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Abstract

Active seismic experiments are widely used to characterize the structure of the subsur-
face for the oil and gas industry. Based on the assumption of scale separation, numer-
ous approaches split the velocity model into a smooth background model controlling
the kinematics of wave propagation and a reflectivity model characterizing the rapid
changes of the model parameters. Macro velocity estimation and reflectivity imaging
are formulated as two inverse problems. The macro velocity estimation scheme can be
derived either in the data-domain, where one seeks an optimal fit between modeled and
observed data, or in the image-domain, where one tries to improve the image coherency.

Migration techniques aim at determining the reflectivity in a given macromodel.
Classic migration is the adjoint operator of the forward linearized modeling and suffers
from migration artifacts. Recent studies recast the asymptotic inversion in the context
of reverse time migration. They define a direct way for inverting the Born modeling
operator, which automatically compensates for uneven illuminations and geometrical
spreading losses, removing in practice migration artifacts.

Migration Velocity Analysis (MVA) techniques assess the quality of the estimated
macromodel by observing the migrated images. The analysis is carried out on the panels
called common image gathers. These panels can be built in two manners: the surface-
oriented methods first perform prestack migration on different subsets of input data,
such as the common-shot gathers, and then collect images along the redundant parame-
ter; the depth-oriented methods extend the image volume with an additional parameter,
for example the subsurface-offset as a spatial delay, inserted during the construction of
reflectivity images. Recent investigations propose to couple the direct inversion to MVA
in the subsurface-offset domain, introducing better robustness. This approach is numer-
ically demanding, even in 2D, and cannot be currently extended to 3D. In this thesis,
I propose to transpose this strategy to the more conventional common-shot migration
based MVA.

I first develop an alternative approach to a recent published work, related to the
common-shot true-amplitude reverse time migration. It is a pseudo-inverse of the Born
modeling operator in the asymptotic sense. The method allows producing prestack re-
flectivity images free of migration smiles in a direct way. Then, I propose to couple this
operator to velocity analysis. Inversion Velocity Analysis (IVA) is thus an alternative
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iv Abstract

to MVA consisting of replacing migration by an asymptotic inverse. I analyze how the
approach can deal with complex models, in particular with the presence of low velocity
anomaly zones or discontinuities, better than the classic MVA. Common-shot IVA ben-
efits from the natural parallel implementation, and requires less numerical cost than its
counterpart in the subsurface-offset domain.

I also propose to extend IVA to the data-domain, leading to a more linearized inverse
problem than classic full waveform inversion. It simply consists of applying the model-
ing operator to the images after the application of the annihilator. The new approach is
close to Full Waveform Inversion, in the sense that the optimal model is obtained when
the norm of the data residual is minimum. On the other hand, the new approach is still
based on the coherency criteria for which the inverse problem is known to have a better
convexity, at least for simple models. I compare the new approach to other reflection-
based waveform inversion to establish formal links between data-fitting principle and
image coherency criteria.

The methodologies are analyzed on 2D synthetic data sets from a series of veloc-
ity models, in particular models with the presence of a low-anomaly zone for which
common-shot migration is not necessarily appropriate, and the Marmousi model, to
justify the robustness. The main contribution of this work is (1) the development of
common-shot true-amplitude reverse time migration and, more importantly, the cou-
pling with velocity analysis; (2) the extension of common-shot IVA to the data-domain
and, along this line, the analysis of the links between image-domain and data-domain
methods.



Résumé

Dans le domaine de la prospection pétrolière, les expériences sismiques actives sont lar-
gement utilisées pour caractériser la structure de la subsurface. Avec l’hypothèse de la
séparation des échelles, de nombreuses approches divisent le modèle de vitesse entre
un modèle de grande longueur d’onde qui contrôle la cinématique de propagation des
ondes, et un modèle de réflectivité qui caractérise les changements rapides. Les esti-
mations du macro-modèle de vitesse et de la réflectivité sont formulées comme deux
problèmes inverses imbriqués. La détermination du macro-modèle peut être obtenue
soit dans le domaine des données, où est mesurée l’écart entre les données modélisées
et les données observées, ou dans le domaine image, où l’objectif est d’avoir des images
cohérentes.

Les techniques de migration visent à déterminer le modèle de réflectivité dans un
macro-modèle donné. La migration classique est seulement l’adjoint de l’opérateur de
modélisation linéarisé. La méthode est connue pour causer des artefacts de migration.
Récemment, une formule d’inversion au sens asymptotique a été développée pour rem-
placer la migration. C’est une méthode directe sans itération. Elle compense pour l’illu-
mination irrégulière, pour le facteur d’atténuation géométrique et donne des images
beaucoup plus propres en pratique.

L’analyse de vitesse par migration est une technique qui juge de la qualité d’un
macro-modèle de vitesse en comparant différentes images issues de sous-ensembles des
données, comme par exemple un point de tir. Des panneaux sont construits en modifiant
la condition d’imagerie soit avec un paramètre de surface, soit avec un paramètre lié à
la profondeur, comme un délai en espace ou en temps. Des résultats récents proposent
de coupler l’inversion asymptotique avec l’analyse de vitesse pour la version extension
en profondeur. L’analyse de vitesse est rendue beaucoup plus robuste. Cette approche
cependant demande des capacités de calcul et de mémoire importantes, même en 2D, et
ne peut actuellement être étendue en 3D. Dans ce travail, je propose de développer le
couplage entre l’analyse de vitesse et la migration plus conventionnelle par point de tir.

Je développe dans un premier temps une alternative à un travail récent autour de
la migration quantitative par point de tir. La formule est un pseudo-inverse de l’opéra-
teur de Born au sens asymptotique. Elle permet d’obtenir des images migrées propres
sans recourir à des itérations. Ensuite, je propose de coupler cet opérateur inverse avec
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vi Abstract

l’analyse de vitesse dite par inversion et non plus par migration. La nouvelle approche
permet de prendre en compte des modèles de vitesse complexes, comme par exemple en
présence d’anomalies de vitesses plus lentes ou de réflectivités discontinues. C’est une
alternative avantageuse en termes d’implémentation et de coût numérique par rapport à
la version profondeur.

Je propose aussi d’étendre l’analyse de vitesse par inversion au domaine des don-
nées. Ceci conduit à une approche du problème inverse plus linéarisée que celle de l’in-
version des formes d’onde. Il suffit d’appliquer l’opérateur de modélisation aux images
après la multiplication par l’annihilateur. Cette nouvelle approche est proche de l’inver-
sion des formes d’onde dans le sens que le modèle optimal est obtenu lorsque la norme
des résidus est minimale. D’un autre côté, l’approche est toujours basée sur le critère
de cohérence. Le problème inverse est connu pour être plus convexe, au moins pour des
modèles simples. Je compare la nouvelle approche avec d’autres méthodes pour établir
des liens formels entre des méthodes dans le domaine des données et dans le domaine
des images.

Les méthodologies sont analysées sur les jeux de données 2D et au travers de toute
une série de méthodes de vitesse, en particulier des modèles avec la présence de zones de
vitesses plus faibles à l’origine de triplications. Ces modèles ne sont pas nécessairement
appropriés pour la migration par point de tir. J’applique aussi les méthodes au modèle
Marmousi pour tester la robustesse. Les principales contributions de ce travail sont (1)
le développement de la migration par point de tir avec amplitude préservée, et surtout le
couplage avec l’analyse de vitesse ; et (2) l’extension de l’analyse de vitesse au domaine
des données, et le lien entre les domaines données et images.
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2 Chapter 1. Introduction

Résumé du chapitre 1
L’imagerie sismique est très utilisée pour caractériser les structures géologiques du
sous-sol au travers de l’analyse des données sismiques, pour ainsi révéler de possibles
ressources souterraines. Le modèle de sub-surface est constitué de paramètres physiques
comme les vitesses des ondes de pression et de cisaillement ou encore la densité des
roches. Ces paramètres contrôlent la propagation des ondes dans la Terre. En raison des
variations spatiales de ces paramètres, les ondes sismiques sont réfractées, réfléchies et
diffractées au cours de la propagation. Des capteurs à la surface enregistrent les on-
des qui ont interagit avec la sub-surface et fournissent ainsi les données pour l’imagerie
sismique. Le traitement géophysique a pour objectif de convertir ces données en im-
ages du sous-sol. Cette étape cruciale est formulée comme un problème inverse pour
déterminer les meilleurs paramètres du modèle Terre. Un bon modèle sert ensuite pour
l’interprétation géologique, la détermination des forages et le positionnement des puits.
Le problème inverse est difficulté à résoudre en pratique. Parmi plusieurs raisons, la
fort non-linéarité entre les données et les paramètres du modèles joue un rôle impor-
tant. C’est le cas lorsque le modèle correspond aux grandes longueurs d’onde de la
vitesse : un macro-modèle qui augmente de 10% ne conduit pas à un champ de pression
qui change dans les mêmes proportions, mais modifie le champ d’onde complet, et en
particulier les temps d’arrivées. Cette thèse ce focalise sur cette thématique.

En ce qui concerne la nature des ondes sismiques, la plupart des méthodes d’imagerie
considère l’approximation acoustique avec les ondes de pression, afin de simplifier les
formulations mathématiques et réduire le coût de calcul. Cette thèse est une contribu-
tion à la construction du modèle de vitesse dans le cadre de l’approximation acoustique
isotrope.

Dans l’introduction, je résume brièvement les principes de base autour de l’imagerie
sismique dans le contexte de l’exploration géophysique, et regarde plus particulière-
ment les approches classiques de la résolution du problème inverse dans les domaines
des données et des images. Finalement, je motive les développements et j’explique les
principales limitations actuelles des méthodes dans le domaine image et l’intérêt a faire
le lien entre les domaines des données et des images.
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Seismic imaging is widely used to characterize the geological structures in the sub-
surface from the analysis of seismic data, and thus to reveal possible resource bear-
ing formations. The subsurface model consists of a set of physical parameters such
as pressure and shear wave velocities or rock density that control the wave propaga-
tion in the Earth. Due to the spatial variations of model parameters, emitted seismic
waves are refracted, reflected and diffracted during propagation. Sensors deployed at
the surface record the waves traveling back to the surface after having interacted with
the subsurface, to provide the data used in seismic imaging. Geophysical processing
can convert those surface measurements into the images of the subsurface. This crucial
step is formulated as the inverse problem aiming at determining the model parameters.
An accurate subsurface model is important for subsequently interpreting the geology,
determining the drilling location, and correctly positioning the wells. The inverse prob-
lem, however, is difficult to solve. Among others, one reason is the highly nonlinear
relationship between data and model parameters. This is the case when the model cor-
responds to the large-scale part of the velocity model: a macro velocity model increased
by 10% does not scale the related pressure field by the same amount, but modifies the
total wavefields, including the arrival times. This thesis especially focuses on this issue.

Regardless of the elastic nature of waves, most seismic imaging methods are based
on acoustic assumptions and involve only pressure waves, to simplify the mathematical
formulation and greatly reduce the computational cost. This thesis is a contribution
related to the velocity model building under the isotropic acoustic approximation.

In this introduction, I first briefly summarize the basic principles behind seismic
imaging in the context of exploration geophysics, and then pay attention to the classic
approaches addressing the inverse problem defined in the data-domain or the image-
domain. Finally, I motivate the research developments by explaining the main limita-
tions of current image-domain methods and by indicating the interest of seeking the
links between image-domain and data-domain methods.

1.1 Seismic imaging principles
In exploration geophysics, seismic experiments are widely used for the subsurface imag-
ing and the reservoir management. The seismic waves can penetrate into the Earth and
thus bring information about the geological structures involved in industrial production,
located at a depth of a few kilometers in the subsurface. Conventional seismic explo-
ration mainly takes advantage of the active seismic experiments, meaning the sources
are artificially triggered, in opposition to the passive earthquake sources used in global
seismology (Lay and Wallace, 1995; Dahlen and Tromp, 1998; Aki and Richards, 2002).
The passive methods, such as interferometry have also been taken into account for ex-
ploration problems nowadays (Schuster et al., 2004; Schuster, 2016). In general, the
study of a physical system can involve three essential elements: observed data, for-



4 Chapter 1. Introduction

ward modeling and inverse problem (Tarantola, 2005). In the following, I review the
principles of seismic imaging for exploration problems. Additionally, I also introduce
the concept of scale separation (Claerbout, 1985) distinguishing different wavenumber
components of the model, as it is the basis for many seismic imaging techniques. The
reader is referred to Sheriff and Geldart (1995); Yilmaz (2001) for a broad introduction
to seismic imaging.

1.1.1 Seismic data
Seismic data can be acquired in land and marine environments. In the land case, the
source is usually a truck-mounted seismic vibrator and the receivers called geophones
record the motion of particles. The receivers are typically deployed on both sides of
the source at the surface (Figure 1.1a). In a marine acquisition, the source is an air-gun
and the receivers called hydrophones measure the pressure. The receivers are located on
one side of the source, along several streamers towed by a marine seismic vessel (Fig-
ure 1.1a). Alternatively, the receivers can also be located at the sea floor in an Ocean
Bottom Cable configuration (MacLeod et al., 1999; Plessix and Perkins, 2010). In both
land and marine cases, the presence of a drilled borehole can provide a different acqui-
sition system called Vertical Seismic Profiling (VSP) (Balch and Lee, 1984; Hardage,
1985; Soni, 2014). The source is similar to the one in conventional experiments but
receivers are located within a well (Figure 1.1b). In the cross-well configuration, the
source is a shot-hole dynamite, and sources and receivers are located in two different
wells (Rector, 1995; Zhou et al., 1995; Plessix et al., 2000).

A trace of seismic data is the discrete-time signal measured at a single receiver.
A group of traces recorded for the same source is usually displayed on a panel called
common-shot gather or simply shot gather, with the time on the vertical axis and source-
receiver distance (i.e. offset) on the horizontal axis. The shot gather records various
types of structural responses to the excitated source (Figure 1.2). Particular events, for
example surface waves in land data and ghosts in marine data, are commonly considered
as noise in seismic exploration and have to be removed by preprocessing (Yilmaz, 2001),
whereas global or engineering seismology may benefit from surface waves to character-
ize the near-surface structure (Xia et al., 1999; Socco and Strobbia, 2004; Shapiro et al.,
2005; Pérez Solano, 2013). Among others, body waves are mainly considered in seismic
imaging and can be categorized according to the paths that connect the source and the
receiver. One group is labeled as transmitted waves, involving

• Direct wave – This type of wave travels across the superficial part of the model.
The associated wave path is a straight line if the very shallow zone of the model
is homogeneous;

• Diving wave – Wave-paths can be curved in the case of increasing velocities with
depth. The effect may bend the waves back to the surface and the associated
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(a) Surface acquisitions (taken from Danish Energy Agency)

(b) VSP acquisitions (taken from Schlumburger)

Figure 1.1 – Acquisition geometries for land and marine environments.

recording is called diving waves. Consequently, this type of waves only has a
limited penetrating depth, especially for short offsets. They may arrive at the
receiver with shorter time than the direct waves at large offsets;

• Refracted wave – With sharp property contrasts existing in the medium, the prop-
agated waves can be refracted for the critical angles along these interfaces and
then later return to the surface.

The other group is identified as scattered waves, consisting of

• First-order scattered wave – The surface excitated waves can be diffracted or re-
flected when it propagates through the strong variations of medium properties.
Interfaces generate reflections and sharp edges trigger diffractions. The first-order
scattered waves are reflected or diffracted only once during propagation. They are
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directly linked to the rapid changes of model parameters. I will focus on this type
of waves in this thesis;

• High-order scattered wave – The multi-scattering is caused by strong medium
property contrasts such as the sea surface or the water bottom. The energy of up-
going first-scattered waves is partly sent back to the subsurface and can reflect or
diffract a few times before being recorded. Their contributions are commonly ei-
ther neglected or removed by the preprocessing (Verschuur et al., 1992; Verschuur,
2006). Alternatively, recent investigations propose to extend seismic imaging to
multiples (Guitton, 2002; Jiang et al., 2005, 2007; Berkhout, 2012; Verschuur and
Berkhout, 2015; Cocher, 2017).

The preprocessing step is an essentially preliminary procedure before determining
the Earth’s model parameters. It consists of selecting the interested events for the subse-
quent analysis and of attenuating noise inherent to field data (see Yilmaz, 2001 for more
details). Some developments attempt to take advantage of all information included in
the data, such as transmissions, multiples, or more generally the full wavefield (see sec-
tion 1.2.1). However, many seismic imaging techniques still rely on primary reflection
data only. In this case, the other events like multiples are considered as noise and should
be removed before the further analysis. The removal of multiples is an intense research
topic (Verschuur, 2006). Here, the thesis only relies on the primary reflected data.

1.1.2 Scale separation
It is difficulty in practice to fully reconstruct the velocity model c with limited acquisi-
tions (Virieux and Operto, 2009). Conventional surface acquisition system usually pro-
vides insufficient low frequencies, limited offsets and/or restricted azimuth coverage in
the observed data. As demonstrated by Claerbout (1985), the model reconstructed from
seismic data lacks intermediate spatial frequencies (i.e. wavenumbers). The recovered
model mainly consists of two separate ranges in the spectrum (Figure 1.3), leading to
the concept of scale separation that distinguishes between perturbation (high wavenum-
bers) and background (low wavenumbers) models (Jannane et al., 1989). The velocity
model c is thus split into two parts,

c(x) = c0(x) + δc(x), (1.1)

where δc is the reflectivity model and c0 the macro velocity or background velocity model
(Figure 1.4), according to the associated wavenumber contents. They all depend on
the spatial coordinate x. The full model c can be inverted without scale separation,
as in Full Waveform Inversion (FWI) presented in section 1.2.1. Alternatively, two
main categories of seismic imaging methods have been established aiming at recovering
different scales (Mora, 1989):
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reflection
diving wave

refraction

direct wave

multiple

multi diffraction

(a) (c)

(b)

Figure 1.2 – A synthetic example of marine seismic data acquired at the surface: (a) scat-
tered paths in the model; (b) transmitted paths in the model; (c) shot gather recorded at
the surface. The red star denotes the position of the source. Solid, dot dashed and dashed
white lines in (a) denote first-reflected, multi-reflected and multi-diffracted waves, re-
spectively. Solid, dot dashed and dashed white lines in (b) denote direct, diving and
refracted waves, respectively.

• Migration aims at recovering the reflectivity model δc (the high-wavenumber
part). Under the Born approximation, the determination of δc is a linear inverse
problem. Such approaches require an accurate background velocity model c0. I
will review migration schemes in section 1.2.2;

• Macro velocity estimation seeks the reconstruction of the macro velocity model
c0 (the low-wavenumber part) that controls the kinematics of the recorded seismic
responses. The macro velocity model is determined with tomographic methods (in
a broad sense) formulated either in the data-domain or in the image-domain (i.e.
before or after migration). I will review tomographic strategies in sections 1.2.3
and 1.3.



8 Chapter 1. Introduction

Figure 1.3 – In black, the classic sketch by Claerbout (1985) illustrating the spatial fre-
quencies that can be resolved from seismic data. The gap is now filled by the improved
resolution of tomography (red curve) and by the impact of broadband acquisition on
imaging (blue curve) (from Lambaré et al., 2014).

Figure 1.4 – A synthetic example of the scale separation for the Marmousi model. The
full velocity model (left) is decomposed into a smooth background velocity model (mid-
dle) and a velocity perturbation model (right).

In seismic imaging, it is common to deal with two types of information included in
the surface measurements: the dynamic and the kinematics aspects. The dynamic aspect
has a direct impact on the amplitudes of the seismic waves. It is related to the reflec-
tion/transmission coefficient, but also depends on the source wavelet, the source and
receiver distributions, etc. On the other hand, the kinematics of wave propagation are
mainly controlled by the long-wavelength part of the velocity model, and the main con-
sequence on the seismic wave is the arrival time. It also has an impact on the amplitudes
due to the geometrical spreading, the attenuation in a dissipative media, etc.

Note that the spectrum gap is significantly filled nowadays (Nichols, 2012; Lambaré
et al., 2014) (Figure 1.3): (1) the improvement of the acquisition system allows record-
ing seismic data with longer offset, wider azimuth and broader frequency band; (2) the
advanced imaging tools can recover the background velocity model with more details.
Nevertheless, scale separation remains the theoretical basis of many conventional and
new imaging methods. This thesis explicitly uses such assumption for the parameteri-
zation of the model.
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Before discussing data-domain and image-domain methods, I first review the main
elements in forward modeling and in the resolution of the inverse problem.

1.1.3 Forward modeling
For subsequent imaging procedures, it is essential to define a physical law that allows
to properly describe the link between the chosen model parameters and the associated
data. It is mathematically formulated as a hyperbolic partial differential equation called
wave equation, which simulates the wave propagation giving a set of model parameters.
In the real Earth, the wave propagation is affected by many subsurface properties. Due
to the high computational cost of simulating the visco-elastic anisotropic wave propa-
gation, I consider only the isotropic acoustic approximation in this thesis. Anisotropy,
elasticity and attenuation are not included. The Earth’s model is thus paramterized by
the pressure wave velocity Vp and the rock density ρ. The reflections are generated from
rapid changes of acoustic impedance Ip = Vpρ. In the constant density case, only the
pressure wave velocity needs to be specified to solve the wave equation. Even for this
simplest assumption, one still has to input a large number of parameters since the model
parameters depend on the spatial coordinates.

The wave equation is commonly resolved by numerical modeling schemes including
finite-difference method (FDM) (Virieux, 1986; Levander, 1988; Etgen and O’Brien,
2007), finite-element method (FEM) (Smith, 1975; Marfurt, 1984), spectrum-element
method (SEM) (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999), etc. In ex-
ploration geophysics, the two main forward modeling tools are FDM and FEM. Moczo
et al. (2010, 2011) compared the two schemes and concluded that the accuracy of the
two methods are comparable with fine samplings. Virieux et al. (2011) have reviewed
the efficiency and complexity of the two methods, and indicated that FDM is widely
used due to its simplicity to implement and the relatively lower computational cost. The
main advantage of FEM is its flexibility in meshing to deal with the boundary condi-
tions and irregular structures. Compared to FDM, it is more numerically expensive and
more difficult to implement. SEM is more applied for global seismology scale problems
(Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999; Fichtner, 2011). Some
investigations proposed to use SEM on the exploration scale (Luo et al., 2009, 2013),
but SEM is very demanding in terms of the computational cost and its grid meshing
requires a priori knowledge of the subsurface structure. This thesis will concentrate on
simulating the wavefield with FDM.

The modeling can also rely on the ray theory, which is based on the high-frequency
asymptotic approximation of the wave equation (Červený, 2005). The propagation of
waves in the subsurface is described by rays sharing the similar propagation laws used
in optics (Červený et al., 1977; Chapman, 2004). For this scheme, the Green’s function
can be decomposed into three parts: one corresponding to the traveltime, one to the
amplitude and one to the source signature. In a given velocity model, the traveltime can
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be simulated either by ray-tracing strategy (Julian, 1977; Červenỳ, 1987), or by solving
the Eikonal equation (Vidale, 1988; Podvin and Lecomte, 1991; Qin et al., 1992).

In this thesis, I only focus on wave-equation-based modeling methods (in particular
FDM) and ray-based modeling methods will not be considered, except for analyzing the
main effects of wave-equation operators on the data.

1.1.4 Inverse problem

Objective function

The inverse problem consists of defining a scalar objective function (also called cost
function) to evaluate the accuracy of model parameters used for modeling. It is de-
signed such that the best model corresponds to the global maximum or minimum in the
objective function. In the data-domain, the objective functions can be defined by mea-
suring the misfit between observed and modeled data, typically in the least-squares sense
(Tarantola, 1984a; Pratt et al., 1998). Alternatively, the data misfit can also be assessed
using other schemes such as crosscorrelation (Luo and Schuster, 1991; Van Leeuwen
and Mulder, 2010), deconvolution (Luo and Sava, 2011; Warner and Guasch, 2016), op-
timal transport distance (Métivier et al., 2016), Huber norm (Guitton and Symes, 2003),
etc. On the other hand, one can first migrate the data and then formulates the objective
functions in the image-domain, with semblance principle (see section 1.3 for details),
measuring the level of coherency or focusing of reconstructed reflectivity images of the
Earth (Al-Yahya, 1989; Symes and Carazzone, 1991; Sava and Biondi, 2004; Symes,
2008).

In seismic imaging, the inverse problem generally seeks a set of model parame-
ters minimizing the objective function. However, it is in practice an ill-posed problem
(Tarantola, 1984a; Scales et al., 1990; Virieux and Operto, 2009). The solution is not
unique, meaning that there are probably several models that can perfectly explain the
data for a given noise level. Some regularizations are conventionally applied to make
the inverse problem better posed (Tikhonov et al., 1977; Menke, 1984; Hansen, 2000;
Asnaashari et al., 2013). The non-uniqueness problem results from various reasons in-
cluding the imperfect acquisition and the crosstalk among different physical parameters
(Tarantola, 2005). Most of the seismic surveys are located at the surface of the Earth and
the offsets are limited, leading to insufficient illumination of the subsurface, especially
in the area with complex geological structures (e.g. salt body and gas clouds). Conse-
quently, some of the subsurface model parameters may be poorly or even not sampled,
such that they cannot be retrieved by analyzing the measurements. For example, the lo-
cal change of seismic velocity and attenuation property may produce similar reflection
coefficients (Mulder and Hak, 2009; Hak and Mulder, 2010). To reduce the crosstalk,
a proper parameterization is needed, for which the model parameters are less coupled
(Virieux and Operto, 2009; Zhou et al., 2015; He and Plessix, 2017).
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Optimization scheme

Inverse problem aims at determining a set of model parameters minimizing the objective
function through an optimization procedure. One possible solution is the global opti-
mization methods (also called the global search methods) (Sen and Stoffa, 2013), which
explore the whole model space to determine the optimum choice. Such schemes require
the ability to calculate the value of the objective function and to properly sample the
model space. For example, Monte Carlo methods (Jin and Madariaga, 1994; Sambridge
and Mosegaard, 2002), simulated annealing (Ingber, 1989; Mosegaard and Vestergaard,
1991; Scales et al., 1992; Misra and Sacchi, 2008) and generic algorithms (Gallagher
et al., 1991; Sambridge and Drijkoningen, 1992; Jin and Madariaga, 1993) have been
applied to the geophysical inverse problems. The main limitation of these schemes is
the computational cost because they require evaluating the objective functions numerous
times.

On the other hand, a realistic alternative is the local optimization methods (also
called gradient-based methods), applicable if the objective function does not contain
local minima. Examples of this family are steepest descent methods (Lines and Treitel,
1984; Tarantola, 1984a), nonlinear conjugate gradient methods (Fletcher and Reeves,
1964; Portniaguine and Zhdanov, 1999; Luo and Schuster, 1991), Gaussian-Newton
methods (Shin, 1988), quasi-Newton methods (Nocedal, 1980; Nash and Nocedal, 1991)
and Newton methods (Santosa et al., 1987; Pratt et al., 1998; Métivier et al., 2013).
For these schemes, the model is iteratively updated such that the value of the objective
function decreases with iterations (Figure 1.5). The direction of the model update at each
iteration is determined by calculating the gradient of the objective function with respect
to model parameters, and possibly the inverse of the Hessian to take into account the
local curvature of the objective function. The adjoint-state technique (Chavent, 1974;
Plessix, 2006) provides an efficient way to derive of the gradient of the objective function
with respect to model parameters.

Figure 1.5 – Schematic for local optimization methods.
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The nonlinear relationship between data and model parameters is an intrinsic dif-
ficulty for the local optimization procedure: the objective function is not necessarily
convex and it may converge towards a local minimum instead of the global one (Bunks
et al., 1995). Therefore, it is important to start from an initial model close enough to
the true model (Beydoun and Tarantola, 1988; Pratt et al., 2008). The alternative is to
develop a multi-scale approach and to start with the low-frequency content of the data.
The presence of low-frequency content in the observed data can relax the requirement
for the initial model (Sirgue, 2006): for example, the classical least-squares objective
function has an enlarged basin of attraction. I will explain the nonlinear issues more in
section 1.2.1. Strategies to define the objective functions with better convex property
will be reviewed in sections 1.2.3 and 1.3.

I have reviewed the seismic imaging principle in this section. In the following sec-
tion, I review the inverse problems formulated in data-domain and image-domain, as
I will investigate the links between two families later in Chapter 4. Although mod-
eling aspects with ray theory were reviewed in section 1.1.3, I will only investigate
the wave-equation-based methods in the following Chapters, except for analyzing the
wave-equation operators. The rays can emphasize the kinematics of wave propagation
in the subsurface. However, ray-based methods poorly behave for sampling the shadow
zone (a low velocity anomaly area) (Moser, 1991). Ray-based methods have built-in
disadvantages including the limited resolution of recovered model (a ray travels trough
a infinitesimally narrow path inside the model) and the instability dealing with strong
heterogeneities (Díaz et al., 2014; Wang et al., 2014). I now detail the classic inverse
problems defined in the data-domain, and the principle of image-domain techniques will
be reviewed in section 1.3. Note that a tomographic mode corresponds to the update of
macromodel c0 and a migration mode to the update of model perturbation δc as men-
tioned in section 1.1.2.

1.2 Data-domain methods
The data-domain methods measure the misfit between observed and modeled data to
evaluate the quality of an estimated model (Tarantola, 2005). Under the isotropic acous-
tic approximation, the model c corresponds to the pressure wave velocity field. In sec-
tion 1.2.1, I first review the FWI strategy, which uses the full recorded data to recon-
struct c without any scale separation. Then, in section 1.2.2, I introduce the migration
technique as a linearized waveform inversion problem. The method relies on the scale
separation assumption and is dedicated to recovering the small scale structure δc. The
reconstruction of the background model c0 is challenging. Traveltime tomography has
becomes a standard for estimating the macro velocity model c0 in the oil and gas industry
since last 90s (Woodward et al., 2008; Nichols, 2012; Lambaré et al., 2014). However,
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it is a ray-based technique and will not be discussed here. I will detail alternative wave-
equation-based strategies which behave in a tomographic mode in section 1.2.3. More
technical details will be provided in Chapter 2.

1.2.1 Full Waveform Inversion

Formulation and resolution

Full Waveform Inversion (FWI) is a technique for seismic imaging which has gained
popularity with the increase of computer powers. It defines a nonlinear inverse prob-
lem in the data-domain, which seeks a set of model parameters minimizing the misfit
between observed and modeled data in the least-squares sense. Originally, Lailly et al.
(1983); Tarantola (1984a) introduced the data misfit as a similarity estimation in the
time-domain. Alternatively, the problem is formulated in the frequency-domain Pratt
and Worthington (1990). The frequency-domain FWI is equivalent to time-domain FWI
when all frequencies are considered simultaneously (Pratt et al., 1998). The reader is
referred to Virieux and Operto (2009); Fichtner (2011) for more details.

FWI considers the full wavefields, and the recovered subsurface image should in-
clude both the large and small scale structures of the velocity model. The contribution
of different types of waves in the estimation of the velocity model can be analyzed via
the following relationship (Devaney, 1982; Miller et al., 1987),

k =
2ω

c
cos(

θ

2
)n, (1.2)

linking the wavenumber k at an spatial point x to the angular frequency ω and to the
opening angle θ related to a source-receiver pair; n is the normalized vector of k (Fig-
ure 1.6). The low-frequency content in data can thus induce small-wavenumber (i.e.
long-wavelength) updates of the model, whereas the high-frequency corresponds to the
large-wavenumber (i.e. short-wavelength) updates. On the other hand, the data from
long-offset is related to large scattering angles and can result in small-wavenumber up-
dates. Hence, low frequencies and large offsets are preferred for a tomographic update
(Alkhalifah and Plessix, 2014). However, the recorded frequencies and surface offset
ranges are limited in practice. In the shallow part of the subsurface, the diving waves
correspond to large diffraction angles, allowing to retrieve small-wavenumber contents
of the subsurface model. Differently, the deep part is mainly sampled by reflected waves
with a small diffraction angle due to the limited surface offset range. Thus, only the
high-wavenumber part of the model can be recovered, meaning that FWI behaves in
a migration mode in this case (Mora, 1989). In section 1.2.3 and 1.3. I will present
some approaches that can extract the long-wavelength part of the velocity model from
the reflected data.
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Figure 1.6 – Illustration of the relationship between the wavenumber k = ks + kr and
the opening angle θ (adapted from Alkhalifah and Plessix, 2014).

Multi-parameter inversion

FWI includes in principle all types of waves (both transmitted and scattered waves)
for resolving different model parameters (velocity, density, anisotropy, attenuation).
The multi-parameter estimation requires a modeling engine capable of reproducing the
physics of wave propagation as accurate as possible (Warner et al., 2013). This is a
first difficulty, since the real Earth is a complex poro-visco-elastic medium, and the
implementation is more computational demanding than for the acoustic approximation
of the wave equation. The simultaneous inversion of several parameters is a more se-
vere challenge, as different parameters may have coupling effects and sensitivities with
various orders of magnitude, making the inversion poorly conditioned. Operto et al.
(2013); Prieux et al. (2013a); He and Plessix (2017) proposed guidelines to design multi-
parameter strategies for FWI, typically by only inverting for vp in a first step. In practice,
many approaches only invert for vp, with other fixed model parameters, because of the
difficulties for multi-parameter estimation (Operto et al., 2013).

Cycle skipping effects

It is well known that the FWI objective function suffers from local minima due to the
nonlinear relationship between data and model parameters (Gauthier et al., 1986). This
issue is so-called cycle-skipping effects (Bunks et al., 1995). In theory, global optimiza-
tion methods may properly deal with this problem, but this is not yet a realistic choice
for FWI due to the heavy computational cost, except recent attempts in 2D (Sambridge
and Mosegaard, 2002; Misra and Sacchi, 2008; Sen and Stoffa, 2013). local optimiza-
tion methods are less expensive but they require a starting model close enough to the
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true model (Beydoun and Tarantola, 1988; Pratt et al., 2008). More precisely, the phase
mismatch between observed and modeled data should be less than half a period recorded
in the data. For example, Figure 1.7 presents three examples with different phase shifts
in data: less than half a period, equal to zero and more than half a period. The first ex-
ample mimics the data generated from the model sufficiently close to the true model and
can converge towards the global minimum, whereas the third one is cycle skipped. The
presence of low-frequency contents in observed data can relax the requirement for the
initial model (Sirgue, 2006), as the associated objective function has an enlarged basin
of attraction around the correct velocity (Figure 1.8). In theory, the basin of attraction of
the misfit function is inversely proportional to the central frequency of the data (Bunks
et al., 1995; Pratt et al., 1996; Sirgue and Pratt, 2004).
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Figure 1.7 – Illustration of the origin of cycle skipping effect. Local optimization con-
verges towards the global minimum for the modeled data with smaller time shift er-
ror (left pink circle), whereas it converges towards the local minimum for the modeled
wavelet with larger time shift error (red star). The black arrows mark the descent direc-
tions.

To deal with this issue, the multi-scale strategy can mitigate the nonlinearity, by
progressively performing the inversion on data from low-frequency to high-frequency
and from long-offset to short-offset (Bunks et al., 1995; Shipp and Singh, 2002; Sirgue,
2006; Virieux and Operto, 2009; Wang et al., 2014). As already mentioned in the reso-
lution part, data recorded with the low-frequency and large-offset allow recovering the
long-wavelength part of the velocity model, such that the attraction basin of the objec-
tive function can be enlarged. In addition, the large-offset recording introduces more
transmitted waves in data (Shipp and Singh, 2002). This multi-scale strategy has been
successfully applied to real data in marine (Sirgue et al., 2009) and land (Plessix et al.,
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Figure 1.8 – Same as for Figure 1.7, but the low-frequency content is involved in the ob-
served and modeled data. The cycle skipped case (red star) in Figure 1.7 now converges
towards the global minimum with the help of low-frequency.

2010) cases. However, the required low frequencies (< 1 Hz) for exploration problems
are very difficult to acquire during controlled-source experiments (Virieux and Operto,
2009), and the large-offset acquisition is expensive since the penetration depth of diving
waves is only one third to one sixth of the largest offset, depending on the experience
(Zhou, 2016).

Alternatively, the definition of the FWI objective function can be modified to enlarge
the basin of attraction around the correct velocity model, avoiding falling into the local
minimum. Several alternative methods will be detailed in section 1.2.3.

1.2.2 Linearized waveform inversion
I first introduce the migration technique as a linearized waveform inversion problem.
The migration approach developed later in Chapter 3 is a wave-equation-based scheme,
but I will review some ray-based migration techniques in this section, as ray theory has
played an essential role in the historical development of migration, including recently
for the derivation of direct approaches.

Classic migration

The purpose of migration techniques is to recover the reflectivity image as velocity per-
turbations of the Earth’s interior. These methods are based on the scale separation con-
cept and assume that the macro velocity model is known. They were mainly designed
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for primary reflections, and can be extended to multiple reflections (Guitton, 2002; Jiang
et al., 2005; Muijs et al., 2007; Cocher et al., 2015).

