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Introduction

One of the strengths of stochastic analysis has been to discover numerous and various links between
stochastic processes and deterministic linear evolution equations. Everything started with the rela-
tion established by Albert Einstein in 1905, between the Brownian motion and the heat equation, see
for example [41]. Today stochastic analysis has extended that link to the correspondence between
different types of stochastic processes and linear deterministic problems for which a non exhaustive
list is given below.

1. Solutions to Stochastic Differential Equations (SDEs) and parabolic Partial Differential Equa-
tions (PDEs);

. jump diffusions and Integro Partial Differential Equations (IPDEs);

. Markov processes and pseudo-differential operators;

2
3
4. SDEs and PDEs with distributional drift;
5. SDEs and PDEs in manifolds;

6

. path-dependent SDEs and related (I)PDEs etc...

The dynamics in law of each stochastic problem (e.g. SDE) is guided by a family of operators which
permits to describe both the evolution in time of the law of the process and the one of the solution
of the deterministic problem. When the process is Markovian, those operators are constituted by
transition semigroups. In the non-Markovian case, we will see that those can be replaced by a natural
system of projectors.

More recently, at the beginning of the 90s, a particular family of stochastic differential equations
with terminal condition was introduced. The solution of such an equation is a couple (Y, Z) of
adapted processes. They contain a random coefficient f called the driver depending pointwise on
the solution. They were called Backward Stochastic Differential Equations (BSDEs). When the ran-
dom dependence of f is expressed through a forward process being the solution of a classical SDE (see
item 1. above), they constitute the probabilistic representation of some special classes of semilinear
PDEs. Later those solutions of SDEs were replaced by more general forward processes, with the idea
of extending the stochastic representation of the linear equations mentioned in the above list (see
items 2. to 6.) to non-linear equations. For a long time, the notion of viscosity solution was consid-
ered as the most adapted notion of solution (although others have been used) to study links between
BSDEs and non-linear deterministic problems. In this thesis, we propose a new type of solution for
these deterministic equations, which we call decoupled mild solution. It is inspired from the usual no-
tion of mild solution and we see it as competitor to the notion of viscosity solution. We prove results
of existence and uniqueness of a decoupled mild solution for various types of equations associated
to all the situations mentioned above, under often very weak assumptions on the coefficients, and
we give arguments in favor of that new notion of solution.

1
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The classical notion of Brownian BSDE was introduced in 1990 by E. Pardoux and S. Peng in
[71], after an early work of ].M. Bismut in 1973 in [18]. It is a stochastic differential equation with
prescribed terminal condition ¢ and driver f

T T
Y =¢ +/ f(r, Y., Z,)dr — / ZydB,,t €0,T], (@)
t t

where B is a Brownian motion. We insist on the fact that f is also random and in particular progres-
sively measurable for every fixed variable y, z. As mentioned above, the unknown is a couple (Y, Z)
of adapted processes. Existence and uniqueness of (1) was established first supposing essentially
Lipschitz conditions on f with respect to Y, Z and square integrability-type conditions on &, f (+,0,0).
In the sequel those conditions were considerably relaxed, see [74] and references therein. When the
randomness of the driver is expressed through a forward diffusion process X and the terminal con-
dition only depends on X7, the BSDE is often said to be Markovian. In order to characterize the link
between a Markovian BSDE and a semilinear PDE, one considers the family of forward diffusions
X = X7, where s is the initial time and « the initial position. The corresponding Markovian BSDEs
are characterized by the solution (Y, Z) = (Y*%*, Z%%) of the system

X = o+ fst B(r, X;")dr + fst o(r, X,;")dB, o)

YOT = g(XE) + [T F o X2 YT, 20T dr — [ Z9TdB, t € [0,T).

Seminal papers on Markovian BSDEs are [76] and [72]. There 3 and o are supposed to be Lipschitz
(with respect to ), g, f(-,-,0,0) to have polynomial growth and f has to be Lipschitz in the variables
(y,2). In [76] and in [72], (2) was linked to the semilinear PDE

ij<d i<d 3)

In particular, if (3) has a classical smooth solution u then (Y% Z5%) = (u(-, X*"),0Vu(-, X*7))
solves the second line of (). Conversely, only under the Lipschitz type conditions mentioned after
([2), the solution of the BSDE can be expressed as a function of the forward process, i.e. (Y%, Z5%) =
(u(-, X2, v(-, X*")), see [43]. It was shown in [72] that if moreover f and g are continuous, then u
is a viscosity solution of (3). Excepted in the case when u has some minimal differentiability prop-
erties in the second variable, see e.g. [52], it is difficult to say something more on v. The analytical
identification of v is commonly called the resolution of the identification problem. One major contri-
bution of this thesis consists in giving an analytical meaning to v. Since the pioneering work of [72],
in the Brownian case, the relations between more general BSDEs and associated deterministic prob-
lems have been studied extensively, and innovations have been made in several directions. In [7] the
authors introduced a new kind of BSDE including a term with jumps generated by a Poisson mea-
sure, where an underlying forward process X solves a jump diffusion equation with Lipschitz type
conditions. They associated with it an Integro-Partial Differential Equation (in short IPDE) in which
some non-local operators are added to the classical partial differential maps, and proved that, under
some continuity and monotonicity conditions on the coefficients, the BSDE provides a viscosity so-
lution of the IPDE. The monotonicity type condition is crucial in [7], indeed, when it does not hold,
a counterexemple is given. Such conditions will not be necessary in our work. In Chapter 13 of [8],
under some Sobolev-type conditions on the coefficients of the Brownian BSDE (@), it is shown that
the function u mentioned above is a solution in the sense of distributions of the parabolic PDE (3).
Later, the notion of mild solution of the PDE was used in [4] where the authors tackled diffusion op-
erators generating symmetric Dirichlet forms and associated Markov processes thanks to the theory

{ Osu + % > (GUT)Ljf)gwju + > Bi0y,u+ f(-,-,u,0Vu) =0 on [O,T[led
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of Fukushima Dirichlet forms, see e.g. [53]. Those results were extended to the case of non symmetric
Markov processes in [87]. Infinite dimensional setups were considered for example in [52] where an
infinite dimensional BSDE could produce the mild solution of a PDE on a Hilbert space. Concerning
the study of BSDEs driven by more general processes or random fields than Brownian motion, we
have already mentioned BSDEs driven by Poisson measures. In this respect, more recently, BSDEs
driven by marked point processes were introduced in [24], see also [5} 6]; in that case the underly-
ing process does not contain any diffusion term. The latter one also includes a diffusive part and it
attacks the resolution of a sort of identification problem in the spirit of [52], by making use of the
notion of weak Dirichlet process.

The BSDEs that we focus on, are situated in the extension of BSDEs driven by a cadlag mar-
tingale M. Those were considered by [20] and applied to obtain the celebrated Follmer-Schweizer
decomposition, see e.g. [83]. Instead of being a couple (Y, Z) as in the case of an underlying Brow-
nian filtration, the solution was a triplet (Y, Z,O) where O is a martingale strongly orthogonal to
M. When the driver vanishes, this constitutes the generalization of the so called Kunita-Watanabe
decomposition. Brownian BSDEs involving a supplementary orthogonal term were studied in [43].
More recently BSDEs driven by a martingale were intensively studied by [22]. BSDEs of the same
type, but with partial information have been investigated in [23]. Finally, BSDEs in a general filtered
space were studied in [67]. The latter appear to be a great extension of the previously existing lit-
erature, and the BSDEs that we will consider in this work lie in the scope of this contribution. The
general (not necessarily Markovian) BSDE of Pardoux-Peng (1) regained attention recently with the
(re)development of path dependent stochastic calculus. Brownian BSDEs of the type

T T
YSJY = 5 ((Bf,n)tE[O,T]) + / f (’I”, (Bf,n)tE[O,T']J }/7“87777 me) dr — / medBTW te [07 T]7 (4)

where for any s € [0, 7], n belongs to the Skorokhod space of cadlag functions D([0, 7], R%), B*" =
n(- A\ s) + (B.vs — Bs), were associated to the path-dependent semi-linear PDE

{ Do + %TT(VQ(I)) +f(,,®,V®) =0 on]0,T[xQ

where D is the horizontal derivative and V is the vertical gradient intended in the sense of [37, 27].
Path-dependent PDEs of previous type have been investigated by several methods. For instance strict
(classical, regular) solutions have been studied in [35, 49, 29] under the point of view of Banach space
valued stochastic processes. It was shown for instance in [29, [77] that if the coefficients are regular
enough then the mapping (s,n) — Y5 is the unique smooth solution of (5). Another popular ap-
proach is the one of viscosity solutions, which was considered by several authors. For instance it was
shown in [42] that if f is bounded, continuous in ¢, uniformly continuous in the second variable, and
uniformly Lipschitz continuous in (y, z) and if £ is bounded uniformly continuous, (s,n) — Y7 isa
viscosity solution of (5) in some specific sense, where the sense of solutions involves the underlying
probability. On another level, [28] considered the so called strong-viscosity solutions (based on ap-
proximation techniques), which are an analytic concept, the first under non-smoothness conditions.
Another interesting approach, probabilistic, but still based on approximation (discretizations) was
given by [65]. More recently, [17] produced a viscosity solution to a more general path-dependent
(possibly integro)-PDE through dynamic risk measures.

We remark that in [42] and [65] for instance, the underlying forward process is the Brownian mo-
tion in its path-dependent formulation, i.e. the window Brownian motion. In [29] 28] (resp. [17])
the underlying forward process is a strong (resp. in law) solution of an SDE with functional de-
pendence. In all those cases the solution ® of (5) was associated to the process Y *" of the solution
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couple (Y*", Z5") of (@) with initial time s and initial condition 7. A challenging link to be explored
was the link between Z*" and the solution of the path-dependent PDE ®. For instance in the case
when Y7 is of the form ®(¢, X*") where X*" is the solution of functional dependent SDE and &
is Fréchet C%1([0,T] x C(|-T,0]), [50] has shown that Z*" is closely related to the Radon measure
Dy, ®(-,X*")) on x € [T, 0], evaluated at {0}. When X is the window Brownian motion that quan-
tity equals the vertical derivative V®. This constitutes again a partial resolution of the identification
problem in the path-dependent context.

Those path-dependent developments naturally lead to consider a more general path-dependent
forward dynamics as the (strong or in law) solution of an SDE with path-dependent coefficients X "
with starting time s and starting path n. Other examples of path-dependent processes are naturally
non-Markovian processes as fractional Brownian motion, general Gaussian processes or solutions
of Volterra type SDEs. In [86], the authors linked a BSDE which forward process is the solution
of a Volterra type SDE to a PDE with Gateaux type derivatives, involving only a finite number of
directions.

Our setup is the following. E is a Polish space, {2 := D(R., E) is the Skorokhod space of cadlag
functions from R4 to £ which we equip with its Borel o-field 7, its initial filtration ' and its (right-
continuous) canonical filtration IF, see Definition m (X¢)ter., denotes the canonical process.

We will consider various types of BSDEs with different forward processes, which are solution (in
law) of some forward dynamics, in general a (Markovian or not) martingale problem. Those BSDEs
will be indexed by the initial time s and point « (or path 7) of the forward process. Then we will link
those families of BSDEs to non-linear deterministic problems generalizing the usual semilinear PDE
in the case that the forward process is a Markov diffusion. As anticipated, our contributions concern
both the case of a Markovian forward process and the case of a non-Markovian (or path-dependent)
one.

We start discussing our work in the Markovian framework. We consider on (2, F) a canonical
Markov class (P*%) s 2)er, x B/ S€€ Deﬁnition This concept was first introduced by E.B. Dinkin,
see [38]. For all (s,z), P** corresponds to the law of the (Markovian) forward process starting in x
at time s. That canonical Markov class is assumed to solve a well-posed martingale problem with
respect to some linear operator (D(a), a) (see Definition 2.4.2), where D(a) is a linear subspace of the
space of Borel real valued functions B(R4 x £, R) defined on R4 x Eand a : D(a) — B(R+ x E,R).
We mean by this that for every (s, z), P% is the unique probability measure such that for all ¢ € D(a),
the process

MG = (- V' 5, Xoya) — /.vsa(qu)(XT)dr ©)

introduced in Notation is, on [s, +00[, an (I, P%*)-martingale. The transition kernel (see Defini-
tion|1.3.4) of that canonical Markov class will be denoted (P ;)o<s<¢, which means the following: for
all real valued bounded Borel ¢ and s < ¢,

E**[p(X¢)] = Ps[¢](x), Vo € E.
When ¢, 19 € D(a) are such that ¢1) € D(a) we denote
L'(¢, ) = aloy) — da(y) — Ya(e), 7)

or shorter I'(¢) when ¢ = . I is called the carré du champ operator and is of great importance in
our work. It was first introduced (in the case of time-homogeneous operators) by J.P. Roth in poten-
tial analysis (see Chapter III in [79]), and popularized by P.A. Meyer in the study of homogeneous
Markov processes, see e.g. [34] Chapter XV Comment 23 or [60] Remark 13.46. It has finally become
a fundamental tool in the study of Markov processes and semi-groups, see for instance [3]. A first
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approach to face deterministic problems for those equations appears in [64]; that paper also contains
an application to obtention of the celebrated Follmer-Schweizer decomposition.

The first type of BSDE which we study in Chapter [2|is the following. For every (s, x), under the
probability IP**, we consider the BSDE without driving martingale

d<Ms,x>T

T
Y = g(Xr) + / f (r, X,, Y,
‘ dr

) dr — (M3" — MP™), t€[0,T). (8)

Here the solution is the couple (Y%, M**) where Y*" is a cadlag adapted square integrable process
and M*” is a square integrable martingale. It is a specific type of BSDE on a filtered space as intro-
duced in [66]. Following the ideas of [43], we can show in Theorem the existence of a Borel
function v and some positive Borel v such that for any (s, z) € [0,T] x E, the solution of (8) verifies

©)

d(M*®

Vit >s: Y, =u(t, X)) P57 as.
Jt — v (t, Xy) dt @ dP*7 ae.

dt

In order to prove this technical Theorem in a very general context (in the sense that the un-
derlying forward Markov process is very general) we extend in Chapter (1| some results concerning
homogeneous (Martingale) Additive Functionnals to a time-dependent framework. The theory of
(Martingale) Additive Functionnals associated to Markov processes was developped in the "60s, see
for instance [38], [68], [19]. A mature version of the homogeneous theory may be found for example
in [34], Chapter XV.

