
HAL Id: tel-01894734
https://pastel.hal.science/tel-01894734

Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe and secure model-driven design for embedded
systems
Letitia Li

To cite this version:
Letitia Li. Safe and secure model-driven design for embedded systems. Embedded Systems. Université
Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLT002�. �tel-01894734�

https://pastel.hal.science/tel-01894734
https://hal.archives-ouvertes.fr

N
N

T
:

2
0

1
8

S
A

C
LT

0
0

2

Approche Orientée Modèles pour la

Sûreté et la Sécurité des Systèmes

Embarqués
Thèse de doctorat de l’Université Paris-Saclay

préparée à Telecom ParisTech

Ecole doctorale n◦580 Dénomination (STIC)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Biot, le 3 septèmbre 2018, par

LETITIA W. LI

Composition du Jury :

Prof. Philippe Collet

Professeur, Université Côte d’Azur Président

Prof. Guy Gogniat

Professeur, Université de Bretagne Sud Rapporteur

Prof. Maritta Heisel

Professeur, University Duisburg-Essen Rapporteur

Prof. Jean-Luc Danger

Professeur, Telecom ParisTech Examinateur

Dr. Patricia Guitton

Ingénieur, Renault Software Labs Examinateur

Dr. Ludovic Apvrille

Maı̂tre de Conférences, Telecom ParisTech Directeur de thèse

Dr. Annie Bracquemond

Directeur de Recherche, Institut Vedecom Co-directeur de thèse

Titre:Approche Orientée Modèles pour la Sûreté et la Sécurité des Systèmes Embarqués

Mots clés: systèmes embarques, véhicules autonomes, sûreté de fonctionnement, sécurité, exploration

d’architecture

Résumé: La présence de systèmes et d’objets em-

barqués communicants dans notre vie quotidienne a

apporté une myriade d’avantages, allant de l’ajout de

commodités et de divertissements à l’amélioration de

la sûreté des déplacements et des soins de santé.

Cependant, les défauts et les vulnérabilités de ces

systèmes exposent leurs utilisateurs à des risques de

dommages matériels, de pertes monétaires, et même

de dommages corporels. Par exemple, certains

véhicules commercialisés, qu’ils soient connectés ou

conventionnels, ont déjà souffert d’une variété de

défauts de conception entraı̂nant des victimes. Dans

le même temps, alors que les véhicules sont de plus

en plus connectés (et dans un avenir proche, au-

tonomes), les chercheurs ont démontré la possibilité

de piratage de leurs capteurs ou de leurs systèmes de

contrôle interne. Cette thèse s’intéresse à la sécurité

et la sûreté des systèmes embarqués, dans le con-

texte du véhicule autonome de l’Institut Vedecom.

Notre approche repose sur une nouvelle méthode

de modélisation pour concevoir des systèmes em-

barqués sûrs et sécurisés, basée sur la méthodologie

SysML-Sec, et impliquant de nouvelles stratégies de

modélisation et de vérification formelle.

Title: Safe and Secure Model-Driven Design for Embedded Systems

Keywords: embedded systems, autonomous vehicles, safe comportment, security, design space exploration

Abstract: The presence of communicating embed-

ded systems/IoTs in our daily lives have brought a

myriad of benefits, from adding conveniences and en-

tertainment, to improving the safety of our commutes

and health care. However, the flaws and vulnera-

bilities in these devices expose their users to risks

of property damage, monetary losses, and personal

injury. For example, consumer vehicles, both con-

nected and conventional, have succumbed to a va-

riety of design flaws resulting in injuries, and in some

cases, death. At the same time, as vehicles become

increasingly connected (and in the near future, au-

tonomous), researchers have demonstrated possible

hacks on their sensors or internal control systems.

This thesis discusses how to ensure the safety and

security of embedded systems, in the context of Insti-

tut Vedecom’s autonomous vehicle. Our approach in-

volves a new model-based methodology for safe and

secure design, which involve new modeling and veri-

fication methods.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Acknowledgments

The research presented in this thesis was sponsored by Institut Vedecom of Versailles, France and took
place at Lab System-on-Chip of Telecom ParisTech in Sophia Antipolis, France.

With the conclusion of my PhD, I would like to recognize everyone who made the completion of this
thesis possible: through technical support, encouragement, assisting with my post-thesis career plans, and
helping me find a life in France.

I would like to thank my advisors, Professor Ludovic Apvrille and Dr. Annie Bracquemond, who have
guided me through this thesis. They have taught me all about modeling, verification, safety, security, and
embedded systems, and it is their suggestions and corrections who have shaped this thesis into a coherent
scientific work. I have been exceptionally fortunate for their availability to aid me in more than just my
research, for I could not have navigated the administrative procedures or language difficulties without
them, and I am also grateful for their willingness to show me the cultural heritage of the country, such as
raclette.

Next, I would like to thank all of my jury members for their time in participating in my defense, and
all of the insights and the expertise they brought forth. I thank my reviewers: Professor Guy Gogniat
and Professor Maritta Heisel for taking time this summer to read my thesis and offer feedback vital to its
improvement, and the examiners of my jury: Professor Jean-Luc Danger, Professor Philippe Collet, and
Dr. Patricia Guitton, for their interest in my research.

I would also like to thank all of the developers of TTool, fellow members of LabSoc, and co-authors, for
the working environment conducive to research, and all of our shared triumphs and disasters, especially:
Professor Renaud Pacalet, who originally welcomed me to LabSoc for an internship and inspired me
to start a career in research, and taught me the meaning of research and the search for knowledge and
understanding, Professor Tullio Tanzi, who provided our case studies on his research on drones and rovers
for disaster relief, and has taught me so much about radar and to find the courage to face the rest of
the world so different than what I have experienced, Professor Rabea Ameur-Boulifa, who has been an
excellent source of knowledge on formalization and verification, Dr. Florian Lugou, who developed so
much of TTool’s security verification capabilities upon which my research is based, Matteo Bertolino, my
officemate and fellow PhD student, who I am sure will forge his own career in academia, Dr. Dominique
Blouin, whose work has greatly facilitated TTool development, Professor Daniela Genius of LIP6, our
co-author who inspired most of our work on performance and relating between levels of abstraction, and
Dr. Andrea Enrici of Nokia, the first of my fellow PhD students to graduate, who has been a great source
of information regarding post-thesis life. I also thank the other researchers at Institut Vedecom, Laurent
Bonic, Professor Féthi ben Ouezdou, and many others for helping with the modeling and testing on the
company side.

I thank my dearest and longtime friends Dr. Sharon Chou, Adam Fagan, Clement Pit-Claudel, Andrea
Wang, and Stephie Wu, for their encouragement to see this thesis through, and staying a part of my life
from afar. I am grateful for these friendships who have endured time and distance, and that they have
ensured that we can meet again in those brief, precious times that we are on the same side of the ocean.

And lastly, I thank my parents, who have always supported me no matter where my education and career
take me. They have set an example to strive for education, knowledge, integrity, and scientific achievement,
which, in my own way, I have attempted to live up to.

1

Abstract

The presence of communicating embedded systems/IoTs in our daily lives have brought a myriad of ben-
efits, from adding conveniences and entertainment, to improving the safety of our commutes and health
care. However, the flaws and vulnerabilities in these devices expose their users to risks of property damage,
monetary losses, and personal injury. For example, consumer vehicles, both connected and conventional,
have succumbed to a variety of design flaws resulting in injuries, and in some cases, death. At the same
time, as vehicles become increasingly connected (and in the near future, autonomous), researchers have
demonstrated possible hacks on their sensors or internal control systems, including direct injection of
messages on the CAN bus.

Ensuring the safety of users or bystanders involves considering multiple factors. Conventional safety
suggests that a system should not contain software and hardware flaws which can prevent it from correct
function. ‘Safety of the Intended Function’ involves avoiding the situations which the system or its compo-
nents cannot handle, such as adverse extreme environmental conditions. Timing can be critical for certain
real-time systems, as the system will need to respond to certain events, such as obstacle avoidance, within
a set period to avoid dangerous situations. Finally, the safety of a system depends on its security. An
attacker who can send custom commands or modify the software of the system may change its behavior
and send it into various unsafe situations.

Various safety and security countermeasures for embedded systems, especially connected vehicles, have
been proposed. To place these countermeasures correctly requires methods of analyzing and verifying
that the system meets all safety, security, and performance requirements, preferably at the early design
phases to minimize costly re-work after production. This thesis discusses the safety and security con-
siderations for embedded systems, in the context of Institut Vedecom’s autonomous vehicle. Among the
proposed approaches to ensure safety and security in embedded systems, Model-Driven Engineering is
one such approach that covers the full design process, from elicitation of requirements, design of hardware
and software, simulation/formal verification, and final code generation. This thesis proposes a modeling-
based methodology for safe and secure design, based on the SysML-Sec Methodology, which involve new
modeling and verification methods.

Security modeling is generally performed in the last phases of design. However, security impacts the early
architecture/mapping and HW/SW partitioning decisions should be made based on the ability of the ar-
chitecture to satisfy security requirements. This thesis proposes how to model the security mechanisms
and the impact of an attacker as relevant to the HW/SW Partitioning phase. As security protocols nega-
tively impact performance, it becomes important to measure both the usage of hardware components and
response times of the system. Overcharged components can result in unpredictable performance and un-
desired delays. This thesis also discusses latency measurements of safety-critical events, focusing on one
critical to autonomous vehicles: braking as after obstacle detection. Together, these additions support the
safe and secure design of embedded systems.

2

Abstract

La présence de systèmes et d’objets embarqués communicants dans notre vie quotidienne a apporté une
myriade d’avantages, allant de l’ajout de commodités et de divertissements à l’amélioration de la sûreté
des déplacements et des soins de santé. Cependant, les défauts et les vulnérabilités de ces systèmes ex-
posent leurs utilisateurs à des risques de dommages matériels, de pertes financières, et même de dommages
corporels. Par exemple, certains véhicules commercialisés, qu’ils soient connectés ou conventionnels, ont
déjà souffert d’une variété de défauts de conception entraînant des victimes. Dans le même temps, alors
que les véhicules sont de plus en plus connectés (et dans un avenir proche, autonomes), les chercheurs ont
démontré la possibilité de piratage de leurs capteurs ou de leurs systèmes de contrôle interne, y compris
l’injection directe de messages sur le bus CAN.

Pour assurer la sûreté des utilisateurs et des passants, il faut considérer plusieurs facteurs. La sûreté con-
ventionnelle suggère qu’un système ne devrait pas contenir de défauts logiciels et matériels qui peuvent
l’empêcher de fonctionner correctement. La "sûreté de la fonction attendue" consiste à éviter les situa-
tions que le système ou ses composants ne peuvent pas gérer, comme des conditions environnementales
extrêmes. Le timing peut être critique pour certains systèmes en temps réel, car afin d’éviter des situa-
tions dangereuses, le système devra réagir à certains événements, comme l’évitement d’obstacles, dans un
délai déterminé. Enfin, la sûreté d’un système dépend de sa sécurité. Un attaquant qui peut envoyer des
commandes fausses ou modifier le logiciel du système peut changer son comportement et le mettre dans
diverses situations dangereuses.

Diverses contre-mesures de sécurité et de sûreté pour les systèmes embarqués, en particulier les véhicules
connectés, ont été proposées. Pour mettre en oeuvre correctement ces contre-mesures, il faut analyser
et vérifier que le système répond à toutes les exigences de sûreté, de sécurité et de performance, et les
faire la plus tôt possible dans les premières phases de conception afin de réduire le temps de mise sur le
marché, et éviter les reprises. Cette thèse s’intéresse à la sécurité et la sûreté des les systèmes embar-
qués, dans le contexte du véhicule autonome de l’Institut Vedecom. Parmi les approches proposées pour
assurer la sûreté et la sécurité des les systèmes embarqués, l’ingénierie dirigée par modèle est l’une de
ces approches qui couvre l’ensemble du processus de conception, depuis la définition des exigences, la
conception du matériel et des logiciels, la simulation/vérification formelle et la génération du code final.
Cette thèse propose une nouvelle méthod de modélisation pour une conception sûre et sécurisée, basée sur
la méthodologie SysML-Sec, et impliquant de nouvelles stratégies de modélisation et de vérification.

La modélisation de la sécurité est généralement effectuée dans les dernières phases de la conception.
Cependant, la sécurité a un impact sur l’architecture/allocation; les décisions de partitionnement logiciel/-
matériel devraient être prises en fonction de la capacité de l’architecture à satisfaire aux exigences de
sécurité. Cette thèse propose comment modéliser les mécanismes de sécurité et l’impact d’un attaquant
dans la phase de partitionnement logiciel/matériel. Comme les protocoles de sécurité ont un impact né-
gatif sur le performance d’un système, c’est important de mesurer l’utilisation des composants matériels
et les temps de réponse du système. Des composants surchargés peuvent entraîner des performances im-
prévisibles et des retards indésirables. Cette thèse traite aussi des mesures de latence des événements
critiques pour la sécurité, en se concentrant sur un exemple critique pour les véhicules autonomes : le
freinage/réponse après la détection d’obstacles. Ainsi, nos contributions soutiennent la conception sûre et
sécurisée des systèmes embarqués.

3

4

Contents

1 Introduction 19
1.1 Safety and Security Concerns in IoTs/Embedded Systems 19
1.2 Design of Embedded Systems . 20
1.3 Problem Statement . 21
1.4 Contribution of this Thesis . 22

1.4.1 Security modeling and verification in the mapping phase 22
1.4.2 Proof of Correctness of Model Transformation for Formal Security Verification . . 22
1.4.3 Attacker Modeling . 23
1.4.4 Latency analysis . 23
1.4.5 Proposition of a modified SysML-Sec Methodology 23
1.4.6 Taxonomy for Safe and Secure Autonomous Vehicle Design 23

1.5 Organization of this Thesis . 24

2 Context: Autonomous Vehicles 27
2.1 Safety and Security Flaws . 27

2.1.1 Safety Flaws in Commercial Vehicles . 27
2.1.2 Survey of Hacks on Connected Vehicles . 28
2.1.3 Safety Limitations of Autonomous Vehicles . 29
2.1.4 Survey of Potential Attacks on Future Autonomous Vehicles 30
2.1.5 Conclusion . 31

2.2 Approaches to Vehicle Safety and Security . 32
2.2.1 Proposals for Safe and Secure Automotive and Embedded System Design 32

2.3 Taxonomy . 34
2.3.1 Potential Causes of Failure . 35
2.3.2 Undesired States of System Behavior . 38
2.3.3 Unsafe Comportment . 39
2.3.4 Countermeasures . 39
2.3.5 Conclusion . 39

2.4 Countermeasures . 40
2.4.1 Safety Countermeasures . 40
2.4.2 Security Countermeasures . 40
2.4.3 Secondary Effects of Countermeasures on Safety, Security, and Performance . . . 42
2.4.4 Conclusion . 43

2.5 Design Process Requirements . 43
2.5.1 Methodology Capabilities . 43
2.5.2 Properties to Verify . 44

5

2.5.3 Security Properties . 44
2.5.4 Conclusion . 45

3 Related Work 47
3.1 Software Development approaches . 48

3.1.1 Agile . 49
3.1.2 Waterfall/V Life Cycle . 49

3.2 Model Driven Methodologies and Toolkits . 49
3.2.1 Frameworks for Analysis . 49
3.2.2 Frameworks for the Design of Embedded Systems 52
3.2.3 Frameworks for Software Design . 56
3.2.4 Conclusion . 59

4 Modeling Methodology 61
4.1 Introduction . 61
4.2 Overview . 62
4.3 Analysis . 66

4.3.1 Requirements . 66
4.3.2 Attack Trees . 67
4.3.3 Fault Trees . 67
4.3.4 Relationship between Analysis Phase Diagrams 68

4.4 Design Phases . 71
4.5 HW/SW Partitioning . 71

4.5.1 Application/Functional Modeling . 71
4.6 Software Design . 75

5 Security-Aware HW/SW Partitioning 79
5.1 Motivation . 79
5.2 Attacker Model . 81
5.3 Security Modeling . 82

5.3.1 Architecture Vulnerabilities . 82
5.3.2 Attacker Scenarios . 82
5.3.3 Attacker Scenario Analysis . 86
5.3.4 Security Countermeasures . 86

5.4 Conclusion . 94

6 Security Verification 97
6.1 Introduction . 97
6.2 ProVerif . 99

6.2.1 Functions . 99
6.2.2 Declarations . 100
6.2.3 Queries . 100
6.2.4 Main Process . 101
6.2.5 Sub-processes . 101
6.2.6 Formalizations . 102
6.2.7 DIPLODOCUS to ProVerif Translation Process 102

6.3 Formalization for Translation . 103
6.3.1 DIPLODOCUS Formalization . 104

6

6.3.2 AVATAR Formalization . 110
6.4 DIPLODOCUS to AVATAR Translation Formalization 111

6.4.1 Full DIPLODOCUS to AVATAR translation . 112
6.4.2 DIPLODOCUS to AVATAR translation for Security 113
6.4.3 Translation of Operators . 115

6.5 Translation to ProVerif . 128
6.5.1 Translation of Queries . 128
6.5.2 Translation of Tasks . 130
6.5.3 Translation of Actions . 130

6.6 Proof of Correctness . 130
6.6.1 Base case . 131
6.6.2 Inductive Step . 131
6.6.3 Conclusion . 133

6.7 ProVerif Results . 133
6.8 Automatic Generation . 135

6.8.1 Security Requirements . 136
6.8.2 Addition of Security Operators . 136
6.8.3 HSM Generation . 140
6.8.4 Automatic Key Mapping . 142
6.8.5 Automatic Generation for Case Study . 142

6.9 Conclusion . 145

7 Performance Evaluation 147
7.1 Introduction . 147
7.2 Latency Analysis . 148

7.2.1 Latency Requirements . 148
7.2.2 Latency Annotations . 149
7.2.3 Latency Analysis . 150
7.2.4 Backtracing Latencies . 151

7.3 Relating Latencies across Levels of Abstraction . 153
7.4 Performance Impact due to adding Security . 155
7.5 Conclusion . 157

8 Conclusion and Perspectives 159
8.1 Integration of full Safety and Security Features into Autonomous Vehicle Model 160
8.2 Contributions . 163
8.3 Perspectives . 164

8.3.1 Security for Embedded Systems in Practice . 164
8.3.2 Accurate Representation of Countermeasures . 164
8.3.3 Full Automatic Generation of Countermeasures 165
8.3.4 Security Modeling and Verification . 165
8.3.5 Time in ProVerif . 166
8.3.6 Safety Countermeasure Modeling . 166
8.3.7 Safety and Security Analysis Diagrams . 166
8.3.8 Relationship between Safety, Security, and Performance 166
8.3.9 System Resilience . 166
8.3.10 Vulnerability Modeling . 167

7

8.3.11 Improved Connections between Phases . 167
8.3.12 Integration of Security Verification Results . 167
8.3.13 Proof of Correctness for Authenticity . 167
8.3.14 Attack Probabilities . 167

9 Resume 169
9.1 Introduction . 169
9.2 Contexte . 171

9.2.1 Sûreté et Sécurité des Voitures Autonomes/Connectés 171
9.2.2 Contre-mesures proposées . 171
9.2.3 Effets secondaires des contre-mesures pour la sûreté, la sécurité et la performance . 173
9.2.4 Travail Connexe . 174

9.3 Méthodologie . 175
9.4 Sécurité d’un Partitionnement Logiciel/Matériel . 177

9.4.1 Modèle d’Attaquant . 177
9.4.2 Modèle de Vulnérabilités . 177
9.4.3 Scénarios d’attaque . 178
9.4.4 Modèle de Contre-mesures . 178
9.4.5 Vérification Formelle . 180
9.4.6 Génération Automatique de Contre-mesures . 181

9.5 Évaluation des Performances . 181
9.5.1 Mesure des Temps de Latence . 182
9.5.2 Analyse de Système Sûr et Sécurisé . 182

9.6 Conclusion . 183
9.6.1 Contributions . 184
9.6.2 Perspectives . 184

Bibliography 185

8

List of Figures

1-1 Vedecom Autonomous Car . 24

2-1 Taxonomy Overview showing how Internal and External Factors can result in Unsafe Com-
portment . 35

2-2 Taxonomy for Autonomous Vehicles Part 1 . 36
2-3 Taxonomy for Autonomous Vehicles Part 2 . 37

4-1 Overview of SysML-Sec Methodology for the Design of Safe and Secure Embedded Systems 64
4-2 Metamodel of Diagrams for SysML-Sec Methodology 65
4-3 Refinement of Requirements for Vehicle Safety and Security 66
4-4 Attack Tree for Obstacle Detection Failure . 68
4-5 Fault Tree for Obstacle Detection Failure . 69
4-6 Linking Attack and Fault Trees into Requirement Diagram 70
4-7 Application Model for Autonomous Vehicle . 72
4-8 Activity Diagram for Navigation in Autonomous Vehicle 72
4-9 Architecture/Mapping Model for Autonomous Car . 73
4-10 Software Design Model for Autonomous Vehicle . 75
4-11 State Machine Diagram refined from HW/SW Partitioning Activity Diagram 77

5-1 Fixing Security Flaws across levels of abstraction . 81
5-2 Modeling data security without dedicated operators . 81
5-3 Security Modeling Metamodel . 83
5-4 Sample Architecture with Insecure Bus . 84
5-5 Extract of Attack Tree for Attacker Scenario Model . 85
5-6 Attacker Scenario execution on hardware . 85
5-7 Activity Diagrams of components in Attacker Scenario 86
5-8 Performance impact due to Addition of Attacker . 87
5-9 Specification of Cryptographic Configuration for Asymmetric Encryption and Decryption . 88
5-10 HSM in Architecture Diagram . 89
5-11 Perception and HSM Activity Diagram . 90
5-12 Firewall added to Architecture Diagram . 91
5-13 Component Diagram with Firewall . 92
5-14 Firewall Activity Diagram . 93
5-15 Mapping Model with and without dedicated Security Operators 94
5-16 Modified Attack Tree with Countermeasures Added . 95

6-1 DIPLODOCUS to ProVerif Translation process . 103
6-2 Functional Model Communication Behavior Formalization 105

9

6-3 Functional Model Choice Behavior Formalization . 106
6-4 Functional Model Loop Behavior Formalization . 107
6-5 Functional Model Complexity Behavior Formalization 109
6-6 Avatar Behavior Formalization . 111
6-7 Translation of Functional Communications to Software Design Communications 113
6-8 Translation of DIPLODOCUS Tasks and Associated Attributes and Communications to

AVATAR . 114
6-9 Translation of Security of Channels - Secure Communication Mapping 116
6-10 Translation of Security of Channels - Insecure Communication Mapping 117
6-11 Translation of Functional Communication Behavior Elements to Software Design Behav-

ior Elements . 118
6-12 Translation of Functional Choice Behavior Elements to Software Design Behavior Elements119
6-13 Translation of Functional Loop Behavior Elements to Software Design Behavior Elements 120
6-14 Translation of Functional Complexity Behavior Elements to Software Design Behavior

Elements . 121
6-15 Translation of Symmetric Encryption Behavior Elements to Software Design Behavior

Elements . 122
6-16 Translation of MAC Cryptographic Configuration to Software Design Behavior 123
6-17 Translation of Nonce Cryptographic Configuration to Software Design Behavior 123
6-18 Translation of Sending Secured vs Unsecured Data to Software Design Behavior 124
6-19 Translation of DIPLODOCUS to AVATAR to ProVerif 129
6-20 Confidentiality, Authenticity, and Reachability Security Annotations 129
6-21 ProVerif Verification Results Output . 134
6-22 Verification Results for Default Mapping . 134
6-23 Verification Results for Modified Mapping with Perception and Navigation Tasks mapped

to same CPU . 135
6-24 Window for Automatic generation of security . 137
6-25 Automatic generation of security operators to ensure confidentiality 138
6-26 Automatic generation of security operators to ensure Weak and Strong Authenticity 141
6-27 Automatic generation of security operators to ensure Confidentiality and Authenticity . . . 141
6-28 Verification Results for Mapping with Security Operators added 144
6-29 Verification Results for Mapping with Security Operators and Insecure Memory Access . . 144

7-1 Mapping Operators tagged with Latency Checkpoints . 149
7-2 Software Design Operators tagged with Latency Checkpoints 149
7-3 Latency Measurement Panel . 152
7-4 Mapping Operator marked with latency measurement and linked Requirement 152
7-5 Performance Pragma with Latency results . 153
7-6 Latencies across Mapping vs Software Design . 154
7-7 Incoherence detected in latency measured between HW/SW Partitioning and Software De-

sign . 155
7-8 Performance results for Mapping 1 . 156
7-9 Simulation Trace for Performing Security Operations in Perception task or HSM 157

8-1 Full Application Model with Safety and Security Countermeasures 161
8-2 Full Mapping Model with Safety and Security Countermeasures 162
8-3 AVATAR Model translated incorrectly to ProVerif due to removal of time 165

10

9-1 SysML-Sec Méthodologie pour la Conception de Systèmes Embarqués Sûrs et Sécurisés . 176
9-2 Spécification de la "Cryptographic Configuration" pour le Chiffrement et le Déchiffrement

Asymétrique . 179
9-3 Résultats de vérification pour l’allocation par défaut . 181

11

12

List of Tables

2.1 Table of Hazards of Autonomous/Connected Vehicles . 31
2.2 Table of Countermeasures . 41
2.3 Impact on Safety, Security, and Performance of Countermeasures 43

3.1 Comparison of Related Works . 60

7.1 Performance Results over Mappings . 156

8.1 Performance Results Comparison of Default vs Safe and Secured Mapping 163

9.1 Tableau de Risques dans les Voitures Autonomes/Connectées 172
9.2 Résultats de Performance . 183

13

14

List of Abbreviations

AADL Architecture Analysis & Design Language
AES Advanced Encryption Standard
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
AVATAR Automated Verification of reAl Time softwARe.
BDMP Boolean Logic Driven Markov Processes
CAN Controller Area Network
CFT Component Fault Tree
CPU Central Processing Unit
DIPLODOCUS DesIgn sPace exLoration based on fOrmal Description teChniques, Uml and SystemC
DSE Design Space Exploration
ECC Elliptic-Curve Cryptography
ECU Electronic Control Unit
EVITA E-safety vehicle intrusion protected applications (project)
FIFO First In First Out
FMVEA Failure Mode, Vulnerabilities and Effect Analysis
FPGA Field-Programmable Gate Array
GPS Global Positioning System
HAZOP HAZard and OPerability
HSM Hardware Security Module
HW/SW Hardware/Software
IoT Internet of Things
ISO International Organization for Standardization
LIDAR Light Detection and Ranging
MABX Micro Auto Box
MAC Message Authentication Code
MARTE Modeling and Analysis of Real Time and Embedded Systems
MCS Minimum Cut Set
MDE Model-Driven Engineering
OBD On-board Diagnostics
NOP No operation
OCL Object Constraint Language
RSA Rivest Shamir Adleman (algorithm)
SMOLES Simple Modeling Language for Embedded Systems
SOTIF Safety of the Intended Function
STPA Systems Theoretic Process Analysis

15

SysML Systems Modeling Language
TCU Telematic Control Unit
TDMA Time-Division Multiple Access
TPM Trusted Platform Module
UML Unified Modeling Language
VANET Vehicular Ad hoc NETworks
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VHDL VHSIC Hardware Description Language
VIN Vehicle Identification Number

16

List of Publications

International Journals

- Letitia W. Li, Daniela Genius, and Ludovic Apvrille. Formal and Virtual Multi-level Design Space Ex-
ploration. International Conference on Model-Driven Engineering and Software Development. Springer,
2017. (Accepted)

Book Chapters

- [16] Ludovic Apvrille and Letitia W. Li. Safe and Secure Support for Public Safety Networks. Wire-

less Public Safety Networks 3, Elsevier, ed. Daniel Camara and Navid Nikaein, pp 185 - 210, 2017

National Journals

- Ludovic Apvrille and Letitia Li. Security Concerns of Connected and/or Autonomous Vehicles. MISC

(87) (Sep/Oct 2016) (in French)

Conference Papers

- [203] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Evolving Attacker Perspectives for Se-
cure Embedded System Design. Conference on Model-Driven Engineering and Software Development

(Modelsward’2018). Funchal, Portugal (Jan 2018)

- [119] Daniela Genius, Letitia W. Li, and Ludovic Apvrille. Multi-level Latency Evaluation with
an MDE Approach. Conference on Model-Driven Engineering and Software Development (Model-

sward’2018). Funchal, Portugal (Jan 2018)

- [202] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Security Modeling for Embedded System
Design. Fourth International Workshop on Graphical Models for Security. Santa Barbara, CA, USA (Aug
2017).

- [200] Letitia W. Li, Ludovic Apvrille, and Annie Bracquemond. Design and Verification of Secure
Autonomous Vehicles. Intelligent Transport Systems. Strasbourg, France (June 2017).

- [201] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Security-Aware Modeling and Analysis
for HW/SW Partitioning. Conference on Model-Driven Engineering and Software Development (Mod-

elsward’2017). Porto, Portugal (Feb 2017)

- [118] Daniela Genius, Letitia W. Li, and Ludovic Apvrille. Model-Driven Performance Evaluation
and Formal Verification for Multi-level Embedded System Design. Conference on Model-Driven En-

gineering and Software Development (Modelsward’2017). Porto, Portugal (Feb 2017)

17

- Letitia Li, Ludovic Apvrille, and Daniela Genius. Virtual Prototyping of Automotive Systems: To-
wards Multi-level Design Space Exploration. Conference on Design and Architectures for Signal and

Image Processing (2016)

- Ludovic Apvrille, Letitia Li, and Yves Roudier. Model-Driven Engineering for Designing Safe and
Secure Embedded Systems. Architecture-Centric Virtual Integration (ACVI). pp. 4–7. IEEE (2016)

- [209] Florian Lugou, Letitia W. Li, and Ludovic Apvrille, Ameur-Boulifa, Rabea. SysML Models and
Model Transformation for Security. Conference on Model-Driven Engineering and Software Develop-

ment (Modelsward’2016). Rome, Italy (Feb 2016)

Under Review

- Letitia W. Li, Florian Lugou, Ludovic Apvrille, and Annie Bracquemond. Model-Driven Design for
Safe and Secure Embedded Systems. Under review

18

Chapter 1

Introduction

“The best thing for being sad," replied Merlin, beginning to puff and blow, “is to learn something.
That’s the only thing that never fails. You may grow old and trembling in your anatomies, you may lie
awake at night listening to the disorder of your veins, you may miss your only love, you may see the
world about you devastated by evil lunatics, or know your honour trampled in the sewers of baser
minds. There is only one thing for it then - to learn. Learn why the world wags and what wags it. That
is the only thing which the mind can never exhaust, never alienate, never be tortured by, never fear or
distrust, and never dream of regretting. Learning is the only thing for you. Look what a lot of things
there are to learn." –T.H. White, The Once and Future King

Communicating embedded systems/IoTs, are becoming increasingly prevalent in our daily lives [96].
These systems with both hardware and software components, contain a computer ‘embedded’ into the
device, and are designed to perform a single dedicated function [25]. The omnipresent connectivity in
these objects has improved our daily lives, from adding conveniences by allowing us to track appliances
(such as fridges, detectors, etc) [263], adding conveniences and improving safety in our daily commutes
(internet connectivity, car monitoring, emergency braking, etc) [342], monitoring our personal health (fit-
bits, glucose monitors) [77] or of children (Mimo, trackers) [277], to helping medical professionals with
menial tasks, monitoring patients or administering treatment (delivery robot, insulin delivery, etc) [314].
For all the benefits due to these connected devices, malfunctions may lead to grave impacts on personal
privacy or safety.

1.1 Safety and Security Concerns in IoTs/Embedded Systems

Radiation therapy machines should help treat cancer, but the software bugs within the Therac-25 machine
caused malfunctions which sickened or killed 6 patients from 1985 - 1986 [198], and the Cobalt-60 radia-
tion machine sickened or killed 28 patients in 2000 [121]. The Nest Protect smoke and carbon monoxide
detector could be turned off easily and unintentionally, and possibly fail to warn users of dangerous sit-
uations [6]. Numerous products have been recalled due to the ability to catch fire, such as hoverboards,
smartphones, and children’s fitness monitors [176]. Security flaws have also been found on medical appli-
ances, such as the Hospira Symbiq drug pump [153]. Researchers have demonstrated how to gain control

19

Chapter 1. Introduction

of connected cars through cellular connectivity and wifi [67, 223], and drones through an insecure re-
mote connection [268]. Attacks have also targeted important industrial systems, as demonstrated by the
Stuxnet, Flame, and Duqu [219] attacks. All of these examples demonstrate the safety risks posed by flaws
or vulnerabilities in connected embedded systems.

Safety is defined as avoidance of situations which can cause losses such as personal injury, illness, property
damage, monetary damage, etc [197]. A system should be free of faults, which are defined as undesired
system states due to either incorrect commands or the absence of the correct command, or a failure, which
is defined as the inability of the system or system element to perform its intended function [62]. In our
context, we divide system safety into multiple aspects: conventional safety involves avoiding malfunctions
resulting in losses, such as the race conditions within the Therac-25 machine that could cause a fatal dose
of radiation to be occasionally administered to patients, and safety of the intended functionality involves
avoiding losses due to environmental conditions even in a system without faults, such as malfunctioning
sensors in adverse weather conditions [31, 154, 198].

Real-time systems involve software continuously controlling physical components which operate within
timing constraints for correct function [123]. In certain real-time systems, performance can also be critical
to safety [64, 243]. Critical events should not be delayed due to bus or processor contention, as such
delays can lead to potentially unsafe situations or inability to avoid possible damages to the system or
users [9, 191].

Furthermore, the safety of a system depends on its security. According to security researcher Charlie
Miller, who demonstrated the remote hack of a Jeep through the cellular network, “You cannot have safety
without security" [128]. Even if a system was designed to be completely safe, should a hacker gain access
to the system, he/she might be able to change the functionality entirely to one which ignores all safety
controls.

1.2 Design of Embedded Systems

The design of safety-critical embedded systems is complicated by their many requirements, and the pres-
ence of both hardware and software components [145]. Not only must we assure that the system will
always behave safely and is protected against attackers, we must also consider the real-time performance
for timing-critical devices, memory, device lifetime, the cost and size of the architecture, reliability, and
power consumption as many of these devices have limited battery life [25, 184].

Designing secure systems is complicated by the lack of security expertise in developers [20,284,306], and
the fact that security mechanisms are often added as an afterthought [98]. At the same time, designing
safe systems is complicated by the need to ensure both the software’s functional correctness in a variety of
environments, and the ability of the hardware to support that software function [144].

Many solutions to ensuring safety and security have been proposed, such as modeling, testing, various
methodologies, and following rigorously discussed industry standards. While many safety and security
standards exist [287], they are written in text, and it is uncertain if the designer has taken them into
account, where quantitative verification is more formalized and uses objective analysis [275]. Formal
and semi-formal specifications can be less ambiguous, and better support finding errors and translations
for simulation/analysis [28]. Tools can check if formal requirements are consistent and complete as an
ensemble, and also automatically check the satisfaction of some types of requirements [238]. We propose

20

Chapter 1. Introduction

that we can directly analyze if each standard is fulfilled if they are written as requirements that are refined
until they can be directly tested (i.e. latency < value). To allow for objective evaluation, we must test a
mathematical statement rather than a high-level idea such as "safety should be a consideration".

One solution, systematic modeling and formal verification, can help detect flaws earlier, specify the system,
and better analyze the overall system, which individual tests cannot do [290]. Fixing software flaws earlier
in the design process costs less than after mass production [137]. Formal verification and simulation can
be performed on the more abstract models to validate the design [91], as full systems can be too large to
model and take too long to verify, often described as the state explosion problem [61]. Designers then
iteratively refine abstract models until the models include all important details [340]. Final models can
then be automatically translated into generated code [192,331], which ensures that the system and models
correlate, and eases the software development process [290].

Graphical modeling languages, such as UML are also found to be more ‘human-friendly’, and easier to
understand [291]. A supporting modeling tool should ease modeling and verification efforts, save time by
demonstrating good user interface design, and perform automatic verification to clearly present the flaws
in the model to the designer [114, 235]. Poor user interface may fail to indicate problems to the user,
or provide misleading information. For example, in 1988, the USS Vincennes mistakenly shot down a
civilian plane it thought to be hostile partially due to receiving measurements from a different plane and
failure to determine if the plane was descending towards the ship to attack, mistakes which can be blamed
on a difficult-to-use and uninformative user interface [301]. In the 1989 airplane crash at Kegsworth, the
pilots failed to determine which engine was malfunctioning, and then shut down the functioning engine,
partially due to a difficult-to-read indicator [43]. While modeling software cannot cause such catastrophic
damage, it is still important to ensure our tool provides the correct information in a clear manner to the
user to best facilitate the generation of correct designs meeting desired specifications.

1.3 Problem Statement

My thesis, sponsored by Institut Vedecom, the French research institute for the development of sustainable
and autonomous vehicles, investigates how to design safe and secure embedded systems. The design of
their autonomous vehicle must take into account a multitude of requirements, especially the safety of the
occupants and other bystanders. One of the critical stages of development is to decide on the high-level
hardware and software, and the mapping of software to hardware (determining the hardware components
where functions are executed) [217, 236, 316].

As presented in this thesis, there exist various design methodologies and tools, each which focus on certain
aspects of design or specific domains, but none that support all of the necessary verification tools and
handle the security modeling required, especially during selection of an architecture and mapping. We
therefore evolve the SysML-Sec Methodology and supporting toolkit TTool to better address these needs
[13, 15]. As an advantage of our approach, keeping the entire modeling within a single toolkit better
ensures that there is only one set of models, and minimizes the amount of rework at each change [157].
At the same time, we ensure the ease-of-use of our toolkit, an essential quality to ensuring its adoption by
designers [235]. We discuss our efforts for clear presentation of verification results, to save the designer
time by automatically identifying which requirements a model fails to meet.

21

Chapter 1. Introduction

1.4 Contribution of this Thesis

The contribution of this thesis involves methods to ensure safe and secure design of connecting embedded
systems, ultimately cumulating in new modeling and verification methodology. More specifically, the
contributions include:

1.4.1 Security modeling and verification in the mapping phase

As to be discussed in Chapter 3, most security modeling describes the detailed implementation of security
protocols, and takes place in the last phases of design. However, the choice of architecture should depend
on its ability to support security features. When designing an architecture and mapping the functions
to architecture, the selection of an optimal mapping relies on correct approximations of execution times
of functions [141]. Therefore, the time to execute these security protocols should be considered when
selecting an architecture/mapping.

However, placement of security functions depends on which data should be secured, which in turn depends
on both the capabilities of the attacker to access the architecture, and which data can be accessed from
those architectural locations. While previous works can take into account the performance overhead due
to execution of security protocols, they lack the ability to check if an attacker can access or modify critical
data [14, 288]. To be certain that security protocols are correctly placed and all security properties are
satisfied, a formal security verification process should be used. To assist the designer, it could also be
helpful to add security mechanisms automatically based on the verification results, and thus generate a
new model fixing all the security flaws.

This thesis describes an approach on modeling attacker capabilities affecting the security of an architecture,
and how to abstractly model the functional and architectural security mechanisms for secure communica-
tion, including encryption, Hardware Security Modules, and Firewalls [201]. Furthermore, we discuss
how to translate mapping models to a formal specification to be analyzed by the security verifier ProVerif.
Based on the verification results, the security flaws in the model could be fixed through the addition of
various security mechanisms. To actualize these ideas, the security modeling and verification steps are
implemented in our toolkit.

1.4.2 Proof of Correctness of Model Transformation for Formal Security Verification

While some formal verification tools conveniently operate directly on program code or graphical models,
most use a mathematical specification language that is complex, difficult to read, and unusable for actual
design [41]. As we rely on graphical models for their ease of use, to formally analyze our models re-
quires a model transformation process. The correctness of verification results, however, relies as much
on correctness of the model transformation as it does the correctness of the model and formal verification
tools [220, 328].

We prove the correctness of the model transformation to a formal specification that can be analyzed with
a security prover, leveraging in part the proof and transformation process described in [208].

22

Chapter 1. Introduction

1.4.3 Attacker Modeling

While attack steps can be modeled in Attack Trees, the description of each attack is usually limited to
a few words, thus limiting their usage to documentation and not to formal evaluation. Simulations on
attack trees can show possible sequences of attack steps, but they do not operate on the actual system,
and therefore, the success of a simulated attack does not imply that the attack will succeed in real life.
Penetration testing, on the other hand, operates directly on the actual production system, but at the final
stages of the engineering process, and after most design has been completed. While successful attacks
more definitively imply that security flaws exist in the system, more rework must be done than if the flaws
had been detected in the design process, and additional hardware may need to be purchased if the repair
requires a modification of the architecture.

We present attacker modeling at a level of abstraction in between attack trees and penetration testing,
where the attacker actions can be directly executed on a system model. This thesis describes ‘Attacker
Scenarios’, which explicitly model the attacker actions affecting a system [203]. Simulation examines the
effect on the system, including the security property Availability, which could not be previously studied.

1.4.4 Latency analysis

As previously mentioned, timing can be critical in real-time systems. Real-time systems may need to
respond to external or system events within a set time frame [218]. For example, a sudden rise in core
temperature should be controlled before components are damaged, and a moving system should change
course before it collides with nearby objects. Even if a system will respond correctly in terms of function,
it is insufficient if the response cannot be executed in time.

Therefore, the latencies between safety-critical events should be analyzed to determine if a system can
behave safely [119]. We describe how our approach can automatically measure latencies, and how they
can be related across the Mapping and Software Design phases as part of our work to assess if choices/ab-
stractions made during the partitioning phase were correct [118].

1.4.5 Proposition of a modified SysML-Sec Methodology

The modifications listed above result in new modeling elements and verification procedures. Integrating
them into the current models involves additional methodology steps. Our additions also add new relations
between diagrams that need to be captured in our methodology.

To address safety and security at the same time, it is thus necessary to develop a new methodology tak-
ing into account all the different modeling and verification steps. The new methodology better relates
requirements and verifications across the different phases, and further integrates attacker models into the
modeling and analysis methodology.

1.4.6 Taxonomy for Safe and Secure Autonomous Vehicle Design

As this thesis was under the direction of Institut Vedecom, we present their Level 4 autonomous car in our
case study. The VEDECOM Autonomous Car, as shown in Figure 1-1, is equipped with a Velodyne Lidar,

23

Chapter 1. Introduction

Figure 1-1: Vedecom Autonomous Car

radars, and one front and one rear Mobileye camera.

To prepare our case study, we present a survey of the related issues, such as published safety and security
issues, and the possible approaches to solve these issues. However, some of the proposed solutions come
with secondary effects. For example, as discussed previously, executing security protocols increases pro-
gram execution time. We discuss the conflicts and downsides of these solutions in terms of how they affect
the safety, security, and performance of a system. These concerns and solutions are then summarized in a
taxonomy, on which our design and verification process is based.

1.5 Organization of this Thesis

This thesis starts with presenting our motivation: Autonomous/Connected Cars, in Chapter 2. We de-
scribe the architecture of the Vedecom autonomous car, then the possible safety and security concerns,
such as reported safety problems caused by software flaws, and demonstrated possible attacks on con-
nected vehicles and their sensors, and then proposed solutions. The aspects of design are summarized in
a taxonomy on autonomous vehicle safety and security. Chapter 3 presents the Related Work, regarding
other methodologies and toolkits related to software design, design of embedded systems, and safety and
security verification techniques.

Chapter 4 presents a proposal for an improved SysML-Sec methodology with the different phases ap-
plied to our Autonomous Vehicle case study. Chapter 5 presents the contributions to security modeling in
HW/SW Partitioning, and Chapter 6 presents the security verification of mapping models with ProVerif,

24

Chapter 1. Introduction

and automatic generation of security mechanisms based on those results. Chapter 7 presents the contri-
butions to measuring latencies between events, and how the requirements and latencies are related across
different phases. Finally, Chapter 8 concludes this thesis and discusses potential future work.

25

Chapter 1. Introduction

26

Chapter 2

Context: Autonomous Vehicles

“Society tolerates a significant amount of human error on our roads. We are, after all, only human. On
the other hand, we expect machines to perform much better. ... Humans have shown nearly zero
tolerance for injury or death caused by flaws in a machine." –Gill Pratt, Toyota Research

The introduction of self-driving cars is expected to decrease accidents, ease traffic, decrease pollution,
offer transport to the disabled, elderly, and children who cannot drive, and change the very fabric of our
daily commutes [101]. Unlike conventional vehicles, autonomous vehicles will rely entirely on software
and sensors, instead of potentially flawed human decision-making for control. To ensure the safety of
passengers and other individuals in proximity, manufacturers must ensure the safe and secure function
of the vehicle software. According to Guillaume Duc, professor at Telecom Paristech and chair of the
Connected cars and cybersecurity project, “Autonomous cars will not exist until we are able to guarantee
that cyber-attacks will not put a smart vehicle, its passengers or its environment in danger.” [156].

As with other embedded devices, vehicles have not been free from design flaws as demonstrated through
the years. Even worse, while the increased connectivity of vehicles has offered new conveniences, safety
measures, and comforts for drivers, they have also created avenues for attack for hackers.

2.1 Safety and Security Flaws

2.1.1 Safety Flaws in Commercial Vehicles

Since the introduction of automobiles, there have been design flaws posing safety risks, some of which
resulted in injuries and deaths of the occupants [120, 199]. Many involved mechanical failures which
resulted in multiple injuries and deaths.

Due to its placement, the fuel tank of the Ford Pinto was found to susceptible to fires in the event of a
rear-end collision, causing hundreds of deaths in the 1970s [343]. Even worse, it was proved that Ford was
aware of the flaw and chose not to correct it, resulting in multiple lawsuits. Ford ultimately recalled 1.5
million vehicles.

27

Chapter 2. Context: Autonomous Vehicles

In 2009, it was reported that Toyota vehicles were involved in multiple accidents due to uncontrollable
sudden accelerations due to a stuck gas pedal [333]. Multiple fatalities resulted from accidents when ve-
hicles accelerated despite the driver attempting to brake. Ultimately, Toyota recalled millions of vehicles.
In 2017, BMW recalled 1 million vehicles due to a fire risk [272]. There were around 40 cases of parked
cars catching on fire due to valve heater or wiring problems, in some cases resulting in fire damage to the
owner’s garage and house as well.

Software flaws have also prompted the recalls of vehicles. For example, in 2016, Hyundai recalled SUVs
since the transmission control computer had an intermittent software problem which could prevent the
vehicle from accelerating [232]. After at least 1 death and multiple injuries due to a software flaw that
prevented airbags from deploying during accidents, in 2016, General Motors recalled millions of vehicles
to be repaired.

These design flaws have caused injuries and death, and cost manufacturers millions in fines, lawsuits, or
recalls.

2.1.2 Survey of Hacks on Connected Vehicles

The authors of [159] presented privacy and security risks of a Tire Pressure Monitoring System. By
monitoring RF signals from the sensors, the authors found the unique sensor ID for identification of the
vehicle, and spoofed packets to send fake tire pressure warnings. This attack could force a driver to pull
over thinking he had a flat tire, and also the ability to track cars by their wireless signals is a privacy
concern.

Telematics units can be attached to cars, and often used for insurance purposes, have been an avenue
of attacks on the operation of vehicles themselves. The authors of [188] performed an attack through
the OBD-II port using the CAN-to-USB interface. The authors built a CAN packet sniffer/injector and
determined how to control units, many commands discovered through fuzzing. Furthermore, the attack
restarts the ECU and erases any evidence of the attack code. However, the attack required physical access
to the OBD device.

Another minor attack [345] used a malicious application on a paired smartphone and a car with an OBD-II
scan tool. When an OBD-II and smartphone with diagnostic application are connected through bluetooth,
an attacker can send malicious CAN frames to the vehicle. While it required the user to accidentally install
the malicious application and for the car to have a telematics unit installed, it demonstrates another avenue
of attack.

The authors of [109] analysed the Metromile TCUs, an aftermarket device interfacing with the OBD-
II port. The ssh keys were common to all TCUs and could be acquired by dumping the NAND flash.
Updates to the TCU were sent through SMS messages, which the authors used to create a new console
starting a remote shell to obtain access to the device through ssh. The authors note that the update did not
have the vehicle verify the server’s identity, which is a major vulnerability.

New phone apps allow users to control comfort settings. However, vulnerabilities in these apps, such
as lack of authentication protocols, can be a problem. One such example is the WebAPI for the Nissan
Leaf, which required only a VIN number to access certain climate control and status of a vehicle [150].
While they did not offer an avenue for attack on the car operation itself, except for draining the battery,
researchers were able to recover driving history, which may be a privacy concern.

28

Chapter 2. Context: Autonomous Vehicles

Most notably, Miller and Valasek’s hack is completely remote and prompted a recall and change in Sprint’s
network [223]. The authors connected to the built-in telematics unit Uconnect’s Diagnostics Bus, open to
any 3G device using Sprint. They reprogrammed the unit with custom firmware to send CAN messages
and control ECUs. This attack is unique as it could attack a vehicle anywhere on the Sprint network and
did not require that the vehicle have more than the default setup.

In 2016, researchers from Tencent presented how to gain control of a Tesla that connected to their malicious
wifi hotspot [67].They reported that a vulnerability in the Tesla’s browser would allow them to run code if
it visited their page. The malicious code helped them gain access to the car’s head unit, which they used
to overwrite the gateway to the CAN bus, and subsequently inject their own commands onto the CAN bus.
Tesla has reportedly responded by requiring that firmware of components writing to the CAN bus be code
signed. However, during Defcon 2017, the same group of researchers demonstrated that they could again
gain remote control of a Tesla via cellular data and wifi [337].

Recently, it has been demonstrated that Denial-of-service attacks against the CAN bus could disable safety
features [246]. By sending multiple erroneous frames to a CAN node, the node could be completely turned
off, preventing it from sending and receiving any more messages. In this case, the authors needed physical
access to the vehicle to carry out the attack, but their attack could be combined with the previous remote
attacks on the CAN bus.

In all of these attacks, connected features have exposed their users to potential privacy or safety risks.

2.1.3 Safety Limitations of Autonomous Vehicles

Unlike conventional vehicles, autonomous vehicles rely on their sensors to perceive the world around
them. Any failure in a sensor could lead to a grave impact on vehicle safety. However, it has been noted
that these sensors are not always reliable.

The GPS is vital to determining the current vehicle location, which helps a vehicle determine not only
it’s trajectory, but also the nearby traffic lights, signs, and etc [66]. However, GPS signals can be easily
blocked, in a tunnel or due to tree cover, for example. Its resolution is also not precise enough to navigate
without other sensors.

In 2016, the Tesla Autopilot caused a fatal crash when its perception system failed to distinguish a white
tractor-trailer against a bright sky [180]. In 2018, a driver again running Tesla autopilot died in a fatal crash
after the vehicle drove into a concrete barrier on the freeway [300], likely due to confusing lane markings.
The Tesla autonomous vehicle uses only radar and cameras, which other developers find insufficient, as
radar fails to see detail and cameras can fail in problematic lighting conditions, such as the glare in this
situation [295]. Lidars have been suggested to be vital, as they are more accurate than radar, and can
provide a 3D image [90].

However, Lidars may fail to function in all environmental conditions as well. Snow and rain may confuse
both lidar and radar systems [216, 229]. They may also obscure the lane markings, though Ford demon-
strated that their autonomous car may navigate in snow with sufficient use of surrounding landmarks even
if the lane markings are unavailable [229].

In 2018, a Uber self-driving vehicle killed a pedestrian in a collision [323]. While the sensors detected the
pedestrian, the software ignored it as a false positive and did not brake. Distinguishing between significant

29

Chapter 2. Context: Autonomous Vehicles

obstacles requiring emergency braking and insignificant obstacles (such as plastic bags blowing across the
road) is a difficult task, as braking constantly would be annoying to passengers, and failing to brake for a
pedestrian or larger obstacle leads to a collision and possibly injuries.

It has also been proposed that autonomous vehicles cannot read human cues, whether of pedestrians or
human drivers [44]. The autonomous car cannot read hand signals giving right-of-way at an intersection,
or a pedestrian’s intention to traverse a cross-walk or to wait for the car to pass. If autonomous cars yielded
to every pedestrian, as would be safest, they would unfortunately slow down traffic.

Human interaction is also involved in situations such as changing lanes. The Google autonomous car was
found to be at fault when it crashed into a bus when merging into a lane, as it expected the bus to slow
down or stop. Human drivers might be more adept at reading the bus driver’s behavior and signals [229].

Furthermore, the road infrastructure is often imperfect, with degraded or missing lane markings, non-
functional traffic lights, and etc [216]. The autonomous vehicle must navigate despite such cues. Other
situations have been cited to be difficult for autonomous vehicles, such as bridges and urban driving [229].
Bridges lack environmental cues such as landmarks, which help a vehicle determine its exact locations.
Navigating cities involve too many obstacles, pedestrians, and cars to process safely, and the GPS may be
blocked by tall buildings.

Each sensor has conditions under which it functions unreliably, and an autonomous vehicle must take these
limitations into account and interpret their data accordingly to ensure it correctly perceives the surrounding
area.

2.1.4 Survey of Potential Attacks on Future Autonomous Vehicles

Even in perfect environmental and operational conditions, sensors cannot be assured to be functional or
completely reliable, as they may be susceptible to malicious attackers. While autonomous vehicles remain
in the development phase and there do not exist production models to attack, researchers have proposed
proof-of-concept attacks on their sensors.

The authors of [255] demonstrated attacks on cameras and LIDARs. First, they showed that it was possible
to blind the camera with a laser. They next demonstrated that it was possible to cause the LIDAR to detect
fake objects. The authors of [294] enhanced the lidar attacks. From a greater distance, the authors could
fool the sensors into detecting fake objects.

Researchers have also shown how to spoof and jam the ultrasonic parking sensors and Millimeter-wave
Radars on Teslas [346]. They were able to show that by using signal generators, they could prevent
detection of obstacles, or cause the sensors to detect non-existent obstacles. These spoofing and jamming
attacks could force unsafe behaviors such as crashing into an obstacle or braking suddenly for no reason.

GPS spoofing was demonstrated by researchers from the University of Texas [149]. The authors demon-
strated how they created false GPS signals to redirect a GPS-guided drone, and then later misdirected a
yacht. Autonomous vehicles greatly rely on GPS for both their location and determination of surrounding
environmental data, so this threat could greatly affect vehicle navigation.

The authors of [40] demonstrated that sound waves, such as from ultrasonic sensors, can affect hard drives,
or more specifically, the shock sensors within the hard drive head unit. The attacks could prevent reads
and writes on the hard drive, slow down, damage certain sectors, or become non-operational. Attackers

30

Chapter 2. Context: Autonomous Vehicles

may potentially use the ultrasonic sensors within autonomous vehicles to either damage the hard drive of
the control computer, or spoof other sensors.

Vehicular Ad hoc NETworks (VANETs) offer a collaborative exchange of data on traffic, environmental
hazards, etc, which may decrease accidents and traffic jams. However, as predicted, malicious participants
may track the location of a vehicle, or send fake traffic data to clear a road for themselves. In addition, V2X
involves connections to numerous vehicles or roadside units. This connective interface offers opportunities
for an attacker to access the interior control systems and possibly gain control of the vehicle itself [248].

