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INTRODUCTION

General context

The use of numerical simulation into the industrial domain allows both to fasten the product
development process and to reduce the prototyping costs. As a transfer institute, ONERA1, the
French aerospace lab, has notably the mission of developing accurate numerical models for the
simulation of damage and fracture. In particular, a recent research axis has been the development
of regularized damage models. Their use is essential to the correct simulation of the softening
behaviour of a structure. Indeed, regularization allows to overcome the well known problem of
spurious localization with standard finite element formulations. This problem has been tackled
notably through the doctoral works of Germain [49] and Feld-Payet [44], which mainly focused
on the numerical aspects. In parallel, the doctoral works of Cuvilliez [35] and Zhang [136] were
carried out at Electricité de France (EdF R&D), addressing more the constitutive behaviour
aspects. The present work is complementary to the mentioned theses. It aims at investigating
the identification of the regularized model parameters.

It is possible to find within the literature several references aiming at characterizing dam-
age models. However, the majority of applications concerns local damage models and so, the
identification leads to results specific to a particular mesh. Moreover, in most cases the iden-
tification is based on punctual or macroscopic measurements, without using the potential of
modern measurement techniques, as Digital Image Correlation (DIC), which provide full-field
measurements. The interest of full-field measurements for the identification of damage resides in
the possibility to measure phenomena occurring at a relatively small scale, as in the localization
band. Furthermore, full-field measurements can be used to drive a finite element simulation by
prescribing measured displacements as boundary conditions, ensuring a consistent comparison
between simulation and experiment. Advanced techniques as the Integrated Digital Image Corre-
lation (I-DIC) use a finite element mesh to perform the digital image correlation while ensuring
the consistency of the result with an associated constitutive models. But in the present study,
the idea is to work on DIC results previously obtained, independently of any assumption on the
behaviour, by any DIC software algorithm.

This study is part of the 4-years long project PRF MECHANICS at ONERA, which aims at
improving the dialogue between experiment and simulation by means of image analysis. The
objective of this project is to build a modular software platform, called escale, dedicated to the
dialogue between experiments and simulations. Thanks to the flexibility of the Python language,
the platform provides a practical interface which allows the communication through NumPy data
exchanges between DIC codes, finite element problem solvers and optimization algorithms.

1Office National d’Etudes et Recherches Aérospatiales
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INTRODUCTION

Objective

The objective of this study is to propose a robust strategy for the characterization of plastic
behaviour and damage up to the onset of fracture. The strategy uses both load and DIC mea-
surements. It is developed into a non-local damage framework. The identification is carried out
considering a FEMU technique, according to which the parameters are identified by minimizing
the discrepancy between the experimental measurements and their simulated counterparts,
issued of a finite element model representative of the tests in terms of geometry and boundary
conditions. Although several applications of FEMU for the characterization of a mechanical
model can be found within the literature (see chapter 4), the novelty of this study consists in
the complex context of application: the ductile failure process. Indeed, the large deformations
involved are challenging both for the measurement system and for the finite element simulation,
which are run up to the onset of failure. To assess the validity of the approach, the technique is
applied to perform parameter identification on relatively simple specimens, and the parameters
are used to simulate the response of complex geometries, which are then validated by comparison
with the experimental responses.

Numerical tools

The DIC results are obtained by means of an efficient stereo correlation algorithm, FOLKI-D
developed at ONERA [76]. Beyond the performances of the GPU implementation, the choice of
FOLKI-D is motivated by the possibility of interacting with its developers to adapt the code in
a relatively short delay. In fact, thanks to the necessities of parameter identification, the DIC
software has been improved on several occasions.

The Finite Element results are obtained by means of Zebulon, an implicit solver co-developed
by the École des Mines and ONERA. The finite strain formulation and the damage model are
completely inherited from the PhD work of Zhang, mentioned above. It had been implemented
within Zebulon at the beginning of the PhD and has been tested thanks to the identification
needs.

The FEMU technique itself is implemented within escale. The development of escale was
parallel to this thesis (no prior implementations of FEMU were available). Furthermore, the
development of FEMU required the development of both the DIC and FE interfaces. Figure 0.1
illustrates the graphical interface of the platform, resulting from 3 years of developments, together
with a significant result issued from the dialogue between experiment and simulation.

Approach of the thesis

Although the present work intends to provide a general approach for parameter identification
applicable to any ductile metal undergoing large deformations, a unique material is considered
in this work: the nickel-based superalloy Inconel 625. Ten different geometries (axisymmetric
and flat) are selected to perform tensile tests, which are described in chapter 1. The choice of the
geometries aims at obtaining heterogeneous displacement fields, in order to collect a maximum
of information from Digital Image Correlation measurements. The selected geometries are tested
up to failure, to create an experimental database adapted to the developments of this work.

The plastic behaviour of Inconel 625 is modelled using an Hosford yield criterion and a Voce-
like isotropic hardening law, while damage evolution is modelled using a GTN damage model. The

2



finite element formulation is defined within the finite strain framework, considering a locking-
free regularized formulation. Globally, the simulation of Inconel 625 relies on 16 parameters,
including the regularization parameter of the non-local model, described in chapter 2.

The consistency of the comparison between experiment and simulation is ensured by the
application of measured displacements as boundary conditions for the finite element problem,
imposing the real kinematics of the deformation. However, the measured displacements need to
be filtered, since the measurement uncertainty distorts the finite element solution, as described
in chapter 3. An innovative filtering technique based on the Robin boundary condition is pro-
posed and tested together with classical filtering approaches, as the moving least squares and
polynomial approximations.

The discrepancy between experiment and simulation is quantified by means of a cost function,
as described in chapter 4. The cost function, which represents the core difference between
alternative FEMU approaches, is chosen to minimize both displacement and load. This is possible
thanks to a proper normalization of each term. Before trying to minimize this cost function to
identify the parameters, a preliminary sensitivity analysis is performed to determine a priori the
feasibility of the identification by FEMU. Indeed, there might be a possible interaction between
the parameters, leading to an indetermination on the result. The details of this analysis are
presented in appendix E for both the plasticity parameters and the damage parameters.

Finally, the proposed identification approach is used to identify the GTN parameters on a
flat geometry, as detailed in chapter 5. The resulting set of parameters is then used to obtain
satisfactory simulations up to the onset of fracture for different geometries, confirming the
validity of the approach.

  

Figure 0.1: The image shows 3 synchronized results: a DIC displacement field (left image) and its
simulated counterpart obtained by prescribing measured displacements as boundary conditions
on the top and bottom edges of the mesh (top right image), plus a comparison between the
experimental force versus time curve and the simulated one (bottom right image) issued from a
set of optimized parameters (see chapter 5).
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INTRODUCTION

Résumé

L’utilisation de la simulation numérique dans le domaine industriel permet d’améliorer le
processus de développement, ainsi que de réduire les coûts de prototypage. L’ONERA, en tant
qu’institut de transfert, a pour mission le développement de modèles numériques prédictifs pour
la simulation de l’endommagement et de la rupture. Les thèses menées au cours de la dernière
décennie se sont intéressées à la modélisation de l’endommagement dans un formalisme
régularisé.
L’objectif de cette thèse, complémentaire aux précédentes, est de développer et mettre en œuvre
une approche d’identification des paramètres pour un modèle d’endommagement régularisé.
Cette approche utilise à la fois les efforts et les mesures de champ denses issues de la corrélation
d’images. L’idée est d’utiliser la richesse des informations de ces mesures afin d’identifier des
paramètres dont l’influence sur une structure est locale. L’approche d’identification proposée
est fondée sur le recalage de modèle éléments finis (FEMU): les paramètres sont identifiés en
minimisant l’écart entre une mesure expérimentale et son pendant simulé.
Bien que la méthode proposée soit applicable à divers matériaux, les travaux présents ont
été réalisés sur l’alliage Inconel625. Les essais effectués ainsi que le choix des géométries
sont illustrés dans le premier chapitre. Le deuxième chapitre est dédié à la modélisation du
comportement et à la formulation éléments finis, choisis afin de reproduire le comportement
observé expérimentalement. Le troisième chapitre introduit le dialogue essai-calcul. Sa fiabilité
est garantie par l’application des déplacements mesurés comme conditions au bord pour le
calcul éléments finis. Le chapitre met en évidence les problèmes issus de l’utilisation d’une
donnée polluée par l’incertitude de mesure, et compare différentes techniques de filtrage.
La méthode d’identification est clairement développée dans le quatrième chapitre et elle est
appliquée pour l’identification des paramètres plastiques afin d’être validée. Enfin, le cinquième
chapitre montre une application de la stratégie FEMU pour l’identification des paramètres
d’endommagement.
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1
MATERIAL AND EXPERIMENTAL METHODS

This chapter describes the experimental procedure and results that support the present PhD work.
Parameter identification is performed using a FEMU technique on a set of tensile tests carried out
at room temperature. The considered material, together with the motivations for its choice, are
discussed in section 1. The kinematic full-field measurement considered in this work, are obtained
using the Digital Image Correlation (DIC) technique described in section 2. The key point of the
present work is the utilization of full-field measurements. In fact, they allow both to consider non-
standard specimens for the characterization of the material and to get access to local variations
of the kinematic response, such as those provoked by the damage phenomena. Hence, full-field
measurements permit the identification of damage parameters, as done in [23, 110]. Moreover,
the accuracy of the identification via FEMU is increased considering heterogeneous kinematic
measurements as input for the inverse problem [7, 60]. Thus, the selection of the specimens
geometry is an important phase, since the required kinematic heterogeneity is originated by
means of geometrical heterogeneities such as notches and holes. Several works within the
literature are focused on the determination of the more suitable geometries for parameter
identification which maximize the heterogeneity of the kinematic fields (e.g. see [31, 37]). The
choice of the geometries for the present tests is discussed in section 3, where the works of
Dournaux [37] and Tanguy [126] are considered as guidelines. Finally, a micro-graphic analysis at
the Scanning Electron Microscope (SEM) is performed on some selected specimens to evaluate the
rupture mechanisms and to quantify the initial void volume fraction. The results are presented
and discussed in section 4.

1.1 Material

Although the present work intends to provide a general approach for parameter identification
applicable to any ductile metal undergoing large deformations, a unique material is considered
in this work: the nickel-based superalloy Inconel 625. This alloy was developed in the early
1950’s to satisfy a growing demand for high-strength piping material [39]. Since then, thanks to
some modifications of the chemical composition, the domain of application has been extended
to the marine, nuclear and aerospace industry. The main characteristics of this material, which
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CHAPTER 1. MATERIAL AND EXPERIMENTAL METHODS

motivated its choice as the reference material for this thesis, are the high tensile strength and
the high deformation at break. Moreover, Inconel 625 shows also an high resistance to oxidation,
which is here an advantage to perform fractographic analysis. Appendix A reports the chemical
composition of the considered alloy and illustrates the microstructure.

1.2 Digital Image Correlation

Several techniques for measuring full-field kinematic fields (e.g. displacement) have been proposed
in the literature during the last decades. Their main difference relies on the physical phenomena
involved into the measurement approach. References [51, 54] provide an extended review of such
techniques. The present work considers Digital Image Correlation (DIC), a white light technique,
developed since the early 70s, which is becoming a standard tool in experimental mechanics [134].
In particular, the present work is concerned with local DIC methods, which provide a measure
of the displacement fields without any assumption on the kinematics (as done for global DIC
methods). The principle of image correlation is quite intuitive to understand. It consists in
identifying the displacement of a deforming object by measuring the variation of light flow (the
gray-level) between two consecutive images. It comes down to an optimization problem that is
solved subset by subset (see figure 1.1). Thus, the object into the image should be characterized
by a recognizable pattern. For this reason, metallic tensile test specimens (which are generally
bright and smooth) are painted to generate a random speckle as in figure 1.1. The matching

  Reference image Deformed image

u(x,y)

x

y

Figure 1.1: Principle of image correlation. The considered subset is the the red square. The
measurement problem is solved when the pattern of all the subsets in the reference images is
recognized within the deformed image (matching).

process is usually guided by a correlation measure, also referred to as score. A simple score
would be the Sum of Squared Differences (SSD) which is the squared norm of the vector made
by collecting the differences of gray-level between the pixels of each subset. Many references,
as [105], use more robust scores, such as the Zero-centered Normalized Cross Correlation (ZNCC)
to account for uncontrolled variations of the gray-scale level between images, for instance due
to a difference of illumination. The measured displacement is then obtained by an optimization
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1.2. DIGITAL IMAGE CORRELATION

process on the score (maximization or minimization depending on the chosen score). Several
algorithms have been proposed for this optimization, which is an important computational burden
considering the large images available nowadays. The image correlations of the present work are
carried out using a correlation algorithm developed at ONERA, referred to as FOLKI-D1 [76]. It
is derived from a previously published algorithm for Particle Image Velocity (PIV), which in turn
is derived from an algorithm for optical flow estimation [75]. The choice of FOLKI-D is motivated
by the following (unordered) reasons:

• no post-filtering operations are carried out;

• the result is dense: displacement is estimated for each pixel of the image;

• the algorithm is well suited for parallel computation: the GPU implementation available
within the escale platform at ONERA allows fast and accurate computing;

• the use of a non commercial software allows an ongoing development of the software and a
better management of each step;

• the level of uncertainty of the measurement is generally low [76].

There are some major particularities that distinguish FOLKI-D from other correlation algo-
rithms. In fact, only translation is considered as motion model between pixels. This might seem
an heavy restriction, but the dense computation carried out allows to bypass the problem, leading
to measure complex movements, as rotations, with a satisfactory accuracy [76]. Furthermore,
FOLKI-D does not rely on an exhaustive research for the optimum, which would require a large
number of score evaluations, often accelerated by FFT (Fast Fourier Transformation) in other
algorithms. Instead, the score function is considered as a surface and a minimum (or maximum)
is searched via a gradient-based approach. Furthermore, FOLKI-D uses a coarse-to-fine strategy
based on a pyramid of images to avoid the optimization to stop on local minima (see figure 1.2).
Starting from the original image (the largest one of the pyramid) low-pass filtering and down-
sampling is performed to obtain smaller images. The downsampled images form the levels of the
pyramid. The first estimation of the displacement field is done at the highest level of the pyramid
(smallest image), considering a null displacement as initialization. Afterwards, the previous
displacement estimation is expanded (upsampling) and used to initialize the correlation at the
lower level of the pyramid. This latter process is repeated until the lowest level (the original
image) is reached. Further details about FOLKI-D and its parallel implementation are given
in [76].

Measuring large displacements The subset matching is a local operation. Hence, in case
the difference between the images is too important, the correlation might not succeed. However,
the coarse-to-fine strategy native of FOLKI-D allows to estimate large displacements since the
difference between the images at the top level of the pyramid is considerably reduced (of a factor
2(n−1), where n is the number of levels of the pyramid). Thus, large displacements at the bottom
level are seen as relatively small displacements at the top level.

Nevertheless, the coarse-to-fine strategy might still not be enough for very large displacements.
This is the case for the current work. The solution to overcome this problem is to update the
reference image (the zero load image) with an intermediary one and to perform an intermediary

1FOLKI is a French acronym for Iterative Lucas-Kanade Optical Flow.
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CHAPTER 1. MATERIAL AND EXPERIMENTAL METHODS

Figure 1.2: Pyramid of images. Starting from the lower level of the pyramid (the original image)
the higher levels are obtained obtained by downsampling the image of the previous level. Once
the pyramid is created, the correlation begins at highest level (the smallest image) and the result
of each level is used to initialize the correlation at the lower level of the pyramid, until the bottom
is reached.

correlation. Afterwards, this latter result is combined with the previous ones in order to obtain a
Lagrangian description of displacement. However, the combining operation involves interpolation
of data and so, it might be a source of errors. Therefore, it should be used only when necessary, i.e.
when a direct correlation would not work. In order to assess the error introduced by the combining
operation, the resulting DIC displacements have been compared with the displacements measured
by a calibrated extensometer. A smooth cylindrical specimen was considered for this operation.
Figure 1.3 shows that the relative error in the worst case scenario (the combining operation is
performed for each image step) is lower than 1.2%.

Quality of the measure The quality of the measured displacement fields can be assessed
using by-products of the FOLKI-D iteration. A first indicator is the final score coefficient, which
is related to the validity of the matching operation. A correct matching indicator in experimental
mechanics should be higher than 90%. A second indicator of the precision is the standard
deviation, or uncertainty, of the displacement field. It can be computed using the final Hessian of
the optimization procedure and the variance of the residual image, as described in [76]. Many
factors influences the uncertainty, as the illumination or the distance of the specimen from the
camera. However, the average uncertainty of the measures carried out during the present work is
of the order of ±1µm for the in-plane displacements and 2µm for the out-of-plane displacements.

Stereoscopic DIC Stereo DIC is used in the present work. In stereo DIC two images are
recorded at each instant. Thanks to the geometrical calibration, conducted using the AFIX2
software available at ONERA [77, 78], the FOLKI-D algorithm is used to compute the disparity
map, for each each time step. The disparity allows to reconstruct the 3D surface of the sample
and also to project the images of the second camera onto the pixel grid of the first camera to
perform a temporal correlation afterwards.
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Figure 1.3: Evaluation of the error introduced by the combining operation. The reference image
has been updated in different ways from an update at each step (400 for 401 images), unreasonable
and unnecessary, to a more reasonable value (40 for 401 images). The relative error has a
maximum value of around 1.2% for the worst case scenario.

1.3 Choice of the specimens geometries and test conditions

As introduced, the main guideline for the selection of the specimens geometries should be the level
of heterogeneity of the kinematic fields. Furthermore, the stress triaxiality level should be taken
into account while studying ductile failure, since it drives damage evolution [126, 135]. Therefore,
the mechanical tests are here carried out on various geometries inspired from the previous works
of Dournaux [37] and Tanguy [126]. Four flat geometries and four cylindrical geometries are
retained. Nevertheless, flat (and relatively thin) specimens represent here the preferred choice to
perform damage parameter identification from full-field measurements. Indeed, for flat specimens,
it is possible to suppose the mechanical fields (and in particular the stress triaxiality) constant
along the thickness direction. Hence, what is measured on surface by DIC is representative of the
response at the specimen’s core. However, cylindrical specimens are often used to study ductile
failure [126] and including them in the present work allows to compare the results with previous
works.

1.3.1 Selected geometries

The considered geometries are referred to by means of abbreviations which indicate their shape
and notch severity. Notations C and P indicates whether the specimen is axisymmetric or flat,
respectively. Notations SMOOTH, and AE indicates whether the specimen is smooth or notched,
respectively. Finally, a number indicates the severity of the notch. Such a value is to be considered
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CHAPTER 1. MATERIAL AND EXPERIMENTAL METHODS

as a relative quantity rather than an absolute one. One flat specimen differs considerably from
the other since it induces a plain strain condition, and will be referred to as PDP. The sketches
are reported in figures 1.4, 1.5 and 1.6. The dimension of the geometries has been computed by
scaling and adapting the original dimensions to the 30 mm round bar available.

(a) CSMOOTH (b) CAE10

(c) CAE4 (d) CAE2

Figure 1.4: Axisymmetric geometries, inspired from reference [126]. All the geometries have the
same cross section area. They allow to study ductile failure because of the high stress triaxiality
level reached at core. Cracks propagate from the core towards the surface.

10
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(a) PSMOOTH (b) PAE2

(c) PAE1

Figure 1.5: Flat geometries, inspired from reference [37]. All specimens are 2 mm thick. Flat
specimens are characterized by a lower stress triaxiality level compared to the axisymmetric
geometries, but it can be supposed constant along the thickness direction. Cracks propagate from
the notches towards the center.

R2
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Figure 1.6: PDP Plain strain geometry, inspired from reference [126]. Cracks propagate from the
center towards the notches.

1.3.2 Experimental procedure and setup

Two identical cameras, which characteristics are summed up in table 1.1, where placed in front
of each specimen to realize a stereoscopic vision system, that is visible in figure 1.7. The speckle
on the specimens was realized by means of an airbrush, rather than a spray bomb, in order to
avoid the splintering of the paint because of an incohesive paint layer.

All the mechanical tests were performed at room temperature on servo-hydraulic testing
machines. Specimens were monotonously loaded at various displacement rates that induced local
strain rates within the range 10−3 −10−4s−1. In addition, specimens CSMOOTH-4 and PAE2-2
were equipped with a large strain extensometer and some elastic unloads were performed in
order to observe a possible loss of stiffness due to damage. Image recording was synchronized with
the testing machine data sampling by means of Mecanismes, a software developed at ONERA.
Table 1.2 summarizes the performed tests and their respective loading conditions.
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CHAPTER 1. MATERIAL AND EXPERIMENTAL METHODS

Figure 1.7: Experimental set-up for tensile tests. The 2 camera form the stereoscopic vision
system, while the spot light ensures a constant light flow preventing erroneous correlations.

Camera AVT MANTA G-235B
Sensor CMOS

Resolution 1936×1216 pixels
Objective Schneider-Kreuznach 50 mm

Dynamic range 8 bits

Table 1.1: Characteristics of the cameras used and their respective objectives.
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CHAPTER 1. MATERIAL AND EXPERIMENTAL METHODS

1.4 Experimental Results

The purpose of this section is to provide a first analysis of the tensile tests. The objective is to
understand the behaviour of Inconel 625 to develop the identification protocol.

1.4.1 Identification of the elasticity parameters

The identification of the elasticity parameters, i.e. the elastic modulus and the Poisson’s ratio, is
not performed using FEMU in this study, although FEMU has already been successfully used
for such a task [79, 121]. Therefore, the camera trig frequency was adapted for the plasticity
and damage phenomena (see table 1.2), to concentrate the effort on the identification of the
plasticity and damage parameters. The modulus of elasticity was measured by considering two
of the tests on axisymmetric cylindrical specimens (CSMOOTH-2 and CSMOOTH-3). To do so,
a small strain extensometer was used. The procedure involved 6 load cycles for each specimen
(within the elastic regime). Three cycles were performed in displacement control (loading at a 0.8
mm/min rate up to an elongation of 0.08 mm) while the other three cycles were performed in load
control (loading at a 0.85 kN/s up to an force of 5 kN). For each cycle, the elastic modulus were
estimated by fitting a linear model (see figure 1.8) by means of the RANSAC2 (random sample
consensus) algorithm [45]. Finally, the average value of the 6 cycles was retained. The Poisson’s
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(a) CSMOOTH-2
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(b) CSMOOTH-3

Figure 1.8: Stress versus strain response of 6 cycles within the elastic range.

ratio was simply taken from the literature [1] since it has a negligible effect on the plasticity and
damage phenomena. Table 1.3 reports the considered value for the elasticity parameters.

Young’s modulus E Poisson’s ratio ν
207 GPa 0.308

Table 1.3: Elastic properties of Inconel 625 at room temperature. Young’s modulus is measured
while the Poisson’s ratio is taken from the literature.

2The RANSAC algorithm is used to exclude the experimental outliers from the optimization.
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1.4. EXPERIMENTAL RESULTS

1.4.2 Analysis of the macroscopic response

The analysis of the macroscopic response provides information about the experimental scattering
and any possible viscosity effect. Furthermore, damage could be quantified if a considerable
variation of stiffness is measurable.

The large strain extensometer applied on specimens 3 and 4, together with a virtual exten-
someter for specimen PSMOOTH-1, provides the stress-strain curves of figure 1.9.

0 10 20 30 40 50 60
L

L0
 %

0

200

400

600

800

1000

F A 0
 M

Pa

CS-3 - 5 mm/min
CS-4 - 5 mm/min
PS-1 - 2 mm/min

Figure 1.9: Tensile test response (stress versus strain) of smooth specimens. The experimental
scattering due to the inhomogeneity of the raw material bars is considerable (the maximum
discrepancy values approximatively 100 MPa).

