considérons un cache LRU et choisissons, au lieu de toujours insérer chaque objet nou-
vellement téléchargé apres un événement Miss, de le faire avec une probabilité fixe p.
Cette description est celle de la politique p-LRU. Aussi surprenant que cela puisse paraitre,

ce faisant, volontairement en appliquant cette insertion stochastique a I’aide d’un généra-

188

teur de nombres pseudo-aléatoires (PRNG), ou en raison d’une corruption involontaire
de données [Bianchi et al., 2013], augmente le taux de hits du cache. En fait, plus p se
rapproche de zéro, plus proche p-LRU est d’un systéme LFU [Martina et al., 2013]. C’est
un résultat important qui a présidé a la 1’élaboration de nos algorithmes LAC et LAC+.
Toutefois, lorsque p tend vers zéro, de moins en moins d’objets sont stockés. Raison
pour laquelle, p-LRU, p — 0 ne peut fonctionner que sous 1’hypothese d’une distribution

de popularité stationnaire.

B.2 Contributions

Ce travail de theése comporte 4 volets que nous introduisons ci-apres:

1. LAC/LAC+: Algorithmes de gestion de cache sensibles a la latence
2. FOCAL: Transmission et gestion de cache conjointes et sensibles a la latence
3. Equité dans les réseaux centrés sur I’information

4. AFFORD: Ask For Directions, routage basé sur 1’apprentissage automatique

B.3 LAC/LAC+: Algorithmes de gestion de cache

sensibles a la latence

Nous avons congu une famille de politiques aléatoires de gestion de cache exploitant la
latence des téléchargements lors de la mise en cache. Cette latence est le temps écoulé
entre I’envoi d’une requéte et la réception de sa réponse.

Les mécanismes de gestion de cache LAC et LAC+ [Carofiglio et al., 2015a,c] fonc-
tionnent comme il suit:

Chaque fois qu’un objet arrive du réseau, il est stocké dans le cache avec une faible
probabilité globale. Cette probabilité augmente considérablement lorsque le contenu
présente un temps de téléchargement (ou latence) exceptionnellement long. En tant que
tel, il s’agit de greffons au-dessus d’un cache LRU qui I’alimentent a une cadence régulée.
De cette fagon, ces algorithmes de mise en cache favorise implicitement les objets popu-

laires et laborieux a télécharger.

189

Le compromis sous-jacent a un tel mécanisme de mise en cache est de conjuguer une
taille de cache nécessairement limitée et la minimisation du temps de téléchargement.

Puisque les caches visent intrinsequement a réduire la distance dans le réseau et com-
battre la congestion, ils doivent prendre en compte la popularité des contenus et autres
facteurs de délais.

Une probabilité d’insertion globalement faible échantillonne des objets populaires
tandis que la latence de récupération des données est une métrique simple, localement
mesurable et cohérente révélant distance parcourue par lesdites données ou congestion.

Le champs d’application de nos politiques de gestion de cache sensibles a la latence
est large: Réseaux centrés sur I'information, centres de données, réseaux de distribution
de contenus (CDN), I’optimisation de serveurs multiprocesseur.

Pour finir, nous avons écrit deux implémentations C++ de LAC et LAC+, une pour le
simulateur CCN niveau paquets (CCNPL-Sim ?) et une autre pour le simulateur NDN basé
sur NS-3 (NDNSim) , qui par ailleurs partage du code avec le daemon de transmission
NDN (NFD)*.

Le chapitre 2 porte sur I’analyse et 1’évaluation des algorithmes LAC et LAC+.

B.3.1 Description

Dans ce travail, nous analysons deux algorithmes distribués, LAC [Carofiglio et al., 2015c¢]
et LAC+ [Carofiglio et al., 2015b], qui visent a minimiser le délai de téléchargement
moyen dans les réseaux centrés sur I’information, et ce sans coordination entre les caches
et sans de colts de signalisation. Notez qu’une mesure fine de la latence est disponible
en ICN car les requétes transmises a travers une interface trouvent réponse a travers cette
méme interface. A 1’échelle du réseau, ceci permet un routage symétrique et la mesure de
la latence induite par le réseau en amont.

Les deux algorithmes fonctionnent de la maniére suivante: Lorsqu’un client sollicite
a Uinstant t un objet de rang k, k € K, si cet objet se trouve dans un cache le long du
chemin et il est retourné au demandeur, ou ce cache le téléchargera, le conservera avec
une probabilité py (1) ou pas, avec une probabilité de 1 — py(t) et finalement enverra cet

objet au demandeur. Nous appelons probabilité de décision py.

Snttp://systemx.enst.fr/ccnpl-sim.html
nttp://named-data.net/doc/NFD/current/

190

http://systemx.enst.fr/ccnpl-sim.html
http://named-data.net/doc/NFD/current/

Pour LAC, la probabilité d’insertion d’un objet de rang k dans le cache a I’instant ¢

B
pir(t) = min (6?((;))7 ,1)) (B.1)

est:

Pour LACH+, la probabilité de décision p;’ (¢) combine deux termes:

pic (t) = pe(t) + (1 — pi(1))Ok(t) (B.2)

ol T (t) est la latence du contenu de rang k monitorée jusqu’a I'instant ¢ et Ty (¢), T(¢)
sont respectivement la moyenne pour le contenu de rang k au cours du temps et pour
tous les contenus mis en cache, calculée jusqu’a I’instant ¢. Les moyennes sont glissantes
(filtre EMA). Nous avons obtenu des résultats satisfaisants en configurant dans le filtre un
poids pour les valeurs passées de 0.9

€ est un tres petit réel. 5 et v sont des parametres d’intensité utilisés par LAC afin
de creuser I’écart en probabilité entre téléchargements de grande et de petite latence. Les
objets présentant une petite grande latence sont téléchargés plus tot. Les objets a latence
négligeable obtiennent une tres petite probabilité de décision mais seront éventuellement
conservés s’ils sont populaires.