In Subsection 2.5/of Chapter 2} we link the BSDEs (8) to the deterministic equation

{a(u)—l—f(-,-,u,F(u);) = 0 on[0,T]xE
uw(T,) = g.

As in the classical theory of Brownian BSDEs (i.e. the BSDEs with underlying Brownian filtration)
and parabolic PDEs, the candidate function to solve is naturally the function u appearing in (9)
and which can be expressed as u(s,z) = Y;"*. For this equation, we introduce in Chapter [3 the
notion of decoupled mild solution. We will here explain the intuition behind this notion of solution.
Later on, that notion will be adapted to other types of equations, but the fundamental idea will be
the same and can be sketched below.

The (time-dependent) semigroup (Ps+)s<; associated to a naturally guide the reader to a notion
of mild solution of the deterministic problem (10). A function u for which I'(u) exists in some sense
(classical, weak, as the closure of some operator etc...), is a mild solution of if for all (s, x)

(10)

T 1
u(s,) = Purlgl(z) + / P [f (v, D(w)3) (r, ) (@) dr- 1)

However, in the most general setup, we can only show that the (deterministic) function (s,z) —
Ys"" is Borel, so it is not always possible to define the value of T" applied to this function. If it were
continuous, one could try to make use of a notion of viscosity solution. The concept of viscosity
solution has been very popular when reduces to a semilinear PDE, but also in some IPDEs with
monotonicity condition and in the case of Hilbert valued equations, see e.g. [45]. Finally as men-
tioned earlier, a flavor of viscosity solution has been implemented even in the path-dependent case.
We propose an alternative strategy. It relies on the fact that I may be expressed with use of the
operator a itself. Since I'(u) = a(u?) — 2ua(u) one can decouple the first line of into the couple of
equations
{ a(u) = —f(-, -, u,v) (12)

v? = a(u?) — 2ua(u),
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where v is a positive real valued auxiliary function. We can then rewrite this as

{ a(u) = —f (-, u,0) (13)

a(u?) = v? —2uf(-, -, u,v).

Taking into account, it is now natural to use the semigroup (mild) formulation for this system
of equations. A decoupled mild solution of will be a Borel function u for which there exists a
positive Borel v such that for all (s, x),

{ U(S, .CU) = PS,T[g] (l‘) + fsTTPS»T[f(" X2 U)(Tv )]('T)dr (14)
u?(s,2) = Porlg®)(@) = [ Parl(v? = 2uf (- u,0)(r, )| (x)dr.

Our first main achievement is to prove in Theorem that whenever f, g are Borel with classical
growth conditions in x and if f is uniformly Lipschitz in y, z, then admits a unique decoupled
mild solution which is given by (s,z) — Y5"". We also showed in Corollary that a classical
solution, if it exists, is a decoupled mild solution (hence is unique), and conversely that if the unique
decoupled mild solution belongs to the domain, then it verifies up to a zero potential set (see
Definition 2.4.11). An important impact of this approach, is that the component M*? of the solution
(Y5* M**) of the BSDE (8) can be related to the (analytically defined) auxiliary function v appearing
in (T4). Indeed that function is also the one appearing in (), meaning that we have v(t, X;) = ‘“Mdist’x”
dt ® dP** a.e. for all (s, z).

Applications are numerous since the Markov process may be very general. Considering solutions
of SDEs possibly with jumps (see [60, 84, [85]), we can tackle in Subsection (with a slightly
different formulation) (I)PDEs of the form

O+ 3Tr(00TV20) + BVY + [ra(@(- + (1)) — & — 1(y) V) F(dy)
1 (42, 1oV + fa(@(- +1(y)) = )2 F(dy))* ) =0 (15)
¢(T7 ) =9,
where 5 : [0,7] x R* — R4, 0 : [0,T] x RY — Mg(R), 7 : [0,7] x R? x R — R? and F is a finite
positive measure not charging 0. IPDE becomes the PDE
{ 8t¢ + %TT<O—O—TV2¢) + 5V¢ + f ('7 ) ¢7 HUV(MD - 07 (16)
¢(T7 ) =9,
when v = 0. Considering solutions of SDEs with distributional drift (see [47, 48, 21) 46| 31]) we can
address in Subsection singular non linear PDEs of the form
{at¢+b'ax¢+ 50070 + f (-, 6, 1|00z¢]) = 0 17)
¢(T7 ) =9,

where b is only a continuous function, hence ¥’ is a distribution, and h is an harmonic function in the
sense that

1
Lh:=V0,h+ §aa§h =0, (18)

by approximations, in a precise sense.
Considering Markov processes associated to pseudo-differential operators (see [57, 58, 59]) we
can discuss in Subsection pseudo-PDEs such as

{ at¢_ (_A)%¢+f <'7')¢7 (caPVf]Rd Wdy>2> =0 (19)
U(Tv') =9,
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where a €]0,2, (=A)2 : ¢ — ¢, PV Jra WMdy is the fractional Laplace operator, ¢, is a funda-
mental constant and PV stands for principal value. Finally by considering diffusions in manifolds,
we can treat in Subsection [3.4.4) the non-linear PDE defined on compact smooth manifold.

The limit of this first group of results, is of course the unidimensionality of I'(¢). To give an idea,
one would like to consider a semilinear PDE, where the driver f should possibly depend on the
whole vector V¢ and not just its norm ||V¢||. This naturally brings us to consider in Chapter 4}, an-
other class of BSDEs close to the BSDEs driven by cadlag martingales studied in [22]. Let us consider
1, ,¥q € D(a) and under each P** the d-dimensional martingale M [¢)]** := (M [¢1]*%, -, M4
as defined in (6). M [¢)]** will be, under P*?, the driving martingale of the BSDE indexed by (s, x).
When the identity belongs to the domain, then X is under each IP** a special semimartingale so a
natural choice for 1) is to take the identity; the driving martingale is just the martingale part of the
canonical process. Under each P** we consider the BSDEs driven by a cadlag martingale

T

S,x s, x dMS’va S’x'r S,x S,

th7 :g(XT)+/ f<7“,XT,Y;~’ ) < dr [w] > )dr_(MT, _]\4157 )7 le [OaT] (20)
t

Those BSDEs are linked to the deterministic equation

{ a(u)—i—f(-,-,u,l“(uu(,;:/j)g z gO on[0,7] x E 1)

Reasoning as for (10), we can decompose the first line of (2I) into the system

a(u) = _f('7 '7“’7”)
{ v; = a(w;) —ua(P;) —Pia(u), 1<i<d, (22)

and
CL(U) = _f('7 -,u,v)
{ alutps) = vi + wa(ihy) — Gif (- wv), 1< <d, @)

where this time v is an R%valued auxiliary function. We define a decoupled mild solution of as
a Borel function u for which there exists a Borel v such that for all (s, z) € [0,T] x E,

U<3,x) = PST +f PS?” (77“’1))( )]( )dV
7“/}1 (37 :L’) = s T[le f PS i Ul + W(%) - 1/11f ('7 U, U)) (T, )] (:L’)d?“ (24)
w,bd(s,x) = sT[gl/}d f Psr Ud"i_ua(l/)d) _Q/)df ('7'1“7”)) (T?')] (ZC)d’F

We show in Theorem that if f, g are Borel with reasonable growth conditions on x and if f is
uniformly Lipschitz in (y, z) then (21) admits a unique decoupled mild solution which is given by
(s,) — Y. where this time Y** comes from the solution of (20). Again, by Proposition[4.5.17 a
classical solution is a decoupled mild solution and whenever the decoupled mild solution belongs
to the domain then it verifies up to a zero potential set. The second item of the solution of the
BSDE can now be related to v appearing in by v(t, X¢) = % dt ® dP*" a.e. for all

(s,x). With this extension of our first result, keeping all previous notations, we tackle in Subsection
singular PDEs of the form

{ Q¢+ b 0pu+ 3002u+ f(-, - u, h'o?0,u) =0

1)
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and in Subsection [4.6.1] PDEs of the form

{ %6 + 3Tr(00TV2¢) + BV + f (-, ¢,00TV) =0 26)
CZ)(T’ ) =9,
where h is again a function fulfilling (18). We could also tackle easily IPDEs of the form

0p + 5T7(00TV?¢) + BV + [ra(6(- +7(y)) — ¢ —1(y) V) F(dy)

+f (2 0,00TVO + [pav(W)(6(- +7(y) — @) F(dy)) =0 (27)

¢(T7 ) =9,

as we will see in the path-dependent framework.

We wish to emphasize that even in the most classical situation of PDE (26)), our concepts and re-
sults provide a new light to the known literature. Indeed, firstly, we obtain an existence and unique-
ness result under very low regularity assumptions on the coefficients. f, g need only be measurable
in ¢,z and /3,0 need only to ensure well-posedness of the martingale problem, for example with 3
Borel and ¢ continuous invertible, or with /3, o continuous in x at fixed ¢. Moreover, we provide an

. . spo._ AMT M{1d]*"),
analytical meaning for the processes 7% 1= —=———=—"*
diffusion setup are given by

coming from the BSDEs, which in the

d(M*>* M[Id]>"),
dr

T
Yf’x = g(XT) =+ / f (7’, X, }/7‘87367 > dr — (M;x - M1587x)7 te [07 T]a (28)
t
where M[Id]*" is the martingale part of the canonical process under P**. As stated above, the
process Z*% is strongly related to the function v appearing in which may be interpreted as a
generalized gradient of u. This identification of Z** is not possible in general when using viscosity
solutions.

The next step in our work is to consider path-dependent extensions of our results. We start by
extending in Chapter 5} some notions and results of Markov processes theory to the path-dependent
setup, since such notions were fundamental in our work. First we introduce the notion of path-
dependent canonical class, see Definition[5.3.4] It will be a set of probability measures
(P¥")(s,n)eRr, x0 defined on the canonical space and such that for some fixed (s,7), P*" models a
forward (path-dependent) dynamics in law, with imposed initial path 7 on the time interval [0, s].
More formally, this set of probability measures verifies the following.

1. Forevery (s,n) € Ry x Q, P (w® =n°) = 1;

2. forevery s € Ry and G € F, the mapping
n — PI(G)

Q — [0,1] is F¢-measurable;

3. forevery (s,n) €e Ry xQ,t>sand G € F,
P*(G|F?)(w) = P (G) for P*" almost all w. (29)

It constitutes the natural adaptation to the path-dependent world of the notion of canonical Markov
class (IP*%) s »)er, x £, Where in general, P** models the law of some Markov stochastic process,
with imposed value z at time s. In particular, is the natural extension of the Markov property
P**(G|X;) = P4X(G) P*" as., see Proposition[1.3.4]

In substitution to the notion a Markov semigroup associated with a canonical Markov class, we
introduce the concept of path-dependent system of projectors denoted (Ps)scr, , see Definitionm
That is a family of operators defined on the set of bounded random variables (in short r.v.) and
verifying the following three items.
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1. For all s € R, the restriction of Ps to B;(£2) coincides with the identity;
2. for all s € Ry, P; maps B, (2) into B; (Q2);
3. forall s,t € Ry witht > s, Pso P, =P,

where B;(Q2) denotes the set of bounded F¢-measurable r.v. A one-to-one connection between them
and path-dependent canonical classes is shown in Corollary Indeed to any path-dependent
canonical class (P*®)(, ,)er, x £, ONe can associate a unique path-dependent system of projectors
(Ps)ser.,. such that for all bounded r.v. Z and every (s,7), we have

E>"Z] = P[Z](n). (30)

This steers us towards the notion of weak generator (D(A), A) of (Ps)scr, Which extends the
notion of generator of a Markovian semigroup and will permit us to define mild type solutions of
path-dependent equations. If (D(A), A) is a linear mapping in the space of F°-progressively measur-
able processes, we say that (D(A), A) is a weak generator of the path-dependent system of projectors
(Ps)ser, if forall ® € D(A), (s,n) € Ry x Qand t > s, we have

Py (n) = (1) + / PA@®),)(n)dr, (31)

see Definition We show in Proposition that (D(A), A) is a weak generator of the path-
dependent system of projectors (P;)scr, iff the corresponding (in the sense of (30)) path-dependent
canonical class (P*"7), ,)er, xq solves the martingale problem associated to (D(4), A), see Definition
0.5.15]

As in the Markovian set-up, examples of path-dependent canonical classes arise from solutions
of a (this time path-dependent) martingale problem as we explain below. Let x be a set of cadlag
processes adapted to the initial filtration IF°. For some given (s,n) € Ry x (2, we say that a probability
measure P*" on (2, F) solves the martingale problem with respect to x starting in (s, ) if

o P5(w® =n°)=1;
e all elements of y are on [s, +oo[ (IP*", F?)-martingales.

We show in Theorem [5.5.12]that merely under some well-posedness assumption, the set of solutions
for varying starting times and paths (P*"), ;) cr, xo defines a path-dependent canonical class. This
in particularly holds for weak solutions of path-dependent SDEs possibly with jumps when there is
existence and uniqueness of a solution, see Theorem [5.6.7}

Once these extensions of Markovian tools are made, in Chapter|[6} on a family of path-dependent
problems, which naturally extend and are of the type

{ AY + f(-,-,Y,I'(Y,¥)) =00n [0,T] x Q

Yr=<£&on (), (32)

where (D(A), A) is the weak generator of a path-dependent system of projectors (Ps)scr,. ¥ :=
(U, ... W) is a given vector of elements of D(A) and T is this time the bilinear map acting on
processes by

[(®,9) := A(PD') — PA(D') — ' A(D). (33)

A typical example is to consider ¥ := X the canonical process, and a map A given by

(A9);(w) :=  (D®)s(w) + 5Tr(0:0] (V2®)1(w)) + Bt (w) - (V®)s(w)

(@@ + 90w ) L oe)) — Bo(@) — 1(w,1) - (VEY W) F(dy), P
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where 3, 0, v are bounded (this time path-dependent) predictable coefficients and F'is still a bounded
positive measure not charging 0. In (34), D is the horizontal derivative and V is the vertical gradient
intended in the sense of [37,27]. In that case, by Proposition 6.5.27|we can evaluate

[(X,®); = (00TV®); + /Rd V(s (@i + (Y Lt 4o0]) — Pr)F(dy). (35)

If v = 0 then becomes the path-dependent PDE

{ DY + iTr(0oTV2Y) + 8- VY + f(-,-,Y,00TVY) = 0on [0,T] x Q )

Yr=£&on 2.

