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Abstract

Side Channel Attacks are a classical threat against cryptographic algorithms in embedded

systems. They aim at exploiting the physical leakages unintentionally emitted by the devices

during the execution of their embedded programs to recover sensitive data. They exploit the

dependencies between the leakages and the values manipulated by the algorithms. As such

attacks represent a real threat against embedded systems different countermeasures have been

developed. They ensure the security of the devices against Side Channel Analysis. Data masking

are one of the most classical countermeasures. In a masking scheme any sensitive variable is

randomly split into several shares. The security of these algorithms comes from the fact that

the first high order moment which depends on the secret data is increased. This order is one of

the fundamental parameters of protected implementations. Nevertheless these countermeasures

are also the target of particular kinds of Side Channel Analysis. In these attacks, called High

Order Attacks an attacker must combine different variables (the shares) in order to recover the

sensitive variable.

In this manuscript we investigate the relevant parameters which allow to build security

evaluation of the cryptographic algorithms protected implementations. Specifically we focus

on masking schemes, but we also investigate the case of shuffling. We investigate their security

in presence of multiple leakages. Indeed there often are in the leakage measurements several

variables which can be exploited to mount Side Channel Attacks. Each variable may leak

through many leakage samples. Any one of these leakages represents a way to improve the

results of the attacks.

In the first part of this manuscript we show that the multiple leakages of a unique variable can

be exploited together to build efficient attacks. In particular we show the optimal way to exploit

these leakages. This optimal treatment coincides with a dimensionality reduction. We show

that, in some cases, this dimensionality reduction comes with no loss on the overall exploitable

information. We additionally show that this dimensionality reduction is asymptotically equivalent

to a well known dimensionality reduction method. Based on this result we investigate further how

such dimensionality reduction methods can be applied in the case of protected implementations.

We show that the impact of such methods increases with the security “level” of the implementation.

This observation gives us a first example of a case where the standard parameter to evaluate the

security of the implementation may not be sufficient. Additionally we present a new optimal
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dimensionality reduction method which is available without a priori knowledge on the leakage

function.

In the second part of this manuscript we investigate how to exploit the leakages of multiple

variables in order to improve the results of Side Channel Analysis. We start by improving the

attacks against a particular kind of masking schemes, namely the ones with a precomputed

table recomputation step. We give the optimal attack against such schemes which provides

better results than the state-of-the-art attacks. This new attack takes into account the multiple

leakages of the table recomputation. Some protections have been developed to protect the table

recomputation steps. As a consequence we investigate the security provided by these protections.

In this context we present results which show that the main parameter to evaluate the security

of the masking schemes, namely the order, is not sufficient to estimate the global security of the

implementation. Indeed we exhibit a new attack which gives better results than the classical

minimal order attack of the state-of-the-art. We extend this result in different scenarios in terms

of leakage functions and type of implementations. We theoretically investigate the best possible

attacks in presence of masking and shuffling. This generalizes the previous case study. We show

that in context of shuffling the optimal attack is not computable. As a consequence we present a

truncated version of this attack with a better effectiveness. This new attack has efficiency close

to the optimal attacks but with a complexity which makes it computable. Additionally it allows

a better understanding of the behaviors of attacks with multiple leakages at multiple orders.
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Résumé de la thèse en français

Les analyses par canaux auxiliaires représentent une vulnérabilité classique des systèmes

embarqués. Elles exploitent les fuites physiques consécutives aux interactions du composant

et de son environnement lors de l’exécution de ses programmes embarqués. Un attaquant

va exploiter ces fuites qui peuvent par exemple être la consommation du composant ou bien

ses émissions électromagnétiques pour retrouver des données secrètes. En effet, il existe des

liens entre ces fuites et les variables manipulées par les algorithmes. Ces attaques représentent

une réelle menace contre les systèmes embarqués ; c’est pourquoi différentes contre-mesures

ont été développées. Elles visent à garantir la sécurité des systèmes contre les analyses par

canaux auxiliaires. Cette thèse va s’intéresser à la sécurité fournie par ces contre-mesures.

Parmi l’ensemble des contre-mesures les schémas de masquage sont particulièrement utilisés.

Dans de tels schémas toutes les variables sensibles sont aléatoirement découpées en plusieurs

« parties ». La sécurité de ces algorithmes provient du fait que l’ordre du premier moment

dépendant de la donnée secrète est augmenté. Cet ordre est l’un des paramètres fondamentaux

des implémentations protégées. Néanmoins ces contre-mesures sont elles mêmes la cible de types

particuliers d’analyses par canaux auxiliaires. Ces attaques appelées attaques d’ordres élevés

doivent combiner différentes variables pour retrouver la variable sensible. Dans ce manuscrit nous

étudions les paramètres importants qui permettent la construction d’évaluations sécuritaires des

implémentations protégées d’algorithmes cryptographiques. Nous nous intéressons en particulier

aux schémas de masquage mais aussi aux protections basées sur du « shuffling ». Nous étudions

leur sécurité dans le contexte où de multiples fuites sont présentes. Il arrive régulièrement que

plusieurs fuites de plusieurs variables puissent être exploitées pour monter des analyses par

canaux auxiliaires. En effet, chacune de ces variables peut fuiter à de multiples reprises. Toutes

ces fuites représentent des chemins possibles d’améliorations des attaques.

Dans la première partie de ce manuscrit nous montrons que les multiples fuites d’une unique

variable peuvent être exploitées pour bâtir des attaques efficaces. En particulier nous présentons

la méthode optimale pour exploiter l’ensemble de ces fuites. Cette méthode optimale correspond

à une réduction de dimensionnalité. Sous certaines contraintes, nous montrons de plus que

cette réduction de dimensionnalité n’entraîne aucune perte sur l’information exploitable. Nous

montrons également que cette méthode est asymptotiquement équivalente à une méthode connue

de réduction de dimensionnalité. En nous appuyant sur ces résultats nous étudions également
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comment de telles méthodes de réduction de dimensionnalité peuvent être appliquées dans le

contexte d’implémentations protégées. Nous montrons dans ce manuscrit que de telles méthodes

voient leur efficacité augmentée avec le niveau de sécurité de l’implémentation. Cette observation

nous donne un premier exemple dans lequel le paramètre standard pour évaluer la sécurité

des protections peut ne pas être suffisant. De plus nous proposons une nouvelle méthode de

réduction de dimensionnalité qui est calculable même sans connaissance a priori de la fonction

de fuite.

Dans la seconde partie de ce manuscrit nous investiguons comment exploiter les fuites de

multiples variables pour améliorer les résultats d’analyses par canaux auxiliaires. Dans un

premier chapitre nous améliorons l’état de l’art des attaques contre un type particulier de schémas

de masquage, à savoir les schémas de masquage avec recalcul de table. En effet dans ce contexte

nous présentons l’attaque optimale dont les résultats sont meilleurs que ceux des attaques de

l’état de l’art. Comme les schémas de masquage avec recalcul de table peuvent être protégés

contre ce type d’attaque nous étudions dans un second temps la sécurité de ces protections.

Dans ce scénario nous présentons des résultats qui montrent que le principal paramètre pour

évaluer la sécurité des schémas de masquage, c’est-à-dire l’ordre n’est pas suffisant. En effet nous

présentons une nouvelle attaque qui donne de meilleurs résultats que l’attaque d’ordre minimal.

Nous étendons ces résultats dans différents scénarios : avec différentes fonctions de fuites et

différentes implémentations. Pour finir nous étudions de façon théorique la meilleur attaque

possible en présence de masquage et de « shuffling » ce qui généralise le précédent cas d’étude.

Dans ce cas nous montrons que l’attaque optimale n’est pas calculable. Pour y remédier, nous

présentons une version tronquée de l’attaque optimale avec une meilleure efficacité calculatoire.

Cette nouvelle attaque conserve des résultats proches de l’attaque optimale mais avec une

bien meilleure complexité, ce qui la rend calculable. De plus sa formule permet une meilleure

compréhension des différents comportements des attaques en présence de multiples fuites à

différents ordres.

Ce manuscrit comporte six chapitres.

Chapitre 1 Introduction.

La cryptographie est devenue au cours de ces dernières années un élément fondamental des

communications notamment numériques. En effet la cryptographie va assurer la sécurité des
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communications en fournissant un certain nombres d’outils appelés primitives cryptographiques

permettant d’assurer différentes propriétés:

• La confidentialité des données, cette propriété assure que l’information transmise n’est

compréhensible que par les parties autorisées.

• L’intégrité des données, cette propriété garantie que les données n’ont aps été altérées par

une tierce partie.

• L’authentification, cette propriété assure que l’échange se fait bien entre les parties voulues.

• La non répudiation, cette propriété assure que les parties ne pourrons nier leurs actions.

Ces propriété vont être assurées par différents types d’algorithmes cryptographiques qui

peuvent se décomposer en au moins deux grandes familles.

Les algorithmes cryptographiques symétriques. Ces algorithmes sont basés sur le fait

que les différentes parties impliquées dans la communication possèdent un secret commun

appelé clef secrète. Ce type d’algorithmes va pouvoir assurer notamment la confidentialité des

données. Dans ce manuscrit nous nous intéressons tout particulièrement à un type particulier

d’algorithmes cryptographiques symétriques: les chiffrements par bloc.

Les algorithmes cryptographiques asymétriques. Dans le cas des algorithmes cryp-

tographiques asymétriques une seule partie possède la clef secrète alors que les autres parties

ont accès à une clef publique. C’est de cette asymétrie dans la connaissance du secret que ce

type d’algorithmes tire son nom. En plus de facilité l’échange de clef ces algorithmes permettent

la confidentialité des données mais également l’intégrité et l’authentification.

Ces algorithmes sont supposés sûrs dans un modèle d’attaquant en boîte noire. Néanmoins

dans la pratique ces algorithmes sont exécutés sur des composants physiques qui peuvent être par

exemple des cartes à puce des micro-contrôleurs. Ce type d’implémentation est vulnérable aux

attaques dites physiques. Parmi l’ensemble des attaques physiques nous nous intéressons dans

ce manuscrit aux attaques par canaux auxiliaires. Ces attaques exploitent les fuite physiques

induites par les interactions entre le composant et son environnement.
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Figure 1: Exemple de trace de consommation

Les attaques par canaux auxiliaires. Les attaques par canaux auxiliaires sont un type

particulier d’attaques physiques, ces attaques n’interagissent pas directement avec le composant

de test, par conséquent ces attaques sont qualifiées d’attaques physiques non-invasives et

passives. Ces attaques exploitent en général des enregistrements numériques, appelé traces ou

encore mesures, de différentes grandeurs physiques qui peuvent être par exemple les émissions

électromagnétiques ou bien la consommation du composant. Comme présenté en Figure 1.

Chacune de ces mesures peut être porteuse d’information en différents points qu’ils convient

d’exploiter afin de construires les attaques le plus efficacement possible.

Afin d’extraire des fuites physiques d’information les valeurs secrètes ce type d’attaque

exploitent souvent les comparaisons entre les mesures et un modèle théorique en utilisant un

“distingueur”.

Les caractéristiques de ces “distingueurs” peuvent varier en fonctions des différents prérequis

nécessaires à leurs calculs ou encore des fuites à exploiter.

Contre-mesures contre les attaques par canaux auxiliaires. Afin de protéger les implé-

mentations cryptographiques contre les attaques par canaux auxiliaires différentes contre-mesures

ont été développées. Les contre-mesures les plus utilisées sont les schémas de masquage. En effet,

leur sécurité peut être formellement prouvée. Dans ces schémas chacune des variables sensibles

Z est “découpée” en Ω parties dans le cas d’un schéma d’ordre Ω− 1 en utilisant Ω nombres

aléatoires appelés les masques. Les implémentations cryptographiques peuvent être également

protégées en utilisant une contre-mesure appelée “shuffling”. Cette contre-mesure consiste à
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exécuter dans un ordre aléatoire les différentes opérations indépendantes d’un algorithme. Ces

contre-mesures sont elles mêmes la cible d’un type particulier d’attaques par canaux auxiliaires

appelé attaques d’ordre élevé. Ces attaques reposent sur la combinaison de différents points de

fuites dépendant de différentes variables.

Il convient donc dans l’optique de construire des attaques efficaces voir optimales de prendre

en compte différents points de fuite. Dans ce manuscrit nous montrons comment exploiter ces

multiples fuites que ce soit dans le cas d’attaque contre des implémentations non protégées ou

dans le cas d’implémentations protégées.

Chapitre 2 Réduction de dimensionnalité optimal.

Réduire la dimensionnalité des mesures est un problème important dans les analyses par canaux

auxiliaires.

En effet les fuites exploitables sont souvent multi-dimensionnelles il y a donc en général un

intérêt à réduire leur dimension afin de réduire la masse de données à traiter lors des attaques. De

manière générale cela permet des capturer les fuites multi-dimensionnelles en un seul échantillon

compressé, et donc de réduire la complexité calculatoire. Le revers de la médaille est que de

telles méthodes peuvent réduire l’efficacité des attaques en termes de probabilité de succès. En

effet la question se pose de savoir quel est l’impact de la réduction de dimensionnalité en termes

d’information exploitable dans les attaques et par conséquent en terme de probabilité de succès.

Dans ce chapitre nous analysons mathématiquement la réduction de dimensionnalité. Nous

montrons que l’attaque optimale reste optimale après une première passe de prétraitement

qui prend la forme d’une projection linéaire des échantillons. C’est à dire que la réduction

de dimensionnalité peut se faire sans perte d’information. Nous étudions l’état de l’art des

méthodes de réduction de dimensionnalité et trouvons que asymptotiquement, la stratégie

optimale coïncide avec l’analyse discriminante linéaire. Nous prouvons également qu’en général

l’analyse en composantes principales ne coïncide pas avec la réduction de dimensionnalité

optimale.

Chapitre 3 Réduction de dimensionnalité dans le cas du
masquage.

Les attaques multivariées permettent « d’attaquer » les schémas de masquage d’ordre élevé en

combinant plusieurs points de fuites. Mais dès lors la question se pose de savoir quelle est la
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meilleur façon d’extraire l’information répartie dans tous les Ω-uplets de points. Dans ce chapitre

nous proposons l’outil de pré-traitement qui répond à cette question. Nous montrons d’abord

qu’il est équivalent de résoudre le problème de la maximisation du coefficient des attaques par

corrélation notées CPA d’ordre élevé et le problème de maximisation de la covariance. Nous

pouvons alors, dans un premier temps, appliquer cette équivalence au problème de réduction de

dimensionnalité des traces par combinaisons linéaires, les pondérations de cette combinaison

sont notées par le vecteur α. Cela nous permet ensuite de lier ce problème avec l’Analyse en

Composante Principale notée PCA. Dans un second temps nous présentons la solution optimale

au problème de maximisation de la covariance comme présentée en Figure 2.

Nous montrons ensuite théoriquement que ces deux méthodes donnent des résultats équiv-

alents lorsque les traces attaquées sont « modulées ». Nous comparons théoriquement et

empiriquement ces méthodes.

Pour finir nous appliquons ces résultats sur les traces du DPA Contest V4 afin d’évaluer

combien les techniques proposées améliorent les attaques du second ordre.

Comme nous pouvons le voir sur la Figure 3 les attaques construites sur une étape de

réduction de dimensionnalité ont de meilleurs résultats. De plus nous remarquons que les deux

méthodes de réduction de dimensionnalité c’est à dire l’analyse en composantes principales et la

méthode de covariance donnent des résultats identiques. Ceci prouve que les traces du DPA

Contest V4 sont proches de traces modulées.

Chapitre 4 Attaque Optimale contre le recalcul de table.

Les parties non linéaires des schémas de masquage sont souvent construites en utilisant des

méthodes de recalcul de table. De tels algorithmes sont caractérisés par leurs nombreuses fuites

pouvant être exploitées afin de réaliser des attaques par canaux auxiliaires. Par conséquent

différentes attaques ont été proposées dans l’état de l’art afin d’exploiter ces fuites. Dans

ce chapitre nous étudions de façon théorique la méthode optimale, au sens de la méthode

maximisant la probabilité de succès, exploitant ces multiples fuites.

Nous montrons en particulier que l’attaque optimale, notée OPT surpasse en terme de

probabilité de succès les différentes attaques de l’état de l’art. En effet nous pouvons voir en

Figure 4 que les attaques multi-variées exploitant le recalcul de table sont plus efficaces (ont

une meilleure probabilité de succès) que les attaques exploitant uniquement les fuites hors de

l’étape de recalcul, comme par exemple l’attaque en corrélation du second ordre notée 2O-CPA.
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Leakage D

α = cov(X;Ψ̂(Z))

||cov(X;Ψ̂(Z))||

Correlation |ρ(X; Ψ̂(Z))| Distinguishers:

Projection
by linear
combination

(1’)

max
k,d∈J1,D1K×J1,D2K

max
k

∣∣∣ρ(α ·X; Ψ̂(Z))
∣∣∣

(0’)
(1’)

α ·X
(scalar)

∣∣∣ρ(X(d); Ψ̂(Z))
∣∣∣

D1

D2

(1) (2)

d1

d2

1

1 d1

d2

d2

d1

(2’)

Figure 2: Presentation de la « méthode de covariance » . L’ attaque 2O-CPA calcule la corrélation
pour chaque paire (d1, d2) de la fuite (étape (1)), ensuite le maximum sur chacune des clefs et des
instants temporels est recherché (étape (2)). Notre méthode obtient un « vecteur de covariance »
sur un composant d’apprentissage (étape (0’)), et ensuite projette la fuite X sur α (étape (1’)),
avant de chercher la meilleure clef lors de la maximisation du distingueur. Remarquons que le
modèle Ψ̂(Z) dépend implicitement de l’hypothèse de clef k.

Cela montre qu’il y a toujours un intérêt à augmenter le nombre de points de fuites exploités

pour les attaques, dans la mesure où ceux ci sont exploités de façon optimale.

De plus l’utilisation du distingueur optimal contre des schémas de masquage avec recalcul

de table permet également d’améliorer le résultat des attaques exploitant les fuites du recalcul

de table en plus des fuites classiques de l’algorithme cryptographique. En effet nous montrons

que les attaques de l’état de l’art exploitant les fuites du recalcul en deux étapes, une première

pour retrouver le masque, la seconde pour retrouver la valeur secrète ne sont pas aussi efficaces,

comme illustré en Figure 4. Ces attaques sont notées dans ce manuscrit 2×CPAmt. On en

déduit donc que la meilleur approche est d’exploiter l’ensemble des fuites en une en appliquant

l’attaque optimale.
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Figure 3: Comparaison entre une attaque CPA du second ordre classique et une attaque second
ordre CPA avec prétraitement utilisant (S-boxes, S-Boxes)

Chapitre 5 Attaque multivariée d’ordre élevé contre le recal-
cul de table calculé dans un ordre aléatoire.

Les schémas de masquage basés sur le recalcul de table sont des contre-mesures classiques

contre les analyses par canaux auxiliaires d’ordre élevé. Néanmoins ils sont connus pour être

attaquables à l’ordre Ω dans le cas où le masquage utilise Ω parties. Dans ce chapitre nous

montrons mathématiquement qu’une attaque d’ordre strictement plus grand que Ω peut être

plus efficace qu’une attaque d’ordre Ω. Pour se faire nous étendons l’idée de Tunstall, Whitnall

et Oswald de FSE 2013: en effet nous montrons des attaques utilisant les multiples fuites liées

à un masque durant le recalcul de table. En particulier dans le cas d’une implémentation

d’un recalcul de table effectué dans un ordre aléatoire, nous montrons qu’il existe une fenêtre

d’opportunité en termes de variance de bruit, dans laquelle une nouvelle attaque multivariée du

troisième ordre est plus efficace que la classique attaque bi-variée du second ordre.

L’attaque présentée dans ce cas d’étude utilise, à son avantage, les multiples fuites des

différentes variables lors du recalcul de table. En effet nous montrons dans ce cas là qu’il est

possible d’extraire du recalcul une variable dépendante du masque. Cette nouvelle variable, issue

donc de la combinaison des différentes variables du recalcul, est elle même combinée à la variable

secrète. C’est cette combinaison finale qui permet de retrouver la valeur de la variable secrète.

Du fait des deux combinaisons successives cette nouvelle attaque est une attaque du troisième

ordre. Cette attaque est notée MVATR. Nous pouvons vérifier de plus que cette attaque sera

plus efficace que les attaques de l’état de l’art lorsque la variance du bruit est comprise dans un

xiv
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Figure 4: Taux de succès contre les tables masquées.

intervalle particulier que nous appelons intervalle de variance utile.

Afin de comparer les résultats de cette nouvelle attaque à ceux de l’état de l’art et de vérifier

de façon empirique nos résultats théoriques, différentes simulations ont été effectuées. Pour

chacune nous avons supposé que les variables fuitaient leur poids de Hamming, nous avons de

plus supposé un bruit blanc gaussien. L’attaque de référence utilisée est l’attaque du second

ordre par corrélation notée 2O-CPA. Nous pouvons dans un premier temps observer en Figure 5

qu’aux bornes de l’interval de variance utile la 2O-CPA et notre nouvelle attaque MVATR

coïncident, ce qui valide nos résultats théoriques. Dans un deuxième temps nous pouvons

observer en Figure 6 qu’entre ces bornes l’attaque MVATR montre de meilleurs résultats. En
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effet, son taux de succès est plus élevé que la 2O-CPA.
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Figure 5: Comparaisons entre 2O-CPA et MVATR

De plus dans le cas du recalcul de table protégé à des ordres élevés présenté par Coron à

EUROCRYPT 2014 nous montrons que cette fenêtre s’élargie linéairement avec l’ordre Ω. Dans

ce cas nous redonnons une définition d’une attaque exploitant les fuites lors du recalcul de table.

Cette nouvelle attaque notée MVAΩ
CS va dépendre de l’ordre utilisé par le masquage de Coron.

Comme précédemment nous avons évalué ces résultats théoriques en utilisant des simulations.

Nous supposons toujours que les variables fuitent en poids de Hamming avec un bruit blanc

gaussien. On peut remarquer sur la Figure 7 que non seulement l’attaque MVAΩ
CS surpasse

l’attaque de référence qu’est l’attaque par corrélation d’ordre élevé notée ici ΩO-CPA, mais que

cet avantage augmente avec l’ordre du schéma de masquage.

Dans ce chapitre nous étudions également le cas de différents modèles de fuite de degré un

et montrons formellement que le modèle en poids de Hamming est le cas le moins favorable à

l’attaquant. Nous montrons en effet que lorsque le modèle de fuite est une pondération des bits

de la valeur sensible, le meilleur cas pour notre nouvelle attaque multivariée est lorsque tout les

bits sont à zéro sauf un, inversement le pire cas est lorsque la pondération est la même pour

tout les bits. Ainsi, l’ensemble des analyses effectuées précédemment en poids de Hamming sont

une borne inférieure des résultats que nous pouvons obtenir avec l’attaque MVATR.

Finalement nous validons ces résultats sur une carte puce. La cible est une implémentation

en assembleur d’un AES-128 avec recacul de table. Cette implémentation à été chargée sur

une ATMEL ATMega163 8-bit. Cette carte à puce est connue pour fuiter. Les attaques sont
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Figure 6: Comparaisons entre 2O-CPA et MVATR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 25000 50000 75000 100000

T
au

x
de

su
cc
ès

Nombre de traces

3O-CPA
MVA3

CS

(a) Ω = 3, σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 100000 200000 300000

T
au

x
de

su
cc
ès

Nombre de traces

4O-CPA
MVA4

CS

(b) Ω = 4, σ = 3.

Figure 7: Comparaison entre ΩO-CPA et MVAΩ
CS

effectuées sur des acquisitions basées sur les ondes électro-magnétiques émises lors de chiffrements.

Nous pouvons remarquer en Figure 8a que sur ces traces les deux attaques MVATR et 2O-CPA

ont la même efficacité. En effet, puisque ces acquisitions sont peu bruitées nous sommes proches

de la borne inférieure de l’interval de variance. Néanmoins quand on ajoute du bruit comme en

Figure 8b l’attaque MVATR devient plus efficace ce qui confirme nos résultats.

xvii



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 50 100 150 200 250

T
au

x
de

su
cc
ès

Nombre de traces

2O-CPA
MVATR

(a) Comparaison sur traces brutes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 100 200 300 400
T
au

x
de

su
cc
ès

Nombre de traces

2O-CPA
MVATR

(b) Comparaison avec ajout de bruit

Figure 8: Comparaisons des SR des attaques MVATR et 2O-CPA

Chapitre 6 Ordre mixte.

Dans ce chapitre nous approximons le distingueur d’une attaque “Template” basée sur le

maximum de vraisemblance en attaques de degrés inférieurs. En exploitant cette décomposition

nous montrons qu’il est possible de construire des attaques hautement multivariées qui restent

efficaces quand la vraisemblance ne peut pas être calculée du faite de sa complexité. Un

algorithme basé sur un recalcul de table aléatoire est utilisé comme illustration pour construire

une nouvelle attaque qui surpasse les attaques de l’état de l’art. Cette nouvelle attaque combine

deux degrés d’attaque et est capable d’exploiter des fuites multi-dimensionnelles ce qui explique

son efficacité.

Le maximum de vraisemblance est le distingueur qui maximise la probabilité de succès.

En ce sens nous le considérons donc comme le distingueur optimal. Cette vient néanmoins

avec une complexité calculatoire importante. En effet, dans le cas d’une attaque contre une

implémentation masquée et calculée dans un ordre aléatoire (« shufflée »), cette complexité

dépends de différents paramètres dont le factoriel de la taille des permutations utilisées pour

construire l’ordre aléatoire. Cette valeur peut être extrêmement importante quand la taille des

permutations augmente. Dans ce cas du fait de sa complexité le distingueur optimal ne peut

être calculé. Dès lors il convient de trouver une alternative au maximum de vraisemblance dans

ces cas.

L’idée de notre approche est d’utiliser les premier termes de la décomposition du distingueur
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optimal en sa série de Taylor. Nous définissons par ROPTL cette nouvelle attaque exploitant

les L premiers termes de la série de Taylor. Notre approche basée sur l’approximation de Taylor

va être efficace d’un point de vue calculatoire (réduction de la complexité) mais reste également

efficace du point de vue du nombre de traces nécessaires pour construire les attaques.

Nous prenons comme exemple pour illustrer cette nouvelle attaque le cas de d’une implémen-

tation d’un schéma masquage avec recalcul de table dans lequel le recalcul de table est effectué

dans un ordre aléatoire. Le gain en termes d’efficacité calculatoire comparé au distingueur

optimal est évident puisque cette attaque est calculable ce qui n’était pas le cas du distingueur

optimal. Afin d’évaluer son efficacité en terme de nombre de traces nécessaires pour effectuer les

attaques nous avons utilisé des simulations. Nous supposons ici un modèle de fuite en poids

de Hamming. Nous appliquons une attaque en utilisant les trois premiers termes de la série

de Taylor. En effet, nous savons grâce au chapitre précédent qu’une attaque d’ordre trois est

efficace. Pour comparer notre attaque aux attaques antérieures nous choisissons comme attaques

de référence l’attaque 2O-CPA et l’attaque MVATR. Nous remarquons que pour les faibles

bruits comme par exemple pour un bruit d’écart type σ = 1 (Figure 9a) que l’attaque ROPT3

est proche de l’attaque MVATR. Cela veut dire que le terme dominant dans la série de Taylor

est le terme de degré trois. Inversement lorsque le bruit est élevé σ = 13 (Figure 9d) l’attaque

ROPT3 est proche de l’attaque 2O-CPA. Cela veut dire que le terme dominant est le terme

de degré deux. Le meilleur cas pour l’attaque ROPT3 comparé aux attaques de référence est

lorsque σ = 8. Dans ce cas les attaques 2O-CPA et MVATR ont les mêmes résultats et l’attaque

ROPT3 à des résultats deux fois meilleurs.
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CHAPTER 1

Introduction

Contents
1.1 Introduction to the cryptography . . . . . . . . . . . . . . . . . . . . 1

1.2 Physical Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Side Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Samples Selection and Dimensionality Reduction . . . . . . . . . 15

1.5 Protection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Attacks on the countermeasures . . . . . . . . . . . . . . . . . . . 23

1.7 Attacks evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 32

1.1 Introduction to the cryptography

Cryptography aims at ensuring the security of the communications between several parties.

Historically mainly used for military or diplomatic purposes, it has seen its uses exponentially

grow up with the development of the communication technologies.

To ensure the security, cryptographic tools (primitives) provide one or more of the following

properties:

Confidentiality. This property guarantees that the information transmitted during the com-

munication will be only intelligible by authorized parties. The confidentiality of data will be

1



1. INTRODUCTION

obtained by encryption schemes. Such schemes transform an initial message called the plain-text

to an unreadable, for any unauthorized party, message called the cipher-text. This transformation

process is called the encryption. The algorithms which perform the revers process are called

decryption algorithms. This process is called decryption.

Data integrity. This property guarantees that the data have not been modified by a malicious

party. To ensure the Data integrity a hash function may be used. A hash function can be

roughly defined as a one way mapping from a string of arbitrary length to a binary string of

fixed length. The security of such schemes depends on the difficulty to find two binary strings

with the same output. Then the data integrity is constructed as follows: first the hash value of

some data is initially computed. To verify that the data have not been altered the hash value of

these data is computed and compared to the original one. Noticed that the integrity of the hash

value has to be ensured in some manners.

Authentication. This property can be applied both on data and parties. The entity au-

thentication ensures that the communication is made between the expected parties. The data

authentication could ensure the origin of the message, the emission date of the message. The

Authentication is often provided by digital signature schemes. A digital signature depends on, a

secret only known by the signer and the message. Exploiting this secret the signer is the only

one able to generate the digital signature. Then anyone else should be able to verify if this

number has been generated by the signer, in general a digital signature is provided with a public

value to allow the verification.

Non repudiation. This property ensures that parties will not deny actions or commitments.

This property can also be ensured by digital signature schemes.

Regarding these properties different kinds of primitive have been developed.

1.1.1 Symmetric Cryptography

The symmetric cryptography also called secret key cryptography is based on the fact that all the

parties involved in the communication share the same secret (unknown by anyone else) called

the secret key. In a symmetric key primitive only one key is involved and as a consequence the

encryption and decryption algorithms take as input the same key. Symmetric encryption schemes

ensure the confidentiality of the data. Block cipher algorithms are often used in symmetric

cryptography. Formally the block ciphers can be defined as functions which take as input

2



1.1 Introduction to the cryptography

two bit-strings: the key and the plain-text and output a bit-string: the cipher-text. The key

length and the plain-text length are two parameters associated with the block cipher algorithm.

Notice that for any key and for any block cipher, the block cipher restricted to this key is a

bijection. In a classical usage the secret key is randomly generated and shared between the

two parties and the security will depend on the secrecy of the key. Several block ciphers have

been proposed, non exhaustively we can cite: Rijndael (118), Serpent (14), Twofish (149), RC6

(143), MARS (28) which are the Advanced Encryption Standard finalists, but also the Data

Encryption Standard (119) (DES), the Triple Data Encryption Standard (119) (TDES), the

International Data Encryption Algorithm (90) (IDEA)... Let us present in more details two

of them which are standardized: the Data Encryption Standard (119) (DES) expended from

the Lucifer (153) cipher and the Advanced Encryption Standard (AES (118) originally called

Rijndael)

Data Encryption Standard (119). The DES algorithm is one of the most widely used

block cipher algorithm. It was adopted by the National Bureau of Standards (NBS) now known

as the National Institute of Standards and Technology (NIST) in 1976 as a standard. The DES

takes as input a key of 56 bits and 64 bits of plain-text. The algorithm consists in 16 rounds of

a “Feistel network”. In order to increase the size of the key an evolution of the DES has been

proposed: the Triple DES where three DES are executed sequentially with a three times longer

key.

Advance Encryption Standard (118). In order to replace the DES, the NIST lunched in

1998 a new competition to select the new standard block cipher. Fifteen candidates have been

proposed and at the end of the selection process the Rijndael algorithm has been chosen to be

the AES. This cipher takes as input a key of length 128, 256, 512 depending on the level of

security required. The plain-text has a length of 128 bits. The algorithm consists of 10, 12 or

16 rounds depending on the length of the key. Each round is composed of different operations

ensuring the diffusion and confusion.

In modern block ciphers the security against statistical attacks is provided by two main

properties the confusion and the diffusion (151).

Diffusion. The diffusion property hides the relationship between the plain-text and the cipher-

text. In general this property is implemented using permutations. The diffusion will impress

on each output bit information provided by each input bit. Generally the diffusion property

3
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comes from manipulations of the order of bits and is provided in the AES by the ShiftRows and

MixColumns.

Confusion. The confusion property hides the relationship between the cipher-text and the

secret key. The confusion property ensures that each bit of the cipher-text is related to the

secret key by a complex function. In general this property is implemented using substitutions.

The confusion comes from non linear operations provided by the SubBytes in the AES. The

operations providing the confusion are often the target of the side-channel analysis. Indeed the

substitutions often manipulated several bits of the key in one operation.

As the length of data may be higher than the plain-text length different mechanisms can be

used to encrypt data using a block cipher. In these cases the way the block cipher are used on

the different parts is called the cipher mode (see (103) for details).

The Electronic CodeBook (ECB) mode. In this mode the whole text to cipher is split

into words which have as size the input size of the block cipher. Then each word is ciphered

with the same key.

The Cipher-Block Chaining (CBC) mode. Similarly to the ECB mode the text is split

into words. The first word is xored with an Initialization Vector (IV) and the result of this xor

is ciphered. The other words are proceed in an iterative process where the i-th word is xored

with the result of the (i− 1)-th step.

These two modes are often used in practice nevertheless other modes exist such as the CBC

with counter (CBCC), the Cipher FeedBAck (CFB), the Output FeedBack (OFB), the counter

mode (CTR), the counter based CTR (CTRC)...

As no random IV is used in the ECB mode this mode is often the one used to perform

side-channel analysis.

1.1.2 Asymmetric Cryptography

At the opposite of the symmetric cryptography in asymmetric cryptography, also called public

cryptography, a public key, derived from a secret key, only known by one party, is shared to other

parties. It is this asymmetry in the information held by the different parties which gives the name

of asymmetric cryptography. Asymmetric cryptography provides two kinds of primitive ensuring

the confidentiality (asymmetric encryption) and the data integrity (digital signature). While

symmetric schemes are based on a sequence of substitutions and permutations the asymmetric

4
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schemes are based on one-way functions meaning that they are easy to compute and difficult to

invert with a trapdoor meaning that they are easy to invert given an extra information. The

TrapDoor One Way Function (TOWF) are relied to a hard problem. In one hand the security of

the asymmetric is based on the difficulty to solve this problem without any extra-information.

On the other hand the problem can be easily solved knowing extra-information.

1.1.2.1 Diffie and Hellman key exchange

One of the main drawback of symmetric primitives is that an a priori shared secret is needed.

In order to allow secure communications without this shared secret Diffie and Hellman have

presented in (45) an asymmetric cryptography primitive which allows a key exchange without

trusted authority. The hard problem is in this case the Diffie-Hellman Problem (DHP) Definition 1

which is itself closed to the Discrete Logarithm Problem (DLP) Def. 2. Nevertheless the DHP is

at least as easy as the DLP.

Definition 1 (Diffie-Hellman Problem). Given a prime p a generator α of Z∗p, and elements
αa mod p and αb mod p find αab mod p.

Definition 2 (Discrete Logarithm Problem). Given a prime p a generator α of Z∗p, and an
element β ∈ Z∗p find the integer x 0 ≤ x ≤ p− 2 such that αx ≡ β mod p.

1.1.2.2 Rivest Shamir Adleman (RSA) cryptosystem (144)

In 1978 Rivest Shamir and Adleman proposed a first example of asymmetric encryption algorithm

and signature scheme in (144) it is the well known RSA cryptosystem. This cryptosystem

is based on the difficulty of factoring integers which are the products of large primes. The

underlying hard problem is the RSA problem (RSAP) Def. 3 which is to find the inverse of the

TOWF of the protocol. This problem is closely linked to the factoring problem Def 4. Indeed

finding a solution of the factoring problem gives a solution to the RSAP, as a consequence the

RSAP is at least as easy as the factoring problem.

Definition 3 (RSA Problem). Given a positive integer n that is a product of two distinct odd
primes p and q, a positive integer e such that gcd e (p− 1) (q − 1) = 1 , and an integer c find a
m such that me ≡ c mod n.

Definition 4 (Factoring Problem). Given a positive integer n find its prime factorization; that
is written n = pe11 p

e2
2 ...p

ek
k where the pi are pairwise distinct primes and ei ≥ 1.

5
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1.1.2.3 El Gamal cryptosystem (50)

In 1988 Taher ElGamal has proposed an asymmetric cryptosystem and a signature scheme based

on the DLP. While the first publication of Diffie Hellman provides a first example of asymmetric

cryptography algorithm for the key exchanges ElGamal algorithms are the first ones to used the

DLP to build encryption scheme and digital signature.

The previous schemes need to compute a modular exponentiation that is for the given

positive integer m the modulus n and an exponent e computing me mod n.

1.1.2.4 Elliptic Curves cryptosystem (82, 110)

In 1985 Neal Koblitz (82) and Victor Miller (110) have independently presented a new cryp-

tosystem based on Elliptic Curves (EC). The EC Cryptography is based on the difficulty to

solve the Elliptic Curve Discrete Logarithm Problem (ECDLP). Currently the best known

algorithm to solve this problem has an exponential running time. This allows smaller key

length compared to RSA. Indeed the factoring problem can be solved in sub-exponential times.

Different cryptographic algorithms have been proposed exploiting ECDLP. Smaller keys are a

real advantage especially in the embedded systems where the memory can be limited. ECC

provides signature, encryption and key exchange primitives.

Definition 5 (Discrete Logarithm Problem). Given an elliptic curve E over a finite field K,
an integer k and points P ∈ E (K) and Q = [k]P ∈ E (K) find k where [k]P = P + ...+ P︸ ︷︷ ︸

k times

.

1.2 Physical Attacks

Classical cryptographic algorithms are guessed to be secured in a black box model where only the

algorithm and some couples plain-text cipher-text are known by the attacker. In such models

classical cryptanalysis exploit intrinsic properties of the cryptographic algorithms in order to

recover sensitive information. Nevertheless cryptographic algorithms never come alone and are

implemented on physical devices e.g smart-cards, micro-controllers. In the rest of the manuscript

we call the device on which the cryptographic algorithms are running the Device Under Test

(DUT).

These implementations are vulnerable to particular attacks the so called Physical Attacks.

Such attacks exploit the interaction of the DUT with its environment.

Physical Attacks can be decomposed into two main categories (98).
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Active Attacks. In an active attack the attacker could modify the execution of the algorithms

executed on the DUT. The Fault Attacks are a classical example of active attacks. They consist

in faulting the execution of the algorithms in order to recover the sensitive values. Since their

introduction by Boneh et al. in (17) they received many publications introducing different ways

to inject fault, different target values and different exploitation steps. To inject fault an attacker

can use Optical fault injection (152) (using for example a Light Amplification by Simulated

Emission of Radiation), Electromagnetic fault injections (136) or other means (17, 88, 148)...

The target of Fault injection can be several kinds of values such as the Input Parameters (10),

the Data processing path (126) or the instruction processing path (178)... Finally different

methods have been proposed to exploit the faults in order to recover sensitive values: Differential

Fault Attacks (DFA) (15), Safe error attacks (183)...

Passive Attacks. Contrary to the Active Attacks the Passive Attacks do not interact with

the DUT. They may consist in observing some physical informations the so called Side Channel

Information emitted by the device during the execution of the cryptographic algorithms. Attacks

exploiting such information are called the Side Channel Attacks later denoted by SCA. SCA

exploit various type of physical measurements such as the power consumption of the devices (83),

theirs electromagnetic emanations (58, 135), the duration of the algorithm (84) but also more

exotic ones such as the acoustic emanations, optical emanations or even the heat.

Following this first characterization of Physical Attacks another complementary decomposition

is possible. An attack is defined as

• Semi-invasive when the attacker can modify the external package of the DUT but does

not modify the internal structure.

• Invasive when it needs permanent modifications of the DUT.

• Non invasive when the attacker only observes the physical emanation generated by the

DUT.

