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INTRODUCTION

Metastable two-phase flows are involved in many industrial fields as well as in natural

phenomena. In the nuclear energy industrial domain, metastable two-phase flows should

be taken into account in the study of hypothetical safety accidents. Within Pressurized

Water Reactors (PWRs), under nominal conditions, the coolant is a single-phase liquid water, which

may transform into a two-phase mixture during accidental transients. Moreover, liquid and vapor

may be in thermodynamic disequilibrium, thus, one or both phases are in metastable conditions.

In the nuclear domain, as well as in other industrial contexts, the correct simulation of those flows

is of paramount importance for enhancing the safety of the system. In fact, numerical simulations

are expected to provide accurate information about the mechanical efforts both on the nuclear fuel

and other reactor components. Nevertheless, the analysis of the metastable two-phase flows is very

challenging, and the complexity of simulating two-phase flows is higher compared to single-phase

flows. In fact, for the simulation of metastable two-phase flows, there are three main difficulties: (i)

the presence of a continuously moving interface that separates the two fields, (ii) the interphase

transfers, and, (iii) the compressibility of both phases.

The separating interface is the locus of the discontinuities in the fluid properties. In the case

of phase-transitions, this interface may also disappear due to the complete water vaporization or

condensation. This feature additionally increases the complexity of modeling these phenomena.

At the interface, mass, momentum and energy exchanges take place. In phase transitions the

exchanges are driven by complex mechanisms and by the thermodynamic disequilibrium between

the phases. Those interfacial exchanges strongly affect the transport phenomena.

For a complete description of certain phenomena, phases must be considered as compressible

fluids. On one hand, this choice is necessary for representing wave motion phenomena. On the other

hand, it renders the numerical modeling even more difficult because it introduces a strong coupling

between the various physical aspects as convection, wave propagation and interphase transfers,

requiring appropriate methods for their mathematical solvability.

From an industrial point of view, currently, for the safety analysis of PWRs, those complex flows

are described using simple models. But they are not altogether satisfactory because they do not take

into account the thermodynamic disequilibrium between liquid and vapor water phases. To improve

the accuracy of the numerical simulations of nuclear safety accidents, a more complete methodology

is desired.

Today several computational codes are able to take into account the presence of metastable

phases [24, 203, 220], however, most of them are based on an ill-posed mathematical model [254].

In the last two decades, more advanced models for metastable two-phase flows have appeared
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INTRODUCTION

[200, 231, 233, 283]. These are mathematically more consistent than the metastable models of

the past since they have the very important feature of being hyperbolic. In nuclear industry, the

transition towards these hyperbolic models has recently started [64, 221] and this thesis belongs to

this path.

The purpose of this Ph.D. thesis is to develop a modern and time-efficient model for the analysis

of metastable two-phase flows, and to couple it with realistic energy and mass transfer terms,

together with accurate water properties.

To achieve that, we followed a progressive path. It starts with the use of classical two-phase flow

models and accurate thermodynamic properties of water. Then, it focuses on the numerical aspects

of a more elaborate two-phase model for metastable flows. And, finally, it couples the accurate

thermodynamic methods to the elaborate two-phase flow model.

The final product of this work is a hyperbolic model for metastable two-phase flows that uses

novel techniques for the calculation of interfacial transfers and up-to-date algorithms for steam-

water properties. Moreover, it is computationally affordable for use in industrial configurations.

These novel techniques for the calculation of interfacial transfers are the main scientific con-

tribution of this Ph.D. thesis. They allow combining today’s state-of-art in numerical modeling

with up-to-date thermodynamics for real fluids. Furthermore, this methodology is time-efficient for

industrial purposes.

Given the specificity of the phenomena analyzed in this thesis, the focus is on liquid and vapor

water in phase transitions. However, the modeling and the numerical procedures here developed are

general and may apply to different contexts.

Industrial context

This thesis, realized at the R&D department of EDF (Électricité de France), aims at studying new

modeling and simulation approaches for the analysis of accidental transients occurring in nuclear

power plants. EDF owns many Pressurized Water Reactors (see Fig. 0.1), therefore, the accidental

scenarios studied in this work are the Loss of Coolant Accident (LOCA), waterhammers and steam

explosions.

The LOCA is a hypothetical scenario and is one of the Design Basis Accidents (DBA) of nuclear

power plants. It represents a sudden rupture of the primary fluid flow circuit and its depressurization

(see Fig. 0.2). According to the primary system breach size, we refer to Large-Break LOCA, Small-

Break LOCA or to slits. The first two represent severe hypothetical accidents of nuclear power plants.

In such scenarios, the water of the primary system comes out through the break and vaporizes. This

complex accident involves many physical phenomena and various components of the nuclear power

plant.

In this thesis, the attention is only drawn to the two-phase phenomena at the breach, for both

fast transient and stationary aspects. For the stationary aspects, Large-Break LOCA, Small-Break

LOCA and slits are analyzed, whereas, for the case of the fast depressurization, the primary circuit

is considered to have a full circumferential break (also called double-ended guillotine break).
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FIGURE 0.1. Schematic of a Pressurized Water Reactor (PWR). Source: Nuclear Regulatory
Commission (NRC).

FIGURE 0.2. Illustration of a Loss of Coolant Accident in a PWR. Source: [257].

As concerns the fast transient aspects, if a rupture suddenly occurs in the primary system of a

PWR, a depressurization wave originates at the breach and propagates upstream into the circuit.

When it arrives into the reactor pressure vessel, it hits the core and it could mechanically damage

the nuclear fuel and the safety and control equipment (control rods, etc.). An accurate analysis of the

rarefaction wave, and of the fluid-structure interaction, can provide more precise information about

the mechanical effects the core components are subjected to. At EDF, currently, these simulations

are performed with the EUROPLEXUS code using an equilibrium model [105]. EUROPLEXUS code

[101] is owned by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and
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the Joint Research Centre (JRC) of the European Union.

For the quasi-stationary aspects, it is important to evaluate the discharge rate of the coolant

inventory through the breach because it influences the depressurization rate of the primary system,

the pressurization of the reactor containment, etc. Establishing an accurate evaluation of the coolant

discharge rate at the breach allows a better design of the safety systems of the nuclear power plant.

The other fast transients we are interested in are the waterhammers and the steam explosions.

Waterhammer is a pressure surge occurring in the circuits of the power plant. This wave propa-

gation phenomenon can be triggered by the sudden closure/opening of a valve, by condensation of

vapor pockets, etc. Steam explosion is the interaction between two components at very different

temperatures. Specifically, the temperature of the hot component is higher than the saturation

temperature of the cold one. In the nuclear industry, steam explosion may occur during a severe

reactor accident when the molten fuel comes into contact with the coolant water or, in a mildly form,

during a Reactivity-Initiated Accident (RIA).

The common feature of all these phenomena is the presence of two-phase water in which phases

may be in thermodynamic disequilibrium. Then, phases can be in metastable states, that means,

the persistence of a phase into the stability domain of another phase. Furthermore, except for

the analysis of the stationary flow at the breach, all the others are wave dominant phenomena in

two-phase water.

Modeling approach

The analysis of the physical phenomena can be carried out by means of an empirical, mathematical

or a hybrid approach. For the metastable two-phase flows, an empirical approach is necessary for

the understanding of the complex interfacial mechanisms or the thermodynamic properties of real

fluids. But the drawbacks of a full empirical approach stems in its narrow validity range and in the

difficulty to describe the spatial and time evolution of the flow.

On the contrary, mathematical modeling helps to generalize the two-phase flows and allows

treatment of a large number of physical phenomena using the same numerical tools. For instance,

the same system of equations can be used to describe solid explosives, shock propagation into solid

alloys, fast liquid-vapor phase transition, etc. But a methodology fully based on a mathematical

approach is not able to correctly take into account some specific phenomena or the accurate fluid

properties.

To balance the drawbacks of those approaches, a hybrid empirical-mathematical approach is

used in this work. The mathematical modeling of the two-phase flows is the basis of our approach,

however, water properties and interfacial exchanges are based on empirical laws. These laws are

already present in the literature and are based on experimental data.

The system of equations analyzed in this work are the Homogeneous Equilibrium Model (HEM)

[136], the Homogeneous Relaxation Model (HRM) [28] and the single-velocity six-equation two-phase

flow model [234].

These models are always used in their conservative forms because the physical phenomena
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analyzed may also include shock waves, that is, property discontinuities in the fluid flow. In fact,

for smooth solutions, all formulations are equivalent, but, for solutions containing shock waves,

nonconservative formulations give incorrect shock solutions. Then, these systems of governing

equations must be closed with an Equation of State (EoS) to calculate the thermodynamic properties

as a function of the system conservative variables.

For water, because accurate analytical EoS for this purpose are not available yet, we adopt an

efficient and very accurate algorithm to calculate water properties when the independent variables of

the EoS are the density and the specific internal energy. This algorithm is based on the IAPWS-IF97

EoS formulation [273] that is very accurate and able to account for metastable states. The water

properties described by this EoS are stored on a tabulated e−v diagram of water. Then, a bicubic

interpolation is performed on this domain in order to accurately calculate the thermodynamic

properties.

For the HEM, liquid and vapor are at full equilibrium then they are at saturation condition,

therefore, during a phase transition, mass and energy transfers are dictated by the equilibrium

conditions. For the HRM, the liquid is metastable and the vapor is at saturation, then the mass

transfer must be modeled separately using an appropriate phase transition model. The single-

velocity six-equation two-phase flow model describes the case of phases at velocity equilibrium

but full thermodynamic disequilibrium for which the mass and energy transfer need to be defined.

For both the hyperbolic transport equation and for the mass-energy exchange terms, we use the

steam-water look-up method mentioned above.

To ascertain the correctness of our algorithms, several verifications have been systematically

performed. The steam-water look-up method has been compared to the original IAPWS-IF97 showing

a very low numerical error in terms of pressure, temperature and speed of sound. The numerical

schemes for the hyperbolic systems have been verified comparing them to exact solutions, when

available. The equilibrium states of the relaxation algorithms have been compared to the equilibrium

conditions given by the IAPWS-IF97. Finally, to show the physical consistency of the numerical

procedures and of the modeling approach, several validations have been done against the available

experimental data.

Outline of the thesis

The thesis is composed of seven chapters divided into three parts. Four chapters are articles

published or under review, therefore, a simple and didactic part was added to introduce the reader to

the metastable two-phase flows. This is done in Part I which is composed of two chapters. Chapter 1

introduces elementary concepts of the thermodynamics of real fluids, phase diagrams, equations of

state and stability-metastability-instability. Chapter 2 describes the mathematical aspects of the

two-phase flows, the necessity of averaging transport equations, the mathematical characteristics of

two-phase flow models and the existence of a hierarchy of these models based on the equilibrium

assumptions.

The following chapters, which are papers either published or under review, are preceded by
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a brief introduction. The order of the chapters represents the chronological order of the papers,

which also shows the research path followed during the Ph.D. thesis. Each chapter represents a

supplementary step towards a complete and coherent analysis of the metastable two-phase flows.

The introductions that precede each chapter serve to describe the industrial needs of each work and

show the links with the previous and next chapters.

Part II discusses the stationary and transient metastable flows using classical two-phase flow

models and state-of-art equations of state. It is composed of two chapters, representing research

articles published in the International Journal of Multiphase Flow.

Chapter 3 is about the stationary metastable two-phase flow at the breach in the event of a

LOCA. Here, we compare Delayed Equilibrium Model (DEM), Homogeneous Equilibrium Model,

Moody (1965) [184] and Henry-Fauske [125] models to experimental data containing a sample range

in excess of 450 conditions to determine an appropriate benchmark. This analysis has been carried

out for both critical mass flux and critical pressure evaluations.

Chapter 4 deals with the fast transient metastable two-phase flows as rapid depressurizations,

waterhammers and steam explosions. The aim of this paper is to show an efficient and very accurate

algorithm to calculate water properties when the independent variables are the density, ρ and the

specific internal energy e. For a given thermodynamic pair (ρ, e), we wish to obtain the corresponding

pressure, temperature and speed of sound. The main purpose is to couple this algorithm to two-

phase flow models in their conservative form. To reach this goal, thermodynamic properties shall

be tabulated on the e-v thermodynamic diagram. These developments are based on the recent

works of Kunick et al. [133]. The obtained algorithm is then coupled to two common two-phase flow

models, the Homogeneous Equilibrium Model and the Homogeneous Relaxation Model, and their

numerical simulations are compared to experimental data showing the very good performance of

our computational approach.

Part III is devoted to the single-velocity six-equation two-phase flow model and its use for the

numerical simulation of fast transients. It is composed of three chapters that describe the evolution

in numerics and modeling for the final use of this two-phase flow model, fully coupled to the proposed

steam-water tables, for the simulation of fast depressurizations.

In Chapter 5 we make a comparison of different numerical schemes for several test cases,

including cavitation problems and shock tubes. The main difference between these schemes stems

from their differing numerical treatments of the nonconservative terms. Further, an efficiency study

for first and second order schemes is also presented. Attention is drawn to the numerical resolution

of the homogeneous portion of this model, hence, the equation of state used throughout this chapter

is an analytic one allowing comparison of the numerical results to the exact solutions.

In Chapter 6 new non-instantaneous EoS-independent relaxation procedures are proposed for

the treatment of phase transition cases. These new procedures are tested from both thermodynamic

and numerical points of view. In particular, we show that, starting from a metastable mixture, they

are able to recover the correct full equilibrium state.

We also show that these new relaxation procedures converge to instantaneous equilibrium

simulations when the characteristic equilibrium recovery times tend to zero. Here the single-velocity

six-equation two-phase flow model is coupled to the IAPWS-IF97 equation of state. This chapter is
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the cornerstone for the use of the single-velocity six-equation model in industrial contexts.

Chapter 7 presents the steam-water tables extended to the vapor metastable domain and the

coupling of the look-up table method to the single-velocity six-equation model for the calculation

of phasic properties. Here, the hyperbolic solver of the six-equation model as well as the non-

instantaneous EoS-independent relaxation procedures use the steam-water tables for an accurate

description of fast depressurizations.
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RESUMÉ EN FRANÇAIS

Cette thèse de doctorat s’intéresse aux écoulements diphasiques métastables typiques de

certains transitoires accidentels qui pourraient intervenir dans les centrales nucléaires. Ces

phénomènes sont difficiles à traiter en raison de la complexité topologique de l’écoulement,

des transferts entre phases et du couplage fort entre les caractéristiques thermodynamiques et

les aspects mathématiques. Les méthodes aujourd’hui en usage dans l’industrie ne décrivent pas

complètement la complexité de ces écoulements car elles s’appuient sur des modèles trop simples.

En fait ces méthodes ne prennent pas en compte le déséquilibre thermo-chimique entre l’eau liquide

et sa vapeur. Par ailleurs, les méthodes hyperboliques proposées récemment dans la littérature pour

la simulation des écoulements métastables ne peuvent pas être appliquées dans l’industrie car elles

utilisent des lois d’état simples qui ne sont pas adaptées pour les calculs industriels. Le but de cette

thèse est de développer une nouvelle approche qui couple les méthodes hyperboliques modernes à

des équations d’état précises.

Le premier chapitre est consacré à une introduction à la physique et à la thermodynamique

des fluides métastables. On présente d’abord les concepts élémentaires à propos du diagramme

de phase en se concentrant sur le mélange liquide-vapeur. Puis les concepts de degrés de liberté

et de potentiels thermodynamiques sont introduits. Pour aborder le concept de métastabilité c’est

l’approche phénoménologie basée sur la thermodynamique des milieux continus qui est utilisée ici.

Enfin, l’importance de la métastabilité est discutée pour différents phénomènes existants dans la

nature ou dans l’industrie. Bien que les analyses conduites dans ce chapitre soient valables pour

n’importe quel fluide, une attention particulière est bien sûr accordée à l’eau.

Le second chapitre est dédié à introduire les principaux concepts mathématiques qui seront

nécessaires par la suite. Tout d’abord on introduit les principales caractéristiques des écoulements

diphasiques. Les complexités physiques et mathématiques des écoulements diphasiques sont notam-

ment discutées ainsi que les conséquences en terme de difficultés numériques pour la simulation de

tels écoulements. Dans ce cadre, les équations de conservation des écoulements diphasiques sont

le plus souvent moyennées. D’autre part, de nombreuses techniques numériques existent si bien

qu’il est nécessaire de clairement préciser quelles approches seront utilisées afin de bien définir

le contexte numérique de la thèse. Ensuite on donne des éléments d’information mathématiques

pour les écoulements diphasiques compressibles et leurs équations d’état et on décrit les modèles

d’écoulements diphasiques les plus communs ainsi que la hiérarchie existant entre eux en fonction

du degré de déséquilibre autorisé entre phases. Les différentes formulations de la vitesse du son

associée à ces modèles sont finalement analysées.

Le troisième chapitre s’intéresse aux modèles de débit critique diphasique. En effet, l’analyse de
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sûreté des réacteurs PWR en cas d’APRP dépend de la capacité à évaluer le débit de fuite du liquide

de refroidissement à la brèche. A cause de la grande différence de pression entre l’eau primaire et le

bâtiment réacteur, le débit massique est bloqué à la brèche. Sous ces conditions, les déséquilibres

mécanique et thermodynamique entre phases ne sont pas assurés. Une théorie générale pour le débit

critique diphasique n’est pas encore disponible. Cependant, des modèles sont capables de fournir

des évaluations précises à la fois des débits critiques et des pressions critiques, comme le modèle

DEM (Delayed Equilibrium Model) dont il est principalement question ici. On montre comment

intégrer le système d’équations du modèle DEM en couplant une méthode de Runge-Kutta classique

à l’algorithme Possible-Impossible pour l’écoulement, ce qui donne une procédure de résolution

assez simple sans recourir à des schémas numériques sophistiqués. Puis les quatre modèles DEM,

HEM (Homogeneous Equilibrium Model), Moody (1965) et Henry-Fauske (1971) sont comparés

aux données expérimentales disponibles. Plus de 450 conditions expérimentales sont ainsi utilisées

couvrant notamment des configurations différentes de type «tuyau long», «tuyau court» et «fissures».

Le modèle DEM donne finalement les meilleurs résultats.

Le quatrième chapitre est consacré aux écoulements transitoires métastables et aux tables

thermodynamiques pour l’eau et sa vapeur. En effet, le système des équations de conservation

doit être fermé à l’aide d’une équation d’état afin de calculer la pression en fonction des variables

conservatives. Pour l’eau, des équations d’état analytiques suffisamment précises ne sont pas encore

disponibles. On propose ici un algorithme efficace et précis pour calculer les propriétés de l’eau

quand les variables indépendantes de la loi d’état sont la densité et l’énergie interne spécifique. Cet

algorithme utilise la formulation IAPWS-IF97 pour la loi d’état de l’eau et sa vapeur, et une méthode

de tabulation s’appuyant sur une interpolation bicubique. La métastabilité dans le domaine liquide

est étendue jusqu’à la spinodale. La loi d’état ainsi définie est couplée à deux modèles diphasiques

classiques : le modèle HEM (Homogeneous Equilibrium Model) et le modèle HRM (Homogeneous

Relaxation Model). Ils sont utilisés pour simuler des problèmes de dépressurisation rapide, de coups

de bélier et d’injection d’énergie. Les comparaisons avec des données expérimentales montrent les

bonnes performances des algorithmes proposés.

Le cinquième chapitre présente une étude comparative de différents solveurs de Riemann dans

le cadre de l’intégration du modèle diphasique à six équations et une vitesse avec relaxations

instantanées. La littérature montre l’efficacité de ce modèle pour la simulation d’écoulements

complexes incluant des processus de vaporisation et de cavitation. On présente ici l’analyse de

différents schémas numériques pour ce modèle en se concentrant sur l’intégration des termes

non-conservatifs présents dans les équations d’énergie phasiques. Deux nouvelles méthodes sont

proposées : un path-conservative schéma de type HLLC basé sur la théorie de Dal Maso – Le Floch –

Murat et un schéma de type HLLC généralisé basé sur un solveur de Riemann de type Siliciu. Ce

dernier schéma présente l’importante propriété de préserver la positivité aux états intermédiaires

des quantités conservées. On utilise aussi deux autres schémas proposés dans la littérature qui sont

dérivés des solveurs de Riemann Osher et HLLEM. On compare ces schémas sur différents cas-tests

dont des cas de cavitation et des tubes à choc. Les résultats numériques montrent que les différentes

méthodes qui correspondent à différents traitements numériques des termes non conservatifs

donnent des résultats similaires et précis sauf, comme attendu, pour les chocs diphasiques aux très
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grands rapports de pression.

Le sixième chapitre développe un modèle hyperbolique avec transition de phase, avec de nouvelles

procédures de relaxation instantanées et indépendantes de la loi d’état. Dans ce cadre, les deux

phases initialement à différentes pressions, températures et potentiels chimiques sont supposées être

amenées vers les conditions d’équilibre grâce à trois processus successifs de relaxation. Tout d’abord,

un processus mécanique s’applique à la relaxation des pressions phasiques, puis un processus

thermique pilote le transfert de chaleur sensible entre les phases à différentes températures et enfin

un processus chimique est responsable du transfert de masse. Le modèle à six équations et une

vitesse est composé de six équations avec termes source qui autorisent la description de mélanges

avec déséquilibre thermodynamique complet. La partie homogène du système d’équations est résolue

à l’aide d’un schéma volume fini à l’ordre deux qui utilise un solveur de Riemann de type HLLC. Les

termes source qui modélisent les processus de relaxation sont intégrés séparément sous la forme de

trois systèmes d’équations différentielles ordinaires. La contribution majeure de ce travail concerne

la capacité de décrire le temps de retard pour le retour à l’équilibre, l’indépendance par rapport à la

loi d’état de l’ensemble du processus numérique et la possibilité de prendre en compte la morphologie

de l’écoulement en utilisant l’aire interfaciale entre phases.

Le septième chapitre est consacré à l’application des différents développements des chapitres

précédents : modèle diphasique à six équations et une vitesse, tables thermodynamiques métastables

pour l’eau et sa vapeur, solveurs de Riemann et enfin nouvelles procédures de relaxation. Le cas

test retenu est représentatif des problèmes de dépressurisation rapide comme en situation d’APRP.

Le modèle fournit des résultats en très bonne correspondance avec les données expérimentales

notamment en ce qui concerne les effets métastables.

Le produit final de ce travail de thèse est un nouveau modèle pour l’analyse industrielle des

écoulements diphasiques métastables qui associe de nouvelles techniques pour le calcul des trans-

ferts entre les phases et des propriétés de l’eau et de sa vapeur. De plus, cette approche est d’un

coût abordable pour les configurations industrielles. Les méthodes développées dans cette thèse

ont été systématiquement vérifiées avec des solutions exactes et validées en utilisant des données

expérimentales de la littérature
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Mathematics and physics of
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1
PHYSICAL FEATURES OF METASTABILITY

This first chapter is devoted to a bibliographic introduction to thermodynamics and to the

physics of metastable fluids. It starts with elementary concepts about the phase diagram of a

pure fluid focusing on the liquid-vapor mixtures. It introduces also the basic thermodynamic

concepts of degrees of freedom and the thermodynamic potentials. Then the equations of state

are briefly discussed and the concepts of stability and equilibrium are introduced. About the

metastability, the so called phenomenological approach is used here because it is based on the

continuum thermodynamics. Then the chapter ends with a discussion on the importance of the

metastability in both nature and industry. Even though the thematics treated in this chapter are

valid for any pure fluid, particular attention will be devoted to water due to the industrial context of

this thesis.

1.1 Pure phase diagram

A pure phase can exist under different states of aggregation. For instance water, at atmospheric

pressure, according to its temperature, can be solid, liquid or vapor. A phase diagram allows to

schematize such information. In Fig. 1.1, the p-v-T and the p-T diagrams for pure water are reported.

Referring to Fig. 1.1(b), the red lines are the loci of two-phase equilibrium and delimit the stability

domains of the three phases.

More precisely, the melting curve indicated by TM continues indefinitely to the highest pressure.

Conversely, the vapor-liquid curve indicated by TC terminates at the critical point C. Beyond this

point, we speak about the supercritical domain where fluctuations becomes important and vapor

and liquid can be no longer distinguished, therefore, we refer at it as supercritical fluid.

Water is a very particular matter with many anomalies. For instance, the negative slope of the

melting curve means that the density of the solid is lower than the one of the liquid. Or the liquid

density maximum at 277.13 K , that is one of the most famous anomalies of water [255]. At low

temperature, the isothermal compressibility factors kT and the isobaric specific heat cp increase
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(a)

(b)

FIGURE 1.1. (a) p-v-T and (b) p-T diagrams for pure water. Sources:
http://sounak4u.weebly.com/properties-of-pure-substance.html and https://commons.
wikimedia.org/wiki/File:Clausius-Clapeyron_phase_diagram.png.

when the temperature decreases [73, 210], that is untypical for a liquid. Further, the specific heat

of water is extremely elevated. Many other unusual properties make water a complicate matter in

thermodynamics, therefore, to well approximate its behavior, complex equations of state are needed.

For this reason, this thesis fully relies on the state-of-art equations of state IAPWS-95 [272] and

IAPWS-IF97 [273], based on a large database of experimental data.

As visible from Fig. 1.1 two remarkable points exist in the water phase diagram. One is the
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1.1. PURE PHASE DIAGRAM

FIGURE 1.2. p-v diagram for pure water. Realized using IAPWS-IF97 EoS.

triple point T, where the three phases coexist and the fluid properties are [272]:

Ttr = 273.16 K , ptr = 0.6117 ·10−3 MPa.

The properties at the triple point are very well known. Since the 5th International Conference on

the Properties of Steam in London in 1956, it has been taken as reference state, thus the specific

internal energy and the specific entropy of the saturated liquid triple point are set equal to zero:

e tr = 0 kJ/kg, str = 0 kJ/kg/K .

The second one is the critical point C [272]:

Tcr = 647.096 K , pcr = 22.064 MPa, ρcr = 322 kg/m3.

Concerning the degrees of freedom (Gibbs rule) of the matter, when only a single phase is

present, the internal equilibrium is said to be divariant, that is the degrees of freedom are two.

This means that to know the properties of the matter, two variables must be fixed, for instance

pressure and temperature. When two phases are present and are in equilibrium (along the red

lines of Fig. 1.1(b)), the system in univariant, that is, one degree of freedom, thus pressure and

temperature are correlated. The critical and the triple points are fixed once for all, then the system

is said to be invariant.

Given that this thesis deals with metastable fluids, as we will see in Chapter 2, phases can be

divariant also in a mixture when phases are not in equilibrium.

The study of the liquid-vapor mixtures lying along the vaporisation curve, going from the triple

point to the critical point, is the main topic of this thesis. For completeness, let us say also that the

vaporization curve is also called in the literature as the saturation curve, the vapor-pressure curve

or the coexistence curve. This curve is depicted in Fig. 1.2 on the p-v plane, where the vaporisation
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curve becomes a dome. In Fig. 1.2, two isotherms are also shown: the one corresponding to 623.15 K

and the critical one. Here we can see that in the saturation dome, when phase are in thermal

equilibrium, the isotherms are also isobars due to the univariance of the equilibrium two-phase

mixtures discussed above. Nevertheless this is not the case for mixtures of metastable phases.

Regarding the critical isotherm, it is the one that admits a horizontal tangent and an inflexion

point, defining the end of the vaporisation curve. Mathematically, at the critical point:(
∂p
∂v

)
T
= 0,

(
∂2 p
∂v2

)
T
= 0, (1.1)

and (
∂T
∂s

)
p
= 0,

(
∂2T
∂s2

)
p
= 0. (1.2)

On the p−T diagram, the liquid-vapor transitions are accompanied by volume (but also entropy)

discontinuities. For this reason they are usually called first order phase transitions1. The latter is a

segment on the p-v diagram and is called binodal curve. The liquid-vapor transition at the critical

point is not accompanied by a volume or entropy discontinuities but is called second order phase

transitions because of the mathematical characteristic of this point (see Eqs. (1.1) and (1.2)). In this

thesis we are mainly focused on first order phase transitions.

1.2 Equations of state and thermodynamic potentials

From the previous section it was stated that a single-phase system has two degrees of freedom.

Therefore one needs to know two variables, together with a corresponding equation of state, to

identify the thermodynamic state of the system.

The equation of state is a thermodynamic equation relating state variables and describes

the physical conditions of the matter. This thermodynamic relation is usually constructed using

thermodynamic potentials describing the equilibrium behavior of a system. They are: the internal

energy, e, the Helmholtz free energy, f , the enthalpy, h, and the Gibbs free energy, g. The latter will

be also called Gibbs free enthalpy. These potentials are related each other by the following algebraic

relations:

f = e−Ts,

h = e+ pv,

g = h−Ts,

(1.3)

where s is the specific entropy. Thanks to the thermodynamic potentials, the complete EoS take the

form of

e(s,v), f (T,v), g(T, p), h(s, p). (1.4)

Here the complete EoS are expressed in natural variables, that is, a set of appropriate variables

that allow to compute the other thermodynamic potentials by partial differentiation. Therefore, no

1Ehrenfest proposed that the order of the transition is given by the lowest-order derivative of the Gibbs energy that is
discontinuous at the transition. Entropy and volume are first order derivatives of the Gibbs energy.
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other relations are needed to describe the thermodynamic behavior of the matter. In Chapter 2 we

will see that compressible flow models require an equation of state in the form

p(ρ, e). (1.5)

This is an incomplete EoS and needs additional relations to define, for instance, the temperature

[63, 181]. Moreover, an incomplete EoS can not determine a corresponding complete EoS [181]. In

this thesis, the incomplete EoS are replaced by iterative or a look-up table inversion of a reference

complete EoS.

Referring to the thermodynamic potentials, their differentials are:

de = Tds− pdv,

d f =−sdT − pdv,

dh = Tds+vdp,

dg =−sdT +vdp.

(1.6)

The first is called Gibbs relation and is the fundamental equation of classical thermodynamics. In

this context, Legendre transformations are a useful tool to pass from a potential to another one,

see [4, 285] for further details. From those, together with the symmetry property of the second

derivatives, one can obtain the Maxwell’s relations:(
∂T
∂v

)
s
=−

(
∂p
∂s

)
v
=+ ∂2e

∂s∂v
,(

∂T
∂p

)
s
=+

(
∂v
∂s

)
p
=+ ∂2h

∂s∂p
,(

∂s
∂v

)
T
=+

(
∂p
∂T

)
v
=− ∂2 f

∂T∂v
,(

∂s
∂p

)
T
=−

(
∂v
∂T

)
p
=− ∂2 g

∂T∂p
.

(1.7)

These relations will be extensively used for the calculation of the partial derivatives
(
∂
∂v

)
e and(

∂
∂e

)
v needed for the water properties tabulation on the e-v plane. And they will be also useful to

express more easily certain derivatives in the analysis of the relaxation of the thermodynamic

disequilibrium.

Let us define also some thermodynamic properties that are used in the following. The specific

heats at constant volume and pressure are

cv =
(
∂e
∂T

)
ρ

= T
(
∂s
∂T

)
ρ

, cp =
(
∂h
∂T

)
p
= T

(
∂s
∂T

)
p

. (1.8)

The isothermal and isentropic compressibility factors are

kT = 1
ρ

(
∂ρ

∂p

)
T

, ks = 1
ρ

(
∂ρ

∂p

)
s
. (1.9)

The coefficient of thermal expansion is

β=−ρ
(
∂ρ

∂T

)
p

. (1.10)
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The previous properties are also called direct measurable quantities and may be related by two

identities
ks

kT
= 1− β2 T

ρ cp kT
= cv

cp
. (1.11)

Alongside with the phasic measurable quantities, two dimensionless parameters will be also used in

the following. The adiabatic exponent γ and the Grüneisen coefficient Γ:

γ= 1
ρp

(
∂2e
∂v2

)
s
= 1

p ks
, Γ= 1

ρ

(
∂p
∂e

)
ρ

= β

cv kT
. (1.12)

A paramount variable in compressible flows is the isentropic speed of sound. It is defined as

c =
√

1
ρks

. (1.13)

1.3 Saturation curve

Along the saturation curve (or vaporization curve), the phase are in full thermodynamic equilibrium:

pl = pv,

Tl = Tv,

gl = gv,

(1.14)

where subscripts l and v indicate, respectively, the liquid phase and the vapor one, and where g

denotes the Gibbs free enthalpy. The conditions expressed in Eq. (1.14) are also called Maxwell

criterion [179].

Since the system is univariant, a dependency psat(T), or Tsat(p), exists. For instance, to construct

the relation psat(T) we apply the Gibbs-Duhem equation (see Eq. 1.6) between the two saturated

states. Since it is an isotherm, this reduces to:

gv − gl =
∫ pv

pl

vdp. (1.15)

Then, the saturation curve, psat(T), can be constructed by requiring the vanishing of Eq. (1.15).

Other methods exist to construct the saturation curve. However, in the case of water, the IAPWS-IF97

provides a suitable basic equation that relates saturation pressure and temperature.

1.4 Stability, metastability and instability

In this section a brief introduction to the concepts of stability, metastability and instability is given.

Although it must not be considered as fully exhaustive. To learn more about this subject, the author

suggests [43, 73] for a rigorous thermodynamic approach and [41] for a graphical and effective

understanding.

To briefly introduce these concepts, it is useful to make the classical analogy reported in Fig. 1.3.

It depicts the trend of a potential energy with respect to an arbitrary abscissa and the state of the

system is represented by a sphere that can roll to a lower potential energy to reach its equilibrium.
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1.4. STABILITY, METASTABILITY AND INSTABILITY

FIGURE 1.3. Concepts of stability, metastability and instability. Source:
https://en.wikipedia.org/wiki/Metastability, drawing made by Georg Wiora (Dr.
Schorsch).

The red sphere represents the metastable state, the green one the instable state and the blue the

stable state of equilibrium of the system. Referring to thermodynamics, the potential energy is the

Gibbs free enthalpy and the abscissa could be the specific volume.

The equilibrium state of the system corresponds to the absolute minimum of the Gibbs energy [43,

73] however another minimum exist, that is a relative minimum, and is where the red sphere lies.

Let us consider now a liquid-vapor phase transition. The abscissa of the metastable state is the one

of the liquid that is obviously lower than the one of the vapor, represented by the blue sphere. The

equilibrium phase of the system would be the vapor one, however the fluid is initially a metastable

liquid. In order to reach the equilibrium, it needs to overcome an energy barrier (the bump on the

top of which the green sphere is located). Then it needs a high enough perturbation.

In other words, a metastable system, when subject to small perturbation does not evolve into

another state; however, when the perturbation is higher than a certain activation value, it does. On

the contrary, a stable system remains in its state no matter the perturbation. Finally, the instable

state evolves to another state if subject to arbitrarily small perturbations.

1.4.1 Metastable water

In this work we refer to the metastability as: the persistence of a phase into the stability domain

of another phase. For instance Fig. 1.4 shows the existence of metastable subcooled vapor in the

subcooled liquid domain and the metastable superheated liquid in the superheated vapor domain.

Obviously, the lifetime of a metastable phase is limited since a stable phase is always going to appear

sooner or later. Moreover, the deeper the metastability of a phase, the shorter its lifetime is [73, 245].

In real systems, the fluids are never pure, suspended impurities exist, the container walls have

irregularities, etc. These facilitate the nucleation of a new phase preventing the fluid to reach a deep

metastable state. They simply decrease the energy barrier discussed above, needed to activate the

nucleation mechanisms. This means that the higher the purity of a fluid, the higher is the possibility

to reach a deep metastable state.

In the case of liquid water, experimentally, one can observe the supercooled water, the superheated

water and the tensile water. The first is the case of water staying in liquid form below its solidification
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FIGURE 1.4. p-T diagram of water. The plot has been realized using the IAPWS-IF97.

temperature, for instance [73, 138]. The second is liquid water at a temperature higher than the

boiling temperature (or, equivalently, at a pressure lower than the saturation pressure) and is

the case on which this work is focused on. Some experimental evidences of superheated water

are reported in [8, 32, 246]. The superheated water could also reach negative pressures, that is

the fluid is able to make a tensile strength on its container walls, for this reason it is also called

tensile [73, 131]. The vapor can be metastable too, as in the case of the subcooled vapor, i.e. vapor at

a temperature lower than the condensation one.

A good reference for the experimental procedures to obtain metastable water and their limits

is [99].

There are two approaches to the phase stability: the microscopic and the phenomenological ones.

The first is based on statistical mechanics. The second is based on the continuum thermodynamics

and is more suitable for macroscopic systems, therefore, the more appropriate for our industrial

purposes. A remarkable difference between the two approaches is that following the microscopic

approach, there is not a sharp transition from metastability to instability. The spinodal is not a

mathematical and physical locus, rather, an approximation.

For the phenomenological approach we start analyzing the phase stability of an isolated system.

From thermodynamics, it is well known that an isolated system attains a maximum value of entropy

at equilibrium [43]. Hence, the criteria for equilibrium and stability can be expressed as:

δS = 0 criterion of equilibrium,

δnS < 0, for the smallest n at which δnS 6= 0 criterion of stability,
(1.16)

where δS and δnS are a shorthand way of representing the terms of successive order. For instance,

for S = S(e,v):

δS =
(
∂S
∂e

)
v

de+
(
∂S
∂v

)
e
dv. (1.17)
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Further developments of the last criterion of Eq. (1.16) provide two conditions which ensure the

stability of a system:

cv > 0 criterion of thermal stability,(
∂p
∂v

)
T
< 0 criterion of mechanical stability.

(1.18)

If both are satisfied, the system is intrinsically stable. Both the equilibrium and the metastable phase

are intrinsically stable, however, the latter remains in this condition only for a finite time interval.

When the thermal fluctuations and the molecular vibrations drive the system to the equilibrium

conditions, provoking vaporisation (for the superheated liquid) or condensation (for the subcooled

vapor), the metastable phase disappears.

1.4.2 Spinodal curve

The criterion of thermal stability shown in (1.18) is always satisfied, whereas the fulfillment of the

mechanical stability criterion is not always ensured. For instance, cubic EoS, such as the van der

Waals EoS, satisfy the mechanical stability condition until the so-called spinodal line. The spinodal

line seems to indicate the separation between the unstable domain from the stable/metastable one,

however, it is just an artifact of equations of state describing both the liquid and the vapor phase.

In equilibrium thermodynamics phase transition occurs at saturation conditions, on the contrary,

in real systems an isothermal pressure change would very likely carry the state point into the

metastable domain. The deeper the metastability reached, the higher is the probability for the phase

change to occur. The spinodal curve is the limit beyond which phase change has already occurred.

The liquid and vapor spinodal lines connect all the minima of the isotherms (liquid spinodal)

and all the maxima (vapor spinodal) closest to the associated side of the saturation curve within

the saturation dome. At these minima and maxima points isotherms have zero slope (see Fig. 1.5),

hence, spinodal lines mark the location from where the mechanical stability condition is violated.

Using the IAPWS-IF97 as EoS, we reveal in the following that the spinodal corresponds to

positive values of the pressure until T ≈ 593.50K . Below this temperature, the limit of mechanical

stability corresponds to negative pressures. This is the domain of the tensile water [49, 73, 131, 132,

143, 170, 245, 284], however this is out of interest in this thesis.

1.5 Metastable fluids in nature and in industry

Pure water and aqueous solutions are often in metastable conditions, both in nature and industry,

nonetheless, these conditions of the matter are often ignored. For this reason, this section enumerates

and briefly discusses the main fields in which metastable states exist.

In geology, the water is often metastable in the soil due to capillarity [206] or in the deep earth’s

crust [243]. Metastable states are common in regions of high thermal fluxes (volcanic regions and

magmas [259], geysers [215], etc.), therefore, many research papers on metastability come from the

geophysics and geochemistry journals. Evidently, this is not restricted to the planet Earth, in fact,

metastable aqueous solutions are believed present in the hyper-arid environments of Mars [182, 183].
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FIGURE 1.5. T-v diagram of water. The plot has been realized using the IAPWS-IF97. Here
we can see the saturation curve, the spinodal curve ((∂p/∂v)T = 0) and an isobaric
curve (i.e. p = 12.7 MPa). The latter has been divided in three portions: the blue one
represents the liquid states, the red one denotes the vapor states and the black dotted
curve refers to the unstable states that connect the previous ones. Going rightwards
along the isobaric curve, up to point (a) water is liquid in a stable state, from (a) to (b)
water is a metastable liquid, from (b) to (c) the fluid is in unstable conditions, from (c)
to (d) water is in metastable vapor conditions and, starting from point (d), the vapor
is stable.

In biology, the metastable states, especially the supercooled ones, play a fundamental role for the

life of cells, microorganisms, etc. An interesting discussion is reported in the introductory chapter

of [73].

Another relevant field in which we can find metastable water is in plant physiology. In fact,

an aqueous solution, called sap, becomes tensile in reaching the tops of trees. The fact that water

reaches negative pressures inside the trees is known at least from the 19th century [73]! Many of

the EoS for the negative pressure domain have been developed to simulate such a phenomenon.

As concerns industry, metastability is often synonym of accident. In industrial processes,

metastable states typically appear due to fast depressurizations or to energy injection. As al-

ready discussed, the industrial context of this thesis is the one of the hypothetical nuclear accidents

involving metastable two-phase flows. However, the same phenomena could be encountered in many

industrial process or chemical factories. For example, in beer or sparkling drinks production sites,

paper factories, in the metallurgy for cooling the melting metals, in petroleum engineering (LNG),

etc.

Some of them are fully stationary as the critical two-phase flow through a safety valve or a

breach of a pipe. Some others are highly non-stationary phenomena, like fast depressurizations,

waterhammers or energy injection. Those kinds of phenomena are separately addressed respectively

in Chapters 3 and 4.
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2
MATHEMATICAL FEATURES OF TWO-PHASE FLOW MODELS

This chapter introduces many concepts that will be necessary for the following. An intro-

duction to the main features of the two-phase flows is given in 2.1. Here the physical and

mathematical complexities of the two-phase flows are discussed. These complexities trans-

late into numerical difficulties for the computational simulation of such flows. To overcome them, the

balance laws for two-phase flows are often averaged [137]. Further, many computational techniques

exist, then it is important to well specify the numerical approaches that will be used in order to give

the precise numerical context to this thesis. Section 2.2 gives some mathematical information about

compressible multiphase flows and their equations of state. Section 2.3 describes the most common

two-phase flow models and the hierarchy existing according to the disequilibria allowed between

phases. To each of these models corresponds a different formulation of the two-phase speed of sound.

For the homogeneous models, a comparison is given in Section 2.4.

2.1 Introduction to two-phase flows

Two-phase flow phenomena are involved in many industrial fields as well as in nature. One can

mention power systems as conventional or nuclear power plants, process systems as distillation

units or chemical reactors, heat transfer systems as heat exchangers, evaporators and condensers,

biological systems as the cardiovascular or the respiratory systems, other natural phenomena as

volcanic jets or clouds formations. The two-phase flows arising from such a variety of systems are

very different from many viewpoints: the phases involved (gas-liquid, gas-solid, liquid-solid), the

flow regime, the kind of interactions between the phases, etc.

Two-phase flows are widely more complicated than single-phase ones. For instance, single-phase

flows are generally categorized as laminar, transitional and turbulent. Whereas, for two-phase flows,

plenty of flow regimes (or flow patterns) exist and their categorization is not often the same from one

textbook to another.

At the beginning, the analysis of the two-phase flows was somewhat empirical and widely based

25



CHAPTER 2. MATHEMATICAL FEATURES OF TWO-PHASE FLOW MODELS

FIGURE 2.1. Two-phase flow patterns for a liquid-vapor mixture. Source:
http://www.thermalfluidscentral.org/encyclopedia/.

on experimental correlations. Hence, its validity was constrained by the test setup, the experimental

range investigated, etc. Due to the large number of fields and applications of two-phase flows, one

can imagine that a large number of tests were done and a lot of correlations exist. Some good

references for this kind of approach are [39, 43, 58, 278].

Later, there was a shift from the empirical approaches to the mathematical modeling. This

allowed the improvement of the prediction of the dynamical behavior of two-phase flows and to

unify many fields and phenomena that were previously treated by separate empirical approaches.

In fact, very different phenomena could be analyzed using the same mathematical and numerical

tools. Some references for the mathematical modeling of two-phase flows are [136, 145].

This thesis is based on the latter approach, however, due to the difficulties to treat some

phenomena, correlations are also used. For instance to model the pressure losses in a two-phase

flow (cf. Chapter 3) or to quantify the characteristic time of thermodynamic equilibrium recovery (cf.

Chapter 4).

2.1.1 Averaging methods and diffused interface technique

In a two-phase flow, two media (or fields) with different properties flow together. The two fields

must be disjoint, therefore, they cannot be two gases. An interface separates the two fields, hence,

this is the locus of the discontinuities of fluid properties. The interfaces are multiple, topologically

complicated and their shape depends on the flow pattern (see Fig. 2.1). Moreover, interfaces move,

deform and may interact in time and in space. In phase-transition flows, they may also disappear.

These features make us understand that the mathematical and computational treatment of such

complicated and time-dependent interfaces is not easy at all. For the feasibility of the numerical

treatment of two-phase flows, those sharp interfaces are replaced by diffused interfaces. In other

words, some details of the flow are suppressed in order to obtain easier systems of equations for the

numerical treatment.
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Mathematically, this involves the averaging of the field properties. Generally, we speak about

time averaging but also spatial and statistical averaging techniques exist. Standard references

are [76, 86, 136], however, those topics are discussed in any multiphase flow textbook, a concise one

is reported in Chapter 8 of [213].

The system of equations obtained must be seen as a macroscopic formulation that is continuous

across the interfaces, eliminating the fluid properties discontinuity across them and making both

phases coexisting continua [137]. Those systems are composed by field balance equations describing

mass, momentum and energy conservation complemented by constitutive equations and interfacial

transfer terms that describe momentum transfer, thermo-chemical transfers, wall friction, etc.

Thanks to averaging, complicated interfaces are absorbed into the volume fraction variables: αk.

In fact, in two-phase flow analysis, the volume fractions, αk, and the interfacial area, A int, are two

fundamental first-order geometrical parameters and they are closely related to the flow regime [137].

In Chapters 3 and 4 of Part II, the interfacial area is not used because the two phases are

considered as a homogeneous mixture and interfacial exchanges are not modeled. However, in

Chapter 6, new relaxation procedures are proposed in order to correlate the interfacial exchanges to

the interfacial area.

2.1.2 Computational methods for two-phase flow

The great heterogeneity of two-phase flows and its presence in many industrial fields has led to the

development of several computational techniques. A reference book describing the most important

ones is [213]. Due to the presence of many computational methods, it is important to specify the

kind of techniques employed for this thesis.

As mentioned above, two-phase flows are very complicated due to the presence of complex

interfaces. For very simple flows, the averaging procedure is not necessary and Navier-Stokes

equations may be solved for each phase. This requires an interface tracking method as marker

functions or connected marker particles.

When the flows become more complex, the direct solution of the Navier-Stokes equations would

be too expensive from a computational point of view, therefore, the expedient is the solution of the

averaged equations aforementioned. For a general flow pattern, the two most important techniques

for the numerical solution of averaged equations are segregated methods [20, 161, 198] and coupled

methods [24, 220, 221, 231, 247, 252, 262].

For the first approach, the balance equations are solved sequentially. This idea comes from the

SIMPLE method, widely used in the single-phase CFD. For the second approach, the equations of

the system are simultaneously solved, hence, they are strictly coupled. Evidently, the latter is the

only one suitable for fast transient calculations and/or for the analysis of flows in which phases have

very strong interactions. This is the case of the industrial context of this thesis: a strong coupling

between the conservation equations, strong interactions between phases and the simulation of fast

transients. Therefore, only coupled methods are used in the following.

The systems of Partial Differential Equations (PDEs) are solved using the Finite Volume Method

where the flux across the interfaces between adjacent finite volumes is calculate using Riemann

27



CHAPTER 2. MATHEMATICAL FEATURES OF TWO-PHASE FLOW MODELS

Solvers [116, 264]. From the computational point of view, the main works in the literature of

two-phase flow on which this thesis is based are [112, 200, 231, 233, 234, 262, 263, 283].

The only exception to this approach is Chapter 3. Here the stationary metastable critical flows

are analyzed, therefore, the time dependency of the balance equations is removed. The latter become

Ordinary Differential Equations (ODEs) that are solved in a more classic fashion using Runge-Kutta

ODE solvers.

2.2 Averaged two-phase flow models

Considering the macroscopic approach aforementioned, phases can be simultaneously present in

a volume domain, for instance the cell mesh of the computational domain. This is also called

interpenetrating continua hypothesis. Several two-phase flow models exist, their classification is

given in the next section. Here a brief introduction of their mathematical properties is given.

Considering for simplicity the 1D case, the averaged two-phase flow models can be generally

written as

∂tU +∂zF(U)+B(U) ∂zU=b, z ∈R, t ∈R+, (2.1)

where U ∈ΩU ⊂Rn is the state vector and ΩU is the phase-space. Given that the industrial context

of this thesis includes also shock waves, conservative forms of the balance equations are always

preferred. In fact, for smooth solutions all formulations are equivalent. However, for solutions

containing shock waves, non-conservative formulations give incorrect shock solutions [264]. There-

fore, U is the vector of the conservative variables, that is, its components are physically conserved

quantities as mixture (or phasic) mass, momentum and total energy. The only exception is the

volume fraction of one of the two species. Sometimes, for sake of simplicity, it is included into the

vector U, however, it is not a conservative quantity.

The conservative part of the system is contained in the nonlinear flux vector F = F(U), and

the nonconservative terms, if present, are expressed in the nonconservative product B(U)∂zU.

Unfortunately, for some two-phase flow models, the homogeneous portion of Eq. (2.1) is not a system

of conservation laws. This is the case when the matrix of nonconservative terms B(U) 6= 0. Due to

the nonconservative form of the equations, the standard notion of weak solution in the sense of

distributions does not apply. More precisely, because of the nonconservative term, B(U)∂zU, and

the fact that products of distributions are not defined by the theory of distributions [239], it is not

possible to rigorously define the notion of weak solution and it is not possible to derive Rankine-

Hugoniot jump conditions. Moreover, for this kind of two-phase flow models, the uniqueness of

solutions can not be guaranteed in the presence of discontinuities.

Alternatively, the PDE (2.1) can be cast in its quasi-linear form

∂tU +A(U) ∂zU=b, (2.2)

where the matrix

A(U)= ∂F
∂U

+B(U) (2.3)

includes both the conservative and the nonconservative terms. The term ∂F
∂U is the Jacobian of the

nonlinear flux. The system is hyperbolic if A(U) has only real eigenvalues and a full set of linearly
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independent eigenvectors exists. The eigenvalues are

λ1 ≤ λ2 ≤ ...≤ λn, λi ∈R. (2.4)

To close system (2.1), one or two equations of state are needed. In fact, according to the kind of

disequilibria existing between the two phases, system (2.1) may require a single equation of state

for the mixture equilibrium pressure:

p = p(ρ, e, ...) (2.5)

where the mixture density and internal energy are:

ρ =Y1ρ1 +Y2ρ2,

e =Y1 e1 +Y2 e2,
(2.6)

Yk =αkρk/ρ being the phasic mass fractions.

Other models require two separate equations of state, one per phase:

pk = pk(ρk, ek), k = 1,2. (2.7)

The latter case relies upon the principle of phase separation [87]. That is, the thermodynamic

properties of one phase do not depend on the thermodynamic state of the other constituent.

Coming back to Eq. 2.1, the vector b accounts for the source terms. They can be: heat source, wall

friction, thermo-chemical interfacial transfers, momentum transfer, etc. In Chapter 3, source terms

will account for the macroscopic effect of heat transfer, wall shear stress, gravitational force and mass

transfer. In Chapter 4, the source terms are the mass transfer for the Homogeneous Relaxation Model

(HRM) and the volumetric energy injection (for the simulation of a steam explosion). In Chapter 6, the

source terms will serve to model the transfers between phases in a less macroscopic way. In fact, the

component of b are used to describe the volume-energy transfer due to the pressure disequilibrium

between phases and the interfacial thermal and chemical transfers due to, respectively, temperature

and Gibbs enthalpy disequilibria. Despite the paramount importance they have in the two-phase

flow analysis, in this chapter they will be neglected to focus on the mathematical features of the

convective portion of the system of equations. Therefore, throughout this chapter, b= 0.

2.3 Hierarchy of the two-phase flow models

Different models describing two-phase flows are available in the literature. Here we consider

compressible flow models that belong to the class stemming from the Baer–Nunziato model [12].

Models in this class differ primarily in the level of non-equilibrium between the two phases that

they are able to take into account.

Each phase is described by five variables, therefore ten variables describe a two-phase flow [254]:

αk, pk, Tk, gk, uk, k = 1,2. (2.8)

The volume fractions αk indicate the amount of space occupied by each phase and are constrained

by the following volume saturation condition:

α1 +α2 = 1. (2.9)
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FIGURE 2.2. Four-dimensional hypercube representing the hierarchy of two-phase flow
models. Parallel edges correspond to the same relaxation processes, and vertexed
(circles) represent the models of the hierarchy. Arrows indicate the instantaneous
relaxation processes needed to reach the pressure (p), temperature (T), chemical (µ)
and velocity (v) equilibria. For instance, the 0 model represents the seven-equation
model of [12], the v model is the single-velocity six-equation model used in Part III,
and vpTµ denotes the homogeneous equilibrium model. The homogeneous models,
that is, the models assuming that phases move at the same velocity, are represented
by yellow circles. Source: [171].

Further, as discussed in Section 1.1, each phase has two degrees of freedom, hence an EoS relates

one variable to the two others, for instance gk = gk(pk,Tk). From these considerations, the degrees

of freedom are, at the maximum, seven. Then, seven partial differential equations are required to

describe a two-phase flow in full disequilibrium.

Adding some equilibrium hypothesis reduces the number of equations required and those models

are called: reduced models. Finally, compressible two-phase flow models span from the seven equation

model (Baer–Nunziato 1986) to the Homogeneous Equilibrium Model (HEM). The former allows

pressure, temperature, Gibbs enthalpy and velocity disequilibria between phases, whereas, the

latter assumes phases are in full equilibrium.

Then there exist a hierarchy of the compressible two-phase flow models according to the allowed

disequilibria. A practical scheme to understand this hierarchy is reported in Fig. 2.2. Referring

to this figure, the hierarchy is represented by means of a four-dimensional hypercube where each

circle represents a two-phase flow model and edges denote the relaxation processes. In particular,

parallel edges correspond to the same relaxation processes. This representation of the hierarchy of
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two-phase flow models is due to Linga [171].

The 0 model represents the seven-equation model of [12], where phases are in full disequilibrium.

Proceeding from left to right, equilibria are added, up to the full equilibrium model, the HEM, here

denoted as vpTµ. Reduced models of the 7-eq. model can be obtained using the Chapman-Enskong

developments [54, 189], as done in [155].