The early migration techniques are based on ray theory. The ray-based family mainly
refers to ray+Kirchhoff (French, 1975; Schneider, 1978; Gray, 1992) or ray+Born (Bey-
doun and Mendes, 1989; Thierry et al., 1998; Operto et al., 2000) migration. The former
is an integral approximation to the wave equation, explicitly expressing how recorded
traces contribute to the reflectivity images (Figure 1.9). The ray+Born approximation
differs from ray+Kirchhoff method by the description of the perturbation components of
the model (i.e. in terms of velocity and density perturbations or in terms of specular re-
flectivity, respectively) (Lambaré et al., 2003; Operto et al., 2003). Ray-based methods
are flexible and efficient, but rays are only asymptotic solutions of the wave equation,
such that they are not always adequately effective in imaging extremely complex struc-
tures, for example in the presence of hard layers and salt bodies.

Figure 1.9 – The principle of Born modeling: (a) calculation of traveltime; (b) Kirchhoff
hyperbola on seismogram. (adapted from Pyun and Shin, 2008)

Later, reflectivity imaging was reformulated as wave-equation-based migration tech-
niques. These approaches can be further divided into one-way wave-equation migration
(namely wavefield extrapolation migration, WEM) (Bamberger et al., 1988; Ehinger
et al., 1996) and two-way wave-equation reverse time migration (RTM) (McMechan,
1983; Baysal et al., 1983), depending on how the lateral variations of velocities are
introduced. WEM methods use paraxial approximation of the wave equation. WEM
is properly defined within certain angles around the main direction but fails to handle
wider angles, especially those near or beyond 90◦. RTM solves the full wave equation
and shows its superiority over other methods in dealing with steep dipping angles and
complex velocity models (Mulder and Plessix, 2004). The wave propagation in the sub-
surface can be characterized more accurately using the two-way propagator compared
to the case of one-way. (Mulder, 2008; Gao and Symes, 2009). Biondi and Shan (2002)
showed the potential of RTM for imaging overturned reflections.

These wave-equation-based methods are commonly implemented through imaging
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condition concept introduced by Claerbout (1971). The reflectivity model is updated
where a downgoing incident wavefield coincides in time and space with an upgoing
receiver wavefield (Figure 1.10). The procedure consists of three steps: (1) propagate the
source wavelet from the source position to determine the downgoing source wavefield;
(2) backpropagate the observed data from the receiver position to determine the upgoing
receiver wavefield; (3) apply the imaging condition to determine the reflectivity image
of the subsurface. Many formulations exist for the imaging condition and the most
common one is the zero-lag crosscorrelation of the source and receiver wavefields. The
procedure is repeated for every shot, with a summation over sources to reduce the signal
to noise ratio, or with an image per shot. On the other hand, the consistency among
different images can also be used as information. This is the basic principle of MVA
techniques presented in section 1.3.

Figure 1.10 – Description of imaging condition for a simple reflector.

This migration algorithm was recognized as the first iteration of FWI, the least-
squares data-fitting inverse problem, by Lailly et al. (1983); Tarantola (1984b) (Fig-
ure 1.11). Under the first-order Born approximation, it is formulated as a linearized
waveform inversion (Østmo et al., 2002). Assuming the background velocity model
c0 is known, it aims at determining the model perturbation δc that best reproduces ob-
served data. Compared to FWI introduced in the previous section, the forward modeling
is linear in the migration case.

The conventional migration is in fact the adjoint operator of the Born modeling
(Claerbout, 1992). Although the adjoint is useful to qualitatively estimate the pertur-
bation model, it is not exactly an inverse and cannot correctly estimate the amplitudes
of migrated images. Consequently, one cannot accurately reproduce the amplitudes of
seismic data from the migrated images, even if a correct background model is given. In
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Figure 1.11 – Description of iterative migration.

practice, the reproduced data is only kinematically correct, in the sense that the major
event is located at the same position as the original data, but the amplitudes are of dif-
ferent magnitudes (Figure 1.12). Moreover, the reproduced data also suffers from artifi-
cial direct arrivals (marked by arrows in Figure 1.12c) related to the migration artifacts
(marked by arrows in Figure 1.12b). Classical migration methods lead to artifacts, such
as migration smiles, due to the limited aperture in observed data. Briefly, the migrated
images are not the solution minimizing the objective function for linearized waveform
inversion.

Figure 1.12 – Illustration indicating that migration cannot completely reproduce the
data: (a) observed data, (b) migrated image with correct macro velocity model, and (c)
modeled data with image (b) in the correct macro velocity model. The artificial direct
arrivals in panel (c) correspond to migration artifacts in panel (b). The observed and
modeled data are in phase, but their amplitudes are different.
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True-amplitude migration: iterative migration versus direct inversion

Standard migration methods are designed to produce kinematically accurate images of
the subsurface, but are not aimed at preserving the amplitudes in migrated images. The
quantitative methods are preferred as they compensate for geometrical spreading losses,
uneven illuminations and deconvolution. The quantitative migration can be retrieved by
seeking a perturbation model in which the modeled data best fit the observed data in
the least-squares sense (Ronen and Liner, 2000). To solve the minimization problem,
a first solution is to use the inverse of the Hessian matrix, the second derivatives of the
objective function with respect to model parameters, which is prohibitively expensive
to compute and to store directly. It is more feasible, either to use a gradient-based
iterative algorithm as in the FWI approach, or to directly solve the inverse problem by
approximating the impact of the Hessian. This leads to two types of true-amplitude
migration methods: iterative migration versus direct inversion.

The initial implementation of iterative migration was carried out with ray-based mi-
gration (Lambaré et al., 1992; Nemeth et al., 1999; Duquet et al., 2000). Then, it was
developed for WEM (Duquet, 1996; Kühl and Sacchi, 2003; Clapp et al., 2005), and
more recently for RTM (Dai et al., 2012; Liu et al., 2013; Zhang et al., 2014a; Xue et al.,
2014). Such approaches can be extended from acoustic to elastic (Forgues and Lambaré,
1997; Yan and Sava, 2008) and to visco-elastic (Ribodetti and Virieux, 1998; Dutta and
Schuster, 2014). It has been demonstrated that iterative migration significantly improves
the resolution of the migrated image and effectively attenuates migration artifacts (Fig-
ure 1.13), especially in the case of incomplete observed data (Nemeth et al., 1999; Kühl
and Sacchi, 2003) and of complex geology Zeng et al. (2017). However, the strategy
is expensive in terms of computational cost as the optimization usually requires several
iterations to converge. Thus, it is very computationally demanding to couple iterative
migration to macro velocity estimation techniques (Zhou, 2016; Cocher et al., 2017b),
and in practice the proper regularization and preconditioner are required for a faster
convergence (Fomel, 2007; Dai et al., 2012; Cocher et al., 2017b).

Direct inversion replaces migration, the adjoint of the Born modeling operator, by an
explicit pseudo-inverse formula. Assuming an infinite recording aperture, these schemes
derive the formula represented by an integral equation similar as in the migration case.
This inverse formula makes the Hessian matrix close to a Dirac function leading to a bet-
ter conditioned problem. The quantitative weight can either be directly used (Beylkin,
1985; Bleistein, 1987; ten Kroode, 2012; Hou and Symes, 2015), or act as a precon-
ditioner in conjunction with iterative migration to boost the convergence (Qin et al.,
2015; Hou and Symes, 2016b; Duprat and Baina, 2016; Cocher, 2017), leading to a
more efficient application. Direct inversion was initially proposed for ray-based meth-
ods (Beylkin, 1985; Bleistein, 1987; Lambaré et al., 1992; Lameloise, 2015). Later, it
was developed for WEM (Zhang et al., 2005, 2007; Joncour et al., 2011), and more
recently for RTM (Op’t Root et al., 2012; ten Kroode, 2012; Zhang et al., 2014a; Hou
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Figure 1.13 – Conventional RTM (a) and least-squares RTM (b) images of the synthetic
salt model based on a GOM survey (adapted from Zeng et al., 2017).

and Symes, 2015; Lameloise, 2015; Qin et al., 2015; Duprat and Baina, 2016; Chauris
and Cocher, 2017). Table 1.1 presents a non exhaustive review of published direct in-
version approaches. Note that some of the direct inversion schemes require an accurate
background velocity model (Zhang et al., 2007; Zhang and Sun, 2009), and the others
do not (ten Kroode, 2012; Hou and Symes, 2015; Li and Chauris, 2017). For the latter,
the model space is extended with an extra parameter (e.g. shot position) such that the
dimensions for model and data spaces are equivalent.

For the works of ten Kroode (2012); Hou and Symes (2015); Qin et al. (2015);
Chauris and Cocher (2017), the asymptotic of ray theory justifies the derivation of the
inverse formula, but no ray quantities are present in the final result. Bleistein et al. (2005)
explained the remarkable fact: the calculation of Beylkin determinants (Jacobian of
transformation between model parameters and acquisition surface coordinates) produces
the reciprocal geometrical amplitudes and other ray-dependent terms. It is a way to
remove the effect of geometrical spreading. In this thesis, I develop a common-shot
direct inversion in Chapter 3 and then couple it to various velocity estimation techniques
for a better robustness in Chapters 3 and 4.

1.2.3 Alternative methods
Alternatives to FWI objective function

To get rid of the cycle-skipping effects, alternative techniques have been developed,
modifying the definition of the classic FWI least-squares objective function to enlarge
the basin of attraction around the correct velocity model. In this subsection, I con-
sider methods that do not rely on the scale separation. Many researchers have proposed
alternative functions to converge towards the global minimum in the absence of low-
frequency and long-offset information (Van Leeuwen and Mulder, 2010; Bozdağ et al.,
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Table 1.1 – Non exhaustive review of published direct inversion approaches. For
subsurface-offset and common-angle domains, the reader is referred to section 1.3.2.

Subsurface-offset or
common-angle domain

Surface-offset or
common-shot domain

Ray-based
Xu and Lambaré (2004);
Lameloise (2015), etc.

Beylkin (1985); Bleistein
(1987); Lambaré et al.
(1992), etc.

One-way wave-
equation-based

Zhang et al. (2007); Joncour
et al. (2011), etc.

Zhang et al. (2005), etc.

Two-way wave-
equation-based

ten Kroode (2012); Zhang
et al. (2014a); Hou and
Symes (2015); Chauris and
Cocher (2017), etc.

Op’t Root et al. (2012); Qin
et al. (2015); Duprat and
Baina (2016); Li and Chauris
(2017), etc.

2011; Liu et al., 2011b; Wu et al., 2014; Warner and Guasch, 2016; Métivier et al., 2016).
There are two distinguished principles to design such an objective function (Bharadwaj
et al., 2015): (1) give more weight to the kinematic error, or (2) transfer the data to
a reduced form (e.g. envelope). Both aim at inferring a tomographic update for ve-
locity model. They allow to mitigate the cycle-skipping issues but the retrieved model
generally has a lower resolution than conventional FWI.

Van Leeuwen and Mulder (2010); Luo and Sava (2011); Chi et al. (2015) proposed
the crosscorrelation-based objective function by computing the crosscorrelation factor
between observed and modeled data. The correct velocity model is associated to fo-
cusing energy at zero temporal delay. This function does not properly handle multiple
arrivals. Bozdağ et al. (2011); Wu et al. (2014); Chi et al. (2014) proposed to design
the objective function evaluating the misfit between observed and modeled data after
the application of the envelope transform. The major advantage is that the reduced seis-
mic signals are less oscillating, reducing cycle-skipping effects. But the technique is
sensitive to small amplitude noise. Warner and Guasch (2014, 2016) developed Adap-
tive Waveform Inversion (AWI), defining an objective function based on the non-causal
Wiener filter. Wiener coefficients are retrieved by deconvolving modeled data with ob-
served data. The method penalizes the Wiener coefficients with a weighting factor de-
fined as the temporal lag. Since the adjoint source of AWI is mathematically in phase
with modelled data, an immunity to cycle skipping effect is then expected. Warner and
Guasch (2016) showed that AWI can properly deal with synthetic data dominated by the
reflected arrivals. They further indicate that Wiener filter based AWI is less sensitive to
errors in the source wavelet than conventional FWI. Luo and Sava (2011) compared the
behaviors between crosscorrelation-based and deconvolution-based objective functions.
Bharadwaj et al. (2015) came up with a strategy using an auxiliary bump functional
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for inversion. The approach squares and subsequently smooths the data to enhance the
long-period content of the data. The bump function is not sensitive to the sign of data,
such that it is only used as a guide for conventional FWI to converge at a global mini-
mum. More recently, Métivier et al. (2016) introduced the optimal transport distance to
evaluate the data residual. More technical aspects about these methods will be provided
in Chapter 2.

Wave-equation traveltime tomography

Wave-equation traveltime tomography method (WETT) extends the conventional trav-
eltime tomography by taking into account the finite-frequency nature of seismic data.
The readers are referred to Woodward et al. (2008); Lambaré (2008); Lambaré et al.
(2014) for recent reviews of conventional traveltime tomography techniques, as the fo-
cus of this thesis is related to waveform inversion. Luo and Schuster (1991) proposed
to crosscorrelate the first arrival events in the observed and modeled data trace by trace,
to extract the temporal lags maximizing the crosscorrelation. Then they seek a veloc-
ity model minimizing these temporal lags in the least-squares sense. This procedure is
similar to minimizing the picked traveltime residuals, but the traveltime error might not
be equivalent to the extracted time-lag because of possible errors in the source wavelet
used for modeled data (Van Leeuwen and Mulder, 2010). WETT uses the same forward
modeling kernel and optimization scheme as FWI, whereas the objective functions are
different (time-lag versus data misfit). Although WETT behaves in a tomographic mode
similar to the conventional traveltime tomography, it is more realistic due to the wave-
equation-based modeling and the finite-frequency attribute (Zhao et al., 2000). WETT
proves to be stable in the presence of low velocity anomalies in the model (Priolo and
Chiaruttini, 2003).

Reflection Waveform Inversion

Reflection Waveform Inversion (RWI) is a technique dedicated to extract the macro ve-
locity model from reflection data (Xu et al., 2012; Brossier et al., 2015; Wu and Alkhal-
ifah, 2015; Zhou et al., 2015). It is derived from migration based traveltime tomogra-
phy (MBTT) (Chavent et al., 1994; Plessix et al., 1995). RWI either assumes the scale
separation between short-wavelength and long-wavelength parts of the velocity model
(Xu et al., 2012) or relies on the parameterization of the impedance and the velocity
models to naturally separate different scales (Zhou, 2016). The short-wavelength and
long-wavelength parts are updated with an iterative relaxation method. The reflectivity
is first inverted in a given macro velocity model with only the short-offset data. Then,
the modeled data with longer offset are produced from the inverted reflectivity. Finally,
the macro velocity model is updated by minimizing the misfit between observed and
predicted reflection data. One repeats these steps until convergence (Zhou, 2016). RWI
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aims at reproducing the data from the reflectivity model such that a true-amplitude mi-
gration scheme must be considered. The conventional migration (an adjoint operator) is
not enough as it can only reproduce the kinematics of the data without properly dealing
with the amplitudes, even if the given macro velocity model is correct.

In terms of resolution, Alkhalifah and Wu (2017) indicate that RWI is similar to
the velocity analysis scheme proposed by Symes and Carazzone (1991), behaving in
a tomographic mode. RWI retrieves the information about the macro model between
the image points and the surface, allowing to recover the long-wavelength part of the
velocity model in deep areas only reached by reflected data. RWI can be extended to
elastic (Guo and Alkhalifah, 2016) and multiple (Staal, 2015; Zhou, 2016) cases.

Differential waveform inversion

Differential Waveform Inversion (DWI) is a technique to assess the macro velocity
model quality using the reflection data (Chauris and Plessix, 2012, 2013). The approach
is formulated in the data domain and relies on the scale separation assumption. As for
RWI, it consists of two main steps: an image section is migrated from a given shot gather
and used to calculate synthetic data for the next shot; then the macro model is updated
by minimizing the difference between the predicted shot and the observed shot at the
next shot position. These two steps formulates a nested optimization loop. This pro-
cedure is inspired by the image quality assessing criteria established for image-domain
methods presented in section 1.3. In Chapter 4, I investigate the relationship between
objective functions defined in the data-domain and the image-domain along the same
line as Chauris and Plessix (2012).

DWI is based on a combination of successive migration and demigration steps. In
that perspective, it is similar to the MBTT method (Chavent et al., 1994; Plessix et al.,
1998), to the crosscorrelation method (Van Leeuwen and Mulder, 2010) and to the ap-
proach proposed by Staal and Verschuur (2012). More importantly, it is similar to RWI
due to several reasons: (1) both methods rely on the scale separation assumption; (2)
true-amplitude migration is essential for both methods; (3) they all explicitly or im-
plicitly introduce the image domain coherency criteria into data-domain; (4) DWI is a
nested optimization procedure, whereas RWI (Xu et al., 2012) assumes the reflectivity
and macromodel are independent. The alternative of DWI will be investigated in Chap-
ter 4 to discuss the possible links between image-domain and data-domain methods. The
differences between RWI and DWI will also be discussed in Chapter 4.

1.3 Image-domain methods
I present in this section the inverse problem formulated in image-domain. This is the
class of methods which will be mainly investigated in this thesis. Image-domain meth-
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ods rely on the fact that seismic data are redundant. Given an macro velocity model, a
set of migrated images can be constructed with different subsets of the data, for exam-
ple one image corresponding to a shot gather (Al-Yahya, 1989). With a correct macro
model, the recovered reflectivity images corresponding to different shot experiments
should be kinematically coherent, in the sense that the reflectors/diffractors in different
images should be located at the same position of the subsurface if they correspond to the
same structures (Al-Yahya, 1989). Otherwise, the incoherencies among different images
are attributed to an incorrect macro velocity model. Migration Velocity Analysis (MVA)
is the family of techniques based on this principle (Symes, 2008).

Historically, MVA emerged as an extension of the Normal Move Out (NMO) correc-
tion procedure. The data set is first sorted into panels called common midpoint gathers,
depending on surface-offset and time. Assuming the Earth’s structure is horizontally
homogeneous, in a common midpoint gather, the reflection traveltimes are a function
of surface-offset following hyperbolic shapes. The process of NMO correction seeks
a 1D velocity model that best explains the hyperbolas. The reader is referred to Yil-
maz (2001) for more details. This method is limited to the case of simple models and
Al-Yahya (1989) extended it to the image-domain to handle more complex structures.

Many wave-equation based MVA approaches have been proposed (Biondi and Sava,
1999; Sava and Biondi, 2004; Biondi and Symes, 2004; Mulder, 2008, among others).
MVA aims to retrieve the macro velocity model, relying on the scale separation and the
Born approximation. According to the formalism introduced by Symes (2008), different
MVA approaches can be distinguished along these lines:

• the choice of redundant parameter: the data is migrated to the image-domain pa-
rameterized with an additional parameter representing the redundancy of seismic
data. For example in 2D, the migrated sections δc(x, z, s) are parameterized by
lateral position x, depth z, and the redundant parameter – shot position s. I discuss
in section 1.3.2 alternatives for the redundant parameters;

• the choice of a coherency or focusing criterion assessing the image quality: it
depends on the choice of the redundant parameter. For example, the coherency
principle will be considered if the redundant parameter corresponds to the shot
position, and the analysis is performed on the panel called Common Image Gather
(CIG) representing a section of the reflectivity volume a fixed lateral position as
a function of depth and the extra parameter. The observed data provide a natural
reference for assessing the quality of velocity model in the data-domain, whereas
there is no such obvious reference in the image-domain. Instead, the objective
function is defined based on the coherency or focusing criterion, and the partial
derivative of this function with respect to the image is commonly called image
residual (versus data misfit).

The technical aspects will be detailed in Chapter 2.
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In the following, I present the principle of two MVA families: the redundant param-
eter is related to the acquisition parameters in the surface-oriented approach, whereas
the extra parameter is an artificial parameter introduced during the construction of the
migrated image in the depth-oriented approach.

1.3.1 Surface-oriented MVA
A choice for the redundant parameter related to the acquisition is the shot position (Al-
Yahya, 1989; Symes and Kern, 1994; Huang and Symes, 2015) or the source-receiver
offset (distance between source and receiver) (Chauris and Noble, 2001; Rickett and
Sava, 2002; Mulder and ten Kroode, 2002). The image volume can be constructed from
different subsets of seismic data, such as common-shot or common-offset gather. The
surface-oriented CIGs are then built by collecting images upon the redundant parameter.
The idea of surface-oriented MVA is that images obtained from several experiments are
supposed to be independent of the extra parameter. Consequently, events on these CIGs
should be horizontal if they are constructed with the correct macro velocity model. An
example of this procedure for the source-receiver offset case is presented in Figure 1.14.

Events in CIGs are not horizontal any more if the macro velocity model is incorrect.
For a single horizontal reflector embedded in homogeneous background velocity model,
they curve upward for a too low velocity model and downward for a too high veloc-
ity model. Then, CIGs can be analyzed by semblance criterion (Chavent and Jacewitz,
1995), which first stacks images over the extension parameter and then defines an objec-
tive function to measure the energy of the stack. For the correct macro velocity model,
the images from different subsets of data are coherent and thus the stack energy is ex-
pected to be maximal, meaning that the best model indeed corresponds the maximum
of the objective function. This objective function has a large basin of attraction around
the correct macro velocity model. However, it may exhibit oscillations away from the
correct model (Chauris and Noble, 2001). One can also correct the Residual Move Out
(RMO) in prestack depth migrated common image point gathers for velocity analysis
(Woodward et al., 1998; Xie and Yang, 2008).

Alternatively, Symes and Carazzone (1991) proposed Differential Semblance Opti-
mization (DSO) strategy, defining an objective function that computes the derivative of
images with respect to the redundant parameter, to measure if the events on CIGs are
horizontal (Chauris and Noble, 2001). Compared to semblance criteria, the DSO ob-
jective function demonstrates a more convex behavior that allows the local optimization
scheme converging towards the global minimum, at least for simple 1D models (Stolk
and Symes, 2002; Van Leeuwen and Mulder, 2009). The DSO principle is justified by
various studies in 2D models (Chauris and Noble, 2001; Mulder and ten Kroode, 2002;
Mulder, 2008; Shen and Symes, 2008).

In practice, the coherency principle of MVA may break down due to imaging arti-
facts. For example, the migration of multiples produces artificial interfaces under the



1.3. Image-domain methods 27

Figure 1.14 – Prestack common-offset data before (a) and after (b) migration. Seismic
data set computed in 2D Marmousi model (a), migrated to surface-offset domain CIGs
(b) by prestack depth migration using the true velocity model. A and C are common-
offset gather and prestack migrated image, respectively, at zero-offset. B and D are
common midpoint gather and CIG, respectively, at fixed position. Accurate velocity
model results in flatness on the CIG panel D. (from Chauris, 2000)

first-order Born approximation (Verschuur and Berkhout, 2015; Cocher, 2017). The
limited acquisition can result in uneven illuminations in migrated images, leading to
incoherent stretching shapes of events in CIGs (Xie et al., 2005). The evaluation of
the DSO objective function is sensitive to coherent noise and thus proper filtering is
required (Chauris and Noble, 2001). The characterization of coherent events over the
offset range can be tedious such that Chauris et al. (2002a) proposed to pick the slope
of locally coherent events in CIGs to evaluate the quality of velocity model, and proved
this to be equivalent to the slope tomography approaches (Billette and Lambaré, 1998;
Billette et al., 2003; Lambaré et al., 2004; Lambaré, 2008; Prieux et al., 2013b). In
surface-oriented methods, each image is constructed from only a subset of the data:
kinematic artifacts may appear when complex wavepaths such as triplicated wavefields
are involved in the problem (Nolan and Symes, 1996; Prucha et al., 1999; Xu et al.,
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2001; Stolk and Symes, 2004). This issue will be discussed and further investigated for
common-shot MVA in Chapter 3.

1.3.2 Depth-oriented MVA
In the depth-oriented formulation of MVA, the redundant parameter is not related to
the acquisition but is introduced during the construction of the migrated images. The
image space is extended by introducing, during the construction of the images, a space-
lag (Rickett and Sava, 2002; Shen et al., 2005; Sava and Vasconcelos, 2011; Lameloise
et al., 2015; Chauris and Cocher, 2017) or a time-delay (Sava and Fomel, 2006; Yang
and Sava, 2011; Sava and Vasconcelos, 2011) as the extra parameter. The space-lag is
commonly referred to as subsurface-offset. The main difference between the surface-
oriented approach is that the input data cannot be split according to acquisition param-
eters. MVA formulated in the extended domain measures the image quality via the
focusing principle, in the sense that the model is optimal when the energy of CIGs is
focused at zero spatial and temporal delay. The reason is that the image section at zero
delay corresponds to the image of the physical reflectivity obtained with classic migra-
tion after summation over all sources and receivers, meaning that the energy focused at
non-zero value of extension parameters is not physical and can carry information about
the inaccuracies of the macro velocity model.

In practice, the extension is usually made along a single extension parameter, to keep
the migrated image size within a reasonable limit. The horizontal subsurface-offset is
usually chosen (Shen et al., 2005; Shen and Symes, 2008; Lameloise et al., 2015; Hou
and Symes, 2016a; Alkhalifah and Wu, 2017). In this case, the energy of CIGs spreads
over non-zero subsurface offset for an incorrect macro model. Events curve downward
(upward) for a too low (high) velocity model (Mulder, 2014).

Alternatively, a scattering angle can be considered as the extension parameter to
build the angle-domain CIGs (ADCIGs) (Xu et al., 2001; Sava and Fomel, 2003; Biondi
and Symes, 2004). Hence, the velocity model is updated by increasing the coherency
of images across angles. Constructing ADCIGs with ray theory is straightforward, as
the scattering angle can be easily deduced from the ray parameter (Xu et al., 2001).
Alternatively, it is feasible to extract ADCIGs from the prestack wavefield downward-
continued using the wave equation (Prucha et al., 1999). Subsurface-offset CIGs can
be linked to ADCIGs through the Radon transform (Sava and Fomel, 2003; Montel and
Lambaré, 2013; Silvestrov et al., 2016).

Despite an attractive formulation, there are not so many published applications on
real data (Chauris and Noble, 2001; Mulder and ten Kroode, 2002; Alkhalifah, 2005;
Shen and Symes, 2008; Mulder, 2014). MVA suffers from gradient artifacts caused by
the limited acquisition and the complex structure (e.g. discontinuous reflectors and salt
bodies) (Fei and Williamson, 2010; Chauris and Lameloise, 2014; Lameloise, 2015).
More details about the gradient artifacts will be reported in Chapter 2. One solution is
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too compensate for uneven illumination in the migration procedure. To attenuate the mi-
gration smiles related to the gradient artifacts, the classic migration can be replaced by
the true-amplitude migration – the iterative migration or the direct inversion (Lameloise,
2015; Hou and Symes, 2016a; Chauris and Cocher, 2017; Cocher et al., 2017a). Both al-
ternatives significantly mitigate the spurious oscillations presented in the gradient. This
new approach is called Inversion Velocity Analysis (IVA). In terms of applications, the
iterative migration is more numerically demanding. In this thesis, I will extensively
discuss the IVA where the inversion is obtained by a direct (wave-equation-based) ap-
proach. Recently, MVA has been extended to transmission (Shen and Symes, 2013;
Chauris et al., 2013; Lameloise and Chauris, 2016) and multiple (Cocher et al., 2017a)
cases.

Compared to FWI formulated in data-domain, inverse problems formulated in the
image-domain provides a more linear approach for estimating the macro velocity model.
This results from the fact that the objective functions for MVA are more convex than for
FWI. On the other hand, FWI is always capable of providing high-resolution results. It
is of great interest to investigate the links between data-domain and image-domain meth-
ods for formulating a high-resolution strategy in a robust way. Among others, Biondi
and Almomin (2012, 2014) proposed to combine FWI and MVA objective functions to
formulate tomographic FWI. Symes (2017) introduced a similar approach to simulta-
neously invert perturbation and macro velocity model with a joint objective function.
Note that DSO was initially defined as a regularization term for FWI. RWI and DWI, as
mentioned in section 1.2.3, aim at determining the large-scale structures of the velocity
model and therefore should be linked to MVA in some ways (Chapter 4). This study
will discuss the possibility of extending MVA to data-domain in Chapter 4.

1.4 Motivations and thesis organization

In the previous sections, I have first introduced different aspects of seismic imaging:
seismic data, scale separation, modeling and inversion. Then, I have detailed the seismic
imaging methods, among others, formulated in both data-domain and image-domain.
The thesis mainly focuses on the wave-equation-based methods under the constant-
density isotropic acoustic assumption. There are two major objectives: (1) seeking a
robust and efficient velocity estimation approach; (2) investigating the possible links
between image-domain and data-domain methods. For the former, in particular, I con-
sider common-shot MVA, with the extension to Inversion Velocity Analysis (IVA) by
coupling direct inversion to velocity analysis. For the latter, I further extend the IVA
approach from the image-domain to the data-domain and, along this line, investigate the
possible links between two domains. I now introduce the motivations, thesis organiza-
tion and contributions.
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1.4.1 Motivation I: towards common-shot inversion velocity analy-
sis – a robust approach

Macro velocity estimation remains challenging in exploration geophysics. MVA is ex-
pected to be a powerful automatic imaging tool for determining the background veloc-
ity model. However, only few applications on real data have been published (Chauris
and Noble, 2001; Mulder and ten Kroode, 2002; Alkhalifah, 2005; Shen and Symes,
2008; Mulder, 2014). Among others, the major reasons are: (1) subsurface-offset MVA,
which is now popular in current literature (Symes, 2008), is very numerically demand-
ing even in 2D, preventing from current extension to 3D; (2) migration artifacts can bias
the velocity update: for example, in the subsurface-offset case, the optimization con-
verges towards a velocity lower than the correct velocity and local minima are present
in the objective function (Lameloise, 2015). For the first issue, it motivates the need
to consider conventional common-shot MVA to reduce the numerical requirements, as
the common-shot scheme benefits from a more natural parallel implementation. For
the second issue, I propose to couple direct inversion to common-shot MVA, formulat-
ing a common-shot IVA approach. Direct inversion is a true-amplitude scheme, which
automatically compensates for geometrical spreading losses and uneven illuminations.
Thus, it suppresses migration artifacts visible in constructed images. Common-shot IVA
is expected to be a robust macro velocity estimation method. I will study common-shot
IVA through synthetic tests in Chapter 3.

Before the detailed investigations in Chapter 3, I indicate here the reason why con-
ventional migration is not sufficient for velocity analysis in a simple case. I consider
a homogeneous model with a single reflector embedded in (Figure 1.15a). In a correct
background model, I first migrate the data to a reflectivity image (Figure 1.15b) for a
single shot. Then, I migrate the data at an adjacent shot position and derive the dif-
ference between two images. Such images related to adjacent shots are expected to be
consistent in a correct background model, however, upward curvatures are visible in the
residual (Figure 1.15c). I repeat the same steps in an incorrect velocity (too low) model,
and there are two main contributions in the image difference (Figure 1.15e): black el-
lipses correspond to upward-curved events attributed to model inaccuracies and green
ellipse to upward-curved events attributed to migration smiles. One can not converge
towards the correct velocity in a MVA procedure, as the image difference is not optimal
even if the background velocity is correct. In practice, the macromodel will be over esti-
mated, as the image differences attributed to migration smiles behave as if the estimated
velocity is too low. In the case of the Marmousi model (1.16), the impact of migration
smiles is even more severer: more events related to migration artifacts are visible due
to the increased complexity of structures. The robustness of common-shot MVA will be
significantly affected if these migration artifacts are not removed from the images.
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Figure 1.15 – Examples illustrating the impact of migration artifacts on image differ-
ences, for a single reflector embedded in a homogeneous macro velocity model. (a) cor-
responds to the exact reflectivity model, (b) to the image migrated in the correct macro
velocity model for a single shot marked by green point in (a), and (c) to the difference
between image (b) and the image for an adjacent shot. (d–e) are similar to (b–c), but
for an incorrect model of which the velocity is 5% lower than the correct value. Black
ellipses correspond to the upward-curved events attributed to velocity inaccuracies, and
green ellipse to those attributed to migration smiles.

1.4.2 Motivation II: investigating the link between data-domain and
image-domain methods

FWI can generate high-resolution models (Lailly et al., 1983; Tarantola, 1984a) but suf-
fers from cycle-skipping effects due to the highly nonlinear relationship between data
and model parameters (Bunks et al., 1995; Virieux and Operto, 2009). Thus, an start-
ing model close enough to the true one is essential for FWI. It motivates the need for
a powerful macromodel estimation technique. Relying on the Born approximation and
scale separation, a tomographic approach can either be formulated in the data-domain
(Biondi and Almomin, 2012; Xu et al., 2013; Chauris and Plessix, 2013; Liu et al.,
2014a) or in the image-domain (Symes and Carazzone, 1991; Sava and Biondi, 2004;
Biondi and Symes, 2004; Lameloise et al., 2015; Chauris and Cocher, 2017). Although
many authors have tried to introduce the MVA concept into waveform inversion (Chau-
ris and Plessix, 2013; Biondi and Almomin, 2012; Alkhalifah and Wu, 2016; Symes,
2017), the relationship between image-domain and data-domain methods has not been
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Figure 1.16 – Same as for Figure 1.15, but for the Marmousi model.

fully understood. Chauris et al. (2002a) established the link between MVA (Symes and
Carazzone, 1991; Mulder and ten Kroode, 2002) and slope tomography (Billette and
Lambaré, 1998; Lambaré, 2008), but it was for ray-based methods. It motivates the
need to further investigate the possible links between two domains for wave-equation-
based approaches. Therefore, in Chapter 4, I propose to extend the IVA approach from
image-domain to data-domain and, along this line, investigate the links between data-
domain and image-domain IVA methods. Data-domain IVA is expected to be close to
RWI/DWI, in the sense that both methods rely on the scale separation and attempt to
assess the estimated macro velocity model using the equivalence of image coherency
criteria in the data-domain. It is of interest to better understand the relationship between
data-domain and image-domain methods. I will explain more mathematical details of
different approaches in Chapter 2. The formal comparison between data-domain and
image-domain methods will be investigated in Chapter 4. In particular, I compare data-
domain and image-domain IVA through numerical experiments. In addition, with theo-
retical analysis, I also compare DSO, a MVA strategy defined in image-domain, to DWI,
a data-fitting scheme defined in data-domain.

1.4.3 Thesis organization
The thesis is organized as followed:

• In Chapter 2, I introduce the methodologies of forward modeling and popular
wave-equation-based methods formulated in both data-domain or image-domain.



1.4. Motivations and thesis organization 33

The data-domain part consists of FWI, RWI, and DWI, while the image-domain
part includes common-shot MVA, subsurface-offset MVA, and the limitations of
current MVA approaches. I mainly introduce the mathematical definition of the
objective functions and the related gradients. In the FWI part, various alternatives
to FWI will be compared on a simple numerical example to analyze the advantages
and disadvantages;

• In Chapter 3, I first develop common-shot true-amplitude migration, which is an
explicit direct inverse formula. It is an alternative to the work of Qin et al. (2015).
The two approaches only differ at the source position and our method preserves
early arrivals more accurately. Then, the direct inversion is coupled to common-
shot velocity analysis. The scheme is formulated as a nested optimization, in
which the inner loop for reflectivity imaging is directly solved through the direct
inversion and outer loop updates the background velocity model with a nonlinear
optimization. I analyze the first gradient for a horizontal reflector embedded in
a homogeneous model. A simple modification of the DSO objective function is
proposed by simply applying an additional operator to the final CIGs before eval-
uating the coherency. The operator is a function of the background velocity model
and yields gradients free of spurious oscillations. Then, the impact of the tripli-
cated wavefields is studied through a model consisting of a low velocity anomaly
zone. Even the common-shot strategy is known to suffer from multipathing caused
by triplications, the proposed approach proves to be robust to retrieve the shape
of anomaly zone after several iterations. Finally, on the Marmousi model, the re-
sult justifies the superior robustness of IVA over MVA. By starting from the IVA
result, subsequent FWI produces non cycle-skipped high resolution result, at least
for the area where IVA supplies a correct background velocity update;

• In Chapter 4, I extend the common-shot IVA from image-domain to data-domain,
leading to a more linearized waveform inversion approach. I calculate the dif-
ferentiate images by comparing adjacent traces in CIGs. The data are produced
by simply applying the Born modeling operator to images after the application of
annihilator. The values of residual images are expected to be around zero for a
correct background model, such that the remodeled data are expected to be mini-
mal. The method is tested on the same models as in the common-shot IVA case.
The major advantage of data-domain is that the additional operator for images is
not necessary any more, and the spurious oscillation can be removed after a sim-
ple smoothing. This new approach is expected to be equivalent to DWI and, along
this line, I compare the image-domain and data-domain approaches to establish
the formal links between data-fitting principle and image-coherency criteria. The
comparison is carried out through both theoretical analysis and numerical experi-
ments;



34 Chapter 1. Introduction

• In Chapter 5, the main conclusions of the thesis are summarized and I propose
several directions for future studies, in particular: edge effects, introduction of
more physics (e.g. density, multiples, transmissions, elastic, attenuation, etc.),
extension to 3D, and real data application.

