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Résumé

Ce document présente nos contributions aux algorithmes d’ordonnancement à criticité
mixte pour multi-processeurs. La correction de l’exécution des applications temps réel
critiques est assurée par l’utilisation d’un ordonnancement vérifié à la conception. Dans ce
contexte, le dimensionnement des plate-formes d’exécution vise à minimiser le nombre de
processeurs nécessaires pour assurer un ordonnancement correct. Ce dimensionnement est
affecté par les exigences de sûreté de fonctionnement. Ces exigences poussent à surestimer
le temps nécessaire garantissant l’exécution correcte des applications. Il en découle un di-
mensionnement assez coûteux. Les méthodes d’ordonnancement des systèmes à criticité
mixte proposent des compromis sur les garanties d’exécution des applications améliorant
le dimensionnement.

Différents compromis ont été proposés mais tous reposent sur la notion de mode
d’exécution. Les modes sont ordonnés, et les tâches voient leur temps d’exécution req-
uis croître avec les modes. Cependant, afin de diminuer le dimensionnement du système,
seul l’ordonnancement des tâches les plus critiques est garanti. Ce modèle est appelé "dis-
carding". La majorité des algorithmes proposés se limitent à deux modes d’exécutions par
simplicité. De plus, les algorithmes les plus efficaces pour multi-processeurs exhibent un
nombre élevé de préemptions, ce qui constitue un frein à leur adoption. Finalement, ces
algorithmes sont rarement généralisables. Pourtant, la prise en compte de plus de deux
modes, ou de tâches aux périodes élastiques permettrait une adoption plus large par le
milieu industriel.

L’approche proposée repose sur la séparation des préoccupations entre la prise en
compte des modes de fonctionnement, et l’ordonnancement des tâches sur multi-processeurs.
Cette méthode permet de concevoir une politique d’ordonnancement efficace et adaptable
à différents modèles de systèmes à criticité mixte. Notre approche consiste à transformer
un lot de tâches à criticité mixte en un lot de tâches qui n’est plus à criticité mixte. Ceci
nous permet d’utiliser un algorithme d’ordonnancement temps réel optimal engendrant
peu de préemptions et de migrations, à savoir RUN. Cette approche, appliquée en premier
pour le modèle discarding avec deux modes d’exécution, rempli son objectif d’efficacité.
Nous illustrons sa généricité en utilisant le même principe pour ordonnancer des systèmes
discarding avec plus de deux modes d’exécution. Enfin, une démarche reposant sur la
décomposition de tâche permet de généraliser l’approche au cas des tâches élastiques.

v



Mots-clés: Système temps réel, criticité mixte, multi–processeurs

Abstract

This thesis focuses on the scheduling of mixed-criticality scheduling algorithms for
multi-processors. The correctness of the execution of the real-time applications is ensured
by a scheduler and is checked during the design phase. The execution platform sizing
aims at minimising the number of processors required to ensure this correct scheduling.
This sizing is impacted by the safety requirements. Indeed, these requirements tend to
overestimate the execution times of the applications to ensure their correct executions.
Consequently, the resulting sizing is costly. The mixed-criticality scheduling theory aims
at proposing compromises on the guarantees of the execution of the applications to reduce
this over-sizing.

Several models of mixed-criticality systems offering different compromises have been
proposed but all are based on the use of execution modes. Modes are ordered and tasks
have non decreasing execution times in each mode. Yet, to reduce the sizing of the ex-
ecution platform, only the execution of the most critical tasks is ensured. This model is
called the discarding model. For simplicity reasons, most of the mixed-criticality schedul-
ing algorithms are limited to this model. Besides, the most efficient scheduling policies
for multi-processors entail too many preemptions and migrations to be actually used. Fi-
nally, they are rarely generalised to handle different models of mixed-criticality systems.
However, the handling of more than two execution modes or of tasks with elastic periods
would make such solutions more attractive for the industry.

The approach proposed in this thesis is based on the separation of concerns between
handling the execution modes and the scheduling of the tasks on the multi-processors.
With this approach, we achieve to design an efficient scheduling policy that schedules dif-
ferent models of mixed-criticality systems. It consists in performing the transformation of
a mixed-criticality task set into a non mixed-criticality one. We then schedule this task set
by using an optimal hard real-time scheduling algorithm that entails few preemptions and
migrations: RUN. We first apply our approach on the discarding model with two execution
modes. The results show the efficiency of our approach for such model. Then, we demon-
strate the versatility of our approach by scheduling systems of the discarding model with
more than two execution modes. Finally, by using a method based on the decomposition
of task execution, our approach can schedule systems based on elastic tasks.

Keywords: Real–time systems, mixed–criticality, multi–processors
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1 Introduction

TABLE OF CONTENTS

1.1 CONTEXT AND MOTIVATIONS OVERVIEW . . . . . . . . . . . . . . . . . . . 1

1.2 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 CHAPTER CONTENT SUMMARIES . . . . . . . . . . . . . . . . . . . . . . . 3

This document presents findings and contributions of the PhD study carried out at IRT
SystemX and Telecom ParisTech (full publication list can be found p 189). This chapter
briefly summarises the motivations and contributions of our study in the field of real-time
scheduling theory.

1.1 Context and motivations overview

This thesis has been carried out within the project "Électronique et Logiciel pour l’Automobile"
(ELA) at the Institute for Technological Research SystemX. This project aimed at propos-
ing new approaches and tools to address the challenges faced by the automotive industry.
Since a decade, the number of in-car embedded applications increased drastically. Given
this trend, cost reduction concerns at design and production levels prompt embedded sys-
tem engineers to rethink their practices.

Our thesis focuses on scheduling methods for safety critical real–time applications that
leverage sizing issues encountered on multi–processor platforms.

When designing safety critical and time constrained software, the scheduling approach
(e.g. the allocation of processor execution time to applications) aims at guaranteeing in-
tegrity and timeliness. Hence, engineers ensure at design time that application provided
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execution time is sufficient, and not arbitrarily shortened because of the interfering execu-
tion of other applications. Therefore, the isolation concerns have been predominant to the
definition of the federated architecture: a network of processors, each executing a single
application. Its design and production cost turns out to be an unbearable constraint for the
future generations of cars.

Hence, researchers and engineers considered compromises on the isolation guarantees
to optimise the hardware sizing. A first step has been to gather as many applications on a
single node and to ensure isolation through partitioned access time. Despite its potential
gain on sizing, this approach based on partitioned architectures offers limited benefits.

The low impact of this approach not only comes from the poor performances of schedul-
ing approaches based on a partitioned allocation of processor execution time. It also comes
from the way estimates of task’s Worst Case Execution Time (WCET) are determined. In
this case, WCETs are estimated only assuming the highest level of guarantee. But these es-
timations can be performed based on assumptions that provide different levels of guarantee
and hence different estimates. In such critical systems, the more important (e.g. critical)
the tasks, the more pessimistic the WCETs. Considering WCET estimates adapted to crit-
icality is a first step to achieve real gains on sizing side. Yet, the true gain lies in accepting
that some applications may not be scheduled at all or with the expected frequency. Such
scheduling approaches belong to the Mixed–Criticality Scheduling theory.

The contributions of this thesis lie more specifically in the field of Mixed–Criticality
Scheduling. Different estimates of WCET are provided for each application. At run-time,
a Timing Failure Event (TFE) occurs when a task does not respect an estimate of its WCET
(e.g. exhibits a higher execution time than expected). On such an event, the execution
timing parameters of the whole task set are either decreased or increased depending on
their criticality. It offers the opportunity to transfer the computing power from the low
critical tasks to the high critical tasks. Yet, existing solutions lack of maturity concerning
multi-processor scheduling, either providing poor schedulability performance, or relying
on approach entailing many preemptions and migrations. Such phenomena are known
to drastically impair the applicability of such schedulers. In this thesis, we define and
evaluate GMC–RUN, a scheduling algorithm that handles various task models of mixed–
criticality systems.

1.2 Contributions

Our first contribution consists of the definition of a new kind of execution server, a modal
server. It allows us to transform the scheduling problem in two sub problems: i) find effi-
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cient uniprocessor mixed–criticality schedules within execution servers, ii) schedule these
execution servers on multi-processor platforms. It allows us reusing optimal schedulers
for multi-processor platforms as parts of our solution.

In our second contribution, we instantiated the approach for two levels of criticality,
HI and LO, assuming LO tasks are discarded upon TFE (discarding model). The combi-
nation of Reduction to UNiprocessor (RUN) optimal scheduler with our modal execution

servers appeared highly efficient. Its worst case and average case performances rank our
approach second in terms of schedulability efficiency, and first with respect to the number
of preemptions and migrations (even compared with contributions issued simultaneously
to the thesis).

The third contribution copes with mixed–criticality scheduling problems that do not
restrict the number of criticality levels. This extension relies on a recursive approach to
reduce successively the number of criticality levels (taking advantage of the two levels
solution). Hence, GMC–RUN is a generic approach that allows us to schedule mixed-
criticality systems with any number of criticality levels. We assessed the performances
of this extension for three levels compared to the two levels approach. Results highlight
conditions for significant sizing gains compared to the two levels approach. Identifying
such conditions is the key to an efficient use of this generalised setting, and a pre–requisite
to its adoption.

The last contribution generalises the concept of modal server to cope with the elastic

task model variant of mixed–criticality task model. It illustrates the versatility of our
approach, that is its capacity to handle different models. The elastic model is certainly
more complex than the discarding model we initially considered. It a priori offers lesser
sizing gain compared to the discarding model. However, it corresponds more accurately
to the industrial needs.

Hence, this thesis core contribution is a mixed–criticality scheduler that is versatile,
and efficient with respect to usual multiprocessors scheduling criteria.

1.3 Chapter content summaries

This thesis is structured as follows.

Chapter 2 settles the context of this study. It aims at providing sufficient background
knowledge to define the problematic of the thesis. It contains a brief description of the
role of real-time scheduling within safety critical system design. It highlights the purpose
of mixed criticality scheduling: reducing sizing cost despite constraints derived from strict
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timing and safety concerns. Finally, it points out the features and limitations of existing
works, anterior and simultaneous to this study.

Chapters 3 and 4 define respectively the problematic tackled, and the proposed ap-
proach.

Chapter 3 states explicitly our objectives from observations made in chapter 2. In
particular, it highlights that mixed–criticality schedulers appear to be extensions of simpler
schedulers and inherit from their efficiency. Based on this observation, we claim that
an extension of a scheduler such as Reduction to UNiprocessor (RUN) would produce
a mixed–criticality scheduler that efficiently copes with preemptions and migrations on
multi-processors.

Chapter 4 details how the approach relies on a top level scheduler and execution servers
with their low level scheduler. These execution servers manage tasks and their possibly
varying needs in terms of processing power. The purpose of these servers is to conceal
variability of WCETs. The top level scheduler schedules these servers as efficiently as
possible on the different processors. This chapter motivates the application of this princi-
ple to three instances of mixed–criticality scheduling problems of increasing complexity.

Chapter 5 details the execution server behaviour used to reduce mixed criticality task
scheduling problems to a non mixed–criticiality scheduling problem. These servers are
called modal servers, and their behavior is first described for two criticality levels.

Chapter 6 explains how modal servers can be used to schedule a task set with two
criticality levels applying the so-called discarding degradation model on multi-processors.
The chapter first justifies the choice of RUN as top level scheduler. Then, it explains how
tasks are allocated to modal servers. A method based on genetic algorithms minimises the
required number of processors by exploring possible allocations. Finally, we provide the
algorithm speed–up factor to assess its worst case performances. Then, we compute the
schedulability ratio and the number of preemptions entailed on randomly generated task
sets.

Chapter 7 presents an extension of the approach to schedule mixed–criticality systems
with more than two criticality levels. We first extend the definition of modal servers to
handle more than two criticality levels. Then, we present an iterative process to resolve
the optimisation problem to minimise the required processing power. Finally, we assess
our approach by comparing the performances of the scheduler for three levels to its per-
formances on the same task set reduced to a two levels model.

Chapter 8 explains how elastic tasks can also be scheduled with simple adaption of the
proposed modal server. We first transform the task set from the elastic task model into
an equivalent one compliant with the discarding task model. Thus, we allocate an elastic

4 © 2017 Romain GRATIA



1.3. Chapter content summaries

task (with its different periods and its single budget per mode) to two execution servers
(with their own single periods and different budgets per mode). Then, we apply GMC–
RUN, our generic approach, to deal with this new task set. As a result, this transformation
increases the number of tasks and therefore the number of preemptions. But it enforces
the scheduling of the elastic task model in its most general definition.

Chapter 9 is the conclusion of this document. It summarises contributions and presents
possible future works.
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This chapter refines the description of the context and motivations presented in the
introduction. In particular, it provides details on the interest of real-time scheduling the-
ory within the design processes of embedded safety critical systems. First, engineering
objectives and technological trends are discussed. We also recall some real-time schedul-
ing principles. Up-coming challenges are then detailed, and mixed–criticality approaches
are presented as promising solutions. Finally, the chapter discusses limitations of existing
approaches in the real-time mixed–criticality scheduling domain. At last, we present the
foundations of the problem statement chapter.

2.1 Industrial context and motivations

This thesis has been carried out within the project "Électronique et Logiciel pour l’Automobile"
(ELA) at the Institute for Technological Research SystemX. Major companies of automo-
tive industry, such as PSA, Renault and Valéo, Continental, SMILE (as ex Openwide),
collaborated with academic institutions Télécom ParisTech, and Université Paris 6 in this
project.

The project aimed at defining and developing new methods and tools to address the
challenges faced by the automotive industry. This section recalls the role of scheduling
into the design process. It allows understanding limitations of current approaches.
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2.1.1 Embedded System design: the sizing problem

Recent changes encountered by the automotive industry are so important that they may
require major changes in their engineering practices.

A car is said to be a safety critical system because its use may put its passengers or
its environment into hazardous situations. With respect to cars, passengers are clearly
the main concern of designers. Such a high level requirement, once refined, impacts many
aspects of the system design. Car subsystems can be classified into categories representing
their impact on car safety. These categories are usually ordered into levels of increasing
importance, called Automotive Safety Criticality Levels (ASIL). It helps defining safety
requirements once for all subsystem belonging to a criticality level. It is a usual practice
in safety engineering, as described in [1]. The higher the criticality level, the stronger the
impact of safety requirement. Thus, for highest criticality levels no trade-off on safety is
allowed, whereas on lower one, some compromises may be possible.

In this context, car manufacturers are faced to contradictory requirements when de-
signing vehicles. On the one hand, car should integrate more and more functionalities
such as navigation, entertainment, logs of maintenance, and still be safe. This trend is
amplified with the growing demand for entertainment and advanced driver assistance sys-
tems (so called ADAS). Obviously, such functionalities lead to non trivial additional costs
in design and production phases. On the other hand, the competition among manufacturers
urges them to cut costs at each step of the development or production process. Yet, actions
taken to reduce cost should not impair system safety or its attractiveness. Hence, manu-
facturers explore approaches that would help them to take advantage of new technologies
to reduce cost, or improve car functionalities without impairing system safety.

Some elementary aspects of embedded software design need to be recalled to under-
stand what are these changes. The design process of such system usually relies on three
steps: i) define use cases and functionalities; ii) define system architecture, interfaces, and
dependencies between the components of the architecture; iii) implement components and
integrate them. All these steps contain validation or verification activities to cope with
safety or quality requirements. One of the most complex issues with such embedded sys-
tem is the sizing problem. Solving sizing problems is to determine vehicle attributes such
as its size, weight, available electrical power, or amount of embedded processors. Some
of these attributes represent resources on which other components depend. Hence, wrong
sizing would affect in this case the ability of these components to deliver their functional-
ities.
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First, entertainment and ADAS implementations depend on complex software appli-
cations. Second, past decades have seen the transition from analogical or hydraulic im-
plementation of several functionalities to digital implementations like in engine control,
steering, braking and diagnostic functions, described in [2] as the x-by-wire approach.
Hence, the consequence is that software applications are now an important part of the ve-
hicle. All these software components represent since past decade a significant share, 30%,
of the value creation in car industry as reported by experts [3]. It means that software is a
part as important as the engine in current vehicles.

In order to ensure that software implemented functionalities are correctly executed, one
has to ensure that sufficient storage, and processing power is embedded. The more storage
and processor embedded, the more expensive the car production. First, processing power
mostly affects the timing of applications, their availability and responsiveness. Second,
even if applications are not safety critical, their impact on car vehicle added value requires
that reasonable guarantees on their responsiveness are provided. However, even a slight
decrease on embedded processing power may have a significant economical impact as
thousands of pieces are produced. Hence, designers may weight the pros and cons to lower
processing power at the expense of these features. Taking such a decision is particularly
difficult as an incorrect sizing may only be detected at run-time if no particular verification
effort is done. Obtaining guarantees that the processing power sizing does not impair
software worthiness or dependability requires determining the sufficient processing power
ensuring timely execution of applications. Yet, the meaning of sufficient varies drastically
depending on the functionalities, but also on the selected design approach.

Design patterns and architectures have been proposed to ease embedded software de-
sign. These architectures define the unit of activity and its dependency on the hardware. It
thus eases the sizing process at the scale of each computing node, and more globally at the
scale of the whole car. Standards have also been proposed to guide engineers when using
some of these architectures.

2.1.2 Patterns and Architectures to ease integration and sizing

The design patterns and architectures enforced during the design process often represent
a compromise between different requirements. Such architectures may become irrelevant
as soon as the core assumptions or requirements they depend on are no longer valid. This
subsection presents design patterns and architecture that impact strongly processing power
sizing.
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First, there is a design pattern that organises software applications in units of sequential
activity: tasks. Such models ease analyses about correct sizing of processing resources.

The concept of task is used to define behavioral and timing requirements for a piece
of sequential code, called task body. An execution of the task body is usually called a
job and a task is an infinite sequence of jobs. These models mainly differ on three as-
pects: triggering conditions (called activations), timing constraints, and their processing
power requirements, mostly represented with their Worst Case Execution Times. Trig-
gering conditions are basically either driven by a sampling logic, or reactive logic. The
first case leads to trigger jobs at time instants that can be computed prior the execution.
The second case leads to trigger job execution only as a reaction to some external event
(button pressed, detection of an obstacle, a change in tire pressure...). Timing constraints
are usually defined as deadlines on job execution completion time. Tasks with such timing
constraints are usually called real–time constraints. The last aspect characterising a task is
an estimate of the processing power necessary for a job to complete its execution. In [3],
authors describe the different task models considered to design a vehicle.

Once these three aspects are known, it is possible to study whether a set of tasks can be
correctly deployed on a set of processors. Scheduling theory and more precisely in real–
time scheduling theory provides answers depending on the considered task model. In this
context, verification procedures have been designed to ensure if tasks access processors
as expected in their task model, and respect all their timing constraints. Such procedures
are called schedulability tests. In order to limit design decisions that need to be checked,
architectures have been defined. Such patterns select a task model, a scheduling approach
and its associated test. Most architectures also rely on dedicated services on the execution
platform, processor and operating system.

The first architecture is the federated architecture. Its motivation is to avoid issues
related to sharing processors between tasks of different applications. Such an architecture
relies on many weak processing units, essentially micro-controllers that interact passing
messages through wired networks. In this case, the software architecture within a pro-
cessing unit called Electronic Control Unit (ECU) is often trivial and not detailed (most
often applications are single tasked). Yet, the growth of the number of embedded appli-
cations leads to consider more than hundred computing units for most advanced vehicles.
Increased interactions between these applications entail massive communications between
processing units. Scheduling disciplines have been proposed to organize communication.
Yet, the larger the number of ECUs, the more complex ensuring that the application de-
pendability is not affected by the network insufficient throughput, or message transfer
latencies, as explained in [4].
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An alternative architecture is to use processing units with far higher processing power.
The principle is to concentrate applications as much as possible on a same execution plat-
form, processor and operating system, that supports multi–tasking execution. For years,
only tasks with similar criticality, triggering conditions and timing constraints have been
deployed together on a same processor. Respecting this constraint eases verifying that
tasks have enough processing power, but also avoids complex analysis with respect to
safety. Dedicated operating systems are used to deploy such architectures. For instance,
OSEK VDX is the specification of the most used operating system for real–time tasks for
automotive software, [5]. Despite its potential, the amount of tasks that can be gathered
with identical criticality level remains limited. The so–called integrated architecture has
been proposed as a refinement of the multi–tasking approach. With respect to scheduling
issues, it proposes an approach that ensures that the time intervals during which a task
accesses the processor are predefined and cannot be modified at run time. Such a strat-
egy limits the risk that a misbehaving task prevents another task to deliver its service.
This architecture is now widely used to design and deploy software in civil aeronautic
industry. Operating systems implementing this principle also ensure memory isolation,
preventing task data alterations. Finally, it is important to notice that such architectures
have been proposed to simplify the deployment problem with respect to all the conflict-
ing objectives: safety and scheduling. In practice, they prioritised, without compromises,
safety requirements handling. With the increasing number of ECUs, such situation may
no longer be affordable.

Another observation can be made for all these architectures. The key parameter to
determine whether a deployment is relevant or not is the estimate of task Worst Case
Execution Time (WCET). This value is the upper bound of the execution time of a task
body.

2.1.3 WCET, a key parameter for sizing

WCET values for a set of tasks directly affect the number of processors required to sched-
ule it correctly. Not surprisingly, WCET estimations have always been frustrating for
engineers. A huge gap exists between average execution time and worst case execution
time estimates. The execution time variability can be due mainly to the different possi-
ble paths of execution in the application code itself. Each path is likely to correspond to
different numbers of instructions. The second cause lies in the fact that processors do not
handle instructions in constant time. Moreover, a single instruction could see its execution

© 2017 Romain GRATIA 11



Chapter 2. Industrial concerns and related works

time multiplied by 100 depending on previously executed ones. Causes are mainly the
behaviours of the processor pipeline, caches, and memory access mechanisms.

A source of difficulties in the estimation of the WCETs are the timing anomalies.
These are situations that represent local worst cases but ultimately do not result in the
global worst cases. These situations have been surveyed for different task models and pro-
cessor technologies. A survey focused on single core processors, [6]. The usual anomalies
that could impact execution time has been extended to account those specific to multi-
cores processors, [7]. Different approaches exist ranging from empiric settings to detailed
models combining information on processor state and application binary code, [8].

In any case, determining if anomalies will occur is non trivial and leads to approximate
the values of WCETs. It is particularly true when timing anomalies are caused by other
task executed simultaneously on the multi-processors. Methods mainly differ on the kind
of anomalies they can handle, and the way they approximate the WCET. For these reasons,
two methods that do not perform the same approximation would produce different values
of WCET. It appears that multi–cores processors rely on design principles that significantly
increase execution time variability. When anomaly timing effects are hardly measurable,
the WCET estimates can simply be increased by a fixed percentage depending on the
safety requirements associated to tasks. This percentage is called the safety margin. Thus,
schedulers can tolerate unforeseen timing anomalies. This practice tends to produce large
over approximations.

Hence, approximation on WCET suffers from this strong variability and exhibits highly
different values. The more critical a task, the more pessimistic the approximation is ex-
pected to be. Conversely, strongly pessimistic approximations of WCETs may not be
relevant for non critical tasks. Indeed, such tasks are not essential for the safe execution
of the system. Hence, if most important timing anomalies occur only in exceptional sit-
uations, then ignoring these cases may yield far lower WCET approximations for these
tasks. Considering such lower values is clearly a compromise between the task timeliness
and its cost in terms of processing power.

The conclusion of these observations is that WCET estimates are parameters pretty
difficult to define as they impact both sizing and dependability. Their definition represents
a difficult compromise.

Next section presents the challenges derived from this context.

2.2 Challenges

In this section, we detail the challenges motivating this thesis.
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2.2.1 Can we avoid or tolerate timing anomalies ?

Collocating tasks with different criticality levels on a processor should not impair the de-
pendability of critical tasks. When timing anomalies prevent critical tasks to comply with
their timing requirements, one can consider such phenomena as faults. Two approaches
are usually possible concerning fault treatment: elimination, or tolerance. A part of the
challenge is to determine which approach would be the most relevant.

Some preliminary results exist with respect to this question. They mainly rely on the
analysis of the causes of anomalies. Anomalies on multi-core platforms are due to the
use of shared hardware resources to link execution cores and main memory. Main shared
resources are the shared caches and memory access bus. It means that the memory access
latency could increase when there are contentions on shared resources. Authors in [9]

have shown that memory bus contention can lead up to 183% higher execution times for
applications on a platform with a shared L2 cache. In [10; 11], authors assessed the impact
of contention on memory access bus and cache consistency mechanisms. They reached
similar conclusions: impact of contentions can be significantly high on execution times.
Hence, such impacts on access latency need to be either eliminated, or tolerated.

Eliminating such interactions relies on resource partitioning at design time and avoid-
ing changes on this allocation at runtime [12; 13]. The elimination of interactions on
shared resource relies on variants of Time Division Multiple Access principle, as explained
in [14]. Such an approach exhibits satisfactory performances on single core processors.
Yet, this principle appears not adapted to multi-core platforms. This principle has been
refined for managing bus contention on avionic processor as presented in [15]. The main
lesson learned is that the latency variability is greatly decreased but it increases signifi-
cantly the minimal latency access time. Moreover, deploying such architecture requires
advanced understanding on cache behavior to configure the mechanism eliminating inter-
actions. For these reasons, such approach is considered unfit for the automotive context.

Hence, the alternative is to propose approaches to tolerate these anomalies. As ex-
plained in the previous section, up to now the simpler solution is to integrate their impact
in WCET estimate. Yet, such an approach let even the smallest anomalies propagate up
to the scheduler logic without any attempt to limit their effect. AUTOSAR standard pro-
poses to systematically use detection mechanisms to specific timing anomalies to avoid
their propagation. Such mechanisms aim at detecting that a task cannot use more than a
fixed time budget. If task job are not complete within this time budget various recovery
actions can be implemented. Hence, using WCET estimates with limited scope of tim-
ing anomalies is no longer a risk for other tasks as this architecture would confine timing
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anomalies to the faulty task as much as possible. This approach is promising but does not
provide any clue on how to exploit best such detection and recovery procedures. It leads
to the second challenge.

2.2.2 Can real time scheduler be smarter and safe ?

Last section presented possible approaches to ensure that tasks of distinct criticalities can
be deployed on a same processor with WCETs estimated according to their criticality.

Since less criticality tasks are not essential for the safe execution of a system, these
tasks could potentially see their timeliness not respected. It would then be safe to consider
WCET estimates ignoring some anomalies for lesser criticality tasks. Such situation would
be considered exceptional. Thus, it is accepted that these tasks timeliness is no longer
a priority. It means that two possible behaviors need to be considered. The first case
consists in considering exceptional situations never occur. The second case considers that
timing anomalies have an exceptionally high impact on task execution time. In this case,
timeliness requirements for tasks of lesser criticality can be reconsidered.

Real time scheduling community takes advantage of this situation by defining a schedul-
ing approach called mixed–criticality scheduling.

The seminal paper of Vestal in 2007, [16] defines accurately this scheduling problem.
It is actually a non trivial extension of the scheduling approach relying on a single WCET
value for each task. This scheduling approach leads to consider either scheduling all tasks
with reasonably low WCET approximation, or to only execute highest criticality tasks
considering highest over approximations of their WCET.

Finally, the challenge is to thus determine whether using such scheduling approaches
actually worth the effort. Can we find a scheduling algorithm that offers opportunities to
significantly decrease the number of processors to be embedded and still provides strong
guarantees on most critical tasks schedulability.

Next section briefly recalls main results in real time scheduling for multi-core proces-
sors, and provides a survey of most recent results in the field of mixed–criticality schedul-
ing.

2.3 Scheduling of critical embedded systems

This section introduces tasks models that in fact define scheduling problems. Then, the
section recalls the notion of schedulability, and usual assessment criteria used in the com-
munity. Finally, we discuss limitations of algorithms handling presented task models. In
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real time scheduling theory, the difference between multi-cores and multi-processors is
not made. Hence, we only use multi-processor to identify the task set execution platform.
Similarly, instead of using execution core to identify a processing unit, we use the term
processor.

2.3.1 Real–time task models

The definition of a task model is the usual approach to describe a scheduling problem.
The model defines the activity represented by a task through parameters identifying its
activations, information on its worst case execution time, and its deadlines.

Periodic and sporadic task models

The periodic task model and the sporadic task one are the most widespread task models in
real-time scheduling theory. It is partly for its simplicity that this model is one of the most
used. The periodic task model relies on very few parameters.

Definition 1 (Periodic Task). A periodic task is defined through two parameters, usually

denoted T, its period, and its budget, usually denoted C.

Yet different instances of this model exist. We can further assume that our periodic
tasks are synchronous, independent and with implicit deadlines. The meaning of these
assumptions being:

• Synchronous tasks: all tasks are started at the same time when the system starts
executing. Hence, considering these first activations occur at time 0, next activations
times of a task of period T would be in the set TN,TN= {k ·T |k ∈ N}.

• Independent tasks: there are no precedence constraints between tasks, that is the
execution of a task does not require that some specific tasks have completed their
executions.

• Implicit deadline: the relative deadline of a task is equal to its period. Therefore, the
absolute deadline of a job activated at time t, of a periodic task of period T , is t +T .
The absolute deadline of a job is equal to the activation time of the next job.

We note Γ a set of such tasks. Hence, if the size of Γ, denoted |Γ| is n, then it contains
τ1, ...,τn. The budget should be sufficient to ensure that if the task executes on the proces-
sor for a duration equal to its budget then it completes the execution of its body (of a job).
Any value lower than the task WCET may not be sufficient to allow the task to complete
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all its jobs. A budget value higher than the WCET can be considered as wasting resources,
since it would never be completely used.

The second model popular among real-time system designers is the sporadic task
model. The main difference of this model with respect to the periodic task model lies
in the definition of activation times that are event triggered. There is an uncertainty on
activation times. Yet, some assumptions on consecutive activation times allow defining a
tractable scheduling problem. The sporadic model assumes that there is a non zero lower
bound on the duration between any two consecutive activations. Other models add con-
straints of precedence or mutual exclusion between task execution. Such models elaborate
the notion of task. In our case, such dependencies do not exist since our tasks are in-
dependent. Despite the attractiveness of covering many models, we decided to consider
the periodic task model during this study. In particular, the synchronous independent task
model with implicit deadlines. This model is one of the most widely used in the mixed–
criticality approaches to simplify the mixed–criticality scheduling problem.

Selecting a task model defines most of the constraints corresponding to the schedul-
ing problem. Usually, the number of processors available in the embedded hardware is
known and remains constant, and is noted m. The scheduling problem generally consists
in checking whether a task set can be scheduled on the m processors by a given scheduling
policy. Yet, there exist scheduling policies that can schedule tasks on the smallest possible
number of processors. In any case, the scheduler determines for each time instant at most
m tasks to schedule. When all processors are identical, one can simply select for each time
instant a subset of the task set that is no larger than the number of available processors.
In this case, the scheduler does not assign tasks to processors. This decision needs to be
taken in a second step.

The mixed–criticality task sets are mostly extensions of the periodic and sporadic mod-
els. We now describe the extension of the periodic task model.

Mixed–criticality task model

Mixed–criticality task model is extension an extension of the real–time task model. This
model alters in deep the task behaviour. Indeed, with this model periods, deadlines and
budgets are not unique for each task. These timing parameters now depend on the critical-
ity level of the task. Hence, it is necessary to know each task criticality level. Criticality
levels are considered fully ordered.

These criticality levels have to reflect the criticality of the timeliness and availability
of the task (is it running and if so, is the result produced in time). In his paper [16], Vestal
simplified the definition directly referring to Safety Integrity Levels. Yet, authors in [17]
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pointed out that the task criticality level could differ from the task SIL. In practice, not
all safety critical tasks have to comply with strict timeliness and high availability. In the
remainder, we assume that the system designer assigns criticality levels to tasks expecting
a gain of using mixed–criticality scheduling on multi-processors instead of simpler non
mixed–criticality schemes. Such gains mainly concern the required processing power to
schedule a system. Indeed, in mixed–criticality systems, it is acceptable to degrade the
execution of tasks with low criticality levels to ensure those of higher criticality tasks.
The probability of the degradation of a task execution being dependent on the confidence
associated to the task timing parameters. A system designer can thus expect that adding a
criticality level helps better tuning and respecting the execution requirements of the tasks
compared to the initial system configuration. Indeed, adding a criticality level allows
the engineer to use more appropriate timing parameter for a subset of tasks and possibly
reduce the probability of the degradation of their execution.

Hence, the use of more or less criticality levels can be used to improve either the
availability and the respect of timeliness of a subset of tasks or to reduce the required
processing power.

The seminal paper provides a generic definition of criticality levels but illustrates it
in the case of tasks exhibiting only two distinct levels, denoted LO and HI. HI level is
the level representing critical tasks. Most contributions in mixed–criticality domain keep
considering only two criticality levels. The periodic task model is extended as follows.
Recall in section 2.2.2 we saw that in order to leverage the issue represented by WCET
computation, it has been proposed to consider potentially under-approximated WCET val-
ues as long as the critical task schedulability is always ensured. Hence, mixed–criticality
periodic tasks may have different values for their periods and budgets.

Task set definition

Definition 2 (Mixed–Criticality Task Set). A mixed–criticality periodic task set, τ1, ...,τn,

is characterized by a set of 5–tuples, (Ti(LO),Ti(HI),χi,Ci(LO),Ci(HI)) with i≤ n, such

that:

• χi the criticality level of the task taken in {LO,HI}.

• Ti(LO), Ti(HI) period values corresponding to levels LO and HI.

• Ci(LO),Ci(HI) the execution time budget values of the task corresponding to levels

LO and HI.
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We introduce additional notations that are used in the whole document.

• A LO task, and a HI task, are respectively tasks with criticality levels LO, and HI.

• If a task τi name is suffixed with {χi = LO}, or {χi =HI}, it means τi is respectively
a LO task or a HI task.

• the utilisation of a periodic task of period T and budget C is the normalized pro-
cessing power it requires, U = C

T . In the case of mixed–criticality scheduling, there
are as many utilisation values as criticality levels. That is Ui(LO) = Ci(LO)

Ti
and

Ui(HI) = Ci(HI)
Ti

.

• utilisation definition can be extended to task sets Γ as follows: UΓ = ∑τi∈ΓUi.

The task set expected behaviour depends on the execution time effectively used at
run-time to complete task executions. As long as the LO parameter values are sufficient,
the parameters used to define task activations and deadlines are the LO parameter values.
Whenever a job has not completed its execution, but has been executed for a duration equal
to its task LO budget, then the task set expected behaviour changes. This change is called
a timing failure event.

Definition 3 (Timing Failure Event). The time at which a job exceeds its task LO time

budget without completing its execution is called a Timing Failure Event (TFE).

It is assumed for any task set that a HI task job cannot execute longer than its Ci(HI)

value. This budget value is said safe. When a system encounters major changes in its
expected behaviour, the system is said to have distinct operating modes. A change in
task set behaviour is thus called a mode change, [18]. Hence, two modes can be defined.
Modes are named according to criticality levels as their definition depends on it. In this
context, a mode can be seen as configuration of the scheduler that enforces the expected
behaviour.

Definition 4 (Execution mode). Let L be a criticality level, the execution mode of L, de-

noted L mode, requires that all tasks τi with criticality level χi such that χi ≥ L are sched-

uled and respect their timing parameters of mode L.

In practice, it means that activation times, deadlines and budgets are determined in
a mode according to parameter values of the corresponding criticality level. During an
execution of a task set, if a mode is said active at time t then it means that all tasks of
criticality higher than L still have to respect their deadlines and activation times defined
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by level L parameters. We assume criticality levels are ordered, that is HI mode is more
important than LO mode, which is denoted LO < HI. A job execution is said to contradict
a L mode, if the job has not completed its execution, while its execution time is larger or
equal to the budget of level L. In this context, the active mode at time t corresponds to
the mode of smallest criticality level in which no job executed for a time larger or equal
to the budget of this criticality level at time t. This definition entails that the initial mode
is always LO. Moreover, task scheduling on processor should be done so that whenever
the Timing Failure Event occurs, all HI task deadlines are respected in the newly entered
mode. This has to be achieved despite the possible increase of HI task budgets and the
execution time used for LO tasks. We name this property the schedule continuity property.

Few more notations are introduced to easily describe the processing power required in
each mode by the different type of tasks (LO and HI). As long as there is no ambiguity
on the currently studied task set, we introduce the following notation: Γ(LO) and Γ(HI)

denote respectively all LO tasks of the task set, and all HI tasks of the task set. Given this
notation, we introduce a notation system to denote the processing power required by these
task sets in the two possible execution modes LO and HI.

The utilisation UΓ(X)(Y ) with X and Y criticality level denotes the utilisation of task
set Γ(X) with respect to Y mode parameter values. Hence, UΓ(LO)(LO) denotes LO tasks
utilisation according to LO mode parameters, and UΓ(HI)(LO) denotes HI tasks utilisation
according to LO mode parameters. Finally, UΓ(LO) and UΓ(HI) denote the utilisation of
the whole task set Γ in LO and HI mode respectively.

While period parameters can be modified, the most widespread model currently used,
HI tasks have usually identical periods in HI and LO modes. Only their budgets are chang-
ing. This can be justified by considering that HI task have to be executed with their timing
parameters that ensures the maximum availability both in LO and HI modes. This requires
to execute them with their periods that fulfill this objective. Budgets have an impact on the
availability if they are insufficient to complete a job. In LO mode, an optimistic assump-
tion is made on their execution times in order to reduce the required processing power to
execute the system. If more execution time is required HI tasks can use their HI mode
budget after a mode change. HI task availability objectives are thus always ensured.

• Ti(LO) = Ti(HI)

• Ci(LO)≤Ci(HI).

This definition leaves unspecified the expected behaviour of task of criticality lower than
the mode level. Their timing requirements are usually degraded into weaker constraints.
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The definition of the expected behaviour in the L mode of task of criticality lesser than L

is called the execution degradation model.

Execution Degradation Model
Recall that mixed–criticality aimed at providing the mean to lower processing power re-
quired to schedule a set of tasks without impairing most critical task execution. This is
achieved through the definition of two execution modes, one in which all tasks are exe-
cuted using optimistic timing parameters, and another one in which only the most critical
tasks see their executions ensured. Hence, it means that when the system runs in the high-
est mode (HI mode), it is necessary to accept compromises on LO task timeliness or even
on their availability.

Two degradation models can be considered. The first degradation model, called the
discarding task model, results in the complete stop of the execution of LO tasks. The
second one, called the elastic task model, allows to gracefully degrade the execution of
LO tasks.

The discarding task model: it assumes that, once a TFE occurs, all current and fu-
ture jobs of tasks of criticality level LO can be stopped. Mixed–criticality task models
enforcing this behaviour in HI mode are called discarding task models. This is the most
spread degradation model. In this context, task periods are considered constant for all
tasks, and tasks of criticality LO have the same LO and HI budgets: Ti(LO) = Ti(HI), and
Ci(LO) =Ci(HI).

Hence, after a TFE, tasks of criticality LO are no longer available. Such degradation
model can be found too extreme, that is why an alternative model has been proposed.

The elastic task model: this model assumes that tasks of criticality LO should always
be executed. However, their parameters could represent a lower requirement in terms
of processing power. Task utilisation as detailed before is a synthetic representation of
processing needs. Hence, the elastic model still requires tasks of criticality LO to be
executed but requires less processor utilisation for them. This goal could be achieved either
by decreasing the budget in HI mode, or by increasing the task period (and thus deadline).
The first case is also called imprecise computation and has received some attention prior
to mixed–criticality scheduling definition, e.g. in [19]. Yet, the imprecise computation
model is unfit as the latency to detect timing failure may not meet the desired objective
to save processing power for task of higher criticality. Thus, we mainly focus on the case
where the budget remains the same, and the period increases. It leads to the following
assumptions timing parameters of each task τi: Ti(LO)≥ Ti(HI) and Ci(LO) =Ci(HI).

20 © 2017 Romain GRATIA



2.3. Scheduling of critical embedded systems

Note that there exist mechanisms to switch back to the LO mode [20; 21; 22] and hence to
execute again LO task as before a TFE.

For completeness purpose, it is important to point out that a degradation model that
does not degrade execution requirements of LO tasks corresponds to a multiple criticality
model (or multi–criticality model for short).

Multi–criticality systems

In this kind of systems, tasks are modelled as mixed–criticality tasks. But execution modes
and execution degradation models are not used. Instead, each task is always executed
following its own criticality level. Hence, a HI task is always executed with the execution
time budget corresponding to its criticality level, that is C(HI). A LO task is also always
executed with the execution time budget of its criticality level, that is C(LO). Since there is
no mode change LO tasks are never stopped executing or changed of periods. A LO task is
always executed with its period T (LO). This forms what has been called multi–criticality
systems [16].

The mixed–criticality task model describes how the tasks behave and their required ex-
ecution resources. The scheduling algorithm provides a schedule, the next section presents
correctness and quality criteria used to assess schedules, and more generally schedulers.

2.3.2 Scheduling algorithms, schedulability and performance criteria

Let first recall some basic definitions.

Background on scheduling algorithms for multi–processors

Recall that a scheduling algorithm or scheduler is an algorithm that aims at determining in
which order the tasks are executed and on which processor.

To determine the order of execution of the tasks or jobs, a scheduling algorithm assigns
priorities. These priorities can be fixed to the task, we then call such scheduling algorithm
fixed task priority scheduling algorithm. They can be fixed to a job, the algorithm is then
said to be a fixed job priority scheduling algorithm. Or they can be dynamic scheduling
algorithms, that is algorithm that can change job priorities during their executions.

Concerning the allocation of tasks an algorithm can allow or not that a task or a job
changes of processor during the execution. This is called a migration. This leads to three
types of multi–processor scheduling algorithms: the partitioned and global scheduling
algorithms [23] and semi–partitioned algorithms.
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In partitioned algorithms, tasks are allocated to processors prior the execution and no
migration is allowed.

In global real–time scheduling algorithms, tasks can be executed on any of the avail-
able processors, that is migration of tasks or jobs, is allowed between processors.

In semi–partitioned scheduling algorithms, tasks that can migrate is determined prior
the execution. These migrations can be performed in two different ways. Either each
job are executed on different processors. This approach can be referred to as job portion

migration [24]. Or each job of a task are executed on a single processor but different jobs
are not necessarily executed on the same processor. This can be referred to as the restricted

migration approach [25]. In both case, the processors on which these tasks can migrate
are also determined prior the execution.

Another criteria can be used to classify scheduling algorithms. A scheduling algorithm
is said preemptive if a task of higher priority can preempt the execution another task. If not
it is said to be non–preemptive. All the considered algorithms in this thesis are preemptive
algorithms.

Background on schedulability

The first concept allows describing an execution of a task set without making assumption
on how it is scheduled.

Definition 5 (Task set execution). The execution of a task set is the definition of the exe-

cution time of each job of each task in the task set.

Each execution could be scheduled differently. Job execution time has to comply with
the time budget parameter(s) of tasks. Hence, a task set execution is selected, one can
define the schedule proposed by the scheduler.

Definition 6 (A schedule). A schedule is a function that returns for any instant t a set of

tasks. All tasks from this set that are allowed to be executed on a processor at time t.

The size of sets returned by this function is bounded by the number of available proces-
sors. Hence, the maximal size of returned set defines the minimal number on processors
on which the schedule can be applied.

A refined definition could consider that a schedule is a tuple of functions, one for each
available processor. Each function returns a pre–determined set of tasks to execute on a
single processor at time t. In this context, a scheduler may propose to a task to use a
processor while no job of the task can be executed. For instance, these jobs may have
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already completed. Conversely, the scheduler can adapt its schedules to task set execution
to avoid granting processors to jobs that cannot be executed.

We need basic validity definitions to identify schedules respecting deadlines, and sched-
ulers that would prevent such situations to occur.

Definition 7 (Valid schedule). A valid schedule ensures for each job of each task that the

duration during which the task is scheduled between its activation time and deadline is

sufficient to complete job execution.

This condition is synonymous to require that all jobs complete their execution before
(or at) their deadline. If all schedules provided by a scheduler for a task set are valid, then
the task set is said schedulable. A procedure to verify such a condition at design time is
called a schedulabilty test. These tests are most often sufficient conditions. Not passing
the tests does not necessarily mean that the scheduler provides non valid schedules. Yet,
the test cannot ensure it at design time. Necessary and sufficient conditions provide more
useful information. Failing the schedulability test means that there are executions of the
task set for which schedules are not valid.

