
HAL Id: tel-01891835
https://pastel.hal.science/tel-01891835

Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for the resolution of stochastic control
problems in high dimension by using probabilistic and

max-plus methods
Eric Fodjo

To cite this version:
Eric Fodjo. Algorithms for the resolution of stochastic control problems in high dimension by using
probabilistic and max-plus methods. Analysis of PDEs [math.AP]. Université Paris Saclay (COmUE),
2018. English. �NNT : 2018SACLX034�. �tel-01891835�

https://pastel.hal.science/tel-01891835
https://hal.archives-ouvertes.fr


N
N

T
:2

01
8S

A
C

LX
03

4

Algorithms for solving
stochastic control problems in high

dimension by combining probabilistic and
max-plus methods

Thèse de doctorat de l’Université Paris-Saclay
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famille pour m’avoir épaulé pendant les moments difficiles par lesquels je suis passé au cours
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Résumé en français de plus de 4000 caractères

Les équations d’Hamilton-Jacobi-Bellman résultent de l’application du principe de la pro-
grammation dynamique aux problèmes de contrôle optimal. Les problèmes de contrôle op-
timal consistent à trouver le paramètre ou contrôle optimisant l’évolution d’un système dy-
namique contrôlé suivant un certain critère. Le critère peut être de maximiser ou minimiser
une certaine fonction dépendante de la trajectoire du système et définie sur un intervalle de
temps fini ou infini. On parle alors de problème de contrôle optimal à horizon fini ou infini.
Suivant que la nature de la dynamique du système étudié est stochastique ou déterministe, le
problème de contrôle optimal est alors stochastique ou déterministe. Dans l’approche de la
programmation dynamique, résoudre un problème de controle optimal nécessite de considérer
une fonction appelée fonction valeur qui est à tout instant t et pour tout état x, la valeur
du critère optimal associé au problème lorsque le système part à l’instant t de l’état x. Le
principe de la programmation dynamique qui consiste à observer que toute sous-trajectoire
d’une trajectoire optimale du système est également optimale sur l’intervalle de temps réduit
considéré, permet d’obtenir que la fonction valeur du problème est solution d’une équation
aux dérivées partielles qui est l’équation d’Hamilton-Jacobi-Bellman. Cette solution peut ne
pas être une solution classique étant donné que la fonction valeur est en général non dérivable.
La notion de solution de viscosité est alors utilisée. Il s’agit d’un type de solutions irrégulières
bien adaptées aux problèmes de contrôle optimal. La fonction valeur du problème est ainsi
calculée comme solution de viscosité de l’équation d’Hamilton-Jacobi-Bellman en utilisant des
méthodes numériques propres aux équations aux dérivées partielles. Cela permet de déduire
ensuite le contrôle optimal. Comme méthodes numériques utilisées, on a par exemple la
méthode des différences finies, les méthodes semi-Lagrangiennes, les méthodes probabilistes
et les méthodes max-plus. La convergence des schémas numériques vers la solution de viscosité
d’une équation aux dérivées partielles a été obtenue comme résultat par Barles et Sougani-
dis sous les conditions de consistence, monotonie et stabilité du schéma. Le premier type de
méthodes utilisé dans ce cadre est la méthode des différences finies. Elle est assez précise mais
a un temps de calcul exponentiel en la dimension de l’espace de l’état du système dynamique
considéré. Ainsi, elle est confrontée à ce qu’on appelle la malédiction de la dimension qui fait
que pour des espaces de dimension supérieure ou égale à 4, elle est inutilisable avec les puis-
sances de calcul actuelles. Les méthodes semi-Lagrangiennes ont l’avantage de pouvoir être
utilisées dans des cas où la méthode des différences finies peut difficilement s’appliquer à cause
d’une monotonie difficile à obtenir (Equations aux dérivées partielles(EDP) du second ordre
où le coefficient du terme de dérivée seconde est une matrice à diagonale non dominante),
mais rencontrent les mêmes limitations que la méthode des différences finies en termes de
temps de calcul. Les méthodes probabilistes permettent de dépasser ces limitations en temps
de calcul car elles peuvent être appliquées quelquesoit la dimension de l’état du système dy-
namique. Par contre les schémas probabilistes rencontrés jusqu’ici dans la littérature sont
monotones sous des conditions difficilement satisfaisables par l’équation d’Hamilton-Jacobi-
Bellman lorsque celle-ci est très fortement non-linéaire. De plus, les méthodes probabilistes
sont linéaires alors qu’un problème de contrôle optimal est par essence non linéaire. Cela
pose problème quant-à la précision de la solution obtenue par une méthode probabiliste.
Les méthodes max-plus quant-à elles, marchent bien pour les problèmes de contrôle optimal
déterministes, leur caractère non linéaire permettant cette fois-ci de gagner en précision. Mais
pour les problèmes de contrôle optimal stochastiques, leur temps de calcul devient double-
ment exponentiel en la dimension. Ce qui les rend pires que la méthode des différences finies.
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On introduit dans cette thèse une nouvelle méthode alliant méthode probabiliste et méthode
max-plus pour profiter de l’adéquation des méthodes probabilistes aux espaces de dimen-
sion élevé avec le caractère non linéaire des méthodes max-plus. Cette méthode est appelée
méthode probabiliste max-plus. Pour pouvoir être appliquée, elle nécessite un schéma prob-
abiliste monotone. Nous avons donc tout d’abord amélioré les schéma probabilistes existants
pour les rendre monotones sous des hypothèses simples. Les problèmes auxquels nous nous
intéressons particulièrement sont des problèmes de contrôle stochastique à horizon fini. En
utilisant les schémas probabilistes que nous avons introduits, ces problèmes sont résolubles
par l’utilisation d’un opérateur probabiliste backward pas à pas en partant de l’expression
de la fonction valeur à l’horizon. L’astuce utilisée dans la méthode probabiliste max-plus
consiste alors à approximer la fonction valeur à l’horizon par un supremum si le problème de
contrôle optimal est un problème de maximization ou un infimum dans le cas contraire, de
fonctions appartenant à un espace fonctionnel de dimension faible. Nous utilisons alors un
théorème que nous avons introduit dans cette thèse qui donne la max-plus distributivité de
tout operateur monotone et sous-homogène agissant sur un supremum de fonctions comme
un opérateur intégral. Si les coefficients de l’équation d’Hamilton-Jacobi-Bellman sont tel que
l’opérateur probabiliste backward utilisé pour la résoudre conserve pas à pas la forme de la
fonction valeur comme supremum ou infimum de fonctions dans l’espace fonctionnel de faible
dimension considéré, la méthode probabiliste max-plus est alors encore plus précise en ce sens
qu’elle utilise une regression linéaire paramétrique pour déterminer les fonctions entrant dans
le supremum ou l’infimum de la fonction valeur en recherchant ces fonctions dans l’espace
théorique dans lequel elles sont censées être. Un exemple d’application est présenté dans le
cadre du calcul du prix de sur-réplication d’une option dont le cross-gamma peut changer
de signe dans un modèle de corrélation incertaine. Le payoff de l’option est alors approximé
par un supremum de fonctions quadratiques et la fonction valeur du problème est déduite
à chaque pas de temps comme un supremum de fonctions quadratiques dont les coefficients
sont déduits par regression. Les calculs sont faits en dimension 2 et 5 en un temps raisonable.
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0.1 Notations

| · | denotes the Euclidean norm in any space Rq, (q ∈ N, q ≥ 1). Sometimes, to be more
explicit, we denote it ‖ · ‖2. On the space of matrices Rn×m, | · | denotes the matrix norm
defined for an element M of Rn×m by :

|M | = sup
r∈Rm
r 6=0

|Mr|
|r|

.

On the space of functions f on a given subspace A of Rq, | · | denotes the sup norm defined
by :

|f | = sup
x∈A
|f(x)|

In this definition, f(x) can be an element of Rm (m ≥ 1) or an element of Rn×m. We will use
sometimes, the following norms for functions defined on a space A when A ⊂ R× Rq.

|f |0 = sup
(t,x)∈A

|f(t, x)|,

and for

[f ]δ = sup
(t,x)6=(s,y)

|f(t, x)− f(s, y)|
(|x− y|+ |t− s|1/2)δ

,

we define the norm | · |δ by :
|f |δ = |f |0 + [f ]δ.

For two vectors u and v of Rn, u · v denotes the scalar product of u and v.
For a given real number a, a+ = max(a, 0) and a− = −min(a, 0). These notations extend

to real functions where for a real function w, w+ is defined by w+ : x 7→ w(x)+ and w− is
defined by w− : x 7→ w(x)−.

For a given function v having a time variable t and a space variable x, Dxv and D2
xv

denote respectively the gradient and the Hessian of v with respect to the space variable x.
When there is no ambiguity (the function v has only a space variable), we will denote the
gradient and the Hessian respectively by Dv and D2v.

For a given space A, C (A) denotes the set of continuous functions on A. If A is a space of
two variables t and x (t for time and x for space), C 1,2(A) denotes the space of functions once
continuously differentiable with respect to t and twice continuously differentiable with respect
to x and Cp(A) denotes the set of continuous functions on A with a polynomial growth in the
variable x. That means that for Φ ∈ Cp(A), there exists m ∈ N∗ and K > 0 such that

|Φ(t, x)| ≤ K(1 + |x|m), ∀(t, x) ∈ A.

If A is a space of only one variable x, this inequality becomes

|Φ(x)| ≤ K(1 + |x|m), ∀x ∈ A.

C k(A) denotes the set of functions k continuously differentiable on A and C k
p (A) denotes

the subset of C k(A) where all the corresponding partial derivatives are of polynomial growth.
C k

b (A) denotes the subset of functions of C k(A) having all their partial derivatives up to order
k bounded.
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All these spaces of functions are sometimes denoted respectively as C (A,B) C 1,2(A,B),
Cp(A,B), C k(A,B), C k

p (A,B), C k
b (A,B) in an equivalent manner where B denotes the space

where live the functions values.
C∞(A) denotes the set of function continuously differentiable at any order k > 0.
USC(A) denotes the set of real upper semicontinuous functions on A while LSC(A) de-

notes the set of real lower semicontinuous functions on A. We have the same definition for
USC(A,Rq) and LSC(A,Rq) except that in this case, the functions are Rq-valued functions.

χa<b is an indicator function which is equal to 1 if a < b and 0 otherwise.
S+(n) and S++(n) denote respectively the set of symmetric and nonnegative matrices and

the set of symmetric and positive definite n× n matrices. S(n) denotes the set of symmetric
n× n matrices.

If A is a matrix, [A]ij denotes the coefficient of A at the i-th row and the j-th column. If
v is a vector, [v]i denotes the i-th coefficient of v.

Sometimes the Kronecker symbol δij will be used. Its value is 0 if i 6= j and 1 otherwise.
I denotes the identity matrix whose dimensions should be infered from the context.
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0.2 Context and motivations

Optimal control theory is a vast domain of applied mathematics where mathematicians are
interested in solving problems like deterministic optimal control problems with finite horizon,
deterministic optimal control problems with infinite horizon, stochastic control problems with
finite horizon, stochastic control problems with infinite horizon and stochastic differential
games. All these problems consist in finding the value of a variable called a control, such that
a given function is optimized in a given sense on trajectories of a given process depending on
the control. The term stochastic means that these trajectories are random (the optimization
is then done on an expectation) while the term deterministic means that these trajectories
are deterministic. Finite horizon means that the process is studied in a bounded time interval
while inifinite horizon refers to cases where the process is considered in unbounded time. All
these problems are solved in the dynamic programming approach, by computing an optimal
function called the value function which satifies a partial differential equation (PDE) called
the Hamilon-Jacobi-Bellman equation or in the differential games problems, the Hamilton-
Jacobi-Bellman-Isaacs equation.

We are interested particularly here in stochastic optimal control problems with finite hori-
zon despite the fact that we present all the type of optimal control problems aforementioned
in Chapter 1. There are a lot of methods that can be used to solve this type of problem. Each
of these methods have a positive and a negative aspect. We can divide them in two groups
: grid-based methods and probabilistic methods. Grid based methods like finite difference
method and Semi-Lagrangian methods applied to the Hamilton-Jacobi-Bellman equation can
be very accurate but cannot be used numerically for problems with high space dimension
(dimension greater or equal to 4) because the representation of the grid in memory becomes
too large. This problem is known as the curse of dimensionality. Probabilistic methods, on
the other hand, can at least be used in high dimension; but for that, a good probabilistic
interpretation of the stochastic control problem is needed. More recently, a third type of
method called the max-plus method has been introduced. However, it was mainly used for
deterministic control problems where it was also subject to the curse of dimensionality. There
has been a breakthrough in 2007 with the paper [52] of McEneaney where the curse of dimen-
sionality is replaced by a curse of complexity dued to the use of too many functions in the
representation of the value function, which can be solved by using a pruning algorithm. After
that, the method has also been extended to the stochastic case [43, 54]. As for probabilistic
methods, Cheridito, Soner, Touzi and Victoir obtained a probabilistic interpretation of the
Hamilton-Jacobi-Bellman equation in [17] which allowed them to build a probabilistic scheme
for the resolution of the Hamilton-Jacobi-Bellman equation. This probabilistic scheme have
been fully studied in [25] by Fahim, Touzi and Warin.

Nevertheless, the use of the max-plus method in the stochastic case causes an explosion
of the curse of complexity related to this method, making any pruning algorithm very hard
to implement and the probabilistic scheme resulted from the work of Cheridito, Soner, Touzi
and Victoir can only be applied to particular Hamilton-Jacobi-Bellman equation not nonlinear
enough with respect to the second order derivatives to represent all the stochastic optimal
control problems. The work presented here, tries to solved this two questions.

We introduce two new probabilistic schemes. The first one is monotone under restrictive
boundness conditions on the coefficient of the PDE while the second one is monotone under
less restrictive conditions allowing it to be used with Hamilton-Jacobi-Bellman equation with
unbounded coefficent and unbounded terminal function. We also introduce a new method
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for solving Hamilton-Jacobi-Bellman equations that is a mix of max-plus and probabilistic
methods. We call it a max-plus probabilistic method. With this method, we get rid of
the need of a pruning algorithm related to max-plus method as this pruning algorithm is
incoporated in the method. On the other hand, we gain the accuracy of max-plus methods
as the non linearity of the value function is well represented.

0.3 Contributions

In Chapter 1, after having presented the different type of optimal control problems, the
related Hamilton-Jacobi-Bellman equations and the results related to viscosity solutions of
Hamilton-Jacobi-Bellman equations in bounded and unbounded settings with respect to the
coefficients and the terminal function of the PDE, we give an improvement of the result of
Da Lio and Ley [23] (Lemma 1.2.2 and Lemma 1.2.3) allowing us to have the existence on
any time interval [0, T ] of the viscosity solution of an Hamilton-Jacobi-Bellman equation with
coefficients and terminal function satisfying growth conditions similar to those of [23].

In Chapter 2, we extend the well known result of convergence of Barles and Sougani-
dis [8] to the case where the viscosity solution lives in the space of unbounded functions
(Theorem 2.1.3). This is done after giving some general results on finite difference method.

In Chapter 3, we presents all the results related to the new probabilistic schemes we
introduced. After having obtained error estimates of different probabilistic approximations
of functions derivatives in the bounded setting, we prove the convergence of each of the two
probabilistic schemes that we introduced here and obtain related error estimates. In a second
part, we present the result we obtained in the unbounded setting with the second probabilistic
scheme that unfortunately did not allow us to obtain the convergence of the scheme. From
our point of view, this can be improved and is let to future work.

In Chapter 4, we present the new max-plus probabilistic method that we introduce. We
give firstly theoretical related results before describing the method algorithm and the related
complexity results.

In Chapter 5, we give the numerical results of the tests we have done which are unfortu-
nately incomplete. Indeed, it took us a lot of time to test the max-plus probabilistic method
with the second probabilistic scheme on a different problem than the one presented in this
manuscript, but due to numerical issues, which were not dependent on the method or the
scheme but rather on the type of problem we chose, we did not get relevant results.

We end this manuscript with a conclusion presenting works that we were not able to
complete in the allowed time and that we hope will know a continuation.
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CHAPTER 1
Optimal control equations and

Viscosity solutions

In this section, we define optimal control problems and present the Hamilton-Jacobi-Bellman
and Hamilton-Jacobi-Bellman-Isaacs equations. We then give some results encountered in
the literature about viscosity solutions which are in general the type of solutions considered
for Hamilton-Jacobi-Bellman equations. We also give improvements of results on viscosity
solution obtained by Da Lio and Ley in a setting closed to linear quadratic optimal control
problems.
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1.1 Optimal control problems and Hamilton-Jacobi-Bellman equa-
tions

We are interested particularly in this thesis in deterministic or stochastic control problems
with finite or infinite horizon and differential games problems. We present the general forms
of each of these classes of problems in this section. As we are going to see, when using the
dynamic programming approach, these problems are solved by finding the value function of
the problem which can sometimes be identified as the classical solution of a first-order (for de-
terministic problems) or second-order (for stochastic problems) partial differential equation
called the Hamilton-Jacobi-Bellman equation or the Hamilton-Jacobi-Bellman-Isaacs equa-
tion for differential games. We recall here verification theorems allowing to make this identi-
fication and which have been extended to the case where the value function is not a classical
solution but a viscosity solution. This last notion will be studied in the next section.

1.1.1 Deterministic optimal control problems with finite horizon

A deterministic optimal control problem with finite horizon consists in optimizing a functional
payoff defined on trajectories of a deterministic control process in bounded time. Let t be the
time variable and x the space variable of such a problem. Let t0 < t1 be two real numbers
such that t ∈ [t0, t1]. Let O be an open set of Rn for n ≥ 1 such that the trajectories of the
deterministic control process live in O. O may be bounded and in this case, it is supposed
that ∂O is a compact manifold of class C2. Let Q := [t0, t1) × O. Q is the domain of the
problem.

To define the problem, we need to define properly deterministic control processes starting
from any point (t, x) ∈ Q̄ and controlled by another process u. We will denote these processes
by (xt,x,u(s))t≤s≤t1 as . We consider the following differential equation.


dxt,x,u(s)

ds
= f(s, xt,x,u(s), u(s)), t ≤ s ≤ t1

xt,x,u(t) = x,

(1.1)

where for all s, u(s) ∈ U ⊂ Rm (m ≥ 1), U is a closed set, and f : [t0, t1]×Rn × U → Rn
is a continuous function.

To ensure the existence and unicity of the processes xt,x,u, the following conditions on f
and the process u are generally imposed.

A 1.1.1. For all ρ > 0, there exists Kρ > 0 such that :

|f(t, x, v)− f(t, y, v)| ≤ Kρ|x− y|, (1.2)

for all t ∈ [t0, t1], x, y ∈ Rn and v ∈ U such that |v| ≤ ρ.

A 1.1.2. u(·) is a bounded Lebesgue measurable function from [t, t1] to U .

Each process xt,x,u is the state process starting at time t from x and the allowed processes
u are the control processes defined from time t. Let U 0(t) be the set of these control processes.

By definition, the processes (xt,x,u(s))s≥t stop at s = t1. But, in the case where O is
bounded, it is usually required that the processes (xt,x,u(s))s≥t stay in Ō and stop at any
time when they exit Ō. So, the processes may stop at a time τ < t1.
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Let us denote by τ t,x,u the stopping time of a process xt,x,u. τ t,x,u is the exit time of the
process (s, xt,x,u(s))s from the closure Q̄ of the domain Q.

A running functional payoff that we shall denote by L and a final functional payoff that
we shall denote by Ψ are considered such that :

• if O is bounded, Ψ : ([t0, t1)× ∂O) ∪ ({t1} × Ō)→ R and

Ψ(t, x) :=

{
g(t, x) if (t, x) ∈ [t0, t1)× ∂O
ψ(x) if (t, x) ∈ {t1} × Ō,

(1.3)

otherwise for O = Rn, Ψ : {t1} × Ō → R and

Ψ(t1, x) = ψ(x), x ∈ Ō (1.4)

with g ∈ C([t0, t1)× ∂O) and ψ a given function on Ō.

• L ∈ C([t0, t1]× Ō × U)

The overall functional payoff to minimize is a function J given by the following expression :

J(t, x;u) :=

∫ τ t,x,u

t
L(s, xt,x,u(s), u(s))ds+ Ψ(τ t,x,u, xt,x,u(τ t,x,u)). (1.5)

We will consider here a problem of minimization of the overall functional payoff. The
general form of the problem is then to find, for any (t, x) ∈ Q̄, u∗ ∈ U 0(t) such that :

J(t, x;u∗) = inf
u∈U 0(t)

J(t, x;u). (1.6)

One may consider for (t, x) ∈ Q̄ a smaller set of controls in the previous minimization. The
objective may be to ensure that τ t,x,u = t1 for all (t, x) ∈ Q̄ by considering only controls whose
related state processes do not exit Ō until t1. In such cases, the set of controls considered for
the minimization will also depends on x. A more general form of the deterministic optimal
control problem is then to find, for any (t, x) ∈ Q̄, u∗ ∈ U (t, x) such that :

J(t, x;u∗) = inf
u∈U (t,x)

J(t, x;u), (1.7)

where U (t, x) ⊂ U 0(t).
To be able to apply to this problem the dynamic programming principle which will be

stated further, the following condition is generally imposed on U (t, x) :

A 1.1.3. For u ∈ U (t, x), let r ∈ [t, τ t,x,u] and u′(·) ∈ U (r, xt,x,u(r)). If we define a control
ũ as :

ũ(s) :=

{
u(s), t ≤ s ≤ r
u′(s), r < s ≤ t1,

(1.8)

then ũ ∈ U (t, x).
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For what follows, we will consider the problem formulated through the equation (1.6).
In dynamic programming setting, to solve this problem, a function that is called the value
function, is introduced. It is defined here as follows :

V (t, x) := inf
u∈U 0(t)

J(t, x;u). (1.9)

The value function respects a principle called the Dynamic Programming Principle corre-
sponding to the following identity. For (t, x) ∈ Q̄ and r ∈ [t, t1] :

V (t, x) = inf
u(·)∈U 0(t)

[∫ r∧τ t,x,u

t
L(s, xt,x,u(s), u(s))ds

+ g(τ t,x,u, xt,x,u(τ t,x,u))χτ t,x,u<r + V (r, xt,x,u(r))χr≤τ t,x,u

] (1.10)

Using this principle, the value function, when smooth enough, is identified as the classi-
cal solution of a Partial Differential Equation (PDE). The boundary condition of this PDE
depends on whether O is bounded or equal to Rn.

For O = Rn, the PDE is :
∂

∂t
W (t, x) + inf

v∈U
{L(t, x, v) + f(t, x, v) ·DxW (t, x)} = 0, (t, x) ∈ Q,

W (t1, x) = Ψ(t1, x), x ∈ O.
(1.11)

For O bounded, the PDE is :
∂

∂t
W (t, x) + inf

v∈U
{L(t, x, v) + f(t, x, v) ·DxW (t, x)} = 0 (t, x) ∈ Q

W (t1, x) = Ψ(t1, x), x ∈ Ō
W (t, x) ≤ Ψ(t, x), (t, x) ∈ [t0, t1)× ∂O.

(1.12)

The following statement is assumed to be true for O bounded.

A 1.1.4. For every (s, ξ) ∈ [t0, t1)× ∂O, there exists v(s, ξ) ∈ U such that :

f(s, ξ, v(s, ξ)) · η(ξ) > 0,

where η(ξ) is the exterior unit normal at ξ ∈ ∂O.

By convention, the equation of PDE (1.12) and (1.11) is rather written as :

− ∂

∂t
W (t, x) +H(t, x,DxW (t, x)) = 0, (1.13)

where for (t, x, p) ∈ [t0, t1)× Rn × Rn

H(t, x, p) = sup
v∈U
{−p · f(t, x, v)− L(t, x, v)} . (1.14)

It is the Hamilton-Jacobi-Bellman equation for deterministic optimal control problems with
finite horizon and the function H is called the Hamiltonian.

The verification theorems allowing to solve the optimal control problem using the PDE (1.12)
or (1.11) are stated as follows in [28] :
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Theorem 1.1.1 ([28, Theorem I.5.1]). O is supposed to be equal to Rn. Let W ∈ C1(Q̄) such
that W satisfies (1.11). Then :

W (t, x) ≤ V (t, x), ∀(t, x) ∈ Q̄.

Moreover, if there exists (t, x) ∈ Q and u∗ ∈ U 0(t) such that :

L(s, xt,x,u
∗
(s), u∗(s))+f(s, xt,x,u

∗
(s), u∗(s)) ·DxW (s, xt,x,u

∗
(s))

=−H(s, xt,x,u
∗
(s), DxW (s, xt,x,u

∗
(s))),

for almost all s ∈ [t, t1], then u∗ is optimal for initial data (t, x) and W (t, x) = V (t, x).

Theorem 1.1.2 ([28, Theorem I.5.2]). O is supposed to be bounded. Let W ∈ C1(Q̄) such
that W satisfies (1.12). Then :

W (t, x) ≤ V (t, x),∀(t, x) ∈ Q̄.

Moreover, if there exists (t, x) ∈ Q and u∗ ∈ U 0(t) such that :

L(s, xt,x,u
∗
(s), u∗(s))+f(s, xt,x,u

∗
(s), u∗(s)) ·DxW (s, xt,x,u

∗
(s))

=−H(s, xt,x,u
∗
(s), DxW (s, xt,x,u

∗
(s))),

(1.15)

for almost all s ∈ [t, τ t,x,u
∗
] and W (τ t,x,u

∗
, xt,x,u

∗
(τ t,x,u

∗
)) = Ψ(τ t,x,u

∗
, xt,x,u

∗
(τ t,x,u

∗
)) in case

τ t,x,u
∗
< t1, then u∗ is optimal for initial data (t, x) and W (t, x) = V (t, x).

These theorems allow one to test the optimality of a given control process.

1.1.2 Deterministic optimal control problems with infinite horizon

A deterministic optimal control problem with infinite horizon consists in optimizing a func-
tional payoff defined on trajectories of a deterministic control process considered on an un-
bounded time interval. The unboundness of the time interval may cause definition problems
for the deterministic control process and for the overall functional payoff which may be infi-
nite.

To simplify things and by using the same notations as in the previous subsection, let us
suppose that the running payoff L, the function g involved in the definition of the terminal
payoff Ψ and the drift function f do not depend on the time variable as in [28]. In this
case, as shown in [28], the dependence of the deterministic optimal problem on the time
variable is not relevant anymore. So we may define the state processes and control processes
as starting from time 0. The state processes xt,x,u defined in the previous subsection, become
the processes xx,u defined by :

dxx,u(s)

ds
= f(xx,u(s), u(s)), s ≥ 0

xx,u(0) = x,
(1.16)

f verifies a condition similar to A 1.1.1 and u is a Lebesgue measurable function defined on
[0,∞). The set of controls is then denoted by U 0 instead of U 0(t).

When O = Rn, there is no stopping time anymore. But, for O bounded, a stopping
time τx,u is considered, which is the exit time of xx,u from Ō. In what follows, we use the
convention τx,u =∞ for O = Rn.
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A discount factor with a constant discount rate β is introduced in the definition of the
overall functional payoff which is then equal to the following :

J(x;u) =

∫ τx,u

0
e−βsL(xx,u(s), u(s))ds+ e−βτ

x,u
g(xx,u(τx,u))χτx,u<∞, (1.17)

where β > 0, L ∈ C(Ō × U), g ∈ C(∂O).
The optimal control problem is then defined on controls u such that :∫ τx,u

0
e−βs|L(x(s), u(s))|ds <∞,

to ensure that J(x;u) is well defined.
Let Ux be this set of controls. Ux is assumed to be non empty for all x ∈ Ō.
As in the previous subsection, we consider here a problem of minimization of the functional

payoff. The value function is then defined by :

V (x) = inf
u∈Ux

J(x;u), x ∈ Ō.

The Dynamic Programming Principle verified by the value function is expressed here by
the following identity. For x ∈ Ō and r ≥ 0 :

V (x) = inf
u(·)∈Ux

[∫ r∧τx,u

0
e−βsL(xx,u(s), u(s))ds

+ e−βτ
x,u
g(xx,u(τx,u))χτx,u<r + e−βrV (x(r))χr≤τx,u

]
.

(1.18)

The Hamilton-Jacobi-Bellman equation is in this case, as follows :

βW (x) +H(x,DW (x)) = 0, x ∈ O, (1.19)

where the Hamiltonian H is defined by

H(x, p) = sup
v∈U
{−p · f(x, v)− L(x, v)}

for x, p ∈ Rn.
In [28], the verification theorem is given only for O bounded under the following assump-

tion.

A 1.1.5. For every ξ ∈ ∂O, there exists v(ξ) ∈ U such that :

f(ξ, v(ξ)) · η(ξ) > 0,

where η(ξ) denotes the exterior unit normal at ξ ∈ ∂O.

This assumption is similar to A 1.1.4.
The PDE that should verify the value function is :{

βW (x) +H(x,DW (x)) = 0, x ∈ O,
W (x) ≤ g(x), x ∈ ∂O.

(1.20)

The verification theorem is then stated as follows.
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Theorem 1.1.3 ([28, Theorem I.7.1]). Let W ∈ C1(Ō) such that W satisfies (1.20). If for
all x ∈ Ō and u ∈ Ux such that τx,u =∞, lim

r↑∞
e−βrW (xx,u(r)) = 0, then :

• W (x) ≤ V (x) for all x ∈ Ō,

• If there exists x ∈ O and u∗ ∈ Ux such that :

L(xx,u
∗
(s), u∗(s))+f(xx,u

∗
(s), u∗(s)) ·DW (xx,u

∗
(s))

= −H(xx,u
∗
(s), DW (xx,u

∗
(s)))

(1.21)

for almost every s ∈ [0, τx,u
∗
) and W (xx,u

∗
(τx,u

∗
)) = g(xx,u

∗
(τx,u

∗
)) if τx,u

∗
<∞, then

u∗ is optimal for initial data x and W (x) = V (x).

1.1.3 Stochastic optimal control problems with finite horizon

While a deterministic optimal control problem consists in optimizing a functional payoff on
trajectories of deterministic control processes, a stochastic optimal control problem look at
the optimization of the expectation of a functional payoff on trajectories of stochastic control
processes. As in section 1.1.1, a time variable t in a bounded interval [t0, t1] of R and a
space variable x in an open set O of Rn are considered. O may be bounded. In this case, we
suppose that ∂O is a compact of class C3.

Stochastic control processes considered are usually continuous time Markov processes. We
will limit ourselves here only to Markov diffusion processes.

Let (Ω,F , (Ft)t0≤t≤t1 , P ) be a filtered probability space and (Bt)t0≤t≤t1 be a Rd Brownian
motion defined on this filtered probability space. We denote by ν the 4-tuple (Ω, (Ft)t0≤t≤t1 , P,B)
that is called a reference probability system (see [28]).

We also denote the control processes here by xt,x,u as in Section 1.1.1. They are solutions
of the following stochastic differential equation :{

dxt,x,u(s) = f(s, xt,x,u(s), u(s))ds+ σ(s, xt,x,u(s), u(s))dBs, t ≤ s ≤ t1,
xt,x,u(t) = x,

(1.22)

where u(s) ∈ U , U closed subset of Rm, f : [t0, t1]×Rn×U → Rn, σ : [t0, t1]×Rn×U → Rn×d.
For this stochastic differential equation to have a unique solution {Fs}-progressively mea-

surable with continuous sample paths, the following assumptions are usually required.

A 1.1.6. f and σ are continuous functions on [t0, t1]×Rn × U and for any v ∈ U , f(·, ·, v),
σ(·, ·, v) are once continuously differentiable on [t0, t1]× Rn.

A 1.1.7. There exists a constant C > 0 such that :

|ft|+ |fx| ≤ C,
|σt|+ |σx| ≤ C,
|f(t, x, v)| ≤ C(1 + |x|+ |v|),
|σ(t, x, v)| ≤ C(1 + |x|+ |v|).

(1.23)

where ft, σt, fx, σx denote respectively the t-partial derivatives and the gradients with respect
to x of the functions f and σ. The norm considered for the partial derivatives is the sup norm
as defined in section 0.1.
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A 1.1.8. The control processes u(·) are {Fs} progressively measurable and such that

Eν
[∫ t1

t
|u(s)|2ds

]
<∞. (1.24)

The control processes {Fs}-progressively measurable which verify the inequality (1.24)
are called admissible control processes.

As in Section 1.1.1, the process (xt,x,u(s))s≥t stops by definition at s = t1. However, for O
bounded, it will stop at its exit time from Ō if this time is lower than t1. We will denote by
τ t,x,u the stopping time of the process xt,x,u. As this process is stochastic and Fs- measurable,
τ t,x,u is random and adapted to the filtration Fs.

The running functional payoff L and the terminal functional payoff Ψ are real functions
which verify the following conditions :

A 1.1.9. L ∈ C([t0, t1]× Ō × U) and Ψ ∈ C([t0, t1]× Ō)

A 1.1.10. There exists a constant C and an integer k such that :

|L(t, x, v)| ≤ C(1 + |x|k + |v|k),
|Ψ(t, x)| ≤ C(1 + |x|k).

(1.25)

The overall payoff function is then :

Jν(t, x;u) = Eν
[∫ τ t,x,u

t
L(s, xt,x,u(s), u(s))ds+ Ψ(τ t,x,u, xt,x,u(τ t,x,u))

]
. (1.26)

Let At,ν denote the set of admissible control processes starting from time t in the reference
probability system ν. As in the previous sections, we consider here a minimization problem.
If the goal is to minimize Jν(t, x, u) over the control processes of At,ν for a given reference
probability system ν, then the solution of the problem is ν-optimal and the related value
function is :

Vν(t, x) = inf
u∈At,ν

Jν(t, x;u). (1.27)

If the goal is to minimize the overall payoff function Jν(t, x, u) over all control processes of
the sets At,ν for any reference probability system ν, then a solution of the problem is globally
optimal and the related value function is defined by :

VPM(t, x) = inf
ν
Vν(t, x).

To study the value function VPM with the dynamic programming theory, a stronger version
of the dynamic programming principle is needed. It is expressed in the following way where
V = VPM.

Definition 1.1.1 (Dynamic programming principle). For every ν, u(·) ∈ Atν and {Fs}-
stopping time θ,

V (t, x) ≤ Eν
[∫ τ t,x,u∧θ

t
L(s, xt,x,u(s), u(s))ds

+ V (τ t,x,u ∧ θ, xt,x,u(τ t,x,u ∧ θ))

]
.

(1.28)
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For every δ > 0, there exist ν and u(·) ∈ Atν such that :

V (t, x) + δ ≥ Eν
[∫ τ t,x,u∧θ

t
L(s, xt,x,u(s), u(s))ds

+ V (τ t,x,u ∧ θ, xt,x,u(τ t,x,u ∧ θ))

]
.

(1.29)

The Hamilton-Jacobi-Bellman equation here is :

− ∂

∂t
W (t, x) +H(t, x,DxW (t, x), D2

xW (t, x)) = 0, (t, x) ∈ [t0, t1)×O, (1.30)

where the Hamiltonian H is defined by :

H(t, x, p, A) = sup
v∈U

[
−f(t, x, v) · p− 1

2
Tr (σσᵀ(t, x, v)A)− L(t, x, v)

]
, (1.31)

for (t, x) ∈ [t0, t1)×O, p ∈ Rn, A ∈ S(n), set of n× n symmetric matrices.
The PDE that should verify here the value function V = VPM = W is then −

∂

∂t
W (t, x) +H(t, x,DxW (t, x), D2

xW (t, x)) = 0, (t, x) ∈ Q = [t0, t1)×O

W (t, x) = Ψ(t, x), (t, x) ∈ ∂Q.
(1.32)

This form of the PDE include the case of O = Rn or O bounded. The verification theorem
allowing to identify the value function VPM as the classical solution of this PDE is then stated
as follows.

Theorem 1.1.4 ([28, Theorem IV.3.1]). Let W ∈ C1,2([t0, t1) × O) ∩ Cp([t0, t1] × Ō) be a
solution of the PDE (1.32). Then :

• W (t, x) ≤ Jν(t, x;u) for any probability reference system ν, control process u ∈ At,ν and
any initial data (t, x) ∈ Q.

• If there exist a reference probability system ν∗ = (Ω∗, {F ∗s }, P ∗, B∗) and u∗ ∈ At,ν∗ such
that :

u∗(s) ∈ arg min
[
f(s, xt,x,u

∗
(s), v) ·DxW (s, xt,x,u

∗
(s))

+
1

2
Tr
(
σσᵀ(s, xt,x,u

∗
(s), v)D2

xW (s, xt,x,u
∗
(s))

)
+ L(s, xt,x,u

∗
(s), v)

]
for Lebesgue×P ∗-almost all (s, ω) ∈ [t, τ t,x,u

∗
]×Ω∗, then W (t, x) = VPM(t, x) = Jν∗(t, x;u∗).

Under sufficient conditions, VPM = Vν for all reference probability system ν. We give here
a Corollary of Theorem IV.7.1 of [28] stating additional conditions to have this result in the
case of O = Rn.

Corollary 1.1.1 ([28, Theorem IV.7.1]). Assume A 1.1.6-A 1.1.10 and O = Rn. If U is
compact, σ is bounded and Ψ(t1, ·) ∈ C2

p(Rn), then for all reference probability system ν,
VPM = Vν .
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The optimal control problem presented above, can be generalized with the use of a discount
factor with a discount rate function β : [t0, t1]× Rd × U → R. The payoff function is then :

Jν(t, x;u) = Eν
[∫ τ t,x,u

t
e−

∫ s
t β(r,xt,x,u(r),u(r))drL(s, xt,x,u(s), u(s))ds

+e−
∫ τt,x,u
t β(r,xt,x,u(r),u(r))drΨ(τ t,x,u, xt,x,u(τ t,x,u))

]
.

The Hamilton-Jacobi-Bellman equation is

− ∂

∂t
W (t, x) +H(t, x,W (t, x), DxW (t, x), D2

xW (t, x)) = 0, (t, x) ∈ [t0, t1)×O,

where the Hamiltonian is defined by :

H(t, x, r, p, A) = sup
v∈U

[
−f(t, x, v) · p− 1

2
Tr (σσᵀ(t, x, v)A) + β(t, x, v)r − L(t, x, v)

]
,

for (t, x) ∈ [t0, t1)×O, r ∈ R, p ∈ Rn, A ∈ S(n).

1.1.4 Stochastic optimal control problem with infinite horizon

Stochastic optimal control problems with infinite horizon are stochastic control problems with
a time variable in an unbounded interval. In this case, the unboundness of the time variable
raises questions of finiteness of the overall payoff.

To fix the ideas, let us consider a stochastic control process with autonomous state dy-
namics defined by the following stochastic differential equation :

dxx,u(s) = f(xx,u(s), u(s))ds+ σ(xx,u(s), u(s))dBs, s ≥ 0 (1.33)

xx,u(0) = x, (1.34)

with x ∈ Rn, u : [0,∞) → U ⊂ Rm, f : Rn × U → Rn, σ : Rn × U → Rn×d and (Bs)s≥0 a
Rd-Brownian motion defined on a filtered probability space (Ω,F , (Fs)s≥0, P ). We denote
as in the previous section, by ν the reference probability system (Ω, (Fs)s≥0, P,B).