1.4.4 Contributions
I first modified an existing finite-difference acoustic forward propagation code, by im-
plementing the 4th order staggered grid (Virieux, 1986) and by adding the convolutional
perfect matching layer (CPML) (Komatitsch and Martin, 2007) to absorb artificial re-
flections. Then, I have developed two methods, common-shot IVA in both image and
data domains, for the estimation of the background velocity update presented in Chap-
ter 3 and 4, as well as the direct inversion formula used here as a reflectivity imaging
tool. The gradient derived with the adjoint state method (Plessix, 2006) is checked with
the finite-difference test (Claerbout, 1985). My main contributions are

• the development of common-shot direct inversion scheme for reflectivity imaging,
leading to CIGs with less migration artifacts, as detailed in Chapter 3;

• the coupling of direct inversion with velocity analysis, formulating a more robust
approach – the common-shot IVA scheme, as detailed in Chapter 3;

• the extension of common-shot IVA to the data-domain, leading to a more lin-
earized waveform inversion equivalent to DWI, as detailed in Chapter 4;

• the qualitative and quantitative comparisons between approaches formulated in
the image-domain and the data-domain, establishing the formal link between data-
fitting principle and image coherency criteria, as detailed in Chapter 4.

These developments allow a better understanding of the behavior of common-shot IVA
and of the possible links between image-domain and data-domain methods. I have first
proposed strategies for a robust and efficient approach – common-shot IVA. Then, this
scheme has been extended to data-domain and, along this line, the relationship between
data fitting and image coherency has been investigated. Part of the results has been
presented in

• Chauris, H., Li, Y. and Cocher, E. [2017] Image-domain versus data-domain
velocity analysis based on true-amplitude subsurface extended migration. 79th
EAGE Conference & Exhibition Workshop, Paris, France;

• Li, Y. and Chauris, H. [2017] An alternative true-amplitude common-shot reverse
time migration. 79th EAGE Conference & Exhibition, Paris, France;
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• Li, Y. and Chauris, H. [2017] Coupling true-amplitude common-shot reverse time
migration to velocity analysis. 79th EAGE Conference & Exhibition, Paris, France;

• Chauris, H. and Li, Y. [2015] Stereo-wave tomography: a new strategy for seismic
imaging. SIAM Conference on Imaging Science, Stanford, United States,

and/or submitted to publication,

• Li, Y. and Chauris, H. [2017] Coupling direct inversion to common-shot velocity
analysis. Geophysics. Submitted;

• Li, Y. and Chauris, H. [2017] Comparison between image-domain and data-domain
inversion velocity analysis via a synthetic case study. Geophysics. In preparation.
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Résumé du chapitre 2
Ce chapitre est dédié à l’introduction des méthodologies d’imagerie sismique dans les
domaines des données et des images. Plus tard au chapitre 4, le lien entre ces deux
familles sera investigué avec plus de détails mathématiques. Je considère ici seulement
les méthodes basées sur l’équation des ondes complètes, même si je me réfère aux méth-
odes de rais pour l’analyse de certains operateurs d’équation d’onde. Avant d’introduire
ces différentes approches, je revois les aspects de modélisation par différences finies
en tant que méthodes numériques. Les méthodes liées au domaine des données sont
l’inversion des formes d’onde (FWI), la « Reflection Waveform Inversion » (RWI) et la
« Differential Waveform Inversion » (DWI), tandis que celles définies dans le domaine
image incluent l’analyse de vitesse par migration (MVA) et sa version données. Les
références bibliographiques sont données au cours du chapitre. J’introduis principale-
ment les fonctions objectives et le gradient associé. Pour la partie FWI, des alternatives
sont analysées, avec une discussion sur les effets de saut de phase. Je discute aussi les
limitations actuelles des méthodes MVA.
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2.1 Introduction
This chapter is dedicated to introducing the methodologies of seismic imaging methods
defined in both data and image domains. Later in chapter 4 the link between two fam-
ilies will be investigated with more mathematical details. I only deal here with wave-
equation-based methods even if I may refer to ray-based methods for the analysis of
some wave-equation operators. The data-domain part consists of Full Waveform Inver-
sion (FWI), Reflection Waveform Inversion (RWI) and Differential Waveform Inversion
(DWI), while those defined in the image-domain include surface-oriented Migration Ve-
locity Analysis (MVA) and depth-oriented MVA. The appropriate references are given
below in this Chapter. I mainly introduce here the definition of the objective function
(OF) and the associated gradient. In the FWI part, the alternative definitions of the clas-
sic OF will be analyzed to discuss the cycle skipping effects. The image-domain part
involves the discussion about the current limitations of MVA. Before introducing the
different approaches, I first review the finite difference modeling aspects used for the
numerical solutions.

2.2 Forward problem

2.2.1 Wave equation
The forward problem consists of solving the wave equation to model the seismic data
propagation given a set of model parameters. For the scope of this thesis, I consider the
constant-density isotropic acoustic approximation of the wave propagation, for which
the wave equation reads:

Lu(s, x, t) = δ(x− s)Ω(t), (2.1)

where u is the pressure wavefield depending on the source position s, the image position
x and the time t. u provides the observed data dcal at receiver positions. Ω is the
source wavelet, a function of time. The Helmoltz operator L denotes ∂2

∂t2
1
c2
−∆, where

c(x) is the velocity and ∆ the Laplacian operator. In the 2D case, this second-order
partial differential equation is equivalent to the equations defined through the first-order
linearized system of Newton’s and Hooke’s law, reading:

∂vx
∂t

= −∂u
∂x
, (2.2)

∂vz
∂t

= −∂u
∂z
, (2.3)

1

c2
∂u

∂t
= −(

∂vx
∂x

+
∂vz
∂z

) + δ(x− s)
∫
t

dt Ω, (2.4)
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where vx, vz are the particle velocity components in x and z directions, respectively.
To simulate the wave propagation, I solve the system of first-order equations instead of
equation 2.1. The main reason is the introduction of absorbing boundary (section 2.2.4).

2.2.2 Numerical solution
The acoustic wave equation can be solved in the time domain (Tarantola, 1984a; Mora,
1989) or in the frequency domain (Pratt and Worthington, 1990; Sirgue and Pratt, 2004).
As indicated in chapter 1, the numerical resolution of the partial differential equations
can be achieved with many schemes including finite-difference method (FDM) (Virieux,
1986; Levander, 1988; Operto et al., 2007) and finite-element method (FEM) (Smith,
1975; Marfurt, 1984). Virieux et al. (2011) have reviewed the efficiency and complexity
of the different numerical modeling methods.

FDM is a natural way to solve partial differential equations. It provides a relatively
efficient implementation compared to FEM for exploration problems. The method di-
rectly estimates each differential term using the Taylor expansion on a regular grid.
Suppose that the 2D spatial samplings are δx and δz and the time step is δt, then the
first-order derivatives in the spatial coordinates (lateral position x and depth position z)
are approximated by the so-called centralized fourth-order Crank-Nicolson approxima-
tion (Kreiss et al., 1973; Robertsson et al., 1994), reading

∂uni,j
∂x
≈
−un

i+ 3
2
,j

+ 27un
i+ 1

2
,j
− 27un

i− 1
2
,j

+ un
i− 3

2
,j

24δx
, (2.5)

∂uni,j
∂z
≈
−un

i,j+ 3
2

+ 27un
i,j+ 1

2

− 27un
i,j− 1

2

+ un
i,j− 3

2

24δz
, (2.6)

where i, j are the 2D spatial coordinates and n the temporal coordinate. Note that ±1
2

means that the position of the grid is shifted by half a grid point, corresponding to
staggered grids (Virieux, 1986). Then, the first-order derivative in time is approximated
by

∂uni,j
∂t
≈
un+1
i,j − uni,j

δt
. (2.7)

The partial derivatives of u are given as examples, but note that the same approximations
can be applied to the partial derivatives of vx and vz. The reader is referred to Fornberg
(1988) for a detailed derivation. In this thesis, I use exactly the scheme with fourth-order
in space and second-order in time for simulating the wave propagation.

Virieux (1986) first introduced the FDM on a staggered grid to increase the order
of the numerical scheme. With such scheme, velocity c and u are sampled at the same
position, whereas vx and vz grids are shifted by half a grid point (Figure 2.1). There
remain two problems for FDM: high velocity contrasts in models lead to instabilities,
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Figure 2.1 – Description of the grid points needed to update (vx, vx) (a) and u (b) fields
(adapted from Thorbecke, 2015). For both cases, four neighbouring points are needed
to compute one central point.

and high Poisson ratio to dispersion. Stability and dispersion will be detailed in the next
section.

The spatial discretization for FDM is achieved on the grid with a regular rectangle
shape, making it simple and straightforward to apply. Nevertheless, the implementation
of regular grids also gives rise to certain limitations, in particular when dealing with to-
pography. The spatial sampling is fixed and not adapted to local physical properties, thus
the method is not as flexible as FEM which uses irregular grids. Marfurt (1984) observes
that FEM better simulates curvilinear interfaces and thin beds than FDM. However, for
the scope of this work, I only consider FDM.

2.2.3 Stability and dispersion
To ensure the stability of modeling scheme, the Courant–Friedrichs–Lewy (CFL) condi-
tion is a necessary condition for convergence while solving partial differential equations
by FDM. The CFL condition is used to restrict the time-step in numerical simulations.
For example, if a wave is crossing a discrete grid distance (δx), then the time-step must
be less than the time needed for the wave to travel to an adjacent grid point, otherwise
the simulation will produce incorrect results. The discretization must satisfy in 2D:

δt ≤ 1

cmax
√

1
(δx)2

+ 1
(δz)2

, (2.8)

where cmax is the maximum velocity. With δh = δx = δz, equation 2.8 reads

δt ≤ 1√
2

δh

cmax
. (2.9)

If this condition is not satisfied, the simulation will output unstable results as shown in
Figure 2.2b.
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Figure 2.2 – Snapshots of wavefields for the case of stable result (a), of instability (b),
and of dispersion (c) (adapted from Thorbecke, 2015).

On the other hand, dispersion can also occur during the simulation of wave propa-
gation. The spatial sampling δh should be defined such that:

δh ≤ λmin
nλ

=
cmin
fmax

1

nλ
, (2.10)

where λmin corresponds to the smallest wavelength, which depends on the maximum
frequency fmax and the minimum velocity cmin. nλ denotes the number of grid points
per wavelength. The number of points per wavelength depends on the spatial and tem-
poral orders in the Taylor expansion: nλ = 5 is usually chosen for fourth-order in space
and second-order in time (Alford et al., 1974). In the case of numerical dispersion, the
simulation will produce dispersive waves, as shown in Figure 2.2c. Note that numerical
dispersion is not the physical dispersion of visco-elastic waves.

2.2.4 Boundary condition
Due to limited computational capacities, the models used in simulation are usually lim-
ited to a finite domain. If no boundary condition is defined at the borders of the model,
waves will be artificially reflected from the numerical borders. To attenuate these spu-
rious reflections, absorbing boundary conditions must be applied. The idea is that ab-
sorbing boundary conditions allow the waves propagating out of the model but prevent
waves from propagating back into the model. Historically, absorbing boundary condi-
tions introduce additional layers around the model, and these layers work as sponges
that can attenuate the waves (Cerjan et al., 1985). However, these sponge layers are not
always effective. Waves entering with a normal incident angle can be appropriately ab-
sorbed by the sponges, however spurious reflections still appear for other incident angles
(Brossier et al., 2009).
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Bérenger (1994) introduced a more effective technique, the Perfectly Matched Layer
(PML), for electromagnetic. Later, among others Komatitsch and Tromp (2003) intro-
duced this scheme for the simulation of seismic wave propagation. It is proven that
PML can properly absorb the waves reaching the numerical artificial borders, regardless
of their incidence angle. Furthermore, the behavior of PML at grazing incidence can be
improved using an unsplit convolutional approach proposed by Komatitsch and Martin
(2007).

To be realistic, it also requires the introduction of the Earth-air interface by a free
surface boundary condition, for the simulation of reflections from the Earth-air interface.
However, in this thesis, I use convolutional PML all around the model and the free
surface is not considered (i.e. surface multiples should be removed from the data in a
pre-processing step).

2.3 Data fitting principle
I detail in this section data-domain methods addressing the inverse problem under the
isotropic constant-density acoustic approximation of the wave equation, meaning that
the unknown is the pressure wave velocity field c(x). The FWI strategy is first pre-
sented, considering the complete data set to reconstruct the model c(x). However, such
a scheme may be trapped into a local minimum due to the cycle-skipping effects, for
which the solution is either to provide an initial model accurate enough or to include
the low-frequency content in data. Alternatively, the least-squares OF can be replaced
by other distance estimation metrics to enlarge the basin of attraction around the correct
velocity model, such that the optimization converges towards a global minimum. Then,
alternative approaches (Reflection Waveform Inversion, RWI and Differential Wave-
form Inversion, DWI) are detailed: they rely on the scale separation assumption, which
divides c(x) into the background velocity model c0(x) and velocity perturbation model
δc(x). Reflected data are used to update the large-scale structures of the subsurface.
Note that the recovery of the macro velocity model c0(x) (i.e. the tomographic mode)
is the main focus in this study, which remains challenging in the literature of seismic
imaging.

2.3.1 Full Waveform Inversion and alternatives
I first introduce the derivation of the gradient of a generic OF with respect to the model.
It is useful for the remaining sections of this thesis. Then, I review the classic FWI
approach with a least-squares OF (Lailly et al., 1983; Tarantola, 1984a; Virieux and
Operto, 2009; Fichtner, 2011). Current alternatives of FWI are then introduced through
other OF definitions and the associated gradients with respect to velocity model. I test
the different approaches on very simple synthetic data sets to discuss if they are prone
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to cycle skipping effects. The least-squares OF is evaluated on a very simple synthetic
data where the necessary low-frequency content is not present (Pratt et al., 1996; Sirgue
and Pratt, 2004).

2.3.1.1 Deriving the model gradient of a generic OF

This introduction is useful for deriving the gradient of all kinds of data-fitting based
objective functions. The gradient of a generic OF J0 can be computed via the widely
used adjoint-state technique (Chavent, 1974; Plessix, 2006). We extend J0 with the
Lagrangian formulation, denoted by Jext, reading

Jext =J0[dcal(s, r, t)]
− < λgen(s, x, t),Lu(s, x, t)− δ(x− s)Ω(t) >s,x,t, (2.11)

where λgen is the generic adjoint source and u the source wavefield. The modeled
data is the response of source wavefield recorded at receiver positions: dcal(s, r, t) =∫

dx u(s, x, t)δ(x− r). The total derivative of Jext with respect to the velocity model is
given by,

dJext
dc

=
∂Jext
∂c

+
∂u

∂c

∂Jext
∂u

+
∂λgen
∂c

∂Jext
∂λgen

. (2.12)

The adjoint-state wavefield λgen is obtained by taking (∂Jext
∂u

, ∂Jext
∂λgen

) = 0, such that the

computation of Fréchet derivatives ∂u
∂c

and ∂λgen
∂c

are avoided. The gradient of Jext with
respect to c reads,

dJext
dc(x)

=
∂Jext
∂c(x)

=
2

c3(x)

∫∫
dsdt

∂2

∂t2
λgen(s, x, t)u(s, x, t), (2.13)

To derive λgen, I differentiate Jext with respect to u, yielding

L∗λgen(s, x, t) =
∂J0

∂u(s, x, t)
. (2.14)

where ∗ represents the adjoint operator such that L∗ is the back propagating operator.
The velocity model can be updated using a gradient-based optimization scheme, for
example the conjugate gradient method. In the following sections, various methods rely
on the strategy to derive the gradient of the objective function with respect to velocity
model.

2.3.1.2 Classic FWI

Lailly et al. (1983); Tarantola (1984a) use a `2 norm to measure the data misfit, reading

Jfwi[c(x)] =
1

2
||dcal[c(x)](s, r, t)− dobs(s, r, t)||2, (2.15)
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where dcal and dobs are the modeled and observed data, respectively. In practice, FWI
is an ill-posed inverse problem; one must include additional information to find a fea-
sible solution through a process called regularization (Tikhonov et al., 1977; Menke,
1984; Engl and Zou, 2000; Asnaashari et al., 2013). For example, one can enforce the
smoothness of the recovered model, or ensure the consistency between model and a pri-
ori information (Asnaashari et al., 2013). Chauris et al. (2015); Cocher (2017) indicated
the importance of regularization for the linearized waveform inversion. The readers are
referred to Castellanos-Lopez (2014) for a detailed review of regularization technique
for waveform inversion.

As before, the gradient of Jfwi with respect to the velocity model c(x) is derived
through the adjoint-state technique (Plessix, 2006). It is obtained by crosscorrelating
two wavefields, reading

∂Jfwi

∂c(x)
=

2

c3(x)

∫∫
dsdt

∂2

∂t2
λ(s, x, t)u(s, x, t), (2.16)

where λ represents the back propagation wavefield using data residual as the new source
term,

L∗λ(s, x, t) =

∫
dr δ(x− r)

(
dcal(s, r, t)− dobs(s, r, t)

)
. (2.17)

To illustrate the behavior of the FWI OF, a synthetic data set is generated by convolv-
ing a Ricker source wavelet, for which the maximum frequency is 27 Hz and frequen-
cies below 8 Hz are filtered, with several instantaneous pulses (Figure 2.3). We consider
it as the observed data. This scheme mimics the wave propagation effect, as the re-
flected/transmitted waves can be roughly explained as a convolution between the source
wavelet and reflection/transmission coefficients (Cooke and Schneider, 1983; Mendel,
2013).

When the starting model is not close enough to the exact model, the classic FWI
can be cycle skipped due to the lack of low-frequency contents in the data. The method
is very sensitive to kinematic errors (i.e. phase shift). In the seismic data, the phases
and the amplitudes mainly correspond to the kinematics and the dynamics controlled by
the velocity model, respectively. I thus mimic the kinematic and the dynamic errors by
shifting the phases and by modifying the amplitudes in data, respectively.

Two cases are investigated to check the behavior of the `2 norm OF with respect to
phase shifts and amplitude changes. In the first test, the modeled data dcal is generated
by shifting the observed data with a time lag (Figure 2.4a), simply

dcal[t, τ ] = dobs[t− τ ], (2.18)

where τ is the time lag, and the misfit curve associated to `2 norm (equation 2.15) reads

ffwi[τ ] =
1

2
||dcal[t, τ ]− dobs[t]||2. (2.19)
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Figure 2.3 – The construction of synthetic data: (a) the source wavelet, (b) the random
pulses and (c) the convolution between the wavelet and random pulses.

The misfit curve exhibits many local minima (Figure 2.4b). The time shift mimics the
error of the kinematics controlled by the velocity model, such that a large time lag cor-
responds to a model far away from the exact model. If the starting model generates data
as marked by the red dot in Figure 2.4b, the FWI will be cycle skipped since the mod-
eled and observed data differ more than half a period in phase (Beydoun and Tarantola,
1988; Pratt et al., 2008). The `2 norm suffers from local minima due to the nonlinear re-
lationship between model and data (Gauthier et al., 1986; Virieux and Operto, 2009). In
the second test, I modify the amplitudes of modeled data from zero to twice the original
amplitude (Figure 2.4c) according to

dcal[Ramp] = Rampdobs, (2.20)

to build the misfit curve,

ffwi[Ramp] =
1

2
||dcal[Ramp]− dobs||2, (2.21)

where Ramp is the amplitude ratio. The amplitude change mimic the errors of dynamic
information included in data. For example, in the case of reflected data, large amplitudes
of data correspond to strong interface contrasts. The associated misfit curve is convex
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Figure 2.4 – Investigation of the shape of the `2 norm OF: (a) observed data (blue)
and calculated data with shifted phase (red); (b) misfit curve related to different phase
shifts (blue curve) and the misfit corresponding to calculated data in (a) (red dot); (c)
observed data (blue) and calculated data with varying amplitude terms (red); (d) misfit
curve associated to different amplitude ratios (blue curve) and the misfit corresponding
to calculated data in (a) (red dot).

(Figure 2.4d) such that the optimization converges towards the correct solution. Assum-
ing the physics of wave propagation is properly described, the `2 norm is able to retrieve
the correct amplitudes but is very sensitive to phase shifts.

2.3.1.3 Current alternative OFs

I introduced several alternative OFs that are less prone to cycle skipping effects than
FWI. The related mathematics is detailed now. For each method, I mainly review two
steps, the definition of OF and the corresponding gradient, two essential elements to
formulate an optimization procedure for solving the inverse problem.

Crosscorrelation OF

Crosscorrelation is a common tool to estimate the kinematic differences between two
time series. The correlation-based OF has been introduced in seismic waveform inver-
sion to get rid of cycle skipping effects (Luo and Schuster, 1991; Woodward, 1992).
Initially, Luo and Schuster (1991) proposed to measure the crosscorrelation lag between
real and modeled data and then minimized this time lag to update the velocity model.
They applied it to a cross-well data. Later, Van Leeuwen and Mulder (2010) further
proposed to use the shifted crosscorrelation between real and modeled data as the OF
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and then penalized the focusing of the energy. They applied it to the transmitted waves
on synthetic cases. Chi et al. (2015); Wang et al. (2015); Luo et al. (2016), among oth-
ers, extended the correlation-based OF to reflected data. Wang et al. (2015) applied the
method to a 2D elastic ultra-long streamer data set recorded in marine environment and
Luo et al. (2016) implemented the method on a 2D field data set.

Referred to Van Leeuwen and Mulder (2010), an alternative OF measures the data
difference using the crosscorrelation-based scheme,

Jcrss[c(x)] =
1

2
||A(τ)C(s, r, τ)||2, (2.22)

where C is the crosscorrelation between observed and modeled data, reading

C(s, r, τ) =

∫
dω dcal(s, r, ω)d∗obs(s, r, ω)e2iωτ , (2.23)

and A(τ) = τ , acting as a penalizing operator to adjust the weight of correlation energy
corresponding to different time-lags τ . ω denotes the angular frequency. Similar to
FWI, the gradient with respect to velocity can be derived using adjoint-state technique,
reading

∂Jcrss

∂c(x)
=

2

c3(x)

∫∫
dxdω (iω)2u(s, x, ω)λ∗crss(s, x, ω), (2.24)

where λcrss represents the back propagated wavefield, reading

L∗λcrss(s, x, ω) =

∫∫
drdτ δ(x− r)A(τ)2C(s, r, τ)dobs(s, r, ω)e−2iωτ . (2.25)

In practice, the observed and modeled data should be normalized before crosscor-
relation (Routh et al., 2011; Zhang et al., 2014a). Alternatively, one can formulate a
normalized version by modifying equation 2.22:

Jcrss[c(x)] =
1

2

||A(τ)C(s, r, τ)||2

||C(s, r, τ)||2
. (2.26)

To remove the effect of amplitudes, the energy of the crosscorrelation in the denomina-
tor acts as a scaling factor similar to the one used in image-domain methods (Chauris
and Noble, 2001; Mulder and ten Kroode, 2002), and thus the correlation OF mainly
evaluates the kinematic errors included in data (Van Leeuwen and Mulder, 2010; Luo
and Sava, 2011).

The same tests are applied to evaluate the behavior of this method with respect to
phase shifts and amplitude changes (Figure 2.5). In the first test, the calculated data
are generated by giving different phase shifts to the observed data (equation 2.18 and
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Figure 2.5 – Same as Figure 2.4, but for the normalized crosscorrelation OF.

Figure 2.5a). The misfit curve presents a convex behavior in this case (Figure 2.5b).
If one starts from the red dot in Figure 2.5b, the method can perfectly converge to-
wards the global minimum. In the second test, the amplitude is changed from zero to
twice the original amplitude (equation 2.20 and Figure 2.5c). The crosscorrelation-based
method is not sensitive to amplitude changes due to the introduction of normalization
(Figure 2.5d). These two tests indicate that crosscorrelation OF suffers less from kine-
matic errors and its evaluation is not affected by amplitudes after normalization, at least
in this simple case.

Adaptive Waveform Inversion OF

Deconvolution is an alternative to crosscorrelation for measuring the kinematic differ-
ences of two signals. Recently, the deconvolution-based OF has been introduced in
seismic waveform inversion (Luo and Sava, 2011; Warner and Guasch, 2014, 2016). In
early stages, Luo and Sava (2011) tested the approach on transmission data in a synthetic
case. Then, Warner and Guasch (2014) proposed Adaptive Waveform Inversion (AWI)
using the Wiener filter to perform the deconvolution between observed and modeled
data. AWI works well with reflection-dominated data; then Guasch and Warner (2014)
applied the approach formulated in 2D to an OBC anisotropic data set. Later, Warner
and Guasch (2015) further developed the method into 3D and applied it to a 3D field data
set, and also applied the approach on the Chevron model (designed for the 2014 FWI
SEG workshop) with a modeling engine using the visco-elastic two-way wave equation.

The OF of AWI is defined via the Wiener transform filter (Warner and Guasch,
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Figure 2.6 – Same as Figure 2.4, but for the AWI OF.

2016),

Jawi[c(x)] =
1

2

||A(t)w[t]||2

||w[t]||2
, (2.27)

where A(t) = t represents the penalty factor. w[ω] = dcal[ω]
dobs[ω]

denotes the acausal Wiener
filter that transforms a single observed trace into an associated modeled trace, that is,
the deconvolution between calculated and observed data. The gradient of OF and the
associated adjoint source read,

∂Jawi

∂c(x)
=

2

c3(x)

∫
dtds

∂2

∂t2
u(s, x, t)λawi(s, x, t), (2.28)

L∗λawi =

∫
dr δ(x− r)

[ ∂w[t]

∂dcal[t]
(
A(t)2 − 2Jawi

||w[t]||2
)w[t]

]
, (2.29)

I apply the synthetic tests to the AWI OF with respect to phase shifts (Figure 2.6a)
and amplitude changes (Figure 2.6c) as well. The misfit curve for the first test has a
convex behavior (Figure 2.6b). The second test leads to a misfit curve with a constant
value (Figure 2.6d). The AWI OF is normalized by the inner product of the Wiener filter
such that it is not sensitive to any amplitude changes (equation 2.27). The AWI OF is
based on the deconvolution of data. Similar to crosscorrelation based method, AWI uses
penalizing factor (i.e. the temporal lag A) to enhance the weight of kinematic errors.
The method is effective to get rid of cycle skipping effect but is not aimed at matching
the amplitudes of data.
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Envelope OF

Envelope is a reduced form of the signal: the modified data contain low frequencies
even if the original signal only contains high frequencies. It has been introduced in
seismic imaging to design an OF with an enlarged basin of attraction (Bozdağ et al.,
2011; Liu et al., 2011b; Chi et al., 2014; Wu et al., 2014). In the early stages, Liu
et al. (2011b); Chauris et al. (2012) applied envelop-based approach to transmission
synthetic data. Then, Chi et al. (2014); Wu et al. (2014) extended it to reflected data
in 2D synthetic case. Luo and Wu (2015) showed that envelope inversion is insensitive
to Gaussian noise. In all cases, the low-frequency contents are not present in data but
envelope-based waveform inversion converges well.

The envelope can be extracted from the seismic signal d[t] via its analytic form d̃[t]
that is constructed by introducing the Hilbert transform H of the data (Farnbach, 1975;
Luo et al., 2003; Bozdağ et al., 2011),

d̃[t] = d[t] + iH{d[t]}. (2.30)

Then, the envelope E[t] is the modulus of d̃[t], reading

E[t] =

√
<{d̃[t]}2 + ={d̃[t]}2, (2.31)

where < denotes the real part and = the imaginary part. Bozdağ et al. (2011) provide a
possible definition of the envelope OF, defined as the difference between logarithms of
envelopes of the modeled and observed data, reading

Jenv[c(x)] =
1

2
|| ln Eobs(s, r, t)

Ecal(s, r, t)
||2, (2.32)

where Ecal and Eobs are envelopes of observed and modeled data, respectively. In prac-
tice, a pre-whitening factor is needed to avoid zero values at the denominator. The
gradient of the envelope misfit with respect to the model and the adjoint source are

∂Jenv

∂c(x)
=

2

c3(x)

∫∫
dsdt

∂2

∂t2
u(s, x, t)λenv(s, x, t), (2.33)

L∗λenv =

∫
dr δ(x− r)

[
ln
(Eobs
Ecal

) dcal
E2
cal

−H
{

ln
(Eobs
Ecal

)Hdcal
E2
cal

}]
. (2.34)

The same tests are also conducted to evaluate the behavior of envelope OF with
respect to phase shifts (Figures 2.7a and 2.7b) and amplitude changes (Figures 2.7c and
2.7d). The envelop contains much lower frequencies than the original data such that the
misfit curve presents no local minimum with respect to the phase shifts (Figure 2.7c).
A pre-whitening factor ε is added to Ecal to avoid zero denominator in equation 2.32.
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Figure 2.7 – Same as Figure 2.4, but for the logarithmic envelop OF. (a,c,d,f) correspond
to (a-d) in Figure 2.4, respectively. (b,e) illustrate the envelops with respect to data in
(a,d), respectively. Note that the vertical axis of (f) is in logarithmic scale. For the
amplitude case, the minimum is not reached for 1 due to the pre-whitening applied to
the envelope.

However, the log function is sensitive to small changes of amplitudes. In the amplitude
case, the global minimum shifts to a wrong position in the misfit curve (Figure 2.7f) due
to the pre-whitening, that is, ln(Eobs/Ecal) is not 0 even if the amplitude of Ecal and
Eobs are identical. Without a cautious prewhitening, the envelop OF can not converge
towards a model producing data with correct amplitudes. Besides, the envelope OF is
limited to distinguish the difference between two data with reversed amplitudes (i.e. not
sensitive to the sign of the data).

Alternatively, Liu et al. (2011b) proposed to calculate the time integral of envelops
for observed and modeled data and then defined a normalized envelope-based OF. I
present here the version without normalization:

Jienv =
1

2
||Qcal(s, r, t)−Qobs(s, r, t)||2. (2.35)
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where

Qcal(s, r, t) =

∫ t

0

dτEcal(s, r, τ). (2.36)

The model gradient of equation 2.35 and the related adjoint source read

∂Jienv

∂c(x)
=

2

c3(x)

∫∫
dsdt

∂2

∂t2
u(s, x, t)λienv(s, x, t), (2.37)

Lλ∗ienv[t] =

∫∫
drdσ δ(x− r)

∂Qcal[σ]

∂dcal[t]

[
Qcal[σ]−Qobs[σ]

]
. (2.38)

where

∂Qcal[σ]

∂dcal[t]
=

{∫ σ
0

dτdcal[t]/Ecal[t], if t = τ∫ σ
0

dτH{dcal[τ ]}/Ecal[τ ]/π(t− τ), if t 6= τ
(2.39)

The preliminary tests show that this OF present a convex misfit curve for both the
phase shift and amplitude change cases (Figure 2.8). Note that the envelope of data is
not sensitive to the sign of the data such that this OF may still be limited to distinguish
the difference betweens two data sets with reversed amplitude.

Bump OF

In a similar way as for the envelope case, an alternative possibility to artificially create
low-frequency contents is to use the absolute value or squared form of the data (Liu
et al., 2011b; Bharadwaj et al., 2015). First, Liu et al. (2011b) proposed to calculate
the normalized integral of the absolute value of data and then measured the difference
between real and modeled data. This approach was applied to a 2D synthetic transmit-
ted data set. Then, Donno et al. (2013) used the same strategy, except the normalized
integral is performed on squared data, for a 2D synthetic cross-hole data set. Bharadwaj
et al. (2015) extended the approach to reflected data in 2D synthetic cases. Bharadwaj
et al. (2016) indicated that the squared form of data after smoothing can be regraded as
a generalized envelope.

Bharadwaj et al. (2016) define a bump OF

Jbmp[c(x)] =
1

2

∣∣∣∣b(t) ∗t (dcal(s, r, t)2 − dobs(s, r, t)2
)∣∣∣∣2, (2.40)

where ∗t denotes the convolution in time and b a blurring function. b is in practice a
low-pass filter which does not necessarily affect the original data set due to the lack of
low frequencies, such that the data need to be squared. The gradient and related adjoint
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Figure 2.8 – Same as Figure 2.4, but for the envelop integral OF. (a,c,d,f) correspond
to (a–d) in Figure 2.4, respectively. (b,e) illustrate the envelop integrals with respect to
data in (a,d), respectively.
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Figure 2.9 – Same as Figure 2.4, but for the auxiliary bump OF. (a,c,d,f) correspond to
(a–d) in Figure 2.4, respectively. (b,e) illustrate the auxiliary bump form of data in (a,d),
respectively.

source read,

∂Jbmp

∂c(x)
=

2

c3(x)

∫∫
dsdt

∂2

∂t2
λbmp(s, x, t)u(s, x, t), (2.41)

L∗λbmp(s, x, t) =

∫
dr δ(x− r)b(t) ?t dcal(s, r, t)

× b(t) ∗t
(
dcal(s, r, t)2 − dobs(s, r, t)2

)
, (2.42)

where ?t denotes the crosscorrelation in time.
The sensitivity tests for the auxiliary bump OF are applied with respect to phase

shifts (Figure 2.9a) and amplitude changes (Figure 2.9c). The misfit curve does not con-
tain any local minima with respect to the phase shift but is not convex (Figure 2.9b). The
second test shows that the auxiliary bump OF does not have the severe converging prob-
lem for fitting the dynamic information (Figure 2.9d). However, similar to the envelope
OF, the method is not sensitive to the sign of data.
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2.3.1.4 Conclusion

The behaviors of different OFs have been tested. The numerical tests displayed have
several limitations: (1) the data used in the tests are not obtained by solving the wave
equation; (2) I mimic the velocity model changes by varying either the phases or the
amplitudes of the data, but the amplitudes and phases change simultaneously for differ-
ent velocity models in practice; (3) the tests are performed in 1D. Despite the very rude
approximations, they can still provide an insight into the behavior of different OFs. In
particular, it roughly shows that these alternative OFs are less cycle skipped compared
to standard FWI.

The conventional FWI seeks a velocity model that best explains the observed data,
but may converge towards a local minimum due to the cycle skipping effects, such that
the large-scale part of structure is difficult to be retrieved by the inversion procedure.
One can modify the OF by giving more weight to evaluate the kinematic errors (e.g.
the crosscorrelation or the Wiener filter) and/or using an altered data form (e.g. the
envelop or the squared data), attempting to find the global optimal velocity model. These
alternatives present misfit curves with a better convex property, at least for simple cases.
In the following, I detail the reflection-based waveform inversion approaches relying on
the scale separation and Born approximation.

2.3.2 Reflection Waveform Inversion
Reflection Waveform Inversion (RWI) (Xu et al., 2012; Alkhalifah, 2014; Brossier et al.,
2015; Zhou et al., 2015) is an approach similar to FWI developed to retrieve the large-
scale structure from reflected events. It is directly inspired by the Migration-Based
Traveltime Tomography (MBTT) (Chavent et al., 1994; Plessix et al., 1995). FWI con-
siders the velocity model c, whereas RWI either assumes an explicit scale separation
between low and high wavenumeber contents of the velocity model (c = c0 + δc) (Xu
et al., 2012) or relies on a parametrization with both the velocity and the impedance to
naturally facilitate an implicit scale separation (Zhou et al., 2015; Zhou, 2016). I con-
sider the former to formulate RWI seeking the optimal models by fitting the reflected
data, reading

Jrwi[c0, δc] =
1

2
||δdcal[c0, δc]− δdobs||2, (2.43)

where δdcal and δdobs are modeled and observed reflected data, respectively. c0 and δc
are the background velocity and the perturbation model, respectively. The modeling of
reflection data can be linearized using the first-order Born approximation, reading

δdcal(s, r, ω) =

∫
dx (iω)2Ω(ω)G0(s, x, ω)

2δc(x)

c0(x)3
G0(r, x, ω), (2.44)
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where Ω is the function of source wavelet and G0 the Green’s function associated to the
background velocity model c0. Then, the augmented function read

J ext
rwi [c0, δc] =

1

2
||δdcal[c0, δc]− δdobs||2 −

∫∫∫
dsdxdω δR∗

[
L0S0 − Ωδ(x− s)

]
−
∫∫∫

dsdxdω R∗0
[
L0δS − (iω)2S0

2δc

c30

]
, (2.45)

where L0 denotes the Helmoltz operator associated to c0. R0 and δR are adjoint state
variables. S0 and δS represent forward propagated and scattered wavefields in a given
macromodel c0, respectively, reading

L0S0(s, x, ω) = Ω(ω)δ(x− s) (2.46)

L0δS(s, x, ω) = (iω)2S0(s, x, ω)
2δc(x)

c0(x)3
, (2.47)

Note that δdcal record the response of δS at receiver positions r: δdcal =
∫

dx δSδ(x−r).
Using the adjoint-state technique (Plessix, 2006), the gradients of OF with respect to c0
and δc respectively read,

∂Jrwi

∂δc
=

2

c30

∫∫
dsdω (iω)2S∗0R0 (2.48)

∂Jrwi

∂c0
=

2

c30

∫∫
dsdω (iω)2(S∗0 · δR +R∗0 · δS −

3δc

c0
S0R

∗
0). (2.49)

Note that I assume here that δc and c0 are independent for such a derivation, following
the strategy of Xu et al. (2012). The third term in equation 2.49 corresponds to the
imprints of velocity perturbations in the gradient, and is an oscillatory term. Wu and
Alkhalifah (2015) proposed to multiply this term by a factor to reduce its weight in the
gradient. Adjoint state variables can be derived by taking (

∂Jextrwi

∂R0
,
∂Jextrwi

∂δR
) = 0, reading

L∗0R0(s, x, ω) =

∫
dr
(
δdcal(s, r, ω)− δdobs(s, r, ω)

)
δ(x− r), (2.50)

L∗0δR(s, x, ω) = (iω)2R0(s, x, ω)
2δc(x)

c0(x)3
. (2.51)

Adjoint variables R0 and δR can be explained as back propagated and back scattered
wavefields in an estimated macromodel c0, respectively. The conventional FWI gen-
erates a gradient (Figure 2.10a) containing different types of subkernels, such as the
transmission kernel (Figure 2.10b) and migration ellipse (Figure 2.10c). The transmis-
sion wave that penetrates into the deep subsurface requires a ultra-long offset acquisition
to record. The migration ellipse dominates the contribution of reflected data in the FWI



58 Chapter 2. Methodology

gradient. In areas not reached by diving waves, RWI seeks a way to extract the large-
scale information of the velocity model by constructing transmission wavepaths between
the reflectors and the source as well as between the reflectors and the receivers (the fa-
mous rabbit ear shapes, see Figures 2.10d and 2.10e) (Xu et al., 2012; Alkhalifah, 2014;
Brossier et al., 2015; Wu and Alkhalifah, 2015).

