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Résumé
Dans cette thèse, nous avons étudié le contrôle et l’optimisation de systèmes dynamiques
sujets à des retards variables.

L’existence de retards, de commande ou d’état, est un problème classique en automa-
tique, susceptible de réduire les performances du système en régime transitoire, voire de
remettre en cause la stabilité de contrôleurs en boucle fermée. De tels phénomènes de
retards variables jouent un rôle important dans de nombreuses applications en génie des
procédés.

Dans une première partie, nous avons étudié la régulation en boucle fermée d’un
système soumis à des retards de métrologie variables et incertains. Nous avons établi de
nouveaux résultats garantissant la stabilité robuste sous certaines conditions explicites
sur le gain du contrôleur. Dans une seconde partie, nous avons abordé le problème de
l’optimisation dynamique de systèmes présentant des retards variables dépendant de la
commande liés à des phénomènes de transport dans des réseaux hydrauliques. Nous avons
proposé un algorithme itératif d’optimisation et garanti sa convergence grâce à une analyse
détaillée.

Mots-clés

Optimisation dynamique, Retards variables, Contrôle de procédés

Abstract
This Ph.D. work studied the control and optimization of dynamical systems subject to
varying time delays.

State and control time delays are a well-known problem in control theory, with
a potential to decrease performances during transient regimes, or even to jeopardize
controllers closed-loop stability. Such variable delays play a key role in many applications
in process industries.

In a first part, we studied the closed-loop control of a system subject to varying and
uncertain metrology delays. We established new results on robust stability under explicit
conditions on the controller gain. In a second part, we tackled the problem of the dynamic
optimization of systems exhibiting input dependent delays due to transport phenomena
in complex hydraulic architectures. We designed an iterative optimization algorithm and
guaranteed its convergence through a detailed analysis.
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Dynamic optimization, Variable delays, Process control
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Chapter 1

Introduction to varying delays and
related control problems

In this thesis, we study some aspects of the general problem of controlling systems subject
to delays. As is well-known, delays are very frequent in process industries, our primary focus
for applications. Interestingly, this is not the only area of engineering where delays are ubiq-
uitous. Delays are a central topic in many control applications, for instance in networked
systems (see [Ric03]), aerospace (see [Ash69], [HLF94], [BPK10] or [ETTA16]), automo-
tive engine (see [DA05], [LCP09], [Lep09], [LCP12] or [BPCP14], [GPP+17], [SGHO17]),
manufacturing industries (see [GH98]), population dynamics (see [Hri97] or [LSLA09]) or
biomedical systems (see [RDBH98], [LS07] or [dLMS09]), to name but a few.

In process industries, delays (also referred to as dead-times or lags) are usually caused
by the process itself, its instrumentation or its actuation and control technology. The
delays can have several root causes. A first cause is data acquisition, the limitations of
the Information Technology (IT) structure and the induced mis-synchronization between
networks that lead to communication delays and errors in measurements time-stamping
(see [JK09], [Nob12], [MP13] or [Pet15]). Another common issue in process control is
that the analysis of material samples may require a significant time to be performed. As
evidenced for instance in [FA04] or [ZB09], an important source of lags in the control
is the computation times of advanced process control algorithms such as Model Based
Control (MPC) and its recent variants (adaptive MPC, economic MPC, distributed and
cooperative MPC among others) which consider fairly advanced models of plants (e.g.
[RRTP78], [MRRS00], [DBS+02], [QB03], [PR03], [PB07], [RM09], [SVR+10], [SM11],
[MMndlPnCA11] or [CSMndlPnL13]). As for the intrinsic sources of delays in the processes
themselves, complex chemical schemes involving activation times and the associated
reaction lags are well-documented problems in chemical engineering (see [Rou96]). At
a more macroscopic scale, material transport phenomena give birth to delays in plants
where several parts of the process are not collocated. This is typically the case when some
feeds are relatively far from the core of the reactor or when complex piping or recycling
architectures are present (see [HD05], [CP08], [MSP08], [RBYAP08] or [ZN09] for instance).
Such situations, with dead-times in pipes used to transfer material among process units,
have been documented in many oil refining and petrochemical processes such as distillation
columns, hydrodesulfurization units (see [Bar06] which provides typical values of the delay
and its variability) or fluid catalytic cracking (FCC e.g. [Kha93] or [AC99]). Finally, delays
are also frequently used to build simple models of high-order, or even distributed, systems.
For instance, a rich body of literature has studied the identification of First Order Plus
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Dead Time (FOPDT) models (see [Fed09], [NM14]) and Second Order Plus Dead Time
(SOPDT) models (see [NSS10]). Such models can be used in combination with popular
industrial PID auto-tune algorithms (e.g. [LWH13]). Generalization to higher order models
have also been studied (see [WZ01]).

In view of the general open-loop and closed-loop paradigms of automatic control, the
presence of delays in the dynamics of a system raises a number of challenges. Closed-loop
feedback-control schemes are usually employed for disturbance rejection and stabilization
purposes. Having a delay in the loop causes several well-documented problems: degraded
transient behaviours, oscillations around steady state and even loss of closed-loop stability
(see [Hal66], [Rug96], [Ric03] or [Krs09], [AM10]), water-bed effects that limit both tracking
and disturbance rejection performances and impose trade-offs (see [LD17]). Numerous
strategies have been developed to address these issues, either extending the seminal idea
of the Smith predictor through Internal Model Control (IMC) or using distributed control
laws. The reader can refer to [MZ89], [KG03] or [MN07] for further details. The classic
techniques are limited to the case of constant delays. The case of time-varying delays
have recently been studied following the early work of [KS08], treating the delay under
the form of an hyperbolic equation stabilized using the tools of backstepping developed in
the field of Partial Differential Equation (PDE) control. In the numerous extensions that
have been considered following [KS08], the future evolution of the delay is either exactly
known a priori or unknown but assumed to be smooth and bounded in a favourable sense
(see [ZWSH05], [BPK10], [BLK13b], [BLK13c], [BL14] or [BPCP14]).

In the context of open-loop motion planning and MPC control, the objective in
process applications is chiefly to improve adverse transient behaviours leading to off-
spec production or degraded regimes. The key tools in this area are those of optimal
control and its numerical implementations. In most cases, a trade-off must be made
between accurate determination of optimal solutions and acceptable computation times.
With constant delays, the mathematical formulations have long been investigated by the
control community (see [Kha61], [Hal68], [SR71], [MZ80], [BRG06] or [FT12], [BV16]).
A detailed survey can be found in [GKM09] and [GM14]. These works cover cases of
multiple input and state delays, with state constraints, in the framework of Pontryagin’s
maximum principle, [PBGM62]. In their linear versions, industrial implementations in
commercial MPC software are common place and routinely handle fixed delays. Following
Richalet’s early work (see [Ric93]), AspenTech’s DMCplus is extremely popular in the oil
refining industry, along with the solutions of other vendors such as Honeywell or ABB.
Interestingly enough, it appears that only little attention has been given to dynamic
optimization problems under varying delays. Since the seminal work of [Ban68], most
research efforts have focused on closed-form solutions to LQR problems for dynamics
impacted by time-varying delays, see [CPP10]. To the best of our knowledge, the only
contributions regarding the case of a structured variability of the delay was laid out in the
early work of [Ash69]. This work treated the case of state dependant delays but does not
seem to have received the appropriate attention, and is not implemented in any available
software package.

In this thesis, we study cases of varying delays. We propose two contributions. Early
in our work, we have realized that in many applications, the instrumentation delay is
actually varying. We illustrate this phenomenon with an example of IMC where the delay
is variable in an unstructured fashion and where instruments and IT limitations do not
allow incoming measurements to be assigned an exact dating upon reception. This yields
an unstructured varying delay in the underlying closed-loop discrete-time dynamics. After
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some steps of modelling, the problem boils down to studying the asymptotic stability of
the following nonlinear dynamics

u0 = 0, δ0 = 0
n > 0, un+1 = f−1(c− δn)
δn+1 = δn + α(fp(un−Dn)− f(un−Dn−∆n)− δn)

where Dn ≥ 0 is an uncertain delay and ∆n is a mis-synchronization term while f and fp
are close functions, c is a given parameter and α is a tuning parameter. We establish a
proof of global convergence and robustness using an original convergence analysis. This
contribution is presented in Chapter 2.

Then, we have spent most of our efforts on optimization problems. In a second part,
we consider a class of structured delays denoted as hydraulic delays (see [CCP10] and
[BPCP14]). Such delays are defined by the following relation∫ t

ru(t)
φ(τ) dτ = 1

where u is one of the system variable (typically some of the system inputs such as a flow
rate), φ is a strictly positive, scalar-valued function and ru = t −Du(t) is the function
of delayed time instants. This type of delay Du(t) is the exact solution of a plug-flow
transport equation, hence its designation as hydraulic. Given a general objective function
to minimize, we tackle the optimal control of systems whose dynamics is subject to
such delays. Prior to our analysis, we conduct preliminary numerical investigations in
Chapter 3. These outline both the surprisingly rich nature of the optimal control strategy
of an elementary process along with the numerical challenges and limitations facing the
state-of-the-art approaches and implementations.

Having met some difficulties in the numerics, we investigate the mathematical char-
acterization of the problem and study its calculus of variations in a general context in
Chapter 4. These investigations highlight the non-differentiability of the straightforward
optimal control formulation. This serves as a basis to develop in Chapter 5 a complete
numerical procedure to solve such problems. This procedure involves an explicit regular-
ization and a specifically tailored fixed-point scheme. A complete convergence proof of
this scheme is established. Numerical applications are treated in Chapter 6.

This work was carried out to support the development of the in-house tools used by
TOTAL for process control and optimization in refining. It has been the subject of the
following publications :

• C.-H. Clerget, J.-P. Grimaldi, M. Chèbre, and N. Petit, “Run-to-run control with
nonlinearity and delay uncertainty”, in Proc. of the 11th IFAC Symposium on
Dynamics and Control of Process Systems, including Biosystems, DYCOPS-CAB
2016

• C.-H. Clerget, J.-P. Grimaldi, M. Chèbre, and N. Petit, “Optimization of dynamical
systems with time-varying or input-varying delays”, in Proc. of the 55th IEEE
Conference on Decision and Control 2016

• C.-H. Clerget, N. Petit, and L. T. Biegler “Dynamic optimization of a system with
input-dependant time delays”, in Proc. of the Foundations of Computer Aided
Process Operations / Chemical Process Control FOCAPO/CPC 2017
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• M. Chèbre, N. Petit, C.-H. Clerget, and J.-P. Grimaldi “Scalable integrated solution
for real time estimation, control and optimization of the quality of fuels manufactured
in refineries: an industrial story”, in Proc. of the IFAC 2017 World Congress

• C.-H. Clerget, J.-P. Grimaldi, M. Chèbre, N. Petit, “An example of robust internal
model control under variable and uncertain delay”, in Journal of Process Control,
2017 (in press)

All the computations of this thesis are performed using a 2.60 GHz Intel(R) Core(TM)
i7-4720HQ processor on a 64 bits system with a 16.0 GB RAM. We will denote as CPUtime
the CPU time of a given task.



Introduction aux problèmes de
retards variables en automatique

Dans cette thèse, nous étudions certains aspects du problème général de la commande des
systèmes à retards. De tels phénomènes de retards sont bien connus dans les industries de
procédés, qui constituent notre principal champs d’application. Ceci étant, il ne s’agit pas
du seul domaine dans lequel la présence de retards est fréquente. Les retards constituent
un problème central pour de nombreuses applications en automatique, par exemple pour
le contrôle de systèmes en réseau (voir [Ric03]), en aéronautique (voir [Ash69], [HLF94],
[BPK10] ou [ETTA16]), en contrôle moteur (voir [DA05], [LCP09], [Lep09], [LCP12],
[BPCP14], [GPP+17] ou [SGHO17]), dans les industries manufacturières (voir [GH98]), en
dynamique des populations (voir [Hri97] ou [LSLA09]) ou encore en ingénierie biomédicale
(voir [RDBH98], [LS07] ou [dLMS09]).

Dans les industries chimiques, les retards peuvent avoir plusieurs causes. Ils sont
en général causés par le procédé lui-même, son instrumentation ou les technologies de
contrôle employées. Une première source de retards vient des processus d’acquisition
de données, des défauts des architectures IT et de la désynchronisation induite entre
réseaux qui conduisent à des retards de communication et des erreurs dans la datation
des mesures (voir [JK09], [Nob12], [MP13] ou [Pet15]). Un autre problème classique en
contrôle de procédés est le fait que les mesures basées sur des analyses d’échantillons
peuvent nécessiter un temps significatif pour être réalisées. Comme l’ont mis en évidence
[FA04] ou [ZB09], les temps de calculs des algorithmes de contrôle avancé peuvent être
importants. C’est en particulier le cas pour la commande prédictive et ses variantes
récentes (commande prédictive adaptative, commande prédictive à critère économique
ou commande prédictive distribuée par exemple) qui emploient des modèles relativement
complexes des procédés (e.g. [RRTP78], [MRRS00], [DBS+02], [QB03], [PR03], [PB07],
[RM09], [SVR+10], [SM11], [MMndlPnCA11] ou [CSMndlPnL13]). En ce qui concerne les
sources de retards propres aux procédés, les schémas réactionnels complexes présentant
des temps d’activation et les retards associés sont des problèmes bien connus en génie
chimique. A une échelle plus macroscopique, les phénomènes de transport de matière
induisent également des retards dans les usines dont les différentes unités ne se trouvent pas
au même endroit. C’est typiquement le cas lorsque certains flux d’alimentation sont loin
du cœur du réacteur ou lorsque des architectures complexes de tuyauterie ou de recyclage
sont présentes. De telles situations avec des retards dus à l’écoulement des produits entre
unités est classique dans de nombreux procédés de raffinage et de pétrochimie comme la
distillation, l’hydrodésulfuration (voir [Bar06] qui fournit des ordres de grandeur du retard
et de sa variabilité) ou le craquage catalytique (e.g. [Kha93] ou [AC99]). Enfin, des retards
sont également souvent utilisés pour construire des modèles simples de systèmes d’ordres
élevés (voire de dimension infinie). Ainsi, une vaste littérature a étudié l’identification
de modèles du premier ordre avec retard (voire [Fed09], [NM14]) et du second ordre avec
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retard (voir [NSS10]). En particulier, de tels modèles peuvent être utilisés en combinaison
avec des algorithmes de réglage automatique de PID (e.g. [LWH13]). Des généralisations
à des modèles d’ordres plus élevés ont également été étudiées (voir [WZ01]).

Du point de vue de l’automatique, la présence de retards dans la dynamique d’un
système soulève de nombreuses difficultés, tant en boucle fermée qu’en boucle ouverte.
Les algorithmes de contrôle en boucle fermée sont généralement utilisés pour rejeter des
perturbations ou stabiliser un système. Dans ce cadre, la présence d’un retard peut causer
plusieurs problèmes : un transitoire dégradé, des oscillations autour de l’état stable et
même une perte de stabilité en boucle fermée (voir [Hal66], [Rug96], [Ric03], [Krs09] ou
[AM10]), des effets de waterbed qui imposent des compromis entre les performances de
suivi de trajectoire et de rejet de perturbations (voir [LD17]). De nombreuses stratégies
existent pour traîter ces problèmes, soit en généralisant les idées du prédicteur de Smith
par le contrôle à modèle interne, soit en utilisant des lois de contrôle intégrales. Le lecteur
intéressé peut consulter [MZ89], [KG03] ou [MN07] pour davantage de détails. Néanmoins,
ces techniques classiques ne traitent que le cas de retards constants. Le cas de retards
variables n’a que récemment été étudié, dans la foulée des travaux novateurs de [KS08],
traitant le retard comme une équation de transport hyperbolique stabilisée en utilisant
les outils du backstepping développés pour le contrôle d’équations aux dérivées partielles.
Dans les nombreuses extensions qui ont été envisagées depuis, l’évolution future du retard
est soit supposée être connue a priori, soit inconnue mais régulière et bornée dans un sens
favorable (voir [ZWSH05], [BPK10], [BLK13b], [BLK13c], [BL14] ou [BPCP14]).

Dans le cadre de la planification de trajectoire en boucle ouverte et de la commande par
modèle prédictif, l’objectif est principalement de limiter les transitoires néfastes conduisant
à la fabrication de produits hors spécifications ou à des régimes de fonctionnement dégradés.
Les principaux outils utilisés dans ce domaine sont la théorie de la commande optimale ainsi
que ses nombreuses implémentations numériques. Dans la plupart des cas, un compromis
doit être trouvé entre la détermination exacte des solutions optimales et des temps de
calcul acceptables en pratique. Le cas à retards constants a déjà fait l’objet d’une étude
approfondie par les automaticiens (voir [Kha61], [Hal68], [SR71], [MZ80], [BRG06], [FT12]
ou [BV16]). Une revue détaillée peut être trouvée dans [GKM09] et [GM14]. Ces travaux
couvrent le cas de retards multiples dans l’état et la commande, en présence de contraintes
d’état, dans le cadre du principe du maximum de Pontryagin, [PBGM62]. En outre, dans
le cadre de systèmes linéaires, les logiciels commerciaux de commande à modèle prédictif
utilisés dans l’industrie permettent généralement de prendre en compte des retards fixes.
Dans la lignée des travaux pionniers de Richalet (voir [Ric93]), l’application DMCplus
d’AspenTech est ainsi devenu très populaire dans le secteur du raffinage, aux côtés de
solutions d’autres fournisseurs comme Honeywell ou ABB. En revanche, il semble que
peu d’attention ait été portée au cas de retards variables. Depuis les travaux fondateurs
de [Ban68], la plus grande partie des efforts de recherche ont porté sur la synthèse de
solutions de problèmes LQR impactés par des retards variables, comme par exemple
dans [CPP10]. A notre connaissance, la seule contribution à l’étude de retards variant de
façon structurée (en fonction de l’état ou de la commande) a été établie dans les travaux
précoces de [Ash69]. Cette étude traitait le cas de retards dépendant de l’état mais ne
semble pas avoir reçue l’attention qu’elle méritait, tant d’un point de vue théorique que
pratique.

Dans cette thèse, nous étudions le cas de retards variables et proposons deux contri-
butions. Dans de nombreuses applications de contrôle, les retards de métrologie liés à
l’instrumentation du système sont en pratique variables. Dans la première partie de notre
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travail, nous étudions ce phénomène sur le cas d’un contrôleur à modèle interne soumis à
un retard variable non structuré et dont le protocole d’acquisition des données ne permet
pas de les dater de façon exacte. Cela conduit à une dynamique en temps échantillonné
présentant un retard variable non structuré. Après quelques étapes de ré-écriture, le
problème se ramène à l’étude de la stabilité asymptotique de la dynamique non linéaire
suivante 

u0 = 0, δ0 = 0
n > 0, un+1 = f−1(c− δn)
δn+1 = δn + α(fp(un−Dn)− f(un−Dn−∆n)− δn)

où Dn ≥ 0 est un retard incertain, ∆n est un terme de désynchronisation, f et fp sont
des fonctions proches, c est un paramètre fixé et α est un paramètre de réglage. Nous
établissons une preuve de convergence robuste en utilisant une technique de preuve originale.
Cette contribution est présentée au Chapitre 2.

Par la suite, nous avons consacré l’essentiel de nos efforts à des problèmes d’optimisation
dynamique. Dans la seconde partie de la thèse, nous considérons une classe de retards
dits hydrauliques (voir [CCP10] et [BPCP14]). De tels retards sont définis par la relation
suivante ∫ t

ru(t)
φ(τ) dτ = 1

où u est un sous-ensemble de variables du système (typiquement une partie des variables
de contrôle telles que des débits), φ une fonction à valeurs réelles strictement positives et
ru = t−Du(t) la fonction des temps retardés. Ce type de retards est la solution exacte
d’une équation d’écoulement piston, d’où sa désignation comme hydraulique. Étant donné
un critère général à minimiser, nous étudions le problème du contrôle optimal de tels
systèmes dont la dynamique présente ce type de retards. En amont de notre analyse, nous
réalisons des investigations numériques préliminaires dans le Chapitre 3. Elles permettent
de mettre en évidence la nature riche des solutions optimales au contrôle d’un procédé
simple ainsi que les limitations de l’état de l’art sur ces problèmes.

Ayant rencontré des difficultés dans le traitement numérique de cet exemple, nous
réalisons le calcul des variations de ce problème pour caractériser la structure de ses
solutions optimales dans le Chapitre 4. Cette étude met en évidence qu’une formulation
naïve du problème n’est pas différentiable. Ces résultats forment la base des développements
du Chapitre 5 dans lesquelles une procédure complète est proposée pour résoudre ce type
de problèmes. Cette procédure implique une régularisation du problème et sa résolution
par un algorithme de point fixe. Une preuve de convergence de cet algorithme est présentée.
Les applications numériques sont traitées dans le Chapitre 6.

Ce travail a été réalisé pour permettre l’améliorations d’outils propriétaires développés
chez TOTAL pour le contrôle et l’optimisation de procédés de raffinage. Il a fait l’objet
des publications suivantes :

• C.-H. Clerget, J.-P. Grimaldi, M. Chèbre, and N. Petit, “Run-to-run control with
nonlinearity and delay uncertainty”, in Proc. of the 11th IFAC Symposium on
Dynamics and Control of Process Systems, including Biosystems, DYCOPS-CAB
2016

• C.-H. Clerget, J.-P. Grimaldi, M. Chèbre, and N. Petit, “Optimization of dynamical
systems with time-varying or input-varying delays”, in Proc. of the 55th IEEE
Conference on Decision and Control 2016
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• C.-H. Clerget, N. Petit, and L. T. Biegler “Dynamic optimization of a system with
input-dependant time delays”, in Proc. of the Foundations of Computer Aided
Process Operations / Chemical Process Control FOCAPO/CPC 2017

• M. Chèbre, N. Petit, C.-H. Clerget, and J.-P. Grimaldi “Scalable integrated solution
for real time estimation, control and optimization of the quality of fuels manufactured
in refineries: an industrial story”, in Proc. of the IFAC 2017 World Congress

• C.-H. Clerget, J.-P. Grimaldi, M. Chèbre, N. Petit, “An example of robust internal
model control under variable and uncertain delay”, in Journal of Process Control,
2017 (in press)

Tous les calculs réalisés dans cette thèse utilisent un processeur 2.60 GHz Intel(R)
Core(TM) i7-4720HQ sur un système 64 bits avec 16.0 GB de RAM. Nous noterons
CPUtime le temps CPU nécessaire pour une accomplir une certaine tâche.



