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Résumé

Dans cette thèse, nous associons mesures expérimentales et modélisation des données pour
étudier l’émission spontanée d’émetteurs fluorescents en environnement nano-structuré. Le
mémoire est organisé en deux parties.

Dans la première partie, nous étudions le transfert d’énergie entre émetteurs fluorescents
en environnement plasmonique et sur des distances micrométriques. Pour commencer,
nous caractérisons le transfert d’énergie entre deux ensembles d’émetteurs situés en champ
proche d’une surface d’argent. Nous déterminons ainsi la dépendance en distance du taux
de transfert d’énergie sur des distances micrométriques. Nous couplons ensuite une boite
quantique et une bille fluorescente à un nano-fil d’argent et nous étudions le transfert
d’énergie entre ces deux émetteurs, distants de plusieurs micromètres. Nous démontrons
notamment le clignotement corrélé de ces deux émetteurs grâce à l’étude de la fonction de
corrélation de leur intensité de fluorescence.

Dans la seconde partie, nous sondons les variations spatiales de densité locale d’états
électromagnétiques induites par des environnements nano-structurés grâce à différentes
techniques de microscopie à super-résolution. A l’aide d’un microscope à balayage, nous
réalisons tout d’abord une étude en trois dimensions de l’interaction de champ proche
entre une bille fluorescente et différentes antennes en silicium. Nous introduisons ensuite
une technique stochastique permettant de déterminer expérimentalement la position et le
taux d’amortissement de molécules uniques photo-activées, avec une précision de localisa-
tion de l’ordre de 10 nm. Enfin, nous utilisons l’information de Fisher afin d’estimer les
bornes inférieures de l’erreur type des estimations de positions et de taux d’amortissement
réalisées dans le cadre de mesures sur molécules uniques.

Mots-clés

Durée de vie de fluorescence, Champ proche, Emission spontanée, Densité d’états élec-
tromagnétiques, Plasmon de surface, antenne diélectrique, Imagerie de super-résolution,
Molécule unique, Borne de Cramér-Rao





Summary

In this thesis, we perform experimental measurements and data modelling to investi-
gate spontaneous emission of fluorescent emitters in nanostructured environments. The
manuscript is organised into two main parts.

In the first part, we study micrometre-range energy transfer between fluorescent emitters
in plasmonic environments. First of all, we characterise plasmon-mediated energy transfer
between ensembles of fluorescent emitters located in the near field of a silver film. We thus
determine the distance dependence of the energy transfer rate over micrometre distances.
We then couple a single quantum dot and a fluorescent nanobead to a silver nanowire and
we study evidences of the energy transfer between the two emitters, separated by several
micrometres. We notably demonstrate a correlated blinking of the two emitters through
the study of the correlation function of their fluorescence intensity.

In the second part, we probe sub-wavelength spatial variations of the local density of
electromagnetic states induced by nanostructured environments by means of different
super-resolution microscopy techniques. To start with, we perform a three-dimensional
study of the near-field interaction between a fluorescent nanobead and different silicon
nanoantennas using a scanning-probe microscope. We then introduce a stochastic tech-
nique to experimentally determine the position and the fluorescence decay rate of single
photo-activated molecules, with a localisation precision of the order of 10 nm. Finally, we
use the Fisher information to estimate lower bounds on the standard errors on position
and decay rate estimates performed in the context of single-molecule microscopy.

Keywords

Fluorescence lifetime, Near field, Spontaneous emission, Electromagnetic density of states,
Surface plasmon, Dielectric antenna, Super-resolution imaging, Single molecule, Cramér-
Rao bound
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General introduction

Nature provides us with a complexity which is a fantastic playground for scientists. Physics
aims at modelling this complexity, and experiments are performed in order to confirm or
infirm that nature does operate in the way predicted by theories. From this point of view,
the study of the interaction between light and matter is an important field of fundamental
research, with several potential applications. Indeed, light-matter interaction is responsible
of most of our perception of the world. A better understanding of this interaction is thus
likely to provide us with new observation tools to study living organisms for instance.
Furthermore, it will perhaps allow us to collect more efficiently the energy radiated by the
sun, which is an important source of renewable energy on earth.

In this thesis, we study specific aspects of light-matter interaction on the nanometre scale
and at visible frequencies. The wavelength of light is then comparable to the distances
in-between the objects, resulting in a specific interaction between them referred to as
near-field interaction. This interaction can be characterised by measuring the properties
of nanometre-scale fluorescent sources in different types of nanostructured environments.
We are specifically interested in the fluorescence decay rate noted Γ which is the average
number of emitted photons per unit time. The decay rate is not an intrinsic emission
property but it can be either enhanced or reduced, depending on the local environment
of the emitter. For instance, optical antennas can be designed to enhance the rate of
spontaneous emission, in order to obtain bright nanosources emitting photons at a high
rate. In biology, several applications including sensing and imaging techniques are based
on the determination of decay rate variations induced by the environment.

In the following paragraphs, we will present several experiments extracted from the litera-
ture in order to introduce different concepts exploited in this thesis. The first experiment
shows the influence of a silver mirror upon the decay rate of fluorescent emitters. The
second experiment details a technique used to precisely determine the position of fluo-
rescent emitters, well below the diffraction limit. For the sake of curiosity, we will also
present acoustic analogues of these experiments, illustrating that electromagnetic waves
and acoustic waves can be described by using a similar formalism.

Drexhage’s experiment Drexhage’s experiment is a milestone in the field of nanopho-
tonics. In 1970, he demonstrated that the excited-state lifetime of a fluorescent emitter
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depends on its local environment [1]. To do so, he studied the spontaneous emission of a
thin layer of europium ions (Eu3+) located above a silver mirror, as represented in Fig. 1
(inset). Using several layers of fatty acids as a spacer, he was able to precisely control
the distance d between the ions and the mirror. Thus, he could measure the distance
dependence of the lifetime enhancement due to the silver mirror, as shown in Fig. 1. The
observed oscillations are explained by the interferences between the field reflected by the
mirror and the non-reflected part, using an orientational average for the dipole moment
of the ions. At this time, the dissipation of energy within the materials was neglected,
explaining the disagreement between the theory and the experiment at small distance
from the mirror. However, this experiment remains the first experimental evidence of the
influence of the environment on spontaneous emission.

Figure 1 – Excited-state lifetime enhancement versus distance to the silver mirror. Image
reproduced from Ref. [1]. Inset: Sketch of the experiment.

Recently, an analogue of this experiment using sound waves was carried out by Langguth
et al. [2]. For this purpose, the authors used a Chinese gong located in front of a concrete
wall acting as a reflector, as represented in Fig. 2 (left). The gong was excited using a
wooden sphere rolling down a rail, and the response of the gong was measured using a
small magnet glued on the backside of the gong. By inducing a current in a pickup coil, the
vibrations of the gong could be monitored in the time domain. Then, the authors identified
the different vibration modes of the gong by performing a Fourier transform on the signal.
For the two lowest modes, they fitted Lorentzian functions to the observed peaks and
they recovered the resonance frequency f and the damping rate γ. By performing this
experiment for several distance d between the gong and the wall, they could study the
distance dependence of both the resonance frequency and the damping rate for the two
vibration modes, as shown in Fig. 2 (right). For both modes, the damping rate γ shows
several oscillations that are the direct analogue of the oscillations of the fluorescence decay
rate observed by Drexhage. As in the original experiment, these oscillations are explained
by the interferences between the field reflected by the mirror and the non-reflected part.
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In addition, the shift of the resonance frequency due to the presence of the reflector can
also be observed, as opposed to experiments in optics for which the expected frequency
shifts are extremely small as compared to the linewidth of the fluorescent emitters.

Figure 2 – Left: Sketch of the time-domain version of Drexhage’s experiment for an
acoustic source. Right: Damping rate and frequency shift versus distance to the wall for
the two lowest frequency modes. Images reproduced from Ref. [2].

From these two experiments, we can see that the spontaneous emission rate of fluorescent
emitters – and equivalently the linewidth of vibration modes of a Chinese gong – can
be tuned using a simple reflector. These effects can be described in terms of spatial
variations in the local density of states (LDOS) caused by the reflector. The influence
of the density of electromagnetic states upon spontaneous emission is a central theme in
this thesis, since we will primarily study spontaneous emission of fluorescent emitters in
various environments.

Photo-activated localisation microscopy Classically, the resolution of optical mi-
croscopy is assumed to be limited to approximately 300 nm due to the diffraction limit.
However, the resolution can be greatly improved if only one pointlike object emits in a
diffraction-limited region at a single time. One major step towards the achievement of high
resolution imaging at optical frequencies was achieved in 2006 by Betzig et al. with the de-
velopment of photo-activated localisation microscopy (PALM) [3]. The authors developed
a method to isolate single molecules at high density based on the serial photo-activation
and photobleaching of fluorescent molecules. To do so, photo-activatable fluorescent pro-
teins must be tagged on different cells of interest. A brief laser pulse randomly activates
a few molecules, and a continuous laser is then used to excite them until photobleach-
ing. During this time, an electron-multiplying charge-coupled device (EM-CCD) camera
records wide-field images of the sample forming an image stack from which more than
105 molecules can usually be localised, as shown in Fig. 3 (left). A few diffraction limited
spots can indeed be identified on many frames (frames A to D). However, the individual
emitters can be localised with a much higher precision (frames A’ to D’) by fitting the
expected PSF to each of these individual distributions. By repeating this procedure many
times, it is possible to reconstruct an image with a resolution down to 10 nm (frames E’
and F’). In comparison to the diffraction limited images (frames E and F), the achieved
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enhancement of the resolution is remarkable. Using this technique, the authors imaged
intra-cellular structures inside a COS-7 cell derived from an African green monkey kidney
tissue. Figure 3 (right) shows the reconstructed image. The achieved resolution allowed
the authors to discern the distribution of specific target proteins (CD63 antigens) inside
a lysosome – a specialised subunit within the cell acting as a waste disposal system. This
work contributed to the attribution of the Nobel Prize in Chemistry 2014 to Eric Bet-
zig, Stefan Hell and William Moerner for the development of super-resolved fluorescence
microscopy.

Figure 3 – Left: Scheme of principle of a PALM experiment. The vertical parallelepiped
represents the acquisition over time of a large number of frames. Right: Reconstructed
images of intra-cellular structures. The image on the top is the reconstructed wide-field
image. The image on the bottom is a magnified view extracted from the smaller box.
Images reproduced from Ref. [3].

Errico et al. recently proposed an adaptation of this method for the imaging of blood
flow using ultrasound frequencies [4]. Instead of using fluorescent molecules, the authors
used the scattering properties of 3-µm-diameter microbubbles at ultrasound frequencies.
These inert contrast agents were injected in a rat vein and were observed using an ultrafast
ultrasound scanner. Then, the signal scattered by each microbubble was analysed in order
to retrieve the position of the bubble during its travel in the brain vessels. By finding the
centroid of the signal measured from each bubble, the authors achieved a resolution of
the order of 10 µm, well below the diffraction limit for ultrasound waves which is around
1 mm. Moreover, the velocity of each microbubble was evaluated by tracking the position
of each bubble in time, as illustrated in Fig. 4 (left). Hence, the authors retrieved the
in-plane velocity of the blood flow with a large dynamic range (from 1 mm/s to 14 mm/s).
Figure 4 (right) shows a complete functional map of the cerebrovascular system in a living
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rat, obtained using this technique. On this map, we can clearly identify different vessels
with opposite blood flow directions and different velocities, depending on their diameter.
This technique is an interesting tool to investigate the various diseases that modify the
microvascular blood flow – such as arteriosclerosis – since the approach allows a precise
determination of both the position and the velocity of contrast agents in blood.

Figure 4 – Left: Sketch of the localisation and the tracking of single microbubbles. Right:
Reconstructed image of the blood flow velocity in the rat brain. Images reproduced from
Ref. [4].

From these two experiments, we can see that it is possible to retrieve the position of a
single emitter – either a fluorescent molecule or a microbubble – with a very high precision.
Then, successive measurements on different emitters can be used to reconstruct a super-
resolved image. The resolution is then determined by the precision of position estimations
for the individual emitters. This technique will specifically be used in Chapter 5 to study
the LDOS variations induced by a silver nanowire.

Presentation of the manuscript In this thesis, we start by investigating the mod-
ification of the energy transfer rate between fluorescent emitters induced by plasmonic
environments. Then, we take advantage of super-resolution techniques in order to probe
sub-wavelength spatial variations of the LDOS induced by dielectric and plasmonic envi-
ronments. The manuscript is organised in an introductory chapter and two main parts,
that we now briefly describe.

• Chapter 1 is an introductory chapter in which we describe light-matter interaction
using a classical approach. We focus on the modification of the emission rate of a
fluorescent emitter due to its environment. This effect is usually referred to as the
Purcell effect, from the work of Purcell in 1946 [5]. As an introduction to Part I, we
calculate the rate of energy transfer between two fluorescent emitters in the general
case of an inhomogeneous environment. We also introduce Part II by presenting
near-field and far-field approaches to super-resolution imaging.

In the first part of this thesis, we characterise the occurrence of micrometre-range energy
transfer between fluorescent emitters in plasmonic environments. We study the occurrence
of energy transfer in two configurations, by using either a silver film or a silver nanowire.

• In Chapter 2, we characterise plasmon-mediated energy transfer between fluorescent
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emitters located on the top of a thin silver film. We specifically study the occurrence
of energy transfer in both the nanometre-range and micrometre-range regimes. In
the latter case, we show that the distance dependence of the energy transfer rate is
determined by the surface-plasmon propagation length at the transition energy of
the emitters. We also calculate an approximate value of the efficiency of the energy
transfer process using the Green formalism.

• In Chapter 3, we present the results of an experiment showing two independent
evidences of micrometre-range energy transfer mediated by single plasmons. The
energy transfer occurs between a single quantum dot and a fluorescent nanobead
located in the near field of a silver nanowire. The first evidence of the energy transfer
is based on the measurement of the decay histograms of the two emitters, and the
second evidence is the demonstration of their correlated blinking. We also discuss the
experimental conditions required to demonstrate the occurrence of energy transfer
between two single emitters on the base of the measurement of the second-order
correlation function.

In the second part of this thesis, we introduce a scanning-probe technique and a stochastic
technique to probe the sub-wavelength spatial variations of the LDOS induced by nanos-
tructured environments. We also discuss the precision of such measurements.

• In Chapter 4, we present a three-dimensional study of the near-field interaction
between a fluorescent nanobead and silicon nanoantennas using a scanning-probe
technique with a fluorescent near-field probe. We notably characterise the spatial
variations of the LDOS due to the Mie resonances of the silicon antennas. We also
highlight the strong directionality of the emission as well as the enhancement of
the excitation intensity due to the antennas. These results are supported by finite-
difference time-domain (FDTD) simulations.

• In Chapter 5, we introduce an experimental technique inspired by photo-activated
localisation microscopy for the simultaneous determination of the fluorescence decay
rate of single molecules and their respective positions with a localisation precision
of the order of 10 nm. We detail the technique used for the measurements, which
requires a 50:50 beamsplitter to split the fluorescence intensity towards an EM-
CCD camera and a single photon avalanche diode (SPAD). Since no more than one
molecule is typically active at a single time on the area conjugated to the SPAD, we
show that the position of the molecules can be associated with their decay rate. As
a result, we present a super-resolved decay rate map reconstructed from more than
3,000 single molecules. We finally characterise the spatial variations of the LDOS
induced by the presence of a silver nanowire on the sample, in good agreement with
FDTD simulations.

• In Chapter 6, we evaluate lower bounds on the standard errors on the position and
decay rate estimates in the context of the experiment performed in Chapter 5. To
this end, we calculate the information matrices associated with EM-CCD and SPAD
measurements. We then calculate the corresponding Cramér-Rao lower bounds and
discuss the precision and accuracy of actual estimations using a numerical approach.
Finally, we introduce some guidelines to design an experimental setup dedicated to
single-molecule localisation and time-resolved single-photon detection.



CHAPTER 1

An introduction to fluorescence

In this first chapter, we present a description of the interaction between a quantum emitter
and the electromagnetic field in the weak-coupling regime. First of all, we develop an
expression of the decay rate of the emitter as well as the rate of energy transfer between two
emitters. These expressions will notably be used in Chapters 2 and 3 to describe plasmon-
mediated energy transfer between fluorescent emitters. Then, we investigate near-field
and far-field approaches to fluorescence microscopy. On the one hand, we introduce the
near-field approach that will be used in Chapter 4 to map the density of states around
silicon nanoantennas. On the other hand, we present the far-field approach that will be
used in Chapter 5 to localise single fluorescent molecules in the vicinity of silver nanowires.

1.1 Spontaneous emission in the dipole approximation

In this section, we present a model to describe the electromagnetic interaction between
a quantum emitter and its environment, in the electric dipole approximation and in the
weak-coupling regime.

1.1.1 Probability distribution of the excited-state lifetime

Let us conceptually isolate a system of interest from the surrounding environment. Spon-
taneous emission is one of the possible interaction processes between this system and its
environment: from an excited state, the system can emit a quantum of energy ∆E in the
form of a photon and decay to a lower energy state. Quantum mechanics associate an
angular frequency ω to such transitions so that ∆E = ~ω where ~ is the reduced Planck
constant.

This thesis primarily focuses on the emission rate noted Γ and defined as the average
number of emitted photons per unit time. It is straightforwardly related to the average
excited-state lifetime τ = 1/Γ. In general, a probability density function (PDF) can be
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estimated by repeating many times the same measurement on the same system. Based on
this principle, time-correlated single-photon counting (TCSPC) can be used to estimate
the PDF of the excited-state lifetime of an emitter. Figure 1.1a illustrates the principle
of the measurement: a pulsed laser excites the emitter at a high repetition rate and a
single-photon avalanche diode (SPAD) detects photons coming from the emitter. For each
detection event, an electronic board determines the time delay ∆t between the excitation
pulse and the emission of a photon. These delays are then histogrammed and used to
estimate the decay rate of the emitter.

As an illustration, we perform a measurement on a semiconductor quantum dot (QD)
placed on a glass substrate. Its emission is characterised by an wavelength in free space
λ0 of the order of 600 nm, which corresponds to an angular frequency ω of approximately
3 × 1015 rad/s. The resulting decay histogram (Fig. 1.1b, light red curve) follows an
exponential distribution that is a characteristic of photon emission by a two-level system
in the weak-coupling regime. In this regime, a photon emitted in the electromagnetic field
has a low probability of being absorbed back by the emitter. In contrast, in the strong-
coupling regime, the emitter strongly interacts with one mode of the electromagnetic field,
resulting in mode splitting and leading to the apparition of the so-called Rabi oscillations.
Such effects are outside the scope of this thesis, which specifically focuses on photon
emission in the weak-coupling regime.

Figure 1.1 – (a) Principle of time-correlated single-photon counting. (b) Normalised
decay histogram measured on a QD on a glass substrate (red curve) and in the near field
of a silver nanowire (dark red curve).

For comparison purposes, we also measure the decay histogram of a second QD located a
few nanometres away from a silver nanowire (Fig. 1.1b, dark red curve). This measurement
clearly demonstrates that the fluorescence decay rate of an emitter strongly depends on
its environment, since the decay rate of the second QD is much larger than the decay
rate of the first one. In order to give a quantitative description of this effect, and more
generally of the influence of the environment on the decay rate of an emitter in the weak-
coupling regime, we can assume the emitted radiation to be monochromatic. Note that, in
practice, the linewidth associated with a given transition is broadened by several effects.
Indeed, any emitter is subject to lifetime broadening since frequency and time are Fourier
transform duals. Furthermore, in solids at room temperature, broadening occurs due
to the interaction between the emitter and its environment through various dissipation
processes, such as phonon emission – the emission of a quantum of vibrational motion. As
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a first approximation, we can consider that the emitter radiates at a single frequency if
it does not interact with a strongly dispersive environment. In addition, we assume that
the emission frequency does not depend on the environment. In general, the energy levels
can be modified under external influence, such as a strong electric field (Stark effect) or
magnetic field (Zeeman effect). However, frequency shifts due to the emitter’s own field
are extremely small in optics. Thus, in the weak-coupling regime and in the absence of
strong external fields, the emission frequency can be considered as an intrinsic property
of the emitter. Finally, we assume that the electromagnetic field generated by the emitter
is weak, so that the response of the environment is linear.

1.1.2 The dipole approximation

The most complete description of spontaneous emission, and more generally of light-
matter interaction, is provided by the theory of quantum electrodynamics (QED), in
which both radiation and matter are quantised. In contrast, in the classical theory, light
is described as a wave and matter is treated with an effective theory. In most experiments,
a classical formalism can predict light-matter interaction with a good accuracy using
Maxwell’s equations, that are the same in both the classical and the quantum pictures.

In both the classical and the quantum pictures, light-matter interaction is usually described
by decomposing the electric scalar potential and the magnetic vector potential into a Taylor
series with origin at the centre of the charge distribution [6]. Let us consider the first terms
involved in this expansion, called the multipolar expansion:

• The electric monopole interaction term describes the motion of a charged system
submitted to an electric field. For such systems, a common approach is to find
the equilibrium position and then to solve the problem for higher-order interaction
terms. There is no magnetic monopole interaction term in the multipolar expansion.

• The electric and magnetic dipole interaction terms depend on the fields at the centre
of the charge distribution. These terms also depend on the intrinsic properties of
the emitting system. At optical frequencies, emitters preferentially interact with the
electric field because of selection rules that constrain the possible transitions of the
system. For this reason, the magnetic dipole interaction term is often not considered
in optics.

• The electric and magnetic quadrupole interaction terms depend on the gradient of
the fields at the centre of the distribution. We consider that the fields are sufficiently
homogeneous over the dimensions of the emitting system so that these terms do not
contribute. This argument also holds for higher order interaction terms.

Hence, the electric dipole interaction usually prevails for small emitters at optical frequen-
cies. This does not hold for a few specific emitters such as lanthanide ions that have a
forbidden transition under the electric dipole approximation. In such cases, electric and
magnetic dipole interaction terms have the same order of magnitude, and it is possible to
detect the interaction between these emitters and the magnetic field [7–9]. However, the
electric dipole approximation is generally sufficient to characterise light-matter interaction
at optical frequencies. Then, the intrinsic properties of an emitter can be described by its
dipole moment noted µ.
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1.2 Emission rate of an electric dipole

We now calculate the average value of the power dissipated in the electromagnetic field
by a classical oscillator and relate it to the decay rate of a two-level quantum system.

1.2.1 Power emitted by an oscillating dipole

For a classical oscillator in the linear regime, we can describe the emitting system by a
current density noted j(r, ω) and the environment by a relative permittivity noted ε(r, ω).
This situation is represented in Fig. 1.2. Using this model, we can study light-matter
interaction between an emitter and an arbitrary environment by solving Maxwell’s equa-
tions for the electric field E(r, ω). This amounts to solve the Helmholtz equation in the
frequency domain expressed by

∇×∇×E(r, ω)− ω2

c2 ε(r, ω) E(r, ω) = iωµ0 j(r, ω) . (1.1)

Importantly, the relative permittivity ε(r, ω) is a complex number, whose real part is
related to the energy scattered by the medium and whose imaginary part is related to the
energy gain or loss within the medium.

Figure 1.2 – Representation of an electric dipole in an arbitrary environment.

Assuming that the emitter can be modelled by a pointlike electric dipole, the associated
current density is expressed in terms of its dipole moment µ and the Dirac delta function
δ as follows:

j(r, ω) = −iωµ δ(r− r0) . (1.2)

By definition, the electric dyadic Green function G(r, r0, ω) is the impulse response of
Eq. (1.1) that verifies the outgoing-wave boundary condition as well as the interface con-
ditions for the electric field. The dyadic Green function is therefore related to the electric
field radiated by the dipole through

E(r, ω) = µ0ω
2G(r, r0, ω)µ . (1.3)

The power transferred from the dipole to the field can directly be found by considering the
Lorentz force acting on charges due to the electric field. The average value of the power
transferred from the dipole to the electromagnetic field at the frequency ω is then

P (ω) = ω

2 Im {µ∗ ·E(r0, ω)} . (1.4)
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In the weak-coupling regime, and assuming that the field generated by the dipole does
not modify the dipole moment µ, it follows that the power transferred from the dipole to
the field is related to the imaginary part of the electric dyadic Green function through the
relation

P (ω) = µ0ω
3

2 |µ|2 Im {u ·G(r0, r0, ω) u} , (1.5)

where u is the unit vector in the direction of the dipole moment. This expression shows
that the power transferred from the dipole to the field at a given frequency depends on
both the intrinsic properties of the emitter and its environment. While the dipole moment
µ describes the intrinsic properties of the emitter, the influence of the environment is
accounted for using the electric dyadic Green function G(r0, r0, ω). The dependence of
dipole emission upon the environment can be interpreted as follows: the electric field
radiated by the dipole can polarise the surrounding medium, that in turn radiates and
creates a field that can interfere with the original field. Due to this effect, the electric
field at the dipole position can be either enhanced or reduced, thus modifying the power
transferred from the dipole to the field. If the dipole is embedded in a homogeneous
medium of refractive index n =

√
ε, the power transferred from the dipole to the field

simplifies to

P0(ω) = nµ0ω
4|µ|2

12πc . (1.6)

1.2.2 Decay rate of a two-level system

While the oscillating dipole is the representation of an emitter in the classical picture, the
derivation of the lifetime PDF requires a QED treatment. Indeed, energy states are not
included in the classical picture. In the quantum picture, we may represent the emitter by
a two-level system. Let us study the overall system defined by the two-level system and
the electromagnetic field. In the weak-coupling regime, this system can be described by
an excited state |i〉 of energy Ei as well as a set of final states |f〉 of identical energy Ef .
Assuming that the transition probability from |i〉 to |f〉 is low, the lifetime PDF is a
decreasing exponential function and Fermi’s Golden rule can be used to calculate the
decay rate Γ. The decay rate reads in this limit [10]

Γ(ω) = 2µ0ω
2

~
|µ|2 Im {u ·G(r0, r0, ω) u} . (1.7)

This important formula shows that a specific environment can either enhance or reduce
the decay rate of a quantum emitter. In a homogeneous medium of refractive index n, it
simplifies to

Γ0(ω) = nµ0ω
3|µ|2

3π~c . (1.8)

We can establish a correspondence between the power P (ω) emitted by the classical oscil-
lator and the decay rate Γ(ω) of the two-level system. Indeed, the power emitted by the
oscillator at the frequency ω corresponds to the product of the decay rate of the two-level
system times the quantum of energy ~ω. To make the correspondence, the classical dipole
moment must also be replaced by twice the quantum dipole moment. This factor of two
can be taken as a correspondence rule for the classical calculation to give the same result
as the quantum one.
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As a consequence, the enhancement of the decay rate of the quantum emitter due to its
environment is exactly the same as the enhancement of the power dissipated by a classical
oscillator. In many cases, the reference situation is a homogeneous medium, and the
modification of the decay rate due to the environment is given by

Γ(ω)
Γ0(ω) = P (ω)

P0(ω) = 6πc
nω

Im {u ·G(r0, r0, ω) u} . (1.9)

We can go one step further and express the influence of the environment on the emission
process in terms of the local density of states (LDOS). The LDOS is defined as the density
of electromagnetic modes at the frequency ω and at the position r0. Because the physical
meaning of the LDOS is ambiguous for an open absorbing medium, we follow the work of
Carminati et al. [11] and use the subsequent expression as a definition of the LDOS:

ρu(r0, ω) = 2ω
πc2 Im {u ·G(r0, r0, ω) u} . (1.10)

This definition coincides with the usual definition of the LDOS if a discrete set of eigen-
modes can be defined. As we can see from Eqs. (1.9) and (1.10), the modification of the
decay rate of a quantum emitter due to its environment is proportional to the modification
of the LDOS at the position of the emitter.

1.2.3 Intrinsic quantum yield

In general, the electromagnetic interaction is not the only possible decay process for an
emitter. As an example, we already pointed out that an emitter can decay from an ex-
cited state to a lower energy state due to vibrational transitions by emitting a phonon.
Such processes increase the decay rate of the emitter without increasing the number of
emitted photons. Hence we consider these processes as losses and we characterise them by
a decay rate Γlosses that can depend on the environment, through the temperature of the
surrounding medium for instance. However, it is generally assumed that the environment
has a weaker influence on the decay rate Γlosses than on the electromagnetic decay rate Γ
given by Eq. (1.7). As a first approximation, it is usually considered that Γlosses is an in-
trinsic property of the emitter that can be experimentally determined using measurements
performed in a homogeneous, non-absorbing reference environment. For this reason, the
intrinsic losses are commonly characterised by the intrinsic quantum yield of the emitter
defined by

ηi = Γ0
Γ0 + Γlosses

, (1.11)

where Γ0 is the decay rate of the emitter due to spontaneous emission in the homogeneous
environment of reference. Note that Γ0 can be calculated by using Eq. (1.8).

We now consider that this emitter is located in a non-homogeneous, dispersive environ-
ment. The total decay rate Γtot of the emitter is then given by Γtot = Γ + Γlosses where Γ
is the decay rate due to the electromagnetic interaction and Γlosses is the decay rate due to
other interaction processes1. This can equivalently be expressed in terms of the intrinsic
quantum yield, which reads

Γtot = Γ + 1− ηi
ηi

Γ0 . (1.12)

1The radiative and non-radiative part of the electromagnetic decay rate Γ are often distinguished [12,13].
This reads Γ = ΓR +ΓNR, where ΓR and ΓNR are respectively the radiative and non-radiative decay rates.
Using these notations, the total decay rate reads Γtot = ΓR + ΓNR + Γlosses.
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As a consequence of lossy transitions, the influence of the environment on the decay rate
of an emitter is more difficult to observe if the emitter has a low intrinsic quantum yield.
Indeed, the modification of the total decay rate due to a given environment is

Γtot
Γtot0

= 1 + ηi

( Γ
Γ0
− 1

)
, (1.13)

where Γtot0 = Γ0 + Γlosses. If the intrinsic quantum yield is of unity, the modification of
the total decay rate due to the environment is directly given by Eq. (1.9). In contrast, the
modification of the total decay rate is less pronounced if the quantum yield is low because
the total transition rate is also driven by the competing decay processes.

1.3 Energy transfer between two emitters

We previously studied the spontaneous emission of an emitter in an arbitrary environment.
Now, we consider the specific situation in which a second emitter is likely to be excited
by the first emitter. We refer to the first emitter as the donor and to the second emitter
as the acceptor.

1.3.1 Energy transfer rate

In order to calculate the rate of energy transfer from a donor to an acceptor, we describe
both emitters by their dipole moments noted µD for the donor and µA for the acceptor, as
represented in Fig. 1.3. Assuming that the acceptor dipole moment µA is entirely induced
by the donor field, it can be expressed by

µA = αA ED(rA, ω) , (1.14)

where αA = αA uA ⊗ uA is the polarisability tensor of the acceptor and uA is the unit
vector defining the orientation of the acceptor dipole moment. In the linear regime, the
polarisability of the acceptor αA does not depend on the excitation field. Note that this
does not hold in the saturation regime: for high excitation fields, the rate of absorption
by a two-level system is indeed limited by the rate of spontaneous emission.

Figure 1.3 – Representation of a donor and an acceptor in an arbitrary environment.

The average value of the power transferred from the acceptor to the electromagnetic field
at the frequency ω is expressed by

PA(ω) = ω

2 Im {µ∗A ·E(rA, ω)} . (1.15)
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In this formula, the electric field evaluated at the position rA can be written as the sum
of the field ED(rA, ω) generated by the donor and the field EA(rA, ω) generated by the
acceptor. At room temperature, these two fields can be considered as incoherent if the
field generated by the acceptor is due to absorption-emission processes. Indeed, the pure
dephasing rate due to the interaction between each emitter and phonons is usually much
faster than both the decay rate and the transfer rate. In contrast, the field generated by
the acceptor due to elastic scattering is coherent with the donor’s field. For this reason, we
consider that scattering by the acceptor is negligible or that it is separately accounted for in
the model. In addition, we assume that the Stokes shift due to the vibrational dissipation
in the acceptor is small, so that we can use the same frequency ω to describe both the
donor and the acceptor emission. Under these assumptions, it is possible to separately
calculate the power PD→A(ω) emitted by the donor and absorbed by the acceptor and
the self-induced power PA→A(ω). From Eqs. (1.14) and (1.15), it follows that the power
transferred from the donor to the acceptor is

PD→A(ω) = ω

2 Im{αA}|uA ·ED(rA, ω)|2 . (1.16)

This can be rewritten by using the dyadic Green function to express the donor field. We
obtain

PD→A(ω) = µ2
0ω

5

2 Im{αA}|µD|2|uA ·G(rA, rD, ω) uD|2 . (1.17)

Thus, the power transferred from the donor to the acceptor can be calculated from the
dyadic Green function by using a classical formalism. From perturbation theory applied to
two quantum emitters, Dung, Knöll and Welsch showed that a similar expression can be
derived for the rate of energy transfer between two quantum emitters [14]. Once again, a
correspondence can be established between the classical and the quantum pictures. More
precisely, the energy transfer rate between two quantum emitters is related to the power
transferred between two classical oscillators by the following expression:

ΓD→A(ω)
Γ0(ω) = PD→A(ω)

P0(ω) = 6πcωµ0
n

Im{αA}|uA ·G(rA, rD, ω) uD|2 , (1.18)

where Γ0(ω) and P0(ω) are the decay rate and the power dissipated by the donor in a
reference homogeneous medium. As we can see from this formula, the energy transfer rate
depends on the absolute square of the dyadic Green function.

The occurrence of energy transfer between a donor and an acceptor is commonly charac-
terised by the energy transfer efficiency noted ηet. It is defined as the ratio of the energy
transfer rate ΓD→A to the total decay rate of the donor ΓtotD . Thus, it characterises the
probability for the donor of exciting the acceptor among all the possible decay processes.
Note that the total decay rate of the donor is given by ΓtotD = ΓD + ΓD→A + Γlosses where
ΓD is the decay rate of the donor without the acceptor and Γlosses is the decay rate due
to intrinsic losses. Thus, the energy transfer efficiency depends on the intrinsic quantum
yield of the donor while the energy transfer rate does not depend on the intrinsic quantum
yields of the emitters.

1.3.2 Expression of the polarisability

We previously introduced the polarisability to describe the dynamical response of the
acceptor to the electric field. Most of the time, this quantity is expressed in terms of
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scattering and absorption cross-sections. These quantities are defined so that the total
radiant fluxes scattered and absorbed by the system are given by the product between the
respective cross-sections and the irradiance of a plane wave incident on the system. Thus,
the scattering and absorption cross-sections both have the dimension of an area. We can
write the polarisability in terms of the absorption cross-section only as we do not consider
the scattering of the donor field by the acceptor.

To relate polarisability and absorption cross-section, we can at first calculate the intensity
I0(ω) of a plane wave from the flux of the Poynting vector. We obtain

I0(ω) = 1
2

√
ε0
µ0
n|Eexc(r0, ω)|2 , (1.19)

where Eexc(r0, ω) is the value of the field at the position r0 and n is the refractive index of
the medium. Then, we calculate the power absorbed by the acceptor and average it over
the three orthogonal orientations of the dipole moment. We obtain

Pabs = ω

2 Im{α}
〈
|u ·Eexc(rA, ω)|2

〉
. (1.20)

This expression can be simplified by integrating the unit vector u over the solid angle
defining the three-dimensional space, leading to

Pabs = ω

6 Im{α}|Eexc(rA, ω)|2 . (1.21)

The absorption cross-section σ is defined so that σI0(ω) equals the average power absorbed
by the emitter. Using this definition, the absorption cross-section of the acceptor σA reads

σA = ω

3n

√
µ0
ε0

Im{αA} . (1.22)

This formula relates the polarisability of the acceptor to its absorption cross-section. It
can be used to calculate the energy transfer rate given by Eq. (1.18). We finally obtain

ΓD→A(ω)
Γ0(ω) = PD→A(ω)

P0(ω) = 18πσA |uA ·G(rA, rD, ω) uD|2 . (1.23)

1.3.3 Förster resonance energy transfer

From Eq. (1.23), we can derive a simple expression for the energy transfer rate in homo-
geneous medium of refractive index n and in the limit of small distance d between donor
and acceptor. In this limit, energy transfer occurs through dipole-dipole interaction and
is referred to as Förster resonance energy transfer (FRET). The absolute square of the
homogeneous Green function is then given by [15]

|uA ·G(rA, rD, ω)uD|2 ≈
c4

16π2n4ω4d6 [uA · uD − 3(u · uD)(u · uA)]2 , (1.24)

where u is the unit vector pointing from the donor to the acceptor. In the literature,
the factor in square brackets is noted κ and is used to characterise the dependence of the
energy transfer on the orientation of the two dipole moments. More precisely, κ2 takes
values between 0 and 4 and the orientational average 〈κ2〉 = 2/3 is used for ensemble
measurements.
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The energy transfer rate calculated under Förster’s approximation is usually normalised by
the decay rate of the emitter in the same medium of refractive index n. From Eqs. (1.23)
and (1.24), it follows that

ΓD→A(ω)
Γ0(ω) = 9c4κ2σA

8πn4ω4d6 . (1.25)

In general, the donor is characterised by a broadband emission spectrum. Hence it can
be useful to express the energy transfer rate averaged over the donor emission spectrum.
Since n and σA both depend on the emission frequency, the averaged energy transfer rate
is expressed by

ˆ ∞
0

ΓD→A(ω)
Γ0(ω) fD(ω) dω = 9c4κ2

8πd6

ˆ ∞
0

fD(ω)σA(ω)
n4(ω)ω4 dω , (1.26)

where fD(ω) is the normalised emission spectrum of the donor. Equation (1.26) is the
common expression of the FRET rate. The transfer rate is inversely proportional to
the sixth power of the distance d between the donor and the acceptor, that makes the
process very sensitive to small changes in this distance. The energy transfer rate typically
becomes negligible when d exceeds 10 nm. In Chapters 2 and 3, we will show that shaping
the environment allows the observation of energy transfer between fluorescent emitters on
distances that are much larger than what would be allowed by dipole-dipole interaction.

1.4 Fluorescence microscopy

We previously studied the time dependence of the excited state and we showed that the
decay rate of an emitter depends on its environment. In this section, we investigate the
precision with which an emitter can be localised in space with a far-field microscope, and
we introduce a near-field microscope that can be use to achieve a deterministic control
over the position of a fluorescent emitter.

1.4.1 Angular spectrum representation of electromagnetic waves

In order to determine the position of an emitter with respect to its environment, one can
excite the emitter and collect the emitted photons using an optical microscope. The posi-
tion of the emitter is then estimated from this knowledge, and the standard deviation of
the distribution followed by the position estimate characterises the precision of the local-
isation procedure. To determine the achievable localisation precision, we must study the
spatial dependence of the electric field generated by the emitter. In general, the electric
field can be expressed using a spatial Fourier transform along one or several coordinates, a
method referred to as the angular spectrum representation. Performing a Fourier transfor-
mation on the variable R = (x, y), the electric field in the frequency domain is expressed
by

E(r) =
+∞¨

−∞

Ẽ(K, z) exp (iK ·R) d2 K
4π2 , (1.27)

where r = (x, y, z) is the point of observation, K = (kx, ky) is the transverse component
of the wavevector and Ẽ(K, z) is the conjugate of the electric field in Fourier space. The
angular spectrum representation is particularly useful to model propagation of the electric
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field in homogeneous media. It can also be used to calculate the dyadic Green function in
some specific geometries such as an interface between two semi-infinite media, as shown in
Appendix A. Moreover, this representation reveals the spatial frequencies associated with
the electric field in a given plane, which strongly influence the localisation precision.

In general, the electric field in the sample plane (z = 0) can be generated by several
emitters in the presence of an arbitrary environment. If we consider that the electric
field is known for z = 0, we can calculate it after propagation in a homogeneous medium
by using the angular spectrum representation. The Fourier coefficients noted Ẽ(K, z) in
Eq. (1.27) can be determined by solving the free-space Helmholtz equation. Assuming
that the direction of propagation is in the upper half space (z > 0), this leads to

Ẽ(K, z) = Ẽ(K, z = 0) exp(ikzz) , (1.28)

where kz is the component of the wavevector in the z-direction. It follows that the electric
field at the observation point is

E(r) =
+∞¨

−∞

Ẽ(K, z = 0) exp (i[K ·R + kzz])
d2 K
4π2 . (1.29)

The field propagator is given by exp(ikzz) in this expression, which clearly highlights the
conditions required for field propagation. If k2

x + k2
y < k2 then kz is a real number and

the field can propagate along the z-direction. In contrast, if k2
x + k2

y > k2 then kz is an
imaginary number and the field exponentially decays along the z-direction.

The field in the sample plane is generally a sum of propagative and evanescent contribu-
tions. The highest frequency components are due to the presence of inhomogeneities in
the sample plane, reducing the length scales the electromagnetic field varies on. However,
if the intensity is measured far from this plane, the highest spatial frequency components
are filtered by the propagation process and the localisation precision depends on the wave-
length of the photons in free space2. The region in space where the contribution of the
evanescent part of the electric field is negligible is called the far field. In contrast, the near
field is the region that is sufficiently close to the system of interest so that the contribution
of the evanescent part of the electric field remains appreciable.