We extend to the notion of decoupled mild solution defining it as a functional Y for which

there exists an auxiliary R%valued functional Z := (Z1,--- , Z%) such that for all (s,n) € [0,7] x Q2
we have
Ye(n) - P +f P 7'7}/7'727')] (W)dr

Yo(mn'(s) =Pl - I P (20 + Y, AL = WL f (1, Y, Z0))] (m)dr 37)

Yon(s) = Ple$Im) — [ P (28 + Y, AW = Wif (-, Y., 2,)) ] (n)dr.
We consider for any (s, ) the BSDE

s T d(M*N, M W], s
Y;’nzg—l—/t f<7«’,’y;‘5777’ < ,dT[ ] > >d7ﬂ_(MTﬂ7_Mtsm)a le [OaTL (38)

under P*", where (P*"7), »yer, xo solves a martingale problem associated to (D(A), A). In (38),
M[¥]*" is the driving martingale of the BSDE, and is the martingale part of the process ¥ under
IP#". These BSDEs are a particular case of those studied in Chapter [4 see Definition Those
BSDEs have this time however a forward component which is modeled in law by the fixed family
(Ipsm)(s,n)ell:‘ur xQ-

An important application for path-dependent (I)PDEs is Theorem [6.5.32]that states the following.
Suppose that the path-dependent SDE of coefficients /3, o,y admits existence and uniqueness in law
for every initial condition (s,7), and that 3;, 0 (resp. ~:(-,z)) are continuous for the Skorokhod
topology in w for almost all ¢ (resp. dt ® dF a.e.), that f(-,-,0,0), £ have polynomial growth and that
f is Lipschitz in (y, z) uniformly in (¢, w). Then there is a unique decoupled mild solution Y for
with ¥ := X and A given in (34). Moreover, both processes Y, Z appearing in can be represented
through the associated BSDEs (38). In particular we have Y : (s,n) — Y57 and gives, as in
the Markovian case, an analytical meaning to the second process Z obtained through those BSDEs.
Indeed, this process may be interpreted as a generalization of the vertical derivative.



Chapter 1

A note on time-dependent additive
functionals

This chapter is the object of the paper [12].

Abstract

This note develops shortly the theory of non-homogeneous additive functionals and is a useful
support for the analysis of time-dependent Markov processes and related topics. It is a significant
tool for the analysis of Markovian BSDEs in law. In particular we extend to a non-homogeneous
setup some results concerning the quadratic variation and the angular bracket of Martingale Ad-
ditive Functionals (in short MAF) associated to a homogeneous Markov processes.

1.1 Introduction

The notion of Additive Functional of a general Markov process is due to E.B Dynkin and has been
studied since the early "60s by the Russian, French and American schools of probability, see for ex-
ample [38], [68]], [19]. A mature version of the homogeneous theory may be found for example in
[34], Chapter XV. In that context, given an element x in some state space £, P* denotes the law of a
time-homogeneous Markov process with initial value x.

An Additive Functional (AF) is a right-continuous process (A;):>o defined on a canonical space,
adapted to the canonical filtration such that for any s < tand « € E, A, = As + A; 0 05 P*-ass,,
where 6 is the usual shift operator on the canonical space. If moreover A is under any law P* a
martingale, then it is called a Martingale Additive Functional (MAF). The quadratic variation and
angular bracket of a MAF were shown to be AFs in [34]. We extend this type of results to a more
general definition of an AF which is closer to the original notion of Additive Functional associated to
a stochastic system introduced by E.B. Dynkin, see [39] for instance.

Our setup will be the following. We consider a canonical Markov class
(P¥%)(s,0)efo,1]x £ With time index [0, 7] and state space E being a Polish space. For any (s,z) €
[0,T]x E, P** corresponds to the probability law (defined on some canonical filtered space (2, F, IF'))
of a Markov process starting from point « at time s. On (2, F), we define a non-homogeneous
Additive Functional (shortened by AF) as a real-valued random-field A := (A!)o<;<u<r verifying
the two following conditions.

1. Forany 0 <t <u <T, AZ is JF;-measurable;

2. for any (s,z) € [0,T] x E, there exists a real cadlag [F***-adapted process A** (taken equal to
zero on [0, s] by convention) such that forany x € Fand s <t <u, A!, = Ay — A7" P*® as.

11
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Fi,u denotes the o-field generated by the canonical process between time ¢ and u, and IF** is obtained
by adding the IP** negligible sets to IF. A% will be called the cadlag version of A under P**. If for
any (s,x), A" is a (P**, F)-square integrable martingale then A will be called a square integrable
Martingale Additive Functional (in short, square integrable MAF).

The main contributions of the paper are essentially the following. In Section we recall the
definition and prove some basic results concerning canonical Markov classes. In Section we
start by defining an AF in Definition In Proposition we show that if (M])o<i<u<r is a
square integrable MAF, then there exists an AF ([M],)o<¢<u<7 Which for any (s,z) € [0,T] x E, has
[M**"] as cadlag version under [P**. Corollary states that given two square integrable MAFs
(M)o<t<u<t, (NY)o<t<u<t, there exists an AF, denoted by ((M, N)!)o<t<u<r, which has (M*% N%%)
as cadlag version under P**. Finally, we prove in Proposition that if M or N is such that for
every (s, ), its cadlag version under P** has its angular bracket absolutely continuous with respect
to some continuous non-decreasing function V/, then there exists a Borel function v such that for any
(s,2), (M>* N>*) = [ u(r, X, )dV;.

The present note constitutes a support for the authors, in the analysis of deterministic problems
related to Markovian type backward stochastic differential equations where the forward process is
given in law, see e.g. Chapters Ml Indeed, when the forward process of the BSDE does not define
a stochastic flow (typically if it is not the strong solution of an SDE but only a weak solution), we
cannot exploit the mentioned flow property to show that the solution of the BSDE is a function of the
forward process, as it is usually done, see Remark 5.35 (ii) in [74] for instance.

1.2 Preliminaries

The present section is devoted to fix some basic notions, notations and vocabulary. A topological
space E will always be considered as a measurable space with its Borel o-field which shall be denoted
B(E) and if S is another topological space equipped with its Borel o-field, B(E, S) (resp. By(E,S),
resp. C(E,S), resp. Cy(E,S)) will denote the set of Borel (resp. bounded Borel, reps. continuous,
resp. bounded continuous) functions from E to S. Let T' € R, d € IN*, then C; 2([0, 7] x RY) will
denote the space of bounded continuous real valued functions on [0, 7] x R¢ which are differentiable
in the first variable, twice differentiable in the second with bounded continuous partial derivatives.

Let (2, F), (E, £) be two measurable spaces. A measurable mapping from (2, F) to (E, £) shall
often be called a random variable (with values in F), or in short r.v. If T is some set, an indexed set
of r.v. with values in E, (X;)tc1 will be called a random field (indexed by T with values in E). In
particular, if T is an interval included in R, (X))t will be called a stochastic process (indexed by
T with values in E). Given a stochastic process, if the mapping

(t,w) — X¢(w)
(TxQ,BT)®F) — (EE)

is measurable, then the process (X;):eT will be called a measurable process (indexed by T with
values in FE).

Let (2, F,IP) be a fixed probability space. For any p > 1, L” := LP(R) will denote the set of
real valued random variables with finite p-th moment. Two random fields (or stochastic processes)
(Xt)teT, (Y2)teT indexed by the same set and with values in the same space will be said to be mod-
ifications (or versions) of each other if for every ¢t € T, P(X; = Y;) = 1. If the probability space is
equipped with a right-continuous filtration ' = (F;);eT, then (Q, F,F, P) will be called stochastic
basis and will be said to fulfill the usual conditions if the probability space is complete and if Fy
contains all the P-negligible sets.
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Concerning spaces of real valued stochastic processes on the above mentioned stochastic basis,
M will be the space of cadlag martingales. For any p € [1,00] H? will denote the subset of M of

elements M such that sup |M;| € LP and in this set we identify indistinguishable elements. #?” is a
teT

1
Banach space for the norm || M||3» = E[|sup M;[?]», and H}} will denote the Banach subspace of H?
teT
whose elements start at zero.

A crucial role in the present note, as well as in classical stochastic analysis is played by localization
via stopping times. If T = [0,7] for some T'" € R, a stopping time will be intended as a random
variable with values in [0, 7] U {400} such that for any ¢ € [0,T], {7 < t} € F;. We define a localizing
sequence of stopping times as an increasing sequence of stopping times (7, ),,>0 such that there exists
N € N for which 7,y = +00. Let Y be a process and 7 a stopping time, we denote Y the process
t — Y;n- which we call stopped process. If C is a set of processes, we define its localized class Cj,. as
the set of processes Y such that there exists a localizing sequence (7,,),>0 such that for every n, the
stopped process Y belongs to C.

We say some words about the concept of bracket related to two processes: the square bracket
and the angular bracket. They coincide if at least one of the two processes is continuous. For any
M,N € M [M, N] denotes the covariation of M, N. If M = N, we write [M] := [M,N]. [M]is
called quadratic variation of M. If M, N € H2 _, (M, N) (or simply (M) if M = N) will denote
their (predictable) angular bracket. H3 will be equipped with scalar product defined by (M, N)42 :=
E[MrNr] = E[(M, N)r| which makes it a Hilbert space. Two elements M, N of Hg,loc will be said to
be strongly orthogonal if (M, N) = 0.

If A is an adapted process with bounded variation then Var(A) (resp. Pos(A), Neg(A)) will
denote its total variation (resp. positive variation, negative variation), see Proposition 3.1, chap. 1 in
[61]. In particular for almost all w € €, t — Vari(A(w)) is the total variation function of the function
t— At (w)

For more details concerning these notions, one may consult [78] or [61] for example.

1.3 Markov classes

We recall here some basic definitions and results concerning Markov processes. For a complete study
of homogeneous Markov processes, one may consult [34], concerning non-homogeneous Markov
classes, our reference was Chapter VI of [40].

1.3.1 Definition and basic results

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 1.3.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topolog-
ical space), and B(E) its Borel o-field. E will be called the state space.

We consider T € RY.. We denote Q) := ID(FE) the Skorokhod space of functions from [0,T] to E right-
continuous with left limits and continuous at time T (e.g. cadlag). For any t € [0, T'| we denote the coordinate
mapping X; : w — w(t), and we introduce on 2 the o-field F := o(X,|r € [0,T]).

On the measurable space (2, F), we introduce the canonical process

(t,w) — w(t)
([0,T] x Q,B([0,T)) @ F) — (E,B(E)),

and the right-continuous filtration I := (F)epo,r) where Fy := () o(Xe|r < s)ift < T, and Fr :=
s€t,T)

X (1.3.1)

o(X,|r € [0,T]) = F.



14 Chapter 1. A note on time-dependent additive functionals

(Q, F,IF) will be called the canonical space (associated to T and E). For any t € [0,T] we denote

Fir =o(X,|r > t),and forany 0 < ¢t < u < T we will denote Fy,, := () o(X,|r € [t,u+ %]).
n>0

Remark 1.3.2. All the results of the present paper remain valid if ) is the space of continuous functions from
[0,T] to E, and if the time index is equal to R .

We recall that since E is Polish, then D(E) can be equipped with a Skorokhod distance which
makes it a Polish metric space (see Theorem 5.6 in Chapter 3 of [44]), and for which the Borel o-field
is F (see Proposition 7.1 in Chapter 3 of [44]). This in particular implies that F is separable, as the
Borel o-field of a separable metric space.

Remark 1.3.3. The above o-fields fulfill the properties below.
1. Forany 0 <t <u <T, F o = Fu N Fr.1;
2. foranyt >0, F, V Fyr = F;

3. forany (s,x) € [0,T] x E, the two first items remain true when considering the IP**-closures of all the
o-fields;

4. forany t > 0,11 := {F = F, N FL|(F}, F}) € Fy x Fyr}is a w-system generating F, i.e. it is stable
with respect to the intersection.

Definition 1.3.4. The function

(s,t,x, A) P (z, A)

p. —

[0,T)> x Ex B(E) — [0,1],

will be called transition kernel if, for any s,tin [0,T), x € E, A € B(E), it verifies the following.
1. Psy(-, A) is Borel,

P ¢(x,-) is a probability measure on (E, B(E)),

ift < sthen Psy(x,A) = 14(x),

e

if s <t,foranyu >t, [ Ps(x,dy)Pu(y, A) = Psu(x, A).
The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 1.3.5. A transition kernel P is said to be measurable in time if for every t € [0, ) and A € B(E),
(s,x) — Ps(x, A) is Borel.

Remark 1.3.6. Let P be a transition kernel which is measurable in time, let ¢ € B(E,R) and t € [0,T)].
Assume that for any (s,z) € [0,T] x E, the integral [ |¢|(y)Ps(x,dy) exists and it is finite. Then the
mapping (s,x) — [ ¢(y)Ps(x, dy) is Borel. This can be easily shown by approximating ¢ by simple functions
and using the definition.

Definition 1.3.7. A canonical Markov class associated to a transition kernel P is a set of probability mea-
sures (P*) (5 2)e(0,1)x & defined on the measurable space (2, F) and verifying for any t € [0,T]and A € B(E)

P (X, € A) = Pyy(z, A), (1.3.2)

and forany s <t < wu
P*Y(X, € A|lF) = Pu(Xe, A) P*% as. (1.3.3)
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The statement below comes Formula 1.7 in Chapter 6 of [40].
Proposition 1.3.8. Forany (s,xz) € [0,T] x E,t > sand F' € F; 7 yields
P**(F|F) = ]Pt’Xt(F) =P%*(F|X;) P*"as. (1.3.4)

Property (1.3.4) is often called Markov property. We recall here the concept of homogeneous
canonical Markov classes and its links with Markov classes.

Notation 1.3.9. A mapping

-~ Ex[0,T]xBE) — [0,1]
P tod) — (1.3.5)

will be called a homogeneous transition kernel if
P: (s, t,z,A) — Pt_s(x, A)Lsct + La(z)1s>¢ is a transition kernel in the sense of Definition This
in particular implies P = Py_(-,-).

A set of probability measures (P*),cp on the canonical space associated to T and E (see Notation [1.3.1)
will be called a homogeneous canonical Markov class associated to a homogeneous transition kernel P if

L 1.3.
VO<t<u<T ,P%X,€AFR)="Pi(X1,A) Pas. (1.3.6)

{ Vt€[0,T] VAeB(E) ,P*X;e A) =Pz, A)
Given a homogeneous canonical Markov class (P*) . associated to a homogeneous transition kernel P, one
can always consider the canonical Markov class (P*%) (s »ye[0,1]x £ @ssociated to the transition kernel

P:(s,x,t,A) —> ]5,5_5(95, Aoy + 1a(x) s>y In particular, for any x € E, we have P%* = P*,

For the rest of this section, we are given a canonical Markov class
(]PS’I)(s,x)e[o,T}x g whose transition kernel is measurable in time. Proposition 3.A.10|in Chapter
shows the following.