The notion of feasibility of a task is define independently of the scheduler used.

Definition 8 (Feasible task set). A task set is feasible on m processors if and only if there

exists for each task set execution a valid schedule of this task set on m processor.

Given this definition, we can discuss performance criteria usually considered to assess
scheduler. Our purpose is to determine which one are relevant in the context of mixed–
criticality task sets.

Performance criteria

Many aspects of the algorithms used to produce or enforce schedules at run–time can be
assessed. First, the quality of schedules can be assessed, then the complexity of deter-
mining at run-time (said "on-line") the schedule. Each of these aspects could affect the
worthiness of a scheduling approach.

Let us first focus on so–called schedulability related criteria. The objective is to de-
termine the capacity of a scheduling algorithm to schedule feasible task sets. Usually
such studies do not account for the processing time used by the scheduler to determine
and enforce its schedules. Such overseen needs in terms of processing power are usu-
ally considered as overheads. Recall that margins were defined to ensure task scheduling
could afford some overseen timing anomalies. It is expected that safety margins tolerate
scheduling overheads. Yet, the larger these overheads, the larger the margins.
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Different phenomena contribute to scheduling overheads: the on–line execution of the
scheduling algorithm, execution context switch, and migration of execution context to a
processor [26; 27; 28; 29]. Notice that usually the two last sources of overhead involve
system calls, and affect cache contents (source of more timing anomalies). Preemptions
are scheduling event corresponding to the time at which a job execution is stopped to grant
its processor to another job. Migration and context switch are particularly more costly
when preemptions occur. Hence, we are interested in assessing how many preemptions
are produced by scheduling algorithms as it is a top level source of overheads on multi-
processors, [27]

Let us first present schedulability performance criteria ignoring overheads. These cri-
teria are classified in theoretical one, and empirical ones. The first one does not take into
account the processing power required by a scheduling algorithm to produce the schedule.
It is hence useful to complete the performance assessments with empirical ones that can
take into account these overheads. Empirical criteria rely on statistical assessment.

Theoretical criteria When designing a scheduling algorithm system designers seek to
have the best possible scheduling performances. An algorithm with the best schedulability
performances is said to be optimal towards that objective. It is defined as follows:

Definition 9. A real–time scheduling algorithm is said optimal with respect to a task

model, if any feasible task set on m processors is schedulable by the algorithm on at

most the same number of processors.

For non mixed–criticality task set, schedulability tests for optimal scheduler consist in
verifying that the task set utilisation is lower or equal to the processor number.

Yet, finding optimal scheduler is not always granted.
In this case, it is interesting to know how far a scheduling algorithm is from the optimal

performances. This can be achieved with the speed–up factor.
The speed-up factor [30] has been extensively used to compare the performances of

scheduling algorithms. But before defining what the speed–up factor is, we need to define
what is a clairvoyant optimal scheduling algorithm:

Definition 10 (Clairvoyant optimal algorithm [30]). A clairvoyant optimal scheduling al-

gorithm is a scheduling algorithm that knows prior execution for how long each job of

each task will execute and is able to find a valid schedule for any feasible task set.

Such clairvoyant scheduling algorithm cannot be implemented. Nonetheless, assessing
quantitatively a scheduling algorithm performance with respect to the clairvoyant schedul-
ing algorithm provides a normalized metrics.
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This quantitative performance indicator is called speed–up factor:

Definition 11 (Speed–up factor [31]). The speed–up factor s for a scheduling algorithm

A corresponds to the minimal factor by which the speed of each processor of a set of unit–

speed processors has to be increased such that any task set schedulable by a clairvoyant

scheduling algorithm becomes schedulable by A.

The lower speed s, the better the algorithm A. In this context, it is considered that an
optimal mixed–criticality scheduling algorithm would have a speed–up factor of 1.

Such a characterization of the schedulability performances only gives an insight on the
worst case performances of the scheduling algorithm.

Empirical criteria Empirical assessments are used to know the average performances
of a scheduling algorithm. They are usually performed by randomly generating task sets
that are thought to be representative of the systems that could effectively be scheduled
with the studied algorithm.

Then statistics are build from these results to determine the likelihood that a task set is
schedulable by the algorithm. Such an information is not proofs but it allows engineers to
decide the risk they take when using such schedulers.

Once the task set samples have been generated, the count of successfully scheduled
task sets is used to determine an average schedulability ratio. Different sampling methods
have been proposed even for mixed–criticality task sets, [32; 33; 34].

Assessing overheads Task set sampling offers the opportunity to actually compute sched-
ules, and thus assess the preemption count entailed by scheduling algorithms. Computing
upper bounds is far too pessimistic, empirical analysis is the most spread way to assess
this aspect for multi–processor scheduling algorithms.

An alternative approach is to implement the scheduler and embed it in operating sys-
tem. Then, the prototype is assessed through monitoring task execution to check time-
liness, and also measuring time spent in scheduler code. Several scheduling algorithms
have been assessed this way recently [26; 35; 36]. These implementations enable to de-
termine whether a scheduling algorithm can be efficiently implemented and to compare
several scheduling algorithms. Negative results only mean that the proposed implemen-
tation is inefficient. Similarly positive results are not proofs, and can provide statistical
information at best.

Next section presents respectively a state of the art for non mixed–criticality task model
and mixed–criticality model. The idea is to show how a scheduler performs on the simpler
multi–criticality system model (defined in 2.3.1) compared to the mixed–criticality one.
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2.3.3 Hard–real scheduling algorithms

We first present scheduling algorithms that do not fully take advantage of the mixed–
criticality task model and schedule them as multi–criticality task sets. Indeed, with these
algorithms mode changes are not handled. Despite this major limitation, we present them
as such algorithms have been used to design mixed–criticality scheduling algorithms han-
dling the mode changes. We present algorithms of the three types previously described,
partitioned, and semi–partitioned, and global. For each type of algorithms, we nonetheless
present only the algorithms with remarkable performances.

Partitioned scheduling algorithms

The approach of partitioned algorithm can be decomposed in two steps. The first step
consists in allocating the tasks to the processor, this is a NP–hard problem. To perform
this allocation, heuristics are used to find the best possible allocation, that is the one using
the fewest possible number of processors. The most common heuristics are the following:

• First Fit: allocate the task to the first processor with sufficient capacity.

• Best Fit: allocate the task to the processor with the largest utilisation of allocated
tasks.

• Worst Fit: allocate the task to processor with the smallest utilisation of allocated
tasks.

Tasks can be considered in the order of increasing or decreasing utilisations.
Then the scheduling on each processor is performed by using any uniprocessor schedul-

ing algorithm, such as Earliest Deadline First that is optimal for uni–processor systems [37].
But partitioned scheduling algorithms suffer low theoretical scheduling performances.

There is no optimal partitioned scheduling algorithm, and the highest provable utilisation
bound for such algorithms is m+1

2 [38], where m denotes the number of processors. This
limitation comes from the fact that each processors can have idle time and yet this idle is
to small on each processor to execute any task but gathered it could be used execute tasks.

Semi–partitioned scheduling algorithms

Semi–partition algorithms aim at mitigating the disadvantage of partitioned algorithms
that cannot use the idle time of several processors to execute a same task. This is achieved
by allowing a subset of tasks to execute on several processors if they cannot be allocated
to a single processor. These tasks are called migrating tasks. The determination of these
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migrating tasks is performed as for partitioned algorithms during the allocation of tasks
to processors prior the execution of the system. Two approaches exist to perform the
migration of the tasks between processors. Either each job of a migrating task is executed
on different processors, this is referred to as job portion migration [24]. Or each job of
a migrating task is executed on a single processor out of a subset of processors. This is
referred to as restricted migration approach [25].

Many semi–partitioned algorithms are based on the job portion migration approach.
Among these algorithms, EDF with task splitting and k processors in a group (EKG) [39]

is remarkable as it is optimal for determined configurations. It consists in first splitting
the task set in heavy and light tasks. The determination of whether a task is heavy or
not depends on a parameter k. During the allocation, heavy tasks are each assigned to
a processor. Light tasks are allocated to processors without any heavy tasks. Since the
scheduling on each processor is performed with EDF, a task can be assigned to processor
if the added up utilisation is lower or equal to 1. If one light task does not fit on a single
processors then it is split into two subtasks and allocated to a group of processors. The
two subtasks are never executed at the same time thanks to a dispatcher algorithm that is
called each time a task activates in a group of processors.

Another optimal approach is the "Notional Processor Scheduling – Fractional capac-
ity" (NPS–F), [40] algorithm. This algorithm is based on the use of periodic reserves

and notional processors. Periodic reserves are basically servers that are used to scheduled
tasks following a uni–processors scheduling policy (such as EDF) and executed periodi-
cally in accordance with a timeslot length. Each reserve is executed periodically for a fixed
length of time. These reserves have a resulting utilisation that amounts to the sum of the
task utilisations they contain and is then inflated to ensure a correct schedule. They also
use the notion of notional processor that describes the execution of a reserve over several
processors without it executing at the same time on more than one processor. This no-
tably describes the offset between the start of execution of each reserve so that this latter
property is respected. The allocation of tasks is performed in two steps. First the tasks
are partitioned in bins, as during a usual partitioned scheduling algorithm. Then each bin
is associated to a notional processor. These notional processors are next allocated to the
physical processor. Two approaches are possible. The first is called flat mapping. In this
approach notional processors are allowed to use only two processors at most. Their allo-
cations are performed by filling each physical processor at a time. If a notional processor
cannot be completely allocated to a processor, the exceeding part is allocated to the next
processor. The second approach is called the semi–partitioned mapping. If the number
of processors is m, then the m first notional processors are each assigned to a processor.
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The remaining notional processors are allocated in the remaining capacity of the proces-
sors potentially resulting in migrations between several processors. During the execution
of the system, each reserve is executed periodically as specified by its timeslot length.
Then tasks in servers are executed following the Earliest Deadline First (EDF) scheduling
policy. It is optimal in particular configurations that also entails more preemptions and
migrations [29].

One algorithm based on the restricted migration approach is EDF–RRJM [24]. A
heuristic job partitioning is used to determine on which processors each task execute.
Migrating tasks are assigned a subset of processors on which they can execute. Each
job of a migrating task is executed on a single processor among this subset of processors
following a Round Robin job migration policy. This policy consists in executing the jobs
of a migrating task on each processor of their subsets in a cyclical way. Experiments
show that this policy entails fewer preemptions than other algorithms based on the job
partitioning approach, while being as competitive as these latter algorithms [24].

Global scheduling algorithms

Many global scheduling algorithms have been proposed.

One of the first optimal scheduling algorithms for multi–processors proposed was Pfair
algorithm [41]. This algorithm schedules the tasks by dividing the time into quanta of
same size. Inside each quanta, all tasks are executed proportionately to their utilisations.
But it has been shown that this algorithm incurs high overheads, in particular through the
generation of many preemptions. Besides it requires the synchronization of all processors
at each quanta. A variant of Pfair called DP–Fair, for Deadline–Partitioning Fair, that
partly remedies to these downsides has been proposed. Tasks are fairly executed between
two consecutive deadlines of any two tasks to schedule.

But several optimal scheduling algorithms entail fewer preemptions.

Among them is RUN [42]. This algorithm works with servers. Authors define servers
as virtual tasks that are composed of a rate, a set of client tasks or other servers and a
set of activation times and deadlines. These servers are also provided with a scheduling
policy that is used to schedule the set of clients for a duration proportional to the rate of
the server. RUN works in two steps. The first step is performed offline and consists in the
derivation of a hierarchy of servers called the Reduction tree. Its derivation is based on two
principles. The first principle is to decompose the multi–processor scheduling problem
into several uni–processor scheduling problems. This is achieved with the use of a first
kind of servers, referred to as primal servers. These servers are used to group tasks and
form uni–processor scheduling problems. The second principle is based on the observation
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that a primal server may not fully use a processor to execute its clients. This happens
when a server has a rate strictly lower than 1. In this case, the processor would have time
intervals of inactivity called idle time. The idle time of a primal server is modeled through
the use of a second kind of server called dual server. Such servers have each a single
client: the primal server from whom they have been derived. By grouping these dual
servers and scheduling them in other primal servers, the number of processors required to
schedule all the uni–processor scheduling problems can be reduced. The Reduction tree
is formed by alternatively creating primal and dual servers until a single primal server is
formed. The second step of the algorithm RUN is performed online and consists in taking
the scheduling decisions. These decisions are made based on the Reduction tree and on the
uni–processor scheduling policy used in the different kind of servers. For primal servers,
these decisions are taken in accordance with the Earliest Deadline First (EDF) scheduling
policy. For the dual servers, when it is itself executed, then its corresponding primal server
is not executed. Scheduling decisions are taken at each releasing of a job and at each
depletion of the budget of a server, primal or dual. This scheduling algorithm is optimal
for periodic tasks with implicit deadlines and has been demonstrated to entail the fewest
number of preemptions and migrations among global scheduling algorithms.

Another optimal scheduling algorithm called U-EDF [43], for Unfair EDF, is also
known to entail few preemptions and migrations. Note that this algorithm can also sched-
ule sporadic tasks with implicit deadlines. This algorithm also works in two steps. The
first step consists in reserving an execution time budget on each processor for each task
through a global process. This allocation is based on the "horizontal" generalisation of the
EDF scheduler. In this generalisation, tasks are still considered in the order of increas-
ing deadlines but tasks with the highest priorities are not each assigned a processor as in
Global–EDF, the usual generalisation of EDF to multi–processor. Instead, this generalisa-
tion consists in allocating execution time budget to as many tasks as possible on a same
processor. When a processor cannot completely execute a task, then its remaining execu-
tion is performed on another processor that is in turn allocated budgets for as many tasks
as possible. This allocation is also done for tasks that do not have active jobs, to ensure
that their future jobs will have enough execution time budgets. This allocation of budgets
takes place each time a new job is released. Once this allocation of tasks to processor
is done, the scheduling is performed on each processor using a modified version of EDF
called EDF with Delays (EDF–D). Between two jobs releasing, EDF–D executes the tasks
on a processor in the order of increasing deadlines that are not already executed on other
processors and that have available budget on the processor. Each time a task is executing
on a processor its budget on the processor is decreased by as much as it has executed.
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Among the fixed–priority global scheduling algorithm fpEDF [44] has been proved to
have an optimal utilisation bound when considering only fixed–priority scheduling algo-
rithm with limit equal to m+1

2 . It basically assigns the highest priority to tasks with an
utilisation strictly greater than 0.5 and schedules the other tasks using Earliest Deadline
First.

2.3.4 Mixed–criticality scheduling algorithms for the discarding tasks

We now present multi–processor scheduling algorithms that fully take advantage of the
mixed–criticality discarding task model. They are all standard real–time scheduling algo-
rithms modified or composed to handle the mixed–criticality task model. These modifica-
tions aim at allowing the correct and efficient use of the mixed–criticality task model. This
is what is called adaptation of a real–time scheduling algorithm. For interested readers, a
thorough review of the research results on mixed–criticality systems is available in [45].
We classify these algorithms depending on whether they handle only two criticality lev-
els, also called dual–criticality systems, or more than two criticality levels. And then as
previously, we distinguish partitioned, semi–partitioned and global scheduling algorithms.

Algorithms for dual–criticality systems

Partitioned mixed–criticality scheduling algorithms. In [46], authors propose an ex-
tension of the zero-slack rate-monotonic scheduling approach (ZSRM) [47]. It consists
in computing offline zero slack instants. These are instants after which a HI task cannot
complete its execution with its HI budget before its deadline if LO tasks are not stopped.
This approach can be used in support of a uniprocessor scheduling policy such as EDF or
RM. In the extension to multi–processors, they notably perform the task allocation first
using usual heuristics such as Best Fit and Worst Fit. Then they use ZSRM to reduce the
number of processors required.

The uniprocessor mixed–criticality scheduling policy EDF–VD has also been used in
partitioned way [48]. EDF–VD, EDF with Virtual Deadlines, being the best uniprocessor
mixed–criticality scheduling algorithm [49] in terms of speed–up factor. In this algorithm,
virtual deadlines are computed for HI tasks. They are computed so that the execution of
HI tasks in LO mode is performed sufficiently soon enough before their real deadlines.
The idea is that if a mode change occurs they are able to respect their real deadlines. It
is achieved by computing a factor that is used to diminished the deadline in LO mode of
HI tasks. This increases of the utilisation of the HI task in LO mode. But this increase is
performed such that the utilisations of the task set after the increase stay lower or equal
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to 1. The partitioned version of this algorithm has a speed–up factor of 8m−4
3m , with m the

number of processors. Several heuristics for the allocation of tasks to processors were
tested in [33]. One conclusion of this paper is that allocating HI task in the order of
decreasing utilisation using the Worst Fit heuristic, and LO tasks in the order of decreasing
utilisation with the First Fit heuristic gives the best results.

Yet, partitioned algorithms do not present the best theoretical schedulability perfor-
mances, notably compared to global scheduling algorithms.

Semi–partitioned mixed–criticality scheduling algorithms. In [50], authors propose
a semi–partitioned approach. Mode changes are performed on a processors basis, that is
the mode change is only performed on the processor on which a TFE occurred. LO tasks
executed on the processor on which the TFE occurred are migrated to another processors.
The schedulability analysis is based on the Adaptive Mixed Criticality (AMC) approach.
AMC is based on a response time analysis that verifies the schedulability in LO mode, HI
mode and during a mode change [51]. Mechanisms are also proposed to switch back to the
LO mode. But being based on partitioned approach, allowing migrations only to enforce
a mode change, the theoretical schedulability performances can also be assumed to be no
better than those of a global scheduling algorithm.

Authors in [52] propose an extension of NPS–F [40] a semi-partitioned scheduling
algorithms to mixed–criticality systems. Their approach consists in partitioning HI tasks
over the available processors. The remaining capacity on all processors is then used to
execute LO tasks. The complete description of this algorithm remains to be done.

Global mixed–criticality scheduling algorithms. The principle of Virtual Deadlines
presented in the previous section about non mixed–criticality schedulers has been used in
two global mixed–criticality scheduling algorithms.

First, with the scheduling algorithm fpEDF to form fpEDF–VD [53]. It uses the same
principle than for EDF–VD and simply replaces the schedulability test of EDF by those of
fpEDF. This scheduling algorithm has a speed–up factor of

√
5+1. Hence, this algorithm

has not the best schedulability performances.

The second algorithm in which virtual deadlines are used is MC–DP–Fair[34], the
current best scheduling algorithm in terms of schedulability performances. Authors first
adapt the fluid scheduling concept to the mixed–criticality systems to yield MC–Fluid. It
basically computes rates so that HI tasks execute sufficiently in LO mode. It takes into
account that if a mode change occurs then they are able to complete theirs execution in HI
mode. Another fluid algorithm, DP–Fair, is also adapted to mixed–criticality systems with
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the additional requirements of the computation of Virtual Deadlines. These algorithms
have been proved to have a speed–up factor of 4

3 [54]. This speed–up value has been
proved to be the optimal value of the speed–up factor for mixed–criticality scheduling
algorithms [49]. Later methods to more easily compute the rates of each task have been
proposed [55; 54]. But as all fluid algorithms, MC–fluid is hardly implementable and
entail many preemptions and migrations. Although, MC–DP–Fair can be implemented
but it is known to entail many preemptions and migrations.

Algorithms generalised to more than two criticality levels

In this section, we only consider scheduling algorithms for tasks using the discarding task
model.

The first mixed–criticality scheduling framework was presented in [56], with the par-
ticularity of being able to handle five criticality levels. It is a hierarchical framework with
five containers, one for each criticality level. Each container has a particular scheduling
policy. For the most critical tasks, a scheduling table is used on each processor. For the
second most critical ones, partitioned EDF is used. Tasks of the third and fourth levels are
scheduled with global EDF. The last one using a best effort scheduling algorithm. On each
processor, tasks are scheduled in decreasing order of criticality levels and then within each
criticality level with one of the aforementioned scheduling policy. Although this algorithm
is implementable [32], it requires that the periods of the tasks of the second criticality level
are harmonic to those of the first level. Hence, it can only be used in specific cases.

2.3.5 Mixed–criticality scheduling algorithms for elastic task model

We present here multi–processor scheduling algorithm for elastic tasks. They are also
adaptation of real–time scheduling algorithms.

In [57], authors propose a semi–partitioned scheduling algorithm for elastic tasks. It
consists in performing the partitioning of the LO and HI tasks on the processors by consid-
ering the HI mode timing parameters of the tasks. Then the scheduling online is performed
by using early–release Earliest Deadline First [58]. In this scheduling policy tasks are
scheduled following the EDF policy. But LO tasks are scheduled with LO mode periods if
HI tasks do not completely use their HI mode budgets and hence leave unused execution
time budget. The determination of whether the unused execution time budget is sufficient
to execute more often a LO task is performed online at so called "early released points".
The unused execution time budget considered is either those available on the same pro-
cessor than the LO task. Or the LO task current job can migrate to another processor if
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the unused execution time budget is available on another processor. The issue with this
approach is that no guarantees can be given before the execution of the system that HI
tasks will leave enough processor capacity to execute LO tasks in LO mode.

In [59], authors propose a partitioned scheduling algorithm for elastic task. Two allo-
cation table of tasks on processors are defined, one for each mode. These tables are defined
so that each HI task keeps executing on its processor whatever the mode is. Each LO task
may have a different processor assigned to it, for each mode. In case of mode change, a
LO task may have to migrate from processors. They also propose an approach to minimise
the number of migrations once a first draft of allocation tables has been computed. Online
tasks are scheduled with fixed priorities assigned using the response time analysis when
performing the partitioning.

We presented two scheduling algorithms for the elastic task model. Both are parti-
tioned or semi-partitioned (fixed-priority) scheduling algorithms. To our knowledge, there
is no global scheduling algorithm that can schedule elastic task. It would be of interest to
have such algorithm since global scheduling algorithms are known to have better theoret-
ical performances than partitioned ones.

2.4 Conclusion

This chapter presented the context, and related works to the problematic studied in this
thesis.

A need for more elaborated task models raised from the automotive industry context.
This chapter detailed this need. Then, the challenges represented by possibles approaches
to treat this need have been explained. In particular, the link between WCET computa-
tion, safety and sizing has been highlighted. Such a link leads engineers to see safety as
contradictory with cost reductions.

In this context, it appeared that finding compromises in design process between safety
guarantees and sizing issues would be a key result. Such a problem is not new but tech-
nologies have changed and the tension between safety and sizing constraints increased.
For this reason, studies on this compromise received lately a lot of attention, and lead
mixed–criticality scheduling theory.

Background on real time scheduling has been recalled. Then, we detailed most relevant
contributions with respect to mixed–criticality approaches. Indeed, such results aim at
lowering the tension resulting from the contradictory objectives of safety engineers, and
system designers (usually in charge of the sizing).
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It appeared that many contributions are available in the field of mixed–criticality schedul-
ing for multi-processors. Yet, such contributions seem to have either poor schedulability
performances, or provide poor results with respect to schedulability overheads. Next chap-
ter details our problematic and objectives with respect to this issue.
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The focus on mixed–criticality systems has led to the design of many scheduling algo-
rithms. For multi–processor platforms, all types of scheduling algorithms have been pro-
posed, from the hierarchical scheduling framework MC2[56], to the partitioned scheduling
algorithm based on EDF–VD, or global scheduling algorithms, such as fp–EDF–VD and
MC–fluid [34]. Yet, as pointed out in the section 2.3.4 p 30, each of these algorithms
presents shortcomings when it comes to efficiency or applicability. Hence, we aim at de-
signing a mixed–criticality scheduling algorithm which is efficient and practicable. As for
all current mixed–criticality scheduling algorithms, its design is also achieved by adapting
an existing real–time scheduling algorithm. But to make sure that the resulting scheduling
algorithm presents the targeted characteristics, the design of our mixed–criticality schedul-
ing algorithm follows a step-by-step approach. The first three steps aim at avoiding that
the resulting mixed–criticality scheduling algorithm exhibits the same defects of current
mixed–criticality scheduling algorithms. The following three next steps are the require-
ments that any mixed–criticality scheduling algorithm has to fulfil to correctly and effi-
ciently schedule a mixed–criticality system. The last step considers the use of another
degradation model of task execution than the discarding task model.
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3.1 Conditions for a well set up adaptation

There is currently no mixed–criticality scheduling algorithm adapted from a real–time
scheduling algorithm both efficient and practicable. Indeed, all current adaptations have
led to mixed–criticality scheduling algorithms with defects, such as a high number of
preemptions or the scheduling of systems with only two criticality levels, among others.
Therefore, the adaptation has to be carried out by always bearing in mind all the charac-
teristics we want the resulting mixed–criticality algorithm to have. It starts by carefully
choosing the initial real–time scheduling algorithm to adapt. The second step consists in
carefully assessing the cost of each strategy of adaptation for the chosen scheduling algo-
rithm. Finally, the need to handle more than two criticality levels is not to be forgotten.

3.1.1 Inheritance of qualities and defects of the initial algorithm

The design of a mixed–criticality scheduling algorithm starts by the choice of a real–
time scheduling algorithm. The choice among real–time multi–processor scheduling al-
gorithms is sizeable but all are not worth to be adapted.

To guide the choice of the original real–time scheduling algorithm, the targeted char-
acteristics have to be taken into account. Indeed, if we examine current mixed–criticality
scheduling algorithms, the best global mixed–criticality scheduling algorithm is MC–
fluid [34], when considering only theoretical and experimental schedulability performances.
MC–fluid has been shown to be far better than fp–EDF–VD the second best global mixed–
criticality scheduling algorithm. When the comparison is also performed between the
initial real–time scheduling algorithms, the same conclusion can be drawn. MC–fluid is
based on the fluid real–time scheduling algorithm, which is known to be optimal, and
is also far better than fp–EDF used by fp–EDF–VD. For uni–processors and partitioned
scheduling algorithms, the best mixed–criticality scheduling algorithm is based on EDF,
and is called EDF–VD. EDF is on the whole the best real–time scheduling algorithm for
uniprocessor, both in terms of schedulability performances, as it is optimal, and in terms
of number of entailed preemptions [60]. Hence, there seems to have a relation between the
performances of the real–time scheduling algorithm and the performances of the resulting
mixed–criticality scheduling algorithm.

Therefore, it can be assumed that not only schedulability performances are impacted
by the initial real–time scheduling algorithm performances. In the two previous examples,
fp–EDF–VD and MC–fluid, the computation of the timing parameters used to take the
scheduling decision is changed but not the event used to trigger a call to the scheduler.
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Hence, the number of calls to the scheduler remains unchanged. Accordingly, the result-
ing number of preemptions and migrations should remain unchanged between the initial
real–time scheduling algorithm used as a basis and the corresponding mixed–criticality
scheduling algorithms. As a result, fluid algorithm and its derivatives being known to
produce many preemptions, it is highly likely that the adaptations of these algorithms to
mixed–criticality systems also entail many preemptions. This is illustrated later in this
thesis.

Finally, the feasibility of the implementation of the scheduling algorithm should also
be taken into account. Indeed, some algorithms are based on concept that can hardly be
put into practice. For example, fluid algorithm is not implementable on usual processors
as it supposes to provide a share of execution to all tasks at each instant. This also af-
fects MC–fluid making it therefore highly difficult to implement, that is why derivatives
of fluid algorithms based on a degraded fluid hypothesis have been proposed. But again
these derivatives can be affected by other defects such as Pfair [31] that requires the syn-
chronisation of all the processors. Thus the re–scheduling on all processors is performed
at the time and can result in memory contention due to the loading of all data of the tasks
to schedule in caches [61] at the same time.

Consequently, the choice of the algorithm should be done by selecting the real–time
scheduling algorithm that presents the targeted characteristics. Once the real–time schedul-
ing algorithm is chosen, the next step consists in determining which strategy of adaptation
to use.

3.1.2 Complexity to perform the adaptation

The adaptation aims at altering real–time scheduling algorithms so that they can handle
the peculiarities of the mixed–criticality system model. Mixed–criticality scheduling al-
gorithms have to handle different sets of timing parameters while real–time scheduling
algorithms have been designed to handle a single one. In particular, real–time scheduling
algorithms have not been designed to switch online from a given set of timing param-
eters to another one, and in particular to let tasks to potentially execute with a larger
budget. To proceed to this adaptation two strategies can be distinguished from the current
mixed–criticality scheduling algorithms. But depending on the initial real–time schedul-
ing algorithm, a strategy can require more modifications than the other. Besides, the more
modifications are carried out, the more the real–time scheduling algorithm is changed and
the more its characteristics are likely to be altered. Hence, the choice of the strategy to per-
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form this adaptation should be made with the aim of limiting the modifications performed
on the real–time scheduling algorithm.

In real–time systems, tasks have only a single value for their timing parameters. As
described in section 2.3.1 p 16, in mixed–criticality systems, a task can have several values
for a given timing parameter and its execution can be stopped. Their proper scheduling
requires the respect of new constraints, that are described later in section 3.2 p 40, that
have to be respected by the adaptation of the real–time scheduling algorithm. Current
adaptations of real–time scheduling algorithms have been done using, to our knowledge,
one of the following strategies:

• Strategy based on timing parameters: with this strategy either the computation of
the timing parameters used to take scheduling decisions is adapted to the pecu-
liarities of mixed–criticality systems, or new timing parameters are used in the
scheduling policy. This strategy generally means that when a mode change occurs,
tasks change of timing parameters. It presents the advantage to leave unaltered the
scheduling overheads of the scheduling policy since the scheduling decision process
remain unaltered.

• Hierarchisation of the scheduling algorithm: one or several scheduling levels are
added, with possibly a different scheduling algorithm at each level. This strategy
enables the use as is of the real–time scheduling algorithms of the different levels of
the hierarchy. Besides, it generally avoids changing timing parameters when a mode
change occurs. But each added scheduling level increases the scheduling overheads.

Each strategy has cases where it requires fewer modifications to perform the adap-
tation than in other cases. For instance, the strategy based on timing parameters allows
to adapt EDF without deeply modifying it. Indeed, it simply requires to compute proper
so–called virtual deadlines for each task to be used in LO mode leaving other aspects of
EDF untouched. But, it might not be the case for other scheduling algorithm, as for exam-
ple RUN [42]. Indeed, RUN bases its online scheduling decisions on a complex structure
computed offline from the timing parameters of the task set to schedule. Using the strategy
based on timing parameters with RUN does not only require to correctly change timing
parameters but also the structure. Thus, in the case of RUN, using this strategy, we might
not have to consider only the need of each task but also how the structure is computed
and how it is used. Indeed, the functioning of this structure might even require to be
changed to fit with the mixed–criticality model. Consequently, adapting RUN with this
strategy may require a lot of modifications, affecting potentially critical aspects and hence
its characteristics.
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Therefore, the adaptation has to address the following problem:

Problem of the complexity of the adaptation:

the adaptation of the real–time scheduling algorithm should result in as few modifications
as possible.

Independently of the chosen algorithm and of the strategy used to adapt it, all mixed–
criticality scheduling algorithms are first designed using a restricted model of the mixed–
criticality systems. Indeed, most of them consider mixed–criticality systems with only two
criticality levels, called dual–criticality systems. This enables us to simplify the problem of
designing such algorithm as the resolution of the mixed–criticality schedulability problem
has been shown to be NP–hard [62] even with only two criticality levels.

3.1.3 Dual–criticality model: a restrictive model

In mixed–criticality systems, criticality levels are often linked to Safety Integrity Lev-
els (SILs) whose number depends on the industry sector. Although the relation between
SILs and criticality level is not necessarily correct, as argued in [17], it means that mixed–
criticality scheduling algorithms should handle up to five criticality levels. Yet, even if we
consider this link as erroneous, criticality levels can be seen as a design parameter that
engineers can use to better fulfil their requirements. Indeed, if a mixed–criticality system
can always be transformed in a dual–criticality system, as proposed in [63], results in loss
of information on task requirements without bringing any clear advantage [64]. Besides,
handling more criticality levels leaves engineers more scope to finely classify their tasks in
different criticality levels and thus add more executions modes. The use of more execution
modes enables to potentially delay the discarding of tasks whose criticality level is not the
lowest nor the highest. It could hence improve the availability of tasks with intermediate
criticality levels. Finally, by designing each task at an adapted criticality level it limits de-
sign costs. Indeed, the higher the criticality level, the higher the confidence in the design
is required, and hence the larger the costs are [65].

But a majority of mixed–criticality scheduling algorithms have been designed to sched-
ule dual–criticality systems, that is mixed–criticality systems with two criticality levels.
The resulting algorithm should then be extended to handle more criticality levels. But it
is rarely done and it is not clear whether it can be done at all and, then, done without
degrading the performances observed for only two criticality levels. The limitation to only
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two criticality levels is aimed at simplifying the scheduling problem when designing the
scheduling algorithm. Indeed, it has been proven that even with only two criticality levels,
the resolution of the mixed–criticality schedulability problem is a NP–hard problem [62].

However, if a scheduling algorithm designed for dual–criticality systems, may not
work for system with more criticality levels since it is a different problem. Finding a so-
lution for dual–criticality systems does not imply that this solution also works for systems
more criticality levels. Consequently, the following problem is to be addressed:

Problem of the generalization to N criticality levels:

a real–time scheduling algorithm adapted to dual–criticality systems may not be extended
to schedule systems with more than two criticality levels.

The three following steps describe the requirements to fulfill so that a mixed–criticality
scheduling algorithm is correct and efficient.

3.2 Requirements for a correct and efficient adaptation

The task model in mixed–criticality systems rests upon the multiplicity of timing parame-
ters for each task and the definition of several execution modes. This enables to adapt the
task timing parameters to the observed execution behaviour of the system. These online
changes of timing parameters alter the scheduling sequences and can occur at the exhaus-
tion of execution budget of any task. Hence, a mixed–criticality scheduling algorithm has
to fulfil three requirements. The first is to ensure that each mode can be correctly sched-
uled. Secondly, we have to ensure that mode changes are correctly performed whenever
they happen. Finally, the adaptation has to ensure the correctness of the scheduling the
most efficiently as possible.

3.2.1 Schedulability per execution mode

In mixed–criticality systems, there are several execution modes defined and, in each of
these modes, tasks have different timing parameters. But real–time scheduling algorithms
are not designed to handle such a diversity in their task set model that results in having
several different task sets to execute. For a mixed–criticality task set to be schedulable, it
first requires that all execution modes are schedulable by the scheduling algorithm.
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Task name Period / Deadline Criticality level C(LO) C(HI)
τ1 5 HI 2 4.5
τ2 3 LO 1 1
τ3 10 HI 3 6.5

Table 3.1: Example of a simple MC task set

Mixed–criticality scheduling algorithms have to be able to allow tasks to use different
WCETs. It means that it has to be able to handle the different processing power require-
ments of each execution mode. For example, the dual–criticality task set in table 3.1 if
scheduled by fp–EDF requires 2 processors in mode LO, but in mode HI it requires 3
processors. Hence, fp–EDF would require at least 3 processors to schedule both modes,
because of the need of the mode HI, otherwise the mixed–criticality system would not
be schedulable. If only two processors are provided, the mixed–criticality system is not
schedulable as the mode HI is not schedulable.

The scheduling of a mixed–criticality system requires first to solve the following prob-
lem:

Problem of the scheduling of a multi–mode task set:

all execution modes of mixed–criticality system have to be schedulable by the chosen
real–time scheduling algorithm.

This condition is necessary but not sufficient. Indeed, when a Timing Failure Event
occurs, a mode change is performed but for it to be correct safe guard mechanisms have
to be provided in order to avoid a deadline miss.

3.2.2 Disruption of the mode change

Mode changes must be done without making the system unschedulable. In particular,
higher criticality tasks must still meet their deadlines after such event.

However, checking that each execution mode passes the schedulability test associated
with the scheduling algorithm does not ensure that a mode change will be properly han-
dled. Indeed, consider the simple dual–criticality task set in table 3.1. If we schedule tasks
τ1 and τ2 using the real–time scheduling algorithm Earliest Deadline First (EDF), we can
easily check that both modes LO and HI pass the associated schedulability test:
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T2
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Figure 3.1: Task set from table 3.1 executing in mode LO

T1
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t
T1 T1
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Figure 3.2: Task set from table 3.1 executing in mode HI

UΓ(LO) = 11
15 ≤ 1 and UΓ(HI)(HI) = 0.9≤ 1

The resulting scheduling sequences are shown in figures 3.1 and 3.2 for modes LO and
HI respectively.

Now, assume a Timing Failure Event (TFE) occurs at time t = 3. We can observe in the
scheduling sequence of figure 3.3, that the HI task τ1 misses its deadline. It does not have
sufficient time between its deadline and the time of occurrence of the TFE to complete its
execution using the budget of the HI mode.

A mode change results in the modification of the task set to schedule and of the task
timing parameters. In particular, it enables higher criticality tasks to execute for longer.
But this additional execution time must be consumed within the remaining time that sep-
arates a task from its deadline, otherwise, a deadline miss follows. The issues are that a
TFE can happen after the exhaustion of the execution budget of any task and that passing
the schedulability test associated to the real–time scheduling algorithm in each mode is not
sufficient. Consequently, the correctness of mode changes has to be ensured by providing
mechanisms. The aim of these mechanisms is to ensure that higher criticality tasks can
execute safely with a larger execution time budget without missing their deadlines.

The scheduling of a mixed–criticality system requires to solve the following problem:

0 1 2 4 5 6 7 9 108
t

T2 T1

TFE

T1

Deadline missed

3

Figure 3.3: Example of a failed mode change: a deadline is missed by the HI task
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Problem of the disruption created by a mode change:

The scheduling of a mode cannot be made independently of the other modes.

In any case, ensuring correct mode change constrains the adaptation of a real–time
scheduling algorithm affecting the efficiency of the mixed–criticality scheduling algo-
rithm.

3.2.3 Mitigation of the negative impact of the adaptation

Mixed–criticality scheduling theory emerged to allow a more efficient use of the execu-
tion platforms. But the adaptation of a real–time scheduling algorithm has to ensure the
correct scheduling of each mode and the correct handling of mode changes to ensure a
correct scheduling of the mixed–criticality system. However, fulfilling these requirements
can have a negative impact on the efficiency of the resulting mixed–criticality scheduling
algorithm.

Mixed–criticality scheduling theory aims at reconciling safety and efficiency. Safety
has to deal with the problems of the scheduling of several modes and with the handling of
mode changes. These problems require safe guarding mechanisms that affect the perfor-
mances of the mixed–criticality algorithms. Indeed, it has been proved that the minimum
speed–up factor of any mixed–criticality scheduling algorithm is 4

3 [49], while real–time
scheduling algorithms are optimal, that is they have a speed–up factor of 1. This is be-
cause unlike a clairvoyant scheduling algorithm the mode in which the system will execute
cannot be known before the execution.

The objective is to execute the system on the maximal number of processors required
by one of the execution modes while ensuring a correct scheduling. It is at least ex-
pected that any mixed–criticality system can be scheduled on no more processors than
the number required if the system was executed as a multi–criticality system. Current
mixed–criticality scheduling algorithms fulfil this objective with one of the two following
strategies:

1. The use of idle time. Each mode may not completely use the available processors.
Hence, there are time intervals during which processors are idle, we refer to these
time intervals as idle time. A strategy toward efficiency is to distribute the idle time
of each mode to the different tasks. MC–fluid employs this strategy by inflating the
rates of the HI tasks both in LO and HI modes using the available idle time of those
modes.
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2. The use of the slack time of tasks. HI task budgets are different in mode LO and HI.
The difference of budget between mode is called slack time. This slack time can be
used to execute LO tasks. It is employed in the scheduling policy presented in [47]

and in MC2.

The distribution of the idle time between tasks presents the advantage of being avail-
able to all tasks and under no conditions. On the contrary, the slack time of the higher
criticality tasks is only available when the higher criticality task has completed its ex-
ecution. But using the slack time of higher criticality tasks presents the advantage of
enabling the sharing of executed time budget between tasks. It enables the scheduling of
tasks without taking into account their execution requirements when sizing the process-
ing power needed to execute the system. Either way the schedulability performances of
mixed–criticality scheduling algorithm depends on the efficient use of available unused
time.

Therefore, besides the correctness issue, we also have to address the following prob-
lem:

Problem of the efficiency of the mixed–criticality scheduling:

Ensuring the correctness of the scheduling of mixed–criticality system leads to the
alteration of the performances.

Mixed–criticality system theory has emerged as a solution to industrial problems. As
stated in the introduction, this thesis has been carried out within an industrial project.
Our industrial partners provided feedback on the assumptions of mixed–criticality system
theory, and in particular, on the discarding task model.

3.3 Discarding task model: a limited degradation model

Industrial partners have expressed the need for another model of degradation model of
task execution enabling a better availability of lower criticality tasks after a mode change.
Indeed, most mixed–criticality scheduling algorithms use as degradation model of task
execution for their LO tasks what we call the discarding degradation model of task execu-
tion. In this degradation model of task execution, LO tasks are completely stopped after
a mode change and are hence unable to provide any level of service. Another degrada-
tion model of task execution allowing lower criticality tasks to provide a minimal service

44 © 2017 Romain GRATIA



3.3. Discarding task model: a limited degradation model

level is the elastic task model. But scheduling elastic tasks and discarding tasks may each
require specific adaptation of a real–time scheduling algorithm.

The elastic task model consists in lengthening the periodicity and deadlines of the LO
tasks. Thus, we still have to ensure that LO tasks are provided with a minimal execution
time budget even after a mode change occurred. Therefore, the way the adaptation is done
for discarding tasks may not handle this change in periods.

Indeed, here the challenges for the adaptation is not to deal only with a change in
WCETs but also in periods. Therefore, the problem to solve is not to only provide more
execution time to HI tasks and nothing to LO tasks after a mode change occurred. But
it is to provide more execution time to HI tasks and execute LO tasks with less stringent
timing requirements. This distinction in objectives influences how the adaptation is carried
out.

This can be observed when comparing Early–Release Earliest Deadline First (ER–
EDF [58]) and EDF–VD. ER–EDF has been designed to schedule elastic task while EDF–
VD schedules discarding tasks. Both algorithms manage to schedule dual–criticality sys-
tems by modifying timing parameters. But ER–EDF computes particular release times for
LO tasks while EDF–VD computes particular deadlines for HI tasks. Hence it seems that
from a same initial real–time scheduling algorithm, the adaptation to schedule discarding
tasks or elastic tasks can be not carried out in the same way.

One might consider the discarding degradation model of task execution as a particular
case of the elastic task model, as it would correspond to a task with a periodicity approach-
ing infinity. However, the extension from the discarding model to the elastic task model is
less obvious because of the remaining execution in HI mode with the elastic task model.
Therefore, designing a dual–criticality scheduling algorithms first for discarding tasks and
then use this scheduling algorithm to also schedule elastic tasks seems highly difficult.

Problem of the limitation of the discarding task model:

Designing a mixed–criticality scheduling algorithm for tasks using the discarding
degradation model of task execution, makes the use of another degradation model of task

execution highly difficult.
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3.4 Conclusion

In this chapter, we described the issues to overcome in order to design a mixed–criticality
scheduling algorithm that does not present the same defects than current mixed–criticality
scheduling algorithms.

We thus started by describing the precautions to take to avoid the defects of the current
mixed–criticality scheduling algorithms. First, when we choose the real–time scheduling
algorithm to adapt. Second, when we choose the strategy to perform the adaptation. And
finally, it requires to anticipate the scheduling of systems with more than two criticality
levels.

We have then presented the requirements to respect when designing a mixed–criticality
scheduling algorithms. In particular, we described the issues raised by mode changes.
We also exposed the negative effects on the efficiency of scheduling algorithms of the
mechanisms required to handle mode changes.

We finally pointed out the need expressed by industrial partners for another degra-
dation model of task execution than the discarding task model. The elastic task model
offers a degradation model that can suit their needs. Yet, scheduling elastic tasks with
a mixed–criticality scheduling algorithm designed for the discarding task model is not
straightforward.

In the next, chapter we briefly present our solutions to tackle these issues.

46 © 2017 Romain GRATIA



4 Approach overview

TABLE OF CONTENTS

4.1 DECOMPOSITION OF THE MIXED–CRITICALITY MULTI–PROCESSOR SCHEDUL-
ING PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 PERFORMANCES OF THE COMPOSITION . . . . . . . . . . . . . . . . . . . . 51

4.3 MIXED–CRITICALITY SYSTEMS WITH ANY NUMBER OF CRITICALITY LEV-
ELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 ELASTIC TASK MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

47



Chapter 4. Approach overview

The previous chapter has detailed the issues to cope with when designing a mixed–
criticality scheduling algorithm. In this chapter, we give an overview of our solutions to
address these problems and to design our mixed–criticality scheduling algorithm.