1.4.2 Far-field microscopy

We can now consider how one localises a pointlike emitter from the far field using an optical
microscope. In the simplified scheme represented in Fig. 1.4, a microscope is described by
an objective and a tube lens. The emitter is located in the focal plane of the objective
and the image is formed in the focal plane of the tube lens. The PDF that describes
the intensity distribution generated by the dipole in the image plane is called the point
spread function (PSF), and the variance of the PSF strongly influences the achievable
localisation precision. As a matter of simplicity, we consider that the emitter is embedded
in a homogeneous medium of refractive index n and that the image plane is in a medium
of refractive index n′.

2In practice, the collection process by the microscope objective acts as an additional low-pass filter
reducing even more the spectrum of spatial frequencies.



18 Chapter 1. An introduction to fluorescence

The exact calculation of the electric field generated in the image plane by a dipole was
performed by Sheppard and Wilson for microscopes of large numerical aperture [16]. First
of all, the electric field before the first interface – labelled (a) in Fig. 1.4 – can be calculated
using the homogeneous Green function in the far-field approximation. Then, the field
after the first lens (b) is derived by using Fresnel coefficients at the interface. The field
propagates as a plane wave in between the lens – from (b) to (c) – and the field after
the second lens (d) is found again using Fresnel coefficients. Finally the angular spectrum
representation of a focused beam can be used to find the field in the image plane.

Figure 1.4 – Simplified representation of a far-field microscope. The black lines repre-
senting light rays are shown for illustration purposes, as they are only an approximate
representation of the calculations performed in Ref. [16].

A simpler expression of the electric field in the focal plane can be obtained using the
paraxial approximation. This approximation is justified on the image side as the nu-
merical aperture of the tube lens is low. Furthermore, it turns out that the paraxial
approximation can also be used on the object side. Indeed, the difference between the
exact calculation and the paraxial approximate is small even for objectives with a high
numerical aperture [17]. In order to express the electric field using the paraxial approxima-
tion, we introduce the magnification of the optical system M and the numerical aperture
of the objective NA. We also define r′ =

√
x′2 + y′2 and we express the PSF in polar

coordinates due to the rotational symmetry of the problem. The intensity distribution in
the image plane generated by a dipole oriented along the object plane (µ = µxux) is then

|Ex(r′)|2 = π3µ2
xNA4

ε20nn
′λ6

0M
2

{ 1
πr′2

J2
1

(2πNAr′
Mλ0

)}
, (1.30)

where J1 is the first-order Bessel functions of the first kind. Similarly, the intensity distri-
bution in the image plane due to a dipole oriented along the normal to the object plane
(µ = µzuz) is

|Ez(r′)|2 = π3µ2
zNA6

2ε20n3n′λ6
0M

2

{ 2
πr′2

J2
2

(2πNAr′
Mλ0

)}
, (1.31)

where J2 is the second-order Bessel functions of the first kind. Equations (1.30) and (1.31)
can both be found in Ref. [17]. For each expression, the term in curly brackets is the 2-
dimensional PDF that describes the intensity distribution in the image plane. Since this
term is normalised so that the area under the density function equals unity, the prefactor
of each expression gives the power emitted towards the image plane. The term in curly
brackets in Eq. (1.30) can be identified with the diffraction pattern resulting from the
illumination of a circular aperture by a plane wave, referred to as the Airy pattern.

As an illustration, we consider a dipole characterised by a free-space emission wavelength
of 670 nm and we assume collection to be performed by an oil objective characterised by
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a ×100 magnification and a 1.4 numerical aperture, as in typical single-molecule experi-
ments. Figure 1.5a shows the intensity in the image plane obtained for a dipole moment
oriented along the x-axis. For comparison purposes, the intensity obtained for a dipole
moment of same amplitude but oriented along the z-axis is shown in Fig. 1.5b.

Figure 1.5 – Intensity distributions in the image plane respectively generated by (a) a
dipole oriented in the object plane and (b) a dipole oriented along the normal to the object
plane. Each dipole is embedded in a homogeneous medium of index n=1.5.

The total power detected in the image plane is lower when the dipole is oriented along the
z-axis. More precisely, the ratio of the number of photons detected in the two different cases
can be calculated from the prefactors of Eqs. (1.30) and (1.31) which gives NA2/2n2 ≈ 0.44.
It means that a lower fraction of the total emission is collected by the objective if the dipole
moment is oriented along the z-axis. Furthermore, the variance of the associated PSF is
larger than the variance of the Airy function. It is thus much harder to detect an emitter
with a dipole moment oriented along the z-axis, as a consequence of both the lower fraction
of collected photons and the larger variance of the PSF.

In many experiments, it makes sense to consider the intensity distribution averaged over
the different orientations of the dipole moment. For instance, this can be used for the
study of several emitters with similar properties and located at the same place, or to
analyse the fluorescence of single emitters that exhibit fast wobbling behaviour around a
fixed position. From Eqs. (1.30) and (1.31), we can calculate the average of the intensity
distribution over the three orthogonal orientations of the dipole moment, which reads

|Eavg(r′)|2 = π3|µ|2NA4

ε20nn
′λ6

0M
2

{
2

3πr′2

[
J2

1

(2πNAr′
Mλ0

)
+ NA2

2n2 J
2
2

(2πNAr′
Mλ0

)]}
. (1.32)

In this expression, the term in curly brackets is the PDF that describes the intensity
distribution in the image plane. As before, the prefactor gives the power emitted towards
the image plane. As shown in Fig. 1.6, the intensity profile averaged over the three
orientations of the dipole moment is very similar to the Airy function, although with a
slightly larger spread. This is a consequence of the lower number of photons collected by
the objective from dipoles oriented along the z-direction.

These results have important consequences for the localisation of a single emitter. If only
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Figure 1.6 – Comparison between the intensity profile calculated for a dipole moment
oriented in the object plane (blue curve) and the intensity profile averaged over the three
orientations of the dipole moment (red curve).

one emitter is located in the object plane, its position can be determined by estimating
the centroid of the measured PSF. The localisation is usually performed by fitting a two-
dimensional Gaussian function or an Airy function to the measured PSF. While a Gaussian
function is often a good approximate, the Airy function is the true PSF for an emitter with
a dipole moment oriented in the object plane. The typical localisation precision for single
molecules using far-field detection is usually characterised using the standard deviation of
the PDF followed by the position estimates. A lower bound for the localisation precision
can be calculated using the Fisher information, as introduced in the context of single-
molecule microscopy by Ober, Ram and Ward [18]. It is of the order of 10 nm for typical
acquisition conditions, as we will see in Chapter 6.

If several emitters are located in the object plane, the minimal distance in-between two
specific emitters required to resolve them is the so-called resolution limit. By extension,
the resolution of an image refers to the highest spatial frequencies characterising the image.
The resolution limit of a far-field microscope is classically defined by the distance between
the principal maximum and the first zero of the Airy function; this is referred to as the
Rayleigh criterion. From Eq. (1.30), it follows that this distance noted rres is expressed
by

rres ≈ 1.22 λ0
2NA . (1.33)

In the context of single-molecule microscopy, the Rayleigh criterion cannot be used to
define the resolution of an image since position estimates follow a Gaussian distribution.
In this case, the resolution can be defined by the full width at half maximum (FWHM) of
the distribution, which is approximately equal to 2.4 times the standard deviation of the
Gaussian function.

1.4.3 Near-field microscopy

We previously assumed that the highest spatial frequencies of the electric field were lost due
to the propagation process. However, sub-wavelength inhomogeneities in the environment
can transfer some near-field information to the far field. This information can notably be
useful to estimate the position of a given emitter. To do so, the inhomogeneities must
scatter – or at least interact with – the electric field generated by one or several emitters.
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By collecting the scattered light, it is possible to retrieve a near-field information. This idea
was proposed by Synge [19] and has led to the development of various types of scanning
optical near-field microscopes (SNOMs).

In many SNOMs, the tip of an atomic force microscope (AFM) is mechanically coupled
to a small tuning fork, forming a oscillating system. Its oscillation frequency changes
due to tip-sample interaction when the apex of the tip is close to a surface, typically
for tip-sample distances of the order of 20 nm. By measuring this frequency shift, it is
possible to implement a feedback loop to keep a constant distance between the apex of
the tip and the sample. In the presence of an electric field, the tip can be polarised and
act as an induced dipole whose emission directly depends on the local field. In particular,
the number of photons scattered by the tip depends on this field. Using a piezoelectric
positioning system, it is possible to scan the tip over the sample with a resolution down
to 1 nm. Consequently, SNOMs can be used to locally probe the electric field and resolve
its high spatial frequency components.

A slightly different approach has been developed during the last few years at Institut
Langevin [20, 21]. As represented in Fig. 1.7, a fluorescent emitter is grafted at the apex
of an AFM tip, so that the position of the emitter can be controlled with a nanometre
precision by using the piezoelectric positioning system of the AFM. Using this setup,
Krachmalnicoff et al. notably presented a simultaneous characterisation of the topography
of a plasmonic antenna along with the intensity and the decay rate of a fluorescent bead
in the near field of this antenna [22].

Figure 1.7 – SNOM with an active probe. A pulsed laser excites the emitter and fluores-
cence photons are measured using a TCSPC system. The sample is moved along the three
dimensions to perform the acquisition of topography, intensity and decay rate maps.

This SNOM is a useful tool to characterise the interaction between an emitter and its
environment with a very good resolution – the resolution is mainly limited by the size
of the emitter and by the distance in-between the emitter and the surface of the sample.
Currently, the resolution of this SNOM is typically of the order of 50 nm due to experi-
mental constraints. In Chapter 4, we will detail the working principle of this microscope
and we will present a characterisation of the interaction between a fluorescent bead and
silicon antennas performed using this SNOM.
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1.5 Conclusion

In this chapter, we introduced a few concepts that will be useful for the understanding
of this thesis. More precisely, we described fluorescent emission and detailed the electric
dipole approximation, which is generally justified for small emitters at optical frequencies.
Under this approximation, we calculated the power dissipated by a classical oscillator and
showed that it can be related to the decay rate of a quantum emitter. We also defined the
LDOS to quantify the effect of the environment on the emission rate, and we introduced
the intrinsic quantum yield to account for non-radiative transitions.

We used a similar formalism to calculate the rate of incoherent energy transfer between two
emitters, from a donor to an acceptor. We established a correspondence between the power
transferred between two oscillators and the energy transfer rate between two quantum
emitters. Then, we introduced the absorption cross-section to describe the response of the
acceptor to an electric field and we calculated the energy transfer rate in a homogeneous
medium and in the dipole-dipole approximation. This sets the basis for the study of
micrometre-range plasmon-mediated energy transfer, presented in Chapters 2 and 3.

We also discussed near-field and far-field approaches to fluorescence microscopy. A precise
control of the position of the emitter can be achieved by grafting the emitter on an AFM
tip, even though it remains a technical challenge. From the far field, the position of a
given emitter can be estimated from the measured PSF with a good precision, assuming
that only one pointlike object emits in a diffraction-limited region. Both approaches can
be used to map LDOS variations induced by nanostructures, as we will see in Chapters 4
and 5.

Throughout the following chapters, we will study spontaneous emission of fluorescent
emitters in various environments. We will take advantage of nanostructures that are
resonant with the electromagnetic field to modify the emission properties – and specifically
the emission rate – of fluorescent emitters. This work fits into the field of nanophotonics,
which ultimately aims to control the electromagnetic field on the nanometre scale.
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CHAPTER 2

Plasmon-mediated energy transfer above a silver film

In this chapter, we present a characterisation of plasmon-mediated energy transfer in the
micrometre-range regime. First of all, we introduce the principle of the experiment and the
context of this work. Then, we present the properties of surface plasmons, which are used
to propagate energy from a donor to an acceptor. After the description of the experimental
setup, we present experimental evidences of the occurrence of energy transfer, both in
the nanometre-range (called short-range) and in the micrometre-range (called long-range)
regimes. In the latter case, we specifically demonstrate that the distance dependence of
the energy transfer rate is determined by the surface-plasmon propagation length at the
transition energy of the emitters. Finally, we estimate an effective distance between the
emitters and the silver mirror and we calculate an approximate value of the efficiency of
the energy transfer process by using the Green formalism.

2.1 Introduction

One of the first observations of fluorescence energy transfer was reported in 1923 [23]. In
this pioneering experiment, Cario and Frank studied a mixture of mercury and thallium
vapour. By exciting the mixture at a frequency corresponding to a transition energy of
the mercury atom, they observed the emission spectra of both atoms and were able to
conclude that thallium was indirectly excited via mercury atoms. This effect was likely
to be due to a non-radiative transfer of energy from the excited mercury atoms to the
thallium atoms, which can be excited at the mercury emission frequency. However, this
effect was not clearly identified at this time.

Thirty years later, Förster derived an analytical expression for the energy transfer rate due
to dipole-dipole interaction. In 1959, he notably gave a comprehensive review of his work
in the Faraday Discussions that were then dedicated to energy transfer [24]. Since then, the
name Förster resonance energy transfer (FRET) is used to describe this phenomenon. In
the expression developed by Förster, the rate of energy transfer is inversely proportional to
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the sixth power of the distance d between donor and acceptor, as expressed by Eq. (1.26).
This applies to energy transfer in homogeneous medium and in the short-range limit.

FRET is now widely employed as a nanoscopic rule. Indeed, since the rate of the process
scales as d−6, it is significant over a very short range of distances, of the order of 10 nm for
typical fluorescent emitters. Thus, by attaching FRET probes to specific sites in molecules,
one can obtain useful information on scales that are unreachable with conventional optics.
As an example, Suzuki et al. used FRET probes to study the molecular mechanism of
muscle contraction [25]. More precisely, they monitored the change of conformation of a
motor protein called myosin using a FRET pair, allowing them to determine the working
stroke of the protein.

In the recent years, several studies were dedicated to the control of FRET by nanos-
tructures. In 2000, Andrew and Barnes studied the occurrence of FRET in an optical
microcavity constituted by two silver mirrors [26]. In this work, they experimentally
demonstrated that the energy transfer rate is influenced by the local density of states
(LDOS). Since then, different configurations were tested in order to modify the features
of the energy transfer. Among them, Reil et al. tuned the resonance of a close-by metallic
nanoparticle across the transition energy of the molecules to enhance the energy transfer
rate [27]. Blum et al. studied the influence of the LDOS on a FRET pair by controlling
the distance between the FRET pair and a silver mirror [28]. Recently, Ghenuche et al.
obtained a 5-fold enhancement of the energy transfer rate by using a resonant aluminium
nanogap antenna providing a strong field confinement [29]. On the theoretical side, Wubs
and Vos highlighted that the position-dependent FRET rate and the LDOS at the donor
transition frequency are completely uncorrelated for any nondispersive medium [30], pro-
viding some insight in the debate about nanophotonic control of the energy transfer via
the LDOS.

In general, FRET remains an inefficient process for donor-to-acceptor distances larger
than 10 nm due to the short range of dipole-dipole interaction. Increasing the efficiency
of the energy transfer process in the micrometer range is a current experimental challenge
in nanophotonics, as it would allow a great control over the interaction between the two
emitter through their respective environments. It could also lead to the development
of interesting applications, such as a more efficient harvesting of solar energy. Indeed,
it is possible to increase the effective absorption cross-section of acceptor molecules by
associating them with a cluster of donor molecules that absorb light and efficiently transfer
the excitation energy to the acceptor molecules [31,32].

Towards the achievement of efficient long-range energy transfer, Andrew and Barnes sug-
gested an original approach for the control of energy transfer by plasmonic structures [33].
In 2004, they experimentally demonstrated a 120-nm-range energy transfer occurring from
donor molecules to acceptor molecules on opposite sides of a silver film supporting coupled
surface plasmons. It was the first evidence that one can tune the environment to observe
energy transfer between fluorescent emitters on distances that are much larger than what
would be allowed by dipole-dipole interaction. Three years later, Kuzyk et al. used the
propagation properties of surface plasmons to mediate energy transfer between fluorescent
emitters [34]. More precisely, they used a silver waveguide and a lithographic fabrication
method to position fluorescent emitters in the near field of the metal surface. This allowed
them to demonstrate the occurrence of energy transfer over distances of several microme-
ters. Using a different approach, Götzinger et al. used whispering gallery modes supported
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by a silica microsphere resonator to achieve energy transfer between two fluorescent beads
over a distance of several tens of micrometers [35].

On the theoretical side, several studies highlighted the potential of plasmonic structures
for the coupling between fluorescent emitters. Among them, Martín-Cano et al. predicted
a large enhancement of the energy transfer rate between two emitters using plasmonic
waveguides [36]. Interestingly, they also predicted that collective emission phenomena such
as superradiance and subradiance can arise from the coupling between the two emitters.
This was also foreseen by Barthes et al. [37]. Recently, de Roque, van Hulst and Sapienza
proposed a hybrid nanoantenna-waveguide system to mediate the energy transfer and
numerically showed an enhancement of the transfer rate of up to 8 orders of magnitude [38].

Principle of the experiment To observe energy transfer over distances larger than
what would be allowed by dipole-dipole interaction, a solution is indeed to guide the
energy emitted from a donor towards an acceptor by using plasmonic structures. The
work presented in this chapter intents to identify the parameters driving the range of
plasmon-mediated energy transfer from an experimental point of view. To do so, we use
thin silver films on top of which a large number of fluorescent emitters is dispersed. More
precisely, we disperse fluorescent beads as donors and a layer of dye molecules as acceptors.
Figure 2.1 illustrates the principle of the experiment. First of all, we excite a donor bead
using a laser. The donor bead excites surface plasmons propagating on top of the silver
film, that excite in turn acceptors molecules located several micrometres apart. With a
high numerical aperture objective, we collect the fluorescence photons emitted by these
acceptors as a signature of the occurrence of energy transfer. Using this scheme, we can
experimentally determine the distance dependence of the energy transfer and compare it
to theoretical results. This work is published in Physical Review Letters [39].

Figure 2.1 – Principle of the experiment: fluorescent dyes (donors) embedded in a
nanobead are excited by a laser and decay by exciting surface plasmons propagating on
top of a thin silver film. A continuous layer of dye molecules (acceptors) dispersed on
the sample can absorb the energy carried by surface plasmons and emit fluorescence pho-
tons. We spectrally characterise these photons to study the occurrence of plasmon-mediated
energy transfer between the donors and the acceptors.

2.2 Properties of surface plasmons

In this section, we describe the properties of surface plasmons, acting as an intermediate
between donors and acceptors in the energy transfer experiment.
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2.2.1 Dispersion relations

Noble metals such as gold or silver are good candidates to interact with light because they
exhibit a resonant behaviour at optical frequencies. These resonances, named plasmon
resonances, are due to the collective oscillations of free electrons at the interface of a
metal and a dielectric medium when an external electric field is applied. Interestingly,
these oscillations can propagate along the interface; they are then called surface plasmons.

To derive the propagation properties of surface plasmons, we describe the response of
the metal to an applied electric field through a complex relative permittivity ε(ω). The
Lorentz–Drude model is a phenomenological description of this response that takes into
account both the free-electron and the interband parts of the dielectric response of a
metal. The classical Drude model describes the free-electron response of the metal from
the plasma frequency ωp, the associated damping constant γ0 and the oscillator strength
f0. The n interband contributions are described by Lorentzian functions respectively
characterised by their resonant frequency ωj , their damping constant γj and their oscillator
strength fj . Using this model introduced by Ehrenreich and Philipp [40], the relative
permittivity of a metal is expressed by1

ε(ω) = 1−
f0ω

2
p

ω2 + iγ0ω
+

n∑
j=1

fjw
2
p

(ω2
j − ω2)− iωγj

. (2.1)

The parameters involved in this expression depend on the properties of the material and
can be found in the literature [41]. From this model, we can derive the dispersion rela-
tion for surface plasmons propagating at the interface between a metal and a dielectric
medium, defined by their respective relative permittivities εm and εd. This configuration
is represented in Fig. 2.2.

Figure 2.2 – Representation of a surface plasmon propagating at an interface between
two semi-infinite media.

Considering that the interface is located in the xy-plane, the interface condition satisfied
by the electromagnetic field requires that a wave for which the electric field is in the
plane of incidence – referred to as a a p-polarised wave – is characterised by the following
dispersion relations [42]:

k2
x = ω2

c2

(
εdεm
εd + εm

)
, (2.2a)

k2
z,m = ω2

c2

(
ε2m

εd + εm

)
, (2.2b)

1We opt for the convention ε = ε′ + iε′′ where ε′ and ε′′ are respectively the real and imaginary parts of
the relative permittivity. A different convention (ε = ε′ − iε′′) is used by the authors in Ref. [41], resulting
in a slightly different expression for Eq. (2.1).
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k2
z,d = ω2

c2

(
ε2d

εd + εm

)
. (2.2c)

We are interested in solutions characterised by a purely imaginary wavenumber in the
transverse direction for both media. Furthermore, the wavenumber in the propagation
direction must have a real part. This is typically true whenever Re(εd + εm) < 0 and
Re(εdεm) < 0. These conditions are notably satisfied for several metal-dielectric combina-
tions at optical frequencies. In this configuration, the wave is confined in the z-direction
but can propagate in the x-direction. However, the imaginary part of kx is generally larger
than zero and the wave is also attenuated in the direction of propagation. Physically, this
attenuation is due to ohmic losses in the metal.

2.2.2 Propagation length

The confinement of an electromagnetic wave along the direction defined by the unit vector
u can be characterised by a propagation length lu defined by l−1

u = 2 Im(ku). This corre-
sponds to the distance over which the wave propagates in this direction until its intensity
has decreased by a factor of 1/e. From Eqs. (2.2), we may define three typical lengths
characterising surface plasmons. The surface-plasmon propagation length characterises
the propagation in the x-direction or any other in-plane direction. The decay lengths
of the surface-plasmon intensity characterise the intensity decay along the z-direction for
both sides of the interface. In general, these three typical lengths depend on the emission
frequency – or equivalently the wavelength in free space λ0 – as well as the considered
materials. Let us consider the frequency dependence of these typical lengths for an inter-
face between a dielectric medium (εd =2.25) and either silver or gold. In the visible range,
the propagation length is larger for silver than for gold (Fig. 2.3a), and it increases with
λ0. Furthermore, the decay length in the transverse direction is smaller on the metal side
than on the dielectric side (Fig. 2.3b), and the decay length on the dielectric side increases
with λ0.

Figure 2.3 – Typical lengths versus free-space wavelength λ0 for a surface plasmon prop-
agating at a metal-dielectric interface. Red curves refer to gold and blue curves refer to
silver. (a) Propagation length along the x-direction. (b) Decay lengths along the z-direction.
Light curves refer to the dielectric side and dark curves to the metal side.
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The surface-plasmon intensity is strongly localised for silver around λ0 = 400 nm, since
the propagation length in the x-direction and the decay lengths of the surface-plasmon
intensity in the z-direction are very short. Around this frequency, the response of the
electrons in the metal to an applied electric field is strong but associated with large losses.
For the energy transfer experiment, the surface plasmon must strongly be confined along
the z-direction but must propagate along the x-direction over long distances. Using a silver
mirror at a wavelength λ0 = 610 nm, the propagation in the x-direction is characterised by
a propagation length of 3.7 µm. In this case, surface plasmons can thus propagate along
the x-direction while they are confined in the z-direction over 70 nm on the dielectric side
and over 15 nm on the metal side.

2.3 Sample preparation and experimental setup

Now, we describe the emitters involved in the experiment. We also present the configura-
tion of the sample, and we detail the optical setup used for its characterisation.

2.3.1 Selection of a donor-acceptor pair

In practice, the development of an energy transfer experiment requires the choice of a
donor and an acceptor among the several types of fluorescent emitters used by experimen-
talists. The most common ones are dye molecules, semiconductor quantum dots (QDs)
and nitrogen-vacancy (NV) centres in diamond nanocrystals. We require the emitter to
be characterised by a low photobleaching rate under typical excitation conditions, a large
absorption cross-section and an intrinsic quantum yield close to unity. Furthermore, a nec-
essary condition for energy transfer to occur is that the emission spectrum of the donor
overlaps with the absorption spectrum of the acceptor. In order to satisfy these conditions,
we use the following ensembles of emitters for the donors and the acceptors:

• As donors, we use dye molecules embedded in polystyrene beads (Red FluoSpheres,
ThermoFisher Scientific) and characterised by a diameter of 109±7 nm. Due to
the large number of molecules embedded in the bead and the protecting polymer
matrix, these beads are relatively insensitive to photobleaching even under intense
illumination conditions.

• As acceptors, we use dye molecules (Atto665, AttoTec Gmbh) embedded in a thin
polyvinyl alcohol (PVA) layer to protect the molecules from photobleaching.

For this donor-acceptor pair, spectral overlap occurs between the donor emission and the
acceptor absorption (Fig. 2.4). One could argue that we could have chosen another donor-
acceptor pair with a better overlap. Indeed, we opt for this configuration in order to be able
to clearly distinguish the emission spectrum of the acceptor from the emission spectrum
of the donor. Moreover, the wavelength of the excitation laser (λ0=532 nm) is slightly
shifted with respect to the donor’s maximum absorption in order to limit direct excitation
of the acceptor. Importantly, the propagation length of surface plasmons propagating at
an interface between silver and PVA is large for the overlap frequencies. The surface-
plasmon propagation length is indeed of the order of 5 µm at λ0 = 650 nm, as shown in
Fig. 2.3a.
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Figure 2.4 – Emission and absorption spectra of the donor (blue curves) and of the
acceptor (red curves). Dashed lines are the absorption spectra and solid lines are the
emission spectra. A green line represents the excitation laser.

2.3.2 Sample preparation

To prepare the sample, we evaporate a 50 nm thick silver layer on a glass coverslip by
e-beam evaporation2, at a pressure of 10−8 bar and at a rate of 0.3 nm/s, that we cover by
a 10 nm thick silica (SiO2) layer. While the silver film is required for the existence of sur-
face plasmons, the silica layer protects the metal against oxidation. An aqueous solution
of donor beads, acceptor molecules and PVA is then spin-coated on the silica layer. The
concentration of acceptor molecules in the solution (0.001 mg/mL) is a trade-off between
the high effective absorption characterising highly concentrated solutions and the occur-
rence of auto-FRET in-between acceptor molecules arising for such high concentrations.
The spin-coating process is performed in two steps. Firstly, the sample rotates at 500 rpm
for 10 s in order to spread the solution over the coverslip and let the beads deposit on the
coverslip. Secondly, it rotates at 1500 rpm for 30 s to evacuate the surplus of solution.
Using this procedure, the resulting sample consists in a homogeneous layer of acceptors
embedded in a PVA matrix with a few isolated donor beads, as represented in Fig. 2.5.

Figure 2.5 – Sketch of the sample.

On average, the distance between two close-by donors is more than 20 µm. Thus, the
excitation laser can easily address a single donor bead and we can study the occurrence of
energy transfer over a large range of distances between this donor bead and the surrounding
acceptor molecules. From AFM measurements, we determine the thickness of the acceptor
layer, which is of the order of 50 nm. Note that the spatial extent of both the donor beads

2Best practices for the deposition of dense metallic films with high purity and low surface roughness
can be found in Ref. [43].
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(∼100 nm) and the acceptor layer (∼50 nm) reasonably match the decay length of the
surface-plasmon intensity in the transverse direction on the dielectric side (∼70 nm). This
optimises the number of donor molecules that can excite surface plasmons on the silver
film as well as the number of acceptor molecules that can absorb their energy.

The thickness of the silver layer (50 nm) is larger than the decay length of the surface-
plasmon intensity on the metal side, which is of the order of 15 nm at λ0 = 650 nm.
More precisely, it follows from Eq. (2.2b) that only 2% of the intensity of the surface
plasmon reaches 50 nm on the metal side. Thus, the thickness of the silver film ensures
that coupling effects between the surface plasmons propagating on each side of the silver
film can be neglected. However, we also need to limit the thickness of the silver film since
we measure the fluorescence photons through the silver film using an objective located
below the sample, as we will see in Sect. 2.3.3.

From these considerations, we can model the silver film by a semi-infinite medium. More-
over, PVA and SiO2 have a similar relative permittivity (εd ≈ 2.25). The thickness of this
dielectric layer and the decay length of the surface-plasmon intensity on the dielectric side
have the same order of magnitude. In addition, the thickness of the PVA layer is too small
for the apparition of guided modes in the layer. We may consequently consider that the
dielectric side is semi-infinite as a first approximation. By describing the geometry of the
sample by this simple model, we can find analytical solutions for wave propagation in this
system. This is an advantage in comparison to more elaborate nanostructures that must
be numerically studied.

2.3.3 Optical setup

To study the occurrence of the plasmon-mediated energy transfer, we excite the donor
and we measure the photons emitted by the acceptors over a wide range of distances.
The characterisation of energy transfer over distance of several micrometres requires the
development of a microscope constituted of two independent optical paths for excitation
and detection, as represented in Fig. 2.6. To this end, we use a single-mode micro-lensed
fibre (Nanonics Imaging Ltd.) in which we inject the excitation laser, while detection is
performed using an oil objective (×100, NA = 1.4, Olympus). The micro-lensed fibre is
mounted on a three-axis piezoelectric nanopositioner required to bring the microlens 4 µm
above the sample, at its working distance. The focal spot has then a diameter of about
1.5 µm.

Figure 2.6 – Optical microscope with two independent paths for excitation and detection.

This configuration allows to properly control the distance d between the excitation and
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the detection area. Indeed, the position of the microscope objective is fixed while both
the sample and the micro-lensed fibre can be translated with a nanometric precision. To
perform the measurements, we keep the micro-lensed fibre focused on the donor and we
simultaneously move the sample and the fibre away from the microscope objective. Thus,
we can measure the fluorescence of the acceptors for different distances d. In the following
paragraphs, the excitation and the detection paths will be described in detail.

Excitation The excitation part of the optical setup is represented in Fig. 2.7. It is
dedicated to the excitation of the donor as well as to the measurement of its fluorescence.
The excitation source is a supercontinuum pulsed laser (Fianium SC450) with a repetition
rate of 10 MHz. The laser light is filtered at 532 nm (FF01-532/18, Semrock) before
being injected into the micro-lensed fibre that focuses the laser within a diameter of
approximately 1.5 µm. Fluorescence photons from the donor are also collected via the
micro-lensed fibre and detected by a single-photon avalanche diode (SPCM-AQR, Perkin-
Elmer). By maximising the number of collected photons on this detector, we ensure that
the donor excitation is constant and always optimised. Moreover, this detector is essential
to monitor the fluorescence of the donor during the experiment in order to verify that it
does not photobleach. The decay histogram of the donor can also be measured using a
time-correlated single-photon counting (TCSPC) system (HydraHarp 400, PicoQuant).

Figure 2.7 – Excitation part of the optical setup. SPAD stands for single-photon
avalanche diode.

Detection The detection part of the optical setup is represented in Fig. 2.8. It is
dedicated to the measurement of the fluorescence coming from the acceptor. Fluorescence
photons emitted from the sample are filtered by a dichroic mirror and focused onto the
core of a multimode fibre, characterised by a 50 µm fibre core diameter and connected
to a spectrometer (Acton SP2300, Princeton Instruments). Thus, the signal measured
by the spectrometer arises from the 500-nm-sized region of the sample that is optically
conjugated to the detection system. An EM-CCD camera (iXon 897, Andor) allows to
record wide-field images of the sample. The camera is used for alignment procedures,
such as bringing the micro-lensed fibre at its working distance and choosing the area of
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the sample that is to be studied. It also provides us with useful information in order to
monitor any drift during the acquisition.

Figure 2.8 – Detection part of the optical setup. EM-CCD stands for electron-multiplying
charge-coupled device.

2.4 Evidences of the occurrence of energy transfer

Using this experimental setup, we can characterise the energy transfer process by mea-
suring either the decay histogram of the donor bead or the fluorescence spectrum of the
acceptors. These two approaches give different insights on the energy transfer process:
while the modification of the decay rate is mainly due to dipole-dipole interaction and
characterises the occurrence of energy transfer between donors and close-by acceptors,
we can demonstrate the occurrence of long-range plasmon-mediated energy transfer using
spectral measurements.

2.4.1 Decay rate of the donor

In Sect. 1.3, we highlighted that the energy transfer rate is directly given by the increase
in the LDOS at the position of the donor due to the presence of the acceptor. The energy
transfer rate is thus given by

ΓD→A = ΓDA − ΓD , (2.3)

where ΓDA and ΓD are respectively the decay rate of the donor in the presence and in
the absence of the acceptor. Furthermore, the energy transfer efficiency, defined as the
probability for the donor of exciting the acceptor among all the possible decay processes,
is directly given by

ηet = ΓD→A
ΓDA

. (2.4)

Experimentally, we measure the decay histogram of a donor bead (for d = 0 µm) in the
presence of surrounding acceptors, on the sample described in Sect. 2.3.2. Then, we prepare
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a donor-only sample – that is, a sample without acceptor dyes – to measure the decay
histogram of a donor bead on silver in the absence of acceptors. To this end, we spin-coat
donor beads on a silver film, following the procedure described in Sect. 2.3.2 except that
acceptor dyes are not added to the solution. By fitting a mono-exponential distribution to
the measured histograms (Fig. 2.9), we determine that the decay rate of the donor bead
in the presence of the acceptors is increased by a factor of 1.4 with respect to the situation
without acceptors. This corresponds to an overall energy transfer efficiency of 30%. This
value is determined by the dipole-dipole interaction between the molecules inside the donor
bead and the acceptors located at distances of the order of a few nanometers from the
bead. Indeed, FRET is much more efficient than long-range energy transfer, as we will see
in Sect. 2.6.4. Thus, the modification of the decay rate of the donor bead does not provide
us with any information about the occurrence and the efficiency of the energy transfer
in the long-range regime. In order to characterise the energy transfer in this regime, we
can however perform spectral measurements of the fluorescence intensity emitted by the
acceptors at different distances d from the donor bead.

Figure 2.9 – Decay histograms of the donor on silver in the absence of surrounding
acceptor (blue curve) and in the presence of the acceptor (red curve). Black lines are
mono-exponential fits to the histograms.

2.4.2 Spectral measurements

In order to characterise the occurrence of energy transfer in the long-range regime, we
study plasmonic radiative losses generated by surface plasmons excited by the donor on
a silver film without acceptors. This allows us to interpret the spectral measurements
performed on the sample containing both the donor and the acceptors.

Plasmonic radiative losses

Whenever surface plasmons propagate along an interface, part of their energy is lost as
ohmic losses, and part of the energy is scattered by inhomogeneities located at the inter-
face between the metal and the dielectric medium. While we measure the fluorescence
intensity emitted by acceptors that are excited by surface plasmons, we also detect these
scattered waves called plasmonic radiative losses. These radiative losses must be distin-
guished from the fluorescence of the acceptors. To characterise these losses, we use the
donor-only sample previously mentioned. We excite a single donor bead and we measure
the emission spectrum due to the radiative losses of the surface plasmons for different
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distances d ranging from 2 to 6 µm. These spectra are red-shifted in comparison to the
spectrum measured at d = 0 µm. Indeed, the donor beads emit a broadband radiation
characterised by wavelengths ranging from approximately 600 to 700 nm. In this spectral
range, the propagation length of surface plasmons significantly depends on the wavelength.
Since longer wavelengths of the spectrum propagate over larger distances, the spectrum of
plasmonic radiative losses appears as red-shifted by the propagation. In order to confirm
the origin of the observed shift, we define a function given by the product between the
spectrum of the donor at d = 0 µm and a decreasing exponential function modelling the
attenuation of the surface plasmon propagating along the interface between a semi-infinite
silver layer and a semi-infinite PVA layer. A good agreement between the experimental
spectra and the model function is obtained by fitting this function to the experimental
spectra for several distances d from 2 to 6 µm. As an example, Fig. 2.10 shows the spec-
trum measured at d = 0 µm, along with the spectrum measured at d = 5 µm and the
results of the fit.

Figure 2.10 – Normalised spectra of radiative losses of surface plasmons excited by a flu-
orescent bead. Blue and black curves respectively show the experimental data for d=0 µm
and d=5 µm. A model function (red curve) that takes into account the wavelength depen-
dence of the dielectric constant of silver is fitted to the spectrum measured at d=5 µm.

Fluorescence of the acceptors

In order to have a signature of long-range energy transfer, we perform spectral measure-
ment on a sample containing both donors and acceptors. To do so, we excite a donor using
the micro-lensed fibre and we perform spectral measurements at different distances d from
the donor’s position, as represented in Fig. 2.6. The acquisition time is 200 s per spectrum.
To have a thorough understanding of this measurement, the various processes that could
contribute to the signal collected at a distance d from the donor must appropriately be
considered:

• Firstly, due to the size of the excitation laser spot (diameter of 1.5 µm), acceptors
located in the proximity of the donor can directly be excited by the laser. This
effect is minimised by blue detuning the excitation laser with respect to the acceptor
absorption spectrum but it is still present. The excited acceptors can either emit
fluorescence photons or excite surface plasmons that can be detected at a distance
d due to radiative losses. In both cases, the emitted photons spectrally overlap with
the acceptor fluorescence and they artificially increase the signal to be measured.
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• Secondly, since acceptors are present in the vicinity of the donor, short-range en-
ergy transfer (FRET) occurs. Acceptors excited by this mechanism can either emit
fluorescence photons or excite surface plasmons with a spectrum overlapping with
the acceptor fluorescence spectrum, which can be detected at a distance d due to
radiative losses.

In order to estimate the contribution of these processes, we perform a reference experiment
in which we focus the micro-lensed fibre on the layer of acceptors, in an area without any
donor bead. Firstly, we measure the signal produced as a function of d. This gives
us an upper limit for the contribution of the first process. Indeed, since some additional
acceptor molecules are excited instead of the donor bead (diameter 100 nm), we can expect
a stronger signal at the frequencies of the acceptors in the reference experiment. Secondly,
we compare the spectra measured at d = 0 µm in the actual and the reference experiments.
The first spectrum is due to fluorescence of the donor, direct excitation of the acceptors
and FRET. The second spectrum is due to direct excitation of the acceptors, with some
additional acceptors in comparison to the first situation. Both experiments show the same
intensity due to the fluorescence of the acceptors. Therefore, the contribution of direct
excitation in the reference experiment is equal to the contribution of direct excitation and
FRET in the energy transfer experiment.

Figure 2.11a shows raw data measured during the energy transfer experiment at d = 2 µm
(blue curve) along with the data measured during the reference experiment for the same
distance d (red curve). We can see that the same irregularities are present in both spectra.
These irregularities are due to stray light and thus cancel out when the reference spectrum
is subtracted to the raw measurement. Figure 2.11b shows the background corrected
spectrum determined using this procedure. This spectrum shows two distinct peaks. While
the peak centred at 610 nm is due to radiative losses of surface plasmons excited by the
donor, the peak centred at 695 nm is the fluorescence of the acceptors excited by surface
plasmons. This second peak is therefore a signature of the occurrence of energy transfer
through surface plasmons.

Figure 2.11 – (a) Raw spectrum measured at d=2 µm (blue curve) and associated back-
ground estimate (red curve). (b) Background corrected signal at d=2 µm (black curve). A
model function (red curve) defined as the sum of the acceptor fluorescence spectrum (green
curve) and the plasmonic radiative losses spectrum (blue curve) is fitted to the spectrum.

To support these conclusions, we consider a model function given by the sum of the
spectrum of plasmonic radiative losses (including the red-shift induced by propagation)
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and of the spectrum of acceptor fluorescence on silver. Then, we fit this function to
the background-corrected spectra using only two free parameters that are normalisation
constants. In total, we perform this analysis for six spectra measured at distances d ranging
from 2 to 7 µm. The good agreement between the model function and the experimental
data (Fig. 2.12) confirms that the two peaks are respectively due to plasmonic radiative
losses and energy transfer. Note that the relative contribution of each peak depends on
the distance d. This is explained by the wavelength dependence of the surface-plasmon
propagation length, as we will see in the following section. As a side experiment, we also
perform similar measurements on a control sample made of donors and acceptors on a bare
glass substrate, without the silver layer. On this sample and with the same integration
time, we do not detect fluorescence emission from the acceptors in this range of distances.
This confirms that the observation of energy transfer is allowed by the presence of the
silver film in the long-range regime.

Figure 2.12 – Measured spectra at different distances d. The black points show spectra
measured at a distance d from the donor ranging from 2 to 7 µm, with an integration time
of 200 s. The red curves are determined by fitting a model function to the spectra for each
distance d.

