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Chapter I

Introduction

I.1 Motivation: drag reduction

Drag reduction in fluid flows is today an hard challenge. From an engineering point of
view decreasing the drag means decreasing the fuel needed to supply a car, increasing the
payload of an airplane, or also decreasing the power needed to move a fluid in a pipeline.
The drag comes from the viscous stress that, by first and reasonable approximation, can
be considered linearly proportional to the strain rate. Locally, this means that those forces
are proportional to the rate of change of the fluid velocity vector as one moves away from
the considered point in every directions. The fluids characterised by a constant viscosity
tensor that links the viscous stress to the strain rate are known as Newtonian fluid. In
this framework, for an incompressible and isotropic Newtonian fluid, the viscous stress is
given by a simple relation

τ = µ
du

dy

where τ is the shear stress, µ is the dynamic viscosity of the considered flow and du/dy
is the variation of the velocity component parallel to the shear in the wall-normal di-
rection. The integral of the shear stress over the wall surface gives the force required
to counterbalance the fluid resistance. Without taking into account the cases in which
the pressure forces play an important role (presence of a separation zone or shock wave)
and considering a constant viscosity (setting the fluid and the temperature at which it
operates) the shear stress strictly depends on the streamwise velocity gradient. The flow
behaviour close to the wall also depends on the flow state in which it is moving: laminar,
turbulent, or transitional, as sketched in fig. I.1. The laminar flow is organised by layers
(latin lamina: sheet) and it is characterized by low velocity gradients and low skin friction
drag. On the other hand, the turbulent state is characterized by a chaotic motion. Strong
velocity gradients are present at the wall due to the presence of the viscous sublayer and
the presence of strong velocity fluctuations. The presence of laminar or turbulent state
is somehow linked to the value of the Reynolds number, that is a dimensionless number
representing the ratio between the inertial forces and the viscous forces. Starting from
a laminar state and increasing the Reynolds number the flow becomes turbulent. The
critical Reynolds number is the number at which the flow becomes unstable.
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Figure I.1: Sketch of the flow over a flat plate. Firstly the flow state is laminar and the
wall normal gradient decrease in the stramwise direction. Afterwards the flow becomes
turbulent with high wall normal velocity gradients due to the presence of the viscous
sublayer and high velocity fluctuations.

I.1.1 Historical overview

Many solutions have been proposed and tested experimentally and numerically in the
last half-century to decrease the drag. In order to achieve this objective one can think
to modify the wall properties or shape to change the mean velocity profile or to reduce
the velocity fluctuations killing the structures like the streaks that selfsustain the turbu-
lence (Waleffe, 1995) or delaying transition in order to increase the laminar region. Walsh
(1982) showed experimentally how introducing longitudinal V-groove riblet surfaces it
was possible to produce consistent net drag reductions for a boundary layer flow. The
reduction was as large as 8 percent respect to the unmodified flat plane. The main idea is
to create an higher viscous sublayer in the transverse direction able to alter the formation
and the growth of the streaks. Babenko and Kozlov (1972) investigated experimentally
the use of an elastic surface to increase the critical Reynolds number and decrease the
amplification rate of unstable disturbances. A more recent solution is the use of super-
hydrophobic surfaces as suggested by Daniello et al. (2009). A pattern of micro- or nano
features on hydrophobic wall surface are applied in order to support a shear-free air-water
interface between wall peaks in the surface. The consequent drag reduction approaches
50% of the drag of the uncontrolled case. This kind of solution can be applied only for
some fluids. With the same philosophy McCORMICK and Bhattacharyya (1973) pro-
posed to produce a near wall air film by electrolysis to eliminate the water-solid contact.
Unfortunately, the air film is highly unstable and the energy required for the electrolysis
was not negligible at all. A wall modification by using porous surfaces is useful to con-
trol separated flow but it increases the skin friction (Kong and Schetz, 1982; Kong et al.,
1982). An other interesting solution proposed at the beginning of the 1960 is the use of
additives like polymers in the flow. Large length-to-diameter particle can provide con-
siderable drag reduction from 20 to 50% (Lumley, 1969). It has also been shown how
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Figure I.2: Sketch of Carry’s solution to drag reduction (Cary Jr et al., 1977). A con-
trolled wake allows to get separation. Keeping the the velocity profile close to the sepa-
ration is possible to drastically reduce the drag.

spherical particles can not yield the same effect. The explanation for the fibrous drag
reduction is that the fibres provide a distributed anisotropic body force since the fibers in
the flow are aligned with the streamwise direction. For this reason features like flexibility
or extensibility of the fibres can impact on the drag reduction. The anisotropy of this
body force allows longitudinal velocity fluctuations but those in the cross-stream direc-
tion are much more constrained. The “mono-dimensionalizing” effect alter the turbulent
production and reduce the drag. Of course this kind of solution cannot be used in an open
flow, even if different solutions have been tested. For example one could inject particles
near the leading edge and attempt to recover them at the trailing edge. The fibers cap-
ture is not straightforward and even if it was possible, there is an additional cost for the
recirculation of the particles. Another approach is to generate the fiber by combustion,
but this solution is not viable for environmental problems. By using the same principle
of the fiber to introduce anisotropy, another proposed body force is the magnetic field
(Anderson and Wu, 1971; Fraim and Heiser, 1968). A magnetic field aligned with the
mean flow only affect radials and tangential velocity fields that for a pipe flow represent
fluctuations. This allows to have the same effect as the fibers. The MHD (Magneto Hydro
Dynamics) limitation is that it can be applied only for magnetic fluids. To reduce the wall
normal velocity gradient it is possible to induce a controlled separation because in the
limit of attached flow the wall normal gradient of the streamwise velocity is equal to zero.
Cary Jr et al. (1977) proposed to use a parallel wall jet to produce a wake close to the
wall as in fig. I.2. The interaction between the wake and the wall induces a separation.
Trying to keep the velocity profile over a long distance in the limit of the separation it is
possible to get a drastic reduction of the drag. The same effect can be achieved by using
controlled adverse pressure gradient (Spangenberg et al., 1967; Stratford, 1959). Finally,
there are two recent solutions that it is worth mentioning. The first one is proposed by
Quadrio and Ricco (2004). It consists in the use of spanwise wall oscillation that are
able to inhibit the formation of elongated wall structures. The research is very active in
this topic as the drag reduction achieved in turbulent flows is around 40%. There are
many variants of this method, for example introducing a moving wall or a body forcing
or, as recently proposed, wall travelling waves (Viotti et al., 2009). Another solution for
drag reduction is to delay transition killing Tollmien-Schlichting waves which represent
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the unsteady perturbations that grow spatially up to get transition. Cossu and Brandt
(2004) demonstrated how streaks optimally distributed are able to damp and (in some
cases) annihilate these unsteady perturbations and consequently delay transition. This
stabilization effect has also been demonstrated experimentally using a distributed array
of cylindrical roughness elements to generate streaks (Fransson et al., 2004). This is just
a small list of the possible solutions adopted or studied in the last half-century. Many
other possibilities could be mentioned like distributed suction or distributed blowing in
the boundary layer, use of localized jets up to the most recent studies on the use of plasma
actuators to generate localized forcing. Some of these solutions come from theoretical in-
vestigations, some others from an heuristic procedure. Some of these cannot be adopted
because the energy economized by drag reduction is lower than the energy used to supply
the control. In some cases, the control is effective only for specific kinds of fluids or flows.
An unique and general solution does not exist and this is the reason why the interest in
this field is so high.

I.2 Origin of the present work

The importance of drag reduction is clear but which kind of solution is worthy of being
studied? In this Ph.D work we were interested in using roughness to generate stable steady
streaks to delay transition. The reason of this choice comes from a natural succession
of researches carried out in the DynFluid laboratory in the last ten years. The main fil
rouge pursued is the study of the numerous issues involved in the transition problem. More
precisely, the transition could be divided in three frameworks: how external perturbations
excite disturbances in the laminar state (receptivity), how the latter grow (instability),
and when and where the flow becomes turbulent (breakdown). These three topics are
proper of the hydrodynamic instability framework.

The three topics are depicted in figure I.3. Focusing on open flows, the first work
carried out at the DynFluid laboratory that is worth to cite is Alizard’s study on the
spatially convective global mode in a boundary layer (Alizard and Robinet, 2007). In this
work, the boundary layer flow was studied by using the global stability theory without any
simplifying hypothesis on the parallelisms of the flow like in the local stability theory. The
convective character of the Tollmien-Schlichting waves appears in the global analysis as a
discretized branch of stable global modes. Local properties as the position of the neutral
curve are also recovered. This work refers to the A-way toward transition as depicted
in fig. I.3. The second step was to investigate on the transient growth due to the non-
orthogonality of the global modes in the boundary layer flow (Alizard and Robinet, 2011).
The results show that to lead optimal transient growth many global modes have to be
considered. This two works brought the foundations for other two research fields. The first
one is the study of more complex flow configuration like separated flows (Alizard et al.,
2009). The second one is a fully 3D transient growth analysis (Cherubini et al., 2010b)
since further investigation on non-modal behaviour was necessary to understand the role
in the transient of non zero streamwise wave number perturbations. In this case the TS
waves are not present in the dynamics towards turbulence and the transition is triggered
by secondary instability of the elongated vortex structures. These two works were a nec-
essary step to understand how the boundary layer receptivity changes in presence of a
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Figure I.3: Illustration of the different mechanisms involved in the transition scenario.
Depending on the amplitude of the external disturbance, it is possible to get transition
via different ways. Picture from (Morkovin et al., 1994).
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geometrical disturbance and also to understand why the TS waves are not the most com-
mon route towards transition observed in the experiments. The last two works refer to
the B- and C-way in figure I.3. In 2010, thanks to Cherubini’s work (Cherubini et al.,
2010a), it was possible to demonstrate that a non-linear optimal perturbation can effi-
ciently induce transition. The effect of the non-linear terms in the optimization loop is a
spatial localization of the optimal initial perturbation and an inclination of the elongated
wall vortices. The non linear evolution of the initial perturbation shows the generation
of hairpin vortices that cause the breakdown towards turbulence. The transition due to
a non-linear optimal perturbation refers to the D- and E-way in figure I.3. Introducing
a local geometrical perturbation (smooth roughness) it is possible to get transition in the
boundary layer due to transient growth mechanisms (Cherubini et al., 2013). A varicose
perturbation that wraps the low streaks behind the roughness induces a breakdown be-
tween the laminar streaked boundary layer and the turbulent state due to the generation
of a wave packet advected downstream which gives rise to hairpin structures. The ca-
pability of the roughness element to stabilize the TS waves was then questioned. The
roughness is able to generate stable steady streaks but at the same time it increases the
non-normalities of the system. Loiseau during his Ph.D work (Loiseau, 2014) investigated
on stability of the boundary layer straked due to the presence of a cylindrical roughness
(Loiseau et al., 2014). The main result was that the presence of the roughness not only
increases the non-normalitiy of the system but it could also induce a self-sustained oscilla-
tion owing to the presence of an unsteady global mode. The source of the unsteady global
mode was linked to the shear generated by the separation zone behind the roughness when
the global mode is varicose and it is linked to the Von Karman instability when the global
mode is sinuous. A parametric analysis on the aspect ratio of the roughness showed that
it is possible to switch from a sinuous to a varicose global mode increasing the size of the
diameter related to the height of the cylindrical roughness.

I.3 Objective of this thesis

In the light of the results achieved in the Loiseau’s Ph.D work many questions could be
posed:

• What is the upper limit of the use of the roughness to delay transition?

• If the roughness affects the transient growth of the energy and the stability of the
system, does it change also its receptivity?

• If the receptivity changes, how the eigenmodes interact between each other when
they are forced?

• Is the receptivity analysis predictive of the dynamics when a broad band external
perturbation acts on the streaky boundary layer?

• Are experimental observations coherent with the linear global analyses?

• When the global mode is triggered, is it the cause of the transition or it forces other
secondary unstable mechanisms that evolve towards transition?
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• By using a roughness that does not allow a separation zone is it possible to annihilate
the unstable global mode?

Under the supervision of Jean-Christophe Robinet and Stefania Cherubini, in this Ph.D.
work we tried to give an answer at all this questions.

I.3.1 Approach

Thanks to the collaboration with the IAG laboratory in the Stuttgart university, namely
thanks to Prof. Ulrich Rist and Mr. Dominik Puckert, a numerical-experimental com-
parison has been possible. The experiment is performed in a water channel in which a
boundary layer flow is reproduced. At the wall a cylindrical roughness is installed to
modulate the boundary layer and to check critical Reynolds number after which the flow
becomes unsteady. The first step was to perform a Direct Numerical Simulation (DNS)
corresponds to the experimental setup to compare the statistical quantities. Under the
assumption of parallel flow the neutral curve has been found by a Bi-Local Stability Anal-
ysis (Bi-LSA). A Global Stability Analysis (GSA) has been performed to check the
existence of an unsteady or steady global mode linked to the presence of roughness. The
sensitivity of the eigenspectra has been evaluated looking at the Pseudospectra. For
steady state configurations the optimal response to a periodic forcing has been evaluated
solving an Optimal Forcing (OF) problem. A synthetic Free Stream Turbulence (FST)
has been put in place to verify that the response of the system to an external broad band
uncontrolled perturbation was coherent with the resolvent curve. Finally the dynamics
resulting from the receptivity of the boundary layer has been decomposed by a Dynamical
Mode Decomposition (DMD) to check a posteriori how much the global modes take part
into transition behind the cylindrical roughness. Changing the roughness shape and using
the Miniaturized Vortex Generators the separation zone disappears and an Optimal initial
Perturbation (OP) analysis has been carried out to check the non-normalities introduced
by the boundary layer deformation.

The implementation of the algorithms necessary to perform some of the previously
cited analyses took a great part of this Ph.D work. For this reason a detailed description
will be provided to the reader in the next chapters.

I.4 Organization of the manuscript

First of all (Chapter II)fundamental mathematical notions about stability analysis are
provided. Local and global analysis, transient energy growth and receptivity of the system
are then explained and discussed. The CFD code and the implemented algorithms are
then discussed (Chapter III). The implementation of each algorithm is explained and a
validation test case to each implementation is also provided to the reader. The stability
analysis is then performed onto the cylindrical roughness experimental case (Chapter

IV). The predictability of the linear stability analysis is then verified by perturbed DNS
(Chapter V). Flow parameters are then changed to study their influences on the flow
dynamics (Chapter VI). The cylindrical roughness shape is then substituted by minia-
turized vortex generators (Chapter VII) to evaluate the difference between roughness
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shapes with and without induced separation zone. Finally, general conclusions and per-
spectives are provided (Chapter VIII).
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Chapter II

Mathematical and theoretical basic

notions
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II.1 Equation of Fluid Dynamics

The mathematical formulation of the flow dynamics is represented by the well know
Navier-Stokes equations. For the cases of interest we refer to the incompressible dimen-
sionless Navier-Stokes (NS) equations:







∇ · U = 0
∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∆U

(II.1)

where U(x, t) is the velocity field, P (x, y) the pressure and Re is the dimensionless number
characterising the flow. The first equation in the system II.1 represents the incompress-
ibility constrain and it comes from the mass conservation. The second equation is the
momentum conservation. The presence of the non linear term (U ·∇)U in the momentum
conservation implies that the solution of the PDE system is highly dependent from the
initial condition for a fixed Re number. The analytical solution of the NS equations is
even today an open problem. The only way to solve this equation is to discretize it in
time and in space. The temporal feature of the solution (e.g. steady, periodic or chaotic)
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depends on the Re number that is then the critical parameter. The Re value at which a
steady solution becomes unsteady is the critical value (i.e. Rec).

II.2 Instability framework

The stability or instability definition pertains to the tendency of a physical system to
move away or not from its initial condition when this is perturbed. More properly, if at
an infinitesimal perturbation of a physical system corresponds a small variation of the
present state which does not grow in time then the system is said to be stable. On the
other hand, if the infinitesimal perturbation is amplified in time, then the system is said
to be unstable. The notion of instability is not related only to fluid mechanics but is a
general concept that can be applied to every physical system or mathematical model.
From a general point of view, a system of equations like (II.1) can be written in a contract
form as

∂Q

∂t
= F(Q) (II.2)

where Q = (u, p)T and F is the non linear operator of the considered problem. The
previous definition of instability could be translated mathematically defining all physical
quantities as the sum of a base state and a fluctuation:

Q(x, t) = Qb(x) + q(x,t) (II.3)

The base state Qb(x) is the time-independent part of the solution. On the other hand,
q(x, t) is the fluctuating component of the solution Q(x, t) and represents the unknown
of the problem. Substituting eq. (II.3) in eq. (II.2) one has







∂Qb

∂t
= F(Qb) = 0 (II.4a)

∂(Qb + q)

∂t
= F(Qb + q) (II.4b)

Hence, the same problem defined by eq. (II.2) has two solutions: Qb and Qb + q.
On the basis of this mathematical formulation, different definitions of instability can

be given. Let us assume that the time evolution of a physical problem (such as fluid
mechanics, electromagnetism, particles, etc.) in a domain V is governed by a set of
partial differential equations (PDE), closed with a convenient set of initial conditions at
t = 0, and a set of boundary conditions on ∂V. We note ‖Q − Qb‖ the amplitude of the
perturbation such that:

‖Q −Qb‖(t) =
[∫∫∫

V

(Q − Qb)
2 dV

] 1

2

Definition II.1. Stability (according to Lyapunov).
The basis field Qb(x, t) is said stable if ∀ǫ > 0, ∃δ(ǫ) > 0 such that if ‖Q(x, 0)−Qb(x, 0)‖ <
δ then ‖Q(x, t)−Qb(x, t)‖ < ǫ, ∀t ≥ 0.

The base state is stable if, for a given norm, it exists a limit for which the perturbations
are small compared to the initial perturbation, ∀t. A more restrictive definition of stability
is that given below:
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Definition II.2. Asymptotic stability.
The base state Qb(x, t) is said asymptotic stable if is stable according to Lyapunov and
also limt→∞ ‖Q(x, t)−Qb(x, t)‖ = 0.

An even more restrictive definition of stability is that of global, or unconditional stability

Definition II.3. Global stability or unconditional.
The base state Qb(x, t) is unconditionally stable if it is stable and ∀‖Q(x, 0)−Qb(x, 0)‖ ⇒
limt→∞ ‖Q(x, t)−Qb(x, t)‖ = 0.

A base state which is stable but not unconditionally stable is called conditionally stable,
i.e. there are finite amplitude perturbations that can grow asymptotically.

When the equation of evolution is non-linear, there is not a general theory to determine
the non-linear stability. However, if the disturbance is small for a given base state,
the equation of evolution can be linearised. In this context, there is a complete stability
theory of the linearised operators.

Definition II.4. Linear stability.
The base state Qb(x, t) is said to be stable if all infinitesimal perturbation evolving onto
Qb(x, t) decrease asymptotically.

A state that is not linearly stable, is linearly unstable. Therefore, the definitions of linear
stability derive from general definition within the limits δ, ǫ → 0. If the flow is linearly
asymptotically unstable, it is consequently also asymptotically unstable (linear instability
can be a sufficient condition for instability). In this work we will carry out a linear
instability analysis, thus from now we will consider the hypothesis that the fluctuation is
small compared to the value of the base state.

II.2.1 Linear analysis

As said before, both Qb and Qb +q are solutions of the problem (II.2). If the assumption
of small fluctuations is true, then the governing equations of the system may be linearised
around the base state as follows. Let us consider the non-linear operator F

F(Q) = F(Qb) +∇F(Qb) · q +O(‖q‖2) (II.5)

with ∇F(Qb) being a differential operator, depending on the base state. As the base
state is the stationary solution of equations (II.2), and neglecting the second order terms,
the previous relation becomes

F(Q) = ∇F(Qb) · q (II.6)

Finally, considering that in a linear context the principle of superposition of the effects
holds

∂Q

∂t
=
∂(Qb + q)

∂t
=

�
�
�∂Qb

∂t
+
∂q

∂t
=
∂q

∂t
(II.7)

equation (II.2) can be rewritten as

∂q

∂t
= ∇F(Qb) · q (II.8)
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or, similarly






B
∂q

∂t
= Jq

q(x, t = 0) = q0

Lq(x0, t) = 0 ∈ ∂D
(II.9)

This is the general form of the equations used for a linear stability analysis of fluctuations,
where

• B is a mass matrix;

• J is the Jacobian operator;

• q0 is the initial condition of the problem;

• Lq(x0, t) are the boundary conditions of the problem.

At this point, a more rigorous definition of the base state must be given.

Definition II.5. Base state.
The base state is an equilibrium or periodic solution of the system under consideration:
in the context of linear stability theory, this solution has to be time-independent, hence
stationary. Moreover, it is the solution that maximises the possible symmetries of the
problem under consideration.

Therefore, since the base state is stationary, the system under analysis is stable if the
solution tends asymptotically to Qb. Being the linearised system of equation autonomous,
its solution could be written as

q(x, t) =
1

2π

∫

Fω

q̂(x;ω)e−iωtdω + c.c. (II.10)

where q̂ is the Fourier-Laplace transform of q and c.c. is its complex conjugate. This
is a function of complex amplitude and ω is the complex pulsation wave. Fω is a path
in the complex plane ω, which must be compatible with the convergence of the integral.
Replacing (II.10) in (II.9), an eigenvalue and eigenvector problem is obtained:

ωBq̂(x, ω) = J(Qb)q̂(x, ω) ⇒ [J(Qb)− ωB] q̂(x, ω) = 0 (II.11)

where ω is the eigenvalue and q̂ is the associated eigenvector. If the imaginary part of
ω is greater than zero (ℑ(ω) > 0) there is no growth in time of the fluctuation. The
eigenvalues are the global modes of the base state, conversely, the eigenvectors represent
the fluctuation shape associated with the different modes.

The physical space is three-dimensional and the most general framework in which a
linear stability analysis can be performed is that all these three spatial directions are
resolved and small time-periodic disturbances (inhomogeneous in all three directions) are
superimposed upon a steady base state (itself inhomogeneous in space). This is consistent
with the separability of the governing equations of time, on the one hand, and the three
spatial directions, on the other. The relevant decomposition in this context is

Q(x, y, z, t) = Qb(x, y, z) + εq(x, y, z, t) (II.12)
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with ε≪ 1.
A problem treated according to the decomposition (II.12) can be solved in general

only numerically. In the past, without the computational tools that we have today, linear
stability analysis had to neglect the dependence of the base state on one or two spatial
directions, i.e. a parallel-flow assumption was made. With this assumption, an analytical
base state can be used and the stability analysis can be carried out analytically. In the
case just mentioned of parallel-flow, for example, the general form of the base flow is
Ub = (Ub(y), 0, 0)

T . Therefore the Navier-Stokes equations are homogeneous in the x
and z directions, and in time t, so these can be solved using normal modes expansion of
perturbation. In this case the solution can be found:

q(x, t) =
1

(2π)3

∫

Fω

[
∫

Lβ

(∫

Lα

q̂(y;α, β, ω)ei(αx+βz−ωt)dα

)

dβ

]

dω + c.c. (II.13)

where β is the wave number in the z direction and α is the wave number in the longitudinal
direction of the fluctuations. α, β ∈ C and similarly to the path Fω, path Lβ is a path in
the complex plane β while path Lα is a path in the complex plane α.

Thanks to the homogeneity assumption in two directions of space and the normal
modes expansion, the result of the substitution of (II.13) in the linearised equations of
the problem under consideration falls into the framework of local stability theory. The
modal solution in both streamwise and spanwise direction is common in a great number
of parallel baseflows (e.g. Blasius, Poiseuille, shear flow) but in the case of a boundary
layer modulated by the presence of the streaks at the wall, the base flow cannot be
considered homogeneous in the spanwise direction. In this case, only in the stremwise
direction one can make the homogeneous solution ansatz since the the base flow changes
slightly in the x-direction (quasi-parallel assumption). In this case the solution will be:

q(x, t) =
1

(2π)3

∫

Fω

(∫

Lα

q̂(y, z;α, ω)ei(αx−ωt)dα

)

dω + c.c. (II.14)

where just the streamwise wave number α is taken into account. This decomposition is
part of local stability framework but with two inhomogeneous direction. For this reason
this kind of analysis can be called bi-local stability analysis1 also because the base flow
turns out to be a 2-D field Qb(y, z).

With a local stability analysis the system of differential equations is written formally
as

N (α, β, ω,Qb)q̂(x;α, β, ω) = 0 (II.15)

where N is the operator of the eigenvalue problem that has to be solved. For a local
stability analysis and according to eq. (II.13) and (II.14), two approaches can be chosen:

• Temporal approach.
Investigation of the asymptotic time behaviour of perturbations having real spatial

1According to Theofilis (2011) this case should be called BiGlobal since two inhomogeneous direction
are taken into account in the base flow. Nevertheless we prefer to call it bi-local because the homogeneous
hypothesis is made on the streamwise direction. The latter consideration is consistent with respect
to the absolute instability (Huerre and Monkewitz, 1985) in a local framework. Moreover, the bi-local

terminology is also accepted by other authors.
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wavenumbers (Michalke, 1964)

[N 1 − ωN 2] q̂(x;α, β, ω) = 0 (II.16)

where α and β are frozen. The asymptotic time evolution of an infinitesimal pertur-
bation is then solely governed by the sign of ℑ(ω) (i.e. the real part of the complex
frequency ω). If ℑ(ω) < 0, the perturbation decays exponentially in time and the
base flow Ub is then denoted as linearly temporally stable and vice-versa.

• Spatial approach (also know as Signaling problem).
Investigation of the base state response to time-harmonic localised forcing. In such
analysis, the prescribed frequency of the forcing is real whereas the wavenumbers
characterising the perturbation can be complex (Michalke, 1965)

[
C2α

2 + C1α + C0

]
q̂(x;α, β, ω) = 0 (II.17)

where β and ω are frozen. If the imaginary part of α is greater than 0 then the base
state is spatially stable (ℑ(α) > 0), and vice-versa.

Another distinction is worth being noticed. The physics literature (Huerre et al., 2000;
Schmid and Henningson, 2012) distinguishes between two different kinds of instability,
namely absolute and convective instabilities. This distinction is necessary because an
infinitesimal perturbation can grow in time and in space. The absolute-convective stability
analysis is pertinent for open shear flows, i.e. situations where fluid particles enter and
leave the domain of interest in finite time without being recycled, in contrast to closed flows
in a finite box such as the lid-driven cavity flow. Investigating the absolute-convective
instability of such a flow allows to determine whether the considered flow behave as a
noise amplifier, sensitive to external noise (convectively unstable) or as a flow oscillator
with a well-defined frequency relatively insensitive to external noise (absolutely unstable).

Following Huerre et al. (2000) we can introduce the stream function ψ of the infinites-
imal perturbation q(x, t) (for simplicity only one spatial direction has been considered):

D

(

− ∂

∂x
, i
∂

∂t
, Re

)

ψ(x, t) = S(x, t) (II.18)

where D(·) is the dispersion relation of the equations and S(x, t) a source term specifying
the forcing imposed on the system in some localised interval both in time and space. If
S(x, t) is put equal to zero then the temporal or spatial analysis would have been sufficient.
Introducing the Green function G(x, t), i.e. the impulse response of the system, one can
then write:

D

(

− ∂

∂x
, i
∂

∂t
, Re

)

G(x, t) = δ(x)δ(t) (II.19)

where δ is the Dirac impulse. The G(x, t) provides all the necessary information, so the
concept of the temporal and spatial instability could be redefined as follows:

• if the flow is linearly stable then:

lim
t→∞

G(x, t) = 0 along all rays x/t = const
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Figure II.1: Linear impulse response G(x, t). (a) Linearly stable flow; (b) linearly convec-
tively unstable flow; (c) marginally convectively/absolutely unstable flow; (d) absolutely
unstable flow. Figure from (Huerre et al., 2000).

• if the flow is linearly unstable (temporal or spatial instability) then:

lim
t→∞

G(x, t) = 0 along at least one ray x/t = const

If linearly unstable, the impulse response of the flow then consists of an unstable wavepacket
confined in a wedge in the (x, t) plane growing either in time or space. Among linearly
unstable flows, one can then make the distinction between absolute and convective insta-
bility:

• An unstable flow is said to be convectively unstable if:

lim
t→∞

G(x, t) = 0 along the rays x/t = 0

• It said to be absolutely unstable if:

lim
t→∞

G(x, t) = ∞ along the rays x/t = 0

The different impulse responses are summarized in fig. II.1.

II.2.2 Linearised Navier-Stokes equations

In the previous subsection the general mathematical tools for the instability investigation
have been given. The decomposition (II.3) can now be applied to the dimensionless
Navier-Stokes equations (II.1). The resulting perturbative equations are represented in
the system (II.20):







∇ · u = 0
∂u

∂t
+ (u · ∇)Ub + (Ub · ∇)u = −∇p + 1

Re
∆u

(II.20)

in which Ub is the base flow, u = (u(x, t), v(x, t), w(x, t))T and p(x, t) are respectively the
fluctuation of the velocity field and pressure field.

As said before, depending on the nature of the base flow, it may make sense to perform
a local, a bi-local or a global stability analysis.
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(a) Poiseuille (b) Couette

(c) Wake (d) Blasius

Figure II.2: (a) and (b): Examples of parallel flows. (c) and (d): Examples of quasi-
parallel flows.

II.2.2.1 Local approach to the NS equations.

In nature, there are many cases in which the base flow is homogeneous in one or two
directions or in which its variation is slow in one or two direction. Some examples of such
flow are represented in fig. II.2.
With this kind of base flow the vector Ub is reduced at just one component, Ub =
(U(y), 0, 0). The choice of the parallel flow approximation has also an historical explana-
tion. The solution of the eigenvalue problem for a solution vector as (u, v, w, p) requires
a large memory. Thanks to this approximation the perturbation can be expanded into
normal modes not only in time (λt) but also in the streamwise direction (αx) and in
spanwise direction (βz).

Substituting this new base flow in (II.20) and making some mathematical manipu-
lation, it is possible to recast the linearised Navier-Stokes equations in just two scalar
equations:

[(
∂

∂t
+ Ub

∂

∂x

)

∇2 − U ′′
b

∂

∂x
− 1

Re
∇4

]

v = 0 (II.21)

[
∂

∂t
+ Ub

∂

∂x
− 1

Re
∇2

]

η = −U ′
b

∂v

∂z
(II.22)

where U ′′
b is the second derivative of the base flow in the y-direction and η satisfies the

condition η = ∂u
∂z

− ∂w
∂x

. Eq. (II.21) and (II.22) are called the Orr-Sommerfeld and the
Squire equation, respectively.
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This pair of equations together with boundary conditions

v =
∂v

∂y
= η = 0 at a solid wall and in the far field

and the initial conditions
v(x, y, z, t = 0) = v0(x, y, z)

η(x, y, z, t = 0) = η0(x, y, z)

provide a complete description of the evolution of an arbitrary disturbance in both space
and time. Using the equation (II.22) and the null divergence condition the fluctuation
components u and w can also be obtained. It is possible also to rewrite the system
composed by eq. (II.21) and (II.22) in a matrix form like

∂

∂t

(
v
η

)

=

(
LOrr,Somm 0

C LSq

)(
v
η

)

(II.23)

where LOrr,Somm and LSq are the Orr-Sommerfeld and Squire operator, and C is a coupling
term. Taking a look to (II.23), some interesting informations could be deduced. The
dynamics of the cross-stream velocity v are decoupled from the dynamics of the normal
vorticity η. In this sense the linear (in)stability of the Squire equation is dictated by the
linear (in)stability of the Orr-Sommerfeld one. The vorticity η cannot extract energy from
the base flow. As a consequence, to determine the asymptotic time-evolution (t→ ∞) of
an infinitesimal perturbation, it is sufficient to consider the Orr-Sommerfeld equation only.
Finally the first equation of (II.23) is autonomous in time t, and in the space coordinates
x and z, so its solutions can be sought in the form of normal modes.

Following the mathematical procedure explained in §II.2.1 and considering eq. (II.21)
and (II.22) together with the parallel assumption of the baseflow, one can introduce
wavelike solutions of the form

{v, η}(x, y, z, t) = {v̂, η̂}(y)ei(αx+βz−ωt)

Substituting these two solutions in (II.21) and (II.22) it is possible to obtain:
[

(−iω + iα)(D2 − k2)− iαU ′′
b − 1

Re
(D2 − k2)2

]

v̂ = 0 (II.24)
[

(−iω + iα)(D2 − k2)− 1

Re
(D2 − k2)

]

η̂ = −iβU ′
bv̂ (II.25)

where k2 = α2+ β2 and D is the derivative operator. To equations (II.24) and (II.25) are
associated the relative boundary conditions v̂ = D v̂ = η̂ = 0 at the solid wall and in the
free stream.

Equations (II.24) and (II.25) are another well known form of the Orr-Sommerfeld
equation and Squire equation, respectively. Due to computational reasons many years
these two equations have been the only way to study the asymptotic behaviour of a flow
in space (ω, β ∈ R and α ∈ C) and in time (α, β ∈ R and ω ∈ C).

Accomplishing this stability analysis means that an eigenvalue problem for eq. (II.24)
must be solved. In order to simplify this task, a two-dimensional perturbation instead
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Figure II.3: Weakly parallel base flow generated by the presence of MVG at the wall.
Behind the roughness the velocity field can be considered homogeneous in the x-direction.

of a three-dimensional one could be considered (for example imposing that the spanwise
component of the perturbation is equal to zero). It could be said that disturbances
superimposed on a two-dimensional base flow are not necessarily two-dimensional if the
purpose is to perform a stability analysis as general as possible. However, this issue was
dispelled by Squire (1933), who in 1933 proved, by assuming periodic disturbances also in
the spanwise direction, that a two dimensional infinitesimal perturbation becomes unstable
at lower Reynolds numbers if the perturbation is two-dimensional (i.e. when it has β = 0),
with respect to the case in which three-dimensional disturbances are considered. For this
reason in simple parallel flows, the destabilizing effect of two-dimensional perturbations
is greater than their respective three-dimensional counterparts, so the lowest limit of
stability is reached with respect to the first and not to these latter.

II.2.2.2 Bi-local approach to the NS equations.

As suggested before, the baseflow could be non homogeneous in the spanwise direction.
In this case the modal solution can be accomplished only in the streamwise direction. An
example of baseflow that is homogeneous only in the x-direction is shown in figure II.3.
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Tatsumi and Yoshimura (1990) proposed an extended version of the Orr-Sommerfeld
equation for a base flow U(y, z) where U is the streamwise component of the base flow.
However in this 2-D formulation of the Orr-Sommerfeld equation the wall-normal velocity
component V (y, z) and the spanwise velocity component W (y, z) of the base flow are
equal to zero. This hypothesis is not always true and especially in the case depicted
in fig. II.3 the V (y, z) and W (y, z) velocity component have an important role in the
lift-up mechanism so they cannot be neglected. For the sake of generality the primitive
variables are considered with no reduction in the order of the NS equations. Performing
the following decomposition:

{u, v, w, p}(x, y, z, t) = {û, v̂, ŵ, p̂}(y, z)ei(αx−ωt) (II.26)

and substituting the modal ansatz (eq. II.26) into the linearised NS equations (II.20)
we obtain the following stability problem for each generic section in the streamwise direc-
tion:

iαû+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
=0 (II.27a)

−Ubαû+ ξû+ iv̂
∂Ub

∂y
+ iŵ

∂Ub

∂z
− αp̂+ α2 i

Re
û =− ωû (II.27b)

−Ubαv̂ + ξv̂ + iv̂
∂Vb
∂y

+ iŵ
∂Vb
∂z

− ∂p̂

∂y
+ α2 i

Re
v̂ =− ωv̂ (II.27c)

−Ubαŵ + ξŵ + iv̂
∂Wb

∂y
+ iŵ

∂Wb

∂z
− ∂p̂

∂z
+ α2 i

Re
ŵ =− ωŵ (II.27d)

where:

ξ =

[

iVb
∂

∂y
+ iWb

∂

∂z
− i

Re

(
∂2

∂y2
+

∂2

∂z2

)]

The stability problem is completed by the boundary conditions. If Ny is the number of
points that discretize the y-direction, the Orr- Sommerfeld Squire operator in a temporal
approach turn out to have a dimension equal to (Ny × 2)2. In the case of a bi-local
analysis, if Nz is the dimension of the vector that discretize the z-direction, the linearised
NS operator will have a dimension equal to (Ny × Nz × 4)2. It is clear how decreasing
the number of the homogeneous directions, the computational cost increases.