Inconel 625 at the annealed state shows high deformation at break (over 50 %) at room
temperature, a considerable hardening and a clear experimental scattering. Figure 1.10 shows
the macroscopic responses of the axisymmetric specimens while figure 1.11 shows the macroscopic
responses of the flat specimens. Let us first note that the experimental scattering observed on
the smooth specimens is confirmed with the notched specimens. In fact, there is an obvious lack
of repeatability of the experimental response for a test carried out twice (or more) at the same
loading rate. A possible explanation of this scattering is that the various specimens comes from
different slices of the original raw bar, for which the mechanical properties might be locally
different. The second remark is about the viscous effect, which appears to be negligible at room
temperature for the tested loading rates. In fact, as visible in figures 1.10(b) and 1.9, the same
test carried out at different loading rates (of a factor 10 and 6 respectively) does not induce a
significantly different macroscopic response. Let us observe that the number of tests performed is
not high enough to precisely quantify the experimental scattering or to assess any viscous effect,
which is not the purpose of the present work.
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Figure 1.10: Mechanical response of the axisymmetric specimens. There is a observable lack of
repeatability of the tests, especially within the plastic regime, and no evident viscous effects.
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(b) Notched specimen PAE1
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(c) Notched specimen PAE2
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(d) Notched plain strain specimen PDP

Figure 1.11: Mechanical response of the flat and plain strain specimens. There is a remarkable
scattering at failure. Let us note that the test on the smooth specimens was interrupted at a
strain level of around 27% due to the machine maximum displacement restriction.
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Measure of damage from loss of stiffness According to Lemaitre and Chaboche [81], any
possible evolution of damage induces a loss of stiffness of the material. Therefore, the elastic
unloads performed on test CSMOOTH-4 have been analysed. For each unload, the Young’s
modulus was calculated supposing a small perturbation. When analysing the loss of stiffness, it
is important to distinguish the loss of stiffness of the material due to damage from the loss of
stiffness of the structure due to the geometric change imposed by deformation (deformation causes
a progressive reduction of the resistant section). This distinction is simply made by calculating
the Young’s modulus of the unloads respectively on the true and nominal stress-strain curve.
Let us explicit the relations between nominal quantities and true quantities by means of the
hypothesis of mass conservation, which is valid within the plastic regime. It will be shown that
the stiffness of the structure decreases as a function of the nominal strain. In the following,
notations ε indicates strain, notation σ indicates stress and suffix n indicates a nominal quantity.
Notations S and l refers to the cross section and specimen’s length respectively, while the suffix 0
denotes the initial value of the associated quantity. Hence, stress and strain are defined as:

(1.1) σn = F
S0

σ= F
S

(1.2) εn = ∆l
l0

ε=
l∫

l0

1
l

dl = ln
(
1+ ∆l

l0

)

where imposing the mass conservation hypothesis S0l0 = Sl, it gives the following expressions
for the actual length and the actual cross section:

(1.3) l = l0 +∆l = l0(1+εn) S = S0

1+εn

which, in turn, give the relations between nominal quantities and true quantities:

(1.4) ε= ln(1+εn) σ=σn(1+εn)

At this point, to obtain the relation between the nominal stiffness and the true stiffness it
is necessary to explicit the response of the system to a small perturbation of strain δε = ∆u

l ,
supposing that it will induces a small perturbation of stress δσ= ∆F

S :

(1.5) E = δσ

δε
= ∆F
∆u

l
S

= ∆F
∆u

l0(1+εn)2

S0
= δσn

δεn
(1+εn)2 = En(1+εn)2

hence, the structure’s stiffness decreases, with respect to the material’s stiffness, according to:

(1.6) En = E
(1+εn)2

Table 1.4 reports the stiffness for the performed unloads3. It is possible to note that while
the nominal stiffness is decreasing because of the change of geometry, the true stiffness remains
constant up to the last measured step. It means that it is not possible, in this case, to quantify
damage by means of a variation of the elastic modulus. It may signify that failure happens mainly
because of a strong late nucleation of voids.

3Let us note that the difference of the initial value with the previously measured value (see table 1.3) is to be
attributed to the lack of precision for small increments of strain of the large strain extensometer used. However, the
relative comparison between each unloads remains valid.
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* E MPa E (nominal) MPa εn [%]
Initial 192459 191791 0.1

Unload 1 189002 147572 13
Unload 2 188053 134126 18.2
Unload 3 189750 124061 23.4
Unload 4 189681 113738 28.7
Unload 5 189729 104995 34.1
Unload 6 190097 96863 39.7
Unload 7 190848 89481 45.6
Unload 8 191093 82350 51.9

Table 1.4: Elastic modulus for each elastic unload performed on the specimen CSMOOTH-4.

0.0 0.1 0.2 0.3 0.4 0.5
n

80

100

120

140

160

180

E,
 E

n [
GP

a]

En = E
(1 + n)2

E
En

Figure 1.12: Evolution of the nominal elastic modulus (En) and true elastic modulus (E) versus
the nominal strain level εn. There is no observable loss of stiffness of the material up to ε≈ 52%,
so that damage cannot be quantified in this manner. The apparent loss of stiffness showed by the
nominal elastic modulus is attributed to the reduction of cross section due to deformation.

1.4.3 Microscopic analysis and initial void volume fraction

A part of the broken specimens was used to perform microscopic analysis. Both fracture surfaces
and polished cross sections have been observed at the Scanning Electron Microscope (SEM).
Fracture surfaces provide data about the rupture mechanisms, while cross sections allow to trace
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the evolution of void volume fraction versus strain level. This latter analysis allows to determine
an initial void volume fraction which is a key parameter for modelling damage evolution.

Fractography Let us begin the analysis with the fracture surfaces of CAE10-1 and CAE10-2,
visible in figure 1.13. They show a cup cone surface typical of ductile metals [126]. Furthermore,
the circular shape of the flat fracture zone confirms the isotropic behaviour of Inconel 625. It is

(a) CAE10 - 1 (0.8 mm/min) (b) CAE10 - 2 (0.08 mm/min)

Figure 1.13: Fracture surface at macro scale of specimens CAE10-1 and CAE10-2. The cup-cone
aspect of the surface is typical of ductile failure. The circular shape of the flat zone indicates an
isotropic behaviour.

now interesting to observe the fracture surface at the scale of the grain size, considering that
specimens CAE10-1 and CAE10-2 were tested at different (one order of magnitude) displacement
rates. The specimen loaded at a higher displacement rate (CAE10-1, figure 1.14(a), loaded at 0.8
mm/min which induces a local strain rate of about 10−3s−1) shows transgranular fracture typical
of ductile failure. Indeed, the fracture surface is characterized by the presence of large cavities (of
about 10 µm) initiated at inclusions. The specimens loaded at a lower displacement rate (CAE10-2,
figure 1.14(b) loaded at 0.08 mm/min which induces a local strain rate of about 10−4s−1) show both
intergranular and transgranular fracture. Indeed, in addition to the large cavities, the fracture
surface is characterized by macro faults which size(about 20 µm) is consistent with the average
grain size. There might be possible relation between the strain rate and the failure mechanisms,
as discussed in the PhD thesis of Max [95] where it is observed a change between intergranular
and transgranular fracture as function of temperature and strain rate. This observation seems
consistent with the fracture surfaces of axisymmetric specimens CAE4-1 and CSMOOTH-2 (see
figure 1.15) and the fracture surfaces of the flat specimens PAE1-1 and PAE2-1 (see figure 1.16).
The local strain rate of these latter 4 specimens was of the order of 10−4s−1. However, the relation
between strain rate, stress triaxiality and fracture mechanism was not further investigated in
the present work.
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(a) CAE10 - 1 (0.8 mm/min) (b) CAE10 - 2 (0.08 mm/min)

Figure 1.14: Fracture surfaces observations of the notched specimen CAE10. The different loading
rates generate different fracture surfaces. The specimen loaded at a higher rate (left) shows
transgranular fracture, while the specimen loaded at a lower rate (right) shows, in addition,
intergranular fracture. Images were taken near the centre of the fracture surface.

(a) CSMOOTH - 2 (b) CAE4 - 1

Figure 1.15: Fracture surfaces observations of the notched specimens CAE4-1 and CSMOOTH-2.
The fracture surfaces are characterized both by intergranular fracture and transgranular fracture.
Images were taken near the centre of the fracture surface.
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(a) PAE1 - 1 (b) PAE2 - 1

Figure 1.16: Fracture surfaces observations of the notched specimens PAE1-1 and PAE2-1. The
fracture surfaces are characterized prevalently by intergranular fracture. Images were taken
near the centre of the fracture surface.
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Measurement of the initial void volume fraction The analysis of the polished cross sec-
tion4 of the raw material allows to calculate the initial void volume fraction of the material.
Furthermore, the same analysis performed on the cross sections of the broken specimens allows
to trace the evolution of void volume fraction versus strain. From this latter, it is possible to
extrapolate the value of void volume fraction at arbitrary values of strain. Three tests have been
considered to perform this analysis (CAE10-3, PAE2-2, PSMOOTH-1).

The void volume fraction is quantified in terms of percentage of surface by an image thresh-
olding operation. To distinguish voids from inclusions (all types confounded) the SEM was set
to generate images where matrix, voids and inclusions correspond to three distinct gray levels
as in figure 1.17. A regular grid of images(200 µm wide, 10% overlap) has been created for each

  

Inclusion

Matrix

Void

200 μm

Figure 1.17: Example of polished cross section (CAE10-3). Matrix, voids and inclusions correspond
to three distinct gray levels. Although the void volume fraction might seem high, the majority of
the dark spot are inclusions. The image has also been chosen as illustration to be particularly
rich in dark spots, compared to the remaining images.

cross section, as in figure 1.18. Once the void volume fraction value f , and the inclusion ratio
value r, were computed for each subset, the following relation has been used to fit the evolution
of porosity versus the distance from fracture, denoted x (which is related to the strain level):

(1.7) f = ae−bx + f0

4The cross section is realized by performing a cut along the loading direction (i.e. perpendicular to the fracture
surface
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~ 2 mm

Figure 1.18: Schema of regular grid on cross section (CAE10-3).

where x is the distance from the fracture surface. Coefficients a and b are two adjustable
coefficients used to perform an exponential fit. Finally, coefficient f0 quantifies the void volume
fraction at the opposite of the fracture surface. The choice of the constant parameter f0 allows
to use equation 1.7 to fit constant profiles of void volume fraction (e.g. for the raw material).
Therefore, parameter f0 will be used to evaluate the void growth versus strain. Figure 1.19 shows
the profiles of porosity and inclusions (which have been fit considering a constant value), while
table 1.5 reports the coefficient f0 for the considered specimens and the relative strain level
measured by DIC. Let us note that void growth is relatively low, since at a relative high strain
level (35% for a deformation at break of 50%) void volume fraction is barely 5 times higher than
the initial value, which is considerably low as well (1 ·10−4). This observation is consistent with
the observation at macroscopic scale of table 1.4: void volume fraction is not high enough to
induce an observable loss of stiffness of the material. Finally, let us note that the inclusion level
is approximatively constant for the considered specimens.
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Specimen p0 ε%
Raw Material 1 ·10−4 0

PAE2-2 1.8 ·10−4 10
PSMOOTH-1 3.7 ·10−4 27

CAE10-3 5.6 ·10−4 35

Table 1.5: void volume fraction for different specimens and the relative (approximative) strain
level. The void volume fraction at relatively high strain level is moderate.
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Figure 1.19: Porosity and inclusions profiles along the loading direction.
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Résumé

Ce premier chapitre présente l’approche expérimentale. Y sont décrits le choix des géométries,
ainsi que la méthode de mesure par corrélation d’images et les premières observations sur les
essais. Bien que la stratégie d’identification proposée dans cette thèse soit conçue pour tous les
matériaux ductiles soumis à de grandes déformations, un seul matériau est utilisé pour mener
l’étude. Il s’agit de l’alliage Inconel625, utilisé dans l’aéronautique.
La rupture ductile est fortement influencée par le niveau de triaxialité des contraintes. Afin de
varier l’état de contraintes, les essais sont réalisés sur des éprouvettes entaillées avec différents
rayons d’entaille. Outre les géométries axisymétriques habituellement utilisées pour l’étude de
la rupture ductile, des géométries planes sont également prises en compte afin de tirer profit de
la richesse des informations de la corrélation d’images. En effet, grâce à la faible épaisseur des
éprouvettes planes, le niveau de triaxialité est quasi-constant dans l’épaisseur et l’amorçage de
la fissure est visible en surface.
La corrélation d’images est faite grâce à un algorithme de corrélation local développé à l’ONERA.
Les résultats fournis sont denses et non filtrés (lissage, etc.).
L’alliage étudié montre une rupture à un niveau important de déformation (≈ 50 % à l’ambiante)
et une forte dispersion de la réponse macroscopique. Cette dispersion affecte davantage le
domaine plastique pour les éprouvettes axisymétriques et l’instant d’amorçage de la fissure
pour les éprouvettes planes. Dans tous les cas, la rupture suit rapidement l’amorçage et
s’accompagne peu de striction.
Les observations au microscope à balayage (MEB) des sections polies permettent de calculer
une valeur pour le taux de porosité initial, et montrent aussi que ce taux reste faible jusqu’à
des niveaux de déformations proches de la rupture. Cette observation est confirmée par une
diminution négligeable du module de Young.
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2
NUMERICAL MODELLING OF DUCTILE FAILURE WITHIN THE FINITE

STRAIN FRAMEWORK

This chapter describes the considered numerical modelling for ductile failure within the finite
strain framework. On the one hand, it is necessary to dispose of a numerical model as complete
and representative of the reality as possible. On the other hand, it is necessary to dispose of
a model as simple as possible, in order to consider a relatively low number of parameters. In
fact, the difficulties of parameter identification increase together with the number of parameters,
since it becomes not trivial to assess whether the parameters are independent between each
other. The choice of the numerical model starts from the analysis of the mechanical tests (see
chapter 1). The considered material, Inconel 625, shows a prominent strain hardening followed
by a softening response attributed to damage evolution, exceeding a strain level of about 50%
at break. Section 2.1 describes the material’s model up to softening, which involves elastic and
plastic deformations. Section 2.2 is dedicated to the modelling of the damage process using the
GTN model. Finally, section 2.3 describes the finite element approach, which considers a large
strain formulation and a non-local regularization proposed in a previous PhD thesis carried out
at EdF R&D [136, 137].

2.1 Elasto-Visco-Plastic behaviour

From the experimental stress-strain curve of figure 1.9, issued from the test on a smooth
cylindrical specimen, it is clear that the considered material presents a non-linear behaviour.
It might be subdivided into three parts, each one associated to a different mathematical (thus
numerical) description. First of all, a linear segment, which is ruled by the elasticity theory.
Secondly, a non linear ascending segment, which is ruled by the plasticity theory. Finally, a non
linear descending segment, which is, here, triggered by geometrical instabilities (necking) and
ruled by damage development. Moreover, due to the metallic nature of the material, some viscous
effects are considered into the numerical model, although the tests carried out do not allow the
identification of the viscous parameters. Finally, let us underline that what is presented below is
restricted to isotropic behaviours. Indeed, this property of the considered material, that has been
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confirmed by the observation of the fracture surfaces (see figure 1.13), leads to several modelling
simplifications.

2.1.1 Elastic deformation

Elastic deformation is reversible and so, non-dissipative. Once the load is removed, the structure
retrieves its original shape. Metallic materials have, in general, an elastic behaviour, according
to which the elastic deformation ε∼el is proportional (linear) to the stress σ∼ . The mathematical
relation which describes a linear elastic behaviour is given by Hooke’s law [128], and derives
from the existence of an elastic energy density Φel :

(2.1) σ∼ = ∂Φel

∂ε∼el

Hooke’s law reads:

(2.2) ε∼el =A∼∼ :σ∼

where A∼∼ is referred to as the compliance tensor. It is strictly positive and its inverse is referred to
as the stiffness tensor. These tensors contains 21 independent elastic coefficients, which reduce
to 2 for an isotropic behaviour. Hence, the stress-strain relation is, in this case, a function of the
Young’s modulus E and the Poisson’s ratio ν:

(2.3) ε∼el =
1+ν

E
σ∼ −

ν

E
Tr(σ∼ ) I∼

The elastic parameters, Young’s modulus and Poisson’s ratio, are not considered into the
FEMU process: elastic modulus is measured following a classic procedure as described in chap-
ter 1, while Poisson’s ratio is a value taken from the literature [1]. In fact, since the objective of
the current work is the identification of damage parameters, the data sampling of the mechanical
tests was not suited for the identification of the elastic coefficients1.

Moreover, let us recall that the scope of this study is not to provide an alternative identification
tool for parameters that can actually be identified elsewhere with higher precision. The goal is to
propose tools to identify those parameters for which there is not a commonly agreed procedure.

2.1.2 Plastic deformation

At crystalline level, the plastic deformation is related to the energy required to move the disloca-
tions within the lattice. There is not a unique theory to approach plasticity, since the mechanisms
that rule such phenomena are complex [89]. The main difficulties come from the irreversibility
of the plastic deformation and the non-holonomic character of the deformation2. However, in
continuum mechanics, in general, an empirical relation between stress and strain is considered
to describe the plastic behaviour at the scale of the Representative Elementary Volume (REV). To
do so, two main theories have been proposed so far.

1The images recording was performed at a constant frequency, which value was adapted to record a reasonable
number of images (< 1000) for the complete test. Therefore, no more than 10 points within the elastic range, which
does not assure an efficient identification of the elastic parameters

2Non-holomic character: the plastic deformation does not depends only on the applied load but also on the history
of load.
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One theory is the so called deformation theory, which attempts to model plasticity by means
of a continuous relation between stress and strain σ∼ = f (ε∼), as is done for the elastic deformation.
However, such an approach does not allow to take into account the irreversibility of plastic
deformation.

A second theory is the incremental theory of plasticity, also referred to as flow theory, which is
based on a mathematical relation between the increment of load and the consequent increment of
the solution in terms of stress, strain and displacement (δσ∼ , δε∼, δu∼ ). The increment of deformation
is then considered as the composition of an elastic contribution and a plastic contribution
δε= δε∼el +δε∼pl . According to this theory, if the material is not undergoing plastic deformation,
its behaviour is purely elastic. Furthermore, the elastic component of deformation is always
recoverable and it is the unique component of deformation that is related to the increment of
stress. This approach is quite efficient since it allows to take into account both irreversibility and
the non-holonomic character of plastic deformation.

Yield criterion The transition from elastic behaviour to plastic behaviour is called yield. A
so called yield criterion is used to establish whether a material is yielding. Such a criterion is
usually formulated in terms of equivalent tensile stress, σeq, which is a scalar value that can be
calculated from the stress stress tensor, either in terms of its invariants (I1, I2, I3) or in terms of
the principal stresses (σ1, σ2, σ3). The yielding begins when the equivalent stress σeq reaches a
critical value known as yield stress, that is the uniaxial elastic limit of the material. In this way,
the yielding of materials under complex loadings can be estimated from the results of uniaxial
tensile tests.

The yield criteria for ductile metals are generally independent of the first stress invariant
(the hydrostatic pressure) because of the incompressibility of the plastic flow [10]. The two most
widespread criteria for ductile isotropic metals are the von Mises criterion [99], and the Tresca
criterion. According to the von Mises criterion, the material yields when the distortion strain
energy density reaches a threshold value, while according to Tresca the material yields when the
maximum shear stress reaches a threshold value. The respective expressions of the equivalent
tensile stress read:

(2.4) σeq = 1
2

[
(σ1 −σ2)2 + (σ2 −σ3)2 + (σ3 −σ1)2] 1

2

for the von Mises criterion and:

(2.5) σeq = 1
2

max(|σ1 −σ2| , |σ2 −σ3| , |σ3 −σ1|)

for the Tresca criterion.
Let us note that a generic yield criterion defines a surface in the space of stresses that is

referred to as the yield surface (see figure 2.1).
Experimental data for isotropic metals tend to lie in between the Tresca surface and the von

Mises surface [64]. Therefore, several alternative criteria have been proposed in the literature [10]
so far, most of them including the contribution of the third invariant of the stress tensor and a
variable number of additional parameters. In the present work we consider the Hosford yield
criterion [64], which is based on a unique additional parameter n ∈ [1,+∞[∈R2, here referred to
as the Hosford exponent. The equivalent stress for this criterion reads:

(2.6) σeq =
[

(σ1 −σ2)n + (σ2 −σ3)n + (σ1 −σ3)n

2

] 1
n
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When varying the Hosford exponent from one to infinity, the Hosford surface expands starting
from the Tresca surface for n = 1, through the von Mises surface for n = 2, to reach the maximum
expansion for n = 2.767 [64]. After that value, the Hosford surface shrinks, crossing again the
von Mises surface (n = 4) to reach the Tresca surface (n =+∞). The Hosford criterion was chosen
since it allows to reproduce any experimental surface that lies in between the Tresca surface and
the von Mises surface, as shown in figure 2.1.

1 1

1 1

1
1

1

1

1 1

1 1

1
1

1

1

Tresca: Hosford n = 1
Von Mises: Hosford n = 2
Hosford n = 8

Figure 2.1: Projection on the σ3 = 0 plane of three Hosford yield surfaces with different exponents.
The Hosford yield surface can reduce both to the Tresca surface and the Von Mises surface.

Hardening In the general case, the yield surface changes with plastic deformation. The
description of the variation is referred to as hardening rule, which is a function of the so called
hardening parameters. Two common hardening rules are kinematic hardening and isotropic
hardening. Kinematic hardening is when the yield surface remains the shame shape and size but
translates in the stress space (Bauschinger effect). Isotropic hardening is when the yield surface
remains the same shape but expands with increasing stress.

The identification of the kinematic hardening parameters requires tensile tests involving
cyclic loadings, while the identification of the isotropic hardening requires only monotonous load-
ings. Therefore, the tensile tests carried out in the present study only allow the characterization
of isotropic hardening. This is the unique hardening rule considered in the following. From here,
the material can either exhibits:

• perfect plastic behaviour: further deformation of the material occurs at constant stress. The
yield surface does not expand nor shrink;
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• hardening behaviour : further deformation of the material induces an increase of the yield
stress. The yield surface expands;

• softening behaviour (negative hardening): further deformation of the material induces a
reduction of the yield stress. The yield surface shrinks.

From figure 1.9, it is clear that the considered Inconel 625 has an hardening behaviour, since
the flow stress arises with the deformation. The hardening law considered in this study is taken
from reference [126], which is in turn inspired from the exponential law proposed by Voce [132].
Such an hardening law describes hardening as a function of the cumulated plastic strain p, an
internal state variable that depends on the loading history of the material:

(2.7) R(p)= R0 +Q1 · (1− e−b1 p)+Q2 · (1− e−b2 p)

where R0 is the initial yield stress and Q1,b1,Q2,b2 are the hardening parameters. The choice of
this hardening law is motivated by the large deformations of the Inconel 625. Indeed, the two
non-linear terms allow to fit for example an early stage and a late stage of work hardening. Both
the yield stress and the hardening parameters will be identified using FEMU.

Flow rule To complete the analysis of the plastic deformation it is necessary to introduce the
so called flow rule, which states a relation between the plastic deformation ε∼pl and the cumulated
plastic strain p.

Most of the metallic materials satisfy the Drucker’s first stability criterion [38] (also called
the Hill’s stability criterion since it was originally proposed by Hill [63]), and they are referred to
as the standard materials. According to this criterion, the plastic work of the material can only
increase:

(2.8) dσ∼ : dε∼pl ≥ 0

Several important consequences follows from this criterion and characterize the standard materi-
als:

• the internal free energy density, denoted here Φ(ε∼el ,a), is a convex function of the elastic
deformation and the internal variables

• the internal energy density can be split into an elastic component and a plastic component:
Φ(ε∼el ,a)=Φel(ε∼el)+Φpl(a)

• the yield surface, denoted here Ψ(σ∼ , p), is convex

• the plastic flow is normal to the yield surface.