Chapter 2

A problem of robustness to
uncertain metrology delay

Robustesse à des retards de métrologie incertains. Dans ce chapitre, nous présen-
tons un exemple simple de système soumis à des retards de mesure variables et incertains.
Ces retards n’ont pas de structure permettant de les compenser simplement dans le con-
trôleur. Nous établissons un résultats de convergence robuste sous une condition de petit
gain.

2.1 Introduction
In this chapter, we investigate the effects of delay variability and uncertainty on the
classic Internal Model Controller (IMC, see e.g [MZ89]) of a single-input single-output
(SISO), static, nonlinear, sampled-data process with delayed measurements whose dating is
uncertain. As is well-known, the uncertainty and the variability of delays lead to challenging
control problems that may jeopardize closed-loop stability, see [Krs09], [HOS+16] and
references therein. It is also known, see [WHQ+05], that metrology delays coupled with
inaccurate process models could lead to closed-loop instability. As discussed earlier in this
thesis, the general treatment of these issues is still an open problem.

The process under consideration and its controller constitute a sampled-data system
(following the terminology employed in e.g. [CF95], [FSR04]) which can be reformulated
using a classic discrete time representation. The specific case under consideration is
actually also formally very similar to a scalar run-to-run controller, the robustness of which
is not trivial. Run-to-run control is a popular and efficient class of techniques, originally
proposed in [SGHH91], specifically tailored for processes lacking in situ measurement for
the quality of the production (see [WGD09]). Numerous examples of implementations
have been reported in the semiconductor, and materials industry, in particular, see
e.g. [WGD09, MdCH00] and references therein. Indeed, the field of run-to-run control
encounters two of the practical problems addressed in this chapter: nonlinear model
uncertainty and variable metrology delays. While these issues have often been reported
(see, e.g. [WHQ+05], [GQ02], [FSB03], [WP15]), they have not received any definitive
treatment from a theoretical viewpoint.

In the problem considered here, model uncertainty stems from the interactions between



20 Chapter 2. A problem of robustness to uncertain metrology delay

the input and the system states which can be rather complex, and, in turn, cause some
non-negligible uncertainty on the quantitative effects of the input. On the other hand,
the measurements are available after a long time lag covering the various tasks of sample
collection, receipt, preparation, analysis and transfer of data through an information
technology (IT) system to the control system. Measurements are thus impacted by large
delays, which can be varying to a large extent, and in some applications be state- or
input-dependant. As detailed in the introduction of this thesis, this variability of the delay
builds up with the intrinsic IT dating uncertainty, because, in numerous implementations,
no reliable timestamp can be associated to the measurements. The delay variability cannot
be easily represented by Gaussian models (e.g. additive noise on the measurement), nor
can it be fully described as deterministic input or state dependant delay, nor known
varying delays that could be exactly compensated for by predictor techniques (as done in
e.g. [BPCP12, BPCP14, BLK13b, BLK13c, BLK13a]).

In the absence of measurement dating uncertainty, robust stability in the presence of
model mismatch can be readily established, using the monotonicity of the system and
model which is formulated here as an assumption. The study of measurement dating
uncertainty effects is more involved. Once expressed in the sampled time-scale, the control
scheme exhibits a variable delay discrete-time dynamics. No straightforward eigenvalues or
Nyquist criterion analysis (see [GQ02]) can be used to infer stability. Instead, a complete
stability analysis in a space of sufficiently large dimension, with a well chosen norm, yields
a proof of robust stability under a small gain condition. Interestingly, this small-gain
bound is reasonably sharp, so that it can serve as guideline for practical implementation.
The novelty of the approach presented in this chapter lies in the proof technique. It does
not treat the uncertainty of the delay using the Padé approximation approach considered
in [ZCMC09], but directly uses an extended dimension of the discrete time dynamics.
It is believed that these arguments of proof could be extended to address more general
problems, in particular to higher dimensional forms (lifted forms) usually considered to
recast general iterative learning control into run-to-run as is clearly explained in [WGD09].

The chapter has two objectives. After laying out a precise problem statement in
Section 2.3, it establishes robust stability results with respect to model mismatch when
measurements are delayed but exactly dated in Section 2.4.1. Then, it extends robust
stability to small model errors when measurements are delayed and their dating is uncertain
in Section 2.4.2. Those results are illustrated through simulations in Section 2.5.

2.2 Notations
Given I an interval of R, and f : I → R a smooth function, let us define

‖f‖∞ = sup
x∈I
|f(x)|

For any vector X, note ‖X‖1, ‖X‖2 and ‖X‖∞ its 1-norm, its Euclidean norm and its
infinity norm, respectively. Note ‖.‖∗ any of the vector norms above. For any square
matrix A, note ‖A‖∗ the norm of A, subordinate to ‖.‖∗. Classically (e.g. [Hig08]), for all
A, B, one has

‖AB‖∗ ≤ ‖A‖∗‖B‖∗
We note bxc the floor value of x, mapping x to the largest previous integer.

For any matrix of dimension s, define Ei the matrix of general term ek,l

∀(k, l), ek,l = δk,sδl,i (2.1)
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Figure 2.1: Examples of possible monotonic and smooth input-output mappings f ,
courtesy of TOTAL

where δ is the Kronecker delta δi,j = 1 if i = j and 0 otherwise.

2.3 Problem statement and proposed solution

2.3.1 Plant under consideration (delay-free)
We note y the controlled variable (output) of the considered plant and u the control
variable (input). It is assumed that there exists fp a strictly monotonous smooth function
such that

y = fp(u) (2.2)

Although fp is unknown, we can use a model of it, f , which is also smooth and monotonous1,
such that fp(0) = f(0). Usually, f is a rough estimate of fp. Typical models are represented
in Figure 2.1. For the simulations considered in this chapter, the model error can be as
large as 20-40%, which is representative of industrial applications requirements.

The target value c for the controlled variable is assumed to be reachable by both the
system and the model, i.e. there exists uc and ũc verifying

fp(uc) = c, f(ũc) = c (2.3)
1In practice, it can result from the analysis of sensitivity look-up tables obtained from experiments

and derivation of interpolating models.
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2.3.2 Metrology delay
A measurement system provides estimates of y with some time delay in a sampled
manner. In many cases, this delay is time varying. Depending on the IT structure,
measurements dating is usually done either using timestamping or an a priori estimation
of the measurement delay. Either way, exact measurement dating is usually impractical,
and some uncertainty on the measurement delay must be considered.

In the system considered in this chapter, the measurements available for feedback in
a control loop thus have two specificities. They are delayed and the measurement delay
0 ≤ D itself is varying and uncertain. With 0 ≤ D̂ the available estimation of D, we note
∆ , D̂ −D the mismatch. Next, we formulate two modelling assumptions
Assumption 1. There exits Dmax such that D ≤ Dmax.
Assumption 2. There exits ∆max such that ∆ ≤ ∆max. If Assumption 1 holds, it is clear
from definition that −Dmax ≤ ∆.

2.3.3 Control problem
A closed-loop controller can be designed for system (2.2). Each time a measurement is
received, the control is updated and the value of the control is kept constant until the
next measurement is received, creating piece-wise constant control signals (with varying
step-lengths). Repetitive application of this process generates a sequence of inputs and
outputs. The delay results in shift of index in the measurement sequence.

Formally, the control design should aim at solving the following problem

Problem 2.1

Create a sequence (un) using the approximate model f and the delayed measurements
(fp(un−Dn))n∈N of yn such that lim

n→+∞
fp(un) = c

We propose a simple nonlinear IMC algorithm to address the problem. This algorithm
adapts a bias term used in a model inversion. Assuming that one could estimate exactly
the measurement delay Dn, the implementation of such an algorithm would be

u0 = 0, δ0 = 0, α ∈]0; 1]
n > 0, un+1 = f−1(c− δn)
δn+1 = δn + α(yn−Dn − f(un−Dn)− δn)

(2.4)

with yn−Dn = fp(un−Dn). (2.4) can be wrapped up in the following usual block diagram of
Figure 2.2.

However, the uncertainties in measurements dating have an impact on the controller
dynamics. Instead of (2.4), one is able to implement the following

u0 = 0, δ0 = 0
n > 0, un+1 = f−1(c− δn)
δn+1 = δn + α(yn−Dn − f(un−D̂n)− δn)

When ∆n = D̂n −Dn 6= 0, this becomes
u0 = 0, δ0 = 0
n > 0, un+1 = f−1(c− δn)
δn+1 = δn + α(yn−Dn − f(un−Dn−∆n)− δn)

(2.5)
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Figure 2.2: Idealized closed-loop control scheme.
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Figure 2.3: Realistic closed-loop control scheme.

where ∆n is a dating uncertainty term. The situation is pictured in Figure 2.3. To
show that (2.5) constitutes a viable solution to our control problem 2.1, it is necessary to
investigate the closed-loop stability of the controller in this case.

2.4 Convergence analysis

2.4.1 Convergence with model mismatch and delay but without
measurement dating uncertainty

In the analysis, three problems must be treated: model mismatch, delayed measurements
and measurement dating uncertainty.

We first consider the system without the later. Used in closed loop, controller (2.4)
gives 

u0 = 0, δ0 = 0, δ1 = α(fp(0)− f(0))
n > 0, un+1 = f−1(c− δn)
δn+2 = (1− α)δn+1 + α(δn−Dn+1 − c+ fp ◦ f−1(c− δn−Dn+1))

(2.6)

The asymptotic behaviour of (2.6) is determined by the extended dynamics of (δn) since
convergence of (δn) clearly implies convergence of (un). If (un) and (δn) converge toward
the limits u and δ respectively, then, necessarily,

u = uc and δ = c− f(uc)

We now define the sequence (dn , δn − δ, n ≥ 0). Equivalently, the error dynamics is
represented by the equation

dn+2 = (1− α)dn+1 + α(dn−Dn+1 + fp ◦ f−1(f(uc)− dn−Dn+1))− αc
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Applying the mean value theorem to the function x 7→ x+ fp ◦ f−1(f(uc)− x), one easily
deduces that there exists

an ∈ [min(0, dn−Dn+1); max(0, dn−Dn+1)]

such that
dn+2 = (1− α)dn+1 + α

(
1−

f ′p ◦ f−1(f(uc)− an)
f ′ ◦ f−1(f(uc)− an)

)
dn−Dn+1

Gathering past values of dn over the range n−Dmax, ..., n+ 1 into a single vector Xn, the
system can be written as a linear time varying system (LTV) of dimension p , Dmax + 2

Xn+1 = AnXn (2.7)

where
Xn =

(
dn−Dmax · · · dn+1

)T
with

An = C + αh(an)Fn (2.8)
where

C =



0 1 0 · · · · · · · · · 0
... . . . . . . . . . ...
... . . . . . . . . . ...
... . . . . . . . . . ...
... . . . . . . 0
... 0 1
0 · · · · · · · · · · · · 0 1− α


using the notation (2.1),

Fn = EDmax+1−Dn+1

and
h(an) = 1−

f ′p ◦ f−1(f(uc)− an)
f ′ ◦ f−1(f(uc)− an) (2.9)

One shall note that, h can be interpreted as a metric of the model error: if f ≡ fp,
we do indeed get h ≡ 0. Since (2.7) is a LTV system, establishing its convergence is
non-trivial. Establishing the asymptotic (not to say exponential) convergence of a general
LTV discrete time system is usually a difficult task. In particular, it is not sufficient
to study its eigenvalues (see [Rug95]). Some results have long been available for slowly
varying systems (see [Ros63] for instance) and have recently been refined in [HI10], in
particular. However, in our present case, it is not necessary to use them. The particular
structure of the varying term allows more straightforward investigations.

Define the (infinite) set of possible transition matrices (2.8)

A = {C + αh(x)Ei, x ∈ R, i ∈ J1;Dmax + 1K} (2.10)

Let us assume that ‖h‖∞ < 1. This assumption implies that the set A is bounded.
Consider a sequence of n transition matrices (Ak)k∈J0;n−1K ∈ An and for i ∈ J0;n− 1K note

Ak = C + αhkEik
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Define

∀k ∈ J1;nK, Πk =
k∏
i=1

Ak−i =


Lk1
...
Lkp

 (2.11)

where Lki designates the ith row of the product of the k matrices. Calculating the product
Πk+1, one obtains that

Lk+1
Dmax+2 = (1− α)LkDmax+2 + αhk+1L

k
ik+1

While for j ∈ J1;Dmax + 1K
Ljk+1 = Lj+1

k

It follows that

‖Lk+1
Dmax+2‖1 ≤ ((1− α) + α‖h‖∞︸ ︷︷ ︸

<1

) max(‖LkDmax+2‖1, ‖Lkik+1
‖1)

Recursively, it is then straightforward to show that

‖ΠDmax+1‖∞ = max
j∈J1;Dmax+2K

‖LDmax+1
j ‖1 ≤ (1− α) + α‖h‖∞ (2.12)

Now, we establish a preliminary result. Consider a discrete linear time-varying sys-
tem (2.13) of dimension s, and A a bounded set of possible transition matrices inMs(R)
and initial condition X0

∀n ≥ 0, Xn+1 = AnXn, An ∈ A (2.13)

For any vector norm ‖.‖∗ and any N ∈ N∗, we define

MN,∗ , sup
AN−i∈A

‖
N∏
i=1

AN−i‖∗ = sup
Ai∈A

‖
N−1∏
i=0

Ai‖∗ (2.14)

Proposition 2.1: Sufficient condition for exponential stability

Consider the system (2.13). If there exists N0 ∈ N∗ such that MN0,∗ < 1, then the
system (2.13) (globally) exponentially converges to 0. One has, for some K > 0,

∀n ∈ N∗, ‖Xn‖∗ ≤ K‖X0‖∗ (MN0,∗)
⌊
n
N0

⌋
(2.15)

Proof. The proof is relatively straightforward

∀n ∈ N, Xn =
n∏
i=1

An−iX0

Hence, grouping terms in N0-size bundles starting from the right

‖Xn‖∗ ≤ ‖
n−
⌊
n
N0

⌋
N0∏

i=1
An−i‖∗ ×

⌊
n
N0

⌋
∏
i=1
‖
N0∏
j=1

A⌊
n
N0

⌋
N0−(i−1)N0−j

‖∗‖X0‖∗
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and

‖Xn‖∗ ≤M
n−
⌊
n
N0

⌋
N0,∗

M

⌊
n
N0

⌋
N0,∗ ‖X0‖∗

Besides,
∀n ∈ N, 0 ≤ n−

⌊
n

N0

⌋
< N0

Hence, we get the desired result by defining

K , max
k∈J0;N0−1K

Mk,∗

�

As a consequence, using the notation (2.14)

MDmax+1,∞ = sup
(Ai)∈ADmax+1

‖ΠDmax+1‖∞ < 1

which, according to Proposition 2.1, means that the (Xn) sequence is exponentially con-
vergent. This, in turn, allows us to formulate the following result

Theorem 2.1: Global convergence without measurement dating uncer-
tainty

Let ∆ = 0. Consider any 0 < α ≤ 1.
If ‖h‖∞ < 1, then the closed loop error (2.6) converges exponentially and

lim
n→+∞

fp(un) = c

Remark 2.1. In particular, one can notice that f ′ and f ′p must have the same sign so
that the condition ‖h‖∞ < 1 can be verified. In this case, if

0 < ‖
f ′p
f ′
‖∞ < 2 (2.16)

then the sufficient condition is satisfied.

Remark 2.2. The result derived in Theorem 2.1 is a sufficient condition for the controller
stability. We can still get some additional insight into the controller behaviour by studying
the particular case in which Dmax = ∆max = 0. Then, we derive a necessary stability
condition from a straightforward eigenvalue analysis showing that the equilibrium point of
the system is locally stable if and only if

0 ≤
f ′p(uc)
f ′(uc)

≤ 1 + 1
α

(2.17)

If α = 1, this shows that the sufficient condition previously derived is also necessary.
Otherwise, this shows that taking α < 1 small enough may allow one to stabilize systems
where the ratio f ′p

f ′
is greater than 2 (actually, this is indeed observed in simulations).
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2.4.2 Convergence with measurement dating error
We now consider the implementation of the controller (2.5) with measurement dating
uncertainty causing the discussed mis-synchronization between measurement and prediction
with ∆ 6= 0.

Using the same transformation as in Section 2.4.1, we establish the closed-loop error

dn+2 = (1− α)dn+1+α
(
fp(f−1(f(uc)− dn−Dn+1))− f(uc) + dn−Dn+1−∆n+1

)
− α(c− f(uc))

Applying the mean value theorem, we get

dn+2 = (1− α)dn+1 − αρ(an)dn−Dn+1 + αdn−Dn+1−∆n+1

where
ρ = 1− h

and
an ∈ [min(0, dn−Dn+1); max(0, dn−Dn+1)]

The system can be written as a LTV system of dimension p , Dmax + ∆max + 2

Xn+1 = AnXn (2.18)

where
Xn =

(
dn−Dmax−∆max · · · dn+1

)T
with

An = C + αFn − αρ(an)F ′n (2.19)

and, with the notation (2.1),
Fn = Ep−1−Dn+1−∆n+1

and
F ′n = Ep−1−∆n+1

2.4.3 Convergence analysis without model error
Let us first assume that there is no model error. Under this assumption

ρ = 1

and the transition matrices An of the dynamics (2.18) all belong to the finite set

A = {C + αEk − αEk′ , (k, k′) ∈ J1; p− 1K× Jp− 1−Dmax; p− 1K} (2.20)

Consider a sequence of n transition matrices (Ai)i∈J0;n−1K ∈ An. Similarly to Sec-
tion 2.4.1, define

∀k ∈ J1;nK, Πk =
k∏
i=1

Ak−i =


Lk1
...
Lkp

 (2.21)
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where Lki designates the ith row of the product of the k matrices. The convergence analysis
is built recursively upon the fact that there exists K > 0 such that for all n ∈ N∗

Mn,∞ = ‖
n∏
i=1

An−i‖∞ ≤ Kηb
n−1

p+Dmax c (2.22)

where
η , max

r∈J1;Dmax+1K
1− α

(1− α)r + 2α
1− α(1− (1− α)r) (2.23)

For all n ≥ 2, it is clear that

∀j ∈ J1; p− 1K, Lnj = Ln−1
j+1 (2.24)

and

∃(rn,mn) ∈ J1; p− 1K2, Lnp = (1− α)Ln−1
p − αLn−1

p−rn + αLn−1
p−mn (2.25)

We wish to prove that there exists K such that the following relation holds for all n ≥ 0

∀j ∈ J1; pK, ‖Lnj ‖1 ≤ Kηb
n+j−2
p+Dmax c (2.26)

Let us define
K , max

(A0,...,An−1)∈An

(
max

i∈J1;Dmax+1K
‖Lip‖1

)
It is clear that (2.25) is true for all indexes from 2 to Dmax + 1. Given n ≥ Dmax + 1,

let us assume that the property is true for this rank. One has

Πn+1 =
n+1∏
i=1

An+1−i =


Ln+1

1
...

Ln+1
p


with

∀j ∈ J1; p− 1K, Ln+1
j = Lnj+1

and
Ln+1
p = (1− α)Lnp − αLnp−rn+1 + αLnp−mn+1

Hence, according to (2.24)

Ln+1
p = (1− α)Lnp − αLn−rn+1

p + αLnp−mn+1 (2.27)

To proceed to the induction, we choose to develop the second term of (2.27). According
to (2.25) at rank n

Ln−rn+1+1
p = (1− α)Ln−rn+1

p − αLn−rn+1
p−rn−rn+1+1 + αL

n−rn+1
p−mn−rn+1+1

It follows that

Ln−rn+1
p = 1

1− α(Ln−rn+1+1
p + αL

n−rn+1
p−rn−rn+1+1 − αL

n−rn+1
p−mn−rn+1+1) (2.28)

As a consequence, after substitution with (2.28), (2.27) gives

Ln+1
p = (1− α)Lnp + αLnp−mn+1
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− α

1− α(Ln−rn+1+1
p + αL

n−rn+1
p−rn−rn+1+1 − αL

n−rn+1
p−mn−rn+1+1)

Recursively, from rank n− rn+1 + 1 to n, we get

Ln+1
p = [(1− α)− α

(1− α)rn+1
]Lnp + αLnp−mn+1

− α2
rn+1−1∑
i=0

1
(1− α)i+1 (Ln−rn+1+i

p−rn−rn+1+1+i − L
n−rn+1+i
p−mn−rn+1+1+i)

Then, if the following condition holds

0 ≤ (1− α)− α

(1− α)rn+1
(2.29)

Using one cancellation and a careful succession of terms reorderings, one has

‖Ln+1
p ‖1 ≤

1− α

(1− α)rn+1
+ 2α2

rn+1−1∑
i=0

1
(1− α)i+1

 max
j∈J1;pK

k∈Jn−rmax;nK

‖Lkj‖

And, finally, using the explicit summation of the geometric sequence

‖Ln+1
p ‖1 ≤

(
1− α

(1− α)rn+1
+ 2α

1− α(1− (1− α)rn+1)
)

max
j∈J1;pK

k∈Jn−Dmax;nK

‖Lkj‖

which leads, by induction with (2.26), to

‖Ln+1
p ‖1 ≤ Kηb

n−Dmax+1−2
p+Dmax c+1

and after a simplification
‖Ln+1

p ‖1 ≤ Kηb
(n+1)+p−2
p+Dmax c

This proves (2.26) at rank n + 1. As a consequence, (2.22) directly follows using the
relation between the infinity norm of a matrix and the one norm of its rows

∀n ∈ N, ‖Πn‖∞ = max
i∈J1;pK

‖Lni ‖1

2.4.4 General case
Based on this first result, we introduce a small model error, and formulate an extension by
continuity. This last result shows that the proposed controller solves the control problem
at stake, in the presence of model mismatch, delayed measurements and dating error.