Instead of hacking the autonomous vehicle directly, researchers have studied how seemingly invisible
changes to street signs can fool image recognition software [122]. The policemen, government officials,
and human drivers will not notice a difference, but these modified signs could confuse an autonomous
vehicle’s perception and cause it to ignore a street sign, and possibly provoke an accident.

These examples show the vulnerabilities of sensors, and how they send misleading information to the
autonomous vehicle due to malicious individuals possibly attempting to provoke an accident or other
undesired situations for personal gain.

Whether due to malicious attackers or naturally-occurring environmental conditions, connected and au-
tonomous vehicles face a range of safety and security hazards, as summarized in Table 2.1, adapted from
our ITS paper [200].

Table 2.1: Table of Hazards of Autonomous/Connected Vehicles
Hazard Attack/Fault Reference

Remote Control of Vehicle by Attacker Wifi/3G network [67, 223, 337]
Control of Vehicle by Attacker Telematics Unit attached to OBD-II port [109, 188, 345]

Safety feature shutdown Denial-of-Service attack on CAN bus [246]
Falsified Sensor readings Camera/Lidar/Radar [255, 294, 346]

Falsified GPS signals GPS [149]
Loss of Privacy Smartphone App/Tire sensor [150, 159]

Misinterpreted Traffic Signs Sign Modification [122]
Poor Lidar/Radar Data Snow/Rain [216, 229]

Poor Camera Data Darkness/Sun Glare [180, 295]
Loss of GPS Signal Buildings/Tunnels [66]

Poor Road Infrastructure Damaged Lane markings/Power Outage [216]

2.1.5 Conclusion

In this section, we presented the flaws, limitations, and vulnerabilities in vehicles and their sensors. No
sensor is reliable in every single situation, and these faults and attacks demonstrate the need for multiple
independent sources for information and resilient design. Furthermore, malicious entities could take ad-
vantage of the connected nature or predictable limitations of sensors to provoke accidents. The next section
presents approaches to assure the security and safety of autonomous vehicles despite these vulnerabilities.

31

Chapter 2. Context: Autonomous Vehicles

2.2 Approaches to Vehicle Safety and Security

As presented in the previous section, autonomous vehicles must overcome the limitations of their sensors
and prevent their connected nature from offering access to hackers. Other works have discussed sensor
design techniques to prevent jamming/spoofing [207, 254] or acoustic interference [40], but we focus on
the solutions related to designing the internal control system of the vehicle and how they can interface
with the sensors. The simplest solution adopted by every autonomous vehicle developer is to use multiple
sensors. Other solutions, like accurately ‘fusing’ the data from various sensors, avoiding other safety
issues, and developing a secure vehicle architecture have been the subject of various projects and papers.

2.2.1 Proposals for Safe and Secure Automotive and Embedded System Design

APSYS and Vedecom have proposed many techniques for ensuring the safe comportment of an au-
tonomous vehicle [39]. To avoid flaws in a single sensor or algorithm, their propositions rely on re-
dundancy and data fusion. The data from multiple sensors should be combined based on their reliability
in the current environmental conditions, and the nearby obstacles are calculated with multiple perception
algorithms. The coherence in detected variables across sensors should be evaluated, as one sensor giving
incongruous data may be due to an error. Based on the perception data and destination, trajectories are
also calculated with multiple algorithms, and the possible trajectories are evaluated again based on their
level of confidence, past record, coherence to determine a final trajectory which should be safe. When
significant errors, data incoherences, or other conditions preventing safe autonomous driving are detected,
the system can enter a fail-safe mode, where the driver should regain control or the vehicle should safely
navigate to a stop [79].

Redundant hardware has been used in other projects [83,189,320] to ensure a system is more fault tolerant.
For example, the UAVCAN project connected mission critical devices to a backup bus in case the primary
bus failed. However, while redundancy improves fault detection and tolerance, it increases the amount of
hardware used and therefore the cost of the system.

The standard ISO26262 describes how to ensure safety in vehicles [160]. It proposes a safety lifecycle,
including hazard and risk analysis, development of safety goals, integration of safety measures, and assess-
ments such as safety validation [50]. Their suggested methodology shown in [50], is based on the V life
cycle. Security goals can be analyzed in a similar way as safety goals. By systematically following these
steps with safety and security validations, designers and managers should design a system minimizing
flaws and vulnerabilities.

Many European projects have recognized the importance of studying security of connected vehicles, and
proposed solutions for aspects of vehicle security.

Like many other works [51, 247], the PRESERVE project studied how to ensure security in V2X commu-
nications [171]. Their V2X Security Subsystem, which involves software for secure communications such
as pseudonym management and cryptography, can be added to all nodes in the V2X network. For more
efficient cryptography, an ASIC-based Hardware Security Modules was also developed and can be added
to the system [228].

Similarly, the SEVECOM (Secure Vehicle Communications) project proposed an architecture including
different modules added to a vehicle for V2X communications, including a Pseudonym Manager, Hard-

32

Chapter 2. Context: Autonomous Vehicles

ware Security Modules, and etc [194]. They also added an ‘In-Car Security Module’ to interface with the
vehicle systems using a firewall and intrusion detection system to prevent attacks on the internal commu-
nications from the open V2X communications.

The Open Vehicular Secure Platform (OVERSEE) project intended to develop a secure communication
platform for all possible vehicles [244]. New applications, such as e-tool, V2X, and remote diagnostics,
will be added to a vehicle’s network, which may pose a security risk. They intended to develop of a single
platform providing a secure runtime environment for applications and communicating with the vehicle.
The OVERSEE platform connects to the in-Vehicle networks, at a single point of access to facilitate
security, with a firewall protecting the internal network. Their platform will also allow the development
of platform and vehicle-independent applications, as the OVERSEE platform and not the vehicle software
will be directly executing the programs.

Plausibility/Coherence checks have been proposed for use in VANETs, to help detect maliciously-sent
data [32,241]. However, they have also been suggested for use in cyber-physical and industrial systems to
help detect failing components or attacks [59,190,321]. Various detection schemes, such as monitoring the
entropy between related clusters of sensors, help detect when abnormal data is being sent into the system.

[253] suggested the addition of firewalls between different ECU domains. Certain vehicle nodes have no
reason to communicate with one another should be separated by a firewall. As there have been propositions
that attacks to the CAN bus might be possible via the Infotainment center, the vehicle controls should be
isolated from those components. The authors also suggest that Denial-of-Service attacks such as SYN
flooding should be prevented by the firewall. It has also been suggested that firewalls should be added to
IoTs in general [3]. Authentication and encryption are argued to be insufficient as weak passwords and
brute force attacks may allow an attack to succeed. A firewall can enforce security policies that block most
cyber-attacks, by blocking certain ports, protocols, and unauthorized IP addresses.

Various anomaly detection schemes on the CAN Bus has been proposed as a solution. Anomaly detectors
have used the Hierarchical temporal memory (HTM) algorithm [336], expected sequences of message IDs
7995934, support vector machines on packet frequency [308], and other machine learning approaches.
Anomaly/intrusion detection may therefore detect some attacks when a hijacked node sends out messages
to carry out an attack. [309] presented a framework to simulate attacks and evaluate their anomaly detector,
which resulted in a generally high success rate, though it has not been tested on actual attacks or with an
attacker who might can adapt his approach to bypass the anomaly detector.

The work in this thesis follows along the recommendations from the EVITA project (E-safety vehicle
intrusion protected applications), another a European collaborative project completed at the end of 2011,
has defined a complete secure automotive architecture, with hardware accelerators and security protocols
in particular [100]. The EVITA project assumed a ‘Dolev-Yao’ attacker who can listen to all traffic as well
as inject data on the buses. The security recommendations included adding hardware security modules,
periodically distributing keys, and isolating domains and monitoring for intrusions using firewalls [292].
An EVITA-compatible HSM can be added to ECUs. For the different cost and security requirements,
three types of HSMs were defined [27,142]. The EVITA HSM Light Version is the simplest version which
performs cryptographic operations and protecting keys, and is intended for sensors and actuators. The
HSM Medium Version, which additionally supports additional cryptographic operations, though only in
software, and a secure boot process, is intended for domain controls. Finally, the largest HSM Full Version
supports hardware acceleration for cryptographic operations such as Whirlpool and ECC, is intended for
V2X applications [281].

33

Chapter 2. Context: Autonomous Vehicles

[151] proposed similar methods for embedded systems in general. The authors proposed that security in
embedded systems must apply across many levels, from hardware up to the detailed security protocols. The
architecture involves both secure and insecure modules across which functions must be mapped. Security
requires additional hardware, power, and computation time, so only the vital functions should be protected.
Their secure modules involved use of security co-processors, with a memory resistant to attack.

Similar to Hardware Security Modules, [324] also presented a device for securing embedded systems, the
Lincoln Laboratory’s Lincoln Open Cryptographic Key Management Architecture (LOCKMA). LOCKMA
also is implemented in a security co-processor which uses dedicated hardware for more efficient cryptog-
raphy. Their device is also designed to securely boot, resist tampering, and a physical unclonable function
for device identification.

To prevent attacks on the sensors of autonomous vehicles, [183] suggested a system of watermarking. A
varying signal was added to actuators, and if the sensor measurements did not show the watermark, then
the system would know that the sensors were tampered with. The statistics of each sensor’s watermark
is known to other sensors. Their experiments involved sending forged position sensor communications to
the collision avoidance module. In 1 out of their 2 preliminary tests, the watermarking helped the system
resist the attack and maintained the correct trajectory. Another work to resist sensors that were tampered
with, [245], used mathematical models to estimate the state of the vehicle and compared expected values
with measured values. Their system can better identify attacks and which sensors are compromised.

And while viruses have not yet been demonstrated to infect connected vehicles, embedded devices were
demonstrated susceptible in the Mirai botnet DDos attacks [233], and fitbits were shown to be theoretically
capable of being hacked and infecting any nearby computer with malware [11]. Similarly, it has been
proposed that equipment used by mechanics for vehicle diagnostics could be infected with malware and
spread it to other vehicles and diagnostics tools [127]. In response, anti-virus software for cars has been
proposed, including by the company Argus Cyber Security [134, 348].

2.3 Taxonomy

To summarize the various issues regarding autonomous vehicle safety and security, we present a taxon-
omy of the risks, vulnerabilities, results, and countermeasures, adapted from the taxonomies presented
in [46, 312]. This taxonomy relates the various elements relevant to considering the safety and security of
autonomous vehicles, and presents an overall high-level view of the entire system and its needs and risks.
This taxonomy focus on the risks posed by the autonomous system alone, and does not present the risks of
a non-connected car (such as mechanical failures). It can also be adapted for analysis of other embedded
systems, as the only changes required would be on the specific external factors affecting behavior, and the
specific unsafe and insecure behaviors.

As shown in Figure 2-1, the autonomous vehicle system, composed of hardware and software, executes as
a system behavior. The behavior of the autonomous vehicle is affected by factors provoking failures, both
internal or external, including coding bugs or poor weather conditions. The failure causes may then cause
the behavior of the system to violate desired safety and security properties of the system, which then in
turn invoke undesired, unsafe comportments, such as ignoring an obstacle. To prevent the undesired final
comportment of the autonomous vehicle, countermeasures can be added. Figure 2-2 and Figure 2-3 show
the detailed complete taxonomy divided across the figures for readability. The first figure shows the factors

34

Chapter 2. Context: Autonomous Vehicles

External Causes

for Failure

System

HW
SW

Internal Causes

for Failure

Unsafe/Insecure

States

Unsafe Comportment

Figure 2-1: Taxonomy Overview showing how Internal and External Factors can result in Unsafe Com-
portment

causing or permitting failures or attacks and the countermeasures to prevent them, while the second figure
elaborates on the exact unsafe and insecure properties that can lead to dangerous real-world behaviors.

2.3.1 Potential Causes of Failure

Many factors, internal and external, can permit or induce system failures.

Internal factors which may allow the system to enter an unsafe or insecure state involve system flaws,
vulnerabilities, and limitations. For example, flaws such as software bugs due to coding mistakes might
cause a system to function differently than specified, hardware flaws such a lossy channel may result in
loss of important system messages, and CPUs with too many tasks mapped on them may fail to calculate
vital system commands in time. Vulnerabilities can involve ports or communications accessible to an
attacker, software flaws leaving the system vulnerable to buffer overflows, or a security protocol used that
turns out to be insecure. Limitations involve Safety of the Intended Function (SOTIF) elements, where
otherwise functioning elements are not effective in all situations, such as sensors which do not function in
all environmental conditions [229] and algorithms which cannot process all driving situations, especially
gestures by a policeman signaling traffic [298].

External factors which can induce unsafe or insecure behavior include an attacker, or environmental
conditions. Attackers, as described in Section 2.1.2 and 2.1.4, can modify code, manipulate sensors,
and inject messages to control the behavior of a system they should not have access to. As described
in section 2.1.3, sensors can be affected by Weather conditions, such as darkness, rain, snow, and fog.
Poor Infrastructure conditions, such as a non-functional traffic light, and poor Road Conditions, such
as roads in poor condition, may also make accidents more liekly. Traffic conditions, such as unexpected

35

C
h
a
p
ter

2
.

C
o
n
text:

A
u
to

n
o
m

o
u
s

V
eh

icles

Hardware

Undesired State

Flaws

Software

Internal Factors

Vulnerabilities
Attacker

External Factors

Environmental Conditions

Software Bug Accessible to Attacker

Open Port

Insecure Encryption Algorithm

Countermeasures

Message Authentication Code

Hash

Firewall

Accessible Interface

Security Protocol Bug

Coherence Check

Redundant Hardware

System

Hardware Flaw

Error-prone Channel

Lossy Channel

Hardware Component

Unsecured Communication

Software Bug

Weather Conditions

Road Conditions

Blinding sunlight

Rain

Fog

Snow

Infastructure Conditions

Traffic Conditions

Unreadable Sign

Unreadable Lane Markings

Poor traction

Bumpy Surface

Non-Operational Traffic Lights

Traffic jam

Accident

Immobilized vehicle

Safety Checks Assured Methodology Security Redundancy Failsafe Mode

Insecure Unsafe

Plausibility Check

Component Health Check

Common Criteria

Formal Verification

System Modeling

Penetration Testing

Anomaly Detection System

Proven Security Algorithms

Safely stop during error/attack

May be prevented by

Encryption/Decryption

Obstacle in road

Multiple Algorithms

Multiple Sensors

Redundant Bus

Redundant Processors

Limitations

Error Check

Intrusion Detection System

Initialization Error Check

Access Control

Edge case unhandled
by algorithm

Sensors affected by
environment

Manipulate sensors

Inject messages

Modify system code

System behavior
Executes as May contain

Affects

May cause

Potential Causes
of Failure

May induce

overload

Hardware Bug

Programming Error

Industry Standards

HW Authentication

F
igure

2-2:
Taxonom

y
for

A
utonom

ous
V

ehicles
Part1

36

C
h
a
p
ter

2
.

C
o
n
text:

A
u
to

n
o
m

o
u
s

V
eh

icles

Availability Violation Confidentiality Violation Authenticity ViolationNon-Repudiation

Altered
Algorithm

Denial Of Service Key recovered

Data recoverable

Personal Information

Driving History

Vehicle Trackable

Code modified

Sensor data modified

Vehicle commands modified

CAN/Flexray message injection

Timing Violation

Unsafe system execution

Deadlock/Livelock

Obstacle avoidance delayed

Vehicle command delayed

Response to traffic delayed

Response to sign delayed

Personal Injury

Ignore Obstacle

Ignore Lane Boundary

Violation of Laws

Ignore Sign

Ignore Speed Limit

Ignore Traffic Light

Injury to Others

Failure to Signal Intentions

Ignore Pedestrians

Unresponsive system

Violation

message

Recovered

Recovered

delayed

Ignore Neighboring Car

Replayed messages/input data

Message Delayed

Obstacle detection delayed

Erroneous Data sent

Unintenteded Message Sent

Functional Violation Reliability Violation

Unsafe Comportment

calculation

Message

delayed/
transmission

Altered
history

history

Privacy Violation

Vehicle command delayed

Incorrect Order Issued

Calculation delayed Erroneous calculation

Incorrect sequence of

functions executed

Message Lost

Loss of Sensor Signal

Unreproducible calculationsCritical latencies
not respected

Insecure Unsafe

Undesired State

driving
Critical Event delayed

Results in

Accidental Data
Modification

Intellectual Property
Stolen

blocked

F
igure

2-3:
Taxonom

y
for

A
utonom

ous
V

ehicles
Part2

37

Chapter 2. Context: Autonomous Vehicles

traffic jams on a freeway, or accidents between other vehicles, may also be difficult for an autonomous
vehicle to navigate.

A combination of such factors may induce a failure, such as an attacker taking advantage of an insecure
security protocol to inject messages to gain unauthorized control of a vehicle, or driving in adverse weather
on a road with poor lane markings may cause the vehicle to fail to stay in lane.

2.3.2 Undesired States of System Behavior

The undesirable states that a system can enter due to the potential causes of failure can be classified as
unsafe or insecure. As shown through the blue arrows which shows causation relationships, violation of
security properties can lead to unsafe states.

2.3.2.1 Insecure States

Non-Repudiation violations occur when an entity sent a message or performed an action, and then he/she
is capable of denying it. The history of actions taken by a vehicle may be vital to a lawsuit assigning
responsibility in an accident, and may be important in V2X to determine if a vehicle has been sending
false information [54]. However, we do not study this property in this thesis.

Availability violations occur when an attacker can prevent the system from providing a necessary service.
The availability of a system can be compromised by denial of service attacks. A subsystem may become
unavailable if the attacker can delay calculations or message transmission.

Confidentiality violations occur when an attacker is capable of recovering sensitive data. For example, if
an attacker can access a cryptographic key, he/she can recover data and also use the key to forge messages,
resulting in Authenticity violations.

Authenticity violations occur when an attacker can forge messages or data that are accepted by the sys-
tem. For example, an attacker might modify the system code, or inject vehicle commands to provoke an
accident.

2.3.2.2 Unsafe States

Timing violations occur when the system does not respond to events in time as required. In a real-time
system such as an autonomous vehicle, calculations should be performed, and messages should be sent in
time for the vehicle to respond to events such as the appearance of an obstacle. Availability violations may
provoke timing violations when the subsystem fails to send critical commands before a set deadline.

Functional violations occur when the vehicle behaves against requirements, such as issuing driving orders
that would send the vehicle off the road or into an accident, deadlocks, incorrect calculation of a trajectory
or obstacle locations, etc. Some of these incorrect functionalities may be induced by an attacker who can
modify system function or messages.

Reliability violations occur intermittently due to system flaws, such as the loss of a message due to a
lossy channel. The unreliable behavior of a system may also cause functional violations, such as incorrect

38

Chapter 2. Context: Autonomous Vehicles

behavior due to the lack of reception of a critical message.

2.3.3 Unsafe Comportment

If the system behavior falls into an undesired state, then its comportment, or real-world behavior, may be
undesired as it risks losses due to privacy violations, legal issues, or dangerous behaviors. For example,
if the system fails to ensure non-repudiation, then the vehicle driving history might be altered, and
the driver could deny fault in an accident. Personal Privacy violations, such as an unauthorized entity
gaining access to a vehicle’s driving history, are caused by confidentiality violations on driving history or
other information that can identify the vehicle.

An unresponsive system can occur due to availability violations, reliability violations, or deadlocks. Un-
safe system executions, ones which risk the safety of occupants, pedestrians, or neighboring vehicles, can
occur due to incorrect system function, or the delay of a critical event. For example, a vehicle failing to
respond in time to an obstacle could lead to an accident and possible damages or injuries to the occupants
or bystanders.

2.3.4 Countermeasures

To prevent the system from entering these undesired states and behaving unsafely, countermeasures should
be included in the system. Countermeasures can involve using an assured design process, validation/veri-
fication, and testing, or safety and security countermeasures as described in the following section. Coun-
termeasures can involve Safety Checks checking the plausibility of data, or that all components initialize
and function correctly without errors, Redundancy of hardware or software, and checking that the redun-
dant data received are indeed coherent, Failsafe Mode, which will bring the vehicle to a safe stop when
errors or other conditions prevent the autonomous driving utility from functioning safely, and Security
mechanisms, such as methods of securing data, or communication monitoring such as anomaly detection
systems.

Some of the countermeasures can be directly linked to the undesired states that they prevent, such as
encryption or message authentication codes preventing message injection, or redundancy preventing reli-
ability issues such as messages lost due to a lossy channel. We will discuss some of the links but do not
show them on our taxonomy as it would make the diagram too crowded and complex.

2.3.5 Conclusion

The presented taxonomy offers an overview of the factors affecting safety and security in autonomous
vehicles, which summarizes published works on this topic and better relates them into a coherent frame-
work. We can use this taxonomy to consider how we can avoid potential safety and security hazards, and
the unsafe situations from which they arise, by integrating the associated countermeasures.

39

Chapter 2. Context: Autonomous Vehicles

2.4 Countermeasures

Based on the taxonomy presented, and previous projects and publications, we select the most commonly-
agreed upon solutions applicable to the design of embedded systems. This section summarizes the main
countermeasures which we study in the rest of this thesis.

2.4.1 Safety Countermeasures

While countless methods for assuring the safety of a system exist, we focus on the main ones used in the
Vedecom car.

Coherence checks can help ensure the correct functionality of a system despite forged or erroneous sensor
data. If there is a significant discord in the sensors, then it is possible that an attacker is spoofing one of
the sensors, or one of the sensors is malfunctioning, and therefore the user should be warned.

Plausibility checks take into account the possible range of values and historical data to filter input data.
For example, an extreme jump in the current location from the GPS in a short interval is impossible, and is
likely due to a malfunction or reception issue. The MABX box, which converts vehicle commands for the
ECU, also performs filtering for safety. The vehicle commands can be accepted or rejected based on the
maximum allowed acceleration, braking, turn, depending on the current speed, etc. Again, due to the lack
of specific data values, we again model the plausibility check as a function with computation complexity,
and then the possibility to either accept or reject the received data.

Redundancy of vital functions and sensors helps to ensure system function in critical components. Even
if one component malfunctions, either the vehicle should continue to function safely, or enter the failsafe
mode by warning the occupants and navigating to a safe stop. The main function of the autonomous
car is the Perception unit, which takes in all the sensor data and generates the set of all obstacles in the
surrounding area. No matter how rigorously it is tested, numerous combinations of sensor measurements
and obstacles exist, and any single perception algorithm may still have flaws. Furthermore, if the processor
or communication bus should fail, then no perception data would be sent to the supervisor, preventing the
system from continuing to function.

2.4.2 Security Countermeasures

Our primary security countermeasures protect our system or data against an attacker. Certain internal
communications of the system may be accessible to the attacker, so it is important to ensure that the at-
tacker cannot recover/tamper with important data that could result in undesired situations. Encryption
mechanisms prevent an attacker from being able to recover (and understand) certain data. Message Au-
thentication codes can be added to a message so that the receiver can determine that the message has
not been modified. Timestamps and nonces can also be used to prevent duplicate messages from being
received and accepted in a replay attack.

Hardware Security Modules (HSMs) have been suggested in EVITA, PRESERVE, SEVECOM, and other
works on embedded system security [92]. They perform security protocols and protect the cryptographic
keys that they contain, conforming with the requirement proposed of secure memories for cryptography.
They are assumed to be protected again software and hardware tampering. In addition, they may contain

40

Chapter 2. Context: Autonomous Vehicles

cryptographic accelerators which perform encryption faster than regular processors. However, they are an
additional hardware component added onto the system. Commercial Hardware Security Modules include
ARM Trust Zone, Infineon Aurix HSM, and etc, some of which are EVITA-compatible [293].

Firewalls separate the different subsystems with different levels of security. They can isolate untrusted
communications to prevent them from accessing critical internal systems. Firewalls can be either hard-
ware or software firewalls, or both. [70] discussed how firewalls implemented in hardware can protect
an embedded system. Their hardware firewalls prevent attacks from recovering sensitive information in
internal system communications and external memories. [107] suggested a hybrid firewall, since hardware
firewalls offer greater throughput but cannot handle more complex rules. Their approach splits the process-
ing between hardware and software, where complex rules are implemented in software, while simple rules
are managed by the FPGA-based firewall. Icon Labs has proposed various IoT security products [152],
including the Floodgate Defender firewall, which can be added in between an embedded device and the
Internet, and configured with security policies.

Intrusion or anomaly detection systems can detect both attacks or component malfunctions [173]. If an
attack is detected, then the system may warn the user, or enter a failsafe mode. Commercial products are
also available for vehicle manufacturers, such as from Symantec’s Anomaly Detection software [45].

Another important security consideration is ensuring code integrity, so that the software itself cannot be
modified. As some demonstrated attacks have involved modifying system code, code signing techniques
and Trusted Execution Environments should prevent these attacks. The Intel Software Guard Extensions
(SGX) helps protect code and data, even in an insecure environment [69]. Other software integrity ap-
proaches involve secure boot, software attestation, and etc [208], which may involve a Trusted Plat-
form Module, a hardware component that determines that the running software has not been tampered
with [318].

While there exist other more specific security mechanisms and protocols, this thesis focuses on how to
abstractly model security for the selection of an architecture, so we group them into their general classifi-
cation of encryption, MAC, etc.

Table 2.2: Table of Countermeasures
Countermeasure Additional Hardware? Addressed Vulnerability Reference

Redundancy HW failure/Algorithm flaws [39, 83, 189, 320]
Plausibility/Coherence

Check
HW failure/Attack [59, 190, 321]

Data Security Command injection [100, 151]
Hardware Security

Modules
Command/Code injection [27, 194, 228, 324]

Firewall/Intrusion
Detection

Command/Code Injection [3, 45, 244, 253, 292]

Code Signing/Trusted
Execution Environment

Code injection [69, 244]

41

Chapter 2. Context: Autonomous Vehicles

2.4.3 Secondary Effects of Countermeasures on Safety, Security, and Performance

An autonomous car is a system in which safety is especially critical, as any malfunction could result in
grave monetary damage or personal injury. Its design therefore involves careful consideration of different
mechanisms to improve the security of the system. However, we note that adding these countermeasures
may cause secondary effects, as repairing one flaw may cause a unfortunate cascade of further repairs.

For example, adding data encryption or authentication improves the security of a system, and should
improve safety by preventing attacker-induced unsafe behavior. However, the added time to secure data
degrades performance, and may delay safety-critical events.

Even firewalls, which filter communications and should prevent hacker-generated communications, will
still apply a certain delay to communications. As any data protection or filtering will involve a delay, there
will be an adverse affect on performance, and an ultimately unknown effect on safety.

For our safety countermeasures, a coherence check may prevent the impact of an attacker if it detects an
incoherence between the injected and correct data, but only if the attacker cannot access both buses easily.
It may be therefore helpful to secure the data with different encryption algorithms and keys to prevent an
attacker from easily accessing both sets of data. Furthermore, the delay due to the coherence check may
affect performance.

Failsafe modes can engage when the system detects a safety problem, such as hardware failure, or a
security issue, such as an attack. While they are intended to improve the safety of the system, their effect
also depends on their implementation, as the degraded mode might involve removal of certain security
protocols, making the system ultimately less secure.

Many added features for connected vehicles should improve safety, such as automatic braking, V2X sys-
tems that can signal if a car in front is braking, etc. However, this added connectivity has adversely
affected the security of these systems, by adding new avenues for attack. No hacks could be carried out on
a completely isolated system.

By taking into account the limitations of sensors (especially due to environmental conditions), we realize
that an autonomous car cannot depend on solely one sensor to perceive the world around it. Providing
additional sensors improves our perception algorithm, but receiving and processing all the data, and then
calculating coherences, occupies additional execution time. In the same manner, other safety checks such
as monitoring or watchdog timers, also require additional hardware or software, and may impact perfor-
mance [280].

Table 2.3 summarizes the impacts that the countermeasures have on the system properties of safety, se-
curity, and performance, whether positive, negative, or unknown. We note that any negative impact on
security or performance may then lead to a negative impact on safety.

Thus, the overall effect on the system of adding a single countermeasure is often unclear. This interplay
between safety and security demonstrates the complications in adding mechanisms to improve safety and
security. The consequence that adding one countermeasure to ensure one requirement may have lead to the
system violating another requirement supports the need for a methodology involving iterations of modeling
and verification steps until the system is verified and all requirements are met.

42

Chapter 2. Context: Autonomous Vehicles

Table 2.3: Impact on Safety, Security, and Performance of Countermeasures
Countermeasure Safety Security Performance

Redundancy + ? -
Data Security +/-/? + -
Failsafe Mode + -/? ?

System Monitoring/Watchdog + ? -/?
Automated Security (braking, V2X) + - -

2.4.4 Conclusion

To ensure the safe and secure comportment of embedded systems, especially autonomous vehicles, various
safety and security countermeasures will be modeled and studied in the rest of this thesis. Some solutions
involve architectural additions, such as Hardware Security Modules and Firewalls, which can be purchased
and integrated into a system. Others, like security protocols, plausibility checks and coherence checks, are
implemented in software. As adding these countermeasures involves an increase in the monetary cost of
the system, computation time, and board area, they should be carefully evaluated and added only where
necessary.

2.5 Design Process Requirements

This chapter described many of the safety and security issues that autonomous vehicles face, and possible
methods to counter them. Using a Model-Driven Methodology, we should ideally be able to verify that our
system will not exhibit the undesired insecure or unsafe behaviors, and also check the effect of the coun-
termeasures added. This process should thus result in the design of a safe and secure system, minimizing
the flaws on the final system, which may involve costly modifications or patches (if they can be fixed at
all).

The ideal methodology would be able to model all of these attacks and countermeasures presented in this
chapter, and check how a system resisted attacks and faults by safety and security verification. As discussed
by [276], there exist instances where safety and security conflict, and therefore they recommended a single
framework to analyze both at the same time.

2.5.1 Methodology Capabilities

The full design of a system occurs in multiple phases at multiple levels of abstraction [262], as real-world
embedded systems can be too complex to design all at once [278, 283]. Before a system can be designed,
it is necessary to resolve the requirements of the system, to consider which of the aforementioned attacks
and environmental factors it should be able to resist. During the design of embedded systems, both the
hardware and software need to be designed, especially as we need to evaluate the placement and impact of
the countermeasures which can be hardware or software-based [143, 313].

43

Chapter 2. Context: Autonomous Vehicles

2.5.2 Properties to Verify

To check that a system will not enter any of the undesired states, safety and security verification should
be performed. The undesired insecure and unsafe states from our taxonomy are summarized as the formal
properties that can be checked. Safe system function can be more precisely expressed as the verifiable
safety properties of deadlock, reachability, liveness, and other safety formula [28]. These properties can be
expressed formally and checked with a model-checker such as UPPAAL or with reachability graphs [15].

Deadlocks occur when no further actions can be taken. For example, they can occur if all functions are
blocked waiting for a communication or event from another function. A deadlock situation is unsafe as
the system can no longer process input, and will fail to prevent the system from entering unsafe situations.

Reachability of a state or condition determines if that state or condition is present in at least one execution
path of the system. Ensuring the main system functions are reachable ensures that the model is correctly
designed.

Liveness of a condition checks if the condition will eventually hold in all execution paths, or if after one
event occurs, then another event will always occur. For example, if a critical system error is detected, then
the system should warn the user and enter failsafe mode. This property can also be expressed as ‘Leads
to’ in UPPAAL.

System function can also be checked formally with custom safety formula expressing that a property to
be always true, true for certain states, or for a property to be true for all states in an execution path.

To ensure that a system performs consistently and avoids the timing violations that delay response to
critical events, performance should be verified. The usage (or load) on hardware components should be
checked to determine if one component is not executing too many tasks. Timing properties should be
checked to determine if events will occur within certain deadlines.

2.5.3 Security Properties

As previously described, the insecure system states fall into the categories Confidentiality, Authentici-

ty/Integrity, Availability, and Non-Repudiation. We study the 3 violations which can prevent safe system
function: Confidentiality, Authenticity, Availability, and Access Control, and define the properties to ver-
ify, as based on the definitions in the EVITA project [274].

Confidentiality is a property regarding whether certain data within the system can be recovered by an
attacker, or unauthorized individual. Data is proved confidential if the attacker can recover the encrypted
form but cannot decrypt it, for example.

Authenticity can be divided into two properties. Integrity, also called weak authenticity is a property
regarding whether certain data within a system can be modified by an attacker or unauthorized individual.
A communication fulfills the property of integrity if it has not been changed during distribution without
the receiver detecting the modification.

Like integrity, strong authenticity is a property related to communications. Where weak authenticity only
determines if a message has been modified by an attacker, strong authenticity ensures that messages being
received in a certain communication exchange must have been sent in that exchange. For example, if an

44

Chapter 2. Context: Autonomous Vehicles

attacker recovers and replays a message, then that communication satisfies the property of Integrity but not
Strong Authenticity.

Availability refers to the ability of the system to offer services when requested by authorized users [339],
and possibly within a set time frame.

Access Control refers to the ability of only authorized entities to access data or perform certain actions. It
can be related to both Confidentiality and Authenticity, as attacks should not be able to access confidential
data, and should not be able to perform If an attacker can modify the code of a system and modify be-
havior of certain components, then access control should prevent these hacked internal components from
performing malicious actions.

These security properties may be evaluated formally with various tools or with simulations and analysis
methods, as described in the next section.

2.5.4 Conclusion

In summary, to ensure the safe function of an autonomous vehicle, and ensure it is able to resist both
attacks and adverse environmental conditions, we require a design methodology capable of modeling the
system at multiple stages (preliminary analysis, architecture/mapping, and detailed software design), and
evaluating the safety and security of the system.

In the next section, we present design methodologies and tools for modeling, analysis, and/or formal
verification in our efforts to find one which fulfills all of these requirements, or to find how to best adapt
an existing methodology to better address all of these needs.

45

Chapter 2. Context: Autonomous Vehicles

46

Chapter 3

Related Work

“For me context is the key - from that comes the understanding of everything.” – Kenneth Noland

In the previous chapter, we described the potential causes for an autonomous vehicle to enter unsafe
situations risking personal injury, property damage, or disclosure of personal information, and summarized
the proposed countermeasures. To evaluate that our system will not enter the unsafe or insecure states, we
propose that a systematic design methodology could be used to model and then evaluate our system. This
design methodology for safety and security-critical embedded systems should support a range of analysis,
design, and verification capabilities. The capabilities can be summarized as follows:

• Modeling Phases

– Analysis (Requirements, Failures, Attacks)

– Architecture/Mapping

– Software Design

• Modeling of Countermeasures

– Hardware-based Countermeasures (HSM, Firewall)

– Software-based Countermeasures (Plausibility check, Coherence Check, Security Protocols)

• Verification

– Safety (Deadlocks, Reachability, Liveness, Performance)

– Security (Confidentiality, Authenticity, Availability)

One methodology which supports most of the capabilities listed is the SysML-Sec Methodology. SysML-
Sec was developed in my lab, Lab System-On-Chip of Telecom ParisTech, for the safe and secure design
of embedded systems [13]. SysML-Sec is an extension of the UML Profile SysML, with some adaptations
or additions to the supported diagrams. These changes are described in greater detail in Chapter 4.

47

Chapter 3. Related Work

UML is widely accepted as the modeling standard for software design, and easily understandable or known
for most developers [106, 132]. UML diagrams span a range of usages, and can be customized by profiles
for more precise needs [112]. For example, SysML uses a subset of UML and then adds extensions, so
that it is more adapted for Model-Based Systems Engineering [80, 242]. SysML, for example, adds the
concepts of Requirements and Parametric Diagrams which are further customized for SysML-Sec.

The entire SysML-Sec methodology, both modeling and verification, is implemented in the toolkit TTool
[15]. Certain models can be verified informally with simulation, or formally with the safety verifier UP-
PAAL [29], and with the security verifier ProVerif [35] [252]. Models are automatically translated into
their equivalence in the formal verification languages by the toolkit. UPPAAL, created for verification of
real-time systems, uses timed automata to check properties such as presence of deadlocks, reachability of
states/conditions, liveness of states/conditions, and conditions holding for all execution paths or all states
within an execution path. ProVerif allows for the verification of the security properties of Confidentiality
and Strong/Weak Authenticity of data, and also the reachability of all states within a security protocol to
determine if it can correctly execute.

Before the start of my thesis, SysML-Sec involved 3 main phases: Analysis, HW/SW Partitioning, and
Software Design. In the Analysis Phase, Attack Trees and Requirements diagrams are generated together
as the designer considers the needs of the system and attacks it may face, with simulation and formal anal-
ysis to analyze if attacks are possible to carry out. Next, in the HW/SW Partitioning phase, the architecture
and high-level function are modeled to determine a mapping and partitioning, supported by simulation of
the mapping and UPPAAL verification of the functional modeling. Finally, the detailed functions are im-
plemented in the Software Design phase, which can be verified with simulation, and formally in terms
of security with ProVerif, and safety with UPPAAL. However, it does not support all of the previously-
described needs, especially security modeling and verification during selection of a mapping/architecture,
attacker modeling within system models, and latency measurements.

In this section, we review the different approaches to designing systems. We start by examining the
main high-level approaches, the Agile vs Waterfall methods. Next, we examine the various tools and
methodologies addressing each state of the design process, and the different verification and validation
tools it supports. Examining the related works helps determine if another toolkit is more suitable for the
design of safe and secure embedded systems, or it can instead provide insights for how the SysML-Sec
Methodology can be adapted.

3.1 Software Development approaches

Software development methodologies can be generally classified into the Agile method or Waterfall method,
with other methodologies variations and enhancements. Agile methods involve designing a small part of
the system, testing, and then slowly adding to the system until it is complete, while the Waterfall-type
methods involve systematic steps of analysis, design, and then testing. We describe these two approaches
to discuss which software development tools and approaches can be applied to embedded system, and also
to describe other characteristics of embedded systems design methods. This section describes the advan-
tages and disadvantages of both the Agile and Waterfall methodology, and which is more suited for the
design of embedded systems.

48

Chapter 3. Related Work

3.1.1 Agile

Agile Software Development relies on flexibility, where software is developed incrementally with design,
coding, and testing cycles [158]. It has been commonly adopted by software companies as it allows for
delivery of products more rapidly and easy evolution of requirements during the design process.

Scrum and Extreme Programming (XP) are adaptations, where Scrum relies on ‘sprints’, or phases where a
certain amount of tasks are divided up, and XP relies on Test-Driven Development and Pair programming,
where unit tests are first developed, after which the minimal amount of code to pass the current unit tests,
and the process is continually repeated until the full program is developed. These methods involve constant
meetings and discussions between developers and managers.

However, while some works have suggested that Agile methods could be applied for embedded system de-
sign [2,129], hardware cannot be easily or inexpensively changed like software, and individual developers
may only be experienced in certain domains [269]. To change the hardware components of a large system
on each iteration would be unrealistic and expensive.

3.1.2 Waterfall/V Life Cycle

The Waterfall method involves step-by-step design, starting with [273]. The V Life Cycle was later pro-
posed as an adaptation of the Waterfall model to better reflect the connections between the design and
verification steps [270].

In efforts to make the Waterfall method more flexible and more rapid, the Incremental Model involved
repeated iterations of the design, testing, and implementation phases, with client feedback after each iter-
ation [84]. The Spiral Life Cycle [38], using ideas the waterfall, evolutionary prototyping and incremental
methods, involves iteraions of 4 phases, determining requirements, risk analysis, development and testing,
and then planning. The system is then constantly improved over each cycle.

3.2 Model Driven Methodologies and Toolkits

However, despite the popularity of Agile for software development [81], for embedded system design, we
use a Waterfall/V Life Cycle-based methodology with Model-Driven Engineering as a logical progression
is more suitable for our purposes. Therefore, the methodologies we examine are generally based on a
step-by-step methodology or cover a single step or design phase.

There exist many model-driven methodologies for systems engineering. Each of them focuses on different
phases, intended applications, and verification properties. This section describes these methods and their
supporting tools, their capabilities relevant to the design, and the similarities and differences with our
approach.

3.2.1 Frameworks for Analysis

Before a system can be designed, the Analysis phase determines the requirements of the system, and
possible attacks and failures must be decided. It is important to determine exactly what a system must do,

49

Chapter 3. Related Work

and what risks should be prevented. Various methods and diagrams have been developed for this purpose.

3.2.1.1 Combined Safety and Security Analysis

Many works have discussed methods for safety and security-critical systems. However, they tend to focus
on determining the risks a system faces, rather than how to design a suitable architecture and system.
To consider safety and security at the same time, many methodologies adapted safety analysis models to
analyze security at the same time.

SAHARA [210] describes how to perform STRIDE security analysis [221] with Hazard Analysis and Risk
Assessment [160] separately, and identifies hazards caused by safety and security threats. The analysis in-
volves completion of Safety Hazard and Security Risks spreadsheets, which details the attacks/hazards, the
risk level, and the corresponding safety goals. Similarly, STPA-Sec [347] also adapted a safety methodol-
ogy Systems Theoretic Process Analysis (STPA) for joint safety-security analysis. The method determines
the unacceptable losses that a system may face, and then the possible vulnerabilities or faults that caused
that hazard. With the analysis in mind, the requirements and countermeasures can be decided. The method-
ology does not offer a supporting toolkit, but can instead to applied to text-based and graphical models for
analysis. These works perform analysis as a guideline for design, and do not use any formal verification
to analyze the probabilities or possibilities of the occurrence of hazards.

Failure Mode, Vulnerabilities and Effect Analysis (FMVEA) [285] examines both failures modes and
threat modes of each component along with their effects, and determines the ultimate severity and prob-
ability of a problem occurring. It follows a set of steps, where each component is analyzed to determine
its failure modes and threat modes. Each failure or threat is then analyzed to determine its effect, sever-
ity, causes, and probabilities. It involves filling out a spreadsheet for each device and threat/attack. This
technique is also subjective, and the probability values assigned are based on the user’s experience and
estimations.

[264, 265] demonstrate how their method CHASSIS considers Safety and Security together using Use
Case, Misuse Case, and Failure Sequence diagrams in a common model. These diagrams can be graphi-
cal or textual. Safety and security hazards in the form of misuse cases are developed, and then trade-off
analysis unifies all requirements and identifies when safety and security conflict. After drawing the misuse
case diagrams, mitigations to prevent these issues are listed, and the list of mitigations can be analyzed to
determine if any conflict, and generate a complete set addressing all safety and security issues. Finally,
CHASSIS concludes by generating hazard analysis tables. While these techniques targeting the require-
ments and analysis phase offer a detailed approach to considering threats against safety and security, they
are not yet automated.

Other methods are based on graphical models, which help support quantitative analysis. [256] used Boolean
Logic Driven Markov Processes to model safety and security. BDMPs are similar to fault and attack trees,
as they refine a root undesired event into more detailed causes, and they also allow for the modeling of
sequences and reactions. The combined safety and security BDMP includes both safety nodes such as
random or activated failures, and security nodes such as attacker actions, and timed and instantaneous
security events. Random failures can lead to different attacker actions, and attacker actions can provoke
failures. Their toolkit accordingly provides quantitative calculations such as probability, average time to
attack, etc.

[299] added possible attacks to Component Fault Trees (CFT), and calculated the combined probability of

50

Chapter 3. Related Work

failure or difficulty of attack. Component Fault trees are similar to Fault trees, but they model components
explicitly with all possible faults within each component. They build a CFT, and then considers where
security problems could arise due to an attacker. Safety faults which can be caused by an attacker are
extended with the details of the attack. Like with fault trees, their method also allows the calculation of
minimum cut sets (MCS) (minimal set of events which can provoke a failure), and each MCS’s probability
of occurrence, required expertise of attacker etc.

3.2.1.2 Safety Analysis

HAZard and OPerability (HAZOP) is a method of determining possible system components which could
pose hazards [178], originating from the chemical industry in the 1970s, but is now used for computer sys-
tems as well. It suggests that a team of employees consider each system element, its operation conditions,
the possible conditions which could be result in injuries or damages, and thereby add safeguards. As this
technique involves filling out worksheets, it is completely text-based, and does not include quantitative
analysis.

[86] presented a framework to analyze the safety risks faced by autonomous and connected cars specifi-
cally. Their technique involves generating a table of attacks along estimated numerical values of time of
attack, level of attacker expertise, and attacker motivation, and the ultimate attack impact, motivation, and
ease of attack are calculated based on a mathematical formula. The resulting attacks are displayed on a
threat matrix, showing ease of attack versus attack impact. Their work helps determine which attacks to
prioritize preventing, and is partially based on quantitative measurements. However, it does not involve
true formal verification or calculation of probabilities of attack.

Fault trees [330] analyze how a single undesired state can occur due to logical combinations of system
faults or events. They use graphical models to describe the causes of a top-level failure, which is repre-
sented by the root node of the fault tree. The occurrence of the root failure is described as logical statements
regarding intermediate failures, gradually refined into detailed causes for the fault. Fault trees support the
use of analyzers to determine logically if the root fault is logically possible, and the probability of occur-
rence of the root fault if each node is marked with its probability. They can be used to determine how
reduce the possibility of occurrence of the root fault by determining which initial faults can be prevented.

3.2.1.3 Security Analysis

Many approaches help determine the security requirements in the first analysis phase.

Attack Defense Trees [187], extended from Attack Trees [286], analyze the possible attacks against a
system, in conjunction with the defenses that the system may implement. Similar to fault trees, they
instead break down a top-level attack into detailed attack steps. The supporting toolkit ADTool analyzes
attack scenarios to determine the cost, probability, time, etc, required for a successful attack.

The Knowledge Acquisition in Automated Specifications approach’s Security Extension aims to identify
security requirements for software systems [325]. The methodology uses a goal-oriented framework and
builds a model of the system, and then an anti-model which describes possible attacks on the system. Both
models are incrementally developed: threat trees are derived from the anti-model and the system model
adds security countermeasures to protect against the attacks described in the anti-model. Countermeasures
and security risks are expressed logically, based on a list of threat and countermeasure patterns. It offers

51

Chapter 3. Related Work

the advantage of modeling requirements and attacks together, but does not calculate probability or other
measures of attack success.

SecuriCAD by foreseeti supports threat modeling and risk management, and operates at a higher level
of abstraction. It models the entire infrastructure as different components including clients, networks,
datastore, etc [93]. It also models specific attacks (memory corruption, SQL injection, code injection) and
defenses (firewalls, intrusion protection, encryption). The probabilistic simulations generate attack graphs,
and estimate parameters such as time to attack, etc. While their system is especially suited to modeling
enterprise systems, their tool may be used for preliminary analysis of connected devices as well. However,
it is not apparent how SecuriCAD could be used to design embedded systems at a much lower level of
abstraction.

Similarly, the Predictive, Probabilistic Cyber Security Modeling Language (CySeMoL) is an attack graph
tool that can analyze the security of entreprise architectures [147]. The models include assets, or compo-
nents that can be attacked, and defenses that can reduce the probability of a successful attack. Attackers
take different actions to compromise different components. The probabilities of discovery of vulnerabil-
ities, successful intrusion detection, and other attack and defense steps were based on consulting experts
and real-world data on system vulnerabilities. From the attack graphs, their analyzer determines the prob-
ability of a successful attack depending on the amount of time available to the attacker. Their tool however
focuses more on modeling a network and components such as datastore, operating systems, and etc.

3.2.1.4 Conclusion

SysML-Sec currently uses Fault Trees, Attack Trees, and Requirements Diagrams in the preliminary anal-
ysis phase. All of these presented analysis methods are important for considering needs before the start
of a system, but do not support the more concrete design of the system itself. An advantage of our toolkit
supporting both analysis and detailed system design is to link our analysis diagrams to system design
diagrams, to be able to better track if the design models address the requirements/risks conceived in the
analysis phase, or determine than a requirement/risk is not relevant and should be removed. In practice,
requirements and system design often evolve together over iterations [237, 338].

While textual models and graphical models each have their own advantages and disadvantages [130],
we chose to use graphical models for modeling as they are easier to understand and to learn to use [82].
Hierarchical tree structures provide a full overview of the system, which can express the underlying reasons
for the attack more clearly [155].

As this thesis delves more in detail into the relationship between safety and security, we will discuss in
future work if additional modeling diagrams combining fault and attack trees are necessary, as proposed by
the works on BDMPs and Component Fault Trees. Requirements diagrams may already include descrip-
tion of safety and security needs together, but some of these suggestions on combining modeling safety
and security risks may eventually be adopted for TTool.

3.2.2 Frameworks for the Design of Embedded Systems

Many works have been proposed for designing embedded systems to fulfill industrial standards.

52

Chapter 3. Related Work

The MontiSim framework provides a tool for the modeling of requirements and systems, supporting vari-
ous simulation tools for different domains, including autonomous vehicles [126, 213]. However, they use
Component and Connector models, and performs simulations based on a fixed hardware, focusing on the
detailed software implementation and behavior, and they lack high-level design and formal verification
capabilities.

Other toolkits are specialized for automotive systems, such as Medini, which supports safety analysis and
design based on ISO26262. It supports the entire methodology, from analysis phase activities including
hazard and risk analysis, HAZOP checklists, safety level determination, requirements diagrams, to archi-
tectural and system modeling in SysML. It also allows import and conversion to Rhapsody, Enterprise
Architect, and Matlab/Simulink models. It supports simulation and probabilistic analysis of faults, but not
security analysis [10].

EAST-ADL is an architecture description language specialized for automotive systems also using the V-
Model methodology [37]. It supports the methodology proposed by ISO26262, modeling safety con-
straints, fault/failure modeling, and timing and safety analysis [58, 75]. Models can be transformed into
Simulink or UPPAAL models for analysis [215]. Simulink models can then be simulated with a plug-in
FMUSim that preserves EAST-ADL properties, allowing the measurement of latencies and various system
values.

Mbeddr is a development environment for embedded software, with extensions so it can be customized for
different domains [334] . It focuses on modeling the software instead of hardware. It supports modeling
requirements and systems, and offers model-checking including simulation and formal verification capa-
bilities. The C-code can be verified with CMBC and Spin-based model checking. However, mbeddr does
not model or verify security properties.

Many other design methodologies handle the complete design flow of embedded systems, from analysis
to prototype code generation. Metropolis supports formal verification, simulation, and synthesis [24].
It follows the Y-chart method describing the functional model, architectural model, and then mapping
functions onto an architecture. The models describe communicating processes, which can be analyzed
with formal verification, simulation, and synthesis.

The authors of [279] introduce an abstract design space exploration (DSE) framework, and its integration
into design space exploration solvers. Their tool Generic Design Space Exploration, is intended to support
DSE for any domain, and allows the use of different solvers for DSE. They allow the user to specify
different metrics and constraints to find an optimal solution.

MAESTRO [271] models embedded firmware, with support for automatic design space exploration and
code generation. It also supports evaluation of power consumption, timing, temperature, etc. The Koski
design flow models multiprocessor system-on-chips in a UML profile with automated design space explo-
ration [170]. The entire process includes requirement description, application and architectural modeling,
architecture exploration, verification by simulation, and code generation.

Capella [259] relies on Arcadia, a comprehensive model-based engineering method. It is intended to
check the feasibility of customer requirements, called needs, for very large systems. Capella provides
architecture diagrams allocating functions to components, and advanced mechanisms to model bit-precise
data structures. Capella is however more business focused, and lacks formal verification capabilities.

Sesame [95] proposes modeling and simulation features at several abstraction levels for Multiprocessor
System-on-Chip architectures. Pre-existing virtual components are combined to form a complex hardware

53

Chapter 3. Related Work

architecture. Models’ semantics vary according to the levels of abstraction, ranging from Kahn process
networks (KPN [169]) to data flow for model refinement, and to discrete events for simulation. Currently,
Sesame is limited to the allocation of processing resources to application processes. It models neither
memory mapping nor the choice of the communication architecture.

The ARTEMIS [258] project originates from heterogeneous platforms in the context of research on mul-
timedia applications in particular. It is strongly based on the Y-chart approach [177]. Application and
architecture are clearly separated: the application produces an event trace at simulation time, which is then
read in by the architecture model. However, behavior depending on timers and interrupts cannot be taken
into account.

MARTE [331] models communications, applications, and architecture. However, it intrinsically lacks
a separation between control and message exchange. However, even if the UML profile for MARTE
adds capabilities to model Real Time and Embedded Systems, it does not specifically support architectural
exploration. Other works based on UML/MARTE, such as Gaspard2 [115], are dedicated to both hardware
and software synthesis, relying on a refinement process based on user interaction to progressively lower
the level of abstraction of input models. However, such a refinement does not completely separate the
application (software synthesis) or architecture (hardware synthesis) models from communication.

Design Patterns are solutions to common design problems that can be applied to all instances of simi-
lar problems [26]. While design patterns were first proposed for software design, [87] proposed how to
use design patterns in embedded systems. Design patterns can also be used with UML. [310] uses AC-
CORD/UML with Component Based System Engineering for prototyping embedded systems, and allows
for modeling of the application and environment, including simulation. As it was intended for develop-
ers who are not software experts, their toolkit offers pre-generated design patterns with automatic code
generation. Their verification consists of prototyping and testing without formal verification.

Similiarly, Problem Frames [164] describe common software development problems, and can be used to
generate requirements. Problem frames model the context of the problem, and then the requirements that
should be generated to solve the problem. Standard solutions to each problem are described as ‘Solution
Structures’, which can then by applied for all situations matching the problem context. Problem frames,
first used for functional problems, have been extended for security and performance-related problems to
generate corresponding requirements [4, 138].

Synopses System On Chip Verification offers various tools, like simulation, verification, virtual proto-
typing, emulation, and debugging [303]. For example they allow for performance verification to check
latencies and system bottlenecks, and simulation using a variety of tools including SystemC, Matlab, etc.
Formal verification can check many implementation details, such as of registers, bus checks, etc. Many of
their tools, however, operate at a very detailed level, such as simulations at the transistor level, and security
verification of locations of data storage.

3.2.2.1 Security in HW/SW Partitioning

Of the works which investigate security during the architecture and mapping phase, [104] relies on Archi-
tecture Analysis and Design Language (AADL) models to consider architectural mapping during security
verification. The authors note that a system must be secure on multiple levels: software applications must
exchange data in a secure manner, and also execute on a secure memory space and communicate over a

54

Chapter 3. Related Work

secure channel. Our work, however, investigates protections against an external attacker instead of access
control.

Another approach performs Design Space Exploration using Integer Linear Programming on a vehicular
network protecting against replay and masquerade attacks, to map nodes to an architecture [205]. The
authors use MACs, a counter, and key distribution to ensure the strong authenticity of CAN, TDMA, and
V2V communications. They examine the needed MAC size for low probability of the attacker guessing
the message, and ensure the timing constraints for message arrivals are met. However, their work targets
automotive systems and network communications, instead of general embedded systems, though the au-
thors have developed other Design Space Exploration tools for general System-On-Chip based on timing,
power, and area constraints, but not security [239, 351].

[136] enhances Design Space Exploration with the ability to map security tasks in a real time multicore
system with the algorithm HYDRA. Their work assumes an attacker who can intercept communications,
forge messages, and prevent the availability of services. To impede the attack, security tasks must be
performed periodically. Security tasks are abstracted to consider only that they must execute within a set
deadline to maintain the security of the system, and not the exact mechanisms for security. Furthermore,
their work does not consider hardware-based security countermeasures.