In a given macromodel c0, the model perturbation δc is estimated via equation 2.48,
which is equivalent to the formulation of reverse time migration (RTM). Then, reflected
data are modeled from (δc, c0) and the residuals between modeled and observed data
are measured to iteratively update the background model. These two procedures are
repeated until converging (Wu and Alkhalifah, 2015; Zhou et al., 2015). In practice, the
estimation of perturbation only uses short-offset (even zero-offset) data and the recovery
of macromodel involves reflected data of long-offset. The idea behind is to build a
perturbation model using data with limited offset and then to predict long-offset data.
Thus, the macromodel can be updated by fitting these predicted data with the observed
data. Zhou et al. (2015); Alkhalifah and Wu (2016) proposed strategies to combine
the information extracted from both transmission data and reflection data to update the
background velocity model.

2.3.3 Differential Waveform Inversion
In the context of macro velocity estimation, Chauris and Plessix (2012) proposed the
Differential Waveform Inversion (DWI) approach defined in the data domain, which is
inspired by Differential Semblance Optimization (DSO) technique (see Symes, 2008
for a review) formulated in the image domain. In a given background velocity model c0,
DWI first constructs the velocity perturbation δc from reflected data of a single shot s
by minimizing

J (0)
dwi[δc] =

1

2
||δd(s)cal[c0, δc]− δd

(s)
obs||

2, (2.52)

where δd(s)cal and δd(s)obs are the computed and observed reflection data at shot position s.
Similar to least-squares migration, a migrated section δc[c0, s] is extracted after mini-
mization. The second step consists of minimizing the misfit between the shot couples
(s+ δs) for the optimal reflectivity δc derived from equation 2.52

J (1)
dwi[c0] =

1

2
||δd(s+δs)cal

[
c0, δc[c0, s]

]
− δd(s+δs)obs ||2, (2.53)

Due to the finite frequency band of the data, the calculated and observed gathers s+ δs
should match within less than half a wavelength if the interval δs is not too large. This
can ensure a larger basin of attraction than in the case of classic FWI. Depending on the
authors, the dependency of δc on c0 is not always considered. This approach accounts for
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Figure 2.10 – An illustration comparing the behavior of FWI and RWI. Sensitivity ker-
nel of FWI for a single reflector embedded in the homogeneous background velocity
model and its different subkernels (adapted from Chi et al., 2015): (a) full kernel of
FWI, (b) transmission kernel, (c) migration ellipse, (d) source-side reflection kernel, and
(e) receiver-side reflection kernel. For RWI, the kernel related to macro model update
includes only (d) and (e), introducing the famous rabbit ear shapes.



60 Chapter 2. Methodology

such dependency, formulating a nested optimization. I develop an equivalent approach
in chapter 4 and the derivation of gradient will detailed in that part.

A main interest of this strategy resides in the possibility to take into account surface-
related multiples (Chauris and Plessix, 2013). Similar to the iterative MVA that can cope
with the multiples proposed by Cocher et al. (2017b), the key point is the iterative mi-
gration. In practice, the iterative migration can be replaced by direct inverse (Chapter 3)
to significantly reduce the computational cost.

Discussion
FWI, RWI and DWI are different data-fitting techniques. The idea behind FWI is that
a model is optimal if it can perfectly reproduce the complete data set. RWI and DWI
use only reflected data and rely on the scale separation explicitly or implicitly. Similar
to FWI, RWI seeks the consistency between modeled and observed data. In addition,
it introduces the idea that, only in a correct macro model, one can perfectly reproduce
the long-offset data with the perturbation model constructed from short-offset data with
limited offset range. In this sense, DWI is similar to RWI: it predicts the data at a
single shot position with the perturbation model constructed from the data at the previous
single shot position. Two elements are important to distinguish between RWI and DWI:
(1) offset versus shot; (2) predicting all data sets versus predicting next shot gather.
In chapter 4, I will extend the image-domain method to data-domain formulating an
approach similar to DWI, and then investigate the link between image-domain and data-
domain methods. I conduct a more detailed analysis of DWI in Chapter 4.

2.4 Image coherency criteria
In this section, I introduce more mathematical details on the image-domain methods
which will be mainly investigated in this thesis. The principle of image-domain methods
is to exploit the redundancy of seismic data after migration. As mentioned in section 1.3,
a collection of migrated images can be constructed with different subsets of the data, for
example one image for each shot gather, in a given background velocity model. Due to
the fact that the Earth’s model is unique, the correct velocity leads to coherent images,
meaning that the recovered reflectors resulting from different shot experiments should
be consistent. Otherwise, the images present discrepancies due to inaccuracies in the es-
timated macro velocity model. Such a class of macro model estimation methods based
on the migration technique is called Migration Velocity Analysis (MVA). According to
the formalism introduced by Symes and Carazzone (1991); Symes and Kern (1994);
Chauris et al. (2002a); Biondi and Symes (2004); Symes (2008); Sava and Vasconce-
los (2011) among others, the general framework of a MVA procedure consists of three
essential steps:
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• the definition of the OF: in contrary to the natural data-fitting strategy, the image-
domain method seeks an OF assessing the quality of velocity model by measuring
the image quality through the coherency or focusing criterion. A generic definition
reads

Jmva[c0] =
1

2
||A(σ)ξ[c0](x, σ)||2 (2.54)

where operator A is the annihilator as a function of the redundant parameter σ.
I define reflectivity ξ as 2δc/c30 in this study. x denotes the spatial coordinate
(x, z) in 2D. A and σ are chosen based on the selected criterion and associated
parameterization detailed later. The OF is known to have a convex behavior over a
large range of velocities (Stolk and Symes, 2002; Van Leeuwen and Mulder, 2009;
Symes, 2008), such that one can minimize the value of Jmva with the gradient
based optimization method. The analysis is performed on panels called Common
Image Gathers (CIGs) consisting of a section of reflectivity volume as a function
of depth z and of the redundant parameter σ for a fixed lateral position x in 2D.

• the construction of images ξ parameterized with an extra parameter σ representing
the redundancy of the data: for example in 2D, the migrated volume is ξ(x, z, σ),
a function of lateral position x, depth z and the redundant parameter σ. Then the
image and the data have the same dimension – (x, z, σ) versus (sx, rx, t). This is
a key point of MVA strategies: even in an incorrect background velocity model,
all information may be preserved during migration of the data, in the sense that
data are supposed to able to be re-modeled in the same background velocity model
using the migrated volume. However, in practice, migration is the adjoint operator
of modeling such that the reproduced data are only kinematically correct (see
Figure 1.12 from Chapter 1);

• the iterative update of the background velocity model c0: for a single iteration,
this includes the computation of the gradient of Jmva with respect to c0 which can
be efficiently derived with the adjoint-state method (Plessix, 2006), and the sub-
sequent velocity update using the local optimization scheme such as a conjugate
gradient scheme.

As mentioned in Chapter 1, MVA is formulated either as a surface-oriented approach
in which the redundant parameter is related to the acquisition (e.g. shot position, shot-
receiver offset, etc.) (Al-Yahya, 1989; Symes and Carazzone, 1991; Chauris and No-
ble, 2001; Mulder and ten Kroode, 2002; Shen and Symes, 2008 among others) or a
depth-oriented approach where the migration is extended during the construction of the
images (e.g. space lag, time lag, etc.) (Sava and Biondi, 2004; Biondi and Symes, 2004;
Symes, 2008; Fei and Williamson, 2010; Shen and Symes, 2013; Mulder, 2014; Shen
and Symes, 2015 among others). I first introduce the details of the essential steps for the
two families, and then discuss the current limitations of MVA.
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Figure 2.11 – CIGs related to incorrect (left) and correct (right) macro velocity models
(from Chauris et al., 2002b).

2.4.1 Surface-oriented MVA
A natural choice of the extra parameter is the acquisition-related parameter such as the
surface-offset (source-receiver distance) (Chauris and Noble, 2001; Rickett and Sava,
2002; Mulder and ten Kroode, 2002 among others) or the shot position (Symes and
Kern, 1994; Huang and Symes, 2015 among others). The images should be identical
when they are constructed from several experiments related to different values of the
selected extra parameter. Consequently, events on the associated CIGs should be hori-
zontal for the correct velocity model (Figure 2.11). The model inaccuracy can thus be
described by analyzing the CIGs: the events curve upward for velocity model too slow
and downward for a velocity model too fast. The DSO technique (Symes and Carazzone,
1991) measures the coherency of events on CIGs,

Jsmva[c0] =
1

2
||Dsxξ[c0](x, s)||2, (2.55)

where the annihilator A and the extra parameter σ in equation 2.54 are replaced by the
horizontal partial derivative Dsx and the shot position sx, respectively. This type of OF
computes the derivative of the images with respect to redundant parameter to measure
the consistency of events in CIGs.

In the surface-oriented case, the reflectivity ξ can be derived as a prestack RTM
approach,

ξ[c0](x, s) =

∫
dt

∂2

∂t2
S0(s, x, t)R0(s, x, t), (2.56)
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which represents the crosscorrelation between forward and backward propagated wave-
fields similar to equation 2.48. The main difference is that there is no integral over the
source position s in equation 2.56. The gradient of Jsmva with respect to c0 is derived
using the adjoint-state technique, reading

∂Jsmva

∂c0(x)
=

2

c0(x)3

∫∫
dsdx

∂2

∂t2
(
λs(s, x, t)S0(s, x, t) + λr(s, x, t)R0(s, x, t)

)
, (2.57)

where λs and λr are the adjoint state variables denoted by,

L0λs(s, x, t) = λξ(s, x)
∂2

∂t2
R0(s, x, t), (2.58)

L∗0λr(s, x, t) = λξ(s, x)
∂2

∂t2
S0(s, x, t), (2.59)

λξ(s, x) =
∂Jsmva

∂ξ(s, x)
= − ∂2

∂s2x
ξ(s, x). (2.60)

The image residual λξ acts comparably as the scattering structures in RWI and DWI
such that λr and λs have the same behavior as the forward and back scattered wave-
fields, respectively. The formulation of gradient (e.g. equations 2.48, 2.49 and 2.57)
always contains crosscorrelations between different wavefields. The crosscorrelation
contributes to the gradient in a migration mode if two wavefields only coincide with
each other at interfaces, whereas the contribution to gradient is in a tomographic mode
if two wavefields share the same wavepath. The wavepaths of λr and R0 (λs and S0)
are shown in Figure 2.12a (Figure 2.12b) corresponding to the latter, and thus lead to a
tomographic update of the model.

However, the conventional surface-oriented method is known to suffer from kine-
matic artifacts when complex wavepaths are considered (Xu et al., 2001; Stolk and
Symes, 2004). The depth-oriented extended model presented in the next paragraph intro-
duce a better way to construct images, less prone to those artifacts (Stolk and de Hoop,
2005). In this thesis, I propose a new approach by coupling common-shot true-amplitude
migration to MVA in Chapter 3.

2.4.2 Depth-oriented MVA

In the depth-oriented formulation of MVA, one introduces the redundant parameter in
the wavefield crosscorrelation during the construction of migrated images. The image-
domain can be extended with the spatial lag (Rickett and Sava, 2002; Shen et al., 2005;
Lameloise et al., 2015; Chauris and Cocher, 2017), the temporal shift (Sava and Fomel,
2006; Yang and Sava, 2011) or the scattering angle (Sava and Fomel, 2003; Biondi and
Symes, 2004). The general extended migration formula with both the spatial lag h and
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Figure 2.12 – Schematic view of the wavefields (a, from the source s; b, from the receiver
r) contributing to the gradient in the presence of a horizontal scattering source (e.g. a
single reflector) at depth z0 (adapted from Chauris and Cocher, 2017). The parameters
S0 and λs as well as R0 and λr correlate between the surface and depth z0.

Figure 2.13 – Description of the horizontal subsurface-offset h.

the temporal shift τ (Sava and Vasconcelos, 2011) read

ξ[c0](x,h, τ) =

∫∫
dtds

∂2

∂t2
S0(s, x− h, t− τ)R0(s, x + h, t+ τ), (2.61)

The image section at h = 0 and τ = 0 corresponds to the migrated section obtained with
RTM formula 2.48 with summation over all sources and receivers. Energy focusing at
non-zero values of the extension parameters corresponds to inaccuracies of the back-
ground velocity model. This is the so-called image focusing principle (Symes, 2008).

In practice, the extension is usually made along a single extension parameter only,
to limit the image size and the computational time (Shen and Symes, 2008). The spatial
lag h is commonly referred to as subsurface-offset and h = (hx, hz) in 2D. In the case of
surface acquisition and mainly horizontal structures, h is constrained to the horizontal
direction (hx,0) (Figure 2.13) and this is the common choice (Shen and Symes, 2008).

With h=(hx,0), CIGs represent the migrated section at fixed lateral position x and
depend on the depth z and the subsurface-offset h. The defocused energy spread over
non-zero h carries the information about inaccuracies of the estimated macro velocity



2.4. Image coherency criteria 65

model. Events are supposed to have a downward (upward) curvature for a velocity
model too low (too high) (Mulder, 2014; Lameloise and Chauris, 2014). The quality of
velocity model can be assessed by an OF that penalizes the defocused energy, reading

Jdmva[c0] =
1

2
||A(h)ξ[c0](x,h)||2, (2.62)

where A(h) = |h| (i.e. hx for h = (hx, 0)). Similar to surface-oriented MVA, one
minimizes the OF using the local optimization scheme and derive the gradient with
adjoint-state method, reading

∂Jdmva

∂c0(x)
=

2

c0(x)3

∫∫
dsdx

∂2

∂t2
(
λs(s, x, t)S0(s, x, t) + λr(s, x, t)R0(s, x, t)

)
, (2.63)

where the adjoint state variables λs, λr and λξ are redefined by

L0λs(s, x, t) =

∫
dhλξ(x + h,h)

∂2

∂t2
R0(s, x + 2h, t), (2.64)

L∗0λr(s, x, t) =

∫
dhλξ(x− h,h)

∂2

∂t2
S0(s, x− 2h, t), (2.65)

λξ(x,h) =
∂Jdmva

∂ξ(x,h)
= a(h)2ξ(x,h). (2.66)

In the inverse theory, one should account for both the gradient and the Hessian of the OF
to update the model, but the computation of the Hessian matrix is prohibitively expensive
for industrial application. Shen and Symes (2015) proposed a method to approximate
the Hessian in an efficient way. An alternative is the quasi-Newton strategy (Nash and
Nocedal, 1991) and the truncated Newton approach (Métivier et al., 2013).

The components in equations 2.63–2.66 indicate that the surface-oriented and the
depth-oriented MVA methods behave in the similar tomographic mode but with two
different descriptions of the macromodel inaccuracies, in the sense that the formulations
of image residual λξ are different. Despite a tomographic update, the gradient of those
MVA methods are not always smooth, meaning that artifacts are present in the gradient.
I will explain the reasons and possible solutions in the following section.

2.4.3 Limitations of MVA
MVA was initially proposed for the reflected data (Symes and Carazzone, 1991). De-
spite the Born approximation, recent studies have extended MVA to transmitted waves
(Chauris et al., 2013; Shen and Symes, 2013; Biondi and Almomin, 2014; Lameloise
and Chauris, 2016) and to multiples (Staal and Verschuur, 2012; Cocher et al., 2015,
2017b). However, not so many applications on real data have been published (Chauris
and Noble, 2001; Mulder and ten Kroode, 2002; Alkhalifah, 2005; Shen and Symes,
2008; Mulder, 2014; Lameloise and Chauris, 2016 among others). This section reviews
several challenges of MVA which prevent from broader adoption.
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Computational cost

In general, the MVA technique is more numerically demanding than FWI in terms of
computation and memory requirements (van Leeuwen et al., 2015). In the case of
subsurface-offset MVA, the model is extended only along the horizontal component
of the subsurface-offset in order to limit the memory requirements. But, one needs to
store the full migrated volume for all spatial and subsurface-offset coordinates. Thus,
it is prohibitively expensive to extend the subsurface-offset MVA to 3D applications,
where two extra dimensions are in principle needed for the model space to match the
data size. Yang and Sava (2015) propose to compute CIGs only at a limited number of
image points rather than the whole image. van Leeuwen et al. (2015) construct CIGs
with only a random choice of data traces. Fu and Symes (2015) investigate a multiscale
strategy in which less and less subsurface-offset is required to be considered during the
iterative update. Note that even if these techniques may decrease the computational cost
for subsurface-offset MVA, the numerical requirements are still heavy. We investigate in
Chapter 3 if and how common-shot MVA can be less numerically expensive and provide
a more efficient implementation.

Migration smiles

Conventional MVA uses the reflectivity resulting from the classic migration which is
the adjoint of the Born modeling operator as already mentioned. This kind of image is
only the first gradient of the `2 norm OF minimizing the data misfit. As an inaccurate
solution to the inverse problem, it may suffer from uneven illumination in a velocity
model containing complex structures. In the presence of salt body, Yang et al. (2013)
indicate that the uneven illumination results in obviously defocused energy visible at
non-zero spatial lag in a correct velocity model.

In the subsurface-offset domain, migration smiles are visible in CIGs, even for a
very simple model such as a single reflector embedded in the homogeneous velocity
(Figure 2.14a). The smiles always present upward curvatures and do not focus for the
correct velocity. As a result, these smiles introduces a bias in the estimation of the opti-
mal velocity model, meaning that the OF is minimal for a velocity model usually slightly
lower than the correct velocity model (Mulder, 2014; Lameloise, 2015): the curvature of
smiles is similar to the one related to too high velocity model. The associated gradient
thus can not provide a satisfactory homogeneous update (Figure 2.14b).

To solve this problem, the iterative migration is preferred (Liu et al., 2014b; Chauris
et al., 2015) since it provides indeed an inverse of the modeling operator, rather than the
classic migration, which is only the adjoint operator. However, the iterative migration
usually requires several loops before convergence and thus MVA becomes a nested op-
timization problem with a more complex gradient computation (Cocher et al., 2017b).
This increases the overall numerical cost for a successful MVA. It may also lead to
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Figure 2.14 – (a) CIGs and (b) associated gradients of the MVA OF computed with
classic migration for a too low (left), correct (middle), and too high (right) velocity
model. Blue, white and red colors correspond to negative, null and positive values,
respectively (from Lameloise, 2015).

unstable results (Cocher, 2017) On the other hand, a sophisticated solution consists of
replacing the classic migration by the direct inverse formula (Lameloise and Chauris,
2014; Hou and Symes, 2015). Lameloise and Chauris (2014) develop the ray+Born in-
version approach proposed by Lambaré et al. (1992) to the subsurface-offset domain and
ten Kroode (2012); Hou and Symes (2015, 2016b); Chauris and Cocher (2017) further
extend it to wave-equation-based operators as a direct inverse. In practice, the quan-
titative weights compensate for uneven illumination and geometrical spreading losses
in the migrated images such that smiles are significantly attenuated (Figure 2.15a) and
the associated gradient is much cleaner (Figure 2.15b). Moreover, it can be either re-
garded as a direct true-amplitude migration approach (Hou and Symes, 2016b; Chauris
and Cocher, 2017) or used as the preconditioner boosting the iterative migration (Hou
and Symes, 2016b; Cocher et al., 2017b) or FWI (Qin et al., 2015), leading to a more
efficient implementation.

The impact of migration smiles can be observed in the surface-oriented domain as
well as in the subsurface-offset domain (Chapter 3). In this thesis, I will follow the
same strategy discussed above, to extend a ray-based quantitative migration (Beylkin,
1985; Bleistein, 1987) into a wave-equation-based inverse formula for the common-
shot gathers, which is a minor modification on the work of Qin et al. (2015), and more
importantly to couple it to the velocity analysis in Chapter 3.
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Figure 2.15 – Same as Figure 2.14 with a quantitative (ray-based) migration instead of
a classic (adjoint) migration (from Lameloise, 2015).

Gradient "artifacts"

In the subsurface-offset MVA gradient, strong oscillations are present (Figure 2.16a),
especially around diffractors and/or along the reflectors (Vyas et al., 2010; Fei and
Williamson, 2010). They are known as gradient artifacts which prevent the MVA gra-
dient from being directly used for updating the velocity model. In the case of a complex
velocity model, these oscillations will be present everywhere, even altering the gradient
direction (Lameloise et al., 2015). A simple prior smoothing on the gradient cannot
completely destroy these oscillations (Chauris and Cocher, 2017). I will discuss the
equivalent issues in the case of common-shot MVA in Chapter 3.

Note that these oscillations are not really artifacts of the gradient: their presence
is due to the fact that when the macromodel velocities increase, the positions of the
reflectors are deeper.

In the context of subsurface-offset MVA, Fei and Williamson (2010) propose the
introduction of a h derivative in the image residual λξ before the computation of the
gradient of the MVA OF. Shen and Symes (2015) recognize it as a warping technique,
namely horizontal contraction. The h derivative makes CIGs contracted in the h di-
rection, leading to the energy more focused at zero subsurface-offset. The trick signif-
icantly improves the quality of the velocity update (Figure 2.16b), but the modification
is no more the gradient of an OF. More importantly, such a technique does not prop-
erly handle low velocity anomalies (Shen and Symes, 2015). Alternatively, Chauris and
Cocher (2017) propose to multiply the recovered images with the velocity at a specific
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Figure 2.16 – The MVA gradients for a homogeneous model with a single horizontal
reflector before (a) and after (b) removing gradient artifacts by horizontal contraction
(from Fei and Williamson, 2010).

power before evaluating the MVA OF. Then, the oscillatory terms around the interface
positions can be removed, and the artifacts related to discontinuities can be attenuated
using the Gaussian smoothing. I will introduce this modification for common-shot MVA
in Chapter 3.

Discussion
In the subsurface-oriented domain, one can avoid some limitations of MVA by replac-
ing the migration, an adjoint operator of modeling, by the inverse, to formulate a new
approach called Inversion Velocity Analysis (IVA). Such an inverse can be derived by
iterative migration (Liu et al., 2014b; Chauris et al., 2015; Cocher et al., 2017b) or direct
inversion (Hou and Symes, 2015; Chauris and Cocher, 2017; Hou and Symes, 2016a).
For the former, it is important to introduce a regularization in the migration step (Huang
and Symes, 2015; Hou and Symes, 2016b; Chauris et al., 2015; Cocher, 2017) to sta-
bilize the derivation of the optimal macromodel. For the latter, the key is to derive a
formula which is the inverse of Born modeling operator (ten Kroode, 2012; Hou and
Symes, 2015; Chauris and Cocher, 2017). For the inner loop of a nested optimization
problem, direct inversion is favored over iterative migration due to its relatively lower
numerical cost.

However, the subsurface-offset method is very demanding in terms of the compu-
tational cost and the memory requirement, due to the extended dimension, preventing
from 3D implementation. Briefly, migration smiles and gradient artifacts motivate the
need for considering an inverse operator, and the numerical requirements motivate the
need to consider direct inverse scheme and common-shot gathers. Consequently, in
Chapter 3, I develop a direct inverse formula for common-shot gathers and then couple
it to MVA for better robustness and efficiency. The numerical requirements between
common-shot and subsurface-offset methods are compared as well in Chapter 3. It is
known that common-shot approach is biased in the presence of triplicated wavefields
(Stolk and Symes, 2004). There is no reason why the direct inverse would solve this
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issue. We investigate in Chapter 3 how triplications impact MVA when direct common-
shot is coupled to velocity analysis.

2.5 Summary
We reviewed various velocity estimation approaches formulated in either data or image
domain in this Chapter. In section 1.2, I explained the ideas behind FWI/RWI/DWI
and indicated the importance of investigating the link between data-domain and image-
domain methods. Note that such a DSO functional was initially defined as the regu-
larization term for FWI (Symes and Kern, 1994). The investigations are detailed in
Chapters 4. In section 1.3, I presented the current limitations of MVA

All introduced methods can be summarized as a generic workflow (Figure 2.17a).
Defining the inverse problem consists of several essential steps: parameterizaiton, mod-
eling, OF and the computation of the gradient of the OF. Such a framework can easily
distinguish different macro velocity estimation approaches (Figure 2.17a).
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Data description Model description OF

FWI 𝑑678 → full data
𝑑&'( → full data 𝑚 → 𝑐 Data fitting

RWI 𝑑678 → reflected data
𝑑&'( → reflected data

𝜉 → image
𝑚 → 𝑐5

Data fitting

DWI 𝑑678 → reflected data
𝑑&'( → reflected data

𝜉 → image
𝑚 → 𝑐5

Data fitting

MVA 𝑑678 → reflected data 𝜉 → image
𝑚 → 𝑐5

Image coherency

initial model 𝑚
observed data 𝑑678

compute
modeled data 𝑑&'(

and/or
reflectivity image 𝜉(∗)

evaluate 
OF 𝐽

reach stopping 
criterion?

return 𝑚

compute F,
FGupdate	𝑚

yes

no

* Image can be obtained with classic migration, with iterative migration 
or with direct inversion. This thesis focus on direct inversion.

(a)

(b)

Chapter 3

Chapter 4

Figure 2.17 – A generic workflow for solving the inverse problem in both data and image
domains (a). The differences among various approaches (b) in terms of data and model
descriptions, and the criteria for the definition of OF.
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Résumé du chapitre 3
L’analyse de vitesse par migration est une technique pour estimer les grandes struc-
tures du modèle de vitesse de propagation des ondes. C’est ce modèle qui contrôle la
cinématique de la propagation. Pour des résultats plus stables, des travaux récents ont
propose de remplacer la migration, l’adjoint de l’operateur de modélisation par Born,
par un inverse direct et ceci dans le contexte du domaine étendu avec l’offset en pro-
fondeur. En suivant la même stratégie, nous avons développé un schéma d’analyse de
vitesse par inversion pour le la migration classique par point de tir. Nous utilisons la
semblance différentielle pour évaluer la qualité des images qui dépendent de la position
de la source et pour obtenir le gradient de la fonction objective, un élément essentiel pour
remettre à jour le macro-modèle de vitesse. Nous discutons des avantages et des limites
au travers d’applications sur des données synthétiques en 2D, d’abord sur des modèles
très simples avec un seul réflecteur au sein d’un modèle homogène, puis sur le mod-
èle Marmousi. L’inverse direct attenue les sourires de migration car il compense pour
le facteur d’atténuation géométrique et pour l’illumination variable de la sub-surface.
Des oscillations parasites autour des interfaces dans les gradients de vitesse peuvent être
supprimées en multipliant la réflectivité inversée par la vitesse à une certaine puissance,
avant de mesurer la cohérence des images. Nous regardons de près la présence de trip-
lications du champ d’onde qui viennent d’anomalies lentes de vitesse. Il apparait que
l’analyse de vitesse par inversion est robuste, même si des artefacts sont observés dans
les images migrées. Le gradient de vitesse conduit a une mise- à -jour stable, tout partic-
ulièrement après un filtrage Gaussien sur une longueur d’onde. Le couplage de l’inverse
par point de tir avec l’analyse de vitesse offre de nouvelles possibilités pour l’extension
à la 3D dans le futur.
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Abstract

Migration Velocity Analysis is a technique to estimate the large-scale structure of the
subsurface velocity model controlling the kinematics of wave propagation. For more
stable results, recent studies proposed to replace migration, adjoint of Born modeling, by
the direct inverse of the modeling operator in the context of extended subsurface-offset
domain. Following the same strategy, we develop a two-way wave-equation-based In-
version Velocity Analysis approach for the original and more efficient surface-oriented
shot gathers. We use the Differential Semblance Optimization objective function to
evaluate the quality of inverted images depending on shot positions and to derive the
associated gradient, an essential element to update the macro-model. We discuss the
advantages and limitations through applications of 2D synthetic data sets, first on sim-
ple models with a single-reflector embedded in various background velocities and then
on the Marmousi model. The direct inverse attenuates migration smiles by compensat-
ing for geometrical spreading and uneven illuminations. Spurious oscillations around
interface positions in the velocity gradient can be removed by multiplying the inverted
reflectivity with the velocity at a specific power before measuring the consistency of
the migrated images. We pay attention to the presence of triplicated wavefields caused
by low velocity anomalies. It appears that Inversion Velocity Analysis is robust even
if artifacts are observed in the seismic migrated sections. The velocity gradient leads
to a stable update, especially after a Gaussian smoothing over a wavelength distance.
Coupling common-shot direct inversion to velocity analysis offers new possibilities for
the extension to 3D in the future.

3.1 Introduction

Migration Velocity Analysis (MVA) is a technique to determine the large-scale struc-
ture of the subsurface velocity from seismic surface acquisitions. It assumes that the
model parameters can be split into a large-scale model or macromodel controlling the
kinematics of wave propagation and a model perturbation generating scattering waves.
Under the Born approximation, the reflected data linearly depend on the reflectivity
model. Classical images are obtained by crosscorrelating the forward wavefield with
the backward wavefield (Claerbout, 1971). As the real Earth model is unique, images
corresponding to different subsets of the data are supposed to be consistent in a correct
background model, at least in the well illuminated regions (Symes, 2008). Migration
Velocity Analysis can be associated to different migration schemes, such as common-
shot, common-offset or common-angle gathers (Symes and Carazzone, 1991; Chauris
and Noble, 2001; Mulder and ten Kroode, 2002; Biondi and Symes, 2004; Sava and
Biondi, 2004; Stolk et al., 2009). More recent alternatives introduced before crosscor-
relation a spatial or a temporal shift in the imaging condition, for example the extended
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Table 3.1 – Dimensions of the data, extended and shot domains. s and r are the source
and receiver coordinates, respectively. t is the time. (x,y,z) are the spatial coordinates.
h is the subsurface-offset.

Dimension Data domain Extended domain Shot domain
1D t z z
2D (s,r,t) (x,z,h) (x,z,s)
3D (sx,sy,rx,ry,t) (x,y,z,hx,hy) (x,y,z,sx,sy)

subsurface-offset, instead of spliting the input data set before migration (De Bruin et al.,
1990; Sava and Fomel, 2006; Symes, 2008) (Table 3.1).

MVA is expected to be a powerful automatic imaging tool. Historically, MVA has
been developed for ray-based methods and then extended to wave-equation-based strate-
gies. Wave-equation MVA is in principle capable of reconstructing complex velocity
structures (Sava and Biondi, 2004). Among others, Differential Semblance Optimiza-
tion (DSO) defines an objective function to evaluate the quality of the background veloc-
ity model used for migration and such an estimation is known to have a convex behavior
(Symes and Carazzone, 1991; Symes, 2008). The inverted long-wavelength model can
provide the initial model for subsequent Full Waveform Inversion (FWI), a technique for
generating high-resolution models (Lailly et al., 1983; Tarantola, 1984a). The first MVA
step is important to avoid FWI to suffer from cycle-skipping effects (Bunks et al., 1995;
Virieux and Operto, 2009). Despite the scale separation and the associated lineariza-
tion, MVA also has the potential to be extended to transmitted waves (Chauris et al.,
2013; Shen and Symes, 2013; Biondi and Almomin, 2014; Lameloise, 2015; Lameloise
and Chauris, 2016) or to multiples (Staal and Verschuur, 2012; Cocher et al., 2015,
2017a,b). Nevertheless, Symes (2008); Lameloise et al. (2015) reviewed that only few
applications on real data have been published yet. MVA still faces a number of chal-
lenges: (1) it is very demanding in terms of computation and memory requirements (van
Leeuwen et al., 2015). In the subsurface-offset configuration, the CPU cost related to the
crosscorrelations for different space lags is not negligible. Moreover, one needs to store
the full migrated volume for all spatial and subsurface offset coordinates, currently pre-
venting from 3D applications except on a very limited size (Chauris and Cocher, 2017).
(2) Migration smiles visible in CIGs introduce a bias in the estimation of the optimal
velocity model (Mulder, 2014; Lameloise et al., 2015). In the subsurface-offset case,
velocities are underestimated: lower velocities introduce a moveout curvature with an
opposite sign as the one associated to migration smiles. (3) The gradient of DSO ob-
jective function with respect to the macro velocity contains spurious oscillations around
the reflector positions, especially in the case of discontinuous reflectivities (Vyas et al.,
2010). They are not artifacts, and exist simply for the reason that higher (lower) veloc-
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ities introduce deeper (shallower) depth for the reflectivity model. Fei and Williamson
(2010) proposed the horizontal contraction method to get rid of these oscillations by
artificially modifying the gradient: after modification, it is no more the gradient of any
objective function (Shen and Symes, 2015). Chauris and Cocher (2017) also explains
why a simple smoothing on the gradient would not destroy these oscillations without
changing the kinematics of wave propagation.

To overcome the difficulties related to the impact of migration smiles on the macro-
model gradient, the first attempt is to consider iterative least-squares migration (Nemeth
et al., 1999; Liu et al., 2014b; Chauris et al., 2015) as the quality of migrated images has
a significant influence on the velocity analysis. Conventional migration is only designed
to produce accurate kinematic images of the subsurface, but is not aimed at preserving
the amplitudes in migrated images, whereas inversion promises that the modeled data
from the inverted reflectivity perfectly match the observed data. This kind of approaches
is a priori rather expensive since the derivation of the optimal reflectivity normally re-
quires several iterations. As an alternative to the iterative schemes, true-amplitude the-
ory or direct approaches were initially proposed for ray-based methods (Beylkin, 1985;
Bleistein, 1987; Lambaré et al., 1992; Xu and Lambaré, 2004) and is a pseudo-inverse of
the Born modeling operator. Then, true-amplitude was extended to elastic case (Forgues
and Lambaré, 1997) and to attenuation case (Ribodetti and Virieux, 1998). Compared to
conventional migration, the true-amplitude methods are preferred because the retrieved
amplitudes give an approximate estimation of the reflection coefficient and automati-
cally compensate for geometrical-spreading and uneven illumination.

Ray-based methods are flexible and efficient but rays are asymptotic solutions of the
wave equation. Such approaches are not always effective in imaging complex struc-
tures. One-way wave-equation-based methods use paraxial approximation of the wave
equation. One-way wave-equation-based true-amplitude methods have been proposed
for both common-shot and common-angle migrations (Zhang et al., 2005, 2007). These
approaches are properly defined within certain angles around the main direction but fail
to handle wider angles, especially those near or beyond 90 degrees. Conversely, two-
way wave-equation-based reverse time migration (RTM) solves the full wave equation
and handle more properly steep dipping angles and complex velocity models. Op’t Root
et al. (2012); Qin et al. (2015) have proposed a similar explicit asymptotic inverse for
shot-profile. Zhang et al. (2014b) have studied how to implement true-amplitude RTM
in angle-domain common-image gathers. ten Kroode (2012); Hou and Symes (2015);
Chauris and Cocher (2017) have investigated the extension to subsurface-offset domain.
These approaches provide asymptotic inversion even if the final expression only con-
tains wave-equation-based operators. For example, the cosine of the take-off angle at the
source position is obtained through the derivative of the Green’s function with respect
to the vertical position of the source. Note that these direct approaches provide proper
preconditioner to reduce the number of iterations (Hou and Symes, 2016b; Duprat and
Baina, 2016; Cocher et al., 2017b; Hou and Symes, 2017).
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Table 3.2 – Non exhaustive references related to different MVA/IVA approaches.

Surface-oriented: common-shot,
surface-offset, etc.

Depth-oriented: common-angle,
subsurface-offset and/or time-lag,
etc.

MVA
Al-Yahya (1989); Symes and Kern
(1994); Chauris and Noble (2001);
Mulder and ten Kroode (2002), etc.

Sava and Biondi (2004); Biondi
and Symes (2004); Symes (2008);
Fei and Williamson (2010); Shen
and Symes (2013); Mulder (2014);
Shen and Symes (2015), etc.

IVA ?

Liu et al. (2014b); Chauris et al.
(2015); Lameloise et al. (2015);
Hou and Symes (2016a); Chauris
and Cocher (2017), etc.

