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Résumé

Les plasmas de fusion par connement magnétique sont le siège d'instabilités qui développent des structures turbulentes d'échelles milli-à centi-métriques. Le transport qui en résulte contrôle le temps de connement de l'énergie et, in ne, les performances énergétiques. Dans les régimes de connement non améliorés, c'est une turbulence à l'échelle ionique qui domine ce transport. Cette turbulence est portée par les ions, mais également par une certaine classe d'électrons, ceux qui sont piégés dans les miroirs locaux du champ magnétique. Il est de fait important de prendre en compte leur dynamique, d'autant plus qu'ils sont également responsables du transport de matière. L'objectif de la thèse consiste à étudier l'impact des électrons d'une part, sur l'amortissement des "Geodesic Acoustic Modes" (GAM) d'une part, et sur la croissance linéaire des modes de turbulence "Ion Temperature Gradients" (ITG) et "Trapped Electron Modes" (TEM) d'autre part. Les GAMs sont des oscillations à la fréquence acoustique du potentiel électrique moyen sur les surfaces magnétiques. Ils interagissent de façon critique avec la micro-turbulence au travers notamment de leur couplage au mouvement des particules énergétiques du plasma. Les ITG et TEM représentent les 2 classes d'instabilités électrostatiques dominantes dans le c÷ur des plasmas de tokamak. Elles sont à ce titre supposées contrôler le transport turbulent de c÷ur. Cette étude est donc une étape préliminaire pour la prédiction du transport turbulent en prenant en compte l'inuence des électrons. Le cadre approprié pour décrire cette turbulence est la théorie dite "gyrocinétique", qui procède d'une réduction de l'espace des phases de 6 dimensions (6D) à 4D + 1 invariant par une moyenne sur le mouvement rapide cyclotronique. Le problème auto-consistant couple l'équation gyrocinétique pour chaque espèce (ions et électrons) aux équations de Maxwell. Le développement de ce modèle cinétique, construit comme une extension autonome du code Gysela dont la version de base donne une réponse adiabatique aux électrons, consiste à ajouter le traitement de la fonction de distribution des électrons.

Leur prise en compte est coûteuse du point de vue des ressources numériques. Trois stratégies sont envisagées pour réduire ce coût: (i) considérer des "électrons lourds", (ii) ltrer les électrons et ne retenir que ceux qui sont piégés, et (iii) adapter les coordonnées pour découpler les dynamiques parallèle (rapide) et transverse (lente) au champ magnétique.

Après une présentation du modèle gyrocinétique et des caractéristiques du code Gysela, nous présentons le modèle des électrons adiabatiques tel qu'il est implémenté dans Gysela et introduisons deux nouveaux modèles: le modèle "Full Kinetic Electrons" 9 CONTENTS dans lequel les électrons sont considérés comme une espèce cinétique et sont traités de la même façon que les ions et le modèle "Trapped Kinetic Electrons" dans lequel seuls les électrons piégés sont cinétiques, les électrons passants reçoivent quant à eux un traitement adiabatique. On constate que les électrons engendrent un sur-amortissement des GAM lié à une intéraction résonante entre la fréquence de rebond de certains électrons piégés et celle des GAMs. Cet amortissement dépend du rapport de masse électron-ion et évolue en (m i /m e ) -1/2 . Pour les simulations linéaires sur l'instabilité d'interchange, on retrouve que les modes ITG sont dominants sur les modes TEM pour des forts gradients de température ionique et vice versa, à prol de température électronique xé. Un accord satisfaisant est obtenu avec le code gyrocinétique GT5D dont les résultats viennent d'être publiés. Enn, nous proposons quelques méthodes pour construire des cas non linéaires qui permettront d'étudier l'inuence des électrons cinétiques sur le transport turbulent.

Abstract

Instabilities, within fusion plasmas by magnetic connement, develop turbulent structures with milli-centimetric scales. The resulting transport impacts the energy connement time and, ultimately, the energy performance. In unimproved connement regimes, ion-scale turbulence generally dominates this transport. This turbulence is carried by the ions, but also by a certain class of electrons, those trapped in the local mirrors of the magnetic eld. Taking into account their dynamics is important, especially since they are also responsible for particle transport. The aim of this thesis is to study the impact of electrons on the damping of "Geodesic Acoustic Modes" (GAM) on the one hand and the linear growth of the turbulence modes "Ion Temperature Gradients" (ITG) and "Trapped Electron Modes" (TEM) on the other hand. GAMs are oscillations at the acoustic frequency of the average electric potential on magnetic surfaces. They interact critically with micro-turbulence, particularly through their coupling to the motion of energetic particles in the plasma. ITG and TEM represent the 2 classes of dominant electrostatic instabilities in tokamak core plasmas. As such, they are supposed to control turbulent transport in the core. This study is therefore a preliminary step for the prediction of turbulent transport while taking into account the inuence of electrons.

The appropriate framework for describing this turbulence is the so-called "gyrokinetic" theory, which proceeds from a 6 dimensions (6D) to 4D + 1 phase space reduction invariant by an average of the fast cyclotron motion. The self-consistent problem couples the gyrokinetic equation for each species (ions and electrons) to the Maxwell equations.

The development of this kinetic model, built as an autonomous extension of the Gysela code whose basic version gives an adiabatic response to electrons, consists in adding the treatment of the electron distribution function. Taking kinetic electrons into account is costly numerically. Three strategies are envisaged to reduce this cost: (i) consider "heavy electrons", (ii) lter electrons so as to keep only the trapped ones, and (iii) adapt the coordinates to decouple the parallel dynamics (fast) and the transverse one (slow) to the magnetic eld.

After a presentation of both the gyrokinetic model and some characteristics of the Gysela code, we expose the adiabatic electrons model as it is implemented in Gysela and introduce two new models: the "Full Kinetic Electrons" model in which electrons are treated kinetically in the same way as the ions and the "Trapped Kinetic Electrons" model in which only the trapped electrons are kinetic, the passing electrons receiving an adiabatic treatment. It is found that electrons generate an over-damping of the GAM 11

Introduction

Making fusion by magnetic connement operable on an industrial scale requires that the power coming from the fusion reactions exceeds by a large amount the one needed to keep the fusion reactions alive (external heating of the plasma, power supply to generate the magnetic eld conguration). Self heating of the plasma, the so-called "ignition", requires that the heating power coming from the fusion-born α particles balances the power losses. These latter are governed by radiative processes (mainly synchrotron and Bremsstrahlung) and by heat transport across the insulating magnetic conguration. This ignition criterion described by J. D. Lawson [58, Lawson 1957] depends on several parameters of the plasma, including the density n and temperature T of the various species in presence as well as a parameter τ E called the energy connement time given by the ratio of the total thermal energy of the plasma divided by the lost power. This criterion of ignition comes down to the triple product which states (for T i ∈ [10 keV, 20 keV]): n T i τ E ≥ 3 . 10 21 keV.s.m -3

We want to know which of these parameters can be changed in order to satisfy this criterion.

• T i must be high enough for charged nuclei to overcome the Coulomb barrier, at least via the tunnel eect, hence allowing fusion reactions.

• n increases the number of fusion reactions but is limited in fusion reactors by macroscopic instabilities beyond a threshold density called the Greenwald density, which depends on the plasma current. [43, Greenwald 2002] • τ E is limited by the losses, including the transport of particles and energy from the core to the edge of the tokamak.

The transport limiting τ E tends to bring down the temperature of the centre, hence preventing the fusion reactions from taking place. An important part of the research eort is dedicated to increasing τ E . The energy connement time can be increased by improving the plasma connement, i.e. by reducing the level of matter and energy transport from the core to the edge of the tokamak. In the absence of perturbation on the electromagnetic eld, the question of particle trajectories in a tokamak is an axisymmetric problem. There are therefore three motion invariants and in this frame the particles are conned. However, the sources of particles and energy as well as the 13 CONTENTS high density and temperature gradients imply that the system is out of equilibrium. This generates instabilities as well as large particle and energy uxes, hence breaking the invariance of the system above a certain threshold. These uxes are dominated by two contributions:

• The neoclassical transport which accounts for the enhancement of collisional transport due to large scale particle trajectories in the toroidal magnetic conguration of controlled fusion devices. In the weak collisional regime which characterizes hot fusion plasmas, the neoclassical transport coecient scales as χ neo ∼ q 2 ε -3/2 χ coll where q stands for the safety factor and ε = r/R 0 stands for the inverse of the aspect ratio [28, Estève 2015]. Besides, a good estimation of the classical transport coecient is χ coll ∼ ρ 2 i ν coll with ρ i the ion Larmor radius and ν coll the collision frequency. For ITER, we have q 3 and ε 1/6 which leads to an increase of the magnitude of the transport coecient by a factor 100.

• The turbulent transport which is related to the uctuations of the electric potential. These uctuations break two invariants of motion: rst, the electric and magnetic elds E and B vary in time as well as the scalar and vector potentials φ and A. The energy is therefore not invariant in time. Second, uctuations break the axisymmetry of the tokamak, and consequently, the toroidal kinetic momentum is no more an invariant of the system.

The breaking of the three invariants results in a large transport 1 due in particular to the high density and temperature gradients within the tokamak: as an example, in Tore Supra, the temperature of the ions in the core plasma reaches a few keV. That corresponds to T core ∼ 150 MK and T edge ∼ 300 K in the edge of the plasma, the minor radius being equal to a = 0.7 m. It appears that the understanding of transport mechanisms, particularly turbulent transport is essential for controlled magnetic fusion.

It has been shown that electrons, and in particular those trapped in the magnetic conguration of the tokamak, can have a contribution to turbulent transport comparable to that of ions [60, 19, 77, 6, Liewer 1985[START_REF] Dannert | Gyrokinetic simulation of collisionless trappedelectron mode turbulence[END_REF][START_REF] Waltz | Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations[END_REF], ITER Physics Basis 2007]. The main objective of this thesis is to evaluate the impact of electrons on two tokamak modes, namely the Geodesic Acoustic Modes (GAM) and the Ion Temperature Gradient instability (ITG) which is driven by ion temperature gradients. In the latter case, we also see the transition where the electron modes become dominant, particularly the Trapped Electron Mode (TEM). This study is carried on in a gyrokinetic model describing each species using a distribution function dened on a 5D-space : 3 dimensions for position and 2 dimensions for velocity. The tool at our disposal for this study is the Gysela code which will be described further.

1 Especially the turbulent one which is much bigger than the neoclassical transport for standard scenarios where transport barriers are not taken into account Chapters 1 and 2 introduce the models of electrons used in this study:

In chapter 1, we rst introduce the tokamak magnetic geometry that we use in this

study. An overview of the particle trajectories is done in which we see that the helical motion of charged particles can be decomposed into three parts: one parallel to the magnetic eld and two transverse to the magnetic eld that result from the Laplace force applied to the charged particle. The rst transverse component is the cyclotron motion:

the charged particle turns around magnetic eld lines. The second transverse contribution results from the inhomogeneities of the magnetic eld, constraining the particle to drift from the magnetic eld lines. Besides it is seen that particles can be sorted into two classes regarding their trajectories : the trapped and passing particles. The orbit of trapped particles has the shape of a banana with a radial width which is large compared to the Larmor radius. Therefore this kind of particles is believed to play a major role in radial transport and some characteristics of trapped particles are recalled such as the bounce and precession motion. A brief description of the gyrokinetic model is then made and it is seen in this model how the equations of Vlasov and Poisson transform into the gyrokinetic and quasi-neutrality equations. The code Gysela describing this model is then presented. Gysela is a gyrokinetic, global, full-f , ux-driven code that considers a model with adiabatic electrons. It appears in particular that this code has many assets but requires huge numerical resources to launch long simulations. We see later that this point is critical when adding kinetic electrons. Eventually some basis of the gyrokinetic theory is presented and in particular, the notion of gyrocentre associated to a particle is dened. In particular, it is possible to decompose the particle density into two parts:

the density of gyrocentres which can be computed directly from the distribution function of gyrocentres and a residual called the polarisation density which is computed directly from the electric potential and is essential whenever one wants to write properly the quasi-neutrality equation.

In chapter 2, we expose the adiabatic electrons model as it is implemented in Gysela.

However, we see that this model does not take into account neither particle transport nor the inuence of electrons on turbulence. Therefore a new model is developed in which we introduce another distribution function to describe electrons kinetically. Nevertheless, such a description where both ions and electrons are kinetic requires to reduce the time step as well as the radial and poloidal steps by a factor (m i /m e ) 1/2 each. For deuterium ions, that means that a given simulation launched with kinetic electrons will be 3600 3/2 ∼ 10 5 times more costly than an equivalent simulation using the adiabatic electrons model. To reduce the cost of the full kinetic electron simulation, we arbitrarily reduce the mass ratio m i /m e . Doing so however, the kinetic behaviour of passing electrons is greatly modied from reality on the contrary to trapped electrons whose precession pulsation is independent from the mass ratio. Therefore to circumvent this problem, we introduce a third hybrid model where trapped electrons are treated kinetically and passing electrons are considered adiabatic. The three electron models are respectfully called the Adiabatic Electron, Full Kinetic Electron and Trapped Kinetic CONTENTS Electron models. Eventually, the theoretical form a pure density source would take with kinetic electrons is derived.

Chapters 3 and 4 tackle the impact of kinetic electrons on the plasma behaviour:

In chapter 3, the impact of kinetic electrons on Geodesic Acoustic Modes is studied. These modes are important for at least two reasons: rst, their evolution is studied in benchmarks. In our case, these tests were extended to kinetic electrons. Second, these modes play a role on turbulence and fast particles transport [17, 82, Conway 2011[START_REF] Zarzoso | Impact of energetic-particle-driven geodesic acoustic modes on turbulence[END_REF]]. We provide an analytical model in which we recover the dispersion relation of GAMs from the gyrokinetic and quasi-neutrality equations. From this equation, both the ion and electron contributions for the expression of the GAM pulsation and damping rate are derived and a comparison with numerical simulations then follows. It appears that the GAM pulsation is not modied much in the presence of kinetic electrons.

However, the GAM damping rate is tremendously increased for large values of the safety factor. This over-damping is due to a coupling between the bouncing modes of trapped electrons and the GAM, the former retrieving the energy stored in the latter. One important result is that the damping rate evolves with the mass ratio as (m i /m e ) -1/2 .

However, some problems have been encountered to predict analytically the correct scaling in safety factor and electron temperature of the GAM damping rate.

In chapter 4, the impact of kinetic electrons on the Ion Temperature Gradient (ITG)

and the Trapped Electron Modes (TEM) instabilities is exposed. First, the ITG and TEM are described as particular cases of the general drift wave and interchange mechanisms and the dispersion relation for both ITG and TEM is given. Second, linear numerical simulations are launched while keeping only one toroidal mode. In these simulations, the density and temperature gradients in the tokamak are set for both ions and electrons such that the ITG and TEM instabilities are triggered. Only the initial unstable phase where the toroidal modes of the electric potential grow exponentially is studied here. It is observed that whenever the ion temperature gradient is reduced while maintaining a xed electron temperature prole, the sign of the poloidal pulsation changes abruptly.

The sign of the poloidal pulsation being a signature of an ion or electron mode, the sign change means that we have found the transition between ITG and TEM modes. This result is conrmed by looking at the energy transfer between particles and the electric wave. We recover the fact that in a ITG-dominated regime, the instability is mostly fuelled by the ions of the plasma whereas in the case of a TEM-dominated regime, the electrons fuel the instability. Eventually, a case where several toroidal modes are kept is built for future turbulent transport studies. It is constructed as follows: rst, some modes are ltered to prevent the development of the so-called ω H mode. This mode is the low β response of the kinetic Alfvén wave and is a signature of an electrostatic model. It should not appear in an electromagnetic model and we prefer to remove it for its appearance is concomitant with a large spurious radial transport that is not physical.

Second, we use the aligned coordinate method thoroughly explained in [45, 57, Hariri 2013[START_REF] Latu | Field-aligned interpolation for semi-lagrangian gyrokinetic simulations[END_REF]] which consists in computing the plasma quantities along magnetic eld lines. The gradients in this direction being very small, it is possible to choose a very loose discretization in that direction, thus reducing the numerical cost. This will be crucial to carry out future non-linear simulations. Finally, we present the rst non-linear results obtained with kinetic electrons.

Chapter 1

Particle trajectories and gyrokinetic theory in a tokamak

The connement of the plasma requires the presence of a particular magnetic geometry provided by the tokamak coils and the plasma currents. This magnetic eld interacts with the charged particles. The resulting Laplace force prevents the particles from leaving the plasma box. Several machines have been developed, including the tokamak and the stellerator to achieve this [48, Helander 2012]. The purpose of this chapter is to describe the conguration of a tokamak of circular section like Tore Supra and to derive the resulting motion of the charged particles of the plasma.

First, we describe the geometry of the magnetic eld imposed by such a tokamak and we see that the plasma in this conguration remains close to a tokamak equilibrium in which uid quantities are homogeneous on every ux surface. Subsequently, we show that the motion of the charged particles immersed in such a eld can be decomposed into a motion parallel to the eld lines, a cyclotron rotation around these, and a perpendicular drift motion which slightly shifts the orbits of the particles from their associated ux surface. We then introduce the gyrokinetic model which allows one to reduce the studied phase space from 6 dimensions (3 of space, 3 of velocity) to 5 dimensions. This reduces the numerical cost of the simulations. In this model, we study a new physical object, the gyrocentre, which is obtained by decoupling the fast gyromotion of particles from the slow perpendicular motion of gyrocentres. Finally, it can be seen that the densities of particles and gyrocentres are not equal, their dierence being the polarization density. [START_REF] Dannert | Gyrokinetic simulation of collisionless trappedelectron mode turbulence[END_REF] 1

.1 Tokamak conguration

In this work, we study a tokamak with the shape of a torus of circular section, characterized by a major radius R 0 and a minor radius a. We dene the inverse of the aspect ratio as ε 0 = a/R 0 . The toroidal direction is dened as the blue one on Fig. 1.1, and the poloidal direction as the red one. We rst introduce the set of torus coordinates to describe the tokamak geometry and the set of canonical coordinates which is adapted to describe the geometry of the magnetic eld. Secondly, we give the expression of the magnetic eld in the canonical coordinates and then an approximated expression in the torus coordinates. The geometry of magnetic eld as well as the set of coordinates used in tokamaks are well described in [47, Hazeltine 2003].

Figure 1.1: Poloidal (in red) and toroidal (in blue) angles (resp. θ and ϕ) and the torus coordinates (r, θ, ϕ).

Torus and canonical coordinates

The torus coordinates are dened as the set of the three coordinates (r, θ, ϕ) shown on • First, the magnetic eld B wraps around the magnetic surfaces of constant poloidal ux Φ P . The coordinate x 1 is taken as a surface label. We choose x 1 = ψ ≡ Φ P /2π. • Due to the axisymmetry of the problem around the tokamak axis 1 , we choose x 3 = ϕ the geometric toroidal angle2 .

• We choose the last coordinate x 2 = θ * called the intrinsic angle and dened so that in the set of canonical coordinates (ψ, θ * , ϕ) the magnetic eld lines are represented within each ux surface ψ = cst by straight lines (shown on Fig. Here the safety factor q depends on ψ only and characterizes the helicity of the magnetic eld lines. It should be noted that condition (1.1) fully determines the angle θ * once the coordinates ψ, ϕ are set.

We introduce the contravariant base (∇ψ, ∇θ * , ∇ϕ) associated with the canonical coordinates (ψ, θ * , ϕ) 3 . A derivation to express the intrinsic angle θ * from the poloidal angle θ is made in Appendix A.1. This set of coordinates is well adapted to express the magnetic eld rigorously. In this coordinate system, the local helicity of the magnetic eld lines is larger (q loc is weaker) on the low eld side than on the high eld side (because B ∝ 1/R).

As a result, the θ * coordinate has more grid points (for a given ∆ϕ) on the high eld side than on the low eld side (see Fig. 1.4). However, as the turbulence is ballooned, we look for a high number of grid points in the low eld side, i.e. the opposite. This is why it is ultimately not this coordinate system that has been retained in Gysela.

Geometry of the magnetic eld

The currents in the poloidal coils and in the plasma induce a potential vector which can be written as:

A = 1 2π [Φ P e ϕ + Φ T e θ ] (1.2) 
where Φ P and Φ T correspond respectively to the poloidal and toroidal magnetic uxes.

The corresponding magnetic eld can be written in the form:

B = I(ψ)∇ϕ + ∇ϕ ∧ ∇ψ (1.3)
where I(ψ) = (R/2π) ∇θ * ∧ ∇Φ T is a function of ψ only, with ψ = Φ P /2π.

It is useful to have an expression of the magnetic eld in the torus coordinates (r, θ, ϕ).

In this model, we make the hypothesis that the magnetic ux surfaces are nested concentric tori with circular section. This means that r can be taken as a magnetic surface label. The magnetic eld lines wrap around these tori and can be decomposed into a toroidal eld B ϕ , and a poloidal eld B θ .

B = B θ e θ + B ϕ e ϕ (1.4)
where we have introduced (e r , e θ , e ϕ ) a normalized basis of the torus coordinates. We make here the approximation θ * θ so that:

q(r) dϕ dθ F L = B.∇ϕ B.∇θ = rB ϕ RB θ (1.5)
This approximation holds in the limit ε = r/R 0 → 0. Ampère's law used on a toroidal circle states that:

B ϕ .R = B 0 .R 0 = µ 0 I 0 (1.6)
where B 0 is the toroidal magnetic eld at R = R 0 and I 0 is the total current in the poloidal coils. From equations (1.5) and (1.6) the expressions of the toroidal and poloidal magnetic elds are easily obtained and it comes:

B = B 0 R 0 R r qR e θ + e ϕ (1.7)
In the whole manuscript, we place ourselves in this last model and use the torus coordinates.

Particle trajectories

The theory of orbits in tokamaks has been widely discussed in several books and articles ([55, 61, 68, 72, Kruskal 1958[START_REF] Robert | Variational principles of guiding centre motion[END_REF][START_REF] Rax | Physique des Tokamaks[END_REF][START_REF] Sarazin | Cours de Master 2 -Turbulence et Transport[END_REF]). First, the trajectories of charged particles are presented, based on the derivation in [72, Sarazin 2013].

Second, we introduce the angle-action set of variables which is well suited to describe the motion of these particles. Finally, some important characteristics of a particular class of particles, those trapped in the magnetic well present in the parallel direction, are derived.

Derivation of particle velocity

In the presence of an electromagnetic eld (E, B) a particle of charge e and mass m follows the equation of Newton:

m dv dt (x, t) = e (E(x, t) + v(x, t) ∧ B(x, t)) (1.8)
where x(t) stands for the position of the particle at time t. It is useful to decompose the magnetic eld as B(x, t) = B + B(x, t). We have B = J • B, where J stands for the gyroaverage operator dened in Eq. (1.58). This term is replaced at order 0 in (ρ c /R) 2 by the magnetic eld B(x GC , t) evaluated at the position of the guiding centre. Within the adiabatic theory, this perturbation remains small compared to B(x GC , t).

The perpendicular dynamics is dominated by a helical trajectory around the magnetic eld lines called the cyclotron motion which is characterized by a pulsation ω c , the cyclotron pulsation, and a perpendicular radius ρ c , the Larmor radius. The adiabatic theory is veried only if two conditions are satised:

• Temporal condition: The magnetic eld or the cyclotron frequency ω c remains fairly constant during the cyclotron period τ c i.e. the variation of ω c over the duration τ c of a complete cyclotron turn is very small compared to ω c :

τ c dω c dt ω c ⇔ 1 ω c dω c dt ω c ⇔ d ln(ω c ) dt ω c ⇔ d ln(B) dt ω c (1.9)
• Spatial condition: The value of the magnetic eld seen by a particle remains almost the same on a cyclotron turn i.e. the Larmor radius ρ c is very small compared to the characteristic length of variation of the magnetic eld L ∇B :

ρ c L ∇B ⇔ ρ c ∇B B 1 ⇔ ρ c ∇ ln B 1 (1.10)
These conditions are satised for strongly magnetized systems, such as the tokamak. We introduce (b, n 1 , n 2 ) an orthonormal basis attached to the particle with b the normalized vector parallel to the magnetic eld. The motion of such a particle can be decomposed in three dierent parts as we will see.

Cyclotron motion

In the absence of an electric eld, and with a uniform and constant magnetic eld B 0 , Eq.(1.8) becomes:

m dv dt (x, t) = e v(x, t) ∧ B 0 (1.11)
As B 0 is uniform, the projection of this equation on the parallel axis gives d t v = 0.

Furthermore, the projection of Eq.(1.11) on the two perpendicular directions, n 1 and n 2 , gives the following system:

dv c1 dt = eB 0 m v c2 dv c2 dt = eB 0 m v c1 (1.12)
where the index c refers to the cyclotron motion. The integration of sytem (1.12) 4 gives the following form for the cyclotron motion:

x c (t) = v t b + ρ c (cos(ω c t)n 1 + sin(ω c t)n 2 ) ρc (1.13)
where the cyclotron pulsation ω c and the Larmor radius ρ c are dened as

ω c = eB 0 m ; ρ c = v c ω c (1.14) 
We introduce the thermal velocity v th and the thermal Larmor radius, which are good guess to get an order of magnitude of v c and ρ c , and are dened as

v th = T m ; ρ th = v th ω c (1.15)
with T the temperature. For a temperature T = 10 keV and a magnetic eld B 0 = 5 T the magnitude of the following quantities is given v th ω c ρ th Deuterium 6.9 10 5 m/s 0.24 10 The trajectory due to the term ρ c is called the cyclotron motion. In a tokamak, particles have a helicoidal motion along the magnetic eld lines of radius ρ c and of wavelength v (2π/ω c ). However the gradients and curvature of the magnetic eld, as well as the transverse electric eld introduce transverse drifts.

Transverse drifts

Taking into account the decomposition of the magnetic eld B(x, t) = B + B(x, t) discussed below Eq.(1.8) and decomposing the velocity as v = v +ṽ with v ≡ ¸v dϕc 2π , Eq.(1.8) leads, for each species s, to the following system:

m s d v dt = e s E + v ∧ B G + ṽ ∧ B (1.16) m s dṽ dt = e s Ẽ + ṽ ∧ B G + v ∧ B + ṽ ∧ B -ṽ ∧ B (1.17)
where the notation B G = B(x GC , t) has been used. The term ṽ ∧ B G is dominant in Eq.(1.17) and this equation reduces at lowest order as:

m s dṽ dt = e s ṽ ∧ B G (1.18)
This equation has the same form as Eq.(1.11): we recover the fact that the fast dynamics is mainly dominated by the cyclotron motion discussed in section 1.2.1.

In the averaged motion equation (1.16), the term ṽ ∧ B needs to be calculated. It can be shown (see [72, Sarazin 2013]) that this term reduces to:

ṽ × B = - µ s e s ∇B
where µ s ≡ e s ω c ρ 2 c /2 is the adiabatic invariant. Equation (1.16) can then be recast as:

m s d v dt = e s ( E + v ∧ B G ) -µ s ∇B G (1.19)
We can decompose the velocity v = v b+v G⊥ with b ≡ B/B. 

m s dv G⊥ dt ⊥ + m s dv dt ⊥ = e s ( E ⊥ + v ∧ B) -µ s ∇ ⊥ B (1.20)
We call ω a characteristic pulsation of the drift motion. The term dv G⊥ dt is of order ω ωc v G⊥ . The transverse drift is an averaged process which appears at the time scale ω ∼ v /R ω c . The contribution of this term is therefore negligible at leading order.

The term dv dt can be developed as:

dv dt ⊥ = v db dt = v 2 ∇ b = v 2 N R with d t b = (v /R) N
where N stands for the normal unit vector of the Frenet frame, R being the associated radius of curvature which corresponds to the major radius. Taking

Eq.(1.20)∧B, the transverse drift velocity in the adiabatic limit reads, at lowest order:

v G⊥ = v E + v D∇,s + v DC,s = E ∧ B B 2 + B e s B 2 ∧ µ s B ∇B B + m s v 2 N R (1.21)
It appears that two sources of transverse drifts are dominant in tokamak plasmas, namely

• The existence of a transverse electric eld E ⊥ . The electric drift is given by:

v E = E ∧ B B 2 (1.22)
• The inhomogeneities of the magnetic eld, that is gradient and curvature. The associated drifts are given respectively by

v D∇,s = v 2 c,s 2ω c,s b ∧ ∇B B ; v DC,s = v 2 ω c,s b ∧ N R c (1.23)
Besides, the term b ∧ N/R b ∧ ∇B/B in the low-β limit (∇ ∧ B 0 in a tokamak). The magnetic drift is then recast as:

v D,s = v 2 + v 2 c,s 2 ω c,s b ∧ ∇B B (1.24)
B is mainly oriented in the toroidal direction. The drift is therefore parallel to the vertical axis. Moreover the sign of this drift depends on the charge of the species, hence causing a charge separation between ions and electrons within the tokamak.

Parallel dynamics

The projection of Eq.(1.8) on b yields:

m dv dt + dv ⊥ dt • b = e E + v ∧ B • b (1.25)
In the frame of the adiabatic theory, it can be shown [72, Sarazin 2013] that averaging this equation on the cyclotron motion gives at leading order in ε ∼ ω/ω c ∼ ρ c /R and at low β:

m dv dt = e E -µ∇ B + mv v E • ∇B B (1.26)

Derivation of the Angle-Action coordinates from the motion invariants

The Noether theorem states that each symmetry of the system is associated with an invariant [38, Goldstein 2002]. The goal here is to identify three invariants of the system.

Each of these invariants is associated with a periodic direction of motion. The motion along each of these periodic directions is fully described via the introduction of an angle α i . The calculation of the actions associated with these angles leads to the introduction of the angle-action set of coordinates (α, J). In this set of coordinates, each action can be expressed by a combination of motion invariants. First, we nd the invariants of motion, then we introduce the angle-action set of coordinates (α, J).

Motion invariants Magnetic moment

The magnetic moment µ of a charged particle of the plasma is due to the helicoidal trajectory around its associated magnetic eld line. It can be calculated by assimilating this cyclotron motion to a current loop of surface S = πρ 2 c and current I = e ωc 2π with ω c standing for the cyclotron frequency:

µ = IS = πρ 2 c e ω c 2π = e 2 ρ 2 c B 2m = mv 2 ⊥ 2B (1.27)
In the case where the magnetic eld varies little at the scales of the cyclotron motion of particles in time and space B(x + ρ c , t + 1/ω c ) B(x, t), then the magnetic moment µ of the particles is constant in time:

dµ dt = 0 (1.28)
This is the adiabatic invariance of the magnetic moment which is valid only within the framework of the adiabatic theory given by the two conditions (1.9) and (1.10).

Energy Newton equation for charged particles reads:

m dv dt = e(E + v ∧ B) (1.29)
Taking the scalar product with v, it becomes:

d dt 1 2 mv 2 = -ev • (∇φ + ∂ t A)
In the case of static electric and magnetic elds, so that ∂ t A = 0 and dφ dt = v • ∇φ, it is possible to write the conservation of the energy E:

dE dt = d dt 1 2 mv 2 + eφ = 0 (1.30)
Toroidal kinetic momentum The plasma is supposed to be axisymmetric in the toroidal direction. As such, the action associated to the angle ϕ is conserved in time.

Noting P ϕ this invariant and p ϕ the toroidal momentum, it is calculated as: ˆ2π

0 P ϕ dϕ = ˆ2πR 0 p ϕ • dl ϕ = ˆ2π 0 (mv ϕ + eA ϕ )R dϕ
The system being axisymmetric in ϕ, it becomes:

P ϕ = mRv ϕ + eRA ϕ
Furthermore, using Stokes' theorem, it is possible to rewrite the last term as:

RA ϕ = 1 2π ˆA • dl ϕ = 1 2π ˆB • dS pol ≡ ψ
Eventually, the expression of the invariant P ϕ , called toroidal kinetic momentum, associated with the axisymmetric toroidal angle ϕ takes the form:

P ϕ = mRv ϕ + eψ (1.31)
Review of motion invariants The particle dynamics is characterized by three invariants:

• The mechanic energy E ≡ 1 2 mv 2 + eφ for constant electric and magnetic elds.

• The magnetic moment µ so that µB ≡ 1 2 mv 2 ⊥ within the adiabatic limit.

• The toroidal kinetic momentum P ϕ ≡ mRv ϕ + eψ for axisymmetric plasma in ϕ.

Angle-Action coordinates

One seeks to construct a set of canonical coordinates using the three invariants of the motion previously found. We introduce the Hamiltonian H of the system. H can be decomposed into a constant equilibrium value H eq (J) on each ow surface and a perturbation H = H -H eq . We seek a set of angle-action coordinates (α, J) that satises the Hamilton equations and such that the actions J remain constant 5 . Besides, the conservation of the action via the change of coordinate imposes:

ˆΓ J • dα = ˆΓ p • dx (1.32)
With this set of coordinates, for i ∈ [START_REF] Abiteboul | Transport turbulent et néoclassique de quantité de mouvement toroidale dans les plasmas de tokamak[END_REF][START_REF] Angelino | On the denition of a kinetic equilibrium in global gyrokinetic simulations[END_REF][START_REF] Arnichand | Identication of Trapped Electron Modes in Frequency Fluctuation Spectra of fusion plasmas[END_REF] the canonical equations are given by: αi =

∂Heq ∂J i ≡ Ω i Ji = - ∂Heq ∂α i = 0 (1.33)
where Ω i stands for the pulsation associated to the angle α i . To construct the anglesaction coordinates, one begins by looking for the symmetries of the system so as to decompose the general trajectory of the particles into 3 periodic parts, each associated with one of the motion invariants (or a combination of these).

• In the conditions of adiabaticity given by Eq.(1.9) and (1.10), the angle ϕ c can be considered as a cyclic coordinate. The set of coordinates associated with this motion is xed as α 1 = ϕ c and J 1 is given by Eq.(1.32) and becomes:

2πJ 1 = ˆ2π 0 mv c ρ c dϕ c -→ J 1 = m e µ (1.34)
• Due to the toroidal axisymmetry of the problem, the toroidal motion is cyclic with respect to the angle ϕ. The set of coordinates associated with this motion is α 3 = ϕ and J 3 = P ϕ where P ϕ stands for the toroidal kinetic momentum derived in Eq.(1.31)

5 This is a direct consequence from the fact that Heq depends only on J:

dJi dt = - ∂Heq ∂αi = 0 ⇒ Ji = constant
• Although the trajectories of the so-called "passing" particles projected in the poloidal plane have a circle-like shape, this is not the case for all particles, especially the trapped ones that exhibit poloidal trajectories with the shape of a banana. The angle α 2 associated with the poloidal motion of the particles is constructed so that after an angle 2π the particle has returned to its starting point. Such an angle can be seen as equal to α 2 = 2π s θ /L θ with s θ the poloidal projection of the curvilinear abscissa and L θ the total distance travelled in a period of the poloidal motion. With this denition, the link between α 2 and θ is given by θ = θ 0 sin α 2 . The associated action is given by:

2πJ 2 = ˆ2π 0 (mv θ + eA θ ) dl θ (1.35)
This approach is particularly important when one wants to express the Hamiltonian of the system: the equilibrium part of the Hamiltonian H eq depends on the actions only, whereas the perturbed part H depends on both the angle and action coordinates.

Characteristics of trapped particles

The expressions of the invariants, introduced in part 1.2.1, enable to sort particles in dierent classes. To do so, we recall the expression of the energy H of a particle of mass m, parallel velocity v and magnetic moment µ in the absence of electric potential:

H = 1 2 mv 2 + µB (r, θ) 1 2 mv 2 + µB 0 (1 -ε cos θ) (1.36)
When moving along the magnetic eld lines, the gyrocentre explores the poloidal variations of the magnitude of the magnetic eld B(r, θ) B 0 R 0 /R with R = R 0 + r cos θ the major radius, the subscript "0" referring to quantities on the magnetic axis. It follows that particles having H < µB max (r) with B max (r) the maximum magnitude of the magnetic eld on a poloidal turn will be reected in the parallel direction when entering the high eld region of the tokamak. Thus, the particles can be sorted (at least) in two dierent classes whose orbits are shown on Figure 1.5:

• v > 0 for all θ: the particle explores the whole poloidal domain. The particle is said to be passing.

• v = 0 for a particular value θ = θ 0 : the particle bounces back before having made a full poloidal turn. The particle is said to be trapped. This system is analogous to the pendulum model represented beside and whose total energy H pend reads:

H pend = 1 2 ml 2 θ2 + mgl(1 -cos θ) (1.37)
• The parallel kinetic energy 1 2 mv 2 of the particle is analogous to the kinetic energy of the pendulum

1 2 ml 2 θ2
• The perpendicular kinetic energy µB is analogous to the potential energy of the pendulum mgl(1 -cos θ)

First, a condition is set for a particle to be trapped. Then, some characteristics of the trapped particles are derived such as the fraction of trapped particles, the shift of the trajectory from the associated magnetic eld line also called the banana width δ b and the bounce pulsation ω b .

Trapping condition

A particle is trapped in the magnetic well when its energy H is such that H ≤ µB max .

In that case, the expression of the energy (1.36) gives: Taking into account that µB = 1 2 mv 2 ⊥ , Eq.(1.38) can be expressed as a trapping condition depending on the particle velocity:

1 2 mv 2 + µB (r, θ) ≤ µB max (r) (1.38)
v v ⊥ ≤ B max (r) B (r, θ) -1 = τ t (r, θ) (1.39) 
The magnetic eld is expressed as B(r, θ) B 0 / (1 + ε cos θ), with ε = r/R 0 the inverse aspect ratio. The maximum value of the magnetic eld for a xed value of ε is then B max (r) = B 0 /(1 -ε). Therefore, the trapping condition Eq.(1.39) becomes:

v v ⊥ ≤ 1 + ε cos θ 1 -ε -1 ε(1 + cos θ) (1.40)
where the second expression is approximated in the limit ε 1. The position of the particle in velocity space v , v ⊥ sets whether the particle is trapped or passing. The trapped domain is given by a cone of equation (1.39) and represented on Fig. 1.6.