According to (2.22) there exists N0 ∈ N such that if there is no model error

MN0,∞ ≤
1
2

With model error, any transition matrix of the dynamics An can be written under the
additive form

An = A0
n + Pn (2.30)

where A0
n is a matrix of the set (2.20)

A0
n ∈ {C + αEkn − αEk′n , (kn, k′n) ∈ J1; p− 1K× Jp− 1−Dmax; p− 1K} (2.31)
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and Pn is a perturbation matrix

Pn = αh(xn)Ek′n (2.32)

with xn a given real number. Consider any collection of N0 such matrices (Ai)i∈J0;N0−1K

and assume that there exists ε > 0 such that ‖h‖∞ ≤ ε, then

‖
N0−1∏
i=0

Ai‖∞ ≤ ‖
N0∏
i=0

A0
i ‖∞ +

N0∑
i=1

CN0−i
N0 (1 + α)N0−iαiεi

≤ 1
2 + ε

N0∑
i=1

CN0−i
N0 (1 + α)N0−iαiεi−1

By upper-bounding the (finite) sum appearing in the right-hand side, it follows that there
exists a sufficiently small value of ε such that for any (Ai)i∈J0;N0−1K

‖
N0−1∏
i=0

Ai‖∞ ≤
3
4 < 1 (2.33)

Then, Proposition 2.1 yields the exponential convergence of Xn and leads to the following
(main) result

Theorem 2.2: Exponential convergence under measurement dating
uncertainty and model mismatch

Let ∆ ≤ ∆max. Consider any 0 < α ≤ 1 such that

0 ≤ (1− α)− α

(1− α)Dmax+1 (2.34)

and
max

r∈J1;Dmax+1K
1− α

(1− α)r + 2α
1− α(1− (1− α)r) < 1 (2.35)

There exists ε ∈ R+ such that, if ‖h‖∞ ≤ ε, then the controller (2.5) is exponentially
stabilizing and guarantees

lim
n→+∞

fp(un) = c

Remark 2.3. In particular, one sees from (2.22) that the larger Dmax and ∆max is, the
slower the guaranteed convergence rate is.

Remark 2.4. One can easily check that there always exist a neighbourhood of α = 0 on
which conditions (2.34)-(2.35) are verified. Indeed

(1− α)− α

(1− α)Dmax+1 −→α→0+
1

and ∀r ≥ 1
1− α

(1− α)r + 2α
1− α(1− (1− α)r) = 1− α +O(α2)

While (2.34)-(2.35) are only sufficient conditions derived in a conservative fashion, we
expect that as α increases, it may reach a bifurcation value beyond which the system is no
longer stable. This behaviour is confirmed by numerical simulations in Section 2.5.1.
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Remark 2.5. In terms of controller design specifications, we can draw the following
statements from our analysis :

• the sign of the estimated gain must be correct and its value cannot be too small
compared with the reality. On the other hand, taking an estimated gain larger than
the true one will slow the controller down but cannot jeopardize its stability

• variable delays cause no specific problem of convergence if we assume that exact
measurement dating is available

• if there is dating uncertainty of the measurement, stability can still be retained,
provided that the measurements filtering is strong enough (α small enough)

2.5 Numerical illustration
In this section, we consider a setting where each sample is analysed during a certain
lapse of time during which no other sample is taken. New control actions are only
implemented when a new measurement result is received. In that way, the time-sampled
measurement delay is always zero (Dn = 0, Dmax = 0), i.e. the measurement we receive is
always informative of the result of the last control action taken. This is a special case of
Theorem 2.2 which is of practical importance in the implementation of many controllers.
In classic run-to-run cases, nonzero Dmax could be considered, without loss of generality.

We will assume that the actual physical time required for the measurement to reach
the controller, Tp, depends on the measured value according to the following relation

Tp(y) = 8.5− 0.75ymes + 10(ξ1 + ξ2) (2.36)

where ξ1,2 are the realizations of two independent random variables taking the values 0 or
1 with respective probabilities of 1

2 . In some simulations, we will assume that timestamps
are not available and that the times at which the measurements are taken have to be
estimated using an approximate model T of Tp. This estimation may be inexact, thus
leading to dating uncertainty of the measurements, i.e. ∆max ≥ 0. In all simulations, the
target will be c = −10.

2.5.1 Influence of pure dating uncertainty
In this subsection, the response of the system, fp, is assumed to be a simple linear function
of the control u. We further assume that it is perfectly known, so that

fp(u) = f(u) = −25u (2.37)

Furthermore, we consider a situation where no timestamp is available. As a consequence,
Tp must be estimated and we assume that the approximate model available to the controller
is

T (y) = 17− 1.5ymes (2.38)
This mismatch results into nonzero values of ∆ which are plotted to provide a graphical
view of its statistical distribution. We also corrupt the measurements with a zero-mean,
uniform noise of small amplitude to excite the system.

We simulate the response of the system for various values of the gain α. The results
show that while the closed-loop system remains stable for α small enough, as α increases,
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destabilization can arise in absence of any model error on the function fp, simply because
of measurement dating uncertainty. This illustrates the fact that Theorem 2.2 does not
hold after a critical value of α, which is conservatively estimated by conditions (2.34)
and (2.35) (α = 3−

√
5

2 ≈ 0.38). The results of these simulations are shown on Figure 2.4.
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(a) α = 0.38, stable response
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(b) α = 0.80, unstable response

Figure 2.4: No model mismatch, measurement dating error, small measurement error

2.5.2 Influence of the system response uncertainty
We further illustrate Theorem 2.2 by simulating the closed-loop response of the system
with a model mismatch (but without any measurement noise). We assume that fp is given
by

fp(u) = −8.4339− 6 arctan(8u− 6) (2.39)
and f by

f(u) = −25u (2.40)
We first run the simulations without measurement dating error with three different

values of α corresponding to a low (α = 0.38 discussed above), medium (α = 0.60) and
high (α = 0.80) filtering. Figure 2.5 shows the results of the simulations. Despite model
mismatch, all of them display asymptotically stable responses.
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Figure 2.6 then shows the results of the simulations where measurement dating error
is introduced (the previous expressions for Tp and T are used). One sees that beyond
a critical value for the gain α, the response becomes increasingly poor, and eventually
becomes unstable for the high α scenario.

These simulations illustrate the merits of the theoretical results established in this chap-
ter. A tuning of the controller gain following the (conservative) estimate provided by the
small-gain condition gives satisfactory closed-loop responses even when the measurement
dating error is not negligible. If the gain is chosen above the threshold, some divergence
(or strong oscillations) can be observed. The situation is similar with reasonable levels of
measurement noise.

2.6 Conclusions
As a static SISO control problem, the core problem tackled in this chapter appears, at first
sight, as simple as it could be. However, the variability and uncertainty of the delay makes
the problem particularly tricky. We have provided explicit robustness margins in regard
of model error and asymptotic analysis on the consequences of uncertain measurement
dating.

In the case where an underlying dynamical system should be considered to model the
system, the preceding approach should be updated, significantly. Because the measurement
will remain sampled by nature, the closed loop system will naturally become a sampled-
data ordinary differential equation as considered in e.g. [FSR04]. Also, it is known that
the introduction of time-varying gains may improve the exponential convergence, when
measurements are subjected to (known) delays. If estimates of the delay are available,
such tuning rules could bring some performance improvement. While the problem becomes
significantly harder due to the time-varying nature of the discretized system transition
matrices, it would be interesting to investigate whether, in a more general context of
multi-input multi-output (MIMO) dynamical systems, an event-triggered discretization
approach such as the one developed here could be used to obtain results on the influence
of measurement dating uncertainty.
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(a) α = 0.38, stable response
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(b) α = 0.80, stable response
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(c) α = 0.60, stable response

Figure 2.5: Model mismatch, no measurement dating error, no measurement noise
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(a) α = 0.38, response remains stable with delay estimation error
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(b) α = 0.60, response starts to exhibit erratic behaviour with delay estimation error
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(c) α = 0.80, response becomes unstable with delay estimation error

Figure 2.6: Model mismatch, measurement dating error, no measurement noise





Chapter 3

Application of direct simultaneous
strategies for dynamic optimization
of systems subject to hydraulic
delays

Application de méthodes de transcription directe pour l’optimisation dy-
namique de systèmes soumis à des retards hydrauliques. Dans ce chapitre,
nous appliquons une méthode de collocations orthogonales pour l’optimisation dynamique
d’un procédé simple présentant un retard hydraulique. Nous mettons en évidence que
les solutions optimales de ce problème possèdent une structure riche. Nous montrons
également les difficultés et les limites que rencontrent ces techniques dans le traitement de
ce type de systèmes à retards variables.

3.1 Introduction
In this chapter, we consider dynamic optimization of systems subject to hydraulic time
delays. The field of dynamic optimization is primarily divided into two types of approaches:
direct and indirect methods. In indirect methods, the problem is viewed as one of functional
analysis (the unknown variables being functions) and its resolution is based upon the
calculus of variations to determine stationarity conditions necessarily satisfied by locally
optimal solutions. These conditions can be derived in a variety of settings using Pontryagin
maximum principle, see [PBGM62]. Classically, this involves the introduction of a dual
(adjoint) variable. The stationarity conditions have the form of a two-point boundary
value problem (TPBVP). The numerical resolution then boils down to finding solutions of
this TPBVP. A detailed overview of methods can be found in [BH69], [RS72], [AMR95],
[Bon02] or [Bon13].

Direct methods, on the other hand, first discretize the input sequence into a vector of
finite dimension and approximate the continuous optimal control problem as a Non Linear
Program (NLP) that can be handled using numerical solvers (see e.g. [Bet01]). Direct
simultaneous methods are a subclass of direct methods. They discretize both the control
and state variables and rely on orthogonal collocations on finite time elements to achieve
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a high-order approximation of the dynamics of the system. The resulting set of discretized
equations can be shown to be equivalent to a high-order implicit Runge-Kutta integration
method (see [Bie10]). Solving the problem then requires the solution of large but very
structured NLP (the Jacobian of the constraints being sparse). This can be efficiently
done using dedicated software packages, such as IPOPT. For further details regarding the
merit of the different types of direct methods and the current state of the art in terms of
direct simultaneous strategies, the reader can refer to [Bie07] for a comprehensive survey
and [FTTMB08] or [SBH16] for detailed case-studies.

These approaches both have well-known advantages and shortcomings. The trade-off
between them is hence very dependant on the applications, and in some cases they can
even be advantageously combined (see [vSB92]). Indirect methods are recognized for their
accuracy and their speed of convergence. However, they require good initial guesses to
converge. More critically, the treatment of constraints is difficult in indirect methods and
requires a good a priori knowledge of the solution structure. Specifically, the number
of constrained arcs in the optimal solution needs to be estimated a priori in order to
parametrize the resolution of the problem. They have found their main applications in the
field of aerospace control, (see for instance [BCT07], [BH09], [ABM11] or [Tré12]). Direct
methods, on the other hand, are much more robust to poor starting guesses and allow
a straightforward treatment of inequality constraints. They can also be viewed as more
straightforward to implement as no adjoint variable need to be explicitly defined prior
to resolution. Among them, collocation-based simultaneous approaches have attractive
numerical stability and approximation properties.

A problem worth discussing is constraints, both on input and state variables. In
practical process applications, bounds are routinely imposed on variables. Thermodynamic
equilibriums also frequently give rise to algebraic relations between variables that can not
be easily written-off and can hamper the stability of the solutions.

Time constants in process industries are relatively larger than in most other control
applications. Nowadays, the computational burden associated with the resolution of direct
formulations of dynamic optimization is considered as tractable for many applications with
standard (desktop) computers. Generally speaking, real-time implementations of MPC can
take advantage of the results of the previous iterations to provide a good initialization point
for the following run. A practical discussion regarding the implementation of such “warm-
start” procedure for primal-dual interior point methods (such as the one implemented in
IPOPT) can be found in [Man15]. Alternatively, strategies such as advanced-step MPC
(see [ZB09]) where an optimal solution is pre-computed between sampling instants based
on a prediction of the future state and very quickly updated using a sensitivity analysis
when a new measurement is received can be considered.

For these reasons, direct methods are usually favoured in this field and we have decided
to treat the class of systems under consideration in this thesis using these state of the art
solutions, specifically a collocation-based simultaneous strategy. This is the topic covered
in this chapter. In Section 3.2, we briefly review some of the existing literature on the
application of collocation-based simultaneous approaches for dynamic optimization of
systems subject to time delay and emphasize the specific challenges raised by the case of
input-dependant hydraulic delays. In Section 3.3, we introduce a tutorial example of a
water heater subject to such delays. It will serve as illustrating example. In Section 3.4,
we present a resolution strategy based on the use of a partial differential equation (PDE)
to describe the delay equation and its approximation by a finite-order model. Several
discretization strategies are presented, along with their numerical results. As will appear,
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the results stress the rich (complex) nature of the optimal solution, and the numerical
difficulties. Their limits motivate the investigation of an alternative approach in the next
chapters of the thesis.

3.2 Direct simultaneous methods for systems subject
to delays

Delays cause specific concerns in the field of simultaneous methods, because they require
specific tools in their numerical simulation. A rich body of literature has long studied the
numerical simulation of delay-differential algebraic equations (DDAE). Useful references
can be found in [BK79], [KV94] or [AP95]. In particular, the implementation of collocation
methods has been studied, for instance in [GH01]-[BCT15].

However, to the best of our knowledge, there exists no contributions on dynamic opti-
mization using such schemes for input or state dependant delays. Indeed, the formulation
of this case seems to raise specific difficulties. In order to illustrate this, let us consider a
system defined by a state variable x, a control variable u and a hydraulic delay ru such
that the dynamics be given by

∀t ∈ [0;T ] , ẋ(t) = f (x(t), x(ru(t)), u(t))) (3.1)

and ∫ t

ru(t)
φ(u(τ))dτ = 1

with f and φ > 0 smooth functions. Consider a collocation mesh defined by Nc ≥ 1 finite
elements of time of equal size h = T

Nc
, each containing K collocation points. We note

tij the time instant associated to the jth collocation point of the ith time element and ti
the endpoint of the ith time element. In general, the time instants ru(tij) have no reason
to match the discretization points of the collocation mesh and the transcription of (3.1)
requires the local interpolation at each mesh point tij of x(ru(tij)). This might seem a
minor difficulty as, typically, noting U = (ui)J1;NcK the vector of discretized inputs and
using a Lagrange interpolation formula, one has

ỹ(ru(tij)) ≈
K∑
k=1

Lk

(
rU(tij)− ti−d(U)−1

h

)
yi−d(U),k (3.2)

where d(U) is defined as
rU(tij) ∈

[
ti−d(U)−1; ti−d(U)

[
However, (3.2) raises the problem of being non differentiable at every point where there
exists integers (i, j, k) ≥ 0 such that rU (tij) = tk. This is made apparent by the equivalent
representation using binary variables

ỹ(ru(tij)) ≈
Nc∑
r=r0

δr
K∑
k=1

Lk

(
rU(tij)− tr−1

h

)
yr,k

where
δr =

{
1 if rU(tij) ∈ [tr−1; tr[
0 if rU(tij) 6∈ [tr−1; tr[

The complexity of optimization problems involving binary variables (MINLP, e.g. [Gro02])
is such that such a formulation is not suitable for a dynamic optimization applications.
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Figure 3.1: Schematic of the water heating process from [MSP08]

3.3 Example of application with hydraulic delay
The system under consideration here is a flow rate controlled water heater with downstream
measurements (pictured on Fig. 3.1) first introduced in [MSP08] and [HT06] (where
complete description of the test bench is given) to outline the challenges associated with
closed-loop control of systems featuring hydraulic time delays. It is composed of a tank
filled with a constant volume V of water and heated by a fixed thermal flux Q. A controlled
flow rate of water q passes through the tank, coming in at a fixed inlet temperature Tin.
Since water gets heated as it flows through the tank, the outlet temperature of the tank
is higher than Tin. After having left the tank, water flows through a pipe of (constant)
cross-section S over a length L. The variable one measures and seeks to control is the
temperature To at the outlet of this pipe.

Neglecting heat losses, the average temperature in the tank T (t) satisfies the following
balance equation

dT (t)
dt

= Q

ρcpV
+ q(t)

V
(Tin − T (t))

, f(T, q)
(3.3)

where ρ, cp and Q are the density of water, its specific heat and the power of supplied
heat, respectively. Assuming instantaneous mixing in the tank, one has

To(t) = T (t−D(t, q)) = T (rq(t))

with ∫ t

t−D(t,q)
q(τ) dτ = LS

In our numerical investigations, we will take Q = 107 J.s−1, ρ = 103 kg.m−3, cp =
4185 J.kg−1.K−1, V = 1 m3, L = 0.5 m, S = 1 m2, Tin = 0°C . Given some desired
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reference signals Tr and qr (chosen to be consistent with the desired steady-state value
Tr), the optimal control problem under consideration is

min
q

∫ T

0
‖To(t)− Tr(t)‖2 + w · ‖q(t)− qr(t)‖2 dt

s.t. Ṫ = f(T, q)
To(t) = T (rq(t))
T (t ≤ 0) = T0

qmin ≤ q(t) ≤ qmax

(3.4)

3.4 Numerical implementation and results
As discussed in Section 3.2, the transcription of the optimal control problem (3.4) into
a smooth NLP using orthogonal collocations is directly not possible. As a consequence,
instead of working directly with the delayed equation, a classic idea is to replace it with
the underlying transport equation governing the system (e.g. [SBH16]). This leads to the
following optimization problem

min
q

∫ T

0
‖To(t)− Tr(t)‖2 + w · ‖q(t)− qr(t)‖2 dt

s.t. Ṫ = f(T, q)
∂Z

∂t
(x, t) = −q(t)

S

∂Z

∂x
(x, t), x ∈ [0;L]

To(t) = Z(L, t)
Z(0, t) = T (t)
Z(x, 0) = T0, x ∈ [0;L]
qmin ≤ q(t) ≤ qmax

(3.5)

Formally, this change of representation does not generate any approximation (equation (3.3)
is the exact solution of the PDE of (3.5), see [BP12]).

The resolution of (3.5) requires the discretization of the transport PDE. It is well-known
that good numerical schemes can be obtained for transport phenomena using finite volumes
methods (see [Lev04]). Classically, space is divided into a set of cells over which averaged
properties are defined (with a running index j)

Tj(t) = 1
∆x

∫ x
j+ 1

2

x
j− 1

2

Z(x, t) dx

We follow the approach described in [Aga10] based on the use of the Method of Lines
(MOL) by discretizing the PDE only with respect to space into a set of ordinary differential
equations. Such a (second-order accurate) scheme defined over a mesh of N cells is given
by

dTn
dt

= −q(t)∆V

(
Tn(t)− Tn−1(t) + 1

2 (Tn(t)− 2Tn−1(t) + Tn−2(t))
)

T0(t) = T1(t) = T (t), To(t) = TN(t), ∆V = VL
N − 1

(3.6)

Now, using (3.6) we have a standard optimal control problem, the resolution of which
is straightforwardly implemented using a simultaneous transcription strategy (see [Bie07]).
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The discretization of the ODEs is achieved using 3 Radau collocation points (see [AS65]) in
each time finite element and the discretized optimisation problems are solved using IPOPT
3.11.8 through the algebraic modelling language AMPL (see [Bie10]). All simulations are
initialized using a constant solution where T = 2°C and q has the consistent stationary
value.

The numerical results of this method are shown on Figures 3.2-3.3 (in both cases the
number of finite time elements of the collocation mesh is taken equal to Nc = 100). T and
To are the values computed by the optimizer while To,ex is the value of To computed a
posteriori by a high fidelity simulator (using a very refined upwind scheme). Figure 3.2
displays the optimal trajectories computed with w = 0.1 for two values of N (10 and 50).
Good results are achieved in both cases. Refining the spatial discretization by a factor of 5
allows us to decrease the discrepancy between the value of To predicted by the optimizer
and the actual realization of the trajectory. This must however be paid by a large increase
in computation time (by a factor close to 40). Furthermore, in both cases, the resolution of
the problem suffers from ill-conditioning. More precisely, the Newton method that IPOPT
follows requires the Jacobian of the KKT matrix to be definite positive. This is true if he
constraint Jacobian is full row rank and the reduced Hessian is positive definite. If this
condition is not verified, or the numerical conditioning of the matrix is too poor, IPOPT
must regularize it by adding a damping term to the Hessian (this behaviour appears for
N ≥ 8)1. The interested reader can refer to [WB06] for a detailed presentation of the
line-search method implemented in IPOPT. The log file of IPOPT for the resolution of
the problem in the case with w = 0.1 and N = 50 can also be found in Appendix A (the
definition of the various outputs of IPOPT are available in [Man15]).

Interestingly, in both cases, the structure of the solution is qualitatively the same
and displays an apparently pseudo-periodic behaviour during the transient state. Despite
its complex structure, this type of solution does not necessarily contradict the physical
intuition. Indeed, low flow-rate regimes correspond to phases where the water in the tank
gets heated while high flow-rate regimes lead to a quick flush of the outlet pipe (thus
allowing hot water to reach faster the outlet of the pipe). This cyclic functioning could
hence be described as “heat and flush”.

Figure 3.3 displays the optimal trajectories computed with w = 0.001 for the same two
values of N (10 and 50). Interestingly, it shows that when the regularization parameter w
becomes sufficiently small, the solution of the optimization are subject to strong spurious
oscillations around steady state. Figure 3.3 evidences the fact that refining the spatial
discretization does not seem to solve the problem but actually worsens it.

Numerical results can still be improved by refining the time mesh of the collocation
scheme while keeping the number of actual degrees of freedom on the control input constant
(equality constraints are imposed on a groups of nb adjacent inputs). Figure 3.4 shows
the results obtained when refining the time mesh by a factor 5. While the precision
of optimizer’s prediction is much improved and some of the spurious oscillations of the
solution is removed, this is paid by an increase of computation time by a factor roughly
equal to 5.