II.2.2.3 Global approach to the NS equations

In the global stability framework no spatial assumptions are made, the base flow is three-
dimensional and defined in a finite domain. Whereas, in the local approach the homoge-
neous directions are infinitely extended. On the contrary in the global approach the x, y
and z-direction are delimited by the chosen numerical domain. For this reason an initial
perturbation on the base flow could grow up and exit the domain if there are not self
sustained mechanisms that regenerate the instabilities. For this reason, convective modes
appear to be stable in a global eigenspectrum. This is the first main difference between
global and local analysis. There is another difference that comes from the latter. In the
local analysis we can distinguish between temporal analysis (i.e. we fix a real α and/or

19



β and we seek for the most unsteady complex temporal wave ω) and spatial analysis (i.e.
we fix the real ω and one of the two real spatial wave lengths α or β and we seek for the
most complex unsteady β or α). On the contrary, the global analysis is a spatio-temporal
analysis because we ask for the most unsteady ω, and linked to this eigenmode there is an
eigenvector that contains all the spatial information. The eigenvector could also take into
account differents mechanisms involved in the growth of the instability. Referring always
to the example of the MVG in fig. II.3, if slightly far to the MVG the parallel hypothesis is
almost acceptable, close to the cylinder this is not, since the presence of the recirculation
bubble makes the base flow highly non-parallel. A modal streamwise decomposition in
this zone is unacceptable. A bi-local analysis could be done anyway imposing a complex ω
(i.e. spatial analysis) or a complex α (i.e. temporal analysis) in order to fix the causality
of the events and establishing if there exists or not an absolute instability (Huerre et al.,
2000). For the sake of clarity we will not explain more on the absolute instability and we
will focus on the global approach. We impose a modal solution in time:

{u, v, w, p}(x, y, z, t) = {û, v̂, ŵ, p̂}(x, y, z)eλt (II.28)

Imposing the decomposition II.28 into the linearised NS equation II.20, we obtain:







∇ · û = 0

λû = (û · ∇)Ub + (Ub · ∇)û +∇p̂− 1

Re
∆û

(II.29)

Introducing the Jacobian matrix J, the mass matrix B and the state vector q̂ = (û, p̂)T ,
one can recast system (II.29) into the following linear system form

λBq̂ = Jq̂ (II.30)

where λ = σ+ iω is the eigenvalue and q̂ is the eigenvector associated to the eigenproblem
II.30. The sign of the real part of the leading eigenvalue σ then determines whether the
fixed point Qb is linearly stable or unstable, whereas its imaginary part ω characterises the
stationary or oscillatory nature of the associated eigenvector. Moreover, the imaginary
part of the first eigenvalue to step within the upper-half σ − ω plane also determines
whether the fixed point experiences a pitchfork (ω = 0) or a Hopf bifurcation (ω 6= 0).

The dimension of the linear operator acting on (û, p̂)T is (Nx×Ny×Nz× 4)2, where
Nx, Ny and Nz are the dimension of the vector that discretizes the numerical domain in
the streamwise, wall-normal and spanwise direction respectively. Today is impossible to
perform a global stability analysis because the memory required to stock such operator is
inaccessible. Table II.1 provides some estimates of the memory requirements if one would
typically need to explicitly construct the generalised eigenvalue problem (II.30) depending
on the spatial dimension of the initial problem under investigation.

Though the actual memory footprint highly depends on the size of the problem and
the choice of dicretization used, these rough estimates clearly highlight how costly and
impractical it would be for one to explicitly construct these matrices in the fully three-
dimensional global stability framework. To overcome this problem time-stepping algo-
rithms are used to have a great approximation of the Jacobian operator with a dimension
affordable for all computers.
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Base Flow Inhom. direction(s) Size of u(t) Storage of J

Ub(y) 1D 102 ∼ 1 Mb
Ub(x, y) 2D 105 ∼ 4.3 Gb

Ub(x, y, z) 3D 107 ∼ 17.6 Tb

Table II.1: Estimation of the memory footprint required for explicit construction of the
matrices involved in generalised eigenvalue problems. Data from (Theofilis, 2003) for a
boundary layer problem.

II.3 Non-normal operator

For many years because of the Squire’s theorem only 2-D flows was studied since the lower
critical Reynolds number was provided by a β = 0 perturbation. But it was unclear why
for a Poiseuille flow transition was observed for Reynolds number lower than the critical
one. If the linear stability analysis predicts unstable behaviour at Rec = 5772 (Orszag,
1971), transition to turbulence was observed already at Re ≈ 1000 (Patel and Head,
1969). Couette flow is unconditionally stable (Romanov, 1973) according to linear stability
but transition was observed already at Re ≈ 350 (Lundbladh and Johansson, 1991). The
explanation was given only in the early 90’s (Reddy et al., 1993) through the use of the
pseudospectrum to analyse non-normal operators. An operator A ∈ C is said to be
normal if its eigenvectors are orthogonal between each other (Kato, 2013). If it is so the
eigenvectors of the operator A are sufficient to explain the whole dynamics. In other
case, the non orthogonality of the eigenvectors could cause a transient amplification of
the initial disturbance even if all the eigenvalues are in the stable part of the eigenspectra.
This is not the only effect of a non-normal operator. Also the receptivity of the system
changes. In many cases a simple study of the eigenspectra may be not sufficient.

II.3.1 Short time dynamics

The geometrical explanation of the transient behaviour is given in figure II.4. In both
cases the axes represent the eigenvectors that are independently damped in time. The
thick line represents the initial condition that is a combination of the two eigenvectors.
In the normal case if both eigenvectors decay, the length of the initial condition decreases
monotonically. This is not true in the non-normal case. This is the reason why it is
possible to get a transient growth of the energy even for Reynolds numbers lower than
the critical one (Reddy and Henningson, 1993). If in the linear framework for t→ ∞ the
energy of the initial disturbance must go to zero when the system is stable, this could
not be the case in the non-linear framework. The initial linear transient growth can
trigger non-linear mechanisms that evolve towards transition. The aim of the optimal
perturbation analysis is to find the initial condition that maximises this growth at a fixed
target time. Also the optimal perturbation analysis can be carried out in local or global
ansatz but for the purpose of this thesis only the global optimal perturbation will be
presented. Let consider the A operator that is the Jacobian operator in a divergence-free
space then

∂u

∂t
= Au (II.31)
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Figure II.4: Geometrical interpretation of the transient growth. Example from
(Schmid and Brandt, 2014).

is the linearized NS equation. The velocity field at the target time will be given by:

uT = Mu0 (II.32)

u0 being the initial condition at t0, uT the solution at the target time t = T and M the
propagation matrix eAT . We are interested to find the perturbation u0 that maximize the
ratio

Λ =
ET

E0
(II.33)

where ET is the final perturbation energy at the target time T defined as the inner product
〈uT ,uT 〉 and Λ is the energy gain. The ratio (II.33) can be recast in:

Λ =
ET

E0
=

〈uT ,uT 〉
〈u0,u0〉

=
〈Mu0,u0〉
〈u0,u0〉

=
〈u0,M

+Mu0〉
〈u0,u0〉

(II.34)

where M+ is the adjoint operator of M and it is equal to its conjugate transposed2. The
optimal perturbation problem II.34 turns out to be an eigenvalue problem

(M+M− Λ)u0 = 0 (II.35)

The matrix M+M is defined positive and the optimal perturbation u0 turn out to be the
eigenvector associated to the greatest eigenvalue Λ. Using the eq. (II.32) it is possible to
recover the velocity field uT at the target time.

II.3.2 Response to harmonic forcing

The dynamics of harmonically forced problem does not depend only on the homogeneous
solution of the problem (II.31). How and how much the eigenvalues interact between each
other when the system is forced depends on the non-normalities of the considered system.
Let consider the system (II.31) with harmonic forcing

∂u

∂t
= Au+ ℜ(f̂exp(iωt)) with f̂(x) ∈ C and ω ∈ R. (II.36)

2The continuous adjoint NS equation can also be defined by means of the integration by parts as
shown by Luchini and Bottaro (2014). The adjoint NS equation for the non-linear optimal perturbation
are reported in appendix VIII.2.
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If the eigenspectrum of A shows only stable modes, this means that the homogeneous
solution of the system (II.36) goes to zero and only the particular solution exists. For this
reason the solution of the velocity field will be on the form

u = ûexp(iωt). (II.37)

Substituting the solution (II.37) in (II.36), the system that links the harmonic forcing to
the harmonic response at fixed ω is

û = (iωI−A)−1f̂ (II.38)

the operator R = (iωI−A)−1 is known as resolvent matrix. Following the mathematical
steps like in the optimal perturbation procedure, it is possible to find the shape of the
forcing that maximises the dimensional ratio Λ = ‖û‖/‖f̂‖ solving the following eigenvalue
problem

(R+R− Λ)f̂ = 0 (II.39)

The optimal forcing procedure helps us to characterize the receptivity of the system to
an external forcing looking at the curve Λ(ω). Note that the harmonic forcing does not
change the spectrum of the operator A. Therefore, the eigenvectors form a complete basis
and it is possible to project the particular solution onto this basis. Invoking the adjoint
eigenfunction and taking advantage of the bi-orthogonality3 condition, for a globally stable
case we get

u =
N∑

j=1

〈

û+
j ,

f̂

iωf − λj

〉

ûj

〈û+
j , ûj〉

exp(iωf t) (II.43)

where û+ is the adjoint eigenmode, û the direct one, λ is the eigenvalue and ωf is the
pulsation of the forcing. From eq. (II.43) some important considerations can be extracted.
If the operator A is normal, using any adjoint eigenmode û+

i as forcing, only the associated
direct mode will constitute the response due to the non-null first inner product. This is
not true for a non-normal operator.

II.3.3 Pseudospectrum

Another way to quantify the non-normalities in the A operator is the evaluation of the
pseudospectrum (TREFETHEN et al., 1993). It is clear that the information provided
by the eigenmodes are not sufficient and to complete this information one could refer to

3Consider the eigenvalue problem for the direct and the adjoint system

λû−Aû = 0 (II.40)

λ+
û
+ −A

+
û
+ = 0 (II.41)

where û
+ and û are the eigenvectors and λ and λ+ are the eigenvalue. The bi-orthogonality condition

refers to the propriety between the direct {λi, û} and adjoint {λ+

i , û
+} eigenpair for which it is true:

(λi − λ+∗

j )〈û+

j , ûi〉 = 0 (II.42)

This means that the inner product 〈û+

j , ûi〉 is zero for every pair of eigenfunctions except when i = j, as
long as λ+

j = λ∗

j (Salwen and Grosch, 1981).
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the resolvent matrix (zI −A)−1 where z ∈ C. In other words it is not only important to
know for which z the resolvent matrix norm is singular but it is interesting to know for
which z the resolvent norm is large. For each ǫ > 0 it is possible to define a new subset
of the complex plane, namely the ǫ-pseudospectrum of A, as follows:

Λǫ(A) = {z ∈ C : ‖(zI −A)−1‖ ≥ ǫ−1}. (II.44)

Λ0(A) denotes the eigenvalue points where ‖(zI − A)−1‖ = ∞ (resonance condition).
Λǫ(A) denotes the complex plane where ‖(zI −A)−1‖ ≥ ǫ−1 and ǫ−1 is a measure of the
amplitude response of the system when it is “perturbed”.
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Chapter III

Numerical methods for instability

analysis
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III.1 Nek5000

The linear stability analysis refers to the capacity or not of an initial disturbance to
extract energy from the base flow. The base flow is a steady solution of the Navier-Stokes
equation. Hence, the first step is to find the steady (laminar) solution for which ∂U/∂t =
0. For some flow set-ups on the analytical solution exists (e.g. Poiseuille, Couette) or
it can be approximated (e.g. Blasius) but in most cases the use of computational fluid
dynamics (CFD) is mandatory. In this Ph.D work the Nek5000 (Fischer et al., 2008)
spectral element code has been used to solve numerically the linear, non-linear and adjoint
Navier Stokes equations.

III.1.1 Spatial discretisation: spectral elements

Concerning the spatial discretization, Nek5000 is based on the spectral element methods
(SEM). This method was first introduced by Patera (1984) and it combines finite ele-
ments and spectral methods. The combination of these two methods allows to have high
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geometrical flexibility and high-order resolution. For this reason this method is widely
used to study stability and transition. Finite element methods are based on the Galerkin
approximation for this reason the NS equations are solved in the weak formulation. In-
troducing a set of test functions the variational formulation of the NS equations reads:

Find (u, p) ∈ H1
b (Ω)

d × L2
0(Ω) such that

∂

∂t
〈w,u〉+ 〈w,u · ∇u〉 = 〈∇ ·w, p〉 − 1

Re
〈∇w,∇u〉+ 〈w, f〉 ∀w ∈ H1

0 (Ω)
d (III.1a)

−〈q,∇ · u〉 =0 ∀q ∈ L2
0(Ω) (III.1b)

where L2
0(ω) is a space of functions that are L2-integrable on the domain Ω with zero

average value, and H1
b (Ω)

d and H1
0 (Ω)

d are Sobolev spaces of vector functions having d
components and satisfying inhomogeneous and homogeneous boundary conditions. The
determination of the particular numerical approximation depends on the choice of the test
function. In the Nek5000, these functions have been chosen to be based on the Legendre
polynomials. The Legendre polynomials provide the best approximation in the H1 norm
(see (Deville et al., 2002) and (Karniadakis and Sherwin, 2013)).

The domain Ω is discretized and divided into E quadrilateral elements. Each element
is defined as Ωe := {x ; xe−1 < x < xe} , 1 ≤ e ≤ E, and let Ω̂ := {ξ ; −1 ≤ ξ ≤ 1}
be the reference (or parent) element onto which each element Ωe will be mapped using
an affine transformation. Assuming a three-dimensional flow case (d = 3), the discrete
velocity in element Ωe mapped onto the three-dimensional reference element Ω̂3 can be
written as

u(x(ξ, ζ, η))|ωe =

N∑

i=0

N∑

j=0

N∑

k=0

ue
i,j,khN,i(ξ)hN,j(ζ)hN,k(η) (ξ, ζ, η) ∈ Ω̂ (III.2)

where hN,i, hN,j and hN,k are one-dimensional Nth-order Lagrange interpolants based on
the Legendre polynomials, x is a mapping function of the local geometry and ue

i,j,k are
the unknown nodal values in Ωe (Deville et al., 2002). Two different quadrature rules
are used for the velocity field and pressure field to avoid spurious pressure modes. The
PN−PN−2 formulation refers to a staggered SEM where the velocity is represented onN+1
Gauss-Lobatto-Legendre (GLL) quadrature points and the pressure on the N − 1 Gaus-
Legendre (GL). Taking advantage of the GLL- and GL- quadrature rules the discretized
Navier-Stokes equations turn out to be:







M
d

dt
u = −C(u)u− 1

Re
Ku+DTp+Mf

−Du = 0
(III.3)

In III.3 M is the mass matrix containing the integration weights, K is the stiffness matrix
and represent the discrete Laplacian, D and DT are the divergence and gradient operators
and C(u)u is the advection operator evaluated using the convective form. Furthermore,
D and DT are transposed matrices, as they are adjoint operators in the continuous formu-
lation, a property that is preserved in the discrete level. Figure III.1 displays the structure
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(a) Global mass matrix M (b) Global stiffness matrix K

Figure III.1: Structure of the global mass and stiffness matrices for E = 3 and N = 5.

of the global stiffness K and mass M matrices resulting from the direct stiffness summa-
tion. As one can see, the mass matrix M exhibits a diagonal structure (it usually is tri-
or penta-diagonal in the FEM), whereas the stiffness matrix K exhibits a block-diagonal
structure, another major difference with the finite element method where the matrices are
sparse. The stiffness matrix is moreover symmetric and positive-definite.

Once the pressure field has been evaluated onto GL- collocation points, its gradient
need to be interpolated in the GLL- collocation points in eq III.3. For further details see
Deville et al. (2002).

Meshing process

The mesh generation for the discretization of the numerical domain is divided in two step.
The first one is the definition of the elements grid. The numerical domain is discretized by
three dimensional quadrilaterals. The only constrain is that there must not be overlapping
between the elements, on the other hand this discretization benefits from all advantage of
the FEM discretization (i.e. high geometrical flexibility). The seconds step is the spectral
discretization within each elements by the chosen polynomial order. The first step is done
by commercial grid generators, on the contrary the second one is automatically achieved
by the Nek5000 taking also into account the elements deformation (Deville et al., 2002).
In order to refine the mesh, two different types of refinements can be used:

• One can add more spectral elements to the spectral elements distribution, a refine-
ment known as h-type.

• Or keeping the spectral elements distribution unchanged and increases the poly-
namial order within each of the spectral element. This is known as p-type refine-
ment.
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The choice of the balance between the number of elements and the polynomial order
is not trivial. A high number of elements with a low polynomial order turns out in a low
spatial order resolution losing the power of the SEM. Contrariwise, few elements with a
high polynomial order could be dangerous because if some spurious oscillation is generated
between the elements or close to the boundary condition, these are not dissipated due to
the high spatial order discretization and the non dissipative scheme. In this case a further
stabilizing filter is necessary (Deville et al., 2002). As a general guideline we try to get an
element grid that provides results in agreement with experiments with a spectral order
equal to 8. Subsequently we increase the spectral order to reach convergence in the results.

III.1.1.1 Boundary conditions

The spatial discretization should take into account the boundary condition to complete
the PDEs system (II.1) and (II.20). The variational formulation of the Navier-Stokes
equations (III.1) is completed by the surface integrals on the edge of the numerical domain.
The only terms affected in this integral are the pressure and the diffusive terms

∮

T

(w · n)pdS +
1

Re

∮

T

w · ∂u
∂n

dS =

∮

T

w · n ·
(

1

Re
∇u− pI

)

dS, (III.4)

with T = ∂Ω. The Dirichlet boundary conditions is imposed by the choice of the test
function. In other cases we need to annihilate n · (Re−1∇u− pI) = 0.

Fringe method

For both linearized and adjoint Navier-Stokes equation the boundary condition are re-
ported in the table III.1. Unfortunately the outflow condition for the adjoint system is

Table III.1: Boundary conditions for the adjoint and direct solver

Direct Adjoint

Inflow u = 0 P+n+Re−1(∇U+) · n = −(U · n)U+ + (U · n)u+

Outflow pn− Re−1(∇u) · n = 0 u+ = 0
Wall u = 0 u+ = 0

not allowed in the Nek5000 and its implementation is not straightforward. To overcome
this problem two choices are possible. The first one is the far field ansatz. The second
one is to force the solution to go towards the Dirichlet boundary condition u+ = 0. In
the first case the inflow boundary condition is simply substituted by u+ = 0 supposing
that the perturbation goes naturally towards zero. This solution could be true in the case
of a roughness installed at the wall. The adjoint system represents the sensitivity of the
base flow and then it is indirectly linked to the gradients of the base flow itself. For the
2D cylinder the sensitivity region is located behind it and on both sides of the cylinder
(Giannetti and Luchini, 2007) and this allows the far field hypothesis if the numerical
domain is large enough. If the adjoint perturbation does not go naturally to zero the far
field hypothesis is not permitted. For this reason, a sponge zone is adopted at the begin-
ning and in the ending of the domain for the linear numerical simulations to avoid any
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influence of the boundary condition on the solution. The damping method was introduced
as solution to all CFD codes that implement periodic inflow-outflow boundary condition
for a non-periodic flow. The main idea is to add a volumetric forcing term on the right
end side of (II.20) that forces the solution to go towards a target solution that in our case
is u+ = 0. The general form of the fringe forcing is given by:

Gi = λ(x)(Ui − ui) (III.5)

where λ(x) represents the shape of the forcing and it is non-null only close to a bound-
ary where the condition u+ = 0 has to be ensured. In (III.5) Ui is the target solution
and ui is the instantaneous velocity component. The form of the fringe λ introduced in
(Lundbladh et al., 1999) is:

λ(x) = λmax

[

S

(
x− xstart
∆rise

)

− S

(
x− xend
∆fall

+ 1

)]

xstart and xend being the position in which the forcing term is active. λmax identifying the
maximum strength of the forcing and its shape being driven by the function S(x) and the
parameters ∆rise and ∆fall. S(x) is a C∞ smooth step function:

S(x) =

{ 0 x ≤ 0,
1/[1 + exp( 1

x−1
) + 1

x
] 0 < x < 1,

1 x ≥ 0
(III.6)

The function λ(x) for the cylinder case studied in this thesis is reported in figure III.2.
The application of the fringe method imposes an additional restriction on the maximum

possible time step of the integration scheme (Schlatter et al., 2005).

III.1.2 Time discretisation

The presence of C(u)u term makes the NS equations (III.3) non-linear and non-symmetric.
If the non-linear term was not, it would have been possible to solve eq. (III.3) by using
stable implicit methods. The advection operator can be treated in three different ways. In
the Nek5000 the advection operator is evaluated using convective form. In order to avoid
the algorithmic difficulties resulting from an implicit treatment of the non-symmetric non-
linear terms C(u)u, the remaining possibility is to treat them explicitly. The temporal
discretization scheme used in Nek5000 is the semi-implicit scheme BDFk/EXTk: the
viscous terms are discretized implicitly using a backward differentiation scheme of order
k whereas the non-linear terms are treated explicitly by an extrapolation of order k, with
k = 1, 2 or 3. For k = 3, the fully discretized Navier-Stokes problem then reads:
(

11

6∆t
M+Re−1K

)

un+1
i −DT

i p
n+1 =

M

∆t

(

3uni −
3

2
un−1
i +

1

3
un−2
i

)

−
(
3Cuni − 3Cun−1

i +Cun−2
i

)
+Mfn (III.7)

−DTun+1 = 0 (III.8)

This numerical scheme produce a residual rn+1 that depends on pn+1. To avoid non-
vanishing error for steady-state solution it is necessary to add DT

i p
n to both sides. In
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Figure III.2: λ(x) function applied to the cylinder case in the linear simulation. xstart =
[−25, 75], xend = [−10, 90], ∆rise = 60% of xend − xstart and ∆fall = 10%. λmax is keep
constant for all numerical simulations and it is equal to 2.6.

this way the error will be function of δpn+1 = pn+1 − pn and it goes to zero for a steady
solution (Deville et al., 2002). Reshuffling the terms on the right-hand side as a simple
forcing vector MFn

i , and collecting the left-hand side in one operator, the system of
equations (III.7 III.8) can be recast into the following matrix form of the unsteady forced
Stokes problem:

(
H −DT

−D 0

)(
un+1

δpn+1

)

=

(
MFn +DTpn

0

)

(III.9)

where H is known as the Helmholtz operator. This matrix problem can be solved using a
LU decomposition. Taking advantage of an arbitrary Q matrix for the sake of projection
purpose, the solution to such LU decomposition is a two-step procedure:

(
H 0
−D −DQDT

)(
u∗

δpn+1

)

=

(
MFn

i +DTpn

0

)

(III.10)

and

(
I −QDT

0 I

)(
un+1

δpn+1

)

=

(
u∗

δpn+1

)

(III.11)

in the first step the velocity field u∗ unprojected in the divergence-free space is evaluated
and in the second step the divergence correction is applied to obtain the un+1 velocity
field. The choice of the matrix Q determines which projection method is used. If the
matrix Q is set to be:
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Q = H−1 (III.12)

no decupling error is introduced, resulting in the Uzawa algorithm. Unfortunately evalu-
ations of the inverse of the Helmholtz operator might be computationally costly and not
well preconditioned due to the presence of the laplacian operator. In order to overcome
this problem, instead of the Uzawa algorithm, the Blair-Perot algorithm is implemented
within Nek5000. The projection matrix then is Q = γM−1/∆t (with γ = 11∆t/6 for
the BDF3/EXT3 scheme). Since the mass matrix M is diagonal, the computation of its
inverse is a straightforward task. Using the Blair-Perot algorithm a non-zero splitting
error is introduced and it is proportional to δpn+1. This need to be taken into account for
the choice of the time step ∆t of the time marching.

III.2 Steady solution of Navier-Stokes equation.

The steady state computation is not a straightforward task for a 3D computation due to
the large degrees of freedom of the problem. A general procedure is to use the Newton
algorithm. Unfortunately this technique can not be used in the way it is because the in-
verse of the Jacobian matrix is required. Many variants exist such as the use of a properly
preconditioned Krylov-subspace to project the Jacobian in a smaller subspace where the
inversion can be done with a reasonable computational cost (Edwards et al., 1994). The
preconditioning is done by increasing the ∆t in the time step to increase the weight of the
diffusive operator in the semi-implicit scheme. Such method can not be used in Nek5000
due to the splitting error introduced by the Blair-Perot algorithm. Another recent pro-
posed solution is to use the adjoint equations whose trajectories converge asymptotically
to the equilibrium solution (Farazmand, 2016). The convergence of this method is slow
and a coupling with a Newton method is mandatory. Today two possibilities exist to
search fix points: the selective frequency damping (Åkervik et al., 2006) and the more
recent BoostConv algorithm (Citro et al., 2017).

III.2.0.1 Selective frequency damping

The main idea of the method introduced by Åkervik et al. (2006) is to add a low-pass
time filter that consists in an ad hoc dissipative term proportional to the high-frequency
velocity fluctuations. This procedure is common in the control theory and consists in an
additional volumetric forcing term on the right-hand side of the Navier-Stokes equation
(II.1). The forcing term has to drive the instantaneous solution U towards a filtered
target solution Ū. A supplementary equation is then necessary for the target solution.
The extended Navier-Stokes system is then composed by the following set of equations:







U̇+ (U · ∇)U = −∇P +
1

Re
∆U− χ(U− Ū)

˙̄U = ωc(U− Ū)

∇ ·U = 0

(III.13)

with χ being the strength of the filter and ωc the cutting circular frequency. The choice
of these two parameters is crucial for the computation: χ has to be positive and larger
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than the growth rate of the instability that one would like to kill, whereas ωc has to be
lower than the eigenfrequency ωI of the instability (usually ωc = ωI/2). The effect of the
filter is to lead the unsteady mode in the steady part of the eigenspectrum (Åkervik et al.,
2006). Despite the knowledge a priori of the bifurcation is necessary for the filter setup,
no particular initial conditions are required for the initialization of the method. The
equation on the target solution evolution ( ˙̄U) needs to be discretized in time. For the
sake of simplicity a first order explicit Euler scheme has been used

Ūn+1 = Ūn +∆t
(
ωc

(
Un − Ūn

))

equally for the forcing term, which has been treated explicitly

− χ(Un − Ūn). (III.14)

The numerical implementation is straightforward in any existing code and few code lines
are required.

III.2.0.2 BoostConv

The BoostConv algorithm is a recent method proposed by Citro et al. (2017) that acts as
convergence accelerator for an existing algorithm (e.g. GMRS, BiCGStab, PGM). In this
framework, we refer to all iterative algorithms that produce at each iteration a residual
and successively the last residual is used to start a new iteration up to convergence. By
means of a Krylov method it is possible to boost the convergence of the iterative method
towards a null residual. Considering the residual vector rn ∈ Rm at the iteration n,
the effect of a common iterative algorithm can be taken into account by the operator
A ∈ R

m×m. In this way the residual rn+1 is equal to:

rn+1 = rn −Arn (III.15)

or equivalent
rn − rn+1 = Arn. (III.16)

The goal of the BoostConv algorithm is to modify the equation (III.16) by correcting rn:

rn − rn+1 = Aξn (III.17)

where ξn is such that Aξn = rn. If it is so, rn+1 turns out to be equal to zero from eq.
(III.15). The challenge is then to find the best approximation of ξn to annihilate rn+1.
Following Citro’s work it is possible to build up two Krylov subspaces one spanning rn
and the other spanning rn − rn+1. Let be X and Y ∈ R

m×N two operators with N ≪ m,
N being the Krylov-space dimension

X = {r1, r2, . . . , rN}
Y = {r1 − r2, r2 − r3, . . . , rN − rN+1}

(III.18)

then from eq. (III.16) Y = AX. It is possible to define ξn as a linear combination of the
previous residuals ri

ξn = Xc (III.19)
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where c is the (N×1) vector that contains the weight associated to each previous residual.
The purpose is to find c that minimizes |rn−Aξn|2. This is achieved by a standard least-
square procedure

Aξn = rn

AXc = rn

Yc = rn

c = (YTY)−1YT rn.

(III.20)

The vector c is obtained invoking the pseudo-inverse matrix of Y where YTY is a small
(N ×N) matrix easy to invert. By using this correction the new residual vector will be:

rn+1 = rn −Aξn

= rn −AXc

= rn −AX(YTY)−1YTrn

= (I−Y(YTY)−1YT )rn.

(III.21)

The Y(YTY)−1YT is an idempotent operator and then act as a projector. This means
that the residual is annihilated just in a small subspace keeping unchanged the residual in
the subspace orthonormal to the first one (I−Y(YTY)−1YT ). This procedure will never
converge if we do not take into account in the correction ξn the residual marching to the
iteration n + 1 of the uncontrolled part of the residual

ξn = Xc+ (I−Y(YTY)−1YT )rn

= Xc+ rn −Yc

= rn + (X−Y)c.

(III.22)

The equation (III.22) provides on estimation sof the correction as suggested in Citro’s
work and the final residual step is now

rn+1 = (I−A)(I−Y(YTY)−1YT )rn, (III.23)

meaning that if the Krylov subspace has dimension equal to zero the original residual
iteration III.15 is recovered.

The correlation matrix (YTY) turns out to be ill conditioned. If the residual decay is
slow, the norm of Yn vector is close to zero and all the vectors in the Y operator could
be highly correlated between each other. In other words it is not sure that span{Y} has
the same dimension of Y. To overcome this problem a QR decomposition [Q,R] = qr(Y)
can be used to evaluate the pseudoinverse of Y

(YTY)−1YT = R−1QT (III.24)

R being a (N ×N) upper triangular matrix and Q the subset of N orthonormal vectors
q ∈ R

m. From an implementation point of view the QR decomposition can be carried out
by a modified Gram-Schmidt iteration. Moreover the system R−1 can be easily solved by
successive substitution for triangular matrices; thus, no additional libraries are required
into the existing code.
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Update the last vector of Y

perform qr decomposition of Y

evaluate weights for linear 

combination of (X-Y)residual correction

BoostConv

Update and store

Figure III.3: Boostconv algorithm implementation in an exiting CFD code. The Boost-
conv procedure is a black-box with just one input and one output.

Application to the Navier-Stokes equation The time step iteration in a generic
CFD code can be considered as an iterative procedure that produces a residual

rn = Un+1 −Un (III.25)

this residual can be handled by the BoostConv algorithm that returns a correction ξn that
will be used to update the Un = Un + ξn solution for the new time step iteration. A
sketch of the Boostconv numerical implementation is depicted in fig. III.3.

Even if the implementation is not straightforward, such as, for instance the SFD, the
Boostconv procedure requires just one variable as input and provides to the CFD code
just one as output. This allows the use of the BoostConv algorithm as a black-box.

III.2.0.3 SFD vs BoostConv

Concerning the benefits of the choice of the SFD algorithm to find the base state, we have
already discussed its easy implementation. The SFD acts as low pass filter cutting of the
frequencies components above a given cut-off frequency. Thus a steady mode (ℑ(λ) = 0),
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Sfd 1 Sfd 2 Sfd 3 Sfd 4 Sfd 5
χ 0.5 0.25 0.125 0.125 0.125
ωc 0.05 0.05 0.05 0.1 0.2

Number of iterations 379’861 232’315 152’428 94’046 64’533

Table III.2: Values of the different couples (χ, ωc) for selective frequency damping as well
as the number of iterations needed to reach a steady state converge down to ‖un+1 −
un‖L2

/dt ≤ 10−8 for all the cases considered. A two-dimensional cylinder flow at Re = 60
has been considered.

such as that recovered in a supercritical pitchfork bifurcation1, cannot be handled by this
kind of approach. To shed light on the effect of the choice of χ and ω in the Selective
Frequency Damping algorithm the 2D cylinder case has been taken as test case. The flow
around a 2D cylinder becomes globally unsteady at Rec = 48. Therefore, starting from
a steady solution at Re = 45, the SFD has been used to find the base state at Re = 60.
In order to set the SFD procedure it is mandatory to know a priori the main features of
the unsteadiness. In this case, previous global stability analyses showed that the leading
eigenvalue for this Reynolds number is λ ≃ 0.02 + i0.8. Thus, one must have χ ≥ 0.02
and ωc ≤ 0.4.

A parametric investigation has been carried out to understand the influence on the
residual convergence of the choice of the χ and ωc parameters. In table III.2 the number
of iteration necessary to converge towards the fixed point are reported. The steady state
is considered well converged when a residual level ‖Un+1 −Un‖ < 10−8 is reached.

In figure III.4 the residual time history is depicted for the different analysed cases.
Changing the parameters (χ, ω) the residual evolution can drastically change. In any
case, the convergence is ensured for the conditions χ ≥ 0.02 and ωc ≤ 0.4. Mathematical
details about the dependence of the convergence slope curve on χ and ω, are provided in
Åkervik et al. (2006).

Regarding the BoostConv performance something more has to be said about its imple-
mentation for a nonlinear system. As already said, successive residual fields could provide
a highly ill conditioned (YTY) matrix. Calling fs the number of Navier-Stokes itera-
tion between two successive residual snapshots to build the Krylov space, it is necessary
to appropriately choosing the value of fs, avoiding too small or too high values. The
BoostConv procedure is based on a linear residual prediction, thus a high value of fs
can give a residual correction in disagreement with the nonlinear evolution. In table III.3
the number of iterations required to reach the convergence is reported in function of the
krylov space dimension and the number of Navier-Stokes iteration between two successive
residual snapshots.

The time evolution of the residual norm is reported in figure III.5 for the parameters
in table III.3.

No particular dependencies with respect to the Krylov space dimension can be noticed.
Decreasing the fs value some slight differences could be noticed due to the conditioning
of (YTY). In any case, the BoosConv procedure seems to be today a valid alternative to
the selective frequency damping algorithm especially because even a steady bifurcation

1The pitchfork bifurcation is a particular bifurcation in which the steady state get transition from one
fix point to another fix point.
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Figure III.4: Time-evolution of the residual for the different set of parameters (χ, ωc)
considered in table III.2. Convergence threshold is set to 10−8.

Boost 1 Boost 2 Boost 3 Boost 4 Boost 5
N 5 5 5 10 15
fs 25 50 100 100 100

Number of iterations 32’252 41’502 28’640 26’854 30’439

Table III.3: Values of the different couples (N, fs) for BoostConv procedure as well as the
number of iterations needed to reach a steady state converge down to ‖un+1−un‖L2

/dt ≤
10−8 for all the cases considered. A two-dimensional cylinder flow at Re = 60 has been
considered.
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Figure III.5: Time-evolution of the residual for the different set of parameters (N, fs)
considered in table III.3. Convergence threshold is set to 10−8.
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Figure III.6: Base flow for 2D cylinder case atRe = 60. Base flow obtained with Boostconv
algorithm (N, fs) = (15, 100) (dashed line) and selective frequency damping (χ, ωc) =
(0.2, 0.125) (continuous line).

can be treated with this method. Finally, a comparison between the base flow obtained
with the two methods is depicted in figure III.6.

III.3 Modal decomposition

The theoretical basis for the linear stability analysis has been given in the previous chapter
§II. Because of the memory issues the Bi-local and the Global stability analysis need to
be treated in a different way. An explanation of the used algorithm and adopted strategy
to handle the memory required to store the Jacobian will be now given in this section.

III.3.1 Bi-Local stability analysis: numerical approach

Using a Bi-local stability analysis is possible to store the whole matrix in sparse fashion.
Depending on the numerical scheme used to discretize the derivative operator the Jacobian
matrix can have many null values. A sparse matrix allows to store just the non-null
elements, economising the memory. The Bi-local analysis has been carried out by a
home-made code written in MATLAB®. For both stability analyses we need to discretize
the Jacobian of the linearised system II.27. To discretize the derivative operator in both
directions y and z a spectral collocation method has been used as those implemented in
the Nek5000. More extensive details will be now provided. The fundamental idea behind
this approach is to interpolate a function by a polynomial that is a uniform and accurate
representation of that function over a certain interval and evaluates the derivative of
the interpolant polynomial on the grid. In comparison to spatial methods such as finite
differences, the polynomial is constructed by a sum of basis functions that are evaluated
at the entire set of grid data points of the considered domain:

f(x) = pN(x) =
N∑

i=0

φi(x)ai (III.26)
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where φi is an expansion function and ai is a weight function. Increasing the number
of grid points leads to an exponential convergence, which provides this method higher
accuracy than spatial methods. Moreover, spectral methods are memory-minimizing as
they require less degrees of freedom in each dimension to achieve the same accuracy
compared to spatial methods (Boyd, 2001). Among different types of spectral methods,
this study exclusively makes use of the collocation approach, in which the polynomial
takes the value of the differential equation at the grid points or rather collocation points.
This means that the weight function ai is the unknown function f(x) itself and only the
expansion function φi determines the accordance between the function and the polynomial.

f(x) ≈ pN(x) =
N∑

i=0

φi(x)f(xi) (III.27)

The choice of the expansion functions is restricted to the physics of the flow. For a periodic
problem, we use trigonometric basis functions on an equispaced grid, which are normally
Fourier series. For a non-periodic problem, we normally use algebraic polynomials on an
unevenly, asymptotically spaced grid. A good choice here are Chebyshev polynomials,
which by simple trigonometric identity can be transformed to trigonometric functions as
well.

III.3.1.1 Chebyshev Gauss-Lobatto collocation method

The flow domain in the wall normal direction is discretized into ny +1 collocation points.
We use a nth

y -order Chebyshev polynomial Tny
, defined in the interval (ζi) ∈ [−1;+1]

where the collocation points ζi are the extrema of Tny
plus the endpoints of the interval

and are given by

ζi = cos

(
πi

ny

)

, i = 0, . . . , ny

and represented in fig. III.7
In order to apply the spectral collocation method, an interpolant polynomial is con-

structed for the dependent variables in terms of their values at the collocation points.