The homogeneous models, that is, the models assuming that phases move at the same velocity,

are represented by yellow circles. More details about the mathematical properties of these models

and their speed of sound are reported in [54, 176]. Except for a comparative study in Chapter 3, all

the models considered in this thesis belong to the subhierarchy of the homogeneous models.

The model indicated as p is the single-pressure six-equation model and, among the various

models of the hierarchy, it is the most employed in engineering. It is very popular notwithstanding

its well-known ill-posedness, due to the loss of hyperbolicity on a large part of the phase-space

[24, 178, 254, 262, 263], that may lead to numerical difficulties.

Evidently, not all models represented in Fig. 2.2 are of practical use in engineering because

some rely on unrealistic hypothesis. To explain better this affirmation, let us assume that there

exist characteristic times of the equilibrium recovery processes for pressure Θp, temperature ΘT ,

velocity Θu and Gibbs enthalpy Θµ disequilibria. Labois, in Chapter 1 of [155], analyses the orders

of magnitude of these characteristic times and he found that

Θp ¿ Θu ¿ ΘT ¿ Θµ. (2.10)

About those characteristic time evaluations, see also [30, 119, 139, 205, 205].

This analysis indicates that the pressure relaxation process is much faster than the velocity

relaxation one, that, in turn, is faster than the thermal relaxation process. And the latter is faster

than the chemical relaxation process. This means that the model indicated as vTµ, for instance,

considers that phases are in thermodynamic equilibrium, they move at the same velocity, however,

they have different phasic pressure. This is clearly in contrast with Eq. (2.10).

In the following the most important two-phase flow models are discussed. The reduced models

are not formally derived from the seven equation model, because this practice, by now, is well known

for the two-phase flow domain. The next section is intended to be a discussion about the reduced

models and their physical and mathematical properties.

For a comprehensive discussion about all the various models, one can refer to [139, 155, 176,

178, 254].

2.3.1 The seven-equation model

The most complete among the compressible two-phase flow model is the seven equation model

of Baer–Nunziato (1986) [12], sometimes called Non-Equilibrium Model (NEM). It allows a full

disequilibrium between phases. In fact pressure, temperature, Gibbs enthalpy and velocity of the

phases are not in equilibrium.
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In 1D, the homogeneous portion of the system of equations is

∂tα1 +uint∂zα1 = 0,

∂t(α1ρ1)+∂z(α1ρ1u1)= 0,

∂t(α2ρ2)+∂z(α2ρ2u2)= 0,

∂t(α1ρ1u1)+∂z(α1ρ1u2
1 +α1 p1)− pint ∂zα1 = 0,

∂t(α2ρ2u2)+∂z(α2ρ2u2
2 +α2 p2)− pint ∂zα2 = 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p1)u1]− pintuint ∂zα1 = 0,

∂t(α2ρ2E2)+∂z[α2(ρ2E2 + p2)u2]− pintuint ∂zα2 = 0,

(2.11)

where pint and uint are, respectively, the interfacial pressure and velocity.

The system has seven real eigenvalues:

λ1 = uint, λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1, λ5 = u2 − c2, λ6 = u2, λ7 = u2 + c2. (2.12)

They have not been enumerated to give λi ≤λi+1 as stated in (2.4). The fields associated with the

λ3,6 are linearly degenerate (LD) whereas the ones associated to the λ2,4,5,7 are genuinely non linear

(GNL). See [116, 168, 264] for more information about LD and GNL fields. The field associated

with λ1 = uint can be LD or GNL according to the choice of the interfacial velocity. Therefore, this

choice greatly impacts the mathematical properties of (2.11), then, the numerical strategy for its

discretization.

For instance, if uint is chosen in order to have a LD-field associated with λ1, the volume fractions

will not change across shock waves, therefore, the nonconservative terms will be inactive across the

shocks. This avoids numerical difficulties in the discrete treatment of those terms. To understand

better the numerical discretization of nonconservative products, see Section 5.3.1.

An analysis of the couple interfacial pressure and velocity which ensures that the field associated

to λ1 be LD and that enforces the entropy inequality is given in [61]. Some other authors have

preferred physically-based choices of pint and uint, with the duty of dealing with nonconservative

products, for instance in [231].

As already stated, the phases are in full thermodynamic disequilibrium, that is

p1 6= p2, T1 6= T2, u1 6= u2, g1 6= g2. (2.13)

To close system (2.11), two decoupled equations of state are needed:

pk = pk(ρk, ek), k = 1,2. (2.14)

The 7-equation model has become popular a few decades later than the spreading of the single-

pressure six-equation model. The idea of introducing an extra equation with respect to the single-

pressure six-equation model, was initially introduced by [190, 196, 197, 217] in order to allow the

pressure disequilibrium and to avoid the ill-posedness of the single-pressure six-equation model (see

next paragraph). Baer–Nunziato [12], simplified and generalized this idea neglecting the inertial

effects for the void fraction evolution.
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Since then, this model is quite popular especially for the deflagration to detonation analysis of

explosives, then, reactive granular multiphase mixtures. Also thanks to the work of Abgrall, Saurel

and their co-workers [231], this model has become popular for simulating one-component multiphase

flow transients as cavitations, etc.

Currently it is the reference model of the under development RELAP-7 code [221] and has

been integrated in the fast dynamics code EUROPLEXUS [64, 71, 173–175] for the analysis of

steam-water fast transients as waterhammers, etc.

2.3.2 The single-pressure six-equation model

The single-pressure six-equation model (p in Fig. 2.2) is certainly the most used two-phase flow

model, at least in the nuclear safety and thermal hydraulics domain.

Up to now it is reference model of several codes: CATHARE [24], NEPTUNE_CFD [203], RELAP-

5 [220], TRAC [252], WAHA [262, 263]. Notwithstanding with its mathematical problems, it has

demonstrated to be robust and accurate for a great number of situations. But, due to its ill-posedness,

it is less suitable for dominant wave motion phenomena.

In 1D, the homogeneous portion of the system of equations is

∂t(α1ρ1)+∂z(α1ρ1u1)= 0,

∂t(α2ρ2)+∂z(α2ρ2u2)= 0,

∂t(α1ρ1u1)+∂z(α1ρ1u2
1 +α1 p)− p∂zα1 = 0,

∂t(α2ρ2u2)+∂z(α2ρ2u2
2 +α2 p)− p∂zα2 = 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p)u1]+ p∂tα1 = 0,

∂t(α2ρ2E2)+∂z[α2(ρ2E2 + p)u2]+ p∂tα2 = 0.

(2.15)

This model can not be cast in a conservative form, then, the uniqueness of solutions can not be

guaranteed in the presence of discontinuities. Further, it is not hyperbolic [31, 36, 115, 254], thus,

mathematically, it presents an ill-posed initial value problem in the sense of Hadamard [122]. This

means that the solution does not probably depend continuously on the initial data [42].

Several authors have added extra terms to make the system conditionally or inconditionally

hyperbolic [209], for example adding a virtual mass term in the momentum equation [85] or using

an interfacial pressure [24, 62]. The latter term has a physical meaning when the flow is stratified,

otherwise, it is just a mathematical trick to ensure hyperbolicity on a large portion of the phase-space.

The system eigenvalues and their nature do depend on the hyperbolization technique used. An

analysis of eigenstructure of this model is given in [262]. Similarly to system (2.11), two eigenvalues

are equal to the phasic velocities: λ1 = u1, λ2 = u2 and the fields associated are LD. The other four

eigenvalues are functions of the phasic densities, velocities, celerities and volume fractions. The

fields associated are GNL.

Phases are in thermodynamic disequilibrium, moving at different velocity but at the same

pressure, that is

p1 = p2 = p, T1 6= T2, u1 6= u2, g1 6= g2. (2.16)
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Since the application domain of this model is not the one of the wave propagation phenomena,

alternative forms, not expressed in conservative variables, are often used in the codes. Thus, the EoS

used can be rather different. A popular way to rewrite system (2.15) in a nonconservative form is:

C ∂tW +D ∂zW= 0, (2.17)

where the vector of the independent variables is W= (p,a,u1,u2, e1, e2)T or W= (p,a,u1,u2,h1,h2)T ,

according to the code, thus, to close system (2.17), the EoS needed are:

ρk = ρk(p, ek), k = 1,2, (2.18)

or

ρk = ρk(p,hk), k = 1,2. (2.19)

This makes one understand why most of the steam-water libraries are arranged on the p − e

thermodynamic plane [44] or on the p−h one [156, 218, 280].

When the formulation with the conservative variables reported in system (2.15) is used for

numerical purposes as done in [262], to close the system, one needs:

p = p(α1ρ1,α2ρ2, e1, e2), αk =αk(α1ρ1,α2ρ2, e1, e2). (2.20)

Due to the pressure equality assumption, and the fact that the void fraction is not known a

priori, the EoS require often an iterative procedure (unless simple analytic EoS are used), that is

computationally expensive [262].

2.3.3 The single-velocity six-equation model

The single-velocity six-equation model is indicated by the circle v in Fig. 2.2. It represents the most

complete among the subhierarchy of the homogeneous two-phase flow models and it is the subject of

Part III of this thesis.

In the homogeneous models, phases evolve at the same velocity. This leads to a much simpler

wave pattern, in fact, all the homogeneous models have the same wave pattern of the single-phase

gas dynamics Euler equations. Notwithstanding to the similar wave pattern, the mathematical and

physical properties of the homogeneous models are very different according to the thermodynamical

disequilibria allowed between the phases.

In 1D, the homogeneous portion of the single-velocity six-equation model is

∂tα1 +u∂zα1 = 0,

∂t(α1ρ1)+∂z(α1ρ1u)= 0,

∂t(α2ρ2)+∂z(α2ρ2u)= 0,

∂t(ρu)+∂z(ρu2 +α1 p1 +α2 p2)= 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p1)u]+Σ(U,∂zU)= 0,

∂t(α2ρ2E2)+∂z[α2(ρ2E2 + p2)u]−Σ(U,∂zU)= 0.

(2.21)
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The nonconservative terms in the phasic total energy equations are

Σ(U,∂zU)=−u [Y2∂z(α1 p1)−Y1∂z(α2 p2)] . (2.22)

These terms are non-zero if u 6= 0 and if Y1Y2 6= 0, that is, the fluid is a mixture containing both

species moving at non-zero velocity. The presence of nonconservative terms does not guarantee the

uniqueness of solutions in the presence of discontinuities. This problem is analyzed and discussed in

Chapter 5.

The eigenvalues of the system are

λ1 = u− c6eq, λ2,3,4,5 = u, λ6 = u+ c6eq, (2.23)

where the speed of sound is

c6eq =
√

Y1c2
1 +Y2c2

2 . (2.24)

The single-velocity six-equation model allows all the thermodynamic disequilibria:

p1 6= p2, T1 6= T2, u1 = u2 = u, g1 6= g2. (2.25)

To close system (2.21), two decoupled equations of state are needed:

pk = pk(ρk, ek), k = 1,2. (2.26)

This full thermodynamic decoupling is very important for our purpose of using accurate steam-water

properties in an efficient way.

This model has initially appeared in [139] as an intermediated step to obtain the celebrated 5-eq.

model of Kapila et al. [139]. Then it was proposed by Saurel et al. [234] for computational purposes

and it was later reformulated by Pelanti & Shyue in [200] to ensure mixture-energy-consistency at

the discrete level.

Considering the characteristic times of the equilibrium recovery reported in (2.10), it could

seem physically wrong to consider the pressure disequilibrium under the assumption of velocity

equilibrium. However, in this thesis, the single-velocity six-equation model will be always coupled to

instantaneous or quasi-instantaneous pressure relaxation terms in order to use it as an alternative

way for solving directly the five-equation model of [139]. This is motivated by its greater robustness

of numerical approximations with respect to the Kapila’s 5-equation model in relation to positivity

preservation of the volume fraction.

Further information about the nonconservative terms of this model and their numerical treat-

ment are given in Chapter 5. The proposition of new relaxation procedures coupled to system (2.21)

is discussed in Chapter 6.

2.3.4 The five-equation model

The five-equation model under discussion is the one represented by the circle vp in Fig. 2.2. In the

following, it will be sometimes called: Kapila’s model, as often occurs in the literature. It describes

multiphase mixtures evolving under unique velocity and pressure for all phases, a scenario that
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is realistic in many practical applications, e.g. condensed phase mixtures, solid explosives, shock

propagation into solid alloys, and fast depressurizations triggering liquid-vapor transition.

In 1D, the homogeneous portion of the five-equation model is

∂tα1 +u∂zα1 +α1α2

(
ρ1c2

1−ρ2c2
2

α1ρ2c2
2+α2ρ1c2

1

)
∂zu = 0,

∂t(α1ρ1)+∂z(α1ρ1u)= 0,

∂t(α2ρ2)+∂z(α2ρ2u)= 0,

∂t(ρu)+∂z(ρu2 + p)= 0,

∂t(ρE)+∂z[(ρE+ p)u]= 0,

(2.27)

The eigenvalues of the system are

λ1 = u− c5eq, λ2,3,4 = u, λ5 = u+ c5eq, (2.28)

where the speed of sound is such that

1
ρ2c2

5eq
= Y1

ρ2
1c2

1
+ Y2

ρ2
2c2

2
, (2.29)

Summarizing, the disequilibrium assumptions of this model are:

p1 = p2 = p, T1 6= T2, u1 = u2 = u, g1 6= g2. (2.30)

To close system (2.27), a mixture equation of state is required:

p = p(α1,ρ1,ρ2, e). (2.31)

Kreeft–Koren [146] have proposed an alternative formulation of Kapila’s five-equation model in

order to circumvent the numerical problems that could arise due to the presence of nonconservative

terms in the void fraction evolutionary equation. This formulation reads:

∂t(α1ρ1)+∂z(α1ρ1u)= 0,

∂t(α2ρ2)+∂z(α2ρ2u)= 0,

∂t(ρu)+∂z(ρu2 + p)= 0,

∂t(ρE)+∂z[(ρE+ p)u]= 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p)u]− pu∂zα1 − (α1 −Y1)u∂z p+ pα1α2
ks,1−ks,2

α1ks,1+α2ks,2
∂zu = 0.

(2.32)

where ks,k are the isentropic compressibility factors expressed in Eq. (1.9).

This model, in the original formulation of system (2.27), is extensively used for numerical

purposes, especially in the compressible two-phase flow domain.

2.3.5 The four-equation model

The four-equation model (vpT in Fig. 2.2) considers a mixture of phases that are in thermo-

mechanical equilibrium but in chemical disequilibrium. It has the structure of the single-phase
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Euler system augmented by a mass balance equation for one of the two phases. In one-dimensional

geometry, the system of equations is

∂t(α1ρ1)+∂z(α1ρ1u)= 0,

∂tρ+∂z(ρu)= 0,

∂t(ρu)+∂z(ρu2 + p)= 0,

∂t(ρE)+∂z[(ρE+ p)u]= 0.

(2.33)

The eigenvalues of the system are:

λ1 = u− c4eq, λ2,3 = u, λ4 = u+ c4eq, (2.34)

Using the caloric EoS e = e(p,ρ,Yk), the speed of sound reads

c2
4eq =

p
ρ
−ρ

(
∂e(p,ρ,Yk)

∂ρ

)
p,Yk

ρ
(
∂e(p,ρ,Yk)

∂p

)
ρ,Yk

. (2.35)

See Section 4.9 for further developments of this formula.

For one-component two-phase flows, it assumes:

p1 = p2 = p, T1 = T2 = T, u1 = u2 = u, g1 6= g2. (2.36)

The mixture equation of state, needed to close system (2.33), writes

p = p(Yk,ρ, e). (2.37)

This model is very simple and has interesting physical and mathematical properties. It can

be cast in a full conservative form, then, there is uniqueness of solution also in the presence of

discontinuities. Moreover, it is the simplest model capable of simulating the metastability in a

two-phase mixture. This leads to an extensive use of it in many fields as cavitations [117], CO2

depressurizations [177], etc. However, according to the author’s opinion, this way of taking into

account the metastability is not realistic. In particular, it is too simplistic to consider exclusively the

chemical disequilibrium because this leads to the weird coexistence of a metastable phase and a

stable non-saturated one (in its single-phase domain). To better understand this feature, one can see

the isobar on the T-v diagram reported on Fig. 1.5. A steam-water mixture, where phases are at the

same pressure and temperature, could be formed by metastable liquid and superheated vapor or

subcooled liquid and metastable vapor. This means that for an evaporation process, the metastable

liquid will become superheated vapor. Further, the more the liquid is in a metastable state, the

more it will be superheated after that the evaporation has occurred. This is unusual. In fact the

metastability is a transitory condition before that the saturated condition is reached. Thus, it seems

more adherent to the physics to have a metastable phase that, during a phase transition, becomes

saturated.

This can be achieved by changing the thermodynamic assumptions of this model. Phases can

be considered to be in thermal and chemical disequilibrium, however, one of the two phases is at

saturation conditions. In the case of the vapor be the one at saturation:

pl = pv = p, Tl 6= Tv = Tsat(p), ul = uv = u, gl 6= gv = gsat(p). (2.38)
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On the mathematical point of view, adding the thermal disequilibrium to (2.36) means that a

degree of freedom is added, demanding an extra transport equation or closure relation. However,

by forcing the saturation condition for one of the two phases means that the degrees of freedom

of that phase will decrease from two to one (a saturated phase has only one d.o.f., see Section 1.1).

Therefore, system (2.36) is sufficient and does not need any extra equation.

Which of the phases is saturated depends on the particular industrial application: in case of a

liquid depressurization, the liquid is allowed to reach the metastable conditions and the vapor is set

to be at saturation conditions, conversely, for a condensation process in a steam turbine, the vapor is

allowed to be metastable and the liquid is set at saturation.

This model is called Homogeneous Equilibrium Model (HRM) [28, 29, 84] and is the object of

Chapter 4. Evidently, due to the modifications to the thermodynamic assumptions, the HRM cannot

be considered as being part of the hierarchy reported in of Fig. 2.2.

2.3.6 The homogeneous equilibrium model

The Homogeneous Equilibrium Model (HEM) considers a mixture made of the liquid and vapor

phases of one-component in full thermodynamic equilibrium. The HEM system has formally the

structure of the single-phase Euler system. In one-dimensional geometry, the HEM equations are:
∂tρ+∂z(ρu)= 0,

∂t(ρu)+∂z(ρu2 + p)= 0,

∂t(ρE)+∂z[(ρE+ p)u]= 0.

(2.39)

The eigenvalues of the system in (2.39) are:

λ1 = u− cHEM , λ2 = u, λ3 = u+ cHEM . (2.40)

Using a caloric EoS of the form e = e(ρ, p), for the HEM, the speed of sound reads:

c2
HEM =

p
ρ
−ρ

(
∂e
∂ρ

)
p

ρ
(
∂e
∂p

)
ρ

. (2.41)

See Section 4.8 for further developments of this formula.

The thermodynamic equilibrium assumptions of the HEM are:

p1 = p2 = p, T1 = T2 = Tsat(p), u1 = u2 = u, g1 = g2 = gsat(p). (2.42)

With the constraints expressed in Eq. (2.42), the internal energies and the specific volumes of

vapor and liquid are those of the saturation curve. That is:

ev = eg(psat), e l = e f (psat), vv = vg(psat), vl = v f (psat), (2.43)

where subscripts f and g indicate, respectively, the saturated liquid and the saturated vapor.

To close the system, the required EoS is

p = p(ρ, e). (2.44)
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FIGURE 2.3. Celerity of two-phase flow models.

In spite of its simplicity, this model is extensively used for numerous industrial applications.

For instance, to simulate heat exchangers (e.g., [211]), for calculating the mass flow rate of critical

two-phase flows [237] and even for the analysis of an hypothetical Loss Of Coolant Accident (LOCA)

in nuclear power plants [105]. Generally, the HEM is particularly well adapted for the simulation

of dispersed bubbly flow [56]. The drawbacks of this model are well known: it cannot reproduce

mechanical or thermodynamic non-equilibrium, typical of annular flows and fast depressurizations,

respectively. If the deviation from equilibrium is moderate, correction terms can be used (drift flux

velocity, subcooled boiling models). However when non-equilibrium effects are more important,

additional equations are needed for an accurate prediction of the flow physics.

Notwithstanding, HEM has good mathematical properties which make it suitable for the simula-

tion of wave motions, hence, fast transients.

2.4 Comparison of the speed of sound of two-phase flow models

For a single phase, the speed of sound corresponds to an intrinsic thermodynamic property. The

definition of a unique value for the speed of sound of a two-phase fluid does only make sense for

certain model assumptions. From a mathematical point of view, for models describing two-phase

flows, the expression of the speed of sound stems from the governing systems of equations. Then, it

depends on the mixture composition, on the degree of inter-phase equilibrium attained between the

phases and on the choice of the EoS.

Figure 2.3 shows the trend of the speed of sound for a steam-water mixture according to the
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different homogeneous models described above. An important feature is that increasing the number

of admitted disequilibria leads to greater speeds of sound. This is consistent with the well-known

sub-characteristic condition [172] that requires that the sound speed associated to a two-phase flow

model is reduced whenever an additional equilibrium is assumed [54, 109].

Generally, the two-phase speed of sound is much lower than the phasic speeds on sound. It can

even be of few order of magnitudes lower.

As we can see in Fig. 2.3, in the two-phase domain, the speed of sound for all the homogeneous

models, except the HEM, is continuous at the single-phase limits, that is, when αv → 0 and αv → 1.

Whereas, for the HEM, it is discontinuous because one of the main characteristics of the equilibrium

EoS is the presence of a “kink” (discontinuity in the derivatives) along the saturation curve. The

discontinuities in the speed of sound have been referred to as unphysical by several authors

[109, 141, 188, 248]. Generally this is not a numerical issue unless for very specific cases. To

understand the mathematical and numerical consequences of this feature, see [181].

Experimentally, it has been noted that its behavior, with respect to the volume fraction, is

non-monotonic [118, 140]. The well known Wood’s speed of sound [279], which is also the one of the

Kapila’s 5-equation model, is very close to the experimental data.

We refer to [54, 109] for a discussion on the speed of sound of a hierarchy of relaxed two-phase

flow models that includes the models considered here.
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equations of state
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STEADY-STATE METASTABLE FLOWS: THE FLASHING

Metastability in two-phase flows not only occurs during fast transient phenomena, but also

in steady-state flows. There are many examples in industry, especially in the thermal

applications. One can mention the natural circulation driven by the nucleation of hot

metastable liquid, the Departure from Nucleate Boiling (DNB) phenomena, etc. These are metastable

two-phase flows triggered by a thermal flux.

Another cause of metastable two-phase is the retarded nucleation following a pressure decrease,

also called flashing. More specifically, this occurs when a subcooled liquid is driven into the two-

phase domain due to a pressure decrease, but the vaporization does not start at saturation pressure.

Due to this delay of vaporization, the liquid becomes metastable.

Flashing typically occurs during the flow between two reservoirs at different pressures. If the

flow is choked, that is, the mass flow rate is independent of the condition of the downstream reservoir,

it is called critical. At the critical section, the velocity of the flows equals the effective local speed of

sound of the mixture. As already discussed in Chapter 2, the speed of sound of two-phase flows is

not well defined and strongly depends on the disequilibrium assumptions between the phases. For

this reason, several critical flow models exist in the literature of multiphase flows.

It is important to comment on two main assumptions of the critical two-phase flow models:

• accounting for the thermal disequilibrium is paramount for flashing,

• the velocity disequilibrium seems to be less important than the thermal one.

In the context of the nuclear industry, the evaluation of the critical mass flow rate is a key feature

of the analysis of the Loss of Coolant Accident (LOCA), from both the transient and the stationary

point of view. On one hand, a quasi-stationary flow occurs at the breach of the primary system, and

many of the emergency systems of the nuclear reactors are designed according to the mass flow

rate leaking out of the primary circuit of the reactor. On the other hand, the stationary critical flow

is also important for transient applications because many nuclear safety codes (EUROPLEXUS,
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RELAP5, CATHARE, WAHA) use it as boundary condition or to account for interfacial terms for the

numerical simulation of transient flows.

This chapter gives a benchmark of four critical flow models, with particular attention devoted to

the Delayed Equilibrium Model (DEM). It is a rather simple and accurate model that, as we will see

in this chapter, is able to predict the critical mass flux and the pressure at the critical section for a

wide range of geometrical and thermodynamic conditions of the fluid.

The industrial purpose of this work was to produce a benchmark of the critical flow models in

order to improve the critical flow condition of the fast transient dynamics software EUROPLEXUS.

This code can use a specific model to simulate the critical flow established at the breach of the

primary circuit. From the numerical point of view, a critical flow model is used to evaluate the

choked mass flow rate and a coherent pressure at the breach that is set as a boundary condition for

the compressible flow model.

Prior to this work, in the EUROPLEXUS code the available critical flow models were HEM,

Fauske (1962) and Moody (1965). None of them is able to take into account the thermal disequilibrium

and the presence of metastable liquid. Given that the Henry-Fauske model (1971) is satisfactory in

terms of both critical pressure and mass flux, it has been added to EUROPLEXUS.

Although the initial intent was to integrate the DEM in EUROPLEXUS, it has been finally

abandoned because it seems too complicated to add as a critical flow boundary condition since it is

not a lumped zero-dimension model but would require a spatial discretization too.

This has been the first research work chronologically done in this PhD thesis. It has served to

make clearer the importance of metastability in the investigated phenomena and the secondary

importance of the velocity disequilibrium. As a result of this analysis, the subsequent work has

been focused on the thermodynamic aspects of the equations of state and on the thermodynamic

disequilibrium rather than the mechanical disequilibrium issue.
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Benchmark of Delayed Equilibrium Model (DEM) and Classic
Two-Phase Critical Flow Models against Experimental Data

International Journal of Multiphase Flow, Vol. 92, 112-130.

M. De Lorenzo1, Ph. Lafon1, J.-M. Seynhaeve2, Y. Bartosiewicz4.

The safety analysis of Pressurized Water Reactors, in the event of LOCA, strongly depends on

the ability to evaluate the discharge rate of coolant inventory through the breach. Due to the huge

pressure difference between the primary system and the reactor containment, the mass flow rate

is choked at the break. Under such conditions, both mechanical and thermal equilibrium between

phases are not ensured.

A general theory to evaluate the two-phase critical mass flow rate is not yet available. However,

some models are capable of providing accurate evaluations of either critical mass flux or critical

pressure and such a model is the Delayed Equilibrium Model (DEM), which is examined in this

article. Here we show how to integrate the DEM system of equations coupling a standard Runge-

Kutta method with the Possible-Impossible Flow algorithm to give a simple procedure which does

not require sophisticate computational schemes.

The main objective of this work is to compare DEM, Homogeneous Equilibrium Model, Moody

(1965) and Henry-Fauske (1971) models to experimental data. The four models were tested and the

results from experimental data containing a sample range in excess of 450 conditions compared in

determining an appropriate benchmark. Each of the chosen models is representative of a particular

category of critical flow models. Furthermore, two-phase critical models provide good estimations

depending on the configuration or set of conditions. Consequently, the models have been individually

tested incorporating long tubes, short tubes and slits.

This analysis has been carried out for both critical mass flux and critical pressure evaluations.

3.1 Introduction

The Loss Of Coolant Accident (LOCA) is one of the Design Basis Accidents (DBA) of most reactor

concepts. The safety analysis of pressurized light water reactors in the event of LOCA strongly

depends on the ability to evaluate the discharge rate of coolant inventory through the breach.

The discharging mass flow rate influences the depressurization rate of the primary system

and the heat transfer in the core, as a result of the flashing in the core. Establishing an accurate

evaluation of the coolant discharge rate at the breach allows one to better design both the Emergency

Core Cooling System (ECCS) and the safety systems of the containment.

Due to the huge pressure difference between the primary system and the reactor containment,

the mass flow rate is choked at the break, resulting in the mixture velocity of the coolant through

the breach equaling the local sound velocity. In such conditions, the flow is referred to as being

1 IMSIA UMR EDF-CNRS-CEA-ENSTA, Palaiseau, France 91120.
2 Université Catholique de Louvain (UCL), Louvain la Neuve, Belgium 1348.
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critical. Furthermore, the flow is also referred to as being choked when the mass flow rate becomes

independent of the downstream flow conditions [242].

The two-phase one-component critical flow plays a paramount role in nuclear safety, but the

phenomenon is still pertinent in fossil-fuel power plants, chemical plants and many industrial

facilities in which subcooled or two-phase pressurized fluids are used. Another application for

two-phase critical flow models is in the pressure-relief valve sizing.

The two-phase critical flow involves the presence of metastable states. Experimental evi-

dences [38, 149, 226] agree that the flashing does not start at saturation pressure, due to the

finite vaporization rate of the liquid. During the expansion, part of the metastable liquid becomes

saturated, however this mechanism is not clear yet. That is why many models have been developed

in the past and why their validation against experimental data is fundamental.

Critical flow of single-phase compressible fluids is well understood and mathematically described.

However, notwithstanding improvements made in terms of evaluation of the critical flow, a complete

and exhaustive theory for the critical two-phase flow is still not available.

Extensive experimental and theoretical researches have been carried out to clarify this flow

phenomenon. Simple ways to calculate the critical mass flow rate are the use of empirical models

(as Burnell [40] or Zaloudek [282]) or practical formulas as the ones of Fauske [106], Moody [184],

Babitskiy [19] and Henry & Fauske [125]. A review of them is given in Wallis [274] and in D’Auria

& Vigni [66].

More complete models are the HRM of Bilicki et al. [29, 84] and the DEM. For the mass transfer

between phases, they use an analytical relaxation correlation adjusted with empirical parameters.

Even more complete and elaborated are the so-called two-fluid models and the ones describing the

nucleation process for the mass and energy transfer between the phases. As Trapp & Ramson [267],

Dagan et al. [67] which also derived an empirical correlation for the density of bubble nuclei, or

Ardron [9] in which the nucleation model is based on the kinetic theory. We may also mention

Elias & Chambre [96, 97], two models based on the bubble transport equation. Boure et al. [37]

produced one of the most complete and advanced critical flow models. By using this model, any

other consistent model can be obtained. The algorithm used in this article, the Possible-Impossible

Flow (PIF) method (cf. Section 3.5.3.2), might be considered as a simplification of the one introduced

in [37].

Elias & Lellouche [98] provided a general review of a two-phase critical flow and conducted a

systematic evaluation to quantify the discrepancy between theoretical models and experimental

data. A more recent review paper is the one of Pinhasi et al. [207] in which all the aspects of the

flashing phenomena were discussed focusing on the release of liquid hazardous materials contained

in pressurized equipments.

More recently works in this domain are the asymptotic analysis of the EVUT model performed

by Valero & Parra [269], the interesting experimental investigation of Fraser & Abdelmessih [111]

about the effect of the location of flashing inception, the mechanistic model of Yoon et al. [281], and

the work of Kim & Mudawar [142] about choked flow in micro-channel heat sinks.

It is important to bear in mind that most of the theoretical models developed do not take into

account the presence of non-condensable gas which reduces considerably the critical mass flow rate
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of the mixture. Papers dealing with the infuence of non-condensable gas are Celata et al. [50] and

the more recent work of Park et al. [195].

In nuclear safety, codes like RELAP5, CATHARE, WAHA are based on the two-fluid model but

as far as the critical flow is concerned, the models used are simple expressions like Henry-Fauske

(1971) for RELAP5 code [249], an experimental correlation for the liquid to interface heat flux term

in CATHARE code [24], and the HRM correlations [84] in WAHA code [165]. RETRAN code uses

fitted forms of Moody (1965) and Henry-Fauske (1971) [180], the fast transient dynamics software

EUROPLEXUS [167], for the critical flow conditions adopts the simple formulas provided by HEM,

Fauske (1962), Moody (1965) and Henry-Fauske (1971).

In this context, the DEM has been implemented with success in WAHA [18] and in NEP-

TUNE_CFD [92] codes. In [18, 92] it was shown that the use of DEM in CFD codes allows a very

good representation of the experimental data and the results obtained were practically identical to

the ones obtained using the primitive steady-state form of the model (see Eq. 3.52). Therefore, the

benchmark of the steady-state form of DEM on a wide range of experimental data is the main objec-

tive of this paper. Moreover, a comparison with other models will be done, in terms of both critical

mass flux and critical pressure. Indeed, in many industrial applications, the pressure evaluation

at the location of the breach is essential. However, determining a benchmark for the evaluation of

critical pressure is unavailable in literature. Furthermore, many models are only able to accurately

calculate the critical mass flux under certain conditions. In order to clarify this evidence, models are

assessed utilizing three different configurations: long tubes, short nozzles and slits. Given that a

general theory is not yet available, it is important to highlight which models behave better under

certain conditions.

The paper is organized as follows. Section 3.2 introduces the main mathematical characteristics

of critical flow. In Section 3.3 we introduce the critical flow models used in the paper and their system

of equations. The speed of sound of the various models is identified and discussed in Section 3.4. In

Section 3.5, practical formulas are derived for the calculation of the critical mass flux. Particular

attention is drawn to the description of the Delayed Equilibrium Model: the simplified system of

ODE for steady-state applications, its closure laws and the algorithm used to solve it.

Section 3.6 is devoted to the comparison of four different models against experimental data. The

four models adopted are:

1. Homogeneous Equilibrium Model, since it does not take into account any non-equilibrium

between phases.

2. Moody (1965) model, in which phases are allowed to flow at different velocities.

3. Henry-Fauske (1971) model, given that it is one of the most used non-equilibrium models.

4. Delayed Equilibrium Model, which authors consider to be one of the most physically consistent

model, notwithstanding its simplicity.

Finally, Section 3.7 is devoted to the quantitative analysis of the models in terms of mean error

and standard deviation with respect to experimental data. This analysis has been carried out for

both critical mass flux and critical pressure evaluations.
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3.2 Mathematical Characteristics of Critical Flows

The critical flow implies that the mass flow rate is maximum, irrespective of change in the pressure

downstream, i.e. for given inlet conditions:

d(GAz)
dp

= 0, (3.1)

where G = ρu is the mass flux over a given area Az, ρ denotes the density and u the fluid velocity.

Consider the single-phase flow at steady-state conditions in a uniform cross-section pipe. For an

upward one-dimensional flow, the momentum balance equation is

d
dz

(
G2

ρ

)
+ dp

dz
=− 1

Az

∫
Pz

τwdPz −ρg. (3.2)

τw denotes the wall shear stress, Pz is the perimeter of the channel and g stands for the gravitational

constant. The pressure is assumed to be uniform over Az. According to mass conservation equation,

the mass flux G remains constant. Assuming that the flow is governed by a barotropic equation of

state such that ρ = ρ(p), the first term of (3.2) can be rewritten as

d
dz

(
G2

ρ

)
=−G2

ρ2
dρ
dp

dp
dz

. (3.3)

Here we can recognize the sonic velocity, c, at which pressure disturbances travel in a fluid, i.e.

c2 = dp
dρ

. (3.4)

Inserting Eq. (3.3) in (3.2) and solving with respect to pressure gradient, we obtain

dp
dz

=−
1

Az

∫
Pz
τwdPz +ρg

1− u2

c2

. (3.5)

From this formula we can see that when the fluid velocity approaches the speed of sound,

dp
dz

→−∞. (3.6)

This phenomenon is even called the pressure-knee.

At steady-state conditions, the governing equations of the two-phase flow constitute a system of

non-linear ordinary first order differential equations. Its mathematical form is:

A
dU
dz

=b. (3.7)

where U represents the variable state vector and b is a source term vector containing body forces,

viscous stresses and heat flux. An alternative way to define the critical flow is to require that the

matrix of the ODE system be singular. Hence, the necessary condition for criticality [37] is

det(A)= 0. (3.8)

The conditions expressed in Eq. (3.6) and (3.8) are linked. In fact, the variable state vector U
may contain the pressure p, thus, solving with respect to its derivative we may have: dp

dz =− ...
det(A) .

Hence the necessary condition expressed in (3.8) makes the pressure gradient to diverge.

In the following we will use (3.6) and (3.8) to find the speed of sound of each of the models

compared to experimental data, but, before we need to introduce their balance equations.
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3.3 Balance Equations of the Models

Critical flow models can be divided according to the kind of non-equilibrium between the two phases.

Homogeneous models have got the mechanical constraint that both phases flow at the same velocity.

Non-homogeneous models relax this constraint allowing slip between phases. Equilibrium models

impose the thermal equilibrium between vapor and liquid phases, whereas, for non-equilibrium

models, phases can be at different temperatures. Assuming that phases are in full equilibrium, we

obtain the Homogeneous Equilibrium Model.

In the following we give the sets of balance equations that formally define the critical flow models

used in the paper. Instead, in Section 3.5, we derive the formulas for the prediction of the critical

mass flux.

3.3.1 Balance Equations of the Homogeneous Equilibrium Model

The HEM does not allow any non-equilibrium between phases. Vapor and liquid are at saturation

conditions, at same pressure and temperature, flowing at the same velocity. Let us recall the balance

equations for a mixture in thermal and mechanical equilibrium between phases (HEM). For one-

dimensional flow with variable cross-sectional area, neglecting the effects of body forces, viscous

stresses and heat flux, along axis z, it can be written in conservative form as


∂t(ρm Az)+∂z(ρmum Az)= 0,

∂t(ρmum Az)+∂z[(ρmu2
m + p) Az]= p ∂z Az,

∂t(ρmEm Az)+∂z[(ρmEm + p)um Az]=−p ∂t Az.

(3.9)

where ρm is the mixture density, i.e. ρm =αvρv + (1−αv)ρl , indicating with αv the volume fraction

occupied by the vapor phase and subscripts v and l stand for vapor and liquid phases. um is the

velocity of the mixture, the total energy is Em = em + 1
2 u2

m and em is the specific internal energy of

the mixture.

Assuming that the mixture undergoes an isentropic transformation up to the critical section,

a practical formula for predicting the critical mass flow rate can be deduced from system (3.9) (cf.

Section 3.5.1).

3.3.2 Balance Equations of Non-Homogeneous Equilibrium Models

This kind of critical flow models supposes phases in thermal equilibrium (Tl = Tv = Tsat(p)) but

relaxes the constraint of mechanical equilibrium (uv 6= ul 6= um). For this purpose, one should need

an extra PDE to describe the momentum balance of one of the two phases. However, some critical

flow models as Moody [184] or Fauske [106] provide the value of the slip ratio of the two velocities,

hence the relative velocity between phases ur is assigned. In the event that the relative velocity is
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known a priori, the set of balance equations describing the flow, in conservative form, is [82, 136]
∂t(ρm Az)+∂z(ρmum Az)= 0,

∂t(ρmum Az)+∂z{[ρmu2
m + p+ρmx(1− x)u2

r] Az}= p ∂z Az,

∂t(ρmE′
m Az)+∂z{[(ρmE′

m + p)um +ρm(L+ (1
2 − x)u2

r +umu2
r)x(1− x)ur]Az}=−p ∂t Az.

(3.10)

The mean velocity um is such that ρmum =αvρvuv +αlρl ul . The relative velocity between phases

is ur = uv −ul . By introducing the slip ratio S = uv/ul , the relative velocity is ur = S−1
1+(S−1)x um. x

denotes the mass fraction of the vapor phase in the mixture and L indicates the latent heat. The

mixture total energy is

E′
m = em + 1

2
u2

m + 1
2

x(1− x)u2
r , (3.11)

and the mean specific internal energy is such that ρmem =αvρvev +αlρl e l .

A closure law for the slip ratio S or the relative velocity ur is needed to system (3.10). Fauske [106]

chose the slip ratio which maximizes the flow momentum:

∂

∂S
[xuv + (1− x)ul]= 0. (3.12)

Moody [184], the one that maximizes the specific kinetic energy:

∂

∂S

[
1
2

xu2
v +

1
2

(1− x)u2
l

]
= 0. (3.13)

As a result, the slip ratio for Fauske model is S = (ρl /ρv)1/2, whereas, for Moody model is

S = (ρl /ρv)1/3.

In the literature, many authors realized that unless for very long tubes, the HEM tends to

systematically underestimate the two-phase critical flow. By relaxing the mechanical equilibrium,

critical mass flow rate evaluations improve. Given that phases have different densities, it is normal

to expect that pressure gradient tends to accelerate the lighter phase, leading to slip ratios larger

than unity. By the way, the improvement introduced by considering the slip between the two phases

is fictitious. In fact, the slip ratios used in many non-homogeneous models seem to be too high with

respect to experimental evidences [270].

Using the method of characteristics, it has been shown that too high slip ratios lead to imaginary

characteristics. For instance, Fauske [106], Moody [184] and Moody [186] models have imaginary

characteristics for most of the range of interest [258, 268]. Characteristics are real just for slip ratios

close to the unity [258]. Hence, a thermal equilibrium model, to be well-posed, must approach the

HEM.

Finally, it comes that the underestimation made by the HEM is essentially due to the assumption

of thermodynamic equilibrium. This assumption is relaxed in the two following models to be

discussed.

3.3.3 Balance Equations of Homogeneous Non-Equilibrium Models

It has been experimentally shown that metastable liquid appears in critical flows. Moby-Dick [226]

and Super Moby-Dick [149] tests, held at CEA during the 1970s, are a clear demonstration of the
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presence of a metastable phase. The thermal non-equilibrium between phases is due to the finite

vaporization rate and it is expected to be more important for short pipes, nozzles, and orifices, where

the fluid transit time is very short.

Many models relaxing the thermal equilibrium condition have been formulated in the past.

Simple models take into account the metastability by using semi-empirical coefficients. Some of

them are a simple empirical formula, for instance: Burnell [40] or Zaloudek [282].

The Henry-Fauske model has been chosen for the comparison because, together with Trapp-

Ransom model [267], it is the reference model for RELAP5 code [249]. Formally, Henry-Fauske

model could be considered as a Homogeneous Non-Equilibrium Model. For this kind of models, the

phases move at the same velocity but a temperature difference exists between phases. In order to

allow phases to have a different mean temperature, we need to add a mass balance equation for the

vapor phase to the system (3.9)

∂t(αvρv Az)+∂z(αvρvum Az)=Γv Az. (3.14)

The mass transfer is modeled by means of the source term Γv. The latter indicates the intensity of

phase transition and tends to introduce a certain delay for the liquid vaporization. Adding Eq. (3.14)

to system (3.9) we obtain a 4-equation model formally identical to the one of Bilicki et al. [29].

Imposing the thermodynamic transformation to which the phases undergo, a practical set of

equations is obtained from this 4-equation model for the prediction of the critical mass flow rate (cf.

Section 3.5.2).

3.3.4 Balance Equations of the Delayed Equilibrium Model

The Delayed Equilibrium Model (DEM) derives from the Lackmé’s [158] idea of describing the

critical flow as composed of three-phases. The three phases are: saturated liquid and vapor and

metastable liquid. This picture of the flow comes from the experimental evidences of Barois [15],

in which local temperature measurements oscillate between stagnation temperature T0 and local

saturation temperature Tsat(p).

The expansion of the metastable flashing liquid is almost frozen. Due to the high velocities, the

transit time is very short, i.e. few milliseconds. Bartosiewicz & Seynhaeve [17] have shown that,

between saturated and metastable liquid, the temperature front only penetrates few tens microns.

The amount of metastable liquid depletes only due to the increase of the interfacial area given that

flow pattern changes.

The basic assumptions of the model are: (i) the mixture is composed by three phases, (ii) two

phases are at saturation, then, at thermal equilibrium, the third phase is at a different temperature,

(iii) the mixture is at pressure and mechanical equilibrium, (iv) the metastable phase undergoes an

isentropic transformation. Table 3.1 helps in understanding how different phases will be indicated

from now on, and the assumptions of the model.

Hence, the magnitude y denotes the mass fraction of the stable phase, i.e. saturated liquid and

vapor. The subscripts employed to indicate the three phases are: l for saturated liquid phase, v for

saturated vapor phase and l, M for metastable liquid phase.
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Table 3.1: DEM model

Saturated vapor Saturated liquid Metastable liquid
Volume fraction αv αl αl,M
Mass fraction X y− X 1− y
Temperature Tsat Tsat Tl,M
Pressure p p p
Velocity um um um

Analogously to the Henry-Fauske model, to define the DEM, we can add an extra mass balance

equation for one of the three phases to the mixture system of equations reported in (3.9). The mass

balance equation for the metastable liquid phase is

∂t(αl,Mρl,M Az)+∂z(αl,Mρl,M um Az)=Γl,M Az. (3.15)

The mass transfer is modeled by means of a source term, Γl,M , which describes the rate of disappear-

ance of the metastable phase to increase the quantity of saturated mixture during the flow. Using

continuity equation, one obtains

Γl,M =−ρm
D y
Dt

. (3.16)

Since it plays a crucial role in the description of the flow, it will be analyzed in Section 3.5.3.1. Given

that the DEM is a three-phase model, the specific volume and internal energy for the mixture are

vm = ρ−1
m = X vv + (y− X )vl + (1− y)vl,M , (3.17)

em = X ev + (y− X )e l + (1− y)e l,M . (3.18)

It is important to specify that the mass fraction of the saturated vapor (flow quality) can be expressed

as

X = xeq y, (3.19)

where xeq is the thermodynamic quality of the portion of the mixture that is at saturated conditions.

As a result, the specific volume of the mixture becomes

vm = y[xeqvv + (1− xeq)vl]+ (1− y)vl,M . (3.20)

On the R.H.S. we have grouped in square brackets the portion at equilibrium conditions and the

metastable one in the last term.

3.4 Speed of Sound of the Models

As discussed in Section 3.2, we can use three possible ways to identify the critical velocity: i) to impose

that the pressure gradient diverges at critical velocity, as in (3.6), ii) to nullify the determinant of A,

as in (3.8), iii) applying the definition of maximum mass flux given in Eq.(3.1).

In this section we will analyze the critical speed of sound of the models under comparison.

Figure 3.1 shows the trend of the speed of sound of the different models for two-phase water. As

well-known, the speed of sound of a two-phase mixture is generally much lower than the single-phase

speed of sound of each specie. Moreover, the mixture speed of sound is lower at low pressures.
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FIGURE 3.1. Speed of sound in vapor-liquid water of the models under comparison. As-
suming that the mixture is at mechanical equilibrium, the speed of sound of the HEM
is the one accounting for the full thermal equilibrium between the phases, whereas
the Wood’s one [279] is obtained assuming that the phases are in frozen thermal
equilibrium. The speed of sound of DEM, expressed in Eq. (3.42), is extrapolated
throughout the whole two-phase domain. Its tends to Wood’s one when y is small but
tends to the HEM speed of sound when y→ 1. For Moody model, the critical mixture
velocity, um, corresponding to the critical mass flux, Gcr, has been plotted.

3.4.1 Speed of Sound of the Homogeneous Equilibrium Model

The HEM is described by the system of equations (3.9), which is written in a conservative form.

Recasting this system in an equivalent primitive form, and neglecting time derivatives, we obtain
um ρm 0

0 um ρ−1
m

0 γHEM p um

 d
dz


ρm

um

p

=b. (3.21)

γHEM is the dimensionless quantity

γHEM = 1

p
(
∂em
∂p

)
ρm

[
p
ρm

−ρm

(
∂em

∂ρm

)
p

]
. (3.22)

Note that (3.21) has the same shape of Eq. (3.7). Imposing the determinant to be equal to zero, one

obtains

det(A)= um

(
u2

m − γHEM p
ρm

)
= 0. (3.23)
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Unless for the trivial case um = 0, the determinant is zero when the um =±cHEM . Hence the speed

of sound of the HEM, cHEM , is

cHEM ,

√
γHEM p
ρm

. (3.24)

Note that the same result can be achieved using the first and the third equation of system (3.21)

and making the pressure gradient to diverge. By using thermodynamic relations de = Tds− pdv

and dh = Tds+vdp, Eq. (3.24) can be rewritten as

c2
HEM =

(
∂p
∂ρm

)
s
. (3.25)

Considering that the mixture is composed by vapor and liquid at saturated conditions, the derivative

is (
∂p
∂ρm

)
s
=−v2

m

{
∂[vl + x(vv −vl)]

∂p

}−1

s
. (3.26)

Finally, a more explicit form is:

c2
HEM =−v2

m

{
dvl

dp
−

[
x

dsv

dp
+ (1− x)

dsl

dp

]
vv −vl

sv − sl
+ x

(
dvv

dp
− dvl

dp

)}−1
. (3.27)

The trend of Eq. (3.27) is depicted in Fig. 3.1 in the entire two-phase domain. It has to be noted that

the speed of sound of the HEM has got two discontinuities for αv = 0 and αv = 1. This is due to the

presence of a “kink” (discontinuity in the derivatives) of the properties across the saturation curve if

the thermal equilibrium is assumed. From Fig. 3.1 we can also see that, according to the HEM, the

speed of sound is extremely low for αv ≈ 0.

3.4.2 Critical Mass Flux of the Moody Model

In Moody model, two different velocities exist for saturated vapor and liquid. For this reason, it is

senseless to define a speed of sound for the mixture. However, we can look for the critical mass flux

which makes the pressure gradient to diverge as in Eq. (3.6). The mass flux is defined as:

G = ρmum =αvρvuv +αlρl ul . (3.28)

The mass balance of system (3.10), at steady state, in a uniform cross-section pipe, indicates that

G = cte. For simplicity, we can also introduce the momentum density (or mixing-cup density), ρ+m, i.e.
1
ρ+

m
= 1

G2 [αvρvu2
v + (1−αv)ρl u2

l ]. For an upward vertical flow, the momentum balance of system (3.10)

can be rewritten as
d
dz

(
G2

ρ+m

)
+ dp

dz
=− 1

Az

∫
Pz

τwdPz −ρm g. (3.29)

Since in Moody model the slip ratio is S = (ρl /ρv)1/3, the momentum density just depends on

thermodynamic magnitudes, for instance, ρ+m = ρ+m(p, s). If we suppose that the flow is isentropic,

using mass and momentum balance equations, the pressure gradient is

dp
dz

=−
1

Az

∫
Pz
τwdPz +ρm g

1+G2 d
dp

(
1
ρ+

m

) . (3.30)
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The vanishing condition of the denominator gives us the critical mass flux:

G2
cr =−

[
d

dp

(
1
ρ+m

)]−1
. (3.31)

In 3.9 the derivative on the R.H.S. of the previous equation is analyzed. Considering that the critical

mass flux is Gcr = ρm,crum,cr, in Fig. 3.1 we plot the trend of the critical mixture average velocity

um,cr in the two-phase domain. The presence of slip between phases makes the critical mass flux to

be higher than the HEM one. However this critical mixture average velocity is still very low at low

αv.

3.4.3 Speed of Sound of the Henry-Fauske Model

Considering Henry-Fauske (1971) as a 4-equation model, it is formed by the system of equations (3.9)

augmented by the balance equation for the mass of the vapor phase expressed in (3.14). At steady-

state, an equivalent primitive form of the system is
um 0 0 0

0 um ρm 0

0 0 um ρ−1
m

0 0 γHF p um


d
dz


x

ρm

um

p

=b. (3.32)

γHF is the dimensionless quantity

γHF = 1

p
(
∂em
∂p

)
ρm,x

[
p
ρm

−ρm

(
∂em

∂ρm

)
p,x

]
. (3.33)

Again, using thermodynamic relations expressed above, one obtains

c2
HF =

(
∂p
∂ρm

)
s,x

. (3.34)

This definition is coincident to the speed of sound of the HRM of Bilicki et al. [29]. Now, let us impose

the approximations and the hypothesis typical of Henry-Fauske [125] to obtain the proper speed

of sound of this model. A more convenient form of (3.34) is given by using fundamental rules for

partial derivatives

c2
HF =−v2

m

[(
∂vm

∂p

)
T,x

−
(
∂vm

∂sm

)
p,x

(
∂sm

∂p

)
T,x

]−1

. (3.35)

Considering the liquid as incompressible and supposing that the vapor phase undergoes a polytropic

transformation, then
(
∂vm
∂p

)
T,x

≈− x0vv
np , where n is the polytropic index. In the phase transition

(
∂vm

∂sm

)
p
= vv −vl

sv − sl
≈ vv −vl,0

sv,0 − sl,0
. (3.36)

where vl,0, sv,0 and sl,0 indicate the stagnation phasic properties. The last derivative to be evaluated

is (
∂sm

∂p

)
T,x

= x0

(
∂sv

∂p

)
T
+ (1− x0)

(
∂sl

∂p

)
T

. (3.37)
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Following the original paper of Henry & Fauske [125]:(
∂sv

∂p

)
T
≈− cp,v

p

(
1
n
− 1
γv

)
,

(
∂sl

∂p

)
T
≈ N

sv,0 − sl,0

sv,eq − sl,eq

dsl,eq

dp
, (3.38)

where γv is the isentropic index for the vapor phase and N is an empirical parameter which takes

into account the metastability. It relates the actual change in quality with pressure, to the rate of

change occurring under equilibrium conditions: dx
dp = N dxeq

dp . Based on experimental observations of

Starkman et al. [253], N is estimated as

N =
xeq/0.14, i f xeq ≤ 0.14,

1, i f xeq > 0.14.
(3.39)

Finally, inserting these relations in (3.35), the speed of sound of the Henry-Fauske model is

c2
HF = v2

m

{
x0vv

np
+ vv −vl,0

sv,0 − sl,0

[
(1− x0)N

sv,0 − sl,0

sv,eq − sl,eq

dsl,eq

dp
− x0cp,v

p

(
1
n
− 1
γv

)]}−1

. (3.40)

Here, the speed of sound of this model has been deduced considering that the Henry-Fauske [125]

is a 4-equation model but we can recognize that Gcr = ρmcHF has the same formulation of the one

indicated in [125]. Given that this formulation depends on the inlet properties of the mixture, it can

not be plotted in Fig. 3.1.

3.4.4 Speed of Sound of the Delayed Equilibrium Model

Formally the system of equations that defines the DEM is similar to (3.32), unless for the first

equation that, for the DEM, is referred to the metastable phase. Following the same procedure

detailed above in the case of the Henry-Fauske model, one obtains the speed of sound of the DEM:

c2
DEM =

(
∂p
∂ρm

)
s,y

. (3.41)

Using the definition of mixture specific volume given in (3.20),

c2
DEM =−v2

m

{
y

d
dp

[
xeqvv + (1− xeq)vl

]
s + (1− y)

(
∂vl,M

∂p

)
s

}−1
. (3.42)

On the R.H.S., the first term into the curly braces, is similar to the speed of sound of the HEM

calculate at the equilibrium quality xeq, i.e. d
dp

[
xeqvv + (1− xeq)vl

]
s =

(
ρm,eqcHEM

)−2
xeq

, where ρ−1
m,eq =

xeqvv + (1− xeq)vl . The DEM speed of sound can be rearranged in the same shape of the well-known

formula of Wood [279]
1

ρ2
mc2

DEM
= y(

ρ2
m,eqc2

HEM
)
xeq

+ 1− y
ρ2

l,M c2
l,M

. (3.43)

From this formula we can see that the DEM exhibits a speed of sound that can span from the one of

the HEM (full thermal equilibrium) to the Wood’s one (frozen thermal equilibrium). This feature of

the model is depicted in Fig. 3.1. In this graph, the DEM speed of sound is plotted by extrapolating

Eq. (3.43). In fact the speed of sound of the DEM tends to Wood’s one when y is very small, whereas,

when y→ 1, the speed sound of the DEM is very close to the one of the HEM.
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3.5 Calculation of the Critical Mass Flux

In this section we derive more practical sets of equations for the calculation of the critical mass flux

and pressure. These will then be used for the benchmark against the experimental data and the

comparison of the DEM with the three classical models described up to here.

