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Résumé

Les plasmas de fusion par con�nement magnétique sont le siège d'instabilités qui dévelop-
pent des structures turbulentes d'échelles milli- à centi-métriques. Le transport qui en
résulte contrôle le temps de con�nement de l'énergie et, in �ne, les performances énergé-
tiques. Dans les régimes de con�nement non améliorés, c'est une turbulence à l'échelle
ionique qui domine ce transport. Cette turbulence est portée par les ions, mais également
par une certaine classe d'électrons, ceux qui sont piégés dans les miroirs locaux du champ
magnétique. Il est de fait important de prendre en compte leur dynamique, d'autant plus
qu'ils sont également responsables du transport de matière. L'objectif de la thèse consiste
à étudier l'impact des électrons d'une part, sur l'amortissement des "Geodesic Acoustic
Modes" (GAM) d'une part, et sur la croissance linéaire des modes de turbulence "Ion
Temperature Gradients" (ITG) et "Trapped Electron Modes" (TEM) d'autre part. Les
GAMs sont des oscillations à la fréquence acoustique du potentiel électrique moyen sur
les surfaces magnétiques. Ils interagissent de façon critique avec la micro-turbulence
au travers notamment de leur couplage au mouvement des particules énergétiques du
plasma. Les ITG et TEM représentent les 2 classes d'instabilités électrostatiques dom-
inantes dans le c÷ur des plasmas de tokamak. Elles sont à ce titre supposées contrôler
le transport turbulent de c÷ur. Cette étude est donc une étape préliminaire pour la
prédiction du transport turbulent en prenant en compte l'in�uence des électrons. Le
cadre approprié pour décrire cette turbulence est la théorie dite "gyrocinétique", qui
procède d'une réduction de l'espace des phases de 6 dimensions (6D) à 4D + 1 invariant
par une moyenne sur le mouvement rapide cyclotronique. Le problème auto-consistant
couple l'équation gyrocinétique pour chaque espèce (ions et électrons) aux équations de
Maxwell. Le développement de ce modèle cinétique, construit comme une extension au-
tonome du code Gysela dont la version de base donne une réponse adiabatique aux
électrons, consiste à ajouter le traitement de la fonction de distribution des électrons.
Leur prise en compte est coûteuse du point de vue des ressources numériques. Trois
stratégies sont envisagées pour réduire ce coût: (i) considérer des "électrons lourds", (ii)
�ltrer les électrons et ne retenir que ceux qui sont piégés, et (iii) adapter les coordon-
nées pour découpler les dynamiques parallèle (rapide) et transverse (lente) au champ
magnétique.

Après une présentation du modèle gyrocinétique et des caractéristiques du code Gy-
sela, nous présentons le modèle des électrons adiabatiques tel qu'il est implémenté dans
Gysela et introduisons deux nouveaux modèles: le modèle "Full Kinetic Electrons"
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dans lequel les électrons sont considérés comme une espèce cinétique et sont traités de la
même façon que les ions et le modèle "Trapped Kinetic Electrons" dans lequel seuls les
électrons piégés sont cinétiques, les électrons passants reçoivent quant à eux un traite-
ment adiabatique. On constate que les électrons engendrent un sur-amortissement des
GAM lié à une intéraction résonante entre la fréquence de rebond de certains électrons
piégés et celle des GAMs. Cet amortissement dépend du rapport de masse électron-ion et
évolue en (mi/me)

−1/2. Pour les simulations linéaires sur l'instabilité d'interchange, on
retrouve que les modes ITG sont dominants sur les modes TEM pour des forts gradients
de température ionique et vice versa, à pro�l de température électronique �xé. Un accord
satisfaisant est obtenu avec le code gyrocinétique GT5D dont les résultats viennent d'être
publiés. En�n, nous proposons quelques méthodes pour construire des cas non linéaires
qui permettront d'étudier l'in�uence des électrons cinétiques sur le transport turbulent.



Abstract

Instabilities, within fusion plasmas by magnetic con�nement, develop turbulent struc-
tures with milli-centimetric scales. The resulting transport impacts the energy con�ne-
ment time and, ultimately, the energy performance. In unimproved con�nement regimes,
ion-scale turbulence generally dominates this transport. This turbulence is carried by
the ions, but also by a certain class of electrons, those trapped in the local mirrors of
the magnetic �eld. Taking into account their dynamics is important, especially since
they are also responsible for particle transport. The aim of this thesis is to study the
impact of electrons on the damping of "Geodesic Acoustic Modes" (GAM) on the one
hand and the linear growth of the turbulence modes "Ion Temperature Gradients" (ITG)
and "Trapped Electron Modes" (TEM) on the other hand. GAMs are oscillations at the
acoustic frequency of the average electric potential on magnetic surfaces. They interact
critically with micro-turbulence, particularly through their coupling to the motion of
energetic particles in the plasma. ITG and TEM represent the 2 classes of dominant
electrostatic instabilities in tokamak core plasmas. As such, they are supposed to con-
trol turbulent transport in the core. This study is therefore a preliminary step for the
prediction of turbulent transport while taking into account the in�uence of electrons.
The appropriate framework for describing this turbulence is the so-called "gyrokinetic"
theory, which proceeds from a 6 dimensions (6D) to 4D + 1 phase space reduction in-
variant by an average of the fast cyclotron motion. The self-consistent problem couples
the gyrokinetic equation for each species (ions and electrons) to the Maxwell equations.
The development of this kinetic model, built as an autonomous extension of the Gysela
code whose basic version gives an adiabatic response to electrons, consists in adding the
treatment of the electron distribution function. Taking kinetic electrons into account is
costly numerically. Three strategies are envisaged to reduce this cost: (i) consider "heavy
electrons", (ii) �lter electrons so as to keep only the trapped ones, and (iii) adapt the
coordinates to decouple the parallel dynamics (fast) and the transverse one (slow) to the
magnetic �eld.

After a presentation of both the gyrokinetic model and some characteristics of the
Gysela code, we expose the adiabatic electrons model as it is implemented in Gysela
and introduce two new models: the "Full Kinetic Electrons" model in which electrons
are treated kinetically in the same way as the ions and the "Trapped Kinetic Electrons"
model in which only the trapped electrons are kinetic, the passing electrons receiving an
adiabatic treatment. It is found that electrons generate an over-damping of the GAM
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explained by a resonant interaction between the bounce frequency of some trapped elec-
trons and that of the GAMs. This damping depends on the electron-ion mass ratio and
evolves as (mi/me)

−1/2. For linear simulations on interchange instability, we �nd that the
ITG modes are dominant over the TEM modes for large ion temperature gradients and
vice versa, at �nite electron temperature gradient. A satisfying agreement is obtained
with the gyrokinetic code GT5D whose results have just been published. Finally, we give
some suggestions for future simulations to build non linear cases that could enable to
study the in�uence of kinetic electrons on turbulent transport.



Introduction

Making fusion by magnetic con�nement operable on an industrial scale requires that the
power coming from the fusion reactions exceeds by a large amount the one needed to
keep the fusion reactions alive (external heating of the plasma, power supply to generate
the magnetic �eld con�guration). Self heating of the plasma, the so-called "ignition",
requires that the heating power coming from the fusion-born α particles balances the
power losses. These latter are governed by radiative processes (mainly synchrotron and
Bremsstrahlung) and by heat transport across the insulating magnetic con�guration.
This ignition criterion described by J. D. Lawson [58, Lawson 1957] depends on sev-
eral parameters of the plasma, including the density n and temperature T of the various
species in presence as well as a parameter τE called the energy con�nement time given by
the ratio of the total thermal energy of the plasma divided by the lost power. This crite-
rion of ignition comes down to the triple product which states (for Ti ∈ [10 keV, 20 keV]):

nTi τE ≥ 3 . 1021 keV.s.m−3

We want to know which of these parameters can be changed in order to satisfy this
criterion.

• Ti must be high enough for charged nuclei to overcome the Coulomb barrier, at
least via the tunnel e�ect, hence allowing fusion reactions.

• n increases the number of fusion reactions but is limited in fusion reactors by
macroscopic instabilities beyond a threshold density called the Greenwald density,
which depends on the plasma current. [43, Greenwald 2002]

• τE is limited by the losses, including the transport of particles and energy from the
core to the edge of the tokamak.

The transport limiting τE tends to bring down the temperature of the centre, hence
preventing the fusion reactions from taking place. An important part of the research
e�ort is dedicated to increasing τE . The energy con�nement time can be increased
by improving the plasma con�nement, i.e. by reducing the level of matter and energy
transport from the core to the edge of the tokamak. In the absence of perturbation
on the electromagnetic �eld, the question of particle trajectories in a tokamak is an
axisymmetric problem. There are therefore three motion invariants and in this frame
the particles are con�ned. However, the sources of particles and energy as well as the

13
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high density and temperature gradients imply that the system is out of equilibrium.
This generates instabilities as well as large particle and energy �uxes, hence breaking the
invariance of the system above a certain threshold. These �uxes are dominated by two
contributions:

• The neoclassical transport which accounts for the enhancement of collisional
transport due to large scale particle trajectories in the toroidal magnetic con�g-
uration of controlled fusion devices. In the weak collisional regime which charac-
terizes hot fusion plasmas, the neoclassical transport coe�cient scales as χneo ∼
q2ε−3/2χcoll where q stands for the safety factor and ε = r/R0 stands for the inverse
of the aspect ratio [28, Estève 2015]. Besides, a good estimation of the classical
transport coe�cient is χcoll ∼ ρ2

i νcoll with ρi the ion Larmor radius and νcoll the
collision frequency. For ITER, we have q ' 3 and ε ' 1/6 which leads to an
increase of the magnitude of the transport coe�cient by a factor 100.

• The turbulent transport which is related to the �uctuations of the electric po-
tential. These �uctuations break two invariants of motion: �rst, the electric and
magnetic �elds E and B vary in time as well as the scalar and vector potentials φ
and A. The energy is therefore not invariant in time. Second, �uctuations break
the axisymmetry of the tokamak, and consequently, the toroidal kinetic momentum
is no more an invariant of the system.

The breaking of the three invariants results in a large transport1 due in particular to
the high density and temperature gradients within the tokamak: as an example, in Tore
Supra, the temperature of the ions in the core plasma reaches a few keV. That corre-
sponds to Tcore ∼ 150 MK and Tedge ∼ 300 K in the edge of the plasma, the minor radius
being equal to a = 0.7 m. It appears that the understanding of transport mechanisms,
particularly turbulent transport is essential for controlled magnetic fusion.

It has been shown that electrons, and in particular those trapped in the magnetic
con�guration of the tokamak, can have a contribution to turbulent transport comparable
to that of ions [60, 19, 77, 6, Liewer 1985, Dannert 2005, Waltz 2007, ITER Physics Basis
2007]. The main objective of this thesis is to evaluate the impact of electrons on two
tokamak modes, namely the Geodesic Acoustic Modes (GAM) and the Ion Temperature
Gradient instability (ITG) which is driven by ion temperature gradients. In the latter
case, we also see the transition where the electron modes become dominant, particularly
the Trapped Electron Mode (TEM). This study is carried on in a gyrokinetic model de-
scribing each species using a distribution function de�ned on a 5D-space : 3 dimensions
for position and 2 dimensions for velocity. The tool at our disposal for this study is the
Gysela code which will be described further.

1Especially the turbulent one which is much bigger than the neoclassical transport for standard
scenarios where transport barriers are not taken into account
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Chapters 1 and 2 introduce the models of electrons used in this study:

In chapter 1, we �rst introduce the tokamak magnetic geometry that we use in this
study. An overview of the particle trajectories is done in which we see that the helical
motion of charged particles can be decomposed into three parts: one parallel to the mag-
netic �eld and two transverse to the magnetic �eld that result from the Laplace force
applied to the charged particle. The �rst transverse component is the cyclotron motion:
the charged particle turns around magnetic �eld lines. The second transverse contribu-
tion results from the inhomogeneities of the magnetic �eld, constraining the particle to
drift from the magnetic �eld lines. Besides it is seen that particles can be sorted into
two classes regarding their trajectories : the trapped and passing particles. The orbit of
trapped particles has the shape of a banana with a radial width which is large compared
to the Larmor radius. Therefore this kind of particles is believed to play a major role
in radial transport and some characteristics of trapped particles are recalled such as the
bounce and precession motion. A brief description of the gyrokinetic model is then made
and it is seen in this model how the equations of Vlasov and Poisson transform into the
gyrokinetic and quasi-neutrality equations. The code Gysela describing this model is
then presented. Gysela is a gyrokinetic, global, full-f , �ux-driven code that considers a
model with adiabatic electrons. It appears in particular that this code has many assets
but requires huge numerical resources to launch long simulations. We see later that this
point is critical when adding kinetic electrons. Eventually some basis of the gyrokinetic
theory is presented and in particular, the notion of gyrocentre associated to a particle
is de�ned. In particular, it is possible to decompose the particle density into two parts:
the density of gyrocentres which can be computed directly from the distribution function
of gyrocentres and a residual called the polarisation density which is computed directly
from the electric potential and is essential whenever one wants to write properly the
quasi-neutrality equation.

In chapter 2, we expose the adiabatic electrons model as it is implemented inGysela.
However, we see that this model does not take into account neither particle transport
nor the in�uence of electrons on turbulence. Therefore a new model is developed in
which we introduce another distribution function to describe electrons kinetically. Nev-
ertheless, such a description where both ions and electrons are kinetic requires to reduce
the time step as well as the radial and poloidal steps by a factor (mi/me)

1/2 each. For
deuterium ions, that means that a given simulation launched with kinetic electrons will
be 36003/2 ∼ 105 times more costly than an equivalent simulation using the adiabatic
electrons model. To reduce the cost of the full kinetic electron simulation, we arbitrar-
ily reduce the mass ratio mi/me. Doing so however, the kinetic behaviour of passing
electrons is greatly modi�ed from reality on the contrary to trapped electrons whose
precession pulsation is independent from the mass ratio. Therefore to circumvent this
problem, we introduce a third hybrid model where trapped electrons are treated kinet-
ically and passing electrons are considered adiabatic. The three electron models are
respectfully called the Adiabatic Electron, Full Kinetic Electron and Trapped Kinetic
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Electron models. Eventually, the theoretical form a pure density source would take with
kinetic electrons is derived.

Chapters 3 and 4 tackle the impact of kinetic electrons on the plasma behaviour:

In chapter 3, the impact of kinetic electrons on Geodesic Acoustic Modes is stud-
ied. These modes are important for at least two reasons: �rst, their evolution is studied
in benchmarks. In our case, these tests were extended to kinetic electrons. Second,
these modes play a role on turbulence and fast particles transport [17, 82, Conway 2011,
Zarzoso 2013]. We provide an analytical model in which we recover the dispersion rela-
tion of GAMs from the gyrokinetic and quasi-neutrality equations. From this equation,
both the ion and electron contributions for the expression of the GAM pulsation and
damping rate are derived and a comparison with numerical simulations then follows. It
appears that the GAM pulsation is not modi�ed much in the presence of kinetic electrons.
However, the GAM damping rate is tremendously increased for large values of the safety
factor. This over-damping is due to a coupling between the bouncing modes of trapped
electrons and the GAM, the former retrieving the energy stored in the latter. One im-
portant result is that the damping rate evolves with the mass ratio as (mi/me)

−1/2.
However, some problems have been encountered to predict analytically the correct scal-
ing in safety factor and electron temperature of the GAM damping rate.

In chapter 4, the impact of kinetic electrons on the Ion Temperature Gradient (ITG)
and the Trapped Electron Modes (TEM) instabilities is exposed. First, the ITG and TEM
are described as particular cases of the general drift wave and interchange mechanisms
and the dispersion relation for both ITG and TEM is given. Second, linear numerical
simulations are launched while keeping only one toroidal mode. In these simulations, the
density and temperature gradients in the tokamak are set for both ions and electrons
such that the ITG and TEM instabilities are triggered. Only the initial unstable phase
where the toroidal modes of the electric potential grow exponentially is studied here. It
is observed that whenever the ion temperature gradient is reduced while maintaining a
�xed electron temperature pro�le, the sign of the poloidal pulsation changes abruptly.
The sign of the poloidal pulsation being a signature of an ion or electron mode, the sign
change means that we have found the transition between ITG and TEM modes. This
result is con�rmed by looking at the energy transfer between particles and the electric
wave. We recover the fact that in a ITG-dominated regime, the instability is mostly
fuelled by the ions of the plasma whereas in the case of a TEM-dominated regime, the
electrons fuel the instability. Eventually, a case where several toroidal modes are kept
is built for future turbulent transport studies. It is constructed as follows: �rst, some
modes are �ltered to prevent the development of the so-called ωH mode. This mode
is the low β response of the kinetic Alfvén wave and is a signature of an electrostatic
model. It should not appear in an electromagnetic model and we prefer to remove it for
its appearance is concomitant with a large spurious radial transport that is not physical.
Second, we use the aligned coordinate method thoroughly explained in [45, 57, Hariri
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2013, Latu 2018] which consists in computing the plasma quantities along magnetic �eld
lines. The gradients in this direction being very small, it is possible to choose a very loose
discretization in that direction, thus reducing the numerical cost. This will be crucial to
carry out future non-linear simulations. Finally, we present the �rst non-linear results
obtained with kinetic electrons.
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Chapter 1

Particle trajectories and gyrokinetic
theory in a tokamak

The con�nement of the plasma requires the presence of a particular magnetic geometry
provided by the tokamak coils and the plasma currents. This magnetic �eld interacts
with the charged particles. The resulting Laplace force prevents the particles from leav-
ing the plasma box. Several machines have been developed, including the tokamak and
the stellerator to achieve this [48, Helander 2012]. The purpose of this chapter is to
describe the con�guration of a tokamak of circular section like Tore Supra and to derive
the resulting motion of the charged particles of the plasma.

First, we describe the geometry of the magnetic �eld imposed by such a tokamak and
we see that the plasma in this con�guration remains close to a tokamak equilibrium in
which �uid quantities are homogeneous on every �ux surface. Subsequently, we show that
the motion of the charged particles immersed in such a �eld can be decomposed into a
motion parallel to the �eld lines, a cyclotron rotation around these, and a perpendicular
drift motion which slightly shifts the orbits of the particles from their associated �ux
surface. We then introduce the gyrokinetic model which allows one to reduce the studied
phase space from 6 dimensions (3 of space, 3 of velocity) to 5 dimensions. This reduces
the numerical cost of the simulations. In this model, we study a new physical object, the
gyrocentre, which is obtained by decoupling the fast gyromotion of particles from the
slow perpendicular motion of gyrocentres. Finally, it can be seen that the densities of
particles and gyrocentres are not equal, their di�erence being the polarization density.

19
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1.1 Tokamak con�guration

In this work, we study a tokamak with the shape of a torus of circular section, charac-
terized by a major radius R0 and a minor radius a. We de�ne the inverse of the aspect
ratio as ε0 = a/R0. The toroidal direction is de�ned as the blue one on Fig.1.1, and
the poloidal direction as the red one. We �rst introduce the set of torus coordinates to
describe the tokamak geometry and the set of canonical coordinates which is adapted
to describe the geometry of the magnetic �eld. Secondly, we give the expression of the
magnetic �eld in the canonical coordinates and then an approximated expression in the
torus coordinates. The geometry of magnetic �eld as well as the set of coordinates used
in tokamaks are well described in [47, Hazeltine 2003].

Figure 1.1: Poloidal (in red) and toroidal (in blue) angles (resp. θ and ϕ) and the torus
coordinates (r, θ, ϕ).

1.1.1 Torus and canonical coordinates

The torus coordinates are de�ned as the set of the three coordinates (r, θ, ϕ) shown on
Fig.1.1 with r the minor radius, θ the poloidal angle and ϕ the toroidal angle. The
poloidal and toroidal magnetic �uxes are de�ned respectively as:

ΦT ≡
¨

B · dST =

ˆ r

0
dr′
ˆ 2π

0
r′ dθBϕ

ΦP ≡
¨

B · dSP =

ˆ R

0
dR′
ˆ 2π

0
R′ dϕBθ

and represented on Fig.1.2. The magnetic �eld lines wrap around the surfaces of constant
poloidal �ux. To simplify the expression of the magnetic �eld B, it is convenient to de�ne
a new set of canonical coordinates (x1, x2, x3) which are de�ned from the symmetries of
B.

• First, the magnetic �eld B wraps around the magnetic surfaces of constant poloidal
�ux ΦP . The coordinate x1 is taken as a surface label. We choose x1 = ψ ≡ ΦP /2π.
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Figure 1.2: Poloidal (in red) and toroidal (in blue) �ux sections.

Figure 1.3: Magnetic �eld lines on a �ux surface using (a) torus coordinates and (b)
canonical coordinates.[47, Hazeltine 2003]

Figure 1.4: Poloidal discretization while following a magnetic �eld line.
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• Due to the axisymmetry of the problem around the tokamak axis1, we choose
x3 = ϕ the geometric toroidal angle2.

• We choose the last coordinate x2 = θ∗ called the intrinsic angle and de�ned so that
in the set of canonical coordinates (ψ, θ∗, ϕ) the magnetic �eld lines are represented
within each �ux surface ψ = cst by straight lines (shown on Fig.1.3) of equation:

dϕ

dθ∗

∣∣∣∣
FL

=
B.∇ϕ

B.∇θ∗
≡ q(ψ) safety factor (1.1)

Here the safety factor q depends on ψ only and characterizes the helicity of the
magnetic �eld lines. It should be noted that condition (1.1) fully determines the
angle θ∗ once the coordinates ψ, ϕ are set.

We introduce the contravariant base (∇ψ,∇θ∗,∇ϕ) associated with the canonical coor-
dinates (ψ, θ∗, ϕ)3. A derivation to express the intrinsic angle θ∗ from the poloidal angle θ
is made in Appendix A.1. This set of coordinates is well adapted to express the magnetic
�eld rigorously. In this coordinate system, the local helicity of the magnetic �eld lines is
larger (qloc is weaker) on the low �eld side than on the high �eld side (because B ∝ 1/R).
As a result, the θ∗ coordinate has more grid points (for a given ∆ϕ) on the high �eld
side than on the low �eld side (see Fig.1.4). However, as the turbulence is ballooned, we
look for a high number of grid points in the low �eld side, i.e. the opposite. This is why
it is ultimately not this coordinate system that has been retained in Gysela.

1.1.2 Geometry of the magnetic �eld

The currents in the poloidal coils and in the plasma induce a potential vector which can
be written as:

A =
1

2π
[ΦPeϕ + ΦTeθ] (1.2)

where ΦP and ΦT correspond respectively to the poloidal and toroidal magnetic �uxes.
The corresponding magnetic �eld can be written in the form:

B = I(ψ)∇ϕ+ ∇ϕ ∧∇ψ (1.3)

where I(ψ) = (R/2π)∇θ∗ ∧∇ΦT is a function of ψ only, with ψ = ΦP /2π.

It is useful to have an expression of the magnetic �eld in the torus coordinates (r, θ, ϕ).
In this model, we make the hypothesis that the magnetic �ux surfaces are nested con-
centric tori with circular section. This means that r can be taken as a magnetic surface

1In reality, because of the �nite number of toroidal coils, the magnetic �eld is not perfectly axisym-
metric.

2A geometric angle can be de�ned as: placed at a constant distance of the rotation axis, the length
of the arc traveled is proportional to the angle of rotation.

3By de�nition, each of the vector ∇α in the base (∇ψ,∇θ∗,∇ϕ) is normal to the surface α = cste.
Moreover, |∇α| = 1/Rα where Rα is the curvature radius of the coordinate line along the coordinate α.
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label. The magnetic �eld lines wrap around these tori and can be decomposed into a
toroidal �eld Bϕ, and a poloidal �eld Bθ.

B = Bθeθ +Bϕeϕ (1.4)

where we have introduced (er, eθ, eϕ) a normalized basis of the torus coordinates. We
make here the approximation θ∗ ' θ so that:

q(r) ' dϕ

dθ

∣∣∣∣
FL

=
B.∇ϕ

B.∇θ
=
rBϕ
RBθ

(1.5)

This approximation holds in the limit ε = r/R0 → 0. Ampère's law used on a toroidal
circle states that:

Bϕ.R = B0.R0 = µ0I0 (1.6)

where B0 is the toroidal magnetic �eld at R = R0 and I0 is the total current in the
poloidal coils. From equations (1.5) and (1.6) the expressions of the toroidal and poloidal
magnetic �elds are easily obtained and it comes:

B = B0
R0

R

[
r

qR
eθ + eϕ

]
(1.7)

In the whole manuscript, we place ourselves in this last model and use the torus coordi-
nates.
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1.2 Particle trajectories

The theory of orbits in tokamaks has been widely discussed in several books and articles
([55, 61, 68, 72, Kruskal 1958, Littlejohn 1983 ,Rax 2012, Sarazin 2013]). First, the tra-
jectories of charged particles are presented, based on the derivation in [72, Sarazin 2013].
Second, we introduce the angle-action set of variables which is well suited to describe the
motion of these particles. Finally, some important characteristics of a particular class of
particles, those trapped in the magnetic well present in the parallel direction, are derived.

1.2.1 Derivation of particle velocity

In the presence of an electromagnetic �eld (E,B) a particle of charge e and mass m
follows the equation of Newton:

m
dv

dt
(x, t) = e (E(x, t) + v(x, t) ∧B(x, t)) (1.8)

where x(t) stands for the position of the particle at time t. It is useful to decompose
the magnetic �eld as B(x, t) = 〈B〉 + B̃(x, t). We have 〈B〉 = J · B, where J stands
for the gyroaverage operator de�ned in Eq.(1.58). This term is replaced at order 0 in
(ρc/R)2 by the magnetic �eld B(xGC , t) evaluated at the position of the guiding centre.
Within the adiabatic theory, this perturbation remains small compared to B(xGC , t).
The perpendicular dynamics is dominated by a helical trajectory around the magnetic
�eld lines � called the cyclotron motion � which is characterized by a pulsation ωc, the
cyclotron pulsation, and a perpendicular radius ρc, the Larmor radius. The adiabatic
theory is veri�ed only if two conditions are satis�ed:

• Temporal condition: The magnetic �eld or the cyclotron frequency ωc remains
fairly constant during the cyclotron period τc i.e. the variation of ωc over the
duration τc of a complete cyclotron turn is very small compared to ωc:

τc
dωc
dt
� ωc ⇔

1

ωc

dωc
dt
� ωc ⇔

d ln(ωc)

dt
� ωc ⇔

d ln(B)

dt
� ωc (1.9)

• Spatial condition: The value of the magnetic �eld seen by a particle remains al-
most the same on a cyclotron turn i.e. the Larmor radius ρc is very small compared
to the characteristic length of variation of the magnetic �eld L∇B:

ρc � L∇B ⇔ ρc

∣∣∣∣∇BB
∣∣∣∣� 1⇔ ρc∇ lnB � 1 (1.10)

These conditions are satis�ed for strongly magnetized systems, such as the tokamak. We
introduce (b,n1,n2) an orthonormal basis attached to the particle with b the normalized
vector parallel to the magnetic �eld. The motion of such a particle can be decomposed
in three di�erent parts as we will see.
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Cyclotron motion

In the absence of an electric �eld, and with a uniform and constant magnetic �eld B0,
Eq.(1.8) becomes:

m
dv

dt
(x, t) = ev(x, t) ∧B0 (1.11)

As B0 is uniform, the projection of this equation on the parallel axis gives dtv‖ = 0.
Furthermore, the projection of Eq.(1.11) on the two perpendicular directions, n1 and n2,
gives the following system: {

dvc1
dt = eB0

m vc2
dvc2
dt = eB0

m vc1
(1.12)

where the index c refers to the cyclotron motion. The integration of sytem (1.12) 4 gives
the following form for the cyclotron motion:

xc(t) = v‖t b+ ρc(cos(ωct)n1 + sin(ωct)n2)︸ ︷︷ ︸
ρc

(1.13)

where the cyclotron pulsation ωc and the Larmor radius ρc are de�ned as

ωc =
eB0

m
; ρc =

∣∣∣∣ vcωc
∣∣∣∣ (1.14)

We introduce the thermal velocity vth and the thermal Larmor radius, which are good
guess to get an order of magnitude of vc and ρc, and are de�ned as

vth =

√
T

m
; ρth =

∣∣∣∣vthωc
∣∣∣∣ (1.15)

with T the temperature. For a temperature T = 10 keV and a magnetic �eld B0 = 5 T
the magnitude of the following quantities is given

vth ωc ρth

Deuterium 6.9 105 m/s 0.24 109 Hz 2.9 mm

Electrons 4.2 107 m/s 0.88 1012 Hz 48 µm

The trajectory due to the term ρc is called the cyclotron motion. In a tokamak, particles
have a helicoidal motion along the magnetic �eld lines of radius ρc and of wavelength
v‖(2π/ωc). However the gradients and curvature of the magnetic �eld, as well as the
transverse electric �eld introduce transverse drifts.

4This integration is made easily by considering vc1 + vc2 and vc1 − vc2 as the two unknowns of the
system.
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Transverse drifts

Taking into account the decomposition of the magnetic �eld B(x, t) = 〈B〉 + B̃(x, t)
discussed below Eq.(1.8) and decomposing the velocity as v = 〈v〉+ṽ with 〈v〉 ≡

¸
v dϕc

2π ,
Eq.(1.8) leads, for each species s, to the following system:

ms
d〈v〉
dt

= es

{
〈E〉+ 〈v〉 ∧BG + 〈ṽ ∧ B̃〉

}
(1.16)

ms
dṽ

dt
= es

{
Ẽ + ṽ ∧BG + 〈v〉 ∧ B̃ + ṽ ∧ B̃− 〈ṽ ∧ B̃〉

}
(1.17)

where the notation BG = B(xGC , t) has been used. The term ṽ ∧ BG is dominant in
Eq.(1.17) and this equation reduces at lowest order as:

ms
dṽ

dt
= esṽ ∧BG (1.18)

This equation has the same form as Eq.(1.11): we recover the fact that the fast dynamics
is mainly dominated by the cyclotron motion discussed in section 1.2.1.

In the averaged motion equation (1.16), the term 〈ṽ ∧ B̃〉 needs to be calculated. It
can be shown (see [72, Sarazin 2013]) that this term reduces to:

〈ṽ × B̃〉 = −µs
es

∇B

where µs ≡ esωcρ2
c/2 is the adiabatic invariant. Equation (1.16) can then be recast as:

ms
d〈v〉
dt

= es (〈E〉+ 〈v〉 ∧BG)− µs∇BG (1.19)

We can decompose the velocity 〈v〉 = v‖b+vG⊥ with b ≡ B/B. The projection Eq.(1.19)
onto the transverse plane yields:

ms
dvG⊥

dt

∣∣∣∣
⊥

+ms

dv‖

dt

∣∣∣∣
⊥

= es (〈E〉⊥ + 〈v〉 ∧B)− µs∇⊥B (1.20)

We call ω a characteristic pulsation of the drift motion. The term dvG⊥
dt is of order

ω
ωc

vG⊥. The transverse drift is an averaged process which appears at the time scale
ω ∼ v‖/R � ωc. The contribution of this term is therefore negligible at leading order.

The term
dv‖
dt can be developed as:

dv‖

dt

∣∣∣∣
⊥

= v‖
db

dt
= v2
‖ ∇‖b = v2

‖
N

R

with dtb = (v‖/R) N where N stands for the normal unit vector of the Frenet frame, R
being the associated radius of curvature which corresponds to the major radius. Taking
Eq.(1.20)∧B, the transverse drift velocity in the adiabatic limit reads, at lowest order:

vG⊥ = vE + vD∇,s + vDC,s =
〈E〉 ∧B

B2
+

B

esB2
∧
[
µsB

∇B

B
+msv

2
‖

N

R

]
(1.21)

It appears that two sources of transverse drifts are dominant in tokamak plasmas, namely
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• The existence of a transverse electric �eld E⊥. The electric drift is given by:

vE =
〈E〉 ∧B
B2

(1.22)

• The inhomogeneities of the magnetic �eld, that is gradient and curvature. The
associated drifts are given respectively by

vD∇,s =
v2
c,s

2ωc,s

b ∧∇B

B
; vDC,s =

v2
‖

ωc,s

b ∧N

Rc
(1.23)

Besides, the term b ∧ N/R ' b ∧ ∇B/B in the low-β limit (∇ ∧ B ' 0 in a
tokamak). The magnetic drift is then recast as:

vD,s =
v2
‖ +

v2
c,s

2

ωc,s

b ∧∇B

B
(1.24)

B is mainly oriented in the toroidal direction. The drift is therefore parallel to the
vertical axis. Moreover the sign of this drift depends on the charge of the species,
hence causing a charge separation between ions and electrons within the tokamak.

Parallel dynamics

The projection of Eq.(1.8) on b yields:

m

(
dv‖

dt
+

dv⊥
dt

)
· b = e

(
E‖ + v ∧B · b

)
(1.25)

In the frame of the adiabatic theory, it can be shown [72, Sarazin 2013] that averaging
this equation on the cyclotron motion gives at leading order in ε ∼ ω/ωc ∼ ρc/R and at
low β:

m
dv‖

dt
= e

〈
E‖
〉
− µ∇‖B +mv‖vE ·

∇B

B
(1.26)

1.2.2 Derivation of the Angle-Action coordinates from the motion in-
variants

The Noether theorem states that each symmetry of the system is associated with an
invariant [38, Goldstein 2002]. The goal here is to identify three invariants of the system.
Each of these invariants is associated with a periodic direction of motion. The motion
along each of these periodic directions is fully described via the introduction of an angle
αi. The calculation of the actions associated with these angles leads to the introduction
of the angle-action set of coordinates (α,J). In this set of coordinates, each action can be
expressed by a combination of motion invariants. First, we �nd the invariants of motion,
then we introduce the angle-action set of coordinates (α,J).
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Motion invariants

Magnetic moment The magnetic moment µ of a charged particle of the plasma is due
to the helicoidal trajectory around its associated magnetic �eld line. It can be calculated
by assimilating this cyclotron motion to a current loop of surface S = πρ2

c and current
I = eωc2π with ωc standing for the cyclotron frequency:

µ = IS = πρ2
ce
ωc
2π

=
e2ρ2

cB

2m
=
mv2
⊥

2B
(1.27)

In the case where the magnetic �eld varies little at the scales of the cyclotron motion of
particles in time and space B(x + ρc, t+ 1/ωc) ' B(x, t), then the magnetic moment µ
of the particles is constant in time:

dµ

dt
= 0 (1.28)

This is the adiabatic invariance of the magnetic moment which is valid only within the
framework of the adiabatic theory given by the two conditions (1.9) and (1.10).

Energy Newton equation for charged particles reads:

m
dv

dt
= e(E + v ∧B) (1.29)

Taking the scalar product with v, it becomes:

d

dt

(
1

2
mv2

)
= −ev · (∇φ+ ∂tA)

In the case of static electric and magnetic �elds, so that ∂tA = 0 and dφ
dt = v ·∇φ, it is

possible to write the conservation of the energy E :
dE
dt

=
d

dt

(
1

2
mv2 + eφ

)
= 0 (1.30)

Toroidal kinetic momentum The plasma is supposed to be axisymmetric in the
toroidal direction. As such, the action associated to the angle ϕ is conserved in time.
Noting Pϕ this invariant and pϕ the toroidal momentum, it is calculated as:ˆ 2π

0
Pϕ dϕ =

ˆ 2πR

0
pϕ · dlϕ =

ˆ 2π

0
(mvϕ + eAϕ)R dϕ

The system being axisymmetric in ϕ, it becomes:

Pϕ = mRvϕ + eRAϕ

Furthermore, using Stokes' theorem, it is possible to rewrite the last term as:

RAϕ =
1

2π

ˆ
A · dlϕ =

1

2π

ˆ
B · dSpol ≡ ψ

Eventually, the expression of the invariant Pϕ, called toroidal kinetic momentum, asso-
ciated with the axisymmetric toroidal angle ϕ takes the form:

Pϕ = mRvϕ + eψ (1.31)
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Review of motion invariants The particle dynamics is characterized by three invari-
ants:

• The mechanic energy E ≡ 1
2mv

2 + eφ for constant electric and magnetic �elds.

• The magnetic moment µ so that µB ≡ 1
2mv

2
⊥ within the adiabatic limit.

• The toroidal kinetic momentum Pϕ ≡ mRvϕ + eψ for axisymmetric plasma in ϕ.

Angle-Action coordinates

One seeks to construct a set of canonical coordinates using the three invariants of the
motion previously found. We introduce the Hamiltonian H of the system. H can be
decomposed into a constant equilibrium value Heq(J) on each �ow surface and a per-
turbation H̃ = H −Heq. We seek a set of angle-action coordinates (α,J) that satis�es
the Hamilton equations and such that the actions J remain constant5. Besides, the
conservation of the action via the change of coordinate imposes:

ˆ
Γ

J · dα =

ˆ
Γ

p · dx (1.32)

With this set of coordinates, for i ∈ [1, 2, 3] the canonical equations are given by:{
α̇i =

∂Heq
∂Ji
≡ Ωi

J̇i = −∂Heq
∂αi

= 0
(1.33)

where Ωi stands for the pulsation associated to the angle αi. To construct the angles-
action coordinates, one begins by looking for the symmetries of the system so as to
decompose the general trajectory of the particles into 3 periodic parts, each associated
with one of the motion invariants (or a combination of these).

• In the conditions of adiabaticity given by Eq.(1.9) and (1.10), the angle ϕc can
be considered as a cyclic coordinate. The set of coordinates associated with this
motion is �xed as α1 = ϕc and J1 is given by Eq.(1.32) and becomes:

2πJ1 =

ˆ 2π

0
mvcρc dϕc −→ J1 =

m

e
µ (1.34)

• Due to the toroidal axisymmetry of the problem, the toroidal motion is cyclic
with respect to the angle ϕ. The set of coordinates associated with this motion is
α3 = ϕ and J3 = Pϕ where Pϕ stands for the toroidal kinetic momentum derived
in Eq.(1.31)

5 This is a direct consequence from the fact that Heq depends only on J:

dJi
dt

= −∂Heq
∂αi

= 0 ⇒ Ji = constant
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• Although the trajectories of the so-called "passing" particles projected in the
poloidal plane have a circle-like shape, this is not the case for all particles, es-
pecially the trapped ones that exhibit poloidal trajectories with the shape of a
banana. The angle α2 associated with the poloidal motion of the particles is con-
structed so that after an angle 2π the particle has returned to its starting point.
Such an angle can be seen as equal to α2 = 2π sθ/Lθ with sθ the poloidal projec-
tion of the curvilinear abscissa and Lθ the total distance travelled in a period of
the poloidal motion. With this de�nition, the link between α2 and θ is given by
θ = θ0 sinα2. The associated action is given by:

2πJ2 =

ˆ 2π

0
(mvθ + eAθ) dlθ (1.35)

This approach is particularly important when one wants to express the Hamiltonian of
the system: the equilibrium part of the Hamiltonian Heq depends on the actions only,
whereas the perturbed part H̃ depends on both the angle and action coordinates.

1.2.3 Characteristics of trapped particles

The expressions of the invariants, introduced in part 1.2.1, enable to sort particles in
di�erent classes. To do so, we recall the expression of the energy H of a particle of mass
m, parallel velocity v‖ and magnetic moment µ in the absence of electric potential:

H =
1

2
mv2
‖ + µB (r, θ) ' 1

2
mv2
‖ + µB0 (1− ε cos θ) (1.36)

When moving along the magnetic �eld lines, the gyrocentre explores the poloidal vari-
ations of the magnitude of the magnetic �eld B(r, θ) ' B0R0/R with R = R0 + r cos θ
the major radius, the subscript "0" referring to quantities on the magnetic axis. It fol-
lows that particles having H < µBmax(r) with Bmax(r) the maximum magnitude of the
magnetic �eld on a poloidal turn will be re�ected in the parallel direction when entering
the high �eld region of the tokamak. Thus, the particles can be sorted (at least) in two
di�erent classes whose orbits are shown on Figure 1.5:

•
∣∣v‖∣∣ > 0 for all θ: the particle explores the whole poloidal domain. The particle is
said to be passing.

•
∣∣v‖∣∣ = 0 for a particular value θ = θ0: the particle bounces back before having
made a full poloidal turn. The particle is said to be trapped.
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Figure 1.5: Trapped and passing orbits.

This system is analogous to the pendulum model repre-
sented beside and whose total energy Hpend reads:

Hpend =
1

2
ml2θ̇2 +mgl(1− cos θ) (1.37)

• The parallel kinetic energy 1
2mv

2
‖ of the particle is

analogous to the kinetic energy of the pendulum
1
2ml

2θ̇2

• The perpendicular kinetic energy µB is analogous to
the potential energy of the pendulum mgl(1−cos θ)

First, a condition is set for a particle to be trapped. Then, some characteristics of
the trapped particles are derived such as the fraction of trapped particles, the shift of the
trajectory from the associated magnetic �eld line also called the banana width δb and
the bounce pulsation ωb.

Trapping condition

A particle is trapped in the magnetic well when its energy H is such that H ≤ µBmax.
In that case, the expression of the energy (1.36) gives:

1

2
mv2
‖ + µB (r, θ) ≤ µBmax(r) (1.38)
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Figure 1.6: Trapping domain: the particles inside the yellow cone are trapped, the others
are passing.

Taking into account that µB = 1
2mv

2
⊥, Eq.(1.38) can be expressed as a trapping condition

depending on the particle velocity:∣∣∣∣ v‖v⊥
∣∣∣∣ ≤

√
Bmax(r)

B (r, θ)
− 1 = τt(r, θ) (1.39)

The magnetic �eld is expressed as B(r, θ) ' B0/ (1 + ε cos θ), with ε = r/R0 the inverse
aspect ratio. The maximum value of the magnetic �eld for a �xed value of ε is then
Bmax(r) = B0/(1− ε). Therefore, the trapping condition Eq.(1.39) becomes:∣∣∣∣ v‖v⊥

∣∣∣∣ ≤
√

1 + ε cos θ

1− ε
− 1 '

√
ε(1 + cos θ) (1.40)

where the second expression is approximated in the limit ε � 1. The position of the
particle in velocity space

(
v‖, v⊥

)
sets whether the particle is trapped or passing. The

trapped domain is given by a cone of equation (1.39) and represented on Fig.1.6.