Proposition 1.3.10. For any event F' € F, (s,x) — P**(F) is Borel. For any random variable Z, if the
function (s, x) — E5*[Z] is well-defined (with possible values in [—oo, cc]), then it is Borel.

Definition 1.3.11. For any (s,z) € [0,T] x E we will consider the (s,x)-completion

(Q, Fo* B .= (F" ieo.r), P5") of the stochastic basis (Q, F,F,P5) by defining F** as the P>"-
completion of F , by extending P>* to F** and finally by defining F;"* as the P**-closure of JF, for every
te[0,T).

We remark that, for any (s, z) € [0,7] x E, (2, F>*, F* P*%) is a stochastic basis fulfilling the
usual conditions, see 1.4 in [61] Chapter I.
We recall the following simple consequence of Remark 32 in [32] Chapter IL

Proposition 1.3.12. Let G be a sub-o-field of F, P a probability on (Q, F) and G¥' the P-closure of G. Let Z¥
be a real G¥ -measurable random variable. There exists a G-measurable random variable Z such that 7 = Z%¥
P-a.s.

From this we can deduce the following.

Proposition 1.3.13. Let (s, x) € [0, T x E be fixed, Z be a random variableand t € [s,T]. Then ES*[Z|F;] =
ES*[Z|F;)"] PS* a.s.
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Proof. E**[Z|F,] is F;-measurable and therefore F; “-measurable. Moreover, let G5* € F;"*, by
Remark 32 in [32] Chapter II, there exists G € F; such that
P**(GUG**) = P**(G\G**) implying 1g = 1gs= P%* a.s. So

E** LgsB*F[Z|F]] = E* [1gES*[Z|F]]
= E" [1¢Z]
= [E5* []lGS,z Z] s
where the second equality occurs because of the definition of E**[Z|F]. O

In particular, under the probability IP**, F-martingales and
[F**-martingales coincide.

We now show that in our setup, a canonical Markov class verifies the Blumenthal 0-1 law in the
following sense.

Proposition 1.3.14. Let (s,z) € [0,T] x E and F € F; 5. Then P%*(F) is equal to 1 or to 0; In other words,
Fs.s 18 P**-trivial.

Proof. Let F' € F , as introduced in Notation Since by Remark Fss = Fs N Fs1, then F
belongs to F; so by conditioning we get

]Es’x[]lp] = Es’x[ﬂp]lp}
= Es’x[]lFEs’z[]lF|f5H
= E>*[1pE>Y[1x]],

where the latter equality comes from (1.3.4) because F' € F, 7. But X, = z, P** a.s., so

Ese[lp] = ES[1pE (1]
= B2

1.3.2 Examples of canonical Markov classes

We will list here some well-known examples of canonical Markov classes and some more recent ones.

o Let £ := RY for some d € N*. We are given 8 € By(Ry x R, RY), a € Cp(Ry x R4, 5% (R?))
(where S* (RY) is the space of symmetric strictly positive definite matrices of size d) and K
a Lévy kernel (this means that for every (¢t,7) € Ry x R?, K(t,z,-) is a o-finite measure

on RN{0}, sup [ 11%!T|2K(t,x,dy) < oo and for every Borel set A € B(R4\{0}), (t,z) —
t,x

S 1M K (,, dy) is Borel) such that for any A € B(RU\{0}), (t,2) — [, b K (t, @, dy) is

bounded continuous.

Let a denote the operator defined on some ¢ € C; 2(Ry x RY) by
(4, Vo)

1
0+ 5Tr@7%0) +(3.590)+ [ (o) —o— {4

) K(-,-, dy) (1.3.7)
In [84] (see Theorem 4.3 and the penultimate sentence of its proof), the following is shown.
For every (s,x) € Ry x RY, there exists a unique probability P** on the canonical space (see
Definition ) such that ¢(-, X.)— [ a(¢)(r, X, )dr is a local martingale for every ¢ € C; (R x
R?) and P5* (X, = z) = 1. Moreover (P*®) (s.2)eRr, xre defines a canonical Markov class and
its transition kernel is measurable in time.
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e The case K = 0 was studied extensively in the celebrated book [85] in which it is also shown
that if 5, « are bounded and continuous in the second variable, then there exists a canonical
Markov class with transition kernel measurable in time (P*®), ,)cr, xre sSuch that ¢(-, X.) —

[, a(¢)(r, X, )dr is a local martingale for any ¢ € C,}’Q(lRJr x RY).

e In [80], a canonical Markov class whose transition kernel is the weak fundamental solution of
a parabolic PDE in divergence form is exhibited.

e In [55], diffusions on manifolds are studied and shown to define canonical Markov classes.

e Solutions of PDEs with distributional drift are exhibited in [47] and shown to define canonical
Markov classes.

Some of previous examples were only studied as homogeneous Markov processes but can easily be
shown to fall in the non-homogeneous setup of the present paper as it will be illustrated in Chapter

Gl

1.4 Martingale Additive Functionals

We now introduce the notion of non-homogeneous Additive Functional that we use in the paper. This
looks to be a good compromise between the notion of Additive Functional associated to a stochastic
system introduced by E.B. Dynkin (see for example [39]) and the more popular notion of homoge-
neous Additive Functional studied extensively, for instance by C. Dellacherie and P.A. Meyer in [34]
Chapter XV. This section consists in extending some essential results stated in [34] Chapter XV to our
setup.

Our framework is still the canonical space introduced at Notation In particular X is the
canonical process.

Definition 1.4.1. We denote A := {(t,u) € [0,T)*|t < u}. On (Q, F), we define a non-homogeneous
Additive Functional (shortened AF) as a random-field A := (AL)( uyen indexed by A with values in R,
verifying the two following conditions.

1. Forany (t,u) € A, Al is Fy ,-measurable;

2. forany (s,z) € [0,T] x E, there exists a real cadlag F**-adapted process A>* (taken equal to zero on
[0, s] by convention) such that forany x € Eand s <t < wu, AL, = Ay — A" P5% as.

A** will be called the cadlag version of A under P*~.

An AF will be called a non-homogeneous square integrable Martingale Additive Functional (short-
ened square integrable MAF) if under any P*® its cadlag version is a square integrable martingale. More
generally an AF will be said to verify a certain property (being non-negative, increasing, of bounded variation,
square integrable, having L'-terminal value) if under any P** its cadlag version verifies it.

Finally, given an increasing AF A and an increasing function V, A will be said to be absolutely contin-
uous with respect to V if for any (s,x) € [0,T] x E, dA*>* < dV in the sense of stochastic measures.

Remark 1.4.2. Let (IP*),ckr be a homogeneous canonical Markov class (see Notation . We recall that
in the classical literature (see Definition 3 of [34] for instance), an adapted right-continuous process A on the
canonical space is called an Additive Functional if forall 0 <t <u <Tandz € E

Au = At + Au—t o] 975 P~ a.s., (141)
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where 0; : w — w ((t + -) A T') denotes the shift operator at time t.

Let (P*®) (5,2)e[0,1)x £ be the canonical Markov class related to (P®).c g in the sense of Notation If
for every 0 < t < u < T, Equation holds for all w, then the random field (t,u) — A, — Az isa
non-homogeneous Additive Functional in the sense of Definition [1.4.1}

Example 1.4.3. Let ¢ € C([0,T] x E,R), ¥ € By([0,T] x E,R) and V : [0,T] — R be right-continuous
and non-decreasing function. Then the random field A given by

A= 6 X) = 900X — [ 60X,V (142)
t

defines a non-homogeneous Additive Functional. Its cadlag version under IP** may be given by
Vs
A% = (- Vs, Xos) = Bsa) = [ 0(r X )av. (1.43)

We now adopt the setup of the first item of Section m We consider some ¢ € C; 2([0,T) x RY), then the
random field M given by

My = 0, X,) = 9(6.X0) = [ alo)(r X )i (1.4.4)

defines a square integrable MAF with cadlag version under IP** given by

M** = ¢(- Vs, X.vs) — o(s,x) — /.VS a(¢)(r, X, )dr. (1.4.5)

In this section for a given MAF (M) ¢ ,)ea we will be able to exhibit two AF, denoted respectively
by ([M].,)¢wea and ((M)%)w)ea, which will play respectively the role of a quadratic variation
and an angular bracket of it. Moreover we will show that the Radon-Nikodym derivative of the
mentioned angular bracket of a MAF with respect to our reference function V' is a time-dependent
function of the underlying process.

Proposition 1.4.4. Let (M), 4y be a square integrable MAF, and for any

(s,x) € [0,T] x E, [M*"] be the quadratic variation of its cadlag version M** under P*>*. Then there exists
an AF which we will call ([M]!,).uwyea and which, for any (s, z) € [0,T] x E, has [M**] as cadlag version
under P57,

Proof. We adapt Theorem 16 Chapter XV in [34] to a non homogeneous set-up but the reader must
keep in mind that our definition of Additive Functional is different from the one related to the ho-
mogeneous case.

For the whole proof ¢ < u will be fixed. We consider a sequence of subdivisions of [t,u]: ¢ =
th < th < ... <t} = usuch that 1’{1<1£1 (th, —tF) e 0. Let (s,z) € [0,t] x E with corresponding

N2
probability P**. For any k, we have > (Mttg > = > (M”

— M73")? P57 a.s., so by definition of
i<k i+1 i<k lim ti

quadratic variation we know that

> (o

+1
i<k ¢

2
) B M), — M, (1.4.6)

k—o00

In the sequel we will construct an F; ,-measurable random variable [M]!, such that for any (s, z) €

2
k s,T
0,t] x E, >, (M;g ) P2 [M]t. In that case [M]!, will then be P5< a.s. equal to [M**], — [M5%],.
- i+1

k—o0
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tk
M

2
i t

' > is F;,-measurable and therefore F,’ -

i+1 ,

Let z € E. Since M is a MAF, for any k, ) <

i<k

measurable. Since ]-"ff is complete, the limit in probability of this sequence, [M**],, — [M**];, is still

]-ffj -measurable. By Proposition (1.3.12} there is an F; ,-measurable variable which depends on (¢, z),
that we call a¢(z,w) such that

at(z,w) = [M""], — [M""];, PY* a.s. (1.4.7)

We will show below that there is a jointly measurable version of (x,w) — a:(z,w). For every integer

2
k
n > 0, we set af(z,w) := n A a;(x,w) which is in particular limit in probability of n A <M:,§ )
lgk i+1

under P%*. For any integers k,n and any x € F, we define the finite positive measures Q*"™*, Q™*

and Q" on (2, F;,,) by
th 2
Ip|nAd, (Mt; > ;
i<k i1

2. QME(F) = EX[1p (a(z,w))];

1. QFme(F) = EM

3. Q7(F) = E*[Lp (ar(,w))].

When £ and n are fixed, for any fixed F', by Proposition|1.3.10

b\ 2
F (n A (M:]; ) )] , is Borel.
i<k i+l

th

Then n A Z (M :

i<k i+1

n, so the convergence takes place in L!, therefore z — Q™ (F) is also Borel as the pointwise limit

in k of the functions z — Q*™®(F). Similarly, a?(z,w) :—8> at(r,w) and is non-decreasing, so by
n—0o0

x — Eb?

t,x
> ]jp—> a}(xz,w), and this sequence is uniformly bounded by the constant
— 00

monotone convergence theorem, being a pointwise limit in n of the functions z — Q™*(F), the
function x — Q" (F) is Borel. We recall that F is separable.

The just two mentioned properties and the fact that, for any =, we also have (by item 3. above)
Q" < PY*, allows to show (see Theorem 58 Chapter V in [33]) the existence of a jointly measurable
(for B(E) ® F; ) version of (z,w) — a;(z,w), that we recall to be densities of Q® with respect to PH*.
That version will still be denoted by the same symbol.

We can now set [M ]!, (w) = a4(X(w),w), which is a correctly defined
JFi n-measurable random variable. For any z, since P*(X; = x) = 1, we have the equalities

(M), = ay(z,-) = [M""], — [M"], PP as. (1.4.8)

u

We will moreover prove that
[M]!, = [M>"], — [M*"]; P*" as., (1.4.9)

holds for every (s, z) € [0,t] x E, and not just in the case s = ¢ that we have just established in (1.4.8).
Let us fix s < t and z € E. We show that under any P**, [M], is the limit in probability of

-

2
> . Indeed, let € > 0: the event
i<k i+l
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)2 .
>\ My ) — M
ti+1

> e} belongs to F; 1 so by conditioning and using the Markov property

Ps* < > e)

) we have

= (1] ) _nn

i<k i+l

& 2
— ST |Ppse ( %(Mttle) —[M]L > e|Fy ]
1< v
2
= B PN (MY ) - M| > e
i<k tf“ “

i<k i+l “
infinity, for every realization w, it yields that
t,X¢ ty ? _ t
(|5 (o, ) -
inated by the constant 1, that convergence still holds under the expectation with respect to the prob-
ability the probability IP**, thanks to the dominated convergence theorem.
So we have built an F; ,-measurable variable [M]!, such that under any P** with s < ¢, [M*?], —
[M*%]; = [M]Y, a.s. and this concludes the proof. O

2
For any fixed y, by (TZ:6) and ([Z8), P ( > (Mf: ) — MY

> e) tends to zero when k goes to

> e) tends to zero when k goes to infinity. Since this sequence is dom-

We will now extend the result about quadratic variation to the angular bracket of MAFs. The next
result can be seen as an extension of Theorem 15 Chapter XV in [34] to a non-homogeneous context.

Proposition 1.4.5. Let (BY)(; .)ea be an increasing AF with L'-terminal value, for any (s, z) € [0, T]x E, let
B*7* be its cadlag version under P and let A** be the predictable dual projection of B** in (2, F*% F* P5%).
Then there exists an increasing AF with L' terminal value (AL) ,en such that under any P>*, the cadlag
version of A is A%”.

Proof. The first half of the demonstration will consist in showing that
V(s,z) € [0,t] x B, (A;" — A}") is F;;; —measurable. (1.4.10)

We start by recalling a property of the predictable dual projection which we will have to extend
slightly. Let us fix (s, z) and the corresponding stochastic basis (€2, 7%, F** [P*?*). For any F' € F*%,
let N5%F be the cadlag version of the martingale, r — E®**[1|F,]. Thenforany 0 <t < u < T, the
predictable projection of the process r +— 1ply ,,(7) is 7 — Nf’_x’F]l[m[(r), see the proof of Theorem
43 Chapter VI in [33]. Therefore by definition of the dual predictable projection (see Definition 73
Chapter VI in [33]) we have

ES* [1p(AST — AD®)] = B [ / NZF dBfff] : (1.4.11)
t

for any F' € F57,

We will now prove some technical lemmas which in a sense extend this property, and will permit
us to operate with a good common version of the random variable [ N**" dB}* not depending on
(s,x).