3.5.1 Calculation of the Critical Mass Flux with Homogeneous Equilibrium
Model and Moody Model

Both Eq. (3.24) and (3.31) are local conditions at the critical section, interesting from the physical

point of view, but useless for practical purposes since local conditions are unknown. Let us derive a

practical equation for predicting the critical mass flux in case of drift between phases. The same

formula is also applicable for the HEM if the slip ratio is set to unity.

The evolution from the stagnation condition up to the critical section is assumed to be isentropic.

Hence, at any point, including the throat, we have

h0 = x
(
hv + 1

2
u2

v

)
+ (1− x)

(
hl +

1
2

u2
l

)
. (3.44)

The phasic velocities are: uv = xG/(αvρv) and ul = (1−x)G/[(1−αv)ρl]. The void fraction is expressed

as

αv = 1
1+S 1−x

x
ρv
ρl

. (3.45)

Using the previous equations, the mass flux expressed in (3.28) becomes

G = ρs
√

2(h0 −h) , (3.46)

where the slip density is expressed by

ρs =
[

x
ρv

+ (1− x)S
ρl

]−1 [
x+ (1− x)

S2

]−1/2
. (3.47)

To calculate x, we can use the assumption of the isentropic expansion, i.e. x = (s0 − sl)/(sv − sl).

Setting the slip ratio to S = (ρl /ρv)1/3, we recover the practical formula proposed by Moody [184] to

calculate the critical mass flux. For S = 1 we get an analogous formula for the HEM.

Equation (3.46) and (3.47) depend only on pressure and stagnation conditions. For determining

the critical mass flow rate Gcr, for HEM and Moody (1965), Eq. (3.46) can be iteratively solved by

using the conditions: (
∂G
∂p

)
throat

= 0,
(
∂2G
∂p2

)
throat

< 0. (3.48)

The first condition comes from the impossibility for a pressure perturbation to propagate against

the flow direction. The second condition states that the critical mass flow rate achieved is the

maximum one. Therefore the calculation of the critical mass flux and pressure reduces to the

research of a maximum that has to be done iteratively since fluid properties change with pressure.

In order to speed up the calculations, in this article, the Golden Section Search algorithm has been

used.
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3.5.2 Calculation of the Critical Mass Flux with Henry-Fauske Model

The purpose of Henry & Fauske in [125] was to provide a practical set of equations to calculate the

critical mass flux only as a function of stagnation conditions. Despite the simplicity of this model, it

allows accounting the non-equilibrium between phases. This way to calculate the critical mass flux

is simple and fairly accurate.

The speed of sound of this model is indicated in Eq. (3.40), it follows that the critical max flow

rate is Gcr = ρmcHF , which depends on stagnation condition and critical pressure. However the

latter is unknown, hence, critical mass flux and pressure equations must be solved together.

Here we include the equation provided by Henry & Fauske in [125] to calculate the pressure at

the throat. The pressure ratio between the throat and the stagnation conditions, η= pt/p0, is:

η=
 1−αv,0

αv,0
(1−η)+ γ

γ−1
1

2βα2
v,t
+ γ

γ−1


γ

γ−1

throat

. (3.49)

where

β=
[

1
n
+

(
1− vl,0

vg,t

)(
(1− x0)N p

x0
(
sv,eq − sl,eq

) dsl,eq

dp

)
t

− cp,v(1/n−1/γ)
sv,0 − sl,0

]
, (3.50)

αv,0 =
x0vv,0

(1− x0)vl,0 + x0vv,0
, αv,t =

x0vv,t

(1− x0)vl,0 + x0vv,t
, vv,t = vv,0η

−1/γ. (3.51)

As discussed above, the metastability is taken into account by an empirical parameter, N,

which has been expressed in (3.39). This empirical correlation has been formulated to hold only for

dispersed mixtures expected at a nozzle throat. In fact, originally, the Henry-Fauske [125] model was

developed for nozzles, orifices and short tubes, in which the assumption of dispersed mixture at the

throat is reasonable. Nevertheless, this model has been widely used even for other configurations,

like long pipes, with good results.

It tries to account for the effects of the thermal non-equilibrium by means of experimental

coefficients. Obviously, the validity of these coefficients is limited to the experimental range for

which they have been determined. For example, the range of the Henry-Fauske [125] reported

in [114] is 20 ≤ p0 ≤ 200 psia for subcooled and saturated inlet conditions, and up to 882 psia for

two-phase mixtures. Much lower than the working pressure of Pressurized Water Reactors. However,

it is extensively used far away from its experimental ranges with adequate results.

3.5.3 Calculation of the Critical Mass Flux with Delayed Equilibrium Model

The integration of the system of equations formed by (3.9) and (3.15) requires non-negligible

computational efforts. One of the aims of this paper is to show that it is possible to obtain very good

estimations of critical mass flux and pressure using simple numerical methods.

For steady-state applications, by means of the entropy balance, Feburie et al. [107] gave a very

compact form for the DEM. Further simplifications come from Attou & Seynhaeve [11]. Finally, the
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DEM can be written as

vv −vl vl −vl,M

(
∂vm
∂p

)
X ,y

− vm
um

0 0 1 vm
um

hv −hl hl −hl,M

(
∂hm
∂p

)
X ,y

um

0 1 0 0





dX
dz

d y
dz

dp
dz

dum
dz


=



vm
Az

dAz
dz

− Pz
Az
τw − 1

vm
gcosθ

vm
um

Pz
Az

q′− gcosθ

f (p, y,Tl,M)


. (3.52)

τw denotes the wall shear stress, Pz is the perimeter of the channel, θ is the angle between

the axis of the channel and the upward vertical direction. q′ takes into account the eventual

heating/cooling of the channel and is expressed in W/m. System (3.52) is formed by four ordinary

first order differential equations. The last equation is

d y
dz

= f (p, y,Tl,M). (3.53)

Similarly to Γl,M for the transient flow, f (p, y,Tl,M) describes the mass transfer for steady-state

flows. Namely, it is the formation rate along coordinate z of stable phases, i.e. saturated liquid

and vapor, from the liquid metastable phase. Its formulation is discussed in Section 3.5.3.1. The

derivatives appearing in the L.H.S. of system (3.52) are(
∂vm

∂p

)
X ,y

= X
dvv

dp
+ (y− X )

dvl

dp
− (1− y)

(
∂vl,M

∂p

)
s
, (3.54)

(
∂hm

∂p

)
X ,y

= X
dhv

dp
+ (y− X )

dhl

dp
− (1− y)

(
∂hl,M

∂p

)
s
. (3.55)

The metastable phase is supposed to undergo an isentropic transformation, then(
∂vl,M

∂p

)
s
=− 1

ρ2
l,M c2

l,M
≈ 0,

(
∂hl,M

∂p

)
s
= vl,M . (3.56)

3.5.3.1 Vaporization during the expansion and closure laws for DEM

The presence of a metastable phase in the model accounts for the vaporization delay experimentally

observed [149, 226]. The vaporization delay is governed by the onset pressure of nucleation, ponset,

and the evolution of the vaporization index, y. At ponset the probability of nucleation becomes

significant, vapor appears and the mixture is accelerated. Lackmé proposed [157]:

ponset = k1 psat(T0), with k1 ≈ 0.95. (3.57)

Generally, experimental facilities use demineralized water, therefore k1 could be somewhat

larger for industrial water applications. Bartosiewicz & Seynhaeve [17] considered 0.95≤ k1 ≤ 0.98.

The relation expressed in Eq. (3.57) has the effect to shift the onset of nucleation at a pressure

smaller than psat. In fact, in classical thermodynamics the phase transition occurs at saturation

conditions, however, in real systems an isothermal pressure change would very likely carry the
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state point into the metastable domain. The deeper the metastability reached, the higher is the

probability for the phase change to occur. Here the onset of nucleation is crudely shifted by using

a factor k1, however, this approximation seems to well reproduce the pressure and void fraction

evolutions in the long and short pipes (Fig. 3.5, 3.6 and 3.9).

Considering the evolution of the mass fraction of the saturated phase, y, on an infinitesimal

interval dz, downstream from the nucleation onset position, Lackmé [159] proposed the relaxation

relation

d y= k2(1− y)(p0 − p)
1
4 dz. (3.58)

Thus, the variation of y is proportional to the mass fraction of the metastable liquid (1− y). The

term (p0−p)n represents the tension that the liquid must tolerate to not vaporize at temperature T0.

The exponent n = 1
4 comes from the approximated trend of the saturation curve: psat ≈ (0.01Tsat)4.

Using this approach, in long tube configurations, the metastable phase disappears slowly as

experimentally observed [149, 226]. Conversely to the approach of Schrock et al. [238], where the

metastability disappears almost instantaneously once the metastable limit is reached, similarly

to rapid depressurization experiments [94]. Feburie et al. [107] proposed a similar correlation for

steam generator cracks and subcooled inlet conditions. Recently, the relaxation law has been written

as [17]
d y
dz

=
(
C1

Pz

Az
+C2

)
(1− y)

[ psat(Tl,M)− p
pcritical − psat(Tl,M)

]C3

, (3.59)

where pcritical = 220.64 bar for water. Equation (3.59) is the formation rate, along coordinate z

of stable phases from liquid metastable phase. The thermodynamic non-equilibrium is function

of the local normalized subcooling difference, expressed in terms of pressure difference. Hence,

the evolution of the metastable phase is described by both local thermodynamic magnitudes and

experimental coefficients, allowing to take into account heterogeneous nucleation at the wall (C1
Pz
Az

)

and in the bulk (C2). The experimental coefficients of Eq. (3.59) have been recently adjusted, giving

to the model a more general validity. Thus, the coefficients used in this article are the ones in [241]

C1 = 0.008390, C2 = 0.633691, C3 = 0.228127. (3.60)

As long as the nucleation onset pressure has not been reached, the flow is single-phase, hence

the wall shear stress, τw, is determined by the following formula

τl = f
G2

l

2ρl
, (3.61)

where the Fanning friction coefficient f is calculated by the Colebrook’s correlation. The wall shear

stress in two-phase flow is calculated by using two-phase multipliers

τTP =Φ2
l τl . (3.62)

For the two-phase multiplier, the correlation of Lockhart-Martinelli, modified by Richardson

(1958), has been adopted

Φ2
l = (1−αv)−1.75. (3.63)
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FIGURE 3.2. Schematic example of a critical trajectory in the phase space Ω. The hy-
persurface, described by det(A)= 0, separates the portion of Ω for which det(A)< 0
by the portion in which det(A) > 0. The singular point represents the intersection
between the critical trajectory and the hypersurface at z = zcritical .

3.5.3.2 Possible-Impossible Flow Algorithm

Let us describe now the numerical method used for solving system (3.52) and its mathematical

foundation. The two-phase flow model of Eq. (3.52) constitutes a system of non-linear ordinary first

order differential equations as (3.7). The components of U represent the trajectories in the phase

space Ω formed by the n components of U and the coordinate z. As introduced above in Eq. (3.8), the

necessary condition for criticality [37] is det(A)= 0.

In the phase space Ω, the points where det(A)= 0, are either turning points or singular points.

These points form a cylindrical hypersurface in the phase space Ω. The compatibility condition for

criticality [37] is

det(A(b),i)= 0, (3.64)

where A(b),i is the matrix obtained by replacing the i-th column of A by the source term vector b. It

can be demonstrated that if Eq. (3.64) is satisfied for i = l, then, det(A(b),i)= 0 ∀i = 1, ..,n [27].

Points satisfying Eq. (3.8) but not Eq. (3.64) are turning points; points satisfying both together

are singular points. Generally, in two-phase flows, singular points are nondegenerate, thus, they can

be: saddle, nodal or spiral points.

It has to be noted that the necessary critical flow criterion involves only the L.H.S. of Eq. (3.52).

Hence, the speed of propagation of a plane wave of small amplitude is insensitive to gravity, tube

shape, wall friction and the other terms of b. On the other hand, the compatibility condition involves

all the terms of the R.H.S. of Eq. (3.52).
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Mathematically, Eq. (3.8) and (3.64), together, represent the choking criterion. In the phase

space Ω, the points of Eq. (3.8) form a cylindrical hypersurface dividing the subcritical and the

supercritical regions (see Fig. 3.2).

To solve Eq. (3.7), therefore system (3.52), the procedure is to start from the point U0 of the phase

space Ω and to integrate along channel axis z until the critical point is detected. Let us explain

better this procedure.

As long as det(A) 6= 0, there are no problems in solving system (3.52) with a standard ODE solver.

As soon as one of the eigenvalues of matrix A is equal to zero, hence det(A)= 0, system (3.52) cannot

be solved by integration at that particular point.

However, in this article, we want to use the DEM to calculate the critical mass flux and pressure,

therefore, the calculation domain arrives up to the critical section. To reach this goal, a standard

ODE solver is sufficient since it allows to approach extremely close to a critical point.

From the inlet up to the critical section, the solution of Eq. (3.7), is given by Cramer’s rule

dUi

dz
= det(A(B),i)

det(A)
= (A−1b)i, (3.65)

where (A−1b)i is the i-th element of the vector A−1b.

System (3.52) can be also solved using Eq. (3.65). To be more accurate, the spatial integration of

system (3.52) can be done using a standard ODE solver. In this paper, all the calculations have been

performed using a six-stage, fifth-order, Runge-Kutta method with a variable space step.

In the case of DEM, the variable vector is U = [X , y, p, um]T . To integrate system (3.52), we

need the value of the variable vector U0 at z = 0, i.e. at the inlet of the channel. Usually not all the

components of U0 are known. The inlet pressure, p0, and the inlet quality of the mixture, X0, are

always known. The fraction of stable phase, y0, is assumed to be equal to X0, it means that all the

liquid is assumed to be metastable at the inlet of the channel, whether it is saturated or subcooled.

However the inlet velocity um,0 is unknown.

To overcome this problem, the system (3.52) is solved coupling the Runge-Kutta method with the

Possible-Impossible Flow (PIF) algorithm which provides a good estimation of the inlet velocity.

Physically, the choked flow represents the maximum value of the possible mass fluxes and the

minimum value of the impossible mass fluxes. The PIF algorithm incorporates this definition and it

might be considered as a simplification of the one introduced in [37] and is similar to the one used

by Yoon et al. [281]. The logical scheme of this algorithm is the following:

Step 0: we start from two values of mass flow rate, ṁimp and ṁpos. The first is defined to be the

impossible mass flow rate (too high) and the latter is a possible flow rate (too low to be the

critical one).

Step 1: The inlet velocity is calculated as um,0 = ṁguess
ρm,0 Az,0

. Where the guessed mass flow rate is:

ṁguess = (ṁimp + ṁpos)/2. All the components of the inlet variable vector U0 are known now.

Step 2: from the inlet conditions, system (3.52) is integrated using a Runge-Kutta method checking

that det(A) does not change its sign (crossing the hypersurface of Fig. 3.2).
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Step 3: If det(A)≤ 0 before the end of the pipe, the flow is critical (Impossible Flow). The ṁimp is

decreased and we restart from Step 1.

Step 4: If det(A)> 0 in all the cells in which the pipe has been discretized, the flow is subcritical

(Possible Flow). The ṁpos is increased and we restart from Step 1.

The iterative algorithm is stopped when the convergence criterion is satisfied, i.e. |ṁimp −
ṁpos|/ṁpos < ε, being ε the required tolerance. This algorithm is extremely rapid and, as we will see

in the following, allows very good estimations of critical mass flux and pressure.

If one wants to solve system (3.52) beyond the critical section, other methods must be used. For

instance, the asymptotic steady-state solution of the time-dependent system as done in [227].

3.5.3.3 Computational Mesh

When performing simulations of critical flows, in the computational domain close to the critical

section, property gradients can be very large, hence, special attention is required. The discretization

must be very fine close to the critical section. Elsewhere, such a fine discretization is not required.

Therefore the grid structure can be represented, for instance, by a geometrical sequence as suggested

by [144]

∆zi =∆z1 d i−1, (3.66)

where d is a constant controlling the grid size; clearly, d > 0. ∆zi is the length of the i− th cell of the

mesh. By imposing that
∑N

i=1∆zi = L, we get

∆zi = L(1−d)
1−dN+1 d i−1. (3.67)

N is the total number of cells in the mesh.

3.6 Comparison against Experimental Data

During the previous decades, many experimental campaigns have been carried out in order to

improve the physical understanding of the flashing phenomena. A complete database of the experi-

mental data, until 1986, can be found in [130]. Since then, some other interesting experiments have

been performed, for instance [11, 152]. Some of them will be analyzed in this article.

The analysis developed here is the comparison of four critical flow models against experimental

data. The chosen four models will be assessed on long tubes, short tubes and small slits. Both

subcooled and two-phase inlet conditions will be examined.

HEM, DEM, Moody and Henry-Fauske models have been chosen for this analysis. The aim of

this study is to provide a benchmark of these models on different geometrical configurations to figure

out which model is more appropriated to be used according to the geometry or the inlet conditions.

Further, we want to highlight the completeness of the DEM with respect to other models.

Finally, models will be tested for their capability of predicting critical pressure because of its

importance in practical applications, for instance, in safety release valve design.
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(b) Moody model (1965)
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FIGURE 3.3. Benchmarks of HEM and Moody (1965) predictions of critical mass flux, Gc,
and critical pressure, pc, with respect to experimental data of Super Moby Dick, long
tubes [149].

Let us recall that the HEM and Moody [184] model are solved to fulfill Eq. (3.48). The research

of the maximum mass flux has been done iteratively using the Golden Section Search algorithm.

Henry-Fauske [125] is the system formed by the mass flux and the pressure equations in (3.49)

to be solved iteratively. For the DEM, the system (3.52) is solved coupling a six-stage, fifth-order,

Runge-Kutta method with the Possible-Impossible Flow algorithm as described in Section 3.5.3.2.
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FIGURE 3.4. Benchmarks of Henry-Fauske (1971) and DEM predictions of critical mass
flux, Gc, and critical pressure, pc, with respect to experimental data of Super Moby
Dick, long tubes [149].

3.6.1 Critical Two-Phase Flow Through Long Tubes

Long tubes represent the configuration in which most of the models exhibit good results. Certainly,

this is the less severe configuration but is quite representative of what happens in particular

situations such as a long safety release duct.

About nuclear safety, long tubes with 100% opening at the throat represent the case of Large

Break Loss of Coolant Accident (LB-LOCA) when the breach is located at several L/D from the
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reactor pressure vessel. If the opening at the throat is reduced, it represents the case of a Small

Break LOCA (SB-LOCA).

Among several experiments, we focused the attention on Super Moby Dick (SMD) long configura-

tion tests [38, 149]. The test section of Super Moby Dick facility has been studied and manufactured

with extreme care in order to avoid as much as possible 2D and 3D effects. That is quite important

for our analysis given that the DEM is a 1D algorithm. Super Moby Dick test section has got three

components: a convergent tube, a constant cross-section duct and a conical divergent.

Conical and smooth convergent nozzles have been used and data of both configurations have

been used here. The smooth convergent shape is a compromise for getting a strong axial pressure

gradient but a small radial gradient and is reported in Fig. 3.5, 3.6. Few tests have been carried

out using an abrupt enlargement instead of the conical convergent and are here analyzed. Static

pressure measurements have been performed at pressure taps along the tube. Void fraction has been

measured by X-rays technique. These local measurements are compared to the profiles predicted by

the DEM.

In case of an abrupt enlargement, the location of the critical section corresponds to the throat

of the duct, whereas, in the configuration with the divergent, the criticality is generally reached

few millimeters downstream from the throat. As discussed in [27], the exact position of the critical

section is less defined for divergent nozzles with small opening angle.

Stagnation pressure data of Super Moby Dick long configuration span from 10 to 120bar. Both

subcooled and two-phase inlet conditions are present.

3.6.1.1 Results

Even in long tubes, the fluid transit time is short compared with the vaporization timescale. During

the expansion, the thermal non-equilibrium increases since the metastable liquid temperature is

almost constant, whereas, the saturated vapor temperature decreases due to the pressure gradi-

ent [226]. However, the fraction of metastable liquid decreases.

For two-phase stagnation conditions, higher void fractions are expected in the neighborhood of

the critical section, therefore, the mechanical equilibrium could become significant. However, the

visual inspection of the flow pattern at the throat, do not justify very high slip ratios as predicted by

Moody [184] model.

In terms of critical mass flow rate prediction, the HEM is more accurate than Moody and Henry-

Fauske models. On the other hand, using the HEM, the predictions of the critical pressure at the

throat are overestimated. The correct prediction of the mass flux coupled to the underestimation of

the critical pressure is an evidence of the thermal non-equilibrium effect.

The consequence of the too high slip ratio of the Moody [184] model is clearly visible in Fig. 3.3a.

Tests with initially subcooled conditions, achieve a low void fraction at the throat, thus the critical

flow rate is well estimated because the thermal non-equilibrium effect is fictitiously accounted by

too high mechanical non-equilibrium. Conversely, tests with initially two-phase conditions, have a

lower thermal non-equilibrium, hence the mass flow rate is largely overestimated by Moody [184]

model, despite the mechanical non-equilibrium is more significant than in subcooled tests.
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FIGURE 3.5. Pressure and void fraction profiles in SMD test section with stagnation
pressure of 20 bar (Tsat = 212.4 oC). Solid lines indicate the simulation results of DEM,
instead, square markers � represent the experimental measurements [149]. The
locations of the critical section are depicted with the marker ×. In these simulations
they have been detected to be around 10−3 m downstream from the throat.

Henry-Fauske [125] model tends to overestimate the mass flux since developed for short nozzles

and orifices, where friction effect is smaller. The benchmark of the DEM against the experimental

data is absolutely positive. Mean errors for both subcooled and two-phase inlet conditions are lower

than 6%, however, the standard deviation is higher for two-phase inlet conditions.

About the estimation of the critical pressure, HEM, Moody [184] and Henry-Fauske [125] models

exhibit a similar trend for two-phase stagnation conditions. Using these models, the critical pressure

is not sensitive to the stagnation flow quality. On Fig. 3.3a and 3.3b, this tendency is shown by

vertical red-dot patterns. However, Henry-Fauske [125] model leads to very good estimations of the

critical pressure for subcooled water at the inlet.

3.6.1.2 Pressure and Void Fraction Evolutions

The DEM is able to reproduce the pressure and void fraction evolutions in the pipe. Both are assessed

against the experimental data in Fig. 3.5 and 3.6.

About the piezometric line in the test section, most of the pressure decrease occurs in the
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FIGURE 3.6. Pressure and void fraction profiles in SMD test section with stagnation pres-
sure of 120bar (Tsat = 324.7 oC). Solid lines indicate the simulation results of DEM,
instead, square markers � represent the experimental measurements [149]. The
locations of the critical section are depicted with the marker ×. In these simulations
they have been detected to be around 10−3 m downstream from the throat.

convergent section. Friction determines linear pressure losses in the constant cross-section duct.

Different slopes represent different Fanning factors (see Eq. (3.61)) due to the increasing Reynolds

number for tests with higher degree of subcooling. Once the pressure reaches the value of ponset,

pressure losses are increased by the two-phase multiplier. Furthermore, the vaporization makes the

fluid to accelerate, therefore, pressure decreases rapidly.

In the simulations reported in Fig. 3.5 and 3.6, the location of the critical section is around

10−3 m downstream from the throat. Generally, the more the inlet conditions are subcooled, the lower

is the void fraction at the throat. For very high subcooling degrees, the thermal non-equilibrium is

rather high, hence, vapor phase appears only in the vicinity of the critical section.

3.6.2 Critical Two-Phase Flow Through Short Nozzles

Short pipes, nozzles and orifices represent configurations in which the non-equilibrium effects

are larger. The fluid transit time is very short and the vaporization rate is not sufficiently high

to re-establish the equilibrium conditions. Experimental data, with these kind of geometry, are

representative of several accidental configurations: breaks in the immediate vicinity of the vessel,
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(b) Moody model (1965)

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

x 10
4

Gc Moody (1965)
[

kg

m2 s

]

G
c
M

E
A
S
U
R
E
D

[

k
g

m
2
s

]

 

 

+20%

−20%

Subcooled

Two−Phase

0 10 20 30 40 50 60
0

10

20

30

40

50

60

pc Moody (1965) [bar]

p
c
M

E
A
S
U
R
E
D

[b
a
r
]

+20%

−20%

FIGURE 3.7. Benchmarks of HEM and Moody (1965) predictions of critical mass flux, Gc,
and critical pressure, pc, with respect to experimental data of Super Moby Dick, short
tubes [150].

breaches of large-diameter pipes, etc.

In literature, much less experimental data are available with respect to long tubes. In this article,

the benchmark of the critical flow models has been performed against the Super Moby Dick short

configuration data [150]. Similarly to the Super Moby Dick long configuration, 2D and 3D effects

have been reduce as much as possible. The test section has got a smooth convergent followed by an

abrupt enlargement (see Fig. 3.9). Inlet diameter is 0.087m, the throat diameter is 0.020 m. Static
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(a) Henry-Fauske model (1971)
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(b) DEM
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FIGURE 3.8. Benchmarks of Henry-Fauske (1971) and DEM predictions of critical mass
flux, Gc, and critical pressure, pc, with respect to experimental data of Super Moby
Dick, short tubes [150].

pressure measurements have been performed at seven pressure taps along the nozzle.

Subcooled tests have been carried out at similar subcooling degrees at 20,40,80 bar and at

234 oC for various inlet pressures. Two-phase stagnation tests have been performed at 30 and

64 bar for several inlet flow qualities.
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3.6. COMPARISON AGAINST EXPERIMENTAL DATA

3.6.2.1 Results

Homogeneous critical flow models are less accurate than for the long tube configurations. HEM

provides good results only for two-phase stagnation conditions. For subcooled inlet, HEM leads to

misleading evaluations of mass fluxes. The mean relative error is −36%, but single relative errors

are as high as −60 %. Hence, the experimental mass flux may be more than twice the value predicted

by the HEM.

Moody [184] model overestimates the two-phase inlet data but underestimates initially subcooled

tests. Reasons are the same as for the long-tube configuration.

As aforementioned, the thermal non-equilibrium effect is predominant on short pipe configura-

tions. In fact, Henry-Fauske [125] and Delayed Equilibrium Model are quite accurate in representing

such experimental data (Fig. 3.8a and 3.8b).

3.6.2.2 Pressure Evolutions

The prediction of pressure and void fraction evolutions on short pipes is rather challenging due to

the stronger thermal non-equilibrium. However, DEM seems to reproduce correctly the piezometric

line in the nozzle. The plot at the top of Fig. 3.9 shows the axial pressure profile of three tests with

equal stagnation pressure but different inlet subcooling degrees. The higher the subcooling degree,

the stronger is the pressure decrease in the nozzle, because of higher mass fluxes.

Central plot in Fig. 3.9 shows the axial pressure profile of four tests with equal stagnation

temperature but different inlet pressure. In short tubes, stagnation temperature seems to be the

dominant effect on critical pressure.

3.6.3 Critical Two-Phase Flow Through Slits

Large-Break and Small-Break LOCA represent severe hypothetical accidents of nuclear power

plants. In such scenarios, the water of the primary system comes out through the break and flashes.

However, the coolant can flow out from the primary system even in non-severe accidental situation.

That is the case of critical flow through small slits. In nuclear safety, there is the assumption of

leak-before-break, i.e. the presence of detectable leakage threshold [53, 286]. System can continue to

operate until such a threshold is reached. Two-phase critical flow models help in predicting the leak

rate.

Several experiments are available in literature on this domain. However, very few are represen-

tative of industrial situations in which crack diameter is roughly a tenth of millimeter (DH ≈ 10−4 m)

[7, 58, 152]. In this article we used the experimental data of John et al. [152]. Here slits are rectan-

gular; one side is 80 mm, the other spans for 0.2 to 0.64 mm. Channel depth is L = 46 mm long. The

inlet conditions of the subcooled liquid water were: pressure p0 of 40, 60, 80, 100, 120 and 140bar

and subcooling degree ∆Tsub of 60, 50, 40, 30, 20, 10 and 2 oC.

For these calculations, channel has been considered of constant cross-section and the wall friction

is constant and equal to the experimental value of [152].
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FIGURE 3.9. At the top, there is the pressure profile in SMD short test section for p0 =
20 bar. In the central plot, the pressure profiles of four tests at T0 = 234 oC is depicted.
At the bottom, we report the geometry of the test section. Solid lines indicate the
simulation results of DEM, instead, square markers � represent the experimental
measurements [150]. The locations of the critical section are depicted with the marker
× and, practically, coincide with the throat. From the plot on the top the trend is quite
clear: the higher the subcooling, the stronger is the pressure decrease in the nozzle.
Instead, from the central plot, we can see that the critical pressure, in short nozzles,
seems to be not affected by the stagnation pressure. The dominant role is played by
the stagnation temperature.

3.6.3.1 Results

These slits are characterized by a large L/DH ratio, small transit time and large wall roughness.

Due to the large L/DH ratio, as seen above, mechanical and thermal equilibrium can be assumed,

leading to evaluate the leak rate using the HEM.
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3.7. BENCHMARK ON OTHER CRITICAL FLOW DATA AND QUANTITATIVE ANALYSIS

Small transit time and the orifice-like geometry may suggest to use Henry-Fauske model.

Figure 3.10 shows that HEM, Moody and Henry-Fauske models would give totally unrealistic critical

mass flux. In such a situation, wall friction is the dominant effect, hence, models assuming an

isentropic expansion fail.

The delayed equilibrium model, even in this situation, provides very good results. Using the

DEM, this particular geometry affects the friction losses but even the nucleation process. In fact,

here, heterogeneous nucleation at the wall is the dominant mechanism of vapor formation. This

phenomenon is represented by the coefficient C1 of Eq. (3.59).

Another model that evaluates correctly the critical flow through slits is Pana model [192].

3.7 Benchmark on other Critical Flow Data and Quantitative
Analysis

Generally, two-phase critical flow models provides good estimations of the mass flux just within

a certain range of inlet conditions or for a particular geometry. In the previous sections, models

have been tested on three different geometries into a wide range of thermodynamic conditions

at stagnation. However, several models, when assessed against data of two similar experimental

facilities, exhibit two different trends [274]. In order to check the behaviors of the four chosen models,

the benchmark has been carried out on more than 450 experimental data of different test rigs.

The experimental data used for the assessment come from: Sozzi & Sutherland (1975), Ardron &

Ackerman (1978), Boivin (1979), Seynhaeve (1980), BNL (1981), Environmental (’90s) and STEP.

Data are both subcooled and two-phase at the inlet. Tube lengths and pipe diameters are widely

variable.

To analyze the results, two statistical indicators are used, mean relative error:

µ= 1
N

N∑
i=1

Gmeas,i −Gcalc,i

Gmeas,i
(3.68)

and standard deviation:

σ=
√√√√ 1

N −1

N∑
i=1

(Gmeas,i −Gcalc,i

Gmeas,i
−µ

)2
. (3.69)

Similar indicators can be defined for the assessment of the critical pressure predictions. The

mean error of each model with respect to the experimental data are summarized in Tab. 3.2 and 3.3,

respectively, for the prediction of critical mass flux and pressure. A negative mean error means that

the model globally underestimates the mass flux or the pressure at the throat for a particular set of

data. The standard deviations are presented in Tab. 3.4 and 3.5.

The performance of a model on a set of experimental data must be judged by using both mean

error and standard deviation together. Figure 3.11 shows the trend of HEM, DEM, Moody and

Henry-Fauske model against the experimental data just mentioned. Globally, DEM is much less

dispersive than the other three models. It is more accurate in most of the set of experimental data

examined (Tab. 3.2), and its predictions are the less scattered (Tab. 3.4). The DEM has been originally
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(b) Moody model (1965)
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(c) Henry-Fauske model (1971)
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(d) DEM

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

Gc DEM
[

kg

m2 s

]

G
c
M

E
A
S
U
R
E
D

[

k
g

m
2
s

]

+20%

−20%

FIGURE 3.10. Benchmarks of HEM, Moody (1965), Henry-Fauske (1971) and DEM pre-
dictions of critical mass flux, Gc, with respect to the experimental data of John et
al. [152].

developed for subcooled inlet conditions, therefore, it is normal to expect a better agreement in this

range. For two-phase stagnation thermodynamic state, HEM predictions fit the data slightly better

than DEM, in terms of critical mass flux. However, DEM behaves much better than HEM for critical

pressure evaluations.
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3.8. CONCLUSIONS

In case of a two-phase mixture at the inlet, the thermal non-equilibrium during the expansion is

lower but still present. Therefore, mixture can be still considered to be composed by three phases. In

such a scenario, the rate of disappearance of the metastable phase, could be different than the one

of Eq. (3.59), developed for other applications.

Table 3.2: Mean error for critical mass flux predictions

HEM Moody Henry-Fauske DEM
Two-phase inlet
SMD long -0.0064 0.7047 0.6455 0,0603
SMD short -0.1565 0.4275 0.2511 0,1748
Environmental -0,1226 2,0749 0,4679 -0,1040
Subcooled inlet
SMD long -0.0584 0.0892 0.3162 -0,0186
SMD short -0.3625 -0.2277 -0.0705 0,0574
John et al. (1988) 2.1699 2.3201 2.5422 0.0096
Environmental 0,0405 0,0335 0,4875 -0,0144
Sozzi&Sutherland (1975) 0,0342 0,1449 0,3679 0,0568
Ardron&Ackerman (1978) -0,4864 -0,2747 -0,0589 -0,0478
Boivin (1979) 0,0102 0,1973 0,5100 -0,0597
Seynhaeve (1980) -0,4636 -0,3428 -0,1076 -0,0004
BNL (1981) -0,2048 -0,2340 0,0014 -0,0105
STEP -0,2089 -0,3272 -0,1092 0,0169

Table 3.3: Mean error for critical pressure predictions

HEM Moody Henry-Fauske DEM
Two-phase inlet
SMD long 0,2757 0,1459 0,2903 0,0615
SMD short 0,0871 -0,0027 0,1140 0,0988
Subcooled inlet
SMD long 0,2542 0,1445 0,1017 0,0545
SMD short 0,4538 0,3462 0,2896 0,1085

3.8 Conclusions

The physical aspects of the critical two-phase flow have been examined utilizing the Delayed

Equilibrium Model and three other well-known models. Particular attention has been paid in

discussing the Delayed Equilibrium Model, which describes the flashing flow comprising of three

phases.

Homogeneous Equilibrium Model, Moody (1965), Henry-Fauske (1971) and the Delayed Equilib-

rium Model have been used in this paper. Many models are able to correctly predict the critical mass

flux only under certain conditions, however in this article the assessments have been undertaken

separately by studying three different configurations: long tubes, short nozzles and slits.
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Table 3.4: Standard deviation for critical mass flux predictions

HEM Moody Henry-Fauske DEM
Two-phase inlet
SMD long 0,0824 0,2490 0,2040 0,1352
SMD short 0,1377 0,2031 0,0727 0,1894
Environmental 0,0612 0,2098 0,3706 0,0504
Subcooled inlet
SMD long 0,1167 0,0939 0,1735 0,0333
SMD short 0,1785 0,0770 0,0535 0,0722
John et al. (1988) 1.6462 1.6680 1.7149 0.1126
Environmental 0,1313 0,3663 0,3567 0,0486
Sozzi&Sutherland (1975) 0,3271 0,3598 0,4505 0,0733
Ardron&Ackerman (1978) 0,1145 0,2219 0,2166 0,0843
Boivin (1979) 0,0695 0,1515 0,2290 0,0793
Seynhaeve (1980) 0,0744 0,2147 0,2403 0,0737
BNL (1981) 0,1351 0,1295 0,1165 0,0617
STEP 0,1573 0,1567 0,0544 0,0789

Table 3.5: Standard deviation for critical pressure predictions

HEM Moody Henry-Fauske DEM
Two-phase inlet
SMD long 0,1103 0,1552 0,1677 0,0596
SMD short 0,1116 0,0890 0,0896 0,1395
Subcooled inlet
SMD long 0,0796 0,1211 0,0400 0,0367
SMD short 0,1910 0,2364 0,1317 0,1311

To ascertain the behavior of the particular models, studies have been carried out and the

benchmark against more than 450 experimental data analyzed in both a graphical and quantitative

representation using mean errors and standard deviations.

The classic models: HEM, Moody (1965) and Henry-Fauske (1971) cannot be considered as global

methods for the evaluation of the two-phase critical flow.

HEM exhibits a positive result in evaluating the critical mass flux of long tubes, but predictions

of the critical pressure are incorrect. Moody’s model is unsuitable under two-phase stagnation

conditions, which is unexpected for a non-homogeneous model. Henry-Fauske model overestimates

the mass flux in long tubes but provides good results for critical pressure. Given that the model has

been developed for nozzles and orifices, the assessment on short tubes is rather positive. Finally,

none of the classic models are able to correctly predict the mass flow rate through very narrow slits.

On the other hand, DEM seems to be a more reliable model in all the configurations tested

in this article, both in terms of critical pressure and critical mass flux. In fact, apart from a few

experiments, the relative error is lower than 20%.
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3.9. APPENDIX 3.A: CONDITION OF CRITICAL MASS FLUX OF MOODY MODEL
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(b) Moody model (1965)
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(c) Henry-Fauske model (1971)
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(d) DEM
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FIGURE 3.11. Benchmarks of HEM, Moody (1965), Henry-Fauske (1971) and DEM predic-
tions of critical mass flux, Gc, with respect to the experimental data.

3.9 Appendix 3.A: Condition of Critical Mass Flux of Moody Model

As discussed in Section 3.4.2, the critical mass flux of Moody [184] corresponds to

G2
cr =−

[
d

dp

(
1
ρ+m

)]−1
. (3.70)
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Using the relation given in (3.45), the momentum density is

1
ρ+m

= [xvv + (1− x)vlS]
(
x+ 1− x

S

)
(3.71)

Substituting (3.71) in (3.70), and making elementary calculations:

G−2
cr =−

{
(vv −vlS)

(
x+ 1− x

S

)
+ [xvv + (1− x)vlS]

(
1− 1

S

)}
dx
dp

−
[

x
dvv

dp
+ (1− x)S

dvl

dp

]
−

{
(1− x)vl

(
x+ 1− x

S

)
− [xvv + (1− x)vlS]

1− x
S2

}
dS
dp

.

(3.72)

Given that the transformation is isentropic(
∂x
∂p

)
s
= 1

sl − sv

[
x

dsv

dp
+ (1− x)

dsl

dp

]
. (3.73)
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TRANSIENT METASTABLE FLOWS AND STEAM-WATER TABLES

Transient metastable flows often occurs in numerous industrial accidents. Analogously to the

stationary metastable flows, the trigger can be of thermal or mechanical kind. For instance,

a quick variation of the heat flux, or a sudden change in pressure or velocity may initiate a

fast transient in which the wave propagation phenomena are dominant.

Such fast transients can be the fast depressurizations caused by the loss of integrity of a

pressurized circuit, waterhammers, due to the sudden closure/opening of a valve in a circuit or the

quick condensation of a vapor pocket in a mixture flows, the rapid injection of thermal energy into

a fluid, etc. These phenomena are at the root of many industrial accidents, both in nuclear and in

conventional industries. They need to be analyzed for their prevention or, at least, the mitigation of

their effects.

In the context of nuclear safety, these scenarios represent the very beginning of the Loss of

Coolant Accident (LOCA), waterhammers that may take place in the various circuits of a nuclear

power plant, energy injection caused by the contact of the coolant with very hot particles of the

nuclear fuel when the cladding breaks, etc. A test case of each of these accidental transients is

analyzed in this chapter.

In these scenarios, the fluid conditions change rapidly. If the fluid enters into the two-phase

domain, a delay of vaporization leads to metastable conditions. In order to correctly simulate these

phenomena, the accurate calculation of the fluid properties is crucial, especially when threshold

phenomena, such as phase transition, are present. Further, steam-water behavior is already very

complex in the stable equilibrium domain but it can be even more complex in the metastable

domain where the derivatives of the thermodynamic properties are very large and approach infinity

close to the spinodal line. This reasoning led to the adoption of the IAPWS-IF97 EoS for transient

simulations, as it was done in the previous chapter for the steady-state calculations. Because the

numerical approach is, however, significantly different, a supplementary effort must be undertaken

to use the IAPWS-IF97 EoS.
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CHAPTER 4. TRANSIENT METASTABLE FLOWS AND STEAM-WATER TABLES

In this chapter, similarly to the previous one, the focus is on the effect of the metastability

and the thermodynamic equilibrium recovery process. Contrary to the previous chapter, here the

time-dependence is strong, and the calculations have been carried out on the EUROPLEXUS

code using an explicit Finite Volume Method. Further, in Chapter 3, the flow was smooth, so the

transport equations were manipulated and written in a nonconservative form. This allowed the use

of pressure as a state variable; then the fluid properties were calculated in a simple manner. In this

chapter, due to the presence of shock waves, the system of transport equations must be written in

conservative form. This poses some difficulties in the evaluation of the water properties because

the thermodynamic variables that are immediately available from the conservative ones are the

density and the internal energy. In this work, we discuss how to calculate the pressure and the other

properties when the known fluid variables are the density and the internal energy.

In fact, based on the work of Kunick et al. [133], thermodynamic properties of water have

been tabulated on the e-v thermodynamic diagram for a fast and accurate interpolation strategy.

Some key features of [133] have been adopted in this work, e.g. the method of grid generation for

the transformation of the e-v thermodynamic diagram into a Cartesian one. However, the method

proposed here must not be consider as an evolution of [133] and is not intended to replace this

IAPWS Guideline. Rather, it is an author’s attempt for the water properties calculation that still

suffers of some deficiency with respect to [133]. In particular, in the method proposed here, the

interpolating functions are not globally smooth and this may lead to some numerical issues as

theoretically explained in [181]. In this sense, some improvements are proposed in the Conclusions

of this thesis.

The interpolation strategy just mentioned has been implemented in the EUROPLEXUS code and,

more recently, in Code_Safari. Concerning the EUROPLEXUS code, prior to this work, a HEM based

on an iterative procedure for water calculations was available. This iterative procedure rendered the

numerical simulations slow and less robust. After this work, EUROPLEXUS incorporates a HEM

that is iterations-free, more robust, and faster (30-70% in terms of CPU time) than the previous one.

Moreover, the previous version of the HRM was obsolete and did not provide reliable results. As a

further achievement of this work, now EUROPLEXUS also incorporates a reliable HRM coupled to

a fast and accurate steam-water tables look-up method.

From this work it is evident that the thermodynamic disequilibrium is the key feature for the

correct analysis of fast depressurizations because it greatly affects the amplitude of the rarefaction

wave that propagates in the event of a fluid circuit break. For the waterhammers, it is harder to

state whether the thermodynamic disequilibrium is important or not, at least for the ones analyzed

here. But for an energy injection simulation, the thermodynamic disequilibrium does affect the

value of the pressure peak.
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4.1. INTRODUCTION

Homogeneous Two-Phase Flow Models and Accurate
Steam-Water Table Look-up Method for Fast Transient

Simulations

International Journal of Multiphase Flow, Vol. 95, 199-219.

M. De Lorenzo1, Ph. Lafon1, M. Di Matteo1,2, M. Pelanti1, J.-M.
Seynhaeve3, Y. Bartosiewicz4.

The accurate simulation of fast steam-water transients requires precise algorithms for calculat-

ing fluid properties. The system of the governing flow equations must be closed with an Equation of

State (EoS) to calculate the pressure as a function of the system conservative variables. For water,

accurate analytical EoS for this purpose are not available yet. The aim of this paper is to show an

efficient and very accurate algorithm to calculate water properties when the independent variables

of the EoS are the density and the specific internal energy. Our algorithm uses a new table look-up

method with bicubic interpolation based on the IAPWS-IF97 EoS formulation, and it is able to

account for metastable states. The liquid metastability domain is extended until the spinodal curve,

here determined and compared with other formulations.

The EoS algorithm is coupled to two classical homogeneous two-phase flow models, namely the

Homogeneous Equilibrium Model (HEM) and the Homogeneous Relaxation Model (HRM). HEM

and HRM are used to simulate fast depressurization, waterhammer and steam explosion problems.

Comparison of the numerical results with available experimental data show the good performance

of the proposed algorithms.

4.1 Introduction

Computational Fluid Dynamics simulations require accurate and fast algorithms for calculating

fluid properties. In industrial applications, simulations are performed for a wide range of regimes,

possibly involving shock wave formation. In such a case, computational algorithms must employ the

conservative form of the governing fluid equations. For compressible flow models in conservative

form, the appropriate thermodynamic independent variables to be chosen for the pressure law

closure are the density ρ (or the specific volume v = 1/ρ) and the specific internal energy e.

For liquid and vapor water, accurate Equations of State (EoS), having (ρ, e) as independent

variable pair, are not available so far. In the last decade, simple EoS such as the Stiffened Gas (SG)

one have been adopted for water and other complex fluids. This SG EoS is based on a lineariza-

tion around a reference thermodynamic state representing the thermodynamic conditions of the

numerical simulation. If the thermodynamic conditions of the simulated flow remain close to the

reference state, the use of SG EoS can give fairly good results as shown in [70, 173, 233]. However,

1 IMSIA UMR EDF-CNRS-CEA-ENSTA, Palaiseau, France 91120.
2Politecnico di Torino, Torino, Italy 10129
3 Université Catholique de Louvain (UCL), Louvain la Neuve, Belgium 1348.
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for sufficiently large temperature deviations from the reference linearization value, the SG EoS can

provide inaccurate results (see the results in [164]) or even unphysical states [231].

For industrial purposes, especially when nuclear safety is involved, fast high-fidelity CFD simula-

tions are needed. The accuracy of a CFD simulation depends on many features often intercorrelated,

however, the precision of the thermodynamic properties calculation is independent from the other

numerical aspects, therefore, it should be the first feature to deal with. To obtain a realistic evalua-

tion of the thermodynamic properties, simple EoS are not sufficient and experimental EoS have to

be employed. However the direct use of such EoS is time consuming.

Furthermore, CFD codes are frequently used, hence calculations must be performed in an

efficient way. For the EoS, the requirement of both accuracy and efficiency can be fulfilled by the

tabulation of an accurate EoS at the beginning of the simulation and a look-up table interpolation at

each time step, for each cell of the simulation domain.

In one-component two-phase transients, metastable phases often appear, thus, the EoS to be

tabulated should be valid also in the metastable domain. For water, an EoS that satisfies all the

features discussed so far is the Industrial Formulation release (1997) of the International Association

for the Properties of Water and Steam (IAPWS), commonly called IAPWS-IF97 [273]. Indeed it is a

simplified form of the most accurate EoS today available, that is the IAPWS-95 [272], but contrarily

to this release, the IAPWS-IF97 can be easily extrapolated into the metastable domain.

The aim of this paper is to show an efficient and very accurate algorithm to calculate water

properties when the independent variables are the density, ρ and the specific internal energy e.

For a given thermodynamic pair (ρ, e), we wish to obtain the corresponding pressure, temperature

and speed of sound. The main purpose is to couple this algorithm to two-phase flow models in

their conservative form. To reach this goal, thermodynamic properties shall be tabulated on the e-v

thermodynamic diagram. The best attempt presented in literature is due to Kunick et al. [133, 147],

which is a Guideline from the IAPWS and is now implemented in RELAP-7 [22, 221]. Here we

present an algorithm based on a bicubic look-up table method for both stable and metastable

domains. Moreover, the new algorithm for fluid properties calculation is coupled to two common

two-phase flow models, the Homogeneous Equilibrium Model (HEM) [56] and the Homogeneous

Relaxation Model (HRM) [28], both within the EUROPLEXUS4 software. Results of simulations

are presented for fast depressurization, waterhammer and energy injection problems. For the fast

depressurization test, a novel correlation for the relaxation time to return to equilibrium conditions

is also proposed.

The paper is organized as follows. In Section 4.2 we describe the homogeneous two-phase flow

models that we consider and the type of EoS that is needed for their closure. Section 4.3 is devoted to

the possible strategies to be adopted when an EoS as p = p(ρ, e) is required. In Section 4.4, we detail

the EoS today available for water focusing on their capability to deal with metastable fluids. We

also discuss the need of an equation for the spinodal line in order to detect, during the simulation,

if one of the two phases has attained an unstable state ((∂p/∂v)T > 0). Section 4.5 illustrates the

construction of the tabulated domain on the e-v thermodynamic diagram, the bilinear mapping

of the diagram and the bicubic interpolation technique. This section ends with the comparisons

between the interpolated values and the exact solution using the IAPWS-IF97. Results of numerical
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simulations performed by EUROPLEXUS with the new look-up table algorithm are presented and

discussed in the Section 4.6. Some conclusions are written in Section 4.7.

4.2 Homogeneous two-phase flow models

Different models describing two-phase flows are available in the literature. Here we consider

compressible flow models that belong to the class stemming from the Baer–Nunziato model [12].

Models in this class differ primarily in the level of non-equilibrium between the two phases that

they are able to take into account.

The most complete model of this type is the seven equation model (Baer–Nunziato 1986), which

allows pressure, temperature and velocity non-equilibrium between the phases. The simplest one is

the Homogeneous Equilibrium Model (HEM) which assumes pressure, temperature and velocity

equilibrium. For a brief but comprehensive discussion about various models for two-phase flows, we

refer to [233].

One of the main goals of this article is to illustrate the coupling between two-phase flow models

and accurate EoS, both in the equilibrium and metastable domains. For this purpose here the

simplest two-phase flow models shall be used. In particular, we will employ the HEM model for

the simulation of thermodynamically stable mixtures. In water fast transients and in steady-state

flashing mixtures, the liquid phase attains the metastable domain evolving beyond its saturated

conditions. To extend our analyses to those cases, the Homogeneous Relaxation Model (HRM) can

be employed. This model represents the simplest two-phase flow model able to simulate flows of

mixtures containing liquid in metastable conditions.

Both the HEM and HRM can be written in a fully conservative form

∂tU +∂zF(U)=b, (4.1)

where U is the vector of the conservative variables, F represents the flux vector and b accounts for

the source terms eventually present. To highlight some thermodynamical features of the models, we

also write here these models in their quasi-linear form

∂tU +A(U)∂zU=b, (4.2)

where A(U) is the Jacobian matrix, defined as

A(U)= ∂F
∂U

. (4.3)

In the next two subsections, both the HEM and the HRM are analyzed to underline their mathe-

matical properties. Both are hyperbolic models when appropriate thermodynamical constraints are

satisfied. The hyperbolicity is discussed in 4.8 and B, respectively.

4EUROPLEXUS code is owned by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and
the Joint Research Centre (JRC) of the European Union.
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FIGURE 4.1. Isobaric curve on the T-v diagram. The plot has been realized using the
IAPWS-IF97. The point (a) lies on the liquid saturation curve and represents the
thermodynamic state of the liquid phase for the HEM. Point (b) is a metastable state
which can represent the state of the liquid phase using HRM. In HRM: Tl(p)> Tv(p).
Point (c) is the spinodal limit for the isobaric p = 12.7 MPa. In the HRM, the liquid
phase cannot overstep this point since the tabulation of the properties is defined until
the spinodal line. Therefore, unstable states are not allowed. Point (d) lies on the
vapor saturation curve and represents the state of the vapor phase for both HEM and
HRM.

4.2.1 Homogeneous Equilibrium Model

The Homogeneous Equilibrium Model (HEM) is a set of partial differential equations that governs the

motion of the total mass, the global momentum and the total energy of a mixture in full equilibrium.

In spite of its simplicity, this model is extensively used for numerous industrial applications. For

instance, to simulate heat exchangers (e.g., [211]), for calculating the mass flow rate of critical

two-phase flows [237] and even for the analysis of an hypothetical Loss Of Coolant Accident (LOCA)

in nuclear power plants [105]. Generally, the HEM is particularly well adapted for the simulation

of dispersed bubbly flow [56]. The drawbacks of this model are well known: it cannot reproduce

mechanical or thermodynamic non-equilibrium, typical of annular flows and fast depressurizations,

respectively. If the deviation from equilibrium is moderate, correction terms can be used (drift flux

velocity, subcooled boiling models). However when non-equilibrium effects are more important,

additional equations are needed for an accurate prediction of the flow physics.

Notwithstanding, HEM has good mathematical properties which make it suitable for the simula-

tion of wave motions, hence, fast transients.
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We shall consider a mixture made of the liquid and vapor phases of one-component in full

thermodynamic equilibrium. The HEM system has formally the structure of the single-phase Euler

system. In one-dimensional geometry, the HEM equations are:
∂tρ+∂z(ρu)= 0,

∂t(ρu)+∂z(ρu2 + p)= 0,

∂t(ρE)+∂z[(ρE+ p)u]= 0.

(4.4)

The notation is the classical one: ρ is the mixture density, u denotes the velocity of the mixture, p

is the pressure, and E is the specific total energy, i.e., E = e+u2/2, where e is the specific internal

energy of the mixture.

This is a system of non-linear hyperbolic conservation laws that governs the dynamics of a

compressible fluid for which the effects of body forces, viscous stresses and heat flux are neglected.

However, for more realistic simulations these phenomena can be taken into account as source terms,

i.e. as contributions to the vector b of Eq. (4.1).

The thermodynamic equilibrium assumptions of the HEM are:

pl = pv = p,

Tl = Tv = Tsat(p),

ul = uv = u,

gl = gv = g,

(4.5)

where subscripts l and v indicate, respectively, the liquid phase and the vapor one, and where g

denotes the Gibbs free enthalpy. The closure laws are:

e = x ev(p)+ (1− x) e l(p),

v = xvv(p)+ (1− x)vl(p),
(4.6)

where the specific volume is v = 1/ρ and the quality is x = mass of vapor
total mass . With the constraints

expressed in Eq. (4.5), the internal energies and the specific volumes of vapor and liquid are those of

the saturation curve. That is:

ev = eg(psat), e l = e f (psat), vv = vg(psat), vl = v f (psat), (4.7)

where subscripts f and g indicate, respectively, the saturated liquid and the saturated vapor. Refer

to Fig. 4.1 for a graphic illustration.

In HEM, the flow quality x corresponds to the thermodynamic quality:

x = mass of vapor
total mass

= h−h f

hg −h f
, (4.8)

where the enthalpy is h = e+ pv.