[166] also considered how to secure communications in embedded systems, with encryption performed
in software or on FPGA. They considered how to ensure only the confidentiality of their internal mes-
sages, with a single encryption algorithm AES. They consider all possible mappings with static and re-
configurable FPGA, and determine if the system meets timing constraints. Their work is focused on
scheduling and constraint satisfaction, and not on modeling of architectures or other encryption algo-
rithms.

Likewise, the Simple Modeling Language for Embedded Systems (SMOLES) [307] was enhanced with a
Security Analysis Language [89]. SMOLES models systems as a set of components with input and output
ports, and tasks are mapped onto the hardware platform. Models can be verified for schedulability, timing,
including latencies, and safety properties with UPPAAL. The addition of security algorithms can secure
communications across partitions, and also models the attacker capabilities in terms of the size of keys that
can be cracked. Their analysis tool can then analyze the fulfillment of integrity and secrecy requirements.
However, their work does not model architectural countermeasures, or security protocols beyond a set of
encryption algorithms.

3.2.2.2 Conclusion

The HW/SW Partitioning tools help the designer decide on a mapping and architecture with analysis and
simulation engines determining execution time, architectural load, functionality, security, and safety of the
system. Some also support automatically choose the best mapping with Design Space Exploration. While
there exist a range of tools which can check the performance and functionality of a mapping, the few which
handle security do not model attacker behavior or support evaluation of the hardware countermeasures
proposed in the previous section. This review of the available toolkits supporting the HW/SW partitioning
phase demonstrates that no existing tool will support the security needs proposed in Section 2.5: ability
to verify security properties of the system (mainly Confidentiality, Integrity, Availability), and ability to
evaluate if countermeasures can help the system resist attacks. The lack of a toolkit supporting our needs
for secure design of embedded systems drives the contributions described in this thesis.

55

Chapter 3. Related Work

3.2.3 Frameworks for Software Design

3.2.3.1 Safety and Security Modeling

Similar to SysML-Sec, [48, 49] consider safety and security issues, and translate their model of blocks
with communications into a specification for formal verification to analyze if safety or security failures
can occur. Their work uses the formal analyzer Alloy, and considers the status of components. The status
involve safety failures such as missing data, erroneous data, or ill-timed data, or security failures due to
an attack such as missing data, injected data, or erroneous data. The verifier can then formally check
if the system will correctly function despite the failures or attacks on some of the components. Their
work, however, considers the high-level view of how failures/attacks affect system function, but does not
determine if the failures/attacks were possible based on the more detailed behavior of the system. Their
approach also does not verify the safety and security properties listed in Section 2.5.3.

3.2.3.2 Security Modeling and Verification

[329] proposed modeling security in embedded systems with attack graphs to determine the probability
that data assets could be compromised. Behaviors are modeled as time-dependant stochastic processes.
Their toolkit checks for confidentiality and integrity of data across different designs, but does not model
encryption mechanisms. While their approach is also UML-based, they focus on estimating probabilities
of success for attacks instead of verifying security properties.

Another probabilistic approach uses state transition models to calculate mean time to failure of the system
due to an attack, and is concerned with the security properties of Confidentiality, Integrity, and Availability
[211]. The system is specified with parameters based on the attacker’s capabilities and system’s capability
to resist attacks, such as the probability a system can detect an attack, probability that the, time to handle
and attack, time an attacker can remain undetected, and etc. Their system, however, is represented with
a state machine diagram and is primarily concerned with whether the system is in a hacked or unhacked
state. Their work offers an approach to quantitative analysis of the ability of the system to resist intrusions,
but does not explicitly model the system or countermeasures.

SecureUML enables the design and analysis of secure systems by adding mechanisms to model role-
based access control [206]. Roles can be assigned to different users, and assets are given security rules.
Authorization constraints are expressed in Object Constraint Language (OCL). SecureUML however does
not model detailed system behavior or security protocols.

UMLSec [168] is a UML profile for expressing security concepts, such as encryption mechanisms and at-
tack scenarios. It provides a modeling framework to define security properties of software components and
of their composition within a UML framework. UMLSec considers the security properties of confidential-
ity, integrity, strong and weak authenticity, and access control concepts. It also features a rather complete
framework addressing various stages of model-driven secure software engineering from the specification
of security requirements to tests, including logic-based formal verification regarding the composition of
software components. However, UMLSec does not take into account the HW/SW Partitioning phase nec-
essary for the design of e.g. IoTs, nor safety verification.

SysML has also been extended to better model security. For example [240] proposed adding threat agents,
vulnerabilities, and encryption to the model. The tool provides a list of vulnerable items, such as connec-

56

Chapter 3. Related Work

tions and ports, which the designer should then attempt to mitigate. However, their work does not discuss
how to verify the security of the system. [195] similarly added security notations to SysML, including
vulnerabilities and security properties, such as integrity. Based on the different components selected, the
toolkit uses the Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) vulnerability
database to determine which vulnerabilities exist in that model. Their inductive definition programming
framework then analyzes the provided model, and check if the system respected the security properties.
They can model the existence of an authentication method abstractly, but not track encrypted communica-
tions or keys, for example.

Secure MDD uses UML to model security critical applications, and performs automatic formal verification
using the Karlsruhe Interactive Verifier (KIV). Security requirements are formalized with OCL Constraints,
which can verify properties like if the attacker can recover certain data. Their tool also generates the Java
code for the application [225].

The authors of [78] leveraged Attack Trees to analyze network security. Both system vulnerabilities and
attacker capabilities are modeled and analyzed to determine the possible attacks a system may face. [148]
also used a hierarchical attack representation model (HARM) to assess different moving target defenses,
modeling both system vulnerabilities and attack graphs and trees. [117] described a similar framework
modeling attacks and defenses in IoTs. These works described the system vulnerabilities along with the
attacker actions, but they do not model security countermeasures or use formal verification.

The Software Architecture Modeling (SAM) framework [5] aims to bridge the gap between informal secu-
rity requirements and their formal representation and verification. SAM uses formal and informal security
techniques to accomplish defined goals and mitigate flaws. Their approach covers both the analysis and
design phases. SAM relies on a well established toolkit - SMV - and considers a threat model.

ASE is a security modeling methodology following the steps of analysis, design, security modeling, and
security verification [322]. They consider the security attributes confidentiality, integrity, availability, and
accountability. Requirements are generated based on identified threats, and then countermeasures are
generated based on the requirements. Security verification consists in ensuring that all countermeasures
are added by checking links, but does not use formal verification to check the detailed security properties.

[42] demonstrated some of the advantages of Functional Block Design using Simulink vs UML. Func-
tional Block Design offers more detailed control modeling, and supports more modes of computation.
However, UML supports better requirements elucidation and verification capabilities. While the detailed
implementation of certain algorithms in our system are also modeled in Simulink, starting with the high-
level design and architectural modeling are more suited to UML.

[102] recognized that Matlab/Simulink is more suited for detailed dataflow modeling, while modeling
languages such as UML and AADL are more suited for architecture modeling. Their tool, Fokus Embed-
ded Systems Architect, generates code from both the UML and Matlab models. Classes are marked to
indicate if their behavior is specified by previously-generated C code, UML code, or Simulink code, and
certain functions can refer to Simulink functions. Their code generator then generates C code for each
UML class or function accordingly. At this point, however, their work focuses only on code generation
and not verification.

Other works suggest more high-level methodologies, some with a suggested set of countermeasures. A
well-known methodology, Common Criteria suggests the full process for ensuring security, involving iden-
tifying threats, assessing risks, implementing countermeasures, and assurring the effectiveness of counter-

57

Chapter 3. Related Work

measures [1]. [267] discussed how Common Criteria can be used for embedded system design. They
suggested countermeasures such as code signing, writing efficient code, minimizing ports, and intrusion
detection systems that can wipe memory if an attack is detected.

[33] described how to use security design patterns, which can either protect authenticity and confidentiality
of the system or data, or the availability of the system. After resources and attackers are identified, the
relevant design pattern can be applied. Detailed policies relating to the pattern are then configured and
validated.

As adding safety features to embedded systems affects non-functional properties, such as performance,
reliability, and etc, [18] proposed that design patterns should also be marked with their side effect, or
implications on these non-functional properties. [135] proposed a methodology and toolkit supporting
adding Security and Dependency Design Patterns. By providing a repository of design patterns, they
allow for reuse of their developed security solutions. These documented and proven Design Patterns can
be useful in software design, and contains many of the countermeasures previously listed such as Secure

Communication and Error Detection/Correction, but we start from a far more abstract level of design and
verify the system at the end.

[305] offers various tools for supporting a Secure Software Development Lifecycle (SSDLC), such as
threat modeling [302] and inspecting software [304]. Their tools, however, provide modeling only at
the analysis phase, and then code analysis tools for inspecting the software. Similarly, Microsoft Security
Development Lifecycle [222] is a software development process considering security at each design phase,
similar to a Waterfall lifecycle. It involves analysis of security and privacy requirements, system design,
implementation, code verification using dynamic and static analysis and fuzz testing, and finally release. It
recommends a set of security practices, such as using approved tools and conducting testing and security
reviews. It is also supported by a threat modeling and code analyzer tools. Their verification operates on
the code itself, and not on models with mathematical formal verification tools.

3.2.3.3 Safety Modeling and Verification

Some works have used mathematical formula to determine the safety of the system in an environment.
To evaluate the safety of navigation algorithms of an autonomous vehicle in different traffic [7, 8] used
Markov Chains. Vehicle behavior is specified as an equation describing its position over time, and the
set of reachable locations is calculated. Their model however, is entirely mathematical and calculates the
probability of a crash at each time step. While these works evaluate the safety of autonomous driving in
greater detail, they assess only the navigation within traffic and not other system properties.

To verify the safety of hybrid systems, [261] proved that the system would never enter unsafe regions with
barrier certificates. Their work, however, is mathematical instead of graphical, and focuses on analyzing
trajectories. They expressed the entire relevant system behavior as a system of mathematical expressions,
which they then verified would never violate certain constraints. While these works precisely analyze
system behavior, they depend on detailed mathematical models, and only analyze their external behavior.

Other works allow for a higher-level verification of the system, with analysis of properties like reachabil-
ity of states and other verifiable expressions. [133] uses the language S#, based on C#, for simulation and
formal verification of safety-critical systems. It allows the modeling of component faults and the environ-
ment of the system. Their safety analysis can generate minimum critical fault sets for hazards, check for

58

Chapter 3. Related Work

reachability and deadlocks, and can check if formula or invariants are satisfied. These works, however, use
text-based instead of graphical models like SysML-Sec.

[167] presented how to check safety requirements within a system modeled in Simulink, and determines
if the system can fulfill that requirement despite multiple faults. After the system is modeled in Simulink,
including explicitly modeling the possibility of faults of components, the model is translated into SCADE.
Safety properties are expressed in Lustre, and the design verifier can determine if the property holds or
not.

Other works have used formal verifiers like UPPAAL to analyze their models. [124] created a tool ECPS
verifier to translate AADL models into timed automata that could be verified with UPPAAL. Possible faults
are modeled with Fault trees, then integrated into an AADL model. Their work is similar to our approach
to safety verification, as they also use an automatic model translator and verify properties of liveness,
reachability, lack of deadlocks, but they use UPPAAL instead of simulations to evaluate latencies.

3.2.3.4 Conclusion

Software Design modeling tools, whether in UML, AADL, Matlab, or textual specification languages,
support a variety of different verification mechanisms. Many offer functional verification or property
checks for safety verification, and others offer formal analysis of protocols for security verification. Others
check the code itself for safety and security flaws. Some of these works offer capabilities are not present
in SysML-Sec/TTool, such as automatically generating vulnerabilities from available databases based on
the components selected, or detailed mathematical functional modeling. However, they lack support for
connecting the architecture/mapping models and the detailed software design models, which is important
in determining that abstract HW/SW Partitioning models performed the correct abstractions, and also
minimizes building an extra set of models manually after the selection of an architecture/maping.

3.2.4 Conclusion

Table 3.1 shows a summary of all related methodologies and toolkits, with their modeling and verification
capabilities to summarize the differences with our work.

All of these other design methodologies and toolkits offer modeling and verification for various purposes
with a range of approaches, but none of them support the full design process needed for the design of safe
and secure embedded systems, such as Vedecom’s Autonomous Vehicle, as previously described in Sec-
tion 2.5. To re-iterate, we stated that the methodology should support modeling for preliminary analysis,
architecture, and more detailed software design, and allow for the modeling of the relevant countermea-
sures studied. Furthermore, the toolkit should provide verification tools to analyze the safety and security
requirements.

While the SysML-Sec Methodology lacks the ability to address some of the needs, such as better timing
analysis and modeling in security, it addressed enough that we could adapt and enhance it to take all of
our modeling and verification needs into account. The rest of the thesis discusses how we added the main
missing capabilities. Some of the other interesting capabilities that TTool/SysML-Sec does not support,
including probabilistic analysis of attacks, offer potential directions of future work described in greater
detail in Section 8.2.

59

Chapter 3. Related Work

Table 3.1: Comparison of Related Works

Toolkit/Method
Phase Supported Verification
Analysis Part. Soft. Func. Safety Security Perf. Formal?

Analysis-Only Tools
CHASSIS [264]
BLDMP [256]
CFT [299]
Attack Defense Trees [187]

Design Tools
TTool/SysML-Sec [13, 15]
UMLSec [168]
SecureUML [206]
Lin2015 [205]
AADL [104]
Metropolis [24]
MAESTRO [271]
Koski [170]
Brunel2015 [48]
MontiSim [126]
Medini [10]
Matlab/Simulink [102]
Arcadia [259]
Sesame [95]
EAST-ADL [58]
Artemis [258]
Design Patterns [87, 135]
Problem Frames [4, 138, 164]
SAM [5]
mbeddr [334]
SysML-IDP [195]
MARTE [331]
SMOLES-SAL [89]
Attack Probabilities [211, 329]

60

Chapter 4

Modeling Methodology

“The good thing about bubbles and arrows, as opposed to programs, is that they never crash."
–Bertrand Meyer

4.1 Introduction

With the growing complexity of embedded systems, designers often rely on system design methodologies.
Instead of starting directly with designing the system itself, many methodologies start with an analysis
phase, to better conceive all of the needs of the system [185]. The most important and hardest task of
designing software systems is sometimes considered to be determining the requirements of the system, as
even clients may not be able to concretely express their needs in sufficient detail to design the system [47].
Ensuring that requirements are as correctly defined as possible in the beginning prevents re-work due
to modifying the system to address added or changed requirements midway through the design process.
In the USS Vincennes disaster, an engineer working on the plane tracking system had proposed adding
displays that would better help users monitor plane trajectory (which could have prevented the disaster),
but his supervisors denied his request since the Navy hadn’t explicitly asked for such a display [301].

Based on the preliminary analysis, a system can be designed in iterations, starting at a high level of ab-
straction [113]. By starting at a high-level of abstraction and then gradually moving to lower levels of
abstraction, the designer is not required to consider the entire complex system at once, and instead can
start with a more manageable high-level model. Over iterations, details are added to the system, until
either the system is ready to build and program by hand, or code can be automatically generated. Auto-
matic generation of program code and VHDL synthesis from a specification is preferred, as design time is
decreased, code can be optimized, and human errors are avoided [161, 227].

In certain real-time safety and security critical embedded systems, such as autonomous vehicles, various
formal verifications and simulations can help ensure that the design meets the requirements stated in the
analysis phase. Safety and security considerations must also be integrated into the design methodology,
with additional modeling, through added diagrams or modeling elements, and formal verification tech-
niques. Since no other toolkit and methodology is adapted for the design of safe and secure embedded

61

Chapter 4. Modeling Methodology

systems, as described in Chapter 3, we propose modifications to the SysML-Sec Methodology. The high-
level overview of our methodology is shown in Figure 4-1. In this section, we describe the modeling steps
in greater detail, with the associated models, and briefly describe the modifications to this methodology
presented in the rest of this thesis. All of the modeling and automatic verification steps are supported by
our toolkit, which then clearly displays the properties satisfied and not satisfied by the current model [235].

4.2 Overview

As with many other methodologies, our methodology recognizes that we need to determine what to design
before we can start designing it. We also need to balance all of the different safety, security, functional, and
timing needs, some of which can conflict as described in section 2.4.3. Our methodology starts with the
Analysis phase, where we consider the needs of the system and possible issues it may face. We model the
requirements of our system, regarding the functionality, safety, and security. To better determine require-
ments, we also model the potential attacks and faults that the system should protect again. Attack Trees
describe the possible attacks the system may face, and Fault Trees describe how failures in the system may
lead to possible losses. The detailed attack steps of an attack tree, for example, The requirements, faults,
and attacks should be modeled together, as possible attacks and failures may lead us to develop new re-
quirements. Countermeasures to attacks and faults, especially, can be directly translated into requirements.

After we have finished our analysis, we accordingly model the system on various levels of detail. The
two design phases, Hardware/Software Partitioning and Software Design, take place in the two different
design environments of TTool: DIPLODOCUS and AVATAR. Each design environment contains different
types of models and supports different types of verifications. Throughout this thesis, HW/SW Partitioning
models within TTool are referred to also as Mapping models or DIPLODOCUS models, and Software
Design models are also referred to as AVATAR models. AVATAR models, for example, indicate the entire
ensemble of block diagrams, state machine diagrams, etc for a single system.

Hardware/Software Partitioning models describe the architecture and high-level functional behavior, and
they show which architectural component performs each function, also called a “mapping”. First models
may be abstract and ignore details, and instead only describe the high-level properties. After the system
is sufficiently modeled, simulation and formal verification determine if mapping-relevant requirements (in
terms of safety, security, and performance) are satisfied. Based on the results of the verification, the par-
titioning models may be modified, and relevant safety and security countermeasures may be added. The
countermeasures at this stage include redundant hardware, firewalls, and abstract data security operators.
Countermeasures operating at a lower level of abstraction are added in the following phase, such as ones
operating on exact values of data communications. Design elements and verification results can be linked
back to the analysis phase diagrams, such as timing results linked to a requirement on timing, or confir-
mation that certain data is secure can be used to mark an attack step impossible. The security verification
results also determine how attacker scenarios can be added explicitly to the diagrams.

Once the architecture and mapping have been determined, we model the detailed behavior of the system
during the Software Design phase. Preliminary Software Design models can also be generated automat-
ically from the HW/SW Partitioning Models. The algorithms and behavior of the system is modeled
in greater detail. Formal verification then checks the system again to ensure it meets refined require-
ments. In Software Design, Verification Queries are written in pragma, which are notes on the modeling
diagrams [16, 252]. Safety verification is performed with UPPAAL or the TTool Model Checker, and

62

Chapter 4. Modeling Methodology

Security Verification by ProVerif [13, 15, 16]. After verification, each pragma automatically marked ver-
ified, not verified, or cannot be analyzed [209, 252]. Based on the verification results, the system models
can be refined, and additional countermeasures, such as exact security protocols, plausibility check, etc.
Once the software is sufficiently designed and verified, our toolkit can automatically generate C code for
prototyping, and test sequences.

In comparison with the last former version of the SysML-Sec Methodology, presented in [12], the new
methodology shows the different modeling and verification steps in greater detail, and adds safety and
security concepts. In the Analysis phase, Fault trees were added to the possible preliminary analysis
diagrams. In the Design phases, the safety and security countermeasures (Redundancy, Firewall, Failsafe
Mode, Security Protocols, etc) which can be added to reconsider a model after verification are explicitly
shown. In the HW/SW Partitioning phase, security modeling and verification have been added, as well as
the automatic model transformation to Software Design models.

The system is continually reconsidered or refined until all requirements are met and the system is mod-
eled with all relevant details included. Throughout the process, modeling and verification elements are
annotated with their related requirements to track the fulfilment of requirements, as we describe in the
following sections.

A metamodel helps define a modeling language or UML profile, and the concepts and relationships be-
tween the structures within it [21, 341]. Their importance lies in their ability to help designers understand
the language and detect inconsistencies within a language [231].

Figure 4-2 shows the metamodel of the different modeling diagrams. The metamodel is divided into the 3
phases, Analysis, HW/SW Partitioning, and Software Design. For example, as described, Analysis models
consist of Requirements Diagrams, Attack Tree Diagrams, and Fault Tree Diagrams. Each Attack Tree
Diagram then consists of the attacks, logical operators linking attacks, and countermeasures.

The links between modeling phases and diagrams are shown, such as the linking of requirements to Veri-
fication Queries and Software pragma, which express how requirements help a designer determine which
properties should be verified. Countermeasures can be related to requirements in the analysis phase, and
these countermeasures may then be present in the HW/SW Partitioning and Software Design Diagrams.
More detailed metamodels of the diagrams will be presented in the rest of this thesis.

63

Chapter 4. Modeling Methodology

Analysis

Requirements

SecuritySafety Functional

Attack Trees

HW/SW Partitioning

Application Architecture

Mapping

Software Design

Verification

Safety SecurityPerformance

Code
Generation

Legend
Modeling

Verification

User-defined
Automatic
Manual
Reconsideration

Safety
Countermeasures

Security
Countermeasures

Safety
Countermeasures

Security Countermeasures

Verification

Safety SecurityPerformance

Firewall
Data Security
 ...

Redundancy, ...

Failsafe Mode
Plausibility Check
 ...

Security Protocols, ...

Attacker
Scenarios

Fault Trees

Security
Safety

DIPLODOCUS

AVATAR

Figure 4-1: Overview of SysML-Sec Methodology for the Design of Safe and Secure Embedded Systems

64

C
h
a
p
ter

4
.

M
o
d
elin

g
M

eth
o
d
o
lo

g
y

Software Design

Analysis
[0..*]

RequirementDiagram

Requirement

SysMLRequirementDiagram

AttackTreeDiagram

SysMLParametricDiagram

FaultTreeDiagram

[0..*]

[0..*]

[0..1]

AttackLogicalOperator

SysMLConstraint

SysMLRequirement
Attack

[0..*]

Countermeasure

[0..*]
[0..*]

[0..*]
[1..1]

[1]

[0..*]

[0..*]

FaultLogicalOperator Fault

[0..*]
[0..*]

[0..*]

[1..1]

[1]
[0..*]

[0..*]

[0..*]

SysMLBlock SysMLBlock

[1]

-type

Verification Result

ReachabilityGraph

ProVerif Security Result

Simulation Trace

UPPAAL Functional/
Safety Result

HW/SW Partitioning

SysMLInternalBlockDiagram

ApplicationDiagram ArchitectureDiagram

Task ComputationNode CommunicationNode

FunctionalCommunication

DeploymentDiagram

SysMLActivityDiagram

Countermeasure
[2..*]

[0..*]

[0..*] task [0..*] [0..*]

<<deploy>>

[1]

[1..*] [1..*]SysMLBlock

Node

ActivityDiagram

[1] <<abstract>>

[0..*]

[0..*]

VerificationQuery

PerformancePragmaSafetyPragmaSecurityPragma

SoftwarePragma

BlockDiagram

Block
SysMLStateMachineDiagram

[2..*]

[0..*]

[1]

StateMachineDiagram

[1]

[0..*]

SysMLBlock

Channels

Countermeasure
<<abstract>>

<<defines>>

<<defines>>

Artifact

<<deploy>>

<<deploy>>

[1]
[1]

SysMLBlockDefinitionDiagram

SysMLBlockDefinitionDiagram

[0..*]

[0..*]

SysMLInternalBlockDiagram

Prototyping

StorageNode

Generated Code

Test Sequence

Annotation

[0..*]

Annotation

SecurityQueryReachabilityQueryPerformanceQuery

[0..*]

[0..*]

[0..*]

[0..*]

F
igure

4-2:
M

etam
odelof

D
iagram

s
for

S
ysM

L
-S

ec
M

ethodology
65

Chapter 4. Modeling Methodology

4.3 Analysis

The Analysis phase, involving specification of requirements and possible risks/attacks helps us abstractly
consider our system, form a coherent list of and provides a framework for design. Models showing how
faults and attacks can occur, which can be named anti-models or misuse cases, can help specification of
requirements [296, 326].

4.3.1 Requirements

Safety Requirements describe properties to ensure the safe function of the system, such as the inability for
the system to reach deadlocks/livelocks, error states, and delayed reactions to safety-critical events. Secu-
rity Requirements describe which communications must not be recoverable or modifiable by the attacker.
These requirements should address all of the issues previously listed in our taxonomy.

<<Requirement>>
SafeFunctionalResponse

<<deriveReqt>>

<<deriveReqt>>

<<Requirement>>
SecurityMain

ID=0
Text="The system should be secure."
Kind="Non-functional"

<<Requirement>>
SecurityAuthenticity

ID=4
Text="The system should
ensure Authenticity"
Kind="Data origin authenticity"

<<Requirement>>
DataSecurity

ID=19
Text="The system will ensure
Authenticity with data
security mechanisms."

<<Requirement>>
MACdata

ID=20
Text="The system will use
Message Authentication
Codes to ensure the
Authenticity of data."
Kind="Integrity"

<<Requirement>>
SafetyMain

ID=0
Text="The system should be safe."
Kind="Safety"

<<Requirement>>
PerformanceLatency

ID=5
Text="The critical system
latencies should
ensure safety."
Kind="Performance"

<<refine>>

<<Requirement>>
SafeFunction

ID=8
Text="The vehicle function
should be safe."
Kind="Safety"

ID=10
Text="The system should
respond safely to events."
Kind="Functional"

<<Requirement>>
SecureCommands

ID=18
Text="The system should
prevent an attacker from
injecting vehicle commands."
Kind="Functional"

<<deriveReqt>>

<<Requirement>>

LatencyBraking

ID=17
Text="When an obstacle
is detected, a braking
order should be issued
in time to avoid
the obstacle."
Kind="Performance"

<<deriveReqt>>

<<Requirement>>
FunctionalObstacleDetect

ID=11
Text="A braking order should
follow every detection of
obstacles in close proximity."

<<Requirement>>

LidarObstacleDetect

ID=9
Text="The Navigation unit should
always issue a braking
order after the Lidar detects
an obstacle in close proximity. "

Kind="Functional"

Kind="Functional"

<<Requirement>>
AuthenticityMessage

ID=15
Text="The system should
ensure the Authenticity
of all internal messages."
Kind="Integrity"

<<Requirement>>

AuthenticityCommand

ID=16
Text="The system should
ensure the Authenticity
of all vehicle commands."
Kind="Integrity"

Kind="Integrity"

<<Requirement>>

ReliabilityCommand

ID=16
Text="The system should
ensure that commands
will be issued reliably."
Kind="Performance"

<<deriveReqt>>

Figure 4-3: Refinement of Requirements for Vehicle Safety and Security

High-level requirements are then refined until they are implementable in a model, or a query to be ver-
ified. Figure 4-3 shows how the safety and security requirements are refined. For safety, the high-level
requirement ‘The system should be safe’ is refined to a safety requirement to brake when detecting an
obstacle and a performance requirement on the timing of such braking orders. For security, the high-level
requirement ‘The system should be secure’ is eventually refined into a requirement for authenticity of ve-
hicle commands and implementation detail to use Message Authentication codes to ensure authenticity.
Safety and Security Requirements can be related, such as the ‘SafeFunctionalResponse’ requirement being
dependent on the ‘SecureCommands’ requirement: more precisely, the ability of the system to respond to

66

Chapter 4. Modeling Methodology

events safety relies on an attacker not being able to inject vehicle commands.

In the Requirement Diagrams, the arrow marked ‘derive Requirement’ links a requirement that contains
implementation details. For example, to ensure Authenticity of communications, the derived requirement
demands that the system implement some countermeasure. One way to ensure authenticity in communi-
cations is to use Message Authentication Codes which can indicate if the message as been altered, as we
will describe in greater detail in section 5.3.4.

Taxonomy elements can be related to certain requirements to determine exactly which type of verification
should be used to check for their satisfaction. For example, The requirement ‘LatencyBraking’ should
be checked by a timing verification. ‘LidarObstacleDetect’ should be checked by functional verification,
or more precisely a liveness property to check that the braking order always follows the detection of
an obstacle too close to navigate around. These requirements then guide the specification of safety and
security verification queries during the proceeding system design phases, to ensure that these requirements
have been met [202], as discussed in the next chapters.

4.3.2 Attack Trees

Attack Trees are related to the Security Requirements, but detail the specific steps the attacker would take
to realize an attack on the system [17]. Figure 4-4 shows one such attack to prevent braking in the case
of obstacles. We consider that there are two main methods to prevent braking: either by preventing the
system from detecting the obstacle, or by preventing transmission of the braking command to the car.
Each individual attack step can be determined to be possible or impossible as the system is designed. To
realize a root attack, a combination of individual steps must be possible so that the root attack is ultimately
logically possible.

For example, one possible combination of attack steps would be to manipulate both the camera and lidar to
accept false data, which would then prevent obstacle detection. If however it was impossible to manipulate
the camera, then that attack path would be impossible due to the fact that the attack step ‘manipulate sen-

sors’ requires both manipulating sensors and the camera, as the system uses a combination of all sensors
for obstacle detection. In noting that possible attacks may include jamming communications, a require-
ment ‘The system must ensure communications are always available’ could be added to address this attack.
Thus, the attack trees and requirements can evolve together. Countermeasures can also be added to disable
an attack step, such as using an authentication method to prevent the forging of ECU commands (as stated
in the requirements).

Based on countermeasures and estimations of attacker capabilities, attack steps can be marked possible or
impossible, and a formal verifier then determines logically if the root attack is possible.

4.3.3 Fault Trees

Similar to Attack Trees, Fault trees represent the causes for a top level ‘failure mode’ event, which occur
due to a logical combination of ‘basic events’, which are specific events that are not needed to be further
decomposed [179]. These events are caused by system malfunctions or limitations, however, and not an
attacker. Each basic failure event can be counter-acted with countermeasures, which as with attack trees,
will disable the failure step. Failure events can also be marked with probabilities, so that the Fault Tree

67

Chapter 4. Modeling Methodology

formal analyzer can determine if the top level failure is possible, and if so, the probability of its occurrence.
Based on the possible environmental factors and component failures, we also propose the combinations of
faults that could cause the failure to detect or avoid an obstacle, as shown in Figure 4-5.

Countermeasures can also be added to prevent faults. For example, redundant hardware (buses and pro-
cessors) can prevent the inability to receive data or calculate trajectories/obstacles.

4.3.4 Relationship between Analysis Phase Diagrams

Potential faults and attacks which cause system losses may motivate the designer to add requirements coun-
teracting them, or the countermeasures listed in Attack and Fault Trees can be rephrased into requirements.
Figure 4-6 shows how the braking failure Attack Trees and Fault Trees are linked to the requirements di-
agram. For example, the requirement to issue a braking order after the lidar detects an obstacle in close
proximity can be violated due to a fuzzy or lossy communication channel, algorithm flaws, or an attacker
who has jammed all inter-system communications. These failures/attacks can be in turn prevented with
redundant communication buses, using multiple algorithms (as all algorithms demonstrating the same flaw
is less likely), and anomaly detection schemes or firewalls.

<<block>>
Vehicle

<<root attack>>
attackAutomaticBraking

<<attack>>
preventDataTransmission

<<attack>>
disableSensors

<<attack>>
manipulateLIDAR

<<attack>>
manipulateSensors

<<AND>> <<attack>>
preventDataComputation

<<OR>>

<<OR>>

<<OR>>

<<attack>>
preventObstacleDetection

<<attack>>
preventBrakingFunction

<<attack>>
manipulateCamera

<<attack>>
corruptControllerCode

<<attack>>
jamInCarCommunications

<<attack>>
forgeECUCommands

<<countermeasure>>
authenticateECUCommands

disabled

<<attack>>
forgeInternalMessages

<<attack>>
forgeObstacleData

<<OR>>

Figure 4-4: Attack Tree for Obstacle Detection Failure

68

C
h
a
p
ter

4
.

M
o
d
elin

g
M

eth
o
d
o
lo

g
y

<<root fault>>
ObstacleAvoidanceFailure

<<OR>>

<<fault>>
sensorFailure

<<fault>>
algorithmFailure

<<fault>>
brakingFailure

<<OR>>

<<fault>>
navigationAlgorithmFailure

<<fault>>
cameraFault

<<fault>>
RadarFault

<<OR>>

<<fault>>
HardwareFault

<<fault>>
fuzzyCommunication

<<fault>>
Rain

<<fault>>
Snow

<<fault>>
brokenLidarSensor

<<fault>>
SunGlare

<<fault>>
brokenCamera

<<OR>>

<<fault>>
processorMalfunction

<<countermeasure>>

HardwareRedundancy

<<fault>>

CANMessageLost
<<fault>>

MABXMalfunction
<<fault>>

ECUMalfunction
<<OR>>

<<OR>>

<<OR>>

<<VOTE>>

<<fault>>
Rain

<<fault>>
Snow

<<fault>>
brokenRadarSensor

<<fault>>
LidarFault

<<countermeasure>>

AlgorithmRedundancy

<<fault>>
perceptionAlgorithmFlaw

F
igure

4-5:
FaultT

ree
for

O
bstacle

D
etection

Failure

69

Chapter 4. Modeling Methodology

<<Requirement>>
RedundancyHW

ID=21
Text="The system should
use redundant hardware
to prevent message loss."
Kind="Functional"

<<deriveReqt>>

<<fault>>
algorithmFailure

<<OR>>

<<fault>>
hardwareFault

<<fault>>
fuzzyCommunication

<<OR>>

<<fault>>
processorMalfunction

<<countermeasure>>

HardwareRedundancy

<<countermeasure>>

AlgorithmRedundancy

<<fault>>
perceptionAlgorithmFlaw

<<Requirement>>

LidarObstacleDetect

ID=9
Text="The Navigation unit should
always issue a braking
order after the Lidar detects
an obstacle in close proximity. "
Kind="Functional"

<<attack>>
preventDataTransmission

<<attack>>
preventBrakingFunction

<<attack>>
jamInCarCommunications

<<countermeasure>>
firewall

<<deriveReqt>>

<<countermeasure>>
anomalydetection

<<Requirement>>
RedundancyAlg

ID=22
Text="The system should
use redundant algorithms
to ensure detection of

Kind="Functional"

<<deriveReqt>>

obstacles."

<<Requirement>>
AnomalyDetection

ID=23
Text="The system should
use anomaly detection
to detect abnormal system

Kind="Functional"
communications."

<<Requirement>>
Firewall

ID=24
Text="The system should
use a firewall to filter
internal communications."

Kind="Functional"

<<Requirement>>
PreventJamming

ID=20
Text="The system should
prevent communication jamming
preventing braking for an obstacle."
Kind="Functional"

<<deriveReqt>> <<deriveReqt>>

Figure 4-6: Linking Attack and Fault Trees into Requirement Diagram

70

Chapter 4. Modeling Methodology

4.4 Design Phases

The design of our system take part at two phases and levels: HW/SW Partitioning and Software Design.
Starting design of a system at a higher level of abstraction can improve the efficiency of the design process
[162, 175].

Abstractions can help in analyzing a large, complex system, by separating out the relevant properties for a
certain concern from irrelevant details [162]. It helps by allowing a designer to take into account only the
relevant parts of the system. For example, writing a program to sort numbers in java does not require any
knowledge of the number of transistors in the computer, or any of the computer architecture details.

In this manner, we design our system at multiple levels of abstraction: first at a highly abstract level to
determine the mapping, or HW/SW Partitioning, and then provide the details of the abstract software
functions in the following Software Development phase. In the next sections, we describe the abstractions
taken at each level.

4.5 HW/SW Partitioning

The HW/SW Partitioning Phase allows us to determine the high-level functionality and architecture of a
system. The modeling process follows the Y-Chart approach [177], where application (high-level function)
and architecture models are designed independently of each other, before application components are
mapped to architecture. The HW/Partitioning Phase takes place in the DIPLODOCUS environment.

At this phase, we concern ourselves only with minimal detail needed to select an architecture. Therefore,
we limit our modeling to the list of functions, their control operators, the complexity of their computations
and their communication activities. For example, algorithms are abstracted into a computation time func-
tion, ignoring the exact calculations within, so that their execution time can be considered in the load on
processors. Similarly, data communications are abstracted into the size of the data sent, and not the actual
names or values of the data, so that the transit time of the communication can be taken into account in
buses, bridges, and the sending and receiving processors.

4.5.1 Application/Functional Modeling

The Application/Functional Models consist of SysML Block (Definition and Internal) Diagrams and Ac-
tivity Diagrams. The Block Diagram describes the system as a series of connected communicating Tasks,
and the description of the communications. Communications can be ‘Channels’, ‘Events’, or ‘Requests’.
Channel-type communications send only abstract data i.e. a quantity of data. Therefore, partitioning de-
cisions are taken according to the amount of data the architecture can handle rather than on the specific
values the architecture can support. Event and Request-type communications are used for coordination
between tasks, including sending execution parameters to each other. More specifically, events are used
for synchronization between two running tasks, while requests can be used to specifically start a single run
of a different task.

Communications can be blocking or non-blocking for the sending or receiving task in certain combina-
tions, and the maximum number of samples in the communications buffer that can be specified as finite

71

Chapter 4. Modeling Methodology

Radar

Camera

Lidar

AutonomousSystem

ExteriorInterface

Perception

+ calcMark : Natural;
+ calcObstacle : Natural;
+ calcVehStat : Natural;
+ calcInfrastruct : Natural;
+ calcRegulation : Natural;
+ calculateConfidenceLevel : Natural;

Navigation
+ error : Boolean;
+ calcTraj : Natural;

MABX

ECU

GPS

ECUcommand

V2Xin

MABXcommand

destData

V2Idata percData

LidarData

RadarData

CamData

vehStatus

GPSRTK

IMUdata

V2Vdata

ECUdata

percUpdate

IMU

UI

V2X

UIdata

V2Xout

Figure 4-7: Application Model for Autonomous Vehicle

chl

MABXcommand(1)

chl

destData(1)

chl

percData(1)

Loop for ever

evt

newPerc()

evt
evt

newDest()

calcTraj

processError

initialization

calcTraj

chl

MABXcommand(1)

processError

Figure 4-8: Activity Diagram for Navigation in Autonomous Vehicle

or infinite. For example, in a ‘Non-Blocking Read - Non-Blocking Write’ channel, the sending task can
write infinite times, and the receiving task can read data even if the buffer is empty. In a ‘Blocking Read -
Blocking Write Channel’, however, the sending task can only write until the buffer is full, and the receiving
task can only read data if the buffer is not empty [94].

Figure 4-7 shows the Application Model for our Autonomous Car. The Exterior Interface manages the
communications with the User Interface, used by the passenger to determine a destination, and V2X sys-

72

Chapter 4. Modeling Methodology

<<CPURR>>
CameraCPU

FV::Camera

<<BUS>>
EthernetCamera

<<CPURR>>
LidarCPU

FV::Lidar

<<CPURR>>
NavigationCPU

FV::Navigation

<<CPURR>>
MABX

FV::MABX

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<CPURR>>

InterfaceCPU

FV::ExteriorInterface
FV::ExteriorInterface <<BUS-CAN>>

EthernetIHM
<<CPURR>>

vehicle

<<BUS-CAN>>
CANLidar

<<CPURR>>
RadarCPU

FV::Radar

<<BUS-CAN>>
CANRadar

<<CPURR>>
IMUCPU

FV::IMU

<<BUS-CAN>>
CANIMU

<<CPURR>>
CPUGPS

FV::GPS

<<BUS>>
EthernetV2IGPS

<<BUS-CAN>>

CANV

<<BUS-CAN>>

CANVedecom

<<BUS>>
WiFI

<<CPURR>>
V2XCPU

FV::V2X

<<CPURR>>
UICPU

FV::UI

<<BUS-CAN>>
CANintersystem

FV::ECU

<<CPURR>>
PerceptionCPU

FV::Perception

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>

NavigationBus

<<BRIDGE>>

Bridge

Figure 4-9: Architecture/Mapping Model for Autonomous Car

tem, which gathers data from the infrastructure (traffic lights, road information, etc) and nearby vehicles
(traffic information, etc). The Perception unit communicates with the different sensors (Camera, LIDAR,
Radar, Inertial Measurement Unit, GPS), and then accordingly calculates the obstacles present, and the
confidence level of the current measured data. That data is then sent to the Navigation unit, which ac-
cordingly calculates a trajectory, and the vehicle commands that the vehicle should perform. The vehicle
command is sent to the MABX, which filters the vehicle commands, and converts accepted commands
into commands for the ECU.

Each individual task describes its abstract functional behavior using an activity diagram. Activity diagram
elements include communication operators, computation elements, and control elements. Communication
operators send Event or Channel signals to another task, displayed with the name of the event or data
channel and the number of samples. Computation elements indicate the task performs some calculation
or data processing, where complexity is expressed in terms of elementary operations (int, float, custom
operations) as either a constant or interval. These complexity are transformed into cycle time when the
task is mapped to an execution node: this time depends on the execution capabilities of the execution
node. Control elements include For Loops, Choice, and Select Event, Random Sequence elements, which
control the execution flow. Non-deterministic behavior can be modeled, such as with Random Sequence

operators which execute a serious of operators in random order. Select Event operators allow execution of
any possible received event next, and Choice operators allow for an execution flow to continue randomly

73

Chapter 4. Modeling Methodology

on any of the possible branches.

An extract of the activity diagram of the Navigation Task is shown in Figure 4-8. The navigation system
starts with an initialization sequence modeled only as a complexity operator. After the initialization, the
navigation task loops to continually wait for the reception of a new destination or new perception data
(in the form of current proximate obstacles), indicated by the Select Event operator. For example, if it
receives the “new perception” event from the Perception Task, it acquires the new perception status with
the Read Channel operator. Next, it calculates the route based on the new data. If route calculation fails,
it processes the error, and if it succeeds, it forges a new MABX command and sends it to the MABX box
by writing data to the MABXcommand channel.

4.5.1.1 Architecture Modeling

The Architecture Model is a set of hardware components, with processing components of Hardware Ac-
celerators and CPUs — a processor also contains an Operating System —, communication components
of Buses, Bridges, and Firewalls, and finally storage nodes of Memories. Nodes have parameters to cus-
tomize their behavior: data-path, performance capabilities, scheduling policy (processor, bus), cache-miss
(processor), etc.

Processing nodes are components which can perform the functions mapped to them, and their performance
parameters specify their behavior in terms of operating frequency, scheduling policy (round-robin, priority-
based, etc). The communication nodes allow for messages to pass across them, and are specified by
scheduling policy (to determine which communication transits first), and bus width (size of data that
transits at a time). These performance parameters will be used to determine if they can support all of
the functions or communications which are mapped to it.

Each Bridge or Bus can either be “Public", and therefore insecure and accessible to an attacker, or “Pri-
vate", and therefore secure and inaccessible to attackers. These properties of communication architectural
components affect the security verification described in the following chapter. At this point, reliability-
related flaws in hardware, such as a lossy bus, are not modeled, but some can be modeled in the Software
Design phase.

Figure 4-9 shows the Architecture for the Autonomous Car. Each node shows its specific stereotype.
Moreover, processors are displayed in blue, Buses are displayed in tan, Bridges are displayed in dark
brown, and Memories are displayed in green. Buses and CPUs are connected if there is a link between
them. Additional memory should be provided to store data for channel communications, but they are not
shown in the interest of space.

4.5.1.2 Mapping Modeling

With the application and architecture modeled, the application is then mapped to determine the location
of functions and communications. Each task of the Application Model must be mapped to either a CPU
or Hardware Accelerator. Tasks to be implemented in software are mapped to processor, while tasks to be
implemented in hardware are mapped to Hardware Accelerators. Communication channels between tasks
may be mapped to show their exact path along memories, buses, bridges and firewalls.

74

Chapter 4. Modeling Methodology

When the application is mapped to architecture, we can obtain performance metrics during simulation
to evaluate the suitability of this mapping [163], such as worst case execution time, load of architectural
components, etc. For example, when tasks are mapped to a processor, the load is calculated as the number
of active cycles (performing calculations, sending data, etc) of the processor divided by the total number
of cycles of the simulation. This metric can help us determine if too many tasks are mapped to a single
processor, or if one task involves too many computation-intensive operations.

When samples of channel data across a bus, at each time, the number of bytes sent is equal to the width
of the bus, meaning that the bus may break up a single sample of larger channel communications across
multiple instances. This process repeats until all of the data are sent. The load of buses, bridges, and
memories can then be calculated to determine if certain communication buses are supporting too many
communications.

As shown in Figure 4-9, all of the sensors (Camera, LIDAR, etc) are mapped to the processors on the left,
and the control system tasks, Perception and Navigation, are each mapped to a CPU in the center. While
we do not need to design the ECUs, we include it in our model in order to model all the system commu-
nications. The prefix ‘FV’ stands for Functional View, which is the name of the Application/Functional
Modeling. Tasks are distinguished by their originating functional model as a single mapping may contain
tasks from multiple functional models.

4.6 Software Design

<<block>>
Sensors

~ out IMUdata(int IMUdata)

~ out radarData(int radarData)

~ out GPSRTKdata(int GPSRTKdata)

~ out lidarData(int lidarData)

~ out camData(int camData)

<<cryptoblock>>
IMU

- IMUdata = 0 : int;

<<cryptoblock>>
GPS

- GPSRTKdata : int;

<<cryptoblock>>

Camera

- signal = 0 : int;

- camData : int;

<<cryptoblock>>
Lidar

- signal = 0 : int;
- lidarData : int;

<<cryptoblock>>
Radar

- signal = 0 : int;

- radarData : int;

<<cryptoblock>>

ECU

- command : vehCommand;

<<cryptoblock>>

ExteriorInterface

- destination : mapCoordinate;

<<cryptoblock>>

UI

- destination : mapCoordinate;

<<cryptoblock>>
MABX

- command : vehCommand;

- maxAccel : int;

- maxBrake : int;

<<cryptoblock>>

Navigation

- error = false : bool;

<<cryptoblock>>

Perception

<<cryptoblock>>
V2X

<<datatype>>
vehCommand

- accel : int;
- brake : int;
- steeringAngle : int;

<<datatype>>
mapCoordinate
- x : int;
- y : int;

<<datatype>>
calculatedData

- obstacle : Obstacle;
- reliability : int;
- confidence : int;

<<datatype>>
Obstacle

- x : int;
- y : int;

- percepData : calculatedData
- command : vehCommand;

- percepData : calculatedData

<<datatype>>
Key

- data: int;

<<datatype>>
Message

- data: int;

- destination : mapCoordinate;

Figure 4-10: Software Design Model for Autonomous Vehicle

The Software Design phase enables the design of the detailed implementation of the system. The detailed
functional behavior of the tasks implemented in software should be defined, so that the code can either be

75

Chapter 4. Modeling Methodology

automatically generated or manually developed from the Software Design models. The Software Design
models take place in the AVATAR environment of TTool. AVATAR is capable of modeling and simulating
system function, generating code, and taking into account safety and security issues within the same model.
It supports safety formal verification using UPPAAL or the custom TTool Model Checker, and security
formal verification using ProVerif [15, 252].

Figure 4-10 shows the Block Diagram, containing all of the tasks and showing the location of commu-
nications. Each block may correspond to one or more tasks from HW/SW Partitioning, and are refined
to contain more attributes. In addition, user-defined data types beyond boolean and integer can be used.
In this case, as the system performs operations on map coordinates, vehicle commands, etc which are
composed of a set of integers, it can be more convenient to explicitly define them as a data type.

Communications are also refined to include more details, such as the exact values being transmitted. The
communications between two blocks can be classified as synchronous, where the block sending a mes-
sage must wait until the receiver is finished accepting the message before performing other operations, or
asynchronous, where the block sending a message can send the message and proceed with other opera-
tions [110]. Communication links can also reflect the safety and security properties of the system. Links
can be designated ‘lossy’, in which they drop packets with a certain probability. The ability of the attacker
to access a communication link is modeled by classifying a channel as ‘private’, or inaccessible to the
attacker, or ‘public’, and accessible to the attacker, and therefore marked with an eye symbol. In our ex-
ample, all of the communications are public, since all of the communications are mapped to pass through
public channels in the mapping. This definition will be described in detail in Chapter 6.

The behavior of each block is defined in a State Machine Diagram. These diagrams reflect the detailed
behavior, refined from the activity diagrams in the HW/SW Partitioning phase. Security protocols can be
modeled in Software Design, as a block can be defined as a ‘crypto-block’, and then the actions within
the state machine diagram can include the cryptographic primitives such as symmetric encryption, verify
certificate, verify MAC, etc. For example, a key distribution protocol was modeled in our paper in [209].

Figure 4-11 shows the first refinements of transforming the activity for the Navigation task for the Software
Design phase.

The communications are presented differently in the HW/SW Partitioning vs Software Design phases.
Communications in HW/SW Partitioning can send quantities of data (channel communications), or syn-
chronize with events (events and requests). Both types of communications are classified as ‘signal’ com-
munications in AVATAR.

Also, as we we will discuss in Section 6.3, we no longer use events for synchronization, so the reception
of destination data or perception data is modeled with a single receive signal. Using the ‘Select Event’ op-
erator in HW/SW Partitioning indicates that the first received event should be executed, which in Software
Design is the same function performed by the choice of two receive signals. In addition, the exact values
being sent in the communication are modeled. The reception of one sample of perception data is refined to
be reception of the set of data including the coordinates of an obstacle and the confidence the algorithms
have about the existence of this obstacle.

The functions performed by the task are refined as well. For example, the details of the algorithm for
calculating trajectories would be added to state machine diagrams. With exact data modeled, we can
determine if the new perception data and destination data require the generation of a new vehicle command,
or if it can continue along the current route (such as continuing to drive along a straight empty stretch of

76

Chapter 4. Modeling Methodology

freeway at the same speed). Also, with the actual algorithms for detecting errors would be included, we
split the one error state into a variety, and model how the system responds to errors at different phases in
the calculation process.

chl

MABXcommand(1)

chl

destData(1)

chl

percData(1)

Loop for ever

evt

newPerc()

evt
evt

newDest()

calcTraj

processError

initialization

calcTraj

chl

MABXcommand(1)

processError

Refinement

init

waiting

percData(percData) destData(coord)

newStatus

updateCommand

calculateTrajectory

calculateCommand

vehCommand(command)

commandSent

error

nearestObstacle=...

[updateRequired] [error]

[else]

command.accel=....
command.brake=....
command.steeringAngle=....

...

error2

...

...

[error]

updateRequired=...
error=...

updateRequired=...
error=...

Figure 4-11: State Machine Diagram refined from HW/SW Partitioning Activity Diagram

77

Chapter 4. Modeling Methodology

78

Chapter 5

Security-Aware HW/SW Partitioning

“Most software today is very much like an Egyptian pyramid with millions of bricks piled on top of
each other, with no structural integrity, but just done by brute force and thousands of slaves." – Alan
Kay

5.1 Motivation

With the rise of attacks on connected embedded systems, ensuring their security is becoming an important
research question. As systems may be too large and complex to accurately consider and analyze in one’s
mind, modeling helps to describe a system and balance all of the different requirements, including security.

As described in Section 3, most security modeling frameworks operate at a low level of abstraction. They
tend to model the exact security mechanisms and all the data involved. We however, propose that there is
value in starting security modeling at a higher level of abstraction.

Hardware / software partitioning, an important early phase in development of embedded systems, models
the abstract, high-level functionality of a system and distributes functions of the system among candidate
hardware architectures. This phase decides on the “best” architecture according to several criteria, includ-
ing hardware cost and performance. Specifying the execution location of each function in architecture
generates a model referred to as a ‘mapping’.

Figure 5-1 shows the entire process of fixing a system after flaws are detected in an embedded system. If
security flaws are detected in a production system (Step 1), then ideally they should be able to be fixed
with a patch adding security mechanisms (Step 2), and before the flaw has been used maliciously resulting
in monetary losses and/or personal injuries. While some security vulnerabilities were reported and demon-
strated only by researchers, allowing the companies to repair the flaws before widespread damage [88],
other vulnerabilities resulted in actual damages, such as from the Stuxnet, Mirai, and other botnet at-
tacks [335]. Besides the monetary losses due to recalls or repairs, companies often also suffered reputation
damages after security breaches [76, 172, 260].

79

Chapter 5. Security-Aware HW/SW Partitioning

However, patching a system by adding security mechanisms may causes the system to violate other re-
quirements, such as timing (Step 3 in Figure 5-1). When modeling security mechanisms after selecting a
mapping, designers may determine that the performance impact due to added encryption/decryption may
render the selected mapping non-optimal, forcing them to redo their model and select a different mapping.
The partitioning of hardware/software may also be changed if security protocols are chosen to be moved
to be executed in hardware. Some of the security countermeasures that could be added, such as Hardware
Security Modules and Firewalls, described in section 2.4 are also hardware-based. It may thus be neces-
sary to re-consider the architecture (Step 4). In an embedded system, changing the hardware at this phase
could prove to be costly.

Therefore, at a minimum, for an accurate selection of a mapping, security algorithms should be modeled
in terms of their execution time. However, even if we add execution time operators to our models as
with previous works [14, 288], it is not easy to determine where these protocols should be added in larger
systems. Before they can be added, we must first determine the vital security properties of the system,
such as which data need to be protected, which in turn depends on which data are accessible to an attacker.
To determine what data is accessible to an attacker, it is necessary to determine which locations of the
architecture are accessible to the attacker and which data is accessible from those architectural locations.
As shown in Figure 5-2, modeling security without dedicated operators is not very detailed.

As systems change, the minimal required security algorithms will vary across architectures and attacker
models. It may be difficult to keep track when security algorithms should be added. Furthermore, it would
be more certain to use formal verification to check the security of models. However, without an ability
to relate security algorithms to the data that they protect, it is not possible to check if data accessible
to an attacker has been secured. Therefore, manually modeling security only in terms of overhead or
calculation complexity, but without tracking data security, is insufficient due to the lack of support for
security assessment.

Also, certain attacks, such as Denial-of-Service attacks, operate by adversely affecting the performance of
a system [72,266]. Performance of processors is only studied in the HW/SW Partitioning phase, so it may
be helpful to model and simulate these attacks on the architecture, to better examine their impact.

To address the above-mentioned issues, in this chapter, we investigate how to express security properties
in an architecture and mapping model despite its high level of abstraction. Modeling security protocols at
this level of abstraction is not quite straightforward. As previously noted, data is modeled very abstractly.
Data communications do not model the actual values, and algorithms are modeled only as an execution
time and do not include the actual formulas, or attributes on which it operates. Security protocols cannot
be directly added into these models, as the data being secured is not yet modeled at this stage. While we
could model the exact data being secured, it is too detailed and unnecessary. The exact names of data
being secured is not relevant to the factors considered in the selection of a mapping (cost, execution time,
chip area).

We discuss how to model both the ability of the attacker to target the architecture, and efforts to adapt
security mechanisms to the high level of abstraction. To support our security modeling, we distinguish
between secure and insecure architectural locations. Communication buses can be modeled ‘internal’
(based on assumed attacker capabilities), and secure against an external attacker. On the contrary, external
buses can be spied on. Functions mapped to the same processor can consider their message exchange
secure. The chosen architecture thus affects the need for encryption algorithms and cryptographic material
storage. Security mechanisms are abstracted to an execution operator, but also include a tag to help track
the security operations applied to a certain data.