Trapped fraction of particles

Let us introduce the fraction of trapped particles α t . By denition:

α t (x, t) = n trapped (x, t) n(x, t) = 2π ´∞ 0 v ⊥ dv ⊥ ´+v ⊥ τt(r,θ) -v ⊥ τt(r,θ) dv f (x, v, t) 2π ´∞ 0 v ⊥ dv ⊥ ´+∞ -∞ dv f (x, v, t) (1.41)
Here the integration domain for the trapped particle is 2π

´∞ 0 v ⊥ dv ⊥ ´+v ⊥ τt(r,θ) -v ⊥ τt(r,θ) dv which is consistent with the previous condition v ,max v ⊥ = τ t (r, θ).
In the case of a Maxwellian distribution function centred on an average velocity of 0 in the parallel and perpendicular directions: 

f eq (x, v, t) = n eq 2πv 2 th -3/2 exp -v 2 + v 2 ⊥ /2v
α t = 2π ˆ∞ 0 v ⊥ dv ⊥ ˆ+v ⊥ τt(r,θ) -v ⊥ τt(r,θ) dv 1 2πv 2 th 3/2 exp - v 2 + v 2 ⊥ 2v 2 th = 2π 2πv 2 th 3/2 ˆ∞ 0 v ⊥ dv ⊥ exp - v 2 ⊥ 2v 2 th ˆ+v ⊥ τt(r,θ) -v ⊥ τt(r,θ) dv exp - v 2 2v 2 th (1.42)
Besides when ε → 0 then τ t → 0, and we can assume that exp -v 2 /2v 

α t = 4πτ t (r, θ) 2πv 2 th 3/2 ˆ∞ 0 v 2 ⊥ dv ⊥ exp - v 2 ⊥ 2v 2 th After a change of variable u = v ⊥ / √ 2v th , it comes: α t = τ t (r, θ)4π -1/2 ˆ∞ 0 u 2 exp -u 2 du
Knowing that ´∞ 0 u 2 exp -u 2 du = √ π/4, the trapped particle fraction becomes:

α t -→ ε→0 τ t (r, θ) (1.43) 
An estimation of the θ average of this fraction ᾱt (r) = 1 2π ´π -π α t (r, θ) dθ can be computed. Using the simplied expression of τ t given by Eq.(1.40) and of α t given by Eq.(1.43), it comes for ε → 0:

ᾱt

∼ ε→0 1 2π ˆ2π 0 ε(1 + cos θ) dθ = 2 √ 2ε π (1.44)
For typical values of ε = 0, 1, the value of the fraction of trapped particles is ᾱt 0.5.

Bounce and precession motions

As said in part 1.2.1, the transverse drifts are responsible for a shift of particle trajectories from their associated magnetic eld surfaces. It results that the projections of trajectories on a poloidal surface have a circle-like shape shifted from the magnetic surfaces for passing particles, and two arcs of dierent radii meeting on the magnetic surface for trapped particles as shown on Fig. 1.5. In addition, as the shift is not the same for the ways back and forth of the trapped particles motion, a shift appears in the toroidal direction after each bounce period of the trapped particle. This results in a precession motion for trapped particles along the toroidal angle (see Fig. 1.7).

The banana width δ b is dened as the shift of trapped particle trajectories from the associated magnetic eld lines in θ = 0. We also dene the bounce pulsation ω b = 2π/T b where T b is the transit/bounce time. For a passing particle, the transit time is the time needed for a particle to do a poloidal turn. For a trapped particle, the bounce time is the time needed for a particle to do a whole back and forth loop in the poloidal direction.

The precession pulsation is dened as ω d = 2π/T d where T d is the time for a trapped particle to do a toroidal turn.

The banana width δ b can be computed knowing the conservation of the toroidal kinetic momentum P ϕ = mRv ϕ + eψ with v ϕ = Bϕ B v v in both ways back and forth of a trapped particle for θ = 0. Knowing dψ dr = -RB θ and q(r) rB 0 /RB θ , it comes:

P ϕ = mR v + eψ(r + δ b ) mR(-v ) + eψ(r) ⇒ δ b = 2qmv εeB 0 (1.45)
Besides, Eq.(1.40) gives the order v ∼ √ 2ε v ⊥ when θ = 0. Considering thermal particles v ⊥ v th and using the thermal Larmor radius expression ρ th given in Eq.(1.15), the thermal banana width simply reduces to:

δ b ∼ 2qε -1/2 ρ th (1.46)
The bounce pulsation is computed from the period of the bounce/transit motion. We introduce ±θ 0 the angle of the turning points when |v | = 0 (for passing particles, we take θ 0 = π), and ε b a parameter which equals 1 for trapped particles and 0 for passing ones. The bounce/transit period is given by:

2π ω b = (1 + ε b ) ˆt(θ=+θ 0 ) t(θ=-θ 0 ) dt = (1 + ε b ) ˆ+θ 0 -θ 0 qR(θ)dθ v (θ) (1.47)
where R = R 0 (1 + ε cos θ). For trapped particles, ε b = 1 and v can be approximated by condition (1.40) with v ⊥ approximated by the thermal velocity v th . Replacing R and v by their θ-dependent expressions, Eq.(1.47) is recast as:

2π ω b 2qR 0 √ ε v th ˆ+θ 0 -θ 0 (1 + ε cos θ) √ 1 -ε √ 1 + cos θ dθ (1.48)
For barely trapped particles, θ 0 = π and the bounce period becomes innite, whereas for deeply trapped particles, θ 0 = 0 and the bounce period becomes zero. Yet, a qualitative evaluation of ω b can be done by doing the following approximations in Eq.(1.47): large aspect ratio limit R = R 0 , v = √ 2ε v th and θ 0 = π. In that case, a simplied expression of the bounce pulsation is:

ω b ≈ √ ε v th √ 2qR 0 (1.49)
Besides, an evaluation of the ratio between the bounce and cyclotron pulsations shows that the bounce pulsation is much lower than the cyclotron pulsation: µB 0 /mRv in the approximation of large aspect ratio R R 0 . It is then possible to dene a precession period as the time needed for a trapped particle to do a full toroidal turn. Taking the expression of δ b given by Eq. (1.45) , this gives the following expression for the precession pulsation ω d :

ω b ω c ≈ √ ε q ρ c R 1
ω d = ∆v 2πR ≈ qω c ρ 2 th rR (1.50)
The ratio between the precession pulsation and the bounce pulsation is

ω d /ω b ≈ q 2 √ ε ρ th r
1 where the approximation R R 0 has been done. Taking a safety factor q = 2, a temperature T = 10 keV, a magnetic eld B 0 = 5 T and using ITER dimensions R 0 = 6.2 m and a = 2 m, the magnitude of the characteristics of the bounce motion at mid-radius are given here:

δ b ω b ω d Deuterium 3.6 cm
1.1 10 In particular, it appears that the precession pulsation ω d does not depend of the mass of the particle.

Gyrokinetic description of a plasma

In a plasma, two physical objects need to be described: the particles and the electromagnetic wave. On the one hand, the particles are described, in the framework of kinetic theory which is tackled in ([50, 66, Ichimaru 1973[START_REF] Nicholson | Introduction to Plasma Theory[END_REF]), by their distribution function dened in the 6D space f (x, v, t) from which all uid quantities can be recovered. This distribution function corresponds to the number of particles per unit volume having approximately the velocity v, near the position x at time t. The rst uid moments are dened as:

           n(x, t) = ´f (x, v, t) d 3 v nV(x, t) = ´vf (x, v, t) d 3 v P (x, t) = ´m(v -V) ⊗ (v -V)f (x, v, t) d 3 v nT (x, t) = p = 1 3 T r( P ) = ´m|v -V| 2 f (x, v, t) d 3 v (1.51)
with n the density, V the uid velocity, P the pressure tensor, p the scalar pressure and T the temperature. On the other hand, the electromagnetic wave is described by the scalar and vector potentials (φ(x, t), A(x, t)). The equations that solve this problem are the Vlasov, the Maxwell-Gauss and Maxwell-Ampere equations. The auto-consistent problem of 5 scalar equations for 5 scalar unknowns can be written as follows:

df dt (x, v, t) = 0 (1.52) φ = - 1 ε 0 s e s n s (1.53) ∇ ∧ B = µ 0 j + 1 c 2 ∂E ∂t (1.54)
with j the electric current density, c the celerity of light, ε 0 and µ 0 the dielectric permittivity and permeability of free space respectively. This model describes fully both the particles and the electromagnetic elds of the plasma. Taking into account that in the limit β 1, satised for a tokamak plasma, the magnetic eld can be assumed to remain constant in time and that turbulent transport is dominated by its electrostatic component, two major approximations are made in our study:

• Electrostatic approximation: The time variations of the magnetic eld are ignored.

Consequently, the remaining unknowns are the distribution function f and the electric potential φ. Besides, the electric eld reads in this approximation as E = -∇φ. This approximation should be removed when considering an electromagnetic model.

• Gyrokinetic theory: A change of coordinates is operated so that the fast phase of the particle motion becomes a coordinates that can be ignored. We thus operate a reduction of the phase space by eliminating the dependency over the cyclotron angle ϕ c introduced in part 1.2.2 that appeared in the Hamiltonian H describing the particle. Consequently, the new Hamiltonian H describing the associated gyrocentre only depends of 5 variables, namely the coordinates of the gyrocentre (x G , v G , µ). This description of the plasma is valid only if the dierence between the two Hamiltonians H = H -H remains small compared to H. This is usually the case since the ratio H/H ∼ ρ * 1.

In this so-called gyrokinetic model well described in [11, Brizard & Hahm 2007], the equations of the system, namely the Vlasov and Maxwell-Gauss equations, become the gyrokinetic and Poisson equations. The latter can be replaced by the quasi-neutrality equation in the limit of large wavelengths as compared to the Debye length.

First, the equations of the gyrokinetic model, namely the gyrokinetic and quasineutrality equations, are discussed. Second, a general description of the Gysela code, which reproduces that model, is made.

The gyrokinetic model

The gyrokinetic equation

The Vlasov equation 6 7 (1.52) means that the distribution function f is conserved in the phase space (x, v). It can be said equivalently that f (X(x, t), V(x, t), t) remains constant along the trajectories so that:

dX dt = V and dV dt = e m (E + V ∧ B)
The Vlasov equation can then be developed according to its partial derivatives in position and velocity space and is recast as:

∂f ∂t (x, v, t) + dX(t) dt • ∂f ∂x (x, v, t) + dV(t) dt • ∂f ∂v (x, v, t) = 0 (1.55)
The motion of the gyrocentre associated to a particle is obtained via a change of coordinates so that the fast phase of the particle motion becomes a coordinates that can be ignored (see Fig.1.8). We thus operate a reduction of phase space from 6 to 5 dimensions.

We can then introduce the distribution function f dened in the 5 dimensional phase space (x G , v G , µ) and which describes the dynamics of the gyrocentres. Actually, the precise denition of a gyrocentre is a delicate matter which will be addressed in section 1.4. In the gyrokinetic model, we consider the Vlasov equation of the gyrocentres and not of the particles of the plasma. This gyrokinetic equation, whose derivation can be found in [START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF], is recalled here:

∂ f ∂t (x, v G , µ, t) + v G⊥ .∇ ⊥ + v G ∇ f (x, v G , µ, t) + dv G dt ∂ f ∂v G (x, v G , µ, t) = 0 (1.56)
where the evolution of the parallel velocity v G is given by Eq.(1.26) and the perpendicular velocity of gyrocentres v G⊥ = v E + v D∇ + v DC reads as the sum of the electric and magnetic drifts derived respectively in Eqs. (1.22) and (1.24). In fact, Eq.(1.56) is an approximated form of the full gyrokinetic equation. A more rigorous form can be found in Eq.( 5) of [40, Grandgirard 2016].

The quasi-neutrality equation

Let us rewrite Eq.(1.53) focussing only on the orders of magnitude:

s e s n s ε 0 k 2 |φ|
The Debye length is dened as λ D = ε 0 T /(n 0 e 2 ) where n 0 ∼ n s stands for a typical plasma density. Poisson equation can be rewritten using the Debye length as:

| s e s n s | en 0 (kλ D ) 2 eφ T
In a tokamak plasma, the potential energy represents only a small fraction of the total energy stored in the tokamak. Actually, the ratio between potential and thermal energy is small enough to consider that the quantity (kλ D ) 

Physical assumptions

The following key approximations have been made:

• Circular magnetic ux surfaces: The magnetic ux surfaces are nested concentric torus with circular section. The magnetic eld lines B wrap around these torus and their analytical expression is chosen as the simplied expression obtained in Eq.(1.7):

B = B 0 R 0 R r qR e θ + e ϕ
• Adiabatic electrons: The electrons are supposed to follow a Boltzmann response which is at equilibrium with the electric potential. This assumption is no longer valid for turbulence developing on an electron scale, such as the Electron Temperature Gradients modes. Alternative models, where electrons are considered as a kinetic species, are the core of this PhD thesis.

Full-f regarding the gyrokinetic equation Gyrokinetic codes can be sorted in two families regarding the treatment of the distribution function: those using the full-f method and those using the δf method. In the δf method [20, Denton 1995], the distribution function is decomposed as f (t) = f eq +δf (t) with f eq a prescribed equilibrium prole that can be taken as a Maxwellian and δf a perturbation to this equilibrium that is let free to evolve in time. However, the back reaction of turbulent transport on the background equilibrium is not accounted for in this method. In the fullf method which is the one adopted in Gysela, the whole distribution function is rst initialized to an equilibrium prole and then let free to evolve in time. In a tokamak, the system is maintained out of equilibrium by particles and energy sources and sinks. It is therefore necessary to add in the code the source terms associated with the transported quantities (energy and particles in the case of kinetic electrons).

Global

A scale separation k qR ∼ k ⊥ ρ i results from the strong anisotropy between the direction parallel to the magnetic eld, characterized by weak density and temperature gradients, and the transverse directions. Some codes, called "ux-tube" ( [25, Dorland 2000], [12, Candy 2003]) take advantage of this scale ordering and simulate a volume aligned on a magnetic eld line and of small poloidal section. These local models enable to reduce signicantly the cost of simulations compared to other codes which simulate the whole plasma domain. However, such codes simulate only the evolution of small scales, the mean density and temperature prole being assumed to remain uniform. Gysela is a "global" code which simulates the whole tokamak domain with a small radius belonging to an interval [r min , r max ], where r min and r max are chosen in the interval [0, a].

Semi-Lagrangian

The specicity of this code is that it uses a semi-Lagrangian approach: the distribution function f (x, v, t) evolves on a xed grid in the phase space (x, v), like Eulerian schemes. We assume the knowledge of the distribution function at each grid point x i at time t. We are looking for its value at each grid point at time t + ∆t. For this, we use the invariance of the distribution function along the characteristics (Lagrangian approach): the value of f at the grid point (x j , v j ) at time t + ∆t is equal to its value at time t at the grid point (x j , v j ) found by following backward in time the trajectories from t + ∆t to t. This foot of the characteristic is generally not a grid point. The value of f at this point is then obtained by interpolation (by cubic splines in Gysela), using the knowledge of f in all the neighbouring grid points at the instant t (Fig. 1.9).

Gyroaverage operator

The gyrokinetic model uses some quantities that have to be averaged over the cyclotron motion. Let G be any function of the position x. Noting ϕ c the gyroangle, ρ c the Larmor radius and x GC the guiding centre position associated to the particle position x, the gyroaverage of G is given by the expression:

J.G(x) = ˛2π 0 dϕ c 2π e ρc.∇ G(x GC ) (1.58)
J is called the gyroaverage operator. Besides, it can be noted that: ˛2π

0 dϕ c 2π e ρc.∇ = ˛2π 0 dϕ c 2π ∞ n=0 (ρ c .∇) n n! = ˛2π 0 dϕ c 2π ∞ n=0 (ρ c .∇) 2n (2n)!
At the lowest order in k ⊥ ρ c , i.e. keeping only the rst term n = 0, this integral is equal to 1. Therefore, at the lowest order, we have: ... ϕc ∼ ...(x GC ). In the case uctuations of the various quantities are characterized by wavelengths that are large compared to the Larmor radius k ⊥ ρ c 1, then J can be approximated to:

J 0 (k ⊥ ρ c ) 1 1 + (k ⊥ ρ c ) 2 /4
This form of J is a Padé approximation.

Construction of an "equilibrium" distribution function from the averaged density and temperature proles

The evolution of the distribution function is governed by the Boltzmann equation

df dt (x, v, t) = C(f ) (1.59)
where C stands for the collision operator. However, it is not possible to nd a stationary equilibrium which at the same time belongs to the kernel of the collision operator 8 and is a function of the motion invariants, seen in part 1.2.2, only (except for the case where all density, average velocity and temperature proles are at). For this reason, it is dicult to nd a true axisymmetric equilibrium, which is the purpose of the neoclassical theory.

In Gysela, we introduce a Maxwellian distribution function constructed from averaged density and temperature proles dened for any time t. Thus, we introduce the "equilibrium" density n eq (r, t) = n(x, t) F S and temperature T eq (r, t) = T (x, t) F S , chosen independent of θ and ϕ 9 , where the average on a magnetic ux surface of constant r is dened as:

...

F S = ˜dθ dϕ B•∇θ ... ˜dθ dϕ B•∇θ (1.60)
Here the designation "equilibrium" is abusive for these quantities do not depend on the motion invariants only. From these proles, we can also dene an "equilibrium" distribution function as:

f eq (r, θ, v , µ, t) = n eq (r, t) [2πk B T eq (r, t)/m] 3/2 exp - E eq (r, θ, v , µ, t) k B T eq (r, t) (1.61) 8 
Boltzmann's H-theorem states that this steady state is obtained when the entropy is maximum, and when this state is reached, the solution f has a Maxwellian prole in velocity space [49, Helander 2002]. 9 In a MHD equilibrium, the ideal Euler equation reads J ∧ B = ∇p. A consequence is B.∇P = 0 and the magnetic surfaces are isobar. In the case of a circular magnetic eld, this means that P is independent of θ and ϕ.

with E eq (r, θ, v , µ, t) = 1 2 m(v -V eq (r, t)) 2 +µB(r, θ), V eq being the ux surface averaged parallel velocity. It can be noted here that there is no transverse component of the average velocity at lowest order. The solution of our evolution problem reads as the sum of this equilibrium function f eq and a perturbation f :

f (x, v, t) = f eq (r, θ, v, t) + f (x, v, t) (1.62)
1.4 Calculation of the particle density in gyrokinetics

In the gyrokinetic model, we aim to describe the particle trajectories in a 5-dimensional space (x, v , µ). As particles evolve in the 6-dimensional space of positions and velocities (x, v), two physical objects associated with each particle are introduced: the guidingcentre and the gyrocentre. The guiding-centre evolves in the 6-dimensional space (x, v).

Its trajectory is obtained by removing the cyclotronic motion to the particle's trajectory.

The gyrocentre is then obtained by doing a phase space reduction to the 5 dimensions (x, v , µ). The objective here is to express the uid moments, and in particular the density, as a function of the distribution function of the gyrocentres f .

Link between particles and gyro-centres

The rst step to take in order to derive the link between f s (x, v, t) and fs (x gy , v gy , t) is to dene correctly the various distribution functions used in this work.

• f is the distribution function of particles (of a given species), so that n(x) = ´f (x, v) d 3 v represents the density of particles at position x.

• f GC is the distribution function of guiding centres (associated with the previous particles), so that n GC (x GC ) = ´fGC (x GC , v GC ) d 3 v GC represents the density of guiding centres at position x GC . It is important to see that n GC (x) = n(x) as one may see on Fig. 1.10.

• f is the distribution function of gyrocentres, so that n(x gy ) = ´f (x gy , v gy ) d 3 v gy represents the density of gyrocentres at position x gy . The coordinates of a guiding centre can be deduced from the coordinates of the particle by averaging its trajectory on a cyclotronic period: x(t) -x GC (t) = ρ c . The coordinates of a gyrocentre will be deduced from the coordinates of the guiding centre.

We want the gyrocentres be dened in a 5 dimension space and we will see later which are the properties dening this new object. The aim of introducing these new coordinates is to simplify the description of the system, by gaining some degrees of liberty to describe the system (which means less parameters to compute in a numerical code).

The important point to notice is that these three dierent distribution functions describe the same physical reality. For each particle, there is only one guiding centre and one associated gyrocentre. Thus, it is natural to nd the same value of the distribution function in coordinates associated with each type of item considered.

Consequently, the distribution function of particles f evaluated at the position of the particles (x, v) is equal to the distribution function of guiding centres f GC evaluated at the position of the guiding centres (x GC , v GC ) and to the distribution function of gyro-centres f evaluated at the position of the gyro-centres (x gy , v gy ) (cf. [11, Brizard 2007]):

f (x, v) = f GC (x GC , x GC ) = f (x gy , v gy ) (1.63)
The problem that occurs here is that the quasi-neutrality equation is a constraint on the particle densities of the dierent species s of the plasma, which can be expressed as integrals of the dierent f s . But the gyrokinetic approach uses and computes only the distribution function of gyrocentres fs . Thus it is necessary to insert a link between the values of f and f evaluated at the same point. Another point to state is that in the end, the physical quantities, like density, should be expressed in the real space x. This xes the choice of coordinates used when the link between both distribution functions is made. This change of coordinates from particle to gyrocentre is tackled in Appendix A.2. This eventually leads to the following relation between f and f :

f (x, v, t) = e -ρc•∇ f (x, v GC , t) + e B φ(x, t) -φ(x gy , t) e -ρc•∇ ∂ µ f (x, v GC ) (1.64)
It is now possible to express the density of particle using only the distribution function of gyrocentres f .

Expression of the particle density

Guiding-centers and electric potential contributions

Equation (1.64) provides the relationship between the particle density n s and the guidingcenter density n Gs :

n s (x, t) = ˆd3 v e -ρc•∇ fs (x, v GC , t) + ˆd3 v e s B φ(x, t) -φ(x gy , t) e -ρc•∇ ∂ µ fs (x, v GC ) (1.65)
The rst integral on the right hand side corresponds to the gyro-center density n G,s (x, t).

Using the gyro-average operator J (see Eq.(1.58)), and writing J v = 2πB * /m s as the Jacobian in the velocity space, it gives:

n G,s (x, t) = ˆJv dµ dv G J. fs (x, v GC , t) (1.66) 
The last integral on the right hand side is the polarization density n pol,s . Besides, the averaged value of φ on the gyroangle reads:

φ(x gy , t) = ˆdϕ c 2π e ρc•∇ φ(x GC , t) = e -ρc•∇ ˆdϕ c 2π e ρc•∇ φ(x, t)
Further recalling that x gy = xρ c and by replacing the expression of φ(x gy , t) in n pol,s , it follows:

n pol,s (x, t) = ˆJv dµ dv G, e s B ˆ2π 0 dϕ c 2π e -ρc•∇ ∂ µ f eq,s (x, v) 1 -e -ρc•∇ e ρc•∇ φ(x, t) (1.67) 
The brackets ... stand for the average over the gyro-phase: ... ≡ ´2π 0 ... dϕc 2π .

Expression of n pol in the large wavelength limit

It is useful to consider the large wavelength limit k ⊥ ρ c 1 of Eq.(1.67), for which some particularly compact expression of n pol,s can be derived. In such a limit, one can restrict the Taylor expansion of the operator to the leading terms of the development only. Details of the calculus are given in Appendix A.3. At second order in k ⊥ ρ c , it comes:

n pol,s (x, t) ∇ ⊥ • m s n eq,s e s B 2 ∇ ⊥ φ(x, t) (1.68)
Chapter 2

Accounting for kinetic electrons in Gysela 2.1 Ion turbulence with adiabatic electrons

In the classic gyrokinetic model detailed in chapter 1, the description of the plasma requires to solve one gyrokinetic equation per kinetic species, each coupled to the others via the Maxwell-Gauss equation which, in the electrostatic limit and for wavelength scales large compared to the Debye length, reduces to the quasi-neutrality equation. The dynamics of each kinetic species, ions and electrons, is well dened in this case.

From the numerical point of view, it should be noticed that the time step needed to accurately follow the dynamics of each species should scale like ∆t s ∝ R 0 /v th,s

1 , with R 0 the tokamak major radius and v th,s the thermal velocity of species s. The ratio of the ion and electron time step is then given by:

∆t i ∆t e ∼ v th,e v th,i = m i m e
at equal temperatures with m s the mass of species s. This ratio is of the order of 60 for deuterium ions. In the presence of both ions and electrons, to resolve the dynamics of both species, it is needed to use the smallest time step, in that case ∆t e . Using this time step in Gysela would be too costly as far as computation time is concerned, and it would be preferable to use ∆t i as the global time step of the model.

A possibility to circumvent this problem is to assume that the electrons are adiabatic, i.e. they are at equilibrium with the ambient electric potential. In that model, only ions are supposed kinetic. This allows us to choose a relatively large time step to describe the dynamics of the plasma.

1 Instabilities can add other constraints to ∆t. E.g., the typical growth rate of ITG γ ∼ v th /(RLT ) 1/2 , where LT stands for the characteristic length of the temperature gradient, would impose ∆t γ 1.

The drawback of this model is that there can be no particle transport and some classes of instabilities, namely the Trapped Electron Modes (TEM), which are believed to play a major role in turbulent transport are not taken into account. In the following, the quasi-neutrality equation is rst derived with the hypothesis of adiabatic electrons and then with kinetic electrons.

Quasi-neutrality with adiabatic electrons

The quasi-neutrality equation (1.57) reads:

i Z i n i (x, t) = n e (x, t) (2.1)
The average on a ux surface2 of this equation is

i Z i n i F S
= n e F S where ... F S stands for the average on a ux surface and dened in Eq. (1.60). Calling ñs = n s -n s F S , Eq.(2.1) minus its averaged value on a ux surface gives:

i Z i ñi (x, t) = ñe (x, t) (2.2)
It is needed to nd the expressions of ñi and ñe in the adiabatic electrons model to develop this equation.

Initially, the gyrocentre distribution function fs for each species s is set as a Maxwellian given by Eq.(1.61): fs,eq (r, θ, v, t) = n s F S (r, t)

(2π T s F S (r, t)/m s ) 3/2 e - Es(r,θ,v) Ts F S (r,t) (2.3) 
As it has already been said in section 1.3.2, the eq subscript is misleading: in practice, it simply refers to the fact that during the plasma evolution, the distribution function does not change much from this Maxwellian prole. Thus, we abusively call it an "equilibrium" distribution function. From Eq.(2.3), we can dene the equilibrium density of gyrocentres as:

n Gi,eq (x, t) = ˆJ0i . fi,eq (x, v, t)

d 3 v
The dierence between the densities n Gi,eq and n i F S reduces to terms in ρ i /L ⊥ where L ⊥ is a typical gradient length of n F S and T F S . A priori, we have ρ i L ⊥ and we can therefore assume that n Gi,eq remains very close to n i F S . Taking up the expression of particle density in the previous section (Eq.(1.66) and (1.68)), it comes:

n i (x, t) = ˆJ0i . fi (x, v, t) d 3 v + ∇ ⊥ • m i n eq,i e i B 2 ∇ ⊥ φ
Consequently, the nal expression of ñi n i -n Gi,eq is:

ñi (x, t) = ˆJ0i .( fi -fi,eq ) d 3 v + ∇ ⊥ • m i n eq,i e i B 2 ∇ ⊥ φ (2.4)
where the notations introduced in chapter 1 have been used.

Electrons are assumed adiabatic, i.e. they are supposed to stay at equilibrium with the electric potential. In this case, ñe (x, t) is not obtained via the electron distribution function 3 . The expression of the electron density using the potential is obtained via the uid force balance for electrons. The simplied momentum conservation equation applied to electrons, reads:

m e n e ∂u e ∂t + (u e .∇) u e = -∇p e -en e (E + u e ∧ B)

(2.5)
where the collisions have been neglected and the pressure tensor has been reduced to a scalar pressure p e . E, B are respectively the electric and magnetic elds. Neglecting the electron inertia and projecting this relationship on the axis parallel to the magnetic eld, only remain the terms of pressure and Coulomb force:

-

en e E -∇ p e = 0 ⇒ ∇ p e = en e ∇ φ (2.6) 
Besides p e = n e T e , and consequently ∇ p e = n e ∇ T e + T e ∇ n e . In order to know which of these two terms is dominant, we compare the parallel diusion coecient for energy D T, e , and for particles D n, e . These coecients are expressed in m 2 /s. These diusions are collisional processes and it is possible to express D X e = v 2 Xe /ν with v Xe a characteristic velocity of variation of X (between two collisions), and ν a characteristic collision frequency. The characteristic velocity which appears in the temperature diusion is the parallel velocity of the electrons. This velocity is taken equal to the electron thermal velocity. Noting k B the Boltzmann constant, the thermal parallel diusion coecient for electrons reads:

D T, e ∼ v 2
th,e

ν with v th,e = 3k B T e m e
The electrons will tend to follow the quasi-neutrality, and the electron density gradients will therefore have a similar prole to the ion density gradients. Therefore, the characteristic velocity appearing in D n,e is the ion thermal velocity:

D n, e ∼ v 2 th,i ν with v th,i = 3k B T i m i
Supposing T e ∼ T i , the ratio between the two latter coecient gives:

D n, e D T, e ∼ m e m i 1 
(2.7)

3 fe does not exist in this model.

Electrons are highly mobile, they therefore thermalize very quickly, which has the eect of smoothing the parallel temperature gradients. From relationship (2.7), it comes:

∇ n e n e

∇ T e T e ⇔ T e ∇ n e n e ∇ T e Eventually, ∇ p e T e ∇ n e . Therefore, Eq.(2.6) becomes at leading order:

∇ n e n e e T e ∇ φ ⇒ ∇ [ln(n e )] ∇ [ e T e φ]
For a perturbation satisfying ∇ [ e Te φ] = 0, there is no electron density response ∇ [ln(n e )] = 0. Therefore, when the potential is the same on the same ux surface φ = φ F S , it comes ∇ n e = 0. Consequently, the only uctuations of the electron density which can be different from 0 are the modes k = 0. In the adiabatic electron approach, we assume ñe = 0 for the modes which remain constant on a magnetic surface (for these modes k = 0). The electron density is then equal to its equilibrium value n e,eq . The integration of this equation gives the following expression of the adiabatic electron density n adiab 

Replacing the expressions of ñi (x, t) (2.4) and ñe (x, t) (2.9) in the adiabatic quasineutrality equation (2.2), it comes eventually:

i Z i ˆJ0i . fi -fi,eq d 3 v + Z i ∇ ⊥ • m i n i,eq e i B 2 ∇ ⊥ φ = n e,eq e T e (φ -φ F S ) (2.10)
It states that the sum over all species of charge density uctuations is zero.

The Gysela code is written in normalized units based on the following normalization choices. We use SI units and a thermal energy scale in electron volts (1 eV = 1.6022 10 -19 J). The four fundamental dimensional normalizing quantities are: a reference ionic mass m 0 = A 0 m p [kg], a reference ionic charge q 0 = Z 0 e [C], a reference magnetic induction B 0 [T] and a reference thermal energy T 0 [eV]. Here, A 0 and Z 0 are the (dimensionless) mass number and charge state of the main ion species and e the modulus of the electron charge. These quantities are used to dene the reference ion cyclotron frequency ω c 0 , the reference thermal speed v th,0 and the reference Larmor-radius ρ 0 as

ω c 0 = Z 0 e B 0 m 0 , v th,0 = T 0 m 0 and ρ 0 = v th,0 ωc 0 = √ T 0 m 0 Z 0 e B 0
. Finally, we choose the equilibrium electron density at mid radius n 0 as reference density. Physical quantities (mass, length, time, charge and density) can be recovered from the normalized quantities used in the code (denoted with a hat symbol) by choosing values for [A 0 , Z 0 , B 0 , T 0 , n 0 ] and applying m s = A s m p = m 0 Âs with A s = A 0 Âs , q s = Z 0 e Ẑs , l = ρ 0 l, t = t ωc 0 and n s = n 0 ns . The velocities are normalized to the corresponding thermal velocities v th,s0 = T 0 /m s , i.e v = v th,s0 vs = v th,0 √ Âs vs . The main normalizations are thus U = T 0 Z 0 e φ, B = B 0 B,

T s = T 0 Ts while µ s = T 0 B 0 μs with μs = v2 ⊥s 2 B and µ 0 J = B 0 ρ 0 Ĵ with Ĵ = ∇ ∇ ∇ × B. By de-
duction, E = E 0 Ê with E 0 = v th,0 B 0 and the normalized distribution function fs , which evolves in the code, is dened as fs = f s v 3 th,s0 /n 0 . Finally, the energy is normalized to the reference thermal energy T 0 . In what follows, all the quantities considered are normalized coordinates, but hat symbols are omitted for the sake of readability.

In Eq.(2.10), we do the following approximations : (i) equilibrium quantities are safely replaced by their initial values 4 and (ii) B/B 0 1. The normalized quasi-neutrality equation which is solved by the Gysela code in the case of adiabatic electrons then reads:

i

Z i ˆJ0i . fi -fi0 d 3 v + ∇ ⊥ . (A i n i0 ∇ ⊥ φ) = n e0 T e0 (φ -φ F S ) (2.11)
where the last term on the left hand side corresponds to the ion polarization density.

The velocity volume element reads:

d 3 v = J v dµ dv G with J v = 2πB * ,s and B * ,s ≡ B + A s /Z s v G b • (∇ ∧ b) (2.12)
J v is the normalized Jacobian in velocity space. J 0i stands for the normalized gyroaverage operator dened in Eq.(1.58). In the limit of large wave lengths (as compared to the cyclotron radius ρ c ), we use the Padé development which reads in Gysela:

J 0i = 1 1 -ρ 2 c 4 ∇ 2 ⊥ 1 + A i µ 2Z 2 i B ∇ 2 ⊥ with ∇ 2 ⊥ 1 r ∂ r (r∂ r ) + 1 r 2 ∂ 2 θ (2.13)
In Gysela, B in Eq.(2.13) is replaced by 1. Replacing ∇ ⊥ by ik ⊥ it comes:

J 0i 1 - A i µk 2 ⊥ 2Z 2 
i n e0 is the constant-in-time electron density, i.e. the initial electron density prole. Indeed, assuming an adiabatic response for the electrons freezes the phase shift between density and electric potential uctuations: it is vanishing, hence preventing any turbulent particle transport due to the electric drift. Also, the equilibrium densities satisfy the quasi-neutrality constraint, so that i Z i n i0 = n e0 : there is no electric potential at equilibrium. Notice that, with these denitions, one has ´d3 v i fi0 = n i0 , with f i0 the initial distribution function of species "i".

Limits of the adiabatic electrons approach -Need for kinetic electrons

This model of adiabatic electrons has some limitations.

First, this model prevents any signicant turbulent transport of matter. Indeed, the expression of the turbulent radial transport of particles Γ r given by the perturbed part of Eq.(1.51) and averaged on a surface of constant r reads:

Γ r = ñe ṽEr F S (2.14)
where ñe is given by equation (2.9) and ṽEr = E θ /B is the radial component of the electric drift velocity. The average on a ux surface is dened in Eq.(1.60). The expression of Γ r becomes:

Γ r = - en e,eq rT e 1 ˜dϕ dθ B•∇θ ¨dϕ dθ B • ∇θ (φ -φ F S ) ∂ θ φ B (2.15)
A full calculation of Γ r is made in Appendix B.1. Eventually, we get in the limit ε 1:

Γ r - en e,eq rT e ε 4π 2 B ¨dϕ dθ 3 cos θ(φ -φ F S )∂ θ φ
It appears that Γ r evolves as ε. Therefore no signicant radial particle transport is allowed in the case of adiabatic electrons.

Second, instabilities governed by the electrons, and in particular those trapped in the local mirrors of the magnetic conguration, are not taken into account. Numerous uid [33, Garbet 2003] and kinetic [79, Weiland 1992], [77, Waltz 2007] models show that they can carry a turbulent transport which is of the same order of magnitude as that due to the ion turbulence in certain regimes of parameters in current tokamaks. Therefore one can expect that ion turbulence, especially the Ion Temperature Gradient modes (ITG), may have a dierent behaviour depending on whether the electron response is set as adiabatic or kinetic. In other words, the ion turbulence transport may not be accurately computed with the hypothesis of adiabatic electrons.

For these reasons, a new model where electrons are modelled by a kinetic distribution function has been implemented. Accounting for kinetic electrons means that the distribution function of the electron gyrocentres f e evolves in time. In this case, the electron response (rst term of Eq.(2.11)) is no longer adiabatic. The quasi-neutrality condition is then modied.

Quasi-neutrality with kinetic electrons

Kinetic electrons allow for particle transport, so that the ux surface density proles are evolving in time. The quasi-neutrality then deals with the full charge densities, and not only the uctuating parts. From here, we use the notation f instead of f to refer to gyrocentre distribution functions for more readibility. Accounting for both gyrocentre and polarization contributions for all species, it reads as follows:

i

Z i {n G,i + n pol,i } = n G,e + n pol,e (2.16) 
where we have introduced for any species s the notations:

n G,s = ˆJ0s .f s (x, v, t) d 3 v ; n pol,s = ∇ ⊥ • m s n s,eq (r, t) e s B(x) 2 ∇ ⊥ φ(x, t) (2.17)
In the polarization term, we have done the approximation n s (x, t) n s,eq (r, t) where n s,eq (r, t) stands for the equilibrium density, more precisely the ux surface averaged density: n s,eq (r, t) = n s (x, t) F S where ... F S stands for the average on a ux surface.

In the present version of Gysela, n s,eq (r, t) is approximated by the initial density prole n s0 .