The system of Equations (4.4) is not closed, there are three equations and four unknowns. To

close the system, an additional equation must be supplied that links the pressure to the other
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thermodynamic variables. Let us consider the caloric equation of state with the pair (p,ρ) as

independent variables:

e = e(p,ρ). (4.9)

We are looking for its inverse:

p = p(ρ, e). (4.10)

As we stressed before for many fluids like water, an accurate EoS expressed in the form of Eq. (4.10)

is not available. In the next section we shall discuss various approaches to evaluate the pressure for

a given pair of values of specific volume and specific internal energy.

Let us note that a complete description of the thermodynamic conditions of the flow requires an

additional relation, the thermal equation of state:

T = T(p,ρ). (4.11)

However, only the caloric EoS is needed to solve the system of equations (4.4). Choosing a thermal

EoS does restrict the choice of a caloric EoS but does not determine it.

The behavior of the speed of sound that characterizes the HEM with respect to the vapor volume

fraction αv is depicted in Fig. 4.2. The expression of the speed of sound is reported in 4.8. It has

to be noted that the speed of sound of the HEM has two discontinuities for αv = 0 and αv = 1. In

fact, one of the main characteristics of the equilibrium equations of state is the presence of a “kink”

(discontinuity in the derivatives) along the saturation curve. The discontinuities in the speed of

sound have been referred to as unphysical by several authors [109, 141, 188, 248].

4.2.2 Homogeneous Relaxation Model

At the beginning of Section 4.2 we pointed out the existence of a hierarchy of two-phase flow

models based on the level of non-equilibrium that they are able to take into account. In certain

fast transients of one-component mixtures it is crucial to take into account thermal and chemical

non-equilibrium, that is the temperature and Gibbs free enthalpy difference between vapor and

liquid. For instance, in depressurizations of subcooled liquids, the pressure evolves very quickly and

the liquid becomes metastable due to the finite vaporization rate. Experimental evidences of this

phenomenon are reported in [16, 223].

The simplest conservative two-phase flow model that accounts for thermal and chemical non-

equilibrium is the Homogeneous Relaxation Model (HRM). The HRM system consists of the mixture

Euler equations augmented with a mass equation for one phase with a relaxation source term for

the flow quality (see Eq. (4.13)).

An important feature of HRM is the assumption that the vapor phase is always at saturation

conditions. Note that this model is different from the 4-equation relaxation model of Flåtten et

al. [109], which accounts for chemical non-equilibrium but assumes thermal equilibrium. These

different assumptions are reflected in the definition of the relaxation source term and closure

relations. Let us also remark that other models such the 5-equation Kapila model [139] or the

6-equation model [200, 234] allow the description of non-equilibrium phenomena, however these

models are more difficult to handle numerically due to the presence of non-conservative terms in
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FIGURE 4.2. Mixture speed of sound for water for HEM, HRM and Wood’s relation [279].
The plot on the left is at 10 MPa whereas the one on the right is at 0.1 MPa (magnified
view). It has to be noted that the speed of sound of the HEM has two discontinuities
for αv = 0 and αv = 1, as discussed in 4.8.

the hyperbolic portion. To better enlighten the novel contribution of this article, we preferred here

to adopt the simpler HRM, which can describe metastable liquids without the need to address

numerical difficulties related to non-conservative products. This is a coherent choice since in the

fast transient flow problems here considered the processes related to the metastable states of liquid

are crucial. Moreover, using the IAPWS EoS, the description of the properties of the subcooled

vapor (metastable with respect to liquid) is complicated since there are no experimental data for its

thermodynamic properties [272].

The governing equations of the HRM, in one dimension, are:



∂t(αvρv)+∂z(αvρvu)=Γl→v,

∂tρ+∂z(ρu)= 0,

∂t(ρu)+∂z(ρu2 + p)= 0,

∂t(ρE)+∂z[(ρE+ p)u]= 0.

(4.12)

To be able to relax the thermal equilibrium constraint, the mass transfer between the two phases

is different with respect to the one of a mixture at saturation conditions. The mass transfer is

modeled by means of a source term, Γl→v, which appears on the right hand side in the equation

of the mass balance of the vapor phase of Eq. (4.12). This source term tends to relax the current
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vapor mass fraction to the equilibrium mass fraction introducing a certain delay for the liquid

vaporization:

Γl→v =−ρ x− xeq

Θ
, (4.13)

where xeq is the equilibrium quality.

HRM has good mathematical properties for numerical approximation purposes, due to the

absence of non-conservative terms. In fact, excluding source terms, this model is under full conser-

vative form. Details about the mathematical properties of the HRM are discussed in [6, 28, 104].

Moreover, HRM also has consistent physical properties in terms of wave propagation. As we can

see in Fig. 4.2, in the two-phase domain, the speed of sound for the HRM is continuous and has

the same non-monotonic behavior of the well known Wood’s speed of sound [279] (which is also the

sound speed that characterizes the Kapila 5-equation model). Such a well-known non-monotonic

behavior for the mixture sound speed has been experimentally verified by several authors in the

literature [118, 140]. Let us note that the curve of the sound speed of the HRM always lays below

the curve of the Wood’s sound speed, and above the curve of the sound speed of the HEM. This

is consistent with the well-known sub-characteristic condition [172] that requires that the sound

speed associated to a two-phase flow model is reduced whenever an additional equilibrium is as-

sumed [109]. We observe that the magnitude of the speed of sound of the HRM can be remarkably

different with respect to Wood’s speed of sound. This difference is smaller at low pressures.

The HRM of Bilicki & Kestin [28, 29, 84] (conversely to [109] and other 4-equation models) for

one-component two-phase flows assumes:

pl = pv = p,

Tl 6= Tv = Tsat(p),

ul = uv = u.

(4.14)

With the relaxations expressed in Eq. (4.14), the internal energies and the specific volumes of

vapor are the ones corresponding to the saturation curve. Whereas, for the liquid phase, they are in

the metastable region of the superheated liquid, namely, along the isobaric line crossing the vapor

saturation curve in (vg, eg). Further explanations are reported on Fig. 4.1. Summarizing, we have:

ev = eg(p), e l 6= e f (p), vv = vg(p), vl 6= v f (p). (4.15)

Since in general thermal equilibrium does not hold, the flow quality, x, does not correspond to the

thermodynamic quality, i.e.

x = mass of vapor
total mass

6= h−h f

hg −h f
. (4.16)

Another useful relation, obtained from the first two equations of Eq. (4.12), gives the flow quality,

or the mass fraction, x:

x = αvρv

ρ
. (4.17)

This is a relation between the volumetric and mass fractions occupied by the vapor phase.
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The closure laws, for Eq. (4.12), are

e = x ev(p)+ (1− x) e l(p,Tl),

v = xvv(p)+ (1− x)vl(p,Tl).
(4.18)

Similarly to the HEM, an equation for the pressure is needed. With respect to the HEM, here,

the flow quality is a variable needed for the evaluation of the mixture pressure. Then, the pressure

law for the HRM has the form:

p = p(x,v, e). (4.19)

4.3 Steam-water EoS for two-phase models

As seen in the previous section, an EoS to determine the pressure is needed to close the systems of

equations (4.4) and (4.12). There are three ways to achieve this goal: to use a simple equation of

state, to employ an iterative algorithm adopting an accurate EoS or to use tabulated values.

Generally, simple EoS allow fast properties calculations but they are not accurate and sometimes

provide unrealistic results. Hence accurate EoS should be used for reliable simulations, as especially

demanded in an industrial context. Iterative algorithms for this type of EoS are time consuming,

therefore, these EoS are often used in tabulated forms.

Let us detail further these three options in the next paragraphs.

4.3.1 Use of a simple caloric EoS

The behavior of a single-phase fluid or a mixture could be described by a simple analytical law.

Historically, EoS have always been formulated in a thermal form, but for very simple thermal EoS,

it is straightforward to obtain a relation as p = p(ρ, e). However, as the complexity of the thermal

form increases, it becomes practically unfeasible to get the corresponding p = p(ρ, e). The simplest

modelling approach is to assume that a fluid behaves as a perfect gas:

p = (γ−1)ρe, (4.20)

where γ= cp/cv is the heat capacity ratio. However this equation is not adapted for stiff fluids such

as water.

A very simple generalization of the ideal-gas thermal EoS is the covolume EoS, also called

Clausius-Noble-Able EoS:

p = (γ−1)ρe
1−bρ

, (4.21)

where b is the covolume and tries to take into account the volume occupied by the molecules

themselves.

Historically, one of the most important EoS, in physics, has been the Van der Waals EoS:

p = RT
v−b

− a
v2 . (4.22)

The last term accounts for the forces of attraction between molecules. Using a cubic EoS, the

hyperbolicity of the Euler system of equations cannot be ensured because of the well-known drawback
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of the positive isothermal compressibility, i.e. (∂p/∂v)T > 0, in the two-phase domain. Indeed, in

the unstable domain enclosed by the spinodal curve, the square of the speed of sound may become

negative and wave propagation has no physical sense [181].

In other words, using a cubic EoS, in the metastable domain, the return to equilibrium corre-

sponds to a thermodynamic transformation. However, to preserve the hyperbolicity of the Euler

equations, we are interested in a kinetic process, as explained in [233], which does not lead to an

imaginary speed of sound. To follow a kinetic process, a widely used EoS is the stiffened gas EoS

(SG-EoS). It is suitable for stiff fluids such as water, since it is the linearization of the Mie-Grüneisen

EoS which was initially developed for solids. It reads:

p = (γ−1)(e− q)ρ−γP∞, (4.23)

where γ, P∞, q are constants to be determined.

The SG-EoS cannot be considered a globally-valid EoS. First of all, it is based on a linearization

of fluid properties, therefore, it does not hold in the highly non-linear regions of the thermodynamic

diagram as in the neighborhood of the critical point or close to the spinodal curve. Furthermore,

the linear nature of this EoS does not allow one to accurately calculate first-order derivatives of

thermodynamical properties, such as the speed of sound, c.

Secondly, depending on choices made to determine the constant q, this EoS may not exhibit a

spinodal curve. This feature is in disagreement with both theory and experiments [73, 93, 170, 245].

Several authors in the literature have shown that this EoS is appropriate for some test problems,

including some industrial test cases [70, 173]. However, since its parameters are defined around a

reference state, a sufficiently large temperature change could lead to an erroneous evaluation of the

thermodynamic properties (see the results in [164]). For instance, such an EoS is not suitable for

the simulation of energy injection transients, whereas, the tabulation method proposed here is valid

for any test.

4.3.2 Use of an iterative algorithm for an accurate EoS

A way to accurately evaluate water properties is to use experimental EoS. In the case of water, the

large availability of experimental data allowed the formulation of a certain number of equations

which have been adopted as International Standards. EoS of this type have been adopted for the

present work and they will be discussed more in detail in Section 4.4.

Generally, accurate EoS are expressed as:

f = f (ρ,T) or g = g(ρ,T), (4.24)

where: f = u−Ts and g = h−Ts are, respectively, the Helmholtz free energy and the Gibbs free

enthalpy. Such EoS are very accurate but extremely costly from a computational point of view. For

industrial purposes, to reduce the computational time, we have:

f = f (p,T) or g = g(p,T). (4.25)

90



4.4. IAPWS-IF97 AND THE REPRESENTATION OF THE LIQUID SPINODAL CURVE

These EoS are also called Industrial Formulation EoS. Such accurate EoS are composed by many

terms, even few hundreds. Generally, their terms come from a best fit of a huge amount of experi-

mental data, as we shall discuss in Section 4.4. From such a cumbersome EoS, it is not feasible to

get an equation in the form: p = p(ρ, e).

However, those EoS can be coupled to the Euler system of equations by using an iterative

algorithm. More specifically, the EoS is a non-linear equation to be solved. Details are given in 4.10.

Kunick et al. [133, 147] made a comparison between the iterative inversion of the IAPWS-IF97

and the look-up table interpolation. The iterative procedure is hundreds of times slower than the

interpolation.

4.3.3 Look-up table interpolation

In order to have accurate fluid properties evaluations, the time consuming iterative procedure for the

EoS could be employed at the beginning of the computation to create a table to be used during the

CFD simulation. This method is generally called look-up table interpolation of the fluid properties.

Even though such a strategy is widely used in many CFD codes [44, 220, 224, 260, 263], most of

these codes still use iterative procedures for the pressure calculation because the tabulation of water

properties is done with respect to the variable pairs: (p,T), (p,h), (p, s), (p, e) or (T,v).

In order to avoid costly iterative procedures, at least into the single-phase domain, iterative

algorithms (see 4.10) could be employed at the beginning of the calculation on a fairly wide number

of couples (v, e), so that, during the CFD calculation, pressure, temperature and speed of sound

may be evaluated just by interpolation. Therefore, the requirements of both accuracy and efficiency

are fulfilled. For such strategy, the best attempt presented in literature belongs to Kunick et

al. [133, 147]. In the two-phase domain, the calculation may be still iterative, but the saturation

curve can be discretized as a conjunction of splines, easy to handle and at the same time sufficiently

accurate and rapid.

A further beneficial feature of the tabulation strategy on the e-v diagram is that we know in

advance if a pair (v, e) belongs to the single phase or to the two-phase domain.

In Section 4.5.1 we show an alternative technique to [133, 147], based on bicubic interpolations.

Moreover, with the goal of simulating fast transients, the tabulation has to be extended into the

metastable domain of water, as has been done in RELAP-7 [22]. Here, this extension is done up to

the assumed spinodal curve.

4.4 IAPWS-IF97 and the representation of the liquid spinodal
curve

Nowadays the most reliable EoS for water is the IAPWS-95 [272]. It replaced the formulation of

Haar et al. [121], which was the adopted international standard since 1984 and still widely used

within many codes for Nuclear Safety. The IAPWS-95 is an analytical equation based on a multi-

parameter fit of all the experimental data, used for general and scientific purposes. The formulation
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FIGURE 4.3. Region subdivision of the IAPWS-IF97 on the p-T diagram. Region 4 repre-
sents the saturation curve.

is a fundamental equation for the specific Helmholtz free energy, f , expressed in dimensionless form.

Appropriate combination of derivatives can produce any desired thermodynamic property.

This formulation behaves reasonably also when extrapolated into the metastable domain [272].

However, it is rather difficult to find a formulation indicating the spinodal curve since it exhibits

several stiff minima (also called Marianna Trench) and stiff maxima (said Himalaya) along an

isotherm [132].

Because the IAPWS-95 formulation is quite cumbersome and time consuming, IAPWS also

maintains a separate formulation recommended for industrial use. It is the IAPWS-IF97 [273],

which replaced the IFC-67 [135]. The IAPWS Industrial Formulation 1997 consists of a set of

equations for five different regions, each of them is covered by a simple basic equation fitting the

values resulting from the IAPWS-95.

In this work we have adopted the IAPWS-IF97 for three reasons:

• IAPWS-IF97 is more suitable for the calculation of the spinodal curve, since there are no stiff

minima or maxima along isotherms, which instead characterize the IAPWS-95, as discussed

above;

• IAPWS-IF97 has an ad hoc formulation for the metastable vapor region which involves a

low-density gas equation that is considered to be more adequate than IAPWS-95 (see [134]).

This choice has been made in view of future work based on the hyperbolic 6-equation model of

[200, 234] which would use both metastable liquid and vapor. In the current work, however,

metastable vapor states are not considered because HEM and HRM do not need them;
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• The discrepancy between the IAPWS-IF97 and the IAPWS-95 is very small [273].

The region subdivision adopted for IAPWS-IF97 is reported in Fig. 4.3.

In addition, IAPWS also provided some backward equations to make the calculation of properties

faster. However, they are not used in the work presented in this paper, because they are not as

accurate as the basic equations.

The entire set of equations originally covered the following range of validity:

273.15K ≤ T ≤ 1073.15K p ≤ 100 MPa,

1073.15K ≤ T ≤ 2273.15K p ≤ 10 MPa.
(4.26)

The subdivision of the entire domain in different regions allows an efficient property computation,

even if still too slow for CFD calculations. The IAPWS-IF97 also deals with metastable states,

providing reasonable values when extrapolated. Last but not least, the basic equation of Region 3

allows one to easily define a spinodal curve (see Fig. 4.4, 4.6).

All the features discussed here motivated the authors to adopt the IAPWS-IF97 for the tabulation

on the e-v diagram.

4.4.1 Spinodal and saturation curve for water

From thermodynamics, it is well known that a closed system attains a maximum value of entropy at

equilibrium [43]. Hence, the criteria for equilibrium and stability can be expressed as:

δS = 0 criterion of equilibrium,

δnS < 0, for the smallest n at which δnS 6= 0 criterion of stability.
(4.27)

Further developments of the last criterion provide two conditions which ensure the stability of a

system:

cv > 0 criterion of thermal stability,(
∂p
∂v

)
T
< 0 criterion of mechanical stability.

(4.28)

If both are satisfied, the system is intrinsically stable. The criterion of thermal stability is satisfied for

all the EoS developed so far, whereas the fulfillment of the mechanical stability criterion is not always

ensured. As discussed in Section 4.3.1, cubic EoS satisfy the mechanical stability condition until the

so-called spinodal line. The spinodal line separates the unstable domain from the stable/metastable

one. In classical thermodynamics phase transition occurs at saturation conditions, on the contrary,

in real systems an isothermal pressure change would very likely carry the state point into the

metastable domain. The deeper the metastability reached, the higher is the probability for the phase

change to occur. The spinodal curve is the limit beyond which phase change has already occurred.

The liquid and vapor spinodal lines connect all the minima of the isotherms (liquid spinodal)

and all the maxima (vapor spinodal) closest to the associated side of the saturation curve within the

saturation dome. In these minima and maxima points isotherms have zero slope (see Fig. 4.1, 4.6),

hence, spinodal lines mark the location from where the mechanical stability condition is violated.
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FIGURE 4.4. Metastable domain considered in this work. In both the e-v and p-T ther-
modynamic planes, the saturated liquid curve, the liquid spinodal and the isobaric
of 0 MPa are represented. The unstable domain represents the states where the
mechanical stability condition is violated (Eq. (4.28). Below the intersection between
the spinodal and the isobaric at p = 0 MPa, the metastable domain refers to negative
pressures. Authors decided to restrict the tabulation of the thermodynamic properties
just on the metastable states at positive pressure.

In the present work, the spinodal curve has been determined by setting to zero (∂p/∂v)T to detect

the limit of the mechanical stability. The resulting spinodal curve agrees with other curves presented

in the literature as shown in Fig. 4.5. The curve (∂p/∂v)T = 0 has been defined using an optimized

Newton-Raphson algorithm [212]. To this end, the basic equation of Region 3 (Fig. 4.3) was used,

even slightly below the temperature of 623.15K which indicates the boundary between Region 1

and 3. As shown in Fig. 4.6, this choice provides accurate results even when the extrapolation is

done below the limit temperature.

Such strategy revealed that the spinodal corresponds to positive values of the pressure until

T ≈ 593.50K . Below this temperature, the limit of mechanical stability corresponds to negative

pressures. The constraint of a positive pressure holds for a gas or vapor, but not for a liquid. Negative

pressures can be reached by depressurizing a liquid isothermally below its saturation pressure.

The possibility for a liquid to be at negative pressure means that it possesses a tensile strength.

At equilibrium, water and other liquids do not support an externally applied mechanical tension.

They can resist to it in a thermodynamically metastable state, resulting in a negative pressure.

The laboratory study of liquids under tension has a long history and the literature abounds with
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FIGURE 4.5. Trend of spinodal curves on the p-T diagram from different formulations.
The one determined in this work (labeled as IAPWS-IF97) agrees with the other ones
proposed in literature [93, 132].

discussions on this subject (e.g. [49, 73, 132, 143, 170, 245, 284]).

However, in this work we limited the tabulation to positive values of the pressure, choosing the

isobaric at p = 0 MPa as border of the metastable domain for temperatures lower than T ≈ 593.50K .

See Fig. 4.4 for a more effective understanding.

Regarding the saturation curve, the equilibrium criterion is ensured by the equality of Gibbs

free enthalpy for the two phases: gl = gv. Along an isotherm, the Gibbs-Duhem equation between

the two saturated states reduces to:

gv − gl =
∫ v

l
vdp. (4.29)

Then, the saturation curve, psat(T), can be constructed by requiring the vanishing of Eq. (4.29). The

IAPWS-IF97 provides a suitable basic equation that relates saturation pressure and temperature.

This simple relation to define the saturation states has been adopted herein.

4.5 Look-up table method for thermodynamic properties
evaluation on the e-v diagram

Fluid properties calculation during CFD simulations should be as fast as possible, and, at the same

time, highly accurate. A look-up table method can meet these requirements through the use of

simple interpolation techniques to determine the thermodynamic properties. The Euler equations

and mixture model systems for compressible flows such as the ones considered in this paper require

a closure law of the form p = p(ρ, e), consequently the best approach is to tabulate the required
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properties on a e-v diagram. Such a diagram is quite uncommon in the literature, hence Fig. 4.7

and 4.8 should make the reader more familiar with the behavior of properties in the considered

thermodynamic plane.

In this section we present the property evaluation method that has been coupled to the HEM

and HRM in the EUROPLEXUS code.

4.5.1 Grid Construction on e-v diagram and bicubic interpolation

The physical domain can be discretized by using a sufficiently high number of nodes. For easiness,

the irregular physical domain, e-v, has been transposed in Cartesian transformed domain, Y-X. This

feature is depicted in Fig. 4.9.

The physical domain has been mapped as follows. In the liquid and supercritical domain we

imposed an equidistant pattern of nodes, hence the distribution is linear, whereas, in the vapor

domain the node distribution is logarithmic. Handling such a regular distribution of nodes ensures

that, the cell (i, j) containing the point can be immediately found:

i = int
(

Y0 −Ymin

∆Y

)
, j = int

(
X0 − Xmin

∆X

)
, (4.30)

where X and Y are the coordinates on the transformed space. i and j are the indices of the cells

along the Y and X directions, respectively. Such a feature is very beneficial in terms of computational
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FIGURE 4.7. Thermodynamic diagram e-v. (a) reports the region subdivision of the IAPWS-
IF97 already illustrated in Fig. 4.3. In (b) we show the trend of the isoquality curves
in the two-phase domain. The thermodynamic domain on the e-v plane is highly
irregular, hence, particular attention is demanded for the node distribution.

time. Then, a bicubic interpolation is performed on the Cartesian diagram Y-X, using stocked values

on the e-v diagram.

In [133], the interpolation was a spline based one, hence the coefficients of spline polynomials

were determined by providing values of the exact derivatives just at the outer boundary of the

grid. Then, constraints were imposed to ensure the continuity of first derivatives throughout the

boundaries of the cells of the e-v plane.

Differently from [133], here a bicubic interpolation is performed. Thus, the values of the deriva-
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(a) Isobaric curves

10
-2

10
0

10
2

Specific volume, v [m3/kg]

0

500

1000

1500

2000

2500

3000

3500

4000

S
p
ec
ifi
c
in
te
rn
a
l
en

er
g
y,

e
[k
J
/
k
g
]

Triple Point Pressure

0.01 MPa0.1 MPa1 MPa10 MPa

Critical Pressure

50 MPa

100 MPa

Sat. Liquid

Sat. Vapor

Isobaric

(b) Isothermal curves

10
-2

10
0

10
2

Specific volume, v [m3/kg]

0

500

1000

1500

2000

2500

3000

3500

4000

S
p
ec
ifi
c
in
te
rn
a
l
en

er
g
y,

e
[k
J
/
k
g
]

Triple Point Temperature

373.15 K

473.15 K

Critical Temperature, 647.096 K

823.15 K

1073.15 K

Sat. Liquid

Sat. Vapor

Isothermal

FIGURE 4.8. Thermodynamic diagram e-v. In (a) we can see the isobaric curves in the liquid
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(b) depicts the isothermal curves.

tives are provided in each node of the grid. The bicubic interpolation for the pressure calculation is

the object of the following section.

4.5.2 Bicubic interpolation

To perform a bicubic interpolation, the cell must be square. For a given non-uniform quadrilateral

on the e-v diagram, its transformation onto a regular cell of an arbitrary Y-X diagram is required.

Let us rescale the coordinates Y-X in order to have a square cell of unit length.

The goal is to construct a function such as (v, e)=Φ(X ,Y ), where X ∈ [0,1] and Y ∈ [0,1], which
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Figure 4.9: Grid of nodes in the physical domain and in the transformed one

describes the entire point space enclosed by the quadrilateral cell. This function, yet to be determined,

forms a map that allows us to transform the quadrilateral cell, that is:

Φ :R2 →R2 suchthat : ∀(v, e) ∈D ⇒ (X ,Y ) ∈D ′, (4.31)

where D is the physical domain and D ′ the transformed one. The chosen mapping function, fulfilling

the requirements of the expression in (4.31), is a bilinear mapping [128, 228], that is:

v =α1 +α2X +α3Y +α4XY , (4.32)

and

e =β1 +β2X +β3Y +β4XY . (4.33)

Setting the vertices of the irregular quadrilateral cell on the e-v plane to be the vertices of the

unit length square of the transformed space, the αi, βi coefficients can be obtained. The indicators

i are distributed in the clockwise direction starting from the node in the bottom left corner. The

coefficients are calculated solving 
1 0 0 0

1 0 1 0

1 1 1 1

1 1 0 0




α1

α2

α3

α4

=


v1

v2

v3

v4

 . (4.34)

A similar expression can be written for the relation between e i and βi. Finally, in a general

framework:

α1 = v1, α2 =−v1 +v4, α3 =−v1 +v2, α4 = v1 −v2 +v3 −v4, (4.35)

β1 = e1, β2 =−e1 + e4, β3 =−e1 + e2, β4 = e1 − e2 + e3 − e4. (4.36)

Given that the grid is formed by horizontal iso-e lines: β2,β4 = 0.

During a numerical simulation, the couple (v0, e0) must be transformed into the point (X0,Y0).

That is, the system formed by Eq. (4.32) and (4.33) should be solved. This system is non-linear
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but simple enough to be solved analytically. In fact, Y0 is the solution of the following quadratic

equation:

aY 2
0 +bY0 + c = 0, (4.37)

for β2,β4 = 0, the coefficients are

a =α4β3,

b =α4(β1 − e0)+α2β3,

c =α2(β1 − e0).

(4.38)

The physical solution is:

Y0 = −b+
p

b2 −4ac
2a

. (4.39)

Once Y0 is known, it is straightforward to find X0 :

X0 = v0 −α1 −α3Y0

α2 +α4Y0
. (4.40)

Bicubic interpolation needs first and second order cross derivatives to be known into the trans-

formed space. Let us call F(v, e) the function into the physical space and F̃(X ,Y ) the corresponding

function into the transformed space. In our case, F corresponds to pressure, temperature or speed of

sound. Using both first and second order chain rules:

∂F̃(X ,Y )
∂X

= ∂F
∂v

∂v
∂X

+ ∂F
∂e

∂e
∂X

, (4.41)

∂F̃(X ,Y )
∂Y

= ∂F
∂v

∂v
∂Y

+ ∂F
∂e

∂e
∂Y

, (4.42)

∂2F̃(X ,Y )
∂X∂Y

= ∂F
∂v

∂2v
∂X∂Y

+ ∂F
∂e

∂2e
∂X∂Y

+ ∂2F
∂v2

∂v
∂X

∂v
∂Y

+ ∂2F
∂e2

∂e
∂X

∂e
∂Y

+ ∂2F
∂v∂e

(
∂v
∂X

∂e
∂Y

+ ∂v
∂Y

∂e
∂X

)
, (4.43)

where the first order partial derivatives of the physical coordinates with respect to the transformed

ones (i.e. ∂v
∂X , ∂e

∂X , ∂v
∂Y , ∂e

∂Y ) are evaluated by using Eq. (4.32) and (4.33). Whereas, first order derivatives

of the function F (i.e. ∂F
∂v , ∂F

∂e ) have been analytically calculated by using the equations of state

provided by IAPWS-IF97. Second order derivatives are approximated by difference quotients of first

derivatives instead. More details about derivative calculations are given in 4.11.

The interpolating surface is a polynomial composed of 16 addends, and it describes the function

F on the transformed space:

F̃(X ,Y )=
3∑

i=0

3∑
j=0

ai j X iY j. (4.44)

The 16 coefficients ai j are the elements of the matrix A:

A=


1 0 0 0

0 0 1 0

−3 3 −2 −1

2 −2 1 1




F̃1 F̃2 ∂Y F̃1 ∂Y F̃2

F̃4 F̃3 ∂Y F̃4 ∂Y F̃3

∂X F̃1 ∂X F̃2 ∂X ,Y F̃1 ∂X ,Y F̃2

∂X F̃4 ∂X F̃3 ∂X ,Y F̃4 ∂X ,Y F̃3




1 0 −3 2

0 0 3 −2

0 1 −2 1

0 0 −1 1

 , (4.45)

where, for instance, ∂X F̃1 indicates the derivative of the function F with respect to the coordinate X

at node 1, that is, the node in the bottom left corner.
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(a) The whole domain of the IAPWS-97

(b) Liquid region

FIGURE 4.10. Distribution of the relative error for pressure between values calculated
using the IAPWS-IF97 and the look-up table method here discussed. The error refers
to the calculation of p = p(ρ, e) for the Euler system. The first plot reports the error
on the whole domain of the IAPWS-IF97 on the e-v diagram. The second plot is a
magnified view for the liquid region. Here we can observe the trend of the saturation
curve, the liquid spinodal and the isobaric of p = 0 MPa. The grid of nodes adopted to
map the physical domain consists of 160000 nodes and roughly 3 million points have
been tested to produce this plot.
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Once the coefficients of the bicubic interpolation are determined, the function is calculated as

follows. Let us suppose to be interested in the pressure calculation, thus:

p(v, e)= p̃(X ,Y )= [1 X X2 X3] A [1 Y Y 2 Y 3]T (4.46)

where A is the coefficient matrix of Eq. (4.45).

The function p̃(X ,Y ) refers to a Cartesian square grid and, by construction [212], has the

following properties: i) the values of the function and the specified derivatives are reproduced exactly

at the nodes, and, ii) the function and the specified derivatives change continuously at the edges of

the square cells. Furthermore, these smoothness properties do not depend on the accuracy of the

specified derivatives [212].

Due to the choice of the bilinear transformation, p(v, e) is still a continuous function across the

cell edges in the e− v diagram. However, not all the derivatives are continuous across the edges.

Further details about derivatives calculation are given in the next section (cf. 4.5.3).

This procedure for calculating thermodynamic properties has a high level of accuracy. As we can

see in Fig. 4.10, the fidelity in the reproduction of the IAPWS-IF97 is very well ensured. Figure 4.10

reports the relative error between the values calculated using the IAPWS-IF97 and the look-up table

method here proposed. Pressure is the physical magnitude which has the strongest gradients on the

e-v diagram, thus, the most difficult field to be represented. The speed of sound and the temperature

have a much smoother trend.

It is worth reminding that the tabulation has been carried out only in the single-phase domain

and in the metastable one. Properties calculation into the two-phase domain relies on iterative

algorithms which use a spline reconstruction of the saturation curve (4.10).

4.5.3 Derivatives calculation from bicubic splines

For a general function F(v, e), the derivatives are calculated using the chain rule. Let us rewrite

Eqs. (4.41) and (4.42) in matrix form:  ∂F̃
∂X
∂F̃
∂Y

=J

∂F
∂v
∂F
∂e

 . (4.47)

where the Jacobian of the transformation is

J=
 ∂v
∂X

∂e
∂X

∂v
∂Y

∂e
∂Y

 , (4.48)

Thus, ∂F
∂v
∂F
∂e

=J−1

 ∂F̃
∂X
∂F̃
∂Y

 . (4.49)

The Jacobian of the transformation must be nonsingular, in order to have an invertible transfor-

mation. This requirements ensures that each point within the cell in e−v corresponds to one and

only one point in the canonical cell in Y − X .
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For the bilinear transformation expressed in Eqs. (4.32) and (4.33), with β2,β4 = 0, the Jacobian

of the transformation is

J=
α2 +α4Y 0

α3 +α4X β3

 . (4.50)

and its inverse is

J−1 =
 1

α2+α4Y 0

− α3+α4 X
β3(α2+α4Y )

1
β3

 . (4.51)

Given that the interpolating function is the bicubic spline in (4.44), the derivatives in the Y − X

domain are

∂F̃
∂X

=
3∑

i=0

3∑
j=0

ai j iX i−1Y j,

∂F̃
∂Y

=
3∑

i=0

3∑
j=0

ai j jX iY j−1.

(4.52)

Therefore, once the point (X0,Y0) is known, the first order partial derivatives can be evaluated by

using Eqs. (4.49), (4.51) and (4.52).

Note that first order partial derivatives in the Y − X diagram are continuous at the inter-cell

edges, however, this property is not generally verified in the e−v diagram. Analyzing Eq. (4.51), one

can observe that continuity is verified only for ∂F
∂v across the horizontal edges thanks to the regular

pattern on nodes along the e-axis. The other derivatives are not continuous but numerical tests have

shown that, at the edges, the discrepancy is small.

4.6 Numerical simulations of steam-water transients

The method for properties calculations discussed in the previous sections has been implemented in

the EUROPLEXUS fast transient dynamics software, a simulation tool employed for instance in the

nuclear safety field.

The numerical method used for this work relies on a Finite Volume discretization for the solution

of the PDEs reported in Eq. (4.4), (4.12). The numerical scheme is the HLLC-type method presented

and assessed in [70]. As mentioned above, HEM is a homogeneous set of partial differential equations,

thus, it does not need additional numerical techniques for its solution.

For the HRM, a fractional step technique is used to solve the system of equations. It means that

the numerical method proceeds in two steps. At each time step, first the homogeneous hyperbolic

portion of the system with no mass transfer is solved. This step provides the non-equilibrium

hydrodynamic field. Then, the mass transfer term is activated where metastable liquid is detected

(relaxation step).

The first step represents the convection:

∂tU +∂zF(U)= 0. (4.53)

For the HEM the vector of the conservative variable is UHEM = (ρ,ρu,ρE)T , whereas, for the HRM

UHRM = (αvρv,ρ,ρu,ρE)T .
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By using the HLLC-type Riemann solver, we compute the approximate solution over the time

interval [tn, tn +∆t] with given initial value Un. The approximate solution of Eq. (4.53), Ũn, will be

the initial value for the second step, i.e., the relaxation step. By solving the following ODE:

dU
dt

=b, (4.54)

we finally obtain the approximate solution Un+1 corresponding to the time level tn+1.

The source term b could contain dissipative terms such as wall friction, body forces or injected

energy. In the case of the HRM, the vector b contains the mass transfer term, Γl→v.

4.6.1 Mass transfer for the HRM

The Homogeneous Relaxation Model is handled by adding one more differential equation (i.e. the

first equation of system 4.4) to the HEM. This supplementary equation drives the evolution of the

quality x. The source term Γl→v describes how the quality x tends towards its local unconstrained-

equilibrium value xeq. In fact the quality is no longer assumed to instantaneously reach the

equilibrium value of xeq, hence a relaxation time, Θ> 0, is introduced.

The vapor rate equation is

∂t(αvρv)+∂z(αvρvu)=−ρ x− xeq

Θ
. (4.55)

By using the continuity equation, this gives

Dx
Dt

=− x− xeq

Θ
, (4.56)

where D/Dt ≡ ∂t +u∂z.

As described above, Eq. (4.56) is solved in two steps: convection and relaxation. The convection

step over the time interval [tn, tn +∆t] provides the evolution of the quality from xn to x̃n. The

relaxation equation becomes
dx
dt

=− x− xeq

Θ
. (4.57)

This equation is integrated over the time interval [tn, tn +∆t] using as initial value x̃n. Due to the

simple form of Eq. (4.57), the integration is analytical. If Θ 6=Θ(x, t):

xn+1 = xeq − (xeq − x̃n)e−
∆t
Θ . (4.58)

By definition, xeq > x̃n, therefore xn+1 < xeq.

Consistently with its construction, the HRM tends to the HEM if Θ→ 0+, in fact

lim
Θ→0+

[
xeq − (xeq − x̃n)e−

∆t
Θ

]
= xeq. (4.59)

The mass transfer is activated just if metastability is detected. For instance, when a liquid undergoes

a depressurization, it becomes metastable. In the case of the HRM, this condition is detected by

using the steam-water tables here proposed. A liquid is metastable if the couple (e,v) belongs to the

region bounded by the saturation curve and the liquid spinodal. Refer to Fig. 4.4, 4.10b for a graphic

illustration. For a two-phase mixture, the metastability is detected when x̃n < xeq.
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4.6.2 Steam-water transients

Now that the numerical strategies have been discussed, we can assess them on three challenging

fast transients tests: fast depressurization, waterhammer and steam explosion problems.

0 2 4 6 8 10 12 14 16

Time, t  [ms]

0

2

4

6

8

10

12

14

P
re

ss
u

re
, 

p
  

[M
P

a]

Experimental data

HRM with new θ
HEM

P1 - 0.048 m upstream from the breach

FIGURE 4.11. Pressure evolution in the first 16ms of the Bartak’s experiment [16]
(12.5 MPa, 563.15K). Assessment of HEM and HRM using the relaxation time corre-
lation proposed in Eq. (4.62).

4.6.2.1 Depressurization Transients

In the context of nuclear safety, one of the Design Basis Accidents (DBA) is the Loss of Coolant

Accident (LOCA), which would occur in the case of a sudden rupture of a primary system pipe. In

the ’70s-’80s, few experimental facilities have studied the rapid depressurization of vessels or pipes

containing water at subcooled conditions [16, 94, 223]. In this section we try to validate the model

discussed above against these physically complex and challenging experiments. The benchmark is

performed using the experimental data of Bartak [16] and Super Canon test rig [223]. The initial

pressure and temperature conditions for the first test are 12.5 MPa and 563.15K , and for the second

test 15 MPa and 573.15K . The corresponding subcooling degrees, i.e. Tsat(pin)−Tin, are respectively

38K and 42K .

The arrangement of the Super Canon facility and the measurement devices are shown in Fig. 4.12.

Both experiments are triggered by the sudden opening of a rupture disc located at one extremity of

the pipe. At that moment, a rarefaction wave originates at the break and moves backward. The very

first milliseconds following the rupture are well represented by the Bartak data, whereas, the whole

transient is better described by the Super Canon experiments.
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FIGURE 4.12. Schematic of Super Canon experimental facility and location of the mea-
surement devices.

The comparisons of HEM and HRM simulations against the experimental data are reported

in Fig. 4.11, 4.13. From the experiments, we know that the measured velocity of the rarefaction

wave compares well with the isentropic speed of sound of single-phase water. This feature is well

reproduced by both models since the rarefaction wave propagates in the single-phase liquid.

The depressurization is initially abrupt and fast. The pressure reaches values lower than

the saturation pressure corresponding to the initial stagnation temperature (7.4 MPa in Bartak

experiment, 8.6 MPa for Super Canon). The difference between the local pressure and the saturation

pressure is as high as 5 MPa, hence, the liquid water tends to penetrate in depth into the metastable

domain. The undershoot is well reproduced by the HRM, whereas, for the HEM, the mixture remains

at saturated condition causing the pressure to stay constant for few hundreds milliseconds.

Figure 4.11 shows that the depressurization is stopped by bubble nucleation, which leads to

a small but extremely quick increase of pressure. Skripov et al. [246], Alamgir & Lienhard [3]

and Bartak [16] agree that bubble nucleation occurs too quickly to be the classical heterogeneous

nucleation at the wall cavities. Hence, it could be the homogeneous nucleation [43], provoked by

the high metastability reached by the liquid. The HRM can reproduce this phenomenon thanks to

the exponential rate of return to equilibrium conditions. The mass transfer from liquid to vapor is

activated only if metastable conditions are detected.

After the explosion-like nucleation, the pressure remains constant for a while, but at values lower

than the saturation one. After 100ms, the wave propagation phenomena are no longer relevant and

the pressure decreases due to the emptying of the capacity. In fact, the closed-end system empties at

the rate imposed by the two-phase critical flow that sets at break [78].

Finally, the simulation performed with the HRM agrees with most of the features experimentally

observed. In this test, the HEM seems to not be sufficient for modeling the acoustic phase of this

transient flow due to the impossibility of dealing with metastable liquids.

The HEM was already implemented in EUROPLEXUS, but coupled to an iterative algorithm

for the thermodynamic properties calculation. The iterative procedure used steam-water tables

developed on the (p,T) diagram. Now, however, the code implements the bicubic look-up table
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FIGURE 4.13. Assessment of HEM and HRM on a Super Canon experiment. The initial
stagnation conditions are 15 MPa and 573.15 K . For this calculation, the 4.389 m
long tube has been discretized into a 1000 cells mesh. In the first milliseconds, the
difference between local pressure and saturation pressure is as high as 5 MPa. The
relaxation time correlation used for this simulation is the one proposed in Eq. (4.62).

algorithm presented in Section 4.5. The direct calculation of properties allows us to save about

the 60-65% of the total computational time in the case of a Super Canon experiment. Hence, the

calculation lasts 1/3 of the time needed before.
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FIGURE 4.14. Comparison between HEM and HRM using different correlations for Θ on
pressure and void fraction evolution in the Super Canon experiment with initial data:
15 MPa, 553.15K . In the legend, DZ1 and DZ2 indicate the correlations proposed by
Downar-Zapolski et al. [84].

4.6.2.2 Relaxation time correlations

The relaxation time Θ accounts for the delay necessary to reach equilibrium conditions. The relax-

ation term is of paramount importance in the HRM.

Downar-Zapolski et al. [84] proposed two correlations based on the experimental data of the Moby
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FIGURE 4.15. Comparison between HEM and HRM using different correlations for Θ on
pressure and void fraction evolution in the Super Canon experiment with initial data:
15 MPa, 573.15K . In the legend, DZ1 and DZ2 indicate the correlations proposed by
Downar-Zapolski et al. [84].

Dick [226] facility, which was a test rig for the stationary critical flow in flashing steam-water [78].

The first correlation, here indicated as DZ1, is:

Θ= 6.51 ·10−4 α−0.257
v

(
psat − p

psat

)−2.24
, (4.60)
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FIGURE 4.16. Comparison between HEM and HRM using different correlations for Θ on
pressure and void fraction evolution in the Super Canon experiment with initial data:
15 MPa, 593.15K . In the legend, DZ1 and DZ2 indicate the correlations proposed by
Downar-Zapolski et al. [84].

the second one, indicated as DZ2, reads:

Θ= 3.84 ·10−7 α−0.54
v

(
psat − p

pcrit − psat

)−1.76
, (4.61)

where pcrit is the pressure of the critical point (22.064 MPa). These correlations express the relax-
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ation time Θ in seconds. Gale et al. [112] proved that these correlations well represent the physics

of vaporization even in unsteady conditions. However they fail in simulating the Super Canon

experiments. Here we propose a correlation that better fits the pressure and void fraction evolution

at high pressures:

Θ= 4 ·10−5 α−0.25
v

(
psat − p

pcrit − psat

)−1.8
. (4.62)

The comparison of the three correlations is reported in Fig. 4.14, 4.15, 4.16. Globally, the correlation

here proposed represents better the whole transient of Super Canon experiments. Additionally, it

well captures the pressure undershoot following the rarefaction wave (Fig. 4.11). In fluid-structure

interaction problems, this feature is crucial because the amplitude of the rarefaction wave is an

important factor in calculating the mechanical stress on the structures. For instance, in the event of

a full-break LOCA mentioned above, the correct simulation of the rarefaction wave may provide

information on the possible damage to the nuclear core.

4.6.3 Waterhammer

Simpson’s column-separation-induced waterhammer experiment [244] is a benchmark of many

two-phase computer codes because of its simple geometry and the richness of phenomena involved. A

pipe is filled by a slow steady state liquid water flow which is interrupted by a sudden closure of the

valve at the end of the pipe. The pipe is 36m long, has constant internal diameter of 0.01905m and

the wall thickness is 0.001588m. The initial thermodynamic state in the pipe in terms of pressure

and temperature is 0.3419 MPa and 297.05K , hence, water is single-phase liquid. Two experiments

are analyzed here, in the first the liquid initially flows at 0.239m/s, in the second the initial velocity

is 0.401m/s. The wave propagation in the tube is triggered by the sudden closure of the valve, waves

propagate in the pipe and are reflected at both pipe ends. According to the initial velocity, pressure

may decrease enough to attain saturation conditions, thus, generating a vapor pocket at the valve.

For this experimentc, the wave propagation velocity is affected by the elasticity of the pipe. In

order to obtain a fair agreement between the simulations and experimental data, the speed of sound

is modified according to Allievi’s correlation [5]. Here we used the optimal Young’s elasticity modulus

of the pipe suggested in [112], i.e. 75GPa, however the real one is around 119GPa.

Figure 4.17 shows the assessment of the HEM and the HRM on the experimental data of [244].

The top graph shows the pressure history near the valve for the test with initial velocity equal

to 0.239m/s. This value is low enough to not provoke vapor formation. The comparison with

experimental data shows very good agreement. Pressure peaks are well described by the simulation

except for the time-decreasing amplitude of pressure waves. This feature is not well represented by

simulations due to the absence of pressure losses in our numerical method. Of course the HEM and

the HRM exactly agree since the fluid is always single-phase liquid.

The bottom graph of Fig. 4.17 shows the pressure history near the valve for the test with initial

velocity equal to 0.401m/s. Conversely to the previous test, cavitation occurs and a vapor pocket

is created close the valve. Moreover, the disappearance of this pocket generates a new pressure

wave, thus a combination of several waves occurs as it is visible at t ≈ 175ms. Again, the lack of

dissipative phenomena in our simulations leads to a slight overestimation of pressure peaks. In this
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FIGURE 4.17. Pressure history near the valve of Simpson’s waterhammer experi-
ment [244]. The top graph shows results for the experiment with initial velocity
0.239m/s, the bottom one for the experiment with initial velocity 0.401m/s. The
initial pressure and temperature conditions for both experiments are 0.3419 MPa
and 297.05K . For this calculation, the 36 m long tube has been discretized into a 1000
cells mesh.

simulation, the HEM and the HRM are coincident. Few discrepancies between the two models are

detected but irrelevant for the global description of the experiment.

Similar considerations about the computational cost as those made in 4.6.2.1 can be made also for
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the Simpson’s experiment. A comparison between the calculation performed by using the numerical

implementation of the HEM previously present in EUROPLEXUS, and the calculation carried out by

using the method presented in this work, suggests that the new algorithm that we have developed

is less time consuming. The use of an interpolation technique of water properties rather than an

iterative one allows us to save the 20-25% of the total computational time that was required before.

4.6.3.1 Steam explosion

A steam explosion is an interaction process between two fluids at very different temperatures.

Namely, the temperature of the hot liquid is higher than the saturation temperature of the cold

one. Such phenomena are typical of iron foundries due to the interaction between melting metal

and coolant water or in petroleum engineering because of the contact of water and liquefied natural

gas. In the nuclear industry, steam explosion may occur during a severe reactor accident when the

molten fuel comes into contact with the coolant water.

During a steam explosion the energy of the hot liquid is transferred to the coolant in a time

scale smaller than the time scale for system pressure relief. Therefore the vaporization leads to the

formation of shock waves that might endanger the surrounding structures.

In the context of nuclear safety, Board & Hall [33] recognized that a steam explosion is very

similar to a chemical detonation. Similarly to a detonation, the propagation of a shock wave through

a pre-mixture of fuel and coolant leads to a quick and fine fragmentation of the fuel, which releases

a huge amount of its internal heat. The rapid heating of the coolant produces high pressures which

drive the shock forward [23].

 3 m  6 m  3 m 

 
1 

m
 

Injection of 10 MW/kg

A B

Liquid water Liquid water Steam water

FIGURE 4.18. Schematic of the injection test. The evolution of pressure, velocity, tempera-
ture and void fraction at points A and B are illustrated in Fig. 4.19 A and B.

If the steam explosion can be assumed as a chemical detonation [33], a simple numerical

modeling might be a quick energy injection. Here we performed a test proposed in [166]. A schematic

of the injection test is depicted in Fig. 4.18.

A 12m long tube is divided into three parts, the leftmost one and the central one contain liquid

water, the rightmost part contains vapor. The pressure field is uniform and equal to 3.517 MPa

(Tsat = 516 K), the liquid is at a temperature of 515.15 K whereas the vapor is at 516.15 K . At t = 0,

the energy injection starts: 10MW /kgH20 are injected in the first portion of the tube for 50 ms. The

volume of this portion is roughly 2.36 m3, containing 1909 kg of liquid water. Hence the injected

energy throughout the transient is 0.95 GJ.
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FIGURE 4.19. Temporal evolutions of pressure, velocity, temperature and void fraction at
points A and B (Fig. 4.18).

The temporal evolutions at points A and B of pressure, velocity, temperature and void fraction

are illustrated in Fig. 4.19. A magnification of the first 55 ms of the transient is reported in Fig. 4.20.

The results are obtained by using the homogeneous equilibrium model.

We can see a pressure peak of 16 MPa during the first 15 ms due to the initial confinement

of water. As the velocity increases, the pressure decreases rapidly, then increases again smoothly

(see Fig. 4.20). Therefore a pressure wave originates and moves rightward. At 80 ms we notice a

pressure peak of 85 MPa due to the quick condensation of the vapor at the end of the tube. From

now the transient becomes similar to a waterhammer as in Section 4.6.3. Waves propagate in the

tube reflecting at the extremities and/or at the location of a sudden change of the acoustic impedance

Z = ρc. This occurs, for instance, when the wave is propagating into a liquid and encounters a

two-phase mixture.

At the end of the transient, the stagnation pressure is increased and has reached the value of

12 MPa. In fact the pipe can be seen as a closed system without mass and energy transfers with the

environment. The energy injection represents the heat exchange with the molten fuel, then, at the

end of the transient the injected energy is completely transformed in internal energy.

This kind of transients are really fast and lead to huge pressure peaks. Experimental tests of

steam explosion are KROTOS [127](pressure peak of 100 MPa in test K49) or SANDIA [102]. Those
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experiments were not reproduced here since the modelling of the heat transfer in such situations

is complicated [23] and is not in the objectives of this work. The purpose of this test was to assess

the robustness of the numerical method and its capability of dealing with very high pressures and

multiple phase changes.
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FIGURE 4.20. Magnification of the temporal evolutions of pressure and velocity during
the first 55 ms.

4.7 Conclusions

In this article we have proposed an efficient EoS look-up table method for steam-water flow simu-

lations. Our algorithm uses the IAPWS-IF97 EoS formulation and evaluates water properties by

interpolation of values tabulated on the e-v thermodynamic diagram. The main features of this

algorithm consist in transforming the irregular shaped e-v physical domain into a regular one

and in performing a bicubic interpolation in the transformed domain. Such a technique makes the

procedure very efficient and at the same time it provides remarkable precision. In particular, in

contrast to simple EoS formulations, our method allows an accurate description of regimes where

water has a significant non linear behavior, i.e. close to the saturation curve, in the metastable

region and close to the critical point.

In fast transients, especially during depressurizations, water becomes metastable. In order to

take into account this phenomenon, the tabulation has been performed until the spinodal curve.

However the spinodal line has not been clearly experimentally identified yet. Here, it has been

determined by extrapolating the basic equation provided by the IAPWS-IF97 EoS.

The steam-water table look up algorithm has been coupled to two simple two-phase flow models,

the Homogeneous Equilibrium Model, and the Homogeneous Relaxation Model. Both models are

numerically solved by Finite Volume discretizations with a HLLC-type scheme. The methods and

algorithms presented in this work have been implemented in EUROPLEXUS, a fast transient

dynamics software adopted for instance in the field of nuclear safety.

The performance of the HEM and HRM coupled with the new steam-water table look-up method

has been assessed on three challenging fast transients problems: fast depressurization, waterham-
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mer and steam explosion tests. For the first two test problems the comparison of numerical results

with experimental data show the very good performance of the computational techniques that we

have developed. Let us note that for the fast depressurization test, although both the HEM and

HRM models prove to be able to describe the main features of the transient flow dynamics, only

the HRM can take into account the deep metastability reached in the very first milliseconds of the

experiment. For this HRM model, a correlation for the relaxation time to return to equilibrium

conditions has been proposed and compared to other correlations found in literature. The correlation

proposed here proves to be more accurate for the description of the pressure evolution, which is a

very important feature in particular for fluid-structure interaction problems.

Our method has also been assessed for its capability of dealing with very high pressures and

multiple phase changes. These are the characteristic features of the considered steam explosion test

case.

Finally, let us stress that the algorithm here proposed is very efficient in terms of time consump-

tion. Indeed the global computational time decreased significantly (even of 65% for the Super Canon

experiment) through the use of a direct properties calculation rather than an iterative one when the

HEM is used.

A further evolution of the present work would be the extension of our technique to the case

of metastable states of vapor and its coupling with a more complex two-phase flow model as the

hyperbolic 6-equation model presented in Pelanti & Shyue [200].
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4.8 Appendix 4.A: HEM - Speed of sound using IAPWS-IF97

The speed of sound in two-phase flows does not correspond to an intrinsic thermodynamic property

of the substance, and it depends both on the mixture composition and on the degree of inter-phase

equilibrium attained between the phases. For models describing two-phase flows the expression of

the speed of sound stems mathematically from the governing systems of equations, and it depends

on the choice of the EoS. For the Homogeneous Equilibrium Model the corresponding speed of sound

can be obtained by using the definition (formally equal to the one of the single-phase case)

c2
HEM =

(
∂p
∂ρ

)
s
. (4.63)

together with the closure EoS relations for the mixture detailed in Section 2.1. Saurel et al. [233]

obtained:
1

ρc2
HEM

= αv

ρvc2
v
+ 1−αv

ρl c2
l

+T
[
αvρv

cp,v

(
dsv

dp

)2
+ αlρl

cp,l

(
dsl

dp

)2]
(4.64)

Based on the expression above, it is easy to see that the HEM system is hyperbolic with the natural

conditions:

ρk > 0, T > 0, cp,k > 0 (4.65)
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where k ∈ {v, l}.

As well known in literature, the HEM has a discontinuous speed of sound (see Fig. 4.2). This

feature is exhaustively explained in [109].