Pour LAC+, puisqu’il posséde une fonction de capture des aberrations (outliers) Oy (+),
£ and ~ sont habituellement fixés a 1.

Soient /i, et o, 1a moyenne et 1’écart-type de tous les T;(¢), Vi € K, 2 un noeud donné.

Nous définissons le 2** quantile comme il suit:

Q.(t) = py + 204 (B.3)

Ceci permet d’expliciter le second terme de p;. ©(¢) est un indicateur quantitatif a
I’instant ¢ du fait qu’un objet de rang k£ object est une aberration du point de vue des

latences moyennes:

(L h-Q
Oult) = (supie,c{Ti<t>} Q.0 O) | (B4

(z = 1) semble étre une valeur raisonnable nous ayant donné satisfaction.
Pour résumer, LAC+ capture les objets les plus populaires échantillonnés par le pre-

mier terme de p; (t) ou les aberrations grdce au second terme de p;’ (t).

191

B.3.2 Analyse

La dynamique du systeme réseau est complexe a capturer en un modele simple en raison
du couplage étroit entre la performance de téléchargement et fonction de mise en cache:
la premiere est clairement affectée par les conditions du réseau, tandis que la charge
réseau découle des performances des caches et vice versa. C’est pourquoi nous nous
sommes concentrés sur le cas d’un cache unique en développant analytiquement certaines
limites de performance exprimées en termes de taux de miss. Brievement nous démon-
trons que les approches asymétrique comme LAC et LAC+ surpassent les mécanismes
précédemment connus, typiquement Starobinski-Tse-Jelenkovié-Radovanovi¢’s (STIR).
LAC et LAC+ sont du genre asym -LRU par opposition aux systemes ou les opérations
d’insertion / remplacement sont soumises symétriquement a la méme probabilité (sym
-LRU). LCP est un cas particulier de mécanisme asymétrique ot I’insertion dans le cache
est déterminée par une probabilité constante p. Se reporter au tableau B.1 pour la notation
utilisée tout au long de cette section. Les variables pourraient étre plus tard libellée avec

I’algorithme courant en indice.

t Instant de réception d’un objet.

T Capacité du cache local en nombre d’objets

T Seuil temporel caractéristique pour remplir un cache de capacité z.

A Taux de requéte total.

A Taux de requéte pour l'objet de rang k, k € K.

qr Popularité de Uobjet de rang k. qx = A/

Pk,r Probabilité de réception d’au moins une requéte pour ’objet de rang k pendant 7 secondes.
M;, Taux de miss asymptotique de 1'objet de rang k.

{VRTTg+}:>0 || Processus stochastique modélisant la latence de téléchargement de l'objet de rang k.
{Prt}e>0 Processus de la probabilité de mise en cache de 'objet de rang k.

P Probabilité de mise en cache aléatoire telle que p 4 Dk,t, Vk,t sous hypothese i.i.d.
{Tkt}t>0 Processus de la probabilité de miss de I'objet de rang k.

{M.1}i>0 Processus de comptage des miss de ’objet de rang k.

Il est censé augmenter tous les 1/my, cycles avec my, = IE[my ¢].

Table B.1 — Notation.

Hypotheses

Considérons un petit nombre d’hypotheses permettant, au demeurant, d’obtenir un mod-

¢le simple et résoluble.

192

e Distribution de popularité Zipf: Nous supposons que la popularité d’un objet suit
une loi de Zipf généralisée. Ainsi Vk € K, ¢ = ck™® avec 1/c =) i * and
le parametre d’asymétrie o > (. Cette hypothese est largement répanéeulce dans la
littérature [Breslau et al., 1999; Mitra et al., 2011].

® Requétes poissoniennes : Nous supposons que les clients demandent des objets
selon un processus de Poisson d’intensité A > (, de maniere similaire a [Carofiglio
et al., 2013b; Badov et al., 2014].

e Modele de Référence Indépendant La corrélation temporelle entre les demandes
d’objet est négligé ici comme dans [Starobinski and Tse, 2001] et [Fricker et al.,

2012]. 11 est néanmoins prévu pour les extensions futures de ce travail.

e LRU: Nous nous concentrons sur la politique de remplacement LRU car largement
adopté et dont la mise en ?uvre la plus courante consiste a déplacer 1’objet le plus
récemment servi a I’avant d’une liste. Cela permet d’étudier 1’algorithme Move-
To-Front en tant que LRU. [Jelenkovi¢ and Radovanovié, 2004].

e Same object size: Par souci de simplicité, nous supposons que tous les objets
récupérés ont la méme taille comme dans [Che et al., 2006]. Le modele pourra

étre amélioré plus tard et incorporer des objets de taille variable.

e VRTT;,, vVt > 0 sont strictement positifs, indépendants et identiquement distribués
(ii.d.).

e pi: €]0,1],Vk,t > 0 sont aussi i.i.d. Par conséquent Jp 2 Pi.t €t T ¢, VT sont aussi
.i.d..

e [’approximation par temps caractéristique (dite de “Che”) [Che et al., 2006] comme
étendue par [Fricker et al., 2012] est un outil essentiel de ce travail. 1I stipule que
dans les caches LRU, le temps avant expulsion de tout objet est correctement ap-

proximé par une constante unique 7.

Taux de miss

Soit 7, la probabilité de miss de 1’objet de rang k a I'instant ¢ et ¢y, ; la probabilité de

recevoir au moins une requéte concernant un objet de rang k£ pendant 7 secondes.