Should A e = m e /m 0 be the normalized mass of electrons, m 0 being the proton mass (A e ≈ 1/1836), then the electron polarization density could be neglected. Also, J 0e could be safely approximated by 1. In Gysela, we decide to keep it since some test simulations were performed at articial larger values of A e . However, for simplication purpose, we can do these approximations in the present study. Using the normalizations introduced for Eq.(2.11), the normalized full kinetic quasi-neutrality equation becomes:

i Z i {n G,i + n i,pol } = ˆfe d 3 v (2.18)
where the normalized gyrocentre and polarization densities of the ions are dened by:

n G,i = ˆJ0i .f i d 3 v ; n pol,i = ∇ ⊥ • (A i n i0 ∇ ⊥ φ) (2.19)
The drawback of the formulation Eq.(2.18) is that it contains terms of very dierent magnitudes: the polarization contributions are much smaller than the gyrocentre densities. From Eq.(2.17), it is possible to evaluate the ratio n pol,s /n G,s ∼ (k ⊥ ρ th,s ) 2 ρ * s 1 where ρ * = ρ th /a. Numerical errors on the computation of gyrocentre densities may then compete with the actual values of the polarization densities. An alternative is then to subtract on both sides the same kinetic quantity, expressed in the various velocity spaces (that of the electrons and of the ions), so as to bring the magnitude of the integrals to the level of the polarization terms. The method is detailed in the following.

The kinetic quantity that is subtracted to each side of the QN equation is an anisotropic Maxwellian distribution function constructed from the actual equilibrium distribution function of the ions:

f i,eq = n i,eq (2π) 3/2 T 1/2 i,eq T ⊥i,eq exp - (v G i -V i,eq ) 2 2T i,eq - µB T ⊥i,eq (2.20) 
where n i,eq , V i,eq , T i,eq and T ⊥i,eq are functions of radius and time:

n i,eq (r, t) = ˆfi d 3 v F S (2.21) n i,eq V i,eq (r, t) = ˆvG i f i d 3 v F S (2.22) n i,eq T i,eq (r, t) = ˆ(v G i -V i,eq ) 2 f i d 3 v F S (2.23) n i,eq T ⊥i,eq (r, t) = ˆµB f i d 3 v F S (2.24)
One wishes to subtract the quantity

n eR (r, θ, t) = i Z i ˆJ0i .f i,eq d 3 v (2.25)
to the right hand side of Eq.(2.18). The idea is then to construct an electron distribution function f eR of the same form as Eq.(2.20) such that n eR = ´feR d 3 v. Here, f eR is constructed as follows:

f eR = n eR (2π) 3/2 T 1/2
e,eq T ⊥e,eq exp -

(v G e -V e,eq ) 2 2T e,eq - µB T ⊥e,eq (2.26) 
where V e,eq , T e,eq and T ⊥e,eq are calculated from the electron distribution function f e computed at time t in the same way as Eqs.(2.22), (2.23) and (2.24). Conversely, the calculation of the electron density prole n eR relies on the constraint imposed by Eq.(2.25). Appendix B.2 details how to compute n eR when J 0e is considered dierent of 1. The quantities i Z i ´J0i .f i,eq d 3 v and ´feR d 3 v can then be subtracted to the left and right hand sides of Eq.(2.18), respectively, which then remains unchanged. Eq.(2.18) is then replaced by: i

Z i ˆJ0i .(f i -f i,eq ) d 3 v + n pol,i = ˆ(f e -f eR ) d 3 v (2.27)
In the current implementation of the quasi-neutrality equation with kinetic electrons in Gysela, some simplications are made:

• We notice that the quantity n eR given by Eq.(2.25) depends on both r and θ. The latter dependency comes from the gyro-average operator J 0 , which exhibits a B dependency. Indeed, using the expression of the normalized gyro-average operator Eq.(2.13), ´d3 v J 0i .f i,eq gives at leading order for protons, in normalized units:

ˆd3 v J 0i .f i,eq n i + A i 2Z 2 i B 2 ∇ 2 ⊥ ˆd3 v µBf i,eq n i 1 + a 2 2L 2 p ρ * 2 i (1 + 2ε cos θ)
with L p the transverse pressure gradient length and ρ * i = m i T i /(aZ 2 i e 2 B 2 0 ) the normalized ion gyro-radius computed with B 0 . Using this rough estimate, the poloidal component of n eR turns out to be of order ερ * 2 i 1 as compared to the leading term, which only depends on r. Consistently, in the following, the poloidal dependency of n eR will safely be ignored.

• We notice that the distribution functions f i,eq and f eR present in Eq.(2.27) depend on time. We choose for now to get rid of this dependency. This simplication should be removed in the future.

Therefore, the quantity substracted on each side of Eq.(2.18) reads:

n eR0 (r) = i Z i ˆJ0i .f i0 d 3 v
where f i0 stands for the initial distribution function of ions. Besides, we write n eR0 = ´feR0 d 3 v where f eR0 is dened by Eq.(2.26) at time t = 0. In that expression, we have chosen V e,eq = 0, T e,eq = T ⊥e,eq = T e0 (r) with T e0 chosen freely. Accounting for these simplications, the quasi-neutrality equation which is eectively solved in Gysela reads as follows:

i Z i ˆJ0i .(f i -f i0 ) d 3 v + n pol,i = ˆ(f e -f eR0 ) d 3 v (2.28)

Filter for (deeply) trapped electrons 2.3.1 The advantage of a lter

Light electrons have a much larger parallel speed than ions, in the typical ratio (m i /m e ) 1/2 at equal temperatures. So as to accurately capture their dynamics, the numerical time step has then to be reduced by the same factor as compared to simulations with adiabatic electrons, i.e. ∆t KE ∼ (m e /m i ) 1/2 ∆t AE ∆t AE (where KE and AE stand respectively for kinetic and adiabatic electrons). This can rapidly lead to a prohibitive increase of the amount of CPU time for a single simulation run. One way of circumventing this diculty is to decrease articially the mass ratio m i /m e in order to reduce the CPU time consumption. By doing so however, the response time scales of electrons are modied and it is therefore important to check how the behaviour of the plasma is impacted. The idea is to see on the one hand if it is possible to make additional hypotheses to circumvent the physical problems posed by an articially low mass ratio and on the other hand if it is possible to retrieve some physics from such simulations that could be compared to the behaviour of a real plasma [12, 8, Candy 2003[START_REF] Bottino | Global nonlinear electromagnetic simulations of tokamak turbulence[END_REF]]:

• Drawback: For "heavy" passing electrons, the inertia term of Eq.(2.5) is no longer negligible.

Consequently, these electrons will not have an adiabatic response, whereas "standard" electrons do. A solution is to force their adiabatic response via a ltering of passing electrons.

• Advantage: Little impact is expected on TEM turbulence since the TEM instability develops at frequencies of the order of ω de ∼ qρ 2 ce ω ce /rR = qTe eBrR which is independent of m e .

Thus the insertion of a ltering in which trapped electrons only are treated kinetically while passing electrons have an adiabatic response, would enable to study both electron turbulence and the impact of kinetic electrons on ion turbulence while ensuring that the passing electrons are correctly described. The idea is to set up a lter in the velocity space:

v G v ⊥ ≤ σ 0 B max (r) B (r, θ) -1 ≡ σ(r, θ) (2.29) 
The ltering parameter σ 0 is a free parameter such that 0 ≤ σ 0 ≤ 1 allowing to treat kinetically only a fraction of trapped electrons. The case σ 0 = 1 implies that all trapped electrons are supposed kinetic whereas the case σ 0 = 0 is equivalent to the adiabatic electrons case. We choose σ 0 = 1 in the following.

Quasi-neutrality with kinetic lter for electrons

The form of the kinetic lter applied to the electrons is greatly inspired from the one used in GT5D [51, Idomura 2016]. The gyrokinetic equation is solved for the entire dis-tribution function of the electrons, irrespective of whether they are passing or trapped 5 .

The kinetic lter is applied to the quasi-neutrality equation only. There, the density of trapped electrons only is calculated from the electron distribution function, the remaining fraction of electrons being assumed to respond adiabatically. For a centred Maxwellian, the fraction of trapped electrons α t is simply α t = σ, with σ given by Eq.(2.29). In the following, we introduce n trap. (2.31)

The integral over the trapped domain is to be taken in between the two limits v G e± (r, θ, µ) = ±σ 2µB/m e : ˆtrap. ...

d 3 v = ˆ∞ 0 dµ ˆvG e+ v G e- J v ... dv G (2.32) 
where J v stands for the Jacobian in velocity space dened in Eq.(2.12). The normalized polarisation density of ions is given by Eq. (2.19). We assume that n e F S is "well" calculated, i.e. that the ux-surface averaged dynamics of all electrons, including passing ones, is well described for the modes (m, n) = (0, 0). In that case, the normalized density of passing electrons n pass. e should satisfy two conditions:

• n pass. 

n pass. e ∝ n adiab e n e F S 1 + 1 T e0 (φ -φ F S ) (2.33) 
• The ux surface average of the density of trapped electrons should satisfy:

n e F S = n trap. e F S + n pass. e F S (2.34) 
These constraints set the form of n pass. e as:

n pass. e = (1 -ᾱt ) n e F S 1 + 1 T e0 (φ -φ F S ) (2.35)
5 This point enables to treat correctly the trapping/detrapping of electrons due to collisions close to the trapped/passing limit.

where ᾱt is the fraction of trapped electrons averaged on a ux surface:

ᾱt (r, t) = n trap. e F S (t) 
n e F S (t)

(2.36)

with n trap. e given by Eq. (2.31). With this form of n pass. e , the zonal density of passing electrons is constructed so as to automatically fulll Eq. (2.34).

So as to improve the accuracy of the numerical solution of Eq.( 2.30), one can subtract the same quantity on both ion and electron sides of the equation. In practice, we can proceed as in section 2.2, and subtract the quantity n eR (r, t) given by Eq.(2.25). The new quasi-neutrality then reads: 

i Z i ˆJ0i .(f i -f i,eq ) d 3 v + n i,pol (2.37) = ˆtrap. (f e -f eR ) d 3 v + n pass. e -(1 -α t,
α t,R (r, θ, t) = ´trap. f eR d 3 v n eR (2.38) 

Implementation of the kinetic lter for electrons in Gysela

The numerical implementation of the quasi-neutrality equation (2.37) is costly because it demands an update of the ux-surface averaged densities and temperatures present in the expressions of f i,eq and f eR every time step. Therefore, we do the same approximation as the one made in Eq.(2.28), and we replace f i,eq and f eR respectively by f i0 and f eR0 , noted simply f e0 in the following. In this part, some approximations are done to simplify equation (2.37). Besides, we add here the electron polarisation density as well as the gyroaverage operator on the electron distribution functions since those are eectively implemented in the code. The quasi-neutrality equation then reads:

- i ∇ ⊥ • (A i n i F S ∇ ⊥ φ) -∇ ⊥ • (A e α t,eq (r, θ, t) n e F S ∇ ⊥ φ) + (1 -ᾱt (r, t)) n e F S T e (φ -φ F S ) = i Z i ˆJ0i (f i -f i0 ) d 3 v (2.39) - ˆtrap. J 0e (f e -f e0 ) d 3 v + (1 -ᾱt (r, t)) n e F S - ˆpass. J 0e f e0 d 3 v
with:

• n s (r, θ, ϕ, t) = ´J0s f s d 3 v + n s,pol : the density prole of species s where n s,pol is dened in Eq.(2.19)

• α t,eq (r, θ, t) = ´trap. J 0e f e,eq d 3 v/ n e F S : the fraction of trapped electrons at equilibrium

• ᾱt (r, t) = n trap. e F S
/ n e F S : the fraction of trapped electrons averaged on a ux surface where

n trap. e = ˆtrap. J 0e f e d 3 v -∇ ⊥ • (A e α t,eq n e F S ∇ ⊥ φ)
This can be written in a more compact form:

L i φ + L e φ + (1 -ᾱt (r, t)) n e F S T e (φ -φ ) = ρ i -ρ trap. e + ρ pass. e (2.40)
where

L i φ = -i A i ∇ ⊥ • ( n i F S ∇ ⊥ φ) L e φ = -A e ∇ ⊥ • (α t,eq (r, θ, t) n e F S ∇ ⊥ φ) (2.41) and      ρ i = i Z i ´J0i (f i -f i0 ) d 3 v ρ trap. e = ´trap. J 0e (f e -f e0 ) d 3 v ρ pass. e = (1 -ᾱt (r, t)) n e F S -´pass. J 0e f e0 d 3 v (2.42)
It appears that the operator L = L i + L e depends both on time t and on the poloidal angle θ. These dependences are numerically costly for two reasons:

• the θ dependency of L implies that (2.40) needs the 2D resolution of a Laplacian.

• the time dependency requires L to be calculated at each time step.

The numerical implementation of this equation requires to make some approximations.

Two levels of approximations can be distinguished: some do not change the quasineutrality condition much and may be kept in Gysela. Others may change the quasineutrality signicantly and should be removed in the future.

The θ dependency of L is due to the trapped fraction α t,eq in the electron polarisation term L e φ. This last term is A i /A e time smaller than L i φ and the approximation α t,eq (r, θ) → ᾱt (r) should have little impact on the quasi-neutrality equation. Moreover, we do the approximation that the averaged densities n s F S and the trapped fraction α t appearing in L do not vary in time. The operator L is approached by the simplied operator L dened as

L = Li + Le with Li φ = -i A i ∇ ⊥ • (n i0 ∇ ⊥ φ) Le φ = -A e ∇ ⊥ • (ᾱ t0 (r)n e0 ∇ ⊥ φ)
where n s0 (r) = ´fs0 d 3 v is the initial radial density prole of species s, ᾱt0 (r) = ᾱt (r, t = 0) is the initial ux surface averaged trapped electron fraction. These approximations add little change to the theoretical quasi-neutrality equation and could be kept in the future version of Gysela.

In order to make the numerical implementation of the quasi-neutrality equation easier, we assume that the averaged densities n s F S and the trapped fraction ᾱt appearing in the other terms of the quasi-neutrality equation vary slowly in time and we do the approximation n s F S → n s0 and ᾱt → ᾱt0 = ´trap. J 0e f e0 F S / ´J0e f e0 F S . This last approximation should be removed in the future. Besides, doing this approximation makes the small correction term ρ pass. e (1 -ᾱt0 (r))n e0 -´pass. J 0e f e0 d 3 v useless.

Therefore, we choose to remove this term in the simplied form of the quasi-neutrality equation. The equation for trapped kinetic electrons in Gysela becomes: 

Li φ + Le φ + (1 -ᾱt0 (r)) n e0 T e (φ -φ F S ) = ρ i -ρ trap. e (2.

Normalized quasi-neutrality equation for full kinetic electrons

The normalized quasi-neutrality equation in the case of full kinetic electrons can be written:

- i A i ∇ ⊥ •(n i 0 ∇ ⊥ φ)-A e ∇ ⊥ •(n e 0 ∇ ⊥ φ) = i Z i ˆJ0 i (f i -f i0 ) d 3 v-ˆJ0e (f e -f e0 ) d 3 v (2.44)
For more readibility, the symbol ... , used for normalized quantities in Gysela in Appendix B.3, will be omitted in the following. Previous equation is equivalent to:

- s A s ∇ ⊥ • (n s 0 ∇ ⊥ φ) = s Z s ˆJ0s (f s -f s0 ) d 3 v (2.45)
where conversely to the previous section the s symbol stands for all species namely both ions and electrons with n Gs and n Gs,eq respectively dened by equations:

nGs = ˆdμ s ˆĴ v dv G s Ĵ0s • fs ; nGs,eq = ˆdμ s ˆĴ v dv G s Ĵ0s • fs,eq
where the normalized equilibrium distribution function is dened as:

fs,eq = c s ns 0

(2π Ts ) 3/2 exp   - v2 G s /2 + μs B Ts   (2.46)
represents the equilibrium part of the distribution function. To avoid the polar coordinate singularity in r = 0, Eq.(2.45) is solved on a corona Ω r min dened as:

Ω r min = {(r, θ) : r min ≤ r ≤ r max ; 0 ≤ θ < 2π} (2.47)
Besides, taking into account boundary conditions periodic in θ and ϕ and Dirichlet in radial direction the previous equation (2.44) can be written as:

                             L FKE φ(r, θ, ϕ) = ρ FKE (r, θ, ϕ) ∀(r, θ) ∈ Ω r min ; 0 ≤ ϕ < L ϕ φ(r min , θ, ϕ) = φ(r max , θ, ϕ) = 0 0 ≤ θ < 2π ; 0 ≤ ϕ < L ϕ φ(r, 0, ϕ) = φ(r, 2π, ϕ) r min ≤ r ≤ r max ; 0 ≤ ϕ < L ϕ φ(r, θ, 0) = φ(r, θ, L ϕ ) ∀(r, θ) ∈ Ω r min (2.48)
with Ω r min dened by (2.47) and

L FKE = - s A s n s 0 (r) ∂ 2 ∂r 2 + 1 r + 1 n s 0 (r) dn s 0 (r) dr ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 (2.49) ρ FKE = s Z s ˆJ0s (f s -f s0 ) d 3 v (2.50)
For inner boundary conditions (r = r min ), two choices are possible, depending on if: (i) r min > ∆r/2 (for a corona case), or (ii) r min = ∆r/2. For the rst case (r min > ∆r/2), Dirichlet conditions are applied, i.e φm 1 = φm (r i = r min , ϕ) = 0. For the second case (r min = ∆r/2), we use the same strategy than the one proposed by Lai [56, Lai 2001] to overcome the 1/r singularity on the axis. This strategy is simply based on the fact that if r min is chosen equal to ∆r/2, the term 1 ∆r 2 -1 r∆r which appear for a standard

Poisson equation is equal to 0. In our case, this strategy is applicable if and only if the radial derivative of the density proles n i 0 is null at r = r min . Using the same strategy as the one used for adiabatic electrons, namely Fourier projection in θ direction and nite dierences in radial direction, leads to the following tridiagonal system (N 1 -1)×(N 1 -1)

system:                    d m 1 u 1 0 • • • 0 l 2 0 . . . 0 d m 2 u 2 0 l 3 d m 3 u 3 0 0 . . . . . . . . . 0 l N 1 -2 d m N 1 -2 u N 1 -2 0 l N 1 -1 d m N 1 -1                                       φ m 1 φ m 2 . . . φ m N 1 -2 φ m N 1 -1                    =                    ρ fke,m 1 ρ fke,m 2 . . . ρ fke,m N 1 -2 ρ fke,m N 1 -1                    (2.51)
where

for each i ∈ [1, N 1 -1]                l i = -β i ∆r 2 -α i 2∆r d m i = β i 2 ∆r 2 + m 2 r 2 i u i = -β i ∆r 2 + α i 2∆r with        α i = s K s (r i ) 1 r i + 1 ns 0 (r i ) dns 0 (r i ) dr β i = s K s (r i ) and K s (r i ) = A s n s 0 (r i ) (2.52)
with ρ m i the poloidal wave vector of ρ i = s [n Gs (r i , θ, ϕ) -n Gs,eq (r i , θ)] and with φ m N 1 = 0.

Let us notice that as for adiabatic electron case, if inner Dirichlet boundary conditions are applied, the matrix system to solve is a (N 1 -2) × (N 1 -2) tridiagonal system equivalent to (2.51) where rst line and rst column are deleted and replaced by the condition φ m 1 = 0.

Normalized quasi-neutrality equation for trapped kinetic electrons

The normalized quasi-neutrality equation in the case of trapped kinetic electrons can be written:

- i A i ∇ ⊥ • (n i 0 ∇ ⊥ φ) -A e ∇ ⊥ • (ᾱ t0 (r)n e 0 ∇ ⊥ φ) + (1 -ᾱt0 (r)) n e 0 Z 2 0 T e (φ -φ FS ) = i Z i ˆJ0 i (f i -f i0 ) d 3 v - ˆtrap. J 0e (f e -f e0 ) d 3 v (2.53) with f s0 = n s 0 (2πT s0 ) 3/2 exp - E s T s0 with E s = 1 2 v 2 G s + µ s B(r, θ) (2.54)
where the radial density and temperature proles for ions (n s 0 and T s0 ) are given while the radial electron temperature prole is dened with a similar form as that of the main ions with τ = T e0 (r peak )/T i0 (r peak ) a prescribed constant parameter. Besides, the radial averaged gradients R/L T i and R/L Te can be set independently. The electron density n e 0 is chosen such that the quasi-neutrality condition is fullled on a ux surface average, i.e

ˆd3 vJ 0e f e0 FS = i Z i ˆd3 vJ 0 i f i0 FS
Considering low electron density gradients, we assume that J 0e f e0 ≈ n e 0 J 0e fe0 with fe0 =

1 (2πT e0 ) 3/2 exp -Ee T e0
, then n e 0 is approximated by:

n e 0 (r) = i Z i ´d3 v J 0 i f i0 FS ´d3 v J 0e fe0 FS (2.55)
The integral on the trapped particles ´trap. is dened for any function g(r, θ, ϕ, v G s , µ s ) as:

ˆtrap.

d 3 v g(r, θ, ϕ, v G s , µ s ) = ˆµs max 0 J v dµ s ˆv+ G s v - G s dv G s g(r, θ, ϕ, v G s , µ s ) (2.56)
where J v = 2πB * s is the jacobian in velocity space and where v ± G s = ±σ 2µ s B(r, θ) with σ(r, θ) 6 dened in Eq.(2.29). ᾱt0 represents the fraction of trapped electrons aver- aged on a ux surface at time t = 0, i.e ᾱt0 = ᾱ(r, t = 0) with ᾱ(r, t) given by Eq.(2.36).

As n e,pol FS (t = 0) = 0 and n trap.

e,pol FS (t = 0) = 0 then:

ᾱt0 = ´trap. d 3 vJ 0e f e (t = 0) FS ´d3 vJ 0e f e (t = 0) FS 6 σ(r, θ) = σ0 ε(1 + cos θ) 1 -ε 1/2 for B(r, θ) ≈ B0R0 R(r, θ) with R(r, θ) = R0(1 + ε cos θ) and ε = r R0
Equation (2.53) can be rewritten as:

L TKE φ + (1 -ᾱt0 (r)) n e 0 Z 2 0 T e (φ -φ FS ) = ρ TKE (2.57) with ρ TKE (r, θ, ϕ) = i Z i ˆJ0 i (f i -f i0 ) d 3 v - ˆtrap. J 0e (f e -f e0 ) d 3 v (2.58)
and 3. Solve for each ϕ ∈ [0, L ϕ [ the 2D following system (2.59) to obtain φ(r, θ, ϕ):

L TKE = - i A i n i 0 (r) ∂ 2 ∂r 2 + 1 r + 1 n i 0 (r) dn i 0 (r) dr ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 -A e n e 0 ᾱt0 ∂ 2 ∂r 2 + 1 r + 1 n e 0 (
                   L TKE + (1 -ᾱt0 (r)) ne 0 Z 2 0 Te φ(r, θ, ϕ) = ρTKE (r, θ, ϕ) ∀(r, θ) ∈ Ω r min φ(r min , θ, ϕ) = φ(r max , θ, ϕ) = 0 0 ≤ θ < 2π φ(r, 0, ϕ) = φ(r, 2π, ϕ) r min ≤ r ≤ r max (2.59)
And applied the periodic boundary conditions in ϕ direction to compute φ(r, θ, ϕ = L ϕ ).

Compute

φ FS and the RHS of (2.60), i.e ρ TKE θ, ϕ + (1 -ᾱt0 )

ne 0 Z 2 0 Te φ FS .
5. Solve the 1D system (2.60) to obtain φ θ, ϕ (r).

       L TKE φ θ, ϕ (r) = ρ TKE θ, ϕ + (1 -ᾱt0 ) ne 0 Z 2 0 Te φ FS ∀r ∈ [r min , r max ] φ θ, ϕ (r min ) = φ θ, ϕ (r max ) = 0 (2.60) 6. Finally, compute φ(r, θ, ϕ) = φ(r, θ, ϕ) + φ θ, ϕ (r).
Let us notice that solving (2.59) is equivalent to solve the same kind of (N 1 -1)×(N 1 -1)

matrix system than (2.51) system, i.e                    d m 1 u 1 0 • • • 0 l 2 0 . . . 0 d m 2 u 2 0 l 3 d m 3 u 3 0 0 . . . . . . . . . 0 l N 1 -2 d m N 1 -2 u N 1 -2 0 l N 1 -1 d m N 1 -1                                       φm 1 φm 2 . . . φm N 1 -2 φm N 1 -1                    =                    ρTKE,m 1 ρTKE,m 2 . . . ρTKE,m N 1 -2 ρTKE,m N 1 -1                    (2.61)
where

for each i ∈ [1, N 1 -1]          l i = -β i ∆r 2 -α i 2∆r d m i = β i 2 ∆r 2 + m 2 r 2 i + (1 -ᾱt0 (r i )) ne 0 (r i ) Z 2 0 Te(r i ) u i = -β i ∆r 2 + α i 2∆r (2.62) with              α i = s =e A s n s 0 (r i ) 1 r i + 1 ns 0 (r i ) dns 0 (r i ) dr + A e n e 0 (r i )ᾱ t0 (r i ) 1 r i + 1 ne 0 (r i ) dne 0 (r i ) dr + 1 ᾱt0 (r i ) d ᾱt0 (r i ) dr β i = s =e A s n s 0 (r i ) + A e ᾱt0 (r i )n e 0 (r i ) (2.63) ρTKE,m i is the poloidal wave vector of ρTKE (r i ) dened as ρTKE = ρ TKE -ρ TKE θ, ϕ
where ρ TKE is given by equation (2.58). The value at outer boundary is given by Dirichlet boundary condition, i.e φm N 1 = 0.

If inner Dirichlet boundary conditions are applied instead of using Lai's strategy, the matrix system to solve is a (N 1 -2) × (N 1 -2) tridiagonal system equivalent to (2.61) where rst line and rst column are deleted and replaced by the condition φm 1 = 0. The second matrix system (2.60) reads:

                   d 1 u 1 0 • • • 0 l 2 0 . . . 0 d 2 u 2 0 l 3 d 3 u 3 0 0 . . . . . . . . . 0 l N 1 -2 d N 1 -2 u N 1 -2 0 l N 1 -1 d N 1 -1                                       φ θ, ϕ (r 1 ) φ θ, ϕ (r 2 ) . . . φ θ, ϕ (r N 1 -2 ) φ θ, ϕ (r N 1 -1 )                    =                    Γ 1 Γ 2 . . . Γ N 1 -2 Γ N 1 -1                    (2.64)
where for each i ∈ [1, N 1 -1] , l i and u i are dened by (2.62) and:

       d i = 2 ∆r 2 β i with β i dened by (2.63) Γ i = ρ θ, ϕ (r i ) + (1 -ᾱt0 (r i )) ne 0 Z 2 0 Te(r i ) φ FS (r i )

Introduction of a pure density source term in Gysela

Fusion tokamaks are open systems with particle and energy losses partly due to transport.

For equilibrium density and temperature proles to reach steady states, it is necessary to provide sources of particles and energy to compensate for these losses. In the gyrokinetic model we use, this can be modelled by introducing a source distribution S s for each species s on the right hand side of the gyrokinetic equation which takes the normalized form: 

df s dt = S s (2.
df s dt = S n s + S v G s + S E s + S Ω s (2.66)
In the adiabatic electrons model, there can be no density transport as discussed in section 2.1.2, and therefore no density source. This is no more the case in multi-species simulations with kinetic electrons, and a density source for each species s, can be added to the right hand side of the gyrokinetic equation (2.66). This section aims to give a form the pure density source term can take with kinetic electrons, the pure source terms of momentum, energy and vorticity being unchanged from the adiabatic electrons case and implemented in appendix A of the paper [73, Sarazin 2011]. It should be stressed that as f s is the distribution function of gyrocentres, S s acts as a source term for the gyrocentre density, momentum, energy and vorticity. In particular, S n s acts as a source of gyrocentres. We will see that adding a real particle source is equivalent to adding a vorticity source for gyrocentres. First, a general form of the pure density source term is given. Second some conditions implied by momentum, energy and vorticity 7 conservations are derived. Finally, a simplied example of a pure density source term is given.

When density transport can occur, a density source S n s (r, θ, ϕ, v , µ) for each species s can be added to the right hand side of the gyrokinetic equation. To simplify the problem, S n s is taken axisymmetric in the toroidal angle ϕ. For all species, this source term has the same normalized form so that, between dierent species, S n s diers only by a constant factor noted S n 0s . This hypothesis is based on the idea that, in velocity space, the source distribution of each species are set as Maxwellian. Consequently, the density source term takes the normalized form:

S n s = S n 0s S r (r) S E (r, θ, v , µ) (2.67)
The density source term is decomposed into a xed radial part S r which corresponds to the radial shape of the source, and a kinetic part S E setting the distribution of the 7 Whenever one has the vorticity conservation, the charge conservation for particles is trivial.

source in velocity space with ´r dr S r (r) = 1 and ´SE d 3 v = 1.

As said previously, we would like to have a density source term S n s which injects gyrocentres without injecting momentum, energy or vorticity. The conservations imply conditions on the form of S E . The aim here is to express these conditions in order to eventually nd a suitable form of the density source S n s .

S E is developed on an orthogonal base of Hermite and Laguerre polynomials:

S E = ∞ l=0 ∞ h=0 c hl H h (ζ)L l (u) e -ζ 2 -u (2.68)
where the following denitions have been used:

ζ 2 ≡ A s v 2 G s 2T s,srce ; u ≡ µB T s,srce (2.69)
T s,srce being the constant source temperature for the s species. This source temperature is independent of the species temperature in the plasma and can be set arbitrarily. To simplify the study, we suppose it to be the same for every species and is noted T source . With the adopted denitions, B * = B(1

+ J B ζ) and J B = √ 2T source J /B 2 where J
stands for the current parallel to the magnetic eld, the integral over the velocity space reads as follow:

ˆd3 v ≡ ˆ+∞ -∞ dv G ˆ+∞ 0 2πB * dµ = (2πT source ) 3/2 √ π ˆ+∞ -∞ (1 + J B ζ) dζ ˆ+∞ 0 du
Let us consider a normalized source distribution S = S r S E . We now compute the integrated source of density S n , momentum S v G , energy S E and vorticity S Ω associated with this source. By denition, these integrated sources are dened as:

             S n = ´d3 v S r S E S v G = ´d3 v v G S r S E S E = ´d3 v v 2 G 2 + µB S r S E S Ω = ´d3 v J 0s S r S E (2.70)
The calculation of the integrated sources is made in [73, Sarazin 2011]. In the end, it comes:

           S n = (2πT source ) 3/2 S r c 00 + J B c 10 S v G = 2π 3/2 T 2 source S r 2c 10 + J B (c 00 + 4c 20 ) S E = (2π) 3/2 T 5/2 source S r 3 2 c 00 + 5 2 J B c 10 + 2c 20 + 6J B c 30 -c 01 -J B c 11 S Ω = S n + √ 2π 3/2 T 5/2 source B 2 ∇ 2 ⊥ [S r (c 00 -c 01 )] + J B ∇ 2 ⊥ [S r (c 10 -c 11 )] (2.71)
We want our source distribution term to be a pure source of density and this implies that S v G , S E and S Ω should be set to zero with S n being non zero. These conditions are sumed up in the following system:

           Injection of density c 00 + J B c 10 = 0
Conservation of momentum 2c 10 + J B (c 00 + 4c 20 ) = 0

Conservation of energy

3 2 c 00 + 5 2 J B c 10 + 2c 20 + 6J B c 30 -c 01 -J B c 11 = 0 Conservation of vorticity ∇ 2 ⊥ [S r (c 00 -c 01 )] + J B ∇ 2 ⊥ [S r (c 10 -c 11 )] = 0 (2.72) satised if c 00 = c 01 = -4c 20 = 0 c 10 = c 11 = c 30 = 0
The condition of conservation of the vorticity (or charge) is very strong: no species is allowed to introduce charges into the system, which is equivalent to a conservation of particles. A less drastic condition is s Z s S s Ω = 0 which imposes the overall charge conservation in the plasma. In addition, care must be taken to inject as many positive as negative charges in the space of the gyrocentres so as not to polarize the system. We must therefore satisfy the condition s Z s S s n = 0. It should be noted that as we are dealing with the gyrocentres distribution functions, these conditions imply a pure source of gyrocentre density. To insert particles, one must have S Ω = 0 while having s Z s S s Ω = 0 to conserve the charge globally. Finally, one can introduce pure momentum or energy sources with a similar study.

For instance, whenever we suppose J B 1, system (2.72) reduces to c 20 = c 00 /2 and c 10 = c 01 = c 11 = 0. Then, setting arbitrary the value c 00 = 1/2, it can be veried that

S n s = S n 0s S r (r) ζ 2 s e -ζ 2 s -u (2.73)
is a possible form for a simplied pure particle source term. This density source term should be added later in Gysela. A major asset of Gysela is the possibility to be uxdriven, i.e. to impose constant source proles. This condition is necessary to simulate a turbulent transport regime at steady state. In the following however, we will not take into account the sources. In the linear study of section 4.2, the associated turbulent transport is negligible so that density and temperature proles remain approximately constant. Therefore, there is no need of source terms to prevent proles relaxation. The same remark applies for the non-linear study of section 4.4, which only explores the very beginning of the non-linear phase. Indeed, in this case, density and temperature proles do not evolve signicantly.

Chapter 3

Contribution of trapped electrons to the damping of geodesic acoustic modes (GAM)

One of the well known saturation mechanisms for the Ion Temperature Gradient (ITG) instability is the production of axisymmetric Zonal Flows (ZF) 1 that serve to shear stabilize the instability [44, Hammett 1993], [78, Waltz 1994]. Zonal Flows are therefore an essential element to both predict and limit turbulent transport levels in tokamaks. In 1996, gyrouid simulations were carried out in which the Zonal Flows were systematically damped [37, Glanz 1996]. Such disappearance of these axisymmetric modes would imply that ITG turbulence would severely limit connement in tokamaks. However, in their paper published in 1998 [71, Rosenbluth 1998], Rosenbluth and Hinton have shown that by adopting a kinetic approach, these Zonal Flows are not damped in the absence of collisions. This analytical result was later conrmed by gyrokinetic codes which all notice that the potential relaxes through time towards a non-zero residual that corresponds to the Zonal Flow value.

This study has led to a new test for gyrokinetic codes called the Rosenbluth-Hinton test which consists in introducing an axisymmetric perturbation of the radial potential prole φ(r) = φ0 sin(kr), and characterize its time evolution [7, Biancalani 2017]. This test provides the residual value the ow φ ∞ , as predicted by Rosenbluth and Hinton, and also the pulsation ω GAM and damping rate γ GAM of the Geodesic Acoustic Mode (GAM), which is another mode of the potential which vanishes through time. The GAM complex frequency is well documented in the particular case of a single ion species with the residual ow and the GAM frequency are mostly unchanged [13, Chen 2003], the GAM damping rate increases signicantly [83, Zhang 2010]. This is attributed to a resonance match between the GAM and the trapped electron bounce pulsations, which changes the imaginary part of the dispersion relation, while it weakly aects its real part.

The objective is to provide an analytical estimate of the trapped electrons contribution to GAM damping, which does not seem to be available in the literature. A variational formulation is used, which is close to the one used previously to study Energetic Geodesic Acoustic Modes (EGAM) [81, Zarzozo 2012]. First the known dispersion relation of GAM is recovered using this methodology. Second an analytic expression for the GAM pulsation and damping rate is derived. In particular, the contribution of trapped electrons to the GAM damping rate is computed. A comparison of the GAM pulsation and damping rate between the analytical formulas derived here and the numerical results found using the Full Kinetic Electron (FKE) model of the Gysela code is then carried out. This study has the double objective to quantify the impact of trapped electrons on the damping of GAM and to verify and benchmark the FKE model.

Dispersion relation of GAM

We anticipate that diamagnetic eects are negligible for GAMs, i.e. we consider a plasma of electrons and hydrogenoid ions with constant density N = N e = N i , and constant electron and ion temperatures T e and T i .

Vlasov equation

The Vlasov equation reads :

∂ t F (x, p, t) -[H, F ] (x, p, t) = S(x, p, t) (3.1)
where S is a source, H the Hamiltonian, F the distribution function. The Poisson bracket is given by :

[H, F ] = ∂H ∂x • ∂F ∂p - ∂H ∂p • ∂F ∂x (3.2)
It is possible to dene two Hamiltonians H and H eq :

H = 1 2 mv 2 + µB + eφ(x, t) (3.3) 
H eq = 1 2 mv 2 + µB + eφ eq where φ stands for the electric potential. H is the hamiltonian corresponding to the distribution function F whereas H eq is the hamiltonian corresponding to the distribution function at equilibrium F eq . We dene F eq and F H as :

F eq = N (2πmT ) 3/2 exp - H eq T (3.4) F H = N (2πmT ) 3/2 exp - H T (3.5)
where N and T are constant density and temperature. The steady equilibrium potential φ eq will be neglected. It is possible to decompose F in two dierent manners :

F =F eq + f (3.6) F =F H + g (3.7)
It may be interesting to write the expression of f knowing g in the saturation limit

eφ T ∼ ρ * 1 described in Appendix C.1. In that limit, it is possible to develop F H knowing F eq . 2 F H = F eq exp - e T (H -H eq ) = F eq 1 - e T φ + O eφ T 2 (3.8)
2 O(A) is a functional equivalent to any functional A.