The employment of the expression of Eq. (4.64) for CFD simulations is not efficient for the steam-

water table look-up method here presented. Let us derive another formulation more convenient and

less time-consuming. Following Eq. (4.2), for the HEM, the quasi-linear form reads:

∂t


ρ

u

p

+


u ρ 0

0 u v

0 γHEM p u

∂z


ρ

u

p

=


0

0

0

 , (4.66)

where the dimensionless quantity, γHEM , is:

γHEM = 1
p ∂pe

(
p
ρ
−ρ ∂ρ e

)
. (4.67)

The eigenvalues of the system in (4.66) are:

λ1 = u− cHEM , λ2 = u, λ3 = u+ cHEM . (4.68)

We define the speed of sound of the HEM, cHEM , as:

cHEM ,

√
γHEM p

ρ
. (4.69)

Using a caloric EoS of the form e = e(ρ, p), for the HEM, the speed of sound reads:

c2
HEM =

p
ρ
−ρ

(
∂e
∂ρ

)
p

ρ
(
∂e
∂p

)
ρ

(4.70)

where: (
∂e
∂ρ

)
p
= (ev − e l)

(
∂x
∂ρ

)
p

=− (ev − e l)
ρ2 (vv −vl)

(4.71)

and (
∂e
∂p

)
ρ

=
(
∂e
∂p

)
x
−

(
∂e
∂x

)
p

(
∂ρ

∂p

)
x

(
∂ρ

∂x

)−1

p

=
(
∂e
∂p

)
x
− ev − e l

vv −vl

(
∂v
∂p

)
x
.

(4.72)

Finally, cHEM can be determined through the following relation:

c2
HEM =

p+ ev−e l
vv−vl

ρ2
[(

∂e
∂p

)
x
− ev−e l

vv−vl

(
∂v
∂p

)
x

] (4.73)

with
(
∂e
∂p

)
x
=

(
x dev(p)

dp + (1− x) de l (p)
dp

)
,
(
∂v
∂p

)
x
=

(
x dvv(p)

dp + (1− x) dvl (p)
dp

)
.

In such a form, it is simple to calculate the speed of sound by using a spline reconstruction

of the saturation curve as vv(p),vl(p), ev(p), e l(p). For this work, the spline coefficients have been

evaluated using the IAPWS-IF97.

117



CHAPTER 4. TRANSIENT METASTABLE FLOWS AND STEAM-WATER TABLES

4.9 Appendix 4.B: HRM - Speed of sound using IAPWS-IF97

Similar to the HEM in 4.8, the quasi-linear form of the HRM reads:

∂t


x

ρ

u

p

+


u 0 0 0

0 u ρ 0

0 0 u v

0 0 γHRM p u

∂z


x

ρ

u

p

=


0

0

0

0

 , (4.74)

where the dimensionless quantity γHRM , is:

γHRM = 1
p ∂pe

(
p
ρ
−ρ ∂ρ e

)
. (4.75)

The eigenvalues of the system of equations (4.74) are:

λ1 = u− cHRM , λ2,3 = u, λ4 = u+ cHRM . (4.76)

We define the speed of sound of the HRM, cHRM , as:

cHRM ,

√
γHRM p

ρ
. (4.77)

Again, the System (4.12) is hyperbolic if and only if γHRM > 0.

Let us derive a formulation of the speed of sound compatible with IAPWS-IF97. The caloric EoS

is e = e(p,ρ, x). Therefore, the speed of sound reads:

c2
HRM =

p
ρ
−ρ

(
∂e(p,ρ,x)

∂ρ

)
p,x

ρ
(
∂e(p,ρ,x)

∂p

)
ρ,x

. (4.78)

By using the following thermodynamic relations:

de = Tds− pdv, (4.79)

dh = Tds+vdp, (4.80)

equation (4.78) becomes:

c2
HRM =

(
∂p
∂ρ

)
s,x

. (4.81)

A more convenient form would be:

c2
HRM =−v2

[(
∂v
∂p

)
T,x

−
(
∂v
∂T

)
p,x

(
∂s
∂p

)
T,x

(
∂s
∂T

)−1

p,x

]−1

. (4.82)

The calculation of these derivatives with IAPWS-IF97 is straightforward if we refer to the

methodology shown in 4.11. However, we remind that even for the calculation of the speed of sound,

the vapor must be set at saturation (see Eq. (4.14)).

118



4.10. APPENDIX 4.C: ITERATIVE ALGORITHMS FOR THE IAPWS-IF97

4.10 Appendix 4.C: Iterative algorithms for the IAPWS-IF97

Using an Industrial Formulation EoS as the IAPWS-IF97, we can define a residual function,

F=F(p,T), whose zero gives the thermodynamic variable pair (p,T) we are looking for. The residual

function is defined as F :Ω→R2, where Ω ∈R2 is the validity domain of the EoS. For instance, in the

single-phase domain, for both the HEM and HRM, we need to solve:

F (p,T)=
(
e− e I APWS97(p,T)

v−vI APWS97(p,T)

)
. (4.83)

In thermodynamics, according to Gibbs phase rule, the degrees of freedom are 2 in the single-phase

region, 1 in the stable two-phase region and 0 for both triple and critical points. Therefore, in

the stable two-phase region, the residual function, F, becomes F : D →R, where D represents the

two-phase domain. In practice, for F = F(p), the domain is D = [ptriple, pcritic]. For F = F(T), we

have D = [Ttriple,Tcritic].

For instance, considering F=F(p), in the stable two-phase domain, the residual function is:

F= e− x ev(p)− (1− x) e l(p) (4.84)

where:

x = x(p)= e − e l(p)
ev(p)− e l(p)

. (4.85)

Equation (4.84) just holds for the stable two-phase domain. Hence, it is not adequate for the HRM.

In the metastable two-phase domain, for the HRM, we need to solve:

F (p,T)=
(
e− x ev(p)− (1− x) e l(p,T)

v− xvv(p)− (1− x)vl(p,T)

)
, (4.86)

where the flow quality, x, is obtained from Eq. (4.17).

Equations (4.83) and (4.86) are two-dimensional non-linear equations. Solving systems of more

than one nonlinear equation is generally hard. To get a globally convergent solver, optimization

and backtracking methods are often employed. Various methods of optimization/backtracking exist,

authors suggest the ones in [212]. Even though such a procedure allows one to implement very

accurate EoS, it is extremely time consuming (hundreds-thousands times longer than a look-up

table interpolation [147]).

4.11 Appendix 4.D: Derivatives of IAPWS-IF97 for the Bicubic
Interpolation

This paragraph outlines how the needed derivatives for the evaluation of the bicubic interpola-

tion coefficients have been calculated. Therefore it serves as a support tool for a more effective

understanding of the procedures presented in 4.5.2.

Let us consider the pressure p as our function F of interest. If the point defined by the couple

(v, e) belongs to Region 1, 2 or 5 of the IAPWS-IF97 domain, first order derivatives can be evaluated
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as: (
∂p
∂v

)
e
=

(
∂v
∂p

)−1

e
=

[(
∂v
∂p

)
T
−

(
∂v
∂T

)
p

(
∂e
∂p

)
T

(
∂e
∂T

)−1

p

]−1

, (4.87)

(
∂p
∂e

)
v
=

(
∂e
∂p

)−1

v
=

[(
∂e
∂p

)
T
−

(
∂e
∂T

)
p

(
∂v
∂p

)
T

(
∂v
∂T

)−1

p

]−1

, (4.88)

where v and e are the coordinates of the thermodynamic plane, while p and T are pressure and

temperature that have been determined by setting to zero Eq. (4.83).

In IAPWS-IF97 [273] the basic equations for Region 1, 2 and 5 are expressed in terms of

dimensionless specific Gibbs free enthalpy:

g (p,T)
RT

= γ (π,τ) , (4.89)

where π = p/p∗ and τ = T∗/T with given p∗ and T∗ depending on the region. R represents the

specific gas constant of ordinary water. Therefore, it is possible to evaluate the partial derivatives

which appear in the square parentheses of Eq. (4.87) and (4.88) as follows:(
∂v
∂p

)
T
= RT

p2 π
2γππ, (4.90)

(
∂v
∂T

)
p
= R

p
π

(
γπ−τγπτ

)
, (4.91)

(
∂e
∂p

)
T
= RT∗

p∗
(
γπτ− γπ

τ
− π

τ
γππ

)
=−T

(
∂v
∂T

)
p
− p

(
∂v
∂p

)
T

, (4.92)

(
∂e
∂T

)
p
=−Rτ2

(
γττ+ π

τ2γπ−
π

τ
γπτ

)
, (4.93)

with γπ =
(
∂γ/∂π

)
τ, γππ =

(
∂2γ/∂π2)

τ and γπτ = ∂2γ/ (∂π∂τ).

If the point belongs to Region 3:(
∂p
∂v

)
e
=

(
∂p
∂v

)
T
−

(
∂p
∂T

)
v

(
∂e
∂v

)
T

(
∂e
∂T

)−1

v
, (4.94)

(
∂p
∂e

)
v
=

(
∂p
∂T

)
v

(
∂e
∂T

)−1

v
. (4.95)

The basic equation for this region is a fundamental equation for the specific Helmholtz free energy

f , expressed in dimensionless form:
f
(
ρ,T

)
RT

=Φ (δ,τ) , (4.96)

where δ= ρ/ρ∗, τ= T∗/T with ρ∗ and T∗ equal to the critical values as defined in [273]. Relating

the thermodynamic properties to the dimensionless Helmholtz free energy and its derivatives when

using Eq. (4.96), it is possible to obtain:(
∂p
∂T

)
v
=−Rδ2τρ∗

(
Φδτ−

Φδ

τ

)
, (4.97)

(
∂p
∂v

)
T
=−ρ2

(
∂p
∂ρ

)
T
=−ρ2RT

(
2δΦδ+δ2Φδδ

)
, (4.98)
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(
∂e
∂T

)
v
=−Rτ2Φττ, (4.99)(

∂e
∂v

)
T
=−ρ2

(
∂e
∂ρ

)
T
=−ρδRT∗Φδτ, (4.100)

where Φδ = (∂Φ/∂δ)τ, Φδδ =
(
∂2Φ/∂δ2)

τ, Φττ =
(
∂2Φ/∂τ2)

δ and Φδτ = ∂2Φ/ (∂δ∂τ).

Then, second order derivatives are approximated as difference quotients of first derivatives:

(
∂2 p
∂v2

)
e
=

(
∂p
∂v

)
v+δ,e

−
(
∂p
∂v

)
v−δ,e

2δ
, (4.101)

(
∂2 p
∂e2

)
v
=

(
∂p
∂e

)
e+δ,v

−
(
∂p
∂e

)
e−δ,v

2δ
, (4.102)

(
∂2 p
∂e∂v

)
=

(
∂p
∂e

)
v+δ−

(
∂p
∂e

)
v−δ

2δ
. (4.103)
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RIEMANN SOLVERS: A COMPARATIVE STUDY

The numerical simulation of metastable states and the use of steam-water tables are the

cornerstones of our approach. Then, we decided to increase the complexity of the two-phase

flow model adopting the single-velocity six-equation model. It represents a complex two-phase

flow model but still with a very simple wave pattern because it is a homogeneous model. This model

has two main positive sides with respect to the HRM employed in the previous chapter: (i) the

possibility to take into account the eventual metastability of the vapor phase, and (ii) the need of

two decoupled equations of state, one per phase. The latter feature ensures a greater robustness and

a lower computational cost due to the complete absence of iterative procedures.

Part III is fully devoted to the single-velocity six-equation model and its use for the numerical

simulation of fast transients.

In this chapter, we focus on the homogeneous portion of this hyperbolic model. The next chapter

provides new modeling and numerical techniques for the source terms of this model, that is, the

interphase transfers of mass and energy for the equilibrium recovery. The final chapter uses all the

techniques developed in this thesis for the simulation of fast depressurizations.

As concerns its homogeneous portion, the single-velocity six-equation model can not be written

in a conservative form. It poses some difficulties for the discretization of the nonconservative terms.

Before using this model for the simulation of industrial test cases, a comparative study for the

discretization of these terms is appropriate.

We adopt several kinds of discretization to ascertain whether those terms are effectively im-

portant or not. From this analysis it was found that, when this model is used to simulate the

five-equation Kapila’s model, the different discretizations of the nonconservative terms assume a

relevant role only in the case of very strong shock waves in the genuinely two-phase mixture. This

is not the case of a Loss of Coolant Accident, but it could occur during a waterhammer or a steam

explosion.
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HLLC-type and path-conservative schemes for a
single-velocity six-equation two-phase flow model: a

comparative study.

Accepted for publication by Applied Mathematics and Computation.

M. De Lorenzo1, M. Pelanti1, Ph. Lafon1.

The present article deals with the numerical integration of a six-equation single-velocity two-

phase flow model with stiff mechanical relaxation. This model can be employed to approximate

efficiently the well known single-velocity single-pressure five-equation model of Kapila et al. [Physics

of Fluids, 13, 2001]. Work in the literature has shown the efficiency of the six-equation model in

simulating complex two-phase flows involving cavitation and evaporation processes. The aim of this

work is to present and discuss various numerical schemes for this two-phase model focusing on the

integration of the nonconservative terms appearing in the phasic energy equations. In fact, previous

work has suggested that the choice of the discretization method for the nonconservative terms

often does not play a significant role. Two new methods are proposed: a path-conservative HLLC-

type scheme that is based on the Dal Maso–LeFloch–Murat theory, and a generalized HLLC-type

scheme that is based on a Suliciu’s Riemann solver. The latter scheme has the important property

of preserving the positivity of the intermediate states of the conserved quantities. Moreover, we

also approximate solutions of the six-equation model by applying two path-conservative schemes

recently proposed in the literature, which have been derived from the Osher and HLLEM Riemann

solvers. We show comparisons of the different numerical schemes for several test cases, including

cavitation problems and shock tubes. An efficiency study for first and second order schemes is also

presented. Numerical results show that different methods corresponding to different numerical

treatments of the nonconservative terms give analogous results and they are all able to produce

accurate approximations of solutions of the Kapila’s five-equation model, except, as expected, for

shocks in two-phase mixtures with very high pressure ratios.

5.1 Introduction

Multiphase mixtures evolving under unique velocity and pressure for all phases are involved in

many practical applications, e.g. condensed phase mixtures, solid explosives, shock propagation into

solid alloys, and fast depressurizations triggering liquid-vapor transition. For such problems, the

well known two-phase flow model of Kapila et al. [139] is particularly suited. This is a compressible

two-phase flow model that belongs to the class stemming from the Baer & Nunziato model [12].

Kapila et al. [139] model involves five partial differential equations: two equations for the phasic

masses, one equation for the mixture momentum, one equation for the mixture energy and a

nonconservative equation for the volume fraction of one of the phases. In this model the phases

evolve at the same velocity with unique pressure but remain in nonequilibrium regarding chemical

1 IMSIA UMR EDF-CNRS-CEA-ENSTA, Palaiseau, France 91120.
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and thermal effects. Therefore this model is suited for simulations involving chemical reactions

and phase changes. Allowing pressure nonequilibrium between the phases, we can obtain another

reduced model from the full nonequilibrium model in [12], namely a six-equation single-velocity

two-phase flow model [139, 200, 234, 283]. When mechanical relaxation terms are incorporated

in the model and instantaneous relaxation is assumed, the six-equation model can be used as an

alternative way to solving directly the five-equation model of [139].

To simulate multiphase mixtures evolving under unique velocity and pressure, it is also possible

to use the 7-equation model of Baer & Nunziato [12] with stiff pressure and velocity relaxation as

shown in [74, 283]. However, using the 7-equation model leads to extra equations and much more

complicated wave patterns in the Riemann solution structure than is needed in the framework of

Godunov-type schemes. This translates to a greater encumbrance of the numerical model. Zein et al.

and Ha et al. [120, 283] made a comparison in terms of CPU time between the 6-equation and the

7-equation model and it turned out that the latter can be as much as ten times more expensive.

The 6-equation single-velocity two-phase flow model with stiff pressure relaxation has recently

received increasing attention in the literature, see e.g. [55, 120, 200, 202, 234, 283]. An undergoing

project of the authors in the context of nuclear reactors safety studies includes the implementation of

this model within the EUROPLEXUS2 code. The aim is to be able to simulate metastable flows that

may occur in hypothetical accidents of nuclear power plants. The choice of this model is motivated

by several advantageous features both from the physical and numerical solution point of view:

i. capability of dealing with metastable fluids,

ii. effective speed of sound equal to that of Wood [279], thanks to the instantaneous pressure

relaxation,

iii. full thermodynamic decoupling between phases’ Equations of State (EoS).

iv. simple Riemann solution wave pattern (two acoustic waves and one contact wave like the

Euler equations),

iv. greater robustness of numerical approximations with respect to the Kapila’s 5-equation model

in relation to positivity preservation of the volume fraction.

The third property is undoubtedly a very important feature for the applications we are interested in.

In fact, for simulating hypothetical accidents of nuclear power plants, it is of paramount importance

to use accurate steam-water properties, in both the stable and metastable thermodynamic domains.

Conversely to Kapila’s model, the six-equation model needs fully decoupled equations of state for

liquid and vapor:

pl = pl(ρl , e l), pv = pv(ρv, ev), (5.1)

where here we have expressed the phasic pressures pl , pv of liquid and vapor, respectively, in terms

of the phasic densities ρl , ρv, and of the specific internal energies e l , ev. This feature will allow us to

2EUROPLEXUS code is owned by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and
the Joint Research Centre (JRC) of the European Union.
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easily use the fast and accurate algorithm for water properties calculation proposed by the authors

in [79]. Instead, with Kapila’s model, iterative algorithms would be necessary in order to guarantee

pressure equality, pl = pv = p. However, for the present paper, only the simple stiffened gas EoS are

used. This is in particular advantageous to derive analytical solutions to be used as references.

The six-equation model has nonconservative products appearing in the phasic total energy

transport equations, which express interphase total energy transfers. We can recognize two different

nonconservative terms in the phasic total energy equations. One refers to the gradient of the volume

fraction, which is typical of many two-phase flow models and is inactive across shock waves due

to the character of the advection equation of the volume fraction. Another term serves to split

the mixture total energy coherently with the assumption of equal velocity and is active across

shock waves. The 5-equation model of Kapila et al. [139] also contains nonconservative products.

In particular, a nonconservative term depending on the divergence of the velocity appears in the

transport equation governing the volume fraction of one of the phases. Due to this term it is

difficult to obtain discretizations of the five-equation model that ensure positivity of the volume

fraction. This difficulty does not arise in discretizations based on the six-equation model since

only a simple homogeneous advection equation for the volume fraction needs to be integrated. On

the other hand, the presence of nonconservative terms in the phasic energy equations of the six-

equation model poses difficulties in its numerical solution. In the work of Pelanti–Shyue [200, 201]

two Riemann solvers were proposed for this two-phase flow model: a Roe-type solver accounting

naturally for nonconservative terms through the Roe matrix associated to the quasi-linear form

of the model system, and a simple HLLC-type solver that neglects discrete contributions of non-

conservative terms in the energy equations. Some comparisons of the solvers suggested that the

choice of the discretization of the nonconservative terms does not play a significant role. The aim

of the present work is to investigate more in depth the effect of different numerical treatments

of the nonconservative terms of the six-equation model. For this model we here present, compare

and discuss various finite volume schemes based on different approximate Riemann solvers. Two

new methods are proposed: a path-conservative HLLC-type scheme that is based on the Dal Maso,

LeFloch, Murat theory [68], and a generalized HLLC-type scheme that is based on a Suliciu’s

Riemann solver [35]. The latter scheme has the very important property of preserving the positivity

of the intermediate states of the conserved quantities. Moreover, we also approximate solutions

of the six-equation model by applying two path-conservative schemes recently proposed in the

literature, namely the Dumbser-Osher-Toro (DOT) scheme [90] and the HLLEM scheme in [88]. We

show comparisons of the different numerical schemes for several test cases, including cavitation

problems and shock tubes. All the schemes are compared against the exact solution of the Kapila et

al. model when it is available (smooth solutions) or to the Saurel et al. [232] jump conditions when

shock waves are involved. An efficiency study for first and second order schemes is also presented.

Numerical results show that different methods corresponding to different numerical treatments of

the nonconservative terms produce accurate approximations to solutions of the Kapila et al. model,

except, as expected, for shocks in two-phase mixtures with very high pressure ratios.

The paper is organized as follows. In Section 5.2 we present the 6-equation single-velocity two-

phase flow model with stiff pressure relaxation together with its mathematical characteristics. In
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Section 5.3 we discuss the physical meaning of the nonconservative terms in the model and possible

numerical approaches for nonconservative systems. Section 5.4 is devoted to the presentation of

the numerical methods that we use. Here we present in detail various Riemann solvers for the

homogeneous six-equation model and we also briefly recall the pressure relaxation numerical

procedure of [200]. Numerical results and comparisons of the different schemes are presented in

Section 5.5. Some conclusions and future steps of this work are discussed in Section 5.6.

5.2 The six-equation single-velocity two-phase flow model

The six-equation single-velocity two-phase flow model was initially proposed in Saurel et al. [234]

and it was later reformulated by Pelanti & Shyue in [200] to ensure mixture-energy-consistency at

the discrete level. It is a two-phase, two-pressure system modelling the dynamics of mixture fluids,

which can also deal with phase transition when the phases are the liquid and its vapor. To each

phase is assigned a density ρk, a pressure pk , a specific internal energy ek and a volume fraction

αk, where k = 1,2. The velocity is assumed to be equal for the two phases. In one spatial dimension

the model system reads

∂tα1 +u∂zα1 =µ(p1 − p2),

∂t(α1ρ1)+∂z(α1ρ1u)= 0,

∂t(α2ρ2)+∂z(α2ρ2u)= 0,

∂t(ρu)+∂z(ρu2 +α1 p1 +α2 p2)= 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p1)u]+Σ(U,∂zU)=−µpi(p1 − p2),

∂t(α2ρ2E2)+∂z[α2(ρ2E2 + p2)u]−Σ(U,∂zU)=+µpi(p1 − p2),

(5.2)

where: Ek = ek+u2/2 is the phasic total energy and Ek = ρkek is the phasic internal energy. The right

hand side describes the pressure relaxation process. Here, pi = Z2 p1+Z1 p2
Z1+Z2

indicates the interface

pressure, where Zk = ρkck is the acoustic impedance of phase k. Since the aim is to approximate

solutions of the Kapila’s model [139], throughout the paper, the pressure relaxation process is

assumed to take place instantaneously: µ→+∞. The saturation condition α1 +α2 = 1 is obviously

assumed. The speed of sound associated to the homogeneous portion of system (5.2) is

chom =
√

Y1c2
1 +Y2c2

2 . (5.3)

Let us remark however that due to the instantaneous pressure relaxation process the effective speed

of sound of system (5.2) is given by the well-known Wood’s relation [279]

1
ρ2c2

wood
= Y1

ρ2
1c2

1
+ Y2

ρ2
2c2

2
, (5.4)

where Yk = αkρk/ρ denotes the mass fraction of the specie k and ρ = α1ρ1 +α2ρ2 is the mixture

density. Note that the Liu’ subcharacteristic condition [172] holds: cwood ≤ chom. We refer to [109]

for a discussion on the speed of sound of a hierarchy of relaxed two-phase flow models that includes

the models considered here. The equation of state used throughout the paper is the stiffened gas EoS

pk = (γk −1)(Ek −ηkρk)−γkπk. (5.5)
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The nonconservative terms in the phasic total energy equations are

Σ(U,∂zU)=−u [Y2∂z(α1 p1)−Y1∂z(α2 p2)] . (5.6)

These terms are non-zero if u 6= 0 and if Y1Y2 6= 0, that is, the fluid is a mixture containing both

species moving at non-zero velocity. Together with the equations of state for pk, this two-phase flow

model is a nonlinear hyperbolic system of the form

∂tU +∂zF(U)+B(U)∂zU=b, z ∈R, t ∈R+, (5.7)

where U ∈ΩU ⊂R6 is the state vector andΩU is the phase-space. The conservative part of the system

is contained in the nonlinear flux vector F=F(U), and the nonconservative terms are expressed in

the nonconservative product B(U)∂zU. Alternatively, the above PDE can be cast in its quasi-linear

form

∂tU +A(U)∂zU=b, (5.8)

where the matrix A(U)= ∂F
∂U +B(U) includes both the conservative and the nonconservative terms.

The term ∂F
∂U is the Jacobian of the nonlinear flux. The system is hyperbolic since A(U) has only real

eigenvalues and a full set of linearly independent eigenvectors exists. We indicate the matrix of

the eigenvalues of with Λ(U)= diag(λ1,λ2, ...,λ6), where λ1 ≤λ2, ...,≤λ6. The matrices of right and

left eigenvectors are R(U) = (r1,r2, ...,r6) and L(U) = (lT
1 , lT

2 , ..., lT
6 ). We assume that left and right

eigenvectors be orthonormal: L ·R= I, i.e. L=R−1. A and B are reported in 5.7, R in 5.8.

5.3 Nonconservative terms of the six-equation model

The 6-equation single-velocity two-phase flow model introduced in (5.2) presents a nonconservative

advection equation of the phasic volume fraction α1 and nonconservative products in the phasic total

energy equations. In this section we analyze the meaning of the latter nonconservative products

grouped in Σ(U,∂zU). First of all, note that the nonconservative products are of opposite sign in the

two phasic total energy equations. It means that the mixture total energy ρE =α1ρ1E1 +α2ρ2E2

is always conserved independently of Σ(U,∂zU). This property holds both at the continuous and

at the discrete level. A conservative scheme for the conservative portion of the 6-equation system

will always guarantee conservation of the mixture total energy, independently of the choice of the

numerical discretization of nonconservative terms. This feature is the key to construct a mixture-

energy-consistent scheme, and it represents the principal advantage of the total-energy based

formulation of [200] versus the internal-energy-based one of [234]. The terms in Σ(U,∂zU) are,

essentially, energy-exchange terms due to forces exerted between phases. We start by the phasic

momentum equation

∂t(αkρku)+∂z(αkρku2 +αk pk)= F. (5.9)

As we will see in the following the force denoted by F generates the energy-exchange terms grouped

in Σ(U,∂zU). Being system (5.2) in 1D, here F is a force per unit of volume. Using the continuity

equation of phase k, Eq. (5.9) becomes

αkρk
Du
Dt

+∂z(αk pk)= F. (5.10)
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Similarly, the momentum equation of the mixture can be written as

ρ
Du
Dt

+∂z(α1 p1 +α2 p2)= 0. (5.11)

Substituting the material derivative Du
Dt of Eq. (5.11) into (5.10), one obtains the expression of the

force F:

F =Y2∂z(α1 p1)−Y1∂z(α2 p2) (5.12)

Obviously, the rate of energy exchange due to the mechanical work is force · velocity, thus one

retrieves Eq. (5.6). To give a physical interpretation of this mechanical work, let us rewrite the force

F as

F = (Y2 p1 +Y1 p2)∂zα1 +Y2α1∂z p1 −Y1α2∂z p2 (5.13)

and suppose that phases have the same pressure p1 = p2 = p, thus

F = p∂zα1 + (α1 −Y1)∂z p. (5.14)

Given that the pressure equilibrium has been imposed, we retrieve the same formulation found

by Kreeft & Koren [146] for the Kapila’s 5-equation model. In fact, the physical interpretation is

equivalent. The term p∂zα1 takes into account the variation of the volume fractions along the

geometrical coordinate z. This feature is illustrated in Fig. 5.1 for a stratified flow pattern but holds

for a generic flow pattern. Under the assumption of pressure equilibrium, indicating the dashed

contours of Fig. 5.1 with S, in differential form, one may write

pndS = d(αp)− pdα (5.15)

where the first term indicates the net pressure force at the two vertical faces located at z and

z+dz, and is taken into account in the phasic total energy equations. The second term is the force

exerted by the pressure along the interface between z and z+dz. This term is quite typical in the

two-phase flow models. It is present in all models treating separately the phasic momentum and/or

the phasic energy. Namely, it is encountered in the 7-equation model [12], in the single-velocity

6-equation model, in the widely diffused single-pressure two-fluid 6-equation model [136], and in

the reformulation of the Kapila’s model made in [146]. Let us note that the nonconservative term in

the advection equation for the volume fraction in the six-equation model is associated to a linearly

degenerate field, and this term is inactive across shock waves. The volume fractions in this model is

invariant across acoustic waves and shocks.

As discussed by Kreeft & Koren [146], the term (α1 −Y1)∂z p represents a force that ensures the

velocity equilibrium between phases. In fact, a pressure gradient would accelerate or decelerate

more the lighter phase than the heavier one (Newton’s second law of motion), hence this term serves

to make a repartition of the mixture total energy that is coherent with the velocity equilibrium.

To better explain this feature, let us consider a contact wave with density and volume fractions

discontinuities. Left and right velocities must be equal, as well as phasic and mixture pressures,

then u(z, t)= û and pk(z, t)= p̂, k = 1,2, ∀ z ∈R, ∀ t ∈R+. In this case, system (5.8) can be linearized

and written as a system of advection equations:

∂tU + û∂zU=b. (5.16)
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FIGURE 5.1. Sketch of the phasic volume fraction increasing along z. For simplicity, here
it has been illustrated as a stratified flow.

This property does not hold if the nonconservative terms of Eq. (5.6) are neglected. Neglecting them,

the repartition of the mixture energy would not ensure the velocity equilibrium because the phasic

internal energy equations would write

∂t(αkρkek) + û∂z(αkρkek)+ p̂û∂zαk = 0. (5.17)

Being (5.17) not an advection equation, it will cause a perturbation of pk(z, t) across the LD wave,

hence, in turn, a perturbation of u(z, t) as just mentioned in [146]. At the discrete level, neglecting

them, requires an extra effort to guarantee the pressure and velocity continuity across the LD wave

as done in the Riemann solver proposed in [200].

Finally, the choice of the discretization of the nonconservative terms affects the approximation

of the repartition of mixture total energy between the two phases. In the following we numerically

investigate the effects of different discretizations.

5.3.1 Numerical treatment of the nonconservative terms

The 6-equation single-velocity two-phase flow model is described by a balance system of equations

which is not a system of conservation laws. In fact, the matrix of nonconservative terms B(U) 6= 0

(see 5.8). Due to the nonconservative form of the equations, the standard notion of weak solution

in the sense of distributions does not apply. More precisely, because of the nonconservative term,

B(U)∂zU, and the fact that products of distributions are not defined by the theory of distribu-

tions [239], it is not possible to rigorously define the notion of weak solution for system (5.2) and it

is not possible to derive Rankine-Hugoniot jump conditions. Moreover, the uniqueness of solutions

can not be guaranteed in the presence of discontinuities.

Nonconservative hyperbolic systems arise in a wide range of applications, e.g. in the modeling of

two-phase flow [136, 139, 187, 254] but also in the modelling of great deformations of elastoplastic
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materials [113, 162]. These systems have proven to be difficult to analyze, nevertheless, their wide

range of applications has motivated large efforts both in the theoretical and numerical frameworks.

Significant studies have been presented in the literature to address this classical problem, notably

the Dal Maso, Le Floch and Murat (DLM) theory [68], and the work by Bianchini & Bressan [26].

The basic idea of the DLM theory is to describe the nonconservative product as

[B(U)∂zU]φ =
∫ 1

0
B(φ(U`,Ur, s))

∂φ

∂s
ds, (5.18)

when U has a jump discontinuity from U` to Ur. Here φ(U`,Ur,0)=U` and φ(U`,Ur,1)=Ur. The

DLM theory is a generalization of Volpert’s [271] and Toumi’s works [266]. Based on the DLM theory,

Parés [193] provided a theoretical framework for the design of well-balanced numerical schemes

for solving nonconservative hyperbolic systems. Then, several Riemann solvers for nonconservative

hyperbolic systems have been designed [47, 88–90, 193, 230, 261]. In this work we will use the

Dumbser-Osher-Toro (DOT) scheme [90] and the HLLEM scheme [88]. A new path conservative

HLLC scheme is also proposed.

Let us also mention other ways of treating numerically nonconservative terms. First, solvers

that are not restricted to systems of conservation laws can incorporate naturally these terms, as

in the case of the Roe-type solver of [200] or the new Suliciu-type solver proposed here. In this

case we can consider that the resulting schemes define implicitly a path of integration for the

nonconservative terms. Another way of dealing with nonconservative terms is to perform a parabolic

regularization of the homogeneous nonconservative system using the following viscous system:

∂tUε +A(Uε)∂zUε = ε∂zzUε, where the viscosity coefficient ε→ 0. Further details are contained in

Bianchini & Bressan [26]. Sainsaulieu used a similar approach for two-phase flow calculations [229].

Finally, some authors have employed simple numerical approximations by assuming for instance

that nonconservative terms do not vary during each time step. For two-phase flow simulations,

such strategy has been extensively adopted to take into account the nonconservative terms for the

5-equation and 7-equation models [231, 234, 283].

5.4 Numerical solution methods

In this section, we discuss the numerical methods used for solving system (5.2). The presence of

nonconservative products makes harder the choice of the Riemann solver to be used. The solution is

obtained by a succession of operators [256],

Un+1 = L∆t
p L∆t

hypUn (5.19)

where L∆t
hyp denotes the hyperbolic operator and L∆t

p denotes the integration operator for the pressure

relaxation terms. First, we examine the hyperbolic operator, which poses the main difficulties due to

the presence of nonconservative terms.

5.4.1 Hyperbolic operator

The application of the hyperbolic operator to Un will give an intermediate state Un+ = L∆t
hypUn,

which is used in the subsequent step as initial value for the the pressure relaxation. In the so-called
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wave propagation form of [168], the second-order numerical scheme for the hyperbolic operator is as

follows:

Un+
i =Un

i −
∆t
∆z

(A +∆Ui− 1
2
+A −∆Ui+ 1

2
)+ ∆t
∆z

(F2nd
i− 1

2
−F2nd

i+ 1
2
). (5.20)

A ±∆Ui+ 1
2

are the so-called fluctuations at the interface zi+ 1
2

between cells i and i+1. Namely,

A +∆Ui+ 1
2

is the right-going fluctuation, A −∆Ui+ 1
2

is the left-going one. The fluctuations can be

calculated as:

A +∆Ui− 1
2
=

M∑
m=1

sm+
i− 1

2
W m

i− 1
2
, A −∆Ui+ 1

2
=

M∑
m=1

sm−
i+ 1

2
W m

i+ 1
2
. (5.21)

where s+ =max(s,0) and s− =min(s,0), and where W m and sm denote the mth wave and associated

speed, respectively, of the approximate Riemann solution wave structure. The second-order accuracy

of the hyperbolic operator is achieved thanks to the second-order correction fluxes:

F2nd
i+ 1

2
= 1

2

M∑
m=1

|sm
i+ 1

2
|
(
1− ∆t

∆z
|sm

i+ 1
2
|
)
W

m,2nd
i+ 1

2
(5.22)

where W
m,2nd

i+ 1
2

are a modified version of W m
i+ 1

2
obtained by applying a limiter function (cf. [168]). In

the following, we detail the various Riemann solvers used to calculate the fluctuations.

5.4.1.1 HLLC solver of Pelanti & Shyue without nonconservative terms

Let us recall here the approximate solver proposed in [200] for system (5.2). This solver does not

discretize the nonconservative terms Σ(U,∂zU) in the phasic total energy equations of (5.2) but it is

built to guarantee the pressure and velocity continuity across the contact discontinuity. Except for

the first equation, which describes the advection of α1, the system is now in a conservative form. In

such a case, the interfacial fluctuations of Eq. (5.20) may be defined as:

A +∆Ui− 1
2
=Fi −FHLLC

i− 1
2

, A −∆Ui+ 1
2
=FHLLC

i+ 1
2

−Fi. (5.23)

This solver consists in applying the HLLC method [265] to the conservative portion of the system

plus the advection equation for α1. The resulting solver consists of three waves W i, i = 1,2,3, moving

at speeds

s1 = S` , s2 = S∗ , s3 = Sr, (5.24)

that separate four constant states U`, U∗
`
, U∗

r and Ur. Here we indicate with ∗`, ∗r quantities

corresponding to the states U∗
`

and U∗
r adjacent (respectively on the left and on the right) to the

middle wave propagating at speed S∗. Following Davis [72] we define

S` =min(u`− c`,ur − cr), Sr =max(u`+ c`,ur + cr). (5.25)

The speed S∗ is then determined as in [264]:

S∗ = u∗ = pr − p`+ρ`u`(S`−u`)−ρrur(Sr −ur)
ρ`(S`−u`)−ρr(Sr −ur)

. (5.26)

The left and right sound speeds c` and cr correspond to the sound speed of the homogeneous six-

equation model chom in (5.3). Note that although nonconservative terms are neglected in this simple
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HLLC solver in the definition of the waves for the phasic total energies, the speed of sound used in the

definition of the speeds of the waves is the one of the model that does include nonconservative terms.

The middle states U∗
`
, U∗

r have been defined in [200] so as to satisfy the following Rankine–Hugoniot

conditions, based on the conservative portion of the system:

F (ζ)(Ur)−F (ζ)(U∗
r )= Sr(U(ζ)

r −U∗(ζ)
r ),

F (ζ)(U∗
` )−F (ζ)(U`)= S`(U∗(ζ)

`
−U(ζ)

`
),

F (ζ)(U∗
r )−F (ζ)(U∗

` )= S∗(U∗(ζ)
r −U∗(ζ)

`
),

(5.27)

ζ= 2, . . . ,6. Then, the middle states are obtained as

U∗
ι =



α1,ι

(α1ρ1)ι
Sι−uι

Sι−S∗

(α2ρ2)ι
Sι−uι

Sι−S∗

ρι
Sι−uι

Sι−S∗ S∗

(α1ρ1)ι
Sι−uι

Sι−S∗

(
E1,ι+ (S∗−uι)

(
S∗+ p1,ι

ρ1,ι(Sι−uι)

))
(α2ρ2)ι

Sι−uι

Sι−S∗

(
E2,ι+ (S∗−uι)

(
S∗+ p2,ι

ρ2,ι(Sι−uι)

))


, (5.28)

ι= `, r. The waves for this simple HLLC-type solver are

W 1 =U∗
` −U`, W 2 =U∗

r −U∗
` , W 3 =Ur −U∗

r . (5.29)

5.4.1.2 Suliciu-type relaxation Riemann solver

We present in this section a new Suliciu-type Riemann solver for the 6-equation two-phase model by

extending the Suliciu’s relaxation Riemann solver presented in [35] for the Euler equations. Similar

to the case of the Euler equations, this solver will prove to be equivalent to a HLLC solver for the

discretization of the conservative equations and of the the volume fraction equation of the two-phase

system. We will show indeed that this solver defines a class of HLLC-type methods that differ for

the definition of some constant parameters, which affect the discretization of the non-conservative

terms. A particular choice of these parameters gives a Riemann solver exactly equivalent to the one

described in Section 5.4.1.1 that neglects nonconservative terms.

The Suliciu’s solver [35] belongs to the class of relaxation Riemann solvers [169], which are based

on the idea of approximating the solution of the original system by the solution of an extended system

called relaxation system. The latter is assumed to relax to the original system, whose variables

define the Maxwellian equilibrium. We refer to [35, 151, 169] for details, and we just present the

structure of the relaxation system associated to (5.2). Following [35] we approximate the solution

of a Riemann problem for the original six-equation model by the solution of an augmented system

that has the property of having characteristic fields all linearly degenerate. Let us introduce two

auxiliary relaxation variables Πk, k = 1,2, which are meant to relax toward the partial pressures,

thus at equilibrium: Πk =αk pk, k = 1,2. The phasic pressures are governed by

∂t pk +u∂z pk +ρkc2
k∂zu = 0, (5.30)
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and the partial pressures by

∂t(αk pk)+u∂z(αk pk)+Ykc2
kρ∂zu = 0. (5.31)

This suggests the form of the equations for new variables Πk, which are independent variables of

the relaxation system. We introduce the constant parameters Ck, k = 1,2, and we replace in the

above equations (5.31) the terms Ykc2
kρ

2 by C2
k, k = 1,2, and (αk pk) by Πk. In order to be able to

specify different constant Ck for the left and right wave structure of the Riemann problem solution,

we also introduce advection equations for Ck. The Suliciu’s relaxation system associated to (5.2) is

∂tα1 +u∂zα1 = 0, (5.32a)

∂t(α1ρ1)+∂z(α1ρ1u)= 0, (5.32b)

∂t(α2ρ2)+∂z(α2ρ2u)= 0, (5.32c)

∂t(ρu)+∂z(ρu2 +Π1 +Π2)= 0, (5.32d)

∂t(α1ρ1E1)+∂z(α1ρ1E1u+Π1u)+u(Y1∂zΠ2 −Y2∂zΠ1)= 0, (5.32e)

∂t(α2ρ1E2)+∂z(α2ρ1E2u+Π2u)−u(Y1∂zΠ2 −Y2∂zΠ1)= 0, (5.32f)

∂zΠ1 +u∂zΠ1 +C2
1/ρ ∂zu = 0, (5.32g)

∂zΠ2 +u∂zΠ2 +C2
2/ρ ∂zu = 0, (5.32h)

∂zC1 +u∂zC1 = 0, (5.32i)

∂zC2 +u∂zC2 = 0. (5.32j)

The eigenvalues of system (5.32) are:

λ̃1,10 = u∓ c̃m, c̃m = Cm

ρ
, Cm =

√
C2

1 +C2
2 , λ̃2 = . . . λ̃9 = u. (5.33)

All the characteristic fields are linearly degenerate, hence we can easily find the exact solution of

the relaxation system through the Riemann invariants.

Riemann invariants Across the contact discontinuity associated to the eigenvalue u:

u = const., Πm = const., (5.34)

where we have defined Πm =Π1 +Π2. Across fields associated to the eigenvalues u∓ c̃m:

αk,Yk = const., k = 1,2, (5.35a)
1
ρ
+ Πk

C2
k
= const., k = 1,2, (5.35b)

u∓ c̃m = const., (5.35c)

C2
2Π1 −C2

1Π2 = const., (5.35d)

Ykek −
Π2

k

2C2
k
= const., k = 1,2, (5.35e)

Ck = const., k = 1,2. (5.35f)

136



5.4. NUMERICAL SOLUTION METHODS

By using (5.35b) and (5.35c) we also deduce:

Πk ±
C2

k

Cm
u = const., k = 1,2, (5.36)

and by using (5.35d) and (5.35b):
1
ρ
+ Πm

C2
m

= const.. (5.37)

Then, by using (5.36), we infer:

Πm ±Cmu = const.. (5.38)

Let us note first that (Πk)`,r = (αk pk)`,r, and (Πm)`,r = (pm)`,r, where pm = α1 p1 +α2 p2. The rela-

tions (5.34) and (5.38) determine the quantities u∗
`
= u∗

r = u∗ and (Πm)∗
`
= (Πm)∗r =Π∗

m:

u∗ = ρ` c̃m`u`+ρr c̃mrur + pm`− pmr

ρ` c̃m`+ρr c̃mr
, Π∗

m = ρ` c̃m`pm`+ρr c̃mr pmr − c̃m` c̃mr(ur −u`)
ρ` c̃m`+ρr c̃mr

. (5.39)

The expression (5.37) determines ρ∗
`,r:

ρ∗`,r =
(

1
ρ`,r

+ cr,`(ur −u`)∓ (pmr − pm`)
c`,r(c`+ cr)

)−1
, (5.40)

and through (5.35a) we can determine (ρk)∗
`,r = (Ykρ/αk)∗

`,r. Then we can find through (5.36):

(Πk)∗`,r = (Πk)`,r +
(Ck)2

`,r

(C2
m)`,r

(Π∗
m − pm`,r), k = 1,2. (5.41)

Finally (5.35e) determines the specific phasic internal energies (ek)∗
`,r. Then the intermediate states

for the partial phasic energies per unit volume can be expressed as:

(αkρkek)∗`,r = (αkρk)∗`,r(ek)`,r +ρ∗`,r

(
(C2

k)`,r

2((C2
m)`,r)2

(Π∗
m − p`,r)2 + (Πk)`,r

(C2
m)`,r

(Π∗
m − p`,r)

)
, (5.42)

and the corresponding total energies are:

(αkρkEk)∗`,r = (αkρkek)∗`,r + (αkρk)∗`,r
u∗2

2
, (5.43)

where we recall the notation Ek = ek + u2

2 . Let us also note also that by using (5.35d) and (5.35e) we

obtain for the mixture specific internal energy e =Y1e1 +Y2e2 the invariant:

e− Π2
m

2C2
m

= const.. (5.44)

We observe that the expressions of the invariants (5.34), (5.37), (5.38) and (5.44) are identical to

those of the Suliciu’s solver for the Euler equations with now Πm and Cm playing the role of the

relaxation variable associated to the pressure p and the constant C = ρc of the single-phase case,

respectively. Therefore the solution for the intermediate states (·)∗
`,r of the mixture quantities of

the two-phase solver has the same form of the solution for the intermediate states of the standard

single-phase Suliciu’s solver (see formulas in Bouchut’s book [35]). It follows that the intermediate

states for αk and the conserved quantities (partial densities, mixture momentum, mixture total
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energy) are identical to those of the HLLC solver of Section 5.4.1.1, and also to those of the path-

conservative HLLC solver of Section 5.4.1.5, as long as S` = u`− c̃m` and Sr = ur + c̃mr. Note that

the intermediate states for the conserved quantities depend merely on the sum C2
m = C2

1 +C2
2, and

only the intermediate states for the phasic energies depend on the individual parameters C1 and

C2. The choice of C1 and C2 for a given definition of Cm defines the partition of the phasic energies

within the mixture, based on the invariant (5.35d). This is related to the fact that the choice of C1

and C2 determines implicitly a specific choice of the integration path used for the approximation of

the nonconservative terms in the energy equations.

Choice of parameters The parameters Ck need to be chosen so that Liu’s subcharacteristic

condition [172] holds:

c̃m =
√

C2
1 +C2

2

ρ
≥ cm, (5.45)

where cm = chom in (5.3). Hence the simplest natural definition for the parameters of the local right

and left states would be (C2
k)`,r = (Ykc2

kρ
2)`,r, which implies (c̃m)`,r = (cm)`,r. This would be also

the less dissipative choice. However, this definition is not suited when shocks are involved in the

solution structure. The idea here is to consider well known robust definitions of the wave speeds

used for the HLLC solver (described in Section 5.4.1.1) to define first c̃m and then Ck. Here in

particular we consider the definition of the wave speeds for the Suliciu’s (HLLC) single-phase solver

of Bouchut [35]. This definition allows one to ensure preservation of positivity of the intermediate

states of the conserved quantities. To this aim we define:

(c̃m)`,r = (cm)`,r + X`,r, (5.46a)

where

if pr−p` ≥ 0,

 X` = ξ
(

pr−p`
ρr cmr

+u`−ur

)
+

Xr = ξ
(

p`−pr
ρ` c̃m`

+u`−ur

)
+

, if pr−p` ≤ 0,

 Xr = ξ
(

p`−pr
ρ`cm`

+u`−ur

)
+

X` = ξ
(

pr−p`
ρr c̃mr

+u`−ur

)
+

. (5.46b)

For positivity the constant ξ≥ 1 must satisfy [35]:

∂

∂ρ

(
ρ

√
∂pm(ρ, s1, s2,α1,Y1)

∂ρ

)
≤ ξ

√
∂pm(ρ, s1, s2,α1,Y1)

∂ρ
. (5.46c)

Assuming a stiffened gas equation of state for each phase, we can satisfy the condition above by

defining:

ξ= max(γ1,γ2)+1
2

. (5.46d)

Then we observe:

c̃2
m =Y1c2

1 +Y2c2
2 + X2 +2X cm =Y1(c2

1 + X2 +2X cm)+Y2(c2
2 + X2 +2X cm). (5.47)

Hence we propose the following definition:

(C2
k)`,r = (Yk)`,r((c2

k)`,r + X2
`,r +2X`,r(cm)`,r)ρ2

`,r. (5.48)
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Note that with this choice Ck vanishes when Yk vanishes, that is a natural requirement. Based on

the analogy of the two-phase case with the single-phase case in [35] we infer that this choice (5.48) of

the parameters guarantees positivity of the intermediate states for the mixture density, the partial

densities, and of the mixture energy of this Suliciu-type solver. Let us recall that αk, as well as Yk,

is governed by an advection equation, hence positivity is preserved for the intermediate states of

these variables. Since as we have noted above only the intermediate states of the phasic energies

depend on the individual parameters Ck, if negative phasic energies are found for the intermediate

states (see (5.35e)), we can always redefine (Ck)`,r in order to preserve positivity, still keeping the

same values (Cm)`,r. Finally, let us remark that if we define

(C2
k)`,r = (YkC2

m)`,r (5.49)

then the resulting Suliciu’s solver is completely equivalent to the HLLC solver described in Sec-

tion 5.4.1.1, which neglects the discretization of the nonconservative terms in the phasic energy

equations of system (5.2). This observation gives some insight on the underlying approximation in

this case: the evolution of the phasic pressures is governed by a fraction of the mixture speed of sound

corresponding to the mass fraction, rather than by the phasic sound speeds, and in this situation

there is no phasic energy transfer related to nonconservative terms. We then can estimate the

difference of the wave components for the phasic energies for the case of the new Suliciu/HLLC-type

solver based on (5.48) and the previous HLLC-type solver based on (5.49):

((αkρkEk)∗`,r)Suliciu = ((αkρkEk)∗`,r)HLLC +∆(αkρkEk)∗`,r, (5.50)

with

∆(αkρkEk)∗`,r =
ρ∗
`,r

2(C2
m)`,r

(Π∗− pm`,r)2

(
(C2

k)`,r

(C2
m)`,r

− (Yk)`,r

)
. (5.51)

Note that we can write

∆(αkρkEk)∗`,r = (−1)k−1
ρ∗
`,r

2(C2
m)`,r

(Π∗− pm`,r)2 (Y2C2
1 −Y1C2

2)`,r

(C2
m)`,r

. (5.52)

Moreover we can observe that if we use the definition (5.48) the contributions of X`,r cancel out

in the above term (Y2C2
1 −Y1C2

2)`,r, which results to be equal to (Y2Y1(c2
1 − c2

2))`,r. Let us note for

completeness of the presentation that the Davis’ definition of the speeds of the HLLC solver described

in Section 5.4.1.1 corresponds to the definition:

c̃m` =max(cm`, (cmr +u`−ur)), c̃mr =max(cmr, (cm`+u`−ur)), (5.53)

and we can for instance employ the following definitions for the constants Ck:

(C2
k)`,r = (Yk c̃2

kρ)2
`,r, k = 1,2, (5.54a)

where

(c̃k)2
`,r =

{
(ck)2

`,r if (cm)`,r ≥ (cm)r,`+u`−ur,

(ck)2
r,`+2(u`−ur)(cm)r,`+ (u`−ur)2 otherwise.

(5.54b)

In summary, the presented Suliciu-type solver defines a class of HLLC-type solvers for the six-

equation two-phase system that includes the solver that was presented by Pelanti & Shyue in [200].

Positivity preservation for this class of solvers can be ensured by the choice of the wave speeds

in (5.46).
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5.4.1.3 Path-conservative Dumbser-Osher-Toro solver

In the context of numerical schemes for hyperbolic systems with nonconservative terms, Parés [193]

introduced the path-conservative schemes based on the theory in [68]. Within this formalism, the

first order path-conservative scheme corresponds to the one of Eq. (5.20) without second-order

corrections. Coherently with [68], the compatibility condition for nonconservative systems is:

A +∆Ui+ 1
2
+A −∆Ui+ 1

2
=

∫ 1

0
A(φ(Ui,Ui+1, s))

∂φ

∂s
ds. (5.55)

The fundamental issue with these numerical schemes is that, in the presence of discontinuities, the

numerical solution may not converge to the specified entropic weak solution [1, 45, 126]. Dumbser

& Toro [90] applied this formalism to the Osher Riemann solver (RS) to extend this solver to

nonconservative hyperbolic systems. We decided to adopt here this RS to integrate system (5.2). This

choice is motivated by the nice features that characterize the Osher RS. In fact, it does not need an

entropy fix (in contrast with Roe-type path-conservative schemes [193, 266]) and it does not lead to

excessive numerical diffusion since it attributes a different numerical viscosity to each characteristic

field. The interfacial fluctuations according to the path-conservative Dumbser-Osher-Toro (DOT)

scheme are

A ±∆Ui+ 1
2
= 1

2

∫ 1

0

(
A(φ(Ui,Ui+1, s))± ∣∣A(φ(Ui,Ui+1, s))

∣∣) ∂φ
∂s

ds, (5.56)

where |A| = R|Λ|R−1 and |Λ(U)| = diag(|λ1|, ..., |λ6|). This is a general definition which depends on

the family of path φ, which is a characteristic of the nonconservative system. Similarly, the Rankine–

Hugoniot condition in the framework of the DLM theory depends on the family of path φ if the system

is nonconservative [68, 162, 193]. By a mathematical point of view, the choice of the family of paths

is important as it determines the speed of propagation of discontinuities, nevertheless, it has been

observed that in certain situations this choice does not significantly alter the numerical results [222].

In the following, we observe the same feature as in [222] for the path-conservative HLLC scheme

proposed below. Sometimes, the choice of the path is based on a physical background [163, 219], but,

very often, a simple segment path

φ(Ui,Ui+1, s)=Ui + s(Ui+1 −Ui) (5.57)

is chosen. For a segment path, the fluctuations of the DOT path-conservative scheme become

A ±∆Ui+ 1
2
= 1

2

(∫ 1

0

(
A(φ(Ui,Ui+1, s))± ∣∣A(φ(Ui,Ui+1, s))

∣∣)ds
)
(Ui+1 −Ui). (5.58)

The numerical evaluation of this path integral can be done via any numerical quadrature rule. For

this work, similarly to [90], we adopted a Gauss-Legendre rule. Finally, the interfacial fluctuations

are calculated as:

A ±∆Ui+ 1
2
= 1

2

(
G∑

j=1

(
ω jA(φ(Ui,Ui+1, s j))±

∣∣A(φ(Ui,Ui+1, s j))
∣∣)) (Ui+1 −Ui). (5.59)

All the calculations presented in this paper are obtained using a three-point Gauss-Legendre rule.

Nevertheless, several numerical experiments have been carried out to ascertain that no differences
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would be detected using a more accurate quadrature algorithm (fifteen-point Gauss-Legendre rule).

Finally, formula (5.59) provides a compact form to calculate interfacial fluctuations since only

the matrices A, |Λ|, R, and R−1 are needed (see 5.7 and 5.8). However, this is very costly from

a computational point of view. The need to take into account the nonconservative terms leads to

evaluate the matrix eigenstructure several times at each interface at each time step, which implies

an important computational cost.

5.4.1.4 Path-conservative HLLEM solver

Dumbser & Balsara [88] have recently proposed a nonconservative formulation of the well-known

HLL Riemann solver. Using the classical similarity variable ξ= z/t, the approximate solution is

U(ξ)=


U`, if ξ≤ S`,

U∗+ϕR∗(Ū)2δ∗(Ū)L∗(Ū)Ur−U`

Sr−S`

(
ξ− 1

2 (Sr +S`)
)
, if S` < ξ< Sr,

Ur, if ξ≥ Sr.