Consequently, the flow rule can be written as:

(2.9) ε̇∼pl = ṗ
∂Ψ

∂σ

where ṗ is referred to as plastic multiplier and it is non null solely if plastic deformation occurs.
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2.1.3 Viscous deformation

Although the characterization of viscous effects would have required tests at higher loading rates
(compared to the the tests described in chapter 1), viscous effects are generally taken into account
into the numerical modelling of a metallic material. Moreover, from a numerical point of view,
viscous effects foster convergence during damage evolution and crack propagation. Therefore, a
simple Norton flow rule is considered. It reads:

(2.10) ṗ = ṗ0

(
Ψ

σ0

)m

where σ0 and m are scalar parameters. Nevertheless, since those parameters cannot be identified
in the present study, their values were arbitrarily fixed to minimize their influence on the
material’s response. A simple criterion was used to set σ0 = 10 MPa and m = 5: these values
induce, for the considered loading rates, a stress variation (compared to the rate-independent
behaviour) considerably lower than the uncertainty of the load cell of the testing machine.

2.2 Damage behaviour

In this section, the numerical tools used for the simulation of the failure process are described
after a brief introduction of the possible approaches to fracture.

2.2.1 Global and local approaches to fracture

Two main approaches have been developed so far to simulate fracture [14]. The first approach is
referred to as global while the second approach is referred to as local. The global approach to
fracture is essentially based on the Linear and Non-Linear Fracture Mechanics. The assumption
is that fracture resistance can be assessed in terms of a single macroscopic parameter, as the
J-integral [65, 112] or the crack tip opening displacement. The global approach to fracture is
simple and widely used. The main limitations of this approach arise when the process zone,
i.e. where fracture occurs, has a dimension which is not negligible compared to the size of the
structure.

The local approach to fracture is based on local criteria. It is based on a more physical
representation of the material degradation. The local approaches can, in turn, be divided into
phenomenological models and micro-mechanical models.

According to phenomenological models, the material degradation is considered from a macro-
scopic point of view. To do so, solely the effects of damage are considered at the scale of the
Representative Elementary Volume. The physics of the phenomenon at the microscale is not
taken into account. Within this category, it is worth mentioning:

• the approach of Kachanov and Rabotnov [66, 111], where damage is quantified as the
reduction of the load carrying effective area;

• the approach of Lemaitre and Chaboche [81], where damage is quantified as the variation
of the elastic modulus;

• the approach chosen by Engelen et al. [40], where damage is quantified by means of a scalar
variable solely driven by the cumulated plastic strain.
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According to micro-mechanical models, the material degradation is considered from a micro-
scopic point of view. The evolution of damage (nucleation, growth and coalescence of micro-voids)
is directly modelled. It is the case of the Gurson’s model [57] and the Rousselier’s model [117],
to mention two of the most known models. Even though a pure micro-mechanical description
could be more accurate, the complex phenomena involved in ductile failure would lead to an
extremely complex micro-mechanical representation. Thus, some phenomenological approxima-
tions are in general accepted and introduced within micro-mechanical models. As an example,
the GTN [130, 131] (Gurson Tvergaard Needleman) model, which is used in the present study,
consists in a modified version of the micro-mechanical model of Gurson, where void nucleation
and void coalescence is modelled considering a phenomenological description.

Additional details about the continuum approaches to damage can be found into the book of
Murakami [102] and into the review of Besson [14].

2.2.2 Damage evolution by void growth

To start, let us recall that the ductile failure of metals is a damage process that involves growth,
nucleation and coalescence of micro voids that are responsible for the loss of bearing capacity of
the structure. In what follows, damage is modelled using a scalar variable f representing the
void volume fraction. On the one hand, the choice of a scalar variable limits the description of
damage to an uniform distribution of spherical voids. On the other hand it leads to a simple but
efficient description of the phenomenon.

One of the first works on void growth is attributed to Rice and Tracey [114]. They studied the
growth of a sperichal cavity within a infinite perfectly plastic medium. The authors highlighted
the relation between the stress triaxiality level3 and the growth of the cavities. This is the main
result of their work, since the Rice and Tracey model cannot be applied to a general porous
material because of the hypothesis of infinite medium.

Later, Gurson [57] defined a damaging yield criterion and an expression for the evolution
of the void volume fraction. It is a complete model to study the evolution of spherical voids
within a perfectly plastic medium. According to the Gurson approach, void growth reduces the
bearing capacity of the material and modifies the yield surface, shrinking it. Let us note that
such a softening behaviour violates the conditions of standard material according to Drucker.
From a numerical point of view, it leads to the localization problem, which will be discussed in
section 2.3.1.

The yield surface of the Gurson model reads:

(2.11) Ψ(σ,R, f )=
(σeq

R

)2
+2 f cosh

(
3σh

2R

)
−1− f 2 ≤ 0

which reduces to a Von Mises surface when no damage occurs ( f = 0). The expression of the
void growth ratio arises from the incompressibility of the plastic flow (elastic deformation is
neglected):

(2.12) ḟ = ḟg = (1− f )Tr(ε̇pl)

Nevertheless, the Gurson’s analysis does not take into account nucleation and void coalescence.
Tveergaard and Needleman [131] improved the model including the missing phenomena of ductile
failure, creating the so called GTN model.

3The stress triaxiality is defined as T = σh
σeq

where σeq the equivalent stress and σh = σ1+σ2+σ3
3 is the hydrostatic

pressure
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Coalescence Coalescence is introduced by means of two parameters q1 and q2 and critical
level of void volume fraction fc at which coalescence begins. Hence, the GTN yield surface
becomes:

(2.13) Ψ(σ,R, f )=
(σeq

R

)2
+2q1 f ∗ cosh

(
3q2σh

2R

)
−1− (q1 f ∗)2 ≤ 0

where f ∗ is an effective void volume fraction, defined as:

(2.14) f ∗ =
{

f if f ≤ fc

fc +δ( f − fc) otherwise

The scalar coefficient δ represents the acceleration of the void growth due to coalescence. Ac-
cording to the GTN model, failure happens when the effective void volume fraction f reaches a
maximum value fr. Rupture occurs when f ∗ = 1

q1
:

(2.15) fr =
(

1
q1

− fc

)
1
δ
+ fc

Nucleation Void nucleation is modelled as a phenomenological contribution ḟn to the void
growth rate ḟ . It is expressed as a function of the cumulated plastic strain:

(2.16) ḟ = ḟg + ḟn = (1− f )Tr(ε̇∼pl)+ An(p)ṗ

where An(p)> 0 is the phenomenological description of the nucleation. A common expression for
An(p) is given by Tvergaard and Needleman [131]:

(2.17) An(p)= fN

sN
p

2π
exp

[
−1

2

(
p− pN

sN

)2]
where fN is the inclusion ratio, which is considered since new voids nucleate at inclusions. Value
pN is the effective plastic strain at which the nucleation ratio is maximum, and sN is the standard
deviation of the deformation due to nucleation. A simpler description of nucleation could be a
linear evolution of nucleation triggered at a certain critical value ps of cumulated plastic strain:

(2.18) An(p)= kH (p− ps)

where k is a constant value and H is the heaviside function. This latter nucleation law is
considered in the present work, since as observed in section 1.4, the considered Inconel 625 shows
a strong (supposedly linear) nucleation of new voids occurring at a high plastic strain levels.

Finally, let us note that although the GTN model provides a rich description of damage, it
has some limitations. In fact, the GTN model does not predict correctly failure under pure shear
loading since pure shear is associated to a null stress triaxiality level. Furthermore,the GTN
model does not predict correctly failure when voids are not spherical [50].

2.3 Finite Element approach

The high deformation values reached during the mechanical tests (see chapter 1) requires a finite
element approach specific for large deformations. Moreover, the chosen material behaviour leads
to well known numerical problems such as volumetric locking and strain localization, which
require advanced techniques to be solved.
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2.3.0.1 Elastic-Plastic constitutive laws within the finite strain framework

The incremental theory of plasticity is still a valid approach within the finite strain framework.
However, there is a large debate about the correct decomposition of deformation into an elastic
component and a plastic component. In the following, the most considered types of decomposition
are presented.

Additive decomposition The first approaches that have been proposed were direct extensions
of the additive decomposition equations defined within the small strain framework ε̇∼ = ε̇∼el + ε̇∼pl ,
but using the strain rate tensor D∼ . Let us note that since the material derivative of the strain
tensor is non-objective, the relation must be written in terms of objective derivatives4.

(2.19) D∼ = D∼ el +D∼ pl

Nevertheless, despite their wide use [15] such approaches are not considered here since they
show undesirable side-effects as a certain energy dissipation within the elastic range (which is
non-physical) and shear oscillations (i.e. distortion of the solution) [36, 120].

Starting from Lee [80], several authors considered a multiplicative decomposition of the
deformation gradient into an elastic and plastic contribution:

(2.20) F∼ = F∼ el ·F∼ pl

Such a decomposition implies the introduction of an in-between configuration obtained by a
conceptual de-stressing (to a null stress) of the currently deformed material configuration.
However, such an intermediate state is fictitious and non unique. This is the main drawback of
this approach. The considered deformation tensors are:

(2.21) G∼ pl = (F∼
T
plF∼ pl)−1 , B∼ el = F∼ G∼ plF∼

T

where G∼ pl is a Lagrangian tensor and B∼ el an Eulerian tensor. A tensor is said to be Lagrangian
when it maps the deformation on the reference configuration. On the opposite, a tensor is said
to be Eulerian when it maps the deformation on the deformed configuration [74]. The internal
energy decomposition reads:

(2.22) Φ=Φel(B∼ el)+Φpl(p)

where p is the cumulated plastic strain, the unique internal variable considered. It follows the
constitutive law:

(2.23) τ∼ = 2
∂Φel

∂B∼ el
·B∼ el , A=−∂Φpl

∂p

where τ is the Kirchhoff stress tensor and A the thermodynamic force associated to p. The plastic
flow is characterized by the following set of equations:

(2.24) Ġ∼ pl =−2λF∼
−1 ∂Ψ

∂τ∼
B∼ el(F∼

T )−1 ṗ =λ∂Ψ
∂A

λΨ= 0 Ψ≤ 0 λ≥ 0

4According to the principle of material objectivity, a kinematic tensor is said to be objective if it is independent
from the frame of reference used to describe the phenomenon [69]. As an example, the Cauchy-Green deformation
tensor C∼ = F∼

T F∼ is an objective tensor. Instead, the material derivative of a deformation tensor is not objective. In
this case, it is possible to formulate the problem in terms of objective derivatives. The most commonly used objective
derivatives are the Truesdell rate, the Green-Nagdhi rate and the Jaumann rate.
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where Ψ is the yield potential function and λ the plastic multiplier.
More recently, Papadopoulos et al. [106] first, and Miehe et al. [98] later, considered an

additive decomposition of the deformation gradient within the logarithmic strains space:

(2.25) E∼ = E∼ el +E∼ pl

where

(2.26) E∼ = 1
2

log(F∼
T ·F∼ )

Let us introduce the stress tensor T∼ , symmetric, defined by duality with respect to the logarithmic
strain rate. Then, the stress power P reads:

(2.27) P =
∫
Ω0

T∼ : Ė∼ dΩ0

Tensor T∼ is a measure of stress within the logarithmic space of strain. It does not have a physical
meaning, but classical stress description as the Kirchoff stress tensor or the Cauchy stress tensor
can be recovered from T∼ as described in reference [98]. According to the flow theory, the internal
energy density reads:

(2.28) Φ=Φel(E∼ el)+Φpl(p)

It follows the constitutive law:

(2.29) T∼ = ∂Φel , A= ∂Φpl

∂p

where the stress-strain relation is hyperelastic. The condition of material objectivity is re-
spected [136, 137]. Furthermore, the plastic flow is characterized as follow:

(2.30) Ė∼ pl =λ
∂Ψ

∂T∼
ṗ =−λ∂Ψ

∂A
λΨ= 0 Ψ≤ 0 λ≥ 0

Shuthov [120] compared the approaches mentioned above based on a weak-invariance indica-
tor: the most rigorous approach appears to be the multiplicative decomposition, since the additive
decomposition within the logarithmic strain approach is accurate solely if the elastic deformation
is negligible compared to plastic deformation, which is the case of this study. Indeed, according
to the experimental tests illustrated in chapter 1, the elastic deformation can be considered as
negligible compared with the plastic deformation.

Furthermore, the similarity of the additive decomposition within the logarithmic strain
space with the small strain formulation makes its implementation relatively easier compared
to the multiplicative approach. This is why this latter approach was retained in this study. The
implementation of the selected approach is entirely inherited from the previous PhD thesis of
Zhang [136, 137], which proposes a robust and complete framework for the simulation of ductile
failure within the large strain framework (the details about the reformulation of the GTN model
within the logarithmic strain space can be found within the the original work).
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2.3.1 The strain localization problem

Phenomenon The softening behaviour of a structure is triggered by instabilities which nature
might be either geometrical (necking) or material (local inhomogeneities) [113]. During the
softening phase, the deformation is concentrated within a thin zone, referred to as localization
band, while the rest of the structure undergoes elastic unload. It is within the localization band
that the damage process take place up to fracture.

Problem description The simulation of a softening behaviour using a standard (local) finite
element approach leads to a non physical solution. In fact, the results are pathologically de-
pendent on the mesh size and orientation: damage localizes within the smallest band that can
be represented by the mesh, which might be a unique layer of elements or a unique layer of
Gauss points (see figure 2.2). Absurdly, for an infinitely small size of the mesh, the localization
zone would tend to a zero width band, and so to a null dissipated energy, which is a completely
non-physical solution.

Figure 2.2: Numerical localization problem shown on a damage field. The mesh size and orienta-
tion determine the profile of damage. Credit [44]

Problem explanation From a mathematical point of view, the localization can be explained
as a loss of ellipticity5 of the constitutive equations which leads to the loss of uniqueness of the
solution. The solution bifurcates [12]. From a modelling point of view, the pathological localization
is due to the lack of information about the material scale. In fact, the continuum mechanics is

5The ellipticity condition reads:

(2.31) det(n · ∂σ∼
∂ε∼

·n)> 0 ∀n ∈R3 ∣∣∣∣n∣∣∣∣= 1
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based on the hypothesis of material’s homogeneity within the Representative Elementary Volume
(REV). Such an hypothesis is no longer verified when localization occurs, since the material
cannot be considered as homogeneous within the REV any more.

Solution The solution to the localization problem consists in enriching the description of the
continuous medium by introducing the missing additional information about the material scale,
which is directly related to the effective (physical) size of the localization band. Such mechanical
models are referred to as non-local models.

Regularization by enriched energy density

This approach consists in adding a phenomenological term to the free energy density of the system,
which acts as regularization operator. The fundamentals of this approach were investigated by
Aero et al. [3]. A developed mathematical framework for this kind of approach is described
in the work of Lorentz [85]. Several publications prove the good mathematical and numerical
properties [87, 88] of this approach: the constitutive relations result from a variational approach
within the standard materials framework, which is valid as long as the regularization is done on
an internal variable. The equations of this approach are written on the reference configuration,
hence using Lagrangian quantities. Considering then the cumulated plastic strain as the variable
to be regularized, the free energy density reads:

(2.32) Φnl(E,Ep, p,∇p)=Φel(E∼ −E∼ pl)+Φpl(p)+ c
2
∇p ·∇p

where parameter c, which has the dimension of a force, is the regularization parameter. The
regularization prescribes a constraint on the gradient of the cumulated plastic strain. The
regularized hardening variable cannot undergo uncontrolled localisation since it would result in
an infinite free energy. Thus, the larger the parameter c, the smoother the spatial distribution of
the hardening variable.

Regularization via a spatial non-local operator

The principle of this family of approaches is to directly introduce a characteristic length (the
internal length) into the model [11, 107, 116]. From a simplified point of view, the characteristic
length expresses zone of mutual interaction between material points. The model is based on the
definition of a spatial operator (tensor or scalar) which connects a mechanical variable to its
non-local counterpart:

(2.33) vnl =B(v)

The choice of the operator B determines the approach and consequently its non-local properties.
However, the weakness of these approaches is the non coercive property of the regularization
operator, which might not ensure the uniqueness of the solution, as proven by Lorentz et al. [86].
In the following, the convolution operator and the gradient operators are introduced.

Convolution operator: the interaction of the material points is defined by a convolution
operation between a weight function w and the local variable v:

(2.34) vnl =

∫
Ω

w(||x− y||v(y)dΩ∫
Ω

w(||x− y||dΩ
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where w is an odd function which maximum is in x = y : w(0)= 1, Ω is the interaction zone and
||x− y|| the distance between two points. This approach has been introduced by Kroner [72] for a
non-local elasticity frame. It has also been used to model brittle failure and ductile failure as well.
Despite the large use of this approach, it carry some algorithmic issues that are incompatible
with an efficient computation. In fact, to compute vnl , it is necessary to share information
between integration points. The integration of the material law is no longer independent for each
integration point. Moreover, the tangent matrix is in general non-symmetric. Finally, there are
additional issues related to the computation of the integral on the edges of the domain and on
the non-convex portions of the domain (e.g. cracks).

However, the regularisation operator that will be introduced in the next paragraph does not
suffer from this problems and can lead to an equivalent result in certain cases.

Gradient operators: the interaction between points is considered via the superior order
derivatives of the deformations fields and the internal variables. A distinction can be made on
the definition of the non-local variable, which might be explicit:

(2.35) vnl = v+ c∇2v

or implicit:

(2.36) vnl − c∇2vnl = v

with c the characteristic length.
The introduction of such an additional equation to the problem requires an additional bound-

ary condition:

(2.37) ∇vnl ·n = 0 on ∂Ω

Both gradient operators can be derived from the convolution operator. Compared to the
explicit gradient approaches, implicit gradient approaches have several advantages [40]. Indeed,
they impose additional boundary conditions only on the domain’s edge and not on the elastic-
plastic boundaries as for explicit gradient approaches. Furthermore, implicit gradient has a
local mathematical formulation which leads to an efficient numerical implementation since no
information needs to be exchanged between integration points.

Regularization via a micromorphic potential

The approaches belonging to this family aim at enriching the kinematic description at macro
scale using additional degrees of freedom issued from the kinematic description at micro scale.
The pioneer work is attributed to the Cosserat brothers [32], that associated a micro-rotation
tensor to each material point. A more recent, and generic, framework has been proposed by
Forest [47]. Once the micromorphic variable is chosen, the formulation of the Helmholtz free
energy is enriched by a micromorphic potential which connects the microscale variable with is
macroscopic counterpart. This operation introduces the effects of the neighbour points generating
a non-local regularization.

Thick Level Set regularization

Thick level set is a numerical model for damage, introduced by Möes [101], based on the definition
of a damage front (the level set) which separates the undamaged zone from the damaged zone.
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Damage is modelled as a function of the orthogonal distance from the damage front. Furthermore,
damage is supposed to be confined within a zone of finite dimension lc in the wake of the front,
which is referred to as the Thick Level Set (TLS). The non-local properties of the TLS method are
given by a constraint imposed on the gradient of the damage function.

In this work the regularization by enriched energy density is considered. It is the regular-
ization considered in the work of Zhang [136, 137], where the positive results obtained for the
simulation of ductile failure within the finite strain framework are encouraging.

2.3.2 The volumetric locking problem

2.3.2.1 Description of the problem

The Volumetric locking is a numerical problem that affects the simulations of quasi-incompressible
behaviours when the finite element approach is solely formulated in terms of displacement. It
arises in the present study because of the incompressibility of the plastic flow. The volumetric
locking problem induces spurious oscillations of the solution fields, as visible in figure 2.3(a).
The displacement solution is underestimated and, on the contrary, the stiffness is overestimated.
In fact, the problem derives from the inability of the standard finite element to find a displace-
ment solution coherent with the a quasi-null volume variation. The mathematical theory of this
problem have been investigated by Babuska [9] and Brezzi [22].

2.3.2.2 Solutions to the problem

A simple solution to prevent volumetric locking is obtained by reducing the number of integra-
tion points. An alternative solution, referred to as selective integration, aims at reducing the
number of integration point only for the hydrostatic part of deformation, which is responsible of
the volumetric locking. The deviatioric part is fully integrated. These techniques restores the
singularity of the stiffness matrix, avoiding locking. Nevertheless, the reduced integration might
lead to zero energy parasite modes which requires an additional stabilization of the finite element.
Furthermore, such techniques are applicable only to quadrangular element. For this reason, they
are not considered in this study, since the long term objective is to use automatic remeshing,
which requires triangular elements. The last solution to mention is represented by the so called
mixed formulations. Introduced by Washizu [133], this solution aims at enriching the finite
element formulation by introducing additional fields (dilatation and pressure) as unknowns of
the problem. This latter solution is part of the numerical approach provided by Zhang [136, 137],
adopted in this study, which consider a mixed non-local method to regularize both the volumetric
locking problem and the strain localization problem (see figure 2.3(b)).
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(a) Standard element (b) Multi-Field element

-800 800
σ11 [MPa]

(c)

Figure 2.3: Aspect of σ11 field using a standard element affected by the volumetric locking
problem (left) and using the mixed element considered in this work (right).
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Résumé

Ce deuxième chapitre porte sur le modèle matériau et sur l’approche éléments finis utilisés
afin de reproduire le comportement observé expérimentalement.
Le seuil de plasticité est défini par le critère de Hosford. Ce critère permet notamment, grâce
à un seul paramètre supplémentaire, de reproduire des comportements matériaux dont les
surfaces de charge sont situées entre celles des critères de Tresca et de Von Mises. Le fort
écrouissage est modélisé par une loi exponentielle de type Voce, où deux termes non-linéaires
permettent de décrire l’écrouissage à des faibles et hauts niveaux de déformation respective-
ment. L’endommagement est modélisé par un modèle de type GTN, où la germination, la
croissance et la coalescence de vides sont prises en compte. Les caractères tardifs et rapides
de la rupture de l’Inconel625 ont été modélisés par une forte germination de nouvelles cavités
commençant à un niveau de plasticité cumulée relativement important.
Les grandes déformations associées aux matériaux ductiles nécessitent des approches éléments
finis spécifiques, capables d’en décrire la cinématique. Dans cette thèse le choix porte sur
l’approche additive logarithmique proposée par Miehe et al. Néanmoins, la simulation d’un
matériau ductile adoucissant en présence de forts écoulements plastiques pose des problèmes
de localisation et de verrouillage. Le premier problème peut être résolu au travers d’approches
non-locales bien connues, tandis que le deuxième problème peut être traité par une formulation
mixte, où les déplacements nodaux ne sont pas les seules inconnues du problème d’équilibre.
Le choix de la formulation éléments finis c’est donc porté sur la formulation proposée dans la
thèse de Zhang, où l’approche en grandes déformations de Miehe et al. est régularisée sur le
gradient de la plasticité afin d’éviter le problème de localisation. De plus, pression et dilatation
sont considérées comme inconnues afin d’éviter le problème de verrouillage.
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3
PRESCRIPTION OF MEASURED BOUNDARY CONDITIONS

This chapter deals with the prescription of measured displacements issued from DIC measure-
ments as boundary conditions for the finite element simulation. To do so, the DIC fields are
mapped onto the finite element mesh as described in appendix B. Applying measured boundary
conditions is important for parameter identification since it assures a consistent comparison
between the considered test and its simulation. In fact, measured boundary conditions allow
to take into account a possible rigid body motion caused by a slipping of the specimen within
the machine clamps. Furthermore, measured boundary conditions allow to completely exclude
the testing machine from the finite element model1. Nevertheless, the measured values of the
displacement fields are altered by the uncertainty of the measurement system, which is here
referred to as measurement noise. The results of the FOLKI-D (DIC) algorithm, where no post-
filtering operations are performed, evidence this problem. The first part of this chapter analyses
the negative impact of the measurement noise onto the solution of the mechanical problem. The
second and last part of this chapter illustrates and compares two possible approaches to limit the
detrimental effect of noised boundary conditions.

3.1 Introduction

Digital Image Correlation (DIC) is a powerful tool to measure surface full field displacements on
both laboratory size samples and real life structures [51]. The richness of information provided by
this technique allows not only to analyse local phenomena [61], but also prescribe the measured
displacements as Dirichlet boundary conditions (assuming constant displacements in depth2), as
in [110] and [43]. Alternatively, the boundary conditions can be considered as unknowns of the
inverse problem and determined by the resolution of the Cauchy’s problem as in [29] and [5].