Depending on the context (mostly the way to inject fault) Fault Attack can be Semi-invasive

active attacks or Invasive active attacks. The rest of this manuscript deals with SCA which in

this nomenclature are Non-invasive passive or Semi-invasive passive attacks when the package is

removed in order to help the attack.
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1.3 Side Channel Attacks

A first example of SCA was provided by the program TEMPEST led by the US government

to study the possible compromising emanations. One of the first scientific presentation about

SCA is due to Kocher in (84) in which an attacker is able to recover sensitive data by exploiting

the time of execution of asymmetric cryptographic algorithms such as Diffie-Hellman (45) and

RSA (144).

The first paper dealing with the exploitation of power consumption is due to Kocher et al.

and published in (83).

The general setup for building SCA works as follows. An attacker will run a cryptographic

algorithm one time or more with different inputs. During these executions the attacker acquires

(e.g. using an oscilloscope) the physical leakages he targets. Such acquisitions are often called

traces or measurements. Exploiting these measurements he can directly recover the key in Simple

Power Analysis (84) (SPA). In other approaches (83) the attacker extracts the value of the

secret key by comparing a set of measurements and a guessed value called the prediction model

using a statistical tool the distinguisher. Since the first publications about SCA many different

distinguishers have been proposed. There is an incentive to choose the optimal distinguisher.

This “optimality” depends on a value to maximize. In practice it is often the probability of

success.

The distinguishers are ones of the core tools of SCA. They allow to compare the measurements

and the prediction model. Thus the secret key is recovered based on this comparison. Through

the literature many different distinguishers have been presented. A Side Channel Attack can be

seen as the overall process which allows to recover the secret key based on physical measurements.

This exploitation often uses measurements assuming a specific leakage and using a particular

distinguisher.

1.3.1 Notations

1.3.1.1 General notations

In this thesis uppercase letters are used for random variables (e.g. U) and the corresponding

lowercase letters for their realizations (e.g. u), calligraphic capital letters denote sets (e.g. U).

Bold symbols are used to denote vectors that have length Q, the number of measurements.

The empirical mean (resp the empirical standard deviation) of a vector u is denoted by u (resp.

( σ̂u)).
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Namely, X denotes a set of Q random variables i.i.d. with the same law as X. X represents

a leakage measurement. So, X is a Q×D matrix which represents a set of Q measurements (also

named the queries) each measurement being of length D i.e. composed of D leakage samples.

Some cryptographic algorithms involve random values. R denotes a set of random variables

i.i.d. with the same law as R which represents this value. t denotes the set of input-texts of

the measurements X with t ∈ T where T is the set of possible input-texts. Let k? be the secret

key. k? ∈ K where K is the set of the possible keys. In this manuscript we suppose that the

computations are done on n-bit words which means that these words can be seen as elements of

Fn2 . As a consequence both k? and t belong to Fn2 .

Notations Xq and X(d) are used to denote the d-th column and the q-th line of the matrix

X, respectively.

Definition 6 (Sensitive variable). A sensitive variable is an internal variable proceeded by the
cryptographic algorithm which depends on a subset of the inputs not known by the attacker (e.g.
the secret key but also the secret random value).

Definition 7 (Selection Function). Let g be a mapping which maps the input data to a sensitive
variable. This function is called selection function.

g : Fn2 × Fn2 × R −→ (Fn2 )
D

k?, T,R 7−→ g (k?, T,R) .
(1.1)

Definition 8 (Leakage Function). The way that the sensitive values leak in the measurements
depends on a leakage function that is a specific characteristic of the target device:

Ψ : (Fn2 )
D −→ RD

V 7−→ Ψ (V ) .
(1.2)

Based on this definition a measured leakage is modeled by:

X = Ψ (g (k?, T,R)) +N, (1.3)

where the random variable N denotes an independent additive noise. This noise is assumed to

be independent between each measurement.

The function g depends on the algorithm while the function Ψ is a characteristic of the

device. The function Ψ is in general not known by the attacker. As a consequence in order to

perform SCA an attacker will often has to make a prediction on the unknown leakage function

by selecting a specific leakage model. Let denote by Ψ̂ this leakage model Ψ̂ : (Fn2 )
D → RD.

9
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In order to simplify our notations we introduce the function y = Ψ̂ ◦ g, where ◦ denotes the

composition law. Additionally we introduce the following notations for the prediction model :

Y ? = y (k?, T,R) = Ψ̂ (g (k?, T,R)) , (1.4)

Yk = y (k, T,R) = Ψ̂ (g (k, T,R)) . (1.5)

The prediction model denotes the association of a leakage model and a key guess k and gives

an estimation of a possible values for the leakages. The key index will often be removed where

there is no ambiguity.

Depending on the DUT the attacker can used some classical leakage models.

In software implementations the Hamming weight is often used. The Hamming weight (HW)

is simply the sum of the bits and is given by:

HW : Fn2 −→ R
g (k?, T,R)

(d) 7−→ ∑
b≤n

[
g (k?, T,R)

(d)
]
b
,

(1.6)

where [·]b : Fn2 −→ F2 is the projection onto th b-th bit.

A more precise model is to assume weights on each value of the bit decomposition. Let us

denote by WHW (for weighted Hamming Weight) this kind of functions which take as input a

vector of weight α:

WHW : R× Fn2 −→ R(
α, g (k?, T,R)

(d)
)
7−→ ∑

b≤n αb

[
g (k?, T,R)

(d)
]
b
.

(1.7)

In a hardware implementation the classical model prediction is the Hamming Distance HD

which is simply the HW of the Exclusive Or (XOR) of internal values.

1.3.2 Leakages descriptions

The SCA are closely linked to the measurements they exploit. In this section we present an

overview of possible kinds of measurements. As already mentioned SCA exploit the additional

information which can leak during the execution of the cipher through a side channel. In order

to exploit the physical emanations the attacker acquired them using an acquisition chain. The

chain represents all the tools which transform the physical leakages into the digital data which

are exploited by the attackers.
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1.3 Side Channel Attacks

Example 1 (DPA contest V4 (169) acquisition chain). An example of an acquisition chain
for ElectroMagnetic emanation (EM) acquisitions can be as follows: the EM are acquired using
an EM near-field probe, then the signal is increased using a Preamplifier and finally digitalized
using an oscilloscope.

After the step of digitalization each measurement can be seen as a vector where the compo-

nents are the leakage samples.

The shape of the measurements will differ from an acquisition setup to another. They

will also differ depending on the target. Indeed the measurements acquired from a hardware

coprocessor may often be “smaller” and “noisier” than measurements acquired from a software

implementation executed on smart-card. Indeed the length of software measurements can exceed

the million of points whereas the hardware may not exceed thousands. Nevertheless in both

cases the number of possible exploitable samples may be small compared to the size of the

measurements.

The leakage function may vary from an experiment to another. Indeed it can be efficiently

modeled by a modulation of a leakage model.

Definition 9 (Modulated Traces). Let us now define a modulated trace as a trace in which each
time sample can be expressed as a modulation of a model (static in time) plus an independent
noisy part:

X =
(
β(d)Ψ̂(g(k?, T,R)) +N (d)

)
d≤D

= β · Ψ̂(g(k?, T,R)) +
(
N (d)

)
d≤D

, (1.8)

where β is a vector in RD and each N (d) is drawn from an independent identical distribution N.
In specific, the variance of the noise does not depend on the time sample d ≤ D.

This notion is illustrated in Fig. 1.1.

Of course in other cases the same model does not appear in several time samples. Indeed the

leakages may be impacted by many external factors such the activation of external peripheral

which is typically the case on System on Chip (SOC). The values manipulated during the

execution of the algorithm may be also manipulated by different combinational logic parts which

have specific leakage functions.

1.3.3 Distinguisher

As already mentioned a common way to perform SCA is to compare a prediction model and

the measurements. In these cases distinguishers are used. The different distinguishers can be

divided into categories depending on the a priori knowledge they required. Nevertheless in some

cases direct exploitations of the measurements are possible.
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Figure 1.1: Example of a modulated trace

1.3.3.1 Simple Side Channel Analysis

In some cryptographic implementations the operations proceeded depend on the value of the

key. In these cases a “simple” observation of the side channel can allow to recover the key. These

attacks called Simple Side Channel Analysis (SSCA) can reveal directly the entire key. A first

example of such attacks has been presented by Kocher in (85). In this attack the attacker takes

advantage of the non constant time execution of operations of the algorithm.

Simple Power Analysis (SPA) will exploit the dependencies between the secret key and the

power leakages. An example was proposed by Coron (38) where an attacker exploits the fact

that a point addition is performed only if the current bit is one. As a consequence by identifying

the sequence of points addition and points doubling the attacker is able to recover the scalar.

1.3.3.2 Profiled attacks

The profiled attacks assume a powerful attacker which has a full control of a clone device of

the DUT often called open sample. Exploiting this clone device the attacker is able to build an

accurate estimation of the leakage function. These attacks are generally multivariate (D > 1)

and are seen as the most powerful kind of attacks. To do so profiled attacks are computed into

two steps:

• profiling phase: during this phase the attacker uses his clone device to estimate the leakage

function. In order to estimate this function he generally needs the knowledge of k? and

the ability to change it. It is in generally not possible on commercial devices.
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• attack phase: during the attack phase the attacker exploits the knowledge of the leakage

function to build a powerful attack to recover the secret key k?.

A first example of Profiled attack the so called template attacks has been given by Chari et

al. in (31). They are known to be the most powerful attacks in an information theoretic sense;

in the context of side-channel analysis, this means that they minimize the error probability, that

is they maximize the probability of success (provided templates are estimated without error).

They consist in estimating the likelihood for a key guess. In the learning phase the probability

density function p (X|T,K?) of the leakages X knowing T and K? is computed. Then in the

attack phase using the Bayes’ theorem the likelihood is computed. In the original publication

the noise N is assumed to be Gaussian, and as a consequence p (X|T,K?) is the density of a

Gaussian distribution.

Following this first example of Profiled Attacks several other Profiled Attacks have been

proposed (75, 77, 93, 147).

Recently the optimal distinguisher has been presented depending on the knowledge of the

attacker about the leakage function (74). When the attacker has a full knowledge of the leakage

function the optimal distinguisher is the Maximum Likelihood (ML) of a Template attacks

scenario.

Definition 10 (Maximum Likelihood Attacks ML). When the leakage function Ψ is known the
optimal distinguisher is given by:

ML : Fn2 × RD×Q → Fn2
y,x 7→ argmaxk∈K

∏Q
q=1 pN (xq − yq) ,

(1.9)

where pN is the density function of the noise, and where yq is the qth realization of the prediction
model Yk (Eqn. (1.5)).

1.3.3.3 Non profiled Attacks

The non profiled attacks scenario assumes a less powerful attacker. Such attacks are generally

univariate D = 1 and take into account all the leakage samples independently (i.e. the

distinguisher is applied successively on each leakage sample). These attacks are generally applied

on a set of traces and are often called differential attacks.

The first distinguisher which has been presented is the difference of mean used in the

mono-bit DPA. The data set is split into two with respect to one bit of the result of the selection

function. The key is recovered by taking the argmax of the distance between the mean of these

two sets.
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Definition 11 (Differential Power Analysis (DPA)). The DPA attacking the bth bit is :

DPA : F2 × Fn2 × RQ → Fn2

b, t,x 7→ argmaxk∈K

∑Q
q=1 xq×1{[g(k?,tq,R)]b=1}∑Q
q=1 1{[g(k?,tq,R)]b=1}

−
∑Q
q=1 xq×1{[g(k?,tq,R)]b=1}∑Q
q=0 1{[g(k?,tq,R)]b=0}

.

(1.10)

Extended version of this attack has been proposed in order to take into account several

bits (11, 104).

Brier et al. have presented in (18) the Pearson Correlation Coefficient ρ as distinguisher

in the Correlation Power Analysis (CPA) which takes into account all the bits of the sensitive

variables.

Definition 12 (Correlation Power Analysis (CPA)). The CPA using the correlation coefficient
as distinguisher is :

CPA : Fn2 × RQ → Fn2
y,x 7→ argmaxk∈K ρ̂ [x,y] ,

(1.11)

where ρ̂ denotes the estimator of the Pearson Correlation Coefficient.

A classical model prediction for the CPA is the HW, or the HD. Nevertheless if the actual

leakage function is different and close to WHW, the results of the CPA decrease.

As a consequence new distinguishers have been proposed to take into account this kind of

leakage functions.

The Linear Regression Analysis (95) (LRA) uses the coefficient of determination as distin-

guisher. In this attack the weights which impact each bit of the sensitive value are recovered

using a Liner Regression approach. The sketch of this attack is as follows, an attacker makes an

estimation of the coefficients α for each key hypothesis k let us denote by α̂ these estimated

weights. These estimated weights are taken such that they minimize the euclidean distance.

Finally the good key is the one maximizing the coefficient of determination.

Definition 13 (Linear Regression Analysis (LRA)). The LRA using the coefficient of determi-
nation as distinguisher is given by:

LRA : Fn2 × RQ → Fn2
t,x 7→ argmaxk∈K 1− ‖x−y·α̂‖2‖x−x‖2 ,

(1.12)

where y denotes the Q× n+ 1 matrix which represents the bit decomposition of the sensitive
variables (with a constant term), and α̂ = (yt · y)

−1 · y · x.
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Many other distinguishers have been presented depending on a partition variance as distin-

guisher (3, 159)

Another approach to relax the constraints linking the leakage function and the prediction

model is the use of the Mutual Information (MI) as distinguisher. The use of the MI has

been presented in the field of side channel analysis by Gierlichs et al. in (59) to build the so

called Mutual Information Analysis (MIA). The main advantage of such approach is that the a

priori knowledge needed to build Ψ̂ could be small, the only assumption needed on Ψ̂ is to be

non-injective (59, 131).

The MI allows to evaluate the dependence between two random variables and is given by:

I[X;Y ] = H[X]− H[X|Y ],where (1.13)

H[X] =

∫ −∞

−∞
p(x) log p(x) dx and where (1.14)

H[X|y] = −
∑

y

∫ −∞

−∞
p(x, y) log p(x|y) dx . (1.15)

Definition 14 (Mutual Information Analysis (MIA) ). The MIA exploiting the MI as distin-
guisher is given by:

MIA : Fn2 × RQ → Fn2
y,x 7→ argmaxk∈K Î[x;y] .

(1.16)

Remark 1. The computation of the empirical MI needs to compute the empirical probability
density functions of x.

1.4 Samples Selection and Dimensionality Reduction

As presented in Sec. 1.3.2 the number of exploitable leakage samples may be small compared

to the length of the measurements. As the Templates Attacks are naturally multivariate they

can be applied directly on the whole traces but this leads to excessive computational loads and

memory consumption (31). To reduce the number of points on which the attacks will be proceed

a variety of methods exits. Such methods can be divided into two main categories: the sample

selection methods and the dimensionality reduction methods.

Those two kinds of method are conceptually closed as they lead to smaller traces. The sample

selection methods aim at finding in the traces the most relevant samples and select them. Sample

selection methods lead as a consequence to a data selection. The dimensionality reduction

methods aim at recombining the different samples in order to increase the possible exploitable
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information contained in one point. The dimensionality reduction methods lead therefor to a data

transformation. As a consequence the major difference occurs when monovariate distinguisher

are applied on the reduced traces. Indeed in the cases of monovariate distinguishers as the

ones presented in SubSect. 1.3.3.3 there is no need of sample selection as the distinguishers

are applied independently on each time sample. Then the results of the attacks with sample

selection will be similar to the results of attacks without sample selection. While, dimensionality

reduction may be an interesting tool as it combines information spread over different leakage

samples in an exploitable one and as a consequence better results can be expected.

1.4.1 Sample Selection

Different metrics for sample selection have presented in the field of SCA. They allow to classify

the samples in order to identify the most relevant ones. The attacker selecting an arbitrary

number of samples maximizing the sample selection metric.

In their original article on Template Attacks Chari et al. (31) used the difference of mean in

order to recover the sample points which are linked to the key.

In the rest of this manuscript x(d) [y] =

∑Q
q=1 x

(d)
q ×1{g(k?,tq,R)(d)=y}∑Q

q=1 1{g(k?,tq,R)(d)=y}
.

Definition 15 (Difference of Mean (31) (DOM)). The DOM sample selection method is given
by:

DOM : F2 × Fn2 × RQ → Fn2
b, t,x 7→ argmaxd≤D

∑
y 6=y′ x

(d) [y]− x(d) [y′] .
(1.17)

An extension of this method based on Sum Of Square Difference has been proposed in (60),

where the square of the difference of means is computed.

Definition 16 (Sum Of Square Difference (60) (SOSD)). The SOSD sample selection method
is given by:

SOSD : F2 × Fn2 × RQ → Fn2
b, t,x 7→ argmaxd≤D

∑
y 6=y′

(
x(d) [y]− x(d) [y′]

)2

.
(1.18)

An extension which takes into account the variance the so called Sum Of Square pairwise

T-differences (SOST) has also been proposed in (60).

One can notice that this selection method is closed to the DPA distinguisher. Similarly other

distinguishers have been adapted to select samples in the context of Template Attacks.
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Definition 17 (Pearson Correlation (98) (CPA)). The CPA sample selection method is given
by:

CPA : Fn2 × RQ → Fn2
y,x 7→ argmaxd≤D ρ̂

[
x(d),y

]
,

(1.19)

where ρ̂ denotes the estimator of the Pearson Correlation Coefficient.

Similarly other distinguishers can be used as metric for sample selection. An overview of the

different methods can be found in (51).

1.4.2 Dimensionality Reduction

While Sample Selection aims at selecting one or more relevant samples the Dimensionality

Reduction aims at recombining the data in a way that information spread over multiple samples

will be combined in only one. In the area of SCA such methods have been presented as

preprocessing for Template Attacks (as the selection samples) but also for differential attacks.

Different dimensionality methods have been proposed. The Principal Component Analysis

(PCA)) is a classical statistical tool for dimensionality reduction (79).

Definition 18. The PCA is an orthonormal linear projection of the data, which maximizes the
variance of the projected subspace of dimension D′ ≤ D. More formally, we search the projection
which maximizes the variance of the projected data. For the first dimension of the subspace this
leads to:

max
‖u1‖=1

Var [Xu1] = max
‖u1‖=1

tu1STu1,

where ST is the covariance matrix given by t (x− x) (x− x). For the second dimension, as we
want an orthonormal projection, this yields:

max
‖u2‖=1
u2·u1=0

tu2STu2.

The process is iterated for each dimension D′ ≤ D.

This method has been introduced in the area of SCA by Archambeau et al. in (2) in the

context of the template attacks. It has been also presented in order to improve the results of

differential attacks in (5).

Remark 2. In the context of SCA the PCA is generally used to maximize the between-class vari-

ance. In this case the covariance matrix computed that is
∑
y∈Fn2

(
x(d) [y]− x(d)

)(
x(d) [y]− x(d)

)t
.
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Recently a new dimensionality reduction tool has been introduced in the context of SCA,

the so called Linear Discriminant Analysis (158) (LDA). While the PCA aims at maximizing

the variance of the projected subspace the LDA maximizes the ratio between the between-class

variance and the within-class variance. This means that compared to the approach using the

PCA is that the within-class is taken into account.

Definition 19. The LDA is an orthonormal linear projection of the data, which maximizes the
ratio between the between-class variance and the within-class variance of the projected subspace
of dimension D′ ≤ D.

For the first dimension of the subspace this leads to:

max
‖u1‖=1

tu1SBu1

tu1SWu1
.

where SB and SW are respectively the between-classes scatter matrix and the within-classes
scatter matrix.

SB =
∑

y∈Fn2

(
x(d) [y]− x(d)

)(
x(d) [y]− x(d)

)t
, (1.20)

SW =
∑

y∈Fn2

Q∑

q=1

(
x(d)
q × 1{g(k?,tq,R)d=y} − x(d) [y]

)(
x(d)
q × 1{g(k?,tq,R)d=y} − x(d) [y]

)t
.

(1.21)

The process is iterated for each dimension D′ ≤ D.

Nevertheless even if these methods have already been compared (see for example (32)) there

is no clear and systematic analysis of their overall behaviors in the context of SCA.

1.5 Protection methods

In order to protect cryptographic algorithms in embedded devices different countermeasures

have been developed. A first approach is to mitigate the part depending on sensitive variables

in the measured leakages.

Adding Noise. A designer can increase the noise in leakages by adding some operations

in parallel of the execution of sensitive variables. As the sensitive variables, these dummy

operations will leak. Another approach is to execute dummy operations between the execution

of sensitive operations. The consequence is a misalignment in the traces which can be seen as

noise.
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Specific Logic. On the other hand a designer can reduced the signal available. A way to

attend this goal is to use dual rail logic. In such implementations the same logic is implemented

twice and during the execution of the algorithm the second logic takes as input the complementary

values.

The two methods lead to a diminution of the Signal to Noise Ratio (SNR) which represents

an evaluation of the ratio between information and noise.

Whereas the both methods provide security by increasing the number of traces needed to

perform the attacks, their respective behaviors are device dependent. As a consequence a formal

analysis of the security provided by these countermeasures is a difficult task. Therefor other

countermeasures have been study for which the security characteristic can be formally grounded.

1.5.1 Data Masking Scheme

Data Masking schemes (29, 96) are one of the most used protection method against SCA as the

provided security can be formally grounded. The aim of data masking is to make the sensitive

data independent from the variables manipulated and then independent from the measured

leakages. Intuitively, masking aims at increasing the order of the statistical moments (in the

leakage distributions) that reveal sensitive information (30, 78).

Interestingly the consequence of such protections is closed to a noise addition as the exploitable

information will be melt into more noisy information. As a consequence we will often see the

SNR as a useful tool to study implementations and specifically protected implementations.

The rationale of masking schemes goes as follows: each sensitive variable is randomly split

into Ω shares (using Ω−1 masks), in such a way that any tuple of Ω−1 shares manipulated during

the masked algorithm is independent from any sensitive variable. A masking scheme which

reaches this property is called perfect masking scheme. This splitting is done using an invertible

operation ⊥ and random values as masks. Let y be the sensitive values and yi,Ω > i > 0 being

the (Ω− 1) random values drawn from a uniform law. Then the values manipulated in the data

masking schemes are the masks and the masked value : y0 = y⊥y1⊥...⊥yΩ−1.

Different operations ⊥ have been presented in the literature. The boolean maskings are the

most classical one, they use the XOR denoted by ⊕ as invertible operation. They are often

used in practice as the XOR operation is easy to implement both in hardware and in software,

moreover in many of the classical block ciphers the permutation operations are linear with the

XOR. The arithmetic or additive masking schemes (38) using the modular addition can also be

used in order to protect cryptographic algorithms in which some operations are linear with the
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Input text y

Boolean splitting ⊕

m1y ⊕m1 ⊕ ...⊕mΩ−1 m2 mΩ−1

⊕key: k

y ⊕ k ⊕m1 ⊕ ...⊕mΩ−1

L L L L

L (m1)L (y ⊕ k ⊕m1 ⊕ ...⊕mΩ−1) L (m2) L (mΩ−1)L (mΩ−1)

⊕

L (y ⊕ k ⊕m1 ⊕ ...⊕mΩ−1)⊕ L (m1)⊕ L (m2)⊕ ...⊕ L (mΩ−1) = L (y ⊕ k)

Figure 1.2: Schematic of a linear part of a masking scheme of a block cipher.

addition. It is for example the case with IDEA, SHA-1 or SHA-2. Another type of masking

schemes are the multiplicative (61) ones using the modular multiplication. They can be used to

compute the substitution part of some block ciphers. Affine masking schemes (57) combine a

multiplicative and a boolean masking scheme.

The linear operations (with respect to ⊥) are easy to implement. These operations are

applied on all the shares and the results are combined by ⊥ (see Fig. 1.2).

At the opposite it could be particularly challenging to compute non-linear parts of the

algorithm, such as for example the S-Box of AES (a function from n bits to n bits).

A classical approach to compute the non-linear parts is to used masked tables. The idea
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is to store a masked version of the non-linear part in a look up table which removes the input

mask and remasks by the output mask. As those masks change for each encryption a possibility

is to precompute off-line the table for each possible input and output mask in a global Look-up

Table (130, 162) . This approach can be prohibitive (e.g. it could be necessary to store a

2n × 2n × 2n × 2n table) and then is not often used in practice. An other approach for software

implementations is to use precompute table (1, 29, 105). In such implementation the non linear

parts are stored in a lookup table and at each encryption a new table is computed for the

specific input and output masks. Recently, Coron presented at EUROCRYPT 2014 (39) a table

recomputation scheme for any Ω. Since this countermeasure aims at high-order security (Ω > 1),

it requires one full table precomputation before every S-Box call.

Variety of hardware implementations can be found using specific mask gates (171) and the

possible algebraic representation of the block cipher (16, 141). An example for AES is to use

the tower field representation to reduce the inversion problem in a smaller field. The Threshold

implementations (116) are a particular kind of hardware implementations which are designed to

ensure the security up to a certain order in presence of glitches.

1.5.2 Protection for Asymmetric Cryptography

The Asymmetric Cryptography algorithms can be vulnerable to SPA indeed the classical

algorithms used for the modular exponentiation used in RSA or the scalar multiplication for

ECC use conditional branches depending on the exponent or the scalar. As an example the

classical scalar multiplication algorithm performs a double and an add when the scalar bit is

one or just a double when the scalar bit is zero. Therefor by simply looked at the sequence of

operations it is possible to recover the entire key within one trace. It exists in the literature

many different scalar multiplications/modular exponentiations.

To avoid SPA a first countermeasure makes the scalar multiplication regular meaning that

the same operations are performed independently from the value of the current bit. Different

algorithms have been proposed to attend this goal such as the Double and Add Always or the

Montgomery Ladder algorithm.

Nevertheless this kind of countermeasure does not protect against differential attacks. An

example of differential attacks has been proposed in (38). Similarly to the protected implemen-

tations of symmetric cryptographic algorithms, different randomization countermeasures have

been developed, they will differ on the randomized values but their behaviors are similar. Indeed
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for each execution of the cryptographic algorithm one value or more is randomized which makes

this particular variable not attackable by differential means.

Different types of variable can be targeted and as a consequence different variables can be

randomized.

Scalar/Exponent Splitting. In order to be protected the scalar (resp. the exponent) has to

be randomized. For ECC a first example of scalar randomization has been proposed in (38):

the group scalar randomization. This countermeasure takes advantage of the group structure of

the EC. It consists in adding to the scalar a multiple of the order of the curve. Nevertheless

this countermeasure is the target of the Carry Leakage Attacks (54). Therefor different other

scalar randomization countermeasures have been proposed. They consist in splitting the scalar

into two values. In the additive splitting (34) a scalar multiplication, with the secret scalar

minus a random number as scalar, is first computed followed by the scalar multiplication with

the random number as scalar. In multiplicative splitting (172) a first scalar multiplication is

done with a random number. The result of this multiplication will play the role of the point in

a second modular multiplication where the scalar is the secret scalar times the inverse of the

random number. An other splitting often used is the Euclidean Splitting (33). Similarly to the

multiplicative splitting a first scalar multiplication is performed using a random number. Its

result serves as point for two other scalar multiplications. The first one used the rest of the

euclidean division between the secret scalar and the random, the second scalar multiplication

used the quotient of this euclidean division.

Similar countermeasures can be found in RSA implementation. Different scalar blindings

have been proposed in the literature. An example of exponent blinding is provided in (84). In

this case a random multiple of the Euler’s function of the modulus is added to the exponent. The

Exponent splitting (34) divides the exponent into two parts. Then two scalar multiplications

are performed.

Data randomization. Specific attacks can target the point on the curve manipulated in the

scalar multiplication rather than the scalar itself. To prevent such attacks data randomizations

often called Points Blindings have been proposed. The first example of Points Blinding was given

in (38). In this countermeasure a pseudo-random point on the curve is stored on the chip and

updated at each iteration. The scalar multiplication is computed on the sum of the initial point

and a random one. Other countermeasures have been proposed in order to protect the ECC
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algorithms against the Doubling Attack (55) which consists in the comparison of two traces with

the base point and the double of this point. Indeed the same value appears in the two traces if

the scalar meets some properties. A first example of countermeasures is the Random Projective

Coordinates (38). Using the Jacobian coordinate representation the point is randomized by

multiplying each coordinate by a random number. A second countermeasure is the Random

Curve Isomorphism (80). In this countermeasure the scalar multiplication is computed on an

isomorphic random curve.

In the case of RSA the data randomization can be provided in two different ways. The

first way is to randomize the modulus. This randomization can be achieved by multiplying the

modulus by a random number. The second way is to randomize the base (84) which consists in

a blinding of the message and the modulus. A random multiple of the modulus will be added to

the message.

This list represents a non exhaustive presentation of possible attacks and countermeasures

against ECC and RSA. A synthesis for ECC can be found in (115).

1.6 Attacks on the countermeasures

1.6.1 High Order Attacks

The masking schemes provide security against the SCA presented in Subsect. 1.3.3 nevertheless

a particular kind of SCA has been developed in order to counter the masking schemes the so

called High order Side Channel Attacks (HOSCA).

An Ω− 1 order masking scheme will ensure that any combination of less than Ω values will

not leak any information about the key.

The overall principle to counter the masking scheme is to combine the leakages of the Ω

shares (29). Based on this principle a whole kind of attacks has been defined the HOSCA (29,

106, 133, 177).

1.6.1.1 Template Attacks

The Template Attacks have been extended to defeat the masking schemes in (121). The rational

of the attacks is similar to the unprotected cases. In the first learning phase the attacker learns

the density probability p (X|T,K?,M) for all the possible (T,K?,M).

Remark 3. As the target is Ω− 1 order masking schemes, X should be at least of size D = Ω.

Remark 4. The profiling step is significantly easier if the masks are known during this step.
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In the attack phase the contribution of the masks is taken into account by computing the

mean over the possible values of the masks.

p (K|X,T ) =
∑

m∈M

p (X|T,K?,m) p(m) (1.22)

Recently the optimal distinguisher has been derived in the context of a template attacks

against protected implementations. In the case of masking the optimal distinguisher which

maximizes the success rate is given by (23) the Maximum Likelihood.

Definition 20 (Maximum Likelihood). When the y (t, k, R) are known and the Gaussian noise
N is i.i.d. across the queries (measurements) and independent across the dimension, then the
optimal distinguisher is:

OPT: RDQ × RDQ −→ Fn2

(x, y (t, k, R)) 7−→ argmax
k∈Fn2

Q∑

q=1

logE exp
−‖xq − y(tq, k, R)‖2

2σ2

(1.23)

where the expectation operator E is applied with respect to the random variable R ∈ R, and the
norm is the Euclidean norm ‖xq − y(tq, k, R)‖2 =

∑D
d=1(x

(d)
q − y(d)(tq, k, R))2.

1.6.1.2 Combination functions

While the Template attacks are multivariate, standard distinguishers are in general monovariate.

Thus in order to combine the leakages of each share specific functions are used. These functions

are called combination functions. The Higher Order Differential Power Analysis (HODPA) are

based on a combination function and a distinguisher presented in Subsect. 1.3.3.3 (also called

differential attacks). In the SCA literature several combination functions have presented taken

conjointly with the distinguisher they completely defined the HODPA. They can be applied

both on the leakage traces or the models. Formally we have that a combination function C is

given by:

C : RD → R
X 7→ C (X) .

(1.24)

Of course to have a sound HODPA we have that D ≥ Ω.

Several examples have been proposed in the case of a second order masking scheme. Let us

denote by X(0) the leakage of the first share and X(1) the leakage of the second one i.e.

X(0) = Ψ(0) (Sbox[T ⊕M ⊕ k?]) +N (0) , (1.25)

X(1) = Ψ(1) (M) +N (1) . (1.26)
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Similarly we define by Y (0) and Y (1) their respective prediction model.

Definition 21 (Product Combining Function (30)). The product combining function multiplies
the shares:

Cp : R× R → R

X 7→ X(0) ×X(1) .
(1.27)

Definition 22 (Absolute Difference Combining Function (107)). The Absolute Difference
Combining Function computes the absolute difference of the two shares:

Cad : R× R → R

X 7→ |X(0) −X(1)| ,
(1.28)

In the two previous examples the combination function is only applied on the leakages. More

exotic high order attack functions have been proposed where two different combination functions

are used for the leakages and the prediction models (121).

Prouff et al. shown in (133) that the best approach, when the leakage function is the

Hamming Weight, is to used the centered product combination function in order to combine the

leakages and the prediction model.

Definition 23 (Centered Product Combining Function (133)). The centered product combining
function computes the centered product of the two shares:

Ccp : R× R → R

X 7→
((
X0 − E

[
X(0)

])
×
(
X(1) − E

[
X(1)

]))
| ,

(1.29)

Additionally Prouff et al. shown in (133) that for a given combination function CX applied

on the measurements to maximize the absolute value of the correlation the prediction models

have to be combined by:

CY : Fn2 × R → R
X 7→ E

[(
Y (0) − E

[
Y (0)

])
×
(
Y (1) − E

[
Y (1)

])]
,

(1.30)

where CY is the same function as CX but defined over Fn2 .

1.6.2 High Order Differential Attacks

Definition 24 (2O-CPA (133)). We denote by 2O-CPA the CPA using the centered product as
combination function. Namely:

2O-CPA: RQ × RQ × RQ −→ Fn2
(x0,x1,y) 7−→ argmax

k∈Fn2
ρ̂
[(

x(0) − x(0)
)
�
(
x(1) − x(1)

)
,y
]
,

(1.31)
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where y = EM
((
y(0) (t, k, R)− E

[
y(1) (t, k, R)

])
�
(
y(1) (t, k, R)− E

[
y(1) (t, k, R)

]))
, � is the

element wise product and ρ̂ is an estimator of the Pearson coefficient.

Then this definition can be straightforward extended to any masking scheme of order Ω.

Definition 25. The “classical” ΩO-CPA is the HOCPA built by combining the Ω shares using
the centered product combination function.

ΩO-CPA: RΩ × R −→ Fn2((
x(i)
)
i∈J0,Ω−1K

, Y

)
7−→ argmax

k∈Fn2
ρ

[
Ω−1∏

i=0

x(i), Y

]
,

where y = EM
(∏d−1

i=0

(
y(i) (t, k, R)− E

[
y(i) (t, k, R)

]))
, and the product is the element wise

product and ρ̂ is an estimator of the Pearson coefficient.

As already mentioned a HOSCA is completely defined by the distinguisher and the combination

function. Then all the properties of these attacks can be expressed using the properties of the

combination function or the distinguisher.

Definition 26 (Attack order). The order of an HODPA is given by the polynomial degree of
its combination function.

Remark 5. In this definition the order of ΩO-CPA is the number of shares combined that is Ω.

Proposition 1. The number of measurements needed to recover the secret key increases expo-
nentially with respect to the order of the masking schemes.

Proof. A first proof of this proposition was given in (108) for a Gaussian noise and DPA

distinguisher.

Therefor the general assumption is that the better attack against a masked scheme is the

minimal order attack.

Recently several HOSCA have been presented which exploit additional leakages (additionally

to the masks and the masked sensitive values). In (24, 124, 173) presented an attack which

takes into account the leakages which occur during the table recomputation of a masked block

cipher with table recomputation steps. Exploiting the multivariate leakages of such algorithms,

the results of the HOSCA are greatly increased.

Let us define the leakages of the table recomputation:

X(2) = Ψ(2)(M) +N (2) (1.32)

X(3) = Ψ(3)(M ⊕ 1) +N (3) (1.33)
...

X(2n+1) = Ψ(2n+1)(M ⊕ (2n − 1)) +N (2n+1) . (1.34)
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1.6 Attacks on the countermeasures

One example of an attack exploiting these leakages has been exposed in (174), which we

label as 2-stage CPA attack.

Definition 27 (2-stage CPA attack (174)).

2×CPAmt(x, t) = arg max
k∈K

ρ̂(x(0), y(0)(t, k, m̂)), (1.35)

where ∀i m̂i is the mask that maximizes the correlation between x(ω)
i and y(ω)

i = ω ⊕mi

for ω ∈ [2, 2n+1]. This attack is a synergy between a horizontal and a vertical attack. For each

trace (separately ∀i), the first attack in Eq. (4.7) consists in recovering the mask during the

precomputation. Second, a regular CPA using a model in which both the plain-text t and the

mask m are assumed as public knowledge is launched. Even if the mask m̂ is not recovered

correctly for each trace (since 2n leakage samples during the precomputation can be seen as

small), it can be expected that the value of the mask is recovered by the first horizontal attack

probabilistically well enough for it to be biased, i.e., better guessed than random.

In order to mitigate the impact of these attacks some countermeasures have been devel-

oped (124) , they are based on random shuffles. These shuffles make the loop index ω unknown

by the attacker. This kind of masking are called in this manuscript shuffled table recomputation

masking scheme.

1.6.3 Dimensionality parameters of the attacks

The SCA often deal with the combinations of several leakage samples. It is the case of SCA with

dimensionality reduction methods for differential attacks or template attacks. The HOSCA often

combine different leakage samples to recover key depend values. In this subsection we present

three definitions (numbered 28, 29 and 30) which allow to classify the attacks depending on the

way they exploit the multiple leakages.

Definition 28 (Dimension). The dimension D of the attack is the number of leakage samples
jointly used to establish one key guess.

Let X be a leakage measurement. We have that X = Ψ (g (k?, T,R)) + N . The set

of all distinct sensitive variables is given by ∆ = {g (k?, T,R)
(i) |∀j 6= i, g (k?, T,R)

(i) 6=
g (k?, T,R)

(j)} .

Definition 29 (δ-variate attacks). An attack is said δ-variate when δ = #∆ .

Notice that this definition does not take into account the possible duplicate variables but

highlights the diversity of exploitable variables.
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Figure 1.3: Example of multiple leakages

Another approach which combines leakage samples, is the exploitation of the leakages of

different target operations. For example an attacker can recover a byte of key during the

AddRoundKey, SubBytes or ShiftRows and combined the different key guesses obtained in order

to improve the results of these attacks. Such attacks presented in (101) are called Multi-target.

In this thesis we give a closed definition:

Definition 30 (τ -target attacks). An attack is said τ -variate when τ is the number of subset
of ∆ which depends on the secret key.

In other words this means that an attacker can build τ different and independent attacks. Of

course a better approach is to exploit all these results in one to improve the success probability

of the attacks.

An overview of the three previous definitions is given in Fig. 1.3. An attacker can target

two different operations the AddRoundKey or SubBytes separately or jointly using three different

variables: the random values, the mask value during the AddRoundKey and the mask value

during SubBytes. These variables may leak through many different time samples (31 in this

example).

In order to illustrate this property let us give some examples in Tab. 1.1.

In this thesis we will investigate how to improve the results of the SCA by increasing these

three parameters.

1.6.4 Horizontal Attack

Similarly to the symmetric case some new attacks have been developed to counter the protections

in the case of asymmetric cryptography. A classical kind of methods to defeat countermeasure
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Attack Dimension δ τ

CPA 1 1 1

CPA with dimensionality reduction D 1 1

2O-CPA 2 2 1

ΩO-CPA Ω Ω 1

Multi-target DPA τ̃ τ̃ τ̃

Table 1.1: Dimension parameter

is the so called Horizontal Attacks. These attacks recover the secret key in only one trace and

as a consequence are not impacted by the randomization countermeasures. They exploit the

regularity in the power laddering to extract information within one trace.

Remark 6. In presence of scalar/exponent Horizontal Attacks blinding allows to recover the
blinded secret key. As this value allows to forge correct outputs it is sufficient for an attacker
point of view to recover only this value.

A first example of Horizontal Attack the so called Big Mac Attack can be found in (179).

This attack on RSA implementation consists in finding if the same operand appears into two

different multiplications. The rational is as follows, the attacker first select two leakage windows

X(1) and X(2) corresponding to two different multiplications. If the Euclidean distance is small

then the same operand are manipulated in the two multiplications. Formally if we have the

‖X(1) −X(2)‖2 < t where t is a threshold we have the same operand. This attack has been

improved in (37) where the Pearson coefficient is used instead of the Euclidean distance. This

attack has also been extended to ECC in (7).

Of course Template Attacks are also available against this protection but they require the

knowledge of the secret values during the profiling phase (102).

An other approach exploiting cluster algorithms has recently been presented. This kind of

attacks allows to recover the secret key in one trace (76, 127). These attacks allow to target

directly the bit-values of the secret key.