For this stochastic process to be well defined, the following assumptions can be taken :

A 1.1.11. f and σ are continuous on Rn × U .

A 1.1.12. f(·, v) and σ(·, v) are in C1(Rn) for any v ∈ U .

A 1.1.13. |fx| ≤ C, |σx| ≤ C

|f(x, v)| ≤ C(1 + |x|+ |v|), |σ(x, v)| ≤ C(1 + |x|+ |v|)

for some constant C.

A 1.1.14. The control processes u(·) are {Fs} progressively measurable and such that for all
t1 <∞,

Eν
[∫ t1

0
|u(s)|2ds

]
<∞ (1.35)
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We consider as in the other sections, the exit time of the control process xx,u from Ō that
we denote here by τx,u. If O = Rn, we set τx,u = +∞.

The running functional payoff L and the terminal functional payoff g are real functions
which verify the following conditions.

A 1.1.15. L ∈ C(Rn × U) and g ∈ C(Rn).

A 1.1.16. There exists a constant C and an integer k such that

|L(x, v)| ≤ C(1 + |x|k + |v|k)

We consider also a discount factor with a constant discount rate β in the overall payoff
function which is then :

Jν(x;u) = Eν
{∫ τx,u

0
e−βsL(xx,u(s), u(s))ds+ χτx,u<∞e

−βτx,ug(xx,u(τx,u))

}
(1.36)

The set of admissible control processes in the reference probability system ν is the set Aν

of control processes verifying the condition A 1.1.14 and the following condition.

Eν
[∫ τx,u

0
e−βs|L(xx,u(s), u(s))|ds

]
<∞. (1.37)

As in the previous section, we consider here a minimization problem with two cases :

• either a minimization of the overall functional payoff on the controls of Aν in a given
reference probability system ν with a value function defined by

Vν(x) = inf
u∈Aν

Jν(x;u),

• or a global minimization of the overall functional payoff over all the reference probability
systems ν with a value function defined by

VPM(x) = inf
ν
Vν(x).

The Hamilton-Jacobi-Bellman equation here is :

βW (x) +H(x,DW (x), D2W (x)) = 0, x ∈ O, (1.38)

where the Hamiltonian H is defined by :

H(x, p,A) = sup
u∈U

{
−f(x, v) · p− 1

2
Tr(σσᵀ(x, v)A)− L(x, v)

}
, (1.39)

with x ∈ O, p ∈ Rn, A ∈ S(n).
The PDE that should verify the value function VPM = W is then{

βW (x) +H(x,DW (x), D2W (x)) = 0, x ∈ O,
W (x) = g(x), x ∈ ∂O.

(1.40)

The verification theorem allowing to solve the stochastic optimal control problem using
this PDE is then stated as follows :
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Theorem 1.1.5 ( [28, Theorem IV.5.1]). Let W ∈ C2(O) ∩ Cp(Ō) be a solution of (1.40)
Then for every x ∈ O :

• W (x) ≤ Jν(x;u) for any ν-admissible control process u(·) such that :

lim inf
t1→∞

e−βt1Eν [χτx,u≥t1W (xx,u(t1))] ≤ 0. (1.41)

• Suppose that there exist ν∗ = (Ω∗, {F ∗s }, P ∗, w∗) and u∗(·) ∈ Aν∗ such that :

u∗(s) ∈arg min
v

[
f(xx,u

∗
(s), v) ·DxW (xx,u

∗
(s))

+
1

2
Tr
(
σσᵀ(xx,u

∗
(s), v)D2

xW (xx,u
∗
(s))

)
+ L(xx,u

∗
(s), v)

] (1.42)

for Lebesgue×P ∗-almost all (s, ω) such that 0 ≤ s ≤ τx,u∗(ω) and

lim
t1→∞

e−βt1Eν∗
[
χτx,u∗≥t1W (xx,u

∗
(t1))

]
= 0.

Then W (x) = J(x;u∗).

In the previous theorem, the equality of W to VPM is not obtained as a result of the
theorem. What is rather obtained is the equality of W to ṼPM which is the infimum of
Jν(x;u) among all reference probability system ν and admissible control u(·) ∈ Aν such that
(1.41) holds. This allows us to state the following corollary.

Corollary 1.1.2. Let W be a function verifying all the conditions of Theorem 1.1.5. If W
is bounded, then W = VPM.

1.1.5 Zero-Sum Stochastic differential games

Stochastic differential games is a subproblem of game theory where the players try to optimize
their payoffs which depend on a state variable evolving in time according to a stochastic
differential equation. In zero-sum stochastic differential games, there are only two players
who have adverse goals. One player tries to maximize a given payoff while the other player
tries to minimize the same payoff.

We consider here a finite horizon zero-sum stochastic differential game where the corre-
sponding stochastic control process is a Markov diffusion process. Let xt,x,a,b be this stochastic
control process with a being the control of player 1 while b denotes the control of player 2.
xt,x,a,b is solution of the following stochastic differential equation :{

dxt,x,a,b(s) = f(s, xt,x,a,b(s), a(s), b(s))ds+ σ(s, xt,x,a,b(s), a(s), b(s))dBs, t ≤ s ≤ t1
xt,x,a,b(t) = x,

(1.43)

where a(s) ∈ A , b(s) ∈ B, A closed subset of Rm and B closed subset of Rp, f :
[t0, t1] × Rn × A × B → Rn, σ : [t0, t1] × Rn × A × B → Rn×d and (Bs)t0≤s≤t1 a Rd-
Brownian motion defined on a filtered probability space (Ω,F , (Fs)t0≤s≤t1 , P ). We let
ν = (Ω, (Fs)t0≤s≤t1 , P,B) denote the related reference probability system.

The conditions for xt,x,a,b to be well defined can be deduced from the conditions of existence
of a Markov diffusion process having only one control. We will consider here an adaptation
of conditions enumerated in Section 1.1.3.
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A 1.1.17. f and σ are continuous functions on [t0, t1]×Rn×A ×B and f(·, ·, a, b), σ(·, ·, a, b)
are of once continuously differentiable on [t0, t1]× Rn for any (a, b) ∈ A ×B.

A 1.1.18. There exists a constant C > 0 such that :

|ft|+ |fx| ≤ C,
|σt|+ |σx| ≤ C,
|f(t, x, a, b)| ≤ C(1 + |x|+ |a|+ |b|),
|σ(t, x, a, b)| ≤ C(1 + |x|+ |a|+ |b|).

(1.44)

A 1.1.19. The control processes a(·) and b(·) are {Fs} progressively measurable and such
that,

Eν
[∫ t1

t
|a(s)|2ds

]
<∞,

Eν
[∫ t1

t
|b(s)|2ds

]
<∞.

(1.45)

These assumptions are weaker than those usually considered in the literature. For the
sake of simplicity and just in this section, we will add two more assumptions.

A 1.1.20. A and B are compact sets.

A 1.1.21. f and σ are bounded.

In what follows, we will ignore the dependence of the problem to the reference probability
system ν. Indeed, the above conditions of the problem being similar to those of Corollary 1.1.1,
we can infer the independence of the problem to the reference probability system even if a
formal proof remains to be done.

The state space O is supposed to be equal to Rn, so that the state process only stops at
t1.

The running functional payoff L and the terminal functional payoff ψ are real functions
which verify the following conditions :

A 1.1.22. L ∈ C([t0, t1]× Rn ×A ×B) and ψ ∈ C(Rn).

A 1.1.23. There exists a constant C and an integer k such that :

|L(t, x, a, b)| ≤ C(1 + |x|k + |a|k + |b|k),
|ψ(x)| ≤ C(1 + |x|k).

(1.46)

There are then a lower value function and a upper value function to the zero-sum stochastic
differential game problem denoted respectively by V − and V +, and defined by :

V + = inf
a∈A

sup
b∈B

E
[∫ t1

t
L(s, xt,x,a,b(s), a(s), b(s))ds+ ψ(xt,x,a,b(t1))

]
, (1.47)

V − = sup
b∈B

inf
a∈A

E
[∫ t1

t
L(s, xt,x,a,b(s), a(s), b(s))ds+ ψ(xt,x,a,b(t1))

]
. (1.48)

Let us now introduce the notion of nonanticipative strategies.
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Definition 1.1.2. If A (t, t1) and B(t, t1) denotes respectively the sets of bounded Lebesgue
measurable functions a : [t, t1] → A , b : [t, t1] → B, a nonanticipative strategy is a map
α : A (t, t1) → B(t, t1) such that for any time s, (t < s < t1) and any control process
a1, a2 ∈ A (t, t1), a1 = a2 almost everywhere in [t, s], implies that α(a1) = α(a2) almost
everywhere in [t, s].

It can be shown ([64]) that the following definitions of the lower and upper value functions
are equivalent to the ones given in (1.47) and (1.48).

V + = inf
α∈Ad

sup
b∈B(t,t1)

E
[∫ t1

t
L(s, xt,x,α(b),b(s), (α(b))(s), b(s))ds+ ψ(xt,x,α(b),b(t1))

]
, (1.49)

V − = sup
β∈Bd

inf
a∈A (t,t1)

E
[∫ t1

t
L(s, xt,x,a,β(a)(s), a(s), (β(a))(s))ds+ ψ(xt,x,a,β(a)(t1))

]
, (1.50)

where Ad and Bd denotes the set of nonanticipative strategies respectively from B(t, t1) to
A (t, t1) and from A (t, t1) to B(t, t1).

By using these definitions of the upper and the lower value functions, it is possible to
obtain a dynamic programming property of these value functions. This allows to obtain then
that V − is at least a viscosity solution of the following PDE : −

∂

∂t
W (t, x) +H−(t, x,DxW (t, x), D2

xW (t, x)) = 0, (t, x) ∈ Q = [t0, t1)× Rn

W (t1, x) = ψ(x), x ∈ Rn,
(1.51)

while V + is at least the viscosity solution of the following PDE : −
∂

∂t
W (t, x) +H+(t, x,DxW (t, x), D2

xW (t, x)) = 0, (t, x) ∈ Q = [t0, t1)× Rn

W (t1, x) = ψ(x), x ∈ Rn,
(1.52)

where H− and H+ are respectively the upper and lower Hamiltonians and are defined by :

H−(t, x, p, A) = inf
b∈B

sup
a∈A

[
−f(t, x, a, b) · p− 1

2
Tr (σσᵀ(t, x, a, b)A)− L(t, x, a, b)

]
, (1.53)

H+(t, x, p, A) = sup
a∈A

inf
b∈B

[
−f(t, x, a, b) · p− 1

2
Tr (σσᵀ(t, x, a, b)A)− L(t, x, a, b)

]
(1.54)

for (t, x) ∈ [t0, t1)× Rn, p ∈ Rn, A ∈ S(n).
The above PDE are called the Hamilton-Jacobi-Isaacs equations. Under the Isaacs condi-

tion, which is the equality of the two Hamiltonians, the lower and the upper value functions
coincide. One partial differential equation is then obtained. Usually, it is not possible to find
a classical solution to this partial differential equation. The value function is then identified
to the viscosity solution of the partial differential equation. This type of solution will be the
subject of the next section.
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1.2 Viscosity solutions

We will start this section by a discussion about the verification theorems of the previous
section. Each of these theorems supposed the existence of a smooth solution to the Hamilton-
Jacobi-Bellman equation and identified the value function of the optimal control problem to
the classical solution of this PDE which is at least of the first order. This suppose that the
value function of the problem is at least differentiable. However, in most cases, we do not
have this differentiability of the value function.

For the deterministic optimal control problems, we can give the following example.

Example 1.2.1. Let us consider a finite horizon deterministic optimal control problem with
t0 = 0, t1 = 1, O = (−1, 1), U = R, f(t, x, u) = u, L(t, x, u) = 1 + 1

4u
2 and Ψ(t, x) = 0. This

is a problem of calculus of variations. It can be shown that the value function of this problem
is :

V (t, x) =

{
1− |x|, |x| ≥ t
1− t, |x| < t,

which is not differentiable if t = |x|.

For stochastic control problems, to have a chance to apply the verification theorems stated
in Sections 1.1.3 and 1.1.4, an uniform parabolicity is required on the diffusion term which
is stated as follows.

A 1.2.1. Let a(t, x, u) = σ(t, x, u)σᵀ(t, x, u). There exists c > 0 such that, for all (t, x, u) ∈
[t0, t1)× Rn × U (with t1 potentially infinite), and ξ ∈ Rn,

n∑
i,j=1

[a(t, x, u)]ij [ξ]i[ξ]j ≥ c|ξ|2. (1.55)

This condition allows the solution of the Hamilton-Jacobi-Bellman equation to be smooth
enough. If this condition is not ensured, there is typically not a classical solution to the PDE.
For zero-sum stochastic differential games, it is worse because even the uniform parabolicity
is not sufficient to have a smooth solution to the Hamilton-Jacobi-Isaacs equation. However,
a generalized solution can be considered. This is also the case for the deterministic optimal
control problems when differentiability cannot be obtained everywhere. However, such a
generalized solution is not unique in general. This has motivated the introduction of the
notion of viscosity solution introduced first in 1984 in a paper of Crandall and Lions [21]. The
aim was to characterize the value function. It was first developed in the deterministic case.
However an extension to the stochastic case has been introduced in other papers ( [49]). In
the following years, many related papers have been published. This ensured the development
of the theory making viscosity solutions a standard nowadays in optimal control problems.

We will give here the definition of this notion of viscosity solution and of the related notions
of second order subjets and superjets as presented in [20]. We will also recall a theorem of [20]
allowing to identify an element of the superjet of a function in particular cases. This theorem
is particularly important to prove a comparison principle for a given PDE. It can for example
be used in the context of Section 3.2 to obtain Lipschitz continuity of the viscosity solution of
the Hamilton-Jacobi-Bellman equation. Existence and unicity results of vicosity solutions for
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second order Hamilton-Jacobi-Bellman equations will also be given in the case where all the
coefficients are bounded and in the linear quadratic case with unbounded coefficients. In this
last case, we extend the results of Da Lio and Ley of the paper [23] by obtaining existence
results of the viscosity solution on any time interval [0, T ] (T > 0), rather than only on a
small time interval [0, τ ], by using some extra conditions.

Similar verification theorems as the one stated in section 1.1.1-1.1.4 exist in the literature,
making the link between the viscosity solution of the Hamilton-Jacobi-Bellman equation and
the value function of the related optimal control problem (see [67] and [39] as examples). We
will not recall these results here as it will drive us away from the main subject of this work.

1.2.1 Definition of Viscosity solutions and of related notions

We want to give here first a definition of viscosity solutions using the notion of subjet and
superjet found in [20]. For that, we need to define first what is the subjet and superjet of a
function at a given point.

Definition 1.2.1. Let W be a given function defined on O ⊂ RN and x̂ ∈ O. The second
order superjet of W at x̂ is the subset denoted by J2,+

O W (x̂) of RN × S(N) such that for any

(p,X) ∈ J2,+
O W (x̂) :

W (x) ≤W (x̂) + p · (x− x̂) +
1

2
(x− x̂) ·X(x− x̂) + o(|x− x̂|2) as x→ x̂, x ∈ O.

The second order subjet of W at x̂ is the subset denoted by J2,−
O W (x̂) of RN × S(N) such

that for any (p,X) ∈ J2,−
O W (x̂) :

W (x) ≥W (x̂) + p · (x− x̂) +
1

2
(x− x̂) ·X(x− x̂) + o(|x− x̂|2) as x→ x̂, x ∈ O.

Remark 1.2.1. −J2,+
O (−W )(x̂) = J2,−

O W (x̂). Moreover, the dependence of J2,+
O W (x̂) and

J2,−
O W (x̂) to O can be removed when x̂ is an interior point of O.

Now we can give the definition of viscosity solutions in the continuous setting.

Definition 1.2.2 ([20, Definition 2.2]). Let F be a continuous real function on RN × R ×
RN × S(N) such that for any r, s ∈ R, x, p ∈ RN , X,Y ∈ S(N) :

F (x, r, p,X) ≤ F (x, s, p, Y )

whenever r ≤ s and Y ≤ X in the Loewner order on S(N). Let O ⊂ RN . A viscosity
subsolution of F = 0 (equivalently a viscosity solution of F ≤ 0) on O is a function W upper
semicontinuous on O such that :

F (x,W (x), p,X) ≤ 0 for all x ∈ O and (p,X) ∈ J2,+
O W (x)

Similarly, a viscosity supersolution of F = 0 (or viscosity solution of F ≥ 0) on O is a
function W lower semicontinuous on O such that :

F (x,W (x), p,X) ≥ 0 for all x ∈ O and (p,X) ∈ J2,−
O W (x)

Finally, W is a viscosity solution of F = 0 in O if it is both a viscosity subsolution and a
viscosity supersolution of F = 0 in O.
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Another equivalent definition of viscosity solution is the following.

Definition 1.2.3. Let F be a function as in Definition 1.2.2. W is a viscosity solution of

F (x,W (x), DW (x), D2W (x)) = 0 (1.56)

in O if and only if W verifies the two following conditions :

• W is upper semicontinuous and ∀φ ∈ C2(O), if x̂ ∈ O is a point where W − φ reachs a
local maximum, then :

F (x̂,W (x̂), Dφ(x̂), D2φ(x̂)) ≤ 0. (1.57)

• W is lower semicontinuous and ∀φ ∈ C2(O), if x̂ ∈ O is a point where W − φ reachs a
local minimum, then :

F (x̂,W (x̂), Dφ(x̂), D2φ(x̂)) ≥ 0. (1.58)

If W satisfies just the first condition, W is a subsolution of (1.56). If it satisfies only the
second condition, it is a supersolution of (1.56).

In the above definitions, the set O considered can have a time interval part. So it can be
of the form (t0, t1)× O, (t0, t1]× O or [t0, t1)× O where O ⊂ Rn = RN−1. These definitions
can then be applied to parabolic or elliptic PDEs.

In the case of a parabolic PDE, the semijets J2,+
O W (x) and J2,−

O W (x) are denoted respec-

tively by P2,+
O W (t, x) and P2,−

O W (t, x) for O = (t0, t1)×O. The superjet of W at (s, z) ∈ O
becomes the set of (a, p,X) ∈ R× Rn × S(n) such that :

W (t, x) ≤W (s, z) + a(t− s) + p · (x− z) +
1

2
(x− z) ·X(x− z)

+ o(|t− s|+ |x− z|2) as (t, x)→ (s, z), (t, x) ∈ O.

The subjet of W at (s, z) ∈ O is then the set of (a, p,X) ∈ R× Rn × S(n) such that :

W (t, x) ≥W (s, z) + a(t− s) + p · (x− z) +
1

2
(x− z) ·X(x− z)

+ o(|t− s|+ |x− z|2) as (t, x)→ (s, z), (t, x) ∈ O.

The present work mainly concerns finite horizon stochastic control problems where a
parabolic PDE arises as the Hamilton-Jacobi-Bellman equation. We recall now a theorem
of [20] in this setting that can be used to obtain Lipschitz results of the viscosity solution of
the Hamilton-Jacobi-Bellman equation in the unbounded framework (Similar to Section 3.2).
We recall that USC(O) is the set of upper semicontinuous functions on O and LSC(O) is the
set of lower semicontinuous functions on O.

Theorem 1.2.1 ([20, Theorem 8.3]). Let Wi ∈ USC((0, T )×Oi) for i = 1, ..., k where Oi is a
locally compact subset of Rni. Let φ be a real-valued function defined on an open neighbourhood
of (0, T ) × O1 × ... × Ok and such that (t, x1, . . . , xk) 7→ φ(t, x1, . . . , xk) is once continuously
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differentiable in t and twice continuously differentiable in (x1, . . . , xk) ∈ O1×. . .×Ok. Suppose
that t̂ ∈ (0, T ), x̂i ∈ Oi for i = 1, . . . , k and

w(t, x1, . . . , xk) ≡W1(t, x1) + . . .+Wk(t, xk)− φ(t, x1, . . . , xk)

≤ w(t̂, x̂1, . . . , x̂k)

for 0 < t < T and xi ∈ Oi. Assume, moreover, that there is an r > 0 such that for every
M > 0, there is a C > 0 such that for i = 1, . . . , k

bi ≤ C whenever (bi, qi, Xi) ∈P2,+
Oi

Wi(t, xi),

|xi − x̂i|+ |t− t̂| ≤ r and |Wi(t, xi)|+ |qi|+ |Xi| ≤M.
(1.59)

Then for each ε > 0 there are Xi ∈ S(ni) such that

• (bi, Dxiφ(t̂, x̂1, . . . , x̂k), Xi) ∈P2,+
Oi

Wi(t̂, x̂i) for i = 1, . . . , k,

•

−(
1

ε
+ |A|)I ≤

X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ A+ εA2,

with A = (D2
xφ)(t̂, x̂1, . . . , x̂k),

• b1 + . . .+ bk = ∂φ
∂t (t̂, x̂1, . . . , x̂k),

Crandall, Ishii and Lions notice in [20] that the condition (1.59) is guaranteed when Wi

is a subsolution of a parabolic equation.
We present this theorem because it can be used to obtain Lipschitz results on the viscosity

solution of the Hamilton-Jacobi-Bellman equation with unbounded coefficients similar to the
equation of Section 3.2. This Lipschitz result can then be used in the same way as Assellaou,
Bokanowski and Zidani in [5] to obtain symmetric error estimates for the convergence of
numerical schemes having a solution with a Lipschitz property. A particular probabilistic
scheme that we introduce in Chapter 3, fits well in this setting.

1.2.2 Existence and Unicity results

We are going to recall now existence and unicity results of viscosity solutions of Hamilton-
Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs equations that will be mentioned or used
in Chapter 2 and Chapter 3.

The notations in the theorems, lemma and corollary reported here from other papers,
have been changed to keep as much as possible a consistency in notations throughout this
document.

We start with a result of Barles and Jakobsen on the viscosity solutions of a general
switching system which is a generalization of the Hamilton-Jacobi-Bellman equations and the
Hamilton-Jacobi-Bellman-Isaacs equations.

Theorem 1.2.2 ([7, Theorem A.1]). Let us consider the following system.

Fi(t, x,W,
∂Wi

∂t
,DxWi, D

2
xWi) = 0 in QT := (0, T ]× Rn, i ∈ I := {1, . . . ,M}, (1.60)
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with

Fi(t, x, r, pt, px, X) = max

{
pt + sup

α∈A
inf
β∈B

L α,β
i (t, x, ri, px, X); ri −Mir

}
,

L α,β
i (t, x, s, q,X) = −Tr[aα,βi (t, x)X]− bα,βi (t, x) · q − cα,βi (t, x)s− fα,βi (t, x),

Mir = min
j 6=i
{rj + k}

where A ,B are compact metric spaces, r is a vector r = (r1, . . . , rM ), and k > 0 is a constant
(the switching cost).

Assume that for any α, β, i, aα,βi = 1
2σ

α,β
i σα,βi

ᵀ
for some n× p matrix σα,βi . Furthermore,

there is a constant C independent of i, α, β, t such that

|σα,βi (t, ·)|1 + |bα,βi (t, ·)|1 + |cα,βi (t, ·)|1 + |fα,βi (t, ·)|1 ≤ C (1.61)

with | · |1 defined in Section 0.1.

• If W ∈ USC(Q̄T ;RM ) is a subsolution of (1.60) bounded above and V ∈ LSC(Q̄T ;RM )
is a supersolution of (1.60) bounded below, then W ≤ V in Q̄T .

• There exists a unique bounded continuous viscosity solution W of (1.60).

The above theorem suppose the boundedness of the coefficients of the PDE and the com-
pactness of the control spaces. The new max-plus probabilistic method that this manuscript
introduces, can be used in the case of unboundedness of the PDE coefficients and of the
control spaces as in linear quadratic problems. The following results due to Da Lio and Ley
in [23], give existence and unicity results in this setting.

Theorem 1.2.3 ([23, Theorem 2.1]). Let us consider the following second order PDE.
∂W

∂t
+H(t, x,DxW,D

2
xW ) +G(t, x,DxW,D

2
xW ) = 0 in (0, T )× Rn,

W (0, x) = ψ(x) in Rn
(1.62)

with H and G are defined by

H(t, x, p,X) = inf
α∈A
{b(t, x, α) · p+ `(t, x, α)− Tr [σ(t, x, α)σᵀ(t, x, α)X]} ,

G(t, x, p,X) = sup
β∈B
{−g(t, x, β) · p− f(t, x, β)− Tr [c(t, x, β)cᵀ(t, x, β)X]} ,

for (t, x) ∈ (0, T )× Rn, p ∈ Rn and X ∈ S(n).
Assume that there exist positive constants C̄ and ν such that :

• A is a subset of a separable complete normed space possibly unbounded.

• b ∈ C([0, T ]× Rn ×A ,Rn) satisfying for x, y ∈ Rn, t ∈ [0, T ], α ∈ A ,

|b(t, x, α)− b(t, y, α)| ≤ C̄(1 + |α|)|x− y|
|b(t, x, α)| ≤ C̄(1 + |x|+ |α|);
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• ` ∈ C([0, T ]× Rn ×A ,R) satisfying for x ∈ Rn, t ∈ [0, T ], α ∈ A ,

C̄(1 + |x|2 + |α|2) ≥ `(t, x, α) ≥ ν

2
|α|2 + `0(t, x, α) with `0(t, x, α) ≥ −C̄(1 + |x|2)

and for R > 0, there exists a modulus of continuity mR such that for any x, y ∈ B(0, R)
(B(0, R) is the open ball of Rn of center 0 and radius R), t ∈ [0, T ], α ∈ A ,

|`(t, x, α)− `(t, y, α)| ≤ (1 + |α|2)mR(|x− y|)

• σ ∈ C([0, T ]×Rn×A ,Rn×d) is locally Lipschitz with respect to x uniformly in (t, α) ∈
[0, T ]×A and satisfies for every t ∈ [0, T ], x ∈ Rn, α ∈ A ,

|σ(t, x, α)| ≤ C̄(1 + |x|),

• B is a bounded subset of a normed space.

• g ∈ C([0, T ] × Rn ×B,Rn) is locally Lipschitz with respect to x uniformly in (t, β) ∈
[0, T ]×B and satisfies for every t ∈ [0, T ], x ∈ Rn, β ∈ B,

|g(t, x, β)| ≤ C̄(1 + |x|),

• f ∈ C([0, T ] × Rn × B,R) is locally Lipschitz with respect to x uniformly in (t, β) ∈
[0, T ]×B and satisfies for every t ∈ [0, T ], x ∈ Rn, β ∈ B,

|f(t, x, β)| ≤ C̄(1 + |x|2),

• c ∈ C([0, T ]× Rn ×B,Rn×d) is locally Lipschitz with respect to x uniformly in (t, β) ∈
[0, T ]×B and satisfies for every t ∈ [0, T ], x ∈ Rn, β ∈ B,

|c(t, x, β)| ≤ C̄(1 + |x|),

• ψ ∈ C(Rn,R) and
|ψ(x)| ≤ C̄(1 + |x|2)

for every x ∈ Rn.

Let W ∈ USC([0, T ] × Rn) be a viscosity subsolution of (1.62) and V ∈ LSC([0, T ] × Rn) be
a viscosity supersolution of (1.62). Suppose that W and V have quadratic growth, i.e there
exists Ĉ > 0 such that for all x ∈ Rn, t ∈ [0, T ],

|W (t, x)|, |V (t, x)| ≤ Ĉ(1 + |x|2). (1.63)

Then W ≤ V in [0, T ]× Rn.

The above theorem gives the unicity result by stating the comparison principle for the
PDE (1.62) and is completed by the following Lemma for the existence result.

Lemma 1.2.1 ([23, Lemma 2.1]). Consider the same assumptions as in Theorem 1.2.3. If
K ≥ C̄ + 1 and ρ are large enough, then W(t, x) = −Keρt(1 + |x|2) is a viscosity subsolution
of (1.62) in [0, T ] × Rn and there exists 0 < τ ≤ T such that W̄ (t, x) = Keρt(1 + |x|2) is a
viscosity supersolution of (1.62) in [0, τ ]× Rn.
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From the two previous statements, the corollary below is deduced.

Corollary 1.2.1 ([23, Corollary 2.1]). Consider the same assumptions as in Theorem 1.2.3.
Then there exists τ > 0 such that there exists a unique continuous viscosity solution of (1.62)
in [0, τ ]× Rn satisfying the growth condition (1.63).

We notice that the existence of the viscosity solution holds only on a time interval [0, τ ] not
necessarily equal to [0, T ]. Previous work of Ito in [41] has shown the existence of a solution
of a similar PDE on any interval [0, t1] (t1 > 0). But this result needed a uniform parabolicity
condition on the PDE and more regularity assumptions were taken on the solution.

We introduce the two following results ensuring the existence of a supersolution of PDE (1.62)
on [0, T ] by taking some extra assumptions.

Lemma 1.2.2. Consider the assumptions of Theorem 1.2.3. Let T > 0. For K > C̄, there
exists ρ > 0 and C1 > 0 such that if `0(t, x, α) ≥ C1|x|2 − C̄, W̄ (t, x) = Keρt(1 + |x|2) is a
supersolution of PDE (1.62) on [0, T ]×Rn. (`0 is the function introduced in the assumption
of Theorem 1.2.3 on the Lagrangian ` of PDE (1.62).)

Proof. Let K > C̄, ρ > 0 and W̄ (t, x) = Keρt(1 + |x|2). Let C1 be such that `0(t, x, α) ≥
C1|x|2 − C̄.

∂W̄

∂t
+H(t, x,DxW̄ ,D2

xW̄ ) +G(t, x,DxW̄ ,D2
xW̄ )

= ρeρtK(1 + |x|2) + inf
α∈A

{
b(t, x, α) · 2Keρtx+ `(t, x, α)− Tr

(
σ(t, x, α)σᵀ(t, x, α)2Keρt

)}
+ sup
β∈B

{
−g(t, x, β) · 2Keρtx− f(t, x, β)− Tr

(
c(t, x, β)cᵀ(t, x, β)2Keρt

)}
≥ Keρt

[
ρ(1 + |x|2)− 2C̄(1 + |x|)|x|+ C1|x|2

Keρt
− 2C̄2(1 + |x|)2 + inf

α∈A

(
ν|α|2

2Keρt
− 2C̄|α||x|

)

− 2C̄(1 + |x|)|x| − C̄

Keρt
(1 + |x|2)− 2C̄2(1 + |x|)2 − C̄

K

]

≥ Keρt
[
ρ(1 + |x|2)− (6 +

2

K
+ 8C̄)C̄(1 + |x|2) +

(
C1

Keρt
− 2KeρtC̄2

ν

)
|x|2
]
.

For ρ ≥ (6+ 2
K +8C̄)C̄ and C1 ≥ 2(KeρT C̄)2

ν , we then obtain that W̄ is a viscosity supersolution
of (1.62) on [0, T ]× Rn.

Lemma 1.2.3. Consider the assumptions of Theorem 1.2.3. Let us suppose that for (t, x) ∈
[0, T ]× Rn, α, α1, α2 ∈ A , β ∈ B :

|b(t, x, α1)− b(t, x, α2)| ≤ C̄|α1 − α2|,
`0(t, x, α) ≥ −C̄|x|2,
|σ(t, x, α)| ≤ C̄|x|,
|g(t, x, β)| ≤ C̄|x|,
|f(t, x, β)| ≤ C̄|x|2,
|c(t, x, β)| ≤ C̄|x|.
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We also suppose that there exists a control α0 ∈ A that we will suppose equal to 0 such that
for a given constant C2,

b(t, x, α0) · x ≥ C2|x|2.

Then, for K > C̄ and C2 > (1 + 2C̄ + 1
K )C̄ + 2KC̄2

ν , W̄ (t, x) = K(1 + |x|2) is a viscosity
supersolution of the PDE (1.62) on [0, T ]× Rn.

Proof. Let K > C̄ and W̄ (t, x) = K(1 + |x|2). Consider the assumptions of Lemma 1.2.3.

∂W̄

∂t
+H(t, x,DxW̄ ,D2

xW̄ ) +G(t, x,DxW̄ ,D2
xW̄ )

≥ inf
α∈A
{b(t, x, 0) · 2Kx+ (b(t, x, α)− b(t, x, 0))2Kx+ `(t, x, α)− Tr(σ(t, x, α)σᵀ(t, x, α)2K)}

+ sup
β∈B
{−g(t, x, β) · 2Kx− f(t, x, β)− Tr (c(t, x, β)cᵀ(t, x, β)2K)}

≥ 2K

[
C2|x|2 − (C̄ +

1

2K
)C̄|x|2 + inf

α∈A

{ ν

4K
|α|2 − C̄|α||x|

}
− (1 + C̄ +

1

2K
)C̄|x|2

]

≥ 2K

[
C2|x|2 − (1 + 2C̄ +

1

K
)C̄|x|2 − 2K

ν
C̄2|x|2

]
.

So for C2 ≥ (1+2C̄+ 1
K )C̄+ 2KC̄2

ν , W̄ is a viscosity supersolution of (1.62) on [0, T ]×Rn.



CHAPTER 2
Numerical methods in Optimal control

In the previous chapter, we presented optimal control problems which are solved by using
Hamilton-Jacobi-Bellman (HJB) equations. We have seen that these PDE generally do not
have classical solutions and the type of solutions that are looked for in the optimal control
theory are viscosity solutions. We do now a brief review of the type of numerical methods in
the literature which are used to solve HJB equations and to obtain approximations of their
viscosity solutions. We introduce in Section 2.1 an extension of the well known convergence
result of monotone numerical schemes due to Barles and Souganidis to be able to apply it to
an unbounded setting.
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2.1 Finite difference methods

The finite difference method is historically the oldest type of numerical method used nowadays
to solve partial differential equations. The starting point of the development of this method
can be identified with the paper of Courant, Friedrichs and Lewy [18] in 1928 even if some
ideas about the method may be found in the literature before this date. The finite difference
method knew after that, a bursting period before the introduction in 1960s of the finite
element method which became more popular in the subsequent years. However, it remained
an active field of research with new finite difference schemes ( [11, 57] for HJB equations and
[50, 31, 32, 58, 56] for other types of PDEs) and new results on the generalization of finite
difference method results to other types of numerical methods. We can give as examples
the theorem on the convergence of approximation schemes for fully non linear second order
equations stated by Barles and Souganidis [8] and the order of convergence of approximation
schemes for parabolic Hamilton-Jacobi-Bellman equations obtained by Barles and Jakobsen [7]
which uses in its proof the method of shaking the coefficients of Krylov [46, 47].

We will give here the definition of the finite difference method and of the related concepts
used with it and recall most popular finite difference schemes in optimal control. We will also
recall the previously cited generalization results of finite difference methods. We will then
introduce as a theorem, an extension of the Barles and Souganidis theorem which will allow
us to apply their result in an unbounded setting in Chapter 3. Notations in the subsequent
reported theorems have been changed to maintain a consistency in notations throughout this
document.

2.1.1 Definition and related results in the Literature

When solving a partial differential equation (PDE), a finite difference method consists in :

• discretizing the variables space of the equation by building a grid;

• discretizing the equation which consists in approximating the equation using finite dif-
ferences instead of partial derivatives such that the resulting equation converges to the
initial equation when the grid step goes to zero;

• solving the resulted discretized equation at the grid points by iterative methods. The
resulted solution is an approximation of the solution of the initial PDE and its value is
computed by interpolation at points which are not grid points.

The discretization of the equation results in the construction of a scheme. It appears in
many numerical methods for solving PDE. The particularity of the finite difference method
is then the exclusive use of finite differences in the approximation of partial derivatives when
building the scheme. The latter has a very important role in the quality of the approximation
of the solution of the equation. If the approximated solution obtained with a given scheme
converges to the solution of the PDE problem when the discretization step of the grid goes
to zero, the scheme is said to be convergent.

It was known for a while that the conditions for a finite difference scheme to be convergent
were :

• the consistency of the scheme meaning that the discretized equation must converge to
the initial PDE when the grid step goes to zero and the function is regular,
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• the stability of the scheme meaning that the solution of the scheme is bounded with
respect to the bounds of the equation parameters.

The stability condition was the most challenging one. Depending on the type of scheme,
there was a conditional stability (explicit scheme) or an unconditional stability (implicit
scheme). The conditional stability for explicit scheme was subject to the CFL condition after
Courant, Friedrichs and Lewy who found in their paper [18], that a finite difference method
involving a space discretization with step ∆x and a time discretization with step ∆t results
in a stable explicit finite difference scheme if ∆x ≥ c∆t for hyperbolic equations, c being
a constant to compute. This has an equivalent for parabolic equations with the inequality
∆x2 ≥ c∆t which is also called the CFL condition.

The conditions of convergence of finite difference schemes have been generalized to PDE
problems with viscosity solutions with the following theorem which can be applied to general
schemes as we are going to see in Sections 2.2 and 2.3.

Theorem 2.1.1 ([8, Theorem 2.1]). Consider a problem of the following form :

F (D2W,DW,W, x) = 0 in Ω̄, (2.1)

where Ω is an open subset of RN and F : S(N)× RN × R× Ω̄ has the following form :

F (M,p, r, x) =

{
H(M,p, r, x) if x ∈ Ω,

r −Ψ(x) if x ∈ ∂Ω,

for Ψ a given function defined on ∂Ω. H is supposed to be fully non linear. Consider also an
approximation scheme of the following form :

S(ρ, x,W ρ(x),W ρ) = 0 in Ω̄, (2.2)

where S : R+ × Ω̄ × R × B(Ω̄) → R is locally bounded with B(Ω̄) being the set of bounded
functions on Ω̄. Consider the following assumptions.

1. S is monotone, which means that :

S(ρ, x, r,W ) ≤ S(ρ, x, r, V ) (2.3)

if W ≥ V for all ρ ≥ 0, x ∈ Ω̄, r ∈ R, W,V ∈ B(Ω̄).

2. S is stable, which means that for all ρ > 0, there exists a solution W ρ of (2.2) such
that W ρ ∈ B(Ω̄) with a bound independent of ρ.

3. The scheme S is consistent which means that for all x ∈ Ω̄ and ψ ∈ C∞(Ω̄) ∩B(Ω̄) :

lim sup
ρ→0
y→x
ξ→0

S(ρ, y, ψ(y) + ξ, ψ + ξ)

ρ
≤ lim sup

y→x
y∈Ω̄

F (D2ψ(y), Dψ(y), ψ(y), y),

and

lim inf
ρ→0
y→x
ξ→0

S(ρ, y, ψ(y) + ξ, ψ + ξ)

ρ
≥ lim inf

y→x
y∈Ω̄

F (D2ψ(y), Dψ(y), ψ(y), y),
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4. (2.1) has the following strong uniqueness (comparison principle) property : If W ∈
B(Ω̄) is an upper semicontinuous subsolution of (2.1) and V ∈ B(Ω̄) is a lower semi-
continuous supersolution of (2.1) then W ≤ V on Ω̄.

