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Abstract

This thesis deals with the design of coded modulations for block fading channels with iter-
ative detection and decoding. First, the design of coded modulations for multiple antenna
fading channels is discussed. The design consists of choosing a space-time precoding ma-
trix that minimizes the discrete-input outage probability for such systems, while taking
into account several parameters that make it suitable for optimized iterative decoding.
To conclude this part, the design of turbo codes for multiple-antenna fading systems is
proposed based on channel multiplexers. Introducing no additional complexity at the re-
ceiver end, these mutliplexers allow to achieve full diversity and high coding gains. Second,
coded modulations for cooperative fading channels is proposed, in which relays transmit
sequentially to each others. Bounds on the achievable diversity orders are derived, and
space-time transmission strategies are proposed to achieve optimal performance. Finally,
the design of irregular turbo codes for block-fading channels is presented. Based on the
density evolution method, degree profiles that perform very close to the fundamental
limits are proposed.
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Résumé de la thèse en Français

Introduction

Depuis une dizaine d’années, les applications de réseaux sans-fil sont devenues très pop-
ulaires. Ces applications permettent de trouver de nouvelles opportunités au systèmes
de communications qui n’étaient pas présentes auparavant. Par contre, de part la nature
du canal sans-fil, des effets comme l’évanouissement du signal, l’ombrage et l’interference
d’autres transmetteurs font que la qualité de la propagation du signal fluctue durant la
transmission. Une approche permettant de combattre ces fluctuations est la conception
de systèmes de communication qui assure la diversité du signal en envoyant plusieurs
copies du meme signal. La diversité du signal peut se faire dans le temps, l’espace, ou
la fréquence. Les systèmes à antennes multiples sont connus pour assurer la diversité
spatiale tout en améliorant la capacité d’un système. Cependant, pour des raisons de
taille d’un mobile ou de prix, il n’est pas possible d’implémenter plusieurs antennes. Pour
cette raison, plusieurs groupes de recherche se sont recemment penchés sur les systèmes
de transmission coopératifs, ou des mobiles s’entraident pour envoyer leur information à
une station de base. Ceci leur permet de profiter de la diversité spatiale et de transmettre
à des débits plus élevés.
Dans cette thèse, des systèmes de modulations codées avec précodage spatio-temporel
sont etudiées pour des canaux à évanouissements par blocs sélectifs en fréquence:

• Dans le Chapitre 2, les limites théoriques des canaux à évanouissements par blocs
sélectifs en fréquence sont introduites, notamment la probabilité de coupure. Ces
concepts seront utilisés dans les chapitres suivant de la thèse. Les modulations
codées avec précodage spatio-temporel sont ensuite introduites ainsi que le récepteur
itératif qui permet d’atteindre de très bonnes performances a complexité réduite. La
fin de ce chapitre est dediée à la borne de Singleton sur l«ordre de diversité qu«une
modulation codée peut atteindre sur un canal à évanouissements par blocs.

• Le Chapitre 3 couvre les modulations codées avec précodage spatio-temporel pour
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les systèmes à antennes multiples avec décodage itératif. Nous commencons par
concevoir des matrices de précodage spatio-temporel qui minimizent la probabilité
de coupure à entrée discrète, et nous démontrons les bonnes performances de ces
précodeurs dès la première itération du récepteur. Nous considérons par la suite
un schema pour quatre antennes en emission basé sur le code d«Alamouti. Nous
concluons ce chapitre par la conception de turbo codes pour les canaux á antennes
multiples basés sur le multiplexage de canal. Ces codes démontrent des performances
à 1 dB de la probabilité de coupure.

• Le Chapitre 4 est dedié à la conception de modulations codées avec précodage
spatio-temporel pour un canal coopératif à plusieurs utilisateurs. Des bornes sur la
diversité de ce système sont d’abord calculées, et il est demontré que l’introduction
d’une matrice de précodage spatio-temporel ne mène à aucune augmentation de
la complexité. Des résultats de simulations qui montrent d’importants gains de
codage sont ensuite montrées, et la conception de turbo codes pour ce type de
canaux conclue ce chapitre.

• Le dernier chapitre de cette thèse montre la conception de turbo codes irreguliers
pour les canaux à évanouissements par blocs. En utilisant la méthode de l’évolution
de densité, il est démontré que ces codes surclassent les codes à matrices de parité
à faible densité (LDPC). En adaptant les multiplexeurs de canal des turbo codes
réguliers, ces codes montrent des performances à une moitié de dB de la probabilité
de coupure sur un canal à évanouissements par blocs.

La conclusion de ce manuscrit contient les remarques sur les résultats ainsi que les per-
spectives pour de futures extensions des travaux de ce chapitre, comme notamment un
système coopératif où les terminaux sont equippés de plusieurs antennes.
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Chapitre 1: Notions de théorie de l’information

Afin de concevoir des modulations codées à précodage spatio-temporel pour les canaux
à évanouissements par blocs à antennes multiples ou coopératifs, il s’avère important
d’établir les limites theoriques de ces canaux. Pour les canaux bruités en général, Claude
Shannon a établi la notion de capacité, qui represente le debit maximal qu’un canal
peut soutenir tout en ayant des probabilités d’erreurs négligeables au niveau du récep-
teur. Cette capacité est donnée par la valeure maximale de l’information mutuelle entre
l’entrée et la sortie du canal donnée par une certaine distribution de l’entrée. Pour les
canaux à évanouissements, pour calculer la capacité du canal, on distingue deux cas; 1) les
évanouissements varient rapidement, définissant un canal ergodique et 2) les évanouisse-
ments varient lentement avec le temps, définissant un canal non-ergodique. Dans le pre-
mier cas, la limite fondamentale du taux de transmission est donnée par la capacité
ergodique du canal, donnée par la moyenne statistique de la capacité avec entrée de canal
Gaussienne sur toutes les valeurs des réalisations de l’évanouissement. Dans le deuxième
cas, la limite fondamentale est la probabilité de coupure du canal, qui est la probabil-
ité que l’information mutuelle entre l’entrée Gaussienne et la sortie du canal tombe en
dessous du rendement de transmission requis. Nous présentons ensuite la probabilité de
coupure à entrée discrète qui sera utilisée dans le prochain chapitre afin d’optimiser les
matrices de précodage spatio-temporel.
Dans la deuxieme partie de ce chapitre, le concept de modulations codées à décodage
itératif est présenté, schéma qui sera utilisé dans la partie restante de ce manuscrit. Dans
ce schéma, l’émetteur consiste en un code correcteur d’erreurs, un entrelaceur qui assure
l’independance probabilistique au niveau du décodeur, un modulateur, puis finalement
en un précodeur spatio-temporel. Le domaine du codage correcteur d’erreurs a été très
actif pendant plusieurs décennies, ce qui a donné des codes adaptés à plusieurs condi-
tions de transmision; les code binaires puissants à décodage à faible complexité (codes
convolutifs, turbo codes, codes à matrice de parité à faible densité (low density parity-
check codes)...) et les codes non-binaires capables de corriger des erreurs en blocs (Reed-
Solomon, BCH...). Dans le contexte des transmissions sans-fil, les codes binaires cités
ci-dessous sont recommandés pour leur décodage itératif à faible complexité. Pour cette
raison les codes convolutifs et les turbo codes on été choisis dans cette thèse. L’entrelaceur,
dont le role est de mélanger les bits à la sortie du codeur, joue un role très important
sur les canaux à évanouissements par blocs, comme ils permettent de placer les bits d’un
évènement d’erreurs sur les différents canaux. Le modulateur, type “Phase Shift-Keying”
(PSK) ou “Quadrature Amplitude Modulation” (QAM), permet de grouper plusieurs bits
en un symbole. Le bloc principal qui perment d’atteindre de hauts debits de transmis-
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sion est le modulateur comme il peut implémenter de larges constellations (ex.: 64-QAM
ou plus). Le dernier bloc avant transmission est le précodeur spatio-temporel, qui joue
un role majeur dans les performances sur les canaux à évanouissements. Les précodeurs
sont généralement classés en deux catégories: 1) les précodeurs orthogonaux (Alamouti,
Tarokh...) qui permettent d’atteindre des ordres élevés de diversité tout en minimizant
l’interférence entre les différents canaux, et 2) Les précodeurs algébriques qui permettent
d’atteindre de bon compromis diversité-débit de transmission. La conception de ce type
de précodeurs sera largement traitée dans cette these. Au niveau du récepteur, un dé-
codeur itératif basé sur un démodulateur fournissant des probabilités a posteriori sur les
bits reçus et un décodeur de canal de type “Forward-Backward” sera consideré. Ce type
de récepteurs permet d’avoir les meilleures performances possibles dans le cas itératif.
Dans la dernière partie de ce chapitre, la borne de Singleton sur l’ordre de diversité maxi-
mal qu’une modulation codée peut atteindre sur un canal à évanouissements par blocs est
presentée. Cette borne, qui peut être atteinte sous la seule condition d’un entrelacement
optimal, est une fonction du taux de codage et du nombre de blocs de canal sur lesquels
le code est transmis. Cette borne permettra par la suite de concevoir des modulations
codées optimales en terme de diversité.
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Chapitre 2: Modulations codées pour les systèmes à an-
tennes multiples

Ce chapitre présente les résultats de la première moitié de la thèse consistant en la con-
ception de divers schémas de modulations codées pour les canaux à antennes multiples.
Nous commençons par un aperçu historique des codes spatio-temporels qui ont permis aux
systèmes à antennes multiples d’atteindre de solides performances. La première famille de
codes spatio-temporels est la famille des codes orthogonaux qui permettent, de par leur
structure, de supprimer toute - ou une partie de - l’interférence au niveau du récepteur.
En partant du fameux code d’Alamouti conçu pour deux antennes et qui est parfaitement
orthogonal, d’autres codes ont été proposé pour des terminaux ayant plus d’antennes.
Cette généralisation s’est faite aux dépens du rendement du code, comme il a été prouvé
qu’aucun code orthogonal n’existe pour des schémas de plus que deux antennes en émis-
sion. La deuxième famille de codes spatio-temporels est la famille des codes algébriques:
permettant d’atteindre des rendements supérieurs aux codes orthogonaux, ces codes ont
par contre une complexité de décodage plus élevée. Un bon exemple de ces codes est le
“Golden Code” conçu pour deux antennes en émission et qui permet d’atteindre les bornes
du compromis diversité-multiplexage. En présence d’un code correcteur d’erreurs, le gain
de codage d’une modulation codée émise sur un canal à antennes multiples est largement
dû au code lui-même. Ceci signifie que le rôle du précodeur spatio-temporel n’est plus le
même que dans le cas non-codé. En effet, il a été démontré que dans le cas d’une mod-
ulation codée, la matrice de précodage spatio-temporel doit avoir deux propriétés pour
assurer un décodage itératif optimal, qui sont les suivantes:

• Les sous-parties d’une ligne donnée de la matrice doivent avoir la même norme.

• Les sous-parties d’une ligne donnée de la matrice doivent être orthogonales.

Ces propriétés seront donc les bases de la conception de matrices de précodage spatio-
temporel dans cette thèse. Nous enchaînons par la suite avec un calcul démontrant que le
taux d’erreur par trame d’un système de transmission non-codé augmente logarithmique-
ment avec la taille de la trame. Ce comportement a aussi été observé avec des modulations
codées basées sur des codes convolutifs.
La deuxième partie de ce chapitre consiste en la conception de matrices de précodage
spatio-temporel pour les modulations codées transmises sur des canaux à antennes mul-
tiples, où l’évanouissement varie par blocs. Nous commençons cette partie par un rappel
de l’ordre de diversité qu’une modulation codée transmise sur un canal à évanouissements
par blocs et à antennes multiples peut atteindre: cet ordre dépend du nombre d’antennes
en émission, en réception, du rendement du code, et du paramètre d’étalage de la matrice
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de précodage spatio-temporel. Comme expliqué dans le chapitre précédent, la limite fon-
damentale de transmission sur un canal à évanouissements par blocs est la probabilité de
coupure, qui consiste ne le fair que certaines “mauvaises” réalisations du canal peuvent
causer l’information mutuelle du canal à chuter en dessous du taux de transmission désiré.
Dans la plupart des travaux de conception de systèmes de communications pour ces types
de canaux, la probabilité de coupure à entrée Gaussienne du canal est considérée. Cette
hypothèse suppose qu’un code optimal est utilisé, et donc s’éloigne du cas pratique qui
est la modulation codée. Pour un canal à entrée discrète, qui est le vrai canal vu par
une modulation codée, l’équation de la probabilité de coupure est bien différente de celle
pour une entrée Gaussienne, et elle est bien évidemment supérieure à l’optimale. Pour
cette raison, nous avons considéré la combinaison des symboles modulés et de la matrice
de précodage spatio-temporel comme une modulation multi-dimensionelle à l’entrée du
canal, et le choix de la matrice de précodage est celui qui minimize la valeur de la proba-
bilité de coupure à entrée discrète pour un rapport signal sur bruit donné. Cette méthode
s’est avérée efficace comme les matrices obtenues pour différents schémas d’antennes en
émission ont mené à des performances plus que satisfaisantes.
La troisième de ce chapitre consiste en la conception d’une modulation codées pour un
émetteur à quatre antennes basé sur le code spatio-temporel orthogonal d’Alamouti, ini-
tialement conçu pour un émetteur à deux antennes. L’idée est convertir un symbol modulé
du schéma initial en une matrice de précodage s’appliquant sur quatre symboles modulés
transmis sur un groupe de deux antennes et sur deux temps de symbole. Comme le produit
matriciel n’est pas commutatif, le fait d’utiliser les opérations de découplage au niveau du
détecteur ne permettent pas de supprimer la totalité de l’interférence (comme dans le cas
de deux antennes en émission). Ceci ne représente aucun probléme, comme le décodeur
itératif, et après quelques itérations, parvient à supprimer l’interférence résiduelle et donc
d’atteindre de bonnes performances.
La dernière partie de ce chapitre consiste en la conception de modulations codées basées
sur des turbo codes pour les canaux à évanouissements par blocs. Cette famille de codes,
connue pour approcher les limites de Shannon pour différents types de canaux, est utilisée
dans plusieurs standards de communications sans-fil. Sur un canal à évanouissements par
blocs, le but est de concevoir un schéma de codage qui permet d’atteindre la diversité max-
imale du canal, et de s’assurer que le gain de codage est optimal. En la présence de turbo
codes, ceci est possible grâce à l’utilisation de multiplexeurs qui distribuent les bits codés
sur les différents blocs du canal. Le premier type de multiplexeurs est le multiplexeur
horizontal, qui envoie toujours le même bit à la sortie du codeur sur la même antenne: il
permet d’atteindre la diversité maximale, mais par contre il a un gain de codage faible,
comme les bits correspondant à un évènement d’erreurs sont mal distribués sur les blocs
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d’évanouissement. Le deuxième types est le multiplexeur dit “h-π-diagonal” qui permet
d’atteindre la diversité maximale est en plus d’atteindre de gain de codage élevé. Ceci est
dû au fait que les bits correspondant à un évènement d’erreurs sont distribués de façon
homogène sur les blocs d’évanouissement.
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Chapitre 3: Modulations codées pour les systèmes coopérat-
ifs

La conception de modulations codées pour les canaux coopératifs à évanouissements est
présentée dans ce chapitre. Les schémas de coopération inter-terminaux a récemment
gagné en popularité due au fait que l’installation de plusieurs antennes sur des terminaux
de petite taille est impossible comme la séparation entre les antennes doit être de l’ordre
de la moitié de la longueur d’onde. Pour cette raison, des terminaux peuvent coopérer
entre eux avant de transmettre à une destination dans le but d’augmenter la capacité et
d’atteindre des ordres de diversité plus élevés. Les protocoles de coopération consistent
en deux types: 1) “Amplifies-et-retransmets” (Amplify-and-Forward) et 2) “Décodes-et-
retransmets” (Decode-and-Forward). Le premier consiste à ce que le rôle du terminal
agissant comme relais amplifies le signal reçu par la source et retransmets à la destina-
tion. Le deuxième consiste à décoder le message reçu par la source, le coder, et puis le
retransmettre à la destination.
Dans ce chapitre, le canal “Slotted Amplify-and-Forward” est considéré, qui consiste à ce
que les relais retransmettent à tour de rôle à la destination ainsi qu’au prochain relais. Le
canal généré par ce protocole est appelé “canal à évanouissements par blocs Matryoshka”
comme l’ordre de diversité d’un symbole donné decroît au fur et à mesure qu’on avance
dans la trame de transmission, ce qui fait allusion aux fameuses poupées russes qui sont
imbriquées l’une dans l’autre. En effet, le degré maximal atteint par le premier symbole
transmis est donné par le nombre de relais plus un (donné par le lien direct source-
destination), alors que le degré minimal donné par le dernier symbole émis est de un,
comme ce symbole est juste transmis sur le lien direct source-destination. Basé sur ce
canal, la conception de modulations codées avec précodage spatio-temporel est introduite.
Une borne de Singleton sur le l’ordre de diversité que peut atteindre une modulation codée
est dérivée en fonction du nombre de relais, du rendement du code correcteur d’erreurs,
et du facteur d’étalement de la matrice de précodage spatio-temporel. Il est important
de noter que, à l’opposé des canaux à antennes multiples, l’étalement n’est pas toujours
nécessaire pour les canaux coopératifs, ce qui permet de réduire de façon drastique la
complexité au niveau de la destination.
Dans la deuxième partie de ce chapitre, la conception de modulations codées à base de
turbo codes est proposée pour un canal “amplify-and-forward” à un relais. Comme il a été
démontré dans le chapitre précédent, placer des multiplexeurs à la sortie du turbo code
permettent d’atteindre la diversité maximale du canal ainsi que d’obtenir de bons gains de
codage. Par contre, à l’opposé des canaux à antennes multiples, le multiplexage horizon-
tal permet d’obtenir de meilleurs performances comparé au multiplexeur “h-π-diagonal”



LIST OF TABLES 23

sur un canal coopératif. Ceci est dû au fait que les bits d’information sont toujours émis
au début de la trame de transmission, ce qui leur permet d’atteindre le maximum de
diversité en étant systématiquement relayés. Par contre, le multiplexeur “h-π-diagonal”
alterne les bits d’information et les bits de parité en première position, ce qui a comme
effet de dégrader le gain de codage.
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Chapitre 4: Conception de turbo codes irréguliers pour
les canaux à évanouissements par blocs

Dans ce dernier chapitre, la conception de turbo codes irréguliers pour les canaux à
évanouissements par blocs est présentée. Les turbo codes parallèles proposés initialement
consistent en deux codes convolutifs récursifs sytématiques séparés par un entrelaceur.
Ces codes sont parmis les plus puissants comme ils permettent d’approcher la limite de
Shannon pour différents types de canaux. Du point de vue du graphe du code, chaque bit
d’information a un degré de deux, comme il est lié aux deux codes constituants. Dans un
but d’améliorer les performances des turbo codes, il est possible de créer une irrégularité
de degré à travers les bits d’ information du code, méthode qui a fait ses preuves avec
notamment les codes à matrice de parité à faible densité, ou “low density parity-check
(LDPC) codes”. Pour ce faire, il faut modifier la structure du code: au lieu de codes
constituants en parallèle séparés par un entrelaceur, un répétiteur de bits est placé avant
l’entrelaceur, qui est à son tour suivi d’un seul code constituant. Dans ce cas, si la répéti-
tion est régulière de degré deux, les code sera exactement comme le turbo code parallèle
initial. Par contre, en variant le degré de répétition des bits d’information, on crée une
irrégularité qui pourra améliorer la performance du code. Il est à noter que plus les bits
sont répétés à l’entrée du code convolutifs, plus il faut perforer les bits de parité à la
sortie du codeur, de façon à ne pas affecter le rendement de codage. La conception de
turbo codes irréguliers consiste donc à trouver le profil de degrés des bits d’information
qui permet de donner les meilleures performances sur un canal donné pour un rendement
donné. Cette recherche de profil se fait en général à travers la méthode de l’évolution de
densité, qui sera expliquée par la suite.
Pour ce qui est de la conception de turbo codes irréguliers pour les canaux à évanouisse-
ments par blocs, le processus consiste en deux étapes:

• S’assurer que le code atteint la borne de Singleton sur l’ordre de diversité

• Trouver le profil de degrés qui a le meilleur seuil de décodage sur le canal à bruit
additif blanc Gaussien, ce qui permet d’assurer un gain de codage optimal sur le
canal à évanouissements par blocs

Pour la premiére étape, c’est-à-dire pour atteindre la diversité maximale du canal, il
suffit d’utiliser les multiplexeurs décrits précédement (horizontal et h-pi-diagonal). Pour
la deuxième étape, la méthode de l’évolution de densité est utilisée: on considère un
mot de code infini, et on traque l’évolution de la densité de probabilité à la sortie du
décodeur à chaque itération de décodage, ce qui permet de savoir si le processus de
décodage converge, c’est-à-dire si la probabilité d’erreurs par bit tend vers zero pour un
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rapport signal-sur-bruit donné. En appliquant cette méthode, la valeur minimale (ou
seuil) du rapport signal-sur-bruit pour laquelle le décodeur converge est révélée. Une
autre méthode, appelée “approximation Gaussienne”, consiste à simuler une distribution
Gaussienne à l’entrée du code, tout en traquant l’évolution à la sortie du code. En utilisant
ces méthodes, un turbo code irrégulier avec un multiplexeur h-pi-diagonal atteint un taux
d’erreurs par trame de moins d’une moitié de decibel de la probabilité de coupure du
canal à évanouissements par blocs, ce qui représente les meilleures performances jamais
atteintes sur ce type de canaux.
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Introduction

Over the past few years, wireless networks applications have gained ever-increasing pop-
ularity. They provide novel opportunities for increased reliability that are non-existent
in point to point communications. However, due to the nature of the wireless channel,
effects such as fading, shadowing, and interference from other transmitters can cause the
channel quality to fluctuate during transmission. One approach to combat such channel
fluctuations is to design a communication system that provides some sort of diversity,
i.e. provides many replicas of the signal to the receiver. Diversity can be temporal,
spatial, or frequential [1]. Multiple-antenna systems (also called Multiple-Input Multiple-
Ouput (MIMO) systems )have been shown to provide spatial diversity that boosts the
performance in fading environments. In addition, the need to transmit at high data rates
is fulfilled with such systems as they allow the simultaneous transmission of multiple
streams (spatial multiplexing). However, in some cases, due to space or cost limitations,
the implementation of more than one antenna on the same terminal is impossible. For
this reason, the concept of cooperative communications was proposed, which means that
terminals can cooperate between each others to provide spatial diversity in a distributed
configuration, thus forming a virtual antenna array.
In this report, we study the design of space-time bit-interleaved coded modulations (ST-
BICM) suited for frequency non-selective single-user block-fading channels. The outline
of the manuscript is as follows:

• In Chapter 2, we first introduce the fundamental information theoretical limits of
block-fading channels in general (namely the outage probability), limits that are
used throughout the report for the analysis of coded modulations. We then de-
scribe the ST-BICM transmitter model, before describing the iterative receiver that
can lead to quasi-maximum likelihood (ML) performance with reasonably low com-
plexity. We end up this chapter by recalling the Singleton bound on the diversity
order of coded systems for a given coding rate.

• In Chapter 3, we propose ST-BICM schemes suited for the multiple-input multiple-
output (MIMO) channel with iterative decoding. First, we design space-time pre-
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coding matrices that minimize the discrete input outage probability, and we show
the good performance of these precoders since the first iteration of an iterative re-
ceiver. Second, we investigate a low-complexity coded scheme for a four-transmit
antenna configuration based on the Alamouti scheme. Finally, we propose the design
of turbo codes for MIMO channels, and we will show that this scheme dramatically
approaches the outage probability limit with relatively low decoding complexity
using intelligent switches (called “code multiplexers”) at the output of the turbo
encoder.

• In Chapter 4, the design of ST-BICM for the amplify-and-forward cooperative pro-
tocol with multiple relays is considered. We derive bounds on the diversity order
for this protocol, and we show that precoders that do not entail an increase in the
detection complexity are optimal diversity-wise. We next discuss coding gain issues
for this protocol, and show simulation results for various coding rates and network
configurations. We finally show the performance of code multiplexers with turbo
codes over this protocol.

• In Chapter 5, in a goal to achieve optimal coding gain over block-fading channels, a
new method for the design of irregular turbo codes is proposed. We first show that
irregular turbo codes outperform LDPC codes for the AWGN channel, and then
we show they outperform the regular turbo codes on block-fading channels using
density evolution methods.

We end up this manuscript by the concluding remarks and some future perspectives.
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Chapter 1

Generalities

1.1 Introduction

In this manuscript, we deal with wireless block-fading channels, that were introduced
in [2] to model slowly varying fading channels. In this model, a frame (or a codeword)
sent over the wireless channel sees a fixed number of fading coefficients. Standards such
as Global System for Mobile Communications (GSM) or the promising Orthogonal Fre-
quency Division Multiplexing (OFDM) that involve slow time-frequency hopping are well
represented by this channel model. The block-fading channel model leads to a null ca-
pacity, as the capacity depends on the instantaneous channel instance. In this chapter,
we will start by introducing the information theoretical limit of block-fading channels,
that is outage probability. We will then present the general communication system we
will use throughout this report; a transmitter consisting of a space-time precoded coded
modulation, and a receiver consisting of an iterative detection and decoding blocks. The
last part of this chapter presents the bound on the diversity order of coded systems on
block-fading channels.

1.2 Information theory of fading channels

Back in 1948, Claude E. Shannon established the definition of channel capacity through
the noisy-channel coding theorem [3] as the maximum theoretical rate at which we can
reliably transmit data (i.e. with a vanishing error rate) over a channel with a specified
bandwidth and at a particular noise level. Channel capacity is a deterministic bound
that takes different expressions depending on the channel type. Now suppose that the
input and the output of the channel are given by the two random variables X and Y
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respectively. The channel capacity is by definition given by:

C = max
p(x)

I(X;Y ) (1.1)

where p(x) is the input distribution and the mutual information I(X;Y ) between X and
Y is given by:

I(X;Y ) = H(X) +H(Y )−H(Y,X) = H(Y )−H(Y/X) = H(X)−H(X/Y ) (1.2)

and the entropy function H gives the average amount of bits one needs to represent a
random process. For the additive white Gaussian noise (AWGN) channel for instance,
the channel capacity for a Gaussian input is given by:

CAWGN = log2

(
1 +R

Eb
N0

)
bits/s/Hz (1.3)

It is thus possible to reliably transmit information on an AWGN channel at a rate R <

CAWGN through an infinite length codeword. Now for wireless channels, the channel
input-output model is given by:

y = xH + w (1.4)

where x is the input vector, y is the output vector, H is the channel matrix with complex
Gaussian fading coefficients, and w is the AWGN vector. In the presence of ergodic
Rayleigh fading, it was shown in [4] [5] that the channel capacity for a Gaussian input
without side information at the transmitter is given by:

C = EH [CH ] = EH
[
log2 det

(
I + PH†H

)]
(1.5)

where P is a function of the signal-to-noise ratio. For single-antenna quasi-static fad-
ing channels, H = h has a single entry. For multiple-antenna and amplify-and-forward
cooperative channels, the complex channel matrix H takes different forms that will be
discussed in the next chapters. Now as the channel gain process is ergodic, i.e. the time
average is equal to the ensemble average, the channel changes at each realization. In
other words, the randomness of the channel coefficients can be averaged out (removed)
over time as shown in (1.5). This results in the fact that the capacity of an ergodic channel
is information stable as it tends to a deterministic value and long-term constant bit rates
can be supported.
Now for non-ergodic fading channels, the channel gain is a random variable and does not
change with time (at least for the duration of a codeword). The channel gain process is
stationary but not ergodic, i.e. the time average is not equal to the ensemble average. This
means that certain “weak” realizations of the channel coefficients can cause the capacity of
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the channel to fall below the transmission rate we want to maintain. Non-ergodic channels
are information unstable [6] as channel capacity is not deterministic. The expression for
the channel capacity is a random variable with probability density function pCH (i) that
defines the “outage” probability [2][7]:

Po = P (CH < R) =

∫ R

0

pCH (i)di (1.6)

For block-fading channels, we suppose that a codeword sees nc different realizations of
the channel matrix, and this gives the following expression for the Gaussian input outage
probability:

Po,nc = P

(
1

nc

nc∑

j=1

log2 det
(
I + PH†jHj

)
< R

)
(1.7)

Note that when D →∞, the averaging over the channel realizations leads to the ergodic
channel capacity as in (1.5). It is clear that area under the tail of the capacity given
the channel distribution pCH (i) in (1.6) is a cumulative distribution function FI(R). The
outage capacity can be seen as the ε-capacity [6] [8] [9] of the channel as:

Cε = sup
p(x)

sup {R : FI(R) ≤ ε} 0 ≤ ε ≤ 1 (1.8)

The ε-capacity Cε is the optimum asymptotic rate at which information can be encoded
over the channel via a sequence of channel codes that yield a maximal probability of
decoding error of ε. Note that:

Cε↓0 = C (1.9)

which gives the Shannon capacity. The ε-capacity approach for outage capacity suits
the convention of “x percent outage” followed by certain papers (see [10] for example).
However, in this report, we will use the outage measure as a probability as in (1.6) to be
able to compare it with word error rate performance of coded modulations.
As proved in [4], maximum capacity over ergodic fading channels (consequently minimum
outage probability over block-fading channels) is achieved with Gaussian inputs, i.e. when
p(x) follows the normal distribution. However, with practical communication systems, we
always deal with discrete input constellations. For this reason, the expression in (1.5) for
Gaussian inputs does not hold anymore. From (1.2), we have:

I(X;Y ) = H(Y )−H(Y/X) (1.10)
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Now let X ∈ Ω, a discrete alphabet of 2n vectors. The entropies from (1.10) can be
expressed as [11]:

H(Y ) = −
∫

y

p(y)log2(p(y))dy

= −
∫

y

∑

x

p(y/x)p(x)log2


∑

x′

p(y/x′)p(x′)


 dy (1.11)

H(Y/X) = −
∑

x

p(x)

∫

y

p(y/x)log2(p(y/x))dy (1.12)

This gives the expression of the mutual information as:

IH = n− 1

2n

∑

x

∫

y

p(y/x)log2(

∑
x′ p(y/x

′)

p(y/x)
)dy (1.13)

= n− 1

nc

nc∑

j=1

Ex,y|Hj

[
log2

(∑
x′ p(y|x

′
,Hj)

p(y|x,Hj)

)]
(1.14)

Fig. 1.1 shows the outage probabilities of a quasi-static fading channel for different
inputs and half-rate channel coding. As mentioned earlier, Gaussian inputs outperform
all other distributions at the same spectral efficiency. We also notice that with half-
rate coding, the 16-QAM constellation outage probability is closer to the Gaussian input
outage probability than the BPSK modulation. As the outage probability reflects the
variations of the mutual information function depending on the channel realizations, this
behavior is explained by the fact that the mutual information curve of the 16-QAM
constellation at half-rate coding is closer to the Gaussian mutual information line than
the BPSK constellation at the same coding rate (see [12, Fig. 2]). Fig. 1.2 shows the
outage probabilities for different MIMO channel antenna configurations, half-rate channel
coding and Gaussian input. The diversity order is given by nt × nr, but the coding gain
differs for the same diversity order depending on the configuration.

1.3 Bit-interleaved coded modulation (BICM) with it-
erative decoding

In 1992, it was shown in [13] that by cascading an error correcting code, a random
interleaver and a modulator, a communication system achieves very high gains. Later,
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Figure 1.1: Outage limits for quasi-static channel, BPSK, 16QAM, and Gaussian input,
half-rate channel coding.

the authors in [14] established a framework for the analysis and design of the so-called
“Bit-interleaved coded modulation” (BICM), and showed that this structure allows to
approach the information theoretical limits of the channel, for the AWGN case as well as
for the ergodic fading case. Since then, this structure has been widely studied for different
scenarios. In [15] [16] [17] among others, the authors studied BICM for non-ergodic fading
channels, and it was proved that this scheme can also approach the outage limit of the
channel. In this report, the BICM model for block-fading channels (i.e. non-ergodic
channels) will be considered.

1.3.1 Structure of the BICM transmitter

The general structure of a BICM is shown in Fig. 1.3. It consists of an error correcting
code C of rate Rc, a deterministic interleaver Π, a symbol mapper, and a space-time
precoder. We will now describe each block and give historical notes and classifications
that justify our choices.
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Figure 1.3: ST-BICM transmitter scheme.

The error correcting code

The field of channel coding started with Shannon’s landmark paper in 1948 [3]. The idea
is to protect data sent through a channel by adding some redundancy to the transmitted
signal in way to ensure reliable communication. The encoder is a bijection between the
information sequence b of length K and the coded sequence c of length N . The coding
rate is Rc = K/N . There are different types of error correcting codes, and they can be
classified into two major categories [18]:

• Algebraic linear block codes: Hamming, Golay, Reed-Muller, BCH, and Reed-
Solomon codes among others. Algebraic coding theory dominated the first decades
of channel coding history. The main objective of this design theory is to maximize
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the minimum distance d (also called Hamming distance (dmin)) between any two
distinct codewords, that is the minimum number of bits in which they differ. They
are mostly used for high data rates, but fail to approach fundamental limits. In
particular, Reed-Solomon codes are efficient in applications that suffer from bursty
errors, such as magnetic tape and disk storage for instance. They can provide high
error-correction power with relatively small redundancy at very high data rates.

• Probabilistic codes: in [18], it is stated that “probabilistic coding is more concerned
with finding classes of codes that optimize average performance as a function of
coding and decoding complexity”. This class includes convolutional codes, prod-
uct codes, concatenated codes, and trellis decoding of block codes. Convolutional
codes were invented in [19]. They can be grouped into two major categories: non-
recursive non-systematic convolutional (NRNSC) codes, where all information bits
are encoded through shift registers, and recursive systematic convolutional (RSC)
where the uncoded information sequence is sent through the channel and at the
same time is encoded through a feedback register. As a result, the code can be
represented by a trellis, which allows for low complexity decoders. Although they
have infinite length, convolutional codewords can be made finite by proper trellis
termination. In this report, we will mainly use NRNSC codes with BICM due to
their flexibility. Product codes and compound codes were proposed in [20] and
[21] respectively. They consist of a serial concatenation of two or more codes at the
transmitter, and by individual decoding of every code at the receiver. Their concept
lead to the invention of “Turbo-codes” that will be discussed in chapter 4. Another
example of concatenated codes are “low-density parity-check” (LDPC) codes [22].
They are based on sparse generator matrices that allow for probabilistic iterative
decoding under the message-passing algorithm. Both LDPC and turbo codes have
been proved to be capacity approaching codes for the AWGN channel. However, in
this report, we will only deal with trellis codes (NRNSC convolutional and turbo
codes).

The interleaver

The role of an interleaver is to scramble the bits of a codeword. It is a very impor-
tant block in a BICM under iterative decoding, as it ensures independance between
the extrinsic probabilities and the a priori probabilities exchanged by the nodes in
a graph. In addition, if maximum-likelihood (ML) decoding is possible, an inter-
leaver spreads the consecutive bits of an error events thus it limits their interference.
There are different types of interleavers: pseudo-random, S-random [23], where two
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consecutive bits at the input of the interleaver will be placed a distance S away from
each other at the output. In [17], a class of optimized interleavers for block-fading
channels was proposed, class that respects the “ideal interleaving” conditions. These
conditions are summarized as (see proposition 5, chapter 3 in [17]), : “...the inter-
leaver should uniformly place consecutive bits on all the channel time realizations,
transmit antennas, and bit positions of the mapping and prohibit the interference of
these consecutive bits in the mapping”. This class of interleavers will be frequently
employed throughout this report.

The modulator

This block converts m coded bits into a constellation symbol at each channel use.
The bijection from bits to symbols is called mapping (or labeling) The cardinality
of the constellation Ω is given by |Ω| = M = 2m. Now in the case of MIMO systems
with nt ≥ 2 transmit antennas for instance, the mapper takes m × nt bits at each
channel use and converts them into a vector of nt modulation symbols. There
exist different types of mappings, each suited for certain applications or specific
channel types. Gray mapping, the most widely used, allows for only one bit to
change between any two neighbors of the constellation, but it only exists for square
constellations (i.e. |Ω| = 22u). The mapping presented in [12] known as “Ungerboeck
mapping” maximizes the Euclidean distance between neighbor constellation symbols
and is suited for trellis-coded modulations. Mapping issues will not be treated in
this report, and only Quadrature Amplitude Modulations (QAM) will be considered.
The energy per M -QAM symbol is given by:

Es =
2(M − 1)

3
(1.15)

The space-time precoder

The precoder S spreads the QAM symbols over s time periods. In most cases, the
precoder is linear, i.e. it maps the QAM vector onto a linear combination of the
constellation symbols. However, in some cases, the space-time precoder is not linear,
as is the case for orthogonal designs [24] [25] and the scheme presented in section
2.7.
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1.3.2 The BICM iterative receiver

The codewords at the output of the concatenation of a space-time precoder and a BICM
can be seen as global Euclidean codes [17]. Ideally, such codes should be decoded with
a maximum-likelihood (ML) decoding algorithm, but an exhaustive search over all the
codewords is unfeasible in practice as the codeword size increases. For this reason, the
receiver for such systems is at the image of the transmitter, whereas corresponding blocks
iteratively exchange soft information. Thus the receiver of a space-time (ST) BICM con-
sists of two main nodes: a soft-input soft-output (SISO) a posteriori probability (APP)
QAM detector, that converts the information carried by the constellation mapper and
the space-time precoder as soft information on the coded bits, and a SISO decoder that
takes the information from the detector as a priori and generates more reliable soft infor-
mation (extrinsic probabilities) on coded bits. The final decision is made on the APP on
information bits at the output of the SISO decoder.
Ideally, the optimal SISO detector computes the channel realizations over all possible
“space-time codewords”. This operation might be too complex for high data rates (large
constellation size, large number of antennas, large number of relays...). A complexity
reduction method called “List sphere decoding” [26] reduces the exhaustive list of candi-
dates to a smaller list without degrading the overall system performance. There also exist
sub-optimal detectors such as SISO Minimum Mean-Square Error (MMSE) detectors or
Serial/Parallel Interference Cancellation (SIC/PIC) detectors developed in multi-user de-
tection theory (see [27] and references therein).
As for the channel decoders, there exist hard output decoders and soft output decoders.
For algebraic codes, there only exist hard output decoders [28] [29]. For convolutional
codes, the most famous hard output decoder is the “Viterbi algorithm” [30] (also known
as Maximum-Likelihood Sequence Estimator (MLSE)), that is optimal in the ML sense.
The first soft-output decoding algorithm was proposed back in the 1950s [31]. In 1963,
Gallager proposed what is known as the “sum-product algorithm” (or also “belief prop-
agation”) for the iterative decoding of LDPC codes. Later, in the 1970s, the “forward-
backward algorithm” (or BCJR, following the initials of the authors) was proposed as a
SISO trellis decoder that gives the APP on information bits. Due to its additional com-
plexity and to its sub-optimality codeword-wise, this algorithm did not replace the Viterbi
algorithm until the invention of turbo codes, where the exchange of soft information was
mandatory (see chapter 4). In the late 1980s, the “soft-output Viterbi algorithm” was
proposed in [32] as a Viterbi algorithm that gives soft information on coded bits, but this
algorithm is sub-optimal compared to the BCJR for iterative processing. Throughout this
report, the BCJR algorithm will be used for the decoding of error correcting codes, due
to its optimality in generating soft information on messages.
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As mentioned previously, the optimum decoding of a ST-BICM is to compute a ML de-
coding algorithm over the global code. This means that the separation between detection
and decoding is largely sub-optimal; an exhaustive ML search of the transmitted vector
at the detector level can provide information that can mislead the decoder in choosing
the probable codeword. For this reason, in a way to approach the optimality of the global
ML detection, we will use an iterative detection and decoding receiver throughout this
manuscript.
Fig. 1.4 shows the general structure of an iterative receiver suited for fading channels.
The two major blocks represent the SISO detector and the SISO decoder, that are sep-
arated by interleaving blocks (the block Π−1 is a de-interleaver). The iterative process
consists of exchanging soft information between the two blocks.

y
SISO

Decoder

SISO

Detector
Π−1

Π

π(ci)

ξ(ci)

Figure 1.4: ST-BICM iterative receiver.