1.7 Attacks evaluation

As already mentioned different distinguishers and preprocessing methods can be used to build

SCA. Then the question arises to know which distinguisher or which combination distin-

guisher/preprocessing method leads to the better efficiency. Two approaches can be chosen. A
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first way is to exploit actual results of attacks to build the comparisons. The other possibility is

to theoretically evaluate the results of the attacks based on the expression of the distinguishers.

1.7.1 Empirical Evaluations

In this approach the different attacks are compared using their respective results. Different

metrics have been proposed in order to exploit theses results to build comparisons. These

metrics are often based on the results of several repetitions of the same attacks over different

sets of traces. This means that the empirical distinguisher D̂ is applied I times on I different

sets of traces iX and iT with i ≤ I build with the same secret key k?. Notice that the index is

before the capital bold letter to avoid ambiguity with the column notation. In the rest of this

section let us denote by ik̂ the result of the i-th one with i ≤ I i.e. ik̂ = argmaxk D̂ (iX, iT).

Definition 31 (Empirical Success Rate (161) (SR)). Let ik̂, i ≤ I be set of I results of I
independent attacks. The empirical Success Rate for an empirical distinguisher D̂ is given by:

SR
[
D̂
]

=
1

I

∑

1≤i≤I

1k?=ik̂
. (1.36)

An approach is to compute Guessing Entropy (GE). The GE is given by the mean rank of

the secret key.

Definition 32 (Rank). The rank of the secret key is given by:

rank (k?) = min
KS∈K

(
#K−#{KS |k? = argmax

k∈KS

D̂ (iX, iT)}+ 1

)
. (1.37)

Definition 33 (Guessing Entropy (89) (GE)). Let ik̂, i ≤ I be set of I results of I independent
attacks. The empirical Guessing Entropy for an empirical distinguisher D̂ is given by:

GE
[
D̂
]

=
1

I

∑

1≤i≤I

rank (k?) . (1.38)

When the attack is followed by a key enumeration (175) an attacker may used the ranking

entropy which takes into account the orders of magnitude of the rank more than the rank of the

key itself (100).

Definition 34 (Ranking Entropy (100) (RE)). Let ik̂, i ≤ I be set of I results of I independent
attacks. The empirical Ranking Entropy for an empirical distinguisher D̂ is given by:

RE
[
D̂
]

=
1

I

∑

1≤i≤I

log rank (k?) . (1.39)

These empirical metrics provide an efficient way to compare the results of different distin-

guishers. A distinguisher will be said better than another one if its SR is higher or if its GE is

lower when applied on the same set of traces.
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1.7.2 Theoretical comparison

The empirical validations do not provide any feedback to explain the behaviors of the success

SCA. In order to get a better understanding on relevant parameters, theoretical evaluation can

be build. The success of an attack can be expressed using the theoretical Success Rate (SR)

Definition 35 (Theoretical Success Rate (SR)). The theoretical Success Rate for a given
distinguisher D is:

SR [D] = p(k? = k̂) . (1.40)

Exploiting this formula different analysis have been performed to study the relevant parame-

ters (53, 140, 170) of the SR. In (53) Fei et al. provided a closed form expression of the SR for

the DPA distinguisher. Exploiting this expression they showed that the SR depends on three

main parameters:

• The number of measurements Q,

• The Signal to Noise Ratio SNR,

• The confusion coefficient κ.

The confusion coefficient is a parameter which expresses the relationship between the correct

key and incorrect key hypothesis for a given leakage model. In the initial publication (53) as

only the DPA was taken into account the leakage model was the one bit one.

Thillard et al. extended in (170) the notion of confusion coefficient for any leakage models

and then give the closed form expression of the SR for the CPA. Recently an approach based (63)

on the Success Exponent (SE) allows to derive the closed form expression of the SR for different

distinguishers (DPA MIA and CPA). In this manuscript we used their definition of the confusion

coefficient.

Definition 36 (Confusion Coefficient (63)). The confusion coefficient between the secret key
k? ∈ K and any key hypothesis k ∈ K for a leakage model is given by:

κ (k?, k) = p(Y (k?) = Y (k)) = E




(
Y (k?)− Y (k)

2
)

2


 . (1.41)

Recently these approaches have been extended in the case of HOSCA against masking

scheme (46, 94).
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1.8 Contributions of the Thesis

1.8.1 Contributions

This thesis is about the security of the protected implementation of cryptographic algorithms.

Especially we investigate the possible attack path using specific HOSCA designed to target these

implementations. In this context we show that the level of security provided by analysis which

take into account only monovariate leakages is overestimated.

In particular starting from the observation that many sensitive leakages appear in the side

channel measurements we investigate what is their impact in terms of security. Which can be

rewritten as:

How far an attack can go by exploiting multiples leakages?

The answer of this question is provided by exploring the different meaning that the term

“multiple” can take in the SCA context.

The Fig. 1.4 represents a summary of the contributions of this thesis. Each arrow highlights

a way to improve the success of the SCA. The black marks represent the initial attacks which

exploit the minimum number of points. In this manuscript we show that increasing the number

of leakage samples used for the attacks by adding similar variables, the D axis in Fig. 1.4 is a

powerful tool to increase the probability of success. We show theoretically the best approach in

case of a first order attack represented by a green arrow. In the case of a second order attack,

represented by a blue arrow, against protected implementations we will present a dimensionality

reduction tool which improves the results of the attacks. The gain of these methods increases

with the order of the implementations. We can easily see in Fig. 1.4 that the previous methods

exploit the multiplicity of leakages with respect with only one axis. The other attacks will

exploit the two remaining axes. We give an example of a multi-target attack exploiting the table

recomputation step of a masking scheme in Chap. 4. We theoretically prove that this method is

the optimal way to exploit the multiple leakages. In Chap. 6 we present a new attack which

exploits the leakages along the δ axis. This attack presents the interesting property of not being

of minimal order as it is a third order attack represented by a red arrow. Nevertheless this

attack exploits only two axes. The last attack exploits the three axes and provides better results

compare to the previous chapter assuming a full knowledge of the leakage function. Finally

Fig. 1.4 shows the different axes to improve the results of SCA. Indeed the classification of the
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Figure 1.4: Summary of the contributions.

attack allows an attacker to select the axis in which he could improve the attacks. We can notice

that these axes are numerous, multiple leakages, multiple variables and multiple targets.

1.8.2 Outlines

In a first Part I of this manuscript we investigate how to increase the SR by exploiting the

multiple leakages of the same sensitive variable. This question is often presented in the SCA

literature and can be expressed into two ways. How to turn multivariate leakages in monovariates

ones and how to do this in the best way. The first question was often answered by applying

dimension reduction tools. Regarding the classification provided in Subsect. 1.6.3 in this part

we will present methods to increase the dimension of the attack.

In Chapter 2 we tackle the question of optimality. We theoretically expressed the best
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dimensionality. In the case of modulated traces with full knowledge of the modulation we gives

the optimal dimensionality reduction.

In Chap. 3 we present new dimensionality reduction tools in the context of HOCPA. We

detail the impact of multiple leakages in the case of HOCPA. In particular we show that as

the number of possible points increases with the order the impact of dimensionality reduction

jointly increases with order. Moreover we present a new tool to go from multivariate leakages to

monovariate ones. Relaxing the knowledge of the attacker we present an optimal dimensionality

reduction for a particular types of noises.

In the second Part II we investigate how to enhance results of HOSCA by taking into account

different variables. In particular regarding the classification provided in Subsect. 1.6.3 we will

build highly variate and highly target attacks. In other words we increase the parameter τ and

δ of the attacks.

In Chap. 4 we extend the first attack against masking schemes with table recomputation

step. In this scenario we derive the optimal distinguisher and show that this approach leads to

better results than the state-of-the-art attacks.

It is known that such attacks targeting the table recomputation are a critical threat against

these implementations. As a consequence countermeasures have been developed. As already

mentioned these countermeasures are based on the randomization of the order of execution of

the table recomputation.

In Chap. 5 we build an HOSCA which allows to attacks such countermeasures better than

any attacks of the state-of-the-art. While being a higher order attack this new attack gives

better results than the minimal order ones. Indeed we show that it is possible to combine the

multiple different leakages in one to increase the SNR and thus the SR of the attacks. As a

consequence we show a first example in which the minimal order monovariate attacks is not the

good tool to asset the security of these shuffled table recomputation implementations of masked

block cipher.

In Chap. 6 we investigate theoretically the behaviors of the Maximum Likelihood distinguisher

in the context of highly multivariate leakages. For instance we take as example the protected table

recomputation algorithm. We show that in this case the ML cannot be computed. Additionally

we present a new attack with better results in this context than the attacks of the state-of-the-art.

In particular this new attack shows how to combine different order leakages to build efficient

HOSCA.
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Dimensionality Reduction a case
study in presence of masking
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CHAPTER 2

Optimal Dimensionality Reduction with Profiling.

The results presented in this chapter have been published in collaboration with Sylvain Guil-

ley, Annelie Heuser, Damien Marion, and Olivier Rioul in the international Workshop on

Cryptographic Hardware and Embedded Systems (CHES 2015) (22).
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2.1 Introduction

The large number of samples to feed into the model has always been a problematic issue for

multi-dimensional side-channel analysis. One solution is to use techniques to select points of

interest. Most of them, such as sum-of-square differences (SOSD) and t-test (SOST) (60), are ad

hoc in that they result from a criterion which is independent from the attacker’s key extraction

objective. Recent criteria, such as leakage maximization by sensitive value (2), avoid this problem.

Other formal criteria, related to non-profiled attacks, have also been proposed (69, 120).
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2. OPTIMAL DIMENSIONALITY REDUCTION WITH PROFILING.

Therefore, there seems to be a converging effort, in both non-profiled and profiled attacks,

to reduce the dimensionality of multi-dimensional measurements. This desirable property of

dimensionality reduction achieves several goals simultaneously:

• it simplifies the side-channel problem (to a single multivariate pdf);

• it concentrates the information (to distinguish using fewer traces); and

• it improves computational speed.

It can be argued, however, that like every preprocessing technique, dimensionality reduction

would lose information.

Contributions. In this chapter, we tackle this problem of dimensionality reduction from a

theoretical viewpoint. Provided that the attacker has full knowledge of the leakage model, we

find that “less is more”: the advantages of dimensionality reduction can come with no impact on

the attack success probability, while improving computational speed.

We derive that the optimal dimensionality reduction process consists in a linear combination

of samples, which we explicit as a projection on a specific one-dimensional space. For white

noise, it turns out that the improved signal-to-noise ratio (SNR) after projection is simply the

sum of the signal-to-noise ratios at the various samples before projection.

Finally, we show that the optimal dimensionality reduction technique asymptotically matches

the linear discriminant analysis (LDA) preprocessing. We find that LDA generally outperforms

principal component analysis (PCA) for which the SNR increases to a lesser extend than LDA,

except in the case of white homoscedastic noise where PCA and LDA become equivalent.

We also validate in practice those results on the DPA contest v2 traces (168).

Review of the state-of-the-art. Dimensionality reduction is part and parcel of profiled

attacks. The seminal paper on template attacks (31) is motivated by keeping covariance

matrices involved in the training phase sufficiently well conditioned. Manual selection of relevant

leaking points was discussed in (122) as educated guesses. Several automated techniques were

proposed, such as sum-of-square differences (SOSD) and t-test (SOST) (60), and also wavelet

transforms (44).

Several related metrics were proposed for leakage detection. The ANOVA (ANalysis Of

VAriance) F-test is a ratio between the explained variance and the total variance—see e.g. (32, 42)

and (13) where it is named Normalized Inter-Class Variance (NICV). Also used for linear
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regression analysis, it is known as the coefficient of determination, denoted by the symbol “R2”.

It is employed in the context of side-channel analysis in (167) as multivariate regression analysis

in the presence of white noise, and in (155), where it is used as a distinguisher and as a linearity

metric.

PCA has been used to compact traces in (5) and templates in (2). The eigenvalues of PCA

can be viewed as a security metric (62) or even as a distinguisher (156). This technique is

particularly attractive as it can be easily and accurately computed with no divisions involved. It

is advocated in (81) that PCA aims at maximizing the inter-class variance, yet it is also important

to take the intra-class variance into account. For this reason, LDA has been promoted as an

improved alternative. Empirical comparisons were investigated in (137, 158, 165). Unfortunately,

despite some differences in terms of qualitative efficiency, there is no clear rationale to prefer one

method over the other. In fact, it is unclear which of the intrinsic virtue of statistical tools, their

implementation, or the dataset is actually responsible for the performance of dimensionality

reduction.

Other works attempted to consider different objective functions. In (120), the correct key

correlation is taken as the objective to be maximized. A similar goal is pursued in (66, 68, 69, 71).

Still other dimensionality reduction techniques exist, such as quadratic discriminant analysis,

but have not been studied in the side-channel literature. We mention that similar questions

have also been raised in the presence of masking countermeasures (20, 49, 138).

Outline. The remainder of the chapter is as follows. The optimal dimensionality reduction is

derived theoretically in Section 2.2. Section 2.3 provides illustrative examples. A comparison

with state-of-the-art techniques such as PCA, and LDA (158) is given in Section 2.4. Practical

validations on real traces are in Section 2.5. Section 2.6 concludes.

2.2 Theoretical Solution in the Presence of Gaussian Noise

2.2.1 Notations

We adopt a matrix notation. The different queries are indexed by q = 1, . . . , Q, where Q is

the number of traces. The different samples in a given trace are indexed by d = 1, . . . , D. Any

matrix containing D samples from Q queries is denoted by:

MD = (Md,q)d,q ,
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2. OPTIMAL DIMENSIONALITY REDUCTION WITH PROFILING.

where d = 1, . . . , D is a row index and q = 1, . . . , Q is a column index. For clarity reason we

add in this chapter the index D. Two matrices noted side-by-side are implicitly multiplied.

In this chapter in order to derive the optimal attack, it is assumed that the leakage model Ψ

is perfectly known to the attacker. We also assumed without loss of generality that is model is

centered.

The actual leakage can be written as

XD = αDY(k?) + ND, (2.1)

where the components of α are not all zero, k? is the (unknown) correct key, and ND is some

random measurement noise. The α and noise distribution are assumed known to the attacker.

We make the stationarity assumption that the noise distribution does not depend on the

particular query, that is, the ND
q are independent and identically distributed independently of

the value of q. For a given q, however, the noise samples of ND
q can be correlated. We assume

that ND
q follows a D-dimensional zero-mean Gaussian distribution N(0,Σ), where covariance

matrix Σ is a symmetric positive definite D ×D matrix. Therefore, there exists a matrix Σ1/2,

which is such that Σ1/2Σ1/2 = Σ. We assume that the matrix Σ is known by the attacker.

2.2.2 Optimal Attack

We focus on the optimal attack as part of our scientific approach to the problem. It is always

possible that for some peculiar reason a suboptimal attack actually performs better in the

presence of dimensionality reduction. But by the data processing theorem (41) any preprocessing

like dimensionality reduction can only decrease information about the secret, and, therefore,

degrade performance of the optimal attack. As a result, it does make sense to minimize the

impact of dimensionality reduction on the success rate for this optimal attack so as not to be

biased by performance loss or gain due to other factors.

The optimal attack, also known as the template attack (31), consists in applying the maximum

likelihood principle (74). Having collected Q traces of dimensionality D in a matrix xD, where

each trace xDq corresponds to a known plaintext tq, the best key guess that maximizes the
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probability of success is given by

D(xD, t) = arg max
k

p(xD|t, k? = k) (2.2)

= arg max
k

pND (xD − αDy(k)) (2.3)

= arg max
k

Q∏

q=1

pND (xD − αDyq(k)) (2.4)

where

pND
q

(zD) =
1√

(2π)D|det Σ|
exp
(
−1

2
(zD)

t
Σ−1zD

)
. (2.5)

We have used the independence of the queries in (2.4) and the assumption that at each query,

the noise distribution is the same in (2.5).

Notice that, the optimal attack can as well be a simple power attack (if Q = 1) or a differential

power attack (if Q > 1), using the terminology from (86). Still, in the sequel, we focus on

attacks which require many traces (Q� 1).

2.2.3 Optimal Dimensionality Reduction

We state our main result in the following Theorem 2.2.1:

Theorem 2.2.1. The optimal attack on the multivariate traces xD is equivalent to the optimal
attack on the monovariate traces x̃Q, obtained from xD by the formula:

x̃q =

(
αD
)t

Σ−1xDq

(αD)
t
Σ−1αD

(q = 1, . . . , Q). (2.6)

Proof. By taking the logarithm of the expression to be maximized in Eqns. (2.2)–(2.5), the
optimal distinguisher D(xD, t) rewrites

D(xD, t) = arg min
k

Q∑

q=1

(
xDq − αDyq(k)

)t
Σ−1

(
xDq − αDyq(k)

)
. (2.7)

For each trace index q, the terms in the sum expand to

(xDq )
t
Σ−1xDq︸ ︷︷ ︸

cst. C independent of k

− 2(αD)
t
yq(k)Σ−1xDq + (yq(k))2(αD)

t
Σ−1αD

= C − 2yq(k)
[
(αD)

t
Σ−1xDq

]
+ (yq(k))2

[
(αD)

t
Σ−1αD

]

=
[
(αD)

t
Σ−1αD

](
yq(k)− (αD)

t
Σ−1xDq

(αD)
t
Σ−1αD

)2

+ C ′.
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2. OPTIMAL DIMENSIONALITY REDUCTION WITH PROFILING.

The latter division is valid since Σ is positive definite and αD is a nonzero vector. Therefore,

D(xD, t) = arg min
k

Q∑

q=1

(
yq(k)− (αD)

t
Σ−1xDq

(αD)
t
Σ−1αD

)2[
(αD)

t
Σ−1αD

]

= arg min
k

Q∑

q=1

(
x̃q − yq(k)

)2

σ̃2
, (2.8)

where 



x̃q =
(αD)

t
Σ−1xDq

(αD)
t
Σ−1αD

,

σ̃ =
(
(αD)

t
Σ−1αD

)−1/2
.

(2.9)

We have shown that (2.7) and (2.8) are equivalent expressions for the same optimal distinguisher,
computed either:

• on multivariate traces xDq , with a noise covariance matrix Σ, or:

• on monovariate (i.e., scalar) traces x̃q, with scalar noise of variance σ̃2.

Theorem 2.2.1 shows that in fact, the optimal attack already integrates an optimal dimen-

sionality reduction. The maximal success rate is not altered.

Definition 37 (Projection vector). Let V D be a column of D elements. We call the projection of
an acquisition campaign xD on V D the new mono-sample traces (V D)

t
xD. That is, every trace

XD
q (1 ≤ q ≤ Q) of the initial campaign is summarized as one sample (V D)

t
XD
q = 〈V D | XD

q 〉.

Based on this definition, Theorem 2.2.1 can be interpreted as follows.

Corollary 1. The optimal dimensionality reduction is made by a linear combination of the
samples where each multivariate trace is projected on the vector V D = Σ−1αD

(αD)tΣ−1αD
, of size D× 1.

Proof. By Theorem 2.2.1,

x̃Q

︸ ︷︷ ︸
1×Q matrix

=
(αD)

t
Σ−1

(αD)
t
Σ−1αD︸ ︷︷ ︸

1×D matrix (V D)
t

xD

︸ ︷︷ ︸
D ×Q matrix

.

In addition, after this projection, the leakage becomes scalar and can be characterized by a

signal-to-noise ratio as shown in the following

Corollary 2. After optimal dimensionality reduction, the signal-noise-ratio is given by

1

σ̃2
= (αD)

t
Σ−1αD.
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Proof. This is in line with Eqn (2.8). The random leakage xD is protected onto V D to yield
X̃q = Yq(k)+Ñ (q = 1, . . . , Q) where Ñ is an additive white Gaussian noise (AWGN) distributed
as N(0, ((αD)

t
Σ−1αD)−1). Recall that the variance of the leakage model has been assumed

normalized = 1. Therefore, the signal-to-noise ratio equals

Var(Yq(k))

Var(Ñ)
=

1

((αD)
t
Σ−1αD)−1

= (αD)
t
Σ−1αD .

The SNR is an interesting metric on its own, because it quantifies how much the signal has

been concentrated (its power increased) for a given noise level. Furthermore, the SNR directly

relates to the success rate of optimal attacks (53).

2.2.4 Discussion

It is interesting to note that the optimal dimensionality reduction does not depend on the actual

distribution of Y D(k), the deterministic part of the leakage model. This means that irrespective

of the leakage function Ψ, the best dimensionality reduction depends only on signal weights αD

and on noise covariance Σ.

Similarly, the optimal dimensionality reduction does not depend on the confusion coefficient

of the leakage model (53): for identical weight and noise distribution, the optimal linear

combination of leakages is the same whether an XOR or a substitution box operation is targeted.

2.3 Examples

2.3.1 White Noise

One interesting situation is when the noise samples are uncorrelated (see for instance (167) for

an experimental setup). The covariance matrix Σ is diagonal:

Σ =




σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
D



.

Proposition 2. For white noise, the optimal dimensionality reduction takes the form:

x̃q =

D∑

d=1

αd
σ2
d

x(d)
q

D∑

d=1

α2
d

σ2
d

(q = 1, . . . , Q) (2.10)
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2. OPTIMAL DIMENSIONALITY REDUCTION WITH PROFILING.

Proof. Apply Theorem 2.2.1, where Σ−1 is diagonal with diagonal entries 1/σ2
d.

Let SNRd = α2
d/σ

2
d be the initial signal-to-noise ratio at the dth sample before dimensionality

reduction.

Proposition 3. For white noise, the equivalent signal-to-noise ratio after optimal dimensionality
reduction is given by the sum

S̃NR =

D∑

d=1

SNRd . (2.11)

Proof. By Corollary 2, S̃NR = (αD)
t
Σ−1αD =

∑D
d=1

α2
d

σ2
d

=
∑D
d=1 SNRd.

Thus, combining independent multidimensional samples within one trace increases the signal-

to-noise as if those samples were captured in D independent traces. In this case having Q traces

of D samples each is simply the same as having Q×D independent monovariate traces.

2.3.2 Correlated Autoregressive Noise

A more general situation is when the samples are correlated like an autoregressive process. More

precisely, assume that all samples share the same noise distribution of variance σ2, and that two

consecutive noise samples have correlation factor equal to ρ ∈]− 1,+1[. The correlation factors

ρ typically models an autoregressive low-pass filtering of the acquisition setup (see Sec. 2.5.2 for

a real-world example). The noise covariance matrix takes the Toeplitz form:

Σ = σ2




1 ρ ρ2 ρ3 · · · ρD−2 ρD−1

ρ 1 ρ ρ2 · · · ρD−3 ρD−2

ρ2 ρ 1 ρ · · · ρD−4 ρD−3

ρ3 ρ2 ρ 1 · · · ρD−5 ρD−4

...
...

...
...

. . .
...

...
ρD−2 ρD−3 ρD−4 ρD−5 · · · 1 ρ

ρD−1 ρD−2 ρD−3 ρD−4 · · · ρ 1




=
(
σ2ρ|d−d

′|)
1≤d,d′≤D.

We emphasize that |ρ| is strictly smaller than one in keeping with the assumption that Σ be

positive definite. When ρ = 0, the noise becomes white as in the preceding subsection.

Proposition 4. For autoregressive noise, the optimal dimensionality reduction takes the form:

x̃q = 1
σ2(1−ρ2)

[
(α1 − ρα2)xq,1 +

∑D−1
d=2 ((1 + ρ2)αd − ρ(αd−1 + αd+1))xd,q

+ (αD − ραD−1)xq,D

]
. (2.12)
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Proof. It can easily be checked that Σ−1 is tridiagonal:

Σ−1 =
1

σ2(1− ρ2)




1 −ρ 0 0 · · · 0 0

−ρ 1 + ρ2 −ρ 0 · · · 0 0

0 −ρ 1 + ρ2 −ρ · · · 0 0

0 0 −ρ 1 + ρ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 + ρ2 −ρ
0 0 0 0 · · · −ρ 1




.

Then apply Theorem 2.2.1:

x̃q = 1
σ2(1−ρ2)

(
α1 α2 · · · αD−1 αD

)




1 −ρ · · · 0 0

−ρ 1 + ρ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + ρ2 −ρ
0 0 · · · −ρ 1







xq,1

xq,2
...

xq,D−1

xq,D




and expand.

Notice that in the optimal dimensionality reduction, each leakage sample x(d)
q is not only

weighted by its corresponding αd but also by its two neighbor weights αd±1, provided the latter

exist.

Proposition 5. For autoregressive noise, the equivalent signal-to-noise ratio after optimal
dimensionality reduction is given by

S̃NR = 1
σ2(1−ρ2)

[
α2

1 + (1 + ρ2)
∑D−1
d=2 α2

d + α2
D − 2ρ

∑D−1
d=1 αdαd+1

]
. (2.13)

Proof. Apply Corollary 2:

S̃NR = 1
σ2(1−ρ2)

(
α1 α2 · · · αD−1 αD

)




1 −ρ · · · 0 0

−ρ 1 + ρ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + ρ2 −ρ
0 0 · · · −ρ 1







α1

α2

...

αD−1

αD




and expand.

Corollary 3. For equal weights α1 = · · · = αD = α, i.e., when initial signal-to-noise ratios
SNR1 = · · · = SNRD = SNR are the same, one has

S̃NR = SNR×D(1− ρ) + 2ρ

1 + ρ
. (2.14)
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Proof. Proposition 5 reduces to

S̃NR =
α2

σ2(1− ρ2)

(
2 + (D − 2)(1 + ρ2)− 2ρ(D − 1)

)

=
α2

σ2(1− ρ)(1 + ρ)
((1− ρ)(D − ρ(D − 2)))

=
α2

σ2

1

1 + ρ
(D − ρ(D − 2)) = SNR×D(1− ρ) + 2ρ

1 + ρ
.

In other words, optimal dimensionality reduction has the effect of multiplying the monovariate

SNR by the factor D−ρ(D−2)
1+ρ . This gain factor is of course equal to 1 for dimension D = 1, but

becomes strictly greater than 1 for larger dimensions, since D−ρ(D−2)
1+ρ > D−(D−2)

2 = 1 where we

have used that ρ > −1 or 1
1+ρ >

1
2 .

For very small values of correlation ρ, Taylor expansion about ρ = 0 gives D−ρ(D−2)
1+ρ =

D − 2(D − 1)ρ + O(ρ2). The SNR gain is equal to the dimension D at first order, which is

consistent with Proposition 3. In addition, that gain is never greater than D, since D(1−ρ)+2ρ
1+ρ ≤

D(1−ρ)+2Dρ
1+ρ = D. Therefore, when SNR1 = . . . = SNRD, nonzero values of correlation ρ

decrease the efficiency of dimensionality reduction, the most favorable situation being the case

of white noise samples.

2.4 Comparison with PCA and LDA

When the attacker does not precisely know the model given by Eqn. (2.1), the optimal dimen-

sionality reduction cannot be applied directly. In this section, we analyse theoretically two

well-known engineering solutions to reduce the dimensionality: PCA and LDA. Both techniques

are based on eigen decompositions.

2.4.1 Principal Components Analysis (PCA)

Principal components analysis aims at identifying directions in the centered data set. The

directions of PCA are the eigenvectors of t (x− x) (x− x).

Proposition 6. Asymptotically as Q −→ +∞,

t (x− x) (x− x) −→ αD(αD)
t
+ Σ. (2.15)

Proof. By the law of large numbers,

t (x− x) (x− x) −→ Cov(X(d)
q , X

(d′)
q )
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almost surely, where the covariance term can be computed as: Cov(X
(d)
q , X

(d′)
q ) = Cov(αdYq +

N
(d)
q , αd′Yq +N

(d′)
q ). When expanding this expression, cross terms disappear by independence

of Y and ND. There remains:

αdαd′ + Σd,d′

where we have used the hypothesis that Yq has unit variance.

The classical PCA has the drawback that t (x− x) (x− x) depends both on the signal and

on the noise. Inter-class PCA has been introduced in (2). The matrix used in the PCA is traded

for a more simple matrix ZD,#Y , where each column, indexed by y, is the centered column
1∑

1≤q≤Q
Yq=y

1

∑
1≤q≤Q
Yq=y

XD
q . One advantage of this method is that it explicitly takes into account

the sensitive variable Y .

It can be easily checked, that, asymptotically, each column ZDy tends to αDy when Q −→ +∞.

Therefore, ZD,#Y (ZD,#Y )
t tends to a D ×D matrix proportional to αD(αD)

t. Here, the noise

has been averaged away in each class y, which is a second advantage. Therefore, in the sequel,

we shall refer to the inter-class PCA of (2) simply as PCA.

We have the following spectral characterization of the asymptotic PCA:

Proposition 7. Asymptotically, PCA has only one principal direction, namely the vector αD.

Proof. By Proposition 6, the PCA matrix tends asymptotically to αD(αD)
t. This D×D matrix

has rank one, because all its columns are multiple of αD. Since

(αD(αD)
t
)αD = αD((αD)

t
αD) =

∥∥αD
∥∥2

2
× αD,

αD is the eigenvector with corresponding nonzero eigenvalue = ‖αD‖22.

Notice that the uniqueness of the eigenvector for PCA holds in our model (2.1). However,

Proposition 7 would not hold if e.g., the noise were correlated to the signal.

Remark 7. The classical PCA has the same eigenvector αD if the noise is isotropic, i.e., white
and of same variance in every dimension.

The paper (2) presents an optimization procedure to find the eigenelements.

Proposition 8. The asymptotic signal-to-noise ratio after projection using PCA is equal to
‖αD‖4

2

(αD)tΣαD
.

Proof. After projection on the (asymptotic) eigenvector αD, the leakage becomes: (αD)
t
αDYq(k

?)+

(αD)
t
ND
q . The projected signal is ((αD)

t
αD)Yq(k

?). The projected noise is (αD)
t
ND
q , which
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remains centered. Its variance is equal to the expectation of its square:

Var((αD)
t
ND
q ) = E

(
(αD)

t
ND
q

)2

= E
(

(αD)
t
ND
q (ND

q )
t
αD
)

= (αD)
tE
(
ND
q (ND

q )
t
)
αD = (αD)

t
ΣαD.

Therefore,

SNRPCA =
Var(((αD)

t
αD)Yq(k

?))

Var((αD)
t
ND
q )

=
Var(

∥∥αD
∥∥2

2
Yq(k

?))

(αD)
t
ΣαD

=

∥∥αD
∥∥4

2

(αD)
t
ΣαD

.

Example 2. For white noise (Sec. 2.3.1)

SNRPCA =

(∑D
d=1 α

2
d

)2

∑D
d=1 α

2
dσ

2
d

. (2.16)

Example 3. For autoregressive noise (Sec. 2.3.2)

SNRPCA =

∑D
d=1 α

2
d

σ2

1

1 + 2∑D
d=1 α

2
d

∑D−1
d=1 ρd

∑D−d
d′=1 αd′αd′+d

. (2.17)

We can now compare the performance of the asymptotic PCA to the optimal dimensionality

reduction.

Theorem 2.4.1. The SNR of the asymptotic PCA is smaller than the SNR of the optimal
dimensionality reduction.

Proof. By assumption the noise covariance matrix is symmetric positive definite, hence there
exists a matrix Σ1/2, which is such that Σ1/2Σ1/2 = Σ. By Cauchy-Schwarz inequality,

(
〈Σ−1/2αD | Σ1/2αD〉

)2

≤
∥∥∥Σ−1/2αD

∥∥∥
2

2
·
∥∥∥Σ1/2αD

∥∥∥
2

2
.

Therefore, SNRPCA = ((αD)
t
αD)2

(αD)tΣαD
≤ (αD)

t
Σ−1αD = S̃NR.

Corollary 4. The asymptotic PCA has the same SNR as the the optimal dimensionality
reduction if and only if αD is an eigenvector of Σ. In this case, both dimensionality reductions
are equivalent.

Proof. Equality holds in Theorem 2.4.1 if and only if there exists a nonzero real number λ such
that Σ1/2αD = λΣ−1/2αD, i.e., ΣαD = λαD, i.e., αD is an eigenvector of Σ.

In this case, the optimal protection is on the vector Σ−1αD = 1
λα

D, which is proportional to
the projection vector belonging to the asymptotic PCA.
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2.4 Comparison with PCA and LDA

Remark 8. Assume white noise (Sec. 2.3.1) where all values σ2
d (1 ≤ d ≤ D) are different.

Then, by Corollary 4, the asymptotic PCA is optimal only if αD = (0, 0, · · · , 0, 1, 0, · · · , 0), which
we may consider unrealistic since only one sample out of D would leak secret information.

In contrast, if σ1 = · · · = σD = σ, the covariance matrix has only one eigenvalue, namely
(1, 1, · · · , 1), which has multiplicity D. Thus, for white homoscedastic noise, PCA is asymptoti-
cally optimal if and only if α1 = · · ·αD = α, that is, the SNR is the same for each sample.

Still in the case of white noise, we can lower bound the SNR of the asymptotic PCA:

Lemma 1. For white noise, the SNR of the asymptotic PCA is not less than the worst SNR
among the samples, but can be strictly smaller than the higher SNR among the samples.

Proof. We have
D∑

d=1

α2
dσ

2
d =

D∑

d=1

σ2
d

α2
d

α4
d ≤

(
D

max
d=1

σ2
d

α2
d

) D∑

d=1

α4
d.

Since
(

maxDd=1
σ2
d

α2
d

)−1

= minDd=1
α2
d

σ2
d

= minDd=1 SNRd, the expression of the SNR of the asymptotic
PCA given by Eqn. (2.16) is such that

SNRPCA =

(∑D
d=1 α

2
d

)2

∑D
d=1 α

2
dσ

2
d

≥

(∑D
d=1 α

2
d

)2

∑D
d=1 α

4
d

D
min
d=1

SNRd ≥
D

min
d=1

SNRd (2.18)

where we have used Cauchy-Schwarz inequality
∑D
d=1 α

2
dα

2
d ≤

(∑D
d=1 α

2
d

)2

.

Conversely, we can give an example for which SNRPCA < maxDd=1
α2
d

σ2
d
. Take D = 2, α1 =

α2 = 1, σ1 = 1 and σ2 = 10. Then SNRPCA = 4/(1 + 102) = 4/101, which is strictly smaller
than α2

1/σ
2
1 = 1.

2.4.2 Linear Discriminant Analysis (LDA)

LDA has been introduced in side-channel analysis in (158). With respect to inter-class PCA, it

computes the eigenvectors of the matrix S−1
w Sb, where:

• Sw is the within-class scatter matrix, asymptotically equal to Σ, and

• Sb is the between-class scatter matrix, equal to αD(αD)
t.

We have the following spectral characterization of the asymptotic LDA:

Proposition 9. Asymptotically, LDA has only one principal direction, namely the vector
Σ−1αD.

Proof. The matrix S−1
w Sb = Σ−1αD(αD)

t has rank one. Indeed, αD(αD)
t has rank one, and

multiplying by an invertible matrix (namely Σ−1) keeps the rank unchanged. Since

(Σ−1αD(αD)
t
)Σ−1αD = Σ−1αD((αD)

t
Σ−1αD) =

(
(αD)

t
Σ−1αD

)
× Σ−1αD,
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Σ−1αD is the unique eigenvector with corresponding eigenvalue (αD)
t
Σ−1αD > 0. This eigen-

value is equal to the SNR of the asymptotic LDA.

By Corollary 2, the SNR of the asymptotic LDA is equal to the SNR of the optimal

dimensionality reduction, denoted by S̃NR. In fact, we have the following.

Theorem 2.4.2. The asymptotic LDA computes exactly the optimal dimensionality reduction.

Proof. Compare Theorem 2.2.1 with Proposition 9: in both cases, the projection vector is
collinear with Σ−1αD.

2.4.3 Numerical Comparison Between Asymptotic PCA and LDA

Numerical comparison between asymptotic PCA and LDA is given in Fig. 2.1(a) and (b),

for D = 6 samples. The noise is chosen autoregressive, with σ = 1 and different values

for ρ (Sec. 2.3.2). The vector αD is chosen equal to (1, 1, 1, 1, 1, 1)
t in Fig. 2.1(a) and to

√
6.0/6.4 · (1.0, 1.1, 1.2, 1.3, 0.9, 0.5)

t in Fig. 2.1(b), such that S̃NR = 6 when ρ = 0. The SNR of

the asymptotic LDA is that of the optimal dimensionality reduction (cf. Corollary 2), and that

of the asymptotic PCA can be found in Example 3. The first case (Fig. 2.1(a)) fits the situation

depicted in Corollary 3. The asymptotic PCA and LDA are almost similar. Besides, when

ρ→ 1−, both SNRs tend to 1 (recall Eqn. (2.17) and (2.14)). But, when the SNR varies over

the D samples (Fig. 2.1(b)), the asymptotic LDA can be significantly better than the asymptotic

PCA. The sample-wise extremal SNRs (SNRd = α2
d/σ

2) are also represented: the SNR of the

PCA can be smaller than the largest SNR, namely max1≤d≤D SNRd, (recall Lemmas 1), which

is not the case of the SNR of the LDA. Actually, the SNR of LDA increases to infinity because

S̃NR ≈ 0.164/(1− ρ) when ρ→ 1− (see Eqn. (2.13)).

2.5 Practical Validation

In this section, we investigate real traces. Experiments are carried out on the DPA contest

v2 (168) traces. One clock cycle lasts D = 200 samples. As traces are captured from a hardware

implementation of an AES, we consider the Hamming distance leakage model (in accordance

with most attacks reported on the analyzed device (36), namely a SASEBO-GII board with a

Xilinx XC5VLX30 FPGA (146)). In the sequel, we focus on the Hamming distance between

the byte 0 of the last round and that of the cipher text. That is, the function Ψ in Eqn. (1.2) is

a normalized Hamming weight; precisely, Ψ : z ∈ Fn2 7→ 2√
n

(
wH(z)− n

2

)
, where n = 8, because
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2.5 Practical Validation

(a) Equal SNRd = 1, 1 ≤ d ≤ D (b) Varying SNRd, 1 ≤ d ≤ D
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Figure 2.1: Comparison of the SNR of asymptotic LDA (optimal) and of asymptotic PCA

AES is a byte-oriented block cipher. In addition, we emphasize that our model (Eqn. (2.1)) is

indeed suitable to leakage dimensionality reduction within one clock period.

2.5.1 Precharacterization of the Model Parameters αD and Σ

In order to characterize the model, we need to recover the column matrix αD and the D ×D
covariance matrix Σ of the noise.

Proposition 10. The parameters of the model (2.1) which minimize the fitting error are given
by

α̂D =
xD(y)

t

y(y)
t .

Proof. The goal (minimizing the fitting error) is similar to that of the optimal distinguisher,
namely maximize the probability of pND(xD − αDy) (Eqn. (2.4)). But in the context of
characterization, the correct key is known. Therefore, we wish to minimize in αD and Σ the
following objective function:

objective(αD,Σ) =

Q∑

q=1

{(
xDq − αDyq(k?)

)t
Σ−1

(
xDq − αDyq(k?)

)}
, (2.19)

which reminds of Eqn. (2.7) (except that now, the key k = k? is known). We use the notation
(α̂D, Σ̂) = argmin(αD,Σ) objective(αD,Σ).

We fix Σ and minimize only on αD. The gradient of objective(αD,Σ) w.r.t. (αD)
t writes:

∂

∂(αD)
t objective(αD,Σ) =

Q∑

q=1

−2yq(k
?)
(
Σ−1xDq − yq(k?)Σ−1αD

)
. (2.20)
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The objective function is extremal in α̂D if and only if its derivative is equal to zero at this
point. Let y be an abbreviation for y(k?). This condition takes the form of a normal equation

α̂D =

∑Q
q=1 yqx

D
q∑Q

q=1 y
2
q

=
xD(y)

t

Y Q(y)
t . (2.21)

where the numerator is the inter-covariance matrix of xD and y, and the denominator is the
covariance matrix of y.

Interestingly, the most likely value α̂D of αD does not depend on the noise covariance matrix.

As ND = xD − α̂Dy has zero mean, the latter can be evaluated on its own as the well-known

unbiased estimator of Σ:

Σ̂ = 1
Q−1 (xD − α̂Dy)(xD − α̂Dy)

t
. (2.22)

By plugging Eqn. (2.21) into Eqn. (2.22), one obtains

Σ̂ = 1
Q−1

(
xD − xD

(y)
t
y

Y Q(y)
t

)(
xD − xD

(y)
t
y

Y Q(y)
t

)t

= 1
Q−1x

D

(
IQ,Q − (y)

t
y

Y Q(y)
t

)2

(xD)
t

(2.23)

= 1
Q−1x

D

(
IQ,Q − (y)

t
y

Y Q(y)
t

)
(xD)

t
(2.24)

= 1
Q−1

(
xD(xD)

t − xD(y)
t
y(xD)

t

Y Q(y)
t

)
.