Assume all the assumptions enumerated above. Then, as ρ goes to 0, the solution W ρ of (2.2)
converges locally uniformly to the unique continuous viscosity solution of (2.1).

We can see that the condition of monotonicity on the scheme has been added. There are
two very famous examples of monotone finite difference schemes in the literature. The first
one (the approximation scheme of Kushner) which is the oldest, is monotone conditionally
to the diffusion coefficient matrix and the second one (the approximation scheme of Bonnans
Zidani) is unconditionally monotone.

The approximation scheme of Kushner (see [48])
This scheme has been introduced by Kushner in 1977. If we consider a partial differential
equation containing an operator Lα defined by :

Lαφ(t, x) =
1

2
Tr[aα(t, x)D2φ(t, x)] + bα(t, x)Dφ(t, x), (2.4)

the approximation scheme consists in replacing Lα in the PDE by :

Lαhφ(t, x) =
n∑
i=1

[
[aα(t, x)]ii

2
∆ii+

∑
j 6=i

(
[aα+(t, x)]ij

2
∆+
ij −

[aα−(t, x)]ij
2

∆−ij

)

+[bα+(t, x)]iδ
+
i − [bα−(t, x)]iδ

−
i

]
φ(t, x)

(2.5)

where w+ = max(w, 0), w− = −min(w, 0) and

δ±i w(t, x) = ± 1

∆x
{w(t, x±∆xei)− w(t, x)}

∆iiw(t, x) =
1

∆x2
{w(t, x+ ∆xei)− 2w(t, x) + w(t, x−∆xei)}

∆+
ijw(t, x) =

1

2∆x2
{2w(t, x) + w(t, x+ ∆x(ei + ej)) + w(t, x−∆x(ei + ej))}

− 1

2∆x2
{w(t, x+ ∆xei) + w(t, x+ ∆xej) + w(t, x−∆xei) + w(t, x−∆xej)}

∆−ijw(t, x) = − 1

2∆x2
{2w(t, x) + w(t, x+ ∆x(ei − ej)) + w(t, x−∆x(ei − ej))}

+
1

2∆x2
{w(t, x+ ∆xei) + w(t, x+ ∆xej) + w(t, x−∆xei) + w(t, x−∆xej)}

∆x being the space discretization step.
This scheme is then monotone and stable if and only if the matrix aα is diagonally dom-

inant. The particular discretization of the gradient with respect to the sign of its coefficient
in the PDE is also referred as an upwind scheme in the literature. This will be used in a
probabilistic form in Section 3.1.

The approximation scheme of Bonnans and Zidani (see [11])
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It is assumed here that there exists a finite stencil S̄ ⊂ ZN\{0} and a set of positive coeffi-
cients {āαβ , β ∈ S̄ } ⊂ R+ for each α ∈ A such that :

aα(t, x) =
∑
β∈S̄

āαβ(t, x)ββᵀ in QT , α ∈ A .

The operator Lα defined in (2.4) can then be written as :

Lαφ(t, x) =
∑
β∈S̄

āαβ(t, x)D2
βφ(t, x) + bα(t, x)Dφ(t, x)

where D2
β = TrββᵀD2. The approximation scheme of Bonnans and Zidani consists in replac-

ing Lα by :

Lαhφ =
∑
β∈S̄

āαβ∆βφ+
N∑
i=1

[
bα+
i δ+

i − b
α−
i δ−i

]
φ (2.6)

with the same notations as for the approximation of Kushner for the derivative of order 1,
and where

∆βw(x) =
1

|β|2∆x2
{w(x+ β∆x)− 2w(x) + w(x− β∆x)}.

This scheme is unconditionally monotone. In [11], Bonnans and Zidani give explicit conditions
of existence of the finite stencil S̄ and techniques to build it systematically.

Once a scheme is known to be convergent, a question remains about how quick is this
convergence with the grid step. There comes the notion of order of convergence. It is the
power of the grid step such that with an appropriate multiplicative factor, it bounds the error
between the approximated solution of the PDE obtained with the scheme and its exact solu-
tion. The following theorem is a result on the error bounds for any monotone approximation
scheme for a parabolic Hamilton-Jacobi-Bellman equation. It is due to Barles and Jakobsen.
For the definition of the norms and notations used in this theorem, see Section 0.1.

Theorem 2.1.2 ([7, Theorem 3.1]). Let us consider the following partial differential equation
:

∂W

∂t
+ F (t, x,W,DxW,D

2
xW ) = 0 in QT := (0, T ]× Rn, (2.7)

W (0, x) = Ψ(x) in Rn, (2.8)

where
F (t, x, r, p,X) = sup

α∈A
{L α(t, x, r, p,X)} ,

with

L α(t, x, r, p,X) := −Tr(aα(t, x)X)− bα(t, x)p− cα(t, x)r − fα(t, x). (2.9)

The coefficients aα, bα, cα, fα and the terminal data Ψ take values respectively in S(n), Rn,
R, R and R. Let us also consider the following approximation numerical scheme to (2.7)-(2.8)
written in the following abstract way :

S(h, t, x,Wh(t, x), [Wh]t,x) = 0 in G +
h := Gh \ {t = 0}, (2.10)

Wh(0, x) = Ψh(x) in G 0
h := Gh ∩ {t = 0} (2.11)
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where Gh is the grid related to the scheme, h = (∆x,∆t) is a multidimensional vector con-
taining the space and the time discretization steps and [Wh]t,x represents typically the values
of the function Wh at points of the grid other than (t, x).
We consider the following assumptions :

• A1: For any α ∈ A , aα = 1
2σ

ασαᵀ for some n × p matrix σα and there is a constant
K independent of α such that :

|Ψ|1 + |σα|1 + |bα|1 + |cα|1 + |fα|1 ≤ K

• A2: For every δ > 0, there are M ∈ N and {αi}Mi=1 ⊂ A such that for any α ∈ A :

inf
1≤i≤M

(|σα − σαi |0 + |bα − bαi |0 + |cα − cαi |0 + |fα − fαi |0) ≤ δ

• S1: There exists λ, µ ≥ 0, h0 > 0 such that if |h| ≤ h0 (where | · | is the Euclidean
norm), W ≤ V are functions continuous and bounded on Gh, and φ(t) = eµt(a+ bt) + c
for a, b, c ≥ 0, then :

S(h, t, x, r + φ(t), [W + φ]t,x) ≥ S(h, t, x, r, [V ]t,x) + b/2− λc in G +
h

• S2: For every h and continuous and bounded function Φ on Gh, the function (t, x) 7→
S(h, t, x,Φ, [Φ]t,x) is bounded and continuous in G +

h and the function r 7→ S(h, t, x, r, [Φ]t,x)
is uniformly continuous for bounded r, uniformly in (t, x) ∈ G +

h .

• S3 i): There exists a function E1(K̃, h, ε) such that for any sequence {ψε}ε>0 of smooth
functions satisfying :

|∂β0
t D

β′ψε(t, x)| ≤ K̃ε1−2β0−|β′| in QT for any β0 ∈ N, β′ = (β′i)i ∈ NN ,

(|β′| =
∑N

i=1 β
′
i), the following inequality holds :

S(h, t, x, ψε(t, x), [ψε]t,x) ≤ ∂ψε
∂t

+ F (t, x, ψε, Dψε, D
2ψε) + E1(K̃, h, ε),

in G +
h .

• S3 ii): There exists a function E2(K̃, h, ε) such that for any sequence {ψε}ε>0 of smooth
functions satisfying :

|∂β0
t D

β′ψε(t, x)| ≤ K̃ε1−2β0−|β′| in QT for any β0 ∈ N, β′ = (β′i)i ∈ NN ,

(| · | being the Euclidean norm and |β′| =
∑N

i=1 β
′
i), the following inequality holds :

S(h, t, x, ψε(t, x), [ψε]t,x) ≥ ∂ψε
∂t

+ F (t, x, ψε, Dψε, D
2ψε)− E2(K̃, h, ε),

in G +
h .

Assume (A1), (S1), (S2), and that (2.10) has a unique continuous and bounded solution
Wh on Gh. Let W denotes the solution of (2.7)-(2.8) and h a vector of real numbers sufficiently
small.
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• If (S3 i) holds, then there exists a constant C depending only on µ, K in (S1), (A1)
such that :

W −Wh ≤ eµt|(Ψ−Ψh)+|0 + Cmin
ε>0

(
ε+ E1(K̃, h, ε)

)
in Gh,

where K̃ = |W |1.

• If (S3 ii) and (A2) holds, then there exists a constant C depending only on µ, K in
(S1), (A1) such that :

W −Wh ≥ −eµt|(Ψ−Ψh)−|0 − Cmin
ε>0

(
ε1/3 + E2(K̃, h, ε)

)
in Gh,

where K̃ = |W |1.

In the above theorem, the condition A1 allows one to have the existence and unicity of a
viscosity solution to the PDE problem (2.7)-(2.8) according to Theorem 1.2.2.

The above theorem allows one to obtain the following corollary which is a consequence of
Theorem 4.1 in [7].

Corollary 2.1.1. Consider the PDE problem (2.7)-(2.8) presented in the previous theorem.
Let us consider the following approximation scheme for this PDE using the θ-method which

is a generalization of the Crank-Nicholson scheme (θ = 1
2).

W (t, x) =W (t−∆t, x)

− (1− θ)∆t sup
α∈A
{−LαhW − cαW − fα} (t−∆t, x)

− θ∆t sup
α∈A
{−LαhW − cαW − fα} (t, x) in G +

h ,

where Lαh is given by (2.5) or (2.6), ∆t being the time discretization step.
If a solution Wh to this scheme exists, then under the conditions of stability (CFL condi-

tions), we have the following result :

−eµt|(Ψ−Ψh)−|0 − Ch
1
5 ≤W −Wh ≤ eµt|(Ψ−Ψh)+|0 + Ch

1
2

with h =
√

∆x2 + ∆t.

2.1.2 Barles and Souganidis result in unbounded setting

We want to have a convergence result such as the one of Barles and Souganidis (Theorem 2.1.1)
when the PDE solution lives in the space of functions with polynomial growth. This will be
particularly useful in Section 3.2 to obtain the convergence of a probabilistic scheme in a
linear quadratic style problem. The following theorem gives such a result and is proved using
the same tools as for Theorem 2.1.1.

Theorem 2.1.3. Consider the same PDE problem as in Theorem 2.1.1. We replace the set
of bounded functions B(Ω̄) in the theorem by the set of functions with a given k-polynomial
growth Bk(Ω̄) defined by :

f ∈ Bk(Ω̄) if ∃C > 0,∀x ∈ Ω̄,
|f(x)|

1 + |x|k
≤ C.
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In this setting, we consider the same assumptions as for Theorem 2.1.1 except for the con-
sistency assumption where for µ : x 7→ 1 + |x|k, the following inequalities are considered
instead.

lim sup
ρ→0
y→x
ξ→0

S(ρ, y, ψ(y) + ξµ(y), ψ + ξµ)

ρ
≤ lim sup

y→x
y∈Ω̄

F (D2ψ(y), Dψ(y), ψ(y), y),

and

lim inf
ρ→0
y→x
ξ→0

S(ρ, y, ψ(y) + ξµ(y), ψ + ξµ)

ρ
≥ lim inf

y→x
y∈Ω̄

F (D2ψ(y), Dψ(y), ψ(y), y),

for x ∈ Ω̄ and ψ ∈ C∞(Ω̄) ∩Bk(Ω̄).

Then, the result of Theorem 2.1.1 still holds.

Proof. We will redo the proof of Barles and Souganidis with Bk(Ω̄) functions.

Let K̄(x) = lim sup
y→x
ρ→0

W ρ(y)
1+|y|k and K(x) = lim inf

y→x
ρ→0

W ρ(y)
1+|y|k .

The functions W̄ (x) = K̄(x)(1 + |x|k) and W(x) = K(x)(1 + |x|k) are respectively upper-
semicontinuous and lower-semicontinuous and W̄ ≥ W. If we show that W̄ and W are
respectively viscosity sub and super solution of equation (2.1), then the comparison principle
applied to functions in Bk(Ω̄) will give us the inequality W̄ ≤W which will end in an equality
so that W = W̄ = W = lim

ρ→0
W ρ will be the unique viscosity solution of (2.1).

We will show that W̄ is a viscosity subsolution of (2.1), the proof of W being a viscosity
supersolution of (2.1) having the same pattern.

Let x ∈ Ω and Φ ∈ C∞(Ω̄) ∩ Bk(Ω̄) such that 0 = (W̄ − Φ)(x) is a local maximum of

W̄ − Φ. W̄ (x)−Φ(x)
1+|x|k is then also a local maximum of the function y 7→ W̄ (y)−Φ(y)

1+|y|k .

Let rc > 0 be such that, for all y in the ball B(x, rc),

W̄ (y)− Φ(y)

1 + |y|k
≤ W̄ (x)− Φ(x)

1 + |x|k
.

We may suppose without loss of generality, a strict maximum is achieved at x and that
Φ(y) ≥ (1 + |y|k)sup

z∈Ω̄
ρ

W ρ(z)
1+|z|k outside the ball B(x, rc).

Then, there exists (ρn)n∈N and (yn)n∈N such that :

lim
n
ρn = 0, lim

n
yn = x, lim

n

W ρn(yn)− Φ(yn)

1 + |yn|k
= 0

and yn is a global maximum of y 7→ W ρn (y)−Φ(y)
1+|y|k .

Let ξn := W ρn (yn)−Φ(yn)
1+|yn|k . We have lim

n
ξn = 0 and for all y ∈ Ω̄, W ρn(y) ≤ (1+|y|kξn+Φ(y).

We also have W ρn(yn) = (1 + |yn|k)ξn + Φ(yn). So, by the monotonicity condition,

S(ρn, yn,W
ρn(yn),W ρn) ≥ S(ρn, yn,Φ(yn) + (1 + |yn|k)ξn,Φ + ξnµ),
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where µ : y 7→ 1 + |y|k. We then have :

0 ≥ lim inf
n

S(ρn, yn,Φ(yn) + (1 + |yn|k)ξn,Φ + ξnµ)

≥lim inf
ρ→0
y→x
ξ→0

S(ρ, y,Φ(y) + (1 + |y|k)ξ,Φ + ξµ)

≥lim inf
y→x
y∈Ω̄

F (D2Φ(y), DΦ(y),Φ(y), y),

by the consistency assumption.
Hence, we deduce that W̄ is a viscosity subsolution of (2.1). We obtain then the result of

the theorem.
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2.2 Semi-Lagrangian methods

Semi-Lagrangian methods can be found in the literature since 1950s with the famous paper [19]
of Courant, Isaacson and Rees. They were related first to the advection equation and were
used in the context of atmospheric modelling. However, during the eighties, similar methods
appeared in the field of optimal control theory. The first paper refered in the control literature
is the paper of Capuzzo Dolcetta ([15]) in 1983 where the author is interested in a deterministic
optimal control problem with infinite horizon. Then, followed the paper of Capuzzo Dolcetta
and Ishii ([16]) , the papers of Gonzales and Rofman ([37], [38]), the paper of Falcone ([26])
and for the stochastic optimal control problems the paper of Menaldi ([55]) and the paper
of Camilli and Falcone ([14]). Recently, Debrabant and Jakobsen have proposed in [24] a
unifying framework for the study of these methods.

We will start here by giving a unifying definition of Semi-Lagrangian method and then
show some Semi-Lagrangian schemes found in the literature and recall convergence results
obtained in [24].

2.2.1 Definition of Semi-Lagrangian methods

Semi-Lagrangian methods follow the same steps as finite difference methods as described in
the previous section. But, on the contrary of the finite difference schemes where the directions
in which the points are taken for the partial derivatives approximations are limited by the grid,
the directions taken in Semi-Lagrangian schemes for the partial derivatives approximations
are guided by the coefficients of the PDE problem and may not allow to choose a grid point.
This may imply the use of an interpolation technique of the value of the solution of the PDE
problem at the points chosen for partial derivatives approximations with its value at their
closest grid points.

One example of Semi-Lagrangian scheme is the scheme introduced by Capuzzo Dolcetta
in [15] and completed with a space discretization by Falcone in [26] where the PDE

max
α∈A
{λW − bα ·DW − fα} = 0 in Rn

with A being a finite set, is approximated by

max
α∈A

{
W h(xi)− (1− λh)W h(xi + bαh)− hfα(xi)

}
where xi is a point of the grid and h is a parameter which can be compared to a time
discretization step.

We give below a brief review of Semi-Lagrangian approximation techniques found in the
literature to approximate operators of the form (2.9). Assume that I∆x is an interpolation
operator using functions values at grid points and k and h are parameters related to the grid
discretization steps. The approximation of (2.7)-(2.8) consists in replacing (2.9) by using the
following approximations.

• The approximation of Falcone in [26] when aα = 1
2σ

ασαᵀ = 0 :

bα(t, x) ·Dxφ(t, x) ≈ I∆xφ(t, x+ hbα(t, x))−I∆xφ(t, x)

h
,
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• the approximation of Crandall and Lions [22] when bα = 0 :

1

2
Tr(σα(t, x)σαᵀ(t, x)D2

xφ(t, x))

≈
p∑
j=1

I∆xφ(t, x+ kσαj (t, x))− 2I∆xφ(t, x) + I∆xφ(t, x− kσαj (t, x))

2k2
,

where σα(t, x) ∈ Rn×p and σαj (t, x) denote the j-th column of σα(t, x). The same
notations are considered for the following approximations.

• The corrected version of the approximation of Camilli and Falcone [14]

1

2
Tr(σα(t, x)σαᵀ(t, x)D2

xφ(t, x)) + bα(t, x) ·Dxφ(t, x)

≈
p∑
j=1

I∆xφ(t, x+
√
hσαj (t, x) + h

p b
α(t, x))− 2I∆xφ(t, x) + I∆xφ(t, x−

√
hσαj (t, x) + h

p b
α(t, x))

2h
,

• The combination of the approximation of Falcone in [26] and Crandall and Lions in [22]

1

2
Tr(σα(t, x)σαᵀ(t, x)D2

xφ(t, x)) + bα(t, x) ·Dxφ(t, x) ≈ I∆xφ(t, x+ hbα(t, x))−I∆xφ(t, x)

h

+

p∑
j=1

I∆xφ(t, x+ kσαj (t, x))− 2I∆xφ(t, x) + I∆xφ(t, x− kσαj (t, x))

2k2
,

• The new more efficient version of the approximation of Camilli and Falcone in [14].

1

2
Tr(σα(t, x)σαᵀ(t, x)D2

xφ(t, x)) + bα(t, x) ·Dφ(t, x)

≈
p−1∑
j=1

I∆xφ(t, x+ kσαj (t, x))− 2I∆xφ(t, x) + I∆xφ(t, x− kσαj (t, x))

2k2

+
I∆xφ(t, x+ kσαp (t, x) + k2bα(t, x))− 2I∆xφ(t, x) + I∆xφ(t, x− kσαp (t, x) + k2bα(t, x))

2k2

Debrabant and Jakobsen proposed in [24] a unifying and more general form of the above
approximations which is the following.

Tr[aα,β(t, x)D2
xφ(t, x)] + bα,β(t, x) ·Dxφ(t, x) ≈ Lα,βk [I∆xφ](t, x)

with

Lα,βk [ψ](t, x) :=
M∑
i=1

ψ(t, x+ yα,β,+k,i (t, x))− 2ψ(t, x) + ψ(t, x+ yα,β,−k,i (t, x))

2k2
(2.12)

for k > 0 and some M ≥ 1, under some conditions on the functions yα,β,+k,i and yα,β,−k,i that
will be given in the next section.

This unifying form allows Debrabant and Jakobsen to obtain quite general results on
Semi-Lagrangian schemes which will be the subject of the next section.
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2.2.2 Convergence and error bounds for Semi-Lagrangian schemes

We will start with a convergence result of Semi-Lagrangian schemes obtained by Debrabant
and Jakobsen in [24] which uses the Theorem of Barles and Souganidis quoted in Theo-
rem 2.1.1. The authors consider the following PDE problem.

∂W

∂t
− inf
α∈A

sup
β∈B

{
Lα,β[W ](t, x) + cα,β(t, x)W + fα,β(t, x)

}
= 0 in QT := (0, T ]× RN (2.13)

W (0, x) = Ψ(x) in RN (2.14)

where A and B are complete metric spaces, and

Lα,β[u](t, x) = Tr[aα,β(t, x)D2
xu(t, x)] + bα,β(t, x)Dxu(t, x).

The coefficients aα,β, bα,β, cα,β, fα,β and Ψ take values respectively in S(N), RN , R, R and R.
The coefficient aα,β is assumed to be positive semi-definite. So the equation may degenerate.
The solution is then to be considered as a viscosity solution.

Theorem 2.2.1 ([24, Theorem 4.2]). Consider the following scheme for the PDE prob-
lem (2.13)- (2.14). δ∆tnW

n
i = inf

α∈A
sup
β∈B

{
Lα,βk [ ¯I∆xW

θ,n
]n−1+θ
i + cα,β,n−1+θ

i W̄i
θ,n

+ fα,β,n−1+θ
i

}
in G

W 0
i = Ψ(xi) in X∆x

(2.15)

where G = (tn, xi)n,i is the time-space grid which is a Cartesian product of a time grid

T∆t and a space grid X∆x, ∆tn = tn − tn−1, max
n

∆tn ≤ ∆t, Lα,βk is defined by (2.12),

I∆x is a space interpolation operator, Wn
i = W (tn, xi), f

α,β,n−1+θ
i = fα,β(tn−1 + θ∆tn, xi),

cα,β,n−1+θ
i = cα,β(tn−1 + θ∆tn, xi), L

α,β
k [ ¯I∆xW

θ,n
]n−1+θ
i = Lα,βk [ ¯I∆xW

θ,n
](tn−1 + θ∆tn, xi),

δ∆tnW
n
i =

Wn
i −W

n−1
i

∆tn
, W̄ θ,n

i = (1− θ)Wn−1
i + θWn

i ,

and
¯I∆xW·

θ,n
= (1− θ)I∆xW

n−1
· + θI∆xW

n
· .

∆x is considered here as an upper bound of the discretization step of X∆x. Assume the
following.

• A1: For any α ∈ A and β ∈ B, aα,β = 1
2σ

α,βσα,βᵀ for some N × P matrix σα,β and
there is a constant K independent of α, β such that :

|Ψ|1 + |σα,β|1 + |bα,β|1 + |cα,β|1 + |fα,β|1 ≤ K.

• I1: There are K > 0 and r ∈ N such that for all smooth functions Φ,

|(I∆xΦ)− Φ|0 ≤ K|Dr
xΦ|0∆xr
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• I2: There is a set of non-negative functions {wj(x)}j such that

(I∆xΦ)(x) =
∑
j

Φ(xj)wj(x)

and for all i, j ∈ N,

wj(x) ≥ 0, wi(xj) = δij and
∑
i

wi(x) ≡ 1

• Y1 :

M∑
i=1

[yα,β,+k,i + yα,β,−k,i ] = 2k2bα,β +O(k4),

M∑
i=1

[yα,β,+k,i yα,β,+
ᵀ

k,i + yα,β,−k,i yα,β,−
ᵀ

k,i ] = 2k2σα,βσα,β
ᵀ

+O(k4),

M∑
i=1

[[yα,β,+k,i ]j1 [yα,β,+k,i ]j2 [yα,β,+k,i ]j3 + [yα,β,−k,i ]j1 [yα,β,−k,i ]j2 [yα,β,−k,i ]j3 ] = O(k4),

M∑
i=1

[[yα,β,+k,i ]j1 [yα,β,+k,i ]j2 [yα,β,+k,i ]j3 [yα,β,+k,i ]j4 + [yα,β,−k,i ]j1 [yα,β,−k,i ]j2 [yα,β,−k,i ]j3 ][yα,β,−k,i ]j4 ] = O(k4),

for all j1, j2, j3, j4 = 1, 2, · · · , n.

• CFL condition :

(1− θ)∆t
[
M

k2
− cα,β,n−1+θ

i

]
≤ 1 and θ∆tcα,β,n−1+θ

i ≤ 1 ∀α, β, n, i. (2.16)

Then, there exists a unique bounded solution U to (2.15) and U converges uniformly to the
solution W of (2.13)- (2.14) as ∆t, k, ∆xr

k2 → 0.

In the above Theorem, the condition A1 allows one to have the existence and unicity of
a viscosity solution to the PDE problem (2.13)- (2.14) using Theorem 1.2.2.

The previous Theorem is completed in [24] by a result on the error bound in the conver-
gence of Semi-Lagrangian schemes recalled below.

Theorem 2.2.2 ([24, Theorem 7.2]). Consider the PDE problem (2.13)- (2.14) and its ap-
proximation scheme (2.15) where the set B is supposed to be a singleton (we can drop then
the indexation in β).

With the assumptions names of Theorem 2.2.1, assume A1, Y1, (2.16), k ∈ (0, 1) and
the following condition :

M∑
i=1

[yα,+k,i + yα,−k,i ][ỹα,+k,i + ỹα,−k,i ] ≤ 2k2(bα − b̃α),

M∑
i=1

[yα,+k,i y
α,+ᵀ

k,i + yα,−k,i y
α,−ᵀ

k,i ] + [ỹα,+k,i ỹ
α,+ᵀ

k,i + ỹα,−k,i ỹ
α,−ᵀ

k,i ]

− [ỹα,+k,i y
α,+ᵀ

k,i + yα,+k,i ỹ
α,+ᵀ

k,i + ỹα,−k,i y
α,−ᵀ

k,i + yα,−k,i ỹ
α,−ᵀ

k,i ]

≤ 2k2(σα − σ̃α)(σα − σ̃α)ᵀ + 2k4(bα − b̃α)(bα − b̃α)
ᵀ
,
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where σα, bα, yα,±k,i represent here the values of the functions of the same name at (t, x) and

σ̃α, b̃α, ỹα,±k,i represent the values of these functions at (t, y). The above system must then hold
for any t, x, y. If W and U are bounded solutions respectively of (2.13)-(2.14) and (2.15),
then there exists c0 such that for ∆t ∈ (0, c0),

|U −W | ≤ C(|1− 2θ|∆t1/4 + ∆t1/3 + k1/2) in G. (2.17)

The error bound obtained here seems to be better than the error bound obtained in Corol-
lary 2.1.1 for finite difference schemes. However, in practice, the best error estimate deduced
from the above theorem is ∆x1/5 which is achieved when k = O(∆x2/5). It corresponds then
to the negative lower bound of the error obtained in Corollary 2.1.1, the upper bound being
of a higher order (∆x1/2).

There is also a recent result about the error bound of a Semi-Lagrangian scheme in an
unbounded setting due to Assellaou, Bokanowski and Zidani ( [5]). It is stated as follows.

Theorem 2.2.3 ([5, Theorem 4.1]). Consider the following PDE :

−∂W
∂t

(t, x) +H(t, x,DxW (t, x), D2
xW (t, x)) = 0, in (0, T )× Rd,

W (T, x) = φ(x), in Rd,

where

H(t, x, p,X) = inf
u∈U

{
−1

2
Tr (σ(t, x, u)σᵀ(t, x, u)X)− b(t, x, u) · p

}
with (t, x, p,X) ∈ (0, T )× Rd × Rd × S(d). It is supposed that :

1. U is a non empty compact subset of Rq (q > 0).

2. b ∈ C ([0, T ]× Rd × U,Rd) and σ ∈ C ([0, T ]× Rd × U,Rd×m).

3. There exists L0 > 0 such that for any (s, t, x, y, u) ∈ [0, T ]× [0, T ]× Rd × Rd × U ,

|b(t, x, u)− b(s, y, u)|+ |σ(t, x, u)− σ(s, y, u)| ≤ L0(|x− y|+ |t− s|
1
2 ),

4. φ is a continuous real function and there exists a constant M0 > 0 such that :

|φ(x)| ≤M0(1 + |x|), (x ∈ Rd).

This PDE has a unique viscosity solution W in the space of functions with linear growth.
Let σk (1 ≤ k ≤ m) denotes the k-th column of σ and σ̄k, (1 ≤ k ≤ 2m) be defined as follows :

σ̄k(t, x, u) := (−1)k
√
mσb k−1

2
c(t, x, u),

where bac denotes the integer part of a ∈ R.
Let h > 0 be a time step of a time grid (tn)0≤n≤N , X∆x be a space grid and V n (0 ≤ n ≤ N)

be the solution of the scheme :

V N (x) = φ(x),

V n−1(x) = Sh(tn, x, V
n), for 1 ≤ n ≤ N,
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where for any t ∈ [0, T ], x ∈ X∆x and any function w : X∆x → R,

Sh(t, x, w) :=
1

2m
max
u∈U

{
2m∑
k=1

[w](x+ hb(t, x, u) +
√
hσ̄k(t, x, u))

}
,

where [w] denotes the linear interpolation of w on the grid X∆x having a grid step ∆x.
V n is completed on points which are not on the time and space grid by bilinear interpolation,
which gives the function V .

Assume that φ is a Lipschitz continuous function with a Lipschitz constant Lφ. There
exists C ≥ 0 depending only on T and L0, such that for every R > 0, we have :

‖V −W‖L∞(BR) ≤ CLφ
(
R7/4h1/4 +

|∆x|
h

)
,

where ‖w‖L∞(BR) represents the supremum of |w(t, x)| for (t, x) ∈ [0, T ]× BR, BR being the
ball of center 0 and radius R.
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2.3 Probabilistic methods

Finite difference methods and Semi-Lagrangian methods need the discretization of the space
variable which leads to a storage and algorithmic complexity exponential in the space dimen-
sion and thus cannot be used in high dimension (greater or equal to 4). This problem is
known as the curse of dimensionality and was a major stepback in the resolution of many
PDEs problems numerically for many years. The introduction of the Feynman-Kac formula
in [42] in 1951 by Kac, was a major breakthrough in the numerical methods for solving PDE
problems. It related linear PDE problems to stochastic differential equations, requiring just
the computation of an expectation to solve them and allowing to use probabilistic methods
such as Monte Carlo method to solve these problems. This first article was only about linear
PDE problems. However, in the following years, a lot of works have been done to enhance
this result and be able to solve non linear partial differential equations in the same way. The
notion of Backward Stochastic Differential Equations has been introduced by Bismut [10] in
1973 in the linear case and by Pardoux and Peng [61] in 1990 in the general case. It al-
lowed to enlarge the class of PDE problems that can be solved using relations similar to the
Feynman-Kac formula from linear to quasi-linear PDE problems. In 2007, Cheridito, Soner,
Touzi and Victoir introduced in [17] the second order Backward Stochastic Differential Equa-
tions allowing to have a form of Feynman-Kac formula for fully non linear PDE problems
like those which arise in optimal control problems. Their work has been extended by Fahim,
Touzi and Warin in [25] who showed that the resulted scheme of [17] can be introduced like
a finite difference scheme where partial derivatives are approximated in a probabilistic way
instead of using finite differences. These developments introduced the need to compute a
conditional expectation. But, in the same time, probabilistic methods evolved to solve this
new difficulty. We can cite in this setting the introduction of the Longstaff and Schwartz
method in [51], the representation formulae based on Malliavin calculus ([30], [29], [12]) and
the quantization-based approach [6, 59]. Further studies followed like the paper of Bouchard
and Touzi [13] and the paper of Gobet, Lemor and Warin [36].

We are going firstly to define probabilistic methods and give a description of their different
variants introduced in the literature to deal with the computation of the conditional expecta-
tion. We will also present related notions such as Backward Stochastic Differential Equation
and second-order Backward Stochastic Differential Equation and the results which link them
to PDE problems. We will then present some particular probabilistic schemes [25, 40] that
we will improve in Section 3.1.

2.3.1 Description of probabilistic methods

When applied to a PDE problem, a probabilistic method needs generally a discretization
of the time variable if there is any. Then, it consists in simulating one or many stochastic
processes according to time-discretized equations on these processes forming the probabilistic
scheme, in order to compute in a backward method the solution of the PDE and sometimes its
derivatives. It may involve the approximation of an expectation or a conditional expectation.
The expectation is generally approximated by the mean of the simulated values which is known
to converge to the theoretical expectation when the number of simulated values increase (Law
of Large Numbers). The computation of the conditional expectation is more complicated. In
the literature, three main approaches have been developed for this calculus. We describe
them in the following subsections.
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2.3.1.a Longstaff and Schwartz method The Longstaff and Schwartz method is based on
the fact that the conditional expectation of a random variable Y with respect to a random
variable X verify the following condition : There exists a measurable function f from R to
R which is square integrable on σ(X) such that for all measurable functions g from R to R
which are square integrable on σ(X), E[(Y − f(X))g(X)] = 0 (σ(X) denotes the σ-algebra
generated by X). Then, E[Y | X] = f(X). Solving this condition is equivalent to solve the
following problem : Find a measurable function f , square integrable on σ(X) such that

f = arg min
g∈G

E
[
(Y − g(X))2

]
,

G being the set of measurable functions square integrable on σ(X).

The Longstaff and Schwartz method consists in considering a particular space of finite
dimension instead of the set of measurable functions such that this problem can be solved with
the least squares method after replacing the expectation by a mean operator on a finite number
of simulations. The conditional expectation is then computed using a simple regression. The
space considered for G is generally the space of polynomials with degrees smaller or equal to
a given value k. But, as shown by Gobet, Lemor and Warin in [36], the space generated by
indicator functions on hypercubes or on a Voronoi partition of the state space can also be
used.

2.3.1.b The Malliavin approach The Malliavin approach for the computation of the condi-
tional expectation of a random variable Y with respect to another random variable X consists
in expressing this conditional expectation as a weighted expectation of Y with the expression
of the weight obtained by Malliavin calculus. The obtained expectation can then be computed
as a mean value over the simulations which converge to the theoretical expectation according
to the law of large numbers.

The intuition here consists in using the fact that :

E [Y | X = x] =
E [Y δx(X)]

E [δx(X)]

where δx is the Dirac function at the point x. Then in the above expectations, the Dirac
function is replaced by expectations with an Heaviside function H times an appropriate
weight π, using Malliavin calculus integration by parts. For more details, see [29] and [12].

Bouchard and Touzi in [13] made an analysis of the error due to the use of the Malli-
avin approach to approximate the conditional expectation in the particular example of the
computation of the solution of a decoupled Forward-Backward stochastic differential equation
(presented further in this section). They found that this error grows exponentially with the
dimension of the state space. This can be considered as another manifestation of the curse of
dimensionality in the convergence of probabilistic method. However, on the contrary of grid
based methods such as finite difference methods and Semi-Lagrangian methods that cannot
even be implemented in high dimension, probabilistic methods have this advantage to be
implementable even in high dimension.

2.3.1.c The quantization approach This method is described or used in [6, 59, 33]. After a
discretization in time common to all the methods presented above, the quantization approach
uses also a discretization in space of the simulated stochastic processes. A space grid is built
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at any time step and a projection of the simulated stochastic processes is done on the grid.
The fact that the method uses a space grid can make it comparable to grid based methods
such as finite difference and semi-Lagrangian methods except that, in this case, the space grid
is stochastic as it is built using processes simulated values.

If we consider then a process (Ys)s and a process (Xs)s for which we want to compute the
conditional expectation E[Ysi+1 | Xsi ] at any time step si, 1 ≤ i ≤ N − 1 knowing YsN as a
function of XsN , the quantization method will first apply a discretization of the state space
using simulations of Xsi , 1 ≤ i ≤ N and build functions qi known as quantizers which relate
any point in the space to a point of the grid corresponding to time si (a Voronoi partition is
generally used here). Then, transitional probabilities from any point of the grid corresponding
to time si to any point of the grid corresponding to time si+1 will be computed using statistics
on simulations of the process (Xsk)1≤k≤N . Afterwards, values of the conditional expectation
E[YsN | XsN−1 ] are then deduced as the sum of the values of YsN expressed at the points of
the grid corresponding to time sN weighted by the transitional probabilities. In the same
way, from the values of E[YsN | XsN−1 ] at the grid points corresponding to time sN−1, the
values of E[YsN−1 | XsN−2 ] can be deduced and so on.

2.3.2 Backward Stochastic Differential Equations

The problem we presented above is a simple form of a problem of a Backward stochastic
differential equation. Let {Bt; t ∈ [0, T ]} be a standard d-dimensional Brownian process
defined on a probability space (Ω,F , P ), and let {Ft} be its natural filtration. Let Y be a FT

measurable k-dimensional random variable. A Backward stochastic differential equation as
generalized by Pardoux and Peng in [61], consists in finding a Ft- adapted pair of stochastic
processes (Yt, Zt)0≤t≤T with values respectively in Rk and Rk×d which verify the following
equation :

Yt +

∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)dBs = Y

where f is a measurable function from Ω × [0, T ] × Rk × Rk×d to Rk which is supposed to
be uniformly Lipschitz with respect to the two last variables, and g is a measurable function
from Ω × [0, T ] × Rk × Rk×d to Rk×d such that the mapping z 7→ g(s, y, z) is a bijection for
any (ω, s, y).

This stochastic differential equation is generally linked to a forward stochastic differential
equation in order to obtain an equivalence with PDE. The result is a Forward Backward
Stochastic Differential Equation (FBSDE). The solution of the forward stochastic differential
equation enters then in the dynamics of the Backward stochastic differential equation. If on
the other hand, the solution of the Backward Stochastic Differential equation is included in
the terms of the forward stochastic differential equation, the FBSDE is coupled. Otherwise,
it is uncoupled.
Example of uncoupled FBSDE from [60]

dXt,x
s = b(Xt,x

s )ds+ σ(Xt,x
s )dBs, t ≤ s ≤ T

Xt,x
t = x,

Y t,x
s = g(Xt,x

T )−
∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,xr )dr −

∫ T

s
Zt,xr dBr, t ≤ s ≤ T
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where b is a function from Rn to Rn of class C3 with all its derivatives up to order 3 bounded,
σ is a function from Rn to Rn×d of class C3 with all its derivatives up to order 3 bounded,
x ∈ Rn, g ∈ C3

p(Rn,Rk), f is defined from [0, T ] × Rn × Rk × Rk×d to Rk such that for any
s ∈ [0, T ], (x, y, z) 7→ f(s, x, y, z) is of class C3, x 7→ f(s, x, 0, 0) is of class C3 and the first
partial derivative of f with respect to y and z are bounded on [0, T ]×Rn×Rk×Rk×d as well
as their derivatives of order one and two with respect to x, y, z. The unknown processes are
then the Fs-adapted processes (Xt,x

s , Y t,x
s , Zt,xs )s∈[0,T ].

The related PDE is then :

∂W

∂t
(t, x) + LW (t, x)− f(t, x,W (t, x), (DxWσ)(t, x)) = 0,

W (T, x) = g(x),

where W : [0, T ]× Rd → Rk, (t, x) 7→ (W1(t, x), · · · ,Wk(t, x)), and

LW =

LW1
...

LWk

 ,

L =
1

2

d∑
i,j=1

(σσᵀ)ij(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
.

W (t, x) is then identified to Y t,x
t , if W is the viscosity solution of this PDE.