(5.60)

The inner state is represented by a linear approximation containing a flattener ϕ ∈ [0,1]. We take

Ū = Ur −U` as intermediate state. The matrix δ∗ is the generalization of the scalar coefficient δ

introduced by Einfeldt [95]. The expression of the interfacial fluctuations is(
A ±∆Ui+ 1

2

)hllem =
(
A ±∆Ui+ 1

2

)hll ±ϕ SrS`

Sr −S`
R∗(Ū)δ∗(Ū)L∗(Ū)(Ui+1 −Ui). (5.61)

Here
(
A ±∆Ui+ 1

2

)hll
are the interfacial fluctuations in the case that the inner state is constant (ϕ= 0

in Eq. (5.60)) as in the original HLL solver. These fluctuations are(
A −∆Ui+ 1

2

)hll =− S`

Sr −S`

(
Fi+1 −Fi + B̃(Ui,U∗)(U∗−Ui)+ B̃(U∗,Ui+1)(Ui+1 −U∗)

)
+ SrS`

Sr −S`
(Ui+1 −Ui),(

A +∆Ui+ 1
2

)hll =+ Sr

Sr −S`

(
Fi+1 −Fi + B̃(Ui,U∗)(U∗−Ui)+ B̃(U∗,Ui+1)(Ui+1 −U∗)

)
− SrS`

Sr −S`
(Ui+1 −Ui).

(5.62)

The term B̃(Ui,U∗) is the straight path-integration of the nonconservative terms according to

DLM-theory

B̃(Ui,U∗)=
∫ 1

0
B̃(φ(Ui,U∗, s)) ds. (5.63)

This Riemann solver does not need an entropy fix and uses only part of the eigenstructure of the

hyperbolic system (conversely to the DOT-RS). Notwithstanding, calculations are rather costly.

5.4.1.5 Path-conservative HLLC solver

The path-conservative Riemann solvers discussed above use entirely or partially the eigenstructure

of the system. Here we design a new simple and efficient path-conservative HLLC solver that does

not need to calculate it. This will result to be much more efficient in terms of computational cost.
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Moreover, both the DOT and the HLLEM path-conservative solvers adopt the approximation that

a linear path connects the left and the right states in the phase space across a discontinuity. The

path-conservative HLLC solver here proposed extends the integration of the nonconservative terms

to the more general family of the polynomial paths:

φ(s)=U−+ sm(U+−U−), (5.64)

where m ∈N. Let us recall that according to the DLM theory [68], across a discontinuity:

λ{U}φ =
∫ 1

0
A(φ(U−,U+, s))

∂φ

∂s
ds, (5.65)

here and in the following, {a}= (a+−a−), where a+ is the value on the right of a discontinuity, a−

the value on the left. λ is the signal velocity. Equivalently:

λ{U}φ = {F(U)}+
∫ 1

0
B(φ(U−,U+, s))

∂φ

∂s
ds, (5.66)

Mass and momentum conservation equations are in conservative form then λ{U( j)} = {F(U( j))},

j = 2,3,4. For the components U( j), j = 2,3,4, the jump conditions do not depend on the choice

of the path φ. Let us analyze the jump conditions of the phasic-total-energy equations in which

nonconservative products are present. Since across a shock wave the volume fractions αk does not

vary, the jump conditions of αkρkEk is

λ{αkρkEk}φ = {αk(ρkEk + pk)u}+ (−1)k+1
∫ 1

0
−u

(
Y2α1

∂

∂s
(p1)φ−Y1α2

∂

∂s
(p2)φ

)
ds, (5.67)

In order to write the pressure gradient in terms of conservative variables, the EoS is needed. The

stiffened gas EoS of Eq. (5.5) expressed in terms of U components is

pk = (γk −1)
(
αkρkEk

αk
− 1

2
αkρk

αk

(ρu)2

ρ2 −ηk
αkρk

αk

)
−γkπk, (5.68)

After some algebraic manipulations, we find that the phasic pressure gradient is

αk

κk
∂z pk =

[(
Yk −

1
2

)
u2 −ηk

]
∂z(αkρk)+Yku2∂z(α jρ j)−Yku∂z(ρu)+∂z(αkρkEk). (5.69)

Using Eq. (5.69), the nonconservative terms are

Σ=Y2

[(
Y1κ2 −κ1

(
Y1 − 1

2

))
u3 +κ1η1u

]
∂z(α1ρ1)+Y1Y2(κ1 −κ2)u2 ∂z(ρu)

− Y1

[(
Y2κ1 −κ2

(
Y2 − 1

2

))
u3 +κ2η2u

]
∂z(α2ρ2)−Y2κ1u ∂z(α1ρ1E1)+Y1κ2u ∂z(α2ρ2E2).

(5.70)

We can now integrate the nonconservative terms using the DLM theory:∫ 1

0
Σds =Y2

[
Y1κ2 −κ1

(
Y1 − 1

2

)]∫ 1

0
u3 ∂

∂s
(α1ρ1)φds+Y2κ1η1

∫ 1

0
u
∂

∂s
(α1ρ1)φds

−Y1

[
Y2κ1 −κ2

(
Y2 − 1

2

)]∫ 1

0
u3 ∂

∂s
(α2ρ2)φds−Y1κ2η2

∫ 1

0
u
∂

∂s
(α2ρ2)φds

+Y1Y2(κ1 −κ2)
∫ 1

0
u2 ∂

∂s
(ρu)φds−Y2κ1

∫ 1

0
u
∂

∂s
(α1ρ1E1)φds+Y1κ2

∫ 1

0
u
∂

∂s
(α2ρ2E2)φds.

(5.71)
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Due to the choice of the integration path made in Eq. (5.64), the derivative of the jth element of the

conservative variable vector is ∂
∂s (U j)φ = (U+

j −U−
j )m sm−1, then

∫ 1

0
Σds = Σ̃2,3,4 −Y2κ1{α1ρ1E1}m

∫ 1

0
usm−1ds+Y1κ2{α2ρ2E2}m

∫ 1

0
usm−1ds, (5.72)

where Σ̃2,3,4 accounts for the path integration of components U( j), j = 2,3,4 and is

Σ̃2,3,4 =
[
Y2

(
Y1κ2 −κ1

(
Y1 − 1

2

))
{α1ρ1}−Y1

(
Y2κ1 −κ2

(
Y2 − 1

2

))
{α2ρ2}

]
m

∫ 1

0
u3sn−1ds

+Y1Y2(κ1 −κ2){ρu}m
∫ 1

0
u2sn−1ds+ [

Y2κ1η1{α1ρ1}−Y1κ2η2{α2ρ2}
]
m

∫ 1

0
usn−1ds

(5.73)

We recall that {a} = (a+−a−), where a+ is the value on the right of a discontinuity, a− the value

on the left. From Eqs. (5.72), (5.73), one can see that the integration of the velocity across the

interface assumes a relevant role for the integration of the nonconservative terms of system (5.2).

As we already mentioned, the path-conservative HLLC scheme here proposed aims to integrate the

nonconservative terms using the conservative variables of the state vector U. Hence, the integral of

the velocity that we now indicate as ũ is:

ũ = m
∫ 1

0
usm−1ds = m

∫ 1

0

(ρu)−+ sm[(ρu)+− (ρu)−]
ρ−+ sm(ρ+−ρ−)

sm−1ds. (5.74)

It can be numerically evaluated using, for instance, a Gauss-Legendre quadrature rule. We adopted

a similar strategy for the integration of u2 and u3 present in Eq. (5.71). Finally, the jump condition

across a shock becomes

λ{αkρkEk}φ = {αk(ρkEk + pk)u}+ (−1)k+1Σ̃2,3,4 + (−1)k (
Y2κ1{α1ρ1E1}−Y1κ2{α2ρ2E2}

)
ũ. (5.75)

Across the contact discontinuity, we have the following invariants: u∗
`
= u∗

r = u∗, p∗
m,` = p∗

m,r = p∗
m,

where pm =α1 p1 +α2 p2. Using the invariance of pm across the contact discontinuity, the jump of

the phasic total energy equations is:

λ{αkρkEk}φ = {αk(ρkEk + pk)u}+ (−1)ku∗
∫ 1

0
α1

∂

∂s
(p1)φds+ (−1)ku

∫ 1

0
p1

∂

∂s
(α1)φds. (5.76)

After some calculations, across a contact discontinuity

λ{αkρkEk}φ = {αk(ρkEk + pk)u}+ (−1)ku∗
(
α1,r p∗

1,r −α1,`p∗
1,`

)
. (5.77)

The first 4 components of the middle state vectors U∗
`

and U∗
r are equal to the ones in Eq. (5.28). In

order to design a new path-conservative HLLC-type scheme, we need to determine ρ∗1,`E∗
1,`, ρ∗2,`E∗

2,`,

ρ∗1,rE∗
1,r and ρ∗2,rE∗

2,r. Let us write the jump relations of α1ρ1E1 across the left-going shock of the

HLLC wave pattern:

S`(ρ∗1,`E∗
1,`−ρ1,`E1,`)= [(ρ∗1,`E∗

1,`+ p∗
1,`)u∗− (ρ1,`E1,`+ p1,`)u`]+ 1

α1,`

∫ 1

0
Σ(U`,U∗

` , s)ds. (5.78)

The previous jump condition, completed by Eq. (5.75) and the stiffened gas EoS, provides the left-

intermediate phasic total energies. Generalizing this procedure for the right-intermediate states,
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one obtains the intermediate total energies of phase k = 1, where ι= `, r:

ρ∗1,ιE
∗
1,ι =

[
ρ1,ιE1,ι(Sι−uι+Y2κ1ũ)+ (ρ∗2,ιE

∗
2,ι−ρ2,ιE2,ι)(Y1κ2ũ

α2,ι

α1,ι
)

−
(
Π1 +κ1ρ

∗
1,ι(

1
2

u∗2 +η1)
)

u∗− p1,ιuι− Σ̃2,3,4/α1,ι

]
/
[
Sι− (1+κ1)u∗+Y2κ1ũ

]
.

(5.79)

Similarly, for ρ∗2,ιE
∗
2,ι, forming an algebraic linear system with 2 unknowns and 2 equations that can

be easily solved by substitution.

Proposition 5.1. The path-conservative HLLC-type scheme designed for the 6-equation two-phase

flow model (5.2) satisfies the consistency condition:
m−1∑
j=0

λ j+1(Ur −U`)= F(Ur)−F(U`)+
∫ 1

0
B(φ(U`,Ur, s))

∂φ

∂s
ds. (5.80)

For instance, for the equation of total energy of phase 1, the consistency condition is:

S`(α1,`ρ
∗
1,`E∗

1,`−α1,`ρ1,`E1,`)+S∗(α1,rρ
∗
1,rE∗

1,r −α1,`ρ
∗
1,`E∗

1,`)+Sr(α1,rρ1,rE1,r −α1,rρ
∗
1,rE∗

1,r)=
α1,r(ρ1,rE1,r + p1,r)ur −α1,`(ρ1,`E1,`+ p1,`)u`+ Σ̃`,r,

(5.81)

where Σ̃`,r = Σ̃`,`∗+ Σ̃`∗,r∗+ Σ̃r∗,r is the integral of the nonconservative terms across the three waves.

Proposition 5.1 can by verified by substituting (5.75) and (5.77) in Eq. (5.81).

5.4.2 Pressure relaxation operator

In the previous sections we discussed and developed solution procedures for the hyperbolic portion

of the system, without accounting for relaxation source terms. Relaxation terms are of paramount

importance since they describe the physical process occurring at the interface between the species.

Thanks to the pressure relaxation operator, solutions to the 6-equation model approximate solutions

of the pressure equilibrium Kapila et al. [139] model. Note also that this relaxation step leads to

an effective speed of sound that corresponds to the the Wood’s one [279] defined in (5.4), which also

characterizes the pressure-equilibrium 5-equation model.

First, let us recall that the complete solution of the six-equation two-phase flow model is obtained

by the succession of operators

Un+1 = L∆t
p L∆t

hypUn. (5.82)

The hyperbolic operator described in the previous sections provides the intermediate solution

Un+ = L∆t
hypUn, which will now be used as initial condition for the pressure relaxation operator L∆t

p .

This operator is defined by the solution of the following system of ordinary differential equations:

∂tα1 =µ (p1 − p2) ,

∂t
(
α1ρ1

)= 0,

∂t
(
α2ρ2

)= 0,

∂t
(
ρu

)= 0,

∂t
(
α1ρ1E1

)=−µpi (p1 − p2) ,

∂t
(
α2ρ2E2

)=µpi (p1 − p2) .

(5.83)
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During this pressure relaxation process, the two phases having initially different pressures relax

toward an equilibrium state with pressure p̃. This is a volume transfer process where the phasic

volume fractions also tend toward an equilibrium value corresponding to the equilibrium pressure p̃.

Let us observe that the mixture density ρ, the partial densities αkρk, the velocity u and the mixture

energies E and e are invariant. On the other hand, the phasic densities ρk, the phasic total energies

Ek and the phasic internal energies ek vary during this process, as well as the phasic pressures

and volume fractions. By employing suitable approximations of the interface pressure appearing

in the phasic energy equations in (5.83), we can formulate a system of algebraic equations for the

relaxed equilibrium state attained for µ→∞. These equilibrium conditions are directly employed

in the numerical procedure used to impose instantaneous mechanical relaxation. For the stiffened

gas EOS these algebraic conditions are particularly simple since they reduce to the solution of a

quadratic equation for the relaxed equilibrium pressure. Note that with this algorithm to handle

infinite-rate pressure relaxation we do not actually discretize the ODE system (5.83) above, hence

the parameter µ does not need to be defined. We refer to [200] for further details.

5.5 Test problems

We present here a selection of two-phase test problems in 1D geometry. The first two test problems

deal with rarefaction waves, hence the simulation results can be compared to the exact solution of

the Kapila et al. [139] model. The last two test problems also contain shock waves. If a discontinuity

is located in a single-phase fluid, locally the flow is described by the Euler model, hence the jump

conditions are the classic Rankine-Hugoniot ones, and an exact solution is available. If a discontinuity

is located in a multiphase mixture, due to presence of nonconservative products in the Kapila et

al. [139] model, an exact solution is not available since jump relations can not be analytically derived.

For this test, simulation results will be compared to an ‘exact’ solver containing prescribed jump

conditions. The latter are the ones derived in [232] in the case of weak strength shocks. In fact, if the

shock is sufficiently weak, a smooth profile can be observed. The smoothness of this profile is due to

a dispersion process, characteristic for multiphase mixtures [232]. These jump conditions present

several interesting physical-mathematical features: (i) are in agreement with the single phase limit,

(ii) are symmetric for all phases, (iii) conserve the mixture total energy, (iv) guarantee the volume

fraction positivity, (v) for weak shocks, the Hugoniot curves are tangent to the isentropes, (vi) have

been validated against many experimental tests.

Some authors have encoded them directly into the Riemann solver, for instance this has been

done in the hybrid Glimm-Roe solver of [2], or as an artificial heat source to coherently do the

mixture energy repartition [204], or correcting the thermodynamic path in the shock layer by forcing

each point to belong to the mixture Hugoniot curve [205]. The latter has been also used in [235, 236].

In the Riemann solvers that we presented in the previous sections we did not encode any physical

jump relation. However we will use the jump conditions of [232] to make a comparison between the

various solvers and their different ways to discretize the nonconservative terms.

The simulations carried out in this section are only at the first order because we aim to compare

the different Riemann solvers avoiding the influence of second order corrections on the integration
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FIGURE 5.2. Numerical results for the water cavitation test with |u| = 2m/s, toutput =
3.2 ms, 2 ·104 cells.

of nonconservative terms. However second-order solvers are used for the efficiency comparison. All

the numerical results have been obtained with a CFL = 0.5 and with a very high number (2 ·104)

of cells in order to avoid any influence of the numerical diffusion on the results and to have mesh

independence. The simulations have been performed by using the basic Fortran libraries of the

CLAWPACK software [168].

5.5.1 Water cavitation tube problem

We first consider a one-dimensional cavitation tube problem proposed in [233]. A mixture of liquid-

vapor water fills a tube of unit length. The initial conditions areρv = 0.63kg/m3, ρl = 1150kg/m3, u =−2m/s, p = 105Pa, αv = 10−2, f or 0m ≤ z ≤ 0.5m,

ρv = 0.63kg/m3, ρl = 1150kg/m3, u =+2m/s, p = 105Pa, αv = 10−2, f or 0.5m ≤ z ≤ 1m.
(5.84)

The vapor is uniformly distributed throughout the tube. A velocity discontinuity is set at z = 0.5m

at initial time t = 0. On the left of the discontinuity the velocity is u =−2m/s, on the right, u = 2m/s.

This Riemann problem generates two rarefaction waves and a trivial contact discontinuity wave of

zero speed, provoking a low-density flow in the center of the tube. The parameters for the Stiffened
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FIGURE 5.3. Mesh convergence study on the water cavitation test with initial velocity
|u| = 2m/s. On the left, we show the first order trend and on the right the second order
trend obtained with minmod limiter.

0,1 1 10 100 1000

CPU time  [s]

0,001

0,01

L
 1

 - 
er

ro
r 

 f
o

r 
m

ix
tu

re
 d

en
si

ty

HLLC-type solver

Path-conservative Osher solver
Path-conservative HLLEM solver
Path-conservative HLLC solver
Suliciu-type solver

Error 0.001

20.6 s

163.8 s

378.2 s

23.0 s
27.5 s

0,1 1 10 100 1000

CPU time  [s]

0,001

0,01

L
 1

 - 
er

ro
r 

 f
o

r 
m

ix
tu

re
 d

en
si

ty

HLLC-type solver

Path-conservative Osher solver
Path-conservative HLLEM solver
Path-conservative HLLC solver
Suliciu-type solver

Error 0.001

6.6 s

45.6 s

83.8 s

7.9 s
7.8 s

FIGURE 5.4. Efficiency study on the water cavitation test with initial velocity |u| = 2m/s.
On the left, we show the first order trend and on the right the second order trend
obtained with minmod limiter.

Gas EoS are γ1 = 4.4, π1 = 6×108 Pa, η= 0 J/kg, γ2 = 1.4, π2 = 0 Pa and η= 0 J/kg.

The simulation results are compared to the exact solutions of Kapila’s model in Fig. 5.2. By using

any of the five RS introduced in the previous sections, numerical solutions of the six-equation model

with stiff mechanical relaxation accurately reproduce the exact results of the 5-equation model. In

particular, the results are practically indistinguishable for all the solvers, except for the HLLEM-RS

that introduces a small smearing around the contact discontinuity wave, which is visible in the vapor

volume fraction plot of Fig. 5.2. This feature is expected and is due to the fact that the HLLEM-RS

is not complete since it uses only two waves to approximate a three-wave model such as system (5.2).

Instead, all the other Riemann solvers used in this work use as many waves as the system (5.2).

In order to compare the precision of the various RS and the computational time required to

achieve a given precision, a mesh convergence and an efficiency studies have been carried out at

both first and second order (see Fig. 5.3 and 5.4). The second order results are obtained using the
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FIGURE 5.5. Numerical results for the water cavitation test with |u| = 500m/s, toutput =
0.58 ms, 2 ·104 cells..

higher-order correction fluxes of Eq. (5.22), employing the minmod limiter. The HLLEM-RS is much

more diffusive and costly than the other solvers since it is not a complete solver as stated above. The

Osher solver is as diffusive as the other three solvers, however, it is much more costly because it

needs to calculate the eigenstructure of the system at each interface for each time step. The other

three RS have a similar trend in terms of numerical diffusivity an computational cost.

Figure 5.5 shows the water cavitation problem when the initial velocity is set as |u| = 500m/s at

both sides of the discontinuity located at z = 0.5m. In this case, the two rarefaction waves generated

are stronger and create a very low density region in the center of the tube. From both cavitation

tests we can also see that the discretization of the nonconservative terms does not play a key role.

In fact, the HLLC solver of Pelanti & Shuye does not take them into account and, nevertheless, the

results coincide with the ones of path-conservative and Suliciu’s schemes.

5.5.2 Dodecane liquid-vapor shock tube problem: shock in pure vapor

We now present a shock tube problem to assess the behavior of the five RS when a shock propagates

in one of the two phases. Here the tube is filled of nearly pure liquid dodecane on the left and of

nearly pure vapor on the right. A pressure discontinuity is set at z = 0.75m at initial time t = 0. The
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FIGURE 5.6. Numerical results for the dodecane liquid-vapor shock tube problem in
Sec. 5.5.2, toutput = 0.473 ms.

initial conditions areρv = 2kg/m3, ρl = 500kg/m3, u = 0m/s, p = 108Pa, αv = 10−8 f or 0m ≤ z ≤ 0.75m

ρv = 2kg/m3, ρl = 500kg/m3, u = 0m/s, p = 105Pa, αv = 1−10−8 f or 0.75m ≤ z ≤ 1m
(5.85)

The parameters for the Stiffened Gas EoS are γ1 = 2.35, π1 = 4×108 Pa, η = 0 J/kg, γ2 = 1.025,

π2 = 0 Pa and η = 0 J/kg. A discontinuity of 1000 bar exists at the initial time. This Riemann

problem generates a left-going rarefaction wave, a right-going shock and an in-between contact

discontinuity that separates liquid and vapor dodecane. As for the previous test, the simulations

performed with the five RS exhibit indistinguishable results, which completely match the exact

results of the 5-equation model (see Fig. 5.6).

5.5.3 Dodecane liquid-vapor shock tube problem: shock in the mixture

Let us modify the previous test in order to have a shock wave occurring in the two-phase mixture.

The initial conditions are the ones in (5.85) except that on the left αv = 0.3 and on the right αv = 0.7.

Now the shock tube is filled of a two-phase mixture on both sides of the discontinuity. The results

are plotted in Fig. 5.7. The left-going rarefaction wave has a much smaller amplitude with respect to
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FIGURE 5.7. Numerical results for the dodecane liquid-vapor shock tube problem in
Sec. 5.5.3, toutput = 0.35 ms.

the previous test and the strength of the shock wave depends on the RS adopted. This dependency is

visible in Fig. 5.7 on the plot of the most sensitive variables, the volume fractions and the mixture

density. In particular, the path-conservative Osher and HLLEM schemes, the proposed Suliciu

scheme and the HLLC solver of [200] converge to the same solution, whereas, the proposed path-

conservative HLLC scheme converges to a different solution. Moreover, none of the RS here adopted

matches the Kapila’s model jump conditions of [232]. Let us also mention nevertheless that since we

are dealing here with a very strong shock wave, the adequacy of the jump conditions of Saurel et

al. [232] is questionable, since they are derived for weak strength shocks. Note that if a conservative

variable is not correctly calculated across a shock, the shock velocity is wrong. Looking at the vapor

volume fraction plot of Fig. 5.7, we can see that the shock velocity calculated by all solvers is larger

than the one of the assumed exact solver.

We now generalize this test and the left pressure is now a parameter. In this way the strength of

the initial discontinuity can be varied and we can see in Fig. 5.8 its effect. Namely, when the shock is

weak or mild, all solvers coincides and the prediction of the shock speed coincides as well. However,

if the shock is particularly strong (initial pressure ratio larger than 200), different discretization

of the nonconservative terms can lead to different results and shock speed evaluations. For this

parametric study we have introduced another way to discretize the nonconservative product, i.e. a
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FIGURE 5.8. Benchmark test for the approximate Riemann solvers against the Saurel
et al. [232] shock relations. The test case is the one presented in Section 5.5.3, but
here the left pressure is a parameter. Increasing the pressure ratio at the initial
discontinuity location, approximate Riemann solvers converge to different weak
solutions (see plot on the right). When the Riemann problem strength becomes high,
shock speeds are clearly different.

simple finite difference approximation. This technique is frequently adopted in the literature but it

is the one that exhibits the highest discrepancy with respect to Saurel et al. [232] shock relations. It

is worth mentioning that four schemes are totally coincident: the HLLC of [200] that neglects the

nonconservative terms, the Suliciu’s scheme, the Osher and the HLLEM path-conservative schemes.

Another interesting feature is that the pressure calculated by the various solver, at least in this test,

is always coincident to the one given by the Saurel et al. [232] shock relations. In fact the pressure

seems not so much sensitive to the phasic total energy repartition.

As mentioned above, if one wants to obtain a post-shock state coherent to the one described by

the Saurel et al. [232] shock relations, several methods exist [2, 204, 205, 235, 236]. In Fig. 5.9 we

show the numerical results of a Glimm solver, coupled to the Saurel et al. [232] shock relations, that

is able to reproduce the post-shock state of [232]. For generating random numbers, both the intrinsic

Fortran 90 function and the van der Corput sequence have been used. The latter guarantees less

noisy results [57]. From Fig. 5.9 we can see that the plateaux are correctly calculated, however they

are translated with respect to the assumed exact solution. The distance between the numerical result

and the prescribed exact one reduces with the increasing quality of the randomness sequence [57]

and increasing the mesh cells.

Finally, in Fig. 5.10 we show the effect of the pressure relaxation operator on the results obtained

by some of the considered Riemann solvers, by plotting results obtained with and without activation

of the instantaneous mechanical relaxation process. First, we notice that in regions where the

solution is smooth (rarefaction waves) there are no significant differences in the results of the

various solvers. Relevant discrepancies are noticed around shocks, if no pressure relaxation is

activated. Nevertheless, as it was already suggested in [200] (with no numerical demonstration),

the pressure relaxation process tends to reduce the differences in the results between the various

solvers.
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FIGURE 5.9. Numerical results for the dodecane liquid-vapor shock tube problem in
Sec. 5.5.3 with Glimm’s method. CFL = 0.45, toutput = 0.35 ms, 500 cells.

In fact, when pressure relaxation is not activated, the mixture energy repartition between

the phases is dictated solely by the Riemann solver, and noticeable differences can be expected

for different treatments on non-conservative products. Instead, when instantaneous mechanical

relaxation is forced to the solution of the 6-equation model, the resulting energy repartition is

constrained by phasic pressure equality. This constraint entails a reduced degree of freedom and a

significant reduction in the differences between various solvers.

5.6 Conclusions

In this work we have discussed various ways to numerically integrate the single-velocity 6-equation

two-phase flow model of [200, 234], focusing in particular on different discretization methods for the

nonconservative terms appearing in the phasic energy equations of the model system. In [200], a

simple HLLC-type solver was employed, which does not account for these nonconservative terms.

Two new Riemann solvers have been designed to build numerical methods for the approximation of

system (5.2): a path-conservative HLLC solver and a Suliciu-type solver. The new Suliciu-type solver

represents a generalization of the HLLC-type solver of [200], and it is shown to be equivalent to the

solver in [200] for a particular definition of the solver’s parameters. One important property of this
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FIGURE 5.10. Numerical results for the dodecane liquid-vapor shock tube problem. On
the left, the two phases evolve with different pressures (no mechanical relaxation).
On the right, instantaneous mechanical relaxation is activated at each time step. The
pressure relaxation procedure reduces the differences in the results obtained by the
various solvers, decreasing also the discrepancies in the shock velocity.

new solver is that it preserves positivity of densities, energies and volume fractions, when a suitable

definition of the solver’s wave speeds is used. Then, we have adopted two path-conservative schemes

presented in the literature, namely the schemes based on the DOT and the HLLEM Riemann

Solvers.

The new path-conservative HLLC and Suliciu-type solvers allow us to take into account the

nonconservative products with no relevant increase of the computational cost, whereas the DOT-RS

and the HLLEM-RS are shown to be extremely expensive (see Fig. 5.4). For smooth solution test

cases such as the cavitation tube tests the numerical results of the considered solvers, which all

account for nonconservative terms, do not differ from the results obtained with the simple HLLC-type

Riemann solver proposed in [200] that neglects those terms. Furthermore, in these problems all the

solvers are able to reproduce the exact solution of the five-equation model corresponding to the limit

of the considered six-equation model with instantaneous pressure relaxation. The various Riemann

solvers’ results also allow us to match exact solutions of the 5-equation model when simulating

problems involving shocks in nearly pure phases. In this case, the nonconservative terms are not

active across the shock wave.

When simulating shocks in genuine two-phase mixture regions various Riemann solvers produce

different results. Discrepancies in the results between the various solvers and between the solvers

and the ’assumed exact’ solution of the five-equation model based on the jump relations of [232]

appear to be small for weak and mild shocks. Differences however become significant for shocks

characterized by strong pressure ratios. The incapability of recovering the correct shock speed is a

well-known drawback of nonconservative two-phase flow models. Path-conservative schemes are not

able to overcome this difficulty, even with a careful physically motivated choice of the integration

path [1]. In the literature one of the most effective approach to circumvent this problem for two-phase

flows is due to Abgrall & Kumar, who encoded the Saurel et al. [232] shock relations into a hybrid

Glimm-Roe solver [2]. One disadvantage of this technique is that Glimm’s method uses an exact
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Riemann solver, so that it might be very difficult to extend this approach to treat arbitrary equations

of states, which is an important goal of our current and future studies. Other methods to impose the

prescribed jump conditions of [232] are reported in [204, 205].

In conclusion, despite inaccuracies for very strong shocks in multiphase mixtures, the finite

volume schemes based on Riemann solvers that we have presented for the six-equation model

with stiff pressure relaxation can provide accurate approximation of solution of the five-equation

Kapila’s equilibrium model for many flow problems, and the choice of the discretization of the

nonconservative terms in the phasic energy equations often has no relevant role. Among the solvers,

the new Suliciu-type solver has the advantage of retaining the simplicity of the HLLC-type solver

of [200] and guaranteeing positivity preservation. In the future, we are are interested in extending

the solution methods that we presented for the six-equation model to physically realistic EoS for

steam and water, as the ones already implemented and discussed in [79] for other classical two-phase

flow models. Ultimately, our aim is to develop computational tools to simulate fast transient flows

and flashing flows [78] relevant for nuclear safety studies.

5.7 Appendix 5.A: Matrices of the 6-equation single-velocity
two-phase flow model

We report here the matrices that characterize the one-dimensional (homogeneous) 6-equation model,

which has the quasi-linear form ∂tU +A(U)∂zU= 0. We have:

A(U)=



u 0 0 0 0 0

0 uY2 −uY1 Y1 0 0

0 −uY2 uY1 Y2 0 0

−$1 +$2 A42 A43 2u−u(κ1Y1 +κ2Y2) κ1 κ2

(−$1 +$2)uY1 A52 A53 Y1H1 −u2Y1(κ1Y1 +κ2Y2) u+κ1uY1 uY1κ2

(−$1 +$2)uY2 A62 A63 Y2H2 −u2Y2(κ1Y1 +κ2Y2) uY2κ1 u+κ2uY2


,

(5.86)

where $k = ρkc2
k − pk(1+κk) with κk = ∂pk(Ek,ρk)

∂Ek
, k = 1,2 (for the SG EOS $k = γkπk), and

A42 =−u2 +χ1 −κ1
u2

2
+u2(κ1Y1 +κ2Y2), A43 =−u2 +χ2 −κ2

u2

2
+u2(κ1Y1 +κ2Y2),

A52 =−Y1H1u+uY1

(
χ1 −κ1

u2

2

)
+u3Y1(κ1Y1 +κ2Y2),

A53 =−Y1H1u+uY1

(
χ2 −κ2

u2

2

)
+u3Y1(κ1Y1 +κ2Y2),

A62 =−Y2H2u+uY2

(
χ1 −κ1

u2

2

)
+u3Y2(κ1Y1 +κ2Y2),

A63 =−Y2H2u+uY2

(
χ2 −κ2

u2

2

)
+u3Y2(κ1Y1 +κ2Y2).
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Such a matrix can be considered as the composition of a conservative and a nonconservative

contribution: A(U)= ∂F
∂U +B(U). The matrix containing the nonconservative terms is:

B(U)=



u 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

u(Y2$1 +Y1$2) B5,2 B5,3 u2Y1Y2(κ1 −κ2) −uY2κ1 uY1κ2

−u(Y2$1 +Y1$2) −B5,2 −B5,3 −u2Y1Y2(κ1 −κ2) +uY2κ1 −uY1κ2


, (5.87)

where

B5,2 =−uY2χ1 +u3Y2

[
−κ1

(
Y1 − 1

2

)
+Y1κ2

]
, B5,3 =+uY1χ2 −u3Y1

[
−κ2

(
Y2 − 1

2

)
+Y2κ1

]
.

5.8 Appendix 5.B: Model System Eigenstructure

The eigenvalues of the matrix A(U) are

λ1 = u− c, λ2 =λ3 =λ4 =λ5 = u, λ6 = u+ c, (5.88)

where u is the velocity in the z direction, and c the mixture sound speed in (5.3). The matrix

R(U)= (r1,r2, ...,r6) of the corresponding right eigenvectors rk, k = 1, . . . ,6, can be taken as:

R(U)=



0 0 0 0 1 0

Y1 0 0 1 0 Y1

Y2 0 1 0 0 Y2

u− c 0 u u 0 u+ c

Y1(H1 −uc) −κ2
κ1

κ2
κ1

H2 − c2
2
κ1

H1 − c2
1
κ1

$1−$2
κ1

Y1(H1 +uc)

Y2(H2 −uc) 1 0 0 0 Y2(H2 +uc)


, (5.89)

where we have denoted with Hk = hk + u2

2 the specific total enthalpy of phase k.
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6
EOS-INDEPENDENT RELAXATION PROCEDURES

The single-velocity six-equation model is able to take into account the full thermodynamic

disequilibrium between phases. Liquid and vapor may be at different pressure, temperature

and chemical potential. This disequilibrium leads to the presence of metastable phases.

However, as explained in Chapter 1, the lifetime of a metastable phase is limited since a stable

phase is always going to appear sooner or later [73]. In fact, phases exchange energy and mass at

their separation interface reducing the thermodynamic disequilibrium and tending towards the

saturated equilibrium conditions.

This chapter is devoted to the description of these interphase transfers for the equilibrium

recovery. Mathematically, they consist of source terms for the single-velocity six-equation model.

They are decomposed in three source terms, each accounting a different physical phenomenon. One

represents the energy and volume repartitions that make phases to tend towards the same pressure.

Another one models the sensible heat transfer triggered by the temperature disequilibrium. The

last one, models the mass and latent heat transfers due to the chemical disequilibrium.

The final goal of Part III of this thesis is to develop a single-velocity six-equation model, fully

coupled to the steam-water tables, for the accurate simulation of metastable water flows. In order to

couple such a model with a tabulated equation of state, the numerical procedures that implement

the interphase transfers must be equation of state independent. Further, to accurately take into

account the presence of metastable phases, the interphase transfers can not be instantaneous.

In this chapter we show how to construct non-instantaneous EoS-independent numerical pro-

cedures for the modeling of interphase transfers between metastable phases. These developments

represent the main scientific contribution of this Ph.D. thesis.

Here the attention is drawn on the construction and on the verification of these novel numerical

procedures. In the next chapter, this methodology will be validated against the experimental data of

fast depressurizations.
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A hyperbolic phase-transition model with non-instantaneous
EoS-independent relaxation procedures

Submitted to Journal of Computational Physics.

M. De Lorenzo1, Ph. Lafon1, M. Pelanti1.

This article deals with the thermodynamic equilibrium recovery mechanisms in two-phase flows

and their numerical modeling. The two phases, initially at different pressures, temperatures and

chemical potentials, are supposed to be driven towards equilibrium conditions by three relaxation

processes. First, a mechanical process applies to relax phasic pressures, then a thermal process,

to allow the sensible heat transfer between the phases at different temperatures, and, lastly, a

chemical process that is responsible for the mass transfer.

The two-phase flow model is composed of six partial differential equations with source terms

that allows the description of mixtures at full thermodynamic disequilibrium. Its homogeneous

portion is hyperbolic and it is solved by a second-order accurate finite volume scheme that uses a

HLLC-type approximate Riemann solver. The source terms modeling the relaxation processes are

separately integrated as three systems of ordinary differential equations.

The main contributions of this paper are: the capability of describing the possibly non-instantaneous

time delay of equilibrium recover in a novel way, the equation of state independence of the numerical

scheme, and the possibility to take into account the morphology of the flow pattern by using the

interfacial area between phases.

6.1 Introduction

The modeling of two-phase flows has seen greatly improvement in the last two decades. At the same

time, new numerical methods have been proposed enhancing capabilities and robustness in the

integration of two-phase flow models.

Many authors in the literature have developed numerical schemes that are suited only for

analytical and too simplistic Equations of State (EoS). One of the main goals of this paper is to

tackle this deficiency, providing numerical schemes that are EoS-independent. The only constraints

demanded of the EoS are the ones dictated by the thermodynamics.

This work is motivated by the existence of fluids that have very complex behaviors, e.g. water.

Such fluids are described with complex EoS or others based on the best-fitting of experimental data

[251, 272, 273] and can not be accurately described by analytical EoS. Moreover, when dealing with

phase-transition phenomena, fluids are often in metastable conditions, wherein the fluid behavior is

even more complex with properties varying rapidly in the thermodynamic state space. Hence only

detailed EoS can represent these behaviors.

In two-phase flows there are many more degrees of freedom and unknowns than in single-phase

flow. Some of them depend on the morphology of how phases are distributed, that is, the flow pattern.

1 IMSIA UMR EDF-CNRS-CEA-ENSTA, Palaiseau, France 91120.
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Several phenomena are flow pattern dependent, e.g. the critical mass flow rate and the critical heat

flux. Here we are not going to examine in depth the morphology of the phase distribution, however,

we try to insert in our model one of the most important parameters, i.e. the interfacial area.

The two-phase flow model here considered is the one in [139, 200, 234] and is a reduced model of

the Baer & Nunziato 7-equation model [12]. It allows a full thermodynamic disequilibrium between

phases since they are at different pressure, temperature and chemical potential. Hence two separate

EoS are required, one describing the behavior of each phase. This reduced model comes from the

assumption that phases move at the same velocity.

The two-phase model is composed of six Partial Differential Equations (PDE) with source terms.

Its homogeneous portion is hyperbolic and is solved by the HLLC-type Riemann solver proposed

in [200] and is second order accurate since second order corrections are applied. The source terms

are responsible of the relaxation processes. Being the phases at different pressure, temperature

and chemical potential, we call relaxation processes such procedures that tend to establish the

thermodynamic equilibrium.

In fact phases are supposed to undergo three consecutive relaxations: i) a mechanical process, in

order to relax phasic pressures towards an equilibrium pressure, ii) a thermal process, to allow the

sensible heat transfer between the phases at different temperatures, iii) a chemical process that

models the mass transfer phenomena.

These relaxations do not take place instantaneously in nature. Among them, the pressure relax-

ation process is the fastest one, however the others can not always be considered as instantaneous.

In some transient phenomena as fast depressurizations, the delay of vaporization and the appear-

ance of metastable phases are key features to well represent the properties evolution (see [79]).

Nonetheless, even some steady-state phenomena as the flashing are strongly influenced by the

delay of vaporization. Therefore it seems much more appropriate to consider these relaxations as

non-instantaneous.

Each of these relaxations forms a system of Ordinary Differential Equations (ODE) that can be

numerical integrated with an ODE solver. Here we have used explicit Runge-Kutta algorithms of

high order of accuracy.

The work here presented is part of an undergoing authors’ project, in the context of nuclear

reactors safety studies, at the end of which this model will be implemented within the fast transient

dynamics software EUROPLEXUS2. The objective is to simulate metastable flows that may occur in

hypothetical accidents of nuclear power plants.

The plan of the paper is the following. In Section 6.2 we present the homogeneous part of the

six-equation single-velocity two-phase flow model together with its mathematical characteristics. In

Section 6.3 we introduce the thermodynamical parameters that will be used throughout the paper.

Here we report as well some physical constraints to which those parameters undergo.

Section 6.4 is the main part of the paper and is devoted to the physical and mathematical

modeling of the relaxation processes. Their irreversibility is discussed in Section 6.11 and their

2EUROPLEXUS code is owned by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and
the Joint Research Centre (JRC) of the European Union.
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well-posedness is analyzed in Section 6.12. Other system of ODEs for the quasi-instantaneous

thermo-chemical relaxation processes are provided in Section 6.10.

The numerical methods for the hyperbolic operator and the relaxation procedures are described

in Section 6.5. 1D and 2D representative test cases are reported, respectively, in Sections 6.7 and 6.8.

In some tests we adopt the stiffened gas EoS to be able to compare the present relaxation procedures

and the instantaneous procedures of [200]. Some other test for water are performed by adopting the

IAPWS-IF97, a very accurate EoS based of experimental data. The conclusions and the future steps

of our work are discussed in Section 6.9.

6.2 Six-equation single-velocity two-phase flow model

The six-equation single-velocity two-phase flow model initially appeared in [139] as a transition

model to obtain the pressure-equilibrium five-equation model from the seven-equation model of Baer

& Nunziato [12]. Later Saurel et al. [234] proposed it as a surrogate of the celebrated Kapila five-

equation model to avoid some numerical difficulties of the latter [234]. It was then reformulated by

Pelanti & Shyue in [200] to ensure mixture-energy-consistency at the discrete level. The six-equation

model is a two-phase, two-pressure system modeling the dynamics of mixture fluids that can also

deal with phase transition when the phases are the liquid and its vapor.

To each phase is assigned a density ρk, a pressure pk, a specific internal energy ek and a volume

fraction αk, where k = 1,2. The velocity is assumed to be equal for the two phases. The governing

equations consist of mass and energy balance laws for each phase, the momentum balance for the

mixture, plus an advection equation for one of the two phases. The homogeneous portion of the

system model reads 

∂tα1 +u ·∇α1 = 0,

∂t(α1ρ1)+∇· (α1ρ1u)= 0,

∂t(α2ρ2)+∇· (α2ρ2u)= 0,

∂t(ρu)+∇· (ρu⊗u+α1 p1 +α2 p2)= 0,

∂t(α1ρ1E1)+∇· [α1(ρ1E1 + p1)u]+Σ(U,∇U)= 0,

∂t(α2ρ2E2)+∇· [α2(ρ2E2 + p2)u]−Σ(U,∇U)= 0,

(6.1)

where: Ek = ek + 1
2u ·u are the specific total energies and ρ = α1ρ1 +α2ρ2 is the mixture density.

Two other useful quantities are: the phasic mass fraction Yk =αkρk/ρ and the phasic partial density

mk =αkρk.

The nonconservative terms that appear in the phasic total energy equations are

Σ(U,∇U)=−u · [Y2∇(α1 p1)−Y1∇(α2 p2)] . (6.2)

These terms are non-zero if |u| 6= 0 and if Y1Y2 6= 0, that is, if the fluid is a mixture containing both

species moving at non-zero velocity.
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The mixture saturation condition is assumed

α1 +α2 = 1. (6.3)

The above system of partial differential equations is hyperbolic and its eigenvalues associated to

the direction n ∈Rd, |n| = 1, are

λ1 =u ·n− chom, λ2,...,4+d =u ·n, λ5+d =u ·n+ chom, (6.4)

where d indicates the spatial dimension, and the speed of sound of the associated homogeneous

model is

chom =
√

Y1c2
1 +Y2c2

2 . (6.5)

The quantities ck are the phasic isentropic speeds of sound and will be defined in the next section.

In Fig. 6.1 the frozen speed of sound of this model is compared to the ones of other two-phase

flow models. However, those sound speeds do not take into account the effect of the source terms.

Thanks to the relaxation processes, the effective speed of sound of system (6.1) will be lower than

the one depicted in Fig. 6.1. This feature is guaranteed by the sub-characteristic condition [172]

that requires that the sound speed associated to a two-phase flow model is reduced whenever

an additional equilibrium is assumed (see [109] for a discussion of the speed of sound in relaxed

two-phase flow models).

In order to close the system, two equations of state (EoS) are needed, one for each phase. They

are of the form of the incomplete EoS [63] (see Section 6.3):

pk = pk(ρk, ek) (6.6)

and are considered to be of class C2.

6.3 Equations of state and thermodynamic quantities

An equation of state is a thermodynamic equation relating state variables and describes the physical

behavior of the matter. We can distinguish complete equations of state and incomplete ones [63, 181].

The complete EoS, expressed in natural variables, are

e(s,v), f (T,v), g(T, p), h(s, p) (6.7)

and do not need other relations to describe the thermodynamic behavior of the matter. The other

physical quantities are the combination of the partial derivatives of the complete EoS. On the

contrary, incomplete EoS do need additional relations. For instance, Eq. (6.6) has no information

about temperature. Moreover, an incomplete EoS can not determine a corresponding complete EoS

as shown in [181].

An incomplete EoS would be sufficient if the thermo-chemical relaxations were not involved.

However, modelling phase transition phenomena requires a complete EoS; therefore, we assume

that each phase behaves according to a complete EoS, and that the corresponding phasic incomplete
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FIGURE 6.1. Sound speed of two-phase flow models. The frozen speed of sound reported in
Eq. (6.5) is here depicted in black.

EoS pk(ρk, ek) are known. When an explicit EoS as (6.6) is not available, iterative algorithms will be

used.

Given that the paper deals with EoS-independent algorithms, we use in the following thermody-

namic properties to express the partial derivatives of thermodynamic variables. Here we give the

definitions of the direct measurable quantities. The phasic specific heats at constant volume and

pressure are

Cv,k =
(
∂ek

∂Tk

)
ρk

= Tk

(
∂sk

∂Tk

)
ρk

, Cp,k =
(
∂hk

∂Tk

)
pk

= Tk

(
∂sk

∂Tk

)
pk

. (6.8)

The phasic isothermal and isentropic compressibility factors are

KT,k =
1
ρk

(
∂ρk

∂pk

)
Tk

, Ks,k =
1
ρk

(
∂ρk

∂pk

)
sk

. (6.9)

The phasic coefficients of thermal expansion are

βk =−ρk

(
∂ρk

∂Tk

)
pk

. (6.10)

These quantities may be related by two identities

Ks,k

KT,k
= 1− β2

k Tk

ρk Cp,k KT,k
= Cv,k

Cp,k
. (6.11)

In addition to the measurable phasic quantities, two dimensionless parameters will be also used in

the following. The adiabatic exponent γk and the Grüneisen coefficient Γk:

γk =
1

ρk pk

(
∂2ek

∂v2
k

)
sk

= 1
pk Ks,k

, Γk =
1
ρk

(
∂pk

∂ek

)
ρk

= βk

Cv,k KT,k
. (6.12)

162



6.3. EQUATIONS OF STATE AND THERMODYNAMIC QUANTITIES

0,001 0,01

Specific volume, v    [m
3
/kg]

560

580

600

620

640

660

T
em

p
er

at
u
re

, 
T

  
 [

K
]

Saturation curve
Spinodal curve

Liquid

Vapor

Unstable states

a d

b

c

FIGURE 6.2. T-v diagram of water. The plot has been realized using the IAPWS-IF97. Here
we can see the saturation curve, the spinodal curve ((∂pk/∂vk)Tk

= 0) and an isobaric
curve (i.e. p = 12.7 MPa). The latter has been divided in three portions: the blue one
represents the liquid states, the red one denotes the vapor states and the black dotted
curve refers to the unstable states that connect the previous ones. Going rightwards
along the isobaric curve, up to point (a) water is liquid in a stable state, from (a) to (b)
water is a metastable liquid, from (b) to (c) the fluid is in unstable conditions, from (c)
to (d) water is in metastable vapor conditions and, starting from point (d), the vapor
is stable.

The values of the quantities introduced in this section have some constraints dictated by

thermodynamic stability. It is well known that a closed system attains a maximum value of entropy

at equilibrium [43]. Hence, the criteria for equilibrium and stability can be expressed, respectively,

as:

δSk = 0, δnSk < 0 for the smallest n at which δnSk 6= 0. (6.13)

Further developments of the last criterion provide two conditions which ensure the thermodynamic

stability of a system:

Cv,k > 0,
(
∂pk

∂vk

)
Tk

< 0. (6.14)

The first is called criterion of thermal stability, the latter criterion of mechanical stability. If both

are satisfied, the system is said to be intrinsically stable. Thermodynamic stability also provides

other constraints:

Cp,k ≥ Cv,k ≥ 0, KT,k ≥ Ks,k ≥ 0, γk ≥ 0. (6.15)

This means that the phasic isentropic speeds of sound are

ck =
√

1
ρkKs,k

> 0. (6.16)
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A deeper analysis of real fluids behavior [181] suggests also that, except for very special case [25],

γk ≥ 1, βk ≥ 0, Γk ≥ 0. (6.17)

The criterion of thermal stability is generally satisfied by the EoS, however the respect of the

mechanical stability is not always ensured. Many EoS satisfy the mechanical stability until the

so-called spinodal line, the line that separates the unstable domain from the stable/metastable one

(see Fig. 6.2).

Cubic EoS as van der Waals’ EoS, as well as some experimental EoS, exhibit the spinodal line. An

example is given in Fig. 6.2 where we plot the saturation, the spinodal curves and an isobar for water

according to the IAPWS-IF97 EoS. This figure also shows how we will treat the phasic EoS. The

IAPWS-IF97 is a complete EoS for liquid and vapor water, hence, when we calculate pl = pl(ρl , e l),

the couple (ρl , e l) must lie in the liquid domain, that is, up to the liquid spinodal curve. Similarly,

the couple (ρv, ev) must always lie in the vapor domain, that is, up to the vapor spinodal curve.

None of the phases can ever lie in the unstable domain given that it would be unphysical but also

because it leads to non-real speed of sounds, hence, ill-posed hyperbolic systems. In this way we can

treat stable and metastable phases without violating the thermodynamic conditions provided in

Eqs. (6.14), (6.15), (6.16).

In equilibrium thermodynamics the phase transition occurs at saturation conditions. On the

contrary, in real systems, it very often occurs when fluids are in the metastable domain. Especially

in the context of fast transients, to well describe the physical phenomena, phases must be able

to lie in the metastable regions. For this reason, in this paper the mass transfer occurs when one

of the phases is metastable. The mass transfer from a metastable phase to the other takes place

as a kinetic process, thus the spinodal curve is the limit beyond which phase change has already

happened.

Other constraints are

ρk > 0, ek > 0, Tk > 0, (6.18)

where the latter comes from the third law of thermodynamics.

6.4 Physical modeling of the relaxation processes

The relaxation procedures discussed in this section aim to be EoS-independent and to describe the

time-dependent process towards the equilibrium state.

In the literature, most of the works deal with instantaneous relaxation procedures to be used

for very simple EoS such as the perfect gas or the stiffened gas EoS. In this section we show how

to construct the dynamical systems of Ordinary Differential Equations (ODEs) that describe the

physics involved in the successive relaxation processes. First the pressure equilibrium step, then

the temperature relaxation one and, finally, the mass transfer procedure.

The systems of ODEs are initially cast in the form:

A(t,y)y′ =B(t,y), A ∈Rq×q, y,B ∈Rq. (6.19)
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The matrix A(t,y) will depend on the intrinsic relations between the independent variables, that is,

the components of y. It describes the dependency between the time derivatives of the independent

variables and does not depend on the modeling choices that will be made about the mass transfer or

the pressure relaxation rate. Conversely, B(t,y) depends only on the modeling choices.

To solve this nonlinear ODE system, it is useful to rewrite it in the canonical form

y′ =F(t,y), (6.20)

where F(t,y)=A(t,y)−1B(t,y). In order for A to be invertible, its rows must be linearly independent,

that is, the number of equation of the system must equal its degrees of freedom.

In thermodynamics, each phase has two degrees of freedom (except for triple and critical points

and the saturation curve), further, the mixture density and internal energy do not vary because of

the mass and energy conservation. This means that a system composed by two phases has three

degrees of freedom. For instance, two of them define the state of phase 1 and the third one describes

the amount of phase 1 in the mixture.

In the pressure and temperature relaxation procedures, since no mass transfer takes place, the

amount of one phase in the mixture remains unchanged, hence, the degrees of freedom reduce to

two. Referring to Eq. (6.19), formally, we can state that for the three relaxation procedures:

qpres., qtemp. = 2, qchemical = 3. (6.21)

The vector of independent variables for the pressure and temperature relaxations will be:

y = [ρ1, e1]T so that it will be quite easy to calculate the phasic pressures as pk = p(ρk, ek), that

is the same form of EoS required for the convective step (see Eq. (6.6)). Instead, for the chemical

relaxation step, the independent variables are: y= [m1,ρ1, e1]T .

During the relaxation step, the mixture density ρ and internal energy e do not change since each

mesh cell can be considered as a closed thermodynamic system. Thus it is possible to express the

magnitudes of phase 2 as dependent parameters of the magnitudes of phase 1 and of the mixture,

that is

α2 = 1− m1

ρ1
, ρ2 = ρ1

ρ−m1

ρ1 −m1
, e2 = ρe−m1e1

ρ−m1
. (6.22)

These definitions come, respectively, from the mixture saturation condition (6.3) and the mixture

mass and energy invariance during the mass relaxation procedure.

In the following we describe the relaxation procedures starting from the fastest one, the pressure

relaxation, then we discuss the thermal and chemical relaxations that may provoke a significant

energy transfer between the phases.

Before proceeding, let us clarify some physical considerations that stand behind our modeling

choices. The heat exchange, in nature, occurs in two ways: sensible heat (conduction, convection and

radiation) and latent heat. Hence the power per unit volume exchanged between the phases, for

instance from phase 1 to phase 2, can be split as

qV
1→2 = qV

1→2,sens. + qV
1→2,latent. (6.23)

The first provokes a temperature change of both phases, leading them towards an equilibrium

temperature. The second is the energy released or absorbed during a mass transfer. An important
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physical constraint is

qV
1→2,sens. × qV

1→2,latent ≥ 0. (6.24)

Which means that if the sensible heat transfer occurs from phase 1 to phase 2, that is T1 > T2, the

latent heat must be transfered in the same direction, that is g1 > g2.

For the thermo-chemical modeling, in the literature, we can find two different approaches. The

first is to consider that the heat exchanged is mainly the latent one, neglecting the sensible heat

transfer. As a result the mass and energy transfers are intimately correlated. Of this kind, we may

mention [24, 225, 252]. The second is to separate, into two different relaxation procedures, the two

phenomena. This is usually done forcing an instantaneous thermal equilibrium, then, during the

chemical relaxation procedure, the phase evolve at the same temperature. For instance, the works

of [64, 200, 233, 283] are of this kind.

When considering non-instantaneous relaxation processes, at the end of the thermal relaxation

step, the phasic temperatures may still be different, therefore the mass transfer can take place

between phases in thermal disequilibrium. We think that our procedure is physically consistent and

is a more general approach than the two kinds of modeling mentioned above. In fact, on the one hand,

sensible heat transfer occurs, hence it needs to be included as source term of system (6.1), however,

it does not take place instantaneously. This physical process is taken into account in Section 6.4.2,

and is called in the following as temperature relaxation process. On the other hand, it is adherent

to the physics to consider that when phase transfer occurs, a temperature disequilibrium exists

between the phases. This process is described in Section 6.4.3, and is called in the following as mass

transfer or chemical relaxation process.