80

Chapter 5. Security-Aware HW/SW Partitioning

Production
System

Code

Architecture

Security Flaw
Detected

Performance
Requirements
ViolatedAdd

Security
Protocol

Modify
Mapping/
Architecture

1)

2)

3)

4)

Figure 5-1: Fixing Security Flaws across levels of abstraction

chl

comm(1)

encrypt

<<BUS-RR>>
Bus0

CPU0
<<CPURR>>

Comp0

CPU1
<<CPURR>>

Comp1

chl

comm(1)

decrypt

Memory0
<<Memory>>

Figure 5-2: Modeling data security without dedicated operators

5.2 Attacker Model

We assume the same Dolev-Yao Attacker model as used for security analysis in Software Design models
[209]. The Dolev-Yao Attacker is an idealized attacker who has full control of the network, as he can read,
remove and send all messages on a public channel, and perform cryptographic operations (encryption,
decryption, hash, and etc) and other operations on messages (splitting/joining) [55,65,85]. We assume the
attacker has no physical access to the system, and therefore do not consider side-channel attacks [349].
This model assumes perfect cryptography, or that messages cannot be decrypted by brute force, but only

81

Chapter 5. Security-Aware HW/SW Partitioning

if the key is known. The Dolev-Yao model is said to use ‘black-box’ cryptography as it does not allow
guessing of keys, and probabilistic models have been developed to address this limitation [60, 317, 350].

However, in our case, the Dolev-Yao model is sufficient for describing security during HW/SW Parti-
tioning as we are interested only in abstract representations of security, and we only need to classify
communications as either accessible or not accessible to an attacker, matching with the Dolev-Yao models
of public vs private channels. Also, by using the previously-adopted verifier, ProVerif, and we can re-use
much of the basic block to Proverif translation to minimize the amount of translations built in TTool.

5.3 Security Modeling

HW/SW Partitioning diagrams were enhanced with new elements to describe both attacker behavior and
security mechanisms. Figure 5-3 shows a detailed metamodel of the security modeling elements.

5.3.1 Architecture Vulnerabilities

Assumptions regarding attacker capabilities are reflected on the architecture. On the architectural model-
ing, buses can be specified as public or private, corresponding with the Dolev-Yao model of whether they
are accessible or not to an attacker. For example, devices communicating on a WiFi network would be
modeled as exchanging over a public bus, while the internal bus would be modeled as private. Private
buses are marked secure with a green shield, as shown on the architecture diagram of Figure 5-4. On
the other hand, the public bus ‘PublicBus’ does not contain a green shield. The distinctions between bus
types also model assumed attacker capabilities: if we assume that an attacker has no physical access to the
system, then we can describe internal buses as private, but if an attacker could physically probe the bus,
then it must be indicated as public.

5.3.2 Attacker Scenarios

Attacker scenarios explicitly model the attacker interactions with a system. They are based on the Attack
Trees, but contain more implementation details and can be simulated in conjunction with the system model.
By modeling attacker actions directly, we can better examine his effect on the system and evaluate possible
countermeasures.

An attacker scenario consists of one or many attacker tasks, representing separate functions working to-
gether to carry out an attack on a system. An attacker task’s behavior includes all possible actions of a
normal application task (read/write data on a channel, control operations, execution of calculations, etc).
In addition, where regular tasks can only read and write on channels directly associated with themselves,
the attacker tasks may read and write on any public channel. A public channel is defined to be any channel
mapped to a path including at least one bus accessible to the attacker. Furthermore, attacker tasks possess
an additional capability: ‘Code Injection’, which replaces an application task’s behavior with an attacker-
determined one, modeling an attacker’s capability to change a task’s execution flow which may include
code modification.

Attacker behavior during simulation depends on the architecture. Read/Write Public Channel commands
can only be successfully executed if the communications are in fact mapped to at least one public bus. We

82

C
h
a
p
ter

5
.

S
ecu

rity-A
w

a
re

H
W

/S
W

P
a
rtitio

n
in

g

HW/SW Partitioning

SysMLInternalBlockDiagram

ApplicationDiagram
ArchitectureDiagram

Task
ComputationNode CommunicationNode

FunctionalCommunication

DeploymentDiagram

SysMLActivityDiagram

[2..*]

[0..*]

[0..*] [0..*]

<<deploy>>

[1]

[1..*] [1..*]

SysMLBlock

Node

Activity

[1]

Artifact

<<deploy>>[1] [1]

SysMLBlockDefinitionDiagram

StorageNode

[0..*]

CPU

HardwareSecurityModule

Bus BridgeHardwareAccelerator Firewall

ActivityElement

ControlActivityElement ExecutionActivityElement CommunicationActivityElement

Loop

Choice

SelectEvent

Sequence

Memory

[1]

[*]

Exec

Action

Attribute

[1]
[*]

Delay

ReadChannelSendEvent

SendRequest ReadRequestWaitEvent

WriteChannel

AttackerTask

AttackerActivityElement

[1]

[1]
[1]
[1]

AttackerScenario

[1]
[*]

[1]

[*]

channelName : String

ReadPublicChannel

channelName : String

WritePublicChannelCodeInjection

CryptographicOperation
samples : Int samples : Int

reqTask : Task

CryptographicData

Nonce

Cryptographic Function

SymmetricEncryptionFunction

symmetricEncrypt() : Message

symmetricDecrypt() : Message

time:Intvariable:Attribute
value:formula

Complexity
 : Int

[1] [*]

Instance

attackedTask:
Task

Request ChannelEvent

[1]

[1]

KeyAsymmetricEncryptionFunction

asymmetricEncrypt() : Message
asymmetricDecrypt() : Message

MessageAuthenticationCodeFunction

calculateMAC() : Message
verifyMAC() : Message

HashFunction

calculateHash() :
Message

[1]
[*]

Message

<<deploy>>[1]

[1]

[0..*]

<<deploy>>

[1]

[1]

[1]

<<deploy>>

[1]

F
igure

5-3:
S

ecurity
M

odeling
M

etam
odel

83

Chapter 5. Security-Aware HW/SW Partitioning

<<BUS-RR>>
PublicBus

CPU0
<<CPURR>>

Comp0

CPU1
<<CPURR>>

Comp1

<<BUS-RR>>
PrivBus0

<<BUS-RR>>
PrivBus1

Memory0
<<Memory>>

Memory1
<<Memory>>

comm
key

comm
key

Memory2
<<Memory>>

Figure 5-4: Sample Architecture with Insecure Bus

considered classifying certain storage nodes/CPUs as tamper-proof, but while there have been many works
on preventing code injection with stack canaries or ensuring memory is not both writable and executable
[71, 251] and tamper-proof program execution/memory such as Execute-Only Memory [19, 22, 57, 116,
204], attacks have managed to bypass some of these countermeasures [53,68,97,125,165]. Therefore, we
could not guarantee the existence of completely tamper-proof CPUs/memories.

At this point, we base the assumption of the ability of the attacker to modify code based on previous attacks
such as Miller and Valasek’s hack through the vulnerability in the cellular data connection, and Tencent’s
hack on Tesla through a browser [223, 234]. The Vedecom prototype is not yet fully equipped with all of
its connections, so while we cannot test if they contain vulnerabilities, we can assume possible sites for
attacks based on previous works. The V2X gateway is open to the outside world, and is often proposed as
a likely source for attack [194, 248]. While methods of protecting the V2X Gateway have been proposed,
we cannot be assured that an attacker will never bypass them, and thus we investigate the damages that an
attacker could cause by modifying the code of the V2X Gateway, and then how to prevent those losses.

We demonstrate this idea by generating one attacker scenario based on the attack tree from Figure 5-5,
more specifically the branch on preventing the braking function by jamming in car communications. In
this attack example, the attacker is not attempting to change the behavior of the system via forged messages
(as protection mechanisms may prevent forged messages from being accepted), but instead trying to delay
valid commands from the system and possibly provoke an accident due to late braking. However, when we
start to generate the step “Modify V2X Code” in order to effectuate the “inject ECU commands” action, we
realize that on the current architecture, the V2X Gateway has no access to inject communications into the
ECU Gateway. The only components that the V2X Gateway communicates with are the Exterior Interface
and the User Interface. Since the Exterior Interface is connected to the ECU Gateway, if it could be hacked,
then fake ECU commands could be sent as quickly as possible. Figure 5-6 shows how the attack scenario
executes on the architecture. The attacker compromises the V2X Gateway, which then compromises the
Exterior Interface. Then, the Exterior Interface mass injects ECU commands to the ECU Gateway.

The activity diagrams of the components relevant to this attacker scenario are shown in Figure 5-7. They
are modeled to have a ‘hacked’ (when the attacker is active) vs ‘normal’ behavior (without the attacker).
By comparing the behavior of the system with and without the attacker, we can better understand the
attacker’s effect. As we can see, the attacker can signal a code injection to the V2X Gateway. When
the V2X Gateway receives the signal, it changes to the hacked behavior, which involves signaling a code
injection to the Exterior Interface. The hacked Exterior Interface then begins sending ECU commands
as quickly as possible in an attempt to occupy all the processing time of the ECU Gateway and prevent
processing of the legitimate commands sent by the MABX.

84

Chapter 5. Security-Aware HW/SW Partitioning

<<block>>
Vehicle

<<root attack>>
attackAutomaticBraking

<<attack>>
preventDataTransmission

<<OR>>

<<attack>>
preventBrakingFunction

<<attack>>
jamInCarCommunications

<<AND>>

<<attack>>
forgeInternalMessages

<<attack>>
modifyV2XCode

<<attack>>
injectECUcommands

Figure 5-5: Extract of Attack Tree for Attacker Scenario Model

<<CPURR>>
NavigationCPU

FV::Navigation

<<CPURR>>
MABX

FV::MABX

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<CPURR>>

InterfaceCPU

FV::ExteriorInterface

<<BUS-CAN>>
EthernetIHM

<<CPURR>>
vehicle

<<CPURR>>
CPUGPS

FV::GPS

<<BUS>>
EthernetV2IGPS

<<BUS-CAN>>

CANV

<<BUS-CAN>>

CANVedecom

<<BUS>>
WiFI

<<CPURR>>
V2XCPU

FV::V2X

<<CPURR>>
UICPU

FV::UI

<<BUS-CAN>>
CANintersystem

FV::ECU

<<CPURR>>
PerceptionCPU

FV::Perception

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>

NavigationBus

<<BRIDGE>>
Bridge

Modify Code

Attacker

Inject ECU
Commands

Figure 5-6: Attacker Scenario execution on hardware

85

Chapter 5. Security-Aware HW/SW Partitioning

chl

V2Xdata(1)

evt

newV2X()

process ms

Loop for ever

[hacked] [else]

evt

injectSig=?injectV2X()

[injectSig] [else]

evt

injectEI()

hacked=true

evt

injectV2X()

chl

V2Xdata(1)
chl

UIdata(1)

evt

evt

newUI()

evt

newV2X()

Loop for ever

[hacked] [else]

chl

ECUcommand(1)

evt

injectEI()

[injectSig] [else]interval ms

evt

injectSig=?injectEI()

hacked=true

V2X Exterior Interface

evt

injectV2X()

Attacker

process ms

...

[active] [else]

Figure 5-7: Activity Diagrams of components in Attacker Scenario

5.3.3 Attacker Scenario Analysis

Attacker Scenarios can be simulated to analyze their effect on the system. One of the new security prop-
erties that can thus be analyzed is ‘Availability’. During simulation with and without the attacker, we can
check the load across processors and the number of forged commands sent compared to the number of
legitimate commands sent, to see if the attacker can effectuate a denial of service.

Figure 5-8 shows the performance impact due to the addition of the attacker. The MABX box experiences
a significant decrease in active time as it is often waiting for its command to be accepted by the ECU
Gateway, which now has to process both the ECU commands from the hacked Exterior Interface as well.

As this system is vulnerable to denial of service attacks and does not preserve the property of Availability,
in the rest of the chapter, we describe countermeasures which can better secure our system.

5.3.4 Security Countermeasures

5.3.4.1 Data Security Mechanisms

When an attacker can access a public bus, and therefore all of the communications which traverse across it,
the attacker can tamper with the communications in a method that could adversely affect system behavior.
As described previously, an attacker should not be able to send commands and gain control of a neigh-
boring car, or modify perception data to indicate that there are no obstacles. In other fields, the insecure
communication protocols to communicate wirelessly with implantable medical devices such as pacemak-
ers has allowed researchers to recover personal and treatment information from the patient, disable the
device, or send a dangerous shock to the patient [214].

Securing the communications can involve adding a proven security protocol. While exact security proto-
cols are modeled in the later development phases [209], in this phase, we still need to take into account
the execution time to execute security protocols for an accurate HW/SW Partitioning, and find a method

86

Chapter 5. Security-Aware HW/SW Partitioning

<<CPURR>>
vehicle

FV::ECU

61%

<<CPURR>>
MABX

FV::MABX

30%

<<BUS-CAN>>
CANV

33%

<<CPURR>>
ExteriorInterface

FV::ExteriorInterface

33%

<<BRIDGE>>
Bridge

1%

<<BUS-CAN>>
IHM

1%

<<CPURR>>
vehicle

FV::ECU

60%

<<CPURR>>
MABX

FV::MABX

5%

<<BUS-CAN>>
CANV

34%

<<CPURR>>
ExteriorInterface

34%

<<BRIDGE>>
Bridge

1%

<<BUS-CAN>>
IHM

1%

+Attacker

FV::ExteriorInterface

Figure 5-8: Performance impact due to Addition of Attacker

of formally verifying that data is indeed secure. At this level of abstraction, we are not interested during
partitioning in the implementation of encryption algorithms; we only need to consider parameters that will
affect the partitioning choice (satisfaction of security properties, execution time, data size).

To abstractly model security protocols and take into account only these relevant properties, we introduce
Cryptographic Configurations, a tag to be added to communications to indicate the presence of security
and the relevant performance overhead. When a channel is tagged with a Cryptographic Configuration,
the user can also select if any cryptographic operations have been performed on the data.

Cryptographic Configurations are graphical artifacts that allow the security verifier to track data encryption
elements. Within activity diagrams, they appear as an upside-down pentagon marked with their type, as
shown in the left side of Figure 5-9, where ‘AE’ represents Asymmetric Encryption and ‘D’ represents
Decryption. Cryptographic Configurations can be typed as follows: Symmetric Encryption and Asymmetric

Encryption patterns encrypt data along with a key/keys specific to the pattern. A MAC can be added to
messages to authenticate it and determine if it has been modified. Hash calculates a hash of the data.
Nonces can be concatenated to messages before encryption to verify authenticity. Advanced allows the

87

Chapter 5. Security-Aware HW/SW Partitioning

user to indicate their own encryption scheme, such as combinations of Cryptographic operations.

sec:rsa

sec:rsa

Figure 5-9: Specification of Cryptographic Configuration for Asymmetric Encryption and Decryption

Figure 5-9 (right) shows the specification of a Cryptographic Configuration. The designer can choose the
type and then the corresponding performance properties, or select a pre-built algorithm which will auto-
matically estimate the performance parameters based on the experimental results in [73]. These estimated
parameters should be modified to better reflect the actual CPU used, but they can still be used to compare
performance of different algorithms.

Encryption operations may be characterized by an encryption and decryption computational complexity (a
measure of the relative execution cycles depending on the processor), and overhead (additional bits added
to the message due to encryption). The computational complexities for operations (encryption, decryption,
forge key, calculate hash, etc) apply for the block size (or block size for default key size if key size can
vary), such as 128 bits for AES, 512 bits for SHA-256, and 214 bytes for 2048-bit key RSA [74,131,250].
If the data length exceeds the block size, then the data is encrypted over multiple runs of the algorithm,
with total computation complexity = message size / block size * 1 block computational complexity. Within
the encryption configurations, a specified nonce may also be concatenated onto messages to prevent replay
attacks. Cryptographic material such as nonces are characterized by a size in number of bits. These pa-
rameters allow us to model the impact of security mechanisms on performance when evaluating candidate
mapping. In addition, Cryptographic Configurations can apply to keys, where keys are encrypted and then
distributed.

By default, the data is sent with all cryptographic operations applied, but in some cases, such as with the
use of Hardware Security Modules as we describe next, it is necessary to send the data in the Cryptographic
Configuration in its unsecured form and without a MAC. When a channel sends such data, the name of
the Cryptographic Configuration is written in red instead of black. Distinguishing between the to possible
forms of the data in a Cryptographic Configuration is important for when we wish to track the data in
a Cryptographic Configuration across multiple tasks. There exist more complex situations than one task
encrypting data and then sending it to another task to be decrypted. For example, let us imagine a case
where Task1 sends unsecured data to Task2, who then encrypts it, and then sends the encrypted data to
Task3, who then decrypts it, and sends the decrypted data to Task4. If we wish to check the Authenticity
of the data, to ensure that the same data sent by Task1 is that received by Task4, then we need a method to
tag the data across this path to link them.

Each key must then be mapped to an accessible memory, and is considered inaccessible to the attacker

88

Chapter 5. Security-Aware HW/SW Partitioning

only if the path to memory is secure. Otherwise, any data encrypted with the key is recoverable by the
attacker. Mapping keys helps determine if the architecture allows sufficient secure paths to memory for
storage of keys.

In our case study, to prevent an attacker from forging and injecting perception data, we wish to ensure
the authenticity of this data. One method to ensure this security property would be to exchange a nonce
between the Navigation and Perception tasks, calculate a message authentication code (MAC) that is con-
catenated onto the message, and have the Navigation task verify that the nonce and MAC both match the
expected values. We will describe how these security operations ensure authenticity in greater detail in the
following chapter in Section 6.8.

5.3.4.2 Hardware Security Modules

Security protocols can add undesired overhead. As previously mentioned in the list of possible counter-
measures, Hardware Security Modules (HSM) are a specially designed hardware element for performing
cryptographic operations more efficiently than regular processors. We model them as hardware accelerator
that performs encryption and decryption in fewer cycles.

For example, we can add a HSM to the Perception task to perform the security operations previously
described on Perception data. Figure 5-10 shows a HSM added onto the architecture diagram, involving a
Hardware Accelerator and secure memory.

Figure 5-11 shows the Activity Diagrams for the Perception task and HSM task. The Navigation and
Perception tasks previously exchanged a nonce. When the Perception task needs to send Perception data,
it sends a request to start to the HSM, and then sends the nonce, and then the data. The HSM then receives
the data, concatenates the nonce onto it, calculates the MAC, concatenates it onto the original Perception
data, and then sends the combined message back to the Perception task. The Perception task then sends the
Perception data + MAC to the Navigation task. As previously described, the Cryptographic Configuration
name is written in red on the write channel operator sending the unsecured data to the HSM.

It is necessary to manually mark if cryptographic operations have been performed on the data or not, for in-
stances where we need to track data which has been sent between tasks before the execution of encryption,
hash, etc for purposes of verification. In this case, we need to know that the data hsmSec_perceptionData
sent by the Perception task was concatenated with a MAC by the HSM, before being sent back to the Per-
ception task and then sent to the Navigation task. We describe the importance of distinguishing between
unsecured vs secured data for security proofs in the following chapter.

<<CPU>>
NavigationCPU

HSMFV::Navigation

<<CPU>>
PerceptionCPU

HSMFV::Perception

<<BUS-CAN>>
CANVedecom

<<MEMORY>>
HSMMemory_CPU0

<<HWA>>
HSM

HSMFV::HSM

<<BUS-RR>>
HSMBus_PereceptionCPU

hsmSec_perceptionData
key

HSM

Figure 5-10: HSM in Architecture Diagram

89

Chapter 5. Security-Aware HW/SW Partitioning

[] []

chl

data_perceptionData(1)

sec:hsmSec_perceptionData

chl

retData_perceptionData(1)

sec:hsmSec_perceptionData

sec:hsmSec_perceptionData

chl

perceptionData(1)

sec:hsmSec_perceptionData

req

startHSM_CPU0()

chl

data_perceptionData(1)

sec:hsmSec_perceptionData
chl

retData_perceptionData(1)

sec:hsmSec_perceptionData

Perception HSM

chl

nonce_perceptionData(1)

chl

nonce_perceptionData(1)
...

...

...

Figure 5-11: Perception and HSM Activity Diagram

5.3.4.3 Firewall

In our attacker scenario, securing communications alone is insufficient to prevent the denial of service
attack blocking the reception of a legitimate vital message. A system should be able to detect and block
abnormal communications, and possibly detect that a component has been compromised and controlled by
an attacker.

Firewalls can be used to filter communications. They can be modeled as a task which either forwards or
drops communications based on the current firewall rules. Rules can be dynamically modified via signals,
to represent how the Firewall may need to block a communication which have been detected as abnormal.
If the Firewall receives a communication that should be blocked, it does not forward the communication
to the destined receiver.

For example, a Firewall can be added to monitor communications between the Exterior Interface, Percep-
tion, Navigation, and MABX tasks as shown in Figure 5-12, as these are the most critical communications.
Furthermore, while the Exterior Interface offers some separation from the V2X Gateway open to the world,
additional protections may be desired.

When the firewall is added, all the communications which pass through the firewall are re-routed in the
Component Diagram as shown in Figure 5-13. Communications are split into a “firewallIn_channel”
and “firewallOut_channel” for each channel, where the original sending task sends data along the “fire-
wallIn_channel” to the firewall, and the firewall forwards communications along the “firewallOut_channel”
to the original receiver. For example, perception data is usually sent between the Perception and Naviga-
tion tasks. When the firewall is added so that the communication traverses it, the perception data channel
is replaced by the “firewallIn_percData” and “firewallOut_percData” channels.

The Firewall activity diagram is shown in Figure 5-14. Firewall rules can be dynamically modified by
any task through events, though simplified in this case to only the Navigation task. The updateRule event
indicates which channel is to be modified, and if it now allowed or not.

90

Chapter 5. Security-Aware HW/SW Partitioning

<<CPURR>>
NavigationCPU

FV::Supervisor
FV::Navigation

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<BUS-CAN>>

EthernetIHM

<<CPURR>>
CPUGPS

FV::GPS

<<BUS>>
EthernetV2IGPS

<<BUS-CAN>>

CANV

<<BUS-CAN>>

CANVedecom1

<<CPURR>>
PerceptionCPU

FV::Supervisor
FV::Perception

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>

NavigationBus

<<FIREWALL>>
Firewall0

<<BUS-CAN>>

CANVedecom2<<CPURR>>
CameraCPU

FV::Camera

<<BUS>>
EthernetCamera

<<CPURR>>
LidarCPU

FV::Lidar

<<BUS-CAN>>
CANLidar

<<CPURR>>
RadarCPU

FV::Radar

<<BUS-CAN>>
CANRadar

<<CPURR>>
IMUCPU

FV::IMU

<<BUS-CAN>>
CANIMU

<<CPURR>>

InterfaceCPU

FV::ExteriorInterface
FV::ExteriorInterface

<<BUS>>
WiFI

<<CPURR>>
V2XCPU

FV::V2X

<<CPURR>>
UICPU

FV::UI

<<CPURR>>
MABX

FV::MABX

<<CPURR>>
vehicle

<<BUS-CAN>>
CANintersystem

FV::ECU

Figure 5-12: Firewall added to Architecture Diagram

When communications traverse the firewall, the firewall receives the “firewallIn” channel, and checks if it
is currently allowed or not. If the channel is allowed, the firewall sends the corresponding “firewallOut”
channel, and if the channel is to be blocked, it does nothing. A delay is added to model the latency of the
firewall to process the data and apply rules.

91

Chapter 5. Security-Aware HW/SW Partitioning

Perception

Navigation
+ percDataIndex = 1 : Natural;
+ V2IdataIndex = 2 : Natural;
+ V2VdataIndex = 3 : Natural;
+ MABXcommandIndex = 4 : Natural;
+ destDataIndex = 5 : Natural;

MABX

ExteriorInterface

Firewall0

+ update : Boolean;
+ percDataAllowed = true : Boolean;
+ V2IdataAllowed = true : Boolean;
+ V2VdataAllowed = true : Boolean;

+ MABXcommandAllowed = true : Boolean;
+ destDataAllowed = true : Boolean;

+ index : Natural;
+ rule : Boolean;

+ process : Natural;
+ percDataIndex = 1 : Natural;

percData_firewallIn

percData_firewallOut

V2Idata_firewallIn

V2Idata_firewallOut

MABXcommand_firewallIn

MABXcommand_firewallOut

destData_firewallOut

V2Vdata_firewallIn

V2Vdata_firewallOut

updateRules

Figure 5-13: Component Diagram with Firewall

92

C
h
a
p
ter

5
.

S
ecu

rity-A
w

a
re

H
W

/S
W

P
a
rtitio

n
in

g

Loop for ever

[index==percDataIndex]

[index==MABXCommandIndex] chl

V2Idata_firewallIn(1)

process

[V2IdataAllowed] [else]

chl

V2Idata_firewallOut(1)

[index==0] [else]

evt

updateRules(channelIndex, rule)

[channelIndex==percDataIndex] []

percDataAllowed=rule

[channelIndex==V2IDataIndex]

V2IDataAllowed=rule

[channelIndex==V2VDataIndex]

V2VDataAllowed=rule

[channelIndex==destDataIndex]

destDataAllowed=rule

[channelIndex==MABXCommandIndex]

MABXCommandAllowed=rule

chl

V2Vdata_firewallIn(1)

process

[V2VdataAllowed] [else]

chl

V2Vdata_firewallOut(1)

process

[destDataAllowed] [else]

process

[MABXcommandAllowed] [else]

chl

MABXcommand_firewallOut(1)

chl

MABXcommand_firewallIn(1)process

[percDataAllowed] [else]

percData_firewallIn(1)

chl

percData_firewallOut(1)

chl

destData_firewallIn(1)

chl

destData_firewallOut(1)

getReqArg (index)

[index==destDataIndex]

[index==V2IDataIndex]

[index==V2VDataIndex]

F
igure

5-14:
F

irew
allA

ctivity
D

iagram
93

Chapter 5. Security-Aware HW/SW Partitioning

5.4 Conclusion

In conclusion, issues related to security are present in the HW/SW Partitioning Phase. Architectural com-
ponents can be vulnerable to an attacker, therefore allowing their communications to be tampered with or
spied on, and these vulnerabilities should be reflected in the architecture models. Also, the security coun-
termeasures to be added affect the architecture and mapping. The execution time of security protocols
should be taken into account during mapping, and the cryptographic keys used in the protocols should be
provided with a secure storage location. Other security countermeasures such as Firewalls and Hardware
Security Modules should be added directly to an architecture.

In a methodology without security modeling capabilities in the HW/SW Partitioning phase, all security
considerations must be left to the final Software Design phase.

chl

comm(1)

encrypt

<<BUS-RR>>
Bus0

CPU0
<<CPURR>>

Comp0

CPU1
<<CPURR>>

Comp1

chl

comm(1)

decrypt
chl

comm(1)

<<BUS-RR>>
Bus0

CPU0
<<CPURR>>

Comp0

CPU1
<<CPURR>>

Comp1

chl

comm(1)sec:comm

sec:comm

sec:comm

sec:comm

<<BUS-RR>>
PrivBus0

<<BUS-RR>>
PrivBus1

Memory0
<<Memory>>

Memory1
<<Memory>>

comm
key

comm
key

<<block>>
Comp0

<<block>>
Comp0

comm(commData)

decrypt

commData=
sdecrypt(commData_enc, key_comm)

comm(commData_enc)

encrypt

commData_enc=
sencrypt(commData,key_comm)

...

...

...

...

...

...
...

...

...

... ...

...

Memory0
<<Memory>>

Memory2
<<Memory>>

Without Security Modeling Elements With Security Modeling Elements

Figure 5-15: Mapping Model with and without dedicated Security Operators

Figure 5-15 shows an extract of an architecture without security modeling mechanisms, and the resulting
software design model. Without security modeling during HW/SW Partitioning (diagram on left), all the
security decisions are first modeled in the Software Design Phase. These considerations include deciding if
each channel between tasks is accessible or not to an attacker, security protocols, etc. Instead, modeling the
security of hardware communications and security protocols (diagram on right) results in a more gradual
addition of security at each level of abstraction. Furthermore, we can determine if a system contains

94

Chapter 5. Security-Aware HW/SW Partitioning

sufficient secure memories by considering the secure storage of keys.

Furthermore, the security modeling in this phase helps us enhance our attack trees, to better reflect which
attack steps are possible on the more detailed system. Figure 5-16 shows the modified attack tree based on
developing the attacker scenario and possible countermeasures. Firewalls may prevent the attacker from
sending messages, and security protocols may prevent the attacker from tampering with communications.

In the next chapter, we describe how we can formally verify the security properties (Confidentiality and
Authenticity) of different communications. The formal verification process first requires a model transfor-
mation from mapping models into an applied pi-calculus specification.

<<block>>
Vehicle

<<root attack>>
attackAutomaticBraking

<<attack>>
preventDataTransmission

<<OR>>

<<attack>>
preventBrakingFunction

<<attack>>
jamInCarCommunications

<<AND>>

<<attack>>
forgeInternalMessages

<<attack>>
modifyV2XCode

<<attack>>
modifyExInterfaceCode

<<attack>>
injectECUcommands

<<countermeasure>>
authenticateMessages

<<countermeasure>>
addFirewall

Figure 5-16: Modified Attack Tree with Countermeasures Added

95

Chapter 5. Security-Aware HW/SW Partitioning

96

Chapter 6

Security Verification

“The man of science has learned to believe in justification, not by faith, but by verification.” –Thomas
Huxley

6.1 Introduction

The ultimate security properties of a system should be determined on the final system, as many coding
mistakes occur at a level of detail not present in modeling [332]. For example, input validation errors such
as buffer overflows, programming errors such as off-by-one array iterations and format string vulnerabil-
ities [140, 319] are implementation errors too detailed to be present in our models. Other errors, such as
multi-threading errors and critical section errors, are not due to design errors, and can be difficult to de-
tect even with testing and formal analysis tools. For example, a NASA autonomous spacecraft controller
was tested and checked before operation, but one of the programs became deadlocked during the actual
operation due to a missing critical section causing a race condition [139].

If code is developed without the use of models, designing models to represent the code to be used with
verification may be time-consuming and inaccurate [230]. The abstract model may fail to reflect all of
the details within the code, or model the system incorrectly, which may result in misleading verification
results. Therefore, certain works formally check source code directly, though they are applied to software-
only systems. For example, [282] works on checking the functionality of C code for embedded systems
specifically, [249] developed Java Path Finder for checking the functionality and finding errors in java
code, and [315] verified that code satisfied CERT secure coding practices. Checking source code however,
cannot take into account security details related to architecture, such as Hardware Security Modules.

On the other hand, early detection of design flaws helps to prevent costly rework [327]. As described in the
previous chapter, if flaws cannot be fixed by a software patch alone, then hardware components may need
to be replaced in the system, which requires the purchase of additional components. If the product has
already been sold commercially, then a mass recall may be necessary. These are costly situations which
should be ideally avoided. In embedded systems, formal verification of code alone may not be sufficient as
it fails to take into account the hardware components [91,193]. Furthermore, models can be more adapted

97

Chapter 6. Security Verification

to formal methods, as they are less complex, and thus their formal specifications are sufficiently small
enough to avoid state explosion problems [332].

In the previous chapter, we described how to abstractly model the mapping of a system to express how it
can be targeted by an attacker and the countermeasures that it may deploy to resist those attacks. Next,
a security verification process should be used to confirm that our added countermeasures are sufficient.
The security properties that we need to verify in embedded systems, as described in Section 2.5, check
if important data will be kept secret from an attacker (Confidentiality), and if important data cannot be
forged by an attacker (Authenticity). Furthermore, to verify that the protocols are able to execute correctly
and complete (decrypt the received message), we should check the Reachability of states.

Using automated formal verification tools instead of checking a design by hand should be more reliable,
as computers do not make human errors, and also more convenient as the results are returned to the user
faster than if the proof was performed by hand. Formal verification tools, however, tend to be written
in mathematical languages, and not in a modeling language. One important aspect of model checking is
therefore to ensure that the model transformation into a formal specification is indeed correct, for verifying
a formal specification that does not match the modeled system does not help us check the correctness of
the model, and may actually cause us to miss actual flaws.

Formal verification methods each have their own advantages and disadvantages. Some are semi-automated,
which use manual interaction to help, while others are entirely automated. One of them, ProVerif, is
a automatic prover operating on a specification in applied pi-calculus and Horn Clauses, based on the
Dolev-Yao attacker model [34], which, as described in the previous chapter, is the attacker model we use
for our models. ProVerif is able to verify the properties important to us: Confidentiality, Authenticity, and
Reachability. Its advantages are that it is suited for embedded systems as ProVerif assumes that the attacker
spies on communications sent along buses, instead of within components, which is the attacker model we
currently use [208]. In addition, ProVerif allows the definition of custom elements such as clauses and
functions, requires no manual work by the user in terms of writing proofs or calculating properties, and
does not limit the number of states explored. It also has a proven record, as it has been used successfully
for many other security-critical projects [23, 103, 224]. For all of these reasons, the developers of TTool
selected ProVerif as the security verification tool.

With the verification results returned by ProVerif, the designer can then add the security mechanisms
described in the previous chapter. In larger systems, however, it may also be tedious to manually add all of
these operators. It would be therefore helpful for the toolkit to automatically generate a new model with
all the security flaws fixed, especially if the designer is not a security expert.

This chapter describes multiple aspects related to security verification. First, we describe the formal ver-
ification language we use, ProVerif. Next, we formalize the model and automatic model transformation
process. We then use a proof by induction to verify that our model transformation process preserves the
security property of Confidentiality.

The next part of the chapter then discusses the ProVerif verification results. We describe how the results
from the prover are interpreted automatically, and backtraced to the model for user convenience. Next, we
describe how the verification results can be used to automatically generate a secured modeling fulfilling
all of the security properties required.

Manually adding all of the security operators can be tedious for a designer. In the interest of convenience,
it is possible to automatically modify a HW/SW Partitioning model so that it fulfills all of the required

98

Chapter 6. Security Verification

security properties. At a high level, we know that if a confidential message is exchanged, it must have
been encrypted before being sent, and then decrypted after reception in order to understand the contents
of the message. Adding these abstract notions of security protocols automatically thus generates a model
of the system secure against the assumed attacks. This auto-generated secure model is used as a base
model that can then be further refined into a final HW/SW Partitioning mapping model describing both
the high-level functional behavior and architecture, including both hardware and software-based security
countermeasures.

6.2 ProVerif

ProVerif assumes a Dolev-Yao attacker, which is a threat model in which the attacker can read or write on
any public channel, create new messages or apply known cryptographic primitives. In other words, once
the attacker has intercepted a message, he behaves as an adversary with a knowledge of basic cryptography,
who can perform calculations and message injections towards deciphering the message. For example, the
attacker can recover the decrypted message if he/she can also intercept a key. The attacker can also send
messages along public channels within the system, such as to impersonate a legitimate actor to start a key
exchange in his/her efforts to recover the key.

The ProVerif prover operates on a ProVerif text specification. A ProVerif specification consists of the
description of a set of processes communicating on public channels as a list of actions of the different
processes, queries indicating the list of properties to verify, and declarations defining functions, channels,
constants, etc. Given a specification, the prover performs calculations to examine all possible execution
paths and possible attacker attempts to access sensitive data, inject messages, etc, and then returns the
results indicating if security properties queried (Confidentiality, Authenticity, Reachability) are satisfied
or violated.

The definitions in this section are used to help explain how HW/SW Partitioning models are translated into
a ProVerif specification, and how insecure communications in the models can be detected in the prover.
An excerpt of the appearance of the main components are shown here:

6.2.1 Functions

Before a function can be used in the behavior specification of a system, it first must be declared. The
declaration describes what arguments the function takes in as input and output. Also, the declaration de-
scribes relationships between functions, or if there are any effects from combining functions, for example
between a corresponding encryption and decryption function.

Functions are defined for the common cryptographic primitives such as symmetric encryption, symmetric
decryption, etc., and modeled as constructor/destructor functions.

For example, here, the symmetric encryption sencrypt and symmetric decryption sdecrypt functions are
defined. For example, sencrypt takes in as input two bitstrings, and outputs a bitstring. Then, in addition,
to indicate to the prover the relation between symmetric encryption and symmetric decryption, the line
starting reduc forall x explains that encrypting x with sencrypt and then decrypting the encrypted message
with sdecrypt results in recovering the original data x.

99

Chapter 6. Security Verification

(* Symmetric key cryptography *)

fun sencrypt (bitstring, bitstring): bitstring.

reduc forall x: bitstring, k: bitstring;

sdecrypt (sencrypt (x, k), k) = x.

6.2.2 Declarations

Declarations specify each channel and variable which will be used in the system. Like functions, they
must also be declared before use. The following specifies one channel ch and one variable X, which is
a bitstring and private (unknown by the attacker) at the start of the system execution. The channel ch is
a public channel on which communications can be sent. Since ch is a public channel, the attacker has
complete (read/write) control on this channel.

(* Channel *)

free ch: channel.

(* Variables *)

free X__0: bitstring [private].

Another channel, chControl is a private channel (inaccessible to the attacker), which subprocesses use to
signal the start of another subprocess. We will show examples using chControl later in this section.

(* Control Channel *)

free chControl: channel.

6.2.3 Queries

Queries indicate to the prover which security properties, confidentiality, authenticity, and reachability,
should be verified. Without queries, the specification would not return any results, as it would not know
which attributes, message exchanges, or events needed to be checked.

‘Queries Secret’ check that an attribute is confidential, meaning that an attacker cannot determine the value
of that attribute. ‘Queries Event’ check the reachability of states. Annotations are placed in a subprocess
which correspond to the start of a state as we show later. If the prover finds a trace that ‘reaches’ that
annotation, it determines that the corresponding state is reachable. ‘Authenticity’ queries check the strong
and weak authenticity of data between two states, to confirm that if the process reaches the latter event,
then the data in that event must be the same as the data in the earlier event.

The example below shows 1) a query for the Confidentiality of data X, 2) a query to check that the protocol
will enter the state ‘state’ of task T, and 3) a query for the authenticity of data X: that if data X was received
by Task T2 at the state ‘msgVerified’, then it was the same X sent by Task T1 at the state ‘sendingMsg’.

(* Queries Secret *)

query attacker (new X)

100

Chapter 6. Security Verification

(* Queries Event *)

query event(enteringState___T__state()).

event enteringState___T__state().

(* Authenticity *)

event authenticity___T1___X___sendingMsg(bitstring).

event authenticity___T2___X___msgVerified(bitstring).

query dummyM: bitstring;

inj-event(authenticity___T2___X___msgVerified (dummyM)) ==>

inj-event(authenticity___T1___X___sendingMsg (dummyM)).

6.2.4 Main Process

The main process is the process describing the actions of the complete system. It is the only process
started as the beginning of system execution, and starts the other subprocesses. For example, if the system
contains two blocks T1 and T2, the main process would be written as shown here, where the main process
declares a new session ID, and then starts each task in parallel.

process

! (

new sessionID[]: bitstring;

((

T1___0 (sessionID)

) | (

T2___0 (sessionID)

) | (

(

((

T1___start (sessionID)

) | (

T2___start (sessionID)

)))

)))

6.2.5 Sub-processes

Sub-processes describe a sub-behavior of a single task in the system. The behavior of a single task is often
split into multiple sub-processes, such as T1__start, T1__0, T__1, and etc. In this example, the starting
behavior of task T1 is shown in T1__start. After the main process signals that T1__start can begin execu-
tion, the task will perform some operations, for example entering the state ‘state1’ (used for reachability
queries as described previously), and then indicate that subprocess T1__0 should start. Signaling the start
of a sub-process (a sub-process can also start itself) involves sending data such as attributes and the session
id along the channel chControl as shown here.

let T1___start (sessionID: bitstring) =

..

101

Chapter 6. Security Verification

event enteringState___T1__state1();

out (chControl, chControlEnc ((sessionID, call___T1___0))).

let T1___0 (sessionID: bitstring) =

...

6.2.6 Formalizations

These different aspects of a ProVerif specification described above are next described in greater detail and
formalized mathematically.

Based on the work in [208], we define the following abbreviations to be used in our formalization. These
will also be used to describe the translation and proof.

• Processes: P,Q are sub-processes or the main process

• Message: M can be sent along channels

• Variables: X,Y, etc on which functions can operate, or which can be the value returned by a function

• Public Channel: ch, the public channel for communications

• Control Channel: chControl, which is a private channel used to control which process is executed
next

• Function: func, which operate on variables and received messages

Each process is composed of possible actions:

• Constructor functions of the form funcX,Y

• Destructor functions of the form X=funcY

• Write channel operations of the form out (ch, M) or out (privChannel, M)

• Read channel operations of the form in (ch, M) or in (privChannel, M)

• Process controls which trigger the start of a process, of the form out (chControl, chContro-

lEnc((sessionID, P, X, Y))

• Conditionals which split a process into different actions, in the form if condition then P else Q.

6.2.7 DIPLODOCUS to ProVerif Translation Process

As described in Chapter 4, our methodology and toolkit supports 2 design phases, each within its own de-
sign environment. The set of HW/SW Partitioning (or Mapping) models are contained in the DIPLODOCUS
environment, and the set of Software Design models are contained within the AVATAR environment.

102

Chapter 6. Security Verification

DIPLODOCUS and AVATAR models differ in many ways, but as we explain in this chapter, DIPLODOCUS
models can be translated to AVATAR models without altering the security properties in the model.

The next sections describe how HW/SW Partitioning (DIPLODOCUS) models are translated into ProVerif
specifications described above, in a multi-step process shown in Figure 6-1. First, a complete DIPLODOCUS
design is translated to an AVATAR model [201], and then, the AVATAR model is in turn translated into a
ProVerif specification. The AVATAR-to-ProVerif transformation is described in detail in [209].

To summarize the AVATAR-to-ProVerif transformation, first, each state machine is split into multiple basic
blocks that are each translated to a ProVerif process. Avatar concepts are then translated into their ProVerif
counterpart. Some of the concepts have no counterparts in ProVerif so the translation must use some
workarounds (for loops for instance), or discard AVATAR concepts that ProVerif can not handle (such as
time). Processes are linked together by using control tokens that signal the start of a sub-process.

Mapping

Model

Basic

Blocks
(* Generated ProVerif specification *)
(* Queries Secret *)
query attacker(new Alice__secretData).
(* Symmetric key cryptography *)
fun sencrypt (bitstring, bitstring): bitstring.
reduc forall x: bitstring, k: bitstring; sdecrypt
 (sencrypt (x, k), k) = x.
...
let Alice__0 (sessionID: bitstring) =

in (chControl, chControlData: bitstring);
let (=sessionID, =call__Alice__0,
Alice__secretData__1:

...
process

! (new sessionID: bitstring;((
System__0 (sessionID)
) | (
 Bob__0 (sessionID)) | (Alice__0 (sessionID
)) | ((
new Alice__sk__data: bitstring;

...

Intermediate

Specification

Backtracing to diagrams

 [206] [199]

Figure 6-1: DIPLODOCUS to ProVerif Translation process

To describe the DIPLODOCUS->AVATAR translation in greater detail, it is first necessary to formalize the
different elements of each. This same translation is used to automatically generate preliminary Software
Design models from Mapping models.

6.3 Formalization for Translation

We formalize our models in three parts: 1) DIPLODOCUS Mapping models 2) AVATAR Software Design
models 3) DIPLODOCUS to AVATAR translation. By formalizing our models and translation process, we
can subsequently prove the correctness of our translation, and also thus explain how a ProVerif specifica-
tion can be obtained from a DIPLODOCUS Mapping Model.

103

Chapter 6. Security Verification

6.3.1 DIPLODOCUS Formalization

As previously described in Chapter 4, HW/SW Partitioning models include Functional/Application mod-
els describing the high-level functionality of the system, Architecture models showing the architecture of
the system, and Mapping models, usually enhancements of the architecture models, mapping the tasks
and communications in the Functional models onto the Architecture models. A Functional model contains
tasks (or functions), and each task has a behavior, which can include basic operations such as computa-
tion and communication, and more complex behaviors involving loops, choices, etc. These concepts are
described formally below.

A Partitioning P is defined as a set of models P = (FM,AM,MM), with FM a Functional Model, AM
an Architecture Model, and MM a Mapping Model.

6.3.1.1 Functional Level

A Functional Model is defined as FM = (T,Comm) where T is a set of Tasks, and Comm is a set of
Communications between tasks. A Task tp is defined as tp = (Attr,B) with Attr a set of Attributes, and
B a behavior.

The Behavior B = (Ctrl, CommOp,CompOp) consists of:

• Control Operators Ctrl – such as loops, choices, etc.

• Communication Operators CommOp – channel read/write, events send/receive, request send/re-
ceive

• Complexity operations CompOp, who model the complexity of algorithms through the description
of a min/max interval of integer/float/custom operations.

Figure 6-2, 6-3, 6-4, and 6-5 show all of the behavior elements along with their formalization.

Among the CommOp, we distinguish between channel read/write operators, which we call Data Com-
munication Operators, and send/receive events or requests, which we designate ‘Control Communication
Operators’. Data Communication Operators send an amount of data, where Control Communication Oper-
ators are used for synchronization between tasks and may be used to send/receive attribute values to be used
in control operators. For example, an event or request may send the number of times a task should execute a
loop. Data Communication Operators are defined by a function commOp(name, IN/OUT, size), where
Control Communication Operators are defined by a function commOp(name, IN/OUT, [attr1, attr2, ...]),
as shown in Figure 6-2.

Control operators Ctrl operate on a sub-behavior subB, defined as a subset of the operators of a behavior
B. Control operators may be simplified to a loop function or choice function.

A choice function choice([subB1, subB2...], [cond1, cond2, ...]) takes a set of subB and a set of condi-
tions cond, where each sub-behavior subB is a possible option only if its corresponding condition cond
evaluates to true. If more than one guard evaluates to true, then during execution, the next operator to
be executed will be chosen non-deterministically among all of the corresponding sub-behaviors. Choice
functions can be non-deterministic or deterministic, depending if there is only one possible outgoing sub-
behavior or one guard condition evaluating to true. For example, select events, choices, and sequences are

104

Chapter 6. Security Verification

chl

name(n)

evt

name(a)

req

name(a)

SendEvent/Send Request

WriteChannel

WaitEvent/ReadRequest

chl

name(n)

evt

name(a) getReqArg (a)

commOp(name,OUT,n)

ReadChannel

commOp(name,IN,n)

Data Communication Operators

Control Communication Operators

commOp(name,IN,[a])

commOp(name,OUT,[a])

Communication Operators

Figure 6-2: Functional Model Communication Behavior Formalization

105

Chapter 6. Security Verification

[guard1] [guard2]

[]

evt

Choice

SelectEvent

Sequence

Random Sequence

>>

<>

subB1 subB2

evt

event1(a)

evt

event2(a)

subB1 subB2 subB3

subB1 subB2 subB3

Control Operators

Choice Control Operators

choice([subB1, subB2],[guard1, guard2])

choice([commOp(event1, IN, [a]),commOp(event2,IN, [a])],

[event1 executed?, event2 executed?])

choice([subB1],[true])

next(subB1) = choice([subB2],[true])

next(subB2)=choice([subB3],[true])

choice([subB1,subB2,subB3],[true,true,true])

next(subB1) = choice([subB21,subB31],[true,true])

next(subB2) = choice([subB12,subB32],[true,true])

next(subB3) = choice([subB13,subB23],[true,true])

next(subB12) = subB321

next(subB32) = subB123

next(subB21) = subB312

next(subB31) = subB213

next(subB13) = subB231

next(subB23) = subB132

Figure 6-3: Functional Model Choice Behavior Formalization

106

Chapter 6. Security Verification

Loop for ever

For Loop

Static For Loop

Infinite Loop

Loop n times

for(init;loop condition;loop func)

subB1subB2

subB1
subB2

subB

Loop Control Operators

loop(subB1,init,loop func,!condition)

next(loop)=subB2

loop(subB1,i=0,i++,i>=n)

next(loop)=subB2

loop(subB1,null,null,false)

Figure 6-4: Functional Model Loop Behavior Formalization

107

Chapter 6. Security Verification

considered choice functions, as shown in Figure 6-3. For example, a non-random sequence is translated
into a series of operators, with first a choice of only taking the first sub-behavior, then next a choice of
only taking the second sub-behavior etc. A random sequence is a choice of taking any of the possible
sub-behaviors, and then a choice of taking any of the remaining sub-behaviors.

A loop(subB, init_func, loop_func, exit_cond) function takes as input a sub-behavior that it will exe-
cute a number of times. At the start of the loop, it executes the initialization function init_func, and on
each loop iteration, it performs a function (increment, decrement, etc) loop_func after each execution of
subB. After each execution of the loop, the exit condition exit_cond is checked. If exit_cond evaluates
to false, then the loop repeats: subB and loop_func is executed again, and then the exit_cond is checked
again. The formalization of the different loops (regular for loop, static for loop, infinite loop) are shown in
Figure 6-4.

A regular for loop follows the format with an init_func, loop_func, and exit_cond where these functions
and conditions may be any function or condition. A static for loop must iterate a fixed number of times n,
where n is a positive integer and finite. An infinite loop may have any init_func and loop_func, but the
exit_cond must always evaluate to false.

Complexity Operators CompOp occupy either a given computational complexity (as a function of cy-
cles), or a fixed time delay (in seconds) and may include a function f operating on the attributes of the task,
expressed as compOp(n,Complexity, f(attr1, attr2, ...)) and compOp(n,Delay, f(attr1, attr2, ...))
respectively. Some model operators perform only a function and occupy neither a computational complex-
ity nor a delay, such as random or action states. All of the different operators thus classified are shown in
Figure 6-5. Overheads and sizes of messages for the security operators may be taken into account in the
calculation of the complexity, and also in the time for these messages to be sent (if the message size is
changed after the operation). The exact complexity of security operators and communications is discussed
in greater detail in Section 7.4.

6.3.1.2 Mapping Level

Mapping involves allocating tasks onto the architectural model. A task mapped to a processor will be
implemented in software, while a task mapped to a hardware accelerator will be implemented in hardware.

The architectural model is a graph of execution nodes (CPUs, Hardware Accelerators), communication
nodes (Buses and Bridges), and storage nodes (Memories). Hardware components are highly abstracted:
a CPU is defined as a set of parameters such as an average cache-miss ratio, go idle time, context switch
penalty, etc.

An Architecture Model

AM = (CommNode, StoreNode,ExecNode, link)

is built upon abstract Hardware Components: Communication Nodes CommNode, Storage Nodes
StoreNode, Execution Nodes ExecNode, and architectural links between Communication Nodes and
any other node link. ExecNode defines a conversion from Complexities to Cycles, and an execution
frequency converting Cycles to seconds, while the times in delay-type Complexity operators are not con-
verted since they were already expressed in physical time. Similarly, CommNode and StoreNode also
define a conversion from functional operations (write data, store data, etc) to physical time.

108

Chapter 6. Security Verification

n

n ms

[n, m] ms

n

[n, m] [n, m]

function(attr1,attr2,...)

ActionState

Random

i = RANDOM0(n, m)

ExecC/ExecI

ExecC Interval/ExecI Interval

Delay

Delay Interval

Complexity Operators

compOp(0,Complexity,i=random(n,m))

compOp(0,Complexity,function([attr1,attr2,...]))

compOp(n,Complexity,NOP)

compOp(random(n,m),Complexity,NOP)

compOp(n,Delay,NOP)

compOp(random(n,m),Delay,NOP)

sec:nonce_name

Forge Nonce

compOp(n,Complexity,int nonce_name)
complexity:n
size:s

Symmetric Encryption

sec:name
complexity:n
overhead:s

Asymmetric Encryption

sec:name
complexity:n
overhead:s

sec:name

Message Authentication Code

complexity:n
overhead:s

compOp(n,Complexity,name_encrypted=sencrypt(name,key))

compOp(n,Complexity,name_encrypted=aencrypt(name,key))

compOp(n,Complexity,name_mac=MAC(name,key);

name_encrypted=concat2(name, name_mac)

Figure 6-5: Functional Model Complexity Behavior Formalization

109

Chapter 6. Security Verification

6.3.2 AVATAR Formalization

The Software Model S = (TS , CommS) can also be defined as a set of Tasks TS and Communications
CommS between tasks. However, the Software Design tasks, behavior, and communications will differ
from their corresponding HW/SW Partitioning elements for the same model as we describe next. Overall,
HW/SW Partitioning (DIPLODOCUS) models are more abstract, and contain fewer functional details than
Software Design (AVATAR) models. On the other hand, HW/SW Partitioning models contain architectural
information that is not shown in the AVATAR models.

A Software Task ts, similar to Partitioning tasks, contains attributes and a behavior diagram, where ts =
(attr′, BD_S). Regarding the behavior of tasks, functional models in the HW/SW Partitioning phase
express algorithms as an abstract complexity operation and communications in terms of the size of the
exchanged data, where Software Design models describe the implementation of algorithms with a sub-
behavior description using attributes, and communications (based on signal exchanges) contain exchanged
values. Thus, the set of attributes of software tasks is likely to be enriched both with regards to the
partitioning model for algorithms details and communication details.

The communications in AVATAR may be one-to-one, many-to-one, one-to-many, or many-to-many be-
tween software tasks. As the set of Software Tasks TS may be different from the set of Partitioning tasks
T , the communications between tasks may also be different, so while CommS and Comm should be sim-
ilar, they are not necessarily identical. For example, if T1 and T2 exchange data in Partitioning models,
but T1 is mapped to a Hardware accelerator, then T1 will not be present in TS , and their communication
is also present in Comm but not CommS . It could also be that one task in T is split into multiple tasks in
TS , and the inter-task communications will be added to CommS .

Software Design functional models contain ‘states’ which do not exist in HW/SW Partitioning functional
models. The state machine diagrams representing the behavior in Software Design models may contain
States, designated state(name, function) which may be followed by any number of sub-behaviors. Ac-
tion states such as random operators may perform a function, such as assigning a random value to an
attribute, while simple states perform no operation.

Communication Operators in Software Design no longer distinguish between Control and Data Communi-
cations. All communication operators are expressed as commOp(name, IN/OUT, [attr1, attr2, etc]),
where they are defined by a name, a direction (in or out), and a list of attributes to be sent or received
(which may be empty).

For Control Operators, there is no longer an explicit Loop operator, though a transition may point to any
state, including itself, so that a loop forms in which state1 = next(next(...(state1)).

Choice operators exist as an explicit operator, but they can be formally simplified as a state followed by
multiple transitions. We express any such situation with multiple transitions leaving an operator to be
next(state) = (tran1, tran2, etc).

While transitions in DIPLODOCUS models only connect one operator to the next, in AVATAR, transi-
tions tran may contain a time function afterTF, guard guard, and function func operating on attributes,
expressed tran(afterTF, guard, func([attr1, attr2, ..]).

The relevant modeling operators of Software Design are shown in Figure 6-6.