Comparable results are obtained using a full discretization, both w.r.t. time and space,
of the PDE using the following second order accurate scheme

Tj(ti+1) = Tj(ti)−
∆t
∆x(Fj+ 1

2
(ti)− Fj− 1

2
(ti))

1In IPOPT these properties can be assessed through the inertia of the matrix. If a regularization term
is used, it is listed as lg(rg).
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Figure 3.2: Optimal trajectories, w = 0.1
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Figure 3.3: Optimal trajectories with MOL, w = 0.001. The input history is sharpened as
the weight w (regularization term) is decreased. The prediction of To by the optimizers
displays a strong discrepancy with its true value
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Figure 3.4: Optimal trajectories with a refined collocation grid, w = 0.001, N = 50, nb = 5,
CPUtime = 115.01 s. The cyclic “heat and flush” behaviour persists but a much higher
accuracy of the prediction of To is achieved compared to Figure 3.3

where

Fj+ 1
2
(ti) = q(ti)

S
Tj−1(ti) + 1

2
q(ti)
S

(1− q(ti)∆t
S∆x )(Tj(ti)− Tj−1(ti))

It should be remembered that this type of finite volumes numerical schemes is only stable
if the Courant-Friedrichs-Lewy [All07] condition is verified

q∆t
S∆x < 1 (3.7)

As a consequence, with such an explicit scheme in time, satisfying (3.7) for a reasonably
large value of N requires a very refined time discretization. In this approach, the transport
PDE is directly transformed into a set of algebraic equations and we only need to apply
collocations to the remaining ordinary differential equation of the tank. To allow N = 40,
we discretize the PDE at 3500 time instants. To keep the comparison meaningful, equality
constraints are once again imposed on adjacent inputs in order to keep the effective number
of degrees of freedom of the control input equal to 100.

The results are displayed on Figure 3.5. As can be seen, this approach achieves excellent
accuracy but at the price of a large increase in computation time with respect to the
findings of Figure 3.3.

3.5 Conclusions
Altogether, this study shows that while interesting results can be obtained using an
approach based on the discretization of the transport PDE (which is an exact representation
of the delay), it presents two main drawbacks:

• even for an elementary system, accurately capturing sharp transient fronts requires
a fine spatial discretization which increases the size of the state and leads to large
optimization problems.
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Figure 3.5: Optimal trajectories with full PDE discretization, wq = 0.001, N = 40,
CPUtime = 142.17 s. The “heat and flush” behaviour is also found. High accuracy of the
optimizer prediction is achieved

• refining the spatial discretization of the PDE leads to problems of numerical con-
ditioning of the Hessian, which adversely affect the performances of the solver and
lead to undesirable behaviour of the solutions (spurious oscillations).

In the remaining of the thesis, we will focus our investigations on the derivation of
a methodology allowing us to exploit our knowledge of the analytical solution of the
transport PDE as a delay equation in order to overcome these issues.



Chapter 4

Calculus of variations for varying
delays

Calcul des variations pour des systèmes à retards variables. Dans ce chapitre,
nous étudions le calcul des variations de problèmes de commande optimale de systèmes
soumis à différents types de retards variables. Nous montrons en particulier que, dans
le cas de retards hydrauliques apparaissant dans la commande, le problème n’est pas
différentiable. Une formulation régularisée est proposée pour éviter cette difficulté et ses
conditions de stationnarités sont calculées.

4.1 Introduction
Prior to developing a sort of indirect numerical method for the problem under consideration
in this thesis, we carry a preliminary study on the associated calculus of variations, and
focus on the derivation of stationarity conditions. The study of the calculus of variations
for optimal control problems subject to time-varying delays in the dynamics is not a new
subject. Following the early works of the optimal control community in the 50s and the
60s, [Ban68] derived necessary stationarity conditions for a system subject to multiple
fixed (with respect to the state and the control) time-varying delays in the state. [Ash69]
studied the case of a generic state-dependant state delay. However, since then the field has
received limited attention and these works are not implemented in any available software
package. Interestingly, none of the works cited above are directly treating the case of
input-dependant input delays, which is our primary focus. As will be seen, this case is, in
fact, more involved.

In the first part of this chapter, we will study the calculus of variations of an optimal
control problem with a fixed time-varying delay1 in the state and the input. This is a
fairly straightforward extension of the reordering techniques presented in [Hug68] for fixed
delays and will serve as an introduction to the second part of the chapter where we study
the case of an input-dependant hydraulic delay in the state and the control. We first
establish the conditions under which such a system is Gâteaux differentiable and outline
that a problem with an explicit input-dependant input delay dependency generally does

1Because r depends on t only, its definition being independent from variations of x or u, we say that
the system is subject to a fixed time varying delay.
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not verify these conditions. We then introduce a smooth regularized version of the problem
and derive its stationarity conditions. Interestingly, this latter result can be seen as a
refinement of the results of the pioneer work of [Ash69] to the case of an hydraulic delay,
under regularization.

4.2 Notations
We denote u ∈ Rp the control and x ∈ Rm the state of the system.

Let L2(E,F ) be the set of functions of integrable square on E with values in F .
With T > 0, we denote C1

pw([0;T ],Rp) the class of piecewise C1 functions from [0;T ]
to Rp, having a finite number of jumps in their values or derivatives on their interval of
definition.

Let D1([0;T ],Rp) be the class of functions from [0;T ] to Rp that are differentiable but
whose derivative are not necessarily continuous.

We denote the function sign : R→ {−1; 0; 1} that maps strictly positive (resp. negative)
arguments to 1 (resp. −1) and 0 onto itself.

Let g ∈ L2(R,Rn) and I be an interval of R. We denote gI the restriction of g to I.
Let f be a function of a real variable, we note the one-sided limit whose s-argument

defines how the t-argument is approached

lim
τ→
s
t
f(τ) =

 lim
τ→t+

f(τ) if 0 ≤ s

lim
τ→t−

f(τ) if 0 > s

4.3 Fixed time-varying delays
Consider r a smooth, strictly increasing function such that for all t, r(t) < t. This function
defines a delayed time law.

Let L : [0;T ]× Rm × Rp → R and f : [0;T ]× Rm × Rm × Rp × Rp → Rm be smooth
functions. Take (u0, x0) ∈ L2([r(0); 0],Rp) × D1([r(0); 0],Rp). Consider the following
optimal control problem having r as fixed time-varying delay

Pr : min
u

∫ T

0
L(t, x(t), u(t)) dt+ ψ(x(T )) , Jr(u)

s.t. ∀t ∈ [0;T ], ẋ(t) = f(t, x(t), x(r(t)), u(t), u(r(t)))
x[r(0);0] = x0, u[r(0);0] = u0

We seek to establish necessary stationarity conditions characterizing optimal solutions
of Pr. Following the classic approach of calculus of variations (see e.g. [GF63]), these
conditions are equivalent to the stationarity conditions of the augmented functional where
the constraints of the dynamics have been adjoined

J̄r(x, u, λ) =
∫ T

0
L(t, x(t), u(t))− λ(t)T ẋ(t)

+ λ(t)Tf(t, x(t), x(r(t)), u(t), u(r(t))) dt+ ψ(x(T ))
Using an integration by parts, one has

J̄r(x, u, λ) =
∫ T

0
L(t, x(t), u(t)) + λ̇(t)Tx(t)

+ λ(t)Tf(t, x(t), x(r(t)), u(t), u(r(t))) dt
− λ(T )Tx(T ) + λ(0)Tx(0) + ψ(x(T ))

(4.1)
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In order to compute the Gâteaux derivatives of J̄r (i.e. the directional derivatives, see
[Rud73]), given any δ ∈ R, x, u, λ, let us first consider the cost variation associated with
a perturbation of its first argument in a direction h. We will use the following simplified
notation for greater convenience

J̄r(x+ δh, u, λ)− J̄r(x, u, λ) = J̄r(x+ δh)− J̄r(x)

Using (4.1), we have

J̄r(x+ δh)− J̄r(x) = δ
∫ T

0

∂L

∂x
(t, x(t), u(t))h(t) + λ̇(t)Th(t)

+ λ(t)T ∂f
∂x

(t, x(t), x(r(t)), u(t), u(r(t)))h(t)

+ λ(t)T ∂f
∂xr

(t, x(t), x(r(t)), u(t), u(r(t)))h(r(t)) dt

− δλ(T )Th(T ) + δ
∂ψ

∂x
(x(T ))h(T ) + o(δ)

This immediately leads to the expression of the Gâteaux derivative w.r.t. the x-argument

DhJ̄r(x) =
∫ T

0

∂L

∂x
(t, x(t), u(t))h(t) + λ̇(t)Th(t)

+ λ(t)T ∂f
∂x

(t, x(t), x(r(t)), u(t), u(r(t)))h(t)

+ λ(t)T ∂f
∂xr

(t, x(t), x(r(t)), u(t), u(r(t)))h(r(t)) dt

− λ(T )Th(T ) + ∂ψ

∂x
(x(T ))h(T )

This last expression is not handy for the coming derivation of stationarity conditions
because the expression under the integral sign mixes the values of h at both time t and
time r(t). Since h is an admissible perturbation, for all t ≤ 0, h(t) = 0. This gives a first
simplification. Then, using a change of variables, one finds

∫ T

0
λ(t)T ∂f

∂xr
(t, x(t), x(r(t)), u(t), u(r(t)))h(r(t)) dt

=
∫ r(T )

0
λ(r−1(t))T · ∂f

∂xr
(r−1(t), x(r−1(t)), x(t), u(r−1(t)), u(t))(r−1)′(t)h(t) dt

Finally, this leads to

DhJ̄r(x) =
(
− λ(T )T + ∂ψ

∂x
(x(T ))

)
h(T )

+
∫ T

0

(
∂L

∂x
(t, x(t), u(t)) + λ̇(t)T

+ λ(t)T ∂f
∂x

(t, x(t), x(r(t)), u(t), u(r(t)))

+ 1[0;r(T )](t)(r−1)′(t) · λ(r−1(t))T ·
∂f

∂xr
(r−1(t), x(r−1(t)), x(t), u(r−1(t)), u(t))

)
h(t) dt

(4.2)
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Similarly, we establish the Gâteaux derivative w.r.t. the input

DhJ̄r(u) =
∫ T

0

(
∂L

∂u
(t, x(t), u(t)) + λ(t)T ∂f

∂u
(t, x(t), x(r(t)), u(t), u(r(t)))

+ 1[0;r(T )](t)(r−1)′(t) · λ(r−1(t))T ·
∂f

∂ur
(r−1(t), x(r−1(t)), x(t), u(r−1(t)), u(t))

)
h(t) dt

(4.3)

and finally,

DhJ̄r(λ) =
∫ T

0
−h(t)T

(
ẋ(t) + f(t, x(t), x(r(t)), u(t), u(r(t)))

)
dt (4.4)

Any stationary solution (x∗, u∗, λ∗) of J̄r is characterized by the relations

∀(h1, h2, h3), Dh1 J̄r(x∗) = Dh2 J̄r(u∗) = Dh3 J̄r(λ∗) = 0

Then, using Dubois-Reymond lemma (see [GF63]), we classically establish the following
result

Theorem 4.1:

The stationarity conditions necessarily verified by locally optimal solutions of Pr
are given by the following two-point boundary value problem (TPBVP)

ẋ(t) = f(t, x(t), x(r(t)), u(t), u(r(t))) (4.5)
x(0) = x0

λ̇(t) = − ∂L

∂x
(t, x(t), u(t))T − ∂f

∂x
(t, x(t), x(r(t)), u(t), u(r(t)))Tλ(t)

− 1[0;r(T )](t)(r−1)′(t)·
∂f

∂xr
(r−1(t), x(r−1(t)), x(t), u(r−1(t)), u(t))Tλ(r−1(t)) (4.6)

λ(T ) = ∂ψ

∂x
(x(T ))T

0 = ∂L

∂u
(t, x(t), u(t))T + ∂f

∂u
(t, x(t), x(r(t)), u(t), u(r(t)))Tλ(t)

+ 1[0;r(T )](t)(r−1)′(t)·
∂f

∂ur
(r−1(t), x(r−1(t)), x(t), u(r−1(t)), u(t))Tλ(r−1(t)) (4.7)

4.4 Input-dependant delays: a non-smooth problem

4.4.1 Gâteau differentiability with input-dependant delays
We now consider a more complex case when the delay depends on the input signal,
according to an integral (hydraulic) law.

Let φ : Rp → R∗+ be a smooth function. Take (u0, x0) ∈ C1
pw([r0; 0],Rp)×D1([r0; 0],Rp),

r0 < 0 with ∫ 0

r0
φ (u0(τ)) dτ = 1
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Consider the optimal control problem with input-dependant delays

P0 : min
u

∫ T

0
L(t, x(t), u(t)) dt+ ψ(x(T )) , J0(u)

s.t. ∀t ∈ [0;T ], ẋ(t) = f(t, x(t), x(ru(t)), u(t), u(ru(t)))
x[r0;0] = x0, u[r0;0] = u0

where ru is implicitly defined by the relation∫ t

ru(t)
φ(u(τ)) dτ = 1

Before addressing the derivation of the optimality conditions, we introduce the following
useful preliminary result

Proposition 4.1: Sensitivity of hydraulic delay w.r.t. input variations

For any t ∈ [0;T ], (u, h) ∈ C1
pw([0;T ],Rp)2 and s ∈ {−1; 1}, we have

lim
δ→
s

0

ru+δh(t)− ru(t)
δ

= 1
lim

τ→
s′
ru(t)

φ(u(τ))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ (4.8)

where
s′ = sign

(
s ·
∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ

)
In particular, if u is continuous at ru(t), the Gâteaux derivative of ru(t) w.r.t. the
input at point u in the direction h is

Dhru(t) , lim
δ→0

ru+δh(t)− ru(t)
δ

= 1
φ(u(ru(t)))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ (4.9)

Similarly, for any t ∈ [0; ru(T )[

lim
δ→
s

0

r−1
u+δh(t)− r−1

u (t)
δ

= − 1
lim

τ→
s′
r−1
u (t)

φ(u(τ))

∫ r−1
u (t)

t

∂φ

∂u
(u(τ))h(τ) dτ (4.10)

where
s′ = sign

(
−s ·

∫ r−1
u (t)

t

∂φ

∂u
(u(τ))h(τ) dτ

)
and if u is continuous at r−1

u (t), the Gâteaux derivative is given by

Dhr
−1
u (t) = − 1

φ(u(r−1
u (t)))

∫ r−1
u (t)

t

∂φ

∂u
(u(τ))h(τ) dτ (4.11)

Proof. From (5.2), we have

1 =
∫ t

ru(t)
φ(u(τ)) dτ =

∫ t

ru+δh(t)
φ(u(τ) + δh(τ)) dτ
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Then, from the smoothness of φ, one deduces that
∫ t

ru(t)
φ(u(τ)) dτ =

∫ t

ru+δh(t)
φ(u(τ)) + δ

∂φ

∂u
(u(τ))h(τ) dτ + o(δ)

It follows that ∫ ru+δh(t)

ru(t)
φ(u(τ)) dτ = δ

∫ t

ru+δh(t)

∂φ

∂u
(u(τ))h(τ) dτ + o(δ) (4.12)

Since we know a priori that r0 ≤ ru+δh(t) ≤ T , one notices that the integral in the
right-hand side is expressed on a bounded domain over which its argument is bounded.
We immediately deduce that

∫ ru+δh(t)

ru(t)
φ(u(τ)) dτ −−→

δ→0
0

Using the fact that φ is a strictly positive function by definition, we obtain the continuity
of ru(t) with respect to the input

ru+δh(t)− ru(t) −−→
δ→0

0

Using this result in (4.12), we have

1
δ

∫ ru+δh(t)

ru(t)
φ(u(τ)) dτ =

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ + o(1) (4.13)

If ∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ 6= 0 (4.14)

then (4.13) guarantees that, in a neighbourhood of δ = 0,

sign(ru+δh(t)− ru(t)) = sign
(
δ
∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ

)
(4.15)

Using this, the desired results (4.8) are finally obtained by taking alternatively the limit of
(4.13) when δ goes to zero from above or below. Otherwise, when (4.14) fails, we directly
get

1
δ

∫ ru+δh(t)

ru(t)
φ(u(τ)) dτ = o(1)

and
lim
δ→0

ru+δh(t)− ru(t)
δ

= 0

The results regarding the variation of r−1
u (t) are established symmetrically after noticing

that the definition of the delay implies that for all t ∈ [0; min(ru(t), ru+δh(t))]

1 =
∫ r−1

u (t)

t
φ(u(τ)) dτ =

∫ r−1
u+δh(t)

t
φ(u(τ) + δh(τ)) dτ

�
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Using this preliminary result, we can continue our analysis. For notational ease, we
write

[t, x, u]v =
(
t, x(t), x(rv(t)), u(t), u(rv(t))

)
Let us derive the stationary points of the augmented functional

J̄0(x, u, λ) =
∫ T

0
L(x(t),u(t)) + λ̇T (t)x(t) + λT (t)f([t, x, u]u) dt

+ λT (0)x(0)− λT (T )x(T ) + ψ(x(T ))

The Gâteaux derivative of J̄0 w.r.t. its second argument at point (x, u, λ) in direction h is

J̄0(u+ δh)− J̄0(u) =
∫ T

0
L(t, x(t),u(t) + δh(t))− L(x(t), u(t))

+ λT (t)
(
f
(
[t, x, u+ δh]u+δh)− f

(
[t, x, u]u

))
We know that there exists a finite number N of distinct time instants r0 < ti ≤ ru(T )i=1..N
at which the control input u is not smooth. For δ small enough, u + δh has the same
jumping points as u, plus those generated by δh which will all have negligible contributions.
The calculus is decomposed over a mesh allowing us to cover both cases when the image of
the jumps of u by the inverse perturbed delayed time law, r−1

u+δh(t), are each approached
from below or above. Using this notation, we have

J̄0(u+ δh)− J̄0(u)
δ

=∫ T

0

∂L

∂u
(t, x(t), u(t))h(t) + λ(t)T ∂f

∂u

(
[t, x, u]u

)
· h(t) dt

+
∫ min(r−1

u (t1),r−1
u+δh(t1))

0
∆(t, δ) dt

+
N∑
i=1

1
δ

∫ max(r−1
u (ti),r−1

u+δh(ti))

min(r−1
u (ti),r−1

u+δh(ti))
λT (t)·(

f
(
t, x(t), x(ru+δh(t)), u(t) + δh(t), u(ru+δh(t)) + δh(ru+δh(t))

)
− f

(
t, x(t), x(ru(t)), u(t), u(ru(t))

))
dt

+
N−1∑
i=1

∫ min(r−1
u (ti+1),r−1

u+δh(ti+1))

max(r−1
u (ti),r−1

u+δh(ti))
∆(t, δ) dt

+
∫ T

max(r−1
u (tN ),r−1

u+δh(min(tN ,ru+δh(T ))))
∆(t, δ) dt+ o(1)

(4.16)

with

∆(t, δ) = λT (t) ·
(
∂f

∂xr

(
[t, x, u]u

)
ẋ(ru(t)) ·

ru+δh(t)− ru(t)
δ

+ ∂f

∂ur

(
[t, x, u]u

)
u̇(ru(t)) ·

ru+δh(t)− ru(t)
δ

+ ∂f

∂ur

(
[t, x, u]u

)
· h(ru+δh(t))

)
where ∂f

∂xr
, ∂f
∂ur

designate the partial derivatives of f w.r.t. its 3rd and 5th arguments
respectively.
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Using (4.10) from Proposition 4.1, we know that on a neighbourhood of δ = 0, if the
upper and lower Gâteaux derivative of r−1

u (ti) are non zero at u, we have

ε , sign
(
r−1
u+δh(ti)− r−1

u (ti)
)

= sign
(
−δ

∫ r−1
u (ti)

ti

∂φ

∂u
(u(τ))h(τ) dτ

)

The strict monotonicity of ru and ru+δh gives that

r−1
u (ti) ≤ t ≤ r−1

u+δh(ti) =⇒ ru+δh(t) ≤ ti ≤ ru(t) (4.17)

and
r−1
u+δh(ti) ≤ t ≤ r−1

u (t) =⇒ ru+δh(t) ≥ ti ≥ ru(t) (4.18)

Both of these inequalities (4.17) and (4.18) are instrumental for the evaluation of the
integrals

∫max(.)
min(.) (.) in (4.16), by determining the arguments of f as δ goes to zero. This

gives

1
δ

∫ max(r−1
u (ti),r−1

u+δh(ti))

min(r−1
u (ti),r−1

u+δh(ti))
λT (t)·(

f
(
t, x(t), x(ru+δh(t)), u(t) + δh(t), u(ru+δh(t)) + δh(ru+δh(t))

)
− f

(
t, x(t), x(ru(t)), u(t), u(ru(t))

))
dt

= 1
δ

∫ max(r−1
u (ti),r−1

u+δh(ti))

min(r−1
u (ti),r−1

u+δh(ti))
λ(t)T ·(

f
(
t, x(t), x(ru(t)), lim

τ→
ε
r−1
u (ti)

u(τ), lim
τ→
−ε
ti
u(τ)

)

− f
(
t, x(t), x(ru(t)), lim

τ→
ε
r−1
u (ti)

u(τ), lim
τ→
ε
ti
u(τ)

))
dt+ o(1)

(4.19)

Otherwise, if the Gâteaux derivative of r−1
u (ti) is equal to zero, we have

lim
δ→0

1
δ

∫ max(r−1
u (ti),r−1

u+δh(ti))

min(r−1
u (ti),r−1

u+δh(ti))
λT (t)·(

f
(
t, x(t), x(ru+δh(t)), u(t) + δh(t), u(ru+δh(t)) + δh(ru+δh(t))

)
− f

(
t, x(t), x(ru(t)), u(t), u(ru(t))

))
dt = 0

Finally, for s ∈ {−1; 1}, gathering the smooth and jump parts of the calculus and using (4.8)
along with (4.10), we have

lim
δ→
s

0

J̄0(u+ δh)− J̄0(u)
δ

=
∫ T

0

∂L

∂u
(t, x(t), u(t))h(t) + λT (t)∂f

∂u

(
[t, x, u]u

)
h(t)

+ λT (t) ∂f
∂xr

(
[t, x, u]u

)
· ẋ(ru(t))
φ(u(ru(t)))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ

+ λT (t) ∂f
∂ur

(
[t, x, u]u

)
· u̇(ru(t))
φ(u(ru(t)))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ
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+ λT (t) ∂f
∂ur

(
[t, x, u]u

)
h(ru(t)) dt

+
N∑
i=1

λ(r−1
u (ti))T ·(

f
(
r−1
u (ti), x(r−1

u (ti)), x(ti), lim
τ →
s′(ti)

r−1
u (ti)

u(τ), lim
τ →
−s′(ti)

ti
u(τ)

)

− f
(
r−1
u (ti), x(r−1

u (ti)), x(ti), lim
τ →
s′(ti)

r−1
u (ti)

u(τ), lim
τ →
s′(ti)

ti
u(τ)

))

· s′(ti)
lim

τ →
s′(ti)

r−1
u (t)

φ(u(τ))

∫ r−1
u (ti)

ti

∂φ

∂u
(u(τ))h(τ) dτ (4.20)

where

s′(t) = sign
(
−s ·

∫ r−1
u (t)

t

∂φ

∂u
(u(τ))h(τ) dτ

)

Using (4.20), we can formulate the following result

Theorem 4.2:

J̄0 is Gâteaux differentiable w.r.t. its second argument at point (x, u, λ) in direction
h if and only if

N∑
i=1

λ(r−1
u (ti))T ·(

f
(
r−1
u (ti), x(r−1

u (ti)), x(ti), lim
τ →
s1(ti)

r−1
u (ti)

u(τ), lim
τ →
−s1(ti)

ti
u(τ)

)

− f
(
r−1
u (ti), x(r−1

u (ti)), x(ti), lim
τ →
s1(ti)

r−1
u (ti)

u(τ), lim
τ →
s1(ti)

ti
u(τ)

))
·

s1(ti)
lim

τ →
s1(ti)

r−1
u (ti)

φ(u(τ))

∫ r−1
u (ti)

ti

∂φ

∂u
(u(τ))h(τ) dτ

=
N∑
i=1

λ(r−1
u (ti))T ·(

f
(
r−1
u (ti), x(r−1

u (ti)), x(ti), lim
τ →
−s1(ti)

r−1
u (ti)

u(τ), lim
τ →
s1(ti)

ti
u(τ)

)

− f
(
r−1
u (ti), x(r−1

u (ti)), x(ti), lim
τ →
−s1(ti)

r−1
u (ti)

u(τ), lim
τ →
−s1(ti)

ti
u(τ)

))
·

−s1(ti)
lim

τ →
−s1(ti)

r−1
u (ti)

φ(u(τ))

∫ r−1
u (ti)

ti

∂φ

∂u
(u(τ))h(τ) dτ

(4.21)
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where
s1(t) = sign

(
−
∫ r−1

u (t)

t

∂φ

∂u
(u(τ))h(τ) dτ

)

Remark 4.1. Note that (4.21) does not trivially hold. This fact means that when f
is explicitly depending upon its delayed input, the augmented cost associated cannot be
guaranteed to be differentiable with respect to the input at any given point if the function u
is not continuous for t > 0 (interestingly, however, discontinuities in the control history
do not raise issues) and counter examples are straightforward to build (see Remark 4.2).