ẑ(ζ, ξ) =

ny∑

k=0

nz∑

l=0

hk(ζ)hl(ξ)ẑ(ζ, ξl),

where ξ denotes the array of collocation points in spanwise direction. In order to express
ẑ only in wall-normal direction we fix ξ = ξj . The above expression can then be written
as

ẑ(ζk, ξ) =

ny∑

k=0

hk(ζ)ẑ(ζ, ξl),

where hk(ζ) is the Lagrange interpolant, which for a Gauss-Lobatto grid becomes

hk(ζ) =

(
1− ζ2k
ζ − ζk

)
T ′
ny
(ζ)

n2
yck

(−1)k+1
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Figure III.7: Chebyshev collocation points are the projections onto the x-axis of equally
spaced points on the unit circle.

with

c0 = cny
= 2, ck = 1, for k ∈ {1, . . . , ny − 1}

(Gottlieb and Hirsh, 1989). The first derivative of ẑ(ζ, ξ) with respect to ζ may be written
as

dẑ

dζ
(ζi, ξj) =

ny∑

k=0

Dikẑ(ζk, ξj)

where D(1)
ik are the elements of the derivative matrix given by

D
(1)
ik =

ci
ck

(−1)i+k

ζi − ζk
, i 6= k, D

(1)
ii = − ζi

2(1− ζ2i )
, D

(1)
00 =

2n2
y + 1

6
= −D(1)

nyny
.

The Chebyshev interval (ζi) ∈ [−1;+1] is transformed to the computational domain
[0; ym] by the use of the conformal mapping:

y(ζi) =
a0(1− ζi)

a1 + ζi
with a0 =

yaym
(ym − 2ya)

and a1 = 1 +
2a0
ym

where ya correspond to the distance from the wall where 50% of the points are located.
Applying the chain rule, the scaling factor for the transformation between physical and
computational domain is then given as Si = (dζ/dy)i, i = 0, . . . , ny and the first deriva-
tive matrix D(1) in the physical domain may be written as

D
(1)
ik = SiD

(1)
ik

The second derivative matrix D(2) is simply D
(2)
ik = D

(1)
imD

(1)
mk.
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Figure III.8: Basic periodic grid is a subset of the interval [0; 2π].

III.3.1.2 Fourier Collocation Method

Fourier approximation is performed over the interval ξ ∈ [0, 2π] on equally spaced grid
points

ξi = (j − 1)h with h =
2π

nz
, j = 1, . . . , nz − 1

and represented in fig. III.8
Again we construct an interpolant polynomial to approximate the dependent variables,

this time in spanwise direction with fixed ζ = ζi.

ẑ(ζi, ξ) =
nz∑

l=1

hl(ξ)ẑ(ζi, ξl)

where ẑ(ζi, •) represents the nz function values of ẑ at the collocation points. The inter-
polation polynomial hl is defined, depending on whether nz is even or odd, as follow:

hl(ξ) =
1

nz
sin
[nz

2
(ξ − ξl)

]

cot

[
1

2
(ξ − ξl)

]

, for nz even

hl(ξ) =
1

nz
sin
[nz

2
(ξ − ξl)

]

csc

[
1

2
(ξ − ξl)

]

, for nz odd

The derivative of ẑ with respect to ξ in according to the above expression may be
written as

dẑ

dζ
(ζi, ξj) =

ny∑

k=0

Djlẑ(ζi, ξl),

with Djl =
dhl
dξ

(ξ) being the derivative matrix. The coefficients of the first and second

derivative, D(1)
jl and D(2)

jl , respectively, are defined depending on the parity of nz. In case
nz is even the coefficients are:

D
(1)
jl =







0 if j = l
1

2
(−1)j−lcot

(j − l)h

2
if j 6= l

D
(2)
jl =







−π2

3h2
− 1

6
if j = l

1

2
(−1)j−lcsc2

(j − l)h

2
if j 6= l
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For odd nz the coefficients are then:

D
(1)
jl =







0 if j = l
1

2
(−1)j−lcsc

(j − l)h

2
if j 6= l

D
(2)
jl =







−π2

3h2
+

1

12
if j = l

1

2
(−1)j−lcsc

(j − l)h

2
cot

(j − l)h

2
if j 6= l

Considering that the physical domain in z-direction extends over the interval [−λ, λ],
we therefore have to apply the transformation z(ξ) = −λ+ λ

π
ξ. As done previously for the

Chebychev collocation derivative we obtain the scaling factor from the chain rule, which
is simply Sj = (dξ/dz)j =

π
λ
, j = 0, . . . , nz and the first and second derivatives D(1) and

D(2) in physical space may then be written as

D
(1)
jl = D

(1)
jl

π

λ
and D

(2)
jl = D

(2)
jl

(π

λ

)2

III.3.1.3 Boundary conditions

For the studied cases, Dirichlet boundary conditions have been imposed at the bottom
and at the top of the domain in the y-direction for the velocity field. In z-direction the
periodicity condition is always imposed. For a 2D problem the vector state has to be
reorganized in a vector like in (III.28)

u =






u11 · · · u1nz

...
. . .

...
uny1 · · · unynz




 = [u11, . . . , uny1, . . . , u1nz

, . . . , unynz
]T (III.28)

ny and nz being the number of rows and columns. The derivative operator in y-direction
that acts on each column, must be repeated on the diagonal nz times. In the same way,
the derivative operator that acted on each line, now it has to be reshaped in order to
handle each ny terms of the vector as ny is the distance in the vector between two terms
of the same line in the matrix (III.28). The best way to handle this reshaping is the use
of the kronecker product. The Kronecker product of two matrices A and B is denoted by
A⊗B. If A and B are of dimensions p×q and r×s, respectively, then A⊗B is the matrix
of dimension pr × qs with p × q block form, where the i, j block is aijB. As example,
given the general matrix

D =

(
♠ ♥
♦ ♣

)

if I denotes the (3× 3) identity matrix, then the kronecker product I ⊗D and D⊗ I will
produce
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I ⊗D =











♠ ♥
♦ ♣

♠ ♥
♦ ♣

♠ ♥
♦ ♣











D ⊗ I =











♠ ♥
♠ ♥

♠ ♥
♦ ♣

♦ ♣
♦ ♣











.

In this way, it is straightforward to handle operators that act on y- and z-directions.
Loking at the last example it is clear the advantage of working with sparse matrices. The
periodicity condition is ensured in z-direction by the Fourier Collocation method. On the
contrary Chebyshev collocation method is used in y-direction. Dirichlet condition imposed
at the top and at the bottom of the 2D domain allows us to ignore the first and the last
column and row of the derivative operator in y-direction (see fig. III.9) (Trefethen, 2000).

Zeroed

Zeroed

Ignored

Ignored

Figure III.9: Dirichlet boundary conditions imposed in the y-derivative operator. Example
from Trefethen (2000).

The derivative operator will be now ny − 2 × ny − 2 matrix. To avoid to impose
any boundary condition on the pressure field, the strategy proposed by Botella (1997) as
been adopted. The pressure is evaluated on a staggered grid. Practically we use only the
internal point for the pressure, in this way is sufficient to generate a derivative operator
of order ny − 2 without removing any line or column. In summary we have to construct
three operators:

• D
(1)(2)
z : nz × nz first and second derivative operator in z-direction.

• D
(1)(2)
y : ny × ny first and second derivative operator in y-direction, for which the

first and last row and column will be removed to take into account the Dirichlet
boundary conditions.

• D
(1)
yP : ny − 2 × ny − 2 first derivative operator in y-direction that acts only on the

pressure grid.

III.3.1.4 Discretized Jacobian

With the operators just defined it is possible to discretize the system (II.27). Let us define
the following matrices:
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• Iy the ny − 2× ny − 2 identity matrix

• Iz the nz × nz identity matrix

• I the (ny − 2)nz × (ny − 2)nz identity matrix

• Z the (ny − 2)nz × (ny − 2)nz zero matrix

•
Σ = −IVb(Iz ⊗D(1)

y )− IWb(D
(1)
z ⊗ Iy) +

1

Re
(Iz ⊗D(2)

y +D(2)
z ⊗ Iy)

•

A0 =








Z Iz ⊗D
(1)
y D

(1)
z ⊗ Iy Z

Σ −D(1)
y UbI −D(1)

z UbI Z

Z Σ−D
(1)
y VbI −D(1)

z VbI Iz ⊗D
(1)
yP

Z −D(1)
y WbI Σ−D

(1)
z VbI D

(1)
z ⊗ Iy








•

A1 =







iI Z Z Z
−iIUb Z Z −iI
Z −iIUb Z Z
Z Z −iIUb Z







•

A2 =





− 1
Re
I Z Z

Z − 1
Re
I Z

Z Z − 1
Re
I





•

B0 =







Z Z Z iεI
−iI Z Z Z
Z −iI Z Z
Z Z −iI Z







The linear stability analysis is carried out looking at the eigenmodes of the following
eigenproblem:

(A− λB)φ̂ = 0

Depending on how the A and B matrices are built the temporal or spatial stability analysis
can be provided. For the temporal stability analysis α, β ∈ R and A and B matrices turn
out to be equal to

•

A = A0 + αA1 + α2A∗
2 with A∗

2 =








Z Z Z Z

Z
A2 Z

Z








•
B = B0 with ε ∼ 10−8
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If ε was equal to zero, then B would have null lines. To avoid this problem a small imagi-
nary value acting on the pressure term has to be used in B0, as suggested by Juniper et al.
(2014). In the eigenproblem λ is the complex eigenvalue (ω in the temporal stability the-
ory) and φ̂ the associated complex eigenvector φ̂ = (û, v̂, ŵ, p̂)T . For the spatial stability

analysis, the eigenproblem remains unchanged but ω, β ∈ R and A and B are:

•

A =














Z Z Z
A0 + ωB0 Z Z Z

Z Z Z
Z Z Z

Z Z Z Z I Z Z
Z Z Z Z Z I Z
Z Z Z Z Z Z I














•

B =















Z Z Z

A1

A2

Z Z Z Z I Z Z
Z Z Z Z Z I Z
Z Z Z Z Z Z I















with ε = 0. In the eigenvalue problem φ̂ = (û, v̂, ŵ, p̂, αû, αv̂, αŵ) is the eigenvector and
the first ny × nz × 4 λ values are the eigenmodes of our interest (the complex α in the
spatial theory).

To validate the Matlab code, the temporal stability analysis of the base flow behind a
3D roughness bump has been computed as done by Shin et al. (2015). The velocity field
is taken at 2.5m behind the roughness, the Reynolds number based on the bump position
is Rex = 1.88 × 105 and α = 33. Further details on the numerical setup can be found
in Shin et al. (2015). The eigenspectrum comparison is shown in figure III.10 and the
leading eigenvectors are depicted in III.11.

III.3.2 Global linear stability

Once discretized, the system (II.20) can be written in a contract form

B
∂q

∂t
= Jq (III.29)

where B is the mass matrix and J the Jacobian operator defined as follows

J =

(
−∇Ub −Ub · ∇+Re−1∆ −∇

∇· 0

)

B =

(
I 0
0 0

)
(III.30)
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Figure III.10: Temporal stability analysis for a velocity field at 2.5m behind a bump
roughness. Rex = 1.88 × 105, α = 33, ny = 120 and nz = 100. In (a) the obtained
eigenspectrum in (b) reference eigenspectrum courtesy of Shin et al. (2015).
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Figure III.11: Eigenvectors associated to the leading eigenvalue (a) real and (b) imaginary
part of the sinuous eigenvector, (c) real and (d) imaginary part of the varicose eigenvector
and (e) real and (f) imaginary part of the TS like eigenvector of the mode in figure III.10.
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Assuming a global mode ansatz, without imposing any spatial assumption, the solution
of (II.20) is in the form

q(x, y, z, t) = q̂(x, y, z)eλt + c.c. (III.31)

Injecting the decomposition (III.31) in the system (III.29) the following generalized eigen-
value problem is formulated:

λBq̂ = Jq̂ (III.32)

where λ = σ + iω. The linear stability of the base flow Ub is then driven by the sign of
the real part of the eigenvalue. If exist a global mode that has σ > 0 then the flow is
linearly globally unstable otherwise if σ < 0 it is linearly stable.

III.3.2.1 Time-stepping approach

Because of the extremely large number of degrees of freedom involved in the computa-
tion, solving the generalized eigenvalue problem for a fully three-dimensional flow using
standard algorithms is not possible today. As a consequence, a time-stepping approach
(Bagheri et al., 2009; Edwards et al., 1994) is used. This approach relies on the fact that,
once projected onto a divergence-free vector space, system III.29 reduces to:

∂u

∂t
= Au (III.33)

with A being the projection of the Jacobian matrix J onto the divergence-free vector
space. The time integration is then carried out involving the exponential propagator
M = eA∆T . The related eigenvalue problem becomes

µû = Mû. (III.34)

The last eigenvalue problem is solved to characterize the asymptotic behaviour of the
flow: if ‖µ‖ > 1 then Ub is linearly unstable, otherwise, if ‖µ‖ < 1 it is linearly stable.
Though the exponential propagator M cannot be explicitly computed, its action onto a
given vector can be easily approximated by time-marching the linearized Navier-Stokes
equations from t = 0 to t = ∆T . This property hence allows us to use Arnoldi-based
iterative eigenvalue solvers. Finally, the eigenpairs (µ, û) of the exponential propagator
M are related to those of the Jacobian matrix J by:

λ =
log(µ)

∆T
and Bq̂ = û (III.35)

The main idea of the time-stepping approach is to use a subset of velocity field to
build an orthonormal basis that can be used to project the whole n× n operator M in a
smaller m ×m space where m ≪ n. Let us consider a n×m operator Vm composed by
m orthonormalized vectors of dimension n × 1 such that VVT ≈ I where I is the n × n
identity matrix. It is possible to write the following decomposition

M = VVTMVVT (III.36)

where VVT is the projection operator and H = VTMV is called Hessenberg matrix and
is a m×m operator. The feasibility of the use of the projection technique is linked to the
feasibility of building the H matrix without store the M operator.
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Arnoldi algorithm

The projection of the propagation matrix in a smaller space is accomplished by the Arnoldi
algorithm. Given the exponential propagator M and an initial vector u0 such that ‖u0‖ =
1, one can build-up the following Krylov sequence Km of dimension m

Km(M,u0) = {u0,Mu0, . . . ,M
m−1u0} (III.37)

This Krylov sequence Km converges towards the eigenvector corresponding to the
largest eigenvalue (in modulus) of M. Unfortunately, as the dimension n is increased,
the sequence Km becomes increasingly badly conditioned. This simple iteration is known
as the power iteration. Though such method is extremely simple to implement within a
given code, it is unfortunately relatively slowly converging and only enables the recovery
of the leading eigenpair discarding in the meantime all of the information contained in the
m− 1 previous vectors of the sequence. To overcome this loss of information, the Arnoldi
method combines the power iteration with a Gram-Schmidt orthogonalisation process.
The Gram-Schmidt procedure is used to orthogonalise the sequence Km and obtain an
orthonormal subset of vector Vm. The Arnoldi factorization reads

MVm = VmHm + βvm+1e
T
m (III.38)

with Vm an orthonormal set of vectors spanning a Krylov sbspace of dimension m, Hm a
m×m upper Hessenberg matrix, and βvm+1 the orthogonal residual indicating how Vm

is far from an invariant space.

Figure III.12: Matrix representation of the Arnoldi decomposition.

Fig. III.12 depicts the structure of the matrices involved in the process. It can be shown
that the Ritz pair (µH ,Vmy) of Hm provides a good approximation for the eigenpair
(µ, û) of the matrix M. The Arnoldi procedure is summarized step by step in table III.4.
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Table III.4: Arnoldi algorithm step-by-step

1
Set an initial arbitrary vector u0

and normalize it such that it has
unitary norm

v1 =
u0

‖u0‖

2
The successive vk is recovered
thanks to the propagation matrix

vk = Mvk−1

3

A Gram-Schmidt iteration is then
used to orthonormalize the k-th
with the previous. This is
accomplished in two steps. hj,k−1

are the terms in the upper diagonal
Hessenberg matrix

for j = 1 → k − 1

hj,k−1 = vjvk

vk = vk − hj,k−1vj

end

4
The subdiagonal term of the
Hessenberg matrix is the norm of
the new orthogonal vector.

hk,k−1 = ‖vk‖

5
Finally the vk is normalised to 1 to
get the new orthogonal direction in
the krylov space.

vk =
vk

hk,k−1

6
Goes to the step 2 up to k equal to
the chosen krylov space m.

while k ≤ m

k = k + 1

goto step 2

end

7
Solve the eigenvalue problem using
LAPACK library Andersen et al.
(1999)

[µH ,y] = eig(H)

8
Use the Vm operator to project the
eigenmodes from m×m space to
n×m space.

µ = µH and û = Vmy

9

Recover the eigenvalue of the
Jacobian matrix A from those of
the propagation matrix M and the
relative residue rk associated at
each ûk.

λ =
log(µ)

∆T
and rk = |βyk(m)|
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Gram-Schmid iterationt

Increase H and V size and update k

ARNOLDI ITERATION   up to  k = m
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and orthonormal basis V

Solve the eigenvalue problem with LAPACK

Recover eigenvalues and 

eigenmodes of the Jacobian 

A from those  of the 

propagation matrix  M

EIGENPROBLEM IN Nek5000

Figure III.13: Arnoldi algorithm implemented in the Nek5000 by Loiseau et al. (2014). A matrix representation of each step in
table III.4 is here depicted.
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Krylov-Schur decomposition

One limitation of the Arnoldi decomposition is however that the dimension m of the
Krylov subspace necessary to converge the leading Ritz pairs is not known a priori. It
might hence be relatively large, thus potentially causing some numerical and/or practical
problems (e.g. storage of Krylov basis Vm , forward instability of the Gram-Schmidt
process involved in the Arnoldi decomposition, etc). Different approachs could be used to
overcome this problem (e.g. Implicitly Restarted Arnoldi Method (Barkley et al., 2008;
Sorensen, 1992)). In the present work the Krylov-Schur decomposition (Stewart, 2002)
has been adopted for the sake of simplicity in its implementation. The Krylov-Schur
method is based on the generalization of the m-step Arnoldi factorization (III.38) to a
Krylov decomposition of order m,

MVm = VmBm + vm+1b
T
m+1 (III.39)

in which the matrix Bm and the vector bm+1 have no restriction. The Arnoldi decompo-
sition then appears as a special case of Krylov decomposition when Bm is restricted to be
in upper Hessenberg form and bm+1 = em. Another special case is the krylov-Schur de-
composition in which the matrix Bm is in real Schur form (i.e. quasi-triangular form with
its eigenvalues in the matrix 1× 1 or 2× 2 diagonal blocs). The Krylov and the Arnoldi
decomposition are equivalents i.e. they have the same Ritz approximation. Moreover, by
means of orthogonal similarity transformations, any Krylov decomposition can be trans-
formed into an equivalent Krylov-Schur decomposition. The core of the Krylov-Schur
method is thus based on a two-steps procedure: (i) an expansion step performed using
a m-step Arnoldi factorization, and (ii) a contraction step to a Krylov-Schur decomposi-
tion of order p retaining only the most useful spectral information from the initial m-step
Arnoldi decomposition. Given an initial unit-norm vector v1 , a subroutine to compute
the matrix-vector product Mvi, and the desired dimension m of the Krylov subspace, the
Krylov-Schur method can be summarized as follows:

1. Construct an initial Krylov decomposition of order m using for instance the m-step
Arnoldi factorization (III.38).

2. Check for the convergence of the Ritz eigenpairs. If a sufficient number has con-
verged, then stop. Otherwise, proceed to step 3.

3. Compute the real Schur decomposition Bm = QSmQ
T such that the matrix Sm is

the real Shurl form and Q is the associated matrix of Shurl vectors. It is assumed
furthermore that the Ritz values on the diagonal blocks of Sm have been sorted
such that the p “wanted” Ritz values are in the upper-left corner of Sm, while the
m − p “unwanted” ones are in the lower-right corner. At this point we have the
following re-ordered Krylov-Schur decomposition as shown in figure III.14. In figure
III.14 Ṽm = VmQ is the re-ordered krylov basis, S11 the subset of the Schur matrix
containing the p “wanted” Ritz values, S22 the subset containing them−p “unwanted”
ones, and [bT

1 b
T
2 ] = bTQ.

4. Truncate the Krylov-Schur decomposition (see fig. III.14) of order m to a Krylov
decomposition of order p like in fig. III.15,
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Figure III.14: matrix representation of the Shurl decomposition.

Figure III.15: Truncated krylov-Shurl decomposition.

with Ṽp equal to the first p columns of Ṽm and ṽp+1 = vm+1.

5. Extend again to a Krylov decomposition of order m using a variation of the proce-
dure used in the first step: the procedure is re-initialized with the starting vector
ṽp+1 but all the vectors in Ṽp are taken into account in the orthogonalization step.

6. Check the convergence of the Ritz values. If not enough Ritz values have converged,
restart from step 3.

This algorithm has two critical steps. The first one is the choice of the “wanted”
Ritz values in the re-ordering of the Schur decomposition in step 2. Since we are only
interested in the leading eigenvalues of the linearized Navier-Stokes operator, all the Ritz
pairs being classified as “wanted” must satisfy ‖µw‖ ≥ 1 − δ (with δ = 0.05 usually). In
any case, other logical constrain can be added (e.g. keep the eigenmode in a range ofω).
Regarding the criterion assessing the convergence of a given Ritz pair, starting from the
Krylov decomposition (III.38), one can write

‖MVmy −VmBmy‖ = ‖MVmy − µBVmy‖ = ‖βeTmy‖ (III.40)

with (µB,y) a given eigenpair of the matrix Bm. A consequence of realtion (III.40)
is that if its right hand side ‖βeTmy‖ is smaller than a given tolerance, then the Ritz
pair (µB,Vmy) provides a good approximation to the eigenpair (µ, û) of the original
matrix M. Herein, a Ritz value is considered as being converged if the associated residual
‖βeTmy‖ ≤ 10−6. The numerical implementation of the Krylov-Schur decomposition used
relies on the basic Arnoldi factorization presented in Loiseau’s work (Loiseau et al., 2014)
and on the LAPACK library (Andersen et al., 1999) for the linear algebra computations
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(Schur and Eigenvalue decompositions). The matrix representation of the Krylov-Schur
algorithm implemented in Nek5000 is depicted in figure III.16.
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Figure III.16: Krylov-Schur decomposition algorithm implemented in the Nek5000. A matrix representation of each Krylo-Schur
step is here depicted.
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Figure III.17: Eigenspectrum for 2D lid-driven cavity case at Re = 8500. for the four cases
N = 256 (green), N = 128 (magenta), N = 96 (blue) and N = 64 (red) the convergence
of the leading eigenmode is always ensured.

Validation and performances

To understand the potential of the Krylov-Schur algorithm, the 2D lid-driven cavity has
been used as test-case. The lid-driven cavity is a case highly studied in bibliography, it
presents a first unstable global mode at Rec = 8135 (Robinet et al., 2005). The Re =
8500 has been chosen for the parametric study. The element mesh is composed by 10
elements with a polynomial reconstruction of order 8 within each element. To illustrate
the dependency of the Krylov space with the number of the converged eigenmodes four
different Krylov dimensions have been considered, N = 64, 96, 128, and 256. For the four
cases the Krylov-Schur procedure stops when the required convergence 10−6 is reached
for at least 8 eigenvectors. The obtained eigenspectrum for the four considered cases is
shown in figure III.17.

It can be observed how for the four cases the convergence of the most unstable eigen-
mode is always ensured. The Krylov-Schur performance are summarised in table III.3.2.1.

m converged modes Shur iterations
256 77 0
128 10 2
96 10 3
64 8 6

Table III.5: Krylov-Schur performance

WithN = 256 the constraint on the converged modes is satisfied already by the Arnoldi
decomposition and no supplementary Schur decompositions are required. Decreasing the
Krylov subspace the number of the Schur decomposition involved in the eigenvalues eval-
uation increases. With this method it is possible to increases drastically the number of
the converged eignemodes with a fixed Krylov subspace that for a 3D problem can be a
bottle neck for the memory required to store it. Unfortunately with this procedure the
control on the time computation to reach convergence is lost. It is impossible to know how
many Schur iteration are necessary to give to the orthonormal basis the good orientation
before getting that capable of ensuring the minimum number of converged modes.
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III.3.2.2 Pseudospectrum from Hessenberg matrix

The computation of the pseudospectrum is much more expensive of the eigenvalue decom-
position. Following Toh and Trefethen (1996) it is possible to use the Hessenberg matrix
to have an approximation of the pseudospectrum as in eq. (III.41).

Λǫ(A) = {z ∈ C : ‖(zI−A)−1‖ > ǫ−1} ≈ {z ∈ C : λmin(zI− log(H))/∆T < ǫ}. (III.41)

To get a good approximation of the pseudospectrum a large Krylov space has to be
taken into account (Toh and Trefethen, 1996). For a non-normal operator the amplitude
response ǫ−1 is higher than a normal case because many eigenvectors are involved. Eq.
II.43 gives an idea of the contribution of each eigenmode when a generic forcing is applied.
The pseudospectrum accuracy relies to the capability of the Arnoldi algorithm to take into
account in the Hessenberg matrix the non normalities of Jacobian operator. Unfortunately,
this task is not accomplished by the Hessenberg matrix, since a simple singular value
decomposition of the Hessenberg matrix does not give an approximation of the optimal
perturbation gain and a simple transconjugation of the Hessenberg matrix does not provide
an approximation of the adjoint operator. For an openflow, such as a boundary layer, a
huge number of eigenmodes and a large Krylov space has to be taken into account to have
a basis representative of the optimal perturbation (Alizard and Robinet, 2011). Another
consideration has to be done: using a the time-stepping method the Jacobian matrix is
not directly handled, but instead the scalar product Av is achieved with a numerical
simulation. For this reason, the pseudospectrum takes also into account the numerical
sensibility of the method used for the time integration. An improvement can be achieved
if an invariant subspace is considered to project the Jacobian. Let U be a subset of n×m
selected eigenvalues of M and QR its qr decomposition then a reduced m×m matrix of
M can be achieved by:

QTMQ = UTMUR−1 = UTUDR−1 = RDR−1 (III.42)

D being the diagonal matrix containing the eigenvalues µ of M. The evaluation of the
pseudospectrum onto the upper-diagonal matrix RDR−1 has the same accuracy of the
pseudospectrum evaluated on the Hessenberg matrix with a Krylov space twice as big
(Toh and Trefethen, 1996).

III.3.2.3 Other decompositions

The global stability analysis just presented allows to decompose the linear flow dynamics
around a steady state in spatial structures (eigenvectors) at which a temporal evolution
(eigenvalue) is associated. If we are not interested in the characterization of the stability of
the system, other decompositions can be considered and applied directly to the nonlinear
system.

Proper Orthogonal Decomposition

Omitting the description of the well known Fourier transform to get Fourier modes, an
important decomposition highly used in fluid dynamic system is the Proper Orthogonal
Decomposition (POD) (Berkooz et al., 1993). The POD has been used in turbulent flows

56



Figure III.18: Structure of the matrices resulting from singular value decomposition.

to highlight spatial uncorrelated structures that give an order to apparent complex flow.
From a statistical point of view a POD base defines an orthonormal space in which at each
mode is associated a variance. Giving a set of N snapshots X = {x1, . . . ,xN} representing
the flow field at different times, the associated spatial POD modes can be found as the
eigenvectors of the spatial correlation matrix XXT , after removing its average

xi = xi −
1

N

N∑

i=1

xi (III.43)

by using the definition of variance. The correlation matrix is Hermitian, then it is a
positive and symmetric matrix. For this reason its eigenvectors and eigenvalues are real.
The eigenvectors of the chronos correlation matrix XTX provide the temporal evolution of
the ith POD mode. More generally the POD decomposition is accomplished by a singular
value decomposition (SVD) of the observable flow fields xi that decomposes the n × N
matrix X in three parts (see also figure III.18):

• U: a n × N matrix whose columns are orthonormal one to another. Each of these
columns then contains one of the so-called POD modes.

• Σ: a real-valued N × N diagonal matrix containing the singular values. The ith

singular value indicates the importance in terms of variance of the ith POD mode
from U in the initial sequence of data.

• V: the N × N dynamic matrix. Its ith row provides the temporal evolution of the
ith POD mode.

From an implementation point of view the POD decomposition is performed in two steps:

1. [Σ2,V] = eig(XTX),

2. U = XVΣ−1.

In this way the direct SVD computation of X is avoided and only N×N matrices are
handled. An example of POD decomposition for a 2D cylinder flow at Re = 60 is reported
in figure III.19. 1000 velocity field snapshots have been used to evaluate the first 20 POD
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Figure III.19: Example of POD decomposition for 2D cylinder case at Re = 60. The
dataset is taken on the limit cycle of the Von-Karman shedding. 1000 velocity field
snapshot has been used to evaluate the first 20 POD modes.

modes. Only few modes have an important role in the representation of the unsteady dy-
namics. To quantify the number of modes necessary to represent the unsteady behaviour,
one can refers to the the Frobenius norm of X as

‖X‖F =

√
√
√
√

n∑

i=1

N∑

j=1

|xij |2 =
√

Σ2
1 + Σ2

2 + . . .+ Σ2
N . (III.44)

The 0.98‖X‖F is ensured by keeping just the first 12 POD modes.

Dynamic mode decomposition

At each POD mode many frequencies can be associated, but for a physical interpretation
of the spatial structure it could be interesting to find spatial structures at which just
one frequency is associated. This task is carried out by the Koopman theory (Koopman,
1931). Considering the non-linear dynamical system

xk+1 = f(xk) (III.45)

the Koopman theory states that is always possible to define an infinite linear operator
(Koopman operator) that captures all the main features of a nonlinear dynamical system

Mxk = f(xk). (III.46)

The eigenfunctions of M define a (nonlinear) change of coordinates in which the system
becomes linear. This means that the solution xk+1 is a linear combination of the eigen-
function of M. Therefore the dynamics of a non-linear system can be investigated by
studying its associated Koopman eigenfunctions. Starting from a discrete-time setting of
data it is possible to build an approximation of the Koopman eigenvectors (Rowley et al.,
2009; Schmid, 2010). The Dynamic Mode Decomposition (DMD) (Schmid, 2010) is an al-
gorithm introduced by Schmid and Sesterhenn (2008) that computes an approximation of
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Figure III.20: Structure of the matrices resulting from DMD.

such eigenvectors starting from data acquired from numerical simulation or experiments.
Given a dataset of fluid fields xj = x(j∆t) at k different time steps such that:

K = [x0,x1, . . . ,xk−1] (III.47)

the DMD goal is to find an approximation of the linear operator A that approximates the
time-discrete dynamical system and providing:

xi+1 = Axi. (III.48)

The A matrix might not be directly accessible and if the three velocity components are
considered, it may have a dimension higher than that of the Jacobian matrix. To overcome
this problem let us consider the flow field sequence

X = [x0,x1, . . . ,xk−2] (III.49)

and the one shifted in time
Y = [x1,x2, . . . ,xk−1] (III.50)

the operator A has to be defined such that

AX = Y. (III.51)

At this point the singular value decomposition svd(X) = UΣVT is invoked to keep just
the first m “most important” modes discarding the spatial structures with low variance

AUΣVT = Y (III.52)

UTAU = UTYVΣ−1 = S (III.53)

The S matrix is a small m ×m matrix that approximates the Koopman operator A see
fig III.20.

As a consequence, the eigenpairs (µc,Γ) of the matrix S are a reasonably good ap-
proximation of the eigenpairs (µ,Φ) of the operator A since:

{

µ ≃ µc

Φ ≃ UΓ
(III.54)
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Figure III.21: Example of DMD decomposition for 2D cylinder case at Re = 60. The
dataset is taken on the limit cycle of the Von-Karman shedding. 1000 velocity field
snapshots have been used to evaluate the first 21 DMD modes.

As for global stability analysis, the growth rate and the circular frequency of the DMD
modes can be recovered by:

σ + iω =
log(µ)

∆t
(III.55)

∆t being the sampling period between two snapshots of the observables. In figure III.21
the DMD spectre is depicted both for µ and σ + iω. Since the velocity snapshots have
been taken on the limit cycle of the Von-Karman shedding, all the DMD modes turn
out to have σ ≤ 0. If for the POD decomposition is straightforward to understand the
“importance” of each spatial mode in the unsteady dynamics, this information it is not
directly accessible in the DMD spectrum as it seems that all modes play the same role
with the same “importance”. Jovanović et al. (2014) proposed a way to assign a weight at
each DMD mode. Consider the reduced system

xt = Sx0 (III.56)

where x0 = UTX0 then the S matrix can be decomposed in a basis of its eigenvectors and
eigenvalues

S = ΓDµZ (III.57)

where the Γ columns (γi) are the right eigenvectors of S, Dµ is the diagonal matrix
containing the eigenvalues and the Z rows (z∗i )

2 are the left eigenvectors of S or the right
eigenvectors of ST . The solution to (III.56) can be found as

xt = ΓDµZx0 =

m∑

i

γiµiz
∗
i x0 =

m∑

i

γiµiαi (III.58)

where αi = z∗i x0 represent the weight associated to the mode γi for the evolution of the
initial condition x0. Because of Φi = Uγi each velocity snapshot can be approximated by

2The z∗i vector has to be normalized such that the bi-orthogonality condition z∗i γi = δij is respected.
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Figure III.22: Modal contribution of DMD modes (a) for 2D cylinder case at Re = 60.
Firt unsteady DMD mode (b).

a linear composition of the DMD mode III.22.

Xt ≈ Uxt =
m∑

i

Φiµiαi (III.59)

The DMD spectrum of the case in figure III.21 with the relative αi weights is shown in
figure III.22.

III.4 Transient growth analysis

III.4.0.1 SVD-Arnoldi

For the optimal perturbation analysis the procedure explained in section §II.3.1 has to be
followed. To solve the eigenvalue problem the propagation matrix M and its adjoint M+

need to be stored. Again, the required memory is inaccessible and the whole exponential
propagation matrix cannot be computed as explained in the book Schmid and Henningson
(2012). A time-stepping approach has to be used once again. The main idea is to build
up a reduced order matrix of M+M as suggested by Barkley et al. (2008). By taking
advantage of the already implemented Arnoldi and Krylov-Schur algorithm, it is possible
to build an Hessenberg matrix whose eigenvalues are representative of those of M+M (see
fig. III.23). The Arnoldi algorithm is still unchanged, the only modification to do is on
the evaluation of the new vector in the Krylov space. Starting from vk−1, this is done in
two steps:

1. Evaluate v∗
k = Mvk−1 with a linear Navier-Stokes solver using vk−1 as initial con-

dition and iterating forward in time from t = 0 to t = T . Being T the target time
of interest.

2. Evaluate vk = M+v∗
k with an adjoint Navier-Stokes solver using v∗

k as initial condi-
tion and iterating backward in time from t = T to t = 0.
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Figure III.23: Hessenberg matrix for optimal perturbation computed by SVD-Arnoldi.

The ith eigenvalue of the Hessenberg matrix µH is the energy gain at t = T associated
at the eigenvector ith u0 if it is used as initial condition at t = 0. The eigenvector
corresponding to the max(µ) is the optimal perturbation and the others are sub-optimal.
Note that the solution of the eigenvalue problem (III.60)

M+Mu0 = Λu0 (III.60)

is equivalent to the singular value decomposition

Mu0 = ΛuT (III.61)

for this reason this algorithm is also known as SVD-Arnoldi. With an SVD decomposition
it is possible to directly access to the perturbation at the target time uT . Solving the
eigenvalue problem uT can be recovered in a second step just using u0 as initial condition
for a linear Navier-Stokes solver integrating forward up to t = T .

III.4.0.2 Optimization problem

The geometrical interpreeation of the optiaml perturbation has been given in section
§II.3.1 and technical procedure to evaluate it has been explained in the previous section.
Up now nothing has been said on the continuous adjoint Navier-Stokes equation. Actually,
adjoint state is a concept originating from the optimisation theory. In the hydrodynamic
instability framework, adjoint-bsed methods can be used to identify optimal perturba-
tions, highlight the most receptive path to break down, select the most destabilising base
flow defect in an otherwise stable configuration, and map the structural sensitivity of an
oscillator. All of these uses have been reviewed by Luchini and Bottaro (2014).

Focusing on the optimization problem, an optimization loop can be setted to reach an
objective function. In our case the objective function is still maximising the kinetic energy
at the time T

L = 〈uT ,uT 〉 (III.62)

A Lagrange function (Zuccher et al., 2004) can now be defined to take into account the
objective function enforced by the constrains. Precisely, the optimal perturbation u0 need
to satisfy:

• it must be solution of the linearised Navier-Stokes equation,

• it must have unit norm,
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• it must be divergence-free.