Inversion Velocity Analysis (IVA) can be established by coupling such asymptotic
inversion to velocity analysis. Artifacts in CIGs are largely attenuated by inversion (Hou
and Symes, 2016a; Chauris and Cocher, 2017). IVA has been developed so far in the
extended subsurface-offset domain (Liu et al., 2014b; Chauris et al., 2015; Hou and
Symes, 2016a,b; Chauris and Cocher, 2017), whereas only a few studies consider the
more traditional surface-oriented domains (Table 3.2). The objective of this study is to
fill this gap. As discussed later, a main advantage is that shot-profile approach, beyond
the natural parallel computation, requires less memory than extended subsurface-offset
if considering 3D extension. However, common-shot scheme is known to suffer from
migration smiles and cannot properly handle triplicated wavefields (Stolk and Symes,
2004). The first aspect will be compensated by direct inversion. The problem related
to caustics will not be solved by the asymptotic inverse, but the coupling with velocity
analysis will be discussed here though numerical investigations.

In this article, we first propose a slightly different common-shot wave-equation in-
version scheme compared to Qin et al. (2015). This is still a pseudo-inverse as it is an
inverse in the asymptotic sense, but better preserves early arrivals in the reconstructed
data. We then couple true-amplitude common-shot reverse time migration to velocity
analysis, namely the shot-profile IVA and explain how to derive the gradient with respect
to the macromodel. The approach is applied to three synthetic cases to discuss the ad-
vantages and limitations. First, we consider a single reflector embedded in homogeneous
background velocity models, to investigate the impact of inverse operator over classical
migration. We pay attention to reflectivity images, CIGs and the first macromodel gradi-
ents. We then consider positive and negative Gaussian circular anomaly zones to study
the sensitivity of IVA with respect to a high or low velocity anomaly area. In particular,
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we discuss the influence of triplicated wavefields. Finally, we perform IVA on the Mar-
mousi model, starting from a homogeneous model. The large-scale structure is retrieved
after several iterations. We subsequently perform FWI starting from the final IVA result,
to extract the fine details within the well illuminated region.

3.2 From migration to inversion
We derive here a direct inverse scheme for common-shot wave equation migration. This
is an alternative to the expression proposed by Qin et al. (2015). We first review the
classical Born modeling and its corresponding adjoint operator. We then express the
true-amplitude version based on high-frequency approximation, and finally explain how
to remove the ray quantities for a pure wave equation based expression. We consider
a velocity model c as the sum of the background model c0 which controls the kine-
matics of the wave propagation and the model perturbation δc which triggers reflected
and diffracted waves. We define the reflectivity as ξ = 2δc/c30. The model c0 is itera-
tively determined by minimizing the DSO objective function in the outer loop procedure,
whereas for each c0 model, an optimal ξ is obtained by solving the inner loop problem,
for which we discuss two possibilities, migration and inversion.

Under the Born approximation, modeled reflected data d linearly depend on the per-
turbation ξ. For common-shot gathers, the classic definition of Born modeling operator
B0 reads (Symes, 2008)

(B0ξ)(s, r, ω) =

∫
dx (iω)2Ω(ω)G0(s, x, ω)ξ(x, s)G0(x, r, ω), (3.1)

where Ω is the source wavelet depending on the angular frequency ω. The two G0 are
the Green’s functions computed in model c0. The composition B0ξ denotes computed
data d in (ξ, c0). We consider here the 2D constant density acoustic wave-equation. The
model perturbation ξ depends on the spatial coordinates x = (x, z). Source and receiver
positions are denoted by s and r, respectively.

For a specific c0, migration is introduced by minimizing for each shot the misfit
between modeled reflection d and observed reflection dobs

J0[ξ] =
1

2
||d[ξ]− dobs||2. (3.2)

The first possibility for determining ξ defines the migration ξmig as −∂J0
∂ξ
|ξ=0, the gra-

dient with respect to the reflectivity ξ for ξ = 0 (Lailly et al., 1983; Tarantola, 1984a),
yielding

(BT0 dobs)(x, s) =

∫
dω S̃∗0(s, x, ω)R̃0(s, x, ω), (3.3)
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where BT0 denotes the adjoint of the modeling operator B0 in model c0. There is no
summation over the source coordinates to later address the velocity analysis part. The
forward and backward wavefields read

S̃0(s, x, ω) = (iω)2G0(s, x, ω)Ω(ω), (3.4)

R̃0(s, x, ω) =

∫
dr G∗0(r, x, ω)dobs(s, r, ω). (3.5)

For the true-amplitude migration, inversion operator B†0 is an inverse of B0 in the
asymptotic sense. It requires the composition of two operators B0 ◦ B†0 applied to any
data outputs equivalent reconstructed data, even in an incorrect background model. It is
possible to derive such an inverse formula under the high frequency approximation. We
follow the same strategy as the one proposed by Qin et al. (2015); the differences with
their approach are introduced later. We first replace the Green’s functions in equation 3.1
by their asymptotic version, then derive an inverse formula, and finally replace all terms
associated to ray quantities by wave-equation terms. The Green’s function is the solution
of wave-equation associated with a Dirac distribution in space and time as a source term.
With ray-based operators, its analytic formula reads

G0(s, x, ω) = K(ω)A(s, x)eiωτ(s,x), (3.6)

where K(ω) = 1/
√
iω in 2D. A is geometrical spreading term, solution of the trans-

port equation, and τ is travel time, solution of the Eikonal equation (Červenỳ, 1987).
Consequently, the Born modeling operator (equation 3.1) reads

(B0ξ)(s, r, ω) =

∫
dx (iω)2Ω(ω)K2(ω)ξ(x)

× A(s, x)A(x, r)eiω(τ(s,x)+τ(r,x)). (3.7)

Let us now introduce the associated true-amplitude common-shot inversion formula
derived by Beylkin (1985); Bleistein (1987). It contains ray-based terms:

(B†0dobs)(x, s) = −
∫∫

drdω
4

c20(x)

cos βr
cr

cos2(
θ

2
)
dobs(s, r, ω)

Ω(ω)

× K∗(ω)A(x, r)e−iωτ(r,x)

K(ω)A(s, x)eiωτ(s,x)
, (3.8)

where cr is background velocity at the receiver position. βr is the take-off angle at the
receiver position and θ the opening angle (Figure 3.1). B†0dobs is the inverted reflectivity
ξinv in model c0 for shot gathers dobs. The ratio between the Green’s function at the
receiver and at the source is a deconvolution imaging condition to balance the ampli-
tudes (Jones, 2014). Under the high frequency, B†0 proves to be the inverse of B0 (see
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Figure 3.1 – Ray parameters ps and pr are the slowness vectors at the image point,
associated to angles θs and θr. βs and βr are oriented angles at the source and receiver
points. We define the opening angle as θ = θs − θr.

Appendix 3.7). The additional weights are referred to as compensation for illuminations
(Schleicher et al., 2008; Liu et al., 2011a).

The next step for developing the direct inversion scheme is to remove the ray-based
quantities in equation 3.8. The main strategy consists of neglecting the derivatives of the
amplitude terms when we apply a spatial gradient to the Green’s functions (ten Kroode,
2012; Hou and Symes, 2015; Qin et al., 2015). By substituting those expressions (see
details in Appendix 3.7), we finally rearrange equation 3.8 with only wave-equation-
based terms, reading

(B†0dobs)(x, s) = 4

∫
dω
(
|S0(s, x, ω)|2 + ε

)−1
×
(
∇xS

∗
0(s, x, ω) · ∇xR0(s, x, ω) + (

iω

c0(x)
)2S∗0(s, x, ω)R0(s, x, ω)

)
, (3.9)

where ε denotes a stabilization parameter to avoid divisions by zero, here applied to
the Green’s functions. Forward and backward propagated wavefields are respectively
defined as

S0(s, x, ω) = (iω)3G0(s, x, ω)Ω(ω), (3.10)

R0(s, x, ω) =

∫
dr DrzG

∗
0(r, x, ω)dobs(s, r, ω), (3.11)

where Drz denotes the partial vertical derivative at receiver point, here applied to the
Green’s function. The final formula only contains wave-equation-based operators. It
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is similar to the one provided by Qin et al. (2015). They only differ around the source
position and in the way to handle early arrivals (see Appendix 3.7 for more details).
Duprat and Baina (2016) propose to consider the formula in the time domain as a pow-
erful preconditioner to accelerate least-squares migration. We implement it here in the
frequency domain as a simple approach to handle the deconvolution part.

The main differences between migration and inversion are as followed: (1) instead
of an imaging condition based on crosscorrelation, the deconvolution imaging condition
is applied to balance the amplitudes (equation 3.9). It implies the implementation of
an inverted source term Ω−1 in inversion; (2) vertical derivative at receiver positions
must be applied on the Green’s function. It is equivalent to a multiplication by the
cosine of the take-off angle at receiver positions. Such a weight emphasizes the vertical
rays at receiver positions; (3) the combinations of partial derivatives with respect to the
image points, such as gradient and Laplacian, are applied on the Green’s functions at
the numerator. Such derivatives act as if the deconvolution kernel was multiplied by
cos2(θ/2), the squared cosine of the half opening angle at the image points. It reinforces
the contribution of short offsets. We now couple the direct inversion to velocity analysis.

3.3 From MVA to IVA

In the nested optimization, the reflectivity is determined by either ξmig or ξinv for the in-
ner loop. The outer loop for updating the background model is based on the consistency
in the image-domain (Symes, 2008). For the DSO approach, we minimize the residuals
between adjacent traces in CIGs constructed from neighboring shot gathers as

Jmig[c0] =
1

2
||Dsxξmig||2, (3.12)

J α
inv[c0] =

1

2
||cα0Dsxξinv||2, (3.13)

where Dsx denotes the derivative with respect to the horizontal source position. Similar
to the strategy proposed by Chauris and Cocher (2017) in the extended subsurface-offset
domain, an extra term cα0 (x) has been introduced in the inversion case. It allows more
flexibility in the shape of the gradient ∂J αinv

∂c0
: the additional contribution to the gradient

for a non-zero α is localized around the reflectivities and may attenuate the spurious
oscillations. The determination of an optimal power α will be later indicated in a case
study. We use the adjoint-state technique (Plessix, 2006) to efficiently derive the gradient
(see details in Appendix 3.8). It is a general method to compute the gradient of an
objective function that depends on model parameters through a set of state variables –
λ̃s and λ̃r for migration, or λs, λr and λξ for inversion. The adjoint-state variables are the
solutions of an adjoint linear system. They can be introduced as Lagrangian constraints.
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The associated gradients read

∂Jmig
∂c0

(x) = 2c−30 (x)

[∫∫
dsdω (iω)2λ̃∗s(s, x, ω)S̃0(s, x, ω)

+

∫∫
dsdω (iω)2λ̃∗r(s, x, ω)R̃0(s, x, ω)

]
, (3.14)

∂J 0
inv

∂c0
(x) = 2c−30 (x)

[∫∫
dsdω (iω)2λ∗s(s, x, ω)S0(s, x, ω)

+

∫∫
dsdω (iω)2λ∗r(s, x, ω)R0(s, x, ω)

−
∫∫

dsdω (iω)2λξ(x, s)
4S∗0(s, x, ω)R0(s, x, ω)

|S0(s, x, ω)|2 + ε

]
. (3.15)

The parameters λs and λr (λ̃s and λ̃r for migration) are the scattering wavefields trig-
gered by the product of λξ, the adjoint source, and the back or forward propagated
wavefields. Cross-correlations λs ? S0 and λr ? R0 contribute to a tomographic update
because they have a similar kernel as Migration Based Traveltime Tomography (MBTT)
(Chavent et al., 1994) and Reflection Waveform Inversion (RWI) (Xu et al., 2012; Wu
and Alkhalifah, 2015). MVA holds a similar tomographic mode update, although mi-
gration suffers from smile artifacts and spurious oscillations present in the associated
gradient. The third integration term in IVA gradient formula is similar to the deconvo-
lution migration and localized around interfaces. Those components are oscillatory and
can be removed by spatially smoothing the gradient.

The gradient for a non-zero α simply reads

∂J α
inv

∂c0
(x) = c2α0 (x)

[
∂J 0

inv

∂c0
(x) + α

∫
ds

(Dsxξinv)
2

c0(x)

]
. (3.16)

Here, the term
∫

s(Dsxξinv)
2 always holds positive value and is only present around in-

terface positions. In practice, we first compute the gradient with respect to α = 0 and
then add the additional term up to different α values to compare their influences on the
gradient, without additional resolution of the wave-equation.

MVA contains a tomographic mode but its gradient still suffers from two main is-
sues: (1) migration smiles contribute to the gradient. The associated upwards curvatures
lead to over velocity estimations; (2) Spurious oscillations do exist around interfaces
(Fei and Williamson, 2010). A simple smoothing does not remove them (Chauris and
Cocher, 2017). IVA provides the solution for both problems: (1) we replace migration
by inversion that reduces the amplitude of migration smiles; (2) the extra term cα0 gives
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the flexibility to modify the gradient around reflector positions such that we are able
to attenuate the oscillations. From our experience, we do not introduce cα0 in the MVA
case because artifacts associated with migration smiles have a larger impact than spuri-
ous oscillations. In the next section, we compare the results of MVA and IVA through
numerical examples.

3.4 Numerical examples
We investigate three 2D synthetic cases. The first example, a single horizontal reflec-
tor embedded in a homogeneous model, gives insights into (1) how the direct inversion
influences the shape of the gradient compared migration and (2) what value of α is an
optimal choice. The selected α will be used in all subsequent tests. Then, the second
case contains a low-velocity anomaly, in which triplicated events exist in the macro-
model. Common-shot approaches are a priori not suited in that case (Nolan and Symes,
1996; Prucha et al., 1999; Xu et al., 2001; Stolk and Symes, 2004). Finally, the last test
is performed on the Marmousi model containing complex structures, such as disconti-
nuities and rough interfaces. We display only the first gradient for the first example and
perform nonlinear iterations to update the velocity model for the last two. In all cases,
the data are generated with a 4th-order staggered-grid finite-difference scheme including
the Convolution Perfectly Matched Layer (CPML) absorbing boundary (Virieux, 1986;
Levander, 1988; Komatitsch and Martin, 2007).

3.4.1 Homogeneous model
We start with a simple model containing a single horizontal reflector at depth z =
0.6 km embedded in a homogeneous velocity. We trigger 81 shots every 0.04 km from
2.4 to 5.6 km at the surface. The source function is a Ricker wavelet with a maximum
frequency of 10 Hz. Receivers are symmetrically deployed every 0.02 km on both sides
of shots with offsets ranging from -1.6 to 1.6 km.

We first migrate and then invert the data in incorrect constant velocity models. In
an ideal stacked image section, we expect only horizontal reflectivities below (for ve-
locity too high) or above (for velocity too low) the correct depth. The migration case
in reference velocity ce = 2.5 km/s and incorrect velocity c0 = 3.0 km/s exhibits a
flat interface at around z = 0.7 km (Figure 3.2a). The same holds for exact velocity
ce = 3.0 km/s and incorrect velocity c0 = 2.5 km/s except that the interface is located
at around z = 0.5 km (Figure 3.2c). The main visible difference on the stacked section
with the inversion scheme is the deconvolution aspect (Figure 3.2b and 3.2d). More dif-
ferences are visible on CIGs (Figure 3.3). For the macromodel with a too high velocity,
the CIG in the migration case displays events with an upward-curved migration smiles
not related to the incorrect model (Figure 3.3a), whereas inversion largely removes those
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Figure 3.2 – Stacked image sections obtained with migration (a, c) and inversion (b, d)
for a single reflector at 0.6 km in incorrect homogeneous models, respectively. Com-
pared to the exact model, the velocity is 0.5 km/s higher for (a, b) and 0.5 km/s lower
for (c, d), respectively.
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Figure 3.3 – CIGs for position x = 2.4 km associated to images for Figure 3.2.

artifacts in CIGs (Figure 3.3b) with the introduction of additional weights such as the
take-off and the opening angles (equation 3.8). If the macromodel velocity is too low,
the migrated CIG seems to be clean, but the inconsistent energy is partly superimposed
to migration smiles (Figure 3.3c). The inverse formula removes this superimposition
and thus produces cleaner CIGs (Figure 3.3d).

In an ideal tomographic approach, we expect only homogeneous positive (negative)
values for a background velocity higher (lower) than the correct velocity. In practice,
MVA gradients are not homogeneous above the reflector, where large-scale positive and
negative values are visible (Figures 3.4a and 3.4d). We replace the migration by inver-
sion and build the IVA associated gradients with α = 0 (Figures 3.4b and 3.4e). IVA
gradients are much more homogeneous than in the MVA case above the interface. The
reason is that the inverse operator compensates for amplitude decay and illumination.
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Figure 3.4 – Gradients obtained with classical MVA (a, d), IVA with α = 0 (b, e) and α =
1 (c, f) for a single reflector at 0.6 km in incorrect invariant models, respectively. Com-
pared to the exact model, the velocity is 0.5 km/s higher for (a–c) and 0.5 km/s lower
for (d–f), respectively. Blue, white, red colors mean negative, zero, positive values,
respectively.

However, the gradient still has a negative (blue) contribution around the reflector (Fig-
ure 3.4b). The reason is that when the velocity is modified, the reflector depth is also
modified. Chauris and Cocher (2017) propose an optimal α = -3/2 to remove the imprint
of the interface but it was derived for the extended domain formulated with the squared
slowness model. As we deal here with velocity, an equivalent optimal α = 1 is selected
to further attenuate oscillations around the reflector position (Figures 3.4c and 3.4f). By
optimal, we mean a value such that the gradient has a pure tomographic update after
a Gaussian smoothing over half a wavelength of the data (Figure 3.5). The Gaussian
smoothing filter is defined as

gσ(r0) =
1√
πσ2

e−
r20
2σ2 , (3.17)

where r0 is the distance. We choose the smoothing parameter σ = λdata/2, where λdata
is the mean wavelength of the data.

We here conclude that the IVA approach with α = 1 can produce the gradient in a to-
mographic mode after smoothing, at least for simple models with a continuous interface.
The same α value is used for following tests.

3.4.2 Low-velocity anomaly
We now investigate the case of three horizontal reflectors at depth z = 0.6, 0.8 and
1.0 km embedded in a velocity model containing a low-velocity zone of up to -0.9 km/s
and located close to the surface (Figure 3.6a), leading to multipathing in observed data.
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Figure 3.5 – Same as for Figure 3.4, after the Gaussian smoothing over half a wave-
length.

The anomaly zone has the shape of a Gaussian lens of characteristic size r = 0.3 km.
For the subsurface-offset domain, similar examples are discussed in Shen and Symes
(2015); Chauris and Cocher (2017): horizontal contraction does not provide a correct
answer, whereas IVA in the extended domain properly deals with the issue.

In this example, we trigger 61 shots every 0.04 km from 0.6 to 3.0 km at the surface.
Receivers are deployed at fixed positions from 0.0 to 3.6 km every 0.02 km at the surface.
After classical migration in a homogeneous model c0 = 2.5 km/s, the stacked migrated
section displays deflected energy, especially below the anomaly zone (Figure 3.6b). The
associated MVA gradient is expected to display a red (positive) contribution, only at the
central part around the anomaly position. This is not the case in Figure 3.6c: the gradient
is oscillatory, similarly as a migrated section provides. The positive gradient value has
a wider distribution beyond just the center, meanwhile the shallow part of central area
shows a blue (positive) update.

Before coupling the inverse scheme to the non-linear optimization, we first check the
quality of inversion by comparing observed data and computed data. Note that the re-
construction is computed after inversion and modeling in an incorrect model of constant
velocity c0 = 2.5 km/s. The effect of the triplication is visible on the observed common-
shot gather (Figure 3.7a). By correct inverse scheme, we mean that inversion followed
by modeling in the same model for a single shot can reconstruct data, perfectly matching
the observed data. This is here the case (Figure 3.7b and c). Extracted traces for different
offsets show that both the phases and amplitudes are correctly recovered (Figure 3.8).
With the inversion approach, the stacked image section is similar to the one produced by
the migrated case (Figure 3.9a), but the gradient displays a expected red circular zone
around the position of the low velocity anomaliy (Figure 3.9b). This is a satisfactory
first step in model building. After 10 iterations on the background model with a classic
nonlinear conjugate gradient scheme, the inverted background model contains a main
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Figure 3.6 – (a) Exact velocity model, (b) stacked migrated section in c0 = 2.5 km/
s for all shots and (c) associated MVA gradient after a Gaussian smoothing over half
a wavelength. From inside to outside of the Gaussian circle in panel (a), the velocity
ranges from 1.6 to 2.5 km/s. Black stars and dashed line refer to shot position in panel
(a). Red corresponds to positive and blue to negative value in panel (c).
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Figure 3.7 – For a single shot at s = 1.6 km, (a) observed data, (b) computed data after
inversion and modelling in an incorrect model of constant velocity c0 = 2.5 km/s, and
(c) residuals at the same scale. Black arrows indicate the triplicated events.

velocity anomaly (Figure 3.9c). Because the model only contains three reflectors, we do
not have enough reflections to perfectly constrain the shape of the anomaly. Here, the
inverted circle has a narrower width than the true one. Nevertheless, it is overall local-
ized around the correct position. The inverted anomaly of the lens is not as low as the
exact one -0.7 versus -0.9 km/s). It is known that tomography retrieves more easily the
shape of the anomaly than the value of the velocity in the case of low velocity anomaly
as rays tend to avoid the zone. The stacked image section in the final model displays
rather horizontal shapes (Figure 3.9d). The consistency is largely improved after updat-
ing the background model as indicated by the CIGs (see arrows in Figure 3.10). Events
with steep dips, present in the CIGs for the true model, are due to to the triplications
(see ellipses in Figure 3.10a) as discussed now.

To better understand the impact of multipathing, we consider a less complicated
case by reducing the velocity anomaly inside the Gaussian lens (Figure 3.11a). The
shot gather (Figure 3.11b) and the stacked image section in the incorrect initial model
(Figure 3.12a) show much weaker multipathing effects than in the previous case. The
first gradient (3.12b) is still provides a correct direction. Similar to the previous test, the
value of the lens anomaly in the final updated model (Figure 3.12c), is not as low as for
the exact anomaly (-0.5 versus -0.6 km/s), even the inverted anomaly is approximately
located at the correct position. Compared to the severe triplicated case, the stacked
inverted image (Figure 3.12d) is cleaner below the anomaly zone, meaning the effect
of the triplication here is not that significant. The main difference between the CIGs
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Figure 3.8 – Traces extracted from Figure 3.7, for surface-offset (a) -0.5, (b) 0, and
(c) +0.5 km. The solid red line refers to the observed data and the dashed blue line
to the data after inversion and modelling in an incorrect model of constant velocity
c0 = 2.5 km/s.

associated to the two low-anomaly tests, is the amplitude of the artifacts due to the
triplications (see the eclipses on Figure 3.10 and 3.13), consistent with Xu et al. (2001).
This is confirmed by shooting rays in the different models (Figures 3.14). The correct
macromodel contains clear triplicated wavefields (Figures 3.14a), whereas it is not the
case for the macromodel obtained with IVA (Figures 3.14b). Inversion followed by
modeling in the correct background model for a single shot cannot represent the data,
especially for the triplicated events (Figures 3.15 and 3.16), where inversion breaks
down.

Many studies have reported that common-shot methods suffer from triplicated wave-
fields (Nolan and Symes, 1996; Prucha et al., 1999; Xu et al., 2001; Stolk and Symes,
2004). This remains true for inversion approach (Figure 3.10), but the coupling between
inverse and velocity analysis is robust. Note that the updated velocity anomaly, derived
by the outer loop optimization, is not as low as the one in the exact model. Although we
were not capable of deriving the exact value of low-anomaly velocity, the results here
indicate that common-shot IVA can effectively find the position of low-anomaly zone
and leads to a correct velocity update direction. We conclude here that direct inversion
breaks down due to the impact of triplications but the common-shot IVA approach stills
provides seismic plausible results.
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Figure 3.9 – (a) Stacked inversion section in c0 = 2.5 km/s for all shots, (b) first gradient
after a Gaussian smoothing over half a wavelength, (c) final inverted model after 10 non-
linear iterations, and (d) stacked inversion section in the final model. Red corresponds
to positive and blue to negative value in panel (c). From inside to outside of the inverted
circle in panel (c), the velocity ranges from 1.86 to 2.54 km/s. Panel (c) and Figure 3.6a
are displayed with the same color scale.
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Figure 3.10 – CIGs associated to (a) the true Gaussian lens model, (b) the initial homo-
geneous model and (c) the updated model for position x, ranging from 0.9 to 2.7 km,
every 0.3 km. Dashed black ellipses indicate the energy related to the triplication effect.
Black arrows mark the same event corresponding to different macro models.
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Figure 3.11 – (a) Exact velocity model and (b) observed data for a single shot at s =
1.6 km. From inside to outside of the Gaussian circle in panel (a), the velocity ranges
from 1.9 to 2.5 km/s. Black stars and dashed line refer to shot position in panel (a).
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Figure 3.12 – Same as for Figure 3.9, but for the case displayed in Figure 3.11. From
inside to outside of the inverted circle in panel (c), the velocity ranges from 2.05 to
2.53 km/s.
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Figure 3.13 – Same as for Figure 3.10, but for the case displayed in Figure 3.11.
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Figure 3.14 – Rays and wavefronts calculated from a source at sx = 1.6 km. (a–d)
correspond to Figures 3.6a, 3.9c, 3.11a and 3.12c, respectively. Black arrows mark the
triplications. The macromodels obtained with IVA contain no triplications (b,d). All
images are displayed with the same scale.

Figure 3.15 – Same as for Figure 3.7, but the computed data is obtained in the correct
background model.
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Figure 3.16 – Same as for Figure 3.7, but the traces are extracted from Figure 3.15.
Black arrows mark the major differences between exact and reconstructed data.

3.4.3 Marmousi model

We apply the common-shot IVA scheme on the central part of the Marmousi model
(Versteeg, 1994). For the background model, we apply a Gaussian smoothing, with a
characteristic length of 60 m, to the original model. Shots are located at depth z =
0.04 km. We use the same acquisition geometry (split spread) as for the single interface
case, except with a larger maximum shot-receiver offset of 3.0 km for the Marmousi
model. Before the iterative optimization, we check the first gradient of data-domain IVA.
The initial incorrect velocity models are a homogeneous model at 1.5 km/s (velocity
too low) and a constant gradient model (velocity too high) starting from 2.0 km/s at
the surface and 4.5 km/s at 2.0 km depth. The gradients are oscillating (Figures 3.17a
and 3.17b). After the Gaussian smoothing over half a wavelength, inversion results
(Figures 3.17g and 3.17h) only exhibit positive (negative) values for too high (too low)
velocity model, indicating that the long wavelengths of the gradient are meaningful even
for such model that consists of many discontinuous interfaces.

We start the nested IVA optimization from a homogeneous initial model at 1.5 km/s.
Optimization is carried out with a hybrid conjugate gradient algorithm (Touati-Ahmed
and Storey, 1990). As a preconditioner, the gradient is multiplied by the squared depth
value z2. 100 iterations are performed (Figure 3.18) to retrieve more details even if most
of the structure is constructed after 25 iterations (not shown here). The value charac-
terizing the Gaussian smoothing on the gradient, is reduced by half every 10 iterations
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Figure 3.17 – Gradients obtained with classical MVA (a, b, e and f) and with IVA for
α = 1 (c, d, g and h) for the Marmousi model. The initial background velocity is a
constant gradient model (from shallow to deep part: 2.0-5.0 km/s) with velocity higher
than the true velocity (a, c, e and g). The initial background velocity is a 1.5 km/s
homogeneous model for (b, d, f and h). Images on the right are obtained from images
on the left after a Gaussian smoothing over half a wavelength distance.
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Figure 3.18 – Convergence curve for the IVA optimization performed on the Marmousi
model. The vertical axis is in logarithmic scale. Blue line represents the misfit value
of objective function in the iteratively updated model and red dashed line represents the
cost value for the exact velocity model.

and eventually we do not smooth the gradient at all after 50 iterations, explaining why
we can have small oscillations in the misfit curve (e.g. for the 51st iteration). The ob-
jective function value goes slightly beyond the value associated to the correct velocity,
meaning that the objective function is not minimum for the true velocity model. This
effects may result from kinematic ambiguity in the images (Nolan and Symes, 1996;
Prucha et al., 1999; Stolk and Symes, 2004): in the presence of multipathing, the CIGs
are not perfectly consistent even for a correct velocity model. Residual artifacts can
also be responsible for that effect, as observed in Hou and Symes (2015). We compare
the true background model to the final updated model after 100 iterations containing of
the sum of the macromodel c0 and the model perturbation δc (Figure 3.19a and 3.19b).
The macro structure of the Marmousi model is well reconstructed, especially in the well
illuminated regions (Figures 3.19d and 3.19e).

To evaluate the reliability, we compute the reflectivity models according to equa-
tion 3.9 in these different macro-models (Figure 3.20). The final retrieved background
model significantly improves the quality of the stacked image (Figure 3.20c), approxi-
mating the result obtained for the true model (Figure 3.20a). Careful examination on the
vertical profiles indicates that the result of IVA is reasonable: the phases and amplitudes
of reflectors are similar for the images obtained in the final and in the true background
velocity models, especially in the central areas (Figure 3.21). The profiles close to edges
show small distortions since the model is incompletely illuminated for these parts. CIGs
are extracted from the image volume to evaluate the quality of the final result, produc-
ing coherent CIGs and demonstrating the similar performance as the true model (Fig-
ure 3.22). Note that a mask is applied in the first 0.2 km to prevent from updating the
shallow part. The limit of the mask (dashed line) is illustrated on Figure 3.22.
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Figure 3.19 – True Marmousi macromodel (a) and total updated model (c0 + δc) after
100 IVA iterations (b). White stars and dashed line indicate the shot position extension.
(c–f) are vertical velocity profiles at positions 2.6, 3.6, 4.6 and 5.6 km, respectively.
Solid blue, dashed-dot red and solid red lines correspond to true, initial and updated
macromodels, respectively.
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Figure 3.20 – Stacked inverted images associated to (a) true, (b) initial and (c) updated
(Figure 3.19) macromodels, respectively.
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Figure 3.21 – Profiles of stacked inverted images associated with true, initial and updated
(Figure 3.19) macromodels. From left to right, columns are related to positions 3.0, 4.0,
5.0 and 6.0 km, respectively. Blue lines refer to image profiles for true model. The red
lines represent profiles for initial model in the top rows and for updated model in the
bottom rows.
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Figure 3.22 – CIGs associated to (a) the true Marmousi model, (b) the initial homoge-
neous model and (c) the updated (Figure 3.19) macromodel for position x, ranging from
2.5 to 6.5 km, every 0.5 km. We apply a taper on the image above the depth indicated
by dashed black line, to exclude the associated contribution to the objective function.
Black ellipse marks a local coherent event for image position (x, z) = (4.5, 1.0) km.
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Similar to Figure 3.7, we are able to produce modeled data that perfectly match the
observed data, through the inversion followed by the Born modeling in an incorrect ho-
mogeneous background model (Figure 3.23). After a successful IVA optimization, the
events in CIGs are flattened such that the images can be stacked to build a unique re-
flectivity model (i.e. the stacked image section) with the improved signal-to-noise ratio.
Since the born modeling is a linear system, we expect such stacked image section can
produce the reconstructed data that fully match the observation in terms of amplitudes
and phases, resembling the performance of the prestack inverted images (Figure 3.23d).
However, the amplitudes of the data modeled from the stacked image are not completely
recovered, whereas the phase information is accurately preserved (Figure 3.24). The
reason is that the inverted reflectivity models corresponding to different shot positions
are not exactly the same even in the correct background model, in particular regarding
their lateral extensions. In this example, we divide the stacked image by the number
of shots (81) as a rough normalization, but the proper factor must be determined by the
number of shots that effectively illuminate the image position. Due to the complex-
ity of geological structure, an image position cannot be fully illuminated by all shots.
For example, the image position (x, z) = (4.5, 1.0) km is only illuminated by half of
the shots in the true background model case (see the ellipse in Figure 3.22), such that
the normalization factor is supposed to be around 40 instead of 81. Consequently, the
amplitude of reconstructed data, particularly corresponding to the discussed event (see
the arrow in Figure 3.24e), is roughly half of the observed data. The amplitudes of
modeled data is always lower than the observed data (Figure 3.24a), not only for the
incorrect background model (Figure 3.24c and 3.24f), but also for the true background
model (Figure 3.24b and 3.24e) and the final updated model (Figure 3.24d and 3.24g).
A subsequent FWI can thus refine the dynamic information.

Finally, the model from Figure 3.19b is used as the initial model for FWI to fur-
ther improve the dynamic details. FWI suffers from cycle skipping effects, unless
low-frequency data are recorded or the initial model is close enough to the correct one
(Virieux and Operto, 2009). In this test, shots are located every 0.08 km ranging from
1 to 6.2 km, and receivers everywhere at the surface (z = 0.04 km). Frequencies be-
low 2 Hz are not present in the observed data. Consequently, the accuracy of the initial
model is the essential element to avoid cycle skipping effects. The structure of Mar-
mousi model is well reconstructed after 70 iterations (Figure 3.25). Even the quality of
the ill-illuminated edges are improved. We hardly observe cycle skipping effects in the
area of which IVA supplies a reasonable macro model. Note that we compare the FWI
results with the true complete model c rather than background model c0 in this case.

We conclude from these different numerical tests that the inversion formulas devel-
oped for the 2D acoustic constant density case (equation 3.9) is indeed inverse instead of
adjoint: the data modeled from inverted images nicely fit the observed data, even in an
incorrect velocity model. More interestingly, inversion highly attenuates the migration
smiles visible in CIGs. The coupling between inversion and velocity analysis produces a



3.4. Numerical examples 105

Receiver (km)
2 4 6

T
im

e
 (

s
)

0

1

2

3

Position (km)
2 4 6

D
e
p
th

 (
k
m

)

0

1

2

3

Receiver (km)
2 4 6

T
im

e
 (

s
)

0

1

2

3

Time (s)
0 1 2 3

A
m

p
lit

u
d
e

-2

0

2

d
obs

d
0

a)

d)

b)

c)

Figure 3.23 – Single-shot inversion test in the Marmousi model: (a) observed data, (b)
inverted image, (c) reconstructed data and (d) single trace data comparison for trace
at x = 5 km indicated by the black dashed line, respectively. The blue and red lines
correspond to the observed and reconstructed data, respectively.
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Figure 3.24 – Shot gathers of (a) observed data and (b–d) modeled data for the shot
at 4.6 km. Modeled data are computed for (b) true, (c) the initial and (d) the updated
background models, with the associated stacked inverted images after summation over
all shots. Curves in (e–g) represent the comparison between observed and modeled data
for a trace at 4.6 km. The blue curves correspond to the observed data and the red dashed
curves to the modeled data. The black arrow in panel (e) marks the event corresponding
to the one in the ellipse in Figure 3.22.
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Figure 3.25 – True Marmousi full model (a) and updated model (b) after 70 FWI itera-
tions starting from the final IVA result (Figure 3.19b). (c–f) are vertical velocity profiles
at positions 2.6, 3.6, 4.6 and 5.6 km, respectively. Solid blue and dashed-dot red lines
represent true and updated models, respectively.
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gradient that does not suffer from the imprints of reflectivity. We propose to incorporate
cα0 , with α = 1, in the definition of the DSO objective function for outer optimization
to evaluate the quality of the consistency in CIGs. Afterwards, the imprint artifacts are
reduced in the gradient smoothed over a characteristic length proportional to the half
wavelength of the data. We discuss the impact of multipathing in the next section. IVA
is capable of dealing with complex structure, at least for the Marmousi model.

3.5 Discussions
We derived the inversion formula by assuming that the main contribution in equa-
tion 3.19 is provided by terms around the diagonal x = x0. Thus, a linearized ver-
sion (equation 3.20) can be obtained by the Taylor expansion. The final formula 3.9 is
slightly different from the one provided by Qin et al. (2015) (equation 3.28). The differ-
ence only concerns the energy at source locations. We apply vertical receiver derivative
on the Green function, whereas Duprat and Baina (2016) accomplish that by applying
an modified boundary condition. Note that the integration over receivers is only per-
formed along the horizontal component of the receiver position and not the vertical one,
preventing from integrating by part. Rocha et al. (2016) propose to compensate for illu-
mination by introducing the energy norm imaging condition. The energy norm weight
is the Laplacian filter. We give a justification for the introduction of this weight that is
explicitly defined in the numerator of our inversion formula. The weight is a high-pass
filter, attenuating the most dipping events in CIGs, especially vertical events associ-
ated to low wavenumbers. Alkhalifah (2014) uses a modified low-pass filter to provide
only long wavelength update for RWI. Nevertheless, such weight only removes kine-
matic artifacts but does not recover correct amplitudes. We have additionally introduced
wavefield deconvolution to preserve amplitude information.