Trapped fraction of particles

Let us introduce the fraction of trapped particles αt. By de�nition:

αt(x, t) =
ntrapped(x, t)

n(x, t)
=

2π
´∞

0 v⊥ dv⊥
´ +v⊥τt(r,θ)
−v⊥τt(r,θ) dv‖f(x,v, t)

2π
´∞

0 v⊥ dv⊥
´ +∞
−∞ dv‖f(x,v, t)

(1.41)

Here the integration domain for the trapped particle is 2π
´∞

0 v⊥ dv⊥
´ +v⊥τt(r,θ)
−v⊥τt(r,θ) dv‖

which is consistent with the previous condition
∣∣∣v‖,maxv⊥

∣∣∣ = τt(r, θ). In the case of a

Maxwellian distribution function centred on an average velocity of 0 in the parallel and
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perpendicular directions: feq(x,v, t) = neq
(
2πv2

th

)−3/2
exp

(
−
(
v2
‖ + v2

⊥

)
/2v2

th

)
, ex-

pression (1.41) becomes:

αt = 2π

ˆ ∞
0

v⊥ dv⊥

ˆ +v⊥τt(r,θ)

−v⊥τt(r,θ)
dv‖

1(
2πv2

th

)3/2 exp

(
−
v2
‖ + v2

⊥

2v2
th

)

=
2π(

2πv2
th

)3/2 ˆ ∞
0

v⊥ dv⊥ exp

(
−
v2
⊥

2v2
th

)ˆ +v⊥τt(r,θ)

−v⊥τt(r,θ)
dv‖ exp

(
−
v2
‖

2v2
th

)
(1.42)

Besides when ε → 0 then τt → 0, and we can assume that exp
(
−v2
‖/2v

2
th

)
' 1 on the

interval [−v⊥τt,+v⊥τt]. Thus αt becomes:

αt =
4πτt(r, θ)(
2πv2

th

)3/2 ˆ ∞
0

v2
⊥ dv⊥ exp

(
−
v2
⊥

2v2
th

)

After a change of variable u = v⊥/
√

2vth, it comes:

αt = τt(r, θ)4π
−1/2

ˆ ∞
0

u2 exp
(
−u2

)
du

Knowing that
´∞

0 u2 exp
(
−u2

)
du =

√
π/4, the trapped particle fraction becomes:

αt −→
ε→0

τt(r, θ) (1.43)

An estimation of the θ average of this fraction ᾱt(r) = 1
2π

´ π
−π αt(r, θ) dθ can be computed.

Using the simpli�ed expression of τt given by Eq.(1.40) and of αt given by Eq.(1.43), it
comes for ε→ 0:

ᾱt ∼
ε→0

1

2π

ˆ 2π

0

√
ε(1 + cos θ) dθ =

2
√

2ε

π
(1.44)

For typical values of ε = 0, 1, the value of the fraction of trapped particles is ᾱt ' 0.5.

Bounce and precession motions

As said in part 1.2.1, the transverse drifts are responsible for a shift of particle trajec-
tories from their associated magnetic �eld surfaces. It results that the projections of
trajectories on a poloidal surface have a circle-like shape shifted from the magnetic sur-
faces for passing particles, and two arcs of di�erent radii meeting on the magnetic surface
for trapped particles as shown on Fig.1.5. In addition, as the shift is not the same for
the ways back and forth of the trapped particles motion, a shift appears in the toroidal
direction after each bounce period of the trapped particle. This results in a precession
motion for trapped particles along the toroidal angle (see Fig.1.7).

The banana width δb is de�ned as the shift of trapped particle trajectories from the
associated magnetic �eld lines in θ = 0. We also de�ne the bounce pulsation ωb = 2π/Tb
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where Tb is the transit/bounce time. For a passing particle, the transit time is the time
needed for a particle to do a poloidal turn. For a trapped particle, the bounce time is the
time needed for a particle to do a whole back and forth loop in the poloidal direction.
The precession pulsation is de�ned as ωd = 2π/Td where Td is the time for a trapped
particle to do a toroidal turn.

The banana width δb can be computed knowing the conservation of the toroidal
kinetic momentum Pϕ = mRvϕ + eψ with vϕ =

Bϕ
B v‖ ' v‖ in both ways back and forth

of a trapped particle for θ = 0. Knowing dψ
dr = −RBθ and q(r) ' rB0/RBθ, it comes:

Pϕ =

{
mR v‖ + eψ(r + δb)

mR(−v‖) + eψ(r)
⇒ δb =

2qmv‖

εeB0
(1.45)

Besides, Eq.(1.40) gives the order v‖ ∼
√

2ε v⊥ when θ = 0. Considering thermal particles
v⊥ ' vth and using the thermal Larmor radius expression ρth given in Eq.(1.15), the
thermal banana width simply reduces to:

δb ∼ 2qε−1/2ρth (1.46)

The bounce pulsation is computed from the period of the bounce/transit motion. We
introduce ±θ0 the angle of the turning points when |v‖| = 0 (for passing particles, we
take θ0 = π), and εb a parameter which equals 1 for trapped particles and 0 for passing
ones. The bounce/transit period is given by:

2π

ωb
= (1 + εb)

ˆ t(θ=+θ0)

t(θ=−θ0)
dt = (1 + εb)

ˆ +θ0

−θ0

qR(θ)dθ

v‖(θ)
(1.47)

where R = R0(1 + ε cos θ). For trapped particles, εb = 1 and v‖ can be approximated by
condition (1.40) with v⊥ approximated by the thermal velocity vth. Replacing R and v‖
by their θ-dependent expressions, Eq.(1.47) is recast as:

2π

ωb
' 2qR0√

ε vth

ˆ +θ0

−θ0

(1 + ε cos θ)
√

1− ε√
1 + cos θ

dθ (1.48)

For barely trapped particles, θ0 = π and the bounce period becomes in�nite, whereas for
deeply trapped particles, θ0 = 0 and the bounce period becomes zero. Yet, a qualitative
evaluation of ωb can be done by doing the following approximations in Eq.(1.47): large
aspect ratio limit R = R0, v‖ =

√
2ε vth and θ0 = π. In that case, a simpli�ed expression

of the bounce pulsation is:

ωb ≈
√
ε vth√
2qR0

(1.49)

Besides, an evaluation of the ratio between the bounce and cyclotron pulsations shows
that the bounce pulsation is much lower than the cyclotron pulsation:

ωb
ωc
≈
√
ε

q

ρc
R
� 1
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Figure 1.7: Toroidal precession of trapped particles.

Because of the radial gradients in the tokamak on the one hand and the banana
width on the other hand, each way back and each way forth of the trajectory of trapped
particles is done with a slightly di�erent magnitude of the toroidal velocity. Integrated
over time, this results in the existence of a toroidal precession velocity ∆v‖ 6= 0. The
precession velocity can be evaluated as:

∆vϕ ' δb
dv‖

dr

∣∣∣∣
θ=0

Using Eq.(1.36) to �nd the expression of the parallel velocity v‖ =
√

2
m(H − µB(r, θ)),

it comes
dv‖
dr

∣∣∣
θ=0
' µB0/mRv‖ in the approximation of large aspect ratio R ' R0. It

is then possible to de�ne a precession period as the time needed for a trapped particle
to do a full toroidal turn. Taking the expression of δb given by Eq.(1.45) , this gives the
following expression for the precession pulsation ωd:

ωd =
∆v‖

2πR
≈
qωcρ

2
th

rR
(1.50)

The ratio between the precession pulsation and the bounce pulsation is ωd/ωb ≈
q2
√
ε
ρth
r � 1 where the approximation R ' R0 has been done. Taking a safety factor

q = 2, a temperature T = 10 keV, a magnetic �eld B0 = 5 T and using ITER dimensions
R0 = 6.2 m and a = 2 m, the magnitude of the characteristics of the bounce motion at
mid-radius are given here:

δb ωb ωd

Deuterium 3.6 cm 1.1 104 Hz 160 Hz

Electrons 0.59 mm 6.8 105 Hz 160 Hz

In particular, it appears that the precession pulsation ωd does not depend of the mass of
the particle.
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1.3 Gyrokinetic description of a plasma

In a plasma, two physical objects need to be described: the particles and the electromag-
netic wave. On the one hand, the particles are described, in the framework of kinetic
theory which is tackled in ([50, 66, Ichimaru 1973,Nicholson 1983]), by their distribu-
tion function de�ned in the 6D space f(x,v, t) from which all �uid quantities can be
recovered. This distribution function corresponds to the number of particles per unit
volume having approximately the velocity v, near the position x at time t. The �rst
�uid moments are de�ned as:

n(x, t) =
´
f(x,v, t) d3v

nV(x, t) =
´

vf(x,v, t) d3v
¯̄P (x, t) =

´
m(v −V)⊗ (v −V)f(x,v, t) d3v

nT (x, t) = p = 1
3Tr(

¯̄P ) =
´
m|v −V|2f(x,v, t) d3v

(1.51)

with n the density, V the �uid velocity, ¯̄P the pressure tensor, p the scalar pressure
and T the temperature. On the other hand, the electromagnetic wave is described by
the scalar and vector potentials (φ(x, t),A(x, t)). The equations that solve this problem
are the Vlasov, the Maxwell-Gauss and Maxwell-Ampere equations. The auto-consistent
problem of 5 scalar equations for 5 scalar unknowns can be written as follows:

df

dt
(x,v, t) = 0 (1.52)

4φ = − 1

ε0

∑
s

esns (1.53)

∇ ∧B = µ0 j +
1

c2

∂E

∂t
(1.54)

with j the electric current density, c the celerity of light, ε0 and µ0 the dielectric per-
mittivity and permeability of free space respectively. This model describes fully both
the particles and the electromagnetic �elds of the plasma. Taking into account that in
the limit β � 1, satis�ed for a tokamak plasma, the magnetic �eld can be assumed to
remain constant in time and that turbulent transport is dominated by its electrostatic
component, two major approximations are made in our study:

• Electrostatic approximation: The time variations of the magnetic �eld are ignored.
Consequently, the remaining unknowns are the distribution function f and the
electric potential φ. Besides, the electric �eld reads in this approximation as E =
−∇φ. This approximation should be removed when considering an electromagnetic
model.

• Gyrokinetic theory : A change of coordinates is operated so that the fast phase of
the particle motion becomes a coordinates that can be ignored. We thus operate
a reduction of the phase space by eliminating the dependency over the cyclotron
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angle ϕc introduced in part 1.2.2 that appeared in the Hamiltonian H describ-
ing the particle. Consequently, the new Hamiltonian H̄ describing the associated
gyrocentre only depends of 5 variables, namely the coordinates of the gyrocentre
(xG, vG‖, µ). This description of the plasma is valid only if the di�erence between

the two Hamiltonians H̃ = H − H̄ remains small compared to H. This is usually
the case since the ratio H̃/H ∼ ρ∗ � 1.

In this so-called gyrokinetic model well described in [11, Brizard & Hahm 2007], the
equations of the system, namely the Vlasov and Maxwell-Gauss equations, become the
gyrokinetic and Poisson equations. The latter can be replaced by the quasi-neutrality
equation in the limit of large wavelengths as compared to the Debye length.

First, the equations of the gyrokinetic model, namely the gyrokinetic and quasi-
neutrality equations, are discussed. Second, a general description of the Gysela code,
which reproduces that model, is made.

1.3.1 The gyrokinetic model

The gyrokinetic equation

The Vlasov equation 6 7 (1.52) means that the distribution function f is conserved in
the phase space (x,v). It can be said equivalently that f(X(x, t),V(x, t), t) remains
constant along the trajectories so that:

dX

dt
= V and

dV

dt
=

e

m
(E + V ∧B)

The Vlasov equation can then be developed according to its partial derivatives in position
and velocity space and is recast as:

∂f

∂t
(x,v, t) +

dX(t)

dt
· ∂f
∂x

(x,v, t) +
dV(t)

dt
· ∂f
∂v

(x,v, t) = 0 (1.55)

The motion of the gyrocentre associated to a particle is obtained via a change of coor-
dinates so that the fast phase of the particle motion becomes a coordinates that can be
ignored (see Fig.1.8). We thus operate a reduction of phase space from 6 to 5 dimensions.
We can then introduce the distribution function f̄ de�ned in the 5 dimensional phase
space (xG, vG‖, µ) and which describes the dynamics of the gyrocentres. Actually, the
precise de�nition of a gyrocentre is a delicate matter which will be addressed in section
1.4.

6 This equation may be obtained by adopting a Hamiltonian approach or using the density of Klimon-
tovich ([35, Ghendrih],[66, Nicholson 1983]).

7 This equation makes it possible to determine the complete evolution of f , whenever the initial
conditions are set. Since macroscopic quantities such as density, pressure, energy �ow are expressed as
integrals of f over the velocity space, it is enough to have knowledge of the 6D-distribution function over
time to know all the macroscopic data of the problem.
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Figure 1.8: A particle motion in blue and its associated gyrocentre in black.

In the gyrokinetic model, we consider the Vlasov equation of the gyrocentres and not
of the particles of the plasma. This gyrokinetic equation, whose derivation can be found
in [11], is recalled here:

∂f̄

∂t
(x, vG‖, µ, t) +

(
vG⊥.∇⊥ + vG‖∇‖

)
f̄(x, vG‖, µ, t) +

dvG‖

dt

∂f̄

∂vG‖
(x, vG‖, µ, t) = 0

(1.56)
where the evolution of the parallel velocity vG‖ is given by Eq.(1.26) and the perpen-
dicular velocity of gyrocentres vG⊥ = vE + vD∇ + vDC reads as the sum of the electric
and magnetic drifts derived respectively in Eqs.(1.22) and (1.24). In fact, Eq.(1.56) is an
approximated form of the full gyrokinetic equation. A more rigorous form can be found
in Eq.(5) of [40, Grandgirard 2016].

The quasi-neutrality equation

Let us rewrite Eq.(1.53) focussing only on the orders of magnitude:∣∣∣∣∣∑
s

esns

∣∣∣∣∣ ' ε0k
2 |φ|

The Debye length is de�ned as λD =
√
ε0T/(n0e2) where n0 ∼ ns stands for a typical

plasma density. Poisson equation can be rewritten using the Debye length as:

|
∑

s esns|
en0

' (kλD)2

∣∣∣∣eφT
∣∣∣∣

In a tokamak plasma, the potential energy represents only a small fraction of the total
energy stored in the tokamak. Actually, the ratio between potential and thermal energy
is small enough to consider that the quantity (kλD)2|eφ/T | � 1 for all values of k in the
turbulence spectrum. Eventually, the Poisson equation is simpli�ed in the equation of
quasi-neutrality: ∑

s

esns = 0 (1.57)
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1.3.2 Presentation of some properties of the Gysela code

Gysela (GYrokinetic SEmi-LAgrangian) is a numeric code solving the gyrokinetic model
presented earlier composed of the gyrokinetic equation coupled with the equation of quasi-
neutrality. This code is full-f (regarding the gyrokinetic equation), global, �ux-driven,
semi-Lagrangian. Some properties of this code, widely detailed in [40, Grandgirard 2016]
and [1, Abiteboul 2012], are recalled hereafter.

Physical assumptions

The following key approximations have been made:

• Circular magnetic �ux surfaces: The magnetic �ux surfaces are nested concentric
torus with circular section. The magnetic �eld lines B wrap around these torus
and their analytical expression is chosen as the simpli�ed expression obtained in
Eq.(1.7):

B = B0
R0

R

[
r

qR
eθ + eϕ

]
• Adiabatic electrons: The electrons are supposed to follow a Boltzmann response
which is at equilibrium with the electric potential. This assumption is no longer
valid for turbulence developing on an electron scale, such as the Electron Temper-
ature Gradients modes. Alternative models, where electrons are considered as a
kinetic species, are the core of this PhD thesis.

Full-f regarding the gyrokinetic equation

Gyrokinetic codes can be sorted in two families regarding the treatment of the distribution
function: those using the full-f method and those using the δf method. In the δf method
[20, Denton 1995], the distribution function is decomposed as f(t) = feq+δf(t) with feq a
prescribed equilibrium pro�le that can be taken as a Maxwellian and δf a perturbation to
this equilibrium that is let free to evolve in time. However, the back reaction of turbulent
transport on the background equilibrium is not accounted for in this method. In the full-
f method which is the one adopted in Gysela, the whole distribution function is �rst
initialized to an equilibrium pro�le and then let free to evolve in time. In a tokamak, the
system is maintained out of equilibrium by particles and energy sources and sinks. It is
therefore necessary to add in the code the source terms associated with the transported
quantities (energy and particles in the case of kinetic electrons).

Global

A scale separation k‖qR ∼ k⊥ρi results from the strong anisotropy between the direction
parallel to the magnetic �eld, characterized by weak density and temperature gradients,
and the transverse directions. Some codes, called "�ux-tube" ([25, Dorland 2000],[12,
Candy 2003]) take advantage of this scale ordering and simulate a volume aligned on a
magnetic �eld line and of small poloidal section. These local models enable to reduce
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Figure 1.9: Scheme of the semi-lagrangian model.[1, Abiteboul 2012]

signi�cantly the cost of simulations compared to other codes which simulate the whole
plasma domain. However, such codes simulate only the evolution of small scales, the
mean density and temperature pro�le being assumed to remain uniform. Gysela is a
"global" code which simulates the whole tokamak domain with a small radius belonging
to an interval [rmin, rmax], where rmin and rmax are chosen in the interval [0, a].

Semi-Lagrangian

The speci�city of this code is that it uses a semi-Lagrangian approach: the distribution
function f (x,v, t) evolves on a �xed grid in the phase space (x,v), like Eulerian schemes.
We assume the knowledge of the distribution function at each grid point xi at time t. We
are looking for its value at each grid point at time t+ ∆t. For this, we use the invariance
of the distribution function along the characteristics (Lagrangian approach): the value
of f at the grid point (xj , vj) at time t + ∆t is equal to its value at time t at the grid
point (x′j , v

′
j) found by following backward in time the trajectories from t+ ∆t to t. This

foot of the characteristic is generally not a grid point. The value of f at this point is
then obtained by interpolation (by cubic splines in Gysela), using the knowledge of f
in all the neighbouring grid points at the instant t (Fig. 1.9).

Gyroaverage operator

The gyrokinetic model uses some quantities that have to be averaged over the cyclotron
motion. Let G be any function of the position x. Noting ϕc the gyroangle, ρc the
Larmor radius and xGC the guiding centre position associated to the particle position x,
the gyroaverage of G is given by the expression:

J.G(x) =

{˛ 2π

0

dϕc
2π

e
ρc.∇

}
G(xGC) (1.58)
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J is called the gyroaverage operator. Besides, it can be noted that:
˛ 2π

0

dϕc
2π

e
ρc.∇

=

˛ 2π

0

dϕc
2π

∞∑
n=0

(ρc.∇)n

n!
=

˛ 2π

0

dϕc
2π

∞∑
n=0

(ρc.∇)2n

(2n)!

At the lowest order in k⊥ρc, i.e. keeping only the �rst term n = 0, this integral is equal
to 1. Therefore, at the lowest order, we have: 〈...〉ϕc ∼ ...(xGC). In the case �uctuations
of the various quantities are characterized by wavelengths that are large compared to the
Larmor radius k⊥ρc � 1, then J can be approximated to:

J0(k⊥ρc) '
1

1 + (k⊥ρc)
2 /4

This form of J is a Padé approximation.

Construction of an "equilibrium" distribution function from the averaged

density and temperature pro�les

The evolution of the distribution function is governed by the Boltzmann equation

df

dt
(x,v, t) = C(f) (1.59)

where C stands for the collision operator. However, it is not possible to �nd a stationary
equilibrium which at the same time belongs to the kernel of the collision operator8 and is
a function of the motion invariants, seen in part 1.2.2, only (except for the case where all
density, average velocity and temperature pro�les are �at). For this reason, it is di�cult
to �nd a true axisymmetric equilibrium, which is the purpose of the neoclassical theory.

In Gysela, we introduce a Maxwellian distribution function constructed from aver-
aged density and temperature pro�les de�ned for any time t. Thus, we introduce the
"equilibrium" density neq(r, t) = 〈n(x, t)〉FS and temperature Teq(r, t) = 〈T (x, t)〉FS ,
chosen independent of θ and ϕ9, where the average on a magnetic �ux surface of con-
stant r is de�ned as:

〈...〉FS =

˜ dθ dϕ
B·∇θ ...˜ dθ dϕ
B·∇θ

(1.60)

Here the designation "equilibrium" is abusive for these quantities do not depend on
the motion invariants only. From these pro�les, we can also de�ne an "equilibrium"
distribution function as:

feq(r, θ, v‖, µ, t) =
neq(r, t)

[2πkBTeq(r, t)/m]3/2
exp

{
−
Eeq(r, θ, v‖, µ, t)
kBTeq(r, t)

}
(1.61)

8 Boltzmann's H-theorem states that this steady state is obtained when the entropy is maximum,
and when this state is reached, the solution f has a Maxwellian pro�le in velocity space [49, Helander
2002].

9In a MHD equilibrium, the ideal Euler equation reads J ∧ B = ∇p. A consequence is B.∇P = 0
and the magnetic surfaces are isobar. In the case of a circular magnetic �eld, this means that P is
independent of θ and ϕ.
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with Eeq(r, θ, v‖, µ, t) = 1
2m(v‖−V‖eq(r, t))2+µB(r, θ), V‖eq being the �ux surface averaged

parallel velocity. It can be noted here that there is no transverse component of the average
velocity at lowest order. The solution of our evolution problem reads as the sum of this
equilibrium function feq and a perturbation f̃ :

f(x,v, t) = feq(r, θ,v, t) + f̃(x,v, t) (1.62)

1.4 Calculation of the particle density in gyrokinetics

In the gyrokinetic model, we aim to describe the particle trajectories in a 5-dimensional
space (x, v‖, µ). As particles evolve in the 6-dimensional space of positions and velocities
(x,v), two physical objects associated with each particle are introduced: the guiding-
centre and the gyrocentre. The guiding-centre evolves in the 6-dimensional space (x,v).
Its trajectory is obtained by removing the cyclotronic motion to the particle's trajectory.
The gyrocentre is then obtained by doing a phase space reduction to the 5 dimensions
(x, v‖, µ). The objective here is to express the �uid moments, and in particular the
density, as a function of the distribution function of the gyrocentres f̄ .

1.4.1 Link between particles and gyro-centres

The �rst step to take in order to derive the link between fs(x,v, t) and f̄s(xgy,vgy, t) is
to de�ne correctly the various distribution functions used in this work.

• f is the distribution function of particles (of a given species), so that n(x) =´
f(x,v) d3v represents the density of particles at position x.

• fGC is the distribution function of guiding centres (associated with the previous
particles), so that nGC(xGC) =

´
fGC(xGC ,vGC) d3vGC represents the density of

guiding centres at position xGC . It is important to see that nGC(x) 6= n(x) as one
may see on Fig.1.10.

• f̄ is the distribution function of gyrocentres, so that n̄(xgy) =
´
f̄(xgy,vgy) d3vgy

represents the density of gyrocentres at position xgy.
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Figure 1.10: Di�erence between the particle and guiding-centre densities.[72, Sarazin
2013]

The coordinates of a guiding centre can be deduced from the coordinates of the
particle by averaging its trajectory on a cyclotronic period: x(t) − xGC(t) = ρc. The
coordinates of a gyrocentre will be deduced from the coordinates of the guiding centre.
We want the gyrocentres be de�ned in a 5 dimension space and we will see later which are
the properties de�ning this new object. The aim of introducing these new coordinates is
to simplify the description of the system, by gaining some degrees of liberty to describe
the system (which means less parameters to compute in a numerical code).

The important point to notice is that these three di�erent distribution functions

describe the same physical reality . For each particle, there is only one guiding
centre and one associated gyrocentre. Thus, it is natural to �nd the same value of
the distribution function in coordinates associated with each type of item considered.
Consequently, the distribution function of particles f evaluated at the position of the
particles (x,v) is equal to the distribution function of guiding centres fGC evaluated
at the position of the guiding centres (xGC ,vGC) and to the distribution function of
gyro-centres f̄ evaluated at the position of the gyro-centres (xgy,vgy) (cf. [11, Brizard
2007]):

f(x,v) = fGC(xGC ,xGC) = f̄(xgy,vgy) (1.63)

The problem that occurs here is that the quasi-neutrality equation is a constraint on
the particle densities of the di�erent species s of the plasma, which can be expressed as
integrals of the di�erent fs. But the gyrokinetic approach uses and computes only the
distribution function of gyrocentres f̄s. Thus it is necessary to insert a link between the
values of f and f̄ evaluated at the same point. Another point to state is that in the
end, the physical quantities, like density, should be expressed in the real space x. This
�xes the choice of coordinates used when the link between both distribution functions
is made. This change of coordinates from particle to gyrocentre is tackled in Appendix
A.2. This eventually leads to the following relation between f and f̄ :

f(x,v, t) = e−ρc·∇f̄(x,vGC , t) +
e

B

{
φ(x, t)− φ̄(xgy, t)

}
e−ρc·∇∂µf̄(x,vGC) (1.64)
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It is now possible to express the density of particle using only the distribution function
of gyrocentres f̄ .

1.4.2 Expression of the particle density

Guiding-centers and electric potential contributions

Equation (1.64) provides the relationship between the particle density ns and the guiding-
center density nGs:

ns(x, t) =

ˆ
d3v e−ρc·∇f̄s(x,vGC , t)

+

ˆ
d3v

es
B

{
φ(x, t)− φ̄(xgy, t)

}
e−ρc·∇∂µf̄s(x,vGC) (1.65)

The �rst integral on the right hand side corresponds to the gyro-center density nG,s(x, t).

Using the gyro-average operator J (see Eq.(1.58)), and writing Jv =
(

2πB∗‖/ms

)
as the

Jacobian in the velocity space, it gives:

nG,s(x, t) =

ˆ
Jv dµ dvG‖ J.f̄s(x,vGC , t) (1.66)

The last integral on the right hand side is the polarization density npol,s. Besides, the
averaged value of φ on the gyroangle reads:

φ̄(xgy, t) =

{ˆ
dϕc
2π

eρc·∇
}
φ(xGC , t) =

{
e−ρc·∇

(ˆ
dϕc
2π

eρc·∇
)}

φ(x, t)

Further recalling that xgy = x−ρc and by replacing the expression of φ̄(xgy, t) in npol,s,
it follows:

npol,s(x, t) =

ˆ
Jv dµ dvG,‖

es
B

ˆ 2π

0

dϕc
2π

{
e−ρc·∇∂µfeq,s(x,v)

[
1− e−ρc·∇

〈
eρc·∇

〉]
φ(x, t)

}
(1.67)

The brackets 〈...〉 stand for the average over the gyro-phase: 〈...〉 ≡
´ 2π

0 ... dϕc
2π .

Expression of npol in the large wavelength limit

It is useful to consider the large wavelength limit k⊥ρc � 1 of Eq.(1.67), for which
some particularly compact expression of npol,s can be derived. In such a limit, one can
restrict the Taylor expansion of the operator to the leading terms of the development
only. Details of the calculus are given in Appendix A.3. At second order in k⊥ρc, it
comes:

npol,s(x, t) '∇⊥ ·
(
msneq,s
esB2

∇⊥φ(x, t)

)
(1.68)



Chapter 2

Accounting for kinetic electrons in
Gysela

2.1 Ion turbulence with adiabatic electrons

In the classic gyrokinetic model detailed in chapter 1, the description of the plasma re-
quires to solve one gyrokinetic equation per kinetic species, each coupled to the others via
the Maxwell-Gauss equation which, in the electrostatic limit and for wavelength scales
large compared to the Debye length, reduces to the quasi-neutrality equation. The dy-
namics of each kinetic species, ions and electrons, is well de�ned in this case.

From the numerical point of view, it should be noticed that the time step needed to
accurately follow the dynamics of each species should scale like ∆ts ∝ R0/vth,s

1 , with
R0 the tokamak major radius and vth,s the thermal velocity of species s. The ratio of
the ion and electron time step is then given by:

∆ti
∆te
∼
vth,e
vth,i

=

√
mi

me

at equal temperatures with ms the mass of species s. This ratio is of the order of 60
for deuterium ions. In the presence of both ions and electrons, to resolve the dynamics
of both species, it is needed to use the smallest time step, in that case ∆te. Using this
time step in Gysela would be too costly as far as computation time is concerned, and
it would be preferable to use ∆ti as the global time step of the model.

A possibility to circumvent this problem is to assume that the electrons are adiabatic,
i.e. they are at equilibrium with the ambient electric potential. In that model, only ions
are supposed kinetic. This allows us to choose a relatively large time step to describe
the dynamics of the plasma.

1 Instabilities can add other constraints to ∆t. E.g., the typical growth rate of ITG γ ∼ vth/(RLT )1/2,
where LT stands for the characteristic length of the temperature gradient, would impose ∆t γ . 1.

45
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The drawback of this model is that there can be no particle transport and some
classes of instabilities, namely the Trapped Electron Modes (TEM), which are believed
to play a major role in turbulent transport are not taken into account. In the following,
the quasi-neutrality equation is �rst derived with the hypothesis of adiabatic electrons
and then with kinetic electrons.

2.1.1 Quasi-neutrality with adiabatic electrons

The quasi-neutrality equation (1.57) reads:∑
i

Zini(x, t) = ne(x, t) (2.1)

The average on a �ux surface 2 of this equation is
∑

i Zi 〈ni〉FS = 〈ne〉FS where 〈...〉FS
stands for the average on a �ux surface and de�ned in Eq.(1.60). Calling ñs = ns−〈ns〉FS ,
Eq.(2.1) minus its averaged value on a �ux surface gives:∑

i

Ziñi(x, t) = ñe(x, t) (2.2)

It is needed to �nd the expressions of ñi and ñe in the adiabatic electrons model to
develop this equation.

Initially, the gyrocentre distribution function f̄s for each species s is set as a Maxwellian
given by Eq.(1.61):

f̄s,eq(r, θ,v, t) =
〈ns〉FS (r, t)

(2π 〈Ts〉FS (r, t)/ms)
3/2

e
− Es(r,θ,v)
〈Ts〉FS(r,t) (2.3)

As it has already been said in section 1.3.2, the eq subscript is misleading: in practice, it
simply refers to the fact that during the plasma evolution, the distribution function does
not change much from this Maxwellian pro�le. Thus, we abusively call it an "equilibrium"
distribution function. From Eq.(2.3), we can de�ne the equilibrium density of gyrocentres
as:

nGi,eq(x, t) =

ˆ
J0i.f̄i,eq(x,v, t) d3v

The di�erence between the densities nGi,eq and 〈ni〉FS reduces to terms in ρi/L⊥ where
L⊥ is a typical gradient length of 〈n〉FS and 〈T 〉FS . A priori, we have ρi � L⊥ and we
can therefore assume that nGi,eq remains very close to 〈ni〉FS . Taking up the expression
of particle density in the previous section (Eq.(1.66) and (1.68)), it comes:

ni(x, t) =

ˆ
J0i.f̄i(x,v, t) d3v + ∇⊥ ·

(
mineq,i
eiB2

∇⊥φ
)

2Hereafter, we shall restrict ourselves to simpli�ed magnetic equilibrium, made of concentric �ux
surfaces of circular poloidal cross section. In this case, a given �ux surface is given by r = cste.
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Consequently, the �nal expression of ñi ' ni − nGi,eq is:

ñi(x, t) =

ˆ
J0i.(f̄i − f̄i,eq) d3v + ∇⊥ ·

(
mineq,i
eiB2

∇⊥φ
)

(2.4)

where the notations introduced in chapter 1 have been used.

Electrons are assumed adiabatic, i.e. they are supposed to stay at equilibrium with
the electric potential. In this case, ñe(x, t) is not obtained via the electron distribution
function 3. The expression of the electron density using the potential is obtained via
the �uid force balance for electrons. The simpli�ed momentum conservation equation
applied to electrons, reads:

mene

(
∂ue
∂t

+ (ue.∇) ue

)
= −∇pe − ene (E + ue ∧B) (2.5)

where the collisions have been neglected and the pressure tensor has been reduced to a
scalar pressure pe. E, B are respectively the electric and magnetic �elds. Neglecting the
electron inertia and projecting this relationship on the axis parallel to the magnetic �eld,
only remain the terms of pressure and Coulomb force:

− eneE‖ −∇‖pe = 0 ⇒ ∇‖pe = ene∇‖φ (2.6)

Besides pe = neTe, and consequently ∇‖pe = ne∇‖Te + Te∇‖ne. In order to know which
of these two terms is dominant, we compare the parallel di�usion coe�cient for energy(
DT,‖e

)
, and for particles

(
Dn,‖e

)
. These coe�cients are expressed in m2/s. These

di�usions are collisional processes and it is possible to express DX‖e = v2
Xe/ν with vXe a

characteristic velocity of variation of X (between two collisions), and ν a characteristic
collision frequency. The characteristic velocity which appears in the temperature di�usion
is the parallel velocity of the electrons. This velocity is taken equal to the electron thermal
velocity. Noting kB the Boltzmann constant, the thermal parallel di�usion coe�cient for
electrons reads:

DT,‖e ∼
v2
th,e

ν
with vth,e =

√
3kBTe
me

The electrons will tend to follow the quasi-neutrality, and the electron density gradi-
ents will therefore have a similar pro�le to the ion density gradients. Therefore, the
characteristic velocity appearing in Dn,e is the ion thermal velocity:

Dn,‖e ∼
v2
th,i

ν
with vth,i =

√
3kBTi
mi

Supposing Te ∼ Ti, the ratio between the two latter coe�cient gives:

Dn,‖e

DT,‖e
∼ me

mi
� 1 (2.7)

3fe does not exist in this model.
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Electrons are highly mobile, they therefore thermalize very quickly, which has the e�ect
of smoothing the parallel temperature gradients. From relationship (2.7), it comes:

∇‖ne
ne

�
∇‖Te
Te

⇔ Te∇‖ne � ne∇‖Te

Eventually, ∇‖pe ' Te∇‖ne. Therefore, Eq.(2.6) becomes at leading order:

∇‖ne
ne

' e

Te
∇‖φ ⇒ ∇‖[ln(ne)] ' ∇‖[

e

Te
φ]

For a perturbation satisfying∇‖[ eTeφ] = 0, there is no electron density response∇‖[ln(ne)] =
0. Therefore, when the potential is the same on the same �ux surface φ = 〈φ〉FS , it comes
∇‖ne = 0. Consequently, the only �uctuations of the electron density which can be dif-
ferent from 0 are the modes k‖ 6= 0. In the adiabatic electron approach, we assume ñe = 0
for the modes which remain constant on a magnetic surface (for these modes k‖ = 0).
The electron density is then equal to its equilibrium value ne,eq. The integration of this
equation gives the following expression of the adiabatic electron density nadiabe :

nadiabe = ne,eqe
e
Te

(φ−〈φ〉FS) (2.8)

Performing a limited development of nadiabe around its equilibrium value φ = 〈φ〉FS , we
get:

ñadiabe ' ne,eqe

Te
(φ− 〈φ〉FS) (2.9)

Replacing the expressions of ñi(x, t) (2.4) and ñe(x, t) (2.9) in the adiabatic quasi-
neutrality equation (2.2), it comes eventually:∑

i

[
Zi

ˆ
J0i.

(
f̄i − f̄i,eq

)
d3v + Zi∇⊥ ·

(
mini,eq
eiB2

∇⊥φ
)]

=
ne,eqe

Te
(φ− 〈φ〉FS) (2.10)

It states that the sum over all species of charge density �uctuations is zero.

The Gysela code is written in normalized units based on the following normal-
ization choices. We use SI units and a thermal energy scale in electron volts (1 eV =
1.6022 10−19 J). The four fundamental dimensional normalizing quantities are: a ref-
erence ionic mass m0 = A0mp [kg], a reference ionic charge q0 = Z0e [C], a reference
magnetic induction B0 [T] and a reference thermal energy T0 [eV]. Here, A0 and Z0 are
the (dimensionless) mass number and charge state of the main ion species and e the mod-
ulus of the electron charge. These quantities are used to de�ne the reference ion cyclotron
frequency ωc0 , the reference thermal speed vth,0 and the reference Larmor-radius ρ0 as

ωc0 = Z0 e B0
m0

, vth,0 =
√

T0
m0

and ρ0 =
vth,0
ωc0

=
√
T0m0

Z0 e B0
. Finally, we choose the equilibrium

electron density at mid radius n0 as reference density. Physical quantities (mass, length,
time, charge and density) can be recovered from the normalized quantities used in the
code (denoted with a hat symbol) by choosing values for [A0, Z0, B0, T0, n0] and applying
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ms = Asmp = m0Âs with As = A0Âs, qs = Z0 e Ẑs, l = ρ0 l̂, t = t̂
ωc0

and ns = n0 n̂s.

The velocities are normalized to the corresponding thermal velocities vth,s0 =
√
T0/ms,

i.e v = vth,s0v̂s =
vth,0√
Âs

v̂s. The main normalizations are thus U = T0
Z0 e

φ̂, B = B0B̂,

Ts = T0T̂s while µs = T0
B0
µ̂s with µ̂s =

v̂2
⊥s

2B̂
and µ0J = B0

ρ0
Ĵ with Ĵ = ∇̂∇∇ × B̂. By de-

duction, E = E0Ê with E0 = vth,0B0 and the normalized distribution function f̂s, which
evolves in the code, is de�ned as f̂s = fsv

3
th,s0/n0. Finally, the energy is normalized to

the reference thermal energy T0. In what follows, all the quantities considered are nor-
malized coordinates, but hat symbols are omitted for the sake of readability.

In Eq.(2.10), we do the following approximations : (i) equilibrium quantities are safely
replaced by their initial values4 and (ii) B/B0 ' 1. The normalized quasi-neutrality
equation which is solved by the Gysela code in the case of adiabatic electrons then
reads: ∑

i

Zi

ˆ
J0i.

(
f̄i − f̄i0

)
d3v + ∇⊥. (Aini0∇⊥φ) =

ne0
Te0

(φ− 〈φ〉FS) (2.11)

where the last term on the left hand side corresponds to the ion polarization density.
The velocity volume element reads:

d3v = Jv dµ dvG‖ with Jv = 2πB∗‖,s and B∗‖,s ≡ B +As/ZsvG‖b · (∇ ∧ b) (2.12)

Jv is the normalized Jacobian in velocity space. J0i stands for the normalized gyro-
average operator de�ned in Eq.(1.58). In the limit of large wave lengths (as compared to
the cyclotron radius ρc), we use the Padé development which reads in Gysela:

J0i =
1

1− ρ2
c
4 ∇

2
⊥

' 1 +
Aiµ

2Z2
i B
∇2
⊥ with ∇2

⊥ '
1

r
∂r(r∂r) +

1

r2
∂2
θ (2.13)

In Gysela, B in Eq.(2.13) is replaced by 1. Replacing ∇⊥ by ik⊥ it comes:

J0i ' 1−
Aiµk

2
⊥

2Z2
i

ne0 is the constant-in-time electron density, i.e. the initial electron density pro�le. In-
deed, assuming an adiabatic response for the electrons freezes the phase shift between
density and electric potential �uctuations: it is vanishing, hence preventing any turbu-
lent particle transport due to the electric drift. Also, the equilibrium densities satisfy
the quasi-neutrality constraint, so that

∑
i Zini0 = ne0: there is no electric potential at

equilibrium. Notice that, with these de�nitions, one has
´

d3vi f̄i0 = ni0, with fi0 the
initial distribution function of species “i”.

4 This approximation is legitimate in the case of adiabatic electrons, because in this case there is no
particle transport as it is veri�ed in part 2.1.2.
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2.1.2 Limits of the adiabatic electrons approach - Need for kinetic
electrons

This model of adiabatic electrons has some limitations.

First, this model prevents any signi�cant turbulent transport of matter. Indeed, the
expression of the turbulent radial transport of particles Γr given by the perturbed part
of Eq.(1.51) and averaged on a surface of constant r reads:

Γr = 〈ñeṽEr〉FS (2.14)

where ñe is given by equation (2.9) and ṽEr = Eθ/B is the radial component of the electric
drift velocity. The average on a �ux surface is de�ned in Eq.(1.60). The expression of Γr
becomes:

Γr = −ene,eq
rTe

1˜ dϕ dθ
B·∇θ

¨
dϕ dθ

B ·∇θ
(φ− 〈φ〉FS)

∂θφ

B
(2.15)

A full calculation of Γr is made in Appendix B.1. Eventually, we get in the limit ε� 1:

Γr ' −
ene,eq
rTe

ε

4π2B

¨
dϕ dθ 3 cos θ(φ− 〈φ〉FS)∂θφ

It appears that Γr evolves as ε. Therefore no signi�cant radial particle transport is al-
lowed in the case of adiabatic electrons.

Second, instabilities governed by the electrons, and in particular those trapped in the
local mirrors of the magnetic con�guration, are not taken into account. Numerous �uid
[33, Garbet 2003] and kinetic [79, Weiland 1992], [77, Waltz 2007] models show that they
can carry a turbulent transport which is of the same order of magnitude as that due to
the ion turbulence in certain regimes of parameters in current tokamaks. Therefore one
can expect that ion turbulence, especially the Ion Temperature Gradient modes (ITG),
may have a di�erent behaviour depending on whether the electron response is set as
adiabatic or kinetic. In other words, the ion turbulence transport may not be accurately
computed with the hypothesis of adiabatic electrons.

For these reasons, a new model where electrons are modelled by a kinetic distribution
function has been implemented. Accounting for kinetic electrons means that the distri-
bution function of the electron gyrocentres fe evolves in time. In this case, the electron
response (�rst term of Eq.(2.11)) is no longer adiabatic. The quasi-neutrality condition
is then modi�ed.



2.2. QUASI-NEUTRALITY WITH KINETIC ELECTRONS 51

2.2 Quasi-neutrality with kinetic electrons

Kinetic electrons allow for particle transport, so that the �ux surface density pro�les are
evolving in time. The quasi-neutrality then deals with the full charge densities, and not
only the �uctuating parts. From here, we use the notation f instead of f̄ to refer to
gyrocentre distribution functions for more readibility. Accounting for both gyrocentre
and polarization contributions for all species, it reads as follows:∑

i

Zi {nG,i + npol,i} = nG,e + npol,e (2.16)

where we have introduced for any species s the notations:

nG,s =

ˆ
J0s.fs(x,v, t) d3v ; npol,s = ∇⊥ ·

(
msns,eq(r, t)

esB(x)2
∇⊥φ(x, t)

)
(2.17)

In the polarization term, we have done the approximation ns(x, t) ' ns,eq(r, t) where
ns,eq(r, t) stands for the equilibrium density, more precisely the �ux surface averaged
density: ns,eq(r, t) = 〈ns(x, t)〉FS where 〈...〉FS stands for the average on a �ux surface.
In the present version of Gysela, ns,eq(r, t) is approximated by the initial density pro�le
ns0.