In Eqn. (2.23), IQ,Q denotes the Q×Q identity matrix, and we use in Eqn. 2.24 the fact that

the matrix IQ,Q − (y)
t
y/(Y Q(y)

t
) is idempotent, i.e., equal to its square.

Remark 9. We have the following remarkable identity:

xD(xD)
t

= α̂D(α̂D)
t
y(y)

t
+ (Q− 1)Σ̂.

This equation is the non-asymptotic version of Proposition 6.

2.5.2 Computation of SNRs on the AES Traces from DPA Contest
v2 Last Round

The values α̂D and Σ̂ are represented in Fig. 2.2. We obtain:

• maxDd=1 α̂
2
d/Σ̂d,d = 1.69 · 10−3 (no dimensionality reduction)

• SNRPCA = ((α̂D)
t
α̂D)2

(α̂D)tΣ̂α̂D
= 1.36 · 10−3 (PCA)
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Figure 2.2: Estimated α̂D (left) and Σ̂ (right), for Q = 10, 000 traces

• SNRLDA = (α̂D)
t
Σ̂α̂D = 12.78 · 10−3 (LDA)

Therefore, the LDA has the largest SNR: it is about seven times larger than the maximum

sample-wise SNR. The PCA has, in this example, an SNR smaller than the maximum univariable

SNR (see Lemma 1).

Interestingly, one can see in Fig. 2.2 that the noise is locally autoregressive, for instance

between samples 107 and 117.

2.6 Conclusions and Perspectives

Dimensionality reduction is common practice in side-channel analysis. This pre-processing

technique has many virtues, such as an elegant multivariate description of the leakages, the

concentration of information which reduces the required number of measurements to extract the

key, and the increase of computational efficiency. Nonetheless, as any processing, dimensionality

reduction can only reduce some information.

Using a mathematical approach, we have shown that dimensionality reduction is actually

part of the optimal attack. This proves rigorously that dimensionality reduction can be achieved

without loss in terms of attack success probability in extracting a secret key. As it turns out,

the optimal dimensionality reduction consists in a linear projection of the trace samples.

We have also shown that the linear discriminant analysis asymptotically achieves the same

projection, and hence becomes optimal as the number of traces increases. When the various

samples are weakly correlated, we have found that PCA is nearly equivalent to the optimal
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2. OPTIMAL DIMENSIONALITY REDUCTION WITH PROFILING.

dimensionality reduction and to LDA. Thus, in realistic contexts, state-of-the-art dimensionality

reduction techniques are actually close to the optimal method.

Finally, we show how to estimate the model parameters (modulation vector αD and noise

covariance matrix Σ), and compute them on a real traces. An SNR gain factor of 7 can be

obtained with respect to sample-wise SNR, which stresses the practical interest of dimensionality

reduction.

As a perspective, we note that it should also be possible to obtain similar results when the

noise is non-Gaussian (e.g., uniform). It is also desirable to compare dimensionality reduction

based on linear projections to machine-learning techniques which are also multidimensional,

such as SVM, random forests, K-means, etc.
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CHAPTER 3

Dimensionality Reduction a case study in presence of masking.

The results presented in this chapter have been published in collaboration with Jean-Luc Danger,

Sylvain Guilley, Annelie Heuser, and Yannick Teglia in the international conference on Security,

Privacy and Applied Cryptography Engineering (SPACE 2014) (20).
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Multi-variate side-channel attacks allow to break higher-order masking protections by com-

bining several leakage samples. But how to optimally extract all the information contained in

all possible Ω-tuples of points? In this chapter, we introduce preprocessing tools that answer

this question. We first show that maximizing the higher-order CPA coefficient is equivalent

to finding the maximum of the covariance. We apply this equivalence to the problem of trace

dimensionality reduction by linear combination of its samples. Then we establish the link

between this problem and the Principal Component Analysis. In a second step we present

the optimal solution for the problem of maximizing the covariance. We also theoretically and

empirically compare these methods. We finally apply them on real measurements, publicly
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available under the DPA Contest v4, to evaluate how the proposed techniques improve the

second-order CPA (2O-CPA).

3.1 Introduction

In some particular masking implementations, the two shares (117) depending on the same mask

leak at different time samples (e.g., in software). Second-order attacks that combine two different

time samples are called bi-variate SCA. When the masking scheme uses Ω shares, multi-variate

SCA are still able to reveal the secret key by combining leakage samples corresponding to each

of the Ω shares. Note that, depending on the implementation and the measurement setup each

share may leak in multiple samples.

To enhance the results of SCA several preprocessing tools can be used. In the case of

bi-variate SCA it is particularly interesting to take into account all the information spread over

the time. Indeed, the number of possible pairs increases quadratically in the number of leakage

samples. For example, if the first share leaks over D1 samples and the second share over D2

samples, we could perform a bi-variate SCA on D1 ×D2 possible combined points. So, taking

into account all these leaks may undoubtedly increase the efficiency of an attack.

More generally, to break (Ω− 1)-order masking schemes the attacker needs to combine Ω

samples corresponding to Ω shares. So, if Di is the number of samples which leak the i-th share

then the attacker could perform multi-variate SCA on
∏

1≤i≤dDi different Ω-tuples. In other

words, the number of possible Ω-tuples to perform multi-variate SCA is in O(DΩ) where D

is the number of samples each share leaks (and assuming that each share is leaking the same

number of samples, i.e., ∀i ∈ J1,ΩK, Di = D).

In order to break (Ω− 1)-order masking schemes an attacker should therefor combine first

the leakages of each share, this leads to an increase of the number of exploitable samples. In a

second times to increase the success of its attack an attacker can exploit all theses leakages in

one by combining them. It will be the case when dimensionality reduction methods are applied.

Many methods have been presented in the area of SCA to combine the information spread

over time: the Principal Component Analysis (PCA) for dimensionality reduction (2) for

Template attacks (31) (see Chapt. 2 for an analysis of dimensionality reduction in a Template

Attacks scenario) but also as a preprocessing tool (5) for DPA (87). Recently in (70) Hajra and

Mukhopadhyay present an approach based on match filters to find the optimal preprocessing.

Other methods have been designed to combine samples from different acquisitions ((154, 158)).
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Additionally, PCA has also been used as a distinguisher in (157). Some other methods could be

applied like the Canonical Correlation Analysis (120) to improve CPA (19). Interestingly, all

these methods lead to a dimensionality reduction.

Another approach to improve the efficiency of SCA is to find the optimal model. A linear-

regression approach may be used. In (120) Oswald and Paar introduce optimization algorithms

to determine numerically the optimal linear combination before CPA. By choosing a different

objective we can give a formal expression for the result of the optimization problem, and then

have an optimal method without any utilization of sophisticated optimization algorithms that

would require “parameter settings", which could be costly in time. Still, we notice that the

approach in (120) and our could be advantageously combined.

Contributions.

In this chapter we tackle the question how to optimally combine the information spread over

multiple time samples, for HOCPA attacks of arbitrary order? Namely we extend the results of

Chapt. 2 in a context of less powerful attacker and attacks against protected implementations.

Specifically in this chapter we assume that the attacker is not able to completely profiled the

leakage function. We present the optimal preprocessing method and express it as a generic

synthetic formula. By linking the PCA to the problem of maximizing the result of the CPA

we are able to evaluate the presented method. We compare these two methods theoretically

and prove that they are optimal under some assumptions. We then compare these methods

empirically as preprocessing tools to boost 2O-CPA attacks on a first-order masking scheme. In

particular, we test these methods on real measurements (DPA contest v4 (169)). In summary,

we show that taking into account all possible pairs of leakage points will significantly improve

the effectiveness of 2O-CPA, in one attack.

Outline of the chapter.

The rest of the chapter is organized as follows. In Sect. 3.2 we present our case study and a

theoretical comparison between PCA and the covariance method as a method to obtain the

optimal preprocessing for second-order CPA. The attacks are then applied on a real masked

implementation in Sect. 3.3. Sect. 3.4 provides another case study to apply these methods as

preprocessing tools. Finally, conclusions and perspectives are drawn in Sect. 3.5.
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3.2 Theoretical optimal preprocessing function

3.2.1 Case study

Let us assume that each measurement trace can be seen as a vector of points. So the leakage

of the measurements can be defined as: X =
(
X(d)

)
1≤d≤D where X(d) = S(d) +N (d), S(d) =

Ψ(d) (g (k?, T,R)) being the part of the leakage which is linked to the internal operation processed

on the target component and N (d) being the noise that assumed to be independent of S(d). It

can be noted that, we simply refer to interval J1, DK as D, whenever there is no risk of confusion.

It can also be assumed that these traces are centered and also reduced, i.e., E
[
X(d)

]
= 0 ∀d and

Var
[
X(d)

]
= 1 ∀d. Note that, the attacker is always able to center by removing the empirical

mean and reduce by dividing the empirical standard deviation.

Let Z be the internal variable (depending on the sensitive variable) manipulated during the

algorithm and let Ψ̂ defines the leakage model. In the case of CPA, a transformation of the

initial data (preprocessing) may increase the correlation coefficient. To consider all information

contained in X an option would be to use a linear transformation as a prepossessing. Note that,

combining all points by a weighted sum leads to a dimensionality reduction. More precisely,

max
α
|ρ
[
α ·X, Ψ̂(Z)

]
|, (3.1)

where ρ is the Pearson coefficient, α is a vector in RD and · the scalar product.

Remark 10. The solution of max
α
|ρ
[
α ·X, Ψ̂(Z)

]
| is also a solution of max

α
ρ
[
α ·X, Ψ̂(Z)

]2
.

Remark 11 (EIS (Equal Images under the Same key) assumption (147)). The only part of the
correlation that allows to distinguish the key is the covariance.

After the preprocessing we do not need to normalize by the variance of the traces, because

we compare key guesses between each other for a given time sample not on a direct scale. So, as

seen in Remark 11 the normalization by the variance does not impact the way we distinguish

the key. Thus, we can simply focus on maximizing the following equation:

max
‖α‖=1

Cov
[
α ·X; Ψ̂(Z)

]2
. (3.2)

As the covariance is not bounded we introduce the constraint ‖α‖ = 1 where ‖·‖ is the

Euclidean norm, namely ‖α‖ =
√
α · α.

In this section we assume that the attacker has a “learning device" with a fixed key on

which he is unrestricted in the number of acquisitions, which is typically more than the required
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number to successfully perform the attack. As a consequence we can reasonably assume that

the attacker knows the key on the learning device and he is able to identify the zones of interest

in J1, DK where the internal variable leaks. Moreover, he is able to estimate the weights of the

linear combination (see Eq. (3.2)) on the learning device. In the rest of this study we call this

step the “learning phase". In the final step the attacker targets another device that is expected

to leak in a similar way as the learning one. However, on the device under attack he is no longer

able to acquire an unlimited amount of traces. In particular, in this “attack phase" his main

goal is to retrieve the secret key using only the minimum number of traces.

3.2.2 Principal component analysis

A classical way to recombine information with linear combinations is to apply PCA (79).

Remark 12. In general, most of the variance lays within a few dimensions (i.e., much less
than D).

Proposition 11. The solution of the problem in Def. 18 is the D′ eigenvectors of X associated
to the D′ maximal eigenvalues.

Proof. The proof can be found in (79).

As the problem of maximizing the covariance depends on the expected leakage model the

preprocessing is defined such that it takes Ψ̂(Z) into account. This implies that the given

preprocessing methods are model-dependent. We can explicit the Proposition 11:

Proposition 12. If we link our measurements X to their conditional expectations E
[
X|Ψ̂(Z)

]

knowing a model Ψ̂(Z), then the PCA yields the principal direction:

max
‖α‖=1

Var
[
α · E

[
X|Ψ̂(Z)

]]
.

This result means that the eigenvector of the largest eigenvalue is the projection that maximizes
the inter-class variance.

Proof. Let Ψ̂1, Ψ̂2, . . . , Ψ̂N the values that Ψ̂(Z) can take. Then, the lines of matrix X are
E
[
X|Ψ̂(Z) = Ψ̂1

]
, E
[
X|Ψ̂(Z) = Ψ̂2

]
, . . ., E

[
X|Ψ̂(Z) = Ψ̂N

]
. Apply Proposition 11.

3.2.3 Preprocessing on modulated side channel traces

In this section we investigate the behaviors of preprocessing methods on modulated side channel

traces. Let us first recall the definition of modulated traces given in Def. 9:
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Definition 38 (Modulated Traces). Let us now define a modulated trace as a trace in which
each time sample can be expressed as a modulation of a model (static in time) plus an independent
noisy part:

X =
(
β(d)Ψ̂(Z) +N (d)

)
d≤D

= β · Ψ̂(Z) +
(
N (d)

)
d≤D

, (3.3)

where β is a vector in RD and each N (d) is drawn from an independent identical distribution N.
In specific, the variance of the noise does not depend on the time sample d ≤ D.

Theorem 3.2.1. In the case of modulated traces the solution of PCA is equivalent to maximizing
the covariance (Eqn. (3.2)). More precisely, if X =

(
β(d)Ψ̂(Z) +N (d)

)
d∈D

then

α ∈ argmax
‖α‖=1

Cov
[
α ·X; Ψ̂(Z)

]2
⇐⇒ α ∈ argmax

‖α‖=1

Var
[
E
[
α ·X|Ψ̂(Z)

]]
.

Proof. The proof is given in Appendix A.1.

Notice that, in Theorem 3.2.1, we consider that many vectors α can maximize the covariance:

so, the return value of the argmax operator is a set.

In a particular case of Theorem 3.2.1 we can explicitly describe α.

Lemma 2. If α and β are linearly dependent, we have:

β

‖β‖ ∈ argmax
‖α‖=1

Cov
[
α ·X; Ψ̂(Z)

]2
. (3.4)

Proof. The proof is given in Appendix A.2.

After projection into the new reduced space the covariance matrix will be zero everywhere

except at (0, 0). Moreover, all the variance should be contained in the first principal direction,

thus, we do not need to take the other eigenvectors into consideration.

As β does not depend on a particular model we also maximize the covariance for wrong

keys in the same proportion as the covariance for the good key. Thus we do not change the

way we distinguish the good key from the wrong ones (the relative distinguishing margin is

unchanged (181)). However, the dimensionality reduction leads to an improvement of the attack

by increasing the signal-to-noise ratio (SNR). We define the SNR as the variance of the signal

divided by the variance of the noise. This definition of SNR coincides with the Normalized

Inter-Class Variance (NICV (12, 13)).

Lemma 3. If the noise N (d) is identically distributed (i.d.) for all d, then the noise is unchanged
by any linear combination of unitary norm.

Proof. By hypothesis, Var
[
α ·
(
N (d)

)
d∈D

]
= ‖α‖2Var [N] = Var [N].
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3.2 Theoretical optimal preprocessing function

Remark 13. In Lemma 3 the traces are modulated (see Def. 9) as a consequence the noise is
independent in the time samples. The assumption of modulated traces is a strong assumption,
nevertheless the noise can always be standardized by multiplying the traces with the inverse of
the noise covariance matrix.

Proposition 13. If the noise N (d) is i.d. for all d, then the signal-to-noise ratio is maximum
after the projection:

max
d∈D

Var
[
β(d)Ψ̂(Z)

]

Var [N]
≤

max
‖α‖=1

Var
[
α · E

[
X|Ψ̂(Z)

]]

Var [N]
.

Proof. By definition of α we have max
d∈D

Var
[
β(d)f(Z)

]
≤ max
‖α‖=1

Var
[
α · E

[
X|Ψ̂(Z)

]]
. Besides,

by lemma 3, the numerator of the SNR does not depend on our preprocessing, since is satisfies
‖α‖ = 1.

Remark 14. In the case of modulated traces the PCA gives the solution of a matched-filter (109).

3.2.4 Covariance vector as a preprocessing method

In the general case when the model is not known or in the presence of noise, the variance may

not only be contained in the first eigenvector (5). Therefore, it may be useful to also take the

other directions of the PCA into account. Note that, we still obtain an optimal function to

reduce the dimensionality before conducting a CPA under the same leakage model assumption.

Proposition 14 (Covariance method).




Cov
[
X(d); Ψ̂(Z)

]

‖
(

Cov
[
X(d); Ψ̂(Z)

])
d∈D
‖



d∈D

∈ argmax
‖α‖=1

Cov
[
α ·X; Ψ̂(Z)

]2

Proof. The proof is given in Appendix A.3.

So, the normalized covariance is the optimal preprocessing method to maximize the value of

the covariance when using linear combinations of traces points. In the rest of this study we call

this method the “covariance method" and the result the “covariance vector".

Remark 15. Note that, the model of the actual leakage of the traces is not used in the proof
of Appendix A.3. The results are therefore applicable for any leakage model such as the one
presented in (67).
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3.2.5 Discussion

The previous subsection shows that the projection of the differential traces on the covariance

vector gives a solution to the problem of maximizing the covariance after dimensionality reduction

(i.e., after having learned the best linear form). This method is better than the state-of-the-art,

where each tuple of samples is processed on its own (see the big picture in Fig. 3.1); it can be

seen as a generalization to higher-order attacks of (70). Some other preprocessing tools have

been proposed to reduce the dimensionality and enhance the quality of the CPA. The PCA (5)

is a known way to preprocess the data to reduce the dimension and increase the efficiency of

attacks. As defined in Sect. 3.2.3, PCA is directly linked to the maximization problem, which is

also underlined by our empirical results given in Sect. 3.3.

Oswald and Paar showed in (120) that the best linear combination (“best” in the sense of

separating the highest peaks from the nearest rival) can be approached by numerical resolutions.

The model presented in (70) is not totally applicable to our study case. If we are in the case of

modulated traces, the expectation over each sample of the combined traces could be null. In

this case the method presented is not directly suitable.

The point of this study is not to exhibit a better method for dimensionality reduction but to

show that we can solve this problem in an easier way by using the vector of covariance.

Other preprocessing methods can be used before any dimensionality reduction such as

reduction filtering using a Fourier or a Hartley transform (8). However, when the transformation

is linear and invertible, the covariance method applies in a strictly equivalent way. The next

subsection clarifies this point on the example of the Fourier transform.

3.2.6 Time vs Frequency domains

Let X a signal in time domain, i.e., X = (X(d))d∈D. The representation of X in the frequency

domain is the discrete Fourier transform F(X).

Definition 39 (Discrete Fourier transform). Let ß be a square root of −1 in C. The discrete
Fourier transform of X is a vector F(X) of same length, defined as F(X)f =

∑
d∈J1,DKX

(d) ·
e−2πßfd/D, for all f in the interval J1, F K (where F = D).

Proposition 14 can also be applied on F(X) instead of X. We then have the following

Corollary.

Corollary 5 (Covariance method in the frequency domain). The covariance method in frequency
domain yields covariance vectors equal to the Fourier transform of the covariance vectors in the
time domain.
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Figure 3.1: Big picture of the “covariance method”. The usual 2O-CPA computes a correlation
for each pair (d1, s2) of leakage (step (1)), and then searches for a maximum over the keys and the
time instances (step (2)). Our new method obtains a “covariance vector” (termed α) on a “learning
device” (step (0’)), and then first projects the leakage X on α (step (1’)), before looking for the
best key only while maximizing the distinguisher (step (2’)). Notice that the model Ψ̂(Z) depends
implicitly on the key guess k.

Proof. We have α ·F(X) = F(α) ·X, by interversion of the sums on f and d. Besides, Parseval’s
theorem states that ||F(α)||2 = ||α||2. Thus, the application of Proposition 14 on F(X) instead
of X yields F(α), where α are the covariance vectors obtained in the time domain.

3.3 Empirical results

In Sect. 3.2 we defined two preprocessing methods (the PCA and the “covariance method").

They were described in general, but can also apply to second-order CPA; the only difference is

that the interval J1, DK where samples live is replaced by the Cartesian product J1, D1K× J1, D2K,

where D1 and D2 are the window lengths containing the leakage of the two shares. Accordingly,

the leakage X is the suitable combination (e.g., the centered product (133)) of samples from

each window, which is reflected in the model (See for instance Eqn. (3.5) and (3.6)). We
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will now compare these two methods on real measurements. These methods combine in one

point the information spread over several points. The more samples to combine, the more the

dimensionality reduction increases the success of the attacks.

3.3.1 Implementation of the masking scheme

To evaluate these two methods we use the publicly available traces of the DPA contest v4 (169),

which uses a first order low-entropy masking protection applied on AES called Rotating S-box

Masking (RSM). In RSM only sixteen Substitution boxes (S-boxes) are used and all the sixteen

outputs of SubBytes are masked by a different mask. We take great in this chapter to exploit

second-order leakage (in particular, we avoid the first-order leakage identified by Moradi et

al. (112)). Moreover, the same mask is used for the AddRoundKey operation where it is XORed

to one plain-text byte T and in the SubBytes operation where it is XORed with the S-box output

depending on another plain-text byte T ′. As a consequence a bi-variate CPA can be built by

combining these two leaks knowing T and T ′. The leakage model in this case is given by:

Ψ̂(Z) = E [(HW[T ⊕M ]− 4) · (HW[Sbox[T ′ ⊕K]⊕M ]− 4) |T, T ′,K] , (3.5)

where T , T ′, K are two bytes of the plaintext and a byte of the key respectively, together noted

Z = (T, T ′,K), and where HW is the Hamming weight function and the expectation is taken

over M . We denote this combination as (XOR, S-Boxes).

Moreover, we also define another way to combine points in order to compensate the mask. As

only sixteen different masks in RSM are used, also a link between the masks used at the output

of the S-boxes exists. Accordingly, the combination of the outputs of two different S-boxes are

not well balanced and we could consider an attack depending on two different S-Boxes which

use two different masks. In this case the leakage model for the bi-variate CPA is:

Ψ̂(Z) = E [(HW[Sbox[T ⊕K]⊕M ]− 4) · (HW[Sbox[T ′ ⊕K ′]⊕M ′]− 4) |T, T ′,K,K ′] . (3.6)

In this equation, which we denote as (S-Boxes, S-Boxes), T and K (resp. T ′ and K ′) are the

plain-text and key bytes entering the first (resp. the second) S-Box, and Z is a shortcut for the

quadruple (T, T ′,K,K ′). We notice that there exists a deterministic link between M and M ′;

M and M ′ belong to some subset {m0,m1, . . . ,m15} of F8
2. We assume that M enters S-box

0 ≤ i ≤ 15 and M ′ S-box 0 ≤ i′ ≤ 15. Then when M = moffset for some 0 ≤ offset ≤ 15, we have

that M ′ = moffset+i′−i mod 16.
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3.3.2 Leakage analysis

We assume that the adversary is able to identify the area where the two operations leak during

the “learning phase". In order to analyze the leakage of the two operations, we first calculate

the covariance of the traces when the mask is known using 25000 measurements.

Figure 3.2a presents the absolute value of the covariance between the points where the mask

is XORed with the plain-text and the leakage model HW[T ⊕M ⊕K]− 4. The covariance is

computed for all key guesses K, where the wrong keys are plotted in gray and the correct key

in red. Note that, as we target a XOR operation the maximum of the absolute value of the

covariance is reached for two key guesses, namely the correct one and its opposite. It is quite

clear, in Fig. 3.2a, that the traces are reasonably modulated (as per Def. 9); consequently, the

relative distinguishing margin is constant over all the whole trace (as underlined in Sec. 3.2.3).

In the sequel, we use as leakage for the first share HW[T ⊕M ]−4 instead of HW[T ⊕M ⊕K]−4.

As the second share is key-dependent, this choice allows us to restrict ourselves to one key search

instead of two.

Figure 3.2b presents the covariance between the points where the output of an S-box leaks

and the leakage model HW[Sbox[T ′ ⊕K]⊕M ]− 4.

In both cases the mask leaks over several points; 50 samples represent less than 1 clock cycle.

In this case the leakage is not uniformly spread over the points, thus it is reasonable to use a

weighted sum to reduce the dimensionality of the data.

As the two leakages do not depend on the same operations their shapes are different.

Interestingly, the distance between the correct key (red) and the next rival (grey) is much smaller

in Figure 3.2a than in Figure 3.2b, Indeed the covariance plotted in Figure 3.2a is computed

using a leakage depending on AddRoundKey, whereas the covariance plotted in Figure 3.2b is

computed using a leakage caused by SubBytes. More precisely, the second plot corresponds to a

time window when the value of the S-box output is moved during the ShiftRows operation that

follows SubBytes.

Figure 3.3a (resp. 3.3b) presents the covariance between the points where the output of an

S-box leaks and the leakage model HW[Sbox[T⊕K]⊕M ]−4 (resp. HW[Sbox[T ′⊕K ′]⊕M ′]−4).

It can be noticed that the leakages of two different S-boxes indeed differ. The reason of this

difference is that the two leakages are not due to the execution of the same operations. Figure 3.3b

shows the covariance between the leakage of the S-box output due to the ShiftRows operation

that follows and the corresponding model, whereas Figure 3.3a shows the covariance between
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Figure 3.2: Covariance absolute value, for (a) XOR and (b) S-box

the leakage due to the SubBytes operations and the corresponding model. As looking-up and

moving a byte are different operations, they leak differently.

3.3.3 Experimental protocol

In this experiment we select two windows of 50 points corresponding to the leakage of the

two shares. Then all possible pairs of points have been combined using the centered product

function (133). In all the experiments, the preprocessing method and the 2O-CPA are applied

on these “combined" traces. We compare 2O-CPA with and without preprocessing.

We used the 50000 first traces of the DPA contest v4 for the learning phase and the remaining

for the attack phase. To compute the success rate we repeated the experiment as many times as

we could due to the restricted amount of traces.

Note that, several attacks using profiling or semi-profiling have been published in the Hall of

Fame of the DPA contest v4. Most of these attacks are specially adapted to the vulnerabilities of

the provided implementation or the particularities of RSM. However, our proposed preprocessing

tools do not particularly target RSM, moreover, they are generic and could be applied to any

masking scheme leaking two shares.
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Figure 3.3: Covariance absolute value, for (a) S-box and (b) S-box+ShiftRows

3.3.4 Comparison of the two preprocessing methods and classical
second-order CPA

First of all, for the (XOR, S-Boxes) combination we see in Fig. 3.4 that the preprocessing

improves the efficiency of the attacks. We need less than 200 measurements to reach 80% of

success with the covariance or PCA preprocessing while we need more than 275 measurements

for the classical 2O-CPA, which gives an improvement of 30%.
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Figure 3.4: Comparison between the classical second-order CPA and second-order CPA with
preprocessing using (XOR, S-Boxes)

Figure 3.5 shows a 3-D representations of the vectors using the PCA (which returns the
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Figure 3.5: Comparison between the covariance vector and the first eigenvector

first eigenvector) and the covariance method (which returns the covariance vector). The larger

the value on the z-axis of Fig. 3.5 and 3.7, the higher the contribution (weight) of this point.

The axes “leakage 1" and “leakage 2" represent the part depending on the two leakages of XOR

(Fig. 3.2a) and S-box (Fig. 3.2b) operations in the combined traces. We can see in Figure 3.5

that the two methods highlight the same points of the combined traces and have the same shape

(approximately the same values). Thus, the two methods give similar results in terms of success

rate, which is confirmed by Figure 3.4.

As it can be seen in Figure 3.6, in case of the (S-Boxes, S-Boxes) combination we need

around 275 traces to reach 80% of success for the 2O-CPA after the two preprocessing methods,

while the raw 2O-CPA needs around 550 traces to succeed. So, using the preprocessing method

decreases the number traces to perform the attack by 50%. It can be seen that the two methods

yield apparently exactly the same results, which means that we are precisely in the framework

of Theorem 3.2.1: the display traces that are almost perfectly modulated by one static leakage

model.

One explanation of the effectiveness of the preprocessing can be found in Figure 3.7. There

are much more leaking points in the same window size when we combine two S-boxes. It

can be seen in Sect. 3.3.5 that another explanation can be the fact that when we apply these

preprocessing methods the attacks are less sensitive to the noise.
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Figure 3.6: Comparison between the classical second-order CPA and second-order CPA with
preprocessing using (S-boxes, S-Boxes)

3.3.5 How is the preprocessing linked to the noise?

We have theoretically shown in Proposition 13 that the presented preprocessing methods improve

the SNR. We now empirically verify this results. In each point we add Gaussian noise to mimic

real noisy measurements. We perform this experiment on the same points and with the same

model as used for Figure 3.4.

Figure 3.8a shows that using preprocessing methods improves second-order CPA in presence

of noise. In this case we added Gaussian noise with a standard deviation of 3. The attacks after

preprocessing need around 225 measurements to reach 80% of success whereas the 2O-CPA

needs more than 550 measurements. Thus, preprocessing leads to a gain over 50%. As shown in

Figure 3.4 the gain was close to 30% without noise.

In Figure 3.8b we can see that for Gaussian noise with a standard deviation of 5 the gain is

more than 75%. Indeed the 2O-CPA after preprocessing needs around 250 traces reach 80% of

success rate whereas for 2O-CPA 1000 measurements are not sufficient.

So this kind of preprocessing by dimensionality reduction is well designed against noisy

implementation where the noise is not correlated with the time or the data.

3.4 On the fly preprocessing

We have defined a case study when the attacker owns a “learning device". As a consequence he

is able to acquire a sufficient number of measurements to well estimate the covariance matrix for
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Figure 3.7: Comparison between the covariance vector and the first eigenvector

the PCA and the covariance vectors. However, the attacker might not always have this powerful

tool.

As seen in Subsect. 3.3.4 even for a small number of traces for the learning phase we have a

significant improvement when we use preprocessing methods. We therefore evaluate these tools

also as “on the fly" preprocessing methods.

3.4.1 Case study

We now model a less powerful attacker who does not have a “learning device" and estimates

the value of the coefficient of the linear transformation directly on the traces used for the

attack. Because the key is unknown the preprocessing method has to be computed for each key

hypothesis. Finally, the adversary applies the covariance between the transformed data and the

model depending on the key hypothesis. In this experiment we use the 10000 first traces of the

DPA contest to compute the success rate which results in 25 repetitions.

3.4.2 Empirical results

Figure 3.9 illustrates the success rate after preprocessing for different sizes of the learning set

for PCA (green) and the covariance vector (red). One can observe that the covariance method

performs better than PCA when a low number of traces is used during the learning phase,
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Figure 3.8: Comparison between 2O-CPA with preprocessing method and without in presence of
Gaussian noise, with a standard deviation of 3 for (a) with a standard deviation of 5 for (b)

accordingly, this method is a good choice as a “on the fly" preprocessing method. The reason

why the PCA method needs more measurements for the learning than the covariance method

to reach its maximum efficiency during the attack phase could be the fact that the covariance

matrix (see the term tXX in Def. 18) needs more traces to be well estimated.

Figure 3.10 shows that with the “on the fly" preprocessing we can perform 2O-CPA using

225 measurements. This represents a gain of 18% compared to raw (sample-wise) 2O-CPA.

3.5 Conclusions and Perspectives

In this chapter we presented the covariance method as an optimal preprocessing method for

second-order CPA. By using all possible leakage points our method improves the efficiency of the

attacks and as the number of combined leakage points grow quadratically, thus our preprocessing

method is well adapted for bi-variate CPA. We further theoretically linked the PCA to the

problem of maximization of the covariance. We demonstrated theoretically the result of the

covariance method to be the optimal linear combination for maximizing the covariance and

underlined empirically that this method improves the result of bi-variate CPA.

Compared to 2O-CPA, the attack based on the optimal covariance method is significantly

improved, particularly in presence of noise and when the number of leaking points is important.
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Figure 3.9: Comparison between covariance and PCA depending on the size of the learning base
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Figure 3.10: Comparison between covariance in line preprocessing and 2O-CPA

This is partly explained by the fact the optimal covariance considers all the relevant sampling

points, whereas the 2O-CPA considers only the best pair of samples and does not exploit the

other interesting pairs.

We have also shown that the optimal covariance method is more efficient than PCA when

the learning phase is performed on the fly. All the results have been validated by experiences on

real traces corresponding to masking implementation of the DPA contest v4. As a consequence

dimensionality reduction by linear combination is well adapted to the case of multi-variate CPA.

Moreover, the higher the order of masking, the more efficient the attack after preprocessing.

We could extend the previous results on other implementations which are less favorable to

attacker, e.g., with more noise. Also we plan to compare the method presented in this chapter

and the method presented in (70) in these cases.
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Following the results of the previous chapter we could extend these results in a profiled

scenario. In this context we could look at the optimal dimensionality reduction in terms of

success rate in the case of masking. Following the notations introduced in the introduction

we will look at the optimal dimensionality reduction in the case of bi-variate attacks. Then a

generalization could be done to extend this result at any order.
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Part II

Multivariate Leakages of a Masking
Scheme with Table Recomputation
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CHAPTER 4

Optimal Distinguisher against Masking Table

The results presented in this chapter have been published in collaboration with Sylvain Guilley,

Annelie Heuser and Olivier Rioul in the international Conference on the Theory and Application

of Cryptology and Information Security (ASIACRYPT 2014) (23).
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Masking schemes based on tables recomputation are classical countermeasures against high-

order side-channel attacks. Recently Tunstall, Whitnall and Oswald at FSE 2013 have exhibit a

new attack which exploits the multiple leakages linked to one mask during the recomputation of

tables. This attack is highly multi-variate as it exploits many different leakages depending on

many different variables. As a consequence following our nomenclature this attack has a high

parameter δ. Based on these results we investigate in this chapter the optimal attack in this

context. We formally compute the optimal distinguisher against table recomputation masking

scheme when the attacker has a full knowledge of the leakage function. This new distinguisher

will provide better result in term of probability of success than the attacks of the state-of-the-
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art. Moreover our analysis gives better understanding on the behavior of the attack. Indeed we

show that for high noises the optimal distinguisher is closed to a sum of several 2O-CPA. As a

consequence this new attack is closed to a highly multi-target attack.

4.1 Algorithm of masking tables

In the implementation of masking schemes, it is particularly challenging to compute non-linear

parts of the algorithm, such as for example the S-Box of AES (a function from n bits to n bits).

To solve this difficulty different methods have been proposed which can be classified in three

categories (97).

• Algebraic methods (16, 141). The outputs of the S-Box will be computed using the

algebraic representation of the S-Box.

• Global Look-up Table (130, 162) method. A table is precomputed off-line for each possible

input and output masks.

• Table recomputation methods which precompute a masked S-Box stored in a table (1,

29, 105). Here, the full table is recomputed despite not all entries will be called. Such

tables can be recomputed only once per encryption to reach first-order security. More

recently, Coron presented at EUROCRYPT 2014 (39) a table recomputation scheme secure

against Ωth-order attacks. Since this countermeasure aims at high-order security (Ω > 1),

it requires one full table precomputation before every S-Box call.

The principle of masking tables is illustrated in Alg. 1. Instead of showing a complete masked

AES, only the masked computation of AddRoundKey followed by SubBytes is shown.

We have indicated the words length of all data as n, typically, n = 8 bit for AES. Two

random masks m and m′ are drawn initially from Fn2 and all the data manipulated by the

algorithm will be exclusive-ored with one of the two masks.

Passing additively masked data through the Sbox is not obvious, as this operation is non-

linear. Therefore, the Sbox is recomputed masked, as shown on lines 2 to 5: a new table S′,

that has also size 2n × n bits, is required for this purpose. It can be seen that the addresses are

accessed sequentially in the ordinal order. In the Sbox precomputation step, the key byte k is

not manipulated. The leakage only concerns the mask.

Then, the masked computation which involves the masked table follows, in lines 7 to 10.

Masking the plaintext is straightforward (see line 7). Key addition can be done safely as a
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second step, as the plaintext is already masked (see line 8). Of course, if the whole AES were to

be evaluated, the demasking step (line 10) would be deferred till the end of the AES.

Algorithm 1: Beginning of a block cipher masked by Sbox precomputation
input : t, one byte of plaintext, and k, one byte of key
output :The application of AddRoundKey and SubBytes on t, i.e., S(t⊕ k)

1 m←R Fn2 , m′ ←R Fn2 // Draw of random input and output masks
2 for ω ∈ {0, 1, . . . , 2n − 1} do // Sbox masking
3 z ← ω ⊕m // Masked input
4 z′ ← S[ω]⊕m′ // Masked output
5 S′[z]← z′ // Creating the masked Sbox entry

6 end
7 t← t⊕m // Plaintext masking
8 t← t⊕ k // Masked AddRoundKey
9 t← S′[t] // Masked SubBytes

// ... normally, the full AES is computed here ...

10 t← t⊕m′ // Demasking
11 return t

4.2 Classical Attacks

We now consider the attack of a masking scheme using Sbox recomputation as described in (87).

It is noteworthy that the traditional approach to reduce the multiplicity of leakage samples

by a combination CX : Rd → R actually would fail in the setup of masking tables. Indeed, the

combination functions are usually considered symmetric into its arguments, meaning that any

swap of the inputs does not affect the combination. This (tacit) hypothesis has been made, for

instance, for

• the absolute difference Cad(X) = |X(0) −X(1)| = |X(1) −X(0)|, and

• the centered product Ccp(X) = (X(0)−E
[
X(0)

]
)(X(1)−E

[
X(1)

]
) = (X(1)−E

[
X(1)

]
)(X(0)−

E
[
X(0)

]
).

We assume here that the attacker applies the combination function on the leakages occurring
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during the Sbox recomputation (see Alg. 1), i.e., the attacker gains 2n leakages

X(0) = Ψ(0)(M) +N (0) (4.1)

X(1) = Ψ(1)(M ⊕ 1) +N (1) (4.2)
...

X(2n−1) = Ψ(2n−1)(M ⊕ (2n − 1)) +N (2n−1) , (4.3)

and would apply1 e.g., Cad(X) or Ccp(X). Additionally, he measures the leakage X(2n) =

Ψ(2n)(T ⊕ k ⊕M) + N (2n) and finally combines it with the previous combined leakages as

C̄(X(2n), C(X(0), . . . , X(2n−1))).

Following the methodology in (133) and assuming an equal leakage function on each share2,

i.e., Ψ = Ψ(0) = · · · = Ψ(2n), the optimal function to combine the predictions would then be

CY = E{C̄X(CX(Ψ(M),Ψ(M ⊕ 1), . . . ,Ψ(M ⊕ (2n − 1))),Ψ(t⊕ k ⊕M))} (4.4)

=
1

2n

∑

m∈Fn2

C̄X(CX(Ψ(m),Ψ(m⊕ 1), . . . ,Ψ(m⊕ (2n − 1))),Ψ(t⊕ k ⊕m))

=
1

2n

∑

m′∈Fn2

C̄X(CX(Ψ(m′ ⊕ k), . . . ,Ψ(m′ ⊕ k ⊕ (2n − 1))),Ψ(t⊕m′)) (4.5)

=
1

2n

∑

m′∈Fn2

C̄X(CX(Ψ(m′),Ψ(m′ ⊕ 1), . . . ,Ψ(m′ ⊕ (2n − 1))),Ψ(t⊕m′)). (4.6)

In Eq. (4.5), we change m for m′ = m⊕ k and in Eq. (4.6), the input terms at position ζ

are replaced with those at position ζ ⊕ k (because of the symmetry property of c). Accordingly,

CY does not depend on the key k and is even constant as the same operation can be done on

t⊕ k, therefore higher-order CPA fails.

Of course, the Sbox precomputation masking scheme can be attacked by the classic means,

that ignore the precomputation stage (i.e., lines 7 to 10 in Alg. 1 are already vulnerable alone).

More precisely, if several Sboxes are computed with different plaintext bytes and different key

bytes, then collision attacks are possible. Also a second-order attack with a combination function

can be achieved, for instance, between the addition of the mask to the plaintext and the Sbox

call, i.e., between lines 7 and 9 in Alg. 1. Additionally, such second-order attack can also be
1The centered product combination function naturally extends from two to any number of inputs. However,

the absolute difference is inherently a binary combination function. A possible generalization in the context
of arity d could thought of as: Cad(X) =

∑
0≤ω<d
0≤ω′<d

|X(ω) −X(ω′)|. Such expression remains unchanged under

permutation of the inputs.
2This assumption is reasonable for software implementation, which is the adequate scenario for masking

tables.
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achieved between one leakage from the Sbox recomputation (say line 3 in Alg. 1. and line 8 (or

preferably with line 9 for a better contrast (9)).