Nevertheless, prescribing noised measured boundary conditions (the measurement values
are altered by the measurement uncertainty) may produce undesirable and unpredictable effects.
Regardless of its amplitude, noise may alter significantly the solution. This contribution analyses

1Because of its own stiffness, the testing machine could not be excluded a priori from the finite element model
without generating a relatively important approximation if nominal displacements were to be prescribed.

2This latter hypothesis is acceptable in most of the cases when thin specimens are considered, see [134]
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the impact of noised boundary conditions in the case of mechanical problems. Their impact is
exposed in section 3.2 on both an analytical and a finite element problem. The proposed filtering
solutions are evaluated in section 3.3. To do so, a reference unnoised solution is generated using
finite element simulation. The corresponding boundary conditions are perturbed with a random
Gaussian noise to generate noised solutions which are then compared to the reference based on
the definition of an alteration coefficient. Finally, in section 3.4, the proposed methodology is
discussed and applied to an actual case study using a complex specimen geometry.

3.2 Impact of noise on the solution of the equilibrium problem

Noised boundary conditions produce an alteration on the solution. This section exposes the
problem on different cases.

3.2.1 Analytical test case: elasticity problem under antiplane shear
condition

This part focuses on an antiplane shear problem (the Poisson’s problem) for which an analytical
solution exists.

x

y

0 L
0

H
Γ

z

Figure 3.1: Cross section of the Poisson problem bar.

Let us consider a bar with rectangular cross section L×H as in figure 3.1, where Γ designates
the top edge (red boundary). An antiplane strain state can be achieved by considering an out-of-
plane displacement field:

(3.1) ux = 0, uy = 0, uz = uz(x, y)= u(x, y)

As boundary conditions, the following nonzero displacement is prescribed on Γ (red boundary),
while a null displacement is prescribed on the remaining portion of the boundary (black boundary).

(3.2) u|Γ =
N∑

n=0
un =

N∑
n=0

u0
n sin

(πn
L

x
)

According to the small strain theory, the relations between strain and displacement read:

(3.3) εxz = 1
2
∂u
∂x

εyz = 1
2
∂u
∂y

Considering an elastic behaviour, the nonzero stress components σxz and σyz can be directly
expressed as functions of the corresponding strain components as:

(3.4) σxz = 2µεxz σyz = 2µεyz
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where µ is the shear Lamé constant. Considering null bulk forces the equilibrium equation reads:

(3.5) ∆un(x, y)= 0

which is the homogeneous Poisson’s equation. It can be solved by separation of variables to obtain
the expression of displacement at equilibrium. The solution is written as:

(3.6) u(x, y)=
N∑

n=0
un(x, y) with un(x, y)= u0

n
sinh(πn

L y)
sinh(πn

L H)
sin

(πn
L

x
)

The partial derivatives are:

∂un

∂x
(x, y)= u0

n
πn
L

sinh(πn
L y)

sinh(πn
L H)

cos
(πn

L
x
)

(3.7)

∂un

∂y
(x, y)= u0

n
πn
L

cosh(πn
L y)

sinh(πn
L H)

sin
(πn

L
x
)

(3.8)

Equations 3.7 and 3.8 allow to evaluate the impact of noise on stress and strain. Let us
consider noise as a term of the same form as the prescribed boundary condition with high spatial
frequency p (with p À N) and relatively small amplitude ub. Since the frequency is in the
numerator of the derived field expressions, the considered noise will affect significantly the
solution even for small values of amplitude. Figure 3.2 shows the difference between the noised
solution and the reference (i.e. without noise), both evaluated on the top edge Γ for a particular
set of (u0

n,n) values. As expected, the impact of noise is higher for the derived fields.
Furthermore, all the solution fields depend on hyperbolic functions of y. This implies that

the impact of noise is maximum on the edge where boundary conditions are prescribed and
that it vanishes as y decreases from H to 0, as illustrated in figure 3.3. These observations
are consistent with the literature [62], where it is shown that errors tend to concentrate in the
vicinity of boundary where measured boundary conditions are applied.
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Figure 3.2: Comparison between the noised solution (blue) and the reference (red) for different
fields on the top edge Γ (y= H). Noise impact is higher for the derived fields. Data: N = 5, u0

1 = 1,
u0

3 = 0.2, u0
5 = 0.03, u0

0 = u0
2 = u0

4 = 0, p = 30, ub = 0.01, H = 1, L = 1.
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Figure 3.3: Noised solution at different distances (solid lines) from the top edge Γ (y= H) where
boundary conditions are prescribed compared with their respective reference solution (dotted
lines). Noise impact vanishes as y decreases from H to 0.

3.2.2 Numerical test case including plasticity
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Figure 3.4: On the left, the considered mesh and cumulated plasticity field for a reference load.
The whole geometry undergoes plastic deformation. On the right, the macroscopic response,
where the two investigated loading steps are indicated. Specimen is 28mm wide, 50 mm high and
2 mm thick. The hole diameter is φ= 4 mm.
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The objective of this section is to illustrate the negative impact of noise within a context closer
to an actual mechanical test. A tensile test on a perforated flat specimen is investigated (see
figure 3.4). The bottom edge of the specimen is clamped so that ux,y=0 = uy,y=0 = 0, while a vertical
uniform displacement (uy,y=H) is applied on the top edge for the reference case (with ux,y=H = 0).
Rigid body motion along the third direction (z) is prevented. The considered constitutive model is
detailed in chapter 2. The solution of the problem submitted to reference boundary conditions
(without noise) is compared to the solution of the problem with noised boundary conditions. Such
boundary conditions are generated adding, for each time step, a Gaussian noise to the reference
boundary conditions. Noise has a null mean value and a standard deviation of ς= 10−3 mm. This
magnitude is chosen to be representative of an experimental uncertainty for DIC measurements.
A relative and an absolute alteration coefficients (δr,C, δa,C) are then defined to quantify noise
impact:

(3.9) δr,C =
∣∣∣∣Cnoise −Cref

Cref

∣∣∣∣ and δa,C = |Cnoise −Cref|

where C is the finite element result of interest (force, displacement, deformation, . . . ). Subscripts
indicate whether the prescribed boundary condition is polluted by noise or not. The absolute
alteration coefficient δa,C allows to evaluate the magnitude of the alteration provoked by noise.
Such an absolute value may be constant for all the loading steps. Instead, the relative alteration
coefficient δr,C allows to evaluate the magnitude of the alteration with respect to a reference value.
In fact, the problems issued from the measurement noise are more significant in correspondence
of the low values of the considered quantity. Moreover, let us note that a reference solution cannot
be defined when experimental boundary conditions are prescribed.

Considering the macroscopic response of the reference simulation (see figure 3.4) two loading
steps are considered: the first one is within the elastic regime while the second one is within
the plastic regime. Displacement for the loading step within the plastic regime is 15 times
the displacement of the loading step within the elastic regime. Figure 3.5 shows the relative
alteration coefficient evaluated at the top edge where boundary conditions are prescribed. As
expected impact is lower on displacement than on stress (of about 2 orders of magnitude). Relative
alteration on stress can exceed 500% within the elastic regime (low displacement value), and
180% within the plastic one (high displacement value).

As observed before, noise impact decreases with the distance from the edge where the
boundary condition is applied. Figure 3.6 shows the alteration coefficient at a distance of 5 mm
from the edge. Noise impact is less than 14% within the elastic regime and less than 1% within
the plastic one.

Since the behaviour is, in this case, supposed not purely elastic, the noised boundary conditions
may cause the formation of spurious plastic areas at the domain’s edge as illustrated in figure 3.7.
In cases where plasticity is coupled with damage, failure prediction may be compromised.

3.3 Noise filtering

Alteration caused by noised boundary condition can be reduced by low-pass filtering. Two ap-
proaches can be then distinguished. The first one aims at reconstructing the data while the
second one is based on the mechanical filtering of the problem.
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Figure 3.5: Relative alteration coefficient δr for vertical displacement uy (blue) and stress
component σ22 (red) evaluated at the top edge, where boundary conditions are prescribed. Noise
alters significantly the finite element solution. At high displacement values (plastic regime) the
perturbation due to noise is less severe.
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Figure 3.6: Relative alteration coefficient δr for vertical displacement uy (blue) and stress
component σ22 (red) evaluated at 5 mm from the edge. Noise impact vanishes with distance.

3.3.1 Data reconstruction

The most commonly used technique of data reconstruction consists in approximating the boundary
condition by a polynomial function of relatively low order m (usually with m < 5). Let us note
that a robust approach for polynomial reconstruction is to define the function with respect to
the curvilinear coordinates system associated to the boundary to deal with complex boundary
geometries. The extrapolation by polynomial functions of constant order has been applied by [62]
to boundary conditions issued from global volumetric image correlation. Restricting the choice to
low order functions allows preventing approximation errors. As observed by Runge [118] when
using polynomial interpolation with polynomials of high degree on a set of equispaced points the
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0.0

0.2
Pcum

Figure 3.7: Spurious cumulated plasticity at the edge where noised boundary conditions are
prescribed. Values on the edge are of the same magnitude than values around the hole.

error of approximation increases with the order of the polynomial, with a concentration at the
edge of the domain. Figure 3.8 shows the alteration coefficient on the stress component σ22 for
function orders m = 0, 1 et 2 on the perforated specimen. This specimen has a straight boundary
which is loaded with a uniform displacement for the reference case (figure 3.4). Therefore, the
zero order polynomial function gives the best filtered result. Comparing the alteration coefficient
for the unfiltered solution (figure 3.5) with the filtered one (figure 3.8) shows that alteration is
reduced by 2 orders of magnitude.

However, let us note that the domain of application of the polynomial reconstruction might be
limited because of the low order constraint. In fact, the geometrical singularities such as notches
or holes could alter significantly the regularity of the boundary condition and impede such an
approximation.

A second technique for the data reconstruction approach is the reconstruction by the Moving
Least Square algorithm [83]. The extrapolation is carried out piece-wise by defining a window
which dimension is lower than the data set size. On the one hand, moving least squares offers
more flexibility to fit complex functions, but on the other hand, it requires a prior analysis of the
boundary condition to determine the optimal parameters (window size and polynomial order).
When the window is undersized for the chosen function order, the moving least square will
reproduce noise instead of smoothing it. On the opposite, when the window is oversized, the
boundary conditions could be distorted (e.g. if the whole data set is used, the result is the same
than the polynomial reconstruction). Figure 3.9 shows the alteration coefficient for different
window sizes for the moving least squares algorithm. In the present study, the window size is
expressed in terms of the number of points used for the local reconstruction. As expected, an
undersized window (w = 3) leads to a reduced and unsatisfactory noise reduction (see figure 3.9).
A larger window sizes allow a proper smoothing of the noise impact. Since the present loading
is a constant displacement applied on a straight boundary, the best result is given by a low
polynomial order combined with a large window size.

Let us compare in figure 3.10 the best filtering result of moving least squares with the best
result obtained using a single polynomial over the whole data set. The higher noise impact
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Figure 3.8: Absolute alteration coefficient on a stress component δa,σ22 for different orders of the
smoothing polynomial function. For the considered case the function order 0 represents at best
the reference data and so it provides the best filtering result.

reduction is given by the polynomial reconstruction, since it reproduce at best the reference
displacement. This example points out the fact that data reconstruction approaches cannot be
automated since the choice of the parameters largely depends on the measured data.

Finally, let us note that the data reconstruction techniques could allow the extrapolation of
the boundary condition where data is missing (e.g. where Digital Images Correlation could not
provide a result, like on the edges of the specimen).
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Figure 3.9: Absolute alteration coefficient δa,σ22 for different parameters for the moving least
squares algorithm. An undersized window leads to an unsatisfactory reduction of noise impact.
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Figure 3.10: Comparison of absolute alteration coefficient δa,σ22 between moving least square
and polynomial approximation. Since for the present case the reference solution is a constant
displacement the reconstruction by a single polynomial is more appropriate than moving least
square.
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3.3.2 Mechanical filtering

The most straightforward approach involving mechanical filtering could be the prescription of
a sheer elastic behaviour on a finite portion of the specimen’s geometry around the boundary
of the domain. The idea is to numerically prevent the development of artificial cumulated
plasticity by forcing an elastic behaviour. However, such a solution is not applicable when
expected cumulated plasticity can develop within that zone: for example in figure 3.4, the whole
perforated specimen is undergoing plastic deformation. Moreover, this solution tends to lock the
out-of-plane displacement at the boundary between the elastic and plastic layer. As a consequence,
the elastic layer solution is excluded from this study.

To overcome this problem, a different approach could be the prescription of the measured
boundary conditions via an elastic attachment. It can be seen as if displacement is applied to
the structure via an elastic spring placed upon the boundary. The described loading can be
represented by a Robin boundary condition, also known as mixed boundary condition or Fourier
boundary condition [58]. It is commonly used for thermodynamic problems3. For a mechanical
problem, the Robin boundary condition reads4:

(3.10) lRσ∼∼
·n∼ = 1

SΓ
(u∼ m −u∼ )

where lR is referred to as the Robin coefficient and SΓ is the characteristic dimension of the
boundary where displacement is prescribed. Quantities SΓ and lR are respectively homogeneous
to [mm2] and [mm/N] for 3D problems, while they are homogeneous to [mm] and [mm2/N] for
2D problems.

Let us recall the anti-plane shear problem in section 3.2, but replacing the Dirichlet boundary
condition on the top edge with the Robin boundary condition of equation 3.10. The solution at
equilibrium now depends on the Robin coefficient lR and reads:

(3.11) un(x, y, lR)= u0
n

1

1+ µπnlR
tanh( πn

L H)

sinh(πn
L y)

sinh(πn
L H)

sin
(πn

L
x
)

while the partial derivatives:

(3.12)
∂un

∂x
(x, y, lR)= u0

n
πn
L

1

1+ µπnlR
tanh( πn

L H)

sinh(πn
L y)

sinh(πn
L H)

cos
(πn

L
x
)

(3.13)
∂un

∂y
(x, y, lR)= u0

n
πn
L

1

1+ µπnlR
tanh( πn

L H)

cosh(πn
L y)

sinh(πn
L H)

sin
(πn

L
x
)

The low pass filtering property of the Robin boundary condition can be evaluated by means of
the Dirichlet-to-Neumann operator, which is defined as the operator that associates the prescribed
displacement on the top edge u|Γ (equation 3.2) to the derived solution (stress σyz for instance)
evaluated on Γ (e.g. equation 3.13):

(3.14) λRN,yz,n = σyz,n

u|Γ,n
=µ 1

u|Γ,n

∂un

∂y
=µπn

L
1

1+ µπnlR
tanh( πn

L H)

1
tanh(πn

L H)

3The heat exchanged across a wall is proportional to the temperature gap.
4The present numerical implementation applies the Robin boundary condition direction-wise.
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The value of such operator for the filtered problem (lR 6= 0), calculated at high frequencies (n →∞),
is bounded to a constant value:

(3.15) lim
n→∞λRN = 1

lRL
and lim

lR→0+
1

lRL
=+∞

It is clear from equation 3.15 that the Robin boundary condition reduces the impact of noise
setting a limit to its detrimental contribution.

Nevertheless, let us underline that the Robin boundary condition is not a Dirichlet condition.
Hence, the original problem itself is modified using a Robin boundary condition, regardless of the
noise. To prove it, let us evaluate the difference in terms of amplitude ru between the solution
with Robin boundary condition (lR 6= 0) and the solution with Dirichlet boundary condition
(lR = 0):

(3.16) ru(lR ,n)= un(x, y, lR 6= 0)
un(x, y, lR = 0)

= 1

1+ µπnlR
tanh( πn

L H)

to observe that the value decreases from 1 to 0 as lR increases from 0 to ∞. Therefore, the
considered Robin boundary conditions degenerates into a Dirichlet condition for lR = 0, while it
degenerates to an homogeneous Neumann condition for lR →∞ (i.e. the prescribed displacement
is completely adsorbed by the Robin spring).

However, the Robin boundary condition might be an acceptable approximation of a Dirichlet
condition for relatively small values of the Robin coefficient lR . Yet, the smaller lR is, the less
noise impact is reduced: a compromise has to be reached. The present work proposes to guide the
compromise by the Discrepancy Criterion of Morozov [100]. The idea beyond such a criterion is to
not require the solution to be more accurate than the measured boundary condition itself, which
originates from a device with a finite precision. The discrepancy criterion reads:

(3.17)
∣∣∣∣u∼ b −u∼ lR

∣∣∣∣
Γ ≤ kς

meaning that the solution u∼ lR (evaluated on the boundary Γ) is acceptable if the difference with
the measured (and prescribed) displacement u∼ b remains within an acceptable range. To provide a
physically reasonable value for this latter range, it is calculated as k times the standard deviation
ς of the measured data. The norm is calculated as a p-norm. The order of the norm is arbitrary.
Therefore, an Euclidean (p = 2) norm is considered in this work.

The evaluation of the optimal Robin coefficient is obtained by assuming an elastic behaviour.
In this case, the variational formulation of an elastic problem with Robin boundary conditions
reads:

(3.18) a(u∼ lR ,v∼)+ 1
lRSΓ

∫
Γ
(u∼ lR −u∼ b)v∼ dS= l(v∼)

where Γ is the portion of boundary where the Robin boundary condition is prescribed, v∼ is a test
function, l(v∼) the work of the external forces, and a(u∼ lR ,v∼) the following bilinear form:

(3.19) a(u∼ lR ,v∼)=
∫
Ω
C : ε∼∼(u∼ lR ) : ε∼∼(v∼)dΩ

The solution of the system of equations 3.18 and 3.17 is not linear with respect to variables
(u∼ lR , lR) because of the non-linear dependence of u∼ lR with respect to lR . Nevertheless, since the
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current objective is to get a relatively small value of lR , it is possible to substitute u∼ lR by an
asymptotic development around lR = 0. The following ansatz is proposed:

(3.20) u∼ lR = u∼ 0 + lRu∼ 1 + l2
Ru∼ 2 +·· ·+ ln

Ru∼ n

Appendix D shows that the ansatz is valid since it is possible to determine all the coefficients u∼ n.
The asymptotic development is here truncated at the first two terms of the series, u∼ 0 and u∼ 1.

(3.21) u∼ 0|Γ = u∼ b and u∼ 1|Γ =−SΓσ∼∼ (u∼ 0)|Γ ·n

They are obtained from the solution of the problem where the noised displacements are applied
on Γ as a Dirichlet boundary condition. Therefore, the Morozov condition is approximated as:

(3.22)
∣∣∣∣u∼ b −u∼ 0 + lRu∼ 1

∣∣∣∣
Γ =

∣∣∣∣lRu∼ 1
∣∣∣∣
Γ ≤ kς

leading to the expression of the optimal Robin coefficient value:

(3.23) lR = kς

SΓ
∣∣∣∣∣∣σ∼∼ (u∼ 0) ·n∼

∣∣∣∣∣∣
Γ

However, the hypothesis of purely elastic behaviour is not met in the cases studied in
the present work, because of the elasto-visco-plastic behaviour of the structure and the early
development of spurious plasticity due to noise within the elastic regime. Therefore, σ∼∼ (u∼ 0)|Γ is
here considered as the solution of the possibly non-linear problem where the noised boundary
conditions have been applied as a Dirichlet condition for the smallest displacement level that can
be prescribed. For instance, it is the first time step given by the images’ sampling.

To summarize, the mechanical filtering via the Robin boundary condition requires three
steps. The first step consists in a partial resolution (first loading step only) of the problem with
noised displacements prescribed as Dirichlet boundary conditions. The second step consists in
the calculation of the optimal coefficient. The third step consists in full resolution of the problem
with noised displacements prescribed as Robin boundary conditions. The Robin coefficient lR is
kept constant with respect to time.

The norm
∣∣∣∣∣∣σ∼∼ ·n∼ ∣∣∣∣∣∣

Γ
in equation 3.23 is calculated as:

(3.24)
∣∣∣∣∣∣σ∼∼ ·n∼ ∣∣∣∣∣∣

Γ
=

√
1

SΓ

∫
Γ

(
σ∼∼
·n∼

)2
dS

where the normalization by SΓ yields a norm that does not change the measurement unit. For a
discretized surface, where potentially each element e has a different size, the norm can also be
computed as:

(3.25)
∣∣∣∣∣∣σ∼∼ ·n∼ ∣∣∣∣∣∣

Γ
=

√√√√ 1
SΓ

∑
Γe

ngp∑
i=1

(
Jiωiσ∼∼ in∼ i

)
e

where i is an index over the Gauss points ngp of the element e. Notation J indicates a Jacobian
term mapping the deformed configuration into the reference configuration, while notation w
indicates the weight associated to the Gauss points. Furthermore, let us note that the finite
element calculation of such a quantity requires a first extrapolation of the stress values from the
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Gauss points of the element to the nodes of the element common with the surface Γ, and a second
interpolation of the stress values from the nodes of the surface to the Gauss points of the surface.

The optimal Robin coefficient for the tensile test on the perforated flat specimen values
lR = 2.78×10−7 mm/N, considering k = 2 and ς= 10−3 mm. Such coefficient produces a reduction
of the noise impact, as can be seen in figure 3.11. The discrepancy condition is indeed verified since∣∣∣∣u∼ b −u∼ lR

∣∣∣∣
Γ ≈ 1.5×10−3 mm which respects the initial condition (kς= 2×10−3 mm). Furthermore,

it might be interesting to evaluate if locally the solution on the boundary is close to the measured
(so prescribed) displacement. To do, the solution on the boundary is compared with the scattering
band of the measure on the same boundary, as visible in figure 3.12. Since 85% of the solution
values are within the scattering band the solution with Robin boundary conditions is considered
as satisfactory.
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Figure 3.11: Absolute alteration coefficient δa,σ22 for a Robin boundary condition with lR =
2.78×10−7 mm/N.
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Figure 3.12: Solution on the boundary where displacement boundary conditions are prescribed.
Robin solution (green) scattering band used to verify the discrepancy criterion. The scattering
band corresponds to the prescribed noised displacement (ub) ±kς, with k = 2 and ς= 10−3. In this
case 85% of the computed values are within the acceptable range. The amplitude is significantly
reduced, but the average solution is altered with respect to the solution of the reference problem.

3.4 Discussion

Regarding the perforated flat specimen, the data reconstruction approaches provided a higher
noise impact reduction compared to the mechanical filtering of the problem, or about 3 orders
of magnitude within the elastic regime. Yet, in order to further evaluate the different filtering
techniques, let us focus on a more complex example: a tensile test on a flat specimen inspired
from the first Sandia Challenge [19], see figure 3.13. The difficulty with this case is that a portion
of the specimen is hidden by the machine clamps during the test. This portion must thus be
omitted from the finite element model of the specimen in order to be able to prescribe measured
displacements as boundary conditions. The part of the geometry taken into account for this
example is visible in figure 3.13. The choice of the geometry’s cut is in general arbitrary. The
present choice of the cut is made in order to be able to compute a value of the force reaction to be
compared to the measured force.

3.4.1 Artificial boundary conditions

At first, artificial boundary conditions are used in order to define a reference simulation for the
evaluation of the noise impact. A numerical simulation is carried out on the entire finite element
model prescribing a constant displacement on the pins (4 mm/min). Afterwards, displacements
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are extracted at the boundary coordinates of the finite element portion (the "submesh") to be used
as reference boundary conditions. Then, noised boundary conditions are generated by adding
a Gaussian noise to the reference boundary conditions. Such noise component has null mean
value and standard deviation ς = 10−3 mm. Let us note that, in order to represent at best a DIC
measurement, only surface displacements are extracted from the full simulation. An hypothesis
of constance in depth is then made. In order to choose the parameters for the data reconstruction

(a) (b)

Figure 3.13: Tensile test on a complex geometry specimen. Tensile test schema on the left and
specimen mesh used for computation on the right.

techniques (polynomial order, window size) it is necessary to perform a prior analysis of the
boundary conditions. In spite of the proximity of the edges with the geometrical singularities, the
reference boundary conditions traced on the curvilinear axis (see figure 3.14) appears smooth
enough to be reconstructed either by a single polynomial function or by a moving least squares
technique. The choice of the polynomial order is here restricted to values larger than 2 since. It is
clear from the curves in figure 3.14 that neither a 0 order polynomial nor a 1 order polynomial
can reproduce the reference boundary conditions, since the real displacement profile barely
corresponds to a low order polynomial. To prove it, the application of a low order polynomial
(< 2) in the present case causes a distortion of the original problem, which may be still assessed
in terms of alteration coefficient as visible in figure 3.15: there is a ratio of around 10 on the
absolute alteration coefficient between orders 1 and 3. However, for an order 3 polynomial, high
impact values can be observed at the extremes of the interval. It may signify that the boundary
condition is not smooth enough to be captured by a low order polynomial function.