The SISO detector receives a complex vector y ∈ CNr given by:

y = zSH + w = xH + w (1.16)

where z ∈ CNt is the vector of QAM symbols, S is a Nt×Nt space-time precoder, H is the
complex channel matrix, and w is a circularly symmetric zero-mean complex Gaussian
noise vector with variance N0. For a MIMO system with nr receive antennas, Nr = s.nr,
while for a cooperative system with β single-antenna relays, Nr = β + 1. In addition,
Nt = s.nt for a MIMO system with nt transmit antennas, and Nt = β + 1 for a co-
operative system, all employing 2m − QAM modulations. The detector first computes
the channel likelihoods p (y/x) over CNr , then it generates the extrinsic probabilities on
coded bits ξ (ci) based on the channel likelihoods and the a priori probabilities π (ci) fed
from the SISO decoder. At the first iteration, all the a priori probabilities are unbiased.
Throughout the iterative process, the exchange of probabilities on coded bits between the
two blocks should give more reliable soft information on the information bits. An ideal
convergence of the process would lead to near-ML performance.
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In the following we will describe the optimal APP detector based on a marginalization
over an exhaustive list. Note that complexity reduction for such detectors was proposed
in [26]. By definition, the APP of a coded bit ci is the probability to detect ci when y is
received:

APP (ci) = p(ci/y) =
p(y/ci)p(ci)

p(y)
i = 1, ...,mNt (1.17)

where Nt = s.nt for a MIMO system with nt transmit antennas, and Nt = β + 1 for
a cooperative system, all employing 2m − QAM modulations. In this expression of the
APP on coded bits at the detector, it is obvious that the probability on coded bits p(ci) is
nothing but the a priori probability fed from the SISO decoder, thus p(ci) = π(ci). Now
the conditional probability density function p(y/ci)p(ci) is obtained by the marginalization
of the joint probability density function of the channel likelihood and the coded bits as
follows:

p(y/ci) =
∑

j 6=i, j≤mNt

p(y, cj/ci) (1.18)

=
∑

j 6=i, j≤mNt

p(y/cj)
∏

u6=i

π(cu) (1.19)

Here we suppose that the coded bits transmitted during the same time period are in-
dependent. Now as the noise is AWGN and by supposing that the receive antennas are
independent we can write:

p(y/c1, ..., cmNt) =
1

2πN0

e−‖y−xH‖
2/2N0 (1.20)

Now in an iterative process in general, a block (i.e. a detector or a decoder) should not
give information on a bit to the other block that is known to this block. The APP on
a coded bit computed by the detector can be written as the product of two independent
probabilities:

APP (ci) = ξ(ci)π(ci) (1.21)

As π(ci) is computed by the SISO decoder, giving back APP (ci) to the SISO decoder
is not appropriate. For this reason, the extrinsic probability ξ(ci) is given to the SISO
decoder. Now let us define c1, ..., ci, ..., cmNt ∈ Ω(ci) as the set of the mNt bits in y having
the ith bit equal to ci, we can write the following normalized expression for the extrinsic
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probabilities [17]:

ξ(ci) =
p(y/ci = 1)

p(y/ci = 0) + p(y/ci = 1)
(1.22)

=

∑
x′∈Ω(ci=1)

[(
e−‖y−x

′
H‖2/2N0

)∏
u6=i π(cu)

]

∑
x∈Ω(ci=1)

[
(e−‖y−xH‖2/2N0)

∏
u6=i π(cu)

] (1.23)

Note that, luckily enough, the expression for p(y) from (1.17) is cancelled through the
normalization. Indeed, the computation of this quantity that depends on the transmitted
signal and the noise is tedious.

1.4 Bounds on diversity for coded systems on non-ergodic
channels

On a single-antenna ergodic fading channel, a frame sees different channel realizations at
each time epoch. This gives a Nakagami distribution of high order (represented by the
sum of the ‖hj‖2) at the output of the detector and thus gives a high order of diversity.
The diversity order that can be achieved by a ST-BICM on such channels is thus mainly
limited by the minimum Hamming distance dmin of the channel code. Over block-fading
channels with a limited number of states, the situation is different. In the sequel, we will
call BO-channel the binary-oriented channel with input ci and output ξ(ci) as observed
by the channel encoder and the channel decoder.

Definition 1. Under the genie condition (i.e. perfect a priori information) in the BO-
channel, the number of independent binary-input non-ergodic fading sub-channels is de-
noted by Dst and called the state diversity.

As an example, in the single-input single-output block-fading channel where a codeword
spans nc channel realizations, we have that Dst = nc. Now let ωH(c) denote the Hamming
weight of a codeword c of length Lc generated by a linear binary code. We write ωH(c) =∑Dst

i=1 ωi, where ωi is the partial Hamming weight transmitted on the binary-input sub-
channel i within the BO-channel. The state diversity dst(c) achieved by the codeword c is
the number of non-zero partial weights. For a given transmitter structure, the achievable
state diversity is dst = minc 6=0 dst(c). Now suppose that each Lc/Dst bits are transmitted
over one channel state. By grouping all the bits transmitted over one channel state into
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one symbol, we get a non-binary code of length Ns = Dst built on an alphabet of size
2Lc/Dst . The Singleton bound on the Hamming distance of the non-binary code (Ks, Ns)

is thus given by:
dst ≤ Ns −Ks + 1 = Ns −Ns.Rc + 1 (1.24)

Finally, state diversity is upper-bounded by [33][34]

dst ≤ bDst(1−Rc) + 1c ≤ Dst (1.25)

Note that the maximal diversity given by the outage limit under a finite size QAM al-
phabet also achieves the above Singleton bound [9]. We can notice from (1.25) that full
diversity is attained only if Rc ≤ 1/Dst. As Dst grows to infinity (i.e. tends to an ergodic
fading channel), the diversity order of a coded system is limited by ωH(c).

1.5 Conclusions

We discussed the outage probability for block-fading channels, that represents the funda-
mental lower-bound on the performance of coded modulations for long enough codewords
on this type of channels. We then presented our system model, that will be used through-
out this manuscript to design schemes that approach the outage probability limit. We
finally explained the bounds on the diversity order of a binary code over block-fading
channels, bound that will be elaborated further to fit to specific types of block-fading
channels, namely the multiple-input multiple-output (MIMO) channel and amplify-and-
forward cooperative fading channel.
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Chapter 2

Coded modulations for the multiple-
antenna channel

2.1 Introduction

Since the late nineties, employing multiple-antennas on a communicating terminal has
been of great interest as a result of the dramatic increase in capacity these systems can
provide [4][5]. Moreover, for block-fading channels, multiple-antennas are a mean to pro-
vide spatial diversity that allows to combat the fluctuations of the quality of the channel.
Since then, researchers in the wireless communication community studied and designed
efficient schemes for such systems that allow for maximal diversity orders and high per-
formance. With the exception of few works that will be mentioned in this chapter, most
designs only considered the protection of constellation symbols under ML decoding, with-
out taking into account the presence of an error correcting code. In this chapter, we will
propose coded modulation schemes for the multiple-antenna channel that perform close to
channel limits. We will start by a state-of-the-art of coding schemes for the MIMO chan-
nel in section 2.2. We will then show the frame error rate of uncoded space-time rotations
as a function of the frame length (that constitutes the motivation behind our work), the
general system model, and the bounds on the diversity order achieved by multiple-antenna
systems. Next we will discuss our three proposed schemes; the first one consists of de-
signing space-time precoders that minimize the discrete-input outage probability (section
2.6), the second consists of the extension of the Alamouti scheme to a system with nt = 4

transmit antennas (section 2.7), and the third considers code multiplexer design for turbo
codes (section 2.8).
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2.2 A brief historical note

After the pioneering works in [4][5] on multiple-antenna channels, the author in [35] pro-
posed the Bell-Labs Layered Space Time codes (BLAST), that demultiplex the symbol
stream over nt transmit antennas, while the receiver recovers the transmitted symbols
through nr receive antennas. This scheme was capable of achieving high data rates
through spatial multiplexing, but it was not capable of recovering the diversity provided
by the transmit antennas as no “smart” processing was performed at the transmitter level.
For that reason, the authors in [25][36] proposed design criteria for “space-time codes”, in
a goal to make benefit from the transmit diversity at the receiver. These criteria consisted
of minimizing the pairwise error probability of a pair of space-time codewords by maxi-
mizing both the determinant and the rank of the codeword matrix. The codes proposed
at first were constructed following orthogonal designs, from the famous Alamouti code
for nt = 2 [24] to the generalization for any number of transmit antennas in [25]. In the
same paper [25], the authors proposed the “space-time trellis codes”; these codes follow
the concept of convolutional codes as they are encoded via a trellis. They have better
error rate performance than orthogonal space-time block codes, but they require a viterbi
decoder thus an increase in decoding complexity. The problem with these codes is that
they severely degrade the information rate by introducing redundancy, and this degra-
dation is proportional to the number of transmit antennas. Indeed, for an orthogonal
complex space-time block code employing nt antennas, the maximal achievable rate is:

Rp =
1 + log2 nt
2. log2 nt

(2.1)

As a nresult of this limitation of orthogonal designs, the use of algebraic tools to build
space-time rotations that attain full diversity and full spatial multiplexing was consid-
ered. Indeed, precoding signals for fading channels, which is well-known in single antenna
transmissions, has been rediscovered for multiple-antenna channels. In fact, Battail was
the first to suggest rotations to combat channel fluctuations in [37]. The pioneering work
on multi-dimensional rotated modulations achieved in the nineties, such as [38][39][40],
opened the way for the study of multi-dimensional rotations (i.e. linear unitary precoders)
in MIMO channels. Rotations in single antenna systems have been designed by classical
algebraic criteria, except for orthogonal transforms proposed by Rainish which are based
on the minimization of the cut-off rate [41]. Also, it has been shown in [42] that ran-
dom rotations perform as good as algebraic rotations in a high-diversity high-dimensional
environment. In [43] [44] [45] among others, the authors proposed then algebraic construc-
tions of space-time codes for uncoded multiple-antenna systems, and they outperformed
orthogonal designs as they were full-rate, i.e. one symbol is sent per transmit antenna per
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symbol time. However, new problems have arisen with these designs, as the determinant
of the codeword matrix vanishes with an increase in the constellation size. The race to
the optimal space-time code for uncoded systems was ended by the works in [46] [47]
[48] for nt = 2 and by [49] for nt = 3, 4, 6. Indeed, these works provide space-time codes
that have non-vanishing determinants, thus they yield optimal performance with uncoded
systems under maximum-likelihood detection. As an example, the Golden code [46] is an
algebraic precoder optimized for nt = nr = 2, its precoding matrix is:

SGC =




0.52e−j0.55 0 0 0.85e+j1.01

0.85e−j0.55 0 0 0.52e−j2.12

0 0.85e+j2.58 0.52e−j0.55 0

0 0.52e−j0.55 0.85e−j0.55 0


 (2.2)

As an alternative to the design criteria proposed in [25][36], linear dispersion (LD) codes
[50] were designed for multiple antenna channels by a search that maximizes the ergodic
capacity of the channel under a Gaussian channel input. Such a design is not necessarily
suitable for a non-ergodic channel with a finite number of states, as these channels are
information unstable [6]. Also, the type of input alphabet is not considered in the search
for linear dispersion codes.
The major drawback of the aforementioned design criteria is that they do not take into
account the concatenation with an error correcting code in the system. Furthermore,
space-time signal modulations must be combined to error-correcting codes in order to
achieve optimal performance in the information theoretical sense.
For this reason, the authors in [16][17] considered bit-interleaved coded modulations for
space-time coding (ST-BICM). They showed that quasi-optimal global ML performance of
the coded modulation is achieved by imposing specific constraints (called genie conditions)
on the structure of the space-time precoder under ideal interleaving. In fact, in order
to guarantee maximum diversity order and maximum coding gain at the output of the
detector, the design must guarantee two conditions:

• Orthogonal sub-rows in the linear precoding matrix.

• Equal norm sub-rows in the linear precoding matrix.

If these conditions are met, perfect a priori probability feedback will be assumed in the
iterative joint detection and decoding of ST-BICM, hence quasi-ML performance will be
attained in practice after some iterations at a high signal-to-noise ratio. As an example,
the cyclotomic rotation given below is an algebraic precoder satisfying the genie conditions
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for ST-BICM with nt = 2:

SCyclo = [φij] =
1

2




1 1 ej6π/15 −ej6π/15

ej2π/15 jej2π/15 −ej8π/15 jej8π/15

ej4π/15 −ej4π/15 ej10π/15 ej10π/15

ej6π/15 −jej6π/15 −ej12π/15 −jej12π/15


 (2.3)

where we have the following:

• Vector (φi,1, φi,2) is orthogonal to vector (φi,3, φi,4) on any row i, i = 1 . . . 4.

• Vectors (φi,1, φi,2) and (φi,3, φi,4) have equal norms.

Note that most of the algebraic space-time rotations designed for uncoded systems
guarantee at least one of the above conditions. The precoding matrix SGC of the Golden
code from (2.2) for instance guarantees the first genie condition, and the second condition
can be compensated by an error correcting code with high coding gain [17].
In this chapter, we will propose space-time precoders suited for the ST-BICM scheme
whose design is mostly based on the conditions established in [16][17] for optimal perfor-
mance. Before doing so, we will show the behavior of the frame error rate performance of
uncoded space-time rotations and recall the bounds on the diversity orders that can be
attained by a ST-BICM on MIMO block-fading channels under ideal interleaving.

2.3 Upper bound on the frame error rate for uncoded
space-time signaling

Suppose that we concatenate Nf space-time precoded blocks forming a frame to be trans-
mitted on a block-fading channel with a probability of error Pf (Nf ). Suppose now that
each block has diversity order d, so the probability of error Pc of each independent code
is a function of the signal-to-noise ratio γ and a chi-square random variable y given by:

y =
2d∑

i=1

y2
i yi ∼ Nf

(
0, σ2

)
(2.4)

p(y) =
yd−1e−y/2σ

2

(d− 1)!
(2.5)

Now let Pf (Nf ) denote the frame error rate as a function of Nf :

Pf (Nf ) =

∫ +∞

0

[
1− (1− Pc(γ, y))Nf

]
p(y)dy (2.6)
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We can write that [33]:

Pf (Nf ) ≤ 1− (1− Pc(γ, y))Nf ≤ Nf .Pc(γ, y) (2.7)

which gives the upper bound on Pf (Nf ) as Nf goes to infinity as [17, Appendix A]:

Pf (Nf ) ≤
∫ +∞

0

min [1, Nf .Pc(γ, y)] p(y)dy (2.8)

=

∫ α

0

p(y)dy +

∫ +∞

α

Nf .Pc(γ, y)p(y)dy (2.9)

where α is given by:

Pc(γ, α) =
1

Nf

(2.10)

Now let us suppose that when γ goes to infinity we get:

Pc(γ, y) ∼= e−yγ/2 (2.11)

which gives the value for α as:

α =
2

γ
log(

Nf

2
) (2.12)

Now we can write the first term of (2.9) as:

Pf1(Nf ) =

∫ α

0

p(y)dy = 1− e−α
d−1∑

k=0

αk

k!
= e−α

+∞∑

k=d

αk

k!
(2.13)

Then we can write:

lim
γ→+∞,Nf→+∞,

Pf1(Nf ) =

[
2
γ

log(
Nf
2

)
]d

d!
(2.14)

Finally we can write the second term of (2.9) as:

Pf2(Nf ) =

∫ +∞

α

Nf .Pc(γ, y)p(y)dy (2.15)

and:

lim
γ→+∞

Pf2(Nf ) = lim
γ→+∞

∫ +∞

α

N
ym−1e−(1+ γ

2
)y

(m− 1)!
dy (2.16)

= lim
γ→+∞

N
e−γ(1+ γ

2
)

(1 + γ
2
)d

d−1∑

k=0

[
γ(1 + γ

2
)
]k

k!
(2.17)

= lim
γ→+∞

1

(1 + γ
2
)d

(2.18)
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We can notice from equation (2.14) that the frame error rate of an uncoded system
degrades as log(Nf )

d where d is the diversity order. Hence, it is impossible to approach
outage probability with uncoded systems, as a coding scheme that approaches outage
probability has to be insensitive (or slightly sensitive) to block length. For the Alamouti
scheme for instance, the frame error rate is upper-bounded by:

Pf (Nf ) ≤
2 log2(

Nf
2

) + 4 log(
Nf
2

) + 4

γ2
(2.19)

In a similar way, it was found in [51] that the frame error rate obtained by concate-
nating Nf (8, 4, 4) block codes is upper-bounded by:

Pf (Nf ) ≤
2 log2(2Nf ) + 3/7 log(7Nf ) + 2 log(2Nf ) + 24/7

(2Rcγ)2
(2.20)

In addition, it was observed in [52] that the frame error rate of convolutional codes
varies logarithmically with Nf on block-fading channels.

2.4 System model and notations

In this chapter, we consider the BICM scheme as presented in section 1.3 concatenated
with a space-time precoder as shown in Fig. 1.3.

The channel model for a precoded ST-BICM is given by:

y = zSH + w = xH + w (2.21)

where z ∈ Ω = (M -QAM)Nt and Nt = Rp ·s ·nt, the parameter s being the time spreading
of a precoding matrix S of dimensions Nt×Nt/Rp, where Rp is the rate of the precoder. In
general, S is a full-rate unitary matrix (i.e. Rp = 1) whose structure is matched to iterative
detection as the class of cyclotomic rotations proposed in [16][17]. The MIMO channel
matrix has dimensions Nt/Rp × Nr/Rp, and assuming that the number of independent
channel realizations observed during one codeword transmission is nc, we get:

H = diag




1/Rp︷ ︸︸ ︷
H1, . . . ,H1︸ ︷︷ ︸

s.Rp/nc

, . . . ,Hnc , . . . ,Hnc , . . . ,H1, . . . ,H1︸ ︷︷ ︸
s.Rp/nc

, . . . ,Hnc , . . . ,Hnc


 (2.22)

the additive white Gaussian noise vector w of dimension Nr/Rp is assumed to be circularly
symmetric with zero mean and mean N0. The Rayleigh fading channel is quasi-static fre-
quency non-selective, i.e. the whole transmitted frame undergoes one channel realization.
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The channel coefficients are supposed to be perfectly known (perfect CSI) to the receiver,
but not to the transmitter. We make the assumption of perfect channel estimation and
perfect synchronization. Digital transmission is made as follows: uniformly distributed
information bits are fed to a binary convolutional encoder C. Coded bits {ci} are then
interleaved through Π, Gray mapped into QAM symbols, precoded through S and trans-
mitted on the MIMO channel given by (2.22). The coherent MIMO detector computes
an extrinsic information ξ(ci) based on the knowledge of H, the received vector y, and
independent a priori information π(cj) for all coded bits. The coding rate is Rc ∈ [0, 1].
The transmitted information rate is equal to R = RpRcnt log2M bits per channel use,
where M is the cardinality of the bi-dimensional QAM constellation. An interleaver Π

enables iterative probabilistic MIMO detection [53][54] of the binary-oriented channel.

2.5 Diversity bounds for coded multiple-antenna sys-
tems

In ST-BICM, there exists a strong interaction between the error correcting code with
interleaving and the linear precoder, both in terms of diversity and coding gain maxi-
mization [17]. Complexity can be controlled by the choice of a space-time rotation S with
minimal time spreading factor s that guarantees full diversity [55]. In other terms, the
lowest complexity solution would be to first let the channel decoder recover the highest
amount of diversity possible, then the detector recovers the remaining diversity through
time spreading. For a MIMO channel, the channel diversity is defined as Dch = ntncnr,
which is equal to the intrinsic diversity order of the physical channel. For a given transmit-
ter structure, the achievable channel diversity is dch = limSNR→+∞− log(Pe)/ log(SNR),
where SNR is the signal-to-noise ratio and Pe is the error probability.