2.5 Distance dependence of the energy transfer rate

From the fluorescence spectra of the acceptors measured at several donor-to-acceptor dis-
tances, we can estimate the distance dependence of the energy transfer process. Since
the energy transfer process relies on the propagation of surface plasmons excited by the
donor bead, we can find a relation between the propagation length of the surface plasmons
excited by the donor and the characteristic distance of the energy transfer process, which
we call the energy transfer range.
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2.5.1 Surface-plasmon propagation length

In order to estimate the spectrally averaged propagation length of the surface plasmons
excited by the donor, we study the donor-only sample and we measure plasmonic radiative
losses due to surface plasmons excited by a donor bead. Figure 2.13 shows the total
intensity of plasmonic radiative losses as a function of the distance d. For each distance d,
we also calculate the standard error on the intensity estimates by taking into account the
statistical error on the number of photons determined from spectral measurements. To do
so, we can assume that the number of photons Nd measured in the spectral range of the
donor at each distance d is Poisson distributed. As we perform background subtraction
on the data, it is also relevant to consider the number of measured background photons
noted N∗d . Thus, we can estimate the standard error σd on each intensity estimate using
the addition property of the variance for uncorrelated variables. We obtain

σd =
√
Nd +N∗d . (2.5)

In this analysis, we neglect the error on the distance d. Indeed, we can accurately control
the distance between the excitation and detection point in the experiment via the piezo-
electric nanopositionners. Moreover, we monitor in real time the drift of the experiment
using the EM-CCD camera and the SPAD collecting the fluorescence photon from the
donor bead. During the 200 s acquisition time of one spectrum, this drift is negligible.

Figure 2.13 – Scattered intensity as a function of the distance d. The black points
are experimental data and the black solid line is determined by fitting the model function
d−1 exp(−d/lD) to the data. Error bars correspond to a statistical significance of ±1σ
calculated assuming that the measured intensities are Poisson-distributed.

The propagation length lD of the surface plasmons excited by the donor is defined as the
distance over which a one-dimensional surface plasmon propagates until its intensity has
decreased of 1/e. In the experiment, surface plasmons are supported by a silver film so that
they can propagate along two dimensions. For this reason, an additional geometric factor
d−1 must be taken into account when analysing the distance dependence of the surface-
plasmon intensity. Hence, we fit a model function defined by d−1 exp(−d/lD) to the mea-
sured data. The propagation length determined using this procedure is lD = 3.4±0.1 µm.
This is slightly smaller than the theoretically expected value of 3.8 µm estimated by cal-
culating the surface-plasmon propagation length averaged over all the donor fluorescence
spectral range, weighted by the fluorescence intensity at each wavelength. This difference
is likely to be due to plasmonic radiative losses, since surface roughness at the silver-
dielectric interface is not accounted for in the theoretical model.
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2.5.2 Energy transfer range

We now study the distance dependence of the energy transfer rate. Indeed, for each
distance d, the number of photons collected from the acceptors due to energy transfer is
given by the integral of the function which models the acceptor fluorescence (Fig. 2.11b,
green curve). Figure 2.14 shows the distance dependence of the intensity collected from
the acceptors (red data point). We also fit a function d−1 exp(−d/let) to the data in
order to determine the energy transfer range let. By using this model function, the energy
transfer range is defined by analogy to the surface-plasmon propagation length. Using
this procedure, we obtain let = 5.4± 0.9 µm. This is significantly larger than the surface-
plasmon propagation length (lD = 3.4 µm) determined on the donor-only sample. Indeed,
lD is the propagation length averaged over the entire spectrum of the surface plasmons
excited by the donor, while the donor emission contributes to the energy transfer in the
spectral range for which a significant overlap occurs with the acceptor absorption spectrum.
In order to highlight this effect, we determine the surface-plasmon propagation length on
a reduced spectral range (635 < λ0 < 680 nm) around the maximum of the acceptor
absorption spectrum (Fig. 2.14, blue data point). This data analysis gives a surface-
plasmon propagation length of 5.3± 1 µm, in good agreement with the value of let. This
observation constitutes a further evidence that the acceptors in the experiment are excited
via surface plasmons originating from the donor bead.

Figure 2.14 – Distance dependence of the intensity detected from the acceptors and due
to energy transfer (in red) and of the plasmonic radiative losses evaluated over the reduced
spectral range 635<λ0<680 nm (in blue). Data points are experimental data and the
solid lines are determined by fitting a model function to the data. Error bars correspond
to a statistical significance of ±1σ calculated assuming that the measured intensities are
Poisson-distributed.

2.6 Efficiency of the energy transfer process

As already pointed out, the low efficiency of the energy transfer process for large distances d
prevents any experimental determination of the energy transfer rate in this regime. Nev-
ertheless, we can theoretically estimate the plasmon-mediated energy transfer efficiency
using the Green formalism.
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2.6.1 Modelling of the experiment

In order to theoretically estimate the energy transfer efficiency, we must define a model for
the experiment. As discussed in Sect. 2.3.2, we can model the geometry of the sample by
two semi-infinite media that are respectively silver and PVA. This model is represented in
Fig. 2.15. Since energy transfer occurs for the frequencies of maximum overlap between the
emission spectrum of the donor and the absorption spectrum of the acceptor, the transfer
frequency ω can be approximated by using the free-space wavelength λ0 = 663 nm which
corresponds to the maximum of the acceptor absorption spectrum. Moreover, a Drude-
Lorentz model can be used to describe the properties of silver. We can thus calculate the
dielectric constant of silver from Eq. (2.1) which gives us εm = −16.2 + 1.2i. The relative
permittivity of PVA is set to εd = 2.25 in the model.

Figure 2.15 – Model used to calculate the energy transfer efficiency. The silver film
and the PVA layer are modelled by two semi-infinite media characterised by their relative
permittivities.

Let us describe the other parameters involved in the model.

Absorption cross-section of the acceptor (σA) In order to describe the response of
the acceptors to the electric field generated by the donor bead, we can calculate
the absorption cross-section of the acceptor from the molar extinction coefficient
(1.6× 105 L mol−1 cm−1) specified by the provider (ATTO-TEC) for molecules in a
phosphate-buffered saline (PBS) solution and for their maximum absorption wave-
length. This corresponds to an absorption cross-section σA = 0.061 nm2 for a single
molecule. The relative permittivity of PBS is around 1.77, which is slightly smaller
than the relative permittivity of PVA. Nevertheless, we use the value of σA given
above as a coarse approximation.

Intrinsic quantum yield of the donor (ηD) Concerning the donor beads (Red Fluo-
Spheres), they are constituted of BODIPY fluorophores with a intrinsic quantum
yield ηD often approaching unity according to the provider (ThermoFisher Scien-
tific). Thus, we use ηD = 1 in the calculations.

Intrinsic quantum yield of the acceptor (ηA) The intrinsic quantum yield of accep-
tors in a PBS solution is of the order of 0.6 according to the provider (ATTO-TEC).
It is difficult to transpose this value to the experiment, in which the emitters are
embedded in a solid PVA matrix. In the calculations, we use ηA = 0.6 as a first
approximation.

Orientation of the dipole moments (uD, uA) The experiment involves a large num-
ber of emitters with arbitrary orientations. It is thus relevant to average the calcu-
lations over the orientation of the transition dipoles.
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Vertical distances to the mirror (zD, zA) It is not straightforward to define the dis-
tances from the mirror surface to the donor (noted zD) and to the acceptor (noted
zA), since the experimental configuration involves many emitters. These emitters
are spatially distributed over the size of the bead for the donors (diameter 100 nm).
Plus, the acceptors are spatially distributed over the thickness of the PVA layer
(thickness 50 nm). We could use the average distance to the silver mirror for each
of these spatial distributions in order to define the distance of the emitters to the
silver mirror. Considering the 10-nm silica spacer between the silver film and the
emitters, this would correspond to zD ≈ 60 nm and zA ≈ 35 nm. In the following
section, we will show another approach to estimate an effective distance between the
mirror surface and each emitter.

2.6.2 Distance between the mirror and the emitters

In order to estimate an effective value for zD and zA, we experimentally study the decay
rate enhancement of donors and acceptors due to the silver surface. For this purpose, we
measure the decay histogram of a donor bead on two different samples, with and without
a silver film (Fig. 2.16a). We obtain ΓD/ΓD,0 = 1.72, where ΓD and ΓD,0 are respectively
the decay rates of the donor on silver and on glass. Following the same procedure for the
acceptors (Fig. 2.16b), we obtain ΓA/ΓA,0 = 1.58, where ΓA and ΓA,0 are respectively the
decay rates of the acceptor on silver and on glass.

Figure 2.16 – (a) Decay histogram of the donor in the presence (blue curve) and in the
absence (dark blue curve) of the silver surface. (b) Decay histogram of the acceptor in the
presence (red curve) and in the absence (dark red curve) of the silver surface. Black lines
are mono-exponential fits to the histograms.

By comparing these results with theoretically expected values, we can estimate an effec-
tive distance between the emitters and the silver surface. To do so, we define the decay
rate enhancement due to the electromagnetic interaction between an emitter and its en-
vironment by Γ/Γ0 where Γ and Γ0 are respectively the decay rates of the emitter in its
environment and in a reference medium. In the experiments described in this chapter, all
of the reference measurements are performed on glass substrates, with the emitters being
embedded in polymer matrices. As a reference, we consequently choose a homogeneous
medium characterised by a relative permittivity εh = 2.25. Then, the decay rate enhance-
ment can be calculated from the dyadic Green’s function describing the system, noted
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G(r, r, ω), and evaluated at the position r of the emitter and at the frequency ω. This
reads

Γ
Γ0

= 6πc
ωn

Im{u ·G(r, r, ω) u} . (2.6)

Considering the normalised decay rate averaged over the orientation u of the transition
dipole, we obtain 〈 Γ

Γ0

〉
u

= 2πc
ωn

Im {Tr G(r, r, ω)} , (2.7)

where Tr denotes the trace operator. This expression is valid whenever the dyadic Green’s
function is diagonal, which is true here due to the symmetry of the modelled geometry.
Furthermore, the expression of the dyadic Green’s function can analytically be simplified
in the specific case of two semi-infinite media, as we show in Appendix A.

Figure 2.17 shows the enhancement of the spontaneous emission rate as a function of
the distance z to the silver mirror. The calculations are performed for two different
frequencies respectively corresponding to the maximum of the emission spectrum for the
donor (λ0 = 610 nm) and the acceptor (λ0 = 695 nm). As expected, we note some
variations in the decay rate due to constructive and destructive interferences between the
field emitted by the dipole and its reflected field.

Figure 2.17 – Calculated enhancement of the decay rate of an emitter in the near-field of
a silver mirror, computed for λ0=610 nm (blue curve) and λ0=695 nm (red curve), and
averaged over three orthogonal dipole orientations.

To compare the theoretical model expressed by Eq. (2.7) and the values determined in
the experiment, we use the relation between the intrinsic quantum yield of an emitter and
the enhancement of its total decay rate that we derived in Sect. 1.2.3. This relation is
expressed by

Γtot
Γtot0

= 1 + ηi

( Γ
Γ0
− 1

)
, (2.8)

where Γtot and Γtot0 are the total decay rates of the emitter in its environment and in the
homogeneous medium of reference. For the donor, assuming ηD = 1, we numerically solve
this equation for zD which gives zD ≈ 50 nm. For the acceptor, assuming ηA = 0.6 and
following the same procedure, we obtain zA ≈ 20 nm. In both cases, these values are
consistent with the layout of the sample, and they are slightly smaller than the average
distances between the spatial distributions of the emitters and the silver mirror. The
calculations presented in the following sections will be performed using these values of zD
and zA.
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2.6.3 Energy transfer rate

Under the assumptions detailed in Sect. 1.3.1, the energy transfer rate Γet depends on the
absolute square of the dyadic Green function and can be written as

Γet
Γ0

= 18πσA|uA ·G(rA, rD, ω) uD|2 , (2.9)

where Γ0 is the decay rate of the donor in the homogeneous medium of reference and the
subscripts D and A respectively refer to the position and orientation of the donor and the
acceptor. The energy transfer rate averaged over the orientations of the dipole moment
reads 〈Γet

Γ0

〉
u

= 2πσA
3∑

i,j=1
|uj ·G(rA, rD, ω) ui|2 , (2.10)

where ui and uj are three orthonormal vectors.

Figure 2.18 shows the distance dependence of the energy transfer rate between a donor
and an acceptor for zD = 50 nm and zA = 20 nm. We numerically investigate a large
range of donor-to-acceptor distances, from d = 30 nm up to d = 100 µm. The donor
and the acceptor are at the same radial position for the smallest considered distance. We
specifically consider two different cases, either in the presence of the silver mirror or in the
homogeneous medium of reference (εd = 2.25). For distances d larger than 100 nm, the
energy transfer rate in the homogeneous medium scales as d−2. This distance dependence
is a characteristic of far-field radiation. In the same range of distances, the energy transfer
rate varies as d−1 exp(−d/let) when the silver mirror is present. In this regime, the distance
dependence of the energy transfer rate is determined by the surface-plasmon propagation
length, as experimentally observed.

Figure 2.18 – Normalised energy transfer rate averaged over the orientations of the
dipole moment. An orange tinted area corresponds to the range of distances studied in the
experiment.

Furthermore, we can clearly identify three different ranges that characterise the plasmon-
mediated energy transfer rate:

• For d smaller than 100 nm, the energy transfer rate is slightly larger in the presence
of the silver mirror than in the homogeneous medium of reference: as the process
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is already quite efficient in the homogeneous medium, the silver mirror does not
substantially increase the energy transfer rate.

• For d between 100 and 50 µm, the energy transfer rate is much larger in the presence
of the silver mirror.

• For d larger than 50 µm, the energy transfer rate is very low and dominated by
far-field radiation. In this regime, the silver surface becomes a source of losses and
the energy transfer rate is larger in the homogeneous medium.

2.6.4 Energy transfer efficiency and enhancement factor

In the literature, the characterisation of the energy transfer process is usually performed
by calculating the energy transfer efficiency, defined as the probability for the donor to
excite the acceptor among all the possible decay processes. Therefore, the energy transfer
efficiency averaged over the orientations of the dipole moment is given by

ηet = ηD
〈Γet〉

〈ΓD〉+ 〈Γet〉
. (2.11)

The energy transfer efficiency does not depend on the intrinsic quantum yield of the
acceptor, as it only characterises the power absorbed by the acceptor and not the power
it radiates. It does depend on the intrinsic quantum yield of the donor but we can assume
that ηD = 1, as previously noted. Figure 2.19a shows the energy transfer efficiency as a
function of the distance between the donor and the acceptor. We can see that the energy
transfer process is more efficient without the silver mirror for distances smaller than 65 nm.
It means that the slight enhancement of the energy transfer rate due to the silver mirror
is not sufficient to compensate for the generated losses. In contrast, for distances larger
than 100 nm, the efficiency of the process becomes higher using the silver mirror. In the
range of distances studied in the experiment (between 2 and 7 µm), the efficiency of the
process is of the order of 10−8. This low efficiency is compensated in the experiment by
the large number of molecules inside the bead (donors) and the PVA layer (acceptors).

Figure 2.19 – (a) Energy transfer efficiency for two emitters separated by a distance d
in the vicinity of the mirror (blue curve) and inside a homogeneous medium (black curve).
(b) Enhancement factor versus the distance d. On each figure, an orange tinted area
represents the range of distances studied in the experiment.
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Another quantity which is commonly used to characterise the energy transfer process is
the enhancement factor, defined as the ratio of the energy transfer rate in the presence
of the silver mirror to the rate in the homogeneous environment of refractive index n. In
this case, fet reads

fet = 〈Γet〉
〈Γet,0〉

. (2.12)

The enhancement factor fet does not depend on the intrinsic quantum yield of the two
emitters. Figure 2.19b shows the enhancement factor as a function of the donor-to-acceptor
distance. For distances smaller than 100 nm, the enhancement factor is slightly larger than
unity, meaning that the energy transfer rate is not really affected by the presence of the
silver mirror. In contrast, this enhancement is substantial for distances between 2 and
7 µm, in the range of distances associated with experimental measurements. In this range,
the average value of the enhancement factor is fet ∼ 40 which means that the energy
transfer rate is enhanced by a factor of 40 in comparison to the rate calculated in a
homogeneous medium. The enhancement factor is maximum for distances around 5 µm
and then decreases down to zero. Indeed, the presence of the silver mirror generates losses
for these larger distances.

2.7 Conclusion

In this chapter, we presented an experimental study of the occurrence of energy transfer
between fluorescent emitters mediated by surface plasmons. Starting from the low effi-
ciency of the energy transfer process in free space for large donor-to-acceptor distances,
we investigated a configuration in which the energy could be guided from the donor to the
acceptor in a more efficient way. For this purpose, surface plasmons are good candidates,
as they naturally confine waves at optical frequencies over the dimension perpendicular
to the interface. Thus, we designed a sample geometry that can be easily fabricated
and characterised. In practice, we used a donor bead and a continuous layer of acceptor
molecules lying on top of a thin silver film. We studied two signatures of the energy
transfer: the modification of the decay rate of the donor and the acceptor fluorescence
conditioned by the excitation of the donor. While the first signature is sensitive to the
short-range interaction, the second one turns out to be relevant for the study of long-range
energy transfer. From spectral measurements, we estimated the distance dependence of
the acceptors fluorescence (Fig. 2.14). Furthermore, we related the energy transfer range
to the surface-plasmon propagation length and we showed that the energy transfer process
is driven by the surface-plasmon propagation length at the frequencies for which maxi-
mum donor-acceptor spectral overlap occurs. Finally, we modelled the experiment and we
calculated the distance dependence of the energy transfer rate using the Green formalism
(Fig. 2.18).

In this work, we distinguished different regimes. In the short-range limit (typically less
than 100 nm) the energy transfer process is not much affected by the silver film as it is
already efficient in free space. In contrast, in the long-range limit (more than 100 nm),
the energy transfer is very inefficient in free space and the silver film greatly enhances its
efficiency. In this range, the distance dependence of the energy transfer rate is determined
by the surface-plasmon propagation length and the energy transfer rate is fastened by the
silver mirror by approximately a factor of 40. Nevertheless, the absolute efficiency of the
long-range process is still very low, of the order of 10−8 in the range of distances considered
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in the experiment. This is mainly a consequence of free-space emission of the donor and of
ohmic losses induced by the metal surface. We compensated for these competing processes
by using a high concentration of fluorescent emitters in the experiment.

It is possible to use other geometric configurations to achieve higher energy transfer rates.
Importantly, we pointed out that the planar geometry of the sample introduced an addi-
tional d−1 dependence since the wave propagates over two dimensions. In the following
chapter, we will tackle this issue by using a silver nanowire to support surface plasmons
over only one dimension. This will substantially enhance the energy transfer efficiency, as
numerically predicted by Martín-Cano et al. [36]. For this reason, we will be able to use
a single-photon emitter as a donor and to investigate the occurrence of energy transfer
mediated by single plasmons.





CHAPTER 3

Energy transfer mediated by single plasmons

In this chapter, we present a study of micrometre-range energy transfer mediated by single
plasmon. We specifically demonstrate micrometre-range plasmon-mediated energy trans-
fer between a single CdSe/CdS/ZnS quantum dot and a fluorescent nanobead located in
the near field of a silver nanowire . First of all, we introduce the principle of the exper-
iment and the context of this work. We then present the experimental setup, the choice
of the donor-acceptor pair and the characterisation of single surface plasmon generation
by a single quantum dot coupled to a silver nanowire. We then show two independent
experimental evidences of micrometre-range energy transfer occurring between the single
quantum dot and the fluorescent nanobead. We notably show that the decay histogram of
the acceptor measured during the experiment is determined by the convolution of the de-
cay histograms of the donor and the acceptor independently excited. We also demonstrate
the correlated blinking of the two emitters. As a conclusion, we discuss the experimen-
tal conditions required to demonstrate an antibunching in the donor and the acceptor
emission.

3.1 Introduction

The foundations of the quantum theory of light and atoms date back to Planck’s attempt
to solve the ultraviolet catastrophe. In 1901, he proposed the hypothesis that blackbody
radiation is emitted in discrete energy packets called quanta. Four years later, Einstein
used this theory to explain the photoelectric effect, even though this did not demonstrate
the quantum nature of light since the results could be explained by the quantisation
of matter. The work of Planck and Einstein inspired the development of the theory of
quantum mechanics at the beginning of the 20th century.

In 1954, Hanbury Brown and Twiss developed a new type of interferometer designed to
resolve the angular diameter of stars [44], based on the correlation in the intensity fluc-
tuations between two separate detectors. Two years later, they studied the correlation
between photons coming from a thermal light emitted by a mercury lamp and impinging
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on two different detectors [45]. They specifically measured the correlation between the
two signals as a function of the angular separation between the detectors and they demon-
strated a positive correlation for zero separation, a phenomenon called photon bunching.
This observation inspired various experiments based on correlation and anti-correlation ef-
fects in the intensities received by two detectors from a beam of particles (such as photons,
electrons, atoms, etc.). Kimble, Dagenais and Mandel notably demonstrated photon anti-
bunching from the fluorescence of sodium atoms in 1977 [46], providing a strong evidence
of the quantisation of the electromagnetic field.

In the recent years, the development of efficient single-photon emitters such as semicon-
ductor quantum dots or nitrogen-vacancy defects led to the observation of single plasmons
exhibiting properties similar to those of photons [47]. In 2007, Akimov et al. coupled a sin-
gle quantum dot to a silver nanowire and demonstrated photon antibunching between the
photons emitted in free space by the quantum dot and the surface plasmons scattered at
the end of the nanowire [48]. Two years later, Kolesov et al. observed self-interferences of
single surface plasmons excited by a nitrogen-vacancy defect coupled to a silver nanowire,
evidencing the wave-particle duality in the properties of surface plasmons [49]. Besides
single-photon emitters, heralded single-photon sources can also be used to generate single
plasmons. For instance, Dheur et al. recently used a plasmonic beamsplitter to demon-
strate the wave-particle duality for a single surface plasmon freely propagating along a
planar metal-air interface [50].

In the experiment presented in Chapter 2, surface plasmons were used to observe the
energy transfer occurring between a large number of fluorescent emitters located above
a silver film. While similar observations of micrometre-range plasmon-mediated energy
transfer so far involved ensembles of fluorescent emitters [34, 51], the coupling of two
quantum emitters mediated by single surface plasmons would allow one to perform inter-
esting experiments in the field of quantum optics. For instance, Dzsotjan, Sørensen and
Fleischhauer theoretically investigated the coupling of two quantum emitters mediated
by a silver nanowire [52]. This work notably showed that subradiance and superradiance
could be observed as a result of the plasmon-mediated interaction between the two emit-
ters. In addition, it was theoretically shown by Gonzalez-Tudela et al. that plasmonic
waveguides are good candidates to generate an entangled system from the coupling of two
distant quantum emitters [53].

Principle of the experiment With the idea of going towards quantum systems, we
now use a single-photon emitter as donor to experimentally study micrometre-range en-
ergy transfer mediated by single plasmons. To this end, a silver nanowire is used as a
surface-plasmon waveguide. We excite the donor with a pulsed laser and we collect the
fluorescence of both the donor and the acceptor with an immersion microscope objective.
Then, we demonstrate the occurrence of energy transfer between a single quantum dot
(donor) and a fluorescent nanobead (acceptor) located on the same nanowire 8.7 µm away
from each other. Figure 3.1 illustrates the principle of this experiment. Using time-resolved
measurements, we perform a comprehensive analysis of the relation between photon emis-
sion of the quantum dot and the fluorescent nanobead by studying the decay rate of the
acceptor and by demonstrating the correlated blinking of the two emitters. This work is
published in Physical Review A [54].
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Figure 3.1 – Principle of the experiment: a single quantum dot (donor) is excited by a
pulsed laser diode and excites single surface plasmons that can be absorbed by a fluorescent
bead (acceptor), distant from the quantum dot of several micrometres. The emission of
fluorescence photons by the acceptor bead is a signature of the energy transfer.

3.2 Sample preparation and experimental setup

In this section, we describe the setup of the experiment, including the choice of a donor-
acceptor pair. While acceptors are fluorescent nanobeads, we use single CdSe/CdS/ZnS
nanocrystals as single-photon donors. These quantum dots (QDs) are chemically synthe-
sised by Emmanuel Lhuillier1 (Institut des Nanosciences de Paris).

3.2.1 Donor-acceptor pair

QDs are semiconductor crystals with a diameter of a few nanometres. When a photon is
absorbed by a QD, it creates a bound state composed of an electron and a hole interacting
with each other through the electrostatic force. This state can then recombine by emitting
a photon. As the size of the crystal approaches the electron-hole distance, quantum
confinement effects take over. For a spherical crystal, these effects can roughly be modelled
by an infinite potential well, in which the exciton can freely move – this model is also known
as the particle in a box model. In such a model, the energy band gap increases when the
size of the box is reduced. For this reason, the emission wavelength of semiconductor
quantum dots can be tuned by controlling the time of growth of the nanocrystals.

The QDs used in the experiment are composed of a CdSe core as well as CdS and ZnS
shells. It was indeed shown by Talapin et al. that a core/shell/shell architecture can
be used to obtain a more efficient confinement of the electron-hole wave function inside
the nanocrystal [55]. The spectrum of these QDs is relatively narrow and centred around
different wavelengths depending on the geometry of the QD, as one can see by measur-
ing the emission spectra of CdSe/CdS/ZnS quantum dots of different sizes (Fig. 3.2a).
The spectral properties of these QDs make them excellent donors for the observation of
micrometre-range energy transfer, essentially for two reasons. Firstly, at the excitation
wavelength (λ0 = 405 nm), surface plasmons are strongly damped, preventing an excita-
tion of the acceptor by surface plasmons directly excited by the excitation laser. Secondly,
the emission spectrum of quantum dots is narrower than the one of fluorescent beads. This
is convenient in order to spectrally distinguish the photons emitted by the QDs. Hence,
we use CdSe/CdS/ZnS nanocrystals as donors in the experiments. We specifically select
QDs emitting at a wavelength around 600 nm. From transmission electron microscopy
(TEM) measurements, we estimate their diameter to be 7.5± 0.5 nm.

1More details on quantum dot synthesis are given in Ref. [54].
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Since the donors emit at wavelengths around 600 nm, we require the acceptors to be char-
acterised by a large absorption cross-section for these wavelengths. We select fluorescent
nanobeads with a diameter of 176±12 nm and which contain a large number of fluorescent
molecules (Dark Red Fluospheres, Thermo Fisher Scientific). Their emission and absorp-
tion spectra are reported in Fig. 3.2b. Note that the overlap between the donor emission
spectrum and the acceptor absorption spectrum is not optimised in this configuration.
This is required in order to properly separate the emission spectra of the two emitters.
Indeed, since acceptor beads have a large diameter, they can scatter surface plasmons
excited by the QD. This creates an undesirable signal at the donor emission wavelengths
that we can properly filter by detuning the donor and the acceptor emission spectra.

Figure 3.2 – (a) Spectrum of CdSe/CdS/ZnS nanocrystals of different sizes, synthesised
by Emmanuel Lhuillier. (b) Emitters selected for the energy transfer experiment. The
donor is a QD (blue curve) and the acceptor is a fluorescent bead (red curve). Dichroic
and long-pass filter transmission curves are represented in grey.

To begin with the sample preparation, we spin-coat chemically synthesised silver nanowires
(Sigma Aldrich) on a glass coverslip. These silver nanowires are characterised by a diam-
eter of approximately 115 nm and lengths ranging from 5 to 50 µm. Then, we spin-coat a
dilute solution of CdSe/CdS/ZnS nanocrystals and acceptor beads; the emitters are pref-
erentially dispersed in the close vicinity of the nanowires using this procedure. As a result,
we obtain a sample presenting isolated silver nanowires near-field coupled with single QDs
and single acceptor beads.

3.2.2 Optical setup

In order to measure the fluorescence intensities emitted by the QDs and the acceptor beads,
we use an inverted fluorescence microscope designed for time-resolved measurements, as
represented in Fig. 3.3. This microscope includes a pulsed excitation laser and two single-
photon avalanche diodes (SPADs). Since the optical arrangement of the SPADs recalls the
intensity interferometer developed by Hanbury Brown and Twiss, we refer to this setup as
a "HBT" configuration.

QDs are excited by using a laser diode at a repetition rate of 40 MHz and emitting
at 405 nm (LDH Series P-C-405M, PicoQuant) with an average power on the sample
of the order of 2 µW. For sample excitation and fluorescence collection, we use an oil
immersion microscope objective with a ×100 magnification and a 1.4 numerical aperture
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Figure 3.3 – Optical setup, based on an inverted fluorescence microscope combined with
time-resolved single-photon detection. DM stands for dichroic mirror and EM-CCD stands
for electron-multiplying charge-coupled device.

(UPLSAPO 100XO, Olympus). A dichroic mirror (Di01-R488, Semrock) and a long-pass
filter (BLP01-488R, Semrock) select the fluorescence photons emitted from the sample.
By passing through a 50:50 beamsplitter, fluorescent photons are detected by an EM-CCD
camera (iXon 897, Andor) and by two SPADs (PDM-R, Micro Photon Devices) developed
by Angelo Gulinatti and Ivan Rech (Politecnico di Milano) and based on a silicon avalanche
photodiode technology providing an enhanced sensitivity in the near infrared [56].

Light coming from the donor and the acceptor is separated by a second dichroic mirror
(ZT647rdc, Chroma) and a long-pass filter (ET665lp, Chroma) and then focused onto the
two SPADs. The first SPAD, called "SPAD 1", collects the donor fluorescence and the
second SPAD, called "SPAD 2", collects the acceptor fluorescence. The dichroic mirror
can be replaced by a 50:50 beam-splitter to characterise the emission properties of indi-
vidual emitters. In both cases, the signal collected by the photodiodes arises from the
500-nm-sized region of the sample that is optically conjugated with the detection system.
Additionally, a removable mirror can be inserted in the optical path to direct photons
towards a fibred spectrometer (Acton SP2300, Princeton Instruments). A piezoelectric
positioning system (PXY 200SG, Piezosystem Jena) is used to perform lateral displace-
ments of the sample in the object plane of the microscope. Hence, we can select a single
QD and an acceptor bead, both of them located in the near field of a 16-µm-long silver
nanowire.

To align the detectors without exciting the emitters, we use a supercontinuum laser (Fi-
anium SC450) filtered either at 560 or 680 nm. To start with, we focus the laser at
λ0 = 560 nm onto the QD and we align SPAD 1 using the signal coming from the laser.
We then use the same procedure with the laser at λ0 = 680 nm to align SPAD 2 with
the acceptor bead. After the alignment procedure, the fluorescence of the donor is thus
detected by SPAD 1 while the fluorescence of the acceptor is detected by SPAD 2.
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3.2.3 Determination of the donor-to-acceptor distance

In the experiment, we focus the pulsed laser at λ0 = 405 nm onto the QD and we measure
the fluorescence of both the QD and the acceptor bead using the SPADs. We then proceed
with the determination of the donor-to-acceptor distance. To do so, we use a wide-field-
image acquired by the EM-CCD camera during the experiment with an acquisition time
of 15 s (Fig. 3.4a). The brightest spot is due to the free-space emission of the QD (the
donor), and is conjugated to SPAD 1. We observe two other bright spots at both ends of the
nanowire, due to the scattering by the extremity of the nanowire of the surface plasmons
excited by the QD. Finally, we detect a bright spot at the position of the fluorescent bead
(the acceptor), which is due to the scattering of the surface plasmons by the bead at the
emission wavelength of the donor as well as the fluorescence from the acceptor molecules
inside the bead. We only measure the fluorescence of the acceptor molecules using SPAD 2
since we filter the scattered surface plasmon using an appropriate set of filters.

Figure 3.4 – (a) Wide-field image of the experiment measured by an EM-CCD camera.
The intensity is plotted in log-scale. (b) Measured point spread functions (data points)
and Gaussian fits to the data (solid lines) used to estimate the coordinates of the emitters.
From left to right: x- and y-coordinates of the donor (blue curves), x- and y-coordinates
of the acceptor (red curves).

By using the wide-field image measured by the EM-CCD camera, we can localise both
the QD and the acceptor bead by fitting a Gaussian function to the measured point
spread functions, as shown in Fig. 3.4b. Using this procedure, we estimate a distance d
of 8.7 µm between the QD and the bead. The precision of this estimation depends on
the number of photons detected from the emitters, as we will see in Chapter 6. However,
the standard error on the position estimates is usually of the order of 10 nm, which is
very small in comparison to the considered distance. Note that the point spread function
(PSF) is wider for the acceptor, which may be due to several reasons. Firstly, QDs are
small objects with a diameter of the order of 10 nm and can be considered as pointlike
emitters. In comparison, the diameter of fluorescent beads is approximately 200 nm, which
is non negligible in comparison to the spread of the PSF. Secondly, the acceptor emission
wavelengths are slightly larger than those of the donor, resulting in a wider PSF.
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3.3 Generation of single surface plasmons

We now characterise the ability of the CdSe/CdS/ZnS nanocrystals to emit single photons
and excite single plasmons. From these properties, we can expect the energy transfer
between the QD and the acceptor bead to occur at the single-plasmon level.

3.3.1 Demonstration of photon antibunching from single quantum dots

Light absorption by a QD can generate one or several electron-hole pairs named excitons
defining several distinct energy states. Importantly, QDs at room temperature generally
have a large single-exciton quantum yield in comparison to the quantum yield associated
with multi-excitons. Thus, most of the photons emitted by a QD come from the radiative
recombination of single excitons. This behaviour can be observed by exciting a QD with
a pulsed laser. If the pulse width is shorter than the excited-state lifetime of the QD, only
one fluorescence photon can be emitted by the QD during the time delay in-between two
pulses, called the repetition period. Single photon emission can then be evidenced with
two detectors in HBT configuration: by using a 50:50 beam-splitter ahead of two SPADs,
the fluorescence intensity emitted by the QD is then split with equal probability towards
the two photon detectors (SPAD 1 and SPAD 2). Because of the quantum nature of light,
each photon is either directed towards SPAD 1 or SPAD 2. Consequently, the signal on
the two detectors is anticorrelated within the same repetition period. We can quantify
this behaviour with the second-order correlation function, which is expressed as a function
of the delay τ by

g(2)(τ) =
ˆ

∆t
I1(t)I2(t+ τ) d t , (3.1)

where I1(t) and I2(t) are the intensities measured by each detector at the time t and ∆t
is the total acquisition time.

We thus perform measurements of the g(2) correlation function on single CdSe/CdS/ZnS
nanocrystals. For a single nanocrystal located on a glass coverslip and excited with an
average laser power of ∼ 0.5 µW, an absence of coincidences at zero delay is observed
(Fig. 3.5a). This phenomenon, called photon antibunching, is a characteristic of a good
single-photon emitter [57]. For a single nanocrystal in the near field of a silver nanowire
and excited with an average power of ∼ 2 µW, the g(2) correlation function shows a small
peak at zero delay (Fig. 3.5b) which means that the radiative recombination of multi-
excitons in the QD is not negligible any more. This might be a direct consequence of
the reduction of the excited-state lifetime induced by the presence of the silver nanowire.
Indeed, it was shown by Klimov et al. that the Auger effect – which is a non-radiative
recombination process – plays an important role in the dynamics of multi-excitons by
reducing their quantum yield [58]. When the excited-state lifetime is strongly reduced,
spontaneous emission can become faster than the Auger effect, resulting in the emission
of two photons within the same repetition period. Furthermore, the excitation intensity is
enhanced due to the higher laser power as well as to the presence of the silver nanowire,
which locally enhances the intensity of the excitation field due to plasmon resonance. As
a high intensity increases the probability of multi-excitons formation, it also increases the
probability of measuring more than one photon within the same repetition period. Thus,
both the reduction of the excited-state lifetime and the enhancement of the excitation
intensity are likely to contribute to the observed radiative recombination of multi-excitons.
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Figure 3.5 – Measurements of the g(2) correlation function. (a) Measurement on a
single nanocrystal on glass using a repetition rate of 5 MHz. (b) Measurement on a single
nanocrystal coupled to a silver nanowire using a repetition rate of 40 MHz.

The measurement of the g(2) correlation function can be relevant in different situations.
For instance, it can be used to determine the number of independent emitters in the case
of several close-by emitters [59]. In the case of a single emitter, it can also be used to find
the contribution of multi-excitons to the photon emission process. Assuming that only
energy states involving one and two excitons contribute to the emission process, it was
notably shown by Nair, Zhao and Bawendi that g(2) measurements allow one to estimate
the biexcition-to-exciton ratio [60]: whenever white noise can be neglected, the biexciton-
to-exciton ratio is given by the ratio of the area under the zero delay peak to the mean
value of the adjacent ones. In the following sections, we will show how the contribution of
white noise in the measurements can be accounted for in order to determine the biexciton-
to-exciton ratio more accurately.

3.3.2 Statistical properties of the second-order correlation function

For an experiment with two detectors in HBT configuration, it is interesting to compute
the expectation of the g(2) correlation function as defined by Eq. (3.1) depending on
the statistical relationship between the intensities I1(t) and I2(t) measured by the two
detectors. We will study the three different cases in which I1(t) and I2(t) are independent,
anticorrelated and correlated. It will notably provide us with reference values for the
number of coincidences measured by the two SPADs during the energy transfer experiment.
In addition, it will also allow us to accurately estimate the biexciton-to-exciton ratio for
the QDs used in the experiment.

Number of coincidences Let us consider an experiment with a pulsed excitation laser
and two detectors in HBT configuration, with n1 photons detected on detector 1 and n2
photons detected on detector 2. We note ∆t the total acquisition time and r the repetition
rate of the excitation laser. The number of repetition periods during the whole experiment
is then nt = r∆t. By definition, the value of the g(2) correlation function is given by the
number of repetition periods for which a photon is detected by each detector. In order
to characterise the distribution followed by the number of coincidences, we can assume
that no more than one photon is detected during one repetition period. Strictly speaking,
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this requires the repetition period to be smaller than the dead time of the detectors,
which is of the order of 80 ns. In practice, the probability of detecting more than one
photon in a repetition period is usually low under typical acquisition conditions and can
be neglected. The number of coincidences then follows a binomial distribution as the result
of nt independent experiments. The expectation of this distribution is given by

E(n1,2) = nt p(1, 2) , (3.2)

where p(1, 2) is the probability of simultaneously measuring a photon on each detector and
n1,2 is the random variable describing the number of coincidences. Moreover, the variance
of the number of coincidences is

Var(n1,2) = nt p(1, 2) [1− p(1, 2)] . (3.3)

To compute both the expectation and the variance of the number of coincidences, we can
express the probability p(1, 2) of simultaneously measuring a photon on each detector as
a conditional probability, which reads

p(1, 2) = p(2|1) p(1) , (3.4)

where p(1) is the probability of measuring a photon on detector 1 and p(2|1) is the prob-
ability of measuring a photon on detector 2 given that a photon has been detected on
detector 1. Assuming that the probability of measuring a photon on a given detector is
time independent, we can directly write p(1) = n1/nt. Therefore, the expectation and
the variance of n1,2 are determined by the conditional probability p(2|1). This probability
can be calculated by making different assumptions concerning the statistical relationship
between the intensities measured by the two detectors. We will detail three different
assumptions in the following paragraphs.

Independent intensities (hypothesis Hi) If the intensities I1(t) and I2(t) measured
by the two detectors are independent, the probability of detecting a photon on detector 2
given that a photon has been detected on detector 1 is given by p(2|1,Hi) = p(2) = n2/nt
where Hi is the hypothesis of independent intensities. It follows that the probability of
simultaneously measuring a photon on each detector is

p(1, 2|Hi) = n1 n2
n2
t

. (3.5)

This expression can for instance be used to calculate the expectation of the g(2) correlation
function at zero delay in the classical limit, which corresponds in practice to a sample with
a large number of emitters. It can also be used to calculate the expectation of g(2) for
large delays, as I1(t) and I2(t + τ) are usually independent in the limit of large delays,
even in the case of a single photon emitter.

Anticorrelated intensities (hypothesis Ha) Let us consider that the intensity mea-
sured by each detector i can be decomposed into two separate contributions so that
Ii(t) = Fi(t) +Bi(t) where Fi(t) and Bi(t) are respectively due to fluorescence and noise.
If the intensities F1(t) and F2(t) are perfectly anticorrelated and if the intensities B1(t)
and B2(t) are independent, the probability of detecting a photon on detector 2 given that
a photon has been detected on detector 1 is given by

p(2|1,Ha) = b2
nt

+ f2
nt

b1
n1

, (3.6)
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where Ha is the hypothesis of anticorrelated fluorescence intensities and fi and bi are
respectively the number of photons due to fluorescence and white noise. It follows that
the probability of simultaneously measuring a photon on each detector is

p(1, 2|Ha) = f1 b2 + f2 b1 + b1 b2
n2
t

. (3.7)

This expression can for instance be used to calculate the expectation of the g(2) correlation
function at zero delay in the case of a perfect single-photon emitter and in the presence
of background noise.

Correlated intensities (hypothesis Hc) As in the preceding paragraph, we consider
that the intensity measured by each detector i can be decomposed into two contributions
Fi(t) and Bi(t). If the two fluorescence intensities F1(t) and F2(t) are simultaneously equal
to zero for nd "dark" repetition periods (with nd < nt), it follows that these intensities
are correlated. This hypothesis is noted Hc. Assuming that the intensities B1(t) and
B2(t) are independent over the whole experiment, the probability of detecting a photon
on detector 2 given that a photon has been detected on detector 1 is given by

p(2|1,Hc) = b2
nt

+ f2
nt

b1
n1

+ f2
nb

f1
n1

, (3.8)

where nb = nt−nd is the number of "bright" repetition periods for which the fluorescence
intensities are considered as independent. It follows that the probability of simultaneously
measuring a photon on each detector is

p(1, 2|Hc) = f1 b2 + f2 b1 + b1 b2
n2
t

+ f1 f2
nt nb

. (3.9)

This expression can be used in the case of a blinking emitter such as a single quantum
dot. Indeed, the emission of QDs usually fluctuates between a bright and a dark state,
as we will see in Sect. 3.5.1. Hence the fluorescence intensities measured by the two
detectors are correlated and Eq. (3.9) can be used to calculate the expectation of the g(2)

correlation function for delays shorter than the typical time scale τb characterising the
blinking behaviour of the QD. In addition, if the considered QD emits single photons,
then F1(t) and F2(t) are also anticorrelated for time scales shorter than the repetition
period τr = 1/r. In such cases, Eq. (3.9) can thus be used to calculate the expectation of
g(2) for near-zero delays (τr < τ < τb).