Remark 4.2. Consider for instance (u, h) such that

u(t) =


1 if t ∈ [−1; 0]
2 if t ∈ ]0; 0.5]
3 if t ∈ ]0.5; 1]

and
∀t ∈ [0; 1], h(t) = 1

along with the following functional

J0(u) =
∫ 1

0
u(ru(t)) dt

where φ is the identity, φ(u) = u ∫ t

ru(t)
u(τ) dτ = 1

Then, we have

J0(u) =
∫ r−1

u (0)

0
1 dt+

∫ r−1
u (0.5)

r−1
u (0)

2 dt+
∫ 1

r−1
u (0.5)

3 dt = 5
3

where

r−1
u (0) = 0.5, r−1

u (0.5) = 5
6

If δ < 0, then r−1
u+δh(t) > r−1

u (t) and
∫ 1

0
u(ru+δh(t)) dt =

∫ r−1
u (0)

0
1 dt+

∫ r−1
u+δh(0)

r−1
u (0)

1 dt+
∫ r−1

u (0.5)

r−1
u+δh(0)

2 dt

+
∫ r−1

u+δh(0.5)

r−1
u (0.5)

2 dt+
∫ 1

r−1
u+δh(0.5)

3 dt

and

J0(u+ δh)− J0(u) =
∫ r−1

u+δh(0)

r−1
u (0)

(1− 2) dt+
∫ r−1

u+δh(0.5)

r−1
u (0.5)

(2− 3) dt

+ δ
∫ 1

0
h(ru(t)) dt+ o(δ)
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Taking s = −1 in (4.10)

lim
δ→
s

0

r−1
u+δh(t)− r−1

u (t)
δ

= − 1
lim

τ→
s′
r−1
u (t)

u(τ)

∫ r−1
u (t)

t
1 dτ

with
s′ = sign

(
−s

∫ r−1
u (t)

t
1 dτ

)
= 1

Finally

lim
δ→0−

J0(u+ δh)− J0(u)
δ

= r−1
u (0)− 0

2 + r−1
u (0.5)− 0.5

3 + 1
2 = 1

4 + 1
9 + 1

2 = 31
36

(4.22)

Conversely, if δ > 0, then r−1
u+δh(t) < r−1

u (t) and

J0(u+ δh)− J0(u) =
∫ r−1

u (0)

r−1
u+δh(0)

(2− 1) dt+
∫ r−1

u (0.5)

r−1
u+δh(0.5)

(3− 2) dt+ δ

2 + o(δ)

and

lim
δ→0+

J0(u+ δh)− J0(u)
δ

= r−1
u (0)− 0

3 + r−1
u (0.5)− 0.5

3 + 1
2 = 1

6 + 1
9 + 1

2 = 7
9

(4.23)

There is indeed a mismatch between the left and the right limits (4.22) and (4.23).

As a consequence, P0 is actually a non-smooth optimization problem and its optimal
solutions cannot be characterized using the standard technique of imposing that all the
variations of the augmented cost be equal to zero.

This result also has important practical consequences. Indeed, any standard optimiza-
tion technique requiring first (or second) order regularity properties is expected to fail to
properly solve P0.

4.4.2 Stationarity conditions of a regularization of the problem
To overcome the mathematical difficulty stressed by Theorem 4.2, we consider a regularized
version of P0 where the input u of the system having x as state is itself made to be the
state of a pure integrator of an underlying input v.

Take (v0, u0) ∈ L2([r0; 0],Rp)×D1([r0; 0],Rp), r0 < 0 with∫ 0

r0
φ (u0(τ)) dτ = 1

and

∀t ∈ [r0; 0], u0(t) = u0(0) +
∫ t

0
v0(τ) dτ

Let P ∈Mp(R) be symmetric definite positive. The regularized optimal control problem
is

P : min
v

∫ T

0
L(t, x(t), u(t)) + 1

2v(t)TPv(t) dt , J(v)

s.t. ∀t ∈ [0;T ], ẋ(t) = f(t, x(t), x(ru(t)), u(t), u(ru(t)))
∀t ∈ [0;T ], u̇(t) = v(t)
x[r0;0] = x0, u[r0;0] = u0, v[r0;0] = v0
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The stationarity conditions of P are the same as those of the free functional where the
constraints have been adjoined

J̄(x, u, λ) =
∫ T

0
L(t, x(t), u(t))− λ(t)T ẋ(t)− ν(t)T u̇(t) + ν(t)Tv(t)

+ λ(t)Tf (t, x(t), x(ru(t)), u(t), u(ru(t))) dt+ ψ(x(T ))

Using two integrations by parts, one for x and one for u, we classically deduce

J̄(x, u, λ) =
∫ T

0
L(t, x(t), u(t)) + λ̇(t)Tx(t) + ν̇(t)Tu(t) + ν(t)Tv(t)

+ λ(t)Tf (t, x(t), x(ru(t)), u(t), u(ru(t))) dt
− ν(T )Tu(T ) + ν(0)Tu(0) + ψ(x(T ))

Consider the variation of J̄ w.r.t. its second argument, u, which one state variable

DhJ̄(u) =
∫ T

0

∂L

∂u
(t, x(t), u(t))h(t) + ν̇(t)Th(t) dt− ν(T )Th(T )

+
∫ T

0
λ(t)T ∂f

∂xr
(t, x(t), x(ru(t)), u(t), u(ru(t)))·

f(t, x(t), x(ru(t)), u(t), u(ru(t)))
φ(u(ru(t)))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ dt

+
∫ T

0
λ(t)T ∂f

∂u
(t, x(t), x(ru(t)), u(t), u(ru(t)))h(t) dt

+
∫ T

0
λ(t)T ∂f

∂ur
(t, x(t), x(ru(t)), u(t), u(ru(t)))h(ru(t)) dt

+
∫ T

0
λ(t)T ∂f

∂ur
(t, x(t), x(ru(t)), u(t), u(ru(t)))·

v(ru(t))
φ(u(ru(t)))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ dt

Using a change of variable in the third integral and Fubini’s theorem (see [DiB02]) in the
fourth and the fifth ones, we find that

DhJ̄(u) =
∫ T

0

∂L

∂u
(t, x(t), u(t))h(t) + ν̇(t)Th(t) dt− ν(T )Th(T )

+
∫ T

0
λ(t)T ∂f

∂u
(t, x(t), x(ru(t)), u(t), u(ru(t)))h(t) dt

+
∫ ru(T )

0
λ(r−1

u (t))T ·
∂f

∂ur
(r−1
u (t), x(r−1

u (t)), x(t), u(r−1
u (t)), u(t))(r−1

u )′(t)h(t) dt

+
∫ T

0

∫ r−1
u (min(τ,ru(T )))

τ
λ(t)T ∂f

∂xr
(t, x(t), x(ru(t)), u(t), u(ru(t)))·

f(t, x(t), x(ru(t)), u(t), u(ru(t)))
φ(u(ru(t)))

dt ∂φ
∂u

(u(τ))h(τ) dτ

+
∫ T

0

∫ r−1
u (min(τ,ru(T )))

τ
λ(t)T ∂f

∂ur
(t, x(t), x(ru(t)), u(t), u(ru(t)))·

v(ru(t))
φ(u(ru(t)))

dt ∂φ
∂u

(u(τ))h(τ) dτ
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Finally, Dubois-Reymond lemma gives the following necessary conditions 2, where two
particular terms of interest, discussed later on, are highlighted in red

ν̇(t) = − ∂L

∂u
(t, x(t), u(t))T − ∂f

∂u
(t, x(t), x(ru(t)), u(t), u(ru(t)))Tλ(t)

− 1[t0;r(t0+T )](t)(r−1
u )′(t)·

∂f

∂ur
(r−1
u (t), x(r−1

u (t)), x(t), u(r−1
u (t)), u(t))T · λ(r−1(t))

−
∫ r−1

u (min(t,ru(T )))

t
λ(τ)T ∂f

∂xr
(τ, x(τ), x(ru(τ)), u(τ), u(ru(τ)))·

f(τ, x(τ), x(ru(τ)), u(τ), u(ru(τ)))
φ(u(ru(τ))) dτ ∂φ

∂u
(u(t))T

−
∫ r−1

u (min(t,ru(T )))

t
λ(τ)T ∂f

∂ur
(τ, x(τ), x(ru(τ)), u(τ), u(ru(τ)))·

v(ru(τ))
φ(u(ru(τ))) dτ ∂φ

∂u
(u(t))T (4.24)

ν(T ) = 0

Similarly calculating the Gâteaux derivatives with respect to x, λ and ν, we establish the
following result

Theorem 4.3:

The stationarity conditions of P are given by the following TPBVP

ẋ(t) = f(t, x(t), x(ru(t)), u(t), u(ru(t))) (4.25)
x(0) = x0

u̇(t) = v(t) (4.26)
u[r0;0] = u0

λ̇(t) = − ∂L

∂x
(t, x(t), u(t))T − ∂f

∂x
(t, x(t), x(ru(t)), u(t), u(ru(t)))Tλ(t)

− 1[t0;ru(t0+T )](t)(r−1
u )′(t)·

∂f

∂xr
(r−1
u (t), x(r−1

u (t)), x(t), u(r−1
u (t)), u(t))T · λ(r−1(t)) (4.27)

λ(T ) = ∂ψ

∂x
(x(T ))T

ν̇(t) = − ∂L

∂u
(t, x(t), u(t))T − ∂f

∂u
(t, x(t), x(ru(t)), u(t), u(ru(t)))Tλ(t)

− 1[t0;r(t0+T )](t)(r−1
u )′(t)·

∂f

∂ur
(r−1
u (t), x(r−1

u (t)), x(t), u(r−1
u (t)), u(t))T · λ(r−1(t))

−
∫ r−1

u (min(t,ru(T )))

t
λ(τ)T ∂f

∂xr
(τ, x(τ), x(ru(τ)), u(τ), u(ru(τ)))·

2On the interval [0; ru(T )] covered by the indicator function, the function r−1
u employed in (4.24) is

well defined.
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f(τ, x(τ), x(ru(τ)), u(τ), u(ru(τ)))
φ(u(ru(τ))) dτ ∂φ

∂u
(u(t))T

−
∫ r−1

u (min(t,ru(T )))

t
λ(τ)T ∂f

∂ur
(τ, x(τ), x(ru(τ)), u(τ), u(ru(τ)))·

v(ru(τ))
φ(u(ru(τ))) dτ ∂φ

∂u
(u(t))T (4.28)

ν(T ) = 0
0 = Pv(t) + ν(t) (4.29)

4.5 Conclusions
In this chapter, we have derived the stationarity conditions of an optimal control problem
subject to a fixed time-varying delay. The Gâteaux differentiability of the optimal control
problem subject to an input-dependant hydraulic delay was investigated. We concluded
that if the delayed input appears in the dynamics, the considered optimal control problem
is not Gâteaux differentiable. We proposed a regularized version of this problem where
the physical input is considered to be a state resulting from the pure integration of a new
control input. The stationarity conditions of this problem were derived. Interestingly,
these conditions only differ from the case of a fixed time delay case by the introduction of
two distributed terms (emphasized in equation (4.24)) stemming from the sensitivity of
the objective w.r.t. a change of delay law produced by the variation of the input.



Chapter 5

Iterative resolution algorithm for the
regularization of an input-dependant
hydraulic input delay

Résolution itérative du contrôle optimal régularisé de systèmes à retards
hydrauliques dépendant de la commande. Dans ce chapitre, nous proposons un
algorithme itératif permettant d’approcher la solution du problème de commande optimale
de systèmes soumis à un retard hydraulique en résolvant une série de problèmes de
commande optimal soumis avec des retards variables mais indépendants de la commande.
Une preuve de convergence de cet algorithme est établie et une application numérique est
présentée.

5.1 Introduction
In this chapter we build an iterative algorithm to solve the problem of optimal control with
hydraulic input-dependant input delays. Following the result of Chapter 4 showing that
this problem is not Gâteaux differentiable, we consider its regularization where the input
is transformed into a state resulting from the integration of a new underlying auxiliary
control. In Section 5.3, we use the stationarity conditions derived in Chapter 4 to propose
an iterative algorithm solving, instead of the original problem, a sequence of simpler
modified problems with fixed time-varying delays. A detailed convergence analysis is
carried out, showing that in a limit case, this algorithm behaves like a gradient descent.
Practically, this approach is attractive as it allows to use straightforwardly the classic tools
of direct simultaneous optimization to solve the intermediate problems. This is explained
in Section 5.3. In Section 5.4, a numerical example is treated to illustrate the interest of
this method.

5.2 Notations
We use the notations of Chapter 4. In addition, given T > 0, n ∈ N∗ and ` ∈ L2([0;T ],Rn),
we denote ‖`‖1 and ‖`‖2 the norm 1 and 2 of the function `. For convenience, we recall
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that, using Cauchy-Schwarz inequality,

‖`‖1 ≤
√
nT‖`‖2

Let g ∈ L2(R,Rn) and I be an interval of R. We denote gI the restriction of g to I.
Let us denote u ∈ Rp the control and x ∈ Rm the state of the system.

5.3 Optimization algorithm
Let T > 0, x0 ∈ Rm and P ∈ Mp(R) be symmetric definite positive. Let φ : Rp → R∗+,
L : [0;T ]×Rm×Rp → R and f : [0;T ]×Rm×Rp×Rp → Rm be smooth functions. Take
(v0, u0) ∈ L2([r0; 0],Rp)×D1([r0; 0],Rp), r0 < 0 with∫ 0

r0
φ (u0(τ)) dτ = 1

and

∀t ∈ [r0; 0], u0(t) = u0(0) +
∫ t

0
v0(τ) dτ (5.1)

Consider the following optimization problem, defined as a simplified case of the general
problem covered in Theorem 4.3 (no terminal cost, no dependency on the past values of
the state), without loss of generality

P : min
v

∫ T

0
L(t, x(t), u(t)) + 1

2v(t)TPv(t) dt , J(v)

s.t. ∀t ∈ [0;T ], ẋ(t) = f(t, x(t), u(t), u(ru(t)))
∀t ∈ [0;T ], u̇ = v

x(0) = x0, u[r0;0] = u0, v[r0;0] = v0

where ru is implicitly defined by the relation∫ t

ru(t)
φ(u(τ)) dτ = 1 (5.2)

and in particular
r0 = ru(0)

Let us consider the operator P : L2([0;T ],Rp)→ D1([0;T ],Rp)×D1([0;T ],Rm)3 such
that P(v) = (u, x, λ, ν) is defined, according to Theorem 4.3, by

u̇(t) = v(t), u[r0;0] = u0 (5.3)
ẋ(t) = f(t, x(t), u(t), u(ru(t))), x(0) = x0 (5.4)

λ̇(t) = −∂L
∂x

(t, x(t), u(t))T − ∂f

∂x
(t, x(t), un(t), u(ru(t)))Tλ(t) (5.5)

λ(T ) = 0

ν̇(t) = −∂L
∂u

(t, x(t), u(t))T − ∂f

∂u
(t, x(t), u(t), u(ru(t)))T · λ(t)

− 1[0;ru(T )](t)(r−1
u )′(t)·

∂f

∂ur
(r−1
u (t), x(r−1

u (t)), u(r−1
u (t)), u(t))T · λ(r−1

u (t))
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−
∫ r−1

u (min(t,ru(T )))

t
λ(τ)T · ∂f

∂u
(τ, x(τ), u(τ), u(ru(τ)))

v(ru(τ))
φ(u(ru(τ))) dτ ∂φ

∂u
(u(t)) (5.6)

ν(T ) = 0

Using these notations, the stationarity conditions of P are given by

(u, x, λ, ν) = P(v)
Pv + ν = 0

(5.7)

Solving P directly is difficult. Instead, we would rather solve a sequence of simpler
auxiliary problems (Pn), such that for all n ≥ 1

Pn+1 : min
vn+1

∫ T

0
L(t,Xn+1(t), un+1(t)) + 1

2vn+1(t)TPvn+1(t)

+ Sn(t)(un+1(t)− un(t)) + α

2 ‖vn+1(t)− vn(t)‖2
2 dt

s.t. ∀t ∈ [0;T ], Ẋn+1 = f(t,Xn+1(t), un+1(t), un+1(run(t)))
∀t ∈ [0;T ], u̇n+1 = vn+1

Xn+1(0) = x0, un+1[r0;0] = u0, vn+1[ru(0);0] = v0

where

Sn(t) =
∫ r−1

un (min(t,run (T )))

t
λn(τ)T · ∂f

∂u
(τ, xn(τ), un(τ), un(run(τ)))

vn(run(τ))
φ(un(run(τ))) dτ ∂φ

∂u
(un(t))

is one of the two extra terms highlighted in Section 4.4.2 and is the sensitivity of the
objective with respect to the change of the delay law caused by a change of the control
input as derived from the calculus of variations. In the definition of Sn and the general
statement of Pn, (un, xn, λn, νn) are defined as

vn 7→ (un, xn, λn, νn) , P(vn)

Throughout the rest of the discussion, the following assumptions are considered
Assumption 3. L is twice continuously differentiable while f , φ are continuously differen-
tiable, and there exists K ≥ 0 such that

∀(t, x, u) ∈ [0;T ]× Rm × Rp, ‖∇2L(t, x, u)‖1 ≤ K

and
∀(t, x, u, ur) ∈ [0;T ]× Rm × Rp × Rp, ‖∇f(t, x, u, ur)‖1 ≤ K

and
∀u ∈ Rp, ‖∇φ(u)‖1 ≤ K

and, ∇2L, ∇f , ∇φ are K-Lipschitz continuous.
Assumption 4. There exists J∗ ∈ R such that

∀v ∈ L2([0;T ]), J∗ ≤ J(v)
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Assumption 5. There exists φmin > 0 such that

∀u ∈ R, φmin ≤ φ(u)

Remark 1. Assumptions 3-4 are classically considered in the optimization literature.
Assumption 5 is usually considered for systems with input varying delays of hydraulic type
[DBP] so that r′u be bounded away from zero and the input keep on reaching the plant.

Definion 5.1. Given α ≥ 0, a sequence (vn)n∈N∗ is called α-admissible if for all n ≥ 2, vn
is a solution (possibly local) of Pn.