For the rest of the proof, 0 <t < u < T will be fixed.
Notation 1.4.6. Let F' € F; 7. We denote for any r € [t,T],w € Q, NF (w) := PE @) (F),
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Itis clear that N*" previously introduced is an (Fy, )<} 77-adapted process which does not depend
on (s, x), which takes values in [0, 1] for all r,w and by Proposition for any (s,z) € [0,t] x E,
N#*F is, on [t,T], a P**-version of N*'.

Lemma 1.4.7. Let F' € F; 7. There exists an F; ,-measurable random variable which we will denote ft“ N f, dB,
such that for any (s,z) € [0,t] X E,
J'NFdB, = [ N*"TdBy" P> as.

Remark 1.4.8. By definition, the process N¥ introduced in Notation and the rv. [ N dB, will not
depend on any (s, ).

Proof. In some sense we wish to integrate r — NZ against B’ for fixed w. However first we do not
know a priori if the paths 7 — N} and r + B! are measurable, second r — N} may not have a left
limit and B* may be not of bounded variation. So it is not clear if [ N* dB! makes sense for any
w. Moreover under a certain P*%, N*% and B>" — B}"" are only versions of N¥ and B! and not
indistinguishable to them. Even if we could compute the aforementioned integral, it would not be
clearif [* NI dB! = [ Nf’_x’FdB,f’z P5% a.s.

We start by some considerations about B, setting Wy, := {w : sup B! < oo} which is F,-

reftu]lNQ

measurable, and for r € [t, u]

sup B! (w)ifw € Wy,
Biw) =1 'Sy
0 otherwise.

Bt is an increasing, finite (for all w) process. In general, it is neither a measurable nor an adapted
process; however for any r € [t,u], Bl is still F; ,-measurable. Sir~1ce it is increasing, it has right and
left limits at each point for every w, so we can define the process B’ indexed on [¢, u] below:

Bl = lirjl Bl r € [t,ul, (1.4.12)
e

when u €]t,T[ and Bl := B if u = T. Therefore B! is an increasing, cadlag process. It is consti-
tuted by F; ,-measurable random variables, and by Theorem 15 Chapter IV of [32], B! is a also a
measurable process (indexed by [t, u]).

We can show that B is P*®-indistinguishable from B>® — B;"” for any (s, z) € [0,t] x E. Indeed,
let (s, z) be fixed. Since B™* — B, is a version of B’ and @ being countable, there exists a P**-null
set N such that forallw € N¢and r € QN[t,u], By (w) — B;"" (w) = Bt(w). Therefore for any w € N¢
and r € [t,ul,

Bi(w) = lim sup B! (w)=lim sup B*"(w), — B**(w);
VT <ap< T t<qp<y
veEQR weD veQ weR

— Bs7x(W)7‘ _ BS7I(CL))t7

where the latter equality comes from the fact that B%*(w) is cadlag and increasing. So we have
constructed an increasing finite cadlag (for all w) process and so the path r — B(w) is a Lebesgue
integrator on [t, u| for each w.
We fix now F' € F; 1 and we discuss some issues related to NV FSince it is positive, we can start
defining the process N, for index values r € [t,T[by N} := limiinf NF', and setting NX' := NE. This
vyr

ve@
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process is (by similar arguments as for B! defined in (T.4.12)), P**-indistinguishable to N*%% for
all (s,z) € [0,#] x E. Forany r € [t,T], N} (see Notation [1.4.6) is JF; ,-measurable, so N will also
be F; ,-measurable for any r € [t,T] by right-continuity of F; . (see Notation . However, N is
not necessarily cadlag for every w, and also not necessarily a measurable process. We subsequently
define
W}, := {w € Q|there is a cadlag function f such that N*'(w) = f on [t,u] N Q}.

By Theorem 18 b) in Chapter IV of [32], W}, is F;,-measurable so we can define on [t, u] Nf =
Nf ]th/u. NFisno longer F**-adapted, however, it is now cadlag for all w and therefore a measurable

process by Theorem 15 Chapter IV of [32]. The r.v. N} are still F; ,-measurable , and N¥ is still P**-
indistinguishable to N*%% on [t, u] for any (s, z) € [0,t] x E.

Finally we can define [ N*" dB, := [ NI dB! which is P** as. equal to [ N>*"dB}" for any
(s,z) € [0,1] x E. Moreover, since N¥ and B are both measurable with respect to B([t, u]) ® F; ., then
[ NEdB, is F; ,-measurable. O

The lemma below is a conditional version of the property (1.4.11).
Lemma 1.4.9. For any (s,z) € [0,t] x E and F' € F,;; we have P5*-a.s.

B [Lp(437 — A}7)| ) = B U NI dB,
t

7.

Proof. Let s,z, F be fixed. By definition of conditional expectation, we need to show that for any
G € F; we have
ft:|:| a.s.

For r € [t,u] we have E**[1png|F;] = LgES*[1p|F,] as. therefore the cadlag versions of those
processes are indistinguishable on [t, u| and the random variables ftu NTGpF dB, and 14 j;“ N 7,F_ dB,
as defined in Lemma are a.s. equal. So by the non conditional property of dual predictable

projection (1.4.11) we have

B [lglp(AY" — A7) = B [[*NOFdB,]

— sz []IGEs,a: [ftu NﬁdBT‘ft]] )

u
ES [1glp(AS" — AJ")] = B [ILG]EW { / NEdB,
t

which concludes the proof. O
Lemma 1.4.10. For any (s,z) € [0,t] x Eand F € F; 7 we have P**-a.s.,
B> [p(Ay* — ApT)F] = B [Lp(A7" — A7)|X].

Proof. By Lemma we have
7.

By Lemma [ NE dB, is F; r measurable so the Markov property (1.3.4) implies

E5* [ / NEdB, ft} = E** [ / NEdB,
t t

therefore E57 [1p(Ay" — AP")|F] is a.s. equal to a o(X;)-measurable r.v and so is a.s. equal to
Es [1p(AST — A57)[X,]. O

B 1p(A7” - 4)F] = 5o | [ NEap,
t

Xt:| )
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We are now able to prove which is the first important issue of the proof of Proposition
which states that By definition, a predictable dual projection is adapted so we already know
that (A" — A;"") is Fu'"-measurable, therefore by Remark [1.3.3] it is enough to show that it is also
Jip-measurable. So we are going to show that

AST — AP =BT [ADT — Af’x|]-},T] P57 a.s. (1.4.13)
For this we will show that
E** [1p(AS" — AP")] = B [LpES" [AD"Y — Af’x|]-"t,T]] , (1.4.14)

for any F' € F. We will prove for F' € F event of the form F = F, N F,pr with F;, € F;
and Fyr € F; 7. By item 4. of Remark such events form a m-system II which generates F.
Consequently, by the monotone class theorem, (1.4.14) will remain true for any F' € F and even in
F5% since P**-null set will not impact the equality. This will imply so that Ay” — A7 is
F;7-measurable. At this point, as we have anticipated, we prove for a fixed

F=Fn Fyr € II. By Lemma [1.4.10we have

E> [Lp(AYT — APY)] = B [IRE™T [1k, (A" — AP")|F]]
= E" [IpE" [1g (A7 — A7) X ]
E*> [1p B [E>® [1k, , (A" — A7) Fer] 1Xd]]
where the latter equality holds since

o(Xy) € Fir. Now since ES* [15, (A" — Aj")|Fir] is Fyr-measurable, the Markov property
(1.3.4) allows us to substitute the conditional o-field o(X;) with F; and obtain

&

E>" [1p(A" — APY)] = E* 1B B (1, (AL" — AP For| 1 7]
= E* [1pE*" [1f, T(As T — AP Fur]
= E* [1pdp, E57[(AY" — AP")| Firl]
= B [IpE>* (AL — AP Fir]-
This concludes the proof of (T.4.14), therefore (T.4.13) holds so that A, — A" is 7,/ -measurable and
o (1.4.10) is established. This concludes the first part of the proof of Proposition[1.4.5
We pass to the second part of the proof of Proposition where we will show that for given
0 < t < u there is an F; ,-measurable r.v. A, such that for every (s,z) € [0,t] X E, (Ay" — A}") = A,
P%%* a.s.
Similarly to what we did with the quadratic variation in Proposition we start bi noticing

that for any z € E, since (A" — A" is ffff -measurable, there exists by Proposition |1.3.12/an F .-
measurable r.v. a(z,w) such that

a(z,w) = AL® — AV PYT as, (1.4.15)

As in the proof of Proposition we will show the existence of a jointly measurable version of
(x,w) = a(x,w). For every z € E we define on F; ,, the positive measure

QF: F s EY [nF(Aiﬁ - A?”?)} = B [Lpa(z,w)]. (1.4.16)
By Lemma and (1.4.11), for every F' € F;, we have

Q°(F) = EY® [ /t ’ Nde,l : (1.4.17)
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and we recall that [ N dB, does not depend on z. So by Proposition x — QF(F) is Borel
for any F. Moreover, for any z, Q% < P»*. Again by Theorem 58 Chapter V in [33], there exists a
version (z,w) — a(x,w) measurable for B(E) ® F;,, of the related Radon-Nikodym densities.

We can now set A!,(w) := a(X¢(w),w) which is then an F; ,,-measurable r.v. Since P**(X; = z) = 1

and (1.4.15) hold, we have
Al =a(Xy, ) = a(x,) = AL — A" PYas. (1.4.18)

We now fix s < ¢t and 2 € F and we want to show that we still have
Al =AY — A7" P5® as. So, as above, we consider F' € F;,, and, thanks to (T.4.11) we compute

E* [1p(Ay" — AP")] = E** [[* NI dB,]
= E** [E>* | [ NI dB,|F]]
= E** [EXY [[“ NI dB,]]
= E*° [E [1pAL]]
= E** [E* [1pAL|F]]
= Es* [1pAL].

Indeed, concerning the fourth equality we recall that, by (1.4.16), (1.4.17) and (1.4.18), we have
E [[* NFdB,] = E" [1pAl] for all z, so this equality becomes an equality whatever random

variable we plug into z. The third and fifth equalities come from the Markov property since
[ NEdB, and A!, are F; p-measurable. Then, adding IP**-null sets does not change the validity of
(T419), so we have for any F' € F;';; that E* [1p(Ay” — AP")] = E** [1pAL].

Finally, since we had shown in the first half of the proof that A7 — A" is 7,/ -measurable, and
since A!, also has, by construction, the same measurability property, we can conclude that Ay™* —
APT = Al PST as.

Since this holds for every t < wand (s,z) € [0,t] X E, (AL)tu)en is the desired AF, which ends
the proof of Proposition[I.4.5| O

(1.4.19)

Corollary 1.4.11. Let M, M’ be two square integrable MAFs, let M** (respectively M'>®) be the cadlag
version of M (respectively M') under P>*. Then there exists a bounded variation AF with L' terminal
condition denoted (M, M') such that under any P*%, the cadlag version of (M,M') is (M** M's"). If
M = M’ the AF (M, M') will be denoted (M) and is increasing.

Proof. If M = M’, the corollary comes from the combination of Propositions and and the
fact that the angular bracket of a square integrable martingale is the dual predictable projection of its
quadratic variation. Otherwise, it is clear that M + M’ and M — M’ are square integrable MAFs, so
we can consider the increasing MAFs (M — M’) and (M + M’). We introduce the AF

(M, M) = J((M + M) — (M~ M),

which by polarization has cadlag version (M*?*, M'>*) under P**. (M, M') is therefore a bounded
variation AF with L' terminal condition. O

We are now going to study the Radon-Nikodym derivative of an increasing continuous AF with
respect to some measure. The next result can be seen as an extension of Theorem 13 Chapter XV in
[34] in a non-homogeneous setup. We will need the following lemma.

Lemma 1.4.12. Let (E, ) be a measurable space, let T be a sub-interval of Ry and let f : E x T — R bea
mapping such that for allt € T, x — f(x,t) is measurable with respect to € and for all x € E, t — f(x,t) is
right-continuous, then f is measurable with respect to € ® B(T).
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Proof. On (E, ) we introduce the filtration (&;)icz where & = & for all ¢. In the filtered space
(E,E&,(&)ter), f defines a right-continuous adapted process and is therefore progressively measur-
able (see Theorem 15 in [32] Chapter IV for instance), and in particular it is measurable. This means
that f is measurable with respect to £ @ B(Z). O

Proposition 1.4.13. Let A be a positive, non-decreasing AF absolutely continuous with respect to some con-
tinuous non-decreasing function V, and for every (s,z) € [0,T[xE let A%" be the cadlag version of A
under P**. There exists a Borel function h € B([0,T] x E,R) such that for every (s,xz) € [0,T] x E,
AT = fs'vs h(r, X;)dV,, in the sense of indistinguishability.