However, a better attack would consist in using altogether all the leakages from the Sbox

recomputation with one (or more) of the samples used during the computation proper (starting

from line 8, when the key is involved). One example of such strategy has been exposed in (174),

which we label as 2-stage CPA attack.

Definition 40 (2-stage CPA attack (174)).

2×CPAmt(x, t) = arg max
k∈K

ρ̂(x(2n), y(2n)(t, k, m̂)), (4.7)

where ∀i m̂i is the mask that maximizes the correlation between x(ω)
i and y(ω)

i = ω ⊕mi

for ω ∈ [0, 2n[. This attack is a synergy between a horizontal and a vertical attack and as a

consequence we will call these attacks Horizontal Vertical (HV) attacks. For each trace (separately

∀i), the first attack in Eq. (4.7) consists in recovering the mask during the precomputation

(lines 2 to 5 in Alg. 1). Second, a regular CPA using a model in which both the plaintext t and

the mask m are assumed as public knowledge is launched. Even if the mask m̂ is not recovered

correctly for each trace (since 2n leakage samples during the precomputation can be seen as

small), it can be expected that the value of the mask is recovered by the first horizontal attack

probabilistically well enough for it to be biased, i.e., better guessed than random. This gives a

rough idea of the proof of soundness for this attack.

Nonetheless, this attack is probably not the most efficient, as it uses separately the information

available from the Sbox precomputation and from the leakage of the AES algorithm proper. The

next subsection investigates the optimal attack and gives approximation for high and low noise.

4.3 High Order Optimal Distinguisher for Precomputation
Masking Tables

When using masking tables (Alg. 1) the attacker first has all leaking samples during the

precomputation, i.e., y(ω)
i = Ψ(ω ⊕m) that are independent of i for 0 ≤ ω ≤ (2n − 1), and,

second, the leakage arising from the combination of the mask m, plaintext ti and the key, i.e.,

y
(2n)
i = Ψ(ti⊕k⊕m). Thus, all terms for ω 6= 2n do not depend on the key and the higher-order

optimal distinguisher from Def. 20 can be further deduced.
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Theorem 4.3.1 (OPT for masking tables). When Ψ : Fn2 → R is known, N (ω)
i ∼ N(0, σ2

ω)

and i.i.d. across values of q and independent across the values of ω = {0, . . . , 2n}, then the
higher-order optimal distinguisher against masking tables takes the form

OPT(x, t) =

arg max
k∈K

q∑

i=1

log

{ ∑

m∈Fn2

exp

{ ∑

ω∈Fn2

1

σ(ω)2

(
x

(ω)
i Ψ(ω ⊕m)− 1

2
Ψ(ω ⊕m)2

)

+
1

σ(2n)2

(
x

(2n)
i Ψ(ti ⊕m⊕ k)− 1

2
Ψ(ti ⊕m⊕ k)2

)}}
. (4.8)

Proof. Straightforward computation from Eq. (1.23) yields

arg max
k∈K

q∏

i=1

∑

m∈Fn2

∏

ω∈Fn2

exp

{
1

σ(ω)2

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2
)}

(4.9)

= arg max
k∈K

q∑

i=1

log




∑

m∈Fn2

exp




∑

ω∈Fn2

1

σ(ω)2

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2
)




 (4.10)

Now plugging the respective leakages as described in Subsect. 4.3 gives

= arg max
k∈K

q∑

i=1

log




∑

m∈Fn2

exp




∑

ω∈Fn2

1

σ(ω)2

(
x

(ω)
i Ψ(ω ⊕m)− 1

2
Ψ(ω ⊕m)2

)

+
1

σ(2n)2

(
x

(2n)
i Ψ(ti ⊕m⊕ k)− 1

2
Ψ(ti ⊕m⊕ k)2

)}}
. (4.11)

Proposition 15 (HOOD for masking tables for low SNR). For large Gaussian noise (or low
SNR) the distinguisher becomes

OPT-high(x, t) =

arg max
k∈K

∑

ω∈Fn2

1

σ(ω)2

q∑

i=1




x
(ω)
i x

(2n)
i

∑
m Ψ(ω ⊕m)Ψ(ti ⊕ k ⊕m)

− 1
2x

(2n)
i

∑
m Ψ(ti ⊕ k ⊕m)Ψ(ω ⊕m)

2

− 1
2x

(ω)
i

∑
m Ψ(ω ⊕m)Ψ(ti ⊕ k ⊕m)

2

+ 1
4

∑
m Ψ(ω ⊕m)

2
Ψ(ti ⊕ k ⊕m)

2



. (4.12)

Proof. Due to the lack of space we neglect the term arg maxk∈K in front of each line. Starting
from Eq. (1.23) we use again the first-order Taylor expansion exp{ε} = 1 + ε+O(ε2). So,

q∏

i=1

∑

m∈Fn2

2n∏

ω=0

(
1 +

1

σ(ω)2

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)
+

1

2σ(ω)4

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)2)
.
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Furthermore, an expansion at second-order gives

q∏

i=1

∑

m∈Fn2

(
1 +

2n∑

ω=0

1

σ(ω)2

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)
+

1

2σ(ω)4

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)2

+

2n∑

ω 6=ω′

1

σ(ω)2
σ(ω′)2

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)(
x

(ω′)
i y

(ω′)
i − 1

2
y

(ω′)
i

2))
. (4.13)

From the perfect masking condition (see (22, Proposition 1)) the first-order term

∑

m∈Fn2

2n∑

ω=0

1

σ(ω)2

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)
=

2n∑

ω=0

1

σ(ω)2

(
x

(ω)
i

∑

m∈Fn2

y
(ω)
i − 1

2

∑

m∈Fn2

y
(ω)
i

2)

is constant as well as

∑

m∈Fn2

2n∑

ω=0

1

2σ(ω)4

(
x

(ω)
i y

(ω)
i − 1

2
y

(ω)
i

2)2 (4.14)

=

2n∑

ω=0

1

2σ(ω)4

(
x

(ω)
i

2 ∑

m∈Fn2

y
(ω)
i

2
+

1

4

∑

m∈Fn2

y
(ω)
i

4
− x(ω)

i

∑

m∈Fn2

y
(ω)
i

3)
. (4.15)

The other terms in ω, ω′ can be written as

2

2n∑

ω<ω′

1

σ(ω)2
σ(ω′)2

(
x

(ω)
i x

(ω′)
i

∑

m∈Fn2

y
(ω)
i y

(ω′)
i − 1

2
x

(ω′)
i

∑

m∈Fn2

y
(ω′)
i y

(ω)
i

2

−1

2
x

(ω)
i

∑

m∈Fn2

y
(ω)
i y

(ω′)
i

2
+

1

4

∑

m∈Fn2

y
(ω)
i

2
y

(ω′)
i

2)
. (4.16)

Moreover, all terms involving only combinations of ω < d = 2n do not depend on the key, thus
we can further simplify to the required equation

∑

ω∈Fn2

1

σ(ω)2

(
q∑

i=1

x
(ω)
i x

(2n)
i

∑

m∈Fn2

y(ω)y(2n) − 1

2
x

(2n)
i

∑

m∈Fn2

y(2n)y(ω)2

(4.17)

−1

2
x

(ω)
i

∑

m∈Fn2

y(ω)y(2n)2
+

1

4

∑

m∈Fn2

y(ω)2
y(2n)2


 . (4.18)

Proposition 16 (Relationship between HOOD and CPA for masking tables). When all noise
variances are equal, i.e., σ = σ(ω) ∀ω, Eq. (4.12) further simplifies to

OPT-high(x, t) = arg max
k∈K

∑

ω∈Fn2

q∑

i=1

(
x

(ω)
i x

(2n)
i

∑

m∈Fn2

Ψ(ω ⊕m)Ψ(ti ⊕ k ⊕m)

− 1

2
x

(ω)
i

∑

m∈Fn2

Ψ(ω ⊕m)Ψ(ti ⊕ k ⊕m)2
)
, (4.19)
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which becomes close to a combination of higher-order CPAs, i.e.,

C-CPA(x, t) = arg max
k∈K

∑

ω∈Fn2

ρ(cn-prodX (x(ω),x(2n)), coptY (y(ω),y(2n))) (4.20)

− 1

2
ρ(x(ω), coptY (y(ω),y(2n)2

)).

Proof. If all the variances are equal we have

∑

ω∈Fn2

Ψ(ω ⊕m)2

σ(ω)
=

1

σ

∑

ω∈Fn2

Ψ(ω ⊕m)2 =
1

σ

∑

ω∈Fn2

Ψ(ω)2. (4.21)

So, regarding the second term in Eq. (4.12) we have

∑

ω∈Fn2

1

σ(ω)2

q∑

i=1

x
(2n)
i

∑

m∈Fn2

Ψ(ti ⊕ k ⊕m)Ψ(ω ⊕m)
2 (4.22)

=

q∑

i=1

x
(2n)
i

∑

m∈Fn2

Ψ(ti ⊕ k ⊕m)
∑

ω∈Fn2

1

σ(ω)2 Ψ(ω ⊕m)
2 (4.23)

=

q∑

i=1

x
(2n)
i

∑

m∈Fn2

Ψ(ti ⊕ k ⊕m)
∑

ω∈Fn2

1

σ2
Ψ(ω)

2 (4.24)

=

q∑

i=1

x
(2n)
i

∑

m∈Fn2

Ψ(ti ⊕m)
∑

ω∈Fn2

1

σ2
Ψ(ω)

2
, (4.25)

which clearly does not depend on the key k. The same goes for the fourth term, which proofs
the first part. Now, rewriting Eq. (4.19) gives

arg max
k∈K

∑

ω∈Fn2

〈x(ω)x(2n) |
∑

m∈Fn2

Ψ(ω ⊕m)Ψ(t⊕ k ⊕m)〉

−〈1
2
x(ω) |

∑

m∈Fn2

Ψ(ω ⊕m)Ψ(t⊕ k ⊕m)2〉, (4.26)

and using the same argumentation as in the proof of (22, Proposition 9) gives the required
formula from the second part.

Interestingly, instead of using one CPA to recover the mask and one to recover the secret key

(see Def. 40) we recover that the best methodology is to attack each share ω < 2n with ω = 2n

(minus a regulation term) and then use a combination of all attacks.

In other words a better attack is to build an attack which recover the key in several manners

based on different variables and then combined them. As a consequence we have build here an

attack which is highly multi-target and as a consequence its parameter τ is also high.

Remark 16. For low noise, we can straightforwardly use (22, Proposition 10), which is validated
in our empirical results.
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Figure 4.1: Success Rate for masking table.

4.3.1 Experimental Validation

To empirically validate our theoretical results we use simulations of a first order masking scheme

with precomputation tables. We target the xor operation in the precomputation phase and the

AddRoundKey of the algorithm (see line 3 and line 8 of Alg. 1). For computationally reasons

for all distinguishers we only target four bits (n = 4).

Remark 17. Targeting the AddRoundKey phase has some advantages. First, it allows to
perform the evaluation on only four bits without the loss of generality of using a four bits Sbox.
Second, in the Sbox precomputation algorithm of Coron (39) the output masks are different for
each entry of the Sbox and could therefore not be combined with the mask of the precomputation
table. However, as in our analysis the attacker can still take advantage of the 2n leakages of the
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masked inputs of the Sbox combined with the leakage of the AddRoundKey operation.

Similarly to the previous experiments, T is uniformly distributed over F4
2 and the noise is

arising from a Gaussian distribution N ∼ N(0, σ2) for σ = σ(0) = ... = σ(16) ∈ {0.5, 1, 3, 5}.
Again to compute the success rate we conducted 500 independent experiments with uniformly

distributed k? and shaded the success rate with error bars.

Figure 4.1 shows the success rate. For low noise (σ = 0.5 and σ = 1) the optimal distinguisher

(HOOD) and its approximation for low noise (HOOD-low) perform similar and better than

the 2nd-order CPA (2O-CPA) with normalized product combination function and the 2-stage

CPA in Eq. 4.7 (2xCPA). Naturally, all distinguishers outperform 2nd-order CPA as it only

utilizes two leakages X(0) and X(256). For higher noise (σ = 3 and σ = 5) the HOOD and its

approximation for high noise (HOOD-high) perform better than the 2-stage CPA (2xCPA) and

2nd-order CPA. Moreover it can be noticed that the distinguisher based on combinations of

CPA (Eq. (4.20)) (C-CPA) and the optimal ones are equally efficient. Accordingly, we have

empirically validated that our new distinguisher approximated from the optimal distinguisher is

valid for high noise and more efficient than the two-stage CPA. In particular, it requires around

1000 traces less to reach P̂S = 90% for σ = 5.

4.4 Classical countermeasure

The strategy to protect the table recomputation against HV attacks and the distinguisher

presented in (23) is to shuffle the recomputation, i.e., do the recomputation in a random order,

as illustrated in Alg. 2.

Different methods to randomize the order are presented in (174). One of the methods

presented is based on a random permutation on a subset of Fn2 .

Let S2n the symmetric group of 2n elements, which represents all the ways to shuffle the set

{0, . . . , 2n−1}. If the random permutation over Fn2 is randomly drawn from a set of permutation

S ⊂ S2n , where card (S)� card (S2n), it is still possible for an attacker to take advantage of

the table recomputation. Indeed as it is shown in (174) attacks could be built by including

all the possible permutations alongside with the key hypothesis. If the permutation is drawn

uniformly over the S2n the number of added hypothesis is 2n! which can be too much for attacks.

For instance, for n = 8, we have 28! ≈ 21684.

By generating a highly entropic permutation, such as defined in (174) or any pseudo random

permutation generator (RC4 key scheduler...), a designer could protect table recomputation
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against HV attacks. Indeed using for example five or six bytes of entropy as seed for the

permutation generator could be enough to prevent an attacker from guessing all the possible

permutations.

The table is recomputed in a random order from line 3 to line 7.

Algorithm 2: Beginning of computation of a block cipher masked by table recomputation
in a random order
input : t, one byte of plaintext, and k, one byte of key
output :The application of AddRoundKey and SubBytes on t, i.e., S[t⊕ k]

// Table precomputation protected by shuffling ...............................

1 m←R Fn2 , m′ ←R Fn2 // Draw of random input and output masks

2 ϕ←R Fn2 → Fn2 , bijective // Draw of random permutation of Fn2
3 for ω ∈ {0, 1, . . . , 2n − 1} do // S-box masking
4 z ← ϕ(ω)⊕m // Masked input

5 z′ ← S[ϕ(ω)]⊕m′ // Masked output

6 S′[z]← z′ // Creating the masked S-box entry
7 end

// Masked computation ...........................................................

8 t← t⊕m // Plaintext masking

9 t← t⊕ k // Masked AddRoundKey

10 t← S′[t] // Masked SubBytes

11 t← t⊕m′ // Demasking
12 return t

4.5 Conclusions and Perspectives

In this chapter we used the optimal distinguisher to build the best possible attack.

We provide a new distinguisher based on correlation whose again is as efficient as the optimal

distinguisher in case of high noise. Naturally, this new distinguisher outperforms all known

(non-profiled) distinguisher for this application. Given all these results we theoretically and

empirically show that for high noise the security analysis with non-profiled distinguisher is

sufficient as it coincides with the optimal distinguisher. Interestingly this new distinguisher based

on correlation as the property to be closed to a sum of high order attacks and as a consequence

to be closed to multi-target attack. These results show that non-profiled distinguishers maybe

enough to ensure the security of protected implementations at the condition to properly take

into account all leakages and specifically the multi-target leakages.
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These results raise various new perspectives. First of all, our methodology of starting from

the optimal distinguisher and deriving approximated distinguisher could be applied to other

scenarios. One application, for example, could be the scenario used in (145). Moreover, future

work should deal with the exact analysis of the impact of noise on the masking efficiency in a

theoretical manner. This comes along with an analysis of the impact of the number of shares, in

particular, with an investigation of the arguments done in (132, 177) about exponential attack

complexity.
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CHAPTER 5

Multivariate High Order Attack against shuffled Masking Table

The results presented in this chapter have been published in collaboration with Sylvain Guilley,

Zakaria Najm and Yannick Teglia in the international Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2015) (26).
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Masking schemes based on tables recomputation are classical countermeasures against high-

order side-channel attacks. Still, they are known to be attackable at order Ω in the case the

masking involves Ω shares. In this work, we mathematically show that an attack of order strictly

greater than Ω can be more successful than an attack at order Ω. To do so, we leverage the idea

presented by Tunstall, Whitnall and Oswald at FSE 2013: we exhibit attacks which exploit the

multiple leakages linked to one mask during the recomputation of tables. Specifically, regarding

first-order table recomputation, improved by a shuffled execution, we show that there is a window

of opportunity, in terms of noise variance, where a novel highly multivariate third-order attack is
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more efficient than a classical bivariate second-order attack. Moreover, we show on the example

of the high-order secure table computation presented by Coron at EUROCRYPT 2014 that the

window of opportunity enlarges linearly with the security order Ω. Here, we also investigate the

case of degree one leakage models, and formally show that the Hamming weight model is the

less favorable to the attacker. Eventually, we validate our attack on a real ATMEL smartcard.

5.1 Introduction

Contributions.

Our first contribution is to describe a new HODPA tailored to target the table recomputation

despite a highly entropic masking (unexploitable by exhaustive search). More precisely, we

propose an innovative combination function, which has the specificity to be highly multivariate.

We relate the combination function of state-of-the-art and our new HODPA attacks to their

success rate, which allows for a straightforward comparison. In particular, we compare the

success rates of our highly multivariate HODPA (exploiting leakages in the table recomputation

as well as in the masked algorithm, where the secret key is used) and of a state-of-the-art

HODPA (exploiting only the leakages within the masked algorithm).

We build a theoretical analysis of their success rate. Our analysis reveals that there is a

window of opportunity, when the noise variance is smaller than a threshold, where our new

HODPA is more successful than a straightforward HODPA, despite it is of higher-order. This

analysis also allows to identify the relevant parameter which impact the success of the attacks.

In particular the impact of the leakage functions is identified, and as a consequence the best

and the worst cases for our new attack are found. Similarly using the success exponent our

theoretical analysis gives the best/worst cases in terms of noise variance.

For instance in this chapter we attack a first-order masking scheme based on table recompu-

tation with a (2n+1 + 1)-variate third-order attack more efficiently than with a classical bivariate

second-order attack. In this case HV attacks could not be applied. This is the first time that a

non minimal order attack is proved better (in terms of success rate) than the attack of minimal

order. Actually, this non intuitive result arises from a relevant selection of leaking samples —

this question is seldom addressed in the side-channel literature. We generalize our attack to a

higher-order masking scheme based on tables recomputation (Coron, EUROCRYPT 2014), and

prove that it remains better than a classical attack, with a window of opportunity that actually

grows linearly with the masking order Ω.
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Finally we propose a new innovative countermeasure in order to protect masking scheme

based on tables recomputation against our new attack.

Outline of the chapter.

The rest of the chapter is organized as follows. In Sect. 5.2 we propose a new attack against

the “protected” implementation of the table recomputation, prove theoretically the soundness

of the attack and validate these results by simulation. In Sect. 5.3 we apply this attack on

a higher-order masking scheme. Sect. 5.4 extends our results to the case where the leakage

function is affine in the bits of the targeted sensitive variable. In Sect. 5.5 we validate our results

on real traces. Finally in Sect. 5.6 we present a countermeasure to mitigate the impact of our

new attack.

5.1.1 Preliminary and notations

In order to conduct a Ωth-order attack an attacker should combine the leakages of Ω shares. To

combine these leakages an attacker will use a combination function (29, 107, 121). The degree

of this combination function must be at least Ω for the attack to succeed. The combination

function will then be applied both on the measured leakages and on the model (this is the

optimal HODPA). As a consequence, an HODPA is completely defined by the combination

function used.

In the rest of the chapter the SNR is given by the following definition:

Definition 41 (Signal to noise ratio). The Signal to Noise Ratio of a leakage denoted by a
random variable L depending on informative part denoted I is given by:

SNR [L, I] =
Var [E [L|I]]

E [Var [L|I]]
. (5.1)

An attack is said sound when it allows to recover the key k? with success probability which

tends to one when the number of measurements tends to the infinity.

5.2 Totally random permutation and attack

In this section we present a new attack against shuffled table recomputation shown in Alg. 2 of

Chapt. 4. The success of this attack will not be impacted by the entropy used to generate the

shuffle. As a consequence this attack will succeed when the HV attacks will fail because the
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quantity of entropy used to generate the shuffle is too large to be exhaustively enumerated. We

then express the condition where this attack will outperform the state-of-the-art second order

attack.

5.2.1 Defeating the countermeasure

As the permutation ϕ is completely random, the value of the current index in the for loop

(line 3 to line 7 in Alg. 2) is unknown. But it can be noticed that this current index ϕ(ω),

printed in boldface for clarity, is manipulated twice at each step of the loop (line 4, line 5):

z ← ϕ(ω)⊕m , (5.2)

z′ ← S[ϕ(ω)]⊕m′ . (5.3)

Let U a random variable uniformly drawn over Fn2 and m ∈ Fn2 a constant. Then, it is shown

in (133) that:

E [(HW[U ]− E [HW[U ]])× (HW[U ⊕m]− E [HW[U ⊕m]])] = −HW[m]

2
+
n

4
. (5.4)

As a consequence, it may be possible for an attacker to exploit the leakage depending on the

two manipulations (Eq. (5.2) and (5.3)) of the current random index in the loop. Indeed, at

each of the 2n steps of the loop in the table recomputation, the leakage of the ϕ(ω) in Eq. (5.2)

and (5.3) which plays the role of U in Eq. (5.4) will be combined (by a centered product) to

recover a variable depending on the mask. Afterwards, these 2n variables will be combined

together (by a sum) in order to increase the SNR as much as possible. Finally, this sum is

combined (again by a centered product) with a leakage depending on the key. This rough idea

of the attack is illustrated it on Fig. 5.1, which represents the “trace” corresponding to the

dynamic execution of Alg. 2, followed by the masked AES AddRoundKey & SubBytes steps.

Remark 18 (Construction of the high-order attack). The construction of the attack depicted
in Fig. 5.1 leverages on two building blocks:

1. the centered product, represented as × , which allows to get rid of a mask (recall Eq. (5.4)),
albeit at the expense of a smaller SNR (it is squared, as shown in (46) – see Sec. 5.2.3)

2. the sum of variables with the same leakage model, represented as + , which increases the
SNR linearly with the number of variables summed together.

An attacker could want to perform the attack on the output of the S-Box. But depending on

the implementation of the masking scheme the output masks can be different for each address
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Figure 5.1: State-of-the-art attack and new attack investigated in this chapter.

of the S-Box (see for example the masking scheme of Coron (39)). To avoid loss of generality we

focus our study on the S-Box input mask of the recomputation. Indeed by design of the table

recomputation masking scheme, the input mask is the same for each address of the S-Box: the

attacker can thus exploit it multiple times. Moreover an attacker can still take advantage of the

confusion of the S-Box (53) to better discriminate the various key candidates. Indeed he can

target the input the of SubBytes operation of the last round. Notice the use of capital M and

capital Φ, which indicates that the leakage is modeled as a random variable.

5.2.2 Multivariate attacks against table recomputation

In the previous section, it has been shown that at each iteration of the loop of the table

recomputation, it is possible to extract a value depending on the mask. As a consequence it is

possible to use all of these values to perform a multivariate attack. In this subsection we give the

formal formula of this new attack. Let us define the leakages of the table recomputation. The

leakage of the masked random index in the loop is given by: HW[Φ (ω)⊕M ]+N
(1)
ω . The leakage

of the random index is given by: HW[Φ (ω)] +N
(2)
ω . In this chapter as no matrix notation is

used the bottom index is used to index the step in the loop.

Depending on the knowledge about the model, the leakage could be centered by the “true”

expectation or by the estimation of this expectation. We assume this expectation is a known

value given by: E
[
HW[Φ (ω)⊕M ] +N

(1)
ω

]
= E

[
HW[Φ (ω)] +N

(2)
ω

]
= n

2 . Then let us denote
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the central leakages as:

X(1)
ω = HW[Φ (ω)⊕M ] +N (1)

ω − n

2
, (5.5)

X(2)
ω = HW[Φ (ω)] +N (2)

ω − n

2
. (5.6)

Besides, the leakage of the masked AddRoundKey is:

X? = HW[T ⊕M ⊕ k?] +N − n

2
. (5.7)

In a view to use all the leakages of the table recomputation, an original combination function

could be defined.

Definition 42. The combination function CTR exploiting the leakage of the table recomputation
is given by:

CTR : R2n+1 × R −→ R((
X

(1)
ω , X

(2)
ω

)
06ω62n−1

, X?

)
7−→

(
−2× 1

2n

∑2n−1
ω=0 X

(1)
ω ×X(2)

ω

)
×X? .

Following the Fig. 5.1 it can be noticed that CTR is in fact the combination of two sub-

combination functions. Indeed, first of all, the leakages of the table recomputation are combined;

the result of this combination is the following value:

XTR = −2× 1

2n

2n−1∑

ω=0

X(1)
ω ×X(2)

ω . (5.8)

Second, this value is multiplicatively combined with X?.

Remark 19. It can be noticed that the random variable XTR does not depend on Φ. Indeed
in Eq. (5.8) the sum can be reordered by Φ. Moreover as this sum is computed over all the
possible Φ (ω) it implies that 1

2n

∑2n−1
ω=0 X

(1)
ω ×X(2)

ω is exactly the expectation over the Φ (ω). As
a consequence XTR is random only through the mask and the noise.

Based on the combination function CTR, a multivariate attack can be built.

Definition 43. The MultiVariate Attack (MVA) exploiting the leakage of the table recomputation
(TR) is given by the function:

MVATR : R2n+1 × R× R −→ Fn2((
X

(1)
ω , X

(2)
ω

)
ω
, X?, Y

)
7−→ argmax

k∈Fn2
ρ
[
CTR

((
X(1)
ω , X(2)

ω

)
ω
, X?

)
, Y
]
,

where Y = E
[(

HW[T ⊕M ⊕ k]− n
2

)
·
(
HW[M ]− n

2

)
|T
]
and ρ is the Pearson coefficient. Ac-

cording to Eq. (5.4), the model Y is equal to an affine transformation of −HW[T ⊕ k] (note the
negative sign for the correlation ρ extremal value when k ∈ Fn2 to be positive).
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Proposition 17. MVATR is sound.

Proof. By the law of large numbers, correlation coefficient involved in the expression of MVATR

tends to ρ(−HW[T ⊕ k?],−HW[T ⊕ k]) when the number of traces tends to infinity. This
quantity is maximal when k = k?, by the Cauchy-Schwarz theorem. Then for enough traces
the noise will impact all the key guesses similarly and as a consequence the result of MVATR is
maximal when k = k?.

Remark 20. The attack presented in Def. 57 is a (2n+1 + 1)-multivariate third order attack.

Let us denote the leakage of the mask (which occurs at line 1 of Alg. 2) by:

X(3) = HW[M ] +N (3) − n

2
. (5.9)

Definition 44. We denote by 2O-CPA the CPA using the centered product as combination
function. Namely:

2O-CPA: R× R× R −→ Fn2(
X(3), X?, Y

)
7−→ argmax

k∈Fn2
ρ
[
X(3) ×X?, Y

]
.

A careful look at Def. 42, Def. 57 and Eq. (5.8) reveals that the only difference between the

MVATR and the 2O-CPA is the use of XTR instead of X(3). Thus XTR will act as the leakage

of the mask. Let us call XTR the second order leakage.

Lemma 4. The informative part of the second order leakage is the same as the informative
part of the leakage mask i.e.,

E [XTR|M = m] = E
[
X(3)|M = m

]
.

Proof. It is a straightforward application of the results of (133): Use Eq. (5.4) and notice the
intentional −2 factor in Eq. (5.8). Both expectations are thus equal to HW[m].

5.2.3 Leakage analysis

By using the formula of the theoretical success rate (SR) we show that as the same operations

are targeted by the MVATR and the 2O-CPA. Consequently, it is equivalent to compare the

SNR or the SR of these attacks. Based on this fact we can theoretically establish the conditions

in which the MVATR outperforms the 2O-CPA. These conditions are given in Theorem 5.2.1.

Recently A.A Ding et al. (46, §3.4) give the following formula to establish the Success Rate

(SR) of second-order attacks:

SR = ΦNk−1

(√b δ0δ1
4

K
− 1/2κ

)
. (5.10)

In this formula:
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• δ0 denotes the SNR of the first share and δ1 denotes the SNR of the second one;

• ΦNk−1 denotes the cumulative distribution function of (Nk − 1)-dimensional standard

Gaussian distribution; as underlined by the authors in (46), if the noise distribution is

not multi-variate Gaussian, then ΦNk is to be understood as its cumulative distribution

function;

• Nk denotes the number of key candidates;

• K denotes the confusion matrix and κ the confusion coefficient;

• b denotes the number of traces.

Remark 21. An update version of this formula for first order CPA has been presented in (52)
which solves the issue of the non invertible matrix.

This formula allows to establish the link between the SNR and SR of second order attacks

against Boolean masking schemes.

Let us apply the A.A Ding et al. formula in the case of our two attacks:

SR2O-CPA = Φ2n−1

(√
b

SNR
[
X(3),M

]
SNR [X?, (T,M)]

4
K
− 1/2κ

)
,

SRMVATR = Φ2n−1

(√
b

SNR [XTR,M ] SNR [X?, (T,M)]

4
K
− 1/2κ

)
.

We target the same operation for the share that leaks the secret key (X?). Moreover by

remark 4 the informative parts of the leakages depending on the mask (XTR and X(3)) is the

same in the two leakages. As a consequence, K and κ are the same in the two attacks.

It can be noticed that the only difference in the success rate formula is the use of SNR [XTR,M ]

instead of SNR
[
X(3),M

]
. Therefore, it is equivalent to compare these values and compare the

SR of these attacks.

Theorem 5.2.1. The SNR of the “second-order leakage” is greater than the SNR of the leakage
of the mask if and only if

σ2 6 2n−2 − n

2
,

where σ denotes the standard deviation of the Gaussian noise.
As a consequence MVATR will be better than 2O-CPA in the interval σ2 ∈ [0, 2n−2 − n/2].

Proof. See Appendix B.1. Interestingly, the same result is also a byproduct of the demonstration
of Proposition 22 (see Appendix B.2.2).

96



5.2 Totally random permutation and attack

Theorem 5.2.1 gives us the cases where exploiting the second-order leakage will give better

results than exploiting the classical leakage of the mask. For example if n = 8 (the case of AES)

the second-order leakage is better until σ2 6 60.

Figure 5.2 shows when the SNR of XTR is greater than the SNR of X(3). In order to have a

better representation of this interval 1/SNR is plotted.

0
5
10
15
20
25
30
35
40
45

0 10 20 30 40 50 60 70

In
ve
rs
e
of

th
e

S
N

R

Variance of the Gaussian Noise

Useful interval of variance

1
SNR[XTR,M ]

1

SNR[X(3),M]

Figure 5.2: Comparison between the variance of the noise for the classical leakage and the
second-order and the impact of these noises on the SNR

5.2.4 Simulation results

In order to validate empirically the results of Sect. 5.2, we test the method presented on simulated

data. The target is a first order protected AES with table recomputation. To simulate the

leakages we assume that each value leaks its Hamming weight with a Gaussian noise of standard

deviation σ. The 512 leakages of the table recomputation are those given in Subsect. 5.2.2.

A total of 1000 attacks are realized to compute the success rate of each experiment. In this

part, the comparisons are done on the number of traces needed to reach 80% of success.

It can be seen in Fig. 5.3a and in Fig. 5.3b that the difference between the two attacks is

null for σ = 0 and σ = 8 (that is, σ2 = 64 ≈ 60). It confirms the bound of the interval shown in

Fig. 5.2. This also confirms that comparing the SNR is equivalent to comparing the SR.

It can be seen in Fig. 5.3 that in presence of noise the MVATR outperforms the 2O-CPA.

The highest difference between the MVATR and 2O-CPA is reached when σ = 3. In this case,

the MVATR needs 2500 traces to mount the attack while the 2O-CPA needs 7500 traces. This

represents a relative gain1 of ≈ 200%. As shown in Fig. 5.3d, the relative gain decreases to 122%
1The formal definition of the relative gain is given in Def. 45.
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when σ = 4.
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Figure 5.3: Comparison between 2O-CPA and MVATR

5.2.5 Theoretical analysis of the SR

While the previous analysis of Subsect. 5.2.3 gives the bounds of effectiveness of the MVATR

it does not allow a quantitative comparison of the respective behaviors of the MVATR and

the 2O-CPA between these bounds. In this subsection we propose an approach which allows

a deeper analysis of the relevant parameters of their SR. We exploit the results of (63) which

presents a closed form formula which links the SR to the SNR for first order attacks. These

results have recently been extended to high order attacks (64).
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Proposition 18 ((63, Corollary 1)). The SR of an additive distinguisher is satisfies:

1− SR ≈ exp (−SE×q) , (5.11)

where SE is the success exponent and q the number of traces used for the attack.

Proof. The proof is given in (63).

Proposition 19. The SE of the 2O-CPA is:

SE2O-CPA = min
k 6=k?

κ (k?, k)

2
(
κ′(k?,k)
κ(k?,k) − κ (k?, k)

)
+ 2

(
α−2

1 σ2
1 + α−2

2 σ2
2 + α−2

1 σ2
1α
−2
2 σ2

2

) , (5.12)

where in our case (which complies to Eqn. (5.1) of Definition 41):

α2
1 = α2

2 = Var
[
E
[
X(3)|M

]]
= Var [E [X?|M,T ]] =

√
n

4
,

σ2
1 = σ2

2 = E
[
Var

[
X(3)|M

]]
= E [Var [X?|M,T ]] = σ2 ,

κ (k?, k) and κ′ (k?, k) are general confusion coefficients defined in

Definition 8 of (63). Notice that κ (k?, k) is a natural extension

of the seminal coefficient introduced by Fei et al. in (53).

Proof. See Appendix B.2.1.

We note that α2
i and σ2

i respectively represent the power of the signal and of the noise.

As Def. 42, Def. 57 and Eq. (5.8) reveals that the only difference between the MVATR and

the 2O-CPA is the use of XTR instead of X(3). Thus we can directly compute the success

exponent of MVATR.

Proposition 20. The SE of the MVATR is:

SEMVATR = min
k 6=k?

κ (k?, k)

2
(
κ′(k?,k)
κ(k?,k) − κ (k?, k)

)
+ 2

(
α−2

1 σ2
1 + α−2

2 σ2
2 + α−2

1 σ2
1α
−2
2 σ2

2

) , (5.13)

where in our case

α2
1 = α2

2 = Var [E [XTR|M ]] = Var [E [X?|M,T ]] =

√
n

4
,

σ2
1 = E [Var [XTR|M ]] = 4×

(
σ2

2n
× n

2
+
σ4

2n

)
,

σ2
2 = E [Var [X?|M,T ]] = σ2 .

Proof. The proof is similar as the proof of Prop. 19 using the values of noise computed in the
Appendix B.1.
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Exploiting this values it is possible to extract the parameters which impact the respective

behavior of the two attacks and especially the ones reaching to a higher difference between the

two attacks. Similarly to Subsect. 5.2.4 we will compare the two attacks using the relative gain.

Definition 45 (rel-gain(SR)). The relative gain between 2O-CPA and MVATR is given by:

rel-gain(SR) =
m

(SR)
2O-CPA −m

(SR)
MVATR

m
(SR)
MVATR

,

where m(SR)
2O-CPA and m

(SR)
MVATR

are respectively the number of traces needed by 2O-CPA and
MVATR to reach success rate value SR.

And we will also use the difference in number of traces needed to reach SR.

Definition 46 (gain(SR)). The difference in number of traces needed to reach SR of success is
given by the gain:

gain(SR) = m
(SR)
2O-CPA −m

(SR)
MVATR

,

where m(SR)
2O-CPA and m

(SR)
MVATR

are respectively the number of traces needed by 2O-CPA and
MVATR to reach SR of success rate.

Notice that rel-gain(SR) and gain(SR) are tools to compare attacks after having computed

their SR. They differ from relative distinguishing margins metrics (181) which analyses the

value of the distinguisher (and not their SR).

Proposition 21. rel-gain(SR) does not depend on the value of SR.

Proof. See Appendix B.2.2.

This means that, in Fig. 5.3, the SR curves for 2O-CPA and MVATR are the same, modulo

a scaling in the X axis. For instance, in Fig. 5.3 (a) and (b), the scaling factor is 1, i.e., the two

curves superimpose perfectly. As a result, one can compare these two attacks in terms of traces

number to extract the key, irrespective of the SR value chosen for the threshold.

Proposition 22. gain(SR) depends on the value of SR, but the value of the noise variance where
gain(SR) is maximum not depends on SR.

Proof. See Appendix B.2.3.

Remark 22. While the bounds of Theorem 5.2.1 depend only on the SNR the maximum effec-
tiveness (the maximum of gain(SR) or rel-gain(SR)) of the MVATR compare to the 2O-CPA also
depends on the operation targets (e.g. AddRoundKey or SubBytes) by the confusion coefficients
κ and κ′.
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5.2.5.1 Numerical Results.

In order to validate our theoretical analysis we build empirical validation based on simulations.

We reuse the curves generated for Sect. 5.2.4. In Fig. 5.4 the empirical results based simulation

are plotted in gray and the Theoretical ones in red pointed lines. The first observation is that

the theoretical analysis match well the simulations which validates our model choices.

In Fig 5.4a it can be noticed that for several SR ( different gray lines) the empirical rel-gain(SR)

are closed which confirmed the Prop. 21. Exploiting the formula of Def. 45 we can find the

noise variance σ2 where rel-gain(SR) is maximum. Indeed it occurs in a root of the derivative of

rel-gain(SR). In our scenario it occurs for σ2 = 9.11 (that is σ ≈ 3.02).

The behavior of gain(SR) is different indeed the SR has an impact on it, the gray lines are

not superimposed (see Fig. 5.4b). But similarly to rel-gain(SR) the SR does not impact the value

of noise where the maximum gain(SR) is reached. This confirms the Prop. 22. In our scenario it

is reached for σ2 = 39.67 (that is σ ≈ 6.30).

In order to compute this maximum we have computed the roots of the derivatives (of

rel-gain(SR) and gain(SR) w.r.t. σ2) using the MAXIMA software.
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Figure 5.4: Comparison between the 2O-CPA and the MVATR

5.3 An example on a high-order countermeasure

The result of the previous section can be extended to any masking scheme based on table

recomputation. In particular the MVATR can apply to High-Order masking schemes.
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5.3.1 Coron masking scheme attack and countermeasure

The table recomputation countermeasure can be made secure against High-Order attacks. An

approach has been proposed by Schramm and Paar (150). However, it happened that this

masking scheme can be defeated by a third order attack (40). To avoid this vulnerability Coron

recently presented (39) a new method based on table recomputation, which guarantees a truly

high-order masking. The core idea of this method is to mask each output of the S-Box with

a different mask and refresh the set of masks between each shift of the table (masking the

inputs by one mask). HV attacks are still a threat against such schemes. Indeed an attacker

will recover iteratively each input mask. Afterwards he will be able to perform a first order

attack on the AddRoundKey to recover the key. To prevent attacks based on the exploitation of

the leakages of the input masks an approach based on a random shuffling of the loop index is

possible (see Alg. 3). Algorithm 3 is a (Ω− 1)-th order countermeasure, meaning that attacks

of order strictly less than Ω fail. In this algorithm, the xi for i < Ω can be seen indifferently

as shares or as masks. The original masked S-Box algorithm from Coron (39) is the same as

Alg. 3, with ϕ chosen as the identity. It can be noticed that the entropy needed to build the

permutation could be low compared to the entropy needed for the masking scheme (especially

because of the numerous costly RefreshMasks operations).

5.3.2 Attack on the countermeasure

We apply Alg. 3 on X which is equal to T ⊕ k?, i.e., ⊕Ω
i=1Xi = T ⊕ k?. Similarly to the

definitions in Subsect. 5.2.2, let us define the leakages of the table recomputation of the masking

scheme of Coron where the order of the masking is Ω−1: X(1)
(ω,i,j) = HW[Φ (ω)⊕Xi]+N

(1)
(ω,i,j)− n

2

and X(2)
(ω,i,j) = HW[Φ (ω)] +N

(2)
(ω,i,j) − n

2 , where i ∈ J1,Ω− 1K will index the Ω− 1 masks. The

Ω-th share is the masked sensitive value. Besides j ∈ J1,ΩK denotes the index of the loop from

lines 7 to lines 9 of the Alg. 3. The leakage of the masks is given by X(3)
i = HW[Xi] +N

(3)
i − n

2 .