The Lagrangian function then reads

L(u, p,u†, p†, λ) = 〈uT ,uT 〉
︸ ︷︷ ︸

objective

−
∫ T

0

〈u†,

(
∂u

∂t
−NS(Ub,u, p)

)

〉dt− λ(〈u0,u0〉 − 1)− 〈p†,∇ · u0〉
︸ ︷︷ ︸

constrains

(III.63)
u†, p† and λ being the Lagrangian multipliers (or adjoint variables) and NS stands for
the linearised Navier-Stokes equation. Note that the quadratic objective defines a convex
problem and then the existence and uniqueness of the optimal solution. To find the
maximum of the functional L it is necessary to impose its variation equal to zero

δL =

(
∂L
∂u

, δu

)

+

(
∂L
∂u†

, δu†

)

+

(
∂L
∂λ

)

δλ+

(
∂L
∂p†

)

δp† +

(
∂L
∂p

)

δp = 0. (III.64)

This is accomplished only when each term is simultaneously equal to zero. For each
variation we get the following optimization system

∂L
∂λ

:= 〈u0,u0〉 = 1 (III.65a)

∂L
∂u†

:=
∂u

∂t
+ (u · ∇)Ub + (Ub · ∇)u+∇p− 1

Re
∆u = 0 (III.65b)

∂L
∂p†

:= ∇ · u = 0 (III.65c)

∂L
∂u

:=
∂u†

∂t
+ (Ub · ∇)u† − (∇Ub)

Tu† +∇p− 1

Re
∆u† = 0 (III.65d)

∂L
∂p

:= ∇ · u† = 0 (III.65e)

∂L
∂u(T )

:= u(T )− u†(T ) = 0 (III.65f)

∂L
∂u(0)

:= u(0)− λ−1u†(0) (III.65g)

Equations (III.65a), (III.65b), (III.65c) are the original constraints of the optimization
problem. Equation (III.65d) and (III.65e) are the adjoint Navier-Stokes equations ob-
tained by integration by parts of the first constraint in the functional (III.63). The last
two equation represent respectively the compatibility condition (III.65f) and the solution
update (III.65f). Detailed mathematical steps are reported in Appendix VIII.2 for a non-
linear optimal perturbation also implemented in Nek5000 (Farano et al., 2017). In many
works the optimization approach is preferred to the SVD-Arnoldi due to its flexibility
for complex optimization function and for the low memory required. The optimization
problem is solved iteratively as shown in the block-diagram in figure III.25.

The system solved in the way depicted in figure III.25 with a simple re-normalization to
update the solution, turns out to be a power iteration method to find the higher eigenvalue
of the eigenproblem (III.60). Such way is the most common and simple way to update the
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Figure III.24: Block diagram of direct-adjoint loop: power-iteration method.

solution (Cherubini et al., 2010a; Monokrousos et al., 2010; Pringle and Kerswell, 2010;
Pringle et al., 2012). A gradient-based method can be used to accelerate the optimization
convergence. The two most famous are the steepest ascent method and the conjugate
gradient method. The algorithm used in the present work, the rotation update technique,
is a modification of the steepest ascent method, based on geometric considerations, that
has been used by Foures et al. (2013, 2014) and Farano et al. (2015, 2016, 2017). A
schematic representation of this procedure is presented on figure III.25.

Let us consider the gradient (III.65g):

∂L
∂u(0)

:= u(0)− λ−1u†(0) (III.66)

In the following, the dependence on the time t = 0 will be dropped for the sake of
simplicity. As can be seen, the current expression of the gradient depends on the Lagrange
multiplier λ which value is unknown at the present time. One can however write down a
mathematical expression of this gradient orthogonalised with respect to the input u:

∂L
∂u(0)

⊥

=
∂L
∂u(0)

−
〈 ∂L
∂u(0)

,u〉
〈u,u〉 u (III.67)

Introducing the analytical expression of the gradient (III.65g), the orthogonalised gradient
can now be expressed as:

∂L
∂u(0)

⊥

= (u† − λu)− 〈(u† − λu),u〉
〈u,u〉 u (III.68)

u† − λu− 〈u†,u〉
〈u,u〉 u+ λ

〈u,u〉
〈u,u〉u (III.69)

After simplifications, the orthogonalised gradient finally reads:

∂L
∂u(0)

⊥

= u† − 〈u†,u〉
〈u,u〉 u (III.70)
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Figure III.25: Schematic representation of the rotation update method. (a) Compute the
gradient ∂L

∂u
of the Lagrange functional. (b) Orthogonalise the gradient with respect to

un(0). (c) Compute Gn, i.e. the orthogonalised gradient being normalised such that its
energy is 1. (d) Update un+1(0) using a linear combination of un(0) and of the orthonor-
malised gradient Gn
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As one can see, the expression of the orthogonalised gradient (III.70) now solely depends
on the direct variable u and the adjoint one u†, while the dependence on the unknown
Lagrange multiplier λ has been completely removed from the optimisation problem. Nor-
malising this new gradient such that:

Gn =

√
1

〈 ∂L
∂u(0)

⊥
, ∂L
∂u(0)

⊥〉
∂L
∂u(0)

⊥

(III.71)

now allows us to look for the update un+1 as a simple linear combination of un and Gn

given by:
un+1 = cos(α)un + sin(α)Gn (III.72)

Since un and Gn form an orthonormal set of vectors, this update un+1 now fulfils, directly
by construction, the constraint on the initial energy (III.65a) without having a quadratic
equation in λ to solve at each iteration of the optimisation loop as is the case in the classical
steepest ascent method. To ensure the convergence of the method to the maximum of
the functional, a check needs however to be put on the value of the angle α used for the
update of the solution. Every calculation presented in this work has been started with
α = π/4. However, if the gain λn+1(T ) computed at the n + 1th iteration is smaller than
the gain λn(T ) at the previous one, then the update un+1 is re-updated with a different
value of α, typically α = α/2, until the condition λn+1(T ) > λn(T ) is achieved.

III.5 Optimal forcing analysis

To study the response of the system to a time periodic forcing, the optimal forcing analysis
has to be carried out. The equation that links the forcing to the response has been
presented in the section §II.3.2 and here reported:

û = (iωI−A)−1f̂ (III.73)

where û is the harmonic response, f̂ the harmonic forcing and A stands for the Jacobian
operator in the divergence-free space. We remember that eq. III.75b lives on the hypothe-
sis that A has only stable modes and thus the asymptotic solution of the forced linearised
Navier-Stokes equation only depends from the particular solution. Once again, for a 3D
problem the equation (III.75b) can not be treated as presented in Schmid and Henningson
(2012) due to the high memory required. An Hessenberg matrix can not be built with
a time-marching CFD code as the equation (III.75b) is not time-depended. The only
accessible solution today is that proposed by Monokrousos et al. (2010) formulating the
problem as an optimization problem. The Lagrangian function can be formulated as
before:

L(û, û†, λ, f̂) = 〈û, û〉
︸ ︷︷ ︸
objective

−〈û†, (iωI−A)û− f̂〉 − λ(〈f̂ , f̂〉 − 1)
︸ ︷︷ ︸

constraints

. (III.74)

The objective function is still the kinetic energy of the response, the additional constrains
are:

• The response has to be solution of the forced linearised Navier-Stokes equation
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• The amplitude of the forcing is normalised to 1.

Note that no time integrals are present and that the adjoint variable û† has been assumed
to be harmonic. The variation of the augmented functional respect to û, û†, λ and f̂ gives:

∂L
∂û†

:= (iωI−A)û− f̂ = 0 (III.75a)

∂L
∂λ

:= 〈f̂ , f̂〉 = 1 (III.75b)

∂L
∂û

:= (−iωI−A†)û† − û = 0 (III.75c)

∂L
∂f̂

:= f̂ = λ−1û† (III.75d)

Equations (III.75a) and (III.75b) are the imposed constraints in the augmented La-
grangian functional (III.74). Equation (III.75c) is the adjoint resolvent and eq. (III.75d)
is the update of the forcing, see Monokrousos et al. (2010) for further details. To solve
the optimization problem we need to solve eq. (III.75a) and (III.75c). Unfortunately we
cannot have access directly at the complex fields û and f̂ as Nek5000 integrates in time
the linearised and the adjoint Navier-Stokes equation. Nevertheless, we can take advan-
tage of the fact that the Jacobian A is stable and for t → ∞ the only possible solution
is the particular one that is periodic and independent from the initial solution. Hence,
initializing the numerical simulation with a zero velocity field and a random unitary forc-
ing, it is possible to recover the complex response performing a Fourier transformation
of the velocity field on one period of the forcing. The optimization loop as proposed by
Monokrousos et al. (2010) is depicted in figure III.26.

Implementation details

Concerning the Fourier transformation, it should be noted that only the mode associated
to the optimization pulsation is required. Therefore, a discrete Fourier transform (DFT)
can be used instead of a Fast Fourier Transform (FFT). The implementation of the DFT
over one pulsation ω is straightforward and it is performed with a sum over Tp = 2π/ω:

if t < (Tend − Tp)

ûr = 0

ûi = 0

else

ûr = ûr +
ωdt

π
u cos(ωt)

ûi = ûi −
ωdt

π
u sin(ωt)

end

To accelerate the optimization loop convergence, the gradient-rotation method can be
applied also in this case instead of a simple normalization of the forcing. To reduce the
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Figure III.26: Block diagram of the optimal perturbation as proposed by Monokrousos et
al. Monokrousos et al. (2010).

time of the numerical simulation necessary to reach the time periodic behaviour before
proceeding with the DFT, two solutions can be adopted. The first one is a differential form
of the shift-and-relax filter proposed by Garnaud et al. (2012). It is a periodic selective
frequencies damping used to converge a particular area in the complex plane of huge
eigenvalue problems. In this case it can be used to damp all the frequencies different from
the imposed one. A second solution is the use of BoostConv. The BoostConv algorithm
can be used to find periodic base flows as shown by Carini et al. Carini et al. (2014) to
study the flip-flop instability behind two cylinders. The main idea is to select a proper
Poincaré plane in which the periodic behaviour is forced to be stationary. To achieve this
goal it is sufficient to build properly the Krylov space like in eq. (III.76).

Xk = [u(t0),u(t0 + Tp), · · · ,u(t0 + (k − 1)Tp)] . (III.76)

To show an application of the BoostConv to converge toward a periodic solution en ex-
ample on the Rossler system (III.77) is shown.







dx
dt

= −y − z
dy
dt

= x+ ay
dz
dt

= b+ z(x− c)

(III.77)

For a = 0.1, b = 0.1 and c = 5 a periodic behaviour is observed over time. Keeping
constant a and b values and changing c form 5 to 6 a period doubling bifurcation can be
noted in the phase space. The BoostConv is then used to find the steady solution and
the periodic solution. The result is shown in figure III.27.
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Figure III.27: Example of BoostConv application onto the Rossler system to converge
towards a steady solution (magenta curve) or periodic solution (red curve). The uncon-
trolled solution shows a period-doubling limit cycle (blue curve) for a = 0.1 , b = 0.1 and
c = 6.

In this case the Poincaré plane is chosen looking at one spatial state variable. When the
solution passes trough the x = 0 plane a new vector is added in the Krylov subspace. To
accelerate the convergence towards the periodic solution in the optimal forcing solution,
the Poincaré plane is taken looking at the time variable as it is known a priori that the
period of the response must be equal to the forcing one. To validate the optimal forcing
procedure two test cases has been studied. The first one is the 2D Poiseuille flow. The
result at Re = 4000 (Rec = 5772) is compared with that of the local theory. For the
reference result only the Orr equation is used since when β = 0 the Sommerfeld equation
is decoupled and it introduces modes that can not be taken into account in strictly 2D
numerical simulation. The theoretical gain curve and the obtained one are depicted in
figure III.28.

With the Lagrangian method only the optimal solution can be found. For this reason
the solution obtained with Nek5000 follows the maximum gain curve. For ω < 0.8 the
optimal forcing has α = 1 and for ω > 0.8 the optimal forcing has α = 2 (see fig. III.29).

In the Poiseuille case the periodic boundary condition are adopted in the streamwise
direction. To test the fringe method the optimal forcing analysis on the 2D boundary
layer has been also achieved. The gain curve for an inflow Blasius profile at Reδ = 100 is
depicted in III.30.

The maximum gain is obtained for ω = 0.018 as stated by Sipp et al. (2010)3. The
optimal forcing and the optimal perturbation for ω = 0.018 are shown in figure III.31.

3Note that in Sipp et al. (2010) different dimensionless parameters have been used.
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Figure III.28: Optimal forcing analysis for 2D Poiseuille flow at Re = 4000. The gain
obtained with the optimal forcing implemented in the Nek5000 follows the curve envelope
of the gain obtained with the local theory.

(a) Optimal forcing ω = 0.28 (b) Optimal response ω = 0.28

(c) Optimal forcing ω = 1.1 (d) Optimal response ω = 1.1

Figure III.29: Example of real part of optimal forcing (left) and real part of optimal
response (right) when α = 1 (top) and when α = 2 (bottom).
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Figure III.30: Optimal forcing analysis of 2D boundary layer flow at Reδ = 100. Maximum
gain at ω = 0.018.

(a) Optimal forcing ω = 0.18

(b) Optimal response ω = 0.18

Figure III.31: Example of optimal forcing (top) and response (bottom) for boundary layer
case at Reδ = 100 and ω = 0.018.
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Chapter IV

Linear analysis of flow over cylindrical

roughness

Contents

IV.1 Transition overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV.1.1 On the Tollmien-Schlichting wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV.1.2 Boundary layer receptivity to the Free Stream Turbulence . . . . . . 76

IV.1.3 Stabilizing effect of the streaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

IV.1.4 Flow dynamics over wall roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

IV.2 IAG’s experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

IV.2.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

IV.2.2 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IV.3 Numerical investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IV.3.1 Numerical set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IV.3.2 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

IV.3.3 Linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

IV.3.4 Varicose mode analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

IV.3.5 Optimal forcing and response analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 105

IV.3.6 General receptivity of the varicose mode . . . . . . . . . . . . . . . . . . . . . . . . 106

IV.3.7 Overall discussion about varicose dynamics . . . . . . . . . . . . . . . . . . . . . 110

IV.1 Transition overview

IV.1.1 On the Tollmien-Schlichting wave.

The boundary layer flow is not an analytical solution of the Navier-Stokes equation like for
Couette or Poiseuille solutions. As suggested by Ludwig Prandtl it is possible to neglect
some terms in the Navier-Stokes equation using scaling arguments. The resulting system,

73



know as “boundary layer equations”, well represents the 2D laminar boundary layer profile.
Introducing the variables η (the wall normal direction scaled by the displacement thickness
δ1) and f(η) (the normalised stream function) the boundary layer flow is described by the
self-similar Blasius solution:

2f ′′′ + f ′′f = 0 (IV.1)

where f ′′′ and f ′′ are the third and second derivative of f . Solving the ordinary differential
equation (IV.1) with f(0) = f ′(0) = 0, f ′(∞) = 0 as boundary conditions, the streamwise
velocity component is depicted in figure IV.1.
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Figure IV.1: Streamwise component and its derivatives of the analytical Blasius solution.

Walter Tollmien (1935) and Hermann Schlichting (1933) showed that the Blasius profile
is linearly unstable. The local stability analysis of the Orr-Sommerfend operator shows
an unsteady mode for α = 0.303 and Rec ≥ 519.4 at ωi = 0.1202 (see fig. IV.2).

The neutral mode that becomes unsteady forRe > Rec is known as Tollmien-Schlichting
(TS) wave. It is a boundary layer perturbation with a peak in the wallnormal velocity
profile around 2δ1 (where δ1 is the displacement thickness) that is convected by the flow
field and grows spatially. When the amplitude of the TS perturbation grows above a
threshold level (1 to 2 percent of the freestream velocity), the flow becomes susceptible to
secondary instability that is three-dimensional in nature and characterized by the occur-
rence of λ-shaped vortices (Herbert, 1988; Kachanov, 1994). Vortices end up generating
hairpin eddies, then the vortex stretching begins the breakdown cascade of these struc-
tures until reaching the turbulent state. One can observe that according to the Rayleigh’s
inflection point criterion, the Blasius profile should be stable even for Re → ∞, because
there is no change in the sign of the Blasius profile curvature, as shown in fig. IV.1. Thus,
the unstable mode must be due to other physical mechanisms not accounted in Rayleigh’s
theory. As reported by Baines et al. (1996), the instability arises because of an interaction
between two idealized modes of the system: an “inviscid” mode, which is neutral when
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Figure IV.2: Eigenspectra and neutral eigenmode in local ansatz associated to the Blasius
velocity profile for α = 0.303, β = 0 and Re = Rec = 519.4.
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viscosity is zero, and a decaying viscous mode (or modes) that exists in uniform shear.
The viscous mode is forced by the inviscid one via the no-slip boundary condition at the
wall. Viscous modes are concentrated only near to the wall (assuming Re≫ 1), where the
inviscid mode fails to satisfy the no-slip boundary condition. Imagining that an inviscid
“partial” mode is propagated in the fluid with a Blasius or near-Blasius profile, this motion
would not respect the zero-velocity condition at the wall. But if the no-slip condition has
to be satisfied by the net resulting motion, there must exist an additional viscously forced
motion that brings to zero the horizontal velocity close to the wall. This viscous destabi-
lization acting in a strong-gradients zone is responsible for the growth of unstable waves.
The TS wave is a convective instability as no self-sustained mechanisms are present as
shown by the global stability analysis (Alizard and Robinet, 2007; Bagheri et al., 2009)
and in a 2D scenario is the most receptive mechanism as shown for leading-edge flat-plate
case (Brandt et al., 2011; Sipp and Marquet, 2013). In a 3D framework the TS-wave is
still the main receptive mechanism at β 6= 0 (Monokrousos et al., 2010). In the ω − β
plane the TS-wave is not the only receptive mode. With a lower gain also the streaks can
be excited by an external perturbation depending on the range of the perturbed ω.

IV.1.2 Boundary layer receptivity to the Free Stream Turbulence

In the light of the linear stability results, the boundary layer can exhibit different responses
depending on the external perturbation amplitude. A natural way to excite the boundary
layer is free stream turbulence (FST). A fundamental experimental work has been done
by Boiko et al. (1994); Westin et al. (1994). By using an upstream grid to generate homo-
geneous turbulence, the transition over a flat plate has been studied for different levels of
free stream turbulence. For sufficiently large values of the FST amplitude, the boundary
layer transition is initiated by the growth of perturbations elongated in the streamwise
direction rather than by TS waves. This perturbation induces a modulation of the base
flow with high and low stremwise velocity fluctuations. This form of streaks is due to the
lift-up mechanism that increases the momentum transport in the wall normal direction
(Landahl, 1980, 1975). The counter rotating vortices elongated in the streamwise direc-
tion grow downstream until they trigger a secondary instability. The latter causes streak
interaction and the breakdown to turbulence (Brandt et al., 2004; Schlatter et al., 2008).
This kind of transition is known as “bypass transition" and it is linked to the non-normal
character of the Navier-Stokes operator. A significant transient emergy growth of a given
perturbation might occur, before the subsequent exponential behaviour (Landahl, 1980,
1975). Such an algebraic growth involves non-modal perturbations and can exist for sub-
critical values of the governing parameters. Andersson et al. (2001) has investigated the
dynamics of the optimal streaks. He highlighted the presence of a secondary instability
that has the form of sinuous modulation of the streaks when their amplitude exceeds
approximately 26% of the freestream velocity. Also a varicose modulation is detected for
optimal streaks having an amplitude larger than roughly 37% of the freestream velocity.
Brandt (2007) demonstrates that varicose and sinuous instabilities shear the same desta-
bilising energy production term. The low speed streak instability is associated with the
work of the Reynolds stress τxy = −ūv on the wall-normal basic shear ∂U/∂y. Further
information on the lift-up mechanism and its implication in the transition scenario are
reported in Brandt’s review paper (Brandt, 2014).
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With low FST level the only possible transition scenario is the linear growth of the TS-
wave. In the experiments the unsteady perturbation is triggered by a wall perturbation
(Boiko et al., 1994). The experimental growth of the unstable perturbation is quite in
agreement with the stability analysis prediction. In the same way the transition depending
on the FST amplitude has been studied also numerically (Schlatter et al., 2007, 2010). For
an intermediate level of FST it was found experimentally that the spatial amplification
rate of small amplitude TS waves was lower than in the quiet FST case (Boiko et al., 1994).
This was attributed at the distortion of the 2D mean profile (Andersson et al., 2001) by
the presence of the non-linear saturation of the streaks. The coexistence of TS-waves,
induced by the wall perturbation, and the streaks, induced by the lift-up mechanism,
makes possible the transition delay.

IV.1.3 Stabilizing effect of the streaks

Starting from the last observation, Cossu and Brandt (2002) had the bright idea to induce
artificially in the boundary layer optimal streaks to completely stabilise the TS waves.
The stabilizing effect increases with the amplitude of the streaks AST up to the critical
value for which the sinuous streak instability is triggered. The numerical observation
(Cossu and Brandt, 2002) was confirmed by linear stability analysis (Cossu and Brandt,
2004). By using Floquet theory, it was demonstrated how a nonlinear periodic steady
streak can stabilize the TS waves. The growth rate of the TS waves is damped increasing
the streak amplitude. The 2D perturbation is modified an a 3D varicose perturbation
called “streaked TS wave”. An explanation to this is provided by the kinetic energy
production for the most unstable wave, showing as the work of the uw-Reynolds stresses
against the spanwise shear ∂U/∂z (lift-up event) is stabilising. Hence it is the spanwise
modulation of the boundary layer that allows to damp the unsteady perturbation and
leads to transition delay. The numerical simulations and the theoretical analyses have
been finally supported by experimental observations (Fransson et al., 2004, 2005, 2006).
Fransson in its experiments used an array of roughness elements installed at the wall to
modulate the boundary layer with high and low speed streaks. The pattern of periodically
distributed cylindrical roughness generates the streaks that were propagated downstream.
A wall perturbation is used to trigger the TS waves in the unsteady region of the boundary
layer. The presence of the streaks can delay transition towards turbulence. Nevertheless,
the presence of the roughness can induce a strong perturbation depending on the Re
number and on the ratio between the roughness height and the boundary layer thickness.
Fransson in its experiments showed that the stabilizing effect of the streaks grows with
the amplitude of the streaks measured as

AST = max
y

{(U(y)high − U(y)low)/2}/U∞. (IV.2)

After an amplitude value of the streaks of about 12 % of U∞, the presence of the cylindrical
roughness induces streaks instability (Fransson et al., 2005) and turbulence is achieved
by subcritical transition. Fransson’s experiments open new perspectives in the passive
control techniques to delay transition. For this reason, it is crucial to investigate the
flow dynamics behind a roughness element to understand why the experimental limit in
the streak amplitude is about 12 % of U∞ and the theoretical one is 26 % to observe a
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sinuous modulation of the streak as reported by Andersson et al. (2001). Siconolfi et al.
(2015a) has recently investigated numerically the possibility to use free-stream vortices to
stabilize TS waves. The ideal vortices imposed at the inlet of the numerical domain in the
free stream can generate stable streaks in the boundary layer by the lift-up mechanism.
The provided stabilization has been verified by the local stability analysis. This is an
important result because it opens new perspectives in the transition control framework.
Unfortunately, this solution does not turn out to be applicable because one should generate
the vortices before the leading edge of the flat plate that needs to be controlled. Thus
considering the presence of roughness elements at the wall, what are the main mechanisms
that make the spanwise modulated boundary layer susceptible to a critical or subcritical
transition?

IV.1.4 Flow dynamics over wall roughness

Roughness elements higher than the boundary layer thickness are usually used to control
separated flows (Beaudoin, 2004; Duriez, 2009). In this cases the roughness represents
an obstacle for the flow. In this Ph.D work a wall roughness is a well geometrically
defined object mounted at the wall that does not reach the height of the boundary layer
thickness. In some conditions, by smartly modulating the flow close to the wall, such
devices are able to delay transition. However, they might also induce early transition by
other mechanisms that are worth investigating, with the aim of providing the limit of such
passive control. The transition promoted by the presence of a roughness in the boundary
layer was an active research field already in the sixties and seventies (Gregory and Walker,
1956; Sedney, 1973). As early as in those years, Braslow (1960) has reviewed all results
available back then stemming from various experimental investigations into one transition
diagram. This enabled them to give a first empirical criterion (fig. IV.3) for transition
still widely used nowadays in industries.

The Von Doenhoff-Braslow diagram depicts a general overview for the transition due
to the presence of a roughness at the wall with any form at given aspect ratio η and Reh
(the Reynolds number evaluated with the velocity value that an analytical Blasius profile
would have had at the position and height of the roughness element). The presence of
the roughness can delay transition but it can induce a strong perturbation depending on
the Re number and the ratio between the roughness height and the boundary layer thick-
ness. Despite the numerous parametric analysis (e.g. roughness shape, distance between
two successive roughness elements, Reynolds number, Mach number, roughness aspect
ratio,...), the Braslow’s work (Braslow, 1960) just lists the numerical set-up at which the
roughness produces an unsteady perturbation without giving an exhaustive explanation on
the nature of the unsteadiness. In Klebanoff and Tidstrom (1972), for a two dimensional
roughness, it is claimed that the transition behind the roughness is a stability governed
phenomenon. The recovery zone makes the velocity profile much closer to a free-shear
layer instead of a boundary layer. The inflection points of the velocity profile can then
drive the unsteadiness. For this reason, parameters like free stream velocity and rough-
ness shape can impact on the boundary layer destabilization (Perraud et al., 2004). A
3D extension of this experimental work for an hemispherical roughness (Klebanoff et al.,
1992) shows a more complex scenario. The presence of the roughness induces the hair-
pin eddies that interact with the wall streaks (inner region) and grow in the streamwise
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Figure IV.3: Reproduction of the transition diagram by Braslow (1960). η = d/h is the
ratio of the roughness element’s diameter d over its height h and Reh is the Reynolds
number evaluated with the value of the Blasius velocity profile UBL evaluated at the
roughness element’s position and height h.

and wall normal directions up to generate ring vortices (outer region). Increasing the
Reynolds number transition appears earlier. Nevertheless, the roughness induced bound-
ary layer preserves the time history for a long distance far away from the wall disturbance.
The resulting turbulence was coloured by a specific frequency. This was a further indi-
cation of the presence of some instability mechanisms. A first detailed explanation on
the generation of the fluid structures that give rise to the streaks was given by Baker
(1979). The flow impacting onto the cylindrical roughness generates an horseshoe vor-
tex that wraps the cylinder up to generate counter rotating vortices already observed
by Gregory and Walker (1956). The size and the numbers of the horseshoe vortices are
studied changing the dimension of the roughness. A description of the streak evolution
downstream a bump roughness was highlighted by Joslin and Grosch (1995) that com-
pared numerical and experimental results in the same work. Since the initial perturbation
that provides transient growth in a boundary layer is given by elongated streamwise vor-
tices, many authors started to investigate the transient growth on the roughness induced
streaks. Experimental (Denissen and White, 2009, 2008; Ergin and White, 2006) and nu-
merical (Choudhari, 2004; Denissen and White, 2009) works show that the streamwise
transient growth of the induced streaks roughly scales with the square of the roughness
Reynolds number, Re2h. Thanks to this results, a model taking into account the optimal
perturbation has been developed to predict transition (Arnal et al., 2011). A first Bi-local
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stability analysis onto a boundary layer flow streaked by the presence of bump roughness
has been performed by Piot et al. (2008). Behind the recovery zone of the roughness,
the steady state is quasi-parallel, allowing to introduce a modal decomposition in the
streamwise direction. The unsteady eigenvalue has the same wavelength of the TS wave
but with a smaller growth rate. This confirms the stabilization of the TS waves. The
found eigenvectors generate a good basis to project the non-linear dynamics observed in
the DNS except for the streamwise position close to the roughness where the base flow
is highly non-parallel. In the same way recently Siconolfi et al. (2015b) has studied the
local stability behind miniature vortex generators demonstrating the stabilization effect
provided by the streaks. The first three dimensional work in the instability framework
onto an isolated bump roughness was performed by Cherubini et al. (2013). By using
an optimization technique she demonstrated that the presence of the roughness increases
the non-normalities of the system that exibiths an higher transient growth of the energy.
Moreover, the presence of the roughness localises the optimal initial perturbation onto
the head of the bump. The time evolution of the obtained perturbation generates a wave
packet convected downstream that in the non-linear simulation gives rise to hairpin struc-
tures leading to transition far from the roughness. One year later, Loiseau et al. (2014)
demonstrated how the presence of the roughness not only increases the non-normality
of the system but also can make the Jacobian globally unsteady. The globally unstable
mode is influenced by the Reynolds number and by the aspect ratio. A varicose or sinuous
behaviour can be observed according to the aspect ratio of the cylindrical roughness. The
wavemaker is located onto the separation zone that is the source of the self-sustained har-
monic oscillator. Recently Siconolfi et al. (2017) demonstrates that the unsteady global
mode for an hemispherical roughness (Citro et al., 2015) is related to the separation zone
by the presence of an absolutely unstable zone. The research is really active in this
field due to the possibility to control transition without introducing additionally energy.
Other works can be cited for instance that provide detailed experimental information onto
the transition scenario (Ye et al., 2016a,b) such as vortex splitting in the spanwise direc-
tion behind the unsteady streaky-induced flow. For more applicative purposes, the use
of the roughness in the hypersonic setup (Bernardini et al., 2012; De Tullio et al., 2013;
Ye et al., 2017) or subject to a cross-flow velocity profile (Brynjell-Rahkola et al., 2017;
Kurz and Kloker, 2016) is also an active research topic.

IV.2 IAG’s experiments

IV.2.1 Experimental set-up

Loiseau’s work (Loiseau et al., 2014) sheds light on the origin of the modal unsteady
behaviour that lead to turbulence the flow behind the roughness element. At the Institute
of Aerodynamics and Gasdynamics (IAG) in the Stuttgart University the research group
led by Prof. Rist tried to reproduce Loiseau’s investigations fascinated by the possibility of
reproducing the different symmetries recovered changing the aspect ratio of the roughness
element.

The experiments are performed in the laminar water channel (Laminarwasserkanal)
that is a closed circuit water channel at the Institute of Aerodynamics and Gasdynamics.
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A sketch of the experimental set-up is depicted in figure IV.4.

Figure IV.4: Laminarwasserkanal figure from Puckert et al. (2015)

The turbulence intensity is 0.089% of the free stream velocity in the frequency range
0.1 - 10 Hz at 0.0745 ms−1 and the test section is 8 x 1.2 x 0.2 m large. To maintain the
turbulence intensity even at very low freestream velocities, an additional screen is installed
if the freestream velocity is below 0.06 m/s as described by Puckert et al. (2017). A
steady, 2D, laminar boundary layer of Blasius type is created by a flat plate with elliptical
leading edge (Wiegand, 1996). The experimental set-up is sketched in figure IV.5. All
length scales are non-dimensionalized by the constant roughness height h, which equals
10 mm in the physical experiment and 1 in the dimensionless domain. The roughness
position is constant at L = 57.1 from the leading edge. The aspect ratio η = d/h is
given by the roughness diameter d and the Reynolds number Re = hUe/ν is determined
by the (variable) freestream velocity Ue and the dynamic viscosity ν of water. Due to
the temperature-dependency of the dynamic viscosity, its value is determined prior to
each individual experiment. The coordinate system originates from the bottom center
of the roughness with non-dimensional x-, y- and z-coordinates extending in streamwise,
wall-normal and spanwise directions, respectively.

Hot-film measurements have been done with a Dantec Streamline 90N10 system and
two single-wire probes 55R15 which were calibrated by traversing them at increasing
speeds in resting water as described in Subasi et al. (2015). The voltage signals are
recorded by a 16-bit A/D-converter at 100 Hz and digitally filtered between 0.1 and
10 Hz. The voltage signal is converted into a streamwise velocity by applying King’s law
and decomposed into mean velocity u and disturbance signal u′. Particle image velocime-
try (PIV) has been done with dual-pulse Nd:YAG Quantel Twin lasers (532 nm), seeding
with 4.2µm nylon particles and image acquisition with a PCO Sensicam system.

IV.2.2 Experimental results

To check the existence of sinuous or varicose symmetries in the experimental unsteadiness,
a numerical case from Loiseau et al. (2014) is taken as reference whose parameters are
summarized in table IV.1.

In table IV.1 the critical Reynolds number is reported. Choosing a lower Reynold
number a steady behaviour is expected. In the parametric study shown in Loiseau et al.
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Figure IV.5: Sketch of experimental set-up. Domain size: L = −57.1. ∆z is varied during
experiments.

η Rec Reh xh h/δ1 ω sym
1 1040 813 156.06 1.45 0.7 S

Table IV.1: Sinuous case in Loiseau et al. (2014).

(2014), the ratio between the height of the boundary layer δ99 at the roughness position
and the height of the roughness h is kept constant and equal to 2. On the contrary,
in Fransson’s study and also in the IAG’s experiment the distance between the leading
edge and the roughness position is fixed at xh = 57.1. The set-up of the studied cases is
reported in table IV.2. The experimental case shows an unsteady behaviour despite the
Reynolds number is lower than the critical one predicted by Loiseau. The pulsation and
the spatial wavelength linked to the observed perturbation are also summarised in table
IV.2.

η h/(mm) Re Reh h/δ1 ωexp λx,exp sym
1 10 700 639 2.03 1.05± 0.11 4.8± 0.5 V

Table IV.2: Summary of the parameters, pulsation frequencies and wavelengths

The effect of the cylinder on the laminar boundary layer for the configuration (η, Re) =
(1, 700) is visualized with potassium permanganate crystals on top of and around the
roughness, which dissolve in water and draw dye streaklines into the flow field. In fig-
ure IV.6 (top), crystals upstream of the roughness visualize the contour around a steady
horseshoe-vortex wrapping around the roughness with nearly straight trailing legs. Sim-
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Figure IV.6: Flow visualization with potassium permanganate crystals placed upstream
of roughness and in recirculation zone. (Top) Top view and (bottom) side view with 5
mm grid background.

ilarly, the recirculation zone can be seen as a dark region downstream of the roughness
followed by regular ejection of hairpin vortices. These unsteady vortices consist of an
omega-shaped head in the upper region of the boundary layer and legs in the lower region
and have been analyzed in detail by Acarlar and Smith (1987) for instance. Figure IV.6
(bottom) shows the shedding of hairpin vortices from a side view. From this picture, the
vortex wavelength can be estimated by the spacing of the heads, which is around λx ≃ 4.8.
In both figure IV.6 (top) and (bottom), the shape of the hairpin vortices becomes less
pronounced as they travel downstream, which is a manifestation of transition to turbu-
lence. As proposed by Klebanoff et al. (1992), the lower part is more affected by turbulent
mixing than the upper part, therefore the hairpin heads preserve their shape for a longer
distance than the legs.

The spanwise symmetry property of the unsteady disturbances has been measured by
two single-wire hot-film probes located symmetrically with respect to the z = 0 plane
in the wake of the roughness element. Their separation ∆z was increased from 0.5 to
6.5 in steps of ∆(∆z) = 0.5 and traversed vertically in increments of ∆y = 0.2 at three
downstream positions x = 10, x = 20 and x = 30. At each position, the two disturbance
signals u′1 and u′2 of the probes have been acquired for 30 s and separated into a symmet-
ric (varicose, uv) and antisymmetric (sinuous, us) component according to the following
approach (Shin et al., 2015):

uv = (
u′1 + u′2

2
)rms, us = (

u′1 − u′2
2

)rms. (IV.3)

The result of this decomposition is shown in figure IV.7. Here, the varicose (sinuous)
component is plotted on the left (right) of the spanwise symmetry plane for x = 10, 20 and
30. Note that both components actually exist on both sides and that the probe spacing
leads to an inevitable gap around the spanwise center. For all three downstream posi-
tions, the varicose disturbance dominates over the sinuous one. The position of maximum
varicose disturbance is in agreement with the position of the heads and legs of the hairpin
vortices in figure IV.6 and its amplitude grows in the downstream direction. The leading
unsteadiness of the flow is therefore of varicose nature. The increasing amplitude of the
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Figure IV.7: Pseudocolors showing varicose (v.) and sinuous (s.) disturbance components
according to equations (IV.3) on left and right side of the spanwise symmetry plane (dash-
dotted line), respectively, at three downstream positions: (left) x = 10, (middle) x = 20
and (right) x = 30.
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Figure IV.8: (Left) Time signals and (right) power spectrum densities (PSD) of streamwise
velocity fluctuations u′/Ue for η = 1 at (x, y, z) = (5, 1.5, 0) Grey lines in the spectra
represent freestream turbulence spectrum at (x, y, z) = (0, 6, 0)

sinuous component with increasing x is probably due to nonlinear interaction of unsteady
disturbances, typical for laminar-turbulent breakdown. In the limit of fully developed
turbulence, the quantities in equation (IV.3) should become identical.

Figure IV.8 shows excerpts of time signals on the left hand side and spectra from
Fourier-transforms of the respective signals on the right hand side. Note that the total
duration was 1200 s and only 20 s are shown in the time signals whereas the full length of
the signal is used for the frequency spectra. The frequency ω at the abscissa is computed
with ω = 2πfhU−1

e , where f is the physical frequency in Hz. In all of the provided spectra
the continuous increase of power at low frequencies is due to natural disturbances in the
water channel and not related to the roughness. Both time signals and spectra show very
regular oscillations at a distinct frequency with higher harmonics in the spectra. These
oscillations belong to the initial stage of hairpin vortex creation visualized in figure IV.6
and the dominant ω is listed in table IV.2.

The unsteadiness is further illustrated by PIV snapshot of wall-normal planes at y = 1
in figure IV.9. Grey pseudocolors indicate the in-plane velocity magnitude and black
vectors indicate the vector sum of streamwise and spanwise velocities. One can see the
streaky wake of the roughness elements with quasi-symmetrical oscillations around the
spanwise centerline. Again, this unsteadiness belongs to the observation of haipin vortices.
The question to be answered by theory is how this unsteadiness can evolve despite global
stability (Loiseau et al., 2014).