Our approach to design a mixed–criticality scheduling algorithm for multi–processor
platforms consists in splitting the multi–processor mixed–criticality scheduling problem
into two distinct and simpler scheduling problems. This decomposition is illustrated in
figure 4.1. To achieve this decomposition, we partition the task set and execute these
partitions into servers. These servers, called modal servers, enforce a mixed–criticality
scheduling policy and deal with the peculiarities of the mixed–criticality systems. This
makes them schedulable by a multi–processor real–time scheduling algorithm. The use of
these servers results in a hierarchical scheduling framework in which a top level sched-
uler, the multi–processor real–time scheduling algorithm, determines the modal servers to
execute. Then schedulers in modal servers, designated as low level schedulers, elect tasks
to execute. Thanks to the use of this hierarchical framework, we only have to design a
mixed–criticality scheduling policy for the low level scheduler.

Modal server 2

Modal server 1

Modal server 4

Modal server 3

Modal server 5

LO mode

HI mode

τ{χ = HI}

τ{χ = HI}

τ{χ = LO}

Processor 1

Processor 2

Top level
scheduler :

Low level
scheduler:

Multi–processor
scheduler

Mixed–criticality
scheduler

Figure 4.1: Representation of the hierarchical scheduling framework

Our mixed–criticality scheduling policy takes advantage of the slack time provided by
HI tasks in LO mode. This slack time is used to either complete the execution of HI tasks,
if a mode change is performed, or to schedule LO tasks in LO mode. We prove prior to
the execution that the slack time provided by HI tasks is sufficient to ensure the correct
execution of LO tasks as long as the LO mode remains active. Hence, a same piece of
execution budget is either used to schedule LO or HI tasks, instead of using two distinct
budgets to schedule LO and HI tasks. This sharing of budgets reduces the number of
processors required to schedule the system. The potential LO tasks not executed in slack
time of HI tasks are scheduled in modal servers with dedicated execution resources.

Performances of the resulting hierarchical scheduling framework, such as the ratio of
schedulable task sets and the number of preemptions entailed, depend on the performances
of the scheduling policies used in the hierarchy. First, the offline determination of which
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LO tasks can be executed in HI task slack time has a key impact on the schedulability
performances of our algorithm. Indeed, the larger the utilisation of LO tasks scheduled in
slack time is, the fewer processors are required. Secondly, we choose the multi–processor
scheduling algorithm based on performance criteria. These criteria aim at ensuring that
our mixed–criticality scheduling algorithm has the targeted characteristics. Indeed, in
section 3.1.1 p 36, we observed that the current mixed–criticality scheduling algorithms
inherited the same defects than their initial real–time scheduling algorithms.

This approach only schedules dual–criticality systems, we then describe our approach
to schedule system with more criticality levels. Mixed–criticality peculiarities are handled
in modal servers the system appears as a non mixed–criticality one to the multi–processor
scheduling algorithm. Indeed, HI tasks are scheduled in modal servers and LO tasks are
either scheduled in HI task slack time or in other modal servers. Hence, the use of the
modal servers somehow reduces by one the number of criticality levels. Therefore, to
handle more criticality levels, we design an inductive process that performs the partitioning
of the tasks by considering that the system comprises only two criticality levels during each
step. This process iterates from the lowest criticality levels to the highest ones and works
for any number of criticality level.

Finally, we generalise our approach to also schedule LO elastic tasks. It requires to
adapt the elastic task model before the partitioning of tasks in modal servers. This adap-
tation consists in determining for each LO elastic task the minimal execution time to pro-
vide in HI mode and the additional execution time required in LO mode. It is achieved
by decomposing the elastic task execution into two subtasks. The first subtask is always
scheduled and ensures the execution of the LO elastic task in HI mode. The second sub-
task is executed only in LO mode and provides the additional execution time required in
LO mode.

We start by giving an overview on how the composition of the two scheduling policies
is carried out.

4.1 Decomposition of the mixed–criticality multi–processor
scheduling problem

To design our mixed–criticality scheduling algorithm, we decompose the scheduling of
the mixed–criticality system on multi–processor platform into two scheduling problems.
We use servers to perform this decomposition of the scheduling problem as shown in
figure 4.1. In the lower part of this figure, servers are used to enforce a mixed–criticality
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τ{χ = HI}

C(HI)− C(LO)

Slack time

τ{χ = HI}

C(LO)

C(HI)

LO Mode

HI Mode

Figure 4.2: Origin of the slack time

scheduling policy on a subset of mixed–criticality tasks schedulable on a uniprocessor.
This mixed–criticality scheduling policy takes advantage of the slack time of HI tasks to
either schedule LO tasks or complete HI tasks depending on the active mode. That is
why, these servers are called modal servers. These servers are then scheduled by a multi–
processor real–time scheduling algorithm as pictured in the upper part of the figure 4.1.
These scheduling algorithms form a hierarchical scheduling framework with a top level
and a low level schedulers. Where the multi–processor scheduling algorithm is the top
level scheduler and our mixed–criticality scheduling policy is the low level one.

Mixed–criticality systems are defined with two execution modes, LO and HI modes,
each with their own timing parameters and task sets to schedule. If HI tasks were executed
using their budgets of HI mode even in LO mode, then a part of this budget would be
unused as long as the active mode is the LO mode. This unused part of the budget is
referred to as slack time. This slack time can be estimated prior execution, as pictured in
figure 4.2, and is equal to the difference of budgets between HI and LO modes for each HI
task. It can be used to either schedule LO tasks or to complete HI tasks.

We need to design a mixed–criticality scheduling policy, that ensures the correct schedul-
ing of LO and HI tasks in the slack time. It notably has to ensure that HI tasks can complete
their executions after a Timing Failure Event (TFE) occurred. Our scheduling policy first
completes HI task executions, so that we have the assurance that slack time is not needed
by HI tasks. Then LO tasks are then safely executed in the slack time left by the HI tasks.
Since, the scheduling performed in the slack time of a HI task is akin to the scheduling
on a uniprocessor, only one LO task at a time can be scheduled. Thus, a uniprocessor
scheduling policy is used to select the LO task to execute.

A way to enforce a particular scheduling policy on a limited set of tasks is to use
servers. We call them modal servers because of their particular mixed–criticality schedul-
ing policies. As modal servers are used to schedule tasks in the slack time of HI task, each
modal server schedules a HI task. The set of LO tasks is determined offline by performing
a partitioning of all LO tasks in modal servers.
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Servers provide limited and constant amount of execution time available during only
limited time interval corresponding to the slack time of HI tasks. Furthermore, available
slack time can be large but split among many HI tasks. Therefore, each HI task can only
provide a very limited amount of slack time potentially preventing the scheduling of any
LO task in their slack time. To limit this scattering of the slack time, we can use the
slack time of several HI tasks to execute a same subset of LO tasks. The modal servers
scheduling these HI tasks form then what we call aggregated modal servers. Aggregated
or not, modal servers cannot correctly schedule all tasks with their resources due to the
limitation of the available slack time. Hence, we need schedulability tests to ensure that
tasks executed within this limited resource are correctly scheduled. This schedulability
test is performed during the partitioning of the LO tasks in the modal servers. If a LO task
passes the schedulability test, it is said to be allocated to the modal server.

This requires to have a resource model for these servers, a model that fits with the
slack time availability. Modal servers handle the mixed–criticality peculiarities through
the use of a mixed–criticality scheduling policy. This policy does not require changing
timing parameters of the modal servers between modes. Hence, this resource model can
be a model used for hard real–time tasks. By using such model it makes modal servers
compatible with the models used by multi–processor real–time scheduling algorithms.
Hence, an adapted resource model is one that mimics the periodic task model behaviour:
the periodic resource model [66]. In this model, the resource can be accessed for an
amount of time fixed by a budget that is replenished periodically. Besides, it is a simple
and widespread resource model compatible with most real–time scheduling algorithms
giving us a large choice for the multi–processor scheduling algorithm.

4.2 Performances of the composition

The hierarchical scheduling framework is composed of two different scheduling policies.
Its performances are dependent on the performances of each scheduling algorithm. As a
consequence, performances of each scheduling algorithm has to be in line with our ob-
jectives in terms of number of preemptions and schedulability performances, in particular
concerning the ratio of task sets successfully scheduled.

First, each scheduling algorithm of the hierarchy has an impact on the number of
preemptions entailed by the whole scheduling framework. The number of preemptions
entailed by the hierarchical scheduling algorithm corresponds to at most the sum of the
preemptions entailed by its two scheduling algorithms. Indeed, if a preemption occurs at
the top level, then it results at the low level in a preemption that was not going to happen
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if the scheduling algorithm of the low level was alone. Inversely, low level scheduling
algorithm can entail preemptions that top level scheduling algorithm would not have.

Besides, the overall schedulability test consists in performing the schedulability test
of each level. A mixed–criticality system is schedulable by the hierarchical scheduling
framework if two conditions are fulfilled. First, if subsets scheduled in modal servers
successfully pass the schedulability test associated to modal server scheduling policy. The
second condition for the system to be schedulable is that the schedulability test associated
to the multi–processor scheduling algorithm is successfully passed by the modal servers.
Hence, if the two scheduling algorithms have pessimistic schedulability tests or a low
utilisation bound then the resulting scheduling algorithm will present poor schedulability
performances.

Therefore, the choice of the scheduling algorithm, for the multi–processor scheduling
or uniprocessor one in modal servers, must take into account these aspects, as we antici-
pated in section 3.1.1 p 36 of the problem statement. Indeed, we then observed that the cur-
rent mixed–criticality scheduling algorithms inherited the defects of the real–time schedul-
ing algorithms used for their designs. These considerations lead us to choose RUN [42] as
multi–processor scheduling algorithm and Earliest Deadline First (EDF) to schedule LO
tasks in HI task slack time. These two scheduling algorithms entail few preemptions [60;
42] and are both optimal scheduling algorithms for multi–processor and uniprocessor plat-
forms respectively.

The scheduling performances are also affected by the partitioning of the LO tasks in
modal servers. During this partitioning, we determine which LO tasks is scheduled in HI
task slack time by allocating LO tasks to modal servers. As LO tasks executed in HI task
slack time do not need their own execution time budgets, the more LO tasks are executed
in HI task slack time, the fewer processors are required to schedule the whole system. We
have to solve an optimisation problem, with the aim of maximising the utilisation of LO
tasks scheduled in HI task slack time.

4.3 Mixed–criticality systems with any number of criti-
cality levels

As exposed in section 3.1.3 p 39 in the problem statement, most existing mixed–criticality
scheduling algorithms are actually dual–criticality scheduling algorithms, that is schedul-
ing algorithms for systems with only two criticality levels. The demonstration that these
dual–criticality scheduling algorithms can also schedule mixed–criticality systems with
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Figure 4.3: Available slack time in each mode of a CL–X task

more than two criticality levels is, in most cases, not given nor straightforward. In our
case, it is achieved by performing the allocation of lower criticality task in modal servers
with an inductive process.

First, notations have to be extended to the case of systems with more than two criti-
cality levels. When speaking of systems with more than two criticality levels, we use a
notation based on numbers. A task of criticality level X is noted a CL–X task. For exam-
ple, a task of criticality level 2 is noted a CL–2 task. The greater X the more critical the
task is. Identically, we note mode X the mode in which all tasks of criticality levels greater
or equal to X are executed with their budgets corresponding to criticality level X.

If executed with its budget of criticality level X, a CL–X task would not completely
use its budget in modes below mode X as depicted in figure 4.3. As its budget is not
completely used, slack time is available. And the lower the active mode is, the more
slack time is available. Hence, in a similar way to dual–criticality systems, the slack
time corresponding to each mode for tasks of criticality level greater than 2 can be used
to schedule tasks with the help of modal servers. The difference here is that a task of
criticality level greater than 2 can still have slack time after the several Timing Failure
Events (TFE). After one TFE, only the difference of budgets between the old active mode
and the new one is required to complete the execution of the higher criticality task. For
instance in the figure 4.3, when changing from mode 2 to mode 3 the slack time use to
complete the CL–X task amounts to C(3)−C(2). We then say that this slack time is of
mode 3, as it is used to complete the higher criticality task when mode 3 becomes active.
Consequently, for a CL–X task its slack time can be used to schedule X−1 sets of lower
criticality tasks Γl , with l ∈ [2,X ], one for each mode from mode 2 to mode X.
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Each set Γl is scheduled in the slack time that is equal to the difference of budgets
between two modes. In figure 4.3, the task set Γ3 is scheduled in the slack time of mode 3.
This slack time of mode 3 can be used in modes 1 and 2 to execute lower criticality tasks
but is needed in mode 3 to complete the CL–X task. A modal server has now to handle
several sets of tasks to take advantage of the slack time of a task.

To determine the criticality level of the tasks that can be scheduled in each of these of
sets of tasks, we examine when the slack time is required to complete the higher criticality
task. A set of lower criticality tasks must not be scheduled if the CL–X needs to complete
its execution. This happens when a TFE occurs and a higher mode becomes active. Hence,
each of these sets have to contain tasks that no longer need to be executed when the CL–X
task needs to complete its execution. In the case of the slack time needed by the CL–X
task when mode 3 becomes active, only tasks with a criticality level strictly lower than
3 can be scheduled in it. This ensures that when the CL–X task needs its slack time to
complete its execution, it can use it without preventing another task from being executed
while it should be. To always respect this condition when performing the allocation of
lower criticality tasks in modal servers, we develop an inductive process.

In order to ensure that each slack time of mode M+1 has only tasks with a criticality
level strictly lower than M+1, we form two groups of tasks based on criticality levels,
as pictured in figure 4.4. First group contains tasks with criticality level strictly lower to
M+1 and are represented in the lower part of the figure. The second one contains tasks
of all other criticality levels from M+1 to X, the highest one, represented in the upper
part of the figure. Once these groups are formed, we partition tasks of criticality level
lower than M+1 into the sets of modal servers. This partitioning aims at executing tasks
of lower criticality levels in slack time of mode M+1 of tasks of criticality level at least
M+1. In figure 4.4, lower criticality tasks are allocated in slack time of mode M+1 equal to
C(M+1)−C(M). After this partitioning, lower criticality tasks are in task sets of modal
servers corresponding to slack time of mode M+1.

All criticality levels are then processed by repeating this grouping and partitioning
with the remaining criticality levels. Each step results in the reduction of the number of
criticality levels by one thanks to the allocation, until reaching the highest criticality level.
The resulting task set exhibits no mixed–criticality characteristics as for dual–criticality
systems.

The scheduling in modal servers follows the same principle than for dual–criticality
system. A modal server executes first its task of highest criticality level and then schedules
tasks of lower criticality level in the slack time left.
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Figure 4.4: Allocation of CL–L tasks into slack time of tasks of higher criticality level

4.4 Elastic task model

When a TFE occurs, LO task execution is impacted. The impact on their execution de-
pends on the degradation model of task execution. The degradation model of task execu-
tion used in most mixed–criticality scheduling algorithm is what we call the discarding
model presented in section 2.3.1 p 20 of the related work. In this model, LO tasks are
completely stopped after a mode change. But, as explained in section 3.3 p 44 of the prob-
lem statement, such a model may be unfit for industrial needs. Indeed, industrials want
that some tasks that are not HI tasks remain executed in HI mode but with a lower rate
of execution. Hence, we consider the use of another task model with a different degra-
dation model of task execution, called the elastic task model. With this model, LO tasks
are not stopped altogether but their execution is performed with less stringent timing re-
quirements after a mode change. LO tasks are executed with larger period and deadline
but with a same execution time budget as pictured in figure 4.5. In this figure, a LO task is
executed C time units with a period T(LO) in LO mode. When HI mode becomes active
this same task is still executed C time units but only with a period T(HI) = 2·T(LO). LO
elastic tasks execution is slowed down in HI mode but not completely stopped. Hence, the
use of modal servers based on our previous approach requires some adaptation as model
server budget is only available in LO mode.

In HI mode, a LO elastic task receives its minimal execution requirements. In LO
mode, it receives its nominal execution requirements. A mode change results in lower
execution requirements for LO elastic tasks. To match with our previous proposal, we
compute the minimal execution requirements in HI mode and the additional execution
requirements compared to HI mode needed in LO mode. This additional execution re-
quirements, only required in LO mode, can then be provided by modal servers.

© 2017 Romain GRATIA 55



Chapter 4. Approach overview
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Figure 4.5: Execution of an elastic task in different modes

This requires to alter the elastic task model. We do not execute a LO elastic task in HI
mode with a lower period and with a same budget than in LO mode. We execute it with a
same period in both modes but with a lower budget in HI mode. We transform a change in
periods into a change in budgets.

By doing this, a LO elastic task τ can be seen as the combination of two subtasks,
as pictured in figure 4.6. These two subtasks are servers that are used to execute the LO
elastic task and each has the following scheduling objective:

1. Subtask τNMC provides the execution time required in HI mode as pictured in fig-
ure 4.6. It ensures that the LO elastic task receives its budget C every period of
the HI mode T(HI). It is executed in both modes and hence cannot be executed in
a modal server. It is noted τNMC, with NMC for non mixed–criticality since it is
always executed.

2. Subtask τDIS provides the additional execution time to subtask τNMC so that LO
elastic task execution requirements are met in LO mode. As it is executed only in
LO mode, this subtask can be executed in a modal server. It is noted τDIS, with DIS
for discarding, as it is discarded after a mode change.

C C

C

T (LO)

T (LO)

τNMC

τDIS LO mode

HI mode

T (HI)

Figure 4.6: Decomposition of an elastic task execution in the different modes

We need to determine the timing parameters of the two subtasks. We need to ensure
that subtasks provide the required execution time when the LO elastic task needs it. Hence,

56 © 2017 Romain GRATIA



4.5. Conclusion

we set the period of the subtask τNMC to the greater common multiple of the periods of
LO and HI modes of the LO elastic task. The period of the τDIS is equal to the period in
LO mode of the LO elastic task. We compute first the additional budget required in LO
mode to schedule the LO elastic task in LO mode. It corresponds to the budget of the
subtask τDIS and it is computed such that the subtask can be executed in the slack time of
a set of modal servers. Then we compute the required budget to correctly execute the LO
elastic task in HI mode. It corresponds to the budget of the subtask τNMC. This budget is
computed such that the execution of both τNMC and τDIS ensures the scheduling of the LO
elastic task as pictured in figure 4.6. To ensure that a LO elastic task complete execution
is assured by τNMC and τDIS in LO mode, τNMC and τDIS are executed sequentially.

Finally, subtasks τDIS are partitioned into modal servers as LO discarding tasks.

4.5 Conclusion

In this chapter, we presented our solutions to tackle the different issues we identified in
the previous chapter when designing a mixed–criticality scheduling algorithm.

Our approach to design our mixed–criticality scheduling algorithm for multi–processor
platforms is to decompose the scheduling problem. We first design a mixed–criticality
scheduling policy for uniprocessor. This mixed–criticality scheduling policy uses the slack
time of HI task to either schedules LO tasks or to complete HI task execution depending
on the active mode. It requires to partition the task set into several uniprocessor prob-
lems. Then a multi–processor scheduling policy is used to schedule the different unipro-
cessor problems. This is achieved by executing each uniprocessor scheduling problem into
servers called modal servers. The use of these two policies form a hierarchical schedul-
ing policy and yield our mixed–criticality scheduling algorithm for multi–processor plat-
forms. The details of our hierarchical scheduling framework and of our mixed–criticality
scheduling policy are given in chapter 5.

The performance of our mixed–criticality scheduling policy depends on two aspects.
First, the choice of the multi–processor scheduling algorithm. Then, the effectiveness of
the use of the slack time of HI tasks. This depends on how efficiently we perform the
partitioning of the tasks in modal servers. This is an optimisation problem. We address
the performance issues in chapter 6.

We also generalise our mixed–criticality scheduling algorithm to system with more
than two criticality levels. This is done by performing an inductive process that considers
each criticality level from the lowest criticality level to the highest one. It basically splits
the task set in two groups based on criticality levels: one group contains tasks of the lowest
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criticality levels, the other all other tasks. Tasks in the first group are scheduled in the slack
time of tasks in the second group. This inductive process is presented in chapter 7.

Finally, we explain how we extend our approach to handle a different model of the
degradation of the task execution, the elastic task model. It is achieved by performing the
execution of LO elastic tasks in two different subtasks providing the minimal execution
requirements of HI mode and the additional execution requirements of LO mode. We use
slack time of a HI task to provide additional execution requirements in LO mode. This is
addressed in chapter 8.
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Chapter 5. The structure of the mixed–criticality scheduling policy

For the design of our mixed–criticality scheduling algorithm for multi–processor plat-
forms, we proposed in the previous chapter to decompose the scheduling problem into two
distinct problems. The mixed–criticality scheduling problem is handled as uniprocessor
problems in modal servers that are scheduled by a multi–processor real–time scheduling
algorithm. The justification for this approach is twofold.

First, it eases the conception of the overall scheduling algorithm. With such framework
we still have to design a mixed–criticality scheduling policy for uniprocessor but we can
use an existing multi–processor real–time scheduling algorithm. Designing a uniprocessor
scheduling policy is easier than designing a multi–processor one [31].

Secondly, we choose to base our mixed–criticality scheduling policy on the use of
the HI task slack time to schedule LO tasks. The use of the slack time aims at reducing
the number of processors required, as LO tasks scheduled in HI task slack time do not
require their own execution resources. But it requires to reserve the slack time for these
LO tasks and prevent other tasks from executing in it. Furthermore, we have to prove
prior to the execution that scheduling of LO tasks is ensured. This can only be achieved
if we know when and how much slack time is available, that is what are the available
execution resources to execute these LO tasks. The usual technique to purposely provide
a determined and constant amount of execution resources to a subset of tasks following a
particular scheduling policy is to use execution servers. These execution servers require to
be scheduled by a second scheduling policy forming a hierarchical scheduling framework.

Yet, several issues remain to be addressed. We have to design a mixed–criticality
scheduling policy. Indeed, we need a mixed–criticality scheduling policy that enables the
scheduling of tasks in the slack time of other tasks while respecting their hard real–time
constraints.

The correctness of the scheduling produced by this hierarchical scheduling framework
is to be ensured. This notably requires specific schedulability tests for the scheduling
of LO tasks in HI task slack time that takes into account the limitation of the execution
resources provided.

In this chapter, we address the scheduling problem that concerns the mixed–criticality
aspect of the scheduling but only with two criticality levels. The second scheduling prob-
lem concerns the scheduling on multi–processors, and is addressed in chapter 6. The gen-
eralisation to mixed–criticality systems with more than two criticality levels is addressed
in chapter 7.

In this chapter, we lay the foundations of our mixed–criticality scheduling algorithm.
We first explain and justify why the hierarchical scheduling framework gives the ex-
pected mixed–criticality scheduling policy for multi–processor and on which conditions
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this scheduling is correct. Then we introduce modal servers. After providing a gen-
eral definition of modal servers, we describe the three ways to use these modal servers
to schedule a mixed–criticality system. First, modal servers enforce our mixed–criticality
scheduling policy that schedules LO tasks in the slack time of a single HI task, we name
such modal servers slackful modal server. We also provide schedulability tests that en-
sures that a LO task is schedulable in the slack time of a HI task. Second, modal servers
are used to schedule LO tasks that cannot be scheduled in HI task slack time, we refer to
these modal servers as slackless modal server. Lastly, slack time can be scattered among
several HI tasks and this can prevent from scheduling any LO task in slack time while the
overall available slack time is large. Therefore, we merge several modal servers to form
what we call aggregated modal servers enabling the scheduling of LO tasks in the slack
time of several HI tasks.

5.1 Laying the foundation of our mixed–criticality schedul-
ing policy for multi–processors

In this section, we detail the formation of our mixed–criticality scheduling policy for
multi–processor and the conditions to fulfil to schedule a system with such a hierarchi-
cal scheduling framework. Then, we determine how much slack time is available and
present the issue of its use.

5.1.1 Hierarchical scheduling framework

The decomposition of the mixed–criticality scheduling problem on multi–processor plat-
forms into two problems, one for the mixed–criticality scheduling on uniprocessor, the
other for multi–processor one, aims at easing the design of our scheduling algorithm. Each
scheduling problem is addressed by using a dedicated scheduling policy. Then the com-
bination of these two scheduling policies form what is called a hierarchical scheduling
framework.

Hierarchical scheduling frameworks have been used to ease the conception of sys-
tems with applications developed independently. These applications come with their own
scheduling policies to schedule their own task sets, designated as low level scheduling al-
gorithm. A top level scheduling algorithm is used to schedule these applications. When
an application is executed it enforces its low level scheduling policy to elect the tasks to
execute.
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A key element to design such scheduling framework is the execution server, that is
defined as follows:

Definition 12. An execution server is a sequence of operations aiming at scheduling tasks.

It is characterized by a resource model, a task set and a scheduling policy. An execution

server uses the execution resources described by its resource model to execute its task set

following its scheduling policy.

Low level schedulers in servers can be any scheduling policy even a policy handling a
different model of tasks.

Modal server 2

Modal server 1

Modal server 4

Modal server 3

Modal server 5

LO mode

HI mode

τ{χ = HI}

τ{χ = HI}

τ{χ = LO}

Processor 1

Processor 2

Top level
scheduler :

Low level
scheduler:

Multi–processor
scheduler

Mixed–criticality
scheduler

Figure 5.1: Representation of our hierarchical scheduling framework for mixed–criticality
scheduling on multi–processor platforms

For instance servers are used to schedule aperiodic tasks with periodic tasks. Conse-
quently, we can use servers to schedule mixed–criticality tasks and let a multi–processor
real–time scheduling algorithm schedule these servers as represented in figure 5.1. This
requires that the resource model of the execution server fits with the task model of real–
time scheduling algorithm and in particular unchanging execution requirements. Then,
scheduling an execution servers is identical to schedule a task.

Such hierarchical scheduling framework can also be used to compose several different
scheduling policies to yield a specific scheduling policy. An example is the Reduction to
UNiprocessor scheduling algorithm [42]. In RUN, two different scheduling policies are
used in a hierarchical structure whose overall functioning gives an optimal scheduling al-
gorithm for multi–processor platforms. Hence, by composing our two scheduling policies
for multi–processor and mixed–criticality systems in a hierarchical framework, we obtain
our mixed–criticality scheduling algorithm for multi–processor platforms by organising it
as pictured in figure 5.1. The mixed–criticality scheduling policy is enforced at low level
of the hierarchical framework and the multi–processor at its top level.

The schedulability of the whole system is ensured if the schedulability in each server
is ensured and if the schedulability at the top level scheduling algorithm is ensured, that is
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if all execution servers are correctly scheduled. A correctly scheduled execution server is
defined as follows:

Definition 13. An execution server is correctly scheduled when it receives execution re-

sources as described by its resource model.

The following theorem gives the conditions for a task set to be schedulable in an exe-
cution server:

Theorem 1. Let S be an execution server with a resource model, Γ its task set and A
its scheduling policy. If server S is correctly scheduled and Γ fulfils the schedulability test

associated to scheduling policy A to be scheduled in server S then task set Γ is schedulable

by server S.

Proof. We prove this theorem by contradiction. Consider that there is a server S with a
task set Γ scheduled following a scheduling policy A . This server S is correctly sched-
uled and Γ fulfils the schedulability test associated to A . Yet, a task in Γ still misses its
deadline. Two cases: either schedulability conditions to be scheduled in server are met but
server S does not provide expected execution time to the task set Γ or server S provides
expected execution but schedulability conditions are not met. The first case contradicts
the first assumption of the theorem stating that the server is correctly scheduled. The sec-
ond case opposes the second assumption of the theorem that assumes task set Γ passes a
schedulability test and hence server S provides sufficient execution resource to schedule
it.

The correctness of the scheduling of the task sets of servers depends on the sufficiency
of the execution resources received by execution servers and provided by them to their task
sets. The next step is to determine the resource model of the execution servers enforcing
our mixed–criticality scheduling policy that we call modal servers. This resource model
has to enable the allocation of the slack time.

5.1.2 Allocation of the slack time

Before introducing modal servers we determine the resource model that best suits to the
slack time and the precautions required when allocating LO tasks to this slack time.

A mixed–criticality system is expected to execute in LO mode, HI tasks executed with
their budgets of LO mode. They fully use their budgets of HI mode only after a mode
change occurred, which is considered to be a very rare event. Now, let us assume we
execute HI tasks with their budgets of HI mode in both LO and HI modes. Then HI tasks
generate what we call slack time defined as follows:
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τ{χ = HI}

C(HI)− C(LO)

Slack time

τ{χ = HI}

C(LO)

C(HI)
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Mode HI
τ{χ = HI}

τ{χ = HI} Slack time

T T

Figure 5.2: Origin of the slack time

Definition 14. Slack time is idle time that originates from unused part of a task budget.

For a HI task, this slack time amounts to C(HI)−C(LO) as represented in figure 5.2.
It is provided each time a HI task is executed as long as LO mode is active. Thus, the slack
time of each HI task is provided every period of that task in LO mode, meaning that slack
time is a periodic resource [66].

Task Period Criticality C(LO) C(HI) U(LO) U(HI)
τ1 5 HI 1 3 0.2 0.6
τ2 2 HI 0.5 1.5 0.25 0.75
τ3 8 HI 0.8 3.2 0.1 0.4
τ4 8 LO 3.2 3.2 0.4 0.4
τ5 15 LO 3.75 3.75 0.25 0.25
τ6 12 LO 2.4 2.4 0.2 0.2
τ7 12 LO 2.4 2.4 0.2 0.2

Table 5.1: Example of MC task set with two criticality levels

For example, consider a typical mixed–criticality task set with two criticality levels
presented in table 5.1, we shall use it to illustrate issues or to detail our solutions for
the scheduling of systems with two criticality levels in the following. Task τ1 slack time
amounts to 2 time units and is replenished every T1 = 5 time units and corresponds to a
utilisation equal to 0.4.

Besides, we define the availability of the slack time as follows:

Definition 15 (Slack time availability). Slack time of task τi is said available when it is

not used to execute task τi.

Now that we have determined the resource model of the slack time, we can determine
how to use it by taking into account two constraints.

First, the execution requirements of HI tasks: slack time must always be available to
complete HI tasks execution.
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Figure 5.3: Availability of the slack time: unsuccessful execution
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Figure 5.4: Availability of the slack time: successful execution

Second, the limited amount of slack time available and its period of replenishment.
It requires to check that there is enough slack time to schedule a LO task and that this
slack time is available when the LO task needs it. Therefore, ensuring that LO tasks are
correctly scheduled in slack time requires the use of proper schedulability tests, that are
presented in section 5.3.3 p 70.

To illustrate this issue, consider the figure 5.3. Task τ4 from table 5.1 is executed
within τ1 slack time. But as can be seen in this figure, if the slack time of task τ1 is made
available only once τ1 has completed its execution, then τ4 misses its deadline at time 8.
The only way to ensure that task τ4 respects its deadline is to perform its execution before
τ1 has completed as described in figure 5.4. But then a potential mode change could not
be correctly performed for task τ1, as slack time has been partly used to execute the LO
task while task τ1 needs the whole slack time to complete its execution in HI mode.

In the following sections, we first introduce a general definition of modal servers and
their mixed–criticality scheduling policy to schedule a set of LO and HI tasks. Then, we
present how to use this modal server to schedule a single HI task and use its slack time to
schedule LO tasks. After presenting schedulability tests to ensure the scheduling of LO
task in HI task slack time, we present how modal servers are used to schedule LO tasks
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Figure 5.5: Budget replenishment of a periodic server S with budget CS = 2 and period
TS = 5

that cannot be scheduled in any HI task slack time. Finally, we describe how to schedule
a set of LO tasks in the slack time of several HI tasks with aggregated modal servers.

5.2 Modal server

Modal servers are introduced to enforce our mixed–criticality scheduling policy. In this
section we present the general definition of a modal server.

Modal server are used to schedule periodic task. To fit with this model we introduce
periodic servers:

Definition 16. A periodic server S is an execution server whose resource model is de-

scribed by a period TS and a budget CS, replenished every period TS, and a utilisation

US =
CS
TS

.

Periodic servers behave as periodic tasks with implicit deadlines: they execute peri-
odically for as long as their budgets as pictured in figure 5.5 and each of their executions
must be completed before their next activation, that represents its deadline.

As for tasks, we can define the utilisation UΓS of a set of periodic servers ΓS such that:

UΓS = ∑
Si∈ΓS

Ui (5.1)

Note that periodic servers present unchanging execution requirements, characterized by a
single budget and a single period. We make explicit for such periodic severs what it means
to be correctly scheduled:

Definition 17. A periodic server S of budget CS and period TS is said to be correctly

scheduled if it effectively executes CS time units every TS time units.
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But because of the mixed–criticality context modal server definition slightly differ
from regular periodic servers or execution servers and are defined as follows:

Definition 18. A modal server MS is a periodic server with two sets of tasks:

• A set of HI tasks ΓMS(HI).

• A set of LO tasks noted ΓMS(LO).

These two task sets are scheduled as follows:

• In LO mode, HI tasks in ΓMS(HI) are scheduled first and once they are completed,

tasks in ΓMS(LO) are scheduled following a uniprocessor scheduling policy.

• In HI mode, only HI tasks in ΓMS(HI) are scheduled.

In our case the uniprocessor scheduling policy used to schedule the LO tasks is Earliest
Deadline First.

However, if we use this definition of the modal server, we cannot prove the correctness
of the mixed–criticality scheduling policy enforce in these servers. Indeed, in LO mode,
LO tasks scheduling may not be ensured since it depends of the completion of all the HI
tasks first. Therefore, we use our modal servers with at most one HI task executed in each
modal server. In the remainder of this chapter, we present the way of using our modal
servers to produce a correct mixed–criticality scheduling.

5.3 Slackful modal server

We define what is a slackful modal server and prove the correctness of our mixed–criticality
scheduling policy in this context. This modal server allows to take advantage of HI task
slack time to schedule LO tasks.

5.3.1 Definition of slackful modal server

A slackful modal server is defined as follows:

Definition 19. A slackful modal server is a modal server whose task set of HI tasks Γ(HI)

is constituted of a single HI task τh.

Hence a slackful modal server is a particular case of modal servers. We call the HI
task the providing task, as it provides the slack time. To represent a modal server, and a
slackful modal server in particular, we use a representation as in the figure 5.6. What is
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LO Mode HI Mode

C(HI)

Modal server (MS)

ΓMS(LO)

τ{χ = HI} τ{χ = HI}

Figure 5.6: Task sets scheduled by slackful modal server

scheduled in LO mode is designated by the left arrow. The HI task τ(HI) is represented
first indicating that it is executed first. Then the set of LO tasks ΓMS(LO) is below the HI
task indicating it is executed after the HI task. The right arrow designate what is scheduled
in HI mode: the HI task.

Before proving the correctness of the mixed–criticality scheduling for slackful modal
server, we describe how we compute the timing parameters of such modal servers. First,
we remind the definition of a divisor:

Definition 20. Let n and m be two integers. n is a divisor of m, noted n | m, if there exists

an integer k such that m = nk.

The first objective of a slackful modal server is to ensure the scheduling of its HI task.
Hence slackful modal server timing parameters should be set to schedule its HI task the
most efficiently as possible.

Davis and Burns [67] show that the utilisation of an execution server required to sched-
uled a set of tasks is lower when the server period is a divisor of the period of one of the
task. Following their results, a modal server should have a period that is a divisor of its HI
task period.

Now, assume that the period set for a slackful modal server is a divisor of its HI task
period. We still have to compute the budget of the slackful modal server. This budget must
be sufficient to schedule the HI task in both HI and LO modes and as low as possible, in or-
der to minimise the required processing power to schedule it. The following theorem gives
a schedulability condition to schedule a task in a periodic server with a period multiple of
the task period:

Theorem 2. If a periodic task τi and a periodic server S are such that TS | Ti and Ui ≤US,

then S ensures τi schedulability.

Proof. It is akin to perform a period transformation [68; 16] on the HI task.
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This theorem can be used to compute the required budget of our slackful modal server:
the budget must be such that the resulting utilisation of the slackful modal server is equal
to utilisation in HI mode of its HI task. And it is the minimal value of utilisation that
allows the correct execution of the HI task. This minimal utilisation value ensures the
scheduling of the HI task whenever the period of the execution server is a divisor of the
HI task period.

But for a same utilisation, the smaller the period of the slackful modal server is the
smaller its budget. Smaller budget means that the execution of the HI task is split as
several executions of the slackful modal server is required to complete the execution of a
job of the HI task. But we have to take into account that each time a server is scheduled
it entails the same overheads than a task, e.g context switching among others, and also
the overheads originating from the use of servers [67]. Therefore, the choice of the period
of the slackful modal server among all the divisors of the period of the HI task should
be the period that allows to complete the execution of the HI in the smallest number of
executions of the slackful modal server. The period of the slackful modal server should
be the greatest divisor of the HI task period that ensures the correct scheduling of the HI
task, that is the period of the HI task.

In conclusion, a slackful modal server has the same budget C and period T than its HI
tasks in HI mode.

5.3.2 Proof of the correctness of the scheduling

A slackful modal server enforces a particular mixed–criticality scheduling policy on its HI
task and LO tasks. Recall, that when LO mode is active, slackful modal server executes
first its HI task and then schedule its sets ΓMS(LO) with Earliest Deadline First (EDF).
When HI mode is active, a slackful modal server schedules only its HI tasks, as LO tasks
are no longer executed.

As slackful modal server definition slightly differs from execution servers we have to
adapt the theorem 1 on the schedulability of a task set in an execution servers to slackful
modal server specificities:

Theorem 3. Let Γ(LO) be a set of LO tasks, τh a HI task and MS a slackful modal server.

If the three following conditions are fulfilled:

1. slackful modal server MS is correctly scheduled .

2. HI task τh is schedulable by the slackful modal server MS in HI mode.

3. All tasks in Γ(LO) are schedulable in slack time of task τh in LO mode.
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then τh and tasks in Γ(LO) are schedulable by our mixed–criticality scheduling policy in

slackful modal server MS in HI and LO modes.

Before proving this theorem we need to introduce the following lemma:

Lemma 1 (Criticality precedence condition). A LO task τ j ∈ ΓMS(LO) of a slackful

modal server, that schedules a HI task τh, is executed in interval I = [k ·Th,(k+1) ·Th] if

and only if τh has completed its (k+1)th execution without triggering a TFE in I.

Proof. It is assured by the definition of slackful modal servers which first execute HI task
and only then LO tasks. If a TFE is triggered then the system switches to the HI mode and
LO tasks are not executed.

Lemma 1 ensures that slack time of a HI task in LO mode is used to schedule LO tasks
only when the HI task has completed its execution without triggering a TFE. It is now
possible to prove the correctness of the theorem 3:

Proof. We prove this theorem by contradiction. Consider that there are a slackful modal
server MS, a task set Γ(LO) and a HI task τh such that theorem 3 assumptions are true but
a task, either 1) τh or 2) a LO task in Γ(LO), still misses its deadline.

1) If τh missed its deadline, two cases are possible. Either one or several LO tasks
executed before τh but this is not possible because of lemma 1. Or slackful modal server
did not executed long enough. Again two cases are possible. First, the slackful modal
server was not correctly scheduled which contradicts our first assumption. Second, slack-
ful modal server provides not enough execution time to HI task τh but this contradicts our
second assumption.

2) This case either contradicts our third assumptions or HI τh executed for longer than
its budget of LO mode. In that latter case, LO tasks are no longer executed as it would
trigger a mode change. Hence the theorem holds.

5.3.3 Schedulability tests to schedule LO tasks in HI task slack time

In this section, we provide schedulability tests to check whether LO tasks in slackful modal
server ΓMS(LO) task set are schedulable in the slack time left by the HI task. To this end
particular schedulability tests are required when allocating LO tasks to slackful modal
server for two reasons. First, slack time provided by HI tasks is limited. Second, slackful
modal server replenishment times are defined independently of the periods of the LO tasks
it schedules, as illustrated in section 5.1.2 p 63. Two schedulability tests are provided and
can be used for any periodic servers such as slackful modal server. The first test can
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Task Period Criticality C(LO) C(HI) U(LO) U(HI)
τ1 5 HI 1 3 0.2 0.6
τ2 2 HI 0.5 1.5 0.25 0.75
τ3 8 HI 0.8 3.2 0.1 0.4
τ4 8 LO 3.2 3.2 0.4 0.4
τ5 15 LO 3.75 3.75 0.25 0.25
τ6 12 LO 2.4 2.4 0.2 0.2
τ7 12 LO 2.4 2.4 0.2 0.2

Table 5.1: Example of MC task set with two criticality levels (same table that on page 64)

only be used if task periods are multiples of the server period, but it efficiently uses slack
time provided. The second one is more complex and somehow pessimistic, but makes no
particular assumptions.

First, we present the schedulability test when periods of LO tasks are multiple of the
period of the periodic server. It extends theorem 2 by considering several tasks to be
scheduled in a periodic server. Let a server S be a periodic server of period TS and budget
CS and a set of tasks Γ to be scheduled by S.

Theorem 4. If (∀τl ∈ Γ,TS | Tl), and UΓ ≤US, then S ensures Γ schedulability.

Yet, this condition on periods may not always be met. In this case, another schedulabil-
ity test based on Supply Bound Functions (SBFs) [66] and the Demand Bound Functions

(DBFs) is proposed.
A SBF returns the minimum amount of execution time supplied by a periodic server

in an interval of length t and is defined as follows:

Definition 21 (Supply Bound Function [66]). Let t be a duration. Let S be a periodic

server with budget CS and of period TS. For any t ≥ 0, the Supply Bound Function of S is

defined as follows:

SBFS(t) = b
t− (TS−CS)

TS
c ·CS + ε(t) (5.2)

with ε(t) = max(t−2(TS−CS)−TS · b t−(TS−CS)
TS

c,0)

In our case the SBF is used to determined the minimal amount of execution provided
by the slack time of HI tasks in slackful modal servers. The SBF from the slack time of
HI task τ1 in table 5.1, corresponding to a budget C = 2 every period T = 5, is pictured in
figure 5.7.

The DBF function of a task or task set returns the amount of CPU time required by
the task or tasks to meet its deadline from the beginning of its execution up to time t. Yet,
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Figure 5.7: Example of SBF and DBF

the usual definition has to be slightly modified to account for parameters of the different
modes.

Definition 22. Let τi be a mixed–criticality implicit deadline periodic tasks of criticality

level L ∈ LO,HI. For any t ≥ 0, the Demand Bound Function of τi at criticality level L is

defined as follows

DBFi(t,L) = b
t
Ti
c ·Ci(L) (5.3)

As for utilization, the DBF of a task set is equal to the sum of DBFs of each task of
the set. The DBF can be computed for each criticality level. But in our case, it is only
relevant for LO tasks and hence requires only to be computed with budget of LO mode of
LO tasks, therefore we omit to indicate the criticality level of the DBF and simply write
DBF(t) instead of DBF(t,LO). The DBF of LO task τ7 in table 5.1 is pictured in figure 5.7.

SBF and DBFs are then compared to check whether a slackful modal server provides
enough execution time to its task set ΓMS(LO). Let LCM(Γ∪{S}) be the Least Common
Multiple of periods of tasks in a task set Γ and period of server S. As explained in [66],
the condition for a periodic server S to ensure its task set schedulability is:

Theorem 5. Given a set of tasks Γ if ∀t ∈ [0;LCM(Γ∪{S})], DBFΓ(t)≤ SBFS(t)), then S

ensures Γ schedulability.

This test may be seen as intractable but the number of comparisons to carry out can be
reduced. Indeed, it is sufficient to only compare the DBF and the SBF at each deadline
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of each task in Γ over the hyper–period, instead of comparing these two functions at each
instant t over the hyper–period.

5.4 Slackless modal server

As said the slack time of HI task is limited. This limitation can prevent LO tasks from
being scheduled in the slack time of any HI task. Still we have to ensure the scheduling of
such tasks in LO mode and stop their executions in HI mode.

To this end we use modal server designated as slackless modal server defined as
follows:

Definition 23. A slackless modal server is a modal server MS whose set ΓMS(HI) is empty

and set ΓMS(LO) contains a single LO task.