Example of coupled FBSDE from [9]
Xt = x+

∫ t

0
b(s,Xs, Ys)ds+

∫ t

0
σ(s,Xs, Ys)dBs

Yt = g(XT )−
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T ]

where b : [0, T ]×Rd×R→ Rd, σ : [0, T ]×Rd×R→ Rd×d, f : [0, T ]×Rd×R×Rd → R and
g : Rd → R are deterministic and Lipschitz continuous functions of linear growth which are
additionally supposed to satisfy some weak coupling or monotonicity condition.

The related PDE is then :
∂W

∂t
(t, x)+

1

2
Tr
(
(σσᵀ)(t, x,W (t, x))D2

xW (t, x)
)

+DxW (t, x) · b(t, x,W (t, x))− f(t, x,W (t, x), DxW (t, x)σ(t, x,W (t, x))) = 0,

W (T, x) =g(x),

and we have Yt = W (t,Xt) and Zt = DxW (t,Xt)σ(t, x,W (t,Xt)), if W denotes the viscosity
solution of this PDE.

Uncoupled FBSDEs can be related to semilinear PDE problems while coupled FBSDEs
can be related to quasi-linear PDE problems (see [60], [62], [63]). However, the Hamilton-
Jacobi-Bellman equation and the Hamilton-Jacobi-Bellman-Isaacs equation encountered in
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Section 1.1 in the stochastic case are either semilinear when the diffusion coefficients do not
depend on the controls or fully nonlinear.

To be able to deal with fully nonlinear PDE problems, Cheridito, Soner, Touzi and
Victoir introduced the notion of second-order Backward Stochastic Differential Equation.
Let (Ft,T ) = (F t

s)s∈[t,T ] be the augmented filtration generated by (Bs − Bt)s∈[t,T ]. One

example of this differential equation consists in finding a quadruple Ft,T -adapted process
(Y t,x
s , Zt,xs ,Γt,xs , At,xs ) taking values in R× Rd × S(d)× Rd such that given functions f, g and

a process Xt,x strong solution to the forward stochastic differential equation :{
dXt,x

s = b(Xt,x
s )ds+ σ(Xt,x

s )dBs

Xt,x
t = x

with b : Rd → Rd and σ : Rd →M d
inv (M d

inv : set of invertible matrices of Rd×d) Lipschitz of
Lipschitz constant smaller or equal to K and such that

|b(x)|+ |σ(x)| ≤ K(1 + |x|p1),

p1 ∈ [0, 1], we have
dY t,x

s = f(s,Xt,x
s , Y t,x

s , Zt,xs ,Γt,xs )ds+ Zt,xs · dXt,x
s +

1

2
Tr
(
σ(Xt,x

s )σᵀ(Xt,x
s )Γt,xs

)
ds, s ∈ [t, T ),

dZt,xs = At,xs ds+ Γt,xs dXt,x
s , s ∈ [t, T ),

YT = g(XT ).

(2.18)

where f : [0, T )× Rd × R× Rd × S(d)→ R and g : Rd → R are continuous functions.
This stochastic differential equation is related to a fully nonlinear PDE problem according

to the following theorem of Cheridito, Soner, Touzi and Victoir in [17].

Theorem 2.3.1 ([17, Theorem 4.10]). Let us consider the second order Backward Stochastic
Differential Equation (2BSDE) (2.18) and the following PDE problem :

−∂W
∂t

(s, x) + f(s, x,W (s, x), DxW (s, x), D2
xW (s, x)) = 0, on [0, T )× Rd, (2.19)

W (T, x) = g(x), x ∈ Rd. (2.20)

Consider the class A t,x
m ((t, x) ∈ [0, T ]× Rd and m ≥ 0) of processes (Zs)s such that :

Zs = z +

∫ s

t
Ardr +

∫ s

t
ΓrdX

t,x
r , s ∈ [t, T ],

where z ∈ Rd, (As)s∈[t,T ] is an Rd-valued, Ft,T -progressively measurable process, (Γs)s∈[t,T ] is

an S(d)- valued, Ft,T -progressively measurable process such that :

max{|Zs|, |As|, |Γs|} ≤ m(1 + |Xt,x
s |p4), ∀s ∈ [t, T ]

and
|Γr − Γs| ≤ m(1 + |Xt,x

r |p5 + |Xt,x
s |p5)(|r − s|+ |Xt,x

r −Xt,x
s |)

for all r, s ∈ [t, T ], where p4 and p5 are fixed positive constants.
Set A t,x = ∪m≥0A

t,x
m and consider the following assumptions.
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• A1 : For every N ≥ 1, there exists a constant FN such that

|f(t, x, y, z, γ)− f(t, x, ỹ, z, γ)| ≤ FN |y − ỹ|

for all (t, x, y, ỹ, z, γ) ∈ [0, T )× Rd × R× R× Rd × S(d) with

max{|x|, |y|, |ỹ|, |z|, |γ|} ≤ N.

• A2 : There exists constants F and p2 ≥ 0 such that

|f(t, x, y, z, γ)| ≤ F (1 + |x|p2 + |y|+ |z|p2 + |γ|p2)

for all (t, x, y, z, γ) ∈ [0, T )× Rd × R× Rd × S(d).

• A3 : There exists constants G and p3 ≥ 0 such that

|g(x)| ≤ G(1 + |x|p3)

for all x ∈ Rd.

• A4 : For all (t, x, y, z) ∈ [0, T )× Rd × R× Rd and γ, γ̃ ∈ S(d),

f(t, x, y, z, γ) ≥ f(t, x, y, z, γ̃) whenever γ ≤ γ̃.

• A5 : For all t ∈ [0, T ), the PDE (2.19) with the terminal condition (2.20) satisfies the
comparison principle on [t, T ] × Rn in the space of functions with a growth exponent
p = max{p2, p3, p2p4, p4 + 2p1}, this space of functions being the set of functions V such
that :

|V (s, x)| ≤ C(1 + |x|p) ∀(s, x) ∈ [t, T )× Rd.

If there exists (t, x) ∈ [0, T ) × Rd such that the 2BSDE (2.18) corresponding to (Xt,x, f, g)
has a solution (Y t,x, Zt,x,Γt,x, At,x) with Zt,x ∈ A t,x, then the PDE (2.19) with the terminal
condition (2.20) has a unique viscosity solution W on [t, T ] × Rd in the space of functions
with growth exponent p = max{p2, p3, p2p4, p4 + 2p1}, W is continuous on [t, T ]×Rd, and the
process Y t,x is almost surely of the form

Y t,x
s = W (s,Xt,x

s ), s ∈ [t, T ]. (2.21)

In particular, (Y s,x, Zs,x,Γs,x, As,x), is the only solution of the 2BSDE (2.18) corresponding
to (Xt,x, f, g) with Zs,x ∈ A s,x.

The above theorem is mainly used to compute the solution of a PDE problem using equal-
ity (2.21). A time discretization approximation of the process (Y t,x

s )s∈[t,T ] is then computed
by using a probabilistic scheme. Cheridito, Soner, Touzi and Victoir, proposed in [17] such a
probabilistic scheme that we present below.

Set

−F (t, x, y, z, γ) = f(t, x, y, z, γ) + b(x) · z +
1

2
Tr[σ(x)σ(x)ᵀγ].

Let sn := t + n(T − t)/N and (Y N
sn )n, (ZNsn)n, (ΓNsn)n be approximations respectively of

Y t,x, Zt,x, Γt,x. The probabilistic scheme in [17] consists in computing (Y N
sn )n, (ZNsn)n, (ΓNsn)n

using the following (implicit) equations :

Y N
T := g(Xt,x

T ), ZNT := Dg(Xt,x
T )
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and for n = 1, ..., N ,

Y N
sn−1

:= E[Y N
sn | X

t,x
sn−1

] + F (sn−1, X
t,x
sn−1

, Y N
sn−1

, ZNsn−1
,ΓNsn−1

)(sn − sn−1)

ZNsn−1
:=

1

sn − sn−1
(σ(Xt,x

sn−1
)ᵀ)−1E[(Bsn −Bsn−1)Y N

sn | X
t,x
sn−1

],

ΓNsn−1
:=

1

sn − sn−1
E[ZNsn · (Bsn −Bsn−1) | Xt,x

sn−1
]σ(Xt,x

sn−1
)−1.

This probabilistic scheme has been the subject of a deeper study in [25]. This study will
be presented in the next subsection.

2.3.3 Probabilistic scheme for Fully NonLinear PDEs

Fahim, Touzi and Warin in [25] showed that the scheme described at the end of the previous
subsection, can be introduced like a finite difference scheme, where partial derivatives are
approximated by using probabilistic expressions. The convergence of the scheme can then be
proved without using the theory of second order Backward Stochastic Differential Equations,
but by using instead theorems related to finite difference schemes such as the Theorem 2.1.1
due to Barles and Souganidis.

Let us consider the PDE of equation (2.19)-(2.20) with the standard d-dimensional Brow-
nian motion and the probability space (Ω,F , P ) introduced in the previous subsection.

As shown in [25], the first hidden step in the scheme of Cheridito and al in [17] is to
decompose the function f in two parts, a linear part and a nonlinear part such that the
PDE (2.19) can be written as :

−L XW − F (·,W,DxW,D
2
xW ) = 0, (2.22)

with

[L Xφ](t, x) :=
∂φ

∂t
(t, x) + b(t, x) ·Dxφ(t, x) +

1

2
Tr(σ(t, x)σᵀ(t, x)D2

xφ(t, x)).

The scheme can then be introduced by using the fact that L X is the infinitesimal
generator of a computable diffusion process X and that by the PDE (2.22), L XW =
−F (·,W,DxW,D

2
xW ). It remains to approximate the function W and its derivatives DxW ,

D2
xW used with the function F . By using Hermite polynomials and a differentiation in the

sense of distributions, this is done in [25] through the result recalled in Lemma 2.3.1. We
introduce an Euler discretization X̂t,x

h := x + b(t, x)h + σ(t, x)(Bt+h − Bt) of the process X
and for k = 0, 1, 2, the operators Dk

xW are replaced by the operators

Dk
hW (t, x) := E[Dk

xW (t+ h, X̂t,x
h )].

For a given function Ψ on Rd, we let :

D0
t,h[Ψ](x) = E

[
Ψ(X̂t,x

h )
]
, (2.23)

D1
t,h[Ψ](x) = E

[
Ψ(X̂t,x

h )(σ(t, x)ᵀ)−1B
t
h

h

]
, (2.24)

D2
t,h[Ψ](x) = E

[
Ψ(X̂t,x

h )(σ(t, x)ᵀ)−1B
t
hB

t
h
ᵀ − hI
h2

σ(t, x)−1

]
, (2.25)

where Bt
h = Bt+h −Bt, and I is the identity d× d matrix.
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Lemma 2.3.1 ([25, Lemma 2.1]). For every function φ : (0, T ] × Rd → R with exponential
growth, we have :

D0
hφ(t, x) = D0

t,h[φ(t+ h, ·)](x), (2.26)

D1
hφ(t, x) = D1

t,h[φ(t+ h, ·)](x), (2.27)

D2
hφ(t, x) = D2

t,h[φ(t+ h, ·)](x), (2.28)

For a positive integer n, h := T/n, ti = ih, i = 0, · · · , n, the scheme is then :

W h(tn, x) = g(x), x ∈ Rd,
W h(ti, x) = Tti,h[W h(ti+1, ·)](ti, x), x ∈ Rd i = 0, · · · , n− 1,

where Tt,h is defined by

Tt,h[Ψ](t, x) := E[Ψ(X̂t,x
h )] + hF (t, x,D0

t,h[Ψ](x),D1
t,h[Ψ](x),D2

t,h[Ψ](x)), (2.29)

for Ψ : Rd → R with exponential growth.
Using, Barles and Souganidis theorem, Fahim, Touzi and Warin obtained the following

convergence result :

Theorem 2.3.2 ([25, Theorem 3.6]). Assume the following on F :

1. The nonlinearity F is Lipschitz continuous with respect to (x, r, p, γ) uniformly in t and
|F (·, ·, 0, 0, 0)|0 <∞;

2. F is elliptic and dominated by the diffusion of the linear operator L X , that is :

DγF ≥ 0 (2.30)

Tr[(σσᵀ)−1DγF ] ≤ 1 (2.31)

on [0, T ) × Rd × R × Rd × S(d), where DγF represents the partial gradient of F with
respect to its last variable γ;

3. DpF ∈ Image(DγF ) and |DpFDγF
−DpF |0 < ∞ where DpF is the partial gradient of

F with respect to its fourth variable and DγF
− denotes the pseudo-inverse of DγF .

Assume also that |b|1, |σ|1 < ∞ and σ is invertible. Also, assume that the fully nonlinear
PDE (2.19) has a comparison principle for bounded functions. Then for every bounded Lips-
chitz function g, there exists a bounded function W such that W h →W locally uniformly. In
addition, W is the unique bounded viscosity solution of problem (2.19)- (2.20).

One of the most strong hypothesis in the above theorem is the second hypothesis on F .
It comes from the monotonicity requirement of the scheme.

DγF = −fγ −
1

2
σσᵀ,

where fγ is the partial gradient of f from PDE 2.19 with respect to its last variable. So,

Tr[(σσᵀ)−1DγF ] ≤ 1⇔ Tr

[
(σσᵀ)−1(−fγ −

1

2
σσᵀ)

]
≤ 1

⇔ Tr

[
−(σσᵀ)−1fγ −

1

2
I

]
≤ Tr

[
1

d
I

]
.
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The last inequality holds if

−σ−1fγ(σᵀ)−1 − 1

2
I ≤ 1

d
I. (2.32)

The inequalities here are to be understood in the sense of the Loewner order. As DγF should
also be nonnegative,

0 ≤ −σ−1fγ(σᵀ)−1 − 1

2
I ≤ 1

d
I.

That give us

σσᵀ ≤ −2fγ ≤ (1 +
2

d
)σσᵀ. (2.33)

The inequality (2.32) is necessary if all the eigenvalues of σ−1fγ(σᵀ)−1 are equal.
When the dimension d increases, condition (2.33) reduces the non linearity character of f

with respect to its last variable γ and makes the PDE more close to a quasi-linear PDE than
to a fully non linear PDE as encountered in optimal control problems.

Guo, Zhang and Zhuo tried to improve this condition in a subsequent work ([40]) by using
instead of a Brownian motion in the above scheme, a trinomial tree with a new kernel for the
Hessian approximation. They manage to allow greater variations in the diagonal terms of fγ .
However, the other terms of fγ must remain almost constant in great dimension.

We note that the probabilistic scheme of Fahim, Touzi and Warin in [25] is equivalent
if we replace the Brownian motion B by a binomial or trinomial random walk, to a finite
difference scheme. The condition (2.31) is then a stronger than the usual form of the CFL
condition which is materialized in dimension greater or equal to 2 by the need to have a
diffusion coefficient matrix diagonally dominant. We give more details about this observation
in the following discussion.

Discussion on the scheme of [25] and the condition (2.31)
Let us first show on examples the behavior of the discretization of [25]. For this, we shall

show what happen when the increments of the Brownian motion Bt+h − Bt are replaced by
any finite valued independent random variables with same law. This will allow us in particular
to compare the discretization of [25] with finite difference schemes. Similar comparisons were
done in [25] but here we shall discuss in addition the meaning of the constraint (2.31) in this
situation that we call here the critical constraint.

To simplify the comparison, we drop the dependence of PDE terms in t and consider the
case where f is linear and depends only on γ:

f(x, r, p, γ) = −1

2
Tr (Aγ)

where A is a d-dimensional symmetric positive definite matrix. We assume that A ≥ I and
choose L X(x, p, γ) = 1

2 Tr (γ), that is b ≡ 0 and σ ≡ I. Hence, F (x, r, p, γ) = 1
2 Tr ((A− I)γ).

Then denoting by N any d-dimensional normal random variable, we get that the operator
Tt,h of (2.29) satisfies:

Tt,h(Ψ)(x) = D0
h(Ψ)(x) + h

1

2
Tr((A− I)D2

h(Ψ)(x)))

= E
(

Ψ(x+
√
hN)(1 +

1

2
Tr((A− I)(NNT − I)))

)
. (2.34)
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This operator is linear, and it is thus order preserving if and only if for almost all values of N
the coefficient of Ψ(x+

√
hN) inside the expectation, that is (1+ 1

2 Tr((A−I)(NNT −I))), is
nonnegative. The critical constraint Tr[(σσᵀ)−1DγF ] ≤ 1 is equivalent here to 1

2 Tr(A−I) ≤ 1.
This corresponds exactly to the condition that the coefficient of Ψ(x) inside the expectation is
nonnegative. Thus, if N is replaced by any random variable taking a finite number of values
including 0, the critical constraint is necessary.

Consider the dimension d = 1 and a simple discretization of N by the random variable
taking the values ±ν with probability 1/(2ν2) and the value 0 with probability 1 − 1/ν2,
where ν > 1. Then, we obtain

Tt,h(Ψ)(x) = Ψ(x) +
b

2ν2

(
Ψ(x+

√
hν) + Ψ(x−

√
hν)− 2Ψ(x)

)
, (2.35)

with b = 1 + 1
2(A11 − 1)(ν2 − 1). This scheme is equivalent to an explicit finite difference

discretization of (2.19) with a space step ∆x =
√
hν, which is consistent with (2.19) if

and only if b = A11 and so if and only if ν =
√

3. In that case, the critical condition
1
2(A11 − 1) ≤ 1 is necessary for the scheme to be monotone and it is equivalent to the CFL
condition A11h ≤ (∆x)2.

For finite difference schemes, the CFL condition can be satisfied by increasing ∆x. How-
ever, here ∆x is stongly connected to the possible values of N and since the probability of
large N is small, one cannot avoid the critical constraint if we keep the discretization (2.28)
of D2

xW .

We can note that in this case the expression of D1
t,h(Ψ)(x) is

D1
t,h(Ψ)(x) =

Ψ(x+
√
hν)−Ψ(x−

√
hν)

2
√
hν

,

which corresponds to a centered finite discretization.

Now, consider the dimension d = 2, and the simple discretization of N where each entry
of N = (Ni)i=1,...,d is replaced by a random variable as above, taking the values ±

√
3 with

probability 1/6 and the value 0 with probability 2/3. In that case, the critical constraint
1
2(A11 + A22 − 2) ≤ 1 is necessary and sufficient for the discretization to be monotone. We
have

Tt,h(Ψ)(x) =E

Ψ(x+
√
hN)(1 +

1

2

2∑
i,j=1

(Aij − δij)(NiNj − δij))


=Ψ(x)

2

9
(2− Tr(A− I))

+
1

18

2∑
i=1

∑
ε=±1

(
Ψ(x+

√
3hεei)(3(Aii − 1) + 2− Tr(A− I))

)
+

1

72

∑
ε1=±1,ε2=±1

(
Ψ(x+

√
3h(ε1e1 + ε2e2))

(
3
( 2∑
i,j=1

(Aij − δij)εiεj
)

+ 2− Tr(A− I)
))

.
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where (e1, e2) is the canonical basis of R2. This discretization can be rewritten as

Tt,h(Ψ)(x) =Ψ(x) +
h

2

 2∑
i,j=1

(Aij − δijb)Dh
ijΨ(x)

+ b∆hΨ(x)

 ,

where b = (1 + Tr(A − I))/3, Dh
ijΨ is the standard 5-point stencil discretization of the

partial derivative ∂2Ψ
∂xi∂xj

on the grid with space step ∆x =
√

3h (as above), and ∆hΨ is

the discretization of ∆Ψ using the external vertices of the 9-point stencil (that is the points
x + ∆x(±e1 + ±e2)). We point out the similarity with the Kushner scheme here. Note also
that the critical constraint Tr(A − I) ≤ 2 implies b ≤ 1. Moreover, since A − I is positive
semidefinite, then 2|A12| ≤ Tr(A− I) ≤ 2 and Aii ≥ 1, so |A12| ≤ Aii for i = 1, 2. The latter
condition means that the matrix is diagonally dominant.

In general, we see that the critical condition (2.31) comes from the CFL condition. As the
ratio between the equivalent space grid step and the time grid step is fixed, the probabilistic
scheme cannot be applied in any case.

We saw that the scheme in [25] is similar to a centered finite difference discretization for
the gradient and a Kushner discretization for the Hessian. We improve it in Section 3.1 by
introducing a sort of probabilistic upwind scheme to deal with terms of the PDE (2.19) in
DxW and an equivalent in probabilistic world of large stencil schemes such as the scheme of
Bonnans and Zidani (see Section 2.1) to deal with terms in D2

xW . This scheme is used in a
general new technique combining probabilistic methods to max-plus methods which will be
presented in the next sections.
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2.4 Max-plus methods

Max-plus methods were introduced in the optimal control theory to exploit the max-plus
linearity of the semigroups associated to Hamilton-Jacobi-Bellman equations of the first order.
Indeed, even if the HJB equation is non linear, optimal control problems can be seen as linear
in the max-plus algebra. The first methods proposed in the literature were subject to the
curse of dimensionality because they needed the construction of a basis of functions over the
state space as in finite element method and thus needed a discretization in space. A basis of
functions over the state space was fixed and the value function was projected on this basis at
each time step using various techniques.

In 2007, McEneaney proposed in the paper [52] a new max-plus approach where there is
no need to project the value function on a fixed basis of functions at each time step. In fact,
the value function is still expressed as a linear combination of functions in the max-plus sense,
but these functions appear naturally at each time step. The curse of dimensionality of old
max-plus approaches disappeared but a new curse appeared called the curse of complexity.
This new approach was later extended to the stochastic case with the resolution of HJB
equations of the second order ([43, 54, 44]).

We will first define what the max-plus algebra is, then give a brief description of old
max-plus approaches before presenting in the deterministic and the stochastic case the curse-
of-dimensionality free max-plus approach developed by McEneaney.

2.4.1 Definition of Max-plus algebra

The max-plus algebra consists in defining on R the max operator or a min operator as an
addition and the usual addition as a multiplication. The properties of these operators on R
make that they can be used to build a new structure of semi-ring. Indeed, the set R∪ {−∞}
denoted as Rmax equipped with the max operator and the usual addition respectively as
”addition” and ”multiplication” operators is a semiring called the max-plus semiring in the
same way as the set R ∪ {+∞} denoted by Rmin equipped with the min operator and the
usual addition respectively as ”addition” and ”multiplication” operators. The last one is
called the min-plus semiring. The set of functions (resp. upper bounded, continuous, lower
semicontinuous, lower semicontinuous and convex) from a subset Ω of RN to Rmax is then
a Rmax- semimodule while the set of functions (resp. lower bounded, continuous, upper
semicontinuous, upper semicontinuous and concave) from Ω to Rmin is a Rmin-semimodule.
Using this, the scalar product is redefined on these semimodules in the following way :

< f, g >= sup
x∈Ω

f(x) + g(x) for f, g ∈ RΩ
max,

< f, g >= inf
x∈Ω

f(x) + g(x) for f, g ∈ RΩ
min.

2.4.2 Max-plus finite element type approaches

The max-plus approaches for solving first order HJB equations rely on the max-plus linearity
of the related Lax-Oleinik semigroup or evolution semigroup. For a deterministic optimal
control problem with finite horizon, the Lax-Oleinik semigroup or evolution semigroup is the
operator which maps for each horizon T , the terminal payoff function Ψ to the value function
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at time 0. Its expression for a maximization goal is given by

ST [Ψ](x) = sup
u

{∫ T

0
L(x(s), u(s))ds+ Ψ(x(T ))

}
dx(s)

ds
= f(x(s), u(s)), x(0) = x, x ∈ Rd, u(s) ∈ U.

It is a semigroup as for any t, s ≥ 0, St+s = St◦Ss, using the Dynamic Programming Principle.
This property allows to write for a maximization problem, that for a given small time horizon
δ, W (t− δ, ·) = Sδ(W (t, ·)) where W is the value function.

As we said in the introduction of this subsection, another good property of the Lax-Oleinik
semigroup is its max-plus linearity. In fact :

ST [sup{f, g}] = sup{ST [f ], ST [g]}; ST [f + λ] = ST [f ] + λ; λ ∈ Rmax,

where f, g are 2 functions from Rd to Rmax, sup{f, g} is the function obtained by taking
the pointwise maximum of f and g, and f + λ is defined on Rd such that for x ∈ Rd,
(f+λ)(x) = f(x)+λ. The same observations can be made for a problem with a minimization
goal where the max operator and Rmax are replaced by a min operator and Rmin.

One approach presented by Fleming and McEneaney in [27] consisted in approximating
the terminal payoff function as a linear max-plus combination of some basis functions (gi)i.
Then, the value function was computed inductively by using Sδ for small time horizon δ,
considered as the time step. Sδ is approximated by a max-plus linear operator over the max-
plus semimodule generated by basis functions (gi)i. The expression of the value function after
each time step δ, needed then only the max-plus projection of (Sδ(gi))i on the basis functions
(gi)i and a max-plus matrix multiplication.

Another approach presented by Akian, Gaubert and Lakhoua in [4] improved the approach
presented above by introducing another basis of test functions (zj)j such that the following
conditions are satisfied :

< zj , W̃ (t− δ, ·) >≤< zj , Sδ(W̃ (t, ·)) >, ∀j, (2.36)

where W̃ is the approximated value function in this approach.
The highest function W̃ satisfying these conditions is chosen. These conditions introduce

a new requirement in the computation of the value function W when the basis functions (zj)j
are different from the basis functions (gi)i. It then helps to improve the approximation error
of the method. The drawback of this method is that when the functions (gi)i and (zj)j are
not Dirac functions, the condition (2.36) can be interpreted as a zero-sum deterministic game
which is not max-plus linear anymore.

All these approaches rely on the choice of basis functions which requires a discretization
of the state space as in finite difference methods. It is thus impossible to avoid the curse of
dimensionality.

2.4.3 Curse of dimensionality free approach of McEneaney in deterministic case

The use of max-plus basis functions in the max-plus methods presented in the above subsec-
tion, leads to a particular type of max-plus methods called the max-plus basis methods.

McEneaney introduced a new category of max-plus methods by exploiting the good prop-
erties of linear quadratic deterministic optimal control problems which are among the few type
of deterministic optimal control problems having a classical solution analytically computable.
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Let consider an Hamilton-Jacobi-Bellman equation in the deterministic case with an
Hamiltonian H such that the PDE is written as follows :

−∂W
∂t

(t, x) + H (t, x,DxW (t, x)) = 0 (2.37)

W (T, x) = Ψ(x) (2.38)

Let us suppose that the objective of the related optimal control problem is to maximize an
overall functional payoff so that −H (t, x,DxW (t, x)) is a maximum of terms. The first step
in the McEneaney approach is to decompose −H in a max-plus sum as follows :

−H (t, x,DxW (t, x)) = max
m∈{1,...,M}

{−H m(t, x,DxW (t, x))} (2.39)

where each H m (m ∈ {1, ...,M}) is the Hamiltonian of a linear quadratic optimal control
problem and M is called the complexity of the Hamiltonian H .

Let (St,t+h)t≥0 that we will denote also by (Sth)t≥0 be the backward evolution operator
of the PDE (2.37) from time t + h to time t and in the same way, let (St,mh )t≥0 be the
backward evolution operator of the PDE (2.37) where the Hamiltonian H is replaced by the
Hamiltonian H m for m ∈ {1, ...,M}. By the dynamic programming principle used to obtain
the Hamilton-Jacobi-Bellman equation,

Sth(W (t+ h, ·))−W (t, x)

h
≈
[
∂W

∂t
(t, x)−H (t, x,DxW (t, x))

]
St,mh (W (t+ h, ·))−W (t, x)

h
≈
[
∂W

∂t
(t, x)−H m(t, x,DxW (t, x))

]
, when h→ 0

(2.40)

Using equalities (2.39) and (2.40), one deduces that

Sth(W (t+ h, ·)) ≈ max
m∈{1,...,M}

St,mh [W (t+ h, ·)] when h→ 0. (2.41)

As for an horizon T , S0,T = S0,h ◦ · · · ◦ ST−h,T where h is chosen small enough and such that
T/h is an integer, the approximation (2.41) allows one to deduce that

S0
T ≈ ( max

m∈{1,...,M}
S0,m
h ) ◦ · · · ◦ ( max

m∈{1,...,M}
Sih,mh ) · · · ◦ ( max

m∈{1,...,M}
S

(T/h−1)h,m
h ).

Let N = T/h. Each Sih,mh m ∈ {1, ...,M}, i ∈ {0, ..., N − 1} being max-plus linear, the
composition operator in the above equality is distributive with respect to the max operator.
So

S0
T ≈ max

(mi1 ,...,miN )∈{1,...,M}N
S

0,mi1
h ◦ ... ◦ S(N−1)h,miN

h .

The number of terms in this last max-plus summation is exponential with the complexity
M . So, even if the curse of dimensionality has disappeared, a curse of complexity appears due
to the exponential growth with M of the number of terms to compute in order to obtain the
final result S0

T . Pruning algorithms have been proposed to eliminate unnecessary functions
in this final max-plus summation (see [53], [34], [35]).

Linear quadratic evolution operators operate on quadratic functions. They transform
quadratic functions into quadratic functions. So for the method described above to work, the
terminal payoff function must be quadratic or a pointwize maximum of quadratic functions.
The value function will then also be a pointwize maximum of quadratic functions. The method
is said to be idempotent as it preserves the form of the terminal payoff.
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2.4.4 Curse of dimensionality free approach of McEneaney in stochastic case

In the stochastic case, the evolution operator of the Hamilton-Jacobi-Bellman equation is no
more max-plus linear. This complicates the application of the curse of dimensionality free
approach of McEneaney as it is applied to the deterministic case.

To see this, let us consider a stochastic optimal control problem with finite horizon T
defined as in section 1.1.3 with trajectories (xt,x,us )s in Rn. We drop the dependence on the
time variable and we consider a maximization problem instead of a minimization problem in
order to use the max-plus algebra Rmax. The evolution semigroup is (ST )T≥0 such that :

ST [Φ](x) = sup

{
E
[∫ T

0
L(xx,u(s), u(s))ds+ Φ(xx,u(T ))

]}
.

Because of the expectation operator, the equality ST [sup{f, g}] = sup{ST [f ], ST [g]} may
not be true for any function f and g. This fact compromises the max-plus linearity of the
semigroup (ST )T≥0.

In [43, 54], McEneaney, Kaise and Han propose another approach specific to the stochastic
case. It uses a sort of max-plus distributivity of the expectation operator over the max
operator which is summarized in the equality below :

E
[
max
z∈Z

Φ(w, z)

]
= max

z̃∈Z̄
E [Φ(w, z̃(w))] , (2.42)

where w represents here a random variable which lives in a subset W of Rd, Z is a possible
continuum set and Z̄ denotes the set of measurable functions from W to Z.

We can see that like the expectation operator, the evolution semigroup in the stochastic
case has this property. It is generalized in Theorem 4.1 to any monotone additively α-
subhomogeneous operator T in the following way :

T

[
max
z∈Z

Φ(w, z)

]
= max

z̃∈Z̄
T [Φ(w, z̃(w))] .

On the contrary of the max-plus linearity, this distributivity property of the evolution
semigroup which we will call the probabilistic distributivity, does not maintain the cardinal-
ity of elements present in the initial max operator, but it makes it grows at the power of a
functional space. The same algorithm as in the deterministic case presented in the previous
subsection, can then be applied here except that the probabilistic distributivity of the evo-
lution operators which replace the max-plus linearity, will make the number of terms in the
final maximum or minimum very high. This makes the use of a pruning algorithm critical
here, but very hard to implement in practice as the set of elements to which is applied this
pruning algorithm is a continuum set. In [54], McEneaney, Kaise and Han propose a prun-
ing algorithm based on a first discretization of this continuum set by a finite set using the
properties of compact sets. However they do not explicitly explain how to make this first
discretization.

In Chapter 4, we will propose a method which uses the above probabilistic max-plus
distributivity property mixed with probabilistic methods. This mix removes the need to do
this difficult pruning operation.



CHAPTER 3
New probabilistic schemes for

stochastic control problems

In this chapter, we describe two new probabilistic monotone schemes for the resolution of an
Hamilton-Jacobi-Bellman equation in the stochastic case. The first scheme which is simpler,
was introduced in [2] while the second, more complex was introduced in [3]. We make the
proof of the convergence of these schemes and obtain related error estimates in a bounded
setting first by using the results of Barles and Jakobsen (Theorem 2.1.2). We then present
our method and the related results to obtain the convergence of the second scheme in an
unbounded quadratic growth setting.
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3.1 New probabilistic monotone schemes in bounded setting

Let us consider the following Hamilton-Jacobi-Bellman equation :

−∂W
∂t
− inf
α∈A
{Lα[W ](t, x) + cα(t, x)W + fα(t, x)} = 0 in QT := [0, T )× Rd, (3.1)

W (T, x) = Ψ(x) in Rd, (3.2)

where A is a complete metric space, and

Lα[W ](t, x) =
1

2
Tr[aα(t, x)D2

xW (t, x)] + bα(t, x) ·DxW (t, x).

The coefficients aα, bα, cα, fα and Ψ take values respectively in S(d), Rd, R, R and R.

Let {Bt; t ∈ [0, T ]} be a standard d-dimensional Brownian process defined on a probability
space (Ω,F , P ).

As Fahim, Touzi and Warin in [25] (see also Section 2.3.3), we introduce functions b :
[0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×d such that the PDE (3.1) is written as :

−L XW − F (·,W,DxW,D
2
xW ) = 0, (3.3)

with

[L Xφ](t, x) :=
∂φ

∂t
(t, x) + b(t, x) ·Dxφ(t, x) +

1

2
Tr(σ(t, x)σᵀ(t, x)D2

xφ(t, x)).

L X is the infinitesimal generator of a diffusion process X solution of the stochastic differential
equation

dXs = b(s,Xs)ds+ σ(s,Xs)dBs.

The Hamiltonian F of (3.3) is then :

F (t, x,W,DxW,D
2
xW ) = inf

α∈A
{Gα[W ](t, x) + cα(t, x)W + fα(t, x)} , (3.4)

where

Gα[W ](t, x) =
1

2
Tr
[
(aα − σσᵀ)(t, x)D2

xW (t, x)
]

+ (bα − b) (t, x) ·DxW (t, x). (3.5)

In the following subsection, we build schemes by replacing W , DxW , D2
xW by conditional

expectations in the same spirit as in [25]. The resulted schemes are monotone with simple
assumptions on the initial PDE (3.1). The results of the following subsection were presented
in [2, 3]. We consider a time discretization Th = {0, h, 2h, ..., (n− 1)h} with h = T/n and the
Euler discretization X̂ of the diffusion process X given by :

X̂(t+ h) = X̂(t) + b(t, X̂(t))h+ σ(t, X̂(t))(Bt+h −Bt) (3.6)

We denote by T̄h, the set {0, h, 2h, ..., nh}.
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3.1.1 Probabilistic approximation of differential operators and their estimates

We first describe the approximation of the second order derivatives proposed in [2] and esti-
mated in [3]. Consider any matrix Σ ∈ Rd×` with ` ∈ N and let us denote by Σ.j , j = 1, . . . `,
its columns. We recall that C k

b ([0, T ]×Rd) is the subset of functions of C k([0, T ]×Rd) with
bounded derivatives up to order k. For any W ∈ C 2([0, T ]× Rd), we have

1

2
Tr(σ(t, x)ΣΣT σT (t, x)D2

xW (t, x)) =
1

2

∑̀
j=1

ΣT
·j σ

T (t, x)D2
xW (t, x)σ(t, x)Σ·j . (3.7)

For any integer k, consider the polynomial:

P2
Σ,k(w) :=

∑̀
j=1

‖Σ.j‖22

(
ck

(
[ΣTw]j
‖Σ.j‖2

)4k+2

− dk

)
, (3.8a)

with

ck :=
1

(4k + 2)E [N4k+2]
, dk :=

1

4k + 2
, (3.8b)

where N is a one dimensional normal random variable, and where we use the convention that
the jth term of the sum is zero when ‖Σ.j‖2 = 0. This is the sum of P2

Σ.j ,k
(w) defined for

each column Σ.j in the same way as P2
Σ,k(w).

Let W ∈ C 4
b ([0, T ] × Rd), and X̂ as in (3.6), then, under some conditions, the following

expression is an approximation of (3.7) with an error in O(h) uniform in t and x [2, Th. 3.1]:

h−1E
[
W (t+ h, X̂(t+ h))P2

Σ,k(h
−1/2(Bt+h −Bt)) | X̂(t) = x

]
. (3.9)

In order to obtain error estimates for the scheme, we need the more precise following result
(Th. 3.1.1).
For p and q two integers and φ a function from [0, T ]×Rd to R with partial derivatives up to
order p in t and q in x, we introduce the following notation :

|∂ptDqφ| = sup
(t,x)∈[0,T ]×Rd

(βi)i∈Nd,
∑
i βi=q

∣∣∣∣∣ ∂p+qφ

∂tp∂xβ1
1 . . . ∂xβdd

(t, x)

∣∣∣∣∣ .
Theorem 3.1.1. Let X̂ be as in (3.6), and denote Bt

h = Bt+h − Bt. Consider any matrix
Σ ∈ Rd×` with ` ≤ d and any integer k ∈ N. Assume that b and σ are bounded by some
constant C uniformly in t and x, and let M be an upper bound of |ΣΣT |. Then, there exists
K = K(C,M) > 0 such that, for all W ∈ C 4

b ([0, T ]× Rd), we have, for all (t, x) ∈ Th × Rd,∣∣∣∣∣h−1E
[
W (t+ h, X̂(t+ h))P2

Σ,k(h
−1/2Bt

h) | X̂(t) = x
]

− 1

2
Tr(σ(t, x)ΣΣT σT (t, x)D2

xW (t, x))

∣∣∣∣∣
≤ K(1 +

√
h)4
[
h(|∂1

tD
2W |+ |∂0

tD
3W |+ |∂0

tD
4W |)+

h
√
h|∂1

tD
3W |+ h2|∂2

tD
2W |+ h2

√
h|∂3

tD
1W |+ h3|∂4

tD
0W |

]
.
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To do the proof of this theorem, we will need the following results.

Lemma 3.1.1. Let A ∈ S(d). Let UᵀDU be the decomposition of A after diagonalization,
with U being an orthogonal matrix and D a diagonal matrix. Let k be a positive integer. Let
us define ck > 0 as in (3.8b) and θD ∈ Rd, KA ∈ R, and the polynomial φA as follows :

• [θD]i := ck[D]ii for i = 1, . . . , d,

• KA = Tr(A)
4k+2 ,

• φA : Rd → R, Z 7→
∑d

i=1([UZ]i)
4k+2[θD]i −KA.

The map φA satisfies, for all p ∈ Rd, R ∈ S(d) and j ∈ {1, ..., d},

E
[
φA(

Bt
h√
h

)

]
= 0 , (3.10a)

E
[
φA(

Bt
h√
h

)pᵀBt
h

]
= 0 , (3.10b)

E
[
Bt
h
ᵀ
RBt

hφA(
Bt
h√
h

)

]
= hTr(RA) , (3.10c)

E
[
[Bt

h]jB
t
h
ᵀ
RBt

hφA(
Bt
h√
h

)

]
= 0 . (3.10d)

Proof. For t ≥ 0, as
Bth√
h

is a Gaussian vector with independent standard normal random

coordinates and the matrix U is orthogonal, U
Bth√
h

is still a Gaussian vector with independent

standard normal random coordinates. So [U
Bth√
h

]i ∼ N , N being a zero-mean, one dimensional

normal random variable with identity covariance.
We thus have :

E
[
φA(

Bt
h√
h

)

]
=

d∑
i=1

E
[
N4k+2

]
[θD]i −KA

=E
[
N4k+2

]
ck

d∑
i=1

[D]ii −
Tr(A)

4k + 2
.