Proof. We set
Cl = Al + (Vi = Vi) + (u —t), (1.4.20)

which is an AF with cadlag versions
C/* =AY +V, +t, (1.4.21)

and we start by showing the statement for A and C’ instead of A and V. We introduce the intermedi-

ary function C' so that for any u > ¢ that = L= € [0,1]; that property will be used extensively in

Sz—c
connections with the application of dominated convergence theorem.
Since A®” is non-decreasing for any (s, z) € [0,7] x E, A can be taken positive (in the sense that
Al (w) > 0forany (t,u) € A and w € Q) by considering A" (defined by (A™)! (w) := A%, (w)™) instead
of A.
Fort € [0,T[ we set

t
AHl
K; := liminf . i e
t
At+l
= lim inf L (1.4.22)
n—oopzn AL ! + o+ (V - Vi)
t

= lim lim min .
n—>oom—>oon<p<mAt 1 —|— + (VtJr; — V})
P

By positivity, this liminf always exists and belongs to [0, 1] since the sequence belongs to [0,1]. For

every (s,z) € [0,T] x E,since forallt > sand n > 0,
_ane
A;f Aff% — A)" P5* as., then K% defined by K, := liminf W is a P**-version of K,
for t € [s,T]. By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [34] for a version
of the theorem with a general atomless measure), for any (s, z), for P**-almost all w, since dC**(w)
is absolutely continuous with respect to dA%"(w), K*"(w) is a density of dA%"(w) with respect to
dC*"(w).
We now show that there exists a Borel function k in B([0, T[x E,R) such that under any P*7,
k(t, X:) is on [s,T[ a version of K (and therefore of K*%). For every ¢t € [0,T[, K; is measurable

with respect to ﬂ Fii 1= = Fi: by construction, taking into account Notation [1.3.1} So for any
>0

(t,x) € [0,T] x E by Proposition[1.3.14} there exists a constant which we denote k(t, 2) such that

K; = k(t,z), P as. (1.4.23)
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For any integers (n, m), we define

Ai+l
™™ (t, ) — BT | min - — ,
nSpSmAH_% + 5+ (V;H—% - Vi)

and for any n
A;l
kp: (t,x) — EH* |inf - T P
pZnAH% + 5+ (Vt—i-% -V)

, (1.4.24)

We start showing that

t

. t+1
= s,x,t) — [E%* [ min L 1<
K™ ( T ) ngpgmAer%“"%"'(vpr%_Vt) s (1425)

0, 7] x Ex [0, T — 0,1],

is jointly Borel. In order to do so, we will show that at fixed ¢, K™ (-, -,t) is Borel, at fixed (s, z),
k™™ (s, x,-) is right-continuous and we will conclude on the joint measurability thanks to Lemma
1.4.12]
If we fix t € [0, 7], then by Proposition
A§+l
(s,z) — E5 rgug T 1 ; v
n<p<m t+1 +§+( 41~ 1)

is a Borel map. Since (s,z) — 1}, 1)(s) is obviously Borel, considering the product of the two previ-
ous maps, Ervm(. . t) is Borel. We now fix some (s, z) and show that l%”’m(s, x, ) is right-continuous.
Since that function is equal to zero on [0, s|, showing its continuity on [s, 7| will be sufficient. We
remark that A%% is continuous IP** a.s. V is continuous, and the minimum of a finite number of

continuous functions remains continuous. Let ¢, — ¢ be a converging sequence in [s,T[. Then
q—0o0

' Af:i; —ApT 4 ‘ ATT AT b d infi
min —sz | tends a.s. to min —= T , when ¢ tends to infin-
nSpSmAtq+%_Atq +5+(‘/tq+%_‘/tq) nSpSmAtJr%_At +5+(Vt+%—vt)

tq
1
tq+ 3

- tends a.s. to
+5+(th+%—vtq)

ity. Since for any s < ¢t < u, A", = Ay" — A)" P57 as., then e
tq+%
t
t+%
t 1 _ .
At+%+p+(\/t+% Vi)

All those terms belonging to [0, 1], by dominated convergence theorem, the men-

tioned convergence also holds under the expectation, hence the announced continuity related to k"™
is established and as anticipated, ™ is jointly measurable in all its variables.

Since k™™ (t,y) = k™™(t,t,y), by composition we can deduce that for any n,m, k™™ is Borel.
By the dominated convergence theorem, k™™ tends pointwise to k" (which was defined in (1.4.24),
when m goes to infinity so k™ are also Borel for every n. Finally, keeping in mind (1.4.22) nd (1.4.23)
we have P"* a.s.

At

. s
k(t,z) = K¢ = lim inf — TE— .
THOOPZnAH% +5+ (Vt+% -V

Taking the expectation and again by the dominated convergence theorem, k" (defined in (1.4.24))
tends pointwise to £ when n goes to infinity so k is Borel.
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We now show that, for any (s,z) € [0,T] x E, k(-, X.) is a P*"-version of K on [s,T[. Since
PY*(X; = x) = 1, we know that for any ¢t € [0,7], z € E, we have K; = k(t,z) = k(t, X;) P"**-as.,,
and we prove below that for any ¢ € [0,77], (s,z) € [0,t] x E, we have K; = k(t, X;) P%"-a.s.

t
t+3

is F -measurable. So the
7 A 1 71L (L,Hrl Vi) 7
t+5 n

Let ¢t € [0, T] be fixed. Since A is an AF, for any n tiad

At
.. t+L .
event 11751_1>1(£1<)f A§+;+%+(‘Q+L*Vf) = k(t, X;) p belongs to F; v and

by Markov property (1.3.4), for any (s, z) € [0,t] x E, we get

IPS’I(Kt = k(t,Xt)) = ]Es,x[]l;)s@ (Kt = k(t, Xt)’ft)]
= EPYY (K, = k(E X2)))
= 1.

For any (s, z), the process k(-, X.) is therefore on [s, T a P**-modification of K and therefore of
K**. However it is not yet clear if provides another density of dA*”* with respect to dC**, which
was defined at (1.4.21).

Considering that (¢,u,w) — V,, — V; also defines a positive non-decreasing AF absolutely con-
tinuous with respect to C, defined in (1.4.20), we proceed similarly as at the beginning of the proof,
replacing the AF A with V.

Let the process K’ be defined by

‘/;_A'_l - ‘/t
K} = liminf — — ,

and for any(s, ), let K’ be defined on [s, T by
v,

v
. tH Ut
K" = liminf —— T :
R T A )
n n

Then, for any (s, z), K'®* on [s,T[ is a P®*-version of K’, and it constitutes a density of dV'(w) with
respect to dC**(w) on [s, T, for almost all w. One shows then the existence of a Borel function £’ such
that for any (s,z), k¥'(-, X.) is a P®*-version of K’ and a modification of K'** on [s,T[. So for any
(s,z), under P** we can write

S

- ‘/s _ fs-\/s K;s,mdcﬁ,a:

Now since dA** < dV, for a fixed w, the set {r € [s, T]|K,;>"(w) = 0} is negligible with respect to dV/
so also for dA%*(w) and therefore we can write

{ Ase = [ RPTACHT
V\/s

Ase = [V RSO

S

= [VET (e T ACRT

s Kq/ﬂs,z

+ f‘VS H{K;a,L:O}dAf‘7x

S

Vs K57%
Js i L g0y AV

where we use the convention that for any two functions ¢, 1) then %ﬂwﬂ) is defined by by

¢ _ | S8ife(a) # 0
g () = { 03t () = 0.
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We set now h := %]l{k; +0y which is Borel, and clearly for any (s, z), h(t, X;) is a P**-version of
H>" = %H{Kzs,zﬂ)} on [s,T]. So by Lemma|2.5.13|in Chapter

H;" = h(t, X;) dV ® dP*" a.e. and finally we have shown that under any P*~,

AST = fS'VS h(r, X;)dV; on [0, T]. Without change of notations we extend & to [0, 7] x E by zero for
t =T. Since A*" is continuous IP**-a.s. previous equality extends to 7. ]

Proposition 1.4.14. Let (Al)( ,ea be an AF with bounded variation and taking L' values. Then there
exists an increasing AF which we denote (Pos(A),)uyea (tesp. (Neg(A)L)uea ) and which, for any
(s,z) €0, T] x E, has Pos(A*") (resp. Neg(A®>™)) as cadlag version under P**.

Proof. By definition of the total variation of a bounded variation function, the following holds. For
every (s,z) € [0,T] x E, s <t <u < T for P** almost all w € ©, and any sequence of subdivisions
of [t,u]: t = th < th < ... <t¥ = u such that mig (th , —th) v 0 we have

1< —00

D IAST (w) = AN (W) — Var(A®"),(w) — Var(A™)(w), (1.4.26)
ik i+1 i k—o00
taking into account the considerations of the end of Section[1.2]
By Proposition 3.3 in [61] Chapter I, we have Pos(A%%) = 1(Var(A%%) + A%®) and Neg(A*7) =
$(Var(A**) — A%®). Moreover, for any z € R we know that 27 = 3(|z| + z) and 2~ = (|z| — z), so
we also have

> (Ay (W) = AL W) = Pos(A™7)u(w) = Pos(A")y(w)

i<k o ko0 (1.4.27)
_Zk(At;;H(w)—At;; (w))™ e Neg(A®")y(w) — Neg(A*7)i(w),
1< v 7 [e'e}

for P** almost all w. Since the convergence a.s. implies the convergence in probability, for every
(s,z) € [0,T] x E, s < t < u and any sequence of subdivisions of [t,u]: t =t} <tk < ... <tF =u
such that min (¢}, — t¥) — 0, we have

i<k k—o0

: + s,z
> (Atz ) L Pos(A®7),, — Pos(AS"),

i<k \ P/ koo (1.4.28)
k s,

) (Ai;H) T Neg(A™), — Neg(A),.

i< : &

The proof can now be performed according to the same arguments as in the proof of Proposition
replacing M with A, the quadratic increments with the positive (resp. negative) increments,
and the quadratic variation with the positive (resp. negative) variation of an adapted process. O

We assume for now that we are given a fixed stochastic basis fulfilling the usual conditions, and
a non-decreasing function V.

Notation 1.4.15. We denote H>V := {M € HZ|d(M) < dV} and H>+V .= {M € H3|d(M) L dV'}.
Proposition which proof is postponed to Chapter [2|states the following.

Proposition 1.4.16. H>" and H>1V are orthogonal sub-Hilbert spaces of H3 and HZ = H>V @+ H>LV.

Moreover, any element of Hfog is strongly orthogonal to any element of HZQ(;CLV.

For any M € HZ, we denote by MV its projection on H?>V.
We can now finally establish the main result of the present note.
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Proposition 1.4.17. Let V be a continuous non-decreasing function. Let M, N be two square integrable
MAFs, and assume that the AF (N) is absolutely continuous with respect to V. There exists a function
v € B([0,T] x E,R) such that for any (s, z), (M>*, N*>*) = [V*v(r, X, )dV,.

Proof. By Corollary there exists a bounded variation AF with L! values denoted (M, N) such
that under any P*7, the cadlag version of (M, N) is

(M#>* N*7%). By Proposition there exists an increasing AF with L! values denoted Pos({M, N))
(resp. Neg((M, N))) such that under any IP**, the cadlag version of Pos({M, N)) (resp. Neg({M, N)))
is Pos((M*7®, N*7)) (resp. Neg((M**, N*7))). We fix some (s, z) and the associated probability P**.
Since (N) is absolutely continuous with respect to V, comparing Definition1.4.1and Notation[1.4.15]
we have N*% € H%V. Therefore by Propositionwe have

(M52, N*5) = (MY, No<) (1429)

— %<(Ms,ac)v 4 Ns,a:> - %<(MS,.Z’)V o N87m>. .
Since both processes 1((M**)V + N*), 1((M*7)V — N*%) are increasing and starting at zero, we
have Pos({M*%, N*%)) = 1((M*%)V + N**) and

Neg(M*#, N*%)) = Z((M>7)Y — N*%)

Now since (M*%)V +N*% and (M**)V —N*% belong to H>", we have shown that dPos({M*%, N*%)) <
dV and dNeg((M**, N**)) < dV in the sense of stochastic measures.

Since this holds for all (s, z) Proposition insures the existence of two functions vy, v_ in
B([0, T)x E,R) such that for any (s, z), Pos({(M**, N5%)) = fs'vs vy (r, X,.)dV, and Neg({M** N5%)) =

fs'vs v_(r, X,)dV,. The conclusion now follows setting v = v; —v_. O






Chapter 2

BSDEs with no driving martingale,

Markov processes and associated Pseudo
PDEs

This chapter is the object of paper [9].

Abstract

We discuss a class of Backward Stochastic Differential Equations (BSDEs) with no driving mar-
tingale. When the randomness of the driver depends on a general Markov process X, those BS-
DEs are denominated Markovian BSDEs and can be associated to a deterministic problem, called
Pseudo-PDE which constitutes the natural generalization of a parabolic semilinear PDE which
naturally appears when the underlying filtration is Brownian. We consider two aspects of well-
posedness for the Pseudo-PDEs: classical and martingale solutions.

2.1 Introduction

This paper focuses on a new concept of Backward Stochastic Differential Equation (in short BSDE)
with no driving martingale of the form

d(M)

T
Yt:§+/t f(r,-,Yr, dV(r)) dVy — (Mp — M), te€][0,T] (2.1.1)

defined on a fixed stochastic basis fulfilling the usual conditions. V' is a given bounded non-decreasing
continuous adapted process, £ (resp. f)is a prescribed terminal condition (resp. driver). The un-
known will be a couple of cadlag adapted processes (Y, M) where M is a martingale. When V; = ¢
(2.1.1) is a particular case of the class of BSDEs introduced and studied by [67], for which we bring a
new light.

A special case of such BSDEs are the Markovian BSDEs of the form

d(Ms,x>
av

T
Y = g(Xr) + / f<r,Xr,Yﬁ@, <r>> dv, — (Mg = M%), te[0,7]  (212)
t

defined in a stochastic basis (2, 7*%, F**, P**) where (IP**)(, »)c(0,1)x £ corresponds to the laws (for
different starting times s and starting points z) of an underlying forward Markov process with time
index [0, T'], taking values in a Polish state space E. Indeed this Markov process is supposed to solve a

31
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martingale problem with respect to a given deterministic operator a, which is the natural generalization
of a stochastic differential equation in law. (2.1.2) will be naturally associated with a deterministic
problem involving a, which will be called Pseudo-PDE, being of the type

{a(qu(.’.’u,r(u)é) = 0 on[0,T]xE (2.13)
uw(T,) = g,

where I'(u) = a(u?) — 2ua(u) is a potential theory operator called the carré du champs operator. The
Markovian BSDE seems to be appropriated in the case when the forward underlying process
X is a general Markov process which does not rely to a fixed reference process or random field as a
Brownian motion or a Poisson measure.

The classical notion of Brownian BSDE was introduced in 1990 by E. Pardoux and S. Peng in
[71], after an early work of J.M. Bismut in 1973 in [18]. It is a stochastic differential equation with
prescribed terminal condition ¢ and driver f; the unknown is a couple (Y, Z) of adapted processes.
Of particular interest is the case when the randomness of the driver is expressed through a forward
diffusion process X and the terminal condition only depends on X7. The solution, when it exists, is
usually indexed by the starting time s and starting point « of the forward diffusion X = X*%, and it
is expressed by

Xt = o+ fst B(r, X7 )dr + fst o(r, X;")dB, (2.14)
YO = g(X) 4 [T XY 20 dr — [T Z30dB,,  te[0,T] .

where B is a Brownian motion. Existence and uniqueness of (that we still indicate with BSDE)
above was established first supposing essentially Lipschitz conditions on f with respect to the third
and fourth variable. § and o were also supposed to be Lipschitz (with respect to x). In the sequel
those conditions were considerably relaxed, see [74] and references therein.