Let us define

X , {v ∈ L2([0;T ]), ∃Rv ∈ R+, ∀w ∈ L2([0;T ]),
J(w) ≤ J(v) =⇒ ‖w‖2 ≤ Rv} (5.8)

the set of L2 functions such that their J-level set is included in a ball of L2 and note

gv , Pv + ν (5.9)

The main result concerning the sequence (Pn) is as follows

Theorem 5.1: Convergence properties of the sequence (Pn)

Under Assumptions 3, 4 and 5, given any α-admissible sequence (vn)n∈N∗ such that
v1 ∈ X , if α is large enough then (vn) satisfies

lim
n→∞

‖gvn‖2 = 0

and
lim
n→∞

‖vn+1 − vn‖2 = 0

Proof. Given n ∈ N∗, let us assume that vn ∈ X (which is true for n = 1 by assumption)
and, by extension of (5.8), define

Xn , {v ∈ L2([0;T ]), J(v) ≤ J(vn)} ⊂ X

which is a bounded set in the sense of the L2 norm, i.e. there exists Rn > 0 such that

∀v ∈ Xn, ‖v‖2 ≤ Rn (5.10)

Consider the operator Q : L2([0;T ],Rp)2 → D1([0;T ],Rp)2 × D1([0;T ],Rm)2 with
Q(v, w) = (u, q, x, λ) defined as

u̇(t) = v(t), u[r0;0] = u0 (5.11)
q̇(t) = w(t), q[r0;0] = u0 (5.12)
ẋ(t) = f(t, x(t), u(t), u(rq(t))), x(0) = x0 (5.13)

λ̇(t) = −∂L
∂x

(t, x(t), u(t))T

− ∂f

∂x
(t, x(t), u(t), u(rq(t)))Tλ(t) (5.14)
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λ(T ) = 0
Note the slight (but important) differences between P defined by (5.3)-(5.6) and Q. The
second argument of Q is used to define the time-varying delay appearing in the right-
hand side of equations (5.13)-(5.14). Based on Assumption 3 and Cauchy existence and
uniqueness theorem, Q is clearly defined. Given the couples of arguments (v1, w1), (v2, w2)
and (v, w), we define

(u1, q1, x1, λ1) = Q(v1, w1), r1 , rq1

(u2, q2, x2, λ2) = Q(v2, w2), r2 , rq2

and
(u, q, x, λ) = Q(v, w), r , rq

which are used to formulate the subsequent lemma
Lemma 5.1 (Lipschitz continuity of Q). The two following inequalities hold

∀t ∈ [0;T ], ‖u2(t)− u1(t)‖1 ≤
√
pt‖v2 − v1‖2 (5.15)

∀t ∈ [0;T ], ‖u(t)− u0‖1 ≤
√
pt‖v‖2 (5.16)

There exists some positive parameters (k1, k2, k3, k4), (l1, l2, l3, l4) independent of α such
that

∀t ∈ [0;T ], ‖x2(t)− x1(t)‖1 ≤ k1‖v2 − v1‖2 + k2(1 + ‖v1‖2)·
(1 + ‖w1‖2 + ‖w2‖2)‖w2 − w1‖2

(5.17)

∀t ∈ [0;T ], ‖x(t)− x0‖1 ≤ k3 + k4‖v‖2 (5.18)

∀t ∈ [0;T ], ‖λ2(t) − λ1(t)‖1

≤ l1(1 + ‖v1‖2)‖v2 − v1‖2 + l2·
(1 + ‖w1‖2 + ‖w2‖2)(1 + ‖v1‖2)2‖w2 − w1‖2

(5.19)

∀t ∈ [0;T ], ‖λ(t)‖1 ≤ l3 + l4‖v‖2 (5.20)

Proof. See Appendix B.1. �

The newly defined operator Q plays a key role with respect to the sequence (vn).
Indeed, the stationarity conditions of Pn+1 are given by

(un+1, Xn+1,Λn+1) = Q(vn+1, vn)

Ṅn+1(t) = −∂L
∂u

(t,Xn+1(t), un+1(t))T

− ∂f

∂u
(t,Xn+1(t), un+1(t), un+1(run(t)))TΛn+1(t)

− 1[0;run (T )](t)(r−1
un )′(t)·

∂f

∂ur
(r−1
un (t), Xn+1(r−1

un (t)), un+1(r−1
un (t)), un+1(t))T ·

Λn+1(r−1
un (t))− Sn(t)T

0 = Pvn+1 +Nn+1 + α(vn+1 − vn)
Nn+1(T ) = 0

(5.21)
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From this, we directly deduce that the solutions of Pn and Pn+1 are related by

vn+1 = vn −
1
α
gvn + 1

α
εn+1 (5.22)

with
εn+1 = −P (vn+1 − vn)− (Nn+1 − νn)

In turn, the cost variation between vn and vn+1 is given by

J(vn+1)− J(vn) =
∫ 1

0
G′(s) ds

where
G(s) = J(vn + (vn+1 − vn)s)

Using the adjoint state method (e.g. [Str07]), one computes, after a few lines of calculus,

J(vn+1)− J(vn) =
∫ 1

0

∫ T

0
gvn+(vn+1−vn)s(t)T (vn+1(t)− vn(t)) dt ds

which gives

J(vn+1)− J(vn) = − 1
α
‖gvn‖2

2 + 1
α
〈gvn , εn+1〉

+
∫ 1

0
〈gvn+(vn+1−vn)s − gvn , vn+1 − vn〉 ds

Finally

J(vn+1)− J(vn) ≤ − 1
α
‖gvn‖2

2 + 1
α
‖gvn‖2‖εn+1‖2+∫ 1

0
‖gvn+(vn+1−vn)s − gvn‖2‖vn+1 − vn‖2 ds

(5.23)

In order to go further into the convergence analysis, we need to establish a bound for
‖εn+1‖2. This is given in the following proposition

Proposition 5.1:

There exists some positive parameters (κ1, κ2, κ3, κ4) independent of α such that
such that

∀t ∈ [0;T ], ‖Nn+1(t)− νn(t)‖1 ≤ (κ1 + κ2‖vn‖2)‖vn+1 − vn‖2 (5.24)

and
∀t ∈ [0;T ], ‖νn(t)‖1 ≤ κ3 + κ4‖vn‖2 (5.25)

Proof. See Appendix B.2. �

Recalling (5.22), we have

‖vn+1 − vn‖2 ≤
1
α

(‖gvn‖2 + ‖P‖2‖vn+1 − vn‖2 + ‖Nn+1 − νn‖2)
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Then, using (5.24)

‖vn+1 − vn‖2 ≤
1
α
‖gvn‖2 + 1

α
(‖P‖2 + κ1 + κ2‖vn‖2)‖vn+1 − vn‖2

As a consequence, if
‖P‖2 + κ1 + κ2Rn < α (5.26)

(which is always possible for α large enough as the left-hand side of (5.26) is independent
of α). We find that

‖vn+1 − vn‖2 ≤
1

α− ‖P‖2 − κ1 − κ2Rn

‖gvn‖2 (5.27)

In particular, we deduce an a priori bound on the norm of vn+1, using (5.25)

‖vn+1‖2 ≤ Rn + ‖P‖2Rn + κ3 + κ4Rn

α− ‖P‖2 − κ1 − κ2Rn

Incidentally, this also leads to

‖εn+1‖2 ≤
‖P‖2 + κ1 + κ2Rn

α− ‖P‖2 − κ1 − κ2Rn

‖gvn‖2 (5.28)

To go further into the analysis of (5.23), we now have to prove the Lipschitz continuity
of gv = Pv + ν with respect to v. In order to do this, consider (v1, v2) and the associated
functions (u1, x1, λ1, ν1) and (u2, x2, λ2, ν2) such that

(u1, x1, λ1, ν1) , P(v1)

and
(u2, x2, λ2, ν2) , P(v2)

Proposition 5.2:

There exists a continuous function K : R3
+ → R+ increasing with each of its

arguments and independent of α such that

∀t ∈ [0;T ], ‖ν2(t)− ν1(t)‖1 ≤ K(‖v0‖2, ‖v1‖2, ‖v2‖2) ‖v2 − v1‖2 (5.29)

Proof. See Appendix B.3 �

One can then investigate further the decrease of cost formulated in (5.23). Using (5.28)
and (5.29), ones gets

J(vn+1)− J(vn) ≤ − 1
α

(1− ‖P‖2 + κ1 + κ2Rn

α− ‖P‖2 − κ1 − κ2Rn

)‖gvn‖2
2

+ Fn(α)
2 ‖vn+1 − vn‖2

2

where
Fn(α) = K(‖v0‖2, Rn, Rn + ‖P‖2Rn + κ3 + κ4Rn

α− ‖P‖2 − κ1 − κ2Rn

) + ‖P‖2
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Then, using (5.27)

J(vn+1)− J(vn) ≤ − 1
α

(
1− ‖P‖2 + κ1 + κ2Rn

α− ‖P‖2 − κ1 − κ2Rn

− αFn(α)
2(α− ‖P‖2 − κ1 − κ2Rn)2

)
‖gvn‖2

2

Since Fn is a decreasing function of α, there exists a value of α large enough such that

1− ‖P‖2 + κ1 + κ2Rn

α− ‖P‖2 − κ1 − κ2Rn

− αFn(α)
2(α− ‖P‖2 − κ1 − κ2Rn)2 , C(α,Rn) > 0

(5.30)

and J(vn+1) − J(vn) < 0. In particular, this guarantees that vn+1 ∈ Xn. By induction,
this implies that if one picks a value α = α1 such that (α1, R1) satisfy (5.26) and (5.30),
then for all rank n, vn ∈ X1 and (5.26) and (5.30) hold. Then, for all rank n

∀n ∈ N∗, J(vn+1)− J(vn) ≤ −C(α1, R1)
α1

‖gvn‖2
2

This leads to
N∑
i=0
‖gvi‖2

2 ≤
α1

C(α1, R1)(J(v0)− J(vn+1))

Finally we derive
N∑
i=0
‖gvi‖2

2 ≤
α1

C(α1, R1)(J(v0)− J∗)

and
lim
n→∞

‖gvn‖2 = 0

which gives the conclusion. �

5.4 Numerical example
We now illustrate the solution method studied in Theorem 5.1 using an example studied
in [BPCP14]. Consider a second order unstable linear system with dynamics given by

ẍ(t)− ẋ(t) + x(t) = u(ru(t))
u̇(t) = v(t)

(5.31)

having the following initial conditions

x(0) = 1, ẋ(0) = 0
u[r0;0] = 1, v[r0;0] = 0

This can equivalently be recast as

Ẋ(t) = AX(t) +Bu(ru(t))
u̇(t) = v(t)
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where

X =
(
x
ẋ

)
, A =

(
0 1
−1 1

)
, B =

(
0
1

)

The optimal control problem is

P : min
v

∫ T

0
‖x(t)− xr‖2

2 + wu‖u(t)− ur‖2
2 + wv‖v(t)‖2

2 dt

s.t. Ẋ(t) = AX(t) +Bu(ru(t))
u̇(t) = v(t)

with T = 10, wu = 0.1, wv = 0.1 and xr = ur = 1.5. Given α = 51, we approach
iteratively a solution of P by constructing an α-admissible sequence (vn). We pick the
trivial initialization value v1 = 0 and for all n ≥ 1 apply the following algorithm :

• given vn, compute un and the delay law rn

• compute (xn, λn) and deduce Sn

• solve Pn+1 and obtain vn+1

The flowchart of the algorithm is presented on Figure 5.1. Practically, the resolution
of Pn+1 is performed using a direct collocation transcription method (see [Biegler]), with
AMPL as algebraic modelling language and IPOPT 3.11.8 as NLP solver. The time
horizon is divided into 100 finite elements of equal size, each of them containing 3 Radau
collocation points. λn is numerically estimated by solving

P̃n : min
v=vn

∫ T

0
‖xn(t)− xr‖2

2 + wu‖un(t)− ur‖2
2 + wv‖v(t)‖2

2 dt

s.t. ẋn(t) = Axn(t) +Bun(run(t))
u̇n(t) = v(t)

and retrieving the adjoint of the discretized problem. The algorithm is terminated when
we reach 100 iterations. More sophisticated termination criteria could be considered, for
instance based on the satisfaction by the current solution of the stationarity conditions.
The results are presented on Figures 5.2-5.5.

Figures 5.2-5.3 report the optimal trajectory that is computed and the associated
delay law. Figure 5.4 pictorially shows how this trajectory is progressively approached by
the sequence. Figure 5.5 exhibits some indicators regarding the convergence properties
of the algorithm : the cost J along with the relative steps size measured by log (∆v) ,
log(‖vn−vn−1‖2

‖vn‖2
) and log (∆J) , log(‖Jn−Jn−1‖2

‖Jn‖2
) at successive iterations. As expected, the

cost decreases monotonically and the linear shape of the cost decrease on the semi-log
plot is evocative of a first order steepest descent-like method. The total computation time
for the first 100 iterations displayed on Figure 5.5 is equal to 10.78 seconds, 8.07 seconds
being actually spent in the solver.

1This value was chosen using a trial and error approach, knowing a priori that some large enough
value of α will actually provide convergence.
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initialize
vn, un

integrate
rn, r

−1
n

solve P̃n
xn, λn

update to
vn+1, un+1

compute
Sn

solve Pn+1

termination
criteria
reached?

stop

IPOPT

IPOPT

no

yes

Figure 5.1: Flowchart of the algorithm
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Figure 5.2: Optimal trajectory computed for P, CPUtime = 10.78 s (8.07 s spent in the
solver)
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Figure 5.3: Delay law of the optimal trajectory, as a function of time
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Figure 5.4: Successive approximations of the optimal trajectory as the successive Pn
problems are solved
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Figure 5.5: Convergence properties of the algorithm
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5.5 Conclusions
In this chapter, we have proposed an iterative algorithm to solve the problem of optimal
control of systems with hydraulic input-dependent input delays. A convergence proof was
detailed and numerical results were given illustrating the practical interest.

A straightforward extension would be to extend the calculus of variations and the
deduced iterative optimization algorithm to the case of systems with hydraulic input-
dependent state delays. This case is of importance since it is instrumental in the modelling
of recycling loops or cascades of reacting units.

The derivation of a method on a second order approximation of the stationarity
conditions would be interesting. This would lead to an algorithm analogous to a trust-
region method.





Chapter 6

Examples

Exemples. Dans ce chapitre, nous présentons les résultats de l’application d’une variante
de l’algorithme présenté au Chapitre 5 sur un problème d’intérêt industriel. Ce chapitre ne
propose pas d’analyses théoriques mais met en évidence la possibilité pratique d’étendre
l’algorithme au-delà du cadre dans lequel nous avons établi sa convergence (en particulier
en présence de contraintes).

6.1 Introduction
In this chapter, we present the numerical results of a variant of the optimization algorithm
presented in Chapter 5. No further convergence analysis is performed (although this could
deserve further investigations). Chiefly, this variant is developed to account for constraints.
It is applied to the dynamic optimization of a mixing system of industrial interest. A
generalization to the case of systems with state delays is presented.

6.2 Desirable features for a practical implementation
of the algorithm

The optimization algorithm developed in Chapter 5 is not directly suitable for practical
implementation. Indeed, in this analysis, the tuning parameter α was considered constant
over all steps (in particular, Theorem 5.1 established the convergence properties of the
algorithm under this assumption). However, practically, keeping α constant is not a
judicious choice. Usually, a desirable behaviour of the cost decrease should consist of two
phases. In a first phase, the cost decreases quickly as achieving effective cost decrease at
each step does not require a large value of α. At this point, α should be kept as large as
possible to speed up convergence. In a second phase, the cost decrease is much slower
and requires a higher α to generate a cost decrease at each step. Indeed, similarly to a
trust-region method (see e.g. [NW99]), the choice of α implicitly selects the step-size.

Then, we should start with a small value of the parameter α and steadily increase it in
order to insure a continued cost decrease after each iteration. As a consequence, we will
allow α to vary between steps according to the following very simple transition rule

J(un) ≤ J(un+1) =⇒ αn+1 = αn + δα (6.1)



76 Chapter 6. Examples
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−1
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solve P̃n
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vn+1, un+1
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stop

IPOPT
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no

yes

Figure 6.1: Flowchart of the algorithm with variable α (and constraints)

where δα > 0 is an increment parameter. It should be possible to develop more advanced
selection procedures based on the theory of trust-region algorithms. However, we have not
investigated these methods yet.

Further, we will consider in this chapter problems P subject to constraints. These
constraints will directly be incorporated into the definition of problems Pn and P̃n. This
is beyond the scope of Chapter 5 but, while a full theoretical analysis is challenging, a
practical extension is possible, as we will show numerically.

The flowchart associated to these updates of the optimization algorithm is presented
on Figure 6.1.
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6.3 Relaxation to a non-regularized input for input-
dependant input delays

6.3.1 Approximate regularization of the control
In this section, we investigate the possibility of applying a variant of the algorithm laid
out in Section 6.2 to a case where the input of the system under consideration has
not been explicitly regularized into a new state. Instead, we consider an approximate
regularization of the original problem still framed in terms of the u variable using a
numerical approximation of its derivative as regularizing term

P : min
u

∫ T

0
L(t, x(t), u(t)) + w∆u · ‖ψ1(u, t)‖2

2 dt , J(u)

s.t. ẋ(t) = f(t, x(t), u(t), u(ru(t)))
x(0) = x0, u[r0;0] = u0

where ψ1(u, .) is an approximation of the function u̇ defined as

ψ1(u, t) = u(tn)− u(tn−1)
tn − tn−1

, t ∈ [tn−1; tn[ (6.2)

Hence, the sequence of problems that we solve is

Pn+1 : min
un+1

∫ T

0
L(t,Xn+1(t), un+1(t)) + w∆u · ‖ψ1(un+1, t)‖2

2

+ Sn(t)(un+1(t)− un(t)) + α

2 ‖un+1(t)− un(t)‖2
2 dt

s.t. Ẋn+1(t) = f(t,Xn+1(t), un+1(t), un+1(run(t)))
Xn+1(0) = x0, un+1[r0;0] = u0

with (according to the developments of Chapter 5)

Sn(t) =
∫ r−1

un (min(t,run (T )))

t
λn(τ)T · ∂f

∂u
(τ, xn(τ), un(τ), un(run(τ)))

ψ2(un, run(τ))
φ(un(run(τ))) dτ ∂φ

∂u
(un(t))

where (xn, λn) are defined using the notations of Chapter 5 and ψ2(u, .) is another approx-
imation of the function u̇ defined as

ψ2(u, t) = u(tn+1)− u(tn−1)
2(tn+1 − tn−1) , t ∈ [tn−1; tn[ (6.3)

In light of our previous investigations, the problems Pn are not differentiable. Practically,
we will manage this issue (along with the problems related to the numerical approximation
of u̇) by formulating the problem in such a way to enforce approximate continuity of u.
Three reasons motivate this choice despite its hurdles :

• it avoids introducing new states and thus restrains the dimension of the problem

• if the problem involves state constraints, it avoids artificially increasing their index
(also refereed to as relative degree, e.g. in [BH69] or [Isi95]), which could lead to
numerical difficulties
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u1(t)

u2(t)

u3(t)

Vpip

yb(t)

V (t)

Figure 6.2: Schematic of the mixing unit

• it allows us to stay closer to the original formulation of the problem and is handy,
for instance, to formulate hard hydraulic constraints on the admissible variations of
u between two time steps

The approach is now illustrated on one example of practical interest.

6.3.2 Batch control of a mixing unit with pre-blend, the “paint”
problem

In this section, we consider an industrial unit mixing three products (see [PCR98] and
[CGCP16]). The products 1 and 2 are pre-blended before going through a dead-volume
Vpip. At the outlet, they are blended with product 3 and immediately reach a storage
tank. The total flow rate, F , of the unit is fixed and we control the ratios of the different
products (also referred to as recipe), u, that are injected at a given time. Our goal is
to control the average composition of the outlet tank, yb. We note y the instantaneous
composition of the product entering the tank and V the instantaneous volume of product
in the outlet tank. A schematic view of the system can be found on Figure 6.2.

Under a plug-flow assumption, the equations and constraints governing the system are
given by

ẏb(t) = − F

V (t) (yb(t)− y(t)) = − F

V (t) (yb(t)− Γ(u(ru(t)))u(t)) , yb(0) = y0 (6.4)

∀t < 0, u(t) = u0 (6.5)∫ t

ru(t)
u1(τ) + u2(τ) dτ = Vpip

F

Γ(u) =


u1

u1+u2
u1

u1+u2
0

u2
u1+u2

u2
u1+u2

0 0 1

 (6.6)

u1 + u2 + u2 = 1 (6.7)
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and
V (t) = V0 + Ft (6.8)

The optimization problems we are going to formulate encompass several elements:

• a reference recipe to follow, ur

• a target of composition of the outlet tank to track, yr

• soft inequality constraints that should be enforced but may be violated, at a cost
on the solution, to avoid infeasibility. They are transcribed using a further smooth
quadratic penalty term in the objective function (see [FM90]). For example, if one
wishes to enforce some inequality a ≤ b, we will add to the cost function a penalty
proportional to

ps(a, b) ,
(
b− a−

√
(b− a)2 + ε

)2
(6.9)

where ε is a small regularizing term

• hard inequality constraints that may not be violated by the system and that are
explicitly formulated as constraints in the problem

In our simulations, we will take the following setting : F = 4 m3.s−1, V0 = 100 m3,
Vpip = 200 m3. Furthermore, we consider a transition from an initial state y0 = (1

6 ,
4
6 ,

1
6),

u(t < 0) = (1
6 ,

4
6 ,

1
6) to yr = (0.5, 0.25, 0.25), ur = (0.5, 0.25, 0.25). All ratios are subject to

the following hard bound constraints

0.01 ≤ ui ≤ 1 (6.10)

Pure tracking problem
In this first scenario, we do not consider any soft or hard constraint other that the bound
constraints (6.10). The optimization cost function is defined by

L(t, yb(t), u(t)) = wy · ‖yb(t)− yr‖2
2 + wu · ‖u(t)− ur‖2

2

The resolution sequence is initialized taking α = 0.3, δα = 0.5 and initial values yb =
y0, u = u0.

We first consider a case where wy = 2, wu = 0.15, w∆u = 1. The results are presented
on Figures 6.3-6.4. As is apparent from Figure 6.4, the convergence properties achieved by
the algorithm are relatively poor. This is due to the strong discontinuity of the optimal
input at the beginning of the time horizon that makes the problem non-differentiable. The
oscillation of the solutions makes the termination of the algorithm difficult, one could
however consider the sequence to have approximately converged after roughly 40 iterations
(representing about 25 seconds of computation).

This problem can however be mitigated by further regularizing the control sequence.
This can be alternatively achieved by increasing the regularizing cost w∆u or by imposing
bounds on the amplitude of the variations of the control between adjacent points of the
collocation mesh. For this reason, we now consider the case where w∆u = 10 and we
impose

∀i ∈ J1; 3K,∀n ≥ 0, |ui(tn)− ui(tn−1)| ≤ ∆umax = 0.08
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Figure 6.3: Optimal trajectory with minimal regularization, w∆u = 1. The control displays
a strong initial discontinuity
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Figure 6.4: Mediocre convergence properties with minimal regularization, w∆u = 1.
CPUtime = 59.21 s (31.98 s spent in solver) for 100 iterations
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Figure 6.5: Optimal trajectory with increased regularization of the control, w∆u = 10

The results reported in on Figures 6.5-6.6. The cost decrease and the overall convergence
of the sequence is greatly improved. Approximate convergence is obtained after 20
iterations (representing about 12 seconds of computation). An improvement by a factor of
approximately 2 is hence obtained compared to the previous case.