84



Figure IV.9: PIV snapshots at y = 1 for (η, Re) = (1, 700).

IV.3 Numerical investigation

The experimental case on the cylindrical roughness at η = 1 shows an unsteady and
varicose behaviour in disagreement with the previous numerical analysis that predicts a
stable sinuous global mode (Loiseau et al., 2014). The main difference between experi-
mental and numerical investigation lies in the shear ratio δ1/h at which the roughness is
subject from the incoming flow. How the stability changes in function of the shear ratio
is unknown as in the Loiseau’s work δ1/h is keep constant and equal to 0.688. A further
numerical investigation is then required.

IV.3.1 Numerical set-up

The parameters in table IV.2 has been used to set the numerical simulation in Nek5000.
A sketch of the numerical domain over the experimental one is now depicted in figure
IV.10.

The computational domain considered is given by Lx = [−25; 90] (x = 0 being the
cylinder position), Ly = [0; 40] and Lz = [−5; 5], x, y, and z being the streamwise, wall-
normal and spanwise directions, respectively. The dynamics of the flow is assumed to be
described by the incompressible Navier-Stokes equations

∂U

∂t
+ (U · ∇)U = ∇P +

1

Re
∇2

U

∇ ·U = 0,
(IV.4)

where U(x, t) = (U, V,W )T is the three-dimensional velocity field and P (x, t) the pressure
field. A sketch of the coarse grid distribution of the spectral elements in xz- and xy- plane
is depicted in figure IV.11.

A total of 23544 elements has been used to discretise the numerical domain. Each
element is then discretized in each direction by a N -Lagrange interpolant by the Nek5000.
A polynomial order N equal to 8 has been used for this computation. A convergence study
on the grid will be provided later on as the grid resolution is a critical point for the global
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Figure IV.10: Sketch of experimental set-up and computational domain. Computational
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Figure IV.11: Spectral element grid. A total of 23544 elements are used to discretise the
numerical domain.
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Figure IV.12: Top view of the streaks induced by the roughness elements. Low-speed
(black) and high-speed streaks (white) are depicted using isosurfaces of the streamwise
velocity deviation of the baseflows from the theoretical Blasius boundary layer flow, ū =
U − UBL.

stability result. The spectral grid is build with the commercial code Pointwise and then
converted by an in house MATLAB code in Nek5000 format. Concerning to the adopted
boundary condition, they can be summarized as follows:

• At Xin = −25. The analytical Blasius solution has been used as Inflow condition
to economize memory and avoid spectral elements to discretise the whole flat plane.
This is in good agreement with the boundary layer velocity profile in the experiments
(Puckert et al., 2015).

• At Xout = 90. Outflow boundary condition pn−Re−1(∇U) · n = 0.

• On the spanwise end planes zside = ±Lz/2 periodic boundary conditions are imposed
for the three components of the velocity vector.

• At the upper boundary Ytop = 40 the slip condition U = 1 and ∂V/∂y = ∂W/∂y = 0
is applied.

• At the wall and on the roughness surface the no-slip boundary condition is imposed.

Regarding the velocity profile imposed at the inlet, the Blasius solution has been im-
posed in order to get δ1/h = 0.49 at the roughness position. Despite the periodic boundary
condition, the spanwise dimension of the numerical domain is large enough to not affect
the unsteadiness generation, and the roughness element can be considered as isolated
(Braslow, 1960). The convective terms are advanced in time using an extrapolation of
order 3 for the non-linear simulation and order 2 for the linear one, whereas for viscous
terms a backward differentiation of order 3 for the non-linear simulation and order 2 for
the linear one is used.

IV.3.2 Steady state

The direct numerical simulation of the experimental case converges towards a steady
solution without any supplementary algorithm (e.g. SFD, Boostconf or Newthon). The
streaked boundary layer is depicted in figure IV.12.

To highlight the low and high speed region the analytical Blasius solution is subtracted
to the obtained steady solution. As one can observe, just behind the roughness five
streaks are present; three of them being low-speed and two high-speed streaks. In this
scenario, two mechanisms are involved in the streaks generation. The first one is the lift-
up mechanism that is triggered by the counter rotating vortices generated by horseshoe
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Figure IV.13: Streamwise evolution of the streaks in yz-plane. Red region represent high
speed streaks, blue region low speed streaks highlight looking at ū = U−UBL. Continuous
lines depict isolevel of U form 0.1 to 0.99.

vortex that wraps the roughness (Baker, 1979). The second mechanism is the shear on
the head of the cylinder that represents an obstacle for the incoming flow. The first
mechanism produces the high and low speed streaks on both sides. On the contrary,
the second mechanism produces the low speed streaks in the middle that extends up to
x ≈ 20. To better display the streamwise evolution of the streaks, the difference between
the steady state and the analytical Blasius solution is displayed in the yz-plane for different
streamwise positions in figure IV.13.

The presence of the low speed streaks at z = 0 just behind the roughness makes the
base flow highly non parallel in the streamwise direction. Nevertheless, a quasi-parallel
evolution is recovered from x = 40 when the two high speed streaks join together. Another
way to quantify the streamwise evolution of the streaks is to define the streaks amplitude
as explained by Shahinfar et al. (2013)

Aint
ST (x) =

1

U∞

∫ +1/2

−1/2

∫ η∗

0

|U(x, y, z)− Uz(x, y)|dηdζ (IV.5)
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where
η =

y

δ
=

y
√

xν/U∞

and ζ =
z

Lz
. (IV.6)

Uz(x, y) being the streamwise velocity averaged in the crossflow direction. The deviation
of the streamwise velocity from its spanwise averaged value is then integrated on the whole
spanwise direction and from 0 < η < η∗ in the wall normal direction at each x position.
η∗ is the truncated wall-normal distance opportunely fixed equal to 9. The value of AST

as reported in eq. (IV.5) is displayed in figure IV.14. Thanks to the definition (IV.5), it
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Figure IV.14: Evolution of the streaks amplitude in streamwise direction. In red the value
of AST as reported in eq. (IV.5). In blue the contribution of the high speed streak (Hext),
external low speed streaks (Lext) and low speed in the middle (Lmid).

is straightforward to separate the contribution of each negative and positive streak. At
each position the positive contribution (Hext) of AST is always equilibrated by its neg-
ative counterpart (Lext + Lmid). Just behind the roughness, the amplitude of the high
speed and low speed streak in the middle is comparable. This is not the case far from
the roughness. After x = 4 the external low speed streaks grow rapidly up to x = 20
where the lift-up can be considered completely triggered. It is also interesting to observe
how the area associated to each positive and negative streak evolves with the streamwise
direction. Figure IV.15 illustrates how despite the external low speed streaks increase
their size proportionally with the boundary layer growth, the high speed streak keeps an
almost constant area along x. The last observation suggests that the streamwise velocity
of the high speed streak has to increase to achieve the same amplitude of the external
low speed streaks as depicted in figure IV.14. As a result, moving downstream, ∂U/∂z
increases in the region close to the inflectional points. If the position x = 20 corresponds
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Figure IV.15: Evolution of the area associated to each positive and negative streaks in
streamwise direction. In blue curves the area of the high speed streak (H ext), external
low speed streaks (L ext) and low speed in the middle (L mid).

with the disappearance of the middle streak (see fig. IV.13), x = 4 coincides with the
disappearance of the separation zone as shown in figure IV.16. As one can observe, there
is another stagnation point in front of the cylinder due to the presence of the horseshoe
vortex (Baker, 1979; Loiseau et al., 2014).

The base flow velocity has been compared with the experimental mean flow in figure
IV.17. Despite the different behaviour experienced in the experiments and in the numerical
simulation, a low distortion can be noted just on the low streak on the middle. On the
both side of the middle streak a perfect superposition of the velocity profiles can be
appreciated.

IV.3.3 Linear stability

IV.3.3.1 Local stability analysis

A further investigation is necessary to explain the mismatch between experiment and
numerical simulation. The unsteadiness experienced in the experiment can be triggered
by receptivity of a steady global mode or by transient growth of the energy. In both cases
the local stability analysis is a mandatory step since the presence of local unstable modes
can be linked to the presence of an absolutely unstable region (Huerre and Monkewitz,
1985) or to the non-normality of the NS operator which allows the energy growth of
an initial perturbation that evolves in streamwise direction (Cossu and Chomaz, 1997).
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Figure IV.16: Recirculation bubble behind cylinder. The red colour highlight negative
streamwise velocity. The orange continuous line depicts the zero streamwise velocity.
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Figure IV.17: Comparison between experimental mean flow (pseudocolor) and numerical
base flow (isolines) at x = 10.
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Figure IV.18: 2D slices of the base flow used to evaluate the local stability analysis.
The pseudocolors highlight the streamwise velocity field in yz-sections. z ∈ [−5; 5] and
y ∈ [0; 30]

Imposing a modal decomposition in the streamwise direction (α) and in time (ω)

u(x, y, z, t) = û(y, z)e(αx+ωt) (IV.7)

it is possible to study the local stability of the base flow at each streamwise position. A
temporal stability analysis has been performed with α ∈ R and ω ∈ C. Different yz planes
have been extracted behind the roughness from the base flow velocity field IV.18.

The 2D velocity field goes from -5 to 5 in the spanwise direction and from 0 to 30
in the wall-normal direction. The z-direction is discretized with 100 Fourier collocation
points and the y-direction with 120 Chebyshev collocation points with the first 60 points
concentrated from y = 0 to y = 5. The local stability has been evaluated for different
streamwise positions from x = 2 to x = 80. The LSA is performed for 0 ≤ α ≤ 3. From
x = 2 to x = 20 four leading modes are present. Both sinuous and varicose symmetries
are observed. Moreover, two modes are linked just to the streak in the middle and the
other two are linked to the streaks on both sides of the cylinder. The sinuous and varicose
modes localized on the middle and the external streaks are depicted in figure IV.19. In
all the cases, the unstable modes are wrapped on the low speed streaks where inflectional
points in the velocity profile are present. For 2 ≤ x ≤ 15 the most unsteady mode is a
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Figure IV.19: Local eigenmodes at x = 10 for α = 1.2. Local eigenvalues that wrap the
middle low streak (top) and the external low streaks (bottom). Both symmetries can be
observed varicose (left) and sinuous (right).

sinuous perturbation on the low speed middle streak (see fig. IV.20). The modes localized
on the two external low speed streaks have always a growth rate lower than that wrapped
on the middle streak. This is true up to x ≈ 17 where the perturbation on the middle
streak becomes stable and only the perturbation on the lateral streaks remains unstable.
If for the middle streak the sinuous perturbation is always more unstable than the varicose
one, on the external streaks the varicose perturbation shows a growth rate greater than
the sinuous one up to x ≈ 24 where all modes become stable. The presence of sinuous and
varicose unstable modes in the local spectrum makes both sinuous and varicose scenarios
possible. In particular, the sinuous scenario might match that proposed by Loiseau et al.
(2014), whereas varicose unsteadiness are currently observed in experiments, as previously
discussed. Nevertheless, the local stability analysis is not capable to explain the reason
why just the varicose perturbation is observed in the IAG experiment. The experimental
dynamics could be projected onto the invariant subspace defined by the eigenvectors of
the local stability spectrum to provide a weight to each eigenvector as done by Piot et al.
(2008). Anyhow, this further study would not explain the source of the unsteadiness.

IV.3.3.2 Global stability analysis

To overcome the limitations of the local stability, the homogeneous hypothesis of the base
flow in the streamwise direction is dropped, leading to a three-dimensional, global stability
analysis. The dynamics of infinitesimal perturbations evolving onto the base flow Ub are
governed by the linearized Navier-Stokes equations

∂u

∂t
+ (u · ∇)Ub + (Ub · ∇)u = −∇p+ 1

Re
∇2u

∇ · u = 0.
(IV.8)
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Figure IV.20: From x = 2 to x = 20 four leading modes are present in the local eigen-
spectrum. The evolution of the unstable modes is highlighted in ωi − ωr plane at x = 2,
5, 10, 15 and 20. Continuous lines are linked to varicose mode, dashed lines to sinuous
one. The red lines depict the modes evolution which live on the external low streaks for
different alpha values. Blue lines depict the evolution of the modes which wrap the low
streak in middle along z = 0.
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Figure IV.21: Global eigenspectrum for the experimental case Re = 700 and δ1/h = 0.491.
The circle markers (©) are linked to varicose perturbation and the square marker (�) to
the sinuous one.

where Ub is the base flow velocity field, while u is the direct perturbation. Although one
should traditionally use a Neumann condition at the outflow for the direct equations, a
zero-velocity condition has been prescribed at both the inflow and outflow in all cases
for the sake of computational simplicity and for coherence with the successive analysis.
Additionally, fringe regions have been used as to kill the perturbation once it reaches
the outflow. Note that the streamwise extent of the domain and the characteristics of
the fringe regions have been chosen so that our results are not hardly influenced by the
inflow-outflow boundary conditions. The linearised Navier Stokes equations are evolved
forward in time to build the Hessenberg matrix that represent a reduced order model of
the propagation matrix. A Krylov space dimension equal to k = 400 and a sampling
period ∆t = 0.748 is used. The eigenmodes have been considered converged if a residual
level lower than 1e−6 is reached. The eigenspectrum is displayed in figure IV.21

Figure IV.21 provides the eigenspectrum which does not present any unstable mode.
At the bottom of the spectrum, one can observe a branch of modes characterized by
a varicose symmetry (circles). On top of them, two isolated modes, characterized by
different symmetries, can be seen: a varicose mode with ω = 1.02 lying close to the
instability threshold (square), along with a more stable sinuous one (red plus) with ω =
0.68. The varicose leading eigenvector, depicted in figure IV.22 (top), shows patches
of spanwise-symmetric streamwise velocity perturbations, which are alternated in the
streamwise direction. They are placed on top of the near-wake central low-speed streak
of the base flow, as well as on the low-speed streaks placed at the sides of the central one
further downstream (black isocontours). The sinuous one, shown in figure IV.22 (bottom)
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Figure IV.22: Eigenvector associated with (a) the isolated varicose and (b) sinuous mode
for case (η, Re) = (1, 700). Isosurfaces of streamwise velocity perturbation (±10% of
maximum amplitude, yellow for positive, blue for negative values). Greyscales are related
to base flow streamwise velocity deviation from Blasius flow, extracted at y = 0.8 (black
for negative, white for positive values).

exhibits a very similar shape, except for its opposite symmetry and its longer streamwise
extent. In agreement with the local stability, in both cases sinuous and varicose global
modes originate onto the middle streaks and move on the external low speed streaks
downstream.

The main features of the experimental unsteadiness are compared with those of the
isolated global mode in table IV.3.

ω λx sym
Exp 1.05± 0.11 4.8± 0.5 V

Numv 1.02 4.7 V
Nums 0.68 3.3 S

Table IV.3: Comparison between experimental observation and numerical isolated eigen-
modes.

As one can see, the main character of the varicose global mode matches perfectly the
experimental observation. This new result open news perspectives that can be summarized
in the following two questions:

• If the varicose global mode matches the experimental unsteady observation, why it
is stable?

• If the varicose stable eigenmode is observed, why the sinuous stable mode is totally
absent in the unsteady dynamics?

One possible explanation to these two questions is that these two modes might be charac-
terized by a highly different receptivity, only one of these being trigged by external noisy
perturbations.

96



(a) (b)

(c) (d)

Figure IV.23: Superposition of the real part of sinuous (right) and varicose (left) global
mode (pseudocolors) with the streamwise velocity of the base flow (isolevel) at x = 10
(top) and x = 40 (bottom).

IV.3.3.3 Pseudospectrum

For the experimental set-up, all the modes in the eigenspectrum are stable. Hence, the
unsteadiness observed experimentally cannot be explained by a linear instability of the un-
derlying base flow. It might however results from a large receptivity of the flow, which can
be either linked to a strong transient growth of perturbations due to the non-orthogonality
of the eigenvectors, or to a strong sensitivity of specific modes to external forcing. In the
first case, the flow will act as an amplifier of a large range of frequencies, whereas in the
latter case, it will ’resonate’ at a precise frequency. To quantify the receptivity of the
flow, the pseudospectrum of the linearized Navier-Stokes operator is evaluated using the
Hessenberg matrix as done by Toh and Trefethen (1996)

Λǫ(A) = {z ∈ C : ‖(zI −A)−1‖ > ǫ−1} ≈ {z ∈ C : λmin(zI − log(H)/∆t) < ǫ}. (IV.9)

where the quantity (zI − A)−1 is known as the resolvent of A (Trefethen and Embree,
2005), measuring how sensitive the eigenvalues of A are to some perturbations of A, and
λmin is the smallest singular value of a matrix, approximating its norm.

The pseudospectrum of A for (η, Re) = (1, 700) is shown in figure IV.24. The solid lines
depict the log10(ǫ

−1) contours, representing the response of the system to a perturbation
zI. As can been seen, very high levels of log10(ǫ

−1) are reached in the vicinity of the
eigenvalue associated to the varicose isolated mode, hence indicating that this particular
eigenpair is highly sensitive to disturbances: even a disturbance as small as ǫ ≈ 10−5 is
sufficient to destabilize the system.

The sinuous mode appear to be not receptive at all, this means that just a perturbation
really close to the eigenmode can trigger a sinuous unsteadiness and besides the interaction
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Figure IV.24: Eigenspectrum (colored symbols) and pseudospectrum (solid lines) of the
linearised Navier-Stokes operator for (η, Re) = (1, 700). Circles (squares) represent vari-
cose (sinuous) modes. The iso-lines represent pseudospectrum given by log10 ǫ

−1 contours,
with ǫ ranging from 10−6 to 10−3.
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Figure IV.25: Approximation of the resolvent norm extracted from the pseudospectrum
for (η, Re) = (1, 700) on the σ = 0 line.

between a sinuous and varicose mode is null since they will be always orthogonal to each
other. Looking at all points on the complex plane (ω−σ) at σ = 0 it is possible to get an
approximation of the resolvent norm like in the optimal forcing framework. The resulting
resolvent (iωI−A)−1 expresses the relation between an harmonic forcing and its response.
The approximation of the resolvent norm is displayed in figure IV.25.

The curve in IV.25 confirms the high receptivity of the varicose global mode. By using
an harmonic forcing with ω = 1.02 to perturb the system an amplification factor of the
forcing amplitude equal to R = ‖û‖/‖f‖ = 104100 is achieved on the final energy of
the response. This result explains the varicose unsteadiness observed in the experiment
despite the steady base flow. A low external perturbation is able to trigger the varicose
global mode since it is the most receptive mode.

IV.3.3.3.a Numerical convergence At this point, a numerical convergence analysis
is necessary in order to demonstrate the independence of the achieved results from numer-
cial parameters. In the present work, the grid convergence analysis has been performed
using a h-type refinement due to its simplicity. Figure IV.26(a) depicts the eigenspectrum
of the linearized Naver-Stokes operator for the case (η, Re) = (1, 700) for three different
polynomial orders, namely N = 6, 8 and 10. For the present configuration, the spectral
element mesh is kept constant (figure IV.27 depicts the coarse grid distribution of the
spectral elements in a given horizontal plane). As shown, the eigenvalues of interest are
hardly influenced by the mesh refinement. On the other hand, figure IV.26(b) depicts the
approximation of the resolvent norm R(ω) as obtained by the pseudospectrum analysis.
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Figure IV.26: Grid convergence analysis on the case (η, Re) = (1, 700). (a) Evolution
of the linearized Navier-Stokes operator as the degree of the Lagrange interpolants is
increased from N = 6 up to N = 10. (b) Same as (a) for the approximation of the
resolvent norm based on the pseudospectrum analysis.

X

Figure IV.27: Coarse grid distribution of the spectral elements in a given horizontal plane
for the aspect ratio η = 1 case. Note that in the simulation N Lagrange interpolants are
used in the three directions of space within each of these elements

Although the peak frequency and resolvent gain do not seem to be largely influenced by
the polynomial order of the Lagrange interpolants used, the low-frequency part of this
resolvent (i.e. ω < 0.75) appears to be significantly stabilized as the polynomial order is
increased as the solution becomes less sensible to the numerical discretization.

IV.3.4 Varicose mode analysis

In the light of the last result, an in-depth analysis of the varicose mode is mandatory to
understand how far the linear result can driver the unsteady non-linear dynamics. More
precisely the kinetic energy budget of the global mode provides information onto the en-
ergy exchange between the base flow and the perturbation highlighting the stabilizing
and destabilizing mechanisms involved in the global eigenvector under consideration. The
same analysis was done by Brandt (2007) in the local framework to characterize varicose
and sinuous instabilities. Brandt shows how the destabilizing effect for the varicose in-
stability is provided by the work of the Reynolds stress tensor τxy = −uv on the wall
normal-basic shear ∂Ub/∂y. In the global stability framework and for flow over roughness
Loiseau et al. (2014) showed that the production term P2 = −uv ∂U

∂y
is just one of the

destabilising terms. A further contribution to the destabilization of the varicose mode
is provided by the spanwise production term P3 = −uw ∂Ub

∂z
. However, it should be con-
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sidered that the varicose instability observed by Loiseau et al. (2014) appears only for
aspect ratios higher than 1. The high aspect ratio of the cylindrical roughness induces
a high distortion of the boundary layer flow in the spanwise direction. This could not
be the case for η = 1. To localize the source of the varicose global mode a wavemaker
(Giannetti and Luchini, 2007) analysis has also been carried out.

IV.3.4.1 Perturbation kinetic energy budget

The kinetic energy rate of exchange for a periodic or bounded flow is described by the
Reynolds-Orr equation:

∂E

∂t
= −

∫

V

u · (u · ∇)UbdV − 1

Re

∫

V

∇u : ∇udV (IV.10)

where the energy is defined as

E =
1

2

∫

V

u · udV. (IV.11)

For the case of interest the flow is neither bounded nor periodic but the perturbation goes
naturally to zero towards the end of numerical domain. On the right hand of equation
(IV.10) the first term is the production term and the second is the dissipation one. The
production term can be decomposed in nine contributions of the Reynolds stress tensor

P1 = −u2∂Ub

∂x
, P2 = −uv∂Ub

∂y
, P3 = −uw∂Ub

∂z

P4 = −uv∂Vb
∂x

, P5 = −v2∂Vb
∂y

, P6 = −vw∂Vb
∂z

P7 = −wu∂Wb

∂x
, P8 = −wv∂Wb

∂y
, P9 = −w2∂Wb

∂z

(IV.12)

For the complexity of the base flow the physical interpretation of each term is not intuitive.
To better understand the mechanisms involved in the production energy rate we follow the
Albensoeder et al. (2001) work. The perturbation is decomposed in two parts u = u⊥+u‖

where u⊥ is the component of the perturbation perpendicular to the base flow field and
u‖ is the parallel one:

u‖ =
(u ·Ub)

‖Ub‖2
Ub ; u⊥ = u− u‖ (IV.13)

The decomposition (IV.13) is injected in the production term of (IV.10). The production
term is now composed by four terms, namely:
Bearing in mind that the base flow is streaked, the perturbation parallel to the base flow
is a disturbance aligned with the streaks, whereas the perpendicular one are in plane with
the counter rotating vortices. The most important production term in the configuration
under consideration is I2 that can be defined as the production of the lift-up mechanism
and represents the exchange of energy from the counter-rotating vortices to the streaks.
I3 is the anti-lift-up production and I1 and I4 can be defined respectively as the self
production of counter-rotating vortices and self production of streaks. The kinetic energy
budget with the decomposition proposed by Albensoeder et al. (2001) is displayed in figure
IV.28 normalized by the unitary dissipation rate.
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I1 =
∫

V
u⊥ · (u⊥ · ∇)UbdV

The transport of energy from the perpendicular
component to the perpendicular one by means of
the gradient of the base flow

I2 =
∫

V
u‖ · (u⊥ · ∇)UbdV

The transport of energy from the perpendicular
component to the parallel one by means of the
gradient of the base flow

I3 =
∫

V
u⊥ · (u‖ · ∇)UbdV

The transport of energy from the parallel
component to the perpendicular one by means of
the gradient of the base flow

I4 =
∫

V
u‖ · (u‖ · ∇)UbdV

The transport of energy from the parallel
component to the parallel one by means of the
gradient of the base flow

Figure IV.28: Energy budget of varicose global mode. Production term normalized with
the dissipation.

As one can see, the only active term for the varicose global mode is the lift-up production
term. Of course the sum of the production terms is lower than the dissipation as the case
is globally stable. The spatial distribution of the lift-up production is depicted in figure
IV.29. The lift up production is localized on the shear generated by the low streaks in the
middle and the production peak is exactly in the z = 0 plane. As previously discussed,
the middle low speed streak is not driven by the lift up mechanism, since the counter-
rotating vortices generated by the horseshoe vortex wrapped around the roughness push
down the flow momentum, which should generate a high speed streak in the z = 0 region.
Indeed, a high speed streak in the z = 0 plane is recovered downstream at x ≈ 20, but
for 0.5 < x < 20 the lift-up mechanism is overtaken by the deficit of velocity induced
by the separation behind the roughness. The energy imbalance of these two mechanisms
in the region 0.5 < x < 20 provides the destabilising effect of the varicose mode. In
figure IV.30 the experimental urms is depicted in function of the streamwise position at
fixed (y, z) coordinates. The curve reveals a peak at x = 8 that is in agreement with
the distribution of the I2 in the streamwise direction (see fig. IV.30), indicating that this
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Figure IV.29: Spatial distribution of the lift-up production. The I2 integrand (yellow
isocontour) is localized on the shear related to the low middle streaks. The black line
highlight isolevel of streamwise velocity in the palne at z = 0 (top) and y = 0.5 (bottom)
plane. Red dashed lines depict the separation zone.

fluctuation peak is indeed linked to the onset of the varicose global mode. Once it is
triggered by receptivity, the varicose global mode drives the main characteristics of the
observed unsteadiness in terms of pulsation, wavelength and turbulent energy production.
Moreover, looking at the spatial distribution of the I2 term, once can observe that it is
localized in the close neighbourhood of the z = 0 plane. In this plane, ∂ • /∂x ≈ 0 and
∂Vb/∂y is negligible compared to ∂Ub/∂y. This means that only the work of the Reynolds
stress tensor τxy = −uv on the wall normal basic shear ∂Ub/∂y provides the observed
energy production. Hence, differently from the varicose mode found by Loiseau et al.
(2014) for a higher aspect ratio (η > 1) the P3 production term is close to zero and
only P2 provides energy extraction from the base flow as assessed by Brandt (2007) for
a varicose instability of the streaks . The P3 production works on both sides of the low
velocity streaks (Loiseau et al., 2014) and it turns out to be triggered just for higher
aspect ratios since the deformation of the boundary layer flow in the crossflow direction
is remarkably higher for η > 1.

IV.3.4.2 Wavemaker

The energy budget analysis helps to understand the non-linear asymptotic behaviour but
it cannot provide any indication on the spatial origin of the mode. The core of the global
instability is known as wavemaker (Giannetti and Luchini, 2007; Marquet et al., 2008),
which indicates the area where the self-sustained oscillator acts. Taking advantage of the
continuous adjoint Navier-Stokes equations:

∂u†

∂t
+ (∇Ub)

T
u

† + (Ub · ∇)u† = −∇p† + 1

Re
∇2

u
†

∇ · u† = 0,

(IV.14)

it is possible to use the Krylov-Schur algorithm to get the adjoint eigenmode associated to
the direct varicose eigenvector. As the adjoint equations are driven by the gradient of the
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Figure IV.30: Comparison between experimental perturbation urms at (y, z) = (1, 0)
(left) and the integrand I2 integrated over crossflow planes (right) for different streamwise
position.
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Figure IV.31: Real part of adjoint mode associated to the varicose global mode. ±5%
isocontour of negative (blue) and positive (yellow) streamwise sensitivity. Grey scale
highlight base flow streamwise velocity.

base flow, the adjoint variables express the sensitivity of the mode itself. More precisely
the adjoint eigenvector is the most efficient forcing that has to be used to observe the
associated direct eigenmode. The adjoint mode associated to the varicose global mode is
depicted in figure IV.31. The adjoint mode is highly concentrated on the head of the rough-
ness where strong gradients are present. The eigenvector extends itself in the upstream
direction and rapidly goes to zero. Following the definition given by Giannetti and Luchini
(2007), the wavemaker is given by the overlap of the direct u and adjoint global mode u†:

ζ(x, y, z) =
‖u(x, y, z)‖‖u+(x, y, z)‖

〈u+,u〉 (IV.15)

It represents the sensitivity of the mode to a base flow modification. Acting on the ζ field
of the eigenvector of interest the growth rate and the pulsation of the eigenmode can be
drastically changed (Marquet et al., 2008). For this reason, the most sensitive zone is also
considered the core of the instability itself. The ζ field is reported in red in figure IV.32.
For the varicose mode the wavemaker is a small zone that wraps the separation zone.
The shear on the recirculation bubble is the cause of inflectional velocity profiles. The
presence of the reverse flow in the separation bubble makes the separation zone a closed
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Figure IV.32: Red isocontour highlight the ζ(x, y, z) field that represent the wavemaker
for the varicose global mode. Green isocontour indicate zero streamwise velocity field.

loop where the instability could be self sustained. A stronger shear behind the roughness
can make the global mode unstable.

IV.3.5 Optimal forcing and response analysis

The resolvent curve in figure IV.25 shows that a harmonic forcing that pulses at ω = 1.02
can induce a harmonic response with a kinetic energy 105 times higher than the amplitude
of the forcing. Unfortunately, as far as well evaluated, the pseudospectrum cannot give any
information about the spatial structure of the forcing that causes the energy amplification.
To recover the forcing shape an optimal forcing analysis should be carried out. Toward
this aim, the direct-adjoint optimization loop introduced by Monokrousos et al. (2010)
is used to find the forcing f̂ that maximises the resolvent norm λ = ‖(iωI − A)−1‖2 at
ω = 1.02. The solution to this convex problem converges in few iterations to a residual
level lower than 10−6. The shapes of the optimal forcing and response are shown in figure
IV.33 (top and bottom, respectively).

The optimal forcing is constituted by streamwise-alternated patches of velocity per-
turbations, placed upstream of the cylinder. Remarkably, it shows a varicose symmetry,
similarly to the most sensitive isolated mode previously analysed. As it might be expected,
the shape of the optimal response induced by such a forcing is very close to the shape of
the isolated varicose mode, as one can observe by comparing figure IV.33 to figure IV.22.
By using the bi-orthogonality condition it is possible to express the response of a steady
system to a harmonic forcing as a linear combination of the direct eigenmodes (IV.16)

u =

(

û
†
j ,

f̂

ω − λj

)

ûj

û∗
j ,Aûj

exp(iωt) (IV.16)
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Figure IV.33: Shape of the optimal forcing (top) and the optimal response (bottom) for
ω = 1.02. Greyscales and isosurfaces are the same as in figure IV.22.

if u is equal to the varicose eigenmode ûj then the scalar product (û†
j, f̂) 6= 0 just for

the adjoint eigenvector û
†
j associated to the direct varicose mode. This behavior can be

ascribed to the quasi-orthogonality of the varicose mode with respect to the other modes.
The optimal gain associated to ω = 1.02 is reported in table IV.4.

Pseudospectrum Adjoint forcing Optimal forcing
104100 143970 149 170

Table IV.4: Comparison between the gain estimation obtained by the pseudospectrum,
the adjoint forcing and the optimal forcing.

A further demonstration of the orthogonality of the varicose mode is that forcing the
system with the adjoint eigenvector the obtained gain is comparable with that of the
optimal forcing. Moreover the Hessemberg matrix turns out to be able to predict the gain
with the pseudospectrum evaluation.

IV.3.6 General receptivity of the varicose mode

In order to demonstrate the generality of the results achieved for (η, Re) = (1, 700) other
two cases have been studied both experimentally and numerically. The objective was
to verify the high receptivity of the varicose perturbation also for an aspect ratio differ-
ent from one. For instance, the case studied experimentally Fransson et al. (2005) and
numerically by Loiseau et al. (2014) has been further investigated to highlight the main
characteristics of the subcritical transition linked to the varicose global mode. The anal-
ysed cases are reported in table IV.5. Two Reynolds numbers close to each other have been
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η h/(mm) Re Reh h/δ1 ωexp ωth λx,exp λx,th
3 10 500 420 1.72 0.82± 0.08 0.77 5± 0.5 4.78
3 10 550 474 1.8 0.90± 0.09 0.8 5± 0.5 4.53

Table IV.5: Summary of the flow parameters, circular frequencies and wavelengths for
cylindrical aspect ratio η = 3.

chosen to figure out how the receptivity changes when the global mode approaches the
instability threshold (Rec = 564 (Loiseau et al., 2014)). As for the case (η, Re) = (1, 700)
the time signal of the velocity field in the point located at (x, y, z) = (10, 1.5, 0) is recorded
and displayed in figure IV.34.
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Figure IV.34: (Left) Time signals and (right) power spectral densities (PSD) of streamwise
velocity fluctuations u′/Ue. Probe located at (x, y, z) = (10, 1.5, 0). Grey lines in the
spectra represent freestream turbulence spectrum at (x, y, z) = (0, 6, 0).

Note that the ordinate of the configuration (η, Re) = (3, 550) is not identical with the
other two configurations. This case is close to the critical Reynolds number Rec = 564 de-
termined by Loiseau et al. (2014) and therefore fluctuates stronger and with more constant
amplitudes. On the contrary, for (η, Re) = (3, 500), the oscillations have a significantly
smaller amplitude. They moreover sustain themselves only transiently, rapidly fading
away before being regenerated again. The unsteadiness is even more spatially displayed
by PIV snapshot in wall-normal plane at y = 1 (see figure IV.35). The instantaneous flow
field displays the varicose perturbation that appears for Re < Rec. As already assesed
by Loiseau et al. (2014) at Re < 564 the baseflow is steady and then the DNS converge
toward the steady state without any supplementary algorithm. The reader can refer to the
Loiseau work (Loiseau et al., 2014) and its Ph.D thesis (Loiseau, 2014) for the base flow
analysis of the η = 3 case. The global stability analysis reveals the presence of a varicose
global mode with a pulsation close to that observed in the experiments. The numerical
wavelength and pulsation are compared with the experimental one in table IV.5.

As one can see the resolvent curve estimated by the pseudospectrum displays a higher
amplification factor around the global varicose mode. From Re = 550 to Re = 500 the
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Figure IV.35: PIV snapshot at y = 1 for (η, Re) = (3, 500). Greyscales indicate the
in-plane velocity magnitude and black vectors indicate the vector sum of streamwise and
spanwise velocities.
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Figure IV.36: Same as in figure IV.24 and IV.25 for (η, Re) = (3, 500).
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Figure IV.37: Same as in figure IV.24 and IV.25 for (η, Re) = (3, 550).
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Figure IV.38: (a) Eigenvector associated with isolated varicose mode, and (b) its adjoint
counterpart for case (η, Re) = (3, 550). Greyscales and isosurfaces are the same as in
figure IV.22.

peak is smoothed, explaining the transient behaviour observed in the experiments for
Re = 500 as the amplitude of the external perturbation is not high enough to self sustain
continuously the varicose mode. The direct and the adjoint eigenvector for (η, Re) =
(3, 550) are displayed in figure IV.38. As for the case (η, Re) = (1, 700), close to the
roughness element the varicose perturbation is located on the middle streaks; then, moving
downstream, it moves onto the two external low speed streaks. It turns out to be more
extended than the eigenvector at (η, Re) = (1, 700) as the low middle streaks does not
disappear far from the roughness. The associated adjoint eigenvector is always localized
onto the head of the cylinder that turns out to be the most sensitive zone. The optimal
forcing analysis at ω = 0.8 for (η, Re) = (3, 550) depicts the same scenario observed in the
case (η, Re) = (1, 700). The optimal response looks like the direct global mode and the
optimal forcing looks like the adjoint global mode. Despite the linearly stable nature of the
underlying base flows, these observations strongly suggest that the unsteadiness observed
experimentally results from a quasi-resonance of the least stable varicose eigenmode due to
the external forcing inherent to an experimental facility. Concerning the gain associated
to ω = 0.8, its values as estimated by the pseudospectrum, the adjoint forcing, and the
optimal forcing are reported in table IV.6. The contribution of the other modes is taken
into account by the optimal forcing since there is a slightly difference between the gain
obtained by the adjoint forcing and that obtained by optimal forcing. For this reason
the pseudospectrum obtained by the Hessenberg matrix has just a qualitative and not
quantitative validity.
As a conclusion, one can say that a varicose unsteadiness is much more receptive than a
sinuous one to external perturbations. The scalar product between a sinuous and varicose
mode is equal to zero due to the different symmetries of these modes. Thus, the probability
to observe a subcritical sinuous unsteadiness is low since a specific non-symmetric external
perturbation is necessary to trigger it.
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Figure IV.39: Shape of (a) the optimal forcing and (b) the optimal response for case
(η, Re) = (3, 550). Greyscales and isosurfaces are the same as in figure IV.22.

Pseudospectrum Adjoint forcing Optimal forcing
393’400 3’284’750 5’300’092

Table IV.6: Comparison between the gain estimation obtained by the pseudospectra, the
adjoint forcing and the optimal forcing for (η, Re) = (3, 550).