Finally, we denote by: X? = HW[
⊕Ω−1

i=1 Xi ⊕ k? ⊕ T ] +N − n
2 the leakage of the masked value.

Definition 47. The combination function CΩ
CS exploiting the leakage of the table recomputation

(Coron Scheme, abridged CS) is given by:

CΩ
CS : RΩ×(Ω−1)×2n+1 × R → R


(
X

(1)
(ω,i,j), X

(2)
(ω,i,j)

)
ω∈F2n

i∈J1,Ω−1K
j∈J1,ΩK

, X?


 7→

Ω−1∏

i=1



−2

Ω2n

∑

ω∈F2n

j∈J1,ΩK

X
(1)
(ω,i,j)×X

(2)
(ω,i,j)


×X

?.
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Algorithm 3: Masked and shuffled computation of y = S (x)

input : x1, . . . , xΩ, such that x = x1 ⊕ . . .⊕ xΩ

output : y1, . . . , yΩ, such that y = y1 ⊕ . . .⊕ yΩ = S(x)

1 ϕ←R Fn2 → Fn2 // Draw of random permutation of Fn2
2 for ω ∈ Fn2 do
3 T (ω)← (S (ω) , 0, . . . , 0) ∈ (Fn2 )

d // ⊕ (T (ω)) = S (ω)

4 end
5 for i = 1 to Ω− 1 do
6 for ω ∈ Fn2 do
7 for j = 1 to Ω do
8 T′ (ϕ(ω )) [j]← T (ϕ(ω )⊕xi) [j] // T′ (ϕ(ω ))← T (ϕ(ω )⊕xi)
9 end

10 end
11 for ω ∈ Fn2 do
12 T (ϕ(ω ))← RefreshMasks (T′ (ϕ(ω ))) // See in Alg. 2 of (39)
13 end
14 end

// Invariant: ⊕ (T (ϕ(ω ))) = S (ϕ(ω )⊕x1 ⊕ . . .⊕ xΩ−1) , ∀ω ∈ Fn2
15 (y1, . . . , yΩ)← RefreshMasks (T (xΩ)) // ⊕ (T (xΩ)) = S (x)

16 return y1, . . . , yΩ
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Similarly to Subsect. 5.2.3, we define for all 1 6 i 6 Ω− 1:

XCSΩ
i

=
−2

Ω2n

∑

ω∈F2n

j∈J1,ΩK

X
(1)
(ω,i,j) ×X

(2)
(ω,i,j) .

This value is the combination of all the leaking values of the table recomputation depending of

one share.

Remark 23. The scaling by factor −2/Ω allows to have, for all i ∈ J1,Ω− 1K:

E
[
XCSΩ

i
|Xi = xi

]
= E

[
X

(3)
i |Xi = xi

]
.

Additionally we define for, i = Ω, XCSΩ
i

= X?. Based on the combination function CΩ
CS a

multivariate attack can be built.

Definition 48. The MultiVariate Attack exploiting the leakage of the table recomputation of
the Ω− 1 order Coron masking Scheme is given by:

MVAΩ
CS : RΩ×(Ω−1)×2n+1 × R× R → Fn2


(
X

(1)
(ω,i,j), X

(2)
(ω,i,j)

)
ω∈F2n

i∈J1,Ω−1K
j∈J1,ΩK

, X?, Y


 7→ argmax

k∈Fn2
ρ

[
Ω∏

i=1

(
XCSΩ

i

)
, Y

]
,

where Y = (−1)Ω−1 ×
(
HW[T ⊕ k]− n

2

)
.

Proposition 23. MVAΩ
CS is sound.

Proof. The demonstration follows the same lines as that of Proposition 17. In the case of
Proposition 23, the expectation of

∏Ω
i=1

(
XCSΩ

i

)
knowing the plaintext T = t is proportional to

HW[t⊕ k]. Indeed by (142) E
[∏Ω

i=1

(
XCSΩ

i

)
|T = t

]
=
(−1

2

)Ω−1 ×
(
HW[t⊕ k]− n

2

)

Remark 24. The attack presented in Def. 48 is a (Ω×(Ω− 1)×2n+1+1)-variate (2×(Ω− 1)+1)-
order attack.

Definition 49. The “classical” ΩO-CPA is the HOCPA build by combining the Ω shares using
the centered product combination function.

ΩO-CPA: RΩ−1 × R× R −→ Fn2((
X

(3)
i

)
i∈J1,Ω−1K

, X?, Y

)
7−→ argmax

k∈Fn2
ρ

[
Ω−1∏

i=1

X
(3)
i ×X?, Y

]
.
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5.3.3 Leakage analysis

The difference between the two attacks is the use of XCSΩ
i
instead of X(3)

i as the leakage of

the Ω− 1 shares which do not leak the secret key. A.A Ding et al. also provides a formula to

compute the SR of HOCPA (46, §3.4).

Similarly to Sect. 5.2, the only differences in the formula are the SNR of the shares which do

not leak the key. Then by comparing the SNR
[
XCSΩ

i
, Xi

]
and SNR

[
X

(3)
i , Xi

]
we compare the

success rate of the attacks. It can be noticed that in our model the SNR does not depend on i.

Theorem 5.3.1. The SNR of the “second-order leakage” is greater than the SNR of the leakage
of the mask if and only if

σ2 6 Ω× 2n−2 − n

2
, (5.14)

where σ denotes the standard deviation of the Gaussian noise.
As a consequence MVAΩ

CS will be better than ΩO-CPA when the noise variance lays in the
interval [0,Ω× 2n−2 − n/2]. We can immediately deduce that the size of the Useful Interval of
Variance increases linearly with the order of the masking scheme.

Proof. See Appendix B.3.

Figure 5.5 shows the impact of the attack order Ω on the interval of noise where the MVAΩ
CS

outperforms ΩO-CPA (let us called this interval the Useful Interval of Variance denoted by

UIoV). We can see that the size of these intervals increases with the order. For example for

Ω = 3 the useful interval of variance is [0, 188]. In practice, it is very difficult to perform a third

order attack with a noise variance of 188. Indeed, recall that the number of traces to succeed an

attack with probability 80% is proportional to the inverse of the SNR (63).
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Figure 5.5: Comparison between the signal to noise ratio of X(3)
i and signal to noise ratio of

XCSΩ
i
(where Ω is the attack order).
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5.3.4 Simulation results on Coron masking Scheme

In order to validate the theoretical results of Subsect. 5.3.3, the MVAΩ
CS has been tested on

simulated data and compared to ΩO-CPA. The simulations have been done with the Hamming

weight model and Gaussian noise such as the leakages defined in Subsect. 5.3.2. We test these

attacks against a second and a third order masking scheme.

To compute the success rate, attacks are redone 500 times for the second order masking and

100 times for the third order masking (because this attack requires an intensive computational

power).

In Fig. 5.6a it can be seen that MVA(3)
CS reaches 80% of success rate for less than 20000 traces

while the 3O-CPA does not reach 30% for 100000. In Fig. 5.6b it can be seen that MVA(4)
CS

reaches 80% of success rate for less than 200000 traces while the 4O-CPA does not reach 5%.
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Figure 5.6: Comparison between ΩO-CPA and MVAΩ
CS

5.4 A note on affine model

In Sect. 5.2 and 5.3, the leakage function was expected to be the Hamming weight. Let us now

study the impact of the leakage function on the MVATR attack. We suppose that the leakage

function is affine i.e. we expecte that the leakage function is the Weighted Hamming Weight.
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5.4.1 Properties of the affine model

Definition 50 (Affine leakage function). Let V the leaking value, α the weight of the leakage
of each bit, and · the inner product in Rn, that is α · V =

∑n
i=1 αiVi. A leakage function Ψα is

said affine if this function is a weighted sum of the bits of the leaking value, i.e., Ψα (V ) = α · V .

In the sequel, we assume sensitive variables are balanced and have each bit independent of

the other, as is customary in cryptographic applications.

Proposition 24. Let 1 = (1, . . . , 1) ∈ Fn2 .

E [Ψα[V ]] =
1

2
(α · 1) and Var [Ψα[V ]] =

1

4
‖α‖22 .

Proof. We have E [Ψα[V ]] = α · E [V ] = α ·
(

1
21
)
and Var [Ψα[V ]] = αtCov [V ]α = 1

4‖α‖22.

Then it is possible to compute the results of the centered product.

Lemma 5. Let U be a random variable following a uniform law over Fn2 , and z ∈ Fn2 . We have:

E [(Ψα[U ]− E [Ψα[U ]])× (Ψβ [U ⊕ z]− E [Ψβ [U ⊕ z]])] = −1

2
(α� β) · z +

1

4
α · β ,

where � denotes the element-wise multiplication, that is (α� β)i = αiβi.

Proof. See in Appendix B.4.1.

Assumption 1. In order to compare the results in case of an affine model and the Hamming
weight model (HW = Ψ1) let us assume that the model variance is the same in the two cases
i.e., Var [Ψα (V )] = Var [HW[V ]]; this is equivalent to ‖α‖22 = n.

Let us also assume that all the values manipulated during the algorithm leak in the same way
i.e., the weight vector α of the sum is the same for all the variables V of the algorithm. This
is realistic because it is likely that sensitive variables transit through a given resource, e.g., the
accumulator register.

In the rest of this section, we will denote by α the vector of weight of the leakage model.

Let us redefine the leakage of the table recomputation the (centered) leakage of the random

index: X(1)
ω = α·(Φ (ω)⊕M)+N

(1)
ω − 1

2 (α · 1), the (centered) leakage of the mask random index:

X
(2)
ω = α · (Φ (ω))+N

(2)
ω − 1

2 (α · 1), the (centered) leakage of the mask: X(3) = α ·M − 1
2 (α · 1),

Besides, let X? be the leakage of a sensitive value depending on the key. We have either:

• X? = α · (T ⊕ k? ⊕M) +N − 1
2 (α · 1), which is similar to Eq. (5.7), or

• X? = α · (S(T ⊕ k?)⊕M) +N − 1
2 (α · 1), if there is an S-Box S.

In a view to unite both expressions, we denote by Z the sensitive variable, that is either

Z = T ⊕ k?, or Z = S(T ⊕ k?). Consequently, we have X? = α · (Z ⊕M) +N − 1
2 (α · 1).
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Lemma 6. In case of affine leakage model the second order leakage XTR is given by:

E [XTR|M = m] = E

[
−2

2n

2n−1∑

ω=0

X(1)
ω ×X(2)

ω |M = m

]
=
(
α2
)
·m− 1

2
‖α‖22 ,

where α2 = α� α.

Proof. Direct application of Lemma 5.

Proposition 25. In case of affine model, the leakages of the MVATR (recall Def. 42) and the
2O-CPA are different. Indeed, let us denote αn = α� α� · · · � α︸ ︷︷ ︸

n times

. We have:

E
[
CTR

((
X(1)
ω , X(2)

ω

)
ω
, X?

)
| T
]

= −1

2
α3 · z +

1

4

n∑

i=1

α3
i ,

and
E
[
X(3) ×X? | T

]
= −1

2
α2 · z +

1

4
‖α‖22 .

Proof. Direct application of Lemma 6 and Lemma 5.

5.4.2 Impact of the model on the confusion coefficient

As the models in the two different attacks are different, the parametersK and κ (recall Eq. (5.10))

also differ. In order to compare the two attacks we first establish the impact of the model on

the value of the minimum confusion coefficient mink 6=0 κk. Then we show that the impact is not

important in case of the targeted sensitive value is proceed in a nonlinear part of the algorithm

(an S-Box).

In practice the confusion coefficients are very close. We study the impact of the disparity of

α using several distributions (see Fig. 5.7):

• αi =
√

1 + ε for i even and αi =
√

1− ε otherwise (abridged α =
√

1± ε),

• and the other sign convention (abridged α =
√

1∓ ε).

We also randomly generate 1000 α. All those distributions satisfy the assumption 1, namely
∑n
i=1 α

2
i = n.

The confusion coefficient for α2 and α3 are very close (see Fig. 5.7).

Moreover we find that the maximum difference in all the simulations with random weight is

max (mink 6=0 α2κk −mink 6=0 α3κk) = 0.019. In terms of number of traces needed to reach 80%

of success this represents a small difference of 5%.
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Figure 5.7: Comparison of mink 6=0 κk for the MVATR and the 2O-CPA

5.4.3 Theoretical analysis

Similarly to the Subsect. 5.2.3 let us study the impact of the affine model on the success of the

MVATR compared to the 2O-CPA.

As motivated in Sect. 5.2.1, we can modify the MVATR in order to target the last round

S-Box input: X? = α ·
(
Sbox−1[T ⊕ k?]⊕M

)
+N − 1

2 (α · 1).

Theorem 5.4.1. The SNR of the “second-order leakage” is greater than the SNR of the leakage
of the mask if and only if

σ2 6 ‖α‖44 ×
2n−2

n
− n

2
,

where ‖α‖p = (
∑n
i=1 |αi|

p
)1/p is the p-norm (p > 1) of vector α, and where σ denotes the

standard deviation of the Gaussian noise.
As a consequence MVATR is better than 2O-CPA when the noise variance is in the interval

[0, ‖α‖44 2n−2/n− n/2].

Proof. See Appendix B.4.2.

Corollary 6. The minimal value of ‖α‖44 subject to ‖α‖22 = n is reached when all the component
of α are equal. This means that the worst case for the MVATR compared to the 2O-CPA is when
the leakage is in Hamming Weight.

Proof. See Appendix B.4.3.

5.4.4 Simulation results

Some simulations have been done in order to validate the results of the theoretical study of the

previous sections. The results, presented in this section, confirm that:

• attacks are not impacted by the small differences of the confusion coefficient (κ, recall

Sec. 5.4.2).
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• attacks depend on the SNR as predicted by Theorem 5.4.1.

For the purpose of the simulations, the target considered is the input of the S-Box of the

last round; as a consequence we consider

X? = α ·
(
Sbox−1[T ⊕ k?]⊕M

)
+N − 1

2
(α · 1) .

The mask M and the plain text T are randomly drawn from F8
2. The noises are drawn from

a Gaussian distribution with different variances σ2. The results of the attacks are expressed

using the success rate. To compute the success rates the experiments have been redone 1000

times. For each experiment the secret key k? are randomly drawn over F8
2. To compare the

efficiency of the two attacks we compare the number of traces needed to reach 80% of success.

For the first experiment we choose α =
√

1± ε (i.e., ∀i, αi =
√

1 + (−1)iε).

5.4.4.1 Case ε = 0.9

In this case ‖α‖44 = 14.480 and according to Theorem 5.4.1, the MVATR should outperform the

classical success rate in the interval [0, 111]. It can be seen in Fig. 5.8a and 5.8b that in such

case when σ2 = 0 or when σ2 = 111 the MVATR and the 2O-CPA need the same number of

traces to reach 80% of success. First of all, this confirms the soundness of our model. Second,

it validates that, in case of affine model when the target is proceeded in a non linear part of

the cryptographic algorithm, the main factor which makes attacks different is the SNR. When

σ = 3 the 2O-CPA needs around 3800 traces to reach 80% of success whereas the MVATR needs

around 1000 traces (see Fig. 5.8c). This represents a relative gain of 280%. Compared to the

relative gain observed in case of the Hamming weight model (recall Fig. 5.3c), this confirms that

the MVATR performs better compare to the 2O-CPA in case of an affine model. It can be seen

in Fig. 5.8d, when the σ = 4, the number of traces needed to reach 80% of success is around

2500 for the MVATR and around 10000 for the 2O-CPA; this represents a relative gain of 300%.

5.4.4.2 Case ε = 0.5

When ε = 0.5, ‖α‖44 = 10; consequently, Theorem 5.4.1 predicts that the MVATR should

outperform 2O-CPA in the interval [0, 76]. It can be seen in Figure 5.9a and 5.9b that in such

case when σ2 = 0 or when σ2 = 76 the MVATR and the 2O-CPA need the same number of

traces to reach 80% of is success. This confirms the results of Theorem 5.4.1.

It can be seen in Fig. 5.9c that when σ = 3 the MVATR needs around 1000 traces to reach

80% of success whereas the 2O-CPA needs 3500 traces. The relative gain of use the MVATR is
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Figure 5.8: Comparison between 2O-CPA and MVATR for ε = 0.9

250%. When σ = 4 then the number traces needed by the MVATR to reach 80% of success is

around 3000. The number of traces needed by the 2O-CPA is around 9000. The relative gain of

the MVATR with respect to the 2O-CPA is 200%.

5.4.4.3 For one bit attacks

The best case for MVATR compared to the 2O-CPA is when all the bits are zero except one

(see Appendix B.4.3). Let us compare the two attacks in a such case. We assume that all the

coordinates of α are equal to zero except the most significant bit. As ‖α‖44 = 64 the Useful

Interval of Variance is [0, 508]. It can bee see in Fig.5.10a that when the noise is null both

111



5. MULTIVARIATE HIGH ORDER ATTACK AGAINST SHUFFLED
MASKING TABLE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 50 100 150 200 250 300 350

Su
cc
es
s
ra
te

Number of traces

2O-CPA
MVATR

(a) σ = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 150000 300000 450000
Su

cc
es
s
ra
te

Number of traces

2O-CPA
MVATR

(b) σ = 8.71.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 2000 4000 6000 8000 10000

Su
cc
es
s
ra
te

Number of traces

2O-CPA
MVATR

(c) σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 7500 15000 22500

Su
cc
es
s
ra
te

Number of traces

2O-CPA
MVATR

(d) σ = 4.

Figure 5.9: Comparison between 2O-CPA and MVATR for ε = 0.5

attacks perform in the same way. It confirms that also in this case the difference resides in the

SNR. When σ = 8 the MVATR reach 80% of success with 25000 traces whereas the 2O-CPA

needs 175000; this represents a relative gain of 600% (see Fig. 5.10b).

5.5 Practical validation

This section presents the results of the multivariate attack exploiting the table recomputation

stage on true traces.
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Figure 5.10: Comparison between the 2O-CPA and the MVATR in case of one bit model in
presence of High Gaussian noise

5.5.1 Experimental Setup

The traces are electromagnetic leakages of the execution of an AES-128 assembly implementation

with table recomputation. Our implementation has been loaded on ATMEL ATMega163 8-bit to

be analyzed. This smartcard is known to be leaky. It contains 16Kb of in-system programmable

flash, 512 bytes of EEPROM, 1Kb of internal SRAM and 32 general purpose working registers.

The smartcard is controlled by a computer through the Xilinx Spartan-VI FPGA embedded in

a SASEBO-W platform. The ATMega is powered at 2.5 V and clocked at 3.57 MHz.

The measurements were taken using a LeCroy wave-runner 6100A oscilloscope by means of

a Langer EMV 0–3 GHz EM probe and PA-303 30 dB Langer amplifier. The acquisition have

been acquired with full bandwidth and with a sampling rate of FS = 500 MS/s.

To build our experiments 13000 traces have been acquired. Each trace contains 12 million

leakages samples in order to simplify our analysis we only acquired the table recomputation

step and the first round of the AES.

5.5.2 Experimental results

Let us first study the results of the attack in terms of success rate. The leakage function as been

recovered using a linear regression. For example the normalized vector of weight for the leakage

of the first share is

α = (0.95, 1.22, 0.98, 1.13, 0.59, 1.01, 1.04, 0.95) .
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Both the MVATR and the 2O-CPA target Sbox[T ⊕ k?]⊕M as in our implementation the input

and output masks are the same.

It can be seen in Fig. 5.11a that the results of the two attacks are similar. Both attacks

perform similarly because the curves are not noisy.

Indeed the average values of the SNR of the 256 leakages of the masked random index

(Φ (ω)⊕M) and the SNR of the 256 leakages of the random index (Φ (ω)) is 5.

If we assume that the variance of the signal is equal to two (such as HW on 8-bit CPUs)

then the variance of the noise is less than 0.5. The mask (M) and the key-dependent share

Sbox[T ⊕ k?]⊕M) leak with a SNR of 14 which corresponds to a noise variance of 0.1, which is

very low (compared to the upper bound of the useful interval of variance given in Theorem 5.2.1,

namely 60).

This two results are specific to the implementation and a clear disadvantage for the MVATR.

But even in this case the MVATR works as well as the 2O-CPA, this shows that there is

(generally) a gain to use the MVATR.

In order to confirm these results let us verify that when the noise increases the MVATR

outperforms the 2O-CPA. Let us add an artificial Gaussian noise with a standard deviation

of 0.0040. This models the addition of a countermeasure on top of the table recomputation.

Then it can be seen in Fig. 5.11b that in this case the MVATR outperforms the 2O-CPA. This

confirms the practicality of our attack, and also that the gain is in the SNR.
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Figure 5.11: Comparison of the SR of the MVATR and the 2O-CPA
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5.6 Countermeasure.

5.6 Countermeasure.

The MVATR represents a threat against block ciphers with table recomputation step. In order to

mitigate this new vulnerability we present in this section a countermeasure. This countermeasure

will ensure the security against the new proposed attack. We present it in the context of a first

order masking scheme but this countermeasure is generic and as a consequence can be applied

in a higher order masking scheme such as the masking scheme of Coron.

Remark 25. The proposed countermeasure tackles the input masks vulnerability. The protection
of the output mask is easier as all the output masks can be different for all the table entries.

5.6.1 Countermeasure Principle

The core idea of this countermeasure is to randomly drawn permutations not all over the possible

permutations but only over a particular kind of permutations: the ones which are commutative

with S (the SubBytes function).

Definition 51. A permutation f : Fn2 → Fn2 is said commutative with respect to the function
g : Fn2 → Fn2 and the composition law if and only if f (g (x)) = g (f (x)) ,∀x ∈ Fn2 .

Exploiting this kind of function the countermeasure principle is as follow: as random

permutation a commutative permutation with respect to S is drawn. Let us call the permutation

γ. Exploiting the commutative property of the random permutation γ(S[ω]) is computed instead

of S[γ (ω)] (line 5 of Alg. 4). Contrast this line with line 5 of Alg. 2. As a consequence if an

attacker combines the leakages of the random mask index (line 4) and the random index (line 5)

the obtained value depends very little in the masks m and m′ (see analysis in Sec. 5.6.3).

5.6.2 Implementations

The major issue of the countermeasure in an implementation perspective is to randomly generate

a commutative permutation.

A first approach could be to generate off line a set of permutations and store them into the

device. At each execution using a random number, a permutation will be selected. Of course

such approach can be prohibitive in terms of memory.

A probably better approach is to generate on the fly a commutative permutation. In this

subsection we give an example of a such algorithm. The idea is to randomly generate a power

(with respect to the combination law) of the SubBytes : S function.
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Algorithm 4: Shuffled masked table recomputation, with additional countermeasure
input :Genuine SubBytes S : Fn2 → Fn2 bijection
output :Masked SubBytes S′ : Fn2 → Fn2 bijection

1 m←R Fn2 , m′ ←R Fn2 // Draw of random input and output masks
2 ϕ←R Fn2 → Fn2 , γ ←R Fn2 → Fn2 such that γ ◦ S = S ◦ γ // Draw of random

permutations ϕ, γ of Fn2, γ permuting with S (see Definition 51)

3 for ω ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-Box recomputation loop
4 z ← γ(ω)⊕m // Masked input
5 z′ ← γ(S[ω])⊕m′ // Masked output
6 S′[z] = z′ // Creating the masked S-Box entry

7 end
8 return S′

Definition 52. The power p ∈ N of the function S is given by:

Sp : Fn2 −→ Fn2
x 7−→ S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸

p

(x) ,

where ◦ denotes the composition law.

Proposition 26. The functions Sp : Fn2 −→ Fn2 and S : Fn2 −→ Fn2 are commutative ∀p ∈ N.

In order to generate a random power of S it is possible to directly compute Sr by applying r

times the permutation S where r is a random number. Notice that r can be larger than the

number of possible power S by the group law property of the combination. But this approach

can be time consumptive.

To faster it, the use of the cycle decomposition of S may be an interesting approach. Let us

recall this well known theorem:

Proposition 27 (Theorem 5.19 (43)). Let Sn be the symmetric group of n elements then each
element of Sn can be expressed as a product of disjoint cycles.

Proposition 28. The maximum number of exponentiations needed to compute Sp could be
reduced from p to p (mod l1) + p (mod l2) + ...+ p (mod lm) where the li denote the respective
length of the cycles in the cycles decomposition of S. Notice that l1 + l2 + . . .+ lm = 2n

Proof. We can express S as S = c1 ◦ c2 ◦ . . . ◦ cm by Prop. 27. As the order of a cycle is equal
to its length l we have that:

Sp = c
p (mod l1)
1 ◦ cp (mod l2)

2 ... ◦ cp (mod lm)
m
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5.6 Countermeasure.

Example 4. Let us take as example of S the SubBytes function of AES. This permutation can
be decomposed of on five disjoint cycles of respectively length l1 = 59, l2 = 81, l3 = 87, l4 =

27, l5 = 2. The order of S is in this case is lcm (59, 87, 81, 27, 2) = 277182. As a consequence
the computation of S277182 requires a maximum of 256 table evaluations.

5.6.3 Security Analysis

The security provided by this countermeasure comes from different parameters. Of course the

first one is to ensure that the MVATR is not still available or at least less effective than the

2O-CPA which remains available. We validated this security using simulation with the same set

up as in Subsect. 5.2.4. Namely we assume that each value leaks its Hamming weight with a

Gaussian noise of standard deviation σ. A total of 1000 attacks has been realized to compute

the success rate of each experiment.

The attacker can combine γ (S[ω]) with γ (ω). The results of this combination can be found

in Fig. 5.12 for two different noise standard deviations. We can immediately see that in this

case the MVATR does not allow to recover the key.
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Figure 5.12: MVATR with commutative function as countermeasure.

The other parameter is the number of possible commutative permutations. Indeed if this

number is too low an attacker can test all the permutations and build attacks such as in (174).

For example using the possible power of S in AES we reach 277182 which is hard to exhaustively

test but remains possible. For some specific cases, such as involutional block ciphers (e.g.,

ICEBERG (163)), the countermeasure cannot apply because the order of the substitution box S

is equal to two.
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Of course another parameter is the security of the permutation generation itself against

possible Side Channel Analysis. If an attacker is able for example to recover: p (mod l1), p

(mod l2), ..., p (mod lm), he will be able to recover the random permutation. This means that

at least the exponentiation of S should be in constant time.

5.7 Conclusions and Perspectives

The table recomputation is a known weakness of masking schemes. We have recalled that

practical countermeasures (e.g., shuffling with a high entropy) could be built to protect the

table recomputation. In this chapter, we have presented a new multivariate attack exploiting

the leakage of the protected table that outperformed classical HODPA even if a large amount of

entropy is used to generate the countermeasure. This multivariate attack gives an example of a

HODPA of non-minimal order which is more efficient than the corresponding minimal order

HODPA. We have theoretically expressed the bound of noise in which this attack outperforms

HOCPA using the SNR. Then we have empirically validated this bound. Interestingly, we show

that if the leakage model consists in a linear combination of bits, then our attack becomes all the

better as the model gets further away from uniform weights (so-called Hamming weight model).

Moreover, we have shown that the relative gain to use the multivariate attack grows linearly

with the order of the masking schemes. This result highlights the fact that the study of masking

scheme should take into account as second parameter the number of variables exploitable by

these attacks. Indeed we have shown in this chapter that when the number of variables used

to perform the attacks increases, the order does not alone provide a criterion to evaluate the

security of the countermeasure, and that the SNR is a better security metric to consider.

In future works we will investigate how to protect table recomputation against such attacks

and investigate the cost of such countermeasures, evaluate the threat of such attacks on high-order

masking schemes implemented on real components. We will also investigate how multivariate

attacks could be applied on other masking schemes and protection techniques. And then, we

will quantify the impact of these attacks.

118



CHAPTER 6

Truncation of Optimal Distinguisher against shuffled Masking Table

The results presented in this chapter have been published in collaboration with Sylvain Guilley,

Annelie Heuser and Olivier Rioul in the international Conference on the Theory and Application

of Cryptology and Information Security (ASIACRYPT 2016) (25).
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The maximum likelihood side-channel distinguisher of a template attack scenario is expanded

into lower degree attacks according to the increasing powers of the signal-to-noise ratio (SNR).

By exploiting this decomposition we show that it is possible to build highly multivariate

attacks which remain efficient when the likelihood cannot be computed in practice due to its

computational complexity. The shuffled table recomputation is used as an illustration to derive

a new attack which outperforms the ones presented by Bruneau et al. at CHES 2015, and so

across the full range of SNRs. This attack combines two attack degrees and is able to exploit

high dimensional leakage which explains its efficiency.
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6.1 Introduction

In order to protect embedded systems against side-channel attacks, countermeasures need to be

implemented. Masking and shuffling are the most investigated solutions for this purpose (99).

Intuitively, masking aims at increasing the order of the statistical moments (in the leakage

distributions) that reveal sensitive information (30, 78), while shuffling aims at increasing the

noise in the adversary’s measurements (73). As a result, an important challenge is to develop

sound tools to understand the security of these countermeasures and their combination (142).

For this purpose, the usual strategy is to consider template attacks for which one can split the

evaluation goals into two parts: offline profiling (building an accurate leakage model) and online

attack (recovering the key using the leakage model). As far as profiling is concerned, standard

methods range from non-parametric ones (e.g., based on histograms or kernels) of which the

cost quite highly suffers from the curse of dimensionality (see e.g., (4) for an application of these

methods in the context of non-profiled attacks) to parametric methods, typically exploiting the

mixture nature of shuffled and masked leakage distributions (91, 92, 121, 125, 164), which is

significantly easier if the masks (and permutations) are known during the profiling phase. Our

premise in this chapter is that an adversary is able to obtain such a mixture model via one of

these means, and therefore we question its efficient exploitation during the online attack phase.

In this context, a starting observation is that the time complexity of template attacks

exploiting mixture models increases exponentially with the number of masks (when masking)

and permutation length (when shuffling (176)). So typically, the time complexity of an optimal

template attack exploiting Q traces against an implementation where each n-bit sensitive value

is split into Ω shares and shuffled over Π different positions is in O
(
Q · (2n)Ω−1 ·Π!

)
, which

rapidly turns out to be intractable. In order to mitigate the impact of this high complexity, we

propose a small, well-controlled and principled relaxation of the optimal distinguisher, based

on its Taylor expansion (already mentioned in the field of side-channel analysis in (23, 46)) of

degree L. Such a simplification leads to various concrete advantages. First, when applied to

masked implementations, it allows us to perform the (mixture) computations corresponding to

the (2n)Ω factor in the complexity formula only once (thanks to precomputation) rather than Q

times. Second, when applied to shuffled implementations, it allows us to replace the Π! factor in

this formula by
(

Π
min(dΠ

2 e,L)
)

=
(

Π
L

)
, thanks to the bounded degree L.

Additionally it can be noticed that an attacker will only build, during the offline profiling,

the leakage models needed for the attack. By applying the Taylor expansion of the optimal

120



6.1 Introduction

distinguisher the complexity of the offline profiling is significantly reduced. In general the

complexity of the offline profiling becomes equivalent to the complexity of the online attack.

The resulting “rounded template attacks” additionally carry simple intuitions regarding the

minimum degree of the Taylor expansion needed for the attacks to succeed. Namely, this degree

L needs to be at least equal to the security order O of the target implementation, defined as the

smallest statistical moment in the leakage distributions that are key-dependent.

We then show that these attacks only marginally increase the data complexity (for a given

success rate) when applied against a masked (only) implementation. More importantly, we

finally exhibit that rounded template attacks are especially interesting in the context of high-

dimensional higher-order side-channel attacks, and put forward the significant improvement of

the attacks against the masked implementations with shuffled table recomputations from CHES

2015 (27).

Contributions. We show that the expansion of the likelihood allows attacks with a very high

computational efficiency, while remaining very effective from a key recovery standpoint. This

means that the expanded distinguisher requires only little more traces to reach a given success

rate, while being much faster to compute.

We also show how to grasp in a multivariate setting several leakages of different orders. In

particular, we present an attack on shuffled table recomputation which succeeds with less traces

than (27). Notice that the likelihood attack cannot be evaluated in this setting because it is

computationally impossible to average over both the mask and the shuffle (the sole number of

shuffles is 2n! ≈ 21684 with n = 8).

Finally, we show that are our rounded version of the maximum likelihood allows better

attacks than the state-of-the-art. Namely, our attack is better than the classical 2O-CPA and

the recent attack of CHES’15 (27) in all noise variance settings.

Outline. The remainder of the chapter is organized as follows. Sec. 6.2 provides the necessary

notations and mathematical definitions. The theoretical foundation of our method is presented

in Sec. 6.3. The case study (shuffled table recomputation) is shown in Sec. 6.4. Sec. 6.5 evaluates

the complexity of our method. The performance results are presented in Sec. 6.6. Conclusions

and perspectives are presented in Sec. 6.7. Some technical results are deferred to the appendices.
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6.2 Notations

Randomization countermeasures consist in masking and shuffling protections. When evaluating

randomized implementations, there are a number of important parameters to consider. First, the

number of shares and the shuffle length in the scheme, next denoted as Ω and Π, are algorithmic

properties of the countermeasure. These numbers generally influence the tradeoff between the

implementation overheads and the security of the countermeasures. Second, the order of the

implementation protected by a randomization countermeasure, next denoted as O, which is

a statistical property of the implementation. It corresponds to the smallest key-dependent

statistical moment in the leakage distributions. When only masking is applied and the masked

implementation is “perfect” (meaning that the leakage of each share is independent of each

other), the order O equals to Ω at best. Finally, the number of dimensions (or dimensionality)

used in the traces, next denoted as D, is a property of the adversary. In this respect, adversaries

may sometimes be interested by using the lowest possible D (since it makes the detection of

POIs in the traces easier). But from the measurement complexity point of view, they have a

natural incentive to use D as large as possible. A larger dimension D allows to increase the

signal to noise ratio (21).

In summary, our notations are:

• Ω: number of shares in the masking countermeasure,

• Π: length of the shuffling countermeasure,

• O: order of the implementation,

• D: dimensionality of the leakages.

Examples. Existing masking schemes combine these four values in a variety of manners.

For example, in a perfect hardware masked implementation case with three shares, we may

have Ω = 3, O = 3 and D = 1 (since the three shares are manipulated in parallel). If this

implementation is not perfect, we may observe lower order leakages (e.g. Ω = 3, O = 1 and

D = 1, that is a first-order leakage). And in order to prevent such imperfections, one may use a

Threshold Implementation (117), in which case one share will be used to prevent glitches (so

Ω = 3, O = 2 and D = 1). If we move to the software case, we may then have more informative

dimensions, e.g. Ω = 3, O = 3, D = 3 if the adversary looks for a single triple of informative

POIs. But we can also have a number of dimensions significantly higher than the order (which
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usually corresponds to stronger attacks). Let us also give an example of S-boxes masking with

one mask, where the masking process of the S-box (often called recomputation) is shuffled. A

permutation Φ of Π = 2n values is applied while computing the masked table. If the attacker

ignores the recomputation step, he can carry out an attack on the already computed table.

Hence parameters Ω = 2, O = 2, D = 2 (also known as “second-order bivariate CPA”). But

the attacker can also exploit the shuffled recomputation of the S-box in addition to a table

look-up, as presented in (27); the setting is thus highly multivariate: Ω = 2, Π = 2n, O = 2,

D = 2 · 2n + 1. Interestingly, the Chapt. 5 shows an attack at degree L = 3 which succeeds in

less traces than attacks at minimal degree L = O = 2.

In general, a template attack based on mixture distributions (often used in parametric

estimation) would require a summation over all random values of the countermeasure, that is

R, which consists in the set of masks and permutations. One can represent R as the Cartesian

product of the set of mask and the set of permutations. Let us denote by M the set of mask

and S the set of permutations. Then R = M× S. Therefore, the cardinality of R is 2n(Ω−1)Π!.

Eventually, the security of a masked implementation depends on its order and noise level.

More precisely, the security increases exponentially with the order (with the noise as basis) (47).

So for the designer, there is always an incentive to increase the noise and order. And for

adversary, there is generally an incentive to use the largest possible D (given the time constraints

of his attack), so that he decreases the noise.

6.2.1 Model

We characterize the protection level in terms of the most powerful attacker, namely an attacker

who knows everything about the design, except the masks and the noise. This means that

we consider the case where the templates are known. How the attacker got the templates is

related with security by obscurity, somehow he will know the model. Of course depending on

the learning phase these estimations can be more or less accurate. For the sake of simplicity we

assume in this chapter the better scenario where all the estimations are exact1.

Besides, we assume that the noise is independently distributed over each dimension. This is

the least favorable situation for the attacker (as there is in this case the most noise entropy).

For the sake of simplicity, we assume that the noise variance is equal to σ2 at each point

1We recall that, even if the templates are perfectly known, the online attack phase still requires O(Q ·2n(Ω−1) ·
Π!) computations.
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d = 1, 2, . . . , D. This allows for a simple theoretical analysis. Let us give an index q = 1, 2, . . . , Q

to each trace. For one trace q, the model is written as:

X = y(t, k?, R) +N, (6.1)

where for notational convenience the dependency in q and d has been dropped. Here X is a

leakage measurement; y = y(t, k?, R) is the deterministic part of the model that depends on the

correct key k?, some known text (plaintext or ciphertext) t, and the unknown random values

(masks and permutations) R. Each sample (of index d) of N is a random noise, which follows a

Gaussian distribution pN (z) = 1√
2πσ2

exp
(
− z2

2σ2

)
.

6.3 A Generic Log-Likelihood for Masked Implementations

In this section we derive a rounded version of Template Attack. Namely we expand a particular

instantiation of the template attack the so-called optimal distinguisher using its Taylor Expansion.

By rounding this expansion at the Lth degree we are able to build a rounded version of the

optimal distinguisher (later defined as ROPTL). This attack features two advantages: it allows

to combine different statistical moments and its complexity becomes manageable.

6.3.1 Maximum Likelihood (ML) Attack

The most powerful adversary knows exactly the leakage model (but the actual key, the masks,

and the noise are unknown during the online step) and computes a likelihood. In the case of

masking the optimal distinguisher which maximize the success rate is given by (23):

Theorem 6.3.1 (Maximum Likelihood). When the y (t, k, R) are known and the Gaussian
noise N is i.i.d. across the queries (measurements) and independent across the dimension, then
the optimal distinguisher is:

OPT: RDQ × RDQ −→ Fn2

(x, y (t, k, R)) 7−→ argmax
k∈Fn2

Q∑

q=1

logE exp
−‖xq − y(tq, k, R)‖2

2σ2

(6.2)

where the expectation operator E is applied with respect to the random variable R ∈ R, and the
norm is the Euclidean norm ‖xq − y(tq, k, R)‖2 =

∑D
d=1(x

(d)
q − y(d)(tq, k, R))2.

Proof. It is proven in (23) that the Maximum Likelihood distinguisher is:

argmax
k∈Fn2

Q∏

q=1

∑

r∈R

P (r) p (xq|y (tq, k, r)) .
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Applying (6.1) for Gaussian noise and taking the logarithm yields (6.2).

Remark 26. Notice that for each trace q, the Maximum Likelihood distinguisher involves a
summation over #R values, which correspond to #R accesses to precharacterized templates.

If D = 1, then the signal-to-noise ratio (SNR) is defined in a natural way as the ratio between

the variance of the model Y and the variance of the noise N . But when the setup is multivariate,

it is more difficult to quantify a notion of SNR. For this reason, we use the following quantity

γ =
1

2σ2
, (6.3)

which is actually proportional to an SNR, in lieu of SNR. In practice, we assume that γ is small.

It is indeed a condition for masking schemes to be efficient (see for instance (47)).

Proposition 29 (Taylor Expansion of Optimal Attacks in Gaussian Noise). The attack consists
in maximizing the sum over all traces q = 1, . . . , Q of

+∞∑

`=1

κ`
`!