Interestingly in both cases where w∆u = 1 or w∆u = 10, almost half of the total CPU
time used by the algorithm is actually spent in the AMPL script performing the various
side tasks presented in Figure 6.1 rather than in the optimization solver itself. This means
that the numerical implementation could still be greatly improved by the use of a more
efficient computing environment.

Case with soft constraints
We now consider an updated scenario where the the following soft constraint is considered

yb2 ≤ ymax2 = 0.5

Obviously, if we translate this rigorously as a constraint, the problem does not have any
admissible solution since yb2(0) > 0.5. Instead, we are going to enforce the constraint by
penalizing its infringement. Thus, using the approach presented in (6.9), we consider the
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Figure 6.6: Convergence properties with increased regularization, w∆u = 10. CPUtime =
54.70 s (28.57 s spent in solver) for 100 iterations
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Figure 6.7: Optimal trajectory with soft constraint. The controller increases the injection
ratio of product 3 in the first part of the batch to lower the injection of 2 and diminish
the constraint violation compared to Figure 6.5

following cost function

L(t, yb(t), u(t)) = wy · ‖yb(t)− yr‖2
2 + wu · ‖u(t)− ur‖2

2 + wp · ps(yb2(t), ymax2)

with wy = 2, wu = 0.15, w∆u = 10, ε = 10−7. The results are reported in Figures 6.7-6.8.
As can be seen, during the transient phase the controller imposes higher injection ratios of
product 3. This allows to dilute the inescapable inlet of 2 which is already in the pipe at the
initial pipe and curtails the constraint infringement. However, this also leads to increasing
the overall delay and leads to a longer “flushing” phase. Approximate convergence is
reached around 20 iterations (representing about 15 seconds of computation).

Case with soft and hard constraints
Additionally, a hard constraint enforcing yb1 ≥ 0.13 is introduced. As can be seen on
Figures 6.9-6.10, the hard constraints on the concentration of product 1 does not allow us
to bring down the concentration of product 2 as much as in the previous case. Indeed, in
the first phase of the transient (when the dead-volume has not yet been flushed out of its
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Figure 6.8: Convergence properties with soft constraint. CPUtime = 72.50 s (39.21 s spent
in solver) for 100 iterations
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Figure 6.9: Optimal trajectory with soft and hard constraints. The controller increases the
injection ratio of 3 in the first part of the batch to lower the injection of 2 and to diminish
the constraint violation. This is limited by the respect of the hard constraint on product 1

initial content), the concentration of product 1 and 2 at the outlet of the unit verifies the
following algebraic relation imposed by the initial composition of the product in the pipe

∀t ∈
[
0; r−1

u (0)
]
, y2(t) = 4y1(t)

Approximate convergence is reached around 20 iterations (representing about 15 seconds
of computation).

6.4 Extension to input-dependant state delays
Formally, the principle of the algorithm can directly be extended to the case of a system
with state delays. Given x0 a continuous, differentiable function on [r0; 0], let us consider

P : min
u

∫ T

0
L(t, x(t), u(t)) dt

s.t. ẋ(t) = f(t, x(t), x(ru(t)), u(t))
x[r0;0] = x0
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Figure 6.10: Convergence properties with soft and hard constraints. CPUtime = 75.25 s
(41.71 s spent in the solver) for 100 iterations
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Theorem 4.2 shows that this optimization problem is well-posed without further regu-
larization since its augmented cost is Gâteaux differentiable. Extending the results of
Theorem 4.3, we define a sequence of auxiliary problems

Pn+1 : min
un+1

∫ T

0
L(t,Xn+1(t), un+1(t)) + Sn(t)(un+1(t)− un(t)) + α

2 ‖un+1(t)− un(t)‖2
2 dt

s.t. Ẋn+1(t) = f(t,Xn+1(t), Xn+1(run(t)), un+1(t))
Xn+1[r0;0] = x0

where

Sn =
∫ r−1

un (min(t,run (T )))

t
λn(τ)T ∂f

∂xr
(τ, xn(τ), xn(run(τ)), un(τ))·

f(τ, xn(τ), xn(run(τ)), un(τ))
φ(un(run(τ))) dτ ∂φ

∂u
(un(t))

and could apply straightforwardly the algorithm of Figure 6.1 to attempt to solve P .
Similarly, a slight modification of the problem under consideration in the calculus of

variations accounting for a delayed term in the running cost would also allow to tackle the
system studied in Chapter 3

P = min
q

∫ T

0
(T (rq(t))− Tr(t))2 + w · (q(t)− qr(t))2 dt

s.t. Ṫ = f(T, q)
T (t ≤ 0) = T0

qmin ≤ q(t) ≤ qmax

Practically, the sequence (Pn+1) would be defined as

Pn+1 : min
un+1

∫ T

0
(Tn+1(rqn(t))− Tr(t))2 + w · (qn+1(t)− qr(t))2

+ Sn(t)(qn+1(t)− qn(t)) + α

2 (qn+1(t)− qn(t))2 dt

s.t. Ṫn+1 = f(Tn+1, qn+1)
T (t ≤ 0) = T0

qmin ≤ q(t) ≤ qmax

where

Sn(t) = 2
∫ r−1

qn (min(t,rqn (T )))

t

(T (rqn(τ))− Tr(τ)) · f (Tn(rqn(τ)), qn(rqn(τ)))
qn(rqn(τ)) dτ

6.5 Conclusions
In this chapter, we have presented a practical extension of the algorithm studied in
Chapter 5. In particular, we showed on a numerical example that it allows to handle
constrained problems that were not treated in our theoretical analysis. We studied the
possibility to treat a problem subject to an hydraulic input delay when the control is
not rigorously regularized. We showed that if some practical precautions are taken, the
algorithm provides good numerical results. We also sketched a possible extension of the
algorithm to the case of a system subject to a state delay.



Chapter 7

Conclusion

Conclusion. Dans ce chapitre, nous résumons les contributions de la thèse et proposons
des axes pour poursuivre le travail de recherche.

In this thesis, we have addressed several problems related to the control and optimization
of systems subject to varying delays. Early on in our work, we started by studying the
influence of uncertain, varying metrology delays on the stability of a simple IMC. We
showed in Chapter 2 that this can yield closed-loop instability and provided explicit
guarantees on the controller gain insuring robust asymptotic convergence. This result
confirms the classic fact of experience according to which the robust operation of controllers
in presence of uncompensated delays requires some detuning of the gain, and thus loss of
performance.

Later on, we tackled the problem of dynamic optimization of a system subject to complex
but structured input-dependant delays: the so-called hydraulic delays. In Chapter 3, we
showed that, while it can yield sound results on many problems, the state-of-the-art to
handle this issue in direct simultaneous methods is not fully satisfactory. Indeed, it requires
to discard the delay equation and to replace it by some discretization of a mathematically
equivalent transport PDE. While doable, this leads to a less parsimonious representation
of the problem and various numerical challenges. Based on this statement, we carried in
Chapter 4 the calculus of variations of this problem to get further insight into the structure
of the optimal solutions. After a lengthy derivation, this establishes the important result
that the straightforward formulation one could consider for dynamic optimization of a
system subject to input-dependant input delays is ill-posed in the sense that it does not
yield a smooth problem. Following this, we established the stationarity conditions of a
regularization of this problem. Interestingly, this work highlighted the difference between
optimizing a system subject to a fixed time-varying delay or an explicitly input-dependant
one. We used this to derive in Chapter 5 an iterative algorithm which only requires to
solve a sequence of auxiliary problems with fixed time varying delay laws. This is of
practical importance as it then allows us to use state-of-the-art simultaneous optimization
methods in the resolution of each auxiliary problem. Our convergence analysis showed
that, similarly to a trust region method, our algorithm becomes equivalent to a gradient
descent in the limit where the allowed step-size goes to zero. Finally, in Chapter 6 we
extend the scope of our algorithm to problems with input and state constraints as well as
systems where the control sequence is only approximately regularized. We demonstrated
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the good numerical performances of our formulation on a problem of industrial interest.
A full numerical benchmark between our method and the existing approaches remains,
however, to be conducted.

While this was not the core topic of this thesis, the case of input-dependant state delays
is of great practical importance in many process applications (recycling loops and cascade
of reacting units for instance) and should be treated. Interestingly, the analysis conducted
in Chapter 4 shows that a problem where only delayed state values (as opposed to delayed
input values) appear in the dynamics is smooth in the sense that it is Gâteaux differentiable.
The results of our calculus of variations lead us to think that a straightforward extension
of our algorithm is possible in this case.

An exciting problem raised by our work is the possibility of extending our approach to
a second order method. This would indeed greatly improve convergence performances. It
is however not clear that the problem has sufficient regularity to directly allow such an
extension. Establishing or disproving this would require the computation of the problem
second variation.
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Appendix A

IPOPT log data on a problem of
Chapter 3

Number of nonzeros in equality constraint Jacobian...: 162042
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 15700

Total number of variables............................: 35848
variables with only lower bounds: 0
variables with lower and upper bounds: 199
variables with only upper bounds: 0
Total number of equality constraints.................: 35748
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.0158601e+01 2.00e+00 1.45e-03 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 9.9091236e+00 2.63e-01 1.78e-01 -1.0 2.21e+00 -4.0 9.64e-01 1.00e+00h 1
2 8.2131500e+00 6.26e-02 2.80e-01 -1.0 1.12e+00 -2.7 1.00e+00 1.00e+00h 1
3 5.5111134e+00 9.38e-01 8.18e-01 -1.7 2.69e+00 -3.1 1.00e+00 1.00e+00h 1
4 5.2555476e+00 4.10e-01 8.70e-01 -1.7 1.36e+00 -2.7 5.49e-01 1.00e+00h 1
5 5.2246545e+00 1.55e-01 2.34e-01 -1.7 1.01e+00 -2.3 1.00e+00 1.00e+00h 1
6 5.0584395e+00 3.45e-02 1.22e-01 -1.7 5.42e-01 -2.8 1.00e+00 1.00e+00h 1
7 4.8212309e+00 1.01e+00 3.53e-01 -2.5 2.07e+00 -3.3 1.00e+00 7.10e-01h 1
8 4.8143059e+00 2.07e-01 8.55e-02 -2.5 1.18e+00 -2.8 6.85e-01 1.00e+00h 1
9 4.7890467e+00 9.27e-02 7.71e-02 -2.5 7.28e-01 -3.3 1.00e+00 5.61e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 4.7312126e+00 2.46e-01 4.75e-02 -2.5 1.54e+00 -3.8 1.00e+00 1.00e+00h 1
11 4.6994719e+00 4.74e-02 2.39e-02 -2.5 8.51e-01 -3.4 1.00e+00 1.00e+00h 1
12 4.6322390e+00 2.51e-01 1.68e-02 -3.8 2.12e+00 -3.8 8.15e-01 1.00e+00h 1
13 4.5965947e+00 1.69e-01 3.34e-02 -3.8 1.09e+00 -3.4 9.73e-01 1.00e+00h 1
14 4.5264094e+00 2.38e-01 1.79e-02 -3.8 2.49e+00 -3.9 1.00e+00 1.00e+00h 1
15 4.5002314e+00 1.44e-01 1.19e-02 -3.8 1.11e+00 -3.5 1.00e+00 7.84e-01h 1
16 4.4773609e+00 9.87e-02 3.90e-02 -3.8 2.81e+00 -3.9 1.00e+00 3.27e-01h 1
17 4.4515408e+00 3.53e-02 1.23e-02 -3.8 1.06e+00 -3.5 1.00e+00 1.00e+00h 1
18 4.3807465e+00 2.35e-01 1.32e-02 -3.8 2.87e+00 -4.0 1.00e+00 1.00e+00h 1
19 4.3269918e+00 3.32e-01 1.52e-02 -3.8 1.66e+01 -4.5 3.95e-01 1.64e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
20 4.3135913e+00 2.92e-01 3.91e-02 -3.8 4.01e+00 -4.0 1.00e+00 1.57e-01h 1
21 4.2652241e+00 4.15e-01 2.80e-02 -3.8 1.98e+01 -4.5 4.62e-01 1.45e-01h 1
22 4.2579711e+00 3.50e-01 1.08e-01 -3.8 3.73e+00 -4.1 1.00e+00 1.60e-01h 1
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23 4.2212423e+00 7.26e-01 8.23e-02 -3.8 1.63e+01 -4.6 1.00e+00 2.05e-01h 1
24 4.2043430e+00 3.44e-01 5.92e-02 -3.8 2.32e+00 -4.1 1.00e+00 5.32e-01h 1
25 4.1690046e+00 7.77e-01 2.82e-02 -3.8 5.04e+00 -4.6 1.00e+00 8.69e-01h 1
26 4.1578351e+00 1.37e+00 2.54e-02 -3.8 3.99e+01 -5.1 1.59e-01 1.20e-01h 1
27 4.1550609e+00 1.12e+00 7.29e-02 -3.8 2.41e+00 -4.7 1.00e+00 1.90e-01h 1
28 4.1391325e+00 3.55e-01 2.26e-02 -3.8 5.90e+00 -5.1 1.00e+00 6.91e-01h 1
29 4.1361067e+00 5.57e+00 7.79e-02 -3.8 2.96e+01 -5.6 7.07e-01 5.52e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
30 4.1258620e+00 7.89e-01 1.54e-02 -3.8 9.23e+00 -5.2 1.00e+00 1.00e+00h 1
31 4.1214413e+00 2.46e-01 6.96e-03 -3.8 4.53e+00 -5.7 1.00e+00 1.00e+00h 1
32 4.1190572e+00 7.35e-01 2.97e-02 -3.8 1.75e+01 -6.1 1.00e+00 3.29e-01h 1
33 4.1168474e+00 1.13e-01 1.51e-03 -3.8 2.53e+00 -6.6 1.00e+00 1.00e+00h 1
34 4.1168693e+00 1.15e-01 3.39e-03 -3.8 2.71e+00 -7.1 1.00e+00 9.81e-01h 1
35 4.1166071e+00 8.29e-02 1.62e-03 -3.8 1.60e+00 -7.6 1.00e+00 1.00e+00h 1
36 4.1162914e+00 3.33e-03 4.62e-05 -3.8 3.21e-01 -5.3 1.00e+00 1.00e+00h 1
37 4.1143897e+00 8.32e-02 1.51e-03 -5.7 1.89e+00 -5.8 9.48e-01 8.95e-01h 1
38 4.1136621e+00 4.14e-02 5.92e-04 -5.7 1.09e+00 -5.4 1.00e+00 1.00e+00h 1
39 4.1135996e+00 9.06e-02 4.23e-02 -5.7 2.39e+01 -5.9 7.59e-01 5.00e-02h 5
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
40 4.1135964e+00 9.05e-02 1.54e-02 -5.7 8.49e-01 -5.4 1.00e+00 7.54e-04h 1
41 4.1134863e+00 1.89e-01 3.72e-02 -5.7 1.48e+01 -5.9 9.96e-01 1.21e-01h 4
42 4.1135814e+00 1.89e-01 1.82e-01 -5.7 4.29e+01 -5.5 1.00e+00 1.65e-03h 9
43 4.1104453e+00 4.86e-01 2.82e-03 -5.7 4.76e+00 -6.0 1.00e+00 1.00e+00H 1
44 4.1124483e+00 1.03e-01 7.66e-04 -5.7 2.12e+00 -6.5 1.00e+00 1.00e+00h 1
45 4.1122647e+00 1.70e-01 2.30e-03 -5.7 3.35e+00 -6.9 1.00e+00 1.00e+00H 1
46 4.1116203e+00 1.24e-02 1.17e-04 -5.7 7.92e-01 -5.6 1.00e+00 1.00e+00h 1
47 4.1113111e+00 6.61e-02 2.02e-03 -5.7 3.34e+00 -6.1 1.00e+00 1.00e+00H 1
48 4.1110597e+00 1.01e-01 9.79e-04 -5.7 2.15e+00 -5.7 1.00e+00 1.00e+00h 1
49 4.1108486e+00 1.74e-01 1.93e-02 -5.7 2.85e+01 -6.1 8.39e-01 6.77e-02h 4
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
50 4.1102066e+00 4.01e-01 4.01e-03 -5.7 4.34e+00 -5.7 1.00e+00 1.00e+00h 1
51 4.1098774e+00 9.52e-01 2.16e-02 -5.7 1.19e+02 -6.2 2.43e-01 4.46e-02h 2
52 4.1068419e+00 1.00e+00 1.82e-02 -5.7 8.48e+00 -5.8 1.00e+00 8.25e-01h 1
53 4.1063826e+00 5.24e-01 8.94e-03 -5.7 7.08e+00 -6.2 7.27e-01 5.00e-01h 2
54 4.1035675e+00 7.87e-01 6.28e-03 -5.7 7.96e+00 -5.8 1.00e+00 8.14e-01H 1
55 4.1002083e+00 1.50e+00 9.22e-03 -5.7 9.00e+00 -6.3 4.19e-01 1.00e+00H 1
56 4.0983771e+00 6.45e-01 8.47e-03 -5.7 2.96e+00 -6.8 1.00e+00 1.00e+00h 1
57 4.0979097e+00 3.26e-02 4.31e-04 -5.7 4.33e-01 -7.2 1.00e+00 1.00e+00h 1
58 4.0978996e+00 1.15e-03 1.41e-05 -5.7 1.30e-01 -7.7 1.00e+00 1.00e+00h 1
59 4.0978983e+00 3.89e-06 4.96e-08 -5.7 9.38e-03 -8.2 1.00e+00 1.00e+00h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
60 4.0978690e+00 3.05e-05 1.16e-06 -8.6 2.24e-02 -8.7 1.00e+00 1.00e+00h 1
61 4.0978689e+00 2.82e-08 1.08e-09 -8.6 6.58e-04 -9.1 1.00e+00 1.00e+00h 1
62 4.0978688e+00 2.72e-11 1.03e-12 -9.0 2.11e-05 -9.6 1.00e+00 1.00e+00h 1

Number of Iterations....: 62

(scaled) (unscaled)
Objective...............: 4.0978688305704445e+00 4.0978688305704445e+00
Dual infeasibility......: 1.0318551568744283e-12 1.0318551568744283e-12
Constraint violation....: 1.1606983649884081e-11 2.7180033397578018e-11
Complementarity.........: 9.0913438300715919e-10 9.0913438300715919e-10
Overall NLP error.......: 9.0913438300715919e-10 9.0913438300715919e-10

Number of objective function evaluations = 98
Number of objective gradient evaluations = 63
Number of equality constraint evaluations = 98
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Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 63
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 62





Appendix B

Elements of proof of Theorem 5.1

B.1 Proof of Lemma 5.1
Proof. Using Cauchy-Schwarz inequality

∀t ∈ [0;T ], ‖u2(t)− u1(t)‖1 = ‖
∫ t

0
v2(τ)− v1(τ) dτ‖1 ≤

√
pt‖v2 − v1‖2 (B.1)

and similarly

∀t ∈ [0;T ], ‖u(t)− u0(0)‖1 ≤
√
pt‖v‖2 (B.2)

We also have

∀t ∈ [0;T ], ‖x2(t)− x1(t)‖1 = ‖
∫ t

0
f(τ, x2(τ), u2(τ), u2(r2(τ)))

− f(τ, x1(τ), u1(τ), u1(r1(τ))) dτ‖1

It follows that

‖x2(t)− x1(t)‖1 ≤
∫ t

0
K‖x2(τ)− x1(τ)‖1 dτ +

∫ t

0
K‖u2(τ)− u1(τ)‖1 dτ

+
∫ t

0
K‖u2(r2(τ))− u1(r2(τ))‖1

+
∫ t

0
K‖u1(r2(τ))− u1(r1(τ))‖1 dτ

Hence

‖x2(t)− x1(t)‖1 ≤ K
∫ t

0
‖x2(τ)− x1(τ)‖1 dτ + 2KT

√
pT‖v2 − v1‖2

+K
∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ

(B.3)

Furthermore, we have
∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ =

∫ t

0
‖
∫ r2(τ)

r1(τ)
v1(s) ds‖1 dτ

≤
∫ t

0

∫ b(τ)

a(τ)
‖v1(s)‖1 ds dτ
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where a(s) , min(r1(s), r2(s)) and b(s) , max(r1(s), r2(s)). Since r1 and r2 are strictly
increasing functions, a and b also are and they are invertible. From their respective
definitions, it is also clear that a(t) ≤ b(t) and a(0) = b(0) = r0. Then, using Fubini’s
theorem ∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ ≤

∫ a(t)

r0

∫ a−1(s)

b−1(s)
‖v1(s)‖1 dτ ds

+
∫ b(t)

a(t)

∫ t

b−1(s)
‖v1(s)‖1 dτ ds

Hence ∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ

≤ ( sup
s∈[r0;a(t)]

(a−1(s)− b−1(s)) + sup
s∈[a(t);b(t)]

(t− b−1(s))) · (‖v1‖1 + ‖v0‖1)

where ‖v0‖1 is used to denote

‖v0‖1 =
∫ 0

r0
‖v0(τ)‖1 dτ

and similarly

‖v0‖2 =
√∫ 0

r0
‖v0(τ)‖2

2 dτ

Then ∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ

≤
(

sup
s∈[r0;a(t)]

(a−1(s)− b−1(s)) + a−1(a(t))− b−1(a(t))
)

(‖v1‖1 + ‖v0‖1)

For any s ∈ [r0; a(t)]
a−1(s)− b−1(s) = y2 − y1

where y1 and y2 are uniquely defined by

s = a(y2) = b(y1)

On the other hand, ∀i ∈ {1, 2}, using the Lipschitz continuity of φ, (5.1), (5.12) and
integrating q either backward or forward, we find

r′i(t) = φ(qi(t))
φ(qi(ri(t)))

≥ φmin

φ(u0(0)) +K(
√
pT‖wi‖2 +√pr0‖v0‖2)

a is a scalar function whose rate of change is lower bounded by the minimum of the two
expressions of the previous equation. As a consequence

φmin

φ(u0(0)) +K(
√
pT (‖w1‖2 + ‖w2‖2) +√pr0‖v0‖2) |y2 − y1| ≤ |a(y2)− a(y1)| (B.4)

Then, since |a(y2)− a(y1)| = |a(y1)− b(y1)| = |r2(y1)− r1(y1)|, one has∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ ≤ 2