Numerical experiment In order to corroborate these results, we perform a numerical
experiment that simulates the emission of photons by a single QD excited at a repetition
rate r = 10 MHz during ∆t = 2 s. We consider two detectors disposed in HBT configu-
ration, and each detector is characterised by a 1% probability of detecting a fluorescence
photon in a given repetition period. In the simulation, the QD is supposed to be a per-
fect single-photon emitter so that the fluorescence intensities F1(t) and F2(t) measured
by both detectors are perfectly anticorrelated on time scales smaller than the repetition
period (100 ns). Furthermore, the QD is characterised by a blinking behaviour between a
bright and a dark state, so that F1(t) and F2(t) are correlated on time scales of the order
of one millisecond. Furthermore, we model the dark count rates of the detectors by con-
sidering a 0.02% probability of detecting a count due to noise by each detector in a given
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repetition period, and the noise intensities B1(t) and B2(t) measured on both detectors
are considered as independent.

Figure 3.6a shows the g(2) correlation function associated with a given realisation of the
numerical experiment. It is calculated from the intensities Ii(t) = Fi(t) + Bi(t) with a
resolution of 100 ns. We can clearly identify the antibunching dip at zero delay due to
single-photon emission, as well as a positive correlation for near-zero time scales. This
positive correlation is observed over time scales larger than 100 ns but smaller than one
millisecond. Figure 3.6b shows the same results plotted for delays of the order of the
repetition period. We observe that the expectation of the number of coincidences does
not depend on the delay in this range, except at zero delay for which the fluorescence
intensities are anticorrelated .

Figure 3.6 – Calculation of the g(2) correlation function for a 2 s numerical experiment
simulating data obtained from a perfect single-photon emitter blinking between a bright and
a dark state on millisecond time scales. The expectations of the number of coincidences
under different hypothesis are represented by solid lines. Dashed lines correspond to a
statistical significance of ±1σ. (a) Results for a given realisation of the experiment and
for delays up to 5 ms. (b) Same results plotted for delays up to 1 µs, representing each
point by a bar.

For comparison purposes, we calculate the expectation of the number of coincidences
as given by Eq. (3.2) for each of the three hypothesis previously detailed concerning the
statistical relationship between the intensities I1(t) and I2(t). For each of these hypothesis,
we also calculate the corresponding interval [µ−σ;µ+σ] where µ is the expectation of the
number of coincidences and σ its standard deviation. One can see that the g(2) correlation
function is correctly estimated for large delays (red lines) using Eq. (3.5). We observe a
similar agreement between the g(2) correlation function calculated at zero delay and the
estimate (blue lines) given by Eq. (3.7), as well as between the g(2) correlation function
calculated for near-zero delays and the estimate (green lines) given by Eq. (3.9).

3.3.3 Quantitative characterisation of single-photon emission

As a direct application of this analysis, we can compare the expectation of the g(2) correla-
tion function to the number of coincidences experimentally measured on CdSe/CdS/ZnS
nanocrystals (Sect. 3.3.1). By doing so, we can accurately estimate the number of coinci-
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dences due to fluorescence photons, and thus the quality of the QDs used in the experiment
as single-photon emitters.

For each experiment, we start by estimating the number of events detected on each SPAD
due to background noise by using the decay histograms. From this knowledge and the
total number of events detected by each SPAD, we can calculate the expectation of the
number of coincidences per repetition period, assuming that the QD is a perfect single-
photon emitter. Then, we group the intensities measured by the SPADs into bins – with
a bin size given by the repetition period of the laser – and we calculate the number of
coincidences for the QD on glass (Fig. 3.7a) and for the QD coupled to the silver nanowire
(Fig. 3.7b). For this analysis, we select only the time intervals for which the emitter is in
the bright state. In practice, this is done by performing a post-processing gating on the
intensities collected by the two detectors. By doing so, we remove a contribution due to
white noise and thus lower the variance of the measured number of coincidences.

Figure 3.7 – Number of coincidences per repetition period for (a) a single QD on glass
and (b) a single QD coupled to a silver nanowire. These results are the same as those
presented in Fig. 3.5, except that the bin size equals the repetition period of the laser. The
expectation of the number of coincidences assuming anticorrelated fluorescence intensities
are represented by black lines. Greys lines represent the mean values of the number of
coincidences for non-zero delays.

We already mentioned that the ratio of the area under the zero delay peak to the mean
value of the adjacent ones gives an estimate of the biexciton-to-exciton ratio in a noise-free
experiment. We can adapt this formula to account for the presence of white noise in the
measurements. To do so, we estimate the contribution of the noise by the expectation
of the number of coincidences calculated for a perfect single-photon emitter. From this
knowledge, we can thus subtract the contribution of the noise to each peak. By using this
procedure, we obtain a biexciton-to-exciton ratio of 4% for the QD on glass and of 29%
when the QD is in the near field of a silver nanowire.

3.3.4 Observation of single plasmons on silver nanowires

It was shown that the coupling of a single-photon emitter to a silver nanowire generates
single surface plasmons exhibiting properties similar to those of single photons [48,49]. The
demonstration relies on the fact that a QD in the near field of a silver nanowire cannot
simultaneously emit a photon in free space and excite a surface plasmon. For the sake of
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completeness, we perform the same experiment with the experimental setup described in
Sect. 3.2. Thus, we study a single CdSe/CdS/ZnS nanocrystals in the near field of a single
nanowire using two detectors in HBT configuration: the first detector detects the photons
emitted in free space by the QD while the second detector detects the photons generated
by the scattering of surface plasmons by the end of the nanowire. In this experiment, we
estimate the distance between the QD and the end of the wire to be approximately 7.2 µm
by using a wide-field image recorded by the EM-CCD camera. Figure 3.8a shows the
g(2) correlation function calculated between the intensities measured by the two detectors,
which exhibits an absence of coincidences at zero delay. Furthermore, by grouping the
intensities per repetition period and by estimating the contribution of white noise in
the measurements, we show that the fluorescence intensities are perfectly anticorrelated
(Fig. 3.8b), indicating that only one quantum of energy is emitted by the QD for each
repetition period.

Figure 3.8 – (a) Measurement of the g(2) correlation function between the photons emit-
ted in free space by a QD coupled to a silver nanowire and the photons generated by the
scattering of surface plasmons at the end of the nanowire. (b) Same results with a bin
size equal to the repetition period (25 ns). The expectation of the number of coincidences
assuming anticorrelated intensities is represented by a black solid line. A grey line rep-
resents the mean value of the number of coincidences for non-zero delays. Dashed lines
correspond to a statistical significance of ±1σ.

3.4 Study of decay histograms

As we confirmed that CdSe/CdS/ZnS nanocrystals excite single surface plasmons when
coupled to a silver nanowire, we can now present the first evidence of the occurrence of
micrometre-range energy transfer mediated by single plasmons. The proof relies on the
analysis of the decay histograms measured from both the donor QD and the acceptor bead.

3.4.1 Decay histogram of the quantum dot

In general, the decay rate of a QD is directly determined by the transition matrix elements
connecting the energy states involved in the emission process. It strongly depends on the
geometry of the QD as well as on the temperature. The excited-state lifetime of a QD
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is usually of the order of 10-100 ns, which is relatively large in comparison to the typical
decay rate of fluorescent molecules. As explained by van Driel et al. [61], this is due to
the thermal population of states with low transition probabilities, called dark states.

In the energy transfer experiment, we can estimate the decay rate of the donor QD
by measuring its decay histogram. For comparison purposes, we also study a single
CdSe/CdS/ZnS nanocrystal on a glass substrate, excited with an average laser power of
∼0.5 µW at a repetition rate of 5 MHz. While this histogram follows a mono-exponential
distribution characterised by a decay rate of 0.034 ns−1, we observe that the decay rate
of the QD involved in the energy transfer experiment is strongly modified by the presence
of the silver nanowire (Fig. 3.9a). Notably, the decay histogram of the QD follows a bi-
exponential distribution. This can be expressed as a function of Γ1 and Γ∗1 which are the
two decay rates characterising the distribution. The lifetime probability density function
(PDF) of the QD then reads

hd(t) = η1Γ1 exp(−Γ1 t) + η∗1Γ∗1 exp(−Γ∗1 t) , (3.10)

where η1 = N1/Nt and η∗1 = N∗1 /Nt with N1 and N∗1 the number of photons respectively
associated with each contribution andNt = N1+N∗1 the total number of measured photons.

Figure 3.9 – (a) Decay histograms of the donor QD (dark blue) and of a single QD on
glass (light blue). The black curve is a mono-exponential fit to the decay histogram of
the QD on glass. (b) Decay histogram of the donor QD, represented using a shorter time
scale. The black curve is a bi-exponential fit to the decay histogram and the grey curve is
the IRF.

In order to estimate the two decay rates characterising the distribution, we fit the con-
volution of the instrument response function (IRF) and a bi-exponential function to the
measured decay histogram (Fig. 3.9b). The main contribution accounts for 80% of the
total photon emission and its decay rate is Γ1 = 0.67 ns−1. This corresponds to an en-
hancement factor of the order of 20 with respect to the reference measurement on the glass
substrate. The remaining 20% of the photons shows a faster decay rate (Γ∗1 >12 ns−1)
which is a characteristic of the radiative recombination of biexciton states. This fast decay
cannot be resolved with the setup used for the experiment since it is shorter than the IRF.
Based on this analysis, we can estimate that the biexciton-to-exciton ratio is of the order
of 25%. We already presented measurements of the g(2) correlation function on a single
QD within the same experimental conditions (Fig. 3.8b) and we demonstrated that the
biexciton-to-exciton ratio is of 29% for this QD. Both values are consistent and indicate
that the donor QD is likely to be a good single-photon emitter.
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In order to check measurement repeatability, we perform several measurements on different
CdSe/CdS/ZnS nanocrystals coupled to silver nanowires. The slower decay as well as
its contribution to the total histogram varies for different emitters, but the faster decay
usually accounts for less than 30% of the total photon emission. From the slower decay,
we typically obtain enhancement factors ranging from 5 to 20 with respect to free-space
emission. This large range of values is expected as we do not control neither the distance
between the QD and the nanowire nor the orientation of the dipole moment of the QD
relative to the nanowire axis.

3.4.2 Decay histogram of the acceptor bead under laser excitation

Before presenting the decay histogram of the acceptor bead measured by SPAD 2 during
the energy transfer experiment, it is interesting to investigate the coupling between the
acceptor bead and the silver nanowire. Hence, we measure the decay histogram of the
acceptor bead under the different excitation schemes represented in Fig. 3.10.

Figure 3.10 – Measurement of the decay histogram of the acceptor bead for different ex-
citation schemes: bead not coupled to the nanowire (Exc. 1), bead coupled to the nanowire
and excited from the far field (Exc. 2), bead coupled to the nanowire and excited by surface
plasmons (Exc. 3).

As a reference, we measure the decay histogram of a bead on a glass coverslip. We then
compare it to the decay histogram obtained for the acceptor bead coupled to the silver
nanowire in two different situations. The bead is either excited by a laser focused on it or
by surface plasmons propagating on the silver nanowire. In this last configuration, surface
plasmons are excited by focusing the excitation laser onto the extremity of the nanowire
(the left end on Fig. 3.4). The laser wavelength is set to 640 nm for these measurements.
This wavelength is indeed in the overlap region between the donor emission spectrum and
the acceptor absorption spectrum, so that surfaces plasmons excited by the laser act like
the surface plasmons excited by the QD in the energy transfer experiment.

As expected, the decay rate of the acceptor bead coupled to the wire is larger than on
glass for both excitation schemes (Fig. 3.11a). Moreover, the decay rate obtained with a
far-field excitation is smaller than the one obtained when the bead is excited via surface
plasmons. Indeed, all the molecules inside the bead can be excited in the first situation
while only the molecules located closer to the wire can be excited in the second situation.
To obtain a quantitative estimate of the decay rate of the acceptor bead, we model the
measured distribution of decay rates by a lognormal distribution, as proposed by Nikolaev
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et al. [62]. The lognormal distribution is defined by

Φ(Γ) = exp
(
− ln2(Γ/Γmf )

w2

)
, (3.11)

where Γmf is the most frequent decay rate and w is a parameter characterising the width
of the distribution. We can use this distribution to define the lifetime PDF of the bead,
which reads

ha(t) ∝
+∞ˆ

Γ=0

Φ(Γ) exp(−Γt)dΓ . (3.12)

We thus fit the convolution of the IRF and the lifetime PDF of the bead to the measured
decay histograms. As a result, we determine the distribution of decay rate Φ(Γ) presented
in Fig. 3.11b and associated with the three different excitations schemes. We observe
that the width w of these distributions significantly depends on the excitation scheme.
The mono-exponential approximation is justified if w is smaller than the lifetime of the
emitter. This approximation notably holds for the measurement on glass. However, the
mono-exponential approximation fails for the measurements concerning the bead coupled
to the nanowire. Hence, we use the average value of Φ(Γ) to compute the enhancement of
the decay rate in these particular situations. Using this approach, we obtain an effective
decay rate enhancement of 1.5 for the bead excited via the far field and of 2.3 for the bead
excited via surface plasmons.

Figure 3.11 – (a) Measured decay histograms in three different situations: bead not
coupled to a nanowire (blue curve), bead coupled to a nanowire and directly excited by the
laser (green curve), bead excited by surface plasmons launched by focusing a laser on the
extremity of the nanowire (red curve). The grey curve is the measured IRF and the black
curves are log-normal fits to the decay histograms. (b) Log-normal distributions of decay
rate for these three situations.

3.4.3 Evidence of the occurrence of energy transfer

In the energy transfer experiment, the occurrence of the energy transfer between the QD
and the acceptor bead can be demonstrated by studying the measured decay histograms.
A common procedure is to determine the enhancement of the decay rate of the donor due
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to the presence of the acceptor. However, no significant differences would be observed in
this case due to the low efficiency of the process. Nevertheless, it is possible to measure the
decay histogram of the acceptor bead, which can be significantly different when excited
by the QD with respect to the case in which the acceptor is directly excited by the
laser. Indeed, in the energy transfer experiment, the acceptor cannot be excited until the
donor decays to the ground state. From the lifetime PDFs of the donor and the acceptor,
respectively noted hd(t) and ha(t), the lifetime PDF of the acceptor excited via the donor
is

het(t) = hirf (t) ∗ hd(t) ∗ ha(t) , (3.13)

where hirf (t) is the IRF and the asterisk (∗) represents the convolution product. While
hd(t) was determined in Sect. 3.4.1 from the decay histogram measured by SPAD 1 during
the experiment, we determined ha(t) in Sect. 3.4.2 by exciting the acceptor bead via
surface plasmons excited by focusing a pulsed laser at λ0 = 640 nm onto an edge of the
wire. Figure 3.12 shows the expected decay histogram of the acceptor excited via the
donor using Eq. (3.13). This PDF is significantly wider than the lifetime PDF of the
donor as well as the lifetime PDF of the acceptor independently excited.

Figure 3.12 –Model functions associated with the decay histograms of the QD (blue curve)
and the acceptor (red curve) independently excited. The model function associated to the
decay histogram of the acceptor excited by the QD is their convolution (orange curve). The
IRF is represented by a grey curve.

From this knowledge, we can now analyse the decay histogram of the acceptor bead mea-
sured during the energy transfer experiment. Figure 3.13a shows the measured decay
histogram with a 64 ps resolution. It is characterised by two components, a slow decay
which is a characteristic of the occurrence of the energy transfer and another decay char-
acterised by a very short lifetime. This component is attributed to silver luminescence.
Indeed, such a fast component of the decay histogram is also observed in test experiments
performed on bare silver nanowires deposited on a glass coverslip under pulsed excitation
at λ0 = 405 nm. Luminescence is characterised by a very broad spectrum and can prop-
agate along the nanowire via surface plasmons for finally being scattered by the acceptor
bead and detected by the detector. We consequently fit the IRF to the luminescence peak
and we subtract it from the decay histogram. Figure 3.13b shows the corrected decay
histogram along with a fit of the expected lifetime PDF to the decay histogram. The
excellent agreement between them is an evidence that the observed acceptor fluorescence
comes from the energy transfer originating from the QD and mediated by surface plas-
mons. From this decay histogram, we estimate that f2 = 1010± 50 fluorescence photons
are detected from the acceptor during the experiment. At the same time, f1 = 1.6 × 107
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fluorescence photons are collected from the QD.

Figure 3.13 – (a) Raw decay histogram measured by SPAD 2 with a resolution of 64 ps.
The IRF is fitted to the measured decay histogram. (b) Corrected decay histogram of the
acceptor with a resolution of 700 ps, along with the model function (orange curve). Error
bars correspond to a statistical significance of ±2σ calculated assuming that the measured
intensities are Poisson-distributed.

3.5 Intensity fluctuations due to blinking

We now demonstrate the correlated blinking of the QD and the acceptor bead as a second
evidence of the occurrence of micrometre-range energy transfer between the two emitters.

3.5.1 Blinking of the quantum dot

At the single-crystal level, the emission of a QD usually fluctuates between bright and
dark states. In a bright state, the electron-hole pair recombines by emitting a photon. In
contrast, the recombination process does not involve spontaneous emission if the QD is
in a dark state. This well-known property of QDs is referred to as blinking. It is often
considered as a drawback since it reduces the average intensity emitted by a QD. It was
notably shown that the blinking behaviour of QDs can be limited by tuning the structure
of the nanocrystals [63,64]. The CdSe/CdS/ZnS nanocrystals used in the experiments are
most of the time in a bright state, even though they show a fast blinking behaviour.

As already mentioned, SPAD 1 is used to measure the fluorescence of the donor during
the energy transfer experiment. Figure 3.14a shows the fluorescence counts of the donor
I1(t) as a function of time. Due to the blinking of the QD, we observe strong fluctuations
on time scales larger than the millisecond between a bright and a dark state for nearly
70 s before photobleaching. A slight drift of the experiment from optimum alignment
is responsible of a continuous loss of collected signal with time. By applying a linear
correction to compensate for this drift, we obtain a corrected intensity distribution of the
number of photons detected per millisecond (Fig. 3.14b), on which the bright and the dark
states clearly appear. This clear distinction between two states and the abrupt decrease
in the measured intensity due to the photobleaching of the QD attest that the donor is
indeed a single QD.
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Figure 3.14 – (a) Time dependence of the fluorescence counts of the QD, with a reso-
lution of 1 ms (blue curve). The drift of the experiment is represented by a dashed line.
(b) Distribution of detected events taking into account a linear correction for the drift of
the experiment.

3.5.2 Characterisation of blinking by second-order correlations

As we collect a low number of photons from the acceptor bead, we cannot directly observe
the fluctuations in the fluorescence counts of the acceptor bead I2(t) as we do for the QD.
However, we can take advantage of the measurements performed by the two detectors and
use the g(2) correlation function to demonstrate the correlated blinking of the QD and the
acceptor bead. Indeed, if the fluorescence intensities F1(t) and F2(t) measured by each
detector are correlated, the expectation of the g(2) correlation function for near-zero delays
is significantly larger as compared to the case of independent fluorescence intensities, as
shown in Sect. 3.3.2. However, while it is easy to compute the g(2) correlation function with
a temporal resolution as good as the repetition period for delays close to zero, the numerical
evaluation of g(2) for a large range of delays requires a large computational power. Under
typical acquisition conditions, the best option to observe the blinking of an emitter on
time scales of the order of the millisecond is to group the detected events into temporal
bins and then to perform the computation of g(2). Furthermore, this procedure increases
the higher signal-to-noise ratio for the number of coincidences due to the binning process.
In this case, the analysis carried out in Sect. 3.3.2 does not hold, because more than one
photon can be measured into one bin. Additionally, single-photon emission cannot be
demonstrated using this approach, as a direct consequence of the binning process.

In this section, we do not calculate the expectation of the g(2) correlation function2 but
its upper limit in the case of a linear relationship between F1(t) and F2(t). Let wbin be
the bin size in unit of repetition periods. From Eq. (3.1), the g(2) correlation function can
be written as

g(2)(τ) = wbin n1 n2
∆t + Cov[I1(t), I2(t+ τ)] , (3.14)

where n1 and n2 are the number of photons measured by each detector during the acqui-

2To calculate the expectation of g(2) with the same formalism as the one used in Sect. 3.3.2, we would
consider that the number of coincidences follows a multinomial distribution, as the result of nt/wbin

independent experiments. However, this approach requires to model the blinking dynamics of the QD,
which is not needed for the method presented in this section.
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sition time ∆t. The covariance operator is defined by

Cov(I1, I2) =
ˆ

∆t
(I1(t)− I1)(I2(t)− I2) dt , (3.15)

where I1 and I2 are the mean intensities measured by the two detectors. Equation (3.14)
explicitly shows that the number of coincidences is the sum of the expectation of the num-
ber of coincidences assuming independent intensities and the covariance of the intensities.
Indeed, the covariance of the intensities equals zero if the two intensities are independent.
As a consequence, we can use the covariance to quantify a possible deviation from inde-
pendence in the statistical relationship between the fluorescence intensities F1(t) and F2(t)
respectively measured by detector 1 and detector 2.

By decomposing each intensity into its fluorescence and noise contributions for each de-
tector i so that Ii(t) = Fi(t) +Bi(t), it follows that

Cov(I1, I2) =
ˆ

∆t
(F1(t)− F1)(F2(t)− F2) dt+

ˆ
∆t

(F1(t)− F1)(B2(t)−B2) dt

+
ˆ

∆t
(B1(t)−B1)(F2(t)− F2) dt+

ˆ
∆t

(B1(t)−B1)(B2(t)−B2) dt . (3.16)

The last three terms involve the integral over ∆t of a white noise and therefore equal zero
in the limit of large ∆t. The covariance of I1(t) and I2(t) is therefore only determined by
the fluorescence counts, and reads

Cov(I1, I2) =
ˆ

∆t
(F1(t)− F1)(F2(t)− F2) dt . (3.17)

In the limit of large ∆t, this equation equals zero if F1(t) and F2(t) are independent.
However, if a linear relation between F1(t) and F2(t) exists so that F2(t) = α F1(t), the
covariance of I1(t) and I2(t) under this hypothesis noted Hlin reads

Cov(I1, I2 | Hlin) = α×
ˆ

∆t
(F1(t)− F1)2 dt . (3.18)

We can use this relation to define a correlation coefficient noted R that equals zero if
F1(t) and F2(t) are uncorrelated and that equals unity if they are linearly related via the
coefficient α. Under these conditions, the coefficient R reads

R = Cov(I1, I2)
Cov(I1, I2 | Hlin) . (3.19)

Since F2(t) = αF1(t), we can directly write Var(F1) = α2 Var(F2) and the correlation
coefficient R becomes

R = Cov(I1, I2)√
Var(F1) Var(F2)

. (3.20)

The correlation coefficient R can be interpreted as an adaptation of the Pearson correlation
coefficient for noisy signals: it equals unity if the fluorescence intensities are linearly related
while it equals zero if the intensities are independent. It is important to note that the
normalisation in Eq. (3.20) is not performed using the variance of the total intensities
but only the contributions due to fluorescence. The contribution of white noise must
consequently be determined before the analysis.
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Using this approach, we can calculate the correlation coefficient R as defined by Eq. (3.20)
for the numerical experiment presented in Sect. 3.3.2. Figure 3.15 shows the correlation
coefficient as a function of the delay between the intensities measured by each detector.
The size of the temporal bins used for I1(t) and I2(t) is 100 µs. As expected, we do not
observe the antibunching in this case. Moreover, we observe that the correlation coefficient
equals zero for large delays, attesting that the fluorescence intensities are independent in
this limit. It is interesting to note that the correlation coefficient is slightly smaller than
unity at zero delay. Indeed, F1(t) and F2(t) are not perfectly linearly related due to the
random character of photon emission when the emitter is in the bright state. However,
this effect is small for a large bin size wbin because fluorescence intensities become almost
perfectly linearly related due to the binning process.

Figure 3.15 – Correlation coefficient versus delay for the numerical experiment presented
in Sect. 3.3.2. It is calculated from I1(t) and I2(t) using a resolution of 100 µs.

3.5.3 Correlated blinking of the donor and the acceptor

We adopt this approach to evaluate the degree of linear correlation as a function of the
delay between the signals detected from the donor QD and the acceptor bead. Indeed,
if the blinking of the two emitters is correlated, we expect to observe a linear relation
between the fluorescence intensities so that F2(t) = αF1(t) and Var(F2) = α2 Var(F1).
Based on the analysis of the decay histograms presented in Sect. 3.4.3, we can estimate
that α = f2/f1 ≈ 6.3×10−5. Moreover, the intensity I1(t) measured by SPAD 1 is largely
due to the fluorescence of the QD which strongly dominates over noise in the experiment.
Since the variance of I1(t) is determined by the blinking of the QD, we can make the
approximation Var(F1) ≈ Var(I1).

To obtain a good signal-to-noise ratio, we perform the following data processing for the
calculation of the correlation coefficient:

• The covariance of the intensities measured by SPAD 1 and SPAD 2 is calculated
with a time resolution of 1 ms.

• We select a 30 s time interval (from t=40 to 70 s in Fig. 3.14a) in which the QD
frequently blinks. By considering this time interval, we increase even more the
variance of the fluorescence intensities in comparison to the variance of the noise.

• We symmetrise the intensities I1(t) and I2(t) in order to be insensitive to the drift
of the experiment.
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• We select the photons on the base of their arrival time with respect to the laser exci-
tation pulse. More precisely, we only consider the interval between 1.856 ns and 12 ns
for the acceptor fluorescence. Consequently, we do not consider the luminescence
peak that we identified in Fig. 3.13a.

Figure 3.16a shows the correlation coefficient R(τ) between the QD intensity and the
acceptor intensity (orange curve), given by

R(τ) = Cov[I1(t), I2(t+ τ)]
αVar(I1) . (3.21)

The correlation coefficient is almost of unity at zero delay, which means that the two
fluorescence intensities F1(t) and F2(t) are almost perfectly linearly related. This obser-
vation proves that the blinking of the donor and the acceptor is correlated. Moreover,
the correlation coefficient goes to zero for large delays, on time scales characterising the
blinking of the QD (of the order of 500 ms). The small deviation from unity at zero delay
has two origins. Firstly, we slightly overestimate the variance of F1(t) by making the
approximation Var(F1) ≈ Var(I1). Secondly, we do not expect a perfectly linear relation
between F1(t) and F2(t) due to the random character of photon emission. This effect was
already observed in the context of the numerical experiment presented in Fig. 3.15.

Figure 3.16 – (a) Correlation coefficient between the fluorescence of the QD and the
fluorescence of the acceptor bead (orange curve). (b) Correlation coefficient between the
fluorescence of the QD and the light scattered by the end of a nanowire (black curve) deter-
mined from a side experiment. In each case, the autocorrelation coefficient measured from
the free-space emission of the QD is also shown for comparison purposes (blue curves).

For comparison purposes, we calculate the autocorrelation coefficient of the QD inten-
sity (Fig. 3.16a, blue curve) defined as the correlation coefficient between the intensity
measured from the QD and itself. The time scales of the fluctuations are effectively the
same for both the QD and the acceptor fluorescence, which corroborates the analysis.
The quantitative agreement between them3 also validates the value of α = F2(t)/F1(t)
determined from the analysis of the decay histograms. In addition, we perform the same
analysis on the experiment involving a QD without an acceptor bead that we already
presented in Sect. 3.3.4. In this experiment, a QD excites single surface plasmons on a
silver nanowire, SPAD 1 detects the free-space emission of the QD and SPAD 2 detects

3The curves shown in Fig. 3.16a are calculated without any free parameter for normalisation.
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the surface plasmons scattered at the nanowire end located 7.2 µm away from the QD.
The autocorrelation of the QD intensity and the correlation coefficient between the QD
intensity and the intensity scattered at the wire extremity are again in excellent agreement
(Fig. 3.16b).

3.6 Towards a demonstration of photon antibunching

In principle, it should be possible to observe an anticorrelation between the intensities
collected from the QD and the acceptor bead at zero delay and on the nanosecond time
scale. However, we do not observe the antibunching in the g(2) correlation function due
to the low number of fluorescence photons measured from the acceptor. In this section,
we identify the conditions that would be required for its observation.

3.6.1 Condition required to demonstrate photon antibunching

Let us determine the condition required to demonstrate an anticorrelation in the fluores-
cence intensities measured by two detectors in HBT configuration. To do so, the number
of coincidences in the central peak of the g(2) correlation function must be smaller than
the number of coincidences in the adjacent peaks. However, for a given realisation of the
experiment, it is not sufficient to show that the measured value of the central peak is
smaller than the mean value of the adjacent peaks to prove that the fluorescence intensi-
ties measured by each detector are anticorrelated. We must indeed demonstrate that this
difference is significant and cannot be attributed to shot noise. To this end, the signal to
be measured must be larger than its standard deviation, which reads

E(na − n0)�
√

Var(na − n0) , (3.22)

where n0 and na are the random variables which respectively describe the number of
coincidences for zero and near-zero delays. In order to characterise the distributions
followed by these two random variables, we can assume a statistical relationship between
the fluorescence intensities F1(t) and F2(t) measured by each detector, as detailed in
Sect. 3.3.2. The expectations of n0 and na can then be calculated using Eq. (3.2) and
their variances using Eq. (3.3).

Let us assume that the fluorescence intensities F1(t) and F2(t) are perfectly anticorrelated.
Then, the expectation of n0 can be calculated from Eq. (3.7). As a matter of simplicity,
we consider here that the emitter does not blink. This amounts to consider only the time
intervals for which the emitter is in the bright state if the emitter does blink. Then, the
expectation of na can be calculated from Eq. (3.5) since I1(t) and I2(t+τ) are independent
for τ 6= 0. The expectation of (na − n0) consequently reads

E(na)− E(n0) = ∆t F̄1F̄2
r

, (3.23)

where ∆t is the acquisition time, r is the repetition rate of the laser and F̄1 and F̄2
are respectively the average fluorescence intensities measured by the two detectors. It
follows that the expectation of the signal to be measured increases with F̄1, F̄2 and ∆t
and decreases with r. These parameters are generally related to one another: for instance,
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increasing the repetition rate of the laser usually increases the measured fluorescence
intensities.

The variance of (na − n0) can be calculated in the same way, even though its expression
also depends on N̄1 and N̄2 that are the average noise intensities respectively measured by
each detector. From this knowledge, we can calculate the value of the test statistic THBT
defined as follows:

THBT = E(na)− E(n0)√
Var(na) + Var(n0)

, (3.24)

This test is constructed from the inequality given by Eq. (3.22), considering that na
and n0 are independent random variables. If THBT � 1, the measurement of the g(2)

correlation function allows one to demonstrate the anticorrelation between F1(t) and F2(t).
In contrast, if THBT < 1, the standard deviation of (na−n0) is greater than its expectation,
which means that the signal-to-noise ratio is insufficient to demonstrate the anticorrelation
in the fluorescence intensities. As a rule of thumb, we can assume that THBT > 3 is
required to demonstrate the anticorrelation, as it corresponds to a statistical significance
of ±3σ.

The test statistic THBT can be used to determine whether a specific experiment performed
in HBT configuration would allow one to demonstrate an anticorrelation between F1(t)
and F2(t) if the intensities are perfectly anticorrelated. Thus, it also gives the upper
limit for the ability of g(2) measurements to demonstrate photon antibunching, regardless
of the actual statistical relationship between F1(t) and F2(t). If F1(t) and F2(t) are
perfectly anticorrelated, the ability of the measurement to demonstrate antibunching can
be evaluated using the test statistic THBT . However, if the anticorrelation is not perfect –
due to the formation of biexction states in a QD for instance – then THBT only gives the
upper limit for the ability of g(2) measurements to demonstrate antibunching.

For typical acquisition conditions, THBT is usually larger than unity. For instance, in
the two experiments respectively performed on a single QD on glass (Fig. 3.7a) and on
a single QD coupled to a silver nanowire (Fig. 3.7b), the number of fluorescence photons
measured by the two SPADs are large resulting in THBT ≈ 65 for both experiments. In
the experiment involving a single QD and the surface plasmon scattered by the end of the
nanowire (Fig. 3.8b) the number of detected photons is smaller resulting in THBT ≈ 10.
Nevertheless, we can clearly see that all of these measurements allow us to draw a signif-
icant conclusion concerning the statistical relationship between the intensities measured
by the two detectors.

3.6.2 Comparison with the current experimental conditions

Let us now summarise the characteristics of the energy transfer experiment:

• We can estimate the acquisition time from the measurement of the intensity emitted
by the QD, as previously shown in Fig. 3.14a. By performing a post-processing
gating in order to consider only the bright state of the QD, we obtain ∆t = 56 s.

• The repetition rate of the laser is r = 40 MHz.

• The number of fluorescence photons measured from the QD is f1 = 1.6×107 and the
number of fluorescence photons measured from the acceptor bead is f2 = 1010. This
respectively corresponds to average fluorescence intensities of F̄1 = 2.9 × 105 cts/s
and F̄2 = 18 cts/s.
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• From the measured decay histograms, we can estimate the number of events due to
white noise on each detector, which is b1 = 2.2×105 and b2 = 4500. This respectively
corresponds to average background intensities of N̄1 = 3900 cts/s and N̄2 = 80 cts/s.

We can now calculate the value of THBT in order to evaluate whether the current ex-
perimental conditions can allow the demonstration of single-photon emission or not. We
obtain THBT = 0.85 which is clearly insufficient to demonstrate an antibunching.

In order to get a better understanding of the limitations of the experiment, we can calcu-
late the expectation and the standard deviation of the number of coincidences as a function
of the parameters described above. To start with, we calculate the expectation and the
standard deviation of the number of coincidences for near-zero delays, assuming indepen-
dence between the fluorescence intensities. Then, we calculate these quantities at zero
delay, assuming perfect anticorrelation between the fluorescence intensities. We present
here the ±2σ-intervals as a function of the average fluorescence intensity F̄2 emitted by
the acceptor and measured by SPAD 2 (Fig. 3.17a). We also present the same intervals
as a function of the acquisition time ∆t of the experiment (Fig. 3.17b).

Figure 3.17 – Expectation of the number of coincidences as a function of (a) the average
fluorescence intensity F̄2 emitted by the acceptor and measured by SPAD 2 and (b) the
acquisition time ∆t of the experiment. Red curves are calculated considering anticorrelated
intensities while blue curves are calculated considering independent intensities. Dashed
lines correspond to a statistical significance of ±2σ. Green lines represent the actual
experimental conditions.

The ±2σ-intervals strongly overlap for the current experimental conditions, characterised
by F̄2 = 18 cts/s and ∆t = 56 s. However, an enhancement of F̄2 by a factor of 4
would result in a value of THBT around 3. In this case, we would be able – in theory – to
demonstrate antibunching. To this end, it will probably be required to enhance the energy
transfer efficiency by using more elaborated nanostructured waveguides. Another possible
solution to improve the ability of the g(2) measurements to demonstrate antibunching is
to increase the acquisition time of the experiment. By increasing the integration time up
to 200 s, we would obtain a value of THBT around 3. However, in practice, the current
acquisition time is limited by the photobleaching of the QD.
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3.7 Conclusion

In this chapter, we presented an experimental demonstration of energy transfer occurring
between a single QD and fluorescent molecules embedded inside a nanobead, for a donor-
acceptor distance of 8.7 µm. To start with, we showed that CdSe/CdS/ZnS nanocrystals
can excite single plasmons with a biexcition-to-exciton ratio smaller than 30%. Then, we
showed that the measurement of the decay histogram of the acceptor bead can be used to
demonstrate the occurrence of energy transfer between the QD and the bead (Fig. 3.13b).
Furthermore, we demonstrated the existence of a positive correlation on the millisecond
time scale between the intensities emitted by the QD and the bead (Fig. 3.16a). This is
the main result of this chapter, which attests that the blinking of the QD and the bead
is correlated while they are distant of several micrometers. This constitutes a further
evidence of micrometre-range energy transfer mediated by single plasmons.

As a direct evidence of a transfer of energy mediated by single energy quanta, we ex-
pect an anticorrelated emission between the QD and the acceptor on the nanosecond
time scale. Unfortunately, this observation was hindered by the noise level due to the
weak efficiency of the energy transfer process. To limit ohmic losses occurring during
the propagation of the surface plasmons, we also studied the energy transfer for shorter
donor-to-acceptor distances. However, the direct excitation of the acceptor bead by the
laser became non-negligible in these cases. It should be noted that the efficiency of the
process could theoretically be estimated – as we did in Sect. 2.6 for the planar geometry –
even though the dyadic Green function of the field reflected by the nanowire is more diffi-
cult to calculate [65]. Using a numerical approach such as a finite-difference time domain
simulation requires a huge computational power because of the large size of the system
along the nanowire axis. An alternative approach to achieve this task is to numerically
determine the field created by a dipole near the nanowire and to analytically account for
the propagation of the surface plasmons, as proposed by Barthes et al. [66].

In any case, more efficient configurations will be required to achieve a stronger coupling
between the emitters. Various waveguides such as plasmonic V-grooves [67], plasmonic
wedges [68] and dielectric nanofibres [69] are already used to efficiently couple single emit-
ters to guided modes; such waveguides could therefore be used to achieve efficient long-
range energy transfer. For this purpose, hybrid nanoantenna-waveguide systems appear as
promising structures, as originally proposed by Oulton et al. [70]. In such configurations,
the field generated by a donor can be efficiently coupled to a dielectric waveguide using
a nanoantenna. The field can then propagate in the waveguide without attenuation so
that it can be outcoupled by another nanoantenna located several micrometers away. For
instance, de Roque, van Hulst and Sapienza numerically showed that the association of
two plasmonic antennas with a dielectric waveguide can enhance the transfer rate for up
to 8 orders of magnitude [38]. Interestingly, Biehs, Menon and Agarwal recently showed
that giant energy transfer rates are also expected between a donor-acceptor pair across a
hyperbolic metamaterial slab [71].

To achieve strong light-matter interaction, plasmonic antennas offer the advantage of a
strong confinement of the electromagnetic field, but with significant ohmic losses. Recently,
dielectric antennas were proposed to circumvent this issue. In the following chapter, we
will present an experimental study of dielectric nanoantennas and we will show their ability
to modify the emission properties of fluorescent emitters located in their near field.
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CHAPTER 4

Spontaneous emission in the near field of silicon
nanoantennas

In this chapter, we present a three-dimensional study of the near-field interaction between
a fluorescent nanobead and different dielectric nanoantennas. First of all, we introduce the
principle of the experiment and the context of this work. Then, we describe the antennas
under study and their Mie resonances, characterised using dark-field measurements. We
also detail the experimental setup, which consists in a homebuilt atomic force microscope
at the tip of which a fluorescent nanobead is fixed. Finally, we present an experimental
study of the spatial variations of the local density of states due to the presence of the
silicon antennas. We also demonstrate that these antennas modify both the excitation
field and the directionality of fluorescence emission.

4.1 Introduction

The theory of light scattering by a homogeneous sphere was formalised by Mie in 1908 [72].
He found the exact solution to Maxwell’s equations for a sphere of any dimensions with
respect to the wavelength of light, generalising the solution found by Rayleigh for small
particles. From this work, the term Mie scattering is nowadays used to describe the
scattering of light by structures presenting a cylindrical or spherical invariance. Such
particles exhibit resonances at different frequencies depending on the size and the material
of the particle. These resonances allow dielectric nanostructures to strongly interact with
light at optical frequencies, resulting in the generation of fewer ohmic losses in comparison
to nanostructures made of plasmonic materials.

Furthermore, Mie resonances of dielectric particles can be used to obtain an effective rel-
ative permeability that is different from unity, while the magnetic response of plasmonic
particles remains almost negligible because of the vanishing electric field inside the par-
ticles [73]. Interestingly, the interaction between the electric and magnetic responses of
dielectric particles opens the possibility to observe several unusual properties, such as a
suppression of optical backscattering, as predicted in 1983 by Kerker, Wang and Giles [74]
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and observed by Person et al. for nanoparticles at optical frequencies [75]. The interaction
between the electric and magnetic part of the field can also be used to observe negative re-
fraction, which was demonstrated at optical frequencies using metamaterials by Valentine
et al. [76].