From (3.8b), we have ckE
[
N4k+2

]
= 1

4k+2 and since Tr(D) = Tr(A), we deduce that

E
[
φA(

Bt
h√
h

)

]
= 0 ,

which shows (3.10a).
Let p ∈ Rd, we have

E
[
pᵀBt

hφA(
Bt
h√
h

)

]
=
√
hE
[
pᵀ
Bt
h√
h
φA(

Bt
h√
h

)

]
=
√
hE

[
(Up)ᵀ(U

Bt
h√
h

)

(
d∑
i=1

[U
Bt
h√
h

]4k+2
i [θD]i

)]

−KAE
[√

h(Up)ᵀ(U
Bt
h√
h

)

]
=0 ,
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as each of the terms of this difference can be written as a sum of monomials of odd degree in

[U
Bth√
h

]i (1 ≤ i ≤ d) which are independent random variables with standard normal law. This

shows (3.10b).

Then, we have to notice that using the formula E
[
N2p

]
= (2p)!

p!2p , we have ck = (E
[
N4k+4 −N4k+2

]
)−1.

So, given R ∈ S(d), we have

E
[
Bt
h
ᵀ
RBt

hφA(
Bt
h√
h

)

]
=hE

[
(U

Bt
h√
h

)ᵀURUᵀ(U
Bt
h√
h

)

d∑
i=1

[U
Bt
h√
h

]4k+2
i [θD]i

]
−KAE

[
Bt
h
ᵀ
RBt

h

]
=h
∑
i 6=j

[URUᵀ]iiE[N4k+2][θD]j + h
d∑
i=1

[URUᵀ]iiE[N4k+4][θD]i

−KAhTr(R)

=h
∑
i,j

[URUᵀ]iiE[N4k+2][θD]j + h
d∑
i=1

[URUᵀ]ii

[
E[N4k+4]− E[N4k+2]

]
[θD]i

−KAhTr(R)

=hE[N4k+2]ck Tr(A) Tr(R) + hTr(URUᵀD)−KAhTr(R)

=
h

4k + 2
Tr(A) Tr(R) + hTr(URUᵀD)− Tr(A)

4k + 2
hTr(R)

=hTr(RA) ,

which shows (3.10c).
For j ∈ {1, ..., d}, [Bt

h]j = eᵀjB
t
h = (Uej)

ᵀUBt
h where ej is the vector of Rd with 1 at index

j and 0 everywhere else.
So :

E
[
[Bt

h]jB
t
h
ᵀ
RBt

hφA(
Bt
h√
h

)

]
=h
√
hE

[
(Uej)

ᵀ(U
Bt
h√
h

)(U
Bt
h√
h

)ᵀURUᵀ(U
Bt
h√
h

)

d∑
i=1

[U
Bt
h√
h

]4k+2
i [θD]i

]
−KAE

[
[Bt

h]jB
t
h
ᵀ
RBt

h

]
= 0,

as this expression can be written as a sum of monomials of odd degree in [Bt
h]i or [U

Bth√
h

]i (1 ≤
i ≤ d) which are independent random variables with standard normal law. It shows (3.10d).

Corollary 3.1.1. Let A ∈ S(d) be written as A = ΣΣᵀ, with Σ ∈ Rd. Let k, ck, and KA be
as in Lemma 3.1.1, and define φA : Rd → R by

φA(Z) = ck(Σ
ᵀZ)4k+2/‖Σ‖4k2 −KA .

Then (3.10) holds for this definition of φA.

Proof. Let U be any orthogonal matrix such that the first row of U is equal to (‖Σ‖2)−1Σᵀ

and let D be the diagonal matrix with the first diagonal term being equal to ‖Σ‖22 and the
others beeing 0. Then, we have A = UᵀDU and in this case, the map φA of Lemma 3.1.1
coincides with the one of Corollary 3.1.1. So, the corollary follows.
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Corollary 3.1.2. Let A ∈ S(d) be written as A =
∑`

i=1 λiΣiΣ
ᵀ
i , with λi ∈ R, Σi ∈ Rd and

` ≥ 1. Let k, ck, and KA be as in Lemma 3.1.1, and define φA : Rd → R by

φA(Z) = ck
∑̀
i=1

λi(Σ
ᵀ
iZ)4k+2/‖Σi‖4k2 −KA .

Then (3.10) holds for this definition of φA.

Proof. From the linearity of KA with respect to A, we get that φA =
∑`

i=1 λiφi where φi is
defined as in Corollary 3.1.1 with Σi instead of Σ. Applying Corollary 3.1.1 to each matrix
Ai = ΣiΣ

ᵀ
i , and taking the linear combination, A =

∑`
i=1 λiAi, we deduce (3.10) for φA.

Corollary 3.1.3. The equations (3.10a)-(3.10d) hold for φA = P2
Σ,k where A = ΣΣᵀ, with

Σ ∈ Rd×`, ` ≥ 1.

Proof. Apply Corollary 3.1.2 to the expression A =
∑`

j=1 Σ.jΣ
ᵀ
.j .

Now, we can prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let X̂t,x
h := x+ b(t, x)h+ σ(t, x)Bt

h.

E
[
W (t+ h, X̂(t+ h))P2

Σ,k(h
−1/2Bt

h) | X̂(t) = x
]

= E
[
W (t+ h, X̂t,x

h )P2
Σ,k(h

−1/2Bt
h)
]

By applying the Taylor formula to order 3 to the function W at point (t, x), we obtain :

W (t+ h, X̂t,x
h ) =W (t, x) +

∂W

∂t
(t, x)h+DxW (t, x)ᵀ(b(t, x)h+ σ(t, x)Bt

h)

+
1

2
(b(t, x)h+ σ(t, x)Bt

h)ᵀD2
xW (t, x)(b(t, x)h+ σ(t, x)Bt

h)

+
1

2
h(b(t, x)h+ σ(t, x)Bt

h)ᵀ
∂DxW

∂t
(t, x) +

1

2
h2∂

2W

∂t2
(t, x)

+
1

6

∑
i,j,k

[b(t, x)h+ σ(t, x)Bt
h]i[b(t, x)h+ σ(t, x)Bt

h]j [b(t, x)h+ σ(t, x)Bt
h]k

∂3W

∂xi∂xj∂xk
(t, x)

+
1

2

∑
i,j

h[b(t, x)h+ σ(t, x)Bt
h]i[b(t, x)h+ σ(t, x)Bt

h]j
∂3W

∂t∂xi∂xj
(t, x)

+
1

2

∑
i

h2[b(t, x)h+ σ(t, x)Bt
h]i

∂3W

∂t2∂xi
(t, x) +

1

6
h3∂

3W

∂t3
(t, x)

+M4(W, t, x, h,Bt
h) .

(3.11)

where M4 can be interpreted as the remainder in an integral form of the Taylor formula and
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is a continuous function with respect to its last argument and such that

|M4(W, t, x, h,Bt
h)| ≤h

4

24
|∂4
tD

0W |

+
h3

6

d∑
i=1

|∂3
tD

1W ||[b(t, x)h+ σ(t, x)Bt
h]i|

+
h2

4

∑
i,j

|∂2
tD

2W ||[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

+
h

6

∑
i,j,p

|∂1
tD

3W ||[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

|[b(t, x)h+ σ(t, x)Bt
h]p|

+
1

24

∑
i,j,p,q

|∂0
tD

4W ||[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

|[b(t, x)h+ σ(t, x)Bt
h]p||[b(t, x)h+ σ(t, x)Bt

h]q| .

By using Corollary 3.1.3, the term

1

2
(b(t, x)h+ σ(t, x)Bt

h)ᵀD2
xW (t, x)(b(t, x)h+ σ(t, x)Bt

h) =
h2

2
b(t, x)ᵀD2

xW (t, x)b(t, x)

+ hb(t, x)ᵀD2
xW (t, x)σ(t, x)Bt

h

+
1

2
(Bt

h)ᵀσ(t, x)ᵀD2
xW (t, x)σ(t, x)Bt

h

when multiplied by

h−1P2
Σ,k(h

−1/2Bt
h),

has an expectation equal to

1

2
Tr
(
ΣΣᵀσ(t, x)ᵀD2

xW (t, x)σ(t, x)
)
.

The other terms in

h−1E
[
W (t+ h, X̂t,x

h )P2
Σ,k(h

−1/2Bt
h)
]
,

are null except terms coming from the product of monomials of degree 2 in [Bt
h]i (1 ≤ i ≤ d)

by P2
Σ,k(h

−1/2Bt
h) and h−1E

[
M4(W, t, x, h,Bt

h)P2
Σ,k(h

−1/2Bt
h)
]
. This last term is bounded

by a sum of terms of the form

Khp−1(h+
√
h)q|∂ptDqW | ≤ Khp−1(1 +

√
h)4(
√
h)q|∂ptDqW |,

where K is a constant function of C and M and p+ q = 4. The other terms are bounded by

Kh(|∂1
tD

2W |+ |∂0
tD

3W |) ≤ Kh(1 +
√
h)4(|∂1

tD
2W |+ |∂0

tD
3W |).

In this way, we obtain the result of Theorem 3.1.1.
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Remark 3.1.1. When the second order derivatives approximation (3.9) will be used in prob-
abilistic schemes in the next subsections, a value of k high enough will be required for these
schemes to be monotone. We can see that a high value of k tends to increase the weight of the
values of the function W at points far from (t, x) and decrease the weight of the values of the
function W at points close to (t, x) in the approximation of the second order derivatives. In
this way, approximation (3.9) is analogous to a large-stencil finite difference approximation
of the second order derivatives. This analogy will be used in the next subsection to name the
resulted schemes.

Let us also introduce the following approximation of the first order derivatives. For any
vector g ∈ Rd, consider the piecewise linear function P1

g on Rd :

P1
g (w) =2(g+ · w+ + g− · w−) , (3.12)

where for any vector µ ∈ Rd, µ+, µ− ∈ Rd are defined such that [µ+]i = max([µ]i, 0), [µ−]i =
−min([µ]i, 0). Note that P1

g is nonnegative. We shall show that

E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
g (h−1Bt

h)
]

(3.13)

is a monotone approximation of

(σ(x)g) ·DxW (t, x) .

Before this, let us note that if σ(x) = 1, b(x) = 1 and h−1/2Bt
h is discretized by a ran-

dom variable taking the values 1 and −1 with probability 1/2, then the discretization (3.13)
corresponds to the Kushner (upwind) discretization found in [48]

d∑
i=1

[
[gi]+

W (t+ h, x+ h1/2ei)−W (t, x)

h1/2
+ [gi]−

W (t+ h, x− h1/2ei)−W (t, x)

h1/2

]
.

Theorem 3.1.2. Let X̂t,x
h := x+ b(t, x)h+ σ(t, x)(Bt+h − Bt) and denote Bt

h = Bt+h − Bt.
Consider any vector g ∈ Rd. Assume that b and σ are bounded by some constant C uniformly
in t and x, and let M be an upper bound of |g|. Then, there exists K = K(C,M) > 0 such
that, for all W ∈ C 2

b ([0, T ]× Rd), we have, for all (t, x) ∈ Th × Rd,∣∣∣(σ(t, x)g) ·DxW (t, x)− E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
g (h−1Bt

h)
]∣∣∣

≤ K(1 +
√
h)2
[√

h(|∂1
tD

0W |+ |∂0
tD

1W |+ |∂0
tD

2W |)

+h(|∂1
tD

1W |) + h
√
h|∂2

tD
0W |

]
.

Proof. By applying Taylor formula to order 1 to the function W at point (t, x), we obtain :

W (t+ h, X̂t,x)−W (t, x) =
∂W

∂t
(t, x)h+DxW (t, x)ᵀ(b(t, x)h+ σ(t, x)Bt

h)

+M2(W, t, x, h,Bt
h),

(3.14)



3.1. NEW PROBABILISTIC MONOTONE SCHEMES IN BOUNDED SETTING 67

where M2 can be interpreted as the remainder in an integral form of the Taylor formula and
is a continuous function with respect to its last argument and such that :

|M2(W, t, x, h,Bt
h)| ≤1

2

∑
i,j

|∂0
tD

2W ||[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

+ h
∑
i

|∂1
tD

1W ||[b(t, x)h+ σ(t, x)Bt
h]i|+

1

2
h2|∂2

tD
0W | .

E
[
DxW (t, x)ᵀσ(t, x)Bt

hP
1
g (h−1Bt

h)
]

=
2

h
E
[
DxW (t, x)ᵀσ(t, x)Bt

h(g+ · (Bt
h)+ + g− · (Bt

h)−)
]

=
2

h
E

∑
i,j

[DxW (t, x)]i[σ(t, x)]ij [B
t
h]j

(∑
k

[g+]k[(B
t
h)+]k + [g−]k[(B

t
h)−]k

)
=

2

h
E

∑
i,j

[DxW (t, x)]i[σ(t, x)]ij [B
t
h]j
(
[g+]j [(B

t
h)+]j + [g−]j [(B

t
h)−]j

)
=

2

h

∑
i,j

[DxW (t, x)]i[σ(t, x)]ij
(
[g+]jE

[
[(Bt

h)+]2j
]
− [g−]jE

[
[(Bt

h)−]2j
])
.

E
[
[(Bt

h)+]2j
]

= hE
[
[(
Bt
h√
h

)+]2j

]
= hE[max(N, 0)2] =

h

2
,

where N is a Gaussian one dimensional variable. In the same way,

E
[
[(Bt

h)−]2j
]

=
h

2
.

So

E
[
DxW (t, x)ᵀσ(t, x)Bt

hP
1
g (h−1Bt

h)
]

=
∑
i,j

[DxW (t, x)]i[σ(t, x)]ij([g+]j − [g−]j)

= DxW (t, x) · (σ(t, x)g).

(3.15)

The terms of E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
g (h−1Bt

h)
]

involving the partial derivatives

of order 2 (through M2(W, t, x, h,Bt
h)) can be bounded by terms of the form

Khp−1/2(h+
√
h)q|∂ptDqW | ≤ Khp−1/2(1 +

√
h)2(
√
h)q|∂ptDqW |,

where K is function of C and M , p+ q = 2.
The other terms can be bounded by

K
√
h(|∂1

tD
0W |+ |∂0

tD
1W |) ≤ K

√
h(1 +

√
h)2(|∂1

tD
0W |+ |∂0

tD
1W |).

In this way, we prove Theorem 3.1.2.

In addition to the approximation of the first and second derivatives, we will need a prob-
abilistic approximation of L XW .
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Lemma 3.1.2. Let X̂t,x
h := x+b(t, x)h+σ(t, x)(Bt+h−Bt). Assume that b and σ are bounded

by some constant C uniformly in t and x. Then, there exists K = K(C) > 0 such that, for
all W ∈ C 4

b ([0, T ]× Rd), we have, for all (t, x) ∈ Th × Rd,∣∣∣h−1
(
E
[
W (t+ h, X̂t,x

h )
]
−W (t, x)

)
−L XW

∣∣∣
≤ K(1 +

√
h)4
[
h(|∂0

tD
2W |+ |∂1

tD
1W |+ |∂2

tD
0W |+ |∂0

tD
3W |+ |∂1

tD
2W |+ |∂0

tD
4W |)

+h
√
h|∂1

tD
3W |+ h2(|∂2

tD
2W |+ |∂2

tD
1W |+ |∂3

tD
0W |) + h2

√
h|∂3

tD
1W |

+h3|∂4
tD

0W |
]
.

Proof. We consider the Taylor development (3.11) of W (t + h, X̂t,x
h ) that was used to prove

Theorem 3.1.1. From this development, we can notice that L XW appears naturally in the
expression of

h−1
(
E
[
W (t+ h, X̂t,x

h )
]
−W (t, x)

)
.

The other terms involving the derivatives of order 4 through M4(W, t, x, h,Bt
h) are bounded

by expressions of the form

Khp−1(h+
√
h)q|∂ptDqW | ≤ Khp−1(1 +

√
h)4(
√
h)q|∂ptDqW | (3.16)

and K function of C, and p+ q = 4.

The terms left from the Taylor development of W (t+h, X̂t,x
h ) are bounded by the following

expression :

Kh(|∂0
tD

2W |+ |∂1
tD

1W |+ |∂2
tD

0W |+ (1 +
√
h)2(|∂0

tD
3W |+ |∂1

tD
2W |))

+Kh2(|∂2
tD

1W |+ |∂3
tD

0W |)

≤ K(1 +
√
h)4h(|∂0

tD
2W |+ |∂1

tD
1W |+ |∂2

tD
0W |+ |∂0

tD
3W |+ |∂1

tD
2W |)

+Kh2(|∂2
tD

1W |+ |∂3
tD

0W |)

In this way, we obtain the result of Lemma 3.1.2.

We add to these results, the estimates of the probabilistic approximation of DxW (t, x)
used by Fahim, Touzi and Warin in [25]. Let for any vector g ∈ Rd, P1,0

g be the linear
function on Rd such that :

P1,0
g (w) = g · w. (3.17)

Lemma 3.1.3. Let X̂t,x
h and Bt

h be as in Theorem 3.1.2. Consider any vector g ∈ Rd. Assume
that b and σ are bounded by some constant C uniformly in t and x, and let M be an upper
bound of |g|. Then, there exists K = K(C,M) > 0 such that, for all W ∈ C 2

b ([0, T ]×Rd), we
have for all (t, x) ∈ Th × Rd,∣∣∣(σ(t, x)g) ·DxW (t, x)− E

[
W (t+ h, X̂t,x

h )P1,0
g (h−1Bt

h)
]∣∣∣ (3.18)

≤ K(1 +
√
h)2
[√

h|∂0
tD

2W |+ h|∂1
tD

1W |+ h
√
h|∂2

tD
0W |

]
(3.19)
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Proof. We use the same Taylor development (3.14) of W at point (t, x) as in the proof of
Theorem 3.1.2. The terms

E
[
W (t, x)P1,0

g (h−1Bt
h)
]
,

E
[
∂W

∂t
(t, x)P1,0

g (h−1Bt
h)

]
,

E
[
DxW (t, x)ᵀb(t, x)hP1,0

g (h−1Bt
h)
]
,

are all null as E
[
P1,0
g (h−1Bt

h)
]

= 0.

E
[
DxW (t, x)ᵀσ(t, x)Bt

hP
1,0
g (h−1Bt

h)
]

=
1

h
E

∑
i,j

[DxW (t, x)]i[σ(t, x)]ij [B
t
h]j

(∑
k

[g]k[B
t
h]k

)
=

1

h
E

∑
i,j

[DxW (t, x)]i[σ(t, x)]ij [B
t
h]2j [g]j


= DxW (t, x) · (σ(t, x)g).

The other terms of E
[
W (t+ h, X̂t,x

h )P1,0
g (h−1Bt

h)
]

coming from M2(W, t, x, h,Bt
h) can be

bounded as in the proof of Theorem 3.1.2. This gives the result of the lemma.

3.1.2 Monotone probabilistic schemes and convergence

We will prove the convergence of two different schemes here under some simple assumptions
on the PDE (3.1)-(3.2). The first scheme presented in [2] uses a mix between second order
derivatives approximation (3.9) and the scheme of Fahim, touzi and Warin found in [25]. We
will call it large stencil probabilistic scheme. The second scheme presented in [3], is a better
version of the first scheme where the upwind first order derivatives approximation (3.13) is
used with the second order derivatives approximation (3.9). We will call it upwind large
stencil probabilistic scheme.

3.1.2.a Large stencil probabilistic scheme The scheme is very similar to the one of Fahim,
Touzi and Warin detailed in Section 2.3.3 except that we use approximation (3.9) for the
second order derivatives. As this approximation depends on the coefficient matrix by which
is multiplied the Hessian D2

xW , it can not be used just as an input of the Hamiltonian F
of (3.3). We need the decomposition of F as a infimum of Hamiltonians which are affine in
W , DxW and D2

xW . This decomposition is given by (3.4).
For each α ∈ A , we suppose that there exists a function Σα : [0, T ]×Rd → Rd×` for ` ≤ d

such that for any (t, x) ∈ [0, T ]× Rd:

(aα − σσᵀ)(t, x) = (σΣαΣαᵀσᵀ)(t, x). (3.20)

One may use for instance the Cholesky factorisation of the matrix (σ−1(aα−σσᵀ)(σᵀ)−1)(t, x).
To ensure the existence of this Cholesky factorisation, we suppose that

aα(t, x) ≥ (σσᵀ)(t, x),
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and σ(t, x) is invertible for any α ∈ A and (t, x) ∈ [0, T ]× Rd.
The scheme is then, with the notations introduced previously:{

W h(t, x) := T0
k,h[W h(t+ h, ·)](t, x), (t, x) ∈ Th × Rd,

W h(T, x) := Ψ(x), x ∈ Rd,
(3.21)

with

T0
k,h[Φ](t, x) := E

[
Φ(X̂t,x

h )
]

+ h inf
α∈A

{
E
[
Φ(X̂t,x

h )h−1P2
Σα(t,x),k(h

−1/2Bt
h)
]

+ E
[
Φ(X̂t,x

h )P1,0
σ−1(t,x)(bα−b)(t,x)

(h−1Bt
h)
]

+ cα(t, x)E
[
Φ(X̂t,x

h )
]

+ fα(t, x)

}
.

(3.22)

We now establish the conditions under which this scheme is convergent.

Lemma 3.1.4 (Consistency). Assume :

• σ and b are bounded in t and x;

• σσᵀ is lower bounded by a positive matrix uniformly in t and x;

• aα, bα and cα are bounded in t, x uniformly in α;

• the left hand element of PDE (3.3) is continuous in t and x.

Then, for φ ∈ C 4
b ([0, T ]× Rd),

lim
(s,y)→(t,x)
(h,c)→(0,0)
s+h≤T

(c+ φ)(s, y)−T0
k,h[(c+ φ)(s+ h, ·)](s, y)

h

= −(L X(t, x) + F (t, x, φ(t, x), Dxφ(t, x), D2
xφ(t, x))).

Proof. In the conditions of Lemma 3.1.4, Theorem 3.1.1, Lemma 3.1.2 and Lemma 3.1.3 can
be applied. Indeed, the second condition on σσᵀ implies that σ−1 is bounded. So with the
others conditions, Σα and σ−1(t, x)(bα − b)(t, x) are bounded.

Let φ ∈ C 4([0, T ]× Rd) and (s, y) ∈ [0, T ]× Rd and c, h > 0 small such that s+ h ≤ T .

(c+ φ)(s, y)−T0
k,h[(c+ φ)(s+ h, ·)](s, y)

h
=
φ(s, y)− E

[
φ(s+ h, X̂s,y

h )
]

h

− inf
α∈A

{
E
[
φ(s+ h, X̂s,y

h )h−1P2
Σα(s,y),k(h

−1/2Bs
h)
]

+ E
[
φ(s+ h, X̂s,y

h )P1,0
σ−1(s,y)(bα−b)(s,y)

(h−1Bs
h)
]

+ cα(s, y)E
[
φ(s+ h, X̂s,y

h )
]

+ fα(s, y) + cE
[
h−1P2

Σα(s,y),k(h
−1/2Bs

h) + P1,0
σ−1(s,y)(bα−b)(s,y)

(h−1Bs
h)
]

+ ccα(s, y)

}
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By Theorem 3.1.1 and the definition of Σα,

1

2
Tr
[
(aα − σσᵀ)(s, y)D2

xφ(s, y)
]
−O(h) ≤ E

[
φ(s+ h, X̂s,y

h )h−1P2
Σα(s,y),k(h

−1/2Bs
h)
]

≤ 1

2
Tr
[
(aα − σσᵀ)(s, y)D2

xφ(s, y)
]

+O(h),

where O(h) is uniform in s, y and α.
In the same way, by Lemma 3.1.3,

(bα − b)(s, y) ·Dxφ(s, y)−O(
√
h) ≤ E

[
φ(s+ h, X̂s,y

h )P1,0
σ−1(s,y)(bα−b)(s,y)

(h−1Bs
h)
]

≤ (bα − b)(s, y) ·Dxφ(s, y) +O(
√
h),

where O(
√
h) is uniform in s, y and α.

By Lemma 3.1.2, we have :

φ(s, y)− E
[
φ(s+ h, X̂s,y

h )
]

h
+O(h) ≤ −L Xφ(s, y)

≤
φ(s, y)− E

[
φ(s+ h, X̂s,y

h )
]

h
+O(h),

whereO(h) is uniform in s, y and α. As b and σ are bounded in s and y and φ ∈ C 4
b ([0, T ]×Rd),

L Xφ(s, y) = O(1). This allows us to deduce that :

φ(s, y)−O(h) ≤ E
[
φ(s+ h, X̂s,y

h )
]
≤ φ(s, y) +O(h).

Then as cα is bounded in s, y uniformly in α, we have :

cα(s, y)φ(s, y)−O(h) ≤ cα(s, y)E
[
φ(s+ h, X̂s,y

h )
]
≤ cα(s, y)φ(s, y) +O(h),

where in all these inequalities, O(h) is uniform in s, y and α.

cE
[
P2

Σα(s,y),k(h
−1/2Bs

h) + P1,0
σ−1(s,y)(bα−b)(s,y)

(h−1Bs
h)
]

= 0 (3.23)

and ccα(s, y) = O(c) with O(c) uniform in s, y, α as cα is bounded. All these observations
allow us to deduce that

lim
(h,c)→(0,0)
s+h≤T

(c+ φ)(s, y)−T0
k,h[(c+ φ)(s+ h, ·)](s, y)

h

= −(L Xφ(s, y) + F (s, y, φ(s, y), Dxφ(s, y), D2
xφ(s, y)))

−→
(s,y)→(t,x)

−(L Xφ(t, x) + F (t, x, φ(t, x), Dxφ(t, x), D2
xφ(t, x))).

Before giving results related to the monotonicity, we are going first to define what we call
a monotone operator.
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Definition 3.1.1. An operator T is monotone on a space D of functions if for any couple of
functions φ and ψ in D ,

φ ≤ ψ ⇒ T [φ] ≤ T [ψ].

Lemma 3.1.5 (Monotonicity). Assume that :

• σ and b are bounded in t and x;

• σσᵀ is lower bounded by a positive matrix uniformly in t and x;

• aα, bα and cα are bounded in t, x uniformly in α;

• There exists a bounded map gα : [0, T ]× Rd → Rd such that

σ−1(t, x)(bα − b)(t, x) = Σα(t, x)gα(t, x).

Then for k > k0 to compute, there exists h0 such that T0
k,h is monotone for h ≤ h0 over the

set of bounded functions Rd → R and there exists C1 such that T0
k,h is C1h-almost monotone

for all h > 0 which means that for φ and ψ bounded functions in Rd → R

φ ≤ ψ ⇒ T0
k,h[φ] ≤ T0

k,h[ψ] + C1h sup(ψ − φ). (3.24)

Proof. Let φ, ψ : Rd → R be bounded such that φ ≤ ψ, h > 0 and k ∈ N. Let gα be a
bounded map [0, T ]× Rd → Rd such that

σ−1(t, x)(bα − b)(t, x) = Σα(t, x)gα(t, x).

T0
k,h[φ](t, x) = inf

α∈A

{
E
[
φ(X̂t,x

h )Pt,x,α,k,h(h−1/2Bt
h)
]

+ hfα(t, x)
}
,

where

Pt,x,α,k,h(w) = 1 + P2
Σα(t,x),k(w) + hP1,0

Σα(t,x)gα(t,x)(h
−1/2w) + hcα(t, x).

We now use the inequality :

inf
α
dα − inf

α
eα ≥ inf

α
{dα − eα}

for (dα)α and (eα)α, two families of real numbers indexed by the parameter α. This allows
us to deduce that :

(T0
k,h[ψ]−T0

k,h[φ])(t, x) ≥ inf
α∈A

{
E
[
(ψ − φ)(X̂t,x

h )Pt,x,α,k,h(h−1/2Bt
h)
]}

.

Let C be a bound of cα and gα in t, x uniformly in α.

Pt,x,α,k,h(w) ≥ 1− h1/2C‖Σα(t, x)ᵀw‖2 − hC + P2
Σα(t,x),k(w)

In the following development, we use the inequality

de ≤ dp

p
+
eq

q
, (3.25)
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for d, e > 0 and 1
p + 1

q = 1. For any matrix Σ ∈ Rd×`, w ∈ Rd, and ε, η > 0, we have

‖ΣTw‖2 ≤
ε

2
‖ΣTw‖22 +

1

2ε

=
ε

2

∑̀
j=1

(
[ΣTw]j
‖Σ.j‖2

)2

‖Σ.j‖22

+
1

2ε

≤ εη2k

4k + 2

∑̀
j=1

(
[ΣTw]j
‖Σ.j‖2

)4k+2

‖Σ.j‖22

+
2kε

(4k + 2)η

∑̀
j=1

‖Σ.j‖22

+
1

2ε

=
εη2k

4k + 2
c−1
k

(
PΣ,k(w) +

Tr(ΣΣT )

4k + 2

)
+

2kε

(4k + 2)η
Tr(ΣΣT ) +

1

2ε
,

with ck > 0 as in (3.8). At the first line, we wrote ‖ΣTw‖2 as 1
ε ε‖Σ

Tw‖2 and used (3.25)
with p = q = 2 and d = ε‖ΣTw‖2 and e = 1. We used this operation at the third line too

by writing
(

[ΣT w]j
‖Σ.j‖2

)2
as 1

ηη
(

[ΣT w]j
‖Σ.j‖2

)2
, and using inequality (3.25) with p = 2k+ 1, q = 2k+1

2k ,

d = η
(

[ΣT w]j
‖Σ.j‖2

)2
and e = 1.

In the conditions of Lemma 3.1.5, Σα is bounded, so is Tr(Σα(t, x)Σα(t, x)T ). Let ā be a
bound of Tr(Σα(t, x)Σα(t, x)T ).

Taking η = ε2 such that h1/2C ε4k+1

4k+2 c
−1
k = 1 and using that Tr(Σα(t, x)Σα(t, x)T ) ≤ ā, we

obtain

Pt,x,α,k,h(w) ≥1− hC − ā

4k + 2
− h1/2C

ε
(

2k

4k + 2
ā+

1

2
)) .

We can observe that

h1/2C
ε4k+1

4k + 2
c−1
k = 1

⇒ε =

(
(4k + 2)ck
Ch1/2

) 1
(4k+1)

.

By letting C1
k =

(
(4k+2)ck

C

) 1
(4k+1)

, we thus have

h1/2C

ε
=

C

C1
k

h
1
2

(1+ 1
4k+1

)

=
C

C1
k

h
2k+1
4k+1 .

Since h1/2C
ε is a multiple of h(2k+1)/(4k+1), there exists a constant Ck depending on k and ā,

such that

Pt,x,α,k,h(w) ≥Lk,h := 1− hC − ā

4k + 2
− Ckh(2k+1)/(4k+1) ,

for all w ∈ Rd. Let us choose k such that ā
4k+2 < 1. We get that the lower bound Lk,h of

Pt,x,α,k,h is nonnegative for h ≤ h0 for some h0 > 0, which implies that T0
k,h is monotone.

Then, for h ≥ h0, Ckh
(2k+1)/(4k+1)/h ≤ C ′ for some constant C ′ > 0, which implies that

Lk,h ≥ −h(C+C ′) for all h > 0. This shows that T0
k,h satisfies (3.24) with C1 = (C+C ′).
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Remark 3.1.2. In the condition of Lemma 3.1.5, the existence of the bounded map gα can
be ensured by the fact that aα − σσᵀ is uniformly lower bounded by a positive matrix.

We will need the following definition in what follows.

Definition 3.1.2. We say that an operator T between any sets F and F ′ of partially ordered
sets of real valued functions, which are stable by the addition of a constant function (identified
to a real number), is additively α-subhomogeneous if

λ ∈ R, λ ≥ 0, φ ∈ F =⇒ T (φ+ λ) ≤ T (φ) + αλ . (3.26)

Lemma 3.1.6. Assume cα is upper bounded in t, x uniformly in α. Then, T0
k,h is additively

αh subhomogeneous over the set of bounded continuous functions Rd → R, for some constant
αh = 1 + Ch with C ≥ 0.

Proof. Let φ be a bounded continuous function from Rd to R and λ ≥ 0. Let C ≥ 0 be a
constant such that cα ≤ C. Let (t, x) ∈ [0, T ]× Rd. As :

• E
[
P2

Σα(t,x),k(h
−1/2Bt

h)
]

= 0;

• E
[
P1,0
σ−1(t,x)(bα−b)(t,x)

(h−1Bt
h)
]

= 0;

Definition 3.22, implies that T0
k,h[φ+λ] ≤ T0

k,h[φ]+(1+Ch)λ. Hence, the result of lemma.

Lemma 3.1.7 (Stability). Let assumptions of Lemma 3.1.5 and Lemma 3.1.6 hold. Assume
that fα is bounded in t, x uniformly in α and let W h be the solution of the scheme (3.21)
where Ψ is a bounded function. Then W h is bounded, meaning that the scheme is stable.

Proof. fα bounded uniformly in t, x and α implies that there exists C > 0 such that |T0
k,h[0]| ≤

Ch. The assumptions of Lemma 3.1.5 imply that there exists C1 such that T0
k,h is C1h-almost

monotone. We can take C1 = C. As assumptions of Lemma 3.1.6 also hold, we can also take
C such that T0

k,h is additively (1 + Ch)-subhomogeneous. Let us suppose that |W h(t+ h, ·)|
(t ∈ Th) is bounded by a constant Kt+h. Then, by the Ch-almost monotonicity

W h(t, ·) ≤ T0
k,h[Kt+h] + Ch(2Kt+h).

The (1 + Ch)-subhomogeneity of T0
k,h implies that

T0
k,h[Kt+h] ≤ T0

k,h[0] + (1 + Ch)Kt+h

≤ Ch+ (1 + Ch)Kt+h.

Hence,

W h(t, ·) ≤ Ch+ (1 + 3Ch)Kt+h.

By symmetry, we obtain that |W h(t, ·)| is bounded by Kt = Ch + (1 + 3Ch)Kt+h. We
suppose also that the bound of Ψ is C. We deduce by induction that |W h| is bounded by
(1 + 3Ch)T/h(1 + 3Ch+ C) ≤ e3CT (1 + C + 3Ch0).

Theorem 3.1.3 (Convergence). Assume that :
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• aα, bα, cα, fα, Ψ are bounded in t, x uniformly in α and Lipschitz continuous with
respect x with a Lipschitz constant independent of α and t;

• σ : [0, T ]×Rd → Rd×d and b : [0, T ]×Rd → Rd are continuous functions and such that

– aα − σσᵀ is lower bounded by a positive matrix uniformly in t, x and α;

– σσᵀ is lower bounded by a positive matrix uniformly in t and x;

– b and σ are bounded;

Then, the PDE (3.1)-(3.2) has a unique bounded continuous viscosity solution and the scheme (3.21)
converges to this solution.

Proof. The fact that the PDE (3.1)-(3.2) has a unique bounded continuous viscosity solution
comes from the first assumption and Theorem 1.2.2 due to Barles and Jakobsen, which gives
us also the fact that the PDE (3.1)-(3.2) satisfies a comparison principle in the space of
continuous bounded functions. This first assumption with the other allow the assumptions
of Lemma 3.1.4, Lemma 3.1.5, Lemma 3.1.7 to hold. Theorem 2.1.1 due to Barles and
Souganidis allow us to conclude that the scheme defined by (3.21) converges to the viscosity
solution of (3.1)-(3.2).

3.1.2.b Upwind large stencil probabilistic scheme In this scheme, we use the upwind
first order derivatives approximation (3.13) instead of the approximation of Lemma 3.1.3.
Moreover, we do not approximate W by D0

t,h[W ] in the Hamiltonian as Fahim, Touzi and
Warin in [25].

In the sequel, we will first obtain a raw form of the discretized equation before writing it
in the form of a scheme. We will use the notations X̂t,x

h and Bt
h introduced in Section 3.1.1.

Let us define Σα as in the previous subsection ((3.20)) and gα such that

(bα − b)(t, x) = σ(t, x)gα(t, x). (3.27)

In the PDE (3.3) where the Hamilonan F is given by (3.4), we approximate for (t, x) ∈
Th × Rd,

L XW (t, x)

by

E
[
W (t+ h, X̂t,x

h )
]
−W (t, x)

h
.

We also approximate for α ∈ A , (t, x) ∈ Th × Rd,

1

2
Tr
[
(aα − σσᵀ)(t, x)D2

xW (t, x)
]

by

1

h
E
[
W (t+ h, X̂t,x

h )P2
Σα(t,x),k(h

−1/2Bt
h)
]
,
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and

(bα − b)(t, x) ·DxW (t, x)

by

E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
gα(t,x)(h

−1Bt
h)
]
.

This gives us the following equation as an approximation of (3.3).

−
E
[
W (t+ h, X̂t,x

h )
]
−W (t, x)

h
− inf
α∈A

{
1

h
E
[
W (t+ h, X̂t,x

h )P2
Σα(t,x),k(h

−1/2Bt
h)
]

+ E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
gα(t,x)(h

−1Bt
h)
]

+ cα(t, x)W (t, x) + fα(t, x)

}
= 0,

(3.28)

which is equivalent to :

sup
α∈A

{
− E

[
W (t+ h, X̂t,x

h )(1 + P2
Σα(t,x),k(h

−1/2Bt
h) + hP1

gα(t,x)(h
−1Bt

h))
]

+W (t, x)(1 + hE
[
P1
gα(t,x)(h

−1Bt
h)
]
− hcα(t, x))− hfα(t, x)

}
= 0.

(3.29)

Let

TDh,α,B(t, x) := 1 + hE
[
P1
gα(t,x)(h

−1Bt
h)
]
− hcα(t, x),

and

TNk,h,α,B(t, x) := 1 + P2
Σα(t,x),k(h

−1/2Bt
h) + hP1

gα(t,x)(h
−1Bt

h).

Lemma 3.1.8. If TDh,α,B(t, x) is lower bounded by a positive constant uniformly in α (which
happens if cα is lower bounded uniformly in α and h is small enough), then equation (3.29)
implies that

W (t, x) = inf
α∈A

E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)

 . (3.30)

Proof. Let suppose that equation (3.29) holds. LetM(t, x) > 0 be a lower bound of TDh,α,B(t, x).
Then for any ε > 0, there exists αε such that :

E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x)−W (t, x)TDh,αε,B(t, x) ≤ ε.
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This gives us :

E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x)

TDh,αε,B(t, x)
≤ ε

TDh,αε,B(t, x)
+W (t, x)

⇒
E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x)

TDh,αε,B(t, x)
≤ ε

M(t, x)
+W (t, x).