When S is the identity matrix, the ST-BICM diversity order is upper-bounded by [34]:

dch ≤ min (nr bntnc(1−Rc) + 1c , Dch) (2.23)

With a vanishing coding rate, i.e. Rc → 0, it is possible to attain the overall system
diversity order nrncnt produced by the receive antennas, the transmit antennas and the
distinct channel states. Unfortunately, this is unacceptable due to the vanishing trans-
mitted information rate. Precoding is one means to achieve maximum diversity with a
non-vanishing coding rate. Under linear precoding that spreads QAM symbols over s
time periods, the Singleton bound becomes [55]:

dch ≤ min
(
snr

⌊
bntnc
s
c(1−Rc) + 1

⌋
, Dch

)
(2.24)
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Now if s = nt.nc, from the above inequality, we observe that precoding may achieve
maximal diversity ntnc without the use of error-correcting codes. Unfortunately, near-
outage performance is impossible in this case due to the weak coding gain of all kinds of
space-time precoders, as was discussed in section 2.3. The near-outage performance of
ST-BICM is a judicious trade-off between error-control coding and linear QAM precoding.
The genie conditions are optimal, in terms of ML performance, when all diversity given
by the transmit antennas is collected at the detector (i.e. s = nt). A supplementary
condition (that will be discussed later) called “Dispersive Nucleo Algebraic” (DNA) has
been proposed in [17] to keep optimality when s < nt while having the genie conditions
on sub-groups of transmit antennas.

With a judicious choice of an error-correcting code and a linear precoder, maximum
diversity is easily attained (dch = Dch). In general, a Nakagami distribution of order
Dch/Dst is associated to each binary-input sub-channel embedded within the BO-channel.
Recall that Dst is the state diversity seen by the binary code. To illustrate the above
definitions, we list the following examples:

• For nt = 2, nr = 1, Dch = 2, and without rotation (s = 1). We get Dst = 2.

• For nt = 2, nr = 2, Dch = 4. Without rotation (s = 1), we have Dst = 2. With a
cyclotomic rotation (s = 2), we get Dst = 1.

• For nt = 4, nr = 2, Dch = 8. Without rotation (s = 1), we have Dst = 4. With a
cyclotomic DNA rotation (s = 2), we get Dst = 2.

2.6 Space-time precoders based on information outage
minimization

2.6.1 Introduction

At that stage, in the existing works, the authors achieved optimal (quasi-ML) performance
with a space-time precoded BICM under iterative detection and decoding. The genie
conditions ensure that a priori information fed back from the decoder becomes perfect
after a certain number of iterations. However, in some practical receivers, an iterative
algorithm might not be possible due to resource limitations. The high data rates and the
high processing speed required in a communication system can put strict constraints on the
number of iterations. For this reason, we will present full-rate space-time precoders that
lead the ST-BICM to perform well since the first iteration. Hence, we propose a simple
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information theoretical design of multi-dimensional rotations that take into account the
interaction between channel coding and symbol space-time spreading.

2.6.2 Linear precoding designs

For a fixed rotation S and nc fixed MIMO channel matrices Hi, i = 1 . . . nc, defined by
the nc fading blocks, let ISH = I(z; y) denote the average mutual information of the
equivalent channel with QAM input z and complex output y as in (2.21). The expression
of ISH is a slight modification of (1.14) that gives:

ISH = s.m.nt −
1

nc

nc∑

i=1

Ez,y|SHi

[
log2

(∑
z′ p(y|z

′
,SHi)

p(y|z,SHi)

)]
(2.25)

where Ez,y|SHi
is the conditional mathematical expectation over z and y. The channel

likelihood is written in its classical form

p(y|z,SH) ∝ exp

(
−‖y − zSH‖2

2σ2

)
(2.26)

Expression (2.25) assumes that the precoder S does space-time spreading within the
same fading block Hi. Its main role is to collect transmit diversity. Time diversity nc is
collected by the convolutional code whereas receive diversity is naturally collected by the
detector. The information rate transmitted by the space-time BICM is R = s.m.nt.Rc

bits per s time periods (with Rp = 1 for full-rate precoders). An outage occurs if the
instantaneous capacity, i.e. ISH in our case, is less than R (see section 1.2). The outage
probability associated to the rotation S at a given signal-to-noise ratio is

Pout(S) = P (ISH < s.m.nt.Rc) (2.27)

The new design, called IOM (Information Outage Minimization), selects a matrix
SIOM within the ensemble ℵ of random unitary matrices such that

SIOM = arg min
S∈ℵ

Pout(S) (2.28)

As an example, choosing the best rotation within an ensemble ℵ limited to 2000 matrices
yields the matrix written below, for QPSK alphabet with nt = s = 2 and coding rate
Rc = 1/2

SIOM =




0.57e+j1.71 0.64e+j1.55 0.14e−j1.89 0.49e+j1.22

0.34e−j0.94 0.51e+j2.82 0.57e+j1.26 0.54e+j0.27

0.59e−j1.38 0.04e−j0.04 0.61e−j1.46 0.52e+j1.25

0.46e−j0.84 0.57e+j1.74 0.53e+j3.05 0.43e−j2.66



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Figure 2.1: Outage limits for nt = nc = s = 2, nr = 1, and Rc = 1/2.

By minimizing the discrete-input outage probability, the random rotation makes the dis-
tribution of the input vector x = zS to the channel look like a Gaussian distribution. Fig.
2.2 shows the distribution of the vector zSIOM for a BPSK modulation, the bell shape
of the curve is flagrant. The problem with the matrix SIOM is that it does not satisfy

 0
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Figure 2.2: Distribution of zSIOM for a BPSK modulation.

the genie conditions. Although it boosts the performance after a “one-shot” detection and
decoding process, it does not guarantee optimal convergence of the iterative process. To
make our design suited for both “one-shot” detection and iterative decoding, a smaller
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set ℵG of random unitary matrices is obtained by adding to ℵ the first genie constraint,
i.e. orthogonal sub-rows in S. This condition is much more important than the second
genie constraint (i.e. equal-norm sub-rows) as it gives independent extrinsic probabilities
at the output of the SISO detector. This second design, called G-IOM, selects a matrix
SG−IOM satisfying

SG−IOM = arg min
S∈ℵG

Pout(S) (2.29)

As an example, choosing the best rotation within an ensemble ℵG limited to 2000 matrices
yields the matrix written below, for QPSK alphabet with nt = s = 2 and coding rate
Rc = 1/2

SG−IOM =




0.88e−j0.30 0 0 0.48e−j0.55

0.48e−j0.33 0 0 0.88e+j2.57

0 0.47e−j2.12 0.88e+j2.85 0

0 0.88e+j2.96 0.47e−j1.49 0



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Figure 2.3: Outage limits for nt = nc = s = 2, nr = 1, and Rc = 3/4.

Now for the case of nt = 4, using a half-rate convolutional code allows us to employ a
DNA precoder with s = 2 as it ensures maximal diversity through (2.24). We thus design
a DNA-IOM precoder that minimizes and satisfies DNA constraints [17]; the first step is
to pick a 4× 4 rotation from the ensemble ℵDNA of random rotation, and the second step
is to place the orthogonal nucleotides inside an 8× 8 matrix and separate them with null
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nucleotides. We obtain the following rotation for nt = 4 and s = 2 (see proposition (2),
page 54, in [17]):

SDNA =




φ11 φ12 0 0 φ13 φ14 0 0

0 0 φ11 φ12 0 0 φ13 φ14

φ21 φ22 0 0 φ23 φ24 0 0

0 0 φ21 φ22 0 0 φ23 φ24

φ31 φ32 0 0 φ33 φ34 0 0

0 0 φ31 φ32 0 0 φ33 φ34

φ41 φ42 0 0 φ43 φ44 0 0

0 0 φ41 φ42 0 0 φ43 φ44




(2.30)

with:

ΦDNA−IOM =




0.73e−j0.81 0.22e+j4.62 0.15e+j0.60 0.61e+j2.59

0.21e+j3.99 0.56e+j4.44 0.62e+j0.25 0.50e−j1.29

0.57e+j0.79 0.13e−j1.28 0.57e−j0.63 0.57e+j0.90

0.29e+j1.01 0.78e+j3.49 0.51e+j2.27 0.20e+j0.91




The DNA-IOM precoder is thus obtained by combining SDNA with ΦDNA−IOM. Also,
the DNA-cyclotomic precoder is constructed by combining SDNA to ΦDNA−Cyclo = SCyclo

given previously in (2.3).
Fig. 2.1 and 2.3 show the outage limit for different type of precoders in terms of Word
Error Rate versus signal-to-noise ratio. The outage probability has been also evaluated
for other system parameters. In fig. 2.1, the precoding matrix enhances the coding gain of
the discrete-input outage curve. In fig. 2.3, following the expression in (2.24), a precoding
matrix with s = 2 is mandatory to recover the diversity at the receiver, as illustrated by
the discrete-input outage curves of the unrotated case (that does not achieve diversity),
and the rotated case. All outage evaluations have been made by (2.25) and (3.13), without
Gaussian and analytical approximations when the channel input is a Gaussian alphabet
as in [56][10].

2.6.3 Simulation results

In order to emphasize the diversity order created by coding at the transmitter side, all
computer simulations have been conducted with the number of receive antennas nr = 1.
Fig. 2.4 and 2.5 illustrate the word error rate performance of a space-time BICM for nt = 2

transmit antennas, nc = 2 channel states, s = 2 time period spreading and a coding rate
Rc = 1/2. Fig. 2.6 illustrates the case with nt = 4 transmit antennas and a precoding
spread factor s = 2. At the first iteration, for nt = 2, IOM precoding slightly outperforms
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other rotations. After 10 detection/decoding iterations, IOM is outperformed by G-IOM
and other algebraic rotations. The slight difference in performance is still apparent for
nt = 4.
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Figure 2.4: QPSK modulation, nt = s = nc = 2, nr = 1, rate 1/2 16-state (23, 35)

convolutional code, interleaver size N = 2048 bits, 1 and 10 iterations.

2.7 Space-time precoders based on the Alamouti scheme

2.7.1 Introduction

One orthogonal design that highly caught the attention of the wireless communications
community is the Alamouti code [24] with Rp = 1/2 for nt = 2. This pragmatic orthogonal
scheme allows to convert a 2×1 (nt×nr) antenna configuration onto a 1×2 configuration,
by creating two independent parallel channels. Many attempts have tried to generalize
the Alamouti scheme to systems with larger antenna configurations, among them the
ABBA code [57], but in all cases the optimization was done by trading one parameter
(diversity order, rate of the precoder Rp < 1/2...). In this section, we present a ST-BICM
design suited for a MIMO system with nt = 4, design that uses the Alamouti structure to
separate blocks of space-time rotated symbols. In our case, the rate of the precoder is still
Rp = 1/2 even though we have more than two transmit antennas. However, the difference
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Figure 2.5: QPSK modulation, nt = s = nc = 2, nr = 1, rate 1/2 16-state (23, 35)

convolutional code, interleaver size N = 2048 bits.
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convolutional code, interleaver size N = 2048 bits.

with the nt = 2 case is that interference among blocks is introduced. For this reason, we
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look at the problem as if we had a Code-Division Multiple Access (CDMA) system with
two users (represented by the two blocks), and inter-block interference becomes similar to
inter-user interference in CDMA. There exists several methods to remove the inter-user
interference in a CDMA system, and the most efficient algorithms are those that use
soft information from a channel decoder [27][58]. In our case, we chose to remove the
inter-block interference using the parallel interference cancellation (PIC) algorithm, that
proves to be optimal in computer simulations in our context. The performance of this
system under quasi-static fading and iterative detection and decoding proved to be close
to system limits. All these points will be clarified in the sequel.

2.7.2 Matrix-Alamouti scheme

In a ST-BICM, the cardinality of the generated set of vectors is given by |Ω| = 2mNt , m
being the number of bits per bi-dimensional QAM constellation symbol. The cardinality
increases exponentially with nt thus leading to a high decoding complexity at the receiver.
If nt = 4, m = 2, and Rp · s = 2 for instance, |Ω| = 216 = 65536, which is intractable
for practical applications. In the sequel, we investigate a non-linear space-time precoding
scheme that combines the symbols in a matrix-Alamouti form [24]. Let us first define the
operators mat(.) and vec(.) : mat(.) transforms a vector into a matrix by putting its last
sub-part beneath its first sub-part, while vec(.) performs exactly the inverse task. Let us
also define the operator ‡ where:

u‡ = vec(U†) (2.31)

where u is a complex vector and U is any complex matrix. In the new model, x is
rewritten as a 1× 16 row vector:

x =
[

x1 x2 −x‡2 x‡1

]
(2.32)

where x1 = z1S and x2 = z2S are space-time vectors in C4, obtained by multiplying a
QAM symbol vector zi ∈ (M-QAM)4 with a 4 × 4 space-time rotation S. Many design
criteria for nt = 2 antennas lead to different classes of rotations S as found in [16][43][46],
or IOM and G-IOM rotations presented in section 2.6. Although the rate of the precoder
in (2.32) is Rp = 1

2
, it is capable of converting the set of cardinality |Ω| = 2mNt onto a

smaller set Ωc of cardinality |Ωc| = 2
mNt

2 , and this is due to the orthogonality inherent to
the Alamouti structure. In addition, the bound on the diversity of this scheme is exactly
that of a system with nt = 2, as it creates two “parallel” streams via x1 and x2 that have
a diversity order of 2 × nr each, independently from the coding rate Rc in (2.24). With
a conventional 4 × nr system, when Rc → 1, full spreading with s = 4 is mandatory to
recover full channel diversity, yielding an exponential increase in detection complexity.
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With the scheme proposed in this section, full spreading means s = 2. The purpose is
then to drastically reduce the complexity at the detector while recovering maximum di-
versity with high coding rates.

By replacing x in (2.21) by its form in (2.32), we get a slightly different channel model
than the one of (2.21) and (2.22) as follows:

[
y1 y2

]
=
[

x1 x2 −x‡2 x‡1

]



Hb1 0

Hb2 0

0 Hb1

0 Hb2




+
[

w1 w2

]

(2.33)

where all vectors y1, y2, w1 and w2 are in C2nr , and:

Hb1 =

[
H1 0

0 H1

]
; Hb2 =

[
H2 0

0 H2

]

where H1 and H2 are 2 × nr channel coefficients matrices. We can write the received
signal vectors from (2.33) as follows:

y1 = x1Hb1 + x2Hb2 + w1 (2.34)

y2 = −x‡2Hb1 + x‡1Hb2 + w2 (2.35)

The new expressions for y1 and y2 from (2.34) and (2.35) become:

Y1 = mat(y1) = mat(x1)H1 +mat(x2)H2 +mat(w1)

= G1H1 + G2H2 + W1 (2.36)

Y2 = mat(y2) = mat
(
−x‡2

)
H1 +mat

(
x‡1

)
H2 +mat(w2)

= −G†2H1 + G†1H1 + W2 (2.37)

where G1 and G1 are 2× 2 matrices, and W1 and W2 are 2× nr matrices.
In order to recover the transmit diversity, the combining scheme in [24] has to be per-
formed on (2.36) and (2.37). However, as matrix multiplication is not commutative, two
combining schemes can be implemented.
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First combining scheme - FCS

We can write the combined versions of G1 and G2 as follows:

Γ1 = H†1Y1 + Y†2H2

= H†1G1H1 + H†2G1H2 + H†1W1 + W†
2H2 (2.38)

Γ2 = H†2Y1 −Y†2H1

= H†1G2H1 + H†2G2H2 + H†2W1 −W†
2H1 (2.39)

Although this combining scheme introduces colored noise, it is capable of totally re-
moving the inter-block interference. However, it gives an estimate of the signal as H†iGjHi

that is not of the form of the matched filter (i.e. H†iHi), thus it does not recover all the
transmit diversity. Indeed, for nr = 2 for instance, the equivalent channel matrix after
combining is given by:

vec(H†1G1H1 + H†2G1H2) ,

z1S




|h11|2 + |h31|2 h∗12h11 + h∗32h31 h∗11h12 + h∗31h32 |h12|2 + |h32|2
h∗21h11 + h∗41h31 h∗22h11 + h∗42h31 h∗21h12 + h∗41h32 h∗22h12 + h∗42h32

h∗11h21 + h∗31h41 h∗12h21 + h∗32h41 h∗11h22 + h∗31h42 h∗12h22 + h∗32h42

|h21|2 + |h41|2 h∗22h21 + h∗42h41 h∗21h22 + h∗41h42 |h22|2 + |h42|2




(2.40)

We observe from (2.40) that only 2 of the 4 symbols of z1S are multiplied by Nakagami
distributed random variables of order 4, thus the overall system diversity is limited to 4.
The same reasoning applies to Γ2.

Second combining scheme - SCS

By permuting the matrix product of the first combining scheme, we get other versions of
Γ1 and Γ2 denoted by Gc1 and Gc2 in the sequel:

Gc1 = Y1H
†
1 + H2Y

†
2

= G1H1H
†
1 + H†2H2G1 + G2H2H

†
1 −H2H

†
1G2 + W1H

†
1 + H2W

†
2 (2.41)

Gc2 = Y1H
†
2 −H1Y

†
2

= H1H
†
1G2 + G2H2H

†
2 + G1H1H

†
2 −H1H

†
2G1 + W1H

†
2 −H1W

†
2 (2.42)
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The first two terms of (2.41) and (2.42) are the desired signal estimates. The second
two terms are the interference introduced by the combining scheme, and the last two terms
are the colored noise components. In this scheme we are able to recover the transmit
diversity via the first two terms of (2.41) and (2.42), as shown in the following equation
for nr = 2:

vec(G1H1H
†
1 + H2H

†
2G1) , z1SHS1 (2.43)

where

HS1 =




A1 + A3 h∗31h41 + h∗32h42 h11h
∗
21 + h12h

∗
22 0

h31h
∗
41 + h32h

∗
42 A1 + A4 0 h11h

∗
21 + h12h

∗
22

h∗11h21 + h∗12h22 0 A2 + A3 h∗31h41 + h∗32h42

0 h∗11h21 + h∗12h22 h31h
∗
41 + h32h

∗
42 A2 + A4


 (2.44)

and

A1 = |h11|2 + |h12|2, A2 = |h21|2 + |h22|2, A3 = |h31|2 + |h32|2, A4 = |h41|2 + |h42|2

By symmetry, we get:

HS2 = H†S1
=




A1 + A3 h31h
∗
41 + h32h

∗
42 h∗11h21 + h∗12h22 0

h∗31h41 + h∗32h42 A1 + A4 0 h∗11h21 + h∗12h22

h11h
∗
21 + h12h

∗
22 0 A2 + A3 h31h

∗
41 + h32h

∗
42

0 h11h
∗
21 + h12h

∗
22 h∗31h41 + h∗32h42 A2 + A4




(2.45)
As shown in (2.43), every symbol in z1S and z2S undergoes Nakagami distributed random
variables of order 4, which leads to an overall system diversity of 8.

However, this combining scheme introduces considerable interference along with col-
ored noise. In an uncoded system, this combining scheme does not converge as the
received signal constellation is not clearly delimited within distinct Voronoï regions, even
for significantly high signal-to-noise ratios. This scenario is similar to that of multi-user
detection (MUD) in heavily loaded CDMA systems, where users introduce interference to
each others. Hence, we can use detection techniques known for coded MUD-CDMA as in
[27][58] and their references to get reliable estimates of the signals. Therefore, we choose
to map one interleaved codeword through z1, and another interleaved codeword using z2,
as if we had two “virtual” users. This results in sending a frame that has the length of
two codewords. The transmitter for the proposed system is shown in Fig. 2.7.

In our case, as convolutional codes are employed, one can send a unique codeword
instead of two. However, we have to make sure that the coded bits that are mapped onto
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H
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z1S
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Figure 2.7: Transmitter model for matrix-Alamouti encoded ST-BICM.

z1 are far from the coded bits that are mapped onto z2 in the trellis of the code, and the
two parts of the code should be interleaved separately. In this way we avoid introducing
inter-block interference at the transmitter.