Recently, several theoretical studies investigated the possibility to use Mie resonances to
build antennas at optical frequencies using dielectric materials. In 2011, Garcia-Etxarri et
al. identified a range of frequencies in the near infrared for which both electric and mag-
netic resonances can be identified, without overlapping with higher order modes [77]. One
year later, Rolly et al. showed that spherical particles can be used to promote magnetic
transitions [78]. To do so, they derived analytical expressions for the decay rate of electric
and magnetic transition dipoles located in the vicinity of a sphere. On the experimental
side, Caldarola et al. recently performed ensemble measurements on emitters dispersed in
the vicinity of silicon dimers, resulting in a substantial increase in the collected fluores-
cence [79]. Cambiasso et al. used a similar approach to demonstrate an increase in the
decay rate of fluorescent dyes located in the gap of a gallium phosphide dimer [80]. Silicon
dimers were also studied by Regmi et al. who performed a comprehensive analysis of the
fluorescence enhancement mechanisms based on fluorescence correlation spectroscopy [81].

In the meantime, a few articles reported on the development of an original scanning-probe
technique used to probe the local density of states (LDOS) in the near field of a nanostru-
cure. This technique is based on the grafting of a fluorescent emitter to the tip of an atomic
force microscope (AFM). In 2011, Frimmer, Chen and Koenderink presented the first de-
cay rate map characterising the near-field interaction between a fluorescent nanobead and
a silver nanowire [82]. In 2013, Krachmalnicoff et al. presented a comprehensive study
of fluorescence emission in the near field of a gold trimer by performing a simultaneous
acquisition of decay rate, intensity and topography maps [22]. In 2014, Schell et al. used a
single nitrogen vacancy center in nanodiamond to perform a three dimensional analysis of
the modification of the decay rate induced by a silver nanowire [83]. This scanning-probe
technique was also applied by Cao et al. to map the radiative and apparent non-radiative
LDOS in the near field of a gold nanoantenna [84].

Principle of the experiment In this chapter, we present the results of a study per-
formed in collaboration with different research groups at Institut Langevin, Institut Fresnel
(Marseilles), Centre Interdisciplinaire de Nanoscience de Marseille (Marseilles), Institut
des Nanosciences de Paris (Paris), Institut de Ciencies Fotoniques (Barcelona) and Po-
litecnico di Milano (Milan). This work consists in a three-dimensional characterisation of
the near-field interaction between a fluorescent nanobead and different dielectric antennas.
This characterisation is done by means of a near-field scanning probe, relying on an AFM
with a fluorescent emitter grafted at the extremity of the tip. Figure 4.1 shows an artistic
view of the experiment. A sample presenting different silicon nanoantennas is scanned in
the three dimensions and we perform time-resolved measurements of the emission of the
bead for each position of the sample. This procedure allows us to observe the enhancement
and the inhibition of the decay rate of the bead induced by different dielectric antennas.
By comparing intensity measurements to numerical results, we also demonstrate that these
antennas modify both the excitation field and the directionality of fluorescence emission.
This work is published in Physical Review Applied [85].
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Figure 4.1 – Principle of the experiment: a fluorescent nanobead is grafted on the tip of
an AFM and is brought in the near field of different silicon nanoantennas. By scanning a
specific antenna around the bead in the three dimensions, we can characterise the near-field
interaction between the fluorescent bead and this antenna.

4.2 Far-field analysis of resonant modes in silicon antennas

In Chapters 2 and 3, we showed that plasmonic materials can be used to modify the
emission properties of fluorescent emitters. Now, we show that dielectric materials can
also be used for this purpose, by taking advantage of resonances induced by the geometry
of silicon disks.

4.2.1 Dielectric antennas

Dielectric materials are characterised by a relative permittivity with a near-zero imaginary
part for a given range of frequencies. As a consequence of the Kramers-Kronig relations,
the real part of the relative permittivity weakly depends on the frequency in this range.
However, one can use combinations of several dielectric materials with different relative
permittivities – vacuum can be one of them – and design specific structures so that the
interface conditions provoke constructive or destructive interferences of the fields depend-
ing on the considered frequency. Similarly, it is possible to design dielectric structures
that are resonant with the magnetic field. Note that a magnetic response can also be ob-
tained from metallic structures such as split-ring resonators, as introduced at microwave
frequencies by Pendry et al. [86]. While this concept works for gigahertz, terahertz and
near-infrared frequencies, it fails for visible light due to ohmic losses and technological
difficulties of sample fabrication [87]. In contrast, resonances of dielectric particles can
be used to obtain an effective relative permeability that is different from unity at optical
frequencies.

The field scattered by a spherical particle can be analytically solved. Indeed, this field
can be decomposed into a multipole series characterised by the electric and magnetic Mie
coefficients respectively noted an and bn. In this expansion, a1 and b1 are associated to the
electric and magnetic dipole modes. Similarly, a2 and b2 are associated with the electric
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and magnetic quadrupole modes. When an electromagnetic field is applied on such parti-
cles, the scattered field is then given by the sum of these contributions. Importantly, the
particle can show a resonant behaviour so that the scattered field is due to one particular
Mie coefficient, depending on the frequency of the excitation field, the size of the sphere as
well as the relative permittivities of the sphere and its environment. The modes of the elec-
tromagnetic field associated with these resonances are generally called Mie modes. Note
that such a decomposition of the fields can also be performed for structures presenting a
cylindrical invariance.

Mie modes of a dielectric antenna are usually excited from the far field by plane wave
illumination. However, they can also be excited from the near field by placing an emitter
in the vicinity of the dielectric antenna. Due to spontaneous emission, the emitter may
excite one or several Mie modes, producing a scattered field that can interfere with the
emitter’s own field, giving rise to a new radiation pattern. Moreover, if the electric field
at the position of the emitter is significantly affected by the scattered field, the sponta-
neous emission rate is modified. More precisely, depending on the antenna geometry, the
interferences between the emitter’s field and the scattered field can be either construc-
tive or destructive at the position of the emitter, resulting in either an enhancement or a
reduction of its decay rate.

For most dielectric nanostructures, electric and magnetic dipolar resonances occur in the
same range of frequencies. Evlyukhin et al. notably observed this effect in the case of
spherical particles [88]. Such resonances can be shifted by tuning the geometry of the
structure, as we will see in the following sections.

4.2.2 Description of the sample and dark-field measurements

We study a sample fabricated by Julien Proust (Institut Fresnel, Marseille) and Bruno
Gallas (Institut des Nanosciences de Paris). This sample is fabricated by electron-beam
lithography and reactive ion etching in a 105-nm-thick amorphous silicon film deposited
on a 1-mm-thick glass substrate [89]. The resulting sample is composed of 20 arrays of
100 disks with diameters ranging from 110 nm to 300 nm and with a disk thickness of
about 100 nm. On this sample, the distance between two adjacent disks is 4 µm, so
that each disk can be considered as independent from one another. In this chapter, we
specifically study two of these antennas (Fig. 4.2) respectively featuring a base diameter
of 170 nm and 250 nm.

Figure 4.2 – Images produced by scanning electron microscopy (SEM) and showing two
silicon antennas with base diameters of 170 nm (left) and 250 nm (right).

We perform a characterisation of the Mie resonances supported by these dielectric antennas
using a dark-field microscope. To do so, we illuminate the sample with a broadband light
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that is not collected by the objective and we measure the light scattered by the antennas
using a color CCD camera (Quicam, Roper). As expected, the resonant frequencies of
the antennas can be moved over the entire visible spectrum depending on their diameter
(Fig. 4.3a).

We also measure the scattering spectra of the antennas using a spectrometer (Acton
SP2300, Princeton Instruments). Figure 4.3b shows the scattering spectra associated with
5 antennas with diameters ranging from 130 nm to 300 nm. Only one peak can be identified
on the scattering spectra of resonators with a diameter smaller than 200 nm. This peak
corresponds to the overlap of magnetic and electric dipole modes that cannot be spectrally
resolved. When varying the diameter from 130 nm to 200 nm, the scattered light intensity
increases and its frequency shifts from the blue to the red part of the spectrum. Larger
resonators feature both dipolar and quadrupolar resonances, leading to broader scattering
spectra and larger cross-sections. Two distinct peaks can consequently be distinguished
on their scattering spectra, the resonance at the shortest wavelength corresponding to
quadrupole modes and the resonance at the largest wavelength corresponding to dipole
modes.

Figure 4.3 – Dark-field characterisation of the sample, performed by Mathieu Mivelle
(Institut des Nanosciences de Paris). (a) Dark-field image of the sample composed of
20 arrays of 100 silicon disks with diameters ranging from 110 nm (upper left) to 300 nm
(lower right). (b) Scattering spectra of individual silicon antennas with diameters ranging
from 130 nm to 300 nm.

4.3 Experimental setup for near-field measurements

As previously discussed, a dielectric antenna can modify the emission rate of a fluorescent
emitter located in its near field. To observe this behaviour, we use a scanning near-field
optical microscope (SNOM) with an active probe, based on a homebuilt AFM that has
been developed during the last few years at Institut Langevin [20,21].
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4.3.1 Description of the near-field fluorescence microscope

The SNOM used for the near-field characterisation of the antennas is constituted of a
nanometre-scale fluorescent emitter grafted at the apex of an AFM tip made of a tapered
silica fibre, as illustrated in Fig. 4.4. The position of the emitter is then controlled with
nanometre precision by using the piezoelectric positioning system controlling the AFM
tip. As proposed by Mühlschlegel et al. [90], the tuning-fork based AFM operating in
shear force is arranged so that the tapered fibre is pressed against one arm of the tuning
fork. The avoidance of glued connections notably facilitates the replacement of the fibre
probe in this setup. Fluorescent emitters can then be grafted at the apex of the tip by
bringing the emitter in contact with the tip while monitoring the process in real time with
an electron-multiplying charge-coupled device (EM-CCD) camera.

Once grafted on the AFM tip, the fluorescent probe can scan the near field of nanostruc-
tures by using piezoelectric nanopositioners to control the position of the emitter with
respect to the structure in three dimensions. Indeed, the interaction between the tip and
the surface of the sample induces a shift of the resonance frequency of the tuning fork.
This shift is then used to maintain the tip-sample distance to about 20 nm using a feedback
loop. As we do not precisely control the vertical position of the emitter with respect to
the end of the tip during the grafting process, the distance between the fluorescent probe
and the sample can vary from about 20 nm to 200 nm.

Figure 4.4 – Sketch of the SNOM used for the near-field characterisation of the antennas.
To this end, a fluorescent probe is grafted at the apex of an AFM tip and the sample is
scanned around the probe in three dimensions.

Both excitation and detection are performed through the 1-mm-thick silica substrate by
using a microscope objective, characterised by a ×60 magnification and a 0.7 numerical
aperture. A supercontinuum pulsed laser filtered at λ0 = 560 nm excites the emitter at a
repetition rate of 10 MHz (Fianium SC450, 40 ps pulses). Fluorescence is filtered using
a dichroic mirror and a high-pass filter (λ0 > 580 nm) and detected by a single-photon
avalanche diode (PDM-R, Micro Photon Devices [56]). We can thus measure the emission
count rate as well as the decay histogram of the fluorescent probe while scanning the
sample in three dimensions.
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4.3.2 Fluorescent source

It is convenient to use a fluorescent emitter with a constant level of brightness for the
characterisation of a given antenna. Fluorescent nanobeads are good candidates for this
application as they are bright, non-blinking and photostable. Large beads are characterised
by a large effective absorption cross-section as they contain many fluorescent molecules.
However, measurements are averaged over the spatial extent of the bead, resulting in a lim-
ited spatial resolution. As a trade-off, we decide to use fluorescent beads with a diameter of
100 nm (Red FluoSpheres, Thermofisher Scientific) characterised by emission wavelengths
around 610 nm. In order to probe silicon antennas with different characteristics, we select
two different antennas respectively characterised by a diameter of 170 nm and 250 nm.
The smallest antenna features a maximum scattering cross-section at 610 nm (Fig. 4.5,
blue spectrum), corresponding to electric and magnetic dipolar resonances. In contrast,
dipolar and quadrupolar resonances of the largest antenna are respectively centred on
550 nm and 710 nm, with a local minimum of the scattering cross-section around 610 nm
(Fig. 4.5, orange spectrum). For this reason, the 170-nm-diameter antenna and the 250-
nm-diameter antenna will respectively be called the on-resonance and the off-resonance
antennas in the remainder of this chapter.

Figure 4.5 – Experimental scattering spectra of 170-nm-diameter (blue curve) and 250-
nm-diameter (orange curve) silicon antennas. Black curves are respectively the absorption
(dashed curve) and emission (solid curve) spectra of the fluorescent bead.

This dark-field characterisation is based on the field scattered by the antennas and mea-
sured in the far field. This field is expected to be quite different from the field scattered
by the antennas in a near-field experiment for several reasons:

• The presence of the polystyrene bead and the tip modifies the environment of the
antennas during the near-field experiments.

• The coupling between the electromagnetic field and the Mie modes supported by
the antennas depends on the features of the field exciting the modes. This field is a
plane wave for the dark-field measurements as opposed to the dipolar fields emitted
by the molecules inside the bead for the near-field measurements.

• The dark-field characterisation is based on the intensity scattered by the antennas to
the far field. In contrast, for the near-field measurements, the intensity collected from
the fluorescent bead depends on the influence of the antenna upon the excitation
intensity at the position of the bead.
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For these reasons, the near-field interaction between a fluorescent probe and a nanoantenna
cannot be directly predicted from far-field measurements.

4.4 Near-field measurements

We now present a three-dimensional study of the near-field interaction between the fluores-
cent bead and silicon antennas performed using the scanning-probe microscope previously
described. As a matter of simplicity, we call x-direction any direction in the sample plane
and we use the term z-direction for the axial direction.

4.4.1 Methods

Experimental study Experimentally, we can either perform a map in the sample plane
or a line scan along the axial dimension. The typical acquisition time is approximately
15 minutes for a map in the sample plane (32×32 pixels) with an integration time of 1 s
per pixel. This time is reduced to approximately 2 minutes for a line scan along the axial
dimension (10 points) with an integration time of 10 s per point. This larger integration
time allows to resolve smaller variations of the fluorescence decay rate. In both cases
and for each bead position, we acquire a decay histogram and we determine the associated
decay rate by fitting the measured histogram with a decreasing mono-exponential function.
This corresponds to a value averaged over the ∼103 randomly-oriented emitters spanning
the 100-nm-diameter bead. Most of the time, the measured decay histograms follow
a mono-exponential distribution. However, in some cases, the bead attached to the tip
shows a bi-exponential distribution. As a matter of simplicity, we decide not to investigate
this specific interaction but to change both the tip and the bead whenever this situation
occurs.

Numerical study For comparison purposes, we also present the results of numerical
simulations performed by Mathieu Mivelle using an in-house finite-difference time-domain
(FDTD) software. These simulations allow us to estimate the evolution of the decay rate
of an emitter located in the centre of a polystyrene bead as a function of the x- and
z-distances to an antenna. They are specifically performed for three orthogonal electric
dipole sources emitting at λ0 = 610 nm, located in the centre of a 100-nm-diameter bead
with a refractive index of 1.57. The refractive index of silicon antennas (n = 4.55 + 0.34i)
is determined by ellipsometry, and simulations take into account a 10-nm-thick silica layer
on the surface of the antennas due to silicon oxidation. The simulations consider a volume
spanning ±2 µm in each direction around the nanostructures, and the grid resolution is
non-uniform: it varies from 25 nm for areas far from the antennas to 5 nm for the region
in the immediate vicinity of the antennas. The antennas are surrounded by air and they
are located on top of glass which models the substrate. For simplicity, the tapered optical
fibre is not taken into account in the simulations.

4.4.2 Spatial variations of the fluorescence decay rate

Measurements along the axial direction To begin with the three-dimensional study
of the antennas, we characterise the evolution of the decay rate of the fluorescent bead
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as a function of its axial distance to the centre of the antennas. The experimental re-
sults for the 170-nm-diameter antenna and the 250-nm-diameter antenna are respectively
shown in Fig. 4.6a and Fig. 4.6b. They are obtained by measuring the decay histogram
for 10 different positions over a range of 300 nm. In order to test the experimental re-
peatability, each acquisition is repeated four times in the case of the on-resonance antenna
and three times in the case of the off-resonance antenna. We observe that the decay rate
is maximum close to the on-resonance antenna, while it is minimum in the vicinity of
the off-resonance antenna. The observed spatial variations are similar to the oscillations
detected by Drexhage in 1970 [1]: as in Drexhage’s experiment, the observed variations
are due to constructive or destructive interferences between emitters inside the bead and
the induced dipoles in the silicon antenna, whose phases depend on the emitter-antenna
distance and on the polarisability of the antenna.

Figure 4.6 – Experimental study of the decay rate of the fluorescent bead versus the z-
distance between the bead and (a) the 170-nm-diameter or (b) the 250-nm-diameter silicon
antennas.

To confirm these observations, we compare them to the results of FDTD simulations. The
decay rate Γ is calculated in the presence of the antenna from the value of the electric
field at the position of the emitter. More details about the method can be found in
Appendix B. We then perform a reference simulation without the antenna to calculate
the reference decay rate noted Γ0. The numerically estimated decay rate enhancement
Γ/Γ0 (Fig. 4.7a) and the experimental data averaged over the different realisations of
the experiments (Fig. 4.7b) are in qualitative agreement for both antenna diameters. By
comparing the simulations with the experiments, we can estimate a minimum of 35±5 nm
for the z-distance observed between the bead and the antennas in the experiments. This
offset is due to the distance imposed by the shear-force feedback control of the tapered
fibre, as well as to the grafting process of the fluorescent bead.

Numerical simulations do not take into account the spatial distribution of the fluorescent
emitters over the dimensions of the fluorescent bead. For this reason, the amplitude of
decay rate variations is larger in the simulations than in the experiments. Moreover, while
the intrinsic quantum yield of the emitters is set to one in the simulations, a smaller
intrinsic quantum yield would explain the lower contrast of the decay rate variations
observed in the experiments, as explained in Sect. 1.2.3. However, we expect this effect
to be of little importance, since the quantum yield of the emitters inside the beads is
supposed to be close to unity according to the provider (ThermoFisher Scientific). Aside
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from this amplitude mismatch, numerical results do confirm the experimental observations,
including the opposite behaviour of the decay rate variations observed in the vicinity of
the on-resonance and the off-resonance antennas. This highlights the possibility of tuning
the phase of the polarisability of dielectric antennas to provoke constructive or destructive
interferences at the position of the emitter, and thus increase or decrease its decay rate.

Figure 4.7 – (a) Numerical and (b) experimental study of the decay rate enhancement
versus the z-distance between the fluorescent bead and the 170-nm-diameter (red data points
and solid line) or 250-nm-diameter (blue data points and solid line) silicon antennas. Error
bars correspond to a statistical significance of ±2σ.

Measurements in the sample plane We now investigate the evolution of the fluores-
cence decay rate as a function of the bead position in the sample plane with respect to
the on-resonance antenna. Significant spatial variations of the decay rate can be observed
for both the experimental map (Fig. 4.8a) and the simulated map (Fig. 4.8c). The decay
rate is indeed enhanced for x = 0 nm and inhibited for x = 200 nm, with a typical size
of the order of 100 nm for these regions. The resolution is here limited by the size of
the fluorescent bead as well as by the distance between the antenna and the bead. As
previously discussed, the amplitude of decay rate variations is larger in the simulations
than in the experiments due to the spatial extent of the fluorescent bead. By comparing
the simulations with the experiments, we can estimate a z-distance between the bead and
the sample of 35 nm.

During this acquisition, we suspect a mechanical contact between the tip and the antenna
in the middle of the scan, resulting in a modification of the position of the bead on the tip.
This would explain the lower contrast observed in the lower half part of the experimental
map. For this reason, we only use the upper half part of the map to perform a radial
average of the decay rate. We thus obtain a line scan (Fig. 4.8b) that we can compare to
the results of numerical simulations performed for x- and z-oriented dipoles (Fig. 4.8d).
These simulations show that the maximum decay rate enhancement is of 1.6 for a vertical
dipole while it is of 0.85 for a horizontal dipole. The orientation-averaged enhancement
correctly explains the 15% increase in the decay rate of the bead experimentally observed
when the bead is above the centre of the antenna. Once again, these results demonstrate
that silicon antennas can modify the LDOS in their vicinity: either an enhancement or
an inhibition of the decay rate can be achieved using the same antenna, depending on the
radial position of the emitter relative to the antenna.
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Figure 4.8 – (a) Experimental study of the decay rate in the sample plane for the 170-
nm-diameter antenna. (b) Decay rate enhancement versus the x-distance to the centre of
the antenna, determined from the upper half part of the experimental map. Error bars
correspond to a statistical significance of ±2σ. (c) Numerical study of the decay rate
enhancement in the sample plane for an axial distance of z=35 nm between the bead and
the sample. (d) Decay rate enhancement calculated for a dipole moment oriented in the
z-direction (dark red curve) and the x-direction (light red curve). The red curve is the
decay rate enhancement averaged over all the possible orientations of the dipole moment.

4.4.3 Observation of directional emission

A silicon antenna influences not only the fluorescence decay rate of an emitter located
in its near field, but also the angular radiation pattern, the radiative quantum yield and
the spatial distribution of the excitation field. All these properties together determine the
number of photons collected by the objective and measured by the detector.

Experimental results We present here the map of the fluorescence intensity collected
from the bead in the sample plane for both the on-resonance (Fig. 4.9a) and the off-
resonance (Fig. 4.9b) silicon antennas. On these maps, two different spatial distributions
can clearly be identified. Interestingly, the collected fluorescence intensity increases by 12%
when the bead is above the on-resonance antenna with respect to the intensity measured
without the antenna. In contrast, the fluorescence intensity is reduced by 40% when the
bead is on top of the off-resonance antenna. Using numerical results, we can estimate an
axial separation of 120 nm between the bead and the sample plane for both experiments.
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Figure 4.9 – Maps of the fluorescence intensity measured from the bead in the vicinity
of (a) the 170-nm-diameter and (b) the 250-nm-diameter antennas. The centres of the
maps correspond to the bead centred on the dielectric antennas. The axial distance is
approximately z=120 nm.

In order to understand these results, we need to separately determine the influence of the
antennas over the angular radiation pattern, the radiative quantum yield of the emitters
and the excitation field. This can be done with FDTD simulations, by modelling the
excitation field by plane waves and the fluorescent emitters by continuous dipole sources.
In this model, the power transferred from the emitter to the field is directly related to
its decay rate, as previously shown in Sect. 1.2. In contrast, experiments are performed
under pulsed excitation. In this case, if the electromagnetic decay rate becomes faster
than the internal lossy transition rate, a decay rate enhancement can induce an increase
in fluorescence intensity. We observe from both experimental and numerical results that
spatial variations of the decay rate are negligible for a z-distance between the antenna and
the bead of 120 nm. Hence, decay rate variations have no effects on the number of photons
collected from the bead, and we can directly compare the intensity variations observed in
experiments to numerical results.

Excitation The modification of the excitation field at the position of the emitter due to
the presence of the antennas is estimated by impinging a plane wave at λ0 = 560 nm on the
sample under normal incidence. More precisely, we calculate the excitation enhancement
defined as the ratio of the intensities at the position of the emitter with and without the
antenna. Spatial variations of the excitation intensity can be identified for both antennas
(Fig. 4.10a), with two maxima for x = 0 nm and x = 400 nm and a minimum for
x = 150 nm. For x = 0 nm, the on-resonance antenna notably enhances the excitation
intensity by a factor of 1.2.

Collection The modification of the number of photons collected from the emitter is
determined by evaluating the Poynting vector far from the antennas. We calculate the
projection of the Poynting vector onto the normal to the surface of the microscope ob-
jective, and we integrate it over the solid angle limited by the numerical aperture of the
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microscope objective. We then define the collection enhancement defined as the ratio of
the intensities collected with and without the antenna. Figure 4.10b shows the evolution
of the collection enhancement as a function of the x-distance for both antennas. We can
see that the presence of the on-resonance antenna increases the collection by a factor of
1.4, while the collection efficiency is reduced for the off-resonance antenna.

Figure 4.10 – Numerical study of (a) the excitation enhancement and (b) the collection
enhancement versus the x-distance for both silicon antenna and for an axial distance of
z=120 nm.

These variations can be explained by two separate effects. Firstly, ohmic losses in the
antennas can decrease the number of photons emitted by the fluorescent bead in the far
field. Secondly, the directional properties of the antennas can either increase or decrease
the number of photons emitted towards the objective. To estimate the contribution of
non-radiative decay channels, we define the radiative decay rate ΓR as the rate of photons
emitted in the far field and the non-radiative decay rate ΓNR as the rate of photons
absorbed by the surrounding structures. Then, the radiative quantum yield reads as
follows:

η = ΓR
ΓR + ΓNR + Γlosses

, (4.1)

where Γlosses is the decay rate due to intrinsic losses as defined in Sect. 1.2.3. In general, we
assume that Γlosses does not depend on the environment, as opposed to the non-radiative
decay rate ΓNR. In the simulations, intrinsic losses are neglected, as previously discussed.
Since the imaginary part of the relative permittivity of silicon is small, we expect the
radiative quantum yield to be close to unity for any position of the emitter with respect to
the nanoantenna. We numerically estimate that the radiative quantum yield is minimum
when the bead is straight above the antennas, with a value of the order of 0.9. We can
therefore conclude that the modification of the number of photons collected from the
emitter is mainly due to the directional properties of the antennas.

Numerical results By taking into account all these effects, numerical simulations allow
us to determine the spatial dependence of the intensity experimentally collected from the
fluorescent bead. In order to compare experimental and numerical results, we estimate the
collected intensity for both the on-resonance (Fig. 4.11a) and off-resonance (Fig. 4.11b)
antennas, assuming an axial separation between the fluorescent bead and the antenna of
120 nm.
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Figure 4.11 – Numerical study of the fluorescence intensity measured from a bead in the
vicinity of (a) the 170-nm-diameter and (b) the 250-nm-diameter antennas and for an
axial distance between the bead and the sample of z=120 nm.

The good agreement observed between the numerical results and the experimental maps
validates the analysis. In a nutshell, for z = 120 nm, the decay rate is not affected by the
presence of the antennas, as opposed to the excitation field and to the radiation pattern
which both depend on the diameter of the antenna. The specific intensity distributions
measured from the bead are explained by both the directional properties of the antennas
and the reduction of the excitation intensity around the antennas for x ∼ 200 nm. Fur-
thermore, the radiative quantum yield stays close to unity due to the weak ohmic losses
generated by dielectric antennas.

4.5 Conclusion

In this chapter, we showed that subwavelength silicon antennas can modify the photon
emission dynamics of fluorescent molecules. We started by presenting several properties of
cylindrical silicon antennas. Using dark-field measurements, we demonstrated that these
antennas can support various Mie resonances. More precisely, we identified electric and
magnetic dipole modes as well as quadrupole modes for the largest antennas. Then, we
presented the scanning-probe technique used to characterise the near-field interaction be-
tween the antennas and a fluorescent bead, chosen as a near-field source to excite the Mie
modes supported by the antennas. Using this technique, we performed three-dimensional
measurements on two different antennas to demonstrate the ability of silicon antennas to
inhibit or enhance the spontaneous emission rate. We experimentally demonstrated an
enhancement of the decay rate of a fluorescent bead located above a 170-nm-diameter
antenna (Fig. 4.8a). Using a numerical approach, we also demonstrated that the varia-
tions observed in the intensity collected from the bead were due to both the directional
properties of the antennas and the spatial dependence of the excitation intensity around
the antennas. This highlights the ability of dielectric antennas to control the directivity
of fluorescence emission.
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The variations of LDOS observed in the experiments were weak in comparison to the vari-
ations that can be observed by using plasmonic antennas [91, 92]. Different experimental
approaches could be used to investigate the near-field interaction between emitters and
dielectric antennas on shorter scales, providing us with the opportunity to study structures
presenting a higher field confinement such as dielectric dimers or hollow nanocylinders.
As an example, a DNA linker could be used to control the distance between a fluorescent
molecule and a dielectric antenna with nanometre precision. This strategy was introduced
by Acuna et al. to enhance the fluorescence intensity of single molecules [93]. A similar
technique was also applied by Bidault et al. to efficiently couple single molecules to gold
nanoparticle dimers [94], resulting in fluorescent nanostructures with radiative lifetimes
below 100 ps. Interestingly, the coupling between the field generated the emitter and the
Mie modes supported by dielectric antennas could be further improved by placing the
emitters inside hollow nanocylinders [95]. A better control of the coupling between the
field generated by the emitter and the various electric and magnetic Mie modes supported
by the antennas could notably allow an observation of highly directive radiation patterns
presenting zero backscattering [74,75].

Stochastic approaches also provide interesting alternatives to scanning-probe techniques
for the study of the near-field interaction between a fluorescent emitters and a given
nanostructure. In the following chapter, we will present a stochastic technique that allows
the determination of the excited-state lifetime of single molecules and their positions with
a very good precision. We will notably demonstrate the performances of the technique
by presenting a study of the near-field interaction between single molecules and a silver
nanowire.





CHAPTER 5

Single-molecule super-resolution microscopy for lifetime
imaging

In this chapter, we introduce an experimental technique based on photo-activated localisa-
tion microscopy. This technique allows the simultaneous determination of the fluorescence
decay rate of single molecules and their respective position with a localisation precision
of the order of 10 nm. First of all, we present the principle of the experiment and the
context of this work. Then, we detail the experimental setup developed for the imple-
mentation of the technique, based on the stochastic photo-activation of single molecules
and the simultaneous detection of fluorescence photons by a camera and a single-photon
avalanche diode. We carefully describe the method used to analyse the large amount of
data acquired during an experiment as well as the strategy adopted to associate the posi-
tion of the molecules with their decay rate. Finally, we present a decay rate map with a
strongly sub-wavelength resolution and we compare the observed variations of decay rate
induced by a silver nanowire to theoretically expected values that are calculated using
finite-difference time-domain simulations.

5.1 Introduction

The resolution limit of a microscope characterises the minimal distance in-between two
point sources that can be resolved using a far-field microscope. It is classically given by
the distance between the principal maximum and the first zero of the Airy function. Using
this criterion – referred to as the Rayleigh criterion – the resolution limit is of the order
of λ0/2 with λ0 the wavelength of the considered light.

The Rayleigh criterion is based on the assumption that only propagating fields are captured
by the imaging system. This assumption restricts the spectrum of spatial frequencies that
can be detected, as detailed in Sect. 1.4.1. In 1928, Synge proposed to take advantage of
the evanescent part of the field to improve the resolution limit of a microscope [19]. He
notably suggested that a small probe located in the near field of a sample could be used
to scatter part of the evanescent field. One could thus obtain a super-resolved image of
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the sample by measuring the intensity of the scattered field for different positions of the
scatterer in the sample plane. The first experimental realisation of this method at optical
frequencies was performed by Pohl, Denk and Lanz in 1984 [96]. In this experiment,
the authors used a narrow aperture that they could move over their sample for near-
field excitation. Since then, several adaptations of this method have been developed; the
near-field scanning optical microscope presented in Chapter 4 is one of them.

Even though high spatial frequencies are not available in the far field, it is possible to
overpass the Rayleigh criterion by using a far-field microscope. For instance, a method was
introduced in 1994 by Hell and Wichmann in order to image a sample containing a large
number of fluorescent emitters [97]. This technique, called stimulated emission depletion
microscopy (STED microscopy), requires the excitation of several emitters from the far
field followed by the depletion of the excited state in the outer region of the excitation spot
using stimulated emission. The resolution is then increased by the non-linear inhibition
of fluorescence in the outer region of the excitation spot. By scanning the sample, such a
microscope can be used to obtain a super-resolved image of the sample. However, besides
a complexity of implementation, one of the main drawbacks of STED microscopy is the
high laser power required to obtain a good resolution.

Super-resolved images can also be obtained with a far-field microscope assuming that the
signal originates from a small emitter such as a fluorescent molecule. The first optical
detection of a single molecule inside a solid crystal was performed in 1989 by Moerner
and Kador using absorption spectroscopy [98]. One year later, Orrit and Bernard de-
tected fluorescence emission from a single pentacene molecule [99]. These works inspired
various experiments based on the fluorescence of single molecules, notably in the field of
biology [100]. Thanks to the development of photo-activatable fluorescent proteins by Pat-
terson and Lippincott-Schwartz [101], two similar super-resolution techniques referred to
as photo-activated localisation microscopy (PALM) were independently introduced in 2006
by Betzig et al. [3] and by Hess, Girirajan and Mason [102]. Meanwhile, Rust, Bates and
Zhuang presented a similar technique called stochastic optical reconstruction microscopy
(STORM) and based on the blinking of fluorescent molecules [103]. In such experiments,
only one molecule can emit at a single time in a diffraction-limited region. The detected
molecule is then precisely localised by fitting the expected point spread function (PSF)
to the intensity distribution measured in the image plane of the microscope. This proce-
dure allows a strongly sub-wavelength resolution, which is only limited by the standard
deviation of the probability density function followed by the position estimates and by
the density of detected molecules. PALM, STORM and STED microscopy encountered
a great success, and these techniques are nowadays widely employed to image biological
samples on the nanometre scale [104].

While PALM, STORM and STED microscopy are based on the study of the intensity
emitted by fluorescent emitters, the simultaneous determination of their fluorescence life-
time would open new imaging possibilities. The first experimental determination of the
fluorescence lifetime on a point-by-point basis was performed in 1993 by Gadella, Jovin
and Clegg [105], introducing a technique called fluorescence lifetime imaging microscopy
(FLIM). Since then, the contrast induced by lifetime variations was used to map differ-
ent parameters on biological samples [106], such as the viscosity, the temperature, the
potential of hydrogen (pH) or the interaction between two emitters due to Förster reso-
nance energy transfer (FRET). Nevertheless, as FLIM-based techniques rely on confocal
microscopy, they are usually diffraction-limited.
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Besides possible biological applications, a precise localisation of fluorescent emitters to-
gether with the determination of their decay rate would allow one to study the local density
of states (LDOS) on the nanometre scale. However, this is a difficult task to achieve since
it would theoretically require an array of fast detectors, with a temporal resolution better
than the nanosecond and with an image size on the sample plane around 100 nm for each
detector. Several techniques based on intensity measurements were recently developed to
overcome this difficulty. In 2016, Johlin et al. notably used a PALM/STORM-based tech-
nique to probe the electromagnetic interaction between dye molecules and a semiconductor
nanowire [107]. The authors specifically studied the variations of the number of photons
collected from the molecules located near the nanowire. Using numerical simulations,
they deconvoluted the influence of emission rate enhancement, directivity modification
and guided mode excitation in order to explain the observed intensity variations. Re-
cently, Mack et al. studied the resonant behaviour of a nanoantenna using fluorescent
molecules with a large Stokes shift [108]. In doing so, they spectrally decoupled the emis-
sion field of the molecules and the modes supported by the plasmonic system, in order to
study the resonance of the antenna at the frequency of the excitation field.

However, methods based on variations of the collected fluorescence intensity generally re-
quire the use of numerical simulations to estimate the fluorescence decay rate. In 2008,
Auksorius et al. proposed an original technique based on a direct measurement of decay
histograms [109]: by associating FLIM with STED microscopy, the authors managed to
probe the decay rate of fluorescent emitters on a sub-wavelength scale. In 2016, Guo,
Verschuuren and Koenderink presented another technique based on the dispersion of flu-
orescent nanobeads at a low concentration over a lattice of identical plasmonic nanoan-
tennas [110]. They determined the decay rate of each bead by scanning the sample and,
by exploiting the periodicity of the lattice, they managed to reconstruct a map of LDOS
variations in the near-field of a single nanoantenna, with a resolution determined by the
diameter of the beads (40 nm). However, this method requires identical nanostructures
to perform the image reconstruction, and it cannot be used to characterise an unknown
sample.

Principle of the experiment In this chapter, we introduce an original experimental
technique to localise fluorescent molecules and to probe their decay rate with a localisation
precision of the order of 10 nm. The method relies on the stochastic photo-activation and
detection of single molecules, as in PALM/STORM-based techniques. More precisely, we
use a pulsed laser to excite the molecules and a 50:50 beamsplitter to split the fluorescence
intensity towards an electron-multiplying charge-coupled device (EM-CCD) and a single-
photon avalanche diode (SPAD). Typically, no more than one molecule is active at a single
time on the area conjugated to the SPAD. We can thus estimate both the position and the
decay rate of each individual molecule by respectively fitting a two-dimensional Gaussian
function and a decreasing exponential function to the measured data, as illustrated in
Fig. 5.1. Based on the correlation in time between the events detected by the camera
and the SPAD, we perform the association between position and decay rate for more than
3,000 photo-activated molecules detected in a 10-hour-long experiment. As a result, we
reconstruct a decay-rate map that shows strong variations due to the presence of a silver
nanowire on the sample. In addition, we compare these results to theoretically expected
values calculated using finite-difference time-domain (FDTD) simulations. This work will
be published in the near future, and the technique used to determine the position and the
decay rate of photo-activated single molecules is currently under patent application.
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Figure 5.1 – The scheme of the experiment. (a) An EM-CCD camera acquires 31 frames
per second, with an exposure time of 30 ms per frame. A single fluorescent molecule is
detected on the third frame of the sequence shown here. (b) The position of the molecule
is estimated by fitting a two-dimensional Gaussian function to the measured PSF, with
a localisation precision of the order of 10 nm. (c) At the same time, a SPAD detects
a fluorescence burst from this molecule. (d) These photons are used to construct a decay
histogram. A decreasing mono-exponential function is then fitted to this histogram in order
to estimate the fluorescence decay rate of the molecule.

5.2 Sample preparation and experimental setup

This section is dedicated to the description of the experimental setup, including the sample
preparation, the optical setup and the implementation of the drift-correction system used
to perform experiments for several hours.

5.2.1 Sample preparation

In order to perform a proof-of-principle experiment, we study the emission of single fluores-
cent molecules (Alexa Fluor 647, ThermoFisher Scientific) in the near field of chemically
grown silver nanowires (Sigma Aldrich) characterised by a diameter of approximately
115 nm. These nanostructures are interesting for the elaboration of the technique, as they
induce nanometre-scale variations of the fluorescence decay rate in their vicinity. More-
over, silver nanowires weakly radiate to the far field, allowing a correct localisation of
near-field coupled emitters. As the sample needs to be immersed in an oxygen-reducing
buffer to induce the photo-activation process of the fluorescent molecules [111], we use
biotin-streptavidin linkers to bind the fluorescent molecules to the microscope coverslip,
as represented in Fig. 5.2.

To prepare the sample, we spin-coat a dilute solution of silver nanowires in isopropyl
alcohol on a glass coverslip for 30 s. A microfluidic chamber is then prepared as follows:
we cover the sample with a ring made of parafilm, we place two micro-pipettes on opposite
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Figure 5.2 – Scheme of the sample. The volume coloured in blue represents the buffer
solution.

sides of the parafilm ring and we cover them with another glass coverslip before heating the
sample up to 70◦C in order to melt the parafilm. We let the microfluidic chamber cool down
for a few minutes before using the micro-pipettes to inject biotin diluted in a phosphate-
buffered saline (PBS) solution at a concentration of 1 g/L. We leave this solution incubate
for 2 hours. Then, we inject streptavidin-conjugated fluorescent molecules (Alexa 647)
diluted in a PBS solution at a concentration of 0.005 g/L, and we leave this new solution
incubate for 2 hours. We add a PBS solution containing a few polystyrene fluorescent
beads 100 nm in diameter (Red FluoSpheres, ThermoFisher Scientific) which we use as
fiducial markers, and we then fill the chamber with an oxygen-reducing buffer. This buffer
is prepared according to the protocol described in Ref. [112]: we use a PBS solution
in which we dilute dextrose (100 mg/mL), cysteamine (3.86 mg/mL), glucose oxidase
(0.5 mg/mL) and catalase (1.18 µL of an aqueous solution concentrated at 20-50 mg/mL).

5.2.2 Optical setup

We now present the optical setup developed for the experiment. While the excitation path
is a typical wild-field excitation scheme of PALM/STORM experiments, the detection path
combines both wide-field imaging and time-resolved single-photon detection. Figure 5.3
shows a scheme of the complete optical setup.

Excitation As previously introduced, photo-activated localisation microscopy relies on
the stochastic photo-activation of single fluorescent emitters and the collection of their
fluorescence until photobleaching. To this end, we use two different lasers:

• To excite the photo-activatable molecules (Alexa Fluor 647), we use a pulsed laser
diode emitting at λ0 = 640 nm (LDH Series P-C-640B, PicoQuant) and at a repeti-
tion rate of 80 MHz. The intensity incident on the sample averaged over a repetition
period (12.5 ns) is 10 µW/µm2. As each pulse is characterised by a full width at
half maximum (FWHM) of 240 ps, the effective intensity incident on the sample is
approximately 500 µW/µm2. The axis of the nanowire is usually set perpendicular
to the polarisation of the laser, in order to minimise the backscattering of the laser
light by the nanowire.

• To photo-activate the fluorescent molecules, we use a laser diode emitting at λ0 =
405 nm (LDH Series P-C-640B, Picoquant). During an experiment, the density
of activatable molecule decreases in time since several molecules are photobleached
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by the excitation laser. To compensate for this effect, we progressively turn on the
photo-activation laser during the acquisition, with an average intensity on the sample
up to 50 nW/µm2.