Should Ae = me/m0 be the normalized mass of electrons, m0 being the proton mass
(Ae ≈ 1/1836), then the electron polarization density could be neglected. Also, J0e could
be safely approximated by 1. In Gysela, we decide to keep it since some test simulations
were performed at arti�cial larger values of Ae. However, for simpli�cation purpose, we
can do these approximations in the present study. Using the normalizations introduced
for Eq.(2.11), the normalized full kinetic quasi-neutrality equation becomes:∑

i

Zi {nG,i + ni,pol} =

ˆ
fe d3v (2.18)

where the normalized gyrocentre and polarization densities of the ions are de�ned by:

nG,i =

ˆ
J0i.fi d3v ; npol,i = ∇⊥ · (Aini0∇⊥φ) (2.19)

The drawback of the formulation Eq.(2.18) is that it contains terms of very di�erent
magnitudes: the polarization contributions are much smaller than the gyrocentre densi-
ties. From Eq.(2.17), it is possible to evaluate the ratio npol,s/nG,s ∼ (k⊥ρth,s)

2ρ∗s � 1
where ρ∗ = ρth/a. Numerical errors on the computation of gyrocentre densities may then
compete with the actual values of the polarization densities. An alternative is then to
subtract on both sides the same kinetic quantity, expressed in the various velocity spaces
(that of the electrons and of the ions), so as to bring the magnitude of the integrals to
the level of the polarization terms. The method is detailed in the following.
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The kinetic quantity that is subtracted to each side of the QN equation is an anisotropic
Maxwellian distribution function constructed from the actual equilibrium distribution
function of the ions:

fi,eq =
ni,eq

(2π)3/2 T
1/2
‖i,eqT⊥i,eq

exp

{
−

(vG‖i − V‖i,eq)2

2T‖i,eq
− µB

T⊥i,eq

}
(2.20)

where ni,eq, V‖i,eq, T‖i,eq and T⊥i,eq are functions of radius and time:

ni,eq(r, t) =

〈ˆ
fi d3v

〉
FS

(2.21)

ni,eqV‖i,eq(r, t) =

〈ˆ
vG‖i fi d3v

〉
FS

(2.22)

ni,eqT‖i,eq(r, t) =

〈ˆ
(vG‖i − V‖i,eq)2 fi d3v

〉
FS

(2.23)

ni,eqT⊥i,eq(r, t) =

〈ˆ
µB fi d3v

〉
FS

(2.24)

One wishes to subtract the quantity

neR(r, θ, t) =
∑
i

Zi

ˆ
J0i.fi,eq d3v (2.25)

to the right hand side of Eq.(2.18). The idea is then to construct an electron distribution
function feR of the same form as Eq.(2.20) such that neR =

´
feR d3v. Here, feR is

constructed as follows:

feR =
neR

(2π)3/2 T
1/2
‖e,eqT⊥e,eq

exp

{
−

(vG‖e − V‖e,eq)2

2T‖e,eq
− µB

T⊥e,eq

}
(2.26)

where V‖e,eq, T‖e,eq and T⊥e,eq are calculated from the electron distribution function
fe computed at time t in the same way as Eqs.(2.22), (2.23) and (2.24). Conversely,
the calculation of the electron density pro�le neR relies on the constraint imposed by
Eq.(2.25). Appendix B.2 details how to compute neR when J0e is considered di�erent of
1. The quantities

∑
i Zi
´
J0i.fi,eq d3v and

´
feR d3v can then be subtracted to the left

and right hand sides of Eq.(2.18), respectively, which then remains unchanged. Eq.(2.18)
is then replaced by:∑

i

Zi

{ˆ
J0i.(fi − fi,eq) d3v + npol,i

}
=

ˆ
(fe − feR) d3v (2.27)
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In the current implementation of the quasi-neutrality equation with kinetic electrons
in Gysela, some simpli�cations are made:

• We notice that the quantity neR given by Eq.(2.25) depends on both r and θ. The
latter dependency comes from the gyro-average operator J0, which exhibits a B
dependency. Indeed, using the expression of the normalized gyro-average operator
Eq.(2.13),

´
d3v J0i.fi,eq gives at leading order for protons, in normalized units:

ˆ
d3v J0i.fi,eq ' ni +

Ai
2Z2

i B
2
∇2
⊥

ˆ
d3v µBfi,eq ' ni

[
1 +

a2

2L2
p

ρ∗2i (1 + 2ε cos θ)

]
with Lp the transverse pressure gradient length and ρ∗i = miTi/(aZ

2
i e

2B2
0) the

normalized ion gyro-radius computed with B0. Using this rough estimate, the
poloidal component of neR turns out to be of order ερ∗2i � 1 as compared to the
leading term, which only depends on r. Consistently, in the following, the poloidal
dependency of neR will safely be ignored.

• We notice that the distribution functions fi,eq and feR present in Eq.(2.27) depend
on time. We choose for now to get rid of this dependency. This simpli�cation
should be removed in the future.

Therefore, the quantity substracted on each side of Eq.(2.18) reads:

neR0(r) =
∑
i

Zi

ˆ
J0i.fi0 d3v

where fi0 stands for the initial distribution function of ions. Besides, we write neR0 =´
feR0 d3v where feR0 is de�ned by Eq.(2.26) at time t = 0. In that expression, we have

chosen V‖e,eq = 0, T‖e,eq = T⊥e,eq = Te0(r) with Te0 chosen freely. Accounting for these
simpli�cations, the quasi-neutrality equation which is e�ectively solved in Gysela reads
as follows:

∑
i

Zi

{ˆ
J0i.(fi − fi0) d3v + npol,i

}
=

ˆ
(fe − feR0) d3v (2.28)
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2.3 Filter for (deeply) trapped electrons

2.3.1 The advantage of a �lter

Light electrons have a much larger parallel speed than ions, in the typical ratio (mi/me)
1/2

at equal temperatures. So as to accurately capture their dynamics, the numerical time
step has then to be reduced by the same factor as compared to simulations with adiabatic
electrons, i.e. ∆tKE ∼ (me/mi)

1/2 ∆tAE � ∆tAE (whereKE and AE stand respectively
for kinetic and adiabatic electrons). This can rapidly lead to a prohibitive increase of the
amount of CPU time for a single simulation run. One way of circumventing this di�culty
is to decrease arti�cially the mass ratio mi/me in order to reduce the CPU time con-
sumption. By doing so however, the response time scales of electrons are modi�ed and it
is therefore important to check how the behaviour of the plasma is impacted. The idea
is to see on the one hand if it is possible to make additional hypotheses to circumvent
the physical problems posed by an arti�cially low mass ratio and on the other hand if it
is possible to retrieve some physics from such simulations that could be compared to the
behaviour of a real plasma [12, 8, Candy 2003, Bottino 2010]:

• Drawback : For "heavy" passing electrons, the inertia term of Eq.(2.5) is no longer
negligible. Consequently, these electrons will not have an adiabatic response,
whereas "standard" electrons do. A solution is to force their adiabatic response via
a �ltering of passing electrons.

• Advantage: Little impact is expected on TEM turbulence since the TEM insta-
bility develops at frequencies of the order of ωde ∼ qρ2

ceωce/rR = qTe
eBrR which is

independent of me.

Thus the insertion of a �ltering in which trapped electrons only are treated kinetically
while passing electrons have an adiabatic response, would enable to study both electron
turbulence and the impact of kinetic electrons on ion turbulence while ensuring that the
passing electrons are correctly described. The idea is to set up a �lter in the velocity
space: ∣∣∣∣vG‖v⊥

∣∣∣∣ ≤ σ0

√
Bmax(r)

B (r, θ)
− 1 ≡ σ(r, θ) (2.29)

The �ltering parameter σ0 is a free parameter such that 0 ≤ σ0 ≤ 1 allowing to treat
kinetically only a fraction of trapped electrons. The case σ0 = 1 implies that all trapped
electrons are supposed kinetic whereas the case σ0 = 0 is equivalent to the adiabatic
electrons case. We choose σ0 = 1 in the following.

2.3.2 Quasi-neutrality with kinetic �lter for electrons

The form of the kinetic �lter applied to the electrons is greatly inspired from the one
used in GT5D [51, Idomura 2016]. The gyrokinetic equation is solved for the entire dis-
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tribution function of the electrons, irrespective of whether they are passing or trapped5.
The kinetic �lter is applied to the quasi-neutrality equation only. There, the density of
trapped electrons only is calculated from the electron distribution function, the remaining
fraction of electrons being assumed to respond adiabatically. For a centred Maxwellian,
the fraction of trapped electrons αt is simply αt = σ, with σ given by Eq.(2.29). In
the following, we introduce ntrap.e the density of trapped electrons calculated from the
electron distribution function and npass.e the density of passing electrons receiving an
adiabatic treatment. The total density of electrons is the sum of those two contributions
ne = ntrap.e + npass.e .

The standard quasi-neutrality equation (2.18) is then replaced by the following one:∑
i

Zi {nG,i + ni,pol} = ntrap.e + npass.e (2.30)

with

ntrap.e =

ˆ
trap.

fe d3v (2.31)

The integral over the trapped domain is to be taken in between the two limits vG‖e±(r, θ, µ) =

±σ
√

2µB/me: ˆ
trap.

... d3v =

ˆ ∞
0

dµ

ˆ vG‖e+

vG‖e−

Jv ... dvG‖ (2.32)

where Jv stands for the Jacobian in velocity space de�ned in Eq.(2.12). The normalized
polarisation density of ions is given by Eq.(2.19). We assume that 〈ne〉FS is "well"
calculated, i.e. that the �ux-surface averaged dynamics of all electrons, including
passing ones, is well described for the modes (m,n) = (0, 0). In that case, the normalized
density of passing electrons npass.e should satisfy two conditions:

• npass.e represents the adiabatic evolution of the passing electrons, and should be
proportionnal to the total adiabatic electron density nadiabe given earlier by equation
(2.8):

npass.e ∝ nadiabe ' 〈ne〉FS
[
1 +

1

Te0
(φ− 〈φ〉FS)

]
(2.33)

• The �ux surface average of the density of trapped electrons should satisfy:

〈ne〉FS =
〈
ntrap.e

〉
FS

+ 〈npass.e 〉FS (2.34)

These constraints set the form of npass.e as:

npass.e = (1− ᾱt) 〈ne〉FS
[
1 +

1

Te0
(φ− 〈φ〉FS)

]
(2.35)

5This point enables to treat correctly the trapping/detrapping of electrons due to collisions close to
the trapped/passing limit.
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where ᾱt is the fraction of trapped electrons averaged on a �ux surface:

ᾱt(r, t) =

〈
ntrap.e

〉
FS

(t)

〈ne〉FS (t)
(2.36)

with ntrap.e given by Eq.(2.31). With this form of npass.e , the zonal density of passing
electrons is constructed so as to automatically ful�ll Eq.(2.34).

So as to improve the accuracy of the numerical solution of Eq.(2.30), one can subtract
the same quantity on both ion and electron sides of the equation. In practice, we can
proceed as in section 2.2, and subtract the quantity neR(r, t) given by Eq.(2.25). The
new quasi-neutrality then reads:

∑
i

Zi

{ˆ
J0i.(fi − fi,eq) d3v + ni,pol

}
(2.37)

=

ˆ
trap.

(fe − feR) d3v + npass.e − (1− αt,R)neR

where feR and neR are introduced in Eqs.(2.25) and (2.26). Finally, αt,R represents the
trapped fraction of density neR. It simply reads:

αt,R(r, θ, t) =

´
trap. feR d3v

neR
(2.38)

2.3.3 Implementation of the kinetic �lter for electrons in Gysela

The numerical implementation of the quasi-neutrality equation (2.37) is costly because it
demands an update of the �ux-surface averaged densities and temperatures present in the
expressions of fi,eq and feR every time step. Therefore, we do the same approximation
as the one made in Eq.(2.28), and we replace fi,eq and feR respectively by fi0 and feR0,
noted simply fe0 in the following. In this part, some approximations are done to simplify
equation (2.37). Besides, we add here the electron polarisation density as well as the
gyroaverage operator on the electron distribution functions since those are e�ectively
implemented in the code. The quasi-neutrality equation then reads:

−
∑
i

∇⊥ · (Ai 〈ni〉FS ∇⊥φ)−∇⊥ · (Aeαt,eq(r, θ, t) 〈ne〉FS ∇⊥φ)

+ (1− ᾱt(r, t))
〈ne〉FS
Te

(φ− 〈φ〉FS) =
∑
i

Zi

ˆ
J0i (fi − fi0) d3v (2.39)

−
[ˆ

trap.
J0e (fe − fe0) d3v + (1− ᾱt(r, t)) 〈ne〉FS −

ˆ
pass.

J0e fe0 d3v

]
with:



2.3. FILTER FOR (DEEPLY) TRAPPED ELECTRONS 57

• ns(r, θ, ϕ, t) =
´
J0sfs d3v + ns,pol: the density pro�le of species s where ns,pol is

de�ned in Eq.(2.19)

• αt,eq(r, θ, t) =
´
trap. J0e fe,eq d3v/ 〈ne〉FS : the fraction of trapped electrons at equi-

librium

• ᾱt(r, t) =
〈
ntrap.e

〉
FS

/ 〈ne〉FS : the fraction of trapped electrons averaged on a �ux

surface where

ntrap.e =

ˆ
trap.

J0e fe d3v −∇⊥ · (Aeαt,eq 〈ne〉FS ∇⊥φ)

This can be written in a more compact form:

Liφ+ Leφ+ (1− ᾱt(r, t))
〈ne〉FS
Te

(φ− 〈φ〉) = ρi −
[
ρtrap.e + ρpass.e

]
(2.40)

where {
Liφ = −

∑
iAi∇⊥ · (〈ni〉FS ∇⊥φ)

Leφ = −Ae∇⊥ · (αt,eq(r, θ, t) 〈ne〉FS ∇⊥φ)
(2.41)

and 
ρi =

∑
i Zi
´
J0i (fi − fi0) d3v

ρtrap.e =
´
trap. J0e (fe − fe0) d3v

ρpass.e = (1− ᾱt(r, t)) 〈ne〉FS −
´
pass. J0e fe0 d3v

(2.42)

It appears that the operator L = Li + Le depends both on time t and on the poloidal
angle θ. These dependences are numerically costly for two reasons:

• the θ dependency of L implies that (2.40) needs the 2D resolution of a Laplacian.

• the time dependency requires L to be calculated at each time step.

The numerical implementation of this equation requires to make some approximations.
Two levels of approximations can be distinguished: some do not change the quasi-
neutrality condition much and may be kept in Gysela. Others may change the quasi-
neutrality signi�cantly and should be removed in the future.

The θ dependency of L is due to the trapped fraction αt,eq in the electron polarisa-
tion term Leφ. This last term is Ai/Ae time smaller than Liφ and the approximation
αt,eq(r, θ)→ ᾱt(r) should have little impact on the quasi-neutrality equation. Moreover,
we do the approximation that the averaged densities 〈ns〉FS and the trapped fraction
αt appearing in L do not vary in time. The operator L is approached by the simpli�ed
operator L̃ de�ned as L̃ = L̃i + L̃e with{

L̃iφ = −
∑

iAi∇⊥ · (ni0∇⊥φ)

L̃eφ = −Ae∇⊥ · (ᾱt0(r)ne0∇⊥φ)
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where ns0(r) =
´
fs0 d3v is the initial radial density pro�le of species s, ᾱt0(r) = ᾱt(r, t =

0) is the initial �ux surface averaged trapped electron fraction. These approximations
add little change to the theoretical quasi-neutrality equation and could be kept in the
future version of Gysela.

In order to make the numerical implementation of the quasi-neutrality equation easier,
we assume that the averaged densities 〈ns〉FS and the trapped fraction ᾱt appearing in
the other terms of the quasi-neutrality equation vary slowly in time and we do the

approximation 〈ns〉FS → ns0 and ᾱt → ᾱt0 =
〈´

trap. J0e fe0

〉
FS

/
〈´

J0e fe0
〉
FS

. This

last approximation should be removed in the future. Besides, doing this approximation
makes the small correction term ρpass.e ' (1 − ᾱt0(r))ne0 −

´
pass. J0e fe0 d3v useless.

Therefore, we choose to remove this term in the simpli�ed form of the quasi-neutrality
equation. The equation for trapped kinetic electrons in Gysela becomes:

L̃iφ+ L̃eφ+ (1− ᾱt0(r))
ne0
Te

(φ− 〈φ〉FS) = ρi − ρtrap.e (2.43)
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2.4 Gysela quasi-neutrality solver

This part tackles the numerical implementation of the quasi-neutrality equations in Gy-
sela for each of the two versions of kinetic electron models: (i) the Full Kinetic Electron
(FKE) and (ii) the Trapped Kinetic Electron (TKE) model. The adiabatic case is treated
in Appendix B.3.

2.4.1 Normalized quasi-neutrality equation for full kinetic electrons

The normalized quasi-neutrality equation in the case of full kinetic electrons can be
written:

−
∑
i

Ai∇⊥·(ni0∇⊥φ)−Ae∇⊥·(ne0∇⊥φ) =
∑
i

Zi

ˆ
J0i(fi−fi0) d3v−

ˆ
J0e(fe−fe0) d3v

(2.44)
For more readibility, the symbol .̂.. , used for normalized quantities in Gysela in Ap-
pendix B.3, will be omitted in the following. Previous equation is equivalent to:

−
∑
s

As∇⊥ · (ns0∇⊥φ) =
∑
s

Zs

ˆ
J0s(fs − fs0) d3v (2.45)

where conversely to the previous section the s symbol stands for all species namely both
ions and electrons with nGs and nGs,eq respectively de�ned by equations:

n̂Gs =

ˆ
dµ̂s

ˆ
Ĵv dv̂G‖s Ĵ0s · ˆ̄fs ; n̂Gs,eq =

ˆ
dµ̂s

ˆ
Ĵv dv̂G‖s Ĵ0s · ˆ̄fs,eq

where the normalized equilibrium distribution function is de�ned as:

ˆ̄fs,eq = cs
n̂s0

(2πT̂s)3/2
exp

−
(
v̂2
G‖s/2 + µ̂sB̂

)
T̂s

 (2.46)

represents the equilibrium part of the distribution function. To avoid the polar coordinate
singularity in r = 0, Eq.(2.45) is solved on a corona Ωrmin de�ned as:

Ωrmin = {(r, θ) : rmin ≤ r ≤ rmax ; 0 ≤ θ < 2π} (2.47)

Besides, taking into account boundary conditions � periodic in θ and ϕ and Dirichlet in
radial direction � the previous equation (2.44) can be written as:

LFKEφ(r, θ, ϕ) = ρFKE(r, θ, ϕ) ∀(r, θ) ∈ Ωrmin ; 0 ≤ ϕ < Lϕ

φ(rmin, θ, ϕ) = φ(rmax, θ, ϕ) = 0 0 ≤ θ < 2π ; 0 ≤ ϕ < Lϕ

φ(r, 0, ϕ) = φ(r, 2π, ϕ) rmin ≤ r ≤ rmax ; 0 ≤ ϕ < Lϕ

φ(r, θ, 0) = φ(r, θ, Lϕ) ∀(r, θ) ∈ Ωrmin

(2.48)
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with Ωrmin de�ned by (2.47) and

LFKE = −
∑
s

Asns0(r)

{
∂2

∂r2
+

[
1

r
+

1

ns0(r)

dns0(r)

dr

]
∂

∂r
+

1

r2

∂2

∂θ2

}
(2.49)

ρFKE =
∑
s

Zs

ˆ
J0s(fs − fs0) d3v (2.50)

For inner boundary conditions (r = rmin), two choices are possible, depending on if: (i)
rmin > ∆r/2 (for a corona case), or (ii) rmin = ∆r/2. For the �rst case (rmin > ∆r/2),
Dirichlet conditions are applied, i.e φ̃m1 = φ̃m(ri = rmin, ϕ) = 0. For the second case
(rmin = ∆r/2), we use the same strategy than the one proposed by Lai [56, Lai 2001]
to overcome the 1/r singularity on the axis. This strategy is simply based on the fact
that if rmin is chosen equal to ∆r/2, the term

(
1

∆r2 − 1
r∆r

)
which appear for a standard

Poisson equation is equal to 0. In our case, this strategy is applicable if and only if the
radial derivative of the density pro�les ni0 is null at r = rmin. Using the same strategy as
the one used for adiabatic electrons, namely Fourier projection in θ direction and �nite
di�erences in radial direction, leads to the following tridiagonal system (N1−1)×(N1−1)
system:

dm1 u1 0 · · · 0

l2

0

...

0

dm2 u2 0

l3 dm3 u3 0

0
. . . . . . . . .

0 lN1−2 dmN1−2 uN1−2

0 lN1−1 dmN1−1





φm1

φm2
...

φmN1−2

φmN1−1



=



ρfke,m1

ρfke,m2

...

ρfke,mN1−2

ρfke,mN1−1



(2.51)

where for each i ∈ [1, N1 − 1]

li = −
(

βi
∆r2 − αi

2∆r

)
dmi = βi

(
2

∆r2 + m2

r2
i

)
ui = −

(
βi

∆r2 + αi
2∆r

) with


αi =

∑
sKs(ri)

(
1
ri

+ 1
ns0 (ri)

dns0 (ri)
dr

)
βi =

∑
sKs(ri) and Ks(ri) = Asns0(ri)

(2.52)

with ρmi the poloidal wave vector of ρi =
∑

s [nGs(ri, θ, ϕ)− nGs,eq(ri, θ)] and with φmN1
=

0.
Let us notice that as for adiabatic electron case, if inner Dirichlet boundary conditions
are applied, the matrix system to solve is a (N1 − 2) × (N1 − 2) tridiagonal system
equivalent to (2.51) where �rst line and �rst column are deleted and replaced by the
condition φm1 = 0.
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2.4.2 Normalized quasi-neutrality equation for trapped kinetic elec-
trons

The normalized quasi-neutrality equation in the case of trapped kinetic electrons can be
written:

−
∑
i

Ai∇⊥ · (ni0∇⊥φ)−Ae∇⊥ · (ᾱt0(r)ne0∇⊥φ) + (1− ᾱt0(r))
ne0
Z2

0Te
(φ− 〈 φ 〉FS)

=
∑
i

Zi

ˆ
J0i(fi − fi0) d3v −

ˆ
trap.

J0e(fe − fe0) d3v (2.53)

with

fs0 =
ns0

(2πTs0)3/2
exp

(
− Es
Ts0

)
with Es =

1

2
v2
G‖s + µsB(r, θ) (2.54)

where the radial density and temperature pro�les for ions (ns0 and Ts0) are given while
the radial electron temperature pro�le is de�ned with a similar form as that of the main
ions with τ = Te0(rpeak)/Ti0(rpeak) a prescribed constant parameter. Besides, the radial
averaged gradients R/LTi and R/LTe can be set independently. The electron density ne0
is chosen such that the quasi-neutrality condition is ful�lled on a �ux surface average, i.e

〈
ˆ

d3vJ0efe0 〉FS = 〈
∑
i

Zi

ˆ
d3vJ0ifi0 〉FS

Considering low electron density gradients, we assume that J0efe0 ≈ ne0J0e f̂e0 with

f̂e0 = 1
(2πTe0)3/2 exp

(
− Ee
Te0

)
, then ne0 is approximated by:

ne0(r) =
〈
∑

i Zi
´

d3v J0ifi0 〉FS

〈
´

d3v J0e f̂e0 〉FS

(2.55)

The integral on the trapped particles
´

trap. is de�ned for any function g(r, θ, ϕ, vG‖s, µs)
as:
ˆ

trap.
d3v g(r, θ, ϕ, vG‖s, µs) =

ˆ µs max

0
Jv dµs

ˆ v+
G‖s

v−
G‖s

dvG‖s g(r, θ, ϕ, vG‖s, µs) (2.56)

where Jv = 2πB∗‖s is the jacobian in velocity space and where v±G‖s = ±σ
√

2µsB(r, θ)

with σ(r, θ) 6 de�ned in Eq.(2.29). ᾱt0 represents the fraction of trapped electrons aver-
aged on a �ux surface at time t = 0, i.e ᾱt0 = ᾱ(r, t = 0) with ᾱ(r, t) given by Eq.(2.36).
As 〈 ne,pol 〉FS(t = 0) = 0 and 〈 ntrap.

e,pol 〉FS(t = 0) = 0 then:

ᾱt0 =
〈
´

trap. d3vJ0efe(t = 0) 〉FS

〈
´

d3vJ0efe(t = 0) 〉FS

6

σ(r, θ) = σ0

[
ε(1 + cos θ)

1− ε

]1/2

for B(r, θ) ≈ B0R0

R(r, θ)
with R(r, θ) = R0(1 + ε cos θ) and ε =

r

R0
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Equation (2.53) can be rewritten as:

LTKEφ+ (1− ᾱt0(r))
ne0
Z2

0Te
(φ− 〈 φ 〉FS) = ρTKE (2.57)

with

ρTKE(r, θ, ϕ) =
∑
i

Zi

ˆ
J0i(fi − fi0) d3v −

ˆ
trap.

J0e(fe − fe0) d3v (2.58)

and

LTKE = −
∑
i

Aini0(r)

{
∂2

∂r2
+

[
1

r
+

1

ni0(r)

dni0(r)

dr

]
∂

∂r
+

1

r2

∂2

∂θ2

}
−Aene0ᾱt0

{
∂2

∂r2
+

[
1

r
+

1

ne0(r)

dne0(r)

dr
+

1

ᾱt0(r)

dᾱt0(r)

dr

]
∂

∂r
+

1

r2

∂2

∂θ2

}
Due to the presence of the 〈 φ 〉FS term in (2.53), the same strategy than the one used
for adiabatic electrons (see section B.3.1) is used, i.e

1. Compute ρTKE(r, θ, ϕ) given by Eq.(2.58) and 〈 ρTKE 〉θ, ϕ(r).

2. Compute ρ̃TKE(r, θ, ϕ) = ρTKE(r, θ, ϕ)−〈ρTKE 〉θ, ϕ(r) the RHS of equation (2.59).

3. Solve for each ϕ ∈ [0, Lϕ[ the 2D following system (2.59) to obtain φ̃(r, θ, ϕ):

(
LTKE + (1− ᾱt0(r))

ne0
Z2

0Te

)
φ̃(r, θ, ϕ) = ρ̃TKE(r, θ, ϕ) ∀(r, θ) ∈ Ωrmin

φ̃(rmin, θ, ϕ) = φ̃(rmax, θ, ϕ) = 0 0 ≤ θ < 2π

φ̃(r, 0, ϕ) = φ̃(r, 2π, ϕ) rmin ≤ r ≤ rmax

(2.59)
And applied the periodic boundary conditions in ϕ direction to compute φ̃(r, θ, ϕ =
Lϕ).

4. Compute 〈 φ̃ 〉FS and the RHS of (2.60), i.e 〈 ρTKE 〉θ, ϕ + (1− ᾱt0)
ne0
Z2

0Te
〈 φ̃ 〉FS.

5. Solve the 1D system (2.60) to obtain 〈 φ 〉θ, ϕ(r).
LTKE〈 φ 〉θ, ϕ(r) = 〈 ρTKE 〉θ, ϕ + (1− ᾱt0)

ne0
Z2

0Te
〈 φ̃ 〉FS ∀r ∈ [rmin, rmax]

〈 φ 〉θ, ϕ(rmin) = 〈 φ 〉θ, ϕ(rmax) = 0

(2.60)

6. Finally, compute φ(r, θ, ϕ) = φ̃(r, θ, ϕ) + 〈 φ 〉θ, ϕ(r).
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Let us notice that solving (2.59) is equivalent to solve the same kind of (N1−1)×(N1−1)
matrix system than (2.51) system, i.e



dm1 u1 0 · · · 0

l2

0

...

0

dm2 u2 0

l3 dm3 u3 0

0
. . . . . . . . .

0 lN1−2 dmN1−2 uN1−2

0 lN1−1 dmN1−1





φ̃m1

φ̃m2
...

φ̃mN1−2

φ̃mN1−1



=



ρ̃TKE,m
1

ρ̃TKE,m
2

...

ρ̃TKE,m
N1−2

ρ̃TKE,m
N1−1



(2.61)

where for each i ∈ [1, N1 − 1]


li = −

(
βi

∆r2 − αi
2∆r

)
dmi = βi

(
2

∆r2 + m2

r2
i

)
+ (1− ᾱt0(ri))

ne0 (ri)

Z2
0Te(ri)

ui = −
(

βi
∆r2 + αi

2∆r

) (2.62)

with


αi =

∑
s 6=eAsns0(ri)

(
1
ri

+ 1
ns0 (ri)

dns0 (ri)
dr

)
+ Aene0(ri)ᾱt0(ri)

(
1
ri

+ 1
ne0 (ri)

dne0 (ri)
dr + 1

ᾱt0(ri)
dᾱt0(ri)

dr

)
βi =

∑
s 6=eAsns0(ri) +Aeᾱt0(ri)ne0(ri)

(2.63)

ρ̃TKE,m
i is the poloidal wave vector of ρ̃TKE(ri) de�ned as ρ̃TKE = ρTKE − 〈 ρTKE 〉θ, ϕ

where ρTKE is given by equation (2.58). The value at outer boundary is given by Dirichlet
boundary condition, i.e φ̃mN1

= 0.
If inner Dirichlet boundary conditions are applied instead of using Lai's strategy, the
matrix system to solve is a (N1 − 2) × (N1 − 2) tridiagonal system equivalent to (2.61)
where �rst line and �rst column are deleted and replaced by the condition φ̃m1 = 0. The
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second matrix system (2.60) reads:

d1 u1 0 · · · 0

l2

0

...

0

d2 u2 0

l3 d3 u3 0

0
. . . . . . . . .

0 lN1−2 dN1−2 uN1−2

0 lN1−1 dN1−1





〈 φ 〉θ, ϕ(r1)

〈 φ 〉θ, ϕ(r2)

...

〈 φ 〉θ, ϕ(rN1−2)

〈 φ 〉θ, ϕ(rN1−1)



=



Γ1

Γ2

...

ΓN1−2

ΓN1−1



(2.64)

where for each i ∈ [1, N1 − 1] , li and ui are de�ned by (2.62) and:
di = 2

∆r2βi with βi de�ned by (2.63)

Γi = 〈 ρ 〉θ, ϕ(ri) + (1− ᾱt0(ri))
ne0

Z2
0Te(ri)

〈 φ̃ 〉FS(ri)
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2.5 Introduction of a pure density source term in Gysela

Fusion tokamaks are open systems with particle and energy losses partly due to transport.
For equilibrium density and temperature pro�les to reach steady states, it is necessary to
provide sources of particles and energy to compensate for these losses. In the gyrokinetic
model we use, this can be modelled by introducing a source distribution Ss for each
species s on the right hand side of the gyrokinetic equation which takes the normalized
form:

dfs
dt

= Ss (2.65)

Besides, in order to control each �uid quantity, namely density, momentum, energy and
vorticity, transferred to the plasma, the source Ss is decomposed into several source
terms, each being a pure source of one �uid quantity. Introducing the notations Sns for
the pure source term of gyrocentre density, S

vG‖
s for the pure momentum source term, SEs

for the pure energy source term, SΩ
s for the pure vorticity source term, the gyrokinetic

equation now reads:
dfs
dt

= Sns + S
vG‖
s + SEs + SΩ

s (2.66)

In the adiabatic electrons model, there can be no density transport as discussed in sec-
tion 2.1.2, and therefore no density source. This is no more the case in multi-species
simulations with kinetic electrons, and a density source for each species s, can be added
to the right hand side of the gyrokinetic equation (2.66). This section aims to give a
form the pure density source term can take with kinetic electrons, the pure source terms
of momentum, energy and vorticity being unchanged from the adiabatic electrons case
and implemented in appendix A of the paper [73, Sarazin 2011]. It should be stressed
that as fs is the distribution function of gyrocentres, Ss acts as a source term for the
gyrocentre density, momentum, energy and vorticity. In particular, Sns acts as a source
of gyrocentres. We will see that adding a real particle source is equivalent to adding a
vorticity source for gyrocentres. First, a general form of the pure density source term is
given. Second some conditions implied by momentum, energy and vorticity 7 conserva-
tions are derived. Finally, a simpli�ed example of a pure density source term is given.

When density transport can occur, a density source Sns (r, θ, ϕ, v‖, µ) for each species s
can be added to the right hand side of the gyrokinetic equation. To simplify the problem,
Sns is taken axisymmetric in the toroidal angle ϕ. For all species, this source term has the
same normalized form so that, between di�erent species, Sns di�ers only by a constant
factor noted Sn0s. This hypothesis is based on the idea that, in velocity space, the source
distribution of each species are set as Maxwellian. Consequently, the density source term
takes the normalized form:

Sns = Sn0s Sr(r)SE(r, θ, v‖, µ) (2.67)

The density source term is decomposed into a �xed radial part Sr which corresponds
to the radial shape of the source, and a kinetic part SE setting the distribution of the

7Whenever one has the vorticity conservation, the charge conservation for particles is trivial.
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source in velocity space with
´
r dr Sr(r) = 1 and

´
SE d3v = 1.

As said previously, we would like to have a density source term Sns which injects
gyrocentres without injecting momentum, energy or vorticity. The conservations imply
conditions on the form of SE . The aim here is to express these conditions in order to
eventually �nd a suitable form of the density source Sns .

SE is developed on an orthogonal base of Hermite and Laguerre polynomials:

SE =
∞∑
l=0

∞∑
h=0

chlHh(ζ)Ll(u) e−ζ
2−u (2.68)

where the following de�nitions have been used:

ζ2 ≡
Asv

2
G‖s

2Ts,srce
; u ≡ µB

Ts,srce
(2.69)

Ts,srce being the constant source temperature for the s species. This source temperature
is independent of the species temperature in the plasma and can be set arbitrarily. To
simplify the study, we suppose it to be the same for every species and is noted Tsource.
With the adopted de�nitions, B∗‖ = B(1 + J‖Bζ) and J‖B =

√
2TsourceJ‖/B

2 where J‖
stands for the current parallel to the magnetic �eld, the integral over the velocity space
reads as follow: ˆ

d3v ≡
ˆ +∞

−∞
dvG‖

ˆ +∞

0
2πB∗‖ dµ

=
(2πTsource)

3/2

√
π

ˆ +∞

−∞
(1 + J‖Bζ) dζ

ˆ +∞

0
du

Let us consider a normalized source distribution S = SrSE . We now compute the
integrated source of density Sn, momentum SvG‖ , energy SE and vorticity SΩ associated
with this source. By de�nition, these integrated sources are de�ned as:

Sn =
´

d3v SrSE

SvG‖ =
´

d3v vG‖ SrSE

SE =
´

d3v

(
v2
G‖
2 + µB

)
SrSE

SΩ =
´

d3v J0sSrSE

(2.70)

The calculation of the integrated sources is made in [73, Sarazin 2011]. In the end, it
comes:

Sn = (2πTsource)
3/2 Sr

[
c00 + J‖Bc10

]
SvG‖ = 2π3/2T 2

sourceSr
[
2c10 + J‖B(c00 + 4c20)

]
SE = (2π)3/2 T

5/2
sourceSr

[
3
2c00 + 5

2J‖Bc10 + 2c20 + 6J‖Bc30 − c01 − J‖Bc11

]
SΩ = Sn +

√
2π3/2T

5/2
source

B2

{
∇2
⊥ [Sr(c00 − c01)] + J‖B∇2

⊥ [Sr(c10 − c11)]
} (2.71)
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We want our source distribution term to be a pure source of density and this implies
that SvG‖ , SE and SΩ should be set to zero with Sn being non zero. These conditions are
sumed up in the following system:

Injection of density c00 + J‖Bc10 6= 0

Conservation of momentum 2c10 + J‖B(c00 + 4c20) = 0

Conservation of energy 3
2c00 + 5

2J‖Bc10 + 2c20 + 6J‖Bc30 − c01 − J‖Bc11 = 0

Conservation of vorticity ∇2
⊥ [Sr(c00 − c01)] + J‖B∇2

⊥ [Sr(c10 − c11)] = 0

(2.72)

satis�ed if

{
c00 = c01 = −4c20 6= 0

c10 = c11 = c30 = 0

The condition of conservation of the vorticity (or charge) is very strong: no species is
allowed to introduce charges into the system, which is equivalent to a conservation of
particles. A less drastic condition is

∑
s ZsSsΩ = 0 which imposes the overall charge

conservation in the plasma. In addition, care must be taken to inject as many positive
as negative charges in the space of the gyrocentres so as not to polarize the system. We
must therefore satisfy the condition

∑
s ZsSsn = 0. It should be noted that as we are deal-

ing with the gyrocentres distribution functions, these conditions imply a pure source of
gyrocentre density. To insert particles, one must have SΩ 6= 0 while having

∑
s ZsSsΩ = 0

to conserve the charge globally. Finally, one can introduce pure momentum or energy
sources with a similar study.

For instance, whenever we suppose J‖B � 1, system (2.72) reduces to c20 = c00/2
and c10 = c01 = c11 = 0. Then, setting arbitrary the value c00 = 1/2, it can be veri�ed
that

Sns = Sn0s Sr(r) ζ
2
s e−ζ

2
s−u (2.73)

is a possible form for a simpli�ed pure particle source term. This density source term
should be added later in Gysela. A major asset of Gysela is the possibility to be �ux-
driven, i.e. to impose constant source pro�les. This condition is necessary to simulate
a turbulent transport regime at steady state. In the following however, we will not take
into account the sources. In the linear study of section 4.2, the associated turbulent
transport is negligible so that density and temperature pro�les remain approximately
constant. Therefore, there is no need of source terms to prevent pro�les relaxation. The
same remark applies for the non-linear study of section 4.4, which only explores the very
beginning of the non-linear phase. Indeed, in this case, density and temperature pro�les
do not evolve signi�cantly.
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Chapter 3

Contribution of trapped electrons to
the damping of geodesic acoustic
modes (GAM)

One of the well known saturation mechanisms for the Ion Temperature Gradient (ITG)
instability is the production of axisymmetric Zonal Flows (ZF) 1 that serve to shear
stabilize the instability [44, Hammett 1993],[78, Waltz 1994]. Zonal Flows are therefore
an essential element to both predict and limit turbulent transport levels in tokamaks. In
1996, gyro�uid simulations were carried out in which the Zonal Flows were systemati-
cally damped [37, Glanz 1996]. Such disappearance of these axisymmetric modes would
imply that ITG turbulence would severely limit con�nement in tokamaks. However, in
their paper published in 1998 [71, Rosenbluth 1998], Rosenbluth and Hinton have shown
that by adopting a kinetic approach, these Zonal Flows are not damped in the absence of
collisions. This analytical result was later con�rmed by gyrokinetic codes which all notice
that the potential relaxes through time towards a non-zero residual that corresponds to
the Zonal Flow value.

This study has led to a new test for gyrokinetic codes called the Rosenbluth-Hinton
test which consists in introducing an axisymmetric perturbation of the radial potential
pro�le φ̃(r) = φ̃0 sin(kr), and characterize its time evolution [7, Biancalani 2017]. This
test provides the residual value the �ow φ∞, as predicted by Rosenbluth and Hinton,
and also the pulsation ωGAM and damping rate γGAM of the Geodesic Acoustic Mode
(GAM), which is another mode of the potential which vanishes through time. The GAM
complex frequency is well documented in the particular case of a single ion species with
adiabatic electrons [75, 85, 84, Sugama 2006, Zonca 1996-2008]. It usually agrees well
with simulations. However adding kinetic electrons change somewhat the picture. While

1 The Zonal Flow (ZF) and the Geodesic Acoustic Mode (GAM) are respectively the eigenmodes
(n1 = 0, n2 = 0, n3 = 0) and (n1 = 0, n2 = 1, n3 = 0) associated to the angles (α1 = ϕc, α2 '
arcsin(θ/θmax), α3 = ϕ) from the angle-action set of variables introduced in part 1.2.2.
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the residual �ow and the GAM frequency are mostly unchanged [13, Chen 2003], the
GAM damping rate increases signi�cantly [83, Zhang 2010]. This is attributed to a
resonance match between the GAM and the trapped electron bounce pulsations, which
changes the imaginary part of the dispersion relation, while it weakly a�ects its real part.

The objective is to provide an analytical estimate of the trapped electrons contri-
bution to GAM damping, which does not seem to be available in the literature. A
variational formulation is used, which is close to the one used previously to study Ener-
getic Geodesic Acoustic Modes (EGAM) [81, Zarzozo 2012]. First the known dispersion
relation of GAM is recovered using this methodology. Second an analytic expression
for the GAM pulsation and damping rate is derived. In particular, the contribution of
trapped electrons to the GAM damping rate is computed. A comparison of the GAM
pulsation and damping rate between the analytical formulas derived here and the numer-
ical results found using the Full Kinetic Electron (FKE) model of the Gysela code is
then carried out. This study has the double objective to quantify the impact of trapped
electrons on the damping of GAM and to verify and benchmark the FKE model.
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3.1 Dispersion relation of GAM

We anticipate that diamagnetic e�ects are negligible for GAMs, i.e. we consider a plasma
of electrons and hydrogenoid ions with constant density N = Ne = Ni, and constant
electron and ion temperatures Te and Ti.

3.1.1 Vlasov equation

The Vlasov equation reads :

∂tF (x,p, t)− [H,F ] (x,p, t) = S(x,p, t) (3.1)

where S is a source, H the Hamiltonian, F the distribution function. The Poisson bracket
is given by :

[H,F ] =
∂H

∂x
· ∂F
∂p
− ∂H

∂p
· ∂F
∂x

(3.2)

It is possible to de�ne two Hamiltonians H and Heq :

H =
1

2
mv2
‖ + µB + eφ(x, t) (3.3)

Heq =
1

2
mv2
‖ + µB + eφeq

where φ stands for the electric potential. H is the hamiltonian corresponding to the
distribution function F whereas Heq is the hamiltonian corresponding to the distribution
function at equilibrium Feq. We de�ne Feq and FH as :

Feq =
N

(2πmT )3/2
exp

(
−Heq

T

)
(3.4)

FH =
N

(2πmT )3/2
exp

(
−H
T

)
(3.5)

where N and T are constant density and temperature. The steady equilibrium potential
φeq will be neglected. It is possible to decompose F in two di�erent manners :

F =Feq + f (3.6)

F =FH + g (3.7)

It may be interesting to write the expression of f knowing g in the saturation limit
eφ
T ∼ ρ∗ � 1 described in Appendix C.1. In that limit, it is possible to develop FH
knowing Feq. 2

FH = Feq exp
(
− e
T

(H −Heq)
)

= Feq

[
1− e

T
φ+O

((
eφ

T

)2
)]

(3.8)

2O(A) is a functional equivalent to any functional A.
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Equations (3.6) and (3.7) imply f − g = FH − Feq and it comes :

f ' g − Feq
e

T
φ (3.9)

Rewriting (3.1) using decomposition (3.7), it comes :

∂tg − [H, g] + ∂t (FH)− [H,FH ] = S

FH only depends of H and thus, [H,FH(H)] = 0. In the case eφ
T � 1, equation (3.8)

gives the expression of ∂tFH = −Feq eT ∂tφ. Then, an alternative formulation of the Vlasov
equation is :

∂tg − [H, g] = Feq
e

T
∂tφ+ S (3.10)

In Appendix C.1, we prove that, in the case of the saturation limit eφ
T � 1, the Hamilto-

nian can be replaced by its equilibrium value Heq in the expression above, i.e. the Vlasov
equation can be linearised :

∂tg − [Heq, g] = Feq
e

T
∂tφ+ S (3.11)

3.1.2 Linear solution of the Vlasov equation

It is convenient to use the set of angle-action variables (α,J) constructed in part 1.2.2,
and related to the set of position/momentum coordinates (x,p), to describe the non
perturbed trajectories of particles. It is reminded that this set of angle-action variables
satis�es :

dαi
dt

=
∂Heq

∂Ji
= Ωi(J)

dJi
dt

= −∂Heq

∂αi
= 0

where i = (1, 2, 3). This is a consequence of the existence of 3 motion invariants of
the unperturbed system, namely the hamiltonian Heq, the magnetic moment µ, and the

canonical toroidal momentum Pϕ = eψ + mv‖
Bϕ
B R, where ψ is the poloidal �ux nor-

malized to 2π. The �rst angle is the cyclotron angle, and the corresponding action is
proportional to the adiabatic invariant J1 = m

e µ. The second and third angles are related
to the guiding center motion. More precisely the third angle is equal to the toroidal angle
up to an o�set that is a periodic function of the second angular variable α2. The corre-
sponding action is the canonical toroidal momentum Pϕ. The second angle describes the
bounce (resp. transit) motion of trapped (resp. passing) particles. The corresponding
action can be derived explicitly, but is of little use here as it can be replaced by the
energy Heq at given µ and Pϕ.