It is necessary for us to distinguish between Transitions tran vs all other operators: communication-

110

Chapter 6. Security Verification

signal(a)

signal(a)

state0

func

ActionOnSignal

after(n,m)

[guard]

commOp(signal,OUT,[a])

commOp(signal,IN,[a])

state(state0,NOP)

transition(func,guard,random(n,m))

transition(NOP,true,0)

x=random(n,m) state(randomx,x=random(n,m))

Random

State

Empty Transition

Transition

AVATAR Operators

Figure 6-6: Avatar Behavior Formalization

s/states. Communications/states must be followed by a transition, and not another communication/state.
Transitions also must be followed by a communication/state, and never another transition. These rules can
be expressed as: tran = next(state), tran = next(comm), and state/comm = next(tran).

6.4 DIPLODOCUS to AVATAR Translation Formalization

This section discusses how a DIPLODOCUS Mapping model, including architectural elements, is trans-
lated into an equivalent AVATAR model. The architectural elements themselves are not present in Soft-
ware Design, but some of their properties should be reflected in the AVATAR model, as we discuss
in this section. Security Verification is performed only on DIPLODOCUS Mapping models instead of
DIPLODOCUS Functional models, for functional models do not model the ability of the attacker to ac-
cess communications. The mapping to architecture imbues the functional model with vulnerabilities.

There are two possible translations: one which translates DIPLODOCUS Mapping models into their exact
AVATAR equivalent, and another which preserves only the equivalence of security properties. It is the
latter simplified translation which we use as the first step in the translation to ProVerif, but we first briefly
describe the elements present in the full translation only before we describe the translation for security
verification.

111

Chapter 6. Security Verification

6.4.1 Full DIPLODOCUS to AVATAR translation

The goal of the full translation is to translate every feature in the DIPLODOCUS model exactly, to be used
as a starting AVATAR model for Software Design.

In the full translation to Software Design models, partitioning tasks mapped to processors are to be im-
plemented in software, and are therefore translated to tasks in Software Design. Tasks implemented in
hardware are removed, as their design in VHDL for example is supported by other tools. These tasks
might be later split or joined manually if desired by the designer, but this preliminary translation is in-
tended to create an equivalent software model.

DIPLODOCUS functional complexity operators may represent an algorithm, or a delay function. The
complexity operators, expressed as a function of execution cycles, are translated into either a time function
TF () or sub-behavior subB first when mapped upon a processor, which can then be used as the time
function in AVATAR. More formally, the transformation relation of functional behavior to software design
behavior can be expressed as:

B = (CtrlOp,CommOp,CompOp)→

BS = (CtrlOp′, CommOp′, TF , subB)

The translation from logical Complexities to physical Time Functions depends on the final hardware,
approximated as f(n) = n*processor frequency*cycles per computational complexity, assuming a 1-stage
pipeline. Complexities and time are ignored in the security proof, but we note this translation as it will be
used in the following chapter in Section 7.3, which discusses how complexities in HW/SW Partitioning
and physical time in Software Design should relate.

Communications in Mapping are typed ‘Non-Blocking Read + Non-Blocking Write’ (NBR-NBW), ‘Block-
ing Read + Non-Blocking Write’ (BR-NBW), or ‘Blocking Read + Blocking Write’ (BR-BW). Software
Design Communications, however, are typed ‘Synchronous’ or ‘Asynchronous’, where Asynchronous
communications can be blocking in writing or not. If an infinite FIFO is attached to the asynchronous
communication channel, then it never blocks writing, where if a finite FIFO is, then it can block writ-
ing. Furthermore, all communication operators in Software Design operate on a single sample, where
Read/Write Channel operators may operate on multiple samples. Therefore, we translate each Read/Write
Channel(n) into n Read/Write Channel(1) operators.

As none of these qualities (blocking vs non-blocking, synchronous vs asynchronous) are taken into account
in ProVerif, for a security translation, we do not take the DIPLODOCUS channel properties into account in
our translation for security. However, for the full translation to be used in Model-Checking or generation
of a preliminary Software Design model, the channel properties are relevant, so we translate the channel
properties to preserve its exact behavior.

6.4.1.1 Translation of Communications

BR-BW channels can be translated into a Asynchronous channel with the same finite sized FIFO used for
the communication. BR-NBW channels are similar, expect that they use an infinite FIFO so as to never
block writing.

112

Chapter 6. Security Verification

BA

BA

BA
comm

Non-Blocking Read + Non-Blocking Write

Blocking Read + Blocking Write

Blocking Read + Non-Blocking Write

comm

comm

<<block>>
A

<<block>>
Data source/sink

<<block>>
B

<<block>>
A

<<block>>
B

Asynchronous, Infinite FIFO

<<block>>
A

<<block>>
B

Asynchronous, Finite FIFO

start

read(0)write(0)

Translation

Translation

Translation

Figure 6-7: Translation of Functional Communications to Software Design Communications

NBR-NBW channels model a data generator in software design. As none of the existing AVATAR Com-
munication types correspond to this channel type, we translate it to contain an intermediate block between
the sending and receiving blocks, where the intermediate block is a data source/sink and can always send
and receive data. Figure 6-7 shows the translations of the different types of channels.

6.4.2 DIPLODOCUS to AVATAR translation for Security

For security translations, our focus is to check the security properties of critical communications which
should be confidential or authentic (such as perception data), and we can ignore the behavior irrelevant to
security. For one, we only take into account architecture as it relates to security. All the tasks, regardless
of whether they are mapped to be implemented in software or hardware, are translated into AVATAR
Software tasks. We need the generated AVATAR model to include the functionality of all hardware-
mapped tasks, which may include securing communications, to determine if the overall function of the

113

Chapter 6. Security Verification

<<block>>
T2

- chan_channeldata= 0 : int;

~ out chan(int chan_channeldata)

T1

chan

T2 <<block>>
T1

+i : Natural - i = 0 : int;

~ in chan(int chan_channeldata)

- chan_channeldata= 0 : int;

Translation

Figure 6-8: Translation of DIPLODOCUS Tasks and Associated Attributes and Communications to
AVATAR

system maintains the security properties. For example, even if the full translation would ignore Hardware
Security Modules, the translation for security needs to take into account whether they encrypt or decrypt
certain data. Therefore, we need to include the behavior of HSMs in the AVATAR model, so that the final
ProVerif specification will also take into account the cryptographic operations applied to the data.

The attributes attr in Partitioning task T_P are translated directly into attributes attr′ in the corresponding
Software Design task T_S. Then, additional attributes are added for each data channel, as Partitioning
models do not describe the actual attributes in the communication, while Software Design models describe
explicitly the exact data sent. For each channel c, an attribute c_channeldata is added to the list of
attributes for the sending and receiving tasks. Software communications may send multiple attributes
together in a single communication, so these attributes may be renamed and split into new attributes as the
design is refined.

In addition, new attributes cc and possibly cc_encrypted, are added for each Cryptographic Configuration.
Multiple Cryptographic Configurations can be sent along the same channel, so to keep them separate and
verify the security of each, we create a new attribute for each, perform the cryptographic operations on it,
and then send either the secured or unsecured form along the channel. The exact steps are described in
more detail in the translation of Cryptographic Configurations to AVATAR.

Figure 6-8 shows how tasks, and their communications and attributes, are translated from DIPLODOCUS
Mapping models to AVATAR Software Design models. Next, we describe how the security properties of
these communications are translated.

6.4.2.1 Security of Communications

The security of a communication between tasks in HW/SW Partitioning (DIPLODOCUS) depends on the
architecture. As memories are not present in Software Design, the data within the memories are instead
present within the attributes of each Software Design Task.

In Software Design, communications between two tasks can be either ‘Public’ or ‘Private’. The hardware
on which the communication path is not taken into account in Software Design: either the attacker can
access the communication or not, but we do not concern ourselves with the hardware-basis behind this
vulnerability. Hardware is modeled at the Software Design phase, so if a communication traversed a
specific bus accessible to the attacker, then that communication is simply modeled ‘Public’. On the other
hand, in the HW/SW Partitioning phase, architectural details are still relevant. These architecture details
must be simplified in order to convert DIPLODOCUS mapping models to AVATAR Software Design
models.

For translation to AVATAR, DIPLODOCUS Channels should be classified as ‘Public’ or ‘Private’ based on
the properties of the communication path –the set of buses, bridges, and memories, between the two tasks.

114

Chapter 6. Security Verification

If any of the communication nodes along the mapped path are accessible to the attacker, then the attacker
can access the data being sent along the path, and the translated channel is considered ‘Public’. Other-
wise, if all communication nodes are secure, then the channel is considered ‘Private’. The architectural
components which are traversed are determined as follows.

By default, the communication between tasks is stored on the memory closest to the sending task. The
receiving task then reads the communication stored on the memory from the shortest path. The shortest
path is defined to be the path crossing the fewest number of architecture components. If there are multiple
shortest paths, then the path is selected randomly from among all of the shortest paths.

If however, the communications are mapped to a specific path, then the communications follow that path
regardless if there exist shorter ones. In a single architecture and mapping of tasks, the same channel can
be translated to a ‘Private’ or ‘Public’ communication. For example, Figure 6-9 shows a mapping where
there exists a channel ‘chData’ between Tasks T1 and T2. By the default communication mapping, data
is stored in Memory0 by T1 along a secure bus Bus0. Task T2 then accesses the data also along a secure
path across Private Bus Bus0. Therefore, the communication is considered ‘Private’ in AVATAR.

Figure 6-10 shows how instead channel ‘chData’ is mapped to a different memory and different commu-
nication path. In this instance, data is stored in Memory1 by T1 by sending the data along an insecure
path through Bus2, Bridge0, and Bus1, all of which are public, and therefore accessible to the attacker.
Then, Task T2 also accesses the data in Memory1 along the indicated path through Bus1, Bridge 0, Bus 2,
Bridge 1, then Bus 3, again all of which are public. Therefore, the communication is considered ‘Public’
in AVATAR, as indicated by the attacker symbol on the communication link.

6.4.3 Translation of Operators

Based on the formalization of Partitioning and Software Design Models, we generate the equivalent trans-
lation for each operator as described in this subsection. In these diagrams, for the formalization, we omit
next operators and assume operations execute in order, unless explicitly stated otherwise for cases of
multiple possible next operations, indicated with a choice operator.

As shown in Figure 6-11, Control and Data communications in Partitioning are translated into the equiv-
alent communication operator in Software Design. A new attribute chan_channeldata is created during
the translation for Data communication operators, while the set of attributes sent remains the same for
Control communication operators.

Figure 6-12 shows how choice operators are translated. The choice operator in Partitioning (where the next
operation is one of multiple possible sub-behavior) is translated into a state, and then a choice: the next
operation can be one of two transitions, and then each of those transitions are followed by the translation
of each of the sub-behaviors in the choice. The guards of the choice operator are then expressed as the
guards on the transitions.

Loop operators are translated into a sequence of states and transitions as shown in Figure 6-13. The choice
to exit the loop or not is translated to a choice operator.

Complexity operators are translated into a state and then a transition with a function and time function
6-14. The time function is a translation of the complexities as described above.

115

Chapter 6. Security Verification

<<BUS-RR>>

Bus3

<<MEMORY>>

Memory2

<<CPURR>>

CPUt1

FV::t1

<<CPURR>>
CPUt2

FV::t2

<<BUS-RR>>

Bus1

<<BRIDGE>>

Bridge0

<<BUS-RR>>

Bus2

<<BRIDGE>>

Bridge1

<<block>>
t2

<<block>>

t1

Translation

<<BUS-RR>>

Bus0

<<MEMORY>>

Memory0

Figure 6-9: Translation of Security of Channels - Secure Communication Mapping

116

Chapter 6. Security Verification

<<MEMORY>>

Memory2

FV::chData

channel

<<CPURR>>

CPUt1

FV::t1

<<CPURR>>

CPUt2

FV::t2

<<BUS-RR>>

Bus0

<<MEMORY>>

Memory0

<<BRIDGE>>
Bridge0

<<block>>
t2

<<block>>

t1

Translation

<<BUS-RR>>

Bus2

FV::chData

channel

FV::chData

channel

<<BUS-RR>>

Bus1

FV::chData

channel

<<BUS-RR>>

Bus3

FV::chData

channel

<<BRIDGE>>

FV::chData

channel

Bridge1

Figure 6-10: Translation of Security of Channels - Insecure Communication Mapping

117

Chapter 6. Security Verification

chl

name(n)

evt

name(a)

req

name(a)

WaitEvent/ReadRequest/SendEvent/Send Request

ReadChannel/WriteChannel

chl

name(n)

evt

name(a) getReqArg(a)

commOp(name,IN/OUT,n)

Data Communication Operators

Control Communication Operators

commOp(name,IN/OUT,[a])

Communication Operators

commOp(name,IN/OUT,[attr channeldata])name(channeldata) name(channeldata)

commOp(name,IN/OUT,[a])name(a) name(a)

Translation

Translation

Figure 6-11: Translation of Functional Communication Behavior Elements to Software Design Behavior
Elements

118

Chapter 6. Security Verification

[guard1] [guard2]

[]

Choice

subB1 subB2

Control Operators

Choice Control Operators

choice([subB1, subB2],[guard1, guard2])

trans1=transition(NOP,guard1,0)

state_choice = state('choice_state')

[guard2][guard1]

R(subB1) R(subB2)

choice_state

Translation

next(state_choice)=(trans1, trans2)

trans2=transition(NOP,guard2,0)

R(subB1)

R(subB2)

Figure 6-12: Translation of Functional Choice Behavior Elements to Software Design Behavior Elements

6.4.3.1 Translation of Cryptographic Configurations

The detailed translation for each cryptographic operator is shown in 6-15, 6-16, and 6-17.

To explain in greater detail, we examine the translations to AVATAR for all possible situations of sending
data secured with a symmetric encryption Cryptographic Configuration shown in 6-15. While the crypto-
graphic operations are not explicitly shown in DIPLODOCUS models, the exact operations are shown in
transitions in the AVATAR model.

Basic data encryption

The first case in the figure shows the simple case of encryption and decryption of data without a nonce.
As we previously explained, as this instance of the write channel operator is tagged with a Cryptographic
Configuration, the data being sent out on the channel chan will be an encrypted form of the new attribute
sym, as named after the Cryptographic Configuration, instead of chanchanneldata. Queries will also
check for if the attacker can recover sym. As shown, the equivalent model in AVATAR involves first
encrypting sym with the symmetric encryption function sencrypt, using the key key_sym, expressed as
sym_encrypted = sencrypt(sym, key_sym), and then sending out sym_encrypted on the channel.

To decrypt the message, the attribute sym_encrypted is read by the read channel operator, and then the
value of sym can be recovered by the symmetric decryption function sym = sym_encrypted, symkey),
assuming the receiving task has access to the key. If it does not have key_sym, then sym is not recover-
able.

Data encryption with nonce

119

Chapter 6. Security Verification

For Loop

for(init;loop condition;increment)

subB1subB2

Loop Control Operators

loop(subB1,init,increment,!condition)

next(loop)=subB2

initloop

init

loop_start

increment R(subB2)
R(subB1)

[loop condition] [else]

state('initloop')

transition(init,true,0)

trans_loop = transition(init,loopcondition,0)

state_loopstart = state('loopstart')

trans_exit=transition(init,!loopcpndition,0)

next(state_loopstart) = (trans_loop,trans_exit)

R(subB2)

R(subB1)

transition(increment,true,0)

Translation

Figure 6-13: Translation of Functional Loop Behavior Elements to Software Design Behavior Elements

120

Chapter 6. Security Verification

n

n ms

n

function(attr1,attr2,...)

ActionState

ExecC/ExecI

Delay

Complexity Operators

compOp(0,Complexity,function([attr1,attr2,...]))

compOp(n,Complexity,NOP)

compOp(n,Delay,NOP)

function

after(f(n))

comp_n

after(n)

comp_n
state('comp_n')

transition(NOP,true,n)

state('comp_n')

transition(NOP,true,f(n))

function(attr1,attr2,...)
state('function')

transition(NOP,true,0)

Translation

Translation

Translation

Figure 6-14: Translation of Functional Complexity Behavior Elements to Software Design Behavior Ele-
ments

121

Chapter 6. Security Verification

encrypt

chan(sym_encrypted)

sym_encrypted=

chan(1)

sec:sym

chl
nonceChan(1)

sec:sym

sencrypt(sym,key_sym)

Basic data encryption

chl

with Nonce

Key encryption

Basic data decryption

decrypt

chan(sym_encrypted)

sym=
sdecrypt(sym_encrypted,

chl

chan(1)

encrypt

chan(sym_encrypted)

sym_encrypted=

chan(1)

sec:sym

sec:sym

sencrypt(sym,key_sym)

chl

decrypt

chan(sym_encrypted)

sym=
sdecrypt(sym_encrypted,

key_sym)

chl

chan(1)

sec:n

sec:n

nonceChan(1)

sec:n

chl

nonce:n

sec:sym

sec:sym

n=RANDOM(0,10)

nonceChan(n)

nonceChan(n)

sym=concat2(sym,n)

get2(sym,sym,testnonce_n)

decrypt_guarded

[testnonce_n==n]

decryt_dummy

encrypt

chan(encryptedKey_k)

encryptedKey_k=

chan(1)

sec:sym

sec:sym

sencrypt(key_k,key_sym)

chl decrypt

chan(encryptedKey_k)

k=
sdecrypt(encryptedKey_k,

 key_sym)

chl

chan(1)

sec:sym

sec:sym

key:k

key:k

sec:sym

sec:sym

Translation

Translation

Sending Task Receiving Task

...

... ...

...

...

...
...

...

...

... ...

...

...

... ...

...

...

...

...

...

...

...

...

...

key_sym)

Translation

Translation

Translation

Translation

Figure 6-15: Translation of Symmetric Encryption Behavior Elements to Software Design Behavior Ele-
ments

122

Chapter 6. Security Verification

encrypt

chan(m_encrypted)

m_mac=

chan(1)

sec:m

chl

nonceChan(1)

sec:m

MAC(m,key_m)

Basic MAC

chl

with Nonce

Basic verify MAC

decrypt

chan(m_encrypted)

get2(m_encrypted,m,m_mac)
testnonce_m=

chl

chan(1)

encrypt

chan(m_encrypted)chan(1)

sec:m

sec:m

chl decrypt

chan(m_encrypted)

get2(m_encrypted,m,m_mac)

chl

chan(1)

sec:n
sec:n

nonceChan(1)

sec:n

chl

nonce:n

sec:m

sec:m

n=RANDOM(0,10)

nonceChan(n)

nonceChan(n)

m=concat2(m,n)

decrypt_guarded

[testnonce_m]

decryt_guarded2

sec:m
nonce:n

sec:m

m_encrypted=
concat2(m,m_mac)

decrypt_guarded

decrypt_dummy

[testnonce_m]

m_mac=

MAC(m,key_m)
m_encrypted=
concat2(m,m_mac)

testnonce_m=

verifyMAC(m,key_m,m_mac)

decryt_dummy

get2(m,m,testnonce_n)

[testnonce_n==n]

Translation

Translation

Sending Task Receiving Task

...

...

...

...

...

... ...

...

...

...

... ...

...

...

... ...

Verify MAC and nonce

verifyMAC(m,key_m,m_mac)

Translation

Translation

Figure 6-16: Translation of MAC Cryptographic Configuration to Software Design Behavior

sec:n n=RANDOM(min,max)
Translation

...

...

...

...

Figure 6-17: Translation of Nonce Cryptographic Configuration to Software Design Behavior

123

Chapter 6. Security Verification

...

chan(sym_encrypted)chan(1)

sec:sym

chl

Sending Secured Data

... ...

Sending Unsecured Data

Translation

chan(sym)chan(1)

sec:sym

chl

...

Translation

Figure 6-18: Translation of Sending Secured vs Unsecured Data to Software Design Behavior

If a nonce is added, then first the nonce n is exchanged between the two tasks. The sending task concate-
nates the nonce onto the attribute sym with sym = concat2(sym, n). Next, the combined message is
encrypted, and the encrypted message is sent, as described with basic data encryption.

To decrypt sym, then first the combined message is decrypted, and then the message and nonce are sep-
arated with the function get2(sym, sym, testnonce_n). If the message has not been tampered with or
replayed, then testnonce_n should be the same as the original nonce n sent out. If they match, then
decryption is finished and sym is accepted. Otherwise, sym is rejected as it has been tampered with.

Key encryption

To distribute keys may include encrypting the key and sending the encrypted message on a channel acces-
sible by the attacker. The key being distributed keyk is encrypted with the symmetric encryption function,
and then the encrypted key encryptedKeyk is sent to the receiving task. Then, the receiving task decrypts
the key with k = sdecrypt(encryptedKeyk, keysym). The attacker should not know keysym, so he/she
cannot recover the key keyk either.

Unsecured vs Secured channels

As explained in the previous chapter, there are instances where a task will send or receive the unsecured
form of a Cryptographic Configuration, usually in instances where the data is sent between tasks before it
is secured, and we need to track the data in its path. Sending unsecured data (across private buses/bridges)
often occurs with the use of HSMs. Figure 6-18 shows an example of sending secured vs unsecured data
from the Cryptographic Configuration sym, and the corresponding translations. When data is sent in the
secured form, as shown in the previous examples, the attribute sent is named symencrypted, but when it
is sent unsecured, it is named sym.

Asymmetric Encryption and MAC Cryptographic Configurations are similarly translated, while Nonces
are translated to be a new attribute which takes a random value.

124

Chapter 6. Security Verification

6.4.3.2 Formal Translation

The set of Operators in Partitioning are translated formally into Operators in Software Design, as described
below:

1. commOp(name, IN/OUT, n)→ commOp(name, IN/OUT, [name_channeldata]);

2. commOp(name, IN/OUT, [attr1, attr2, ...]→ commOp(name, IN/OUT, [attr1, attr2, ...]);

3. compOp(n,Complexity, f(attr1, attr2, ...))→ state(′comp_n′),
transition(f(attr1, attr2, ...), true, f(n)) or subB

4. compOp(n,Delay, f(attr1, attr2, ...))→ state(′comp_n′, transition(f(attr1, attr2, ...), true, n)
or subB)

5. choice([subB1, subB2, ...], [cond1, cond2, ..])→
state(′choicestate′)
next(state(′choicestate′)) = (trans1, trans2)
trans1 = transition(NOP, cond1, 0);
R(subB1);
trans2 = transition(NOP, cond2, 0);
R(sub2);

6. loop(subB1, initfunc, incfunc, exitcond); subB2;→
state(′initloop′);
transition(initfunc, true, 0);
state(′loopstart′);
next(state(′loopstart′)) = (trans_loop, trans_exit) trans_loop = transition(NOP, !exitcond, 0);
R(subB1);
transition(incfunc, true, 0)
trans_exit = transition(NOP, exitcond, 0);
R(subB2);

To express the transformation in greater detail, we write out the pseudocode to transform each HW/SW
Partitioning functional operator into AVATAR functional operators. The full translation of each operator is
described in Algorithm 1 and 2. For readability, the algorithm is split across two different functions, one
for simple communication and computation operators, and another for complex control operators.

125

Chapter 6. Security Verification

function translateOperator
input: Mapping model operator op
output: translated Software design operator newOp, modified Software Design Models
if op ∈ simple operators (not choice, loop) then

//exec operations
if op ∈ exec then

newOp= new Avatar State
transition.after← translate op complexity into time

end
if op ∈ delay then

newOp= new Avatar State
transition.after← delay

end
if op in cryptoOperations then

newOp = new Avatar State
transition.action← translate op function

end
//channel operations
if op ∈ write channel then

channel chan = operator.channel
newOp= new Avatar Send Signal(chan.name, chanData)

end
if op ∈ read channel then

channel chan = operator.channel
newOp= new Avatar Receive Signal(chan.name, chanData)

end
//Request operations
if op ∈ sendRequest then

request = operator.request
newOp= new Avatar Send Signal(request.name, request.parameters)

end
if op ∈ readRequest then

request = operator.request
newOp= new Avatar Receive Signal(request.name, request.parameters)

end
//Event operations
if op ∈ sendEvent then

event = operator.event
newOp= new Avatar Send Signal(event.name, event.parameters)

end
if op ∈ readEvent then

event = operator.event
newOp= new Avatar Receive Signal(event.name, event.parameters)

end
Add newOp to State Machine Diagram nextOp = translateOperator(op.next))
Add transition between newOperator and nextOp
return newOp

end
Algorithm 1: Algorithm to translate simple DIPLODOCUS Functional Operators to AVATAR Software
Design Operators

126

Chapter 6. Security Verification

if op ∈ complex operators then
if op ∈ choice then

newOp = new AvatarState(choiceState)
listOfNextElements← new list of Avatar Operators
for Operator next in op.nexts do

listOfNextElements.add((translateOperator(next))
end
for AvatarOperator nextOp in listOfNextElements do

Add transition between newOp and nextOp
transition.guard← op.guard[next]

end
end
if op ∈ sequence then

for seqOp ∈ op.nexts do
newOp = translateOperator(seqOp)

end
Add transitions between each pair of sequential seqOp

end
if op ∈ randomSequence then

newOp = new AvatarState(choiceState)
for seqOp ∈ op.nexts do

newOp2 = translateOperator(seqOp)
Add transition between newOp and newOp2
//Create the possible choices on the remaining operators in the randomSequence tmpOp = op
tmpOp.nexts.remove(seqOp)
newOp3 = translateOperator(tmpOp)
Add transition between newOp2 and newOp3

end
end
if op ∈ loop then

newOp = new AvatarState(Init loop)
transition.action← op.init
newOp2 = new AvatarState(loop start)
transition2.guard← loopcondition
transition2.action← op.loopfunction
Add transition 2 between newOp and newOp2
loopBehavior = translateOperator(op.loopBehavior)
Add transition between last element in loopBehavior and newOp2
exitBehavior = translateOperator(op.next)
Add transition between newOp2 and exitBehavior

end
end
Add all new operators and transitions
Algorithm 2: Algorithm to translate complex DIPLODOCUS Functional Operators to AVATAR Software
Design Operators

127

Chapter 6. Security Verification

6.5 Translation to ProVerif

This section describes the 2-step translation from DIPLODOCUS mapping models to ProVerif specifi-
cations. Figure 6-19 shows a translation from DIPLODOCUS to AVATAR, and then to ProVerif, for a
representative sample of the different modeling elements.

At the highest level, we need to translate the mapping security queries to Proverif queries, then translate
each task into one or multiple processes. The basic functions (symmetric encryption, asymmetric encryp-
tion, MAC, and etc) are declared in the Functions section at the beginning of each ProVerif specification,
and do not need to be translated.

6.5.1 Translation of Queries

Security annotations in DIPLODOCUS indicate which security properties should be verified. These an-
notations should be placed based on the security requirements defined in the Analysis Phase. Figure 6-20
shows the different annotations, as shown in the indicated circle. Confidentiality and Authenticity anno-
tations are marked on communications in the Functional Component Design diagram, while Reachability
annotations are marked on operators in Activity diagrams.

A small grey lock on the sending channel indicates that the Confidentiality for the data sent along the
channel should be checked. A split grey lock on the receiving channel indicates that Authenticity of the
data sent along that channel should be checked. We place these annotations on the channels instead of
channel operators since there may be multiple read/write channel operators for each channel, and it would
be tedious to tag each operator.

The reachability of states is also a safety property and can also be verified by TTool’s safety checker, and
states which should be checked for reachability are instead marked with an annotation ’RL’, which stands
for ‘Reachability’ and ‘Liveness’.

Each security query marked on a channel is translated into a pragma in AVATAR, and then to the cor-
responding query in ProVerif, depending on which property is being checked. For example, the three
annotations in our example would be translated to:

(* Queries Secret *)

query attacker (new chan_chData)

(* Queries Event *)

query event(enteringState___lidar__writelidardata()).

event enteringState___lidar__writelidardata().

(* Authenticity *)

event authenticity___T1___chan_chData___sendingMsg(bitstring).

event authenticity___T2___chan_chData___msgVerified(bitstring).

query dummyM: bitstring;

inj-event(authenticity___T2___chan_chData___msgVerified (dummyM)) ==>

inj-event(authenticity___T1___chan_chData___sendingMsg (dummyM)).

128

Chapter 6. Security Verification

T1

chan

T2

?

Model Pragmas

Security Property
#Confidentiality T1.chan__channelData

query attacker(new T1__chan_channelData)

DIPLODOCUS

T1 T2
T2

<<block>>
T1

<<block>>

AVATAR ProVerif
process ! (

 new sessionID[]: bitstring;

 ((

 T1___0 (sessionID)) | (

 T2___0 (sessionID)

) | (

 (((

 T1___start (sessionID)) | (

 T2___start (sessionID)

)))

)))

let T1___start (sessionID: bitstring) =

..

out (chControl, chControlEnc (

 (sessionID, call___T1___0))).

let T1___0 (sessionID: bitstring) =

...

chl

chan(n) chData(chan_channelData)
out(ch,t1__chan__channelData)

[guard1] [guard2]

[]

subB1 subB2

[guard2][guard1]

R(subB1) R(subB2)

choice_state

if guard1 then

else

 if guard2 then...

encrypt

sym_encrypted=
sec:sym

sencrypt(sym,key_sym)

let t1__sym_encrypted: bitstring =

 sencrypt(t1__sym, t1__key__sym)

Translation Translation

Figure 6-19: Translation of DIPLODOCUS to AVATAR to ProVerif

LidarData(1)

chl
RRLL??

ReachabilityConfidentiality Authenticity

t1

chan

t2

?

t1

chan

t2

?
S
W

Figure 6-20: Confidentiality, Authenticity, and Reachability Security Annotations

129

Chapter 6. Security Verification

These 3 queries in ProVerif check the confidentiality of attribute chan_chData, then the reachability of
event enteringState___lidar__writelidardata()) (corresponding to the LidarData write channel operator),
and then the authenticity of attribute chan_chData: that if data in state msgVerified in task T1 exists, it
must be the same as the data chan_chData in state sendingMsg.

6.5.2 Translation of Tasks

Each task in the model is translated into one of the processes started by the main process, where each Task
t in D adds the following lines to P :

let t_start(x,...)

let t_0(sessionID: bitstring) =

and a line is added to the main process:

process

! (

new sessionID[]: bitstring;

((

t___0 (sessionID)

...

6.5.3 Translation of Actions

The Activity of each task is translated into a State Machine using the translation described in the previous
section, and then the state machine is translated into basic blocks as described in [208], so that a single
task in an activity may be split across multiple processes.

As described above, each operator in DIPLODOCUS is translated into one or more AVATAR operators.
The AVATAR operators are then translated into actions in a ProVerif specification. As ProVerif has no
concept of time, temporal operators are removed, but communications, actions, and control operations are
translated. The exact translation of operators involves first applying Algorithm 1 and then the algorithm
described in [208].

Thus, in this section, we have formally described how HW/SW Partitioning (DIPLODOCUS) models are
transformed in 2 steps into ProVerif text specifications, by describing the individual transformations for
each element: queries, tasks, and task behaviors.

6.6 Proof of Correctness

With all of the terms and translations formally defined, we can begin our proof. In this section, we prove
that Mapping models are correctly translated into a ProVerif specification. In this case, ‘correctly trans-

130

Chapter 6. Security Verification

lated’ means that if a security property is violated in the model, then ProVerif should return that the result
is verified false. We use proof by induction as we can iterate over the length of the trace and add a new
operation in each inductive step.

As [208] proved the correctness of the Avatar-to-ProVerif translation in terms of Confidentiality, we must
prove that our DIPLODOCUS-to-AVATAR translation also preserves Confidentiality properties in order
to prove that the full DIPLODOCUS-to-ProVerif translation preserves Confidentiality properties.

For our proof, we assume there is a variable X which we wish to assure is not recoverable by the attacker.

Statement: For each DIPLODOCUS trace D of length n, there exists an AVATAR trace S generated by
the automatic translation process, and if X is not confidential in D, then it will not be confidential in S.
We prove this statement by induction iterating on the length n.

We denote AK as the current set of knowledge of the attacker, including all possible knowledge that can
be obtained from AK. For example, if encX = symmetricEncrypt(X, key) and AK = encX , key,
then AK = encX , key,X . At the start of the process, AK = ∅. The Confidentiality of X is verified false

if X ∈ AK, and the Confidentiality of X is verified true if x /∈ AK after expanding AK to contain all
discoverable knowledge.

6.6.1 Base case

The Base case is a trace of length 0, or processes with no actions. If no operations occur in D, then no
operations occur in S.

No variables, including X, have been transmitted on a public channel, so the attacker has no knowledge in
both D and S: AK = ∅, and therefore X remains confidential in both D and S.

6.6.2 Inductive Step

If a trace of length n will be correctly translated, then we prove that a trace of length of length n+1 will
also be correctly translated.

Adding the extra element to generate a trace of length n+1 can involve adding the following actions:

Choice

If the n+1th action is a choice, then the AVATAR trace will also contain a choice. Each branch will maintain
the current attacker knowledge, so adding a choice alone maintains the correctness of the translation in
terms of confidentiality of X.

Channel Out

There exist multiple possibilities of the possible channel out operations relevant to the Confidentiality of
X.

Writing X to a channel in DIPLODOCUS is translated into a Send Signal operation, in the form:
commOp(ch,OUT,X
→ commOp(ch,OUT,X); In both DIPLODOCUS and AVATAR, X is being sent along a public channel.

131

Chapter 6. Security Verification

Sending data along a public channel will increase the knowledge of the attacker. In DIPLODOCUS, if
X is sent along a public channel, then AKn+1 = AKn ∪ X . The operation commOp(ch,OUT,X) in
AVATAR will similarly increase the knowledge of the attacker by X.

Sending any data unrelated to X will not affect the knowledge of the attacker AK.

Encryption If instead of sending X, encX is written to a channel, where encX = sencrypt(X, keyX),
both the DIPLODOCUS and AVATAR trace will be adding an element commOP (ch,OUT, encX).

In this case, AKn+1 = AKn ∪ encX . If keyX ∈ AK, then AK = keyX , encX , which leads to
AK = keyX , encX,X . Otherwise, if AK = encX , then no additional knowledge about X can be gained
at this point.

If instead, the key keyX is sent along the public channel, then both traces will add the element
commOP (ch,OUT, keyX).

Attacker knowledge will increase as: AKn+1 = AKn∪keyX . If encX ∈ AK, then AK = keyX , encX ,
which leads to AK = keyX , encX,X . Otherwise, if AK = key, then no additional knowledge about X
can be gained at this point.

The same applies for asymmetric encryption: as long as the attacker does not have the key, then he/she
cannot recover X .

Hash/MAC

Hashes are assumed to be 1-way functions, where the original message cannot be recovered from the hash.
If hash(X) is sent along a public channel, then AK = hash(X), but x /∈ AK.

Message Authentication Codes are similarly calculated with a hash function, so that even obtaining the
MAC and key will not be enough for an attacker to recover the original message.

In each case, the change in the set of attacker knowledge is identical in both AVATAR and DIPLODOCUS.

Channel In

Reading data in DIPLODOCUS is translated into a Receive Signal operation, in the form: commOp(ch, IN,X)
→ commOp(ch, IN,X)

Receiving data that has already been sent along a public channel does not change the knowledge of the
attacker, for if X has already been sent, then X ∈ AK, and if X has not been sent, then X /∈ AK, but the
operation commOP (ch, IN,X) cannot disclose X either for the receiving task does not know the value
of X.

We assume an empty memory at the start of system execution, so it is impossible to read X if the write X
operation has not yet been executed.

An attacker can inject any data he/she wishes, but that impacts the authenticity of the communications, but
not confidentiality of data that we examine in this case.

Functions

Functions calculating new attribute values in DIPLODOCUS are translated into actions in AVATAR, using
the translation compOp(n,Complexity, f(attr1, attr2, ...))

132

Chapter 6. Security Verification

→ state(′comp_′n), transition(f(attr1, attr2, ...), true, f(n), 0)

Calculations within a process involve no output of data along a public channel in both DIPLODOCUS and
AVATAR. Therefore, AK remains unchanged in both traces, and the confidentiality of X is unchanged in
both traces.

6.6.3 Conclusion

Since the base case and inductive step both hold, our statement above is proven: for each DIPLODOCUS
trace D and the corresponding generated AVATAR trace S, the confidentiality of any variable X will be the
same in both traces. Therefore, we have proved that the DIPLODOCUS-to-Avatar translation preserves
the property of Confidentiality.

As we will discuss in the Perspectives in Section 8.3, a proof that our model transformation preserves the
property of Authenticity should be developed in the future.

6.7 ProVerif Results

The security results returned by the ProVerif prover indicate if each query is verified true, verified false,
or cannot be verified, as shown on the window in Figure 6-21. These results are back-traced onto the
DIPLODOCUS Component Diagrams for user convenience, and remain on the diagrams for the user to
refer to as they reconsider and modify the models. This capability was first added as described [209].
Before the start of this thesis, a user had to read textual ProVerif output, and then remember it as he/she
modified the models. For larger models, it may be difficult to remember the exact security verification
results for each query.

The security annotations, in the form of grey locks, as described in Section 6.5.1, are colored after security
verification to indicate if their corresponding security property is satisfied (green) or not satisfied (red). If
there is an error with the prover and the results cannot be determined, then the lock remains grey.

For confidentiality results, data exchanged across a channel vulnerable to an attacker is indicated by a
crossed-out red lock. However, data proved confidential is indicated by a green lock. Weak Authenticity
and Strong Authenticity are indicated by the split lock with the half-locks colored green for verified true
and half-locks colored red and crossed out for verified false. The two halves of the lock corresponding
to authenticity can be colored differently, for example, if weak authenticity is verified true but strong
authenticity is verified false.

Since a single functional model may have multiple associated mappings, the name of the mapping is
displayed next to the security annotations, in order to indicate which mapping these results correspond to.

For example, we previously mentioned that an attacker tampering with internal communications could
prevent the braking system from correctly functioning. We demonstrate how ProVerif verification works
by checking the security of our Autonomous Vehicle system, focusing on ensuring the authenticity of the
communications between the Navigation and Perception units. In the current architecture, shown in Figure
6-22, the Perception and Navigation units communicate across an insecure bus. As expected, Perception
data is not verified authentic.

133

Chapter 6. Security Verification

Figure 6-21: ProVerif Verification Results Output

Perception
percDataVerification

chl
percData(1)

chl

percData(1)

Navigation

S
W

<<CPURR>>
NavigationCPU

FV::Supervisor
FV::Navigation

<<BUS-CAN>>
CANVedecom

<<CPURR>>
PerceptionCPU

FV::Supervisor
FV::Perception

...

...

...

...

Mapping1

Perception
percData

Navigation

Functional Model

Mapping Model
+Backtracing

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>

NavigationBus

Figure 6-22: Verification Results for Default Mapping

134

Chapter 6. Security Verification

Perception
percDataVerification

chl
percData(1)

chl

percData(1)

Navigation

S
W

<<MEMORY>>

MemoryMain

<<BUS-CAN>>
PerceptionBus

<<CPURR>>
MainCPU

FV::Supervisor
FV::Perception

...

...

...

...

FV::Supervisor
FV::Navigation

Mapping2

Perception
percData

Navigation

Functional Model

Mapping Model

+Backtracing

Figure 6-23: Verification Results for Modified Mapping with Perception and Navigation Tasks mapped to
same CPU

However, if the architecture is modified as shown in 6-23, where Perception and Navigation are mapped to
the same CPU, and there exists a secure path to memory, then Perception data is verified authentic. In the
next section, we discuss how our tookit can automatically add Cryptographic Configurations to represent
security protocols to secure data regardless of the architecture.

6.8 Automatic Generation

As previously noted, software engineers are often not experts in security. In the HW/SW Partitioning
phase, we therefore offer automatic generation capabilities, including adding Cryptographic Configura-
tions with associated security operators and Hardware Security Modules. Figure 6-24 shows the automatic
generation window, with its many possible generation modes and options. At each generation, the toolkit
can add security operators (and optionally using a HSM to perform security operations for selected tasks),
or map all keys to a memory that is accessible securely.

The security representations are added based on the security properties that must be fulfilled for each
channel. The automatically generated secured model is only to provide an estimate of the performance
properties of the secured system, and the exact security protocols should be described in greater detail
in the Software Design phase. In certain cases, there are multiple methods to satisfy a security property,
and we take only one of these options to simplify the algorithm. For example, by default, all encryption
operators are set to symmetric encryption, for simplicity in mapping keys.

135

Chapter 6. Security Verification

6.8.1 Security Requirements

The security requirements should be first indicated with the security annotations (grey locks) on the Com-
ponent Diagram. It is assumed that if the user marks that there should be a query (Confidentiality and/or
Authenticity) of data sent along a certain channel, then he/she desires that channel data fulfill those se-
curity properties. Based on the properties indicated, different types of cryptographic operators are added
to the sending and receiving task. Next, all data operations for that channel are tagged to show that it is
secured data from that Cryptographic Configuration being sent.

6.8.2 Addition of Security Operators

In the first option, the toolkit can add security operators based on the selected security property to ensure
and the based on the security requirements of each channel. The user selects if he/she wishes to ensure
confidentiality and/or weak authenticity or strong authenticity for all channels marked with security anno-
tations. For example, if the user only wishes to add operators to ensure confidentiality, then the toolkit will
ignore the requirements on authenticity and only add the encryption operators to channels marked with
the security annotation indicating that the data on them must be confidential. However, if the user also
indicates that he/she wishes to ensure weak (and optionally strong) authenticity, then the toolkit will add
MACs and/or nonces to channels which have been marked that their communications should be authen-
tic. The detailed operators which need to be added are described further in this section. The mapping of
keys for each operator added can then be performed automatically with the key mapping algorithm to be
described later.

In addition, for the operators being added, estimated times to perform encryption, decryption, calculate a
MAC, etc, and the overhead, can be manually set in lieu of using the default options.

Algorithm 3 and 4 show how security operators are automatically added to a mapping model based on
ProVerif verification results. Part 1 parses the verification results to determine which channels need to
be secured, and part 2 takes the list of channels and currently-violated security properties, and modifies
the activity diagrams by adding the appropriate security operators to the activity diagrams of each task
associated with the channel.

6.8.2.1 Confidentiality only

If the only property that needs to be fulfilled is confidentiality, then the data being sent along the channel
must be encrypted to be unreadable by the attacker, and it must also be decryptable by the receiver. Fur-
thermore, the associated keys should have been securely shared and stored, though we do handle this with
. Figure 6-25 shows the operators added: the message should be encrypted before being sent, and then
decrypted after being received.

6.8.2.2 Authenticity only

Ensuring Authenticity prevents the attacker from injecting custom data, which can be carried out by adding
a sort of additional information to the message. Similar to how a checksum can check if the data within

136

Chapter 6. Security Verification

Figure 6-24: Window for Automatic generation of security

137

Chapter 6. Security Verification

input: ProVerif verification results, insecure mapping model
options: addWeakAuthenticity? addStrongAuthenticity?
//Confidentiality is added by default
//Strong authenticity can be added only if weak authenticity is also added
output: new generated secured mapping model
struct chanInfo : [channel, securityProperties(strong authenticity, weak authenticity,)]
toSecure = new list of chanInfo
for channel in model do

secProperties← new list of security properties
if channel confidentiality = ‘Verified False’ and channel.checkConfidentiality then

secProperties.add(Confidentiality)
end
if addWeakAuthenticity and channel.checkAuthenticity then

if channel authenticity = ‘Verified False’ then
secProperties.add(Weak Authenticity)
if addStrongAuthenticity then

secProperties.add(Strong Authenticity)
end

end
end
chanInfo.add(new chanInfo(channel, secProperties))

end
Algorithm 3: Algorithm to Modify Diagrams to automatically add security operators Part 1

t1

chData

Adding Encryption

chl
chData(1)

chl

chData(1)

t2

t1
chData chl

t2

sec:enc

sec:enc

sec:enc

sec:enc
chData(1)
chl

chData(1)

Figure 6-25: Automatic generation of security operators to ensure confidentiality

138

Chapter 6. Security Verification

for channel in chanInfo do
if Confidentiality, Authenticity ∈ channel.securityProperties then

if StrongAuthenticity ∈ channel.securityProperties then
Add new nonce channel between channel.destinationTask→ channel.originTask
Add send nonce to channel.destinationTask
Add receive nonce to channel.originTask

end
foreach Write Channel Operator do

Add Encryption Operator before write operator
if addStrongAuthenticity then

Add nonce to Encryption Operator
end

end
foreach Read Channel Operator do

Add Decryption Operator after read operator
end

end
else if Authenticity ∈ channel.securityProperties then

if StrongAuthenticity ∈ channel.securityProperties then
Add new nonce channel between channel.destinationTask→ channel.originTask
Add send nonce to channel.destinationTask
Add receive nonce to channel.originTask

end
foreach Write Channel Operator do

Add MAC Operator before write operator
if addStrongAuthenticity then

Add nonce to Encryption Operator
end

end
foreach Read Channel Operator do

Add MAC Verification Operator after read operator
end

end
else if Confidentiality ∈ channel.securityProperties then

foreach Write Channel Operator do
Add Encryption Operator before write operator

end
foreach Read Channel Operator do

Add Decryption Operator after read operator
end

end
end

Algorithm 4: Algorithm to Modify Diagrams to automatically add security operators Part 2

139

Chapter 6. Security Verification

has been modified due to lossy transmissions, Message Authentication Codes can be calculated by only
authorized individuals with a key and can be used to detect if a message has been modified.

Message Authentication Codes are generated from a message and cryptographic key. The MAC can be
concatenated onto a message before being sent. The receiver then splits the combined message into the
original message and the MAC, calculates the MAC based on the shared secret key, and checks if the
calculated and original MAC match. If the attacker tampers with a message secured only by encryption,
it is assumed that the message will not decrypt correctly, but it is also possible that the decrypted message
can be accepted by the receiver. Therefore, it is recommended to use Message Authentication Codes to
ensure authenticity of messages [186].

As shown in Figure 6-26, the MAC operator calculates the MAC and concatenates it to the message, and
the corresponding ‘Decrypt’ operator for a MAC serves to verify the MAC, and reject the received data if
the MAC does not match.

If however Strong Authenticity must be guaranteed, or that the system should resist replay attacks, then a
MAC alone is insufficient, since a replayed message will match its MAC as it was sent by an authorized
sender. Instead, a nonce, sequence number or timestamp should be provided for each message. As shown
in the bottom of Figure 6-26, the receiver first sends the sender an unique nonce before each message
transmission. The sender concatenates the nonce onto each message, and then calculates the MAC of the
combined message. The receiver then again checks that the MAC matches the message, and also checks
if the nonce matches the one expressly sent for this message. If the attacker replays a message, then the
nonce will not match and the message can be rejected.

6.8.2.3 Confidentiality and Authenticity

Confidentiality and Authenticity can be ensured together by adding a nonce and then encrypting the com-
bined message, as shown in Figure 6-27. Adding a MAC alone would not ensure confidentiality of the
message, and encrypting the message alone would not ensure authenticity. While Encrypt-then-MAC
could also ensure Authenticity, we chose to exchange a nonce and then encrypt the message as it was
simpler.

6.8.3 HSM Generation

Instead of adding the security operators within each task, it is possible to indicate that all security oper-
ations should be performed with a HSM instead. After the user selects which tasks should have a HSM
added, our tookit modifies the modeling diagrams to add the HSM, including modifying the task’s activity
diagrams to send data to the HSM, generating the HSM’s activity diagram, etc. A single Hardware Se-
curity Module is added to each processor which executes at least one of the designated tasks. If multiple
tasks mapped to a single CPU are designated to have a HSM added to them, then only a single HSM will
be added.

For each HSM to be added to perform security operations for one or more tasks, first, the architectural
diagram is modified to add a Hardware Accelerator and memory, with a connecting private bus, as shown
in the previous chapter in Figure 5-10.

140

Chapter 6. Security Verification

t1

chData

Adding MAC check

chl
chData(1)

chl

chData(1)

t2

S
W

t1
chData

chl

chl
t2

S
W

sec:enc

sec:enc

sec:enc

sec:enc

Adding Nonce

t1

chData

chl
chl

t2

S
W

sec:enc

sec:enc
sec:enc

sec:enc

chl
nonceCh(1)

sec:nonce chl

nonceCh(1)
nonce:nonce

sec:nonce

sec:nonce

chData(1)

chData(1)

chData(1)

chData(1)

Figure 6-26: Automatic generation of security operators to ensure Weak and Strong Authenticity

t1

chData

Adding Encryption
+ Nonce

chl
chData(1)

chl

chData(1)

t2

S
W

t1

chData

chl

chl

t2

S
W

sec:enc

sec:enc

sec:enc

sec:enc

chl

nonceCht2(1)

sec:nonce chl

nonceCht2(1)

nonce:nonce

sec:nonce

sec:nonce

chData(1)

chData(1)

Figure 6-27: Automatic generation of security operators to ensure Confidentiality and Authenticity

141

Chapter 6. Security Verification

Next, we determine which data needs to be secured by the HSM. For each channel, we use a modified
version of Algorithm 3 to determine which security properties need to be satisfied. The activity diagrams
of the sending task T1 and receiving task T2 are then modified.

The component diagram is modified to add a new task HSM. For each data communication which needs
to be secured, a ‘data_channel’ and ‘retData_channel’ is added between the HSM task and its associated
original task. Before each secure exchange of data between T1 and T2, T1 first sends the data to secure
along ‘data_channel’. The associated security operators from 4 are then added to the HSM. Channel
operators are then added to the HSM and T1 so the HSM can return the data to T2 along ‘retData_channel’.
Finally, a decrypt operator is added to T2 after the reception of the data.

6.8.4 Automatic Key Mapping

With multiple Cryptographic Configurations, it may become tedious to the map all of the keys to memory.
Our toolkit therefore can find every Cryptographic Configuration used by a task, and then, depending on the
type of the Cryptographic Configuration, map each applicable key to a memory that the task can securely
access. For Cryptographic Configurations of type symmetric encryption or MAC, both the sending and
receiving task will need to be able to access the key. For asymmetric encryption, however, all the sending
tasks will need the public key while only the receiving task will need to access the private key.

If a key is sent along a bus accessible to an attacker, then the key would be known to the attacker, so
we wish to avoid sending keys along public buses. Our key mapping algorithm, shown in Algorithm
5, iterates over each Cryptographic Configuration used, and checks each task if it uses that Cryptographic
Configuration. For each task which needs the key, the algorithm searches for securely accessible memories
from the processor to which it is mapped. The algorithm traverses all possible private buses and bridges
using breadth-first search, until it finds a memory. The key is then mapped to that memory. If all possible
secure paths are searched and no memories are found, then a warning is issued saying it is impossible to
map keys for that task.

6.8.5 Automatic Generation for Case Study

As previously described in Section 6.7, our current architecture and mapping does not ensure the authen-
ticity of Perception data sent from the Perception task to the Navigation task. Using automatic generation,
we indicate that we wish to ensure the strong authenticity of Perception data, and generate the following
new model.

Figure 6-28 shows how security operators are added to the activity of the Perception task and Navigation
task, and the resulting verification results. As previously described, adding a MAC and nonce can be used
to ensure strong and weak authenticity, even if perception data is sent a bus accessible to the attacker.

If however, we remove the memory connected along a secure path, and instead provide one memory along
the public bus for the Navigation and Perception tasks as shown in Figure 6-29, the cryptographic key used
to calculate MACs becomes accessible to the attacker when either accesses it. Then, after the Nonce is sent
along a public channel, the attacker can concatenate the nonce to his/her own forged message, calculate
the MAC with the recovered key, concatenate the MAC to the message, and then send it to the Navigation
task. As the MAC will match since it was calculated with the correct key, and the nonce will also match,
then the Navigation task will accept this forged data message and authenticity does not hold.

142

Chapter 6. Security Verification

function mapKeys
input: Mapping Model
output: modified Mapping Model
for Cryptographic Config cc in model do

for Task t in model do
if cc ∈ t then

//Task uses Cryptographic Config, so find closest secure memory
proc← Processor containing t toVisit← empty list of architecture communication
components

toVisit.add(All private buses/bridges accessible from proc)
while toVisit is not empty do

currentNode = toVisit.pop(0)
//Remove first element of toVisit
if currentNode ∈ Memory then

Map key to currentNode
break

end
toVisit.add(All private buses/bridges accessible from proc)

end
if no key mapped then

Warn ‘Cannot map key cc for Task t’ due to lack of secure memory
end

end
end

end
Algorithm 5: Key Mapping Algorithm

143

Chapter 6. Security Verification

Perception
percData

Verification

chl
percData(1)

chl

percData(1)

Navigation

S
W

<<CPURR>>
NavigationCPU

FV::Supervisor
FV::Navigation

<<MEMORY>>
MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<BUS-CAN>>

CANVedecom

<<CPURR>>
PerceptionCPU

FV::Supervisor
FV::Perception

<<BUS-CAN>>

NavigationBus

...

...

...

...

encPerc
key

<<MEMORY>>

encPerc
key

MemoryNavigation

sec:encPerc

chl
nonceChPerc(1)

sec:nonce

nonce:nonce

sec:encPerc sec:encPerc

chl
nonceChPerc(1)

sec:nonce

sec:nonce

sec:encPerc

Mapping3

Perception
percData

Navigation

Functional Model

Mapping Model
+Backtracing

Figure 6-28: Verification Results for Mapping with Security Operators added

S
W

Perception
percData

Verification

chl
percData(1)

chl

percData(1)

Navigation

<<CPURR>>
NavigationCPU

FV::Supervisor
FV::Navigation

<<BUS-CAN>>

CANVedecom

<<CPURR>>
PerceptionCPU

FV::Supervisor
FV::Perception

...

...

...

...

<<MEMORY>>

encPerc
key

MemoryMain

sec:encPerc

chl
nonceChPerc(1)

sec:nonce

nonce:nonce

sec:encPerc
sec:encPerc

chl
nonceChPerc(1)

sec:nonce

sec:nonce

sec:encPerc

Mapping4

Perception
percData

Navigation

Functional Model

Mapping Model

+Backtracing

Functional Model

Figure 6-29: Verification Results for Mapping with Security Operators and Insecure Memory Access

144

Chapter 6. Security Verification

6.9 Conclusion

This chapter described the security verification of HW/SW Partitioning models, first by formalizing the
model transformation process and proving its correctness, and then by describing how results are inter-
preted and displayed on the models, and also how our toolkit can take those results to automatically add
security operators to correct the unsatisfied security properties. We demonstrate how slight changes to an
architecture can result in different security verification results, and thus the importance of adding memories
providing secure access to cryptographic keys.

Mapping models are translated into Proverif specifications, and the security annotations are translated into
queries which indicate to the prover which security properties we are interested in. Using a recognized
prover ProVerif, those indicated security properties are then verified formally. The results of the security
verification can then be used to generate a secured model fulfilling all the security properties marked on
the model.

However, adding security causes a negative impact on performance. The time to encrypt/decrypt/calculate
MACs may cause the system to no longer respond to critical events in time. The next chapter describes
the importance of calculating latencies between events.

145

Chapter 6. Security Verification

146

Chapter 7

Performance Evaluation

“I wish it need not have happened in my time,” said Frodo.
“So do I,” said Gandalf, “and so do all who live to see such times. But that is not for them to decide.
All we have to decide is what to do with the time that is given us.” –J.R.R. Tolkien, The Fellowship of
the Ring

7.1 Introduction

Performance metrics are commonly used to assess the suitability of an architecture and mapping, often
supported by automatic Design Space Exploration [226, 257]. The performance of a system is charac-
terized by its timings and percentage usage times of architectural components. As previously discussed,
performance is one of the factors impacting the safety of certain systems.