Consequently, the moving least square method may represent the better choice among the
data reconstruction approaches. The considerations on this technique made for the perforated
flat specimen are still valid: if window size is undersized, noise is reproduced and no filtering
occurs. As visible in figure 3.16, the choice of a small window sizes (w = 3) produces negligible
noise impact reductions regardless of the polynomial order, while a window size of w = 27 points
produces a significant noise impact reduction.

In this case, the optimal Robin coefficient given by equation 3.23 is lR = 2.84×10−7 mm/N for
the top edge and lR = 2.48×10−7 mm/N for the bottom one. These values lead to a satisfactory
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Figure 3.14: Displacement on the top boundary of the Sandia Challenge specimen. Notation s
designates the curvilinear axis.
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Figure 3.15: Absolute alteration coefficient δa,σ22 for different orders of the smoothing polynomial
function. An inappropriate value of the polynomial order (2,3) produces a distortion of the original
problem .
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Figure 3.16: Alteration coefficient δa,σ22 for different parameters of the moving least squares
algorithm.

reduction of the noise impact, as visible in figure 3.17 for the top edge. The discrepancy condition
is indeed verified since

∣∣∣∣u∼ b −u∼ lR

∣∣∣∣
Γ ≈ 1.1×10−3 mm which respects the initial condition (kς=

2×10−3 mm). Furthermore, the solution is also locally acceptable since it is relatively close to the
prescribed values, as visible in figure 3.18.

All the proposed filtering techniques provides a satisfactory reduction of noise impact. On
the one hand, data reconstruction showed better scores than the mechanical filtering, but on
the other hand, it requires a prior analysis of the boundary conditions to determine the optimal
parameters, which may be non trivial. Instead, the mechanical filtering is an automated approach
since it works regardless of the boundary condition profile.
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Figure 3.17: Alteration coefficient δa,σ22 for a Robin boundary condition with lR = 2.84×10−7

mm/N.
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Figure 3.18: Displacement solution on the top edge. Robin boundary condition (blue line) and
scattering band (blue) used to verify the discrepancy criterion. The scattering band corresponds
to the prescribed noised displacement (ub) ±kς, with k = 2 and ς= 10−3. In this case 85% of the
computed values are within the acceptable range.
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3.4.2 Experimental boundary conditions

In order test the presented filtering techniques on experimental full-field measurements, a
mechanical test has been carried out on the specimen inspired from the first Sandia Challenge.
A constant uniform displacement (4 mm/min) is prescribed by the tensile test machine. A local
DIC software developed at ONERA [28, 75] provides the full field surface measurement from
which the boundary conditions for the "submesh" are extracted. The estimated DIC uncertainty
for the considered specimen is ς=±5×10−4 mm. The polynomial reconstruction is carried out
using a polynomial order p = 3, while the moving least squares technique using a polynomial
order p = 1 with a window size w = 27. The optimal Robin coefficients are estimated at the
first loading step using k = 2, which gives 3.298×10−7 mm/N and 4.756×10−7 mm/N for the
top and bottom edges respectively. Let us note that using experimental boundary conditions a
reference cannot be defined, so noise filtering may be evaluated this time based on the artificial
cumulated plasticity that develops on the boundary of the mesh (which does not correspond to
a free boundary in real life). As visible in figure 3.19, unfiltered boundary conditions leads to
develop artificial cumulated plasticity on the boundary. Moreover, its value is similar to the value
calculated around the specimen’s holes. All the proposed filtering techniques allow to limit the
development of cumulated plasticity on the boundary. The cumulated plasticity maxima are no
longer located on the edges.

Furthermore, all the presented filtering techniques allow to perform numerical computation
which is consistent with the experimental observations. Figure 3.20 shows that all the computed
forces are consistent with the experimental one. Let us note that the rapid rise of the computed
load is obtained close to the experimental failure initiation point. This is due to the fact that
the plasticity model is unable to reproduce damage, which was excluded in this case from the
computation, so that the computed displacement fields cannot reproduce the experimental ones
(large mode I opening).
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Figure 3.19: Cumulated plasticity on a portion of complex geometry for the three considered
filtering techniques and the unfiltered simulation.
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Figure 3.20: Measured force compared to the computed reaction. Notation Macro indicates the
curve computed on the full geometry prescribing the same macroscopic displacement rate used
for the experimental tests. Notation Unfiltered indicates the simulation where the measured
boundary conditions have been directly prescribed as a Dirichlet boundary condition. Notations
MLS, Pol, Robin indicate the filtering technique associated to the prescribed boundary conditions.
For instance, moving least squares, polynomial function and Robin boundary condition.

3.5 Conclusion

The negative effects produced by noised boundary conditions prescribed to a mechanical problem
have been studied. It has been shown that impact of noise is maximum around the edges where
boundary conditions are prescribed and that impact is higher on the derived fields (e.g. strain)
compared to the zero order fields (e.g. displacement). Three filtering solutions have been proposed
and discussed based on an alteration coefficient defined on the difference with a reference
(numerical) solution. The first two techniques aim at the reconstruction of the noised boundary
condition (polynomial extrapolation and moving least squares reconstruction), while the latter
one aims at the mechanical filtering of the problem thanks to a Robin boundary condition. All the
different filtering techniques reduced the impact of noise. The data reconstruction techniques
gave better results compared to the mechanical filtering. However, they require a prior analysis
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of the data in order to set the function parameters (order of the polynomial, window size). Instead,
the mechanical filtering by the Robin boundary condition turned out to be a robust technique
based only on a filtering coefficient (here called the Robin coefficient lR) which computation
can be automated. However, the filtering capacity of this latter technique is constrained by
the compromise made on lR . In fact, a Robin boundary condition can be an approximation of a
Dirichlet condition only for small values of lR . The proposed filtering techniques have been applied
to a problem where boundary conditions were issued of a Digital Image Correlation measurement
on a tensile test: all of them were able to limit the development of artificial cumulated plasticity
on the boundary, which may be responsible of wrong failure prediction otherwise.
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Résumé

Ce troisième chapitre est un préambule à la méthode FEMU, et traite la prescription des
déplacements mesurés comme condition au bord pour le calcul éléments finis. Cette opération
assure la cohérence de la comparaison entre essai et calcul, qui est à la base de l’identification
par recalage de modèles éléments finis. Parce que les valeurs mesurées sont polluées par
l’incertitude de mesure (bruit), cette opération conduit à des altérations importantes de la
solution mécanique.
Au travers d’un cas analytique il est prouvé que les effets négatifs du bruit de mesure sont plus
importants pour les champs dérivés (par exemple les contraintes) et que cette altération est
concentrée près des bords où les déplacements sont imposés. Dans le cas d’un calcul élasto-
plastique, ce problème n’est pas négligeable car il conduit à générer de la plasticité artificielle
qui pourrait induire une simulation incorrecte de la rupture. Le filtrage du bruit est donc
fondamental. Différentes solutions de type filtre passe-bas sont possibles, comme par exemple
des techniques de reconstruction (lissage) ou des techniques de régularisation mécanique. Ces
différentes solutions ont été comparées. Les techniques s’appuyant sur le lissage montrent
des atténuations importantes de l’impact du bruit, mais nécessitent une analyse préalable
de la donnée afin de déterminer les paramètres de lissage. Ce type de solution est donc peu
automatisable contrairement aux techniques basées sur la régularisation mécanique. Dans ce
contexte, un filtrage mécanique innovant basé sur la condition au bord de Robin est proposé.
Un seul coefficient est nécessaire pour ce type de filtrage et il s’obtient en suivant un protocole
bien défini.
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4
FINITE ELEMENT MODEL UPDATING

This chapter describes the Finite Element Model Updating strategy considered to perform
parameter identification from both the measured force and full-field measurements. It provides
a description of the technique and a practical guidance for the identification of parameters.
Section 4.1 introduces parameter identification as an inverse problem. Afterwards, section 4.2
focuses on parameters identification from full field measurements and motivates the choice
of FEMU in the present study. Subsequently, section 4.3 describes the implemented FEMU
technique, detailing the cost function used. Finally, section 4.4 presents and discusses the
application of FEMU to the considered material for the identification of the plasticity parameters.

4.1 Parameter identification

Performing parameter identification basically means solving a so called inverse problem, in
opposition with the classical forward problem of solid mechanics. A brief description of forward
and inverse problems is provided in the following.

Forward problem A forward problem is a problem for which the input data and the model (also
referred to as the system) together with its parameters are known. Both the material parameters
and the geometry are considered as model parameters. The unknown of the forward problem
is the response of the system. As an example, for a mechanical problem, given a solicitation, a
mechanical model and a set of variables, the response of the forward problem consists in the
deformed geometry and in the mechanical fields (stress, strain, displacement, etc.). In most of
cases, a forward problem is well-posed according to Hadamard [59], i.e.:

• the solution exists (existence)

• the solution is unique (uniqueness)

• the solution is continuous with respect to the parameters of the system (stability)

The latter conditions ensures a low dependency of the solution on small errors on the input data
or on the geometrical discretization.
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Inverse problem An inverse problem is a problem for which the input data is known but the
model is totally (or partially) unknown. To solve the inverse problem, it is necessary to know
(totally or partially) the response of the system. In most cases, for a mechanical problem, the
system is only partially unknown: the geometry and the material model are known, but the model
parameters are not. The inverse problem can then be solved by knowing the response (force,
displacement, strain, etc.) of the system. When only the parameters of the model are unknown,
the inverse problem is referred to as an identification problem [51].

However, contrary to the forward problem, the inverse problem is in general ill-posed ac-
cording to Hadamard. Because of the lack of completeness of the model (in general the model
does not represent the whole set of complex phenomena that occurs during deformation) it is not
possible to determine the exact solution of the inverse problem (inverting the forward problem).
Therefore, the inverse problem is reformulated as an optimization (or minimization) problem1,
which stability is not ensured because of the uncertainties which affect the input data. However,
the stability can be improved by considering superabundant data, as full-field measurements.

4.2 Parameter identification from full field measurements

There exists several techniques to perform parameter identification from full field measure-
ments [51, 54]. In the following, four of the most commonly used methods are presented. One of
them, FEMU, is retained.

4.2.1 Constitutive Equation Gap method (CEG)

This method aims at minimizing the discrepancy between an admissible stress field τ∼ and a stress
field σ∼ (uexp) computed from the experimental displacement uexp via the constitutive relation,
σ= C∼∼ (θ) : ε∼(uexp), with C∼∼ (θ) the elastic tensor dependent on the set of unknown parameters θ.
The discrepancy is quantified thanks to an energy norm representing the constitutive equation
gap:

(4.1) E (uexp,τ∼,θ)= 1
2

∫
Ω

(
τ∼ −C∼∼ (θ) : ε∼(uexp)

)
: C∼∼ (θ)−1 :

(
τ∼ −C∼∼ (θ) : ε∼(uexp)

)
dΩ

The constitutive equation gap of equation 4.1 has been first proposed as an error indicator for
finite element simulations [73], and was considered only later as an identification tool. Is has been
used to identify the parameters of elastic behaviours [17, 46] and an elasto-plastic behaviours [51]
(considering a secant tensor). However, the majority of the applications concern elastic problems.
Furthermore, let us note that, since DIC measurements are only available on the surface, the
applications of the CEG method usually concerns problems for which the assumption of plane
stress is valid.

4.2.2 The Virtual Fields Method (VFM)

This method, proposed by Grediac [53], is based on the principle of virtual work, which reads:

(4.2)
∫
Ω

σ∼ (θ,ε∼) : ε∼(u∗)dΩ−
∫
∂Ω

T ·u∗dS = 0

1Such an approximative solution is also formalized as a quasi-solution in the sense of Tikhonov [127].
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with u∗ a kinematically admissible displacement field. The principle of virtual fields method is
simple. It aims at verifying the equilibrium equation in a weak sense for a prescribed strain field.
To do so, the stress tensor on the left term is evaluated from the constitutive law (explicitly for a
linear elastic problem, implicitly for an incremental plastic problem) as function of the material
parameters and of the experimental strain: σ∼ = f (θ,ε∼exp). Hence, it is possible to build a system
of equations where the unknowns are the n parameters to be identified. In order to be solved, the
system must contain at least n linearly independent equations, which are obtained by carefully
choosing the virtual displacement fields. This latter requirement represents the main difficulty
with this method. Several works within the literature concern the choice (possibly automatic) of
the virtual fields [52, 55, 129]. This Virtual Fields Method is a promising approach, since it allows
the identification of dynamic properties by adding an acceleration term to the principle of virtual
work. Furthermore, since there is no need to build an underling Finite Element model, the VFM
does not require to know the exact boundary conditions. However, a particular attention to the
experimental uncertainty is necessary, since the required quantities (strain and acceleration) are
derivatives of the measured displacement: the derivation operation might amplify the uncertainty.
Furthermore, as for the CEG methods, the majority of the applications within the literature
concern situations for which the plane stress hypothesis is valid.

This method has been applied to identify, elastic [27] parameters, viscoelastic parameters [56],
plastic parameters [8, 27], but also damage parameters [104] for ductile behaviour. Let us note
that this latter reference considers a local Lemaitre damage model, where the damage law is
based on 3 parameters.

4.2.3 The Equilibrium Gap Method (EGM)

This method aims at verifying the equilibrium relation in a local sense. Hence, it consists in
minimizing the force residuals associated to a local mismatch of mechanical properties. The
measured displacements uexp are prescribed on each node of the mesh and the parameters θ
are updated until the force residual vector is null. It can be written in a weak form to be solved
based on a finite element discretization [110]. As an example, for an elastic problem, whit K∼ the
stiffness tensor, the cost function reads:

(4.3) f res = K∼ (θ) ·uexp − f

where vector f contains the applied nodal forces. This latter vector is null when only the interior
nodes are considered. Like the virtual fields method, it requires the full-field displacement to be
available over the entire surface of a 2D specimen.

This approach has been used to identify elastic properties [4], damage fields [30] and damage
laws [34, 110] for composite materials. These latter applications concern local phenomenological
descriptions of damage. An interesting comparison between FEMU, described here after, and the
Virtual Fields Method can be found in [6].

4.2.4 The Finite Element Model Updating method (FEMU)

This method aims at minimizing the discrepancy between a measured quantity and its simulated
counterpart by means of an optimization algorithm. The set of parameters which minimizes the
discrepancy is the targeted set of material parameters. The discrepancy is quantified via a cost
function considering either a single data type (displacement, force, temperature, . . . ) or several
ones.
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The principle of FEMU is intuitive. The corresponding flowchart is presented in figure 4.1.
Each iteration includes the computation of a finite element solution and the evaluation of the
cost function. Based on this latter evaluation the considered parameters are either kept and the
identification stops, or updated to provide the input for the subsequent iteration. The presence of

  

Cost Function < ε

   YES

Solution (EF)Measure (DIC) Boundary Conditions

Parameters Update
NO

Parameters

Tensile Test

Identified Parameters

Initial Guess

Figure 4.1: Flowchart for parameter identification by Finite Element Model Updating.

a finite element solution within the loop ensures that the equilibrium condition is automatically
verified. Hence, for a given set of parameters, if the displacement solution exists, it is also
kinematically admissible.

Historically, the first approaches of FEMU where based on a force cost function [33]. The
displacement cost function arrived later [42] together with the full-field measurement techniques.
Nowadays, it is quite common to use mixed cost functions. FEMU has been successfully used
to identify elastic parameters [79, 121] and plastic parameters [37, 60, 93, 122]. Some works
consider FEMU to perform identification of plastic parameters within the finite deformation
framework [92, 109].

There exists a multitude of works within the literature, not labelled as FEMU, where the
material parameters are identified by minimizing the discrepancy between the experimental
response and the simulated one, as [37, 96]. Nevertheless, the boundary conditions are not
always issued of a measurement system [124], and when they are the problems related to the
measurement uncertainties described in chapter 3 is not taken into account. In other cases the
cost function considers only macroscopic quantities (i.e. not full-field measurements) [123].

A FEMU technique has also been used to identify the parameters of local Gurson damage
models [23, 90, 91, 123]. Despite the positive results, they are potentially dependent on the
finite element mesh used for the simulations, and might not be used to simulate a specimen
with different mesh size. Instead, in the present work, the FEMU approach is used to identify
the parameters of a non local model, which solution is independent from the mesh size and
orientation, as the identified parameters.
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The motivations for the choice of the FEMU as identification approach can be summarized in
the following points:

• the cost function can be formulated using observable data: force and displacement. In this
way, the experimental uncertainties are not amplified by numerical derivation to obtain
strain fields. Furthermore, the major advantage of using displacements rather than strains
implies than any kind of strain formulation (corotational, multiplicative, logarithmic, . . . )
can be used in the FE calculations. A possible change of the finite element formulation is
then neutral with respect to the identification procedure;

• the structure effects due to the large deformations are implicitly taken into account within
the finite element solution;

• the FEMU approach does not require the measured displacement field to be available on
the entire observed surface. Hence, correlation errors might be tolerated;

• it is possible to parametrize aspects of the model other than the behaviour’s law parameters,
as the regularization parameter of the non-local models;

• the implementation is flexible regarding the finite element (FE) solution. Indeed, since the
FE model can be seen as a black box tool, the FEMU can be easily interfaced with different
FE codes;

• the hypothesis of plane stress is not required.

An efficient identification procedure based on FEMU must consider consistent comparisons
between experiments and simulations. To do so, measured displacements are prescribed as
boundary conditions to the finite element problem. However, as illustrated in chapter 3, such
an operation could lead to an erroneous solution if the measurement uncertainty is neglected.
Regarding the management of the boundary conditions, the choice has been here to invest time
to analyse the evolution of the boundary conditions in order to use the moving least squares
reconstruction technique.

In this work, the in-plane boundary conditions are considered as constant along the thickness
direction to compute 3D simulations. It can be considered an acceptable approximation as long as
displacement is prescribed on boundaries relatively far from geometrical non-linearities. The out-
of-plane boundary conditions are handled considering the symmetry of the specimen (only half of
the specimen is modelled). Furthermore, beyond the problems related to the noised boundary
conditions, the proposed FEMU implementation is sensitive to transfer of values from the DIC
coordinate system to the FE coordinate system. Indeed, as discussed in appendix B, since the
finite element mesh is built independently from the DIC results, it is necessary to ensure that the
true coordinate systems are correctly aligned, in order not to add bias to the measured values.

Moreover, let us note that the main limitation of FEMU is related to the computational
time, which might not be negligible when simulating complex behaviours as in the present
case. Indeed, the computational time of one simulation determines the duration of the entire
identification, which takes usually between 15 and 20 iterations to converge. The heaviest
operation is here the computation of the Jacobian matrix used to update the parameters: it
requires m+1 simulations with m the number of unknown parameters. For this reason, this
operation has been parallelized, so that the computation of the Jacobian costs (in terms of time)
as a single computation. Nevertheless, the duration of identification remains considerable.
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4.3 Cost function

The cost function is the core of the identification algorithm. It is, in general, defined as p-norm of
the discrepancy between the experimental and the numerical response, which is referred to as
the identification residual. Hence, the cost function is a scalar function ψ :Rm →R where m is
the number of time steps considered. Explicitly:

(4.4) ψ= ∣∣∣∣r(θ)
∣∣∣∣

p =
(

m∑
i=1

∣∣r i(θ)
∣∣p

) 1
p

where θ is the vector of the unknown parameters. Several authors agree with the choice of an
Euclidean norm (p = 2) [37, 68, 70, 79, 92, 109], since it leads to a differentiable cost function,
and the minimization problem is generally formulated as a least squares minimization problem.
An absolute norm (p = 1) could be used as well [25]. The Euclidean norm is considered in the
present work.

The proposed norm defines a mixed cost function, combining both the force residual and the
displacement residual by means of a scalar coefficient α ∈ [0,1]:

(4.5) ψ=αψd + (1−α)ψ f

The residuals are chosen to be adimensional quantities because of their different nature:

(4.6) ψd = f (usim(θ)−uexp)
Wd

ψ f =
f (Fsim(θ)−F exp)

Wf

where notations sim and exp are used to refer to simulated and experimental quantities respec-
tively, while Wf and Wd are the normalization coefficients for displacement and force respectively.
The choice of these latter coefficients is not straightforward since they must lead to residuals of
the same order of magnitude in order to manage the weight of the displacement term and the
force term only through the parameter α. Several examples of normalizations might be found
within the literature. Among them:

• Pottier [109] normalizes each term of both residuals (force and displacement) by the
maximum value measured at the considered step;

• Manhken [92] normalizes the displacement residual by the initial residual (the discrepancy
between the experimental displacement and the displacement computed using the initial
guess parameters);

• Kajberg [67] normalizes both residuals by the amplitude of the considered quantity;

• Robert [115] normalizes the force residual by the maximum value at the considered step, as
Pottier [109], while the displacement residual by the standard deviation of the measured
displacement.

In the present work an approach similar to Robert et al. [115] is considered: both the displace-
ment normalization coefficient and the force normalization coefficient are calculated using the
standard deviation definition2. After implementation, this proposition seems to lead to adimen-
sional values of the same order of magnitude both for the displacement residual and the force
residual.

2No statistical meaning should be attributed to the force normalization factor although it is computed as a
standard deviation.
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The considered cost function aims at minimizing the average Euclidean distance between
the calculated and measured quantities. The average value is meant both in a spatial and in a
temporal sense. The displacement and force residuals read:

(4.7) ψd =

√√√√√ 1
te − ts

te∫
ts

[
1
Ω

Ï
Ω

Ndim∑
i=1

(
uexp

i −usim
i (θ)

)2 dΩ

]
dt

√√√√√√ 1
te − ts

te∫
ts

[
1
Ω

Ï
Ω

Ndim∑
i=1

(
uexp

i
)2 dΩ

]
dt−

 1
te − ts

te∫
ts

 1
Ω

Ï
Ω

√√√√Ndim∑
i=1

(
uexp

i
)
dΩ

dt


2

(4.8) ψ f =

√√√√√ 1
te − ts

te∫
ts

Ndim∑
i=1

(
F exp

i −Fsim
i (θ)

)2 dt

√√√√√√ 1
te − ts

te∫
ts

Ndim∑
i=1

(
F exp

i
)2 dt−

 1
te − ts

te∫
ts

√√√√Ndim∑
i=1

(
F exp

i
)
dt


2

where it is possible to recognize the discrepancy terms at the numerators and the standard
deviations at the denominators. In the expressions of the residuals:

• notation Ω indicates the area considered for the minimization of the displacement cost
function. The choice of such a parameter should be done based on sensitivity analysis, as
shown in appendix E, in order to exclude those zones which are insensitive from a variation
of the parameters since solely the measurement uncertainty would contribute to the cost
function

• notations ts and te indicates respectively the initial and final time instants to consider for
the identification. As for the minimization area Ω, the time interval should be chosen based
on a sensitivity analysis

• notation Ndim indicates the displacement components to take into account within the cost
function. A major guidance for the choice of this parameter is provided by the sensitivity
analysis. However, the choice depends also on the measurement equipment, so that the
coefficient might be different between displacement and force residual, as in the present
case. Indeed, the load cell of the tensile test machine provides the force along a single
direction, while the stero-DIC system provides the displacements along 3 directions.

Furthermore, let us note that the choice of an integral formulation for the spatial average was
made in order to obtain a cost function value independent from the number of nodes of the
finite element mesh, which might change because of a mesh adaptation operation. Similarly,
the integral formulation for the temporal average is introduced to be independent from the
sampling frequency of the images which might not be constant during the different stages of
loading (elasticity, plasticity, . . . ).