193

Proposition B.1. 57 nous nous restreignons a un ensemble dénombrable de prob-
abilités de mise en cache, et en supposant que l’approximation de Che prévaut, le
ratio de miss M;*"™ d’algorithmes asymétriques tels que LAC et LAC+, pour l'objet
de rang k est:

1— Pk,
M —NT Pl =y e B.5
e D e ey ()
T, being the root of Z(l — M) = x. (B.6)
kek
Proof. Voir 2.4.2]

Notons que ¢y ., = 1 — e "™ sous arrivée poissonienne d’objets.
Prendre en compte toutes les valeurs de p dans Eq.(B.6) n’est pas aisément résoluble
numériquement. La proposition suivante montre que toutes les valeurs de p peuvent Etre

efficacement remplacées par leur espérance.

Proposition B.2. En supposant des arrivées de requétes poissoniennes, le ratio de
miss d’un cache M;*™ est correctement approximé en utilisant l'espérance IE[p] de
la probabilité de mise en cache p quand IE[p] tend vers zéro ou lorsque la popularité

de l’objet tend vers zéro ou encore si le cache est tres large:

MESY™ 1— Pk, 7z
k

T 11— (1 - Ep)) (B-7)

Ce résultat est important car il établit des conditions réalisables pour I’équivalence
asymptotique entre 1’utilisation d’une probabilité de mise en cache variable p et ’'usage
de son espérance p = E[p].

Cependant, I’inconvénient opérationnel d’un p constant et petit est qu’il remplace
considérablement le moment ou les objets populaires sont stockés dans le cache pour la

premicre fois. LCP, par exemple, en souffre parce que le moment d’insertion dans le
L
AkD
converge lentement. LAC+ apporte une solution pour varier de maniere adéquate p afin

cache est prévu a —~=. Par conséquent, Le temps moyen de téléchargement d’un objet

de mettre en cache les objets les plus coliteux au plus tot.

Proof. Voir 2.2 O

194

Borne inférieure

Fournir une approximation sous forme close du taux de miss de asym-LRU et son temps
caractéristique 7o°Y™ est difficile. Au lieu de cela, nous démontrons sa supériorité par
rapport au mécanisme sym-LRU analytiquement tractable. Moyennant une certaine perte
de généralité, o, I’exposant de la loi Zipf, également appelé son parametre d’asymétrie,
est supposé strictement supérieur a 1.

Dans le mécanisme symétrique sym-LRU, les regles MTF sont conditionnées par la
méme probabilité dans les deux cas hit et miss. En revanche, dans asym-LRU la décision

MTF est conditionnée par une probabilité uniquement en cas de miss.

Proposition B.3. Supposons que les VRT Ty, Vk,t sont i.i.d., un large catalogue et
un large cache, la probabilité de miss stationnaire des algorithmes LRU symétriques,

pour tout objet de rang k, est approrimée par:

sym x
Mky = eXp {—m} s (BS)

ou I'(+) est la fonction Gamma.
Proof. Voir 2.4 [

I’expression en forme close de la Proposition 2.3 est intrinsequement la méme que

celle de LRU dans [Carofiglio et al., 2013b]. Cette observation induit le corolaire suivant.

Corollary B.3.1. En supposant que les VRT Ty, Vk,t sont i.i.d.,

sym __ LRU
M7 = M,

i.e., sym-LRU se comporte en régime stationnaire comme LRU.

Il en découle que asym-LRU surpasse sym-LRU grace a sa convergence vers la poli-
tique de gestion de cache Least Frequently Used [Martina et al., 2013]. On en déduit la
Proposition 2.4, laquelle procede de la notion de conservation e-permanent , a notion que

nous introduisons ci-dessous.

Definition B.1. Un objet est dit e-permanemment conservé si son taux de miss est

inférieur a un petit réel noté e.

195

b '(j i 6_
Dans ce contexte, notons 7,,echanism 1€ Nombre d’objets populaires ermanemment

conservés grace a un mécanisme de mise en cache,

Proposition B.4. Lorsque [’espérance de la probabilité de mise en cache tend vers
zéro, asym-LRU héberge e- permanemment un nombre plus important d’objets pop-

ulaires que sym-LRU i.e.,

nasym Z nsym

Proof. Voir 2.4. O]

Notons L Aasym 1’algorithme LRU équipé d’un mécanisme stochastique et asymétrique
de mise en cache sensible a la latence (LAC et LAC+) et notons L Asym I’algorithme LRU
modifié pour le MTF stochastique et symétrique sensible a la latence (STJR).

Corollary B.4.1. Lorsque l’espérance de la probabilité de mise en cache tend vers

zéro,
dk > 1: TILAasym > RTLAsym - (Bg)

Cela signifie généralement que la performance des caches LRU équipés de LAC ou
de LAC+ peut dépasser d’un facteur x donné celle de sym-LRU, donc de LRU étudiée
analytiquement et largement dans les travaux précédents [Carofiglio et al., 2013b]. De
nombreuses simulations soutiennent ces résultats mathématiques, ot souvent x > 2 et

d’ol découle une réduction drastique de la durée de téléchargement de contenus.

B.4 FOCAL: Transmission and gestion de cache

conjointes et sensibles a la latence

La gestion de cache doit €tre soutenue par une stratégie de transfert de paquets appro-
priée [Rossini and Rossi, 2014; Dehghan et al., 2015] car la performance du premier est
pilotée par le processus d’arrivée de la demande, duquel le second est responsable. En
méme temps, le trafic a transmettre est le trafic miss du cache local. De cette observa-
tion, il apparait clairement que la gestion de cache et le transfert doivent étre optimisés

conjointement.

196

C’est le but de FOCAL [Carofiglio et al., 2015b, 2016]. Il combine 1’algorithme
de gestion de caches LAC+, alimentées par une nouvelle stratégie de transfert LB-Perf
qui dirige constamment les objets les plus populaires a travers les mémes interfaces,
en s’ assurant régulierement ces dernieres peuvent se le permettre, tout en équilibrant la
charge du reste du trafic .