Equations (3.6) and (3.7) imply f -g = F H -F eq and it comes :

f g -F eq e T φ

(3.9)

Rewriting (3.1) using decomposition (3.7), it comes : 

∂ t g -[H, g] + ∂ t (F H ) -[H, F H ] = S
∂ t g -[H, g] = F eq e T ∂ t φ + S (3.10)
In Appendix C.1, we prove that, in the case of the saturation limit eφ T

1, the Hamiltonian can be replaced by its equilibrium value H eq in the expression above, i.e. the Vlasov equation can be linearised : 

∂ t g -[H eq , g] = F eq e T ∂ t φ + S
dα i dt = ∂H eq ∂J i = Ω i (J) dJ i dt = - ∂H eq ∂α i = 0
where i = (1, 2, 3). This is a consequence of the existence of 3 motion invariants of the unperturbed system, namely the hamiltonian H eq , the magnetic moment µ, and the canonical toroidal momentum P ϕ = eψ + mv Bϕ B R, where ψ is the poloidal ux normalized to 2π. The rst angle is the cyclotron angle, and the corresponding action is proportional to the adiabatic invariant J 1 = m e µ. The second and third angles are related to the guiding center motion. More precisely the third angle is equal to the toroidal angle up to an oset that is a periodic function of the second angular variable α 2 . The corresponding action is the canonical toroidal momentum P ϕ . The second angle describes the bounce (resp. transit) motion of trapped (resp. passing) particles. The corresponding action can be derived explicitly, but is of little use here as it can be replaced by the energy H eq at given µ and P ϕ .

The pertubed hamiltonian h is dened here so that Z τ h = eφ/T with Z the charge number (i.e. Z i = 1 for ions and Z e = -1 for electrons) and τ = T /T i (i.e. τ i = 1 for ions and τ e = T e /T i for electrons). Thanks to the periodicity with respect to the angle and time variables, all quantities can be developed in Fourier series as :

g(α, J, t) = nω g nω exp {i (n • α -ωt)} (3.12) h(α, J, t) = nω h nω exp {i (n • α -ωt)} (3.13)
Replacing this expression of g in equation (3.11), it comes for each mode (n, ω) :

-iωg nω - j          ∂H eq ∂α j 0 ∂g n,ω ∂J j - ∂H eq ∂J j Ω j ∂g n,ω ∂α j in j gn,ω          = Z τ F eq (-iωh n,ω ) + S n,ω -iωg nω + i j n j Ω j g n,ω = -iω Z τ F eq h n,ω + S n,ω
An exact solution of Eq.(3.11) is :

g nω = ω Z τ F eq h nω + iS n,ω ω -n • Ω + i0 +
The term +i0 + is used to do an analytical extension when the real part of the denominator vanishes according to the Landau prescription.This term cannot be skipped for causality reasons. Without sources, this solution becomes :

g nω = ω ω -n • Ω + i0 + Z τ F eq h nω (3.14)

Quasi-electroneutrality

The quasi-electroneutrality equation takes the form species Z s N s = 0. This equation is supposed to be satised at equilibrium, which implies species Z s ´d3 pF s,eq (x, p, t) = 0.

Using the decomposition of the distribution function (3.6), the quasi-neutrality constraint can be written as :

species Z s ˆd3 pf s (x, p, t) = 0 (3.15)
The quasi-electroneutrality constraint can be reformulated in a weak form 3 as : with h † an arbitrary eld. The strong formulation Eq.(3.15) can be rewritten as ∂L ∂h † = 0, where the functional L is dened as :

∀h † (x, t), ˆd3 x    species Z s ˆd3 pf s (x, p, t)    h † (x, t) = 0
L = -N T i species Z s ˆdςf s (x, p, t)h † (x, t) (3.17)
where the volume element in the phase space dς = d 3 x d 3 p = d 3 αd 3 J has been introduced. Replacing f s by its expression depending of g s on each mode ω (Eq.(3.9)), it comes :

L ω = -N T i species Z s ˆdς - Z s τ s F s,eq h ω + g s,ω h † ω
For now, h † ω is indeterminate. We wish to take for the functional L the Lagrangian of the particles, ions and electrons included. To do this, we choose h † ω = h * ω . Decomposing g on its linear solutions given in Eq.(3.14), the functional recasts as :

L ω = N T i species Z 2 s τ s ˆd3 xh ω h * ω -N T i species Z 2 s τ s ˆdςF M n ω ω -n • Ω + i0 + h nω h * nω (3.18)
where we have introduced F M = F eq /N the Maxwellian normalized to the density. This prole is set as the same for all species. The imaginary part of the resonant integral is most easily calculated in the action/angle space, using the volume element dς = d 3 α d 3 J. Also the unperturbed Hamiltonian H eq (J) is a function of the actions only and Ω is a set of resonant frequencies Ω i = ∂Heq ∂J i . Since the GAM frequency is much lower than the cyclotron frequency, only n 1 = 0 components are kept in Eq. (3.18). This is equivalent to a gyrokinetic calculation, with an hamiltonian H eq = 1 2 mv 2 + µB. Moreover, a GAM has a toroidal wave number that is null, which implies n 3 = 0 since α 3 = ϕ up to a periodic function of α 2 . Therefore the summation should be run on n 2 integers only. We note that useful equivalent formulation of the functional is

L ω = N T i species 1 τ ˆdςF M |φ ω | 2 -|J 0 • φ ω | 2 -N T i species 1 τ ˆdςF M v D • ∇φ ω -iω 2 -N T i species 1 τ n ˆdςF M ω ω -n • Ω + i0 + n • Ω ω h nω 2 (3.19)
where J 0 denote the gyroaverage operator, v D is the vertical drift velocity, and the summation over n is restricted to components n 1 = 0, n 3 = 0.

Trajectories and hamiltonian components

In the expression of the functional, the coecients h ω and h n 2 ω are unknowns of the problem. It is therefore needed to guess the shape of these hamiltonian components depending of the poloidal structure of the potential. First, we recall the expressions of passing and trapped trajectories using the angle-action variables. Second, a guess for the hamiltonian components appearing in the Lagrangian expression (3.18) is given.

Trajectories using angle-action variables

The general expressions of the guiding center position and poloidal angle read :

r G = r + r θ G = c α 2 + θ
where r is the minor radius of a reference magnetic surface, c = 1 (resp. 0) for passing particles. The functions r and θ are functions of the actions J, or equivalently to the motion invariants (H eq , µ, P ϕ ), and periodic functions of α 2 . We will omit to mention explicitly the dependencies on the motion invariants, to simplify the notations. The functions r and θ can be chosen respectively as even and odd functions of α 2 . For deeply passing particles, one nds :

r = δ c cos α 2 θ = - δ c r sin α 2
where

δ c = - v D Ω 2 v D = - mv 2 + µB eBR 0 Ω 2 = v qR 0 (3.20)
Here δ c is the displacement of a drift surface and is of order qρ c , where ρ c is the gyroradius. The trajectory equations Eq.(3.20) are valid at order 1 in δ c /r. Eq.(3.20) corresponds to a circle that is shifted horizontally by a distance δ c from the magnetic surface.

Fourier components of the hamiltonian

In the following, we use the GAM electric potential φ in position variables normalized to the perturbed hamiltonian h in angle-action variables so that φ(x, t) = h(α, J, t). While keeping a single radial wave vector, the GAM electric potential is expanded in Fourier series with respect to the poloidal angle :

φ ω (r, θ) = +∞ m=-∞ φmω (K)e i(Kr+mθ) (3.21)
First, φ ω is developed around the gyrocentre position (r G , θ G ) : φ ω (r, θ) = J 0 φ ω (r G , θ G ).

Second, using the hamiltonian decomposition Eq.(3.13) of h ω in α, the mode n = (0, n 2 , 0) is given by :

h n 2 ω (J) = ˚+π -π dα 1 2π dα 2 2π dα 3 2π J 0 +∞ m=-∞ φmω (K)e i(Kr G +mθ G ) e -in 2 α 2 = J 0 ˆ+π -π dα 2 2π +∞ m=-∞ φmω (K)e i(Kr G +mθ G -n 2 α 2 )
Using the trajectory equations Eq. (3.20), the correspondence between Fourier and hamiltonian components is found to be :

h n 2 ω (J) = e iKr J 0 ˆ+π -π dα 2 2π +∞ m=-∞ φmω (K)e i[K r+m θ+( cm-n2)α2] (3.22)
As seen above θ is of the order of δc r for passing particles, and can therefore be neglected against K r if K m r . It is shown in Appendix C of the thesis of C. Nguyen [65, Nguyen 2009] that φmω (K) scales as (-iKρ i ) m φ0ω , where ρ i = mv T i eB 0

is the thermal ion gyroradius. We will therefore use the following auxiliary real numbers :

φmω = (-i) m φ m (3.23) 
with φ -m = φ m and

η m = φmω (-iKρ i ) m = φ m (Kρ i ) m ∼ o(1) (3.24)
Moreover a calculation of the potential at order 2 in Kρ i guarantees a functional that is correct at 4th order. In the following we consider only the harmonics m = 0, ±1, ±2 consistent with a second order calculation of the potential in Kρ i , i.e.

φ ω = φ 0 + 2φ 1 sin(θ) -2φ 2 cos(2θ) + o(K 3 ρ 3 i )φ 0 (3.25)
that will also be written

φ ω = φ 0 1 + 2Kρ i η 1 sin(θ) -2K 2 ρ 2 i η 2 cos(2θ) + o(K 3 ρ 3 i ) (3.26)

Passing particles

For passing particles c = 1. Replacing Eq.(3.23) in Eq.(3.22), one gets :

h n 2 ω = i n 2 e iKr J 0 (Kρ i ) m (-1) m J n 2 -m (Kδ c ) φ m (3.27)
where J n 2 (Kδ c ) is the Bessel function of index n 2 and argument Kδ c , that will be written in short Jn 2 to avoid the confusion with the gyroaverage operator. The decomposition of the perturbed hamiltonian can be written with both position-momentum and angleaction variables φ ω (x) = h ω (α, J) with :

φ ω = m (-i) m φ m exp(imθ) h ω = n 2 h n 2 ω exp(in 2 α 2 )
Using the fact that ´d3 xd 3 pφ ω φ * ω = ´d3 αd 3 Jh ω h * ω and the development of φ ω around the gyrocentre position (r G , θ G ) : φ ω (r, θ) = J 0 φ ω (r G , θ G ), it can be veried that :

n 2 |h n 2 ω | 2 = J 2 0 m |φ m | 2 (3.28)
Since δ c is the radial shift of a drift surface relative to the reference magnetic surface, it appears that the operator Jn 2 is similar to the gyroaverage operator, with the gyroradius replaced by δ c . In the limit of small wave numbers Kδ c 1,

J 0 (Kδ c ) 1 -1 4 K 2 δ 2 c ,
and

J n 2 (Kδ c ) 1 n 2 ! Kδc 2 n 2
for n 2 = 0. These properties ensure a rapid convergence of the series in n 2 whenever Kρ i is small enough. We keep only the rst harmonics n 2 = 0, ±1, ±2, consistent with a calculation at order 2 in Kρ i , and therefore order 4 for the Lagrangian. The correspondence Eq.(3.27) leads to the following relations :

h 0 = e iKr J 0 J0 φ 0 h 1 = ie iKr J 0 J1 φ 0 -J0 φ 1 h -1 = ie iKr J 0 J1 φ 0 + J0 φ 1 h 2 = -e iKr J 0 J2 φ 0 -J1 φ 1 + J0 φ 2 h -2 = -e iKr J 0 J2 φ 0 + J1 φ 1 + J0 φ 2 (3.29)
Setting b = Kδ c , the Bessel functions are expanded as :

J0 = 1 -b 2 4 + b 4 64 + o(b 6 ) J1 = b 2 1 -b 2 8 + o(b 5 ) J2 = b 2 8 + o(b 4 ) (3.30) consistent with the constraint J2 0 + 2 J2 1 + 2 J2 2 = 1 + o(b 6 ).

Trapped particles

For trapped particles c = 0. Replacing Eq.(3.23) in Eq. (3.22), one gets :

h n 2 ω = e iKr J 0 ˆdα 2 2π exp {i(K r -n 2 α 2 )} φ 0 + 2φ 1 sin θ -2φ 2 cos 2 θ (3.31)
For large wavelengths K r 1 and anticipating that only n 2 = 0 components will matter for damping, one nds

h n 2 ω = e iKr J 0 ˆdα 2 2π exp (-in 2 α 2 ) iK rφ 0 + 2φ 1 sin θ -2φ 2 cos 2 θ (3.32)
For electrons, the operator J 0 is set to unity, consistently with the expansion of the potential at order 1 in Kρ i . Also the banana width is small and will be neglected as it introduces a subdominant dependence on the electron mass. Hence the hamiltonian components read

h n 2 ω = e iKr hn 2 ω Kρ i φ 0 (3.33)
where

hn 2 ω = 2 ˆ2π 0 dα 2 2π η 1 sin θ -η 2 Kρ i cos 2 θ e -in 2 α 2
(3.34)

Real part of the dispersion relation

It turns out that the real part of the lagrangian is most easily computed by using Eq. (3.19) and the relationship

-in • Ωh nω = v D • ∇ + v ∇ φ ω n (3.35) 
We introduce the dimensionless Lagrangian L = L/N i T i and its density L dened as L = ´d3 x L , which can be written as

L = N T i species 1 τ |φ ω | 2 -|J 0 • φ ω | 2 -N T i species 1 τ v D • ∇φ ω -iω 2 - species 1 τ n 2 ω ω -n 2 Ω 2 + i0 + v D • ∇ + v ∇ φ -iω nω 2 (3.36)
where brackets indicate an average over the velocity space with a Maxwellian weight. The extremalisation of L with respect of φ * 1 and φ * 2 allows to compute φ 1 and φ 2 as a function of φ 0 . The calculation will not be repated here as it was done in [64, Nguyen 2008], using a double expansion in Kρ i and 1/qΩ, where Ω = ωR 0 v T i

. Reference [START_REF] Nguyen | Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks[END_REF] addresses in fact the case of Beta Alfvén Eigenmode (BAE), but also covers GAMs, which is found by imposing the electrostatic limit (ψ ω = 0 and E ω = φ ω ) in the notations of [START_REF] Nguyen | Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks[END_REF]. One then nds

φ 1 = 1 + 2 + τ e q 2 Ω 2 + o 1 q 4 Ω 4 τ e Kρ i Ω φ 0 + o(K 3 ρ 3 i )φ 0 (3.37)
and 

φ 2 = - 7 4 + τ e + τ e (2 + τ e ) q 2 Ω 2 + o 1 q 4 Ω 4 τ e Ω 2 K 2 ρ 2 i φ 0 (3.38)

REAL PART OF THE DISPERSION RELATION

L = Λ 1 -Λ 2 K 2 ρ 2 i K 2 ρ 2 i |φ 0 | 2 (3.39)
where 

Λ 1 = 1 - 7 2 + 2τ e 1 Ω 2 - 23 2 + 8τ e + 2τ
2T i /m i /(qR 0 ).
It appears that kinetic electrons play a minor role in the GAM expression. In fact, the kinetic answer of electrons is contained in the terms in ω / ω ± Ω e 2 of Eq.(3.19). Although, these terms do not impact much the GAM pulsation, it will be seen further that they must be taken into account while evaluating the damping rate.

GAM damping

Contrary to the GAM pulsation, which is not much changed whether electrons are adiabatic or kinetic, the GAM damping is believed to depend greatly of the kinetic answer of electrons [83, Zhang 2010]. The amount of exchanged energy between particles and wave is derived from the imaginary part of the Lagrangian for ions rst and for electrons second. Then the associated damping rate is computed and compared to the existing theory.

Contribution of ions to GAM damping

The The imaginary part of the normalized functional takes the following expression:

L = K 2 ρ 2 i |φ 0 | 2 1 2 π 2 q 5 Ω 3 e -q 2 Ω 2 2 1 + 2 1 + 2τ e q 2 Ω 2 + o 1 q 4 Ω 4 + K 2 ρ 2 i 1024 π 2 q 9 Ω 5 e -q 2 Ω 2 8 1 + 16 1 + τ e q 2 Ω 2 + o 1 q 4 Ω 4 (3.42)
Finally the total functional is found to be:

L = K 2 ρ 2 i |φ 0 | 2 Λ 1 -Λ 2 K 2 ρ 2 i + i 1 2 π 2 q 5 Ω 3 e -q 2 Ω 2 2 1 + 2 1 + 2τ e q 2 Ω 2 + i 1 1024 π 2 K 2 ρ 2 i q 9 Ω 5 e -q 2 Ω 2 8 1 + 16 1 + τ e q 2 Ω 2 (3.43)
that can be compared directly to Eq.( 6) of [84, Zonca 2008]. Each bracket [...] is calculated up to an error of order 1 q 4 Ω 4 . Moving back to physical units, the density of exchanged energy per volume and time unit:

W i = π 2 N i T i v T i R 0 K 2 ρ 2 i |φ 0 | 2 q 5 Ω 4 e -q 2 Ω 2 2 1 + 2 1 + 2τ e q 2 Ω 2 + K 2 ρ 2 i 512 q 4 Ω 2 e -q 2 Ω 2 8 1 + 16 1 + τ e q 2 Ω 2 (3.44)
where the normalized frequency Ω is given by the dispersion relation L = 0.

Contribution of electrons to GAM damping Reduction of the lagrangian

Deeply passing electrons contribute weakly to GAM damping because of their large velocities. This can be seen in Eq.(3.44) when applied to electrons, where the small electron to ion mass ratio in the exponential leads to a tiny value of the power exchange compared with the contribution of passing ions. However trapped electrons do contribute to GAM damping because their bounce frequency becomes small near the passing/trapped domain and meet a resonance with the GAM pulsation [13, Chen 2003]. In principle barely passing electrons may also contribute. However their contribution was found to be small numerically [START_REF] Chen | Simulations of turbulent transport with kinetic electrons and electromagnetic eects[END_REF]. Let us introduce a resonant Lagrangian for the electrons (both trapped and passing)

L res,e = -N i T i 1 τ e +∞ n 2 =-∞ ˆdςF M ω ω -n 2 Ω 2 + i0 + |h nω | 2 (3.45)
The electron bounce pulsation Ω 2 scales as the electron transit frequency v T e qR 0 , i.e. is much larger than the GAM pulsation. However Ω 2 becomes small near the trapped/passing boundary, thus allowing a resonance, and therefore damping. We introduce a normalized bounce pulsation

Ω b = Ω 2 qR 0 v T e (3.46) 
where v T e = T e /m e is the electron thermal velocity. We will also make use of the scaling parameter σ = qτ

-1/2 e
(m e /m i ) 1/2 , which is proportional to the square root of the electron to ion mass ratio, hence a number that is small compared to one. The bounce frequency normalized to the ion transit frequency can then be written

Ω 2 R 0 v T i = Ω b σ (3.47)
The resonance condition requires Ω b σ 1. The volume integrated energy transfer from a GAM to electrons is W e = 2ω (L res,e ).

We introduce a normalized Lagrangian

Lres,e = L res,e τ e

N i T i K 2 ρ 2 i |φ 0 | 2 (3.48)
which is readily written as

Lres,e = -

+∞ n 2 =-∞ ˆdςF M Ω Ω -n 2 Ω b σ + i0 + hn 2 ω 2 (3.49)
To simplify the notations, we omit the explicit dependencies of the Hamiltonian on the actions and the rst and third angle variables. Hence the perturbed Hamiltonian reads

hω (α 2 ) = +∞ n 2 =-∞ hn 2 ω e in 2 α 2 (3.50)
consistently with

hn 2 ω = ˛dα 2 2π hω (α 2 ) e -in 2 α 2 (3.51)
We make use of the relations

1 Ω -n 2 Ω b σ + i0 + = -i σ |Ω b | ˆ+∞ 0 ds exp i σ Ω Ω b -n 2 + i0 + s (3.52)
and

+∞ n 2 =-∞ e in 2 X = +∞ p=-∞ 2πδ (X -2πp) (3.53) 
where = sign (Ω b ) is the sign of the parallel velocity for passing particles, and is equal to 1 for trapped particles. This procedure, detailed in Appendix C.3, leads to the following expression of the Lagrangian

Lres,e = 2iπσΩ +∞ p=-∞ ˆdς F M |Ω b | ˛dα 2 2π hω (α 2 ) ˛dα 2 2π h * ω α 2 Θ α 2 -α 2 + 2pπ exp iσ Ω Ω b α 2 -α 2 + 2pπ (3.54)
where Θ is a Heaviside function (Θ(x) = 1 for x > 0, 0 otherwise). This expression can also be obtained by solving the Vlasov equation when using angular variables. It is reminded that dς = d 3 α d 3 J = (2π) 3 d 3 J is the volume integration element in the phase space. For passing particles, this integration element contains a summation of the sign of the parallel velocity

. At this point it is convenient to choose [-π, π] as the interval spanned by α 2 and α 2 . For = 1, negative values of p do not contribute because of the Heaviside function, while for p ≥ 1, the Heaviside function is equal to 1so that the Heaviside function matters only for p = 0. For similar reasons, only negative values of p matter when = -1. A convenient form of Eq.(3.54) can be obtained after a summation over the index p ≥ 1 for = 1 (p ≤ -1 for = -1), namely

Lres,e = 2iπσΩ ˆdς

F M |Ω b | ˆπ -π dα 2 2π ˆπ -π dα 2 2π hω (α 2 ) h * ω α 2 exp iσ Ω Ω b α 2 -α 2    Θ α 2 -α 2 + 1 exp -2iπσ Ω |Ω b | -1    (3.55)
Eq.(3.55) can be considered as a workable form. Its main advantage is to avoid using explicit resonances. Also it exhibits clearly the parametric dependencies. A convenient alternative form is

Lres,e = 2iπσΩ ˆdς 

F M Ω b ˆπ -π dα 2 2π ˆ ∞ α 2 dα 2 2π hω (α 2 ) h * ω α 2 exp iσ Ω Ω b α 2 -α 2 Notations λ = µB 0 H b (λ) θ 0 (λ) κ Passing 0 ≤ λ ≤ λ min = 1 1+ε 0 π 0 ≤ κ ≤ 1 Trapped λ min ≤ λ ≤ λ max = 1 1-ε 1 -π ≤ θ 0 ≤ π 1 ≤ κ ≤ +∞

Quantitative estimate of GAM electron damping

The phase space density F M dς in the Lagrangian Eq.(3.55) reads

F M dς = dV =±1 dλ 2 π dvv 3 1 |Ω b | e -v 2 (3.56) 
where dV = 4π 2 R 0 rdr is the volume element, λ = µB 0 Heq , is the sign of the parallel velocity (for passing particles only) , and v is a normalized velocity v 2 = 1 2 mv 2 + µB /T .

The bounce/transit pulsation reads

1 |Ω b | = 1 + b √ 2v τ (λ) (3.57) 
where

τ (λ) = ˆθ0 -θ 0 dθ 2π 1 (1 -λ + ελ cos θ) 1/2 (3.58)
Here θ 0 is the poloidal angle of a trapped particle turning point, i.e. the positive solution of v (E, λ, θ) = 0, while θ 0 = π for passing particles. The meaning of the notations for trapped and passing particles is given in Table 3.1. The bounce/transit frequency Ω b has been chosen positive. It exhibits a discontinuity at the trapped/passing boundary.

The reason is that a barely passing particle makes one turn in θ, i.e. 2π, while a barely trapped particle moves back and forth in the poloidal direction, and therefore spans a 4π interval in θ. It can be veried that ´dςF M = 1, as expected. The pitch-angle variable λ does not allow an easy handling of the singularity at the passing/trapped boundary.

It is therefore useful to introduce an alternative pitch angle parameter κ dened as

κ 2 = 2ελ 1 -λ(1 -ε) (3.59) It appears that dλ = 4ε (1 + ε) 2 κ dκ Λ 2 (κ) (3.60) and v v T e = ε 1 + ε 1/2 2v Λ 1/2 (κ) 1 -κ 2 sin 2 θ 2 1/2 (3.61)
where

Λ(κ) = 2ε + (1 -ε) κ 2 1 + ε (3.62)
The function Λ(κ) is smooth near κ = 1, with Λ(1) = 1. The bounce/transit time can be explicited in terms of the complete elliptical function of the rst kind K, namely

τ (κ) = 1 + ε 2ε 1/2 Λ 1/2 (κ)τ (κ) (3.63) 
where

τ (κ) = 2 π      K(κ 2 ) if 0 ≤ κ ≤ 1 1 κ K 1 κ 2 1 ≤ κ ≤ +∞ (3.64) 
Details on the link between the angular variable α 2 and the poloidal angle θ can be found in the Appendix C.2.

In the following only the contribution of trapped electrons is kept, since passing electrons contribute weakly to damping. Using this set of variables in the limit of large aspect ratio ε 1, the integrand of the Lagrangian Eq.(3.55) is recast as

F M |Ω b | dς = 2 π 1 1 + ε dV =±1 κ dκ Λ(κ) (1 + b (κ)) 2 τ 2 (κ)v dve -v 2 (3.65)
Another important quantity that appears in the Lagrangian Eq.(3.55) is the ratio σ Ω

|Ω b | , which reads σ Ω |Ω b | = 1 + b 2 √ 1 + εσ * τ (κ)Λ 1/2 (κ) (3.66)
For trapped electrons, and in the limit of large aspect ratio ε → 0, it reduces to σΩ/ |Ω b | = σ * τ (κ)Λ 1/2 (κ). The parameter σ * , dened as

σ * = σ ε 1/2 Ω = m e m i τ e 1/2 q ε 1/2 Ω (3.67)
is the key parameter for a GAM to meet a resonance with trapped electrons. Indeed the condition σ * 1 corresponds to the condition ω ω b , where the bounce frequency ω b scales as

v T e ε 1/2 qR 0

. Introducing Lres,e the Lagrangian per volume unit dened as Lres,e = ´dV Lres,e , the Lagrangian Eq.(3.55) reads

Lres,e = 8i

√ 2πε 1/2 σ * ˆ+∞ 1 κ dκ Λ(κ) τ 2 (κ) ˆ+∞ 0 dvv exp -v 2 ˆπ -π dα 2 2π ˆπ -π dα 2 2π hω (α 2 ) h * ω α 2 exp iσ * τ v Λ 1/2 α 2 -α 2 Θ α 2 -α 2 + 1 exp -2iπσ * τ v Λ 1/2 -1 (3.68)
One important consequence of Eq.(3.68) is that

Lres,e is some function of σ * , up to a weak dependence on the aspect ratio. Since the frequency Ω is a function of (q, τ e ) only, this means that mass scaling prescribes the dependence on safety factor q and electron to ion ratio τ e = Te T i .

The parameter σ * is smaller than 1 for usual plasma parameters, typically of the order of 1/10, or less. An estimate of the integral Eq.(3.68) appears to be quite difcult. Nevertheless some exact results can be derived. It is reminded that the main

GAM poloidal dependence is of the form hω (α 2 ) ∼ sin [θ(α 2 )]. Introducing the function σ(v, κ) = σ * τ (κ)
v Λ 1/2 (κ), it appears that the imaginary part of the integrand in the Lagrangian Eq.(3.68) scales as σ3 when σ → 0 (see Appendix C.4.1). This yields a very small contribution to damping and can be neglected against ion damping in most conditions. However this expansion breaks down whenever σ o(1), i.e. close to the curve σ * τ (κ)Λ 1/2 (κ) = v in the phase space (v, κ). Since σ * is small, this requires small values of the period τ (κ). This situation occurs near the trapped/passing boundary κ ∼ 1, where τ -1 2 ln(κ -1). The condition σ o(1) is also fullled at small values of the velocity v σ * . However because of the integrand in velocity that behaves as v, the contribution from low velocities is quite small (smaller than [σ * ] 2 ). This means that most of the integral comes from the trapped/passing boundary κ ∼ 1 as it is conrmed by Fig. 3.1 which shows the contribution of particles in the velocity space (v , µ). The exact calculation of Eq.(3.68) in the region κ ∼ 1 is dicult. Hence we have to resort to making some approximations. One expect the bounce integrals in (α 2 , α 2 ) to be dominated by the turning points (α 2 = ± π 2 , α 2 ± π 2 ). The conguration that maximize the damping is such that α = α = π 2 (see derivation in Appendix C.4.2). This procedure provides the following estimate of the imaginary part of the Lagrangian

Lres,e = √ 2πε 1/2 σ * D(σ * ) ˆ+∞ 1 κ dκ Λ(κ) τ 2 (κ) hω (θ 0 (κ)) 2 (3.69)
where hω (θ 0 ) is the value of the perturbed Hamiltonian at the bounce point when expressed in the θ variable, and D(σ * ) measures the weight of the region in the phase space where σ * τ (κ

)Λ 1/2 (κ)/v > 1. It is reminded that σ * = qτ -1/2 e ε -1/2 (m e /m i ) 1/2 Ω.
The perturbed Hamiltonian is of the form Eq.(3.26). The normalised amplitude of the 

η 1 = -1 + 2 + τ e q 2 Ω 2 τ e Ω (3.71) 
and

η 2 = -2 7 4 + τ e + τ e (2 + τ e ) q 2 Ω 2 τ e Ω 2 Kρ i (3.72)
Here the brackets [...] are calculated up to an error of order o 1 q 4 Ω 4 . Hence the imaginary part of the Lagrangian reads

Lres,e G (q, τ e ) ε 1/2 σ * D(σ * )K 2 ρ 2 i |φ 0 | 2 (3.73)
where G is a number (in the limit of large aspect ratio)

G (q, τ e ) = √ 2π ˆ+∞ 1 dκκ τ 2 (κ) Λ(κ) η 2 (θ 0 (κ)) (3.74)
and sin θ 0 2 = 1 κ . The special case D(σ * ) = 1 corresponds to the estimate based on a strong weight of bounce points, i.e. when Eq.(3.69) is exact. Since only a fraction of particles fulll this criterion, one expects that D(σ * ) ≤ 1. Strictly speaking the form factor D (σ * ) depends also on , but this is a weak dependence in the limit of large aspect ratio. One important consequence of Eq.(3.73) is the dimensionless form

Lres,e , which oers an ecient way to probe the parametric dependencies. Since the frequency Ω and potential amplitude are functions of (q, τ e ) only, this means that the mass scaling provides a strong constraint on the dependence on safety factor q and electron to ion ratio temperature τ e = T e /T i .

Final expression of damping due to trapped electrons

Using Eqs.(3.48,3.73), and W e = 2Ω (L res,e ) v T i R 0

, the following expression of the power exchange between electrons and GAM is then found

W e = 2G (q, τ e ) Ω 2 D(σ * ) m e m i 1/2 q τ 3/2 e N i T i v T i R 0 K 2 ρ 2 i |φ 0 | 2 (3.75)
Finally the total dispersion relation with electrons is found to be L = 0, where

L = K 2 ρ 2 i |φ 0 | 2 Λ 1 -Λ 2 K 2 ρ 2 i + i 1 2 π 2 q 5 Ω 3 e -q 2 Ω 2 2 1 + 2 1 + 2τ e q 2 Ω 2 + i 1 1024 π 2 K 2 ρ 2 i q 9 Ω 5 e -q 2 Ω 2 8 1 + 16 1 + τ e q 2 Ω 2 + iG (q, τ e ) D(σ * ) m e m i 1/2 q τ 3/2 e Ω (3.76)
It is reminded that A rough estimate of the damping rate due to electrons is obtained by tting the parenthesis in the real part of the dispersion relation by 1 -

Λ 1 = 1 - 7 2 + 2τ e 1 Ω 2 - 23 2 + 8τ e + 2τ
Ω 2 0 Ω 2 ,
where Ω 0 is the zero of L(Ω 0 ) = 0 (see Appendix C.5). A perturbative calculation than provides the normalised damping rate

R 0 γ v T i 1 2 G (q, τ e ) D(σ * ) m e m i 1/2 q τ 3/2 e Ω 2 0 (3.79)
Using η(θ) = η 1 sin(θ), with η 1 given by Eq.(3.71), the following results are found G (q, τ e ) = 0.69 1 + 2 + τ e q 2 Ω 2 where Ω 0 is a function of q and τ e , and σ * =

q τ 1/2 e ε 1/2 me m i 1/2
. It is stressed here that the expression Eq.(3.81) is exact, though the weight function D(σ * ) ≤ 1 is unknown at this stage. Nevertheless this formulation greatly constrains the dependencies on q, τ e and m e /m i , as anticipated . Hence a way to check this expression is to perform rst a scan on one parameter to determine the function D(σ * ), and then check the variation with respect to the other parameters. Previous simulations indicate that the damping rate due to trapped electrons scales as (m e /m i ) 1/2 [7, [START_REF] Biancalani | Cross-code gyrokinetic verication and benchmark on the linear collisionless dynamics of the geodesic acoustic mode[END_REF]]. This suggests that D(σ * ) is constant and close to D(σ * ) 1.0 . If so, Eq.( 3.81) can then be used to test other dependencies, in particular on τ e and q.

Rosenbluth-Hinton test with kinetic electrons

We take an axisymmetric form of the potential φ 00 , the indices '00' referring to the wave number 0 both in the poloidal and toroidal directions (θ, ϕ). The system quickly evolves to produce a potential structure composed of a ZF part and a GAM part [80, 84, Winsor 1968[START_REF] Zonca | Radial structures and nonlinear excitation of geodesic acoustic modes[END_REF]]. The evolution of the mode φ 00 can be decomposed into two parts: a transient part which is governed by Landau damping and vanishes after a pseudo-periodic state and a residual part which is undamped in the absence of collisions, hence remaining constant. After the reorganization phase, the axisymmetric part of the potential evolution shown on Fig. 3.2 takes the form :

φ 00 (r, t) = φ 00 (t = ∞) + (φ 00 (t = 0) -φ 00 (t = ∞))e -γ GAM t cos(ω GAM t) F (r) (3.82)
where :

• F is the radial prole of the potential supposed to remain constant in time.

• φ 00 (t = ∞) is the residual part of the potential when time becomes innite. It corresponds to the value predicted by Rosenbluth and Hinton [71, Rosenbluth 1998]:

φ 00 (t = ∞) φ 00 (t = 0) = 1 1 + 1.6 q 2 √ ε (3.83)
• ω GAM is the pulsation of the oscillations of the GAM damping.

• γ GAM is the damping rate of the GAM damping.

In this part, ω GAM and γ GAM are tted in the models AE and FKE developed in chapter 2 and compared to the analytical predictions and the results obtained by other gyrokinetic codes.

We consider a plasma in a circular concentric tokamak conguration, similar to the one used in [7, [START_REF] Biancalani | Cross-code gyrokinetic verication and benchmark on the linear collisionless dynamics of the geodesic acoustic mode[END_REF]], with R 0 = 1.3 m, a = 0.13 m and ρ * = 1/160. We use a at prole for the ion and electron equilibrium densities n i,eq and n e,eq , the temperatures T i = T e and the safety factor q = 3.5. Besides, the plasma is chosen to be hydrogen-like with a mass ratio m i /m e = 1600. We add an initial perturbation ñi to the equilibrium density prole taken for the ions so that we get an axisymmetric perturbation of the potential prole φ00 (r, t = 0) = φ00,0 sin(k r r).

First, a convergence test is done on the time step and the full time length of the simulation to retrieve the GAM pulsation and damping rate. Second the dependency with the safety factor and the radial structure of the initial perturbation of these two parameters is looked at and a comparison between the AE and FKE models is carried out. Finally, the dependence on the mass ratio m i /m e is done. It appears that the GAM pulsation is not much changed with kinetic electrons, whereas the GAM damping rate depends heavily of kinetic electrons due to the resonance of GAM with trapped electrons modes explained in part 3.4.2. In particular we retrieve the dependency γ GAM ∝ (m i /m e ) 1/2 . 

Numerical convergence tests with Gysela

The convergence scan proposed for Gysela code has been performed with the same parameters as described in previous section. This corresponds for Gysela to L r = 160/ρ i with ρ i = T i /m i /Ω i and an aspect ratio 1/ε = R/a = 10. Density and temperature proles are at and normalized to 1. A at safety factor is taken equal to 2 for the following tests. Electrons are considered adiabatic. In Gysela, due to its full-f character, the initial condition is performed on the distribution function f s and consists of an equilibrium distribution function f s,eq added to a perturbation fs , namely f s = f s,eq + fs .

Then, the electrostatic potential φ(r, θ, ϕ) is computed at time t = 0 by solving the quasineutrality equation. In the present test, the perturbation part fs reads fs = f s,eq g(r) with g(r) = -1 r k r cos(k r r) -k 2 r r sin(k r r) where k r = (k + 1)π/L r with k ∈ N. The corresponding radial prole of the zonal component φ 00 (r) ∼ sin(k r r) is plotted in Figure 3.3 (black line) for k = 1 as it is shown in Appendix C.6.

In the Gysela code, the 5D space (r, θ, ϕ, v , µ) is uniformly discretized with N r × N θ × N ϕ points in the 3D real space and N v × N µ points in the 2D velocity space (with N x the number of points in x direction). This mesh grid is xed in time with r ∈

[0, L r ], θ ∈ [0, 2π], ϕ ∈ [0, 2π], v ∈ [-α v T i , α v T i ] and µ ∈ [0, L µ ].
Due to the toroidal axisymmetry of the test the number of toroidal points N ϕ is xed to N ϕ = 8. A comparison (not presented here) with N ϕ = 16 has shown really good agreement with N ϕ = 8. Simulations with N ϕ = 4 would be probably close to those with N ϕ = 8 but are not possible in the code due to parallelization constraints. This technical constraint could be removed. However simulations with so little number of points in toroidal direction are v th,i = 7. A simulation with α = 5 has been performed (not presented here) showing very small dierence (< 2%) with the case α = 7. However, as this value could have more impact for larger q values due to resonance condition v /qR = ω GAM , the value α = 7 has been preferred for the following tests. L µ is xed to L µ = 12 T i /B 0 (with B 0 = 1). All simulations have been performed for a at safety factor prole equal to 2 and until t = 50000 Ω -1 i . Flat density and temperature proles are also considered with τ e = T e /T i = 1.