In the case of the low-velocity anomaly tests, the Gaussian lens anomaly model leads
to clear triplicated wavefields for which the conventional common-shot scheme breaks
down, whereas our method is robust. The multipathing effect mainly leads to imaging
artifacts corresponding to the reflector location ambiguity: a single event recorded in
the observation at one surface receiver can be attributed to reflectors reflectors at two
or more image points (Stolk and Symes, 2004). The imaging ambiguity contributes to
non-flat events in CIGs, thus altering conventional velocity analysis (Nolan and Symes,
1996). This is still the case for the asymptotic inversion formula. However, numeri-
cal tests (the second synthetic example) show that IVA is relatively robust for different
reasons. The non-triplicated events contribute more to the velocity update more than
those artifacts do, and CIGs for the final inverted macromodel does not contain very
strong artifacts. Even if the derivation of the inverse formula assumes the absence of
multipathing, the coupling with velocity analysis is relatively robust as for the extended
subsurface-offset approaches (Stolk et al., 2009; ten Kroode, 2012; Hou and Symes,
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2015).
For the nested optimization system, we solve the inner loop by the direct inversion,

and the outer loop by the nonlinear iterative scheme. Beyond the scope of this article,
there is another strategy: instead of direct inversion, one can retrieve the inverted image
by iteratively minimizing the inner loop (equation 3.2). Such an approach is computa-
tional expensive since it generally requires several iterations to converge (Cocher et al.,
2017a). However, the scheme can incorporate multiples if they are modeled by the
forward engine, whereas the asymptotic inversion is limited to primary reflection only.
The direct inversion could be used as a preconditioner for the iterative scheme (Lam-
baré et al., 1992; Qin et al., 2015; Hou and Symes, 2016b). Considering the limited
acquisition, iterative migration has advantages over direct inversion that assumes an in-
finite acquisition and a complete illumination of the subsurface. To fully solve the outer
loop, it is essential to estimate the Hessian associated to the objective function (equa-
tion 3.13). For industry-scale problems, iterative schemes for inverting the Hessian are
always prohibitively expensive though. In the context of horizontal contraction, Shen
and Symes (2015) propose an economical estimation of the sum of the Hessian matrix.
More studies are needed to derive an equivalent for common-shot IVA approach.

We now discuss the computational cost and the memory requirement by comparing
classic FWI (Lailly et al., 1983; Tarantola, 1984a), subsurface-offset IVA proposed by
Chauris and Cocher (2017) and common-shot IVA detailed here. For all methods, the
main computational step consists of evaluating the objective function and of calculat-
ing its gradient with respect to the velocity model. In practice, the former is included
in the derivation of the latter, as the modeled data or inverted images are also required
for computing the macromodel gradient. We thus analyze only the procedure of macro-
model gradient computation. We evaluate the computational cost as a function of qmod
and qcross. For a given source term, qmod and qcross indicate the computational costs
required to solve the wave equation once and to crosscorrelate two wavefields once, re-
spectively. qmod is proportional to the number of grid points nt, nz and nx. Compared
to qmod, qcross is negligible in 2D, but its cost can significantly increase in 3D.

First, FWI needs to solve the forward and backward propagation problems and then
crosscorrelate the two wavefields to derive the gradient, such that only two wavefields
are required. The first column in Table 3.3 gives a summary of required memory
and CPU cost for FWI. Second, subsurface IVA requires computing four vectors of
wavefields: the forward and backward propagated wavefields and the associate two
adjoint state variables. Besides, the method also needs storing all the inverted im-
ages, which depend on the subsurface-offset, to compute the contribution of a single
source to the macromodel gradient. This scheme needs the computation of wavefields
already calculated in the direct inversion (see details in Cocher et al., 2017b), because
it is necessary to integrate over all shots for deriving the inverted image correspond-
ing to a given subsurface-offset value h. Thus, the wavefields are 4D arrays depended
on (nt, nz, nx, ns), too large to be stored in the memory: they need to be recomputed
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Table 3.3 – Comparison of different approaches in terms of memory and computational
requirements for calculating the gradient of the associated objective function. (nz, nx)
denote the size of the 2D model and nt the sample size of the time for the data. nh is
the number of the subsurface-offset sampling and ns the number of the shot. For a given
source term, qmod and qcross are the costs required to solve the wave equation once and
to crosscorrelate two wavefields once, respectively.

FWI IVA (subsurface-offset) IVA (common-shot)
Memory 2(nz, nx, nt)-vectors 4(nz, nx, nt)-vectors, 4(nz, nx, nt)-vectors,

(nz, nx, nh)-vector (nz, nx, 3)-vector
CPU 2nsqmod+ 6nsqmod+ 4nsqmod+
cost nsqcross (nh + 2)nsqcross 5nsqcross

twice for each shot during the gradient derivation. Briefly, the subsurface-offset IVA
requires 2nsqmod calculating wavefields for the direct inversion, 2nsqmod for the recom-
puted wavefields and 2nsqmod for the adjoint state variables. In terms of crosscorrelation,
nhnsqcross is required for inverting the images and 2nsqcross for deriving the gradient (see
the inversion and gradient formulations in Chauris and Cocher, 2017). The second col-
umn in Table 3.3 provides a summary for subsurface-offset IVA. Finally, common-shot
IVA also requires four wavefields similar to subsurface-offset IVA. However, we need
only three images (ξ(x, s− δs), ξ(x, δs) and ξ(x, s+ 1)), for which the memory require-
ment is less than in the subsurface-offset case, to compute λξ (equation 3.34) for a given
source s and the associated contribution to gradient. In terms of CPU cost, common-
shot IVA avoids the recomputation of wavefields in subsurface-offset, as a result of the
more natural shot-by-shot implementation. Consequently, 2nsqmod modeling are saved.
For crosscorrelation, 3nsqcross is required for inverting the images (equation 3.9) and
2nsqcross for deriving the gradient (equation 3.15). nh is much larger than 3 such that
(nh + 2)nsqcross is greater than 5nsqcross. However, the numerical requirements for
storing images and for crosscorrelating wavefields are negligible in the 2D case. Con-
sequently, common-shot and subsurface-offset IVA approaches in practice have similar
memory requirements in 2D. The third column in Table 3.3 shows a summary of re-
quired memory and CPU cost for common-shot IVA.

If we consider a 3D implementation, subsurface-offset IVA will become prohibitively
expensive due to the significantly increased memory requirements (from (nz, nx, nh) to
(nz, ny, nx, nhx , nhz)), whereas the common-shot IVA requires less (from (nz, nx, 3) to
(nz, ny, nx, 5)). Additionally, the cost of crosscorrelation is no more negligible for the
subsurface-offset case, as two extra dimensions are introduced such that nhnsqcross be-
comes nhxnhznsxnszqcross. The common-shot IVA requires less computational cost and
memory than in the subsurface-offset case: it may be extended to 3D.
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3.6 Conclusions
We have proposed to couple direct inversion to common-shot image-domain velocity
analysis. The asymptotic inverse operator automatically compensates for uneven illu-
mination and removes migration smiles. As a result, the IVA gradient has a smoother
behavior and suffers less from oscillations around interface positions than in the MVA
case. To get rid of the imprint for reflectivity in the macromodel update, we have multi-
plied the inverted reflectivity by the velocity at a specific power, determined in a two di-
mension case study, before evaluating the objective function. Compared to conventional
common-shot methods, triplicated waves still alter the images, but the coupling with
velocity analysis is robust. The non-linear optimization, performed on the Marmousi
model, proves its capability to deal with complex media. By starting from the final IVA
results as the initial model, the subsequent FWI successfully derives a non-cycle skipped
high resolution model, at least for the area of which IVA supplies a correct background
velocity update. Three aspects are essential for a successful IVA: inverse instead of
adjoint, reflectivity multiplied by the velocity at a specific power in the evaluation of
the coherency, and Gaussian smoothing over half a wavelength distance. The future
work consists of comparing IVA approaches in the surface-offset and subsurface-offset
domains.
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3.7 Appendix I: Common-shot inversion scheme

The objectives of this appendix are the following: (1) demonstrate thatB†0 is an inverse of
B0 in the asymptotic sense; (2) provide the detailed derivation from ray-based inversion
formula to an expression containing only wave-equation-based operators.

We first introduce Hξ as the integrand of the product of the two operators, reading

(B†0 ◦ B0)ξ(x, s) =

∫
dx0 H(x, x0, s)ξ(x0, s). (3.18)

Such expression indicates that B†0 is indeed the inverse of B0 if H is a spatial Dirac
distribution δ(x − x0) (Lambaré et al., 1992; Lameloise et al., 2015; Hou and Symes,
2015; Chauris and Cocher, 2017). Substituting equations 3.7 and 3.8 into equation 3.18,
the operator H reads:

H(s, x, x0) =

∫∫
dωdr

4ω

c20(x)

cos βr
cr

cos2(
θ

2
)
Ar
As
As0Ar0e

−iω4τ , (3.19)

where we simplify amplitude and traveltime terms: As = A(s, x), As0 = A(s, x0),
Ar = A(r, x), Ar0 = A(s, x0) and4τ = τ(s, x) + τ(r, x)− τ(s, x0)− τ(s, x0). The half
integration is denoted by K(ω) = 1/

√
iω in the 2D case. We are interested in the terms

around the diagonal of operator H . Using the Taylor expansion, H becomes:

H(s, x, x0) ≈
∫∫

dωdr
4ω

c20(x)

cos βr
cr

cos2(
θ

2
)A2

r0
e−i(k·(x−x0)), (3.20)

where k · (x − x0) = ω4τ . Wavenumber k is a 2D vector, whose components are kx
and kz. The traveltime terms τ are linked to wavenumber terms k through slowness
terms. The slowness vector is the spatial derivative of the traveltime. The cosine and
sine functions of the oriented angle terms θs and θr can also be transferred to partial
derivatives of traveltimes τs and τr, and the link is given in Hou and Symes (2015).
Changing variables from (r, ω) to (kx, kz), equation 3.20 reads:

H(s, x, x0) ≈
∫

dk
4ω

c20(x)

cos βr
cr

cos2(
θ

2
)A2

r0

∣∣∣∣∂(r, ω)

∂k

∣∣∣∣ e−i(k·(x−x0)). (3.21)

Here, the 2x2 Jacobian determinant in 2D can easily be obtained since all wavenumber
terms have explicit expressions, yielding∣∣∣∣ ∂k

∂(r, ω)

∣∣∣∣ =

∣∣∣∣∂kx∂r
∂kx
∂ω

∂kz
∂r

∂kz
∂ω

∣∣∣∣ =

∣∣∣∣∣ ω 1
c0(x)

cos θr
∂θr
∂r

1
c0(x)

(sin θs + sin θr)

−ω 1
c0(x)

sin θr
∂θr
∂r

1
c0(x)

(cos θs + cos θr)

∣∣∣∣∣
=ω

2

c20(x)

∣∣∣∣∂θr∂r

∣∣∣∣ cos2
θ

2
. (3.22)
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The expression for the amplitude term are given in Zhang et al. (2005); ten Kroode
(2012); Hou and Symes (2015):

A2
r =

1

8π2

cr
cos βr

∣∣∣∣∂θr∂r

∣∣∣∣ . (3.23)

We substitute equations 3.22 and 3.23 into equation 3.21 such that most of ray terms are
canceled out, yielding

H(s, x, x0) =

∫
dk

1

4π2
e−i(k·(x−x0))

=δ(x− x0). (3.24)

To obtain equation 3.9 from equation 3.8, we introduce the following approximations

∇xG0(s, x, ω) ' iω

c0(x)

(
sin θs, cos θs

)
G0(s, x, ω), (3.25)

∇xG0(r, x, ω) ' iω

c0(x)

(
sin θr, cos θr

)
G0(r, x, ω), (3.26)

DrzG0(r, x, ω) ' iω
cos βr
cr

G0(r, x, ω), (3.27)

where cr is the velocity at the receiver position. θs and θr are the angles at the image
points x associated with the source and receiver positions, respectively. We replace high-
frequency terms in equation 3.8 with Green’s function and then substitute the cosine
and sine functions with equations 3.25–3.27. Given the fact that θ = θs + θr, ray-based
inversion formula is finally rearranged to equation 3.9, a formula containing only wave-
equation-based operators.

For the purpose of accelerating the convergence of FWI, Qin et al. (2015); Qin and
Lambaré (2016) have developed an equivalent inversion formula, reading

Bqininv[dobs](x, s) = 4

∫
dω
(
|S0(s, x, ω)|2 + ε

)−1
×
(
∇xS

∗
0(s, x, ω) · ∇xR0(s, x, ω) +R0(s, x, ω)∆xS

∗
0(s, x, ω)

)
. (3.28)

The difference is only the second term in the numerator, that is, ∆xS
∗
0(s, x, ω) versus

iω
c0
S∗0(s, x, ω). These two terms are the same, except at the source position. Conse-

quently, we expect better preservation of early arrivals for our approach.
To validate the reliability of our method, we apply our approach to the constant

density isotropic acoustic Marmousi model. The data are generated by finite difference
Born modeling in the correct background velocity and reflectivity models (Figure 3.26a).
We use a single shot located at 4.6 km at the surface. Receivers are symmetrically
deployed on both sides of shot with offsets ranging from -4 to 4 km (Figure 3.26b).
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We then migrate observed data in the correct background velocity using methods of
Qin et al. (2015) and ours (Figures 3.26c and 3.26e), respectively. We use migrated
images as reflectivity models to generate reconstructed data (Figures 3.26d and 3.26f).
Both methods provide the same result, except around the first arrivals, due to non-zero
energy at the source position in the inverted images. Our method is closer to the exact
data than Qin et al. (2015) for the early arrivals. Qin et al. (2015)’s approach adds an
artificial value in the inverted image at the source position such that the direct arrival in
reconstructed data is less accurate than ours.

The exact and reconstructed data should perfectly match if an inverse of the Born
modeling is used to retrieve the reflectivity image. We select 4 traces at positions 2, 3, 5
and 6 km (Figure 3.27), to compare the quality of reconstructions in details for both ap-
proaches. Our method preserves amplitudes better than Qin et al. (2015). The observed
and modeled data are consistent even at large shot-receiver offset (Figures 3.27e and
3.27h). We also compute the root-mean-square error between exact and reconstructed
data trace by trace (Figure 3.28). Our method presents an overall lower RMS error,
which means our reconstruction is closer to exact data. This is due to missing energy
around the first arrivals.
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Figure 3.26 – Single-shot test in the Marmousi model for a shot located at 4.6 km at
the surface. (a) True reflectivity model; (b) Data modeled from (a); (c) Migrated image
using the method of Qin et al. (2015); (d) Data modeled from (c); (e) Migrated image
using our method; (f) Data modeled from (e). (a), (c) and (e) are plotted with the same
scale. (b), (d) and (f) are all modeled in a correct smooth background model and plotted
at the same scale.
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Figure 3.27 – Comparison between exact and reconstructed single trace data. (a–d) are
examples using the method of Qin et al. (2015). (e–h) are examples using our method.
From left to right, the column refers to the single trace data located at receiver positions
2, 3, 5 or 6 km, respectively. Blue curve represents exact data. Red curve represents
reconstructed data.

Figure 3.28 – RMS misfit between observed and reconstructed data for each receiver
position. Blue curve represents Qin et al. (2015)’s method. Red curve represents the
approach developed here.
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3.8 Appendix II: Gradient derivation for IVA

We explain here how to compute the gradient of the IVA objective function (equa-
tion 3.13) using the adjoint-state technique (Plessix, 2006). We consider the source
and receiver wavefields defined in equations 3.10 and 3.11. In the following, we note
the 2D acoustic Helmholtz operator:

L0 = − ω2

c20(x)
−4. (3.29)

We extend equation 3.13 with Lagrangian formulation for α = 0, denoted by J 0
ext,

depending on (c0, ξinv, S0, , R0, λξ, λs, λr) and reading

J 0
ext =

1

2
||Dsxξinv(x, s)||2

−
∫∫

dxds λξ(x, s)
[
ξinv(x, s)− 4

∫
dω
(
|S0(s, x, ω)|2 + ε

)−1
×
(
∇xS

∗
0(s, x, ω) · ∇xR0(s, x, ω) + (

iω

c0(x)
)2S∗0(s, x, ω)R0(s, x, ω)

)]
−
∫∫∫

dxdsdω λ∗s(s, x, ω)
[
L0S0(s, x, ω)− (iω)3Ω(ω)δ(x− s)

]
−
∫∫∫

dxdsdω λ∗r(s, x, ω)
[
L∗0R0(s, x, ω)−

∫
dr dobs(s, r, ω)

∂δ(x− r)

∂rz

]
,

(3.30)

where λξ, λs and λr are adjoint state variables associated with ξ, S0 andR0, respectively.
The different terms can be interpreted as constraints. The total derivative of Jext with
respect to the velocity is given by

dJext
dc0

=
∂Jext
∂c0

+
∂ξinv
∂c0

∂Jext
∂ξinv

+
∂S0

∂c0

∂Jext
∂S0

+
∂R0

∂c0

∂Jext
∂R0

+
∂λξ
∂c0

∂Jext
∂λξ

+
∂λs
∂c0

∂Jext
∂λs

+
∂λr
∂c0

∂Jext
∂λr

. (3.31)

We develop the IVA gradient by taking (∂Jext
∂ξinv

, ∂Jext
∂S0

, ∂Jext
∂R0

, ∂Jext
∂λξ

, ∂Jext
∂λs

, ∂Jext
∂λr

) = 0.

It avoids the computation of Fréchet derivatives (∂ξinv
∂c0

, ∂S0

∂c0
, ∂R0

∂c0
, ∂λξ
∂c0

, ∂λs
∂c0

and ∂λr
∂c0

). The
partial derivatives ∂Jext

∂λξ
, ∂Jext
∂λs

and ∂Jext
∂λr

equal to zero leads to the definitions of inverted
image, forward wavefield and backward wavefield, respectively. The derivatives of Jext
with respect to ξ, S0 and R0, imposed to 0, give the expressions to calculate the adjoint
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state variables λξ, λs and λr, respectively:

L∗0λs(s, x, ω) = −4
[
∇x ·

(
U(s, x, ω)∇xR0(s, x, ω)

)
− (

iω

c0(x)
)2U(s, x, ω)R0(s, x, ω)

+ 2S0(s, x, ω)U(s, x, ω)<
{
ξ̃inv(s, x, ω)

}]
, (3.32)

L0λr(s, x, ω) = −4
[
∇x ·

(
U(s, x, ω)∇xS0(s, x, ω)

)
− (

iω

c0(x)
)2U(s, x, ω)S0(s, x, ω)

]
, (3.33)

λξ(x, s) = −D2
sxξinv(x, s), (3.34)

whereU = λξ/(|S0|2+ε) for simplification and ξ̃inv(s, x, ω) is the integrand of ξinv(s, x).
Equations 3.32–3.34 are solved in reverse order. Subsequently, the final gradient is
obtained by inserting the values of the forward and backward propagated wavefields,
inverted images, and associated adjoint state variables into equation 3.15.
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Résumé du chapitre 4
Dans ce chapitre, nous comparons trois approches différentes :

• L’analyse de vitesse par inversion dans le domaine image (introduite au Chapitre
3) ;

• Une extension proposée ici, définie dans le domaine des données ;

• L’inversion d’onde différentielle (introduite dans le Chapitre 2), une méthode
définie dans le domaine des données et basée sur les arrivées réfléchies.

L’analyse de vitesse par migration est une technique pour la détermination des grandes
structures de la sub-surface. Elle est définie dans le domaine image et évalue la qualité
du macro-modèle au travers de la cohérence des images migrées. L’analyse de vitesse
par inversion est une alternative : elle remplace la migration, l’adjoint de l’operateur de
Born, par un inverse direct. Ceci conduit à des résultats plus stables. Pour établir le
lien entre les méthodes dans les domaines des données et des images, nous proposons
d’étendre l’analyse de vitesse par inversion au domaine des données, pour une version
d’inversion des formes d’onde linearisée. Pour cela, nous appliquons l’operateur de
modélisation sur les images différentiées. Par images différentiées, nous entendons des
images qui ont être multipliées par l’annihilateur. La qualité du macro-modèle est es-
time par la norme de ces données. Nous discussion le comportement de cette nou-
velle approche au travers d’applications en 2D, d’abord dans un milieu homogène avec
un seul réflecteur, puis sur le modèle Marmousi. Ensuite, nous établissons des liens
quantitatifs entre la RWI, une technique de minimisation des résidus des données, et
la semblance différentielle, basée sur la cohérence des images. Enfin, nous comparons
numériquement les approches dans les domaines des données et des images. Les deux
approches sont robustes et donnent des résultats comparables, au moins dans le cas
de Marmousi. Ainsi, un lien est établi entre les deux approches. Il est cohérent avec
l’analyse théorique. Ces travaux donnent une meilleure compréhension des relations
entre les méthodes définies dans les domaines données et images.
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Abstract
In this Chapter, we compare three different approaches:

• common-shot Inversion Velocity Analysis in the image-domain (introduced in
Chapter 3);

• an extension (proposed here) defined in the data-domain (data-domain Inversion
Velocity Analysis);

• Differential Waveform Inversion (introduced in Chapter 2), a reflection-based ap-
proach defined in the data-domain.

Migration Velocity Analysis is a technique for the determination of the large-scale
structures of subsurface. It is defined in the image-domain and assesses the quality
of the estimated macromodel by measuring the image coherency. Inversion Velocity
Analysis is an alternative: it replaces the migration, adjoint of Born modeling, by the
direct inverse of the modeling operator, leading to more stable results. To investigate
the links between image-domain and data-domain methods, we propose to extend Inver-
sion Velocity Analysis to the data-domain, formulating a linearized waveform inversion
approach. For that, we map the differentiate image back to the data space by sim-
ply applying the modeling operator onto it. By differentiate image, we mean the image
multiplied by the annihilator. We assess the quality of an estimated macromodel by mea-
suring the norm of these residual data. We discuss the behavior of this new approach
through applications to 2D synthetic data sets, first on a homogeneous model with a
single-reflector embedded in, and then on the Marmousi model. Then, we establish the
quantitative links between reflection-based waveform inversion, a technique based on
data fitting principle, and differential semblance optimization, a scheme measuring the
image coherency. Finally, we numerically compare the results of image-domain and
data-domain IVA. The two approaches are robust and provide comparable results, at
least for the Marmousi model. Therefore, a quantitative equivalence between image-
domain and data-domain methods is established. This is consistent with the theoretical
analysis. These investigations provide a better understanding for the relationships be-
tween image-domain and data-domain methods.

4.1 Introduction
An accurate velocity model is an essential requirement for a successful seismic imaging
procedure. Full Waveform Inversion (FWI) seeks a velocity model that can best explain
the complete data sets (Tarantola, 1984a; Pratt et al., 1998). The major problem of FWI
is that the relationship between data and velocity model is highly nonlinear. Therefore,
FWI suffers from a severe cycle-skipping problem, meaning that its objective function
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has many local minima (Gauthier et al., 1986; Bunks et al., 1995). This leads to the
requirements for including low-frequency contents in the data and/or for starting from
an estimated velocity model close enough to the true one (Beydoun and Tarantola, 1988;
Sirgue, 2006; Pratt et al., 2008). However, the required low frequencies, typically below
1 Hz in the exploration context, are very difficult to acquire during controlled-source
experiments (Virieux and Operto, 2009). It is thus needed to obtain a good starting
model with other approaches for subsequent FWI.

Mora (1989) recognized that seismic inverse problem has a migration mode and a
tomographic mode. Assuming a scale separation of the subsurface model (Claerbout,
1985), the migration and tomographic modes correspond to the determination of the
small-scale (i.e. the model perturbation) and of the large-scale (i.e. the background
model or macromodel) parts of the model, respectively. Since the migration mode only
characterizes the local rapid variations of the model, the approaches used to build a
starting model for FWI should behave in a tomographic mode to retrieve the large-scale
structure of the subsurface. In the regions illuminated by transmitted waves, FWI itself
can retrieve the large-scale part of the model (Alkhalifah and Plessix, 2014; Brossier
et al., 2015; Zhou et al., 2015), but the penetration depth of transmitted events is limited
due to the finite range of the acquisition offset in practice (Zhou, 2016). Thus, reflection-
based tomographic approaches are particularly important to provide a starting model for
FWI in the region not reached by transmitted waves. These tomographic approaches
can be formulated either in the image-domain or in the data-domain (Díaz et al., 2014).
Many tomographic approaches do not split the model into the perturbation model and
the macromodel (Van Leeuwen and Mulder, 2010; Liu et al., 2011b; Wu et al., 2014;
Warner and Guasch, 2014; Bharadwaj et al., 2015 among others). However, the follow-
ing section focuses on those techniques relying on the scale separation assumption and
on the Born approximation.

Image-domain methods mainly refer to Migration Velocity Analysis (MVA), a tech-
nique to determine the background model controlling the kinematics of wave propa-
gation. Under the Born approximation, the reflected data linearly depend on the model
perturbation. In an estimated macromodel, the perturbation images are obtained through
migration defined as the crosscorrelation between source and receiver wavefields (Claer-
bout, 1971). Once the data are migrated, one can evaluate the quality of the macro-
model by measuring the coherency of these images. Conventional MVA splits the data
into subsets, such as common-shot (Al-Yahya, 1989; Symes and Carazzone, 1991) or
common-offset (Chauris and Noble, 2001; Mulder and ten Kroode, 2002), and then mi-
grate them separately in the same background model. If all images are consistent, the
current macromodel is considered to be optimal. Moveout residuals in Common-Image
Gathers (CIGs) carry the information about the inaccuracies of the macromodel. Differ-
ential Semblance Optimization (DSO) (Symes and Carazzone, 1991; Symes, 2008) is a
way to evaluate the quality of the model by comparing adjacent images.

Later, other extensions were proposed for MVA. Instead of splitting data into sub-
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sets, the full data set is migrated and then a spatial or temporal shift is introduced in the
imaging condition (Faye and Jeannot, 1986; Sava and Fomel, 2006; Symes, 2008; Sava
and Vasconcelos, 2011). Thus, the estimated model is optimal if the energy in associated
CIGs focuses around the zero spatial or temporal shift. The spatial shift is also called
subsurface-offset. Alternatively, a scattering angle can be considered as the extension
parameter to build the angle-domain CIGs (ADCIGs) (Xu et al., 2001; Sava and Fomel,
2003; Biondi and Symes, 2004). One important issue is that migration is by definition
the adjoint operator of the Born modeling; in practice, artifacts are present in migrated
images. In the extended domain, it was recently proposed to replace migration by an in-
version scheme: first iterative migration (Liu et al., 2014b; Chauris et al., 2015; Cocher
et al., 2015), then direct inversion (ten Kroode, 2012; Hou and Symes, 2015; Lameloise
et al., 2015; Chauris and Cocher, 2017). In that case, the migration artifacts are highly
attenuated, leading to a more robust macromodel estimation approach, namely Inver-
sion Velocity Analysis (IVA). However, the extended subsurface-offset approach is very
demanding in terms of the memory requirement, preventing from 3D extension (Yang
and Sava, 2011; van Leeuwen et al., 2015; Chauris and Cocher, 2017). We proposed to
apply the same strategy to common-shot MVA in Chapter 3 for the feasibility of future
3D extension.

Data-domain methods here mainly refer to the techniques attempting to introduce
the principle of MVA into waveform inversion. One possibility is to introduce the con-
cept of extended modeling proposed by Symes (2008) to formulate a forward modeling
engine: the wave equation is linearized based on an extension of the perturbation model
along the spatial (Almomin and Biondi, 2012; Liu et al., 2014a) or temporal (Biondi
and Almomin, 2012, 2014) shift axis. This extra parameter is same as the one used to
extend the image space in depth-oriented MVA. Based on this extension, they define an
objective function that has an image focusing term in addition to the conventional FWI
data fitting term. The approaches based on spatial or temporal shift are recognized as
Extended Waveform Inversion (EWI) (Liu et al., 2014a; Fu and Symes, 2015; Symes,
2017) and Tomographic Full Waveform Inversion (TFWI) (Almomin and Biondi, 2012;
Biondi and Almomin, 2012, 2014). Alternatively, Chauris et al. (2017) proposed to ob-
tain the reflectivity images with a true-amplitude migration (direct inversion) scheme in
the subsurface-offset domain. After applying an annihilator to inverted images, one can
model the associated data in an estimated macromodel. Then, the optimal macromodel
is determined by minimizing the norm of this new data. Thus, the image focusing crite-
ria is extended to the data-domain. Despite a different objective function, this approach
also introduces the linearized modeling extended by the subsurface-offset parameter.
One can view this family as the extension of depth-oriented IVA to data-domain.

On the other hand, one can directly minimize the misfit between modeled and ob-
served reflected data in the least-squares sense, to formulate Reflection Waveform In-
version (RWI) (Xu et al., 2012; Brossier et al., 2015; Zhou et al., 2015; Wu and Alkhal-
ifah, 2015). It is inspired by migration based traveltime tomography (MBTT) (Chavent



124 Chapter 4. Image-domain versus data-domain

et al., 1994; Plessix et al., 1995). The implementation of Xu et al. (2012) assumes the
model perturbation and macro velocity model are independent parameters. The short-
wavelength and long-wavelength parts of the model are updated by minimizing the same
objective function. One first determines the model perturbation in a given background
velocity model, and then updates the macromodel with only short-offset data (even zero-
offset) (Alkhalifah and Wu, 2016; Zhou, 2016). The modeled data with larger offset
range are predicted from the inverted reflectivities in the estimated macromodel. Then,
the data misfit is used to update the macromodel. However, the model perturbation
depends on the background model, such that the two parameters are supposed to be up-
dated in a nested optimization procedure, as for MVA (Cocher et al., 2017b). One can
alternatively formulate a reflection-based approach defined in the data-domain, called
Differential Waveform Inversion (DWI) (Chauris and Plessix, 2012, 2013). It consists
of two main steps: an image section is retrieved from a given shot gather and used to cal-
culate synthetic data for the next shot; then the macro model is updated by minimizing
the difference between the predicted shot gather and the observed shot gather at the next
shot position. This procedure is inspired by DSO (Symes and Kern, 1994; Chauris and
Plessix, 2012). These approaches are all reflection-based waveform inversion, relying
on the scale separation and on Born approximation. We shall see in this Chapter that
one can consider them as the extension of surface-oriented IVA to the data-domain.

Despite many approaches introducing the concept of MVA to waveform inversion,
the relationship between image-domain and data-domain methods has not been fully
understood. Chauris et al. (2002a) investigated the link between MVA Symes and
Carazzone (1991); Sava and Biondi (2004) and slope tomography (Billette and Lam-
baré, 1998; Lambaré, 2008) in the context of ray-based methods. In this Chapter, we
first extend the common-shot IVA approach from image-domain to data-domain fol-
lowing the same strategy proposed by (Chauris and Cocher, 2017). We construct the
reflectivity images with a direct inverse applied to common-shot gathers. Then, the data
are computed from the differential images, which is derived by comparing images for
neighbouring shots. We define the objective function as a `2-norm of this new data
and explain how to derive the gradient with respect to the background velocity model.
This procedure formulates a nested optimization, where the inner loop is dedicated to
retrieving the reflectivity and the outer loop to updating the macromodel. Numerical
examples in synthetic cases are presented to discuss the advantages and the limitations.
We then investigate the relation between the new approach and reflection-based wave-
form inversion. The purpose is to investigate the explicit link between image-domain
and data-domain for wave-equation-based methods.
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4.2 Common-shot IVA in the data-domain

We consider a velocity model c as the sum of the background model c0 which controls
the kinematics of the wave propagation and the model perturbation δc which triggers
scattered waves. We define the reflectivity as ξ = 2δc3/c0. We update δc and c0 in a
nested optimization procedure for the new approach.

4.2.1 Objective function

We introduce here the new objective function defined in the data-domain. The model
c0 is iteratively determined by minimizing the new objective function in the outer loop
procedure, whereas in an estimated c0 model, an optimal ξ is obtained by solving the
inner loop problem, for which we consider the direct inversion developed in Chapter 3.

In a given macro velocity model c0, we define the Born modeling as a linear re-
lationship between reflectivity ξ and reflected data d for every single shot. Here, the
reflectivity ξ, depending on the spatial coordinates x and on the shot coordinates s, is
obtained with the convolution of two Green’s functions

d(s, r, ω) = (B0ξ)(s, r, ω)

=

∫
dx(iω)2Ω(ω)G0(s, x, ω)ξ(x, s)G0(x, r, ω), (4.1)

where r is the receiver coordinates and Ω the source wavelet, function of the angular
frequency ω. The linear operation between the data d and the model perturbation ξ is
denoted by B0, equation 3.1 in Chapter 3. The migrated section ξmig is obtained by
applying the adjoint BT0 of B0 to the observed data. For common-shot gathers, we came
up with a pseudo-inverse B†0 of the Born modeling operator in Chapter 3, which is an
alternative to the formulations proposed by Qin et al. (2015); Duprat and Baina (2016). It
is a true-amplitude migration scheme in the asymptotic sense (see section 3.7). By true-
amplitude migration, we mean the inverted images can perfectly reproduce the observed
data. Note that the true-amplitude scheme used here is a direct inversion rather than an
iterative migration. By definition, we have

ξmig = BT0 dobs, (4.2)

ξinv = B†0dobs. (4.3)

The adjoint operator BT0 represents the conventional reverse time migration, defined as
the crosscorrelation between source and receiver wavefields (Claerbout, 1971; Baysal
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et al., 1983). Referred to equation 3.9 in Chapter 3, the inverse B†0 is given by

ξinv(x,s) = (B†0dobs)(x, s) = 4

∫
dω
(
|S0(s, x, ω)|2 + ε

)−1
×
(
∇xS

∗
0(s, x, ω) · ∇xR0(s, x, ω) + (

iω

c0(x)
)2S∗0(s, x, ω)R0(s, x, ω)

)
, (4.4)

with modified source and receiver wavefields

S0(s, x, ω) = (iω)3G0(s, x, ω)Ω(ω), (4.5)

R0(s, x, ω) =

∫
dr DrzG

∗
0(r, x, ω)dobs(s, r, ω), (4.6)

where Drz denotes the partial vertical derivative at the receiver position. Although the
derivation relies on ray-based expressions, this common-shot inversion formula contains
only wave-equation-based terms. It is defined such that B0B†0d = d even in an incorrect
background velocity model.

In the 2D case, we develop the objective function of common-shot IVA from the
image-domain to the data-domain

J α
image[c0] =

1

2
||cα0Dsxξinv||2ξ =

1

2
||cα0DsxB

†
0d
obs||2ξ , (4.7)

J β
data[c0] =

1

2
||B0cβ0Dsxξinv||2D =

1

2
||B0cβ0DsxB

†
0d
obs||2D. (4.8)

The subscripts ξ andD indicate that the `2-norms are evaluated in the image-domain and
data-domain, respectively. Dsx is the derivative with respect to the horizontal source po-
sition, same as for the case of DSO (Symes and Kern, 1994). For simplification, we
define dβ = B0cβ0Dsxξinv in the following. The new data dβ is a function of (s, r, ω).
We call it scaling data. These two objective functions both evaluate the consistency of
the reflectivity sections. Equation 4.7 has already been discussed in Chapter 3. Equa-
tion 4.8 corresponds to the new approach defined in the data-domain. In practice, after
the application of derivative Dsx to the inverted reflectivity model ξinv, scaling data are
modeled from the differentiate images under the Born approximation (equation 4.1). It
is expected that the `2-norm of these data is minimal for the correct velocity model.
The inaccuracies of macromodel correspond to the non-horizontal events in CIGs for
image-domain IVA, whereas the non-zero values of scaling data dβ indicate that the
macromodel should be updated for data-domain IVA (Figure 4.1). As already discussed
in Chapter 3, the introduction of cα0 in equation 4.7 allows more flexibility in the shape
of the gradient ∂

∂c0
J α
image: the additional contribution to the gradient for a non-zero α is

localized around the interfaces and may attenuate the spurious oscillations related to in-
terface imprints. For the same purpose, cβ0 is introduced in data-domain IVA. However,
we explain later that β = 0 is sufficient in practice .
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Figure 4.1 – Image-domain and data-domain IVA. Left is observed shot gather. Middle
is the constructed CIG after the application of the inverse operator to the an observed
data. Red, blue and greed dashed lines correspond to the cases of under-estimated, cor-
rect and over-estimated background velocity models, respectively. Right are the data
modeled from the differential images in the given background velocity. Different back-
ground velocity correspond to modeled data of almost the same kinematics and they are
distinguished by their amplitudes.

4.2.2 Gradient of the objective function

We use the adjoint-state technique (Chavent, 1974; Plessix, 2006) to efficiently derive
the gradient (see details in Appendix 4.5). It is a general method to compute the gra-
dient of an objective function with respect to model parameters through a set of state
variables: λ̃s, λ̃r and λ̃ξ for image-domain IVA, or λs, λr, λξ and λd for data-domain
IVA. These adjoint-state variables are the solutions of an adjoint linear system. They can
be introduced as Lagrangian constraints. We first define a wavefield term Sd, reading

Sd(s, x, ω) =

∫
dy (iω)2Ω(ω)G0(s, y, ω)G0(y, x, ω)Dsxξ(y, s). (4.9)

where y is the auxiliary spatial coordinates. Sd is the forward scattering wavefield trig-
gered by Dsxξ in the background velocity c0. The scaling data d0 is the response of Sd
at receiver positions.