Le chapitre 3 présente FOCAL. Nous y montrons comment FOCAL est déduit de la
solution optimale d’un probleme de minimisation de la latence. De plus, nous analysons
la stabilité de FOCAL, évaluons en profondeur son implémentation au sein de CCNPL-
Sim en C++ sur diverses topologies de réseau et analysons sa sensibilité a différents

parametres.

B.4.1 Algorithmes de gestion de caches sensibles a la latence

Leffet conjoint de la mise en cache et de le transfert de paquets sensibles a la latence,
repose sur un nouveau mécanisme de mise en cache stochastique, exploitant des infor-
mations de latence. Ce mécanisme ne requiert aucune coordination explicites entre les
caches. Cette nouvelle politique de mise en cache sensible a la latence est appelée LAC+
et s’appuie sur la proposition de LAC dans [Carofiglio et al., 2015¢] que nous avons
résumé précédemment. L’ innovation qu’apporte LAC+ par rapport a LAC consiste a ren-
forcer la dépendance a la latence dans les décisions probabilistes de mise en cache, sur
la base d’une surveillance et d’une estimation en ligne du moment de second ordre de la

distribution de la latence.

B.4.2 Stratégies de transmission sensibles a la latence

La réduction de la latence peut €galement €tre obtenue grace a des stratégies de trans-
fert de requétes de type saut-par-saut visant a minimiser i) distance au premier cache ou
le I’évenement hit se produit, ii) la congestion dans le réseau. Dans cette optique, la
présence de multiples chemins est clairement essentielle. En utilisant comme base de
comparaison I’approche transfert aléatoire uniforme qui sélectionne a I’aveugle avec des
interfaces de sortie de probabilité égales dans le FIB, nous ciblons la famille d’approches
d’équilibrage de charge dynamiques et distribuées dont I’ objectif est d’orienter les deman-

des de contenus dans le temps et a travers les interfaces de sortie disponibles de maniere

197

a minimiser i) -ii) en moyenne. Dans [Carofiglio et al., 2013c], un schéma d’équilibrage
de charge est dérivé d’une optimisation conjointe du taux de transfert/contrdle de con-
gestion, et du transfert multi-chemin sous 1’objectif de minimiser la charge du lien le plus
chargé du réseau. La minimisation de la charge du lien le plus chargé implique une réduc-
tion significative de la latence moyenne globale telle qu’elle peut étre appréciée dans les
scenarii simulés. Ci-apres, nous nous référons a une telle approche simplement comme
Load Balancing (LB). LB sélectionne au hasard les interfaces de sortie disponibles par
entrée FIB selon les poids calculés. Au début, chaque interface a le méme poids égal a
un et le processus de transfert aléatoire est uniforme par rapport aux interfaces de sor-
tie disponibles. Cela permet de sonder toutes les interfaces disponibles et de surveiller le
nombre moyen d’intéréts en attente (PI) par entrée FIB et par interface. Une telle métrique
reflete la latence résiduelle due a la distance au premier cache, ainsi que le niveau de con-
gestion. Apres cette phase initiale, le calcul des poids pilotant la sélection de 1’interface
de sortie consiste simplement a prendre le nombre moyen de PI par entrée FIB et par
interface de sortie normalisée au nombre moyen total de PI par entrée FIB (de sorte que
les poids soient compris entre O et 1). Idéalement, LB fonctionne sur les entrées FIB par
contenu permettant un assez fin équilibrage de charge a I’échelle des flux. Cependant, une
approximation faisable qui restreint le nombre d’états a maintenir dans le FIB remplace
les entrées par contenu par des entrées par préfixe regroupant ainsi tous les noms de con-
tenu derriere le méme préfixe (la recherche FIB est supposée €tre celle du préfixe le plus
long abrégé LPM). Notez que dans nos simulations, nous adoptons une approche LB par

contenu avec I’objectif de quantifier ses meilleures performances atteignables.

LB peut améliorer significativement le débit / 1a latence globale percue par I’ utilisateur
final, en comparaison avec au transfert aléatoire uniforme grace a I’utilisation informée
par la charge, de plusieurs routes par le téléchargement. Cependant, il n’est pas capable
de réaliser une coordination implicite des caches le long de différents routes, en raison de
sa répartition aléatoire pondérée, qui répartit les Intéréts pour le méme contenu sur toutes
les interfaces de sortie en fonction des poids. Pour comprendre ce probleme, considérons
le cas de trois interfaces de sortie disponibles pour un contenu donné £ avec les poids
associés, wy, wa, ws. A chaque demande de contenu £, LB divise le processus d’arrivée
d’intérét au fil du temps en trois processus de sortie, avec un taux de w;, wq, w3 par rapport
au total, sans sélectionner la méme interface de sortie pour une demande de morceaux de

contenu donnée. En conséquence, le processus d’arrivée dans les caches le long des trois

198

Ingress

flow k1

flow kn

1 .
kn load balanced Wi X EWMA(pending;) .

\
A+

Figure B.1 — L’algorithme de sélection d’interfaces: équilibrage de charge avec sélec-
tion persistante d’interface pour les contenus les plus populaires.

chemins a les mémes caractéristiques que 1’original (a I’exception du taux), ce qui conduit

les caches a fonctionner indépendamment et a stocker les mémes objets.

Intuitivement, un tel comportement avantage les objets les plus populaires avec un
taux de hits élevé sur tous les chemins disponibles, mais réduit les performances globales
des caches en raison du manque de coordination entre eux. En revanche, la division des
Intéréts de maniere a persister la sélection d’une ou de quelques interfaces de sortie unique
au cours du temps pour chaque contenu (tout en conservant 1’équilibrage de charge par
préfixe en fonction des poids LB) différencierait le processus d’arrivée dans les caches le
long des trois chemins de I’exemple précédent, donc réaliserait une coordination implicite
des caches, conduisant a de meilleures performances globales. Cette idée, basée sur la
Proposition 3.1, la Proposition 3.2 et le Corollaire 3.2.1, inspire notre proposition d’un
schéma d’équilibrage de charge amélioré, que nous nommons LB- Perf (équilibrage de

charge avec un transfert permanent).