φ(u0(0)) +K(
√
pT (‖w1‖2 + ‖w2‖2) +√pr0‖v0‖2)

φmin
·

sup
s∈[0;T ]

|r2(s)− r1(s)| · (‖v1‖1 + ‖v0‖1)
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Using (5.2), we have ∫ t

r1(t)
φ(q1(τ)) dτ −

∫ t

r2(t)
φ(q2(τ)) dτ = 0

Hence
|
∫ r1(t)

r2(t)
φ(q2(τ))dτ | ≤ K

∫ t

0
‖q2(τ)− q1(τ)‖1 dτ

And then
|r2(t)− r1(t)| ≤ Kt

√
pT

φmin
‖w2 − w1‖2

Then∫ t

0
‖u1(r2(τ))− u1(r1(τ))‖1 dτ ≤

2KT
√
pT

φ(u0(0)) +K(
√
pT (‖w1‖2 + ‖w2‖2) +√pr0‖v0‖2)

φ2
min

· (‖v1‖1 + ‖v0‖1)‖w2 − w1‖2

(B.5)

Substituting in (B.3), this leads to

‖x2(t)− x1(t)‖1 ≤ K
∫ t

0
‖x2(τ)− x1(τ)‖1 dτ + 2KT

√
pT‖v2 − v1‖2

+
φ(u0(0)) +K(

√
pT (‖w1‖2 + ‖w2‖2) +√pr0‖v0‖2)

φ2
min

·

2K2T
√
pT (‖v1‖1 + ‖v0‖1)‖w2 − w1‖2

Using Grönwall’s lemma

‖x2(t)− x1(t)‖1 ≤
(φ(u0(0)) +K(

√
pT (‖w1‖2 + ‖w2‖2) +√pr0‖v0‖2)

φ2
min

·

2K2T
√
pT (‖v1‖1 + ‖v0‖1)‖w2 − w1‖2 + 2KT

√
pT‖v2 − v1‖2

)
eKt

Synthetically, a conservative estimate is as follows

‖x2(t)− x1(t)‖1 ≤ k1‖v2 − v1‖2 + k2(1 + ‖w1‖2 + ‖w2‖2)(1 + ‖v1‖2)‖w2 − w1‖2

We also have

∀t ∈ [0;T ], ‖x(t)− x0‖1 ≤
∫ t

0
‖f(τ, x(τ), u(τ), u(rq(τ)))‖1 dτ

Using the Lipschitz continuity of f

‖x(t)− x0‖1 ≤
∫ t

0
‖f(0, x0, u0(0), u0(r0))‖1 +Kτ +K‖x(τ)− x0‖1

+K‖u(τ)− u0(0)‖1 +K‖u(r(τ))− u0(r0)‖1 dτ

With Gröwall’s lemma and (B.2), we find

‖x(t)− x0‖1 ≤ T (‖f(0, x0, u0(0), u0(r0))‖1 + KT

2 + 2K
√
pT‖v‖2 +K

√
pr0‖v0‖2)eKT
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This is rewritten as
‖x(t)− x0‖1 ≤ k3 + k4‖v‖2 (B.6)

Let us define µ : t 7→ λ(T − t). Then, integrating backwards, one gets

‖µ(t)‖1 ≤
∫ t

0
‖∂L
∂x

(T − τ, x(T − τ), u(T − τ))

+ ∂f

∂x
(T − τ, x(T − τ), u(T − τ), u(rq(T − τ)))Tµ(τ)‖1 dτ

Using the Lipschitz continuity of ∂L
∂x

, the boundedness of ∂f
∂x
, (B.1) and (B.6), we find

‖µ(t)‖1 ≤ K
∫ t

0
‖µ(τ)‖1 dτ + T

(
∂L

∂x
(0, x0, u0(0)) +KT +K(k3 + k4‖v‖2) +K

√
pT‖v‖2

)
We deduce that the norm of the adjoint state is bounded

∀t ∈ [0;T ], ‖λ(t)‖1 ≤ T
(
∂L

∂x
(0, x0, u0) +KT +K(k3 + k4‖v‖2) +K

√
pT‖v‖2

)
eKT

and

∀t ∈ [0;T ], ‖λ(t)‖1 ≤ l3 + l4‖v‖2 (B.7)

We also have

‖µ2(t)− µ1(t)‖1

≤
∫ t

0
‖∂L
∂x

(T − τ, x2(T − τ), u2(T − τ))

− ∂L

∂x
(T − τ, x1(T − τ), u1(T − τ))‖1 dτ

+
∫ t

0
‖∂f
∂x

(T − τ, x2(T − τ), u2(T − τ), u2(r2(T − τ)))Tµ2(τ)

− ∂f

∂x
(T − τ, x1(T − τ), u1(T − τ), u1(r1(T − τ)))Tµ1(τ)‖1 dτ

Consequently

‖µ2(t)− µ1(t)‖1

≤ K
∫ t

0
‖x2(T − τ)− x1(T − τ)‖1 + ‖u2(T − τ)− u1(T − τ)‖1 dτ

+
∫ t

0
K‖µ2(τ)− µ1(τ)‖1 + ‖(∂f

∂x
(T − t, x2(T − τ), u2(T − τ), u2(r2(T − τ)))T

− ∂f

∂x
(T − t, x1(T − τ), u1(T − τ), u1(r1(T − τ)))T )µ1(τ)‖1 dτ

Then

‖µ2(t)− µ1(t)‖1

≤ K(1 + l3 + l4‖v1‖2)
∫ t

0
‖x2(T − τ)− x1(T − τ)‖1 + ‖u2(T − τ)− u1(T − τ)‖1 dτ

+K
∫ t

0
‖µ2(τ)− µ1(τ)‖1 + ‖u2(r2(T − t))− u1(r1(T − t))‖1‖µ1(τ)‖1 dτ
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And, reusing (B.5), we get

‖µ2(t)− µ1(t)‖1

≤ K(1 + l3 + l4‖v1‖2)
∫ t

0
k1‖v2 − v1‖2 + k2(1 + ‖w1‖2 + ‖w2‖2)·

(1 + ‖v1‖2)‖w2 − w1‖2 +
√
pT‖v2 − v1‖2 dτ +K

∫ t

0
‖µ2(τ)− µ1(τ)‖1

+
√
pT‖v2 − v1‖2 dτ + (l3 + l4‖v1‖2)2K2T

√
pT ·

φ(u0) +K(
√
pT (‖w1‖2 + ‖w2‖2) +√pr0‖v0‖2)

φ2
min

(‖v1‖1 + ‖v0‖1)‖w2 − w1‖2

Again, using Grönwall’s lemma, one finds

‖λ2(t)− λ1(t)‖1 ≤
l1(1 + ‖v1‖2)‖v2 − v1‖2 + l2(1 + ‖w1‖2 + ‖w2‖2)(1 + ‖v1‖2)2‖w2 − w1‖2

�

B.2 Proof of Proposition 5.1
Proof. We have

‖Nn+1(t)− νn(t)‖1 ≤∫ T

t
‖∂L
∂u

(τ,Xn+1(τ), un+1(τ))− ∂L

∂u
(τ, xn(τ), un(τ))‖1

+ ‖∂f
∂u

(τ,Xn+1(τ), un+1(τ), un+1(rn(τ)))TΛn+1(τ)

− ∂f

∂u
(τ, xn(τ), un(τ), un(rn(τ)))Tλn(τ)‖1 dτ

+
∫ rn(T )

min(t,rn(T ))
‖ ∂f
∂ur

(r−1
n (τ), Xn+1(r−1

n (τ)), un+1(r−1
n (τ)), un+1(τ))Λn+1(r−1

n (τ))

− ∂f

∂ur
(r−1
n (τ), xn(r−1

n (τ)), un(r−1
n (τ)), un(τ))λn(r−1

n (τ))‖1(r−1
n )′(τ) dτ

Using a change of variables in the second integral, we find

‖Nn+1(t)− νn(t)‖1 ≤

K
∫ T

t
‖Xn+1(τ)− xn(τ)‖1 + ‖un+1(τ)− un(τ)‖1 + ‖Λn+1(τ)− λn(τ)‖1

+ ‖λn(τ)‖1

(
‖Xn+1(τ)− xn(τ)‖1

+ ‖un+1(τ)− un(τ)‖1 + ‖un+1(rn(τ))− un(rn(τ))‖1

)
dτ

+K
∫ T

r−1
n (min(t,rn(T )))

‖Λn+1(τ)− λn(τ)‖1 + ‖λn(τ)‖1

(
‖Xn+1(τ)− xn(τ)‖1

+ ‖un+1(τ)− un(τ)‖1 + ‖un+1(rn(τ))− un(rn(τ))‖1

)
dτ
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Finally, using the various Lipschitz continuity results established in Lemma 5.1, we find

‖Nn+1(t)− νn(t)‖1 ≤KT
(√

pT + k1 + 2l1(1 + ‖vn‖2)

+ 2(l3 + l3‖vn‖2)(2
√
pT + k1)

)
‖vn+1 − vn‖2

This can be rewritten as

‖Nn+1(t)− νn(t)‖1 ≤ (κ1 + κ2‖vn‖2)‖vn+1 − vn‖2

It is also straightforward to show that, for some positive constants κ3, κ4, one has

‖νn(t)‖1 ≤ κ3 + κ4‖vn‖2

�

B.3 Proof of Proposition 5.2
Proof. From (5.6), one has

‖ν2(t)− ν1(t)‖1 ≤

‖
∫ T

t

∂L

∂u
(τ, x2(τ), u2(τ))T − ∂L

∂u
(τ, x1(τ), u1(τ))T

+ ∂f

∂u
(τ, x2(τ), u2(τ), u2(r2(τ)))Tλ2(τ)

− ∂f

∂u
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ)

+ 1[0;r2(T )](τ)(r−1
2 )′(τ)·

∂f

∂ur
(r−1

2 (τ), x2(r−1
2 (τ)), u2(r−1

2 (τ)), u2(τ))Tλ2(r−1
2 (τ))

− 1[0;r1(T )](τ)(r−1
1 )′(τ)·

∂f

∂ur
(r−1

1 (τ), x1(r−1
1 (τ)), u1(r−1

1 (τ)), u1(τ))Tλ1(r−1
1 (τ))

+
∫ r−1

2 (min(τ,r2(T )))

τ
λ2(s)T ·

∂f

∂ur
(s, x2(s), u2(s), u2(r2(s))) v2(r2(s))

φ(u2(r2(s))) ds∂φ
∂u

(u2(τ))T

−
∫ r−1

1 (min(τ,r1(T )))

τ
λ1(s)T ·

∂f

∂ur
(s, x1(s), u1(s), u1(r1(s))) v1(r1(s))

φ(u1(r1(s))) ds∂φ
∂u

(u1(τ))T dτ‖1

Hence, using a change of variable in two of the integrals above, and after a Cauchy-Schwarz
inequality, one gets

‖ν2(t)− ν1(t)‖1 ≤

‖
∫ T

t

∂L

∂u
(τ, x2(τ), u2(τ))T − ∂L

∂u
(τ, x1(τ), u1(τ))T
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+ ∂f

∂u
(τ, x2(τ), u2(τ), u2(r2(τ)))Tλ2(τ)

− ∂f

∂u
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ) dτ‖1

+ ‖
∫ T

r−1
2 (min(t,r2(T )))

∂f

∂ur
(τ, x2(τ), u2(τ), u2(r2(τ)))Tλ2(τ) dτ

−
∫ T

r−1
1 (min(t,r1(T )))

∂f

∂ur
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ) dτ

+
∫ T

t

∫ r−1
2 (min(τ,r2(T )))

τ
λ2(s)T ·

∂f

∂ur
(s, x2(s), u2(s), u2(r2(s))) v2(r2(s))

φ(u2(r2(s))) ds∂φ
∂u

(u2(τ))T

−
∫ r−1

1 (min(τ,r1(T )))

τ
λ1(s)T ·

∂f

∂ur
(s, x1(s), u1(s), u1(r1(s))) v1(r1(s))

φ(u1(r1(s))) ds∂φ
∂u

(u1(τ))T dτ‖1

Noting that

‖
∫ T

r−1
2 (min(t,r2(T )))

∂f

∂ur
(τ, x2(τ), u2(τ), u2(r2(τ)))Tλ2(τ) dτ

−
∫ T

r−1
1 (min(t,r1(T )))

∂f

∂ur
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ) dτ‖1

≤
∫ T

t
‖ ∂f
∂ur

(τ, x2(τ), u2(τ), u2(r2(τ)))Tλ2(τ)

− ∂f

∂ur
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ)‖1 dτ

+ ‖
∫ r−1

2 (min(t,r2(T )))

r−1
1 (min(t,r1(T )))

∂f

∂ur
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ) dτ‖1

We get

‖ν2(t)− ν1(t)‖1 ≤
K(T − t) sup

τ∈[0;T ]
(‖x2(τ)− x1(τ)‖1 + ‖u2(τ)− u1(τ)‖1 + 2‖λ2(τ)− λ1(τ)‖1)

+ 2K(T − t)(l3 + l4‖v1‖2)·(
sup
τ∈[0;T ]

(‖x2(τ)− x1(τ)‖1 + 2‖u2(τ)− u1(τ)‖1) +
∫ T

0
‖u1(r2(t))− u1(r1(t))‖1 dτ

)

+ ‖
∫ r−1

2 (min(t,r2(T )))

r−1
1 (min(t,r1(T )))

∂f

∂ur
(τ, x1(τ), u1(τ), u1(r1(τ)))Tλ1(τ) dτ‖1︸ ︷︷ ︸

,A

+ ‖
∫ T

t

∫ r−1
2 (min(τ,r2(T )))

r−1
1 (min(τ,r1(T )))

λ2(s)T ·

∂f

∂ur
(s, x2(s), u2(s), u2(r2(s))) v2(r2(s))

φ(u2(r2(s))) ds∂φ
∂u

(u2(τ)) dτ‖1︸ ︷︷ ︸
,B
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+ ‖
∫ T

t

∫ r−1
1 (min(τ,r1(T )))

τ
λ2(s)T ·

∂f

∂ur
(s, x2(s), u2(s), u2(r2(s))) v2(r2(s))

φ(u2(r2(s))) ds∂φ
∂u

(u2(τ))

− λ1(s)T ·
∂f

∂ur
(s, x1(s), u1(s), u1(r1(s))) v1(r1(s))

φ(u1(r1(s))) ds∂φ
∂u

(u1(τ)) dτ‖1︸ ︷︷ ︸
,C

We have

A ≤
∫ r−1

2 (min(t,r2(T )))

r−1
1 (min(t,r1(T )))

K(l3 + l4‖v1‖2) dτ

The definition of the delay (5.2) gives us

∫ r−1
2 (min(t,r2(T )))

min(t,r2(T ))
φ(u2(τ)) dτ −

∫ r−1
1 (min(t,r1(T )))

min(t,r1(T ))
φ(u1(τ)) dτ = 0

It follows that
∫ r−1

2 (min(t,r2(T )))

r−1
1 (min(t,r1(T )))

φ(u2(τ)) dτ = −
∫ r−1

1 (min(t,r2(T )))

min(t,r1(T ))
φ(u2(τ))− φ(u1(τ)) dτ

−
∫ min(t,r1(T ))

min(t,r2(T ))
φ(u2(τ)) dτ

(B.8)

Besides, (5.2) also implies

|
∫ min(t,r1(T ))

min(t,r2(T ))
φ(u2(τ)) dτ | ≤ |

∫ r1(T )

r2(T )
φ(u2(τ)) dτ | = |

∫ T

r1(T )
φ(u2(τ))− φ(u1(τ)) dτ |

≤ K(T − r0)
√
pT‖v2 − v1‖2

Then, using (B.8) and performing the same calculation

(r−1
2 (min(t, r2(T )))− r−1

1 (min(t, r1(T )))) ≤ 2K(T − r0)
√
pT

φmin
‖v2 − v1‖2

Finally, we have

A ≤ 2K2(T − r0)
√
pT

φmin
(l3 + l4‖v1‖2)‖v2 − v1‖2

To treat B, we note

a : [r0; max(r1(T ), r2(T ))]→ [0;T ]
t 7→ min(r−1

1 (min(τ, r1(T ))), r−1
2 (min(τ, r2(T ))))

and

b : [r0; min(r1(T ), r2(T ))]→ [0;T ]
t 7→ max(r−1

1 (min(τ, r1(T ))), r−1
2 (min(τ, r2(T ))))



B.3. Proof of Proposition 5.2 115

Since r−1
1 and r−1

2 are both strictly increasing functions, a and b both are invertible
functions and

B ≤
∫ b(t)

a(t)

∫ a−1(s)

t
‖λ2(s)T ·

∂f

∂ur
(s, x2(s), u2(s), u2(r2(s))) v2(r2(s))

φ(u2(r2(s)))
∂φ

∂u
(u2(τ))‖1 dτ ds+

∫ T

b(t)

∫ a−1(s)

b−1(s)
‖λ2(s)T ·

∂f

∂ur
(s, x2(s), u2(s), u2(r2(s))) v2(r2(s))

φ(u2(r2(s)))
∂φ

∂u
(u2(τ))‖1 dτ ds

Then, by the Lipschitz continuity of ∂φ
∂u

and the boundedness of ∂f
∂ur

B ≤ ( sup
s∈[a(t);b(t)]

(a−1(s)− t) + sup
s∈[b(t);T ]

(a−1(s)− b−1(s)))·

(l3 + l4‖v2‖2) K
2

φmin

∫ T

0
‖v2(r2(s))‖1 ds

Besides, by the Cauchy-Schwarz inequality∫ T

0
‖v2(r2(s))‖1 ds ≤

√
pT

√∫ T

0
‖v2(r2(s))‖2

2 ds

≤
√
pT

√∫ r2(T )

r2(0)
‖v2(s)‖2

2 · (r−1
2 )′(s) ds

≤

√√√√pT (φ(u0(0)) +K
√
pT‖v2‖2 +K

√
pr0‖v0‖2)

φmin
(‖v2‖2 + ‖v0‖2)

and since a ≤ b

B ≤ (a−1(b(t))− b−1(b(t)) + sup
s∈[b(t);T ]

(a−1(s)− b−1(s)))·

(l3 + l4‖v2‖2) K
2

φmin

√√√√pT (φ(u0(0)) +K
√
pT‖v2‖2)

φmin
(‖v2‖2 + ‖v0‖2)

Finally, after a few lines of calculus similar to (B.4), we get

B ≤ 2(l3 + l4‖v2‖2) K
2

φmin

√√√√pT (φ(u0(0)) +K
√
pT‖v2‖2) +K

√
pr0‖v0‖2

φmin
(‖v2‖2 + ‖v0‖2)·

KT
√
pT (φ(u0(0)) +K

√
pT‖v1‖2 +K

√
pr0‖v0‖2)

φ2
min

‖v2 − v1‖2

Using the same kind of computations on C, we show that

∀t ∈ [0;T ], ‖ν2(t)− ν1(t)‖1 ≤ K(‖v0‖2, ‖v1‖2, ‖v2‖2) ‖v2 − v1‖2

where K : R3
+ → R+ is a continuous function such that for all i

xi ≤ zi =⇒ K(x1, x2, x3) ≤ K(z1, z2, z3)

which gives the conclusion �





Appendix C

Reporting of the numerical results

Variables Constraints CPUtime
Figure 3.2, N = 10 8000 7999 0.65 s
Figure 3.2, N = 50 36000 35999 23.16 s
Figure 3.3, N = 10 8000 7999 1.16 s
Figure 3.3, N = 50 36000 35999 20.20 s
Figure 3.4 180000 179999 115.01 s
Figure 3.5 321959 321958 142.17 s

Figure C.1: Numerical results of Chapter 3

Variables Constraints Total CPUtime Solve CPUtime Approx. conv.
Figure 5.2 2375 2300 10.78 s 8.07 s ≈ 8 s
Figure 6.4 7493 7600 59.21 s 31.98 s ≈ 25 s
Figure 6.6 7493 7600 54.70 s 28.57 s ≈ 12 s
Figure 6.8 7493 7600 72.50 s 39.21 s ≈ 15 s
Figure 6.10 7493 8200 75.25 s 41.71 s ≈ 15 s

Table C.1: Numerical results of Chapter 5 and 6 for 100 iterations



 

 

 

Résumé 
 

Dans cette thèse, nous avons étudié le 

contrôle et l'optimisation de systèmes 

dynamiques sujets à des retards variables.  

 

L'existence de retards, de commande ou 

d'état, est un problème classique en 

automatique, susceptible de réduire les 

performances du système en régime 

transitoire, voire de remettre en cause la 

stabilité de contrôleurs en boucle fermée. De 

tels phénomènes de retards variables jouent 

un rôle important dans de nombreuses 

applications en génie des procédés. 

 

Dans une première partie, nous avons étudié 

la régulation en boucle fermée d'un système 

soumis à des retards de métrologie variables 

et incertains. Nous avons établi de nouveaux 

résultats garantissant la stabilité robuste sous 

certaines conditions explicites sur le gain du 

contrôleur. Dans une seconde partie, nous 

avons abordé le problème de l'optimisation 

dynamique de systèmes présentant des 

retards variables dépendant de la commande 

liés à des phénomènes de transport dans des 

réseaux hydrauliques. Nous avons proposé 

un algorithme itératif d'optimisation et garanti 

sa convergence grâce à une analyse 

détaillée. 

 

 

 

 

 

 

 

Mots Clés 
 

Optimisation dynamique, Retards variables, 

Contrôle de procédés 

 

Abstract 
 

This Ph.D. work studied the control and 

optimization of dynamical systems subject to 

varying time delays. 

 

State and control time delays are a well-

known problem in control theory, with a 

potential to decrease performances during 

transient regimes, or even to jeopardize 

controllers closed-loop stability. Such variable 

delays play a key role in many applications in 

process industries. 

 

In a first part, we studied the closed-loop 

control of a system subject to varying and 

uncertain metrology delays. We established  

new results on robust stability under explicit 

conditions on the controller gain. In a second 

part, we tackled the problem of the dynamic 

optimization of systems exhibiting input 

dependent delays due to transport 

phenomena in complex hydraulic 

architectures. We designed an iterative 

optimization algorithm and guaranteed its 

convergence through a detailed analysis. 
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