We previously saw in section 5.3.1 p 67 that a server has the lowest utilisation to sched-
ule its task set when it has the period of the tasks it must schedule. Therefore, to choose
the timing parameters of a slackless modal server, we proceed as for the selection of the
timing parameters for slackful modal server. A slackless modal server timing parameters
are those of the LO task it schedules.

The scheduling policy of slackless modal server is left unchanged. In LO mode, LO
tasks are scheduled as soon as the modal server is executed, as it contains no HI task. In
HI mode it schedules nothing, as LO tasks are no longer executed.

5.5 Aggregated modal server

The issue is that each HI task may only provide small amount of slack time while the
overall slack time of HI tasks is large. Due to this scattering of the slack time, no LO task
may be schedulable in the slack time of HI tasks. To avoid that situation the idea is to
gather as much as possible this slack time so that some LO tasks are scheduled in the slack
time of several HI tasks. We achieve that by forming what we call aggregated modal
servers.

5.5.1 Definition of aggregating modal servers

Aggregated modal servers are defined as follows:
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Definition 24. An aggregated modal server AMS is a set of slackful modal servers such

that these slackful modal servers are executed sequentially and the set of LO tasks ΓAMS(LO)

scheduled by this AMS is such that ΓAMS(LO) = ∪MSi∈AMSΓMSi(LO).

LO Mode HI Mode

C(HI)

Modal server 1

Γ(LO)

τi{χi = HI} τi{χi = HI}

LO Mode HI Mode

C(HI)

Modal server N

τj{χj = HI} τj{χj = HI}

...

Figure 5.8: Aggregated modal servers task sets scheduling

The set scheduled in each mode by an aggregated modal server is pictured in figure 5.8.
Determining the available execution time is too complex, if modal servers can execute in
parallel. Executing sequentially all slackful modal servers of an aggregated modal server
ensures that the available slack time from all modal servers is exactly the sum of their
slack time in LO mode. The slack time of the HI tasks of these slackful modal servers can
be added up and made available in their aggregated modal server.

Hence it supposes that slackful modal servers forming an aggregated modal server
have to be schedulable on a uniprocessor. Therefore, the sums of the utilisations of these
servers forming an aggregated modal server must be lower or equal to 1. In the remainder
of this document, we refer to this condition as the sequential condition.

Because several slackful modal servers are used to schedule a same set of LO tasks,
we have to extend schedulability tests used in the case of aggregated modal servers.

5.5.2 Schedulability tests associated to aggregated modal server

We present extensions of the schedulability tests described in section 5.3.3 p 70 to ensure
that a set of LO tasks Γ(LO) can be properly scheduled by an aggregated modal server
AMS.

We start by extending the schedulability tests with a condition on periods. Let AMS
be an aggregated modal server.
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Theorem 6. If ∀MSi ∈ AMS,∀τl ∈ ΓAMS(LO),Ti | Tl , and UΓAMS(LO) ≤ ∑
MSi∈AMS

Ui, then

MSi ensures ΓMSi(LO) schedulability.

This condition on periods is only met for very specific cases. For more general cases,
we can reuse and extend the schedulability test based SBF and DBF.

Authors in [69] extended the definition of SBF to two servers. They proved that the
SBF of the aggregation of two periodic servers is the sum of their SBFs. We further extend
this result to a set ΓS of p periodic servers on a uniprocessor.

Lemma 2. The SBFΓS of the aggregation of p periodic servers Si with SBFi and forming a

set ΓS and executed on a uniprocessor is:

SBFΓS(t) =
p

∑
i=0

SBFi(t),∀t ≥ 0. (5.4)

Proof. SBFΓS gives the minimum amount of execution time provided by all periodic servers
aggregated from ΓS. Because these periodic servers are scheduled together on a unipro-
cessor, none of them is executed in parallel. Remind that each SBFi corresponds to the
minimum execution time provided by each periodic server Si. Therefore the minimum
amount of execution time provided by SBFΓS is equal to the sum of those provided by
each of the p servers Si.

Let Γ be a set of periodic tasks with implicit deadlines, and ΓS a set of periodic servers.
Then, the schedulability test presented in theorem 5, based on the DBF and SBF functions,
can be extended as follows:

Theorem 7. Γ is correctly scheduled by periodic servers in ΓS if:

∀t ∈ [0;LCM(Γ∪ΓS)],DBFΓ(t)≤ SBFΓS(t) (5.5)

With LCM(Γ∪ΓS) the least common multiple of periods of all tasks and servers respec-

tively in Γ and ΓS.

This also holds in our case as we consider only modal servers respecting the sequential
condition. As for theorem 5, SBFs and DBFs have only to be compared at the deadlines
of the tasks in the task set over the hyper–period.
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5.6 Conclusion

In this chapter, we have presented and justified the correctness of our hierarchical schedul-
ing framework. We also justified the use of the periodic resource model to schedule tasks
in the slack time of HI tasks.

Then we introduced a new kind of servers called modal servers. These servers are used
in three different ways. First we presented slackful modal server that schedules a single
HI task and a set of LO tasks in the slack time of the HI task. We provided the proof
of the correctness of the mixed–criticality scheduling for slackful modal server and the
schedulability tests to verify the schedulabiltiy of LO tasks in HI task slack time. Second,
we presented slackless modal server used to schedule LO tasks not schedulable in any HI
task slack time. Finally, we presented how the limitation of the slack time provided by
each slackful modal server can be overcome by aggregating the slack time of these modal
servers and presented their proper schedulability tests.

In the next chapter, we deal with the scheduling of these modal servers on a multi–
processor platform. This is in done in two steps. First, we perform and justify the choice
of the multi–processor real–time scheduling algorithm used to scheduled modal servers.
Secondly, we present how we find a good partitioning of LO tasks in modal servers.
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Chapter 6. The performances of the mixed–criticality scheduling policy

In the previous chapter, we described the structure of our mixed–criticality scheduling
algorithm, that is a hierarchical scheduling framework. To enforce our mixed–criticality
scheduling policy, that takes advantage of HI task slack time, we defined a new kind of
execution server called modal servers. These servers are periodic servers, and as such
can be scheduled as periodic tasks with implicit deadlines by a multi–processor real–time
scheduling algorithm.

In this chapter, we complete the design of our hierarchical scheduling framework
called GMC–RUN, for Generalised Mixed–Criticality RUN, to make it efficient. Two
aspects of our approach still have to be specified: the top level scheduling algorithm and
the allocation of LO tasks in slackful modal servers, aggregated or not. These two aspects
have to be dealt with the aim to obtain the best schedulability performances, measured
with theoretical and experimental metrics.

To ensure the efficiency of the top level of the hierarchical scheduling framework,
we carefully choose its scheduling algorithm among several multi–processor real–time
scheduling algorithms against several criteria. These criteria concern not only theoretical
but also practical aspects of the multi–processor scheduling algorithms.

The efficiency of the low level scheduling algorithm depends on the efficient use of
the HI task slack time, that is on how the allocation of LO tasks to modal servers is made.
This allocation problem is an optimisation problem. Indeed, LO tasks executed in modal
servers do not require additional execution resources. We have hence to find the allocation
that reduces as much as possible the utilisation of the overall system, in order to reduce
the number of processors. It corresponds to a difficult optimisation problem that we solve
using an evolutionary algorithm.

We start this chapter with the choice of the top level scheduling algorithm of our hi-
erarchical scheduling framework. Based on our criteria, that concern the number of pre-
emptions entailed, the schedulability test among others, RUN has been chosen. We then
present the most essential aspects of the algorithm RUN. Next, we present the conditions to
use the different types of modal servers, i.e slackful modal servers, slackless modal servers
and aggregated modal servers. Finally, we present the conditions for a set of modal servers
to be schedulable by RUN.

In the second section of this chapter, we address the allocation of LO tasks in modal
servers. We first describe our optimisation problem. We then give the principles of the
evolutionary algorithm. Finally, we explain why they are an appropriate method to solve
our optimisation problem and describe how we efficiently use them to find a good alloca-
tion.
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Finally, theoretical and experimental assessments of GMC–RUN are carried out. The-
oretical assessment is here to give an insight on the worst performances of our scheduling
algorithm, while the experimental one gives an insight on its average performances. The
theoretical assessment is twofold. First, we determine a lower and an upper bounds on the
number of processors required by GMC–RUN. Second, we compute the speed–up factor
of GMC–RUN. Experimental assessment is carried out by computing the schedulability
ratio and the number of entailed preemptions from randomly generated task sets.

6.1 The choice of the top level scheduler

The role of the top level scheduling algorithm of the hierarchy is to ensure that modal
servers are correctly executed. In our case, it is a multi–processor scheduling algorithm.
The overall performances of our scheduling algorithm depend on the performances of
the schedulers used at the top level and at the low level of the hierarchy. Therefore the
choice of the top level scheduling algorithm is made based on a list of criteria. Based
on our criteria, RUN [42] appears to be the best choice. After justifying this choice, we
present the essential features of RUN to understand how the conditions of use of each kind
of modal server, i.e slackful modal server, slackless modal server and aggregated modal
servers, are fulfilled.

6.1.1 Justification of the choice

For the choice of our top level scheduling algorithm, we assess the global scheduling
algorithms Reduction to UNiprocessor (RUN) [42], U–EDF [43] and DP–Fair [70] and
partitioned EDF. These algorithms are the state–of–the–art multi–processor scheduling
algorithms either for global scheduling algorithms or partitioned ones.

The first criterion used to select the possible scheduling algorithms is the ability to
schedule periodic tasks with implicit deadlines and synchronously started, since modal
servers behave as such. Indeed, modal servers have a periodic resource model, that be-
haves similarly to the periodic task model. All the considered scheduling algorithms fulfil
that criterion.

To perform our choices we also use the following criteria:

1. Schedulability performances: to select our scheduling algorithm several indicators
are used such as the speed–up factor or the ratio of randomly generated tasks suc-
cessfully scheduled.
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2. Number of preemptions and migrations per job entailed: it gives an insight prior
to the implementation on the actual efficiency and practicability of the scheduling
algorithm. Schedulability performance assessments generally do not take into ac-
count the overheads incurred by preemptions and migrations. A high number of
preemptions per job negatively impacts the schedulability performances.

3. An algorithm whose implementation is feasible. Indeed, as said in the problem state-
ment, there are algorithms based on concepts that are difficult to implement. One
such algorithm is the fluid algorithm [61] that must provide at each instant execution
time to each task proportionately to their utilisations. It requires the simultaneous
use of a same processor by several tasks at each instant. This also concerns all the
other overheads not originating from preemptions or migrations. For instance, if the
time to carry out a scheduling decision or a task releasing is too large, it can nullify
the schedulability performances even for a scheduling algorithm presenting the best
theoretical schedulability performances.

We now compare all the considered scheduling algorithms against these three criteria.

1- Theoretical schedulability performances

All the considered global scheduling algorithms are optimal scheduling algorithms for
multi–processor platforms. This means that they are able to schedule on a platform with
m processors any task set whose utilisation is at most equal to m.

For its part, partitioned EDF has, as for all partitioned scheduling algorithms, a prov-
able utilisation bound for periodic tasks with implicit deadlines of only m+1

2 [31]. This
limit only ensures that task sets with a utilisation no higher than m+1

2 are schedulable on
m processors.

On that criteria, global scheduling algorithms have a clear advantage over the parti-
tioned one.

2- Number of preemptions and migrations

The negative impact of preemptions and migrations on schedulability performances be-
comes larger as their numbers increase. Therefore, scheduling algorithms that entail the
smallest number of preemptions or migrations should be favoured.

The numbers of preemptions and migrations entailed are more generally estimated by
simulating the execution of scheduling algorithms. Each considered scheduling algorithm
has been presented [42; 43; 70] with a comparison based on the number of preemptions
and migrations per job. From these comparisons the following conclusions can be drawn.
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First, fair scheduling algorithms, such as DP–Fair, entail far more preemptions and
migrations than any other considered scheduling algorithm, both partitioned and global
scheduling algorithms. Besides, it significantly alters their schedulability performances.
The impact on schedulability performances has been shown in [27], where it appears that
partitioned EDF presents better schedulability performances than a fair optimal scheduling
algorithm. And this, although that latter kind of scheduling algorithm is theoretically
optimal and the former is not.

Second, partitioned EDF presents the best performances in terms of preemptions and
does not entail any migration, which is an advantage when considering overheads [27;
36].

Third, RUN implementation [36] has been compared to partitioned EDF. This com-
parison has shown that for systems with a utilisation such that partitioned EDF presented
no deadline misses, RUN entailed the same number of preemptions than partitioned EDF.
RUN entailed more preemptions than partitioned EDF, only for systems with higher utili-
sations that are not all schedulable by partitioned EDF.

Fourth, U–EDF and RUN present very close performances on these two criteria [43].
U–EDF only slightly incurs more preemptions and migrations as the number of processors
becomes larger compared to RUN.

Besides, these comparisons have also shown that RUN, and in a lesser extent U–EDF,
are remarkably scalable as the numbers of preemptions and migrations change little with
the size of the scheduled system, that is with the number of processors fully utilised.

3- Practicability of the algorithms

Preemptions and migrations are not the only sources of overheads than can degrade the
performances of a scheduling algorithm. These performances can also be degraded by the
time required to take a scheduling decision or the time required to process the releasing of
a task.

RUN practicality has been questioned as RUN scheduling decisions are based on a
complex structure derived offline called reduction tree. These decisions involve non trivial
operations that have raised concerns on the complexity of the implementation of RUN and
on its efficiency. But an implementation has been performed in [36]. Authors state that
the RUN algorithm is implementable without too much complexity and does not entail
prohibitive overheads. RUN is shown to be quite competitive against partitioned EDF.

On that criterion, partitioned EDF is shown to entail among the lowest overheads com-
pared to all scheduling algorithms.
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To our knowledge no implementation of DP–Fair and of U–EDF are currently avail-
able.

Conclusion

In conclusion, U–EDF, RUN and partitioned EDF present really interesting performances
concerning preemptions and migrations. Yet, compared to partitioned EDF, U–EDF and
RUN offer far better theoretical schedulability performances. RUN emerges as it entails
slightly fewer preemptions than U–EDF. Furthermore, an implementation of RUN has
been performed demonstrating its feasibility. For all these reasons we choose RUN as
the top level scheduling algorithm of our hierarchical scheduling framework. Before pre-
senting the conditions to fulfil to schedule modal servers with RUN, we need to present
essential features of RUN.

6.1.2 RUN description

RUN is a hard multi–processor real–time scheduling algorithm that can schedule periodic
tasks with implicit deadlines synchronously started. RUN approach is original as it mixes
the principles of a partitioned algorithm with those of a global scheduling algorithm. But,
it differs from semi–partitioned scheduling algorithms as task migrations are not limited.
RUN scheduling algorithm is composed of two steps: one performed offline, another on-
line. The first step consists in deriving offline a hierarchical structure called the reduction

tree. This tree is based on particular task and server models called respectively fixed–rate
tasks and fixed–rate servers.

Fixed–rate task and fixed–rate server

First, we introduce the fixed–rate task model used by RUN authors and upon which the
fixed–rate server is based. We then describe how the more usual model of the periodic
task with implicit deadlines is handled.

Fixed–rate task. Authors in RUN have their own model of tasks called fixed–rate tasks.
Before giving a definition of such task, we introduce the definitions of a rate and of acti-
vation times.

Definition 25 (Rate). A rate µ ∈ [0,1] of a task is the proportion of a processor it needs to

correctly execute.
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Hence, in case of periodic tasks the rate is equal to the utilisation of the task.

Definition 26 (Activation time). The activation times of a task are the instants when the

task becomes ready to be executed.

A fixed–rate task is defined as follows:

Definition 27. A fixed–rate task is defined by a rate µ ∈ [0,1] and a set D containing all

the task activation times and absolute deadlines.

Fixed–rate task and periodic task with implicit deadlines. A periodic task with im-
plicit deadlines can be modelled with a fixed–rate task. The rate of the fixed–rate task is
equal to the utilisation of the periodic task. The set D of activation times and deadlines is
equal to the set D = { j ·T, j ∈ N}, where T is the period of the periodic task.

These fixed–rate tasks are then executed in RUN by servers called fixed–rate servers.

Fixed–rate server. A server is used to run tasks, that RUN authors refer to as its clients.
When the server is executed, it selects one of its clients using a scheduling algorithm, and
executes it. RUN authors use a particular model of a server called fixed–rate server:

Definition 28. A fixed–rate server is defined through: a set of clients Γ, a set of replen-

ishment times D, and an execution rate µ ∈ [0,1]. Such a server is denoted S(µ,D,Γ). A

server schedules the jobs of its client following its own scheduling policy.

Sufficient conditions for clients schedulability in a fixed–rate server using Earliest
Deadline First (EDF) are provided in theorem III.1 in [42]. The corresponding demon-
stration of the correctness of the scheduling follows the theorem. It first requires that
servers are correctly scheduled. The server is correctly scheduled if for any two consec-
utive replenishment times t and t ′ of D, then the server is executed (t ′− t) · µ time units.
Once a set of servers is proved to be schedulable, a schedulability test must be performed
for each server to prove that its client set is also schedulable.

If the EDF fixed–rate server S(µ,D,Γ) has replenishment times equal to all activation
times of tasks in Γ, then UΓ ≤ µ entails Γ is schedulable by S. Note that the clients of
servers can be servers as well. An EDF fixed–rate server with a set of servers ΓS as clients
ensures its clients are schedulable if its rate is greater than the sum of the rates of its clients
assuming D = ∪S(µ j,D j,Γ j)∈ΓSD j, where D is the set of activation times of the server and
D j those of each client.

We can now, describe how the reduction tree is built offline.
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Task Period Criticality C(LO) C(HI) U(LO) U(HI)
τ1 5 HI 1 3 0.2 0.6
τ2 2 HI 0.5 1.5 0.25 0.75
τ3 8 HI 0.8 3.2 0.1 0.4
τ4 8 LO 3.2 3.2 0.4 0.4
τ5 15 LO 3.75 3.75 0.25 0.25
τ6 12 LO 2.4 2.4 0.2 0.2
τ7 12 LO 2.4 2.4 0.2 0.2

Table 6.1: Example of MC task set with two criticality levels (same table that on page 64)

Offline construction of the reduction tree

Upon this notion of fixed–rate server, RUN builds offline a hierarchy of servers called the
reduction tree. The reduction tree is used online to elect tasks to execute. The first step to
build this tree of servers is to partition the task set.

Partitioning the task set. RUN partitions a task set Γ into disjoint subsets. Each of
these subsets Γ j is scheduled in a EDF fixed–rate server. Hence, each subset must have
a utilisation lower or equal to 1 in order to be correctly scheduled by its EDF fixed–rate
server. This condition will be referred to as the packing condition. But these subsets
must also respect a second condition: the sum of the utilisations of any two subsets must
be strictly greater than 1. This ensures that no couple of subsets can be scheduled on a
single processor. Each such subset represents a uniprocessor scheduling problem. Fixed–
rate servers whose clients respect these constraints are referred to as primal servers.

The operation, that defines the set of primal servers, is called PACK [42]. This opera-
tion can have multiple possible solutions that are all correct. It is first applied on a set of
tasks but can also be applied to a set of servers.

One possible result of the PACK operation for the task set presented in table 6.1 is given
in figure 6.1. Primal servers are the servers S15, S26 and S347. Server S15 schedules tasks
τ1 and τ5, S26 schedules τ2 and τ6 and server S347 schedules tasks τ3, τ4 and τ7. Server
S15 rate is equal to the sum of the utilisations of tasks τ1 and τ5 and its set of activation
times is the union of those of tasks τ1 and τ5. The same holds for other servers with their
corresponding tasks. Notice that server S347 has a rate equal to 1.0. During its execution,
this server uses a complete processor.

Reducing the number of processors. The second operation aims at reducing the num-
ber of processors required to schedule all the created primal servers by enabling the sharing
of processors between these primal servers. It is achieved by introducing a second kind
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τ1 τ2 τ3 τ4τ5 τ6 τ7

S15 S26 S347

µ = 1.0µ = 0.85 µ = 0.95

{5, 15} {2, 12} {8, 12}

Figure 6.1: One possible result of the packing operation for task set presented in table 6.1

of fixed–rate servers called dual servers. These are created by a specific operation called
DUAL. They are basically used to schedule the idle time of primal servers, that is the
amount of time a processor remains idle if it was used to schedule a single primal server.
The number of processors is reduced by merging the idle time of several primal servers.
This is achieved by regrouping dual servers in other primal servers.

Generation of the reduction tree. The creation of primal and then dual servers is
regrouped in one operation called REDUCE. The REDUCE operation results in the
scheduling of tasks or of servers by two levels of servers: one with primal servers and
one with dual ones. The two levels can be modelled by a tree structure in which a node
represents a server or a task, and a branch binds a server to one of its clients. The REDUCE

operation is first applied on the set of fixed–rate tasks. Then REDUCE is applied itera-
tively to the resulting servers. The algorithm stops when the REDUCE operation produces
a single primal server. The tree structure produced by the sequence of the REDUCE op-
erations is called the reduction tree. Primal servers that schedule fixed–rate tasks and not
dual servers are called leaf primal servers .

As the PACK operation can have several possible results, the reduction tree is not
unique for a task set. But all trees schedule the task set with the same number of proces-
sors.

One possible resulting reduction tree for the task set is presented in figure 6.2. The
final primal server used to schedule the dual servers is called Sroot and has a rate of 1.0.
Note also that, based on the recommendation of RUN authors, we added an idle task τI .
The purpose is to have an overall utilisation of the task set equal to an integer. In this
example, it is equal to 3. The idle task set has a rate of 0.2 and an arbitrary deadline of
15. When this task is scheduled then the processor is idle. Servers marked with a "*"
correspond to dual servers.

This reduction tree is then used online to determine the tasks to execute. For more
details on the online behaviour of RUN see the article [42].
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τ1 τ2 τ3 τ4τ5 τ6 τ7

S15 S26 S347

S15∗ S26∗ S347∗

Sroot

τI

SI

SI∗
µ = 0.15 µ = 0.05 µ = 0.0 µ = 0.8

µ = 0.2µ = 1.0µ = 0.85 µ = 0.95

{5, 15} {2, 12} {8, 12} {15}

{5, 15} {2, 12} {8, 12} {15}

µ = 1.0

Figure 6.2: One possible reduction tree for task set presented in table 6.1

RUN schedulability test

A task set is schedulable by RUN on m processors if the following theorem is respected:

Theorem 8. A task set Γ is schedulable on m processors by RUN if:

UΓ ≤ m (6.1)

A consequence of this theorem is that we can estimate the minimal number p of pro-
cessors required to schedule a task set Γ with RUN from the task set utilisation UΓ with
the following formula:

p = dUΓe (6.2)

Where dxe gives the smallest integer larger or equal to x.

6.2 GMC–RUN: scheduling modal servers with RUN

In section 5.3.2 p 69 of the previous chapter, we presented the theorem 3 that states the
conditions for the correct scheduling of mixed–criticality tasks in modal servers. One of
the conditions of this theorem is the correct scheduling of modal servers.

In this section, we explicit the conditions to verify whether a set of modal servers is
schedulable by RUN. It first requires that a reduction tree can be built from a set of modal
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servers and thus respects the rules of the PACK and DUAL operations. Then, we define
what an allocation is. Finally, we present the schedulability test for the scheduling of
modal servers by GMC–RUN.

6.2.1 Conditions to schedule the different types of modal servers

In this section, we justify that the different types of modal servers can be scheduled with
RUN. Indeed, the computation of the reduction for RUN requires the respect of the condi-
tions for the PACK operation. In particular, the possibility of forming primal servers with
utilisation lower or equal to 1.

Slackful and slackless modal servers

Slackful and slackless modal servers timing parameters are those of their providing tasks
or of their LO tasks. Hence, the utilisation of these modal servers is at most equal to 1.
Besides, as previously said, modal servers behave as periodic tasks. Therefore, RUN can
schedule slackful modal servers and slackless modal servers.

Aggregated modal servers

An aggregated modal server is constituted of several slackful modal servers that have to
be executed sequentially, as exposed in section 5.5 p 73. Their use with RUN requires to
find a way to respect this sequential condition and the conditions of the PACK operation.

RUN decomposes the multi–processor scheduling problem into several uniprocessor
ones thanks to the use of the primal servers. Within these primal servers, the tasks, or
in our case modal servers, are executed as on a uniprocessor. They are hence executed
sequentially. Thus, slackful modal servers executed in a same leaf primal server can be
aggregated to form an aggregated modal server.

6.2.2 Allocation of tasks in modal servers

The scheduling of a mixed–criticality system with RUN requires that we have determined
in which modal servers each LO task is executed. We need to introduce few notations to
identify the set of servers that can be built given a mixed–criticality task set Γ.

The set of derived modal servers from Γ is the union of slackful modal servers derived
from HI tasks of Γ noted M S SF , slackless modal servers derived from LO tasks of Γ, and
the aggregated servers that can be built from HI tasks in Γ denoted M S AGG.
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The relation binding LO task to modal server is called an allocation of LO tasks and is
defined as follows:

Definition 29 (Allocation). An allocation of LO task from mixed–criticality task set Γ is a

function that associates to each LO task, the modal server derived from Γ.

Following this definition, it is possible to consider allocations that cannot be deployed.
This situation occurs when the sum of utilisations in HI mode of the providing tasks of
the aggregated modal server is higher than 1. Similarly, allocation may correspond to
situations where LO task schedulability cannot be ensured as schedulability test applied to
servers fails.

Once the allocation has been performed, the mixed–criticality system results in the set
of modal servers noted ΓGMC−RUN . If there are aggregated modal servers, there is also a
set of constraints, noted C . These constraints are imposed by the sequential condition of
the aggregated modal servers. They have to be taken into account when performing the
PACK operation that forms the leaf primal servers. The set of modal servers ΓGMC−RUN

has then to be scheduled by RUN.

6.2.3 Schedulability test of GMC–RUN

In this section, we consider that the allocation of LO tasks into modal servers has been
performed. This allocation has resulted in a set of modal servers noted ΓGMC−RUN and
a set of constraints for the PACK operation noted C . We note UGMC−RUN the utilisation
of this set of modal servers and m the number of processors available. The following
theorem gives the condition for the correct scheduling of the set of modal servers on the
m processors:

Theorem 9. Let Γ be a set of mixed–criticality tasks and ΓGMC−RUN be the set of modal

servers resulting from the allocation of tasks in Γ to modal servers. Let UGMC−RUN be

the utilisation of ΓGMC−RUN and C the set of constraints of the PACK operation resulting

from the allocation. If UGMC−RUN ≤ m and the set of constraints C are compatible with

the rules of the PACK operation then RUN can schedule the set ΓGMC−RUN .

Proof. It follows from the respect of RUN conditions for the computation of its reduction
tree by all types of modal servers and of theorem 8.
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6.3 Finding the best possible allocation

GMC–RUN schedulability performances depend on the amount of LO task utilisation we
manage to allocate to slackful modal servers and aggregated modal servers. Indeed, the
utilisation of the set of modal servers ΓGMC−RUN is equal to the sum of the utilisations
of the slackful modal servers and of the aggregated modal servers and of the slackless
modal servers needed to schedule the unallocated LO tasks. Hence, the more LO tasks are
allocated to slackful modal servers or aggregated modal servers, the smaller the utilisation
UGMC−RUN is.

We have hence to find the allocation of LO tasks with the largest utilisation of allocated
LO tasks to slackful modal servers and aggregated modal servers.

We first define our optimisation problem and explain why we use an evolutionary al-
gorithm to solve it. We then present the principles of the evolutionary algorithm and detail
the mechanisms involved to find the best possible allocation.

6.3.1 Optimisation problem

We want to maximise the utilisation of LO tasks allocated to slackful modal servers and
aggregated modal servers. Hence, let us first formalise this optimisation problem by de-
scribing its inputs, solution space, and function to maximise.

Roughly speaking problem inputs correspond to the definition of tasks in Γ. The so-
lution space is the set of all possible allocations. In order to follow the usual definition of
optimisation problem as assignment problem, it is possible to characterise an allocation
through a vector of variables. Each variable represents the allocation of one LO task to a
modal server. Hence, this variable value is either in M S SF , or M S AGG, or the symbol ⊥
designating the task slackless modal server server. Thus, Allocτ denotes such a variable
for the LO task τ. The solution space is the set of all assignments of (Allocτi)τi∈Γ(LO) with
values from M S SF ∪M S AGG∪{⊥}.

Let ΓAllocated be the set of LO tasks that are not allocated to their respective slackless
modal server. Then, the function to maximise is :

∑
τi∈ΓAllocated

Ui(LO)

Yet, each solution has to comply with additional constraints derived from the schedu-
labilty condition, and the sequential condition required to form aggregated servers. Before
providing the complete definition, we introduce the following notion to identify the condi-
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tion in which the schedulability test based on SBF and DBF should be used to determine
task LO task schedulability in modal servers. For a slackful or aggregated modal server,
its set of allocated LO tasks is said harmonic when each LO task period is a multiple of
each providing task period in this server. When, such a condition is not satisfied, the SBF
and DBF test needs to be used.

We sum up our optimisation problem in the following definition:

Definition 30. input: a mixed criticality task set, Γ

variables: the variable representing the allocation of each LO task of Γ to a modal

server: (Allocτi)τi∈ΓLO with value in M S SF ∪M S AGG∪{⊥}.

Objective: maximise ∑τi∈ΓAllocated U(τi)

Constraints: solutions need to respect:

For each s ∈M S SF ∪M S AGG s.t. Γs(LO) 6= /0∧Γs(LO) is harmonic,

∑
τi∈Γs(LO)

Ui(LO)≤ ∑
τ j∈Γs(HI)

(U j(HI)−U j(LO)) (6.3)

For each s ∈M S SF ∪M S AGG s.t. Γs(LO) 6= /0∧Γs(LO) is non-harmonic, for each

t ∈ {0, ...,LCM}, LCM being the least common multiple of periods of LO and pro-

viding task of s:

∑
τi∈Γs(LO)

DBFi(t)≤ ∑
τ j∈Γs(HI)

SBFj(t) (6.4)

and for each s ∈M S AGG,

∑
τ j∈Γs(HI)

U j(HI)≤ 1 (6.5)

Finding an allocation reaching the optimum of utilisation allocated to non slackless
servers is a discrete optimisation problem. The choice of the approach depends usually
on the size of the solution space (set of possible allocations), and the complexity of an
computing exact solution. Concerning the size of the solution space, there are roughly as
many slackful modal server and aggregated modal server than subsets of Γ(HI) minus 1.
Then, if we note n the number of LO tasks and k the number of modal servers, the number
of possible allocations is (2k)n. For instance, with five LO tasks and five modal servers it
makes 33,554,432 possible allocations

An exact solver tries to produce an actual optimum for the optimization problem. An
alternative to exact solution is to use heuristics that at best offer local optima. Meta heuris-
tic approaches are generic heuristics that need to be refined, or parametrized in order to
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obtain a solver for the optimisation problem. Here follows some insights on why we
have selected a meta heuristic approach to solve our optimisation problem. First, we need
only to consider schedulable allocations. Finding such allocations involves for each task a
schedulability test requiring to compare supply and demand bound functions (cost depend-
ing on period arithmetic properties). Such tests are thus rather complex. Moreover, recall
that the problem suffers of a combinatorial explosion of the number of modal servers. It
grows exponentially in the number of HI tasks. For these reasons, approaches based on
heuristics appeared more tractable than exact solution computation.

Selecting or designing an heuristic efficiently requires some analysis of the features of
the solution space. Finding its topological or structural properties (like orderings, vector
space structure with independence, graph structure...), is usually the key to largely im-
prove solution space exploration efficiency. It usually allows to design either dedicated
solution space exploration, or reuse existing ones. Yet, our solution space has very poor
structural properties: no total orders, no real vector space structure. It only has a partial
order structure based on set inclusion comparison operator. Moreover, the set of schedu-
lable allocation has no clear convexity properties, and tends to have a low density into
the solution space. Finally, despite the utility criteria is a linear function, this property is
hardly interesting given the lack of structure on the solution space. Hence, we decided to
use meta-heuristics. A survey on such generic approaches to heuristic definition helped us
select it, [71].

Among meta-heuristics, we preferred to avoid so called single trajectory approaches
to maximize the likelihood to find at least a non trivial schedulable allocation. In single
trajectory approaches, a solution is improved step by step through moves into the solution
space. Alternatives are approaches that take advantage of improving simultaneously sev-
eral candidate solutions. Yet, the challenge is to take advantage of the known properties
of the solution space to refine the meta-heuristics. To our point of view, the evolutionary
algorithm approach appears the most attractive.

6.3.2 Evolutionary algorithm

Evolutionary algorithms are stochastic optimisation algorithms. These algorithms find
the best possible solution by iteratively and randomly exploring the space of solutions by
modifying current known solutions.
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Principles

We seek to find the allocation of LO tasks to modal servers that maximises the utilisation
of allocated LO tasks through the use of an evolutionary algorithm. We describe here the
general principles of these algorithms and how they can be used to solve our problem.
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Figure 6.3: Proceeding of an evolutionary algorithm

The proceeding of an evolutionary algorithm is represented in figure 6.3.

In evolutionary algorithms, the representation of the solutions has to be carefully cho-
sen to avoid considering results that are incorrect solutions to the problem. Each iteration,
called generation, produces a subset of solutions called population. The population of
the first generation, called initial population, is generated either randomly or composed of
solutions already known. These populations are composed of individuals, that represent
possible solutions of the problem. Each individual is described through a genotype, i.e a
data structure, that encodes the solution. From the genotype of an individual, a phenotype

can be decoded, that is a solution of the optimisation problem. If the genotype is not cor-
rectly chosen, the resulting phenotype may not be interpreted as a solution to the problem.
In our case we have to ensure that the genotype of individual represents only the allocation
of LO tasks to slackful modal server, or to aggregated modal server or to slackless modal
server.

To find the best possible solution, the space of solutions has to be explored with effi-
cient search and selection operators. Search operators produce new solutions by creating
new individuals from existing ones with two objectives. The first is to ensure the conver-
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gence towards the best possible solution. The second is to ensure that the many different
subsets of solutions of the space of solutions are explored. This requires that the created
individuals have a phenotype that can be interpreted as a solution of the problem. It also
requires that they represent better solutions than the original individuals.

These operators are classified into two categories: the mutation and crossover opera-
tors. The role of the mutation operator is to explore the space of solutions in the "neigh-
bourhood" of existing individuals. This is achieved by randomly altering the genotype of
an existing individual. In our case, it would consist in either deallocating or allocating a
LO task to a slackful modal server. The role of the crossover operator is to create poten-
tially very different individuals from existing ones, allowing the exploration of different
subsets of solutions. This is achieved by mixing the genotypes of several existing individ-
uals. In our case, it would mean to mix the allocations of different tasks from different
individuals. These new individuals are added to the population.

The selection operator has also the same two objectives. It ensures the convergence of
the algorithm by selecting the best individuals to form a new population used for the next
generation. This requires to be able to assess the solution expressed by the phenotype of
each individual. In our case, the assessment of the individuals consists in computing the
utilisation of the LO tasks allocated to slackful modal servers or aggregated modal servers.
Second, it ensures the exploration of all subsets of solutions by ensuring the diversity of
the individuals in the population, so that not same solutions are always considered. For
our problem, it is ensured by keeping individuals that describe allocations that are not
schedulable. We also keep individuals with aggregated modal servers that do not respect
the sequential condition, i.e whose slackful modal servers cannot be sequentially executed.
The resulting new population is then used in the next generations.

These operations are applied until a condition of termination is reached, that can be
for instance a number of generations. The final solution to the optimisation problem is the
individual with the best evaluation.

For a more detailed description of evolutionary algorithms, the reader can refer to the
following documents [72; 73; 74].

Hence, the use of an evolutionary algorithm requires to define a representation of the
individual and three operators: mutation, crossover and selection. But the representation
used influences how the operators can be implemented. Besides, since these operators
are applied on many individuals over all the iterations, they should be kept as simple as
possible. Therefore, before choosing a representation for our individuals, we specify the
operations required to perform our mutation, crossover and selection.
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Designing the mutation, crossover and selection operators

The search and selection operators have to be designed with the objectives to explore dif-
ferent subsets of the space of solutions and to converge towards the best possible solution.

The allocation of a LO task to a modal server, as defined in definition 29, consists in
adding the task to the set of LO tasks of the modal server. Therefore, operations on sets
can be used to describe the mutation and crossover operators.

Mutation operator: the mutation operator is used to change the allocation of a single
task in a single modal server. Since an individual represents the complete allocation of
LO tasks in modal servers, a slight modification consists in only changing the allocation
of a task in a slackful modal server. Hence, the mutation consists in our case to add or to
remove a randomly chosen task from a randomly chosen slackful modal server.

Crossover operator: our crossover operator mixes the allocation of different tasks from
several individuals. Our operator consists in taking the union of a subset of tasks noted
Γ from a first individual with the complement of this task subset noted Γ from another
individual to form a new individual. A second individual can be formed by making the
opposite. That is, we take the complement of the subset Γ from the same first individual
and the subset of tasks Γ from the same second individual.

Correction of individuals: yet, our two search operators as previously defined do not
always produce individuals that can be interpreted as solutions of our optimisation prob-
lem. Indeed, our search operators can produce individuals, whose decoded phenotypes
represent an allocation whose set consistency cannot be assessed. That is, they can pro-
duce individuals with aggregated modal servers whose sets of LO tasks are not equal to
the union of the sets of LO tasks of each slackful modal server of the aggregation. Yet,
our definition of aggregated modal server states that all modal servers have the exact same
LO tasks in their LO task sets. Therefore, we have to correct these individuals to have a
solution that is consistent with our definition of aggregated modal server.

To perform this correction, we compute the union of the sets of LO tasks of two slack-
ful modal servers if a same LO task is allocated to the two slackful modal servers. The set
produced by this union replaces the sets of the two slackful modal servers. It ensures that
all slackful modal servers forming an aggregated modal server have the same set of LO
tasks to schedule.
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Task Period Criticality C(LO) C(HI) U(LO) U(HI)
τ1 5 HI 1 3 0.2 0.6
τ2 2 HI 0.5 1.5 0.25 0.75
τ3 8 HI 0.8 3.2 0.1 0.4
τ4 8 LO 3.2 3.2 0.4 0.4
τ5 15 LO 3.75 3.75 0.25 0.25
τ6 12 LO 2.4 2.4 0.2 0.2
τ7 12 LO 2.4 2.4 0.2 0.2

Table 6.1: Example of MC task set with two criticality levels (same table that on page 64)

Selection operator: the selection operator has the same two objectives than the search
operators. Through the selection of the best individuals of the population, it ensures the
convergence of the evolutionary algorithm. It also promotes the exploration of different
subsets of solutions by keeping some diversity in the population. This requires to assess
the individuals.

First, the schedulability of the allocations has to be checked before. We have to identify
the different allocations that have to be checked. This actually requires to identify the
aggregated modal servers. This operation is similar to the one performed previously during
the correction of individuals. The selection operator uses its result.

Once the different allocations of LO tasks decided, we can check their schedulabil-
ity. And in case of aggregated modal servers, we also have to check that the sequential
condition is respected. Then we evaluate the individuals. If an allocation has been found
to be unschedulable, the evaluation of the individual is penalised. An individual is also
penalised if it involves an aggregated modal server that does not fulfil the sequentiality
condition.

Once the assessment performed, we select the individuals with the greatest evalua-
tions. Selected individuals may represent unschedulable allocations or aggregated modal
servers that do not respect the sequentiality condition. Indeed, the population may not be
constituted of enough individuals representing schedulable individuals. These individuals
ensure the diversity of the population.

Implementation of the evolutionary algorithm

Now that we know the requirements that the choice of the representation should respect,
we can choose the structure of the genotype of our individuals. Then, we briefly describe
how we implemented our search operators, the correction of individuals and the selection
operators for the chosen representation.
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Implementation of the genotype of the individual: the representation of our individ-
uals has to represent only solutions to our problem and ease the application of the three
operators. The allocation of tasks to slackful modal servers implies operations on sets,
that is why we based our operators on set operations. A usual representation of sets is
the vector. Hence, for each task, we use a binary vector of length equal to the number of
slackful modal servers (or providing HI tasks). A "1" indicates that the task is allocated
to the corresponding slackful modal server, otherwise a "0" is used. If a vector contains
several 1s, it means that an aggregated modal server is formed. If a vector is full of 0s,
then the task is allocated to a slackless modal server. The complete allocation of all LO
tasks is represented by all the vectors which form a matrix. Hence, the genotype of our
individuals are represented as matrices.




MS1 MS2 MS3

τ4 0 0 0
τ5 0 0 1
τ6 0 0 0
τ7 1 1 0




Figure 6.4: Example of an individual for the task set in table 6.1

Figure 6.4 represents a possible individual for the task set in table 6.1. In this indi-
vidual, task τ5 is allocated to modal server MS3, of providing task τ3, that is the HI task
whose slack time is used to schedule the LO task. Task τ7 is allocated to the aggregated
modal server formed with slackful modal servers MS1 and MS2 of providing tasks τ1 and
τ2 respectively. Tasks τ4 and τ6 are allocated to slackless modal servers.

0 0 0 0 0 1 1 1 0




MS1 MS2 MS3
τ4 0 0 0
τ5 0 0 1
τ6 0 0 0
τ7 1 1 0




0 0 0

Figure 6.5: Change of the representation of the matrix of an individual

In the following, to ease the description of the action of our operators, we represent
the genotype as a vector, as illustrated in figure 6.5. Each block of three in the vector
represents the allocation of a task into the different slackful modal servers.
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Implementation of the mutation operator: the mutation operator has to change the
allocation of a single task to a single slackful modal server. This is achieved by randomly
choosing an entry of the vector. The value of the corresponding entry is flipped to the
opposite value. It means if the entry is a "1", then a new individual is created with a "0"
at the same location and vice versa. The mutation hence results in the allocation or de–
allocation of tasks from a slackful modal server. It can also form aggregated modal server,
if the task was already allocated to a different slackful modal server.

An example is given in figure 6.6. In this example, the entry corresponding to the
allocation of τ7 to modal server MS1, containing HI task τ1, is changed from 1 to 0, in
grey in the figure.

0 0 0 0 0 1 1 1 00 0 0 0 0 0 0 0 1 0 1 00 0 0

Figure 6.6: Example of a mutation

0 0 0 0 0 1 1 1 00 0 0

1 1 00 0 0

0 0 0 0 0 0 0 0 00 1 0

0 0 0 0 0 1 0 0 00 1 0

Seminal individual 1

Seminal individual 2

New individual 2

New individual 1 0 0 0 0 0 0

Crossover splitting line

Figure 6.7: Example of a crossover

Implementation of the crossover operator The crossover operator has to form two
new individuals from two existing ones by mixing their allocations. This mixing of the
allocations is performed by using the union operation. We take the union of the allocations
of a subset of LO tasks from a first individual with the complementary of this subset of
LO tasks from another individual to form a new one. The second individual is formed by
making the opposite. This operation is performed by splitting the vector of our seminal
individuals in two parts and forming two new individuals. For each new individual, we
use a different part of the vector from each original individual.
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An example is given in figure 6.7. The vectors of our seminal individuals are split
along the so called crossover splitting line, that corresponds to split the matrix between
their 2nd and the 3rd rows. Then we use one part of each seminal individual to form a new
one. A second individual is formed using the other part of each seminal individual.

Correction: the correction ensures that the individuals represent a solution consistent
with our definition of the aggregated modal server. It has to ensure that each slackful
modal servers of an aggregated modal server have the same LO tasks allocated. A binary
AND operation allows to detect whether the tasks are allocated to a same slackful modal
server. In this case, their vectors are replaced by their unions through the use of the binary
OR operation. During this correction, we identify the different allocations represented by
the individual.

We illustrate the result of the correction in figure 6.8. In the left of the figure, we have
an individual with tasks τ5 and τ7 allocated to the slackful modal server MS1. But τ5 is
also allocated to slackful modal server MS3 and τ7 to slackful modal server MS2. This
individual is inconsistent with our definition of the aggregated modal server. Indeed, two
tasks allocated to a same slackful modal server are not allocated to all the same slackful
modal servers. This individual has to be corrected and replaced by the individual repre-
sented on the right. In this individual, tasks τ5 and τ7 are allocated to all the same slackful
modal servers MS1, MS2 and MS3.