IV.3.7 Overall discussion about varicose dynamics

The performed linear studies provide a complete picture of the dynamics of the experimen-
tally observed varicose unsteadiness. At this point; the receptivity process, the unsteady
mechanism and the resulting transitional1 behaviour are clear and they can be summarized
step-by-step as follows:

1. The flow impacting the roughness element generates a horseshoe vortices that wraps
the cylinder. The counter rotating vortices push down the momentum in the sym-
metry plane at z = 0 and move up the momentum on both sides of the roughness.
The resulting lift-up mechanism should produce a high streaks in the middle (linked
to negative wall normal velocity) flanked by two low speed streaks (linked to positive
wall normal velocity). Close to the cylinder, the high speed streak is hampered by
the presence of the separation zone, resulting into a low speed elongated region close
to the roughness.

2. The presence of the recirculation bubble introduces in the system a zone with a back
flow that makes possible the existence of a stable global mode well confined in the

1It would not be correct to call it turbulent as the unsteadiness is dominated by just one pulsation and
the resulting spatial spectrum is “coloured” by the wavelengths related to the global varicose eigenvector.
In the experiments the turbulence appears far from the roughness for the case Re = 700.
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numerical domain. The wavemaker analysis illustrates how the structural sensitivity
of the base flow to the varicose global mode is localized into the separation zone.

3. An external perturbation that acts on the wavemaker zone triggers the varicose
global mode that arises in the separation zone and successively is convected down-
stream, first on the low speed streak along z = 0, then on the two lateral low speed
streaks as suggested by the shape of the global mode and by the bi-local stability
analysis.

4. Once triggered, the perturbation works to restore the high speed streak on the
middle by the lift-up production. This explains why the low distortion between the
experimental mean flow and the numerical base flow in figure IV.17 is localized on
the low velocity middle streak.

In the unsteady scenario just depicted the physical origin of the instability has been
made clear. However, a quantitative evaluation of the external perturbation needed to
trigger this mode has not been made, and the connection between the shape of the varicose
perturbation and the observed hairpin structures is yet to be explained. To conclude this
linear study and open the road to a successive nonlinear investigation, two questions
should be asked:

1. What is the minimum amplitude of the external perturbation needed to trigger by
receptivity the global mode?

2. How the eigenvector shape is linked to the non-linear structures observed in the
experiments?
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Chapter V

Non-linear analysis of flow over

cylindrical roughness
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V.1 Non-linear analysis

The different analyses presented in §IV have demonstrated the high receptivity of the
considered flow, despite its linearly stable nature. More specifically, the pseudospectrum
and optimal forcing analyses have strongly underlined the receptivity of the flow at the
frequency corresponding to the least stable varicose eigenmode and its quasi-resonant re-
sponse. Despite their success, these analyses rely on the linearized Navier-Stokes equations
and, as such, do not provide any insight into the nonlinear evolution of the perturbation.
In order to properly quantify this response, one would need to perform a nonlinear resol-
vent analysis. Such an analysis is however beyond the scope of our current work. One can
nonetheless gain some insights into the nonlinear evolution of the perturbation by means
of direct numerical simulations. For that purpose, two different types of direct numerical
simulations are considered hereafter:

• An impulse-response direct numerical simulation

• Direct numerical simulations forced by the optimal forcing obtained from the resol-
vent analysis with three different amplitudes.
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Regarding the boundary conditions, a Blasius velocity profile is now prescribed at the
inflow boundary while a classical outflow condition is used at the other end of the domain.
Note furthermore that the fringe regions included in the linear analyses are no longer used.

V.1.1 Impulsively forced DNS

The pseudospectrum and optimal forcing analyses provided in the previous sections sug-
gest that the flow can be highly receptive at the frequency of the isolated global mode.
Thus, even a direct numerical simulation initialized by a generic perturbation can be ex-
pected to give rise to a response dominated by the frequency of that mode, as observed
in the experiments presented in section IV.2. To ascertain this hypothesis, we focus our
attention on the case (η, Re) = (1, 700) and perform a DNS initialized by a superposition
of an impulsive wavepacket of the form v(x, 0) = sin(πx/5) sin(πx/20) onto the linearly
stable base flow, shown in the upper right box of figure V.1. The wavepacket, placed
right downstream of the cylinder in the region 0 < x < 20, has an initial amplitude
A = 5 × 10−5, which is sufficiently low to allow a (mostly) linear evolution of the flow
response. The main frame of figure V.1 provides a space-time diagram showing the evolu-
tion of the wavepacket, that is initially amplified and stretched in the streamwise direction
up to x ≈ 40. After its initial transient growth, the wavepacket begins to decrease in am-
plitude and streamwise extent, slowly fading away as time increases, as it might have been
anticipated by the initial low amplitude of the wavepacket and linearly stable nature of the
flow. Figure V.2 provides the time trace of the vertical perturbation velocity component
monitored by a probe located at (x, y, z) = (10, 1.2, 0). After a relatively short transient,
the signal oscillates at a preferential frequency, followed by an exponential decay. This
decay is well approximated by an exponential function characterized by a decay rate of
−0.01, that is in close agreement with the decay rate of the isolated varicose mode (see the
figure IV.24). Moreover, a Fourier transform of that signal highlights the existence of a
dominant peak at ω = 1.02, demonstrating that the most unstable mode of the spectrum
can indeed be triggered by a generic perturbation injected impulsively into the flow.

V.1.2 Optimally-forced DNS

Once ascertained that the dominant frequencies observed within the flow are likely to
result from a quasi-resonance of the isolated varicose mode, it is interesting to shed some
light on the transition scenario induced by this phenomenon, with the final aim of compar-
ing the generated coherent structures with those observed experimentally. We thus focus
once again on the case (η, Re) = (1, 700), using the optimal forcing at ω = 1.02 to force a
DNS. The optimal forcing is scaled with three different initial amplitudes (A = 10−5, 10−4,
and 10−3) in order to investigate the effect of the nonlinearity on the time evolution of the
flow. The resulting wall-normal velocity fluctuations, given by the instantaneous velocity
minus its temporal mean value, are monitored by a probe located at (x, y, z) = (10, 1.5, 0).
The time traces (left) obtained for the three amplitudes considered and their frequency
spectra (right) are provided in figure V.3.

For the lowest amplitude (top frame), a time-periodic behavior appears to settle after
a short initial phase characterized by a transient growth of the perturbation. After this
initial phase, a periodic signal with associated circular frequency equal to that of the
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Figure V.1: Time evolution of the wall-normal velocity perturbation v measured at (y, z) =
(1.2, 0) for the impulsively perturbed DNS. In the upper-right box is provided the shape
of the wall-normal perturbation added to the base flow at t = 0. The red dashed line
indicates the cylinder position. The case considered is (η, Re) = (1, 700).

varicose mode is observed. An increase of the forcing amplitude causes the non-linearities
to be triggered, hence resulting in the emergence of smaller-amplitude harmonics which
rapidly fade away leading, again, to the establishment of a quasi-periodic signal (middle
frame of figure V.3). For the largest amplitude considered herein, an even larger num-
ber of harmonics are generated by the nonlinearities, inducing a saturation of the signal
amplitude as shown in the bottom frame of figure V.3.

In order to obtain a quantitative criterion defining whether transition to turbulence
has occurred or not, the skin friction coefficient Cf(x) is computed. Figure V.4 depicts
the streamwise evolution of Cf(x) for the optimally forced DNS at the three amplitudes
considered. Note that the evolution of Cf(x) for the unperturbed steady base flow is
also reported for the sake of reference. For the lowest value of the forcing’s amplitude,
the flow remains laminar behind the roughness, as indicated by the Cf curve which is
superimposed to that of the base flow (compare the dashed and the solid lines). For
A = 10−4, the skin friction begins to deviate from the reference state, while for A = 10−3,
it strongly increases. Such an increase of the skin friction typically indicates the onset of
transition towards a turbulent flow, although the values of Cf typical of high Reynolds
number turbulent boundary-layer flows have not been reached yet in the computational
domain considered.

Figure V.5 provides a snapshot of the instantaneous flow where the vortical structures
are highlighted using the λ2 criterion (Jeong and Hussain, 1995). One can observe the
generation of hairpin vortices right downstream of the roughness element, the first one
being placed at x ≈ 2. Up to x ≈ 30, a train of hairpin vortices can be observed, whose
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Figure V.2: Time evolution of the wall-normal velocity perturbation v extracted at
(x, y, z) = (10, 1.2, 0). The upper-right box shows the Fourier transform of that time
signal, showing that the response of the flow to a generic perturbation is indeed domi-
nated by the most receptive global mode (σ, ω) = (-0.01,1.02). The case considered is
(η, Re) = (1, 700).
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Figure V.3: (Left) Time evolution of the wall-normal velocity fluctuation for initial
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Figure V.4: Streamwise evolution of the skin friction factor Cf(x) for four different am-
plitudes of the optimal forcing. The case considered is (η, Re) = (1, 700).

heads appear to have a streamwise spacing of ∆x ≈ 4.7. The vortical structures also
spread in the spanwise direction generating Λ vortices at their spanwise sides. These pri-
mary hairpin vortices then start to break down at x ≈ 30, corresponding to the streamwise
position at which the skin friction Cf reaches its highest value. This transition scenario
closely resembles the one observed experimentally, showing the shedding of hairpin vor-
tices having a varicose symmetry with streamwise wavelength ≈ 5. However, due to the
nature of the optimal forcing, the flow remains symmetric up to the end of the domain (see
fig. V.5) and the associated spatial and temporal Fourier spectra remain characterized by
a limited number of different wavelengths.

Finally, to further characterize the spatial spreading of the fluctuation, a spanwise
Fourier transform of the urms field for different selected y and x positions has been per-
formed. The wall-normal position of the dominant Fourier mode in the y-direction for a
fixed x position (circles) and the associated spanwise wavenumber (colors of the circles as
specified by the colorbar) are shown in figure V.6. The first peak (x = 9) is associated
to the generation of the train of hairpin vortices behind the cylinder, the corresponding
spanwise wavelength, β = 0.63, being close to the spanwise dimension of the first hairpin.
For x ≥ 10, the first hairpin vortex starts to disappear, whereas a second one is generated
downstream, inducing a second peak at x = 23 due to the growth of a second perturbation
that wraps the two low streaks. For x > 26, the wall-normal position of the dominant
Fourier mode of urms rapidly moves towards the wall, where the flow starts to become
turbulent (see figure V.4). Further downstream, the maximum amplitude of the Fourier
transform is characterized by β = 0, but, due to the spanwise symmetry of the flow field,
a second peak at β = 1.26 is observed, which becomes predominant for 85 ≤ x ≤ 90.
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Figure V.5: Hairpin vortices highlighted by lambda-2 criterion (λ2 = −0.02) and colored
by streamwise velocity. The case considered is (η, Re) = (1, 700).
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Figure V.6: Variation in the streamwise direction of the wall-normal position of the max-
imum amplitude mode of the spanwise Fourier transform of the urms. Colorbar indicates
the spanwise wavenumber of the dominant Fourier mode. Red dashed line provides the
analytical displacement thickness of the Blasius solution whereas the blue dashed-dotted
line indicates the height of the cylinder. The case considered is (η, Re) = (1, 700).
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V.2 Receptivity to Free Stream Turbulence

In section §V.1.1 and §V.1.2 it has been demonstrated how a generic perturbation in the
wavemaker zone is able to trigger the varicose global mode and how the optimal forcing
associated to the pulsation observed in the experiment can reproduce the hairpin vortices
when it is used in a non-linear numerical simulation. Nevertheless, the uncontrolled
perturbation in the hydro-channel has not the structure of the optimal forcing and it does
not act just on the wavemaker region of the varicose global mode. The spatial structure of
the perturbations in figure V.5 is exclusively linked to the spatial structure of the optimal
response structure. The good agreement between the numerical spatial wavelength (e.g.
distance among two successive hairpins) and the experimental one could be interpreted
as an obvious result.

1. Can a non localized and non structured perturbation trigger the receptivity mech-
anism of the varicose global mode?

The only information about the external perturbation in the hydro-channel is the Tu
(turbulence intensity) that is much lower than 1. To reproduce the receptivity of the
boundary layer to the external turbulence an artificial Free Stream Turbulence (FST) has
been built in the Nek5000 code.

V.2.1 FST generation

The easiest and most common way to introduce grid turbulence is to use Fouries modes
with a random amplitude and then rescale the total turbulent kinetic energy to the desired
Tu level (Rogallo, 1981). Unfortunately, in the presence of one inhomogeneous direction
(wall-normal) this is no longer possible as the Fourier modes are appropriate only in the
periodic directions. The inflow turbulence needs to be damped within the boundary layer
and it has to be unbounded at the upper boundary of the numerical domain. The natural
choice is to use a sum of modes of the continuous branch of the Orr-Sommerfeld Squire op-
erator as done by Brandt et al. (2004); Jacobs and Durbin (2001). These eigenvalues can
be found analytically once defined the Reynolds number and the streamwise, wallnormal
and spanwise wavenumbers (α, γ, β, respectively) . The 1-D eigenvector is equal to zero
at the wall in order to respect the no-slip boundary condition and it is modulated with
wavenumber γ outside the boundary layer in the y-direction with a constant maximum
amplitude value. Invoking Taylor’s hypothesis, the streamwise wave number α is replaced
by a frequency ω = αU∞:

ui = Aiûi(y)e
(iβz−iωt) (V.1)

where Ai is the amplitude associated to the eigenvector ûi(y). The velocity perturbation
profile ui added to the base flow velocity profile can be now used as inflow condition. The
amplitude Ai must be conform to a common turbulent energy spectrum. For this purpose
the Von-Karman spectrum has been chosen:

E(k) =
2

3

a(kL)4

(b+ (kL)2)17/6
Lq (V.2)
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where a = 1.606 and b = 1.350, L is the integral length scale and q the turbulent kinetic
energy. Fixing the minimum kl and the maximum ku depending on the chosen numerical
resolution, the energy is distributed in 20 k-shell. These are homogeneously divided in 20
triads of (ω, γ, β) values defined by the vertices of a dodecahedron inscribed in the k-shell.
A sketch of the discretized Von Karman spectrum and shell discretization is shown in
figure V.7.
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Figure V.7: Discretized Von Karman spectrum and k-shell discretization by a regular
dodecahedron. The shape of the Von-Karman spectrum is discretized once ku, kl and L
have been defined.

Defining Tu =
√

u2rms + v2rms + w2
rms, the equation (V.2) can be recast as:

E(k) =
a(kL)4

(b+ (kL)2)17/6
LTu2 (V.3)

To set the inflow turbulence it is necessary to define Tu, L, kl and ku. Unfortunately L
is not accessible in the available experiments and a value from the bibliography is used
L = 1.641. The integral length scale is then linked to the wave number (k) with the
maximum energy E(k) by the relation

L =
1.8

kmax
. (V.4)

1In Brandt et al. (2004) an integral length scale of 5δ1 has been chosen for three numerical cases at
Reδ1 = 300. In Jacobs and Durbin (2001) an integral length scale of 5.1δ1 has been chosen for Reδ1 = 274.
In our case the Reδ1 = 300 is achieved at xh = 43 downstream of the leading edge with δ1/h = 0.43. If
Lx=47 = 5δ1 is adopted, at the inflow position Lx=32 = 1.64 set knowing that the integral length scale is
proportional to L ∝ x−0.29 (Jacobs and Durbin, 2001).
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The maximum energy is injected at kmax = 1.09. L is also linked to the the length scale
L11 defined by the longitudinal two-points correlation as:

L11 ≈ 0.643L. (V.5)

kl is set equal to 0.63 and ku to 4.08. Due to the stable nature of the modes on the
continuous branch of the OSS spectrum, the turbulence in the free stream has to decay
exponentially. For a Tu = 0.18% and at a distance from the wall equal to 30 an exponential
decay of the turbulence can be observed (fig. V.8). The FST intensity follows the decays
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Figure V.8: Exponential turbulent decay in streamwise direction.

law Tu ∝ (x+x0)
−n with n ≈ 0.71 as also suggested by Jacobs and Durbin (2001). Further

informations about the Orr-Sommerfeld and Squire modes and about the turbulent energy
spectrum discretization are provided in Appendix .1 with a validation test case presented
by Brandt et al. (2004).

V.2.2 FST results

The experiment shows transition with a Tu = 0.089% of the free stream velocity. Nev-
ertheless, one needs to consider that the turbulent spectrum in the water channel is
characterized by wave numbers intrinsic to the experimental set-up (e.g. pump, presence
of the leading edge, free water surface, ...). The implemented free stream turbulence does
not take into account the hydro-channel features, however it is a guideline to understand
the receptivity process. For the study of the flow over a roughness in the presence of free
stream turbulence the numerical discretization has been changed in order to get the same
spatial resolution in the whole computational domain and avoid numerical dissipation of
the turbulence. The turbulent intensity is progressively increased until the appearance
of hairpin vortices. Three different Tu = 0.045%, 0.09% and 0.18% are here presented.
The evaluation of the skin friction drag helps to highlight the Tu level and the streamwise
position at which the global mode receptivity is triggered. The Cf versus the x position is
reported in figure V.9 for the three cases. The turbulent intensity values used in the DNS
are too low to trigger non-normal growth of the energy in the laminar boundary layer
region. For x < 0 no influence on the skin friction is observed. For x > 0, already with
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Figure V.9: Cf(x) vs x for different turbulent intensity. The Cf for Tu = 0% is also
reported as reference.

Tu = 0.045% the Cf curve slightly deviates from the laminar condition. Even though
the structural turbulence is different between channel and numerical simulations, for an
incoming turbulent intensity Tu = 0.18%, only two times higher then the experimental
one, a transitional flow is observed. The hairpin vortices noticed in the experiments and
in the DNS forced by the optimal forcing are still present in this case as illustrated in
figure V.10 by the isolevel of λ2-criterion. The unsteady perturbation starts with the
generation of the hairpin eddies from the cylinder head and develops on the low middle
streak. After that, the hairpins are dissipated on the low middle streaks and new vortex
structures start to grow spatially on the lateral low speed streaks as in the optimally
forced case. If in the forced case the varicose symmetries are preserved also far from the
roughness due to the symmetrical forcing structure, in this case non-symmetric structures
are observed for x > 55. As for the optimal forcing transition, the behavior of the fluctua-
tion in the y-direction has been investigated as reported in figure V.11. Qualitatively the
same behavior can be observed by comparing fig. V.6 and fig. V.11. The first peak, that
is linked to the growth of the perturbation on the middle streak, and the second peak,
that is linked to the growth of the perturbation onto the lateral low speed streak, are now
slightly damped with respect to the optimally forced case (see fig. V.6). Nevertheless,
in this case once the flow is turbulent the Fourier transform has just one main peak at
β = 0. This means that the maximum fluctuations are homogeneous in z also at the end
of the domain. In figure V.6 the effect of the periodicity in the spanwise direction has
to be taken into account. A symmetric perturbation that passes the boundary condition
could induce an aliasing effect which annihilates or amplifies same spanwise wavenumbers.
From a quantitative point of view a numerical probe in (10, 1.5, 0) is used to evaluate the
temporal signal reported in figure V.12. In figure V.12 the instantaneous velocity field on
the line at y = 1.5 and z = 0 is also reported. The Fourier transform of the two signals
confirms again the dominance of the global varicose mode in the unsteady dynamics. The
temporal spectrum shows a main pulsation at ω = 1.02 and its subharmonics. In the tem-
poral signal a low modulation also appears at ω = 0.1. This modulation, also observed in
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Figure V.10: Spatial evolution of the unsteady perturbation in the streamwise direction
highlighted with isolevel of λ2 = −0.02 for an incoming Tu = 0.18%. The vortical
structures are coloured by streamwise velocity field.
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Figure V.11: Variation in the streamwise direction of the wall-normal position of the max-
imum amplitude mode of the spanwise Fourier transform of the urms. Colorbar indicates
the spanwise wavenumber of the dominant Fourier mode. Red dashed line provides the
analytical displacement thickness of the Blasius solution whereas the blue dashed-dotted
line indicates the height of the cylinder. The case considered is (η, Re) = (1, 700).
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Figure V.12: A probe in (10,1.5,0) is used to catch the temporal signal and its spectrum
with the main pulsation at ω = 1.02 (left). Instantaneous wall-normal velocity on a line
located at y = 1.5 and z = 0 shows a dominant spatial wavenumber α = 1.3 (right).
For both signals the Fourier spectrum is also reported. For the temporal signal the main
harmonic is at ω = 1.02 and for the spatial signal the main spatial wavelength is equal to
1.3.

the experiments IV.8, is linked to the receptivity of the streaky-TS waves. From a spatial
point of view, despite the short length of the signal as limited by the size of the numerical
domain a main spatial wavelength α ≈ 1.3 can be noticed.

V.2.2.1 DMD modes

Since the hairpin vortex shape observed experimentally and numerically behind the rough-
ness is a non-linear structure2, it could be interesting to decompose the evolution of the
non-linear Navier-Stokes equations perturbed by the free stream turbulence to highlight
the mechanisms involved in the hairpins generation with temporally uncorrelated struc-
tures. In accordance with Koopman theory it is possible to decompose the non-linear
dynamics in an infinite-dimensional linear system. The DMD is an algorithm that ap-
proximates the Koopman operator as explained in chapter §III. Following the procedure
explained in section §III.3.2.3 it is possible to decompose the non-linear dynamics with
a linear combination of spatial structures temporally uncorrelated. To extract the DMD
spectrum, 200 velocity snapshots have been used. The flow fields have been extracted from
the DNS every ∆T = 0.78. Only the first 21 SVD modes have been taken into account
to ensure a Foebrenius norm higher than the 92% for the whole dynamics caught by the
200 snapshots. To facilitate the spectrum convergence, a spatial window from x = −25 to
x = 50 has been applied to each snapshot in order to exclude the chaotic region and only
keep the region having a “regular” motion. The DMD spectrum is illustrated in figure
V.13. As one can observe the DMD modes are located on the line at σ = 0, confirming
the periodicity of the used signal. In figure V.13 the weights associated to each mode

2It is not possible to observe the generation of hairpin vortices in a linear Navier Stokes numerical
simulation. These non-linearities play an important role in the evolution of the initial perturbation that
give rise to the Ω-shape structure (Zhou et al., 1999). The non-linearities are involved in the vortex tilting
of the initial perturbation and in the vortex sustain once generated (Cherubini et al., 2011).
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Figure V.13: DMD spectrum associated to the non-linear unsteady dynamics at
(Re, η, Tu) = (700, 1, 18%). Evaluation with 200 velocity snapshots extracted each
∆T = 0.78 from the non-linear DNS. 21 SVD modes have been used.

evaluated as explained in §III.3.2.3 are also reported. To better observe the contribution
to the unsteady dynamics, the mode associated to ω = 0 as been removed from the DMD
spectrum as it has the highest contribution in the weights. Two main modes (and the
relative complex conjugate) are present. The first one at ω = 1 and the second one at
ω = 0.11, as predicted by the Fourier transform in V.12. The associated spatial DMD
modes are reported in figure V.14. The structure of the mode at ω = 1 approximates

X

ω = 1

X

ω = 0.11

Figure V.14: ±10% of the maximum streamwise velocity of the real part of the DMD
modes associated to ω = 1 (top) and ω = 0.11 (bottom) in spectrum V.13. Grey scale
illustrate streamwise mean flow velocity at y = 0.5.

that of the global varicose mode. The perturbation firstly evolves onto the low middle
streaks and then moves onto the two low lateral streaks. The DMD mode at ω = 0.11 is
composed by an oblique perturbation that alternates its sign onto the low velocity streaks
and it is linked to the streaky-TS receptivity.

V.3 Generation of hairpin vortices

The contribution of the varicose global mode to the unsteady dynamics has been widely
discussed. The link between the spatial distribution of the varicose mode and the observed
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structures needs further analysis. Information about the non-linear dynamics can be
extracted by the distortion of the base flow towards the mean flow once the unsteadiness
is triggered. A comparison between the base flow and the mean flow is then mandatory.

V.3.0.0.a Base flow Let us consider the base flow topology sketched in figure V.15.
The flow hitting on the cylinder generates an horseshoe vortex (HP) that wraps the
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Figure V.15: Sketch of the generation of the streamwise vortices. Behind the cylinder the
horseshoe vortices (HP) and the rearpair vortices (RP) are present. The rearpair vortices
are generated by secondary flow.

roughness. At the same time a secondary flow is induced by the fact that the flow has to
turn around the cylinder. A particle that is located on A position moves to the position
B due to centrifugal forces. Due to the presence of the HP vortex a particle on B moves
toward C thanks to the momentum diffusion. Just behind the cylinder, a positive pressure
gradient ∂p/∂z in the spanwise direction is generated by the presence of the separation
zone. A particle is then pushed from C towards D. Finally, a particle located in the
position D would have a low inertia; thus, for mass conservation, it would move from D

to A.Due to the combination of these effects, a new pair of vortices, dubbed the rear pair
(RP) vortices , is generated as shown in the sketch in figure V.15. The rear pair vortices
have also been observed experimentally (Ye et al., 2016b). The presence of the HP and
RP vortices has been highlighted by passive Lagrangian tracking of particles injected in
the inflow and transported by the base flow field as shown in figure V.16. The particles
are injected at x = −15, z = 0.1 and distributed along y from 0.1 to 0.7. A subset of
particles is captured by the core of the horseshoe vortex, whereas the residual ones enter
in the recirculation zone remaining locked in the core of the rear pair vortex. The presence
of a RP vortex has no influence on the far field as they are dissipated when the low speed
streak in z = 0 plane dies, as one can observe looking at the streamwise vorticity Ωx in
figure V.17. On the other hand, the RP vortices are a necessary ingredient for the hairpin
vortices generation close to the cylinder. To understand the mechanisms involved in the
hairpin creation we should refer to Cohen et al. (2014) work. In his work, Cohen et al.
identify a minimal model for the generation of packets of hairpin vortices. The hairpin
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Figure V.16: Particle tracking transported by the base flow field. Tracking lines colored
by vorticity module. Particles injected at (x, y, z) = (−15, 0.1 : 0.7, 0.1).

Figure V.17: Ωx ± 0.1 of the base flow velocity field. The blue colour indicate negative
stramwise vortices the red color the positive one. Slice at y = 0.8.

shape is generated by the non-linear interaction of three structural ingredients:

i) shear in the wallnormal direction

ii) counter-rotating vortex pairs (CVP)

iii) 2D wavy vortex sheet

The three ingredients are sketched in figure V.18 (picture from (Cohen et al., 2014)).
Looking at the velocity field just behind the cylinder at x = 2 (fig. V.19) we can recog-

nize two of the structures predicted by the Cohen’s model. The necessary counter-rotating
vortices are represented by the RP vortices illustrated by the isolevel of the streamwise
vorticity Ωx and the shear is given by the reverse-flow in the recirculation bubble high-
lighted by the spanwise vorticity Ωz in figure V.19. Finally, the 2D wavy vortex sheet is
generated by the stationary oscillation provided by the wavemaker of the global mode,
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Figure V.18: Illustration of the three elements for the hairpin eddies generation: (a)
simple shear; (b) CVP; (c) wavy vortex sheet. Picture from (Cohen et al., 2014) courtesy
of Cohen.

RPHP

Z

Figure V.19: Isolevel of negative (dashed line) and positive (solid line) streamwise
vorticityΩx of the base flow field. Isocontour of spanwise vorticity Ωz. Dark zones high-
lights negative vorticity.

that we remember to be on the separation zone, see fig. IV.32. This simple but effective
model is able to explain the generation of hairpin vortices combining three linear mecha-
nisms in a non-linear way.

Once generated, the hairpins are sustained in the streamwise direction by the gradients
of the flow field (advection and tube stretching) and by the inflectional points. The
variation of the flow in the x-direction is negligible with respect to the spanwise and
wallnormal gradients and as first approximation the inflectional points are evaluated by
looking at the zero value of the term in (V.6).

∂2U

∂y2
+
∂2U

∂z2
= 0 (V.6)

128



The location of the points in which the condition in (V.6) is verified are reported with
red line in figure V.20 in the plane at z = 0. Close to x = 9 three inflectional points are

Figure V.20: Plane at z = 0. Tick red line indicate the line in which the term (V.6) is
verified. Dash line refers to negative streak and continuous line to positive one. Gray
scale colour depicts contour of streamwise velocity.

present in the wall normal direction. This can explain the position of the maximum of
the global mode energy production shown in figure IV.29. The disappearance of the two
inflectional points can be also seen in figure V.21, where there is a change of sign of the
crossflow vorticity Ωz in y ∈ [0.4; 0.6]. After x = 9 just negative Ωz is present. The peak
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Figure V.21: Solid line represents the streamwise velocity in z = 0 plane. Dash line
represents the absolute value of the vorticity in the crosflow direction |Ωz|. The vorticity
at y ∼ 1 is associated to negative spanwise Ωz.

associated to Ωz at y ∼ 1 slightly moves towards the wall in x-direction.

V.3.0.0.b Mean flow The unsteady fluctuation given by the triggered varicose mode
modifies the baseflow. The distortion leads to differences between the baseflow and the
mean flow not only in the field close to the cylinder, where the global mode works. Consid-
ering the unsteady case achieved with an incoming free stream turbulence at Tu = 0.18%
of the U∞, the resulting mean flow streamwise velocity profile is plotted in figure V.22 in
plane at z = 0. The mean flow in V.22 can be compared to the base flow V.21. The first
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Figure V.22: Solid line represents the streamwise velocity at z = 0. Dash line represents
the absolute value of the vorticity in the crosflow direction |Ωz|.

peak of the vorticity is diffused in the wallnormal direction and dissipated before that of
the base flow. More importantly, the disappearance of the three inflectional points takes
place already at x = 7.5. Once the positive peak of Ωz vorticity is disappeared, the hair-
pin is no longer sustained. As explained by Farano et al. (2015), the hairpin generation is
linked to sweeps and ejections events. Looking at the fluctuation field u′(t) = U(t)− Ū,
the sweep event fails after the disappearance of the positive spanwise vorticity Ωz (fig.
V.23). When the sweep event is no longer active the hairpin moves far from the wall

Figure V.23: Istantaneous fluctuation field u associated to the hairpin structure high-
lighted by the λ2-criterion.

and is gradually dissipated. At the same time new vortical structures appear between
the high speed streak and the low speed streaks due to the presence of a shear caused
by an inflectional point on the streamwise velocity in the crossflow direction. This first
vortical structure starts to wrap the two lateral low speed streak up to generate new hair-
pin vortices. With this mechanism the perturbation moves outwards in the z-direction,
also promoted by the increasing inflectional velocity profile in the spanwise direction as
observed in chapter §IV looking at the streaks evolution (fig IV.14 and IV.15). The
increasing instability in the spanwise direction causes the generation of new streamwise
vortices. The Ωx field evaluated on the mean flow and illustrated in figure V.22 reveals how
the vortices are multiplied in the crossflow direction moving downstream. The streamwise

130



Figure V.24: Ωx ± 0.1 on the mean flow. The blue colour indicate negative stramwise
vortices the red color the positive one. Velocity field at y = 0.8.

vortices generation has been also observed experimentally by Ye et al. (2016b). Once the
supercritical condition is reached, secondary and tertiary vortices are generated behind
roughness elements of different shape. It seems that a secondary instability occurs when
an unsteady perturbation rides the two lateral streaks. For a cylindrical case studied
by Ye et al. (2016b), transition takes place on the horseshoe vortices when a secondary
vortices is triggered. The same scenario is observed in the numerical case just shown.

V.4 Overall discussion about transition

The DNS calculations perturbed in three different ways always show the high receptivity
of the varicose mode. Introducing an inflow turbulence it is possible to self sustain the
varicose global mode. The route to transition can now be summarized as follows:

1. The external turbulence is able to penetrate the boundary layer that thickens up
to the wavemaker zone of the varicose global mode. Low levels of turbulence are
enough to observe the unsteady features of the global mode.

2. The shear in the wall normal direction of the streamwise velocity plus the rear pair
vortices induced by a secondary flow plus the oscillating motion provided by the
global mode constitute the sufficient ingredients for the hairpin vortices generation.

3. The hairpin vortices grow downstream on the low velocity middle streak up to x ∼ 8.
The hairpins are sustained by the presence of inflectional points in the wall normal
direction of the streamwise velocity. The presence of positive spanwise vorticity
ensures sweep and ejection events.

4. After x ∼ 8 the hairpin vortices start to be dissipated (see figure V.6 and V.11) but
a new perturbation is induced on the two lateral low speed streaks.

5. The perturbation on the horseshoe vortices grows up to x ∼ 25 where a wall per-
turbation occurs as shown in figure V.6 and V.11.

6. This last perturbation, that goes towards transition, is accompanied by the genera-
tion of streamwise vortices in the spanwise direction.

The results achieved by global stability analysis, receptivity and perturbed DNS con-
stitute a complete scenario to understand subcritical transition of flow over roughness
elements. Usually, this subcritical transition is ascribed to the transient growth of pertur-
bations induced by the non-orthogonality of convective modes in the discretized branch
(see figure IV.21). As shown in figure V.3, a short transient growth is present for amplitude
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levels of the forcing lower then A < 10−3. Of course, non-normality could have similar
influences in cases different from (η, Re, δ1/h) = (1, 700, 0.491), but when a varicose global
mode is present, its strong receptivity will dominate other energy growth mechanisms such
as non-normality.
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Chapter VI

Parametrical analysis
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VI.1 Re and δ1/h variation effect

In the previous chapters the study of the case (η, Re) = (1, 700) has been largely discussed.
The varicose mode that was not present in Loiseau’s work (Loiseau et al., 2014) (Loiseau,
2014) for η = 1 is found to be able to drive the unsteadiness by receptivity mechanisms.
In the light of these results, some questions arise:

• What does it happen to the base flow topology when the Reynolds number and/or
the shear ratio δ1/h change?

• How do the global eigenvalues move in the complex eigenspectrum?

To answer at this questions, one of the unstable cases from Loiseau’s work (η, Re, δ1/h) =
(1, 1200, 0.688) is chosen as a reference. By changing separately the Reynolds number
and the aspect ratio, the reference case is reached from that studied in the last chapter,
namely (η, Re, δ1/h) = (1, 700, 0.491).

VI.1.1 Reynolds number effect

Three cases with the same shear ratio δ1/h = 0.491 and different Re number are selected.
By increasing Re from 700 to 1200 the DNS shows a sinuous unsteadiness. By using the
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BoosConv algorithm to reach the stationary solution at Re = 900 and 1200, the evolution
of the streaks (as presented in chapter §IV) is reported in figure VI.1 for Re=700, 900
and 1200. The Reynolds number impacts on the amplitude of the higher and the two

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

x

A
S
T

Figure VI.1: Streaks amplitude vs x-direction for Re =700 (blue), 900 (red) and 1200
(green). The curve with circle markers (◦) depicts the low streak amplitude in the middle
vs x. Continuous lines are related to the high speed streaks and dashed line to the lateral
low speed streaks.

lateral low speed streaks. The low middle streak appears more elongated. By keeping
constant the aspect ratio δ1/h the theoretical Blasius profile at the cylinder position is
always the same. Hence, the head of the cylinder is subject to the same dimensionless
streamwise velocity. For this reason the curves are superimposed in the flow field close to
the roughness. The areas associated to the streaks for the three cases are depicted in figure
VI.2. The reduced viscosity effect induces a delay in the growth of the area of the three
streaks proportionally to the boundary layer thickness growth. By increasing the Reynolds
number the sinuous eigenvector becomes unsteady, as shown in figure VI.3. The increasing
size of the low streak in the middle plane promotes the sinuous instability as assessed by
the local stability analysis. The sinuous mode can become globally unstable if the local
sinuous unstable mode becomes absolutely unstable. This could be possible since the
wavemaker of the sinuous mode (Loiseau et al., 2014) is always located on the separation
zone, precisely on both sides of the separation zone. If the absolute region is large enough,
the absolute instability becomes self-sustained and then global (Pier and Huerre, 2001),
(Siconolfi et al., 2017). The critical Reynold number is about Rec ≈ 850 for δ1/h = 0.49
that is lower than Rec = 1040, as tracked by Loiseau et al. for δ1/h = 0.688.

134



0 20 40 60 80
0

2

4

6

8

10

12

x

A
R
E
A

S
T

Figure VI.2: Streak areas vs x-direction for Re =700 (blue), 900 (red) and 1200 (green).
Curves as in figure VI.1.
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Figure VI.3: Eigenspectrum for Re =700, 900 and 1200. Red (+) marker represents the
varicose mode, magenta (×) marker the sinuous one.