(−γ)`, (6.4)

where κ` is the `th-order cumulant of the random variable ‖x− y(t, k, R)‖2, which can be found
inductively from `th-order moments:

µ` = ER
(
‖x− y(t, k, R)‖2`

)
, (6.5)

using the relation:

κ` = µ` −
`−1∑

`′=1

(
`− 1

`′ − 1

)
κ`′µ`−`′ (` ≥ 1). (6.6)

Proof. The log-likelihood can be expanded according to the increasing powers of the SNR as:

logE exp
(
−γ‖x− y(t, k, R)‖2

)
=

+∞∑

`=1

κ`
`!

(−γ)`, (6.7)

where we have recognized the cumulant generating function (166). The above relation (6.6)
between cumulants and moments is well known (180).

Definition 53. The Taylor expansion of the log-likelihood truncated to the Lth degree LLL in
SNR is

LLL =

L∑

`=1

(−1)`κ`
γ`

`!
. (6.8)

Put differently, we have LL = LLL + o(γL) (using the Landau notation). The optimal attack

can now be “rounded” in the following way:
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Definition 54 (Rounded OPTimal Attack of Degree L in γ). The rounded optimal Lth-degree
attack consists in maximizing over the key hypothesis the sum over all traces of the Lth order
Taylor expansion LLL in the SNR of the log-likelihood:

ROPTL : RDQ × RDQ −→ Fn2
(x, y (t, k, R)) 7−→ argmax

k∈Fn2
LLL.

(6.9)

Proposition 30. If the degree L is smaller than the order O of the countermeasure then the
attack fails to distinguish the correct key.

Proof. One can notice that µ` combines (by a product) a most ` terms following the formula:

µ` =
∑

k1+...+kD=`

(
`

k1, . . . , kD

)
E

∏

0<i<D+1

(x(i) − y(i))2·ki ,

with k1 + . . .+ kd = `. It implies that it exits at most ` different ki > 0 and as a consequence
there are at most ` different variables in the expectation. Therefore by definition of a perfect
masking scheme µL does not depend on the key. As a consequence LLL with L < O neither
depends on the key.

Theorem 6.3.2. Let an implementation be secure at order O − 1. The lowest-degree successful
attack is the one at degree L = O which maximizes LLL. This is equivalent to summing

µL = ER
(
‖x− y(t, k, R)‖2L

)
,

over all traces and

• maximize the result over the key hypotheses, if L is even;

• minimize the result over the key hypotheses, if L is odd.

Proof. Since κ` is independent of k for all ` ≤ L, the first sensitive contribution to the log-
likelihood is

(−1)LκL
γL

L!
.

Now, κL = µL+ lower order terms (which do not depend on the key as the implementation
is secure at order O − 1), and removing constants independent of k the contribution to the
log-likelihood reduces to (−1)LµL.

Theorem 6.3.3 (Mixed Degree Attack). Assuming an implementation secure at order O, the
next degree successful attack is the one at degree L+ 1 = O+ 1 which maximizes LLL+1. This is
equivalent to summing

µL(1 + γµ1)− γ µL+1

L+ 1
,

over all traces and
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• maximize the result over the key hypotheses, if L is even;

• minimize the result over the key hypotheses, if L is odd.

Proof. The (L+ 1)th-order term in the log-likelihood becomes

(−1)LκL
γL

L!
+ (−1)L+1 κL+1

(L+ 1)!
γL+1.

Now from (6.6) we have, for L > 0

κL+1 = µL+1 − (L+ 1)µLµ1 + lower-order terms.

Removing terms that do not depend on k, we obtain:

(−1)LγL
(
µL − γ(

µL+1

L+ 1
− µLµ1)

)
.

Compared to a Lth-degree attack, we see that µL is replaced by a corrected version:

µL(1 + γµ1)− γ µL+1

L+ 1
,

where µ1 is independent of k. However, µ1 cannot be removed as it scales the relative contribution
of µL and µL+1 in the distinguisher.

Remark 27. In contrast to LLL, implementing LLL+1 requires knowledge of the SNR parameter
γ = 1/2σ2.

Remark 28. In general, when L ≥ O the rounded optimal attack ROPTL exploits all key
dependent terms of degree `, where O ≤ ` ≤ L, whereas an LO-CPA (30) or MCP-DPA (113)
only exploits the term of degree L.

6.4 Case Study: Shuffled Table Recomputation

In this section we apply the ROPTL formula of Eq. (6.9) in Def. 54 to the particular case of a

block cipher with a shuffled table recomputation stage. We show that in this scenario our new

method allows to build a better attack than that from the state-of-the-art. By combining the

second and the third cumulants we construct an attack which is better than:

• any second-order attack;

• the attack presented at CHES 2015. Following the notations of (27) we denote this attack

by MVATR (which stands for Multi-Variate Attack on Table Recomputation) in the rest

of this chapter. This is a third-order attack that achieves better results than 2O-CPA

when the noise level σ is below a given threshold (namely σ2 ≤ 2n−2 − n/2).
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Figure 6.1: Leakages of the shuffled table recomputation scheme

6.4.1 Parameters of the Randomization Countermeasure

In order to validate our results we take as example a first order (O = 2), masking scheme where

the sensitive variables are split into two shares (Ω = 2). The nonlinear part of this scheme

is computed using a table recomputation stage. This step is shuffled (Π = 2n) for protection

against some known attacks (124, 174). Then an attacker builds highly multivariate attacks

with a dimensionality of D = 2 · 2n + 1. The beginning of this combined countermeasure is given

in Algorithm 2 of Chapt. 4.

We used lower case letter (e.g., m, ϕ) for the realizations of random variables, written

upper-case (e.g., M , Φ). For the sake of simplicity in the rest of this case study, we assume that

m = m′.

An overview of the leakages over time is given in Fig. 6.1.

We detail below the mathematical expression of these leakages. The randomization consists

in one mask M chosen randomly in {0, 1}n, and one shuffle (random permutation of {0, 1}n)
denoted by Φ. Thus, we denote R = (M,Φ), which is uniformly distributed over the Cartesian

product {0, 1}n × S2n (i.e. M = {0, 1}n and S = S2n), where Sm is the symmetric group of m

elements. We have D = 2n+1 + 2 leakage models, namely:
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• X(0) = y(0) (t, k, R) +N (0) with y0 (t, k, R) = HW[M ],

• X(1) = y(1) (t, k, R) +N (1) with y1 (t, k, R) = HW[S[T ⊕ k]⊕M ],

• X(i) = y(i) (t, k, R) +N (i), for i = 2, . . . , 2n + 1 with y(i) (t, k, R) = HW[Φ(i− 2)⊕M ],

• X(j) = y(j) (t, k, R) + N (j), for j = 2n + 2, . . . , 2n+1 + 1 with y(j) (t, k, R) = HW[Φ(j −
2n − 2)].

We recall that we assume the noises N are i.i.d. Clearly, there is a second-order leakage, as the

pair (X(0), X(1)) does depend on the key. But there is also a large multiplicity of third-order

leakages, such that (X(1), X(i), X(j=i+2n)), as will be analyzed in this case study.

The following side-channel attacks are applied on a set of Q realizations. Let us define I

and J as I = J2, 2n + 1K and J = J2n + 2, 2 × 2n + 1K. Then the maximal dimensionality is

D = 2 + 2× 2n, and we denote a sample d as d ∈ {0, 1} ∪ I ∪ J . The Q leaks (resp. models) at

sample d are denoted as x(d) and y(d) = y(d)(t, k, R). For any measurement indexed by q ∈ Q:

• We denote by x(0)
q the leakage of the mask (M).

• We denote by x(1)
q the leakage of the masked SubBytes (S[tq ⊕ k]⊕M).

• The 2n leakages of the random masked index (Φ (ω)⊕M where ω denotes the index of

the loop of the recomputation stage) are denoted by x(i)
q with i ∈ J2, 2n + 1K = I. Then

ω = i− 2 .

• We denote by x(j)
q the 2n leakages of the random index (Φ (ω)) with j ∈ J2n+2, 2×2n+1K =

J . Then ω = j − 2n + 2.

Let us denote in bold letter the set of leakages of all the queries i.e. x(d) =
(
x

(d)
0 , ..., x

(d)
Q−1

)
,

d ∈ {0, 1} ∪ I ∪ J .
In this section y(d) (tq, k, R), d ∈ {0, 1}∪I∪J denotes the expected leakage model of x(d)

q . The

expected leakage model for all queries is given by y(d) (t, k, R) =
(
y(d) (t0, k, R) , ..., y(d) (tQ−1, k, R)

)
,

d ∈ {0, 1} ∪ I ∪ J .
In order to simplify the notations we introduce

f (d)
q =

(
x(d)
q − y(d) (tq, k, R)

)2

, (6.10)

with d ∈ {0, 1} ∪ I ∪ J . The q can be omitted where there is no ambiguity.
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6.4.2 Second-Order Attacks

As any other high order masking scheme, our example can be defeated by High Order Attacks (30,

106, 133, 177). As our scheme is a first order masking scheme with two shares it can be defeated

using a second order attack (30, 106) which combines the leakages of the two shares using a

combination function (30, 106, 121) such as the second order CPA (2O-CPA) with the centered

product as combination function.

Using our notation it implies D = 2.

Definition 55 (2O-CPA (133)). We denote by 2O-CPA the CPA using the centered product as
combination function. Namely:

2O-CPA: RQ × RQ × RQ −→ Fn2(
x(0),x(1),y

)
7−→ argmax

k∈Fn2
ρ̂
[
x(0) � x(1),y

]
,

(6.11)

where y = EM (y0 (t, k, R)� y1 (t, k, R)), � is the element wise product and ρ̂ is an estimator
of the Pearson correlation coefficient. It can be noticed that as the terms y(0) (t, k, R) and
y(1) (t, k, R) only depend on M the expectation is only computed over M.

Remark 29. Here we have assumed without loss of generality that the leakages and the model
are centered.

An attacker can restrict himself in order to ignore the recomputation stage. Since such

attacker ignores the table recomputation no random shuffle is involved. As a consequence the

optimal distinguisher restricted to these leakages becomes computable. Nevertheless as we will

see in Sec. 6.6 this approach is not the best. Indeed a lot of exploitable information is lost by

not taking into account the table recomputation.

Definition 56 (OPT2O Distinguisher — Eq. (6.2) for D = 2). We define by OPT2O the optimal
attack which targets the mask and the masked sensitive value.

OPT2O : R2Q × R2Q → Fn2
(
x(d), y(d) (t, k, R)

)
d∈{0,1} 7→ argmax

k∈Fn2

Q∑

q=1

logE exp


−γ

∑

d∈{0,1}

f (d)
q


 ,

(6.12)

with f (d)
q as defined in Eq. (6.10).

6.4.3 Exploiting the Shuffled Table Recomputation Stage

It is known that the table recomputation step can be exploited to build better attacks than

second order attacks (23, 174). Recently a new attack has been presented which remains better
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than the 2O-CPA even when the recomputation step is protected (27). Let us recall the definition

of this attack:

Definition 57 (MVATR (27)). The MultiVariate Attack (MVA) exploiting the leakage of the
table recomputation (TR) is given by the function:

MVATR : RQ(2n+1+1) × RQ −→ Fn2

(
x(d),y

)
d∈{1}∪I∪J 7−→ argmax

k∈Fn2
ρ̂





−

1

2

∑

i∈I,
j=i+2n

x(i) � x(j)


� x(1),y


 ,

(6.13)

where, like for Def. 55, y = EM
(
y(0) (t, k, R)� y(1) (t, k, R)

)
, � is the element wise product

and ρ̂ is an estimator of the Pearson coefficient.

Let us now apply our new ROPTL on a block cipher protected with a shuffled table
recomputation. In this case the lower moments are given by:

µ` = E

[(∑
d

f (d)

)`
]

= E

( f (0)︸︷︷︸
S[t⊕k]⊕M

+ f (1)︸︷︷︸
M

+
∑
i∈I

f (i)︸︷︷︸
Φ(ω)⊕M

+
∑
j∈J

f (j)︸︷︷︸
Φ(ω)

)` .

Proposition 31. The second degree rounded optimal attack (Def. 54 for L = 2) on the table
recomputation is:

ROPT2 : R2Q × R2Q −→ Fn2
(
x(d), y(d) (t, k, R)

)
d∈{0,1} 7−→ argmax

k∈Fn2

Q∑

q=1

E(f (0)
q × f (1)

q ).
(6.14)

Proof. Combine Theorem 6.3.2 and Eq. (C.9) of Appendix C.1.2.

Remark 30. The ROPT2 which targets the second order moment happens not to take into
account the terms of the recomputation stage. Naturally the only second order leakages are also
the ones used by 2O-CPA and OPT2O distinguishers.

Proposition 32. The third degree rounded optimal attack (Def. 54 for L = 3) on the table
recomputation is:

ROPT3 : R(2n+1+2)Q × R(2n+1+2)Q −→ Fn2
(
x(d), y(d) (t, k, R)

)
d∈{0,1}∪I∪J 7−→ argmax

k∈Fn2

Q∑

q=1

µ2q(1 + γµ1q)− γ
µ3q

3
,

(6.15)

where the values of µ1q, µ2q and, µ3q are respectively provided in Eq. (C.1) of Appendix C.1.1,
Eq. (C.9) of Appendix C.1.2 and Eq. (C.12) of Appendix C.1.3.

Proof. Combining Theorem 6.3.2 and Appendix C.1.

Proposition 33. To compute µ1, µ2 and µ3 an attacker does not need to compute the prohibitive
expectation over S2n .

Proof. Proof given in Appendix C.1.
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6.5 Complexity

In this section we give the time complexity needed to compute OPT and ROPTL. We also show

that when L� D the complexity of ROPTL remains manageable whereas the complexity of

OPT is prohibitive. In this section all the complexities are computed for one key guess.

6.5.1 Complexity in the General Case

Let us first introduce an intermediate lemma.

Lemma 7. The complexity of computing µ` (for one trace) is lower than:

O

((
D + `− 1

`

)
· 2(Ω−1)n ·

(
Π

min
(⌈

Π
2

⌉
, `
)
))

. (6.16)

Proof. See Appendix C.2.1.

Proposition 34. The complexity of OPT is:

O
(
Q · (2n)Ω−1 ·Π! ·D

)
. (6.17)

The complexity of ROPTL is lower than:

O

(
Q · L ·

(
D + L− 1

L

)
· 2(Ω−1)n ·

(
Π

min
(⌈

Π
2

⌉
, L
)
))

. (6.18)

Proof. The proof is given in Appendix C.2.2.

Prop. 34 allows to compare the complexity of the two attacks. One can notice that there are

still terms with Π! or D! in ROPTL such as
(
D+L−1

L

)
or
(

Π
min(dΠ

2 e,L)
)
. Nevertheless these two

terms can be seen as constants when L� D. As a consequence we have the following remark.

Important Remark. When the degree L of the attack ROPTL is such that L � D the

complexity of OPT is much higher than the complexity of ROPTL. Indeed the main term for

OPT is Π! whereas the one for ROPTL is 2(Ω−1)n.

Proposition 35. The complexity of ROPTL can be reduced to O
(
Q·L·

(
D+L−1

L

))
with a pre-

computation in O
(
L ·
(
D+L−1

L

)
· 2(Ω−1)n ·

(
Π

min(dΠ
2 e,L)

))
.

Proof. See Appendix C.2.3.

This means that for Q large enough i.e. when γ is low enough this computational “trick”

allows a speed-up factor of 2(Ω−1)n
(

Π
min(dΠ

2 e,L)
)
. The idea is to output the values depending on

the queries from the computation of the expectations. These expectations only depend on the

model which can be computed only once.
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6.5.2 Complexity of our Case Study

Let us now compute the complexity of these two distinguishers applied to our case study. Of

course an approach could be to use the formula of the previous section 6.5.1. But one can notice

that a lot of terms could be independent of the key and as consequence not needed in an attack.

Another approach is to use the formula of the distinguisher.

Proposition 36. The complexity of OPT is:

O
(
Q · (2n) · 2n! ·

(
2n+1 + 2

))
. (6.19)

The complexity of ROPT2 is:
O (Q · 2n) . (6.20)

The complexity of ROPT3 is lower than:

O
(
Q · 24n

)
. (6.21)

Proof. See Appendix C.2.4.

Remark 31. As already mentioned an attacker can ignore the leakages of the table recomputation
and only target the two shares. In such case the complexity of OPT2O (Def. 56) is O (Q · (2n)).
With the result of Prop. 35 the complexity of ROPT2 reduces to O (Q).

Remark 32. Using the result of Prop. 35 the complexity of ROPT3 can be reduced to O
(
Q · 22n

)

with a precomputation step of O
(
22n
)
.

Remark 33. A summary of the complexity, and the computation time of the distinguishers are
provided in Appendix C.2.5 in Table C.1.

6.6 Simulation Results

In this section we validate in simulation the soundness of our approach for the case study

described in Sec. 6.4.1. The results of these simulations are expressed in success rate (defined

in (160) and denoted by SR). All simulations are computed using the Hamming weight model

as a leakage model. As we assume an attacker with a perfect knowledge, the leakages are the

model (denoted by y) plus some noise. The noise is Gaussian with a standard deviation of σ.

In Subsec. 6.6.1 we assume that the attacker does not take into account the table recom-

putation stage. He only targets the leakages of the mask and the masked share (the leakage

of masked S-Box). Namely the leakages which occurs in lines 1 and 10 of Algorithm 2. This

approach allows to compute the restricted version of the maximum likelihood. We compare the

results of the maximum likelihood, our rounded version and the high order attacks.
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In Subsec. 6.6.2 we present our main results. In this subsection the attacker can exploit

the leakage of the mask, the masked share and all the leakages of the table recomputation. In

this scenario we show that our rounded version of the optimal distinguisher outperforms all the

attacks of the state-of-the-art.

6.6.1 Exploiting only Leakage of the Mask and the Masked Share

In this subsection all the attacks are computed using only the leakages of the line 1 and the

line 10 of Algorithm 2 of Chapt. 4.

In this case study we assume a perfect masking scheme with: Y (0) = HW[M ] and Y (1) =

HW[S[T ⊕ k]⊕M ].

It can be seen in Fig. 6.2 that even for small noise (σ = 1, Fig. 6.2a) the 2O-CPA and

ROPT2 are equivalent. Indeed the two curves superimpose almost perfectly (in order to better

highlight a difference, as many as 1000 attacks have been carried out for the estimation of the

success rate). Moreover these two attacks are nearly equivalent to the optimal distinguisher

(we recover here the results of (23)). We can notice that for both σ = 1 and σ = 2, ROPT4 is

not as good as ROPT2. This means that the noise standard deviation is not large enough for

approximations of higher degrees to be accurate. Indeed when the noise is not low enough the

weight of each term of the decomposition can be such that some useful terms vanish due to the

alternation of positive and negative terms in the Taylor expansion.

Let us recall that the decomposition of Eq. (6.8) is valid only for low γ = 1/(2σ2) i.e. high

noise. The error term ( o(γL)) in by the Taylor expansion gives the asymptotic evolution of this

error when the noise increases but does not provide information about the error for a fixed value

of noise variance. This means that the noise is too small for ROPT4 to be a good approximation

of OPT although ROPT2 is nearly equivalent to OPT.

For σ = 2 the noise is high enough to have a good approximation of OPT by ROPT4. For

this noise all the attacks are close to OPT (Fig. 6.2b).

In the context where only the mask and the masked share are used it is equivalent to compute

the 2O-CPA, ROPT2 and OPT. As a consequence in the rest of this chapter only the 2O-CPA

will be displayed.

To conclude our ROPTL is in this scenario at least as good as the HO-CPA of order L,

which validates the optimality of state-of-the-art attacks against perfect masking schemes of

order O = L.
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Figure 6.2: Bivariate attacks

6.6.2 Exploiting the Shuffled Table Recomputation

In this subsection the attacker can target the leakage of the mask, the masked share and all the

leakages occurring during the table recomputation. As a consequence the attacks of Subsec. 6.6.1

remain possible. It has been shown in (23, 164) that the 2O-CPA with the centered product

becomes close to the OPT2O (the Maximum Likelihood) when the noise becomes high. It is

moreover confirmed by our simulation results as it can be seen in Fig. 6.2. We choose as attack

reference for the Fig. 6.3 and Fig. 6.4 the 2O-CPA and not the OPT2O because it performs

similarly 6.2 and it is much faster to compute (see Table C.1) which is mandatory for attacks

with high noise (e.g. for σ = 12) which involve many traces.

Following the formulas provided previously empirical validations have been done. For σ ≤ 8

the attacks have been redone 1000 times to compute the SR. For σ > 8 the attacks have been

done 250 times. Results are plotted in Fig. 6.3 and Fig. 6.4. In these figures the results of the

2O-CPA, the MVATR and ROPT3 are plotted. Noticed that the likelihood is not represented

because we cannot average over R.

Recall that the cardinality of the support of R is 2n × 2n!. It can be first noticed that for all

the noises ROPT3 is the best attack.

Let us analyze how much better ROPT3 is than 2O-CPA and MVATR. The comparison with

our new attack can be divided in three different categories. For low noise σ = 3 (see Fig. 6.3b)

the results of ROPT3 are similar to the results of MVATR. This means that the leakage of the

shuffled table recomputation is the most leaking term in this case. At the opposite when the

noise is high (for σ = 12 see Fig. 6.4c) ROPT3 becomes close to 2O-CPA which means that
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as expected the most informative part is the second order term. For medium noise 7 ≤ σ ≤ 9

(see Fig. 6.3d, Fig. 6.4a and Fig. 6.4b) the results of ROPT3 are much better than the result

of 2O-CPA and MVATR. Moreover, the gain compared to the second best attack is maximum

when the results of 2O-CPA and MVATR are the same. Indeed for σ = 7 (see Fig. 6.3d), ROPT3

needs 35000 traces to reach 80% of success whereas MVATR (the second best attack) needs

60000 traces. This represents a gain of 71%. For σ = 8 (see Fig. 6.4a), ROPT3 needs 65000

traces to reach 80% of success whereas the MVATR and the 2O-CPA needs 120000 traces. This

represents a gain of 85%. And when the noise increases to σ = 9 (see Fig. 6.4b), ROPT3 needs

120000 traces to reach 80% of success whereas 2O-CPA (the second best attack) needs 200000

traces, which is a gain of 66%.

These results can be interpreted as follows: The MVATR is a third order attack which

depends on the third order moment. The 2O-CPA is a second order attack which depends on

the second order moment. The new ROPT3 attack combines these two moments. When the

noise is low the MVATR and the ROPT3 performs similarly; this shows that the dominant term

in the Taylor expansion is the third order one. At the opposite when the noise increases the

ROPT3 becomes close to the 2O-CPA which indicates that the important term in the Taylor

expansion is the second order one. As ROPT3 combines the second and the third order moment

weighted by the SNR it is always better than any attack exploiting only one moment.

6.7 Conclusions and Perspectives

In this chapter, we derived new attacks based on the Lth degree Taylor expansion in the SNR of

the optimal Maximum Likelihood distinguisher. We have shown that this Lth degree truncation

allows to target a moment of order L. The new attack outperforms the optimal distinguisher with

respect to time complexity. In fact as we have theoretically shown, the Taylor approximation

can be effectively computed whereas the fully optimal maximum likelihood distinguisher, was

not computationally tractable.

We have illustrated this property by applying our new method in a complex scenario of

“shuffled table recomputation” and have compared the time complexity of the new attack and

the optimal distinguisher. In addition, we have shown that in this context our attack has a

higher success rate than all the attacks of the state-of-art over all possible noise variances.

An open question is how to quantify the accuracy of the approximation LL −→ LL` as

a function of the noise. In other words, what is the optimal degree of the Taylor expansion
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Figure 6.3: Attack on shuffled table recomputation (Low Noises)
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Figure 6.4: Attack on shuffled table recomputation (High Noises)
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of the likelihood for a given SNR? Another interesting extension of this framework would be

on hardware devices which are known to leak at various orders (see the real-world examples

in (111, 113, 114)).
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7.1 Conclusion

Side-Channel Analysis are still a very dynamic research area in which new results are continuously

published. In this manuscript we proposed different ways to improve the results of SCA. We

have both explored them in empirical and theoretical manners. We were especially interested in

the exploitation of multiple leakages to improve the success of the SCA. We have shown that

this behavior of Side channel measurements is a meaningful way to improve the attacks.

In particular in the first part of this manuscript (Part I) we have shown the possible

exploitations of multiple leakages of a unique variable. In Chap. 2 we studied the optimal way

to exploit this kind of leakages in order to maximize the Success Rate in a profiling scenario.

We have shown that in the context of a powerful attacker with a full knowledge of the leakage

function it coincides with a dimensionality reduction. In this context we gave the exact formula

of this reduction and linked it with two classical dimensionality reduction tools the PCA and

the LRA. Specifically we have shown that our new dimensionality reduction is asymptotically

141



7. CONCLUSION

equivalent to the LRA. In Chap. 3 we analyzed the optimal dimensionality reduction in the case

of a less powerful attacker. In this scenario the attacker has no a priori knowledge on the leakage

function. This generalization of the attacker model comes with a less powerful result. Indeed in

this chapter the optimization problem is the maximization of the distinguisher. Moreover we

took as case-study the High-Order attacks against masking scheme while the state-of-the-art

attack mainly deals with univariate non protected implementations. As a consequence we

investigated in this chapter the dimensionality reduction in the case of 2-variate attacks. In this

context the rational of the dimension reduction may differ to the univariate one. Especially

we showed that the gain of the uses of dimensionality reduction increases with the order. As

a consequence such methods are a powerful tool against protected implementations. In these

two scenarios the methods presented increase significantly the results of the attack. This means

that both in non protected and protected implementations, an increase of the dimension of the

attacks improves their results. We showed these results in 1-variate and 2-variate scenario and

theoretically extended these results at any orders.

In the second part of this manuscript (Part II) we investigated the possible exploitation of

the leakages of multiple variables. In the Chap. 4 we extended the results of the state-of-the-art

by deriving the optimal attack against a masking scheme with a table recomputation step. In

particular we showed that in this case the exploitation of the multiple leakages of the table

recomputation can greatly improve the results of the attacks. Indeed the new attacks offer

better results in success probability than the different attacks of the state-of-the-art. This

theoretical and empirical analysis provides a better understanding on the construction of highly

multivariate attacks. Indeed we showed that the optimal attack takes into account all the

leakages in once. Moreover we showed that for high noises this new attack is closed to the “mean”

of different attacks. As a consequence the optimal attack is closed to a multi-target attack. The

multi-target attacks represent an interesting research path. The implementations of the masking

schemes with a table recomputation step can be protected, as a consequence, we presented in

Chap. 5 a new multivariate attack tailored to defeat such countermeasures. This new attack

is the first example of a non minimal order attack more efficient that the minimum one. In

other words we showed that by combining more variables than the minimum number needed to

recover a key depend variable, we could build better attacks. This means that in presence of

masking scheme it may have an interest to build highly multivariate attacks. As a consequence

in order to properly evaluate the security of the masked implementation we showed that the

order is not a sufficient metric. In this context we extended this attack for different leakage
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functions and different masking schemes at different orders. Finally we additionally gave some

countermeasures. In Chap. 6 we theoretically investigated how far an attacker can exploit these

leakages. As a consequence we put themselves in the case of an attacker with full knowledge

of the models. In this context we showed that the main issue is the complexity of the optimal

attack. In order to avoid this, we presented a new attack based on a truncated version of the

Taylor Expansion of the Maximum Likelihood. This new attack retains the efficiency property

of the Maximum Likelihood by completely out performing the results of all known attacks. As a

truncated version this new attack has a better effectiveness and as a consequence is computable.

Moreover it gives interesting insight on the behavior High Order attacks. Indeed contrary to the

state-of-the-art attack a better attack will take into account the leakages at different orders and

combined them using the SNR as weight. These features highlight the fact these attacks are

close to the combinations of attacks at different orders. They exploit different combination of

variables. As a consequence these attacks are multi-target.

In this study we showed that the number of exploitable leakage samples is a fundamental

parameter in the evaluation of the security of the implementation of cryptographic algorithms.

Especially we showed that the order of the implementation of the masking scheme is not a

sufficient criterion to ensure the security of protected implementations.

7.2 Perspectives.

7.2.1 Under Review.

During this thesis we investigated some other research paths which are not part of this manuscript

and are now under review.

Success Exponent. The first one is to identify the relevant parameters of the success of

the SCA in cases of protected implementations. In order to investigate these parameters an

interesting way is to extent the results of the Success Exponent in the cases of protected

implementations. We already extended these results in the case of High Order masking schemes,

shuffling implementations and noise addition. In this context we showed that the SNR of each

shares play a fundamental role. As in the unprotected cases the confusion coefficient is another

important parameter. As already mentioned in the state-of-the-art the impact of the order is

in the number of products needed to recover a value depending on the key. As a consequence

the maximum degree of the polynomial in the noise variance will depend on the order of the
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implementation of the masking schemes. The overall gain of the exploitation of the multiple

leakages will be then in the coefficient of the polynomial.

Horizontal Attacks. It is well-known that the leakages of multiple variables are an effective

way to attack protected implementations of asymmetric cryptography algorithms. Indeed the so

called “horizontal” attacks are ones of the most effective ways to defeat such implementations.

During this thesis we investigated how these attacks can be improved using machine learning

methods. We showed that the uses of particular distances in cluster algorithms may improve

the results of attacks based on clustering.

Stochastic Collision Attacks. We showed that in order to attack protected implementations

multi-target attacks are an efficient tool. These attacks combined the leakages of the key

dependent variables but also the variables involved in the countermeasures. A classical kind of

attacks which exploit several variables in order to break protected implementation are the so

called collision attacks. One our current work introduces the so called stochastic collision which

combined the behaviors of collision attacks and stochastic attacks. Interestingly this new attack

can be applied on masking schemes. The simulation results show that this new attack gives

better results than the state-of-the-art collision attacks.

7.2.2 Research Perspectives.

In this thesis we showed that the exploitation of multiple leakages improves the result of SCA.

Interestingly we showed that the parameters of the multiplicity of leakages have a greater

impact than the order of the implementation. As a consequence the order has to be be seen

more as a design parameter than a security parameter even if of course it has an impact of

the security of the implementation. As the order is not a sufficient parameter to evaluate the

security of protected implementations, the security should be established using other parameters.

Specifically it should be based on the number of leakages, the number of variables and their

possible combinations. Any security evaluation should be based on a detailed analysis of the

masking schemes where all combinations of variables should be considered.

Additionally an interesting perspective is to combined, in the context of protection implemen-

tation, the different methods presented in this manuscript with the recent results of multi-target

attacks. In this context exploiting the multiple, possibly masked, leakages of the different parts

of the cipher algorithm should lead to significant improvements.
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In this manuscript we showed that a possible approach is to perform unified attacks using

the Maximum Likelihood. An interesting research path would be to generalize this approach

for any protected implementations noticing that in some cases it may be not sufficient or not

computable. In these cases truncated versions may be an interesting approach.

The theoretical approach based on the Success Exponent can be an interesting first step for

further researches. Indeed the expression of the theoretical Success Rate will allow to highlight

the different behaviors of different attacks against different implementations. Such approaches

will lead to fairer comparisons as it will take into account more parameters than straightforward

comparisons based for example only on the order or the SNR.

Another question is how this result can be extended on other secure implementations?

Especially are the others masking schemes vulnerable against attacks exploiting multiple leakages?

If it is the case, how their security is impacted compared to their traditional security parameters?

Generally we showed in this manuscript that the use of the multiple leakages improve the

results of the SCA. We introduce different parameters to classify these leakages depending on

the multiplicity of different variables or the way there are exploited to recover the key. We saw

that the way multiple leakages are exploited depends on these parameters. A possible research

path is to optimally derived the way to take into account this multiplicity of type of leakages.

By doing so it may possible to identify a generic framework to exploit the multiple leakages and

as a consequence establish a parameter to evaluate the security of protected implementations.

7.3 List of publications.

During this thesis I contributed to different publications which are not part of this manuscript.

In the following we list the contributions.

The following contributions are part of this manuscript:

Multi-Variate High-Order Attacks of Shuffled Tables Recomputation, Nicolas Bruneau,

Sylvain Guilley, Zakaria Najm and Yannick Teglia, to appear in Journal of Cryptology.

Abstract

Masking schemes based on tables recomputation are classical countermeasures

against high-order side-channel attacks. Still, they are known to be attackable at

order d in the case the masking involves d shares. In this work, we mathematically

show that an attack of order strictly greater than d can be more successful than an
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attack at order d. To do so, we leverage the idea presented by Tunstall, Whitnall

and Oswald at FSE 2013: we exhibit attacks which exploit the multiple leakages

linked to one mask during the recomputation of tables. Specifically, regarding first-

order table recomputation, improved by a shuffled execution, we show that there is a

window of opportunity, in terms of noise variance, where a novel highly multivariate

third-order attack is more efficient than a classical bivariate second-order attack.

Moreover, we show on the example of the high-order secure table computation

presented by Coron at EUROCRYPT 2014 that the window of opportunity enlarges

linearly with the security order d. These results extend that of the CHES ’15

eponymous paper. Here, we also investigate the case of degree one leakage models,

and formally show that the Hamming weight model is the less favorable to the

attacker. Eventually, we validate our attack on a real ATMEL smartcard.

Keywords: Shuffled table recomputation, highly multivariate high-order attacks,

signal-to-noise ratio.

Taylor Expansion of Maximum Likelihood Attacks for Masked and Shuffled Imple-

mentations, Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul, François-Xavier

Standaert and Yannick Teglia, appeared in Advances in Cryptology - ASIACRYPT 2016 - 22nd

International Conference on the Theory and Application of Cryptology and Information Security.

Abstract

The maximum likelihood side-channel distinguisher of a template attack scenario

is expanded into lower degree attacks according to the increasing powers of the

signal-to-noise ratio (SNR). By exploiting this decomposition we show that it

is possible to build highly multivariate attacks which remain efficient when the

likelihood cannot be computed in practice due to its computational complexity.

The shuffled table recomputation is used as an illustration to derive a new attack

which outperforms the ones presented by Bruneau et al. at CHES 2015, and so

across the full range of SNRs. This attack combines two attack degrees and is able

to exploit high dimensional leakage which explains its efficiency.

Keywords: Template Attacks, Taylor expansion, Shuffled table recomputation.

Less is More - Dimensionality Reduction from a Theoretical Perspective, Nicolas
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Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion and Olivier Rioul, appeared in

Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International Workshop.

Abstract

Reducing the dimensionality of the measurements is an important problem in

side-channel analysis. It allows to capture multi-dimensional leakage as one single

compressed sample, and therefore also helps to reduce the computational complexity.

The other side of the coin with dimensionality reduction is that it may at the same

time reduce the efficiency of the attack, in terms of success probability.

In this paper, we carry out a mathematical analysis of dimensionality reduction.

We show that optimal attacks remain optimal after a first pass of preprocessing,

which takes the form of a linear projection of the samples. We then investigate the

state-of-the-art dimensionality reduction techniques, and find that asymptotically,

the optimal strategy coincides with the linear discriminant analysis.

Keywords: Dimentionality Reduction, Side Channel Analysis.

Multi-Variate High-Order Attacks of Shuffled Tables Recomputation, Nicolas Bruneau,

Sylvain Guilley, Zakaria Najm and Yannick Teglia, appeared in Cryptographic Hardware and

Embedded Systems - CHES 2015 - 17th International Workshop.

Abstract

Masking schemes based on tables recomputation are classical countermeasures

against high-order side-channel attacks. Still, they are known to be attackable at

order d in the case the masking involves d shares. In this work, we mathematically

show that an attack of order strictly greater than d can be more successful than an

attack at order d. To do so, we leverage the idea presented by Tunstall, Whitnall

and Oswald at FSE 2013: we exhibit attacks which exploit the multiple leakages

linked to one mask during the recomputation of tables. Specifically, regarding first-

order table recomputation, improved by a shuffled execution, we show that there is a

window of opportunity, in terms of noise variance, where a novel highly multivariate

third-order attack is more efficient than a classical bivariate second-order attack.

Moreover, we show on the example of the high-order secure table computation

presented by Coron at EUROCRYPT 2014 that the window of opportunity enlarges

linearly with the security order d.
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Keywords: Shuffled table recomputation, highly multivariate high-order attacks,

signal-to-noise ratio.

Masks will Fall Off, Nicolas Bruneau, Sylvain Guilley, Annelie Heuser and Olivier Rioul,

appeared in Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on

the Theory and Application of Cryptology and Information Security.

Abstract

Higher-order side-channel attacks are able to break the security of cryptographic

implementations even if they are protected with masking countermeasures. In this

paper, we derive the best possible distinguishers (High-Order Optimal Distinguish-

ers or HOOD) against masking schemes under the assumption that the attacker can

profile. Our exact derivation admits simple approximate expressions for high and

low noise and shows to which extent the optimal distinguishers reduce to known

attacks in the case where no profiling is possible. From these results, we can explain

theoretically the empirical outcome of recent works on second-order distinguishers.

In addition, we extend our analysis to any order and to the application to masked

tables precomputation. Our results give some insight on which distinguishers have

to be considered in the security analysis of cryptographic devices.

Keywords: Side-channel analysis, higher-order masking, masking tables, higher-

order optimal distinguisher (HOOD), template attack.

Boosting Higher-Order Correlation Attacks by Dimensionality Reduction, Nicolas

Bruneau, Jean-Luc Danger, Annelie Heuser and Yannick Teglia, appeared in Security, Privacy,

and Applied Cryptography Engineering - 4th International Conference, SPACE 2014.

Abstract

Multi-variate side-channel attacks allow to break higher-order masking protections

by combining several leakage samples. But how to optimally extract all the

information contained in all possible d-tuples of points? In this article, we introduce

preprocessing tools that answer this question. We first show that maximizing the

higher-order CPA coefficient is equivalent to finding the maximum of the covariance.

We apply this equivalence to the problem of trace dimensionality reduction by linear

combination of its samples. Then we establish the link between this problem and
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the Principal Component Analysis. In a second step we present the optimal solution

for the problem of maximizing the covariance. We also theoretically and empirically

compare these methods. We finally apply them on real measurements, publicly

available under the DPA Contest v4, to evaluate how the proposed techniques

improve the second-order CPA (2O-CPA).

Keywords: Bi-variate attacks, second-order correlation power analysis (2O-

CPA), principal component analysis, interclass variance, covariance vector.

The following contributions are not part of this manuscript:

Analysis and Improvements of the DPA Contest v4 Implementation, Shivam Bhasin,Nicolas

Bruneau, Jean-Luc Danger, Sylvain Guilley and Zakaria Najm, appeared in Security, Privacy,

and Applied Cryptography Engineering - 4th International Conference, SPACE 2014.

Abstract

DPA Contest is an international framework which allows researchers to compare

their attacks under a common setting. The latest version of DPA Contest pro-

poses a software implementation of AES-256 protected with a low-entropy masking

scheme. The masking scheme is called Rotating Sbox Masking (RSM) which claims

first-degree security. In this paper, we review the attacks submitted against DPA

Contest v4 implementation to identify the common loop holes in the proposed im-

plementation. Next we propose some ideas to improve the existing implementation

to resist most of the proposed attacks at affordable performance overhead. Finally

we compare our implementation with the original proposal in terms of complexity

and side-channel leakage.

Keywords: Side Channel Attacks, DPA Contest, Low Entropy Masking Schemes

Shuffling.

Time-Frequency Analysis for Second-Order Attacks, Pierre Belgarric, Shivam Bhasin,

Nicolas Bruneau, Jean-Luc Danger, Nicolas Debande, Sylvain Guilley, Annelie Heuser, Zakaria

Najm and Olivier Rioul, appeared in mart Card Research and Advanced Applications - 12th

International Conference, CARDIS 2013.
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Abstract

Second-order side-channel attacks are used to break first-order masking protections.

A practical reason which often limits the efficiency of second-order attacks is

the temporal localisation of the leaking samples. Several leakage samples must

be combined which means high computational power. For second-order attacks,

the computational complexity is quadratic. At CHES ’04, Waddle and Wagner

introduced attacks with complexity O(n log2 n) on hardware traces, where n is the

window size, by working on traces auto-correlation. Nonetheless, the two samples

must belong to the same window which is (normally) not the case for software

implementations. In this article, we introduce preprocessing tools that improve the

efficiency of bi-variate attacks (while keeping a complexity of O(n log2 n)), even if

the two samples that leak are far away one from the other (as in software). We put

forward two main improvements. Firstly, we introduce a method to avoid losing

the phase information. Next, we empirically notice that keeping the analysis in

the frequency domain can be beneficial for the attack. We apply these attacks

in practice on real measurements, publicly available under the DPA Contest v4,

to evaluate the proposed techniques. An attack using a window as large as 4000

points is able to reveal the key in only 3000 traces.