199

Algorithm 7: Les contenus les plus populaires sont échantillonnés dans Pop-
ularFiles. Puis des faisceaux de flux sont créés, un par entrée FIB, en fonction
du volume d’intérét observé. Ensuite, on leur associe les interfaces qui les
transféreront en mode persistant

At update time (every AT);

Faces are ranked every AT}y > AT

T+ T+ AT ;

IsPersistentDisabled = FALSE;

foreach FileName in PopularFiles do

prefix <— GetFIBPrefix(FileName) ;

OuputFaces < GetOutputFaces(prefix) ;

FlowBundle < GetFlowBundle(prefix) ;

Face <~ OuputFaces.Begin();

Sort(FlowBundle by InterestCounter) ;

if (T > ATy)then

Sort(FaceRecord by weight) ;

T+ 0;

end

CumSum <« 0 ;

foreach (FlowRecord in FlowBundle) do

CumSum ¢+ CumSum + FlowRecord.Popularity() ;

while (Face # OuputFaces.End()) do

if (CumSum < Face.weight) then
FlowRecord.SetFace(Face);

break ;

else

CumSum «+ CumSum + FlowRecord.Popularity() ;

Face < OuputFaces.Next();

end

end

end
end

200

Algorithm 8: Sélection persistante d’interface de sortie basée sur la popularité
des contenus.

At Interest I arrival with name /p/file_name/chunk_name ;
I matches name prefix /p in the FIB ;
OuputFaces < GetOutputFaces(prefix = /p) ;
if (IsPersistentDisabled) then
LoadBalancing. Update(OuputFaces.weights) ;
FacelD < LoadBalancing.SelectFrom(OuputFaces) ;
else
PopularitySampler.Insert(I) ;
if (PopularitySampler.Find(FileName(I))) then

‘ PopularFiles.ManageHit(I) ;
end
if (PopularFiles.IsPopular(FileName(I))) then
FlowRecord < FlowBundle.Find(FileName(I)) ;
FlowRecord.Interest Counter++ ;
FlowBundle.Norm—++ ;
FacelD < FlowRecord.GetFace() ;
if (FacelD isEmpty) then

‘ FacelD < LoadBalancing.GetFace(OuputFaces) ;
end

else
‘ FacelD < LoadBalancing.GetFace(OuputFaces) ;
end
end
DoSendInterest (I, FaceID) ;

function ManageHit (Interest = I)

prefix <— GetFIBPrefix(FileName(I)) ;

FlowBundle < GetFlowBundle(prefix) ;

if PopularitySampler.IsPopular(Filename(I)) then
FlowRecord <+ FlowBundle.Find(FileName(I)) ;
if FlowRecord isEmpty then

FlowBundle.Insert(FileName(I)) ;

end

end

end

201

Dans une premiere phase, LB-Perf calcule les poids par préfixe a associer aux inter-
faces de sortie disponibles comme dans le cas de LB. FOCAL est également équipé d’un
échantillonneur de popularité qui identifie en régulierement les objets les plus populaires
et stocke leur nom localement. La méthode d’estimation de popularité a la volée est hors-
de-portée de cette these, bien que dans nos simulations, nous ayons utilisé un filtre k-LRU
[Martina et al., 2013]. Dans nos simulations, nous définissons pour chaque sous-cache du
k-LRU une capacité de 50 objets (dans le premier scénario simple) ou a 160 (dans les
autres scénarii). Les objets trouvés dans le dernier sous-cache sont considérés d’une pop-
ularité élevée et tous leurs morceaux sont alors comptabilisés afin d’estimer la taille du

flux correspondant.

Par essence, 1’estimation de la taille des flux est volatil. Pour le stabiliser, nous sup-
posons que les tailles de flux normalisées suivent une loi de puissance inconnue. Pour
inférer les parametres de cette loi, nous calculons le logarithme des tailles de flux normal-

isées et ajustons le modele linéaire obtenu en utilisant les moindres carrés ordinaires.

Pour une mise en oeuvre plus générale de notre mécanisme, nous ne suggérons pas
d’utiliser k-LRU qui, tout en étant implémenté, exige que k soit tres grand lorsque la pop-
ularité est mesurée en termes de trafic observé et non en termes de nombre de demandes
de contenu. Cependant, une demande de contenu (objet ou fichier) est difficile a identifier
dans la pratique, car différents clients peuvent demander le méme objet en utilisant des

permutations distinctes des numéros de séquence des morceaux de contenus.

Pour un préfixe donné, les contenus les plus populaires sont regroupés en faisceaux de
flux comme indiqué dans Algorithme 7. Chaque faisceau contient des éléments avec une
popularité consécutive jusqu’a la taille relative de I’interface qui les acheminera, d’ou le
fait que la taille de chaque faisceau dépende du poids de I’interface, comme indiqué dans
Algorithme 7. Ainsi, pour des éléments plus populaires, une seule interface de sortie est
toujours sélectionnée en commengant par les interfaces les moins congestionnées (avec
des poids plus élevés). Pour tous les autres éléments, la sélection des interfaces obéit
a la régle LB standard, voir Algorithme 8. Chaque AT secondes, les contenus les plus
populaires sont réassignés a des faisceaux de flux en fonction des poids des interfaces qui,

d’autre part, sont eux aussi mis a jour indépendamment.