The macromodel gradient for image-domain IVA is already introduced in Chapter 3.
For the reader’s convenience, we write here the expressions of associated gradients for
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both image-domain and data-domain IVA

∂J 0
image

∂c0(x)
= 2c−30 (x)

[∫∫
dsdω (iω)2λ̃∗s(s, x, ω)S0(s, x, ω)

+

∫∫
dsdω (iω)2λ̃∗r(s, x, ω)R0(s, x, ω)

−
∫∫

dsdω (iω)2λ̃ξ(x, s)
4S∗0(s, x, ω)R0(s, x, ω)

|S0(s, x, ω)|2 + ε

]
, (4.10)

∂J 0
data

∂c0(x)
= 2c−30 (x)

[∫∫
dsdω (iω)2λ∗d(s, x, ω)Sd(s, x, ω)

+

∫∫
dsdω (iω)2λ∗s(s, x, ω)S0(s, x, ω)

+

∫∫
dsdω (iω)2λ∗r(s, x, ω)R0(s, x, ω)

−
∫∫

dsdω (iω)2λξ(x, s)
4S∗0(s, x, ω)R0(s, x, ω)

|S0(s, x, ω)|2 + ε

]
. (4.11)

Similar to (λ̃s, λ̃r, λ̃r) for image-domain IVA, parameters λs and λr are the scattering
wavefields triggered by the product of λξ, the adjoint source, and the back or forward
propagated wavefields. Crosscorrelations λs?S0 and λr?R0 contribute to a tomographic
update for data-domain IVA same as for image-domain IVA. λd is the receiver wavefield
related to scaling data d0. Crosscorrelation λd ? Sd has a similar behavior as λr ? R0.
The fourth integration term on the right side of equation 4.11 is similar to deconvolution
migration and localized around interfaces. Those components are oscillatory and can be
removed by spatially smoothing the gradient. For the macromodel gradient, the major
differences between image-domain and data-domain IVA are that: (1) λξ is related to the
scaling data d0 for data-domain IVA, whereas λ̃ξ is the partial derivative of equation 4.7
with respect to image ξ; (2) the expressions of macromodel gradient for data-domain
IVA has one more tomographic component (λd ?Sd) than for image-domain IVA. These
additional terms require solving wave equation twice more, leading to a more CPU time-
consuming implementation. The readers are referred to table 4.1 for a comparison of
FWI, image-domain IVA and data-domain IVA in terms of the CPU cost for calculating
the gradient of the objective function. The mathematical definitions of adjoint variables
are given in appendix 4.5.

In the next section, we investigate how IVA is extended from image-domain to data-
domain in practice. Then, we pay attention to the shape of the gradients, especially
around the reflector location, through numerical examples. As the example will show
that β = 0 is sufficient for data-domain IVA, we did not give the generic formulation for
gradient of J β

data with respect to the macromodel.
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Table 4.1 – Comparison between different approaches in terms of computational re-
quirements for calculating the gradient of associated objective functions with respect to
model. ns is the number of shots. For a given source term, qmod is the CPU cost required
to solve the wave equation once. The CPU cost for crosscorrelation is neglected here.

FWI/RTM Image-domain IVA Data-domain IVA
CPU cost 2nsqmod 4nsqmod 6nsqmod

4.2.3 Numerical examples
We investigate two 2D synthetic cases. The first example, a single horizontal reflector
embedded in a homogeneous model, gives insights into (1) what is measured by the new
data-domain objective function and (2) why β = 0 is sufficient for the data-domain IVA.
In this case, we only display the first gradient. Then, the second test is performed on
the Marmousi model containing complex structures, such as discontinuities and rough
interfaces. We perform nonlinear iterations to update the macro velocity model for this
case. In all cases, the data are generated with a 4th-order staggered-grid finite-difference
scheme including the Convolution Perfectly Matched Layer (CPML) absorbing bound-
ary (Virieux, 1986; Levander, 1988; Komatitsch and Martin, 2007).

Homogeneous model

We start with a simple model containing a single horizontal reflector at depth z = 1.0 km
embedded in a homogeneous model, for which the velocity is 2.5 km/s. We trigger 81
shots every 0.04 km from 2.4 to 5.6 km at the surface. The source function is a Ricker
wavelet with a maximum frequency of 10 Hz. Receivers are symmetrically deployed
every 0.02 km on both sides of shots with offsets ranging from -1.6 to 1.6 km.

After the application of direct inverse (equation 4.4), we invert the data in three
constant velocity models, for which the velocities are 2.2, 2.5 and 2.8 km/s, respectively.
In an ideal stacked image section, we expect only horizontal reflectivities below (for
velocity too high), around (for accurate velocity) or above (for velocity too low) the
correct depth.

The three examples exhibit flat interfaces at around z = 0.8 km (Figure 4.2a), at
around z = 0.6 km (Figure 4.2b) and at around z = 1.2 km (Figure 4.2c). More differences
to distinguish three cases are visible on CIGs. For the macromodel of too low velocity,
the CIG displays an upward-curved event related to the incorrect model (Figure 4.3a).
For the correct background velocity, the event is almost horizontal (Figure 4.3b), even
if the edges (related to the spatial positions far away from the shot position) are slightly
upward-curved due to the limited acquisition. If the macromodel velocity is too high,
the corresponding event exhibits an downward curvature (Figure 4.3c). The images are
constructed through the direct inversion. Therefore, the migration artifacts in CIGs are
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Figure 4.2 – Stacked image sections obtained with inversion operator B† for a single
reflector at 0.6 km in different constant velocity models, respectively. Compared to the
exact model, the velocity is 0.3 km/s lower for (a), equivalent for (b) and 0.3 km/s higher
for (c), respectively.

highly attenuated such that we can distinguish the events associated to model inaccu-
racies from migration smiles. For the image-domain IVA, in practice, we compute the
differential images by comparing adjacent traces in CIGs. For the cases of velocity
too low and too high, the moveout residuals result from non-horizontal events in CIGs
(Figure 4.3d and 4.3f). These residuals can be used to update the background velocity
model. However, residuals are also visible in the CIG associated to the correct macro-
model even if they are weaker than the cases of incorrect macromodels (Figure 4.3e).
They are mainly caused by the stretching shape of the event in the CIG and the upward-
curved event at the edges related to limited acquisition. We use this numerical experi-
ment to explain the idea of image-domain common-shot IVA (Figure 4.1). The next step
consists of transferring these image incoherency to scaling data for the introduction of
the new approach defined in the data-domain.

The shot gather contains only reflection which exhibits a hyperbolic shape (indicated
by the curved green line in Figure 4.4a). If we simply apply the modeling operator B0
to the differential images (Figures 4.3d, 4.3e and 4.3f), it is expected to output reflected
events with different amplitudes at the same location as the observed data (Figure 4.1),
because the same macromodel is used for the modeling and inversion parts. In practice,
the scaling data related to different background velocity models indeed consist of re-
flected events of hyperbolic shapes with modified amplitudes: the reflected data for the
two incorrect velocity cases are of reversed amplitudes and of almost the same magni-
tudes, and the correct velocity case corresponds to the smallest amplitudes (marked by
green arrows in Figures 4.4b,4.4c and 4.4d). In addition to the reflection, events sim-
ilar to the direct arrivals are also present in the scaling data (marked by black arrows
in Figures 4.4b,4.4c and 4.4d). In the case of correct macromodel, they result from the
residual artifacts exhibited in Figure 4.3e, and the reasons for those artifacts are already
discussed in the previous paragraph. For the case of background model with too high
velocity, the events marked by dashed green straight lines are caused by migration ar-
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Figure 4.3 – CIGs for position x = 2.4 km (a–c) associated to images for Figure 4.2. (d–
f) are the residuals between adjacent traces in CIGs (a–c). Green dashed lines illustrate
the curvatures of events related to different model inaccuracies. (a–c) and (d–f) are
displayed with the same scale, respectively.

tifacts which are not fully removed from the images. These artifacts are very weak but
still visible in CIGs (e.g. around the left vertical axis of Figure 4.3f): they are upward-
curved events but not related to inaccuracies of the model. In the next paragraph, we
investigate the shape of macromodel gradient to check if the velocity update would be
significantly biased.

In an ideal tomographic approach, we expect zero value gradient for the correct back-
ground velocity model, and only homogeneous positive (negative) values for a back-
ground velocity higher (lower) than the correct velocity. For image-domain IVA, we
need an optimal α = 1 in equation 4.7 to remove the spurious oscillations visible in the
macromodel gradient around the interface positions (section 3.4.1). On the other hand,
β = 0 is sufficient for data-domain IVA, in the sense that the associated gradients have
the expected shapes after the application of Gaussian smoothing over half a wavelength.
The definition of Gaussian smoothing filter is referred to equation 3.17. We build the
data-domain IVA associated gradients with β = 0 (Figures 4.5a, 4.5b and 4.5c). These
gradients are almost homogeneous above the interface. Around the reflector, spurious
oscillations are still present even it is much weaker than for the case of image-domain
IVA with α = 0 (see Chapter 3). After the application of the Gaussian smoothing over
half a wavelength, the value in gradient for correct macromodel is almost zero (Fig-
ure 4.5e), and the gradient for incorrect macromodel shows a pure tomographic update
(Figures 4.5d and 4.5f).

A gradient obtained with data-domain IVA can be split into different subkernels.
For a simple comparison, we decompose the gradients for both image-domain and data-
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Figure 4.4 – Observed data for shot position sx = 4.0 km (a), and scaling data for shot
position sx = 4.0 km (b–d) associated to image incoherency for (d–f) in Figure 4.3,
respectively. Green and black arrows correspond to the direct arrival events and the
reflected events, respectively.

Figure 4.5 – Gradients obtained with data-domain IVA (β = 0) for a homogeneous
macromodel with velocity too low (a, d), with correct velocity (b, e) and with velocity
too high (c, f), respectively. We apply the Gaussian smoothing over half a wavelength
to (a–c) to derive (d–f), respectively. All images are displayed with the same scale.
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domain IVA according to equations 4.10 and 4.11. Note that the comparison between
two approaches will be further detailed in section 4.3.3. We first consider a too low
background velocity for example. For image-domain IVA, the contributions of λ̃s ?
S0 and λ̃r ? R0 have tomographic behaviors (Figures 4.6b and 4.6c). The subkernel
related to the oscillatory term is localized around the interface (Figure 4.6d), and can be
reduced by the introduction of α = 1, for which the contribution is localized at the same
position but with opposite sign (Figre 4.6a). For data-domain IVA, the contributions
of λs ? S0 and λr ? R0 (Figures 4.6f and 4.6g) have tomographic behaviors similar to
the case of image-domain IVA above the interface. However, Figures 4.6f contains less
oscillations than Figures 4.6b around the interface, whereas Figures 4.6g has stronger
positive values around the interface compared to Figures 4.6c. In addition, data-domain
IVA has one more tomographic subkernel related to λd?Sd (Figure 4.6e), which behaves
similar to the contribution of λr ? R0. For data-domain IVA, we do not introduce any
additional component related β (i.e. β = 0) in the gradient to cancel the contribution
of the oscillatory term (Figure 4.6h), as it would be attenuated after summing different
contributions and the subsequent Gaussian smoothing can simply break the spurious
oscillations in gradient. Back to the complete gradients, the oscillations are visible
around the interface position for image-domain IVA (α = 0) even after the application of
the Gaussian smoothing (Figure 4.7a), whereas image-domain (α = 1) and data-domain
(β = 0) both provide more homogeneous update (Figures 4.7b and 4.7c). Similar results
are observed for a background model with too high velocity (Figures 4.8 and 4.9).

We now explain why β = 0 is optimal for data-domain IVA. If the annihilator Dsx is
replaced by the identity operator I in equation 4.8, we expectB0B†0dobs = dobs (definition
of the inverse) with β = 0, such that the gradient of modified J 0

data with respect to c0
should be zero. In fact, this is only valid for the long wavelengths as the inversion is
derived in an asymptotic sense. We change the annihilator Dsx in equations 4.7 and 4.8
and compute the gradients of modified J 0

image, J 1
image and J 0

data with respect to correct
c0. They all have small oscillations localized around the interface (Figures 4.10a, 4.10b
and 4.10c). After the application of a Gaussian smoothing over half a wavelength, the
values of macromodel gradients for image-domain IVA (α = 1) and data-domain IVA
(β = 0) are almost zero (Figures 4.10e and 4.10f), whereas it is not the case for image-
domain IVA (α = 0) (Figure 4.10d). It indicates that β = 0 is optimal for data-domain
IVA: data-domain IVA (β = 0) is superior over image-domain IVA (α = 0) and is
equivalent to image-domain IVA (α = 1).

We provide another argument why data-domain IVA (β = 0) can remove the spu-
rious oscillations in the macromodel gradient. With α = 0, the gradient obtained with
image-domain IVA contains spurious oscillations. These oscillations are in fact the im-
prints of interfaces: the depth of interface changes when the background velocity model
is updated. On the other hand, for data-domain IVA, the scaling data (i.e. dβ) can be
seen as a reflectivity defined in the time-domain as for the MBTT case (Chavent et al.,
1994; Plessix et al., 1995). A modification of the macromodel only leads to amplitude
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Figure 4.6 – Decomposition of macromodel gradients obtained with image-domain IVA
or data-domain IVA for a homogeneous macromodel with velocity too low. (a) corre-
sponds to the additional term related to α = 1 for image-domain IVA. (b–d) correspond
to λ̃s ? S0, λ̃r ? R0 and the oscillatory term in equation 4.10 for image-domain IVA
(α = 0), respectively. (e–h) correspond to λd ? Sd λs ? S0, λr ? R0 and the oscillatory
term in equation 4.11 for data-domain IVA (β = 0), respectively. (a–d) and (e–h) are
displayed with same scale, respectively.
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Figure 4.7 – Gradients obtained with image-domain IVA (α = 0) (a), image-domain
IVA (α = 0) (b) and data-domain IVA (β = 0) (c) for a homogeneous macromodel with
velocity too low, after a Gaussian smoothing over half a wavelength. (a) corresponds to
the summation of Figures 4.6b-4.6d, (b) to the summation of Figures 4.6a-4.6d, and (c)
to the summation of Figures 4.6e-4.6h.
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Figure 4.8 – Same as for Figure 4.6, but for a homogeneous macromodel with velocity
too high.
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Figure 4.9 – Same as for Figure 4.7, but for a homogeneous macromodel with velocity
too high.
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Figure 4.10 – Gradients obtained with image-domain IVA (α = 0) (a), image-domain
IVA (α = 0) (b) and data-domain IVA (β = 0) (c) with respect to the correct macro
velocity model. The annihilator in all methods are replaced by the identity factor. We
apply the Gaussian smoothing over half a wavelength to (a–c) to derive (d–f), respec-
tively. (a,b,d,e) and (c,f) are displayed with the same scale, respectively.

variations in this time-domain reflectivity.
the applications of B0 and B†0 in equation 4.8 are at the same position, such that we

could expect a macromodel gradient free of interface imprints. However, B0B†0dobs =
dobs is in the asymptotic sense. Thus, only the long-wavelength part of the gradient
reaches our expectation.

We conclude here that the data-domain IVA approach with β = 0 can produce the
gradient in a tomographic mode after smoothing, at least for simple models with a con-
tinuous interface. The same β value is used for following tests.

Marmousi model

We apply the data-domain IVA scheme on the central part of the Marmousi model (Ver-
steeg, 1994). The true background model is obtained after applying a Gaussian smooth-
ing with a characteristic length of 60 m to the original model. Shots are located at depth
z = 0.04 km. We use the same acquisition geometry (split spread) as for the single inter-
face case, except with a larger maximum shot-receiver offset of 2.4 km for the Marmousi
model.

Before the iterative optimization, we check the first gradient of data-domain IVA.
The initial incorrect velocity models are a homogeneous model at 1.5 km/s (velocity
too low) and a constant gradient model (velocity too high) starting from 2.0 km/s at the
surface and 4.5 km/s at 2.0 km depth. The gradients of objective function with respect
to macromodel exhibit many vertical strips behaving in a tomographic mode, but many
oscillations are still visible (Figures 4.11a and 4.11b). After the application of a Gaus-
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Figure 4.11 – Gradients obtained with data-domain IVA for the Marmousi model. The
initial model is a 1.5 km/s homogeneous model for (a,c,e). The initial model is a constant
gradient model (from shallow to deep part: 2.0-5.0 km/s) with velocity higher than the
true velocity (b,d,f). We apply the Gaussian smoothing over half a wavelength to (a,b)
for (c,d) and over one wavelength for (e,f), respectively. Blue, white and red represent
negative, zero and positive values, respectively.

sian smoothing over half a wavelength, the gradients are much reliable (Figures 4.11c
and 4.11d), but the values are not only negative for the background model of too low
velocities (Figures 4.11c) and these positive values in the deeper part can probably bias
the update after the application of a depth preconditioner to the gradient. Increasing the
characteristic wavelength of the Gaussian smoothing to one wavelength, the gradients
are finally more consistent, meaning that the results only exhibit positive (negative) val-
ues for too high (too low) velocity model (Figures 4.11e and 4.11f). It indicates that the
gradient has a smooth behavior even for such model that consists of many discontinuous
interfaces. In the case of complex structure, the Gaussian smoothing over more than half
a wavelength may be needed.

We start the nested IVA optimization from a homogeneous initial model of 1.5 km/s.
Optimization is carried out with a hybrid conjugate gradient algorithm (Touati-Ahmed
and Storey, 1990). As a preconditioner, the gradient is multiplied by the squared depth
value z2. 100 iterations are performed and the misfit curve presents the convergence after
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Figure 4.12 – Convergence curve for the data-domain IVA performed on the Marmousi
model. Blue line represents the misfit value of objective function for the iteratively
updated model and red dashed line represents the misfit value for the exact velocity
model.

around 80 iterations (Figure 4.12). IVA converges much slower in the data-domain than
in the image-domain. As mentioned in Chapter 3, the same test requires only around 25
iterations to converge. The reason of different convergence speeds will be explained in
section 4.3.3.

The final value of the objective function goes beyond the value associated to the
correct velocity, meaning that the objective function is not minimal even for the true
velocity model. This was also observed in Hou and Symes (2016a). The effects directly
link to the fact that the values of scaling data are not exactly zero even for the correct
macromodel. The non-zero value of scaling data can result from kinematic ambiguity
in the image (Nolan and Symes, 1996; Prucha et al., 1999; Stolk and Symes, 2004): in
the presence of multipathing, the CIGs are not perfectly consistent even for a correct
velocity model.

During the iterative update, the characteristic length for the Gaussian smoothing ap-
plied to the gradient is one wavelength at the very beginning and is reduced every 10
iterations. Eventually, we keep using a Gaussian smoothing over a quarter wavelength
after 30 iterations. Note that this strategy of smoothing is different from the one applied
to image-domain IVA. If the gradient is not smoothed any longer after several iterations,
the optimization could be trapped into a local minimum and the estimated macro veloc-
ity model exhibits spurious oscillations. For example, Figure 4.13 shows the result of
an updated model if the gradient is no more smoothed after several iterations: the infor-
mation about the deeper part of the macro velocity model is not retrieved, and spurious
oscillations are present everywhere. This approach is not necessary recommended as
the short-wavelength information is introduced in the macromodel.

Different from the previous case, we keep applying in practice a Gaussian smoothing



4.2. Common-shot IVA in the data-domain 139

Posistion (km)
2 3 4 5 6 7

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

1.5 2 2.5 3 3.5 4

Posistion (km)
2 3 4 5 6 7

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

1.5 2 2.5 3 3.5 4

Velocity (km/s)
1 2 3 4

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

Velocity (km/s)
1 2 3 4

Velocity (km/s)
1 2 3 4

Velocity (km/s)
1 2 3 4

b)

c) f)d) e)

a)

Figure 4.13 – Example illustrating the optimization converging towards a local mini-
mum with an improper smoothing strategy. True Marmousi background model (a) and
updated model after 100 data-domain IVA iterations (b). White stars and dashed line in-
dicate the shot position extension. (c–f) are vertical velocity profiles at positions 2.6, 3.6,
4.6 and 5.6 km, respectively. Solid blue, dashed-dot red and solid red lines correspond
to true, initial and updated models, respectively.
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Figure 4.14 – True Marmousi background model (a) and updated model after 100 data-
domain IVA iterations (b). White stars and dashed line indicate the shot position ex-
tension. (c–f) are vertical velocity profiles at positions 2.6, 3.6, 4.6 and 5.6 km, re-
spectively. Solid blue, dashed-dot red and solid red lines correspond to true, initial and
updated models, respectively.

over a quarter wavelength after 30 iterations. We compare the true background model
to the final updated model after 100 nonlinear iterations (Figure 4.14a and 4.14b). The
macro structure of the Marmousi model is well reconstructed, especially the central part
that is well illuminated (Figures 4.14d and 4.14e). The structures at edges are less ap-
propriately recovered due to the limited acquisition geometry (Figures 4.14c and 4.14f).

To evaluate the quality of the final result, we compute the reflectivity models ac-
cording to equation 4.4 for the exact, initial and estimated macromodels, respectively
(Figure 4.15). The final retrieved background model significantly improves the qual-
ity of the stacked image (Figure 4.15c), close to the result obtained for the true model
(Figure 4.15a). Cautious examination on the vertical profiles indicates that the result of
data-domain IVA is reasonable: the phases and amplitudes of reflectors are similar for
the images obtained in the final and in the true background velocity models, especially in
the central areas (Figure 4.16). The profiles close to edges show small distortions since
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the model is not fully illuminated for these deep regions. CIGs are extracted from the
image volume to evaluate the consistency of the included events over different shot posi-
tions. The final result produces coherent CIGs and has similar behavior to the true model
(Figure 4.17). Note that a mask on the inverted images and the macromodel gradient is
applied in the first 0.2 km to prevent from updating the shallow part, as an additional
preconditioner. The limit of the mask (dashed line) is illustrated on Figure 4.17. These
indicate the consistency between the data-domain and image-domain IVA approaches:
the final results improve the quality of images despite objective functions defined in
different domains. A more detailed comparison will be provided in section 4.3.3.

After a successful data-domain IVA optimization procedure, the events in CIGs are
more horizontal. Therefore, the image incoherency should be significantly reduced,
leading to scaling data with weaker amplitudes. The differential images are computed
by comparing the neighboring traces in CIGs (Figure 4.18). The scaling data are mod-
eled in the estimated macromodels using the image-domain residuals as the reflectivity
models. The image incoherency associated to data-domain IVA results (Figure 4.18c)
are significantly reduced compared to the case of the starting model (Figure 4.18b),
and is even smaller than for the correct velocity model in some areas (Figure 4.18a).
The associated scaling data transfer these residuals from image-domain to data-domain.
Theoretically, we expect that the scaling data related to the correct velocity model is
minimal. In practice, some spurious direct arrivals (Figure 4.19a) are still visible even
for the case of true macromodel. These direct arrivals also exist in the scaling data
for the starting model (Figure 4.19b), indicated by black arrows. The reflected events
in scaling data carry the main information about the inaccuracies of the macromodel,
whereas the direct arrivals correspond to residual artifacts in CIGs close to the same
position (Figure 4.18a). After the nonlinear optimization of data-domain IVA, both the
energy of the direct arrivals and reflections in scaling data are minimized (Figure 4.19c),
as it is explicitly defined in the objective function. This explains the reason why the
misfit for the data-domain IVA result is even lower than the value related to the exact
macromodel in Figure 3.18. Despite the artifacts, numerical results have shown that the
large-scale structures of the Marmousi model are properly retrieved by minimizing the
new objective function defined in the data-domain.

We shoot rays in the correct and updated Marmousi macromodels (Figures 4.20).
The correct macromodel contains clear triplicated wavefields (Figures 4.20a), whereas
it is not the case for the macromodel obtained with IVA (Figures 4.20b). We refer to
Chapter 3 for more discussions about triplications.

Finally, the model from Figure 4.14b is used as the starting model for FWI to further
improve the dynamic details. To avoid the cycle skipping effects for FWI, low-frequency
data should be recorded or the starting model should be close enough to the correct one
(Virieux and Operto, 2009). In this test, shots are located every 0.08 km ranging from 1
to 6.2 km, and receivers everywhere at the surface (z = 0.04 km). Frequencies below 2
Hz are not recorded in the observed data. Therefore, the accuracy of the starting model



142 Chapter 4. Image-domain versus data-domain

Posistion (km)
2 3 4 5 6 7

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

×10
-7

-3

-2

-1

0

1

2

3

Posistion (km)
2 3 4 5 6 7

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

×10
-7

-3

-2

-1

0

1

2

3

Posistion (km)
2 3 4 5 6 7

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

×10
-7

-3

-2

-1

0

1

2

3

a)

b)

c)

Figure 4.15 – Stacked inverted images associated to (a) true (Figure 4.14a), (b) initial
and (c) updated (Figure 4.14b) models, respectively.
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Figure 4.16 – Profiles of stacked inverted images associated with true, initial and updated
(Figure 4.14b) models. From left to right, columns are associated to positions 2.6, 3.6,
4.6 and 5.6 km, respectively. Blue lines refer to image profiles for true model. The red
lines represent profiles for initial model in the top rows and for updated model in the
bottom rows.



144 Chapter 4. Image-domain versus data-domain

Position (km)
2.5 3 3.5 4 4.5 5 5.5 6 6.5

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

Position (km)
2.5 3 3.5 4 4.5 5 5.5 6 6.5

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

Position (km)
2.5 3 3.5 4 4.5 5 5.5 6 6.5

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2

a)

c)

b)

Figure 4.17 – CIGs associated to (a) the true Marmousi model, (b) the initial homoge-
neous model and (c) the updated model (Figure 4.14b) for position x, ranging from 2.5
to 6.5 km, every 0.5 km. We apply a taper on the image above the depth indicated by
dashed black line, to exclude the associated contribution to our objective.
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Figure 4.18 – The same as Figure 4.17, but for the image residuals computed by com-
paring adjacent traces in CIGs. All images are displayed with the same scale.
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Figure 4.19 – The same as Figure 4.17, but for the time-domain scaling data sets, com-
puted for shot position sx, ranging from 3.4 to 5.8 km, every 0.4 km. All images are
displayed with the same scale.
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Figure 4.20 – Rays and wavefronts calculated from a source at surface with sx = 6.0 km
in (a) true and (b) inverted (Figure 4.14b) Marmousi macromodels, respectively. All
images are displayed with the same scale.
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Figure 4.21 – True Marmousi full model (a) and updated model (b) after 70 FWI it-
erations starting from the final data-domain IVA result (Figure 4.14b). (c–f) are verti-
cal velocity profiles at positions 2.6, 3.6, 4.6 and 5.6 km, respectively. Solid blue and
dashed-dot red lines represent true and updated models, respectively.

is the key element to get rid of cycle skipping effects. The structures of Marmousi model
are well retrieved after 70 nonlinear iterations of FWI (Figure 4.21). Cycle skipping ef-
fects are hardly observed in the area of which IVA supplies a reasonable macromodel.
Note that we compare the FWI results with the true complete model c rather than back-
ground model c0 in this case.

Summary

We conclude from these different numerical tests that the new data-domain approach
(equation 4.8) is robust. In contrary to incorporating cα0 , with α = 1, to the objective
function 4.7 for the image-domain approach, we only use β = 0 for data-domain IVA.
The new approach produces a macromodel gradient that does not suffer from the im-
prints of reflectivity, at least after the Gaussian smoothing over half a wavelength. For
a more complex model, a larger smoothing may be needed. IVA is capable of dealing
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with complex structures, at least for the Marmousi model. The macromodel gradient
should always be smoothed for a robust iterative updating. Minimizing the norm of
scaling data increases the coherency of images at the same time. The final result of
data-domain IVA provides a well-estimated starting model for subsequent FWI, leading
to non cycle-skipped results, at least for well-illuminated regions.

4.3 Comparisons between image and data domains
For the methods relying on the Born approximation, both data-domain and image-
domain aim at determining an optimal background model. The objective of this sec-
tion is to better understand the possible links between different approaches. We first
establish the link between data-domain IVA and DWI, under the condition that the re-
flectivity model is properly estimated. More generally, we investigate, in a generic way,
the relationships between data fitting principle and image coherency criteria. Finally, we
compare the numerical results between image-domain and data-domain IVA methods.

4.3.1 Equivalence between data-domain IVA and DWI

We first compare data-domain IVA to Differential Waveform Inversion (DWI) (Chauris
and Plessix, 2012). Two approaches are both developed from the DSO approach. Here,
we consider only two shot gathers at positions sk and sk+1 with k ∈ [1, Ns], where Ns is
the total shot numbers. In the DWI approach, one first determines the reflectivity image
for a single shot position in a given macromodel, and then predict data at the next shot
position. We build a reflectivity image for sk in a given background velocity model c0

ξ(x, sk) = ξ[sk] = B†0[sk]dobs[sk]. (4.12)

Then, we calculate the modeled (demigrated) data at the next shot position using the
reflectivity retrieved from the previous shot gather

dcaldwi[sk+1] = B0[sk+1]ξ[sk]. (4.13)

Note that B0 and B† are referred to equations 4.1 and 4.4, respectively. To assess the
quality of the estimated background model, we evaluate the misfit between modeled and
observed data

Jdwi[c0] =
1

2

∣∣∣∣∣∣dobs[sk+1]− dcaldwi[sk+1]
∣∣∣∣∣∣2. (4.14)

If the background model is correct, the reflectivity images retrieved from two shot gath-
ers should be consistent such that the data at sk+1 can be predicted from ξ[sk]. This
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is equivalent to the image coherency principle. In the asymptotic sense, the inverse
operator is defined such that

B0[sk+1]ξ[sk] = B0[sk+1]B†0[sk+1]d
obs[sk+1] ' dobs[sk+1] (4.15)

and then we substitute equations 4.12, 4.13 and 4.15 into equation 4.14, reading

Jdwi[c0] '
1

2

∣∣∣∣∣∣B0[sk+1]
(
ξ[sk+1]− ξ[sk]

)∣∣∣∣∣∣2
=

1

2

∣∣∣∣∣∣B0[sk+1]Dskξ[sk]δs
∣∣∣∣∣∣2, (4.16)

where δs represents the shot interval. This objective function is equivalent to equa-
tion 4.8. Therefore, the two approaches are proved to be consistent if a true amplitude
migration scheme is applied, in the sense that B†0 is indeed an inverse of B0, and it
is indeed the case for our direct inverse formula (equation 4.4). Note that the inverse
formula is derived under the first-order Born approximation, meaning that the multi-
scattered wavefields are not considered. To cope with multiples, one can replace direct
inverse by iterative migration (Chauris and Plessix, 2013; Cocher et al., 2017b), even if
iterative scheme is more computational intensive. In the next section, we generalize the
results for different migration schemes.

4.3.2 Data fitting versus image coherency

DWI is inspired by common-shot DSO (Symes and Carazzone, 1991; Symes and Kern,
1994; Chauris and Plessix, 2012). Its idea can be extended to other migration schemes,
to be explained later, formulating different reflection-based waveform inversion ap-
proaches. We establish the link between the DWI method, a data fitting technique
defined in the data-domain, and the DSO approach, a MVA strategy defined in the
image-domain. The comparison is performed for different migration schemes (common-
shot, common-offset, time-delay, common-angle and subsurface-offset cases). True-
amplitude migration is the key element to link two families.

Common-shot migration scheme

We express the calculated shot gather dcaldwi[sk+1] for the reflectivity ξ[sk] = ξ(x, sk) with
a first-order approximation
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dcaldwi(sk+1, r, ω) = (iω)2Ω(ω)

∫
dxG0(sk+1, x, ω)ξ[sk]G0(r, x, ω) (4.17)

' (iω)2Ω(ω)

∫
dxG0(sk, x, ω)ξ[sk]G0(r, x, ω)

+ (iω)2Ω(ω)

∫
dx

∂G0(sk, x, ω)

∂sk
ξ[sk]G0(r, x, ω)δs. (4.18)

The first term on the right side of the equation 4.18 corresponds to dobs[sk]. We
replace the second term using the sum rule in differentiation

dcaldwi[sk+1] ' dobs[sk] + (iω)2Ω(ω)
∂

∂sk

∫
dxG0(sk, x, ω)G0(r, x, ω)ξ[sk]δs

− (iω)2Ω(ω)

∫
dxG0(sk, x, ω)G0(r, x, ω)

∂ξ[sk]

∂sk
δs. (4.19)

The second term on the right side of the equation is recognized as the derivative of the
observed data

dcaldwi[sk+1] ' dobs[sk] +
∂dobs[sk]

∂sk
δs

− (iω)2Ω(ω)

∫
dxG0(sk, x, ω)G0(r, x, ω)

∂ξ[sk]

∂sk
δs. (4.20)

The first two terms on the right side read the first-order approximation of observed data
at shot position sk+1. We thus finally have

dobs[sk+1]− dcaldwi[sk+1] = (iω)2Ω(ω)

∫
dxG0(sk, x, ω)

∂ξ[sk]

∂sk
G0(r, x, ω)δs. (4.21)

Minimizing the difference between the calculated data at shot position sk+1 and for
ξ[sk+1] and the observed data at sk+1 is the same as minimizing the derivative of the
reflectivity ξ[sk] with respect to sk (for common-shot DSO, we refer to Symes and Kern,
1994). Thus the DWI scheme is equivalent to the common-shot DSO approach if they
both obtain ξ(x, sk) after true-amplitude migration (iterative migration or direct inverse).
Note that the reflectivity section results from a first iteration of iterative migration in the
conventional DSO approach. The first method is defined in the data-domain, whereas
the second is defined in the model space. For equation 4.21, the time-domain data misfit
is minimal when amplitudes are correctly predicted – this is a reason to explain why
true-amplitude migration is needed in the image-domain even if the absolute values of
are not required.
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Common-offset migration scheme

We now consider the common-offset migraiton scheme. For the reflectivity section
ξ[xh] = ξ(xh, x), a function of x and a shot-receiver offset xh. Following the same
strategy for common-shot migration, the minimization of the data misfit dobs[xk+1

h ] −
dcaldwi[x

k+1
h ] is equivalent to the minimization of the derivative of ξ[xkh] with respect to xkh

(for common-offset DSO, we refer to Chauris and Noble, 2001; Mulder and ten Kroode,
2002). This common-offset DWI scheme behaves in a tomographic similarly to the
conventional RWI (Xu et al., 2012; Wu and Alkhalifah, 2015; Brossier et al., 2015).
However, the two approaches have some major differences: (1) DWI is formulated as
a nested optimization to update δc and c0, whereas RWI assumes two parameters are
independent, at least for the approach of Xu et al. (2012); (2) DWI predicts the a sin-
gle common-offset gather using the perturbation model constructed from the previous
common-offset gather, whereas RWI builds δc model from data with a limited range
of shot-receiver offsets (e.g. xh ∈ (0, h0), h0 is the value of the maximum offset) and
then predicts data with larger range of offsets (e.g. xh ∈ (0, h1), h1 is the value of the
maximum offset and h1 � h0).

Time-delay migration scheme

We extend the previous results to time-delay migration scheme. For the reflectivity
section ξ[τ ] = ξ(x, τ), a function of x and the time-delay τ , the data d is given by

d(s, r, ω) = (iω)2Ω(ω)

∫∫
dx dτ G0(s, x, ω)G0(r, x, ω)ξ[τ ]e−iωτ (4.22)

= (iω)2Ω(ω)

∫
dxG0(s, x, ω)G0(r, x, ω)ξ̂τ (x, ω) (4.23)

The variable ξ̂τ [ω] is the Fourier transform of ξ[τ ] over τ . Note that the usual equation
for time-delay expansion expresses ξ[τ ] as a function of the input data (Sava and Fomel,
2006). Equation 4.22 is the expression of extended modeling proposed by Symes (2008);
Biondi and Almomin (2014), being the adjoint version of the other.

Following the same strategy as for common-shot migration, we retrieve reflectivity
section ξ[ω] and then define the modeled data for frequency ω + δω here

dcaldwi(s, r, ω + δω) = (iω)2Ω(ω)

∫
dxG0(s, x, ω)ξ̂[ω]G0(r, x, ω), (4.24)

and the differences between the modeled and observed data for frequency ω + δω reads

dobs[ω + δω]− dcaldwi[ω + δω] '(iω)2Ω(ω)

×
∫

dxG0(s, x, ω)
∂ξ̂[ω]

∂ω
G0(r, x, ω) (4.25)
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An objective function measuring data misfit is equivalent to the one assessing the image
coherency through the derivative of ξ̂τ (x, ω) with respect to ω, or alternatively through
the norm of iτξ(x, τ), as a derivative in the Fourier domain can be expressed as a multi-
plication in the original space (for time-delay MVA, we refer to Sava and Fomel, 2006).
This provides an key explanation for the introduction of a multiplication by τ in the
objective function as an annihilator.

Subsurface-offset migration scheme

The extension for the depth-offset migration case is similar to the previous cases. Once
more, we express the data as a function of the reflectivity ξ depending on the image
point x and on the depth-offset h

d(s, r, ω) = (iω)2Ω(ω)

∫∫
dx dhG0(s, x-h, ω)G0(r, x+h, ω)ξ[h] (4.26)

= (iω)2Ω(ω)

∫
dxG0(s, x, ω)G0(r, x, ω)ξ̂h(x, s, r, ω), (4.27)

where

ξ̂h(x, s, r, ω) =

∫
dh

G0(s, x-h, ω)G∗0(s, x, ω)G0(r, x-h, ω)G∗0(r, x, ω)

|G0(s, x, ω)|2|G0(r, x, ω)|2
ξ[h] (4.28)

'
∫

dh eik·hξ[h] = ξ̂[k] (4.29)

with k = ω
(
∂τ0(s,x)
∂x + ∂τ0(r,x)

∂x

)
. Under the high frequency approximation and up to

smooth term, the integrand in equation 4.28 can be simplified to a Fourier transform
in the spatial-domain (ten Kroode et al., 1998). Once again, the modified demigration
reads

dcaldwi[k + δk] = (iω)2Ω(ω)

∫
dxG0(s, x, ω)ξ̂[k]G0(r, x, ω), (4.30)

and the differences between the modeled and observed data for wavenumber k + δk are

dobs[k + δk]− dcaldwi[k + δk] ' (iω)2Ω(ω)

×
∫

dxG0(s, x, ω)
∂ξ̂[k]

∂k
G0(r, x, ω) (4.31)

As before, a multiplication by h is equivalent to a derivative with respect to k (for
subsurface-offset MVA, we refer to Symes, 2008). With the ray theory, we have |k| =
2ω cos(θ)/c0(x), where θ is the half-opening angle at the image point x. This is thus
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equivalent to a constant angle migration (for angle-domain MVA, we refer to Biondi
and Symes, 2004).