Finally, in order to take into account the experimental scattering, the parameters should be
identified on several tests at the same time. To do so, a unique cost function constituted by the
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sum of the individual contributions is considered:

(4.9) ψ=
Ntest∑
n=1

(
αnψd,n + (1−αn)ψ f ,n

)

4.4 Identification of parameters within the plastic regime

This section illustrates the identification of the plasticity parameters, which is carried out
considering the largest number of experimental tests as possible in order to take into account the
scattering of the data. The approach is focused at first on the hardening parameters, and then on
the Hosford exponent. Moreover, the identification considered solely the part of the experimental
response within the plastic regime, which is a condition verified up to a strain value of about 40%
(i.e. without damage), as shown in section 1.4.

The FEMU identification is supported by the sensitivity analysis illustrated in appendix E.
The identification is assumed, in this study, to be efficient solely if a perturbation of the parame-
ters induces a variation of the response (force, displacement) which is at least comparable with
the uncertainty of the measurement instrument. Indeed, since the cost function is minimized by
means of a gradient method, which evaluates the minimization direction based on a Jacobian
matrix computed by perturbation of the parameters, a variation of the response within the range
of uncertainty of the measure might lead to local minima of the cost function.

4.4.1 Identification of the hardening parameters

This identification is carried out using both the classical approach for identification and the
FEMU approach, in order to validate this latter by means of a comparison with a commonly
accepted approach. To start, let us recall the hardening law from chapter 2:

(4.10) R(p)= R0 +Q1(1− e−b1 p)+Q2(1− e−b2 p)

where R0, the yield stress, together with the hardening coefficients Q1, b1, Q2 and b2, are referred
to as the hardening parameters to be identified.

Classical approach The most straightforward procedure for the identification of the harden-
ing parameters, referred to as the classical approach, consists in fitting the experimental stress
versus strain curves. Such a technique, based on punctual measurements (extensometer), relies
on the hypothesis of homogeneous deformation within the gauge length, which is sufficiently
satisfied considering smooth specimens. The classical approach is also based on the hypothesis of
mass (volume) conservation (valid within the plastic regime only) which allows to determine the
relation between the true quantities of the hardening law (σ, ε) and nominal quantities issued
from the experimental tests (σn, εn), as described in chapter 1, equation 1.4. Therefore, the
classical identification was carried out considering two tests on smooth specimens that were
equipped with an extensometer: tests CSMOOTH-3 and CSMOOTH-4 (see table 1.2).

FEMU approach Contrary to the classical approach, the FEMU approach can be applied to
any geometry. The following 10 tests have been considered to identify the hardening parameters
via FEMU: CAE10-(1,2) CAE4-(1,2) CAE2-(1,2) PAE1-(1,2) and PAE2-1. The smooth specimens
were excluded since the lack of remarkable features (corners or artificial markers) on their
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surface does not allow a correct alignment of the coordinate systems according to the procedure
described in appendix B. The first step to set up the FEMU identification is to analyse the
results of the sensitivity analysis according to the criterion mentioned in the introduction of this
section. It is shown that the influence of the hardening parameters on the displacement fields is
located on the same area, which would imply an indetermination of the parameters if solely the
displacement discrepancy were considered. Indeed, it would not be possible to distinguish the
individual contribution of each parameter. Furthermore, the influence of parameters Q1 and b1
on displacement is negligible (compared to the measurement uncertainty) both at the early and
late stages of hardening. For these reasons, the repartition coefficient α was set to α= 0 in order
to minimize the force discrepancy only. Solely the vertical component of the simulated load is
considered, since it is the unique component comparable with an experimental quantity.

Let us note that there is a slight difference between the FEMU identification and the classical
one: the Hosford exponent identification. Indeed, the influence of this parameter is null for smooth
specimens but not for notched specimens, because of the multi-axial state of stress. For this
reason, the Hosford exponent should, a priori, be considered within the FEMU identification at
the same time than the hardening parameters. However, since the sensitivity analysis showed
that the influence of such a parameter on the force discrepancy is here negligible (i.e. with α= 0),
it has not been considered for this first step of identification.

The FEMU algorithm has been tested considering different guess values, in order to assess the
uniqueness of the solution. The results and their relative initial values are reported in table 4.1:
All the techniques converge to a similar set of values. However, the values of parameters Q1 and

Guess values
Parameter Classical FEMU 1 FEMU 2 Unit

R0 490 490 350 MPa
Q1 80 80 50 MPa
b1 230 230 300
Q2 3600 3600 2000 MPa
b2 0.6 0.6 0.7

Results
Parameter Classical FEMU 1 FEMU 2 Unit

R0 460 454 (−1.3%) 448 (−2.6%) MPa
Q1 62 71 (+14.5%) 78 (+26%) MPa
b1 315 408 (+29.5%) 397 (+26.%)
Q2 2820 2944 (+4.4%) 2905 (−3.%) MPa
b2 0.794 0.802 (+1%) 0.833 (+5%)

Table 4.1: Hardening parameters: guess values and identification results. The set of parameters
obtained via classical identification is similar to the set of parameters obtained using FEMU. The
difference with the parameters obtained by the classical approach is expressed in percentage
next to each values.

b1 identified using FEMU have a higher difference with respect to the the values identified using
the classical technique. This large difference is attributed to the relatively low influence of those
parameters on the global response, which is limited at the early stages of hardening, as visible in
figure 4.2.
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Figure 4.2: Evolution of the non-linear terms of the hardening law with respect to the cumulated
plasticity p, considering the parameters identified by the classical approach. The influence of
parameters Q1 and b1 is limited at the early stages of hardening, and produces a simple vertical
shift at the late stages of hardening.

4.4.2 Verification of the hardening parameters

The identified hardening parameters were verified by means of comparisons with the experimen-
tal data, in two steps. The first comparison was made based on the experimental responses of the
axisymmetric smooth specimens, which were excluded from the FEMU identification. As visible
in figure 4.3, the set of parameters issued from the classical identification leads to a numerical
curve which lies perfectly in between the two experimental ones. This confirms the validity of the
curve fitting performed. The parameters identified via FEMU leads to slightly overestimating the
response of the axisymmetric specimens. Let us recall that the FEMU identification considered
9 tests compared to the 2 tests considered for the classical identification. Further analysis of
the response on the other geometries are thus necessary to conclude on this difference. In the
meantime, let us note that the two curves considering the FEMU parameters are close to each
other, confirming the stability of the result. The set of parameters referred to as FEMU 1 is then
arbitrarily chosen as the set of identified hardening parameters.

Further verification of the hardening parameters was made by comparison between experi-
ment and simulation for all the tests on simple notched specimens carried out in this work, as
visible in figures 4.4, 4.5, 4.6 and 4.7 for axisymmetric, PAE1, PAE2 and plain strain geometries
respectively. The comparison with the experimental curves is satisfactory for both sets of parame-
ters (classical and FEMU 1 in table 4.1), confirming the validity of FEMU for the identification of
the hardening parameters. However, let us note that the computational time of these two types
of identification is not comparable, which motivates the choice of the classical approach if a large
number of tests on smooth specimens is available.
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Figure 4.3: Comparison between the identified set of parameters based on the experimental
response of the axisymmetric smooth specimens. The numerical curves are calculated up to a
strain level of 40%, which delimits the plastic regime.
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Figure 4.4: Comparison between the experimental responses and their numerical counterparts
for the axisymmetric specimens. The simulations are computed using the respective measured
boundary conditions and the identified set of parameters referred to as FEMU 1. The Hosford
exponent was set to n = 7.5.
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Figure 4.5: Comparison between the experimental responses and their numerical counterparts for
the flat PAE1 specimens. The simulations are computed using the respective measured boundary
conditions and the identified set of parameters referred to as FEMU 1. The Hosford exponent
was set to n = 7.5.
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Figure 4.6: Comparison between the experimental responses and their numerical counterparts
for the flat specimens. The simulations are computed using the respective measured boundary
conditions and the identified set of parameters referred to as FEMU 1. The Hosford exponent was
set to n = 7.5. The load of specimen PAE2-2 has been plotted versus time rather than elongation
in order to assess the accuracy of the management of the boundary conditions: the elastic unloads
(0.2 mm) are correctly reproduced. Specimens PAE2-2 and PAE2-3 were not considered for the
identification.
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Figure 4.7: Comparison between the experimental responses and their numerical counterparts
for the plane strain specimen. The simulations are computed using the respective measured
boundary conditions and the identified set of parameters referred to as FEMU 1. The Hosford
exponent was set to n = 7.5.
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From the analysis of the macroscopic responses, it appears that the load of flat specimens
is overestimated compared to the experiment, contrary to the axisymmetric specimens. Such a
mismatch is attributed to the material scattering, due to a possible inhomogeneity of the the raw
material. The stress versus strain curves of figure 4.8 illustrate the significant material scattering
on smooth specimens. However, a link with the microstructure has not been investigated.
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Figure 4.8: Experimental load for 3 different geometries. There is a considerable scattering due
to a possible inhomogeneity of the the raw material.

4.4.3 Identification of the Hosford exponent

As mentioned, the Hosford exponent was not included within the previous FEMU identification
since the repartition coefficient α was set to a null value (force gap only) and the sensitivity
analysis showed a negligible influence of this parameter on the force response for the considered
geometries. Therefore, the identification of this parameters was carried out in a second time.

According to the sensitivity analysis in appendix E, the Hosford exponent has a significant
influence on the horizontal displacement (orthogonal to the loading direction) especially for the
flat specimens PAE1 and PAE2. Therefore, the FEMU identification has been carried out by
setting the repartition coefficient to unit α= 1.0 and considering solely the horizontal direction
within the minimization. To limit the computational time, solely the test PAE2-1 was considered
for this step of the identification. Again, in order to verify the uniqueness of the solution, several
guess values have been tested (see table 4.2). The final values are similar to each other so that
an Hosford exponent n = 7.5 is retained as the identified value.

An additional confirmation of the validity of this result is given by the evolution of the cost
function with respect to the targeted parameter n visible in figure 4.9, from which the convexity
of the cost function is clear.
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Hosford exponent n
Guess Value 4 10 6
Final Value 7.3 7.9 7.6

Table 4.2: Hosford exponent: guess values and identification results.
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Figure 4.9: Convexity of the cost function with respect to the Hosford exponent. Let us not
the high convexity of this parameter given by the considerable sensitivity of the transversal
displacement field with respect to the Hosford exponent.

4.5 Conclusion

The proposed strategy for parameter identification has been successfully validated thanks to the
identification of the hardening parameters. Indeed, the obtained parameters are similar to the
parameters identified using a classical approach. A different behaviour was observed between flat
and axisymmetric specimens, which has been attributed to an intrinsic difference of the material
at the raw state. Finally, the Hosford exponent has been identified using FEMU, thanks to its
considerable influence of the transversal displacement field.
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Résumé

Ce quatrième chapitre introduit l’identification des paramètres à partir de mesures de champ
denses. Les principales méthodes présentes dans la littérature sont décrites, dont la méthode
FEMU retenue pour cette étude. La FEMU est choisie car elle s’appuie sur des quantités
directement mesurables et car elle permet de traiter des problèmes nécessitant une simulation
tridimensionnelle. La formulation de la FEMU proposée est basée sur une fonction coût de type
intégral afin de rendre la mesure de l’écart entre simulation et expérience indépendante du
maillage éléments finis. De plus, la fonction coût proposée prend en compte force et déplacement
simultanément, ce qui nécessite une normalisation adéquate afin de comparer ces quantités
de nature différente. La normalisation est faite en considérant les écarts types respectifs des
mesures. La mise en place de l’identification demande le réglage d’un nombre de facteurs
à prendre en compte tels que la zone d’intérêt ou bien les composantes de déplacement. Ce
réglage est guidé par des analyses de sensibilité. Ces analyses montrent si les paramètres ont
une influence suffisante pour l’identification par rapport à la précision des moyens de mesure.
Elles montrent également si les paramètres sont en compétition dans la zone considérée. Le
paramètres d’écrouissage de l’Inconel625 sont d’abord identifiés par une approche standard et
ensuite par FEMU sur des géométries différentes. La similitude entre les résultats issus de ces
deux approches, en termes de valeur et de réponse macroscopique, permet de valider l’approche
FEMU. Enfin, la FEMU est utilisée pour identifier le critère de plasticité d’Hosford à partir
d’un seul essai de traction sur éprouvette plane entaillée.
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5
IDENTIFICATION OF DAMAGE PARAMETERS VIA FEMU

This last chapter of the thesis is dedicated to the FEMU identification of the damage parameters
(both the parameters of the GTN model and the regularization parameter of the non-local model
being here referred to as damage parameters). Section 5.1 gives a brief literature overview of
different approaches for the identification of the GTN model. Subsequently, section 5.2 discusses
the influence of the regularization parameter for the considered model. Section 5.3 illustrates the
application of FEMU on a flat specimen and section 5.4 discusses the obtained results by means
of comparisons between experiment and simulation on several specimens.

5.1 Identification of the GTN model within the literature

There is not a unique approach to perform the identification of the GTN parameters. Various
approaches have been proposed so far, most of which consider a mixed experimental-numerical
technique with, possibly, SEM observations [71, 84]. The main purpose of SEM analysis is to
determine the parameters which have a micro-mechanical meaning, as the initial void volume
fraction or the final void volume fraction [71]. In this way, it is possible to reduce the number
of parameters to be identified by means of an optimization algorithm, which are managed as
phenomenological parameters. Reducing the number of parameters to be optimized is indeed as a
key point of parameter identification. With the same objective, several studies aim at determining
correlations between the parameters. Perrin et al [108], define parameter q1 as function of
porosity, showing that, for a null porosity, this parameter tends to q1 = 1.47, accordingly to the
result of Tvergaard and Needleman [131] (q1 = 1.5). Gao et al. [48] link parameters q1 and
q2 to the strain hardening, which has a decelerating effect on void growth. Zhang et al.[138]
propose a relation between fr and f0 ( fr = 0.15+2 f0). Benseddiq et al. [13] show that the critical
void volume fraction fc decreases with increasing stress triaxiality for a nickel-chromium steel
(12NC6). However, the results are based on a limited number of tests. Let us note that an
exhaustive overview of various identification approaches and their respective results can be found
in the latter mentioned work of Benseddiq et al.

Because of the similarity with the proposed FEMU approach, it is worth mentioning the
works of Springmann and Kuna [123, 124], where it is proposed to identify the GTN model
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by minimizing the distance (force and local displacement) between test and simulation by
means of a gradient method. However, their approach considers a local model of damage, giving
parameters potentially dependent on the considered mesh. Furthermore, the boundary conditions
are apparently not issued from local measurements, since only 1/8 of the specimen geometry is
modelled. Brunet et al. [24] consider a non-local model of damage and propose to identify the
damage parameters with a FEMU approach based on the force gap. The differences with the
present approach are that the non-local regularization is an explicit gradient formulation and
that the FE solution is obtained according to an explicit integration. Most of all, the boundary
conditions for the finite element problem do not appear as issued from full-field measurements.
Finally, let us mention a recent work of Abbassi et al. [2], where an Artificial Neural Networks
is coupled with DIC measurements to perform the identification of the GTN model parameters.
According to the authors, such an approach leads to considerable computational time gain.

5.2 Influence of the regularization parameter

In this section, the influence of the non-local regularization parameter (see chapter 2, equa-
tion 2.32) is investigated both within the hardening regime and the softening regime. Indeed,
although this parameter allows the correct simulation of the mechanical response during the
softening phase, the regularization is made on the cumulated plasticity field, which appears prior
to softening.

Hardening regime The sensitivity analysis presented in appendix E, shows that, within
the plastic regime, the sensitivity of displacement and force with respect to the regularization
parameter is negligible, since it cannot be captured by the current measurement systems. Hence,
knowing that the uncertainties of the considered measurement systems are relatively small
(±0.001 mm and ±200 N), the regularization parameter is to be considered as a parameter
without any influence within the hardening regime. However, let us note that this conclusion is
relative to the considered non-local model1. A rather clear illustration of this negligible influence
is visible in figure 5.1, with the evolution of the cost function with respect to the regularization
parameter and the Hosford exponent within the plastic regime. The convexity with respect to the
regularization parameter is insignificant compared to the convexity with respect to the Hosford
exponent.

Softening regime The influence of the regularization parameter becomes significant (with
respect to the measurement uncertainty) within the softening phase, as visible in figure E.9.
Nevertheless, the guess value of the regularization parameter remained unaltered during an
identification attempt (see table 5.1). This result was attributed to the competing influence
between the regularization parameter and the remaining damage parameters, as visible in
figures E.9 and E.7. Let us note that the influence of the regularization parameter is one order of
magnitude lower than the GTN parameters, so that a minimal variation of the GTN parameters
compensates for the contribution of the regularization parameter in terms of displacements.

Nevertheless, let us note that although a value of the regularization parameter cannot be
identified in this study, the considered non-local model provides solutions independent from the
mesh size and orientation. Therefore, also the FEMU technique provides parameters which do

1From another point of view, this analysis shows that the regularization parameter of the considered non-local
model does not alter the solution of the corresponding local model within the plastic regime.
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Figure 5.1: Evolution of the displacement cost function with respect to the Hosford exponent and
the regularization parameter. The cost function takes an approximatively constant value along
the regularization parameter axis.

not depend on the mesh characteristics and can be used to simulate specimens with different
mesh sizes.

5.3 Application of FEMU

The approach retained in the present study considers all the GTN parameters as phenomenologi-
cal terms, except for the initial void volume fraction ( f0 = 1×10−4) measured be means of SEM
observations. Furthermore, no empirical relations between the parameters are considered.

5.3.1 Identification

The sensitivity analysis (see appendix E) showed a clear competition between the various
parameters of the GTN model, leading to a potential indetermination. Therefore, the choice
has been made to lock parameters q1 and q2 since their purpose is to control void growth, which
has been shown to be a minor phenomenon compared to void coalescence for Inconel 625 (see
section 1.4). Furthermore, according to the literature, their values do not vary significantly for
metallic materials [13, 41, 130, 131]. The values of parameters q1 and q2 were then fixed at 1.5
and 1 respectively, as originally proposed by Tvergaard and Needleman [131].
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The FEMU was thus used to identify the 4 remaining parameters, denoted k, ps, fc, fr as
in equations 2.18 and 2.15, which guess values are reported in table 5.1. The guess values are
representative of the observations of chapter 1: according to the SEM analysis, void growth is
negligible (< 5×10−4) up to a ε≈ 35% of deformation. For this reason, void nucleation is considered
the principal mechanism leading to the critical level of void volume fraction. Thus, relatively
high values for the nucleation parameters are taken as guess values. Furthermore, according
to the analysis of the elastic unloads, no loss of stiffness was observed up to a deformation of
50%, meaning that there should not be a significant void volume fraction. Considering that the
material generally breaks at strain levels slightly higher than 50%, the assumption is that failure
occurs at a relatively low level of void volume fraction ( fr = [0.10−0.25]).

Solely the flat geometries were considered for the characterization of damage. In fact, due
to their relatively small thickness (compared to the diameter of the axisymmetric specimens),
the mechanical solution is characterized by a negligible gradient along the thickness direction
(see, for example, the stress triaxiality evolution in figure 5.2). In this way, what is measured
on the surface by DIC is considered as representative of the behaviour at core. Besides fracture
initiation is not observable for axisymmetric geometries since it occurs at the center of the notched
specimens.
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Figure 5.2: Comparison of the stress triaxiality along the thickness direction between flat and
axisymmetric geometries. The values are calculated at the center of the specimen.

In order to limit the computational time of the identification, the damage parameters were
identified on solely the test PAE2-12 (see figure 1.5(b)).

2Each simulation involved in the algorithm is run up to the onset of fracture. Hence, the 3D implicit simulation
of geometry PAE2 required approximatively 10 hours of calculation with ∼ 80000 degrees of freedom. Moreover,
the computational time of one simulation affects the time of the identification, since the time of one simulation is
multiplied by sum of the number of iteration of the identification process plus the number of evaluations of the
Jacobian matrix.
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FEMU was run considering a repartition coefficient α= 0.5 to minimize both the force gap and
the displacement gap. All the 3 displacement directions were considered within the cost function
(Ndim = 3). The Region of Interest Ω is a rectangular zone corresponding approximatively to
the refined region of the mesh showed in appendix E. The considered time interval corresponds
approximatively to the last stage of hardening plus the entire softening phase. The identified
values are reported in the table 5.1

Identification on test PAE2-1
Parameter Guess Value FEMU Unit

fc 0.10 0.063
fr 0.25 0.127
ps 0.4 0.458
k 0.6 0.49
c 40 39.98 [N]

Table 5.1: Results of damage parameter identification. The non-local regularization parameter c
remained unaltered.

5.3.2 Verification

The identified parameters were at first used to simulated the PAE2 geometry, which test number
1 served for the identification. Each test was simulated prescribing the measured displacements
as boundary conditions. One the one hand, figure 5.3 shows that the onset of softening is correctly
reproduced for test PAE2-1, as expected. On the other hand, figure 5.3 shows that the identified
parameters allows also to simulate correctly the onset of softening on the same geometry with a
different loading (the effective boundary conditions are not strictly the same for all tests), and
different meshes (for PAE2-3). The premature failure predicted for specimen PAE2-3 is due to
the higher deformation at failure showed experimentally, which cannot be modelled with the
parameters identified on test PAE2-1. These observation confirms the aptitude of FEMU for the
identification of the damage parameters for the initiation stage.

Let us also note that the simulated spatial distribution of void volume fraction is consistent
with the physical crack observed experimentally for specimens PAE2-1 and PAE2-2, as visible
in figures 5.4 and 5.5. This result is obtained thanks to the application of measured boundary
conditions. The comparison for specimen PAE2-3 is not showed here, since when the simulation
stopped, no crack is visible on the real specimen. Indeed, at this point, the measured boundary
conditions correspond to a stable hardening phase. Consequently the simulation of void volume
fraction is equally distributed on both the roots of the notch, as visible in figure 5.3.
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Figure 5.3: Top: comparison between experimental result and simulation for 3 PAE2 specimens
tested. The simulation are made using the identified damage parameters. Bottom: spatial distri-
bution of void volume fraction. The simulations stopped because of a convergence issue arising
once the critical void volume fraction value fr = 0.127 is reached.
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Figure 5.4: Comparison between the simulated void volume fraction (left) and the real crack
(right) for test PAE2-1. The simulation’s result is shown synchronized with the image.
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Figure 5.5: Comparison between the simulated void volume fraction (left) and the real crack
(right) for test PAE2-2. The simulation’s result is shown synchronized with the image.
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5.4 Validation of the damage parameters

The validation of the identified parameters needs to take into account specimens different from
those used for the identification. To do so, two groups of geometries have been considered. The first
group is formed by the tests that were taken into account for the identification of the plasticity
parameters (see section 4.4), but excluded from the identification of the damage parameters
because of the computational time constraint: i.e. all the axisymmetric geometries, together with
the PAE1 and the plane-strain geometry. The second group is formed by tests on more complex
geometries, which failure is not trivial to predict.

5.4.1 Validation on the first group of specimens

Figures 5.8, 5.6 and 5.7 compare the simulated load with the experimental one. The validation
is based on the capacity of the model to predict the onset of failure. Let us note that all the
simulations stopped because of convergence difficulties appearing once the critical value of void
volume fraction is reached.

The simulation of the onset of failure is satisfactory for all the flat specimens and the plane
strain specimen, as visible in figures 5.6 and 5.7. Let us note that for specimen PAE1-2 (as for
specimen PAE2-3), the simulated onset of failure is premature since the experimental response of
specimen PAE1-2 showed higher deformation at failure than specimen PAE1-1 (see figure 1.11(b)).
The consistent scattering at failure could be taken into account by enlarging the number of tests
considered for the identification of the damage parameters. It would then be interesting to
determine not only a set of parameters but also a confidence interval around a mean macroscopic
response.