202

B.5 Equité dans les réseaux centrés sur I’information

Nous avons étudié I’équité de 1’allocation du débit aux contenus lorsque les caches de-
viennent omniprésents dans un réseau [Bonald et al., 2017]. Etant donné que la mise en
cache des objets les plus populaires est I’approche suivie par nos propres algorithmes de
gestion de cache, une distorsion sévere de I’équité en serait-elle une conséquence que des
algorithmes de gestion de cache sont supposés résorber?

Il s’avere que s’assurer que les objets les plus populaires occupent les caches, comme
LFU I’organise, est le pendant gestion en cache d’une solution aux problemes de distribu-
tion de contenus « -équitable - I’ordonnancement équitable niveau contenus des paquets
en est le complément.

En d’autres termes, les politiques de gestion de cache n’ont pas besoin d’étre congues
pour 1’équité, comme 1’ont suggéré les travaux précédents. Ne se concentrant pas sur
le taux de hits du cache, mais sur 1’équité du débit, nous montrons que 1’ -équité
en ICN peut étre traitée de la méme maniere que dans les réseaux traditionnels, par

l’intermédiaire de I’ordonnancement des paquets.

B.5.1 Cache Network Model

D’abord, nous présentons un modele mathématique qui capture la dynamique de 1I’ensemble
du réseau. Le modele le considere comme un réseau de files d’attente ou les caches con-
tribuent a augmenter le taux de service. Nous visons a maximiser une fonction d’utilité
du trafic exogene admissible. Se référer au tableau B.2 pour la notation et a B.2 pour un

synoptique du modele utilisé ci-apres.

Hypotheses

e Les processus stochastiques { \g ,,.5(t) }o<t<7 en tant que taux exogene, { itx np(t) o<t<r
en tant que taux de service et {h,, (f) }o<:<r en tant que taux de hits sont indépen-
dant.

e e réseaux route un seul préfixe.

e Tous les objets ont la méme taille.

203

Figure B.2 — Réseaux transportant le contenu k a travers le cache n.

e La taille des caches n’est jamais nulle.

e Les serveurs de contenus ne sont pas eux-mémes des clients.

e Le trafic exogene a un noeud donné est celui généré par une application locale qui

n’est pas satisfait par le cache local.

e Nous supposons un contrdle de la congestion saut-par-saut c’est-a-dire que les in-

téréts sont envoy€s en moyenne a un taux équivalent au taux de service du lien.

Nous définissons une file d’attente d’intéréts (PIQ) comme le nombre d’intéréts en
attente par contenu et par face. Un intérét mis en file d’attente dans une PIQ est servi

lorsque le paquet de données correspondantes revient.

Soit Q) »(t) la taille de la file d’attente d’intéréts pour le contenu k a I’instant ¢ pour
le lien (n,b). h,x(t) = Lk in cache n ac ¢} indique si le contenu % a €té trouvé dans le cache

n a I’instant ¢. L’évolution au cours du temps de la taille de la PIQ du contenu £, pour les

204

n € N || Identifiant de noeud ICN. N/ C N.
t € Ry || Instant auquel un contenu est regu.
kek Rang du contenu en terme de popularité. k = 1 est celui du contenu le plus populaire,
tandis que |K| correspond & l'objet le moins populaire.
I'"(n) || Ensemble des noeuds d’entrée du noeud n.
I'"(n) | Ensemble des noeuds de sortie du noeud n.
Hk,nb Moyenne a long terme du taux de service pour le contenu k sur le lien (b, n)
An Moyenne a long terme du taux d’arrivée exogene des intéréts au noeud n.
Ak Moyenne a long terme du taux d’arrivée exogene des intéréts pour le contenu k au noeud n.
qr Popularité du contenu k. Il s’agit de la probabilité qu’un contenu lorsque requis
soit le contenu k. Elle est strictement ordonnée: qr41 < gi.
1.y Fonction indicatrice.
Ak Borne supérieure de la moyenne a long terme du taux d’arrivée exogene
des intéréts du contenu k au noeud n .
c(k) Ensemble des serveurs des contenus k.
R ke Taux de hits du contenu k au noeud n
Ch.n Capacité du lien (b,n) en morceaux de contenu/s.
Tn Capacité du cache n en nombre d’objets.

Table B.2 — Notation.

noeuds de sortie b € I'"(n), au noeud n est bornée supérieurement comme suit:

Qrnp(0) =0,¥b € T'*(n) and
d
> 2 Qras(t) < Auilt)

bel'* (n)
+ (1= Tar() D WQp >0} Hkan(t)
a€l’'—(n)
Z L4y 1 (6)>03 Htesn b (1) (B.10)
belt (n)

Le taux de service /i q(t) de la PIQ est le débit du contenu & sur le lien (b, a) a I'instant

t. Mk (t) = e (t) est le taux d’arrivée exogene des intéréts pour le contenu & au noeud

n et a 'instant ¢. De la Proposition 3.3, on déduit le débit admissible maximal _/_\n,k donné

par:

A k= Z ,uknb Z Hkana k (Bll)

bel't+(n acl'—(n)

205

sous les contraintes suivantes:

Zﬂk,a,ﬂ < Cha Yn,ael (n) (B.12)
kek
Z BM =T, Vn (B.13)
kek
0<h,p <1, Vn,k (B.14)
fran >0, Vn,k,ael (n) (B.15)
Mok < Mgy Vn, k. (B.16)

Nous ignorons dans ce travail la contrainte (B.16) qui impose une borne inférieure
au taux du service des contenus Cela signifie que le réseau ne garantit pas que certains
contenus demandés sur un noeud donné seront satisfaits. Cela dépendra entierement de

I’optimalité de le servir.