The pertubed hamiltonian h is de�ned here so that Z
τ h = eφ/T with Z the charge

number (i.e. Zi = 1 for ions and Ze = −1 for electrons) and τ = T/Ti (i.e. τi = 1 for
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ions and τe = Te/Ti for electrons). Thanks to the periodicity with respect to the angle
and time variables, all quantities can be developed in Fourier series as :

g(α,J, t) =
∑
nω

gnω exp {i (n ·α− ωt)} (3.12)

h(α,J, t) =
∑
nω

hnω exp {i (n ·α− ωt)} (3.13)

Replacing this expression of g in equation (3.11), it comes for each mode (n, ω) :

−iωgnω −
∑
j


∂Heq

∂αj︸ ︷︷ ︸
0

∂gn,ω
∂Jj

− ∂Heq

∂Jj︸ ︷︷ ︸
Ωj

∂gn,ω
∂αj︸ ︷︷ ︸
injgn,ω

 =
Z

τ
Feq(−iωhn,ω) + Sn,ω

−iωgnω + i
∑
j

njΩjgn,ω = −iωZ
τ
Feqhn,ω + Sn,ω

An exact solution of Eq.(3.11) is :

gnω =
ωZτ Feqhnω + iSn,ω

ω − n ·Ω + i0+

The term +i0+ is used to do an analytical extension when the real part of the denominator
vanishes according to the Landau prescription.This term cannot be skipped for causality
reasons. Without sources, this solution becomes :

gnω =
ω

ω − n ·Ω + i0+

Z

τ
Feqhnω (3.14)

3.1.3 Quasi-electroneutrality

The quasi-electroneutrality equation takes the form
∑

species ZsNs = 0. This equation is
supposed to be satis�ed at equilibrium, which implies

∑
species Zs

´
d3pFs,eq(x,p, t) = 0.

Using the decomposition of the distribution function (3.6), the quasi-neutrality constraint
can be written as : ∑

species

Zs

ˆ
d3pfs(x,p, t) = 0 (3.15)

The quasi-electroneutrality constraint can be reformulated in a �weak� form 3 as :

∀h†(x, t),
ˆ
d3x

 ∑
species

Zs

ˆ
d3pfs(x,p, t)

h†(x, t) = 0 (3.16)

3Let A : R → R. Then, equation ∀x, A(x) = 0 ⇔ ∀B : R → R,
´
A(x)B(x)dx = 0. The last form of

the equation is called the �weak� formulation of the �rst one.
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with h† an arbitrary �eld. The strong formulation Eq.(3.15) can be rewritten as ∂L
∂h†

= 0,
where the functional L is de�ned as :

L = −NTi
∑

species

Zs

ˆ
dςfs(x,p, t)h

†(x, t) (3.17)

where the volume element in the phase space dς = d3x d3p = d3αd3J has been
introduced. Replacing fs by its expression depending of gs on each mode ω (Eq.(3.9)),
it comes :

Lω = −NTi
∑

species

Zs

ˆ
dς

(
−Zs
τs
Fs,eqhω + gs,ω

)
h†ω

For now, h†ω is indeterminate. We wish to take for the functional L the Lagrangian of
the particles, ions and electrons included. To do this, we choose h†ω = h∗ω. Decomposing
g on its linear solutions given in Eq.(3.14), the functional recasts as :

Lω = NTi
∑

species

Z2
s

τs

ˆ
d3xhωh

∗
ω

−NTi
∑

species

Z2
s

τs

ˆ
dςFM

∑
n

ω

ω − n ·Ω + i0+
hnωh

∗
nω (3.18)

where we have introduced FM = Feq/N the Maxwellian normalized to the density. This
pro�le is set as the same for all species. The imaginary part of the resonant integral
is most easily calculated in the action/angle space, using the volume element dς =
d3α d3J. Also the unperturbed Hamiltonian Heq(J) is a function of the actions only and

Ω is a set of resonant frequencies Ωi =
∂Heq
∂Ji

. Since the GAM frequency is much lower than
the cyclotron frequency, only n1 = 0 components are kept in Eq.(3.18). This is equivalent
to a gyrokinetic calculation, with an hamiltonian Heq = 1

2mv
2
‖ + µB. Moreover, a GAM

has a toroidal wave number that is null, which implies n3 = 0 since α3 = ϕ up to a
periodic function of α2. Therefore the summation should be run on n2 integers only. We
note that useful equivalent formulation of the functional is

Lω = NTi
∑
species

1

τ

ˆ
dςFM

[
|φω|2 − |J0 · φω|2

]
− NTi

∑
species

1

τ

ˆ
dςFM

∣∣∣∣vD · ∇φω−iω

∣∣∣∣2
− NTi

∑
species

1

τ

∑
n

ˆ
dςFM

ω

ω − n ·Ω + i0+

∣∣∣∣n ·Ωω hnω

∣∣∣∣2 (3.19)

where J0 denote the gyroaverage operator, vD is the vertical drift velocity, and the
summation over n is restricted to components n1 = 0, n3 = 0.
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3.2 Trajectories and hamiltonian components

In the expression of the functional, the coe�cients hω and hn2ω are unknowns of the
problem. It is therefore needed to guess the shape of these hamiltonian components
depending of the poloidal structure of the potential. First, we recall the expressions of
passing and trapped trajectories using the angle-action variables. Second, a guess for the
hamiltonian components appearing in the Lagrangian expression (3.18) is given.

3.2.1 Trajectories using angle-action variables

The general expressions of the guiding center position and poloidal angle read :

rG = r + r̂

θG = εcα2 + θ̂

where r is the minor radius of a reference magnetic surface, εc = 1 (resp. 0) for passing
particles. The functions r̂ and θ̂ are functions of the actions J, or equivalently to the
motion invariants (Heq, µ, Pϕ), and periodic functions of α2. We will omit to mention
explicitly the dependencies on the motion invariants, to simplify the notations. The
functions r̂ and θ̂ can be chosen respectively as even and odd functions of α2. For deeply
passing particles, one �nds :

r̂ = δc cosα2

θ̂ = −δc
r

sinα2

where

δc = −vD
Ω2

vD = −
mv2
‖ + µB

eBR0

Ω2 =
v‖

qR0
(3.20)

Here δc is the displacement of a drift surface and is of order qρc, where ρc is the gyroradius.
The trajectory equations Eq.(3.20) are valid at order 1 in δc/r. Eq.(3.20) corresponds to
a circle that is shifted horizontally by a distance δc from the magnetic surface.

3.2.2 Fourier components of the hamiltonian

In the following, we use the GAM electric potential φ in position variables normalized to
the perturbed hamiltonian h in angle-action variables so that φ(x, t) = h(α,J, t). While
keeping a single radial wave vector, the GAM electric potential is expanded in Fourier
series with respect to the poloidal angle :

φω(r, θ) =

+∞∑
m=−∞

φ̃mω(K)ei(Kr+mθ) (3.21)
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First, φω is developed around the gyrocentre position (rG, θG) : φω(r, θ) = J0φω(rG, θG).
Second, using the hamiltonian decomposition Eq.(3.13) of hω in α, the mode n =
(0, n2, 0) is given by :

hn2ω (J) =

˚ +π

−π

dα1

2π

dα2

2π

dα3

2π

{
J0

+∞∑
m=−∞

φ̃mω(K)ei(KrG+mθG)

}
e−in2α2

= J0

ˆ +π

−π

dα2

2π

+∞∑
m=−∞

φ̃mω(K)ei(KrG+mθG−n2α2)

Using the trajectory equations Eq.(3.20), the correspondence between Fourier and hamil-
tonian components is found to be :

hn2ω (J) = eiKrJ0

ˆ +π

−π

dα2

2π

+∞∑
m=−∞

φ̃mω(K)ei[Kr̂+mθ̂+(εcm−n2)α2] (3.22)

As seen above θ̂ is of the order of δcr for passing particles, and can therefore be neglected
against Kr̂ if K � m

r . It is shown in Appendix C of the thesis of C. Nguyen [65,
Nguyen 2009] that φ̃mω(K) scales as (−iKρi)mφ̃0ω, where ρi = mvTi

eB0
is the thermal ion

gyroradius. We will therefore use the following auxiliary real numbers :

φ̃mω = (−i)mφm (3.23)

with φ−m = φm and

ηm =
φ̃mω

(−iKρi)m
=

φm
(Kρi)m

∼ o(1) (3.24)

Moreover a calculation of the potential at order 2 in Kρi guarantees a functional that
is correct at 4th order. In the following we consider only the harmonics m = 0,±1,±2
consistent with a second order calculation of the potential in Kρi, i.e.

φω = φ0 + 2φ1 sin(θ)− 2φ2 cos(2θ) + o(K3ρ3
i )φ0 (3.25)

that will also be written

φω = φ0

[
1 + 2Kρiη1 sin(θ)− 2K2ρ2

i η2 cos(2θ) + o(K3ρ3
i )
]

(3.26)

3.2.3 Passing particles

For passing particles εc = 1. Replacing Eq.(3.23) in Eq.(3.22), one gets :

hn2ω = in2eiKrJ0(Kρi)
∑
m

(−1)mJn2−m (Kδc)φm (3.27)

where Jn2 (Kδc) is the Bessel function of index n2 and argumentKδc, that will be written
in short J̄n2 to avoid the confusion with the gyroaverage operator. The decomposition



3.2. TRAJECTORIES AND HAMILTONIAN COMPONENTS 77

of the perturbed hamiltonian can be written with both position-momentum and angle-
action variables φω(x) = hω(α,J) with :{

φω =
∑

m(−i)mφm exp(imθ)

hω =
∑

n2
hn2ω exp(in2α2)

Using the fact that
´
d3xd3pφωφ

∗
ω =
´
d3αd3Jhωh

∗
ω and the development of φω around

the gyrocentre position (rG, θG) : φω(r, θ) = J0φω(rG, θG), it can be veri�ed that :∑
n2

|hn2ω|
2 = J2

0

∑
m

|φm|2 (3.28)

Since δc is the radial shift of a drift surface relative to the reference magnetic surface, it
appears that the operator J̄n2 is similar to the gyroaverage operator, with the gyroradius
replaced by δc. In the limit of small wave numbers Kδc � 1, J0 (Kδc) ' 1 − 1

4K
2δ2
c ,

and Jn2 (Kδc) ' 1
n2!

(
Kδc

2

)n2 for n2 6= 0. These properties ensure a rapid convergence
of the series in n2 whenever Kρi is small enough. We keep only the �rst harmonics
n2 = 0,±1,±2, consistent with a calculation at order 2 in Kρi, and therefore order 4 for
the Lagrangian. The correspondence Eq.(3.27) leads to the following relations :

h0 = eiKrJ0J̄0φ0

h1 = ieiKrJ0

[
J̄1φ0 − J̄0φ1

]
h−1 = ieiKrJ0

[
J̄1φ0 + J̄0φ1

]
h2 = −eiKrJ0

[
J̄2φ0 − J̄1φ1 + J̄0φ2

]
h−2 = −eiKrJ0

[
J̄2φ0 + J̄1φ1 + J̄0φ2

]
(3.29)

Setting b = Kδc, the Bessel functions are expanded as :

J̄0 = 1− b2

4 + b4

64 + o(b6)

J̄1 = b
2

[
1− b2

8

]
+ o(b5)

J̄2 = b2

8 + o(b4)

(3.30)

consistent with the constraint J̄2
0 + 2J̄2

1 + 2J̄2
2 = 1 + o(b6).

3.2.4 Trapped particles

For trapped particles εc = 0. Replacing Eq.(3.23) in Eq.(3.22), one gets :

hn2ω = eiKrJ0

ˆ
dα2

2π
exp {i(Kr̂ − n2α2)}

(
φ0 + 2φ1 sin θ̂ − 2φ2 cos 2θ̂

)
(3.31)
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For large wavelengths Kr̂ � 1 and anticipating that only n2 6= 0 components will matter
for damping, one �nds

hn2ω = eiKrJ0

ˆ
dα2

2π
exp (−in2α2)

(
iKr̂φ0 + 2φ1 sin θ̂ − 2φ2 cos 2θ̂

)
(3.32)

For electrons, the operator J0 is set to unity, consistently with the expansion of the
potential at order 1 in Kρi. Also the banana width is small and will be neglected as
it introduces a subdominant dependence on the electron mass. Hence the hamiltonian
components read

hn2ω = eiKrh̃n2ωKρiφ0 (3.33)

where

h̃n2ω = 2

ˆ 2π

0

dα2

2π

(
η1 sin θ̂ − η2Kρi cos 2θ̂

)
e−in2α2 (3.34)

3.3 Real part of the dispersion relation

It turns out that the real part of the lagrangian is most easily computed by using Eq.(3.19)
and the relationship

− in ·Ωhnω =
[(

vD · ∇+ v‖∇‖
)
φω
]
n

(3.35)

We introduce the dimensionless Lagrangian L̄ = L/NiTi and its density L̄ de�ned as
L̄ =

´
d3xL̄ , which can be written as

L̄ = NTi
∑
species

1

τ

[
|φω|2 −

〈
|J0 · φω|2

〉]

− NTi
∑
species

1

τ

〈∣∣∣∣vD · ∇φω−iω

∣∣∣∣2
〉

−
∑
species

1

τ

∑
n2

〈
ω

ω − n2Ω2 + i0+

∣∣∣∣∣
[(

vD · ∇+ v‖∇‖
)
φ

−iω

]
nω

∣∣∣∣∣
2〉

(3.36)

where brackets indicate an average over the velocity space with a Maxwellian weight. The
extremalisation of L̄ with respect of φ∗1 and φ

∗
2 allows to compute φ1 and φ2 as a function

of φ0. The calculation will not be repated here as it was done in [64, Nguyen 2008], using
a double expansion in Kρi and 1/qΩ, where Ω = ωR0

vTi
. Reference [64] addresses in fact

the case of Beta Alfvén Eigenmode (BAE), but also covers GAMs, which is found by
imposing the electrostatic limit (ψω = 0 and Eω = φω) in the notations of [64]. One then
�nds

φ1 =

{
1 +

2 + τe
q2Ω2

+ o

(
1

q4Ω4

)}
τe
Kρi
Ω

φ0 + o(K3ρ3
i )φ0 (3.37)

and

φ2 = −
{

7

4
+ τe +

τe (2 + τe)

q2Ω2
+ o

(
1

q4Ω4

)}
τe
Ω2
K2ρ2

iφ0 (3.38)
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Terms in φ1 of order (K3ρ3
i )φ0 are not given here in details for simplicity, but are nec-

essary to calculate the functional at right order. The dispersion relation <
(
L̄
)

= 0 is
obtained by plugging Eq.(3.37) and Eq.(3.38) into the functional Eq.(3.36). One �nally
gets

<
(
L̄
)

=
(
Λ1 − Λ2K

2ρ2
i

)
K2ρ2

i |φ0|2 (3.39)

where

Λ1 = 1−
(

7

2
+ 2τe

)
1

Ω2
−
(

23

2
+ 8τe + 2τ2

e

)
1

q2Ω4
(3.40)

and

Λ2 =
3

4
−
(

13

2
+ 6τe + 2τ2

e

)
1

Ω2
+

(
747

8
+

481

8
τe +

35

2
τ2
e + 2τ3

e

)
1

Ω4
(3.41)

This expression agrees with previous calculations [85, 84, 75, 76, Zonca 1996-2008,
Sugama 2006-8]. Note however that the normalizations are di�erent: in the aforemen-
tioned works, the thermal velocity is de�ned as

√
2Ti/mi, and the thermal gyroradius

accordingly, while the GAM frequency is normalized to a transit frequency de�ned as√
2Ti/mi/(qR0).

It appears that kinetic electrons play a minor role in the GAM expression. In fact, the
kinetic answer of electrons is contained in the terms in ω /ω±Ωe

2 of Eq.(3.19). Although,
these terms do not impact much the GAM pulsation, it will be seen further that they
must be taken into account while evaluating the damping rate.
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3.4 GAM damping

Contrary to the GAM pulsation, which is not much changed whether electrons are adi-
abatic or kinetic, the GAM damping is believed to depend greatly of the kinetic answer
of electrons [83, Zhang 2010]. The amount of exchanged energy between particles and
wave is derived from the imaginary part of the Lagrangian for ions �rst and for electrons
second. Then the associated damping rate is computed and compared to the existing
theory.

3.4.1 Contribution of ions to GAM damping

The exchange of energy between particles and waves per volume and time unit is given
by the relation W = 2ω= (L), where L =

´
d3xL. A positive value of W > 0 means

particle heating, i.e. damping. The calculation is restricted for now to passing ions. The
imaginary part of the normalized functional =

(
L̄
)
is obtained, the same way as <

(
L̄
)
,

by plugging the value of φ1 Eq.(3.37) and φ2 Eq.(3.38) into the functional L̄ Eq.(3.36).
The imaginary part of the normalized functional takes the following expression:

=
(
L̄
)

= K2ρ2
i |φ0|2

{
1

2

√
π

2
q5Ω3e−

q2Ω2

2

[
1 + 2

1 + 2τe
q2Ω2

+ o

(
1

q4Ω4

)]
+

K2ρ2
i

1024

√
π

2
q9Ω5e−

q2Ω2

8

[
1 + 16

1 + τe
q2Ω2

+ o

(
1

q4Ω4

)]}
(3.42)

Finally the total functional is found to be:

L̄ = K2ρ2
i |φ0|2

{
Λ1 − Λ2K

2ρ2
i

+ i
1

2

√
π

2
q5Ω3e−

q2Ω2

2

[
1 + 2

1 + 2τe
q2Ω2

]
+ i

1

1024

√
π

2
K2ρ2

i q
9Ω5e−

q2Ω2

8

[
1 + 16

1 + τe
q2Ω2

]}
(3.43)

that can be compared directly to Eq.(6) of [84, Zonca 2008]. Each bracket [...] is cal-

culated up to an error of order
(

1
q4Ω4

)
. Moving back to physical units, the density of

exchanged energy per volume and time unit:

Wi =

√
π

2
NiTi

vT i
R0

K2ρ2
i |φ0|2 q5Ω4

{
e−

q2Ω2

2

[
1 + 2

1 + 2τe
q2Ω2

]
+
K2ρ2

i

512
q4Ω2e−

q2Ω2

8

[
1 + 16

1 + τe
q2Ω2

]}
(3.44)

where the normalized frequency Ω is given by the dispersion relation <
(
L̄
)

= 0.
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3.4.2 Contribution of electrons to GAM damping

Reduction of the lagrangian

Deeply passing electrons contribute weakly to GAM damping because of their large ve-
locities. This can be seen in Eq.(3.44) when applied to electrons, where the small electron
to ion mass ratio in the exponential leads to a tiny value of the power exchange com-
pared with the contribution of passing ions. However trapped electrons do contribute to
GAM damping because their bounce frequency becomes small near the passing/trapped
domain and meet a resonance with the GAM pulsation [13, Chen 2003]. In principle
barely passing electrons may also contribute. However their contribution was found to
be small numerically [13]. Let us introduce a resonant Lagrangian for the electrons (both
trapped and passing)

Lres,e = −NiTi
1

τe

+∞∑
n2=−∞

ˆ
dςFM

ω

ω − n2Ω2 + i0+
|hnω|2 (3.45)

The electron bounce pulsation Ω2 scales as the electron transit frequency
vTe
qR0

, i.e. is much
larger than the GAM pulsation. However Ω2 becomes small near the trapped/passing
boundary, thus allowing a resonance, and therefore damping. We introduce a normalized
bounce pulsation

Ωb =
Ω2qR0

vTe
(3.46)

where vTe =
√
Te/me is the electron thermal velocity. We will also make use of the

scaling parameter σ = qτ
−1/2
e (me/mi)

1/2, which is proportional to the square root of
the electron to ion mass ratio, hence a number that is small compared to one. The
bounce frequency normalized to the ion transit frequency can then be written

Ω2
R0

vT i
=

Ωb

σ
(3.47)

The resonance condition requires Ωb ' σ � 1.
The volume integrated energy transfer from a GAM to electrons isWe = 2ω= (Lres,e).

We introduce a normalized Lagrangian

L̄res,e =
Lres,e τe

NiTiK2ρ2
i |φ0|2

(3.48)

which is readily written as

L̄res,e = −
+∞∑

n2=−∞

ˆ
dςFM

Ω

Ω− n2
Ωb
σ + i0+

∣∣∣h̃n2ω

∣∣∣2 (3.49)

To simplify the notations, we omit the explicit dependencies of the Hamiltonian on the
actions and the �rst and third angle variables. Hence the perturbed Hamiltonian reads

h̃ω (α2) =
+∞∑

n2=−∞
h̃n2ωe

in2α2 (3.50)
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consistently with

h̃n2ω =

˛
dα2

2π
h̃ω (α2) e−in2α2 (3.51)

We make use of the relations

1

Ω− n2
Ωb
σ + i0+

= −i σ

|Ωb|

ˆ +∞

0
ds exp

{
i

[(
σ

Ω

Ωb
− n2

)
ε‖ + i0+

]
s

}
(3.52)

and
+∞∑

n2=−∞
ein2X =

+∞∑
p=−∞

2πδ (X − 2πp) (3.53)

where ε‖ = sign (Ωb) is the sign of the parallel velocity for passing particles, and is
equal to 1 for trapped particles. This procedure, detailed in Appendix C.3, leads to the
following expression of the Lagrangian

L̄res,e = 2iπσΩ
+∞∑
p=−∞

ˆ
dς
FM
|Ωb|

˛
dα2

2π
h̃ω (α2)

˛
dα′2
2π

h̃∗ω
(
α′2
)

Θ
[
ε‖
(
α′2 − α2 + 2pπ

)]
exp

{
iσ

Ω

Ωb

(
α′2 − α2 + 2pπ

)}
(3.54)

where Θ is a Heaviside function (Θ(x) = 1 for x > 0, 0 otherwise). This expression
can also be obtained by solving the Vlasov equation when using angular variables. It
is reminded that dς = d3α d3J = (2π)3 d3J is the volume integration element in the
phase space. For passing particles, this integration element contains a summation of
the sign of the parallel velocity ε‖. At this point it is convenient to choose [−π, π] as
the interval spanned by α2 and α′2. For ε‖ = 1, negative values of p do not contribute
because of the Heaviside function, while for p ≥ 1, the Heaviside function is equal to 1 -
so that the Heaviside function matters only for p = 0. For similar reasons, only negative
values of p matter when ε‖ = −1. A convenient form of Eq.(3.54) can be obtained after
a summation over the index p ≥ 1 for ε‖ = 1 (p ≤ −1 for ε‖ = −1), namely

L̄res,e = 2iπσΩ

ˆ
dς
FM
|Ωb|

ˆ π

−π

dα2

2π

ˆ π

−π

dα′2
2π

h̃ω (α2) h̃∗ω
(
α′2
)

exp

{
iσ

Ω

Ωb

(
α′2 − α2

)}
Θ

[
ε‖
(
α′2 − α2

)]
+

1

exp
(
−2iπσ Ω

|Ωb|

)
− 1

 (3.55)

Eq.(3.55) can be considered as a workable form. Its main advantage is to avoid using
explicit resonances. Also it exhibits clearly the parametric dependencies. A convenient
alternative form is

L̄res,e = 2iπσΩ

ˆ
dς
FM
Ωb

ˆ π

−π

dα2

2π

ˆ ε‖∞

α2

dα′2
2π

h̃ω (α2) h̃∗ω
(
α′2
)

exp

{
iσ

Ω

Ωb

(
α′2 − α2

)}
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Notations λ = µB0

H εb(λ) θ0(λ) κ

Passing 0 ≤ λ ≤ λmin = 1
1+ε 0 π 0 ≤ κ ≤ 1

Trapped λmin ≤ λ ≤ λmax = 1
1−ε 1 −π ≤ θ0 ≤ π 1 ≤ κ ≤ +∞

Table 3.1: Notations and conventions for passing and trapped particles.

where α′2 is now a continuous integration variable that spans the interval [α2, ε‖∞]. This
form can be obtained in a faster way by solving the Vlasov equation in angle variable. At
this point, the velocity integration has to be further detailed, to produce a more practical
expression.

Quantitative estimate of GAM electron damping

The phase space density FM dς in the Lagrangian Eq.(3.55) reads

FM dς = dV
∑
ε‖=±1

dλ

√
2

π
dvv3 1

|Ωb|
e−v

2
(3.56)

where dV = 4π2R0rdr is the volume element, λ = µB0

Heq
, ε‖ is the sign of the parallel ve-

locity (for passing particles only) , and v is a normalized velocity v2 =
[

1
2mv

2
‖ + µB

]
/T .

The bounce/transit pulsation reads

1

|Ωb|
=

1 + εb√
2v

τ̄(λ) (3.57)

where

τ̄(λ) =

ˆ θ0

−θ0

dθ

2π

1

(1− λ+ ελ cos θ)1/2
(3.58)

Here θ0 is the poloidal angle of a trapped particle turning point, i.e. the positive solution
of v‖(E, λ, θ) = 0, while θ0 = π for passing particles. The meaning of the notations for
trapped and passing particles is given in Table 3.1. The bounce/transit frequency Ωb

has been chosen positive. It exhibits a discontinuity at the trapped/passing boundary.
The reason is that a barely passing particle makes one turn in θ, i.e. 2π, while a barely
trapped particle moves back and forth in the poloidal direction, and therefore spans a 4π
interval in θ. It can be veri�ed that

´
dςFM = 1, as expected. The pitch-angle variable

λ does not allow an easy handling of the singularity at the passing/trapped boundary.
It is therefore useful to introduce an alternative pitch angle parameter κ de�ned as

κ2 =
2ελ

1− λ(1− ε)
(3.59)
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It appears that

dλ =
4ε

(1 + ε)2

κ dκ

Λ2(κ)
(3.60)

and
v‖

vTe
=

(
ε

1 + ε

)1/2 2v

Λ1/2(κ)

[
1− κ2 sin2

(
θ

2

)]1/2

(3.61)

where

Λ(κ) =
2ε+ (1− ε)κ2

1 + ε
(3.62)

The function Λ(κ) is smooth near κ = 1, with Λ(1) = 1. The bounce/transit time can
be explicited in terms of the complete elliptical function of the �rst kind K, namely

τ̄(κ) =

(
1 + ε

2ε

)1/2

Λ1/2(κ)τ(κ) (3.63)

where

τ(κ) =
2

π


K(κ2) if 0 ≤ κ ≤ 1

1
κK
(

1
κ2

)
1 ≤ κ ≤ +∞

(3.64)

Details on the link between the angular variable α2 and the poloidal angle θ can be found
in the Appendix C.2.

In the following only the contribution of trapped electrons is kept, since passing
electrons contribute weakly to damping. Using this set of variables in the limit of large
aspect ratio ε� 1, the integrand of the Lagrangian Eq.(3.55) is recast as

FM
|Ωb|

dς =

√
2

π

1

1 + ε
dV

∑
ε‖=±1

κ dκ

Λ(κ)
(1 + εb(κ))2 τ2(κ)v dve−v

2
(3.65)

Another important quantity that appears in the Lagrangian Eq.(3.55) is the ratio σ Ω
|Ωb| ,

which reads

σ
Ω

|Ωb|
=

1 + εb
2

√
1 + εσ∗τ(κ)Λ1/2(κ) (3.66)

For trapped electrons, and in the limit of large aspect ratio ε→ 0, it reduces to σΩ/ |Ωb| =
σ∗τ(κ)Λ1/2(κ). The parameter σ∗, de�ned as

σ∗ =
σ

ε1/2
Ω =

(
me

miτe

)1/2 q

ε1/2
Ω (3.67)

is the key parameter for a GAM to meet a resonance with trapped electrons. Indeed the
condition σ∗ ' 1 corresponds to the condition ω ' ωb, where the bounce frequency ωb
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scales as vTeε
1/2

qR0
. Introducing L̄res,e the Lagrangian per volume unit de�ned as L̄res,e =´

dV L̄res,e, the Lagrangian Eq.(3.55) reads

L̄res,e = 8i
√

2πε1/2σ∗
ˆ +∞

1

κ dκ

Λ(κ)
τ2(κ)

ˆ +∞

0
dvv exp

(
−v2

)
ˆ π

−π

dα2

2π

ˆ π

−π

dα′2
2π

h̃ω (α2) h̃∗ω
(
α′2
)

exp
{
iσ∗

τ

v
Λ1/2

(
α′2 − α2

)}
{

Θ
(
α′2 − α2

)
+

1

exp
(
−2iπσ∗ τvΛ1/2

)
− 1

}
(3.68)

One important consequence of Eq.(3.68) is that =
(
L̄res,e

)
is some function of σ∗,

up to a weak dependence on the aspect ratio. Since the frequency Ω is a function of
(q, τe) only, this means that mass scaling prescribes the dependence on safety factor q
and electron to ion ratio τe = Te

Ti
.

The parameter σ∗ is smaller than 1 for usual plasma parameters, typically of the
order of 1/10, or less. An estimate of the integral Eq.(3.68) appears to be quite dif-
�cult. Nevertheless some exact results can be derived. It is reminded that the main
GAM poloidal dependence is of the form h̃ω (α2) ∼ sin [θ(α2)]. Introducing the function
σ̄(v, κ) = σ∗ τ(κ)

v Λ1/2(κ), it appears that the imaginary part of the integrand in the La-
grangian Eq.(3.68) scales as σ̄3 when σ̄ → 0 (see Appendix C.4.1). This yields a very
small contribution to damping and can be neglected against ion damping in most con-
ditions. However this expansion breaks down whenever σ̄ ' o(1), i.e. close to the curve
σ∗τ(κ)Λ1/2(κ) = v in the phase space (v, κ). Since σ∗ is small, this requires small values
of the period τ(κ). This situation occurs near the trapped/passing boundary κ ∼ 1,
where τ ' −1

2 ln(κ − 1). The condition σ̄ ' o(1) is also ful�lled at small values of the
velocity v ' σ∗. However because of the integrand in velocity that behaves as v, the
contribution from low velocities is quite small (smaller than [σ∗]2). This means that most
of the integral comes from the trapped/passing boundary κ ∼ 1 as it is con�rmed by
Fig.3.1 which shows the contribution of particles in the velocity space (v‖, µ). The exact
calculation of Eq.(3.68) in the region κ ∼ 1 is di�cult. Hence we have to resort to making
some approximations. One expect the bounce integrals in (α2, α

′
2) to be dominated by

the turning points (α2 = ±π
2 , α

′
2 ± π

2 ). The con�guration that maximize the damping is
such that α = α′ = π

2 (see derivation in Appendix C.4.2). This procedure provides the
following estimate of the imaginary part of the Lagrangian

=
(
L̄res,e

)
=
√

2πε1/2σ∗D(σ∗)

ˆ +∞

1

κ dκ

Λ(κ)
τ2(κ)

∣∣∣h̃ω (θ0(κ))
∣∣∣2 (3.69)

where h̃ω (θ0) is the value of the perturbed Hamiltonian at the bounce point when ex-
pressed in the θ variable, and D(σ∗) measures the weight of the region in the phase

space where σ∗τ(κ)Λ1/2(κ)/v > 1. It is reminded that σ∗ = qτ
−1/2
e ε−1/2 (me/mi)

1/2 Ω.
The perturbed Hamiltonian is of the form Eq.(3.26). The normalised amplitude of the
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Figure 3.1: Contribution of particles to the integral Eq.(3.68) in the velocity space (v‖, µ).
It appears that the particles located near the trapped/passing boundary (dashed white
line) contribute the more.

Hamiltonian perturbation is de�ned as

η(θ) =
h̃ω (θ)

Kρiφ0
(3.70)

In general η(θ) is of the form η(θ) = η1 sin(θ) + η2 cos(2θ), where from Eqs.(3.37,3.38)

η1 = −
{

1 +
2 + τe
q2Ω2

}
τe
Ω

(3.71)

and

η2 = −2

[
7

4
+ τe +

τe (2 + τe)

q2Ω2

]
τe
Ω2
Kρi (3.72)

Here the brackets [...] are calculated up to an error of order o
(

1
q4Ω4

)
. Hence the imaginary

part of the Lagrangian reads

=
(
L̄res,e

)
' G (q, τe) ε

1/2σ∗D(σ∗)K2ρ2
i |φ0|2 (3.73)

where G is a number (in the limit of large aspect ratio)

G (q, τe) =
√

2π

ˆ +∞

1
dκκ

τ2(κ)

Λ(κ)
η2 (θ0(κ)) (3.74)
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and sin
(
θ0
2

)
= 1

κ . The special case D(σ∗) = 1 corresponds to the estimate based on

a strong weight of bounce points, i.e. when Eq.(3.69) is exact. Since only a fraction
of particles ful�ll this criterion, one expects that D(σ∗) ≤ 1. Strictly speaking the
form factor D (σ∗) depends also on ε, but this is a weak dependence in the limit of
large aspect ratio. One important consequence of Eq.(3.73) is the dimensionless form
=
(
L̄res,e

)
, which o�ers an e�cient way to probe the parametric dependencies. Since

the frequency Ω and potential amplitude are functions of (q, τe) only, this means that
the mass scaling provides a strong constraint on the dependence on safety factor q and
electron to ion ratio temperature τe = Te/Ti.

Final expression of damping due to trapped electrons

Using Eqs.(3.48,3.73), and We = 2Ω= (Lres,e)
vTi
R0

, the following expression of the power
exchange between electrons and GAM is then found

We = 2G (q, τe) Ω2D(σ∗)

(
me

mi

)1/2 q

τ
3/2
e

NiTi
vT i
R0

K2ρ2
i |φ0|2 (3.75)

Finally the total dispersion relation with electrons is found to be L̄ = 0, where

L̄ = K2ρ2
i |φ0|2

{
Λ1 − Λ2K

2ρ2
i + i

1

2

√
π

2
q5Ω3e−

q2Ω2

2

[
1 + 2

1 + 2τe
q2Ω2

]
+ i

1

1024

√
π

2
K2ρ2

i q
9Ω5e−

q2Ω2

8

[
1 + 16

1 + τe
q2Ω2

]
+ iG (q, τe)D(σ∗)

(
me

mi

)1/2 q

τ
3/2
e

Ω

}
(3.76)

It is reminded that

Λ1 = 1−
(

7

2
+ 2τe

)
1

Ω2
−
(

23

2
+ 8τe + 2τ2

e

)
1

q2Ω4
(3.77)

and

Λ2 =
3

4
−
(

13

2
+ 6τe + 2τ2

e

)
1

Ω2
+

(
747

8
+

481

8
τe +

35

2
τ2
e + 2τ3

e

)
1

Ω4
(3.78)

A rough estimate of the damping rate due to electrons is obtained by �tting the paren-

thesis in the real part of the dispersion relation by 1 − Ω2
0

Ω2 , where Ω0 is the zero of
<
[
L̄(Ω0)

]
= 0 (see Appendix C.5). A perturbative calculation than provides the nor-

malised damping rate

R0γ

vT i
' 1

2
G (q, τe)D(σ∗)

(
me

mi

)1/2 q

τ
3/2
e

Ω2
0 (3.79)
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Using η(θ) = η1 sin(θ), with η1 given by Eq.(3.71), the following results are found

G (q, τe) = 0.69

(
1 +

2 + τe
q2Ω2

0

)2 τ2
e

Ω2
0

(3.80)

and

R0γ

vT i
' 0.34

(
1 +

2 + τe
q2Ω2

0

)2

qτ1/2
e D(σ∗)

(
me

mi

)1/2

(3.81)

where Ω0 is a function of q and τe, and σ∗ = q

τ
1/2
e ε1/2

(
me
mi

)1/2
. It is stressed here that

the expression Eq.(3.81) is exact, though the weight function D(σ∗) ≤ 1 is unknown at
this stage. Nevertheless this formulation greatly constrains the dependencies on q, τe
and me/mi, as anticipated . Hence a way to check this expression is to perform �rst a
scan on one parameter to determine the function D(σ∗), and then check the variation
with respect to the other parameters. Previous simulations indicate that the damping
rate due to trapped electrons scales as (me/mi)

1/2 [7, Biancalani 2017]. This suggests
that D(σ∗) is constant and close to D(σ∗) ' 1.0 . If so, Eq.( 3.81) can then be used to
test other dependencies, in particular on τe and q.
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3.5 Rosenbluth-Hinton test with kinetic electrons

We take an axisymmetric form of the potential φ00, the indices '00' referring to the
wave number 0 both in the poloidal and toroidal directions (θ, ϕ). The system quickly
evolves to produce a potential structure composed of a ZF part and a GAM part [80, 84,
Winsor 1968, Zonca 2008]. The evolution of the mode φ00 can be decomposed into
two parts: a transient part which is governed by Landau damping and vanishes after a
pseudo-periodic state and a residual part which is undamped in the absence of collisions,
hence remaining constant. After the reorganization phase, the axisymmetric part of the
potential evolution shown on Fig.3.2 takes the form :

φ00(r, t) =
{
φ00(t =∞) + (φ00(t = 0)− φ00(t =∞))e−γGAM t cos(ωGAM t)

}
F (r) (3.82)

where :

• F is the radial pro�le of the potential supposed to remain constant in time.

• φ00(t = ∞) is the residual part of the potential when time becomes in�nite. It
corresponds to the value predicted by Rosenbluth and Hinton [71, Rosenbluth 1998]:

φ00(t =∞)

φ00(t = 0)
=

1

1 + 1.6 q2
√
ε

(3.83)

• ωGAM is the pulsation of the oscillations of the GAM damping.

• γGAM is the damping rate of the GAM damping.

In this part, ωGAM and γGAM are �tted in the models AE and FKE developed in chapter
2 and compared to the analytical predictions and the results obtained by other gyroki-
netic codes.

We consider a plasma in a circular concentric tokamak con�guration, similar to the
one used in [7, Biancalani 2017], with R0 = 1.3 m, a = 0.13 m and ρ∗ = 1/160. We use a
�at pro�le for the ion and electron equilibrium densities ni,eq and ne,eq, the temperatures
Ti = Te and the safety factor q = 3.5. Besides, the plasma is chosen to be hydrogen-like
with a mass ratio mi/me = 1600. We add an initial perturbation ñi to the equilibrium
density pro�le taken for the ions so that we get an axisymmetric perturbation of the
potential pro�le φ̃00(r, t = 0) = φ̃00,0 sin(krr).

First, a convergence test is done on the time step and the full time length of the
simulation to retrieve the GAM pulsation and damping rate. Second the dependency
with the safety factor and the radial structure of the initial perturbation of these two
parameters is looked at and a comparison between the AE and FKE models is carried
out. Finally, the dependence on the mass ratio mi/me is done. It appears that the
GAM pulsation is not much changed with kinetic electrons, whereas the GAM damping
rate depends heavily of kinetic electrons due to the resonance of GAM with trapped
electrons modes explained in part 3.4.2. In particular we retrieve the dependency γGAM ∝
(mi/me)

1/2.
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Figure 3.2: Evolution of the axisymmetric component of the potential for the adiabatic
(red dashed line) and full kinetic (blue full line) electrons models.

3.5.1 Numerical convergence tests with Gysela

The convergence scan proposed for Gysela code has been performed with the same pa-
rameters as described in previous section. This corresponds for Gysela to Lr = 160/ρi
with ρi =

√
Ti/mi/Ωi and an aspect ratio 1/ε = R/a = 10. Density and temperature

pro�les are �at and normalized to 1. A �at safety factor is taken equal to 2 for the
following tests. Electrons are considered adiabatic. In Gysela, due to its full-f charac-
ter, the initial condition is performed on the distribution function fs and consists of an
equilibrium distribution function fs,eq added to a perturbation f̃s, namely fs = fs,eq+ f̃s.
Then, the electrostatic potential φ(r, θ, ϕ) is computed at time t = 0 by solving the quasi-
neutrality equation. In the present test, the perturbation part f̃s reads f̃s = fs,eq g(r)
with g(r) = −1

r

(
kr cos(krr)− k2

rr sin(krr)
)
where kr = (k + 1)π/Lr with k ∈ N. The

corresponding radial pro�le of the zonal component φ00(r) ∼ sin(krr) is plotted in Figure
3.3 (black line) for k = 1 as it is shown in Appendix C.6.

In the Gysela code, the 5D space (r, θ, ϕ, v‖, µ) is uniformly discretized with Nr ×
Nθ ×Nϕ points in the 3D real space and Nv‖ ×Nµ points in the 2D velocity space (with
Nx the number of points in x direction). This mesh grid is �xed in time with r ∈ [0, Lr],
θ ∈ [0, 2π], ϕ ∈ [0, 2π], v‖ ∈ [−α vTi , α vTi ] and µ ∈ [0, Lµ]. Due to the toroidal axisym-
metry of the test the number of toroidal points Nϕ is �xed to Nϕ = 8. A comparison
(not presented here) with Nϕ = 16 has shown really good agreement with Nϕ = 8.
Simulations with Nϕ = 4 would be probably close to those with Nϕ = 8 but are not
possible in the code due to parallelization constraints. This technical constraint could be
removed. However simulations with so little number of points in toroidal direction are
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Figure 3.3: Time evolution of the radial pro�le of the zonal component φ00 for the initial
time (black line) and 4 di�erent times (t = 4350 Ω−1

i , t = 12250 Ω−1
i , t = 20100 Ω−1

i and
t = 27950 Ω−1

i . ρ is the normalized radial position, i.e ρ = (r − rmin)/Lr.

not standard simulations, so choice has been made to run with Nϕ = 8 and to postpone
the required modi�cation of the code for now. The maximum of velocity normalized to
its thermal value in parallel velocity space is �xed at α =

v‖max

vth,i
= 7. A simulation with

α = 5 has been performed (not presented here) showing very small di�erence (< 2%)
with the case α = 7. However, as this value could have more impact for larger q values
due to resonance condition v‖/qR = ωGAM , the value α = 7 has been preferred for the
following tests. Lµ is �xed to Lµ = 12Ti/B0 (with B0 = 1). All simulations have been
performed for a �at safety factor pro�le equal to 2 and until t = 50000 Ω−1

i . Flat density
and temperature pro�les are also considered with τe = Te/Ti = 1.