By letting ε go to 0, we obtain that :

inf
α∈A

E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)


≤ lim
ε→0

E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x)

TDh,αε,B(t, x)

≤W (t, x).

On the other hand, for α ∈ A :

0 ≤ E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)−W (t, x)TDh,α,B(t, x)

⇒W (t, x) ≤
E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)

⇒W (t, x) ≤ inf
α∈A

E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)

 .

Hence the result of the lemma.

Lemma 3.1.9. If TDh,α,B(t, x) is lower bounded by a positive constant and upper bounded
uniformly in α (which happens if gα and cα are bounded), then equation (3.29) is equivalent
to (3.30).

Proof. The implication (3.29) ⇒ (3.30) has been proved in the previous lemma.
We now suppose that equation (3.30) holds and TDh,α,B(t, x) ≥ M(t, x) > 0. Let N(t, x)

be an upper bound of TDh,α,B(t, x). Then for any ε > 0 there exists αε such that :

E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x)

TDh,αε,B(t, x)
≤W (t, x) + ε.

This gives us

E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x) ≤W (t, x)TDh,αε,B(t, x) + εTDh,αε,B(t, x)

⇒E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x) ≤W (t, x)TDh,αε,B(t, x) + εN(t, x)

⇒E
[
W (t+ h, X̂t,x

h )TNk,h,αε,B(t, x)
]

+ hfαε(t, x)−W (t, x)TDh,αε,B(t, x) ≤ εN(t, x)

⇒ inf
α∈A

{
E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)−W (t, x)TDh,α,B(t, x)
}
≤ εN(t, x).
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By letting ε goes to 0, we then obtain

inf
α∈A

{
E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)−W (t, x)TDh,α,B(t, x)
}
≤ 0.

On the other hand, for α ∈ A :

E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)
≥W (t, x)

⇒E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x) ≥W (t, x)TDh,α,B(t, x)

⇒E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)−W (t, x)TDh,α,B(t, x) ≥ 0

⇒ inf
α∈A

{
E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)−W (t, x)TDh,α,B(t, x)
}
≥ 0.

Hence, in the conditions of the lemma, equation (3.30) implies (3.29). Hence, the result of
the lemma.

Now, let us consider the following scheme :{
W h(t, x) :=T1

k,h[W h(t+ h, ·)](t, x), (t, x) ∈ Th × Rd

W h(T, x) :=Ψ(x), x ∈ Rd,
(3.31)

where

T1
k,h[Φ](t, x) := inf

α∈A

E
[
Φ(X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)

 . (3.32)

We are going to give the conditions under which this scheme is convergent.

Lemma 3.1.10 (Consistency). Assume that :

• σ and b are uniformly bounded in t and x;

• σσᵀ is lower bounded by a positive matrix uniformly in t and x;

• aα, bα and cα are bounded in t, x uniformly in α;

• the left hand part of PDE (3.3) is continuous;

Then, the scheme (3.31) is consistent with PDE (3.3).

Proof. In the conditions of the lemma, σ−1 is bounded, so is gα, Σα. cα is also bounded. Then
by Lemma 3.1.9, the scheme (3.31) is equivalent to the discretized equation (3.30) which is
equivalent to equation (3.28). Moreover, Theorem 3.1.1, Theorem 3.1.2 and Lemma 3.1.2 can
be applied.
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By using these results and letting S(h, t, x,W (t, x),W (t + h, ·)) be the left hand side of
equation (3.28) for W ∈ C 4

b ([0, T ]× Rd), we have :

S(h, s, y,W (s, y) + c,W (s+ h, ·) + c) = −L XW (s, y) +O(h)−

inf
α∈A

{
1

2
Tr
[
(aα − σσᵀ)(s, y)D2

xW (s, y)
]

+O(h)

+ (bα − b)(t, x) ·DxW (t, x) +O(
√
h) + cα(t, x)W (t, x)

+ fα(t, x) + cα(t, x)c

}
,

for (s, y) ∈ [O, T ] × Rd such that s + h ≤ T . We can notice that c disapear everywhere
in the expression of S(h, s, y,W (s, y) + c,W (s + h, ·) + c) except as a factor of cα(t, x) as

E
[
P2

Σα(t,x),k(h
−1/2Bt

h)
]

= 0.

As cα is bounded uniformly in t, x, α, cα(t, x)c = O(c). So :

lim
(h,c)→(0,0)

S(h, s, y,W (s, y) + c,W (s+ h, ·) + c)

= −L XW (s, y)− F (s, y,W (s, y), DxW (s, y), D2
xW (s, y))

−→
(s,y)→(t,x)

−L XW (t, x)− F (t, x,W (t, x), DxW (t, x), D2
xW (t, x)),

because of the continuity of −L XW (·, ·) − F (·, ·,W (·, ·), DxW (·, ·), D2
xW (·, ·)) which is an

assumption of the lemma. Hence, the consistency of the scheme (3.31) with PDE (3.3).

Lemma 3.1.11 (Monotonicity). Assume that :

• σσᵀ is lower bounded by a positive matrix uniformly in t and x;

• σ is bounded in t and x;

• aα is bounded in t and x uniformly in α;

There exists k0 ∈ N such that for k > k0, the scheme (3.31) is monotone.

Proof. The conditions of the lemma ensure that Σα is bounded in t, x uniformly in α. Let C
be a bound of Σα.

TNk,h,α,B(t, x) ≥ 1− |Σ
α(t, x)|2

4k + 2

≥ 1− C2

4k + 2
.

Let k0 be such that C2

4k0+2 <
1
2 . Then for k > k0,

TNk,h,α,B(t, x) >
1

2
> 0.

Hence the monotonicity of the scheme.
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Lemma 3.1.12. If cα is bounded in t and x uniformly in α, then there exists h0 > 0 such
that for h < h0, T1

k,h is additively αh-subhomogeneous over the set of bounded continuous

functions Rd → R for some αh = 1 + Ch with C ≥ 0.

Proof. As E
[
P2

Σα(t,x),k(h
−1/2Bt

h)
]

= 0, for Φ a bounded function from Rd to R and λ > 0,

we have

T1
k,h[Φ + λ](t, x) = inf

α∈A

E
[
Φ(X̂t,x

h )TNk,h,α,B(t, x)
]

+ hfα(t, x)

TDh,α,B(t, x)
+ λ

[
1 +

hcα(t, x)

TDh,α,B(t, x)

] .

As cα is bounded in t and x uniformly in α, there exists h0 such that for h < h0, TDh,α,B(t, x) ≥
M > 0. In this setting, there exists C > 0 such that

cα(t, x)

TDh,α,B(t, x)
≤ C,

hence the result of the lemma.

Lemma 3.1.13 (Stability). Let the assumptions of Lemma 3.1.11 and Lemma 3.1.12 hold.
Assume that fα is bounded in t and x uniformly in α and let W h be the solution of the
scheme (3.31) where Ψ is a bounded function. Then there exists k0 ∈ N and h0 > 0 such that
for k > k0 and h < h0, W h is bounded, meaning that the scheme is stable.

Proof. The assumptions of Lemma 3.1.12 imply that there exists h0 such that for h < h0,
the operator T1

k,h is additively (1 + Ch)-subhomogeneous for C > 0 and TDh,α,B(t, x) is lower
bounded by a positive constant M .

T1
k,h[0](t, x) = h inf

α∈A

{
fα(t, x)

TDh,α,B(t, x)

}
.

As fα is bounded and TDh,α,B is lower bounded in t and x uniformly in α, infα∈A

{
fα(t,x)

TDh,α,B(t,x)

}
is bounded. We can take C also as its bound.
Let us suppose that |W h(t+h, ·)| (t ∈ Th) is bounded by a constant Kt+h. By Lemma 3.1.11,
there exists k0 ∈ N such that for k > k0, the scheme (3.31) is monotone. So for k > k0,

T1
k,h[−Kt+h] ≤W h(t, ·) ≤ T1

k,h[Kt+h].

By the (1 + Ch)-subhomogeneity of the operator T1
k,h, we have :

T1
k,h[0] ≤ T1

k,h[−Kt+h] +Kt+h(1 + Ch)

⇒− Ch−Kt+h(1 + Ch) ≤ T1
k,h[−Kt+h],

and

T1
k,h[Kt+h] ≤ T1

k,h[0] +Kt+h(1 + Ch)

⇒T1
k,h[Kt+h] ≤ Ch+Kt+h(1 + Ch).

Hence, |W h(t, ·)| is bounded by Ch + Kt+h(1 + Ch). If C is also a bound of Ψ, then by
induction (we can also use the Gronwall Lemma), we obtain that |W h| is bounded by (1 +
Ch)T/h(1 + Ch+ C) ≤ eCT (1 + C + Ch0).
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Theorem 3.1.4 (Convergence). Assume that :

• aα, bα, cα, fα, Ψ are bounded in t, x uniformly in α and Lipschitz continuous with
respect x with a Lipschitz constant independent of α and t;

• σ : [0, T ]×Rd → Rd×d and b : [0, T ]×Rd → Rd are continuous functions and such that

– aα ≥ σσᵀ

– σσᵀ is lower bounded by a positive matrix uniformly in t and x;

– b and σ are bounded;

Then, the PDE (3.1)-(3.2) has a unique bounded continuous viscosity solution and the scheme (3.31)
converges to this solution.

Proof. We use Theorem 1.2.2 to obtain the existence and unicity of the viscosity solution of
PDE (3.1)-(3.2). The convergence of the scheme (3.31) is then deduced from Theorem 2.1.1
as a consequence of Lemma 3.1.10, Lemma 3.1.11, Lemma 3.1.13 and the comparison prin-
ciple of the PDE (3.1)-(3.2) in the space of bounded continuous functions obtained from
Theorem 1.2.2.

Remark 3.1.3. We can notice that the convergence of this second probabilistic scheme re-
quires less restrictive conditions than the first one presented in Section 3.1.2.a as aα − σσᵀ
should not necessarily be lower bounded by a positive matrix uniformly in t, x and α, but is
just required to be nonnegative.

3.1.3 Error estimates of probabilistic schemes

We now use Theorem 2.1.2 to obtain error estimates of each scheme presented in the previous
subsection. For that, we will need a few lemma to be able to apply Theorem 2.1.2.

3.1.3.a Large stencil probabilistic scheme We start by the large stencil probabilistic scheme.

Lemma 3.1.14. Under the conditions of Lemma 3.1.5, there exists λ, µ ≥ 0, h0 > 0 such
that if h ≤ h0, W ≤ V are continuous and bounded functions on Th × Rd, and φ(t) =
eµ(T−t)(a+ b(T − t)) + c for a, b, c ≥ 0, then :

S1(h, t, x, r + φ(t), [W + φ](t+ h, ·)) ≥ S1(h, t, x, r, V (t+ h, ·)) + b/2− λc in Th × Rd,

where

S1(h, t, x, r,Φ) :=
r −T0

k,h[Φ](t, x)

h
, (3.33)

(t, x) ∈ Th × Rd, r ∈ R, Φ bounded function on Rd.

Proof. Let µ, a, b, c ≥ 0, and φ be defined as in the lemma. Let W ≤ V be two continuous
and bounded functions on Th×Rd. Under the conditions of Lemma 3.1.5, cα is bounded and
there exists h0 > 0 such that for h < h0, T0

k,h is monotone. Let M be a bound of cα. By
using a development similar to the one of the proof of Lemma 3.1.4, we obtain that :

S1(h, t, x, r + φ(t), [W + φ](t+ h, ·)) ≥S1(h, t, x, r,W (t+ h, ·)) +
φ(t)− (1 +Mh)φ(t+ h)

h
.
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For h < h0,

S1(h, t, x, r,W (t+ h, ·)) ≥ S1(h, t, x, r, V (t+ h, ·)).

φ(t)− (1 +Mh)φ(t+ h) = eµ(T−t)(1− (1 +Mh)e−µh) (a+ b(T − t))−Mhc

+ eµ(T−t−h)(1 +Mh)bh

For µ high enough (µ > M), 1− (1 +Mh)e−µh > 0 for h < h1. So by taking λ = M ,

φ(t)− (1 +Mh)φ(t+ h)

h
≥ b− λc ≥ b/2− λc.

Hence the result of the lemma.

Lemma 3.1.15. Under the conditions of Theorem 3.1.3, for every h > 0 and continuous
and bounded function Φ on T̄h × Rd, the function (t, x) 7→ S1(h, t, x,Φ(t, x),Φ(t + h, ·)) is
bounded and continuous on Th×Rd and the function r 7→ S1(h, t, x, r,Φ(t+h, ·)) is uniformly
continuous for bounded r, uniformly in (t, x) ∈ Th × Rd with S1 given by equation (3.33).

Proof. Let h > 0 and Φ be a continuous and bounded function on T̄h × Rd. As Th is finite,
to prove that (t, x) 7→ S1(h, t, x,Φ(t, x),Φ(t+h, ·)) is bounded and continuous on Th×Rd, it
is sufficient to prove that for any t ∈ Th, x 7→ S1(h, t, x,Φ(t, x),Φ(t+ h, ·)) is continuous and
bounded.

S1(h, t, x,Φ(t, x),Φ(t+ h, ·)) =
Φ(t, x)− E

[
Φ(t+ h, X̂t,x

h )
]

h

− inf
α∈A

{
E
[
Φ(t+ h, X̂t,x

h )(P2
Σα(t,x),k(h

−1/2Bt
h)

+ P1,0
σ−1(t,x)(bα−b)(t,x)

(h−1Bt
h) + cα(t, x))

]
+ fα(t, x)

}
.

In the conditions of Theorem 3.1.3, aα(t, ·), bα(t, ·), cα(t, ·) and fα(t, ·) are bounded and
Lipschitz continuous with a Lipschitz constant uniform in t and α. σ and b are also continuous
and bounded and such that Σα(t, x)Σα(t, x)ᵀ is lower and upper bounded by a positive matrix
uniformly in t, x and α and σ−1 is bounded.

P2
Σα(t,x),k(h

−1/2Bt
h) being the result of polynomial and fractional operations on columns

of Σα, it is then continuous in x uniformly in α. So is x 7→P1,0
σ−1(t,x)(bα−b)(t,x)

for t ∈ Th.

We then have that for t ∈ Th, the function

x 7→ E
[
Φ(t+ h, X̂t,x

h )(P2
Σα(t,x),k(h

−1/2Bt
h) + P1,0

σ−1(t,x)(bα−b)(t,x)
(h−1Bt

h) + cα(t, x))
]

is continuous uniformly in α as Φ is continuous. It is also bounded uniformly in t, x and α by
an integrable random variable. So by the dominated convergence theorem, the expectation of
this function is continuous in x uniformly in α. This allows us to conclude that all the part
of S1 which is in the infimum on α ∈ A is continuous in x uniformly in α and bounded. So
this infimum is continuous in x and bounded.
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By the dominated convergence theorem, we also obtain that x 7→ E
[
Φ(t+ h, X̂t,x

h )
]

is

continuous in x. So, for any t ∈ Th, x 7→ S1(h, t, x,Φ(t, x),Φ(t + h, ·)) is continuous and
bounded.

From the expression of S1, we can see that r 7→ S1(h, t, x, r,Φ(t+h, ·)) is an affine function
with the coefficient of r being 1/h and such that for r = 0, it is finite and bounded uniformly
in t and x. This function is then uniformly continuous, uniformly in (t, x) ∈ Th × Rd.

Lemma 3.1.16. Under the conditions of Theorem 3.1.3, if W ∈ C∞b ([0, T ]×Rd) is such that
:

|∂ptDqW | ≤ K̃ε1−2p−q, ∀p, q ∈ N

with 0 < ε ≤ 1, K̃ > 0, then, when h is small enough :∣∣S1(h, t, x,W (t, x),W (t+ h, ·)) + L X [W ](t, x) + F (t, x,W (t, x), DxW (t, x), D2
xW (t, x))

∣∣
≤ E(K̃, h, ε)

for all t ∈ Th and x ∈ Rd with

E(K̃, h, ε) = KK̃
(
hε−3(1 +

√
h)4(1 +

√
hε−1)4 +

√
hε−1(1 +

√
h)2(1 +

√
hε−1)2

)
,

where K depends on bounds of σ, b, σ−1(bα − b) and Σα and S1 is given by (3.33).

Proof. We will use the elements of the proof of Theorem 3.1.1, Lemma 3.1.3 and Lemma 3.1.2.
We consider W as in the lemma.

From the proof of Theorem 3.1.1, the S1(h, t, x,W (t, x),W (t + h, ·)) approximates the
second order term in F uniformly with a residual error having two components. The first
component is

K1h(1 +
√
h)4(|∂1

tD
2W |+ |∂0

tD
3W |)

which, considering the conditions of Lemma 3.1.16, gives the following expression

K1hK̃(1 +
√
h)4(ε−3 + ε−2) ≤ 2K1K̃(1 +

√
h)4hε−3,

K1 being a constant depending on the bounds of σ, b, Σα.
The second component is a sum of terms of the form

K1h
p−1(h+

√
h)q|∂ptDqW | ≤ K1h

p−1(1 +
√
h)4(
√
h)q|∂ptDqW |

≤ K1(1 +
√
h)4hp−1(

√
h)qK̃ε1−2p−q,

for p+ q = 4. This gives us the following expression

K̃K1(1 +
√
h)4εh−1(

h

ε2
+

√
h

ε
)4 = K̃K1(1 +

√
h)4εh−1

(√
h

ε

)4

(
√
hε−1 + 1)4

= K̃K1(1 +
√
h)4hε−3(1 +

√
hε−1)4

So the residual error between the second order term of F and its approximation in S1 is
bounded by :

2K1K̃(1 +
√
h)4hε−3(1 +

√
hε−1)4.
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Using the elements of the proof of Lemma 3.1.3, we also have the first order terms of F
that are approximated in S1 uniformly with a residual error being a sum of terms of the form

K2h
p−1/2(1 +

√
h)2(
√
h)q|∂ptDqW | ≤ K2h

−1/2(1 +
√
h)2hp(

√
h)qK̃ε1−2p−q,

for p+ q = 2, and K2 being a constant depending on the bounds of σ−1(bα − b), σ, b.∑
p+q=2

hp(
√
h)qK̃ε1−2p−q ≤ K̃ε(hε−2 +

√
hε−1)2

≤ K̃hε−1(1 +
√
hε−1)2

So the error estimate in S1 for the first order term of F , is bounded by K2K̃
√
hε−1(1 +√

h)2(1 +
√
hε−1)2.

Using the elements of the proof of Lemma 3.1.2, we have that L XW is approximated in
S1 with a residual error having a first component of the form :

K3(1 +
√
h)4h(|∂0

tD
2W |+ |∂1

tD
1W |+ |∂2

tD
0W |+ |∂0

tD
3W |+ |∂1

tD
2W |)

≤K3(1 +
√
h)4hK̃(ε−1 + ε−2 + ε−3 + ε−2 + ε−3)

≤K3(1 +
√
h)45K̃hε−3,

K3 being a constant dependent on the bounds of σ and b.

The second component is exactly as the second error component seen for the approxima-
tion of the second order term of F above with K3 instead of K1. This gives us an error bound
approximation of L XW of

5K3K̃(1 +
√
h)4hε−3(1 +

√
hε−1)4

The third component which is the residual of the form K6h
2(|∂2

tD
1W | + |∂3

tD
0W |) can be

bounded by

2K6h
2K̃ε−5 ≤ 2K6K̃hε

−3(1 +
√
hε−1)4,

K6 being a constant dependent on the bounds of σ and b.

The approximation of W in F by E
[
W (t+ h, X̂t,x

h )
]

in S1 is then bounded by

5K3K̃(1 +
√
h)4h2ε−3(1 +

√
hε−1)4 + h‖L XW‖∞,

where ‖L XW‖∞ is the supremum of |L XW | which is bounded by K̃(1+2ε−1) = K̃ε−1(ε+2).

As 5K3K̃(1 +
√
h)4h2ε−3(1 +

√
hε−1)4 ≤ K4K̃(1 +

√
h)4hε−3(1 +

√
hε−1)4 and hK̃ε−1(ε+

2) ≤ K5K̃(1 +
√
h)4hε−3(1 +

√
hε−1)4 for h small, we deduce the result of the lemma.

We consider the following assumption.

A 3.1.1. For every δ > 0, there are M ∈ N and {αi}Mi=1 ⊂ A such that for any α ∈ A :

inf
1≤i≤M

(|σα − σαi |0 + |bα − bαi |0 + |cα − cαi |0 + |fα − fαi |0) ≤ δ.
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Theorem 3.1.5. Under the conditions of Theorem 3.1.3 and considering Assumption A 3.1.1,
if W h is the solution of the scheme (3.21) and W is the solution of (3.1)- (3.2), then there
exists C1, C2 functions of |W |1 (| · |1 being defined in Section 0.1), such that, for all (t, x) ∈
T̄h × Rd,

−C1h
1/10 ≤ (W h −W )(t, x) ≤ C2h

1/4.

Under the conditions of Theorem 3.1.3, the assumption 3.1.1 can be verified if A is
compact.

Proof. Using Lemma 3.1.14, Lemma 3.1.15, Lemma 3.1.16, we can see that under the condi-
tions of Theorem 3.1.3 and with the assumption A 3.1.1, all the assumptions needed to apply
Theorem 2.1.2 of Barles and Jakobsen are verified.

Indeed, by taking ε = h1/4 in the min expression of the upper bound of the result of
Theorem 2.1.2 and ε = h3/10 in the lower bound, we obtain the bounds given above.

This gives us the result of the Theorem.

The bounds we obtain in this case are the same as in Corollary 2.1.1 giving the error
bounds estimates for finite difference schemes.

3.1.3.b Upwind large stencil probabilistic scheme We are going to obtain in the same
way as above, error estimates for the second probabilistic scheme. We will consider S as the
operator defined by :

S(h, t, x, r,Φ(·)) :=
1

h
sup
α∈A

{
−E

[
Φ(X̂t,x

h )TNk,h,α,B(t, x)
]

+ rTDh,α,B(t, x)− hfα(t, x)
}
.

This operator has already been used in the proof of Lemma 3.1.10.

Lemma 3.1.17. Under the conditions of Lemma 3.1.11 and Lemma 3.1.12, there exists
λ, µ ≥ 0, h0 > 0 such that if h ≤ h0, W ≤ V are functions continuous and bounded on
Th × Rd, and φ(t) = eµ(T−t)(a+ b(T − t)) + c for a, b, c ≥ 0, then :

S(h, t, x, r + φ(t), [W + φ](t+ h, ·)) ≥ S(h, t, x, r, V (t+ h, ·)) + b/2− λc in Th × Rd.

Proof. Let µ, a, b, c ≥ 0, and φ be defined as in the lemma. Let W ≤ V be two continuous
and bounded functions on Th × Rd and (t, x) ∈ Th × Rd.

S(h, t, x, r + φ(t),[W + φ](t+ h, ·))

= sup
α∈A

{
− 1

h
E
[
W (t+ h, X̂t,x

h )TNk,h,α,B(t, x)
]

+
1

h
rTDh,α,B(t, x)

− fα(t, x) +
1

h
(−φ(t+ h)E

[
TNk,h,α,B(t, x)

]
+ φ(t)TDh,α,B(t, x))

}
.

From the expressions of TDh,α,B(t, x) and TNk,h,α,B(t, x) and using the fact that φ(t)−φ(t+h) > 0,
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E
[
P1
gα(t,x)(h

−1Bt
h)
]
≥ 0 and |cα| is bounded by M ,

−φ(t+ h)E
[
TNk,h,α,B(t, x)

]
+ φ(t)TDh,α,B(t, x) = (φ(t)− φ(t+ h))

(
1 + E

[
P1
gα(t,x)(h

−1Bt
h)
])

− cα(t, x)hφ(t)

≥ (φ(t)− φ(t+ h))− cα(t, x)hφ(t)

≥ eµ(T−t)(a+ b(T − t))(1− e−µh − hM)

+ eµ(T−t−h)bh−Mhc.

By taking µ > M , there exists h0 such that for h < h0, 1− e−µh − hM > 0. We then have:

S(h, t, x, r + φ(t), [W + φ](t+ h, ·)) ≥S(h, t, x, r,W (t+ h, ·))
+ eµ(T−t−h)b−Mc

≥ S(h, t, x, r, V (t+ h, ·))
+ b/2−Mc,

by Lemma 3.1.11. Hence we obtain the result of the lemma for λ = M .

Lemma 3.1.18. Under the conditions of Theorem 3.1.3 which are stronger than the con-
ditions of Theorem 3.1.4, for every h and continuous and bounded function Φ on T̄h × Rd,
the function (t, x) 7→ S(h, t, x,Φ(t, x),Φ(t+ h, ·)) is bounded and continuous on Th ×Rd and
the function r 7→ S(h, t, x, r,Φ(t + h, ·)) is uniformly continuous for bounded r, uniformly in
(t, x) ∈ Th × Rd.

Proof. Let Φ be a bounded continuous function on T̄h×Rd. Using the same kind of arguments
as in Lemma 3.1.15, we obtain that under conditions of Theorem 3.1.3, TNk,h,α,B(t, x) and

TDh,α,B(t, x) are continuous in x uniformly in α and bounded for any t ∈ Th. Then, by
using the properties of Φ and fα and the dominated convergence theorem, we conclude that
the part of S(h, t, x,Φ(t, x),Φ(t + h, ·)) which is in the supremum on α is continuous in x
for any t ∈ Th uniformly in α and bounded. So, the supremum over α is continuous in x
for any t ∈ Th and bounded. This allows us to conclude the continuity and boundness of
(t, x) 7→ S(h, t, x,Φ(t, x),Φ(t+ h, ·)) on Th × Rd, Th being discrete.

S(h, t, x, r,Φ(t + h, ·)) is the supremum of affine functions of r which are bounded for
bounded r and such that the coefficient (TDh,α,B(t, x) ) of r is bounded. So it is Lipschitz
continuous with respect to r bounded, so uniformly continuous for bounded r, uniformly in
(t, x) ∈ Th × Rd.

Lemma 3.1.19. Under the conditions of Theorem 3.1.4, if W ∈ C∞b ([0, T ] × Rd) is such
that :

|∂ptDqW | ≤ K̃ε1−2p−q, ∀p, q ∈ N

with 0 < ε ≤ 1, K̃ > 0, then, when h is small enough :∣∣S(h, t, x,W (t, x),W (t+ h, ·)) + L X [W ](t, x) + F (t, x,W (t, x), DxW (t, x), D2
xW (t, x))

∣∣
≤ E(K̃, h, ε)
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for all t ∈ Th and x ∈ Rd with

E(K̃, h, ε) = KK̃
(
hε−3(1 +

√
h)4(1 +

√
hε−1)4 +

√
hε−1(1 +

√
h)2(1 +

√
hε−1)2

)
,

where K depends on the bounds of σ, b, gα and Σα.

Proof. We use exactly the same arguments as in the proof of Lemma 3.1.16. The only
difference here is that W (t, x) in F (t, x,W (t, x), DxW (t, x), D2

xW (t, x)) is not approximated
in S(h, t, x,W (t, x),W (t + h, ·)) and the approximation of the first order derivative term of
F (t, x,W (t, x), DxW (t, x), D2

xW (t, x)) in S(h, t, x,W (t, x),W (t+h, ·)) results in an additional
error (see the proof Theorem 3.1.2) which is :

K6

√
h(|∂1

tD
0|+ |∂0

tD
1|) ≤ K6

√
hK̃(1 + ε−1)

≤ K6K̃
√
hε−1(ε+ 1)

≤ K7K̃
√
hε−1(1 +

√
h)2(1 +

√
hε−1)2,

where K6 and K7 depend on the bounds of σ, b and gα. Hence we obtain the result of the
lemma.

Theorem 3.1.6. Under the conditions of Theorem 3.1.3 (which are stronger than the con-
ditions of Theorem 3.1.4) and considering the assumption A 3.1.1, if W h is the solution of
the scheme (3.31) and W is the solution of (3.1)- (3.2), then there exists C1, C2 functions of
|W |1 (| · |1 defined in Section 0.1), such that, for all (t, x) ∈ T̄h × Rd,

−C1h
1/10 ≤ (W h −W )(t, x) ≤ C2h

1/4.

Proof. Using Lemma 3.1.17, Lemma 3.1.18, Lemma 3.1.19, we can see that under the con-
ditions of Theorem 3.1.3 and with the assumption A 3.1.1, all the assumptions needed to
apply Theorem 2.1.2 of Barles and Jakobsen are verified. By the same arguments as for
Theorem 3.1.5, we obtain the result of the theorem.
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3.2 Extension to PDE with unbounded coefficients

We tried to show that the upwind large stencil probabilistic scheme still converges when the
coefficients of the PDE and the terminal function have growth similar to those of a linear
quadratic optimal control PDE, but we did not succed. However, we want to present the
method and results we obtained in this attempt. We also outline a method used by Assellaou,
Bokanowksi and Zidani in [5] to obtain error estimates of a Semi-Lagrangian scheme when the
PDE has Lipschitz coefficients with linear growth and the terminal function is also Lipschitz
with a linear growth. Indeed, it allows them to obtain the same lower and upper bound of
the error, unlike Barles and Jakobsen. Their method relies then on the Lipschitz character
not only of the viscosity solution of the PDE but also of the approximated solution obtained
with their scheme.

In the following, we present the method and the results that we obtained when trying
to show the convergence of the upwind large stencil probabilistic scheme when the PDE
coefficients and terminal functions are unbounded and satisfy some conditions (alike linear
quadratic optimal control problems conditions).

Let us consider the PDE (3.1)-(3.2) with the following conditions on the coefficients :

A 3.2.1. There exists positive constants C̄, ν, C1, C2, Clip such that :

• A is unbounded;

• cα = 0

• The function (t, x, α) 7→ bα(t, x) is continuous and for x, y ∈ Rd, t ∈ [0, T ], α ∈ A ,

|bα(t, x)− bα(t, y)| ≤ C̄|x− y| (3.34a)

|bα(t, x)| ≤ C̄(1 + |x|+ |α|); (3.34b)

• The function (t, x, α) 7→ fα(t, x) is continuous and for x ∈ Rd, t ∈ [0, T ], α ∈ A ,

ν

2
|α|2 + `0(t, x, α) ≤ fα(t, x) ≤C̄(1 + |x|2 + |α|2) with `0(t, x, α) ≥ C1|x|2 − C̄

|fα(t, x)− fα(t, y)| ≤C̄(1 + |x|+ |y|+ |α|)|x− y|.

where C1 >
2((C2+1)e

(6+ 2
C2

+8C̄)C̄T
C̄)2

ν

• There exists σ which does not depend on α such that a = σσᵀ and σ ∈ C([0, T ] ×
Rd,Rd×d) and for every t ∈ [0, T ], x, y ∈ Rd,

|σ(t, x)| ≤C̄ (3.35a)

|σ(t, x)− σ(t, y)| ≤C̄|x− y|. (3.35b)

• Ψ ∈ C(Rd,R) and for x, y ∈ Rd,

|Ψ(x)| ≤C2(1 + |x|2),

|Ψ(x)−Ψ(y)| ≤Clip(1 + |x|2 + |y|2)|x− y|
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We can notice that from Corollary 1.2.1 and Lemma 1.2.2, the PDE (3.1)-(3.2) has a
unique continuous viscosity solution in the space of functions with quadratic growth in this
setting.

We first give error estimates for the approximations (3.9) and (3.13) in this setting.

We consider the space Cqua([0, T ] × Rd) of C∞ functions on [0, T ] × Rd with quadratic
growth in x such that for any p ∈ N, q ≥ 2 and φ ∈ Cqua, we have with the notations of
Section 3.1 :

|∂ptD0φ(t, x)| ≤Cp,0,φ(1 + |x|2) (3.36)

|∂ptD1φ(t, x)| ≤Cp,1,φ(1 + |x|) (3.37)

|∂ptDqφ(t, x)| ≤Cp,q,φ. (3.38)

We hereby, define the constants Cr,s,φ for r, s ∈ N and φ ∈ Cqua([0, T ]× Rd).

Theorem 3.2.1. Let X̂ as in (3.6), and denote Bt
h = Bt+h − Bt. Consider any matrix

Σ ∈ Rd×` with ` ≤ d and any integer k ∈ N. Assume that b and σ are such that there
exists a constant C uniform in t and x such that |b(t, x)| ≤ C(1 + |x|) and |σ| ≤ C, and
let M be an upper bound of |ΣΣT |. Then, there exists K = K(C,M) > 0 such that, for all
W ∈ Cqua([0, T ]× Rd), we have, for all (t, x) ∈ Th × Rd,∣∣∣∣∣h−1E

[
W (t+ h, X̂(t+ h))P2

Σ,k(h
−1/2Bt

h) | X̂(t) = x
]

− 1

2
Tr(σ(t, x)ΣΣT σT (t, x)D2

xW (t, x))

∣∣∣∣∣
≤ K(1 +

√
h)4(1 + |x|4)

[
h(C1,2,W + C0,3,W + C0,4,W )+

h
√
hC1,3,W + h2C2,2,W + h2

√
hC3,1,W + h3C4,0,W

]
.

Proof. The proof is very similar to the proof of Theorem 3.1.1. We use a Taylor formula to
order 3 of W (t+ h, X̂t,x

h ) at point (t, x). As seen in the proof of Theorem 3.1.1, by using this

Taylor formula, the terms left in E
[
W (t+ h, X̂t,x

h )P2
Σ,k(h

−1/2Bt
h)
]

are

1

2
Tr(σ(t, x)ΣΣT σT (t, x)D2

xW (t, x))

h−1E
[
M4(W, t, x, h,Bt

h)P2
Σ,k(h

−1/2Bt
h)
]

and the terms coming from the product of monomials of degree 2 in [Bt
h]i (1 ≤ i ≤ d) by

P2
Σ,k(h

1/2Bt
h). The difference is in the way of bounding terms in this formula, coming from

the bound of b(t, x) which is now C(1 + |x|) and the bound of the derivatives. The latter
terms are bounded by :

Kh(C1,2,W + (1 + |x|)C0,3,W ) ≤ Kh(1 +
√
h)4(1 + |x|4)(C1,2,W + C0,3,W ).

By replacing the derivatives which appear in M4(W, t, x, h,Bt
h) by their bounds on the interval
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between (t, x) and (t+ h, X̂t,x
h ), we obtain that M4(W, t, x, h,Bt

h) is now bounded by :

|M4(W, t, x, h,Bt
h)| ≤h

4

24
C4,0,W 3(1 + |x|2 + |b(t, x)h|2 + |σ(t, x)Bt

h|2)

+
h3

6

d∑
i=1

C3,1,W (1 + |x|+ |b(t, x)h|+ |σ(t, x)Bt
h|)|[b(t, x)h+ σ(t, x)Bt

h]i|

+
h2

4

∑
i,j

C2,2,W |[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

+
h

6

∑
i,j,p

C1,3,W |[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

|[b(t, x)h+ σ(t, x)Bt
h]p|

+
1

24

∑
i,j,p,q

C0,4,W |[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

|[b(t, x)h+ σ(t, x)Bt
h]p||[b(t, x)h+ σ(t, x)Bt

h]q| .

So

h−1E
[
M4(W, t, x, h,Bt

h)P2
Σ,k(h

−1/2Bt
h)
]
≤
∑
p+q=4

K1(1 + |x|max{2−q,0})(1 + h)max{2−q,0}hp−1

(h(1 + |x|) +
√
h)qCp,q,W

≤
∑
p+q=4

K1[(1 + |x|)(1 + h)]max{2−q,0}(1 + |x|)qhp−1

(1 +
√
h)q(
√
h)qCp,q,W

≤
∑
p+q=4

K(1 + |x|4)hp−1(1 +
√
h)4(
√
h)qCp,q,W ,

with K1,K depending only on C and M . Hence the result of the theorem.

Theorem 3.2.2. Let X̂t,x
h := x+ b(t, x)h+ σ(t, x)(Bt+h − Bt) and denote Bt

h = Bt+h − Bt.
Consider any map gα : [0, T ]×Rd → Rd such that |gα(t, x)| ≤ C(1+ |x|+ |α|), with C uniform
in t and x. Assume that b and σ are such that |b(t, x)| ≤ C(1 + |x|) and |σ(t, x)| ≤ C. Then,
there exists K = K(C) > 0 such that, for all W ∈ Cqua([0, T ] × Rd), we have, for all
(t, x) ∈ Th × Rd,∣∣∣(σ(t, x)gα(t, x)) ·DxW (t, x)− E

[
(W (t+ h, X̂t,x

h )−W (t, x))P1
gα(h−1Bt

h)
]∣∣∣

≤ K(1 +
√
h)4(1 + |x|2)(1 + |x|+ |α|)

[√
h(C1,0,W + C0,1,W + C0,2,W )

+hC1,1,W + h
√
hC2,0,W

]
.

Proof. A Taylor formula applied to W (t + h, X̂t,x
h ) to order 1 at (t, x) and a development

similar to the one of the proof of Theorem 3.1.2 give that :

E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
gα(h−1Bt

h)
]

= h(
∂W

∂t
(t, x) +DxW (t, x)ᵀb(t, x))E

[
P1
gα(h−1Bt

h)
]

+ (σ(t, x)gα(t, x)) ·DxW (t, x)

+ E
[
M2(W, t, x, h,Bt

h)P1
gα(h−1Bt

h)
]
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We have :

h(
∂W

∂t
(t, x) +DxW (t, x)ᵀb(t, x))E

[
P1
gα(h−1Bt

h)
]

that is smaller than

C̄(1 + |x|2)
√
h(C1,0,W + C0,1,W )|gα(t, x)|

which is smaller than

C̄(1 + |x|2)(1 +
√
h)2(1 + |x|+ |α|)

√
h(C1,0,W + C0,1,W ).

By replacing the derivatives involved in M2(W, t, x, h,Bt
h) by their bounds over the interval

between (t, x) and (t+ h, X̂t,x
h ), we also have

|M2(W, t, x, h,Bt
h)| ≤1

2

∑
i,j

C0,2,W |[b(t, x)h+ σ(t, x)Bt
h]i||[b(t, x)h+ σ(t, x)Bt

h]j |

+ h
∑
i

C1,1,W (1 + |x|+ |b(t, x)h|+ |σ(t, x)Bt
h|)|[b(t, x)h+ σ(t, x)Bt

h]i|

+
1

2
h23C2,0,W (1 + |x|2 + |b(t, x)h|2 + |σ(t, x)Bt

h|2) .

So

E
[
M2(W, t, x, h,Bt

h)P1
gα(h−1Bt

h)
]
≤
∑

p+q=2 K1(1 + |x|max{2−q,0})(1 + h)max{2−q,0}hp−1/2

(h(1 + |x|) +
√
h)qCp,q,W (1 + |x|+ |α|)

≤
∑

p+q=2 K1((1 + |x|)(1 + h))max{2−q,0}(1 + |x|)qhp−1/2

(1 +
√
h)q(
√
h)qCp,q,W (1 + |x|+ |α|)

≤
∑

p+q=2 K(1 + |x|2)(1 +
√
h)4hp−1/2(

√
h)q

Cp,q,W (1 + |x|+ |α|),

where K1,K are constants depending only on C. Hence the result of the theorem.