Keywords: Bi-variate attacks, zero-offset 2O-CPA, discrete Hartley transform,

leakage in phase.
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APPENDIX A

Appendix of Dimensionality Reduction

A.1 Proof of Theorem 3.2.1

Proof. On the one side we have

Cov
[
α ·X, Ψ̂(Z)

]
=
(

Cov
[
S(d) +N (d), Ψ̂(Z)

])
d∈D
· α

= α ·
(

Cov
[
S(d), Ψ̂(Z)

])
d∈D

= α ·
(
E
[
S(d)Ψ̂(Z)

])
d∈D

.

The other side yields Var
[
α · E

[
X|Ψ̂(Z)

]]
= Var

[
α ·
(
S(d)

)
d∈D

]
. Now if S(d) = β(d)Ψ̂(Z),

then we have for both sides




Cov
[
α ·X; Ψ̂(Z)

]2
= (α · β)

2 E
[
Ψ̂(Z)2

]2
,

Var
[
α · E

[
X|Ψ̂(Z)

]]
= Var

[
(α · β) Ψ̂(Z)

]
= (α · β)

2 E
[
Ψ̂(Z)2

]
,

which proves equivalence.

A.2 Proof of Lemma 2

Proof.

argmax
‖α‖=1

Cov
[
α ·X, Ψ̂(Z)

]2
= argmax
‖α‖=1

(α · β)
2 E
[
Ψ̂(Z)2

]2

= argmax
‖α‖=1

(α · β)
2 , because E

[
Ψ̂(Z)2

]2
> 0.
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By the Cauchy-Schwarz theorem, we have: (α · β)
2 6 ‖α‖2 × ‖β‖2,where equality holds if

and only if α and β are linearly dependent, i.e., α = λβ. Accordingly, if ‖α‖ = 1 we have
λ = 1

‖β‖ , which gives us the required solution.

A.3 Proof of Proposition 14

Proof. We have

Cov
[
α ·X, Ψ̂(Z)

]
= α ·

(
Cov

[
X(d); Ψ̂(Z)

])
d∈D

.

Similar to the proof of Lemma 2, we use the Cauchy-Schwarz inequality. In particular,

(
α ·
(

Cov
[
X(d); Ψ̂(Z)

])
d∈D

)2

6 ‖α‖2 × ‖
(

Cov
[
X(d); Ψ̂(Z)

])
d∈D
‖2.

We have the equality,
(
α ·
(

Cov
[
X(d); Ψ̂(Z)

])
d∈D

)2

= ‖α‖2 × ‖
(

Cov
[
X(d); Ψ̂(Z)

])
d∈D
‖2,

if and only if α = λ
(

Cov
[
X(d); Ψ̂(Z)

])
d∈D

.

So, if ‖α‖ = 1 we have λ = 1

‖(Cov[Ψ̂(Z);Ψ̂(Z)])
d∈D
‖
.
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APPENDIX B

Appendix of Multivariate Attack.

B.1 Proof of Theorem 5.2.1

In order to prove the Theorem 5.2.1 let us first introduce some lemmas. By Remark 19 the

only random parts of XTR are the noise and the mask. As a consequence the random variable

(XTR|M = m) depends only on the noise, and is equal to:

(XTR|M = m) =− 2× 1

2n

2n−1∑

ω=0

[(
HW[Φ (ω)⊕m] +N (1)

ω − n

2

)

×
(

HW[Φ (ω)] +N (2)
ω − n

2

)]
.

(B.1)

Lemma 8.

(XTR|M = m) = HW[m]− n

2

− 2× 1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]

− 2× 1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]

− 2× 1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]
.

(B.2)

Proof. (XTR|M = m) can be split into a deterministic part and a random part:

(XTR|M = m) = −2× (Sd + Sr) ,
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where

Sd =
1

2n

2n−1∑

ω=0

[(
HW[Φ (ω)⊕m]− n

2

)
×
(

HW[Φ (ω)]− n

2

)]
,

Sr =
1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]

+
1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]

+
1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]
.

Sd = E [(HW[U ⊕M ]− E [HW[U ⊕M ]])× (HW[U ]− E [HW[U ⊕M ]]) | M = m]

= −1

2
HW[m] +

n

4
by (133) ,

where U denotes a random variable drawn uniformly over Fn2 .

Lemma 9.

Var [(XTR|M = m)] = 4×
(
σ2

2n
× n

2
+
σ4

2n

)
. (B.3)

Proof. Recall that the random variable (XTR|M = m) can be write as in Lemma 8; thus
Var [(XTR|M = m)] = 4× (V1 + V2 + V3 + C1 + C2 + C3), where

V1 = Var

[
1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]]
,

V2 = Var

[
1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]]
,

V3 = Var

[
1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]
,

C1 = 2× Cov

[
1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]
,

C2 = 2× Cov

[
1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]
,

C3 = 2× Cov

[
1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
,

1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]]
.

Let us now prove that C1 = C2 = 0. First we have:

Cov

[
1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]
=C

(1)
1 − C(2)

1 ,
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with

C
(1)
1 = Cov

[
1

2n

2n−1∑

ω=0

[
HW[Φ (ω)]×N (1)

ω

]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]

=
1

2n

2n−1∑

ω′=0

1

2n

2n−1∑

ω=0

[
Cov

[
HW[Φ (ω)]×N (1)

ω , N
(1)
ω′ ×N

(2)
ω′

]]
.

The random variables N (i)
ω , where i ∈ {1, 2} and ω ∈ Fn2 are mutually independent and

independent with all the HW[Φ (ω)]. Thus we have:

∀ω, ω′,Cov
[
HW[Φ (ω)]×N (1)

ω , N
(1)
ω′ ×N

(2)
ω′

]
= 0

⇐⇒ 1

2n

2n−1∑

ω′=0

1

2n

2n−1∑

ω=0

[
Cov

[
HW[Φ (ω)]×N (1)

ω , N
(1)
ω′ ×N

(2)
ω′

]]
= 0

⇐⇒ C
(1)
1 = 0 .

Besides

C
(2)
1 = Cov

[
1

2n

2n−1∑

ω=0

[n
2
×N (1)

ω

]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]

=
n

2
× 1

2n

2n−1∑

ω′=0

1

2n

2n−1∑

ω=0

[
Cov

[
N (1)
ω , N

(1)
ω′ ×N

(2)
ω′

]]
.

As N (i)
ω , where i ∈ {1, 2} and ω ∈ Fn2 , are mutually independent, we have:

Cov
[
N (1)
ω , N

(1)
ω′ ×N

(2)
ω′

]
= 0, ∀ (ω, ω′) ∈ Fn2 × Fn2

⇐⇒ C
(2)
1 = Cov

[
1

2n

2n−1∑

ω=0

[n
2
×N (1)

ω

]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]
= 0

⇐⇒ Cov

[
1

2n

2n−1∑

ω=0

N (1)
ω ×

(
HW[Φ (ω)]− n

2

)
,

1

2n

n−1∑

ω=0

N (1)
ω ×N (2)

ω

]
= 0 .

Identically we prove that:

Cov

[
1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]
,

1

2n

2n−1∑

ω=0

[
N (1)
ω ×N (2)

ω

]]
= 0 .

As a consequence C1 = C2 = 0. Let us now study C3. By the bi-linearity of the covariance C3

can be rewritten such that:

C3 =
2

22n

2n−1∑

ω=0

2n−1∑

ω′=0

Cov
[
N (1)
ω ×

(
HW[Φ (ω)]−n

2

)
, N

(2)
ω′ ×

(
HW[Φ (ω)⊕m]−n

2

)]
.
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But

Cov
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)
, N

(2)
ω′ ×

(
HW[Φ (ω)⊕m]− n

2

)]

= E
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)
×N (2)

ω′ ×
(

HW[Φ (ω)⊕m]− n

2

)]

− E
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
× E

[
N

(2)
ω′ ×

(
HW[Φ (ω)⊕m]− n

2

)]
.

By definition, N (1)
ω is independent from HW[Φ (ω)]. Thus:

E
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
= E

[
N (1)
ω

]
× E

[(
HW[Φ (ω)]− n

2

)]
= 0 and

E
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
× E

[
N

(2)
ω′ ×

(
HW[Φ (ω)⊕m]− n

2

)]
= 0 .

N
(1)
ω is independent from

(
HW[Φ (ω)]− n

2

)
×N (2)

ω′ ×
(
HW[Φ (ω)⊕m]− n

2

)
. Thus E

[
N

(1)
ω ×

(
HW[Φ (ω)]− n

2

)
×N (2)

ω′ ×
(
HW[Φ (ω)⊕m]− n

2

)]
=

0, which implies that C3 = 0. As a consequence Var [(XTR|M = m)] = 4× (V1 + V2 + V3).

V1 = Var

[
1

2n

2n−1∑

ω=0

[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]]

=
1

22n

2n−1∑

ω=0

Var
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]

+
2

22n

∑

06ω<ω′62n−1

Cov
[
N (1)
ω × (HW[Φ (ω)]) , N

(1)
ω′ × (HW[Φ (ω′)])

]
. (B.4)

As Cov
[
N

(1)
ω × (HW[Φ (ω)]) , N

(1)
ω′ × (HW[Φ (ω′)])

]
= 0, the terms in Eq. (B.4) are all null. It

can be noticed that E
[
HW[Φ (ω)]− n

2

]
= 0 as Φ (ω) is uniformly distributed over S2n and

E
[
N

(1)
ω

]
= 0. As a consequence:

Var
[
N (1)
ω ×

(
HW[Φ (ω)]− n

2

)]
= Var

[
HW[Φ (ω)]− n

2

]
×Var

[
N (1)
ω

]
, hence

V1 =
1

22n

2n−1∑

ω=0

σ2 × n

4
=

1

2n
× σ2 × n

4
.

Identically, we have

V2 = Var

[
1

2n

2n−1∑

ω=0

[
N (2)
ω ×

(
HW[Φ (ω)⊕m]− n

2

)]]
=
σ2

2n
× n

4
= V1 , and

V3 = Var

[
1

2n

2n−1∑

ω=0

N (1)
ω ×N (2)

ω

]
=
σ4

2n
.

Finally

Var [(XTR|M = m)] = 4×
(
σ2

2n
× n

2
+
σ4

2n

)
.
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B.2 Proof of the propositions of Sect. 5.2.5

Then let us prove the Theorem 5.2.1.

Proof. Lemma 9 gives us the value of the variance of the noise. Then by the definition of the
SNR, we have:

SNR [XTR,M ] > SNR
[
X(3),M

]
⇐⇒ Var [HW[M ]]

Var [(XTR|M = m)]
>

Var [HW[M ]]

Var [N3]

⇐⇒ 4×
(
σ2

2n
× n

2
+
σ4

2n

)
6 σ2

⇐⇒ 2n−1 − n
2

> σ2

B.2 Proof of the propositions of Sect. 5.2.5

B.2.1 Proof of Prop. 19

Proof. By Theorem 2 in (64, Appendix A.2) (extended version of (63)) we have that the SE of
is given by

SE2O-CPA = min
k 6=k?

κ (k?, k)

2
(
κ′(k?,k)
κ(k?,k) − κ (k?, k)

)
+ 2

∑
i∈{0,2}d
i 6=(0,...,0)

∏
1≤δ≤d

(
α−iδδ · σiδδ

)

= min
k 6=k?

κ (k?, k)

2
(
κ′(k?,k)
κ(k?,k) − κ (k?, k)

)
+ 2

(
α−2

1 σ2
1 + α−2

2 σ2
2 + α−2

1 σ2
1α
−2
2 σ2

2

) .

B.2.2 Proof of Prop. 21

Proof.

m
(SR)
2O-CPA −m

(SR)
MVATR

m
(SR)
MVATR

=

(
log (1− SR)

SE2O-CPA
− log (1− SR)

SEMVATR

)
× SEMVATR

log (1− SR)

=
SEMVATR

SE2O-CPA
− 1 ,

which indeed does not depend on SR.

B.2.3 Proof of Prop. 22

Let us now compute the difference of traces needed to reach any SR.

m
(SR)
2O-CPA −m

(SR)
MVATR

=
log (1− SR)

SE2O-CPA
− log (1− SR)

SEMVATR
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Let us rewrite using α = α1 = α2. In such case:

m
(SR)
2O-CPA −m

(SR)
MVATR

=
log (1− SR)

SE2O-CPA
− log (1− SR)

SEMVATR

=
log (1− SR)

SE2O-CPA
− log (1− SR)

SEMVATR

=

(
2α−2 log (1− SR)

κ (k?, k)

)(
1 + α−2σ2

)(
σ2 − 4

(
σ2

2n
n

2
+
σ4

2n

))

The attacks perform similarly when m2O-CPA − mMVATR = 0 which implies (σ2 − 4 ×(
σ2

2n × n
2 + σ4

2n

)
= 0. Notice that we recover here the results of the Subsect. 5.2.3.

In order to find the noise when the maximum occurs let us compute the derivative in σ2:

Ω
(
m

(SR)
2O-CPA −m

(SR)
MVATR

)

Ωσ2
=

((
α−2 − 4α−2

2n
× n

2

)
+

(
8α−2

2n
+ 2α−4 − 8α−4

2n
× n

2

)
σ2 − 12α−4σ4

2n

)

×
(

2
log (1− SR)

κ (k?, k)

)

The maximum occurs when
Ω
(
m

(SR)
2O-CPA−m

(SR)
MVATR

)
Ωσ2 = 0 which not depends on the SR.

B.3 Proof of Theorem 5.3.1

Similarly to the Remark 19 we have ∀i < Ω:

(
XCSΩ

i
|Mi = m

)
=
−2

Ω2n

∑

ω∈F2n

j∈J1,ΩK

[(
HW[Φ (ω)⊕m] +N

(1)
(ω,j) −

n

2

)

×
(

HW[Φ (ω)] +N
(2)
(ω,j) −

n

2

)]
.

As the i is fixed for each share we have removed it from the index position.

Lemma 10.

Var
[(
XCSΩ

i
|Mi = m

)]
= 4×

(
σ2

Ω× 2n
× n

2
+

σ4

Ω× 2n

)
, (B.5)

where Ω is the number of share of the high-order masking scheme and i < Ω.

Proof. Lemma 10 is a straightforward extension of Lemma 9.

Exploiting Lemma 10 let us prove Theorem 5.3.1.
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Proof. As Lemma 10 gives us the variance of the noise of the second-order leakage we have
∀i < Ω

SNR
[
XCSΩ

i
,Mi

]
> SNR

[
X

(3)
i ,Mi

]

⇐⇒ Var [HW[M ]]

Var
[(
XCSΩ

i
|Mi = m

)] >
Var [HW[M ]]

Var
[
N

(3)
i

]

⇐⇒ 4×
(

σ2

Ω× 2n
× n

2
+

σ4

Ω× 2n

)
6 σ2

⇐⇒
(
n− Ω× 2n−1

) σ2

Ω× 2n−1
+

σ4

Ω× 2n−2
6 0.

The upper bound of the interval are the σ2 where σ2 6= 0 and:

σ4

Ω× 2n−2
=
(
d× 2n−1 − n

) σ2

Ω× 2n−1

⇐⇒ σ2 =

(
d× 2n−1 − n

)

2

⇐⇒ σ2 = d× 2n−2 − n

2
.

It implies that the size of Useful Interval of Variance is given by d× 2n−2 − n
2 .

B.4 Affine model

B.4.1 Proof of Lemma 5

Proof.

E [(Ψα (U)− E [Ψα (U)])× (Ψβ (U ⊕ z)− E [Ψβ (U ⊕ z)])]

= E
[(
α · U − α ·

(
1

2
1

))
×
(
β · (U ⊕ z)− β ·

(
1

2
1

))]

= E
[(
α ·
(
U − 1

2
1

))
×
(
β ·
(

(U ⊕ z)− 1

2
1

))]

= E
[(

1

2
α · U

)
×
(

1

2
β ·
(
U ⊕ z

))]

=
1

4

(
αtE

[
U
(
U ⊕ z

)t
]
β
)
,

where U denotes 2
(
U − 1

21
)
.

It can also be noticed that: U = −
(
(−1)

U1 , . . . , (−1)
Un
)
, and thus (U ⊕ z) = −

(
(−1)

U1+z1 , . . . , (−1)
Un+zn

)
.

Moreover

E
[
U
(
U ⊕ z

)t
]

= Cov
[
U,
(
U ⊕ z

)t
]

=⇒
(
E
[
U
(
U ⊕ z

)t
])

i,j
= Cov

[
(−1)

Ui , (−1)
(Uj+zj)

]

=⇒
(
E
[
U
(
U ⊕ z

)t
])

i,j
= 0 if i 6= j or

(
E
[
U
(
U ⊕ z

)t
])

i,j
= (−1)

zj if i = j .
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Eventually, we have:

E [(Ψα (U)− E [Ψα (U)])× (Ψβ (U ⊕ z)− E [Ψβ (U ⊕ z)])]

= −1

4
(α� β) · z = −1

4
(α� β) · 2

(
z − 1

2
1

)

= −1

2
(α� β) · z +

1

4
(α� β) · 1 = −1

2
(α� β) · z +

1

4
α · β .

B.4.2 Proof of the Theorem 5.4.1

Similarly to Eq. (B.1) we have:

(XTR|M = m) =− 2× 1

2n

2n−1∑

ω=0

[(
α · (Φ (ω)⊕m) +N (1)

ω − 1

2
(α · 1)

)

×
(
α · (Φ (ω)) +N (2)

ω − 1

2
(α · 1)

)]
.

Lemma 11.

Var [(XTR|M = m)] = 4×
(

n

2n+1
× σ2 +

σ4

2n

)
.

Proof. Similar to proof of Lemma 9 (see Appendix B.1) using the affine model instead of the
Hamming Weight and Assumption 1.

Then we can prove the Theorem 5.4.1.

Proof. Lemma 11 gives us the value of the variance of the noise. Then by the definition of the
SNR, we have:

SNR [XTR,M ] > SNR
[
X(3),M

]

⇐⇒ Var
[
α2 ·M

]

Var [(XTR|M = m)]
>

Var [α ·M ]

Var
[
N (3)

]

⇐⇒
1
4‖α‖44

4×
(
σ2

2n+1 × n+ σ4

2n

) >
1
4n

σ2

⇐⇒ σ2

4
× ‖α‖44 −

σ2

2n+1
× n2 − σ4

2n
× n > 0

⇐⇒ σ2 ×
(

1

4
× ‖α‖44 −

1

2n+1
× n2 − σ2

2n
× n

)
> 0

⇐⇒ 1

4
× ‖α‖44 −

1

2n+1
× n2 − σ2

2n
× ‖α‖22 > 0

⇐⇒ 2n

4
× ‖α‖

4
4

n
− 2n

2n+1
× n2

n
> σ2

⇐⇒ ‖α‖44 ×
2n−2

n
− n

2
> σ2
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B.4.3 Proof of Corollary 6

Let us first prove the following result:

Lemma 12. Let x ∈ Rn and let p, q two integers such that p > q > 0. Then:

n
1
p−

1
q ‖x‖q 6 ‖x‖p 6 ‖x‖q . (B.6)

These two bounds are tight. Indeed,

∀i, j, xi = xj =⇒ n
1
p−

1
q ‖x‖q = ‖x‖p

∃i/xi 6= 0 and ∀i 6= j, xj = 0 =⇒ ‖x‖p = ‖x‖q .

Proof. Let us first prove the lower bound of Eq. (B.6). By the Hölder inequality we have:

∑

i

|xi|q 6
(∑

i

(|xi|q)P
) 1
P
(∑

i

(1)
Q

) 1
Q

where P =
p

q
and Q =

p

p− q .

So, we have,
∑
i |xi|q 6 ‖x‖qpn1− qp , i.e., ‖x‖pn

1
p−

1
q 6 ‖x‖p.

Then let us prove the upper bound. We have
∑
i
|xi|q
‖x‖qq = 1. Hence, for all 1 6 i 6 n, |xi|

q

‖x‖qq 6 1.

Therefore, for all i, |xi|
p

‖x‖pq 6 |xi|q
‖x‖qq , hence

∑
i
|xi|p
‖x‖pq 6

∑
i
|xi|q
‖x‖qq = 1, which yields the announced

inequality: ‖x‖pp 6 ‖x‖pq .
Let us prove the sufficient conditions when the inequalities become equalities:

∀i, j, xi = xj =⇒ ‖x‖p = |xi|n
1
p and ‖x‖q = |xi|n

1
q =⇒ ‖x‖p = ‖x‖qn

1
p−

1
q

∃i, xi 6= 0 and ∀i 6= j, xj = 0 =⇒ ‖x‖p = |xi| and ‖x‖q = |xi| =⇒ ‖x‖p = ‖x‖q.

The Corollary 6 is the application of Lemma 12 with p = 4 and q = 2.

Proof. Indeed we have by Theorem 5.4.1 that the useful interval of variance is 0 6 σ2 6

‖α‖44 × 2n−2

n − n
2 , where ‖α‖22 = n (recall Assumption 1). Then by Lemma 12:

(
‖α‖2n

1
4−

1
2 + 1

2

)4

× 2n−2

n
− n

2
6 ‖α‖44 ×

2n−2

n
− n

2
6 ‖α‖42 ×

2n−2

n
− n

2

=⇒
(
‖α‖2n

1
4−

1
2

)4

× 2n−2

n
− n

2
6 ‖α‖44 ×

2n−2

n
− n

2
6 n2 × 2n−2

n
− n

2

=⇒ 2n−2 − n

2︸ ︷︷ ︸
Value of Theorem 5.2.1.

6 ‖α‖44 ×
2n−2

n
− n

2
6 n× 2n−2 − n

2
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APPENDIX C

Appendix of Mixed Order.

C.1 Computation of the Moments

C.1.1 Computation of µ1

There is no computational difficulty:

µ1 = E(f (0)) + E(f (1)) +
∑

i∈I
E(f (i)) +

∑

j∈J
E(f (j)). (C.1)

Now, when there is no ϕ in the R.V., then the expectation is only onM (indeed, 1
2n!

∑
ϕ∈S2n

1 =

1). Thus,

E(f (0)) =
1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2 =
1

2n

∑

m∈Fn2

(x(0) −HW[m])2, (C.2)

which cannot further be simplified (in the simulations, it will be computed by the computer).

Similarly

E(f (1)) =
1

2n

∑

m∈Fn2

(x(1) −HW[S[t⊕ k]⊕m])2 =
1

2n

∑

m∈Fn2

(x(1) −HW[m])2. (C.3)

When there is an expectation on Φ, then at order one, it considers only one value Φ(ω).

It is uniformly distributed, hence one can replace the expectation on Φ by an expectation on
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one value of ϕ, we call M ′. For instance:

E(f (i)) =
1

2n!

∑

ϕ∈S2n

(x(i) −HW[ϕ(ω)])2

=
1

2n

∑

m′∈Fn2

(x(i) −HW[m′])2, (C.4)

which can thus be computed with the same average method as E(f (0)).

Lastly, when there is both M and Φ(ω), then whichever variable can absorb the other one,

since both are uniformly distributed on Fn2 . This means that:

E(f (j)) =
1

2n

∑

m∈Fn2

1

2n!

∑

ϕ∈S2n

(x(j) −HW[ϕ(ω)⊕m])2

=
1

22n

∑

m,m′∈Fn2

(x(j) −HW[m⊕m′])2

=
1

22n

∑

m̃,m′∈Fn2

(x(j) −HW[m̃⊕m′ ⊕m′])2 where m̃ = m⊕m′ (C.5)

=
1

2n

∑

m̃∈Fn2

(x(j) −HW[m̃])2, (C.6)

which is once again a similar computation as done for computing E(f (0)).

C.1.2 Computation of µ2

Recall that only the key dependent terms of µ2 are needed for ROPT2 and ROPT3.

Notice that the square terms are computed as the non-square terms. For instance,

E(f (0)2
) =

1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])4 =
1

2n

∑

m∈Fn2

(x(0) −HW[m])4, (C.7)

which we drop since it does not depend on k. All in one, the only key-dependent term is:

E(f (0) × f (1)) =
1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2(x(1) −HW[m])2, (C.8)

which cannot be further simplified and will be computed by the computer. So, for the purpose

of the attack, we have:

µ2 = E(f (0) × f (1)) + cst. (C.9)
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C.1.3 Computation of µ3

We shall consider only terms which depend on the key, hence product of three terms, one of

which (at least) is f (0). Obviously, E(f (0)3
) does not depend on k, for the same reason as given

in Eqn. (C.7). But the two terms:

1. E(f (0)2
f (1)) and

2. E(f (0)f (1)2
)

Notice that they are present
(

3
2

)
= 3 times each when developing the cube.

Interestingly, those are not the only cases where f (0) and f (1) are selected.

E(f (0)f (1)f (j))

=
1

2n

∑
m∈Fn2

1

2n!

∑
ϕ∈S2n

(x(0) − HW[S[t⊕ k] ⊕m])2(x(1) − HW[m])2(x(j) − HW[ϕ(ω) ⊕m])2

=
1

2n

∑
m∈Fn2

1

2n

∑
m′∈Fn2

(x(0) − HW[S[t⊕ k] ⊕m])2(x(1) − HW[m])2(x(j) −HWm′ ⊕m)2

=
1

2n

∑
m∈Fn2

(x(0) − HW[S[t⊕ k] ⊕m])2(x(1) − HW[m])2 1

2n

∑
m′∈Fn2

(x(j) − HW[m′ ⊕m])2

=
1

2n

∑
m∈Fn2

(x(0) − HW[S[t⊕ k] ⊕m])2(x(1) − HW[m])2 1

2n

∑
m̃′∈Fn2

(x(j) − HW[m̃′])2 (As in

Eq. (C.5))

= E(f (0)f (1))E(f (j)).

Similarly, we have:

E(f (0)f (1)f (i)) = E(f (0)f (1))E(f (i)).

Now, we consider products without f (1). Obviously, taking only f (0) and f (i) is not enough,

since: E(f (0)2
f (i)) = E(f (0)2

)E(f (i)) and E(f (0)f (i)2
) = E(f (0))E(f (i)2

) are key indepen-

dent. The same goes for E(f (0)2
f (j)) and E(f (0)f (j)2

). We are left with E(f (0)f (i)f(i′)),

E(f (0)f (j)f(j′)), and E(f (0)f (i)f (j)).

The term E(f (0)f (i)f(i′)) = E(f (0))E(f (i)f(i′))) does not depend on k, because there is no

M in f (i).

The term E(f (0)f (j)f(j′)) can also factorize as E(f (0))E(f (j)f(j′))), hence it does not depend

on k. The reason is more subtle, so we detail it:

E(f (0)f (j)f(j′)) =
1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2

× 1

2n(2n − 1)

∑

(m′,m′′)∈Fn2×F
n
2

s.t. m′ 6=m′′

(x(j) −HW[m′ ⊕m])2(x(j′) −HW[m′′ ⊕m])2.
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Now, the second sum does not depend on m, as shown below:

1

2n(2n − 1)

∑

(m′,m′′)∈Fn2×F
n
2

s.t. m′ 6=m′′

(x(j) −HW[m′ ⊕m])2(x(j′) −HW[m′′ ⊕m])2 =

1

2n

∑

m′∈Fn2

(x(j) −HW[m′ ⊕m])2 1

2n − 1

∑

m′′∈Fn2 \{m′}

(x(j′) −HW[m′′ ⊕m])2 =

1

2n

∑

m̃′∈Fn2

(x(i) −HW[m̃′])2 1

2n − 1

∑

m′′∈Fn2 \{m̃′⊕m}

(x(j′) −HW[m′′ ⊕m])2 =

1

2n

∑

m̃′∈Fn2

(x(j) −HW[m̃′])2 1

2n − 1

∑

m̃′′∈Fn2 \{m̃′′��
�XXX⊕m⊕m}

(x(j′) −HW[m̃′′])2.

Consequently, the last case is E(f (0)f (i)f (j)). We can subdivide it into two cases: j = i+ 2n

and j 6= i+ 2n. When j = i+ 2n, the permutation Φ is evaluated at the same ω in f (i) and f (j).

We denote by M ′ the R.V. Φ(ω), where ω = j − 2. Hence:

E(f (0)f (i)f (j=i+2n)) =

1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2 1

2n

∑

m′∈Fn2

(x(i) −HW[m′])2(x(j) −HW[m′ ⊕m])2. (C.10)

These terms (for all j ∈ J) correspond to the MVATR attack published at CHES 2015 (27).

Eventually, there are the terms for j 6= i− 2n. They are actually key dependent, hence must

be kept. They are equal to:

E(f (0)f (i)f (j 6=i+2n)) =
1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2

× 1

2n
1

2n − 1

∑

(m′,m′′)∈Fn2×F
n
2

s.t. m′ 6=m′′

(x(i) −HW[m′])2(x(j) −HW[m′′ ⊕m])2.

Interestingly, without the constraint m′ 6= m′′, this quantity does not depend on the key. So,

the leakage which is exploited here is due to the fact Φ is not a random function, but a bijection.

As, in µ3, we are only interested in non constant terms, we can rewrite:

E(f (0)f (i)f (j 6=i+2n)) = cst− 1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2

× 1

2n
1

2n − 1

∑

(m′,m′′)∈Fn2×F
n
2

s.t. m′=m′′

(x(i)−HW[m′])2(x(j)−HW[m′′ ⊕m])2

= cst− 1

2n

∑

m∈Fn2

(x(0) −HW[S[t⊕ k]⊕m])2

× 1

2n − 1

∑

m′∈F2

(x(i) −HW[m′])2(x(j) −HW[m′ ⊕m])2. (C.11)
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The non-constant term is similar to Eqn. (C.10) provided a scaling by −(2n − 1)/2n is done.

So, for the purpose of the attack, we have:

µ3 = cst + 3E(f (0)2
f (1)) + 3E(f (0)f (1)2

) + 3!E(f (0) × f (1))

(∑

i∈I
E(f (i)) +

∑

j∈J
E(f (j))

)

+ 3!

2n+1∑

i=2

E(f (0)f (i)f (j=i+2n)) + 3!

2n+1∑

i=2

∑

j∈{2+2n,...,2n+1+1}\{i+2n}

E(f (0)f (0)f (j)). (C.12)

C.2 Complexity Proofs

C.2.1 Proof of Lemma 7

In order to prove Lemma 7 let us first introduce a preliminary result.

Lemma 13. The quantity
(

Π
`

)
is increasing if ` < dΠ/2e and its maximum is

(
Π
dΠ

2 e
)
.

Proof.
(

Π

`+ 1

)
=

Π!

(Π− `− 1)!(`+ 1)!
=

Π− `− 1

`+ 1

(
Π

`

)
,

and the factor Π−`−1
`+1 is strictly greater than 1. Indeed,

Π− `− 1

`+ 1
> 1 ⇐⇒ Π > 2(`+ 1) ⇐⇒ ` < dΠ/2e .

Finally we can prove Lemma 7.

Proof. Let us first assume that one dimension leaks at most one element of the permutation.
We can thus develop the expression of µ`, and we denote the complexity under the braces.

µ` = ER
(
‖x− y(t, k, R)‖2`

)

=
∑

k1+...+kD=`︸ ︷︷ ︸
(D+`−1

` )

`!
∏D
d=1 kd!

ER︸︷︷︸
2(Ω−1)n( Π

dΠ
2 e)

(
D∏

d=1

f (d)kd

)

︸ ︷︷ ︸
min(D,`)

As k1 + . . .+ kD = ` there are at most D indices kd, 1 ≤ d ≤ D such that kd 6= 0. Hence there
are at most min (D, `) elements in the product.

Each dimensions which leaks an element of the permutation can also leaks the masks. The
worst case in terms of complexity is when all the permutation leakages depend also on the
masks. Let us denote by i such that 1 ≤ i ≤ min (D, `) the number of those terms. Then
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the expectation is computed over 2(Ω−1)n Π!
(Π−i)! . Nevertheless by taking into account the

commutativity properties of the product one can only compute 2(Ω−1)n
(

Π
i

)
.

By Lemma 13 we have that is value
(

Π
i

)
is maximum with

(
Π
`

)
when ` ≤

⌈
Π
2

⌉
. When ` > Π

2 +1

the maximum is
(

Π
dΠ

2 e
)
.

Finally as there are
(
D+`−1

`

)
elements in the sum.

The complexity of µ` is lower than O
((
D+`−1

`

)
2(Ω−1)n

(
Π

min(dΠ
2 e,`)

))
.

C.2.2 Proof of Proposition 34

In order to prove Lemma 34 let us first introduce a preliminary result.

Lemma 14. The quantity
(
D−1+`

`

)
is increasing with ` if D > 1.

Proof. We have that :
(
D − 1 + `+ 1

`+ 1

)
=
D + `

`+ 1

(
D − 1 + `

`

)
,

where ∀`, D+`
`+1 > 1 provided D > 1.

Finally let us prove Prop. 34.

Proof. Complexity of OPT:
Following Eq. (6.2) we have that the computation for a key guess of OPT is:

Q∑

q=1︸︷︷︸
Q

log E︸︷︷︸
Π!2n(Ω−1)

exp
−‖x− y(t, k, R)‖2

2σ2︸ ︷︷ ︸
D

. (C.13)

We assume that the computation of the log and the exp is constant. As a consequence the
complexity of the optimal distinguisher is O

(
Q · (2n)Ω−1 ·Π! ·D

)

Complexity of ROPTL:The computation of ROPTL involves the computation of the µ` with
` ≤ L (Eq. (54) and Eq. (53)). By Lemma 7 and Lemma 14 all these terms have a complexity
lower than O

((
D+L−1

L

)
· 2(Ω−1)n ·

(
Π

min(dΠ
2 e,L)

))
(Eq. (6.16)).

As a consequence the complexity of ROPTL is lower than

O

(
Q · L

(
D + L− 1

L

)
· 2(Ω−1)n ·

(
Π

min
(⌈

Π
2

⌉
, L
)
))

. (C.14)

C.2.3 Proof of Proposition 35

Proof. Let us develop all the product in the term µ` in order to compute the expectation in the
minimum number of values.
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µ` = EM
(( D∑

d=1

(x(d) − y(0))2
)`)

=
∑

`1,`2,...,`D∑D
d=1=`

`!∏D
d=1 `d!

EM
(
(x(1) − y(1))2`1 · · · (x(D) − y(D))2`D

)
.

Moreover (x(d) − y(d)(t, k,M))2`d =
∑2`d
i=0

(
2`d
i

)
x(d)2`d−i

y(δ)(t, k,M)
i

µ` =
∑

`1,`2,...,`D∑D
d=1 `d=`

`!∏D
d=1 `d!

EM

(
D∏

d=1

(
2`d∑

i=0

(
2`d
i

)
x(d)2`1−i

y(d)(t, k,M)
i

))

=
∑

`1,`2,...,`D∑D
d=1 `d=`

`!∏D
d=1 `d!

∑

i1≤2`1
...

iD≤2`D

D∏

d=1

((
2`d
id

)
x(d)2`d−id

)
EM

(
D∏

d=1

y(d)(t, k,M)
id

)

︸ ︷︷ ︸
can be precomputed

.

C.2.4 Proof of Proposition 36

Proof. In our case study the size of the permutation is Π = 2n.
Then the complexity of OPT is given by a straightforward application of Eq. (6.17).
From Eq. (6.14) we have that for ROPT2 the computation for one key guess and one trace is

given by E(f (0) × f (1). In this equation the expectation is computed over 2n values (Eq. (C.7)).
From Eq. (6.15) we have that for ROPT3 the computation for one key guess and one trace is

given by µ(q)
2 (1 + γµ

(q)
1 )− γ µ

(q)
3

3 . It can be seen in Eq. (C.2), Eq. (C.3), Eq. (C.4) and Eq. (C.6)
that the expectation of µ1 is computed over 2n values. The dominant term in µ3 (Eq. (C.12)) is
:

2n+1∑

i=2

∑

j∈{2+2n,...,2n+1+1}\{i+2n}︸ ︷︷ ︸
22n

E︸︷︷︸
22n

(f (0)f (i)f (j)).

The expectation in this term is computed over 22n values (Eq. (C.11)). The sum is computed
on less than 22n.

C.2.5 Time and complexity

The times of the section are expressed in seconds. All the attacks have been run on Intel Xeon

X5660 running at 2.67 GHz. All the implementations are mono-thread. The model of the

simulations is the one describe in Sec. 6.6. For each distinguisher the attacks are computed 1000

times on 1000 traces.
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Attack Dimension Time (in seconds) Computational Complexity

2O-CPA 2 39 O (Q)

ROPT2 2 295 O (Q)

OPT2O 2 9473 O (Q · (2n))

MVATR 2n+1 + 1 130 O (Q · 2n)

ROPT3 2n+1 + 2 2495 O
(
Q · 22n

)

OPT 2n+1 + 2 Not computable O
(
Q · (2n) · 2n! ·

(
2n+1 + 2

))

Table C.1: Time and complexity

C.3 Analysis of the DPAcontest.

Recently an open implementation of a masking scheme with shuffling has been presented in

the DPA contest v4.2 (169). In this implementation the execution of the different states is

performed in an random order.

An attacker can target the integrated leakages of the different states in order to counter the

shuffling (35, 142).

A better approach is to take into account the possible leakages of the permutation. In this

case the optimal distinguisher will be not computable as it involves an expectation over 16!

values. In this case the rounded optimal attack will reduced this complexity.

Let us define the leakages of such implementations.

• X(0) = y(0) (t, k, R) +N (0) with y(0) (t, k, R) = HW[M ],

• X(1) = y(1) (t, k, R) +N (1) with y(1) (t, k, R) = HW[S[π (T ⊕ k)]⊕M ],

• X(i) = y(i) (t, k, R) +N (i), for i = 2, . . . , 18 with y(i) (t, k, R) = HW[Φ(i− 2)],

Then similarly to the Appendix C.1 we have that:

µ1 = E(f (0)) + E(f (1)) +
∑

i∈I
E(f (i)), (C.15)

µ2 = E(f (0) × f (1)) + cst. (C.16)

Additionally as it is a low entropy masking scheme the secret key can leaked in an univariate

high order attack. Depending on the number of masks involve in the masking scheme it could

be at order 2, 3 or more. For simplicity let us assume it is at order 3. In such cases
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C.3 Analysis of the DPAcontest.

µ3 = E(f (1)3
) + 3E(f (0)2

f (1)) + 3E(f (0)f (1)2
) + 3!

2n+1∑

i=2

E(f (0)f (1)f (i)) + cst. (C.17)

Of course an attacker can additionally exploit all the leakages of the different states in order

to increase the success of the attacks.

In some particular low entropy masking schemes the same masks are reused several time or

are linked by deterministic relations (e.g the first version of the DPAcontest). In this context it

could be interesting to combine the leakages of different states (20). In this case our method

could benefit of the multiple possible points combinations.
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Attaques par Canaux Auxiliaires Multivariées, Multi-cibles et
d’ordre élévé
Nicolas BRUNEAU

ABSTRACT : Side Channel Attacks are a classical threat against cryptographic algorithms in embedded
systems. They aim at exploiting the physical leakages unintentionally emitted by the devices during the exe-
cution of their embedded programs to recover sensitive data. As such attacks represent a real threat against
embedded systems different countermeasures have been developed. In thesis we investigate their security in
presence of multiple leakages. Indeed there often are in the leakage measurements several variables which
can be exploited to mount Side Channel Attacks. In particular we show in this thesis the optimal way to exploit
multiple leakages of a unique variable. This dimensionality reduction comes with no loss on the overall ex-
ploitable information. Based on this result we investigate further how such dimensionality reduction methods
can be applied in the case of protected implementations. We show that the impact of such methods increases
with the security “level” of the implementation. We also investigate how to exploit the leakages of multiple
variables in order to improve the results of Side Channel Analysis. We start by improving the attacks against
masking schemes, with a precomputed table recomputation step. Some protections have been developed
to protect such schemes. As a consequence we investigate the security provided by these protections. In
this context we present results which show that the main parameter to evaluate the security of the masking
schemes is not sufficient to estimate the global security of the implementation. Finally we show that in the
context of masking scheme with shuffling the optimal attack is not computable. As a consequence we present
a truncated version of this attack with a better effectiveness.

KEY-WORDS : Side Channel Attacks, Masking scheme, Multivariate Attacks, Optimal Attack
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