Parameters and results are summarized in Table 3.2. Comparisons are performed on
the three quantities: (i) the radial wave number krρi, (ii) the damping rate γ and (iii)
frequency ω of the zonal component of the electrostatic potential φ00. The radial wave
number is computed with the following formula:

krρi = ρi

√√√√ Nr∑
i=0

(
d

dr
φ00 norm(ri, t)

)2/√√√√ Nr∑
i=0

(φ00 norm(ri, t)− 〈φ00 norm〉r)2 (3.84)

with ρi =

√
Ti/mi
Ωi

and φ00 norm(ri, t) = φ00(ri, t)/maxri φ00(ri, t). The values reported in
Table 3.2 correspond to the mean values of krρi computed at times where log(φ00(rp, t))
is maximum with rp the radial position of the maximum value of φ00(r) at initial time.
The damping rate is estimated by using the method of least squares also on the maximum
values of log(φ00(rp, t)). γ values reported in Table 3.2 are computed with 6 maximums



92 CHAPTER 3. ROLE OF TRAPPED ELECTRONS TO GAM DAMPING

Figure 3.4: Time evolution of
φ00(rp, t) − 〈φ00(r)〉r (t) used to
compute the damping rate. rp is the
radial position of the maximum value of
φ00(r) at initial time. The green points
correspond to the maximum values.
The 6 red points correspond to the
points used for the linear interpolation
(red line).

Figure 3.5: Fourier transform in time
of φ00(r = rp) used to compute the fre-
quency with rp the radial position of the
maximum value of φ00(r) at initial time.
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(see red circles in Figure 3.4). Four �rst simulations (cases 1 to 4 in Table 3.2) have been
performed for the same 5D mesh of ∼ 536.8 millions of points (Nr, Nθ, Nϕ, Nv‖ , Nµ) =

(256, 64, 8, 128, 32) but with varying the time step ∆t from ∆t = 5 Ω−1
i to ∆t = 50 Ω−1

i .
All the other simulations except the last one (cases 5 to 10) have been performed with
∆tΩi = 25 varying: (i) the number of points in µ direction (case 5: Nµ = 16, case
6:Nµ = 8); (ii) the number of points in radial direction (case 7: Nr = 128, case 8:
Nr = 512); (iii) the number of points in poloidal direction (case 9: Nr ×Nθ = 2562) and
(iv) �nally the number of points in parallel velocity space (case 10: Nv‖ = 64). The last
case (case 11) corresponds to a simulation where all varying parameters have been taken
to their smaller tested value, namely ∆t = 50Ω−1

i , Nr = 128, Nθ = 64, Nv‖ = 64 and
Nµ = 8.

case Nr Nθ Nv‖ Nµ ∆tΩi krρi γ Ω−1
i ωΩ−1

i

1 256 64 128 32 5. 0.05630867 0.02664329 1.81126121

2 256 64 128 32 10. 0.05630867 0.02663145 1.81126121

3 256 64 128 32 25. 0.05630868 0.02657794 1.81126121

4 256 64 128 32 50. 0.05630874 0.02653612 1.81196116

5 256 64 128 16 25. 0.05630058 0.02657711 1.81126121

6 256 64 128 8 25. 0.05601206 0.0265876 1.81126121

7 128 64 128 32 25. 0.05649958 0.0266591 1.81126121

8 512 64 128 32 25. 0.0562041 0.02655708 1.81126121

9 256 256 128 32 25. 0.05630868 0.02657654 1.81126121

10 256 64 64 32 25. 0.05630868 0.02655779 1.81196116

11 128 64 64 8 50. 0.05620426 0.02661145 1.81126121

Table 3.2: 11 simulations performed for q = 2 with Nϕ = 8 by varying the number of
points in r, θ, v‖ and µ directions. Results are compared for the radial wave number
krρi, the damping rate γ and the frequency ω of the zonal component of the electrostatic
potential.

Considering case 1 as the reference case, the maximum relative error is less than 1% for
krρi and ω estimations, and less than 2% for γ (see Table 3.2). In all these simulations,
even the coarse grained one (case 11), are fully accurate. However, it appears that,
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considering that these tests have been performed for a low value of the safety factor q = 2
and a small radial wave number krρi ∼ 0.056, those results suggest to avoid parameters
where we observe a departure even small from the reference case, namely ∆t = 50Ω−1

i

and Nµ = 8. Hence, more secure parameters for larger q values or larger krρi values could
correspond to those of case 5, namely a mesh (Nr, Nθ, Nϕ, Nv‖ , Nµ) = (256, 64, 8, 128, 16)

of 268.4 millions of points with a time step of ∆t = 25 Ω−1
i . Such a simulation requires

2 hours on 256 cores for 2000 time iterations compared to the coarse grained simulation
which takes around 1 hour on 64 cores (1000 iterations).

3.5.2 Dependence on the radial wave number krρi

In the theoretical part, the radial pro�le of the mode is assumed to remain constant
over time, during both the initial plasma reorganization phase and the damping phase
of the GAM. In fact, the radial wave number kr varies slightly due to the radial coupling
induced by the quasi-neutrality equation on the potential and the need to satisfy the
Neumann condition drφ = 0 at the limits rmin and rmax of the radial domain. This
modi�cation of kr can lead to deviations from the theoretical predictions of ωGAM and
γGAM seen earlier, and it should be veri�ed that these remain valid in our simulations.
Because of this problem, it is useless to try retrieving the exact theoretical dependence
of ωGAM and γGAM in kr at high orders. Fig.3.6 shows the evolution over time of the
potential radial pro�le as well as the associated radial wave number for two forms of
initial perturbations :

• φ̃(1)
00 (r, t = 0) = φ̃00,0 sin(krr)

• φ̃(2)
00 (r, t = 0) = φ̃00,0(1− cos(krr))

Figure 3.6: Time evolution of kr with an initial perturbation in 1−cos(krr) and sin(krr).

To compute the value of kr through time, the following average on r has been done :

〈kr〉r (t) =

∑
r ∂rφ00(r, t)∑
r φ00(r, t)
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We observe that the value of kr is less altered through time with the perturbation 1−cos.
This is related to the fact that this perturbation satis�es Neumann's conditions from the
beginning of the simulation. As a result, the pro�le of the potential is less changed
during the initial reorganization phase for this pro�le. On the contrary, in the sin case,
the pro�le changes quickly in the vicinity of rmin and rmax to satisfy the Neumann's
condition, hence a slight increase of kr for this pro�le. Consequently, the form 1− cos is
preferred to the form sin because we do not want the radial wave number kr to change too
much over time. Details on the two forms the radial pro�le of the density perturbation
ñi should take are given in Appendix C.6.

3.5.3 Dependence on the mass ratio mi/me

We now compare the expressions of the GAM pulsation and damping rate previously
found in the theoretical study with the results obtained with numerical simulations. The
dependence on mass ratio of the GAM damping rate and pulsation computed with the
Gysela code using the FKE model for τe = 1, q = 3.5 is shown on Fig.3.7. Several
conclusions can be drawn from these �gures. First the pulsation depends weakly on
mi/me - this means that trapped electrons do not in�uence much the real part of the
Lagrangian, as expected. The damping rate exhibits a characteristic (mi/me)

−1/2 scaling.
A best �t leads to a constant value of D(σ∗) = 14. This indicates that the useful part of
the phase space that contributes to GAM damping does not depend critically on the mass
ratio, a rather surprising �nding. In fact, picking up the numerical value Ω0 ' 1.8, it
appears that Eq.(3.81) agrees well with the numerical results when choosing D(σ∗) = 1.
We will keep up with this value in the following. Hence Eq.(3.81) becomes:

R0γ

vT i
' 0.34

(
1 +

2 + τe
q2Ω2

0

)2

qτ1/2
e

(
mi

me

)−1/2

(3.85)

Fig.3.7 also shows a comparison of γGAM between the codes Gysela (models FKE
and AE), ORB5 and GENE [7, Biancalani 2017]. The dependency in (mi/me)

−1/2 is
also recovered with the codes ORB5 and GENE. It can be observed however that for
mi/me = 400 and mi/me = 1600, the damping rate predicted with Gysela is lower
than expected. This behaviour has two consequences : �rst, this reinforces the idea of a
coupling between the GAM and the trapped electron modes as explained in the previous
theoretical model. Nevertheless, the dependency in (mi/me)

−1/2 implies that the GAM
damping is overevaluated at low mass ratios. Hence, a good prediction of the behaviour
of GAMs must be done at realistic mass ratios, which of course requires more computer
resources.

4The fact that D(σ∗) is a constant is not trivial, as σ∗ = q

τ
1/2
e ε1/2

(
me
mi

)1/2

shows ami/me dependency.

Only the results of numerical tests show that D(σ∗) is approximately independent of the mass ratio.
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Figure 3.7: GAM pulsation and damping rate calculated with Gysela vs ion to elec-
tron mass ratio. The damping rate is compared with the codes ORB5 and GENE [7,
Biancalani 2017]. The analytic dashed line is given by Eq.(3.85).

3.5.4 Dependence on the safety factor q

We now turn to the dependence on safety factor. Results from the Gysela code are
shown on Fig.3.8 for the damping rate and pulsation - parameters are mi/me = 1600
and τe = 1. It appears that Ω0 depends weakly on q, a consequence of the inequality
q2Ω2

0 � 1 over most of the scan range. In this case Eq.(3.85) predicts a linear de-
pendence on q, while a roughly inverse dependence is observed on Fig.3.8. This is a
rather puzzling result. Indeed, it cannot come from a poor identi�cation of the function
D(σ∗). Indeed, an inverse dependence on q would require a function D(σ∗) ∼ [σ∗]−2

since σ∗ = qτ
−1/2
e ε−1/2 (me/mi)

1/2, but this would imply a (me/mi)
−1/2 scaling of the

damping rate, clearly inconsistent with the numerical results.

It can also be pointed out that Fig 3.8 shows that the deviation between the adiabatic
and kinetic electron models is larger for q > 2 as it has already been observed with the
GTC code [83, Zhang 2010]. In particular, we note that the local maxima due to the
second order resonance arising from the �nite orbit width e�ect in the adiabatic model
becomes negligible compared to the damping due to trapped electrons.

3.5.5 Dependence on the temperature ratio τe = Te/Ti

The damping rate and pulsation calculated by Gysela are reproduced on Fig.3.9 for
the parameters are mi/me = 1600 and q = 3.5. It is quite di�cult to infer a monomial

scaling law, but we �nd that the dependence in τ1/2
e is well satis�ed for τe > 1. Finding

the good scaling in both mi/me and τe strongly recommends the proposed formula of
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Figure 3.8: Dependence of the pulsation and damping rate with the safety factor q.
The analytic dashed line is given by Eq.(3.85).

the GAM damping rate Eq.(3.85). This formula predicts indeed an over-damping due
to barely trapped/passing electrons but the scaling in safety factor is not well found.
Further studies should be made to understand this discrepancy.
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Figure 3.9: GAM pulsation and damping rate vs electron to ion temperature ratio.
The analytic dashed line is given by Eq.(3.85).

3.5.6 Conclusion

In this section, several results have been veri�ed:

• Taking into account a radial pro�le of the form 1− cos(krr) with Neumann bound-
ary conditions provides a better conservation of the initial radial wave number
than a pro�le in sin(krr). Choosing a 1 − cos(krr) form is useful to minimize the
discrepancies in the comparison between analytical and numerical results.

• Kinetic electrons have only a slight impact on the GAM pulsation, but increase the
damping rate tremendously. This con�rms the existence of a resonant interaction
between trapped electrons and GAM.

• It is possible to recover with the FKE model the (mi/me)
−1/2 scaling of the GAM

damping rate due to trapped electrons by choosing a phase space weight D(σ∗)
that is constant and equal to 1

2 . Besides, the scaling in electron to ion temperature

ratio in τ1/2
e is also recovered. However some discrepancies on the safety factor still

need to be investigated. The scaling in mass ratio is also recovered with the local
codes ORB5 and GENE.

• For low mass ratios (mi/me ∼ 100), the TKE model is found to have a behaviour
close to the AE model. However, for realistic mass ratios (mi/me ∼ 3600), the
GAM damping rate found with the TKE model matches the one obtained with the
FKE model.



Chapter 4

Linear study and �rst non-linear
simulations of the Ion Temperature
Gradient (ITG) and Trapped
Electron Mode (TEM) instabilities

The deviations from thermodynamic equilibrium, in particular density and temperature
gradients, are sources of free energy which fuel the micro-instabilities of the plasma,
leading to particle and energy turbulent transport. These micro-instabilities are classi-
�ed according to the sources of free energy that fuel them. In particular, the ITG-TEM
instabilities are created by density and temperature gradients. The ITG regime is ob-
tained when it is mainly the ions that provide energy to the electric wave and TEM
when this is the electrons which give their energy. Besides, in that particular case the
instability is mainly due to the trapped electrons.

First, the linear dispersion relation of the ITG-TEM instability is given with a closer
look at the pulsation and growth rate. In a second time, simulations are performed
with the trapped kinetic electron model of GYSELA. This test allows us to look at the
dependence of the pulsation and growth rate with di�erent parameters and in particular
the poloidal wavelength and the ionic temperature gradient. A transition between the
ITG dominated regime and the TEM dominated regime is shown. Then, some simulation
results where we initialize a perturbation composed of several poloidal wavelength are
shown: these enable to highlight some pure electrostatic phenomena among which the
so-called ωH mode. Finally, we present the �rst non-linear results obtained with kinetic
electrons.

99
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4.1 The Ion Temperature Gradient and Trapped Electron
Mode instability

First, a qualitative presentation on the mechanisms of the general drift wave and inter-
change instability is given. Then we present the dispersion relation of potential waves
acknowledging for non-uniform density and temperature pro�les. The case of the ITG-
TEM instability is then studied and an approximated analytic expression for the pulsation
and damping rate of such modes is given. This presentation is based on the following
works [68, Rax 2012],[72, Sarazin 2013],[30, Garbet 2001],[10, Bourdelle 2000] for this
section.

4.1.1 Drift wave and interchange mechanisms

Drift waves

Let us consider a plasma in a Cartesian base (x, y, z) with a uniform magnetic �eld B in
the z direction. Ions are assumed at rest. Thus, the density of ions is supposed constant
in time, uniform in the y and z directions, with a negative uniform gradient in the x
direction so that it takes the form ni(x) = ni(x0) + ∂xni|x0(x− x0) with ∂xni|x0 < 0 in
the vicinity of the position x ∼ x0. An initial perturbation on the electric potential of
the form φ(x0, y, t = 0) = φ0 sin(ky) at x = x0 is introduced. The electron density can
be decomposed as ne = n̄e + ñe where:

• n̄e = 〈ne〉y is the density pro�le averaged along the coordinate y.
It comes n̄e(x) = ni(x) = ni(x0) + ∂xni|x0(x− x0).

• ñe = ne − ni is the di�erence between ion and electron density due to plasma
polarisation. Under the hypothesis of adiabatic electrons (see section 2.1), ñe is in
phase with the potential and can be written as ñe(x0, y, t = 0) = ñe0 sin(ky) at
initial time and x = x0.

The shape of the electric potential and the electron density is shown on Fig.4.1 as well
as the electric �eld E and associated drift vE .

At this point, we would like to study the future of such a perturbation. Therefore, we
try to establish the evolution equation of the potential so as to identify it to a particular
type of wave. We start from the conservation equation of matter applied to the electrons.
This equation reads:

∂ne
∂t

+ ∇ · Γe = 0 (4.1)

with Γe = nev the particle �ux of electrons and v = v‖+ v⊥. We suppose that v‖ varies
little in the z direction. The perpendicular velocity can be decomposed as v⊥ = vE+vdia

where vE stands for the electric drift velocity, vdia stands for the diamagnetic velocity.
Besides, we have ∇ · (nvdia) = ∇p

e ·∇∧
(

B
B2

)
= 0 in a uniform magnetic �eld. Therefore,
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Figure 4.1: Schematic view of the drift wave (a) and drift wave instability (b) mechanisms.
[72, Sarazin]

only the electric term vE = E ∧ B/B2 is retained here. The particle �ux of electrons
simply reduces to:

ΓEe = −ne
B

∂φ

∂y
ex

where ex is the unit vector of the x direction. Eq.(4.1) becomes, in the linear approxi-
mation:

∂ñe
∂t
− ∂xn̄e

B

∂φ

∂y
= 0 (4.2)

Using the hypothesis of adiabatic electrons, the electron density perturbation reads ñe =
en̄e
Te
φ 1. Replacing ñe in Eq.(4.2), one eventually gets the wave equation on the electric

potential:
∂φ

∂t
+
ω∗

k

∂φ

∂y
= 0 (4.3)

where ω∗ = (kTe/eB)(−∂xn̄e)/n̄e > 0 is called the diamagnetic pulsation. This is the
equation of a propagative wave in the direction of the y < 0 and of phase velocity ω∗/k.
In the absence of density gradients in the x direction, this equation simply becomes
∂tφ = 0 and the wave is stationary. Physically, because of the density gradient, there
are more electrons which are brought by the electric drift from the high density zones
a© and b© on Fig.4.1 than from the low density zones c© and d©. This causes the local

1When ne = n̄e, φ = 〈φ〉y = 0.
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maxima of the wave to be shifted through time. Thus, the electric drifts cause the wave
to propagate and is hence called drift wave.

Besides, it is noted that in the case where ñe and φ are exactly in phase, the amplitude
of the wave does not vary and there can be no instability. In the case where a phase shift
between these two quantities exists, we will see that this last point is no longer true.

Drift wave instability

In the case where there is a small phase shift between the electron density perturbation
and the potential, the electron density perturbation takes the form ñe = en̄e

Te
(1 − iδ)φ

with |δ| � 1. Therefore, Eq.(4.3) is recast as:

∂φ

∂t
+
ω∗

k
(1− iδ)∂φ

∂y
= 0 (4.4)

The solution of this equation reads φ = φ0 exp {−i(ω∗t− ky)} exp(−δω∗t). Two cases
appear here:

• δ < 0 then the wave is damped.

• δ > 0 then the wave is unstable.

In the latter case, we see the appearance of a drift-wave instability. The initial phase shift
between potential and electron density may have several origins among which plasma re-
sistivity and wave-particle resonances which both cause electrons to depart from their
adiabatic response. The resistive version of this instability is well described by the
Hasegawa-Wakatani model, establishing the dispersion relation from matter and charge
conservation ([42, Gravier], [46, Hasegawa]). The case of wave-particle resonances in-
cludes, among others, the so-called slab branches of ITG and ETG instabilities (see e.g.
[18, 54, Coppi 1967, Kadomtsev 1970])

Interchange instability

We consider the same plasma with this time a gradient of magnetic �eld in the x di-
rection ∂xB < 0. The same initial perturbation on the electric potential φ(x0, y, t =
0) = φ0 sin(ky) at x = x0 is introduced. Let us consider a region located between a
minimum and a maximum of potential. The �uctuations of φ lead to local electric �elds
E = −∂yφ ey. Within the adiabatic theory, the particles are subject to velocity drifts
transverse to the magnetic �eld lines. In the con�guration plotted on Fig.4.2, we see
that the combination of the electric drifts vE and the ∇B drifts v∇B tend to bring ions
coming from the high density region h© towards a maximum of potential � 2. It is the
opposite for particles coming from the low density region l©. There are signi�cantly more
ions and electrons coming from the high density region than from the low density region.

2and respectively to bring electrons coming from the high density region h© towards a minimum of
potential �
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Figure 4.2: (a) Schematic view explaining the physical mechanism of the interchange
instability. (b) Evidence of balloned character of ITG linear modes (�uctuations of the
electric potential, Gysela code)

As a result, the potential perturbation increases, hence leading to an instability.

The case where the gradients of density and magnetic �eld are in the same direction
leads to the interchange instability. Yet, when these are in opposite directions, the
potential perturbation is damped and there is no instability. Consequently in tokamaks,
the interchange instability appears only in the low �eld side region as shown on Fig.4.2.

4.1.2 Dispersion relation in presence of density and temperature gra-
dients

The stability of a given mode of the electric potential is given by the sign of the linear
growth rate γ. This information is contained via the knowledge of the dispersion rela-
tion established from the Vlasov equation coupled to the quasi-neutrality equation, in
the same way as it has been done for the GAM study in chapter 3. In that case, we
consider non-uniform density and temperature pro�les, and we use the angle-action set
of coordinates (α,J) introduced in section 1.2.2, so that for i = (1, 2, 3):

dαi
dt

=
∂Heq

∂Ji
= Ωi(J) (4.5)

dJi
dt

= −∂Heq

∂αi
= 0 (4.6)

In this derivation, we �rst express the Vlasov equation and its linear solutions. Then
the quasi-neutrality equation is recalled and we eventually express the Lagrangian of the
system by plugging the linear solutions of the Vlasov equation in the quasi-neutrality
equation.
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Linear solutions of the Vlasov equation

In the absence of sources and collisions, the Vlasov equation reads:

∂tF (x,p, t)− [H,F ] (x,p, t) = 0 (4.7)

where H is the Hamiltonian and F the distribution function. The Poisson bracket is
given in the angle-action set of coordinates by:

[H,F ] =
∂H

∂α
· ∂F
∂J
− ∂H

∂J
· ∂F
∂α

(4.8)

The distribution function F and the Hamiltonian H are developped in Fourier series
along the coordinates α and t:{

F (α,J, t) = Feq(J) +
∑

nω fnω(J)ei(n.α−ωt)

H(α,J, t) = Heq(J) +
∑

nω hnω(J)ei(n.α−ωt)
(4.9)

We note f = F − Feq and h = H −Heq. Replacing these expression in Eq.(4.7), using
the fact that ∂tFeq − [Heq, Feq] = 0, it comes:

∂tf +
∂f

∂α

∂Heq

∂J
− ∂Feq

∂J

∂h

∂α
+

(
∂f

∂α

∂h

∂J
− ∂f

∂J

∂h

∂α

)
= 0

The source term S is supposed constant in time. Neglecting the quadratic terms, and
using the Fourier development (4.9), the Vlasov equation becomes:

− iωfnω + in ·Ωfnω − in ·
∂Feq
∂J

hnω = 0 (4.10)

with Ω = ∂Heq/∂J. Finally, the linear solutions of the Vlasov equation can be written
as:

fnω =
−n · ∂Feq∂J hnω

ω − n ·Ω + i0+
(4.11)

Taking Feq as a Maxwellian distribution function of expression Feq = n
(2πmT )3/2 e

−Heq/T ,

Eq.(4.11) becomes after calculations:

fnω = −Feq
T

(
1− ω − n · ω∗

ω − n ·Ω + i0+

)
hnω (4.12)

with ω∗ = 1
n
∂n
∂J −

(
3
2 −

Heq
T

)
1
T
∂T
∂J being the diamagnetic frequency. This quantity con-

tains the in�uence of the gradients of density and temperature hence representing the
deviations of the system from tokamak equilibrium. The term +i0+ is used to remind
that an analytic continuation must be done according to the Landau prescription (i.e. to
ensure causality). The result is independent of 0+ as long as 0+ tends to 0.
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Quasi-electroneutrality

The quasi-neutrality constraint can be written as
∑

species esns = 0. It is still satis�ed at
equilibrium. The condition

∑
species es(ns − ns,eq) = 0 writes:

∑
species

es

ˆ
d3pfs(x,p, t) = 0 (4.13)

The quasi-neutrality constraint can be reformulated in a �weak� form 3 as:

∀φ†(x, t),
ˆ

d3x

 ∑
species

es

ˆ
d3pfs(x,p, t)

φ†(x, t) = 0 (4.14)

with φ† an arbitrary �eld. We introduce the functional L 4 of φ† de�ned as:

L =
∑

species

es

ˆ
d3x d3pfs(x,p, t)φ

†(x, t) (4.15)

We do the choice φ† = φ∗. Replacing the expression (4.12) of f for each mode ω and
taking into account that for each species s, hs = esφ, functional (4.15) is easily recast as:

Lω =−
∑

species

ˆ {
d3x d3v

esF
s
eq

Ts(∑
nω

[
1− ω − n · ω∗s

ω − n ·Ω + i0+

]
φnωe

i(n.α−ωt)

)(∑
n′ω′

φn′ω′e
i(n′.α−ω′t)

)∗}

Since the set of angle-action variables introduced in section 1.2.2 is canonically conjugated
to the variables (x,p), the integration element in the phase space reads:

dτ = d3x d3p = d3α d3J (4.16)

Noticing that
´

d3αein·α = (2π)3δ(n), the functional can be simpli�ed as:

Lω = −
∑

species

ˆ
(2π)3 d3J

esF
s
eq

Ts

∑
nω

φnωφ
∗
nω

(
1− ω − n · ω∗s

ω − n ·Ω + i0+

)
(4.17)

The term n ·Ω represents all the possible resonant modes linked with one of the three
motion invariants. The formulation is not yet gyrokinetic: indeed, the terms n1Ω1 de-
scribe the resonance of cyclotron modes, the terms n2Ω2 describe the resonance for the

3Let A : R → R. Then, equation ∀x, A(x) = 0 ⇒ ∀B : R → R,
´
A(x)B(x)dx = 0. The last form of

the equation is called the �weak� formulation of the �rst one.
4The weak formulation of the quasi-neutrality is written as Eq.(4.14) ∀φ†, L(φ†) = 0 whereas the

strong formulation writes as Eq.(4.13) ∂L
∂φ† = 0. Both formulations are equivalent for a continuous

functional.
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bounce/passing motion, and the terms n3Ω3 describe the resonance for the precession
motion. Furthermore, as a characteristic function of the system, this Lagrangian func-
tional contains all the information required to tackle the development of potential modes
of the system, i.e. the expression of pulsation and growth rate of each mode number k.

Besides, in the absence of inhomogeneities, we have ω∗ = 0. In that case, the mode
can only be damped: this is the Landau damping case which has been tackled in several
books (see for instance [39, Goldston]). Therefore, the apparition of an instability re-
quires to have gradients on the density and temperature pro�les. These deviations from
equilibrium state act as a source of free energy which can fuel the instabilities on the
potential modes.

Lagrangian (4.17) can be decomposed into an adiabatic and a kinetic part. The
kinetic part is the fraction on the right of the parenthesis. We see that considering a
model with adiabatic electrons not only skips all electron modes, but it also modi�es the
growth of ion modes. We can therefore expect, with a kinetic electron model to see the
appearance of electron modes, including the TEM regime, but also to see an in�uence of
the kinetic electrons on the dynamics of ion modes and in particular the ITG.

4.1.3 Dispersion relation of ITG and TEM

A particular case of the drift wave and interchange instability

Most instabilities which govern turbulence in tokamak plasmas can be explained with the
mechanisms of the drift wave and the interchange instabilities. The instability is then
fuelled by the inhomogeneities of density, temperature and magnetic �eld. It is possible
to distinguish some classes of instabilities depending on which class of particles transfers
its kinetic energy into potential energy to develop the instability:

• The Ion/Electron Temperature Gradient modes (ITG/ETG) mostly involve passing
ions/electrons. This instability has two branches: the slab one has the mechanism
of the drift wave instability whereas the toroidal one has the mechanism of the
interchange instability.

• The Trapped Ion/Electron Modes (TIM/TEM) involve trapped ions/electrons. The
mechanism's type is interchange.

The resonance condition depends both on the mode wavenumber as shown on Fig.4.3,
and on the density and temperature pro�les. With the knowledge of these pro�les, a map
of the dominant instabilities function of the density and temperature gradient values of
the two species can be established (see Fig.4.4).

Under the usual tokamak conditions, simulations show that the main instabilities
responsible for turbulent transport are the ITG and TEM [63, Merz 2010]. Besides, the-
oretical kinetic models predicted quite early that this turbulent transport was impacted



4.1. THE ITG AND TEM INSTABILITY 107

Figure 4.3: Schematic localization of di�erent modes over a growth rate spectrum. n
refers here to the toroidal wavenumber. [10, Bourdelle 2000]

Figure 4.4: Predominence domain of the ITG-TEM instability with Ti = Te [34, Garbet].
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strongly by kinetic electrons [29, Gang 1991],[79, Weiland 1992]. Consequently, the role
of kinetic electrons on turbulent transport has been investigated thoroughly in the past
twenty years. It has been shown by several codes that taking into account the kinetic
response of trapped electrons in gyrokinetic models added the TEM turbulence but also
modi�ed strongly the level of ITG turbulence [14, 13, 15, Chen 2001-3][51, Idomura 2016].
Other important physics such as �nite-β e�ects and collisions [9, Bottino 2011] or the
generation of Zonal Flows in the case of TEM and TIM microturbulence [27, 26, 41,
Drouot 2014-5, Gravier 2016] has been studied. A benchmark between several codes is
made in [69, Rewoldt 2007]. Besides, the impact of kinetic passing electrons has been
studied as well and these add another family of unstable modes, namely the Electron
Temperature Gradient (ETG) which can create turbulent transport as well [25, Dorland
2000],[53, Jenko 2000],[77, Waltz 2007]. In addition, kinetic passing electrons modify
signi�cantly the level of the ITG and TEM turbulence as well [23, 24, Dominski 2015-7].
However, for numerical resources issues, we consider in our simulations (sections 4.2 and
4.3) only the trapped electrons kinetic because they have a stronger impact on turbulent
transport than the passing ones.

Dispersion relation: simpli�ed approach

In this section, one derives a simpli�ed expression of the dispersion relation of ion and
electron modes governed by the gyrokinetic equation Eq.(1.56) and the quasi-neutrality
Eq.(2.18). Denoting fs(r, θ, ϕ, vG‖, µ, t) the distribution function of the gyrocenters of a
given species �s�, the simpli�ed gyrokinetic equation considered here is the following:

∂tfs + (vE + vD + vG‖).∇fs +
dvG‖

dt
∂vG‖fs = 0 (4.18)

where vE and vD stand respectively for the electric and magnetic (curvature and ∇B)
drifts. In this expressions, it should be noticed that the gradient operator ∇ is to be
taken at constant vG‖ and µ. Simpli�ed expressions will be used in the following:

vE .∇ '
B×∇J0.φ

B2
.∇ ' 1

rB
{∂r(J0.φ) ∂θ − ∂θ(J0.φ) ∂r}

vD.∇ '
msv

2
G‖ + µB

esB

B×∇B

B2
.∇ ' vD0

{
sin θ ∂r +

cos θ

r
∂θ

}
vG‖∇‖ '

vG‖

R

{
∂ϕ +

1

q
∂θ

}
ms

dvG‖

dt
' −es∇‖(J0.φ)− µ∇‖B +msvG‖ vE .

∇B

B

with J0 the gyro-average operator and vD0 = −(msv
2
G‖ + µB)/esBR. Here, B∗‖ has

been approximated by B and sub-dominant components of the transverse drifts (toroidal
components and �nite beta contribution) have been neglected.
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Let us consider a stationary equilibrium without any electric �eld: φeq = 0. Canonical
Maxwellian distribution functions are solutions of the equilibrium gyrokinetic equation:
they are formed with canonical pro�les of density, temperature and velocity depending on
the toroidal canonical momentum [52, 2, 21, Idomura 2003, Angelino 2006, Dif-Pradalier
2008]. In the limit of small ρ∗ values, these pro�les can be approximated by their local
limit, so that the pro�les depend on the radial coordinate only. Hereafter, we consider a
centered local Maxwellian as the equilibrium:

fs,eq(r, θ, vG‖, µ) =
neq,s

(2πTeq,s/ms)3/2
exp

{
− Es
Teq,s

}
(4.19)

where Es = 1
2msv

2
G‖ + µB is the kinetic energy and neq,s and Teq,s depend on the radial

coordinate r only.

Let us now add perturbations to this equilibrium: φ = φ̃(r, θ, ϕ, t) and fs = fs,eq +
f̃s(r, θ, ϕ, vG‖, µ, t). In the limit of small perturbations, i.e. f̃s/fs,eq ∼ esφ̃/Teq,s � 1,
Eq.(4.18) can be linearized by dropping o� all nonlinear terms which are quadratic in
�uctuations. The resulting equation reads as follows:

∂tf̃s + vD.∇⊥f̃s + vG‖∇‖f̃s + vE .∇⊥fs,eq

+

{
− es
ms
∇‖(J0.φ̃) + vG‖ vE .

∇B

B

}
∂vG‖fs,eq = 0 (4.20)

Here, the parallel trapping in the local mirrors of the magnetic �eld has been ignored
(term proportional to µ∇‖B ∂vG‖ f̃s), which is relevant for strongly passing particles only.
Further noticing that:

∇⊥fs,eq =

{
∇rneq,s
neq,s

+
∇rTeq,s
Teq,s

(
Es
Teq,s

− 3

2

)
− µ

Teq,s
∇⊥B

}
fs,eq

vG‖ vE .
∇B

B
∂vG‖fs,eq =

mv2
G‖

esB

B×∇B

B2
.∇⊥(esJ0.φ̃)

fs,eq
Teq,s

Eq.(4.20) can be recast as follows:

∂tf̃s + vD.∇⊥f̃s + vG‖∇‖f̃s

+vEr

{
∇rneq,s
neq,s

+
∇rTeq,s
Teq,s

(
Es
Teq,s

− 3

2

)}
fs,eq

+
{
vG‖∇‖(esJ0.φ̃) + vD.∇⊥(esJ0.φ̃)

} fs,eq
Teq,s

= 0 (4.21)

with vEr = −∂θ(J0.φ̃)/rB the radial component of the electric drift.

The next step consists in projecting �uctuating �elds in the Fourier space:

f̃s =
∑
m,n,ω

f̂m,n,ω ei(mθ+nϕ−ωt)

φ̃ =
∑
m,n,ω

φ̂m,n,ω ei(mθ+nϕ−ωt)
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In the linear regime, each of these modes turns out to be decoupled from the others, up
to the toroidal coupling terms (involving vD) which couple adjacent poloidal m numbers,
namely m, m + 1 and m − 1. For the sake of simplicity, the following notation will be
used for these terms:

vD.∇⊥ → i ωDs

where ωD ' k⊥vD0 actually stands for an operator. A more rigorous treatment requires
using the ballooning representation, which is mentioned the next section. In Fourier
space, Eq.(4.21) yields:

f̂m,n,ω =
−ω∗s + ωD + k‖vG‖

ω − ωD − k‖vG‖
esJ0.φ̃

Teq,s
fs,eq

= −
{

1− ω − ω∗s
ω − ωD − k‖vG‖

}
esJ0.φ̃

Teq,s
fs,eq (4.22)

where k‖ = (n + m/q)/R is the parallel wave vector and the diamagnetic frequency is
de�ned by:

ω∗s = ω∗n + ω∗T

(
Es
Teq,s

− 3

2

)
with ω∗X = (kθρs) vTs∇r logX, kθ = m/r the poloidal wave vector, ρs = msvTs/esB the
thermal gyro-radius and vTs =

√
Teq,s/ms the thermal velocity.

The last step requires using the quasi-neutrality, which relates the charge densities
of gyro-centers to the ion polarization densities. In the case of a single ion plasma with
equal ion and electron temperatures, the �nal dispersion relation reads as follows:

2 + (k⊥ρi)
2 −

〈
J0

ω − ω∗i
ω − k‖vG‖ − ωDi

J0

〉
i

−
〈

ω − ω∗e
ω − k‖vG‖ − ωDe

〉
e

= 0 (4.23)

Here, the brackets stand for the integral over the velocity space, weighted by the re-
spective equilibrium distribution function: 〈...〉s =

´
d3v ... feq,s. In the case where

the inhomogeneity of the magnetic �eld can be neglected, the ωDs operators should be
ignored.

Dispersion relation using the ballooning representation

The full calculation of the dispersion relation (4.23) is obtained under the following
assumptions:

• Hydrodynamic limit : ω/k � vth,i

• Limit of high wavelength values : k⊥ρi � 1

• Ballooning representation [16, 70, Connor 1979, Romanelli 1993]
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• Adiabatic electrons5

This calculation, made in [30, Garbet 2001] and veri�ed in [36, Girardo 2015], leads to
the form (Eq.(100) of [30]):{

τω + ω
∗
ni

ω − ω∗pi
+

v2
th,i

2ω2q2R2
∂θθ +

1

2
k2
θρ

2
i

(
1 + s2θ2

)
− ωgi

ω

}
φ̂nω(θ) = 0 (4.24)

with τ = Te/Ti, s = r
q

dq
dr , ω

∗
ni = 1

ni
∂ni
∂J , ω

∗
T i = 1

Ti
∂Ti
∂J , ω

∗
pi = ω∗ni + ω∗T i, ωgi =

−2Tikθ/(eiBR) and φ̂nω is the ballooning potential de�ned as:

φ(r, θ, ϕ, t) =
∑
nω

φ̂nω(θ) exp {in [ϕ− q(r)(θ − θk)]− iωt}

with θk is a reference angle known as the ballooning angle. Likewise, Drouot and Gravier
derived a linear dispersion relation valid for TIM and TEM turbulence (Eq.(12) of [26,
Drouot 2015]). Neglecting the FLR e�ect (term in kθρi) and the inhomogeneities of
the magnetic �eld (hence ωg = 0), the two last terms of Eq.(4.24) vanish. Previous
simulations launched using the "Cyclone DIII-D base case parameter set" de�ned in [22,
Dimits 2010] showed that the pulsation of a ITG or TEM mode can be expressed as:

ω ∼ ω∗ns ∼ −sign(es) kθρi
vth,s
Ln

(4.25)

where Ln = n/∇n. The sign of the pulsation is negative for ITG modes and positive
for TEM modes. This statement is of great use in the linear study that follows, for the
knowledge of the pulsation sign enables to sort ITG from TEM modes.

5This hypothesis can be easily removed by doing the sum on all species.
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4.2 Linear ITG-TEM simulations

The linear study carried here consists in retrieving the pulsation and growth rate of
unstable modes so as to compare the values with those obtained with other codes. In
fact, we prefer to do a benchmark with other codes rather than a veri�cation with
analytic results because these latter are approximated, especially for a global code such as
Gysela. In this part, we use the label (m,n) to describe a mode of poloidal wavenumber
m and toroidal wavenumber n. Besides, the indice ”i” is used for the type of ions in the
simulations, namely deuterium, and ”0” is used for normalized quantities in Gysela,
the normalisation using hydrogen ions.

4.2.1 Parameters used and type of the instability in a linear simulation

In a standard linear case, we introduce a perturbation f̃ on the initial Maxwellian distri-
bution function of ions f0 using a single n = n0 and several m. In order to keep only this
toroidal mode n0, a �lter is introduced to eliminate all the modes n /∈ {0, n0}. There-
after, the system builds up the eigenmodes that grow exponentially. The magnitude of
the initial potential perturbation is of the form φm,n0(t = 0) ∝ exp

{
−(m/n0 + q)2

}
. For

each chosen value n0, we look at the evolution of the resonant mode (−qn0, n0). The
associated wavenumber of this mode is given by kθρi = −(n0q/r)ρi. In order to do a com-
parison with the results obtained with kinetic electrons in the gyrokinetic code GT5D,
we use the same plasma parameters as those used in [51, Idomura 2016]. We consider a
collisionless deuterium plasma in a circular concentric tokamak con�guration where we
have taken the aspect ratio R0/a = 2.79, the safety factor pro�le q(r) = 0.85+2.18(r/a)2,
and ρ∗ = ρ0/a = 1/139 with ρ0 =

√
T0/m0/ωc0, T0 being a normalized temperature,

m0 the hydrogen mass and ωc0 the cyclotron pulsation. This value of ρ∗ is di�erent
from the one used by Idomura (ρ∗GT5D = 1/150). The di�erence is due to normalisation
issues of the ion temperature and explained in section 4.2.5. The resulting Cyclone like
parameters at mid-radius ρpeak = 0.5 where ρ = r/a ∈ [0, 1] are ε = rpeak/R0 ' 0.18,
q(rpeak) = 1.4. Besides, the density and temperature pro�les are let free to evolve6 and
set at the beginning of the simulation to:

X(r, t = 0) = exp

{
−R0

LX
δ tanh

(
ρ− ρpeak

δ

)}
(4.26)

where X stands for either n, Ti or Te. δ, R0/Ln, R0/LTi , R0/LTe are parameters that can
be chosen arbitrarily. Throughout this study, we set the parameters δ = 0.3 and R0/Ln =
2.22. The normalized densities and temperatures at mid-radius are consequently set to
1: ni(rpeak) = ne(rpeak) = 1, Te(rpeak) = Ti(rpeak) = 1. In addition, we choose the mass
ratio equal to mi/me = 100 except for the convergence test carried in section 4.2.2. In
this section, two temperature pro�les are used:

6Density and temperature pro�les should not evolve much in linear regime because the radial �ux is
negligible. However, as the initial distribution function slightly di�ers from the equilibrium distribution
function, these pro�les evolve a little anyway.
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• R0/LTi = R0/LTe = 6.92 called the 'ITG-dominant' case

• R0/LTi = 0.01 and R0/LTe = 6.92 called the 'TEM-dominant' case

Given these parameters, the instability can be sorted into two categories, namely
ITG and TEM, depending on the type of particle, ion or electron, that fuels the insta-
bility. The sign of the pulsation ω gives the nature of the dominant instability as seen
in Eq.(4.25). For a ITG instability ω ∼ ω∗T i < 0 and for a TEM instability ω ∼ ω∗Te > 0.
We verify afterwards that both methods give the same results. Experimentally, there are
other ways to identify the type of the dominant instability, including re�ectometry [3,
Arnichand 2015].

After a series of tests explained in section 4.2.2 to determine the maximum time step
that can be used for each of the three electron models, the dependency of the linear
growth rate and the pulsation with the poloidal wavenumber kθρi is studied in section
4.2.3 and we show that the ITG regime is obtained for small values of kθρi whereas the
TEM regime is obtained for large values of kθρi. With the parameters stated before,
the transition appears for kθρi ' 0.5. Then in section 4.2.4, we make the ion radial
temperature gradient R0/LTi vary with a �xed value of the toroidal wavenumber. It is
veri�ed that for large values of R0/LTi the ITG instability is dominant and for small
values of R0/LTi the TEM instability becomes dominant. For kθρi = 0.28, the transition
appears at R0/LTi ' 5.