Parameters and results are summarized in Table 3.2. Comparisons are performed on the three quantities: (i) the radial wave number k r ρ i , (ii) the damping rate γ and (iii) frequency ω of the zonal component of the electrostatic potential φ 00 . The radial wave number is computed with the following formula:

k r ρ i = ρ i Nr i=0 d dr φ 00 norm (r i , t) 2 Nr i=0 (φ 00 norm (r i , t) -φ 00 norm r ) 2 (3.84) with ρ i = √ T i /m i Ω i
and φ 00 norm (r i , t) = φ 00 (r i , t)/ max r i φ 00 (r i , t). The values reported in Table 3.2 correspond to the mean values of k r ρ i computed at times where log(φ 00 (r p , t)) is maximum with r p the radial position of the maximum value of φ 00 (r) at initial time.

The damping rate is estimated by using the method of least squares also on the maximum values of log(φ 00 (r p , t)). γ values reported in Table 3.2 are computed with 6 maximums considering that these tests have been performed for a low value of the safety factor q = 2 and a small radial wave number k r ρ i ∼ 0.056, those results suggest to avoid parameters where we observe a departure even small from the reference case, namely ∆t = 50Ω -1 i and N µ = 8. Hence, more secure parameters for larger q values or larger k r ρ i values could correspond to those of case 5, namely a mesh (N r , N θ , N ϕ , N v , N µ ) = (256, 64, 8, 128, 16) of 268.4 millions of points with a time step of ∆t = 25 Ω -1 i . Such a simulation requires 2 hours on 256 cores for 2000 time iterations compared to the coarse grained simulation which takes around 1 hour on 64 cores (1000 iterations).

Dependence on the radial wave number k r ρ i

In the theoretical part, the radial prole of the mode is assumed to remain constant over time, during both the initial plasma reorganization phase and the damping phase of the GAM. In fact, the radial wave number k r varies slightly due to the radial coupling induced by the quasi-neutrality equation on the potential and the need to satisfy the Neumann condition d r φ = 0 at the limits r min and r max of the radial domain. This modication of k r can lead to deviations from the theoretical predictions of ω GAM and γ GAM seen earlier, and it should be veried that these remain valid in our simulations.

Because of this problem, it is useless to try retrieving the exact theoretical dependence of ω GAM and γ GAM in k r at high orders. Fig. 3.6 shows the evolution over time of the potential radial prole as well as the associated radial wave number for two forms of initial perturbations :

• φ(1) 00 (r, t = 0) = φ00,0 sin(k r r)

• φ(2) 00 (r, t = 0) = φ00,0 (1 -cos(k r r)) To compute the value of k r through time, the following average on r has been done : k r r (t) = r ∂ r φ 00 (r, t) r φ 00 (r, t)

We observe that the value of k r is less altered through time with the perturbation 1-cos.

This is related to the fact that this perturbation satises Neumann's conditions from the beginning of the simulation. As a result, the prole of the potential is less changed during the initial reorganization phase for this prole. On the contrary, in the sin case, the prole changes quickly in the vicinity of r min and r max to satisfy the Neumann's condition, hence a slight increase of k r for this prole. Consequently, the form 1 -cos is preferred to the form sin because we do not want the radial wave number k r to change too much over time. Details on the two forms the radial prole of the density perturbation ñi should take are given in Appendix C.6.

Dependence on the mass ratio m i /m e

We now compare the expressions of the GAM pulsation and damping rate previously found in the theoretical study with the results obtained with numerical simulations. The dependence on mass ratio of the GAM damping rate and pulsation computed with the Gysela code using the FKE model for τ e = 1, q = 3.5 is shown on Fig. 3.7. Several conclusions can be drawn from these gures. First the pulsation depends weakly on m i /m e -this means that trapped electrons do not inuence much the real part of the Lagrangian, as expected. The damping rate exhibits a characteristic (m i /m e ) -1/2 scaling. A best t leads to a constant value of D(σ * ) = 1 4 . This indicates that the useful part of the phase space that contributes to GAM damping does not depend critically on the mass ratio, a rather surprising nding. In fact, picking up the numerical value Ω 0 1.8, it appears that Eq.(3.81) agrees well with the numerical results when choosing D(σ * ) = 1.

We will keep up with this value in the following. Hence Eq.(3.81) becomes:

R 0 γ v T i 0.34 1 + 2 + τ e q 2 Ω 2 0 2 qτ 1/2 e m i m e -1/2
(3.85) Fig. 3.7 also shows a comparison of γ GAM between the codes Gysela (models FKE and AE), ORB5 and GENE [7, Biancalani 2017]. The dependency in (m i /m e ) -1/2 is also recovered with the codes ORB5 and GENE. It can be observed however that for m i /m e = 400 and m i /m e = 1600, the damping rate predicted with Gysela is lower than expected. This behaviour has two consequences : rst, this reinforces the idea of a coupling between the GAM and the trapped electron modes as explained in the previous theoretical model. Nevertheless, the dependency in (m i /m e ) -1/2 implies that the GAM damping is overevaluated at low mass ratios. Hence, a good prediction of the behaviour of GAMs must be done at realistic mass ratios, which of course requires more computer resources. 4 The fact that D(σ * ) is a constant is not trivial, as σ

* = q τ 1/2 e ε 1/2 me m i 1/2
shows a mi/me dependency. Only the results of numerical tests show that D(σ * ) is approximately independent of the mass ratio. 

Dependence on the safety factor q

We now turn to the dependence on safety factor. Results from the Gysela code are shown on Fig. 3.8 for the damping rate and pulsation -parameters are m i /m e = 1600 and τ e = 1. It appears that Ω 0 depends weakly on q, a consequence of the inequality q 2 Ω 2 0 1 over most of the scan range. In this case Eq.(3.85) predicts a linear dependence on q, while a roughly inverse dependence is observed on Fig. 3.8. This is a rather puzzling result. Indeed, it cannot come from a poor identication of the function D(σ * ). Indeed, an inverse dependence on q would require a function D(σ * ) ∼ [σ * ] -2 since σ * = qτ -1/2 e ε -1/2 (m e /m i ) 1/2 , but this would imply a (m e /m i ) -1/2 scaling of the damping rate, clearly inconsistent with the numerical results.

It can also be pointed out that Fig 3.8 shows that the deviation between the adiabatic and kinetic electron models is larger for q > 2 as it has already been observed with the GTC code [83, Zhang 2010]. In particular, we note that the local maxima due to the second order resonance arising from the nite orbit width eect in the adiabatic model becomes negligible compared to the damping due to trapped electrons.

Dependence on the temperature ratio τ e = T e /T i

The damping rate and pulsation calculated by Gysela are reproduced on Fig. 3.9 for the parameters are m i /m e = 1600 and q = 3.5. It is quite dicult to infer a monomial scaling law, but we nd that the dependence in τ 1/2 e is well satised for τ e > 1. Finding the good scaling in both m i /m e and τ e strongly recommends the proposed formula of The analytic dashed line is given by Eq.(3.85).

the GAM damping rate Eq.(3.85). This formula predicts indeed an over-damping due to barely trapped/passing electrons but the scaling in safety factor is not well found.

Further studies should be made to understand this discrepancy. 

Conclusion

In this section, several results have been veried:

• Taking into account a radial prole of the form 1 -cos(k r r) with Neumann boundary conditions provides a better conservation of the initial radial wave number than a prole in sin(k r r). Choosing a 1 -cos(k r r) form is useful to minimize the discrepancies in the comparison between analytical and numerical results.

• Kinetic electrons have only a slight impact on the GAM pulsation, but increase the damping rate tremendously. This conrms the existence of a resonant interaction between trapped electrons and GAM.

• It is possible to recover with the FKE model the (m i /m e ) -1/2 scaling of the GAM damping rate due to trapped electrons by choosing a phase space weight D(σ * )

that is constant and equal to 1 2 . Besides, the scaling in electron to ion temperature ratio in τ 1/2 e is also recovered. However some discrepancies on the safety factor still need to be investigated. The scaling in mass ratio is also recovered with the local codes ORB5 and GENE.

• For low mass ratios (m i /m e ∼ 100), the TKE model is found to have a behaviour close to the AE model. However, for realistic mass ratios (m i /m e ∼ 3600), the GAM damping rate found with the TKE model matches the one obtained with the FKE model.

Chapter 4

Linear study and rst non-linear simulations of the Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities

The deviations from thermodynamic equilibrium, in particular density and temperature gradients, are sources of free energy which fuel the micro-instabilities of the plasma, leading to particle and energy turbulent transport. These micro-instabilities are classied according to the sources of free energy that fuel them. In particular, the ITG-TEM instabilities are created by density and temperature gradients. The ITG regime is obtained when it is mainly the ions that provide energy to the electric wave and TEM when this is the electrons which give their energy. Besides, in that particular case the instability is mainly due to the trapped electrons. 

Drift wave and interchange mechanisms Drift waves

Let us consider a plasma in a Cartesian base (x, y, z) with a uniform magnetic eld B in the z direction. Ions are assumed at rest. Thus, the density of ions is supposed constant in time, uniform in the y and z directions, with a negative uniform gradient in the x direction so that it takes the form n

i (x) = n i (x 0 ) + ∂ x n i | x 0 (x -x 0 ) with ∂ x n i | x 0 <
0 in the vicinity of the position x ∼ x 0 . An initial perturbation on the electric potential of the form φ(x 0 , y, t = 0) = φ 0 sin(ky) at x = x 0 is introduced. The electron density can be decomposed as n e = ne + ñe where:

• ne = n e y is the density prole averaged along the coordinate y.

It comes ne (x) = n i (x) = n i (x 0 ) + ∂ x n i | x 0 (x -x 0 ).
• ñe = n e -n i is the dierence between ion and electron density due to plasma polarisation. Under the hypothesis of adiabatic electrons (see section 2.1), ñe is in phase with the potential and can be written as ñe (x 0 , y, t = 0) = ñe0 sin(ky) at initial time and x = x 0 .

The shape of the electric potential and the electron density is shown on Fig. 4.1 as well as the electric eld E and associated drift v E .

At this point, we would like to study the future of such a perturbation. Therefore, we try to establish the evolution equation of the potential so as to identify it to a particular type of wave. We start from the conservation equation of matter applied to the electrons.

This equation reads:

∂n e ∂t + ∇ • Γ e = 0 (4.1)
with Γ e = n e v the particle ux of electrons and v = v + v ⊥ . We suppose that v varies little in the z direction. The perpendicular velocity can be decomposed as v ⊥ = v E +v dia where v E stands for the electric drift velocity, v dia stands for the diamagnetic velocity. Besides, we have ∇ • (nv dia ) = ∇p e • ∇ ∧ B B 2 = 0 in a uniform magnetic eld. Therefore, 

∂ ñe ∂t - ∂ x ne B ∂φ ∂y = 0 (4.2)
Using the hypothesis of adiabatic electrons, the electron density perturbation reads ñe = ene Te φ 1 . Replacing ñe in Eq.( 4.2), one eventually gets the wave equation on the electric potential:

∂φ ∂t + ω * k ∂φ ∂y = 0 (4.3)
where ω * = (kT e /eB)(-∂ x ne )/n e > 0 is called the diamagnetic pulsation. This is the equation of a propagative wave in the direction of the y < 0 and of phase velocity ω * /k.

In the absence of density gradients in the x direction, this equation simply becomes ∂ t φ = 0 and the wave is stationary. Physically, because of the density gradient, there are more electrons which are brought by the electric drift from the high density zones maxima of the wave to be shifted through time. Thus, the electric drifts cause the wave to propagate and is hence called drift wave.

Besides, it is noted that in the case where ñe and φ are exactly in phase, the amplitude of the wave does not vary and there can be no instability. In the case where a phase shift between these two quantities exists, we will see that this last point is no longer true.

Drift wave instability

In the case where there is a small phase shift between the electron density perturbation and the potential, the electron density perturbation takes the form ñe = ene Te (1 -iδ)φ with |δ| 1. Therefore, Eq.( 4.3) is recast as:

∂φ ∂t + ω * k (1 -iδ) ∂φ ∂y = 0 (4.4)
The solution of this equation reads φ = φ 0 exp {-i(ω * t -ky)} exp(-δω * t). Two cases appear here:

• δ < 0 then the wave is damped.

• δ > 0 then the wave is unstable.

In the latter case, we see the appearance of a drift-wave instability. The initial phase shift between potential and electron density may have several origins among which plasma resistivity and wave-particle resonances which both cause electrons to depart from their adiabatic response. The resistive version of this instability is well described by the Hasegawa-Wakatani model, establishing the dispersion relation from matter and charge conservation ( [START_REF] Gravier | Etude expérimentale des régimes dynamiques des ondes de dérive dans un plasma magnétise de laboratoire[END_REF]Gravier], [START_REF] Hasegawa | Plasma edge turbulence[END_REF]Hasegawa]). The case of wave-particle resonances includes, among others, the so-called slab branches of ITG and ETG instabilities (see e.g. [18, 54, Coppi 1967[START_REF] Kadomtsev | Turbulence in Toroidal Systems[END_REF])

Interchange instability

We consider the same plasma with this time a gradient of magnetic eld in the x direction ∂ x B < 0. The same initial perturbation on the electric potential φ(x 0 , y, t = 0) = φ 0 sin(ky) at x = x 0 is introduced. Let us consider a region located between a minimum and a maximum of potential. The uctuations of φ lead to local electric elds E = -∂ y φ e y . Within the adiabatic theory, the particles are subject to velocity drifts transverse to the magnetic eld lines. In the conguration plotted on Fig. 4.2, we see that the combination of the electric drifts v E and the ∇B drifts v ∇B tend to bring ions coming from the high density region h towards a maximum of potential 2 . It is the opposite for particles coming from the low density region l . There are signicantly more ions and electrons coming from the high density region than from the low density region. As a result, the potential perturbation increases, hence leading to an instability.

The case where the gradients of density and magnetic eld are in the same direction leads to the interchange instability. Yet, when these are in opposite directions, the potential perturbation is damped and there is no instability. Consequently in tokamaks, the interchange instability appears only in the low eld side region as shown on Fig. 4.2.

Dispersion relation in presence of density and temperature gradients

The stability of a given mode of the electric potential is given by the sign of the linear growth rate γ. This information is contained via the knowledge of the dispersion relation established from the Vlasov equation coupled to the quasi-neutrality equation, in the same way as it has been done for the GAM study in chapter 3. In that case, we consider non-uniform density and temperature proles, and we use the angle-action set of coordinates (α, J) introduced in section 1.2.2, so that for i = (1, 2, 3):

dα i dt = ∂H eq ∂J i = Ω i (J) (4.5) dJ i dt = - ∂H eq ∂α i = 0 (4.6)
In this derivation, we rst express the Vlasov equation and its linear solutions. Then the quasi-neutrality equation is recalled and we eventually express the Lagrangian of the system by plugging the linear solutions of the Vlasov equation in the quasi-neutrality equation.

Linear solutions of the Vlasov equation

In the absence of sources and collisions, the Vlasov equation reads:

∂ t F (x, p, t) -[H, F ] (x, p, t) = 0 (4.7)
where H is the Hamiltonian and F the distribution function. The Poisson bracket is given in the angle-action set of coordinates by:

[H, F ] = ∂H ∂α • ∂F ∂J - ∂H ∂J • ∂F ∂α (4.8)
The distribution function F and the Hamiltonian H are developped in Fourier series along the coordinates α and t:

F (α, J, t) = F eq (J) + nω f nω (J)e i(n.α-ωt) H(α, J, t) = H eq (J) + nω h nω (J)e i(n.α-ωt) (4.9)

We note f = F -F eq and h = H -H eq . Replacing these expression in Eq.(4.7), using the fact that ∂ t F eq -[H eq , F eq ] = 0, it comes:

∂ t f + ∂f ∂α ∂H eq ∂J - ∂F eq ∂J ∂h ∂α + ∂f ∂α ∂h ∂J - ∂f ∂J ∂h ∂α = 0
The source term S is supposed constant in time. Neglecting the quadratic terms, and using the Fourier development (4.9), the Vlasov equation becomes:

-iωf nω + in • Ωf nω -in • ∂F eq ∂J h nω = 0 (4.10)
with Ω = ∂H eq /∂J. Finally, the linear solutions of the Vlasov equation can be written as:

f nω = -n • ∂Feq ∂J h nω ω -n • Ω + i0 + (4.11)
Taking F eq as a Maxwellian distribution function of expression F eq = n (2πmT ) 3/2 e -Heq/T , Eq.(4.11) becomes after calculations:

f nω = - F eq T 1 - ω -n • ω * ω -n • Ω + i0 + h nω (4.12) with ω * = 1 n ∂n ∂J -3 2 - Heq T 1 T
∂T ∂J being the diamagnetic frequency. This quantity con- tains the inuence of the gradients of density and temperature hence representing the deviations of the system from tokamak equilibrium. The term +i0 + is used to remind that an analytic continuation must be done according to the Landau prescription (i.e. to ensure causality). The result is independent of 0 + as long as 0 + tends to 0.

Quasi-electroneutrality

The quasi-neutrality constraint can be written as species e s n s = 0. It is still satised at equilibrium. The condition species e s (n s -n s,eq ) = 0 writes:

species e s ˆd3 pf s (x, p, t) = 0 (4.13)
The quasi-neutrality constraint can be reformulated in a weak form 3 as:

∀φ † (x, t), ˆd3 x    species e s ˆd3 pf s (x, p, t)    φ † (x, t) = 0 (4.14)
with φ † an arbitrary eld. We introduce the functional L 4 of φ † dened as:

L = species e s ˆd3 x d 3 pf s (x, p, t)φ † (x, t) (4.15)
We do the choice φ † = φ * . Replacing the expression (4.12) of f for each mode ω and taking into account that for each species s, h s = e s φ, functional (4.15) is easily recast as:

L ω = - species ˆ d 3 x d 3 v e s F s eq T s nω 1 - ω -n • ω * s ω -n • Ω + i0 + φ nω e i(n.α-ωt)
n ω

φ n ω e i(n .α-ω t) * Since the set of angle-action variables introduced in section 1.2.2 is canonically conjugated to the variables (x, p), the integration element in the phase space reads:

dτ = d 3 x d 3 p = d 3 α d 3 J (4.16)
Noticing that ´d3 αe in•α = (2π) 3 δ(n), the functional can be simplied as:

L ω = - species ˆ(2π) 3 d 3 J e s F s eq T s nω φ nω φ * nω 1 - ω -n • ω * s ω -n • Ω + i0 + (4.17)
The term n • Ω represents all the possible resonant modes linked with one of the three motion invariants. The formulation is not yet gyrokinetic: indeed, the terms n 1 Ω 1 describe the resonance of cyclotron modes, the terms n 2 Ω 2 describe the resonance for the bounce/passing motion, and the terms n 3 Ω 3 describe the resonance for the precession motion. Furthermore, as a characteristic function of the system, this Lagrangian functional contains all the information required to tackle the development of potential modes of the system, i.e. the expression of pulsation and growth rate of each mode number k.

Besides, in the absence of inhomogeneities, we have ω * = 0. In that case, the mode can only be damped: this is the Landau damping case which has been tackled in several books (see for instance [START_REF] Robert | Introduction to plasma physics[END_REF]Goldston]). Therefore, the apparition of an instability requires to have gradients on the density and temperature proles. These deviations from equilibrium state act as a source of free energy which can fuel the instabilities on the potential modes.

Lagrangian (4.17) can be decomposed into an adiabatic and a kinetic part. The kinetic part is the fraction on the right of the parenthesis. We see that considering a model with adiabatic electrons not only skips all electron modes, but it also modies the growth of ion modes. We can therefore expect, with a kinetic electron model to see the appearance of electron modes, including the TEM regime, but also to see an inuence of the kinetic electrons on the dynamics of ion modes and in particular the ITG.

Dispersion relation of ITG and TEM

A particular case of the drift wave and interchange instability

Most instabilities which govern turbulence in tokamak plasmas can be explained with the mechanisms of the drift wave and the interchange instabilities. The instability is then fuelled by the inhomogeneities of density, temperature and magnetic eld. It is possible to distinguish some classes of instabilities depending on which class of particles transfers its kinetic energy into potential energy to develop the instability:

• The Ion/Electron Temperature Gradient modes (ITG/ETG) mostly involve passing ions/electrons. This instability has two branches: the slab one has the mechanism of the drift wave instability whereas the toroidal one has the mechanism of the interchange instability.

• The Trapped Ion/Electron Modes (TIM/TEM) involve trapped ions/electrons. The mechanism's type is interchange.

The resonance condition depends both on the mode wavenumber as shown on Fig. Under the usual tokamak conditions, simulations show that the main instabilities responsible for turbulent transport are the ITG and TEM [63, Merz 2010]. Besides, theoretical kinetic models predicted quite early that this turbulent transport was impacted However, for numerical resources issues, we consider in our simulations (sections 4.2 and 4.3) only the trapped electrons kinetic because they have a stronger impact on turbulent transport than the passing ones.

Dispersion relation: simplied approach

In this section, one derives a simplied expression of the dispersion relation of ion and electron modes governed by the gyrokinetic equation Eq.(1.56) and the quasi-neutrality Eq.(2.18). Denoting f s (r, θ, ϕ, v G , µ, t) the distribution function of the gyrocenters of a given species s, the simplied gyrokinetic equation considered here is the following:

∂ t f s + (v E + v D + v G ).∇f s + dv G dt ∂ v G f s = 0 (4.18)
where v E and v D stand respectively for the electric and magnetic (curvature and ∇B) drifts. In this expressions, it should be noticed that the gradient operator ∇ is to be taken at constant v G and µ. Simplied expressions will be used in the following:

v E .∇ B × ∇J 0 .φ B 2 .∇ 1 rB {∂ r (J 0 .φ) ∂ θ -∂ θ (J 0 .φ) ∂ r } v D .∇ m s v 2 G + µB e s B B × ∇B B 2 .∇ v D0 sin θ ∂ r + cos θ r ∂ θ v G ∇ v G R ∂ ϕ + 1 q ∂ θ m s dv G dt -e s ∇ (J 0 .φ) -µ∇ B + m s v G v E . ∇B B
with J 0 the gyro-average operator and v D0 = -(m s v 2 G + µB)/e s BR. Here, B * has been approximated by B and sub-dominant components of the transverse drifts (toroidal components and nite beta contribution) have been neglected.

Let us consider a stationary equilibrium without any electric eld: φ eq = 0. Canonical Maxwellian distribution functions are solutions of the equilibrium gyrokinetic equation: they are formed with canonical proles of density, temperature and velocity depending on the toroidal canonical momentum [52, 2, 21, Idomura 2003[START_REF] Angelino | On the denition of a kinetic equilibrium in global gyrokinetic simulations[END_REF][START_REF] Dif-Pradalier | On the inuence of initial state on gyrokinetic simulations[END_REF]]. In the limit of small ρ * values, these proles can be approximated by their local limit, so that the proles depend on the radial coordinate only. Hereafter, we consider a centered local Maxwellian as the equilibrium: [START_REF] Dannert | Gyrokinetic simulation of collisionless trappedelectron mode turbulence[END_REF] where E s = 1 2 m s v 2 G + µB is the kinetic energy and n eq,s and T eq,s depend on the radial coordinate r only.

f s,eq (r, θ, v G , µ) = n eq,s (2πT eq,s /m s ) 3/2 exp - E s T eq,s (4.
Let us now add perturbations to this equilibrium: φ = φ(r, θ, ϕ, t) and f s = f s,eq + fs (r, θ, ϕ, v G , µ, t). In the limit of small perturbations, i.e. fs /f s,eq ∼ e s φ/T eq,s 1,

Eq.( 4.18) can be linearized by dropping o all nonlinear terms which are quadratic in uctuations. The resulting equation reads as follows:

∂ t fs + v D .∇ ⊥ fs + v G ∇ fs + v E .∇ ⊥ f s,eq + - e s m s ∇ (J 0 . φ) + v G v E . ∇B B ∂ v G f s,eq = 0 (4.20)
Here, the parallel trapping in the local mirrors of the magnetic eld has been ignored

(term proportional to µ∇ B ∂ v G fs ), which is relevant for strongly passing particles only.

Further noticing that: ∇ ⊥ f s,eq = ∇ r n eq,s n eq,s + ∇ r T eq,s T eq,s

E s T eq,s - 3 2 - µ T eq,s ∇ ⊥ B f s,eq v G v E . ∇B B ∂ v G f s,eq = mv 2 G e s B B × ∇B B 2 .∇ ⊥ (e s J 0 . φ)
f s,eq T eq,s

Eq.(4.20) can be recast as follows:

∂ t fs + v D .∇ ⊥ fs + v G ∇ fs
+v Er ∇ r n eq,s n eq,s + ∇ r T eq,s T eq,s

E s T eq,s - 3 2 f s,eq + v G ∇ (e s J 0 . φ) + v D .∇ ⊥ (e s J 0 . φ) f s,eq
T eq,s = 0 In the linear regime, each of these modes turns out to be decoupled from the others, up to the toroidal coupling terms (involving v D ) which couple adjacent poloidal m numbers, namely m, m + 1 and m -1. For the sake of simplicity, the following notation will be used for these terms:

v D .∇ ⊥ → i ω Ds
where ω D k ⊥ v D0 actually stands for an operator. A more rigorous treatment requires using the ballooning representation, which is mentioned the next section. In Fourier space, Eq.(4.21) yields:

fm,n,ω = -ω * s + ω D + k v G ω -ω D -k v G e s J 0 . φ T eq,s f s,eq = -1 - ω -ω * s ω -ω D -k v G e s J 0 . φ T eq,s f s,eq (4.22) 
where k = (n + m/q)/R is the parallel wave vector and the diamagnetic frequency is dened by:

ω * s = ω * n + ω * T E s T eq,s - 3 2 with ω * X = (k θ ρ s ) v T s ∇ r log X, k θ = m/
r the poloidal wave vector, ρ s = m s v T s /e s B the thermal gyro-radius and v T s = T eq,s /m s the thermal velocity.

The last step requires using the quasi-neutrality, which relates the charge densities of gyro-centers to the ion polarization densities. In the case of a single ion plasma with equal ion and electron temperatures, the nal dispersion relation reads as follows:

2 + (k ⊥ ρ i ) 2 -J 0 ω -ω * i ω -k v G -ω Di J 0 i - ω -ω * e ω -k v G -ω De e = 0 (4.23)
Here, the brackets stand for the integral over the velocity space, weighted by the respective equilibrium distribution function:

... s = ´d3 v ... f eq,s . In the case where the inhomogeneity of the magnetic eld can be neglected, the ω Ds operators should be ignored.

Dispersion relation using the ballooning representation

The full calculation of the dispersion relation (4.23) is obtained under the following assumptions:

• Hydrodynamic limit : ω/k v th,i
• Limit of high wavelength values : k ⊥ ρ i 1

• Ballooning representation [16, 70, Connor 1979[START_REF] Romanelli | The radial structure of the ion?temperature?gradient?driven mode[END_REF] • Adiabatic electrons 5 This calculation, made in [30, Garbet 2001] and veried in [36, Girardo 2015], leads to the form (Eq.( 100) of [START_REF] Garbet | Instabilités, turbulence et transport dans un plasma magnétisé[END_REF]):

τ ω + ω * ni ω -ω * pi + v 2 th,i 2ω 2 q 2 R 2 ∂ θθ + 1 2 k 2 θ ρ 2 i 1 + s 2 θ 2 - ω gi ω φnω (θ) = 0 (4.24) with τ = T e /T i , s = r q dq dr , ω * ni = 1 n i ∂n i ∂J , ω * T i = 1 T i ∂T i ∂J , ω * pi = ω * ni + ω * T i , ω gi = -2T i k θ /(e i BR)
and φnω is the ballooning potential dened as:

φ(r, θ, ϕ, t) = nω φnω (θ) exp {in [ϕ -q(r)(θ -θ k )] -iωt}
with θ k is a reference angle known as the ballooning angle. Likewise, Drouot and Gravier derived a linear dispersion relation valid for TIM and TEM turbulence (Eq.( 12) of [26, Drouot 2015]). Neglecting the FLR eect (term in k θ ρ i ) and the inhomogeneities of the magnetic eld (hence ω g = 0), the two last terms of Eq.(4.24) vanish. Previous simulations launched using the "Cyclone DIII-D base case parameter set" dened in [22, Dimits 2010] showed that the pulsation of a ITG or TEM mode can be expressed as:

ω ∼ ω * ns ∼ -sign(e s ) k θ ρ i v th,s L n (4.25)
where L n = n/∇n. The sign of the pulsation is negative for ITG modes and positive for TEM modes. This statement is of great use in the linear study that follows, for the knowledge of the pulsation sign enables to sort ITG from TEM modes.

5 This hypothesis can be easily removed by doing the sum on all species.

Linear ITG-TEM simulations

The linear study carried here consists in retrieving the pulsation and growth rate of unstable modes so as to compare the values with those obtained with other codes. In fact, we prefer to do a benchmark with other codes rather than a verication with analytic results because these latter are approximated, especially for a global code such as Gysela. In this part, we use the label (m, n) to describe a mode of poloidal wavenumber m and toroidal wavenumber n. Besides, the indice "i" is used for the type of ions in the simulations, namely deuterium, and "0" is used for normalized quantities in Gysela, the normalisation using hydrogen ions.

Parameters used and type of the instability in a linear simulation

In a standard linear case, we introduce a perturbation f on the initial Maxwellian distribution function of ions f 0 using a single n = n 0 and several m. In order to keep only this toroidal mode n 0 , a lter is introduced to eliminate all the modes n / ∈ {0, n 0 }. Thereafter, the system builds up the eigenmodes that grow exponentially. The magnitude of the initial potential perturbation is of the form φ m,n 0 (t = 0) ∝ exp -(m/n 0 + q) 2 . For each chosen value n 0 , we look at the evolution of the resonant mode (-qn 0 , n 0 ). The associated wavenumber of this mode is given by k θ ρ i = -(n 0 q/r)ρ i . In order to do a comparison with the results obtained with kinetic electrons in the gyrokinetic code GT5D, we use the same plasma parameters as those used in [51, Idomura 2016]. We consider a collisionless deuterium plasma in a circular concentric tokamak conguration where we have taken the aspect ratio R 0 /a = 2.79, the safety factor prole q(r) = 0.85+2.18(r/a) 2 , and ρ * = ρ 0 /a = 1/139 with ρ 0 = T 0 /m 0 /ω c0 , T 0 being a normalized temperature, m 0 the hydrogen mass and ω c0 the cyclotron pulsation. This value of ρ * is dierent from the one used by Idomura (ρ * GT 5D = 1/150). The dierence is due to normalisation issues of the ion temperature and explained in section 4.2.5. The resulting Cyclone like parameters at mid-radius ρ peak = 0.5 where ρ = r/a ∈ [0, 1] are ε = r peak /R 0 0.18, q(r peak ) = 1.4. Besides, the density and temperature proles are let free to evolve 6 and set at the beginning of the simulation to:

X(r, t = 0) = exp - R 0 L X δ tanh ρ -ρ peak δ (4.26)
where X stands for either n, T i or T e . δ, R 0 /L n , R 0 /L T i , R 0 /L Te are parameters that can be chosen arbitrarily. Throughout this study, we set the parameters δ = 0.3 and R 0 /L n = 2.22. The normalized densities and temperatures at mid-radius are consequently set to 1: n i (r peak ) = n e (r peak ) = 1, T e (r peak ) = T i (r peak ) = 1. In addition, we choose the mass ratio equal to m i /m e = 100 except for the convergence test carried in section 4.2.2. In this section, two temperature proles are used:

6 Density and temperature proles should not evolve much in linear regime because the radial ux is negligible. However, as the initial distribution function slightly diers from the equilibrium distribution function, these proles evolve a little anyway.

• R 0 /L T i = R 0 /L Te = 6.92 called the 'ITG-dominant' case

• R 0 /L T i = 0.01 and R 0 /L Te = 6.92 called the 'TEM-dominant' case Given these parameters, the instability can be sorted into two categories, namely ITG and TEM, depending on the type of particle, ion or electron, that fuels the instability. The sign of the pulsation ω gives the nature of the dominant instability as seen in Eq.(4.25). For a ITG instability ω ∼ ω * T i < 0 and for a TEM instability ω ∼ ω * T e > 0.

We verify afterwards that both methods give the same results. Experimentally, there are other ways to identify the type of the dominant instability, including reectometry [3, Arnichand 2015].

After a series of tests explained in section 4.2.2 to determine the maximum time step that can be used for each of the three electron models, the dependency of the linear growth rate and the pulsation with the poloidal wavenumber k θ ρ i is studied in section 4.2.3 and we show that the ITG regime is obtained for small values of k θ ρ i whereas the TEM regime is obtained for large values of k θ ρ i . With the parameters stated before, the transition appears for k θ ρ i 0.5. Then in section 4.2.4, we make the ion radial temperature gradient R 0 /L T i vary with a xed value of the toroidal wavenumber. It is veried that for large values of R 0 /L T i the ITG instability is dominant and for small values of R 0 /L T i the TEM instability becomes dominant. For k θ ρ i = 0.28, the transition appears at R 0 /L T i 5.

Numerical study to determine the maximum time step

Using the Gysela parameters introduced earlier, the 5D space (r, θ, ϕ, v , µ) is uniformly discretized with N r × N θ × N ϕ points in the 3D position space and N v × N µ points in the 2D velocity space (with N x the number of points in x direction). This mesh grid is xed in time with r ∈

[0, a], θ ∈ [0, 2π], ϕ ∈ [0, 2π] (full torus), v ∈ [-α v T 0 , α v T 0 ] and µ ∈ [0, L µ ].
The maximum of thermal velocities in velocity space are xed to α = 7 and L µ = 12 T 0 /B 0 . The number of points taken in position and velocity are N r = 255, N θ = 256, N ϕ = 128, N v = 64 and N µ = 32. These values were chosen so as to resolve both the ion Larmor radius and the electron banana width spatially.

A numerical study, based on the ITG-dominant case presented earlier, is performed for the Adiabatic Electrons (AE) and Trapped Kinetic Electrons (TKE) models, introduced in chapter 2. The aim is to determine the maximum possible time step that can be used for each model without deteriorating the linear results. In Fig. 4.5, the evolution of the module of the most unstable modes (m,n=14) is plotted for the two models with dierent time steps. It is observed that the AE model converges for much larger time steps than the TKE model. This is due to the fact that in the AE model one only needs to solve the ion dynamics, hence a required maximum time step which scales as ∆t AE ∝ R/v ,i R/v th,i . With kinetic electrons, one has to solve the dynamics of the electrons, i.e. a maximum time step in ∆t KE ∝ R/v ,e . The parallel velocity of passing This scaling seems to be satised between the AE and TKE models. (on the right) has a time step too large to satisfy it. When the time step is too large, the modes that should be unstable are no longer dominant. We observe that other modes, with a poloidal number m close to 0, become dominant and the simulation is no longer relevant. Therefore, it must be checked that the time step is small enough to avoid this problem.

Dependence of the growth rate and pulsation with the toroidal wavenumber

The linear growth rate γ and pulsation ω are computed with the Gysela code and compared to the ones found with the code GT5D that can be found in [51, Idomura 2016].

Both codes are gyrokinetic, global, full-f . The resolution scheme is dierent however:

GT5D is eulerian whereas Gysela is semi-lagrangian. The comparison in the case of adiabatic electrons was already made by Y. Asahi [5, Asahi 2017]. This study plus the similarities between the two codes Gysela and GT5D encouraged us to do the same comparison with kinetic electrons. Details about the normalisation of ρ * between the two codes are given in section 4.2.5. The parameters used in Gysela and GT5D are explained in section 4.2.1. The type of instability, ITG or TEM, is given by the sign of ω as seen in part 4.1.3. It is therefore crucial to have access to this information. ITG and TEM being particular cases of drift waves, the pulsation can be retrieved from the poloidal mode phase velocity: ω = k θ v θ = -nq d t θ. Plotting the potential with respect to time and poloidal angle shows immediately the sign of ω (see Fig. 4.7).

We present in Figs.4.8 and 4.9 a comparison between both codes regarding the growth rate and pulsation in the ITG-dominant case using the Adiabatic Electrons and Trapped Kinetic Electrons models for dierent values of the toroidal wavenumber k θ ρ i . This curve has the same general shape as the theoretical diagram shown in Fig. 4.3: the ITG regime is expected to be obtained for the low values of k θ ρ i and the TEM regime for the larger ones. A good agreement is found between the two codes in the ITG regime for both the adiabatic and trapped kinetic models. However, it is unclear if the ITG/TEM transition is recovered for the same value of k θ ρ i . Simulations were launched using larger values of k ⊥ ρ i (0.6 and 0.7) but we could not retrieve the value of ω and γ: indeed, the evolutions of the modes φ m,n do not exhibit an exponential growth in time at these values of m an n.

This exponential growth would have been expected for this kind of instability. Since the number of points in θ and ϕ is unchanged for large k ⊥ ρ i values, it might not be enough to resolve the mode when n = 30 or n = 35. Indeed, a number of points N ϕ = 128 implies that there are roughly 4 points per period when n = 30. The same reasoning applies for the θ direction as N θ = 256 and m res q n res ∼ 60. Low spatial discretization could explain why we were unable to retrieve the growth rate and pulsation for large values of k ⊥ ρ i , but this problem remains an open question. We believe on the other hand that the time step is small enough. Indeed, simulations with smaller time steps (∆t = 1 ω -1 c0 )

have been launched, but no change of behaviour has been noticed.

Dependence of the growth rate and the pulsation with the ion temperature gradient

In this section, the electron temperature gradient is maintained constant R 0 /L Te = 6.92 whereas the ion temperature gradient varies within the range R 0 /L T i ∈ [0, 6.92], the two limit cases corresponding to the TEM and ITG dominant regimes introduced in section The TEM regime is obtained for R 0 /L T i < 5.2. The ITG-TEM transition is charac- terized by a change of sign of the pulsation ω as explained earlier. Moreover we observe a change of slope in the evolution of γ characteristic of a dierent solution given by the linear dispersion relation. The instability is fuelled by the plasma inhomogeneities which act as sources of free energy. In the case of a low value of R 0 /L T i , the instability is driven mainly by electrons and for a big value of R 0 /L T i , the instability is driven mainly by ions. We observe that the ITG/TEM transition is sharp and the same with both codes.