MS1 MS2 MS3
τ4 0 0 0
τ5 1 0 1
τ6 0 0 0
τ7 1 1 0







MS1 MS2 MS3
τ4 0 0 0
τ5 1 1 1
τ6 0 0 0
τ7 1 1 1




Figure 6.8: Correction of individuals

Implementation of the selection operator: the selection operator selects the individu-
als to form the population for the next generation of the evolutionary algorithm. It requires
to evaluate the individuals. To do so, it uses the identification of the different allocations
from the correction. We first check the schedulability of each allocation. The schedula-
bility test used depends on whether the periods of tasks can be divided by the periods of
modal servers.
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Task Period Criticality C(LO) C(HI) U(LO) U(HI)
τ1 5 HI 1 3 0.2 0.6
τ2 2 HI 0.5 1.5 0.25 0.75
τ3 8 HI 0.8 3.2 0.1 0.4
τ4 8 LO 3.2 3.2 0.4 0.4
τ5 15 LO 3.75 3.75 0.25 0.25
τ6 12 LO 2.4 2.4 0.2 0.2
τ7 12 LO 2.4 2.4 0.2 0.2

Table 6.2: Example of MC task set with two criticality levels (same table that on page 64)

In the case that task periods can be divided, the test based on utilisation, from theo-
rem 4, is used. It simply consists in computing the utilisations of the set of LO tasks and
compare it with the utilisation of the whole slack time of slackful modal servers.

If the condition on periods is not met, we use the tests based on SBF and DBF functions
described in theorem 5. We perform that test by comparing these two functions at all the
deadlines of the tasks over the hyper–period, and not at all instants. This reduces the
required number of comparisons.

The sequentiality condition, that states that slackful modal servers of aggregated modal
servers have to be executed sequentially, is checked by summing the utilisations of the
corresponding slackful modal servers. If that utilisation is lower or equal to one, the
aggregated modal server is correct.

Once the schedulability of all allocations and sequential conditions for all aggregated
modal servers have been checked, we evaluate the individual. It is performed by summing
the utilisations of the LO tasks. If one allocation schedulability test failed or if the sequen-
tial condition of one aggregated modal server is not respected, this sum is multiplied by a
fixed penalty factor of -10000.

Once all individuals of the population have been assessed, the selection operator selects
a number of individuals. This number is equal to the sum of the number of modal servers
and the number of LO tasks.

If we consider the individual in figure 6.4, it appears that the allocation of τ5 in modal
server MS3 is unschedulable as it does not fulfil the theorem 7. Besides, the aggregated
modal server does not fulfil the sequentiality condition. Indeed the sum of the utilisation
of the two modal servers is greater than 1 (0.75 + 0.6 = 1.35 > 1). Hence, the overall
evaluation of the individual is (0.2+0.25) ·−10000 =−4500.
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Example: application of the evolutionary algorithm

Now that we know which scheduling algorithm is used as global scheduler and how to
perform the allocation, we can apply our algorithm on the task set presented in table 6.2.
The allocation results in a set of modal servers composed of one slackful modal server,
one aggregated modal server and one slackless modal server.

With our evolutionary algorithm we find that τ4 can be allocated to slackful modal
server MS2 and tasks τ5 and τ6 can be allocated to the aggregation of MS1 and MS3.
Task τ7 is allocated to the slackless modal server MS4. With this allocation the overall
utilisation of the system is reduced from 2.8 to 1.95, making this task set schedulable on 2
processors instead of 3. For the record, MC–Fluid [34] ensures this task set schedulability
for no fewer than 3 processors.

In the next section, we assess GMC–RUN both theoretically and experimentally. First
theoretically, we prove that GMC–RUN never uses more processors than a multi–criticality
system scheduled by RUN and has a speed–up factor of 2. Then for experimental assess-
ment on randomly generated task sets, we use our evolutionary algorithm to carry out our
experiments.

6.4 Assessment of GMC–RUN

We assess GMC–RUN in two different ways, first theoretically. This gives us an indication
on the worst case performances of our algorithm. In particular, it indicates us whether
GMC–RUN performs better than if a mixed–criticality system was scheduled as a multi–
criticality system. Recall, that a multi–criticality system is a mixed–criticality system but
with tasks always executed with their HI mode timing parameters. Through the use of
the speed–up, we can determine how far we are from a theoretical optimal clairvoyant
scheduling algorithm. But since the worst case may only be reached for very specific and
unlikely task sets, we also perform a second assessment that considers likelier cases.

Second, we assess it experimentally on randomly generated task sets. This assess-
ment gives us an insight on the average performances of our algorithm. It also enables to
consider only task sets that are likelier to be encountered in actual systems.

6.4.1 Theoretical assessment of GMC–RUN

Let us first recall some notations. UΓ(HI)(HI) is the utilisation in HI mode of HI tasks
in task set Γ, UΓ(HI)(LO) is the utilisation in LO mode of HI tasks in task set Γ and
UΓ(LO)(LO) the utilisation in LO mode of LO tasks in Γ. Finally, recall that a multi–
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criticality task set is schedulable by any optimal scheduling algorithm on m processors as
long as UΓ(HI)(HI)+UΓ(LO)(LO)≤ m.

The theoretical assessment of GMC–RUN is two fold.

First, we give an upper bound and a lower bound on the number of processors that
GMC–RUN requires to schedule a mixed–criticality task set. We prove that GMC–RUN
never requires more processors than the one required by RUN to schedule the same system
but as a multi–criticality system.

Second, we compute its speed–up factor. This speed–up factor indicates how far the
worst performances of GMC–RUN are from those of an optimal clairvoyant scheduling
algorithm.

Number of processors

We are interested in determining whether GMC–RUN can require more processors than
what would be required if the system was executed as a multi–criticality system. The
following theorem gives an upper bound and a lower bound on the number of processors
required to schedule a task set with GMC–RUN:

Theorem 10. The number of processors P required to schedule a system verifies:

dmax(UΓ(HI)(HI),UΓ(LO)(LO)+UΓ(HI)(LO))e ≤ P≤ dUΓ(HI)e (6.6)

Proof. The upper bound corresponds to the worst case execution of our partitioning al-
gorithm of Γ. In the worst case, no LO tasks is executed in modal servers, corresponding
to schedule the mixed–criticality system as a multi–criticality one. Hence, the sum of the
utilisations of this multi–criticality system equals to ∑τi∈ΓUi(HI) = UΓ(HI). The lower
bound is proven considering that any correct mixed–criticality scheduler has to schedule
any task set at least in each of its modes (LO and HI). We have to consider two executions:
the first one in which the TFE never happens, and second in which it happens immediately.
In LO mode, any task set cannot be scheduled with less than dUΓ(HI)(LO)+UΓ(LO)(LO)e
processors. Similarly, the same task set cannot be scheduled in HI mode with less than
dUΓ(HI)(HI)e processors. To meet both conditions, any mixed–criticality scheduler uses
for any task set at least dmax(UΓ(HI)(HI),UΓ(LO)(LO)+UΓ(HI)(LO))e processors.

Notice that we have proved that GMC–RUN never requires more processors than the
corresponding multi–criticality system scheduled by RUN or any other optimal real–time
scheduling algorithm. This result is independent of the chosen method for the allocation
of LO tasks to modal servers.
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Speed–up factor: background

Recall from section 2.3.2 that the speed–up is regularly used to theoretically assess the
performances of real–time scheduling algorithms. The principle of the speed–up factor is
to compare the schedulability performances of the considered scheduling algorithm to the
hypothetical performances of a clairvoyant optimal scheduling algorithm. Recall also, that
the lower a speed–up is the better the performances of the considered algorithm are.

The speed–up factor was defined in [30] as the ratio s by which to increase the speed
of processors such that the following inequality holds:

maxI
Ss(I)
A1(I)

≤ c (6.7)

Where Ss(I) is the cost for the online scheduler to schedule the input I with processors of
speed s. A1(I) is the cost for the clairvoyant scheduling algorithm to schedule the same
input with processors of speed 1. c is a constant bounding the ratio.

It is generally sought to determine how much faster processors should be so that a
considered algorithm can reach the best possible performances. We hence compare our
algorithm to an optimal clairvoyant scheduling algorithm. This also means that we want a
bounding constant equal to 1.

Speed–up factor for GMC–RUN

The following theorem gives the value of the speed–up factor of GMC–RUN:

Theorem 11. The speed-up factor of GMC–RUN is 2.

This speed–up factor is computed by comparing the performances of our algorithm
GMC–RUN and an optimal clairvoyant scheduling algorithm.

Before beginning the proof, we recall the following mathematical property:

0≤ x≤ y⇒ dxe ≤ dye (6.8)

Proof. In a mixed–criticality system, an optimal clairvoyant algorithm has the information
of how long each job will execute. Therefore, with such algorithm we can determine prior
execution whether the system will execute in HI or LO mode.

To express the cost to schedule an input I by each algorithm, we use the number of
processors. For a given task set the maximum cost for any optimal algorithm is, as demon-
strated in theorem 10 is dUΓ(HI)e.
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Since an optimal clairvoyant scheduling algorithm knows how the execution will un-
fold, it only need to use the maximum required number of processors for the mode that
will be active. Hence its cost is given by:

max(dUΓ(HI)(HI)e,dUΓ(HI)(LO)+UΓ(LO)(LO)e) (6.9)

Using our cost function in inequality 6.7, we have to find a speed s such that the
following inequality holds:

dUΓ(HI)(HI)+UΓ(LO)(LO)

s e
max(dUΓ(HI)(HI)e,dUΓ(HI)(LO)+UΓ(LO)(LO)e) ≤ 1 (6.10)

We want to prove that this inequality holds for s = 2. The proof is divided in two parts.
We first demonstrate this inequality holds for s≥ 2. Then we prove that for any s such that
s < 2, the inequality is not true any more.

s≥ 2:
Two cases can be identified.

First case, let assume

max(dUΓ(HI)(HI)e,dUΓ(HI)(LO)+UΓ(LO)(LO)e) = dUΓ(HI)(HI)e (6.11)

We want to demonstrate that :

d
UΓ(HI)(HI)+UΓ(LO)(LO)

2
e ≤ dUΓ(HI)(HI)e (6.12)

As 0≤UΓ(HI)(LO), inequality (6.8) gives

UΓ(LO)(LO)≤ dUΓ(LO)(LO)e ≤ dUΓ(HI)(LO)+UΓ(LO)(LO)e

Hence, from inequalities (6.11) and (6.8), we deduce that

UΓ(LO)(LO)≤ dUΓ(HI)(LO)+UΓ(LO)(LO)e ≤ dUΓ(HI)(HI)e (6.13)

UΓ(LO)(LO)+UΓ(HI)(HI)
2

≤
dUΓ(HI)(HI)e+UΓ(HI)(HI)

2
⇒

UΓ(LO)(LO)+UΓ(HI)(HI)
2

≤ dUΓ(HI)(HI)e
(6.14)

d
UΓ(LO)(LO)+UΓ(HI)(HI)

2
e ≤ ddUΓ(HI)(HI)ee= dUΓ(HI)(HI)e (6.15)
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Therefore, the inequality (6.12) is verified.
Second case, let assume

max(dUΓ(HI)(HI)e,dUΓ(HI)(LO)+UΓ(LO)(LO)e) = dUΓ(HI)(LO)+UΓ(LO)(LO)e (6.16)

We want to demonstrate that :

d
UΓ(HI)(HI)+UΓ(LO)(LO)

2
e ≤ dUΓ(HI)(LO)+UΓ(LO)(LO)e (6.17)

From inequalities (6.16) and (6.8), we deduce :

UΓ(HI)(HI)≤ dUΓ(HI)(HI)e ≤ dUΓ(HI)(LO)+UΓ(LO)(LO)e (6.18)

UΓ(LO)(LO)+UΓ(HI)(HI)≤UΓ(LO)(LO)+ dUΓ(HI)(LO)+UΓ(LO)(LO)e (6.19)

UΓ(LO)(LO)≤ dUΓ(HI)(LO)+UΓ(LO)(LO)e ⇒UΓ(LO)(LO)+UΓ(HI)(HI)

≤ 2× (dUΓ(HI)(LO)+UΓ(LO)(LO)e)
(6.20)

UΓ(HI)(HI)+UΓ(LO)(LO)

2
≤ dUΓ(HI)(LO)+UΓ(LO)(LO)e (6.21)

d
UΓ(HI)(HI)+UΓ(LO)(LO)

2
e≤ ddUΓ(HI)(LO)+UΓ(LO)(LO)ee= dUΓ(HI)(LO)+UΓ(LO)(LO)e

(6.22)

Inequality (6.17) is also verified. Hence, 2 is a speed-up factor of GMC–RUN.

s < 2:
Now, we show that 2 is the lower bound of the speed-up factor of our adaptation. To

prove that let assume s = 2−ε with ε→ 0+. We can exhibit a counter example such that :

d
UΓ(HI)(HI)+UΓ(LO)(LO)

2− ε
e ≥ max(dUΓ(HI)(HI)e,dUΓ(HI)(LO)+UΓ(LO)(LO)e) (6.23)

Lets assume we have a task set such that :

UΓ(LO)(LO) =UΓ(HI)(HI) = dUΓ(HI)(HI)e and UΓ(HI)(LO) = 0

Then, max(dUΓ(HI)(HI)e;dUΓ(HI)(LO)+UΓ(LO)(LO)e) = dUΓ(HI)(HI)e
and inequality (6.23) becomes :

d 2
2− ε

×UΓ(HI)(HI)e> dUΓ(HI)(HI)e (6.24)
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As 2
2−ε

> 1, inequality (6.24) can be made true for UΓ(HI)(HI) large enough. This demon-
strates we can exhibit a counter example for any s < 2.

This value of 2 is the second best value among current global mixed–criticality schedul-
ing algorithms. Note that this result is true for any optimal multi–processor scheduling
processor used as top level scheduling algorithm, not only for RUN.

6.4.2 Experimental assessment

In this section, we experimentally evaluate the performances of GMC–RUN on two cri-
teria. First, we estimate the schedulability efficiency on randomly generated task sets.
Second, we measure the average number of preemptions per job. Our approach is mainly
compared to MC–DP–Fair [34], a variant of a MC–Fluid, known for its schedulability ef-
ficiency. Evaluation for GMC–RUN has been done using both aggregated modal servers
and evolutionary algorithm. The implementation of our evolutionary algorithm is based
on the Distributed Evolutionary Algorithms in Python (DEAP) framework [75].

Sampling

We need representative task set samples to estimate average performances for various
combinations of periods, utilisations and proportions of HI tasks. We generate random
task sets following the method described in [53]. With this method, the proportion of HI
tasks PHI and the maximal utilisation of modes UBound and the minimal and maximal ratio
between utilisations of LO and HI modes can be set.

For a given task set Γ, let UBound be max(UΓ(HI)(HI),UΓ(LO)) and let PHI be the
proportion of HI tasks in Γ. The normalised utilisation Unorm = UBound

m takes its values in
(0.05N∩ [0.6,1.0]), with m the number of processors whose values are successively taken
in {2,4,8}. For each value of Unorm, 500 sample task sets are generated. For each sample,
the generation procedure ensures the task set parameters are consistent with UBound . The
algorithm 1 show the overall procedure to create one task set.

For each new task τnew, we first determine its criticality level χnew. It is performed by
generating randomly a variable hi_or_low assuming a uniform distribution between 0 and
1. If hi_or_low < PHI then it is a HI task, otherwise it is a LO one.

If χnew is set to HI, we first determine the utilisation in HI mode Unew(HI) of the
task. To ensure that no execution modes has an overall utilisation greater than Ubound , the
utilisations of a HI task is the minimum between two values. The first value is randomly
drawn in [0.02,0.7] assuming a uniform distribution. The second is the difference between
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the utilisation limit Ubound and the current value of the utilisation of the HI mode of the
task set UΓ(HI). UΓ(HI) is then updated with the utilisation of the new task in HI mode.

Then a ratio r between task utilization in LO and HI modes, Unew(HI)/Unew(LO), has
to be determined. This parameter is drawn from a uniform distribution in [1,4]. To avoid
exceeding UBound , the LO utilisation value Unew(LO) is chosen among two values. Either
it is equal to the utilisation Unew(HI) divided by r. Or it is equal to the difference between
the utilisation limit Ubound and the current value of the utilisation in LO mode of the task
set UΓ(LO). UΓ(LO) is then updated with the utilisation of the new task in LO mode.

If χnew is set to LO. The utilization value in LO mode Unew(LO) needs to be deter-
mined. Its value is the minimum between a value randomly drawn in [0.02,0.7] assuming
a uniform distribution or the difference between the utilisation limit Ubound and the current
value of the utilisation in LO mode of the task set UΓ(LO). UΓ(LO) is then updated with
the utilisation of the new task in LO mode.

Finally, the period is drawn in an interval from a log uniform distribution as described
in [76]. The chosen interval is [10,100] with a step of 10.

The number of tasks in the task set is not fixed in advance. A task τnew is gener-
ated as long as continue is true. The variable continue is checked with the function
CheckUtilisation() at the end of each creation of a task. It stays true until one of the
utilization UΓ(HI)(HI) or UΓ(LO) reaches UBound .

These task sets were first used to measure schedulability ratio and the weighted schedu-
lability ratio. Then, they were used to measure the number of preemptions entailed per
job. These two metrics were also used to compare GMC–RUN with MC–DP–Fair [34],
and fpEDF–VD [53].

Result exploitation

Schedulability performances: ratio of task set successfully scheduled The accep-
tance ratio is the percentage of task sets deemed schedulable by a scheduling algorithm.
We compare schedulability efficiency computing the acceptance ratio of GMC–RUN,
fpEDF–VD and MC–DP–Fair. Figures 6.9, 6.10 and 6.11 show acceptance ratio vary-
ing for normalized values of UBound/m on 2, 4 and 8 processors respectively.

Results show that GMC–RUN outperforms fpEDF–VD as GMC–RUN exhibits a schedu-
lability ratio close to MC–DP–Fair efficiency for any number of processors and proportion
of HI tasks. For instance, on 2 processors with PHI = 0.3 and for a normalized utilization
value of 0.7 GMC–RUN manages to schedule more than 95% of task sets compared with
100% for MC–DP–Fair and less than 40% for fpEDF–VD.
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Algorithm 1 Task generation for experiments with two criticality levels
Input: Umin, Umax, rmin, rmax, Tmin, Tmax, Ubound , PHI
Output: Γ

1:
2: Γ←{}
3: continue← True
4: while continue = True do
5: τnew = NewTask()
6: hi_or_low←Uni f ormDistribution(0,1)
7: if hi_or_low≤ PHI then
8: χnew = HI
9: Unew(HI) = min(Uni f ormDistribution(Umin,Umax),UBound−UΓ(HI)(HI))

10: UΓ(HI)(HI)←UΓ(HI)(HI)+Unew(HI)
11: r←Uni f ormDistribution(rmin,rmax)

12: Unew(LO) = min(Unew(HI), Unew(HI)
r ,UBound−UΓ(LO))

13: UΓ(LO)←UΓ(LO)+Unew(LO)
14: else
15: Unew(LO) = min(Uni f ormDistribution(Umin,Umax),UBound−UΓ(LO))
16: χnew = LO
17: UΓ(LO)←UΓ(LO)+Unew(LO)
18: end if
19: Tnew = GenerateTaskPeriod(Tmin,Tmax)
20: Γ← Γ∪{τnew}
21: continue←CheckUtilisation()
22: end while
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Figure 6.9: Acceptance ratio with normalized utilization (UBound/m) for different propor-
tions of HI tasks on 2 processors.

GMC–RUN remains close to MC–DP–Fair on 2,4 and 8 processors. It presents as
good performances as MC–DP–Fair up to a normalised utilisation of 0.7. Yet, GMC–
RUN performs better than MC–DP–Fair in high utilisations for proportions of HI tasks
equal to 0.7 for two and four processors.

The better performances of GMC–RUN and MC–DP–Fair compared to fpEDF–VD
support our initial intuition that using the best multi–processor real–time scheduling al-
gorithms to design a mixed–criticality one. Indeed, both algorithms, GMC–RUN and
MC–DP–Fair, have designed based on an optimal multi–processor real–time scheduling
algorithm.

Then the better results of GMC–RUN for high proportions of HI tasks in HI utilisation
may seem surprising. But the explanation lies in task set samples properties. Higher
proportions of HI tasks means that the task set utilisation is most likely equal to HI task
utilisation alone. Hence, a lot of slack time is likely to be available in LO mode, meaning
that modal servers have large budgets. Therefore, the allocation of LO tasks in modal
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Figure 6.10: Acceptance ratio with normalized utilization (UBound/m) for different pro-
portions of HI tasks on 4 processors.

servers is more likely and thus reduces in larger proportion the overall utilisation of the
system. For these cases, since the proportion of HI tasks is large, we manage with our
approach to reduce task set utilisations to utilisation of the HI mode.

Then to have a better understanding of the influence of the proportion of HI tasks on
the acceptance ratio, we compute the weighted acceptance ratio [77]. Let R(U,PHI) be the
acceptance ratio for a normalised utilisation U and a proportion of HI task PHI and Um

be the set of normalised utilisations used for m processors with m ∈ {2,4,8}. Then the
weighted acceptance ratio A(PHI) is defined as follows:

A(PHI) =
ΣU∈UmU ·R(U,PHI)

ΣU∈UmU
(6.25)

The results are represented in figure 6.12. The common trend of these curbs is that
the acceptance ratio first decreases until reaching proportion of HI tasks of 0.5/0.6 and
a weighted acceptance ratio of 0.65 for 2 processors, 0.55 for 4 processors and 0.5 for
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Figure 6.11: Acceptance ratio with normalized utilization (UBound/m) for different pro-
portions of HI tasks on 8 processors.

8 processors. Then acceptance ratio increases. These graphs also show that the fewer
processors there are the larger the weighted acceptance ratio is. Note also that these trends
hold for fpEDF–VD and MC–DP–Fair.

An explanation to this is that as the proportion of HI tasks increases before reaching
0.5, more HI tasks are to be scheduled. Still, they do not supply sufficient slack time
to schedule a sufficient amount of LO task utilisation to sufficiently reduce the overall
utilisation of the task set and make it schedulable. Then as HI tasks become the majority,
slack time becomes more available allowing more LO tasks to be scheduled in it.

These experiments show that GMC–RUN has very satisfactory performances. It has
schedulability efficiency comparable to MC–DP–Fair in average cases.

Practicality: number of preemptions entailed

The number of preemptions entailed by a scheduling algorithm impact the performances
of a scheduling algorithm. The choice of RUN has been partly based on its ability to entail
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Figure 6.12: Weighted acceptance ratio with different values of HI task proportion for
different number of processors.

few preemptions. But because modal servers have limited budgets their use can split the
execution of their allocated tasks. Hence, it might generate preemptions that would not
occur without the use of modal servers.

We propose to compare the average number of preemptions per job that GMC–RUN
and MC–DP–Fair entail. We use the method described in RUN to count preemptions:
per job, and ignoring those due to task activation and completion. We only count the
number of preemptions in LO mode, as scheduling in HI mode is very similar to non–
mixed–criticality case for both algorithms. The comparison for this mode will therefore
yield the same results than those shown in [42], and that shown that RUN outperforms a
version of DP–Fair scheduling algorithm. We filter out samples for which one of GMC–
RUN or MC–DP–Fair cannot ensure schedulability on 2 processors. Results are pictured
in figure 6.13.

The average number of preemptions is drawn with task numbers as abscissa. As ex-
pected, GMC–RUN entails at least five times fewer preemptions in average than MC–
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Figure 6.13: Average number of preemptions per job for task sets with different number
of tasks

DP–Fair. Note that the gap is quite impressive for reasonable task set sizes and increases
steadily. In this situation, GMC–RUN clearly dominates MC–DP–Fair.

6.5 Conclusion

In this chapter, we have achieved the design of our hierarchical scheduling framework
with the choice of its top level scheduling algorithm. We based our choice on a list of
performance criteria, that consider both theoretical and practical performance aspects of
scheduling algorithms. We compared several possible multi–processor real–time schedul-
ing algorithm against these criteria. It ultimately lead to the choice of the RUN algorithm.
This choice led to name our hierarchical scheduling framework GMC–RUN.

We then described how the use of the different kinds of modal servers could be used
with RUN. In particular, we described how the sequential condition of the aggregated
modal servers could be respected through the use of RUN primal servers.

Next, we described the optimisation problem that represents the allocation of tasks in
modal servers. The problem is to find the allocation with the largest utilisation of LO tasks
allocated to modal servers. We explained why and how evolutionary algorithms are used
to solve this optimisation problem.

Finally, we evaluate GMC–RUN both theoretically and experimentally. We first proved
that GMC–RUN never requires more processors than the number of processors required
by RUN when scheduling a mixed–criticality system as a multi–criticality one. Then, we
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showed that GMC–RUN has the second best speed–up factor for mixed–criticality multi–
processor scheduling algorithms, with a value of 2. We then measured the schedulabil-
ity ratio on randomly generated task sets and compared GMC–RUN to fpEDF–VD and
MC–DP–Fair, the two best mixed–criticality global scheduling algorithms. It results that
GMC–RUN presents the second best performances and is closer to MC–DP–Fair, the best
of the three algorithms, than to fpEDF–VD. At last, we computed the number of preemp-
tions per job for GMC–RUN and MC–DP–Fair. On this criteria GMC–RUN outperforms
MC–DP–Fair by entailing at least five times fewer preemptions.

In the next section, we describe our method to schedule mixed–criticality systems with
more than two criticality levels with GMC–RUN. We notably present an iterative process
that allow to correctly allocate tasks in modal servers for any number of criticality levels.
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Chapter 7. Extension to N criticality levels

In previous chapters, we presented our mixed–criticality scheduling algorithm for sys-
tems with two criticality levels. Our algorithm is a hierarchical scheduling framework
based on modal servers. These servers enforce a mixed–criticality scheduling policy that
enables the scheduling of LO tasks in HI task slack time. It requires to allocate LO tasks
to modal servers. This operation is performed by using an evolutionary algorithm.

Yet, in section 3.1.3 p 39 of the problem statement, we explained that the handling of
only two criticality levels is not sufficient. The use of only two criticality levels aims at
simplifying the mixed–criticality scheduling problem. But, industrial norms and standards
define up to five criticality levels. Therefore, the handling of more than two criticality
levels by mixed–criticality scheduling algorithms becomes a must. Moreover, handling
more criticality levels enables system engineers to adjust more precisely the availability of
the different tasks.

The generalisation to more than two criticality levels requires to handle more modes
and consequently to ensure possibly more than one mode change. Thus it requires the
coordinated scheduling of all modes so that mode changes are correctly handled. Recall
in particular, that we have to ensure that we handle the disruption problem, exposed in
section 3.2.2 p 41 of the problem statement, that can lead to missed deadlines after a mode
change.

Besides, our algorithm is based on the use of the slack time of tasks. The introduction
of more criticality levels results in potentially more tasks with available slack time. More-
over, the multiplication of modes makes the availability of the slack time, and thus its use,
more complex compared to systems with two criticality levels. Indeed in dual–criticality
systems, only the HI tasks have available slack time that is no longer available after a
single mode change.

The multiplication of modes is first dealt with by the generalisation of the task model.
Following this generalisation, we also have to adapt the definition of the modal server to
ensure both all possible mode changes and the use of the slack time.

Since, there are more criticality levels and modes, the identification of which tasks
can be executed in other task slack time is less obvious than for dual–criticality systems.
We therefore need a clear rule to state whether the slack time of a task is available to
execute another task. Hence, we have to revisit how we perform the allocation of tasks in
modal servers. Since slack time availability depends on the active mode, the tasks with
available slack time and those without can be defined mode by mode. Therefore, for each
mode we have the same situation than for dual–criticality systems where tasks can be into
two groups: those with slack time and those without. The idea is hence to perform the
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allocation as with dual–criticality systems by considering each mode at a time through an
inductive process.

In this chapter, we first describe the extension of the model and the notations of the
mixed–criticality task. Next, we explicit the sources, the amount and the availability of
the slack time in systems with more than two criticality levels. Then, we present how our
modal servers can handle task set with tasks belonging to more than two criticality levels.
Finally, we justify why our hierarchical scheduling framework yields a correct scheduling
of mixed–criticality systems with any number of criticality levels. We then explain how
our evolutionary algorithm is reused in an inductive process to perform the allocation of
tasks in modal servers. Finally, we experimentally assess the schedulability performances
of our scheduling algorithm by measuring the schedulability ratio for task sets scheduled
with either three or two criticality levels.

7.1 Generalisation of the system model

In this section, we present the notations used for mixed–criticality tasks classified in more
than two criticality levels. We then determine the amount of available slack time for such
tasks per mode and state how it can be safely used.

7.1.1 Generalisation of the task model

This section deals with the description of the generalisation of the model of the mixed–
criticality periodic task with implicit deadlines to any number of criticality levels. The
notations used until now to indicate the criticality level of the tasks is not practical beyond
two criticality levels. Since we aim at handling systems with more than two criticality
levels, we need a different notation.

A practical and straightforward notation for denoting criticality levels is to use num-
bers. For system with N criticality levels, we use numbers from 1 to N and note CL =

{1,2, ...,N} the set of criticality levels. N represents the number of criticality levels as
well as the highest possible criticality level.

In such mixed–criticality system, a task set Γ contains n tasks τ1, ...,τn with each
task τi ∈ Γ characterised by (Ti,χi,Ci(1),Ci(2), ...,Ci(N)). These tasks are synchronously
started at time t = 0. Ti is still task τi period and its implicit deadline in all modes.

χi denotes τi criticality level in CL . A task of criticality level χi is referred to as a
CL–χi task or noted τi{χ = χi}. Let τi and τ j be two tasks of criticality level χi and χ j

respectively. If χi > χ j then τi is more critical than τ j.
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Ci(1), ...,Ci(N) are the budgets of τi for criticality levels 1 to N, respectively. We
assume that ∀χ ∈ CL , Ci(χ) ≤ Ti. Moreover ∀χ, χi < χ implies Ci(χ) = Ci(χi), and for
any χ and χ′ in CL , χ≤ χ′ ≤ χi implies Ci(χ)≤Ci(χ

′)≤Ci(χi). We assume that all jobs
of CL–N tasks always complete their executions in no more than Ci(N). From the period
and the budget of a task τi, we can derive its utilisation, Ui =

Ci
Ti

.

As for budgets there are as many task utilisations and Demand Bound Functions, de-
fined in definition 22 in section 5.3.3 p 72, as there are criticality levels. Hence, for a
criticality level χ ∈ CL , Ui(χ) =

Ci(χ)
Ti

and DBFi(t,χ) = b t
Ti
c ·Ci(χ).

The subset of tasks in Γ with criticality level χ is denoted: Γ(χ) = {τi ∈ Γ| χi = χ}.
Similarly, Γ(< χ), Γ(≤ χ), Γ(≥ χ) Γ(> χ) denote subsets of Γ such that tasks are of
criticality levels smaller, smaller or equal, greater or equal, and greater than χ, respectively.
Besides, we define the maximal criticality level of a task set as follows:

Definition 31 (Maximal criticality level of a task set). The maximal criticality level of a

task set Γ is defined as: maxτi∈Γ χi

We finally use the following notation ΓM to designate a task set of maximal criticality
level M.

Utilisation definition can be extended to a task set Γ: UΓ = ∑τi∈ΓUi. It can be gener-
alised to define the utilisation of the task set Γ at level χ as: UΓ(χ) = ∑τi∈ΓUi(χ). Finally,
we note UΓ(χ1)(χ2) the utilisation of tasks of criticality level χ1 in Γ at criticality level χ2.

We define what an execution mode is with this model of mixed–criticality systems.

Definition 32 (Execution mode). An execution mode is a configuration of the scheduler

characterised by the following elements;

• A criticality level χ ∈ CL

• Task set Γ(≥ χ) whose tasks are scheduled using their budgets C(χ)

Execution mode corresponding to the criticality level χ, is referred to as mode χ. A
mode χ is said lower (respectively, higher) than an another mode χ′ if χ is smaller (re-
spectively, larger) than χ′. N execution modes are defined for a system with N criticality
levels. A mixed–criticality system can be executed in any of the N modes. Hence a mode
define the scheduling objectives to reach for each task and requires mechanisms to enforce
a mode change.

We consider the system starts executing in mode 1, and changes its mode whenever a
Timing Failure Event occurs (TFE).
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Definition 33 (Timing Failure Event). A Timing Failure Event is the instant at which a

task job has been executed for as long as its C(χ) without completing its execution, while

the system is in mode χ.

If a TFE occurs while the system is in mode χ, then a mode change is performed from
mode χ to mode χ+1. CL–χ Tasks τi ∈ Γ(χ) are no longer executed. A job of τi respects
its timing parameters of level χ if its execution time is lower than Ci(χ) and thus does not
trigger a TFE. Mode χ is said active as long as all jobs respect their timing parameters
of criticality level χ. The system current execution mode is the mode with the lowest
criticality level that has not suffered a TFE.

7.1.2 Determination of the slack time per mode

The task model being generalised to handle more criticality levels, we have to determine
the available slack time before performing the allocation of tasks. It consists in checking
whether the slack is still a periodic resource, quantifying the slack time and determining
which tasks can be scheduled in that slack time.

Although the task model has been generalised, the periodic activation of the tasks
remains. Hence, the slack time is still a periodic resource (see section 5.1.2 p 63).

In dual–criticality systems, slack time originates in LO mode from the difference be-
tween budgets of HI and LO modes as HI tasks are scheduled with their HI mode budgets.
Following similar reasoning for systems with more than two criticality levels, we execute
all tasks with their budgets at their criticality levels. Now that tasks have potentially more
than two budgets, there are several intervals of slack time: one for each difference between
budgets of two consecutive modes as pictured in figure 7.1. Each interval of slack time
can be associated to a mode.

Definition 34 (Interval of slack time). An interval of slack time of mode M, or simply

slack time of mode M, is a portion of the slack time of a task that is available until mode

M becomes active.

Recall the availability of slack time has been defined in definition 15 page 64. For
example, the slack time of mode 3 is equal to the difference between the budgets of mode
3 and 2: C(3)−C(2). Hence, a CL–N task executed with its budget of mode N, C(N), has
N−1 intervals of slack time, as shown in figure 7.1.

After a TFE, several intervals of slack time of a task that can still be available. The
availability of the slack time depends on the value of its mode and of the criticality level of
the active mode. When mode M becomes active, the slack time of mode M of a CL–N task,
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τ{χ = N}

C(2)− C(1)

Slack time of mode 2

C(1)

Mode < 2

C(3)− C(2)

Slack time of mode 3

C(N)− C(N − 1)

Slack time of mode N

Mode 2 Mode < 3 Mode 3 Mode < N Mode N

Γ(≤ 1) τ{χ = N} Γ(≤ 2) τ{χ = N} Γ(≤ N − 1) τ{χ = N}

Figure 7.1: Intervals of the slack time of a CL–N task

τ{χ = N}

C(2)− C(1)

Slack time of mode 2

C(1) C(3)− C(2)

Slack time of mode 3

C(N)− C(N − 1)

Slack time of mode N

C(4)− C(3)

Slack time of mode 4

C(3)

Execution of task τ{χ = N} Available slack time

Figure 7.2: Availability of the intervals of slack time of a CL–N task

with N > M, is used to complete the CL–N task. But only intervals of slack time of modes
M and lower are not available and used to execute the CL–N task in mode M. Meaning
that the intervals of slack time from higher modes are still available. To illustrate this,
observe figure 7.2. In this figure, the active mode is mode 3, as the CL–N task executes for
as long as its budget of mode 3. This budget can be decomposed as the budget of mode 1
completed by the slack time of modes 2 and 3. These two intervals of slack time are hence
no longer left unused in mode 3. But slack time of higher modes, from 4 to N, are still left
unused. Therefore, they can be used to schedule other tasks.

As for dual–criticality systems, a set of tasks can be executed in the slack time of a task
τi as long as this slack time is not used to complete task τi. These systems are constituted
with a single criticality level of tasks providing slack time and a single criticality level of
tasks schedulable in that slack time. In systems with more criticality levels, the number of
criticality levels and of intervals of slack time of different modes are larger. Besides tasks
can be scheduled in the slack time of all tasks. This depends on the modes of the slack
time and of the criticality levels of tasks.

But we have to ensure that the interval of slack time of a task τi is never used to
simultaneously complete the task τi and execute a set of other tasks. To avoid that situation,
we have to respect the following theorem:
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Theorem 12. Let Γ be set of tasks of maximum criticality level K. Consider an interval of

slack time of mode M of a CL–N task. If K < M then the interval of slack time is available

for the tasks in Γ.

Proof. We prove this theorem by contradiction. Assume a CL–N task τ has a slack time
of mode M and that a set of tasks Γ is composed of tasks with a maximum criticality
levels equal to M−1. Still when a mode K becomes active that slack time has to schedule
simultaneously τ and the set of tasks Γ.

If K is such that K ≥M. The interval of slack time completes task τ when mode M or
higher is active. But when mode M becomes active none of the tasks in Γ is scheduled as
they are all of criticality lower than M. Hence, in such case, task τ and tasks in Γ are not
scheduled simultaneously in the slack time.

If K is such that K < M. The interval of slack time schedules the task set Γ when
modes lower than M are active. Task τ executes for as long as a budget of mode lower
than M and does not need the slack time of mode M.

This proves the theorem.

Now that we know when and how much slack time is available and the criticality levels
of the tasks that can be scheduled in it, we extend the definition of modal servers.

Task Period Criticality C(1) C(2) C(3)
τ1 50 3 16 16 25.6
τ2 50 1 17.28 17.28 17.28
τ3 100 3 12.8 13.12 18.56
τ4 50 1 23.04 23.04 23.04
τ5 500 2 9.6 9.92 9.92
τ6 50 3 2.56 10.88 31.36
τ7 1000 1 13.12 13.12 13.12
τ8 100 1 7.36 7.36 7.36
τ9 100 1 16.32 16.32 16.32
τ10 500 1 28.48 28.48 28.48
τ11 50 2 14.08 35.84 35.84
τ12 50 2 3.84 18.88 18.88
τ13 100 2 72.64 74.24 74.24
τ14 100 1 23.68 23.68 23.68

Table 7.1: Example of a set of tasks with three criticality levels.
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7.2 Generalisation of the modal server

As for dual–criticality systems, modal servers are used to take advantage of the slack time
produced by tasks to schedule other tasks. But, in systems with more than two criticality
levels, we saw that tasks can have more than one interval of available slack time. Yet,
modal servers have been defined to only handle one such interval of slack time. In this
section, We extend here the definitions of modal servers, slackful modal servers, slackless
modal servers and aggregated modal servers. Besides, to exemplify our definitions, we
use the task set described in table 7.1. This task set is derived from tasks provided by
our industrial partners of the ELA project. It is composed of tasks with three criticality
levels and their timing parameters can be considered as representative of what can be
encountered in the automotive industry.

7.2.1 General definition of a modal server

Recall, that in dual–criticality systems, the slack time of modal servers originated of a
HI tasks, that were called providing tasks. We reuse this concept of providing tasks to
generalise the definition of modal servers to systems with more than two criticality levels:

Definition 35. In a system with N criticality levels, a modal server MS is characterised

by a budget CMS, a period PMS, a set of providing tasks PMS and N-1 task sets noted

Γ1
MS,...,ΓN−1

MS . We note M the maximal criticality level of PMS. Each task set Γ1
MS,...,ΓM−1

MS

are such that task set Γx, with x∈ [1, ..,M−1], contains only tasks of criticality level lower

or equal to x. The remaining task sets ΓM
MS,...,ΓN−1

MS are left empty.

A modal server periodically executes for CMS time units every PMS time units. During

its execution it schedules its task sets as follows:

1. If active mode K is such that K < M, schedule first tasks in task set PMS until com-

pletion of all its tasks. Then ∀x ∈ [K, ...,M− 1] schedule following a uniprocessor

scheduling policy all task set Γx
MS in the increasing order of x for a duration equal

to the interval of slack of time of mode x+1.

2. If K = M, schedule only task set PMS, following a uniprocessor scheduling policy.

3. If active mode K is such that K > M, schedule nothing.

A modal server has still a periodic execution, since the slack time is still a periodic
resource. The uniprocessor scheduling policy used is Earliest Deadline First. With, this
definition of the modal server respects theorem 12 p 121, that gives a rule that ensures
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the slack time is never used to simultaneously execute the providing tasks and other tasks.
Its set Γ1

MS, containing only CL–1 tasks, is scheduled in interval of slack time of mode 2.
CL–2 and CL–1 tasks contained in Γ2

MS are scheduled in interval of slack time of mode
3... And when mode M becomes active, only providing tasks in PMS are scheduled, that is
tasks of criticality level equal to M.

Since we have generalise the definition of the slack time and of the modal server,
we now have to generalise the definitions of the slackful modal servers, slackless modal
servers and aggregated modal servers.

Definition of a slackful modal server

A slackful modal server is defined as follows:

Definition 36. A slackful modal server is a modal server MS whose providing task set PMS

contains a single task.

For the same reasons than those exposed in section 5.3.1 p 67, a slackful modal server
takes the same timing parameters than those of its providing task. A slackful modal server
is represented in figure 7.3.

The correctness of the scheduling in these slackful modal servers is ensured for the
same reasons than those exposed in section 5.3.2 p 69. We assume that the modal server
is correctly scheduled. The modal server has the same timing parameters than those of the
CL–M task. Besides this task is completed before scheduling the other task sets. It hence
ensures that the CL–M task is correctly scheduled. The correctness of the scheduling of
tasks in the other task sets of the modal servers is proved by using the schedulability tests
presented in theorems 4 and 5, that can be found at pages 71 and 72, respectively.

Consider the task set described in table 7.1. We can form two slackful modal servers
from tasks τ11 and τ6. τ11 is of criticality level 2 and is added to the task set Γ2 of its
slackful modal server, noted MS11. τ6 is of criticality level 3 and is added to the task set
Γ3 of its slackful modal server, noted MS6. τ11 has a slack time of mode 2 with a budget
of 21.76. τ6 has a slack time of mode 2 with a budget of 8.32 and a slack time of mode
3 of budget 20.48. We can allocate task τ2 to the slackful modal server MS11 and more
precisely in its slack time of mode 2. Similarly, we can allocate task τ8 in the slack time of
mode 2 and tasks τ5 and τ12 in the slack time of mode 3 of the slackful modal server MS6.

Definition of a slackless modal server

A slackless modal server is defined as follows:
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Mode 1 Mode N

Modal server (MS)
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τ{χ = N} τ(N)

Γ2
MS

b

b

b

ΓN−1
MS

b

b

b

Mode 2

τ(N)
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b
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C(2)-C(1)
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C(2) C(N)

C(N)-C(N-1)

τ{χ = N} τ{χ = N}

ΓN−1
MS

Γ2
MS

Figure 7.3: A slackful modal server with its task sets to execute in each mode with the
given budgets

Definition 37. A slackless modal server is a modal server MS whose task set PMS has a

single task and all its task sets Γ1
MS,...,ΓN−1

MS are empty.

Identically, the timing parameters of such modal server are those of the task at its
criticality level.

Such modal server schedules its non empty task set until the active mode of the system
is larger than the criticality level of the task and then nothing.

When considering the task set described in table 7.1, task τ4 can not be allocated to
any slackful modal server, hence it is scheduled in a slackless modal server.

Definition of an aggregated modal server

An aggregated modal server is defined as follows:

Definition 38. An aggregated modal server AMS is a set of slackful modal servers MSi

such that these slackful modal servers are executed sequentially and one or several of their

task sets Γ1
MSi

,...,ΓN−1
MSi

contains the same tasks.

The use of aggregated modal servers requires to respect the sequential condition pre-
sented in section 5.5.1 p 74.

When considering the task set described in table 7.1, an aggregation of slackful modal
servers can be formed with the providing tasks τ3 and τ12 to schedule task τ10 and τ14. τ10

and τ14 being executed in the slack time of mode 2 for both providing tasks.
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7.2.2 Scheduling generalised modal servers with GMC–RUN

In chapters 5 and 6, we explained that the peculiarities of the mixed–criticality scheduling
were contained in modal servers. Besides, as model servers are periodic servers, they are
schedulable as regular periodic tasks with implicit deadlines. Thus, modal servers can be
scheduled by a multi–processor real–time scheduling algorithm.

Our extension of the modal server aimed at taking into account the changes brought
by the use of more criticality levels. This affected the number of task sets in modal servers
and the scheduling policy enforced in modal servers. Yet, it did not affect its periodic
execution similar to that of a regular periodic server or task. Hence, mixed–criticality
peculiarities are still handled in modal servers, they are thus still schedulable by a multi–
processor real–time scheduling algorithm.