In addition, a third laser is required for the excitation of fiducial markers (fluorescent
beads) that are used for the implementation of the real-time drift correction system (see
Sect. 5.3). This laser is a supercontinuum laser (Fianium SC450) filtered at λ0 = 568 nm
by an excitation filter (LL01-568, Semrock). We always choose a bead far from the centre
of the area under study. In this way, the excitation laser of the bead does not perturb the
measurement because it is not aligned with the excitation laser of the photo-activatable
molecules.

These three lasers illuminate the sample through an oil immersion objective (UPLSAPO
100XO, Olympus) mounted on an inverted microscope and characterised by a ×100 mag-
nification and 1.4 numerical aperture. Before the objective, a lens characterised by a focal
length of 300 mm is used to obtain a wide-field illumination, over an area of approximately
200 µm2.

Figure 5.3 – Optical setup for simultaneous wide-field imaging and time-resolved single-
photon detection.

Detection Fluorescence from the sample is collected by the objective and filtered by a
dichroic mirror (ZT405/488/561/647rpc, Chroma) as well as two different long-pass filters
(ZET405/488/561/640m, Chroma and FF01-446/523/600/677, Semrock). Then, a 50:50
beamsplitter splits the signal towards two paths:

• On the first path, fluorescence photons are directed towards an EM-CCD camera
(iXon 897, Andor) to form an image of the sample with a field of view of tens of
micrometers on the sample plane. We record wide-field images with an exposure time
of 30 ms; these images are then used to localise the molecules with a localisation
precision of the order of 10 nm.

• On the second path, a SPAD (PDM-R, Micro Photon Devices [56]) is connected
to a time-correlated single-photon counting (TCSPC) system (HydraHarp400, Pi-
coquant). This setup allows the determination of decay rates up to 10 ns−1, corre-
sponding to fluorescence lifetimes of 100 ps. On this path, we use a 50 µm confocal
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pinhole to conjugate the SPAD to a small area on the sample plane (∼800 nm in
diameter).

By carefully controlling the activation laser power, we ensure that no more than one
molecule is typically active at a single time on the area conjugated to the SPAD. This
condition allows us to correctly associate the position of the molecules with their decay
rate, as we will see in Sect. 5.4. Consequently, the acquisition time of an experiment is
usually of several hours, so that several thousands of fluorescent molecules can be detected.

5.2.3 Data acquisition

Before starting data acquisition, we select an area on the sample in which a silver nanowire
can be identified by basic transmission imaging. Then, we place the area of interest in
the middle of the field of view of the camera by using a piezoelectric stage (PXY 200SG,
Piezosystem Jena) controlling the in-plane position of the sample. This area is conjugated
to the SPAD, as illustrated in Fig. 5.4. In order to perform real-time drift correction in
the sample plane and along the axial direction, we also select an area of the sample in
which a fluorescent bead can be identified. The fluorescent molecules surrounding the
bead are photobleached using the laser diode emitting at λ0 = 640 nm before starting the
acquisition: in this way, we improve the signal-to-noise ratio for the localisation of the
bead.

Figure 5.4 – Scheme of the EM-CCD camera field of view.

During an acquisition, we record the 13×13 pixels area of the EM-CCD camera conjugated
to the area of interest on the sample as well as the 11×11 pixels area of the EM-CCD cam-
era corresponding to the fiducial marker area. The arrival time of each photon detected
by the SPAD is also recorded in real time. Using this strategy, we perform several exper-
iments on identical samples and with an acquisition time ranging from 1 to 10 hours. In
the following sections, we will analyse the results of a 10-hour-long acquisition presenting
the highest density of detected molecules.

5.3 Drift correction

We now describe the implementation of the drift-correction system. In this section, the
coordinates in the sample plane are noted x and y, and the coordinate along the axial
direction is noted z.
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5.3.1 Correction in the sample plane

To determine and correct the drift in the sample plane, we estimate the position of the
fiducial marker from the wide-field images acquired by the camera and we use a feedback
loop to maintain the marker at a fixed position. To this end, we identify a small area
(11 × 11 pixels) around the marker, as previously mentioned. Every 5 s, we obtain an
image with a high signal-to-noise ratio by summing the frames recorded during this time
interval (∼170 frames). A two-dimensional Gaussian function is then fitted to the intensity
measured in the image plane. This Gaussian function is defined by

f(x, y) = A exp
(
−(x− x0)2 + (y − y0)2

2σ2

)
+B , (5.1)

where B is the level of background noise, A is the amplitude of fluorescence signal, x0
and y0 are the coordinates of the marker and σ is the standard deviation of the Gaussian
function. The drift is calculated as the difference between the estimated coordinates and
the setpoint position, defined as the centre of the 11× 11 pixels area. A feedback signal is
applied on the piezoelectric stage controlling the in-plane position of the sample in order
to compensate for the drift. We operate the piezoelectric positioning system in open-loop
mode to eliminate additional noise introduced by the sensor and the driver stabilisation
system.

In order to estimate the performances of the drift-correction system, we analyse the images
acquired during the 10-hour-long experiment previously mentioned. The estimation of
the position of the fiducial marker associated with each frame is performed by using
ThunderSTORM, a plug-in for ImageJ developped by Ovesný et al. [113]. In addition, we
perform a sliding average of the estimated positions in the time intervals in-between the
steps of the piezoelectric positioners and over a maximum of 61 frames, corresponding to a
time interval of 2 s and a number of collected fluorescence photons of the order of 15,000.
This procedure allows to obtain a good estimate of the error, defined as the difference
between the estimated position of the marker and the setpoint value. The distributions of
the estimated error for the x-coordinate and the y-coordinates are respectively shown in
Figs. 5.5a and 5.5b.

Figure 5.5 – Distribution of the estimated error of the marker position for the 10-hour-
long acquisition. (a) Error in the x-direction and (b) error in the y-direction.

The standard deviations of these distributions are respectively 3.3 and 3.1 nm, attesting
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that the drift correction system can operate for 10 hours with a very good precision. The
estimated error is comparable to the limit of localisation precision, of the order of 1.5 nm
for 15,000 fluorescence photons collected by the camera1. Therefore, the error is negligible
in comparison to the localisation precision of photo-activated molecules, which is of the
order of 10 nm.

5.3.2 Defocus correction

In order to estimate the drift of the sample in the z-direction with respect to the focal
plane, we analyse images of the fiducial marker accumulated over several seconds. Then,
the axial position of the objective with respect to the sample is corrected in real time
with a piezoelectric positioning system (MIPOS 20SG, Piezosystem Jena) located between
the objective and the microscope turret. The defocus-correction system is based on a
real-time maximisation of the power spectral density of the measured images. Before
the acquisition, we perform a scan in the z-direction in order to determine the spatial
frequencies corresponding to the typical extent of the PSF when the bead is focused.
During the acquisition, we calculate the Fourier transform of each image and we apply a
mask to select these spatial frequencies. The power spectral density γ corresponding to
these frequencies must then be compared to a setpoint value, that we define to be the
maximum value of γ obtained from the 20 previous measurements. With this approach,
the progressive photobleaching of the fluorescent molecules inside the bead is not an issue,
because the setpoint value can decrease accordingly.

However, this strategy does not allow a direct estimation of the axial position of the ob-
jective focal plane with respect to the sample plane. It is indeed not possible to determine
the direction of the drift along the z-axis. Therefore, the defocus-correction system starts
the feedback in an arbitrary direction. This direction is then maintained unless the power
spectral density decreases for two consecutive measurements. We specifically require that
the power spectral density decreases faster between the measurements performed at times
ti−1 and ti than between the measurements performed at times ti−2 and ti−1, so that
γi−2 − γi−1 < γi−1 − γi. This proportional-integral correction makes the system less
sensitive to noise as compared to a purely proportional correction.

Unlike for the drift correction in the sample plane, the acquisition time used to determine
the axial drift can vary. If the estimated drift is large, the defocus-correction system only
accumulates a few frames before the next estimation of the drift – with a minimum of
20 frames corresponding to less than 1 s. Thus, the feedback system can rapidly react to
a strong defocus. In contrast, the acquisition time becomes much larger if the estimated
drift is small – with a maximum of 500 frames corresponding to ∼15 s. In this case,
the feedback system is slower but more precise. In order to test the performances of the
feedback system, we induce 4 step-like defocuses of arbitrary direction during a 5 min
acquisition. The amplitude of each defocusing step is of the order of 1 µm and the time
interval in-between each step is approximately 1 min. As expected, the power spectral
density strongly decreases after each defocusing step (Fig. 5.6a), a correction is accordingly
applied (Fig. 5.6c) and the position of the piezoelectric stage readily compensates for that
defocus (Fig. 5.6e). The feedback system typically corrects the defocus in less than 5 s
once it is detected.

1This limit can be calculated using the Fisher information, as we will see in Chapter 6 (Sect. 6.3.5).
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The performance of the feedback system is also very satisfactory for the 10-hour-long
experiment. Due to progressive photo-bleaching of the fluorescent molecules inside the
bead, the power spectral density decreases in time during the experiment (Fig. 5.6b), but
the regulation still manages to compensate for the drift of the system by doing small steps
of the order of 10 nm (Fig. 5.6d). Over the whole experiment, we observe an overall
defocus of the order of 1 µm compensated in real time by the defocus-correction system
(Fig. 5.6f). The strong drift detected during the first hour is likely to be due to the thermal
stabilisation of the experiment.

Figure 5.6 – Performances of the defocus-correction system for intentional, strong defo-
cuses (left) and during the 10-hour-long acquisition (right). (a) and (b): Power spectral
density of the images. (c) and (d): Correction applied by the defocus-correction system.
(e) and (f): Absolute z-position.

Both the performances of the in-plane drift-correction system and the defocus-correction
system are satisfactory and allow a good stability of the sample during the 10-hour-long
experiment. In practice, it is possible to perform experiments with an even longer ac-
quisition time (more than 20 hours) before a failure of the drift-correction system due to
complete photobleaching of the fluorescent molecules inside the bead.

5.4 Position and decay rate association

We now describe the post-processing analysis performed on the data to associate the
position of the molecules with their decay rate.

5.4.1 Position and decay rate estimations

To start with, we independently estimate the positions and the decay rates of the molecules
from the data respectively measured by the EM-CCD camera and the SPAD.
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Position estimations The EM-CCD camera acquires 31 frames per second with an
acquisition time of 30 ms per frame. The full sequence of wide-field images saved by the
camera (13×13 pixels) is imported by ImageJ and the positions of the photo-activated
molecules are estimated using ThunderSTORM [113]. First of all, each frame is filtered
using a wavelet filter, as proposed by Izeddin et al. [114]. For each frame, approximate
localisation of the molecules is then performed by applying a threshold that depends on
the signal-to-noise ratio of the camera data. For this acquisition, we set it to 2.7 times the
standard deviation of the intensity values obtained in the filtered image. Finally, sub-pixel
localisation of the molecules is performed by fitting a two-dimensional Gaussian function
to the data using the weighted least squares method on a restricted domain around the
molecule (7×7 pixels). As an illustration, we present here a frame in which a single
molecule can be identified (Fig. 5.7a); a two-dimensional Gaussian function is fitted to the
measured PSF in order to estimate the position of the molecule (Fig. 5.7b).

Figure 5.7 – (a) Detection of a single molecule by the EM-CCD camera. (b) Gaussian
function fitted to the measured PSF. Black lines represent the estimated coordinates of the
molecule.

As some molecules can be identified over consecutive frames, we perform a merging of the
data acquired by the camera if the estimated distance between successive detections is
less than 40 nm. Then, the position of the molecule is determined by using the average
value of the positions estimated from the different frames. Using this strategy, we obtain
approximately 24,000 different detections for the whole experiment. This number is limited
by the weak activation power required to ensure that no more than one molecule is typically
active at a single time on the area conjugated to the SPAD.

Decay rate estimations In addition to EM-CCD images, we also record the arrival
time of each photon detected by the SPAD. To deal with the large size of the resulting file
(∼15 GB), the 10-hour-long acquisition is split into several sequences of approximately
50 minutes. Then, we compute the number of detected photons as a function of time with a
resolution of 500 µs. The intensity of background noise associated with this signal usually
decreases during the experiment due to a decreasing number of activated molecules in the
periphery of the detection area. Hence, the intensity time trace is Fourier filtered in order
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to remove low frequency components associated with temporal fluctuations longer than
30 s. Then, we consider that a molecule is potentially detected for each burst surpassing a
given threshold that depends on the signal-to-noise ratio of the SPAD data. For each 50-
minutes-long sequence, we set it to 2.6 times the standard deviation of the filtered signal.
If another burst occurs within the typical blinking time scale (20 ms), it is attributed to the
same molecule. As an illustration, we present here a small part of the intensity time trace
in which a burst can be identified (Fig. 5.8a). In total, we identify approximately 14,000
events over the 10-hour-long acquisition. This value is small in comparison to the number
of detections obtained from camera data. Indeed, the area of the sample conjugated to the
SPAD (∼ 800× 800 nm) is smaller than the area over which the localisation is performed
(∼ 1100× 1100 nm).

Figure 5.8 – (a) Identification of a burst in the intensity time trace – this burst cor-
responds to the detection shown in Fig. 5.7a. (b) Estimation of the decay rate from the
decay histogram. The estimated decay rate is here 4.7 ns−1.

For each SPAD event, we build the associated decay histogram with a resolution of 16 ps in
order to estimate the decay rate (Fig. 5.8b). To do so, the contribution of background noise
is estimated by using close-by time intervals in which no burst can be identified. Then, the
convolution of the instrument response function (IRF) and a decreasing mono-exponential
function is fitted to the decay histogram using the least-squares method. The value of the
decay rate is set to 10 ns−1 if the fit yields a value higher than this limit. Indeed, the
IRF of the setup is characterised by a FWHM of approximately 240 ps (corresponding to
4 ns−1) and we consider that estimates above 10 ns−1 are not meaningful even after the
deconvolution process. This point will be discussed in detail in Chapter 6 (Sect. 6.4.4).

5.4.2 Temporal and spatial correlations

The detections identified from camera data and the bursts identified from SPAD data
are strongly time-correlated, as previously illustrated in Fig. 5.1. We now precisely char-
acterise the spatio-temporal correlation between SPAD events and camera detections in
order to associate the position of a large number of molecules with their decay rate. For
simplicity, we use the subscript i when referring to a detection identified using camera
data and the subscript j when referring to an event identified using SPAD data.
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Temporal correlation In the beginning of the experiment, the acquisition of both cam-
era and SPAD data is started by using an in-house software, and we can expect a time
offset of several milliseconds between the two different channels. In order to precisely de-
termine this time offset, we build two binary representations respectively associated with
the SPAD events and the camera detections (1 for a SPAD event or a camera detection, 0
otherwise). We then calculate the time correlation of these binary representations with a
resolution of 500 µs, as shown in Fig. 5.9 for a typical sequence of 50 minutes. The max-
imum of this correlation coefficient gives an accurate estimate of the time offset between
the camera and the SPAD. This delay is typically around 20 ms, which is consistent with
the data acquisition procedure. Note that the correlation coefficient does not reach unity
but is typically between 0.3 and 0.5. Indeed, the conditions required for the detection of a
molecule by the camera and by the SPAD are different. In comparison to the SPAD, the
camera is characterised by a larger field of view and a larger quantum efficiency. However,
its lower temporal resolution makes the identification process less efficient for molecules
characterised by fast temporal fluctuations. Hence we can expect some molecules to be
detected by only one of the two detectors, resulting in a value smaller than unity for the
maximum of the correlation coefficient.

Figure 5.9 – Correlation coefficient calculated from binary representations of the SPAD
events and the camera detections. A dashed line represents the estimated time offset be-
tween the two channels.

Once the time offset between the camera and the SPAD is estimated and compensated, we
can quantify the time overlap between a camera detection and a SPAD event. To do so, we
simply calculate the ratio of the time overlap ∆tij to the time interval ∆tj corresponding
to the SPAD event. The camera detection and the SPAD event are likely to be associated
to the same molecule whenever this ratio is close to unity.

Spatial correlation In order to characterise the spatial correlation between SPAD
events and camera detections, we must identify the pixels of the camera that are con-
jugated to the area of the sample seen by the SPAD. Hence, we measure the response of
the SPAD by scanning a fluorescent bead with a diameter of 100 nm over a large area in
the sample plane. Figure 5.10a shows the number of photons detected by the SPAD as a
function of the bead position. The FWHM value of the measured profile is of the order of
500 nm, as expected from the diameter of the confocal pinhole (50 µm) and the magnifica-
tion of the optical system (×100). We can model this response by a function h(x, y) which
is the convolution of a 500 nm gate and a two-dimensional Gaussian function. Figure 5.10b
shows a fit of the model function to the experimental data. The good agreement between
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them attests that the function h(x, y) can be used to describe the response of the SPAD.

Figure 5.10 – (a) Measured response of the SPAD while scanning a fluorescent bead in
the sample plane. (b) Model function fitted to the measured response of the SPAD.

Using this characterisation, we can estimate the number of photons to be detected by the
SPAD from a given camera detection. Let xi and yi be the coordinates in the sample plane
corresponding to this detection and Ni the number of fluorescence photons measured by
the camera, we can simply assume that the number of photons to be detected by the
SPAD is proportional2 to Ni h(xi, yi).

5.4.3 Association conditions

By using the estimation of the time offset between the camera and the SPAD as well as
the characterisation of the spatial conjugation between the detectors, we now identify the
molecules for which both the position and the decay rate can be determined. We can
associate position and decay rate in the following situations:

• In 77% of the cases, the association between position and decay rate is straightfor-
ward. In such cases, only one camera detection is identified in the emission time ∆tj
corresponding to a SPAD event. In addition, this SPAD event is the only one iden-
tified in the emission time ∆ti corresponding to the camera detection. Therefore,
the camera detection i and the SPAD event j can be associated.

• In 18% of the cases, several camera detections are identified in ∆tj . In such cases, we
evaluate the likelihood of each detection to be the one corresponding to the SPAD
event, based on the number of fluorescence photons measured by the camera, the
distance to the centre of the detector and the temporal overlap between the SPAD
event and the considered frame. An association condition can thus be obtained on

2One can compare the quantum efficiencies of the camera (∼ 0.9) and the SPAD (∼ 0.5) to obtain
an estimate of the number of photons to be detected by the SPAD. This is however not required for a
comparison between different detections identified from the camera data.
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the base of the value taken by the following variable:

Tij = Ni h(xi, yi)×
∆tij
∆tj

. (5.2)

After the identification of the detection k associated with the maximum value of Tij ,
we consider that the association between position and decay rate can be performed
only if Tkj > αa

∑n
i=1 Tij where n is the number of camera detections in ∆tj and

αa is a threshold characterising the association condition. If αa is low, camera
detections are more frequently associated to SPAD events. However, this increases
the number of cases in which the measured decay histograms are the sum of different
decay histograms that cannot be properly separated by a post-processing analysis.
As a trade-off, we use αa = 80% in the experiment.

• In 5% of the cases, several SPAD events are identified in ∆ti. Then, if the difference
between these decay rates is smaller than 30%, we merge the SPAD events and
we calculate the average decay rate. Otherwise, we evaluate the likelihood of each
event to be the one corresponding to the camera detection, based on the number
of fluorescence photons measured by the SPAD. To do so, we identify the event k
associated with the highest number of photons Nk and we perform the association
between position and decay rate only if Nk > αa

∑n
i=1Ni where Ni is the number

of photons associated with the overlapping SPAD events and αa is the threshold
previously mentioned (αa = 80%).

Two additional conditions are required in order to correctly perform the association be-
tween position and decay rate. For each molecule, at least 150 fluorescence photons must
be detected on each detector. Moreover, the standard deviation of the Gaussian function
fitted to the camera data must be smaller than 190 nm. These two conditions avoid the
occurrence of false detections that would be due to noise. Using this procedure, we as-
sociate the position of 3,581 camera detections with their decay rate. We then perform
post-processing filtering to account for the few remaining loopholes of the procedure. To
do so, we compare each decay rate to the decay rate of the 10 closest detections. On
average, this corresponds to a distance of 19 nm between the detection and its neigh-
bours. Then, we perform an outlier identification based on the median absolute deviation
(MAD). A decay rate Γ is rejected if the decay rates Γk of the closest neighbours satisfy
the following condition:

|Γ−Med(Γk)| > αr Med
[
|Γk −Med(Γk)|

0.675

]
, (5.3)

where Med is the median operator and αr is a rejection threshold. The factor 0.675
is used so that MAD and standard deviation are approximately equal for large normal
samples [115]. It should be noted that no outlier identification is performed if more than
50% of the neighbours have a decay rate equal to the upper limit previously mentioned
(10 ns−1) since the right-hand side of Eq. (5.3) equals zero in this case. With the approach
expressed by Eq. (5.3), using a small threshold αr allows the identification of many outliers
but may also identify actual detections as outliers. As a trade-off, we use αr = 5 resulting
in the identification of 6% of outliers. By removing them, the number of actual detections
reduces to 3,352.
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5.5 Experimental results

From the results of the 10-hour-long experiment, we can study the enhancement of the
decay rate of the molecules induced by the presence of the silver nanowire. Before analysing
these results, we describe the strategy used to build a decay rate map from the position
and the decay rate of the detected molecules.

5.5.1 Reconstruction of the decay rate map

We can now build a decay rate map with sub-wavelength resolution that takes into account
the position of the molecules, their decay rate and the localisation precision. First of all, we
discretise the xy-plane with a resolution of 1 nm. As we will see in Chapter 6 (Sect. 6.3.5),
the typical standard deviation of the probability density function followed by the position
estimates is 6 nm. Hence, we represent each molecule by a circular area with a diameter of
15 nm, which is the FWHM of the associated Gaussian distribution. If only one molecule
is detected in this area, then the colour of the area is determined by the decay rate of the
molecule. However, if n molecules are detected in the same area, we compute a weight
function Φ(x, y) for each point of the overlap area. This function expresses the probability
amplitude of detection per unit area, which reads

Φ(x, y) =
n∑
i=1

[
1

2πσ2
x,y

exp
(
− di

2σ2
x,y

)]
, (5.4)

where σx,y is the typical localisation precision of the molecules and di is the distance
between this molecule and the considered point (x, y). The decay rate Γ(x, y) associated
with each point of the overlap area is then calculated as a weighted average over the decay
rates Γi of the detected molecule, according to

Γ(x, y) = 1
Φ(x, y) ×

n∑
i=1

[
Γi

2πσ2
x,y

exp
(
− di

2σ2
x,y

)]
. (5.5)

Figure 5.11 shows the reconstructed decay rate map over an area of 1 µm2 including 93%
of the detected molecules. On this map, we can clearly identify the location of the silver
nanowire, which induces an enhancement of the fluorescence decay rate by at least a factor
of 15. The upper limit of the decay rate map is set to 10 ns−1, as already mentioned in
Sect. 5.4.1. We indeed consider that we cannot correctly estimate such high decay rates
due to the IRF of the setup.

Spatial variations of the decay rate are observed well below the diffraction limit, demon-
strating the ability of the technique to simultaneously determine the position and the
decay rate of single molecules with a very good precision. The performance of the tech-
nique relies on both the localisation precision and the density of detected molecules. We
already mentioned that the FWHM of the Gaussian distribution typically followed by the
position estimates is 15 nm. Moreover, the average distance between two nearby detec-
tions is 7.5 nm, but the density of detected molecules is clearly not uniform over the map3.

3For comparison purposes, we can calculate the average distance between two nearby detections under
the assumption that the density of detected molecules ρ is uniform. In this case, the distance r to the nearest
neighbour follows the probability density function H(r) = 2πρr exp(−πρr2) [116], and the expectation of
r is E(r) = 1/(2√ρ). The resulting value (9 nm) is slightly larger that the mean value obtained from
experimental data (7.5 nm), since some areas are more dense than others on the experimental map.
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Figure 5.11 – Map of the decay rate of 3,119 single molecules in the near field of a silver
nanowire.

The centre of the map shows a higher density of detected molecules, as the pinhole does
not filter any photon from this area. Inhomogeneities that can be observed on smaller
scales are likely to be due to an inhomogeneous repartition of fluorescent molecules on the
substrate due to the sample preparation procedure. Furthermore, the density of detected
molecules is lower along the nanowire axis. This effect is likely to be due to the reduced
excitation intensity at this location, as we will see in the following section.

5.5.2 Density of detected molecules

As in usual PALM/STORM experiments, we can study the spatial variations of the density
of detected molecules. Figure 5.12a shows the number of detected molecules as a function
of the distance d to the nanowire axis. On average, we can see that twice as many molecules
are detected for d = 50 nm as for d = 0 nm. This may be due to different effects:

• Fluorescent molecules are present on both the silver nanowire and the glass substrate.
As we measure a projection of the system on the sample plane, the apparent density
of molecules is higher close to the nanowire.

• The interaction between the excitation field and the nanowire results in a non-
uniform excitation intensity distribution.

• The photo-activation and the photobleaching of the fluorescent molecules might be
affected by the proximity of the nanowire.

In order to estimate the influence of the excitation field on the observed density variations,
we perform a numerical study of the system using MEEP, a finite-difference time-domain
software developed by Oskooia et al. [117]. The relative permittivity of the silver nanowire
is modelled with a Lorentz–Drude model as expressed by Eq. (2.1), the relative permittivity
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of the buffer solution is set to 1.77 and the relative permittivity of glass is set to 2.25.
We simulate the illumination of a nanowire located on a glass substrate by a plane wave
at λ0 = 640 nm polarised perpendicular to the nanowire, as in the experiment. In this
configuration, a two-dimensional simulation gives the exact solution due to the invariance
of the structure and the source along the longitudinal dimension. As a result, we obtain
a map of the time-averaged intensity in the vicinity of the silver nanowire (Fig. 5.12b). It
shows a local enhancement of the excitation intensity on the sides of the nanowire, with
an extension of about 20 nm, as well as a reduction of the excitation intensity on the top
of the wire. This supports the observed variations of the density of detected molecules:
the molecules located in the intensity hot spots have a larger probability to be excited,
and their fluorescence can surpass the noise level to be detected by the SPAD and the
camera.

Figure 5.12 – (a) Number of detected molecules as a function of the distance to the
nanowire axis. (b) Time-averaged intensity of the excitation field in the vicinity of the
silver nanowire calculated from the results of a FDTD simulation. Dashed lines represent
the edges of the nanowire.

5.5.3 Decay rate enhancement

To get a deeper insight into the spatial variations of the decay rate observed in the exper-
iment, we study the dependence of the decay rate on the distance d to the nanowire axis
(Fig. 5.13a). For the molecules detected far from the nanowire axis (d > 200 nm), the
decay rate distribution is characterised by an average value of 0.68 ns−1 and a standard
deviation of 0.17 ns−1. In contrast, the decay rate is higher than 10 ns−1 for molecules
detected at distances d < 60 nm from the nanowire axis. This distance approximately
corresponds to the radius of the nanowire, which confirms that molecules with the largest
decay rates are those attached to the nanowire or in its closest vicinity – the procedure
used for sample preparation allows both the coverslip and the silver nanowire to be la-
belled with fluorescent molecules. In comparison to the average decay rate of the molecules
located far from the nanowire, the decay rate of these molecules is enhanced by at least a
factor of 15.



5.5. Experimental results 111

Figure 5.13 – (a) Distribution of decay rate and decay rate enhancement versus distance
to the wire axis. (b) Decay rate enhancement as a function of the distance to the nanowire
for the three orientations of the dipole moment. Inset: Cross-section of the system numer-
ically studied. Dashed lines represent the edges of the nanowire.

To complete these experimental results, we numerically study the enhancement of the
decay rate due to the nanowire using MEEP [117]. Unlike for the numerical study pre-
sented in Sect. 5.5.2, we model the system in three dimensions, with a mesh resolution
of 1 nm. As the effect of the substrate on the decay rate is small due to the low con-
trast between the relative permittivities of the buffer solution and the glass coverslip, we
perform the simulations without the substrate to limit the computational time. In each
simulation, the emitter is modelled as an electric dipole source that generates a Gaussian
pulse at λ0 = 670 nm, and the decay rate is estimated according to the method detailed
in Appendix B. We assume that the intrinsic quantum yield of Alexa Fluor 647 dyes is
ηi = 0.33 as specified by the provider (ThermoFisher Scientific). Using this model, we
numerically investigate distances between the nanowire and the emitter ranging from 4 nm
to 150 nm. We also compute the decay rate without the nanowire as a reference value
used for normalisation.

Figure 5.13b shows the decay rate enhancement induced by the nanowire for each of the
three orientations of the dipole moment respectively defined by the unitary vectors ux, uy
and uz. The decay rate enhancement for radially oriented dipoles (x-direction) is large
in the vicinity of the nanowire edge, with a maximum value of about 14 at a distance
of 4 nm from the nanowire. The decay rate enhancement of longitudinally (y-direction)
and azimuthally (z-direction) oriented dipoles is of the order of 6 at the same distance.
The decay is mainly non radiative at these very short distances, and the contribution of
quenching is large. Furthermore, the distance dependence of the decay rate enhancement
is very different depending on the dipole orientation. At distances between 10 and 100 nm
from the nanowire edge, radially oriented dipoles specifically present high decay rates due
to the coupling between dipolar emission and surface-plasmon modes. This was studied
by Barthes et al., who performed a detailed analysis of the interaction between a dipole
and a plasmonic waveguide [66].

Experimental and numerical results are in good qualitative agreement, supporting the
validity of the experimental technique. A precise knowledge on both the dipole orientation
of the molecules and the distance to the nanowire is however required for a quantitative
analysis of the experimental results. The fluorescent molecules used for the experiment
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(Alexa Fluor 647) are bound to the microscope coverslip using biotin-streptavidin linkers.
From the size of the linkers, we estimate the minimum distance between the probes and
the nanowire to be of the order of 5 nm. Since these short distances are comparable to
the microscopic length scale of the free-electron gas, the description of the metal by a
nonlocal dielectric function can be necessary. This would lead to an enhancement of the
nonradiative decay [118, 119] that is not taken into account by FDTD simulations. This
effect may consequently explain the large number of detected molecules characterised by
a decay rate larger than 10 ns−1. Furthermore, we do not control the orientation of the
dipole moment nor the degree of intrinsic rotational mobility of the attached fluorescent
probes, which depends on the rigidity of their linkers. In order to obtain a quantitative
agreement between the experiment and the numerical simulations, a better understanding
of the orientation of the molecules could be achieved by using polarised superresolution
microscopy [120,121].

5.6 Conclusion

In this chapter, we introduced a new experimental technique to determine the decay rate
of photo-activated single molecules along with their position with a localisation precision
of the order of 10 nm. This technique relies on the simultaneous detection of fluorescence
photons by two different detectors, an EM-CCD camera and a SPAD. Since no more
than one molecule is typically active at a time on the area conjugated to the SPAD, we
could associate the position of more than 3,000 single molecules with their decay rate
from data acquired during a 10-hour-long experiment. We thus reconstructed a map of
the fluorescence decay rate of the molecules (Fig. 5.11), and we observed an increase in
the LDOS induced by the presence of a silver nanowire, in qualitative agreement with
numerical simulations. A quantitative agreement would require a better knowledge of the
orientation of the molecules as well as the consideration of possible non-local effects in the
simulations.

The technique presented in this chapter is a interesting tool to investigate light-matter
interaction on the nanometre scale, as it allows a direct characterisation of the LDOS with
a strongly sub-wavelength resolution. We can also expect this method to be used for the
study of biological samples. For instance, different target-search strategies were identified
by Izeddin et al. using a technique that combines single-particle tracking (SPT) and PALM
techniques [122]. For such an application, a real-time determination of the fluorescence
decay rate could be of great interest. This could be achieved by tagging proteins of interest
with donor and acceptor fluorescent molecules: by tracking photo-activated donors and by
studying the variations of their decay rate due to FRET, one could monitor the interaction
occurring between the protein and the target. Nevertheless, most biological applications
will require to increase the field of view of the technique. To this end, a possibility relies
on SPAD arrays constituted of several independent channels and covering an area of tens
of micrometres in the sample plane [123].

It would also be beneficial to use fluorescent molecules with a higher intrinsic quantum
yield. Indeed, the variations of the decay rate induced by the environment of the molecules
would be easier to observe. Another possible improvement of the technique would be
to localise the molecules in the three dimensions. Huang et al. notably introduced a
technique characterised by an axial localisation precision of the order of 60 nm [124]. The
authors used a cylindrical lens to induce an asymmetry in the PSF of the emitters in
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order to estimate the axial position of the emitter from this asymmetry. An alternative
approach based on decay rate variations induced by a thin gold film was proposed by
Chizhik et al. [125], allowing a more precise axial localisation. Performing the experiment
at cryogenic temperatures could also be an interesting perspective. Indeed, Weisenburger
et al. recently demonstrated cryogenic localisation of single molecules [126], increasing the
number of photons collected from a given molecule by several orders of magnitude.

In the experiment, we determined the position and the decay rate of the molecules using
an EM-CCD camera and a SPAD. However, we can split the fluorescence intensity emit-
ted from the molecules towards several different detectors and simultaneously determine
various physical quantities. For instance, a spectrometer could be added to the optical
path. By using photo-activatable probes with distinct colours [127], it would be possible
to probe LDOS variations at different frequencies. However, the splitting of the fluores-
cence intensity towards different detectors reduces the precision of the estimations, since
the achievable precision directly depends on the number of detected fluorescence photons.
In the following chapter, we will investigate the precision that can be reached by esti-
mating the position and the decay rate of a single molecule using EM-CCD and SPAD
measurements.





CHAPTER 6

Fundamental limit on the precision of position and lifetime
estimations

In this chapter, we assess a lower bound on the precision of the estimations performed
from the data presented in Chapter 5. This is done by calculating the Cramér-Rao lower
bound on the variance of position and decay rate estimators. First of all, we detail the
context of this work and we introduce the basics of estimation theory. We then calculate
the information matrix associated with camera measurements and we give the Cramér-
Rao bound on the variance of position estimators. We similarly analyse measurements
performed with the single-photon avalanche diode to evaluate the lower bound on the
variance of decay rate estimators. In both cases, we assess the precision of actual estima-
tions using numerical results. Finally, we use the Cramér-Rao bound in order to provide
some guidelines to design the experimental setup.

6.1 Introduction

For many applications in physics, it is useful to evaluate the best precision achievable in
the estimation of one or several physical quantities using a given experimental setup. To
this end, one must study the variance of estimators, which are the random variables used
to estimate these quantities. The derivation of a lower bound on the variance of unbiased
estimators was performed by Rao in 1945 [128]. One year after the publication of Rao’s
work, Cramér independently published a book containing a similar demonstration [129].
This result is referred to as the Cramér-Rao lower bound, and is nowadays widely used
as a tool for the optimisation of experimental setups. To do so, one must find a model
for the probability density function followed by the experimental observations, called the
likelihood function. By calculating the information matrix characterising the amount of
information contained in the measurements about the parameters to be estimated, it is
then possible to obtain a lower bound on the variance of these parameters.

Since the development of single-molecule microscopy, estimating the precision of single-
molecule localisation became a challenge. At first, this was achieved using a technique
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introduced by Bobroff that relies on the least-squares method [130]. From this work, a
simple formula describing the localisation precision was derived by Thompson, Larson and
Webb [131]. In 2004, Ober, Ram and Ward introduced a more general approach based
on the calculation of the Cramér-Rao bound [18], assuming isotropic photon emission and
modelling the noise with a Gaussian probability density function. While this model is
appropriate for data measured by a CCD camera, it could be adapted to correctly model
the effect of the multiplication register of an electron-multiplying charge-coupled device
(EM-CCD) [132]. Moreover, a comprehensive study of the precision of position estimations
was performed by Mortensen et al., who compared different estimators assuming either
isotropic or dipole photon emission [133]. The approach based on the calculation of the
Cramér-Rao bound is now widely adopted by the community of experimental physicists
and biologists working with single molecules. A comprehensive review of this work was
recently proposed by Deschout et al. [134]. Moreover, a tutorial that summarises and
illustrates the practical calculation of the Cramér-Rao bound in the context of single-
molecule microscopy was published by Chao, Ward and Ober [135].

In the context of fluorescence lifetime estimation, the performances of different estimators
were compared by Bajzer et al. in 1991 [136]. This study notably included the maximum
likelihood method, which relies on the calculation of the likelihood function. The precision
and the bias of maximum-likelihood estimators were also compared to other estimators by
Tellinghuisen and Wilkerson in 1993 [137]. These two studies relied on a simple model for
the likelihood function, which was notably improved by Rowley et al. in 2011 [138]. In this
work, the authors developed an estimator that combines maximum-likelihood estimation
and prior information about the parameters to be estimated, a technique referred to as
a Bayesian method. A similar estimator was recently studied by Kane et al. for lifetime
imaging based on Förster resonance energy transfer [139]. Along with these studies based
on comparisons between different estimators, the calculation of the Cramér-Rao bound on
the variance of lifetime estimators was performed in 1992 by Köllner and Wolfrum using
the multinomial approach [140].

Definition of the problem In this chapter, we calculate the Cramér-Rao bound on
the variance of both position and decay rate estimators in the context of the experiment
performed in Chapter 5. While we follow Ref. [135] to estimate the Cramér-Rao bound on
the variance of position estimators, we derive an expression of the Cramér-Rao bound on
the variance of decay rate estimators that is more general than the one given in Ref. [140].
This expression notably includes the instrument response function (IRF) and is compatible
with experiments characterised by high repetition rates. This work allows us to get a
satisfactory answer to the two following questions:

• What is the precision of position and decay rate estimations performed in Chapter 5?

• What are the general rules that must be followed to design the experimental setup?

6.2 Estimation theory

To start with, we introduce the conceptual framework necessary to calculate the Cramér-
Rao bound on the variance of any estimator using a classical frequentist reasoning: the
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parameters of interest are assumed to be deterministic but unknown1.

6.2.1 Estimators and sampling distributions

Any experiment can be analysed as the result of n measurements which constitute the
data set, noted X. One particular measurement can then be described by a data item
Xi where i takes integer values between 1 and n. As the n measured values are likely
to be different for each realisation of the experiment, we can consider them as a set of n
random variables described by a n-dimensional joint probability density function (PDF)
noted p(X). The n measurements are often independent; in this case, the n-dimensional
PDF can be factorised into the product of n one-dimensional PDFs, which reads

p(X) =
n∏
i=1

p(Xi) . (6.1)

In general, the functional form of the population is unknown and we intend to retrieve some
of its features from the measured data. We define θ as a set of parameters characterising
the PDF. As the data depend on the parameters, the PDF of X is noted p(X; θ). Since
any estimate of the parameters must be a function of the data, any estimator θ̂ of these
parameters is a function of X. An estimator is consequently a random variable that can
be described by a PDF noted p(θ̂; θ) called the sampling distribution.

In theory, any function of the data could be used as an estimator. However, some estima-
tors are better than others. Any useful estimator must give the correct values for all the
parameters in the limit of an infinite number of data items. An estimator which satisfies
this property is a consistent estimator, and thus verifies

lim
n→∞

θ̂ = θ . (6.2)

In practice, there is a finite number of data items, and a consistent estimator may not
retrieve on average the true value of the parameters: the estimator is then biased. The
bias B is defined as the difference between the expectation of θ̂ for n data items and the
true value of the parameters θ. Hence the bias generally depends on n as well as on θ and
θ̂. It can be expressed as

B(θ) = E(θ̂)− θ , (6.3)

where E is the expectation operator defined as follows:

E(θ̂) =
ˆ

θ̂ p(θ̂; θ) d θ̂ . (6.4)

The variance of an estimator describes the spread of values of θ̂ about its expectation. It
is expressed in terms of the sampling distribution as

Var(θ̂) =
ˆ [

θ̂ − E(θ̂)
]2
p(θ̂; θ) d θ̂ . (6.5)

1An alternative view to the frequentist reasoning is the Bayesian approach, in which parameters to be
estimated are viewed as realisations of random variables. In addition to the frequentist analysis performed
in this chapter, it would be interesting to assess the variance of position and decay rate estimators from
the Bayesian perspective, as it would notably allow to easily include a possible prior knowledge about
parameters in the model [141].
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Finally, the error on the estimate of one given component θj of θ is usually characterised
by the standard error on the estimates, which is noted σθj

and is given by

σθj
=
√

Var(θ̂j) . (6.6)

The bias and the standard error are used to quantify the accuracy and the precision of
an estimator, as illustrated in Fig. 6.1. While the accuracy describes the deviation of the
expectation of the estimator from the true value of the parameter, the precision describes
the spread of the estimates of the parameter around its expectation2.

Figure 6.1 – Illustration of the precision and the accuracy of an estimator.