The radial temperature has a bigger impact on the type of instability than the chosen wavenumber. It can be noted that a dierence appears between the two codes. This deviation can partly be explained by the fact that the value of ρ * chosen in Gysela must depend on the parameter R 0 /L T i to be comparable to the one of GT5D as explained in section 4.2.5. The choice ρ * GY S = 1/139 is comparable to ρ * GT 5D = 1/150 only for R 0 /L T i = 1.7 and R 0 /L T i = 5.5. In the future, it would be interesting to do this test again, using this time the good value of ρ * GY S associated with the corresponding R 0 /L T i so as to get comparable ρ * values with the two codes.

Normalisation of the value of ρ * in Gysela to t the one in GT5D

To do the comparison between Gysela and GT5D, we must use the same parameter ρ * . The problem here is that ρ * are computed dierently in Gysela and GT5D. Therefore, a given value of ρ * GT 5D will correspond to a dierent value of ρ * GY S . We rst give the expressions of ρ * calculated with each code. Second, we give the condition between ρ *

GY S

and ρ * GT 5D so as to have the same physical parameter. In each code, ρ * is computed as follows:

• GT5D

ρ * GT 5D = v GT 5D th,i a ω ci with v GT 5D th,i = T i r m i
where the averaged ion temperature T i r is computed as:

T i r = ´a 0 rT i (r) dr ´a 0 r dr

• Gysela ρ * GY S = v GY S th,i a ω ci with v GY S th,i = T i (r peak ) m i
The ratio of these two normalisations gives:

ρ * GY S ρ * GT 5D = T i (r peak ) T i r
Therefore, to get a value of ρ * with Gysela identical to the one of GT5D, we must choose ρ * GY S as: The value of T i r depends on the parameter R 0 /L T i . Therefore, it is necessary to calculate for each value of R 0 /L T i the corresponding value of ρ * GY S . We plot in Fig. 4.12.a the value of ρ * -1 GY S as a function of R 0 /L T i to satisfy condition (4.27). The associated temperature prole is given by Eq.(4.26) with δ = 0.3, ρ ∈ [0, 1] and ρ peak = 0.5.

ρ * GY S = T i (r peak ) T i r ρ * GT 5D (4.27) 
In the tests launched with Gysela, we chose ρ * GY S = 1/139 independently of the value of R 0 /L T i . We realized recently that this value corresponds to an old normalization used for R 0 /L T i = 6.92 with ρ ∈ [0, 0.7] and ρ peak = 0.35. This case corresponds to the intersection of the purple dashed lines of Fig. 4.12.b. Meanwhile, these parameters were changed to ρ ∈ [0, 1] and ρ peak = 0.5 so as to be the same as those used in GT5D. Thus, this value of ρ * GY S does not satisfy condition (4.27) for every value of R 0 /L T i . The error made on ρ * can be estimated to approximately 7%. This could explain part of the dierences observed between the two codes in Figs.4.10 and 4.11.

Implementation of a method to launch non-linear simulations

Previous linear tests have been carried out using a single toroidal mode. Fig. 4.13

shows the development of the potential using the trapped kinetic electron model at m i /m e = 100 with the discretization mentioned earlier in the linear study. In such tests, the development of resonant modes at k = 0 is observed. Yet, future studies of turbulent transport will require to launch cases with several toroidal modes for simulation times much longer than those used in the linear study. Therefore the cost of such simulations is expected to be very large. Moreover, given that the growth rate of the linear modes is substantially modied for small values of m i /m e (∼ 1) [9, Bottino 2011], it can be expected that the transport levels will be badly predicted if a too low mass ratio is chosen. It is therefore in our best interest to nd numerical methods that reduce the cost of simulations while ensuring that the evolution of turbulence is correctly predicted by doing so. The testing of such methods is done by launching a bunch of toroidal modes so as to look at the linear growth of the resonant modes satisfying m/n = -q. Second, we present a method developed to reduce the numerical cost of these simulations:

the aligned coordinate method ([57, Latu], [START_REF] Hariri | A ux-coordinate independent eld-aligned approach to plasma turbulence simulations[END_REF]Hariri]). This method is particularly useful to resolve the dynamic of kinetic electrons which require higher space resolution, hence more memory.

4.3.1

The so-called ω H mode: a signature of the electrostatic model Using the parameters described in section 4.2.1, we place ourselves in the conditions of the ITG-like case. We introduce an initialization of the modes (m, n) with an amplitude φ m,n (t = 0) ∝ exp -(m/n + q) 2 . There is a substantial transport of matter and energy modifying the density and temperature proles, which prevents a linear analysis from being carried out. This transport seems to be concomitant with the appearance of high frequency oscillations, attributed to the so-called ω H mode, which are shown for dierent mass ratios in Fig. 4.14.

The ω H mode corresponds to the electrostatic limit β 1 of the kinetic Alfven wave [74, Scott 1997] as explained in Appendix D.2. In the case of kinetic electrons, this mode is found by looking at the resonance of the passing particles in the dispersion equation (4.23). Here, the terms (k ⊥ ρ i ) 2 and ω D have been neglected. Considering only the resonance of passing particles, this equation reads:

2 - ω -ω * i ω -k v i J 2 0 I - ω -ω * e ω -k v e E = 0 (4.28) 
where ... = ´...

F eq d 3 v and J 2 0 1-(k ⊥ ρ i ) 2 /2. In the hydrodynamic limit ω k v th,e
and neglecting the equilibrium gradients ω ω * i , ω * e , the ion and electron terms of Eq.(4.28) become:

I 1 - (k ⊥ ρ i ) 2 2 ; E 1 + k v th,e ω 2 
Finally, the resonant pulsation ω H , solution of Eq.(4.28) takes the form:

ω H ω ci = k k ⊥ m i m e (4.29) 
This high frequency can be measured in Fig. 4.14 and the dependence in m i /m e is veried. Two points can be mentioned here: on the one hand, the ω H mode is a signature of the electrostatic model that should not appear in an electromagnetic model. On the other hand, it appears only at high frequency. Thus, two strategies can be used numerically to treat this ω H mode:

• Either we keep these modes and the time step should be chosen small enough to resolve these modes. This solution requires a very small time step and is therefore costly numerically.

• Or we lter these modes so as not to take them into account in our study.

Choosing the second option, the question arises how to lter these modes. It should be noted that these modes are due to passing electrons and have a nite

k 1 R [n + m/q].
We therefore choose to proceed in a way similar to what is done in GT5D [51, Idomura 2016] to eliminate the ω H mode: on the one hand, only trapped electrons receive a kinetic treatment and on the other hand we lter the modes n = 0 except for the mode (m = 0, n = 0).

The aligned coordinates method: a way to reduce the toroidal discretization

In Gysela, parallel derivatives can be computed using eld-aligned coordinates [57, Latu 2018]. This allows one to use a coarser grid in a chosen direction, while still properly describing the relevant k ∼ 0 modes. The method has been initially proposed by Ottaviani [67, Ottaviani 2011], and further developed in the Fenicia code [45, Hariri 2013].

Parallel and perpendicular dynamics

The equations of motion in Gysela state as follows, when considering dominant contributions only:

dr dt = v Er + v Dr dθ dt = v Eθ + v Dθ r + v qR (4.30) dϕ dt = v R
In this scheme, we numerically solve a 2D advection in (r, θ) given by the two rst equations of the system (4.30), a 1D advection in ϕ given by the last equation and the advection in v . One can notice that this motion of the gyrocentres can be decomposed in two independent dynamics:

• a dynamics parallel to the magnetic eld lines described by the equations:

dθ dt = v /qR dϕ dt = v /R (4.31) 
• a dynamics perpendicular to the magnetic eld lines described by the equations:

dr dt = v Er + v Dr dθ dt = (v Eθ + v Dθ )/r (4.32) 
The aligned coordinate method ([57, [START_REF] Latu | Field-aligned interpolation for semi-lagrangian gyrokinetic simulations[END_REF]], [45, Hariri 2013]) consists in solving the 2×2D advections (4.31) and (4.32) and the advection in v . This so-called Strang splitting is therefore more demanding in numerical resources for a given discretization. However, the gradients in the parallel direction are much smaller than those in the transverse directions, roughly in the ratio k qR ∼ k ⊥ ρ i . Therefore the aligned coordinates method enables to use a discretization in the parallel direction much coarser than that used to describe the transverse directions. It is then possible to greatly reduce the discretization in one of the three spatial dimensions with little loss of accuracy in the description of plasma physics. The idea of this method is detailed below.

In practice, small grid steps (large number of grid points) are used in the radial r and poloidal θ directions and a coarse mesh in the toroidal direction ϕ. Let us consider a function G of the 2 space coordinates θ and ϕ. Let (θ * , ϕ * ) be the footpoint of the trajectory, i.e. the point at which a 2-dimensional interpolation is required. The eldaligned method proceeds in 2 steps for this interpolation. Before all, one identies the magnetic eld line which intersects (θ * , ϕ * ). The intersections of this eld line with the toroidal grid mesh are marked with blue crosses on Fig. 4.15. The rst step consists in interpolating the value of G on each of these crosses by using the rened mesh in the 

Comparison aligned versus not aligned

In the adiabatic electrons model, we launch two series of simulations, one using the aligned coordinates scheme and the other using the classical coordinates scheme. We compare the evolution of the higher amplitude modes with and without aligned coordinates for dierent numbers of toroidal points N ϕ (see Fig. 4. [START_REF] Connor | High mode number stability of an axisymmetric toroidal plasma[END_REF]). We see that the non-aligned case with N ϕ = 32 has not converged so we did not show the case N ϕ = 16. Conversely, the aligned case N ϕ = 128 has totally converged so we did not show the case N ϕ = 256.

It is found that the two cases have converged at identical levels from a toroidal discretization N ϕ = 32 for the aligned case and N ϕ = 256 for the non-aligned case.

The aligned coordinates enabled a reduction of spatial discretization (here by a factor 8) while obtaining similar results. The resulting eective cost in terms of computation time is summed up in Tab.4.1. Due to issues related to the Strang splitting explained earlier, aligned cases are more costly than non-aligned ones at a given N ϕ . This saving is particularly valuable for the launch of nonlinear cases with kinetic electrons for which the evolution times are long and therefore very expensive in terms of numerical resources. In particular, it can be noted that the simulation converges with less toroidal points in the aligned scheme (N ϕ = 32 with the aligned coordinates versus N ϕ = 256 without).

N

Expression of the eective parallel wave vector

It has been seen that the aligned method gives, for a reduced numerical cost, similar growth rate values for resonant modes as the ones obtained without using this method.

However, we want to check whether the (m, n) values of resonant modes are the same with both methods. To do so, we recall the reasoning made in [45, Hariri 2013] to compute the eective parallel wave vector in the aligned method, the resonant modes being the ones such satisfying k ∼ 0. The reasoning is the following. The parallel gradient of any 3D eld φ can be computed by nite dierences along the parallel direction s. At second order, it reads:

R∇ F A φ(r, ξ, s) ≈ φ(r, ξ, s + ∆s) -φ(r, ξ, s -∆s) 2∆s

(4.33)
where R is the major radius and the superscript F A stands for eld-aligned coordinates. ∆s = ∆ϕ = 2π/N ϕ is the increment in the parallel direction (N ϕ being the number of toroidal grid points), and ξ denotes the second coordinate orthogonal to the magnetic eld B (typically, ξ = θ -ϕ/q(r)). In terms of poloidal and toroidal Fourier modes (using the change of variables (ξ, s) → (θ, ϕ), with θ = ξ + ϕ/q and ϕ = s), such an expression leads to:

R∇ F A φ(r, ξ, s) = 1 2∆s m,n φm,n (r, t)
e im[ξ+(s+∆s)/q]+in(s+∆s) -e im[ξ+(s-∆s)/q]+in(s-∆s) = m,n φm,n (r, t)e i(mθ+nϕ) e i∆ϕ(n+m/q) -e -i∆ϕ(n+m/q) 2∆ϕ = m,n φm,n (r, t)e i(mθ+nϕ) i sin [(n + m/q)∆ϕ] ∆ϕ It turns out that the normalized eective parallel wave vector then reads:

k F A = sin(Rk ∆ϕ) R∆ϕ = k sinc(Rk ∆ϕ) (4.35)
where k stands for the actual parallel wave vector at this resolution:

Rk = n + m q
In this framework, the resonant modes are such that their eective parallel wave number is vanishing k F A = 0. This leads to the following relationship:

k F A = 0 ⇔ n res = - m q + π ∆ϕ = - m q + N ϕ 2 (with ∈ Z) (4.36)
In this case, even large m modes can be coupled to resonant (i.e. such that k F A = 0) low n modes. As a matter of fact, given a maximum poloidal wave number m max which needs to be resolved, there is no need to go up to n max = -m max /q in order to properly account for resonant modes at this small transverse scale: the toroidal n modes characterized by n = -m max /q + π/∆ϕ will already do the job.

Aliasing and resonances

Let us now consider the case of an under resolved simulation in ϕ using eld aligned coordinates to compute parallel derivatives. By under resolved, we mean that resonant modes such that m + nq = 0 will still have a large magnitude at the smallest resolved scale in ϕ, namely for (m, n) = (∓qN ϕ /2, ±N ϕ /2). Aliasing (see Appendix D.3) will result in the appearance of o-diagonal modes in the 2D (m, n) Fourier spectrum of the signal, depicted by the red-solid lines on Fig. 4.17.a. These modes will still be treated as resonant by the code (although m+nq = 0) since their eective parallel wave vector k F A is vanishing. However, these are not the only modes which are considered as resonant within the eld-aligned approach. Indeed, Eq.(4.36) shows that additional o-diagonal bands are also to be considered as resonant (dashed-red lines on Fig. 4.17.a). In a Gysela simulation, after a reorganization phase, we observe on Fig. 4.17.b the appearance of the three types of modes mentioned earlier:

• The resonant modes satisfying m/n = -q (black line of Fig. 4.17.a).

• The "folded" modes due to aliasing and corresponding in fact to the modes such that |n| > N ϕ /2 (red lines of 4.17.a).

• Other "spurious" modes that are resonant in the eld-aligned approach but which are neither the ones satisfying m/n = -q nor the ones explained by aliasing which are considered (dashed-red lines on Fig. 4.17.a).

In our case, N ϕ = 32 and the modes n > 16 (resp. n < -16) will appear at the toroidal frequencies n -N ϕ (resp. N ϕ -n). We take the ITG-like case in which we initially excite the set of resonant modes for n ∈ [-10, 10]. In order to launch non-linear tests, it is necessary to ensure that the folded and spurious modes do not interfere with the resonant modes with a m/n value close to -q. If the value of N ϕ is too small, the resonant modes and the spurious modes overlap. This could alter the predictions of turbulent transport and should therefore be avoided. To circumvent this problem, we add a "diagonal lter" which retains only the diagonal band m = -nq and those corresponding to folded modes. The width ∆m of these bands must be chosen both to retain these modes while eliminating the spurious modes. The gap in m between the spurious modes and the original signal being qN ϕ /2, a possible choice is to retain only the modes m ∈ [-qn -∆m/2; -qn + ∆m/2] with ∆m = qN ϕ /2.

First results of non-linear simulations

Using the strategy described in section 4.3, some rst non-linear simulations were launched with the trapped kinetic electron model. In this section, we present some results to validate the trapped kinetic electron model. To do so, we compare the results obtained with the 2 limit cases ITG-dominant and TEM-dominant mentioned earlier. We use the same parameters as those described in section 4.2.1. We use Neumann boundary conditions without any source of particle or energy. The initial potential perturbation is taken as φ m,n 0 (t = 0) = 10 -5 exp -(m/n 0 + q) 2 in normalized units. Besides, we use a mass ratio m i /m e = 100 and we recall the form of density and temperature proles given by Eq.(4.26):

X(r, t = 0) = exp - R 0 L X δ tanh ρ -ρ peak δ
where X stands for either n, T i or T e . We have δ = 0.3, R 0 /L n = 2.22 and R 0 /L Te = 6.92 in both cases. Besides, we choose (i) R 0 /L T i = 6.92 in the ITG-dominant case and (ii) R 0 /L T i = 0.5 in the TEM-dominant case. Furthermore, we use the aligned coordinates method described in section 4.3.2. We also introduce in both cases the same initialization as the one used in part 4. First, we look at the evolution and structure of the potential. Then we study the energy transfer from the electric wave to particles in order to verify which species is responsible for the instability in each case. Finally, we check that the conservation of energy is well satised using our model.

Potential structure

Fig. 4.18 shows the evolution of the modes (m, n) of the electric potential which are dominant at t = 30000 ω -1 c0 . We recognize up to t 17000 ω -1 c0 the linear growth phase of the resonant modes seen in the linear analysis and then the saturation of these modes at their maximum level during the non-linear phase that follows. It can be noted here that the mode φ 00 grows very fast and independently with other modes. This mode is not only due to turbulence: it also participates to the radial force balance

E r = 1 e ∇ r p -v θ B ϕ + v ϕ B θ .
It is possible that it is this contribution which appears very early, before the turbulence contributes to it. Besides, an "accident" seems to appear in both cases (t = 20000 for the ITG case, t = 15000 for the TEM case). One should keep in mind that what is plotted corresponds to the value of φ 00 at a given radius (r peak ). However φ 00 has a radial structure, which oscillates around 0. If these oscillations move slightly, φ 00 may change sign in r peak , passing through 0. This is probably the case in the accident at t = 20000).

Thereafter, we choose to explore the potential structure in the non-linear phase at the two times t = 20000 ω -1 c0 and t = 25000 ω -1 c0 .

Fig. 4.20 shows the poloidal proles of the potential uctuations φ -φ 00 in the nonlinear phase at the times mentioned earlier. We recognize a ballooned structure, i.e.

the uctuations are greater in the low eld side than in the high eld side. This is a characteristic of an interchange-type instability. It can be noted here that in Fig. 4.18 the case ITG-dominant seems to enter the non-linear phase before the TEM-dominant case.

This explains that potential poloidal prole in Fig. 4.20 seems to have a more advanced structure in the ITG-dominant case than in the TEM-dominant one. Besides, the potential structures seem to be larger in the TEM-dominant case than in the ITG-dominant one. In certain ranges of plasma parameters, zonal ows are known to be less ecient to stabilize TEM turbulence than ITG turbulence [4, 62, Asahi 2014[START_REF] Merz | Nonlinear saturation of trapped electron modes via perpendicular particle diusion[END_REF]], hence letting potential structures to become larger in the TEM-dominant case. If we look at the d r φ 00 proles on Fig. 4.19 at the nal time, the shears seem to be of the same order of magnitude (∼ 3.10 -3 ) and present similar proles, with a large layer of central shear (ρ ∼ 0.5 -0.6) and not much elsewhere. The history is quite dicult to compare because of dierences in color scale, but shear levels do not seem to dier greatly between the two simulations ITG-dominant and TEM-dominant. In fact, the shear seems to be almost the same in both situations but its eect on turbulence is dierent: dierences in radial scales observed on potential uctuations (Fig. 4.20) could result from the fact that TEMs are less sensitive to a given shear that the ITGs. That would be consistent with the literature.

We show on Fig. 4.21 the Fourier transform in (θ, ϕ) of the previous potential proles in the non-linear phase at the same times as before. The blue horizontal band n = 0 corresponds to the modes (m = 0, n = 0) which were removed here as said earlier. We verify that in the non-linear phase, the resonant modes (m, n) satisfying k = 0 remain dominant in the non-linear phase. We also notice the presence of the folded modes mentioned in section 4.3.2. Besides, we see that the spurious modes, presented in the same section, appear in the ITG-dominant case.

Energy conservation

We now want to check that the energy conservation equation established in Appendix D.1 is veried in the non-linear phase for the two cases: ITG-dominant and TEM-dominant.

The energy conservation for a given species reads as follows: 

V ∂ t E F S + ∂ χ (V Q χ F S ) = -e ˆd3 v v + v E + v D • ∇ φ f F S (4.37)

Energy transfer between the electric wave and particles

The method mentioned in section 4.2.3 to determine the nature of the instability is difcult to use during the non-linear phase because the potential prole is very heckled.

However, we can look at the energy transferred to the wave by the ions and electrons of the plasma. We expect that in an ITG turbulence it is mainly the ions that supply the energy to the wave and conversely that it is the electrons that provide the energy to the wave in a TEM turbulence. In Appendix D.1.2, this energy transfer is derived and reads as ´Js • E d 3 v as mentioned in section 4.4.2. It is shown in particular that the energy transfer associated to the electric drift is vanishing and that the term associated to the parallel drift is negligible compared to the one due to the gradients and curvature of the magnetic eld. This is consistent with the fact that the instability is of the "interchange" type, i.e. governed by the inhomogeneity of B (as well as the inhomogeneities of n and T ). Consequently, the energy transfer term reduces to ´JD • E d 3 v where J D = ev D f . We show on Fig. 4.25 the energy transfer wave to particle from t = 0 to t = 25000 ω -1 c0 with Gysela.

We nd that in the ITG-dominant case, it is indeed the ions that give energy to the electric wave. For the TEM-dominant case, both species participate in the instability.

We can see on both plots that the radial proles are perturbed. The high variations between neighbouring points observed in the ITG-dominant case are typical of a too low resolution. It is known that the radial step is too small to fully resolve our simulations and this could explain these proles. In the TEM-dominant case however, the perturbations seem to have a larger radial period. It is therefore unclear whether these corrugations observed on the energy transfer proles are a kinetic signature of electrons as explained in Appendix D.4 or a mere consequence of a low spatial resolution. Future simulations would require decreasing the radial step to check this last point. 

Conclusion

In this chapter, several results have been seen:

• The ITG instability is recovered for large values of R 0 /L T i and the TEM instability for small values of R 0 /L T i while keeping the parameter R 0 /L Te constant.

• The linear behaviour of the codes Gysela and GT5D is similar. The deviations observed between the two codes are less than 10%. These may be due to the low discretization used in Gysela and/or to the dierences of simulation parameters (in particular ρ * ).

• One should remove the modes (m = 0, n = 0) to avoid the apparition of the socalled ω H mode. This mode appears here because the model is electrostatic and it should not be present in an electromagnetic simulation.

• The aligned coordinates method enables to reduce the number of points in the toroidal direction by a factor 4 to 8, hence reducing the overall cost of simulations.

So far, this method requires the use of a diagonal lter in the Fourier space so as to remove spurious modes specic to that method.

• In the rst non-linear simulations, we saw on the one hand, that the potential structure shows a ballooned shape with the resonant modes k = 0 which become dominant as expected. On the other hand, the energy transfer diagnostic indicates that ions give energy to the wave in the case of an ITG instability and that both ions and electrons participate to the growth of the considered TEM instability, the role of electrons being dominant. Moreover, the energy conservation seems to be globally satised for both species.

Conclusion

Providing an adiabatic treatment to electrons is not an unreasonable assumption for a turbulence dominated by ions. In this case, the structures of the modes are made at large scales and evolve over times much longer than the evolution times of electrons. Indeed, the fast parallel dynamics of the electrons allows them to stay in phase with ion turbulence structures, hence leading to an adiabatic response of the electrons. Nevertheless, this approach misses some important physical issues:

• Near the resonance surfaces k = 0, the response of electrons is non-adiabatic.

• In an adiabatic electron model, the turbulent particle transport is almost vanishing.

• The turbulence carried by electrons is not taken into account when electrons are adiabatic.

Accessing this physics thus requires to go beyond the frame of adiabatic electrons. Some codes have already taken this step and the aim of this thesis is to do the same for the • The Adiabatic Electron (AE) model where all electrons have an adiabatic response.

• The Full Kinetic Electron (FKE) model where all electrons are described by a kinetic distribution function.

• The Trapped Kinetic Electrons (TKE) model in which it is possible to give a kinetic response only to a part of the electrons (usually the trapped ones) and to treat the rest adiabatically.

141 First, we have looked at the impact of kinetic electrons on the damping of Geodesic Acoustic Modes (GAM). The damping of GAMs is part of the Rosenbluth-Hinton test which is a well known test to benchmark and verify gyrokinetic codes. The comparison between simulations run with the Adiabatic Electron model and the Full Kinetic Electron model showed that the GAM pulsation remains almost unchanged in the presence of kinetic electrons in agreement with theoretical predictions. Conversely, the GAM damping rate is increased for large values of the safety factor. The theory to predict the pulsation and damping rate of GAMs existed only for adiabatic electrons models. In this thesis, the contribution of electrons to GAM damping has been derived. It appears that this contribution is usually not negligible thanks to a resonance between barely trapped/passing electrons bounce/transit frequency and the mode pulsation. Damping is estimated via the computation of the energy exchanged between the mode and electrons. This expression appears to be quite intricate as it involves a quadruple integral over the phase space and poloidal angles. A more tractable expression is obtained by assuming a strong weight of trapped particle bounce points in this integral. The ratio between the exact result and the approximate is a weight function that depends only on a dimensionless number, which characterises the ratio of the mode to trapped electrons bounce frequencies.

This weight function thus measures the number of resonant electrons that participate in mode damping. Comparison with available data in the literature suggests that this weight function is nearly constant and close to 1, thus conrming a prominent role of barely trapped particles. In addition, under suitable assumptions, the model recovers that the damping rate evolves with the mass ratio as (m i /m e ) -1/2 , in agreement with three gyrokinetic codes, namely Gysela, ORB5 and GENE [7, Biancalani 2017].

This work also enabled to look at the impact of kinetic electrons on the linear growth of the Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities. We use the Trapped Kinetic Electron model at low mass ratio m i /m e = 100 to save numerical resources and we look at both the sign of the poloidal pulsation and the energy transfer from the electric wave to the ions and electrons of the plasma to determine the type of instability, ITG or TEM. It appears that temperature gradients have a very big impact on the type of instability in presence : a high electron temperature gradient implies the trapped electrons provide energy to the electric wave, whereas a high ion temperature gradient implies the ions excite the wave. Besides the transition between ITG and TEM dominated regimes is clearly observed while changing the radial gradient of the ion temperature for a xed electron temperature prole. However, we did not recover the transition when increasing the value of the wavevector of the mode, interpreted as a result of a too coarse mesh grid, constrained by numerical resources. Finally, we set up the frame for future simulations to build non linear cases that could enable to study the inuence of kinetic electrons on turbulent transport. First, it is important to lter the modes of poloidal number m = 0 and those of toroidal number n = 0 except for the zonal ow (m, n) = (0, 0). This operation eliminates the ω H mode which is the low β response of the kinetic Alfvén wave and appears only in electrostatic simulations.

The appearance of this mode is accompanied by a radial particle and energy transport that should not occur in the electromagnetic case. Therefore, this mode has been safely ltered out. Second, the aligned coordinate method developed in [45, 57, Hariri 2013[START_REF] Latu | Field-aligned interpolation for semi-lagrangian gyrokinetic simulations[END_REF]] is to be preferred since it gives results similar to the non-aligned method for a much lower numerical cost. It should be used in conjunction with a diagonal lter to avoid the growth of spurious non-resonant modes.

The rst step to continue this work would be to measure the transport coecients with and without kinetic electrons. This study should provide a rst glimpse of the impact of kinetic electrons on turbulent transport. To complete this rst study, one should add the possibility of using the particle source that has been discussed in the end of chapter 2 and treat the collision term electron-ion that is not implemented in the current version of the code although it is of the same order of magnitude as the collision term ion-ion. Finally, one should get rid of the electrostatic hypothesis by adding the Ampere equation to the gyrokinetic system in order to solve the evolution of the magnetic eld. This electromagnetic model would thus take into account all the magnetic modes. In order to nd the relation θ * (ψ, θ), let us compute the ratio dθ * /dθ:

dθ * dθ = B • ∇θ * B • ∇θ = B • ∇ϕ qB • ∇θ Hence it comes θ * (ψ, θ) = ˆθ 0 dϑ B • ∇ϕ q(ψ)B • ∇ϑ (A.3) with B • ∇ϕ = Bϕ R and B • ∇θ = B θ
r with R and r being resp. the major and minor radius of the position. Ampere's law implies B ϕ R = B ϕ0 R 0 with R 0 the major radius at the center of the tokamak, B ϕ0 the toroidal eld B ϕ at R 0 . As an approximation, one can choose for the expression of the poloidal eld: B θ = B θ0 1 + ∆ r R 0 cos θ with ∆ the Shafranov shift and B θ0 a function of ψ. Knowing moreover, that R A.2 Change of coordinates from particle to gyrocentre A.2.1 Canonical change of coordinates for f : (q gy , p gy ) to (q GC , p GC )

= R 0 1 + r R 0 cos θ , equation (A.3) becomes: θ * (ψ, θ) = ˆθ 0 dϑ rB ϕ0 R 0 R 2 0 B ϑ0 1 + r R 0 cos ϑ -2 1 + ∆ r R 0 cos ϑ -1 ( 

Introduction of the gyro-centre

To dene correctly the gyrocentre, we rst write the Hamiltonians describing a particle and its guiding centre, and second we choose a good form of the Hamiltonian of the gyrocentre, with the constraint that it should be independant of the gyroangle ϕ c .

The Hamiltonian associated with a particle of mass m, charge e at coordinates (q, p)

is given by:

H(q, p, t) = 1 2 mv 2 + µB + eφ(x, t) (A.5)
The magnetic moment is an adiabatic invariant. At leading order, the value of µB calculated at the position of the guiding centre can be approximated by µB calculated at the position of the particle. The Hamiltonian of the guiding centre associated to the coordinates (q GC , p GC ) is then given by:

H GC (q GC , p GC , t) = 1 2 mv 2 GC + µB + eφ GC (x GC , t)
where φ GC (x GC , t) is the potential observed by a given guiding centre at the position x GC . For each couple guiding centre-particle, the same potential is observed. Thus, it comes the relation φ(x, t) = φ GC (x GC , t). Indeed, the same physical reality is seen from the point of vue of the particle and the guiding centre, in the same way as for the distribution functions (cf. Eq.(1.63)). To express φ GC (x GC , t) as a function of φ at point x GC , it is needed to process a change of coordinates from x to x GC which consists in making a limited development in xx GC = ρ c . Let F be a function of x GC that we want to express in x. This can be written as:

F (x GC ) = F (x) -(x -x GC ) • ∇F | x + ... with x -x GC = ρ c
which can also be written as:

F (x GC ) = e -ρc•∇ F (x) (A.6)
Thus, it is possible to write φ GC (x GC , t) as:

φ GC (x GC , t) = φ(x, t) = φ(x GC + ρ c , t) = e ρc•∇ φ(x GC , t)
It is then possible to derive the nal form of H GC (q GC , p GC , t):

H GC (q GC , p GC , t) = 1 2 mv 2 GC + µB + ee ρc•∇ φ(x GC , t) (A.7)
The fundamental point to notice here is that, due to the variations of the value of the local electric eld on scales of the Larmor radius, H GC depends of the gyroangle

A.3 Expression of the polarization density n s,pol

This calculation was rst made in J. Abiteboul's thesis [1, Abiteboul 2012] and extended to the case where only trapped particles are kept.

General case

Notice that the Larmor radius itself depends on spatial location via its B dependence. More precisely, when moving from one position to another x ↔ x G , the following relations hold:

x

→ x G : x = x G + ρ s (x) (A.22) x G → x : x G = x -ρ s (x G ) x -ρ s (x) + (ρ s • ∇)ρ s (A.23)
Then it comes, with the convention that ρ s stands for ρ s (x) hereafter:

e ρs•∇ 1 + ρ s • ∇ + 1 2 (ρ s • ∇) 2 (A.24) e -ρs•∇ 1 -ρ s • ∇ + [(ρ s • ∇)ρ s ] • ∇ + 1 2 (ρ s • ∇) 2 (A.25)
With these expressions, and at second order in k ⊥ ρ s , eq. 1.67 reads as follows:

n s,pol (x, t) ˆJv dµdv G e s B ˆ2π 0 dϕ c 2π (1 -ρ s • ∇) ∂ µ f s,eq (x, v) 1 -1 -ρ s • ∇ + ((ρ s • ∇)ρ s ) • ∇ + 1 2 (ρ s • ∇) 2 1 + ρ s • ∇ + 1 2 (ρ s • ∇) 2 φ(x, t)
The gyro-radius vector ρ s can be written ρ s = ρ s (cos ϕ c e x + sin ϕ c e y ) where e x , e y are the two vectors of the cartesian basis. It follows:

ρ s • ∇ = 0 (ρ s • ∇) 2 = 1 2 ρ s ∇ ⊥ • (ρ s ∇ ⊥ ) (A.26)
with ρ s = |ρ s | the norm of the gyro-radius. Keeping terms up to the second order in k ⊥ ρ s only, one gets:

n s,pol (x, t) ˆJv dµdv G e s B ˆ2π 0 dϕ c 2π (1 -ρ s • ∇) ∂ µ f s,eq (x, v) 1 -1 -ρ s • ∇ + ((ρ s • ∇)ρ s ) • ∇ + 1 2 ρ s • ∇(ρ s • ∇) + 1 4 ρ s ∇ ⊥ .(ρ s ∇ ⊥ ) φ(x, t) = -ˆJv dµdv G e s B 1 2 (ρ s • ∇(ρ s • ∇)) + ((ρ s • ∇)ρ s ) • ∇ + 1 4 ρ s ∇ ⊥ .(ρ s ∇ ⊥ ) φ ∂f s,eq ∂µ 
+ (ρ s • ∇φ) ρ s • ∇ ∂f s,eq ∂µ (A.27)
Three brackets remain to be calculated. The rst one has already been computed (cf.

eq. A.26). The two others read as follows:

((ρ s • ∇)ρ s ) • ∇ = 1 4 ∇ ⊥ ρ 2 s • ∇ ⊥ (ρ s • ∇φ) (ρ s • ∇∂ µ f s,eq ) = 1 2 ρ 2 s ∇ ⊥ φ • ∇ ⊥ ∂ µ f s,eq It then comes, further noticing that ρ s ∇ ⊥ • (ρ s ∇ ⊥ φ) = 1 2 ∇ ⊥ ρ 2 s • ∇ ⊥ φ + ρ 2 s ∇ 2 ⊥ φ: n s,pol (x, t) -ˆJv dµdv G e s B 1 2 ∇ ⊥ ρ 2 s • ∇ ⊥ φ + 1 2 ρ 2 s ∇ 2 ⊥ φ + 1 2 ρ 2 s ∇ ⊥ φ • ∇ ⊥ ∂ µ f s,eq = ˆJv dµdv G e s 2B ∂ µ ∇ ⊥ ρ 2 s • ∇ ⊥ φ + ρ 2 s ∇ 2 ⊥ φ +ρ 2 s ∇ ⊥ φ • ∇ ⊥ f s,eq At this point, notice that B -1 ∂ µ = (m s v ⊥ ) -1 ∂ v ⊥ commutes
with the operator in conguration space ∇ ⊥ . For the same reason, ´Jv dµ also commutes with the operator ∇ ⊥ . Since B -1 ∂ µ ρ 2 s = 2m s /(e s B) 2 , one nally obtains the following expression for the polarization density:

n s,pol (x, t) ˆJv dµdv G ∇ ⊥ • m s e s B 2 f s,eq ∇ ⊥ φ = ∇ ⊥ • ˆJv dµdv G m s e s B 2 f s,eq ∇ ⊥ φ = ∇ ⊥ • m s n s,eq e s B 2 ∇ ⊥ φ(x, t) (A.28)

Trapped particles only

Expressing the density n s,eq as an integral in velocity space, Eq.(A.28) recasts as:

n s,pol (x, t) ∇ ⊥ • m s e s B 2 ˆJv dµdv G f s,eq (x, v) ∇ ⊥ φ(x, t)
The same calculation is carried out when considering trapped particles only. However, the integration domain of f s,eq is changed. Therefore, the polarisation density for trapped particles n trap.

s,pol simply expresses as:

n trap. s,pol (x, t) ∇ ⊥ • m e e e B 2 ˆtrap. J v dµdv G f s,eq (x, v) ∇ ⊥ φ(x, t) = ∇ ⊥ • m e e e B 2 n trap. s,eq ∇ ⊥ φ = ∇ ⊥ • m e e e B 2 α t n s,eq ∇ ⊥ φ (A.29)
where α t = n trap. s,eq /n s,eq is the fraction of trapped particles.

B.1 Adiabatic particle transport

The turbulent radial transport of particles is given by Eq.(2.15) and using the notations introduced in part 2.1.2, it reads:

Γ r = -en e,eq rT e

1 ˜dϕ dθ B•∇θ ¨dϕ dθ B • ∇θ (φ -φ F S ) ∂ θ φ B One notes A = ˜dϕ dθ B•∇θ (φ -φ F S ) ∂ θ φ B .
The magnetic eld can be expressed as:

B = I(ψ)∇ϕ + ∇ϕ ∧ ∇ψ → B • ∇θ = (∇ψ ∧ ∇θ) • ∇ϕ
Then it comes:

B 2 = I 2 |∇ϕ| 2 + (∇ϕ ∧ ∇ψ) • (∇ϕ ∧ ∇ψ) = I R 2 + |∇ψ| 2 |∇ϕ| 2 = I 2 + |∇ψ| 2 R 2 
Besides:

q(ψ) = B • ∇ϕ B • ∇θ ⇒ B • ∇θ = 1 q B • ∇ϕ = I qR 2 
Thus, the expression of A becomes:

A = ¨dϕ dθ(φ -φ F S )∂ θ φ qR 2 I R I 2 + |∇ψ| 2 = q I I 2 + |∇ψ| 2 ¨dϕ dθ R 3 (φ -φ F S )∂ θ φ = qR 3 0 I I 2 + |∇ψ| 2 ¨dϕ dθ (1 + ε cos θ) 3 (φ -φ F S )∂ θ φ
Moreover, due to the periodicity in θ of φ we have:

¨dϕ dθ(φ -φ F S )∂ θ φ = ˆdϕ φ 2 2 2π 0 -[ φ F S φ] 2π 0 = 0 
Therefore, A can be recast as:

A = εqR 3 0 I I 2 + |∇ψ| 2 ¨dϕ dθ 3 cos θ + 3ε cos 2 θ + ε 2 cos 3 θ (φ -φ F S )∂ θ φ
The calculation of ˜dϕ dθ B•∇θ gives:

¨dϕ dθ B • ∇θ = qR 2 0 I ¨dϕ dθ (1 + ε cos θ) 2 = 4π 2 qR 2 0 I 1 + ε 2 2 
Eventually, the development of the turbulent radial transport of particles Γ r in ε reads:

Γ r = - en e,eq rT e R 0 4π 2 I 2 + |∇ψ| 2 ε 1 + ε 2 2 ¨dϕ dθ 3 cos θ + 3ε cos 2 θ + ε 2 cos 3 θ (φ-φ F S )∂ θ φ B.