Assuming that the allocation of tasks in the different modal servers has been per-
formed. It resulted in a set of modal servers noted ΓMS of utilisation UMS and a set of
constraints C due to the potential formation of aggregated modal servers. Then this set
of modal servers is schedulable by GMC–RUN if the conditions presented in theorem 9,
page 88, are respected. That is if UMS is lower or equal to the number of processors and
the set constraints C respect the rules of the RUN PACK operation.

But it assumes that we have performed the allocation of tasks in modal servers. Our
method described in section 6.3 p 89 was designed to handle dual–criticality systems not
systems with more criticality levels. We describe in the following section, how we perform
this allocation for mixed–criticality systems with more than two criticality levels.

7.3 Inductive allocation

This section describes how the allocation of tasks in modal servers is performed for mixed–
criticality systems with more than two criticality levels. We explain how an inductive pro-
cess allows to perform the allocation for such systems. This inductive process consists
first in splitting the set of tasks into two groups based on the constraints imposed by theo-
rem 12 p 121, that gives a rule that ensures the slack time is never used to simultaneously
execute the providing tasks and other tasks.. These two groups can then be handled as a
task set with two criticality levels to perform the allocation. These operations are repeated
as many times as there are slack time of different modes, that is N−1 times for a system
with N criticality levels.

To exemplify our approach we use the task set described in table 7.1. But, for the sake
of clarity, we only consider tasks τ4, τ6, τ8, τ10, τ12 and τ13 of this task set. We represented
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these tasks in figure 7.4, classified in criticality levels and with the available intervals of
slack time in each mode.

τ6 Slack time of mode 2 Slack time of mode 3

τ8 τ10 τ4

CL–2 tasks

CL–1 tasks

CL–3 tasks

τ12 Slack time of mode 2τ13 Slack time of mode 2

Figure 7.4: Representation of the considered tasks with their slack time of different modes

For dual–criticality systems, the allocation of tasks in modal servers is achieved by
splitting the task set into two groups. A first group is constituted of tasks with available
slack time, i.e the HI tasks. These tasks are used as providing tasks to form slackful
modal servers. The second group is composed of tasks that have no available slack time.
These tasks can hence be scheduled in slack time of the tasks of the first group, i.e the LO
tasks. Tasks in the second group are allocated to slackful modal servers and aggregated
modal servers, when they are schedulable. Otherwise, they are allocated to slackless modal
servers. The result is a set of modal servers that are schedulable by a non–mixed–criticality
scheduling algorithm such as RUN. The allocation in modal servers has the effect of re-
ducing the number of criticality levels from two to one, i.e to a system schedulable by a
real–time scheduling algorithm.

Following the dual–criticality system case, we start the allocation for a system with N
criticality levels by splitting the task sets into two groups. The first group contains all tasks
that have an interval of available slack time of mode K. The second group is composed
of tasks that have no available slack time of mode K. That is tasks that have a criticality
level strictly lower than K. The inductive process consists in considering all the intervals
of slack time in the increasing order of modes.

Hence, the first iteration of the inductive process considers slack time of mode 2. The
first group is hence composed of all tasks with a criticality level greater than 1 since they
all have an interval of slack time of mode 2. The second group is constituted of tasks that
can be allocated to the slack time of mode 2 according to theorem 12 p 121, i.e the CL–1
tasks.

The allocation is performed on these two groups as for dual–criticality systems. The
result is a set of CL–1 tasks allocated to a set of slackful modal servers. These slackful
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modal servers are formed with providing tasks of any higher criticality levels. CL–1 tasks
are added to sets Γ1 of slackful modal servers. A set of CL–1 tasks can potentially remain
unallocated.

τ12 Slack time of mode 2

τ13 Slack time of mode 2

Tasks to allocate

Tasks with
available slack time

Allocation of taskIntervals of slack time considered

τ8τ4τ10

τ6 Slack time of mode 2 Slack time of mode 3

Figure 7.5: Representation of the allocation of system with three criticality levels: first
iteration allocation in slice of slack time of mode 2

The splitting and the allocation of the tasks of our example are represented in figure 7.5.
We seek to allocate CL–1 tasks, τ4, τ8 and τ10 into the slack time of mode 2 of tasks of
higher criticality levels τ6, τ12 and τ13. We split these tasks in two groups and manage to
allocate task τ10 into task τ12 slack time and task τ8 into the slack time of task τ6. This
shows that our approach allows to use the slack time not only of CL–2 tasks to schedule
CL–1 tasks but also slack time of tasks of higher criticality levels. The result of the first
iteration of our approach for these tasks is pictured in figure 7.6.

With this first iteration, we have performed the allocation in the slack time of mode 2.
The next iteration is to consider the slack time of mode 3. We repeat the same operations.
Tasks are split into two groups, one group contains the tasks with available slack time of
mode 3. The other group is composed of tasks that can be allocated to this slack time. This
second group is composed of CL–2 tasks and also includes the set of unallocated CL–1
tasks originating from the first iteration of the allocation. This second iteration results in
the allocation of CL–2 tasks into task sets Γ2 of slackful modal servers and potentially in
a set of unallocated CL–2 and CL–1 tasks.

Note that during this second iteration, the formation of aggregated modal servers has
to take into account the potential aggregated modal servers from the first iteration. Indeed,
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it may happen that during the first iteration two slackful modal servers MSα and MSβ

form an aggregated modal server. Then, during the second iteration, one the two modal
servers MSα form another aggregated modal with a different slackful modal server MSγ.
This aggregated modal server is correct not only if MSα and MSγ respect the sequentiality
condition, that is if they can be scheduled sequentially. But it is correct only if MSα, and
MSβ, and MSγ respect the sequentiality condition. Therefore, during an iteration of the
inductive process the formation of aggregated modal servers must take into account the
potential aggregated modal servers from previous iterations.

Note also that some CL–2 tasks may be providing tasks of slackful modal servers.
Hence, these slackful modal servers may have CL–1 tasks in their sets Γ1. These same CL–
2 tasks may then be allocated to other slackful modal servers to be scheduled in an interval
of slack time of mode 3, or higher. Thus, a slackful modal server can be allocated to
another slackful modal server. It still yields a correct scheduling as long as the conditions
of theorem 1 presented in section 5.1.1, p 63, are respected. This theorem states that
a set of periodic tasks with implicit deadlines is schedulable by a server if the server is
correctly scheduled and tasks passed a schedulability test. Since, modal servers can be
scheduled as regular periodic tasks, this theorem also applies to allocated slackful modal
servers. Hence, if the slackful modal servers are correctly scheduled and its allocated
slackful modal servers respect a schedulability tests, then the allocated slackful modal
servers are schedulable. Then, tasks allocated to allocated slackful modal servers stay
schedulable since the slackful modal servers are correctly scheduled and the tasks has
passed a schedulability test. As a slackful modal server and its providing task have the
same timing parameters, we can indistinctly speak of the allocation of a slackful modal
server or of the corresponding providing task.

This possibility happens in our example as shown in figure 7.7. During this second
iteration, we considered the allocation of CL–2 tasks τ12 and τ13 and of the CL–1 task τ4,
that remained unallocated from the first iteration. Task τ12 is allocated to the slack of time
of mode 3 of task τ6, while τ12 execute in its slack time of mode 2 task τ10. We have hence
the allocation of a slackful modal server into another slackful modal server.

Once, the second iteration is achieved, we perform the next iteration. During the Kth

iteration, with K < N−1, the two groups are constituted as follows:

• A first group of tasks with available slack time of mode K + 1, that corresponds to
tasks of criticality level greater or equal to K +1.
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τ6 Slack time of mode 3

τ12

τ8

τ10

τ4

CL–2 tasks

CL–1 tasks

CL–3 tasks

τ13

Figure 7.6: Result of the considered task set after the first allocation

τ6 Slack time of mode 2Slack time of mode 3

Tasks to allocate

Tasks with
available slack time

Allocation of taskIntervals of slack time considered

τ12 τ10

τ8

τ13 τ4

Figure 7.7: Representation of the allocation of system with three criticality levels: second
iteration allocation in slice of slack time of mode 3

• A second group constituted of tasks of criticality level equal to K and potentially of
all unallocated tasks of criticality levels lower than K originating from all previous
iterations.

The tasks in the second groups are to be allocated in the slack time of mode K +1 of the
tasks of the first group. They will be added to the sets ΓK of the corresponding slackful
modal servers.

Once all the iterations of the inductive process have been performed, the remaining
unallocated tasks are each scheduled in its own slackless modal server. The resulting set
of slackful modal servers and slackless modal servers can then be scheduled if it respects
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the condition of theorem 9 p 63 that gives the conditions for a set of modal servers to be
schedulable by GMC–RUN.

Providing task Allocation in Allocation in
slack time of mode 2 slack time of mode 3

τ1 /0 τ9
τ3 τ10,τ14 τ7
τ4 • •
τ6 τ8 τ5, τ12
τ11 τ2 •
τ12 τ10,τ14 •
τ13 /0 •

Table 7.2: Result of the allocation of the task set described in table 7.1.

The final result of the allocation of the whole task set described in table 7.1 is presented
in table 7.2. In table 7.2, tasks in column "Providing task" are the tasks scheduled either
in slackful modal servers or in slackless modal servers at the end of the allocation process.
The tasks appearing in the other two columns are those scheduled in the slack time of
other tasks. In these same columns, the "•" means that the task has no available slack time
in that mode. The symbol " /0" means that the task has slack time but no tasks has been
allocated. Thanks to our approach, we are able to reduce the overall utilisation from 4.53
to 3.24. We can hence schedule this task set on four processors instead of five.

7.4 Experimental assessment

The generalisation of our approach to systems with more than two criticality levels offers
system engineers the possibility to adjust more precisely the availability of tasks. Indeed,
by adding more criticality levels, they can more finely classify its tasks in the different
criticality levels. In this section, we want to assess the impact on the schedulability per-
formances of the use of more than two criticality levels. To this end we measure and
compare the schedulability ratio of GMC–RUN using the same task sets but in different
configurations with two or three criticality levels. We first describe how these task sets are
generated.

Considered scenario

We consider the case where system engineers have tasks classified in three criticality lev-
els. For each task they dispose of as many budgets value as the task criticality level. But
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since they dispose of only mixed–criticality scheduling algorithm that handled two criti-
cality levels, they have to convert their three–criticality–level system into a dual–criticality
one. A first mode is used to schedule all tasks. The second one is used to schedule only
the most critical tasks that is those of criticality level 3.

In the second mode, CL–3 tasks are executed with their safest budgets C(3).
For the first mode, system engineers have several possible configurations. CL–1 tasks

have a single possible budget C(1). CL–2 tasks can be executed with their budgets of
their criticality levels C(2) or of criticality level 1, C(1). The use of C(2) can decrease
the likelihood of a CL–2 task triggering a TFE, it is hence more conservative. The use of
C(1) requires fewer processing power, it is hence more optimistic. For CL–3 tasks, they
can also decide between their budgets C(1) or C(2). The use of C(2) provides the same
advantage than for CL–2 tasks. The use of the budget C(1) results in more available slack
time. We hence consider the following configurations with two criticality levels:

• CL–1 tasks with C(1), CL–2 tasks with C(1) and CL–3 tasks with C(1) and C(3).
As it uses the optimistic (Opt) budgets for CL–2 and CL–3 tasks, it is called config-
uration Opt2Opt3.

• CL–1 tasks with C(1), CL–2 tasks with C(2) and CL–3 tasks with C(1) and C(3).
As it uses the conservative (Cons) budget for CL–2 and the optimistic (Opt) one for
CL–3 tasks, it is called configuration Cons2Opt3.

• CL–1 tasks with C(1), CL–2 tasks with C(2) and CL–3 tasks with C(2) and C(3).
As it uses the conservative (Cons) budgets for CL–2 and CL–3 tasks, it is called
configuration Cons2Cons3.

But the use of these configurations with two criticality levels has an impact on the avail-
ability of tasks. We compare the guarantees of availability of the configurations with two
criticality levels with those of the configuration with three criticality levels in table 7.3. A
↓ means that the availability of tasks is degraded and a↘ means it is slightly degraded. A
−→ means that the availability in not impacted. A ↑ means that the availability is highly
improved and a↗ means it is slightly improved.

The impact on the availability of tasks in table 7.3 is assessed by considering the likeli-
hood that the use of a budget triggers a TFE. A TFE is likelier with the use of budgets C(1)
than with budgets C(2) or even more than with budgets C(3). Similarly, a TFE is likelier
with the use of budgets C(2) than with budgets C(3). Recall also that a TFE is supposed
not to be possible with budgets C(3).

First consider the CL–1 tasks. These tasks are in configuration Opt2Opt3 as likely to
be stopped as in the system with three criticality levels. Indeed, in these configurations,
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CL–1 availability CL–2 availability CL–3 availability
Configuration

Opt2Opt3 −→ ↓ −→
Configuration
Cons2Opt3 ↗ ↓ −→

Configuration
Cons2Cons3 ↑ ↘ −→

Table 7.3: Impact on the availability of tasks in the different configurations compared to
the three criticality level configuration

these tasks are dropped as soon as a C(1) is exceeded. In the other two configurations,
Cons2Opt3 and Cons2Cons3, CL–1 task availability is improved, as the likelihood that a
TFE is triggered by a CL–2 or CL–3 task is lowered. Indeed, in configuration Cons2Opt3,
CL–2 tasks trigger a TFE if they exceed their budgets C(2) and not C(1). And for config-
uration Cons2Cons3, CL–1 tasks are stopped if CL–2 or CL–3 task triggers a TFE if they
exceed their budgets C(2) and not C(1).

Now consider CL–2 tasks. In all configurations these tasks see their availability de-
graded as they can be stopped as soon as a CL–1 task exceed its C(1) budget. While, in the
configuration with three criticality levels, these tasks are dropped only if a CL–2 or a CL–3
task exceeds its budget C(2). Availability is a bit better in configuration Cons2Cons3, since
CL–3 tasks are executed with their budgets C(2). We hence see that all the configurations
with two criticality levels degrade the availability of CL–2 tasks.

The availability of CL–3 tasks is unaffected in all configurations since their execution
is always ensured by the mode 2 of the configurations with two criticality levels.

We now compare the schedulability performances of these three possible configura-
tions with two criticality levels with those of the the configuration with three criticality
levels, called configuration 3Crit.

Task set generation

The generation of the task sets is performed with the objective to evaluate the impact of
the use of three criticality levels on the schedulability performances. To that aim, we need
representative task set samples to estimate average performances for various combinations
of task parameters with three criticality levels. To generate our task sets, we extend the
method described in [53] used for generating dual–criticality task sets. With this extended
method, the maximal utilisation of modes UBound and the minimal and maximal ratio be-
tween utilisations of modes can be set for each task set with three criticality levels. We
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generate 500 task sets for each value of UBound ∈ [0.6,m], with m the number of processors
such that m ∈ {2,4,8}.

The comparison with optimal mixed–criticality scheduling algorithm is impossible
since none can be designed. In the case of mixed–criticality systems, we know that no
optimal scheduling algorithm exists [49]. Hence another method has to be found to mea-
sure how far the experimental performances of an algorithm are from those of an opti-
mal scheduling algorithm. Yet, we know that an optimal mixed–criticality scheduling
algorithm is able to schedule a mixed–criticality task set if the largest utilisation of the
modes is lower than the number of processors. That is for a system with three modes if
max1≤l≤3UΓ(≥l)(l) ≤ m, with m the number of processors, then the task set is schedula-
ble by the optimal scheduling algorithm. We hence generate task sets such that tasks are
created as long as max1≤l≤3UΓ(≥l)(l)≤UBound .

To that aim we first determine the criticality level of a task following a uniform dis-
tribution. We then draw the utilisation at the criticality level of the task. This utilisation
value is limited to interval [0.02,0.7] to avoid tasks with a too large utilisation. Once this
utilisation is drawn, we have to determine the other values for the tasks with a criticality
level larger than 1.

We want to compute these utilisations while limiting the difference between the high-
est mode utilisation of the task and that of the lowest mode. Therefore, to compute the
utilisation corresponding to the mode 1 of these tasks, we randomly draw a ratio between
these two utilisations. Yet, we consider that this ratio can be larger for CL–3 tasks than
for CL–2 tasks. Indeed, the safety requirements are more stringent for the former than for
the latter. Hence, the ratio is drawn between 1 and a value that depends on the criticality
level of the task. The different values used are presented in table 7.4. A third value is then
required for the CL–3 tasks. It is randomly drawn such that in average the slack time is
evenly distributed between the slack time of mode 2 and mode 3.

But, we want to respect the utilisation limit UBound . Therefore, for each utilisation
value we take the minimum between the randomly drawn value and the difference between
the utilisation UBound and the current utilisation of the corresponding mode. This ensures
that the utilisation limit UBound is not exceeded.

Finally, a period is drawn following a log distribution as described in [76].

Once the task sets with three criticality levels have been created, we create those for
the configurations with two criticality levels. We simply take the task sets with three
criticality levels and transform them into dual–criticality task sets. The CL–1 and CL–
2 tasks become CL–1 tasks and CL–3 tasks become CL–2 tasks in dual–criticality task
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Criticality level rmax
2 5
3 10

Table 7.4: Values of maximal ratio for different criticality levels

sets. The chosen values for their utilisations is performed as previously described for each
configuration.

We then look for the allocations for all these task sets and measure the schedulability
ratio for each couples of UBound and m.

Result exploitation
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Figure 7.8: Schedulability ratio of GMC–RUN using three criticality levels or two criti-
cality levels.

We assessed the three possible configurations with two criticality levels against the
configuration with three criticality levels. The results are presented in figure 7.8. We recall
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CL–1 availability CL–2 availability CL–3 availability
Configuration

Opt2Opt3 −→ ↓ −→
Configuration
Cons2Opt3 ↗ ↓ −→

Configuration
Cons2Cons3 ↑ ↘ −→

Table 7.5: Impact on the availability of tasks in the different configurations compared to
the three criticality level configuration

the impact on the availability of each configuration with two criticality levels compared to
the configuration with three criticality levels in table 7.5.

The configuration with three criticality levels performs as well as the configurations
Cons2Opt3 and Cons2Cons3 while offering better availability for CL–2 tasks. Indeed
the schedulability ratio of the configuration with three criticality levels is almost equal
to the schedulability ratio of the configuration Cons2Opt3 for two and four processors.
With a difference between schedulability ratio limited to 5% with 2 and 4 processors for a
normalised utilisation of 1.0 and 0.6, respectively. With 8 processors, this difference rises
at up to 15% for a normalised utilisation of 0.6.

The difference, with the configuration Cons2Cons3 is far larger. With 2 and 4 pro-
cessors the difference can go as high as 13% and 14%, respectively, for a normalised
utilisation of 0.65. With 8 processors, the difference is limited to 5% at most.

The degradation of the schedulability performances of the 3Crit configuration with 8
processors can be explained by the combination of two factors. First, compared to systems
with 2 and 4 processors, the number of possible allocations is far larger. In section 6.3.1
p 89, we presented that the number possible allocations can be computed with (2k)n, where
n is the number of tasks to allocate and k the number of modal servers. The average num-
ber of tasks for systems with 8 processors is 25 against 12 for those with 4 processors. If
we consider that for 4 processors we have in average 4 slackful modal servers and 8 tasks
to allocate, it gives 4,294,967,296 possible allocations. Then for 8 processors, with an av-
erage of 8 slackful modal servers and 17 tasks, it gives v 8 ·1040 possibilities. The second
factor is that in the 3Crit configuration, modal servers have in average intervals of slack
time of a utilisation 0.18 against 0.29 for the configuration Cons2Opt3. This smaller util-
isation could be mitigated by finding the best possible allocation for each slackful modal
server or by forming aggregated modal servers for system with 2 and 4 processors. But
with a larger number of tasks, these allocations becomes far harder to find with 8 proces-
sors.
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In terms of schedulability performances only, the configuration Opt2Opt3 is clearly
the best but it is also the worse in terms of availability for the CL–2 tasks. Hence, if the
system engineers only seek schedulability performances it is the configuration it should
use. With 4 processors the difference between schedulability ratio of the configuration
3Crit and Opt2Opt3 can go as high as 60%.

7.5 Conclusion

In this chapter, we presented our approach to schedule mixed–criticality systems with
more than two criticality levels. We first presented our notations to model such systems
for any number of criticality levels. We also described the complexity to use the slack time
in such systems. Indeed, in such system more tasks have available slack time and whose
available amount depends on the active mode of the system. We provided a clear rule to
ensure its safe use. We then extended the definition of modal servers for such systems that
enables to take advantage of slack time of task of any criticality level.

Next, we described how to perform the allocation of tasks to modal servers. This is
achieved through an inductive process that consider each mode at a time. During each
iteration, the allocation is performed as for dual–criticality systems with an evolutionary
algorithm.

Finally, we assessed the impact of the use of three or two criticality levels in different
configuration to schedule a system whose tasks are classified in three criticality levels.
These configurations offered different levels of availability guarantee for lower criticality
tasks, with the configuration with three criticality levels providing the best guarantee for
CL–2 tasks. It resulted that using the configuration with three criticality levels presents in
most cases schedulability performances as good as those of two configurations with two
criticality levels. Although, the configuration offering the best schedulablity performances
is a configuration with two criticality levels, it is one the configurations offering the lowest
guarantees for the availability of CL–2 tasks. Hence, our approach to schedule systems
with more than two criticality levels can offer better availability without highly impacting
the schedulability performances.

In the next chapter, we present our approach to schedule elastic task in dual–criticality
systems.
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Chapter 8. The scheduling of elastic tasks

In previous chapters, we presented our mixed–criticality scheduling algorithm GMC–
RUN to schedule mixed–criticality systems using the discarding degradation model of
task execution. First with two criticality levels and then for any number of criticality
levels. But the discarding degradation model of task execution may not fit the industrial
needs. Industrial partners may require that tasks are less frequently executed instead of
being totally stopped as exposed in section 3.3. This corresponds to the elastic task model.

In this chapter, we seek to schedule LO elastic tasks with a minimum number of pro-
cessors and as few preemptions as possible. However, our previous approach can not be
used as is. Indeed, compared to discarding tasks, elastic tasks do not have decreasing
budgets but have increasing periods. Besides, although LO elastic tasks have smaller ex-
ecution requirements in HI mode, a minimal execution has yet to be ensured. These two
differences make our approach unusable as is. Indeed, our approach requires that LO tasks
are not executed in HI mode to be allocated in modal servers. Moreover, slackful modal
servers and aggregated modal servers, are designed to provide additional execution time
budget, not to execute tasks with different frequencies.

Hence to schedule a task set with the elastic tasks model, we first transform it in an
equivalent task set compliant with the discarding model. This adaptation aims at switching
from a change of periods to a change of budgets between modes. It is performed by split-
ting each LO elastic task in two subtasks. The first subtask ensures the minimal execution
requirements of HI mode and is called non mixed–criticality subtask. The second one,
only executed in LO mode, provides the additional execution requirement needed in LO
mode compared to HI mode, and is called discarding subtask. The computation of the
timing parameters of the subtasks is done in such way that the scheduling in each mode is
ensured for all tasks even in case of a Timing Failure Event (TFE). Besides, they have to
be computed such that the resources needed to execute the system are reduced. Therefore,
they are computed such that their utilisations are not equal to the sum of the utilisations
of LO and HI modes of the LO elastic task, but equal to its utilisation in LO mode. It at
least ensures that we do not perform worse than if we executed the LO tasks with their
LO mode timing parameters. Then, we find the best possible allocation of the discarding
subtasks in slackful modal servers, so that dedicated execution resources are only needed
for non mixed–criticality subtasks. Note that if a LO elastic task can not be allocated to
any modal server, then it is always executed with its timing parameters of LO mode in
slackless modal server.

However, the allocation of discarding subtasks in slackful modal servers requires that
they are completely schedulable in these servers. If they are not, they are executed in
slackless modal servers, and our approach is doubly penalised. Indeed, the execution
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resources needed to execute the LO elastic task are those of the LO mode even in HI mode.
And the slack time of HI tasks is left unused. Hence, the idea to limit this double penalty.
Instead of seeking to completely execute a discarding subtask in slackful modal servers,
only a part of its execution is allocated to such servers. We call such allocations partial
allocations. It is performed by determining the maximum execution time that slackful
modal servers provide. Yet, it may happen that the budget that can be provided by slackful
modal servers is lower than the budget required to meet the execution requirements of the
elastic task. In that case, the missing execution time budget has to be provided by the non
mixed–criticality subtask. The principle is that the resulting allocation still enables the
execution of LO elastic tasks with fewer execution resources than if LO elastic tasks were
executed using only their LO mode timing parameters.

In this chapter, we first present the peculiarities of the elastic task model. Then, we
explain how the slack time of HI tasks can be used to schedule the additional execution
requirements of LO elastic tasks in LO mode. It is achieved by decomposing LO elastic
tasks into two subtasks called non mixed–criticality subtask and discarding subtask. We
also justify and explicit the conditions for the correctness of our approach. Next, we
explain how we determine the periods and give the inequalities to compute the budget of
each subtask. Finally, we describe how, during the allocation, we compute the budgets of
each subtask by taking into account the budgets of modal servers.

8.1 The elastic task model

The elastic task model was first proposed by Buttazzo and al. in [19]. This model enables
the adaptation of the rate of execution of a task, in particular in case of overloaded situa-
tions. The aim is to always provide minimum execution time to all tasks. In this section,
we explicit the notations used for elastic tasks and the changes on the execution following
a mode change.

An elastic task can be defined as follows:

Definition 39 (Elastic task). An elastic task is a mixed–criticality periodic task with im-

plicit deadlines with two different periods. It is characterised by the following timing

parameters:

• A criticality level χ ∈ {LO,HI}.

• Two periods noted T(LO) and T(HI) such that Ti(LO) ≤ Ti(HI), if χ = LO, and

Ti(LO) = Ti(HI), if χ = HI.
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Task name T(LO) T(HI) χ C(LO) C(HI)
τ1 5 10 LO 2 2

Table 8.1: Example of an elastic task

• Two execution budgets noted C(LO) and C(HI) such that Ci(LO) = Ci(HI), if χ =

LO, and Ci(LO)≥Ci(HI), if χ = HI.

The discarding task model can be seen as a particular case of the elastic task model. A
discarding task would be an elastic task with an infinite period in HI mode.

An example of such elastic task is given in table 8.1, we use this task throughout this
chapter to illustrate the issues to address and to detail our solutions. The execution of this
task in each mode is presented in figure 8.1.

C C

T (LO)

LO mode

HI mode

T (HI)

0 1 2 3 4 5 6 7 9 108

0 1 2 3 4 5 6 7 9 108

C

Figure 8.1: Representation of the execution of task τ1 from table 8.1

Because of the two possible values for the period, we have to explicit the computation
of the utilisation for each criticality level: Ui(LO) = Ci(LO)

Ti(LO) and Ui(HI) = Ci(HI)
Ti(HI) . We also

use the following notations: UΓ(LO)(LO)=∑τi∈Γ(LO)Ui(LO), UΓ(HI)(LO)=∑τi∈Γ(HI)Ui(LO),
UΓ(HI)(HI) = ∑τi∈Γ(HI)Ui(HI).

In this chapter, we only consider systems with two criticality levels, composed of a set
of elastic tasks Γ with n independent tasks, synchronously started, τ1, ...,τn and described
by using two modes, called LO and HI modes. We consider the system starts executing
in LO mode. This mode stays active, as long as each task τi completes its jobs in a time
smaller than Ci(LO). It changes its mode whenever a Timing Failure Event occurs that
is when a task has executed for as long as its LO mode budget without completing its
execution. In that case, the system changes of mode from LO mode to HI mode.

The scheduler has to ensure for the HI tasks the same scheduling objectives than with
the discarding task model:
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1. HI task jobs not yet completed can continue to execute for up to their C(HI) without
missing their deadlines

2. All following new HI task jobs can execute for as long as their C(HI)

But for the LO tasks these objectives have now changed:

1. LO task jobs not yet completed and started at a time ts are executed up to C(HI)
time. The deadline of the jobs are switched from deadlines computed using the
periods of LO mode, ts +T (LO), to deadlines computed by using the periods of HI
mode, ts +T (HI).

2. New jobs of LO tasks are executed up to C(HI) every T (HI).

Hence, a mode change notably impacts the activation times of elastic tasks. After, a mode
change, LO tasks activation times are shifted by an offset equal to the difference between
their periods of HI and LO modes. They no longer correspond to the activation times
computed with their periods of LO mode were used. Nor are they those computed from
their periods of HI mode. Hence, after a mode change, tasks can no longer be considered as
synchronously started. Let demonstrate this property as the activation times and deadlines
can be computed in each mode.

We now provide formula to compute the activation times and deadlines of jobs during
which a TFE occurs, in LO mode and in HI mode. Assume that a Timing Failure Event
(TFE) occurs at time tT FE . The last activated LO (LAL) job of a LO task is the jthLAL

job such that jLAL = b tT FE
T (LO)c+ 1. The activation time of this job, noted actLAL, can be

computed by:
act( jLAL) = b

tT FE

T (LO)
c ·T (LO) = ( jLAL−1) ·T (LO) (8.1)

In LO mode, the activation time of the kth job of a LO or HI task τ, such that k < jLAL,
and assuming a synchronous start of all tasks, is equal to:

actLO(k) = (k−1) ·T (LO) (8.2)

The corresponding deadline of this job is given by:

ddlLO(k) = k ·T (LO) (8.3)

In HI mode, the activation time of the kth job of LO task τ, such that k≥ jLAL, is given
by:

actHI(k) = actLAL +(k− jLAL) ·T (HI) (8.4)
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The corresponding deadline of this job is given by:

ddlHI(k) = actLAL +(k+1− jLAL) ·T (HI) (8.5)

For HI tasks, the equations for the computation of the release time and deadline remain
the same than in LO mode since for these tasks T (LO) = T (HI).

To exemplify this impact, consider the execution of task τ1 in figure 8.2. At time t = 8
a TFE is detected. Hence, the activation of the job following the LAL job of task τ1, that
corresponds to its third job, is given by:

actLAL +(k− jLAL) ·T (HI) = b8
5
c ·5+(3− (b8

5
c+1)) ·10 = 15 (8.6)

The deadline of the third job is given by:

b8
5
c ·5+(3+1− (b8

5
c+1)) ·10 = 25 (8.7)

C C

T (LO)

LO mode HI mode

T (HI)

0 1 2 3 4 5 6 7 9 108 11 12 13 14 15 16 18 1917 20

TFE

C

21 22 23 24 25

Figure 8.2: A mode change with elastic tasks

It follows the definition of the scheduling of a mixed–criticality system composed of
elastic tasks:

Definition 40 (Scheduling objectives). A mixed–criticality system with elastic task is cor-

rectly scheduled if:

1. As long as the LO mode is active, all jobs complete their executions before their

deadlines of LO mode and using at most their budgets of this mode.

2. As long as the HI mode is active, all jobs complete their executions before their

deadlines of HI mode and using at most their budgets of this mode.

These changes in the scheduling objectives of the LO task prevent the reuse as is of
the slackful modal servers. Indeed, their use assumes HI tasks completely use the budget

142 © 2017 Romain GRATIA



8.2. Task elasticity and slack time

of slackful modal servers and aggregated modal servers. Hence, with the current approach
of GMC–RUN, LO elastic tasks are only schedulable in slackless modal servers, making
the reduction of the execution requirements of the system impossible. In the following
section, we present how we manage to use slackful modal servers to schedule LO elastic
tasks and make possible the reduction of the execution requirements of the system.

8.2 Task elasticity and slack time

In this section, we describe how the decomposition of an elastic task into two subtasks
enables their scheduling in HI task slack time. We also expose the conditions so that this
decomposition produces a correct scheduling.

8.2.1 Decomposition in subtasks

We aim at finding how to schedule LO elastic tasks in slackful modal servers, aggregated
or not. The issue is that slack time of HI tasks is available in LO mode only, while LO
elastic tasks are executed in both LO and HI modes. To make the use of modal servers
possible, we decompose each LO elastic task into two subtasks.

As previously said, LO elastic tasks have lower utilisations in HI mode than in LO
mode. To take advantage of this observation, we divide the tasks into two subtasks one
mandatory and one optional as presented in [78]. This technique as been already used for
mixed–criticality systems in [79] but for HI tasks only. In this paper, subtasks are used to
represent an increase in execution requirements of HI task in HI mode.

In our approach, we use this technique to model the increase of the execution require-
ments of LO elastic tasks in LO mode. Such decomposition is drawn in figure 8.3, for an
elastic task of budget C and of periods T(LO) and T(HI). The decomposition is performed
by defining two subtasks. A first one ensures the execution requirements of the HI mode
and is thus always executed. It is referred to as non mixed–criticality subtask and noted
τNMC. A second subtask provides the additional execution time needed in LO mode in
addition to the first subtask. As it is only executed in LO mode, it executes as a LO dis-
carding task, and as such it can be executed in slackful modal servers. Hence, it is referred
to as discarding subtask and noted τDIS.

These subtasks are used to schedule another task, they hence are executions servers.
These servers are then supposed to be scheduled by modal servers. Therefore, they have to
execute as a periodic task with implicit deadlines. That is why the subtasks are modelled
as periodic servers.
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0 1 2 3 4 5 6 7 9 108

LO mode

HI mode

T

C C

0 1 2 3 4 5 6 7 9 108

C

T

τNMC

τDIS

Figure 8.3: Decomposition of an elastic task execution in each mode

Now that we have determined how to decompose the execution of the elastic task, we
have to compute the timing parameters of each subtask. Since, they are periodic servers,
we have to determine a budget and a period for each subtask. The computation of these
timing parameters have to fulfil several requirements:

1. They must be computed such that the execution of the LO elastic task is correct in
each mode even in the case of a TFE.

2. We aim at reducing the overall execution requirements of the system. Hence, the
scheduling of discarding subtask and non mixed–criticality subtask should not re-
quire more processing power than the scheduling the LO elastic task in LO mode.

3. The resulting timing parameters should limit the number of added preemptions. In
particular, we want to avoid to have subtasks with a period of 1. Indeed, with peri-
ods of 1 our approach would mimic the execution produced by a fluid algorithm and
would thus produce lots of preemptions. We can reduce the number of preemptions
by limiting the number of executions of the subtasks required to complete one exe-
cution of the LO elastic task. We have hence to find the largest periods for the two
subtasks such that the two other constraints are respected.

4. The subtasks are then to be scheduled by modal servers. It requires that tasks have
a null offset, even after a TFE. These subtasks must hence have a single period and
start executing with a null offset.

To ease the computation of these timing parameters and because the initial LO elastic
task can execute only on one processor at a time, we assume that the two subtasks are
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never executed in parallel. In the case of GMC–RUN, this requires to execute the two
subtasks of a same elastic task in the same primal server.

Once the computation of the timing parameters has been performed for each subtask of
the LO elastic tasks, we have to find the best possible allocation of the discarding subtasks
in modal servers. It still is performed by using an evolutionary algorithms. Yet, we have
to ensure that the two subtasks are not executed in parallel once the discarding subtask
is allocated. Therefore, we have to check that the non mixed–criticality subtasks can be
sequentially executed with the eventual slackful modal servers in which the discarding
subtask has been allocated.

Finally, the modal servers resulting of the allocation process are then scheduled by
RUN as they were with discarding tasks. This because they are regular periodic servers
with a null offset.

In the next section, we give the conditions to ensure the scheduling of LO elastic tasks
using our approach.

8.2.2 Correctness of the approach

In this section, we detail the conditions for the correctness of the scheduling of a LO elastic
task in its discarding subtask and its non mixed–criticality subtask. These conditions are
listed in the following theorem:

Theorem 13. Let τ be a LO elastic task and τDIS its discarding subtask and τNMC its non

mixed–criticality subtask. If the following conditions are fulfilled:

1. τDIS and τNMC are executed sequentially.

2. τDIS and τNMC are correctly scheduled.

3. The execution of both τDIS and τNMC ensure the scheduling of τ in LO mode.

4. The execution of τNMC only ensures the scheduling of τ in HI mode.

then task τ is schedulable by τDIS and τNMC in LO and HI modes.

Proof. We prove this theorem by contradiction. Assume a task τ and its discarding subtask
τDIS and its non mixed–criticality subtask τNMC such that the conditions of theorem 13 are
respected but still task τ misses a deadline.

In LO mode, if task τ misses a deadline then τDIS and τNMC did not provide enough
execution time. Either they were not correctly scheduled but that contradicts our second
hypothesis, or their added up budget is not sufficient. That latter possibility contradicts
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either our first assumption meaning that a part of the budget was lost because τDIS and
τNMC executed in parallel while τ can execute in only one server at a time. Or our third
assumption is violated, meaning that τDIS and τNMC can not provide sufficient execution
time to the elastic task.

In HI mode, if τ misses a deadline then either τNMC can not correctly scheduled τ in
HI mode but it contradicts our fourth assumption or τNMC is not correctly scheduled in
contradiction with our second assumption.

This theorem assumes our capacity to correctly compute the timing parameters of the
discarding subtask and non mixed–criticality subtask.

8.3 Determining the timing parameters of the subtasks

In this section, we describe how we perform the computation of the timing parameters of
the discarding subtask and of the non mixed–criticality subtask.

The computation of the timing parameters has several objectives to meet. It first has
to ensure the correct execution of the LO elastic task. It also aims at minimising the
utilisations of both the non mixed–criticality subtask and of the discarding subtask. And
finally, it should limit the number of preemptions by finding the largest possible periods.

The computation of the timing parameters is performed through the use of a schedula-
bility test. It is either based on the utilisations (see theorem 4 in section 5.3.3), or on the
Supply Bound Function and the Demand Bound Function (see theorem 5 in section 5.3.3).

However, the schedulability test that can be used depends on a property on periods of
the LO elastic task and on periods of its subtasks. That is whether LO elastic task periods
are a multiple of the periods of the discarding subtask and of the non mixed–criticality
subtask. If we assumed that periods are never multiples, we could only use the test based
on SBF and DBF. This would give poor results as this test can reject cases that pass the
schedulability test based on utilisations.

Therefore, it is critical to first determine the periods of the subtasks. Once these periods
are determined we present the inequalities that budgets of the discarding subtask and non
mixed–criticality subtask have to respect.

8.3.1 Selecting of the periods

In this section, we determine the periods of the two subtasks used to decompose an elastic
task. The subtasks are periodic servers used to schedule a single task, which is a LO elastic
task.
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We showed in section 5.3.1, that the required utilisation of a server to schedule a task
set is the lowest when its period is a divisor of the period of the tasks to schedule. We
reuse this property in the case of the subtasks. Subtasks are periodic servers that execute a
single task. Hence, to minimise the utilisations of both the discarding subtask and the non
mixed–criticality subtask, their periods have to be divisors of the periods of the LO elastic
task.

The non mixed–criticality subtask has to ensure the scheduling of the LO elastic task
in LO and HI modes and when a mode change occurs. The simplest way to ensure the
correct scheduling of a LO elastic task within its subtask is to choose its period T NMC

such that the subtask and the task have the same activation times. This can be ensured by
choosing its period such that it divides the periods of the LO elastic task. Since, the non
mixed–criticality subtask schedules the LO elastic task in both LO and HI modes it should
divide both periods. But then, there may be several common divisors of the LO and HI
periods.

To choose T NMC among them, we take into account the fact that the lower the period
of the subtask the more the execution of the LO elastic task will be split, resulting in more
preemptions. To limit the number of additional preemptions the period of the non mixed–
criticality subtask should be as large as possible. It means to take the greatest common
divisor of the periods of the LO elastic task in LO and HI modes.

We follow the same reasoning for the period T DIS of the discarding subtask. But this
subtask has only to ensure the scheduling of the LO elastic task in LO mode. Hence, its
period has only to be a divisor of the period of the LO elastic task in LO mode. To avoid
unnecessary preemptions, we favour its largest divisor and choose the period in LO mode
of the elastic task.

8.3.2 Finding subtask budgets

In this section, we give the inequalities used to compute the budgets of the discarding
subtask and non mixed–criticality subtask.

To ensure the scheduling of a LO elastic task, the utilisations of its discarding subtask
and of its non mixed–criticality subtask have to respect the conditions of the following
theorem:

Theorem 14. Let τ be a LO elastic task of utilisations U(LO) and U(HI), and of periods

T(LO) and T(HI) for LO and HI modes respectively. Let τNMC be its non mixed–criticality

subtask and τDIS its discarding subtask. Let CNMC and CDIS be the budgets of τNMC and

τDIS respectively. Let T NMC and T DIS be the periods of τNMC and τDIS. If the following
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equations holds:
CNMC

T NMC +
CDIS

T DIS ≥U(LO) (8.8)

CNMC

T NMC ≥U(HI) (8.9)

and τNMC and τDIS are executed sequentially then τ is correctly scheduled.

Proof. We have to prove that the two subtasks of an elastic task always ensure its schedul-
ing. We decompose our proof in three cases: when the system is in LO mode, when it is
in HI mode and when a TFE occurs.

In LO mode, we have to prove that the two subtasks ensure the correct scheduling
of LO elastic tasks. The schedulability is ensured by theorem 4 p 71. Indeed, this the-
orem concerns the case where server periods divide the periods of the tasks they have to
schedule. Since, this property holds here we can apply it. Besides, the two subtasks never
execute in parallel. Indeed, T NMC and T DIS have been selected so that they divide T(LO).
The tasks are schedulable if their utilisations is lower than the utilisation of the servers.
Hence the sum of the utilisations of the two subtasks have to be larger than the utilisation
of LO mode U(LO) of the elastic task.

We now consider the case of the job during which a TFE occurs at time tT FE ≥ 0.
This job has eventually to respect the execution requirements of the LO elastic task in HI
mode. We hence have to verify that only the execution of the non mixed–criticality subtask
τNMC can ensure the scheduling of the LO elastic task. Indeed, after a TFE, the discarding
subtask is no longer executed.

Assume, this job is the jth job of the elastic task, j ≥ 1. This job has to be executed
up to C(HI). It executes in the interval [tstart , tdeadline[ with tstart = ( j− 1) · T (LO) and
tdeadline = ( j−1) ·T (LO)+T (HI). The subtask τNMC is also released at time tstart , since
T NMC divides the period T(LO). It has also a deadline at tdeadline, since T NMC divides
tdeadline. Hence, over the interval [tstart , tdeadline[, τNMC executes α = T (HI)

T NMC ≥ 1 times.
From inequality 8.9 it holds that:

CNMC

T NMC ≥U(HI) (8.10)

⇐⇒ CNMC

T NMC ≥
C(HI)
T (HI)

(8.11)
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⇐⇒ T (HI)
T NMC ·C

NMC ≥C(HI) (8.12)

⇐⇒ α ·CNMC ≥C(HI) (8.13)

This holds for any job and for any tT FE .

In HI mode, after a mode change occurred at time tT FE ≥ 0, the released jobs now
suffer from an offset. We have hence to prove that the non mixed–criticality subtask can
still ensure the scheduling of the LO elastic task.

The kth job of an elastic task starts executing at tstart = b tT FE
T (LO)c·T (LO)+(k−(b tT FE

T (LO)c+
1)) · T (HI), with k ≥ 1. Its absolute deadline is tdeadline = b tT FE

T (LO)c · T (LO) + (k + 1−
(b tT FE

T (LO)c+1)) ·T (HI). Over the interval [tstart , tdeadline[, the elastic task needs to execute
for C(HI) units of time.

The non mixed–criticality subtask τNMC is also activated at time tstart . Indeed, T NMC

divides tstart , for any tT FE and k, since T NMC divides T(HI). Besides, in interval [tstart , tdeadline[,
subtask τNMC executes α = T (HI)

T NMC ≥ 1 times. Therefore, subtask τNMC executes for α ·
CNMC units of time over the interval [tstart , tdeadline[.

From inequality 8.9 it holds that:

CNMC

T NMC ≥U(HI) (8.14)

⇐⇒ α ·CNMC ≥C(HI) (8.15)

This holds for any job started in HI mode and for any tT FE . Hence, the schedulability of
the elastic in HI mode is ensured.

This proves theorem 14.

This theorem gives us the inequalities to compute the budgets of the two subtasks.
Yet, there is some scope in their computations that can be taken advantage of to improve
schedulability performances.

Balancing the budgets

Observe in theorem 14 that there is a possible balance between the budget of the non
mixed–criticality subtask and the budget of the discarding subtask. Indeed, in inequal-
ity 8.8, the larger the budget of the non mixed–criticality subtask is, the smaller the budget
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of the discarding subtask can be. Instead of considering that the non mixed–criticality
subtask has only to ensure the execution requirements of the HI mode, it can also provide
some of the additional execution requirements needed in LO mode. This enables to reduce
the budget of the discarding subtask. This can be taken advantage of when performing the
allocation of discarding subtask.