Many real-time safety-critical systems, such as autonomous cars, interact continuously with the environ-
ment and users. New input from the outside world is processed by the system, which then effectuates a
response observable in the real world. The timing of such responses can greatly impact functionality and
safety.

Even if the system is functionally correct, and implemented safety functions ensure safe behavior, those
safety functions are inefficacious if they cannot execute in time. Therefore, it is important to ensure
the ability of an embedded system to respond to events in a timely manner [218]. Autonomous vehicles
especially need to rapidly respond to changes in road and traffic conditions, such as to traffic lights, changes
in speed limits, unexpected stopped vehicles, and obstacles in the road. The system must calculate the
needed response in time for the vehicle to react correctly, such as braking before reaching a red light, or
changing lanes before the vehicle reaches the end of a newly shut down lane.

Timing requirements can vary across real-time systems, where some events must execute before or after
a given time, or for less strict systems, the average response time should be below a set time [212]. Even
in non-safety-critical systems, a user will not wish to purchase or continue to use a slow or unresponsive
device [146]. In other systems, it important to determine the timing profile of a sub-system for it to interact
predictably with other components in a system [311].

147

Chapter 7. Performance Evaluation

Latencies also relate to our works on checking the assumptions taken at higher levels of abstraction. As
a model should be consistent across multiple levels of abstraction, the latencies measured at each level
of abstraction should also correspond, as discrepancies in the measured latencies indicate errors in the
abstraction or translations across models. Decisions on architecture and mapping made at the higher level
of abstraction are based on estimations of metrics that should be validated on the more refined software
design models [118, 119].

In addition, other performance metrics are often related to the latencies measured. The timing characteris-
tics of a system can also be affected by the usage, or load, on processors or communication buses [99]. If
a processor is too highly charged, it can lead to undesired delays of lower priority tasks.

In the previous chapters, we discussed countermeasures to ensure the security of a system. The addition
of security operations, however, induces a negative effect on the performance of a system. In this chapter,
we quantitatively evaluate that performance impact on the set of secured and unsecured mappings. The
evaluation involves both assessing the load of the architectural components and verifying the timing of the
system. In Chapter 4, we defined one of our requirements to be for the autonomous vehicle can brake in
time to avoid an obstacle detected by sensors. This timing requirement serves as a running example for
how we perform latency analysis on our model.

7.2 Latency Analysis

Latency analysis is performed in multiple steps. First, the quantitative requirement on latency must be
defined. Next, the text requirement must be translated to determine which modeling elements the critical
events refer to, after which latencies can be measured in simulation. The results are then conveniently
displayed on the modeling diagrams.

7.2.1 Latency Requirements

Before latencies can be measured, we must first define which are the timing requirements of the system.
In Section 4.3, we previously described the needs of our section, including latency requirements. Latency
requirements are first expressed in Requirement Diagrams as a refined requirement of a safety requirement.
The high-level requirement ‘The system should be safe’ is refined to ‘System latencies should preserve safe
function’, and further into ‘When an obstacle is detected, a braking order must be issued in time to avoid
the obstacle.’

It next becomes necessary to determine the exact latency requirements. Braking distance is calculated as
the distance traveled by the vehicle during a response time added to the braking distance of the vehicle. In
our simplified example, we assume the maximum distance that an obstacle can be detected is 80 meters,
and the vehicle is traveling at a constant 100 km/h in dry road conditions. Braking distance is therefore
approximated to be 50 meters [52]. Therefore, the reaction distance is 30 meters, and the maximum time
to issue the braking order is 1.08 seconds, though the reaction time should be ideally faster [111].

148

Chapter 7. Performance Evaluation

chl

ECUcommand(1)

chl

ECUdata(1)

processECUcommand

Loop for ever

evt

newECUdata()

evt

newECU()

chl

LidarData(1)

evt

newLidar()

40 ms

Loop for ever

Figure 7-1: Mapping Operators tagged with Latency Checkpoints

waiting

lidarData(data)

control(sensorOn)

data= RANDOM0[0, 10]

[sensorOn]

after (samplingRate,samplingRate)

waiting

ECUin(command)

after (processingTimeMin,processingTimeMax)

Figure 7-2: Software Design Operators tagged with Latency Checkpoints

7.2.2 Latency Annotations

With the timing requirements defined, the relevant operators must be selected on the modeling diagrams.
The events referenced by the requirements should be translated to their equivalent activity diagram event.
For example, the obstacle detection event corresponds with the start of sending Lidar Data to the Perception
unit, and the issue of a braking order to the vehicle corresponds with the reception of the ECU command
by the ECU Gateway. We are assuming that the response time of the ECUs is negligible.

Each relevant operator is tagged as a ‘Latency checkpoint’, displayed as a blue flag, as shown in Figure 7-1
and 7-2. During simulation, all the possible latency checkpoints can be selected in the Latency window, as
shown in Figure 7-3. The min, max, average, and standard deviation of the set of latency values between
the two events is displayed for the current simulation run.

In the Software Design Phase, latency queries can also be written in Performance Pragmas, as shown in
Figure 7-5. Each pragma statement may check if all instance of operators op1 and op2 meet a certain
criteria, such as being less than or greater than a set number. Without a set number provided, statements

149

Chapter 7. Performance Evaluation

may also instead ask for the average latency value.

7.2.3 Latency Analysis

Latencies are measured by averaging the values measured over multiple simulations. The simulation
engine, based in C++, is described in [181, 182]. Each architectural component then schedules operations
by the tasks or communications mapped on it, which then execute as a transaction over a given time. Each
simulation run is stored as a set of transactions executed on the set of architectural components.

Simulations can be run automatically to completion, or interactively in user-defined increments. Users can
step through a simulation based on a number of transactions, time units, or commands, or they can run until
the next memory access or bus transfer. A step-by-step interactive simulation can help the user examine
the detailed execution of a system. While a user could note the execution times of important operators and
calculate latencies manually, it would be time consuming to manually record and calculate these latencies,
especially if we wish to check the latencies over many iterations.

Before the start of my thesis, latencies could only be manually calculated by recording the execution times
during an interactive simulation, or from an execution trace file as shown:

data.txt

========= Scheduling for device: SupervisorCPU_0 =========

Supervisor: SelectEvent t:9550034 l:1 vl:1 Ch: newPerc__newPerc

Supervisor: Read 4,percData t:9550035 l:4 vl:4 Ch: percData

Supervisor: Execi 1100000 t:9550039 l:1100000 vl:1100000

========= Scheduling for device: ECU_CPU_0 =========

ECU: Wait newECU__newECU t:18650070 l:1 vl:1 Ch: newECU__newECU

ECU: Read 4,ECUcommand t:18650071 l:4 vl:4 Ch: ECUcommand

ECU: Send newECUdata__newECUdata t:18650075 l:1 vl:1 Ch: newECUdata__newECUdata

ECU: Write 4,ECUdata t:18650076 l:1 vl:4 Ch: ECUdata

========= Scheduling for device: MABX_CPU_0 =========

MABX: Wait newMABX__newMABX t:10650040 l:1 vl:1 Ch: newMABX__newMABX

MABX: Read 4,MABXcommand t:10650041 l:4 vl:4 Ch: MABXcommand

MABX: Send newStatus__newStatus t:10650045 l:1 vl:1 Ch: newStatus__newStatus

========= Scheduling for device: PerceptionCPU_0 =========

Perception: SelectEvent t:8000001 l:5 vl:1 Ch: newLidar__newLidar

Perception: Read 4,LidarData t:8000006 l:5 vl:1 Ch: LidarData

Perception: Read 4,LidarData t:8000012 l:5 vl:1 Ch: LidarData

Perception: Read 4,LidarData t:8000018 l:5 vl:1 Ch: LidarData

Perception: Read 4,LidarData t:8000024 l:5 vl:1 Ch: LidarData

Perception: Execi 160000 t:8000029 l:800000 vl:160000

Perception: Execi 150000 t:8800029 l:750000 vl:150000

Perception: Send newPerc__newPerc t:9550029 l:5 vl:1 Ch: newPerc__newPerc

Perception: Write 4,percData t:9550034 l:1 vl:4 Ch: percData

Perception: Notified newECUdata__newECUdata t:9550035 l:5 vl:1 Ch: newECUdata__newECUdata

Perception: Notified newStatus__newStatus t:9550040 l:5 vl:1 Ch: newStatus__newStatus

Extracting the execution times for each operator could be performed by hand or even programmatically,
except that multiple operators of the same name are not distinguishable in the trace file. Multiple operators

150

Chapter 7. Performance Evaluation

in an activity diagram can all be read operators for the same channel, for example, and are only distin-
guishable within the simulation engine by their id. While it would be possible to modify the simulation
engine and print the ids in the trace, we decided it would be more helpful to the user to calculate latencies
within the simulation window automatically.

Since all of the data required to calculate latencies between operators (operator id + execution time tuples)
already exists within the simulation engine, we only needed to extract them into the display window. Each
hardware node stores a list of all transactions. A new command was added to request that each node
print out the list of transactions which matched the requested ids, and the output transactions were then
sent to the simulation user interface for processing. The list of transactions is then processed as shown in
Algorithm 6.

For user convenience, we provide a panel for the user to indicate which latencies to measure, which our
toolkit then automatically calculates. All the operators marked with latency checkpoints are listed in a
drop-down menu, and the user can select between which two operators should latencies be measured.

Given operators op1 and op2, where occurrences O of the operators O(op1) = [t1evt1, t2evt1, ...], and
O(op2) = [t1evt2, t2evt2, ...] respectively, the list of latencies lmin is calculated as described in Algo-
rithm 6.

input: occurrences of operators op1 and op2 output: set of all latencies between op1 and op2
intialize l={}
for t_op1 in O(op1) do

min_latency = MAX_INTEGER;
for t_op2 in O(op2) do

if t_op2 - t_op1 > 0 t̂_op2 - t_op1 < min_latency then
min_latency = (t_op2 - t_op1)

end
end

end
l.add(min_latency)

Algorithm 6: Algorithm to Calculate Latency for Operators (op1, op2)

As shown in Figure 7-3, the minimum, maximum, average, and standard deviation of the latency values
measured in the current simulation run is displayed. These values are measured as cycles relative to the
main clock, and can converted to real time in seconds based on the processor frequencies.

7.2.4 Backtracing Latencies

Backtracing latencies directly onto activity and state machine diagrams better helps the user modify the
design as it may be difficult to remember all of the different measured latencies for larger designs. These
annotations also explicitly mark if requirements are not met or there is an incoherence in the design across
different levels of abstraction.

151

Chapter 7. Performance Evaluation

Figure 7-3: Latency Measurement Panel

chl

ECUCommand(1)

writeChannel:LidarData
.19

<<Requirement>>

LatencyBrakingNum

ID=17
Text="The Latency
between write: LidarData
and read:ECUCommand
should be less than
1.08seconds."

Kind="Performance"

Figure 7-4: Mapping Operator marked with latency measurement and linked Requirement

7.2.4.1 HW/SW Partitioning

Latencies are backtraced to be displayed for each operator. For each latency measurement, the name of
the other operator is displayed, along with average value of the latency measurement in seconds.

Operators marked with latency checkpoints can also be directly linked to requirements. If the requirement
is formatted in the form "The latency between Operator 1 and Operator 2 should be less than x seconds’,
and then linked to Operator 1 or Operator 2, the fulfillment of this requirement is automatically displayed
after simulation. Latencies that violate timing requirements are marked in red. Figure 7-4 shows the linked
requirement for braking, and since it is satisfied, the latency is marked in black instead of red.

This idea of automatically interpreting requirements as verification annotations or queries should be ex-
tended to other requirements, as it could be convenient for the designer to have all of the queries set up,
and prevent the designer from forgetting to take into account one of the requirements. This idea will be
further discussed as Future Work.

152

Chapter 7. Performance Evaluation

Performance Pragmas
Latency(LidarData.measure,ECU.ECUcommand)<1.08
Latency(Perception.startProcess,Perception.percData)?0.17

Figure 7-5: Performance Pragma with Latency results

7.2.4.2 Software Design

As the design is refined, the same latency measurements should be checked on the Software Design task.

In Software Design diagrams, both the pragma and latency checkpoints can be annotated. Send/receive
signal operators can also be linked to communication operators from the HW/SW Partitioning Phase, so
that should the measured latencies differ by over fixed percentage, the labeled latency is also marked in
red.

Figure 7-5 shows the pragma annotated with the possible results after simulation. A green check mark
indicates that the latency meets requirements, while a red cross indicates that the measured latency does
not. Latency queries are annotated with the average latency value.

7.3 Relating Latencies across Levels of Abstraction

The two main levels of abstraction handled in our methodology are at the HW/SW Partitioning phase, and
the Software Design phase. In the HW/SW Partitioning Phase, algorithms are abstracted as a Computa-
tional Complexity, which can be converted to real time based on the frequency of the hardware component
on which it is executed. When the software design model is subsequently developed, it refines the parti-
tioning functional model by adding details of the implementation of algorithms. The algorithm execution
time should be similar to the estimated computational complexity. Figure 7-6 shows how latencies are
calculated in the HW/SW Partitioning and Software Design Phase.

If a design has been modeled consistently across different levels of abstraction, then the latencies should be
similar. A large discrepancy may mean that execution time was not correctly translated from computational
complexities, or other performance issues [119]. For example, simulations in Software Design ignore
architecture, and do not take into account potential processor and bus contentions that could delay the
execution of operations or reception of communications. One potential solution to better take into account
the hardware platform is to use the SocLib library [297] for prototyping, as described in [119].

To detect such incoherences, Software Design operators which are latency checkpoints are linked to their
corresponding HW/SW Partitioning operator. After simulation on both levels, the latency from HW/SW
Partitioning, which is measured in cycles, is converted to actual time, and checked against the latency from
Software Design, which is measured in seconds. If the times differ by more than 10%, then the latency is
marked in red to indicate an error.

In our example, we examine the measured braking time to determine if the obstacle detection and trajectory
calculation algorithm execution times are correctly translated. The average latency, 3757311 cycles, is
divided by the clock frequency 20MHz to be equal to 0.19 seconds.

In our preliminary Software Design, the average latency is measured to be 0.12 seconds. As shown in 7-7,

153

Chapter 7. Performance Evaluation

sig()

state0

sig() sig()

state1

state2

Partitioning

Before mapping

evt

event()

chl

channel(size)

Algorithm
Complexity

Channel Operator

After mapping

Channel
Transit
Time

Algorithm
Execution
Time

Event Operator

Latency

Software Design

Channel Signal Operator

Channel
Time
Function

Algorithm
Time
Function

Event Signal Operator

Latency

Modeling Execution on Target

calculateAlgorithm

signal1(attribute)

signal2()

Figure 7-6: Latencies across Mapping vs Software Design

154

Chapter 7. Performance Evaluation

ECUIn(command)

sendSignal:LidarData
0.12

chl

ECUCommand(1)

writeChannel:LidarData

0.19

Partitioning

Software design

Figure 7-7: Incoherence detected in latency measured between HW/SW Partitioning and Software Design

this latency is marked in red. As the corresponding latencies are significantly different, we should re-check
both our models to find where the discrepancy lies.

7.4 Performance Impact due to adding Security

Adding security protocols are expected to lead to degraded performance, due to the additional time required
to send longer messages (from added nonces or MACs), exchange keys, and execute security algorithms.
The new capability added to measure latencies between events can help us determine if adding security
will delay critical events.

We examine the performance of the secured and unsecured Autonomous Vehicle models described in the
previous chapters. The default mapping, from Figure 6-22, includes no security mechanisms and does
not ensure the security of Perception data. Mapping 2, from Figure 6-23, maps both the Navigation and
Perception tasks to a single CPU to ensure Authenticity of Perception data. Mapping 3, from Figure 6-28,
uses the same Architecture and Mapping as Mapping 1, but adds security protocols to ensure Authenticity
of Perception data. As Hardware Security Modules have been proposed as a solution to mitigate the
performance impact due to security protocols, we should examine if they indeed can improve performance
for a secured model. Mapping 4, from Figure 5-10, includes security protocols as in Mapping 3, but instead
uses a HSM to encrypt perception data.

As described in Section 4.5, the ability to measure the load of each architectural component, or percentage
of time a component is active, was previously available in TTool. We also should examine the reaction time
of the system to brake following the detection of an obstacle, to check if our secured systems can still react
in time to avoid collisions with obstacles. Figure 7-8 shows the load of the different architectural elements
on Mapping 1, the default mapping. As all of the components besides the Perception and Navigation CPUs
are active less than 1% of the time, we examine only their loads across the other mappings.

Table 7.1 shows the performance results for each mapping, including the max, average, and standard
deviation of the braking latencies measured, and the load of the Perception and Navigation CPUs.

The Perception and Navigation tasks are computation intensive, and as expected, mapping both to a single
processor results in a highly loaded CPU and increased latency. Adding security (Mapping 3) very slightly
increases the average and maximum braking latency. However, the addition of a single Hardware Security
Module in this case does not result in significant improvements to performance, as theoretically expected.

155

Chapter 7. Performance Evaluation

<<CPURR>>
NavigationCPU

FV::Navigation

<<CPURR>>
MABX

FV::MABX

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<CPURR>>
vehicle

<<CPURR>>
CPUGPS

FV::GPS

<<BUS>>
EthernetV2IGPS

<<BUS-CAN>>
CANV

<<BUS-CAN>>
CANVedecom

<<BUS-CAN>>
CANintersystem

FV::ECU

<<CPURR>>
PerceptionCPU

FV::Perception

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>

NavigationBus

<<BRIDGE>>

Bridge

0% 0%

39%53%

0%

0% 0%

0%

0% 0%

0%

Figure 7-8: Performance results for Mapping 1

Table 7.1: Performance Results over Mappings

Mapping
Braking Latency (s) Load (%)
Max Average St. Dev Perception CPU Navigation CPU

Mapping 1 (Default) 0.52 0.19 0.13 53 39
Mapping 2 (Nav + Perc on same CPU) 1.15 0.45 0.28 93 -
Mapping 3 (+Security Protocols) 0.53 0.21 0.27 47 35
Mapping 4 (+Security Protocols +HSM) 0.57 0.20 0.15 50 36

156

Chapter 7. Performance Evaluation

perceptionData(1)

verifyMAC

Navigation Perception HSM
...

Mapping 4
(+Security Protocols +HSM)

Mapping3
(+Security Protocols)

Navigation Perception
...

@0

nonce_perceptionData(1)

startHSM_CPU0()

perceptionData(1)

verifyMAC

calculateMAC

data_perceptionData(1)

retData_perceptionData(1)

calculateMAC

@370

@426

@0

@1

@9

@25

@62

@94

+1

+370

+56
+8

+16

+37

+56

+32

@160

Figure 7-9: Simulation Trace for Performing Security Operations in Perception task or HSM

While the Hardware Security Module performs the security protocols significantly faster than a regular
processor, the processor must send the communications to the HSM and then receive the encrypted com-
munications to send. In this case, the majority of the operations performed are calculating the obstacles
and trajectory, and the encryption operations are insignificant in comparison. In fact, if the amount of
data is trivial, We assumed that the hardware accelerator performs security operations 25x faster than the
regular processor, a somewhat optimistic assumption based on the experimental results in [56, 344].

Our estimated data size for perception data is 16 bytes, and data size for the nonce is set to 8 bytes
which should be sufficient [63]. With the SHA-256 block size of 512 bits, the operation is performed in
a single instance of 370 cycles. Figure 7-9 shows the simulation trace for if the MAC is calculated by the
Perception task, or instead by the associated HSM, and annotated with the number of cycles to perform
each operation. We assume a bus transfer speed of 1 byte/cycle, with the total transfer time for each
communication depending on the message size. For example, the final perception data message sent is 24
bytes (message + nonce) + 32 bytes (MAC) [174]. Synchronization events, such as starting the HSM, are
assumed to take 1 cycle. The speedup in these 266 cycles is insignificant, especially as we assumed the
perception and navigation algorithms executed in far more than 370 cycles.

If we examine a system in which security algorithms occupy the majority of the execution time, we may
find that HSMs have a greater impact on performance. Our future work should examine if these results are
indeed accurate by testing on a prototype, and thus, model HSMs more realistically based on experimental
data.

7.5 Conclusion

Performance metrics, such as load and latencies, are vital characteristics of a system’s behavior. Not only
should a system behave correctly, but it must also execute its behaviors in time to respond to safety critical
events. Processes can be further delayed if a single hardware component is in charge of executing too
many intensive processes or transporting large amounts of data communications.

157

Chapter 7. Performance Evaluation

In our previous work checking the performance impact due to security [201], our timing analysis was
limited to comparing total execution cycles of setting the main task to run a fixed number of times. Through
our new capability to measure latency, we were able to examine a critical safety property:obstacle response
time. The added latency measurements allows for a more precise assessment, as we determine the response
times exactly instead of possibly measuring the latencies for events that were not important. For example,
measuring the total run time of our example would include the inactive time of the sensors between data
collection.

Thus, we evaluated the performance of various configurations of our system, with different mappings
and security capabilities, and noted the performance impact of securing a single communication, with
the security protocols performed by processors or by a Hardware Security Module. By better examining
performance of various mappings, we can better select which will meet all of our requirements.

158

Chapter 8

Conclusion and Perspectives

"The future of the safety movement is not so much dependent upon the invention of safety devices as
on the improvement of methods of educating people to the ideal of caution and safety."
- Walter Dill Scott

Connected embedded systems, such as future autonomous vehicles, are expected to bring many conve-
niences to our lives. Not only does internet connectivity bring entertainment for passengers on a long
trip, but it provides us access to the wealth of knowledge available: an exact location with comprehensive
driving instructions, locations of restaurants or gas stations for rest stops, and traffic conditions all around
us to better help us avoid gridlocks. Drivers no longer need to read a paper map or find detours by hand.
Additional safety features, such as automatic braking or parking assist, can further prevent collisions.

However, by adopting these connected and automated features, we cede an amount of control of our
vehicle, and instead rely more strongly on software. Accidents in a completely autonomous vehicle will
be due to system errors instead of driver errors. Therefore, these systems should be assured to function
correctly and safely. As accidents involving autopilot have shown, these systems cannot yet handle all road
conditions, and sensors and processing algorithms may fail to correctly perceive the environment correctly
[180, 300, 323]. The safety of these systems should be assured through a comprehensive verification
process.

The safety of embedded systems relies on multiple aspects. First, the system should be free of software
bugs that might cause it to deadlock and stop responding, potentially resulting in dangerous situations such
as the vehicle driving straight off the road or stopping on the freeway. Next, the system should be secure
against hackers, so that hackers cannot modify the system code, as in Miller and Valasek’s hack [223],
and inject their own commands into the system. For example, a hacker who can gain control of another’s
vehicle could provoke a fatal accident, such as turning hard into incoming traffic. A safe system must
also take into account its limitations and compensate for them. Since cameras do not function well in low
lighting, the system should rely primarily on the other sensors at night. Finally, the safety of the system
depends on performance, or timings. Hardware components should not be so highly charged that they
cannot perform functions reliably, and critical events, such as obstacle avoidance, should not be delayed
so that they execute beyond a strict deadline.

159

Chapter 8. Conclusion and Perspectives

8.1 Integration of full Safety and Security Features into Autonomous Ve-
hicle Model

Throughout this thesis, we demonstrated each of the new capabilities of our approach to improve the safety
and security of the Autonomous Vehicle in our running example. We have explained some of the possible
countermeasures to add, but we conclude by demonstrating how to integrate a preliminary set we consider
necessary to avoid most of the possible hazards.

We conclude by integrating all of the relevant safety and security countermeasures into a single model,
and then evaluating its overall safety, security, and performance. In previous chapters, we described that
perception data should be ensured authentic to prevent an attacker from injecting false perception data.
We extend this requirement to other other critical internal communications as well, such as vehicle status,
MABX commands, ECU data, and ECU commands. In addition, authenticity of sensors should be guaran-
teed. The EVITA project discussed that the system should detect if a genuine sensor was replaced with a
faulty or modified sensor without authorization by a malicious individual, and recommended an authenti-
cation process to detect that each component was authentic [274]. The EVITA project [274] also suggested
that functional internal communications should confidential. Understanding the format of the communi-
cations could allow an attacker to reverse-engineering software or recover intellectual property [166,289].
Therefore, we also require the critical internal communications be verified Confidential. Securing the
system requires adding the security countermeasures described in Chapter 5 and 6. As the Navigation
task must decrypt or encrypt multiple communications, more than in our previous study in Section 7.4, it
may observe a greater performance improvement when supplied with a Hardware Security Module. As in
Chapter 5, we use a Firewall to protect against the attacker injection of code.

In addition, as discussed earlier, redundancy of protocols and hardware can better prevent system failure
even in the event of a single protocol flaw, lost message, or processor fault. Since the calculation of obsta-
cles is critical, we duplicate that function. The Perception task is then split into a preliminary Perception
task which accepts the inputs from the sensors, and then the duplicated second task which calculates the
location of each obstacle and the corresponding level of confidence. The Navigation task must then take
the 2 sets of Perception data and determine if they are coherent. If the data differ too greatly, then there is
likely an error in the system. Another safety check which should be important is on sensor data. Coherence
and Plausibility checks can detect and discard sensor data which has been falsified by an attacker, poor
data due to sensor limitations, or erroneous data generated by a faulty sensor.

Figures 8-1 and 8-2 show the Functional and Mapping models of the autonomous vehicle respectively,
with the described safety and security countermeasures added, along with the security verification results
confirming the confidentiality and authenticity of critical internal communications. This model with im-
proved safety and security should protect against many of the faults and attacks described in Chapter 2,
such as sensor limitations [180, 216, 229, 295], manipulated sensors [255, 294, 346], and attacker-injected
commands and data [67, 223, 337]. This model does not include the security mechanisms for the V2X
(pseudonym generator, etc), security protocols on the CAN bus, tamper-resistance mechanisms for sen-
sors (filtering, etc), vulnerabilities such as open ports, or coding details. Future safety and security tests
should be performed on first the detailed software design model, and then a developed prototype.

We repeat our performance evaluation from Section 7.4 to check the performance impact due to the addi-
tions. We examine both braking latency and the load on the Perception and Navigation CPU(s) as before.
Table 8.1 compares the performance results from our base model (with no security or safety counter-

160

Chapter 8. Conclusion and Perspectives

Radar

Camera

Lidar

AutonomousSystem

ExteriorInterface

Perception

Navigation

MABX

ECU
GPS

ECUcommand

V2Xin

MABXcommand

destData

V2Idata

LidarData

RadarData

CamData

vehStatus

GPSRTK

IMUdata

V2Vdata

ECUdata
IMU

UI

V2X

UIdata

Perception1 Perception2

percData1 percUpdate1
percData2

percUpdate2

percDataRaw1

percDataRaw2

+Coherence Check
+Plausibility Check

+Decrypt MABXcommand

+Encrypt vehStatus

+Decrypt ECUcommand

+Encrypt ECUdata

+Encrypt ECUcommand

+Coherence Check
+Encrypt MABXcommand

+Decrypt vehStatus

Mapping_safesec

Mapping_safesec

Mapping_safesec

Mapping_safesec

S
W

Mapping_safesec

S
W

Mapping_safesec

S
W

Mapping_safesec

+Decrypt percData

Mapping_safesec Mapping_safesec

S
W
Mapping_safesec S

W
Mapping_safesec

+Verify Sensor Data

S
W Mapping_safesec

S
W Mapping_safesec

S
W Mapping_safesec

S
W Mapping_safesec

S
W Mapping_safesec

+Calculate and Add MAC

V2Xout

Figure 8-1: Full Application Model with Safety and Security Countermeasures

161

C
h
a
p
ter

8
.

C
o
n
clu

sio
n

a
n
d

P
ersp

ectives

<<CPURR>>
CameraCPU

FV::Camera

<<BUS>>
EthernetCamera

<<CPURR>>
LidarCPU

FV::Lidar

<<CPURR>>
NavigationCPU

FV::Navigation

<<CPURR>>
MABX

FV::MABX

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<CPURR>>

InterfaceCPU

FV::ExteriorInterface
FV::ExteriorInterface

<<BUS-CAN>>

EthernetIHM

<<CPURR>>

vehicle
<<BUS-CAN>>

CANLidar

<<CPURR>>
RadarCPU

FV::Radar

<<BUS-CAN>>
CANRadar

<<CPURR>>
IMUCPU

FV::IMU

<<BUS-CAN>>
CANIMU

<<CPURR>>
CPUGPS

FV::GPS

<<BUS>>
EthernetV2IGPS

<<BUS-CAN>>

CANV

<<BUS-CAN>>

CANVedecom1

<<BUS>>
WiFI

FV::Camera

<<CPURR>>
V2XCPU

FV::V2X FV::Camera

<<CPURR>>
UICPU

FV::UI

<<BUS-CAN>>
CANintersystem

FV::ECU

<<CPURR>>
PerceptionCPU

FV::Perception

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>
NavigationBus

<<FIREWALL>>
Firewall0

<<BUS-CAN>>

CANVedecom2

<<CPURR>>
PerceptionCPU1

FV::Perception1

<<BUS-CAN>>
CANPercInter

<<CPURR>>
PerceptionCPU2

FV::Perception2

<<BUS-CAN>>
CANPercInter1

<<BUS-CAN>>
CANPercInter1

<<HWA>>
HSM

FV::HSM

<<BUS-RR>>
HSMBus

<<MEMORY>>
MemoryHSM

F
igure

8-2:
F

ullM
apping

M
odelw

ith
S

afety
and

S
ecurity

C
ounterm

easures

162

Chapter 8. Conclusion and Perspectives

Table 8.1: Performance Results Comparison of Default vs Safe and Secured Mapping

Mapping
Braking Latency (s) Load (%)

Max Average St. Dev Perc CPU Perc CPU1 Perc CPU2 Nav CPU
Default Mapping 0.52 0.19 0.13 53 39

+Safe +Sec Mapping 1.13 0.46 0.10 4 10 10 42
+Safe +Sec Mapping

(Improved Perf.)
0.99 0.39 0.15 5 7 7 36

measures) and our new final safe and secure model. As expected, the braking latency was significantly
increased, though the loads on the processors decreased, likely due to breaking up the Perception tasks
and idle time waiting for another task to send or receive communications. At this point, the reaction time
to brake for an obstacle is while on average less than the 1.08 seconds required, the maximum braking
latency exceeds the allowable reaction time. To improve this latency, we could consider further modifying
the mapping, such as using better processors, or improving the runtime of the different algorithms. In this
case, while this first set of safety and security countermeasures should improve the security of our au-
tonomous vehicle, their addition degraded its performance to which point consequently it could no longer
be guaranteed safe.

Therefore, we needed to modify our system so that it would satisfy performance requirements again. We
could decrease the braking latency using various approaches, such as using more efficient processors,
more efficient security protocols, optimized algorithms, and etc. According to our model, the Perception
tasks’ algorithms are the most computation intensive, and therefore we targeted them for improvement.
As shown in Table 8.1, in the performance results for Safe and Secure Mapping (Improved Performance),
the system would satisfy the timing requirements if the computation complexity could be reduced by 10%.
This assumption should be validated after re-designing the algorithm in detail in the Software Design
phase, aligning with our methodology based on iterations of modeling, verification, and reconsideration
steps, which are repeated until all system requirements are satisfied.

8.2 Contributions

This thesis discussed safe and secure design of such systems from a Model-Driven Engineering perspec-
tive. Modeling a system helps designers systematically consider all of the system needs, and detect issues
in the modeling phases before purchase of hardware or time-intensive development of code. Repairing
problems early in these phases thus prevents costly rework or patching products after mass production and
distribution.

We started with a summary of the issues faced by autonomous and connected vehicles, and discussed
how modeling and verification could support the design of such systems. We presented the capabilities
of other methodologies and toolkits, but as none satisfied all of our design needs, we proposed a new
methodology. Our new methodology enhances the SysML-Sec Methodology [13] to consider security
during the HW/SW Partitioning Phase, allowing for the modeling of attacker capabilities to target an
architecture and architecture-based countermeasures, and improved performance analysis by examining
the latencies between critical events.

These ideas were actualized and integrated in the modeling toolkit TTool [15]. Throughout this thesis,

163

Chapter 8. Conclusion and Perspectives

we have demonstrated the new capabilities of our toolkit, in modeling, verification, and automatic genera-
tion using the Vedecom Autonomous Vehicle as our case study. We have demonstrated how our HW/SW
Partitioning models can now be better analyzed to determine the attacker impact, whether through code in-
jection or message tampering, guiding us to add countermeasures automatically such as Hardware Security
Modules. Furthermore, we used our new latency measurement capabilities to both check the coherence
of models across different levels of abstraction and to more precisely analyze the performance of secured
vs unsecured models than in previous publications [201]. The latter analysis helped us better determine
the performance impact due to security, and also demonstrated the limitations of HSMs. Without these
modeling and verification capabilities, the analysis in the HW/SW Partitioning phase may fail to take into
account security requirements and the performance impact of security operations, leading to selection of
a non-ideal architecture/mapping. With these new modeling and analysis features, we proposed an archi-
tecture/mapping model of the Autonomous Vehicle system with safety and security mechanisms included,
and then determined its satisfaction of safety, security, and performance requirements. In conclusion,
these improved modeling and verification capabilities help select a mapping satisfying safety, security,
and performance requirements, and better provide a better foundation for the subsequent Software Design
phase.

8.3 Perspectives

The ultimate goal of this thesis was to determine how to design safe and secure systems. We have provided
a methodology and supporting toolkit which should be easy to use, but still cannot address all aspects of
safe and secure design.

While this thesis has proposed new aspects for design of embedded systems, there exist significant future
work, beyond modeling and verification. One important future research direction is to investigate the
practical aspects of security in embedded systems, to determine if our modeling adequately represents
systems and their potential vulnerabilities.

8.3.1 Security for Embedded Systems in Practice

As this thesis is primarily theoretical, future work should involve determining if our modeling approach
is sufficient to represent security vulnerabilities and countermeasures, and our supported verification tools
can indeed detect actual security flaws in real-world systems. Our HW/SW Partitioning phase, for example,
is highly abstract, and we should ensure that a secure model is indeed secure in practice. For example,
many of the demonstrated hacks [67, 223] involved entering the system through an open port, which we
should determine if this possibility is correctly represented by modifiable code and public buses.

8.3.2 Accurate Representation of Countermeasures

Theoretically, Hardware Security Modules should greatly improve performance. However, experimental
results have shown variable improvements, with the HSM from the EVITA project showing a range of
experimental results on different security algorithms, from no improvement to a 25x speedup [344], and
[56] showing 2-60x speedup for the security functions, resulting in 2-9x speedups of the entire algorithm.

164

Chapter 8. Conclusion and Perspectives

after (20,20)

X_encrypted=sencrypt(X,key)

state0

c(X) c(X_encrypted)

AVATAR Model ProVerif Specification

 new choice___state0___0[]: bitstring;

 out (ch, choice___state0___0);

 in (ch, choice___state0: bitstring);

//choice__state0 is randomly selected to be either

choice__state0__0 or choice__state0__1

 if choice___state0 = choice___state0___0 then (

 out (ch, Block1___X__data___1))

 else

 out (ch, Block1___X_encrypted__data___2).

Figure 8-3: AVATAR Model translated incorrectly to ProVerif due to removal of time

We should investigate with actual Hardware Security Modules to see their impact of performance, and
thus, more accurately represent HSMs.

Other potential future work enhance our ideas on modeling and verification, including future development
for our toolkit.

8.3.3 Full Automatic Generation of Countermeasures

The ultimate automatic generation tool would take in the set of requirements, a base model, and then add all
countermeasures to fulfill all of these requirements. At this point, our current automatic security generation
tool adds security operators and Hardware Security Modules to fulfill marked security properties. These
additions, however, may cause the model to no longer meet timing and performance requirements. Given
an accurate set of information regarding the execution time of different encryption algorithms, our tool
could suggest which algorithm would fulfill timing requirements, or suggest that a Hardware Security
Module be added. However, in our case study, we determined that Hardware Security Modules were not
effective due to the minimal security operations performed, and our toolkit should be able to better analyze
the model to determine when adding HSMs would be effective.

8.3.4 Security Modeling and Verification

Currently, our security verification focuses on determining if an attacker can access specific sensitive data
or modify program code. For all that ProVerif has served our purpose, it is possible that other security
provers may bring their own advantages. For example, only limited mathematical notation can be used in
ProVerif.

This thesis touches upon tamper-proof program execution, but decided that no hardware or software coun-
termeasure could definitively allow us to classify a task as tamper-proof. However, the future developers
of TTool should consider keeping track of future research in this direction.

165

Chapter 8. Conclusion and Perspectives

8.3.5 Time in ProVerif

We currently disregard all temporal operators for the translation to ProVerif, as the security prover has no
concept of time. However, in certain cases, this simplification can lead to the prover wrongfully deter-
mining that sensitive data is recoverable by the attacker when in fact it is not. For example, Figure 8-3
shows an Avatar State Machine Diagram where the next action is to send the data X after t seconds or
the encrypted form of X, along a channel c which we assume public. By removing the after(t) action,
ProVerif interprets the behavior of the system to be sending X or X_encrypted, for which the Confiden-
tiality of X is proved false. However, in AVATAR, the system will take the first available action, which
would be to send X_encrypted. Therefore, in reality, X would never be sent along the public channel, so
the Confidentiality of X is actually true in the model. Future work should consider how to best add the
concepts of unreachability due to time into our translation.

8.3.6 Safety Countermeasure Modeling

While TTool supports the modeling of safety countermeasures like Redundancy and Coherence checks,
unlike security countermeasures, they cannot yet be added automatically like security countermeasures
can. The automatic addition of these common countermeasures would reduce design time and manual
work, making modeling more efficient.

8.3.7 Safety and Security Analysis Diagrams

As discussed in Chapter 3, various works have proposed combining safety and security analysis. While
in our example, fault trees and attack trees can be modeled separately, certain faults may make an attack
more likely, and our modeling diagrams should investigate how to connect them.

8.3.8 Relationship between Safety, Security, and Performance

Considering the interactions between Safety and Security is important to fulfill both types of requirements.
We have discussed some aspects of how adding countermeasures affects each, but there is more analysis
and research to be done, especially on how to better automate the process. Furthermore, while our security
analyzer can determine which security properties on data and communications are violated, it would be
helpful to extrapolate the ultimate effect on the system safety based on the security analysis results.

8.3.9 System Resilience

While our current safety verification can check the correctness of our design and if it avoids certain unsafe
situations, we do not yet support fault resistance analysis. Currently, during Software Design, our toolkit
can simulate the effect of lossy communications, we propose expanding these fault simulations to allow
for faulty architectural components, such as lossy buses or failing processors, and faulty communications,
such as across error-prone channels.

166

Chapter 8. Conclusion and Perspectives

8.3.10 Vulnerability Modeling

TTool’s current modeling of vulnerabilities are limited to communications accessible to an attacker and
tasks which can be modified by an attacker. Works like [93, 195] offered more detailed vulnerability
modeling. Based on specific commercial components selected, these tools looked up the list of discovered
vulnerabilities for each component. This idea could better guide the development of attack trees with the
exact vulnerabilities and corresponding attack steps that can be carried out on the system.

8.3.11 Improved Connections between Phases

This paper noted that security requirements, attacks, and faults in the Analysis phase can be related to
certain countermeasures and verifications in the later phases. However, these links are not yet complete,
and with the exception of limited latency requirements, requirements are not yet automatically translated
into verification annotations or pragmas. This automation is another proposed area of future work.

8.3.12 Integration of Security Verification Results

Currently, Confidentiality and Authenticity properties are formally checked with ProVerif, while Availabil-
ity properties are checked informally with Attacker Scenarios and our simulation engine. While ProVerif
does not handle verification of Availability or consider performance parameters, and our simulation engine
is not yet formal and ignores cryptographic operations, we could look into methods of better harmonizing
these two analysis methods. We could potentially either find another prover considering all 3 proper-
ties, or adapt either our simulator to take into account security properties, or extend ProVerif to consider
Availability.

8.3.13 Proof of Correctness for Authenticity

In this thesis and [208], we have proved that the model transformations to ProVerif specifications maintain
that if a variable is not Confidential in the model, then it will be verified non confidential in the ProVerif
specification. In future work, we should also prove the correctness of the transformation for both the
Strong and Weak Authenticity properties.

8.3.14 Attack Probabilities

Security properties in TTool are currently either proved true or false, or unproved, does not take into
account brute force or side channel attacks, and assumes that keys cannot be guessed. However, as other
works have provided times for attack and attack probabilities based on parameters such as key size, security
algorithm, etc. Many agencies and researchers have provided recommendations for key size [36,196], and
as encryption/decryption time varies with key size, it would be helpful to indicate to the user if their
selected key size/algorithm is acceptable security practice, or if a brute force attack break it too quickly
[108]. However, it is worth noting that recommended key size, algorithms, and password cracking times
change over time [30, 105], and they may need to be updated yearly.

167

Chapter 8. Conclusion and Perspectives

168

Chapter 9

Resume

La vérité vaut bien qu’on passe quelques années sans la trouver.
–Jules Renard

9.1 Introduction

Les systèmes embarqués et les dispositifs connectés sont de plus en plus répandus dans notre vie quotidi-
enne [96]. Ces systèmes, qui comportent des composants matériels et logiciels, contiennent un ordinateur
"intégré" dans l’appareil et sont conçus pour exécuter une seule fonction dédiée [25]. La connectivité
omniprésente de ces objets a amélioré notre vie quotidienne, avec l’ajout de commodités dans notre mai-
son [263], et l’amélioration de la sécurité dans nos trajets quotidiens (connectivité Internet, surveillance
des voitures, freinage d’urgence, etc) [342]. Malgré tous les avantages dus à ces dispositifs connectés,
leurs dysfonctionnements posent des impacts graves sur la vie privée ou la sécurité personnelle.

Par exemple, des machines de radiothérapie devraient aider à traiter le cancer, mais les bogues logiciels
ont rendu malades ou tué des dizaines de patients [121, 198]. Des autres produits quotidiens ont été
rappelés en raison de risques sur la sûreté [6, 176]. Des failles de sécurité ont également été trouvées
sur des appareils médicaux, comme la pompe à médicaments Symbiq de Hospira [153]. Les chercheurs
ont démontré comment prendre le contrôle des voitures connectées grâce à la connectivité cellulaire et
wifi [67, 223], et des drones grâce à une connexion à distance non sécurisée [268]. Les attaques ont
également visé d’importants systèmes industriels, comme en témoignent les attaques Stuxnet, Flame et
Duqu [219]. Tous ces exemples démontrent les risques de sûreté posés par les failles ou les vulnérabilités
des systèmes embarqués et connectés.

La sûreté est définie comme l’évitement de situations qui peuvent causer des pertes telles que des blessures
corporelles, des maladies, des dommages matériels, des dommages financiers, etc. Un système devrait être
exempt de défauts, qui sont définis comme des états système indésirables dus soit à des commandes incor-
rectes ou à l’absence de la commande correcte, soit à une défaillance, qui est définie comme l’incapacité du
système ou de l’élément du système à remplir sa fonction prévue [62]. Dans notre contexte, nous divisons
la sûreté du système en multiples aspects : la sûreté conventionnelle qui consiste à éviter les dysfonction-

169

Chapter 9. Resume

nements entraînant des pertes, comme les errurs de programmation de l’appareil Therac-25 qui pourraient
occasionner une dose fatale de rayonnement aux patients, et la sûreté de la fonctionnalité prévue qui con-
siste à éviter les pertes dues aux conditions environnementales, même dans un système sans défaut, comme
le mauvais fonctionnement des capteurs dans des conditions météorologiques défavorables [31, 154, 198].

Les systèmes en temps réel impliquent un logiciel de contrôle continu qui commande des composants
physiques, qui fonctionnent avec des contraintes de temps pour une fonction correcte [123]. Dans cer-
tains systèmes en temps réel, la performance peut également être essentielle à la sûreté [64, 243]. Les
événements critiques ne devraient pas être retardés en raison d’un conflit d’accès au bus ou au processeur
d’un système embarqué, car de telles contentions peuvent créer des situations potentiellement dangereuses
comme des dommages au système ou aux utilisateurs [9, 191].

De plus, la sûreté d’un système dépend de sa sécurité. Selon le chercheur en sécurité Charlie Miller, qui
a démontré le piratage à distance d’une Jeep à travers le réseau cellulaire, "Vous ne pouvez pas avoir la
sûreté sans sécurité" [128]. Même si un système a été conçu pour être complètement sûr, si un pirate
accède au système, il pourrait changer la fonctionnalité entièrement d’un système qui ne met en oeuvre
des contrôles de sûreté.

La conception de systèmes embarqués sûrs est compliquée en raison de leurs nombreuses exigences et de
la présence de composants matériels et logiciels [145]. Non seulement nous devons nous assurer que le
système se comportera toujours en toute sûreté et qu’il est protégé contre les attaquants, mais nous devons
également tenir compte de la performance en temps réel pour les dispositifs critiques du point de vue de la
synchronisation, de la mémoire, de la durée de vie des dispositifs, du coût et de la taille de l’architecture,
de la fiabilité et enfin de la consommation d’énergie pour les systèmes sur batterie [25, 184].

La conception de systèmes sécurisés est compliquée par le manque d’expertise en sécurité des développeurs
[20,284,306,306], et le fait que les mécanismes de sécurité sont souvent ajoutés une fois le système déjà sur
le marché [98]. En même temps, la conception de systèmes sûrs est compliquée par la nécessité d’assurer
à la fois l’exactitude fonctionnelle du logiciel dans une variété d’environnements et la capacité du matériel
à supporter les fonctions de sécurité [144].

De nombreuses solutions pour assurer la sûreté et la sécurité ont été proposées, telles que la modélisation,
les tests, diverses méthodologies et le respect de normes industrielles. Une solution, la modélisation sys-
tématique et la vérification formelle, peut aider à détecter les défauts plus tôt, à préciser le système et à
mieux analyser l’ensemble du système, ce que les tests individuels ne peuvent pas faire [290]. Réparer
les défauts logiciels plus tôt dans le processus de conception coûte moins cher qu’après la production de
masse [137]. La vérification formelle et la simulation peuvent être effectuées sur les modèles plus abstraits
pour valider la conception [91], car les systèmes complets peuvent être trop grands pour être modélisés
et prendre trop de temps à vérifier, souvent décrits comme le problème de l’explosion d’état [61]. Les
concepteurs affinent ensuite de façon itérative les modèles abstraits jusqu’à ce que les modèles incluent
tous les détails importants [340]. Les modèles finaux peuvent alors être automatiquement traduits en code
généré [192, 331], ce qui assure la corrélation entre le système et les modèles, et facilite le processus de
développement logiciel [290].

Ma thèse, financée par l’Institut Vedecom, l’institut de recherche pour le développement de véhicules
durables et autonomes, étudie la conception de systèmes embarqués sûrs et sécurisés. La conception de
leur véhicule autonome doit tenir compte d’une multitude d’exigences, notamment la sûreté des occupants
et des autres passants. L’une des étapes critiques du développement est de décider du matériel et des
logiciels de haut niveau, et du partitionnement du logiciel avec le matériel (déterminer les composants

170

Chapter 9. Resume

matériels où les fonctions sont exécutées) [217, 236, 316].

Comme présenté dans cette thèse, il existe plusieurs méthodologies et outils de conception, chacune se
concentrant sur certains aspects de la conception ou des domaines spécifiques, mais aucune ne supporte
les outils de vérification nécessaires et gère la modélisation de la sécurité requise, en particulier lors de la
sélection d’une architecture et des allocations de fonctions sur l’architecture. Nous faisons donc évoluer la
méthodologie SysML-Sec et l’outil de support TTool pour mieux répondre à ces besoins [13,15]. Comme
avantage de notre approche, le fait de garder l’ensemble de la modélisation dans une seule boîte à outils
permet de s’assurer qu’il n’y a qu’un seul ensemble de modèles et de minimiser le nombre de reconsid-
érations à chaque changement [157]. En même temps, nous assurons la facilité d’utilisation de notre boîte
à outils, une qualité essentielle pour assurer son adoption par les concepteurs [235]. Nous discutons aussi
de nos efforts pour une assurer une présentation claire des résultats de vérification au niveau des modèles,
afin de faire gagner du temps au concepteur en identifiant automatiquement les exigences auxquelles un
modèle ne répond pas.

Les contributions de cette thèse sont la proposition d’une nouvelle methodologie de modélisation et de
verification, dont la modelisation de sécurité pendant le phase d’allocation logicielle/matérielle, et les
mesures de latences (performance).

9.2 Contexte

9.2.1 Sûreté et Sécurité des Voitures Autonomes/Connectés

L’introduction des voitures autonomes devrait réduire les accidents, faciliter la circulation, diminuer la
pollution, offrir des services de transport aux personnes handicapées, aux personnes âgées et aux enfants,
et aux autres qui ne peuvent pas conduire, et changer l’essence même de nos trajets quotidiens [101].
Contrairement aux véhicules conventionnels, les véhicules autonomes s’appuieront entièrement sur des
logiciels et des capteurs, au lieu de prendre des décisions humaines potentiellement erronées pour le con-
trôle. Pour assurer la sécurité des passagers et des autres personnes à proximité, les constructeurs doivent
assurer le fonctionnement sûr et sécurisé du logiciel du véhicule.

Comme pour les autres dispositifs embarqués, les véhicules n’ont pas été exempts de défauts de sécurité
et de sûreté, comme cela a été démontré ces années. Pire encore, alors que la connectivité accrue des
véhicules a offert de nouvelles facilité pour la sûreté, elle a également créé des possibilités d’attaque pour
les pirates informatiques.

Le tableau 9.1 résume les risques pour la sécurité et la sûreté pour les véhicules connectés et autonomes.

9.2.2 Contre-mesures proposées

De nombreux projets de recherche proposent de prendre en compte ces problèmes: nous les présentons en
fonction des contre-mesures possibles. Bien qu’il existe d’innombrables méthodes pour assurer la sûreté
d’un système, nous nous concentrons sur les principales méthodes utilisées dans le prototype Vedecom.

Les contrôles de cohérence peuvent aider à garantir le bon fonctionnement d’un système malgré des don-
nées de capteurs falsifiées ou erronées. S’il y a une discordance significative dans les capteurs, alors il est

171

Chapter 9. Resume

Table 9.1: Tableau de Risques dans les Voitures Autonomes/Connectées
Risque Attaque/Défaut Reférence

Contrôle à distance du véhicule par
l’attaquant

Réseaux Wifi/3G network
[67, 223,

337]

Contrôle du véhicule par l’attaquant
Unité télématique attachée au port

OBD-II
[109, 188,

345]

Arrêt des fonctions de sécurité
Attaque par déni de service sur le bus

CAN
[246]

Données des capteurs falsifiées Camera/Lidar/Radar
[255, 294,

346]
Signaux GPS falsifiés GPS [149]

Atteinte à la vie privée Appli Smartphone App/Capteur Pneu [150, 159]
Mauvaise interprétation des panneaux

de signalisation routière
Modification de panneau [122]

Mauvaises Données Lidar/Radar Neige / Pluie [216, 229]
Mauvaises Données Caméra Ténèbres / éblouissement solaire [180, 295]

Perte de Signaux GPS Bâtiments / Tunnels [66]

Mauvaise infrastructure routière
Marquage des voies endommagées /

Panne d’électricité
[216]

possible qu’un attaquant usurpe l’un des capteurs, ou qu’un des capteurs ne fonctionne pas correctement,
et donc l’utilisateur devrait être averti.

Les contrôles de plausibilité tiennent compte de la plage possible des valeurs et des données historiques
pour filtrer les données d’entrée. Par exemple, un saut extrême dans la position actuelle à partir du GPS
dans un court intervalle est impossible, et est probablement dû à un dysfonctionnement ou à un problème de
réception. Le boîtier MABX, qui convertit les commandes du véhicule pour les ECUs, effectue également
un filtrage pour des raisons de sûreté. Les commandes du véhicule peuvent être acceptées ou rejetées en
fonction de l’accélération maximale autorisée, du freinage, du virage, de la vitesse actuelle, etc.

La redondance des fonctions vitales et des capteurs permet d’assurer le fonctionnement du système dans
les composants critiques. Même en cas de dysfonctionnement d’un composant, le véhicule doit continuer
à fonctionner en toute sûreté ou entrer en mode de sûreté en avertissant les occupants et en se dirigeant
vers un arrêt sûr. La fonction principale de la voiture autonome est l’unité Perception, qui recueille toutes
les données des capteurs et génère l’ensemble des obstacles dans la zone environnante. Quelle que soit
la rigueur des tests, il existe de nombreuses combinaisons de mesures de capteurs et d’obstacles, et tout
algorithme de perception peut encore avoir des défauts. De plus, en cas de défaillance du processeur ou du
bus de communication, aucune donnée de perception ne serait envoyée au superviseur, ce qui empêcherait
le système de continuer à fonctionner.

Nos contre-mesures de sécurité primaires protègent notre système ou nos données contre un attaquant.
Certaines communications internes du système peuvent être accessibles à l’attaquant, il est donc important
de s’assurer que l’attaquant ne peut pas récupérer ou altérer des données importantes qui pourraient donner
lieu à des situations indésirables. Les mécanismes de cryptage empêchent un attaquant de récupérer (et
de comprendre) certaines données. Les codes d’authentification de message peuvent être ajoutés à un
message afin que le destinataire puisse déterminer que le message n’a pas été modifié. Les horodatages et
les nonces peuvent également être utilisés pour empêcher que des messages en double ne soient reçus et

172

Chapter 9. Resume

acceptés lors d’une rediffusion.

Des modules de sécurité matérielle (HSM) ont été suggérés dans les projets européen EVITA, PRESERVE,
SEVECOM et d’autres travaux sur la sécurité des systèmes embarqués [92]. Ils définissent des protocoles
de sécurité et protègent les clés cryptographiques qu’ils contiennent, conformément à l’exigence proposée
de mémoires sécurisées pour la cryptographie. En outre, ils peuvent contenir des accélérateurs cryp-
tographiques qui effectuent le chiffrement plus rapidement que les processeurs ordinaires. Cependant, il
s’agit d’un composant matériel supplémentaire ajouté au système. Les modules de sécurité du matériel
commercial peuvent être basés sur ARM Trust Zone, Infineon Aurix HSM, etc, dont certains sont compat-
ibles avec les spécifications issues d’EVITA [293].

Les pare-feu séparent les différents sous-systèmes avec des niveaux de sécurité différents. Ils peuvent
isoler les communications non fiables pour les empêcher d’accéder à des systèmes internes critiques. Les
pare-feu peuvent être des pare-feu matériels ou logiciels, ou les deux. [70] a discuté de la façon dont les
pare-feu peuvent être mis en œuvre dans le matériel afin de protéger un circuit intégré.

Les systèmes de détection d’intrusion ou d’anomalie peuvent détecter des attaques ou des dysfonction-
nements de composants [173]. Si une attaque est détectée, le système peut avertir l’utilisateur ou entrer en
mode failsafe. Des produits commerciaux sont également disponibles pour les constructeurs automobiles,
comme le logiciel de détection d’anomalie de Symantec [45].