In [76] and in [72] previous BSDE was linked to the semilinear PDE

i,j<d i<d (2.1.5)

In particular, if has a classical smooth solution u then (Y%, Z5%) := (u(-, X*"), o Vu(-, X*7))
solves the second line of (2.1.4). Conversely, only under the Lipschitz type conditions mentioned after
([2.1.4), the solution of the BSDE can be expressed as a function of the forward process (Y*%, Z5%) =
(u(-, X5*),v(-, X5")), see [43]. When f and g are continuous, u is a viscosity solution of (2.1.5). Ex-
cepted in the case when v has some minimal differentiability properties, see e.g. [52], it is difficult to
say something more on v. One major contribution of this paper consists in specifying v.

{ Oy + % > (O’O’T)i,jaiwju + > Bi0z,u+ f(-,-,u,0Vu) =0 on [O,T[XRd

Since the pioneering work of [72], in the Brownian case, the relations between more general BS-
DEs and associated deterministic problems have been studied extensively, and innovations have been
made in several directions.

In [7] the authors introduced a new kind of BSDE including a term with jumps generated by a
Poisson measure, where an underlying forward process X solves a jump diffusion equation with Lip-
schitz type conditions. They associated with it an Integro-Partial Differential Equation (in short IPDE)
in which some non-local operators are added to the classical partial differential maps, and proved
that, under some continuity conditions on the coefficients, the BSDE provides a viscosity solution of
the IPDE. In chapter 13 of [8], under some specific conditions on the coefficients of a Brownian BSDE,
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one produces a solution in the sense of distributions of the parabolic PDE. Later, the notion of mild
solution of the PDE was used in [4] where the authors tackled diffusion operators generating sym-
metric Dirichlet forms and associated Markov processes thanks to the theory of Fukushima Dirichlet
forms, see e.g. [53]. Those results were extended to the case of non symmetric Markov processes
in [87]. Infinite dimensional setups were considered for example in [52] where an infinite dimen-
sional BSDE could produce the mild solution of a PDE on a Hilbert space. Concerning the study
of BSDEs driven by more general martingales than Brownian motion, we have already mentioned
BSDEs driven by Poisson measures. In this respect, more recently, BSDEs driven by marked point
processes were introduced in [24], see also [5]; in that case the underlying process does not contain
any diffusion term. Brownian BSDEs involving a supplementary orthogonal term were studied in
[43]. We can also mention the study of BSDEs driven by a general martingale in [22]. BSDEs of the
same type, but with partial information have been investigated in [23]. A first approach to face de-
terministic problems for those equations appears in [64]; that paper also contains an application to
financial hedging in incomplete markets. Finally, BSDEs in general filtered space were studied in [67]]
as we have already mentioned.

We come back to the motivations of the paper. Besides introducing and studying the new class of
BSDEs (2.1.1)), (resp. Markovian BSDEs (2.1.2)), we study the corresponding Pseudo-PDE and
carefully explore their relations in the spirit of the existing links between and (2.1.5). For the
Pseudo-PDE, we analyze well-posedness at two different levels: classical solutions, which generalize
the C12-solutions of and the so called martingale solutions. In the following Chapter 3, we also
discuss other (analytical) solutions, that we denominate as decoupled mild solutions. The main con-
tributions of the paper are essentially the following. In Section [2.3| we introduce the notion of BSDE
with no driving martingale (2.1.1). Theorem states existence and uniqueness of a solution for
that BSDE, when the final condition & is square integrable and the driver f verifies some integra-
bility and Lipschitz conditions. For technical reasons we have decided to provide an independent
constructive proof from the one of [67]. Indeed we need that construction for the sequel of the paper.
On the other hand, the particular form of our BSDE allows a simple and direct proof.

In Section we consider an operator and its domain (a,D(a)); V will be a continuous non-
decreasing function. That section is devoted to the formulation of the martingale problem concerning
our underlying process X. For each initial time s and initial point « the solution will be a probability
P** under which for any ¢ € D(a),

66, X) = o(s,0) = [ al6)(r X,)aV;

is a local martingale starting in zero at time s. We will then assume that this martingale problem is
well-posed and that its solution (P**); .)ej0,7)x £ defines a Markov process. In Proposition
we prove that, under each one of those probabilities, the angular bracket of every square integrable
martingale is absolutely continuous with respect to dV'. In Definition [2.4.14} we suitably define some
extended domains for the operators a and I', using some locally convex topology. In Section we
introduce the Pseudo-PDE to which we associate the Markovian BSDE (2.1.2), considered un-
der every IP**. We also introduce the notions of classical solution in Definition[2.5.3} and of martingale
solution in Definition which is fully probabilistic. Proposition says the following. Clas-
sical solutions of typically belong to the domain D(a) and are shown also to be essentially
martingale solutions. Conversely a martingale solution belonging to D(a) is a classical solution, up
to so called zero potential sets, see Definition Proposition asserts that, given a classical
solution u € D(a), then for any (s, z) the processes Y ** = u(-, X.) and

M** =u(-, X)) —u(s,z) — [, f(,, -,u,l“(u)%)(r, X,)dV; solve (2.1.2) under the probability P**.
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Theorem [2.5.15| states that, without any assumptions of regularity, there exist Borel functions u
and v such that for any (s, z) € [0,7] x E, the solution of (2.1.2)) verifies

Vt>s: Y;S’x — u(tht) P57 a.s.
d<]§[sz> (t) =02(t, Xz) dV @ dP>® a.e.

Theorems 2.5.21 and [2.5.22] state that the function u mentioned above is the unique martingale
solution of (2.1.3). Moreover v is also identified as a function of u through an extension of the carré
du champs operator.

In Section [2.6| we list some examples which are developed in Chapter 3l These include Markov
processes defined as weak solutions of Stochastic Differential Equations (in short SDEs) including
possible jump terms, a-stable Lévy processes associated to fractional Laplace operators, solutions of
SDEs with distributional drift and diffusions on compact manifolds.

2.2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.

A topological space E will always be considered as a measurable space with its Borel o-field which
shall be denoted B(E) and if (F, dF) is a metric space, C(E, F') (respectively Cy(E, F'), B(E, F'), By(E, F))
will denote the set of functions from E to F' which are continuous (respectively bounded continuous,
Borel, bounded Borel).

On a fixed probability space (2, F,PP), for any p > 1, LP will denote the set of random vari-
ables with finite p-th moment. A measurable space equipped with a right-continuous filtration
(Q, F,F := (Ft)ier) (Where T is equal to Ry or to [0,T] for some 7" € R ) will be called a filtered
space. A probability space equipped with a right-continuous filtration (2, 7, F,P) will be called
called a stochastic basis and will be said to fulfill the usual conditions if the probability space is
complete and if Fy contains all the P-negligible sets. We introduce now some notations and vocab-
ulary about spaces of stochastic processes, on a fixed stochastic basis (2, F, F, IP). Most of them are
taken or adapted from [60] or [61]. A process (X;):eT is said to be integrable if X; is an integrable
r.v. for any ¢t. We will denote V (resp V1) the set of adapted, bounded variation (resp non-decreasing)
processes starting at 0; VP (resp VP»1) the elements of V (resp V1) which are predictable, and V*
(resp V=T) the elements of V (resp V') which are continuous. If A € V, we will denote Pos(A)
and Neg(A) the positive variation and negative variation parts of A, meaning the unique pair of
elements V1 such that A = Pos(A) — Neg(A) (see Proposition 1.3.3 in [61] for their existence) and
Var(A) = Pos(A) + Neg(A) its total variation. M will be the space of cadlag martingales. For any
p € [1, 00] HP will denote the Banach space of elements of M for which || M ||3» := E[|sup Mt\p]% < 0o

teT
and in this set we identify indistinguishable elements. H{, will denote the Banach subspace of H? of

elements vanishing at zero.

If T = [0,T] for some T' € R, a stopping time will take values in [0,7] U {+00}. We define a
localizing sequence of stopping times as an a.s. increasing sequence of stopping times (7,),>0 such
that there a.s. exists N € N for which 7y = 4o00. Let Y be a process and 7 a stopping time, we
denote by Y7 the stopped process t — Y;,,. If C is a set of processes, we define its localized class
Cioc as the set of processes Y such that there exists a localizing sequence (7,,),>0 such that for every
n, the stopped process Y™ belongs to C. In particular a process X is said to be locally integrable
(resp. locally square integrable) if there is a localizing sequence (7, ),>0 such that for every n, X;™ is
integrable (resp. square integrable) for every ¢.
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For any M € Mj,., we denote [M] its quadratic variation and if moreover M € H? , (M)
will denote its (predictable) angular bracket. H3 will be equipped with scalar product defined by
(M,N)3pz = E[MrNr| = E[(M, N)r| which makes it a Hilbert space. Two local martingales M, N

will be said to be strongly orthogonal if M/ N is a local martingale starting in 0 at time 0. In Hg,loc this
notion is equivalent to (M, N) = 0.

2.3 BSDEs without driving martingale

In the whole present section we are given 7' € R% , and a stochastic basis (Q, F,F = (Ft)ieo,11> IP)
fulfilling the usual conditions. Some proofs and intermediary results of the first part of this section

are postponed to Appendix[2.B|

Definition 2.3.1. Let A and B be in V. We will say that dB dominates dA in the sense of stochastic
measures (written dA < dB) if for almost all w, dA(w) < dB(w) as Borel measures on [0, T.

We will say that dB and dA are mutually singular in the sense of stochastic measures (written dA1dB)
if for almost all w, the Borel measures dA(w) and dB(w) are mutually singular.

Let B € V. dB ® dP will denote the positive measure on

(@ x[0,T],F ® B([0,T1)) defined for any F € F & B([0,T]) by

dB®dP(F) =E { fOT 1p(r,w)dBy (w)] . A property which holds true everywhere except on a null set for this
measure will be said to be true dB ® dIP almost everywhere (a.e).

The proof of Proposition below is in Appendix

Proposition 2.3.2. For any A and B in VPt there exists a (non-negative
dB ® dPP a.e.) predictable process and a process in VP ALB such that

dA*B 1 dBand A = AP + AP as.

where AP = [ 92 (r)dB,. The process A*B is unique and the process 4 is unique dB ® dP a.e.

Moreover, there exists a predictable process K with values in [0, 1] (for every (w, 1)), such that AP = [[ 11y 1ydA,
and ALB f()]l{K 71}dA

The predictable process %5 appearmg in the statement of Proposition [2.3.2| will beF the Radon-
Nikodym derivative of A by B

Remark 2.3.3. Sinceforany s < t Ay — As = [1 94 (r)dB, + AP — ALP a.s. where ALP is increasing, it
is clear that for any s < t,

fst j—g (r)dB, < Ay—As a.s. and therefore that for any positive measurable process ¢ we have fOT cbr% (r)dB, <
fOT ¢drdA, as.

If Aisin VP, and B € VPt We set 44 .— 2Pos(A) _ dPos(A) g g ALB .= (Pos(A))LB - (Neg(A))L5.

Proposition 2.3.4. Let Ay and Ay be in VP, and B € VP'". Then,
AAtA2) — dy 1 92 4V @ dP ae. and (Ay + Ap)B = ALP + 43P,

Proof. The proof is an immediate consequence of the uniqueness of the decomposition (2.3.2). O
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Let V € V7", We introduce two significant spaces related to V.
H?V = {M € HE|d(M) < dV} and H>LV := {M € H3|d(M) L dV}.
The proof of the two propositions below are in Appendix[2.B]

Proposition 2.3.5. Let M € H3, and let V € VP*. There exists a pair (MY, M+V) in H>Y x H>LV such
that M = MYV + M*V and (MY, M+V) =0,

Moreover, we have (M") = (M)" = [, %(r)dv; and (M+V) = (M)*V and there exists a predictable
process K with values in [0, 1] such that
MY = [( g, <iydM, and MY = [ g _1ydM,.

Proposition 2.3.6. H>" and H**V are orthogonal sub-Hilbert spaces of H3 and H3 = H*V ot HZLV.

Moreover, any element of leo::/ is strongly orthogonal to any element of ’Hl%;CLV

Remark 2.3.7. All previous results extend when the filtration is indexed by R ...

We are going to introduce here our Backward Stochastic Differential Equation (BSDE) for which
there is no need for having a particular martingale of reference.

We will denote Pro the o-field generated by progressively measurable processes defined on [0, 7] x €2.
Given some V € V%, we will indicate by £2(dV ® dP) (resp. L%(dV @ dP)) the set of (up to indistin-
guishability) progressively measurable processes ¢ such that £ fOT $2dV,] < oo (resp. fOT |pr|dV; < 00
P a.s.) and L?(dV ® dP) the quotient space of £2(dV ® dP) with respect to the subspace of pro-
cesses equal to zero dV ® dIP a.e. More formally, L?(dV ® dIP) corresponds to the classical L? space
L%([0,T] x Q, Pro,dV ® dP) and is therefore complete for its usual norm.

L£2cadlag(qV @ dP) (resp. L?<*4a9(dV @ dIP)) will denote the subspace of £L2(dV @ dP) (resp. L*(dV ®
dPP)) of cadlag elements (resp. of elements having a cadlag representative). We emphasize that
L2cadlag(qV @ dIP) is not a closed subspace of L?(dV @ dP).

The application which associates to a process its corresponding class will be denoted ¢ + ¢.

The aforementioned BSDE will depend on a triple (V,¢&, f) of coefficients: V' is an integrator pro-
cess, £ is the final condition, f is the driver.

Hypothesis 2.3.8. 1. V is bounded continuous non-decreasing adapted process;
2. {is asquare integrable Fr-measurable r.v.
3. f:([0,T] x Q) x R x R — R, measurable with respect to Pro @ B(R) @ B(R).
4. f(-,-,0,0) € L2(dV ® dP).

5. There exist positive constants KY | KZ such that, P a.s. we have for all t,y, v, z, 2/,

A~

‘f(ta '73/72) - f(ta '73/,72,)‘ < Ky‘y - y/‘ + KZ”Z - Z/’. (231)
We start with a lemma.

Lemma 2.3.9. Let Uy and Us be in £2(dV @dP) and such that Uy = Us. Let F:0,T)xQxR — Rbesuch
that F(-,-,U1) and F(-,-,Us) are in L°(dV ® dP), then the processes [, F(r,-,U})dV; and [ F(r,-,U2)dV;
are indistinguishable.

Proof. There exists a P-null set N such that for any w € N¢, Ul(w) = U%(w) dV (w) a.e. So for any
wENC F(, wUl( )) F(., wUZ( )) dV (w) a.e. implying

Jo Fr,w, U} (w = [y F(r,w,U(w))dV;(w). So [y F(r,-,U})dV, and [; F(r,-,U2)dV; are indis-
tinguishable processes ]
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In some of the following proofs, we will have to work with classes of processes. According to
Lemma if U is an element of L2 (dV ® dPP), the integral fo F(r,w,U,)dV, will not depend on the
representantive process U that we have chosen.