Computation of n eR

Two strategies can be adopted to compute n eR in the case we suppose J 0e = 1:

• either replacing J 0e by its Padé approximation. In this case, n eR is the solution of an ordinary dierential equation, which can be easily solved numerically by inverting a tridiagonal matrix.

• or using an iterative procedure from an initial guess. This latter method has the advantage of considering the actual gyroaverage operator which is used in Gysela.

Its drawback is that the convergence cannot be guaranteed for simulation arbitrary parameters.

In the future, we believe the former method should be implemented in Gysela for the convergence issue mentioned in the iterative procedure.

Dierential equation

Admitting that all proles have gradient lengths larger than the Larmor radii, the gyroaverage operator J 0 can then be approximated by its long wave length limit given by the Padé development Eq.(2.13). In this case 1 :

ˆJ0e T ⊥e,eq (r) r + T ⊥e,eq (r)

.f eR d 3 v ≈ ˆ f eR + A e 2r ∂ r {r∂ r (µf eR )} d 3 v Using Eq.( 2 
β(r) = A e T ⊥e,eq (r) 2r + T ⊥e,eq (r)

γ(r) = A e 2 T ⊥e,eq (r) 
Here the prime " " denotes the radial derivative. The radial range r ∈ [0, a] is discretized in the values r j with j ∈ [1, N r ] and the notation X j is used instead of X(r j ), where X is a given function of r. A numerical way to retrieve n eR is to invert the following tridiagonal system (in the case where the derivatives in the radial direction are computed with nite dierences at second order in ∆r). For j ∈ [2, N r -1] this system reads:

L j n eR, j-1 + D j n eR, j + U j n eR, j+1 = R j (B.1)
1 Here, d 3 v is approximated by d 3 v ≈ 2πB dµ dv , i.e. B * e is replaced by B. Also, the radial derivatives of the magnetic eld B can be safely neglected because they are of higher order.

´J0e .(n K eR feR ) d 3 v remains much smaller than the ion polarization term, typically in the ratio ρ * . A possible condition can then read as follows:

max r R -´J0e . n K eR feR d 3 v max r,i {∇ r . (A i n i0 ∇ r φ 00 )} ≤ min r,i {ρ * i } with ρ * i = √ A i T i0 /(aZ i )
and where the extrema are to be taken on the radial prole and on all active (i.e. non-trace) ion species. Alternatively, it could be replaced by the following condition:

max r R -ˆJ0e . n K eR feR d 3 v ≤ min r,i {ρ * 2 i } min r {R}
Because the iterative procedure presents the risk of not converging, we should employ the former method in GYSELA, i.e. the inversion of the tridiagonal system Eq.(B.1).

B.3 Normalized quasi-neutrality equation for adiabatic electrons

In this appendix, the symbol ... refers to normalized quantities in the Gysela code. The normalized quasi-neutrality equation in the case of adiabatic electrons can be written:

-

1 ne 0 i Âi ∇⊥ • ni 0 B0 ∇⊥ φ + 1 Z 2 0 Te φ -φ FS = 1 ne 0 i Ẑi [n G i -nG i ,eq ] (B.7)
where the normalized electron density ne 0 is dened as ne 0 = i Z 0 Ẑi ni 0 . In the fol- lowing, i symbol stands for ion species while the e symbol stands for electrons. The s symbol will be used when no distinction between both ion and electron species is required.

Notice that, in the polarization term (rst term of eq. (B.7)), B has been replaced by B0 = 1. The integral φ FS represents the ux surface average of φ where for all g(r, θ, ϕ) function:

g FS (r) = ˆg Ĵx dθ dϕ / ˆĴ x dθ dϕ

(B.8)
with Ĵx = 1/( B • ∇θ) the normalized jacobian space. The normalized guiding-center density nGs of species s is given by:

nGs = ˆdμ s ˆĴ v dv G s Ĵ0s • fs (B.9)
with the normalized jacobian in velocity equal to Ĵv = 2π B * s . The correction term nGs,eq in the right hand side is dened as follows:

nGs,eq = ˆdμ s ˆĴ v dv G s Ĵ0s • fs,eq and therefore the fact that the term nGs -nGs,eq can be expressed as:

nGs -nGs,eq = 2π ˆdμ s B Ĵ0s where the integrals I 0 and I 1 are dened by: I 0 (r, θ, ϕ, μs ) = ˆ fsfs,eq dv G s and I 1 (r, θ, ϕ, μs ) = ˆv G s fsfs,eq dv G s

B.3.1 How to overcome the diculty due to φ FS term ?

In this section, we explain the particular treatment performed to overcome the problem of the ux surface average term ... FS appearing in quasi-neutrality equation (B.7).

For more readability the hat symbols will be omitted for normalized quantities in the following. Let us consider a disk Ω of radius r = r max , i.e

Ω = {(r, θ) : 0 < r ≤ r max ; 0 ≤ θ < 2π} (B.14)
As ϕ plays the role of a parameter in equation (B.7), it can be written as a set of 2D

Poisson equations in polar coordinates as:

L AE φ + 1 Z 2 0 T e (r) [φ -φ FS ] = ρ(r, θ, ϕ) ∀(r, θ) ∈ Ω and 0 ≤ ϕ < 2π (B.15)
where the dierential operator of second order L AE (where AE symbol stands for adiabatic electrons) is dened as:

L AE = - 1 n e 0 (r) i A i ∇ ⊥ • (n i 0 (r)∇ ⊥ ) = - 1 n e 0 (r) i A i n i 0 (r) ∂ 2 ∂r 2 + 1 r + 1 n i 0 (r) dn i 0 (r) dr ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2
and the right hand side reads ρ(r, θ, ϕ) = 1 n e 0 (r) s Z s [n Gs (r, θ, ϕ) -n Gs,eq (r, θ)]

(B.16)
where n Gs and n Gs,eq are respectively dened by equations (B.9) and (B.10). One diculty of equation (B.15) is the treatment of polar coordinates singularity. As discussed later, the rst idea was to treat the problem of a coronna, i.e r min ≤ r ≤ r max with r min > 1.e -2 . But more recently the strategy proposed by Lai [START_REF] Lai | A note on nite dierence discretizations for poisson equation on a disk[END_REF] to overcome this singularity has been used. This will be described more in details in the next section.

Concerning the treatment of φ FS in Eq.(B.15), let us rst dene for all function g, g θ, ϕ the radial function equal to 

L AE φ θ, ϕ + 1 Z 2 0 T e [ φ θ, ϕ -φ FS ] = ρ θ, ϕ (B.17)
Let φ be dened as

φ = φ -φ θ, ϕ (B.18)
Then, by subtracting (B.17) to (B.15), 

L AE + 1 Z 2 0 T e φ(r, θ, ϕ) = ρ(r, θ, ϕ) with ρ = ρ -ρ θ, ϕ ∀(r, θ, ϕ) ∈ R 3 (B.
L AE φ θ, ϕ + 1 Z 2 0 T e φ θ, ϕ = ρ θ, ϕ ( 
                             L AE φ + 1 Z 2 0 Te(r) [φ -φ FS ] = ρ(r, θ, ϕ) ∀(r, θ) ∈ Ω r min ; 0 ≤ ϕ < L ϕ φ(r min , θ, ϕ) = φ(r max , θ, ϕ) = 0 0 ≤ θ < 2π ; 0 ≤ ϕ < L ϕ φ(r, 0, ϕ) = φ(r, 2π, ϕ) r min ≤ r ≤ r max ; 0 ≤ ϕ < L ϕ φ(r, θ, 0) = φ(r, θ, L ϕ ) ∀(r, θ) ∈ Ω r min (B.22)
Then the dierent steps for solving (B.22) and obtaining φ are the following:

1. Compute ρ(r, θ, ϕ) given by Eq.(B.16) and ρ θ, ϕ (r). 

                   L AE + 1 Z 2 0 Te φ(r, θ, ϕ) = ρ(r, θ, ϕ) with ρ = ρ -ρ θ, ϕ ∀(r, θ) ∈ Ω r min φ(r min , θ, ϕ) = φ(r max , θ, ϕ) = 0 0 ≤ θ < 2π φ(r, 0, ϕ) = φ(r, 2π, ϕ) r min ≤ r ≤ r max (B.23)
And applied the periodic boundary conditions in ϕ direction to compute φ(r, θ, ϕ = L ϕ ).

4. Compute ρ θ, ϕ .

5. Solve the 1D system (B.24) to obtain φ θ, ϕ (r).

       L AE + 1 Z 2 0 Te φ θ, ϕ (r) = ρ θ, ϕ ∀r ∈ [r min , r max ] φ θ, ϕ (r min ) = φ θ, ϕ (r max ) = 0 (B.24)
6. Finally, compute φ(r, θ, ϕ) by using (B.18), i.e φ(r, θ, ϕ) = φ(r, θ, ϕ) + φ θ, ϕ (r).

Let us notice that radial boundary conditions imposed in (B.23) and (B.24) ensure radial Dirichlet boundary conditions for φ (because φ(r min , θ, ϕ) = φ(r min , θ, ϕ)+ φ θ, ϕ (r min ) = 0 and the same for φ(r max , θ, ϕ) = 0).

Solving of the equation system (B.23)

As described in the following, the matrix system (B.23) (where ϕ plays the role of a parameter) is solved with nite dierences in radial direction and Fourier projections in θ. Let φ and ρ be represented in terms of the Fourier expansion as

     φ(r, θ, ϕ) = m φm (r, ϕ) exp(imθ) ρ(r, θ, ϕ) = m ρm (r, ϕ) exp(imθ)
then the equation (B.23) can be rewritten in the wave number representation, for each poloidal mode m and for each independent value of ϕ, as the following dierential equation:

L AE m + 1 Z 2 0 T e (r) φm (r, ϕ) = ρm (r, ϕ) (B.25)
with the operator L AE m dened as

L AE m = - 1 n e 0 (r) s =e A s n s 0 (r) ∂ 2 ∂r 2 + 1 r + 1 n s 0 (r) dn s 0 (r) dr ∂ ∂r - m 2 r 2 (B.26)
and where φm (resp. ρm ) is the Fourier transform in θ of φ (resp. ρ). Let us dene,

K s (r) = A s n s 0 (r) n e 0 (r) ; β(r) = s =e K s (r) and α(r) = s =e K s (r) 1 r + 1 n s 0 (r) dn s 0 (r) dr (B.27)
then the dierential operator L AE m can be written

L AE m = -β(r) ∂ 2 ∂r 2 + α(r) ∂ ∂r -β(r) m 2 r 2 (B.28)
Let us dened the radial discrete domain [r min , r max ] by N 1 points r i = r min + (i -1)∆r, ∀i = 1, • • • , N 1 with the discretization step ∆r = L r /(N 1 -1) where L r = r max -r min represents the domain length. For the following, let us dened the notations φm i = φm (r i , ϕ), ρm i = ρm (r i , ϕ), β i = β(r i ) and α i = α(r i ). Then up to second order in ∆r, equations (B.23) can be written as the following set of equations ∀i

= 1, • • • , N 1 -β i φm i-1 -2 φm i + φm i+1 2∆ 2 r -α i φm i+1 -φm i-1 2∆r + β i m 2 r 2 i φm i + 1 Z 2 0 T e (r i ) φm i = ρm i which is equivalent to ∀i = 1, • • • , N 1 - β i ∆r 2 - α i 2∆r φm i-1 + 2β i ∆r 2 + β i m 2 r 2 i + 1 Z 2 0 T e (r i ) φm i - β i ∆r 2 + α i 2∆r φm i+1 = ρm i (B.29)
Concerning boundary conditions, Dirichlet conditions are applied in r max , i.e φm

N 1 = φm (r i = r max , ϕ) = 0, then for i = N 1 -1 equation (B.29) becomes - β N 1 -1 ∆r 2 - α N 1 -1 2∆r φm N 1 -2 + 2β N 1 -1 ∆r 2 + β N 1 -1 m 2 r 2 N 1 -1 + 1 Z 2 0 T e (r N 1 -1 ) φm N 1 -1 = ρm N 1 -1 (B.30)
For inner boundary conditions (r = r min ), two choices are possible, depending on if: (i) r min > ∆r/2 (for a corona case), or (ii) r min = ∆r/2. For the rst case (r min > ∆r/2), Dirichlet conditions are applied, i.e φm 1 = φm (r i = r min , ϕ) = 0. For the second case (r min = ∆r/2), we use the same strategy than the one proposed by Lai [START_REF] Lai | A note on nite dierence discretizations for poisson equation on a disk[END_REF] to overcome the 1/r singularity on the axis. This strategy is simply based on the fact that if r min is chosen equal to ∆r/2, the term 1 ∆r 2 -1 r∆r which appear for a standard Poisson equation is equal to 0. In our case, this strategy is applicable if and only if the radial derivative of the density proles n i 0 is null at r = r min . Indeed, in this case the term behind φm 0 in equation (B.29

) for i = 1 is equal to s =e K s (r 1 ) 1 ∆r 2 -1 r∆r = 0, such that β 1 2 ∆r 2 + m 2 r 2 1 + 1 Z 2 0 T e (r 1 ) φm 1 - β 1 ∆r 2 + α 1 2∆r φm 2 = ρm 1 (B.31)
Then solving (B.29) leads to solve the tridiagonal

(N 1 -1) × (N 1 -1) system                    d m 1 u 1 0 • • • 0 l 2 0 . . . 0 d m 2 u 2 0 l 3 d m 3 u 3 0 0 . . . . . . . . . 0 l N 1 -2 d m N 1 -2 u N 1 -2 0 l N 1 -1 d m      (B.32)
where for each i ∈

[1, N 1 -1]                l i = -β i ∆r 2 -α i 2∆r d m i = β i 2 ∆r 2 + m 2 r 2 i + 1 Z 2 0 Te(r i ) u i = -β i ∆r 2 + α i 2∆r with        α i = s K s (r i ) 1 r i + 1 ns 0 (r i ) dns 0 (r i ) dr β i = s K s (r i ) and K s (r i ) = A s ns 0 (r i ) ne 0 (r i ) (B.33)
with ρm i the poloidal wave vector of ρi dened as ρi = ρ i -ρ i θ, ϕ with ρ i = 1 n e 0 (r i ) s =e [n Gs (r i , θ, ϕ) -n Gs,eq (r i , θ)] and with φm N 1 = 0.

Let us notice that for the rst case, where inner Dirichlet boundary conditions are applied, the matrix system to solve is a (N 1 -2)×(N 1 -2) tridiagonal system equivalent to (B.32) where rst line and rst column are deleted and replaced by the condition φm 1 = 0.

Solving of the equation system (B.24)

The system (B.24), also solved with nite dierences, can be rewritten as:

       L AE + 1 Z 2 0 Te(r i ) φ θ, ϕ (r i ) = Γ(r i ) for each r i ∈ [r 1 , r N 1 ]
φ θ, ϕ (r min ) = φ θ, ϕ (r max ) = 0

with Γ i = Γ(r i ) = ρ θ, ϕ (r i ) which is equivalent (by using the same notation than for the previous matrix system (B.32)) to 

                   d 1 u 1 0 • • • 0 l 2 0 . . .
0 l N 1 -2 d N 1 -2 u N 1 -2 0 l N 1 -1 d N 1 -1 Γ N 1 -2 Γ N 1 -1                    (B.
Γ i = ρ θ, ϕ (r i )
F H -F eq = F eq -e T φ + o eφ T

Dividing by F eq , it comes: g F eq ∼ eφ T

Moreover we have : g F eq ∼ δn n eq

The mixing length theory states that the saturation, which corresponds to the long time limit that we are interested in, is obtained when the condition |∇δn| |∇n eq | is satised. It is possible to evaluate |∇δn| k ⊥ δn with 1/k ⊥ = ρ i the scale of ion instabilities, and |∇n eq | n eq /L n with L n ∼ a the tokamak scale. Thus, the saturation limit corresponds to the condition : with ρ L the Larmor radius of the ions. We see that the ratio {eφ, g} / {H eq , g} depends of the radial and poloïdal structure of the plasma via k r k θ . Hence, the saturation limit eφ/T 1 is not enough to state that the ratio {eφ, g} / {H eq , g} 1. However, in the case of GAMs, k r ∼ a -1 and k θ ∼ a -1 with a the small radius of the tokamak. The ratio becomes in that case : where it is reminded that

δn n eq ∼ ρ i a =
τ (κ) = 2 π      K(κ 2 ) if 0 ≤ κ < 1 (passing) 1 κ K 1 κ 2 if 1 < κ < +∞ (trapped) (C.2)
As expected, the bounce/transit period becomes very large near the passing/trapped boundary κ = 1 since K(κ) -1 2 ln |1 -κ| for |1 -κ| 1. A useful expression of α 2 (δ) Lres,e =2iπσΩ • if s 0 = 1 ε (α 2 -α 2 + 2πp) = ε (α 2 -α 2 + 2πp), (ε = ±1) is negative, then the dirac function is zero in the integration domain [0; +∞[ and B = 0. This can be dealt with by the introduction of an Heaviside function Θ (Θ(x) = 1 for x > 0, 0 otherwise) and doing the integral over s, the Lagrangian nally takes the shape of Eq.(3.54):

in the upper quadrant 0 ≤ δ ≤ π 2 , 0 ≤ α 2 ≤ π 2 is α 2 =        π F( θ 2 ,κ 2 ) F( π 2 ,κ 2 ) if 0 ≤ κ < 1 (passing) π 2 F sin -1 [κ sin( θ 2 )], 1 κ 2 F π 2 , 1 κ 2 if 1 < κ < +∞ (trapped) (C.
• if s 0 = ε (α 2 -α 2 + 2πp) is
Lres,e =2iπσΩ In fact, we earlier removed the term "i0 + " that appeared in Eq.(3.52) for simplication.

Taking this term into account, the expression exp iσ Ω Ω b 2π

"∞" should be rewritten

exp i σ Ω Ω b 2π + i0 + "∞"
hence becoming zero. The sum is then recast as:

+∞ p=1 exp iσ Ω Ω b 2πp = 1 exp -2iπσ Ω Ω b -1
The Lagrangian then takes the shape of Eq.(3.55):

Lres,e =2iπσΩ ˆdς This comes from the fact that each term in (π + α -α) taken separately involves again a second derivative of θ integrated over a period. This implies that the o (σ) contribution to Lres,e cancels.

Let us now determine the o (σ) 2 contribution to Lres,e . Terms from both Eq.(C.8) and Eq.(C.9) matter. However a close inspection of these contribution shows that they are all pure imaginary numbers, and therefore do not contribute to damping since they exclusively contribute to the real part of the Lagrangian. Hence the imaginary part of the Lagrangian must scales as [σ] 3 when σ → 0. It is stressed however that σ = σ * τ (κ) v Λ 1/2 (κ) is a function of κ and v. Therefore even if σ * is a small number, there exists regions of the phase where the condition σ → 0 breaks down. These regions provide the largest contribution to the Lagrangian, and therefore to damping.

C.4.2 Explicit calculation of the electron Lagrangian

We consider the Lagrangian Eq. • The calculation of the rst integral I 1 gives I 1 = ∂n ∂t where n stands for the density of gyrocentres.

• The calculation of the second integral I 2 reads:

I 2 = ˆd3 v B * ∇ • ẋB * f + ∂ v v B * f + ∂ µ μB * f
The magnetic moment is conserved through time, thus μ = 0. Since d 3 v/B * = 2π dv dµ, the integral of the second term reads:

ˆd3 v B * ∂ v v B * f = ˆ2π dµ v B * f v =+∞ v =-∞ = 0
because f becomes 0 when |v| becomes innite. As d 3 v/B * is independent of the position coordinate x, the integral I 2 then reduces to:

I 2 = ˆd3 v B * ∇ • ẋB * f = ∇ • ˆd3 v ẋ f = ∇ • Γ
where Γ = ´d3 v ẋ f stands for the particle ux.

Consequently, the conservation equation for particle takes the form:

∂n ∂t + ∇ • Γ = 0 (D.2)
In a set of coordinates (x i ), the expression of the gradient becomes:

∇ • Γ = 1 √ g i ∂ x i ( √ gΓ i )
where √ g stands for the Jacobian of the set of coordinates (x i ). In the case of the usual tokamak coordinates (χ, θ, ϕ), we have √ g = Rr dr dχ . With this formulation, equation (D.2) becomes:

∂ t ( √ gn) + ∂ χ ( √ gΓ χ ) + 1 r ∂ θ √ gΓ θ + 1 R ∂ ϕ ( √ gΓ ϕ ) = 0 (D.3)
Averaging this equation on (θ, ϕ), the last two terms disappear: where H = 1 2 mv 2 + µB + e φ stands for the hamiltonian with φ = J 0 .φ, J 0 being the gyroaverage operator. We then integrate this equation in velocity space. It comes:

ˆ∂ f ∂t H d 3 v + ˆ1 B * ∇ z żB * f H d 3 v = 0
• The calculation of the rst integral I 1 gives:

I 1 = ∂ ∂t ˆf H d 3 v -ˆe f ∂ t φ d 3 v = ∂E ∂t + ˆe φ∂ t f d 3 v = ∂E ∂t + e φ∂ t n
where E = 1 2 mv 2 + µB stands for the total energy of gyrocentres. • The calculation of the second integral I 2 gives: 

I 2 = ˆd3 v B * ∇ • ẋB * f H + ∂ v v B * f H + ∂ µ μB * f H
∂E ∂t + ∇ • Q = -eΓ • ∇ φ = -e ˆd3 v v + v E + v D • ∇ φ f (D.6)
where v G is the parallel gyrocentre velocity, v E is the electric gyrocentre drift, v D is the magnetic gyrocentre drift, J 0 is the gyroaverage operator. Averaging this equation on a ux surface in the same way it has been made for matter conservation, it comes:

V ∂ t E F S + ∂ χ (V Q χ F S ) = -e ˆd3 v v + v E + v D • ∇ φ f F S (D.7)
The right hand side term can also be written as + ´J • E d 3 v using the notations J = ev and E = -∇ φ. This term, computed as the opposite of the time derivative of the electromagnetic potential energy, corresponds to the power transferred from the electric wave to the particles. Three contributions to this term can be identied:

• The parallel contribution ´J • E d 3 v • The electric contribution ´JE • E d 3 v • The magnetic contribution ´JD • E d 3 v
Of these three contributions, only the J D • E term is retained, the others being negligible as shown below.

Electric contribution

The electric term appearing in the right hand side of Eq.(D.7) reads:

ˆJE • E d 3 v = -e ˆd3 v v E • ∇ φ f = e ˆd3 v ∇ φ ∧ B B 2 • ∇ φ f = 0
Therefore, the electric contribution is always vanishing.

Parallel contribution

The right hand side of equation (D.7) can be written as:

ˆJ • E d 3 v = ˆJ • E d 3 v + ˆJ⊥ • E d 3 v
We want to know which of the parallel or the perpendicular contributions is dominant.The parallel and transverse electric eld can be evaluated as:

E = -∇ φ k ρ * T e E ⊥ = -∇ ⊥ φ k ⊥ ρ * T e
where k ∼ 1/qR is the parallel wave vector, k ⊥ is the transverse wave vector, ρ L being the Larmor radius, ρ * = ρ i /a ∼ eφ/T is the ratio between the ion Larmor radius and the small tokamak ratio and T is the temperature supposed isotropic. The parallel and transverse velocity can be evaluated as:

v → M v th v ⊥ → v D p eBR ρ * a R v th D.2
The ω H mode and the kinetic Alfven wave

In the absence of perpendicular gradients, the dispersion relation giving the real pulsation of the kinetic Alfven wave reads [74, Scott 1997]:

Ω 2 = κ 2 1 + κ 2 ⊥ β + μκ 2 ⊥ where          β = 4π nTe B 2 qR L ⊥ 2 = cs/L ⊥ v A /qR 2 μ = nTe B 2 qR L ⊥ 2 = cs/L ⊥ v th,e /qR 2 κ ⊥ = k ⊥ ρ s κ = qR k Ω = ω L ⊥ cs
where L ⊥ is a characteristic wavelength perpendicular to the magnetic eld. Using nonnormalized notations the pulsation of the kinetic Alfven wave is recast as:

ω 2 = k 2 v 2 A 1 + k 2 ⊥ ρ 2 i 1 + k 2 ⊥ δ 2 e (D.9)
where the Alfven velocity v A and the electron skin depth δ e have been dened as: The solution of the dispersion relation of kinetic Alfven modes in the electrostatic limit is the so-called ω H mode:

ω 2 H = ω 2 ci k k ⊥ 2 m i m e (1 + k 2 ⊥ ρ 2 i ) (D.11)
However, we notice that the condition (D.10) on β is rarely satised in tokamaks. As a consequence, taking into account the electromagnetic eects at nite β ( k 2 ⊥ ρ 2 i m e /m i ∼ 5.10 -5 ) naturally eliminates this mode ω H and replaces it with the kinetic Alfven wave.

D.3 Aliasing and Nyquist frequency

Let's consider a continuous signal of time t, x(t), characterized by a bounded frequency Fourier spectrum x(f ) (see Fig. The signal is now sampled at the frequency f s = τ -1 , so that the sampled signal x s (t) reads as follows:

x s (t) = x(t) Remark: The reason for such a statement can be understood easily. Let's consider the signal sampled at the frequency f s = 1/τ . Then x s1 (nτ ) = x 1 (nτ ) = x sin(2πf 1 nτ + ϕ) with n ∈ Z. Let x 2 (t) be a signal of same amplitude and phase as x 1 (t), but of frequency f 2 such that f 2 = f 1 + kf s with k ∈ Z: x 2 (t) = x sin(2πf 2 t + ϕ). When sampled at frequency f s , x 2 (t) will then be indistinguishable from x 1 (t), sampled at the same frequency. Indeed, x s2 (nτ ) = x 2 (nτ ) = x sin(2πf 1 nτ + ϕ + 2πnk).

D.4 Kinetic response of electrons close to resonance surfaces

We want to show that the behaviour of kinetic electrons close to resonance surfaces k = 0 is dierent from the one with adiabatic electrons. The idea here is to determine the position of the resonance due to the kinetic part in the electron density. The uctuation of the electron density ñe = n e -n e,eq , calculated from Eq.(4.22), can be evaluated as: 

ω ∼ ω * i = (k ⊥ ρ i ) v th,i L T ∼ k v th,i
where L T is a characteristic length of temperature gradients. Besides, we have: Thus, the adiabatic behaviour is retrieved.

• Close to the resonance surfaces q -m/n: k = 1 R (n + m/q) → 0. Therefore, k changes from a very high value to zero and there is a particular radial position r m,n + δr m,n close to the resonance surface r m,n such that the denominator of the non adiabatic part of Eq.(D.12) vanishes, thus causing the uctuations of the electron density ñe to diverge. q dr = k θ s/(qR) with s = r d r q/q is the magnetic shear. Therefore, the radial extension of the zone around a resonance surface where the response of electrons is kinetic reads as:

|δr m,n | k ⊥ k θ q s R L T ρ e q s R L T ρ e
We have L T ∼ a and q/s ∼ 1 in the core plasma. This causes δr m,n ∼ ρ e . Thus, in a kinetic electron model, the kinetic eects of electrons are expected to be localized near the resonance surfaces and to have a width of the order of a few ρ e . An analysis of these ne radial structures in the GENE code can be found in [23, Dominski 2015]. It should be pointed out that this kinetic signature can be explained only if the ratio m i /m e is big enough. However, as the TEM resonance does not depend on the mass ratio, simulated plasmas using small mass ratio m i /m e = 100 can still show some physical behaviour.
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 1012 1 with r the minor radius, θ the poloidal angle and ϕ the toroidal angle. The poloidal and toroidal magnetic uxes are dened respectively as: Φ T ≡ ¨B • dS T = ˆr 0 dr ˆ2π 0 r dθB ϕ Φ P ≡ ¨B • dS P = ˆR 0 The magnetic eld lines wrap around the surfaces of constant poloidal ux. To simplify the expression of the magnetic eld B, it is convenient to dene a new set of canonical coordinates (x 1 , x 2 , x 3 ) which are dened from the symmetries of B.
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 12 Figure 1.2: Poloidal (in red) and toroidal (in blue) ux sections.
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 1314 Figure 1.3: Magnetic eld lines on a ux surface using (a) torus coordinates and (b) canonical coordinates.[47, Hazeltine 2003]
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 15 Figure 1.5: Trapped and passing orbits.
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 16 Figure 1.6: Trapping domain: the particles inside the yellow cone are trapped, the others are passing.
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 172 Figure 1.7: Toroidal precession of trapped particles.
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 18 Figure 1.8: A particle motion in blue and its associated gyrocentre in black.
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 19 Figure 1.9: Scheme of the semi-lagrangian model.[1, Abiteboul 2012]
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 110 Figure 1.10: Dierence between the particle and guiding-centre densities.[72, Sarazin 2013]

=

  n e,eq e e Te (φ-φ F S ) (2.8) Performing a limited development of n adiab e around its equilibrium value φ = φ F S , we get: ñadiab e n e,eq e T e (φ -φ F S )

e

  the density of trapped electrons calculated from the electron distribution function and n pass. e the density of passing electrons receiving an adiabatic treatment. The total density of electrons is the sum of those two contributions n e = n trap. e + n pass. e . The standard quasi-neutrality equation (2.18) is then replaced by the following one: i Z i {n G,i + n i,pol } = n trap.

e

  represents the adiabatic evolution of the passing electrons, and should be proportionnal to the total adiabatic electron density n adiab e given earlier by equation (2.8):

43 ) 2 . 4

 4324 Gysela quasi-neutrality solver This part tackles the numerical implementation of the quasi-neutrality equations in Gysela for each of the two versions of kinetic electron models: (i) the Full Kinetic Electron (FKE) and (ii) the Trapped Kinetic Electron (TKE) model. The adiabatic case is treated in Appendix B.3.

2 .

 2 Compute ρTKE (r, θ, ϕ) = ρ TKE (r, θ, ϕ) -ρ TKE θ, ϕ (r) the RHS of equation (2.59).

  adiabatic electrons[75, 85, 84, Sugama 2006[START_REF] Zonca | Kinetic theory of low-frequency alfvén modes in tokamaks[END_REF]-2008]. It usually agrees well with simulations. However adding kinetic electrons change somewhat the picture. While 1 The Zonal Flow (ZF) and the Geodesic Acoustic Mode (GAM) are respectively the eigenmodes (n1 = 0, n2 = 0, n3 = 0) and (n1 = 0, n2 = 1, n3 = 0) associated to the angles (α1 = ϕc, α2 arcsin(θ/θmax), α3 = ϕ) from the angle-action set of variables introduced in part 1.2.2.

F 1 ,

 1 H only depends of H and thus, [H, F H (H)] = 0. In the case eφ T equation (3.8) gives the expression of ∂ t F H = -F eq e T ∂ t φ. Then, an alternative formulation of the Vlasov equation is :

(3. 11 ) 3 . 1 . 2

 11312 Linear solution of the Vlasov equationIt is convenient to use the set of angle-action variables (α, J) constructed in part 1.2.2, and related to the set of position/momentum coordinates (x, p), to describe the non perturbed trajectories of particles. It is reminded that this set of angle-action variables satises :

(3. 16 ) 3

 163 Let A : R → R. Then, equation ∀x, A(x) = 0 ⇔ ∀B : R → R, ´A(x)B(x)dx = 0. The last form of the equation is called the weak formulation of the rst one.

  exchange of energy between particles and waves per volume and time unit is given by the relation W = 2ω (L), where L = ´d3 xL. A positive value of W > 0 means particle heating, i.e. damping. The calculation is restricted for now to passing ions. The imaginary part of the normalized functional L is obtained, the same way as L , by plugging the value of φ 1 Eq.(3.37) and φ 2 Eq.(3.38) into the functional L Eq.(3.36).
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 310370 Figure 3.1: Contribution of particles to the integral Eq.(3.68) in the velocity space (v , µ).It appears that the particles located near the trapped/passing boundary (dashed white line) contribute the more.
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 32 Figure 3.2: Evolution of the axisymmetric component of the potential for the adiabatic (red dashed line) and full kinetic (blue full line) electrons models.
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 33 Figure 3.3: Time evolution of the radial prole of the zonal component φ 00 for the initial time (black line) and 4 dierent times (t = 4350 Ω -1 i , t = 12250 Ω -1 i , t = 20100 Ω -1 i and

Figure 3

 3 Figure 3.4: Time evolution of φ 00 (r p , t) -φ 00 (r) r (t) used to compute the damping rate. r p is the radial position of the maximum value of φ 00 (r) at initial time. The green points correspond to the maximum values. The 6 red points correspond to the points used for the linear interpolation (red line).
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 35 Figure 3.5: Fourier transform in time of φ 00 (r = r p ) used to compute the frequency with r p the radial position of the maximum value of φ 00 (r) at initial time.

Figure 3 . 6 :

 36 Figure 3.6: Time evolution of k r with an initial perturbation in 1 -cos(k r r) and sin(k r r).

Figure 3 . 7 :

 37 Figure 3.7: GAM pulsation and damping rate calculated with Gysela vs ion to electron mass ratio. The damping rate is compared with the codes ORB5 and GENE [7, Biancalani 2017]. The analytic dashed line is given by Eq.(3.85).
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 38 Figure 3.8: Dependence of the pulsation and damping rate with the safety factor q.
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 39 Figure 3.9: GAM pulsation and damping rate vs electron to ion temperature ratio. The analytic dashed line is given by Eq.(3.85).

First, the linear99 4 . 1

 41 dispersion relation of the ITG-TEM instability is given with a closer look at the pulsation and growth rate. In a second time, simulations are performed with the trapped kinetic electron model of GYSELA. This test allows us to look at the dependence of the pulsation and growth rate with dierent parameters and in particular the poloidal wavelength and the ionic temperature gradient. A transition between the ITG dominated regime and the TEM dominated regime is shown. Then, some simulation results where we initialize a perturbation composed of several poloidal wavelength are shown: these enable to highlight some pure electrostatic phenomena among which the so-called ω H mode. Finally, we present the rst non-linear results obtained with kinetic electrons. The Ion Temperature Gradient and Trapped Electron Mode instability First, a qualitative presentation on the mechanisms of the general drift wave and interchange instability is given. Then we present the dispersion relation of potential waves acknowledging for non-uniform density and temperature proles. The case of the ITG-TEM instability is then studied and an approximated analytic expression for the pulsation and damping rate of such modes is given. This presentation is based on the following works [68, Rax 2012],[72, Sarazin 2013],[30, Garbet 2001],[10, Bourdelle 2000] for this section.

Figure 4 . 1 :

 41 Figure 4.1: Schematic view of the drift wave (a) and drift wave instability (b) mechanisms.[[START_REF] Sarazin | Cours de Master 2 -Turbulence et Transport[END_REF] Sarazin] 

a and b on Fig. 4 .

 4 1 than from the low density zones c and d . This causes the local 1 When ne = ne, φ = φ y = 0.

2Figure 4 . 2 :

 42 Figure 4.2: (a) Schematic view explaining the physical mechanism of the interchange instability. (b) Evidence of balloned character of ITG linear modes (uctuations of the electric potential, Gysela code)

3

  Let A : R → R. Then, equation ∀x, A(x) = 0 ⇒ ∀B : R → R, ´A(x)B(x)dx = 0. The last form of the equation is called the weak formulation of the rst one.4 The weak formulation of the quasi-neutrality is written as Eq.(4.14) ∀φ † , L(φ † ) = 0 whereas the strong formulation writes as Eq.(4.13) ∂L ∂φ † = 0. Both formulations are equivalent for a continuous functional.
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 43 and on the density and temperature proles. With the knowledge of these proles, a map of the dominant instabilities function of the density and temperature gradient values of the two species can be established (see Fig.4.4).
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 43 Figure 4.3: Schematic localization of dierent modes over a growth rate spectrum. n refers here to the toroidal wavenumber. [10, Bourdelle 2000]
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 44 Figure 4.4: Predominence domain of the ITG-TEM instability with T i = T e [34, Garbet].
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 21 with v Er = -∂ θ (J 0 . φ)/rB the radial component of the electric drift. The next step consists in projecting uctuating elds in the Fourier space: fs = m,n,ω fm,n,ω e i(mθ+nϕ-ωt) φ = m,n,ω φm,n,ω e i(mθ+nϕ-ωt)
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 45 Figure 4.5: Convergence study to nd the maximal time step required to resolve the AE and TKE models. We measure that the simulation is converged with ∆t AE = 60 ω -1 c0 for
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 46 Figure 4.6: Fourier transform in (θ, ϕ) of the electric potential where only the toroidal mode n = 10 is kept. We use the trapped kinetic electron model with m i /m e = 100. The white line shows the resonant modes of equation m = -qn. The time step is taken as (a) ∆t = 2 ω -1 c0 : diagonal resonant modes k ∼ 0 appear, (b) ∆t = 10 ω -1 c0 : spurious
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 47 Figure 4.7: (a) Picture of the poloidal prole of the potential and (b) Evolution of the poloidal prole of sign(φ) log |φ| with time. The sign of d t θ is the same as the sign of the drift wave pulsation ω.
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 4 Fig.4.6 shows an example of two simulations run with the TKE model: one (on the left) has a suciently small time step to satisfy the criteria mentioned earlier. The other
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 21 Figs.4.10 and 4.11.
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 48 Figure 4.8: Dependence of the growth rate with the toroidal wavenumber. The ITGdominant case used here corresponds to the parameters: R 0 /L T i = R 0 /L Te = 6.92
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 49 Figure 4.9: Dependence of the pulsation with the toroidal wavenumber. The ITGdominant case used here corresponds to the parameters: R 0 /L T i = R 0 /L Te = 6.92
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 410 Figure 4.10: Dependence of the growth rate with the ion temperature gradient. One toroidal mode n = 14 has been launched with an electron temperature gradient R 0 /L Te = 6.92
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 411 Figure 4.11: Dependence of the pulsation with the ion temperature gradient. One toroidal mode n = 14 has been launched with an electron temperature gradient R 0 /L Te = 6.92
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 412 Figure 4.12: Dependence of ρ * GY S with R 0 /L T i to satisfy condition (4.27) with ρ * GT 5D = 1/150. (a) ρ ∈ [0, 1] and ρ peak = 0.5. (b) ρ ∈ [0, 0.7] and ρ peak = 0.35.
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 413 Figure 4.13: Fourier transform in (θ, ϕ) of the electric potential in a multimode simulation.
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 414 Figure 4.14: Time spectrum of a multimode ITG-like case for dierent mass ratios. We measure ω H (m i /m e = 1) 0.016 ω c0 and ω H (m i /m e = 25) 0.076 ω c0 . We nd ω H (m i /m e = 25)/ω H (m i /m e = 1) = 4.75 5.
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 415 Figure 4.15: Discretization of a magnetic eld line using the aligned coordinate method.
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 416 Figure 4.16: Evolution of the absolute value of the four dominant modes at t = 16000ω -1 c0 .