Une autre considération importante en matière de sécurité est d’assurer l’intégrité du code, de sorte que
le logiciel lui-même ne peut pas être modifié. Comme certaines attaques démontrées ont impliqué la
modification du code système, les techniques de signature de code et les environnements d’exécution
sécurisée devraient prévenir ces attaques.

Bien qu’il existe d’autres mécanismes et protocoles de sécurité plus spécifiques, cette thèse se concentre
sur la façon de modéliser abstraitement la sécurité pour la sélection d’une architecture sûre et sécurisée.

9.2.3 Effets secondaires des contre-mesures pour la sûreté, la sécurité et la performance

Une voiture autonome est un système dans lequel la sûreté est particulièrement critique, car tout dysfonc-
tionnement peut entraîner de graves dommages financiers ou corporels. Sa conception implique donc un
examenation attentif des différents mécanismes permettant d’améliorer la sûreté du système. Cependant,
nous notons que l’ajout de ces contre-mesures peut avoir des effets secondaires, car la correction d’un
défaut peut entraîner une cascade malheureuse de corrections supplémentaires.

Par exemple, l’ajout du chiffrement ou de l’authentification des données améliore la sécurité d’un sys-
tème et devrait améliorer la sûreté en prévenant les comportements dangereux induits par les attaquants.
Cependant, le temps supplémentaire pour sécuriser les données dégrade les performances et peut retarder
les événements critiques pour la sécurité.

Même les pare-feu, qui filtrent les communications et devraient empêcher les communications générées
par des pirates informatiques, continueront d’appliquer un certain délai aux communications. Comme la
protection des données ou le filtrage entraînera un retard, il y aura un effet négatif sur la performance et
un effet inconnu sur la sécurité.

Pour nos contre-mesures de sécurité, un contrôle de cohérence peut empêcher l’impact d’un attaquant s’il
détecte une incohérence entre les données injectées et les données correctes, mais seulement si l’attaquant

173

Chapter 9. Resume

ne peut pas accéder facilement à tous les composants en même temps. Il peut donc être utile de sécuriser
les données avec des algorithmes de cryptage et des clés différentes pour empêcher un attaquant d’accéder
facilement aux deux ensembles de données. En outre, le retard dû au contrôle de cohérence peut affecter
les performances.

Les modes de sûreté peuvent s’activer lorsque le système détecte un problème de sûreté, comme une
défaillance matérielle, ou un problème de sécurité, comme une attaque. Bien qu’ils soient destinés à
améliorer la sûreté du système, leur effet dépend également de leur mise en œuvre, car le mode dégradé
peut impliquer la suppression de certains protocoles de sécurité, ce qui rend le système moins sûr en fin de
compte.

De nombreuses caractéristiques supplémentaires pour les véhicules connectés devraient améliorer la sûreté,
comme le freinage automatique, les systèmes V2X qui peuvent signaler si une voiture avant freine, etc.
Cependant, cette connectivité accrue a eu un impact négatif sur la sécurité de ces systèmes, en ajoutant de
nouvelles voies d’attaque. Aucun piratage ne peut être effectué sur un système complètement isolé.

En prenant en compte les limites des capteurs (notamment en raison de conditions environnementales),
nous nous rendons compte qu’une voiture autonome ne peut pas dépendre d’un seul capteur pour percevoir
le monde qui l’entoure. Fourniture de capteurs supplémentaires améliore notre algorithme de perception,
mais reçoit et traite toutes les données, puis le calcul des cohérences utilise des cycles d’horloge supplé-
mentaires. De la même manière, d’autres contrôles de sécurité, tels que la surveillance ou les timers de
type “watchdog” nécessitent également du matériel ou des logiciels supplémentaires, et peuvent avoir un
impact sur les performances [280].

Ainsi, l’effet global sur le système de l’ajout d’une seule contre-mesure n’est souvent pas clair. Cette
interaction entre la sécurité et la sûreté démontre les complications liées à l’ajout de mécanismes visant à
améliorer la sécurité et la sûreté. Le fait que l’ajout d’une contre-mesure pour s’assurer qu’une exigence
peut avoir mené à la violation d’une autre exigence démontre l’importance des itérations de modélisation
et de vérification jusqu’à ce que le système soit vérifié et que toutes les exigences soient satisfaites.

Pour bien ajouter les contre-mesures, qu’elles soient réalisées en logiciel ou matériel, on a besoin de
méthodologies et d’outils avec des capacités multiples. La conception complète d’un système se fait
en plusieurs phases à plusieurs niveaux d’abstraction [262], car les systèmes embarqués du monde réel
peuvent être trop complexes pour être conçus tous à la fois [278, 283]. Avant qu’un système puisse être
conçu, il est nécessaire de décrire les exigences du système, de considérer quelles attaques et quels facteurs
environnementaux le système devrait prendre en compte. Lors de la conception des systèmes embarqués,
le matériel et les logiciels doivent être conçus, d’autant plus que nous devons évaluer l’emplacement et
l’impact des contre-mesures qui peuvent être matérielles ou logicielles [143, 313].

Il faut aussi soutenir la verification formelle de propriétés de sûreté et sécurité, notament les propriétés de
sûreté de “deadlock”, Accessibilité, Vivacité, et Performance, et les propriétés de sécurité de Confidential-
ité, Authenticité, et Disponibilité.

9.2.4 Travail Connexe

Il y avait des autres outils et méthodologies pour le modélisation de systèmes embarqués, comme [24,104,
170, 271, 331], mais ils se concernent plus le verification fonctionelle et performance. Entre ceux qui se

174

Chapter 9. Resume

concerne la sécurité, ils sont plutôt sur la analyse seulement [187,256,264], en modélisation de logiciel et
pas matériel [168, 206], ou ils concernent seulement quelques attaques [205].

Toutes ces autres méthodologies de conception et les outils offrent les capacites de la modélisation et
de la vérification avec une gamme d’approches, mais aucune d’entre elles ne supporte le processus de
conception complet nécessaire à la conception de systèmes embarqués sûrs et sécurisés, tels que le véhicule
autonome de Vedecom. Bien que la méthodologie SysML-Sec n’ait pas la capacité de répondre à certains
des besoins, comme une meilleure analyse du temps et une meilleure modélisation en matière de sécurité,
elle a suffisamment pris en compte pour que nous puissions l’adapter et l’améliorer afin de tenir compte de
tous nos besoins en matière de modélisation et de vérification. Le reste de la thèse traite de la façon dont
nous avons ajouté les principales capacités manquantes.

9.3 Méthodologie

La figure 9-1 présente une vue d’ensemble de notre méthodologie. Tout d’abord, nous modélisons les
exigences de notre système, en ce qui concerne la fonctionnalité, la sûreté et la sécurité. Pour mieux
déterminer les besoins, nous modélisons ensemble les attaques et les défauts potentiels contre qui le sys-
tème devrait protéger. Les arbres d’attaque décrivent les attaques possibles auxquelles le système peut être
confronté, et les arbres de défaillance décrivent comment les défaillances du système peuvent entraîner
des pertes possibles. Les étapes d’attaque détaillées d’un arbre d’attaque, par exemple, Les exigences, les
défaillances et les attaques doivent être modélisées ensemble, car les attaques et les échecs possibles peu-
vent nous amener à développer de nouvelles exigences. Les contre-mesures aux attaques et aux pannes,
en particulier, peuvent être directement traduites en exigences.

Après avoir terminé notre analyse d’exigences, nous modélisons le système à différents niveaux de détail.
Les modèles de partitionnement matériel/logiciel décrivent l’architecture et les modèles de haut niveau
fonctionnel, et ils montrent quelle composante architecturale exécute quelle fonction : cette étape est égale-
ment appelée "allocation". Les premiers modèles peuvent être abstraits et ignorer les détails et ne décrire
que les propriétés de haut niveau. Une fois que le système est suffisamment modélisé, la simulation et la
vérification formelle déterminent si les exigences relatives à l’allocation (en termes de sûreté, de sécurité
et de performance) sont satisfaites. En fonction des résultats de la vérification, les modèles de partition-
nement logiciel/matériel peuvent être modifiés et des contre-mesures de sûreté et de sécurité pertinentes
peuvent être ajoutées. Les contre-mesures à ce stade comprennent le matériel redondant, les pare-feu et
les opérateurs de sécurité des données abstraites. Des contre-mesures fonctionnant à un niveau inférieur
d’abstraction sont ajoutées dans la phase suivante, telles que celles qui fonctionnent sur des valeurs exactes
des communications de données. Les éléments de conception et les résultats de vérification peuvent être
liés aux diagrammes de phase d’analyse, tels que les résultats de synchronisation liés à une exigence de
synchronisation, ou la confirmation que certaines données sont sécurisées peut être utilisée pour signifier
qu’une attaque est impossible. Les résultats des vérifications de sécurité déterminent également comment
les scénarios d’attaque peuvent être ajoutés explicitement aux diagrammes.

Une fois l’architecture et l’allocation déterminées, nous modélisons le comportement détaillé du système
pendant la phase de conception logicielle. Les modèles de conception logicielle préliminaires peuvent
également être générés automatiquement à partir des modèles de partitionnement HW/SW. Dans cette
étape, les algorithmes et le comportement du système sont modélisés plus en détail. Une vérification
formelle vérifie ensuite à nouveau le système pour s’assurer qu’il répond à des exigences plus précises.

175

Chapter 9. Resume

Dans la conception logicielle, les requêtes de vérification sont écrites en pragma, qui sont des notes sur les
diagrammes de modélisation [16, 252]. La vérification de sûreté est effectuée avec UPPAAL ou le TTool
Model Checker, et la vérification de sécurité est effectuée avec ProVerif [13, 15, 16]. Après vérification,
chaque pragma est marqué automatiquement "vérifié", "non vérifié", ou "ne peut pas être analysé" [209,
252]. Sur la base des résultats de la vérification, les modèles du système peuvent être affinés et des
contre-mesures supplémentaires, comme des protocoles de sécurité exacts, des contrôles de plausibilité, etc
ajouté. Une fois que le logiciel est suffisamment conçu et vérifié, notre outil peut générer automatiquement
du code C pour le prototypage et les séquences de test.

Analysis

Requirements

SecuritySafety Functional

Attack Trees

HW/SW Partitioning

Application Architecture

Mapping

Software Design

Verification

Safety SecurityPerformance

Code
Generation

Legend
Modeling

Verification

User-defined
Automatic
Manual
Reconsideration

Safety
Countermeasures

Security
Countermeasures

Safety
Countermeasures

Security Countermeasures

Verification

Safety SecurityPerformance

Firewall
Data Security
 ...

Redundancy, ...

Failsafe Mode
Plausibility Check
 ...

Security Protocols, ...

Attacker
Scenarios

Fault Trees

Security
Safety

DIPLODOCUS

AVATAR

Figure 9-1: SysML-Sec Méthodologie pour la Conception de Systèmes Embarqués Sûrs et Sécurisés

176

Chapter 9. Resume

9.4 Sécurité d’un Partitionnement Logiciel/Matériel

Le partitionnement matériel/logiciel, phase initiale importante dans le développement des systèmes em-
barqués, modélise la fonctionnalité abstraite et de haut niveau d’un système et distribue les fonctions
du système entre les architectures matérielles candidates. Cette phase décide de la “meilleure” architec-
ture en fonction de plusieurs critères, dont le coût et la performance du matériel. La spécification de
l’emplacement d’exécution de chaque fonction dans l’architecture génère un modèle appelé "allocation".

Lors de la modélisation des mécanismes de sécurité après la sélection d’une allocation, les concepteurs
peuvent déterminer que l’impact sur les performances dû à l’ajout de cryptage/décryptage peut rendre
l’allocation sélectionnée non optimal, les forçant à refaire leur modèle et à sélectionner une autre alloca-
tion. Le partitionnement du matériel/logiciel peut également être modifié si les protocoles de sécurité sont
choisis pour être déplacés afin d’être exécutés dans le matériel. Certaines des contre-mesures de sécurité
qui pourraient être ajoutées, telles que les modules de sécurité matérielle et les pare-feu, sont également
basées sur le matériel. Il peut donc être nécessaire de reconsidérer l’architecture.

Dans cette section, nous expliquons comment modéliser abstraitement la sécurité dans cette phase, puis
comment vérifier formellement la sécurité du système. Nous discutons de la façon de modéliser à la fois
la capacité de l’attaquant à cibler l’architecture et les efforts pour adapter les mécanismes de sécurité à
un niveau élevé d’abstraction. Pour soutenir notre modélisation de la sécurité, nous faisons la distinction
entre les emplacements architecturaux sécurisés et non sécurisés. Les bus de communication peuvent
être modélisés en interne (en fonction des capacités supposées de l’attaquant) et donc protégés contre un
attaquant externe. Au contraire, les bus externes peuvent être espionnés. Les fonctions allouées sur le
même processeur peuvent considérer leur échange de messages comme sécurisé. L’architecture choisie
affecte donc le besoin d’algorithmes de chiffrement et de stockage de matériel cryptographique. Les
mécanismes de sécurité sont décrites grâce à un opérateur de comportement qui définit notamment un
label pour aider à suivre les opérations de sécurité appliquées à certaines données.

9.4.1 Modèle d’Attaquant

Nous nous basons sur le même modèle Dolev-Yao Attacker que celui utilisé pour l’analyse de sécurité
dans les modèles de conception de logiciels [209]. L’attaquant Dolev-Yao est un attaquant idéalisé qui a le
contrôle total du réseau de communication public, car il peut lire, supprimer et envoyer tous les messages
sur un canal public, et effectuer des opérations cryptographiques (cryptage, décryptage, hachage, etc.) et
d’autres opérations sur les messages (splitting/joining) [55, 65, 85]. Il suppose une cryptographie parfaite,
car il suppose que les messages ne peuvent pas être décryptés par la force brute, mais seulement si la clé est
connue. Le modèle Dolev-Yao est dit utiliser la cryptographie ‘black-box’ car il ne permet pas de deviner
les clés, et des modèles probabilistes ont été développés pour répondre à cette limitation [60, 317, 350].

9.4.2 Modèle de Vulnérabilités

Les hypothèses concernant les capacités de l’attaquant sont reflétées sur l’architecture. Sur la modélisation
architecturale, les bus peuvent être spécifiés comme publics ou privés, correspondant au modèle Dolev-
Yao, selon qu’ils sont accessibles ou non à un attaquant. Par exemple, les appareils communiquant sur
un réseau WiFi seraient modélisés comme échangeant sur un bus public, tandis que le bus interne serait

177

Chapter 9. Resume

modélisé comme privé. Les bus privés sont marqués sécure avec un bouclier vert, comme indiqué sur le
diagramme d’architecture. Le bus public ‘PublicBus’ ne contient pas de bouclier vert. Les distinctions
entre les types de bus supposent également les capacités de l’attaquant : si nous supposons qu’un attaquant
n’a pas d’accès physique au système, alors nous pouvons décrire les bus internes comme étant privés, mais
si un attaquant peut physiquement sonder le bus, alors il doit être indiqué comme étant public.

9.4.3 Scénarios d’attaque

Les scénarios d’attaque modélisent explicitement les interactions de l’attaquant avec un système. Ils sont
basés sur les arbres d’attaque, mais contiennent plus de détails d’implémentation et peuvent être simulés
en conjonction avec le modèle de système.

Un scénario d’attaquant consiste en une ou plusieurs tâches de l’attaquant, représentant des fonctions
distinctes travaillant ensemble pour effectuer une attaque sur un système. Le comportement d’une tâche
d’attaquant inclut toutes les actions possibles d’une tâche d’application normale (lecture/écriture de don-
nées sur un canal, opérations de contrôle, exécution de calculs, etc). En outre, lorsque les tâches normales
ne peuvent lire et écrire que sur des canaux directement associés à eux-mêmes, les tâches de l’attaquant
peuvent lire et écrire sur n’importe quel canal public. Un canal public est défini comme étant tout canal
alloué à un chemin comprenant au moins un bus accessible à l’attaquant. De plus, les tâches de l’attaquant
possèdent une capacité supplémentaire : ‘Code Injection’, qui remplace le comportement d’une tâche
de l’application par un comportement déterminé par l’attaquant, modélisant la capacité de l’attaquant à
changer le flux d’exécution d’une tâche qui peut inclure une modification du code.

Les scénarios d’attaque peuvent être simulés pour analyser leur effet sur le système. L’une des nouvelles
propriétés de sécurité qui peuvent ainsi être analysées est la disponibilité. Pendant la simulation avec
et sans l’attaquant, nous pouvons vérifier la charge des processeurs et le nombre de fausses commandes
envoyées par rapport au nombre de commandes légitimes envoyées, pour voir si l’attaquant peut effectuer
une attaque par déni de service.

9.4.4 Modèle de Contre-mesures

Lorsqu’un attaquant peut accéder à un bus public, et donc à toutes les communications qui le traversent,
l’attaquant peut altérer les communications selon une méthode qui pourrait affecter négativement le com-
portement du système. Comme décrit précédemment, un attaquant ne devrait pas être capable d’envoyer
des commandes et de prendre le contrôle d’une voiture voisine, ou de modifier les données de perception
pour indiquer qu’il n’y a pas d’obstacles. La sécurisation des communications peut impliquer l’ajout d’un
protocole de sécurité éprouvé. Alors que les protocoles de sécurité exacts sont modélisés dans les phases
ultérieures de développement [209], dans cette phase, nous devons encore prendre en compte le temps
d’exécution pour exécuter les protocoles de sécurité pour un partitionnement HW/SW précis, et trouver
une méthode pour vérifier formellement que les données sont bien sécurisées. A ce niveau d’abstraction,
nous ne sommes pas intéressés pendant le partitionnement par l’implémentation d’algorithmes de chiffre-
ment: il suffit de considérer les paramètres qui affecteront le choix du partitionnement (satisfaction des
propriétés de sécurité, temps d’exécution, taille des données).

Pour modéliser abstraitement les protocoles de sécurité et ne prendre en compte que ces propriétés perti-
nentes, nous introduisons un opérateur appelé Cryptographic Configurations, qui comprend une balise à

178

Chapter 9. Resume

ajouter aux communications pour indiquer la présence de sécurité et le temps de traitement pour l’exécution
du chiffrement/déchiffrement sur ces données

sec:rsa

sec:rsa

Figure 9-2: Spécification de la "Cryptographic Configuration" pour le Chiffrement et le Déchiffrement
Asymétrique

Cryptographic Configurations sont des artefacts graphiques qui permettent au vérificateur de sécurité de
suivre les éléments de chiffrement des données. Dans les diagrammes d’activité, ils apparaissent comme
un pentagone à l’envers. marqués avec leur type, comme indiqué dans la Figure 9-2, où ‘AE’ représente
le cryptage asymétrique et ‘D’ représente le décryptage. Les configurations cryptographiques peuvent
être tapées comme suit: Cryptage symétrique et Cryptage asymétrique. Les modèles cryptent les don-
nées ainsi qu’une ou plusieurs clés spécifiques au modèle. Un MAC peut être ajouté aux messages pour
l’authentifier et déterminer s’il a été modifié. Hash calcule un hachage des données (et le vérifie ensuite).
Nonces peut être concaténée à des messages avant le cryptage pour vérifier l’authenticité. Advanced per-
met à l’utilisateur de indiquent leur propre schéma de cryptage, comme des combinaisons de données
cryptographiques. opérations.

Figure 9-2 (à droite) montre la spécification d’une configuration cryptographique. Le concepteur peut
choisir le type et ensuite la performance correspondante, ou sélectionner un algorithme pré-construit
qui estimera automatiquement les paramètres de performance sur la base des résultats expérimentaux
dans [73]. Ces paramètres estimés devraient être modifiés pour mieux refléter le CPU utilisé, mais ils
peuvent toujours être utilisés pour comparer les performances de différents algorithmes. Par exemple, les
opérations de chiffrement peuvent être caractérisées par une complexité de calcul de chiffrement et de
déchiffrement (une mesure des cycles d’exécution relatifs selon le processeur) et des coût supplémentaires
(bits supplémentaires ajoutés au message pendant le chiffrement). Ces paramètres nous permettent de
modéliser l’impact des mécanismes de sécurité sur la performance lors de l’évaluation d’une allocation.

Les protocoles de sécurité peuvent ajouter des surcouts. Comme mentionné précédemment dans la liste des
contre-mesures possibles, les modules de sécurité matérielle (HSM) sont un élément matériel spécialement
conçu pour effectuer les opérations cryptographiques plus efficacement que les processeurs ordinaires.
Nous les modélisont en tant qu’accélérateur matériel qui effectue le chiffrement et le déchiffrement en
moins de cycles.

Les pare-feu peuvent être utilisés pour filtrer les communications. Ils peuvent être modélisés comme une
tâche qui transmet ou supprime les communications en fonction des règles de pare-feu en vigueur. Les
règles peuvent être modifiées dynamiquement via des signaux, pour représenter comment le pare-feu peut

179

Chapter 9. Resume

avoir besoin de bloquer une communication qui a été détectée comme anormale. Si le pare-feu reçoit une
communication qui devrait être bloquée, il ne transmet pas la communication au destinataire prévu.

9.4.5 Vérification Formelle

Ensuite, un processus de vérification de la sécurité devrait être utilisé pour confirmer que les contre-
mesures ajoutées sont suffisantes. Les propriétés de sécurité que nous devons vérifier dans les systèmes
embarqués sont: vérifier si des données importantes seront gardées secrètes pour un attaquant (Con-
fidentialité), et si des données importantes ne peuvent pas être falsifiées par un attaquant (Authentic-
ité). De plus, pour vérifier que les protocoles sont capables de s’exécuter correctement par exemple de
déchiffrer le message reçu, il faut vérifier l’accessibilité des états. On utilise le langage de spécification
formel ProVerif. Notre outil traduit automatiquement les modèles d’allocation en AVATAR, et ensuite en
ProVerif [201, 209].

ProVerif est basé sur le modèle d’attaquant un Dolev-Yao, qui est un modèle d’attaquant dans lequel
n’importe qui peut lire ou écrire sur n’importe quel bus public, créer de nouveaux messages ou appliquer
des primitives connues. En d’autres termes, une fois que l’attaquant a intercepté un message, il se comporte
comme une personne raisonnablement compétente avec une connaissance de la cryptographie de base,
et peut récupérer le message décrypté s’il peut aussi intercepter une clé. L’attaquant peut acquérir des
connaissances à chaque fois qu’un processus effectue une écriture sur un canal public, puis à partir de
tous les calculs possibles. Par exemple, si l’attaquant connaît la clé, puis intercepte un message chiffré,
l’attaquant connaîtra alors le message original. Cela correspond à nos hypothèses d’un attaquant actif sur le
système, qui peut effectuer des opérations cryptographiques et tentera activement d’injecter des messages
falsifiés ou de déchiffrer les messages récupérés.

Les résultats de sécurité retournés par le prouveur ProVerif indiquent si chaque requête est vérifiée vraie,
vérifiée fausse, ou ne peut pas être vérifiée. Ces résultats sont ajoutés sur les diagrammes de composants
DIPLODOCUS pour la commodité de l’utilisateur, et restent sur les diagrammes pour que l’utilisateur
puisse s’y référer lorsqu’il reconsidère et modifie les modèles. Cette capacité a d’abord été ajoutée comme
décrit [209].

Les annotations de sécurité, sous forme de cadenas gris, sont colorées pour indiquer si leur propriété de
sécurité correspondante est satisfaite (vert) ou non satisfaite (rouge). S’il y a une erreur avec le prouveur
et que les résultats ne peuvent être déterminés, le cadenas reste gris.

Pour les résultats de confidentialité, les données échangées sur un canal vulnérable à un attaquant sont
indiquées par un cadenas rouge barré. Cependant, les données prouvées confidentielles sont indiquées par
un cadenas vert. L’authenticité faible et l’authenticité forte sont indiquées par un cadenas séparé en deux
demi-blocs colorés en vert ou rouge selon le résultat de vérification.

Une altération des communications internes par un attaquant pourrait empêcher le système de freinage de
fonctionner correctement. Nous démontrons comment fonctionne la vérification ProVerif en vérifiant la
sécurité de notre système de véhicule autonome, en mettant l’accent sur l’authenticité des communications
entre les unités de navigation et de perception. Dans l’architecture actuelle, montrée dans la Figure 9-3, les
unités Perception et Navigation communiquent à travers un bus non sécurisé. Comme prévu, les données
de perception ne sont pas vérifiées authentiques.

180

Chapter 9. Resume

Perception
percDataVerification

chl
percData(1)

chl

percData(1)

Navigation

S
W

<<CPURR>>
NavigationCPU

FV::Supervisor
FV::Navigation

<<BUS-CAN>>
CANVedecom

<<CPURR>>
PerceptionCPU

FV::Supervisor
FV::Perception

...

...

...

...

Mapping1

Perception
percData

Navigation

Functional Model

Mapping Model
+Backtracing

<<MEMORY>>

MemoryPerception

<<BUS-CAN>>
PerceptionBus

<<MEMORY>>

MemoryNavigation

<<BUS-CAN>>

NavigationBus

.

Figure 9-3: Résultats de vérification pour l’allocation par défaut
.

9.4.6 Génération Automatique de Contre-mesures

Comme indiqué précédemment, les ingénieurs logiciels ne sont souvent pas des experts en sécurité. Dans
la phase de partitionnement HW/SW, nous offrons donc des capacités de génération automatique, y com-
pris l’ajout de configurations cryptographiques avec les opérateurs de sécurité associés et les modules de
sécurité matérielle. A chaque génération, notre outil peut ajouter des opérateurs de sécurité, ajouter un
HSM à des tâches sélectionnées, ou mapper toutes les clés sur une mémoire accessible en toute sécurité.

Les représentations de sécurité sont ajoutées en fonction des propriétés de sécurité qui doivent être rem-
plies pour chaque canal. Cette sécurité générée automatiquement ne vise qu’à fournir une estimation des
propriétés de performance du système sécurisé, et les protocoles de sécurité exacts devraient être décrits
plus en détail dans la phase de conception du logiciel. Dans certains cas, il existe plusieurs méthodes
pour satisfaire une propriété de sécurité, et nous ne prenons qu’une seule de ces options pour simplifier
l’algorithme. Par exemple, par défaut, tous les opérateurs de cryptage utilisent le cryptage symétrique,
pour simplifier l’allocation des clés.

9.5 Évaluation des Performances

Les mesures de performance sont couramment utilisées pour évaluer la pertinence d’une architecture et
d’une allocation, comme dans le cas d’une exploration automatique [226, 257]. La performance d’un sys-
tème se caractérise par les temps de traitement d’une donnéee ou la charge des composants de l’architecture,
comme la charge des bus et des processeurs.

De nombreux systèmes critique, tels que les voitures autonomes, interagissent en permanence avec l’environnement
et les utilisateurs. Les nouvelles entrées du monde extérieur sont traitées par le système, qui effectue en-
suite une réponse observable dans le monde réel. Le moment de où ces interventions sont produites peut

181

Chapter 9. Resume

avoir un impact considérable sur la fonctionnalité et la sécurité.

Il est donc important d’examiner la performance d’un système : à la fois les latences et la charge des
processeurs. Les caractéristiques de synchronisation d’un système peuvent également être affectées par
l’utilisation, ou la charge, sur les processeurs ou les bus de communication [99]. Si un processeur est trop
chargé, il peut retarder des tâches moins prioritaires.

9.5.1 Mesure des Temps de Latence

Une fois les exigences de synchronisation définies, les opérateurs concernés doivent être sélectionnés sur
les diagrammes de modélisation. Chaque opérateur concerné est étiqueté comme un "point de contrôle de
latence", affiché comme un drapeau bleu.

Les latences sont mesurées en faisant la moyenne des valeurs mesurées sur plusieurs simulations. Le
moteur de simulation, basé en C+++, est décrit dans [181, 182]. Chaque composant architectural planifie
ensuite les opérations par les tâches ou les communications qui y sont mappées, qui s’exécutent ensuite
comme une transaction sur une période de temps donnée. Chaque simulation est stockée sous la forme
d’un ensemble de transactions exécutées sur l’ensemble des composants architecturaux.

Les latences sont ensuite retracées pour être affichées pour chaque opérateur. Pour chaque mesure de
latence, le nom de l’autre opérateur est affiché, ainsi que la valeur moyenne de la mesure de latence en
secondes.

9.5.2 Analyse de Système Sûr et Sécurisé

Tout au long de cette thèse, nous avons démontré chacune des nouvelles capacités de notre approche pour
améliorer la sécurité et la sûreté du Véhicule Autonome dans notre exemple. Nous avons expliqué certaines
des contre-mesures possibles à ajouter, puis nous concluons en intégrant un ensemble préliminaire de
mécanismes que nous considérons nécessaires pour éviter la plupart des dangers possibles.

Nous concluons en intégrant toutes les contre-mesures de sûreté et de sécurité pertinentes dans un modèle
unique, puis en évaluant sa sûreté, sa sécurité et son rendement globaux. Ce modèle, dont la sûreté et la
sécurité sont améliorées, devrait protéger contre bon nombre des défaillances et des attaques, telles que les
limitations des capteurs [180, 216, 229, 295], les capteurs manipulés [255, 294, 346], et les commandes et
données injectées par l’attaquant [67, 67, 223, 337].

Nous vérifions maintenant l’impact des ajouts sur les performances. Nous examinons à la fois la latence
de freinage et la charge sur le(s) processeur(s) de perception et de navigation comme avant. Le tableau
9.2 compare les résultats de performance de notre modèle de base (sans contre-mesures de sécurité ou de
sûreté) et notre nouveau modèle final sûr et sécurisé. Comme prévu, la latence de freinage a été consid-
érablement augmentée, bien que les charges sur les processeurs aient diminué, probablement en raison de
l’interruption des tâches de perception et du temps d’attente en attente d’une autre tâche pour envoyer ou
recevoir des communications. A ce stade, le temps de réaction au freinage d’un obstacle est en moyenne
inférieur aux 1,08 secondes requises, la latence de freinage maximale dépasse le temps de réaction ad-
missible. Pour améliorer cette latence, nous pourrions envisager de modifier davantage l’allocation, par
exemple en utilisant de meilleurs processeurs ou en améliorant le temps d’exécution des différents algo-
rithmes. Dans ce cas, alors que cette première série de contre-mesures de sécurité et de sûreté devrait

182

Chapter 9. Resume

Table 9.2: Résultats de Performance

Allocation
Latence de freinage (s) Charge (%)

Max Moyenne Écart-type
Perc
CPU

Perc
CPU1

Perc
CPU2

Nav
CPU

Allocation Défaut 0.52 0.19 0.13 53 39
Allocation Sûre et

Sécurisée
1.13 0.46 0.10 4 10 10 42

Allocation Sûre et
Sécurisée (Performance

Amélioré)
0.99 0.39 0.15 5 7 7 36

améliorer la sécurité de notre véhicule autonome, leur ajout a dégradé ses performances jusqu’à un point
où le système ne pouvait plus être garanti sûr.

Par conséquent, nous devons modifier notre système pour qu’il réponde aux exigences de performance.
Nous pourrions réduire la latence de freinage en utilisant différentes approches, telles l’utilisation de pro-
cesseurs plus efficients, des protocoles de sécurité plus efficaces, des algorithmes optimisés, etc. Nous
avons amélioré les algorithmes des tâches de Perception car ces sont les plus consommateurs en terme
de complexité de calcul. Le tableau 9.2 présente nos résultats du point de vue des performances. Nous
voyons que le système peut satisfaire aux exigences de temps si la complexité de calcul est réduite de 10
%. Cette hypothèse nécessite cependant d’être validée à nouveau après la phase de re-conception logiciel.
Ce processus est conforme à notre méthodologie; les étapes de modélisation, de vérification et de révision
seront répétées jusqu’à ce que toutes les exigences du système soient satisfaites.

9.6 Conclusion

Les systèmes embarqués connectés, tels que les futurs véhicules autonomes, devraient apporter de nom-
breuses commodités dans nos vies. Non seulement la connectivité Internet apporte du divertissement aux
passagers lors d’un long voyage, mais elle nous donne accès à la richesse des connaissances disponibles
: un emplacement exact avec des instructions de conduite complètes, l’emplacement des restaurants ou
des stations-service pour les aires de repos, et les conditions de circulation tout autour de nous pour mieux
nous aider à éviter les embouteillages. Les conducteurs n’ont plus besoin de lire une carte papier ou de
trouver des détours à la main. Des dispositifs de sécurité supplémentaires, comme le freinage automatique
ou l’aide au stationnement, peuvent également prévenir les collisions.

Cependant, en adoptant ces fonctions connectées et automatisées, nous abandonnons une partie du con-
trôle de notre véhicule et nous nous appuyons davantage sur le logiciel. Les accidents dans un véhicule
complètement autonome seront dus à des erreurs du système au lieu d’erreurs du conducteur. Par con-
séquent, ces systèmes devraient être assurés de fonctionner correctement et en toute sécurité. Comme
l’ont montré les accidents impliquant un pilote automatique, ces systèmes ne peuvent pas encore gérer
toutes les conditions routières, et les capteurs et les algorithmes de traitement peuvent ne pas percevoir
correctement l’environnement correctement [180,300,323]. La sûreté de ces systèmes devrait être assurée
par un processus de vérification complet.

La sûreté des systèmes embarqués repose sur de multiples aspects. Premièrement, le système devrait être

183

Chapter 9. Resume

protégé contre les pirates: il faut que les pirates ne puissent pas modifier le code du système, comme dans
le hack [223] de Miller et Valasek, où des fausses ommandes sont injectiées dans le système. Par exemple,
un pirate informatique qui peut prendre le contrôle du véhicule d’une autre personne pourrait provoquer
un accident mortel. Un système sûr doit aussi tenir compte de ses limites et les compenser. Comme les
caméras ne fonctionnent pas bien dans des conditions de faible éclairage, le système devrait s’appuyer
principalement sur les autres capteurs la nuit. Enfin, la sûreté du système dépend de la performance ou du
timing. Les composants matériels ne doivent pas être chargés à un point tel qu’ils ne peuvent pas exécuter
des fonctions de manière fiable, et les événements critiques, tels que l’évitement d’obstacles, ne doivent
pas être retardés de manière à ce qu’ils s’exécutent au-delà d’un délai strict.

9.6.1 Contributions

Cette thèse portait sur la conception sûre et sécurisée de tels systèmes en s’appuyant sur l’ingénierie pilotée
par les modèles. La modélisation d’un système aide les concepteurs à considérer systématiquement tous les
besoins du système et à détecter les problèmes dans les phases de modélisation avant l’achat de matériel ou
le développement de code qui prend beaucoup de temps. Réparer les problèmes dès le début de ces phases
permet d’éviter des retouches ou des correctifs coûteux après la production de masse et la distribution.

Nous avons commencé par un résumé des problèmes auxquels sont confrontés les véhicules autonomes
et connectés, et nous avons discuté de la façon dont la modélisation et la vérification pourraient soutenir
la conception de tels systèmes. Nous avons présenté les capacités d’autres méthodologies et d’outils,
mais comme aucune ne répondait à tous nos besoins de conception, nous avons proposé une nouvelle
méthodologie. Notre nouvelle méthodologie améliore la méthodologie SysML-Sec [13] pour prendre
en compte la sécurité pendant la phase de partitionnement HW/SW, permettant de modéliser les ca-
pacités de l’attaquant pour cibler une architecture et des contre-mesures basées sur l’architecture, et
d’améliorer l’analyse des performances en examinant les latences entre les événements critiques. Ces
capacités améliorées de modélisation et de vérification aident à sélectionner une cartographie répondant
aux exigences de sûreté, de sécurité et de performance, et fournissent une meilleure base pour la phase
suivante de conception logicielle.

9.6.2 Perspectives

Le but ultime de cette thèse était de déterminer comment concevoir des systèmes sûrs et sécurisés. Nous
avons fourni une méthodologie et un outil support qui devrait être facile à utiliser, mais qui ne peut toujours
pas aborder tous les aspects de la conception. Bien que cette thèse ait proposé de nouveaux aspects pour
la conception des systèmes embarqués, il existe des travaux futurs importants, au-delà de la modélisation
et de la vérification. Une importante orientation de recherche future est d’étudier les aspects pratiques de
la sécurité dans les systèmes embarqués, afin de déterminer si notre modélisation représente adéquatement
les systèmes et leurs vulnérabilités potentielles.

Ainsi, nous avons proposé une contribution, comme sur les expériences pratiques pour voir si nos postulats
et théories sont suffisamment réalistes, et les améliorations de notre outil pour une meilleure expérience
utilisateur. On doit enrichir notre modèle d’attaquant, et prendre en compte les probabilities d’attaque.
Idéalement, notre outil pourrait aussi prendre l’ensemble de toutes les exigences (sûreté, sécurité et per-
formance), puis générer automatiquement un modèle entièrement sûr et sécurisé.

184

Bibliography

[1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduc-
tion and general model, Version 3.1, Revision 1 (CCMB-2006-09-001), Sep 2006.
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.pdf.

[2] Pekka Abrahamsson. Speeding up embedded software development. ITEA Innovation report, 2007.

[3] Alan Grau. The internet of things needs firewalls too.
http://www.electronicdesign.com/communications/internet-things-needs-firewalls-too, Mar 2013.

[4] Azadeh Alebrahim and Maritta Heisel. Applying performance patterns for requirements analysis.
In Proceedings of the 20th European Conference on Pattern Languages of Programs, EuroPLoP
’15, pages 35:1–35:15, New York, NY, USA, 2015. ACM.

[5] Yomna Ali, Sherif El-Kassas, and Mohy Mahmoud. A rigorous methodology for security archi-
tecture modeling and verification. In Proceedings of the 42nd Hawaii International Conference on

System Sciences, volume 978-0-7695-3450-3/09. IEEE, 2009.

[6] Dave Altavilla. When the IOT fails: Nest recalls over 400k smoke detectors.
https://www.forbes.com/sites/davealtavilla/2014/05/22/when-the-iot-fails-nest-recalls-over-400k-
smoke-detectors/, May 2014.

[7] M. Althoff, O. Stursberg, and M. Buss. Model-based probabilistic collision detection in autonomous
driving. IEEE Transactions on Intelligent Transportation Systems, 10(2):299–310, Jun 2009.

[8] Matthias Althoff, Olaf Stursberg, and Martin Buss. Safety assessment of autonomous cars using
verification techniques. In American Control Conference, 2007. ACC’07, pages 4154–4159. IEEE,
2007.

[9] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In [1990] Proceed-

ings. Fifth Annual IEEE Symposium on Logic in Computer Science, pages 414–425, Jun 1990.

[10] ANSYS. Medini analyze. http://www.medini.eu/index.php/en/products/functional-safety, 2017.

[11] Axelle Apvrille. Geek usages for your Fitbit Flex tracker Hack.lu, Luxemburg, October 2015. Slides
at framadrive.org/index.php/s/Wk6nxAKMpVTdQl4, October 2015.

[12] L. Apvrille, L. Li, and Y. Roudier. Model-driven engineering for designing safe and secure embed-
ded systems. In 2016 Architecture-Centric Virtual Integration (ACVI), pages 4–7, April 2016.

185

Bibliography

[13] L. Apvrille and Y. Roudier. SysML-Sec: A Model Driven Approach for Designing Safe and Secure
Systems. In 3rd International Conference on Model-Driven Engineering and Software Develop-

ment, Special session on Security and Privacy in Model Based Engineering, France, February 2015.
SCITEPRESS Digital Library.

[14] Ludovic Apvrille. If I secure my car, will it still brake? http://archive.hack.lu/2014/hacklu_cars.pdf,
October 2014.

[15] Ludovic Apvrille. Webpage of TTool. In http://ttool.telecom-paristech.fr/, 2015.

[16] Ludovic Apvrille and Letitia W. Li. 9 - Safe and Secure Support for Public Safety Networks. In
Wireless Public Safety Networks 3, pages 185 – 210. Elsevier, 2017.

[17] Ludovic Apvrille and Yves Roudier. SysML-Sec Attack Graphs: Compact Representations for
Complex Attacks. In Sjouke Mauw, Barbara Kordy, and Sushil Jajodia, editors, Graphical Models

for Security, pages 35–49, Cham, 2016. Springer International Publishing.

[18] Ashraf Armoush, Falk Salewski, and Stefan Kowalewski. Effective pattern representation for safety
critical embedded systems. In Computer Science and Software Engineering, 2008 International

Conference on, volume 4, pages 91–97. IEEE, 2008.

[19] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Secure embedded processing through hardware-
assisted run-time monitoring. In Design, Automation and Test in Europe, pages 178–183 Vol. 1,
March 2005.

[20] Warwick Ashford. Developers lack skills needed for secure devops, survey shows.
http://www.computerweekly.com/news/450424614/Developers-lack-skills-needed-for-secure-
DevOps-survey-shows, August 2017.

[21] Colin Atkinson and Thomas Kühne. Profiles in a strict metamodeling framework. Science of

Computer Programming, 44(1):5–22, 2002.

[22] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger, and Jannik
Pewny. You can run but you can’t read: Preventing disclosure exploits in executable code. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 1342–1353. ACM, 2014.

[23] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In Computer Security Foundations Symposium, 2008.

CSF’08. IEEE 21st, pages 195–209. IEEE, 2008.

[24] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli.
Metropolis: An Integrated Electronic System Design Environment. Computer, 36(4):45–52, April
2003.

[25] Michael Barr and Anthony Massa. Programming embedded systems: with C and GNU development

tools. " O’Reilly Media, Inc.", 2006.

[26] Kent Beck and Ward Cunningham. Using pattern languages for object-oriented programs. 1987.

[27] Nicholas Becker. Safety of the intended functionality for ADAS. http://files.hanser-
tagungen.de/docs/20140905155628_SafetyoftheintendedFunctionalityfor20ADAS.pdf.

186

Bibliography

[28] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In Formal methods for

the design of real-time systems, pages 200–236. Springer, 2004.

[29] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In Lecture Notes

on Concurrency and Petri Nets, pages 87–124. W. Reisig and G. Rozenberg (eds.), LNCS 3098,
Springer-Verlag, 2004.

[30] Better buys. Estimating password-cracking times. https://www.betterbuys.com/estimating-
password-cracking-times/.

[31] John Birch. Safety argument framework for vehicle autonomy.
http://safety.addalot.se/upload/2017/2-6-2%20JohnBirch.pdf, May 2017.

[32] Norbert Bißmeyer, Joël Njeukam, Jonathan Petit, and Kpatcha M Bayarou. Central misbehavior
evaluation for VANETS based on mobility data plausibility. In Proceedings of the ninth ACM

international workshop on Vehicular inter-networking, systems, and applications, pages 73–82.
ACM, 2012.

[33] Bob Blakeley. Introduction to Security Design Patterns. Open Group, 2004.

[34] B. Blanchet. Automatic verification of correspondences for security protocols. Journal of Computer

Security, 17(4):363–434, July 2009.

[35] B. Blanchet. Proverif automatic cryptographic protocol verifier user manual. Technical report,
CNRS, Département d’Informatique École Normale Supérieure, Paris, July 2010.

[36] Matt Blaze, Whitfield Diffie, Ronald L Rivest, Bruce Schneier, and Tsutomu Shimomura. Min-
imal key lengths for symmetric ciphers to provide adequate commercial security. a report by an
ad hoc group of cryptographers and computer scientists. Technical report, Information Assurance
Technology Analysis Center Falls Church VA, 1996.

[37] Hans Blom, De-Jiu Chen, Henrik Kaijser, Henrik Lönn, Yiannis Papadopoulos, Mark-Oliver Reiser,
Ramin Tavakoli Kolagari, and Sara Tucci. EAST-ADL: An Architecture Description Language for
Automotive Software-intensive Systems in the Light of Recent use and Research. International

Journal of System Dynamics Applications (IJSDA), 5(3):1–20, 2016.

[38] Barry W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):61–
72, 1988.

[39] Mathilde Boisson, Emmanuel Arbaretier, and Annie Bracquemond. Architecture sûre du véhicule
autonome sans chauffeur. In Congrès Lambda Mu 20, 2016.

[40] Connor Bolton, Sara Rampazzi, Chaohao Li, Andrew Kwong, Wenyuan Xu, and Kevin Fu. Blue
Note: How intentional acoustic interference damages availability and integrity in hard disk drives
and operating systems. In Proceedings of the 39th Annual IEEE Symposium on Security and Pri-

vacy, May 2018.

[41] Jonathan Peter Bowen. Formal specification and documentation using Z: A case study approach,
volume 66. International Thomson Computer Press London, 1996.

187

Bibliography

[42] Lisane Brisolara, Leandro Becker, Luigi Carro, Flávio Wagner, Carlos E Pereira, and Ricardo Reis.
Comparing high-level modeling approaches for embedded system design. In Proceedings of the

2005 Asia and South Pacific Design Automation Conference, pages 986–989. ACM, 2005.

[43] Great Britain, Air Accidents Investigation Branch, and G Britain. Report on the Accident to Boeing

737-400 G-OBME Near Kegworth, Leicestershire, on 8 January 1989. HM Stationery Office, 1990.

[44] Rodney Brooks. The big problem with self-driving cars is people.
https://spectrum.ieee.org/transportation/self-driving/the-big-problem-with-selfdriving-cars-is-
people, July 2017.

[45] Rodney Brooks. Symantec anomaly detection for automotive.
https://www.symantec.com/products/anomaly-detection-for-automotive, 2018.

[46] RR Brooks, S Sander, Juan Deng, and Joachim Taiber. Automobile security concerns. IEEE Vehic-

ular Technology Magazine, 4(2), 2009.

[47] Frederick P Brooks Jr. The Mythical Man-Month: Essays on Software Engineering, Anniversary

Edition, 2/E. Pearson Education India, 1995.

[48] Julien Brunel and David Chemouil. Safety and security assessment of behavioral properties using
alloy. In Floor Koornneef and Coen van Gulijk, editors, Computer Safety, Reliability, and Security,
pages 251–263, Cham, 2015. Springer International Publishing.

[49] Julien Brunel, David Chemouil, Laurent Rioux, Mohamed Bakkali, and Frédérique Vallée. A
viewpoint-based approach for formal safety & security assessment of system architectures. In 11th

Workshop on Model-Driven Engineering, Verification and Validation, volume 1235, pages 39–48,
2014.

[50] Simon Burton, Jürgen Likkei, Priyamvadha Vembar, and Marko Wolf. Automotive functional safety
= safety + security. In Proceedings of the First International Conference on Security of Internet of

Things, SecurIT ’12, pages 150–159, New York, NY, USA, 2012. ACM.

[51] Giorgio Calandriello, Panos Papadimitratos, Jean-Pierre Hubaux, and Antonio Lioy. Efficient and
Robust Pseudonymous Authentication in VANET. In Proceedings of the Fourth ACM International

Workshop on Vehicular Ad Hoc Networks, VANET ’07, pages 19–28, New York, NY, USA, 2007.
ACM.

[52] Carl R. Nave. Stopping Distance for Auto. http://hyperphysics.phy-astr.gsu.edu/hbase/crstp.html.

[53] Nicholas Carlini and David Wagner. ROP is Still Dangerous: Breaking Modern Defenses. In
USENIX Security Symposium, pages 385–399, 2014.

[54] Mumin Cebe, Enes Erdin, Kemal Akkaya, Hidayet Aksu, and Selcuk Uluagac. Block4forensic:
An integrated lightweight blockchain framework for forensics applications of connected vehicles.
arXiv preprint arXiv:1802.00561, 2018.

[55] Iliano Cervesato. The Dolev-Yao intruder is the most powerful attacker. In 16th Annual Symposium

on Logic in Computer Science—LICS, volume 1, 2001.

188

Bibliography

[56] Jed Kao-Tung Chang, Chen Liu, and Jean-Luc Gaudiot. Hardware acceleration for cryptography
algorithms by hotspot detection. In International Conference on Grid and Pervasive Computing,
pages 472–481. Springer, 2013.

[57] Benjie Chen and Robert Morris. Certifying program execution with secure processors. In HotOS,
pages 133–138, 2003.

[58] D. Chen, R. Johansson, H. Lönn, H. Blom, M. Walker, Y. Papadopoulos, S. Torchiaro, F. Tagliabo,
and A. Sandberg. Integrated safety and architecture modeling for automotive embedded systems. e

& i Elektrotechnik und Informationstechnik, 128(6):196–202, Jun 2011.

[59] Sébastien Christiaens, Juergen Ogrzewalla, and Stefan Pischinger. Functional safety for hybrid and
electric vehicles. Technical report, SAE Technical Paper, 2012.

[60] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative analysis of the leakage of
confidential data. Electronic Notes in Theoretical Computer Science, 59(3):238–251, 2002.

[61] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on the state
explosion problem in model checking. In Informatics, pages 176–194. Springer, 2001.

[62] Pat L Clemens. Fault tree analysis. JE Jacobs Severdurup, 2002.

[63] Simon Cogliani, Diana-Ştefania Maimuţ, David Naccache, Rodrigo Portella do Canto, Reza Rey-
hanitabar, Serge Vaudenay, and Damian Vizár. OMD: a compression function mode of operation
for authenticated encryption. In International Workshop on Selected Areas in Cryptography, pages
112–128. Springer, 2014.

[64] Matjaž Colnarič, Domen Verber, and Wolfgang A Halang. Real-time characteristics and safety of
embedded systems. Distributed Embedded Control Systems: Improving Dependability with Coher-

ent Design, pages 3–28, 2008.

[65] Hubert Comon and Vitaly Shmatikov. Is it possible to decide whether a cryptographic protocol is
secure or not? Journal of Telecommunications and Information Technology, pages 5–15, 2002.

[66] Jamie Condliffe. The reason we won’t have autonomous cars any time soon.
https://gizmodo.com/how-to-teach-an-autonomous-car-to-drive-1694725874, May 2015.

[67] Lucian Constantin. Researchers hack Tesla Model S with remote attack.
http://www.pcworld.com/article/ 3121999/security/researchers-demonstrate-remote-attack-against-
tesla-model-s.html, September 2016.

[68] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Negro, Christopher
Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing control: On the effectiveness of
control-flow integrity under stack attacks. In Proceedings of the 22Nd ACM SIGSAC Conference

on Computer and Communications Security, CCS ’15, pages 952–963, New York, NY, USA, 2015.
ACM.

[69] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptology ePrint Archive,
2016:86, 2016.

189

Bibliography

[70] Pascal Cotret, Guy Gogniat, and Martha Johanna Sepúlveda Flórez. Protection of heterogeneous
architectures on FPGAs: An approach based on hardware firewalls. Microprocessors and Microsys-

tems, 42:127 – 141, 2016.

[71] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wagle, and Erik Walthinsen.
Protecting systems from stack smashing attacks with stackguard. In Linux Expo, 1999.

[72] Scott A Crosby and Dan S Wallach. Denial of service via algorithmic complexity attacks. In
USENIX Security Symposium, pages 29–44, 2003.

[73] Crypto++. Crypto++ 6.0.0 benchmarks. https://www.cryptopp.com/benchmarks.html, December
2017.

[74] Crypto++. Advanced encryption standard. https://www.cryptopp.com/wiki/ Ad-
vanced_Encryption_Standard, Apr 2018.

[75] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Yiannis Papadopoulos, Mark-Oliver
Reiser, Anders Sandberg, David Servat, Ramin Tavakoli Kolagari, Martin Törngren, and Matthias
Weber. 11 The EAST-ADL Architecture Description Language for Automotive Embedded Software,
pages 297–307. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[76] Dark Reading Staff. Most companies suffer reputation damage after security in-
cidents. https://www.darkreading.com/cloud/most-companies-suffer-reputation-damage-after-
security-incidents/d/d-id/1330869?, January 2018.

[77] Tom Davenport and John Lucker. Running on data: Activity trackers and the inter-
net of things. https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-16/internet-of-things-
wearable-technology.html, January 2015.

[78] Jerald Dawkins and John Hale. A systematic approach to multi-stage network attack analysis. In
Information Assurance Workshop, 2004. Proceedings. Second IEEE International, pages 48–56.
IEEE, 2004.

[79] R. Debouk, B. Czerny, J. d’Ambrosio, and J.J. Joyce. Safety strategy for autonomous systems. In
International Systems Safety Conference. System Safety Society, volume 3, 2011.

[80] Lenny Delligatti. SysML distilled: A brief guide to the systems modeling language. Addison-Wesley,
2013.

[81] Steve Denning. Agile: The world’s most popular innovation engine.
https://www.forbes.com/sites/stevedenning/2015/07/23/the-worlds-most-popular-innovation-
engine/, July 2015.

[82] Mamadou H Diallo, Jose Romero-Mariona, Susan Elliott Sim, Thomas A Alspaugh, and Debra J
Richardson. A comparative evaluation of three approaches to specifying security requirements. In
12th Working Conference on Requirements Engineering: Foundation for Software Quality, Luxem-

bourg, 2006.

[83] Steven X Ding. Model-based fault diagnosis techniques: design schemes, algorithms, and tools.
Springer Science & Business Media, 2008.

[84] Defense System Software Development. Standard, 1983.

190

Bibliography

[85] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE trans. on Information Theory,
29:198–208, 1983.

[86] Derrick Dominic, Sumeet Chhawri, Ryan M. Eustice, Di Ma, and André Weimerskirch. Risk as-
sessment for cooperative automated driving. In Proceedings of the 2Nd ACM Workshop on Cyber-

Physical Systems Security and Privacy, CPS-SPC ’16, pages 47–58, New York, NY, USA, 2016.
ACM.

[87] Bruce Powel Douglass. Real-time design patterns: robust scalable architecture for real-time sys-

tems, volume 1. Addison-Wesley Professional, 2003.

[88] Terry Dunlap. The 5 worst examples of IoT hacking and vulnerabilities in recorded history.
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/, May 2017.

[89] M. Eby, J. Werner, G. Karsai, and A. Ledeczi. Integrating security modeling into embedded sys-
tem design. In 14th Annual IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems (ECBS’07), pages 221–228, March 2007.

[90] Economist. The long, winding road for driverless cars. https://www.economist.com/news/science-
and-technology/21722628-forget-hype-about-autonomous-vehicles-being-around-cornerreal-
driverless-cars-will, May 2017.

[91] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded systems:
formal models, validation, and synthesis. Proceedings of the IEEE, 85(3):366–390, Mar 1997.

[92] Fabian Eisele. Introducing Hardware Security Modules to Embedded Systems.
https://vector.com/portal/medien/cmc/events/Vector_EMOB_2017_Phanuel_Hieber.pdf, 2017.

[93] M. Ekstedt, P. Johnson, R. Lagerström, D. Gorton, J. Nydrén, and K. Shahzad. Securi CAD by Fore-
seeti: A CAD Tool for Enterprise Cyber Security Management. In 2015 IEEE 19th International

Enterprise Distributed Object Computing Workshop, pages 152–155, Sept 2015.

[94] Andrea Enrici, Letitia Li, Ludovic Apvrille, and Dominique Blouin. A Tutorial on
TTool/DIPLODOCUS: an Open-source Toolkit for the Design of Data-flow Embedded Systems.
https://ttool.telecom-paristech.fr/docs/Tutorial.pdf, 2018.