6.4.1 Pressure relaxation

At the end of the convection step, vapor and liquid evolve at different pressures. At the interface, the

two phases exert a force that is proportional to the interface pressure, hence, a positive resultant

force is applied to the lower pressure phase by the higher pressure phase. This force makes the

system to tend towards the pressure equilibrium condition. However, as far as the equilibrium

condition is not achieved, the phase at higher pressure makes a positive work since it expands its

volume. A work exchange between the phases means that the phasic internal energies change.

This procedure is devoted to the modeling of this process in order to quantify the phasic internal

energies changes, and as a result, the void fraction change. To this end, we consider each mesh cell

as an isolated thermodynamic system (no-exchange of mass and energy with the outside world),

composed by two subsystems that can be considered as closed thermodynamic systems (no-exchange

of mass between them). Evidently, these subsystems delimit the liquid and the vapor. The first law

of thermodynamics for closed systems can be written for each phase. For phase 1:

Φth,2→1 −W1→2 = d
dt

(ρ1e1V1). (6.25)

Here we use the typical convention of positive heat when it is provided from the outside world to the

system, and positive work when it is done by the system to the outside.
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The heat transfer will be taken into account in the next relaxation process, hence: Φth,2→1 = 0.

Considering that Vk =αkV , the first law reads:

− pintV
dα1

dt
= d

dt
(ρ1e1V1). (6.26)

As concerns the void fraction time derivative, using basic rules of calculus, it can be rewritten as

dα1

dt
= 1
ρ1

[
dm1

dt
−α1

dρ1

dt

]
. (6.27)

During this relaxation, no mass transfer occurs, therefore m1 stays constant. Using this information

and Eq. (6.27), the first principle for the phase 1 is:

de1

dt
= pint

ρ2
1

dρ1

dt
. (6.28)

An analogous relation can be found for phase 2.

Now we need to provide a relation for the modeling of the temporal rate of change of one of the

variables. A reasonable choice, already employed in the literature, is to consider that the volume

fractions vary proportionally to the pressure difference between the phases, that is

dα1

dt
∝ (p1 − p2). (6.29)

In fact, the pressure difference is the main driver of this relaxation process, hence, it is a realistic

hypothesis. As stated before, we prefer to adopt ρ1 and e1 as independent variables because we want

to be able to calculate the phasic pressures as pk = p(ρk, ek). Eqs. (6.27) and (6.29) define the rate of

change of ρ1, instead, (6.28) defines the one of e1. For such a case, system (6.19) takes the form: 1 0

− pint
ρ2

1
1

 d
dt

ρ1

e1

=
− ρ1

α1

p1−p2
Θp

0

 , (6.30)

where Θp > 0 is the characteristic time of the pressure relaxation process and is, generally, rather

small. If we cast system (6.30) in the canonical form (see Eq. (6.20)), it reads
dρ1
dt =− ρ1

α1

p1−p2
Θp ,

de1
dt =− pint

m1

p1−p2
Θp .

(6.31)

Given that the pressure relaxation process is rather fast, another modeling choice can be made,

alternatively to Eq. (6.29). We propose this new method because it guarantees better computational

features, that is, the possibility to employ a semi-analitycal numerical procedure. We suppose that

the pressure disequilibrium follows an exponential decrease in time:

d(p1 − p2)
dt

=− p1 − p2

Θp . (6.32)

The analytical solution of (6.32), for Θp 6=Θp(t, pk), is

(p1 − p2)(t)= (p1 − p2)t=0 e−t/Θp
. (6.33)
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that is always positive. This choice allows us to construct numerical schemes that are more physically

consistent avoiding that the pressure disequilibrium may change its sign (for Θp > 0).

Let us construct a dynamical system as (6.30), built having in (6.32) its driver towards the

equilibrium. Using the caloric EoS: ek = ek(pk,ρk), the time derivative of the specific internal energy

is
dek

dt
=

(
∂ek

∂pk

)
ρk

dpk

dt
+

(
∂ek

∂ρk

)
pk

dρk

dt
. (6.34)

Solving for dpk
dt :

dpk

dt
= ρkΓk

[
dek

dt
−

(
∂ek

∂ρk

)
pk

dρk

dt

]
, (6.35)

As derived in Eq. (6.28), dek
dt = pint

ρ2
k

dρk
dt , hence

dpk

dt
= ρkΓk

[
pint

ρ2
k

−
(
∂ek

∂ρk

)
pk

]
dρk

dt
. (6.36)

In order to obtain a relation for the time-evolution of ρ1, we need to express a dependency relation

between dρ1
dt and dρ2

dt . To this end, one should use the constraint of the mass conservation for the

mixture. Considering that ρ =α1ρ1 +α2ρ2 and that dρ
dt = 0, one obtains

dρ2

dt
=−ρ1 −ρ2

α2ρ1

dm1

dt
− α1ρ2

α2ρ1

dρ1

dt
, (6.37)

however, for the pressure relaxation step, m1 stays constant. Plugging (6.36) and (6.37) into (6.32),

and rearranging, one obtains:

a
dρ1

dt
=− p1 − p2

Θp . (6.38)

where

a = ρ1Γ1

[
pint

ρ2
1

−
(
∂e1

∂ρ1

)
p1

]
+ρ2Γ2

α1ρ2

α2ρ1

[
pint

ρ2
2

−
(
∂e2

∂ρ2

)
p2

]
. (6.39)

a is a bounded function for α2 > 0 however its sign may depend on the choice of pint.

We can rewrite the ODE system as: a 0

− pint
ρ2

1
1

 d
dt

ρ1

e1

=
− p1−p2

Θp

0

 , (6.40)

that, in the canonical form becomes 
dρ1
dt =− 1

a
p1−p2
Θp ,

de1
dt =− pint

aρ2
1

p1−p2
Θp .

(6.41)

This ODE system is the one that will be employed in our numerical scheme. For a sufficiently small

Θp, at the end of the pressure relaxation process, the two phasic pressures would be very close each

other. For instance, for Θp =∆tconv/9, the final pressure disequilibrium is around the 0.01% of the

initial one. As a result, after the pressure relaxation procedure, phases may be considered roughly

in pressure equilibrium for Θp <∆tconv/9.

For the analysis of the irreversibility of the pressure relaxation see 6.11.1.
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6.4.2 Temperature relaxation

At the end of the pressure relaxation step, the phases are roughly at same pressure but at a different

temperature. During this step, the phasic temperatures tend towards an equilibrium temperature

for the mixture. Similarly to the approach of the previous section, the mesh cell is considered as an

isolated thermodynamic system composed of two closed subsystems that identify each of the two

phases.

For phase 1, the first law is again the one reported in Eq. (6.25). However the heat flux is not

anymore zero, but equal to

Φth,2→1 = hA int(T2 −T1). (6.42)

Here we consider that the sensible heat is mainly due to convection. h is the heat transfer coefficient

expressed in W/m2 ·K and A int is the interface area expressed in m2 and flow pattern dependent.

This dependency is taken into account just at the beginning of the temperature relaxation step and

then A int is not supposed to vary during the process.

The first principle for phase k is

dek

dt
= hA int

mkV
(T j −Tk)+ pint

ρ2
k

dρk

dt
. (6.43)

Since the pressure equilibrium is almost achieved at the end of the previous relaxation step, we

impose the dynamical pressure equilibrium

dp1

dt
= dp2

dt
. (6.44)

It does not mean that we impose p1(t) = p2(t) = p(t), rather that the pressure difference between

phases does not change during the heat transfer process. Using Eq. (6.35), this condition becomes

ρ1Γ1

{
hA int

m1V
(T2 −T1)+

[
pint

ρ2
1

−
(
∂e1

∂ρ1

)
p1

]
dρ1

dt

}
= ρ2Γ2

{
hA int

m2V
(T1 −T2)+

[
pint

ρ2
2

−
(
∂e2

∂ρ2

)
p2

]
dρ2

dt

}
.

(6.45)

Phasic densities can be correlated by (6.37) and this, finally, provides the temporal evolution equation

of ρ1:

a
dρ1

dt
=−hA int

V
(T2 −T1)

(
Γ1

α1
+ Γ2

α2

)
. (6.46)

where a is the one defined in (??). For such a case, we can write the ODE system: a 0

− pint
ρ2

1
1

 d
dt

ρ1

e1

=
− hA int

V (T2 −T1)
(
Γ1
α1

+ Γ2
α2

)
hA int
m1V (T2 −T1)

 , (6.47)

which, in the canonical form becomes
dρ1
dt =− hA int

V (T2 −T1) 1
a

(
Γ1
α1

+ Γ2
α2

)
,

de1
dt =− hA int

V (T2 −T1)
[

pint
aρ2

1

(
Γ1
α1

+ Γ2
α2

)
− 1

m1

]
.

(6.48)

hA int/V is assigned or calculated at the beginning of this relaxation procedure and is assumed to

not change during this process. In order to close the system, we need to provide the phasic EoS

pk = pk(ρk, ek), Tk = Tk(ρk, ek) (or alternatively, Tk = Tk(ρk, pk)) and the values of ck and Γk.
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We can see that system (6.48) does not need any characteristic time for this process since it is

intrinsically defined, somehow, by hA int/V and the other thermodynamic properties.

For the analysis of the irreversibility of the temperature relaxation see 6.11.2.

In the case of a quasi-instantaneous temperature relaxation with a general EoS, instead of

arbitrarily increasing the morphological term hA int/V , one can employ the semi-analytic procedure

proposed in 6.10.1. It will give rise to a much more robust numerical scheme.

6.4.3 Mass transfer

This procedure allows the mass transfer for both condensation and evaporation events. In the

following, we assume that the mass transfer occurs from phase 1, the giver, to phase 2, the taker.

This means that, in terms of chemical potentials, g1 > g2. In an evaporation process, phase 1 is the

liquid and phase 2 is the vapor, for a condensation process, it is the opposite.

An important assumption is to neglect the exchange of specific kinetic and potential energies

since phases move at the same velocity at the same vertical level, therefore, a portion of mass,

when passing from phase 1 to phase 2, does not change its specific kinetic energy. If the same mass

transfer technique is adopted for the 7-equation model [12], or for any other model with velocity

disequilibrium, this exchange should be taken into account.

The heat transfer has been already taken into account in the previous relaxation process, thus

Φth,2→1 = 0. The mass conservation law for the open system defined by the phase 1 is

dM1

dt
=V

dm1

dt
=−G1→2 A int. (6.49)

The mass conservation law for the open system of phase 2 is

dM2

dt
=V

dm2

dt
=+G1→2 A int. (6.50)

Obviously, due to the global mass conservation of the closed system represented by phase 1 and 2

together:
dm1

dt
=−dm2

dt
. (6.51)

The mixture energy conservation provides a relation between the specific energies time derivatives :

de2

dt
=− e1 − e2

m2

dm1

dt
− m1

m2

de1

dt
. (6.52)

Similarly to what done in Section 6.4.2, in the following we impose the pressure equilibrium by

forcing condition (6.44). Thanks to Eqs. (6.37) and (6.52) we can express the dependency relation

between dρ1
dt , dρ2

dt , and de1
dt , de2

dt , Eq. (6.44) is equivalent to

i p
dm1

dt
+ jp

dρ1

dt
+kp

de1

dt
= 0, (6.53)

where

i p = ρ2Γ2
e1 − e2

m2
+

(
∂p2

∂ρ2

)
e2

ρ1 −ρ2

α2ρ1
,

jp =
(
∂p1

∂ρ1

)
e1

+
(
∂p2

∂ρ2

)
e2

α1ρ2

α2ρ1
,

kp = ρ1Γ1 +ρ2Γ2
m1

m2
.

(6.54)
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Since the mass transfer process occurs after the temperature relaxation step, the temperature

difference between the phases stays constant, which means:

dT1

dt
= dT2

dt
. (6.55)

By considering ek = ek(Tk,ρk), its time derivative is:

dek

dt
= Cv,k

dTk

dt
+

(
∂ek

∂ρk

)
Tk

dρk

dt
. (6.56)

Solving for dTk
dt :

dTk

dt
= 1

Cv,k

[
dek

dt
−

(
∂ek

∂ρk

)
Tk

dρk

dt

]
. (6.57)

Imposing that the temperature difference stays constant, one obtains

iT
dm1

dt
+ jT

dρ1

dt
+kT

de1

dt
= 0, (6.58)

where

iT = 1
Cv,2

e1 − e2

m2
+

(
∂T2

∂ρ2

)
e2

ρ1 −ρ2

α2ρ1
,

jT =
(
∂T1

∂ρ1

)
e1

+
(
∂T2

∂ρ2

)
e2

α1ρ2

α2ρ1
,

kT = 1
Cv,1

+ 1
Cv,2

m1

m2
.

(6.59)

For a general closure law for the mass transfer, system (6.19) takes the form:
1 0 0

i p jp kp

iT jT kT

 d
dt


m1

ρ1

e1

=


−G1→2

A int
V

0

0

 (6.60)

where matrix Am(y) gives the dependency of the independent variables: m1,ρ1, e1 for any closure

law for the mass transfer. Conversely, the right hand side depends exclusively from this closure law.

The inverse matrix is:

A−1
m =


1 0 0

i pkT−kp iT
kp jT− jpkT

−kT
kp jT− jpkT

kp
kp jT− jpkT

jp iT−i p jT
kp jT− jpkT

jT
kp jT− jpkT

− jp
kp jT− jpkT

 , (6.61)

hence, the canonical form for the ODE system is
dm1
dt =−G1→2

A int
V ,

dρ1
dt =−G1→2

A int
V

i pkT−kp iT
kp jT− jpkT

,
de1
dt =−G1→2

A int
V

jp iT−i p jT
kp jT− jpkT

.

(6.62)

This system describes the temporal evolution of ρ1 and e1 that complies with: (i) the mixture

mass conservation, (ii) the mixture energy conservation, (iii) the pressure equilibrium, and, (iv) the
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phasic temperature difference invariance, for a given mass transfer term that defines the temporal

evolution of m1. Thus, to close the system, a closure law for the mass transfer term G1→2 A int is

needed.

In the context of the non-equilibrium two-phase flow, various closure laws have been formulated

to describe the mass transfer process. For instance nucleation models (see [208, 214]), statistical

mechanics theory (see [275–277]), or simpler relaxation models. However, an important physical

feature to be respected is that: the deeper the metastability reached, the higher is the probability

for the phase change to occur. For instance it can be taken into account by considering the mass

transfer rate to be somewhat proportional to the chemical disequilibrium:

dm1

dt
=− g1 − g2

Θg
A int

V
, Θg > 0, (6.63)

where the parameter Θg is the characteristic relaxation time towards the chemical equilibrium of

the mixture. Another way is to use the mass relaxation law of Bilicki and co-workers [28, 29, 84]:

dm1

dt
=−m1 −m1,eq

Θg , Θg > 0 (6.64)

that is, the partial masses (or, equivalently, the mass fractions) relax exponentially towards the

equilibrium condition defined by m1,eq. In [28, 29, 84] the authors provided also some closure laws

for Θg however they are intended just for flashing flows.

For the analysis of the irreversibility of the mass transfer process see 6.11.3.

In the case of a quasi-instantaneous Gibbs free enthalpy relaxation with a general EoS, the

semi-analytic procedure proposed in 6.10.2 guarantees a greater numerical robustness than (6.62).

6.5 Numerical solution methods

Considering the contribution of the relaxation sources, the six-equation model becomes a system of

six PDEs with source terms:

∂tα1 +u ·∇α1 = α1
aρ1Θp (p1 − p2)+ α1

aρ1

hA int
V (T1 −T2)− 1

ρ1

(
1−α1

i pkT−kp iT
kp jT− jpkT

)
G1→2

A int
V ,

∂t(α1ρ1)+∇(α1ρ1u)=−G1→2
A int
V ,

∂t(α2ρ2)+∇(α2ρ2u)=+G1→2
A int
V ,

∂t(ρu)+∇(ρu⊗u+α1 p1 +α2 p2)= 0,

∂t(α1ρ1E1)+∇[α1(ρ1E1 + p1)u]+Σ=−α1 pint
aρ1Θp (p1 − p2)+bT

hA int
V (T1 −T2)−bgG1→2

A int
V

∂t(α2ρ2E2)+∇[α2(ρ2E2 + p2)u]−Σ=+α1 pint
aρ1Θp (p1 − p2)−bT

hA int
V (T1 −T2)+bgG1→2

A int
V

(6.65)

where bT =α1ρ1

[
pint
aρ2

1

(
Γ1
α1

+ Γ2
α2

)
− 1

α1ρ1

]
and bg =α1ρ1

jp iT−i p jT
kp jT− jpkT

.

In this section, we discuss the numerical methods used for solving system (6.65). The solution is

obtained by a succession of operators [256] of first order,

Un+1
i = L∆t

source L∆t
hyp Un

i (6.66)
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or second order

Un+1
i = L∆t/2

source L∆t
hyp L∆t/2

source Un
i , (6.67)

where Lhyp and Lsource denote, respectively, the hyperbolic and the source operator. The latter

is composed by three operators: Lp, LT , Lg that are, respectively, the operators for pressure,

temperature and chemical potential relaxation procedures. Considering for simplicity the first order

operator splitting, at the end of the hyperbolic operator the state vector is Un+ = L∆t
hypUn, that is

used as initial value for the pressure relaxation operator at the end of which the state variable

is Un+,p = L∆t
p Un+. This is used as initial value for the temperature relaxation and the result will

be Un+,pT = L∆t
T Un+,p, which, in turn, is the initial value for the mass transfer procedure, giving,

finally: Un+,pT g = L∆t
g Un+,pT .

6.5.1 Hyperbolic operator

The application of the hyperbolic operator to Un will give an intermediate state

Un+ = L∆t
hypUn, (6.68)

which is used in the subsequent step as initial value for the integration of the pressure relaxation

terms. For simplicity we describe the solver for the 1D system. In the so-called wave propagation

form of [168], the second-order numerical scheme for the hyperbolic operator has the following form:

Un+
i =Un

i −
∆t
∆z

(A +∆Ui− 1
2
+A −∆Ui+ 1

2
)+ ∆t
∆z

(F2nd
i− 1

2
−F2nd

i+ 1
2
). (6.69)

Here A ±∆Ui+ 1
2

are the so-called fluctuations at the interface zi+ 1
2

between cells i and i+1. Namely,

A +∆Ui+ 1
2

is the right-going fluctuation, A −∆Ui+ 1
2

is the left-going one. Following [168], the fluc-

tuations can be calculated in terms of the wave solution structure of local Riemann problems at

interfaces zi+ 1
2

as:

A +∆Ui− 1
2
=

M∑
m=1

sm+
i− 1

2
W m

i− 1
2
, A −∆Ui+ 1

2
=

M∑
m=1

sm−
i+ 1

2
W m

i+ 1
2
. (6.70)

where s+ =max(s,0) and s− =min(s,0), and where W m and sm , m = 1, . . . , M, indicate the waves and

speeds, respectively, representing the Riemann solution structure for initial data pairs (Ui,Ui+1). An

approximate Riemann solver is needed to compute these quantities. Here we will consider Riemann

solvers composed of M = 3 waves. This well represents the wave pattern of system (6.1), which is

composed of three waves as the single-phase Euler equations.

The second-order accuracy of the hyperbolic operator is achieved thanks to the second-order

correction fluxes:

F2nd
i+ 1

2
= 1

2

M∑
m=1

|sm
i+ 1

2
|
(
1− ∆t

∆z
|sm

i+ 1
2
|
)
W

m,2nd
i+ 1

2
(6.71)

where W
m,2nd

i+ 1
2

are a modified version of W m
i+ 1

2
obtained by applying a limiter function (cf. [168]).

To calculate the fluctuations we have adopted the approximate solver proposed in [200] for

system (6.1). This solver does not discretize the nonconservative terms Σ(U,∂zU) in the phasic total

energy equations. This choice has been analyzed and discussed in [80], where we conclude that,
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except for very strong shocks in the two-phase mixture, these nonconservative terms do not affect

the numerical results when the pressure relaxation operator is activated.

Except for the first equation, which describes the advection of α1, the system is now in a

conservative form. In such a case, the interfacial fluctuations of Eq. (6.69) may be defined as:

A +∆Ui− 1
2
=Fi −FHLLC

i− 1
2

, A −∆Ui+ 1
2
=FHLLC

i+ 1
2

−Fi. (6.72)

The terms FHLLC
i± 1

2
have been defined applying the idea of the HLLC solver of Toro et al. [265]

and consists in applying the standard HLLC method to the conservative portion of the system plus

the advection equation for α1. The resulting solver consists of three waves W i, i = 1,2,3, moving at

speeds

s1 = S` , s2 = S∗ , s3 = Sr, (6.73)

that separate four constant states U`, U∗
`
, U∗

r and Ur. Here we indicate with subscripts ∗`, ∗r

quantities corresponding to the states U∗
`

and U∗
r adjacent (respectively on the left and on the right)

to the middle wave propagating at speed S∗. Following Davis [72] we define

S` =min(u`− c`,ur − cr), Sr =max(u`+ c`,ur + cr). (6.74)

The speed S∗ is then determined as in [264]:

S∗ = u∗ = pr − p`+ρ`u`(S`−u`)−ρrur(Sr −ur)
ρ`(S`−u`)−ρr(Sr −ur)

. (6.75)

The left and right sound speeds c` and cr correspond to the sound speed of the homogeneous six-

equation model chom in (6.5). Note that although nonconservative terms are neglected in this simple

HLLC solver in the definition of the waves for the phasic total energies, the speed of sound used in the

definition of the speeds of the waves is the one of the model that does include nonconservative terms.

The middle states U∗
`
, U∗

r have been defined in [200] so as to satisfy the following Rankine–Hugoniot

conditions, based on the conservative portion of the system:

F (ζ)(Ur)−F (ζ)(U∗
r )= Sr(U(ζ)

r −U∗(ζ)
r ),

F (ζ)(U∗
` )−F (ζ)(U`)= S`(U∗(ζ)

`
−U(ζ)

`
),

F (ζ)(U∗
r )−F (ζ)(U∗

` )= S∗(U∗(ζ)
r −U∗(ζ)

`
),

(6.76)

ζ= 2, . . . ,6. Then, the middle states are obtained as

U∗ι =



α1,ι

(α1ρ1)ι
Sι−uι

Sι−S∗

(α2ρ2)ι
Sι−uι

Sι−S∗

ρι
Sι−uι

Sι−S∗ S∗

(α1ρ1)ι
Sι−uι

Sι−S∗

(
E1,ι+ (S∗−uι)

(
S∗+ p1,ι

ρ1,ι(Sι−uι)

))
(α2ρ2)ι

Sι−uι

Sι−S∗

(
E2,ι+ (S∗−uι)

(
S∗+ p2,ι

ρ2,ι(Sι−uι)

))


, (6.77)

ι= `, r. The waves for this simple HLLC-type solver are

W 1 =U∗
` −U`, W 2 =U∗

r −U∗
` , W 3 =Ur −U∗

r . (6.78)
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6.5.2 Relaxation operators

The relaxation operators are essentially represented by the three systems of ODEs reported in

Eqs. (6.41), (6.48), (6.62). They can be solved by both implicit and explicit ODE solvers. Generally

speaking, the implicit ODE solvers are more robust due to their larger A-stable domain however

their are much more expensive than the explicit schemes since a nonlinear system must be solved at

each time step. Especially when dealing with time consuming EoS, the computational cost of this

kind of ODE solvers could be too high. Further due to the so-called Dahlquist barrier, the A-stability

is lost for an implicit scheme with accuracy order higher than 2 (unless using coupled methods).

For this work, ODE solvers with this order of accuracy have proven to not be adequate. For

instance, we have tested implicit low-accuracy ODE solvers (backward Euler and Crank-Nicolson

solvers) for the temperature relaxation, and we observed that the pressure equilibrium between

the phases is often violated. This means that the heat exchange does not occur anymore at the

mechanical equilibrium as imposed by Eq. (6.44). Analogously, using implicit low-accuracy ODE

solvers for the mass transfer procedure, the thermal and the mechanical equilibrium are often

violated as well. These provoked the appearance of some oscillations in our 1-D shock-tube tests.

For the calculations made in this article we mainly used high order explicit Runge-Kutta (RK)

methods with adaptive stepsize. The order of accuracy of the RK algorithms tested spanned from 3 to

8. However the most used one was the so-called RK45, i.e. the algorithm proposed by Fehlberg [108],

that is, a method of forth order with an error estimator of fifth order for the calculation of the

variable time step. The drawback of this explicit method is the loss of stability for stiff problems.

The stiffness of our ODE systems depends on the values of some parameters: Θp for the pressure

relaxation, hA int/V for the temperature relaxation and Θg for the mass transfer process. For very

low values of Θp,Θg and for very high values of hA int/V , the ODE systems may become stiff.

The pressure relaxation procedure is often stiff since we aim to approximate unique-pressure

flows. This may cause unphysical behaviors as the phasic pressures intersections.

On the other hand, as we have already mentioned, using time consuming EoS, it would be

too expensive to employ implicit methods for stiff ODEs. Hence we needed to assume that the

pressure disequilibrium follows an exponential decrease in time as shown in (6.32). The latter has

an analytical solution, reported in (6.33), that can be used for computational purposes designing

a semi-analytical algorithm. The canonical form of the pressure relaxation ODE system can be

rewritten as 
dρ1
dt =− 1

aΘp (p1 − p2)hyp e−t/Θp
,

de1
dt =− pint

aρ2
1Θ

p (p1 − p2)hyp e−t/Θp
.

(6.79)

Here (p1 − p2)hyp is the pressure disequilibrium at the end of the hyperbolic step. This choice has

been very beneficial allowing to construct a very robust pressure relaxation scheme, preventing the

intersection of phasic pressures.

Similarly, if one is interested in quasi-instantaneous thermal and chemical relaxations, but

wants to continue using an explicit ODE solver, we suggest to use the semi-analytic procedures

proposed in 6.10.1 and 6.10.2.
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FIGURE 6.3. Time evolution of properties during the pressure relaxation step. On the
left, ρl , e l , αl , on the right phasic pressures, temperatures and free enthalpies. The
initial conditions are: liquid water at 9 MPa and the vapor water at 7 MPa, both
close to their respective saturation temperatures. Both the stiffened gas and the
IAPWS-IF97 EoS are considered and their trends are qualitatively similar. For this
case Θp = 10−3 s.

6.6 Equilibrium recovery test

The relaxation procedures proposed in this paper aim to drive the liquid-vapor mixture from a

disequilibrium state towards the equilibrium state (with an arbitrary rapidity). The disequilibrium

state is the one provided by the hyperbolic operator, then, the relaxations are applied cell by cell. In

this section we verify that the proposed procedures are able to recover the correct equilibrium state.

Moreover, we compare results for an accurate EoS and a very simple one, showing the advantage of

working with costly but accurate EoS.

Let us take a disequilibrium mixture of liquid and vapor water, at rest. The liquid is at pl =
9 MPa and Tl = Tsat(pl)−1K ≈ 575.50K , thus, in subcooled conditions. The vapor is at pv = 7 MPa

and Tv = Tsat(pv)+ 1K ≈ 559.98K , hence in superheated conditions. The mixture is composed

by 10% in mass of vapor. If the mixture had been in a full thermodynamic equilibrium, then:

pl = pv = peq ≈ 8.29 MPa, Tl = Tv = Tsat(peq) ≈ 570.69K , gl = gv = gsat(peq) ≈−513.32kJ/kg and

the vapor quantity would be 12.4%.

Now, starting from this disequilibrium state, we want to recover the equilibrium one solving in

succession the three systems of ODEs reported in Eqs. (6.41), (6.48), (6.62). Here we have chosen as

mass transfer driver the chemical potential disequilibrium as reported in Eq. (6.63).

The results of the three relaxations processes are presented in Fig. 6.3, 6.4, 6.5. In the first,

phasic pressures converge to an equilibrium value that is rather close to the initial vapor pressure.

This is obvious given that a small increase of the volume occupied by the liquid makes its pressure to

reduce dramatically. In fact the liquid has a much more stiff behavior than the vapor. The pressure

disequilibrium decays exponentially as imposed by (6.32). During this transient the thermal and
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FIGURE 6.4. Time evolution of properties during the temperature relaxation step. On
the left, ρl , e l , αl , on the right phasic pressures, temperatures and free enthalpies.
The initial conditions correspond to the final conditions of the previous case (see
Fig. 6.3). For this case we consider hA int/V = 108 W/(m3 K), which is not a realistic
value, however it has been chosen to show that phasic temperatures converge, while
the phasic pressure maintain their small discrepancy.
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FIGURE 6.5. Time evolution of properties during the chemical relaxation step. On the left,
ρl , e l , αl , on the right phasic pressures, temperatures and free enthalpies. The initial
conditions correspond to the final conditions of the previous case (see Fig. 6.4). For
this case we consider A int/V = 1 m−1 and Θg = 7m4/(kg s).
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FIGURE 6.6. Evolution on the T−v of liquid (on the left) and vapor (on the right), described
by the IAPWS-IF97, for the equilibrium recovery test (cf. Section 6.6).

chemical disequilibrium stay almost unchanged. It is remarkable how the stiffened gas EoS is

able to well represent the water behavior. However, this was expected due to the fact that in the

phase space, the SG-EoS and IAPWS-IF97 had similar trends (see Fig. 6.14). The parameter for the

stiffened gas EoS have been calculated as in [129].

Then the mixture undergoes a sensible heat transfer process to equilibrate their phasic tempera-

tures. For this case we consider hA int/V = 108 W/(m3 K), which is not a realistic value, but it has

been chosen to make phases to converge towards an equilibrium temperature. During this process,

the pressure difference stays constant as enforced in Eq. (6.44). Let us notice that notwithstanding

with the effort to calculate reliable SG coefficients, the two EoS converge to a different equilibrium

state: the discrepancy is roughly of 2bar and 2K . The reasons are essentially two: the SG coefficients

are constant, but even more important, the behavior in the phase space is different (see Fig. 6.15)

given the different trends of the EoS derivatives. Note that the phasic free enthalpies intersect

during this relaxation process and this is not an unphysical behavior. In fact, being almost at the

same pressure and temperature, phases may have very similar phasic free enthalpies. Unphysical

would be that the liquid phase has a higher temperature but a lower free enthalpy than the vapor,

violating the condition in (6.24). Another unphysical phenomenon would be the intersection of

the phasic free enthalpies during the mass transfer process that would violate the second law of

thermodynamics.

Finally, the mixture at pressure and temperature equilibrium undergoes a mass transfer process

that will establish the chemical equilibrium. This process is driven by Eq. (6.63) and takes place with

mechanical and thermal equilibrium as guaranteed by Eqs. (6.44) and (6.55). Due to the different

behavior of the thermodynamic derivatives, the dynamical behavior of the two considered EoS is also

affected. First, this is visible by the fact that the same value of the characteristic time Θg produces

different time evolutions. Namely, the SG-EoS is much faster than the IAPWS-IF97 in recovering

the full equilibrium. Secondly, the two EoS converge to different equilibrium states (the discrepancy

is around 2bar and 4K).

At the end, the IAPWS-IF97 has reached the correct equilibrium condition whereas the SG-EoS
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has not. The paths followed by the phases described by the IAPSW-IF97 onto the T −v diagram are

reported in Fig. 6.6.

6.7 1-D numerical tests

We now present some numerical tests of Riemann problems in 1D geometry. The relaxation proce-

dures developed above and reported in Eqs. (6.41), (6.48), (6.62) are now coupled to the hyperbolic

operator described in Section 6.5.1 for two-phase flow calculations.

This section presents first some numerical tests involving fluids governed by the stiffened

gas EoS to show the consistency of our relaxation techniques with the instantaneous relaxation

procedures developed in [200]. Moreover, due to the simplicity of this EoS, for some tests we are able

to make a comparison with an exact solution. Then we tackle the challenging task of dealing with a

complex EoS: the already mentioned IAPWS-IF97. Some comparisons are done between the present

model and the classical homogeneous equilibrium model (HEM). The latter has also been integrated

in CLAWPACK and its EoS is handled by the look-up table technique presented in [79].

Unless specified, all the numerical results have been obtained with CFL = 0.8 on 1000 cell

meshes.
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FIGURE 6.7. Numerical results for the water cavitation test with initial velocity |u| =
0.2m/s. Initial parameters are reported in Eq. (6.80), toutput = 0.2 ms. Calculations
made with 1000 cells, second order HLLC-type scheme for the hyperbolic operator
and RK45 as ODE solver.
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FIGURE 6.8. Numerical results for the water cavitation test with initial velocity |u| = 2m/s.
Initial parameters are reported in Eq. (6.80), toutput = 0.32 ms. Calculations made
with 5000 cells, second order solver for the hyperbolic operator and RK45 as ODE
solver.

6.7.1 Water cavitation problem with the stiffened gas EoS

A velocity discontinuity is initially set at the middle of a pipe of 1 m length, the velocity value being

−|u| on the left side and +|u| on the right side. The fluid is a mixture of vapor and liquid water at

the same thermodynamic conditions in the entire pipe. Due do the initial velocity discontinuity,

two rarefaction waves generate moving leftwards and rightwards. They are symmetric given that

the absolute value of the initial velocity is equal on the two sides of the pipe. A trivial contact

discontinuity wave of zero speed appears as well in the center of the pipe.

Here we test two different strengths of the initial velocity discontinuity: a mild one with

|u| = 0.2m/s and a stronger one with |u| = 2m/s. The initial conditions are the same for both tests

and are:
ρv = 0.63kg/m3, ρl = 1150kg/m3, p = 105Pa, αv = 10−2, f or 0m ≤ z ≤ 0.5m,

ρv = 0.63kg/m3, ρl = 1150kg/m3, p = 105Pa, αv = 10−2, f or 0.5m ≤ z ≤ 1m.
(6.80)

For both tests, the fluid is described by the stiffened gas EoS. However, two different set of EoS

parameters are used. For the first test, they are reported in Tab. 6.1. For the second test, they are

reported in Tab. 6.2.
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TABLE 6.1. Parameters for the Stiffened Gas EoS for liquid and vapor water (first test in
Sec. 6.7.1) [234].

Phase γ π [Pa] η [J/kg]
liquid 4.4 6×108 0
vapor 1.4 0 0

TABLE 6.2. Parameters for the Stiffened Gas EoS for liquid and vapor water (second test
in Sec. 6.7.1) [200].

Phase γ π [Pa] η [J/kg] cv [J/(kg K)]
liquid 2.35 109 −1167×103 1816
vapor 1.43 0 +2030×103 1040

For the first test, the simulation results are reported in Fig. 6.7. They are compared to the exact

solutions of Kapila’s model and to the instantaneous relaxation procedures of [200]. In the pressure

plot we can see that as the characteristic time of the pressure relaxation decreases, the pressure

profile tends to the exact one of the Kapila’s model and to the one provided by the instantaneous

pressure relaxation technique of [200]. Further, the strength and the speed of the rarefaction waves

decrease for smaller Θp.

For the second test, the simulation results are reported in Fig. 6.8. Here we analyze the impact

of the temperature relaxation which follows a quasi-instantaneous pressure relaxation (Θp =∆t/10).

The parameter that controls the rapidity of the temperature relaxation process is hA int/V . When it

is small, the temperature relaxation is slow, hence the numerical results are close to the one of the

Kapila’s model. When it is large, the temperature relaxation is fast and we are able to reproduce the

numerical results obtained by the instantaneous pressure and temperature relaxation procedures

of [200]. In fact for hA int/V = 106 W/(m3 K) the results are practically indistinguishable with the

ones of [200].

6.7.2 Water cavitation test with the IAPWS-IF97 EoS

A 1 m length tube is filled by saturated water and steam at thermochemical equilibrium. The vapor

phase occupies a small part (1%) of the tube volume. The initial conditions arep = 10 MPa, Tk = Tsat(p), u =−5m/s, αv = 10−2, f or 0m ≤ z ≤ 0.5m,

p = 10 MPa, Tk = Tsat(p), u =+5m/s, αv = 10−2, f or 0.5m ≤ z ≤ 1m.
(6.81)

At time t = 0 a velocity discontinuity of |u| = 5m/s is set at the center of the tube and generates

two rarefaction waves. In Fig. 6.9 we show the effect of the different relaxation procedures. Here

the pressure and the temperature relaxations are quasi-instantaneous, i.e. we used Θp = ∆t/10

and hA int/V = 1011 W/(m3 K). The mass transfer is driven by the phasic Gibbs free enthalpy

difference as already mentioned in Eq. (6.63). As made visible by the plot of the phasic temperatures,

both temperatures decreases and an important thermal disequilibrium exists between the liquid

and the vapor. The liquid is metastable because its local pressure is lower than the saturation

pressure corresponding to its local temperature. The temperatures are then equilibrated by the
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FIGURE 6.9. toutput = 0.5 ms, 1000 cells, second order solver for the hyperbolic operator
and Runge-Kutta 4-5 as ODE solver.
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temperature relaxation procedure. However, a chemical disequilibrium exists between the phases

and the liquid has a higher Gibbs free enthalpy. Finally, the mass transfer procedure tends to reduce

the chemical disequilibrium increasing the quantity of vapor and the phasic Gibbs free enthalpies

are indistinguishable. From the vapor mass fraction plot we can see that the quantity of vapor at

the center of the tube is ten times larger than the initial amount.

As in the previous case, the strength and the speed of the waves vary according to the heat

and mass transfer occurring between the two phases. In particular, when a quasi-instantaneous

pressure relaxation is performed, the 6-equation model tends to the Kapila’s model therefore the

speed of sound of the model will be the one of Wood [279]. When a quasi-instantaneous temperature

relaxation is performed, our code behaves like a 4-equation model in which the only disequilibrium

between phases is the chemical one. Hence the speed of sound is even lower than the Wood’s one (see

Fig. 6.1). Finally, applying the mass transfer with different characteristic times Θg, the behavior

changes deeply. For a fast mass transfer, our code behaves as a HEM with a very low celerity [79].

As concerning the wave pattern, unless for the case in which the mass transfer is fast, it is quite

different to the typical one of a cavitation tube. For instance the two plateaux between the tails of

the rarefaction waves and the contact discontinuity do not exist anymore. They are restored when

the model tends to the HEM, i.e. for a very low Θg. For values lower than Θg = 10−2, the results do

not change anymore.

About the incidence of the source terms on the wave pattern and the possible lost of the constant

states one may refer to [21].

In Fig. 6.9 we present also a comparison between the 6eq. model with very fast relaxation

procedures and the classic HEM for the most sensible magnitude, i.e. the void fraction. The wave

amplitudes are the same, however, for the same mesh, CFL number and limiter, the HEM is much

less diffusive than the 6eq. model.

6.7.3 Evaporation-condensation shock tube test with the IAPWS-IF97 EoS

The tube is filled by saturated water and steam at thermochemical equilibrium. The initial conditions

are p = 10 MPa, Tk = Tsat(p), u = 0m/s, αv = 0.4, f or 0m ≤ z ≤ 0.5m,

p = 9 MPa, Tk = Tsat(p), u = 0m/s, αv = 0.6, f or 0.5m ≤ z ≤ 1m.
(6.82)

At time t = 0 a pressure discontinuity of 1 MPa is set at the center of the tube. This Riemann

problem generates a left-going rarefaction wave and right-going contact discontinuity and shock. In

Fig. 6.10 we show the effect of the different relaxation procedures. The pressure and temperature

relaxations are quasi-instantaneous, i.e. we used Θp = ∆t/10 and hA int/V = 1011 W/(m3 K). The

mass transfer is driven by the phasic Gibbs free enthalpy difference.

In the two plateaux adjacent the contact discontinuity, phases assume different temperatures

and the thermodynamic disequilibrium is of opposite kind. At the tail of the rarefaction wave, the

liquid is hotter than the vapor, meanwhile, in the post-shock plateau the vapor is hotter than the

liquid. Then the temperature relaxation procedure takes place and the phases reach the thermal

equilibrium, but, the chemical disequilibrium persists. At the tail of the rarefaction wave the liquid
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FIGURE 6.10. toutput = 1.6 ms, 1000 cells, second order solver for the hyperbolic operator
and Runge-Kutta 4-5 as ODE solver.
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has a higher Gibbs free enthalpy, therefore, it is going to evaporate thanks to the mass transfer

procedure. Conversely, in the post-shock plateau the vapor has a higher Gibbs free enthalpy, then a

condensation occurs.

According to the characteristic time of the chemical equilibrium recovery, the 1-D profiles change.

For values lower than Θg = 10−3, the results do not change anymore and, at the end of the relaxation

processes, the disequilibria between the phases are practically extinguished. When these processes

are fast, our code tends to the HEM as shown in Fig. 6.10. As for the previous case, the HEM is

much less diffusive than the 6eq. model, however, for the contact discontinuity wave, the two-models

are indistinguishable.

6.7.4 Evaporation shock tube test with the IAPWS-IF97 EoS

This shock tube test is to assess the capability of our code of dealing with quasi-vanishing phases

and to approximate shock waves. A 1 m length pipe is filled by a mixture of liquid and steam water

and a Riemann problem is located a 0.6 m. On the left the water is quasi-pure liquid (0.1% in volume

of vapor) and on the right it is quasi-pure vapor (0.1% in volume of liquid), therefore the location of

the Riemann problem is almost a liquid-vapor interface. The initial conditions arep = 10 MPa, Tk = Tsat(p), u = 0m/s, αv = 10−3, f or 0m ≤ z ≤ 0.6m,

p = 9 MPa, Tk = Tsat(p), u = 0m/s, αv = 1−10−3, f or 0.6m ≤ z ≤ 1m.
(6.83)

The Riemann problem generates a left-going rarefaction wave, a right going contact discontinuity

and a right going shock. In Fig. 6.11 we show the effect of the different relaxation procedures.

The pressure and temperature relaxations are quasi-instantaneous, i.e. we used Θp =∆t/10 and

hA int/V = 1011 W /(m3 K). The mass transfer is driven by the phasic Gibbs free enthalpy difference

according three different characteristic times.

On the left side of the contact discontinuity, in the post-rarefaction plateau, the liquid assumes a

temperature higher than the vapor phase. On the contrary, on the left side of the contact discontinuity,

in the post-shock plateau, the liquid has a lower temperature than the vapor phase. Thanks to the

temperature relaxation process, the two phases assume almost the same temperature (|Tl −Tv| <
10−3 K), however the liquid has a higher Gibbs free enthalpy therefore the mass transfer process

provokes its evaporation on both sides of the contact wave.

In the post-shock plateau the liquid is almost vanishing: its volume fraction has varied from

10−3 to 10−6. This is a very challenging condition for the relaxation procedures here proposed since

the problem becomes bad conditioned for vanishing phases (cf. 6.12). Nevertheless our explicit ODE

solver did not fail.

As in the previous case, the strength and the velocity of the waves are strongly affected by the

relaxation processes, especially the one related to the mass transfer. The rapidity of the Gibbs free

enthalpy relaxation deeply influences the wave pattern. The most impacted magnitudes are pressure

and velocity.

For a very fast chemical relaxation (Θg = 10−3), the highest relative difference in terms of Gibbs

free enthalpy is: |gl − gv|/(∑αk gk)< 10−5, k = l,v. For values lower than Θg = 10−3, the results do

not change anymore.
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FIGURE 6.11. toutput = 0.5 ms, 1000 cells, second order solver for the hyperbolic operator
and Runge-Kutta 4-5 as ODE solver.
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At the end of each time step, the two phases are almost at the full equilibrium in terms of

pressure, temperature and Gibbs free enthalpy, hence our code tends to a HEM. In Fig. 6.11 we

present also a comparison between the 6-eq. model with very fast relaxation procedures and the

classic HEM. This is done in a magnified plot of the void fraction profile. As seen in the previous

tests, the wave amplitudes are the same, however, the HEM is less diffusive than the 6-eq. model.

Nonetheless, for the contact discontinuity wave, the two-models are indistinguishable.
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FIGURE 6.12. Pressure field, 200x200 cells, second order solver for the hyperbolic operator
and Runge-Kutta 4-5 as ODE solver. The continuous red line represents the initial
contour of the vapor bubble and the dashed red line indicates the interface at the
displayed time.
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FIGURE 6.13. Chemical disequilibrium field, 200x200 cells, second order solver for the
hyperbolic operator and Runge-Kutta 4-5 as ODE solver. The continuous red line
represents the initial contour of the vapor bubble and the dashed red line indicates
the interface at the displayed time.

6.8 2-D numerical test

As 2-D numerical test we are going to consider the interaction of a pressure wave in a liquid with a

vapor bubble. In the industrial context, this test has many implications, for instance it can represent

a portion of a waterhammer. That is, the compression of a vapor pocket originated close to a valve

suddenly closed.

We consider a vapor bubble (αv = 0.999) contained in a two-phase media (αv = 0.01) that is

compressed by a liquid (αl = 0.999) at higher pressure. This scenario is representative of the
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compression of a two-phase slug pattern (see [43]) in which the slug is modeled as a vapor bubble

that is surrounded by a mixture containing liquid and vapor at thermal and chemical equilibrium.

In particular we are going to see the deformation of the vapor bubble and the propagation of the

thermodynamic disequilibrium induced by the shock.

The geometric domain is a square of 1 m side containing a bubble located in the center of the

domain (0,0) that has a radius of 0.25 m. The high pressure liquid is located on the left side and is

moving at 1 m/s towards the bubble.

At the vertical interface (x =−0.35 m) between the liquid at higher pressure (10 MPa) and the

mixture at lower pressure (8 MPa), the Riemann problem generates a right-going shock, a left-going

shock and a contact discontinuity. These waves are visible on the first row of Fig. 6.12 where the

pressure fields at t = 0.1 ms are reported. The shock is going to interact with the bubble, therefore,

is partially reflected at the bubble interface due to the sudden change of acoustic impedance Z = ρc

of the two media. The reflected wave is a rarefaction (see the second row of Fig. 6.12). Thus the shock

front propagates right-wards on the top and the bottom of the bubble, instead, the new rarefaction

wave spreads circularly towards the left of the bubble penetrating into the high pressure domain.

Let us focus now on the thermodynamic equilibrium between the phases, therefore, on Fig. 6.13.

At t = 0, everywhere the phases are in thermodynamic equilibrium. Then, due to shock and rarefac-

tion waves, those equilibria are lost and can be restored thanks to the relaxation procedures discuss

above.

We now analyze the contribution of the relaxation processes on the high pressure domain on the

left. This portion of the domain is crossed by two left-going rarefaction waves. The first is the one

originating at t = 0 at the Riemann problem interface (see the first row of Fig. 6.13), the second is

the result of the interaction of the right-going shock with the bubble surface (see the second row of

Fig. 6.13). Both rarefaction waves make the liquid phase to be metastable at a higher temperature

than vapor, however for the chemical disequilibrium, the liquid phase has a lower Gibbs free enthalpy

than vapor. Thanks to the temperature relaxation, this discordance, between the thermal and the

chemical disequilibrium, disappears. The phases are practically at the same temperature but the

liquid has now a higher Gibbs free enthalpy than vapor. This chemical disequilibrium is reduced by

the evaporation process guaranteed by the chemical relaxation.

Analyzing the right portion of the domain, the shock wave originating at t = 0 at the Riemann

problem interface, moves rightwards and makes the vapor to be metastable at a higher temperature

with respect to the liquid. But, in terms of the chemical disequilibrium, the vapor phase has a lower

Gibbs free enthalpy than liquid. The temperature relaxation makes the phasic temperature to be

almost equal and inverts the chemical disequilibrium. Thus, the vapor has a higher Gibbs free

enthalpy than liquid. A condensation process occurs and reduces the chemical disequilibrium.

6.9 Conclusions

We have presented and tested three innovative procedures for the relaxation of the thermodynamical

disequilibrium between two phases. This relaxation procedures are non-instantaneous but capable

to reproduce instantaneous relaxation calculations (see Fig. 6.7 and Fig. 6.8). When the relaxation
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processes between the phases are fast, this model can retrieve the classical HEM as shown in the 1D

test using the IAPWS-IF97 EoS. Further, this relaxation procedures can use arbitrary EoS, that is a

very important requirement in some particular industrial applications, for instance, nuclear safety.

The temperature and the mass transfer procedures contains explicitly the ratio A int/V that will

allow to adequate the strength of the transfer processes to the interface area of exchange. This

feature has not been too much investigated in this paper but it will be considered in our future

works.

The thermal and the chemical relaxations proposed in the core of the paper are not intended to

be used for quasi-instantaneous processes. In that case, we propose two semi-analytic procedures for

general EoS in 6.10. The latter have a greater numerical robustness when used in stiff contexts.

The perspectives of this work is to implement the complete model (6.65) in the EUROPLEXUS

fast dynamic code for the analysis of fast transients that concern the safety of nuclear power plants,

a domain in which the metastability of the phases plays a very important role. In order to use it for

industrial applications, model (6.65) will be coupled with the steam-water tables presented in [79],

that is, a look-up table technique with a globally continuous bicubic interpolating function.

6.10 Appendix 6.A: Semi-analytic relaxations

6.10.1 Appendix 6.A.1: Semi-analytic temperature relaxation

In case of a stiff temperature relaxation, a semi-analytic procedure may guarantee better numerical

properties than system (6.48). The idea of this semi-analytic temperature relaxation is the same

introduced in (6.32) for the phasic pressure relaxation. That is an exponential temporal decrease of

the disequilibrium. For the temperature relaxation process, it reads

d(T1 −T2)
dt

=−T1 −T2

ΘT . (6.84)

Its analytical solution, for ΘT 6=ΘT (t,Tk), is

(T1 −T2)(t)= (T1 −T2)t=0 e−t/ΘT
. (6.85)

Coupling this driver to the pressure equilibrium of Eq. (6.44), the mass and the energy conservation

laws, it comes out: 
dρ1
dt =−T1−T2

ΘT

(
jT − jp

kp
kT

)−1
,

de1
dt =+T1−T2

ΘT

(
jT − jp

kp
kT

)−1 jp
kp

,
(6.86)

where jp,kp, jT and kT are the one already expressed in (6.54) and (6.59). A robust numerical

method is based on the semi-analytic system:


dρ1
dt =− (T1−T2)t=0

ΘT e−t/ΘT
(
jT − jp

kp
kT

)−1
,

de1
dt =+ (T1−T2)t=0

ΘT e−t/ΘT
(
jT − jp

kp
kT

)−1 jp
kp

.
(6.87)
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6.10.2 Appendix 6.A.2: Semi-analytic Gibbs free enthalpy relaxation

In case of a Gibbs free enthalpy relaxation, a semi-analytic procedure may guarantee better numeri-

cal properties than system (6.62). The chemical disequilibrium is supposed to follow an exponential

temporal decrease, that is:
d(g1 − g2)

dt
=− g1 − g2

Θg . (6.88)

Its analytical solution, for Θg 6=Θg(t, gk), is similar to the one in (6.85) for the temperature dise-

quilibrium. Using the rules of partial derivative and the mass and the energy conservation laws,

Eq. (6.88) can be rewritten as

i2
dm1

dt
+ j2

dρ1

dt
+k2

de1

dt
=− g1 − g2

Θg , (6.89)

where

i g =
(
∂g2

∂e2

)
ρ2

e1 − e2

m2
+

(
∂g2

∂ρ2

)
e2

ρ1 −ρ2

α2ρ1
,

jg =
(
∂g1

∂ρ1

)
e1

+
(
∂g2

∂ρ2

)
e2

α1ρ2

α2ρ1
,

kg =
(
∂g1

∂e1

)
ρ1

+
(
∂g2

∂e2

)
ρ2

m1

m2
.

(6.90)

Coupling this driver to the pressure and temperature equilibria, as done in Sec. 6.4.3, it comes out:
dm1
dt =+ g1−g2

Θg
jT kp− jpkT

∆ ,
dρ1
dt =− g1−g2

Θg
iT kp−i pkT

∆ ,
de1
dt =+ g1−g2

Θg
iT jp−i p jT

∆ ,

(6.91)

where ∆= iT jgkp − iT jpkg − i g jT kp + i g jpkT + i p jT kg − i p jgkT .

A robust numerical method is based on using the analytic solution of (6.88). In this case the

system reads: 
dm1
dt =+ (g1−g2)t=0

Θg e−t/Θg jT kp− jpkT
∆ ,

dρ1
dt =− (g1−g2)t=0

Θg e−t/Θg iT kp−i pkT
∆ ,

de1
dt =+ (g1−g2)t=0

Θg e−t/Θg iT jp−i p jT
∆ .

(6.92)

6.11 Appendix 6.B: Irreversibility of the relaxation procedures

6.11.1 Appendix 6.B.1: Irreversibility of the pressure relaxation process

The pressure relaxation process is obviously an irreversible process. The physical irreversibility is

not just due to the work made by the unavoidable friction forces, but persists even if friction forces

are neglected as we have done here. Let us demonstrate it.

The time-evolution of the specific entropy sk = sk(ρk, ek) is

dsk

dt
=

(
∂sk

∂ρk

)
ek

dρk

dt
+

(
∂sk

∂ek

)
ρk

dek

dt
, (6.93)
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where
(
∂sk
∂ρk

)
ek

=− pk
Tkρ

2
k
, and

(
∂sk
∂ek

)
ρk

= 1
Tk

. It corresponds to the Gibbs equation formulated in ther-

mostatics and is based on the hypothesis of local equilibrium [154]. Inserting the Eq. (6.28) in the

previous one:
dsk

dt
= pint − pk

Tkρ
2
k

dρk

dt
. (6.94)

Thus, the mixture entropy evolution reads

dS
dt

= α1

T1T2ρ1
[pint(T2 −T1)+T1 p2 −T2 p1]

dρ1

dt
. (6.95)

The time-evolution of ρ1, considering what written in (6.94), is

dρ1

dt
=

(
∂ρ1

∂p1

)
s1

dp1

dt
−

(
∂ρ1

∂p1

)
s1

(
∂p1

∂s1

)
ρ1

ds1

dt

= ρ1Ks,1
dp1

dt
−T1ρ

2
1Ks,1Γ1

ds1

dt

= ρ1Ks,1
dp1

dt
−Ks,1Γ1(pint − p1)

dρ1

dt

= ρ1Ks,1

1+Ks,1Γ1(pint − p1)
dp1

dt
.

(6.96)

Inserting this relation in (6.95):

dS
dt

= α1Ks,1

T1T2

[pint(T2 −T1)+T1 p2 −T2 p1]
1+Ks,1Γ1(pint − p1)

dp1

dt
. (6.97)

and taking the interface pressure as pint = (p1 + p2)/2,

dS
dt

= T1 +T2

T1T2

α1Ks,1(p2 − p1)

1+ 1
2 Ks,1Γ1(p2 − p1)

dp1

dt
. (6.98)

since Ks,1 = 1/(p1γ1) > 0, if p2 > p1, the coefficient in front of the derivative is positive, and the
dp1
dt > 0 because it tends to re-equilibrate with p2 thanks to Eq. (6.32). However, if p2 < p1 the

mixture entropy will increase only if:

|p2 − p1| < 2γ1 p1

Γ1
(6.99)

therefore, this choice of pint is not suitable if p2 À p1. A choice that guarantees that the mixture

entropy will increase unconditionally during the pressure relaxation process is pint = max(p1, p2).