2.7.3 Iterative joint detection and decoding

Let us write (2.41) and (2.42) as:

gc1 = vec(Gc1) = z1SHS1 + z2SHI1 + vec(W1H
†
1 + H2W

†
2) (2.46)

gc2 = vec(Gc2) = z2SHS2 + z1SHI2 + vec(W1H
†
2 −H1W

†
2) (2.47)

where HS1 and HS2 are taken from (2.44) and (2.45). In addition, we have:

HI1 =




0 −h41h
∗
11 − h42h

∗
22 h31h

∗
21 + h32h

∗
22 0

−h31h
∗
21 − h32h

∗
22 B 0 h31h

∗
21 + h32h

∗
22

h41h
∗
11 + h42h

∗
22 0 −B −h41h

∗
11 − h42h

∗
22

0 h41h
∗
11 + h42h

∗
22 −h31h

∗
21 − h32h

∗
22 0




where
B = h31h

∗
11 + h32h

∗
12 − h41h

∗
21 − h42h

∗
22

and HI2 = H†I1 by symmetry.
Now let N denote the number of M-QAM symbols in one convolutional codeword (i.e.

there are 2N M-QAM symbols in a frame for both convolutional codes). In order to get
reliable estimates of the combined signals, one has to efficiently remove interference from
(2.46) and (2.47). This gives us:

g̃c1 = gc1 − z̃2SHI1

= z1SHS1 + (z2 − z̃2)SHI1 + vec(W1H
†
1 + H2W

†
2) (2.48)
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g̃c2 = gc2 − z̃1SHI2

= z2SHS2 + (z1 − z̃1)SHI2 + vec(W2H
†
2 −H1W

†
1) (2.49)

The first term in (2.48) and (2.49) is the desired signal part, and the other two are
the residual interference and colored noise terms. In this case, the likelihoods of g̃c1 and
g̃c2 follow the multivariate Gaussian distribution as:

p (g̃c1 | z1,SHS1) ∼ N (z1SHS1 ,Σ1) ; p (g̃c2 | z2,SHS2) ∼ N (z2SHS2 ,Σ2)

where

Σ1 = E
[
(g̃c1 − z1SHS1)

† (g̃c1 − z1SHS1)
]

(2.50)

Σ2 = E
[
(g̃c2 − z2SHS2)

† (g̃c2 − z2SHS2)
]

(2.51)

Let us define:

V1 (z1) = g̃c1 − z1SHS1 (2.52)

V2 (z2) = g̃c2 − z2SHS2 (2.53)

After the interference and colored noise covariance matrices Σi are computed, the soft-
input soft-output (SISO) detector computes the extrinsic probabilities ξi (cj) that the jth

bit of codeword i is equal to 1, as given by the slight modification of (1.23) as:

ξ1 (c`) =

∑
z
′
1∈Ωc(c`=1) exp

[
−V1

(
z
′
1

)
Σ−1

1 V1

(
z
′
1

)†]∏
r 6=` π1 (cr)

∑
z1∈Ωc

exp
[
−V1 (z1)Σ−1

1 V1 (z1)†
]∏

r 6=` π1 (cr)
(2.54)

and

ξ2 (c`) =

∑
z
′
2∈Ωc(c`=1) exp

[
−V2

(
z
′
2

)
Σ−1

2 V2

(
z
′
2

)†]∏
r 6=` π2 (cr)

∑
z2∈Ωc

exp
[
−V2 (z2)Σ−1

2 V2 (z2)†
]∏

r 6=` π2 (cr)
(2.55)

Where π1 (cr) and π2 (cr) are a priori probabilities generated by soft-input soft-output
(SISO) decoders for the 1st and the 2nd convolutional codes respectively. As shown in
Fig. 2.8 below, the extrinsic probabilities are then fed back from the SISO detectors
to their respective SISO decoders that use the forward-backward (BCJR) algorithm to
give a posteriori probabilities of the coded bits. In addition, the decoders give back a
priori π1 (cr) and π2 (cr) probabilities to their respective SISO detectors as in the classical
receiver, and also to the detectors of different indices in order to compute the covariance
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matrices Σi and better remove the interference at each iteration. Unlike the conventional
receiver where the extrinsic probabilities generated by the detector are computed once at
the first iteration using (1.23), the extrinsic probabilities (2.54) and (2.55) in this case are
computed at each iteration as the Σi matrices change. However, in most cases, this linear
increase in complexity is negligible compared to the exponential increase in complexity
introduced by a signal set of higher cardinality. Let us take the following example: suppose
we have a conventional ST-BICM with Rc = 3/4 and nt = 4 transmit antennas. In order
to recover maximal diversity, we need to use a space-time precoder with s = 4. This
gives a cardinality of the space-time signal vector as |Ω| = 2mNt = 216m, over which the
exhaustive search to compute the extrinsic information in (1.23) is performed. However,
with the matrix-Alamouti scheme, s = 2 is sufficient to recover the diversity. This gives
|Ωc| = 28m, using a higher order M -QAM constellation to compensate Rp = 1/2. So
even if we need t iterations for the receiver to converge, we still have a drastic complexity
reduction, as 2× t× 28m � 216m.

1

Detector

SISO

2

Detector

SISO

Decoder

2

SISO

1

Decoder

SISO

Alamouti

Combining

SCS

Π−1
1

Π−1
2

Π1

Π2

y

ξ2 (cℓ)

π2 (cℓ)

ξ1 (cℓ)

π2 (cℓ)
π1 (cℓ)

π1 (cℓ)

z̃c1

z̃c2

Figure 2.8: Iterative receiver model for matrix-Alamouti encoded ST-BICM

In computer simulations presented in the next section, vectors z1 and z2 in (2.50) −
(2.53) were replaced by their soft estimates. Thus, we have:

Σ1 w
1

N

N
4∑

i=1

[
(g̃c1i − z1iSHS1)

† (g̃c1i − z1iSHS1)
]

(2.56)

Σ2 w
1

N

N
4∑

i=1

[
(g̃c2i − z2iSHS2)

† (g̃c2i − z2iSHS2)
]

(2.57)
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Figure 2.9: Performance for a frame size of 4096 coded bits ( 2 × 2048 for matrix-
Alamouti ), Rc = 1/2, nt = 4 and nr = 2 antennas.

2.7.4 Simulation results

In this section, frame error probabilities are illustrated versus signal-to-noise ratios and
frame size for nt = 4 and nr = 2. Comparisons are done with respect to discrete input
and Gaussian input outage probabilities. The convolutional code is the half-rate 16-
state (23, 35)8 non-recursive non-systematic code (NRNSC) and the interleavers are the
optimized interleavers from [17]. Fig. 2.9 shows the frame error rate performance for
different a frame sizes of 4096 coded bits. The matrix-Alamouti scheme is compared to
the DNA-cyclotomic rotations and the D-STTD scheme first proposed in [59] and included
in the IEEE802.11n standard, all at a coding rate Rc = 1/2. As DNA-cyclotomic rotations
are full-rate (i.e. Rp = 1), it was simulated with BPSK modulation in order to preserve
the same spectral efficiency with the other two schemes that are simulated with QPSK
modulations. In fact, with half-rate coding, the matrix S of matrix-Alamouti scheme does
not need to spread the symbol vectors, as diversity can be ensured with s = 1. In this
case, our scheme performs equally with the two others. However, by setting S = SCyclo

from (2.3), we observe a gain with respect to the other schemes. This for sure is at the cost
of a slight additional complexity, as s = 2 in this case. Fig. 2.10 shows the performance
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Figure 2.10: Performance for Rc = 2/3, BPSK modulation, nt = 4 and nr = 2 antennas.

Alamouti scheme with Rc = 2/3, that is the half-rate 16-state (23, 35)8 NRNSC code with
puncturing, with BPSK modulation. When S = SCyclo, the coded modulation achieves
full diversity with s = 2 as explained in section 2.7.2. With this coding rate, the D-
STTD scheme does not ensure maximum diversity, and the standard ST-BICM requires
a spreading factor of s = 4 as defined in 2.24 to achieve maximum diversity. Finally, Fig.
2.11 compares the performance of the matrix-Alamouti scheme with the DNA-cyclotomic
scheme for different frame sizes at a signal-to-noise ratio of 9dB. We can see that our
scheme is more robust to an increase in the frame size than the conventional scheme.

2.8 Outage-approaching turbo codes for the multiple-
antenna channels

2.8.1 Introduction

As shown in section 2.3, the frame error rate of uncoded space-time signaling is upper-
bounded by a quantity that varies as logd(n), where d is the diversity order. In order to
approach the outage probability limit, the frame error rate of any given coding scheme
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Figure 2.11: Frame error rate versus frame size, Rc = 1/2, Eb/N0 = 9 dB, nt = 4 and
nr = 2 antennas.

should be independent of the block length [9, 15]. Therefore, such space-time coding tech-
niques will fail in approaching the outage capacity limit of the quasi-static MIMO channel.
Algebraic space-time codes described in section 2.2 and any convolutionally/algebraically
coded STBC also fail in approaching the outage limit. Hence, our objectives are

• Design a space-time code based on state multiplexing [52] and turbo encoding
[60][61] in order to achieve near outage limit performance.

• Control the detection/decoding complexity and propose relatively low complexity
schemes.

• Make the word error probability insensitive to the block length. This is the inter-
leaving gain of turbo codes translated to the field of non-ergodic fading channels as
discovered in [15][9].

2.8.2 Code multiplexing over channel states

The physical channel we consider is a quasi-static frequency non-selective MIMO channel
with nt transmit antennas and nr receive antennas. On a Gaussian channel, the pairwise
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error probability supposing the zero codeword is emitted by a linear encoder is given by:

P (0→ c) = Q

(√
2RcEb
N0

ωH(c)

)
(2.58)

where ωH(c) is the Hamming weight of the codeword and Eb/N0 is the signal-to-noise
ratio. Now, on a Rayleigh fading channel with Dst states, the conditional pairwise error
probability becomes:

P (0→ c) = Q



√√√√2RcEb

N0

Dst∑

i=0

ωi(c)|hi|2

 (2.59)

where ωi(c) represents the partial weight of the codeword c undergoing fading hi, and∑
i ωi(c) = ωH(c). After performing a mathematical expectation over the channel states,

we can upper-bound the pairwise error probability as:

P (0→ c) ≤ 1

2

Dst∏

i=1

1

1 + ωi(c)
REb
N0

(2.60)

Hence the diversity order d(c) that can be achieved by the code is given by the number
of non-zero partial weights ωi(c). In addition, for high signal-to-noise ratios, the pairwise
error probability behaves like:

P (0→ c) ∝ 1∏Dst
i=1 ωi(c)

× 1

(Eb/N0)d(c)
(2.61)

So our objectives are to first guarantee that ∀i, ωi(c) 6= 0, to attain maximum diversity,
second to maximize the product

∏Dst
i=1 ωi(c) and hence the coding gain. For this purpose,

the authors in [52] proposed the “code multiplexer” defined as follows:

Definition 2. The multiplexer is an intelligent switch that distributes turbo coded bits si
over the Dst parallel sub-channels of the BO-channel.

Actually, the multiplexer should be called “de-multiplexer” or equivalently “channel inter-
leaver”. We have chosen the word “multiplexer” in order to avoid any confusion with the
interleaver denoted by Π used inside a turbo code. Fig. 2.12 shows two important multi-
plexing examples from [52] suite for a non-ergodic fading channel with Dst = 2 states. The
two digits 1 and 2 represent the two states of the BO-channel. The symbol X represents
a punctured parity bit. Note that in this chapter we will only consider half-rate codes
multiplexed over two-state non-ergodic channels, but generalization to any rate codes on
non-ergodic channels is straight-forward as long as Rc ≤ 1/Dst.
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Horizontal Multiplexer

s1 1 1 1 1 1 1
s2 2 X 2 X 2 X
s3 X 2 X 2 X 2

H-π-diagonal Multiplexer

s1 1 2 1 2 1 2
s2 2 X 2 X 2 X

π−1(s3) X 1 X 1 X 1

Figure 2.12: Horizontal (top) and h-π-diagonal (bottom) multiplexers for a rate 1/2
parallel turbo code.

Proposition 1. Let C be a rate 1/2 parallel turbo code transmitted on a 2-state channel
and built from RSC(g1(x), g2(x)). Under horizontal state multiplexing and for any input
weight ω, the number η of codewords in C with incomplete state diversity is

η(ω, dst < 2) = 0 ∀ ω ≥ 2

Proof. For any non-zero turbo codeword, it is well-known that the Hamming weight of
s1 is ω ≥ ωmin = 2 [61]. Also, the Hamming weight of both s2 and s3 must be positive
despite puncturing. Hence, it is trivial that dst = 2 since s1 is always transmitted on the
first channel state and (s2, s3) are transmitted on the second channel state.

The recursive systematic convolutional constituent has constraint length ν + 1. Its
feedback generator polynomial is g1(x) and its forward generator polynomial is g2(x).

Definition 3. A recursive systematic convolutional code is said to be a full-span convo-
lutional code if the generators satisfy deg(gi(x)) = ν and gi(0) = 1, for i = 1, 2.

Trellis transitions outgoing from the 0-state and those incoming to the 0-state will be
called full-span transitions, i.e. both bits are set to 1 on the transition label.

Proposition 2. Let C be a rate 1/2 parallel turbo code transmitted on a 2-state channel
and built from a full-span RSC(g1(x), g2(x)). Under h-π-diagonal state multiplexing and
for any input weight ω, the number η of codewords in C with incomplete state diversity is

η(ω, dst < 2) = 0 ∀ ω ≥ 2
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Figure 2.13: Trellis error events for input weight ω = 2. The two interleaving configura-
tions are indicated. Diversity is guaranteed by full-span transitions.

Proof. For ω = 2 and ω = 3: if a full-span transition is interleaved (via π) into a full-span
transition, then state diversity is guaranteed. As shown in Fig. (2.13) and (2.15), one of
the full-span transitions in RSC1 is converted into a full-span transition in RSC2.
For ω ≥ 4: Consider the case where ω = 4. Except for the unique interleaving con-
figuration depicted in Fig. (2.16), all turbo codewords exhibit dst = 2 due to full-span
transitions. Now, let χi(sj) ∈ {1, 2} denote the BO-channel state over which the binary
element sj belonging to RSCi is transmitted. We distinguish two cases when a critical
configuration is transmitted on the channel.
Case 1: error event in RSC1 starts at state 1, χ1(s1) = 1. Diversity is guaranteed by
RSC1 because χ1(s2) = 2.
Case 2: error event in RSC1 starts at state 2, χ1(s1) = 2. Then, we distinguish two
sub-cases:
Case 2.1: Information bit s1 is set to 1 within the error event and hits state 1 yielding
χ1(s1) = 1. Hence, diversity is guaranteed by RSC1 without the help of RSC2.
Case 2.2: Information bit s1 = 1 never hits state 1 in the trellis event of RSC1, χ1(s1) 6= 1.
This situation occurs because equality is not satisfied in (1.25) whenRc = 1/2 andDst = 3,
i.e. it is possible to create RSC1 codewords that never hit state 1. Thanks to the structure
of the h-pi-diagonal multiplexer, at least one full-span transition in RSC2 has χ2(s3) = 1

for χ1(s1) = 2.
The same proof applies for ω > 4.

Example with RSC(7, 5)8

A critical configuration is a configuration (or an event) in which the diversity is not
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RSC2 Trellis

Diversity not guaranteed

RSC1 Trellis
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Without π−1(s3)
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Figure 2.14: Effect of h-π-diagonal multiplexing on trellis events. Illustration for input
weight ω = 6 with and without de-interleaving of the second parity bit.

guaranteed by the first RSC alone, thus the receiver relies on the parity bit of RSC 2
to recover the diversity. Let us now give an example of critical configurations for ω = 4

as defined in the proof of prop. 2. When χ1(s1) = 1 and χ1(s2) = 2, the RSC trellis is
represented by the transition matrix

A1 =




0 0 D1D2LW 0

D1D2LW 0 L 0

0 D1LW 0 D2L

0 D2L 0 D1LW




When χ1(s1) = 2 and χ1(s2) = X, the transition matrix is

A2 =




0 0 D2D3LW 0

D2D3LW 0 L 0

0 D2LW 0 D3L

0 D3L 0 D2LW




The complete weight enumerator T (W,D,L) of simple error events is given by the top
left entry of the product A1A2A1A2 . . . or A2A1A2A1 . . . depending on the position of the
outgoing transition. A critical configuration is given by a product of type A2(A1A2)` for
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Figure 2.15: Trellis error events for input weight ω = 3. The six interleaving configurations
are equivalent to two distinct configurations.
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Figure 2.16: A critical configuration for full-span outgoing and incoming transitions.
Input weight ω = 4.

an event of length 2` + 1. For ` = 1 . . . 3 no critical configurations are found. For ` = 4,
we have

T (W,D,L) = . . .+ (2D1D
5
2D

4
3 +D8

2D
2
3)L9W 4 + . . .

Therefore, the shortest critical event for ω = 4 has length L = 9. It includes 4 information
bits with χ1(s1 = 1) = 2, 4 parity bits with χ1(s2 = 1) = 2, and 2 punctured bits with
χ1(s2 = 1) = X. In this case, without a de-interleaver at the output of RSC 2, one cannot
track the position of the parity bit s3 at the output, as shown in Fig. 2.14. Therefore, we
cannot make sure that full diversity is attained. However, a de-interleaver at the output
of RSC 2 makes the coded bits of the turbo code synchronized within the trellis of the
RSC constituents.
At this point, based on the study of η, the reader sees no difference between h-π-diagonal
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and horizontal multiplexers. Indeed, propositions (1) and (2) state that both multiplexers
achieve full state diversity. The error rate performance depends on the achieved diversity
and on the so-called coding gain or product distance defined by the product ω1ω2 of partial
Hamming weights. Now, it should be clear that horizontal multiplexing shows a great
unbalance between ω1 and ω2. As an example, for input weight ω = 2, consider RSC(7,5)
error events of length L = 4+3i and total Hamming weight wH = 6+2i, i = 0 . . . (N−4)/3.
For horizontal multiplexing, ω1 = 2 and ω2 = 4 + 2i. Therefore, its coding gain behaves
as O(N). For h-π-diagonal multiplexing, ω1 = ω2 = 3 + i. Hence, the coding gain
of h-π-diagonal multiplexing increases as O(N2). The loss is even more dramatic for
ω = 3. The latter is neglected on the Gaussian channel since its contribution to the
error rate performance is O(1/N). On non-ergodic fading channels, when ω = 3, turbo
codewords satisfying wH(s2) >> 1 and wH(s3) >> 1 will suffer from the unbalance of
horizontal multiplexing. A comparison between h-π-diagonal and horizontal multiplexers
is illustrated in Fig. 2.18 with 2 transmit antennas and a QPSK modulation.

2.8.3 Word error rate performance with nt = 2
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Figure 2.17: BPSK modulation, quasi-static channel, nt = 2, nr = 1, turbo code with
Rc = 1/2, (17, 15)8, N = 400.
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Figure 2.18: QPSK modulation, quasi-static channel, nt = 2, nr = 1, turbo code with
Rc = 1/2, (17, 15)8, N = 400.

In this section, computer simulations are made for nt = 2 and without linear precod-
ing (s = 1) on the quasi-static MIMO channel. The rate 1/2 turbo code is built from
RSC(17, 15)8 and a pseudo-random interleaver π of size N . All curves include word error
rate versus signal-to-noise ratio per bit. Fig. 2.17 shows the performance of a BPSK
modulation with 2 transmit and 1 receive antenna, and N = 400. Fig. 2.18 shows a sim-
ilar situation with a QPSK modulation. The performance with 2 transmit and 2 receive
antennas is given in Fig. 2.19. Notice that the word error rate is roughly the same for
N = 400 and N = 6400. Finally, the performance of 8-PSK is illustrated in Fig. 2.20 and
compared to both outage limits (discrete and Gaussian inputs).