So far, when we performed the allocation of a LO task in a modal server, i.e in the slack
time of a HI task, the slack time provided by the HI task could only be used to completely
execute the LO tasks. If it is not possible, that is if no schedulability test is passed, our
approach is imposed a double penalty. First, the LO task is provided with a dedicated
execution time budget that covers its whole execution requirements. Second, HI task slack
time remains totally unused. That case makes our use of the slack time inefficient. The
idea to mitigate these two drawbacks is to only allocate to modal servers what they can
actually execute, this is what we call a partially allocated task:

Definition 41 (Partially allocated task). A partially allocated task is a task whose only a

part of its execution is performed in a modal server.

In the case of elastic task, it consists in computing the budget of the discarding subtask
such that it fits in a slackful modal server or an aggregated modal server.

Recall that what can be executed in slackful modal servers or aggregated modal servers
does not have to be accounted for when sizing the required processing power to execute
the system. Hence, we should compute the maximum budget that can be provided by a
slackful modal server or an aggregated one, this corresponds to an optimisation problem.

8.4 Resolution of the optimisation problem

In this section, we expose our solutions to resolve our optimisation problems. The first
problem, is to compute the maximum budgets of discarding subtasks that can be provided
by a slackful modal server or an aggregated modal server. The second problem is to find
the allocation that minimises the required processing power to execute a system.

We first explain how we intend to solve these two problems. Then, we explain how
the evolutionary algorithm is used to find a good allocation. Finally, we describe how the
budgets of the subtasks are computed for a given allocation of tasks to a modal server.

8.4.1 Decomposition of the optimisation problem

The two problems cannot be solved independently. Indeed, the maximal budgets of dis-
carding subtasks that can be allocated to modal server depends on which modal server is
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allocated discarding subtasks. Therefore, for each allocation we need to compute the max-
imal budgets of the discarding subtasks. But because these two problems have different
properties we do not use the a unique method to solve them.

The problem of finding the allocation of LO elastic tasks with the largest utilisation
of discarding subtasks in modal servers has the same properties than for discarding tasks.
Therefore, we also solve this problem by using evolutionary algorithm. We exposed these
properties and justify why we considered that evolutionary algorithm is the best method
to resolve it in section 6.3.1 p 89.

Concerning the computation of the maximum budget a different method can be used.
Indeed, budgets are continuous variables and not discrete as for the problem of finding
the allocation. Therefore, more classical resolution methods for continuous optimisation
problems can be used. These methods are more efficient than the use of an evolutionary
algorithm.

In the next sections, we describe how the evolutionary algorithm we used for discard-
ing tasks is refined for elastic tasks. Then, we present the inequalities to solve in order to
find the maximal budgets of discarding subtasks for a given allocation of tasks to a modal
server. Two cases are considered, when the modal server period divides the periods of the
discarding subtasks and when it does not.

The individuals are evaluated by computing the sum of the utilisations of the discard-
ing subtask. This individual is penalised if the the corresponding non mixed–criticality
subtasks and the modal server cannot be executed sequentially.

8.4.2 Refining the evolutionary algorithm

The allocation of the LO elastic tasks in modal servers is also performed by using an evo-
lutionary algorithm. Although the genotype does not change, only the discarding subtask
of a LO elastic task is allocated to modal servers and not the whole LO task.

Concerning the operators, only the selection operator has to be adapted. Indeed, for
each allocation we do not perform a schedulability test to check that a set of discarding
subtasks is schedulable in a modal server. Instead, we compute their budgets such that they
are schedulable in the modal server. Then, we compute the budgets of the non mixed–
criticality subtasks with the inequalities of the theorem 14 ensuring the schedulability
of the LO elastic task. Besides, we have to check that the corresponding non mixed–
criticality subtask is never executed in parallel of the modal server. With GMC–RUN,
that latter condition is checked by verifying that the non mixed–criticality subtask can be
scheduled in the same RUN primal server than the slackful modal server. The individuals
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are evaluated by computing the sum of the utilisations of the discarding subtask. This
individual is penalised if the the corresponding non mixed–criticality subtasks and the
modal server cannot be executed sequentially.

8.4.3 Computation of the budgets of the subtasks

For a given set of discarding subtasks allocated to a slackful modal server or an aggregated
modal server, we seek to maximise the utilisation of discarding subtasks scheduled in it.
When performing the allocation, there might be tasks in this set that can be completely
executed in it while others might only be partially allocated. We have hence to decide
which tasks should be completely executed in the modal server and which should only be
partially allocated. It is hence an optimisation problem. We distinguish two cases when
resolving this problem: when modal server periods divide the periods of the discarding
subtasks and when they do not.

Task periods are multiple of modal server periods

We want to maximise the utilisation of discarding subtasks allocated to the slackful modal
servers or the aggregated modal servers. In the case modal server period divides those of
the discarding subtasks, we can use the theorem 4 based on the utilisation and presented
p 71. This maximum can be found by solving the following optimisation problem:

Definition 42. Let ΓDIS be a set of discarding subtasks, and ΓNMC be the set of corre-

sponding non mixed–criticality subtasks of a set Γ of LO elastic tasks. Let MS be a modal

server. The period of MS divides all periods of the discarding subtasks in ΓDIS. We note

UMS the utilisation of MS and U slack
MS the overall utilisation of the slack time provided by

MS. We note UDIS/alloc
i the utilisation of the task τDIS

i ∈ ΓDIS that can be allocated in

modal servers MS. We also note UNMC
i the utilisation of the corresponding non mixed–

criticality subtask in ΓNMC. We finally note Ui(LO) and Ui(HI) the utilisations in LO and

HI of the corresponding LO elastic task. To find the maximal utilisation UDIS/alloc
i of each

discarding subtasks in ΓDIS, we have to solve the following optimisation problem:

Maximise ∑τi∈ΓDIS UDIS/alloc
i

Sub ject to

∑τi∈ΓDIS UDIS/alloc
i ≤U slack

MS

UDIS/alloc
i ≤Ui(LO)−Ui(HI) ∀τDIS

i ∈ ΓDIS

∑τi∈ΓNMC UNMC
i +UMS ≤ 1
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The inequalities ∑τi∈ΓDIS UDIS/alloc
i ≤U slack

MS ensure that the discarding subtasks are schedu-
lable in MS.

The inequalities UDIS/alloc
i ≤ Ui(LO)−Ui(HI) are here to upper bound the budgets

of the discarding subtasks. It is not relevant to have a discarding subtask with a higher
utilisation than the difference of the utilisations between modes. Indeed, a non mixed–
criticality subtask has a utilisation at least equal to the utilisation in HI mode of the LO
elastic task. Therefore, it is only interesting to allocate an utilisation equal to up the
difference of utilisations between modes LO and HI.

The inequalities ∑τi∈ΓNMC UNMC
i +UMS ≤ 1 ensure that the non mixed–criticality sub-

tasks and the modal server can be executed sequentially.

The budgets of non mixed–criticality subtasks can then be computed using the inequal-
ities presented in theorem 14, that gives the conditions on subtask budgets to schedule a
LO elastic task.

Task periods are not multiple of modal server periods

We now compute the maximum budgets of discarding subtasks that can be allocated to a
modal server, in the case where task and modal server periods are not multiples. In that
case, we have to solve the following optimisation problem:

Definition 43. Let Γ be a set of LO elastic tasks. We note Ui(LO) and Ui(HI) the util-

isations in LO and HI of the LO elastic task τi ∈ Γ. Let ΓDIS be the corresponding set

of discarding subtasks to be allocated in a modal server MS of utilisation UMS. We note

ΓNMC the set of corresponding non mixed–criticality subtasks and UNMC
i the utilisation

of a subtask τNMC
i ∈ ΓNMC. We want to determine the budget CDIS/alloc

i for each discard-

ing subtask τDIS
i ∈ ΓDIS of period T DIS

i such that the utilisation of allocated discarding

subtasks is maximised. This requires to solve the following optimisation problem:

Maximise ∑τi∈ΓDIS
CDIS/alloc

i
T DIS

i

Sub ject to

∑τi∈ΓDISb t
T DIS

i
cCDIS/alloc

i ≤ ∑MS j∈ΓMS SBFj(t) ∀ t ∈ [0,LCM]

CDIS/alloc
i
T DIS

i
≤Ui(LO)−Ui(HI) ∀τDIS

i ∈ ΓDIS

∑τi∈ΓNMC UNMC
i +UMS ≤ 1

Where LCM is the hyper–period.
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The inequalities with the DBF and the SBF ensure the schedulability of the discarding
subtasks.

The inequalities CDIS/alloc
i
T DIS

i
≤Ui(LO)−Ui(HI) set an upper bound on the budgets of the

discarding subtasks. It is not relevant to have a discarding subtask with a higher utilisa-
tion than the difference of the utilisations between modes. Indeed, non mixed–criticality
subtask have a utilisation at least equal to the utilisation in HI mode of the LO elastic task.

The inequalities ∑τi∈ΓNMC UNMC
i +UMS ≤ 1 ensure that the non mixed–criticality sub-

tasks and the modal server can be executed sequentially.

The budgets of non mixed–criticality subtasks can then be computed using the inequal-
ities presented in theorem 14, that gives the conditions on subtask budgets to schedule a
LO elastic task.

8.5 Discussion

In this section, we discuss the advantages of our approach to schedule elastic tasks com-
pared to existing works.

Originality: it is, to our knowledge, the first global scheduling algorithm for the elastic
task model. The only multi–processor scheduling algorithms for the elastic task model are
partitioned algorithms [57; 59].

Advantages: our approach presents several advantages compared to existing scheduling
algorithms for the elastic task model.

First our task model is more general than those used in other scheduling algorithms. It
does not propose a variety of period values as large as in [19; 80], where periods can take
any value in an interval of values, but a larger choice of values for the budgets can be used.
Indeed, our approach can handle increasing or constant periods with constant or decreasing
budgets when changing from LO mode to HI mode. A model with decreasing budgets for
LO task was proposed in [81] and applied in [82], though only for uniprocessors. This is
possible because our approach enables a flexible distribution of the budgets between the
two subtasks.

Besides, our task model is sufficient to handle actual systems. Indeed, in actual systems
the periodicity of tasks cannot take any value as they can be constrained by other fields
such as the control theory for instance. The impact of the objectives pursued by control
engineers on the choice that can be made computer engineers is described in [83]. In this
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paper is described a method to implement a Flight Management System modelled with
SIMULINK on many–core platforms and notably for the choice of the frequencies of the
execution of tasks.

Finally, compared to the approach in [57], we give prior the execution of the system
the guarantee that LO tasks can effectively execute in LO mode. Indeed, in [57], the
schedulability test only ensures that the HI mode is schedulable. It is only during the
execution of the system that it is determined if LO tasks can execute more frequently. This
is determined at precise instants, called early release points. If, at these instants, HI tasks
have left enough slack time, a LO task can be executed earlier. But there is no methods
to know prior execution whether this will actually happen. On the contrary, our approach
ensures that the LO mode is schedulable and it will stay active as long as no Timing Failure
Event occurs.

8.6 Conclusion

In this chapter, we have described how to schedule elastic tasks within modal servers. It
is performed by decomposing each elastic task into two subtasks. One subtask, called non
mixed–criticality subtask, is executed in both LO and HI modes. It must at least ensure
the correct execution of the elastic task in HI mode. A second subtask, called discarding
subtask, is executed only in LO mode. It has to provide the additional execution time
required in LO mode. With the non mixed–criticality subtask, it ensures that the LO
elastic task is correctly scheduled in LO mode. We made explicit the conditions to ensure
a correct scheduling of an elastic task. In particular, it requires the sequential execution
of the discarding subtask and of the non mixed–criticality subtask. We explained how to
determine the period of each subtask, and presented the inequalities that their budgets have
to respect.

Finally, we described how we take advantage of modal server budgets during the al-
location to maximise the allocated utilisation of LO elastic tasks through the use of the
partial allocation.

Our approach is to our knowledge the first global scheduling algorithm for elastic tasks.
The elastic task model is sufficient for actual systems. Besides, it can easily be extended
to handle elastic task with a decreasing budget and an increasing period and ensure that
LO mode will be active. It also ensures that LO tasks can be effectively executed with
their LO mode timing parameters before a TFE occurs.

© 2017 Romain GRATIA 155



Chapter 8. The scheduling of elastic tasks

156 © 2017 Romain GRATIA



9 Conclusion

TABLE OF CONTENTS

9.1 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

This chapter concludes this dissertation and identifies future research opportunities.

9.1 Conclusion

In this thesis, we have proposed a versatile approach to efficiently schedule mixed–criticality
systems. Mixed–criticality systems are composed of several tasks with different critical-
ity levels. The scheduling of these systems can be efficiently performed by accepting to
degrade the availability of tasks with lower criticality levels.

There exist several mixed–criticality task models to perform this degradation. In this
thesis, we studied two task models. The most commonly used results in the complete stop
of the execution of a task and is called the discarding task model. We first considered
it with two criticality levels. We then considered this task model with more than two
criticality levels. Using more criticality levels enables to more finely classify tasks, and
thus to more finely degrade the availability of tasks. The last studied model is the elastic
task model with two criticality levels. With that model, task executions are more gracefully
degraded by simply reducing the frequency of their executions instead of stopping them
completely.

Our contributions enable to schedule mixed–criticality system efficiently while giving
the system designers sufficient scope to adjust the availability of each task to meet its
objectives. These contributions of this thesis are the following:

• We first introduce a new kind of execution servers called modal servers for mixed–
criticality systems; we first apply them to schedule systems with two criticality lev-
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els composed of discarding tasks. These servers enforce a uniprocessor mixed–
criticality scheduling policy that takes advantage of the slack time of HI tasks to
schedule LO ones. Each time a LO task is executed in the slack time of a HI task,
the processing power required by the system, measured through its utilisation, is
reduced. They handle the mixed–criticality system peculiarities while executing as
regular periodic servers. We described three types of modal servers: slackful modal
servers, aggregated modal servers and slackless modal servers. We provided the
theorems to ensure the correct scheduling of tasks in these modal servers.

• These modal servers are then used in a hierarchical scheduling framework. Modal
servers are scheduled using any multi–processor hard real–time scheduling algo-
rithm, since they execute as regular periodic servers. We explain how we chose
the Reduction to UNiprocessor (RUN) scheduling algorithm for its theoretical and
practical performances. We therefore called our hierarchical scheduling framework
GMC–RUN. The efficiency of GMC–RUN depends on our ability to execute the
largest amount of LO task utilisation in HI task slack time. It corresponds to a
difficult optimisation problem, that we resolved through the use of an evolutionary
algorithm.

• We then assessed GMC–RUN. First theoretically, by proving it has a speed–up factor
of 2. It is the second best speed–up among mixed–criticality scheduling algorithms
for multi–processors. Secondly, experimentally on randomly generated task sets.
We measured the schedulability ratio of GMC–RUN and compared it with two oth-
ers global mixed–criticality scheduling algorithms: MC–DP–Fair and fpEDF–VD.
Again GMC–RUN presents the second best performances, while being closer to the
best algorithm MC–DP–Fair than to fpEDF–VD. Finally, we measured the number
of preemptions per job for MC–DP–Fair and GMC–RUN. GMC–RUN entails at
least five times fewer preemptions than MC–DP–Fair.

• We then proposed a simple inductive process to schedule, with GMC–RUN, mixed–
criticality systems with more than two criticality levels. We compared the perfor-
mances of our scheduling algorithms with tasks sets scheduled using three or two
criticality levels. It results that using three criticality levels gives the best compro-
mise between availability and schedulability efficiency.

• We then explained a method to schedule elastic tasks with GMC–RUN. We sched-
ule elastic tasks into two kinds of execution servers: a modal server and a regular
periodic server. The regular periodic server provides the required execution in HI
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mode. The modal server provides the additional execution required in LO mode.
Our approach is the first global scheduling algorithm for elastic tasks. Compared to
other elastic scheduling algorithms, it allows to consider a more general elastic task
model, guarantees the LO tasks availability and as a global scheduling algorithm
should provide good efficiency performances.

• We finally introduced the partial allocation of tasks in modal servers. This allows to
use the slack time of HI tasks that was not used because not large enough. Indeed,
we now seek to execute in a modal server only what it can schedule of a task instead
of seeking to completely execute the task in it. Besides, it can be used for both the
elastic and the discarding task models. It should thus improve the efficiency of our
approach for both models.

Our contributions form a scheduling framework that is both efficient and versatile. Yet,
it also creates new research opportunities.

9.2 Future Work

We identified several research opportunities to complete our contributions.

Elastic tasks

Elastic tasks scheduling : The performance assessment of our approach to schedule
systems composed of elastic tasks with two criticality levels would first require to de-
termine how to properly evaluate the different approaches to compare them. We saw in
section 8.5 p 154, that our approach ensures the scheduling of LO mode prior the execu-
tion of the system while another research work does not. The advantages or disadvantages
of each approach can not be measured with the mere comparison of schedulability ratio
as it is usually performed. Indeed, this performance criteria does not allow to evaluate the
task availability ensured by each approach.

Elastic task model with more than two criticality levels : The elastic task model used
in our approach only use two periods. Yet, system designers could be interested to use
more than two periods. This would offer system designers more latitude to adjust the
availability of each task. This extension could be considered as a generalisation of our
approach to elastic task model with more than two criticality levels.
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Implementation of GMC–RUN

Attempts to implement GMC–RUN have been carried out from the existing RUN imple-
mentation [36]. However, we realised that the existing implementation was a very early
prototype and was not in compliance with what was described in [36]. Due to these tech-
nical issues, we were not able to achieve the implementation of GMC–RUN before the
end of this thesis. The interest for an implementation remains, since we designed our
algorithm with the objective to make it practicable.

Partial allocation in practice

We have to find an efficient method to perform the partial allocation of tasks and inte-
grate in our tool to find allocations. We intend to implement this approach not only for
elastic tasks but also for discarding tasks. Thanks to the partial allocation a higher share
of the available slack time will be used and it should hence improve our schedulability
performances. We will also observe the effect of the use of this approach on the number
of preemptions, since it results in splitting the execution of allocated LO tasks between at
least two servers.

Design process

Deriving a complete conception process can help system designers finding the best trade–
off between availability and efficiency as it has been performed in [65]. This process would
make use of the different task models, discarding and elastic, with potentially more than
two criticality levels. This would require to be able to determine the gain in availability
that each possibility offers. It would also require methods to determine the task budgets
for each criticality level potentially associated to a confidence level, that would indicate
the probability that the budget has to be exceeded. This could be achieved by taking
advantage of the probabilistic WCETs [84; 85], that aims computing WCET associated
with a probability of being exceeded.
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TIA sous la supervision de Laurent PAUTET et Thomas ROBERT de Télécom ParisTech.
Cette thèse a été effectuée au sein de l’Institut de Recherche Technologique SystemX (IRT
SystemX) dans le cadre du projet Électronique et Logiciel pour l’Automobile (ELA). Ce
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10.2 Contexte industrielle et motivations

L’industrie automobile est confrontée depuis quelques années aux défis posés par l’intégration
de plus en plus d’applications dans une voiture. Cette tendance est par ailleurs appelée à
se renforcer du fait du développement de la voiture autonome. Elle a pour conséquence de
forcer les concepteurs des systèmes embarqués à repenser leurs pratiques, afin de main-
tenir des coûts de conception et de production à des niveaux raisonnables.

Une voiture représente ce qui est appelé un système critique, car son dysfonction-
nement, ou d’un de ses sous–systèmes, peut engendrer des conséquences graves pour ses
utilisateurs et son environnement. Au sein de ce système, certaines applications peu-
vent être considérées comme plus critiques que d’autres, c’est-à-dire, dont le dysfonc-
tionnement peut avoir des conséquences plus graves que d’autres. Il est donc possible
de classer les applications dans différents niveaux de criticité. Différentes méthodes de
classification existent, souvent propre à chaque secteur industriel. Dans l’automobile cette
classification est décrite dans la norme ISO26262, qui classe les applications dans 4 Au-

tomotive Safety Criticality Levels. Chaque niveau de criticité est associé avec un certain
nombre de précautions à prendre lors de la conception et de l’exécution des applications
correspondantes. Ces précautions étant de plus en plus contraignantes à mesure que le
niveau de criticité augmente.

Une des difficultés rencontrées lors de la conception de tel système est le dimension-
nement de la puissance de calcul nécessaire permettant d’assurer l’exécution correcte de
toutes les applications. Cette puissance de calcul doit être dimensionnée au plus juste afin
d’éviter des surcoûts inutiles. De fait, des architectures et des méthodes de conceptions
permettent de faciliter la conception de tels systèmes.

Dans un premier temps, dans le but de faciliter le dimensionnement et la correction
de l’exécution des applications, celles–ci sont découpées en éléments exécutables séquen-
tiellement appelés tâches. A chaque tâche est associé un morceau de code exécutable
séquentiellement et un modèle d’exécution. Il existe plusieurs modèles de tâches qui se
distinguent sur trois aspects: les conditions d’activations, les contraintes temporelles sur
l’exécution et les besoins en puissance de calcul. Une tâche peut être soit activée si cer-
tains événement se produisent, soit activée à des dates pré–déterminées. Les contraintes
se caractérisent souvent par des échéances, c’est-à-dire des instants auxquels l’exécution
d’une tâche doit être terminée. Enfin, les besoins en puissance de calcul correspondent à
une estimation du temps nécessaire pour qu’une tâche termine une exécution.

Une fois cette décomposition en tâches effectuée, la théorie de l’ordonnancement per-
met de déterminer si un ensemble d’applications peut être correctement exécuté sur un
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ensemble de processeurs, et plus particulièrement la théorie de l’ordonnancement des
systèmes temps réel. Il existe pour cela des procédures de vérifications, appelées tests
d’ordonnançabilité, qui permettent de s’assurer que l’exécution de chaque tâche respectera
les caractéristiques de son modèle d’exécution. Afin de limiter le nombre de choix de con-
ception, un certain nombre d’architectures ont été définies. Celles–ci précisent notamment
la répartition des applications sur les calculateurs.

L’architecture actuellement utilisée est l’architecture fédérée. Celle–ci consiste à exé-
cuter chaque application sur des processeurs dédiés. Elle présente l’avantage d’éviter que
l’exécution des tâches d’une application soit perturbée par l’exécution des tâches d’une
autre application. Cela est particulièrement intéressant dans le cas où d’applications avec
des niveaux de criticité différents. Cependant, avec le nombre croissant d’applications à
embarquer, la pertinence de cette architecture est de plus en plus discutable. Actuellement
elle se traduit déjà par l’intégration de près de 100 Electonic Control Units (ECU). Or plus
le nombre d’ECUs embarqués est grand plus la vérification de la correction de l’exécution
des tâches est compliquée [4]. En effet, cette architecture requiert l’échange de messages
sur un réseau (de type CAN) reliant les ECUs. La complexification du réseau avec le nom-
bre grandissant d’ECU augmente les chances d’un manque de bande passante sur le réseau
ou de grande latence dans la réception des messages. Ces deux phénomènes pouvant alors
avoir un impact sur l’exécution des tâches d’une application.

Une architecture alternative, appelée architecture intégrée, est actuellement consid-
érée. Elle consiste à partager les processeurs entre différentes applications, ce partage
visant à utiliser plus efficacement la puissance de calcul des processeurs. Cependant, du
fait des niveaux de criticité différents, les possibilités offertes par cette architecture ne
sont utilisées qu’à moitié. En effet, pour l’instant seules les applications de même critic-
ité peuvent être exécutées sur les mêmes processeurs, limitant ainsi les gains potentiels.
Cependant cette approche n’est plus tenable pour les années à venir.

De cette description, il faut en effet retenir qu’un élément clé de la réussite ou non
de l’exécution d’applications sur un ensemble de processeurs est l’estimation des besoins
en puissance de calcul des tâches. Celle–ci est effectuée pour des tâches temps réel par
l’estimation du pire temps d’exécution (WCET).

Cependant, si l’utilisation des WCETs pour estimer les besoins en temps d’exécution
des tâches assure une exécution sûre du système, elle conduit aussi à une surestimation
des besoins en puissance de calcul. En effet, ces WCETs sont en général beaucoup plus
grands que les temps d’exécution moyens des tâches. Ceci s’explique par la très grande
variabilité du temps d’exécution des tâches qui est due aux différents chemins possibles
dans le code d’une tâche. Ces différents chemins se traduisant par l’exécution de dif-
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férentes instructions dont les temps d’exécution eux–même sont différents et variables
d’une exécution à une autre. Cette variabilité est encore plus marquée pour les multi–
processeurs du fait du partage de ressources entre processeurs, comme les caches ou le bus
d’accès à la mémoire [10; 11; 9]. Ces variabilités font qu’aucune méthode d’estimation
du WCET d’une tâche ne fournit d’estimation précise. Le manque de maîtrise de ces vari-
abilités est alors compensée par l’usage de marges lors de l’estimation des WCETs, afin
d’assurer l’exécution correcte des tâches. Ces marges se traduisent par une surestimation
des WCETs et sont d’autant plus importantes que la tâche est critique.

Des travaux ont visé à essayer de gérer cette variabilité, et deux tendances se déga-
gent. D’un côté, certains travaux essayent d’éliminer cette variabilité grâce à des méthodes
de partitionnement [12; 13] ou basées sur le principe du Time Division Multiple Access
(TDMA) [14; 15]. Cependant, ces méthodes ont tendance à augmenter les temps d’accès
aux ressources et demandent une connaissance fine de l’architecture du matériel utilisé.
De telles méthodes sont inadaptées au contexte automobile de cette thèse.

L’autre approche possible est de tolérer cette variabilité. La première solution est
d’intégrer cette variabilité dans les WCETs des tâches, mais cette solution est inefficace du
fait du sur–dimensionnement de la puissance de calcul nécessaire qu’elle induit. Une autre
approche consistant à surveiller l’exécution des tâches et à mettre en place des mécanismes
évitant la propagation des anomalies lorsqu’elles se produisent. Cette dernière approche
est considérée dans le cadre de l’ordonnancement temps réel.

L’une de ces approches a été proposées par Vestal [16]. Elle vise à adapter l’estimation
des WCETs des tâches à leur niveau de criticité tout en partageant de mêmes processeurs
pour exécuter des tâches avec des niveaux de criticité différents. Cette proposition a donné
lieu à la création des systèmes dits à criticité mixte et à des algorithmes d’ordonnancement
dédiés. Ceux–ci visent à trouver un meilleur compromis entre l’usage efficace de la puis-
sance de calcul des processeurs et la disponibilité des tâches, en particulier des moins
critiques.

Nos travaux ont porté dans ce contexte à développer de nouvelles méthodes d’ordonnancement
pour les systèmes temps réel critiques à criticité mixte exécutés sur des processeurs multi–
processeurs.
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10.3 Ordonnancement des systèmes à criticité mixte: mod-
èles et état de l’art

Dans cette section, nous présentons les modèles de systèmes à criticité mixte et les algo-
rithmes d’ordonnancement dédiés à ces systèmes existants. L’ordonnancement des sys-
tèmes à criticité mixte visent en effet à utiliser plus efficacement la puissance de calcul des
processeurs sans compromettre le sûreté de l’exécution des tâches les plus critiques. Ils
requièrent donc des modèles spécifiques et des algorithmes d’ordonnancement associés.

10.3.1 Mixed–criticality task model

Le modèle des tâches à criticité mixte [16] est une extension des tâches temps réel clas-
siques.

Definition 44 (Mixed Criticality Task Set). Dans un lot de tâches Γ à criticité mixte péri-

odiques, τ1, ...,τn, chaque tâche τi est caractérisée par 5 paramètres, (Ti(LO),Ti(HI),χi,Ci(LO),Ci(HI))

tels que:

• χi est le niveau de criticité, ou criticité, de la tâche pris dans {LO,HI}, où HI dénote

une criticité plus importante que LO, ce qui est noté HI > LO.

• Ti(LO), Ti(HI) sont les périodes pour les niveaux LO et HI.

• Ci(LO),Ci(HI) les budgets temps d’exécutions pour les niveaux LO et HI.

Nous utilisons aussi les notations suivantes:

• Une tâche LO et une tâche HI son respectivement des tâches avec une criticité LO
et HI respectivement.

• Si une tâche τi est suivi du suffixe {χi = LO}, or {χi = HI}, cela signifie que la
tâche τi est une tâche LO ou HI respectivement.

• L’utilisation U d’une tâche périodique de période T et de budget C est U = C
T . Dans

le cas des systèmes à criticité mixte, il existe autant d’utilisations que de niveaux de
criticité: Ui(LO) = Ci(LO)

Ti(LO) et Ui(HI) = Ci(HI)
Ti(HI) pour les niveaux LO et HI respective-

ment. L’utilisation peut par ailleurs est calculée pour un lot de tâches Γ comme suit:
UΓ = ∑τi∈ΓUi.
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Les paramètres utilisés lors de l’exécution d’un lot de tâches dépendent des temps
d’exécution effectifs des tâches. Tant que les paramètres temporels du niveau LO sont
respectés, ceux–ci sont utilisés notamment pour l’activation et les échéances des tâches.
Si un job s’est exécuté pendant aussi longtemps que le budget de niveau LO de la tâche
sans avoir pour autant terminé son exécution, alors les paramètres utilisés changent. Ce
comportement est appelé une Timing Failure Event (TFE):

Definition 45 (Timing Failure Event). L’instant auquel un job dépasse le budget du niveau

LO de sa tâche sans avoir terminé son exécution est appelé une Timing Failure Event

(TFE).

Nous faisons l’hypothèse dans la thèse, que le budget de mode HI d’une tâche HI est
sûr, et ne peut donc pas être dépassé. Lorsqu’une TFE se produit, les paramètres temporels
utilisés par les tâches changent, c’est ce qui est appelé un changement de mode [18]. Nous
pouvons alors définir au moins deux modes d’exécution. Ceux–ci sont nommés d’après
les criticité car leur définition en dépend:

Definition 46 (Mode d’exécution). Soit L une criticité, le mode d’exécution L, noté mode

L, nécessite que toutes les tâches τi, avec une criticité χi telle que χi ≥ L, soient ordon-

nancées et respectent leurs paramètres temporels de mode L.

Durant l’exécution d’un système, si un mode est dit actif à un instant t, cela signifie
alors que toutes les tâches de criticité au moins L doivent respecter leurs temps d’activation
et leurs échéances définis à partir de leurs paramètres temporels de mode L. Le mode actif
à un instant t correspond au mode avec la criticité la plus petite, telle qu’aucun job ne
s’est exécuté pendant un temps plus long ou égal que le budget de cette criticité. En
conséquence, le mode LO est toujours le mode initial. Par ailleurs, l’ordonnancement de
ces tâches nécessitent de pouvoir assurer que les échéances des tâches HI dans le nouveau
mode seront respectées si une TFE se produit. Et cela, même si ce changement se traduit
par une augmentation de budgets pour les tâches LO et HI. C’est ce que nous appelons la
propriété de continuité de l’ordonnancement.

L’introduction des modes nécessitent l’introduction de notations supplémentaires. Γ(LO)

et Γ(HI) représentent le lot de tâches LO et de tâches HI dans Γ respectivement. La no-
tation UΓ(X)(Y ) représente l’utilisation du lot de tâches Γ(X) à la criticité Y, avec X étant
aussi une criticité. Par exemple UΓ(LO)(LO) représente l’utilisation des tâches LO en mode
LO.

Si un changement de mode se traduit potentiellement par un changement de tous les
paramètres temporels d’une tâche, dans les faits, seuls quelques paramètres changent.
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Dans le modèle le plus répandue, seuls les budgets changent pour les tâches HI de la
manière suivante:

• Ti(LO) = Ti(HI)

• Ci(LO)≤Ci(HI).

En ce qui concerne les tâches LO, plusieurs modèles de dégradation de leur exécution
existent et sont appelés modèles de dégradation de l’exécution des tâches LO. Nous en
considérons deux modèles: le modèle à annulation et le modèle de la tâche élastique.

Modèle de dégradation d’exécution

L’ordonnancement des systèmes à criticité mixte visent à utiliser plus efficacement la
puissance de calcul des processeurs sans compromettre le sûreté de l’exécution des tâches
les plus critiques. Ceci n’est possible qu’en acceptant que les tâches de plus basse criticité
voient leur exécution dégradée pour permettre l’exécution en mode HI des tâches HI. Deux
modèles sont considérés dans la thèse pour effectuer cette dégradation.

Le modèle de dégradation à annulation. Lorsqu’une TFE se produit, tous les jobs
actuels et futurs des tâches LO sont arrêtés. Nous appelons ce modèle le modèle de tâche à
annulation. C’est le modèle le plus couramment utilisé actuellement. Il en résulte que les
périodes et les budgets d’une tâche LO τi sont constants: Ti(LO) = Ti(HI), and Ci(LO) =

Ci(HI). Mais ce modèle peut être considéré comme trop définitif dans la dégradation des
tâches LO.

Le modèle des tâches élastiques. Ce modèle suppose que les tâches LO doivent
toujours être exécutées. Cependant leurs paramètres de mode LO sont leurs paramètres de
références avec lesquels elles doivent être exécutées. Le mode HI leur offrant seulement
une exécution dégradée du fait de l’utilisation d’une période plus grande. Nous avons les
hypothèses suivantes sur les paramètres d’une tâche LO élastique τi: Ti(LO)≥ Ti(HI) and
Ci(LO) =Ci(HI).

Noter qu’un système à criticité mixte peut être transformé en un système à criticité
multiple. Cela correspond à un système dans lequel les tâches LO et HI sont toujours
exécutées avec leurs paramètres temporels correspondant à leur criticité.

La modèlisation des systèmes à criticité mixte étant très différente des systèmes temps
réel classique ceux–ci nécessitent des algorithmes d’ordonnancement adaptés.
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10.3.2 Algorithmes d’ordonnancement pour les tâches dites à annu-
lation

Dans cette section, nous présentons brièvement les algorithmes d’ordonnancement exis-
tants pour les systèmes à criticité mixte pour multi–processeurs. Une présentation plus
complète de l’ensemble des résultats pour ces systèmes est disponible dans l’état de l’art
écrit par Burns [45]. Nous classons ces algorithmes selon qu’ils sont capables de gérer
deux niveaux de criticité ou plus pour le modèle à annulation et considérons enfin les al-
gorithmes pour le modèle élastique. Mais tout d’abord, nous présentons brièvement les
critères de performances utilisés pour comparer des algorithmes d’ordonnancement.

Critères de performance

Les performances d’un algorithme d’ordonnancement sont mesurées par sa capacité à pou-
voir ordonnancer un grand nombre de lots de tâches pour un nombre de processeurs donné.
Il existe différentes manières de mesurer cette capacité: certaines sont théoriques d’autres
expérimentales.

Critère théorique Un algorithme capable d’ordonnancer tous les lots de tâches ordon-
nançables pour un certain de processeurs est dit optimal.

Cependant il n’est pas toujours possible de développer un algorithme optimal. C’est
pourquoi il est alors intéressant de déterminer l’écart entre les performances d’un algo-
rithme et celles d’un algorithme optimal, même théorique. Cela est possible grâce au
facteur speed–up [30].

Le facteur speed–up est régulièrement utilisé pour évaluer théoriquement les perfor-
mances des algorithmes d’ordonnancement temps réel. Le principe de ce facteur est de
comparer les performances de l’algorithme étudié avec celles d’un hypothétique algo-
rithme optimal et clairvoyant. Plus ce facteur est petit plus l’algorithme a de bonnes per-
formances.

Le facteur speed–up a été défini comme le ratio s par lequel la fréquence des pro-
cesseurs doit augmenté de sorte à ce que un algorithme S ait les mêmes performances
qu’un algorithme d’ordonnancement optimal clairvoyant. Il calculé de sorte à ce que
l’inégalité suivante soit respectée:

maxI
Ss(I)
A1(I)

≤ c (10.1)
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Avec Ss(I) le coût de l’ordonnancement par l’algorithme S de l’entrée I avec des pro-
cesseurs de fréquence s. A1(I) est le coût de l’ordonnancement par l’algorithme clairvoy-
ant pour les mêmes entrées et avec des processeurs de fréquence 1. Et c est une constante,
généralement prise égale à 1 pour déterminer à quelle vitesse l’algorithme S a les mêmes
performances que l’algorithme clairvoyant. Un algorithme optimal possède un facteur
speed–up de 1. Cependant, le facteur speed–up ne permet que d’avoir une indication sur
les pires performances d’un algorithme. Par ailleurs, il ne prend pas en compte les surcoûts
nécessaires pour appliquer la politique d’ordonnancement.

Critères empiriques Ces critères servent à donner une vision sur les performances
moyennes d’un algorithme d’ordonnancement. Il consiste généralement à générer aléa-
toirement des lot de tâches censés être représentatifs de ceux qui peuvent être rencontrés
dans des systèmes industriels. Plusieurs méthodes de génération de lot de tâches ont été
proposées pour les systèmes à criticité mixte [32; 33; 34]. Puis, des indicateurs statistiques
sont calculés à partir de ces lots de tâches, comme la probabilité qu’un lot de tâche soit
ordonnançable par un algorithme donné. L’un de ces indicateurs est le taux de succès
d’ordonnançabilité, qui consiste à compter le nombre de lot de tâches ordonnançables.

Estimation des surcoûts. La génération de ces lots de tâches permet par ailleurs de
simuler leur ordonnancement, permettant ainsi de compte le nombre de préemptions et de
migrations. Ces événements ayant un impact non négligeable sur les performances d’un
algorithme d’ordonnancement.

Une autre solution est d’implémenter l’algorithme dans un système d’exploitation. Ce
prototype est ensuite évalué en vérifiant que les tâches sont correctement exécutées et
en mesurant le temps d’exécution de l’ordonnanceur. Plusieurs implémentations ont été
faites [26; 35; 36] et ont permis de déterminer si les algorithmes étudiés pouvaient être
implémentés efficacement.

Algorithmes pour les systèmes avec deux niveaux de criticité

Algorithmes d’ordonnancement partitionnés. Dans leur article [46], les auteurs pro-
posent une extension de l’algorithme zero-slack rate-monotonic (ZSRM) [47]. Cet algo-
rithme se base sur le calcul d’instants appelés zero slack instants. Ce sont les derniers
instants à partir desquels une tâche HI ne peut plus terminer son exécution en utilisant son
budget de mode HI même si les tâches LO sont arrêtées. Leur approche consiste donc à
les arrêter au plus tard lorsque ces instants sont atteints. Ces instants peuvent être utilisés
avec une politique d’ordonnancement monoprocesseur telle que EDF ou RM. Pour leur
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extension aux multi–processeurs, ils utilisent des heuristiques pour l’allocation des tâches
aux processeurs telles que Best Fit et Worst Fit.

L’algorithme monoprocesseur EDF–VD a aussi été étendue aux multi–processeurs
grâce à l’approche partitionée [48]. EDF–VD, pour EDF with Virtual Deadlines, est
le meilleur algorithme monoprocesseur pour les systèmes à criticité mixte [49], lorsque
les facteurs speed–up sont considérés. Cet algorithme consiste à calculer des échéances
virtuelles pour les tâches HI. Celles–ci sont calculées de sorte à ce que les tâches HI soient
exécutées plus tôt en mode LO pour qu’elles puissent s’exécuter pendant aussi longtemps
que leur de budget de mode HI en cas de changement de mode. Ces échéances virtuelles
sont calculées grâce à un facteur qui diminue l’échéance des tâches HI en mode LO. La
version partitionnée de cet algorithme a facteur speed–up de 8m−4

3m , où m représente le
nombre de processeurs.

Cependant les algorithmes partitionnés sont connus pour ne pas avoir les meilleures
performances d’ordonnançabilité.

Algorithmes d’ordonnancement semi–partitionnés. Dans leur article [50], les auteurs
proposent un algorithme semi-partitionné. Les changements de mode sont faits processeurs
par processeurs, c’est-à-dire que si une anomalie est détectée sur un processeur, seul ce
dernier change de mode. Les tâches LO de ce processeur migrent alors vers un autre
processeur. Le test d’ordonnançabilité est basé sur le test Adaptive Mixed Criticality

(AMC) [51]. C’est un test basé sur l’analyse du temps de réponse. Des mécanismes
pour retourner vers le mode LO sont aussi proposés. Mais cette approche étant basée sur
une approche partitionnée n’autorisant les migrations que dans le cadre des changements
de mode, ses performances doivent être similaires à un algorithme partitionné.

Une extension aux systèmes à criticité mixte de NPS–F [40] est proposée dans l’article [52]

. Les tâches HI sont allouées sur l’ensemble des processeurs disponibles. La capacité
restante de chaque processeur est ensuite utilisée pour exécuter des tâches LO. Cependant
la description complète de l’algorithme reste à faire.

Algorithmes d’ordonnancement globaux. Le principe des échéances virtuelles est réu-
tilisé dans deux algorithmes globaux.

Le premier se base sur l’algorithme fpEDF et est appelé fpEDF–VD [53]. Le calcul
des échéances virtuelles est fait d’une manière analogue à celle présentée pour EDF–VD,
simplement le test d’ordonnançabilité est remplacé par celui de fpEDF. Cet algorithme un
facteur speed–up de

√
5+ 1, ce qui ne représente pas la meilleur performance pour ces

algorithmes.
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Le second algorithme est MC–DP–Fair [34], qui est actuellement l’algorithme avec
le meilleur facteur speed–up et qui présente aussi les meilleurs taux d’ordonnançabilité.
Les auteurs ont d’abord adapté le concept d’algorithme fluide aux systèmes à criticité
mixte donnant l’algorithme MC–Fluid. Il consiste à calculer des taux d’utilisations pour
les tâches HI de sorte à ce qu’elles s’exécutent suffisamment en mode LO pour pou-
voir s’exécuter avec leur budget de mode HI d’une façon sûre après un changement de
mode. MC–DP–Fair est l’adaptation de DP–Fair qui reprend le calcul de nouveaux taux
d’utilisation mais utilise aussi les échéances virtuelles. Ces deux algorithmes ont un fac-
teur speed–up 4

3 [54], qui est la valeur optimale pour un algorithme d’ordonnancement
pour systèmes à criticité mixte [49]. Cependant, ces algorithmes basés sur l’ordonnancement
fluide sont connus pour engendrer un très grand nombres de migrations et de préemptions.

Algorithmes pour les systèmes avec plus de deux niveaux de criticité.

Dans cette section, nous considérons les algorithmes capable de gérer plus de deux niveaux
de criticité.

Le premier algorithme pour ces systèmes est MC2 [56], qui peut gérer 5 niveaux de
criticité. C’est un algorithme hiérarchique à 5 niveaux, un pour chaque niveau de crit-
icité. Chaque niveau a une politique d’ordonnancement dédiée. Pour les tâches les plus
critiques, l’ordonnancement est assuré par la génération d’une table d’ordonnancement.
Ensuite, les tâches avec le second niveau de criticité sont ordonnancées par l’algorithme
EDF partitionné. Puis les tâches des troisième et quatrième niveaux de criticité sont ordon-
nancées avec global EDF. Le dernier niveau de criticité est ordonnancé avec un algorithme
d’ordonnancement best effort. Sur chaque processeurs les tâches sont ordonnancées dans
l’ordre décroissant de leur niveau de criticité. Bien qu’implémentable [32], cet algorithme
requiert cependant que les périodes des tâches du second niveau de criticité soient des
multiples de celles des tâches du premier niveau. Il n’est donc utilisable que pour des cas
bien spécifiques.

10.3.3 Algorithmes adaptés au modèle de tâches élastiques

Nous présentons dans cette section, les algorithmes multi–processeurs dédiés à l’ordonnancement
des tâches élastiques sur multi–processeurs.

Le premier algorithme a été présenté dans [57]. Les auteurs présentent un algorithme
semi–partitionné. Les tâche LO et HI sont allouées aux processeurs en ne considérant que
leurs paramètres temporels de mode HI. L’ordonnancement se fait ensuite selon early–
release EDF [58]. Cette version modifiée de EDF permet d’exécuter les tâches avec une
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période plus petite que celle du mode HI si les tâches HI n’utilisent pas tout leur budget
de mode HI. La détermination si une tâche LO peut se faire avec une plus petite période
se fait à des instants nommés early release points. Cependant, il est impossible de savoir
avant l’exécution que le lot de tâches pourra vraiment être exécuté avec les paramètres de
mode LO.