[95] Cagkan Erbas, Selin Cerav-Erbas, and Andy D. Pimentel. Multiobjective optimization and evolu-
tionary algorithms for the application mapping problem in multiprocessor system-on-chip design.
IEEE Transactions on Evolutionary Computation, 10(3):358–374, 2006.

[96] Ericsson. Ericsson mobility report: On the pulse of the netwroked society.
https://www.ericsson.com/assets/local/mobility-report/documents/2016/Ericsson-mobility-report-
june-2016.pdf, June 2016.

[97] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed Okhravi,
and Stelios Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications

Security, CCS ’15, pages 901–913, New York, NY, USA, 2015. ACM.

[98] S. Evans and J. Wallner. Risk-based security engineering through the eyes of the adversary. In
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop, pages 158–165,
June 2005.

191

Bibliography

[99] Event Helix. Issues in Real-time System Design. https://www.eventhelix.com/ RealtimeMantra
IssuesInRealtimeSystemDesign.htm, 2017.

[100] EVITA. E-safety Vehicle InTrusion protected Applications. http://www.evita-project.org/.

[101] Daniel J. Fagnant and Kara Kockelman. Preparing a nation for autonomous vehicles: opportunities,
barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77:167
– 181, 2015.

[102] T. Farkas, E. Meiseki, C. Neumann, K. Okano, A. Hinnerichs, and S. Kamiya. Integration of UML
with Simulink into embedded software engineering. In 2009 ICCAS-SICE, pages 474–479, Aug
2009.

[103] Marouane Fazouane, Henning Kopp, Rens W van der Heijden, Daniel Le Métayer, and Frank Kargl.
Formal verification of privacy properties in electric vehicle charging. In International Symposium

on Engineering Secure Software and Systems, pages 17–33. Springer, 2015.

[104] Peter H. Feiler, Bruce A. Lewis, Steve Vestal, and Edward Colbert. An overview of the SAE
architecture analysis & design language (AADL) standard: A basis for model-based architecture-
driven embedded systems engineering. In Pierre Dissaux, Mamoun Filali-Amine, Pierre Michel,
and François Vernadat, editors, IFIP-WADL, volume 176 of IFIP, pages 3–15. Springer, 2004.

[105] David C. Feldmeier and Philip R. Karn. Unix password security - ten years later. In Gilles Brassard,
editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 44–63, New York, NY, 1990.
Springer New York.

[106] Ana M Fernández-Sáez, Michel RV Chaudron, and Marcela Genero. Exploring Costs and Benefits
of Using UML on Maintenance: Preliminary Findings of a Case Study in a Large IT Department.
In EESSMOD@ MoDELS, pages 33–42, 2013.

[107] Andreas Fiessler, Sven Hager, Björn Scheuermann, and Andrew W Moore. HyPaFilter-A versatile
hybrid FPGA packet filter. In Architectures for Networking and Communications Systems (ANCS),

2016 ACM/IEEE Symposium on, pages 25–36. IEEE, 2016.

[108] Jason Fossen. How long to crack a password spreadsheet. https://cyber-
defense.sans.org/blog/2009/06/12/how-long-to-crack-a-password-spreadsheet, June 2009.

[109] Ian D Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. Fast and vulnerable: A story
of telematic failures. In WOOT, 2015.

[110] Martin Fowler. UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional, 2004.

[111] Bernhard Friedrich. The effect of autonomous vehicles on traffic. In Autonomous Driving, pages
317–334. Springer, 2016.

[112] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. An introduction to UML profiles. UML

and Model Engineering, 2, 2004.

[113] Daniel D Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. Embedded system design:

modeling, synthesis and verification. Springer Science & Business Media, 2009.

192

Bibliography

[114] Wilbert O Galitz. The essential guide to user interface design: an introduction to GUI design

principles and techniques. John Wiley & Sons, 2007.

[115] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah, Anne Etien, Philippe Mar-
quet, and Jean-Luc Dekeyser. A model-driven design framework for massively parallel embedded
systems. ACM Trans. Embedded Comput. Syst, 10(4):39, 2011.

[116] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and hash trees for effi-
cient memory integrity verification. In The Ninth International Symposium on High-Performance

Computer Architecture, 2003. HPCA-9 2003. Proceedings., pages 295–306, Feb 2003.

[117] Mengmeng Ge, Jin B Hong, Walter Guttmann, and Dong Seong Kim. A framework for automating
security analysis of the internet of things. Journal of Network and Computer Applications, 83:12–
27, 2017.

[118] Daniela Genius, Letitia W. Li, and Ludovic Apvrille. Model-Driven Performance Evaluation and
Formal Verification for Multi-level Embedded System Design. In Conference on Model-Driven

Engineering and Software Development (Modelsward’2017), Porto, Portugal, February 2017.

[119] Daniela Genius, Letitia W Li, Ludovic Apvrille, and Tullio Tanzi. Multi-level latency evaluation
with an mde approach. In 6th International Conference on Model-Driven Rngineering and Software

Development (MODELSWARD 2018), 2018.

[120] Patrick George. Have new technologies made cars less safe? https://auto.howstuffworks.com/car-
driving-safety/safety-regulatory-devices/new-technologies-cars-less-safe.htm, March 2010.

[121] Jack M. Germain. Can software kill you? https://www.technewsworld.com/story/33398.html, April
2004.

[122] Dave Gershgorn. Instead of hacking self-driving cars, researchers are trying to hack the world they
see. https://qz.com/1031233/instead-of-hacking-self-driving-cars-researchers-are-trying-to-hack-
the-world-they-see/, July 2017.

[123] Robert L. Glass. Real-time: The "Lost World" of software debugging and testing. Commun. ACM,
23(5):264–271, May 1980.

[124] F. S. Gonçalves, D. Pereira, E. Tovar, and L. B. Becker. Formal Verification of AADL Models Using
UPPAAL. In 2017 VII Brazilian Symposium on Computing Systems Engineering (SBESC), pages
117–124, Nov 2017.

[125] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano Giuffrida. ASLR on the Line:
Practical Cache Attacks on the MMU. NDSS (Feb. 2017), 2017.

[126] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. Simulation framework for executing component and connector models of self-driving ve-
hicles. In 20th International Conference on Model Driven Engineering Languages and Systems

MODELS 2017, pages 109–115, 2017.

[127] Andy Greenberg. Car hack technique uses dealerships to spread malware.
https://www.wired.com/2015/10/car-hacking-tool-turns-repair-shops-malware-brothels/, Octo-
ber 2015.

193

Bibliography

[128] Andy Greenberg. A deep flaw in your car lets hackers shut down safety features.
https://www.wired.com/story/car-hack-shut-down-safety-features/, August 2017.

[129] B. Greene. Agile methods applied to embedded firmware development. In Agile Development

Conference, pages 71–77, Jun 2004.

[130] Hans Grönninger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel. Textbased
modeling. arXiv preprint arXiv:1409.6623, 2014.

[131] Shay Gueron, Simon Johnson, and Jesse Walker. Sha-512/256. In Information Technology: New

Generations (ITNG), 2011 Eighth International Conference on, pages 354–358. IEEE, 2011.

[132] Darko Gvozdanović, Saša Dešić, and Darko Huljenić. UML Supported Software Design. In In-

ternational Conference on Software, Telecommunications and Computer Networks SoftCOM 2001,
2001.

[133] Axel Habermaier, Johannes Leupolz, and Wolfgang Reif. Unified simulation, visualization, and
formal analysis of safety-critical systems with s. In Maurice H. ter Beek, Stefania Gnesi, and
Alexander Knapp, editors, Critical Systems: Formal Methods and Automated Verification, pages
150–167, Cham, 2016. Springer International Publishing.

[134] Kristen Hall-Geisler. Even your connected car will need antivirus software.
https://techcrunch.com/2016/05/02/even-your-connected-car-will-need-antivirus-software/, May
2016.

[135] Brahim Hamid, Jacob Geisel, Adel Ziani, Jean-Michel Bruel, and Jon Perez. Model-driven engi-
neering for trusted embedded systems based on security and dependability patterns. In International

SDL Forum, pages 72–90. Springer, 2013.

[136] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B Bobba. A design-space explo-
ration for allocating security tasks in multicore real-time systems. arXiv preprint arXiv:1711.04808,
2017.

[137] Bill Haskins, Jonette Stecklein, Brandon Dick, Gregory Moroney, Randy Lovell, and James Dabney.
8.4.2 Error Cost Escalation Through the Project Life Cycle. In INCOSE International Symposium,
volume 14, pages 1723–1737. Wiley Online Library, 2004.

[138] Denis Hatebur, Maritta Heisel, and Holger Schmidt. Security engineering using problem frames. In
Günter Müller, editor, Emerging Trends in Information and Communication Security, pages 238–
253, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[139] Klaus Havelund, Mike Lowry, SeungJoon Park, Charles Pecheur, John Penix, Willem Visser,
Jonathan White, et al. Formal analysis of the remote agent before and after flight. In Proceed-

ings of the 5th NASA Langley Formal Methods Workshop, volume 134, 2000.

[140] J. Heffley and P. Meunier. Can source code auditing software identify common vulnerabilities and
be used to evaluate software security? In 37th Annual Hawaii International Conference on System

Sciences, 2004. Proceedings of the, pages 10 pp.–, Jan 2004.

[141] Joerg Henkel and Rolf Ernst. The interplay of run-time estimation and granularity in hw/sw par-
titioning. In Proceedings of the 4th International Workshop on Hardware/Software Co-Design,
CODES ’96, pages 52–, Washington, DC, USA, 1996. IEEE Computer Society.

194

Bibliography

[142] Olaf Henniger, Alastair Ruddle, Hervé Seudié, Benjamin Weyl, Marko Wolf, and Thomas
Wollinger. Securing Vehicular On-Board IT Systems: The EVITA Project. In VDI/VW Automo-

tive Security Conference, 2009.

[143] T. A. Henzinger and J. Sifakis. The discipline of embedded systems design. Computer, 40(10):32–
40, Oct 2007.

[144] Thomas A Henzinger. Two challenges in embedded systems design: predictability and robustness.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences, 366(1881):3727–3736, 2008.

[145] Thomas A Henzinger and Joseph Sifakis. The embedded systems design challenge. In International

Symposium on Formal Methods, pages 1–15. Springer, 2006.

[146] Nat Hillary. Measuring performance for real-time systems. Freescale Semiconductor, November,
2005.

[147] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt. P2 cysemol: Predictive, probabilistic cyber
security modeling language. IEEE Transactions on Dependable and Secure Computing, 12(6):626–
639, Nov 2015.

[148] Jin B Hong and Dong Seong Kim. Assessing the effectiveness of moving target defenses using
security models. IEEE Transactions on Dependable and Secure Computing, 13(2):163–177, 2016.

[149] Todd E. Humphreys, Brent M. Ledvina, Mark L. Psiaki, Brady W. O’Hanlon, and Paul M. Kint-
ner Jr. Assessing the spoofing threat: Development of a portable gps civilian spoofer. In Proceedings

of the ION GNSS international technical meeting of the satellite division, volume 55, page 56, 2008.

[150] Troy Hunt. Controlling vehicle features of Nissan LEAFs across the globe via vulnerable APIs.
https://www.troyhunt.com/controlling-vehicle-features-of-nissan, December 2016.

[151] David D Hwang, Patrick Schaumont, Kris Tiri, and Ingrid Verbauwhede. Securing embedded sys-
tems. IEEE Security & Privacy, 4(2):40–49, 2006.

[152] Icon Labs. Floodgate IoT security toolkit. http://www.iconlabs.com/prod/products/floodgate-iot-
security-toolkit, 2018.

[153] ICS-CERT. Hospira Lifecare PCA Infusion System Vulnerabilities, Advisory (icsa-15-125-01b).
https://ics-cert.us-cert.gov/advisories/ICSA-15-125-01B, June 2015.

[154] Infineon Technologies AG. Aurix security hardware. https://www.infineon.com/cms/en/ produc-
t/microcontroller/ 32-bit-tricore-microcontroller/ aurix-safety-joins-performance/ aurix-security-
solutions/aurix-security-hardware/, 2018.

[155] Terrance R Ingoldsby. Understanding risks through attack tree analysis. Computer Security Journal,
20(2):33–59, 2004.

[156] Institut Mines-Telecom. No autonomous cars without cybersecurity.
https://blogrecherche.wp.imt.fr/en/2017/12/12/autonomous-cars-cybersecurity/, December 2017.

[157] National Instruments. Best practices for embedded software testing of safety compliant systems.
http://www.ni.com/white-paper/13671/en/, January 2016.

195

Bibliography

[158] Pedro Isaias and Tomayess Issa. Information System Development Life Cycle Models, pages 21–40.
Springer New York, New York, NY, 2015.

[159] Rob Miller Ishtiaq Rouf, Hossen Mustafa, Sangho Oh Travis Taylor, Wenyuan Xu, Marco Gruteser,
Wade Trappe, and Ivan Seskar. Security and privacy vulnerabilities of in-car wireless networks: A
tire pressure monitoring system case study. In 19th USENIX Security Symposium, Washington DC,
pages 11–13, 2010.

[160] Road vehicles - Functional safety. Standard, 2011.

[161] J. A. Cook. Automatic code generation. https://www.ethz.ch/content/dam/ethz/special-
interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-
Systems/OtherNotes/Automatic_Code_Generation.pdf, Mar 2008.

[162] Chafic Jaber. High-level SOC Modeling and Performance Estimation: Application To A Multi-core

Implementation Of LTE EnodeB Physical Layer. PhD thesis, Telecom Paristech, September 2011.

[163] Chafic Jaber, Andreas Kanstein, Ludovic Apvrille, Amer Baghdadi, Patricia Le Moenner, and Re-
naud Pacalet. High-Level System Modeling for Rapid HW/SW Architecture Exploration. In Proc.

of the 20th IEEE/IFIP International Symposium on Rapid System Prototyping (RSP’2009), Jun
2009.

[164] Michael Jackson. Problem frames-analyzing and structuring software development problems. 2001.
New York, Oxoford: Addison-Wesley, 390.

[165] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Address Space Layout Random-
ization with Intel TSX. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’16, pages 380–392, New York, NY, USA, 2016. ACM.

[166] K. Jiang, P. Eles, and Z. Peng. Co-design techniques for distributed real-time embedded systems
with communication security constraints. In 2012 Design, Automation Test in Europe Conference

Exhibition (DATE), pages 947–952, March 2012.

[167] Anjali Joshi and Mats PE Heimdahl. Model-based safety analysis of Simulink models using SCADE
design verifier. In International Conference on Computer Safety, Reliability, and Security, pages
122–135. Springer, 2005.

[168] Jan Jürjens. UMLsec: Extending UML for Secure Systems Development. In Proceedings of the 5th

International Conference on The Unified Modeling Language, UML ’02, pages 412–425, London,
UK, UK, 2002. Springer-Verlag.

[169] Gilles Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,
editor, Information Processing ’74: Proceedings of the IFIP Congress, pages 471–475. North-
Holland, New York, NY, 1974.

[170] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko Hännikäinen, Timo D. Hämäläi-
nen, Jouni Riihimäki, and Kimmo Kuusilinna. UML-based Multiprocessor SoC Design Framework.
ACM Trans. Embed. Comput. Syst., 5(2):281–320, May 2006.

[171] Frank Kargl and Norbert Bissmeyer. Y4&5 dissemination report. Technical Report Deliverable 6.4,
PRESERVE Project, Jun 2015.

196

Bibliography

[172] Dawn Kawamoto. IoT security incidents rampant and costly.
https://www.darkreading.com/vulnerabilities—threats/iot-security-incidents-rampant-and-
costly/d/d-id/1329367, July 2017.

[173] Matt Kelly. With the rise of autonomous vehicles, hackers pose a serious new
threat. https://www.news.virginia.edu/content/rise-autonomous-vehicles-hackers-pose-serious-
new-threat, Apr 2017.

[174] S Kelly and S Frankel. Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with
IPsec. Technical report, 2007.

[175] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli. System-level design:
orthogonalization of concerns and platform-based design. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 19(12):1523–1543, Dec 2000.

[176] Arjun Kharpal. After Samsung’s Note 7, here’s 10 of the biggest tech recalls ever.
https://www.cnbc.com/2016/09/13/after-samsung-note-7-recall-10-biggest-tech-recalls-ever.html,
September 2015.

[177] B. Kienhuis, E.F. Deprettere, P. van der Wolf, and K.A. Vissers. A Methodology to Design Pro-
grammable Embedded Systems: The Y-Chart Approach. In Embedded Processor Design Chal-

lenges, pages 18–37. Springer, 2002.

[178] Trevor A Kletz. HAZOP and HAZAN: identifying and assessing process industry hazards. IChemE,
1999.

[179] J. Kloos, T. Hussain, and R. Eschbach. Risk-based testing of safety-critical embedded systems
driven by fault tree analysis. In 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops, pages 26–33, March 2011.

[180] Will Knight. Tesla Crash Will Shape the Future of Automated Cars.
https://www.technologyreview.com/s/601829/tesla-crash-will-shape-the-future-of-automated-
cars/, July 2016.

[181] D. Knorreck. UML-based Design Space Exploration, Fast Simulation and Static Analysis. PhD
thesis, Telecom ParisTech, EDITE, October 2011.

[182] Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. Fast simulation techniques for design
space exploration. In Objects, Components, Models and Patterns, volume 33 of Lecture Notes in

Business Information Processing, pages 308–327. Springer Berlin Heidelberg, 2009.

[183] Woo-Hyun Ko, B. Satchidanandan, and P. R. Kumar. Theory and implementation of dynamic
watermarking for cybersecurity of advanced transportation systems. In 2016 IEEE Conference

on Communications and Network Security (CNS), pages 416–420, Oct 2016.

[184] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. Security as a new dimension in
embedded system design. In Proceedings of the 41st Annual Design Automation Conference, DAC
’04, pages 753–760, New York, NY, USA, 2004. ACM. Moderator-Ravi, Srivaths.

[185] S. Konrad, B. H. C. Cheng, and L. A. Campbell. Object analysis patterns for embedded systems.
IEEE Transactions on Software Engineering, 30(12):970–992, Dec 2004.

197

Bibliography

[186] Phil Koopman. Secrecy vs. integrity and why encryption might be the wrong choice.
https://betterembsw.blogspot.fr/2013/10/secrecy-vs-integrity-and-why-encryption.html, Octo-
ber 2013.

[187] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. ADTool: Security Analysis
with Attack-Defense Trees. In Quantitative Evaluation of Systems, volume 8054 of Lecture Notes

in Computer Science, pages 173–176. Springer Berlin Heidelberg, 2013.

[188] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage. Experimental security analysis of a modern automobile.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 447–462,
Washington, DC, USA, 2010. IEEE Computer Society.

[189] Bill Krause. Use processor redundancy for maximum reliability.
https://www.eetimes.com/document.asp?doc_id=1277540, February 2002.

[190] Marina Krotofil, Jason Larsen, and Dieter Gollmann. The process matters: Ensuring data veracity
in cyber-physical systems. In Proceedings of the 10th ACM Symposium on Information, Computer

and Communications Security, ASIA CCS ’15, pages 133–144, New York, NY, USA, 2015. ACM.

[191] J. H. Lala and R. E. Harper. Architectural principles for safety-critical real-time applications. Pro-

ceedings of the IEEE, 82(1):25–40, Jan 1994.

[192] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérome Hugues. Ocarina: An environment for
AADL models analysis and automatic code generation for high integrity applications. In Interna-

tional Conference on Reliable Software Technologies, pages 237–250. Springer, 2009.

[193] Edward A Lee. Cyber physical systems: Design challenges. In Object oriented real-time distributed

computing (isorc), 2008 11th IEEE international symposium on, pages 363–369. IEEE, 2008.

[194] Tim Leinmüller, Levente Buttyan, Jean-Pierre Hubaux, Frank Kargl, Rainer Kroh, Panagiotis Pa-
padimitratos, Maxim Raya, and Elmar Schoch. Sevecom-secure vehicle communication. In IST

Mobile and Wireless Communication Summit, number LCA-POSTER-2008-005, 2006.

[195] Laurens Lemaire, Jorn Lapon, Bart De Decker, and Vincent Naessens. A SysML extension for
security analysis of industrial control systems. In 2nd International Symposium for ICS & SCADA

Cyber Security Research 2014, pages 1–9. BCS Learning & Development Ltd., 2014.

[196] Arjen K Lenstra and Eric R Verheul. Selecting cryptographic key sizes. Journal of cryptology,
14(4):255–293, 2001.

[197] Nancy G. Leveson. Software Safety in Embedded Computer Systems. Commun. ACM, 34(2):34–
46, February 1991.

[198] Nancy G Leveson and Clark S Turner. An investigation of the Therac-25 accidents. Computer,
26(7):18–41, 1993.

[199] Doron Levin. Here are some of worst car scandals in history. http://fortune.com/2015/09/26/auto-
industry-scandals/, September 2015.

[200] Letitia W. Li, Ludovic Apvrille, and Annie Bracquemond. Design and Verification of Secure Au-
tonomous Vehicles. In Intelligent Transportation Systems 2017), Strausbourg, France, June 2017.

198

Bibliography

[201] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Security-Aware Modeling and Analysis for
HW/SW Partitioning. In Conference on Model-Driven Engineering and Software Development

(Modelsward’2017), Porto, Portugal, February 2017.

[202] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Security modeling for embedded system design.
In International Workshop on Graphical Models for Security, pages 99–106. Springer, 2017.

[203] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Evolving attacker perspectives for secure em-
bedded system design. In 6th International Conference on Model-Driven Rngineering and Software

Development (MODELSWARD 2018), 2018.

[204] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell,
and Mark Horowitz. Architectural support for copy and tamper resistant software. ACM SIGPLAN

Notices, 35(11):168–177, 2000.

[205] Chung-Wei Lin, Bowen Zheng, Qi Zhu, and Alberto Sangiovanni-Vincentelli. Security-Aware De-
sign Methodology and Optimization for Automotive Systems. ACM Transactions on Design Au-

tomation of Electronic Systems (TODAES), 21(1):18, 2015.

[206] Torsten Lodderstedt, David A. Basin, and Jurgen Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In Proceedings of the 5th International Conference on The

Unified Modeling Language, UML’02, pages 426–441, London, UK, UK, 2002. Springer-Verlag.

[207] G. Lu, D. Zeng, and B. Tang. Anti-jamming filtering for drfm repeat jammer based on stretch
processing. In 2010 2nd International Conference on Signal Processing Systems, volume 1, pages
V1–78–V1–82, July 2010.

[208] Florian Lugou. Environments for Analyzing the Security of Smart Objects. PhD thesis, Telecom
Paristech, February 2018.

[209] Florian Lugou, Letitia W. Li, Ludovic Apvrille, and Rabea Ameur-Boulifa. SysML Models and
Model Transformation for Security. In Conference on Model-Driven Engineering and Software

Development (Modelsward’2016), Rome, Italy, February 2016.

[210] Georg Macher, Andrea Höller, Harald Sporer, Eric Armengaud, and Christian Kreiner. A combined
safety-hazards and security-threat analysis method for automotive systems. In Floor Koornneef and
Coen van Gulijk, editors, Computer Safety, Reliability, and Security, pages 237–250, Cham, 2015.
Springer International Publishing.

[211] Bharat B. Madan, Katerina Goševa-Popstojanova, Kalyanaraman Vaidyanathan, and Kishor S.
Trivedi. A method for modeling and quantifying the security attributes of intrusion tolerant systems.
Performance Evaluation, 56(1):167 – 186, 2004. Dependable Systems and Networks - Performance
and Dependability Symposium (DSN-PDS) 2002: Selected Papers.

[212] Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static timing analysis of embedded
software. In Proceedings of the 34th Annual Design Automation Conference, DAC ’97, pages 147–
152, New York, NY, USA, 1997. ACM.

[213] Shahar Maoz, Ferdinand Mehlan, Jan Oliver Ringert, Bernhard Rumpe, and Michael von Wenck-
stern. OCL framework to verify extra-functional properties in component and connector models.

199

Bibliography

In 20th International Conference on Model Driven Engineering Languages and Systems MODELS

2017, pages 24–30, 2017.

[214] Eduard Marin, Dave Singelée, Flavio D Garcia, Tom Chothia, Rik Willems, and Bart Preneel. On
the (in) security of the latest generation implantable cardiac defibrillators and how to secure them.
In Proceedings of the 32nd Annual Conference on Computer Security Applications, pages 226–236.
ACM, 2016.

[215] Raluca Marinescu, Henrik Kaijser, Marius Mikučionis, Cristina Seceleanu, Henrik Lönn, and
Alexandre David. Analyzing industrial architectural models by simulation and model-checking.
In International Workshop on Formal Techniques for Safety-Critical Systems, pages 189–205.
Springer, 2014.

[216] John Markoff. A guide to challenges facing self-driving car technologists.
https://www.nytimes.com/2017/06/07/technology/autonomous-car-technology-challenges.html,
June 2017.

[217] Peter Marwedel. Embedded and cyber-physical systems in a nutshell. DAC. COM Knowledge

Center Article, 20(10), 2010.

[218] Peter Marwedel and Gert Goossens. Code generation for embedded processors, volume 317.
Springer Science & Business Media, 2013.

[219] D. Maynor. SCADA Security and Terrorism: We’re Not Crying Wolf! In Invited presentation at

BlackHat BH 2006. Presentation available at: https://www.blackhat.com/presentations/bh-federal-

06/BH-Fed-06-Maynor-Graham-up.pdf, USA, 2006.

[220] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes in Theo-

retical Computer Science, 152:125–142, 2006.

[221] Microsoft. The STRIDE Threat Model. https://msdn.microsoft.com/en-
us/library/ee823878%28v=cs.20%29.aspx, 2005.

[222] Microsoft. What is the Security Development Lifecycle. http://www.microsoft.com/en-
us/sdl/default.aspx, 2018.

[223] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle. Black

Hat USA, 2015.

[224] Paolo Modesti. Anbx: Automatic generation and verification of security protocols implementations.
In International Symposium on Foundations and Practice of Security, pages 156–173. Springer,
2015.

[225] N. Moebius, K. Stenzel, H. Grandy, and W. Reif. SecureMDD: A Model-Driven Development
Method for Secure Smart Card Applications. In 2009 International Conference on Availability,

Reliability and Security, pages 841–846, March 2009.

[226] Sumit Mohanty, Viktor K Prasanna, Sandeep Neema, and J Davis. Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular simulation. ACM

SIGPLAN Notices, 37(7):18–27, 2002.

200

Bibliography

[227] T. G. Moreira, M. A. Wehrmeister, C. E. Pereira, J. F. Pétin, and E. Levrat. Automatic code gener-
ation for embedded systems: From UML specifications to VHDL code. In 2010 8th IEEE Interna-

tional Conference on Industrial Informatics, pages 1085–1090, July 2010.

[228] Martin Moser. The PRESERVE V2X Security Subsystem. https://www.preserve-
project.eu/sites/preserve-project.eu/files/preserve-ws-03-vss.pdf, June 2015.

[229] Danielle Muoio. 6 scenarios self-driving cars still can’t handle.
http://www.businessinsider.fr/us/autonomous-car-limitations-2016-8, August 2016.

[230] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and David L. Dill. Cmc:
A pragmatic approach to model checking real code. SIGOPS Oper. Syst. Rev., 36(SI):75–88, De-
cember 2002.

[231] Andrey Naumenko and Alain Wegmann. A metamodel for the Unified Modeling Language: critical
analysis and solution. Technical report, 2002.

[232] NBC. Hyundai Recalls 41K SUVs Over Software Glitch.
https://www.nbcwashington.com/news/national-international/Hyundai-Recalls-SUVs-Software-
Flaw-May-Stop-Acceleration-393663311.html, May 2016.

[233] Lily Newman. The Botnet That Broke the Internet Isn’t Going Away.
https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/, December 2016.

[234] Sen Nie, Ling Liu, and Yuefeng Du. Free-Fall: Hacking Tesla from Wireless to CAN
Bus. https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-
Wireless-To-CAN-Bus-wp.pdf, July 2017.

[235] No Magic. Choosing the right modeling tool. https://www.nomagic.com/getting-started/choosing-
the-right-modeling-tool, 2018.

[236] Tammy Noergaard. Embedded systems architecture: a comprehensive guide for engineers and

programmers. Newnes, 2012.

[237] Bashar Nuseibeh. Weaving together requirements and architectures. Computer, 34(3):115–119,
2001.

[238] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap. In Proceedings of

the Conference on the Future of Software Engineering, pages 35–46. ACM, 2000.

[239] P. Nuzzo, J. B. Finn, A. Iannopollo, and A. L. Sangiovanni-Vincentelli. Contract-based design of
control protocols for safety-critical cyber-physical systems. In 2014 Design, Automation Test in

Europe Conference Exhibition (DATE), pages 1–4, March 2014.

[240] Robert Oates, Fran Thom, and Graham Herries. Security-aware, model-based systems engineering
with sysml. In Proceedings of the 1st International Symposium on ICS & SCADA Cyber Security

Research, pages 78–87. BCS, 2013.

[241] Marcus Obst, Laurens Hobert, and Pierre Reisdorf. Multi-sensor data fusion for checking plausi-
bility of V2V communications by vision-based multiple-object tracking. In Vehicular Networking

Conference (VNC), 2014 IEEE, pages 143–150. IEEE, 2014.

201

Bibliography

[242] Object Management Group OMG. SysML. In http://www.sysml.org/, 2011.

[243] Jonathan S Ostroff. Formal methods for the specification and design of real-time safety critical
systems. Journal of Systems and Software, 18(1):33–60, 1992.

[244] OVERSEE. Open Vehicular Secure Platform. https://www.oversee-project.com/, 2010.

[245] Miroslav Pajic, James Weimer, Nicola Bezzo, Oleg Sokolsky, George J Pappas, and Insup Lee. De-
sign and implementation of attack-resilient cyberphysical systems: With a focus on attack-resilient
state estimators. IEEE Control Systems, 37(2):66–81, 2017.

[246] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. A stealth, selective, link-
layer denial-of-service attack against automotive networks. In Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 185–206, Cham, 2017. Springer International Publishing.

[247] Panagiotis Papadimitratos, Levente Buttyan, Tamás Holczer, Elmar Schoch, Julien Freudiger,
Maxim Raya, Zhendong Ma, Frank Kargl, Antonio Kung, and Jean-Pierre Hubaux. Secure vehic-
ular communication systems: design and architecture. IEEE Communications Magazine, 46(11),
2008.

[248] Panagiotis Papadimitratos, Levente Buttyan, Jean-Pierre Hubaux, Frank Kargl, Antonio Kung, and
Maxim Raya. Architecture for secure and private vehicular communications. In Telecommunica-

tions, 2007. ITST’07. 7th International Conference on ITS, pages 1–6. IEEE, 2007.

[249] Corina S. Păsăreanu and Willem Visser. Verification of Java Programs Using Symbolic Execution
and Invariant Generation. In Susanne Graf and Laurent Mounier, editors, Model Checking Software,
pages 164–181, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[250] Paul Ohmart. How Much Data Can You Encrypt With RSA Keys?
https://info.townsendsecurity.com/bid/29195/how-much-data-can-you-encrypt-with-rsa-keys,
Apr 2011.

[251] PAX Team. NOEXEC. http://pax.grsecurity.net/docs/noexec.txt, May 2003.

[252] G. Pedroza, L. Apvrille, and D. Knorreck. AVATAR: A SysML Environment for the Formal Veri-
fication of Safety and Security Properties. In 2011 11th Annual International Conference on New

Technologies of Distributed Systems, pages 1–10, May 2011.

[253] Mert D. Pesé, Karsten Schmidt, and Harald Zweck. Hardware/Software Co-Design of an Automo-
tive Embedded Firewall. https://web.eecs.umich.edu/ mpese/papers/2017-01-1659.pdf, 2017.

[254] J. Petit and S. E. Shladover. Potential cyberattacks on automated vehicles. IEEE Transactions on

Intelligent Transportation Systems, 16(2):546–556, April 2015.

[255] Jonathan Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. Remote attacks on automated vehi-
cles sensors: Experiments on camera and lidar. Black Hat Europe, 11:2015, 2015.

[256] Ludovic Piètre-Cambacédès and Marc Bouissou. Modeling safety and security interdependencies
with BDMP (Boolean logic Driven Markov Processes). In Systems Man and Cybernetics (SMC),

2010 IEEE International Conference on, pages 2852–2861. IEEE, 2010.

202

Bibliography

[257] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Transactions on Computers, 55(2):99–112, Feb
2006.

[258] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van der Wolf, and Ed F. Deprettere.
Exploring embedded-systems architectures with Artemis. IEEE Computer, 34(11):57–63, 2001.

[259] Polarsys. ARCADIA/CAPELLA (webpage). In https://www.polarsys.org/capella/arcadia.html,
2008.

[260] Ponemon Institute LLC. The impact of data breaches on reputation & share value.
https://www.centrify.com/media/4737054/ponemon_data_breach_impact_study.pdf, May 2017.

[261] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates.
In Rajeev Alur and George J. Pappas, editors, Hybrid Systems: Computation and Control, pages
477–492, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[262] Nikolaos Priggouris, Adeline Silva, Markus Shawky, Magnus Persson, Vincent Ibanez, Joseph
Machrouh, Nicola Meledo, Philippe Baufreton, and Jason Mansell Rementeria. The system design
life cycle. In CESAR-Cost-efficient Methods and Processes for Safety-relevant Embedded Systems,
pages 15–67. Springer, 2013.

[263] pymnts.com. Can A Connected Refrigerator Anchor The IoT Household?
https://www.pymnts.com/intelligence-of-things/2017/can-a-connected-refrigerator-anchor-the-
iot-household/, May 2017.

[264] Christian Raspotnig, Peter Karpati, and Andreas L Opdahl. Combined Assessment of Software
Safety and Security Requirements: An Industrial Evaluation of the CHASSIS Method. Journal of

Cases on Information Technology (JCIT), 20(1):46–69, 2018.

[265] Christian Raspotnig, Vikash Katta, Peter Karpati, and Andreas L Opdahl. Enhancing CHASSIS: a
method for combining safety and security. In Availability, Reliability and Security (ARES), 2013

Eighth International Conference on, pages 766–773. IEEE, 2013.

[266] D. R. Raymond and S. F. Midkiff. Denial-of-service in wireless sensor networks: Attacks and
defenses. IEEE Pervasive Computing, 7(1):74–81, Jan 2008.

[267] L Ricci and L McGinness. Embedded system security. white paper, 2004.

[268] Nils Rodday. Hacking a Professional Drone. Slides at www.blackhat.com/docs/asia-
16/materials/asia-16-Rodday-Hacking-A-Professional-Drone.pdf, March 2016.

[269] Jussi Ronkainen and Pekka Abrahamsson. Software development under stringent hardware con-
straints: Do agile methods have a chance? In International Conference on Extreme Programming

and Agile Processes in Software Engineering, pages 73–79. Springer, 2003.

[270] Paul Rook. Controlling software projects. Software Engineering Journal, 1(1):7–16, 1986.

[271] Rafael Rosales, Michael Glass, Jürgen Teich, Bo Wang, Yang Xu, and Ralph Hasholzner.
MAESTRO— Holistic Actor-Oriented Modeling of Nonfunctional Properties and Firmware Be-
havior for MPSoCs. ACM Trans. Des. Autom. Electron. Syst., 19(3):23:1–23:26, June 2014.

203

Bibliography

[272] Brian Ross, Cindy Galli, Stephanie Zimmermann, Cho Park, and Pete Madden. BMW re-
calls 1 million vehicles for fire risk. http://abcnews.go.com/US/bmw-recalls-million-vehicles-fire-
risk/story?id=50922136, November 2017.

[273] Winston W Royce. Managing the development of large software systems: concepts and techniques.
In Proceedings of the 9th international conference on Software Engineering, pages 328–338. IEEE
Computer Society Press, 1987.

[274] A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald, T. Leimbach, A. Fuchs, S. Gür-
gens, O. Henniger, R. Rieke, M. Ritscher, H. Broberg, L. Apvrille, R. Pacalet, and G. Pedroza.
Security requirements for automotive on-board networks based on dark-side scenarios. Technical
Report Deliverable D2.3, EVITA Project, 2009.

[275] Jose Fran Ruiz, Rajesh Harjani, Antonio Mana, Vasily Desnitsky, Igor Kotenko, and Andrey
Chechulin. A methodology for the analysis and modeling of security threats and attacks for systems
of embedded components. In Parallel, Distributed and Network-Based Processing (PDP), 2012

20th Euromicro International Conference on, pages 261–268. IEEE, 2012.

[276] Sara Sadvandi, Nicolas Chapon, and Ludovic Piètre-Cambacédès. Safety and Security Interdepen-
dencies in Complex Systems and SoS: Challenges and Perspectives. In Omar Hammami, Daniel
Krob, and Jean-Luc Voirin, editors, Complex Systems Design & Management, pages 229–241,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[277] Safety.com. The top 40 best wearable tech products for kids and families.
https://www.safety.com/best-wearables, July 2017.

[278] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software design methodology
for embedded systems. IEEE Design Test of Computers, 18(6):23–33, Nov 2001.

[279] Tripti Saxena and Gabor Karsai. MDE-Based Approach for Generalizing Design Space Exploration,
pages 46–60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[280] Eric Schlaepfer. Comparison of internal and external watchdog timers.
https://www.maximintegrated.com/en/app-notes/index.mvp/id/4229, June 2008.

[281] Christian Schleiffer, Marko Wolf, André Weimerskirch, and Lars Wolleschensky. Secure key
management-a key feature for modern vehicle electronics. Technical report, SAE Technical Pa-
per, 2013.

[282] Bastian Schlich and Stefan Kowalewski. Model checking c source code for embedded systems.
International Journal on Software Tools for Technology Transfer, 11(3):187–202, Jul 2009.

[283] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER SOCIETY-,
39(2):25, 2006.

[284] Holger Schmidt. Pattern-based confidentiality-preserving refinement. In International Symposium

on Engineering Secure Software and Systems, pages 43–59. Springer, 2009.

[285] Christoph Schmittner, Thomas Gruber, Peter Puschner, and Erwin Schoitsch. Security Application
of Failure Mode and Effect Analysis (FMEA). In Andrea Bondavalli and Felicita Di Giandomenico,
editors, Computer Safety, Reliability, and Security, pages 310–325, Cham, 2014. Springer Interna-
tional Publishing.

204

Bibliography

[286] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

[287] Erwin Schoitsch. Design for safety and security of complex embedded systems: A unified approach.
In Proceedings of the NATO Advanced Research Workshop on Cyberspace Security and Defense:

Research Issues, pages 161–174. Springer, 2005.

[288] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann. Car2X Communication:
Securing the Last Meter - A Cost-Effective Approach for Ensuring Trust in Car2X Applications
Using In-Vehicle Symmetric Cryptography. In 2011 IEEE Vehicular Technology Conference (VTC

Fall), pages 1–5, Sept 2011.

[289] Hendrik Schweppe. Security and privacy in automotive on-board networks. PhD thesis, Télécom
ParisTech, 2012.

[290] B. Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–25, Sept 2003.

[291] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul of model-driven software
development. IEEE Software, 20(5):42–45, Sept 2003.

[292] H. Seudié, J. Shokrollahi, B. Weyl, A. Keil, M. Wolf, F. Zweers, T. Gendrullis, M. S. Idrees,
Y. Roudier, H. Schweppe, H. Platzdasch, R. El Khayari, O. Henniger, D. Scheuermann, L. Apvrille,
and G. Pedroza. Secure on-board architecture specification. Technical Report Deliverable D3.2,
EVITA Project, 2010.

[293] Hervé Seudié. Vehicular on-board security: Evita project. https://www.evita-
project.org/Publications/Seu09.pdf, November 2009.

[294] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim. Illusion and dazzle: Adversarial
optical channel exploits against lidars for automotive applications. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems – CHES 2017, pages 445–467,
Cham, 2017. Springer International Publishing.

[295] Tom Simonite. Self-driving cars’ spinning-laser problem.
https://www.technologyreview.com/s/603885/autonomous-cars-lidar-sensors/, March 2017.

[296] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with misuse cases. Re-

quirements Engineering, 10(1):34–44, Jan 2005.

[297] SocLib consortium. The SoCLib project: An integrated system-on-chip modelling and simulation
platform, 2003. www.soclib.fr.

[298] Jason Sparapani. Driverless cars not a ‘solved problem,’ says MIT professor.
https://searchcio.techtarget.com/blog/TotalCIO/Driverless-cars-not-a-solved-problem-says-MIT-
professor, February 2016.

[299] Max Steiner and Peter Liggesmeyer. Combination of safety and security analysis - finding se-
curity problems that threaten the safety of a system. In SAFECOMP 2013-Workshop DECS

(ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems) of the 32nd

International Conference on Computer Safety, Reliability and Security, 2013.

[300] Jack Stewart. Tesla’s Autopilot Was Involved in Another Deadly Car Crash.
https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/, March 2018.

205

Bibliography

[301] Luke Swartz. Overwhelmed by technology: How did user interface failures on board the USS
Vincennes lead to 290 dead. Erişim tarihi, 25, 2001.

[302] Synopsys. Architecture Risk Analysis, 2018. https://www.synopsys.com/software-
integrity/software-security-services/software-architecture-design/risk-analysis.html.

[303] Synopsys. Scalable SoC Verification, 2018. https://www.synopsys.com/verification.html.

[304] Synopsys. Security Control Design Analysis (SCDA), 2018. https://www.synopsys.com/software-
integrity/software-security-services/software-architecture-design/security-control-design-
analysis.html.

[305] Synopsys. SSDLC 101: What is the secure software development life cycle?, 2018.
https://www.synopsys.com/blogs/software-security/secure-sdlc/.

[306] Synopsys Editorial Team. Infographic: A lack of software security training puts companies
at risk. https://www.synopsys.com/blogs/software-security/software-security-training-resources-
infographic/, January 2018.

[307] Tivadar Szemethy and Gabor Karsai. Platform modeling and model transformations for analysis.
Journal of Universal Computer Science, 10(10):1383–1407, 2004.

[308] A. Taylor, N. Japkowicz, and S. Leblanc. Frequency-based anomaly detection for the automotive
can bus. In 2015 World Congress on Industrial Control Systems Security (WCICSS), pages 45–49,
Dec 2015.

[309] A. Taylor, S. P. Leblanc, and N. Japkowicz. Probing the limits of anomaly detectors for automobiles
with a cyber attack framework. IEEE Intelligent Systems, PP(99):1–1, 2018.

[310] P. Tessier, S. Gerard, C. Mraidha, F. Terrier, and J. M. Geib. A component-based methodology for
embedded system prototyping. In 14th IEEE International Workshop on Rapid Systems Prototyping,

2003. Proceedings., pages 9–15, June 2003.

[311] Lothar Thiele and W Ernesto. Performance analysis of distributed embedded systems. In In In-

ternational Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation

(ICSAMOS. Citeseer, 2011.

[312] V. L. L. Thing and J. Wu. Autonomous vehicle security: A taxonomy of attacks and defences. In
2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing

and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and

IEEE Smart Data (SmartData), pages 164–170, Dec 2016.

[313] Donald E Thomas, Jay K Adams, and Herman Schmit. A model and methodology for hardware-
software codesign. IEEE Design & test of computers, 10(3):6–15, 1993.

[314] Cadie Thompson. As healthcare costs rise and patients demand better care, hospitals turn to
new technologies. http://www.businessinsider.fr/us/how-hospitals-are-using-iot-2016-10/, October
2016.

[315] Syrine Tlili, XiaoChun Yang, Rachid Hadjidj, and Mourad Debbabi. Verification of CERT Secure
Coding Rules: Case Studies. In Robert Meersman, Tharam Dillon, and Pilar Herrero, editors, On

206

Bibliography

the Move to Meaningful Internet Systems: OTM 2009, pages 913–930, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[316] Juha-Pekka Tolvanen, Metacase Janne Luoma, and De-Jiu Chen. Reaping the benefits of
architectural modeling in embedded design. https://www.embedded.com/design/prototyping-
and-development/4437065/Reaping-the-benefits-of-architectural-modeling-in-embedded-design,
November 2014.

[317] Angelo Troina, Alessandro Aldini, and Roberto Gorrieri. A probabilistic formulation of imperfect
cryptography. In Proc. of 1st Int. Workshop on Issues in Security and Petri Nets, WISP, volume 3.
Citeseer, 2003.

[318] Trusted Computing Group. Trusted Platform Module (TPM) Summary, April 2008.

[319] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious kingdoms: A taxonomy of
software security errors. IEEE Security & Privacy, 3(6):81–84, 2005.

[320] UAVCAN development team. Hardware design recommendations.
http://uavcan.org/Specification/8._Hardware_design_recommendations/#devices-with-different-
number-of-redundant-interfaces, March 2018.

[321] David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas, Nils Ole Tippenhauer, Junia Valente,
Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg. Limiting the impact of stealthy
attacks on industrial control systems. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16, pages 1092–1105, New York, NY, USA, 2016.
ACM.

[322] Anton V Uzunov, Eduardo B Fernandez, and Katrina Falkner. ASE: a Comprehensive Pattern-
Driven Security Methodology for Distributed Systems. Computer Standards & Interfaces, 41:112–
137, 2015.

[323] Lisa Vaas. Uber car software detected woman before fatal crash but failed to
stop. https://nakedsecurity.sophos.com/2018/05/09/uber-car-software-detected-woman-before-
fatal-crash-but-failed-to-stop/, May 2018.

[324] Michael Vai, David J. Whelihan, Benjamin R. Nahill, Daniil M. Utin, Sean R. O’Melia, and Roger I.
Khazan. Secure embedded systems. Technical report, MIT Lincoln Laboratory Lexington United
States, 2016.

[325] Axel van Lamsweerde. Elaborating Security Requirements by Construction of Intentional Anti-
Models. In Proc. of the 26th International Conference on Software Engineering , ICSE ’04, pages
148–157, 2004.

[326] Axel Van Lamsweerde, Simon Brohez, Renaud De Landtsheer, David Janssens, et al. From system
goals to intruder anti-goals: attack generation and resolution for security requirements engineering.
Proc. of RHAS, 3:49–56, 2003.

[327] Dániel Varró. Automated formal verification of visual modeling languages by model checking.
Software & Systems Modeling, 3(2):85–113, May 2004.

207

Bibliography

[328] Dániel Varró, Gergely Varró, and András Pataricza. Designing the automatic transformation of
visual languages. Science of Computer Programming, 44(2):205 – 227, 2002. Special Issue on
Applications of Graph Transformations (GRATRA 2000).

[329] Maria Vasilevskaya and Simin Nadjm-Tehrani. Quantifying Risks to Data Assets Using Formal

Metrics in Embedded System Design, pages 347–361. Springer International Publishing, Cham,
2015.

[330] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl. Fault tree hand-
book. Technical report, Nuclear Regulatory Commission Washington DC, 1981.

[331] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard, and Jean-Philippe Diguet. A
co-design approach for embedded system modeling and code generation with UML and MARTE.
In Design, Automation and Test in Europe, pages 226–231, Dresden, Germany, April 2009.

[332] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio Lerda. Model check-
ing programs. Automated Software Engineering, 10(2):203–232, Apr 2003.

[333] Bill Vlasic and Nick Bunkley. Toyota will fix or replace 4 million gas pedals.
http://www.nytimes.com/2009/11/26/business/26toyota.html, November 2009.

[334] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. mbeddr: instantiating a language
workbench in the embedded software domain. Automated Software Engineering, 20(3):339–390,
Sep 2013.

[335] Jack Wallen. Five nightmarish attacks that show the risks of IoT security.
http://www.zdnet.com/article/5-nightmarish-attacks-that-show-the-risks-of-iot-security/, June
2017.

[336] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng. A Distributed Anomaly Detection
System for In-Vehicle Network using HTM. IEEE Access, PP(99):1–1, 2018.

[337] Elizabeth Weise. Chinese group hacks a Tesla for the second year in a row.
https://www.usatoday.com/story/tech/2017/07/28/chinese-group-hacks-tesla-second-year-
row/518430001/, July 2017.

[338] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. E. Heimdahl, and S. Rayadurgam. Your
"what" is my "how": Iteration and hierarchy in system design. IEEE Software, 30(2):54–60, March
2013.

[339] Michael E Whitman and Herbert J Mattord. Principles of information security. Cengage Learning,
2011.

[340] Anton Wijs and Luc Engelen. Refiner: Towards formal verification of model transformations. In
Julia M. Badger and Kristin Yvonne Rozier, editors, NASA Formal Methods, pages 258–263, Cham,
2014. Springer International Publishing.

[341] James Williams, Athanasios Zolotas, Nicholas Matragkas, Louis M Rose, Dimitios S Kolovos,
Richard F Paige, and Fiona Polack. What do metamodels really look like? 1078, 01 2013.

208

Bibliography

[342] Wired. How connectivity is driving the future of the car.
https://www.wired.com/brandlab/2016/02/how-connectivity-is-driving-the-future-of-the-car/,
February 2016.

[343] Ben Wojdyla. The top automotive engineering failures: The ford pinto fuel tanks.
https://www.popularmechanics.com/cars/a6700/top-automotive-engineering-failures-ford-pinto-
fuel-tanks/, May 2011.

[344] Marko Wolf and Timo Gendrullis. Design, implementation, and evaluation of a vehicular hardware
security module. In International Conference on Information Security and Cryptology, pages 302–
318. Springer, 2011.

[345] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical wireless attack on the connected car and
security protocol for in-vehicle CAN. IEEE Transactions on Intelligent Transportation Systems,
16(2):993–1006, 2015.

[346] Chen Yan, Wenyuan Xu, and Jianhao Liu. Can you trust autonomous vehicles: Contactless attacks
against sensors of self-driving vehicle. DEF CON, 24, 2016.

[347] William Young and Nancy G. Leveson. An Integrated Approach to Safety and Security Based on
Systems Theory. Commun. ACM, 57(2):31–35, February 2014.

[348] T. Zhang, H. Antunes, and S. Aggarwal. Defending connected vehicles against malware: Challenges
and a solution framework. IEEE Internet of Things Journal, 1(1):10–21, Feb 2014.

[349] YongBin Zhou and DengGuo Feng. Side-channel attacks: Ten years after its publication and the
impacts on cryptographic module security testing. IACR Cryptology ePrint Archive, 2005:388,
2005.

[350] Roberto Zunino and Pierpaolo Degano. A note on the perfect encryption assumption in a process
calculus. In Igor Walukiewicz, editor, Foundations of Software Science and Computation Structures,
pages 514–528, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[351] Wei Zuo, Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Chung-Wei Lin, Shinichi Shiraishi,
and Deming Chen. Accurate High-level Modeling and Automated Hardware/Software Co-design
for Effective SoC Design Space Exploration. In Proc. 54th Annual Design Automation Conference

2017, DAC ’17, pages 78:1–78:6, New York, NY, USA, 2017. ACM.

209

	Introduction
	Safety and Security Concerns in IoTs/Embedded Systems
	Design of Embedded Systems
	Problem Statement
	Contribution of this Thesis
	Security modeling and verification in the mapping phase
	Proof of Correctness of Model Transformation for Formal Security Verification
	Attacker Modeling
	Latency analysis
	Proposition of a modified SysML-Sec Methodology
	Taxonomy for Safe and Secure Autonomous Vehicle Design

	Organization of this Thesis

	Context: Autonomous Vehicles
	Safety and Security Flaws
	Safety Flaws in Commercial Vehicles
	Survey of Hacks on Connected Vehicles
	Safety Limitations of Autonomous Vehicles
	Survey of Potential Attacks on Future Autonomous Vehicles
	Conclusion

	Approaches to Vehicle Safety and Security
	Proposals for Safe and Secure Automotive and Embedded System Design

	Taxonomy
	Potential Causes of Failure
	Undesired States of System Behavior
	Unsafe Comportment
	Countermeasures
	Conclusion

	Countermeasures
	Safety Countermeasures
	Security Countermeasures
	Secondary Effects of Countermeasures on Safety, Security, and Performance
	Conclusion

	Design Process Requirements
	Methodology Capabilities
	Properties to Verify
	Security Properties
	Conclusion

	Related Work
	Software Development approaches
	Agile
	Waterfall/V Life Cycle

	Model Driven Methodologies and Toolkits
	Frameworks for Analysis
	Frameworks for the Design of Embedded Systems
	Frameworks for Software Design
	Conclusion

	Modeling Methodology
	Introduction
	Overview
	Analysis
	Requirements
	Attack Trees
	Fault Trees
	Relationship between Analysis Phase Diagrams

	Design Phases
	HW/SW Partitioning
	Application/Functional Modeling

	Software Design

	Security-Aware HW/SW Partitioning
	Motivation
	Attacker Model
	Security Modeling
	Architecture Vulnerabilities
	Attacker Scenarios
	Attacker Scenario Analysis
	Security Countermeasures

	Conclusion

	Security Verification
	Introduction
	ProVerif
	Functions
	Declarations
	Queries
	Main Process
	Sub-processes
	Formalizations
	DIPLODOCUS to ProVerif Translation Process

	Formalization for Translation
	DIPLODOCUS Formalization
	AVATAR Formalization

	DIPLODOCUS to AVATAR Translation Formalization
	Full DIPLODOCUS to AVATAR translation
	DIPLODOCUS to AVATAR translation for Security
	Translation of Operators

	Translation to ProVerif
	Translation of Queries
	Translation of Tasks
	Translation of Actions

	Proof of Correctness
	Base case
	Inductive Step
	Conclusion

	ProVerif Results
	Automatic Generation
	Security Requirements
	Addition of Security Operators
	HSM Generation
	Automatic Key Mapping
	Automatic Generation for Case Study

	Conclusion

	Performance Evaluation
	Introduction
	Latency Analysis
	Latency Requirements
	Latency Annotations
	Latency Analysis
	Backtracing Latencies

	Relating Latencies across Levels of Abstraction
	Performance Impact due to adding Security
	Conclusion

	Conclusion and Perspectives
	Integration of full Safety and Security Features into Autonomous Vehicle Model
	Contributions
	Perspectives
	Security for Embedded Systems in Practice
	Accurate Representation of Countermeasures
	Full Automatic Generation of Countermeasures
	Security Modeling and Verification
	Time in ProVerif
	Safety Countermeasure Modeling
	Safety and Security Analysis Diagrams
	Relationship between Safety, Security, and Performance
	System Resilience
	Vulnerability Modeling
	Improved Connections between Phases
	Integration of Security Verification Results
	Proof of Correctness for Authenticity
	Attack Probabilities

	Resume
	Introduction
	Contexte
	Sûreté et Sécurité des Voitures Autonomes/Connectés
	Contre-mesures proposées
	Effets secondaires des contre-mesures pour la sûreté, la sécurité et la performance
	Travail Connexe

	Méthodologie
	Sécurité d'un Partitionnement Logiciel/Matériel
	Modèle d'Attaquant
	Modèle de Vulnérabilités
	Scénarios d'attaque
	Modèle de Contre-mesures
	Vérification Formelle
	Génération Automatique de Contre-mesures

	Évaluation des Performances
	Mesure des Temps de Latence
	Analyse de Système Sûr et Sécurisé

	Conclusion
	Contributions
	Perspectives

	Bibliography