4.2.2 Numerical study to determine the maximum time step

Using the Gysela parameters introduced earlier, the 5D space (r, θ, ϕ, v‖, µ) is uniformly
discretized with Nr ×Nθ ×Nϕ points in the 3D position space and Nv‖ ×Nµ points in
the 2D velocity space (with Nx the number of points in x direction). This mesh grid is
�xed in time with r ∈ [0, a], θ ∈ [0, 2π], ϕ ∈ [0, 2π] (full torus), v‖ ∈ [−α‖ vT0 , α‖ vT0 ]
and µ ∈ [0, Lµ]. The maximum of thermal velocities in velocity space are �xed to α‖ = 7
and Lµ = 12T0/B0. The number of points taken in position and velocity are Nr = 255,
Nθ = 256, Nϕ = 128, Nv‖ = 64 and Nµ = 32. These values were chosen so as to resolve
both the ion Larmor radius and the electron banana width spatially.

A numerical study, based on the ITG-dominant case presented earlier, is performed
for the Adiabatic Electrons (AE) and Trapped Kinetic Electrons (TKE) models, intro-
duced in chapter 2. The aim is to determine the maximum possible time step that can
be used for each model without deteriorating the linear results. In Fig.4.5, the evolu-
tion of the module of the most unstable modes (m,n=14) is plotted for the two models
with di�erent time steps. It is observed that the AE model converges for much larger
time steps than the TKE model. This is due to the fact that in the AE model one only
needs to solve the ion dynamics, hence a required maximum time step which scales as
∆tAE ∝ R/v‖,i ' R/vth,i. With kinetic electrons, one has to solve the dynamics of the
electrons, i.e. a maximum time step in ∆tKE ∝ R/v‖,e. The parallel velocity of passing
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Figure 4.5: Convergence study to �nd the maximal time step required to resolve the AE
and TKE models. We measure that the simulation is converged with ∆tAE = 60 ω−1

c0 for
the AE model and ∆tTKE = 20 ω−1

c0 for the TKE model with mi/me = 4

Figure 4.6: Fourier transform in (θ, ϕ) of the electric potential where only the toroidal
mode n = 10 is kept. We use the trapped kinetic electron model with mi/me = 100.
The white line shows the resonant modes of equation m = −qn. The time step is taken
as (a) ∆t = 2 ω−1

c0 : diagonal resonant modes k‖ ∼ 0 appear, (b) ∆t = 10 ω−1
c0 : spurious

modes m ' 0 appear.
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Figure 4.7: (a) Picture of the poloidal pro�le of the potential and (b) Evolution of the
poloidal pro�le of sign(φ) log |φ| with time. The sign of dtθ is the same as the sign of
the drift wave pulsation ω.

electrons is approximately vpass.‖,e ∼ vth,e. For trapped electrons, it is vtrap.‖,e ∼
√
ε vth,e.

For the aspect ratio R0/a = 2.79 used in our simulations, we have
√
ε ' 0.6 ∼ 1. Con-

sequently, the minimum time step required to solve the dynamics of electrons should go
as ∆tFKE ∝

√
me/mi ∆tAE . In our case, mi/me = 4 which implies ∆tKE ∼ ∆tAE/2.

This scaling seems to be satis�ed between the AE and TKE models.

Fig.4.6 shows an example of two simulations run with the TKE model: one (on the
left) has a su�ciently small time step to satisfy the criteria mentioned earlier. The other
(on the right) has a time step too large to satisfy it. When the time step is too large, the
modes that should be unstable are no longer dominant. We observe that other modes,
with a poloidal number m close to 0, become dominant and the simulation is no longer
relevant. Therefore, it must be checked that the time step is small enough to avoid this
problem.

4.2.3 Dependence of the growth rate and pulsation with the toroidal
wavenumber

The linear growth rate γ and pulsation ω are computed with the Gysela code and com-
pared to the ones found with the code GT5D that can be found in [51, Idomura 2016].
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Both codes are gyrokinetic, global, full-f . The resolution scheme is di�erent however:
GT5D is eulerian whereas Gysela is semi-lagrangian. The comparison in the case of
adiabatic electrons was already made by Y. Asahi [5, Asahi 2017]. This study plus the
similarities between the two codes Gysela and GT5D encouraged us to do the same
comparison with kinetic electrons. Details about the normalisation of ρ∗ between the
two codes are given in section 4.2.5. The parameters used in Gysela and GT5D are
explained in section 4.2.1. The type of instability, ITG or TEM, is given by the sign of
ω as seen in part 4.1.3. It is therefore crucial to have access to this information. ITG
and TEM being particular cases of drift waves, the pulsation can be retrieved from the
poloidal mode phase velocity: ω = kθvθ = −nq dtθ. Plotting the potential with respect
to time and poloidal angle shows immediately the sign of ω (see Fig.4.7).

We present in Figs.4.8 and 4.9 a comparison between both codes regarding the growth
rate and pulsation in the ITG-dominant case using the Adiabatic Electrons and Trapped
Kinetic Electrons models for di�erent values of the toroidal wavenumber kθρi. This curve
has the same general shape as the theoretical diagram shown in Fig.4.3: the ITG regime
is expected to be obtained for the low values of kθρi and the TEM regime for the larger
ones. A good agreement is found between the two codes in the ITG regime for both the
adiabatic and trapped kinetic models. However, it is unclear if the ITG/TEM transition
is recovered for the same value of kθρi. Simulations were launched using larger values of
k⊥ρi (0.6 and 0.7) but we could not retrieve the value of ω and γ: indeed, the evolutions
of the modes φm,n do not exhibit an exponential growth in time at these values ofm an n.
This exponential growth would have been expected for this kind of instability. Since the
number of points in θ and ϕ is unchanged for large k⊥ρi values, it might not be enough to
resolve the mode when n = 30 or n = 35. Indeed, a number of points Nϕ = 128 implies
that there are roughly 4 points per period when n = 30. The same reasoning applies for
the θ direction as Nθ = 256 and mres ' q nres ∼ 60. Low spatial discretization could
explain why we were unable to retrieve the growth rate and pulsation for large values of
k⊥ρi, but this problem remains an open question. We believe on the other hand that
the time step is small enough. Indeed, simulations with smaller time steps (∆t = 1ω−1

c0 )
have been launched, but no change of behaviour has been noticed.

4.2.4 Dependence of the growth rate and the pulsation with the ion
temperature gradient

In this section, the electron temperature gradient is maintained constant R0/LTe = 6.92
whereas the ion temperature gradient varies within the range R0/LTi ∈ [0, 6.92], the two
limit cases corresponding to the TEM and ITG dominant regimes introduced in section
4.2.1. The toroidal wavenumber is �xed to n = 14 which implies kθρi = −(nq/rpeak)ρi =
−0.28. The evolution of the linear growth rate γ and pulsation ω are computed using
the Trapped Kinetic Electron model with the codes Gysela and GT5D and shown on
Figs.4.10 and 4.11.

The TEM regime is obtained for R0/LTi < 5.2. The ITG-TEM transition is charac-
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Figure 4.8: Dependence of the growth rate with the toroidal wavenumber. The ITG-
dominant case used here corresponds to the parameters: R0/LTi = R0/LTe = 6.92

Figure 4.9: Dependence of the pulsation with the toroidal wavenumber. The ITG-
dominant case used here corresponds to the parameters: R0/LTi = R0/LTe = 6.92
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Figure 4.10: Dependence of the growth rate with the ion temperature gradient. One
toroidal mode n = 14 has been launched with an electron temperature gradient R0/LTe =
6.92

Figure 4.11: Dependence of the pulsation with the ion temperature gradient. One toroidal
mode n = 14 has been launched with an electron temperature gradient R0/LTe = 6.92
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terized by a change of sign of the pulsation ω as explained earlier. Moreover we observe
a change of slope in the evolution of γ characteristic of a di�erent solution given by the
linear dispersion relation. The instability is fuelled by the plasma inhomogeneities which
act as sources of free energy. In the case of a low value of R0/LTi , the instability is driven
mainly by electrons and for a big value of R0/LTi , the instability is driven mainly by
ions. We observe that the ITG/TEM transition is sharp and the same with both codes.
The radial temperature has a bigger impact on the type of instability than the chosen
wavenumber. It can be noted that a di�erence appears between the two codes. This de-
viation can partly be explained by the fact that the value of ρ∗ chosen in Gysela must
depend on the parameter R0/LTi to be comparable to the one of GT5D as explained
in section 4.2.5. The choice ρ∗GY S = 1/139 is comparable to ρ∗GT5D = 1/150 only for
R0/LTi = 1.7 and R0/LTi = 5.5. In the future, it would be interesting to do this test
again, using this time the good value of ρ∗GY S associated with the corresponding R0/LTi
so as to get comparable ρ∗ values with the two codes.

4.2.5 Normalisation of the value of ρ∗ inGysela to �t the one in GT5D

To do the comparison between Gysela and GT5D, we must use the same parameter ρ∗.
The problem here is that ρ∗ are computed di�erently in Gysela and GT5D. Therefore,
a given value of ρ∗GT5D will correspond to a di�erent value of ρ∗GY S . We �rst give the
expressions of ρ∗ calculated with each code. Second, we give the condition between ρ∗GY S
and ρ∗GT5D so as to have the same physical parameter. In each code, ρ∗ is computed as
follows:

• GT5D

ρ∗GT5D =
vGT5D
th,i

aωci
with vGT5D

th,i =

√
〈Ti〉r
mi

where the averaged ion temperature 〈Ti〉r is computed as:

〈Ti〉r =

´ a
0 rTi(r) dr´ a

0 r dr

• Gysela

ρ∗GY S =
vGY Sth,i

aωci
with vGY Sth,i =

√
Ti(rpeak)

mi

The ratio of these two normalisations gives:

ρ∗GY S
ρ∗GT5D

=

√
Ti(rpeak)

〈Ti〉r
Therefore, to get a value of ρ∗ with Gysela identical to the one of GT5D, we must
choose ρ∗GY S as:

ρ∗GY S =

√
Ti(rpeak)

〈Ti〉r
ρ∗GT5D (4.27)
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Figure 4.12: Dependence of ρ∗GY S with R0/LTi to satisfy condition (4.27) with ρ∗GT5D =
1/150. (a) ρ ∈ [0, 1] and ρpeak = 0.5. (b) ρ ∈ [0, 0.7] and ρpeak = 0.35.

The value of 〈Ti〉r depends on the parameter R0/LTi . Therefore, it is necessary to cal-
culate for each value of R0/LTi the corresponding value of ρ∗GY S . We plot in Fig.4.12.a
the value of ρ∗−1

GY S as a function of R0/LTi to satisfy condition (4.27). The associated
temperature pro�le is given by Eq.(4.26) with δ = 0.3, ρ ∈ [0, 1] and ρpeak = 0.5.

In the tests launched with Gysela, we chose ρ∗GY S = 1/139 independently of the
value of R0/LTi . We realized recently that this value corresponds to an old normalization
used for R0/LTi = 6.92 with ρ ∈ [0, 0.7] and ρpeak = 0.35. This case corresponds to the
intersection of the purple dashed lines of Fig.4.12.b. Meanwhile, these parameters were
changed to ρ ∈ [0, 1] and ρpeak = 0.5 so as to be the same as those used in GT5D.
Thus, this value of ρ∗GY S does not satisfy condition (4.27) for every value of R0/LTi . The
error made on ρ∗ can be estimated to approximately 7%. This could explain part of the
di�erences observed between the two codes in Figs.4.10 and 4.11.
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4.3 Implementation of a method to launch non-linear sim-
ulations

Previous linear tests have been carried out using a single toroidal mode. Fig.4.13
shows the development of the potential using the trapped kinetic electron model at
mi/me = 100 with the discretization mentioned earlier in the linear study. In such tests,
the development of resonant modes at k‖ = 0 is observed. Yet, future studies of turbulent
transport will require to launch cases with several toroidal modes for simulation times
much longer than those used in the linear study. Therefore the cost of such simulations
is expected to be very large. Moreover, given that the growth rate of the linear modes
is substantially modi�ed for small values of mi/me (∼ 1) [9, Bottino 2011], it can be
expected that the transport levels will be badly predicted if a too low mass ratio is cho-
sen. It is therefore in our best interest to �nd numerical methods that reduce the cost
of simulations while ensuring that the evolution of turbulence is correctly predicted by
doing so. The testing of such methods is done by launching a bunch of toroidal modes
so as to look at the linear growth of the resonant modes satisfying m/n = −q.

Figure 4.13: Fourier transform in (θ, ϕ) of the electric potential in a multimode simula-
tion.

First, we highlight the emergence of high frequency modes when using the Full Kinetic
Electron model, the so-called ωH mode, which is characteristic of an electrostatic model.
Consistently with the calculation made in section 4.3.1, ωH modes are expected to arise
due to passing particles at �nite k‖. Provided these particles are treated with an adiabatic
response, as proposed by Idomura [51, Idomura 2016] (he only retains the kinetic response
of passing electrons for k‖ = 0 modes), the simulation should be safe with respect to ωH
modes. In practice, this amounts to �ltering the modes (m,n = 0) with m 6= 0. Besides,
Lee also recommend to eliminate the modes (m,n) with m ' 0 [59, Lee PFL1983].
Second, we present a method developed to reduce the numerical cost of these simulations:
the aligned coordinate method ([57, Latu],[45, Hariri]). This method is particularly useful
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Figure 4.14: Time spectrum of a multimode ITG-like case for di�erent mass ratios. We
measure ωH(mi/me = 1) ' 0.016 ωc0 and ωH(mi/me = 25) ' 0.076 ωc0. We �nd
ωH(mi/me = 25)/ωH(mi/me = 1) = 4.75 ' 5.

to resolve the dynamic of kinetic electrons which require higher space resolution, hence
more memory.

4.3.1 The so-called ωH mode: a signature of the electrostatic model

Using the parameters described in section 4.2.1, we place ourselves in the conditions of
the ITG-like case. We introduce an initialization of the modes (m,n) with an ampli-
tude φm,n(t = 0) ∝ exp

{
−(m/n+ q)2

}
. There is a substantial transport of matter and

energy modifying the density and temperature pro�les, which prevents a linear analysis
from being carried out. This transport seems to be concomitant with the appearance
of high frequency oscillations, attributed to the so-called ωH mode, which are shown for
di�erent mass ratios in Fig.4.14.

The ωH mode corresponds to the electrostatic limit β � 1 of the kinetic Alfven
wave [74, Scott 1997] as explained in Appendix D.2. In the case of kinetic electrons,
this mode is found by looking at the resonance of the passing particles in the dispersion
equation (4.23). Here, the terms (k⊥ρi)

2 and ωD have been neglected. Considering only
the resonance of passing particles, this equation reads:

2−
〈

ω − ω∗i
ω − k‖v‖i

J2
0

〉
︸ ︷︷ ︸

I

−
〈

ω − ω∗e
ω − k‖v‖e

〉
︸ ︷︷ ︸

E

= 0 (4.28)

where 〈...〉 =
´
... Feq d3v and J2

0 ' 1−(k⊥ρi)
2/2. In the hydrodynamic limit ω � k‖vth,e
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and neglecting the equilibrium gradients ω � ω∗i , ω
∗
e , the ion and electron terms of

Eq.(4.28) become:

I ' 1− (k⊥ρi)
2

2
; E ' 1 +

(
k‖vth,e

ω

)2

Finally, the resonant pulsation ωH , solution of Eq.(4.28) takes the form:

ωH
ωci

=
k‖

k⊥

√
mi

me
(4.29)

This high frequency can be measured in Fig.4.14 and the dependence in
√
mi/me is

veri�ed. Two points can be mentioned here: on the one hand, the ωH mode is a signature
of the electrostatic model that should not appear in an electromagnetic model. On
the other hand, it appears only at high frequency. Thus, two strategies can be used
numerically to treat this ωH mode:

• Either we keep these modes and the time step should be chosen small enough to
resolve these modes. This solution requires a very small time step and is therefore
costly numerically.

• Or we �lter these modes so as not to take them into account in our study.

Choosing the second option, the question arises how to �lter these modes. It should be
noted that these modes are due to passing electrons and have a �nite k‖ ' 1

R [n+m/q].
We therefore choose to proceed in a way similar to what is done in GT5D [51, Idomura
2016] to eliminate the ωH mode: on the one hand, only trapped electrons receive a
kinetic treatment and on the other hand we �lter the modes n = 0 except for the mode
(m = 0, n = 0).

4.3.2 The aligned coordinates method: a way to reduce the toroidal
discretization

In Gysela, parallel derivatives can be computed using �eld-aligned coordinates [57,
Latu 2018]. This allows one to use a coarser grid in a chosen direction, while still
properly describing the relevant k‖ ∼ 0 modes. The method has been initially proposed
by Ottaviani [67, Ottaviani 2011], and further developed in the Fenicia code [45, Hariri
2013].
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Parallel and perpendicular dynamics

The equations of motion in Gysela state as follows, when considering dominant contri-
butions only:

dr

dt
= vEr + vDr

dθ

dt
=
vEθ + vDθ

r
+
v‖

qR
(4.30)

dϕ

dt
=
v‖

R

In this scheme, we numerically solve a 2D advection in (r, θ) given by the two �rst
equations of the system (4.30), a 1D advection in ϕ given by the last equation and the
advection in v‖. One can notice that this motion of the gyrocentres can be decomposed
in two independent dynamics:

• a dynamics parallel to the magnetic �eld lines described by the equations:{
dθ
dt = v‖/qR
dϕ
dt = v‖/R

(4.31)

• a dynamics perpendicular to the magnetic �eld lines described by the equations:{
dr
dt = vEr + vDr
dθ
dt = (vEθ + vDθ)/r

(4.32)

The aligned coordinate method ([57, Latu 2018],[45, Hariri 2013]) consists in solving the
2×2D advections (4.31) and (4.32) and the advection in v‖. This so-called Strang splitting
is therefore more demanding in numerical resources for a given discretization. However,
the gradients in the parallel direction are much smaller than those in the transverse di-
rections, roughly in the ratio k‖qR ∼ k⊥ρi. Therefore the aligned coordinates method
enables to use a discretization in the parallel direction much coarser than that used to
describe the transverse directions. It is then possible to greatly reduce the discretization
in one of the three spatial dimensions with little loss of accuracy in the description of
plasma physics. The idea of this method is detailed below.

In practice, small grid steps (large number of grid points) are used in the radial r
and poloidal θ directions and a coarse mesh in the toroidal direction ϕ. Let us consider
a function G of the 2 space coordinates θ and ϕ. Let (θ∗, ϕ∗) be the footpoint of the
trajectory, i.e. the point at which a 2-dimensional interpolation is required. The �eld-
aligned method proceeds in 2 steps for this interpolation. Before all, one identi�es the
magnetic �eld line which intersects (θ∗, ϕ∗). The intersections of this �eld line with the
toroidal grid mesh are marked with blue crosses on Fig.4.15. The �rst step consists in
interpolating the value of G on each of these crosses by using the re�ned mesh in the
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Figure 4.15: Discretization of a magnetic �eld line using the aligned coordinate method.

poloidal direction. For the second and last step, the value of G at (θ∗, ϕ∗) is computed
by performing an interpolation along the �eld line, by using the values computed at step
1 on the blue crosses. Also, parallel gradients (which govern the equation computing
dtv‖) are computed with �nite di�erences along the �eld line.

Comparison aligned versus not aligned

In the adiabatic electrons model, we launch two series of simulations, one using the
aligned coordinates scheme and the other using the classical coordinates scheme. We
compare the evolution of the higher amplitude modes with and without aligned coor-
dinates for di�erent numbers of toroidal points Nϕ (see Fig.4.16). We see that the
non-aligned case with Nϕ = 32 has not converged so we did not show the case Nϕ = 16.
Conversely, the aligned case Nϕ = 128 has totally converged so we did not show the case
Nϕ = 256.

It is found that the two cases have converged at identical levels from a toroidal
discretization Nϕ = 32 for the aligned case and Nϕ = 256 for the non-aligned case.
The aligned coordinates enabled a reduction of spatial discretization (here by a factor
8) while obtaining similar results. The resulting e�ective cost in terms of computation
time is summed up in Tab.4.1. Due to issues related to the Strang splitting explained
earlier, aligned cases are more costly than non-aligned ones at a given Nϕ. This saving
is particularly valuable for the launch of nonlinear cases with kinetic electrons for which
the evolution times are long and therefore very expensive in terms of numerical resources.

Nϕ 256 128 32 16

Not aligned 108 653 53 746 14 187 -

Aligned - 118 899 23 112 11 432

Table 4.1: Cost in CPU seconds of a similar case for di�erent toroidal discretization with
the aligned and not-aligned methods.
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Figure 4.16: Evolution of the absolute value of the four dominant modes at t = 16000ω−1
c0 .

In particular, it can be noted that the simulation converges with less toroidal points in
the aligned scheme (Nϕ = 32 with the aligned coordinates versus Nϕ = 256 without).



4.3. METHOD FOR NON-LINEAR SIMULATIONS 127

Expression of the e�ective parallel wave vector

It has been seen that the aligned method gives, for a reduced numerical cost, similar
growth rate values for resonant modes as the ones obtained without using this method.
However, we want to check whether the (m,n) values of resonant modes are the same with
both methods. To do so, we recall the reasoning made in [45, Hariri 2013] to compute
the e�ective parallel wave vector in the aligned method, the resonant modes being the
ones such satisfying k‖ ∼ 0. The reasoning is the following. The parallel gradient of any
3D �eld φ can be computed by �nite di�erences along the parallel direction s. At second
order, it reads:

R∇FA‖ φ(r, ξ, s) ≈ φ(r, ξ, s+ ∆s)− φ(r, ξ, s−∆s)

2∆s
(4.33)

where R is the major radius and the superscript FA stands for �eld-aligned coordinates.
∆s = ∆ϕ = 2π/Nϕ is the increment in the parallel direction (Nϕ being the number of
toroidal grid points), and ξ denotes the second coordinate orthogonal to the magnetic
�eld B (typically, ξ = θ−ϕ/q(r)). In terms of poloidal and toroidal Fourier modes (using
the change of variables (ξ, s)→ (θ, ϕ), with θ = ξ + ϕ/q and ϕ = s), such an expression
leads to:

R∇FA‖ φ(r, ξ, s) =
1

2∆s

∑
m,n

φ̂m,n(r, t){
eim[ξ+(s+∆s)/q]+in(s+∆s) − eim[ξ+(s−∆s)/q]+in(s−∆s)

}
=
∑
m,n

φ̂m,n(r, t)ei(mθ+nϕ) ei∆ϕ(n+m/q) − e−i∆ϕ(n+m/q)

2∆ϕ

=
∑
m,n

φ̂m,n(r, t)ei(mθ+nϕ) i sin [(n+m/q)∆ϕ]

∆ϕ
(4.34)

It turns out that the normalized e�ective parallel wave vector then reads:

kFA‖ =
sin(Rk‖∆ϕ)

R∆ϕ
= k‖sinc(Rk‖∆ϕ) (4.35)

where k‖ stands for the actual parallel wave vector at this resolution:

Rk‖ = n+
m

q

In this framework, the resonant modes are such that their e�ective parallel wave number
is vanishing kFA‖ = 0. This leads to the following relationship:

kFA‖ = 0⇔ nres = −m
q

+
`π

∆ϕ
= −m

q
+
`Nϕ

2
(with ` ∈ Z) (4.36)

In this case, even largemmodes can be coupled to �resonant� (i.e. such that kFA‖ = 0) low
n modes. As a matter of fact, given a maximum poloidal wave numbermmax which needs
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Figure 4.17: (a) Expected and (b) obtained 2D Fourier spectrum (m,n) of any �uctuating
�eld φ(r, θ, ϕ) using the aligned coordinate scheme. Fig.(b) has been obtained with the
trapped kinetic electron model. Fig.(a) shows three kind of modes: the resonant (in
black), folded (in red) and spurious (in dashed red) modes.

to be resolved, there is no need to go up to nmax = −mmax/q in order to properly account
for resonant modes at this small transverse scale: the toroidal n` modes characterized by
n` = −mmax/q + `π/∆ϕ will already do the job.

Aliasing and resonances

Let us now consider the case of an under resolved simulation in ϕ using �eld aligned
coordinates to compute parallel derivatives. By under resolved, we mean that resonant
modes such that m + nq = 0 will still have a large magnitude at the smallest resolved
scale in ϕ, namely for (m,n) = (∓qNϕ/2,±Nϕ/2). Aliasing (see Appendix D.3) will
result in the appearance of o�-diagonal modes in the 2D (m,n) Fourier spectrum of the
signal, depicted by the red-solid lines on Fig. 4.17.a. These modes will still be treated as
resonant by the code (althoughm+nq 6= 0) since their e�ective parallel wave vector kFA‖ is
vanishing. However, these are not the only modes which are considered as resonant within
the �eld-aligned approach. Indeed, Eq.(4.36) shows that additional o�-diagonal bands
are also to be considered as resonant (dashed-red lines on Fig. 4.17.a). In a Gysela
simulation, after a reorganization phase, we observe on Fig.4.17.b the appearance of the
three types of modes mentioned earlier:

• The resonant modes satisfying m/n = −q (black line of Fig.4.17.a).

• The "folded" modes due to aliasing and corresponding in fact to the modes such
that |n| > Nϕ/2 (red lines of 4.17.a).

• Other "spurious" modes that are resonant in the �eld-aligned approach but which
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are neither the ones satisfying m/n = −q nor the ones explained by aliasing which
are considered (dashed-red lines on Fig. 4.17.a).

In our case, Nϕ = 32 and the modes n > 16 (resp. n < −16) will appear at the
toroidal frequencies n − Nϕ (resp. Nϕ − n). We take the ITG-like case in which we
initially excite the set of resonant modes for n ∈ [−10, 10]. In order to launch non-linear
tests, it is necessary to ensure that the folded and spurious modes do not interfere with
the resonant modes with a m/n value close to −q. If the value of Nϕ is too small,
the resonant modes and the spurious modes overlap. This could alter the predictions
of turbulent transport and should therefore be avoided. To circumvent this problem,
we add a "diagonal �lter" which retains only the diagonal band m = −nq and those
corresponding to folded modes. The width ∆m of these bands must be chosen both to
retain these modes while eliminating the spurious modes. The gap in m between the
spurious modes and the original signal being qNϕ/2, a possible choice is to retain only
the modes m ∈ [−qn−∆m/2;−qn+ ∆m/2] with ∆m = qNϕ/2.
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4.4 First results of non-linear simulations

Using the strategy described in section 4.3, some �rst non-linear simulations were launched
with the trapped kinetic electron model. In this section, we present some results to vali-
date the trapped kinetic electron model. To do so, we compare the results obtained with
the 2 limit cases ITG-dominant and TEM-dominant mentioned earlier. We use the same
parameters as those described in section 4.2.1. We use Neumann boundary conditions
without any source of particle or energy. The initial potential perturbation is taken as
φm,n0(t = 0) = 10−5 exp

{
−(m/n0 + q)2

}
in normalized units. Besides, we use a mass

ratio mi/me = 100 and we recall the form of density and temperature pro�les given by
Eq.(4.26):

X(r, t = 0) = exp

{
−R0

LX
δ tanh

(
ρ− ρpeak

δ

)}
where X stands for either n, Ti or Te. We have δ = 0.3, R0/Ln = 2.22 and R0/LTe = 6.92
in both cases. Besides, we choose (i) R0/LTi = 6.92 in the ITG-dominant case and (ii)
R0/LTi = 0.5 in the TEM-dominant case. Furthermore, we use the aligned coordinates
method described in section 4.3.2. We also introduce in both cases the same initializa-
tion as the one used in part 4.3.1. In particular, we use the same �lter to eliminate the
modes (m,n = 0) with m 6= 0. The discretization used in these simulations is Nr = 255,
Nθ = 256, Nϕ = 32, Nv‖ = 127 and Nµ = 15 and the time step is ∆t = 2ω−1

c0 . Both
cases were launched using the Marconi machine on the Broadwell partition. Each case
made 15000 iterations on 4608 processors for a total computational time of 200 000 CPU
hours. It should be stressed that the two simulations presented here are at the minimum
possible resolution in terms of time step, spatial and µ discretization. The discretization
should be increased for future non-linear tests. The cost of such simulations would be
rather 1 million CPU hours. The following study aims to show that some simple physical
statements can be veri�ed with this kinetic electron model.

First, we look at the evolution and structure of the potential. Then we study the
energy transfer from the electric wave to particles in order to verify which species is
responsible for the instability in each case. Finally, we check that the conservation of
energy is well satis�ed using our model.

4.4.1 Potential structure

Fig.4.18 shows the evolution of the modes (m,n) of the electric potential which are dom-
inant at t = 30000ω−1

c0 . We recognize up to t ' 17000ω−1
c0 the linear growth phase of the

resonant modes seen in the linear analysis and then the saturation of these modes at their
maximum level during the non-linear phase that follows. It can be noted here that the
mode φ00 grows very fast and independently with other modes. This mode is not only due
to turbulence: it also participates to the radial force balance Er = 1

e∇rp−vθ Bϕ+vϕBθ.
It is possible that it is this contribution which appears very early, before the turbulence
contributes to it. Besides, an "accident" seems to appear in both cases (t = 20000 for
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the ITG case, t = 15000 for the TEM case). One should keep in mind that what is plot-
ted corresponds to the value of φ00 at a given radius (rpeak). However φ00 has a radial
structure, which oscillates around 0. If these oscillations move slightly, φ00 may change
sign in rpeak, passing through 0. This is probably the case in the accident at t = 20000).
Thereafter, we choose to explore the potential structure in the non-linear phase at the
two times t = 20000ω−1

c0 and t = 25000ω−1
c0 .

Fig.4.20 shows the poloidal pro�les of the potential �uctuations φ − φ00 in the non-
linear phase at the times mentioned earlier. We recognize a ballooned structure, i.e.
the �uctuations are greater in the low �eld side than in the high �eld side. This is a
characteristic of an interchange-type instability. It can be noted here that in Fig.4.18 the
case ITG-dominant seems to enter the non-linear phase before the TEM-dominant case.
This explains that potential poloidal pro�le in Fig.4.20 seems to have a more advanced
structure in the ITG-dominant case than in the TEM-dominant one. Besides, the poten-
tial structures seem to be larger in the TEM-dominant case than in the ITG-dominant
one. In certain ranges of plasma parameters, zonal �ows are known to be less e�cient
to stabilize TEM turbulence than ITG turbulence [4, 62, Asahi 2014, Merz 2008], hence
letting potential structures to become larger in the TEM-dominant case. If we look at
the drφ00 pro�les on Fig.4.19 at the �nal time, the shears seem to be of the same order
of magnitude (∼ 3.10−3) and present similar pro�les, with a large layer of central shear
(ρ ∼ 0.5−0.6) and not much elsewhere. The history is quite di�cult to compare because
of di�erences in color scale, but shear levels do not seem to di�er greatly between the two
simulations ITG-dominant and TEM-dominant. In fact, the shear seems to be almost the
same in both situations but its e�ect on turbulence is di�erent: di�erences in radial scales
observed on potential �uctuations (Fig.4.20) could result from the fact that TEMs are
less sensitive to a given shear that the ITGs. That would be consistent with the literature.

We show on Fig.4.21 the Fourier transform in (θ, ϕ) of the previous potential pro�les
in the non-linear phase at the same times as before. The blue horizontal band n = 0
corresponds to the modes (m 6= 0, n = 0) which were removed here as said earlier. We
verify that in the non-linear phase, the resonant modes (m,n) satisfying k‖ = 0 remain
dominant in the non-linear phase. We also notice the presence of the folded modes
mentioned in section 4.3.2. Besides, we see that the spurious modes, presented in the
same section, appear in the ITG-dominant case.

4.4.2 Energy conservation

We now want to check that the energy conservation equation established in Appendix D.1
is veri�ed in the non-linear phase for the two cases: ITG-dominant and TEM-dominant.
The energy conservation for a given species reads as follows:

V ∂t 〈E〉FS + ∂χ (V 〈Qχ〉FS) = −e
〈ˆ

d3v
(
v‖ + vE + vD

)
·∇φ̄ f̄

〉
FS

(4.37)
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Figure 4.18: Evolution of resonant modes for the ITG-dominant and TEM-dominant
cases.
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Figure 4.19: Evolution of the radial pro�le of drφ00 for the ITG-dominant and TEM-
dominant cases.

where the �ux surface average has been de�ned as 〈...〉FS = V −1
´

dθ dϕ
√
g ... with V =´

dθ dϕ
√
g and

√
g = Rr drdχ the Jacobian in position coordinates. The term V ∂t 〈E〉FS

stands for the time variation of the kinetic energy of the considered species. The term
∂χ (V 〈Qχ〉FS) represents the radial energy transport within the tokamak. The right
hand side corresponds to the energy transferred from the electric wave to particles, also
written

´
Js ·E d3v where E stands for the electric �eld and Js = es

(
v‖ + vE + vDs

)
f̄s,

v‖, vE , vD being respectively the parallel velocity, the electric and magnetic drifts and f̄
the gyrokinetic distribution function of the considered species. This term has a particular
signi�cance and is studied in more details in the next section.

Fig.4.22 shows the radial pro�les of the di�erent terms involved in the energy conser-
vation equation (4.37) for the two species. Figs.4.23 and 4.24 shows the same diagnostic
for each species. We observe that the energy conservation is well satis�ed for ions and
electrons. Besides, we can notice that the terms ∂χ 〈QE〉FS and ∂χ 〈QD〉FS are opposite
[32, Garbet 2016]. It is interesting to note that the exchanged energy between wave and
particles eφ̄∂tn in green in Figs.4.23 and 4.24 is much lower than the other terms involved
in the conservation equation.

4.4.3 Energy transfer between the electric wave and particles

The method mentioned in section 4.2.3 to determine the nature of the instability is dif-
�cult to use during the non-linear phase because the potential pro�le is very heckled.
However, we can look at the energy transferred to the wave by the ions and electrons of
the plasma. We expect that in an ITG turbulence it is mainly the ions that supply the
energy to the wave and conversely that it is the electrons that provide the energy to the
wave in a TEM turbulence. In Appendix D.1.2, this energy transfer is derived and reads
as
´

Js · E d3v as mentioned in section 4.4.2. It is shown in particular that the energy
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Figure 4.20: Poloidal pro�le of the potential �uctuations φ − φ00 at the times t =
20000ω−1

c0 and t = 25000ω−1
c0 for the ITG-dominant and TEM-dominant cases. t =

20000ω−1
c0 corresponds to the beginning of the non-linear phase.
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Figure 4.21: Fourier transform of the poloidal pro�le of the potential for the ITG-
dominant and TEM-dominant cases.

transfer associated to the electric drift is vanishing and that the term associated to the
parallel drift is negligible compared to the one due to the gradients and curvature of the
magnetic �eld. This is consistent with the fact that the instability is of the "interchange"
type, i.e. governed by the inhomogeneity of B (as well as the inhomogeneities of n and
T ). Consequently, the energy transfer term reduces to

´
JD · E d3v where JD = evDf̄ .

We show on Fig.4.25 the energy transfer wave to particle from t = 0 to t = 25000ω−1
c0

with Gysela.

We �nd that in the ITG-dominant case, it is indeed the ions that give energy to the
electric wave. For the TEM-dominant case, both species participate in the instability.
We can see on both plots that the radial pro�les are perturbed. The high variations
between neighbouring points observed in the ITG-dominant case are typical of a too low
resolution. It is known that the radial step is too small to fully resolve our simulations and
this could explain these pro�les. In the TEM-dominant case however, the perturbations
seem to have a larger radial period. It is therefore unclear whether these corrugations
observed on the energy transfer pro�les are a kinetic signature of electrons as explained
in Appendix D.4 or a mere consequence of a low spatial resolution. Future simulations
would require decreasing the radial step to check this last point.
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Figure 4.22: Local energy balance for all species at time t = 20000ω−1
c0 for the ITG-

dominant case and t = 25000ω−1
c0 for the TEM-dominant case.
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Figure 4.23: Local energy balance for ions at time t = 25000ω−1
c0 for the TEM-dominant

case.
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Figure 4.24: Local energy balance for electrons at time t = 25000ω−1
c0 for the TEM-

dominant case.
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Figure 4.25: Energy transfer normalized to T0 from the electric wave to particles from
t = 0 to t = 25000ω−1

c0 on the radial domain. A negative value means that particles give
energy to the wave.
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4.5 Conclusion

In this chapter, several results have been seen:

• The ITG instability is recovered for large values of R0/LTi and the TEM instability
for small values of R0/LTi while keeping the parameter R0/LTe constant.

• The linear behaviour of the codes Gysela and GT5D is similar. The deviations
observed between the two codes are less than 10%. These may be due to the low
discretization used in Gysela and/or to the di�erences of simulation parameters
(in particular ρ∗).

• One should remove the modes (m 6= 0, n = 0) to avoid the apparition of the so-
called ωH mode. This mode appears here because the model is electrostatic and it
should not be present in an electromagnetic simulation.

• The aligned coordinates method enables to reduce the number of points in the
toroidal direction by a factor 4 to 8, hence reducing the overall cost of simulations.
So far, this method requires the use of a diagonal �lter in the Fourier space so as
to remove spurious modes speci�c to that method.

• In the �rst non-linear simulations, we saw on the one hand, that the potential
structure shows a ballooned shape with the resonant modes k‖ = 0 which become
dominant as expected. On the other hand, the energy transfer diagnostic indicates
that ions give energy to the wave in the case of an ITG instability and that both
ions and electrons participate to the growth of the considered TEM instability, the
role of electrons being dominant. Moreover, the energy conservation seems to be
globally satis�ed for both species.



Conclusion

Providing an adiabatic treatment to electrons is not an unreasonable assumption for a
turbulence dominated by ions. In this case, the structures of the modes are made at large
scales and evolve over times much longer than the evolution times of electrons. Indeed,
the fast parallel dynamics of the electrons allows them to stay in phase with ion turbulence
structures, hence leading to an adiabatic response of the electrons. Nevertheless, this
approach misses some important physical issues:

• Near the resonance surfaces k‖ = 0, the response of electrons is non-adiabatic.

• In an adiabatic electron model, the turbulent particle transport is almost vanishing.

• The turbulence carried by electrons is not taken into account when electrons are
adiabatic.

Accessing this physics thus requires to go beyond the frame of adiabatic electrons. Some
codes have already taken this step and the aim of this thesis is to do the same for the
Gysela code. A kinetic electron model has been developed in which a gyrokinetic equa-
tion is added to describe the temporal evolution of the electron distribution function on
the one hand and in which the quasi-neutrality equation is modi�ed to take into account
the new kinetic form of the electron density on the other hand. The high cost of such
full kinetic simulations has led us to develop a third hybrid model between the adiabatic
electron model and the kinetic electron model in which only the trapped electrons are
treated kinetically. This intermediate model has the advantage of allowing less expensive
simulations by arti�cially reducing the mass ratio mi/me while still recovering some of
the physics of the trapped electrons. Eventually, we end up with three di�erent models
to treat electrons:

• The Adiabatic Electron (AE) model where all electrons have an adiabatic re-
sponse.

• The Full Kinetic Electron (FKE) model where all electrons are described by a
kinetic distribution function.

• The Trapped Kinetic Electrons (TKE) model in which it is possible to give a
kinetic response only to a part of the electrons (usually the trapped ones) and to
treat the rest adiabatically.
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First, we have looked at the impact of kinetic electrons on the damping of Geodesic
Acoustic Modes (GAM). The damping of GAMs is part of the Rosenbluth-Hinton test
which is a well known test to benchmark and verify gyrokinetic codes. The comparison
between simulations run with the Adiabatic Electron model and the Full Kinetic Electron
model showed that the GAM pulsation remains almost unchanged in the presence of ki-
netic electrons in agreement with theoretical predictions. Conversely, the GAM damping
rate is increased for large values of the safety factor. The theory to predict the pulsation
and damping rate of GAMs existed only for adiabatic electrons models. In this thesis, the
contribution of electrons to GAM damping has been derived. It appears that this con-
tribution is usually not negligible thanks to a resonance between barely trapped/passing
electrons bounce/transit frequency and the mode pulsation. Damping is estimated via
the computation of the energy exchanged between the mode and electrons. This expres-
sion appears to be quite intricate as it involves a quadruple integral over the phase space
and poloidal angles. A more tractable expression is obtained by assuming a strong weight
of trapped particle bounce points in this integral. The ratio between the exact result
and the approximate is a weight function that depends only on a dimensionless num-
ber, which characterises the ratio of the mode to trapped electrons bounce frequencies.
This weight function thus measures the number of resonant electrons that participate
in mode damping. Comparison with available data in the literature suggests that this
weight function is nearly constant and close to 1, thus con�rming a prominent role of
barely trapped particles. In addition, under suitable assumptions, the model recovers
that the damping rate evolves with the mass ratio as (mi/me)

−1/2, in agreement with
three gyrokinetic codes, namely Gysela, ORB5 and GENE [7, Biancalani 2017].

This work also enabled to look at the impact of kinetic electrons on the linear growth
of the Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabili-
ties. We use the Trapped Kinetic Electron model at low mass ratio mi/me = 100 to save
numerical resources and we look at both the sign of the poloidal pulsation and the en-
ergy transfer from the electric wave to the ions and electrons of the plasma to determine
the type of instability, ITG or TEM. It appears that temperature gradients have a very
big impact on the type of instability in presence : a high electron temperature gradient
implies the trapped electrons provide energy to the electric wave, whereas a high ion
temperature gradient implies the ions excite the wave. Besides the transition between
ITG and TEM dominated regimes is clearly observed while changing the radial gradient
of the ion temperature for a �xed electron temperature pro�le. However, we did not re-
cover the transition when increasing the value of the wavevector of the mode, interpreted
as a result of a too coarse mesh grid, constrained by numerical resources. Finally, we
set up the frame for future simulations to build non linear cases that could enable to
study the in�uence of kinetic electrons on turbulent transport. First, it is important to
�lter the modes of poloidal number m = 0 and those of toroidal number n = 0 except
for the zonal �ow (m,n) = (0, 0). This operation eliminates the ωH mode which is the
low β response of the kinetic Alfvén wave and appears only in electrostatic simulations.
The appearance of this mode is accompanied by a radial particle and energy transport
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that should not occur in the electromagnetic case. Therefore, this mode has been safely
�ltered out. Second, the aligned coordinate method developed in [45, 57, Hariri 2013,
Latu 2018] is to be preferred since it gives results similar to the non-aligned method for
a much lower numerical cost. It should be used in conjunction with a diagonal �lter to
avoid the growth of spurious non-resonant modes.