VI.1.2 Shear effect

Contrary to the previous analysis, the Reynolds number is now kept constant at 700 and
the shear ratio ranges from δ1/h = 0.491 to 0.688, where the latter is the one fixed by
Loiseau et al. (2014). Increasing the ratio δ1/h the cylinder height becomes smaller with
respect to the boundary layer thickness. It is known a priori that no unstable cases are
present for this analysis since at δ1/h = 0.688 the critical Reynolds number is Rec = 1040.
The same analysis on the streaks amplitude is performed and displayed in figure VI.4 By
increasing δ1/h the amplitude of the streak decreases as the roughness is much more
immersed in the boundary layer. For the same reason the velocity that hits the cylinder
head is lower. This also explains the different amplitudes close to the roughness flow
field. The areas at each streamwise section of the streaks are comparable between each
other (see fig. VI.5). This implies that the velocity gradients in the spanwise direction
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Figure VI.4: Streaks amplitude vs x-direction for δ1/h =0.491 (blue), 0.59 (red) and 0.688
(green). The curve with circle marker (◦) depicts the low streak amplitude in the middle.
The continuous line is related to the hight speed streak and the dashed one to the lateral
low speed streaks.
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Figure VI.5: Streak areas vs x-direction for δ1/h =0.491 (blue), 0.59 (red) and 0.688
(green). Curves as in figure VI.4.
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are weaker for higher δ1/h. Slow velocity variations in the spanwise direction and low
amplitude level of the streaks make the case at δ1/h = 0.59 devoid of isolated global
modes as illustrated in figure VI.6. Reducing the Reynolds number sinuous and varicose
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Figure VI.6: Eigenspectrum for δ1/h =0.491, 0.59 and 0.688. Red (+) marker represents
varicose mode, magenta (×) marker sinuous one.

mode become stable. Reducing even more the shear ratio up to δ1/h =0.39 both sinuous
and varicose mode are destabilized. Moreover the varicose global mode becomes unstable
as illustrated in figure VI.7. It should be noted that in such flow condition the cylinder
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Figure VI.7: Eigenspectrum for δ1/h =0.39. Red (+) marker represents varicose mode,
magenta (×) marker sinuous one.

height is h = 0.86δ99. Hence, this case is on the limit of the roughness that can be defined
as “miniaturized”. The shear ratio, and more precisely the velocity hitting the cylinder
head, plays an important role on the critical Re number at which the system can become
unsteady.
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VI.2 Receptivity of the sinuous mode

In chapter §IV the pseudospectrum in figure IV.24 shows a low interaction between the
sinuous mode and the others present in the eigenspectrum. This is possible because all
the modes in the spectrum are varicose and the sinuous mode turns out to be always
orthogonal to the others. As the isolated varicose mode approaches the instability thresh-
old, it becomes highly susceptible to a harmonic forcing that works at the same pulsation.
Thus, the following question arises:

• Is this the case also when the sinuous global mode approaches the instability thresh-
old?

VI.2.1 Receptivity to harmonic forcing

To check the receptivity of the sinuous global mode the case (η, Re, δ1/h) = (1, 1000, 0.688)
has been studied. The chosen case corresponds to the same set-up selected by Loiseau et al.
(2014), where no isolated varicose global modes are present. The reader can refer to
Loiseau et al. (2014), Loiseau (2014) for the base flow analysis. The eigenspectrum and
the related pseudospectrum estimation is reported in figure VI.8. No isolated global
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Figure VI.8: Eigenspectrum and pseudospectrum for (η, Re, δ1/h) = (1, 1000, 0.688). Ma-
genta square points highlight sinuous mode and blue circle points the varicose mode. The
iso-lines represent the pseudospectrum given by log10 ǫ contour.

modes are present. The chosen case shows an isolated sinuous mode with a growth rate
σ = −0.01 that is comparable to the growth rate of the varicose mode for the case
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(η, Re, δ1/h) = (1, 700, 0.491). Despite the sinuous mode is close to the instability thresh-
old, it seems that the receptivity of the sinuous mode is triggered just with a perturbation
that acts in the complex plane close to (σ, ω) = (−0.01, 0.677). Due to the high interaction
of the varicose modes between each other no convergence is reached in the pseudospectrum
also with a spectral order equal to 12. For this reason the pseudospectrum provides just
a qualitative interpretation of the resolvent. To achieve the true resolvent curve several
optimal forcing computations have been performed. The resolvent curve VI.9 appears
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Figure VI.9: Amplification factor of the harmonic forcing for different ω for (η, Re, δ1/h) =
(1, 1000, 0.688).

strongly linked to the distribution of the eigenvalues in the global spectrum in figure VI.8.
The system appears to be highly receptive to a harmonic forcing that pulses at ω = 0.677.
The orthogonality of the sinuous mode is felt by the fact that the curve peaks with a gain
of about 5.3×105. This is synonymous of the low interaction with the closest global mode.
To verify the orthogonality of the sinuous mode, the optimal forcing shape is compared to
the adjoint eigenmode in figure VI.10 and the optimal response to the direct eigenmode in
figure VI.11. The adjoint mode is localized on the cylinder head non-symmetrically with
respect to the streamwise velocity. The sinuous mode is tied to a Von-Karman instability
(Loiseau et al., 2014), (Loiseau, 2014). Once again, when the global mode is orthogonal
to the others the optimal forcing looks like the adjoint mode and the optimal response
like the direct mode, following equation (IV.16) . This is not true for the resolvent modes
at 0.8 < ω < 1.3, as illustrated in figure VI.12 and VI.13. For ω = 1.25 the gain is
equal to 3× 105 and the resolvent mode shows a varicose distribution that does not look
like the eigenvector associated at the same pulsation. The adjoint eigenmode in figure
VI.12 is localized mostly on the cylinder sides. The optimal forcing, however, covers the
whole cylinder surface and extends upstream in the symmetry plane at z = 0, while the
adjoint mode does not. According to eq. (IV.16) the optimal response is for this case a
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(a)

(b)

Figure VI.10: ±10% of streamwise component of sinuous adjoint eigenmode (top) and
optimal forcing shape (bottom) at ω = 0.677. Gray scales highlight streamwise velocity
field at y = 0.5.

(a)

(b)

Figure VI.11: ±10% of streamwise component of sinuous direct eigenmode (top) and
optimal response shape (bottom) at ω = 0.677. Gray scales highlight streamwise velocity
field at y = 0.5.

(a)

(b)

Figure VI.12: ±10% of streamwise component of varicose adjoint eigenmode (top) and
optimal forcing shape (bottom) at ω = 1.25. Gray scales highlight streamwise velocity
field at y = 0.5.

linear combination of the direct global modes. Hence, it is not surprising that the spatial
distribution of the optimal response does not match that of the eigenmode at ω = 1.25.
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(a)

(b)

Figure VI.13: ±10% of streamwise component of direct varicose eigenmode (top) and
optimal response shape (bottom) at ω = 1.25. Gray scales highlight streamwise velocity
field at y = 0.5.

VI.2.2 Receptivity to free stream turbulence

The gain curve in figure VI.9 suggests that the most amplified pulsation is ω = 0.667
with a sinuous associated structure. Nevertheless, to verify how the system responds
to a broadband perturbation a DNS with an incoming free stream turbulence has been
performed. The set-up of the homogeneous turbulence is the same of the case presented in
section §V.2.1. The turbulent intensity has been progressively increased up to the onset
of unsteadiness in the flow. Differently from the case studied in the previous chapter §V,
an incoming turbulent intensity Tu = 0.06% is sufficient for making the Cf curve diverge
from the unperturbed case (see fig. VI.14). The perturbation associated to a turbulent
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Figure VI.14: Skin friction drag vs the streamwise position at different turbulent intensi-
ties for the case (η, Re, δ1/h) = (1, 1000, 0.688).

intensity Tu = 0.06% is illustrated in figure VI.15 using iso-levels of the λ2-criterion. Low
values of λ2 are used in this visualization to highlight how the free stream perturbation is
able to penetrate the boundary layer and destabilize the rear pair vortices. The streamwise
vortices behind the roughness show a varicose modulation that induces the merging of the
two vortices providing wake hairpin eddies. The resulting perturbation is then decomposed
in smallest scale structures moving downstream. Increasing the turbulent intensity up to
Tu = 0.26% the rear pair vortices modulation increases its amplitude and the two lateral
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Figure VI.15: Instantaneous flow field with incoming turbulence at Tu = 0.06%. Isocon-
tours of λ2 = −0.005.

low speed streaks are also destabilized. The transitional scenario is illustrated in figure

Figure VI.16: Instantaneous flow field with incoming turbulence at Tu = 0.26%. Isocon-
tours of λ2 = −0.005.

VI.16. The resulting perturbation shows again a varicose symmetry. The receptivity
of the varicose modes drives the transition although the gain is lower then the sinuous
resolvent mode. This can also be appreciated by the fact that the Cf increases slowly
along x confirming the convective character of the triggered modes. The time signal
recorded by a probe in (x, y, z) = (10, 1, 0) is reported in figure VI.17. The Fourier
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Figure VI.17: Time signal for incoming turbulence with Tu = 0.26 (top) and its FFT
(bottom).

spectrum shows two main peaks at ω = 0.8 and 1.05. These two peaks linked to the
unsteadiness on the rear pair vortices and those on the low speed streaks live in the range
of ω associated to varicose resolvent modes, as shown in fig VI.9. The reason why the
sinuous instability is not triggered is because the probability to observe it, is rather low.
The area under the resolvent curve associated to a sinuous perturbation is much smaller
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than the varicose one. Therefore, an external uncontrolled broadband perturbation that
acts onto all the harmonics more effectively triggers a varicose response of the system.
For several quantitative details and further mathematical explanations, the receptivity to
a stochastic forcing has to be evaluated as done by Hœpffner and Brandt (2008).

VI.3 Overall discussion on the parametric analysis

The shear ratio δ1/h is a critical parameter of the system since it takes into account
the interaction of the boundary layer profile with the roughness element height. The
symmetry of the unsteady global mode can be changed not only by varying the aspect
ratio of the roughness element, but also changing the δ1/h ratio. With low δ1/h values,
the growth of a varicose global mode is promoted. On the contrary, with a high δ1/h just
the sinuous global mode can become unstable. This means that with the same aspect ratio
both symmetries (sinuous and varicose) can arise, depending on the shear ratio. When
an almost unstable sinuous global mode is present in the eigenspectrum, the resolvent
curve exhibits a high receptivity to the pulsation corresponding to the sinuous mode. The
sinuous mode receptivity is highly picked, the receptivity to varicose ones is contrariwise
lower in amplitude, but widely distributed onto a large range of ω. This makes varicose
modes more likely to be observed. The receptivity of the streaky boundary layer to the
free stream turbulence confirms the last conclusion.
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Flow over miniaturized vortex
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VII.1 Streaks generation by MVGs

The use of small roughness elements to generate streaks is limited by the streaks amplitude
level. Experimentally, this limit is set to 12% of the free stream amplitude (Fransson et al.,
2004). Loiseau et al. (2014) have demonstrated how this limit is related to a supercritical
bifurcation after which the system becomes globally unstable. In the previous chapters
it has been shown how transition can be achieved also subcritically. This makes the
cylindrical roughness a non-robust solution for the passive control. The receptivity to
external perturbations can give rise to a varicose perturbation linked to the presence
of one or more varicose global modes. For what has been seen, the supercritical and
subcritical transition are always linked to the base flow structures behind the roughness,
more precisely to the separation zone induced by the presence of the roughness.
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VII.1.1 Experimental studies

Fransson and Talamelli (2012) proposed to install on the wall miniaturized vortex gener-
ators to produce stable steady streaks. The vortex generators shape is a known geometry
already used in aeronautical application to delay or prevent separation by reducing pres-
sure drag introducing large scale vortices. This kind of structure has been miniaturized
up to 0.3÷ 0.5 times the boundary layer thickness δ99. In the boundary layer the MVGs
generate wall vortices which modulate the boundary layer by the presence of high and
low speed streaks. The streaks generation is provided by the lift-up mechanism triggered
by controrotative vortices observed experimentally (Fransson and Talamelli, 2012) and
numerically (Siconolfi et al., 2015b). The miniaturized vortex generators are sketched in
figure VII.1. The geometry of the roughness is described by few parameters:

Figure VII.1: Sketch of miniaturized vortex generators.

• h the height of the roughness,

• d the distance between the MVG

• L the length of a single MVG

• t the MVG thickness

• θ the angle between the MVG and the streamwise direction

The main advantage of this roughness shape is that it does not produce a huge sepa-
ration zone as for cylindrical (Loiseau et al., 2014) or hemispherical (Citro et al., 2015)
roughness elements that can induce global instability. The resulting steady state can be
considered quasi homogeneous already close to the roughness. A pattern of 15 equidistant
MVG pairs is able to produce steady streaks up to an amplitude level equal to 32% of the
free stream velocity. To use the words of the authors Shahinfar et al. (2012) this device
is tremendously powerful in modulating the boundary layer in crossflow direction. The
stabilizing energy production term in the spanwise direction −uw∂U/∂z compensates the
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destabilizing one in the wallnormal direction −uv∂U/∂y (Brandt, 2014). The stabilizing
effect provided by the MVGs installation has been tested in several condition. Satisfac-
tory results are achieved in presence of adverse pressure gradient (Fransson and Talamelli,
2012), for an incoming TS like perturbation at β = 0 (Shahinfar et al., 2013, 2014) and
also oblique TS waves (Shahinfar et al., 2014). The MVGs can stabilize TS waves also
when they work in the unstable region of the boundary layer velocity profile. Different
parametric analysis have also been conducted. The amplitude of the streaks AST and
its stabilization effect AST/ATS were tracked in function of h, d and Λ that is the dis-
tance between two successive MVG pairs. AST is directly proportional to h, d and U∞

and inversely proportional to Λ. Another important goal achieved with MVG roughness
elements is the possibility to install successive arrays of vortex generators to restore or re-
inforce the wall streaks providing further transition delay Fransson and Talamelli (2012);
Sattarzadeh et al. (2014).

VII.2 Numerical investigation

To understand the differences between the cylindrical case already studied and the MVGs
one, the L1 experimental case in Shahinfar et al. (2014) has been studied numerically.
The parameters for the experimental set-up are reported in table VII.1.

U∞(m s−1) h(mm) h/δ1 Re Reh
7.6 1.3 1.17 659 421.71

Table VII.1: L1 case parameters in Shahinfar et al. (2014).

In table VII.1 Re is defined using the free stream velocity U∞, the height of the MVGs h
and the dynamic viscosity ν. On the contrary Reh is known as roughness Reynolds number
and is defined with the velocity that a theoretical Blasius profile should have at the MVG
height. In the numerical simulation the first definition of Reynolds number is chosen. The
dimensionless numerical domain is shown in figure VII.2. The geometrical sizes have been
fixed by the experiments, θ = 15◦, L = 3.25mm, t = 0.3mm and d = 3.25mm and then
made dimensioneless by h = 1.3mm. The spanwise dimension of the numerical domain is
also set to respect the experimental MVGs periodicity Λ/h = 10 (Shahinfar et al., 2013,
2014). The other dimensions of the numerical domain are L0 = 40, L1 = 100 and H = 40.
The analytical Blasius velocity profile is used as inflow boundary condition and it is set
to match the required δ1/h at the MVGs position. This choice is in agreement with the
experimental configuration. Outflow boundary condition is used at the end of the domain
and periodicity condition is imposed in spanwise direction. No-slip and slip condition are
imposed at the wall and on the top of the numerical domain, respectively. The MVGs are
located at (x, y, z) = (0, 0, 0).

VII.2.0.0.a Set-up validation Unfortunately, a quantitative validation of the nu-
merical set-up is not straightforward since quantitative values are provided for streamwise
positions out of the chosen numerical domain. However, a qualitative but satisfactory val-
idation can be performed. A perturbed experimental case is considered in Shahinfar et al.
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Figure VII.2: Sketch of numerical domain used for the MVG roughness.

(2014) as validation test case. In the T1 case (Shahinfar et al., 2014) a wall normal har-
monic perturbation is produced by six loud speakers . The perturbation induces TS
waves at β = 0. The T1 case set-up is resumed in table VII.2. In table VII.2 f0 is the

U∞(m s−1) h(mm) h/δ1 f0(Hz) Reh F
7.4 1.3 1.15 48 409 82.2

Table VII.2: T1 case parameters in (Shahinfar et al., 2014).

dimensional frequency used to yield the harmonic perturbation. F is the dimensionless
frequency defined as

F =
(2πf0ν)

U2
∞

× 106 (VII.1)

The same case without passive control shows transition around 1500 mm due to linear
TS-wave growth (Shahinfar et al., 2014). Introducing MVGs, the TS-wave is stabilized
and turbulent transition is delayed. The evolving perturbation in time and in space is
divided in two contributions. The first one is the unsteady perturbation:

uu = U(x, z, t) − U t(x, z) (VII.2)

and the second is the steady one

us = U t(x, z)− U tz(x) (VII.3)

where U(z, x, t) is the instantaneous stramwise velocity on the fictitious plane in which
urms is maximum. U t is the streamwise velocity averaged in time and U tz averaged in
time and in the crossflow direction. The total perturbation turns out to be:

utot = uu + us = U(x, z, t)− U tz(x). (VII.4)

Just for the validation case the numerical domain extends up to L1 = 200. The domain
has been discretized with 62902 spectral elements which, in turn, are discretized with a
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Figure VII.3: Spectral elements discretization of MVGs roughness.

spectral order equal to 8. The spectral elements grid, organized by blocks, is reported
in figure VII.3. The wall perturbation produced by the loudspeakers is reproduced by a
harmonic wall normal perturbation that has a maximum amplitude level equal to 10−4.
The comparison between experimental and numerical uu, us and utot is reported in figure
VII.4. The unsteady perturbation uu (figure VII.4(b)) is represented by TS-waves modu-

num)

exp)

(a) (b) (c)

Figure VII.4: utot, uu and us for T1 case in Shahinfar et al. (2014). First row experimental
results, second row numerical one. (a) spatial and spatio-temporal distribution of utot,
(b) spatial and spatio-temporal distribution of uu and (c) spatial distribution of us. Dark
colour refers to positive values, bright to positive one.

lated by the presence of the streaks induced by MVGs. The steady perturbation (figure
VII.4(c)) highlights the presence of a high speed streak in the middle and two low speed
streaks on both sides. The superposition of uu and us gives rise to the streak modulation
in streamwise direction as depicted in VII.4(a). Behind the MVG position the streaks
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spread in the spanwise direction up to reach the periodic boundary condition.

VII.2.1 Motivation

The local stability analysis was performed by Siconolfi et al. (2015b) for the C01 and
C09 cases in (Shahinfar et al., 2013). In the C01 case four unstable local modes are
found. They show how the unstable region of the Blasius velocity profile is drastically
reduced. But still, a new unstable region appears behind the MVGs. The numerical and
experimental results have raised some question:

1. The presence of the miniaturized vortex generators represents a local geometrical
perturbation that can not be taken into account using a local stability ansatz. The
local approach extends the velocity profile extracted at one x position indefinitely
downstream and upstream discarding the high gradients in the streamwise direction
close to the roughness. Is there some global mode originated by the non-parallelism
of the flow introduced by the MVGs?

2. All the experiments are carried out in the minimum turbulence level (MTL) wind
tunnel at the Royal Institute of Technology (KTH) in Stockholm. In this wind tun-
nel the background turbulence level is about 0.025% of the free stream velocity at
25 ms−1 (Lindgren and Johansson, 2002). With such a low free stream turbulence
level the non-normality mechanisms possibly present in the system cannot be ex-
pressed. Following the results achieved in the previous chapters, this is a key point
in the usability of the roughness as passive control. How much influence on the flow
dynamics does the eigenvectors non-orthogonality have? In other words, how much
an initial perturbation can be amplified in a finite time?

To answer to these two questions, global stability and optimal perturbation analyses have
been performed. The two studies are accompanied by a parametric analysis that helps to
understand the critical and subcritical limits of the use of the MVGs as passive control
device.

VII.3 Linear analysis

VII.3.1 Modal stability

The case L1 is studied by means of DNS and global stability analysis. The numerical
simulation set with the parameters listed in table VII.1 with the geometrical sizes fixed
in (Shahinfar et al., 2014) converges towards a steady solution without the use of sup-
plementary tools (e.g. SFD, BoostConv, etc). The absence of self-sustained unsteady
mechanisms underlines the absence of global unstable modes. The streaky base flow is
illustrated in figure VII.5. Up to x = 20 there are two separated low and high speed
streaks. After x = 20 the two high speed streaks merge together giving rise to a quasi
parallel base flow that diffuses in wall-normal direction proportionally to the boundary
layer growth. Contrary to the cylinder case, no low speed streaks are induced due to
the blocking effect of the roughness. Further details about the flow field onto the MVG
roughness are provided by Siconolfi et al. (2015b). The global stability analysis has been
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Figure VII.5: Streaked base flow behind MVGs for L1 case in Shahinfar et al. (2014).
Isolevels (top) of U − UBL to highlight high speed streak (black) and low speed streaks
(white). Isocontours (bottom) of U − UBL in three streamwise position x = 20, 50 and
80. Black lines (bottom) refers to streamwise velocity field from 0 to 0.95.

performed with a Krylov subspace equal to 750. The time sampling between two succes-
sive velocity vectors is 1 time unit. The eigenvalues computation stops when at least 100
modes reach a residual level lower than 10−6. The global eigenspectrum is reported in
figure VII.6. In figure VII.6 the eigenspectrum is superposed to the eigenspectrum related
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Figure VII.6: Blue diamond markers global eigenspectrum for L1 case in Shahinfar et al.
(2014). Red circle markers global eigenspectrum for boundary layer without MVGs.

to the boundary layer case without MVGs. The boundary layer eigenspectrum has been
evaluated in a numerical domain that has the same dimension of the case with MVGs. The
boundary layer spectrum presents different branches of convective modes. The one close
to the instability threshold is associated to TS-waves with β = 0. The other convective
branches show TS-waves with a β different to 0 and compatible with the imposed peri-
odicity condition. The eigenspectrum associated to the L1 case also exhibits convective
modes. The eigenmodes in the TS-wave region are slightly damped 0.05 < ω < 0.3, but
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new modes are destabilized at ω > 0.3. The eigenvectors associated to the spectrum in
figure VII.6 are the streaky-TS predicted by Cossu and Brandt (2004) as shown in figure
VII.7. Moving on the convective branch from low to high ω the streamwise wavenumber α

(a)

(b)

Figure VII.7: Streamwise velocity for eigenmodes associated to ω = 0.12 (a) and ω = 0.48
(b) for the eigenspectrum in figure VII.6.

also increases. All the modes on the discretized branch are varicose. This makes the eigen-
vectors non-orthogonal between each other. The pseudospectrum evaluation confirms the
last observation (see fig. VII.8). A perturbation zI of the Hessenberg matrix gives rise to
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Figure VII.8: Pseudospectrum evaluation on the Hessenberg matrix. Iso-lines represent
pseudospectrum given by log10 ǫ contour.

a response ǫ that involves all the modes close to the z. Extracting the ǫ value on σ = 0
line, the resolvent curve approximation is depicted in figure VII.9. For a harmonic forcing
that pulses at ω, the streaky-TS modes in between 0.1 < ω < 0.3 are highly amplified. In
the eigenspecrum there are no eigenvectors associated to unstable mechanisms of the flow
close to the MVGs. The MVGs are then able to produce streaks in the boundary layer
without inducing subcritical transition. The receptivity is linked just to the streaky-TS
modes.
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Figure VII.9: Resolvent curve extracted from pseudospectrum in VII.8 for a harmonic
perturbation σ = 0.

VII.3.2 Non-modal stability

The receptivity analysis shows how the MVGs operate just on the TS stabilization without
introducing further unsteadiness linked to the shear behind the roughness. Nevertheless,
the resolvent modes basis is not representative of the dynamics of the flow in a finite time
as it is based on the initial guess for which, when t → ∞, only the particular solution of
the forced system exists. It is then important to prove that for short time an initial solu-
tion is not highly amplified up to triggering non-linear effects that could make the linear
stability non predictive. To verify the short time behaviour the linear optimal pertur-
bation analysis has been performed. Taking advantage of the implemented Krylov-Schur
decomposition, the SVD-Arnoldi decomposition is used to find optimal and sub-optimal
perturbations. The used Krylov space was equal to 25 and the iterative procedure is
stopped when the first 4 SVD modes are converged. The SVD is performed for different
target times from 0 to 180. The energy gain associated to each optimization time Topt
is reported in figure VII.10. The gain curve reveals a maximum energy amplification
equal to 1.4 × 104 at target time 27 with an antisymmetric initial condition. However,
the optimal perturbation symmetry changes with the time optimization. The evolu-
tion of the optimal perturbation is constrained by the base flow topology. Close to the
MVGs there are two separated high speed streaks (VII.5). The latter merge together at
x ≈ 50. For a short optimization time the optimal perturbation is symmetrically dis-
tributed and is confined on the small separation zone behind the MVGs (fig. VII.11(a)).
For 7.5 < Topt < 40 the optimal perturbation is antisymmetric (VII.11(b)) and at the
target time the perturbation are two wave packets localized in between the two high and
low speed streaks (VII.12(b)). Increasing Topt the wave packets move downstream up to
the merger of the two high speed streaks (fig. VII.5). At this point, for Topt > 40, the
optimal perturbation becomes symmetric (VII.12(c)). With just one high speed streak
the previous antisymmetric perturbation seems to be “rephased”. For this reason after
Topt = 50 there is not converged antisymmetric suboptimal. A further slightly peak at
Topt = 125 can be noticed in the gain curve VII.10. This can be associated with the
interaction of the evolving wave packet with the periodic boundary condition as shown
in figure VII.12(d). At Topt = 125 the optimal perturbation at the target time looks like
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Figure VII.10: Energy gain curve for L1 case (Shahinfar et al., 2014). Dashed red line
refers to antisymmetric perturbation, continuous black line to symmetric perturbation.
Blue region highlight region where antisymmetric perturbation is optimal.
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Figure VII.11: Optimal initial perturbation for Topt = 5(a), 27(b), 57(c) and 125(d). In
all cases ±5% of maximum streamwise velocity.

the streaky-TS observed in the eigenvectors VII.7(a). After Topt > 125 the energy gain
decreases (fig. VII.10) since the wave packet is convected outside the numerical domain.

If the transient behaviour is driven by non-orthogonal eigenfunctions, it could seem
strange that no antiymmetric converged eigenfunctions are present in the global spectrum
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Figure VII.12: Optimal perturbation at Topt = 5(a), 27(b), 57(c) and 125(d). In all cases
±10% of maximum streamwise velocity.

in figure VII.6. Moreover, the SVD decomposition does not find a main singular value
mode with an amplitude level much larger then the suboptimal one. On the contrary,
up to Topt = 50, three suboptimal perturbations have an amplitude level pretty close to
the optimal one. Referring to Cossu and Chomaz (1997) work, the transient behaviour is
linked to the presence of a locally unstable flow. Moreover, they claim that the energy
gain quantifies exactly the energy growth of the locally unstable convective modes. For
this reason a further analysis on the local stability is mandatory. In figure VII.13 the
local eigenspectrum for a base flow extracted at x = 10 is shown. In figure VII.13, the
α value is also varied from 0.1 to 3. In the example just shown, four unstable convective
modes are present in agreement with Siconolfi et al. (2015b). The four eigenfunctions and
their unstable region are reported in figure VII.14. Both symmetric and antisymmetric
eigenfunctions are present. Hence, the local stability analysis justifies the presence of four
main singular values together with their observed symmetries.

VII.3.3 Out-of-design control

The streaks control to delay transition works well if the amplitude of the external per-
turbation is low enough to not triggering a non-linear energy growth. This is true for
instance on plane wings where the free stream turbulence level is lower than 1% of the
free stream velocity. Far from the design setup (L1 case in Shahinfar et al. (2014)) the
roughness element can trigger supercritical or subcritical bifurcations which accelerate
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Figure VII.13: Local eigenspectrum for a baseflow extracted at x = 10. Different colours
correspond to different streamwise wavenumber α. α is varied from 0.1 to 3 with a step
equal to 0.05.
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Figure VII.14: Real part of the four locally unstable eigenfunctions and its unstable region.

transition. To estimate the flow behaviour when the flow parameters change it is possible
to refer to the Von Doenhoff-Braslow diagram IV.3. In such diagram the appearance of
unsteadiness is strictly linked to the aspect ratio of the roughness d/h (d being the size of
the roughness in the crossflow direction) and the roughness Reynolds number based on the
Blasius velocity on the roughness head. In the Von Doenhoff-Braslow diagram IV.3 three
zones exist. The first one is the lower one where the flow is laminar despite the presence
of the roughness. The second one is the grey region in figure IV.3 and it identifies the flow
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conditions in which unsteadiness can be triggered. The last one is the upper one and it
indicates the flow parameters for which turbulent flow is observed behind the roughness.
Paying attention to this diagram the values of θ, δ1/h and Re are changed and the global
stability is then evaluated.

VII.3.3.1 θ effect

Let us assume as MVG’s height the maximum height of the roughness h and as d the
projection of the MVG’s length L onto the crossflow plane. Starting from the experimental
L1 case Shahinfar et al. (2014) the value of θ is changed. Increasing θ the considered flow

Figure VII.15: Von Doenhoff-Braslow diagram increasing θ. Blue marker refers to exper-
imental L1 case (Shahinfar et al., 2014). θ values 15◦, 30◦, 45◦ and 60◦

case moves at iso-Reh in figure VII.15. The four studied cases are listed in table VII.3. For

θ 15◦ 30◦ 45◦ 60◦

d/h 0.64 1.25 1.77 2.2√
Reh 20.5 20.5 20.5 20.5

Table VII.3: Studied cases for θ effect.

θ = 60◦ the flow case enters the transitional zone and two isolated global modes appear
in the eigenspectrum VII.16. The isolated global modes have a comparable pulsation
and growth rate but different symmetry. The two eigenvectors are depicted in figure
VII.17. The two global eigenvectors act on the flow field close to the roughness. Their
appearance is linked to the recirculation bubble size. Increasing the MVG’s impact angle
θ the separation zone as well as the extension of the shear flow increase. Thus, global
eigenmodes are recovered as for the cylindrical roughness case. Increasing the angle a new
stagnation zone appears in front of the roughness. It has to be said that the θ = 60◦ case
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Figure VII.16: Global eigenspectrum increasing θ.

(a)

(b)

Figure VII.17: ±10% of real part of streamwise velocity perturbation for symmetric (a)
and antisymmetric (b) global mode at θ = 60◦.

is just a numerical experiment that will never be used for control purposes. Nevertheless,
it is a powerful example to emphasise the link between the separation zone size and the
global character of the eigenmodes.

VII.3.3.2 Re effect

Now, we maintain the geometry unchanged, keeping constant θ = 15◦, and we change
the Reynold number to observe unsteadiness in the direct numerical simulation. The flow
case moves at iso-aspect ratio in the Von Doenhoff-Braslow diagram VII.19. The flow
cases studied to evaluate the Re effect are summarized in table VII.4. At Re = 1500 the
flow case moves into the unsteady region and also the DNS shows unsteady behaviour.
The streaks start to oscillate in a varicose fashion far from the MVGs as illustrated in
figure VII.21. The velocity signal measured by a probe placed at (x, y, z) = (60, 1, 3)
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(a) (b)

(c) (d)

Figure VII.18: Separation zone for θ = 15◦(a), 30◦(b), 45◦(c) and 60◦(d).

Re 657 1000 1350 1500

d/h 0.64 0.64 0.64 0.64√
Reh 20.5 25.3 29.2 30.9

Table VII.4: Studied cases for Re effect.

shows how the modal behaviour is characterized by just one pulsation at ω = 0.763. The
SFD has been used to recover steady solution and evaluate the global stability analysis.
The superposition of the eigenspectrum at different Reynolds numbers shows (fig. VII.22)
how increasing Re a collection of global modes become unsteady. In agreement with the
DNS, the unsteady modes are around ω = 0.8. Concerning the numerical dependence
of the obtained eigenspectrum, further investigations are necessary. The unstable modes
resemble convective modes pushed downstreams toward the outflow boundary condition
(see figure VII.23). The presence of a collection of unstable global modes instead of just
one isolated global mode could be due to a short numerical domain. As experienced
by Loiseau in its Ph.D thesis (Loiseau, 2014), if the numerical domain is not longer
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Figure VII.19: Von Doenhoff-Braslow diagram increasing Re. Blue marker refers to ex-
perimental L1 case (Shahinfar et al., 2014). Re values 659, 1000, 1350 and 1500.

Figure VII.20: Positive and negative wall normal velocity for unsteady DNS at Re = 1500.
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Figure VII.21: Time signal and its Fourier transform at Re = 1500.

enough to embed the whole eigenvector, the eigenspectrum shows a collection of unstable
eigenmodes aligned with the pseudospectrum curves (Lesshafft, 2017) instead of just one
isolated global mode recovered with a longer domain. In the present case also increasing
the numerical domain up to x = 180, the isolated global mode is not achieved. Increasing
the Reynolds number the viscosity effects are reduced and if the instability is provided by
an inflectional velocity profile the global mode may need a huge numerical domain to be
properly discretized. However, despite the numerical weakness of the achieved result, the
critical Reynolds number could slightly change if the wavemaker is not embedded in the
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Figure VII.22: Global eigenspectrum increasing Re.

Figure VII.23: ±10% of streamwise velocity of unstable eigenvector at ω = 0.8 for
Re = 1500.

numerical domain but the supercritical nature of the bifurcation does not change. Finally,
increasing Re leads to the arise of steady antisymmetric modes.

VII.3.3.3 h/δ1 effect

To conclude the parametric analysis also the effect of the shear ratio h/δ1 has been in-
vestigated. Increasing h/δ1 the dimension of the roughness related to the boundary layer
thickness increases. A sketch is reported in figure VII.24. The shear growth is achieved

Figure VII.24: Sketch of the MVG dimension related to boundary layer thickness δ99.

moving the MVGs toward the leading edge. Increasing h/δ1 the streamwise velocity on
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the roughness head increases. The flow case in the Von Doenhoff-Braslow diagram VII.19
moves at iso-shear ratio towards the transitional region. The four studied cases are listed

Figure VII.25: Von Doenhoff-Braslow diagram increasing h/δ1. Blue marker refers to
experimental L1 case (Shahinfar et al., 2014). h/δ1 values 1.17, 1.5, 2 and 2.3.

in table VII.5. Even if the flow case enters in the transitional region, no unstable eigen-

h/δ1 1.17 1.5 2 2.3
d/h 0.64 0.64 0.64 0.64√
Reh 20.5 22.5 24.4 25

Table VII.5: Studied cases for h/δ1 effect.

modes are observed in figure VII.27 for h/δ1 = 2.3. Also in this case symmetric and
antisymmetric eigenmodes are present in the eigenspectrum. The shear value does not
affect drastically the asymptotic behaviour but observing the initial optimal perturbation
in figure VII.11 the MVG head is the most sensible zone. The optimal perturbation for
the case with h/δ1 = 2 shows a dangerous energy transient growth. The gain curve at
h/δ1 = 1.17 moves to higher gain level up to Et/E0 ∼ 107. This last result reduces the
applicability of the MVGs devices to control transition.

VII.4 Overall discussion about MVGs roughness

The global spectrum and pseudospectrum confirm the experimental results about MVGs.
When they are used in the design set-up, the flow is globally stable and it is receptive
to the streaky-TS mode. Unfortunately, if the asymptotic features promote the use of
the MVGs, the short time behaviour is affected by the non-normalities of the system.
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Figure VII.26: Global eigenspectrum increasing h/δ1.

Figure VII.27: Transient energy growth comparison between h/δ1 = 1.17 (black contin-
uous line) and δ1 = 2 (red dashed line). Blue region highlight Topt range for which the
optimal perturbation is antisymmetric.

The presence of the MVGs induces the presence of unstable convective local modes that
allow transient energy growth. Depending on the target time, the optimal perturbation
exhibits symmetric and antisymmetric optimal perturbations coherent with the presence
of symmetric and antisymmetric local unstable modes. Increasing the impact angle θ
or the Reynolds number Re it is possible to achieve supercritical bifurcation. The size
of the separation zone is representative of the global features of the eigenvector. The
experiments performed with low external perturbation are not representative of the non-
normality introduced by the MVG roughness. The non-normality drastically increases as
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the MVG head approaches the height of the boundary layer thickness. Further analysis
are necessary to quantify the amplitude of the external perturbation necessary to trigger
non-modal unsteadiness.
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Chapter VIII

Overall conclusion

VIII.1 Conclusion

In this thesis the flow over roughness elements has been studied. The recent studies on
the use of wall roughness to delay transition justify the strong interest in the understand-
ing of the operational limitations of this passive control. Roughness elements are able to
generate counter-rotating vortices which trigger the lift-up effect. The induced high and
low speed streaks modulate the boundary layer inducing a stabilizing energy production
term that works in the spanwise direction against the destabilizing wall-normal one. If in
the field far from the roughness a pattern of high and low speed streaks is recovered, close
to the used roughness element the induced shear can introduce dangerous unsteadiness.
The latter are propagated downstream inducing secondary instability of the streaks. The
nature of the induced unsteadiness has been studied in detail in this thesis.

The flow field around a cylindrical roughness has been studied by means of:

1. comparison between DNS and experiments,

2. local stability analysis,

3. global stability analysis,

4. receptivity analysis,

5. perturbed DNS.