We have established the link between a misfit in the data-domain and a residual
in the image-domain. The two formulations can be equivalently used under the Born
approximation. The essential element to link the two domains are true-amplitude mi-
gration. DSO seeks a model which produces kinematically coherent images. Despite
migration artifacts, the conventional migration, an adjoint operator of the modeling,
can already construct reflectivity images at correct positions in an accurate background
model. Therefore, one may argue that true-amplitude migration is not essential for
MVA. However, in the DWI approach, observed and modeled data are not comparable
if only the adjoint operator is used to reconstruct reflectivity model. Thus, its image-
domain alternative, the DSO approach, might produce biased result without introducing
the true amplitude migration scheme. This is consistent with the conclusion in Chap-
ter 3: true-amplitude migration removes the artifacts in velocity updates related to mi-
gration smiles, leading to a more robust approach. For a deeper analysis, we conduct
numerical experiments in the next section.

4.3.3 Numerical comparisons
We now compare the numerical results of image-domain and data-domain IVA. With the
same preconditioner, the new approach converges slower compared to image-domain
IVA, as presented in section 4.2.3. To analyze the reasons, we first focus on the shape of
macromodel gradient in a simple homogeneous model with three reflectors embedded
in. We investigate which approach is better conditioned and what preconditioner should
be applied. Then, we validate the choice of preconditioner by comparing in details
the results for the Marmousi model, including the final macro velocity model for IVA,
associated CIGs, and the estimated complete velocity model after subsequent FWI. The
purpose is to investigate the quantitative links as well as the differences between the
image-domain and data-domain methods.

Multi-reflector model

We start from a homogeneous model, for which the velocity is 2.5 km/s, with three
horizontal reflectors (at depth z = 0.6, 1.3 and 2.0 km) embedded in. We trigger 181
shots every 0.04 km from 2.4 to 9.6 km at the surface. Receivers are symmetrically
deployed every 0.02 km on both sides of shots with offsets ranging from -2.4 to 2.4 km.

We compute the first macromodel gradient for two homogeneous models, for which
the velocities are 2.0 and 3.0 km/s, respectively. In an ideal macromodel gradient, we
expect only positive (negative) values for a background velocity higher (lower) than the
correct velocity. Beyond the sign aspects, the gradients are expected to exhibit a three-
layered shape separated by three reflectors. The value of gradient should be stronger for
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the shallower part as it contains three contributions from the three layers, and weaker
for the deeper part. The gradients obtained with image-domain IVA (α = 0) exhibit
strong variations around the interface locations (Figure 4.22a and 4.22e). The sign of
the gradient values are even altered for some positions around the interfaces (z = 1.5 and
2.3 km) in Figure 4.22e. On the other hand, the gradients obtained with image-domain
IVA (α = 1) are closer to the expectations, consisting of only positive or negative values
and of a layered gradient shape (Figure 4.22b and 4.22f). The results obtained with
data-domain IVA are comparable to the ones obtained with image-domain IVA (α =
1), except for the low sensitivity to the deeper parts of the model (Figure 4.22c and
4.22g). After multiplying the gradients by depth z, the sensitivity to deeper parts of the
model is significantly improved. We extract the central profiles of different gradients
to compare the associated behaviors in details. Despite some differences around the
interface positions, the preconditioned results exhibit almost the same trend as the ones
obtained with image-domain IVA (α = 1) (Figure 4.23). Note that the profiles are
normalized by the respective maximum absolute value.

After preconditioning, the gradient obtained with data-domain IVA approximates the
result with image-domain IVA (α = 1). We explain the reason through a rough analysis.
The gradient of equations 4.7 and 4.8 can be expressed as

∂J 1
image

∂c0
= < c0

∂Dsxξ

∂c0
, c0Dsxξ >s + <

∂c0
∂c0

Dsxξ, c0Dsxξ >s (4.32)

∂J 0
data

∂c0
= < B0

∂Dsxξ

∂c0
,B0Dsxξ >s,r,ω + <

∂B0
∂c0

Dsxξ,B0Dsxξ >s,r,ω (4.33)

The right side of the formulations have a consistent form. Compared to the case of
image-domain IVA, the macromodel gradient for data-domain IVA has BT0 B0 and BT0 ∂B0

∂c0
as additional factors, which are related to four Green’s functions. Under the high fre-
quency approximation, these functions correspond to the multiplication by 1/z2 with
vertical rays. Neglecting other terms of constant or minor values, the gradient for equa-
tion 4.33 is decayed by 1/z2 compared to the one for equation 4.32. Therefore, the
gradient obtained with data-domain IVA should be additionally multiplied by a depth
preconditioner, to approximate the one obtained with image-domain IVA. Note that the
theoretical explanation is limited to the homogeneous model and vertical rays. Multipli-
cation by z is sufficient for the homogeneous model for the numerical example demon-
strated in this section. In the following, we investigate this issue for more complex
structures.

Marmousi model

With a homogeneous model, the application of a z preconditioner to the gradient of data-
domain IVA is sufficient, in the sense that the gradient shapes for non-preconditioned
image-domain IVA and preconditioned data-domain are comparable. However, the first
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Figure 4.22 – The first macromodel gradient, after a Gaussian smoothing over half a
wavelength, obtained with image-domain IVA for α = 0 (a,e) and for α = 1 (b,f),
and with data-domain IVA (c,g). (d,h) are (c,g) multiplied by the value of depth z,
respectively. Compared to the exact model,the velocity is 0.5 km/s lower for (a–d) and
0.5 km/s higher for (e–h), respectively.
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Figure 4.23 – Profiles at position x = 6 km for the first gradients displayed in Fig-
ure 4.22. (a,b) are related to image-domain IVA (α = 0). In plots (c,d), solid blue, solid
red and dashed red lines correspond to image-domain IVA (α = 1), and data-domain
IVA before and after preconditioning, respectively. Compared to the exact model, the
velocity is 0.5 km/s lower for (a,c) and 0.5 km/s higher for (b,d), respectively
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gradient cannot fully represent the velocity update after nonlinear iterations, and the
choice of preconditioner may change in a more complex model. To be more realistic, we
further investigate the impact of preconditioner for data-domain IVA in the Marmousi
model.

We start from the same homogeneous model (c0 = 1.5 km/s) and perform few
nonlinear iterations to update the background velocity with different approaches: non-
preconditioned image-domain IVA (α = 1), and data-domain IVA before and after pre-
conditioning. By preconditioning, we mean the gradient of the objective function with
respect to macromodel is multiplied by z or z2. The geometry is same as in section 4.2.3.
In all tests, the updated macromodel related to data-domain IVA after preconditioning is
closer to the case of non-preconditioned image-domain IVA (Figure 4.24). In the case
of the z preconditioner, the velocity for the updated macromodel, obtained with precon-
ditioned data-domain IVA, is still lower than the result of image-domain IVA, after 1
iteration (Figure 4.24a) or 2 iterations (Figure 4.24b). On the other hand, the updated
macromodel, obtained with data-domain IVA preconditioned by z2, approximates the re-
sult of image-domain IVA after 1 iteration (Figure 4.24c). These two macromodels are
almost identical after 2 nonlinear iterations (Figure 4.24d). Therefore, z2 behaves better
than z as a preconditioner for data-domain IVA in the Marmousi model, at least after 2
or more iterations. We now focus on the impact of z2 preconditioner. After 5 nonlinear
iterations (Figure 4.25a), the macromodels, retrieved by image-domain IVA and precon-
ditioned data-domain IVA, produce very similar CIGs (Figure 4.25d and 4.25e). These
CIGs are different from the case of non-preconditioned data-domain IVA (Figure 4.25c).
As the optimization has not converged yet, only the shallower parts of these CIGs are
consistent with the case of correct background velocity model (Figure 4.25b). The ap-
plication of depth preconditioner enhances the response of the macromodel gradient to
deeper structures, and thus significantly boosts the convergence. Without the depth pre-
conditioner, the optimization should still converge towards a similar result but at a much
slower converging speed. It is the reason why, in section 4.2.3, data-domain IVA uses
more iterations (Figure 4.12), than image-domain IVA (Figure 3.18) for convergence, as
we applied the same preconditioner to the gradient for both experiments.

We now gather the final results already presented in sections 3.4.3 (for image-domain
IVA) and 4.2.3 (for data-domain IVA), for a more detailed comparison between the two
approaches. With the application of the same preconditioner z2, the inverted macromod-
els for two approaches are very alike except for the deep part and the edges, as marked
by red arrows in Figures 4.26a and 4.26b. In practice, the strategies of two experiments
are not completely the same: we do not apply any smoothing to the gradient after several
iterations for image-domain IVA, whereas a Gaussian smoothing over at least a quarter
wavelength is applied to the gradient for data-domain IVA. Consequently, more details
are included in the final result for image-domain IVA than for data-domain IVA. This is
clearly visible in profiles of the estimated macromodel (Figure 4.26). Compared to the
starting macromodel, the final updated macromodel for both image-domain and data-
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Figure 4.24 – Profiles at x = 4.6 km extracted from background models obtained with
different methods after few nonlinear iterations. Dashed black lines correspond to the
exact macromodel. Solid blue, solid red, and dashed red lines correspond to the results
obtained with image-domain IVA (α = 1), and with data-domain IVA before and after
preconditioning, respectively. The gradients for data-domain IVA is multiplied by z in
(a,b), and by z2 in (c,d). (a,c) and (b,d) correspond to the results after 1 iteration and 2
iterations, respectively.
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Figure 4.25 – Macromodels obtained with different methods after 5 nonlinear iterations
(a) and associated CIGs (b–d). (a) is the same as Figure 4.24d, but for the case after
5 iterations. (b) is associated to the correct macromodel, and (c–e) to the results of
non-preconditioned data-domain IVA, data-domain IVA preconditioned by z2 and non-
preconditioned image-domain IVA, respectively.
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Figure 4.26 – The background model obtained after performing 100 nonlinear iterations
with imaged-domain IVA (a) and with data-domain IVA (b). Red arrows are at same
positions for (a,b) and mark the area exhibiting differences. (c–f) are vertical velocity
profiles at positions 3.5, 4.5, 5.5 and 6.5 km, respectively. Dashed black, solid blue and
solid red lines correspond to true Marmousi macromodel, image-domain result (precon-
ditioner z2) and data-domain result (preconditioner z2), respectively. Green arrow is at
the same position as in Figure 4.28.

domain approaches produce CIGs where events are more coherent, much closer to the
case of correct model (Figure 4.27). The differences between CIGs for two methods are
mainly visible in the deepest part at a large shot-receiver offset, related to a poor illumi-
nation, as shown inside the green rectangles in Figures 4.27f-4.27h. After 70 iterations
of FWI, although the areas marked by red arrows in Figures 4.28a and 4.28b still exhibit
minor differences, the consistency between two estimated macromodels is significantly
further improved. An example is the event marked by the green arrow in Figures 4.26f
and 4.28f: the results of image-domain and data-domain approaches are more identical
after subsequent FWI.
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Figure 4.27 – CIGs for starting macromodel (a,f), exact macromodel (b,e) and the final
results obtained with image-domain IVA (c,g) and data-domain IVA (d,h). (a–d) corre-
spond to shot position 4.6 km and (f–h) to shot position 6.2 km. Dashed green rectangles
are at the same location for (e–h) to mark the differences.
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Figure 4.28 – Same as for Figure 4.26, but for the results after subsequent FWI.
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Table 4.2 – Strategies proposed for a successful implementation of image-domain
and data-domain IVA, at least for the case of Marmousi model.

Image-domain IVA Data-domain IVA
cα0 or cβ0

(1) α = 1 β = 0
Smoothing(2) no yes
Preconditioner(3) z0 z2

(1) See equations 4.7 and 4.8.
(2) For both methods, a Gaussian smoothing over one wavelength is applied to the gradient at the
first iteration, and the characteristic length is reduced every 10 iterations. "No" means the gradient
is not smoothed after several iterations and "yes" means the gradient is always smoothed;
(3) Data-domain IVA preconditioned by z2 is equivalent to non-preconditioned image-domain IVA;
For the numerical experiments, we used z2 for both approaches.

Summary

We compared the image-domain and data-domain IVA through numerical examples.
Several elements are essential to link the image-domain and data-domain IVA: (1) data-
domain IVA (α = 1) is equivalent to image-domain IVA with β = 0; (2) data-domain
IVA requires a more aggressive preconditioner, in the sense that the macromodel gradi-
ent should be multiplied by z or z2, to have same behavior as the image-domain IVA.
If not preconditioned, data-domain IVA may still requires more iterations; (3) we have
observed the macro gradient of data-domain IVA should always be smoothed during iter-
ative optimization. Otherwise, spurious oscillations can present in the updated velocity
model, preventing from convergence (discussed in section 4.2.3). One possible reason
is that data-domain IVA requires more iterations and we stopped smoothing the gradient
before convergence in the case converging towards a local minimum (Figure 4.13). The
reader is referred to Table 4.2 for the strategy we followed in practice to deal with the
Marmousi model. Note that we preconditioned the both approaches with z2 in practice,
leading to a relative slower convergence speed for data-domain IVA.

4.4 Conclusions

In the first part, we have proposed to extend common-shot IVA from image-domain
to data-domain, formulating a new approach by minimizing the norm of scaling data.
In an estimated macromodel, these data are modeled from the differentiate images of
the inverted reflectivities. For image-domain IVA, we multiplied the inverted reflectiv-
ity by the velocity at a specific power to provide more flexibility in the shape of the
gradient. This is not necessary needed for the new approach: the associated gradient
has a smoother behavior and does not suffer from interface imprint after the Gaussian
smoothing. In general, the value of characteristic length of Gaussian smoothing is half a
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wavelength, but it may need to be increased for complex structures up to one wavelength
during the first iteration. Then, the nonlinear optimization, performed on the Marmousi
model, proves its capability to deal with complex media. More efforts are needed to
investigate the smoothing strategy applied to the gradient in a nonlinear optimization
procedure. By starting from the final data-domain IVA results, the subsequent FWI suc-
cessfully derives a non-cycle skipped high resolution model, at least for the area where
IVA supplies a correct background velocity update.

In the second part, we have compared the image-domain and data-domain meth-
ods. Data-domain IVA proves to be equivalent to DWI. DWI was originally proposed
for common-shot migration scheme and its idea is now extended to other migration
schemes, including common-offset, time-delay, subsurface-offset and common-angle
migration schemes. We established a quantitative link between the data fitting princi-
ple and the image coherency criteria. It explains why true-amplitude migration is an
important aspect in image-domain velocity analysis. Then, we compared the results of
image-domain and data-domain IVA approaches. The data-domain approach requires
a stronger preconditioner, for example, multiplying the gradient by the value of depth
at a higher power. After preconditioning, the velocity update for data-domain IVA is
equivalent to the case of image-domain IVA. Otherwise, it converges slower than image-
domain IVA. Despite these, both methods prove to be robust and provide a good starting
model for FWI. The quantitative equivalence between image-domain and data-domain
methods is established through these numerical tests.

The objective function for the new approach defined in data-domain introduces an
additional Born modeling operator compared to the case of image-domain IVA. This ad-
ditional modeling leads to two more wavefield terms in the formulation of the model gra-
dient of the objective function. More precisely, for a single source term, the derivation
of model gradient requires computing two wavefields for FWI/RTM, four wavefields for
image-domain IVA and six wavefields for data-domain IVA.

The main advantage of data-domain IVA is the definition of the data that can be seen
as a reflectivity in time as in the MBTT approach (Chavent et al., 1994; Plessix et al.,
1995). More research is needed to fully exploit this approach.
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4.5 Appendix I: Gradient derivation for IVA in the data-
domain

We explain here how to compute the gradient of the data-domain IVA objective function
(equation 4.8) using the adjoint-state technique (Plessix, 2006). We consider the source
and receiver wavefields defined in equations 4.5 and 4.6. In the following, we note the
2D acoustic Helmholtz operator:

L0 = − ω2

c20(x)
−4. (4.34)

We define a mask operator K such that d0(s, r, ω) = K(x, r)Sd(s, x, ω). Then, we
extend equation 4.8 with Lagrangian formulation for β = 0, denoted by J 0

ext, depending
on (c0, Sd, ξinv, S0, , R0, λd, λξ, λs, λr) and reading

J 0
ext =

1

2
||K(x, r)Sd(s, x, ω)||2

−
∫∫∫

dxdsdω λ∗d(s, x, ω)

[
L0Sd(s, x, ω)−Dsxξinv(x, s)

S0(s, x, ω)

iω

]
−
∫∫

dxds λξ(x, s)
[
ξinv(x, s)− 4

∫
dω
(
|S0(s, x, ω)|2 + ε

)−1
×
(
∇xS

∗
0(s, x, ω) · ∇xR0(s, x, ω) + (

iω

c0(x)
)2S∗0(s, x, ω)R0(s, x, ω)

)]
−
∫∫∫

dxdsdω λ∗s(s, x, ω)
[
L0S0(s, x, ω)− (iω)3Ω(ω)δ(x− s)

]
−
∫∫∫

dxdsdω λ∗r(s, x, ω)
[
L∗0R0(s, x, ω)−

∫
dr dobs(s, r, ω)

∂δ(x− r)

∂rz

]
,

(4.35)

where λd, λξ, λs and λr are adjoint state variables associated with Sd, ξ, S0 and R0,
respectively. The different terms can be interpreted as constraints. The total derivative
of J 0

ext with respect to the velocity is given by

dJ 0
ext

dc0
=
∂J 0

ext

∂c0
+
∂Sd
∂c0

∂J 0
ext

∂Sd
+
∂ξinv
∂c0

∂J 0
ext

∂ξinv
+
∂S0

∂c0

∂J 0
ext

∂S0

+
∂R0

∂c0

∂J 0
ext

∂R0

+
∂λd
∂c0

∂J 0
ext

∂λd
+
∂λξ
∂c0

∂J 0
ext

∂λξ
+
∂λs
∂c0

∂J 0
ext

∂λs
+
∂λr
∂c0

∂J 0
ext

∂λr
. (4.36)

To avoid computing Fréchet derivatives (∂Sd
∂c0
, ∂ξinv
∂c0

, ∂S0

∂c0
, ∂R0

∂c0
, ∂λd
∂c0
,
∂λξ
∂c0
, ∂λs
∂c0
, ∂λr
∂c0

), we

develop the IVA gradient by taking (
∂J 0

ext

∂Sd
,
∂J 0

ext

∂ξinv
,
∂J 0

ext

∂S0
,
∂J 0

ext

∂R0
,
∂J 0
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∂λd
,
∂J 0

ext

∂λξ
,
∂J 0
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∂λs
,
∂J 0

ext
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) =
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0. The partial derivatives ∂J 0
ext

∂λd
, ∂J

0
ext

∂λξ
, ∂J

0
ext

∂λs
and ∂J 0

ext

∂λr
correspond to the definitions of in-

verted image, forward wavefield and backward wavefield, respectively. The derivatives
of J 0

ext with respect to ξ, S0 and R0, imposed to 0, give the expressions to calculate the
adjoint state variables λs, λr, λξ and λd, respectively:

L∗0λs(s, x, ω) = −4
[
∇x ·

(
U(s, x, ω)∇xR0(s, x, ω)

)
− (

iω

c0(x)
)2U(s, x, ω)R0(s, x, ω)

+ 2S0(s, x, ω)U(s, x, ω)<
{
ξ̃inv(s, x, ω)

}]
(4.37)

−Dsxξinv(x, s)
λd(s, x, ω)

iω
, (4.38)

L0λr(s, x, ω) = −4
[
∇x ·

(
U(s, x, ω)∇xS0(s, x, ω)

)
− (

iω

c0(x)
)2U(s, x, ω)S0(s, x, ω)

]
, (4.39)

λξ(x, s) =−
∫

dω Dsx

S0(s, x, ω)λ∗d(s, x, ω)

iω
, (4.40)

L∗0λd(s, x, ω) =

∫
dr δ(x− r)K(y, r)Sd(s, y, ω), (4.41)

whereU = λξ/(|S0|2+ε) for simplification and ξ̃inv(s, x, ω) is the integrand of ξinv(s, x).
Equations 4.38–4.41 are solved in reverse order. Subsequently, the final gradient is
obtained by inserting the values of the forward and backward propagated wavefields,
inverted images, and associated adjoint state variables into equation 4.11.
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Résumé du chapitre 5
Dans cette thèse, j’ai étudié l’analyse de vitesse par migration sous l’approximation de
la propagation des ondes acoustiques en milieu à densité constante. Ce type de tech-
nique estime la qualité du macro-modèle en regardant la cohérence des images migrées.
Elle est conduite sur des panneaux de focalisation (CIGs). Ils sont construits de deux
manières, soit la migration est réalisée sur des sous-ensembles de données comme les
points de tir, soit un décalage spatial est introduit lors de la construction des images
de réflectivité. Des investigations ont propose de coupler l’inverse direct à l’analyse de
vitesse pour une plus grande robustesse, et dans le cas de l’offset en profondeur. Cepen-
dant, l’approche offset en profondeur demande beaucoup de mémoire, même en 2D, et
ne peut pas être étendue en 3D actuellement.

Historiquement, Chauris et al. (2002a), ont regarde le lien entre l’analyse de vitesse
(Symes and Carazzone, 1991; Sava and Biondi, 2004), un schéma défini dans le do-
maine image, et la stéréotomographie (Billette and Lambaré, 1998; Lambaré, 2008),
une approche dans le domaine des données. C’était pour des approches avec les rais.
L’optimisation par semblance différentielle (DSO) a été initialement définie comme
un terme de régularisation de l’inversion des formes d’onde (Symes and Kern, 1994).
Beaucoup d’approches ont introduit le concept d’analyse de vitesse dans l’inversion
(Biondi and Almomin, 2012; Liu et al., 2014a; Alkhalifah and Wu, 2016; Chauris et al.,
2017). Cependant, la relation entre les domaines images et des données demande plus
de travaux.

Dans cette thèse, j’ai regardé principalement deux aspects : (1) pour une approche
applicable et robuste, j’ai développé l’inversion directe par point de tir, et surtout le
couplage avec l’analyse de vitesse ; (2) j’ai étendu l’analyse de vitesse par inversion du
domaine image au domaine des données, et par ce fait établi des liens entre ceux deux
domaines.
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5.1 Conclusions
In this thesis, I have investigated Migration Velocity Analysis (MVA) techniques un-
der the constant-density acoustic wave-equation approximation. This type of technique
assesses the quality of the estimated macromodel by measuring the coherency of mi-
grated images. The analysis is carried out on the panels called Common Image Gathers
(CIGs). CIGs can be built in two manners: the surface-oriented methods first perform
migration on different subsets of input data, such as the common-shot gathers, and then
collect images along the redundant parameter; the depth-oriented methods extend the
image volume with an additional parameter, for example the subsurface-offset as a spa-
tial shift, inserted during the construction of reflectivity images. Recent investigations
propose to couple the direct inversion to MVA in the subsurface-offset domain, intro-
ducing better robustness. However, this approach requires large memory, even in 2D,
and cannot be currently extended to 3D.

Historically, Chauris et al. (2002a) investigated the link between MVA (Symes and
Carazzone, 1991; Sava and Biondi, 2004), a scheme defined in the image-domain, and
stereotomography (Billette and Lambaré, 1998; Lambaré, 2008), an approach defined
in the time-domain. But it was only for ray-based methods. Differential Semblance
Optimization (DSO) was initially defined as a regularization term of Full Waveform
Inversion (FWI) (Symes and Kern, 1994). Many approaches introduced the concept of
MVA to waveform inversion (Biondi and Almomin, 2012; Liu et al., 2014a; Alkhalifah
and Wu, 2016; Chauris et al., 2017). However, the relationship between image-domain
and data-domain methods has not been fully understood.

In this thesis, I have mainly investigated these two issues: (1) for an affordable
and robust approach, I have developed the common-shot direct inversion and, more
importantly, coupled it to velocity analysis; (2) I have extended the common-shot IVA
from image-domain to data-domain and, along this line, established some links between
two domains.

5.1.1 Common-shot Inversion Velocity Analysis
In Chapter 3, I have developed an alternative approach to Qin et al. (2015), related to the
common-shot direct inversion. It is a pseudo-inverse of the Born modeling operator in
the asymptotic sense. The method automatically compensate for geometrical spreading
losses and uneven illuminations, such that migration smiles visible in reflectivity im-
ages are highly attenuated. Then, I have proposed to couple this direct inverse operator
to velocity analysis, leading to Inversion Velocity Analysis (IVA), a nested optimization
procedure. The interface imprints are visible around reflector positions in the macro-
model gradient for common-shot IVA, and I removed these spurious oscillations by
multiplying the inverted reflectivity with the velocity at a specific power (α = 1) before
measuring the consistency of the migrated images. The velocity gradient behaves in a
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pure tomographic mode after the application of a Gaussian smoothing over half a wave-
length distance. After, I have paid attention to the impact of triplicated wavefields. It
appears that triplicated waves still alter the images, but the coupling with velocity anal-
ysis is robust, at least better than for conventional MVA. This approach can deal with
complex models, at least in the case of a smooth version of the Marmousi model. By
starting from the final IVA results, the subsequent FWI successfully derives a non-cycle
skipped high resolution model, at least for the areas of which IVA supplies a correct
background velocity update. Three aspects are essential for a successful IVA imple-
mentation: inverse instead of adjoint, reflectivity multiplied by the velocity at a specific
power in the evaluation of the coherency, and Gaussian smoothing over half a wave-
length distance. Common-shot velocity analysis is less numerically expensive than its
counterpart in the subsurface-offset domain, offering new possibilities for the extension
to 3D in the future.

5.1.2 Links between image-domain and data-domain methods
In Chapter 4, I have proposed to extend common-shot IVA from image-domain to data-
domain, formulating a new approach by minimizing the data misfit. In a given macro-
model, these data are modeled from the differentiate images of the inverted reflectivities.
For image-domain IVA, I multiplied the inverted reflectivity by the background veloc-
ity at a specific power to provide more flexibility in the shape of the gradient, and thus
removed the interface imprints (spurious oscillations) visible in the gradient. This is not
necessary for the data-domain IVA approach: the associated gradient has a smoother
behavior and does not suffer from interface imprint after the Gaussian smoothing. In
general, the value of characteristic length of Gaussian smoothing is half a wavelength,
but it may need to be increased for complex structures. Through numerical experiments,
I have shown that data-domain IVA is capable of dealing with complex media, at least
for the case of a smooth version of the Marmousi model. By starting from the final data-
domain IVA macromodel, the subsequent FWI successfully derives a non-cycle skipped
result, at least for the well-illuminated area.

In Chapter 4, I have also compared the image-domain and data-domain methods.
Data-domain IVA proves to be equivalent to Differential Waveform Inversion (DWI).
DWI was originally proposed for common-shot migration scheme and, in this thesis, its
idea is now extended to other migration schemes, including common-offset, time-delay,
subsurface-offset and common-angle migration schemes. I established a quantitative
link between the data fitting principle and the image coherency criteria. It explains
why true-amplitude migration is an important aspect in image-domain velocity analy-
sis. Then, the image-domain and data-domain IVA approaches are compared through
numerical examples. The data-domain approach requires a stronger preconditioner,
for example, multiplying the gradient by the value of depth at a higher power. After
preconditioning, the velocity update for data-domain IVA is equivalent to the case of
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image-domain IVA. Otherwise, it requires more iterations. Despite that, both methods
prove to be robust and provide a good starting model for FWI. The equivalence between
image-domain and data-domain methods is further justified through these numerical
tests. More research is needed to fully exploit the structure of data-domain IVA.

In Chapter 4, I have also discussed the numerical cost of data-domain IVA. The
objective function defined in data-domain introduces one more Born modeling operator
compared to the case of image-domain IVA, leading to a more CPU-time consuming im-
plementation. More precisely, for a single source term, the derivation of model gradient
requires computing two wavefields for FWI/RTM, four wavefields for image-domain
IVA and six wavefields for data-domain IVA. In terms of computational cost, data-
domain IVA is not necessary to be recommended. However, it has a natural tomographic
velocity update and has provided a way to investigate the links between image-domain
and data-domain and has a more natural tomographic velocity update.

5.2 Perspectives

5.2.1 Edge effects

An important drawback for common-shot schemes is the edge effects of migration. As
for each shot, the illumination of subsurface is limited: even if the direct inverse com-
pensates for uneven illuminations, the edging parts still suffer from a poor illumination,
leading to migration smiles. After the summation over all shots, the edge effects can be
suppressed due to improved signal to noise ratio. However, common-shot IVA requires
prestack images, such that the related macromodel gradient also suffers from server edge
effects (Figure 5.1). Only the central part of the gradient has an expected shape and can
lead to reliable velocity updates. To cope with this issue, one possibility is to consider
iterative migration, which deals with incomplete observations better than asymptotic
inversion (Nemeth et al., 1999). The same kind of limitation is also observed for the
subsurface-offset case (Cocher, 2017).

5.2.2 Introduction of more physics

I have proposed a direct inverse formula for common-shot gathers under the constant-
density isotropic acoustic approximation. In this study, I have used an explicit scale
separation between a smooth background velocity model and a model perturbation. Fol-
lowing a strategy proposed by Zhou (2016) in the framework of FWI, one could also
investigate a more natural scale separation, using velocity and impedance perturbation
to parameterize the model, the velocity controlling the kinematics of wave propaga-
tion and impedance accounting for the reflective property of the subsurface instead of
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Figure 5.1 – Description of the impact of edge effects on macromodel gradient obtained
with image-domain IVA. Black dashed lines mark the boarder between well illuminated
area and edges.

the velocity model and model perturbation. Zhou et al. (2015) indicated that these two
parameters exhibit less coupling compared to the case of velocity and density.

Under the constant-density acoustic approximation, Lameloise and Chauris (2016)
show how transmitted waves can be included in MVA techniques by constructing ex-
tended images in a very similar manner to the usual procedure for reflections. They
propose a strategy in which these two kinds of events are used successively. This is in
the case of subsurface-offset and the extension to common-shot gathers needs further
investigations. Transmitted waves are usually used in a first step to update the shallow
part of the velocity model; then reflections are inverted to reach the deeper part of the
model. Inverting reflection and transmission data simultaneously could potentially bet-
ter constrain the inversion. As pointed out by Lameloise et al. (2015), an issue is that
transmitted events are more energetic than reflections, requiring to introduce weights
to balance the amplitudes of both kinds of events. The combination of reflection and
transmitted data in a unified framework needs further investigations.

5.2.3 Extension to 3D

Considering the extension to 3D, subsurface-offset MVA will become prohibitively ex-
pensive due to the significantly increased memory requirements (from (nz, nx, nh) to
(nz, ny, nx, nhz , nhz)), whereas the common-shot IVA requires less (from (nz, nx, 3) to
(nz, ny, nx, 5)). In addition to the storage of 3D images, a crosscorrelation should be
performed for each couple (hx, hy) and the cost of it is not negligible for the subsurface-
offset case any more. The common-shot IVA requires less computational cost and mem-
ory than in the subsurface-offset case, and may be extended to 3D. A new inversion
formula taking into account the new dimensions in 3D should be defined with a strategy
similar to the 2D case (Chapter 3). A main difficulty is that 3D acquisition does not
provide dense source and receiver coverage in all directions. With the common-shot mi-
gration scheme, it may cause even strong undesirable edge effects on reflectivity image
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and associated gradients.

5.2.4 Application to real data
In this thesis, I have only investigated the synthetic cases under the constant-density
acoustic approximation. I rely on Born approximations, such that only first reflected
waves are present in data. The real case is much more complicated, and I should at least
pay attention to four essential elements: (1) in correct estimation of the source wavelet;
(2) incomplete physics in the forward modeling engine; (3) limited acquisition; (4) 3D
effects.

In the synthetic case, I assumed that the source wavelet is properly estimated, but it
may not be the case for real experiments. As a prelude to real data applications, one can
apply the proposed IVA approaches to observed data computed with a source wavelet
different from the one used during inversion, to check the sensitivity to source estimation
errors. For the direct inverse, the approach is robust, whereas this is not the case for the
iterative scheme (Cocher, 2017).

More generally, the physics that is not accounted for in the forward modeling engine
may lead to inconsistent CIGs and velocity updates. For example, multi-scattered and
converted waves are not predicted under the first Born approximation. The impact of
attenuation and elastic on the amplitude may also be an issue for IVA strategies. To
cope with multiples, Cocher et al. (2017a) has proposed iterative migration under the
high-order Born approximation for subsurface-offset MVA, and this strategy should be
extended to common-shot schemes. As the next step, one may try to develop a direct
inverse formula for the elastic case, and investigate the impacts of attenuation on direct
inversion.

Finally the effect of limited acquisition should be further analyzed. Direct inverse
formulas are indeed derived with the assumption of an infinite acquisition, while ve-
locity analysis requires a dense shot coverage. In practice, these requirements may not
be realistic, especially in 3D the spatial sampling inherent in prestack data can be poor.
Once again, iterative migration may be an interesting alternative in this case as it deals
more effectively with incomplete observations (Nemeth et al., 1999). For a faster conver-
gence, one can use direct inversion as a preconditioner following the strategy proposed
by Qin et al. (2015); Hou and Symes (2016b); Duprat and Baina (2016), and then couple
it to velocity analysis.
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Résumé

Les expériences sismiques actives sont
largement utilisées pour caractériser la
structure de la subsurface. Les méthodes
dites d’analyse de vitesse par migration
ont pour but la détermination d’un macro-
modèle de vitesse, lisse, et contrôlant la
cinématique de propagation des ondes.
Le modèle est estimé par des critères
de cohérence d’image ou de focalisation
d’image. Les images de réflectivité ob-
tenues par les techniques de migration
classiques sont cependant contaminées
par des artefacts, altérant la qualité de
la remise à jour du macro-modèle. Des
résultats récents proposent de coupler
l’inversion asymptotique, qui donne des
images beaucoup plus propres en pra-
tique, avec l’analyse de vitesse pour la
version offset en profondeur. Cette ap-
proche cependant demande des capaci-
tés de calcul et de mémoire importantes
et ne peut actuellement être étendue en
3D.
Dans ce travail, je propose de dévelop-
per le couplage entre l’analyse de vi-
tesse et la migration plus conventionnelle
par point de tir. La nouvelle approche
permet de prendre en compte des mo-
dèles de vitesse complexes, comme par
exemple en présence d’anomalies de vi-
tesses plus lentes ou de réflectivités dis-
continues. C’est une alternative avanta-
geuse en termes d’implémentation et de
coût numérique par rapport à la version
profondeur. Je propose aussi d’étendre
l’analyse de vitesse par inversion au do-
maine des données pour les cas par
point de tir. J’établis un lien entre les
méthodes formulées dans les domaines
données et images. Les méthodologies
sont développées et analysées sur des
données synthétiques 2D.

Mots Clés

imagerie sismique • problème inverse •
analyse de vitesse par migration quanti-
tative • point de tir • domaine donnée

Abstract

Active seismic experiments are widely
used to characterize the structure of
the subsurface. Migration Velocity Anal-
ysis techniques aim at recovering the
background velocity model controlling the
kinematics of wave propagation. The first
step consists of obtaining the reflectiv-
ity images by migrating observed data in
a given macro velocity model. The es-
timated model is then updated, assess-
ing the quality of the background veloc-
ity model through the image coherency
or focusing criteria. Classical migra-
tion techniques, however, do not provide
a sufficiently accurate reflectivity image,
leading to incorrect velocity updates. Re-
cent investigations propose to couple the
asymptotic inversion, which can remove
migration artifacts in practice, to velocity
analysis in the subsurface-offset domain
for better robustness. This approach re-
quires large memory and cannot be cur-
rently extended to 3D.
In this thesis, I propose to transpose
the strategy to the more conventional
common-shot migration based velocity
analysis. I analyze how the approach can
deal with complex models, in particular
with the presence of low velocity anomaly
zones or discontinuous reflectivities. Ad-
ditionally, it requires less memory than
its counterpart in the subsurface-offset
domain. I also propose to extend In-
version Velocity Analysis to the data-
domain, leading to a more linearized
inverse problem than classic waveform
inversion. I establish formal links be-
tween data-fitting principle and image co-
herency criteria by comparing the new
approach to other reflection-based wave-
form inversion techniques. The method-
ologies are developed and analyzed on
2D synthetic data sets.

Keywords

seismic imaging • inverse problem •
quantitative migration velocity analysis •
common-shot gathers • data domain
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