Lemma 3.2.1. Let X̂t,x
h := x + b(t, x)h + σ(t, x)(Bt+h − Bt). Assume that b and σ are

such that |b(t, x)| ≤ C(1 + |x|) and |σ(t, x)| ≤ C for some constant C uniform in t and x.
Then, there exists K = K(C) > 0 such that, for all W ∈ Cqua([0, T ] × Rd), we have, for all
(t, x) ∈ Th × Rd,∣∣∣h−1

(
E
[
W (t+ h, X̂t,x

h )
]
−W (t, x)

)
−L XW

∣∣∣
≤ K(1 +

√
h)4(1 + |x|4)

[
h(C0,2,W + C1,1,W + C2,0,W + C0,3,W + C1,2,W + C0,4,W )

+ h
√
hC1,3,W + h2(C2,2,W + C2,1,W + C3,0,W ) + h2

√
hC3,1,W + h3C4,0,W

]
.

Proof. We use also here for the proof a Taylor development of W (t+h, X̂t,x
h ) to order 3 at (t, x)

which gives us the same result as in the proof of Theorem 3.1.1. The terms which are monomi-

als of degree 1 in h, give us hL XW in the expression of E
[
W (t+ h, X̂t,x

h )−W (t, x)
]
. Using
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the expression of M4(W, t, x, h,Bt
h) of the proof of Theorem 3.2.1, h−1E

[
M4(W, t, x, h,Bt

h)
]

can be bounded by ∑
p+q=4

K(1 + |x|4)hp−1(1 +
√
h)4(
√
h)qCp,q,W .

The other terms of h−1E
[
W (t+ h, X̂t,x

h )−W (t, x)
]

which are not null, are bounded by the

following terms

(K0 +
1

6
h|b(t, x)|2)C0,2,W ≤ (1 + h)K1(1 + |x|2)C0,2,W ≤ hK(1 +

√
h)4(1 + |x|4)C0,2,W

K0h|b(t, x)||1 + |x||C1,1,W ≤ hK1(1 + |x|2)C1,1,W ≤ hK(1 + |x|4)C1,1,W

K0h|1 + |x|2|C2,0,W ≤ hK(1 + |x|4)C2,0,W

(K0 +
1

6
h|b(t, x)|2)h|b(t, x)|C0,3,W ≤ hK1(1 + h)(1 + |x|2)(1 + |x|)C0,3,W ≤ h(1 +

√
h)4K(1 + |x|4)C0,3,W

(K0 +
1

2
h|b(t, x)|2)hC1,2,W ≤ hK(1 +

√
h)4(1 + |x|4)C1,2,W ,

1

2
(1 + |x|)h2|b(t, x)|C2,1,W ≤ K1(1 + |x|2)h2C2,1,W ≤ Kh2(1 + |x|4)C2,1,W ,

1

6
(1 + |x|2)h2C3,0,W ≤ Kh2(1 + |x|4)C3,0,W .

where K0,K1,K are constants depending only at most on C. Hence the result of the Lemma.

We tried to show the convergence of the upwind large stencil probabilistic scheme in the
unbounded setting given by Assumption A 3.2.1 by using the improvement of the Barles and
Souganidis Theorem that we presented and proved in Section 2.1 (Theorem 2.1.3). However,
we did not get all the elements needed to prove the stability of the scheme in this setting. We
give below the different results that we obtained.

We consider the assumption :

A 3.2.2. σ is bounded and b has a linear growth with respect to x.

gα and Σα are defined as in Section 3.1.2.b meaning that for σσT uniformly greater than
a postive matrix M0 ∈ S(d) and a(t, x) ≥ σσT , Σα is well defined and bounded and gα is
of linear growth in x and α. We consider as functionnal space, B2([0, T ] × Rd) which is the
space of functions with quadratic growth in x.

The result of monotonicity of Lemma 3.1.11 still holds in this setting. However, we need
to obtain a consistency and a stability result. We will start by the consistency result. We
saw in Section 3.1.2.b that the use of the upwind large stencil probabilistic scheme results in
the following discretized equation.

S(h, t, x,W (t, x),W (t+ h, ·)) = 0, (t, x) ∈ Th × Rd
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where

S(h, t, x,W (t, x),W (t+ h, ·)) =−
E
[
W (t+ h, X̂t,x

h )
]
−W (t, x)

h
(3.39)

− inf
α∈A

{
1

h
E
[
W (t+ h, X̂t,x

h )P2
Σα(t,x),k(h

−1/2Bt
h)
]

(3.40)

+ E
[
(W (t+ h, X̂t,x

h )−W (t, x))P1
gα(t,x)(h

−1Bt
h)
]

(3.41)

+ cα(t, x)W (t, x) + fα(t, x)

}
. (3.42)

Theorem 3.2.3 (Consistency result in the unbounded setting). Let µ : x 7→ (1 + |x|2) and
W ∈ Cqua([0, T ] × Rd). If σσT is uniformly greater than a postive matrix M0 ∈ S(d) and
a(t, x) ≥ σσT with σ and a bounded, then

lim
h→0

(s,y)→(t,x)
c→0

S(h, s, y,W (s, y) + cµ(y),W (s+ h, ·) + cµ)

= −L XW (t, x)− F (t, x,W (t, x), DxW (t, x), D2
xW (t, x)),

F being the Hamiltonian given in Equation (3.3).

Proof. Let h, c > 0 small enough and y ∈ Rd. Using Theorem 3.2.1, Theorem 3.2.2 and
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Lemma 3.2.1, we have

S(h, s, y,W (s, y)+cµ(y),W (s+ h, ·) + cµ) = −
E
[
W (s+ h, X̂s,y

h )
]
−W (s, y)

h

− inf
α∈A

{
1

h
E
[
W (s+ h, X̂s,y

h )P2
Σα(s,y),k(h

−1/2Bt
h)
]

+ E
[
(W (s+ h, X̂s,y

h )−W (s, y))P1
gα(s,y)(h

−1Bt
h)
]

+ fα(s, y)

+
c

h
E
[
(1 + |X̂s,y

h |
2)(P2

Σα(s,y),k(h
−1/2Bt

h))
]

+ cE
[
(|X̂s,y

h |
2 − |y|2)P1

gα(s,y)(h
−1Bt

h)
]}

− c

h
E
[
|X̂s,y

h |
2 − |y|2

]
=−L XW (t, y) +O(Ch(1 + |y|4))− inf

α∈A

{
1

2
Tr
[
(σΣα(Σα)T σT )(s, y)D2

xW (s, y)
]

+Kh(1 + |y|4)

+ σ(s, y)gα(s, y) ·DxW (s, y) +K(1 + |y|2)(1 + |y|+ |α|)
√
h

+ fα(s, y) +
c

h
E
[
(1 + |X̂s,y

h |
2)P2

Σα(s,y),k(h
−1/2Bt

h)
]

+ cE
[
(|X̂s,y

h |
2 − |y|2)P1

gα(s,y)(h
−1Bt

h)
]}

+
c

h
E
[
|X̂s,y

h |
2 − |y|2

]
,

K being a constant proportional to the constant K of Theorem 3.2.1, Theorem 3.2.2 and
Lemma 3.2.1.

|X̂s,y
h |

2 =X̂s,y
h (X̂s,y

h )ᵀ

=|y|2 + h2|b(s, y)|2 + (Bt
h)T (σT σ)(s, y)Bt

h

+ 2(hyT b(s, y) + yT σ(s, y)Bt
h + hb(s, y)T σ(s, y)Bt

h).

From the properties of P2
Σα(s,y),k(h

−1/2Bt
h) deduced in Corollary 3.1.3, we then have

E
[
(1 + |X̂s,y

h |
2)P2

Σα(s,y),k(h
−1/2Bt

h)
]

=hTr
[
(σΣα(Σα)T σT )(s, y)

]
,

and we can show using same reasoning as in the proof of Theorem 3.1.2 that :

E
[
(|X̂s,y

h |
2 − |y|2)P1

gα(s,y)(h
−1Bt

h)
]

=(h2|b(s, y)|2 + 2hyT b(s, y))E
[
P1
gα(s,y)(h

−1Bt
h)
]

+ 2(y + hb(s, y)) · (σgα)(s, y) + E
[
(Bt

h)T (σT σ)(s, y)Bt
hP

1
gα(s,y)(h

−1Bt
h)
]
,
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so that

c|E
[
(|X̂s,y

h |
2 − |y|2)P1

gα(s,y)(h
−1Bt

h)
]
| ≤K1(1 + |y|3)

√
hc+K1(1 + |y|2)c+

K1((1 + |y|2)
√
h+ 1 + |y|)c|α|,

K1 being proportional to the constant K introduced above. We also have∣∣∣E [|X̂s,y
h |

2 − |y|2
]∣∣∣ ≤h(1 + |y|2)K2,

K2 proportional to K. So,

c

h

∣∣∣E [|X̂s,y
h |

2 − |y|2
]∣∣∣ ≤ c(1 + |y|2)K2.

We thus have :

S(h, s, y,W (s, y) + cµ(y),W (s+ h, ·) + cµ) =−L XW (s, y)− inf
α∈A

{
1

2
Tr
[
(σΣα(Σα)T σT )(s, y)D2

xW (s, y)
]

+ σ(s, y)gα(s, y) ·DxW (s, y) + fα(s, y)

+ K 1(c, h, |y|, α)

}
+ K 2(c, h, |y|),

with K 1 having a linear growth in α such that it converges to 0 when c and h go to 0 for
α = α0 and its growth coefficient with respect to α goes to 0 with c and h. We also have
K 2(c, h, |y|) that converges to 0 when c and h go to zero.

These observations with the fact that fα is strictly convex in α according to Assumption
A 3.2.1, allows us to conclude that :

lim
h→0
c→0

S(h, s, y,W (s, y) + cµ(y),W (s+ h, ·) + cµ)

= −L XW (s, y)− F (s, y,W (s, y), DxW (s, y), D2
xW (s, y)),

with a convergence uniform in s and y for s, y bounded. Hence,

lim
h→0
c→0

(s,y)→(t,x)

S(h, s, y,W (s, y) + cµ(y),W (s+ h, ·) + cµ)

= −L XW (t, x)− F (t, x,W (t, x), DxW (t, x), D2
xW (t, x)).

Hence the result of the theorem.

For the stability, we tried to use a modified version of the additive α- subhomogeneity
given in Definition 3.1.2.

Definition 3.2.1. We say that an operator T defined on functions with quadratic growth is
additively α-subhomogeneous if for µ : x 7→ 1 + |x|2, for any function with quadratic growth φ
and for any λ > 0

T (φ+ λµ) ≤ T (φ) + αλµ.
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We obtained the following result.

Proposition 3.2.1. Considering assumptions A 3.2.1 and A 3.2.2, the operator T1
k,h defined

by (3.32) is additively αh subhomogeneous over the set of functions with quadratic growth, for
some constant αh = 1 + C

√
h with C ≥ 0.

Proof. Let φ be a function with quadratic growth and µ be defined as in Definition 3.2.1. Let
λ > 0.

T1
k,h[φ+ λµ](t, x) = inf

α∈A

{E
[
TNk,h,α,B(t, x)(φ+ λµ)(X̂t,x

h )
]

+ hfα(t, x)

TDh,α,B(t, x)

}

= inf
α∈A

{E
[
TNk,h,α,B(t, x)φ(X̂t,x

h )
]

+ hfα(t, x)

TDh,α,B(t, x)
+ λ

E
[
TNk,h,α,B(t, x)(1 + |X̂t,x

h |
2)
]

TDh,α,B(t, x)

}
.

Using the development made in the proof of Theorem 3.2.3, we have :

E
[
TNk,h,α,B(t, x)(1 + |X̂t,x

h |
2)
]

=E
[
1 + |X̂t,x

h |
2
]

+ E
[
(1 + |X̂t,x

h |
2)P2

Σα,k(h
−1/2Bt

h)
]

+ hE
[
(1 + |X̂t,x

h |
2)P1

gα(t,x)(h
−1Bt

h)
]

=1 + |x|2 + h2|b(t, x)|2 + hTr
[
(σσT )(t, x)

]
+ 2hxT b(t, x)

+ hTr
[
(σΣα(Σα)T σT )(t, x)

]
+ (1 + |x|2)hE

[
P1
gα(t,x)(h

−1Bt
h)
]

+ (h2|b(t, x)|2 + 2hxT b(t, x))hE
[
P1
gα(t,x)(h

−1Bt
h)
]

+ 2(x+ hb(t, x))h · (σgα)(t, x) + E
[
(Bt

h)T (σT σ)(t, x)Bt
hP

1
gα(t,x)(h

−1Bt
h)
]

=(1 + |x|2 + h2|b(t, x)|2 + 2hxT b(t, x))(1 + hE
[
P1
gα(t,x)(h

−1Bt
h)
]
)

+ 2(x+ hb(t, x))h · (σgα)(t, x) + hTr
[
(σΣα(Σα)T σT )(t, x)

]
+ hTr

[
(σσT )(t, x)

]
.

|h2|b(t, x)|2 + 2hxT b(t, x)| ≤ Kh(1 + |x|2)

K depending only on the linear growth coefficient of b in x.∣∣∣∣∣2(x+ hb(t, x))h · (σgα)(t, x) + hTr
[
(σΣα(Σα)T σT )(t, x)

]
+ hTr

[
(σσT )(t, x)

] ∣∣∣∣∣
≤ hK(1 + h)(1 + |x|)|gα(t, x)|+ κh,
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κ depending on the bounds of Σα(Σα)T and σσT . We thus have :∣∣∣∣∣∣
E
[
TNk,h,α,B(t, x)(1 + |X̂t,x

h |
2)
]

TDh,α,B(t, x)

∣∣∣∣∣∣ ≤(1 + |x|2)(1 +Kh) +
hK(1 + h)(1 + |x|)|gα(t, x)|+ κh

1 + K̃
√
h|gα(t, x)|

≤(1 + |x|2)(1 + (K + κ)h) +
K

K̃
(1 + |x|)(1 + h)

√
h

≤(1 + |x|2)(1 + C
√
h).

Thus the result of the proposition.

To obtain the stability of the scheme, it would have been preferable to obtain the α-
subhomogeneity of the scheme operator with a constant α = (1 + Ch) for some C > 0.
As

T1
k,h[0] = inf

α∈A

fα(t, x)

TDh,α,B(t, x)
,

with fα bounded from above and below by convex functions in α plus functions in x with
quadratic growth, T1

k,h[0] is of quadratic growth and a proof similar to the one done in
Section 3.1.2.b would have allowed us to obtain the stability of the scheme.
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CHAPTER 4
New probabilistic max-plus method

We present in this chapter a new method for solving stochastic control problem that we called
a probabilistic max-plus method. It has been introduced in [1] where it was used with the
probabilistic scheme of Fahim, Touzi and Warin presented in Section 2.3.3. It has then been
applied to the schemes presented in Section 3.1.2.a and Section 3.1.2.b respectively in [2]
and [3]. The originality of the method is the use of a low number of basis functions in the
regression needed to compute the conditional expectation in a probabilistic scheme, while
keeping a good approximation of the function solution we try to approximate. In particular,
the non linearity of this function is well taken into account. The idea is that, if a probabilistic
scheme used with the method keep stable a given space of functions with low dimension, then
the method can be used with this scheme with terminal functions expressed as supremum or
infimum of these functions depending on the goal of the underlying optimal control problem.
We consider here as functionnal space with low dimension, the space of quadratic functions.

We give the theoretical results in the setting of each of the probabilistic schemes de-
scribed in Section 3.1 and then present the different versions of the algorithm that we have
implemented.
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4.1 Theoretical results

The originality of the method in [1] is that instead of applying a regression estimation to
compute D i

t,h(W h(t+ h, ·)) as proposed in [25] by Fahim, Touzi and Warin, we approximate

W h by a max-plus linear combination of basic functions (namely quadratic forms) and use the
distributivity property stated in Theorem 4.1 which generalizes Theorem 3.1 of McEneaney,
Kaise and Han [54, 44]. It also generalizes a more old result stated in Theorem 14.60 of [65]
by Rockafellar and Wets along with another result stated in Proposition 6.1 of [66] by Shapiro
and Ruszczyński. This allows us to keep a non linearity in the expression of W h in adequation
with the non linearity of the related stochastic control problem.

In the sequel, we denote W = Rd and D the set of measurable functions from W to R
with at most some given growth or growth rate (for instance with at most exponential growth
rate), assuming that it contains the constant functions.

Theorem 4.1. Let W = Rd and D be the set of measurable functions from W to R with at
most some given growth or growth rate (for instance with at most exponential growth rate),
containing the constant functions, and let G be a monotone additively α-subhomogeneous
operator from D to R, for some constant α > 0. Let (Z,A ) be a measurable space, and let W
be endowed with its Borel σ-algebra. Let φ : W ×Z → R be a measurable map such that for all
z ∈ Z, φ(·, z) is continuous and belongs to D . Let v ∈ D be such that v(w) = supz∈Z φ(w, z).
Assume that v is continuous and bounded. Then,

G(v) = sup
z̄∈Z

G(φ̄z̄)

where φ̄z̄ : W → R, w 7→ φ(w, z̄(w)), and

Z ={z̄ : W → Z, measurable and such that φ̄z̄ ∈ D}.

Proof. Since v belongs to D , G(v) is well defined. Similarly, by definition, for all z̄ ∈ Z, φ̄z̄

belongs to D , so that G(φ̄z̄) is well defined.
Let ε > 0. By definition of v, for all w ∈ W , there exists zw ∈ Z such that φ(w, zw) ≥

v(w) − ε. Then, since w′ 7→ φ(w′, zw) and w′ 7→ v(w′) are continuous maps W → R, there
exists δw > 0 such that for all w′ ∈ B(w, δw) (the open ball centered at w with radius δw),
|φ(w′, zw)− φ(w, zw)| ≤ ε and |v(w′)− v(w)| ≤ ε. Then, for w′ ∈ B(w, δw), we have

φ(w′, zw) ≥ φ(w, zw)− ε ≥ v(w)− 2ε ≥ v(w′)− 3ε .

As W is the countable union of compact metric spaces, there exists a sequence (wi)i≥0 of
W such that W = ∪i≥0B(wi, δ

wi). Let us denote, for all i ≥ 0, Wi = B(wi, δ
wi) and W ′

i =
Wi \ (∪j<iWj). Define the function z1 such that, for all i ≥ 0, z1(w′) = zwi , for w′ ∈ W ′

i . Since
(W ′

i )i≥0 is a countable partition of W composed of Borel sets, the map z1 is well defined on
W and measurable. Since φ is measurable, this implies that φ̄z1 is also measurable. Moreover,
by the above properties and the definition of v, we have

v(w) ≥ φ̄z1(w) = φ(w, z1(w)) ≥ v(w)− 3ε, ∀w ∈ W .

Since v ∈ D , and D is the set of measurable functions from W to R with at most some given
growth or growth rate and containing the constant functions, we get that φ̄z1 has also this
growth or growth rate, which implies that φ̄z1 ∈ D , so z1 belongs to Z.
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Since G is monotone and additively α-subhomogeneous from D to R, and ε > 0, we get
that

G(v) ≥ G(φ̄z1) ≥ G(v − 3ε) ≥ G(v)− 3αε .

Then

sup
z̄∈Z

G(φ̄z̄) ≥ G(v)− 3αε .

On the other hand, for any z̄ ∈ Z, φ̄z̄ ≤ v. So G(φ̄z̄) ≤ G(v). We then have

G(v) ≥ sup
z̄∈Z

G(φ̄z̄) ≥ G(v)− 3αε .

and since this property holds for all ε > 0, we obtain the equality, which shows the assertion
of the theorem.

We will consider in the following a Hamilton-Jacobi-Bellman PDE more general than the
one seen previously (PDE (3.1)), with a control α represented by a couple (m,u) where m is
a discrete control and u is a control living in a continuum set. We will also suppose without
loss of generality, that the PDE coefficients do not depend on the time variable and we will
be interested in a maximization problem. The PDE we consider is the following :

−∂W
∂t
−H (x,W (t, x), DW (t, x), D2W (t, x)) = 0, x ∈ Rd, t ∈ [0, T ), (4.1a)

W (T, x) = Ψ(x), x ∈ Rd, (4.1b)

where the Hamiltonian H : Rd ×R×Rd × S(d)→ R of the above control problem is defined
as:

H (x, r, p,Γ) := max
m∈M

H m(x, r, p,Γ) , (4.2a)

with

H m(x, r, p,Γ) := sup
u∈U

H m,u(x, r, p,Γ) , (4.2b)

H m,u(x, r, p,Γ) :=
1

2
Tr (amu (x)Γ) + bmu (x) · p

+ cmu (x)r + fmu (x) , (4.2c)

amu = σmu (σmu )ᵀ, bmu , cmu , fmu taking the place of aα, bα, cα, fα of Section 3.1. It can be
seen that the modifications made here to the initial problem (3.1)-(3.2) of Section 3.1 do not
change the validity of the results obtained in Section 3.1.

We rewrite each H m (m ∈M ) in the form (3.3) where the diffusion X and the Hamilto-
nian F depends now on the discrete control m. b becomes bm and σ becomes σm.

We consider then the backward operator T related to any probabilistic scheme encountered
previously in this document as :

Tt,h(φ)(x) = max
m∈M

Tmt,h[φ](x) , (4.3a)
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with

Tmt,h[φ](x) = Gmt,h,x(φ̃mt,h,x) (4.3b)

where

Smt,h : Rd ×W → Rd, (x,w) 7→ Smt,h(x,w) = x+ fm(x)h+ σm(x)w , (4.3c)

φ̃mt,h,x = φ(Smt,h(x, ·)) ∈ D if φ ∈ D . (4.3d)

For the probabilistic scheme of Fahim, Touzi and Warin ([25]), Gmt,h,x is the operator from
D to R given by

Gmt,h,x(φ̃) = D0
t,h,m,x(φ̃)

+hmax
u∈U

(
Gm,u

1 (x,D0
t,h,m,x(φ̃), D1

t,h,m,x(φ̃), D2
t,h,m,x(φ̃))

)
, (4.3e)

with

D0
t,h,m,x(φ̃) = E(φ̃(Bt+h −Bt)) ,

D1
t,h,m,x(φ̃) = E(φ̃(Bt+h −Bt)(σm(x)T )−1h−1(Bt+h −Bt)) ,

D2
t,h,m,x(φ̃)(x) := h−1E

[
φ̃(Bt+h −Bt)(σm(x)ᵀ)−1 (Bt+h −Bt)(Bt+h −Bt)ᵀ − hI

h
σm(x)−1

]
,

where

Gm,u
1 (x, r, p,Γ) =

1

2
Tr [(amu (x)− σm(x)σm(x)ᵀ)Γ] + (bmu (x)− bm(x)) · p+ cmu (x)r + fmu (x).

Indeed, the Euler discretization X̂m of the diffusion with generator L Xm
satisfies

X̂m(t+ h) = Smt,h(X̂m(t),Wt+h −Wt) . (4.4)

We will redefine these operators in the following subsections to adapt them to the proba-
bilistic scheme considered.

4.1.1 Method in the large stencil probabilistic scheme setting

To explain the algorithm, assume that the final reward Ψ of the control problem can be
written as the supremum of a finite number of quadratic forms. Denote Qd = S(d)×Rd ×R
and let

q(x, z) :=
1

2
xTQx+ b · x+ c, with z = (Q, b, c) ∈ Qd , (4.5)

be the quadratic form with parameter z applied to the vector x ∈ Rd. Then for gT = q, we
have

W h(T, x) = Ψ(x) = sup
z∈ZT

gT (x, z)

where ZT is a finite subset of Qd and W h is the approximated solution of the PDE (4.1)
computed using a scheme.

We rewrite each H m (m ∈ M ) in the form (3.3) where the diffusion X and the Hamil-
tonian F depends now on the discrete control m. b becomes bm and σ becomes σm. The
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function W h can then be computed by a scheme operator defined as the maximum over
m of the large stencil probabilistic scheme operators for Hamilton-Jacobi-Bellman equation
with H m as Hamiltonian. So the operator T0

k,h defined by (3.22) in Section 3.1.2.a, can be
replaced in this setting by :

T0
k,h[Φ](t, x) := max

m∈M
T0,m
k,h [Φ](t, x) (4.6)

where each T0,m
k,h is defined by :

T0,m
k,h [Φ](t, x) := E

[
Φ(X̂t,x,m

h )
]

+ h sup
u∈U

{
E
[
Φ(X̂t,x,m

h )h−1P2
Σmu (x),k(h

−1/2Bt
h)
]

+ E
[
Φ(X̂t,x,m

h )P1,0
(σm)−1(x)(bmu −bm)(x)

(h−1Bt
h)
]

+ cmu (x)E
[
Φ(X̂t,x,m

h )
]

+ fmu (x)

}
,

where X̂t,x,m
h := x + bm(x)h + σm(x)Bt

h and Σm
u is the equivalent of Σα defined in Sec-

tion 3.1.2.a.
In the following, we introduce some notations. Let us consider a continuous function

φ : Rd → R, x 7→ φ(x) and define

Tt,h[φ](x) := T0
k,h[φ](t, x), (4.7a)

Tmt,h[φ](x) := T0,m
k,h [φ](t, x). (4.7b)

Let Gmt,h,x be the operator from D to R given by

Gmt,h,x(φ̃) = D0
t,h,m,x(φ̃)

+h sup
u∈U

(
Gm,u

1 (x,D0
t,h,m,x(φ̃), D1

t,h,m,x(φ̃)) +D2
t,h,Σmu (x),k(φ̃)

)
, (4.7c)

with

D0
t,h,m,x(φ̃) = E(φ̃(Bt+h −Bt)) ,

D1
t,h,m,x(φ̃) = E(φ̃(Bt+h −Bt)(σm(x)T )−1h−1(Bt+h −Bt)) ,

D2
t,h,Σ,k(φ̃)(x) := h−1E

[
φ̃(Bt+h −Bt)PΣ,k(h

−1/2(Bt+h −Bt))
]
,

and :
Gm,u

1 (x, r, p) = (bmu (x)− bm(x)) · p+ cmu (x)r + fmu (x).

Then we have

Tmt,h[φ](x) = Gmt,h,x(φ̃mt,h,x) , (4.8)

with φ̃mt,h,x and Smt,h as in (4.3d) and (4.3c).
Using the same arguments as for Lemma 3.1.5 and Lemma 3.1.6, one can obtain the

stronger property that for h ≤ h0, all the operators Gmt,h,x belong to the class of monotone
additively αh-subhomogeneous operators from D to R if the conditions of these lemma are
satisfied. This allows us to apply Theorem 4.1 and thus have the following result.
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Theorem 4.2 ([1, Theorem 2], compare with [54, Theorem 5.1]). Consider the control prob-
lem equivalent to the Hamilton-Jacobi-Bellman equation (4.1). Assume that U = Rp and
that for each m ∈ M , cmu and amu are constant, amu is nonsingular, bmu is affine with respect
to (x, u), fmu is quadratic with respect to (x, u) and strictly concave with respect to u, and
that Ψ is the supremum of a finite number of quadratic forms. Consider the scheme (3.21),
with T0

k,h as in (4.6) and let Gmt,h,x be as in (4.7). Assume that σm constant and nonsingu-
lar, Σm

u constant and nonsingular and bm affine. Assume that D is the set of functions with
at most quadratic growth. Assume that the operators Gmt,h,x belong to the class of monotone
additively αh-subhomogeneous operators from D to R, for some constant αh = 1 + Ch with
C ≥ 0. Assume also that the value function W h of (3.21) belongs to D and is locally Lip-
schitz continuous with respect to x. Then, for all t ∈ Th, there exists a set Zt and a map
gt : Rd × Zt → R such that for all z ∈ Zt, gt(·, z) is a quadratic form and

W h(t, x) = sup
z∈Zt

gt(x, z) . (4.9)

Moreover, the sets Zt satisfy Zt = M × {z̄t+h : W → Zt+h | Borel measurable}.

Theorem 4.2 uses the following property which was stated in [1, Lemma 3] without proof,
and without the upper bound assumption mentioned in it. We give here the proof of the
lemma.

Lemma 4.3 (Compare with [1, Lemma 3]). Let us consider the notations and assumptions of
Theorem 4.2. Let z̃ be a measurable function from W to Qd and let q̃x denotes the measurable
map W → R, w 7→ q(Smt,h(x,w), z̃(w)), with q as in (4.5). Assume that there exists z̄ ∈ Qd

such that q(x, z̃(w)) ≤ q(x, z̄) for all x ∈ Rd, and almost all w ∈ W , and that q̃x belongs to
D , for all x ∈ Rd. Then, the function x 7→ Gmt,h,x(q̃x) is a quadratic function that is, it can be
written as q(x, Z) for some Z ∈ Qd.

Proof. Since Smt,h is linear with respect to x, q̃x(w) is a quadratic function of x the coeffi-
cients of which depend on w. Then, due to the assumptions that σm and Σm

u are constant
and nonsingular, we get that Di

t,h,m,x(q̃x) with i = 0, 1, and D2
t,h,Σmu (x),k(q̃x) are quadratic

functions of x. Let Gm,ut,h,x(φ̃) denotes the expression in (4.7c) without the maximization in

u. We get that Gm,ut,h,x(q̃x) is of the form K(x, u) + (Ax + Bu) · D1
t,h,m,x(q̃x), where K is a

quadratic function of (x, u), strictly concave with respect to u and A and B are matrices.
This also holds if we replace z̃(w) by z̄, that is if we replace q̃x by Q̃mt,h,x : w 7→ q(Smt,h(x,w), z̄)

with Q(x) = q(x, z̄). However in that case, since Q is deterministic, D1
t,h,m,x(Q̃mt,h,x) =

D1
t,h,m(Q)(x) = E(DQ(Smt,h(x,Bt+h−Bt))) which is an affine function of x, since DQ is affine.

Therefore Gm,ut,h,x(Q̃mt,h,x) is a quadratic function of (x, u), strictly concave with respect to u,
so its maximum over u ∈ U is a quadratic function of x, that we shall denote by P (x).

SinceGmt,h,x is assumed to be monotone from D to R, we get thatGmt,h,x(q̃x) ≤ Gmt,h,x(Q̃mt,h,x) =

P (x). Therefore for all x ∈ Rd and u ∈ U = Rp, we obtain that K(x, u) + (Ax + Bu) ·
D1
t,h,m,x(q̃x) = Gm,ut,h,x(q̃x) ≤ P (x). So (Ax + Bu) · D1

t,h,m,x(q̃x) is a polynomial of degree at
most 3 in the variables x1, . . . , xd, u1, . . . , up upper bounded by a polynomial of degree at
most 2. Taking the limit when the xi and uj go to ±∞, we deduce that all the monomials of
degree 3 have zero as coefficients, so that (Ax+ Bu) ·D1

t,h,m,x(q̃x) is a quadratic function of

(x, u). D1
t,h,m,x(q̃x) does not depend on u. So (Ax + Bu) ·D1

t,h,m,x(q̃x) is linear in u. Hence,

Gm,ut,h,x(q̃x) is a quadratic function of (x, u), strictly concave with respect to u, which implies
that its maximum over u ∈ U , Gmt,h,x(q̃x), is a quadratic function of x.
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Proof of Theorem 4.2. Lemma 4.3 shows in particular the property that each operator Tmt,h
such that Tmt,h[φ](x) = Gmt,h,x(φ̃mt,h,x) with Gmt,h,x as in (4.7c), sends a deterministic quadratic
form into a quadratic form. Since for any finite number of quadratic forms, there exists a
quadratic form which dominate them, the assumptions of Theorem 4.2 imply that Ψ and then
all the functions W h(t, ·) are upper bounded by a quadratic form (recall that M is a finite
set). Then, applying Theorem 4.1 to the maps W h(t, ·) and using Lemma 4.3, we get the
representation formula (4.9).

In Theorem 4.2, as in [54, 44, Theorem 5.1], the sets Zt are infinite for t < T . If the
Brownian process is discretized in space, the set W can be replaced by a finite subset, and
the sets Zt become finite. Nevertheless, their cardinality increases at each time step as
#Zt = #M × (#Zt+h)p where p is the cardinality of the discretization of W . Then, if all
the quadratic functions generated in this way were different, we would obtain that #Z0 =
#M−1/(p−1)×(#M 1/(p−1)#ZT )p

T/h
is doubly exponential with respect to the number of time

discretization points and more than exponential with respect to p. Since the Brownian process
is d-dimensional, one may need to discretize it with a number p of values which is exponential
in the dimension d. Hence, the computational time of the resulting method would be worst
than the one of a usual grid discretization. In [54], McEneaney, Kaise and Han proposed to
apply a pruning method at each time step t ∈ Th to reduce the cardinality of Zt. For this,
they assume already that the function W h is represented as the supremum of the quadratic
functions parameterized by a finite set Zt of Qd. They show that pruning (that is eliminating
elements of Zt) is optimal if one looks for a subset of Qd with given size representing W h as
the supremum of the corresponding quadratic functions with a minimal measure of the error.
There, the measure of the error is the maximum of the integral of the difference of functions
with respect to any probabilistic measure on Rd. Then, restricting the set of probabilistic
measures to the set of normal distributions, they propose to use LMI techniques to find
the elements of Zt that can be eliminated. However, whatever the number N of quadratic
functions used at the end to represent W h at each time step is, the computational time of
the pruning method is at least in the order of the cardinal of the initial set Zt. Hence, if Zt
is computed as above using a discretization of the Brownian process and the representation
of W h at time t + h already uses N quadratic forms, then #Zt = #M × Np, so that it
is exponential with respect to p and can then be doubly exponential with respect to the
dimension d.

In [1], we proposed to compute the expression of the maps W h(t, ·) as a maximum of
quadratic forms by using simulations of the processes X̂m. These simulations are not only
used for regression estimations of conditional expectations, which are computed there only in
the case of random quadratic forms, leading to quadratic forms, but they are also used to fix
the “discretization points” x at which the optimal quadratic forms in the expression (4.9) are
computed. We will explicitly give the algorithm in Section 4.2 but first let us make the same
analysis as above in the upwind large stencil probabilistic scheme setting.

4.1.2 Method in the upwind large stencil probabilistic scheme setting

By the same reasoning as in the previous subsection, the following version of the upwind large
stencil probabilistic scheme operator T1

k,h can be used to solve PDE (4.1).

T1
k,h[Φ](t, x) = max

m∈M
T1,m
k,h [Φ](t, x),
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with :

T1,m
k,h [Φ](t, x) := sup

u∈U

E
[
Φ(X̂t,x,m

h )TNk,h,m,u,B(t, x)
]

+ hfmu (x)

TDh,m,u,B(t, x)

 ,

where :

TDh,m,u,B(t, x) := 1 + hE
[
P1
gmu (x)(h

−1Bt
h)
]
− hcmu (x),

and

TNk,h,m,u,B(t, x) := 1 + P2
Σmu (x),k(h

−1/2Bt
h) + hP1

gmu (t,x)(h
−1Bt

h),

Σm
u and gmu being such that :

(amu − σm(σm)ᵀ)(t, x) = (σmΣm
u (Σm

u )ᵀ(σm)ᵀ)(t, x), (4.10)

(bmu − bm)(t, x) = σ(t, x)gmu (t, x), (4.11)

P1
g and P2

Σ,k being defined as in (3.12) and (3.8) and X̂t,x,m
h := x+ bm(x)h+ σm(x)Bt

h.
As in the previous subsection, we define some operators by considering for a continuous

function φ : Rd → R, x 7→ φ(x) :

Tt,h[φ](x) = T1
k,h[φ](t, x), (4.12a)

Tmt,h[φ](x) = T1,m
k,h [φ](t, x). (4.12b)

Let Gmt,h,x be given by

Gmt,h,x(φ̃) = sup
u∈U

GNt,h,x,m,u(φ̃)

TDh,m,u,B(x)
, (4.13)

with

GNt,h,x,m,u(φ̃) = D0
t,h(φ̃) + h

{
fmu (x) +D1

t,h,gmu (x)(φ̃) +D2
t,h,Σmu (x),k(φ̃)

}
, (4.14)

where

D0
t,h(φ̃) = E(φ̃(Bt+h −Bt)) ,

D1
t,h,g(φ̃) = E(φ̃(Bt+h −Bt)P1

g (h−1(Bt+h −Bt)) ,

D2
t,h,Σ,k(φ̃)(x) := h−1E

[
φ̃(Bt+h −Bt)P2

Σ,k(h
−1/2(Bt+h −Bt))

]
.

Then, we have :

Tmt,h[φ](x) = Gmt,h,x(φ̃mt,h,x) , (4.15)

with φ̃mt,h,x and Smt,h as in (4.3d) and (4.3c).
Using the same arguments as for Lemma 3.1.11 and Lemma 3.1.12, one can obtain the

property that for h ≤ h0, all the operators Gmt,h,x belong to the class of monotone additively
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αh-subhomogeneous operators from D to R if the conditions of these lemma are satisfied. This
allows us to apply Theorem 4.1. However, we do not have a result similar to Theorem 4.2
here as in this case, the expressions g+ and g− in the value of D1

t,h,g(φ̃) prevent the operator
Gmt,h,x from sending a convex random quadratic form that is upper bounded by a deterministic
quadratic form into a quadratic form.

Despite this fact, one can still obtain the following result.

Theorem 4.1.1. Let us consider the notations and assumptions of Theorem 4.2, except that
T0
k,h is replaced by the operator T1

k,h. Let us use the notations and properties of (4.12)
and (4.13). Let z̄ be a measurable function from W to Qd and Z ∈ Qd be such that
q(x, z̄(W )) ≤ q(x, Z) for all x ∈ Rd and w ∈ W , where q is as in (4.5). Let q̃x be the map
W → R, w 7→ q(Smt,h(x,w), z̄(w)), Then, the function q̄ : x 7→ Gmt,x,h(q̃x) is upper bounded by
a quadratic map. The same property holds for lower bounds.

Moreover, there exists C > 0, independent of h such that if the map z̄ is constant, that
is deterministic, and ‖z̄‖ ≤ K for some norm on Qd. Then, there exists z ∈ Qd such that
‖z − z̄‖ ≤ C(K + 1)2h and

|q̄(x)− q(x, z)| ≤ C(K + 1)3h3/2(|x|2 + 1)3/2, for all x ∈ Rd .

Proof. Let T̃t,h and T̃mt,h, G̃mt,h,x denote respectively the operators Tt,h, Tmt,h and Gmt,h,x defined
in (4.7). The notations Tt,h, Tmt,h and Gmt,h,x will then refer to Definition (4.12). We introduce

G̃t,h,x,m,u and D̃1
t,h,g such that :

G̃mt,h,x(φ̃) = max
u∈U

G̃t,h,x,m,u(φ̃) , (4.16)

G̃t,h,x,m,u(φ̃) = D0
t,h(φ̃)(1 + cmu (x)h)

+h
{
fmu (x) + D̃1

t,h,gmu (x)(φ̃) +D2
t,h,Σmu (x),k(φ̃)

}
, (4.17)

D̃1
t,h,g(φ̃) = E(φ̃(Bt+h −Bt)g · (h−1(Bt+h −Bt)) .