2.8.4 Linear precoding via DNA rotations with nt = 4

In the case of nt = 4 transmit antennas, we have Dst = 4. Maximum state diversity in
(1.25) cannot be attained with Rc = 1/2 if Dst = 4. Therefore, we add a linear precoder
in order to downgrade Dst from 4 to 2. This does not affect the physical channel diversity
Dch. If the rotation has s = 4, i.e. a full spreading unitary precoder as usually studied
in the literature, then Dst will reduce to 1. Also, MIMO detection complexity increases
exponentially with s. The solution to maintain Dst = 2 is given by Dispersive Nucleo
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Figure 2.19: QPSK modulation, quasi-static channel, nt = 2, nr = 2, turbo code with
Rc = 1/2, (17, 15)8, N = 400/6400.

Algebraic (DNA) precoders discussed in section 2.6 for s ≤ nt. Now, let us observe the
MIMO channel with SDNA as in (2.30). The QAM vector z = (z1, z2, . . . , z8) goes through
the precoder before H. Consider the lattice point zSH without adding Gaussian noise.
One would notice that zi is transmitted via the 1st and 2nd transmit antennas if i is odd,
and via the 3rd and 4th transmit antennas if i is even. Consequently, the DNA precoder
converts the 4 × nr MIMO channel onto two 2 × nr MIMO channels. Binary elements
mapped to zi when i is odd (resp. i is even) will be sent through the first BO-sub-channel
(resp. the second BO-sub-channel). As a final illustration, Fig. 2.21 shows the error rate
of BPSK modulation with 4 transmit and 2 receive antennas.

2.9 Conclusions

In this chapter, we proposed space-time bit-interleaved coded modulations for the multiple-
antenna channel that perform close to outage limit. In [17], it was shown that cyclotomic
rotations satisfying genie/DNA conditions are the best choice for precoding in space-time
bit-interleaved coded modulations, due to their enhanced performance and their flexibility.
These rotations are optimal in both algebraic and information theoretical senses. They
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Figure 2.20: 8-PSK modulation, quasi-static channel, nt = 2, nr = 2, turbo code with
Rc = 1/2, (17, 15)8, N = 1600.

exist for any set of MIMO channel parameters, mainly the number of transmit antennas
and the precoder time-spreading factor. However, the families of IOM linear precoders
we presented in this chapter correct the failure of cyclotomic rotations to lead the system
to reasonable performance since the first iteration in an iterative receiver when the sys-
tem has delay constraints. They also exist whatever the MIMO system configuration is,
with the difference in that their design requires Monte Carlo simulations. They can be
designed by relaxing the genie constraints or by maintaining one constraint depending on
the decoding technique we want to employ.
In addition, we proposed a low-complexity space-time coding scheme for nt = 4 based on
the Alamouti scheme. This low-complexity scheme ensures state diversity Dst = 1, which
means it can be used with all coding rates Rc ∈ [0, 1] while maintaining maximal channel
diversity dch = 4 × nr. In addition to exponentially reducing the detection complexity,
this scheme showed a slight degradation of the frame error rate over a quasi-static fading
channel, that is more robust than classical ST-BICM. As configurations with nt = 4 are
particularly of interest in recent wireless communication systems (such as IEEE.802a/b/g
standards), the low-complexity solution together with the high performance provided by
this scheme are valuable.
Finally, we studied turbo-coded modulations for the MIMO channel based on the works in
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Figure 2.21: BPSK modulation, quasi-static channel, nt = 4, nr = 2, turbo code with
Rc = 1/2, (17, 15)8, N = 1600. Linear precoding via a cyclotomic DNA rotation

[52] on “code multiplexers”. When the coding rate of the turbo-code satisfies Rc ≤ 1/Dst,
the use of multiplexers at the output of the encoder ensures low detection complexity and
near-outage limit performance. Surprisingly enough, the frame error rate performance
of turbo-coded modulations is insensitive to block length. This is probably due to the
interleaving gain of the turbo-code on AWGN channels translated to non-ergodic fading
channels, whereas the number of neighbors of a turbo-codeword increases linearly with
the interleaver size [62]. Note that it was recently shown in [63] that LDPC codes have
almost the same behavior over block-fading channels. However, the coding gain with
regular turbo codes on block-fading channels is slightly better than that of regular LDPC
codes.
To summarize, we can follow these strategies for low-complexity decoding of coded mod-
ulations over the MIMO channel:

• If Rc ≤ 1/Dst and an iterative receiver can be used, use turbo-codes with multiplex-
ers for nt = 2 antennas and turbo-codes with multiplexers along with DNA rotation
for nt = 4 as proposed in section 2.8.

• If nt = 4 and an iterative receiver can be employed, use the Matrix-Alamouti scheme
presented in section 2.7 whatever the channel coding rate is.
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• Else, if Rc > 1/Dst, use cyclotomic rotations [17] with an iterative receiver.

• If no iterations are allowed at the receiver, use IOM rotations presented in section
2.6 with all channel configurations.
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Chapter 3

Coded modulations for the amplify-
and-forward cooperative channel

3.1 Introduction

As discussed in the previous chapter, multiple-antenna systems can provide reliable com-
munication (through large diversity orders) and high data rates in block-fading environ-
ments. The advantages of such systems is widely recognized and they are proposed in
many standards. However, due to size (and sometimes cost) limitations, the implemen-
tation of many antennas on a single terminal is unfeasible. This is the case of the uplink
transmission in a cellular link for instance.
Since the early 1970s, the idea of the relay channel in information theory was proposed
[64]. In [65], the authors proved the gain in capacity the relay channel has and sketched
the rate regions for this channel under different hypothesis. Inspired by these works, the
authors in [66, 67] proposed the concept of “user cooperation diversity”, whereas user’s
terminals help each other to convey their signals to a destination. This allows for the sig-
nals to attain high spatial diversity orders by using the antennas of other terminals and
thus by forming a virtual antenna array. Note that this is not a simple relaying problem,
as users are responsible for the “partner’s” signals as well as their own signals.
One main application is the cooperation of in-cell users in a cellular system. Reliable
communication can be achieved through diversity and by relaying signals from terminals
that are far from the base station. The drawback is the fact that the inter-user channel
is noisy, thus imposing various cooperation protocols we will discuss later in this report.
Another potential application is in wireless ad hoc networks, such as mesh networks for
instance. A wireless ad hoc network does not depend on a central control unit, and it does
not have a fixed infrastructure. The nodes communicate by forming a network based on



80
3. Coded modulations for the amplify-

and-forward cooperative channel

channel conditions and mobile locations.
The main problems in non-cooperative networks is their rigid infrastructure, whose block-
ing probability increases with the number of terminals that are sharing the network. Many
service providers have experience dealing with temporary elevations in network traffic.
COSMOTE, the Greek telecommunications company responsible for providing service to
the 2004 Olympic games, had to deploy additional resources in the area surrounding the
Olympic complex. This extra equipment allowed this system to successfully deliver over
100 million text messages during the 17 day duration of the games. Similarly, sporting
events and large public gatherings in the United States regularly take advantage of the
so-called Cell-on-Wheels (COW) services in order to account for location-dependent traf-
fic spikes. With cooperative communications, networks will not experience such problems
anymore, as the more users there are in a network, the more reliably one can communicate.
In addition, the hardware implementation of multiple antennas on the same terminal that
is difficult to realize is traded for protocol algorithms shared among terminals through
the network, which is easily updatable and gains in flexibility.
In this chapter, we will start by recalling the communication protocols for the cooperative
fading channel. We will then establish the system model for coded modulations over the
amplify-and-forward protocol. Then we will discuss bounds on diversity for this type of
protocol, that are followed by coding strategies and simulation results. The last part of
this chapter discusses channel multiplexing issues for turbo-coded modulations over such
protocols.

3.2 Cooperative communications protocols

After the authors in [66, 67] introduced the concept of cooperative diversity, many papers
proposed cooperation protocols that define the way the cooperation between users is per-
formed. These protocols can be classified into two major categories, that are amplify-and-
forward (AF) and decode-and-forward (DF). Note that the large majority of the existing
designs we will recall in the sequel are based on the so-called “Diversity-Multiplexing
Tradeoff” (DMT) of the channel [68]. The DMT is a piece-wise linear function that rep-
resents, at very high signal-to-noise ratios, the tradeoff between the maximum achievable
rate (as a function of the signal-to-noise ratio) and the maximal achievable diversity order
over the wireless channel. Although the DMT bound gives an insight on the superiority
of a given protocol (or a given antenna configuration for MIMO systems) and allows for
the design of optimal space-time precoders for uncoded systems, its relevance as a design
tool for coded modulations with iterative decoding is arguable.
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Figure 3.1: Cooperative fading channel.

3.2.1 Amplify-and-forward protocols

In these protocols, the relays scale the signals received from the source (or by other relays)
and forward them to the destination (or to other relays) without other treatment. These
protocols are easy to implement in practical communication systems, as the computational
complexity they introduce at the relay is limited to the scaling operation. The orthogonal
amplify-and-forward (OAF) protocol was first introduced in [69] for the single-relay case.
By orthogonal we mean that the source and the relay do not send data simultaneously.
The second major work concerning this family of protocols is the framework established in
[70] for the single-relay case. The authors proposed three amplify-and-forward protocols
that are:

• Protocol I: the source broadcasts a signal to both the relay and the destination in
the first phase. In the second phase, the relay scales the signal and forwards it to
the destination, while the source transmits another message to the destination. This
protocol is also known as the non-orthogonal amplify-and-forward (NAF) protocol
[71].

• Protocol II: the source broadcasts a signal to both the relay and the destination in
the first phase like in Protocol I. In the second phase, only the relay scales the signal
it received in the previous phase and forwards it to the destination. This protocol
is the OAF protocol introduced in [69].
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• Protocol III: the source sends a signal only to the relay in the first phase. The
second phase is similar to the second phase in Protocol I.

In addition to introducing these protocols, the authors discussed and analyzed some infor-
mation theoretical aspects of cooperative protocols that brought insight to the behavior
of such systems. From these three protocol, Protocol I caught the attention of the re-
searchers in the community as it allows for high data rates (the source always transmits).
Indeed, in [71], it is shown that the NAF protocol outperforms the AF protocol for high
data rates. However, for the case of more than one relay, the NAF protocol suffers from a
limitation , as half of the symbols in the cooperation frame are protected. For this reason,
the authors in [72] proposed the slotted amplify-and-forward (SAF) scheme; by allowing
inter-relay communication (see Fig. 3.1), on can protect β out of β + 1 symbols. For
this reason, the SAF scheme largely outperforms the β-relay NAF scheme for high data
rates. Many space-time code design for uncoded fading channels for the AF protocols
were proposed, among them [73] [74] [75, 76], but optimal space-time codes for uncoded
systems can be found in [72] [77].

3.2.2 Decode-and-forward protocols

This class groups the protocols in which the relays operate on the signal they receive from
the source (or from other relays) before forwarding it. The first protocol, the selection
decode-and-forward, was introduced in [69] for the single-relay cooperative channel. In
this protocol, the relay estimates the channel coefficient between the source and the relay,
say hsr, and it computes |hsr|2. If this value falls below a threshold, the relay remains idle.
If not, the relay decodes the message and forwards it to the destination. This scheme was
generalized to multiple relays in [78]. In [71], the authors introduced the dynamic decode-
and-forward protocol wherein the time for which the relays listen to the source depends
on the source-relay channel gain. In [79], the authors treated the compress-and-forward
protocol and proved it to be optimal for the single-relay channel. Note that unlike the
decode-and-forward protocol where the relays have to know the source-relay channel, the
relays in the compress-and-forward protocol have to know all the channel coefficients of
the incoming paths. In [80], the authors proposed an intuitive distributed turbo code that
achieves high performance; it consists of broadcasting a convolutional codeword to both
the relay and the destination, the relay decodes the codeword, interleaves it, and encodes
it prior to forwarding to the destination that performs iterative decoding between the two
codes. Similar constructions can be found in [81] for distributed turbo codes and in [82]
for LDPC codes.



3.3. Space-time bit-interleaved coded modulations for the
amplify-and-forward cooperative channel 83

3.3 Space-time bit-interleaved coded modulations for
the amplify-and-forward cooperative channel

As discussed in section 3.2.1, many distributed space-time codes for uncoded systems have
been proposed in the literature. However, the optimal codes in [72] [77] that achieve the
DMT frontier of the channel introduce delay in the cooperation frame of the NAF/SAF
protocol, which means that the source broadcasts for several time slots before the co-
operation at the relay starts. Indeed, as these codes were initially designed for MIMO
systems, the spreading factor s = nt for such systems is translated into a delay d = s− 1

for the NAF/SAF protocols. This delay actually results in an exponential growth of the
detection complexity at the receiver.
Nevertheless, in the presence of an error correcting code, it was shown in chapter 2 that
one can trade diversity from the channel detector to the channel decoder over block-fading
channels by using space-time rotations. In addition, for the SAF channel, unlike for the
MIMO channel, the maximal diversity order β + 1 of the channel can be achieved using
a rotation that does not lead additional complexity. This is a key point for our design
framework in the rest of this chapter.
To our knowledge, no work has yet treated channel coding issues for AF cooperative pro-
tocols in general. In this chapter, we consider the problem of coding for the half-duplex
non-orthogonal slotted amplify-and-forward (NAF/SAF) cooperative channel. We only
consider a network with single-antenna nodes. We derive bounds on the diversity order of
this protocol that are achieved by a distributed space-time bit-interleaved coded modu-
lation (D-ST-BICM) scheme under iterative APP detection and decoding. These bounds
lead to the design of space-time precoders that ensure maximum diversity and high coding
gains.

3.4 System model and parameters

We consider the amplify-and-forward fading relay channel. We impose the half-duplex
constraint, whereas terminals cannot transmit and receive signals simultaneously. We
consider the TDMA-based Protocol I from [70] that is also known as the non-orthogonal
amplify-and-forward (NAF) protocol. For the case of more than one relay, we use the
“naive” slotted amplify-and-forward (SAF) cooperative protocol proposed in [83], where
inter-relay communication is allowed; the source transmits in all time slots, and starting
from the second slot, only one relay scales and transmits the message received in the
previous time slot. By protecting β symbols out of β + 1, this protocol can achieve a
diversity order of β with a length-β+ 1 vector, whereas the classical β-relay NAF scheme
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achieves the same diversity order with a length-2β vector. The main reason we use this
protocol is because it induces low detection complexity. The “naive” SAF protocol gives
the following signal model:

ydi =
√
Eihsdxi +

√
1− Eihridγi−1yri−1

+ wdi (3.1)

yri =
√
gsriEihsrixi +

√
gri−1ri (1− Ei)hri−1riγi−1yri−1

+ wri (3.2)

with i = 1, ..., β + 1. Subscripts s , d , and ri correspond to source, destination, and
i th relay . The unit variance complex symbol xi is transmitted in the ith slot, the received
signal at the destination in the ith time slot is ydi , while yri is the signal received by the
ith relay. The coefficients Ei represent the energy transmitted by the source in the ith

slot. The geometric gain gj` is defined as E|hj`|2/E|hs`|2 [72]. The hkl are the complex
Gaussian fading coefficients that are constant for the duration of a codeword and wdi and
wri are AWGN noise components. The γi are the energy normalization coefficients at the
ith relay, subject to E|γiyri−1

|2 ≤ 1, and γ0 = 0. In matrix form, we can write for a system
with β relays:

yd = xH + wc = zSH + wc (3.3)

where yd is the length-(β + 1) vector of received signals and z is the length-(β + 1)

vector of M-QAM symbols. S is a (β + 1)× (β + 1) precoding matrix, and H is given by:

H =




h11 h12 h13 · · ·
0 h22 h23 · · ·
0 0 h33 · · ·
...

...
... . . .


 (3.4)

where

hii =
√
Eihsd

h12 =
√
gsr1E1(1− E2)γ1hsr1hr1d

h13 =
√
gsr1gr1r2E1(1− E2)(1− E3)γ1γ2hsr1hr1r2hr2d

h23 =
√
gsr2E2(1− E3)γ2hsr2hr2d

Finally, the vector wc is a length-(β + 1) colored Gaussian noise vector whose entries are
given by:

w1 = wd,1

w2 =
√

(1− E2)γ1hr1dwr,1 + wd,2

w3 =
√

(1− E2)(1− E3)γ1γ2hr1r2hr2dwr,1 +
√

(1− E3)γ2hr2dwr,2 + wd,3
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an so on. We set:

Γ = E
[
w†cwc

]
= 2N0Θ (3.5)

Where the † operator denotes transpose conjugate. By performing a Cholesky decompo-
sition on Θ, we get:

Θ = Ψ†Ψ (3.6)

Thus the equivalent channel model would become:

ydΨ
−1 = zSHΨ−1 + w (3.7)

where w is a white Gaussian noise vector.

3.5 The diversity of coded modulations over precoded
SAF channels

The maximum diversity inherent to the SAF channel is dmax = β + 1, and it can be
collected by an APP detector (at the destination) if linear precoding is used at the trans-
mitter. In general, it is sufficient to use a linear precoder that mixes the β+1 constellation
symbols being transmitted on the channel to achieve the full diversity with uncoded sys-
tems and without increasing the decoder complexity. However, using larger precoders can
further improve the performance. From an algebraic point of view, a linear precoder of
size (β+1)2×(β+1)2 is the minimal configuration to achieve the best coding gains (with-
out channel coding) at the price of an increase in detection complexity (The complexity
of an APP detector grows exponentially with the number of dimensions) [84].
On the other hand, for coded systems transmitted on block-fading channels, the channel
decoder is capable of collecting a certain amount of diversity that is however limited by
the Singleton bound [34]. As shown in [85], the lowest complexity solution is to first
recover the channel code diversity and then collect the remaining diversity through linear
precoding. For this purpose we derive hereafter an upper bound on the diversity order of a
coded transmission through a precoded SAF channel, and deduce the precoding strategy
to achieve the full diversity.

First, we will introduce a new model of block-fading channel that will be used in the
following to compute the bounds on the diversity order of coded SAF channels.
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3.5.1 Matryoshka block-fading channels

In this section we consider a block-fading channel model where the set of random variables
of a higher diversity block always include the set of random variables of a lower diversity
one, like Matryoshka dolls:

Definition 4. Let us consider λ independent Rayleigh fading distributions. LetM(D,L)

be a channel built from the concatenation of |D| blocks, where D and L are the sets of
diversity order and lengths of each block, respectively. The integer |D| is the cardinality of
D. The i-th diversity block is defined by a linear combination of a subset S(i) of D(i) ≤ λ

Rayleigh distributions, such that S(i + 1) ⊂ S(i), i.e., the blocks are sorted such that
∀i < j,D(i) ≥ D(j) and we assume that D(1) = λ has the highest diversity order.

Fig. 3.2 shows the representation of the Matryoshka block-fading channel. Notice that
nD = λ for the non-precoded channel.

D(1) D(2) D(nD)

S(1) = {α1, · · · , αλ} S(2) ⊂ S(1) · · · S(nD) ⊂ S(nD − 1)

← L(1) bits → ←L(2) bits → ← L(nD) bits →

Figure 3.2: Matryoshka block-fading channel model.

Let us now transmit a BPSK-modulated and interleaved codeword of a rate-Rc code
on the channel M(D,L). First, let us focus on the pairwise error probability (PEP) of
two given binary codewords c and c′. Due to the channel model, the diversity order of
this PEP is equal to the diversity order of the lowest index block seeing a non null bit of
c− c′. The performance of the coded modulation has a diversity order upper bounded by
δmax defined as follows:

Proposition 3. The diversity observed after decoding a rate-Rc code transmitted over a
M(D,L) channel is maximized by δmax :

δmax = D(i) where
i−1∑

k=1

L(k) < Rc

|D|∑

k=1

L(k) ≤
i∑

k=1

L(k) (3.8)

and is achievable for any linear code.
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Proof. This proof is inspired from the Singleton bound’s one. The code has parameters
(N,K), where N =

∑|D|
k=1 L(k) and K = RcN .

If K >
∑i−1

k=1 L(k), whatever the code, a puncturing of the last
∑|D|

k=i L(k) bits leads
to a null minimal Hamming distance code. This means that there exists two codewords c
and c′ such that the first

∑|D|
k=i L(k) bits of c− c′ are null, and involves that δmax ≤ D(i).