The simulations of the axisymmetric geometries are encouraging, as visible in figure 5.8,
since the all the simulations, except for CAE2-1, predict failure after the maximum experimental
load is reached. Nevertheless, the simulated failure happens too rapidly (quasi vertical load drop).
Indeed, the axisymmetric geometries have a different stress triaxiality level, which is not taken
into account by identifying the parameters on an unique flat geometry. A possible solution is to
consider both axisymmetric and flat geometries for the identification of the damage parameters.
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Figure 5.6: Simulation of the PAE1 specimens using the parameters identified via FEMU on test
PAE2-1. The simulations stopped because of a convergence issue arising once the critical void
volume fraction value fr = 0.127 is reached.
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Figure 5.7: Simulation of the plane strain specimen using the parameters identified via FEMU
on test PAE2-1. The simulations stopped because of a convergence issue arising once the critical
void volume fraction value fr = 0.127 is reached.
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Figure 5.8: Simulation of the axisymmetric specimens using the parameters identified via FEMU
on test PAE2-1. The simulations stopped because of a convergence issue arising once the critical
void volume fraction value fr = 0.127 is reached.
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5.4.2 Validation on the second group of specimens

The second group of geometries considered for the validation of the identified parameters are
inspired from the first two editions of the Sandia Fracture Challenge [18, 19]. The challenges
consisted in simulating the ductile failure of specimens characterized by an unusual arrangement
of geometrical non-linearities (notches and holes that induce a complex failure). In this work, the
geometrical features of the original geometries are kept, while their size is scaled to allow the
machining within the 30 mm round bar available (see the plans in figure 5.4.2). These geometries
will be referred to as Sandia 1 and Sandia 2.
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Figure 5.9: Sketches of specimens Sandia 1 and Sandia 2, both inspired from the Sandia Fracture
Challenges. Specimens are 2 mm thick.

Experimental tests The evolution of the measured force versus the prescribed machine
displacement is showed in figure 5.10(a) for Sandia 1 and in figure 5.11(a) for Sandia 2. Unlike
the tests described in chapter 1, the Sandia specimens do not show a considerable scattering
at failure. The experimental response is reproducible. The difference between the macroscopic
response of the third Sandia 1 specimens compared to the other tests on the same geometry,
is due to a different crack path, as visible in figure 5.10(b). It is interesting to note that a first
crack appeared in specimen Sandia1-3 at the same location of the other Sandia1 specimens, but
this first crack stopped and a second crack propagated up to failure through a different hole.
Instead, the crack propagation for the Sandia 2 specimens was similar for each tests, as visible in
figure 5.11(b).
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Figure 5.10: Experimental results for geometry Sandia 1. Four tests have been performed
considering 2 different loading rates. The curves show a negligible scattering of the response. The
different crack paths (indicated with red arrows) explain the discrepancy between the results.
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Figure 5.11: Experimental results for geometry Sandia 2. Four tests have been performed
considering 2 different loading rates. The curves show a negligible scattering of the response. All
tests show similar crack paths (indicated with red arrows).
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Simulations Figures 5.12 and 5.13 compare the experimental responses with their simulated
counterparts for both Sandia specimens. Although the experimental scattering within the hard-
ening regime of specimen Sandia 1 is negligible, it is not the case for the numerical responses.
Such a difference is attributed to the prescription of measured boundary conditions, which is
altered by the matching uncertainty (see appendix B) because of the high displacement gradient
in correspondence with the mesh boundaries (the relatively small dimension of the specimen
accentuate the error). Therefore, in the following, solely the Sandia 2 specimens are evaluated.
The simulation of the onset of fracture is satisfactory. Moreover, the positions of the simulated
maxima of void volume fraction is in agreement with the actual positions of the cracks, which
initiate from the interior of the holes towards the notch roots (see figure 5.11(b)).

The experimental failure of the Sandia 2 specimens is highly repeatable. Consequently,
the corresponding boundary conditions applied for the simulations of each specimen are very
similar. This explains why the simulations lead to similar macroscopic responses: every time, the
simulated fracture point is underestimated with respect to the experimental one. It would be
interesting to check whether this difference is consistent with a confidence interval (which needs
to be determined).
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Figure 5.12: Comparison between simulation and experiment for the Sandia 1 specimen. The
simulations stopped because of a convergence issue arising once the critical void volume fraction
value fr = 0.127 is reached. The differences between the simulated loads are mainly attributed to
the matching uncertainty (see appendix B).
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Figure 5.13: Comparison between simulation and experiment for the Sandia 2 specimen. The
simulations stopped because of a convergence issue arising once the critical void volume fraction
value fr = 0.127 is reached. The differences between the simulated loads are mainly attributed to
the matching uncertainty (see appendix B).
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(a) Sandia2-1 (b) Sandia2-2
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Figure 5.14: Simulated void volume fraction for two Sandia 2 specimens. The simulations stopped
because of a convergence issue arising once the critical void volume fraction value fr = 0.127 is
reached. The simulated location of void volume fraction is in agreement with the real cracks
showed in figure 5.11(b).
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The results on the flat specimens confirm the FEMU method as a potential approach for
the identification of the damage parameters to satisfactorily simulate the onset of fracture.
Furthermore, they confirm the necessity to take into account the experimental scattering at
failure by considering several tests for the identification process, and to define a confidence
interval. The results on the axisymmetric specimens confirm the necessity to take into account
different levels of stress triaxiality for the identification of the ductile damage parameters.
Therefore, before investigating unmodeled phenomena, it is necessary to utilise the entire
database.
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Résumé

Dans ce dernier chapitre, la stratégie d’identification développée est utilisée pour identifier des
paramètres du modèle d’endommagement GTN pour l’Inconel625. Une seule éprouvette plane
entaillée est utilisée pour cette opération afin de réduire les temps de calcul.
L’analyse de sensibilité montre que tous les paramètres du modèle GTN sont en com-
pétition dans la zone d’intérêt sur l’éprouvette et que cela provoque une indétermination
sur l’identification des paramètres. Afin de réduire cette indétermination, les valeurs des
paramètres liés à la croissance des cavités sont choisies a priori car ce phénomène n’est pas
prépondérant pour l’Inconel625. Les paramètres inconnus restants sont identifiés par FEMU
et validés par comparaison essai-calcul. Parmi ceux-ci, seul le paramètre de régularisation du
modèle non-local n’a pas pu être identifié jusqu’à amorçage pour l’Inconel625, car ce matériau
est manifestement peu sensible au paramètre dans ces conditions.
Plusieurs résultats sont tirés de la validation sur l’essai ayant servi pour l’identification
des paramètres. D’une part, l’instant d’amorçage de la fissure est bien reproduit malgré la
dispersion expérimentale du matériau, qui n’est pas prise en compte. D’autre part, le site
d’amorçage est bien prédit malgré l’indétermination générée par la symétrie de l’éprouvette, et
ce grâce à l’imposition des conditions limites réelles. Des conclusions similaires sont obtenues
pour les simulations des autres essais sur la même géométrie avec des conditions aux bords
différentes et sur les autres géométries planes.
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Conclusion

The present work proposes a parameter identification strategy for plastic behaviour and damage
up to the onset of fracture. The strategy uses both load and full-field measurements. It is developed
into a regularized damage framework. The proposed approach is based on a Finite Element Model
Updating (FEMU) technique, according to which the parameters are identified by minimizing the
discrepancy between experiment and simulation, quantified by means of a cost function.

There are two main particularities that characterize the proposed identification strategy with
respect to other FEMU-based strategies. The first particularity concerns the cost function, which
quantifies the discrepancy between experiment and simulation in terms of load and displacement.
These two different quantities are combined into a unique scalar value by means of appropriate
weights. Furthermore, the use of integral formulations allows to obtain values independent on
external factors, as the number of nodes. The second particularity concerns the management of
the boundary conditions, which might be considered as the principal issue regarding FEMU. The
measured displacements are prescribed as boundary conditions for the finite element problem, in
order to ensure the consistency of the simulation with respect to the experiment. It is shown that
prescribing boundary conditions polluted by the measurement uncertainty has a negative effect
on the finite element solution. An innovative filtering technique based on the Robin boundary
condition is proposed and tested together with classical filtering approaches, as the moving least
squares and polynomial approximations.

Although the strategy intends to be general, a specific material is chosen to perform the
tests. The superalloy Inconel 625, used in the aeronautic industry, is retained. The specimens’
geometries are selected to generate a heterogeneous spatial distribution of the kinematic fields, in
order to fully use the richness of information of the Digital Image Correlation (DIC) measurements.
The efficient DIC algorithm FOLKI-D is used to obtain dense (pixel-wise) results without any
post-filtering operation on the computed fields. Ten different geometries (flat and axisymmetric),
with two to four specimens for each geometry, are tested up to fracture, for a total number of 26
tests.

Fractographic observations allow to confirm the isotropic character of the material behaviour.
Further microscopic observation is used to determine the initial void volume fraction. The micro-
scopic analysis also permits to assume that failure of Inconel 625 is due to a strong nucleation of
new voids occurring at a high cumulated plasticity level. The experimental macroscopic responses
show a considerable scattering both within the plastic domain and at failure.

The observed ductile behaviour is modelled using an Hosford yield criterion and a Voce-like
isotropic hardening law. Damage is modelled using the well-known GTN model, able to reproduce
the observed sequence of strong void nucleation and coalescence. The simulation of a softening
behaviour requires a non-local regularization, which is here obtained by introducing the gradient
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of the cumulated plasticity into the free Helmholtz energy density. Furthermore, the well known
volumetric locking problem is solved by means of mixed displacement-pressure-volume variation
elements. Because of the large deformations reached by Inconel 625, an additive logarithmic
formulation is considered. All the computations involve an unstructured 3D mesh, and are
performed with an implicit solver (locally and globally).

The elastic modulus and the 5 hardening parameters are identified by means of a classical
approach (i.e. curve fitting). The GTN parameters q1 and q2 are fixed according to the literature,
as microscopic observations have evidenced very little void growth, which means that their
identification is prone to be difficult. The same observations allow to determine the initial void
volume fraction and guess values for the remaining unknown parameters.

The 6 remaining parameters are identified using the proposed FEMU technique, which
implementation is validated by comparing the previous hardening parameters with the FEMU
identified ones. The feasibility of the identification is assessed based on a sensitivity analysis.
It is indeed necessary to verify that the observed quantities (force, displacement) are sensitive
with respect to the unknown parameters. The identification is considered as possible if a small
perturbation of the parameters induces an absolute variation of force and displacement which is
at least comparable with the uncertainty of the measurement instrument.

This analysis indicates that the transversal displacement (with respect to the loading direc-
tion) is, for the flat specimens, the most sensitive with respect to the Hosford exponent, while
the same parameter has a negligible influence on the force response. For this reason the Hosford
exponent is identified by minimizing the transversal displacement discrepancy using the FEMU
method.

The same sensitivity analysis shows that the regularization parameter of the considered
non-local model does not induce a significant variation neither on force nor on displacement.
Although the regularization parameter cannot be identified, the non-local model gives to the
finite element solution the regularization necessary to obtain results independent from the mesh
size and dimension.

The sensitivity analysis of the 4 remaining GTN parameters shows that it is possible to
identify them by considering both force and displacement on flat specimens. The identification via
FEMU of these parameters is then carried out on a unique specimen, to limit the computational
time.

The identification strategy is validated based on the comparison between experiment and
simulation for all the 8 notched geometries. The identified parameters are consistent with the
microscopic observations. Indeed, they allow to simulate the minimal void growth prior to the
onset of softening and the subsequent rapid failure due to void nucleation. For the flat specimens,
the onset of softening is satisfactorily predicted and the positions of the simulated maxima of
void volume fraction are in agreement with the actual positions of the cracks, even when several
locations are possible.

The simulations of specimen Sandia 1 underline the difficulties of the alignment between the
DIC coordinate system and the FE coordinate system when the mesh boundaries correspond to
high displacement gradient areas. The identification results confirm the necessity to take into
account the experimental scattering at failure and different stress triaxiality levels, especially
for ductile behaviours. This can be achieved by utilising several specimens for the identification
of the damage parameters.
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Several challenges still need to be faced to obtain a more robust parameter identification using
the proposed strategy, from the numerical point of view as well from the experimental point of
view.

First of all, the stability of the approach should be verified testing several guess values for
the damage parameters, as done for the plasticity parameters. Such an operation, which requires
a significant amount of computational time, is indispensable to verify that the solution is a global
minimum. Moreover, the stability and robustness of the approach, should be tested by performing
parameter identification on materials characterized by different failure mechanisms (e.g. with a
significant void growth).

Furthermore, the accuracy of the method needs to be increased by improving the technique
for the alignment of the coordinate systems. In fact, such an operation is actually based on the
selection of points that are generally on the border of a specimens, where the quality of the image
might not be excellent. Printing a regular and specific speckle (totally or partially) appears to be
a possible solution. In this way, the proposed identification technique might be used to investigate
scale effects, since the comparison between experiment and simulation on small specimens will
be more accurate.

The computational time of the identification should be reduced, and this operation is not
feasible solely by means of parallel computation. The computation of the Jacobian matrix appears
to be the heaviest operation, so the investigation of semi-analytical calculations could have a
beneficial impact on the identification time.

The simulations of this work are run up to the onset of failure. A robust damage-to-fracture
transition tool appears then necessary to run the simulations up to the complete failure. The
proposed identification approach might then be used to identify the parameters related to crack
insertion.

It would also be interesting to work on shape optimization techniques to improve test defi-
nition. In fact, as it is shown in this work, the concurring influence of the various parameters
often leads to an indetermination: there exists a multitude of combinations of parameters which
gives a unique spatial distribution of displacement. Shape optimization might lead to specimen
geometries (and relative loading conditions) that isolate the influence of each parameter on a
different zone.

Finally, it would be interesting to study the propagation of the material scattering from the
experimental responses to the identified parameters. In this way, it would be possible to identify
not only a set of parameters, but also a confidence interval.
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Résumé

Cette thèse propose une approche d’identification des paramètres de plasticité et
d’endommagement jusqu’à amorçage. L’approche proposée prend en compte à la fois les efforts
et les mesures de champ denses issues de la corrélation d’images. La stratégie d’identification
est développée en considérant un modèle d’endommagement régularisé. Elle est fondée sur une
méthode de type recalage de modèle éléments finis (FEMU), selon laquelle les paramètres sont
identifiés en minimisant l’écart entre une mesure et son pendant simulé.
Une attention particulière est mise sur la gestion des conditions au bord: les déplacements
mesurés sont utilisés pour piloter le calcul éléments finis afin d’en assurer la cohérence avec la
mesure expérimentale. Cette opération génère des problèmes sur la solution mécanique à cause
des incertitudes de mesure. Une technique de filtrage innovante et automatique est proposée,
basée sur la condition au bord de Robin.
L’implantation de la stratégie d’identification est validée sur la base de l’identification des
paramètres d’écrouissage par comparaison avec les résultats d’une technique standard. La
stratégie est ensuite utilisée pour identifier un critère de plasticité de type Hosford et les
paramètres d’endommagement du modèle GTN les plus influents. Les valeurs obtenues sont
validées par comparaison de l’instant et du site d’amorçage entre essai et calcul.
Plusieurs pistes sont possibles pour poursuivre le développement de la stratégie proposée. Tout
d’abord, pour prendre en compte la dispersion expérimentale il faudrait mener l’identification
sur plusieurs essais afin d’obtenir un jeu de paramètres moyens et un intervalle de confiance
associé. De plus, plusieurs valeurs de départ pour l’optimisation devraient être testées afin
de vérifier l’unicité de la solution. Ensuite, il serait intéressant d’améliorer la technique pour
l’alignement des repères éléments finis et corrélation d’images, afin d’augmenter la robustesse
de la comparaison essai-calcul. Enfin, une dernière amélioration concerne l’optimisation des
géométries pour réduire la compétition entre paramètres sur une même zone de l’éprouvette.
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A
CHARACTERISTICS OF THE STUDIED INCONEL 625

This appendix provides a brief description of Inconel 625. The material was annealed at 1025◦C,
held 30 minutes, and furnace cooled. It was supplied in form of bars of 30 mm diameter. The
chemical composition is reported in table A.1, as declared by the supplier. The microstructure was
investigated at the Scanning Electron Microscope (SEM). It was observed an average grain size
of around 30 µm as in figure A.1(a). Moreover, the SEM analysis showed the presence of equally
distributed micro-voids and intermetallic precipitates as in figure A.1(b). This observation is
consistent with the literature on the nickel-based superalloys [16, 119]. However, in this work the
various precipitates are considered as a unique phase and quantified by means of their fraction
of occupied volume.

Al C Cb(Nb)+Ta Co Cr Fe Mn Mo
0.24 0.02 3.61 < 0.10 21.99 0.52 0.27 8.75

Ni P S Si Ti
Balance < 0.005 < 0.002 0.08 0.2

Table A.1: Chemical composition of Inconel 625. Source: Haynes International
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(a) Microstructure of an annealed Inconel 625. The
grain size varies from a minimal value of 5µm to a
maximal value of 50µm

(b) Generic intermetallic precipitate of an an-
nealed Inconel 625.

Figure A.1: Microstructure observation
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B
COMPARISON OF THE EXPERIMENTAL DISPLACEMENT FIELDS

WITH THEIR SIMULATED COUNTERPARTS

This appendix describes the technique used both to transfer the measured boundary conditions
on the finite element mesh and to compare the experimental displacement fields with their
simulated counterparts. Indeed, these latter quantities are, in general, not available within the
same coordinate system. An alignment procedure is then essential to accomplish the comparison.
Furthermore, an additional transfer is usually necessary since the nodes of the finite element
mesh are not located at the center of a pixel in the image.

B.1 Alignment of the experimental (DIC) and numerical (FE)
spatial coordinates systems

A straightforward approach to align the DIC coordinate system with the FE coordinate system
consists in meshing the geometry reconstructed from the DIC measurements, as made in ref-
erence [115]. In this way, the real geometry of the specimen is potentially taken into account.
However, this technique might lead to a mesh which edges are not consistent with the real edges
of the specimen, since the DIC algorithms do not provide a result within a finite zone around the
boundaries (the dimension of this zone depends on the considered algorithm). As a consequence,
the mismatch between FE model and real geometry leads to compute an external reaction which
is not comparable with the experimental force. Since this inconvenient alters the identification
result of FEMU, this approach is not taken into account.

Instead, an indirect approach is considered, which applications might be found within the
literature about parameter identification [97, 109], and consists in performing a feature-based
pose estimation [125]. It can be seen as an extrinsic calibration problem, in opposition with
the intrinsic calibration of the DIC system. This approach requires the selection of a certain
number of remarkable features on the CAO model. These features are then matched (manually
or automatically) on the reference image, where the DIC results are available. In the present
case the choice is restricted to corner points which are manually matched within the reference
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image. The matched points allow to identify, usually by optimizing a least-squares criterion, the
parameters of the underlying transformation model (translation, rotation, etc.).

Two transformation models are considered in this study: an homography transformation
and a Perspective-n-Points (PnP) transformation. Both are capable to represent the relative
displacement of the reference image with respect to the CAE model, although the latter one
should be considered as first choice. The principle of these models is described in the following
paragraphs, while the details about the mathematical modelling are let to reference [125]1. Let
us underline that the choice of the transformation model determines also the minimum number of
features necessary to solve the identification problem. Hence, this minimal number of remarkable
features should be taken into account when preparing the specimens: if the number of native
features as corners is not enough, a certain number of artificial markers need to be added at
known positions. Finally, let us observe that if the speckled painted on the surface was instead
printed according to a fixed pattern (grid, regular spots, . . . ), the speckle itself could be used to
solve the matching problem (in the same manner that the speckled is used to solve the correlation
problem between images), providing a more accurate alignment of the coordinate systems.

Homography Homography is a planar transformation, associated to a non linear model,
which maps a set of 2D coplanar points from the CAE model to a set of 2D points on the
reference image, preserving straight lines. It requires at least 4 correspondences to estimate
the parameters. Although the homography requires coplanar features, a possible workaround to
manage axisymmetric geometries can consist in defining a virtual planar geometry associated
to the original 3D one. Such a virtual geometry is defined as the projection of the 3D geometry
on a plane, similarly to the DIC reference image which is the two dimensional projection of the
considered specimen. However, the possible errors that might follow from this approximation
have not been investigated.

Perspective-n-Point (PnP) Perspective-n-Point is a quasi-3D transformation, associated to a
non linear model, which maps a set of 3D points from the CAE model to a set of 2D points on the
reference image. It requires at least 3 correspondences to estimate the parameters. According
to [125], it is probably the most suitable approach (flexible and accurate) to estimate the pose.
However, in practice the estimation of the pose might not be satisfactory in two cases. The first
one when the points along the thick direction are not clear on the reference image due to the
quasi-perpendicular camera orientation (the PnP estimation is then not accurate). The second
one when a set of coplanar features is selected on the CAE model rather than a three-dimensional
set (the PnP model is then over-parametrized). Therefore, in such cases the homography relation
provides a better estimation of the pose.

B.2 Uncertainty of the matching uncertainty

When the alignment procedure is based on the matching of features, the accuracy of the matching
operation, denoted E, has an indirect influence on the accuracy of the identification via FEMU. In
fact, an incorrect positioning of the mesh nodes leads to prescribe the wrong boundary conditions
and leads to a non representative comparison with the experimental quantities. Therefore, an
indicator the accuracy of the matching needs to be estimated. Supposing that the matching

1The implementations provided by the OpenCV library [21] are considered. See functions findHomography and
solvePnP of OpenCV 3.2.0
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position for a generic feature is located at the center of a specific pixel, the largest matching error
is committed when the effective position of the feature is located on a corner of the pixel [109].
Hence, the matching error values at most half of the diagonal length of the pixel:

(B.1) E =± 1p
2

pixel

Actually, it might not be possible to locate the considered feature within a unique pixel because of
the lack of sharpness of the image (see figure B.1).

  Selected position

Acceptable positions

Figure B.1: Uncerntainty of the matching operation. Because of the lack of sharpness of the
image, it might be difficult to locate the considered feature within a single pixel on the image.

In those cases, the matching error increases of a factor k:

(B.2) E =±k
1p
2

pixel

where k represents the minimum range of pixels within which is possible to locate the targeted
feature. Such a value depends on the experimental set-up (camera orientation, illumination, etc.).
In this work, a value k = 3 was considered as average value according to the recorded images.

Nevertheless, a proper evaluation of the matching error needs to be based on metrical
quantities. Here, two different quantities are considered to define two error indicators: the
resolution of the image and the gradient of the displacement field.

The resolution of the image, denoted r and expressed in terms of millimeter per pixel, defines
the following error indicator:

(B.3) E1 =±kr
1p
2

mm

which expresses how much the dimension of the geometry is altered by the matching uncertainty.
In general, the resolution depends on external factors, as camera positioning and lighting of the
room, so that the values of E1 are generally constant for a common test equipment, as reported in
table B.1. A practical criterion is to accept values of E1 of the same order of magnitude than the
dimensional tolerance prescribed for the machining of the specimen. Nevertheless, the value of E1

117



APPENDIX B. COMPARISON OF THE EXPERIMENTAL DISPLACEMENT FIELDS WITH
THEIR SIMULATED COUNTERPARTS

needs to be evaluated with respect to the absolute size of the specimen. Let us also observe that
the resolution of the image might not be constant over the entire surface for non-flat specimens.

The gradient of the displacement field, denoted ∇||u|| and expressed in terms of millimeter
per pixel2, defines the following error indicator:

(B.4) E2 =±k∇||u|| 1p
2

mm

which expresses how much the matching operation affects the transferred values. The value of E2
varies with respect to the considered geometry, as reported in table B.1. For a specific geometry, the
value of E2 varies with respect to the applied load. Moreover, two evaluations of E2 are significant
to evaluate the matching uncertainty. The first one is the maximum value assumed over the entire
surface, denoted E2,s, since within the FEMU algorithm, the matching errors propagate with a
factor proportional to the local gradient of the displacement. The second one is the maximum value
assumed over the zone where the measured displacement is prescribed as boundary condition,
denoted E2,bc. This latter value impacts directly the possibility of performing a simulation
consistent with the experiment since it affects the boundary conditions. As an example, let
us consider the Sandia 1 geometry which FE boundaries are located where displacement is
not constant, with respect to the PAE2 geometry which FE boundaries are located where the
displacement is quasi-constant (null gradient): the boundary conditions of the Sandia 1 geometry
are clearly altered, as shown in table B.1.