Formulation du probleme Nous allons maintenant insérer le taux d’arrivée admis-
sible dans une fonction d’utilité équitable U(-). Le débit alloué au contenu £ sur tout le

réseaux est définit par

¢k = Z /_\n,k - Z ﬂkvbvn + Z Bn,kﬂk,a,n- (Bl?)
neN beUs(k) neN
nel~ (b) a€l'~ (n)

La fonction objectif consiste a trouver le taux de service optimal pour chaque contenu

et chaque lien, ainsi que le taux de hits tels que

maximize » xU(¢x/a), (B.18)

K kex

avec U(+) une fonction d’utilité a-équitable.

I’ a-équité pondérée a été introduite dans [Mo and Walrand, 2000], puis adaptée
pour I’allocation de caches par [Dehghan et al., 2016]. Cependant, comme exprimé dans
I’équation B.18, nous préconisons une formulation de 1’ a-équité pondérée qui opere sur
des taux par unité de poids. La raison de ce choix est sa convergence vers I’équité de

max-min pondérée lorsque o — oo, tandis que la formulation pondérée originale de Mo

206

et Walrand tend vers I’équité max-min [Mo and Walrand, 2000]. Fait intéressant, notre
formulation donne des solutions indépendantes de «, produisant donc des allocations sim-

plement équitables.

(Pn/ax)™ oo ®

ince q.U(d%/qx) = a 1o qkl—a7a7é ;
L’ objectif se simplifie en
Maximizer
fi,h
> 4 U(o), ifa#1
kek (B.19)
> arlog(dr/qx), otherwise.

kek

Les cas particuliers que cette a-équité pondérée inclut sont:

e pour o = 1, ’objectif est dit celui de 1’équité proportionnelle pondérée [Kelly et al.,
1998].

e lorsque « est infini, I’objectif correspond a 1’équité max-min pondérée c’est-a-dire
max min(¢x/q;) [Radunovi¢ and Boudec, 2007].

Par la suite, 1’attribut pondéré sera sous-entendu lorsque omis.

Solution

Allocation générale a-équitable La premiere propriété des allocations de a-
équitables des contenus dans les réseaux de cache est leur efficacité de Pareto. On dit
que Dattribution est Pareto-efficace si toute tentative d’augmenter la part d’un contenu
diminue la part d’un autre contenu. Dans notre probleme d’optimisation, cela se traduit

par le fait que la capacité des liens ait été entierement attribuée.

Property B.1 (Efficacité au sens de Pareto pour tout a > 0). L’allocation de bande

passante a-équitable est Pareto-efficace car ’allocation de ressource optimale utilise

207

toute la capacité des liens pour servir les contenus c’est-a-dire que

(an = Cnas Yn€N,Yael' (n). (B.20)

/’Lk,a,n
kel

Proof. Voir Propriété 4.1 m

A présent, notre résultat principal. Il a établi que ICN, en adoptant LFU comme
politique de gestion de cache maximisant le taux de hits , a de facto adopté la politique de

gestion de cache optimale quant a I’équité du débit des contenus.

Proposition B.5 (LFU satisfait 'a-équité). LFU est une politique de gestion de
cache pour réseaux visant a a-équité des débits alloués aux contenus, pour tout
a > 0.

Proof. Voir Proposition 4.1. O]

Ce résultat est important car il montre que 1’algorithme LFU et ses heuristiques (LRU,
p-LRU, LRU-k, LRU + LCD) peuvent conduire a des réseaux a-équitables, Vo > 0. Les
ordonnanceurs de paquets seraient chargés de I’autre partie de la solution optimale, un
partage de bande passante équitable entre contenus. Nous nous désignons ce dernier en
tant que partage de bande passante aux contenus a-équitable. Il est mathématiquement
tractable grace a la concavité du probleme, compte tenu des taux de hits binaires, car la
concavité est une condition suffisante pour I’existence d’un optimum global. En outre, un
partage de bande passante aux contenus qui soit a-équitable est réalisable en pratique dans
le paradigme ICN car les paquets sont nommés de maniere unique d’apres les contenus
qu’ils transportent.

Il convient également souligner la nouveauté de ce résultat, car les travaux antérieurs
[Dehghan et al., 2016] ont abouti a des conclusions tres différentes. C’est parce qu’ils
ont seulement examiné des caches isolés, ont constaté que 1’équité nécessitait des taux
de hits fractionnés pour chaque valeur du parametre d’équité o supérieur a zéro et des
algorithmes pour les caches TTL cong¢us de maniere idoine. Leurs algorithmes de mise
en cache consistent a ajuster les Temps-a-vivre (TTL) de chaque contenu via une descente
en gradient.

Pour finir, I’algorithme suivant (Alg. 9, Alg. 10) est un exemple d’implémentation

de I’équité max-min pondérée par contenu distribué. Il s’appuie sur un ordonnanceur de

208

type Deficit Round-Robin [Shreedhar and Varghese, 1995] pour réaliser une allocation de
bande passante aux contenus qui soit max-min équitable, compte tenu d’un substrat de

gestion de cache LFU.

Algorithm 9: Allocation a-équitable des contenus dans ICN

Input: Data packet, o
Cache.Insert(packet, Policy::LFU);
FairQueuing.Shape(packet, a);

Algorithm 10: Allocation max-min équitable des bandes-passantes de con-
tenus
function FairRate.Shape (Data packet, o)
FairQueuing.Queue[packet.ContentName()].Push(packet);

if a == 0o then
‘ FairQueuing.SendData(Policy:: DEFICIT_ROUND__ROBIN);
end

end

B.6 AFFORD: Ask For Directions, machine learning-

based routing

La derniere contribution de cette these traite du cofit prohibitif de I’exécution de I’algorithme
de recherche du plus long préfixe dans les FIB de taille considérable. En effet, compte
tenu de I’espace de noms illimité qui caractérisera I’Internet des objets a venir, il sera
difficile de transférer des paquets a chaque noeud en escomptant une connaissance exacte
des chemins a prendre. Avec Ask For Directions (AFFORD) [Mekinda and Muscariello,
2016], nous proposons d’entrainer un ensemble de petits réseaux de neurones artificiels
dans le plan de controle et les interroger rapidement, dans le plan de données, a propos
des sauts suivants les plus probables.