We will use the latter when condition (6.99) is violated.

6.11.2 Appendix 6.B.2: Irreversibility of the temperature relaxation process

In physics, the sensible heat transfer is an irreversible process. Here we discuss the irreversibility

of our temperature relaxation method.

Describing the time-evolution of the specific entropy sk = sk(ρk, ek) as done in Eq. (6.93), for

phase 1:
ds1

dt
= 1

T1

hA int

V
(T2 −T1)

[
1

aρ2
1

(
Γ1

α1
+ Γ2

α2

)
(p1 − pint)+ 1

m1

]
, (6.100)
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and for phase 2:

ds2

dt
= α1

α2

1
T2

hA int

V
(T2 −T1)

[
1

aρ1ρ2

(
Γ1

α1
+ Γ2

α2

)
(pint − p2)− 1

m1

ρ1

ρ2

]
. (6.101)

Finally, considering that the mixture entropy is S =α1ρ1s1 +α2ρ2s2, its time-derivative reads

dS
dt

=α1
hA int

V
(T2 −T1)

[
1

aρ1

(
Γ1

α1
+ Γ2

α2

)(
p1 − pint

T1
+ pint − p2

T2

)
+ 1
α1

(
1

T1
− 1

T2

)]
. (6.102)

We have investigated the sign of this function, however, in the general case of p1 6= p2, it seems

to be too complex to demonstrate the irreversibility of the process. In order to check the physical

consistency of our code, we calculate the mixture entropy at the beginning and at the end of this

relaxation. So far we have never detected a decrease of the mixture entropy.

In the limit case of p1 = p2, (6.102) becomes

dS
dt

= hA int

V
(T1 −T2)2

T1T2
≥ 0, (6.103)

hence, if the temperature relaxation occurs when phases are at pressure equilibrium, the process is

irreversible.

6.11.3 Appendix 6.B.3: Irreversibility of the mass transfer process

In physics, the mass transfer is an irreversible process. Here we discuss the irreversibility of our

mass transfer method.

Describing the time-evolution of the specific entropy sk = sk(ρk, ek), for phase 1:

ds1

dt
= 1

(kp jT − jpkT )T1

dm1

dt

[
− p1

ρ2
1

(i pkT −kp iT )+ ( jp iT − i p jT )

]
, (6.104)

for phase 2:

ds2

dt
=−m1

m2

1
(kp jT − jpkT )T2

dm1

dt

[
− p2

ρ2
1

(i pkT −kp iT )+ ( jp iT − i p jT )

]
, (6.105)

for the mixture:

dS
dt

=
{
α1ρ1

T2 −T1

(kp jT − jpkT )T1T2

[
− p
ρ2

1
(i pkT −kp iT )+ ( jp iT − i p jT )

]
+ (s1 − s2)

}
dm1

dt
. (6.106)

We have investigated the sign of this function, however, for the general case of p1 6= p2 and T1 6= T2,

it seems to be too complex to demonstrate the irreversibility of the process. In order to check the

physical consistency of our code, we calculate the mixture entropy at the beginning and at the end of

the mass transfer process. So far we have never detected a decrease of the mixture entropy.

6.12 Appendix 6.C: Well-posedness of the relaxation procedures

In this section we want to discuss about the well-posedness of the relaxation procedures developed

in the previous section. The dynamical systems that reproduce the disequilibrium relaxations have

been written in the form

y′ =F(y). (6.107)
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This means that our relaxation procedures (6.41), (6.48) and (6.62), are autonomous ODE systems

that do not depend explicitly on time. In the following we refer to them as Fp(y), FT (y) and Fg(y).

According to Hadamard, a problem is well-posed if: (i) a solution exists, (ii) the solution is unique,

(iii) the solution’s behavior changes continuously with the initial conditions.

The existence of a solution of the problem (6.107) on a domain Ω is guaranteed by the Peano

existence theorem [199], which requires only the continuity of the function F(y) (see (6.20)) on Ω.

The uniqueness of the solution is ensured by Cauchy-Kowalevski theorem, which requires that F(y)

be Lipschitz continuous. The latter condition guarantees also the continuously dependence of the

solution by the data [42]. Lipschitz continuity requires

sup
(y∈Ω)

∣∣∣∣∂Fi

∂yj
(y)

∣∣∣∣<+∞, 1≤ i, j ≤ m. (6.108)

Before to proceed, let us precise that the relaxation procedures developed are senseless if just

one phase is present, hence, we have a practical constraint, that is

αk ∈ (ε,1−ε), ε> 0, (6.109)

where ε is a tolerance that allows to use the relaxation procedures just when both phases are present

and their volume fraction is not negligible.
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FIGURE 6.14. Trend of the partial derivatives
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i
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(y) with respect to α2 for two-phase
water. The liquid is at 7 MPa and the vapor is at 6 MPa, close to their respective sat-
uration temperatures. Both the stiffened gas and the IAPWS-IF97 EoS are considered
and their trends are qualitatively similar. For this case Θp = 10−3 s.
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The different trends are due to the different sign of the partial derivatives of the
thermodynamic quantities. For this case we considered hA int/V = 1W /m3 ·K .
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As concerns the function Fp(y) of system (6.41), it is not defined for a = 0, however, as seen

in (??), a 6= 0 for the physical domain defined by (6.14), (6.15), (6.109). Then Fp(y) is continuous in

the domain of interest. For the first partial derivatives Fp(y) with respect to y, it comes out that

lim
α1→1

∂F p
i

∂yj
(y)=−∞, 1≤ i, j ≤ 2. (6.110)

Similarly, for the temperature relaxation, FT (y) is continuous in the domain of interest. For its first

partial derivatives, it comes out that

lim
αk→1

∂FT
i

∂yj
(y)=±∞, 1≤ i, j ≤ 2. (6.111)

The behavior of the partial derivatives of Fp(y) and FT (y) throughout the two-phase domain is

reported in Fig. 6.14 and 6.15 where we also compare, for two-phase water, the stiffened gas and

the IAPWS-IF97 EoS. In the case of the pressure relaxation process, their trends are qualitatively

similar, this means that the simple stiffened gas EoS is able to represent the physics of expand-

ing/compressing fluids when no heat transfer occurs. On the other hand, as far as thermal properties

are involved (see Fig. 6.15), the trends of the partial derivatives are different because the derivatives

of the thermal properties have different sign for the two EoS.

For the mass transfer procedure, the second and the third components of (6.62) are not continuous

in case

kp jT − jpkT = 0, (6.112)

and for the partial derivatives of (6.62) we have

lim
αk→1

∂F g
i

∂yj
(y)=±∞, 2≤ i ≤ 3, 1≤ j ≤ 3. (6.113)

Summarizing, for systems (6.41), (6.48) and (6.62), it is required that αk ∈ (ε,1− ε) and that

kp jT − jpkT 6= 0. In such a case, the functions are continuous and their partial derivatives are

always bounded, independently from the adopted EoS. Therefore they are well-posed in the sense of

Hadamard.
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7
A SIX-EQUATION SINGLE-VELOCITY MODEL WITH TABULATED EOS

The single-velocity six-equation model discussed in the previous two chapters is finally used

here for the simulation of metastable two-phase flows of industrial concern. This is the last

chapter of this work and involves most of the computational techniques developed throughout

this Ph.D. thesis. It represents an ongoing research that will be submitted for publication in the

International Heat and Mass Transfer journal.

The focus of this work is the merging of the single-velocity six-equation model with the novel

relaxation procedures and the new steam-water tables. Its outcome is an accurate and time-efficient

hyperbolic model for the analysis of metastable two-phase flows, that is the final product of this

thesis.

The merging of the several contributions of this thesis is made possible by the work presented in

Chapter 6. In fact, it allows to couple the complete single-velocity six-equation model to arbitrary

equations of state. The final purpose of the work presented in Chapter 6 was, evidently, the coupling

of the six-equation model to the steam-water tables developed in Chapter 4.

Although the steam-water tables and the look-up table technique worked remarkably in Chap-

ter 4, the HEM and the HRM do not take into account the vapor metastable states. Instead the

single-velocity six-equation model does. Hence the first step discussed in this chapter is the extension

of the steam-water tables to the vapor metastable domain up to the vapor spinodal line.

Once the steam-water tables have been extended, the coupling to the six-equation model is de-

scribed. Then, the final model is implemented in EUROPLEXUS code and is used for the simulation

of metastable two-phase flows occurring due to a fast depressurization. It represents the industrial

context of this work that is the numerical simulation of the metastable steam-water flows in the

event of a Loss of Coolant Accident (LOCA) in nuclear power plants. The calculations are validated

against experimental data available in the literature.
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A hyperbolic phase-transition model coupled to direct
steam-water tables for the analysis of metastable two-phase

flows

In preparation for Computers & Fluids.

M. De Lorenzo1, Ph. Lafon1, M. Pelanti1, A. Pantano1,2,3, M. Di Matteo4, Y.
Bartosiewicz4, J.-M. Seynhaeve4.

7.1 Introduction

The last two decades have seen a great improvement in the modeling of the two-phase flows.

Hyperbolic models have become more popular and their application domains are various. These

advancements allowed to better take into account the disequilibria existing between the phases

because the thermodynamic disequilibrium has been decomposed in mechanical, thermal and

chemical ones.

In case of phase transition simulations of a one-component mixture, the presence of a thermo-

dynamic disequilibrium leads to the presence of metastable states, that is, the persistence of a

phase into the stability domain of another phase. Thanks to the contribution of the new hyperbolic

techniques, the analysis of the metastable two-phase flows has greatly improved. Nonetheless, these

improvements have not changed the numerical methodologies of common use in industry.

One of the reasons stems from the difficulty of using real equations of state in the new hyperbolic

approaches, versus the necessity to accurately calculate the fluid properties in industrial applications.

In fact, the numerical techniques recently proposed in the literature [64, 200, 233, 283] are often

designed only for very simple EoS as the stiffened gas one.

In order to use such hyperbolic models for the simulation of metastable flows of industrial

interest, our previous works have dealt, separately, with the calculation of fluid properties and the

calculation of the transfer terms.

In [79], we have developed a fast and accurate technique for the calculation of steam-water

properties for compressible two-phase flow models. This method is hundreds times faster than the

direct use of the reference EoS, the IAPWS-IF97, with a negligible deviation with respect to the

correct value.

In [81], we proposed a novel method for the relaxation of the thermodynamic disequilibrium

for phases described by arbitrary EoS. Moreover, to correctly take into account the presence of

metastable states, the equilibrium recovery process is not instantaneous. This method was coupled

to a slow iterative algorithm implementing the IAPWS-IF97 EoS.

The purpose of the current work is to couple the two aforementioned techniques. The outcome of

this work is a hyperbolic model for metastable two-phase flows that uses novel techniques for the

1 IMSIA UMR EDF-CNRS-CEA-ENSTA, Palaiseau, France 91120.
2Politecnico di Torino, Torino, Italy 10129.
3INP Phelma, Grenoble, France 38000.
4 Université Catholique de Louvain (UCL), Louvain la Neuve, Belgium 1348.
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calculation of interfacial transfers and of steam-water properties. Moreover, it is computationally

affordable for its use in industrial configurations.

In our previous works, the single-velocity six-equation model was numerically integrated using

the basic Fortran libraries of the CLAWPACK software [168]. Due to its industrial interest, the

single-velocity six-equation model has been implemented in EUROPLEXUS code for the simulation

of metastable steam-water flows in the event of a Loss of Coolant Accident (LOCA), i.e. a Design

Basis Accident (DBA) of nuclear power plants. Here we use our methodology for the simulation of

fast depressurizations, validating it against experimental data available in the literature.

The plan of the article is the following. In Section 7.2 we briefly describe the six-equation

single-velocity two-phase flow model together with its physical and mathematical properties. Here

we discuss both the homogeneous hyperbolic portion of the model and the source terms necessary

for the thermodynamic equilibrium recovery. Section 7.3 explains our strategy for the calculation

of steam-water properties and the developments of the work done in [79] for the extension to

the metastable vapor states. In Section 7.4 we show the numerical methods developed for the

calculation of the complete model, focusing on the Riemann solver and the Runge-Kutta Ordinary

Differential Equations (ODEs) solvers. These methods are used in Section 7.5 for the simulation

of fast depressurizations occurring in steam-water systems. Finally, in Section 7.6, we give some

conclusions and perspectives.

7.2 Six-equation single-velocity two-phase flow model

For the metastable two-phase flows simulation, we chose the six-equation single-velocity model in the

form proposed in [200] to ensure mixture-energy-consistency at the discrete level. The six-equation

model is a two-phase, two-pressure system modeling the dynamics of mixture fluids that can also

deal with phase transition when the phases are the liquid and its vapor.

We introduce before the homogeneous hyperbolic portion of the model and, then, we describe the

complete model.

7.2.1 Homogeneous hyperbolic portion of the model

The governing equations consist of mass and energy balance laws for each phase, the momentum

balance for the mixture, plus an advection equation for one of the two phases. The velocity is

assumed to be equal for the two phases. In 1D, the hyperbolic homogeneous portion of this model

reads 

∂tα1 +u∂zα1 = 0,

∂t(α1ρ1)+∂z(α1ρ1u)= 0,

∂t(α2ρ2)+∂z(α2ρ2u)= 0,

∂t(ρu)+∂z(ρu2 +α1 p1 +α2 p2)= 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p1)u]+Σ(U,∂zU)= 0,

∂t(α2ρ2E2)+∂z[α2(ρ2E2 + p2)u]−Σ(U,∂zU)= 0.

(7.1)
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At each phase is assigned a density ρk, a pressure pk, a specific internal energy ek and a volume

fraction αk, where k = 1,2. Ek = ek + 1
2 u2 are the specific total energies and ρ =α1ρ1 +α2ρ2 is the

mixture density. Two other useful quantities are: the phasic mass fraction Yk = αkρk/ρ and the

phasic partial density mk =αkρk. The saturation condition α1 +α2 = 1 is obviously assumed.

The nonconservative terms that appear in the phasic total energy equations are

Σ(U,∂zU)=−u · [Y2∂z(α1 p1)−Y1∂z(α2 p2)] . (7.2)

These terms are non-zero if u 6= 0 and if Y1Y2 6= 0, that is, if the fluid is a mixture containing both

species moving at non-zero velocity.

The above system of partial differential equations is hyperbolic and its eigenvalues are

λ1 = u− chom, λ2,...,5 = u, λ6 = u+ chom, (7.3)

where the speed of sound of the associated homogeneous model is

chom =
√

Y1c2
1 +Y2c2

2 , (7.4)

and ck are the phasic isentropic speeds of sound. In order to close the system, two equations of state

(EoS) are needed, one per each phase. They are of the form of the incomplete EoS [63]:

pk = pk(ρk, ek). (7.5)

In this work, we do not use an analytic relation for (7.5), but, a look-up table algorithm for a fast

and accurate evaluation of steam-water properties. This procedure provides bicubic spline functions

globally continuous on the entire e-v domain. This technique is explained in Section 7.3.

7.2.2 The complete model for phase transition

The complete six-equation single-velocity two-phase flow model, proposed in [81], allows to simulate

phase transition phenomena of metastable phases. The relaxation processes are non-instantaneous

and are written for an arbitrary EoS.

Considering the contribution of the relaxation sources, the six-equation model reported in

Eq. (7.1) reads:

∂tα1 +u∂zα1 = α1
aρ1Θp (p1 − p2)+ α1

aρ1

hA int
V (T1 −T2)− 1

ρ1

(
1−α1

i pkT−kp iT
kp jT− jpkT

)
G1→2

A int
V ,

∂t(α1ρ1)+∂z(α1ρ1u)=−G1→2
A int
V ,

∂t(α2ρ2)+∂z(α2ρ2u)=+G1→2
A int
V ,

∂t(ρu)+∂z(ρu2 +α1 p1 +α2 p2)= 0,

∂t(α1ρ1E1)+∂z[α1(ρ1E1 + p1)u]+Σ=−α1 pint
aρ1Θp (p1 − p2)+bT

hA int
V (T1 −T2)−bgG1→2

A int
V

∂t(α2ρ2E2)+∂z[α2(ρ2E2 + p2)u]−Σ=+α1 pint
aρ1Θp (p1 − p2)−bT

hA int
V (T1 −T2)+bgG1→2

A int
V

(7.6)

where bT = α1ρ1

[
pint
aρ2

1

(
Γ1
α1

+ Γ2
α2

)
− 1

α1ρ1

]
and bg = α1ρ1

jp iT−i p jT
kp jT− jpkT

. h is the convection heat transfer

coefficient, A int/V is the interfacial area density per unit volume, Γk are the phasic Grüneisen

coefficients, and Θp is the characteristic time for the pressure equilibrium recovery.
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From (7.6) we can see that the pressure disequilibrium (p1−p2) drives the compression-expansion

energy transfer that leads to the pressure equilibrium. The term (T1 −T2) drives the sensible heat

transfer and G1→2 stands for the net mass flow rate per unit interfacial area due to phase transition

phenomena.

7.3 Look-up table algorithm for liquid and vapor EoS

To correctly simulate phase transition phenomena, accurate equations of state should be used.

For the steam-water properties, nowadays, the most reliable EoS for water is the IAPWS-95 [272].

This is an analytical equation based on experimental data and is used for general and scientific

purposes. Given that the IAPWS-95 formulation is quite cumbersome and time consuming, IAPWS

also provides a separate formulation recommended for industrial use, i.e. the IAPWS-IF97 [273].

The latter consists of a set of equations for five different regions, fitting the values resulting from

the IAPWS-95. In this work we rely on the IAPWS-IF97 for the water properties calculation.

Generally, accurate EoS are expressed as:

f = f (ρ,T) or g = g(p,T), (7.7)

where: f = u−Ts and g = h−Ts are, respectively, the Helmholtz free energy and the Gibbs free

enthalpy. Such EoS are very accurate but extremely costly from a computational point of view.

Therefore, replacing the incomplete EoS in (7.5) by an iterative algorithm that implements a

complete EoS as (7.7) is feasible but too expensive for industrial calculations.

Based on the works of Kunick et al. [147], in [79] we proposed a strategy to calculate steam-water

properties. In our previous work, it consisted in a look-up table method that calculates p = p(ρ, e) by

a bicubic interpolation on the e-v thermodynamic diagram.

Since it was used for HEM and HRM calculations, ρ and e referred to equilibrium single-phase

states or to mixture ones. Whereas, for the current work, the look-up table technique is used for the

calculation of phasic EoS, i.e. pk = pk(ρk, ek).

In the following we present the liquid and the vapor domains of water on the e-v diagram. Then

we discuss the limits of these domains, showing the extension up to liquid and vapor spinodal curves.

Finally, we recall the guidelines of our strategy for the bicubic interpolation of the thermodynamic

properties.

7.3.1 The e-v diagram for water

The e-v diagram is quite uncommon in the literature. In [79] we have shown the behavior of

thermodynamic properties in this plane, and the trend of isotherms, isobars and isoquality curves

for single-phase water and mixtures at saturated conditions. Here, we make a different use of this

diagram because we need one equation of state per phase.

Figure 7.1 depicts the liquid and the vapor domains on the e-v diagram. The water phase diagram

is clearly subdivided into two portions. The liquid region, located on the left of the e-v diagram,

is defined up to the critical point and the composition of the liquid spinodal and the p = 0 curves
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FIGURE 7.1. Liquid and vapor water on the e-v diagram. The critical point is indicated by
circular markers © in the main plot and its magnified view. Plot realized using the
IAPWS-IF97 and the IAPWS-95.

(see [79] for further explanations). The vapor domain is the one located above of the critical point

and the vapor spinodal line.

The area comprised between the two spinodal lines is not of interest because it refers to phasic

unstable states.

In Fig. 7.2 we show the 2D trends of pressure, temperature and speed of sound on the whole e-v

domain. Note that the 2D plots here reported are intended for phasic liquid and vapor, in stable and

metastable conditions, then, their behaviors beyond the saturation curve do not correspond to the

mixture plots shown in [79].

7.3.2 Extension to vapor metastable states

In fast transients of nuclear industry concerns, one or both phases can be metastable. The liquid can

reach metastable states due to a rapid depressurization (see [79] or Section 7.5), and the vapor can

depart from equilibrium conditions during the vapor pocket compression initiating a waterhammer.

But, metastable vapor is also of concern in the expansion stages of the steam turbines, both in

nuclear and in conventional steam power plants.

For these reasons, the novel steam-water tables have to take into account the metastable vapor

states. For a prior work similar to the present one, refer to [148]. In this section we provide a method

of determination of the thermodynamical states belonging to the vapor spinodal curve, which allows
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FIGURE 7.2. Phasic pressures (MPa), temperatures (K) and speeds of sound (m/s) on the
e-v diagram. The results obtained using the IAPWS-IF97. The black line indicates
the saturation curve.
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the extension to the metastable vapor conditions included between the saturation curve and the

spinodal one.

Contrary to the liquid spinodal curve shown in [79], the properties of the vapor spinodal have been

determined using the IAPWS-95 Formulation. In fact, the IAPWS-95 expresses the thermodynamical

variables as a function of v = 1/ρ and T, therefore, it exists a function of the form

p = p(v,T), (7.8)

that allows to define the loci at which (
∂p
∂v

)
T
= 0. (7.9)

These correspond to the limit of thermodynamic stability for a pure phase, then, they define the

spinodal curve [43, 73]. For the liquid domain, in [79], we used the IAPWS-IF97 to define this limit,

however, this is not possible for the vapor phase.

The pure vapor boundary has been identified using the IAPWS-95, however, the metastable

vapor properties are everywhere defined using the IAPWS-IF97. Even on the vapor spinodal line,

once it has been identified by the IAPWS-95, the thermodynamic properties are recalculated using

the IAPWS-IF97. In Fig. 7.3 we show the comparison between the pure vapor temperature and

speed of sound on the vapor spinodal curves obtained by the IAPWS-95 and the IAPWS-IF97. The

trends are very similar.
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FIGURE 7.3. Speed of sound and temperature profiles on the vapor spinodal curve. The
results obtained using the IAPWS-IF97 are compared to the ones obtained with the
IAPWS-95.

Once the vapor spinodal curve has been identified, the domain of the steam-water tables can be

extended up to this limit. Beyond this limit, the phase is unstable, then, non physical. That is the

reason why the spinodal lines represent an impassable boundary in our work.

7.3.3 A bicubic interpolation method

For easiness, the irregular physical domain e-v, has been transposed in a Cartesian transformed

domain, Y-X. This feature is depicted in Fig. 7.4.
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Figure 7.4: Grid of nodes in the physical domain and in the transformed one

As discussed in [79], in the liquid and supercritical domain we imposed an equidistant pattern

of nodes, hence the distribution is linear, whereas, in the vapor domain the node distribution is

logarithmic. Handling such a regular distribution of nodes ensures that, the cell containing the

working point can be immediately found. Such a feature allows to strongly reduce the computational

time of the cell identification.

Then, a bicubic interpolation is performed on the Cartesian diagram Y-X, using stored values on

the e-v diagram.

To perform a bicubic interpolation, the cell must be square. A bilinear mapping is used to pass

from the physical domain to the Cartesian one. The bilinear mapping functions are:

v =α1 +α2X +α3Y +α4XY , (7.10)

and

e =β1 +β2X +β3Y +β4XY . (7.11)

To identify αi, βi coefficients, one needs to set the vertices of the irregular quadrilateral cell on the

e-v plane to be the vertices of the unit length square of the transformed space. In our particular case,

the grid is formed by horizontal iso-e lines (see Fig. 7.4), then: β2,β4 = 0. Finally, it comes out:

α1 = v1, α2 =−v1 +v4, α3 =−v1 +v2, α4 = v1 −v2 +v3 −v4, (7.12)

β1 = e1, β2 = 0, β3 =−e1 + e2, β4 = 0. (7.13)

The bilinear mapping serves to identify the (X0,Y0) point corresponding to a phasic (vk,0, ek,0)

value. Once the point is known, we can calculate the thermodynamic properties using a bicubic

interpolation. Let us suppose to be interested in the phasic pressure calculation, thus:

pk(vk,0, ek,0)= p̃k(X0,Y0)= [1 X0 X2
0 X3

0 ] A [1 Y0 Y 2
0 Y 3

0 ]T (7.14)
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where A is the coefficient matrix and it describes the function pk on the transformed space. Its

elements are

A=


1 0 0 0

0 0 1 0

−3 3 −2 −1

2 −2 1 1




p̃k,1 p̃k,2 ∂Y p̃k,1 ∂Y p̃k,2

p̃k,4 p̃k,3 ∂Y p̃k,4 ∂Y p̃k,3

∂X p̃k,1 ∂X p̃k,2 ∂X ,Y p̃k,1 ∂X ,Y p̃k,2

∂X p̃k,4 ∂X p̃k,3 ∂X ,Y p̃k,4 ∂X ,Y p̃k,3




1 0 −3 2

0 0 3 −2

0 1 −2 1

0 0 −1 1

 , (7.15)

where, for instance, ∂X p̃k,1 indicates the derivative of the function pk with respect to the coordinate

X at node 1, that is, the node in the bottom left corner. One can refer to [79] for further information

about the calculations of these derivatives.

The function p̃k(X ,Y ) refers to a Cartesian square grid and, by construction [212], has the

following properties: i) the values of the function and the specified derivatives are reproduced exactly

at the nodes, and, ii) the function and the specified derivatives change continuously at the edges of

the square cells. Furthermore, these smoothness properties do not depend on the accuracy of the

specified derivatives [212].

Due to the choice of the bilinear transformation, pk(vk, ek) is still a continuous function across

the cell edges in the e-v diagram. However, not all the derivatives are continuous across the edges.

Further details about derivatives calculation are given in [79].

7.4 Numerical solution methods

The numerical solution of system (7.6) can be obtained by a succession of operators [256] of first

order,

Un+1
i = L∆t

source L∆t
hyp Un

i (7.16)

or second order

Un+1
i = L∆t/2

source L∆t
hyp L∆t/2

source Un
i , (7.17)

where Lhyp and Lsource denote, respectively, the hyperbolic and the source operator. The latter

is composed by three operators: Lp, LT , Lg that are, respectively, the operators for pressure,

temperature and chemical potential relaxation procedures. The result of an operator is used as

initial value for the following operator.

In this section, we describe the numerical techniques used for solving the hyperbolic homogeneous

portion of the system and, then, the relaxation operators.

7.4.1 Hyperbolic operator

The hyperbolic homogeneous portion of the model, that is, Eq. (7.1), can be written as

∂tU +∂zF(U) +B1(U) ∂zu +B2(U) ∂z(α1 p1) +B3(U) ∂z(α2 p2) = 0, (7.18)
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where:

U=



α1

α1ρ1

α2ρ2

ρu

α1ρ1E1

α2ρ2E2


, F=



α1u

α1ρ1u

α2ρ2u

ρu2 +α1 p1 +α2 p2

α1(ρ1E1 + p1)u

α2(ρ2E2 + p2)u


, B1 =



−α1

0

0

0

0

0


, B2 =



0

0

0

0

−uY2

+uY2


, B3 =



0

0

0

0

+uY1

−uY1


.

(7.19)

Considering a spatial domain decomposed in cells, we refer to Un
i as the integral average of the

calculation variables vector in the ith cell at the time step tn. The evolution between tn and tn+ is

Un+
i =Un

i −
∆t
∆z

(
Fn

i+ 1
2
−Fn

i− 1
2

)
−∆tHi (7.20)

where Fn
i± 1

2
denote the fluxes at the boundaries of the mesh cell, and Hi groups all the contributions

of nonconservative terms, that is

Hi =
∫
∆z

B1 ∂zu dz−
∫
∆z

B2 ∂z(α1 p1) dz−
∫
∆z

B3 ∂z(α2 p2) dz. (7.21)

Equation (7.20) is exact, however we need an approximation method to evaluate both the fluxes

and the integral of nonconservative terms. For the former, we adopt a HLLC-type method, then, the

numerical approximation of flux is:

FHLLC,n
i+ 1

2
(Un

i ,Un
i+1)=



F`, if S` > 0,

F∗
`
=F`+S`(U∗

`
−U`), if S` ≤ 0< S∗,

F∗
r =Fr +Sr(U∗

r −Ur), if S∗ ≤ 0< Sr,

Fr, if Sr ≤ 0.

(7.22)

This solver is complete because it assume as many waves as the ones of the system. In fact, three

waves are present and move at speeds

s1 = S` , s2 = S∗ , s3 = Sr. (7.23)

They separate four constant states called: U`, U∗
`
, U∗

r and Ur. We indicate with subscripts ∗`, ∗r

the quantities corresponding to the states U∗
`

and U∗
r adjacent (respectively on the left and on the

right) to the middle wave propagating at speed S∗. Following Davis [72] we define

S` =min(u`− c`,ur − cr), Sr =max(u`+ c`,ur + cr). (7.24)

The speed S∗ is then determined as in [264]:

S∗ = u∗ = pr − p`+ρ`u`(S`−u`)−ρrur(Sr −ur)
ρ`(S`−u`)−ρr(Sr −ur)

. (7.25)
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The completely upwind fluxes of Eq. (7.22) are: F` =F(Un
i ) and Fr =F(Un

i+1). The middle states

are:

U∗ι =



α1,ι

(α1ρ1)ι
Sι−uι

Sι−S∗

(α2ρ2)ι
Sι−uι

Sι−S∗

ρι
Sι−uι

Sι−S∗ S∗

(α1ρ1)ι
Sι−uι

Sι−S∗

(
E1,ι+ (S∗−uι)

(
S∗+ p1,ι

ρ1,ι(Sι−uι)

))
(α2ρ2)ι

Sι−uι

Sι−S∗

(
E2,ι+ (S∗−uι)

(
S∗+ p2,ι

ρ2,ι(Sι−uι)

))


, (7.26)

with ι= `, r.

Nonconservative terms are approximated using a first order approximation method, that is∫
∆z

B1(U) ∂zu dz ≈B1(Un
i )

(
ui+ 1

2
−ui− 1

2

)
, (7.27)

∫
∆z

B2(U) ∂z(α1 p1) dz ≈B1(Un
i )

[
(α1 p1)i+ 1

2
− (α1 p1)i− 1

2

]
, (7.28)∫

∆z
B3(U) ∂z(α2 p2) dz ≈B1(Un

i )
[
(α2 p2)i+ 1

2
− (α2 p2)i− 1

2

]
. (7.29)

In order to calculate the interfacial quantities, we use the wave pattern information coming from

the HLLC solver. For the advection equation we use the method proposed in [153]:

uHLLC,n
i+ 1

2
(Un

i ,Un
i+1)=



u`, if S` > 0,
S`−u`

S`−S∗ S∗, if S` ≤ 0< S∗,
Sr−ur
Sr−S∗ S∗, if S∗ ≤ 0< Sr,

ur, if Sr ≤ 0.

(7.30)

For the nonconservative terms of the phasic energy equations, we propose:

(αk pk)HLLC,n
i+ 1

2
(Un

i ,Un
i+1)=



(αk pk)`, if S` > 0,

αk,`[pk,`−ρk,`(S`−u`)(u`−S∗)], if S` ≤ 0< S∗,

αk,r[pk,r −ρk,r(Sr −ur)(ur −S∗)], if S∗ ≤ 0< Sr,

(αk pk)r, if Sr ≤ 0.

(7.31)

7.4.2 Relaxation operators

In the literature, most of the works deal with instantaneous relaxation procedures to be used for

very simple EoS as the stiffened gas one. In [81], authors proposed a novel method to describe the

physics involved into the relaxation processes. They consist in dynamical systems of ODEs that allow

the equilibrium recovery. The novelty of this work lies in the EoS independence of the numerical

techniques.

These relaxation processes can be split into three systems of ODEs, each one modeling a different

physical phenomenon. In this work the systems of ODEs are calculated using a high order explicit

Runge-Kutta (RK) method with adaptive stepsize, that is, the so-called RK45 [108]. This method is
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fourth order accurate with an error estimator of fifth order for the calculation of the variable time

step.

The drawback of this explicit method is the loss of stability for stiff problems. However, one may

refer to the appendix of [81] for alternative robust semi-analytical methods if needed.

At the end of the hyperbolic operator step, the phases are in full thermodynamic disequilibrium.

This is attenuated using three relaxation operators that are used in series. First the pressure

equilibrium step, then the temperature relaxation one and, finally, the mass transfer procedure. We

introduce them in the following of this section.

7.4.2.1 Pressure relaxation operator

The pressure relaxation procedure is a system of ODEs composed of two equations. In the canonical

form it writes 
dρ1
dt =− 1

a
p1−p2
Θp ,

de1
dt =− pint

aρ2
1

p1−p2
Θp ,

(7.32)

where

a = ρ1Γ1

[
pint

ρ2
1

−
(
∂e1

∂ρ1

)
p1

]
+ρ2Γ2

α1ρ2

α2ρ1

[
pint

ρ2
2

−
(
∂e2

∂ρ2

)
p2

]
. (7.33)

pint indicates the interfacial pressure. This technique is based on the first law of the thermody-

namics and an exponential time-decay for the pressure disequilibrium. It allows a semi-analytical

integration, then, it is very robust even for stiff cases (Θp ¿ 1). Since we use the six-equation model

to integrate more easily the five-equation model of [139], the pressures equilibrium is required at

the end of this pressure relaxation step. Hence, sufficiently small Θp must be used. For instance, for

Θp =∆tconv/9, the final pressure disequilibrium is around the 0.01% of the initial one. As a result,

phases may be considered roughly in pressure equilibrium.

7.4.2.2 Temperature relaxation operator

The temperature relaxation procedure is based on the first law of thermodynamics and the Newton’s

law for the convection. This step is the one responsible for the sensible heat transfer. In the canonical

form, it is 
dρ1
dt =− hA int

V (T2 −T1) 1
a

(
Γ1
α1

+ Γ2
α2

)
,

de1
dt =− hA int

V (T2 −T1)
[

pint
aρ2

1

(
Γ1
α1

+ Γ2
α2

)
− 1

m1

]
.

(7.34)

h is the heat transfer coefficient expressed in W/m2 ·K and A int is the interface area expressed in

m2 and flow pattern dependent. One can use some empirical correlations to estimate them or can

use hA int
V as a parameter for speeding up or slowing down the sensible heat transfer process.

For very fast temperature relaxation processes, a more robust technique is reported in the

appendix of [81]. It is a semi-analytical procedure based on an exponential time-decay for the

temperature disequilibrium.
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7.4.2.3 Mass transfer operator

The mass transfer procedure models the condensation and evaporation events. The procedure

proposed in [81] is very flexible because it may incorporate various models present in the literature.

For instance nucleation models (see [208, 214]), statistical mechanics theory (see [275]), or simpler

relaxation models [28].

It is based on the pressure equilibrium between the phases, and, the phasic temperature

difference invariance. This latter condition means that the heat transfer occurring in this processes

is the latent one. No sensible heat transfer occurs. The canonical form of this relaxation process is
dm1
dt =−G1→2

A int
V ,

dρ1
dt =−G1→2

A int
V

i pkT−kp iT
kp jT− jpkT

,
de1
dt =−G1→2

A int
V

jp iT−i p jT
kp jT− jpkT

.

(7.35)

To close the system, a closure law for the mass transfer term G1→2 A int is needed.

The mass transfer is due to a chemical disequilibrium, that is, a difference between the phasic

Gibbs free enthalpy. For this reason, many authors in the literature assumes:

G1→2 ∝ (g1 − g2). (7.36)

In this work, we assume

G1→2
A int

V
= g1 − g2

Θg
, (7.37)

where Θg is the characteristic time for the chemical equilibrium recovery. Such magnitude is not

clearly known, then, we adopt a correlation inspired to [28, 79, 84], i.e.

Θg = Kg α
−0.25
v

(
psat − p

pcrit − psat

)−1.8
. (7.38)
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FIGURE 7.5. Schematic of Super Canon experimental facility and location of the measure-
ment devices.
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FIGURE 7.6. Pressure evolution in the first 16ms of the Bartak’s experiment [16]
(12.5 MPa, 563.15K). Assessment of the single-velocity six-equation model against
the experimental data and the HEM results. For this calculation, the 1.7 m long tube
has been discretized into a 1000 cells mesh and Kg = 4.

7.5 Numerical simulations of fast depressurizations

In the context of nuclear safety, the Loss of Coolant Accident (LOCA) is one of the Design Basis

Accidents (DBA). It represents the sudden rupture of a primary system pipe of the nuclear power

plants. When it occurs, a rarefaction wave originates at the breach and moves upstream in the

primary circuit. The interaction of this wave with the reactor core may lead to the mechanical

damage of core components. Then, for the fluid-structure analysis, the correct calculation of the

rarefaction wave amplitude is of paramount importance.

The thermodynamic disequilibrium plays a crucial role on the rarefaction wave amplitude,

thus, a simple HEM can not produce a correct simulation of these flows. Therefore, to improve the

industrial simulation tools, the single-velocity six-equation model has been implemented in the fast

dynamic code EUROPLEXUS.

Since the phenomena involving metastable states were not completely known, in the ’70s-’80s,

some experimental campaigns have been carried out. The experimental facilities for the industrial

scenarios focused on the rapid depressurization of vessels or pipes containing water at subcooled

conditions [16, 94, 223].

In this section we use these experiments for the validation of the methodology discussed above

with EUROPLEXUS code. The benchmark is performed using the experimental data of Bartak [16],

Edwards-O’Brien [94] and Super Canon test rig [223]. The schematic of the Super Canon facility

and the measurement devices are shown in Fig. 7.5. The Bartak and Edwards-O’Brien test facilities
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are very similar to Fig. 7.5. For further details about the test rigs geometry and the measurement

techniques, one may refer to [16, 94, 223].

The initial pressure and temperature conditions are 12.5 MPa and 563.15K for the Bartak test,

10.34 MPa and 557.59K for the Edwards-O’Brien test, and 15 MPa and 593.15K for the Super

Canon test. Then, the corresponding subcooling degrees, i.e. Tsat(pin)−Tin, are, respectively, 38K ,

29K and 22K .

The three experiments are triggered by the sudden opening of a rupture disc located at one

extremity of the pipe. At that moment, a rarefaction wave originates at the break and moves

backward. The very first part of the transient is well represented by the Bartak and Edwards-

O’Brien data, whereas, the Super Canon experiments represent the global transient.

The depressurization is initially abrupt and fast, then pressure drops below the saturation

pressure corresponding to the initial stagnation temperature (7.4 MPa in Bartak experiment,

6.8 MPa in Edwards-O’Brien test, 11.2 MPa for Super Canon). The liquid water is then into the

metastable domain.

Since the abrupt depressurization has led the liquid into a deep metastable condition, the fluid

is driven from the thermodynamic disequilibrium towards the thermodynamic stability condition.

Then, the depressurization is stopped by a quick vaporization, also called explosion-like nucleation.

The system pressure is therefore driven towards the saturated conditions. Further discussions about

the rate of depressurization, the pressure undershoot and the homogeneous nucleation phenomenon

can be found in [3, 16, 43, 73, 246].

In Fig. 7.6, 7.7 and 7.8 we show the comparisons of the numerical simulations obtained with

the single-velocity six-equation model and the experimental data. To underline the importance

of the thermodynamic disequilibrium, we report as well the numerical results of the HEM. From

these figures we can observe that the pressure undershoot just discussed is well reproduced by the

six-equation model, whereas, for the HEM, the mixture always remains at saturated conditions.

This means that a numerical simulation performed with a HEM leads to an underestimation of the

amplitude of the rarefaction wave, then, for a fluid-structure interaction analysis, the HEM leads to

an underestimation of the mechanical consequences on the structure.

By the experimental measurements we know that the velocity of propagation of the rarefaction

wave compares well with the isentropic speed of sound of the liquid water initially present into the

system. From Fig. 7.6, 7.7 we can see that this velocity is correctly simulated by both equilibrium

and disequilibrium two-phase flow models.

For a HEM simulation, once the rarefaction wave has taken the fluid into the two-phase

domain, the phase transition takes place in order to maintain the phases at the full thermodynamic

equilibrium. In this case, the phase transition starts when the fluid reaches the saturated liquid

curve.

For the single-velocity six-equation model, the rarefaction wave propagates into the liquid and

takes it to metastable conditions. The phase transition does not take place immediately when the

fluid reaches the saturated conditions, thus, the amplitude of the rarefaction wave is wider than in

the HEM calculations. For the single-velocity six-equation model, the mass transfer that transforms

the liquid into vapor is activated only when metastable conditions are detected. Once one of the two

212



7.5. NUMERICAL SIMULATIONS OF FAST DEPRESSURIZATIONS

0 2 4 6 8 10 12 14

Time, t  [ms]

0

2

4

6

8

10

12

P
re

ss
u
re

, 
p
  
[M

P
a]

Experimental data

single-vel.  6eqs.  model

HEM

GS1 - 0.168 m upstream from the breach

0 2 4 6 8 10 12 14

Time, t  [ms]

2

4

6

8

10

12

P
re

ss
u
re

, 
p
  
[M

P
a]

Experimental data

single-vel.  6eqs.  model

HEM

GS2 - 0.326 m upstream from the breach

0 2 4 6 8 10 12 14

Time, t  [ms]

2

4

6

8

10

12

P
re

ss
u
re

, 
p
  
[M

P
a]

Experimental data

single-vel.  6eqs.  model

HEM

GS3 - 1.161 m upstream from the breach

0 2 4 6 8 10 12 14

Time, t  [ms]

2

4

6

8

10

12

P
re

ss
u
re

, 
p
  
[M

P
a]

Experimental data

single-vel.  6eqs.  model

HEM

GS4 - 2.072 m upstream from the breach

0 2 4 6 8 10 12 14

Time, t  [ms]

2

4

6

8

10

12

P
re

ss
u
re

, 
p
  
[M

P
a]

Experimental data

single-vel.  6eqs.  model

HEM

GS6 - 3.182 m upstream from the breach

0 2 4 6 8 10 12 14

Time, t  [ms]

2

4

6

8

10

12

P
re

ss
u
re

, 
p
  
[M

P
a]

Experimental data

single-vel.  6eqs.  model

HEM

GS7 - 4.017 m upstream from the breach

FIGURE 7.7. Assessment of the single-velocity six-equation model on a Edwards-O’Brien
experiment. The initial stagnation conditions are 10.34 MPa and 557.59 K (1500 psia,
544oF). For this calculation, the 4.096 m long tube has been discretized into a 1000
cells mesh and Kg = 0.5.

phases crosses the saturation curve, the mass transfer is activated and its intensity is proportional

to the chemical disequilibrium (see Eq. (7.37)). This is coherent with the theory of thermodynamic

stability according to which a deeper metastability condition leads to a faster mass transfer [43].

Summarizing, this modeling choice allows to well represent the two main physical features occurring

in fast depressurizations: (i) the correct amplitude of the rarefaction wave, and (ii) the explosion-like
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FIGURE 7.8. Assessment of the single-velocity six-equation model on a Super Canon
experiment. The initial stagnation conditions are 15 MPa and 593.15 K . For this
calculation, the 4.389 m long tube has been discretized into a 1000 cells mesh and
Kg = 0.5.

nucleation phenomenon.

Considering the whole depressurization Super Canon experiment in Fig. 7.8, after the explosion-

like nucleation, the pressure remains constant, but at values lower than the saturation one. Hence

the liquid is still in metastable conditions. After 50 ms, the pressure decreases due to the emptying of

the capacity. The emptying rate is imposed by the two-phase critical flow that sets at the breach [78].
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7.6 Conclusions

In the present work we have developed a single-velocity six-equation model, for phase transition

flows, in the EUROPLEXUS code. The industrial objective of this work was to provide EUROPLEXUS

code of a hyperbolic model able to deal with thermal and chemical disequilibria to be used for the

fluid-structure interaction analysis of hypothetical accidents in nuclear reactors.

This work is the merging of two techniques previously developed by the same authors. The

first technique was about the fast and accurate calculation of steam-water properties [79]. The

second technique introduced a method for solving the relaxation processes source terms using an

EoS-independent numerical procedure [81].

The outcome of this work is a two-phase phase-transition model, based on the recent and more

advanced hyperbolic models [64, 200, 233, 283], but improved thanks to the coupling with an

accurate EoS. Here the process of equilibrium recovery is decomposed according to the physical

disequilibria, then, it is closer to the physics than the more traditional bi-fluid models that are very

popular in the nuclear safety field [24, 112, 220, 262].

The new methodology has been validated on experimental data of rapid depressurization tests

available in the literature.
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This thesis focuses on the study of one-component two-phase flows with thermodynamic

disequilibrium between the phases. Generally, in two-phase flows, phases can flow at different

velocity, pressure, temperature and chemical potential. But, due to its crucial importance on

the industrial applications of this thesis, the analysis of the thermodynamic disequilibrium is the

focus of this work. Those metastable two-phase flows need to be numerically simulated in order to

predict the mechanical behavior of the nuclear reactors components in case of accidental transients.

The purpose of this Ph.D. thesis was to develop modern and time-efficient models for the analysis

of metastable two-phase flows, able to take into account the thermodynamic disequilibrium and

to accurately calculate the water properties. The global time-efficiency of the numerical methods

proposed is required for their use on industrial configurations.

To achieve the final goal of this thesis, a progressive path has been followed. On this path we

can recognize three main milestones: the analysis of the stationary flashing metastable flows, the

development of new steam-water tables for the transient metastable flows, and the work on the

single-velocity six-equation two-phase flow model.

The first work, discussed in Chapter 3, was about the stationary choked metastable two-phase

flows. These conditions may establish at the breach of the primary circuit of a PWR in the case

of a LOCA. We compared four critical flow models against more than 400 experimental data to

determine an appropriate benchmark for their capability to predict critical mass flux and critical

pressure. The industrial outcome of this first work was the implementation in EUROPLEXUS of the

Henry-Fauske (1971) critical flow model as boundary condition model of a circuit breach.

In the second work, reported in Chapter 4, the attention was drawn on the fast transient

metastable two-phase flows as in rapid depressurizations, waterhammers and steam explosions.

Based on the recent works of Kunick et al. [133], we developed an algorithm for the calculation of

water properties as function of density and specific internal energy, i.e. a look-up table method in

the e-v thermodynamic diagram. This algorithm is time-efficient and very accurate and was used

to calculate water properties for two classical two-phase flow models in their conservative form.

The two-phase flow models used for this work were the Homogeneous Equilibrium Model and the

Homogeneous Relaxation Model.

The comparison between the numerical simulations of HEM and HRM and the experimental

data was extremely positive and showed the importance of the thermodynamic disequilibrium for

the fast depressurizations. The industrial outcome of this second work was the implementation

in EUROPLEXUS of new steam-water tables and their coupling with HEM and HRM. A HEM

217



CHAPTER 7. A SIX-EQUATION SINGLE-VELOCITY MODEL WITH TABULATED EOS

was already present in EUROPLEXUS, however, the new version is more robust and faster (30-

70% in terms of CPU time). The previous version of the HRM was obsolete and did not provide

reliable results anymore, while, the new one is accurate and coupled to the steam-water tables

aforementioned. In EUROPLEXUS, these models have been named, respectively, HTPM-EQUI and

HTPM-META.

The third work introduces further advancements and is discussed in the whole Part III. It

focused on the single-velocity six-equation model for the simulation of transient metastable flows

and is composed of three topics: the hyperbolic solver, the relaxation procedures and its industrial

application.

For the hyperbolic solver, in Chapter 5, we made a comparison of five numerical schemes with

different numerical treatments of the nonconservative terms to determine their influence on smooth

and discontinuous solutions. Two out of the five Riemann solvers are a novel contribution of this

thesis and are proven to be fast and accurate thanks to an efficiency study.

The relaxation procedures designed for this model are discussed in Chapter 6. The novelty of this

work consists in the equation of state independence of the numerical techniques for the simulation of

the mechanical and thermodynamic relaxation processes. Further, these new relaxation procedures

are non-instantaneous, then, the metastable states can be correctly taken into account. This work

represents the core scientific contribution of this Ph.D. thesis.

Finally, in Chapter 7, the main developments done so far have been merged for the simulation of

fast depressurizations of initially subcooled water. The domain of the steam-water tables has been

extended so to include also the domain of the metastable vapor. Then, the single-velocity six-equation

model has been coupled to the new steam-water tables thanks to the EoS-independent relaxation

procedures. This method allows a good simulation of the rarefaction waves in metastable liquid

water as shown by the comparison with the experimental data.

The single-velocity six-equation model has been implemented in EUROPLEXUS where it is

labeled as HTP6.

Ultimately, the work done in this Ph.D. thesis is a further step towards the unification of the

today mathematical and numerical modeling state-of-art of the two-phase flow domain to the up-

to-date thermodynamics for real fluids. Then, it has been proven to be adequate for the industrial

simulation of compressible metastable two-phase flows that may arise in many circumstances.

Industrial perspectives

Most of the work carried out for this thesis is already at the industrial grade, i.e. robust and

computationally inexpensive.

The steam-water tables have been tested on more than 5 million points, showing to be robust

and accurate. The HEM and the HRM have been tested on many scenarios and proven to be accurate

on the whole validity domain of the steam-water tables. The HEM is intrinsically robust because

iteration-free, while, the HRM is based on an iterative algorithm that may not converge during
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severe transient simulations. Then, for some severe industrial simulations as steam explosions, a

feature to be improved is the iterative algorithm for the pressure calculation of the HRM.

Similarly, the robustness of the single-velocity six-equation model can be still improved. The

methodology developed is iteration-free and numerically robust, especially when the semi-analytic

relaxation procedures are used. However the weakness of the methodology stems in the existence of

a validity domain for the pure phase properties. This validity domain is bounded by the liquid and

vapor spinodal curves and the p = 0 line for the liquid. At low pressures, the metastable domain is

very narrow because the p = 0 line lies close to the liquid saturation curve, then the liquid phase

may cross this line provoking the end of the numerical simulation. To overcome these difficulties,

one may extend the liquid metastable domain to the tensile water (p < 0), as done in [148], or design

a more robust numerical technique for the equilibrium recovery of the liquid phase, forcing the

liquid to follow an attractive trajectory to the saturated equilibrium conditions. The drawback of the

latter strategy is that the relaxation processes can no longer be decomposed according to physical

phenomena as done in Chapter 6 (compression, sensible heat and latent heat) and the equilibrium

recovery would just be driven by a mathematical law unable to decouple the different physical

phenomena.

Further, a medium-term perspective of this work could be the adjustment of the relaxation

techniques to the velocity disequilibrium case and their coupling with the seven-equation model

already present in EUROPLEXUS [64, 174]. In that case, no adjustments would be necessary for

using the steam-water tables within the seven-equation model.

Academical perspectives

For academical purposes, the main contributions of this thesis stem in the novel relaxation proce-

dures of Chapter 6. They provide new tools for the simulation and the understanding of the phase

transition phenomena.

From the small scale point of view, thanks to the decoupling of the physical phenomena ef-

fects (compression, sensible heat and latent heat transfers), one can conduct a finer analysis of

equilibrium recovery mechanisms. Using these techniques, it could be possible to increment the

physical understanding of some phenomena, simulating vapor bubbles cavitation or liquid droplets

vaporizations. This analysis of the thermal and chemical disequilibria can be useful to extrapolate

new macroscopic correlations, etc. A preliminary step towards this goal has been already done by

the IMSIA, joint lab EDF-CNRS-ENSTA-CEA. The single-velocity six-equation model together with

the steam-water tables have been implemented on the high-order code called Code_Safari [69, 100].

From the macroscopic point of view, the novel relaxation procedures allow to study same physical

phenomena at different flow pattern regimes. It could be interesting to study the dependency of

some phenomena on the topological magnitudes (interfacial area).

Moreover, the mass transfer procedure proposed in Chapter 6 allows to take into account different

phase transition models using the same numerical framework. This could be used to conduct a

benchmark of the different phase transition models (nucleation models, relaxations models, etc.)

219



CHAPTER 7. A SIX-EQUATION SINGLE-VELOCITY MODEL WITH TABULATED EOS

against experimental data.

Another perspective of this work is the simulation of fluids other than water. Together with

Université catholique de Louvain (UCL, Belgium) and Sherbrooke University (Canada), we par-

ticipated to a work on the CO2 properties tabulation for the simulation of challenging two-phase

flow phenomena [103] in ejectors. A further advancement could be the use of the single-velocity

six-equation model for the analysis of such nonequilibrium flows.
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écoulements diphasiques métastables typiques 
de certains transitoires accidentels qui pourraient 
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phénomènes sont difficiles à traiter en raison de 
la complexité topologique de l’écoulement, des 
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complexité de ces écoulements. En fait, si ces 
méthodes prennent en compte un certain 
déséquilibre thermodynamique entre l’eau 
liquide et sa vapeur, elles pêchent par contre au 
niveau de la consistance mathématique. Par 
ailleurs, les méthodes hyperboliques qui ont été 
proposées pour pallier ce défaut tardent à être 
appliquées dans l’industrie car elles utilisent 
 

pour la plupart des lois d’état simples qui ne sont 
pas adaptées pour les calculs industriels. Le but 
de cette thèse est de perfectionner ces nouvelles 
approches en couplant des méthodes 
hyperboliques modernes à des équations d’état 
précises. Le produit final de ce travail est un 
nouveau modèle pour l’analyse industrielle des 
écoulements diphasiques métastables qui associe 
de nouvelles méthodes pour le calcul des 
transferts interfaciaux et les techniques les plus 
récentes pour l’estimation des propriétés de l’eau 
et de sa vapeur. De plus, cette approche est d’un 
coût abordable pour les configurations 
industrielles. 
Les méthodes développées dans cette thèse ont 
été systématiquement vérifiées avec des 
solutions exactes et validées en utilisant des 
données expérimentales de la littérature. 
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Abstract :  This Ph.D. thesis deals with the 
metastable two-phase flows typical of accidental 
transients that could occur in nuclear power 
plants. Those phenomena are of difficult 
treatment due to the topological difficulty of the 
flow, the interphase transfers and the strong 
coupling between thermodynamic features and 
mathematical aspects. 
The methods today in use in industry do not 
fully describe the complexity of these flows. In 
fact, if these methods take into account a certain 
thermodynamic disequilibrium between liquid 
and vapor water, they lack mathematical 
consistency. On the other hand, the hyperbolic 
methods that have been proposed for 
overcoming this problem are slow to spread in 
the industry because most of them use simple 

 equations of state that are not adequate for 
industrial calculations. The purpose of this 
Ph.D. thesis is to improve these  new approaches 
by coupling modern hyperbolic methods to 
accurate equations of state. The final product of 
this work is a new model for the industrial 
analysis of metastable two-phase flows that 
incorporates novel techniques for the calculation 
of interfacial transfers and up-to-date techniques 
for the estimation of steam-water properties. 
Moreover, it is computationally affordable for 
its use in industrial configurations. 
The methods developed in this thesis have been 
sistematically verified against exact solutions 
and validated using experimental data of the 
literature. 
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