Figure 4 .

 4 Figure 4.17: (a) Expected and (b) obtained 2D Fourier spectrum (m, n) of any uctuating eld φ(r, θ, ϕ) using the aligned coordinate scheme. Fig.(b) has been obtained with the trapped kinetic electron model. Fig.(a) shows three kind of modes: the resonant (in black), folded (in red) and spurious (in dashed red) modes.

3 . 1 .

 31 In particular, we use the same lter to eliminate the modes (m, n = 0) with m = 0. The discretization used in these simulations is N r = 255, N θ = 256, N ϕ = 32, N v = 127 and N µ = 15 and the time step is ∆t = 2 ω -1 c0 . Both cases were launched using the Marconi machine on the Broadwell partition. Each case made 15000 iterations on 4608 processors for a total computational time of 200 000 CPU hours. It should be stressed that the two simulations presented here are at the minimum possible resolution in terms of time step, spatial and µ discretization. The discretization should be increased for future non-linear tests. The cost of such simulations would be rather 1 million CPU hours. The following study aims to show that some simple physical statements can be veried with this kinetic electron model.

Figure 4 . 18 :

 418 Figure 4.18: Evolution of resonant modes for the ITG-dominant and TEM-dominant cases.

Figure 4 . 19 :

 419 Figure 4.19: Evolution of the radial prole of d r φ 00 for the ITG-dominant and TEMdominant cases. where the ux surface average has been dened as ... F S = V -1 ´dθ dϕ √ g ... with V = ´dθ dϕ √ g and √ g = Rr dr dχ the Jacobian in position coordinates. The term V ∂ t E F S stands for the time variation of the kinetic energy of the considered species. The term ∂ χ (V Q χ F S ) represents the radial energy transport within the tokamak. The right hand side corresponds to the energy transferred from the electric wave to particles, also written ´Js • E d 3 v where E stands for the electric eld and J s = e s v + v E + v Ds fs , v , v E , v D being respectively the parallel velocity, the electric and magnetic drifts and f the gyrokinetic distribution function of the considered species. This term has a particular signicance and is studied in more details in the next section.

Fig. 4 .

 4 Fig.4.22 shows the radial proles of the dierent terms involved in the energy conservation equation (4.37) for the two species. Figs.4.23 and 4.24 shows the same diagnosticfor each species. We observe that the energy conservation is well satised for ions and electrons. Besides, we can notice that the terms ∂ χ Q E F S and ∂ χ Q D F S are opposite[32, Garbet 2016]. It is interesting to note that the exchanged energy between wave and particles e φ∂ t n in green in Figs.4.23 and 4.24 is much lower than the other terms involved in the conservation equation.

Figure 4 . 20 :

 420 Figure 4.20: Poloidal prole of the potential uctuations φ -φ 00 at the times t = ω -1 c0 and t = 25000 ω -1 c0 for the ITG-dominant and TEM-dominant cases. t = ω -1 c0 corresponds to the beginning of the non-linear phase.

Figure 4 . 21 :

 421 Figure 4.21: Fourier transform of the poloidal prole of the potential for the ITGdominant and TEM-dominant cases.

Figure 4 . 22 :

 422 Figure 4.22: Local energy balance for all species at time t = 20000 ω -1 c0 for the ITG-

Figure 4 . 23 :

 423 Figure 4.23: Local energy balance for ions at time t = 25000 ω -1 c0 for the TEM-dominant

Figure 4 . 24 :

 424 Figure 4.24: Local energy balance for electrons at time t = 25000 ω -1 c0 for the TEM-

Figure 4 . 25 :

 425 Figure 4.25: Energy transfer normalized to T 0 from the electric wave to particles from t = 0 to t = 25000 ω -1 c0 on the radial domain. A negative value means that particles give

  Gysela code. A kinetic electron model has been developed in which a gyrokinetic equation is added to describe the temporal evolution of the electron distribution function on the one hand and in which the quasi-neutrality equation is modied to take into account the new kinetic form of the electron density on the other hand. The high cost of such full kinetic simulations has led us to develop a third hybrid model between the adiabatic electron model and the kinetic electron model in which only the trapped electrons are treated kinetically. This intermediate model has the advantage of allowing less expensive simulations by articially reducing the mass ratio m i /m e while still recovering some of the physics of the trapped electrons. Eventually, we end up with three dierent models to treat electrons:

Figure A. 1 :

 1 Figure A.1: Evolution of the intrinic angle θ * depending on the poloidal angle θ as predicted by Eq.(A.4). Here, we have chosen ε = 0.3, q = 2 and ∆ = 0.01.

A. 4 )

 4 Fig.A.1 shows the evolution of θ * when θ varies.

  .21) and (2.24) to compute the integrals, it comes: ˆJ0e .f eR d 3 v F S ≈ n eR + A e 2r ∂ r {r∂ r (n eR T ⊥e,eq )} = α(r)n eR + β(r)n eR + γ(r)n eR with α(r) = 1 + A e 2

(B. 10 )(

 10 where the normalized equilibrium distribution function is dened as: fs,eq = c s ns 0 part of the distribution function. The concentration c i is such that i c i Z 0 Ẑi = 1. The normalized gyro-average operator Ĵ0s approximated by Padé corresponds to: in the quasi-neutrality equation, B is replaced by B0 = 1 in the code. Let us notice that in the code, to avoid the expensive gyro-average operation for each value of v G which occur for the computation of the RHS of the quasi-neutrality equation (B.7) we use the denition of B *

By applying the integration 1 L

 1 g θ, ϕ (r) = 1 L θ L ϕ ˆˆg(r, θ, ϕ) dθ dϕ θ Lϕ ´´• dθ dϕ to previous equation (B.15) and by using the fact that φ θ, ϕ FS = φ FS then:

B. 20 )

 20 To summarize, the solving of equation system (B.[START_REF] Chen | A ?f particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations[END_REF]) can be replaced by the solving of two simpler equations (B.[START_REF] Dannert | Gyrokinetic simulation of collisionless trappedelectron mode turbulence[END_REF]) and (B.20) and the electrostatic potential deduced by φ = φ+ φ θ, ϕ (due to relation (B.18)). Indeed, equation (B.20) is a dierential equation only depending on the radial direction. Besides, in (B.[START_REF] Dannert | Gyrokinetic simulation of collisionless trappedelectron mode turbulence[END_REF]) the variable ϕ plays the role of a parameter, then the discretization of the equation can be performed by projecting in Fourier space in θ direction and by using nite dierences in the radial direction as described in the following paragraph.B.3.2 Numerical solving of the quasi-neutrality equationGlobal algorithm for the quasi-neutrality solver Boundary conditions are periodic in θ and ϕ while Dirichlet boundary conditions are applied in the radial direction. To avoid the polar coordinate singularity in r = 0, equation (B.15) is not solved on the disk domain Ω (Eq. (B.14)) in poloidal cross-section but on a corona Ω r min dened as Ω r min = {(r, θ) : r min ≤ r ≤ r max ; 0 ≤ θ < 2π} (B.21) So including boundary conditions, Eq. (B.15) on Ω r min × [0, L ϕ ] becomes:

2 ∆r 2 β i + 1 Z 2 0

 212 [START_REF] Garbet | Physics of transport in tokamaks[END_REF] where for each i ∈ [1, N 1 -1] , l i and u i are dened by (B.33) and Te(r i ) = d 0 i with d 0 i given by (B.33) 

1 C. 2 κ 2

 122 Angle action variablesUsing parity arguments, the bounce/transit average be reduced to an average over anupper quadrant in α 2 sin 2 δ ... if 1 < κ < +∞ (trapped) (C.1)

3 )dδ 1 -m sin 2 δ(C. 4 ) 2 = 1 κ sn κτ α 2 , 1 κ 2 if 1 1 . 2 = 1 κ 1 -κ 2 sin 2 θ 2 ( 1 -κ 2 sin 2 θ 2 (= 1 , when -π 2 < α 2 < π 2 and= - 1 when -π < α 2 < -π 2 or π 2 < α 2 σ + i0 + hn 2 ω 2 Usinge -in 2 ε s hn 2 ω 2 Ae 2 -α 2 -

 3124212112112121221222222 where F (ϕ, k) is the incomplete elliptical function of the rst kind dened asF (δ, m) = ˆδ 0This relation can be formally inverted to provide a link between the guiding-center poloidal angle θ and the angular variable α 2 . It is also interesting to construct this link for all values of the angles α 2 and θ. Using the property K(k) = F π 2 , k , the relation Eq.(C.3) can be rephrased assin θ 2 = sn τ α 2 2 , κ 2 if 0 ≤ κ < 1 (passing) sin θ < κ < +∞ (trapped) (C.5)valid for all α 2 , θ. The function sn(δ, k) is the Jacobian elliptic function that coincides with the trigonometric sin δ function for k One recovers that θ = α 2 + 1 4 κ 2 sin(α 2 ) for deeply passing particles κ → 0. For deeply trapped particles κ → ∞, θ = θ 0 sin α 2 where θ 0 is the bounce angle, sin θ 0 . Note that the Jacobi sn function diers signicantly from a sinusoidal function for barely trapped or passing particles κ ∼ 1. Eqs.(C.1, C.3) also provide a useful expression of the derivative dα 2 dθ , which reads for passing particles τ (κ) dα 2 = dθ < π . The factor 2 comes from the period doubling when crossing the passing/trapped boundary. The parameter is readily interpreted as the sign of the particle parallel velocity. When = 1, a trapped particle moves from -θ 0 (α 2 = -π 2 ) to θ 0 (α 2 = π C.3 Electron Lagrangian expressed with angular variables Eq.(3.49) is recalled: Eq.(3.52) the Lagrangian is recast as follows:Lres,e = iσΩ ˆdς F MThe term A can be calculated by replacing hn 2 ω by its expression given by Eq.(3.51). It becomes: in 2 (α 2 -α 2 -ε s)Using Eq.(3.53), A becomes: ε s -2πp)Replacing the expression of A in Lres,e , it comes:

  (α 2 -α 2 -ε s -2πp) BTwo cases appear now:

  positive, then it is in the integration domain [0; +∞[and B = exp iσ Ω Ω b (α 2 -α 2 + 2πp)

Θ(α 2 -α 2 + 2 -α 2 ) 1 -

 22221 (α 2 -α 2 + 2pπ)] exp iσ Ω Ω b (α 2 -α 2 + 2πp)We consider ε = 1. The Heaviside function in Eq.(3.54) is equal to: if p = 0 0 if p < 0 Therefore, the Lagrangian Eq.(3.54) becomes: Lres,e =2iπσΩ ˆdς F M |Ω b | ˆπ -π geometrical sum can be rewritten as: exp iσ Ω Ω b 2π -1

1 dvv 2 2 exp- 1 2iπ 1 + 6 -π α -α - 1 2 α -α 2 + o(σ 3 )(C. 9 )∂α 2 π

 122162392 F M |Ω b | ˆπ -π dα 2 2π ˆπ -π dα 2 2π hω (α 2 ) h * ω (α 2 ) exp iσ Ω Ω b (α 2 -α 2 )Trapped electron Lagrangian for a sin θ GAM perturbationThe harmonic m = 1 of the GAM corresponds to a hω (α 2 ) = η sin [θ(α 2 )] perturbation. exp -v 2 I (κ, v)whereI (κ, v) = σ ˆπ -π dα 2π ˆπ -π dα 2π sin [θ(α)] sin θ(α ) exp iσ α -α Θ α -α + 1 exp (-2iπσ) -1 where σ = σ * τ (κ) v Λ 1/2 (κ). It is reminded that ∂θ ∂α = 2 τ (κ) 1 -κ 2 sin 2 θ 2 (see Eq.( C.7) in Appendix C.2), where = 1 when θ goes from -θ 0 to +θ 0 and = -1 on the way back, i.e. from +θ 0 to -θ 0 . It then appears that ∂ 2 θ ∂α 2 = -τ 2 (κ)κ 2 sin θ, andI (κ, v) iσ α -α Θ α -α + 1 exp (-2iπσ) -1We now expand Eq.(C.8) in power laws in σ. We note thatlim σ→0 σ exp iσ α -α = σ + iσ 2 α -α + o(σ 3 ) (C.8) lim σ→0 σ exp {iσ (α -α)} exp (-2iπσ) -1 = iσ π + α -α + σ2 π 2The o σ0 term in Eq.(C.9) does not contribute to I (κ, v) because it involves integrals of second derivatives∂ 2 θ∂α 2 over a period, which obviously vanish. The o (σ) term comes from both Eq.(C.8) and Eq.(C.9). Hence the function I (κ, v) can be decomposed in two corresponding parts I = I 1 + I 2 . The rst one readsI 1 (κ, v)The second contribution I 2 is such thatI 2 (κ, v) = -+ α -α = 0

1 (κ 2 sin 2 θ 2 (C. 11 )C. 5 + 2 0Ω 2 0 . 2 qτ 1 / 2 e

 12115220212 (3.68) as formulated in Appendix C.4.1, C.[START_REF] Bourdelle | Analyse de stabilité de plasmas de tokamak[END_REF] where σ = σ * τ (κ) v Λ 1/2 (κ). The largest contribution must come from the domain in the phase space where σ > 1, since it was shown in Appendix C.4.1 that regions where σ << 1 bring a negligible o(σ 3 ) contribution to its imaginary part. We split I (κ, v) in two parts I = I 1 + I 2 , which correspond to the two terms in the bracket [ ] (second line of Eq.(C.10)). The rst one readsI 1 (κ, v) = σ ˆπ -π dα 2π ˆπ -π dα 2π hω (α) h * ω α exp iσ α -α Θ α -αThe integrand is assumed to be dominated by the turning points α = ± π 2 , where θ = ±θ 0 . Let us detail this delicate point. For any function h(θ) even in θ, one has the identity Damping rate estimationThe notations D r and D i are used respectfully for the real and imaginary parts of the dispersion relation. The solutions of the equation D(Ω) = 0 are characterized by the complex pulsation Ω = Ω 0 -iΓ with Ω 0 the normalized resonance pulsation and Γ the normalized damping rate. Close to the GAM resonance, Ω Ω 0 and |Γ/Ω 0 | 1.Developing the dispersion relation D(Ω) = D r (Ω) + iD i (Ω) = 0 around Ω 0 gives: D(Ω) D r (Ω 0 ) 0 iD i (Ω 0 ) + (Ω -Ω 0 ) -iΓ ∂ Ω (D r + i D i Dr )| Ωr = 0and Γ can be recast as:Γ D i (Ω 0 ) ∂ Ω D r (Ω 0 )Taking the real part of dispersion relation of the form D r (Ω) = 1 -Ω , we have ∂ Ω D r (Ω 0 ) = 2 Ω Taking now the imaginary part of the dispersion relation due to electrons in Eq.(3.76), namely D i (Ω) = G(q, τ e )D(σ * ) me m i 1/Ω, the normalized damping rate yields to Eq.(3.79):

D. 1 . 2

 12 √ gΓ θ = √ gΓ θ (θ = 2π) -√ gΓ θ (θ = 0) = 0 because √ gΓ θ is periodic in θ. The same can be done for Γ ϕ . Therefore, it comes:∂ t ˆdθ dϕ √ gn + ∂ χ ˆdθ dϕ √ gΓ χ = 0 Dening ... F S = V -1 ´dθ dϕ √ g ... with V = ´dθ dϕ √ g the ux surface average, it comes: V ∂ t n F S + ∂ χ (V Γ χ F S ) = 0 (D.4)NB: If we work with the spatial coordinates (r, θ, ϕ), then √ g = rR and the conservation equation becomes:V ∂ t n F S + ∂ r (V Γ r F S ) = 0 Energy conservationThe conservation equation of energy is obtained by replacing f by f H in equation (D.1)

I 2 = ∇ • ˆd3 v ẋ f 1 2 mv 2 +

 22 Like the conservation of particle, the two last terms are equal to 0. The integral I 2 then reduces to: e φ = ∇ • Q + ∇ • e φΓ where Q = 1 2 m ´d3 v ẋv 2 f stands for the kinetic energy ux. Consequently, the conservation equation for energy takes the form: ∂E ∂t + ∇ • Q + e φ∂ t n + ∇ • e φΓ = 0 (D.5) Besides, ∇ • e φΓ = eΓ • ∇ φ + e φ∇ • Γ = e Γ • ∇ φ -e φ∂ t n due to matter conservation (D.2). Thus, the conservation equation of energy writes:

v A = B √ µ 0 nm i ; δ e = c s ω pe = m e µ 0 ne 2 1 (D. 10 ) 2 ( 1 + k 2 ⊥ ρ 2 i ) where v A δ e 2 = v th,e ρ s 2 = e 2

 211021222 In the electrostatic limit β = nT /(B 2 /2µ 0 ) 1, it comes:In that case, the dispersion relation Eq.(D.9) becomes: B 2 m e m i

  Figure D.1: Fourier spectrum of the continuous signal x(t): x(f ).

  t -nτ )It follows that the Fourier transform (denoted FT) xs (f ) of the sampled signal is the convolution of x(f ) by the Fourier transform of the Dirac comb:xs (f ) = x(f ) FT +∞ n=-∞ τ δ(t -nτ ) = x(f ) +∞ k=-∞ δ(f -kf s ) = +∞ k=-∞ x(f -kf s )It readily appears that, in between the frequencies -f max and +f max , the two spectra x(f ) and xs (f ) will dier from each other if the sampling frequency f s is smaller than 2f max . In other words, any frequency component of the original signal above f s /2 is indistinguishable from a lower frequency component, called an alias, associated with one of the copies (blue dashed curves on Fig. D.2). f s /2 is called the Nyquist frequency.

Figure D. 2 :

 2 Figure D.2: Red curve: Fourier spectrum of the discretized signal x s (t): xs (f ). Blue dashed curves: copies (aliases) of the original spectrum, shifted by kf s (k ∈ Z).

  ... stands for the Fourier transform in action-angle variables and ... = ´d3 v ... F eq with F eq a Maxwellian distribution function and ω De ∼ k ⊥ • v De is a pulsation linked with the magnetic drifts. The pulsation for an ion turbulence reads:

  ω * e = (k ⊥ ρ e ) v th,e L T ∼ ω * i since ρ s v th,s = T s e s B (D.13) k v th,e = k v th,i m i m e k v th,iAt this point, two cases can be distinguished depending of the radial position:• Far from resonance surfaces: k = 0. The term k v th,e is greater than ω and the non adiabatic part of Eq.(D.12) vanishes:ω -ω * e ω -k v e -ω De ∼ ω * i k v th,e ∼ 0

  This last divergence condition is recast as k(r m,n + δr m,n ) v th,e = ω * i -ω De ω * i ∼ ω * e .It is possible from this relation to give an approximated expression of δr m,n . Developing k around the position r m,n , it comes: k (r m,n + δr m,n ) = k (r m,n ) + δr m,n dk dr rm,n Since k (r m,n ) = 0 and using the expression of ω * e Eq.(D.13), the resonance condition reads: δr m,n dk dr rm,n (k ⊥ ρ e ) v th,e L T The radial derivative of k reads d r k -m qR dq

  

  ⊥ τ t , +v ⊥ τ t ]. Thus α t becomes:

	2 th	1 on the
	interval [-v	

  [START_REF] Nguyen | Magneto-hydrodynamic activity and energetic particles : application to Beta Alfvén Eigenmodes[END_REF] Besides, in order to control each uid quantity, namely density, momentum, energy and vorticity, transferred to the plasma, the source S s is decomposed into several source terms, each being a pure source of one uid quantity. Introducing the notations S n

	the pure source term of gyrocentre density, S	v G s	s for for the pure momentum source term, S E

s for the pure energy source term, S Ω s for the pure vorticity source term, the gyrokinetic equation now reads:

  Terms in φ 1 of order (K 3 ρ 3 i )φ 0 are not given here in details for simplicity, but are necessary to calculate the functional at right order. The dispersion relation L = 0 is obtained by plugging Eq.(3.37) and Eq.(3.38) into the functional Eq.(3.36). One nally gets

Table 3 .

 3 1: Notations and conventions for passing and trapped particles.where α 2 is now a continuous integration variable that spans the interval [α 2 , ∞]. This form can be obtained in a faster way by solving the Vlasov equation in angle variable. At this point, the velocity integration has to be further detailed, to produce a more practical expression.

  • I 0 (r, θ, ϕ, μs ) +

	Âs Ẑs	vG s B b • Ĵ Ĵ0s • I 1 (r, θ, ϕ, μs )

  ρ * 1Justication of the linear approximationLet us introduce the Poisson brackets of two functionnals F and G in the gyrokinetics coordinates (Eq.(159) of[11, Brizard 2007]) : direction of the magnetic eld, p the momentum, B the magnetic eld, b the magnetic eld unit vector and e the charge of the considered particle. It is possible to evaluate the two Poisson brackets {H eq , g} and {eφ, g} using the notations of part 3.1 : v ∼ T /m the velocity parallel to the magnetic eld lines, k x a typical wave number in the x direction (in particular k ∼ 1/qR), r the radial coordinate, θ the poloidal angle. Calculating the ratio {eφ, g} / {H eq , g}, it comes :{eφ, g} {H eq , g}∼ k r k θ φ Bv k ∼ qRρ L k r k θ . eφ T

	with	standing for the {H eq , g} ∼	∂H eq ∂p	∂g ∂x	∼ v k g
				{eφ, g} ∼	1 eB	e∂φ ∂r	∂g r∂θ	∼	1 B	k r φk θ g
	Thus it comes :		g F eq	∼	eφ T	∼ ρ *	1
		{F, G}	∇ F	∂G ∂p	-	∂F ∂p	∇ G -	b eB	• (∇F × ∇G)
						169	

with

In reality, because of the nite number of toroidal coils, the magnetic eld is not perfectly axisym- metric.

2 A geometric angle can be dened as: placed at a constant distance of the rotation axis, the length of the arc traveled is proportional to the angle of

rotation.[START_REF] Arnichand | Identication of Trapped Electron Modes in Frequency Fluctuation Spectra of fusion plasmas[END_REF] By denition, each of the vector ∇α in the base (∇ψ, ∇θ * , ∇ϕ) is normal to the surface α = cste.Moreover, |∇α| = 1/Rα where Rα is the curvature radius of the coordinate line along the coordinate α.

This integration is made easily by considering vc1 + vc2 and vc1 -vc2 as the two unknowns of the system.

This equation may be obtained by adopting a Hamiltonian approach or using the density of Klimon- tovich ([START_REF] Ghendrih | Cours de Master 2 -Plasmas de Bords[END_REF] Ghendrih],[66, Nicholson 1983]).

[START_REF] Biancalani | Cross-code gyrokinetic verication and benchmark on the linear collisionless dynamics of the geodesic acoustic mode[END_REF] This equation makes it possible to determine the complete evolution of f , whenever the initial conditions are set. Since macroscopic quantities such as density, pressure, energy ow are expressed as integrals of f over the velocity space, it is enough to have knowledge of the 6D-distribution function over time to know all the macroscopic data of the problem.

Hereafter, we shall restrict ourselves to simplied magnetic equilibrium, made of concentric ux surfaces of circular poloidal cross section. In this case, a given ux surface is given by r = cste.

This approximation is legitimate in the case of adiabatic electrons, because in this case there is no particle transport as it is veried in part 2.1.2.

     Γ 1 Γ 2 . . .

), while it moves back from θ 0 to -θ 0 for = -1. Note also that θ = 0 for α 2 = π, α 2 = 0 and α 2 = -π.

Remerciements

(see red circles in Figure 3.4). Four rst simulations (cases 1 to 4 in Table 3.2) have been performed for the same 5D mesh of ∼ 536.8 millions of points (N r , N θ , N ϕ , N v , N µ ) = (256, [START_REF] Nguyen | Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks[END_REF][START_REF] Bottino | Global nonlinear electromagnetic simulations of tokamak turbulence[END_REF]128,[START_REF] Garbet | On the relationship between residual zonal ows and bump-on tail saturated instabilities[END_REF] but with varying the time step ∆t from ∆t = 5 Ω -1 i to ∆t = 50 Ω -1 i .

All the other simulations except the last one (cases 5 to 10) have been performed with ∆tΩ i = 25 varying: (i) the number of points in µ direction (case 5: N µ = 16, case 6:N µ = 8); (ii) the number of points in radial direction (case 7: N r = 128, case 8: N r = 512); (iii) the number of points in poloidal direction (case 9: N r × N θ = 256 2 ) and (iv) nally the number of points in parallel velocity space (case 10: N v = 64). The last case (case 11) corresponds to a simulation where all varying parameters have been taken

to their smaller tested value, namely ∆t = 50Ω -1 i , N r = 128, N θ = 64, N v = 64 and N µ = 8. Considering case 1 as the reference case, the maximum relative error is less than 1% for k r ρ i and ω estimations, and less than 2% for γ (see Table 3.2). In all these simulations, even the coarse grained one (case 11), are fully accurate. However, it appears that,

Appendices

Appendices of chapter 1 A.1 Expression of the intrinsic angle θ *

We are looking for the expression of θ * as a function of the poloidal geometric angle θ, and the poloidal ux ψ. In particular, the ratio dθ * / dθ will be computed.

We introduce A as the vector potential. Assuming that there is no radial current, A can be developed in a suitable base (∇ψ, ∇θ * , ∇ϕ) as:

where Ψ T and Ψ P are for now undetermined quantities depending of ψ only. It is then possible to compute B = ∇ ∧ A:

The projection of B on the vectors of the contravariant basis yields:

It can be shown that by averaging the quantities Ψ T , Ψ P on the magnetic surfaces of the tokamak, we see that they correspond up to a factor 2π, to the toroidal and poloidal ux values respectively ([68, Rax 2012] p.165).

The safety factor expression can be found by noticing that:

ϕ c even when considered at the position of the guiding centre(cf. [11, Brizard 2007] p. 423). The dependency in ϕ c comes from the fact that in the expression of H GC , the Larmor radius vector ρ c depends on the gyroangle. Indeed, for dierent values of ϕ c , the electric eld seen by the particle is not the same, and this results in a modication of the Hamiltonian H GC . To simplify our problem, a physical object, the gyrocentre, at coordinates noted (q gy , p gy ), is introduced, and dened by its Hamiltonian, H(q gy , p gy , t), taken as the gyroaverage on the gyroangle of H GC (q GC , p GC , t):

with φ being the averaged value of φ on the gyroangle:

As J involves only terms of even order, it is then possible to write equivalently J = ´dϕc 2π e -ρc•∇ . It will be useful to keep in mind that due to the construction of H:

∂ ϕc H(q gy , p gy , t) = 0

Use of the generating function S from guiding-centres to gyrocentres

The old canonical coordinates (q GC , p GC ) that of the guiding centre and the new ones (q gy , p gy ) those of the gyro-centre only dier by innitesimal quantities of order ε ∼ ρ * . They are related to each other by some innitesimal canonical transform. In such a case, they can be shown to be related, at rst order in the small parameter ε, by the generating function εS(q GC , p GC ) 1 as follows (see [38, Goldstein 2002]):

q gy -q GC = ε∂ pgy S p gy -p GC = -ε∂ qgy S At this point, the generating function εS remains to be determined. As explained later, it can be deduced from the expressions of the Hamiltonians associated with the old (guide centres) and the new (gyrocentres) coordinates (and the constraints put on their structures).

Using Taylor expansion at rst order, any eld F evaluated at the position (q GC , p GC ) can then be expressed in terms of its value at (q gy , p gy ):

1 Rigorously speaking, the generating function G is of the second kind: G = G2(qGC , pgy)qgyro,ipgyro,i, with G2 = qGC,ipgyro,i + εS(qGC , pgy, t). Here, (qGCipgyro,i -qgyro,ipgyro,i) acts as the identity transform. The function S depends a priori on S(qGC , pgy, t). At leading order in ε however, it can also be considered as a function of either (qGC , pGC ) or (qgy, pgy), equivalently. This is especially true for the Hamiltonian H GC :

Here, H GC (q gy , p gy , t) stands for the old Hamiltonian (for which (q GC , p GC ) are canonically conjugated), with q GC (resp. p GC ) replaced by q gy (resp. p gy ). A priori, it diers from the new Hamiltonian, H(q gy , p gy , t), for which (q gy , p gy ) are canonically conjugated. The theory of canonical transformations ensures that H GC and H are related by the following relation:

On the other hand, the total time derivative of S reads:

. By injecting Eq.(A.12) in Eq.(A.13), it readily appears that:

As will be checked a posteriori, the considered generating function εS evolves slowly enough so that ε d t S is actually of second order in ε. Therefore, at the rst order of the development that is considered here, it should be neglected:

H(q gy , p gy , t) = H GC (q gy , p gy , t)

In this case only, equation (A.12) can be safely replaced by: H GC (q GC , p GC , t) H(q gy , p gy , t) -ε[ H, S] q GC ,p GC (A.15)

Let us use the set of angle-anction canonical coordinates (α, J) dened in section 1.2.2. As far as the gyrokinetic theory is concerned, the transformation acts on the rst pair of conjugate coordinates (α 1 , J 1 ), with α 1 = ϕ c the gyro-phase and J 1 = -m s µ s /e s (see [31, Garbet 2009]). From Eq.(A.15), it comes:

with φc ≡ ω cs = ∂ J 1 H the cyclotron frequency. The canonical structure of the transformation implies that the Poisson bracket is unchanged, and its calculation is then easy.

Determination of S

As said previously in equation A.10, H(q gy , p gy , t) should not depend on the gyro-angle ϕ c . In this case, the last term on the right hand side of Eq.(A.16) vanishes. This allows one to express the generating function S 2 as function of the old and new Hamiltonian:

ω cs H GC (q GC , p GC , t) -H(q gy , p gy , t)

Particle versus gyrocentre distribution functions

The problem that occurs here is that the quasi-neutrality equation is a constraint on the particle densities of the dierent species s of the plasma, which can be expressed as integrals of the dierent f s . But the gyrokinetic approach uses and computes only the distribution function of gyrocentres fs . Thus it is necessary to insert a link between the values of f and f evaluated at the same point. Another point to state is that in the end, the physical quantities, like density, should be expressed in the real space x. This xes the choice of coordinates used when the link between both distribution functions is made.

Let us recall equation (A.11) applyed to f .

Knowing that, by construction, ∂ ϕc f = 0, it comes:

Injecting the expression of S (Eq.(A.17)), the relation becomes:

Knowing that f (x gy , v gy , t) = f (x, v, t) (Eq.(1.63)), and by making a limited development in xx GC = ρ c on all the x GC dependant terms, according to Eq.(A.6), we can write:

It is now possible to express the density of particle using only the distribution function of gyrocentres.

2 From its expression Eq.(A.17), it is clear that the partial time derivative of εS typically involves Appendix B
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The values of n eR for j = 1 and N r are set by the Neumann constraint d r n eR | j = 0, which takes the form numerically:

n eR,1 = n eR,2 ; n eR,Nr = n eR,Nr-1

Iterative procedure

Let us dene the normalized Maxwellian feR = f eR /n eR . Then condition (??) reads as follows:

ˆJ0e . n eR feR d

where the electron gyro-average operator J 0e has been added. A rst approximation for n eR can be readily obtained by assuming that it commutes with the gyroaverage operator J 0e . This is equivalent to neglecting terms of the order of (ρ e /L n ) k , with k a strictly positive integer and L k n = n eR /(∂ k n eR /∂r k ). This value of n eR constitute the initial guess of the iterative procedure. Let us call it n 0 eR :

The dierence ∆n eR = n eR -n 0 eR between n 0 eR and the exact solution n eR of eq.(B.3) is a measure of the error. It simply reads:

which is the same equation as eq.(B.3) with a dierent right hand side. Using the same assumption as previously, ∆n eR can be approximated by neglecting its radial derivatives, so that it would commute with J 0e . Denoting ∆n 0 eR this approximate quantity, one obtains:

This method can be further iterated. The iterative procedure then takes the form:

The iteration is then stopped at iteration k = K as soon as a predened convergence condition is fullled.

Such a condition requires that the dierence between R and Appendices of chapter 3

C.1 Saturation limit

The mixing length theory

With the notations used in part 3.1, f , g are of the same order as F H -F eq . Knowing equation (3.8), this dierence can be linked to the potential φ :

where h(α) must be understood as h(α) = h [θ(α)]. If h(θ) is a smooth function, the integral on the r.h.s of Eq.(C.11) can be approximated by h(θ 0 ), assuming that most of the integration will be weighted by the turning point θ = ±θ 0 . The (integrable) singularity at the turning points does not appear explicitly when using the variable α, because it is then hidden in the function h(α), which is built from h(θ) by using the change of variable θ → α. It is recovered by changing h(α) by h(θ 0 )π δ(α -π 2 ) + δ(α + π 2 ) whenever it is integrated over α, where h(θ 0 ) is the value of h at the turning point. A calculation of Eq.(C.11) using this approximation when σ → 0 shows that (I 1 ) scales as σ3 , as already found via an exact calculation in Appendix C.4.1. This is no longer true when σ ∼ o [START_REF] Abiteboul | Transport turbulent et néoclassique de quantité de mouvement toroidale dans les plasmas de tokamak[END_REF]. Indeed in that case, the oscillating function exp {iσ (α -α)} introduce a phase term exp (±iπσ

Once integrated over the phase space, this phase term is averaged down to a small number. Hence most of the contribution comes from the neighborhood of α = α = π 2 and α = α = -π 2 . One must then be careful that the Heaviside function introduces a factor 1 2 since the integral of a δ function over a half-space is half-unity. The integral Eq.(C.11) can then be upper bounded by the following (rough) estimate

The second piece reads

where a prior version of the Lagrangian, namely Eq.(3.54) (before summation over the index p), was used. Using the same trick as before, it appears that the region of the phase space where σ > 1 contributes weakly, because the phase terms exp {i2pπσ} average out to small numbers after integration over the phase space. The resulting Lagrangian then reads

Lres,e = 2i 

C.6 Form of the density perturbation to get a sinusoidal potential

We decompose the initial distribution function prole into a Maxwellian plus a perturbation g(r). This perturbation triggers an initial potential prole of the form φ(r) = φ sin(kr) with k the spatial frequency of the oscillations. We consider only one ion species, the electrons response is adiabatic, and the gyroaverage operator is approximated by a Padé form, which reads :

with ρ the Larmor radius, and

θ . Since all quantities considered are independent of θ at the initial time, we will take

In this framework, the equation of quasi-neutrality at the initial time reads :

with n 0 (r) = ´d3 v J 0 .f 0 the initial density and f 0 the initial Maxwellian prole of the distribution function. In our case, it is assumed that f 0 (and hence n 0 ) and the magnetic eld B are independent of r and that J 0 = 1. After developing the polarization term, we nd:

where

By choosing a perturbation of the distribution function g(r) = -K(r), Eq.(C.13) is satised.

• For φ(r) = φ sin(kr), choosing φ = 1/M f 0 implies g(r) = - We note: x the position, v the velocity, v the projection of the velocity on the magnetic eld direction, µ the magnetic moment, F the distribution function, J 0 the gyroaverage operator,φ the electric potential, E the electric eld, B the magnetic eld, J the electric current, ε 0 the dielectric permitivity of vacuum, µ 0 the dielectric permeability of vacuum, n the density, m the mass, e the charge. X refers to the quantity X applied for gyrocentres.

D.1.1 Matter conservation

The conservation equation of particles is obtained by integrating equation (D.1) in velocity space, it comes:

* stands for the jacobian between particle and gyrocentres in velocity phase space.

with M the Mach number in the parallel direction and p mv 2 th the pressure. Thus, the ratio between the parallel and transverse contribution to the right hand side of equation (D.7) is:

This ratio is small enough to neglect the parallel contribution compared to transverse one.

Removing the electric and parallel contributions, Eq.(D.7) eventually reads: In unimproved confinement regimes, ion-scale turbulence generally dominates this transport. This turbulence is carried by the ions, but also by a certain class of electrons, those trapped in the local mirrors of the magnetic field. Taking into account their dynamics is important, especially since they are also responsible for particle transport.

The aim of this thesis is to study the impact of electrons on the damping of "Geodesic Acoustic Modes" (GAM) on the one hand and the linear growth of the turbulence modes "Ion Temperature Gradients" (ITG) and "Trapped Electron Modes" (TEM) on the other hand.