Un second algorithme a été présenté dans [59]. Cet algorithme est un algorithme
partitionné. Deux allocations des tâches sont faites: une pour le mode LO, une pour le
mode HI. Dans chaque allocation les tâches HI restent sur les mêmes processeurs. Par
contre, les tâches LO peuvent être amenées à changer de processeur si un changement de
mode se produit. Le test d’ordonnançabilité utilisé pour allouer les tâches aux processeurs
se base sur l’analyse du temps de réponse, qui sert aussi à déterminer les priorités fixes des
tâches. Cependant, bien que cet algorithme assure que le mode LO peut être exécuté, le
changement de mode requiert d’arrêter momentanément les tâches LO. Elles sont arrêtées
tant que les tâches LO, qui doivent migrer, n’ont pas migré et que les jobs des tâches HI
au moment du changement de mode n’ont pas terminé leur exécution.

10.4 Problématique

Nombre d’algorithmes d’ordonnancement pour systèmes à criticité mixte ont été présen-
tés notamment pour les multi–processeurs. Cependant, comme présenté dans la section
précédente, chacun de ces algorithmes présente des défauts soit en terme d’efficacité soit
sur leur capacité à être utilisé dans des systèmes réels. Ces limitations ayant trait aux
nombres de niveaux de criticité ordonnaçables et ou l’utilisation exclusive au modèle de
tâche à annulation. Nous visons à proposer une approche pour l’ordonnancement de ces
systèmes qui soit efficace et utilisable. Comme pour les algorithmes actuels, nous avons
adapté un algorithme d’ordonnancement temps réel aux systèmes à criticité mixte. Mais,
pour éviter les défauts des algorithmes actuels et nous assurer que nous obtenons bien les
performances voulues, nous avons conçu notre approche étape par étape.

La première étape a visé à éviter que l’approche finale exhibe les mêmes défauts que
les algorithmes actuels. C’est pourquoi nous effectuons l’adaptation d’un algorithme en
gardant en tête les objectifs que l’ont souhaite atteindre. Cela commence lors du choix
de l’algorithme à adapter qui doit présenter les caractéristiques visées. Il s’agit ensuite
d’évaluer et anticiper les surcoûts que l’adaptation engendrera et essayer de les limiter.
Enfin, il faut aussi garder en tête que l’ordonnancement des systèmes à criticité mixte
avec plus de deux niveaux de criticité est nécessaire mais qu’il n’est pas forcément aisé de
passer de l’ordonnancement à deux niveaux vers plus de deux.
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Ensuite, il s’agit de s’assurer que l’adaptation respecte bien les objectifs d’ordonnancement
des systèmes à criticité mixte. Notamment l’adaptation doit pouvoir assurer l’ordonnancement
des différents modes et assurer la continuité de l’ordonnancement lorsqu’un changement
de mode se produit. En effet, celui–ci se traduit par une augmentation du budget des tâches
HI qui doivent pouvoir l’utiliser avant leurs échéances. Enfin il faut que cette adaptation
soit faite de manière efficace afin d’assurer de meilleurs performances d’ordonnançabilité.

La dernière étape a consister à permettre l’ordonnancement d’un autre modèle de
dégradation que celui dit de l’annulation. En l’occurrence, nous avons considéré le mod-
èle des tâches élastiques. Or ce modèle requiert de continuer à exécuter les tâches LO en
mode HI et ce avec des période différentes entre les mode LO et HI, ce qui introduit un
certains de différences qu’il faut gérer par rapport au modèle de dit de l’annulation.

10.5 GMC–RUN: un algorithme d’ordonnancement multi–
processeur pour système à criticité mixte

Dans cette section, nous présentons notre algorithme GMC–RUN, pour Generalised Mixed–

Criticality–RUN. Nous décrivons d’abord son fonctionnement global. Puis, nous décrivons
comment nous parvenons à le rendre efficace.

10.5.1 Décomposition du problème d’ordonnancement

Pour concevoir notre algorithme d’ordonnancement à criticité mixte sur multi–processeur,
nous avons divisé le problème d’ordonnancement en deux sous problèmes. Le premier
sous problème concerne le problème d’ordonnancement à criticité mixte. Le second con-
cerne le problème d’ordonnancement sur multi–processeurs.

Modal server 2

Modal server 1

Modal server 4

Modal server 3

Modal server 5

LO mode

HI mode

τ{χ = HI}

τ{χ = HI}

τ{χ = LO}

Processor 1

Processor 2

Top level
scheduler :

Low level
scheduler:

Multi–processor
scheduler

Mixed–criticality
scheduler

Figure 10.1: Représentation de l’algorithme hiérarchique
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τ{χ = HI}

C(HI)− C(LO)

Slack time

τ{χ = HI}

C(LO)

C(HI)

LO Mode

HI Mode

Figure 10.2: Origine du slack time.

Pour mettre en application cette décomposition du problème en deux sous problème
nous avons utilisé des serveurs d’exécution défini comme suit:

Definition 47. Un serveur d’exécution est une séquence d’opérations qui vise à ordon-

nancer des tâches. Il se caractérise par un modèle de ressource, un lot de tâches et une

politique d’ordonnancement. Un serveur d’exécution utilise ses ressources d’exécution

décrit par son modèle de ressource pour exécuter le lot de tâches selon sa politique

d’ordonnancement.

Les serveurs sont couramment utilisés pour appliquer une politique d’ordonnancement
spécifique à un sous lot de tâches. L’utilisation de ces serveurs nous permet de décomposer
de le problème d’ordonnancement comme présenté dans la figure 10.1.

Dans la partie inférieure de cette figure, les serveurs sont utilisés pour appliquer une
politique d’ordonnancement à criticité mixte monoprocesseur. Elle s’applique à un sous
ensemble de tâches du système.

Ces serveurs sont ensuite ordonnancés selon une politique d’ordonnancement multi–
processeur temps réel comme représenté dans la partie supérieure de la figure 10.1. L’emploi
de ces deux algorithmes forment ce qui est appelé un algorithme d’ordonnancement hiérar-
chique à deux niveaux. Le niveau du bas, applique la politique d’ordonnancement à crit-
icité mixte dans les serveurs. Le niveau du haut, applique la politique d’ordonnancement
multi–processeur aux serveurs. Il nous reste maintenant à préciser ces deux politiques
d’ordonnancement.

Les systèmes à criticité mixte sont définis avec deux modes d’exécution, les modes
LO et HI. Dans chaque mode est associé aux tâches un lot de paramètres temporels propre
à un mode. Si les tâches HI sont exécutées avec leur budget de mode HI, même dans le
mode LO, alors une part de ce budget reste inutilisée tant que le mode LO est actif. Cette
partie inutilisée du budget est appelée slack time. La quantité de slack time disponible par
tâche est estimable avant son exécution, comme le montre la figure 10.2. La quantité de
slack time disponible est égal à la différence entre les budgets des modes HI et LO pour
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chaque tâche HI. Selon les modes il peut être utilisé pour terminer l’exécution de la tâche
HI ou pour exécuter des tâches LO.

Pour cela, il nous faut concevoir une politique d’ordonnancement qui permet d’ordonnancer
correctement les tâches LO et HI dans ce slack time. Celle–ci doit assurer que les tâches
HI peuvent terminer leur exécution avant leurs échéances même en cas de changement
de mode. C’est pourquoi notre politique termine d’abord l’exécution des tâches HI, nous
permettant de nous assurer que celles–ci n’ont pas besoin de leur slack time. Ce qui nous
permet alors de pouvoir ordonnancer des tâches LO d’une manière sûre dans le slack time
des tâches HI. Étant donné que l’ordonnancement dans le slack time des tâches HI est
similaire à ordonnancer des tâches sur un monoprocesseur, nous utilisons une politique
d’ordonnancement monoprocesseur.

Nous avons besoin d’un modèle de ressource pour nos serveurs qui nous permet d’utiliser
le slack time des tâches HI. Le modèle de ressource utilisé correspond à un modèle de
ressource utilisé pour les systèmes temps réel classique: avec un WCET et une période.
Un tel modèle de ressource est le modèle des ressources périodiques [66].

Dans ce modèles une ressource est accessible pour une durée fixée par un budget qui
est réapprovisionné périodiquement. Par ailleurs, ce modèle présente l’avantage d’être
très répandu et compatible avec de nombreux algorithmes d’ordonnancement temps réel
classiques.

Ces serveurs appliquent une politique d’ordonnancement à criticité mixte qui tire profit
du slack time laissé par les tâches HI. Ce slack time est soit utilisé pour ordonnancé un lot
de tâches LO ou pour terminer l’exécution des tâches HI en mode HI. Ainsi ces serveurs
sont appelés des serveurs modaux définis comme suit:

Definition 48. Un serveur modal MS est un serveur dont le modèle de ressource est défini

par une période TS, un budget CS et une utilisation US = CS
TS

. Ce budget est abondé à

chaque période TS. Il possède deux lots de tâches:

• Un lot de tâches HI ΓMS(HI).

• Un lot de tâches LO ΓMS(LO).

Ces lots de tâches sont ordonnancés selon politique d’ordonnancement suivante:

• En mode LO, les tâches HI dans ΓMS(HI) sont ordonnancées en premier. Une fois

ces tâches terminées, les tâches LO dans ΓMS(LO) sont ordonnancées. Les ordon-

nancements de ces deux lots de tâches est fait suivant une politique d’ordonnancement

monoprocesseur.
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• En mode HI, seules les tâches HI dans ΓMS(HI) sont ordonnancées.

On appelle serveur modal slackful, les serveurs modaux avec une seule tâche HI dans
le lot ΓMS(HI). Les serveurs ne disposent que d’une quantité limitée mais constante de
slack time pour exécuter un lot de tâches LO et qui n’est disponible que dans un intervalle
de temps bien défini. Par ailleurs, le slack time disponible peut être globalement grand
mais distribué entre beaucoup de tâches. La quantité de slack time disponible par tâche
HI peut donc être très petite, ne permettant d’exécuter aucune tâche LO. Afin de limiter
cet éparpillement du slack time, nous utilisons le slack time de plusieurs tâches HI pour
exécuter un même lot de tâches LO. Les serveurs modaux exécutant chacune de ces tâches
formant alors ce qu’on appelle des serveurs modaux agrégés. Enfin, les tâches LO non
allouées dans le slack time d’un serveur modal slackful ou agrégé sont exécutées dans des
serveurs modaux slackless. Ces serveurs sont tels que que ΓMS(HI) est vide et ΓMS(LO)

contient une seule tâche LO. Il y a donc autant de serveur modaux slackless qu’il y a de
tâches LO non allouées.

Quoi qu’il en soit, agrégés ou non, les serveurs modaux ne disposent que d’une quantité
limitée de slack time. Il se peut donc que ce slack time soit insuffisant pour correctement
exécuter des tâches LO. C’est pourquoi nous avons besoin de test d’ordonnançabilité pour
s’assurer avant l’exécution du système que les tâches LO exécutées dans le slack d’une
tâche HI le seront correctement. Si une tâche passe avec succès un test d’ordonnancement
celle–ci est dit allouée au serveur modal correspondant. Deux tests d’ordonnançabilité
sont utilisés: un basé sur l’utilisation et l’autre sur les demand bound function et supply

bound function [66].

Les particularités des systèmes à criticité mixte sont gérées par la politique d’ordonnancement
des serveurs modaux. Ceux–ci ont des paramètres temporels constants, i.e. ils ne changent
pas de paramètres temporels si un changement de mode se produit. Les serveurs modaux
sont donc ordonnançables par des algorithmes d’ordonnancement classiques.

La détermination de quelles tâches LO sont exécutées dans le slack time de quelles
tâches HI est effectuée hors ligne. Elle répond à un certains nombre d’objectifs de perfor-
mance tout comme le choix de l’algorithme multi–processeur.

10.5.2 Efficacité de l’approche

Les performances d’un algorithme hiérarchique, comme le nôtre, dépendent des perfor-
mances de chaque algorithme qui compose cette hiérarchie. Ainsi, les algorithmes utilisés
pour former cette hiérarchie doivent présenter des performances qui soient en adéquation
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avec nos objectifs, à savoir un nombre faible de préemptions engendrées et un grand taux
de succès à l’ordonnancement.

Chaque algorithme composant la hiérarchie a un impact sur le nombre de préemptions
engendrées. Dans le cas d’un algorithme hiérarchique, ce nombre est au plus égal à la
somme des préemptions engendrées par chaque algorithme de la hiérarchie. En effet, si
une préemption est engendrée par l’algorithme de premier niveau, alors il se peut que cela
se traduise au second niveau par une préemption qui ne se serait pas produit si l’algorithme
de ce niveau était utilisé seul. Le cas inverse peut aussi se produire. Une préemption peut
être engendrée par l’algorithme du second niveau et ne l’aurait pas été si l’algorithme de
premier niveau avait été utilisé seul.

Par ailleurs, le test d’ordonnançabilité de la hiérarchie se fait par l’application des
tests d’ordonnançabilité de chaque niveau de la hiérarchie. Dans notre cas, un système
à criticité mixte est ordonnançable si deux conditions sont remplies. Premièrement, un
lot de tâches est ordonnançable dans un serveur si celui–ci passe avec succès le test
d’ordonnançabilité associé à notre politique d’ordonnancement à criticité mixte. La sec-
onde condition est que les serveurs modaux soient ordonnançables par la politique d’ordonnancement
multi–processeur. Si les deux politiques d’ordonnancement ont des tests d’ordonnancement
pessimistes, avec par exemple une limite d’utilisation basse, alors la hiérarchie d’ordonnancement
aura de mauvaises performances.

Il résulte que le choix des algorithmes d’ordonnancement utilisés pour chaque niveau
doit prendre en compte ces aspects. La prise en compte de ces contraintes nous a amené
à choisir RUN [42] pour effectuer l’ordonnancement des serveurs modaux sur le multi–
processeur. Nous avons par ailleurs choisi Earliest Deadline First (EDF) pour effectuer
l’ordonnancement des tâches LO dans le slack time des tâches HI. En effet, ces deux
algorithmes engendrent très peu de préemptions [60; 42] et sont tous les deux optimaux
pour les mutli–processeurs et les monoprocesseurs respectivement. En particulier, un lot
de serveurs modaux est ordonnançable sur m processeurs par RUN si son utilisation est
inférieure ou égale à m.

Enfin, les performances de notre algorithme hiérarchique peuvent aussi être affectées
par la répartition des tâches LO dans les serveurs modaux. Cette répartition consiste à
déterminer quelles tâches LO sont exécutées dans le slack time de quelles tâches HI en
allouant ces tâches LO aux serveurs modaux. Comme une tâche LO exécutée dans le
slack time d’une tâche HI n’a pas besoin de budget temps d’exécution propre, plus il y
a de tâches LO allouées dans le slack time, plus l’utilisation du lot de serveurs modaux
est faible. Nous avons donc à résoudre un problème d’optimisation dont l’objectif est de
maximiser le taux d’utilisation des tâches LO exécutées dans le slack time des tâches HI.
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Task Period Criticality C(LO) C(HI) U(LO) U(HI)
τ1 5 HI 1 3 0.2 0.6
τ2 2 HI 0.5 1.5 0.25 0.75
τ3 8 HI 0.8 3.2 0.1 0.4
τ4 8 LO 3.2 3.2 0.4 0.4
τ5 15 LO 3.75 3.75 0.25 0.25
τ6 12 LO 2.4 2.4 0.2 0.2
τ7 12 LO 2.4 2.4 0.2 0.2

Table 10.1: Exemple d’un lot de tâches à criticité mixte.

Ce problème d’optimisation est résolu par l’utilisation d’un algorithme évolutionnaire. En
effet, le nombre de solutions possibles et la complexité des tests d’ordonnançabilité font
que l’utilisation de méthode de résolution exacte est inefficace.

Exemple: application de l’algorithme évolutionnaire Maintenant que nous avons notre
algorithme au complet, à savoir un politique d’ordonnancement à criticité mixte, une poli-
tique d’ordonnancement multi–processeur et un méthode pour trouver une bonne alloca-
tion des tâches LO dans les serveurs modaux. Nous pouvons appliquer notre approche
sur le lot de tâches présenté dans le tableau 10.1. Le résultat de l’allocation suite à
l’application de notre algorithme évolutionnaire donne un serveur modal dit slackful, un
agrégé et un serveur modal slackless.

La tâche τ4 est allouée au serveur modal slackful MS2 quant aux tâches τ5 et τ6 elles
sont allouées à l’agrégé formé avec MS1 et MS3. La tâche τ7 est allouée à serveur modal
slackless MS4. Cette allocation permet de réduire l’utilisation du système de 2,8 à 1,95 et
peut donc être ordonnancé sur 2 processeurs au lieu de 3. Remarquer, que MC–fluid [34]

nécessite 3 processeurs pour ordonnancer ce lot de tâches.

Dans la section suivante nous évaluons d’une manière plus exhaustive les perfor-
mances de GMC–RUN.

10.6 Évaluation de GMC–RUN

GMC–RUN a été évalué de deux manières différentes. D’abord d’une manière théorique,
ce qui nous donne une indication des pires performances possibles de notre algorithme. En
particulier, nous prouvons que GMC–RUN n’a jamais besoin de plus de processeurs pour
ordonnancer un système à criticité mixte que si celui–ci est ordonnancé comme un système
à criticité multiple. Puis en calculant le facteur speed–up, nous déterminons l’écart entre
les performances de notre algorithme et un algorithme optimal clairvoyant. Cependant,
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cet indicateur de performance est pessimiste puisque cet écart peut n’arriver que dans le
cas de systèmes très particuliers et non représentatifs des systèmes pouvant être rencontrés
dans l’industrie.

C’est pourquoi nous évaluons aussi expérimentalement notre algorithme afin d’avoir
une idée sur les performances de notre algorithme pour des lots de tâches que nous con-
sidérons comme représentatifs.

10.6.1 Évaluation théorique

Nous rappelons d’abord un certain nombre de notations. UΓ(HI)(HI) est l’utilisation en
mode HI des tâches HI du lot Γ. UΓ(HI)(LO) est l’utilisation en mode LO des tâches
HI du lot Γ. UΓ(LO)(LO) est l’utilisation en mode LO des tâches LO du lot Γ. Enfin,
un système à multiple criticités est ordonnançable par un algorithme d’ordonnancement
multi–processeur optimal sur m processeurs si UΓ(HI)(HI)+UΓ(LO)(LO)≤ m.

L’évaluation théorique de GMC–RUN se fait en deux temps.

D’abord, nous donnons et prouvons la borne supérieure du nombre de processeurs req-
uis pour ordonnancer un système à criticité mixte. Puis, nous calculons son facteur speed–
up. Ce facteur donne une indication sur l’éloignement des performances de l’algorithme
de celles d’un algorithme optimal clairvoyant.

Nombre de processeurs

Nous nous intéressons ici à déterminer si pour ordonnancer un système à criticité mixte,
GMC–RUN peut avoir besoin de plus de processeurs que si le système est ordonnancé
comme un système à criticité multiple. Le théorème suivant donne une borne supérieure
et une borne inférieure sur le nombre de processeurs requis pour ordonnancer un système
à criticité mixte avec GMC–RUN:

Theorem 15. Le nombre de processeurs P requis pour ordonnancer un système à criticité

mixte vérifie les inégalités suivantes:

dmax(UΓ(HI)(HI),UΓ(LO)(LO)+UΓ(HI)(LO))e ≤ P≤ dUΓ(HI)e (10.2)

Remarquer que nous avons prouvé que GMC–RUN ne requiert jamais plus de pro-
cesseurs que l’ordonnancement du système à criticité multiple ordonnancé par un al-
gorithme d’ordonnancement temps réel optimal classique. Ce résultat est par ailleurs
indépendant de la méthode choisie pour effectuer l’allocation des tâches LO dans les
serveurs modaux.
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Facteur speed–up

Le théorème suivant donne la valeur du facteur speed–up pour GMC–RUN:

Theorem 16. Le facteur speed–up de GMC–RUN est 2.

Ce facteur speed–up est le deuxième meilleur facteur speed–up parmi les algorithmes
d’ordonnancement pour systèmes à criticité mixte. Elle est par ailleurs vraie pour n’importe
quel algorithme optimal multi–processeur utilisé dans notre hiérarchie d’ordonnancement,
et pas seulement pour RUN.

10.6.2 Évaluation expérimentale

Nous avons ensuite évalué expérimentalement GMC–RUN et l’avons comparé avec d’autres
algorithmes d’ordonnancement à criticité mixte, à savoir MC–DP–Fair [34] et fpEDF–
VD [53]. Cette évaluation se base sur deux critères. Le premier est le taux de succès
d’ordonnançabilité. Le second le nombre de préemptions engendrées. Nous avons pour
cela généré aléatoirement des lots de tâches. L’implémentation de notre algorithme évo-
lutionnaire est basé sur le framework Distributed Evolutionary Algorithms pour Python
(DEAP) [75].

La génération des lots de tâches est basée sur une méthode décrite dans [53]. Cette
méthode permet de générer des lots de tâches à partir de différentes valeurs de période,
taux d’utilisation et proportions de tâches HI.

Le taux de succès d’ordonnançabilité

Le ratio d’acceptation est le pourcentage de lot de tâches considéré ordonnançable par
un algorithme d’ordonnancement. Nous avons comparé les ratios d’acceptation de GMC–
RUN, fpEDF–VD et MC–DP–Fair. La figure 10.3 montre le taux de succès d’ordonnançabilité
pour différentes utilisations normalisées UBound/m pour 2 processeurs.

Les résultats montrent que GMC–RUN a de meilleures ratio d’acceptation que fpEDF–
VD et qui sont proches de ceux de MC–DP–Fair, quelque soit la proportion de tâches HI.
Par exemple, avec deux processeurs, 30% de tâches HI et une utilisation normalisée de
0.7, GMC–RUN ordonnance 95% des lots de tâches contre 100% pour MC–DP–Fair et
moins de 40% pour fpEDF–VD. Cependant, GMC–RUN est meilleur que MC–DP–Fair
pour des hautes utilisations et pour des une proportion de tâches HI égale à 70%.

Les meilleurs performances de GMC–RUN et MC–DP–Fair par rapport à celles de
fpEDF–VD confirment notre intuition initiale que les meilleurs algorithmes d’ordonnancement
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Figure 10.3: Taux de succès d’ordonnançabilité pour des utilisation normalisées
(UBound/m) pour différentes proportions de tâches HI sur 2 processeurs.

à criticité se base sur les meilleurs algorithmes d’ordonnancement classiques. En ef-
fet, GMC–RUN et MC–DP–Fair ont été conçus à partir d’algorithme d’ordonnancement
multi–processeur optimaux classiques.

Les meilleurs résultats de GMC–RUN pour des proportions de tâches HI élevées peu-
vent s’expliquer par le fait que plus la proportion de tâches HI est élevée plus le taux
d’utilisation du lot de tâches correspond à celui des tâches HI seules. Par ailleurs, une
grande proportion de slack time devient disponible en mode LO, ce qui facilite l’allocation
de tâches LO dans les serveurs modaux et donc de réduire l’utilisation du système.

Le nombre de préemptions engendrées

Le nombre de préemptions engendrées par un algorithme d’ordonnancement influence
sa capacité à pouvoir ordonnancer ou non un lot de tâches. Le choix de RUN s’est fait
en parti sur ce critère, et pour lequel il excelle en engendrant très peu de préemptions.
Mais comme les serveurs modaux ont des budgets limités, leur utilisation peut découper
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l’exécution des tâches qui leur sont allouées. Ainsi, leur utilisation peut engendrer des
préemptions supplémentaires.
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Figure 10.4: Nombre moyen de préemptions par job pour des lots constitués d’un nombre
variable de tâches.

Nous avons comparé le nombre de préemptions engendrées par job pour GMC–RUN
et MC–DP–Fair. Pour cela nous avons utilisé la même méthode de comptage que celle
décrite dans le papier sur RUN: pour chaque job et en ignorant celles dues à une activation
ou à la complétion d’un job. Nous n’avons effectué ce comptage que pour le mode LO,
car le mode HI revient à ordonnancer les tâches HI avec RUN et donnerait des résultats
similaires à ceux présentés dans [42] et qui montrent que RUN est bien meilleur qu’un
algorithme similaire à DP–Fair. Les résultats sont présentés dans le figure 10.4.

Le nombre moyen de préemptions est reproduit en fonction du nombre de tâches.
Comme attendu, GMC–RUN engendre en moyenne au moins cinq fois moins de préemp-
tions que MC–DP–Fair. Par ailleurs, l’écart se creuse à mesure que le nombre de tâches
augmente.

10.7 Ordonnancement des systèmes à criticité mixte avec
plus de deux niveaux de criticité

Cependant, la plupart des algorithmes d’ordonnancement à criticité mixte ne se limite à
l’ordonnancement que des systèmes avec deux niveaux de criticité. L’extension à plus de
niveaux de criticité n’est souvent pas faite et pas forcément évidente. Or, l’utilisation
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Figure 10.5: Slack time disponible dans chaque mode pour une tâche CL–X.

de plus de deux niveaux de criticité permet de gérer plus finement la dégradation de
l’exécution des tâches de criticité moyenne. Dans notre cas, nous y parvenons en allouant
les tâches dans les serveurs modaux par un processus itératif.

Les notations doivent tout d’abord être adaptées au cas des systèmes avec plus de
deux niveaux de criticité. Nous nous basons pour ces systèmes sur une notation à base de
chiffres. Pour une tâches de criticité X nous utilisons la notation suivante: tâche CL–X.
Par exemple, une tâche de criticité 2 est notée tâche CL–2. Plus X est grand, plus la tâche
est critique. De la même manière, nous notons mode X, le mode dans lequel toutes les
tâches de criticité plus grande ou égale à X sont exécutées avec leur budget correspondant
à la criticité X.

Lorsqu’une tâche de criticité X est exécutée avec son budget de mode X, même dans
les modes inférieurs à X, alors la tâche n’utilise pas tout son budget et il y a alors du slack
time. Ceci est représenté dans la figure 10.5. Ce slack time disponible est d’autant plus
important que le mode est bas. Nous pouvons donc de la même que pour les systèmes
avec deux niveaux de criticité utiliser ce slack time pour exécuter d’autres tâches et ce en
utilisant des serveurs modaux. La différence ici est qu’une tâche de criticité plus grande
que 2 peut encore avoir du slack time de disponible après la détection d’une TFE. Après
une seule TFE, seulement le slack time correspondant à la différence entre les budgets des
modes 2 et 1 n’est plus disponible. Par exemple, dans la figure 10.5, lorsque le système
passe du mode 2 vers le mode 3, le slack time qui est réutilisé pour exécuter la tâche
CL–X est égal à C(3)−C(2). On dit alors que ce slack time est de mode 3, comme il
est utilisé pour exécuter la tâche de plus haute criticité quand le mode 3 devient actif. Par
conséquent, une tâche CL–X peut utiliser son slack time pour ordonnancer X − 1 lots de

© 2017 Romain GRATIA 183



Chapter 10. Résumé en français de la thèse

tâches de plus basses criticités Γl , avec l ∈ [2;X ]. Cela en fait un pour chaque mode, du
mode 2 au mode X.

Chaque lot Γl est ordonnancé dans le slack time égal à la différence des budgets de
deux modes consécutifs. Dans la figure 10.5, le lot Γ3 est ordonnancé dans le slack time
de mode 3. Ce slack time de mode 3 est utilisé dans les modes 1 et 2 pour exécuter des
tâches de plus basses criticités. Mais en mode 3, il doit servir à terminer l’exécution de la
tâche CL–X. Un serveur modal doit donc maintenant gérer plusieurs lots de tâches.

Pour déterminer la criticité des tâches qui peuvent être ordonnancées dans chacun de
ces lots, nous examinons quand le slack time est utilisé pour exécuter la tâche de plus
haute criticité. Un lot de tâches de plus basses criticités ne doit pas être ordonnancé si
une tâche CL–X a besoin de compléter son exécution en utilisant le slack time. Ceci
arrive quand une TFE se produit et un mode plus élevé devient actif. Ainsi, chacun de ces
lots de tâches ne doit contenir que des tâches qui n’ont plus à être ordonnancées lorsque
la tâche CL–X doit utiliser le slack time pour compléter son exécution. Dans le cas du
slack time dont la tâche CL–X a besoin quand le mode 3 devient actif, seules les tâches
avec une criticité strictement inférieure à 3 peuvent y être exécutées. En effet, lorsque
la tâche CL–X a besoin de ce slack time de mode 3, elle peut l’utiliser sans empêcher
d’autres tâches de s’exécuter. Afin de toujours respecter cette règle, nous avons conçu un
processus d’allocation itératif.

Afin d’assurer que chaque slack time de mode M+1 n’a à exécuter que des tâches avec
une criticité strictement inférieure à M+1, nous séparons les tâches selon leur criticité
et formons deux groupes de tâches comme représenté dans la figure 10.6. Le premier
groupe, dans la partie inférieure de la figure, est composé de tâches de criticité strictement
inférieure à M+1. Le second groupe, dans la partie supérieure de la figure, contient toutes
les tâches de criticité supérieure ou égale à M+1. Une fois ces deux groupes formés, nous
répartissons les tâches du premier groupe dans les serveurs modaux formés à partir des
tâches du second groupe. Cette répartition vise à exécuter les tâches de plus basse criticité
dans le slack time de mode M+1 des serveurs modaux. Dans la figure 10.6, les tâches
de plus basses criticité sont allouées dans le slack time de mode M+1 dont le budget est
égal à C(M +1)−C(M). Une fois cette répartition terminée, les tâches de basse criticité
allouées sont dans le lot de tâches correspondant à ce slack time de mode M+1.

Tous les niveaux de criticité sont ensuite considérés en répétant ces opérations de for-
mation des deux groupes et de l’allocation des tâches du premier groupe dans les serveurs
modaux formés à partir des tâches du second groupe. Chaque étape se termine par la ré-
duction d’un niveau de criticité grâce à l’allocation des tâches dans les serveurs modaux
(slackful, agrégés ou slackless). Une fois tous les niveaux de criticité traités, le résultat
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Figure 10.6: Allocation des tâches CL–L dans le slack time de tâches plus critiques.

est un lot de serveurs modaux ordonnançable par un algorithme d’ordonnancement temps
réel classique comme dans le cas des systèmes à criticité mixte avec deux niveaux.

L’ordonnancement dans les serveurs modaux suit la même logique que dans le cas des
systèmes avec deux niveaux. Chaque serveur modal exécute d’abord la tâche avec la plus
haute criticité, et à partir de laquelle il a été crée, puis le serveur modal ordonnance les lot
de tâches moins critiques.

10.8 Ordonnancement des tâches élastiques

Lorsqu’une TFE se produit, l’exécution des tâches LO est dégradée. La dégradation subie
dépend du modèle de dégradation utilisé. Le plus couramment utilisé parmi les algo-
rithmes d’ordonnancement à criticité mixte est ce qu’on appelle le modèle à annulation.
Dans ce modèle, les tâches LO sont totalement arrêtées après un changement de mode, ce
qui rend ce modèle peu intéressant pour des applications industrielles. En effet, nos parte-
naires industriels ont besoin de pouvoir assurer une exécution minimale pour des tâches
de plus basse criticité. C’est pourquoi, nous considérons l’utilisation d’un autre modèle de
dégradation de l’exécution des tâches LO, appelé le modèle des tâches élastiques. Dans
ce modèle, les tâches LO ne sont pas totalement arrêtées mais leur exécution est ralentie
par l’utilisation d’une période et d’une échéance plus grandes comme représenté dans la
figure 10.7. Dans cette figure, une tâche LO est exécutée C unités de temps avec une péri-
odicité T(LO) en mode LO. Quand le mode HI devient actif cette même tâche est toujours
exécutée avec un budget C mais avec une périodicité T(HI) = 2·T(LO). Cependant, du fait
de l’exécution des tâches LO en mode HI, l’utilisation des serveurs modaux requiert ne
peut pas se faire telle quelle.
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Figure 10.7: Exécution d’une tâche élastique dans les différents modes.

En mode HI, les tâches LO élastiques reçoivent une exécution minimale. En mode
LO, elles sont exécutées d’une manière nominale. Un changement de mode se traduit
donc pour ces tâches par une réduction des besoins d’exécution des tâches LO. Afin de
pouvoir réutiliser notre approche basée sur les serveurs modaux, nous calculons les be-
soins d’exécution minimaux du mode HI et les besoins supplémentaires requis en mode
LO comparés à ceux du mode HI. Ces besoins d’exécution supplémentaires, seulement
nécessaires en mode LO, peuvent alors être fournis par le slack time de serveur modaux.

Ceci nécessite de transformer le modèle de la tâche élastique. Pour cela, au lieu
d’exécuter une tâche LO avec une période plus petite et un même budget, nous cherchons
à exécuter la tâche LO avec une même période mais un budget plus petit en mode HI.
Nous transformons donc un changement de périodes en un changement de budgets.

En faisant cela, un tâche LO élastique τ peut être décomposée en deux sous tâches
comme représenté dans la figure 10.8. Ces deux sous tâches sont deux serveurs qui sont
utilisés pour exécuter la tâche LO élastique chacun avec les objectifs d’ordonnancement
suivants:

1. La sous tâche τNMC fournit le temps d’exécution requis en mode HI. Il assure que
la tâche LO élastique reçoit un budget C avec une périodicité T(HI) en mode HI.
Elle est appelée τNMC, NMC signifiant Non Mixed–Criticality, étant donné qu’elle
est toujours exécutée.

2. La sous tâche τDIS vient en supplément de la tâche NMC et fournit le temps d’exécution
additionnel en mode LO afin d’assurer l’exécution de la tâche LO en mode LO. Elle
est notée DIS pour discarding, car elle est arrêtée après un changement de mode.

Nous avons enfin besoin de déterminer les paramètres temporels des deux sous tâches.
Ces paramètres temporels doivent assurer l’ordonnancement correct de la tâche LO dans
les deux modes. Pour cela, nous fixons la période de la sous tâche τNMC égal au plus grand
multiple commun des périodes du mode LO et HI de la tâche LO, tandis que la période de
la tâche τDIS est égale à sa période en mode LO. Ensuite, nous commençons par calculer
le budget de la tâche τDIS. Son budget est calculé de sorte à ce que la sous tâche τDIS soit
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Figure 10.8: Décomposition de l’exécution d’une tâche élastique dans les différents
modes.

ordonnançable dans le slack time d’un lot de serveurs modaux. Pour cela, ce calcul est
effectué en même temps que l’allocation des sous tâches τDIS dans les serveurs modaux.
Puis nous calculons le budget de la sous tâches τNMC de telle sorte que l’ordonnancement
de la tâche LO en mode HI soit assuré et que l’exécution combinée des deux sous tâches
τDIS et τNMC assure l’ordonnancement de la tâche LO. Pour cela, on s’assure que les deux
sous tâches ne sont jamais exécutées en parallèle.

10.9 Conclusion

Dans cette thèse, nous avons proposé une approche versatile et efficace pour l’ordonnancement
des systèmes à criticité mixte. Ces systèmes sont composés de tâches avec différentes crit-
icité et peuvent être ordonnancées efficacement en acceptant d’éventuellement dégrader
l’exécution des tâches les moins critiques.

Il existe de nombreux modèles de dégradation. Dans cette thèse nous en avons étudié
deux. Le plus couramment utilisé est le modèle dit de l’annulation qui consiste à arrêté
complètement les tâches LO après un changement de mode. Nous l’avons d’abord con-
sidéré pour des systèmes avec deux niveaux de criticité puis l’avons ensuite étudié pour
des systèmes constitués de plus de deux niveaux. L’utilisation de plus de niveaux de crit-
icité permettant de gérer l’exécution des tâches d’une manière plus fine, car il permet de
dégrader l’exécution des tâches d’une manière plus progressive. Le second modèle de
dégradation étudié est le modèle de la tâche élastique avec deux niveaux de criticité. Avec
ce modèle, l’exécution des tâches est dégradée moins définitivement en augmentant leur
périodicité plus qu’en les arrêtant totalement.

Nos contributions permettent l’ordonnancement de systèmes à criticité mixte d’une
manière efficace tout en donnant aux concepteurs une marge de manœuvre pour ajuster
l’exécution des tâches à leur besoin. Les contributions de cette thèse sont les suivantes:
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• Introduction d’un nouveau type de serveur d’exécution appelé serveur modal pour
les systèmes à criticité mixte. Ces serveurs ont d’abord été appliqués aux sys-
tèmes avec deux niveaux de criticité composé de tâches basées sur le modèle de
l’annulation. Ces serveurs appliquent une politique d’ordonnancement à criticité
mixte monoprocesseur qui tire profit du slack time des tâches HI pour ordonnancer
des tâches LO.

• Ces serveurs modaux sont ensuite ordonnancés par un algorithme d’ordonnancement
multi–processeur classique, qui dans notre cas est RUN. Les serveurs et cet algo-
rithme forment un algorithme d’ordonnancement dit hiérarchique que nous avons
appelé GMC–RUN. Les performances de GMC–RUN dépendent de la résolution
efficace du problème d’allocation des tâches LO dans les serveurs modaux. Ce
problème d’optimisation a été résolu grâce à l’utilisation d’un algorithme évolution-
naire.

• Nous avons ensuite évalué GMC–RUN. D’abord théoriquement en calculant son
facteur speed–up que nous avons prouvé être de 2. Ensuite expérimentalement sur
des lots de tâches générés aléatoirement. Nous avons mesuré le taux de succès
d’ordonnançabilité et le nombre de préemptions moyen par job. Il se trouve que
sur le premier critère GMC–RUN présente des performances proches de celles de
MC–DP–Fair mais engendre beaucoup moins de préemptions que ce dernier.

• Nous avons ensuite présenté un processus itératif simple pour ordonnancer des sys-
tèmes avec plus de deux niveaux de criticité.

• Enfin nous avons présenté une méthode pour permettre l’ordonnancement de tâches
élastiques avec GMC–RUN. Cette méthode consiste à décomposer l’exécution des
tâches LO en deux sous tâches. Le calcul des budgets de ces sous tâches tirant
profit du slack time disponible d’un lot de serveurs modaux donné. Par ailleurs elle
est la première approche pour ces tâches sur multi–processeur permettant d’assurer
l’exécution du système dans le mode LO.
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[65] D. Tămaş–Selicean, Design of Mixed-Criticality Applications on Distributed Real-

Time Systems. PhD thesis, 2014.

[66] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,”
in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, pp. 2–13, Dec 2003.

[67] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in
26th IEEE International Real-Time Systems Symposium (RTSS’05), pp. 10 pp.–398,
Dec 2005.

[68] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical problems
in prioritized preemptive scheduling,” in Proceedings of the 7th IEEE Real-Time

Systems Symposium (RTSS’86), December 2-4, 1986, New Orleans, Louisiana, USA,
pp. 181–191, 1986.

[69] J. Lee, L. T. X. Phan, S. Chen, O. Sokolsky, and I. Lee, “Improving resource uti-
lization for compositional scheduling using dprm interfaces,” SIGBED Rev., vol. 8,
pp. 38–45, Mar. 2011.

© 2017 Romain GRATIA 197



Bibliography

[70] S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: a unifying theory
for optimal hard real-time multiprocessor scheduling,” Real-Time Systems, vol. 47,
no. 5, pp. 389–429, 2011.

[71] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez, “Metaheuristic opti-
mization frameworks: a survey and benchmarking,” Soft Computing, vol. 16, no. 3,
pp. 527–561, 2012.

[72] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1989.

[73] S. Luke, Essentials of Metaheuristics. Lulu, second ed., 2013. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[74] J. Dréo, A. Petrowski, P. Siarry, and E. Taillard, Métaheuristiques pour l’optimisation

difficile. Eyrolles, first ed., 2003.

[75] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP:
Evolutionary algorithms made easy,” Journal of Machine Learning Research, vol. 13,
pp. 2171–2175, jul 2012.

[76] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis of multipro-
cessor tasksets,” in WATERS’2010, pp. 6–11, July 2010.

[77] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability.”

[78] J. W. Liu, K.-J. Lin, W.-K. Shih, A. C.-s. Yu, J.-Y. Chung, and W. Zhao, “Algorithms
for scheduling imprecise computations,” Computer, vol. 24, no. 5, pp. 58–68, 1991.

[79] J. Theis, G. Fohler, and S. Baruah, “Schedule table generation for time-triggered
mixed criticality systems,” in 1st Workshop on Mixed Criticality Systems (WMC),

IEEE Real-Time Systems Symposium, pp. 79–84, December 2013.

[80] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate of low-criticality
tasks in mixed criticality systems,” in 1st Workshop on Mixed Criticality Systems

(WMC), IEEE Real-Time Systems Symposium), pp. 43–48, Dec. 2013.

[81] A. Burns and S. Baruah, “Towards a more practical model for mixed criticality sys-
tems,” in 1st Workshop on Mixed Criticality Systems (WMC), IEEE Real-Time Sys-

tems Symposium, pp. 1–6, december 2013.

198 © 2017 Romain GRATIA



[82] S. Baruah, A. Burns, and Z. Guo, “Scheduling mixed-criticality systems to guarantee
some service under all non-erroneous behaviors,” in 2016 28th Euromicro Confer-

ence on Real-Time Systems (ECRTS), pp. 131–138, July 2016.

[83] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The rosace case study:
From simulink specification to multi/many-core execution,” in 2014 IEEE 19th Real-

Time and Embedded Technology and Applications Symposium (RTAS), pp. 309–318,
April 2014.

[84] S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis, “Static probabilistic timing analysis
for real-time systems using random replacement caches,” vol. 51, pp. 77–123, 2015.

[85] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim,
“Proartis: Probabilistically analyzable real-time systems,” vol. 12, (New York, NY,
USA), pp. 94:1–94:26, ACM, May 2013.

© 2017 Romain GRATIA 199





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Une Approche Efficace et Polyvalente pour l’Ordonnancement
de Systèmes à Criticité Mixte sur Processeur Multi-Coeurs

Romain Gratia

RÉSUMÉ : Dans cette thèse, nous nous intéressons à l’ordonnancement des systèmes à criticité mixte
sur des multi-processeurs. Dans ces systèmes des applications de différents niveaux de criticité sont exé-
cutées sur une même plate-forme d’exécution. Ces niveaux de criticité indiquent l’importance de chaque
application pour le fonctionnement sûr du système et auxquels sont associées des exigences de sûreté de
fonctionnement. Le respect de ces exigences est actuellement assuré par l’emploi de méthodes de concep-
tion, qui sont connues pour leur faible efficacité en particulier pour les multi-processeurs. Nous proposons
donc dans cette thèse une approche efficace et générique d’ordonnancement des systèmes à criticité mixte
sur multi-processeurs. Efficace, car les comparaisons avec les solutions existantes ont montré que notre ap-
proche permet d’ordonnancer plus de systèmes tout en générant très peu de préemptions. Nous parvenons à
ces résultats en tirant profit de la différence de temps d’exécution entre niveaux de criticité que nous utilisons
pour exécuter plus d’applications critiques ou non critiques selon le comportement du système. Générique,
car elle permet d’ordonnancer des systèmes à criticité mixte composés d’un nombre quelconque de niveaux
de criticité ainsi que deux modèles de systèmes à criticité mixte différents. Cette généricité nous permet
d’adapter notre approche aux objectifs de disponibilité de chaque application et ainsi de mieux répondre aux
besoins industriels.

MOTS-CLEFS : Ordonnancement temps réel, multi-processeurs, systèmes à criticité mixte.

ABSTRACT : This thesis focuses on the scheduling of mixed-criticality systems on multi-processors. In
these systems, several applications with different criticality levels are executed on a same execution platform.
The criticality levels denote the importance of the applications for the correct execution of the system. To each
criticality level is associated safety requirements. These safety requirements are currently satisfied by using
methods known to be inefficient, particularly for multi-processor platforms. We therefore propose in this thesis
an efficient and versatile approach to schedule these mixed-criticality systems on multi-processors. Efficient,
as our experiments and comparisons with existing solutions show that our approach schedules
more systems while entailing fewer preemptions. This is achieved by taking advantage of the
difference of execution times between criticality levels to either execute more the non critical or
the critical applications depending on the behaviour of the system. Versatile, since our approach
schedules mixed-criticality systems composed of any number of criticality levels and two different
mixed-criticality task models. Thanks to this versatility, our approach can be adapted to meet the
availability objectives of the applications and thus better meet the industrial needs.

KEY-WORDS : real–time scheduling, multi-processors, mixed–criticality systems.
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