Le chapitre 5 explique et analyse AFFORD, cette nouvelle approche de routage. Nous

en faisons en outre 1’évaluation sur des jeux de données de tailles diverses.

209

Cache, Process and Forward in
Information-Centric Networking
Léonce MEKINDA

ABSTRACT: This thesis investigates how making content caching and forwarding
latency-aware can improve data delivery performance in Information-Centric Networks
(ICN). We introduce a new very effective contribution to the existing content caching
toolset. The designed mechanism leverages retrieval time observations to decide whether
to store an object in a network cache, based on the expected delivery time improvement.
We demonstrate that our distributed latency-aware caching mechanism, LAC+, outper-
forms state of the art proposals and results in a reduction of the content mean delivery
time and standard deviation of LRU caches by up to 60%, along with a fast convergence
to these figures.

In a second phase, we conjointly optimize the caching function and the multipath
request forwarding strategies as both coexist in ICN at network level and should rein-
force each other. To this purpose, we introduce the mixed forwarding strategy LB-Perf,
directing the most popular content towards the same next hops to foster egress caches
convergence, while load-balancing the others.

Third, we address ICN fairness to contents. We show that traditional ICN caching,
which favors the most popular objects, does not prevent the network from being globally
fair, content-wise. The incidence of our findings comforts the ICN community momen-
tum to improve LFU cache management policy and its approximations. We demonstrate
that in-network caching leads to content-wise fair network capacity sharing as long as
bandwidth sharing is content-wise fair.

Finally, we contribute to the research effort aiming to help ICN Forwarding Informa-
tion Base scale when confronted to the huge 10T era’s namespace. We propose AFFORD,
a novel view on routing in named-data networking that combines machine learning and
stochastic forwarding. More specifically, we show that compressing the Forwarding In-
formation Base into bitwise trie-indexed Artificial Neural Networks accelerates next hop

lookup and reduces Forwarding Information Base’s size by orders of magnitude.

KEYWORDS: Information-Centric Networks; Performance evaluation; Cache

management; Transport protocol; Forwarding; Machine learning.

TELECOM

ParisTech

Z ParisTec

INSTITUT DES SCIENCES ET TECHNOLOGIES]
PARIS INSTITUTE OF TECHNOLOGY]

	Abstract
	Résumé
	List of publications
	Introduction
	Today's Internet
	An architecture that no longer fits its usage
	The rampant threat of host-centric Internet collapse
	The dawn of HTTPS-by-default
	Excessive latency
	Weak multipath support
	A non-native relief by CDNs

	5G, an opportunity
	Information-Centric Networking
	Content-Centric / Named-Data Networking
	NDN operations
	NDN security
	NDN routing
	NDN forwarding
	Mobility in NDN
	Caching in NDN

	Problem statement
	Our contributions
	LAC/LAC+: Latency-aware caching
	FOCAL: joint Forwarding and Caching with Latency-awareness
	Fairness in Information-Centric Networking
	AFFORD: Ask For Directions, machine learning-based routing

	Mathematical foundations
	Elements of probability theory
	Queuing theory fundamentals
	Lyapunov optimization
	Nonlinear optimization
	Cache performance analysis
	Performance analysis of Networks of Caches

	LAC/LAC+: Latency-Aware Caching Strategies in ICN Can delivery in ICN be faster ?
	Introduction
	Related work
	Latency-aware heuristics
	Analysis
	Assumptions
	Miss ratio
	Lower bound

	Simulation
	Conclusion and future work

	FOCAL: Joint Forwarding and Caching with Latency-awareness in ICN Can delivery in ICN be much faster ?
	Introduction
	Related work
	Problem statement
	Optimal algorithm design
	Optimal algorithm design guidelines through analytic insight
	Numerical solutions
	Maximizing the hit ratio of dynamic caches through optimal bundling

	FOCAL
	Latency-aware caching strategies
	Latency-aware forwarding strategies

	Performance analysis
	Simulation
	Linear topology with forwarding branches
	Fat tree with direct access to content repositories
	US backbone-like scenario

	Conclusion

	On the Fairness of ICN Can ICN be fair ?
	Introduction
	Related work
	Cache Network Model
	Model assumptions
	Cache network capacity
	Problem formulation
	Solution

	Toy examples
	Client/Server tandem
	Client/Cache/Server bus

	Evaluation
	Client/Cache/Server bus
	A simple network

	Conclusion

	Supervised Machine Learning-based Routing for NDN Can ICN scale ?
	Introduction
	Related work
	AFFORD
	AFFORD supervised learning
	AFFORD forwarding

	Analysis
	Evaluation
	Tiny-size FIB
	Medium-size FIB
	Big-size FIB

	Conclusion and future work

	Conclusion and future work
	Bibliography
	Appendices
	ZIMPL Mathematical Programs
	ZIMPL code for section 3.4.2
	ZIMPL code for section 3.4.3.0

	Appendices
	Résumé étendu
	Information-Centric Networking
	Content-Centric / Named-Data Networking
	Fonctionnement de NDN
	Transmission dans NDN
	Caching in NDN

	Contributions
	LAC/LAC+: Algorithmes de gestion de cache sensibles à la latence
	Description
	Analyse

	FOCAL: Transmission and gestion de cache conjointes et sensibles à la latence
	Algorithmes de gestion de caches sensibles à la latence
	Stratégies de transmission sensibles à la latence

	Équité dans les réseaux centrés sur l'information
	Cache Network Model

	AFFORD: Ask For Directions, machine learning-based routing