If the code is linear, there exists an interleaver that makes the code systematic. If
the information bits are transmitted on the blocks of higher diversity order and K ≤∑i

k=1 L(k), the Hamming distance after puncturing the last
∑|D|

k=i+1 L(k) bits remains
strictly positive and induces that δmax ≥ D(i).�

As a remark, whatever the QAM modulation is, the log-likelihood ratio expression
of the channel model at the output of the APP detector always takes equivalent BPSK
modulations at its input. The bound on the diversity order applies then to any discrete
modulation.

3.5.2 Precoded SAF channel models and associated bounds

Non-precoded SAF channels

The time periods of the SAF channel can be sorted into β + 1 blocks, the j-th block
corresponding to the transmission through 0 ≤ j− 1 ≤ β relays. We will assume that the
interleaver of the BICM is ideal, i.e., that for any pair of codewords (c, c′), the w non-null
bits of c − c′ are transmitted in different blocks of β + 1 time periods. The interleaving,
modulation and transmission through the channel transform the coded words c and c′

into the points C and C ′ in an Euclidean space. For a fixed channel, the performance is
directly linked to the Euclidean square distance |C−C ′|2, which can be rewritten as a sum
of w square Euclidean distances associated to the non-null bits of c− c′.

The performance of a BPSK modulation transmitted through j − 1 relays during j
time periods of a quasi-static SAF channel has a diversity order j. The square distance
|C −C ′|2 is a function of the fading coefficients of the equivalent channel. It can be factor-
ized as follows:

∑β+1
k=1 d

2
k where dk is the total Euclidean distance seen by the k-th block.

Finally, the diversity order of a given pairwise error probability is equal to the maximal
index k such that dk is non-null. At very high SNR, the performance is lead by the worse
pairwise error probability, the diversity order of the BICM is then the lower bound of all
pairwise error probabilities diversity orders.
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At the output of the APP detector, an equivalent block-fading channel is observed
and the constituent blocks do not have the same intrinsic diversity order: A soft output
belonging to the β + 2 − j-th block carries the attenuation coefficients {hsd;hsr1hr1d;
. . . ;hsr1hr1r2 · · ·hrj−2rj−1

hrj−1d}. As a remark, blocks are sorted such that the j-th block
carries a diversity order β+2− j. Under perfect interleaving, the equivalent SAF channel
at the output of the APP detector is a matryoshka M([β + 1, β, . . . , 1], [N/(β + 1), . . . ,

N/(β + 1)]) channel, where N is the number of coded bits per codeword. With this
observation, we can conclude that the upper bound on the diversity order of a non-
precoded SAF channel is

δmax,1(β,Rc) = 1 + b(1−Rc) (β + 1)c (3.9)

which is equal to the classical Singleton bound on the diversity order of block-fading
channels [15].

Precoded SAF channels

Let us now introduce a linear precoder that rotates symbols of s different diversity order
blocks together. First of all, let us focus on two different scenarios:

• The linear precoder size is lower than (or equal to) β+1. In this case, the dimension
of the received vector yd remains unchanged, thus there is no increase in detection
complexity, and no delay is introduced to the protocol.

• The linear precoder size is lower than (or equal to) (d+1)(β+1)×(d+1)(β+1), where
d is the delay (i.e. the source broadcasts for d+ 1 time slots before the relays start
to cooperate). In this case, the complexity of the detector increases exponentially
with d. As mentioned previously, these precoders are mandatory to achieve optimal
performance for uncoded systems. However, in the presence of channel coding, they
can be avoided.

We will now present two precoding strategies and compute the bound (3.8) for these two
particular cases.

First strategy: a single precoder First, let us assume that s diversity blocks of size
N/(β+ 1) are linearly precoded together, then the diversity order of the new sN/(β+ 1)-
length block is the maximum diversity order of the precoded blocks. As the other blocks
keep their own diversity, it seems natural to maximize their diversity orders in a way to
increase the coding gain at the output of the decoder (The best performance is achieved
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for a block-fading channel with diversity orders as equal as possible.). The length of the
precoder input vector is β + 1. We propose to precode the first block with the s− 1 last
blocks, i.e., the highest diversity order with the s − 1 lowest ones. At the output of the
APP detector, the channel model is a matryoshkaM (D,L) where D = [β + 1, β, . . . , s]

and L = [sN/(β+1), N/(β+1), . . . , N/(β+1)], which leads to the following upper bound
on the diversity order:

δmax,2(β,Rc, s) = min(s+ b(1−Rc) (β + 1)c, β + 1) (3.10)

Indeed, by replacing D = [β+ 1, β, . . . , s] and L = [sN/(β+ 1), N/(β+ 1), . . . , N/(β+ 1)]

in (3.8), we observe that if Rc ≤ s/(β+ 1) then Rc(β+ 1) ≤ s+ i−1 < Rc(β+ 1) + 1, else
we have that i = 1 and δmax,2(β,Rc, s) = D(1). It is then easy to show that the upper
bound on the diversity is given by (3.10). Note that, in the representation of Fig. 3.2, we
have that nD = λ− s+ 1 with precoding.

If s = 1, then δmax,2(s) is equal to the Singleton bound on the diversity order of
an uncorrelated block fading channel with equal per-block diversity. If s ≥ 1, δmax,2(s)

is greater than the upper bound on the diversity order for block fading channels. For
example, the full diversity order cannot be achieved for the transmission of a s = 2-
precoded BICM with rate 2/3 on a block fading with diversity order 3 (the diversity is
upper bounded by 2). For the SAF channel, the full diversity order can be achieved in
that case, as shown in Fig. 3.3.

As a remark, in order to achieve the upper bound on the diversity of a block fading
channel, at least one non null bit of any word c−c′ should be placed in as many independent
blocks as given by the singleton bound. For precoded SAF channels, the bound is achieved
as soon as one non null bit of any word c− c′ is placed in a block of diversity higher than
δmax,1(s). The last problem has less constraint than the first one. Tables 3.1 and 3.2 show
the values of δmax,2(β,Rc, s) for different coding rates with respect to the number of relays
and the value of s. We can notice that full diversity is obtained with s ≥ (β + 1)Rc in all
configurations.

Second strategy: (β + 1)/s precoders Let us assume that s divides β + 1, we can
then use (β + 1)/s precoders: The first precodes the highest diversity order block with
the s − 1 lowest ones. The second, if any, precodes the second highest diversity order
block with the s − 1 lowest non-precoded ones, and so on. By using this precoding
strategy that includes several independent precoders, we further increase the diversity
of the extrinsic probabilities at the input of the decoder, and consequently the diversity
at the output of the decoder. Indeed, the equivalent M (D,L) channel has parameters
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Figure 3.3: Two-relay SAF cooperative channel, Rc=2/3 RSC (25,37,35)8 code, BPSK
modulation, 1440 coded bits.

Table 3.1: δmax,2(β,Rc, s) for Rc = 1/2

β \ s 1 2 3 4 5

1 2 2
2 2 3 3
3 3 4 4 4
4 3 4 5 5 5
5 4 5 6 6 6
6 4 5 6 7 7
7 5 6 7 8 8
8 5 6 7 8 9

D = [β + 1, β, . . . , β + 2− (β + 1)/s] and L = [sN/(β + 1), . . . , sN/(β + 1)], which leads
to the following upper bound on the diversity order:
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Table 3.2: δmax,2(β,Rc, s) for Rc = 3/4

β \ s 1 2 3 4 5 6

1 1 2
2 1 2 3
3 2 3 4
4 2 3 4 5
5 2 3 4 5 6
6 2 3 4 5 6 7
7 3 4 5 6 7 8

δmax,3(β,Rc, s) = min
(

(β+1)(s−1)
s

+ 1 +
⌊

(1−Rc)(β+1)
s

⌋
, β + 1

)
(3.11)

It can be easily shown that

δmax,2(β,Rc, s) ≤ δmax,3(β,Rc, s) (3.12)

However, the maximum diversity order δmax,2(β,Rc, s) = δmax,3(β,Rc, s) = β + 1 is
achieved for the same s ≥ (β+1)Rc. The advantage of δmax,3(β,Rc, s) over δmax,2(β,Rc, s)

is for non-full diversity schemes. In addition, it is important to note that the bounds in
(3.10) and (3.11) have straight-forward applications to systems employing delay precoders.

3.6 Coding strategies

Based on the bounds on the diversity order derived in the previous section, one can
choose a good coding strategy given the system parameters (i.e. number of relays, coding
rate...). As for the coding gain, it is tedious to analytically compute the pairwise error
probability for the NAF and SAF protocols, as it involves integrations over the product
of two or more complex Gaussian variables representing the different channel gains hj`.
Now consider ∆2 =‖

(
x− x

′)
SH ‖2 with x − x

′
=
∑β+1

k=1 d
2
k. Next, we look at the

distribution of ∆2 as an empirical tool that helps us in choosing the best coding strategy.
Fig. 3.4 shows the distribution of ∆2 for the single-relay NAF protocol. From the bounds
on diversity of (3.10) and (3.11), we notice that if Rc ≤ 1/(β + 1), we do not need to
precode for diversity purpose, as the channel decoder recovers the entire diversity of order
β + 1. However, we can see that for unrotated QPSK input, there is a high number of
small squared distances, thus we can eliminate the small values of ∆2 by rotating the
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QPSK vector. When the vector z has relatively small cardinality, it is useful to rotate the
transmitted signal constellation with s = smax = β+1 in a way to combine all the symbols
together. A rotation plays the role of "smoothing" the distribution of the input vector
x, making it tend to the Gaussian distribution. However, unlike for MIMO systems (see
Fig. 2.2), the rotation in this case keeps the length of the transmitted vector unchanged.

 0
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 0.6

 0  1  2

QPSK
IOM rotated QPSK
16QAM
IOM rotated 16QAM

Figure 3.4: Distribution of ∆2 for the single-relay NAF protocol.

With an increase in the constellation size, a rotation with smax generates a dense
vector space, making the extrinsics at the output of the detector suffer from interference
between symbols. In this case, as the unrotated constellation generates a reasonable ∆2

distribution with a small number of small distances, an optimized interleaver [17] that
approaches the ideal interleaving condition is sufficient to provide high coding gains and
maximum diversity. Now if Rc > 1/(β + 1), rotations are mandatory to ensure full di-
versity at the receiver. For the same reasons as when Rc ≤ 1/(β + 1), we use rotations
with smax for small size constellations. With large size constellations, it is judicious to
minimize the inter-symbol interference and choose a rotation with the minimum s that
satisfies the bounds δmax,2(β,Rc, s) or δmax,3(β,Rc, s). We can then ensure full diversity
and at the same time deliver better quality extrinsics (than with smax) to the channel
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decoder. Note that if no iterations are possible at the receiver, the smin that allows for
maximal diversity leads the optimal performance of the D-ST-BICM.
The threshold at which we can change the coding strategy (i.e. the value of s) cannot
be computed analytically, but simulations showed that a rotation with smax gives better
performance with BPSK and QPSK modulations, while degrading the coding gain with
16-QAM constellations or higher. To conclude as to which strategy to follow in order to
achieve high coding gains, we can say that:
I) With BPSK and QPSK modulations, always use precoders with smax whatever the
coding rate Rc is.
II) With 16-QAM modulations and higher:
1) If Rc ≤ 1/(β + 1), do not precode, use optimized interleavers from [17].
2) If Rc ≥ 1/(β + 1), precode with smin that satisfies δmax,2(β,Rc, s) or δmax,3(β,Rc, s).
III) If no iterations are possible, precode with smin that satisfies δmax,2(β,Rc, s) or δmax,3(β,Rc, s)

whatever the coding rate Rc is.
These strategies will be illustrated in the next section. Finally, note that whatever the
value of s is, there is no increase in the APP detection complexity.

3.6.1 Simulation results

In this section, word error rate performances are compared to information outage proba-
bility for different system configurations to illustrate the results presented in the previous
sections. We consider the half-duplex SAF cooperative channels with different coding
rates and constellation sizes. We set the values of E1 = 1, and E2 = E3 = E1/2 so that the
received energy is invariant from slot to slot. The geometric gain coefficients gij are all
set to 0 dB in this section. The space-time precoders are (IOM) as presented in section
2.6. They are selected from the ensemble of random rotations as:

Pout(S) = P (ISH < (β + 1) .m.Rc) (3.13)

As an example, the 3× 3 rotation SIOM,s=2 that satisfies δmax,2(β,Rc, s) obtained for the
SAF protocol with two relays, 16-QAM input, and half-rate channel coding is given by:

SNAF−IOM,s=2 =




0.69e−2.84 0 0.72e−0.12

0 1 0

0.72e−1.11 0 0.69e−1.29


 (3.14)

Fig. 3.5 shows the outage probability for QPSK input, rotated QPSK input with an
IOM rotation, and Gaussian input of the single-relay NAF protocol. Without rotation,
the discrete input curve is about 2dB away from the Gaussian input. With IOM rotation,
the curve roughly achieves the lower bound without any increase in detection complexity.
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Figure 3.5: Outage probability comparison for the single-relay NAF protocol: QPSK
input, rotated QPSK input with 2× 2 IOM rotation, and Gaussian input.

In Fig. 3.6, we consider a 16-QAM modulation coded with half-rate codes over the
two-relay SAF channel. Without rotation, the decoder is not capable of recovering the
diversity as shown in (3.10). Adding a rotation with smax ensures the diversity, but mixes
three 16-QAM symbols which results in a dense signal space. We can achieve slightly
better performance using a precoder with s = 2 as it creates less interference between
signals, while ensuring maximum diversity. Note that this gain appears since the first
iteration.
Finally, Fig. 3.7 shows the performance of QPSK constellation on a three-relay SAF

cooperative channel using Rc = 1/2 and Rc = 3/4 codes. Diversity is provided in several
ways; for Rc = 3/4 codes, a rotation with s = 3 is sufficient to provide diversity, while
two s = 2 rotations are used for Rc = 1/2. However, to achieve optimal coding gains, a
rotation with smax has to be used.
For all these configurations, performance less than 2dB away from outage probability is
achieved for codeword sizes in the range of 1000-1500 coded bits.
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Figure 3.6: Two-relay SAF cooperative channel, Rc=1/2 NRNSC (23,35)8 code, 16-QAM
modulation, 1440 coded bits.

3.7 Code multiplexing over channel states for the half-
duplex NAF cooperative channel

As discussed in section 2.8, channel multiplexers can ensure maximal diversity orders and
optimal coding gains for turbo codes on block-fading channels provided the rate of the
code respects Rc ≤ 1/Dst, where Dst is number of states of the BO channel. For both
the cases of single-input single-output block-fading channel with Dst blocks [52] and the
MIMO channel with Dst channel states (see section 2.8), both the horizontal multiplexer
and the h-π-diagonal multiplexer ensured maximal diversity for turbo codes. However, the
h-π-diagonal multiplexer showed better coding gain as it helped to equalize the partial
Hamming weights in (2.59). It is of great benefit to see what is the optimal channel
multiplexer for turbo codes in the NAF protocol, as it was discussed in section 3.6 that
for high spectral efficiencies a rotation degrades the performance of the code. In the sequel,
we will only discuss the case of half-rate turbo codes over the single-relay half-duplex NAF
cooperative channel. The generalization to the β-relay case is straight-forward as long as
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Figure 3.7: Three-relay SAF cooperative channel, Rc=1/2 (23,35)8 (continuous red lines)
and 3/4 (13,25,61,47)8 (dashed blue lines) NRNSC codes, QPSK modulation, 1024 coded
bits.

Rc ≤ 1/ (β + 1). We show in Fig. 3.8 the channel multiplexers for half-rate turbo codes
over the NAF channel. Note that when the two channel states of the BO-channel are
separated by a commas, this means that the binary element si is sent in the first time
slot of the cooperation frame, and consequently it sees all the states of the matryoshka
channel. The two multiplexers of Fig. 3.8 ensure maximal state diversity at the receiver
over a two-state BO-channel as shown for MIMO channel with nt = 2 (see section 2.8).
The difference is that with horizontal multiplexing, diversity is always guaranteed by the
first RSC code, as all the information bits see the two states of the BO-channel. With
h-π-diagonal multiplexing, diversity is ensured through the two constituent codes as for
the MIMO channel. However, the coding gains provided by the two multiplexers for the
NAF protocol are different from that of the MIMO channel. To illustrate this issue, let
us consider the product ω1ω2 of the partial Hamming weight in (2.59). Suppose that the
constituent RSC codes are two half-rate (7, 5)8 codes, and that the input weight is ω = 2.
Consider now error events of length L = 4 + 3j and total Hamming weight wH = 6 + 2j,
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Horizontal Multiplexer

s1 1 , 2 1 , 2 1 , 2 1 , 2 1 , 2 1 , 2
s2 1 X 1 X 1 X
s3 X 1 X 1 X 1

H-π-diagonal Multiplexer

s1 1 , 2 1 1 , 2 1 1 , 2 1
s2 1 X 1 X 1 X

π−1(s3) X 1 , 2 X 1 , 2 X 1 , 2

Figure 3.8: Single-relay NAF channel: Horizontal (top) and h-π-diagonal (bottom) mul-
tiplexers for a rate 1/2 parallel turbo code.

i = 0 . . . (N − 4)/3. For horizontal multiplexing, ω1 = 6 + 2j and ω2 = 2. For h-π-
diagonal multiplexing, ω1 = 6 + 2j and ω2 = 3 + j. Let ω1i, ω2i, ω1p, and ω2p be the
partial weights of information and parity bits. For horizontal multiplexing, ω1i = ω2i = 2,
ω1p = 6 + 2j, while ω2p = 0. For h-π-diagonal multiplexing, ω1i = 2, ω2i = 2 if j is odd,
ω2i = 1 otherwise. ω1p = 4 + 2j, ω2p = 1 + j if j is odd, ω2p = 2 + j otherwise. Unlike
the case of two-state BO-channel where information bits have diversity 1 with horizontal
multiplexing, the horizontal multiplexer better protects the information bits than the
h-π-diagonal multiplexer over the single-relay NAF channel. In fact, this interpretation
joins the results on the bound on the diversity of Matryoshka block-fading channels under
ideal interleaving derived in section 3.5, whereas an optimized interleaver makes the code
systematic and places the information bits on the block carrying the maximal diversity
order.

3.7.1 Simulation results

Fig. 3.9 and 3.10 shows the performance of half-rate turbo codes with different chan-
nel multiplexers and with 2 × 2 IOM rotations over the single-relay NAF protocol. As
shown in section 3.6, IOM rotations are best performing for QPSK constellations, allow-
ing the code to approach the outage probability by less than a dB. On the opposite, it
is impossible for the code to manage the interference between QAM symbols created by
IOM rotations for large constellations. In addition, horizontal multiplexing slightly out-
performs the h-π-diagonal multiplexing in Fig. 3.9 for large constellations, as it better
protects information symbols. The gain of horizontal multiplexing is even higher in Fig.
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3.10 when the geometric gain gsr between the source and the relay is considerable. Note
that, like for MIMO systems, word error rate performance of turbo-coded modulations
over the NAF protocol is insensitive to interleaver size.
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Figure 3.9: Single-relay NAF channel: Frame error rate comparison for QPSK (dashed
blue lines) and 64-QAM (continuous red lines) modulations, turbo code with Rc = 1/2,
(17, 15)8. gsr = 0 dB.