The �rst step to continue this work would be to measure the transport coe�cients
with and without kinetic electrons. This study should provide a �rst glimpse of the
impact of kinetic electrons on turbulent transport. To complete this �rst study, one
should add the possibility of using the particle source that has been discussed in the
end of chapter 2 and treat the collision term electron-ion that is not implemented in the
current version of the code although it is of the same order of magnitude as the collision
term ion-ion. Finally, one should get rid of the electrostatic hypothesis by adding the
Ampere equation to the gyrokinetic system in order to solve the evolution of the magnetic
�eld. This electromagnetic model would thus take into account all the magnetic modes.
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Appendix A

Appendices of chapter 1

A.1 Expression of the intrinsic angle θ∗

We are looking for the expression of θ∗ as a function of the poloidal geometric angle θ,
and the poloidal �ux ψ. In particular, the ratio dθ∗/ dθ will be computed.

We introduce A as the vector potential. Assuming that there is no radial current, A
can be developed in a suitable base (∇ψ,∇θ∗,∇ϕ) as:

A = ΨT∇θ∗ + ΨP∇ϕ

where ΨT and ΨP are for now undetermined quantities depending of ψ only. It is then
possible to compute B = ∇ ∧A:

B = ∇ΨT ∧∇θ∗ + ∇ΨP ∧∇ϕ

The projection of B on the vectors of the contravariant basis yields:

B ·∇ψ = 0 by de�nition, B is tangent to magnetic surfaces

B ·∇θ∗ = −J dΨP

dψ
with J = ∇ψ · (∇θ∗ ∧∇ϕ) (A.1)

B ·∇ϕ = J
dΨT

dψ

It can be shown that by averaging the quantities ΨT , ΨP on the magnetic surfaces of
the tokamak, we see that they correspond up to a factor 2π, to the toroidal and poloidal
�ux values respectively ([68, Rax 2012] p.165).

The safety factor expression can be found by noticing that:

q(ψ) ≡ dϕ

dθ∗

∣∣∣∣
LC

= − dΨT

dΨP
=

B ·∇ϕ

B ·∇θ∗
(A.2)
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Figure A.1: Evolution of the intrinic angle θ∗ depending on the poloidal angle θ as
predicted by Eq.(A.4). Here, we have chosen ε = 0.3, q = 2 and ∆ = 0.01.

In order to �nd the relation θ∗(ψ, θ), let us compute the ratio dθ∗/dθ:

dθ∗

dθ
=

B ·∇θ∗

B ·∇θ
=

B ·∇ϕ

qB ·∇θ

Hence it comes

θ∗(ψ, θ) =

ˆ θ

0
dϑ

B ·∇ϕ

q(ψ)B ·∇ϑ
(A.3)

with B ·∇ϕ =
Bϕ
R and B ·∇θ = Bθ

r with R and r being resp. the major and minor
radius of the position. Ampere's law implies BϕR = Bϕ0R0 with R0 the major radius at
the center of the tokamak, Bϕ0 the toroidal �eld Bϕ at R0. As an approximation, one

can choose for the expression of the poloidal �eld: Bθ = Bθ0

(
1 + ∆ r

R0
cos θ

)
with ∆ the

Shafranov shift and Bθ0 a function of ψ. Knowing moreover, that R = R0

(
1 + r

R0
cos θ

)
,

equation (A.3) becomes:

θ∗(ψ, θ) =

ˆ θ

0
dϑ
rBϕ0R0

R2
0Bϑ0

(
1 +

r

R0
cosϑ

)−2(
1 + ∆

r

R0
cosϑ

)−1

(A.4)

Fig.A.1 shows the evolution of θ∗ when θ varies.
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A.2 Change of coordinates from particle to gyrocentre

A.2.1 Canonical change of coordinates for f̄ : (qgy,pgy) to (qGC ,pGC)

Introduction of the gyro-centre

To de�ne correctly the gyrocentre, we �rst write the Hamiltonians describing a particle
and its guiding centre, and second we choose a good form of the Hamiltonian of the
gyrocentre, with the constraint that it should be independant of the gyroangle ϕc.

The Hamiltonian associated with a particle of mass m, charge e at coordinates (q,p)
is given by:

H(q,p, t) =
1

2
mv2
‖ + µB + eφ(x, t) (A.5)

The magnetic moment is an adiabatic invariant. At leading order, the value of µB
calculated at the position of the guiding centre can be approximated by µB calculated
at the position of the particle. The Hamiltonian of the guiding centre associated to the
coordinates (qGC ,pGC) is then given by:

HGC(qGC ,pGC , t) =
1

2
mv2

GC‖ + µB + eφGC(xGC , t)

where φGC(xGC , t) is the potential observed by a given guiding centre at the position
xGC . For each couple guiding centre-particle, the same potential is observed. Thus,
it comes the relation φ(x, t) = φGC(xGC , t). Indeed, the same physical reality is seen
from the point of vue of the particle and the guiding centre, in the same way as for the
distribution functions (cf. Eq.(1.63)). To express φGC(xGC , t) as a function of φ at point
xGC , it is needed to process a change of coordinates from x to xGC which consists in
making a limited development in x − xGC = ρc. Let F be a function of xGC that we
want to express in x. This can be written as:

F (xGC) = F (x)− (x− xGC) ·∇F |x + ... with x− xGC = ρc

which can also be written as:

F (xGC) = e−ρc·∇F (x) (A.6)

Thus, it is possible to write φGC(xGC , t) as:

φGC(xGC , t) = φ(x, t) = φ(xGC + ρc, t) = eρc·∇φ(xGC , t)

It is then possible to derive the �nal form of HGC(qGC ,pGC , t):

HGC(qGC ,pGC , t) =
1

2
mv2

GC‖ + µB + eeρc·∇φ(xGC , t) (A.7)

The fundamental point to notice here is that, due to the variations of the value of
the local electric �eld on scales of the Larmor radius, HGC depends of the gyroangle
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ϕc even when considered at the position of the guiding centre(cf. [11, Brizard
2007] p. 423). The dependency in ϕc comes from the fact that in the expression of HGC ,
the Larmor radius vector ρc depends on the gyroangle. Indeed, for di�erent values of ϕc,
the electric �eld seen by the particle is not the same, and this results in a modi�cation of
the Hamiltonian HGC . To simplify our problem, a physical object, the gyrocentre, at co-
ordinates noted (qgy,pgy), is introduced, and de�ned by its Hamiltonian, H̄(qgy,pgy, t),
taken as the gyroaverage on the gyroangle of HGC(qGC ,pGC , t):

H̄(qgy,pgy, t) =

ˆ
dϕc
2π

{HGC(qGC ,pGC , t)}

=
1

2
mv2

GC‖ + µB + eφ̄(xgy, t) (A.8)

with φ̄ being the averaged value of φ on the gyroangle:

φ̄(xgy, t) =

{ˆ
dϕc
2π

eρc·∇
}
φ(xGC , t) ≡ J.φ(xGC , t) (A.9)

As J involves only terms of even order, it is then possible to write equivalently

J =
{´ dϕc

2π e−ρc·∇
}
. It will be useful to keep in mind that due to the construction of

H̄:
∂ϕcH̄(qgy,pgy, t) = 0 (A.10)

Use of the generating function S from guiding-centres to gyrocentres

The old canonical coordinates (qGC ,pGC) � that of the guiding centre � and the new
ones (qgy,pgy) � those of the gyro-centre � only di�er by in�nitesimal quantities of order
ε ∼ ρ∗. They are related to each other by some in�nitesimal canonical transform. In
such a case, they can be shown to be related, at �rst order in the small parameter ε, by
the generating function εS(qGC ,pGC) 1 as follows (see [38, Goldstein 2002]):{

qgy − qGC = ε∂pgyS

pgy − pGC = −ε∂qgyS

At this point, the generating function εS remains to be determined. As explained
later, it can be deduced from the expressions of the Hamiltonians associated with the old
(guide centres) and the new (gyrocentres) coordinates (and the constraints put on their
structures).

Using Taylor expansion at �rst order, any �eld F evaluated at the position (qGC ,pGC)
can then be expressed in terms of its value at (qgy,pgy):

F (qGC ,pGC) = F (qgy,pgy)− ε[F, S]qGC ,pGC +O(ε2) (A.11)

1 Rigorously speaking, the generating function G is of the second kind: G = G2(qGC ,pgy) −
qgyro,ipgyro,i, with G2 = qGC,ipgyro,i + εS(qGC ,pgy, t). Here, (qGCipgyro,i − qgyro,ipgyro,i) acts as the
identity transform. The function S depends a priori on S(qGC ,pgy, t). At leading order in ε however, it
can also be considered as a function of either (qGC ,pGC) or (qgy,pgy), equivalently.
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This is especially true for the Hamiltonian HGC :

HGC(qGC ,pGC , t) = HGC(qgy,pgy, t)− ε[HGC , S]qGC ,pGC +O(ε2) (A.12)

Here, HGC(qgy,pgy, t) stands for the old Hamiltonian (for which (qGC ,pGC) are canon-
ically conjugated), with qGC (resp. pGC) replaced by qgy (resp. pgy). A priori, it di�ers
from the new Hamiltonian, H̄(qgy,pgy, t), for which (qgy,pgy) are canonically conju-
gated. The theory of canonical transformations ensures that HGC and H̄ are related by
the following relation:

H̄(qgy,pgy, t) = HGC(qGC ,pGC , t) + ε∂tS +O(ε2) (A.13)

On the other hand, the total time derivative of S reads: dtS = ∂tS − [HGC , S]. By
injecting Eq.(A.12) in Eq.(A.13), it readily appears that:

H̄(qgy,pgy, t) = HGC(qgy,pgy, t) + ε
dS

dt
+O(ε2)

As will be checked a posteriori, the considered generating function εS evolves slowly
enough so that ε dtS is actually of second order in ε. Therefore, at the �rst order of the
development that is considered here, it should be neglected:

H̄(qgy,pgy, t) = HGC(qgy,pgy, t) +O(ε2) (A.14)

In this case only, equation (A.12) can be safely replaced by:

HGC(qGC ,pGC , t) ' H̄(qgy,pgy, t)− ε[H̄, S]qGC ,pGC (A.15)

Let us use the set of angle-anction canonical coordinates (α,J) de�ned in section
1.2.2. As far as the gyrokinetic theory is concerned, the transformation acts on the �rst
pair of conjugate coordinates (α1, J1), with α1 = ϕc the gyro-phase and J1 = −msµs/es
(see [31, Garbet 2009]). From Eq.(A.15), it comes:

HGC(qGC ,pGC , t) = H̄(qgy,pgy, t)− ε[H̄, S]ϕc,J1

= H̄(qgy,pgy, t) + ε
(
ωcs ∂ϕcS − ∂ϕcH̄ ∂J1S

)
(A.16)

with ϕ̇c ≡ ωcs = ∂J1H̄ the cyclotron frequency. The canonical structure of the transfor-
mation implies that the Poisson bracket is unchanged, and its calculation is then easy.

Determination of S

As said previously in equation A.10, H̄(qgy,pgy, t) should not depend on the gyro-angle
ϕc. In this case, the last term on the right hand side of Eq.(A.16) vanishes. This allows
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one to express the generating function S2 as function of the old and new Hamiltonian:

εS(qGC ,pGC , t) =

ˆ
dϕc
ωcs

{
HGC(qGC ,pGC , t)− H̄(qgy,pgy, t)

}
=

ˆ
ms dϕc
B

{
eρc·∇φ(xGC , t)− φ̄(xgy, t)

}
=

ˆ
ms dϕc
B

{
φ(x, t)− φ̄(xgy, t)

}
(A.17)

A.2.2 Particle versus gyrocentre distribution functions

The problem that occurs here is that the quasi-neutrality equation is a constraint on
the particle densities of the di�erent species s of the plasma, which can be expressed as
integrals of the di�erent fs. But the gyrokinetic approach uses and computes only the
distribution function of gyrocentres f̄s. Thus it is necessary to insert a link between the
values of f and f̄ evaluated at the same point. Another point to state is that in the end,
the physical quantities, like density, should be expressed in the real space x. This �xes
the choice of coordinates used when the link between both distribution functions is made.

Let us recall equation (A.11) applyed to f̄ .

f̄(xGC ,vGC) = f̄(xgy,vgy)− ε[f̄ , S]ϕc,J1 +O(ε2) (A.18)

Knowing that, by construction, ∂ϕc f̄ = 0, it comes:

f̄(xgy,vgy) = f̄(xGC ,vGC)− ε
(
es
ms

∂ϕcS

)
∂µf̄(xGC ,vGC) (A.19)

Injecting the expression of S (Eq.(A.17)), the relation becomes:

f̄(xgy,vgy, t) = f̄(xGC ,vGC , t) +
e

B

{
φ(x, t)− φ̄(xgy, t)

}
∂µf̄(xGC ,vGC) (A.20)

Knowing that f̄(xgy,vgy, t) = f(x,v, t) (Eq.(1.63)), and by making a limited develop-
ment in x − xGC = ρc on all the xGC dependant terms, according to Eq.(A.6), we can
write:

f(x,v, t) = e−ρc·∇f̄(x,vGC , t) +
e

B

{
φ(x, t)− φ̄(xgy, t)

}
e−ρc·∇∂µf̄(x,vGC) (A.21)

It is now possible to express the density of particle using only the distribution function
of gyrocentres.

2 From its expression Eq.(A.17), it is clear that the partial time derivative of εS typically involves
frequencies ∂tS ∼ ωS which are much smaller than the cyclotron one: ω/ωcs � 1. As a result, the
ratio (ε∂tS)/H, with H ∼ eφ the �uctuating part of the Hamiltonian, turns out to be of the order of
(ε∂tS)/H ∼ (ω/ωcs) ε ∼ O(ε2).
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A.3 Expression of the polarization density ns,pol

This calculation was �rst made in J. Abiteboul's thesis [1, Abiteboul 2012] and extended
to the case where only trapped particles are kept.

General case

Notice that the Larmor radius itself depends on spatial location via its B dependence.
More precisely, when moving from one position to another x↔ xG, the following relations
hold:

x→ xG : x = xG + ρs(x) (A.22)

xG → x : xG = x− ρs(xG) ' x− ρs(x) + (ρs ·∇)ρs (A.23)

Then it comes, with the convention that ρs stands for ρs(x) hereafter:

eρs·∇ ' 1 + ρs ·∇ +
1

2
(ρs ·∇)2 (A.24)

e−ρs·∇ ' 1− ρs ·∇ + [(ρs ·∇)ρs] ·∇ +
1

2
(ρs ·∇)2 (A.25)

With these expressions, and at second order in k⊥ρs, eq. 1.67 reads as follows:

ns,pol(x, t) '
ˆ
JvdµdvG‖

es
B

ˆ 2π

0

dϕc
2π

(1− ρs ·∇) ∂µfs,eq(x,v){
1−

[
1− ρs ·∇ + ((ρs ·∇)ρs) ·∇ +

1

2
(ρs ·∇)2

]
〈

1 + ρs ·∇ +
1

2
(ρs ·∇)2

〉}
φ(x, t)

The gyro-radius vector ρs can be written ρs = ρs(cosϕcex + sinϕcey) where ex, ey are
the two vectors of the cartesian basis. It follows:

〈ρs ·∇〉 = 0〈
(ρs ·∇)2

〉
=

1

2
ρs∇⊥ · (ρs∇⊥) (A.26)
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with ρs = |ρs| the norm of the gyro-radius. Keeping terms up to the second order in
k⊥ρs only, one gets:

ns,pol(x, t) '
ˆ
JvdµdvG‖

es
B

ˆ 2π

0

dϕc
2π

(1− ρs ·∇) ∂µfs,eq(x,v){
1−

[
1− ρs ·∇ + ((ρs ·∇)ρs) ·∇ +

1

2
ρs ·∇(ρs ·∇)

+
1

4
ρs∇⊥.(ρs∇⊥)

]}
φ(x, t)

= −
ˆ
JvdµdvG‖

es
B

〈[
1

2
(ρs ·∇(ρs ·∇))

+ ((ρs ·∇)ρs) ·∇ +
1

4
ρs∇⊥.(ρs∇⊥)

]
φ
∂fs,eq
∂µ

+ (ρs ·∇φ)

(
ρs ·∇

∂fs,eq
∂µ

)〉
(A.27)

Three brackets remain to be calculated. The �rst one has already been computed (cf.
eq. A.26). The two others read as follows:

〈((ρs ·∇)ρs) ·∇〉 =
1

4

(
∇⊥ρ2

s

)
·∇⊥

〈(ρs ·∇φ) (ρs ·∇∂µfs,eq)〉 =
1

2
ρ2
s ∇⊥φ ·∇⊥∂µfs,eq

It then comes, further noticing that ρs∇⊥ · (ρs∇⊥φ) = 1
2

(
∇⊥ρ2

s

)
·∇⊥φ+ ρ2

s∇2
⊥φ:

ns,pol(x, t) ' −
ˆ
JvdµdvG‖

es
B

[
1

2

(
∇⊥ρ2

s

)
·∇⊥φ+

1

2
ρ2
s∇2
⊥φ

+
1

2
ρ2
s∇⊥φ ·∇⊥

]
∂µfs,eq

=

ˆ
JvdµdvG‖

es
2B

∂µ
[(
∇⊥ρ2

s

)
·∇⊥φ+ ρ2

s∇2
⊥φ

+ρ2
s∇⊥φ ·∇⊥

]
fs,eq

At this point, notice that B−1∂µ = (msv⊥)−1∂v⊥ commutes with the operator in con-
�guration space ∇⊥. For the same reason,

´
Jvdµ also commutes with the operator

∇⊥. Since B−1∂µρ
2
s = 2ms/(esB)2, one �nally obtains the following expression for the

polarization density:

ns,pol(x, t) '
ˆ
JvdµdvG‖ ∇⊥ ·

(
ms

esB2
fs,eq∇⊥φ

)
= ∇⊥ ·

(ˆ
JvdµdvG‖

ms

esB2
fs,eq∇⊥φ

)
= ∇⊥ ·

(
msns,eq
esB2

∇⊥φ(x, t)

)
(A.28)
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Trapped particles only

Expressing the density ns,eq as an integral in velocity space, Eq.(A.28) recasts as:

ns,pol(x, t) '∇⊥ ·
(
ms

esB2

[ˆ
JvdµdvG‖fs,eq(x,v)

]
∇⊥φ(x, t)

)
The same calculation is carried out when considering trapped particles only. However,
the integration domain of fs,eq is changed. Therefore, the polarisation density for trapped
particles ntrap.s,pol simply expresses as:

ntrap.s,pol (x, t) '∇⊥ ·
(
me

eeB2

[ˆ
trap.
JvdµdvG‖fs,eq(x,v)

]
∇⊥φ(x, t)

)
= ∇⊥ ·

(
me

eeB2
ntrap.s,eq ∇⊥φ

)
= ∇⊥ ·

(
me

eeB2
αtns,eq∇⊥φ

)
(A.29)

where αt = ntrap.s,eq /ns,eq is the fraction of trapped particles.
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B.1 Adiabatic particle transport

The turbulent radial transport of particles is given by Eq.(2.15) and using the notations
introduced in part 2.1.2, it reads:

Γr = −ene,eq
rTe

1˜ dϕ dθ
B·∇θ

¨
dϕ dθ

B ·∇θ
(φ− 〈φ〉FS)

∂θφ

B

One notes A =
˜ dϕ dθ

B·∇θ (φ− 〈φ〉FS)∂θφB . The magnetic �eld can be expressed as:

B = I(ψ)∇ϕ+ ∇ϕ ∧∇ψ → B ·∇θ = (∇ψ ∧∇θ) ·∇ϕ

Then it comes:

B2 = I2 |∇ϕ|2 + (∇ϕ ∧∇ψ) · (∇ϕ ∧∇ψ)

=

(
I

R

)2

+ |∇ψ|2 |∇ϕ|2 =
I2 + |∇ψ|2

R2

Besides:

q(ψ) =
B ·∇ϕ

B ·∇θ
⇒ B ·∇θ =

1

q
B ·∇ϕ =

I

qR2

Thus, the expression of A becomes:

A =

¨
dϕ dθ(φ− 〈φ〉FS)∂θφ

qR2

I

R√
I2 + |∇ψ|2

=
q

I
√
I2 + |∇ψ|2

¨
dϕ dθ R3(φ− 〈φ〉FS)∂θφ

=
qR3

0

I
√
I2 + |∇ψ|2

¨
dϕ dθ (1 + ε cos θ)3(φ− 〈φ〉FS)∂θφ

Moreover, due to the periodicity in θ of φ we have:
¨

dϕ dθ(φ− 〈φ〉FS)∂θφ =

ˆ
dϕ

{[
φ2

2

]2π

0

− [〈φ〉FS φ]2π0

}
= 0

Therefore, A can be recast as:

A =
εqR3

0

I
√
I2 + |∇ψ|2

¨
dϕ dθ

[
3 cos θ + 3ε cos2 θ + ε2 cos3 θ

]
(φ− 〈φ〉FS)∂θφ

The calculation of
˜ dϕ dθ

B·∇θ gives:¨
dϕ dθ

B ·∇θ
=
qR2

0

I

¨
dϕ dθ (1 + ε cos θ)2 =

4π2qR2
0

I

(
1 +

ε2

2

)
Eventually, the development of the turbulent radial transport of particles Γr in ε reads:

Γr = −ene,eq
rTe

R0

4π2

√
I2 + |∇ψ|2

ε

1 + ε2

2

¨
dϕ dθ

[
3 cos θ + 3ε cos2 θ + ε2 cos3 θ

]
(φ−〈φ〉FS)∂θφ
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B.2 Computation of neR

Two strategies can be adopted to compute neR in the case we suppose J0e 6= 1:

• either replacing J0e by its Padé approximation. In this case, neR is the solution
of an ordinary di�erential equation, which can be easily solved numerically by
inverting a tridiagonal matrix.

• or using an iterative procedure from an initial guess. This latter method has the
advantage of considering the actual gyroaverage operator which is used in Gysela.
Its drawback is that the convergence cannot be guaranteed for simulation arbitrary
parameters.

In the future, we believe the former method should be implemented in Gysela for the
convergence issue mentioned in the iterative procedure.

Di�erential equation

Admitting that all pro�les have gradient lengths larger than the Larmor radii, the gy-
roaverage operator J0 can then be approximated by its long wave length limit given by
the Padé development Eq.(2.13). In this case 1:

ˆ
J0e.feR d3v ≈

ˆ [
feR +

Ae
2r
∂r {r∂r(µfeR)}

]
d3v

Using Eq.(2.21) and (2.24) to compute the integrals, it comes:〈ˆ
J0e.feR d3v

〉
FS

≈ neR +
Ae
2r
∂r {r∂r(neRT⊥e,eq)} = α(r)neR + β(r)n′eR + γ(r)n′′eR

with

α(r) = 1 +
Ae
2

[
T ′⊥e,eq(r)

r
+ T ′′⊥e,eq(r)

]

β(r) = Ae

[
T⊥e,eq(r)

2r
+ T ′⊥e,eq(r)

]
γ(r) =

Ae
2
T⊥e,eq(r)

Here the prime “ ′ ” denotes the radial derivative. The radial range r ∈ [0, a] is discretized
in the values rj with j ∈ [1, Nr] and the notation Xj is used instead of X(rj), where
X is a given function of r. A numerical way to retrieve neR is to invert the following
tridiagonal system (in the case where the derivatives in the radial direction are computed
with �nite di�erences at second order in ∆r). For j ∈ [2, Nr − 1] this system reads:

Lj neR, j−1 +Dj neR, j + Uj neR, j+1 = Rj (B.1)

1Here, d3v is approximated by d3v ≈ 2πB dµ dv‖, i.e. B∗‖e is replaced by B. Also, the radial
derivatives of the magnetic �eld B can be safely neglected because they are of higher order.
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with

Lj = − βj
2∆r

+
γj

∆r2
; Dj = α(rj)−

2γj
∆r2

; Uj =
βj

2∆r
+

γj
∆r2

(B.2)

The values of neR for j = 1 and Nr are set by the Neumann constraint drneR|j = 0,
which takes the form numerically:

neR,1 = neR,2 ; neR,Nr = neR,Nr−1

Iterative procedure

Let us de�ne the normalized Maxwellian f̂eR = feR/neR. Then condition (??) reads as
follows: ˆ

J0e.
(
neR f̂eR

)
d3v = R (B.3)

where the electron gyro-average operator J0e has been added. A �rst approximation for
neR can be readily obtained by assuming that it commutes with the gyroaverage operator
J0e. This is equivalent to neglecting terms of the order of (ρe/Ln)k, with k a strictly
positive integer and Lkn = neR/(∂

kneR/∂r
k). This value of neR constitute the initial

guess of the iterative procedure. Let us call it n0
eR:

n0
eR =

R´
d3v J0e.f̂eR

(B.4)

The di�erence ∆neR = neR − n0
eR between n0

eR and the exact solution neR of eq.(B.3)
is a measure of the error. It simply reads:

ˆ
J0e.

(
∆neR f̂eR

)
d3v = R−

ˆ
J0e.

(
n0
eRf̂eR

)
d3v

which is the same equation as eq.(B.3) with a di�erent right hand side. Using the same
assumption as previously, ∆neR can be approximated by neglecting its radial derivatives,
so that it would commute with J0e. Denoting ∆n0

eR this approximate quantity, one
obtains:

∆n0
eR =

R−
´
J0e.

(
n0
eRf̂eR

)
d3v´

J0e.f̂eR d3v
(B.5)

This method can be further iterated. The iterative procedure then takes the form:

n0
eR =

R´
J0e.f̂eR

d3v

nk+1
eR = nkeR +

R−
´
J0e.

(
nkeRf̂e0

)
d3v´

J0e.f̂eR d3v
∀k ∈ N (B.6)

The iteration is then stopped at iteration k = K as soon as a prede�ned convergence
condition is ful�lled. Such a condition requires that the di�erence between R and
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´
J0e.(n

K
eRf̂eR) d3v remains much smaller than the ion polarization term, typically in

the ratio ρ∗. A possible condition can then read as follows:

maxr

{
R−

´
J0e.

(
nKeRf̂eR

)
d3v
}

maxr,i {∇r. (Aini0∇rφ00)}
≤ min

r,i
{ρ∗i }

with ρ∗i =
√
AiTi0/(aZi) and where the extrema are to be taken on the radial pro�le

and on all active (i.e. non-trace) ion species. Alternatively, it could be replaced by the
following condition:

max
r

{
R−

ˆ
J0e.

(
nKeRf̂eR

)
d3v

}
≤ min

r,i
{ρ∗ 2

i } min
r
{R}

Because the iterative procedure presents the risk of not converging, we should em-
ploy the former method in GYSELA, i.e. the inversion of the tridiagonal system Eq.(B.1).
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B.3 Normalized quasi-neutrality equation for adiabatic elec-
trons

In this appendix, the symbol .̂.. refers to normalized quantities in the Gysela code. The
normalized quasi-neutrality equation in the case of adiabatic electrons can be written:

− 1

n̂e0

∑
i

Âi∇̂⊥ ·
(
n̂i0

B̂0

∇̂⊥φ̂
)

+
1

Z2
0 T̂e

[
φ̂− 〈 φ̂ 〉FS

]
=

1

n̂e0

∑
i

Ẑi [n̂Gi − n̂Gi,eq] (B.7)

where the normalized electron density n̂e0 is de�ned as n̂e0 =
∑

i Z0Ẑin̂i0 . In the fol-
lowing, i symbol stands for ion species while the e symbol stands for electrons. The s
symbol will be used when no distinction between both ion and electron species is required.
Notice that, in the polarization term (�rst term of eq. (B.7)), B̂ has been replaced by
B̂0 = 1. The integral 〈φ̂〉FS represents the �ux surface average of φ̂ where for all g(r̂, θ, ϕ)
function:

〈 g 〉FS(r̂) =

ˆ
g Ĵx dθ dϕ /

ˆ
Ĵx dθ dϕ (B.8)

with Ĵx = 1/(B̂ · ∇̂θ) the normalized jacobian space. The normalized guiding-center
density n̂Gs of species s is given by:

n̂Gs =

ˆ
dµ̂s

ˆ
Ĵv dv̂G‖s Ĵ0s · ˆ̄fs (B.9)

with the normalized jacobian in velocity equal to Ĵv = 2πB̂∗‖s. The correction term
n̂Gs,eq in the right hand side is de�ned as follows:

n̂Gs,eq =

ˆ
dµ̂s

ˆ
Ĵv dv̂G‖s Ĵ0s · ˆ̄fs,eq (B.10)

where the normalized equilibrium distribution function is de�ned as:

ˆ̄fs,eq = cs
n̂s0

(2πT̂s)3/2
exp

−
(
v̂2
G‖s/2 + µ̂sB̂

)
T̂s

 (B.11)

represents the equilibrium part of the distribution function. The concentration ci is such
that

∑
i ciZ0Ẑi = 1. The normalized gyro-average operator Ĵ0s approximated by Padé

corresponds to:

Ĵ0s ≈ 1 +
1

2

Âs

Ẑ2
s

µ̂s

B̂
∇̂2
⊥ (B.12)

where, as in the quasi-neutrality equation, B̂ is replaced by B̂0 = 1 in the code. Let us
notice that in the code, to avoid the expensive gyro-average operation for each value of
vG‖ �which occur for the computation of the RHS of the quasi-neutrality equation (B.7)�

we use the de�nition of B̂∗‖s

b̂∗s =
1

B̂∗‖s

(
B̂ +

√
Âs

Ẑs

v̂G‖s

B̂
Ĵ

)
and B̂∗‖s = B̂ +

√
Âs

Ẑs

v̂G‖s

B̂
b · Ĵ (B.13)
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and therefore the fact that the term n̂Gs − n̂Gs,eq can be expressed as:

n̂Gs − n̂Gs,eq = 2π

ˆ
dµ̂s

(
B̂ Ĵ0s · I0(r̂, θ, ϕ, µ̂s) +

√
Âs

Ẑs

v̂G‖s

B̂
b · Ĵ Ĵ0s · I1(r̂, θ, ϕ, µ̂s)

)
where the integrals I0 and I1 are de�ned by:

I0(r̂, θ, ϕ, µ̂s) =

ˆ (
ˆ̄fs − ˆ̄fs,eq

)
dv̂G‖s and I1(r̂, θ, ϕ, µ̂s) =

ˆ
v̂G‖s

(
ˆ̄fs − ˆ̄fs,eq

)
dv̂G‖s

B.3.1 How to overcome the di�culty due to 〈 φ 〉FS term ?

In this section, we explain the particular treatment performed to overcome the problem
of the �ux surface average term 〈 ... 〉FS appearing in quasi-neutrality equation (B.7).
For more readability the hat symbols will be omitted for normalized quantities in the
following. Let us consider a disk Ω of radius r = rmax, i.e

Ω = {(r, θ) : 0 < r ≤ rmax ; 0 ≤ θ < 2π} (B.14)

As ϕ plays the role of a parameter in equation (B.7), it can be written as a set of 2D
Poisson equations in polar coordinates as:

LAEφ+
1

Z2
0Te(r)

[φ− 〈 φ 〉FS] = ρ(r, θ, ϕ) ∀(r, θ) ∈ Ω and 0 ≤ ϕ < 2π (B.15)

where the di�erential operator of second order LAE (where AE symbol stands for adia-
batic electrons) is de�ned as:

LAE = − 1

ne0(r)

∑
i

Ai∇⊥ · (ni0(r)∇⊥)

= − 1

ne0(r)

∑
i

Aini0(r)

{
∂2

∂r2
+

[
1

r
+

1

ni0(r)

dni0(r)

dr

]
∂

∂r
+

1

r2

∂2

∂θ2

}
and the right hand side reads

ρ(r, θ, ϕ) =
1

ne0(r)

∑
s

Zs [nGs(r, θ, ϕ)− nGs,eq(r, θ)] (B.16)

where nGs and nGs,eq are respectively de�ned by equations (B.9) and (B.10). One di�-
culty of equation (B.15) is the treatment of polar coordinates singularity. As discussed
later, the �rst idea was to treat the problem of a coronna, i.e rmin ≤ r ≤ rmax with
rmin > 1.e−2. But more recently the strategy proposed by Lai [56] to overcome this
singularity has been used. This will be described more in details in the next section.

Concerning the treatment of 〈φ 〉FS in Eq.(B.15), let us �rst de�ne for all function g,
〈 g 〉θ, ϕ the radial function equal to

〈 g 〉θ, ϕ(r) =
1

LθLϕ

ˆ ˆ
g(r, θ, ϕ) dθ dϕ
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By applying the integration 1
LθLϕ

´ ´
· dθ dϕ to previous equation (B.15) and by using

the fact that 〈 〈 φ 〉θ, ϕ 〉FS = 〈 φ 〉FS then:

LAE〈 φ 〉θ, ϕ +
1

Z2
0Te

[〈 φ 〉θ, ϕ − 〈 φ 〉FS] = 〈 ρ 〉θ, ϕ (B.17)

Let φ̃ be de�ned as

φ̃ = φ− 〈 φ 〉θ, ϕ (B.18)

Then, by subtracting (B.17) to (B.15),

(
LAE +

1

Z2
0Te

)
φ̃(r, θ, ϕ) = ρ̃(r, θ, ϕ) with ρ̃ = ρ−〈ρ〉θ, ϕ ∀(r, θ, ϕ) ∈ R3 (B.19)

According to (B.18), 〈 φ̃ 〉FS = 〈φ 〉FS−〈φ 〉θ, ϕ. Then 〈φ 〉FS replaced by 〈 φ̃ 〉FS + 〈φ 〉θ, ϕ
in equation (B.17) gives

LAE〈 φ 〉θ, ϕ +
1

Z2
0Te
〈 φ 〉θ, ϕ = 〈 ρ 〉θ, ϕ (B.20)

To summarize, the solving of equation system (B.15) can be replaced by the solving
of two simpler equations (B.19) and (B.20) and the electrostatic potential deduced by
φ = φ̃+〈φ〉θ, ϕ (due to relation (B.18)). Indeed, equation (B.20) is a di�erential equation
only depending on the radial direction. Besides, in (B.19) the variable ϕ plays the role
of a parameter, then the discretization of the equation can be performed by projecting
in Fourier space in θ direction and by using �nite di�erences in the radial direction as
described in the following paragraph.

B.3.2 Numerical solving of the quasi-neutrality equation

Global algorithm for the quasi-neutrality solver

Boundary conditions are periodic in θ and ϕ while Dirichlet boundary conditions are
applied in the radial direction. To avoid the polar coordinate singularity in r = 0,
equation (B.15) is not solved on the disk domain Ω (Eq. (B.14)) in poloidal cross-section
but on a corona Ωrmin de�ned as

Ωrmin = {(r, θ) : rmin ≤ r ≤ rmax ; 0 ≤ θ < 2π} (B.21)
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So including boundary conditions, Eq. (B.15) on Ωrmin × [0, Lϕ] becomes:

LAEφ+ 1
Z2

0Te(r)
[φ− 〈 φ 〉FS] = ρ(r, θ, ϕ) ∀(r, θ) ∈ Ωrmin ; 0 ≤ ϕ < Lϕ

φ(rmin, θ, ϕ) = φ(rmax, θ, ϕ) = 0 0 ≤ θ < 2π ; 0 ≤ ϕ < Lϕ

φ(r, 0, ϕ) = φ(r, 2π, ϕ) rmin ≤ r ≤ rmax ; 0 ≤ ϕ < Lϕ

φ(r, θ, 0) = φ(r, θ, Lϕ) ∀(r, θ) ∈ Ωrmin

(B.22)

Then the di�erent steps for solving (B.22) and obtaining φ are the following:

1. Compute ρ(r, θ, ϕ) given by Eq.(B.16) and 〈 ρ 〉θ, ϕ(r).

2. Compute ρ̃(r, θ, ϕ) = ρ(r, θ, ϕ)− 〈 ρ 〉θ, ϕ(r) the RHS of equation (B.19).

3. Solve for each ϕ ∈ [0, Lϕ[ the 2D following system (B.23) (deduced from (B.19)) to
obtain φ̃(r, θ, ϕ):

(
LAE + 1

Z2
0Te

)
φ̃(r, θ, ϕ) = ρ̃(r, θ, ϕ) with ρ̃ = ρ− 〈 ρ 〉θ, ϕ ∀(r, θ) ∈ Ωrmin

φ̃(rmin, θ, ϕ) = φ̃(rmax, θ, ϕ) = 0 0 ≤ θ < 2π

φ̃(r, 0, ϕ) = φ̃(r, 2π, ϕ) rmin ≤ r ≤ rmax

(B.23)
And applied the periodic boundary conditions in ϕ direction to compute φ̃(r, θ, ϕ =
Lϕ).

4. Compute 〈 ρ 〉θ, ϕ.

5. Solve the 1D system (B.24) to obtain 〈 φ 〉θ, ϕ(r).
(
LAE + 1

Z2
0Te

)
〈 φ 〉θ, ϕ(r) = 〈 ρ 〉θ, ϕ ∀r ∈ [rmin, rmax]

〈 φ 〉θ, ϕ(rmin) = 〈 φ 〉θ, ϕ(rmax) = 0

(B.24)

6. Finally, compute φ(r, θ, ϕ) by using (B.18), i.e φ(r, θ, ϕ) = φ̃(r, θ, ϕ) + 〈 φ 〉θ, ϕ(r).

Let us notice that radial boundary conditions imposed in (B.23) and (B.24) ensure radial
Dirichlet boundary conditions for φ (because φ(rmin, θ, ϕ) = φ̃(rmin, θ, ϕ)+〈φ〉θ, ϕ(rmin) =
0 and the same for φ(rmax, θ, ϕ) = 0).
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Solving of the equation system (B.23)

As described in the following, the matrix system (B.23) (where ϕ plays the role of a
parameter) is solved with �nite di�erences in radial direction and Fourier projections in
θ. Let φ̃ and ρ̃ be represented in terms of the Fourier expansion as

φ̃(r, θ, ϕ) =
∑

m φ̃
m(r, ϕ) exp(imθ)

ρ̃(r, θ, ϕ) =
∑

m ρ̃
m(r, ϕ) exp(imθ)

then the equation (B.23) can be rewritten in the wave number representation, for each
poloidal mode m and for each independent value of ϕ, as the following di�erential equa-
tion: (

LAE
m +

1

Z2
0Te(r)

)
φ̃m(r, ϕ) = ρ̃m(r, ϕ) (B.25)

with the operator LAE
m de�ned as

LAE
m = − 1

ne0(r)

∑
s 6=e

Asns0(r)

{
∂2

∂r2
+

[
1

r
+

1

ns0(r)

dns0(r)

dr

]
∂

∂r
− m2

r2

}
(B.26)

and where φ̃m (resp. ρ̃m) is the Fourier transform in θ of φ̃ (resp. ρ̃). Let us de�ne,

Ks(r) =
Asns0(r)

ne0(r)
; β(r) =

∑
s 6=e

Ks(r) and α(r) =
∑
s 6=e

Ks(r)

(
1

r
+

1

ns0(r)

dns0(r)

dr

)
(B.27)

then the di�erential operator LAE
m can be written

LAE
m = −

[
β(r)

∂2

∂r2
+ α(r)

∂

∂r
− β(r)

m2

r2

]
(B.28)

Let us de�ned the radial discrete domain [rmin, rmax] by N1 points ri = rmin + (i− 1)∆r,
∀i = 1, · · · , N1 with the discretization step ∆r = Lr/(N1 − 1) where Lr = rmax − rmin

represents the domain length. For the following, let us de�ned the notations φ̃mi =
φ̃m(ri, ϕ), ρ̃mi = ρ̃m(ri, ϕ), βi = β(ri) and αi = α(ri). Then up to second order in ∆r,
equations (B.23) can be written as the following set of equations ∀i = 1, · · · , N1

−βi

(
φ̃mi−1 − 2φ̃mi + φ̃mi+1

2∆2
r

)
− αi

(
φ̃mi+1 − φ̃mi−1

2∆r

)
+ βi

m2

r2
i

φ̃mi +
1

Z2
0Te(ri)

φ̃mi = ρ̃mi

which is equivalent to ∀i = 1, · · · , N1

−
(
βi

∆r2
− αi

2∆r

)
φ̃mi−1 +

(
2βi
∆r2

+
βim

2

r2
i

+
1

Z2
0Te(ri)

)
φ̃mi −

(
βi

∆r2
+

αi
2∆r

)
φ̃mi+1 = ρ̃mi

(B.29)
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Concerning boundary conditions, Dirichlet conditions are applied in rmax, i.e φ̃mN1
=

φ̃m(ri = rmax, ϕ) = 0, then for i = N1 − 1 equation (B.29) becomes

−
(
βN1−1

∆r2
− αN1−1

2∆r

)
φ̃mN1−2 +

(
2βN1−1

∆r2
+
βN1−1m

2

r2
N1−1

+
1

Z2
0Te(rN1−1)

)
φ̃mN1−1 = ρ̃mN1−1

(B.30)
For inner boundary conditions (r = rmin), two choices are possible, depending on if: (i)
rmin > ∆r/2 (for a corona case), or (ii) rmin = ∆r/2. For the �rst case (rmin > ∆r/2),
Dirichlet conditions are applied, i.e φ̃m1 = φ̃m(ri = rmin, ϕ) = 0. For the second case
(rmin = ∆r/2), we use the same strategy than the one proposed by Lai [56] to overcome
the 1/r singularity on the axis. This strategy is simply based on the fact that if rmin

is chosen equal to ∆r/2, the term
(

1
∆r2 − 1

r∆r

)
which appear for a standard Poisson

equation is equal to 0. In our case, this strategy is applicable if and only if the radial
derivative of the density pro�les ni0 is null at r = rmin. Indeed, in this case the term
behind φ̃m0 in equation (B.29) for i = 1 is equal to

∑
s 6=eKs(r1)

(
1

∆r2 − 1
r∆r

)
= 0, such

that [
β1

(
2

∆r2
+
m2

r2
1

)
+

1

Z2
0Te(r1)

]
φ̃m1 −

(
β1

∆r2
+

α1

2∆r

)
φ̃m2 = ρ̃m1 (B.31)

Then solving (B.29) leads to solve the tridiagonal (N1 − 1)× (N1 − 1) system

dm1 u1 0 · · · 0

l2

0

...

0

dm2 u2 0

l3 dm3 u3 0

0
. . . . . . . . .

0 lN1−2 dmN1−2 uN1−2

0 lN1−1 dmN1−1





φ̃m1

φ̃m2
...

φ̃mN1−2

φ̃mN1−1



=



ρ̃m1

ρ̃m2
...