Let z̄ be a measurable function from W to Qd and Z ∈ Qd be such that q(x, z̄(w)) ≤ q(x, Z)
for all x ∈ Rd and w ∈ W , where q is as in (4.5). Consider the map φ(x) = q(x, Z). It
satisfies −CK(1 + |x|2) ≤ φ(x) ≤ CK(1 + |x|2) as soon as ‖Z‖ ≤ K. Here and below ‖ · ‖
denotes a norm on Qd and C is any positive constant independent of h ≤ 1. Since Gmt,h,x
is monotone, we get that q̄(x) ≤ Gmt,h,x(φ̃mt,h,x) = Tmt,h(φ)(x) and a similar result holds for a
lower bound. Due to the assumptions on the parameters of the problem, it is easy to show
that for any (deterministic) quadratic form, T̃mt,h(φ) is a quadratic form. Hence, to obtain
the two assertions of the theorem, it is sufficient to show that, for any quadratic form φ with
norm K, Tmt,h(φ) is bounded above and below by quadratic forms, the norm of which depend

on K, T̃mt,h(φ) is a quadratic form such that the norm of its difference with φ is bounded by

C(K + 1)2h, and that we have

|Tmt,h(φ)(x)− T̃mt,h(φ)(x)| ≤ C(K + 1)3h3/2(|x|2 + 1)3/2, for all x ∈ Rd .

Using that P1
g (w) = g · w + |g| · (|w| − E(|w|) + |g| · E(|w|), we deduce

GNt,h,x,m,u(φ̃)

TDh,m,u,B(x)
−D0

t,h(φ̃) =
G̃t,h,x,m,u(φ̃)−D0

t,h(φ̃) +Rt,h,gmu (x)(φ̃)

TDh,m,u,B(x)
, (4.18)
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where

Rt,h,g(φ̃) = E
[
φ̃(Bt

h)|g| · (|Bt
h| − E(|Bt

h|))
]

with Bt
h = Bt+h −Bt ,

and |Bt
h| representing the absolute value term by term of Bt

h.
Due to the assumptions on the coefficients and on the scheme, Smt,h(x,w) is affine with

respect to (x,w), (x, u) 7→ Σm
u (x) is constant and nonsingular, (x, u) 7→ gmu (x) is affine in

(x, u), and (x, u) 7→ cmu (x) is constant. Hence the map φ̃mt,h,x(w) is a quadratic function

of (x,w). Applying expectations with appropriate factors, we obtain that D0
t,h(φ̃mt,h,x) is a

quadratic form, such that the norm of D0
t,h(φ̃mt,h,x) − φ(x) is bounded by CKh, and that

D2
t,h,Σmu (x),k(φ̃

m
t,h,x) is a constant (in x and u) which can be bounded by CK.

Since the coordinates of Bt
h are independent and with zero expectation, we also get that

the first order term D̃1
t,h,gm(x,u)(φ̃

m
t,h,x) in (4.17) is equal to the scalar product of gmu (x), which

is affine in (x, u), with an affine function of x, the norm of which is bounded by CK. We
deduce that

G̃t,h,x,m,u(φ̃mt,h,x)−D0
t,h(φ̃mt,h,x) = h(fmu (x) + Ψ(x, u)) , (4.19)

where Ψ is quadratic in x and u with second order derivatives in u equal to 0, with a norm
bounded by CK and that D0

t,h(φ̃mt,h,x) is quadratic in x, and that their norms are bounded
by CK. Taking the supremum with respect to u in the previous expression, we deduce that
T̃mt,h(φ) = G̃mt,h,x(φ̃mt,h,x) is quadratic in x, and that the norm of its difference with φ is bounded

by C(K + 1)2h.
Since gm : (x, u) 7→ gmu (x) has linear growth,

|Rt,h,gmu (x)(φ̃
m
t,h,x)| ≤ C(1 + |u|+ |x|)‖E

[
φ̃mt,h,x(Bt

h)(|Bt
h| − E(|Bt

h|))
]
‖.

Again due to the properties of φ̃mt,h,x and Bt
h, we get that the second factor in the former

inequality is constant and is bounded by CKh3/2.
All together, we deduce that

GNt,h,x,m,u(φ̃mt,h,x)

TDh,m,u,B(x)
−D0

t,h(φ̃mt,h,x) ≤ h(fmu (x) + Ψ(x, u)) + CKh3/2(1 + |u|+ |x|)
TDh,m,u,B(x)

.

Then, using CKh1/2|u| ≤ |u|2ε/2 + C2K2h/(2ε), for ε > 0 small enough, and similarly for
|x|, and using that TDh,m,u,B(x) ≥ 1 − hcmu (x) ≥ 1/2 for h small enough, we deduce that the
right hand side of the above inequality is bounded above by a quadratic form in x, so does
the supremum with respect to u of the left hand side. Since D0

t,h(φ̃mt,h,x) is a quadratic form,

we deduce that Gmt,h,x(φ̃mt,h,x) = Tmt,h(φ)(x) is bounded above by a quadratic form. Moreover

the norm of this quadratic form is bounded by K + C(K + 1)2h. A similar lower bound can
be obtained.

To obtain the second assertion of the lemma, we shall now use the following equation

GNt,h,x,m,u(φ̃)

TDh,m,u,B(x)
− G̃mt,h,x(φ̃) =

G̃t,h,x,m,u(φ̃)− G̃mt,h,x(φ̃) + R̃t,h,gmu (x)(φ̃)

TDh,m,u,B(x)
, (4.20)

where

R̃t,h,gmu (x)(φ̃) = (D0
t,h(φ̃)− G̃mt,h,x(φ̃))(TDh,m,u,B(x)− 1) +Rt,h,gmu (x)(φ̃) .
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Using (4.19), we get that for φ̃ = φ̃mt,h,x, G̃t,h,x,m,u(φ̃)−G̃mt,h,x(φ̃) can be written in the form

−h(u−L(x))TQ(u−L(x)) where L is affine with a norm bounded by CK and Q is a positive
definite matrix, independent of K, so there exists β > 0 such that this expression is bounded
above by −βh|u−L(x)|2. Using (4.19) again, we obtain that D0

t,h(φ̃)−G̃mt,h,x(φ̃) is a quadratic

form, the norm of which is bounded by C(K + 1)2h. Moreover, TDh,m,u,B(x)− 1 = −cmu (x)h+

C
√
h|gmu (x)| for some norm (the 1-norm) on Rd and |Rt,h,gmu (x)(φ̃)| ≤ CKh3/2|gmu (x)|. We

deduce that |R̃t,h,gmu (x)(φ̃)| ≤ Ch2(K + 1)2(1 + |x|2) +C(K + 1)2h3/2(1 + |x|2)|gmu (x)|. Then,

using that TDt,h,m,u(x) ≥ 1+δmh ≥ 1/2 for h small enough, and that y 7→ y/(a+y) is increasing
with respect to y > 0, for any a > 0, we obtain

|R̃t,h,gmu (x)(φ̃)|
TDh,m,u,B(x)

≤ Ch2(K + 1)2(1 + |x|2) +
C(K + 1)2h3/2(1 + |x|2)|gmu (x)|

1 + C
√
h|gmu (x)|

≤ Ch2(K + 1)2(1 + |x|2) +
C(K + 1)2h(1 + |x|2)A(x, u)

1 +A(x, u)

for any bound A(x, u) of h1/2|gmu (x)|. Since |gmu (x)| ≤ C(K+1)(1+|x|)+|u−L(x)|, we can take

A(x, u) = C(K+1)h1/2(1+|x|2)1/2+ ε
2C(K+1)2h(1+|x|2)

|u−L(x)|2+C(K+1)2h2(1+|x|2)
2ε for any ε >

0. Then, bounding above separatly the three terms of the sum in A(x, u)/(1+A(x, u)) by lower
bounding 1+A(x, u), and using the same upper boundA(x, u) of h1/2‖gmu (x)‖ in the expression
of the first summand in (4.20), and that G̃t,h,x,m,u(φ̃) − G̃mt,h,x(φ̃) ≤ −βh|u − L(x)|2 ≤ 0, we

deduce for ε = 2β h
C :

GNt,h,x,m,u(φ̃)

TDh,m,u,B(x)
− G̃mt,h,x(φ̃) ≤C(K + 1)3[h(1 + |x|2)]3/2 .

Then, taking the supremum over u, we obtain

Gmt,h,x(φ̃)− G̃mt,h,x(φ̃) ≤ C(K + 1)3[h(1 + |x|2)]3/2 .

For the reverse inequality, using that G̃t,h,x,m,u(φ̃) − G̃mt,h,x(φ̃) = 0 for u = L(x), and

applying the above bound of R̃t,h,gmu (x)(φ̃) to u = L(x), we get directly that

Gmt,h,x(φ̃)− G̃mt,h,x(φ̃) ≥ −C(K + 1)3[h(1 + |x|2)]3/2 .

If the last inequality of Lemma 4.1.1 were true for random maps z̄, then one may expect
to obtain Equation (4.9) of Theorem 4.2 up to an error in O(

√
h(1 +‖x‖2)3/2). Note that, for

this bound to be true, one would also need to show the following Lipschitz property for Tt,h:
if φ(x)− φ′(x) ≤ K(1 + ‖x‖2)3/2 for all x ∈ Rd, and φ and φ′ have a given quadratic growth,
then Tt,h(φ)(x)− Tt,h(φ′)(x) ≤ (1 + Ch)K(1 + ‖x‖2)3/2 for all x ∈ Rd.

4.2 Description of the algorithm and complexity

4.2.1 Description of the algorithm presented in [1]

Using the notations Tmt,h and Gmt,x,h introduced in the previous section whose meaning should
be understood depending on the scheme that is used, the first description of the max-plus
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probabilistic algorithm introduced in [1] was the following. (Some notations were introduced
in Section 3.1).

Algorithm 4.2.1.
Input: A constant ε giving the precision, and a 5-uple N = (Nin, Nrg, Nx, Nw, Nm) of integers
giving the sizes of the samples and the “method of sampling” Nm ∈ {1, . . . , 5} described
below. A finite subset ZT of Qd such that |Ψ(x) −maxz∈ZT q(x, z)| ≤ ε, for all x ∈ Rd, and
#ZT ≤M ×Nin, and the operators Tmt,h and Gmt,x,h.

Output: The subsets Zt of Qd, for t ∈ Th ∪ {T}, and the approximate value function W h,N :
(Th ∪ {T})× Rd → R.
• Initialization: Let X̂m(0) = X̂(0), for all m ∈M , where X̂(0) is random and independent
of the Brownian process. Consider a sample of (X̂(0), (Bt+h − Bt)t∈Th) of size Nin indexed

by ω ∈ ΩNin := {1, . . . , Nin}, and denote, for each t ∈ Th ∪ {T} and ω ∈ ΩNin, X̂m(t, ω) the
value of X̂m(t) induced by this sample and satisfying X̂m(t + h) := X̂m(t) + bm(X̂m(t))h +
σm(X̂m(t))(Bt+h−Bt). Define the function W h,N (T, ·) by W h,N (T, x) = maxz∈ZT q(x, z), for
x ∈ Rd, with q as in (4.5).
• For t = T − h, T − 2h, . . . , 0 apply the following 3 steps:

(1) For each ω ∈ ΩNin and m ∈ M , construct a sample (ω1, ω
′
1), . . . , (ωNrg , ω

′
Nrg

) of
elements of ΩNin ×ΩNin, using the method described below in item named ”Method Nm” and
using possibly the constants Nx and Nw. Induce the sample X̂m(t, ωi) (resp. (Bt+h−Bt)(ω′i))
for i ∈ ΩNrg of X̂m(t) (resp. Bt+h −Bt). Denote by W N

t ⊂ W the set of (Bt+h −Bt)(ω′i) for
i ∈ ΩNrg .

(2) For each ω ∈ ΩNin and m ∈M , construct zt ∈ Qd depending on ω and m as follows:
Let z̄t+h : W N

t → Zt+h ⊂ Qd be such that, for all i ∈ ΩNrg we have

W h,N (t+ h, Smt,h(X̂m(t, ω), (Bt+h −Bt)(ω′i)))

= q
(
Smt,h(X̂m(t, ω), (Bt+h −Bt)(ω′i)), z̄t+h((Bt+h −Bt)(ω′i))

)
.

Extend z̄t+h as a measurable map on W . Let q̃
m,z̄t+h
t,x,h be the map W → R, w 7→ q(x+bm(x)h+

σm(x)w, z̄t+h(w)). Compute an approximation of x 7→ Gmt,x,h(q̃
m,z̄t+h
t,x,h ) by a linear regression

estimation on the set of quadratic forms using the sample (X̂m(t, ωi), (Bt+h − Bt)(ω′i)), with

i ∈ ΩNrg . We obtain zt ∈ Qd such that q(x, zt) ' Gmt,x,h(q̃
m,z̄t+h
t,x,h ).

(3) Denote by Zt the set of all the zt ∈ Qd obtained in this way, and define the function
W h,N (t, ·) by :

W h,N (t, x) = max
z∈Zt

q(x, z) ∀x ∈ Rd .

Let us precise now the different choices Nm of the “method of sampling” used in the
algorithm:

• Method 1 : Assume Nrg = Nin and take ωi = ω′i = i for i ∈ ΩNrg , which means that
we take the initial sampling.

• Method 2 : Assume Nrg = Nx×Nw, with Nx ≤ Nin, and choose once for all ω ∈ ΩNin

and m ∈ M in the algorithm: a random sampling ωi,1, i = 1, . . . , Nx among the
elements of ΩNin and independently a random sampling ω′1,j j = 1, . . . , Nw among
the elements of ΩNin , then take the product of samplings, leading to (ωi,1, ω

′
1,j) for

i = 1, . . . , Nx and j = 1, . . . , Nw. Reindexing the sampling, we obtain (ωi, ω
′
i) for

i = 1, . . . , Nrg.
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• Method 3 : Do as in Method 2, but choose different samplings for each ω ∈ ΩNin and
m ∈M in the algorithm, independently.

• Method 4 : Assume Nrg = Nx ×Nw and Nw = Nin and do as in Method 2, but take
the fixed sampling ω′1,j = j instead of random sampling.

• Method 5 : Assume Nrg = N2
in and do as in Method 2, but take the fixed samplings

ωi,1 = i and ω′1,j = j instead of random samplings.

4.2.2 Complexity of the algorithm presented in [1]

Note that no computation is done at Step (3), which gives only a formula (or procedure) to be
able to compute the value function at each time step t and point x ∈ Rd as a function of the
sets Zt. This is what is done for instance to obtain plots. In particular, the algorithm only
stores the elements of Zt which are elements of Qd. It is easy to see that the sets Zt of the
above algorithm satisfy #Zt ≤M ×Nin for all t ∈ Th and Qd has dimension (d+ 1)(d+ 2)/2.
The memory space to store the value function at a time step is in the order M × Nin × d2,
so the maximum space complexity of the algorithm is O(M ×Nin × d2 × T/h). The number
of computations at each time step for the optimization (computation of the z̄t+h) will be
at most in the order of (M × Nin)2 × Nin in methods 1 and 5 and at most in the order of
(M ×Nin)2 ×Nw when using methods 2,3,4. Moreover, the number of computations at each
time step for the regression estimation will be at most in the order of M ×Nin ×Nrg so will
be dominated by the number of computations of the optimization step.

4.2.3 Description of the algorithm presented in [2]

A particular case of the algorithm described previously was presented in [2], where we added
the possibility of having the same operator L Xm

for different m, in which case we choose
to simulate the process X̂m only one time for each possible L Xm

. Then the number of
simulations and quadratic forms decreases. To formalize this, we considered in the algorithm
the projection map π which sends an element m of M to a particular element of its equivalence

class for the equivalence relation “m ∼ m′ if L Xm
= L Xm′

”. The algorithm is described in
the following.

Algorithm 4.2.2. Input: A constant ε giving the precision, a time step h and a horizon time
T such that T/h is an integer, a 3-uple N = (Nin, Nx, Nw) of integers giving the sizes of the
samples, such that Nx ≤ Nin, a subset M ⊂M and a projection map π : M →M . A finite
subset ZT of Qd such that |ψ(x)−maxz∈ZT q(x, z)| ≤ ε, for all x ∈ Rd, and #ZT ≤ #M×Nin.
The operators Tt,h, Smt,h and Gmt,x,h for t ∈ Th and m ∈ M , with L Xm

(and thus Smt,h)
depending only on π(m).

Output: The subsets Zt of Qd, for t ∈ Th ∪ {T}, and the approximate value function W h,N :
(Th ∪ {T})× Rd → R.

• Initialization: Let X̂m(0) = X̂(0), for all m ∈M , where X̂(0) is random and independent
of the Brownian process. Consider a sample of (X̂(0), (Bt+h−Bt)t∈Th) of size Nin indexed by

ω ∈ ΩNin := {1, . . . , Nin}, and denote, for each t ∈ Th∪{T}, ω ∈ ΩNin, and m ∈M , X̂m(t, ω)
the value of X̂m(t) induced by this sample satisfying (4.4). Define the function W h,N (T, ·) by
W h,N (T, x) = maxz∈ZT q(x, z), for x ∈ Rd, with q as in (4.5).

• For t = T − h, T − 2h, . . . , 0 apply the following 3 steps:
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(1) Choose a random sampling ωi,1, i = 1, . . . , Nx among the elements of ΩNin and inde-
pendently a random sampling ω′1,j j = 1, . . . , Nw among the elements of ΩNin, then take the
product of samplings, that is consider ω(i,j) = ωi,1 and ω′(i,j) = ω′1,j for all i and j, leading to

(ω`, ω
′
`) for ` ∈ ΩNrg := {1, . . . , Nx} × {1, . . . , Nw}.

Induce the sample X̂m(t, ω`) (resp. (Bt+h −Bt)(ω′`)) for ` ∈ ΩNrg of X̂m(t) with m ∈M
(resp. Bt+h −Bt). Denote by W N

t ⊂ W the set of (Bt+h −Bt)(ω′`) for ` ∈ ΩNrg .

(2) For each ω ∈ ΩNin and m ∈M , denote xt = X̂m(t, ω) and construct zt ∈ Qd depending
on ω and m as follows:

(a) Choose z̄t+h : W N
t → Zt+h ⊂ Qd such that, for all ` ∈ ΩNrg , we have

W h,N (t+ h, Smt,h(xt, (Bt+h −Bt)(ω′`)))
= q
(
Smt,h(xt, (Bt+h −Bt)(ω′`)), z̄t+h((Bt+h −Bt)(ω′`))

)
.

Extend z̄t+h as a measurable map from W to Qd. Let q̃t,h,x be the element of D given by
w ∈ W 7→ q(Smt,h(x,w), z̄t+h(w)).

(b) For each m̄ ∈M such that π(m̄) = m, compute an approximation of x 7→ Gm̄t,h,x(q̃t,h,x)

by a linear regression estimation on the set of quadratic forms using the sample (X̂m(t, ω`), (Bt+h−
Bt)(ω

′
`)), with ` ∈ ΩNrg , and denote by zm̄t ∈ Qd the parameter of the resulting quadratic form.

(c) Choose zt ∈ Qd optimal among the zm̄t ∈ Qd at the point xt, that is such that q(xt, zt) =
maxπ(m̄)=m q(xt, z

m̄
t ).

(3) Denote by Zt the set of all the zt ∈ Qd obtained in this way, and define the function
W h,N (t, ·) by :

W h,N (t, x) = max
z∈Zt

q(x, z) ∀x ∈ Rd .

The same algorithm has been given in [3].

4.2.4 Complexity of the algorithm presented in [2]

The same remark about the representation of W h,N that has been done in Section 4.2.2,
still holds here. Since Zt satisfy #Zt ≤ #M × Nin for all t ∈ Th, and Qd has dimension
(d+1)(d+2)/2, the memory space to store the value function at a time step is in the order of
#M×Nin×d2, so the maximum space complexity of the algorithm is O(#M×Nin×d2×T/h).
Before computing the value function, one need to store the values of all the processes, with a
memory space in O(#M×Nin×d×T/h). Moreover, the total number of computations at each
time step is in the order of (#M ×Nin)2×Nw×d2+#M ×Nin×(Nx×Nw×d2+Nx×d5+d6),
where the first term corresponds to step (a) and the second one to step (b). Note also that
Nx can be chosen to be in the order of a polynomial in d since the regression is done on the
set of quadratic forms, so in general the second term is negligible, and it is also worth to take
#M small.



CHAPTER 5
Numerical Results

We present in this chapter our numerical results that we group in two parts. The first
section present numerical results of the test of the different options of the new probabilistic
max-plus method described in Algorithm 4.2.1 when applied with the probabilistic scheme
of Fahim, Touzi and Warin. The second section presents numerical results of the test of
Algorithm 4.2.2 with the large stencil probabilistic scheme described in Section 3.1.2.a. In
all these tests, we are interested in finding the superhedging price of a basket option in an
uncertain correlation model. To test the new probabilistic max-plus method with the upwind
large stencil probabilistic scheme presented in Section 3.1.2.b, we looked at a problem of
dynamic optimization of a portfolio with transaction costs. However, the characteristics of
the problem (utility function) caused us important numerical problems which did not allow
us to obtain relevant results.
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5.1 Test of Algorithm 4.2.1 with the probabilistic scheme of [25]

To test our algorithm, we consider the problem of pricing and hedging an option with uncertain
volatility and two underlying processes, studied as an example in Section 3.2 of [45]. There
the method proposed is based on a regression on a process involving not only the state but
also the (discrete) control.

With the notations of Chapter 4, we consider the case where d = 2, M = {ρmin, ρmax}
with −1 ≤ ρmin, ρmax ≤ 1 , and there is no continuum control, so u is omitted. The dynamics
of the controlled processes are given, for all m ∈M , by bm = 0, and for ξ = (ξ1, ξ2) ∈ R2,

σm(ξ) =

[
σ1ξ1 0

σ2mξ2 σ2

√
1−m2ξ2

]

with σ1, σ2 > 0. The parameters of the overall functional payoff satisfy cm = 0, fm = 0, and,
for ξ = (ξ1, ξ2) ∈ R2,

Ψ(ξ) = (ξ1 − ξ2 −K1)+ − (ξ1 − ξ2 −K2)+

with x+ = max(x, 0), K1 < K2.

The two coordinates of the controlled process stay in R+, the set of positive real numbers.
To be in the conditions of Theorem 4.2, we approximate the function Ψ with a supremum of
a finite number of concave quadratic forms on a large subset of R2

+, typically on the subset of
ξ such that ξ1 − ξ2 ∈ [−100, 100]. Note that since the second derivative of Ψ is −∞ in some
points, it is not c-semiconvex for any c > 0 and bounded domain, so the approximation need
to use some quadratic forms with a large negative curvature, and so the algorithm proposed
in [54] may not work. The maps σm for m ∈M are not constant but they are linear. In this
setting, the conditions of Theorem 4.2 are not fully satisfied. However, as we are going to see,
we still obtain satisfactory results.

We take the same constants as in [45]: σ1 = 0.4, σ2 = 0.3, K1 = −5, K2 = 5, T = 0.25,
ρmin = −0.8, ρmax = 0.8. We fix the time discretization step to h = 0.01.

We first tested our algorithm in the case where M is the singleton {ρmin} or {ρmax},
which means that there is no action on the process, so that the true value function can
be computed analytically, and compared with the solution obtained by our algorithm. The
method Nm = 1 gives very bad results even at time T − h. The method Nm = 5 need too
much space and time even for Nin = 1000. In Table 5.1, we present for different values of
N = (Nin, Nrg, Nx, Nw, Nm), with Nm = 2, 3, 4, the norm of the error on the value function
at time t = 0 and states ξ2 = 50 and ξ1 ∈ [20, 80]. We see that the best method is the second
one, and that Method 3 gives very bad results. This may be explained by the introduction of
a bias due to the maximization of independent random variables. Note also that the errors
for Method 2 are comparable to the standard deviations obtained in [36] by Gobet, Lemor
and Warin in the case of similar option problems with a usual regression estimation of the
value function.

In view of these results, we present in Figure 5.1 the result obtained for the control problem
tested in [45], that is with M = {ρmin, ρmax}, and Nin = 1000, Nrg = Nx × Nw, Nx = 10,
Nw = 1000 and Nm = 2. The result is very similar to the one presented in [45].
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ρ Nin Nrg Nx Nw Nm e∞ e1

-0.8 1000 10000 10 1000 2 0.521 0.173

0.8 1000 10000 10 1000 2 0.157 0.074

-0.8 1000 1000 10 100 2 0.75 0.41

0.8 1000 1000 10 100 2 0.36 0.11

-0.8 1000 1000 10 100 3 3.48 1.92

0.8 1000 1000 10 100 3 3.05 0.81

-0.8 100 1000 10 100 2 1.95 0.46

0.8 100 1000 10 100 2 1.81 0.33

-0.8 100 10000 10 1000 2 2.09 0.53

0.8 100 10000 10 1000 2 1.79 0.36

-0.8 100 1000 10 100 4 2.15 0.55

0.8 100 1000 10 100 4 1.80 0.39

Table 5.1: Sup-norm and normalized `1 norm of the error, on the value function with constant
ρ, at time t = 0, and states ξ2 = 50 and ξ1 ∈ [20, 80], denoted e∞ and e1 resp.

Figure 5.1: Value function obtained at t = 0, and ξ2 = 50 as a function of ξ1 ∈ [20, 80]. Here
Nin = 1000, Nrg = Nx ×Nw, Nx = 10, Nw = 1000 and Nm = 2. In blue, ρ is constant equal
to −0.8, in green ρ is constant equal to 0.8, and in black ρ ∈ {−0.8, 0.8}.
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5.2 Test of Algorithm 4.2.2 with the probabilistic scheme of Sec-
tion 3.1.2.a

To illustrate our algorithm, we consider the problem of evaluating the superhedging price of
an option under uncertain correlation model with several underlying stocks (the number of
which determines the dimension of the problem), with changing sign cross gamma. As we saw
in the previous section, the case with two underlying stocks was studied first as an example in
Section 3.2 of [45], where the method proposed is based on a regression on a process involving
not only the state but also the (discrete) control. In the previous section, we presented our
algorithm tests with M = M on the same 2-dimensional example as [45]. Here we shall
consider the same example with M reduced to one element and then consider a similar one
with 5 stocks (so in dimension 5). Illustrations are obtained from a C++ implementation of
Algorithm 4.2.2, which can easily be adapted to any model.

With the notations of the introduction, the problem has no continuum control, so u is
omitted, and for all m ∈M , bm = 0 and cm = 0 = fm. So it reduces to maximize

J(t, x, µ) :=E [Ψ(ξT ) | ξt = x] .

The dynamics is given by dξi,s = σiξi,sdBi,s where the Bi are Brownians with uncertain cor-
relations: < dBi,s, dBj,s >= [µs]ijds with µs ∈ Cor, a subset of the set of positive symmetric
matrices with 1 on the diagonal. This is equivalent to the condition that

[σm(x)σm(x)T ]ij = σixiσjxjmij , for m ∈ Cor .

Here we assume that Cor is the convex hull of a finite set M . Since the Hamiltonian of the
problem is linear with respect to m, the maximum over Cor is the same as the maximum over
M , so we can assume that the correlations satisfy µs ∈M . We consider the following final
payoff:

Ψ(x) = Ψ1(max
i odd

xi − min
j even

xj), x ∈ Rd,

Ψ1(x) = (x−K1)+ − (x−K2)+, x ∈ R,
x+ = max(x, 0),

K1 < K2.

K2 − K1

K1 K2

Since Ψ1 is nondecreasing, we have Ψ(x) ≥ Ψ1(xi − xj), for all i odd and j even. Then,
we can lower bound the value function in dimension d by the application of the value function
of dimension 2 with volatilities (σi, σj) and set M = {−ρ, ρ} with ρ = max{mij ,m ∈ Cor}.
Indeed if we denote by v2

σi,σj the value function of the 2-dimensional problem with volatilities

σi, σj with M = {−ρ, ρ} and by v5
σ,Cor the value function of the 5-dimensional problem, then

v5
σ,Cor(t, x) ≥ supE [Ψ1((ξT )i, (ξT )j) | ξt = x]. Since this depends on (ξT )i, (ξT )j only and that

these processes do not depend on the other coordinates (ξT )k with k 6= i, j, we get that
v5
σ,Cor(t, x) ≥ v2

σi,σj ,ρ(t, xi, xj).
Note that all the coordinates of the controlled process stay in R+, the set of positive

real numbers. To be in the conditions of Theorem 4.2, we approximate the function Ψ1

with a supremum of a finite number of quadratic forms on a large subset of R, typically on
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[−1000, 1000], so that Ψ is approximated with a supremum of a finite number of quadratic
forms on the x ∈ Rd+ such that xi−xj ∈ [−1000, 1000]. Note that since the second derivative
of Ψ1 is −∞ in some points, it is not c-semiconvex for any c > 0 and bounded domain, so
the approximation need to use some quadratic forms with a large negative curvature, and so
we are not under the conditions of [54]. Moreover, since the state space is unbounded, one
cannot approximate Ψ as a supremum of a finite number of quadratic forms on all the state
space as assumed in Algorithm 4.2.2. However, due to stability considerations, the simulated
process stays with almost probability one in a ball around the initial point, so that one may
expect the value function to be well approximated in a bounded subset of Rd. The maps σm

for m ∈M are not constant but they are linear, and one can choose σ such that σ(x)−1σm(x)
is constant and b = 0, and get that the result of Theorem 4.2 still holds.

In the illustration below, we choose K1 = −5, K2 = 5, T = 0.25, the time step h = 0.01,
the volatilities σ1 = 0.4, σ2 = 0.3, σ3 = 0.2, σ4 = 0.3, σ5 = 0.4 and the following correlations
sets:

M = {m =
[

1 m12
m12 1

]
| m12 = ±ρ} for 2 stocks,

and

M = {m =

 1 m12 0 0 0
m12 1 0 0 0

0 0 1 0 0
0 0 0 1 m45
0 0 0 m45 1

 | m12 = ±ρ, m45 = ±ρ} for 5 stocks.

In dimension 2, we choose Nx = 10, Nw = 1000 and test several values of simulation
size Nin, and compare our results with the true solutions that can be computed analytically
when M is a singleton, see Figures 5.2 and 5.3. For ρ = 0 or ρ = 0.4, k = 0 is sufficient
in Lemma 3.1.5 (indeed the nonlinearity of the PDE F = 0 for ρ = 0, so there is no second
derivative to discretize), whereas for ρ = 0.8, one need to take k = 2 to obtain the mono-
tonicity of the scheme. This may explain why a greater sampling size Nin is needed to obtain
the convergence for ρ = 0.8.

In dimension 5, we choose Nx = 50, Nw = 1000 and Nin = 3000, and compare our
results with a lower bound obtained from the results in dimension 2, as explained above, see
Figure 5.4. Although, the lower bound appears to be above the value function computed
from the Hamilton-Jacobi-Bellman equation in dimension 5, the difference between the value
function and the lower bound is small and of the same amount as the difference observed in
Figure 5.3 between the value functions computed in dimension 2 with the simulation sizes
Nin = 2000 and Nin = 3000. This indicates that the size of the simulations Nin = 3000 is
not enough to attain the convergence of the approximation, although the results give already
the correct shape of the value function. Such a result would be difficult to obtain with
finite difference schemes, and at least will take much more memory space. For instance, the
computing time for one time step of a finite difference scheme on a regular grid over [0, 100]5

with 100 steps by coordinate is in 1010 and is thus comparable with the computing time of
Algorithm 4.2.2, N2

in×Nw×d2, with the above parameters, whereas the memory space needed
for the finite difference scheme at each time step is similar to the computing time and is thus
much larger than the one needed in Algorithm 4.2.2 (in Nin × d2 = 7.5 105).

The computation of the value function in dimension 5 took ' 19h with the C++ program
compiled with “OpenMP” on a 12 core Intel(R) Xeon(R) CPU E5 − 2667 - 2.90GHz with
192Go of RAM (each time iteration taking ' 2500s). The main part of the computation time
is taken by the optimization part (a) of Algorithm 4.2.2, with a time in O(N2

in×Nw×d2). The
bottleneck here is in the computation, for each given state x at time t + h, of the quadratic
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form which is maximal in the expression of W h,N (t+h, x). Therefore, a better understanding
of this maximization problem is necessary in order to decrease the total computing time. This
would allow us to obtain better approximations in dimension 5 in particular, and increase the
dimension with a small cost. Such an improvement is left for further work.
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Figure 5.2: Value function in dimension 2, for ρ = 0 on top, and ρ = 0.4 on bottom, at t = 0,
and x2 = 50 as a function of x1 − x2. Here Nin = 1000, 2000, or 3000, Nx = 10, Nw = 1000.
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Figure 5.3: Value function in dimension 2, for ρ = 0.8, at x2 = 50 as a function of x1 − x2

obtained with Nx = 10, Nw = 1000. On top, the value is shown at each time step multiple
of 0.05 and is obtained for Nin = 3000. On bottom, the value at time t = 0 is compared for
Nin = 1000, 2000 and 3000 and with the exact solution when M is a singleton.
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Figure 5.4: Value function for ρ = 0.8 in dimension 5, at x2 = x3 = x4 = x5 = 50 as a
function of x1 − x2. Here Nin = 3000, Nx = 50, Nw = 1000. On top, the value is shown at
each time step multiple of 0.05. On bottom, the value at time t = 0 is compared with a lower
bound obtained by using the results in dimension 2.
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Figure 5.5: Value function for ρ = 0.8 in dimension 5, at x2 = x3 = x4 = x5 = 50 as a
function of x1 − x2. On top, Nin = 3000 and 5000. On bottom, Nin = 3000, 5000 and 10000.
Nx = 50, Nw = 1000. The value is computed using an optimization algorithm for computing
z̄t+h.



Conclusion

We introduced new probabilistic schemes to solve Hamilton-Jacobi-Bellman equations in the
stochastic case which are monotone and can converge with less restrictions than those of
Fahim, Touzi and Warin in [25] and Guo, Zang and Zhuo in [40]. Indeed, the non linearity
of the PDE with respect to the second order derivative can be high and the only condition
is that the PDE is uniformly elliptic. We proved convergence and obtained error estimates
for PDE with bounded coefficients. What remains is to obtain same convergence results in
the case of PDE with unbounded coefficients. We think that error estimates can be obtained
using the same method as Assellaou, Bokanowski and Zidani in [5] as the solution of the
probabilistic scheme we considered for the unbounded setting is Lipschitz continuous. By
obtaining Lipschitz result on the viscosity solution of the PDE in the unbounded setting
given in Section 3.2 and then taking the same steps as in [5], convergence results and error
estimates can then be obtained. Before going this far, we have to notice that the method
of [5] allows already to improve the lower bound error estimate that we obtained with the
method of Barles and Jakobsen [7] in this manuscript for PDE with bounded coefficients. It
can also be generalized to a lot of other schemes where the solution of the scheme is Lipschitz
continuous.

The second new result of this work is the max-plus probabilistic method. We showed that
we have theoretical results which shows that the convergence of the method is justified at
least for one of the probabilistic scheme we presented here in the case of a linear quadratic
problem. However, a more precise result giving error estimates of the method with respect
to the number of simulations and the other algorithm variables is needed. Some numerical
tests have been performed but need to be extended to more difficult problems.

All these remarks are left for further work.
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Résumé : Les problèmes de contrôle stochas-
tique optimal à horizon fini forment une classe de
problèmes de contrôle optimal où interviennent des
processus stochastiques considérés sur un intervalle
de temps borné. Tout comme beaucoup de problème
de contrôle optimal, ces problèmes sont résolus
en utilisant le principe de la programmation dyna-
mique qui induit une équation aux dérivées partielles
(EDP) appelée équation d’Hamilton-Jacobi-Bellman.
Les méthodes basées sur la discrétisation de l’espace
sous forme de grille, les méthodes probabilistes ou
plus récemment les méthodes max-plus peuvent alors
être utilisées pour résoudre cette équation. Cepen-
dant, le premier type de méthode est mis en défaut
quand un espace à dimension grande est considéré
à cause de la malédiction de la dimension tandis que
le deuxième type de méthode ne permettait jusqu’ici
que de résoudre des problèmes où la non linéarité
de l’équation aux dérivées partielles par rapport à la
Hessienne n’est pas trop forte. Quant au troisième
type de méthode, il entraine une explosion de la
complexité de la fonction valeur. Nous introduisons

dans cette thèse deux nouveaux schémas probabi-
listes permettant d’agrandir la classe des problèmes
pouvant être résolus par les méthodes probabilistes.
L’une est adaptée aux EDP à coefficients bornés tan-
dis que l’autre peut être appliqué aux EDP à co-
efficients bornés ou non bornés. Nous prouvons la
convergence des deux schémas probabilistes et ob-
tenons des estimées de l’erreur de convergence dans
le cas d’EDP à coefficients bornés. Nous donnons
également quelques résultats sur le comportement
du deuxième schéma dans le cas d’EDP à coeffi-
cients non bornés. Ensuite, nous introduisons une
méthode complètement nouvelle pour résoudre les
problèmes de contrôle stochastique optimal à horizon
fini que nous appelons la méthode max-plus proba-
biliste. Elle permet d’utiliser le caractère non linéaire
des méthodes max-plus dans un contexte probabiliste
tout en contrôlant la complexité de la fonction valeur.
Une application au calcul du prix de sur-réplication
d’une option dans un modèle de corrélation incertaine
est donnée dans le cas d’un espace à dimension 2 et
5.

Title : Algorithms for solving stochastic control problems in high dimension by combining probabilistic and
max-plus methods

Keywords : Optimal control problems, Dynamic programming, Non linear partial differential equations of se-
cond order

Abstract : Stochastic optimal control problems with
finite horizon are a class of optimal control problems
where intervene stochastic processes in a bounded
time. As many optimal control problems, they are of-
ten solved using a dynamic programming approach
which results in a second order Partial Differential
Equation (PDE) called the Hamilton-Jacobi-Bellman
equation. Grid-based methods, probabilistic methods
or more recently max-plus methods can be used then
to solve this PDE. However, the first type of methods
default in a space of high dimension because of the
curse of dimensionality while the second type of me-
thods allowed till now to solve only problems where
the nonlinearity of the PDE with respect to the second
order derivatives is not very high. As for the third type
of method, it results in an explosion of the complexity
of the value function. We introduce two new proba-
bilistic schemes in order to enlarge the class of pro-

blems that can be solved with probabilistic methods.
One is adapted to PDE with bounded coefficients
while the other can be applied to PDE with bounded
or unbounded coefficients. We prove the convergence
of the two probabilistic scheme and obtain error esti-
mates in the case of a PDE with bounded coefficients.
We also give some results about the behavior of the
second probabilistic scheme in the case of a PDE
with unbounded coefficients. After that, we introduce a
completely new type of method to solve stochastic op-
timal control problems with finite horizon that we call
the max-plus probabilistic method. It allows to add the
non linearity feature of max-plus methods to a proba-
bilistic method while controlling the complexity of the
value function. An application to the computation of
the optimal super replication price of an option in an
uncertain correlation model is given in a 5 dimensio-
nal space.
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