3.8 Conclusions

In this chapter, a framework for channel coding over the amplify-and-forward cooperative
protocol with iterattive decoding was established. Bounds on the diversity orders for
coded systems for the case where all terminal have a single antenna. It was shown that
precoding without introducing time delay to the cooperation frame can lead the D-ST-
BICM to achieve maximal diversity. The absence of delay is even more important in that
it does not increase the detection complexity at the destination. It was also discussed
that precoding all the symbols together, which might look as a reliable maximum diversity
solution, is in fact harmful for the overall coding gain for large constellations. These coding
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Figure 3.10: Single-relay NAF channel: Frame error rate comparison for QPSK (dashed
blue lines) and 64-QAM (continuous red lines) modulations, turbo code with Rc = 1/2,
(17, 15)8. gsr = 20 dB.

strategies also hold when no iterations are possible at the receiver. We also presented
channel multiplexing issues for turbo codes over the AF protocol, and showed that we
can closely approach the outage probability limit even for large constellations.
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Chapter 4

Design of irregular turbo codes for
block-fading channels

4.1 Introduction

The block-fading channel is a simplified channel model that characterizes delay-constrained
communication over slowly-varying fading channels [2, 7, 54]. The received signal at block
c is given by

yc = αcxc +wc c = 1, . . . , nc (4.1)

where xc,y,wc ∈ RL are the input, output and noise vectors at block c = 1, . . . , nc,
and L is the block length. The noise components have zero mean and variance N0,
and αc is the Rayleigh fading coefficient of block c, assumed to be perfectly known to
the receiver. Particular instances of the block-fading channel are orthogonal-frequency
multiplexing modulation (OFDM) and frequency-hopping systems, such as mobile data
communications in EDGE/3G and WiMax/LTE environments. Despite its simplification,
it captures the essential characteristics of delay-constrained wireless communication and
yields useful code design criteria. Since this channel is nonergodic, it has zero capacity
and the fundamental limit is the outage probability [2, 7]. It has been shown in [15] that
the diversity of binary codes of rate Rc over an nc-block fading channel is given by the
Singleton bound

δ = 1 + bnc(1−Rc)c. (4.2)

The design of binary linear codes for the block-fading channel has been studied in
[34, 33, 15, 52, 51, 86]. However, these binary regular codes cannot perform closer than 1

dB from the outage probability. As shown in [51, 86], the effective design procedure for
outage-approaching codes follows a two-step process:
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1. Design block-wise maximum distance separable (MDS) codes, that achieve the
largest possible diversity given by the Singleton bound in the block-erasure channel
[87];

2. Reducing the decoding threshold in the AWGN channel.

In this chapter, we design irregular binary turbo codes [88] for block-fading channels.
Based on the h-π-diagonal multiplexer [52] we design irregular turbo codes with full di-
versity. We then find irregular turbo codes with low decoding thresholds over the AWGN.
We show that the resulting codes perform within 0.5 dB from the outage probability in
both density evolution and finite-length cases, achieving the current best performance
reported in the literature.

The organization of the chapter is as follows. In Section 4.2, we describe the structure
and density evolution of irregular turbo codes. The specific block-fading design and
density evolution are described in Section 4.3. Section 4.4 gives the concluding remarks.

4.2 Basics on Irregular Turbo Codes

In regular parallel turbo codes, the two constituent recursive systematic convolutional
(RSC) encoders are identical (i.e. same constraint length and generator polynomials)
[89]. This is equivalent to merging the two constituent encoders into a single one, and
doubling the size of the interleaver. To do so, a 2-fold repeater is added before the
interleaver Π, and we obtain a self-concatenated turbo code [90][91] as shown in Fig. 4.1.
In this representation, each information bit is connected to the code trellis via two edges.
We hence say that the degree of the information bits is d = 2 as shown in the propagation
tree in Fig. 4.2, and that the turbo code is regular. Using this structure, one can create
irregularity by repeating a certain fraction fi of information bits i times, inducing larger
protection for some bits than in the regular case [92]. Like for low-density parity check
(LDPC) codes [93, 94], irregularity can enhance the performance of turbo codes for large
block lengths [88, 92, 95, 96]. The encoder of an irregular turbo code is similar to that
of Fig. 4.1, with the difference that the information bit stream is fed to a non-uniform
repeater that divides the information bits into d classes with d = 2, ..., dmax, where dmax is
the maximum bit-node degree [88]. The number of bits in a class d is a fraction fd of the
total number of information bits at the turbo encoder input, knowing that bits in class d
are repeated d times. Finally, the output of the non-uniform repeater is interleaved and
fed to the RSC constituent code. In order to ensure a target rate, puncturing is used, and
only a fraction 1− fp of parity bits are transmitted, where fp is the fraction of punctured
parity bits. Now let K denote the length of the information sequence, N the interleaver
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size, ρ the rate of the RSC constituent code, and Rc the rate of the turbo code. We have
the following

dmax∑

d=2

fd = 1,
dmax∑

d=2

d · fd = d, (4.3)

N =
dmax∑

d=2

d · (fdK) = K · d, (4.4)

Rc =
K

K + N
ρ
−N =

1

1 +
(

1
ρ
− 1
)
d
, (4.5)

ρ =
1

1 + (1− fp)
(

1
ρ0
− 1
) , (4.6)

where ρ0 = k/n is the initial rate of the constituent RSC code before puncturing, and d
is the average degree of information bits. Similar to LDPC codes, the degree distribution
from an edge perspective is defined by

λd =
d · fd
d

, d = 2 . . . dmax. (4.7)

Repeater Interleaver RSC

Figure 4.1: Systematic self-concatenated turbo encoder. Information bits are sent di-
rectly over the channel, and parity bits are generated by first repeating information bits,
interleaving, and then recursive systematic convolutional (RSC) encoding.

4.2.1 Density Evolution in AWGN

We consider rate-Rc irregular turbo codes built from a rate-ρ RSC constituent code and
degree profile {fd}d=2,...,dmax . Due to the symmetry of the channel, we assume that the
all-zero codeword is modulated into x = +1,+1, ...,+1 and transmitted over an AWGN
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channel with noise variance N0. At the channel output, each received sample can be
written as y = x+w = 1+w, so the log-likelihood ratio (LLR) is given by the well-known
expression:

M0 = log
p(y|x = +1)

p(y|x = −1)
=

2

N0

y =
2

N0

(1 + w). (4.8)

We haveM0 ∼ N ( 2
N0
, 4
N0

), the associated probability density function will be denoted by
p0(x).

The local neighborhood tree for an information bit belonging to an acyclic asymptot-
ically large irregular turbo code is shown in Fig. 4.2. The index i refers to the decoding
iteration number. A bitnode of degree d has d− 1 incoming extrinsic probabilities ξi and
one outgoing a priori probability πd,i which also plays the role of a partial a posteriori
probability (APP). The total APP may be obtained by combining πd,i with an extra ex-
trinsic probability. The message associated to ξi isMi = log(ξi(bit=0))

log(ξi(bit=1))
and its probability

density function is pMi
(x). Given d and i, the probability density function of log-ratio

messages associated to πd,i will be denoted by pd,i(x). Following [96] we have that

pd,i(x) = F−1
[
F [p0(x)]Fd−1 [pMi

(x)]
]

(4.9)

where F denotes the Fourier transform operator. Based on partial a posteriori probabili-
ties, the average bit error probability at iteration i is defined as

Pb(i) =
dmax∑

d=2

fdPb(d, i) (4.10)

where Pb(d, i) is the bit error probability of class d given by the area under the tail of
pd,i(x).

At an RSC checknode level as illustrated in Fig. 4.2, based on a priori input πi−1 with
pdf pi−1(x), an accurate estimation of pMi

(x) is made via a forward-backward algorithm
[97] applied on a sufficiently large trellis window of sizeW centered around the information
bit. Since we are dealing with random ensembles of irregular turbo codes, we have

pi(x) =
dmax∑

d=2

λd pd,i(x). (4.11)

Given an irregular turbo ensemble, its decoding threshold is the minimal signal-to-noise
ratio Eb/N0 for which Pb(i) vanishes with i. The threshold can be determined via Density
Evolution (DE) [96], a procedure where pi(x) is updated from pi−1(x) by propagating
probabilistic densities through the tree graph of Fig. 4.2.
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Figure 4.2: Propagation tree used in density evolution for an irregular turbo code. The
πi represents a priori probability, and the ξi the extrinsic probability. Circles represent
bitnodes, and rectangles are local neighborhood RSC trellis constraints.

4.2.2 Numerical results for AWGN

The DE method gives the limiting convergence behavior of capacity-approaching codes,
and it is used to find optimal degree profiles for LDPC codes in [93, 96, 98]. By setting
the average degree to be d = 3 and using the RSC (13, 15)8 constituent code, we obtained
powerful half-rate irregular turbo codes with different degree profiles; for example by
taking f2 = 0.9, f9 = 0.04, and f15 = 0.06, the threshold is 0.31 dB. The distributions
f2 = 0.923 and f15 = 0.077 or f2 = 0.9 and f12 = 0.1, yield a 0.36 dB threshold. Recall
that Shannon limit for half-rate coding over the AWGN channel is approximately 0.18

dB. The irregular turbo code defined by f2 = 0.9 and f12 = 0.1 is used later in section 4.3
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over the block-fading channel.

4.3 Irregular Turbo Codes over Block-Fading Channels

In [52], the authors proposed multiplexer design for regular parallel turbo codes that en-
sure full diversity and optimal coding gain. However, as the self-concatenated structure
of the code involves only one constituent code, the generalization of the so-called h-π-
diagonal multiplexers initially designed for regular parallel turbo codes is not straight-
forward. Without loss of generality, we restrict our design to irregular turbo codes over
block-fading channels with nc = 2 blocks and rate Rc = 1/2. The extension to block-
fading channels with more fading blocks follows similar arguments but it is not discussed in
this manuscript. Special care should be taken when designing a turbo code that achieves
the Singleton bound without attaining full diversity, i.e., nc > δ ≥ 1/Rc.

In an irregular turbo code with average degree d, a bit is connected to the trellis of
the code via d edges on average. Following the identity N = Kd, this can be seen as a
“parallel” turbo code with β constituent codes, where:

β = d d e (4.12)

In order to achieve high coding gains, the h-π-diagonal multiplexer should be extended
to irregular turbo codes. We consider constituent RSC codes with initial coding rate
ρ0 = 1/2. To keep the structure of the multiplexer, only half of the parity bits of the
first RSC constituent code should be punctured, knowing that the overall rate Rc should
remain fixed. Now let φp be the fraction of parity bits to be punctured from every RSC
constituent code starting from the second one. We have that:

φp =
βfp − 1

2

β − 1
(4.13)

The general h-π-diagonal multiplexer is shown in Fig. 4.3, where b is the information bit,
and sj is the parity bit of constituent code j. As an example, we consider a half-rate
irregular turbo code with β = d = 3. This gives fp = 0.66 and φp = 0.75, so 3 parity
bits out of 4 are punctured from both RSC 2 and RSC 3. Again, we consider a half-rate
irregular turbo code with d = 2.727. We get fp = 0.63 and φp = 0.7. The puncturing
pattern is then slightly different from that of the previous example, as in a period of
length 20, there is one more bit that is sent over the channel.
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RSC 1 (information) b 1 2 1 2
RSC 1 (parity) s1 2 X 2 X
RSC 2 (parity) π−1(s2) X 1/X X 1/X

...
...

...
...

...
...

RSC β (parity) π−1(sβ) X 1/X X 1/X

Figure 4.3: H-π-diagonal multiplexer of a half-rate irregular turbo code built from ρ0 =

1/2 constituent RSC code. The number of rows is β + 1 where β = d d̄ e. One parity bit
out of two is punctured from RSC 1. There is a fraction φp of punctured parity bits per
row (represented by an X) starting from RSC 2.

4.3.1 Density evolution on BF channel

In this section we study the word error rate performance of half-rate irregular turbo
codes over a two-state block-fading channel via density evolution. As with the AWGN
channel, we assume that the all-zero codeword is modulated into x = +1,+1, ...,+1 and
transmitted over a block-fading channel with nc states (nc = 2 in our case).

For a given fading instance α = (α1, α2), the irregular turbo code ensemble is observing
two types of channel messages,M0,1 ∼ N (2α1

N0
,

4α2
1

N0
) andM0,2 ∼ N (2α2

N0
,

4α2
2

N0
), as in (4.8).

DE is performed in a similar fashion as described in Section 4.2.A after taking into account
the multiplexing of bits (i.e. which channel assigned to which bit) as defined in Fig. 4.3.
At a fixed SNR, it is possible to determine via DE whether the average bit error probability
Pb(i) vanishes with i or not. When Pb(i) 9 0 as i→ +∞, we say that a density evolution
outage (DEO) occurs.

Now, let us define the following indicator function:

1DEO(α) =





0, Pb(i)→ 0,

1, Pb(i) 9 0.

(4.14)

The probability of a DEO is then given by

PDEO =

∫

α∈R2

1DEO(α)p(α)dα =

∫

α∈Vo
p(α)dα, (4.15)

where Vo is the outage region for the irregular turbo code ensemble under DE, i.e.,

Vo =
{
α ∈ Rnc

+ | 1DEO(α) = 1
}
. (4.16)

The (nc−1)-dimensional surface separating Vo from its complementary in Rnc
+ is called the

outage boundary. Thus, DE on a block-fading channel is a method to determine the outage
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boundary for a given turbo code ensemble at a given SNR. The information-theoretical
boundary related to the outage probability is defined by the equality C(α, Eb/N0) = Rc,
where C is the channel capacity (or mutual information) under a certain type of input
alphabet.

For an infinite-length code ensemble, it is easy to show that the word error probability
Pew satisfies [86]

PDEO ≤ Pew. (4.17)

Consequently, the outage probability found by DE is a lower bound for the word error
probability and can be compared to the information outage probability. Equality in (4.17)
occurs if the block threshold is equal to the bit threshold [99].

4.3.2 Numerical results on BF channel

Fig. 4.5 compares the outage boundary of regular and irregular turbo codes with the 8-
state RSC(13, 15)8 constituent code and h-π-diagonal multiplexing at Eb/N0 = 8dB. The
irregular turbo code is the best one from Section 4.3.1, with a threshold of 0.31dB on the
AWGN channel. The boundaries are computed by picking points orthogonal to the BPSK
input outage. Although irregular and regular codes have similar performance for largely
unbalanced fading pairs, the irregular turbo code performs better in the neighborhood of
the ergodic line. It actually approaches the BPSK input outage border over a large range
of fading pairs.

Fig. 4.6 shows the word error rate performance of the same codes and h-π-diagonal
multiplexing under both density evolution and Monte Carlo simulation with K = 6000

bits. As we observe, both DE performance and finite-length are very close to the outage
probability (within 0.5 dB). Note that, as observed in [15, 52, 51, 86], irregular turbo codes
are good for the block-fading channel, in the sense that their performance is insensitive
to the block length.

For finite length simulations, the repeater should be designed in a special way, as
shown in Fig. 4.4. Bits are divided into two groups, and only the information bits of
the first RSC are transmitted over the channel: circled bits are transmitted over the 1st

channel state, and non-circled bits are sent over the 2nd channel state. To guarantee full
diversity, the decoder should always find its way through the trellis of the code, thus bits
corresponding to the same trellis transition should not be sent over the same channel state
[52]. In order to ensure this property, bits of degree greater than 2 are placed in the H
positions in the multiplexer of Fig. 4.4. Repetition is thus done in a way that if the 2nd
channel state is unreliable, decoding can be successful through RSC 2 and RSC 3, and if
the 1st channel state is unreliable, RSC 1 can decode the received codeword.



4.4. Conclusions 109

RSC 1 RSC 2 RSC 3

I 1 2 3 4 5 6 1 2 H H 5 6 H H 3 4 H H

P p1 X p3 X p5 X X p2 X X X p6 X X X p4 X X

Figure 4.4: H-π-diagonal multiplexer of a half-rate irregular turbo code with d = 3

transmitted on a 2-state block-fading channel using a punctured half-rate constituent
RSC code. The irregular turbo encoder is built using 3 constituent encoders, where only
the information bits (on the line labeled with I) of RSC 1 are transmitted over the channel.
The bits pi correspond to parity bits, the X represents punctured parity bits, and the bits
labeled H correspond to bits with degree higher than 2. The circled bits are sent over the
the 1st channel state, the other bits are sent over the 2nd state. In order to achieve full
diversity, some of the circled information bits should be repeated more than twice and
fed to RSC 2 and RSC 3.

Note that although the density evolution convergence criterion is based on bit error
probability, it is relevant to assume that the word error probability of irregular turbo
codes has an equivalent decoding threshold under density evolution. In fact, it was shown
in [99] that the word and bit error probability of certain LDPC codes, among which
the class of Irregular Repeat-Accumulate (IRA) codes [100], have identical thresholds.
Irregular turbo codes can be seen as IRA codes that are decoded iteratively using a
different scheduling, that results from the difference between forward-backward and belief-
propagation decoding.

4.4 Conclusions

In this chapter, we presented irregular turbo codes that are capable of closely approaching
the outage probability of the block-fading channel, both in terms of density evolution
(infinite length) and finite length. The design method is based on two steps. First, a
suitable full-diversity multiplexer was designed. Second, codes were optimized over the
AWGN channel through density evolution. This represents the best family of codes over
the block-fading channel reported in the literature.
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Regular turbo code - outage boundary
Irregular turbo code - outage boundary
Outage probability, BPSK input
Ergodic line

Figure 4.5: Outage boundary of regular and irregular turbo codes under h-π-diagonal
multiplexing and with the RSC (13, 15)8 constituent code at Eb/N0 = 8dB. Circles filled
with crosses correspond to the fading pairs in which irregular turbo codes outperform
regular codes. Although the two codes have similar performance with largely unbalanced
fading pairs, the irregular code outperforms the regular code in the vicinity of the ergodic
line.
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Figure 4.6: Word error rate for Rc = 1
2
turbo codes over the block-fading channel with

nc = 2, RSC (13, 15)8 constituent code and BPSK modulation. Performance of codes is
invariant with codeword length, and it was estimated using both the density evolution
algorithm and Monte Carlo simulations.
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Conclusions

This manuscript presented space-time bit-interleaved coded modulations for both the
multiple-antenna block-fading channel and the amplify-and-forward cooperative fading
channel with single-antenna nodes. What these schemes have in common is that they were
capable of achieving the maximal diversity orders the block-fading channels -they were
designed for- allowed and they provided high coding gains with relatively low decoding
complexity at the receiver.

For the multiple-antenna channel, we proposed the following:

• Information Outage Minimizing (IOM) space-time precoders: these precoders allow
for optimal performance of the ST-BICM if no iterations are possible at the receiver.
They can also be adapted so that they become optimal for both “one-shot” decoding
and iterative decoding

• Matrix-Alamouti space-time precoder: application of the Alamouti scheme with two
transmit antennas to four transmit antennas. With proper signal decoupling and
iterative interference cancellation/decoding, frame error rate robust with respect to
the frame size was achieved.

• Turbo-code design for multiple-antenna systems: these systems achieved optimal
word error rate performance insensitive to the interleaver size by using a special
multiplexer that places the binary elements at the output of the code “intelligently”
on the channel states. This performance is achieved at no additional cost in com-
plexity.

For the amplify-and-forward cooperative fading channel, the following results were
carried out:

• Bounds on the diversity order of coded systems over the Matryoshka block-fading
channel representing the slotted amplify-and-forward protocol were derived. These
bounds can be achieved by judicious precoding without affecting the decoding com-
plexity.
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• Coding strategies based on the bounds on diversity that allow to achieve high coding
gains depending on the coding rate, modulation size, and number of relays.

• Turbo-code design for the amplify-and-forward cooperative fading channel: the code
multiplexer that suits the Matryoshka block-fading channel model proved to be
optimal. Again, word error rate performance insensitive to block size at no increase
in complexity is achieved.

Finally, we proposed irregular turbo codes that exhibit a vanishing gap with the outage
probability for large block lengths over the single-input single-output block-fading channel.
This is done through an adapted channel multiplexer that suits the self-concatenated
structure of the code. This result can be applied to any block-fading channel type. The
material elaborated in this report opens the way for the following perspectives:

• Study of sub-optimal receivers for the SAF protocol: indeed, the upper-triangular
structure of the channel matrix can allow for the implementation of sub-optimal de-
tectors such as the Successive Interference Cancellation (SIC) or the SISO-Minimum
Mean-Square Error (MMSE) detectors that can provide a drastic complexity reduc-
tion with respect to the exhaustive APP detector.

• Derive bounds on the diversity order of the MIMO-SAF channel: investigate on
what diversity orders a D-ST-BICM can achieve in the case where the nodes have
multiple antennas.

• Study of Decode-and-Forward protocols from the D-ST-BICM point-of-view.

• Study of the schemes proposed in this manuscript for Multi-Carrier (MC)-CDMA
systems and OFDM systems.
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