ρ̃mN1−2

ρ̃mN1−1



(B.32)

where for each i ∈ [1, N1 − 1]

li = −
(

βi
∆r2 − αi

2∆r

)
dmi = βi

(
2

∆r2 + m2

r2
i

)
+ 1

Z2
0Te(ri)

ui = −
(

βi
∆r2 + αi

2∆r

) with


αi =

∑
sKs(ri)

(
1
ri

+ 1
ns0 (ri)

dns0 (ri)
dr

)
βi =

∑
sKs(ri) and Ks(ri) = As

ns0 (ri)

ne0 (ri)

(B.33)
with ρ̃mi the poloidal wave vector of ρ̃i de�ned as

ρ̃i = ρi − 〈 ρi 〉θ, ϕ with ρi =
1

ne0(ri)

∑
s6=e

[nGs(ri, θ, ϕ)− nGs,eq(ri, θ)]
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and with φ̃mN1
= 0.

Let us notice that for the �rst case, where inner Dirichlet boundary conditions are applied,
the matrix system to solve is a (N1−2)×(N1−2) tridiagonal system equivalent to (B.32)
where �rst line and �rst column are deleted and replaced by the condition φ̃m1 = 0.

Solving of the equation system (B.24)

The system (B.24), also solved with �nite di�erences, can be rewritten as:
(
LAE + 1

Z2
0Te(ri)

)
〈 φ 〉θ, ϕ(ri) = Γ(ri) for each ri ∈ [r1, rN1 ]

〈 φ 〉θ, ϕ(rmin) = 〈 φ 〉θ, ϕ(rmax) = 0

with Γi = Γ(ri) = 〈 ρ 〉θ, ϕ(ri) which is equivalent (by using the same notation than for
the previous matrix system (B.32)) to

d1 u1 0 · · · 0

l2

0

...

0

d2 u2 0

l3 d3 u3 0

0
. . . . . . . . .

0 lN1−2 dN1−2 uN1−2

0 lN1−1 dN1−1





〈 φ 〉θ, ϕ(r1)

〈 φ 〉θ, ϕ(r2)

...

〈 φ 〉θ, ϕ(rN1−2)

〈 φ 〉θ, ϕ(rN1−1)



=



Γ1

Γ2

...

ΓN1−2

ΓN1−1



(B.34)

where for each i ∈ [1, N1 − 1] , li and ui are de�ned by (B.33) and
di = 2

∆r2βi + 1
Z2

0Te(ri)
= d0

i with d0
i given by (B.33)

Γi = 〈 ρ 〉θ, ϕ(ri)
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Appendices of chapter 3

C.1 Saturation limit

The mixing length theory

With the notations used in part 3.1, f , g are of the same order as FH − Feq. Knowing
equation (3.8), this di�erence can be linked to the potential φ :

FH − Feq = Feq

[
− e
T
φ+ o

(
eφ

T

)]
Dividing by Feq, it comes:

g

Feq
∼ eφ

T

Moreover we have :
g

Feq
∼ δn

neq
The mixing length theory states that the saturation, which corresponds to the long time
limit that we are interested in, is obtained when the condition |∇δn| ' |∇neq| is satis�ed.
It is possible to evaluate |∇δn| ' k⊥δn with 1/k⊥ = ρi the scale of ion instabilities, and
|∇neq| ' neq/Ln with Ln ∼ a the tokamak scale. Thus, the saturation limit corresponds
to the condition :

δn

neq
∼ ρi

a
= ρ∗ � 1

Thus it comes :
g

Feq
∼ eφ

T
∼ ρ∗ � 1

Justi�cation of the linear approximation

Let us introduce the Poisson brackets of two functionnals F and G in the gyrokinetics
coordinates (Eq.(159) of [11, Brizard 2007]) :

{F ,G} '
(
∇‖F

∂G
∂p‖
− ∂F
∂p‖
∇‖G

)
− b

eB
· (∇F ×∇G)

169
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with ‖ standing for the direction of the magnetic �eld, p the momentum, B the magnetic
�eld, b the magnetic �eld unit vector and e the charge of the considered particle. It is
possible to evaluate the two Poisson brackets {Heq, g} and {eφ, g} using the notations of
part 3.1 :

{Heq, g} ∼
∣∣∣∣∂Heq

∂p‖

∂g

∂x‖

∣∣∣∣ ∼ v‖k‖g
{eφ, g} ∼ 1

eB

∣∣∣∣e∂φ∂r ∂g

r∂θ

∣∣∣∣ ∼ 1

B
krφkθg

with v‖ ∼
√
T/m the velocity parallel to the magnetic �eld lines, kx a typical wave

number in the x direction (in particular k‖ ∼ 1/qR), r the radial coordinate, θ the
poloidal angle. Calculating the ratio {eφ, g} / {Heq, g}, it comes :

{eφ, g}
{Heq, g}

∼ krkθφ

Bv‖k‖
∼ qRρLkrkθ.

eφ

T

with ρL the Larmor radius of the ions. We see that the ratio {eφ, g} / {Heq, g} depends
of the radial and poloïdal structure of the plasma via krkθ. Hence, the saturation limit
eφ/T � 1 is not enough to state that the ratio {eφ, g} / {Heq, g} � 1. However, in the
case of GAMs, kr ∼ a−1 and kθ ∼ a−1 with a the small radius of the tokamak. The ratio
becomes in that case :

{eφ, g}
{Heq, g}

∼ qRρL
a2

.
eφ

T
� 1 in the case

eφ

T
� 1

C.2 Angle action variables

Using parity arguments, the bounce/transit average be reduced to an average over an
upper quadrant in α2

2

π

ˆ π
2

0
dα2... =


1
τ

2
π

´ π
2

0
dδ√

1−κ2 sin2 δ
... if 0 ≤ κ < 1 (passing)

1
κτ

2
π

´ π
2

0
dδ√

1− 1
κ2 sin2 δ

... if 1 < κ < +∞ (trapped)
(C.1)

where it is reminded that

τ(κ) =
2

π


K(κ2) if 0 ≤ κ < 1 (passing)

1
κK
(

1
κ2

)
if 1 < κ < +∞ (trapped)

(C.2)

As expected, the bounce/transit period becomes very large near the passing/trapped
boundary κ = 1 since K(κ) ' −1

2 ln |1− κ| for |1− κ| � 1. A useful expression of α2(δ)
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in the upper quadrant 0 ≤ δ ≤ π
2 , 0 ≤ α2 ≤ π

2 is

α2 =


π

F( θ2 ,κ
2)

F(π2 ,κ2)
if 0 ≤ κ < 1 (passing)

π
2

F
(

sin−1[κ sin( θ2)], 1
κ2

)
F
(
π
2
, 1
κ2

) if 1 < κ < +∞ (trapped)
(C.3)

where F (ϕ, k) is the incomplete elliptical function of the �rst kind de�ned as

F (δ,m) =

ˆ δ

0

dδ′√
1−m sin2 δ′

(C.4)

This relation can be formally inverted to provide a link between the guiding-center
poloidal angle θ and the angular variable α2. It is also interesting to construct this
link for all values of the angles α2 and θ. Using the property K(k) = F

(
π
2 , k
)
, the

relation Eq.(C.3) can be rephrased as

sin
(
θ
2

)
= sn

(
τα2

2 , κ2
)

if 0 ≤ κ < 1 (passing)

sin
(
θ
2

)
= 1

κsn
(
κτα2,

1
κ2

)
if 1 < κ < +∞ (trapped)

(C.5)

valid for all α2, θ. The function sn(δ, k) is the Jacobian elliptic function that coincides
with the trigonometric sin δ function for k � 1. One recovers that θ = α2 + 1

4κ
2 sin(α2)

for deeply passing particles κ → 0. For deeply trapped particles κ → ∞, θ = θ0 sinα2

where θ0 is the bounce angle, sin
(
θ0
2

)
= 1

κ . Note that the Jacobi sn function di�ers

signi�cantly from a sinusoidal function for barely trapped or passing particles κ ∼ 1.
Eqs.(C.1, C.3) also provide a useful expression of the derivative dα2

dθ , which reads for
passing particles

τ (κ) dα2 =
dθ√

1− κ2 sin2 θ
2

(C.6)

while for trapped particles

2τ (κ) dα2 = ε‖
dθ√

1− κ2 sin2 θ
2

(C.7)

where ε‖ = 1, when−π
2 < α2 <

π
2 and ε‖ = −1 when−π < α2 < −π

2 or π2 < α2 < π . The
factor 2 comes from the period doubling when crossing the passing/trapped boundary.
The parameter ε‖ is readily interpreted as the sign of the particle parallel velocity. When
ε‖ = 1, a trapped particle moves from −θ0 (α2 = −π

2 ) to θ0 (α2 = π
2 ), while it moves

back from θ0 to −θ0 for ε‖ = −1. Note also that θ = 0 for α2 = π, α2 = 0 and α2 = −π.
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C.3 Electron Lagrangian expressed with angular variables

Eq.(3.49) is recalled:

L̄res,e = −
+∞∑

n2=−∞

ˆ
dςFM

Ω

Ω− n2
Ωb
σ + i0+

∣∣∣h̃n2ω

∣∣∣2
Using Eq.(3.52) the Lagrangian is recast as follows:

L̄res,e = iσΩ

ˆ
dς
FM
|Ωb|

ˆ +∞

0
ds exp

{
iσ

Ω

Ωb
ε‖s

} +∞∑
n2=−∞

e−in2ε‖s
∣∣∣h̃n2ω

∣∣∣2︸ ︷︷ ︸
A

The term A can be calculated by replacing h̃n2ω by its expression given by Eq.(3.51). It
becomes:

A =

˛
dα2

2π
h̃ω(α2)

˛
dα′2
2π

h̃∗ω(α′2)

+∞∑
n2=−∞

ein2(α′2−α2−ε‖s)

Using Eq.(3.53), A becomes:

A =

˛
dα2

2π
h̃ω(α2)

˛
dα′2
2π

h̃∗ω(α′2)
+∞∑
p=−∞

2πδ(α′2 − α2 − ε‖s− 2πp)

Replacing the expression of A in L̄res,e, it comes:

L̄res,e =2iπσΩ
+∞∑
p=−∞

ˆ
dς
FM
|Ωb|

˛
dα2

2π
h̃ω(α2)

˛
dα′2
2π

h̃∗ω(α′2)

ˆ +∞

0
ds exp

{
iσ

Ω

Ωb
ε‖s

}
δ(α′2 − α2 − ε‖s− 2πp)︸ ︷︷ ︸

B

Two cases appear now:

• if s0 = 1
ε‖

(α′2 − α2 + 2πp) = ε‖(α
′
2 − α2 + 2πp), (ε‖ = ±1) is negative, then the

dirac function is zero in the integration domain [0; +∞[ and B = 0.

• if s0 = ε‖(α
′
2 − α2 + 2πp) is positive, then it is in the integration domain [0; +∞[

and B = exp
{
iσ Ω

Ωb
(α′2 − α2 + 2πp)

}
This can be dealt with by the introduction of an Heaviside function Θ (Θ(x) = 1 for
x > 0, 0 otherwise) and doing the integral over s, the Lagrangian �nally takes the shape
of Eq.(3.54):

L̄res,e =2iπσΩ
+∞∑
p=−∞

ˆ
dς
FM
|Ωb|

˛
dα2

2π
h̃ω(α2)

˛
dα′2
2π

h̃∗ω(α′2)

Θ[ε‖(α
′
2 − α2 + 2pπ)] exp

{
iσ

Ω

Ωb
(α′2 − α2 + 2πp)

}
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We consider ε‖ = 1. The Heaviside function in Eq.(3.54) is equal to:

Θ(α′2 − α2 + 2pπ) =


1 if p > 0

Θ(α′2 − α2) if p = 0

0 if p < 0

Therefore, the Lagrangian Eq.(3.54) becomes:

L̄res,e =2iπσΩ

ˆ
dς
FM
|Ωb|

ˆ π

−π

dα2

2π

ˆ π

−π

dα′2
2π

h̃ω(α2)h̃∗ω(α′2) exp

{
iσ

Ω

Ωb
(α′2 − α2)

}
Θ(α′2 − α2) +

+∞∑
p=1

exp

{
iσ

Ω

Ωb
2πp

}
Besides, the geometrical sum can be rewritten as:

+∞∑
p=1

exp

{
iσ

Ω

Ωb
2πp

}
=

+∞∑
p=0

exp

{
iσ

Ω

Ωb
2πp

}
− 1 =

1− exp
{
iσ Ω

Ωb
2π
}”∞”

1− exp
{
iσ Ω

Ωb
2π
} − 1

In fact, we earlier removed the term ”i0+” that appeared in Eq.(3.52) for simpli�cation.

Taking this term into account, the expression exp
{
iσ Ω

Ωb
2π
}”∞”

should be rewritten

exp
{
i
(
σ Ω

Ωb
2π + i0+

)}”∞”
hence becoming zero. The sum is then recast as:

+∞∑
p=1

exp

{
iσ

Ω

Ωb
2πp

}
=

1

exp
{
−2iπσ Ω

Ωb

}
− 1

The Lagrangian then takes the shape of Eq.(3.55):

L̄res,e =2iπσΩ

ˆ
dς
FM
|Ωb|

ˆ π

−π

dα2

2π

ˆ π

−π

dα′2
2π

h̃ω(α2)h̃∗ω(α′2) exp

{
iσ

Ω

Ωb
(α′2 − α2)

}
Θ(α′2 − α2) +

1

exp
{
−2iπσ Ω

Ωb

}
− 1


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C.4 Trapped electron Lagrangian

C.4.1 Trapped electron Lagrangian for a sin θ GAM perturbation

The harmonic m = 1 of the GAM corresponds to a h̃ω (α2) = η sin [θ(α2)] perturbation.
The corresponding Lagrangian reads

L̄res,e = 8i
√

2πε1/2η2

ˆ +∞

1

κ dκ

Λ3/2(κ)
τ(κ)

ˆ +∞

0
dvv2 exp

(
−v2

)
I (κ, v)

where

I (κ, v) = σ̄

ˆ π

−π

dα

2π

ˆ π

−π

dα′

2π
sin [θ(α)] sin

[
θ(α′)

]
exp

{
iσ̄
(
α′ − α

)}{
Θ
(
α′ − α

)
+

1

exp (−2iπσ̄)− 1

}
where σ̄ = σ∗ τ(κ)

v Λ1/2(κ). It is reminded that ∂θ
∂α = 2ε‖τ(κ)

√
1− κ2 sin2 θ

2 (see Eq.( C.7)

in Appendix C.2), where ε‖ = 1 when θ goes from −θ0 to +θ0 and ε‖ = −1 on the way

back, i.e. from +θ0 to −θ0. It then appears that ∂2θ
∂α2 = −τ2(κ)κ2 sin θ, and

I (κ, v) =
1

τ4κ4
σ̄

ˆ π

−π

dα

2π

∂2θ

∂α2

ˆ π

−π

dα′

2π

∂2θ

∂α′2

exp
{
iσ̄
(
α′ − α

)}{
Θ
(
α′ − α

)
+

1

exp (−2iπσ̄)− 1

}
We now expand Eq.(C.8) in power laws in σ̄. We note that

lim
σ̄→0

σ̄ exp
{
iσ̄
(
α′ − α

)}
= σ̄ + iσ̄2

(
α′ − α

)
+ o(σ̄3) (C.8)

lim
σ̄→0

σ̄ exp {iσ̄ (α′ − α)}
exp (−2iπσ̄)− 1

= − 1

2iπ

{
1 + iσ̄

(
π + α′ − α

)
+ σ̄2

[
π2

6

− π
(
α′ − α

)
− 1

2

(
α′ − α

)2]
+ o(σ̄3)

}
(C.9)

The o
(
σ̄0
)
term in Eq.(C.9) does not contribute to I (κ, v) because it involves integrals

of second derivatives ∂2θ
∂α2 over a period, which obviously vanish. The o (σ̄) term comes

from both Eq.(C.8) and Eq.(C.9). Hence the function I (κ, v) can be decomposed in two
corresponding parts I = I1 + I2. The �rst one reads

I1 (κ, v) = σ̄
1

τ4κ4

ˆ π

−π

dα

2π

∂2θ

∂α2

ˆ π

α

dα′

2π

∂2θ

∂α′2

= −σ̄ 1

τ4κ4

1

4π

ˆ π

−π

dα

2π

∂

∂α

[
∂θ

∂α

]2

= 0
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The second contribution I2 is such that

I2 (κ, v) = − σ̄

2π

1

τ4κ4

ˆ π

−π

dα

2π

∂2θ

∂α2

ˆ π

−π

dα′

2π

∂2θ

∂α′2
(
π + α′ − α

)
= 0

This comes from the fact that each term in (π + α′ − α) taken separately involves again
a second derivative of θ integrated over a period. This implies that the o (σ̄) contribution
to L̄res,e cancels.

Let us now determine the o (σ̄)2 contribution to L̄res,e. Terms from both Eq.(C.8)
and Eq.(C.9) matter. However a close inspection of these contribution shows that they
are all pure imaginary numbers, and therefore do not contribute to damping since they
exclusively contribute to the real part of the Lagrangian. Hence the imaginary part of the
Lagrangian must scales as [σ̄]3 when σ̄ → 0. It is stressed however that σ̄ = σ∗ τ(κ)

v Λ1/2(κ)
is a function of κ and v. Therefore even if σ∗ is a small number, there exists regions of
the phase where the condition σ̄ → 0 breaks down. These regions provide the largest
contribution to the Lagrangian, and therefore to damping.

C.4.2 Explicit calculation of the electron Lagrangian

We consider the Lagrangian Eq.(3.68) as formulated in Appendix C.4.1,

L̄res,e = 8i
√

2πε1/2

ˆ +∞

1

κ dκ

Λ3/2(κ)
τ(κ)

ˆ +∞

0
dvv2 exp

(
−v2

)
I (κ, v)

where

I (κ, v) = σ̄

ˆ π

−π

dα

2π

ˆ π

−π

dα′

2π
h̃ω (α) h̃∗ω

(
α′
)

exp
{
iσ̄
(
α′ − α

)} [
Θ
(
α′ − α

)
+

1

exp (−2iπσ̄)− 1

]
(C.10)

where σ̄ = σ∗ τ(κ)
v Λ1/2(κ). The largest contribution must come from the domain in the

phase space where σ̄ > 1, since it was shown in Appendix C.4.1 that regions where
σ̄ << 1 bring a negligible o(σ̄3) contribution to its imaginary part. We split I (κ, v) in
two parts I = I1 + I2, which correspond to the two terms in the bracket [ ] (second line
of Eq.(C.10)). The �rst one reads

I1 (κ, v) = σ̄

ˆ π

−π

dα

2π

ˆ π

−π

dα′

2π
h̃ω (α) h̃∗ω

(
α′
)

exp
{
iσ̄
(
α′ − α

)}
Θ
(
α′ − α

)
The integrand is assumed to be dominated by the turning points α = ±π

2 , where θ = ±θ0.
Let us detail this delicate point. For any function h(θ) even in θ, one has the identity

ˆ π

−π

dα

2π
h(α) =

´ θ0
−θ0

dθ√
1−κ2 sin2 θ

2

h(θ)

´ θ0
−θ0

dθ√
1−κ2 sin2 θ

2

(C.11)
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where h(α) must be understood as h(α) = h [θ(α)]. If h(θ) is a smooth function, the
integral on the r.h.s of Eq.(C.11) can be approximated by h(θ0), assuming that most of the
integration will be weighted by the turning point θ = ±θ0. The (integrable) singularity
at the turning points does not appear explicitly when using the variable α, because it is
then hidden in the function h(α), which is built from h(θ) by using the change of variable
θ → α. It is recovered by changing h(α) by h(θ0)π

{
δ(α− π

2 ) + δ(α+ π
2 )
}
whenever it

is integrated over α, where h(θ0) is the value of h at the turning point. A calculation
of Eq.(C.11) using this approximation when σ̄ → 0 shows that < (I1) scales as σ̄3, as
already found via an exact calculation in Appendix C.4.1. This is no longer true when
σ̄ ∼ o(1). Indeed in that case, the oscillating function exp {iσ̄ (α′ − α)} introduce a
phase term exp (±iπσ̄) when α = π

2 , α
′ = −π

2 or α = −π
2 , α

′ = π
2 . Once integrated over

the phase space, this phase term is averaged down to a small number. Hence most of
the contribution comes from the neighborhood of α = α′ = π

2 and α = α′ = −π
2 . One

must then be careful that the Heaviside function introduces a factor 1
2 since the integral

of a δ function over a half-space is half-unity. The integral Eq.(C.11) can then be upper
bounded by the following (rough) estimate

I1 (κ, v) ≤ σ̄

4

∣∣∣h̃ω (θ0)
∣∣∣2 (C.12)

The second piece reads

I2 (κ, v) = σ̄

+∞∑
p=1

ˆ π

−π

dα

2π

ˆ π

−π

dα′

2π
h̃ω (α) h̃∗ω

(
α′
)

exp
{
iσ̄
(
α′ − α+ 2pπ

)}
where a prior version of the Lagrangian, namely Eq.(3.54) (before summation over the
index p), was used. Using the same trick as before, it appears that the region of the phase
space where σ̄ > 1 contributes weakly, because the phase terms exp {i2pπσ̄} average out
to small numbers after integration over the phase space. The resulting Lagrangian then
reads

L̄res,e = 2i
√

2πε1/2σ∗D(σ∗)

ˆ +∞

1

κ dκ

Λ(κ)
τ2(κ)

ˆ +∞

0
dvv exp

(
−v2

) ∣∣∣h̃ω (θ0(κ))
∣∣∣2

which leads to Eq.(3.69) after integration over the velocity modulus v. The function
D(σ∗) measures the weight of the region in the phase space (κ, v) where σ̄ ≥ 1. The
function D(σ∗) is presumably smaller than 1. The complementary part of the phase
space where σ̄ ≤ 1 was shown in Appendix C.4.1 to produce a small o(σ̄3) contribution
to imaginary part of L̄res,e. Hence D(σ∗) = 1 can be considered as an upper bound of
the Lagrangian.
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C.5 Damping rate estimation

The notations Dr and Di are used respectfully for the real and imaginary parts of the
dispersion relation. The solutions of the equation D(Ω) = 0 are characterized by the
complex pulsation Ω = Ω0 − iΓ with Ω0 the normalized resonance pulsation and Γ the
normalized damping rate. Close to the GAM resonance, Ω ' Ω0 and |Γ/Ω0| � 1.
Developing the dispersion relation D(Ω) = Dr(Ω) + iDi(Ω) = 0 around Ω0 gives:

D(Ω) ' Dr(Ω0)︸ ︷︷ ︸
0

+ iDi(Ω0) + (Ω− Ω0)︸ ︷︷ ︸
−iΓ

∂Ω(Dr + i Di︸︷︷︸
�Dr

)|Ωr = 0

and Γ can be recast as:

Γ ' Di(Ω0)

∂ΩDr(Ω0)

Taking the real part of dispersion relation of the form Dr(Ω) = 1 − Ω2
0

Ω2 , we have
∂ΩDr(Ω0) = 2

Ω0
. Taking now the imaginary part of the dispersion relation due to

electrons in Eq.(3.76), namely Di(Ω) = G(q, τe)D(σ∗)
(
me
mi

)1/2
qτ

1/2
e Ω, the normalized

damping rate yields to Eq.(3.79):

Γ ' 1

2
G (q, τe)D(σ∗)

(
me

mi

)1/2

qτ1/2
e Ω2

0
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C.6 Form of the density perturbation to get a sinusoidal
potential

We decompose the initial distribution function pro�le into a Maxwellian plus a per-
turbation g(r). This perturbation triggers an initial potential pro�le of the form φ(r) =
φ̃ sin(kr) with k the spatial frequency of the oscillations. We consider only one ion species,
the electrons response is adiabatic, and the gyroaverage operator is approximated by a
Padé form, which reads :

J0 =
1

1− ρ2

4 ∇
2
⊥
∼ 1 +

ρ2

4
∇2
⊥

with ρ the Larmor radius, and ∇2
⊥ = 1

r∂r(r∂r) + 1
r2∂

2
θ . Since all quantities considered

are independent of θ at the initial time, we will take ∇2
⊥ = 1

r∂r(r∂r).
In this framework, the equation of quasi-neutrality at the initial time reads :

ˆ
d3v J0.g(r) + ∇⊥ ·

(
mn0(r)

ZeB2
∇⊥φ

)
=

e

Te(r)
(φ(r)− 〈φ(r)〉FS)

ˆ
d3v J0.g(r) +

1

r
∂r

(
r
mn0(r)

ZeB2
∂rφ

)
= 0

with n0(r) =
´

d3v J0.f0 the initial density and f0 the initial Maxwellian pro�le of the
distribution function. In our case, it is assumed that f0 (and hence n0) and the magnetic
�eld B are independent of r and that J0 = 1. After developing the polarization term, we
�nd: ˆ

d3v {g(r) +K(r)} = 0 (C.13)

where

K(r) = Mf0

[
1

r

(
∂rφ+ r∂2

rφ
)]

(C.14)

By choosing a perturbation of the distribution function g(r) = −K(r), Eq.(C.13) is
satis�ed.

• For φ(r) = φ̃ sin(kr), choosing φ̃ = 1/Mf0 implies

g(r) = −1

r

[
k cos(kr)− k2r sin(kr)

]
(C.15)

• For φ(r) = φ̃ (1− cos(kr)), choosing φ̃ = 1/Mf0 implies

g(r) = −1

r

[
k sin(kr) + k2r cos(kr)

]
(C.16)
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Appendices of chapter 4

D.1 Conservation equations

Conservation equations in Gysela are tackled in J. Abiteboul's thesis [1, Abiteboul
2012]. We here do a similar derivation with the particular objective of getting an ex-
pression of the energy transfer from the electric wave to particles. We �rst retrieve the
particle and energy conservation equation for gyrocentres by integrating the gyrokinetic
equation in velocity space. The gyrokinetic equation takes the form:

∂f̄

∂t
+

1

B∗‖
∇z
(
żB∗‖ f̄

)
= 0 (D.1)

with z = (x,v) referring to the position and velocity coordinates and B∗‖ = B +
m
q vG,‖b.∇ ∧ b. First, the matter conservation equation is derived and then the en-
ergy conservation equation for gyrocentres.

We note: x the position, v the velocity, v‖ the projection of the velocity on the
magnetic �eld direction, µ the magnetic moment, F the distribution function, J0 the
gyroaverage operator,φ the electric potential, E the electric �eld, B the magnetic �eld, J
the electric current, ε0 the dielectric permitivity of vacuum, µ0 the dielectric permeability
of vacuum, n the density, m the mass, e the charge. X̄ refers to the quantity X applied
for gyrocentres.

D.1.1 Matter conservation

The conservation equation of particles is obtained by integrating equation (D.1) in ve-
locity space, it comes:

ˆ
∂f̄

∂t
d3v +

ˆ
1

B∗‖
∇z
(
żB∗‖ f̄

)
d3v = 0

with d3v = Jvdv‖dµ where Jv = 2πB∗‖ stands for the jacobian between particle and
gyrocentres in velocity phase space.

179
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• The calculation of the �rst integral I1 gives I1 = ∂n
∂t where n stands for the density

of gyrocentres.

• The calculation of the second integral I2 reads:

I2 =

ˆ
d3v

B∗‖

[
∇ ·

(
ẋB∗‖ f̄

)
+ ∂v‖

(
v̇‖B

∗
‖ f̄
)

+ ∂µ

(
µ̇B∗‖ f̄

)]
The magnetic moment is conserved through time, thus µ̇ = 0. Since d3v/B∗‖ =
2π dv‖ dµ, the integral of the second term reads:

ˆ
d3v

B∗‖
∂v‖

(
v̇‖B

∗
‖ f̄
)

=

ˆ
2π dµ

[
v̇‖B

∗
‖ f̄
]v‖=+∞

v‖=−∞
= 0

because f̄ becomes 0 when |v| becomes in�nite. As d3v/B∗‖ is independent of the
position coordinate x, the integral I2 then reduces to:

I2 =

ˆ
d3v

B∗‖
∇ ·

(
ẋB∗‖ f̄

)
= ∇ ·

ˆ
d3v ẋf̄ = ∇ · Γ

where Γ =
´

d3v ẋf̄ stands for the particle �ux.

Consequently, the conservation equation for particle takes the form:

∂n

∂t
+ ∇ · Γ = 0 (D.2)

In a set of coordinates (xi), the expression of the gradient becomes:

∇ · Γ =
1
√
g

∑
i

∂xi (
√
gΓi)

where
√
g stands for the Jacobian of the set of coordinates (xi). In the case of the usual

tokamak coordinates (χ, θ, ϕ), we have
√
g = Rr drdχ . With this formulation, equation

(D.2) becomes:

∂t (
√
gn) + ∂χ (

√
gΓχ) +

1

r
∂θ

(√
gΓθ
)

+
1

R
∂ϕ (
√
gΓϕ) = 0 (D.3)

Averaging this equation on (θ, ϕ), the last two terms disappear:
´ 2π

0 dθ ∂θ
(√
gΓθ
)

=√
gΓθ(θ = 2π)−√gΓθ(θ = 0) = 0 because

√
gΓθ is periodic in θ. The same can be done

for Γϕ. Therefore, it comes:

∂t

(ˆ
dθ dϕ

√
gn

)
+ ∂χ

(ˆ
dθ dϕ

√
gΓχ

)
= 0

De�ning 〈...〉FS = V −1
´

dθ dϕ
√
g ... with V =

´
dθ dϕ

√
g the �ux surface average, it

comes:
V ∂t 〈n〉FS + ∂χ (V 〈Γχ〉FS) = 0 (D.4)

NB : If we work with the spatial coordinates (r, θ, ϕ), then
√
g = rR and the conservation

equation becomes:
V ∂t 〈n〉FS + ∂r (V 〈Γr〉FS) = 0
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D.1.2 Energy conservation

The conservation equation of energy is obtained by replacing f̄ by f̄ H̄ in equation (D.1)
where H̄ = 1

2mv
2
‖ + µB + eφ̄ stands for the hamiltonian with φ̄ = J0.φ, J0 being the

gyroaverage operator. We then integrate this equation in velocity space. It comes:
ˆ
∂f̄

∂t
H̄ d3v +

ˆ
1

B∗‖
∇z
(
żB∗‖ f̄ H̄

)
d3v = 0

• The calculation of the �rst integral I1 gives:

I1 =
∂

∂t

ˆ
f̄ H̄ d3v −

ˆ
ef̄∂tφ̄ d3v

=
∂E
∂t

+

ˆ
eφ̄∂tf̄ d3v

=
∂E
∂t

+ eφ̄∂tn

where E = 1
2mv

2
‖ + µB stands for the total energy of gyrocentres.

• The calculation of the second integral I2 gives:

I2 =

ˆ
d3v

B∗‖

[
∇ ·

(
ẋB∗‖ f̄ H̄

)
+ ∂v‖

(
v̇‖B

∗
‖ f̄ H̄

)
+ ∂µ

(
µ̇B∗‖ f̄ H̄

)]
Like the conservation of particle, the two last terms are equal to 0. The integral I2

then reduces to:

I2 = ∇ ·
ˆ

d3v ẋf̄

(
1

2
mv2 + eφ̄

)
= ∇ ·Q + ∇ ·

(
eφ̄Γ

)
where Q = 1

2m
´

d3v ẋv2f̄ stands for the kinetic energy �ux.

Consequently, the conservation equation for energy takes the form:

∂E
∂t

+ ∇ ·Q + eφ̄∂tn+ ∇ ·
(
eφ̄Γ

)
= 0 (D.5)

Besides, ∇ ·
(
eφ̄Γ

)
= eΓ ·∇φ̄+ eφ̄∇ · Γ = eΓ ·∇φ̄− eφ̄∂tn due to matter conservation

(D.2). Thus, the conservation equation of energy writes:

∂E
∂t

+ ∇ ·Q = −eΓ ·∇φ̄

= −e
ˆ

d3v
(
v‖ + vE + vD

)
·∇φ̄ f̄ (D.6)

where vG‖ is the parallel gyrocentre velocity, vE is the electric gyrocentre drift, vD is the
magnetic gyrocentre drift, J0 is the gyroaverage operator. Averaging this equation on a
�ux surface in the same way it has been made for matter conservation, it comes:

V ∂t 〈E〉FS + ∂χ (V 〈Qχ〉FS) = −e
〈ˆ

d3v
(
v‖ + vE + vD

)
·∇φ̄ f̄

〉
FS

(D.7)
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The right hand side term can also be written as +
´

J ·E d3v using the notations J = ev
and E = −∇φ̄. This term, computed as the opposite of the time derivative of the
electromagnetic potential energy, corresponds to the power transferred from the electric
wave to the particles. Three contributions to this term can be identi�ed:

• The parallel contribution
´

J‖ ·E d3v

• The electric contribution
´

JE ·E d3v

• The magnetic contribution
´

JD ·E d3v

Of these three contributions, only the JD ·E term is retained, the others being negligible
as shown below.

Electric contribution

The electric term appearing in the right hand side of Eq.(D.7) reads:
ˆ

JE ·E d3v = −e
ˆ

d3v vE ·∇φ̄ f̄

= e

ˆ
d3v

∇φ̄ ∧B

B2
·∇φ̄ f̄ = 0

Therefore, the electric contribution is always vanishing.

Parallel contribution

The right hand side of equation (D.7) can be written as:
ˆ

J ·E d3v =

ˆ
J‖ ·E d3v +

ˆ
J⊥ ·E d3v

We want to know which of the parallel or the perpendicular contributions is dominant.The
parallel and transverse electric �eld can be evaluated as:

E‖ = −∇‖φ ' k‖ρ∗
T

e

‖E⊥‖ = ‖−∇⊥φ‖ ' k⊥ρ∗
T

e

where k‖ ∼ 1/qR is the parallel wave vector, k⊥ is the transverse wave vector, ρL being
the Larmor radius, ρ∗ = ρi/a ∼ eφ/T is the ratio between the ion Larmor radius and
the small tokamak ratio and T is the temperature supposed isotropic. The parallel and
transverse velocity can be evaluated as:

v‖ →M‖vth

v⊥ → vD '
p

eBR
' ρ∗ a

R
vth
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withM‖ the Mach number in the parallel direction and p ' mv2
th the pressure. Thus, the

ratio between the parallel and transverse contribution to the right hand side of equation
(D.7) is:

´
J‖ ·E d3v´
J⊥ ·E d3v

'
M‖vthE‖

ρ∗(a/R)vthE⊥
'

M‖

ρ∗(a/R)

1/qR

k⊥
=

M‖

q k⊥ρi
� 1

This ratio is small enough to neglect the parallel contribution compared to transverse one.

Removing the electric and parallel contributions, Eq.(D.7) eventually reads:

V ∂t 〈E〉FS + ∂χ (V 〈Qχ〉FS) = −e
〈ˆ

d3v vD ·∇φ̄ f̄

〉
FS

(D.8)
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D.2 The ωH mode and the kinetic Alfven wave

In the absence of perpendicular gradients, the dispersion relation giving the real pulsation
of the kinetic Alfven wave reads [74, Scott 1997]:

Ω2 = κ2
‖

1 + κ2
⊥

β̂ + µ̂κ2
⊥

where


β̂ = 4π nTe

B2

(
qR
L⊥

)2
=
(
cs/L⊥
vA/qR

)2

µ̂ = nTe
B2

(
qR
L⊥

)2
=
(

cs/L⊥
vth,e/qR

)2

κ⊥ = k⊥ρs κ‖ = qR k‖ Ω = ωL⊥cs

where L⊥ is a characteristic wavelength perpendicular to the magnetic �eld. Using non-
normalized notations the pulsation of the kinetic Alfven wave is recast as:

ω2 = k2
‖v

2
A

1 + k2
⊥ρ

2
i

1 + k2
⊥δ

2
e

(D.9)

where the Alfven velocity vA and the electron skin depth δe have been de�ned as:

vA =
B

√
µ0nmi

; δe =
cs
ωpe

=

√
me

µ0ne2

In the electrostatic limit β = nT/(B2/2µ0)� 1, it comes:

k2
⊥δ

2
e = 2k2

⊥ρ
2
s

me

mi

1

β
� 1 (D.10)

In that case, the dispersion relation Eq.(D.9) becomes:

ω2 '
(
k‖

k⊥

)2(
vA
δe

)2

(1 + k2
⊥ρ

2
i ) where

(
vA
δe

)2

=

(
vth,e
ρs

)2

=
e2B2

memi

The solution of the dispersion relation of kinetic Alfven modes in the electrostatic limit
is the so-called ωH mode:

ω2
H = ω2

ci

(
k‖

k⊥

)2
mi

me
(1 + k2

⊥ρ
2
i ) (D.11)

However, we notice that the condition (D.10) on β is rarely satis�ed in tokamaks. As a
consequence, taking into account the electromagnetic e�ects at �nite β (& k2

⊥ρ
2
ime/mi ∼

5.10−5) naturally eliminates this mode ωH and replaces it with the kinetic Alfven wave.
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D.3 Aliasing and Nyquist frequency

Let's consider a continuous signal of time t, x(t), characterized by a bounded frequency
Fourier spectrum x̂(f) (see Fig. D.1):

|x̂(f)| ≡
∣∣∣∣ˆ +∞

−∞
dt x(t) e2iπft

∣∣∣∣ = 0 for |f | > fmax

Figure D.1: Fourier spectrum of the continuous signal x(t): x̂(f).

The signal is now sampled at the frequency fs = τ−1, so that the sampled signal
xs(t) reads as follows:

xs(t) = x(t)
+∞∑

n=−∞
τ δ(t− nτ)

It follows that the Fourier transform (denoted FT) x̂s(f) of the sampled signal is the
convolution of x̂(f) by the Fourier transform of the Dirac comb:

x̂s(f) = x̂(f) ? FT

[
+∞∑

n=−∞
τ δ(t− nτ)

]

= x̂(f) ?

+∞∑
k=−∞

δ(f − kfs)

=

+∞∑
k=−∞

x̂(f − kfs)

It readily appears that, in between the frequencies −fmax and +fmax, the two spectra
x̂(f) and x̂s(f) will di�er from each other if the sampling frequency fs is smaller than
2fmax. In other words, any frequency component of the original signal above fs/2 is
indistinguishable from a lower frequency component, called an alias, associated with one
of the copies (blue dashed curves on Fig. D.2). fs/2 is called the Nyquist frequency.
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Figure D.2: Red curve: Fourier spectrum of the discretized signal xs(t): x̂s(f). Blue
dashed curves: copies (aliases) of the original spectrum, shifted by kfs (k ∈ Z).

Remark : The reason for such a statement can be understood easily. Let's consider the
signal sampled at the frequency fs = 1/τ . Then xs1(nτ) = x1(nτ) = x̂ sin(2πf1nτ + ϕ)
with n ∈ Z. Let x2(t) be a signal of same amplitude and phase as x1(t), but of frequency
f2 such that f2 = f1 + kfs with k ∈ Z: x2(t) = x̂ sin(2πf2t + ϕ). When sampled
at frequency fs, x2(t) will then be indistinguishable from x1(t), sampled at the same
frequency. Indeed, xs2(nτ) = x2(nτ) = x̂ sin(2πf1nτ + ϕ+ 2πnk).

D.4 Kinetic response of electrons close to resonance surfaces

We want to show that the behaviour of kinetic electrons close to resonance surfaces k‖ = 0
is di�erent from the one with adiabatic electrons. The idea here is to determine the
position of the resonance due to the kinetic part in the electron density. The �uctuation
of the electron density ñe = ne − ne,eq, calculated from Eq.(4.22), can be evaluated as:

(̂̃ne
ne

)
' eφ̂

T

1−
〈

ω − ω∗e
ω − k‖v‖e − ωDe

〉
︸ ︷︷ ︸

non-adiabatic part

 (D.12)

where .̂.. stands for the Fourier transform in action-angle variables and 〈...〉 =
´

d3v ... Feq
with Feq a Maxwellian distribution function and ωDe ∼ k⊥ · vDe is a pulsation linked
with the magnetic drifts. The pulsation for an ion turbulence reads:

ω ∼ ω∗i = (k⊥ρi)
vth,i
LT
∼ k‖vth,i
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where LT is a characteristic length of temperature gradients. Besides, we have:

ω∗e = (k⊥ρe)
vth,e
LT
∼ ω∗i since ρsvth,s =

Ts
esB

(D.13)

k‖vth,e = k‖vth,i

√
mi

me
� k‖vth,i

At this point, two cases can be distinguished depending of the radial position:

• Far from resonance surfaces: k‖ 6= 0. The term k‖vth,e is greater than ω and the
non adiabatic part of Eq.(D.12) vanishes:

ω − ω∗e
ω − k‖v‖e − ωDe

∼ ω∗i
k‖vth,e

∼ 0

Thus, the adiabatic behaviour is retrieved.

• Close to the resonance surfaces q ' −m/n: k‖ = 1
R(n + m/q) → 0. Therefore,

k‖ changes from a very high value to zero and there is a particular radial position
rm,n + δrm,n close to the resonance surface rm,n such that the denominator of
the non adiabatic part of Eq.(D.12) vanishes, thus causing the �uctuations of the
electron density ñe to diverge.

This last divergence condition is recast as k‖(rm,n + δrm,n) vth,e = ω∗i − ωDe ' ω∗i ∼ ω∗e .
It is possible from this relation to give an approximated expression of δrm,n. Developing
k‖ around the position rm,n, it comes:

k‖ (rm,n + δrm,n) = k‖ (rm,n) + δrm,n
dk‖

dr

∣∣∣∣
rm,n

Since k‖(rm,n) = 0 and using the expression of ω∗e Eq.(D.13), the resonance condition
reads:

δrm,n
dk‖

dr

∣∣∣∣
rm,n

' (k⊥ρe)
vth,e
LT

The radial derivative of k‖ reads drk‖ ' − m
qR

dq
q dr = kθs/(qR) with s = r drq/q is the

magnetic shear. Therefore, the radial extension of the zone around a resonance surface
where the response of electrons is kinetic reads as:

|δrm,n| '
∣∣∣∣k⊥kθ

∣∣∣∣ qs RLT ρe ' q

s

R

LT
ρe

We have LT ∼ a and q/s ∼ 1 in the core plasma. This causes δrm,n ∼ ρe. Thus, in a
kinetic electron model, the kinetic e�ects of electrons are expected to be localized near
the resonance surfaces and to have a width of the order of a few ρe. An analysis of these
�ne radial structures in the GENE code can be found in [23, Dominski 2015]. It should
be pointed out that this kinetic signature can be explained only if the ratio mi/me is big
enough. However, as the TEM resonance does not depend on the mass ratio, simulated
plasmas using small mass ratio mi/me = 100 can still show some physical behaviour.
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Résumé : Les  plasmas  de  fusion  par
confinement  magnétique  sont  le  siège
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