Matching Error (k = 3)
Test E1 [mm] E2,s [mm] E2,bc [mm]

PAE2-1 0.06 0.02 0.0025
Sandia1-2 0.06 0.036 0.019
Sandia2-1 0.06 0.025 0.003

Table B.1: Values of the matching uncertainties.

B.3 Values interpolation

The DIC results are transferred at the finite element nodes position using a bi-cubic spline
interpolation of the full field map. The interpolation error is here assumed to be negligible since
the pixel grid is, thanks to the dense result provided by FOLKI-D (1 value per pixel), much
finer than finite element mesh. Let us note that the spline interpolation allows to extrapolate
the measured values at the nodes located where DIC did not provide a result (i.e. edges and
untextured zones).

Finally, an alternative, and probably more robust, approach would be to perform a transfer
using the finite element shape functions. However, this approach has not been investigated in
this study.

2The gradient is here calculated as the gradient of the DIC result with respect to the pixels of the image.
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C
MINIMIZATION OF THE COST FUNCTION

The identification problem is solved as a minimization problem as:

(C.1) min
θ
ψ(θ) with θmin ≤ θ ≤ θmax

where function ψ(θ) is here assumed of the particular form:

(C.2) ψ(θ)= 1
2

∑
j

r2
j (θ)

where vector r is a residual vector.
The bounds on the parameters are here considered as scalar values representing the minimum

and maximum accepted values, forming an hypercube in the space of parameters. Such a problem
is approached as a convex optimization problem [20]. In fact, the cost function is supposed to be
locally convex over a convex set. Within this framework, the theory is consolidated and there
exists a large variety of algorithms [20]. Part of the PhD work of Kleinermann [70] is focused
on the comparison of minimization algorithms for parameter identification. They are compared
based on the result of identification. The PhD work of Silva [121] also provides a review of the
most used algorithms for parameter identification. Based on their remarks, two algorithms to
solve our minimization problem have been selected in this study: the Nelder-Mead algorithm and
the Levenberg-Marquardt algorithm. Both algorithms are natively formulated for unconstrained
problems. Constraints on the parameter are really important for parameter identification in
mechanics, since a non-physical parameter (e.g. a negative elastic modulus together with a
positive yield stress) would lead to the impossibility to compute a finite element solution. Thus, a
simple solution to impose bounds to unbounded algorithms consists in replacing the cost function
by a pseudo-function which imposes a severe penalty when parameters are outside the bounds:

(C.3) ψ(θ)=
{
ψ(θ) if θmin ≤ θ ≤ θmax

ψ′ otherwise
with ψ(θ)¿ψ′ ∀θ

where Θ denotes the set of admissible parameters.
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Nelder-Mead algorithm The Nelded-Mead algorithm [103] is a first order algorithm which is
part of the simplex methods, a popular class of techniques for linear optimization. They are based
on the hypothesis that the cost function might be approximated (locally) by a linear function. The
solution is searched in a progressively decreasing domain (the simplex). The values assumed
by the cost function at the vertex of the simplex are evaluated at each iteration. Afterwards,
the simplex is then shrunk based on the rank of such values. The simplex methods are known
to be robust, but their efficiency decreases with the number of unknowns. Nevertheless, these
methods are derivative-free. Thus, the Nelder-Mead algorithm might be a convenient choice if the
numerical computation of derivative cannot be trusted because of the experimental uncertainties.

Levenberg-Marquardt algorithm The Levenberg-Marquardt algorithm is a second order al-
gorithm which is part of gradient-based methods. Supposing the objective functions as convex, the
solution is given by the set of parameter for which the gradient is null. Proposed by Levenberg [82]
and improved by Marquardt [94] later, this algorithm overcomes the conditioning issue of the
Gauss-Newton algorithm. If the numerical derivative can be trusted, this algorithm should be the
first choice as minimization technique. The considered update rule of the Levenberg-Marquardt
algorithm reads:

(C.4) θi+1 = θi −
[
J∼

T (θi)J∼ (θi)+λdiag
(
J∼

T (θi)J∼ (θi)
)]−1∇ψ(θi)

where λ is a scaling factor and J∼ is the Jacobian matrix of the residuals, which is here calculated
by changing one factor at time the parameters, according to the forward finite difference formula:

(C.5) Jmn = rm(θn +δθn)− rm(θn)
δθn
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D
VALIDITY OF THE ASYMPTOTIC DEVELOPMENT

Let us recall the variational formulation of the mechanical problem with Robin boundary condi-
tions:

(D.1) a(u∼ lR ,v∼)+ 1
lRSΓ

∫
Γ
(u∼ lR −u∼ b)v∼ dS= l(v∼)

where Γ is the portion of boundary ∂Ω where the Robin boundary condition is prescribed, v∼ is a
test function, l(v∼) the work of the external forces, and a(u∼ lR ,v∼) a bilinear form. In the following,
notation ∂ΩD refers to the portion of boundary where a Dirichlet boundary condition is prescribed,
while ∂ΩN refers to the portion of boundary where a Neumann boundary condition is prescribed
(∂Ω≡Γ∪∂ΩN ∪∂ΩD). Let us recall also the asymptotic development of equation 3.20:

(D.2) u∼ lR = u∼ 0 + lRu∼ 1 + l2
Ru∼ 2 +·· ·+ ln

Ru∼ n

which is proposed (ansatz) as a possible approximation of u∼ lR around lR = 0, assuming u∼ 0|∂ΩD =
UD and u∼ i|∂ΩD = 0 for i ≥ 1. Since here lR has a dimension, it means that the terms u∼ i for i ≥ 1
are not to be read as displacement components and no physical meaning should be found.

If it is possible to determine all the u∼ n terms, the asymptotic development is an acceptable
approximation of u∼ lR around lR = 0.

The variational formulation of the Robin problem is approximated as:

(D.3)
1

lRSΓ

∫
Γ
(u∼ 0 −u∼ b)v∼ dS+

[
a(u∼ 0,v∼)+ 1

SΓ

∫
Γ
u∼ 1v∼ dS

]
+ . . .

. . . + lR

[
a(u∼ 1,v∼)+ 1

SΓ

∫
Γ
u∼ 2v∼ dS

]
+ l2

Ra(u∼ 2,v∼)+ ·· · = l(v∼)
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which gives, by separating the terms according to the lR exponents order, the following system of
equations:

(D.4)



1
lR

:
∫
Γ(u∼ 0 −u∼ b)v∼ dS= 0 ∀v∼ ∈ C(0) on ∂ΩD

0 : a(u∼ 0,v∼)+ 1
SΓ

∫
Γu∼ 1v∼ dS= l(v∼) ∀v∼ ∈ C(0) on ∂ΩD

lR : a(u∼ 1,v∼)+ 1
SΓ

∫
Γu∼ 2v∼ dS= 0 ∀v∼ ∈ C(0) on ∂ΩD

...
ln
R : a(u∼ n,v∼)+ 1

SΓ

∫
Γu∼ n+1v∼ dS= 0 ∀v∼ ∈ C(0) on ∂ΩD

where notation C(0) is a set of the displacements kinematically admissible to zero. The first
equation of the system gives:

(D.5) u∼ 0|Γ = u∼ b

Then, the second equation gives at first:

(D.6) a(u∼ 0,v∼)= l(v∼) ∀v ∈ C(0) sur ∂ΩD ∪Γ
considering a narrow set of test functions (i.e. kinematically admissible also on Γ). Knowing from
the first equation that u∼ 0|Γ = u∼ b, this latter equation it implies that u∼ 0 is the solution of the
variational problem where u∼ b is prescribed as Dirichlet boundary condition on Γ. Hence:

(D.7) a(u∼ 0,v∼)=
∫

∂ΩN∪Γ

(
σ∼∼

(u∼ 0) ·n
)
v∼ dS ∀v∼ ∈ C(0) on ∂ΩD

which, together with the second equation of the system gives:

(D.8)
∫
Γ

(
σ∼∼

(u∼ 0) ·n
)
v∼ dS+ 1

SΓ

∫
Γ
u∼ 1v∼ dS= 0 ∀v∼ ∈ C(0) on ∂ΩD

Hence:

(D.9) u∼ 1|Γ =−SΓσ∼∼ (u∼ 0)|Γ ·n
The third equation gives, at first:

(D.10) a(u∼ 1,v∼)= 0 ∀v∼ ∈ C(0) on ∂ΩD ∪Γ
which implies (knowing u∼ 1|Γ from the previous step) that u∼ 1 is the solution to the variational
problem where u∼ 1|Γ is applied as Dirichlet boundary condition. Hence:

(D.11) a(u∼ 1,v∼)=
∫
Γ

(
σ∼∼

(u∼ 1) ·n
)
v∼ dS ∀v∼ ∈ C(0) on ∂ΩD

which gives, together with the third equation of the system:

(D.12) u∼ 2|Γ =−SΓσ∼∼ (u∼ 1)|Γ ·n
At this point, applying the same mechanism (i.e. tightening and widening the set of test functions),
it is possible to obtain all the terms of the asymptotic development:

(D.13) u∼ n|Γ =−SΓσ∼∼ (u∼ n−1)|Γ ·n
which proves its validity.
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E
SENSITIVITY ANALYSIS

The sensitivity analysis represents in this work a basic step of parameter identification. It is
used to estimate a priori the feasibility of the identification. A sensitivity analysis consists in
quantifying the perturbation of the model’s output (displacement and force for instance) produced
by a variation of the model’s inputs (material’s parameters for instance). The identification of a
certain parameter is here considered as feasible if a reasonable perturbation of the parameter
induces a significant variation of force and displacement. A perturbation is here considered as
reasonable if it is lower than 5%, while the variation of the output is considered as significant if
it is at least equivalent to the uncertainty of the measurement system (i.e. approximatively ±200
N regarding the force and approximatively ±0.001 mm regarding the displacement1). Finally, let
us underline that the sensitivity analysis is specific for each specimen, since both the geometry
and the loading conditions play a role.

When performing a sensitivity analysis, the following situations might be met:

• a mutual influence of the parameters, if the output’s variation produced by different
parameters is located on the same zone of the specimen, at the same stage of loading. In
that case, the possible effect of the variation of one parameter might be compensated by
another parameter, leading to an indetermination of the identified values. Furthermore,
in such a situation all the concurrent competing should be taken into account within the
minimization (except if some of them have already been identified in a different manner or
fixed at arbitrary values). This was the case of displacement with respect to the hardening
parameters in the present study;

• an absence of sensitivity of a geometry with respect to a specific parameter. In this case,
that parameter needs to be excluded from the identification on that geometry and be
identified on a different geometry. Let us note that this case might be beneficial to simplify
the identification of those parameters which would have a mutual influence on the output

1Although these values can be used to interpret all the sensitivity analyses of the present study, they might be, in
general, different for each test. Indeed, the uncertainty of the load cell depends on its calibration and on the range of
measurable values, while the uncertainty of the DIC measurements depends on the camera orientation and on the
quality of the speckle on the surface.

123



APPENDIX E. SENSITIVITY ANALYSIS

of a different geometry. This was the case of force with respect to the Hosford exponent in
the present study.

E.1 Methodology

Many factors should to be considered when performing a sensitivity analysis, as the computational
cost or the non-linearities of the system [26]. Therefore, there exist as many techniques to perform
the analysis. However, one of the simplest and most common approaches consists in changing
one factor at a time (OAT) and to quantify the variation on the output. Such an approach is
considered in this study because of its simplicity and because the same technique is used to
calculate the Jacobian matrix of the identification problem, as described in appendix C. Table E.1
reports the reference set of parameters considered for all the sensitivity analysis presented here
after. Each parameter was perturbed of +5%. The sensitivity analysis are presented in terms of

Reference parameters for the sensitivity analysis
Plasticity

R0 [MPa] Q1 [MPa] b1 Q2 [MPa] b2 n
460 62 315 2820 0.794 8

Damage
fc fr k ps c [N]

0.05 0.15 0.5 0.5 40

Table E.1: Reference parameters for the sensitivity analysis.

spatial fields for the displacement gap and in terms of force versus displacement of the machine
for the force gap.

E.2 Results

The sensitivity analysis illustrated and discussed below, consider geometries CAE4 and PAE2
as representative of the axisymmetric and flat geometries respectively. At first, the sensitivity
analysis is carried out on the plasticity parameters, which include the hardening parameters and
the Hosford exponent, and then on the GTN parameters. Finally, the influence of regularization
parameter of the non-local model is analysed.

E.2.1 Plasticity parameters

The first parameters analysed are the hardening parameters, denoted R0, Q1, b1, Q2, b2. The
sensitivity fields are evaluated both at the late stages of hardening, where the absolute value
of displacement is maximum, and at the early stages of hardening, where the influence of
parameters Q1 and b1 is more relevant.

The result at the late stages of hardening shows that parameters R0, Q2, b2 have a significant
influence on displacement, while Q1 and b1 have not, as visible in figures E.1 and E.2. The
result at the early stages of hardening shows that parameters Q1 and b1 still have a negligible
influence, as visible in figure E.3.. Furthermore, let us note that the influence of the hardening
parameters is located on a common zone of the geometry. To not incur into an indetermination
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of the parameters, the identification of the hardening coefficients was carried out omitting the
displacements from the cost function.

(a) R0 - U1 (b) Q1 - U1 (c) b1 - U1 (d) Q2 - U1 (e) b2 - U1

(f) R0 - U2 (g) Q1 - U2 (h) b1 - U2 (i) Q2 - U2 (j) b2 - U2

0.001 mm 0.02 mm

(k)

Figure E.1: Sensitivity of the horizontal (U1) and vertical (U2) displacement fields with respect
to the hardening parameters on the CAE4 axisymmetric geometry. The boundary conditions
are issued from test CAE4-2 (figure 1.10(c)). The displacement gap fields are shown at the late
stages of hardening. It is possible to notice the influence of the parameters located on a common
zone, which leads to an indetermination if solely the displacement gap is considered for the
identification. Moreover, the sensitivity with respect to parameters Q1 and b1 is negligible at this
loading stage.
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(a) R0 - U1 (b) Q1 - U1 (c) b1 - U1 (d) Q2 - U1 (e) b2 - U1

(f) R0 - U2 (g) Q1 - U2 (h) b1 - U2 (i) Q2 - U2 (j) b2 - U2

0.001 mm 0.02 mm

(k)

Figure E.2: Sensitivity of the horizontal (U1) and vertical (U2) displacement fields with respect to
the hardening parameters on the PAE2 flat geometry. The boundary conditions are issued from
test PAE2-1 (figure 1.11(c)). The displacement gap fields are shown at the late stages of hardening.
It is possible to notice the influence of the parameters located on a common zone, which leads to
an indetermination if solely the displacement gap is considered for the identification. Moreover,
the sensitivity with respect to parameter b1 is negligible at this loading stage.

126



E.2. RESULTS

(a) Q1 - U1 (b) b1 - U1 (c) Q1 - U1 (d) b1 - U1

(e) Q1 - U2 (f) b1 - U2 (g) Q1 - U2 (h) b1 - U2

0.001 mm 0.02 mm

(i)

Figure E.3: Sensitivity of the horizontal (U1) and vertical (U2) displacement fields with respect to
the hardening parameters Q1 and b1. The displacement gaps are evaluated at the early stages of
hardening. The sensitivity is negligible also at this loading step.
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The subsequent parameter which influence was analysed is the Hosford exponent. As figures
E.4 and E.5 show, the influence of this parameter can be considered as negligible on the force
for both geometries. Instead, the influence on displacement is significant for the flat geometries,
especially along the transversal direction (with respect to the loading direction).

(a) U1 (b) U2

0.0 0.5 1.0 1.5 2.0
Displacement [mm]

0

1

2

3

4

5

6

7

Fo
rc

e 
va

ria
tio

n 
[N

]

n = ± 5%

(c) Force gap

0.001 mm 0.002 mm

(d)

Figure E.4: Sensitivity of force and displacement fields (U1, U2) with respect to the Hosford
exponent on the CAE4 axisymmetric geometry. The boundary conditions are issued from test
CAE4-2 (figure 1.10(c)). The displacement gap fields are shown at the late stages of hardening,
where the absolute values of displacement is the highest. The influence of the Hosford exponent
is negligible both on force and displacement.
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Figure E.5: Sensitivity of force and displacement fields (U1, U2) with respect to the Hosford
exponent on the PAE2 flat geometry. The boundary conditions are issued from test PAE2-1
(figure 1.11(c)). The displacement gap fields are shown at the late stages of hardening, where the
absolute values of displacement is the highest. The influence of the Hosford exponent on force is
negligible, while the influence on displacement is considerable.
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E.2.2 Damage parameters

The approach presented here above is now applied to evaluate the influence of the GTN model
parameters. Solely the flat geometry is considered. The simulations are then run up to the onset
of softening and the results are shown at the last converged loading step. The influence of all
the GTN parameters is considerable on the displacement fields, as shown in figures E.6 and
E.7. There is a clear concurrence between all the parameters on a common zone. Furthermore,
the influence of the parameters governing void nucleation is higher compared to the remaining
parameters, since the reference values are calibrated to reproduce a strong void growth.

(a) fc - U1 (b) fr - U1 (c) ps - U1

(d) q1 - U1 (e) q2 - U1 (f) k - U1

0.001 mm 0.01 mm

(g)

Figure E.6: Sensitivity of the horizontal (U1) displacement field with respect to the damage
parameters on the PAE2 flat geometry. The boundary conditions are issued from test PAE2-1.
The displacement gap fields are shown at the onset of softening.

The same analysis can be applied for the sensitivity of the vertical field, as in figure E.7:
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(a) fc - U2 (b) fr - U2 (c) ps - U2

(d) q1 - U2 (e) q2 - U2 (f) k - U2

0.001 mm 0.01 mm

(g)

Figure E.7: Sensitivity of the vertical (U2) displacement field with respect to the damage para-
meters on the PAE2 flat geometry. The boundary conditions are issued from test PAE2-1. The
displacement gap fields are shown at the onset of softening.

Influence of the regularization parameter Although the role of the regularization param-
eter is to regularize the numerical model when softening occurs, its identification within the
plastic regime was investigated since the regularization is made on the cumulated plasticity field,
which starts developing before softening. The sensitivity analysis showed that the variation on
force and displacement provoked by such a parameter (for the considered model, described in
chapter 2) is not significant enough to be measured neither by the load cell nor the DIC system
(see figure E.8).

Finally, let us observe that the vertical displacement field becomes sensitive with respect to
the regularization parameter during the softening phase, as visible in figure E.9.
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Figure E.8: Sensitivity of force and displacement fields (U1, U2) with respect to the regularization
parameteron both axisymmetric (CAE4) and flat geometries (PAE2) within the plastic regime.
The boundary conditions are issued from tests CAE4-2 and PAE2-1. The displacement gap fields
are shown at the late stages of hardening, where the absolute values of displacement is the
highest. The influence of the regularization parameter exponent is negligible both on force and
displacement.
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(a) c - U1 (b) c - U2

0.001 mm 0.002 mm

(c)

Figure E.9: Sensitivity of the displacement fields (U1, U2) with respect to the regularization
parameter on the flat geometries (PAE2) within the softening (damage) phase.
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Résumé

Cette thèse a pour objectif le
développement d’une stratégie
d’identification des paramètres de
plasticité et d’endommagement
jusqu’à amorçage, pour des métaux
ductiles.
Un formalisme logarithmique est
utilisé pour simuler les grandes
déformations subies par les éprou-
vettes et une formulation non-locale
multi-champ permet de simuler
l’adoucissement indépendamment
du maillage utilisé et d’éviter le
verrouillage volumique.
La Corrélation d’Images Digitales est
utilisée pour obtenir des mesures
hétérogènes plein champ à partir
d’éprouvettes entaillées.
La stratégie proposée s’appuie sur
des observations microscopiques et
sur une approche d’identification
par recalage de modèle éléments
finis (FEMU), visant à minimiser
l’écart entre une mesure et son
pendant simulé. L’écart est exprimé
en termes de force et déplacement
grâce à une normalisation appro-
priée. L’application de la FEMU est
guidée par des analyses de sensibil-
ité.
La robustesse de la comparai-
son essai-calcul est assurée par
l’application de conditions au
bord mesurées. L’effet négatif de
l’incertitude de mesure est mis en
évidence et une solution de filtrage
innovante est proposée.
La stratégie est appliquée pour
l’identification des paramètres de
l’alliage Inconel625. Elle permet
de reproduire l’amorçage pour des
éprouvettes planes, en termes de
réponse macroscopique et de locali-
sation des sites d’amorçage.

Mots Clés

Endommagement ductile, FEMU,
Identification des paramètres, Con-
ditions au bord mesurées, Grandes
déformations, Corrélation d’images
digitales

Abstract

This thesis proposes an identifica-
tion strategy for plastic behaviour and
damage up to the onset of fracture,
for an application to ductile metals.
A logarithmic finite strain formulation
is used to simulate the large deforma-
tions undergone by the specimens,
while a locking-free non-local formu-
lation allows a mesh independent
simulation of the softening behaviour.
Digital Image Correlation is used to
obtain heterogeneous full-field mea-
surements from tensile tests on
notched specimens.
The identification strategy is based
both on microscopic observations
and on a Finite Element Model Up-
dating (FEMU) technique, according
to which the parameters are identi-
fied by minimizing the discrepancy
between experiment and simulation.
The discrepancy is quantified both
in terms of displacement and force
thanks to an appropriate normaliza-
tion. The application of FEMU is
guided using sensitivity analysis.
The robustness of the comparison
between simulation and measure-
ment is ensured by prescribing mea-
sured displacements as boundary
conditions for the simulation. The
negative effect of the measurement
uncertainty is underlined, and an in-
novative filtering approach is pro-
posed.
The proposed strategy is used to
identify the materials’ parameters of
alloy Inconel625. It allows to repro-
duce the onset of fracture for flat
specimens, both in terms of macro-
scopic response and crack initiation
location.

Keywords

Ductile damage, FEMU, Parame-
ter identification, Measured boundary
conditions, Finite strain, Digital image
correlation


	Table of Contents
	Introduction
	Material and Experimental Methods
	Material
	Digital Image Correlation
	Choice of the specimens geometries and test conditions
	Selected geometries
	Experimental procedure and setup

	Experimental Results
	Identification of the elasticity parameters
	Analysis of the macroscopic response
	Microscopic analysis and initial void volume fraction


	Numerical modelling of ductile failure within the finite strain framework
	Elasto-Visco-Plastic behaviour
	Elastic deformation
	Plastic deformation
	Viscous deformation

	Damage behaviour
	Global and local approaches to fracture
	Damage evolution by void growth

	Finite Element approach
	The strain localization problem
	The volumetric locking problem


	Prescription of measured boundary conditions
	Introduction
	Impact of noise on the solution of the equilibrium problem
	Analytical test case: elasticity problem under antiplane shear condition
	Numerical test case including plasticity

	Noise filtering
	Data reconstruction
	Mechanical filtering

	Discussion
	Artificial boundary conditions
	Experimental boundary conditions

	Conclusion

	Finite Element Model Updating
	Parameter identification
	Parameter identification from full field measurements
	Constitutive Equation Gap method (CEG)
	The Virtual Fields Method (VFM)
	The Equilibrium Gap Method (EGM)
	The Finite Element Model Updating method (FEMU)

	Cost function
	Identification of parameters within the plastic regime
	Identification of the hardening parameters
	Verification of the hardening parameters
	Identification of the Hosford exponent

	Conclusion

	Identification of damage parameters via FEMU
	Identification of the GTN model within the literature
	Influence of the regularization parameter
	Application of FEMU
	Identification
	Verification

	Validation of the damage parameters
	Validation on the first group of specimens
	Validation on the second group of specimens


	Conclusion and Perspectives
	Characteristics of the studied Inconel 625
	Comparison of the experimental displacement fields with their simulated counterparts
	Alignment of the experimental (DIC) and numerical (FE) spatial coordinates systems
	Uncertainty of the matching uncertainty
	Values interpolation

	Minimization of the cost function
	Validity of the asymptotic development
	Sensitivity analysis
	Methodology
	Results
	Plasticity parameters
	Damage parameters


	Bibliography