6.2.2 Cramér-Rao lower bound

For an unbiased estimator, a theoretical limit can be calculated for the minimum variance
of any component θ̂j of θ̂. This limit is the so-called Cramér-Rao lower bound and can be
calculated assuming the following regularity condition [142]:

E
[
∂ ln p(X; θ)

∂θ

]
= 0 . (6.7)

The regularity condition holds if the order of the expectation operator and the differen-
tiation operator can be interchanged, which is generally true if the definition domain of
p(X; θ) does not depend on θ. Then, as a consequence of the Cauchy-Schwartz inequality3,
the variance of any unbiased estimator θ̂ must satisfy the following condition:

Var(θ̂j) ≥
[
I−1(θ)

]
jj
, (6.8)

where I is the Fisher information matrix defined by

[I(θ)]jk = E
[(

∂ ln p(X; θ)
∂θj

)(
∂ ln p(X; θ)

∂θk

)]
. (6.9)

The inequality expressed by Eq. (6.8) is referred to as the Cramér-Rao inequality. An
unbiased estimator is called efficient if its variance equals the theoretical limit given by

2This is the common definition of precision and accuracy, used for instance in Ref. [134]. This differs
from the definition set by the norm ISO 5725-1:1994, used for instance in Ref. [135]. According to this
latter convention, both precision (a small variance) and trueness (a small bias) are required for an estimator
to be accurate.

3The demonstration can be found in Appendix 3B of Ref. [142].



6.3. Precision of position estimations 119

the Cramér-Rao bound. Moreover, any estimator that satisfies the equality condition in
Eq. (6.8) is necessarily unbiased.

As shown in Ref. [143], an equivalent expression of Eq. (6.9) is given by

[I(θ)]jk = −E
[(

∂2 ln p(X; θ)
∂θj∂θk

)]
. (6.10)

The coefficients of the information matrix are therefore determined by the curvature of
the natural logarithm of p(X; θ). If p(X; θ) strongly depends on the parameter θj , it
means that the data set X provides a lot of information about θj . Hence, the information
matrix can be used to assess the amount of information about the parameters contained
in a given data set. Assuming that the n data items are independent, Eq. (6.1) can be
used to simplify the expression of the information matrix, which then reads

[I(θ)]jk =
n∑
i=1

E
[

1
[p(Xi; θ)]2

(
∂p(Xi; θ)
∂θj

)(
∂p(Xi; θ)
∂θk

)]
. (6.11)

The information matrix is thus additive for independent measurements.

6.2.3 Data modelling

In data modelling, we adopt the hypothesis H that the n-dimensional joint PDF has a
particular form that can be expressed as a function of a set of parameters θ. In this
case, the PDF is named the likelihood function. To obtain a model for the likelihood
function, we can firstly assume a functional form f(θ) for the population, from which an
expectation fi can be calculated for each data item. We can secondly assume a functional
form for the likelihood functions p(Xi|θ,H) associated with each data item. As a matter
of simplicity, these likelihood functions will be noted pi(X|θ) in the following sections.
Assuming that the hypothesis H is correct, the information matrix can then be calculated
using Eq. (6.11).

Generally, we do not estimate all the parameters involved in the model from the data.
Indeed, the estimation precision increases for all the parameters whenever we can estimate
the value of one or several parameters from independent experiments. If the parameters
do not have definite values but are described by probability distributions, we can use the
median values of the measured distributions in the calculations. Such a procedure allows
to obtain a typical value of the estimation precision for the parameters that are to be
estimated from the data.

6.3 Precision of position estimations

Using the framework previously detailed, we can calculate the Cramér–Rao lower bound
on the variance of position estimators in the context of single-molecule microscopy, using
wide-field images acquired by an EM-CCD camera.

6.3.1 Point spread function

We consider the simple situation in which a far-field microscope is used to collect the
photons emitted by a single molecule located in the object plane. In the image plane, the
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intensity distribution depends on the orientation of the dipole moment of the molecule,
as detailed in Sect. 1.4.2. However, we showed that the Airy pattern – which is the
exact solution considering a molecule in a homogeneous medium with a dipole moment
in the sample plane – is a good approximate of the pattern averaged over all the possible
orientations of the dipole moment of the molecule. Indeed, the emission collected from a
dipole oriented along the normal to the object plane is much smaller than that of a dipole
in the sample plane, even by using a microscope objective with a high numerical aperture.
Hence we assume that the 2-dimensional PDF describing the intensity distribution in the
image plane is given by Eq. (1.30). This PDF can be expressed from the coordinates in the
image plane noted (x′, y′) and the coordinates of the molecule in the object plane noted
(x0, y0) as follows:

q(x′, y′) =
J2

1

(
2πNA

√
(x′ −Mx0)2 + (y′ −My0)2

Mλ0

)
π [(x′ −Mx0)2 + (y′ −My0)2] , (6.12)

where J1 is the first-order Bessel function of the first kind, NA is the numerical aperture
of the objective, M is the magnification and λ0 is the free-space emission wavelength.

The expression of the point spread function (PSF) given by Eq. (6.12) is valid assuming
that the emitter is inside a homogeneous medium. This is clearly not the case in the
experiment presented in Chapter 5, since the molecules are located in the near field of
a silver nanowire. However, we can use Eq. (6.12) as a first approximation as long as
the inhomogeneities in the environment (the nanowire) weakly radiate to the far field. In
contrast, it was shown that this approximation is not reasonable in the case of photon
emission in the vicinity of a resonant antenna [144,145]. The mislocalisation was notably
estimated in the case of an emitter coupled to a gold nanoparticle [146].

The expectation of each data item – that is, the expectation of the value measured on
each pixel by the camera – is then expressed as follows:

fi = N

ˆ

(x′,y′)∈pixel

q(x′, y′) dx′ d y′ +Nb

ˆ

(x′,y′)∈pixel

qb(x′, y′) dx′ d y′ , (6.13)

where N is the total number of photons emitted by the molecule and detected by the
camera and Nb is the number of photons due to background noise which follows a PDF
noted qb(x′, y′). In Eq. (6.13), the integration is performed over the area that defines the
considered pixel.

6.3.2 EM-CCD data model

We can now derive a functional form for the likelihood function that describes the number
of events measured on each pixel by the camera. To start with, let us review the different
processes involved in photon detection by an EM-CCD camera. When photons impinge the
active area of the camera, they are transformed into photoelectrons that are accelerated in
the multiplication register. These photoelectrons are then accumulated in a potential well
until they are converted by an analog-to-digital converter (ADC). The electronic offset
used to avoid the observation of negative values – called the baseline of the camera – is
usually subtracted before data analysis.
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Assuming that fluorescence photons detected by the camera can be independently de-
scribed, the number of photons impinging on each pixel during a given time interval
follows a Poisson distribution of expectation fi. The noise associated with the standard
deviation of this distribution is referred to as shot noise. If we do not consider the addi-
tional noise arising from the detection process, the PDF associated with the observation
of X photoelectrons on a given pixel is

ppi (X; θ) = fXi
X! exp(−fi) . (6.14)

This sets the fundamental limit achievable by a perfect camera. However, the multiplica-
tion register of an EM-CCD camera enhances the number of generated photoelectrons in
order to beat the readout noise of the camera, and the PDF followed by the number of
photoelectrons generated by the process depends on the gain g. As shown in Ref. [132],
this PDF noted pei (X; θ) can be approximated, for large gain values, by

pei (X; θ) =


exp(−fi) , for X = 0 ,

exp
(
−
X

g
− fi

)√
fiX

g
I1

2
√
fiX

g


X

, for X > 0 ,

(6.15)

where I1 is the first-order modified Bessel function of the first kind. In addition, the
readout process induces a Gaussian noise on each pixel characterised by an expectation
ηg and a standard deviation σg. This Gaussian noise can be described by the following
PDF:

pg(X; θ) = 1
σg
√

2π
exp

(
−(X − ηg)2

2σ2
g

)
. (6.16)

The PDF describing the readout noise of the camera is the same for all the pixels. There-
fore, we can consider that the PDF describing the number of photoelectrons per pixel for
a real EM-CCD camera is given by

pi(X; θ) = [pei (X; θ)] ∗ [pg(X; θ)] , (6.17)

where the asterisk (∗) represents the convolution product.

In practice, we can use different models to identify the limits of the experiment:

• The fundamental limit is obtained by assuming no background noise (B = 0) and
by considering a perfect camera. The PDF describing the number of photoelectrons
per pixel is then given by Eq. (6.14). This is the hypothesis Hl.

• The limit of the measuring instruments is set by assuming no background noise
(B = 0) and by considering a real camera. More precisely, we use Eq. (6.17) for the
PDF describing the number of photoelectrons per pixel. This is the hypothesis He.

• The limit of the actual experiment is obtained by estimating the background noise
B and by using Eq. (6.17) for the PDF of the number of photoelectrons per pixel.
This is the hypothesis Ha.

These models involve a large number of parameters but many of them can be independently
determined. In the following section, we will assume that λ0, NA, M , g, ηg,σg, Nb and
qb(x′, y′) are precisely determined from side experiments. The set of parameters to be
estimated from the data will therefore be θ = (x0, y0, N).
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6.3.3 Calculation of the information matrix

In order to calculate the information matrix associated with EM-CCD images, we must
calculate the partial derivatives of the likelihood functions pi(X; θ) with respect to each
parameter. This can be done by using the chain rule, which reads

pi(X; θ)
∂θj

= pi(X; θ)
∂fi

∂fi
∂θj

. (6.18)

We start by differentiating Eq. (6.13) with respect to each parameter. We obtain the
following expressions:

∂fi
∂x0

= N

ˆ

(x′,y′)∈pixel

∂q(x′, y′)
∂x0

dx′ d y′ , (6.19a)

∂fi
∂y0

= N

ˆ

(x′,y′)∈pixel

∂q(x′, y′)
∂y0

dx′ d y′ , (6.19b)

∂fi
∂N

=
ˆ

(x′,y′)∈pixel

q(x′, y′) dx′ d y′ . (6.19c)

The partial derivatives involved in Eqs. (6.19a) and (6.19b) can be analytically calculated.
Under the hypothesis Hl, we must differentiate Eq. (6.14) by fi. This reads

∂ppi (X; θ)
∂fi

=
(
fXi
X! exp(−fi)

)(
X − fi
fi

)
. (6.20)

Under the hypothesis He and Ha, we must differentiate Eq. (6.17) by fi. This reads
∂pi(X; θ)

∂fi
=
[
∂pei (X; θ)

∂fi

]
∗ [pg(X; θ)] . (6.21)

The partial derivative involved in this expression can be numerically evaluated using a
finite-difference scheme.

We can now compute the coefficients of the information matrix as given by Eq. (6.11).
Several of these coefficients equal zero since they involve an integral over the product of
two functions of opposite parity. For this reason, the information matrix has the following
form:

I(θ) =

Ixx 0 0
0 Iyy 0
0 0 INN

 . (6.22)

Under the hypothesis He and Ha, the coefficients of this matrix can be numerically eval-
uated by using

[I(θ)]jk =
n∑
i=1

(
∂fi
∂θj

)(
∂fi
∂θk

) +∞ˆ

X=0

dX
pi(X; θ)

[
∂pi(X; θ)

∂fi

]2
. (6.23)

Under the hypothesis Hl, this expression can be simplified. As pi(X; θ) is a Poisson
distribution of expectation fi, the variance of this distribution is also equal to fi. Equa-
tions (6.20) and (6.23) consequently yield

[I(θ)]jk =
n∑
i=1

1
fi

(
∂fi
∂θj

)(
∂fi
∂θk

)
. (6.24)
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Equations (6.23) and (6.24) can be used to calculate the Cramér-Rao bound expressed by
Eq. (6.8) in the context of single-molecule localisation.

6.3.4 Experimental conditions

In order to calculate the information matrix associated with the experiment described in
Chapter 5, we must estimate the value of the parameters involved in the model. Let us
review the characteristics of the experiment:

Emission wavelength The emission wavelength of the molecules (Alexa Fluor 647) is
measured using a spectrometer and is centred around λ0 = 670 nm.

Detection setup The numerical aperture of the objective used for collection is NA=1.4
and the magnification of the optical system is M = 100. The gain of the EM-CCD
camera used for the experiment is g = 100, and the number of photoelectrons per
A/D counts is 12.3 as specified by the provider (Andor). The pixels of the camera
are squared, with a size of 16×16 µm, and position estimations are performed using
a reduced frame of 7×7 pixels. For the calculations, we will assume that the position
of the molecules on the sample plane is conjugated to the centre of a pixel. This is
of low importance, as the precision of position estimators weakly depends on this
parameter if the sampling is sufficiently good.

Readout noise Readout noise is an intrinsic property of the camera that characterises
the readout process. It is usually estimated from a measurement in complete dark-
ness with a short integration time. In practice, we perform the measurement of
4,000 frames (17 × 17 pixels) with a integration time of 30 ms per frame, as in the
experiment. The number of photoelectrons associated with the readout noise follows
a Gaussian distribution (Fig. 6.2a), with a mean value of ηg = 1194 and a standard
deviation of σg = 53.6. We can safely neglect the small deviation from the Gaussian
model: indeed, readout noise is negligible in the experiment because we use a high
value for the electron-multiplying gain.

Figure 6.2 – (a) Measurement of the readout noise. A Gaussian function is fitted to the
data (red curve). (b) Measurement of the background noise due to luminescence of the
sample. The PDF given by Eq. (6.17) is fitted to the data (red curve). On each figure, a
grey dashed line represents the baseline.
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Background noise Background mainly originates from the luminescence of the glass
substrate, which is a consequence of the high excitation power used for the exper-
iment. As we do not detect any luminescence signal from the silver nanowire, the
function qb(x′, y′) is uniform over the whole frame. Therefore, we can define B as the
expectation of the number of background photons impinging on each pixel during
the acquisition time of one frame (30 ms). Since B does not depend on the presence
of an active molecule on the frame, we can estimate B from the data acquired during
the experiment. To this end, we measure the number of photoelectrons per pixel
on the frames in which no molecule can be identified and we fit the PDF given by
Eq. (6.17) to the data (Fig. 6.2b). As a result, we obtain an estimate of the number
of background photons per pixel on each frame (B = 21.9). Such a number of pho-
tons approximately generates g×B ≈ 2, 000 photoelectrons due to the multiplication
register of the camera.

Measurement time For each molecule, we must estimate the measurement time ∆t
which corresponds to the time spent in the bright state by the molecule. Figure 6.3a
shows the distribution of the measurement time ∆t for each molecule, determined
from the number of frames associated with each detection. The median value of this
distribution is 2 frames, corresponding to a measurement time of 60 ms.

Number of fluorescence photons The number of photons detected from each molecule
by the camera ranges from 150 to more than 10,000 fluorescence photons (Fig. 6.3b).
The median value of this distribution is 1,228 photons, which means that a molecule
is typically detected on 2 successive frames with 614 fluorescence photons detected
on each frame. The distribution is truncated: as explained in Sect. 5.4.3, we use
a threshold of 150 photons for the data analysis in order to discriminate between
spurious and real events.

Figure 6.3 – Distribution of (a) the measurement time ∆t and (b) the number of photons
detected from each molecule during the experiment. A red curve shows a log-normal fit to
the data, and a dashed line represents the condition N>150 used for the data analysis.

6.3.5 Numerical results

We can now compute the Cramér-Rao bound on the variance of position estimators using
Eq. (6.8) in order to evaluate a lower bound on the standard error σx,y on the position es-
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timates performed using one frame. Assuming that there is no preferred direction in space
– this is not exactly true because of the shape of the pixels, but is a good approximation
for squared pixels – the Cramér-Rao inequality reads

σx,y ≥
√

1
Ixx

=
√

1
Iyy

. (6.25)

In the experiment, a molecule is typically detected on two successive frames, as detailed in
Sect. 6.3.4. Its position is then estimated by the mean of the individual estimates, so that
the standard error on the resulting position estimate is σx̄,ȳ = σx,y/

√
2. We specifically

perform the calculation of σx̄,ȳ for the different hypothesis introduced in Sect. 6.3.2. The
fundamental limit (Fig. 6.4, red curve) is calculated under the hypothesis Hl: it only
includes the shot noise and the finite size of the pixels. As expected, the Cramér-Rao
bound decreases when the number of detected photons increases. The instrumental limit
(Fig. 6.4, green curve) is calculated under the hypothesis He. It is slightly larger than
the fundamental limit since it also accounts for the readout noise of the camera and
the noise introduced by the electron multiplying process. Note that the variance of the
readout noise can actually be neglected due to the large gain value used in the experiment
(g = 100). The actual experimental limit (Fig. 6.4, blue curve) is calculated under the
hypothesis Ha. It is significantly larger than the fundamental limit for a low number of
detected photons. In this regime, a lower background would be appreciable to enhance
the localisation precision. This could for instance be done by using a quartz substrate
instead of glass.

Figure 6.4 – Cramér-Rao lower bound (CRLB) on the standard error on the position
estimates as a function of the number of fluorescence photons detected by the camera,
calculated for ∆t=60 ms (2 frames). Dark blue points are the average square-root deviation
of the position, retrieved using the weighted least-squares method. A dashed line represents
the condition N>150 used for the data analysis.

While the Cramér-Rao bound gives the lower bound on the standard error on position
estimates, we can also characterise the variance of the actual estimator. To this end,
we numerically generate a set of 104 frames with a fixed number of fluorescence photons
N ranging from 100 to 10,000. This is performed by describing the number of events
detected on each pixel with the PDF expressed by Eq. (6.17). We then calculate the
cumulative distribution function and we use it to randomly generate numbers according
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to the considered PDF based on the inversion principle [147]. The parameters used for
the calculations are the ones described in Sect. 6.3.4. As in the actual experiment, we
use the ImageJ plug-in ThunderStorm [113] to estimate the position of the molecules
using the weighted least-squares (WLS) method. From these data, we compute the root-
mean-square (RMS) deviation of the estimates as a function of the number of collected
fluorescence photons (Fig. 6.4, black points).

As expected, the RMS deviation calculated using the actual estimator is always larger than
the lower bound calculated using the information matrix. However, we can see that the
variance of the estimator approaches the Cramér-Rao bound for a number of fluorescence
photons around 1,000. For the median value of the measured distribution (N = 1, 228),
we obtain a RMS deviation of 6 nm while the Cramér-Rao bound on the standard error
on the estimates is 5.5 nm. This provides us with an indication about the typical precision
of position estimations performed in the experiment.

The RMS deviation saturates to approximately 3 nm for larger number of photons. This
might be due to the fact that the estimator used by ThunderStorm fits a Gaussian func-
tion to a numerically-generated PSF that follows an Airy distribution. For this reason,
we cannot entirely retrieve the information from the data using this estimator. Moreover,
maximum-likelihood estimators are theoretically more efficient and could be used to en-
hance the localisation precision [148]. Considering the actual experiment, the achievement
of a better localisation precision would certainly require to improve the model itself. It
would notably be interesting to know the orientation of the dipole moment of the molecules
and to investigate the modification of the radiation pattern by the nanostructure. From
this knowledge, we would be able to improve the function used to model the measured
PSF. This would ultimately enhance the localisation precision.

6.4 Precision of decay rate estimations

We can similarly calculate the Cramér-Rao bound on the variance of decay rate estimators
in the context of single-molecule microscopy. We specifically study estimations based on
the decay histograms acquired by a single photon avalanche photodiode (SPAD).

6.4.1 SPAD data model

In the weak-coupling regime, the PDF of the excited-state lifetime of a two-level system is a
decreasing exponential function characterised by its decay rate Γ, as detailed in Sect. 1.2.2.
By modelling a molecule by a two-level system, the PDF that describes the photon emission
time t is given by

qfluo(t) = Γ exp(−Γt) . (6.26)

The decay rate of a given molecule may vary with time. This can happen if the molecule
moves with respect to its local environment, or if the orientation of its dipole moment
varies with time. In the experiment presented in Chapter 5, the molecules are attached to
the substrate but they are likely to precess since they are in a liquid medium. Furthermore,
the modification of the decay rate induced by the silver nanowire depends on the orien-
tation of the dipole moment, as shown by the numerical results presented in Sect. 5.5.3.
However, since the agreement between experimental data and the mono-exponential model
is satisfactory, we assume here that the decay rate is constant over the whole measurement.
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In an ideal experiment, an infinitely short laser pulse would excite a molecule and an
ideal time-correlated single-photon counting (TCSPC) detection system would measure
the photon detection time with an infinitely good precision. However, in a real experiment,
the laser has a finite pulse duration. In addition, the TCSPC electronics induces a lost of
precision over the photon detection time due to the jitter of the system. These two effects
can be accounted for by measuring the IRF of the system, which is described by a PDF
noted qirf (t). Therefore, the PDF followed by the photon detection time measured by the
experimental system is

q(t) = qirf (t) ∗ [Γ exp(−Γt)] . (6.27)

From this expression, we can find the expectation of each data item; that is, the expectation
of each data point of the decay histogram. We obtain

fi = N
+∞∑
l=0

ti+1+lTˆ

ti+lT

q(t) d t+Nb

ti+1ˆ

ti

qb(t) d t , (6.28)

where N is the number of photons emitted by the molecule and detected by the system,
Nb is the number of detected photons due to background noise which follows a PDF noted
qb(t), and T is the repetition period of the laser. If the fluorescence lifetime of the molecule
is much smaller than the repetition period, only the first term of the sum in Eq. (6.28) is
significant.

In general, SPADs have negligible readout noise and the dark count rate contributes to
the background noise. Thus, we can model the distribution of photons detected for each
data point by a Poisson distribution of expectation fi. The PDF associated with the
observation of X events on a given data point is then expressed by

pi(X; θ) = fXi
X! e

−fi . (6.29)

The set of parameters that must be estimated from the data is θ = (N,Γ), while we
estimate qirf (t), qb(t) and Nb with independent measurements.

6.4.2 Calculation of the information matrix

The likelihood functions pi(X; θ) expressed by Eq. (6.29) are the same as in Eq. (6.14).
The expression of the information matrix is consequently given by Eq. (6.24), namely,

[I(θ)]jk =
n∑
i=1

1
fi

(
∂fi
∂θj

)(
∂fi
∂θk

)
. (6.30)

We now make the change of variable u = Γt in order to obtain dimensionless quantities for
the parameters involved in the calculations. In addition, we define the normalised repeti-
tion period r = ΓT and the normalised intensity of background noise β = Nb/(rN). Using
the variable u, the PDF characterising the IRF and the background noise distribution are
respectively

q̃irf (u) = qirf (u/Γ)
Γ , (6.31a)

q̃b(u) = qb(u/Γ)
Γ . (6.31b)
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The calculation of the information matrix is performed in Appendix C in the more general
case of a bi-exponential distribution with unknown background. Since the parameters to
be estimated are here θ = (N,Γ), the information matrix reduces to

I(θ) =
(
INN INΓ
INΓ IΓΓ

)
, (6.32)

where the matrix coefficients are expressed by

INN = 1
N

n∑
i=1

(J I
i )2

J I
i + βJB

i

, (6.33a)

IΓΓ = N

Γ2

n∑
i=1

(KI
i )2

J I
i + βJB

i

, (6.33b)

INΓ = 1
Γ

n∑
i=1

J I
iK

I
i

J I
i + βJB

i

, (6.33c)

and JI, KI and JB are defined as follows:

J I
i =

+∞∑
l=0

ui+1+lrˆ

ui+lr

[q̃irf (u) ∗ exp(−u)] du , (6.34a)

KI
i =

+∞∑
l=0

ui+1+lrˆ

ui+lr

[q̃irf (u) ∗ (1− u) exp(−u))] du , (6.34b)

JB
i = r

ui+1ˆ
ui

q̃b(u) du . (6.34c)

In this case, the cross-terms of the information matrix must be considered. Physically, it
means that a lack of information about one parameter influences the estimation precision
of other parameters.

6.4.3 Experimental conditions

In order to calculate the information matrix associated with the experiment described in
Chapter 5, we experimentally determine the value of the different parameters involved in
the model. Let us review the characteristics of the experiment:

TCSPC system The resolution of the acquisition board is 16 ps and the repetition rate
of the laser is 80 MHz; hence the repetition period is 12.5 ns and there are 782 data
points.

IRF The PDF associated with the IRF – noted qirf (t) – is determined by removing the
fluorescence filter between the sample and the SPAD. Figure 6.5a shows the resulting
normalised decay histogram, characterised by a full width at half maximum (FWHM)
of 240 ps.

Noise distribution The PDF noted qb(t) and followed by the number of events due to
background noise is estimated by using different periods of time in which no molecule
is detected. Figure 6.5b presents the measured histogram normalised as a PDF. This
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noise strongly depends on the considered data point: indeed, we expect the detection
of luminescence photons to be correlated to the laser pulses, since luminescence of
the substrate is excited by the laser pulses.

Figure 6.5 – (a) Measurement of the IRF for the determination of the PDF noted qirf (t).
(b) Decay histogram associated with background noise for the determination of the PDF
noted qb(t).

Background noise The intensity of background noise per repetition period is constant
over the whole experiment, and the average noise intensity is Ib = 1.21 cts/ms. Let
∆t be the time interval in-between photo-activation and photobleaching of a detected
molecule. During this time interval, the expectation of the number of background
photons is simply Nb = Ib∆t. Figure 6.6a shows the measured distribution of the
measurement time ∆t determined from SPAD data. Since the median value of this
distribution is 66 ms, it follows that the typical value of Nb is 80 background photons
per molecule detected. The measured distribution is similar to the distribution
obtained using the EM-CCD images and shown in Fig. 6.3a. However, the temporal
resolution offered by the SPAD is much better than the one of the camera, limited
by the acquisition time of a frame (30 ms).

Number of fluorescence photons The number of fluorescence photons measured from
each molecule ranges from 150 to 10,000, with a median value of 367 photons
(Fig. 6.6b). This value is lower than the typical number of photons detected by
the camera (1,228 photons). Indeed, due to the pinhole used on the optical path
leading to the SPAD, fluorescence is partly filtered if the molecule is not exactly at
the centre of the image of the pinhole on the sample plane. In addition, the quan-
tum efficiency of the SPAD (∼ 0.5) is lower than the one of the camera (∼ 0.9).
These two effects explain why the typical number of collected photons is lower for
the SPAD. It should also be noted that SPAD measurements are more sensitive to
the noise due to luminescence of the substrate. Noise is indeed integrated over a
large effective area in the case of SPAD measurements – that is, the area conjugated
to the chip of the detector. In contrast, this area is reduced to the area conjugated
to one pixel in the case of camera measurements.

Since the SPAD typically detects a smaller number of fluorescence photons than the
camera, the condition N > 150 used for the SPAD data analysis indirectly influences
the distribution of the number of photons detected by the camera and previously
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shown in Fig. 6.3b. For less than 1,000 photons detected by the camera from a given
molecule, it becomes less likely that the corresponding number of photons detected
by the SPAD fulfils the condition N > 150. In this regime, the distribution of the
number of photons collected by the camera decreases when N decreases, as observed
in Fig. 6.3b.

Figure 6.6 – Distribution of (a) the measurement time ∆t and (b) the measured number of
photons from each molecule detected during the experiment. A model function (red curve)
accounting for the pinhole transmission is fitted to the data. A dashed line represents the
condition N>150 used for the data analysis.

6.4.4 Numerical results

With these values for the parameters, we can use Eq. (6.8) to compute the Cramér-
Rao bound on the standard error σΓ on the decay rate estimates. Using the notations
introduced in Sect. 6.4.2, the Cramér-Rao inequality can be expressed as

σΓ
Γ ≥

1√
N
× ψ (r, k, q̃irf , β, q̃b) , (6.35)

where k is the number of data points per lifetime and ψ is calculated by inverting the
information matrix. The function ψ describes the influence of the various parameters
involved in the model on the value of the Cramér-Rao bound, as we will see in Sect. 6.5.2.
It is always greater than unity and equals unity when the shot noise limit is reached.

Using this expression, we study the Cramér-Rao bound on the relative standard error
σΓ/Γ as a function of the number of fluorescence photons detected by the SPAD. The
experimental limit on the error is computed by taking into account the background noise
calculated using ∆t = 66 ms. We specifically calculate the Cramér-Rao bound assuming
a relatively slow decay rate of Γ = 0.7 ns−1 (Fig. 6.7a, green curve), which is the typical
decay of the molecules when they are located far away from the nanowire. For comparison
purposes, we also calculate the Cramér-Rao bound assuming a faster decay rate of Γ =
7 ns−1 (Fig. 6.7a, blue curve). The fundamental limit on the relative standard error σΓ/Γ
(Fig. 6.7a, red curve) is found by assuming that ψ = 1; that is, no background noise
(Nb = 0), an ideal IRF as well as an infinite number of data points. We can observe that
the Cramér-Rao bound on the relative standard error σΓ/Γ deviates from the fundamental
limit when the number of measured fluorescence photons is low. This effect is due to the
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background noise, as already observed in Sect. 6.3.5 when we calculated the Cramér-Rao
bound on the variance of position estimators. We also observe that the influence of the
IRF is larger for Γ = 7 ns−1 than for Γ = 0.7 ns−1. For Γ = 7 ns−1, the excited-state
lifetime is indeed reduced to 140 ps and becomes comparable to the FWHM of the IRF
(240 ps), thus reducing the amount of information given by each data item.

Figure 6.7 – (a) Cramér-Rao bound on the standard error on the decay rate estimates as
a function of the number of fluorescence photons. A dashed line represents the condition
N>150 used for the data analysis. (b) Cramér-Rao bound on the standard error on the
decay rate estimates as a function of the decay rate. An orange tinted area represents the
range of values determined in the experiment.

Whereas the fundamental limit on the relative standard error on the decay rate estimates
does not depend on Γ, the introduction of a finite IRF and a non-uniform background
noise induces a dependence of the relative standard error upon Γ. To demonstrate this
effect, we study the lower bound on the relative standard error σΓ/Γ as a function of the
decay rate Γ for N = 367 photons (Fig. 6.7b). The Cramér-Rao bound on the relative
standard error is large when Γ is large, due to the influence of the IRF. In this regime, we
could improve the precision of the estimations by using a detection system with a smaller
jitter and an excitation laser with a shorter pulse width. The Cramér-Rao bound on the
relative standard error also increases when Γ is small. In this regime, the background
noise has a large influence, because the expected numbers of background and fluorescence
photons are on the same order of magnitude for every point of the decay histogram. This
is not the case for larger Γ, because most of the fluorescence photons are then measured
within a short time, resulting in a higher signal-to-noise ratio for the first data points.
Importantly, the Cramér-Rao bound on the absolute standard error σΓ becomes larger
than 1 ns−1 for Γ > 10 ns−1. This justifies the threshold used in Sect. 5.5.1 to present the
decay rate map of the molecules around the silver nanowire.

We can also study the variance of the actual estimators using numerically generated data.
To do so, we numerically generate a set of 104 decay histograms with a fixed number of
fluorescence photons N ranging from 100 to 10,000 photons and with ∆t = 66 ms. Each
histogram is then analysed in order to estimate the decay rate using two different algo-
rithms based on least-squares minimisation, the first one with no weights and the second
one taking the results of the first estimation to compute the weight of each data point.
For comparison purposes, a third algorithm based on maximum likelihood estimation is
also tested. Finally, we compute the RMS deviation of the estimates for each value of N .
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By comparing the Cramér-Rao bound to the calculated RMS deviations for Γ = 7 ns−1

(Fig. 6.8a) and Γ = 0.7 ns−1 (Fig. 6.8b), we can see that the efficiency of the estimators
based on the weighted least-squares (WLS) and on the maximum likelihood (ML) methods
is good for any number of detected fluorescence photons. In contrast, the estimator based
on the least-square (LS) method is less efficient, especially for a low number of detected
photons. For N = 367 photons and Γ = 0.7 ns−1, the RMS deviation calculated using
the LS method is of 10%, while the Cramér-Rao bound on the relative standard error is
of 7%. For Γ = 7 ns−1, these values increase to 12% for the LS method and 9% for the
Cramér-Rao bound. The decay rate of the molecules is actually estimated using the LS
method in the experiment: indeed, the algorithm based on the LS method is more robust
with respect to any deviation from the model. We could use a WLS method or a ML
method to estimate the decay rate of the molecules with a better efficiency. To this end,
it would however be required to consider possible deviations from the mono-exponential
model assumed in the analysis.

Figure 6.8 – Test of the estimators based on the least-squares and weighted least-squares
methods. Dashed lines represent the condition N>150 used for the data analysis.

Additionally, we can also evaluate the bias B of each estimator, as defined by Eq. (6.3).
Therefore, we study B/Γ as a function of the number of detected fluorescence photons
N for Γ = 7 ns−1 (Fig. 6.8c) and Γ = 0.7 ns−1 (Fig. 6.8d). We observe that the bias is
larger for a low number of photons N and is always positive, which means that we tend
to overestimate Γ when a few photons are collected from the molecules. As expected, we
also observe that the bias of the WLS and ML estimators is smaller than the bias of the
LS estimator.
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6.5 Towards an optimisation of the experimental setup

In this section, we discuss the importance of several parameters by calculating the Cramér-
Rao bound for different configurations of the experimental setup. It should be mentioned
that the Cramér-Rao bounds on the relative standard error on the decay rate estimates
σΓ/Γ and on the lifetime estimates στ/τ are strictly the same, as shown in Appendix C.
Hence results concerning decay rate estimators also apply to lifetime estimators.

6.5.1 Beamsplitter transmission

In the experiment described in Chapter 5, a 50:50 beamsplitter allows the detection of
fluorescence photons by both the EM-CCD camera and the SPAD. By changing the
transmission-reflection features of the beamsplitter, we can decide to promote either posi-
tion or decay rate estimations, as the number of collected photons determines the achiev-
able precision. To show this effect, we study the influence of the beamsplitter transmission
upon the Cramér-Rao bound on the standard error on position and decay rate estimates.
We perform the calculation of σx̄,ȳ and σΓ by using the typical values of the experimental
parameters, as detailed in Sects. 6.3.4 and 6.4.3. Transmitted and reflected photons are re-
spectively directed towards the SPAD and the camera. Figure 6.9 shows that a wide range
of beamsplitter transmissions can allow a reasonable precision of both position and decay
rate estimation. For a transmission of 0.1, we obtain σx̄,ȳ = 4.5 nm and σΓ/Γ = 14%.
For a transmission of 0.9, these values are σx̄,ȳ = 13 nm and σΓ/Γ = 5%. From these
considerations, one can choose the appropriate beamsplitter depending on the expected
decay rate variations and the desired spatial resolution.

Figure 6.9 – Cramér-Rao bound on the standard error on decay rate (blue curve) and
position (red curve) estimates. A grey line represents the current configuration of the
experiment (a 50:50 beamsplitter).

6.5.2 Optimisation of the TCSPC setup

We now turn into more general considerations and we discuss the experimental conditions
required to obtain a satisfying estimation precision. Since an exhaustive literature on the
subject is already available for position estimations [18, 131, 134], we focus here on decay
rate estimations. The Cramér-Rao inequality is expressed by Eq. (6.35) in the case of
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a mono-exponential distribution. As already mentioned, the function ψ is calculated by
inverting the information matrix and describes the influence of the different parameters
involved in the model on the value of the Cramér-Rao bound. It is always greater than
unity and equals unity when the shot noise limit is reached. It is therefore interesting to
study how ψ varies as a function of the parameters involved in the model in order to identify
best practices for designing a TCSPC setup. Table 6.1 summarises the parameters used in
the model. In the third column, we recall the definitions of the dimensionless parameters
constructed using N and Γ as references. We can therefore study how ψ varies as a
function of the number of data points k, the repetition period r, the PDF associated with
the IRF noted q̃irf (u) and the level of background noise β. In the following paragraphs,
we will study the influence of each parameter upon the function ψ. To this end, the value
of all the other parameters will be set in order to approach the fundamental limit of the
Cramér-Rao bound. As an illustration, we compare these results to the conditions of the
experiment previously analysed4.

Parameters Dimensionless parameters
Fluorescence decay N and Γ
Repetition period T r = ΓT

Number of data points n k = n/r
Instrument response function qirf (t) q̃irf (u)

Background noise Nb and qb(t) β = Nb/(rN) and q̃b(u)

Table 6.1 – Parameters involved in the TCSPC data model for a mono-exponential dis-
tribution.

Noise intensity Figure 6.10a presents the dependence of ψ on the dimensionless param-
eter describing background noise β, which is defined as the number of background photons
measured in one fluorescence lifetime divided by the total number of fluorescence photons.
Assuming uniform background noise, an ideal IRF, a large number of data points and a
large repetition period, we can use the integral form of the information matrix expressed
by Eq. (C.20). In this case, the function ψ only depends on β, and the influence of back-
ground noise on the precision of the estimations is small (ψ < 1.2) when β < 0.01. These
results indicate that the contribution of background noise is significant in the experiment,
as β ranges from 0.01 to 1.

Number of data point Figure 6.10b presents the dependence of ψ on the number
of data points per lifetime k. This parameter is set by the resolution of the acquisition
board. For the calculations, we assume a large repetition period (r = 100) and an ideal
IRF. Without noise, k > 10 is largely sufficient to achieve the best possible precision
(ψ < 1.0004). The presence of uniform noise slightly increases the number of points
required to obtain a good precision of decay rate estimations. These results indicates that
the number of data point is sufficient in the experiment, as k ranges from 6 to 90.

4This is only an approximation, since the calculations are performed assuming different idealised versions
of the experiment. The analysis corresponding to the actual experimental conditions was presented in
Sect. 6.4.4.
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Figure 6.10 – Study of the precision of decay rate estimations as a function of (a) the
noise intensity, (b) the number of data point, (c) the repetition period and (d) the standard
deviation of the IRF. Dashed lines represent the asymptotic values. On each figure, an
orange tinted area represents the range of values relevant to the experiment.

Repetition period Figure 6.10c presents the dependence of ψ on the number of fluo-
rescence lifetimes r per repetition period. This parameter is set by the repetition rate of
the pulsed laser. For the calculations, we use a large number of data points (k = 500) and
an ideal IRF. Without noise, r > 5 is required in order to achieve a good precision of decay
rate estimations (ψ < 1.1). In the presence of uniform noise, the repetition period has a
similar influence on ψ in comparison to the background-free case. These results indicate
that the repetition period is large enough in the experiment, as r ranges from 8 to 125.

Instrument response function Wemodel the IRF by an inverse Gaussian distribution,
defined by the mean of the distribution µ and a shape parameter λ. This distribution is
defined on ]0,+∞[ and its standard deviation σirf equals

√
µ3/λ. Performing the change

of variable u = Γt, we obtain for q̃irf the following expression:

q̃irf (u) =
√

λg
2πu3 exp

(
−λg(u− µg)2

2µ2
gu

)
, (6.36)

where λg = λΓ and µg = µΓ. Figure 6.10d shows the influence of the standard deviation
of q̃irf – which is equal to Γσirf – on the precision of decay rate estimations. For the
calculations, we use a large repetition period (r = 100) as well as a large number of data
points (k = 500). As expected, the precision of decay rate estimations is good (ψ < 1.4)
when Γσirf is smaller than unity. In the presence of uniform noise, the standard deviation
of the IRF has a larger influence on ψ than in the background-free case. These results
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indicate that the contribution of the IRF can be significant in the experiment, as Γσirf
ranges from 0.1 to 1.5.

6.5.3 TCSPC models with several unknown parameters

In Sects. 6.4 and 6.5.2, we calculated the information matrix assuming that the decay
histogram follows a mono-exponential distribution and that all the parameters except
N and Γ are precisely estimated from independent measurements. This model can be
extended to any time-dependence of the decay histogram with any number of unknown
parameters. In Appendix C, we show the calculation of the information matrix for a
bi-exponential distribution with 5 unknown parameters, namely, the decay rates and the
numbers of fluorescence photons characterising each decay as well as the number of photons
due to background noise. In the following paragraphs, we will detail two particular cases:
the mono-exponential model with unknown noise intensity and the bi-exponential model.

Mono-exponential model with unknown noise intensity Let us assume that the
decay histogram follows a mono-exponential distribution and that the set of unknown
parameters are θ = (N,Γ, Nb). In this case, it is important to use a large repetition
period in comparison to the fluorescence lifetime of the emitter, in order to estimate Nb

with a good precision. If this condition is not satisfied, the precision of the estimations for
all the parameters is degraded. To show this effect, we calculate the value of ψ as a function
of r when the expectation of Nb is known or unknown (Fig. 6.11a). For the calculations,
we use a large number of data points (k = 500), an ideal IRF and uniform background
noise. We observe that the precision of decay rate estimations dramatically decline for
small values of r when the noise intensity is unknown. In the case the expectation of Nb

is known and for β = 1, the value of ψ exceed the asymptotic value by a factor of 10%
if the repetition period of the laser is equal to twice the lifetime of the emitter (r = 2).
In the case the expectation of Nb is unknown and for the same level of noise, r = 13 is
required to achieve the same precision of decay rate estimation. This clearly highlights the
importance of independently estimating the background intensity whenever high repetition
rates are used. In the range of values relevant to the experiment, estimating the number
of background photons from independent measurements actually improves the precision of
decay rate estimations. Indeed, for β = 1 and r = 8, we obtain ψ = 3.9 if Nb is unknown
whereas ψ = 3.3 if Nb is known.