The possibility of a supercritical bifurcation induced by a global unsteady mode has been
amply demonstrated for different roughness shapes. However, it was not clear how a glob-
ally stable case might induce unsteadiness in an experiment. Despite the stability of the
global spectrum, the distribution of the eigenvalues in the complex plane provides many
information. Such information are extracted by the evaluation of the pseudospectrum
and the resolvent curve. These two tools show how the receptivity of a stable eigenvalue
can so high that it can be easily triggered by an external perturbation with a really low
amplitude. By using the optimal forcing procedure it was revealed how the spatial distri-
bution of the forcing associated to the receptive mode looks like the spatial distribution
of the adjoint mode associated to the same forcing pulsation. This is possible because
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the global mode has a spatial support that is close to the roughness, whereas the other
modes are convective and then pushed towards the outflow boundary. The eigenvectors
being orthogonal to each other, they do not interact when forced. Different symmetries
also cause orthogonality between eigenvectors. When just the isolated sinuous global
mode is present in the eigenspectrum, the perturbed DNS exhibits varicose response due
to receptivity of varicose convective modes. This is in disagreement with the resolvent
curve that reveals a high receptivity of the sinuous mode. This is possible because the
non-interaction between sinuous and varicose modes makes improbable the emergence of
a sinuous response when most of the frequencies are linked to a varicose feature of the
associated optimal response.

When the global mode is triggered (by receptivity mechanisms or by supercritical
bifurcation) the induced unsteadiness are very much shaped by the global mode. A dy-
namical mode decomposition (DMD) reveals how the shape of the leading DMD mode is
similar to the global mode. Concerning the fluid structures observed in the unsteady be-
haviour, the global eigenvector appears to be involved in the hairpin vortices generation.
Behind the cylinder, the hairpin eddies are generated by a non-linear interaction of linear
ingredients and then sustained by the base flow topology. Once the first bifurcation is
triggered, a second bifurcation arises giving rise to transition to turbulence. The topology
of the base flow and more precisely the evolution of the streaks in streamwise direction,
shows an increasing inflectional profile in the spanwise direction moving downstream. This
allows the perturbation placed onto the low speed streaks to spread in the spanwise di-
rection promoting the generation of new streamwise vortices also observed experimentally.

Spanning different Reynolds numbers and different values of the shear ratio, both
sinuous and varicose global modes have been found. Increasing the Reynolds number the
varicose mode is stabilized and the sinuous one is promoted. On the contrary, reducing the
difference between the cylinder height and the boundary layer thickness both varicose and
sinuous global modes are destabilized up to bring the varicose mode in the unstable region
of eigenspectrum. With the same aspect ratio of the cylindrical roughness both sinuous
and varicose supercritical bifurcations can be experienced. The first one is achieved with
high value of δ1/h and high value of Re. The second one can be observed with low δ1/h
value and low Re.

By replacing the cylindrical roughness with the miniaturized vortex generators the
scenario completely changes. The miniaturized vortex generation shape induces a small
separation zone that does not allow the presence of an isolated global mode. The pseu-
dospectrum shows the high receptivity of the streaky-TS mode but no global modes linked
to the shear induced by the geometrical disturbance are noticed. If the asymptotic be-
haviour is not affected by the MVG, the short-time dynamics reveals a high non-normality
of the system. Different symmetries are recovered as optimal initial condition varying the
optimization target time. The highest transient energy gain is linked to antisymmetric
perturbation that at t = 0 is located on the MVG head and at t = Topt is located on
the two separated high and low speed streaks. For a long optimization time the opti-
mal perturbation is symmetric and the streaky-TS shape observed in the eigenfunctions
is recovered. The presence of antisymmetric optimal and sub-optimal modes is due to
the presence of antisymmetric convective unstable modes behind the MVGs. Increasing
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the angle between the MVG roughness and the streamwise direction, the separation zone
increases and the appearance of isolated global modes is observed in the eigenspectrum.
A supercritical bifurcation can be also obtained increasing the Re number. On the con-
trary increasing the ratio h/δ1, thus reducing the difference between the boundary layer
thickness and the MVG height the global stability does not exhibit significant variations
but the optimal perturbation shows a drastic increase of the energy growth up to 107

times the initial energy. Low amplitude of the external perturbation can make the MVGs
unusable to delay transition.

VIII.2 Perspectives

This thesis sheds light on the limits of the use of roughness elements to delay transition
and contributes to give a mathematical and physical explanation to the transitional zone
in the Von Doenhoff-Braslow diagram.

The perspectives for the continuation of this work arise from several discussion between
the authors and the supervisors and more over from the innumerable DNS performed
without a clear mathematical and physical explanation.

1. The work carried out in this thesis is a continuation of a part of the Jean-Christophe
Loiseau’s thesis. At the end of his thesis, he suggested to investigate onto the energy
transient growth in presence of the cylindrical roughness. Unfortunately this was
not possible in this work for lack of time. By the optimally forced DNS we know that
a transient energy growth exists and maybe the role of the transient growth is
important to select the perturbation symmetries when the flow over the roughness
is randomly perturbed. For example, in the case of a globally unstable sinuous
eigenmode initialized with a random flow field, a varicose perturbation is rapidly
generated and only when the latter is out from the numerical domain the sinuous
unsteadiness is experienced. Without a transient growth analysis we do not have
any measure of the involved non-normalities in the transient behaviour.

2. As claimed in §V the transition behind the cylindrical roughness does not arise di-
rectly by the unsteady global mode. The unsteady global mode triggers a secondary
perturbation that goes towards transition. For a case that shows an unstable sinu-
ous global mode with a growth rate slightly above the stability threshold the DNS
reveals a sinuous modulation of the low speed streak in the middle but no transition
is observed. It would be interesting to show, by a floquet analysis, how the eigen-
mode associated to the secondary bifurcation extracts energy from the periodic base
flow.

3. To complete the analysis of the flow over cylindrical roughness the spatial correlation
of the stochastically perturbed case presented in section §VI needs to be computed
by the numerical solution of a Lyapunov equation in order to check the possible
presence of the sinuous mode. Further DNS with different turbulent design need to
be carried out in order to check the sensitivity of the system to different integral
scales of the turbulence. It would be interesting to check if the penetrability of the
pure OS and pure Squire modes change if the boundary layer is modified by streaky
structures.
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4. Concerning the flow over MVG roughness elements, the study of the experimental
case provides an exhaustive explanation on the limits of MVGs use as passive control
to delay transition. If the steady asymptotic dynamics is preserved, the short time
dynamics can induce dangerous transient energy growth. Further DNS need to be
performed to shed light on the amplitude value that the optimal perturbation need
to satisfy to trigger non-normalities.

5. An optimal forcing on a numerical domain extended on x-direction 1000 times
the height of the roughness also need to be performed. If in the boundary layer the
optimal forcing is located onto the lower branch of the neutral curve and the optimal
response onto the upper branch, what happens when two unsteady zones exist in
the numerical domain? In the MVG case the first neutral curve is located close the
roughness and the second one is related to the streaky-TS wave. It is not clear if
the optimal forcing takes place just onto the lower branch of the first unsteady zone
or it should show a structure with two spatial supports, one for each lower branch.

6. The parametric analysis shows how asymptotic and short time dynamics can be
highly modified varying Reynolds number, MVG angle and shear. In all cases the
Von Doenhoff-Braslow is predictive of the unsteady dynamics. The Von Doenhoff-
Braslow diagram is based just on the aspect ratio and on the roughness Reynolds
Reh. Is this enough to be predictive on the appearance of the unsteadiness? One
can think to change simultaneously the shear ratio (and then the velocity on the
roughness head) and the viscosity in order to keep constant Reh. We tried to perform
this numerical experiment and the answer to the previous question is negative. In
figure VIII.1 there is one of the results achieved keeping the Reh and d/h values equal
to the experimental case. The case in figure VIII.1 is unsteady with a non-symmetric
perturbation. The hairpin vortices are strong behind one streak and weak behind
the other. A sort of intermittent behaviour is also observed. The strong hairpin
generation moves between the two streaks. No stability analysis has been done yet
but different scenarios are possible. In particular, this behaviour might be due to:
1) a superposition of symmetric and antisymmetric convective modes; 2) an energy
transient growth of the first two singular modes; 3) a secondary instability of the
wake behind two roughness elements like the Flip-Flop instability. At the end of
this Ph.D the answer has not been found yet. In any case, a third axis that takes
into account the parameter δ1/h needs to be considered in an equivalent of the Von
Doenhoff-Braslow diagram.

Roughness topic must be followed up to give an answer to all this question.
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Figure VIII.1: Unsteady case despite (Reh)
0.5 = 20.5 and d/h = 0.63 as in the experi-

ments.
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.1 Continuous adjoint equations

The augmented functional is defined as
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∂ui
∂t

+
∂(uiUj)

∂xj
+
∂(Uiuj)

∂xj
+
∂p

∂xi
− 1

Re

∂2ui
∂x2j

+
∂(uiuj)

∂xj

)

dV dt +

−
∫ T

0

∫

V

p†
∂ui
∂xi

dV dt− λ (E0 − E(0))

(1)

where

E(T ) =
1

2

∫

V

ui(T )ui(T )dV ; E(0) =
1

2

∫

V

ui(0)ui(0)dV

Seeking for the extrema of L, one has to impose that its derivatives with respect to every
independent variable are equal to zero, giving the equations that close the optimization
problem

∂L
∂λ

= 0 =⇒ E0 − E(0) = 0 =⇒ E0 = E(0) (2)

∂L
∂u†k

= 0 =⇒ ∂uk
∂t

+
∂(ukUj)

∂xj
+
∂(Ukuj)

∂xj
+

∂p

∂xk
− 1

Re

∂2uk
∂x2j

+
∂(ukuj)

∂xj
= 0 (3)

∂L
∂p†

= 0 =⇒ ∂ui
∂xi

= 0 (4)

∂L
∂p

= 0 =⇒ ∂u†i
∂xi

= 0 (5)

∂L
∂uk

= 0 =⇒ ∂u†k
∂t

+
∂(u†kUj)

∂xj
− u†i

∂Ui

∂xk
+
∂p†

∂xk
+

1

Re

∂2u†k
∂x2j

+
∂(u†kuj)

∂xj
− u†i

∂ui
∂xk

= 0 (6)

∂L
∂uk(T )

= 0 =⇒ uk(T )− u†k(T ) = 0 (7)

∂L
∂uk(0)

= 0 =⇒ u†k(0)− λuk(0) = 0 (8)

Here follows the demonstration of eq. (1)-(8).

Demonstration of eq. (2) is immediate.
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For eq. (3)

∂L
∂u†k

= 0 =⇒

=⇒ − ∂

∂u†k

∫ T

0

∫

V

u†i

(
∂ui
∂t

+
∂(uiUj)

∂xj
+
∂(Uiuj)

∂xj
+
∂p

∂xi
− 1

Re

∂2ui
∂x2j

+
∂(uiuj)

∂xj

)

dV dt = 0

∫ T

0

∫

V

∂u†i
∂u†k

(
∂ui
∂t

+
∂(uiUj)

∂xj
+
∂(Uiuj)

∂xj
+
∂p

∂xi
− 1

Re

∂2ui
∂x2j

+
∂(uiuj)

∂xj

)

dV dt = 0

∫ T

0

∫

V

δik

(
∂ui
∂t

+
∂(uiUj)

∂xj
+
∂(Uiuj)

∂xj
+
∂p

∂xi
− 1

Re

∂2ui
∂x2j

+
∂(uiuj)

∂xj

)

dV dt = 0

in fact it should be remembered that there is not dependence between direct variables

and adjoint variables, that is ∂qi
∂q†

k

= 0, and ∂q†i
∂qk

= 0, too. Bringing the Knoneker delta into

the derivative operator and remembering its propriety that qiδik = qk, one has

∫ T

0

∫

V

(
∂(uiδik)

∂t
+
∂(uiδikUj)

∂xj
+
∂(Uiδikuj)

∂xj
+
∂p

∂xi
δik −

1

Re

∂2(uiδik)

∂x2j
+
∂(uiδikuj)

∂xj

)

dV dt = 0

∫ T

0

∫

V

(
∂uk
∂t

+
∂(ukUj)

∂xj
+
∂(Ukuj)

∂xj
+

∂p

∂xk
− 1

Re

∂2uk
∂x2j

+
∂(ukuj)

∂xj

)

dV dt = 0

Imposing that the last integral has to be null, it means that the integrand function has
to be equal to zero in every point of the domain and for every moment of time. Finally,
this brings to:

∂uk
∂t

+
∂(ukUj)

∂xj
+
∂(Ukuj)

∂xj
+

∂p

∂xk
− 1

Re

∂2uk
∂x2j

+
∂(ukuj)

∂xj
= 0

For eq. (4), for the same reason as above

∂L
∂p†

= 0 =⇒ −
∫ T

0

∫

V

∂ui
∂xi

dV dt = 0 =⇒ ∂ui
∂xi

= 0

For eq. (5), it is necessary to do an integration by parts of the term u†i
∂p
∂xi

∫ T

0

∫

V

u†i
∂p

∂xi
dV dt =

✟✟✟✟✟✟✟✟∫ T

0

[

u†ip
]

∂V
dt−

∫ T

0

∫

V

p
∂u†i
∂xi

dV dt = −
∫ T

0

∫

V

p
∂u†i
∂xi

dV dt

where the first integral on the RHS is null because of the u†i = 0 boundary condition used
(adjoint perturbations equal to zero on the domain boundaries). In this way, eq. (1)

B



becomes

L = E(T )−
∫ T

0

∫

V

u†i

(
∂ui
∂t

+
∂(uiUj)

∂xj
+
∂(Uiuj)

∂xj
− 1

Re

∂2ui
∂x2j

+
∂(uiuj)

∂xj

)

dV dt +

+

∫ T

0

∫

V

p
∂u†i
∂xi

dV dt−
∫ T

0

∫

V

p†
∂ui
∂xi

dV dt− λ (E0 −E(0))

which derivation provides

∂L
∂p

= 0 =⇒
∫ T

0

∫

V

∂u†i
∂xi

dV dt = 0 =⇒ ∂u†i
∂xi

= 0

In order to obtain eq. 6, integration by parts of many terms of L is needed.

L = E(T )+

−
∫ T

0

∫

V

(

u†i
∂ui
∂t

︸ ︷︷ ︸
1

+ u†i
∂(uiUj)

∂xj
︸ ︷︷ ︸

2

+ u†i
∂(Uiuj)

∂xj
︸ ︷︷ ︸

3

+u†i
∂p

∂xi
− 1

Re
u†i
∂2ui
∂x2j

︸ ︷︷ ︸
4

+ u†i
∂(uiuj)

∂xj
︸ ︷︷ ︸

5

)

dV dt +

−
∫ T

0

∫

V

p†
∂ui
∂xi

︸ ︷︷ ︸
6

dV dt− λ (E0 − E(0))

Integration by parts of terms 1, 2, 4, 6 and development of terms 3, 5 give

1 :

∫ T

0

∫

V

u†i
∂ui
∂t

dV dt =
✘✘✘✘✘✘✘✘∫ T

0

[

u†iui

]

∂V
dt−

∫ T

0

∫

V

ui
∂u†i
∂t

dV dt = −
∫ T

0

∫

V

ui
∂u†i
∂t

dV dt

2 :

∫ T

0

∫

V

u†i
∂(uiUj)

∂xj
dV dt =

✘✘✘✘✘✘✘✘✘✘∫ T

0

[

u†iuiUj

]

∂V
dt−

∫ T

0

∫

V

uiUj
∂u†i
∂xj

dV dt = −
∫ T

0

∫

V

uiUj
∂u†i
∂xj

dV dt

3 :

∫ T

0

∫

V

u†i
∂(Uiuj)

∂xj
dV dt =

∫ T

0

∫

V

u†i

(

uj
∂Ui

∂xj
+

�
�
��Ui
∂uj
∂xj

)

dV dt =

∫ T

0

∫

V

u†iuj
∂Ui

∂xj
dV dt

4 :

∫ T

0

∫

V

1

Re
u†i
∂2ui
∂x2j

dV dt =
✘✘✘✘✘✘✘✘✘✘✘∫ T

0

[
1

Re
u†i
∂ui
∂xj

]

∂V

dt−
∫ T

0

∫

V

1

Re

∂u†i
∂xj

∂ui
∂xj

dV dt =

= −
∫ T

0

∫

V

1

Re

∂u†i
∂xj

∂ui
∂xj

dV dt =
✘✘✘✘✘✘✘✘✘✘✘✘

−
∫ T

0

[

1

Re

∂u†i
∂xj

ui

]

∂V

dt+

∫ T

0

∫

V

1

Re
ui
∂2u†i
∂x2j

dV dt =

=

∫ T

0

∫

V

1

Re
ui
∂2u†i
∂x2j

dV dt

5 :

∫ T

0

∫

V

u†i
∂(uiuj)

∂xj
dV dt =

∫ T

0

∫

V

u†i

(

uj
∂ui
∂xj

+
�
�
��

ui
∂uj
∂xj

)

dV dt =

∫ T

0

∫

V

u†iuj
∂ui
∂xj

dV dt

6 :

∫ T

0

∫

V

p†
∂ui
∂xi

dV dt =
✘✘✘✘✘✘✘✘
∫ T

0

[
p†ui

]

∂V
dt−

∫ T

0

∫

V

ui
∂p†

∂xi
dV dt = −

∫ T

0

∫

V

ui
∂p†

∂xi
dV dt

C



with ∂uj

∂xj
= 0 in term 3 and 5 coming from the mass conservation, and ui = u†i = 0 imposed

at the domain boundaries. After this, eq. (1) becomes:

L = E(T )+

+

∫ T

0

∫

V

(

ui
∂u†i
∂t

︸ ︷︷ ︸
1

+ uiUj
∂u†i
∂xj

︸ ︷︷ ︸
2

−u†iuj
∂Ui

∂xj
︸ ︷︷ ︸

3

−u†i
∂p

∂xi
+

1

Re
ui
∂2u†i
∂x2j

︸ ︷︷ ︸
4

−u†iuj
∂ui
∂xj

︸ ︷︷ ︸
5

)

dV dt+

+

∫ T

0

∫

V

ui
∂p†

∂xi
︸ ︷︷ ︸

6

dV dt− λ (E0 − E(0))

Deriving the last expression with respect to the variable uk, one has

∂L
∂uk

= 0 =⇒

=⇒ ∂

∂uk

∫ T

0

∫

V

(

ui
∂u†i
∂t

︸ ︷︷ ︸
1

+ uiUj
∂u†i
∂xj

︸ ︷︷ ︸
2

−u†iuj
∂Ui

∂xj
︸ ︷︷ ︸

3

+
1

Re
ui
∂2u†i
∂x2j

︸ ︷︷ ︸
4

−u†iuj
∂ui
∂xj

︸ ︷︷ ︸
5

+ ui
∂p†

∂xi
︸ ︷︷ ︸

6

)

dV dt = 0

∫ T

0

∫

V

(
∂ui
∂uk

∂u†i
∂t

︸ ︷︷ ︸
1

+Uj
∂ui
∂uk

∂u†i
∂xj

︸ ︷︷ ︸
2

−u†i
∂uj
∂uk

∂Ui

∂xj
︸ ︷︷ ︸

3

+
1

Re

∂ui
∂uk

∂2u†i
∂x2j

︸ ︷︷ ︸
4

−u†i
∂uj
∂uk

∂ui
∂xj

︸ ︷︷ ︸
5.1

−u†iuj
∂

∂uk

(
∂ui
∂xj

)

︸ ︷︷ ︸
5.2

+

+
∂ui
∂uk

∂p†

∂xi
︸ ︷︷ ︸

6

)

dV dt = 0

∫ T

0

∫

V

(

δik
∂u†i
∂t

︸ ︷︷ ︸
1

+Ujδik
∂u†i
∂xj

︸ ︷︷ ︸
2

−u†iδjk
∂Ui

∂xj
︸ ︷︷ ︸

3

+
1

Re
δik
∂2u†i
∂x2j

︸ ︷︷ ︸
4

−u†iδjk
∂ui
∂xj

︸ ︷︷ ︸
5.1

−u†iuj
∂

∂uk

(
∂ui
∂xj

)

︸ ︷︷ ︸
5.2

+

+ δik
∂p†

∂xi
︸ ︷︷ ︸

6

)

dV dt = 0

∫ T

0

∫

V

(
∂(u†iδik)

∂t
︸ ︷︷ ︸

1

+Uj
∂(u†iδik)

∂xj
︸ ︷︷ ︸

2

−u†i
∂Ui

∂xj
δjk

︸ ︷︷ ︸
3

+
1

Re

∂2(u†iδik)

∂x2j
︸ ︷︷ ︸

4

−u†i
∂ui
∂xj

δjk
︸ ︷︷ ︸

5.1

−u†iuj
∂

∂uk

(
∂ui
∂xj

)

︸ ︷︷ ︸
5.2

+

+
∂p†

∂xi
δik

︸ ︷︷ ︸
6

)

dV dt = 0

∫ T

0

∫

V

(
∂u†k
∂t
︸︷︷︸

1

+Uj
∂u†k
∂xj

︸ ︷︷ ︸
2

−u†i
∂Ui

∂xk
︸ ︷︷ ︸

3

+
1

Re

∂2u†k
∂x2j

︸ ︷︷ ︸
4

−u†i
∂ui
∂xk

︸ ︷︷ ︸
5.1

−u†iuj
∂

∂uk

(
∂ui
∂xj

)

︸ ︷︷ ︸
5.2

+
∂p†

∂xk
︸︷︷︸

6

)

dV dt = 0

D



Terms 2 and 5.2 need further development.

2 : Uj
∂u†k
∂xj

=
∂(Uju

†
k)

∂xj
−

�
�
�
�

u†k
∂Uj

∂xj
=
∂(Uju

†
k)

∂xj

5.2 :

∫ T

0

∫

V

u†iuj
∂

∂uk

(
∂ui
∂xj

)

dV dt =
✘✘✘✘✘✘✘✘✘✘✘✘✘✘∫ T

0

∫

V

[

u†iuj
∂ui
∂uk

]

∂V

dV dt−
∫ T

0

∫

V

∂ui
∂uk

∂(u†iuj)

∂xj
dV dt =

= −
∫ T

0

∫

V

δik
∂(u†iuj)

∂xj
dV dt = −

∫ T

0

∫

V

∂(u†iδikuj)

∂xj
= −

∫ T

0

∫

V

∂(u†kuj)

∂xj
dV dt

In this way, the last equation becomes

∫ T

0

∫

V

(
∂u†k
∂t
︸︷︷︸

1

+
∂(Uju

†
k)

∂xj
︸ ︷︷ ︸

2

−u†i
∂Ui

∂xk
︸ ︷︷ ︸

3

+
1

Re

∂2u†k
∂x2j

︸ ︷︷ ︸
4

−u†i
∂ui
∂xk

︸ ︷︷ ︸
5.1

+
∂(u†kuj)

∂xj
︸ ︷︷ ︸

5.2

+
∂p†

∂xk
︸︷︷︸

6

)

dV dt = 0

Imposing that the integral has to be null, finally one gets

∂u†k
∂t

+
∂(Uju

†
k)

∂xj
− u†i

∂Ui

∂xk
+

1

Re

∂2u†k
∂x2j

− u†i
∂ui
∂xk

+
∂(u†kuj)

∂xj
+
∂p†

∂xk
= 0

E



.2 Free Stream Turbulence implementation

.2.1 OSS modes

To generate a synthetic free stream turbulence we used the same method proposed by
Brandt et al. (2004). A subset of 200 Orr-Sommerfeld Squire modes is used to generate
the instantaneous inlet flow field in conjunction with the Blasius velocity profile

Uinflow = UBlas +
200∑

i=1

Aiûi(y)e
(iβz−iωt) (9)

Ai being the weight associated to each mode. With the hypothesis that in the free stream
the velocity field U is constant and equal to 1 and then U ′ = U ′′ = 0 being U ′ and U ′′ the
first and the second derivative of the velocity profile in the wall-normal direction. Hence,
the coupling therm in the Squire equation is then annihilate −iβU ′ = 0. In this scenario
the Orr-Sommerfeld (10) and Squire (11) equation are decoupled to each other

[

(−iω + iαU)(D2 − k2)− 1

Re
(D2 − k2)2

]

v̂ = 0 (10)

[

(−iω + iαU)− 1

Re
(D2 − k2)

]

η̂ = 0 (11)

and it is possible to get pure Orr-Sommerfeld and pure Squire modes. Introducing U = 1
the Orr-Sommerfeld equation can be recast as:

(D2 − k2)2v̂ − iαRe{(1− c)(D2 − k2)}v̂ = 0 (12)

where c is the phase velocity, D2 the second derivative operator, k2 = α2 + β2 and v̂(y)
the wall normal perturbation. For y → ∞ is

v̂ = Aeiγy +Be−iγy + Ce−ky (13)

and an analytical solution for the eigenvalue c can be extracted (Salwen and Grosch,
1981); (Grosch and Salwen, 1978)

c = 1− i

(

1 +
γ2

k2

)
k2

αRe
(14)

γ being the wavenumber in the wall-normal direction. Once α, β, γ and Re have been
defined, the eigenvalue is fixed by (14) and it can be used in (12) to find the associated
eigenvector. To solve the equation (10) four boundary condition have to be imposed. The
firsts two are the no-slip at the wall v̂0 = Dv̂0 = 0. The third is a dirichlet normalization
boundary condition v̂∞ = 1. The last one is provided by Jacobs and Durbin (1998) and
it is a numerical condition achieved once discretized the problem. The relation (13) is
imposed onto two successive discretization points in the free-stream y1, y2

(D2v̂ + γ2v̂)y1
(D2v̂ + γ2v̂)y2

= ek(y2−y1) (15)

A



The boundary condition (15) is imposed on the last two point of the numerical domain.
The imposition of the condition (15) is not straightforward as it can not be imposed
directly in the OSS operator. A newton iteration is then implemented to restore iter-
atively the right boundary condition. The solution v̂y2 is set equal to v̂y1 = 1 as first
approximation. Of course this produces an error that can be evaluated as

(D2v̂ + γ2v̂)y1
(D2v̂ + γ2v̂)y2

− ek(y2−y1) = ξ1. (16)

Adding a small perturbation to v̂y2 = 1 + ε a second error is achieved ξ2. A first order
sensibility can be now estimated as

dξ

dε
=
ξ2 − ξ1
ε

(17)

At this point a Newton iteration is used to find ε that annihilate ξ and then obtain the
wanted solution. Usually with 500 Chebyshev collocation points to discretize the velocity
profile 4 Newton iteration are enough to reach an error level ξ < 10−10. In figure 2 the
same OSS eigenmode of Brandt et al. (2002) is achieved. Since the Squire equation (11)

v̂
-1 0 1

y

0
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v
r

v
i |v|

Figure 2: Orr-Sommerfeld eigenfunction vs y for Re = 500, α = 1, β = 0.2 and γ = 0.628.
The mode can is the same as in figure 6 of Brandt et al. (2002)

is decoupled from the OSS (10) one the normalization condition η∞ = 1 is used at the
top of the numerical domain and the no-slip condition η0 = 0 at the wall.
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The pure OSS mode (ûoss, v̂oss, ŵoss) can now be obtained by

ûoss = iαDv̂/k2 (18)

v̂oss = v̂ (19)

ŵoss = iβDv̂/k2 (20)

and the pure Squire mode (ûsq, v̂sq, ŵsq) as

ûsq = −iβη̂/k2 (21)

v̂sq = 0 (22)

ŵsq = iαη̂/k2 (23)

In order to increase the isotropy of the system a random phase φi ∈ [0, π[ is added to OSS
and Squire modes (Schlatter, 2001). The final perturbation is now

û = cos(φ1)e
iφ2ûoss + sin(φ1)e

iφ3 ûsq (24)

v̂ = cos(φ1)e
iφ2 v̂oss (25)

ŵ = cos(φ1)e
iφ2ŵoss + sin(φ1)e

iφ3ŵsq (26)

The velocity vector (û, v̂, ŵ) is now normalized in order to have unitary energy density by
taking in consideration just the numerical domain out from the boundary layer y > 5δ1.
The resulting eigenfunction will not respect the boundary conditions imposed in the DNS
at the top of the domain. As suggested by Brandt et al. (2004) a fringe zone as those
explained in chapter §III can be used to damp to 0 the perturbation on the top of the
domain. This will avoid small time step for the time marching of the DNS.

.2.2 Turbulent spectrum discretization.

As explained in §IV a turbulent energy spectrum has to be chosen to set the amplitude Ai

at each eigenfunction of the turbulent basis. For this purpose the Von-Karman spectrum
has been used

E(k) =
2

3

a(kL)4

(b+ (kL)2)17/6
Lq. (27)

Thanks to eq. 27 it is possible to associate at each k an energy. Following Brandt et al.
(2004) the range of the available wavenumbers [kmin, kmax] is divide in 20 shell and at each
kj is associate an E(kj). Since k2 = α2 + β2 + γ2 then each ki represents a sphere that
can be discretized with a regular dodecahedron which is composed by 20 corners (see fig.
3). The dodecahedron is not symmetric, hence, each of the 20 (α, β, γ) triad is different.
Using the dodecahedron for each kj a total of 200 (α, β, γ) triads are generated. The
amplitude of the eigenmode is equal to

A2
i (kj) = E(kj)

(kmax − kmin)/19

20
. (28)

To increase the isotropy of the basis and to avoid concentric dodecahedron, a random
rotation is added at each shell kj.

C



-2
-1

γ

0

 20

 6

 5

1

 15

 16

 17

2

 11

 9

β

 2

 7

 1

 8

 10

 12

 19

2

 14

 13

 3

 4

 18

1

α

0
-1

-2

-2

2

1

0

-1

Figure 3: Example of the dodecahedron used to discretize k-shell. The dodecahedron is a
regular non-symmetric polyhedron with 20 corners.

.2.3 Validation

Once generated, the eigenfunctions are read in Nek5000 and scaled to the good ampli-
tude level. The streamwise wavenumber is converted in a pulsation invoking the Taylor
hypothesis ω = U∞α. To validate the procedure the Case1 in (Brandt et al., 2004) is
reproduced.

x× y × z nx× ny × nz Reδ1 Tu% L/δ1
1000× 100× 90 1152× 201× 192 300 4.7 5

Table 1: Set-up of Case1 in Brandt et al. (2004).

A total of 133980 spectral elements with a spectral order equal to 12 are used in
Nek5000 to achieve the same solution depicted in (Brandt et al., 2004). The expo-
nential Tu decay with the streamwise direction is shown in figure 4. The figure 4
can be compared with the figure 2 in (Brandt et al., 2004). The turbulent intensity
Tu =

√

(u2rms + v2rms + w2
rms)/3 is evaluated at y/δ1 = 60 and averaged in z-direction.

The homogeneous and isotropic turbulence decay obeys to a power low as observed ex-
perimentally and in agreement with the stable nature of the pure OSS modes used as
basis to generate the inflow perturbation. A further comparison is provided by skin fric-
tion coefficient Cf vs Rex in figure 5. The figure 5 can be compared with figure 3a in
(Brandt et al., 2004). The Cf is used to highlight the transition position. In figure 5
the theoretical Blasius (laminar) Cf and the empirical turbulent one are also reported.
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Figure 4: Exponential Tu decay for Case1 in (Brandt et al., 2004). The curve is extracted
at y/δ1 = 60.
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Figure 5: Skin friction coefficient Cf vs Rex for Case1 in (Brandt et al., 2004).

Finally the instantaneous flow field is shown in figure 6. The figure 6 is extracted on the
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-45
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�

Figure 6: nstantaneous streamwise velocity field at y/δ1 = 2 for Case1 in (Brandt et al.,
2004).

wall-normal plane at y/δ1 = 2. The streaks generation induced by the lift-up mechanism
and the streaks instability with the generation of turbulent spots can be noticed in figure
6.
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Dynamique souscritique et supercritique d’un écoulement incompressible autour 
d’éléments de micro-rugosité 

 
RÉSUMÉ : Cette thèse vise à mettre en évidence les limites du contrôle passif en 
utilisant des éléments de rugosité miniaturisés. La topologie des écoulements induite par 
la présence d’une rugosité cylindrique et des générateurs de tourbillons miniaturisés a 
été étudiée pour analyser la dynamique pour des temps court et long. Différentes 
bifurcations supercritiques ont été examinées au moyen d’une analyse de stabilité 
globale. La bifurcation souscritique est déclenchée par des mécanismes de croissance 
transitoire de l'énergie ou par la réceptivité de modes globaux stables. Des structures de 
forçage optimal 3D sont extraites pour comprendre la distribution spatiale liée à la 
fréquence de résonance du système. La simulation numérique directe perturbée révèle le 
rôle central du mode global le moins stable dans les instationnarités non-linéaires 
observées. Une analyse détaillée des structures tourbillonnaires montre qu’elles sont 
principalement liées aux mécanismes linéaires sous-jacents. La principale 
caractéristique globale du mode propre est liée à la présence d’une zone de séparation 
en aval de la rugosité cylindrique. En utilisant des générateurs de tourbillon 
miniaturisés, cette zone de séparation est fortement diminuée et aucun mode global isolé 
est alors présent. La dynamique de l’écoulement se révèle être conduit non seulement 
par le nombre de Reynolds de rugosité et par son rapport d'aspect géométrique, mais 
aussi par le rapport entre la hauteur de la rugosité et l’epaisseur de couche limite. 
 
Mots clés : Ecoulements autour de rugosités, stabilité globale, forçage optimal 3D, 
réceptivité, transition vers la turbulence, croissance transitoire, contrôle passif. 
 

Subcritical and supercritical dynamics of incompressible flow over miniaturized 
roughness elements 

 
ABSTRACT : This thesis aims at highlighting the limits of passive control by using 
miniaturized roughness elements. The flow topology induced by the presence of 
cylindrical roughness and miniaturized vertex generators has been studied to uncover 
asymptotic and short time dynamics. Supercritical bifurcations has been investigated by 
means of global stability analysis. Subcritical bifurcation are induced by transient 
growth of the energy or receptivity of stable global modes. 3D optimal forcing 
structures are extracted to figure out the spatial distribution linked to the resonant 
pulsation. Perturbed direct numerical simulation reveals the pivotal role of the less 
steady global mode in the non-linear unsteadiness. A detailed analysis of the flow 
structures is provided and linked to the involved linear mechanisms. Global feature of 
the eigenmode are linked to the presence of the separation zone behind the cylindrical 
roughness. By using miniaturized vortex generators the separation zone is suppressed 
and no isolated global modes are present. The flow dynamics turns out to be driven not 
only by roughness Reynolds number and geometrical aspect ratio but also by the ratio 
between the roughness height and the boundary layer thickens. 
  
Keywords : Flow over roughness, global stability, 3D optimal forcing, receptivity to 
turbulence, transient growth, passive control. 


	Introduction
	Motivation: drag reduction
	Historical overview

	Origin of the present work
	Objective of this thesis
	Approach

	Organization of the manuscript

	Mathematical and theoretical basic notions
	Equation of Fluid Dynamics
	Instability framework
	Linear analysis
	Linearised Navier-Stokes equations
	Local approach to the NS equations.
	Bi-local approach to the NS equations.
	Global approach to the NS equations


	Non-normal operator
	Short time dynamics
	Response to harmonic forcing
	Pseudospectrum


	Numerical methods for instability analysis
	Nek5000
	Spatial discretisation: spectral elements
	Boundary conditions

	Time discretisation

	Steady solution of Navier-Stokes equation.
	Selective frequency damping
	BoostConv
	SFD vs BoostConv


	Modal decomposition
	Bi-Local stability analysis: numerical approach
	Chebyshev Gauss-Lobatto collocation method
	Fourier Collocation Method
	Boundary conditions
	Discretized Jacobian

	Global linear stability
	Time-stepping approach
	Pseudospectrum from Hessenberg matrix
	Other decompositions


	Transient growth analysis
	SVD-Arnoldi
	Optimization problem


	Optimal forcing analysis

	Linear analysis of flow over cylindrical roughness
	Transition overview
	On the Tollmien-Schlichting wave.
	Boundary layer receptivity to the Free Stream Turbulence
	Stabilizing effect of the streaks
	Flow dynamics over wall roughness

	IAG's experiments
	Experimental set-up
	Experimental results

	Numerical investigation
	Numerical set-up
	Steady state
	Linear stability
	Local stability analysis
	Global stability analysis
	Pseudospectrum
	Numerical convergence


	Varicose mode analysis
	Perturbation kinetic energy budget
	Wavemaker

	Optimal forcing and response analysis
	General receptivity of the varicose mode
	Overall discussion about varicose dynamics


	Non-linear analysis of flow over cylindrical roughness
	Non-linear analysis
	Impulsively forced DNS
	Optimally-forced DNS

	Receptivity to Free Stream Turbulence
	FST generation
	FST results
	DMD modes


	Generation of hairpin vortices
	Base flow
	Mean flow


	Overall discussion about transition

	Parametrical analysis
	Re and 1/h variation effect
	Reynolds number effect
	Shear effect

	Receptivity of the sinuous mode
	Receptivity to harmonic forcing
	Receptivity to free stream turbulence

	Overall discussion on the parametric analysis

	Flow over miniaturized vortex generators
	Streaks generation by MVGs
	Experimental studies

	Numerical investigation
	Set-up validation
	Motivation

	Linear analysis
	Modal stability
	Non-modal stability
	Out-of-design control
	 effect
	Re effect
	h/1 effect


	Overall discussion about MVGs roughness

	Overall conclusion
	Conclusion
	Perspectives

	Appendices
	Continuous adjoint equations
	Free Stream Turbulence implementation
	OSS modes
	Turbulent spectrum discretization.
	Validation
	Acknowledgements




	References