Bi-exponential model In the mono-exponential model, the PDF describing the time
of emission of a photon is given by Eq. (6.26). We now assume that the decay histogram
follows a bi-exponential distribution characterised by two decay rates Γ1 and Γ2 so that
the lifetime PDF becomes

qfluo(t) = η1Γ1 exp(−Γ1t) + η2Γ2 exp(−Γ2t) , (6.37)

where η1 and η2 respectively characterise the contribution of each decay. Let N be the
total number of collected fluorescence photons. We suppose that the set of unknown
parameters is θ = (N1,Γ1, N2,Γ2) where N1 = η1N and N2 = η2N . In this case, the
Cramér-Rao bound reads

σΓ1

Γ1
≥ 1√

N1
× ψ (α, γ, r, k, q̃irf , β, q̃b) , (6.38)
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Figure 6.11 – (a) Study of the precision of decay rate estimations as a function of r when
β is known (dark curves) and β must be estimated from the data (light curves). Dashed
lines represent the asymptotic values, and an orange tinted area represents the range of
values relevant to the experiment. (b) Study of the precision of decay rate estimations
as a function of γ. Dashed lines represent the asymptotic values, corresponding to the
mono-exponential cases.

where α = N2/N1 and γ = Γ2/Γ1. Notably, the precision of decay rate estimations
strongly depends on the ratio of the two decay rates γ, as shown in Fig. 6.11b. For the
calculations, we use α = 1 as well as a large number of data points (k = 500), a large
repetition period (r = 100), an ideal IRF and a uniform background noise. We observe
that ψ tends to infinity for γ close to unity. Indeed, a large number of photons is required
to obtain a satisfactory precision when the ratio between the two decay rates approaches
one. In contrast, when the two decay rates differ by more than one order of magnitude,
ψ approaches the theoretical limit given by the mono-exponential model. Let us compare
the precision of decay rate estimations in the absence of noise for a mono-exponential
and a bi-exponential distribution. In the mono-exponential case, the Cramér-Rao bound
on the relative standard error is 10% for N = 100 photons. The same relative standard
error is achieved in the bi-exponential case for N = 1, 000 photons if Γ2 = 1.5 Γ1 and for
N = 10, 000 photons if Γ2 = 1.1 Γ1.

In a nutshell, a large number of photons is generally required to get a satisfactory preci-
sion if many parameters are unknown. In practice, we can use independent measurements
to enhance the estimation precision of one or several given parameters. Then, the infor-
mation matrix is the sum of the information matrices calculated from each independent
measurement.

6.6 Conclusion

In this chapter, we used the Fisher information to calculate the lower bounds on the
variance of position and decay rate estimators. Thus, we were able to assess the precision
of the estimations performed in Chapter 5. To start with, we modelled the data measured
by the EM-CCD camera and we calculated the information matrix associated with actual
experimental conditions. We studied how the lower bound on the standard error on the
position estimates depends on the number of fluorescence photons (Fig. 6.4), and we
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tested the algorithm used to retrieve the position of the molecules. From these results, we
showed that the typical standard error on the position estimates is of the order of 6 nm
in the experiment. Then, we used the same strategy to evaluate the precision of decay
rate estimations. We studied how the lower bound on the standard error on the position
estimates depends on the number of fluorescence photons (Fig. 6.7a) but also on the value
of the decay rate (Fig. 6.7b). We tested the algorithm used to estimate the decay rates
and we showed that the typical relative standard error on the decay rate estimates is of
the order of 10-12%. Finally, we discussed the experimental conditions required to obtain
a good precision of the estimations. We highlighted that the Fisher information cannot be
used to accurately determine the precision of the estimations, as it depends on the actual
estimator used for the data analysis. Moreover, we also discussed the approximations
used to model the measured PSF by an Airy function and the PDF of the excited-state
lifetime by a decreasing exponential function. The elaboration of a more advanced model
would require a full characterisation of the interaction between the molecules and their
environment, including a precise knowledge of the orientation of the dipole moment of the
molecules.

We pointed out that a lack of information about one parameter influences the estimation
precision of other parameters if the cross-terms of the information matrix are non-zero. In
the case of position estimations, the cross-terms of the information matrix are zero due to
the symmetry properties of the PSF. In contrast, the cross-terms are non-zero for decay
rate estimations, even in the mono-exponential case. This is mainly due to the difficulty
of simultaneously estimating the number of fluorescence photons and the intensity of
background noise from a decay histogram. In the experiment, background noise can be
estimated from an independent measurement, and the respective contribution of signal and
noise can be precisely determined. As a result, cross-terms do not significantly contribute
to the variance of decay rate estimates. Cross-terms strictly equal zero in the case of
background-free estimations, as we can see from Eq. (C.21).

The results presented in this chapter inform us about the experimental features which
can be improved to optimise the precision of the estimations. For instance, the general
result expressed by Eq. (6.38) provides us with a valuable tool for the optimisation of a
TCSPC setup, as it allows the direct calculation of a reliable benchmark for the precision of
decay rate estimations. Indeed, the calculation of the Cramér-Rao bound allows to easily
identify the parameters that must be optimised in order to achieve precise, shot-noise
limited estimations, as we did in Sects. 6.3.5 and 6.4.4 in the context of the experiment
presented in Chapter 5. We notably showed that the IRF is a limitation for the estimation
of decay rates higher than 10 ns−1. We also showed that the noise due to luminescence
has a large impact on both the position and decay rate estimations if the number of
collected fluorescence photons is small. Note that we could easily calculate the lower
bound on the variance of intensity estimators that would be used to estimate the number
of fluorescence photons emitted by a molecule and detected by the detectors. Using the
same mathematical framework, we could also characterise any deviation of the excited-
state lifetime distribution to a reference situation.



General conclusion and perspectives

In this thesis, we studied different aspects of spontaneous emission and energy transfer in
the near field of nanostructured materials. We now summarise the main results, and we
present some perspectives.

As an introduction, we presented a classical description of the interaction between fluo-
rescent emitters and their environment (Chapter 1). With a Green function formalism,
we obtained simple analytical expressions for several physical quantities relevant to the
experiments presented in this thesis, including the decay rate of a quantum emitter and
the rate of energy transfer between two emitters. We recalled that, while the decay rate of
an emitter is proportional to the local density of states (LDOS) at the emission frequency,
the rate of energy transfer between two emitters is proportional to the absolute square
of the dyadic Green function at the transfer frequency. We also discussed near-field and
far-field approaches to fluorescence microscopy. With a far-field microscope, the position
of a fluorescent emitter must be estimated from the intensity detected in the image plane.
In contrast, a scanning near-field optical microscope with an active probe can be used to
achieve a deterministic control over the emitter’s position.

By tuning the environment of fluorescent emitters, both the rate and the range of energy
transfer can be strongly enhanced. Based on this idea, we showed that simple plasmonic
nanostructures can be used to achieve micrometre-range energy transfer between fluo-
rescent emitters. We specifically investigated plasmon-mediated energy transfer in two
configurations, a thin silver film (Chapter 2) and a silver nanowire (Chapter 3). In the
thin film configuration, we determined the distance dependence of the energy transfer
rate using spectral measurements, and we demonstrated that this rate directly depends
on the surface-plasmon propagation length at the transition energy of the emitters. More-
over, we used the Green formalism to estimate the energy transfer rate in the experiment.
From these calculations, we identified different ranges of interaction specific to plasmon-
mediated energy transfer. In the nanowire configuration, we presented an experimental
demonstration of energy transfer occurring between a single quantum dot (QD) and flu-
orescent molecules embedded inside a nanobead, located 8.7 µm away. We showed that
the decay histogram of the acceptor measured during the experiment is determined by the
convolution of the decay histograms of the donor and the acceptor independently excited.
In addition, we demonstrated the existence of a positive correlation on the millisecond
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time scale in the intensities measured from the quantum dot and the bead, which attests
that the blinking of the quantum dot and the bead is correlated while they are located
several micrometres away from each other. These results constitute an indirect evidence
of the occurrence of energy transfer mediated by single plasmons. As a direct evidence, we
expected an anticorrelated emission between the QD and the acceptor on the nanosecond
time scale, but its observation was hindered by the noise level due to the weak efficiency of
the energy transfer process. Indeed, plasmonic waveguides are characterised by significant
propagation losses due to ohmic losses. Moreover, the coupling of the emitters to surface
plasmons modes competes with other decay processes, such as free-space emission and
quenching.

In this context, a stimulating perspective is to use hybrid plasmonic-dielectric waveguides
for the realisation of long-range energy transfer, as proposed in Ref. [38]. In this scheme,
two emitters coupled to plasmonic antennas could interact over a large range of distances
via the guided modes of a dielectric waveguide. Propagation losses would be much smaller
as compared to a plasmonic waveguide, and antennas would allow an efficient coupling of
the emitters to the guided modes of the waveguide. Work in this direction is already in
progress at Institut Langevin. A project in collaboration with Université de Technologie
de Troyes relies on the association of a TiO2 waveguide with two triangular plasmonic an-
tennas. Another approach in collaboration with Laboratoire Kastler Brossel involves two
gold nanorods located on a stretched optical fibre. In both cases, a challenging task will be
to precisely position the emitters in the near field of the plasmonic antennas. To this end,
a possible solution relies on placing the emitters on the antennas by nano-manipulation us-
ing the homebuilt near-field optical microscope described in this thesis. Several techniques
could alternatively be implemented to precisely depose the emitters on the antennas, such
as photo-lithography [149], electro-hydrodynamic printing [150], or electron beam lithog-
raphy combined with chemical functionalisation [151]. These plateforms could ultimately
be used to perform interesting experiments involving an efficient coupling between two
distant quantum emitters. For instance, a long-distance entanglement was recently ob-
served between two SiV centres inside a photonic crystal cavity [152]. This experiment
was performed at cryogenic temperature, but the recent observation of plasmon-mediated
superradiance at room temperature raises the question of the robustness of superradiance
against temperature-induced decoherence [153].

Most of the time, optical antennas are made of plasmonic materials, which provide a deeply
subwavelength mode volume due to plasmon resonances. However, the rate of photons
emitted by a nearby emitter is generally reduced by quenching due to ohmic losses in the
metal. As a lossless alternative to plasmonic antennas, we investigated the possibility to
take advantage of Mie resonances in order to build antennas at optical frequencies using
dielectric materials (Chapter 4). To this end, we performed a three-dimensional analysis of
the near-field interaction between a fluorescent nanobead and two different antennas using
a scanning probe microscope. We showed that dielectric antennas can either increase or
decrease the fluorescence decay rate, and we detected spatial variations of the measured
fluorescence intensity due to the directivity properties of the antennas and their ability to
modify the excitation field. The observed decay-rate variations were weak in comparison to
the variations that can be observed by using plasmonic antennas, but numeral simulations
performed by Mathieu Mivelle at Institut des NanoSciences de Paris (INSP) showed that a
larger enhancement is expected when the emitter is located inside the antenna. Moreover,
dielectric antennas are able to interact with both the electric and the magnetic part of
the field. Hence, it would be interesting to use emitters with a strong magnetic dipole
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transition for the study of dielectric antennas with non-overlapping electric and magnetic
Mie modes. The coupling of europium ions to dielectric hollow nanocylinders is currently
studied at INSP. By means of near-field scanning-probe microscopy, it should be possible
to assess the relative importance of electric and magnetic dipole emission. This work
could ultimately allow to tune both the electric and magnetic decay rate using a lossless
antenna.

While scanning near-field optical microscopy allows a deterministic control over the posi-
tion of a fluorescent emitter, the technique remains difficult to implement. Moreover, in
some cases, the interaction between the tip and the structure can perturb the measurement
and provoke sample damage. We proposed an alternative approach for the determination
of the fluorescence decay rate of photo-activated single molecules and their respective po-
sitions (Chapter 5), with a localisation precision of the order of 10 nm. The technique
is implemented by splitting the fluorescence intensity towards two different detectors, a
camera and a single-photon avalanche photodiode (SPAD). As a proof-of-principle experi-
ment, we studied the interaction between fluorescent molecules and a silver nanowire. By
ensuring that no more than one molecule was typically active at a time on the area con-
jugated to the SPAD, we could associate the position of more than 3,000 single molecules
with their decay rate from data acquired during a 10-hour-long experiment. We detected
decay rate variations well below the diffraction limit, with an enhancement by at least a
factor of 15 in the vicinity of the nanowire. In the context of this experiment, we used the
Fisher information to assess lower bounds on the precision of the estimations (Chapter 6).
We calculated the Cramér-Rao lower bounds on the variance of both position and decay
rate estimators, and we compared them to numerically generated data in order to estimate
the performances of the estimators used for the analysis of experimental data. We also
provided some guidelines to design the experimental setup, primarily focusing on decay
rate estimations using time-resolved single-photon detection. We notably discussed the
influence of the instrument response function and the repetition rate of the laser upon the
estimation precision. We also highlighted that the trade-off between the precision of posi-
tion and decay rate estimations can be controlled by choosing the appropriate beamsplitter
depending on the expected decay rate variations and the desired spatial resolution.

This technique is an interesting tool to investigate light-matter interaction, as it provides
a direct characterisation of the LDOS with a strongly sub-wavelength resolution. While
the study of resonant antennas can be complicated due to the mislocalisation of the flu-
orescent emitters involved in the emission process, the technique can directly be applied
to the study of non-radiative processes such as quenching. We also expect this technique
to open interesting possibilities in the field of biology, as it allows to access the contrast
provided by the modification of the excited-state lifetime of fluorescent emitters (as in
fluorescence-lifetime imaging microscopy) with a high localisation precision (as in photo-
activated localisation microscopy). For instance, this technique could be used to precisely
map different parameters on biological samples such as the viscosity, the pH or the inter-
action between two proteins tagged with fluorescent emitters via the lifetime variations
induced by the occurrence of Förster resonance energy transfer (FRET). For such applica-
tions, the estimation of lower bounds on the variance of lifetime estimators will be helpful
to design experimental setups allowing shot-noise limited estimations. Since most biologi-
cal applications will require to increase the field of view of the technique, the utilisation of
SPAD arrays is currently investigated at Institut Langevin, in collaboration with Politec-
nico di Milano. Different strategies for the axial localisation of the fluorescent molecules
are also considered. Using a cylindrical lens to induce an asymmetry in the point spread
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function is a possibility, but another technique based on the decay rate variations induced
by a gold film could be used to achieve a higher axial localisation precision [125]. In
this configuration, the in-plane localisation would be performed from the measured point
spread function, while the axial position would be estimated from the decay rate of the
emitter. Thus, it should be possible to perform a precise three-dimensional localisation of
photo-activated molecules, with a lateral precision of 10 nm and an axial precision of the
same order of magnitude.
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APPENDIX A

Dyadic Green function at an interface

A.1 Definition of the problem

We are interested in the spatial distribution of the electric field generated by a dipole
in the near field of a silver mirror. This problem can be solved by finding the reflected
part of the dyadic Green function at an interface G11(r1, r2, ω). In the general case, the
Green tensor depends on the position of the emitter r1 = (x1, y1, z1), the position of the
receptor r2 = (x2, y2, z2) and the frequency of the light ω. The geometry of the problem
is represented in Fig. A.1.

Figure A.1 – Geometry of the problem.

G11(r1, r2, ω) can be decomposed as the sum of the homogeneous Green tensor G0 and
the contribution due to the field scattered by the interface S11. Due to the symmetry in
the geometry, the scattered Green tensor only depends on z1,z2, ω and d = ‖r1 − r2‖,
while the homogeneous green tensor only depends on d and ω. This reads

G11(r1, r2, ω) = G0(d, ω) + S11(d, z1, z2, ω) . (A.1)

The development of an expression for the homogeneous Green tensor can be found for
instance in the work of Levine and Schwinger [154]. For d 6= 0, it is expressed as

G0(d, ω) = exp(ikd)
4πd

[
I− u⊗ u + ikd− 1

(kd)2 (I− 3u⊗ u)
]
, (A.2)
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where I is the unit dyadic, u = (r1 − r2)/d and k = nω/c. For d = 0, the real part of the
homogeneous Green tensor is singular [155] but its imaginary part has a finite limit which
reads as follows:

lim
d→0

(Im {G0(d, ω)}) = k

6π I . (A.3)

A.2 Notations

In order to develop an expression for S11, we consider an interface between two media of
respective index ni = √εi and an incident plane wave of a given amplitude defined by
its wavevector k+

1 = (K, γ1). From the conservation of the transverse components of the
wavevector K = (kx, ky), the magnitude of the longitudinal wavevector in both media is
given by

γi =
√
k2
i −K2 , (A.4)

where k2
i = εik

2
0 and the norm of transverse wavenumber is K =

√
k2
x + k2

y. Thus, the
wavevector of the reflected wave is k−1 = (K,−γ1) while the wavevector of the transmitted
wave is k+

2 = (K, γ2).

Following the notations introduced by Sipe [156], we pose the problem in terms of s- and
p-polarised waves, as represented in Fig. A.2. The unitary vectors in each directions read

ŝ = K̂× ẑ , (A.5a)

p̂±i = 1
k0ni

(
Kẑ∓ γiK̂

)
. (A.5b)

Figure A.2 – Definition of the problem in terms of s- and p-polarised waves.

A.3 Fresnel coefficients

The Fresnel coefficients for the reflected wave read

rs12 = µ2γ1 − µ1γ2
µ2γ1 + µ1γ2

, (A.6a)
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rp12 = ε2γ1 − ε1γ2
ε2γ1 + ε1γ2

. (A.6b)

Defining u by u2 = K2/k2
1, the magnitude of the longitudinal wavevector in both media

is expressed by
γ1 = k1

√
1− u2 , (A.7a)

γ2 = k1

√
k2

2/k
2
1 − u2 . (A.7b)

The Fresnel coefficients can be expressed as a function of u with

rs12 = µ2
√

1− u2 − µ1
√

(k2/k1)2 − u2

µ2
√

1− u2 + µ1
√

(k2/k1)2 − u2
, (A.8a)

rp12 = ε2
√

1− u2 − ε1
√

(k2/k1)2 − u2

ε2
√

1− u2 + ε1
√

(k2/k1)2 − u2
. (A.8b)

A.4 Angular spectrum representation

By performing a Fourier transform along the transverse coordinates, the scattered Green
tensor is expressed by

S11(d, z1, z2, ω) =
¨

s11(K, z1, z2) exp (iK · (r1 − r2)) d kx d ky , (A.9)

where s11(K, z1, z2) is the two-dimensional Fourier transform of S11(d, z1, z2, ω). The
plane wave expansion of the scalar Green’s function is known as the Weyl identity and is
expressed by

exp(ik1d)
4πd = i

8π2

¨ exp(iγ1|z|)
γ1

exp (iK · (r1 − r2)) d kx d ky . (A.10)

Using this identity along with Fresnel theory, it follows that

s11(K, z1, z2) = i

8π2 (̂s rs12 ŝ + p̂−1 rp12 p̂+
1 )exp (iγ1|z1 + z2|)

γ1
. (A.11)

A s-polarised wave reflects at an interface with a coefficient rs12 and keeps the same di-
rection ŝ, while a p-polarised wave reflects at an interface with a coefficient rp12 and its
direction gets changed to p̂−1 .

A.5 Simplified expression

Changing from Cartesian to polar coordinate system, the scattered Green tensor is

S11(d, z1, z2, ω) =
+∞ˆ

K=0

dK Ki

8π2γ1
exp(iγ1|z1 + z2|)

2πˆ

θ=0

d θ (̂s rs12 ŝ + p̂−1 rp12 p̂+
1 ) exp (iKd cos(θ − φ)) . (A.12)
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The integral over the angle θ can be explicited using Bessel functions of the first kind,
using the following properties:

2πˆ

θ=0

exp(ix cos(θ − φ)) cos(nθ) d θ = 2πinJn(x) cos(nφ) , (A.13a)

2πˆ

θ=0

exp(ix cos(θ − φ)) sin(nθ) d θ = 2πinJn(x) sin(nφ) . (A.13b)

Due to the rotational symmetry of the system, we can choose any angle φ for the calculation
and it is convenient to choose φ = 0. We obtain a simplified expression of the scattered
Green tensor using the integration variable u, which reads

S11(d, z1, z2, ω) = ik1
8π

+∞ˆ

u=0

udu√
1− u2

×exp
(
ik1
√

1− u2|z1 + z2|
)

[A(u)rs12(u)+B(u)rp12(u)] ,

(A.14)
where A(u) and B(u) are two matrices defined by

A(u) =

Axx 0 0
0 Ayy 0
0 0 0

 , (A.15a)

B(u) =

Bxx 0 Bxz
0 Byy 0
Bzx 0 Bzz

 , (A.15b)

and the matrix elements are

Axx = J0(k1du) + J2(k1du) ,
Ayy = J0(k1du)− J2(k1du) ,
Bxx = (u2 − 1)[J0(k1du)− J2(k1du)] ,
Byy = (u2 − 1)[J0(k1du) + J2(k1du)] ,
Bzz = 2u2J0(k1du) ,
Bxz = −Bzx = 2iu

√
1− u2J1(k1du) .

(A.16)



APPENDIX B

Numerical evaluation of the LDOS

B.1 Power dissipated by a dipole

Numerical simulations can be used to determine the spatial variations of the LDOS, or
equivalently the decay rate enhancement of a dipole due to the interaction between this
emitter and a structure in its vicinity. This requires two simulations, one in the presence
of the structure and one in its absence. It is possible to compute the decay rate Γ of a
quantum emitter from the power P transferred by a classical emitter to the electromagnetic
field using the following relation:

Γ
Γ0

= P

P0
, (B.1)

where P0 (Γ0) is the power transferred by the dipole to the field (the decay rate of the
emitter) in the absence of the structure. The power transferred by the dipole to the field
is directly found by considering the Lorentz force acting on charges due to the electric
field and reads

P (t) = j(r0, t) ·E(r0, t) , (B.2)

where the current j and the electric field E are evaluated at the dipole position r0. In
a numerical simulation, a dipole is generated by creating an oscillating current j at the
dipole position. The amplitude of the generated current can be controlled and is generally
the same in the simulations with and without the structure. Thus, the power transferred
to the field by the dipole at a given time is directly given by the value of the electric field
at this time and at the dipole position.

B.2 Poynting theorem

While the power emitted by a dipole is given by Eq. (B.2), one can be interested in
the power radiated out of the system, which occupies a volume V and is delimited by a
closed surface ∂V . This is directly given by the total flux of the Poynting vector across a
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closed surface around the structure. The Poynting theorem is a direct consequence of the
conservation of energy and reads as follows:

− ∂

∂t

˚
V
udV =

‹
∂V

S · d A +
˚

V
j ·E dV . (B.3)

This theorem states that the rate at which the energy density u changes equals the outward
flux of the Poynting vector S = E×H plus the power transferred to the electromagnetic
field due to the movement of the charges. This last term involves the power dissipated
by the dipole, as well as the power dissipated by losses in the structures. In a numerical
simulation, we can define a closed surface around the system and monitor the outward
flux of the Poynting vector. By comparing this flux to the power dissipated by the dipole,
it is thus possible to determine the rate of dissipation in the system due to ohmic losses.

B.3 Case of a continuous source

In practice, in a simulation, we can create a dipole at a fixed frequency ω defined by
j(r0, t) = j(t) ul where j(t) = j0 exp(−iωt). Note that it is a common procedure to turn
on the source with a smooth turn-on function. Running the simulation until the electro-
magnetic field is monochromatic, we can calculate the time averaged power transferred by
the dipole to the field, which reads

〈P 〉 = 1
2 Re{j∗(r0) ·E(r0)} . (B.4)

This expression shows that determining the time average of the component of E in the
direction of the dipole is sufficient to compute the enhancement of the power transferred
by a dipole to the field due to the structure, from the two simulations which are performed
with and without the structure using the same current density j to model the dipole.

Moreover, we can also consider the time averaged version of the Poynting theorem, which
is ‹

∂V
〈S〉 · d A = −1

2

˚
V

Re{j∗ ·E} dV , (B.5)

where 〈S〉 = 1/2 Re{E × H∗} is the time average of the Poynting vector. The power
radiated out of the system is then directly given by the outward flux of the time average
Poynting vector. By comparing the power dissipated by the dipole and the power radiated
out of the system, we can access the rate of losses in the system.

B.4 Case of a Gaussian pulse

Instead of running the simulation until the field is monochromatic, we can compute the
power transferred to the field by an impulsive source at a given frequency ω, and run the
simulation until all the energy has left the system. A possible temporal dependence of the
source is a Gaussian pulse, defined by

j(t) = j0 exp
(
−iωt− (t− t0)2

2w2

)
. (B.6)
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The field is not monochromatic, because of the broadband character of the pulse. To
calculate the power dissipated by the pulse at a given frequency, it is required to Fourier
transform the time-dependent quantities into the frequency domain. The power spectrum
of the Gaussian pulse can easily be accessed from Eq. (B.6). The discrete Fourier transform
of the electric field can be evaluated by

Ê(r0, ω) = ∆t√
2π

N−1∑
n=0

E(r0, n∆t) exp(−iωn∆t) . (B.7)

From Eq. (B.2), it directly follows that

P̂ (r0, ω) = ĵ(r0, ω) ∗ Ê(r0, ω) . (B.8)

Again, we can see that only the contribution of the field in the direction of the dipole will
contribute to the power dissipated by the dipole. In the case of linear medium, Oskooi
and Johnson [157] showed that this expression can be rewritten as a product between the
spectrum of the pulse and the Fourier transform of the electric field.





APPENDIX C

Fisher information matrix for decay rate estimations

C.1 Definition of the problem

Let us assume that we have n measurements and that we can model the distribution of
events detected for each data point by a Poisson distribution of expectation fi. Then, the
coefficients of the information matrix are given by

[I(θ)]jk =
n∑
i=1

1
fi

(
∂fi
∂θj

)(
∂fi
∂θk

)
. (C.1)

We consider the estimation of the parameters characterising the excited-state probability
density function of a molecule using SPAD measurements. We assume that the fluores-
cence signal is bi-exponential, with Γ1 and Γ2 the decay rates of each component and N1
and N2 the numbers of photons characterising each component. The background noise is
characterised by the probability density function qb(t) and the number of associated pho-
tons Nb. The instrument response function (IRF) is described by its probability density
function qirf (t). In this situation, the set of parameters that are to be estimated from the
data is θ = (N1,Γ1, N2,Γ2, Nb). Considering n data items, the expectation fi for each
data item reads

fi = N1

+∞∑
l=0

ti+1+lTˆ

ti+lT

[
qirf (t) ∗ Γ1e

−Γ1t
]

d t+N2

+∞∑
l=0

ti+1+lTˆ

ti+lT

[
qirf (t) ∗ Γ2e

−Γ2t
]

d t

+Nb

ti+1ˆ

ti

qb(t) d t .

(C.2)
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C.2 Discrete formulation

Nondimensionalisation of the problem Let us take Γ1 as a reference, and make the
change of variable u = Γ1t. Then, we can define r from the repetition period T so that
r = Γ1T . Therefore, r and T are respectively given by r = un+1 − u1 and T = tn+1 − t1.
We also define α = N2/N1, γ = Γ2/Γ1 and β = Nb/(rN1). Moreover, using the variable u
instead of t, the probability density functions associated with the IRF and the background
noise are respectively

q̃irf (u) = qirf (u/Γ1)
Γ1

,

q̃b(u) = qb(u/Γ1)
Γ1

.

(C.3)

All these notations are summarised in Table C.1.

Parameters Dimensionless parameters
First fluorescence decay N1 and Γ1
Second fluorescence decay N2 and Γ2 α = N2/N1 and γ = Γ2/Γ1

Repetition period T r = Γ1T
Number of data points n k = n/r

Instrument response function qirf (t) q̃irf (u) = qirf (u/Γ1)/Γ1
Background noise Nb and qb(t) β = Nb/(rN1) and q̃b(u) = qb(u/Γ1)/Γ1

Table C.1 – Parameters involved in the TCSPC data model for a bi-exponential decay.

Using these notations, Eq. (C.2) can be rewritten as

fi = N1

+∞∑
l=0

ui+1+lrˆ

ui+lr

[
q̃irf (u) ∗ e−u

]
du+ α

+∞∑
l=0

ui+1+lrˆ

ui+lr

[
q̃irf (u) ∗ γe−γu

]
du

+βr
ui+1ˆ
ui

q̃b(u) du

 .

(C.4)

Calculation of the information matrix In order to calculate the information matrix,
let us define JI, JII, KI, KII and JB as follows:

J I
i =

+∞∑
l=0

ui+1+lrˆ

ui+lr

[
q̃irf (u) ∗ e−u

]
du ,

KI
i =

+∞∑
l=0

ui+1+lrˆ

ui+lr

[
q̃irf (u) ∗ (1− u)e−u

]
du ,

J II
i =

+∞∑
l=0

ui+1+lrˆ

ui+lr

[
q̃irf (u) ∗ γe−γu

]
du , (C.5)
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KII
i =

+∞∑
l=0

ui+1+lrˆ

ui+lr

[
q̃irf (u) ∗ γ(1− γu)e−γu

]
du ,

JB
i = r

ui+1ˆ
ui

q̃b(u) du .

Differentiating Eq. (C.4) by each parameter yields

fi = N1
(
J I
i + αJ II

i + βJB
i

)
,

∂fi
∂N1

= J I
i ,

∂fi
∂Γ1

= N1
Γ1
KI
i , (C.6)

∂fi
∂Nb

= JB
i ,

∂fi
∂N2

= J II
i ,

∂fi
∂Γ2

= αN1
γΓ1

KII
i .

We can now calculate the coefficients of the information matrix as given by Eq. (C.1),
which reads

IN1N1 = 1
N1

n∑
i=1

(J I
i )2

J I
i + αJ II

i + βJB
i

,

IΓ1Γ1 = N1
Γ2

1

n∑
i=1

(KI
i )2

J I
i + αJ II

i + βJB
i

,

IN1Γ1 = 1
Γ1

n∑
i=1

J I
iK

I
i

J I
i + αJ II

i + βJB
i

,

INbNb
= 1
N1

n∑
i=1

(JB
i )2

J I
i + αJ II

i + βJB
i

,

IN1Nb
= 1
N1

n∑
i=1

J I
iJ

B
i

J I
i + αJ II

i + βJB
i

,

IΓ1Nb
= 1

Γ1

n∑
i=1

JB
i K

I
i

J I
i + αJ II

i + βJB
i

,

IN2N2 = 1
N1

n∑
i=1

(J II
i )2

J I
i + αJ II

i + βJB
i

,

IN1N2 = 1
N1

n∑
i=1

J I
iJ

II
i

J I
i + αJ II

i + βJB
i

, (C.7)

IΓ1N2 = 1
Γ1

n∑
i=1

J II
i K

I
i

J I
i + αJ II

i + βJB
i

,

INbN2 = 1
N1

n∑
i=1

JB
i J

II
i

J I
i + αJ II

i + βJB
i

,

IΓ2Γ2 = α2N1
γ2Γ2

1

n∑
i=1

(KII
i )2

J I
i + αJ II

i + βJB
i

,
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IN1Γ2 = α

γΓ1

n∑
i=1

J I
iK

II
i

J I
i + αJ II

i + βJB
i

,

IΓ1Γ2 = αN1
γΓ2

1

n∑
i=1

KI
iK

II
i

J I
i + αJ II

i + βJB
i

,

INbΓ2 = α

γΓ1

n∑
i=1

JB
i K

II
i

J I
i + αJ II

i + βJB
i

,

IN2Γ2 = α

γΓ1

n∑
i=1

J II
i K

II
i

J I
i + αJ II

i + βJB
i

.

As Γ1 is our reference, the Cramér-Rao inequality will be most conveniently expressed
in terms of this parameter. By inverting the information matrix, we indeed obtain the
following expression:

σΓ1 ≥
Γ1√
N1
× ψ (α, γ, r, k, q̃irf , β, q̃b) , (C.8)

where ψ is calculated by inverting the information matrix and σΓ1 is the standard error
on the decay rate estimates.

Formulation in terms of the excited-state lifetime We can also calculate the
Cramér-Rao bound on the lifetime estimator. To do so, we define the excited-state lifetime
τ1 = 1/Γ1 and we perform a transformation of parameter, as detailed in Appendix 3B of
Ref. [142]. This reads

Var (τ̂1) ≥
[
∂(1/Γ1)
∂Γ1

]2 [ Γ1√
N1
× ψ (α, γ, r, k, q̃irf , β, q̃b)

]2
, (C.9)

where τ̂1 is the lifetime estimator. This expression simplifies to

στ1 ≥
τ1√
N1
× ψ (α, γ, r, k, q̃irf , β, q̃b) , (C.10)

where στ1 is the standard error on the lifetime estimates. This demonstrates that the
Cramér-Rao lower bounds are the same for the relative standard error on the decay rate
and lifetime estimators.

C.3 Limiting cases for the discrete formulation

Ideal IRF Whenever the IRF can be considered as ideal, the set coefficients defined by
Eq. (C.6) becomes

J I
i =

[
e−ui − e−ui+1

]+∞∑
l=0

e−lr ,

KI
i =

[
ui+1e

−ui+1 − uie−ui
]+∞∑
l=0

e−lr +
[
e−ui+1 − e−ui

]+∞∑
l=0

lre−lr ,

J II
i =

[
e−γui − e−γui+1

]+∞∑
l=0

e−γlr ,

KII
i =

[
γui+1e

−γui+1 − γuie−γui
]+∞∑
l=0

e−γlr +
[
e−γui+1 − e−γui

]+∞∑
l=0

γlre−γlr .

(C.11)
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JB
i remains unchanged, as it does not depend on the IRF. These expression can be further

simplified, by using the following properties of geometric series:
+∞∑
l=0

e−lr = 1
1− e−r ,

+∞∑
l=0

lre−lr = re−r

(1− e−r)2 .

(C.12)

Using these properties, we obtain

J I
i = e−ui − e−ui+1

1− e−r ,

KI
i = ui+1e

−ui+1 − uie−ui

1− e−r + re−r (e−ui+1 − e−ui)
(1− e−r)2 ,

J II
i = e−γui − e−γui+1

1− e−γr ,

KII
i = γui+1e

−γui+1 − γuie−γui

1− e−γr + γre−γr (e−γui+1 − e−γui)
(1− e−γr)2 .

(C.13)

Uniform background noise Whenever the background noise is uniform over the rep-
etition period, the coefficient JB

i becomes

JB = r/n . (C.14)

C.4 Integral formulation

Let us assume that the number of data items n is large. In the case of an ideal IRF and
a uniform background noise, the coefficients of the information matrix can be analytically
calculated in the case of a mono-exponential decay. As a matter of simplicity, we drop the
subscript "1" when referring to the expected number of photons N and the decay rate Γ.
Then, in the limit of an infinite number of data items, we can replace the sum involved in
the calculation of the information matrix by an integral. Equation (C.1) becomes

[I(θ)]jk = 1
Γ

rˆ

0

1
f

(
∂f

∂θj

)(
∂f

∂θk

)
du . (C.15)

The functions involved in the calculation of the information matrix are J I(u), KI(u) and
JB, which we define as follows:

J I(u) =
+∞∑
l=0

e−(u+lr) = e−u

1− e−r ,

KI(u) =
+∞∑
l=0

[1− (u+ lr)] e−(u+lr) = e−u [1− e−r − re−r − u (1− e−r)]
(1− e−r)2 ,

JB = 1 .

(C.16)

As we did in Eq. (C.7), f can be expressed as

f(u) = ΓN
(
J I(u) + βJB

)
. (C.17)
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Let us define Vr and Wr by

Vr = 1− e−r ,
Wr = 1− e−r − re−r .

(C.18)

The coefficients of the information matrix are then given by

INN = 1
NVr

rˆ

0

e−2u

e−u + βVr
du ,

IΓΓ = N

Γ2V 3
r

rˆ

0

(Wr − uVr)2e−2u

e−u + βVr
du ,

INΓ = 1
ΓV 2

r

rˆ

0

(Wr − uVr)e−2u

e−u + βVr
du , (C.19)

INbNb
= Vr
Nr2

rˆ

0

1
e−u + βVr

du ,

INNb
= 1
Nr

rˆ

0

e−u

e−u + βVr
du ,

IΓNb
= 1

ΓrVr

rˆ

0

(Wr − uVr)e−u
e−u + βVr

du .

C.5 Limiting cases for the integral formulation

Infinite repetition period In the limiting case of an infinite repetition period, INbNb

diverges towards +∞. This means that the amount of information over this parameter is
infinite, and the information matrix becomes a 2 × 2 matrix. Moreover, both Vr and Wr

equals unity. The coefficients then read

INN = 1
N

{
1− β ln

(1 + β

β

)}
,

IΓΓ = N

Γ2

{
1 + β

[
π2

3 − ln
(1 + β

β

)
(1 + ln [β (β + 1)])− 2Li2

(
β

β + 1

)
+ 2Li3

(
− 1
β

)]}
,

INΓ = β

Γ

{
π2

6 −
1
2 ln

(1 + β

β

)
(2 + ln (β (β + 1)))− Li2

(
β

β + 1

)}
.

(C.20)

In these expressions, Li2 and Li3 respectively refer to the polylogarithm functions of order
2 and 3. Using these expressions, the Cramér-Rao lower bound on the standard error on
the decay rate estimates can be expressed as a product of Γ/

√
N and ψ (β).
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Background-free measurements If the number of background photons equals zero
(Nb = 0) the information matrix is

INN = 1
N
,

IΓΓ = N

Γ2

{
(1− e−r)2 + r2e−r

(1− e−r)2

}
,

INΓ = 0 .

(C.21)

In this case, the Cramér-Rao lower bound on the standard error on the decay rate estimates
can be expressed as a product of Γ/

√
N and ψ (r).

Fundamental limit Finally, in the limiting case of an infinite repetition period and no
background noise, we retrieve the following well-known result:

INN = 1
N
,

IΓΓ = N

Γ2 ,

INΓ = 0 .

(C.22)

In this case, the Cramér-Rao lower bound on the standard error on the decay rate estimates
equals Γ/

√
N .
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Résumé
Dans cette thèse, nous associons
mesures expérimentales et modélisa-
tion des données pour étudier l’émission
spontanée d’émetteurs fluorescents en
environnement nano-structuré. Le mé-
moire est organisé en deux parties.

Dans la première partie, nous étudions le
transfert d’énergie entre émetteurs fluo-
rescents en environnement plasmonique
et sur des distances micrométriques.
Pour commencer, nous caractérisons le
transfert d’énergie entre deux ensem-
bles d’émetteurs situés en champ proche
d’une surface d’argent. Nous détermi-
nons ainsi la dépendance en distance
du taux de transfert d’énergie sur des
distances micrométriques. Nous cou-
plons ensuite une boite quantique et une
bille fluorescente à un nano-fil d’argent
et nous étudions le transfert d’énergie
entre ces deux émetteurs, distants de
plusieurs micromètres. Nous démon-
trons notamment le clignotement corrélé
de ces deux émetteurs grâce à l’étude de
la fonction de corrélation de leur intensité
de fluorescence.

Dans la seconde partie, nous sondons
les variations spatiales de densité lo-
cale d’états électromagnétiques induites
par des environnements nano-structurés
grâce à différentes techniques de micro-
scopie à super-résolution. A l’aide d’un
microscope à balayage, nous réalisons
tout d’abord une étude en trois dimen-
sions de l’interaction de champ proche
entre une bille fluorescente et différentes
antennes en silicium. Nous intro-
duisons ensuite une technique stochas-
tique permettant de déterminer expéri-
mentalement la position et le taux
d’amortissement de molécules uniques
photo-activées, avec une précision de
localisation de l’ordre de 10 nm. En-
fin, nous utilisons l’information de Fisher
afin d’estimer les bornes inférieures de
l’erreur type des estimations de posi-
tions et de taux d’amortissement réal-
isées dans le cadre de mesures sur
molécules uniques.

Mots Clés
Durée de vie de fluorescence, Champ
proche, Emission spontanée, Densité
d’états électromagnétiques, Plasmon de
surface, antenne diélectrique, Imagerie
de super-résolution, Molécule unique,
Borne de Cramér-Rao

Abstract
In this thesis, we perform experimental
measurements and data modelling to in-
vestigate spontaneous emission of fluo-
rescent emitters in nanostructured envi-
ronments. The manuscript is organised
into two main parts.

In the first part, we study micrometre-
range energy transfer between fluores-
cent emitters in plasmonic environments.
First of all, we characterise plasmon-
mediated energy transfer between en-
sembles of fluorescent emitters located
in the near field of a silver film. We thus
determine the distance dependence of
the energy transfer rate over microme-
tre distances. We then couple a single
quantum dot and a fluorescent nanobead
to a silver nanowire and we study evi-
dences of the energy transfer between
the two emitters, separated by several
micrometres. We notably demonstrate
a correlated blinking of the two emitters
through the study of the correlation func-
tion of their fluorescence intensity.

In the second part, we probe sub-
wavelength spatial variations of the lo-
cal density of electromagnetic states in-
duced by nanostructured environments
by means of different super-resolution
microscopy techniques. To start with,
we perform a three-dimensional study
of the near-field interaction between a
fluorescent nanobead and different sil-
icon nanoantennas using a scanning-
probe microscope. We then introduce
a stochastic technique to experimen-
tally determine the position and the flu-
orescence decay rate of single photo-
activated molecules, with a localisation
precision of the order of 10 nm. Finally,
we use the Fisher information to estimate
lower bounds on the standard errors on
position and decay rate estimates per-
formed in the context of single-molecule
microscopy.

Keywords
Fluorescence lifetime, Near field, Spon-
taneous emission, Electromagnetic den-
sity of states, Surface plasmon, Dielec-
tric antenna, Super-resolution imaging,
Single molecule, Cramér-Rao bound
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