We will now give the formulation of our BSDE.

Definition 2.3.10. We say that a couple (Y, M) € £2<49(qV @ dP) x H2 is a solution of BSDE(E, f, V)
if it verifies

T
V=¢+ / f (r, Y, dfl]\‘f> (r)) dV, — (My — M) (2.32)

in the sense of indistinguishability.
Proposition 2.3.11. If (Y, M) solves BSDE(, f, V), and if we denote
f <r, LY, W(ro by f,, then for any t € [0, T), a.s. we have

Y,
M

Proof. Since Y; = & + ftT frdVr — (Mr — M) as., Y being an adapted process and M a martingale,
taking the expectation in (2.3.2) at time ¢, we directly get Y; = E [{ + ftT frdw

that Yp = E [§+ I foav,

fOT frdV,— Yy =€+ fOT frdV, —E [5 + fOT frdV, ’.7-'0] . Taking the expectation with respect to F; in the
above inequality gives the second line of (2.3.3).

E
E

§+ftTfrdVr Ft
¢+ [ fravi| R

(2.3.3)

-E [E + fOT frd‘/r

-

]:t} and in particular

.7-'0]. Since My = 0, looking at the BSDE at time 0 we get My = £ +

O]

We will proceed showing that BSDE(¢, 1, V') has a unique solution. At this point we introduce
a significant map ® which will map L?(dV ® dP) x H2 into its subspace L?*¥9(dV @ dP) x H3.
From now on, until Notation we fix a couple (U, N) € L?(dV ® dP) x HZ to which we will
associate (Y, M) which, as we will show, will belong to L***¥9(dV ® dP) x H3. We will show that
(U,N) ~ (Y, M) is a contraction for a certain norm. In all the proofs below, U will only appear in
integrals driven by dV' through a representative U.

Proposition 2.3.12. Forany t € [0,T], ftT f2 <r, U, \/@(T)) dV, isin L* and
<j;fT f <T7 ) UT) déj‘\/[)(r)> d%) isin L2,

Proof. By Cauchy-Schwarz inequality and thanks to the boundedness of V' together the Lipschitz con-
ditions on f in Hypothesis there exist a positive constant C' such that, for any ¢ € [0, 7], we have

T 2 d(N) 2 T / d{N)
(ft f <T7 ) U'f’v dV(T)> d‘/7’> S V’jg f;f f2 (Ta ) UT7 dV(T)) d‘/'r (234)
<C (S 20,000V, + [T U2V, + 740 (r)av;)
The three terms on the right are in L!. Indeed, by Remark

tT %(r)dvr < ({(N)r — (N);) which belongs to L' since N is taken in H?. By Hypothesis
f(-,-,0,0) isin £2(dV @ dIP), and U was also taken in L?(dV ® dPP). This concludes the proof. O
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We can therefore state the following definition.

Definition 2.3.13. Setting f, = f (r,-,U,, %(r) , we define M as the cadlag version of the martingale
toE e+ ) favi| B - B[+ i favi| 7]

It admits a cadlag version taking into account Theorem 4 in Chapter IV of [33]], since the stochastic basis ful-
fills the usual conditions. We denote by Y the cadlag process defined by Y; = £+ftT f (r, - Ur, % (r)) dv,—
(Mg — M;). This will be called the cadlag reference process and we will often omit its dependence to (U, N).

According to previous definition, it is not clear whether Y is adapted, however, we have the
almost sure equalities
Y, = &+ f1 frdVy — (My — M)
= ¢+ [T fave— (64 J) foaVe —E ¢+ [ frav,
= EBle+ [T fav|R] - fav,
= B¢+ [ frdVi|Fi|.

7))

(2.3.5)

Since Y is cadlag and adapted, by Theorem 15 Chapter IV of [32], it is progressively measurable.

Proposition 2.3.14. M belongs to H3 and sup |Y;| € L2
t€[0,T]

Proof. M is square integrable and vanishes at 0 by Definition [2.3.13|and Proposition [2.3.12| A con-
sequence of Definition 2.3.13, of Cauchy-Schwarz inequality and of the boundedness of V' is the
existence of some C, C’ > 0 such that, a.s.,

. 2
sup Y2 < O+ sup (ftT frdw> + sup (Mg — M;)?
¢€[0,T] t€[0,T] t€[0,7] (2.3.6)
< '+ [] f2av, + sup M?
t€[0,T]
which belongs to L' by Proposition 2.3.12/and the fact that £ and M are square integrable. O

Since Y is cadlag progressively measurable, sup |Y;| € L? and since V is bounded, it is clear that
te[0,T]

Y € £%cdla9(dV @ dIP) and the corresponding class Y belongs to L><%9(dV ® dIP).

Notation 2.3.15. We denote by ® the operator which associates to a couple (U, N) the couple (Y, M).

o L*(dV @ dP) x HE — L>d99(qV @ dP) x H}E
' (U,N) — (Y.M).

Proposition 2.3.16. The mapping (Y, M) — (Y, M) induces a bijection between the set of solutions of
BSDE(, f,V) and the set of fixed points of ®.

Proof. First, let (U, N) be a solution of BSDE(&, f,V), let (Y, M) := ®(U, N) and let Y be the refer-
ence cadlag process associated to U as in Definition [2.3.13 By this same definition, M is the cadlag
version of
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tHE{ﬁ—kf()Tf(HU dc<lV>())dVIt] [§+f0Tf<r,-’U7 dflv>()>dv

sition[2.3.11} sois N, meaning M = N. Again by Definition[2.3.13 Y = §—|—fT f <r, Upy A/ w(r)> dV,—

]:(]:| but by Propo-

(N7 — N.) which is equal to U thanks to (2.3.2), so Y = U in the sense of indistinguishability, and in
particular, U =Y, implying (U, N) = (Y, M) = ®(U, N). The mapping (Y, M) — (Y, M) therefore
does indeed map the set of solutions of BSDE(&, f, V) into the set of fix points of ®.

The map is surjective. Indeed let (U, N) be a fixed point of ®, the couple (Y, M) of Definition [2.3.13

verifies Y = £ + f f ( dév) (r )> dV, — (Mr — M.) in the sense of indistinguishability, and

(Y, M) =®(U,N) = (U,N),soby Lemma.3.9, [ f (7’, Y, \/‘W(ﬂ) dV, and

f f ( dflv>( )) dV, are indistinguishable and ¥ = §+f f ( dilv>( )) dVy—(Mr—
M.), meaning that (Y, M) solves BSDE(¢, f, V).

We finally show that it is injective. Let us consider two solutions (Y'!, M) and (Y2, M) of BSDE(¢, £.V)
with Y1 = Y2, By Lemma 2.3.9, the processes [ f < R SZA‘;D( )> dV, and

i < - Y2, dg“@ (r)) dV, are indistinguishable, so taking (2.3.2) into account, we have Y1 = Y.
O
From now on, if (Y, M) is the image by ® of a couple

(U,N) € L*(dV ® dPP) x HZ, by default, we will always refer to the cadlag reference process Y of Y/
defined in Definition

Lemma 2.3.17. Let Y be a cadlag adapted process satisfying E | sup Y;*| < oo and M be a square integrable
te[0,7]
martingale. Then there exists a constant C' > 0 such that for any € > 0 we have
E | sup <c(iB|swp v2| + 2B (M1 ).
t€[0,T] 2 te[0,7) 2e

In particular, [,Y,-dM, is a uniformly integrable martingale.

Proof. By Burkholder-Davis-Gundy and Cauchy-Schwarz inequalities, there exists C' > 0 such that

E | sup ‘fo < C]E[ f(;fygd[M]?}
te[0,T]
< CE | [sup Y2[M]r < C,|E|sup Y?| E[[M]r
te[0,T] te[0,T]
< C(;]E sup Y72 +21€]E[[M]T]> < +oo.
te[0,7

So [, Y,-dM, is a uniformly integrable local martingale, and therefore a martingale. ]
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Lemma 2.3.18. Let Y be a cadlag adapted process and M € H?. Assume the existence of a constant C' > 0 and

an L'-random variable Z such that for any t € [0,T], Y2 < C (Z - ‘fg Y,-dM, ) Then sup |Yi| € L2
te[0,7)

/ t Y,—dM, ) . (2.3.7)
0

Since Y;- is caglad and therefore locally bounded, (see Definition p164 in [78]) we define 7,, = inf {t >
0: Y- > n}. Ityields fdAT" Y,-dM, is in H? since its angular bracket is equal to fO'AT" Y2 d(M),

I
is L? and

Proof. For any stopping time 7 we have

sup Y2 <C <Z—|— sup
t€[0,7] t€[0,7]

which is inferior to n?>(M)r € L'. By Doob’s inequality we know that sup ‘ f(f Y, -dM,
te|0,m]
using (2.37), we get that sup Y;?is L!. By (2.3.7) applied with 7,, and taking expectation, we get
t€[0,7y]
E|sup V2| < <1 +E | sup ’fg Y,-dM,
[t€[0, ] | t€[0,7n]
Lemma 2.3.1_Z| applied to (Y™, M) there exists C” > 0 such that for any n € N* and € > 0,

), for some C’ which does not depend on n. By

C// 7

E|sup Y?| <C"|[1+$5E | sup Y/
L t€[0,7x] ] te(0,70]
C'3 > 0 such that for any n > 0,

+ 3 E[M ]T]> . Choosing e = -, it follows that there exists

iE sw[up ]Y? < C3(1+E[[M]r]) < co. By monotone convergence theorem, taking the limit in n
te|0,m,
we get the result. ]

Proposition 2.3.19. Let A € R, let (U, N), (U’, N") be in

L2(dV ® dP) x HE, let (Y, M), (Y',M') be their images by ® and let Y,Y' be the cadlag representa-
tives of Y, Y introduced in Definition Then |, VY, _dM,, I e’\VTY;’, dmy, [, VY, dM! and
Jo €V Y!_dM, are martingales.

Proof. Thanks to Proposition [2.3.14|we know that sup |Y;| and sup |Y/|are L?. Moreover since M
te[0,T] t€[0,T7]

and M’ are square integrable, the statement yields therefore as a consequence of Lemma and
the fact that V' is bounded. O

We will now show that @ is a contraction for a certain norm. This will imply that it has a unique
fixed point in L?(dV ® dP) x H3 since this space is complete and therefore that BSDE(¢, f,V) has a
unique solution thanks to Proposition [2.3.16

For any A > 0, on L?(dV ® dP) x HZ we define the norm

(Y, M)|} :=E [fOT e’\VrerdVr} +E [ OT e’\Vrd<M>r} . Since V' is bounded, these norms are all equiv-

alent to the usual one of this space, which corresponds to A = 0.
Proposition 2.3.20. There exists A\ > 0 such that for any
. . 2 . 2
(U,N) € L*(dV ® dP) x H3, CI)(U’N)HA <1 H(U,N)H/\. In particular, ® is a contraction in L*(dV ®
dP) x H3 for the norm || - ||x.

Proof. Let (U, N) and (U’, N') be two couples of L*(dV @ dIP) X 7-[.3, let (Y, M) and (Y', M’) be their
images via ® and let Y, Y’ be the cadlag reference process of Y, Y’ introduced in Definition [2.3.13
We will write Y for Y — Y’ and we adopt a similar notation for other processes. We will also write
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]‘Tt = f (ta ) Uta dc<l]‘>'f>(t)> - f (t7 " Ut/’ dfi]‘\il> (t)> :

By additivity, we have dY; = —f;dV; + dM,. Since Yr = £ — £ = 0, applying the integration by
parts formula to Y,?e*"* between 0 and T we get

T T T T
YE - 2/ VY, frdVi + 2/ VY, _dM, +/ eMVrd[M), + )\/ VY 2av, = 0.
0 0 0 0

Since, by Proposition [2.3.19} the stochastic integral with respect to M is a real martingale, by
taking the expectations we get

T T T
E [Y§] - 2B [ / e*VTYﬁnfrdVr} +E [ / eV d( M >r] +AE [ / e/\VTYTQdVr} = 0.
0 0 0
So by re-arranging and by using the Lipschitz condition on f stated in Hypothesis we get
T T _
B[y VTRV, + B | [y eVea(a), |
< 2KVE | [y VIV[T,]aV;

T = d d(N'

+27B [ %) R0 - 50| av]

< (KYa+ KZ8)E [ T AVT|YT|2dVT] +KTY]E[ T ,\VT|U|2dV}

+ IEJ T)\VT

2
AN 1y _ dil%r)] av.

for any positive a and 8. Then we pick a = 2KY and 8 = 2KZ, which gives us

| [y Wry%zv} E |y e aiar), |
< 2KV + (KPR | [ Ve |V[2a;]

+ IE[ T AVT|UT‘2dVT} +%]E [fOTe)\VT M(T)_ d<N/>()

dv av \T QdVT}

We choose now A = 1+ 2((KY)? + (K%)?) and we get

]E[ OT )‘VTY2dV} —l—]E[ T AVrd<M>r:|

(2.3.8)

< 1E|: T AVT’UT‘QCZW} +%E OT AVr

2
A0 () — d%(r)) dv,

’ , 2
On the other hand, since by Proposition [2.B.1) we know that fw) dg‘\p — (duzif{iv >) is a positive

'\/@_\/Wz - dV —2 dv\/y

process, we have

< dN) _ Qd(NNY) | d(N) (2.3.9)
= qu av av
= <N> dV ® dP a.e.

Therefore, since by Remark we have f eAVr < >( dv, < f eMVrd(N),, then expression (2.3.8)
implies
T A\V,.3y2 T Ve g 1 T _\V, 2 T Ve g :
[f "Y2dV, + [y M M}r} ;E [f U PaV, + [y eMVr N)r], which proves the con-
traction for the norm || - |x. O
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Theorem 2.3.21. If (¢, f) verifies Hypotheszsthen BSDE(¢, f, V) has a unique solution.

Proof. The space L?(dV ® dP) x HZ is complete and ® defines on it a contraction for the norm ||(-, -)||x
for some A > 0, so ® has a unique fixed point in R
L*(dV ® dP) x HZ. Then by Proposition2.3.16, BSDE(&, f, V) has a unique solution. O

Remark 2.3.22. Let (Y, M) be the solution of BSDE(E, f, V) and Y the class of Y in L2(dV ® dP). Thanks

to Proposition|2.3.16} we know that
(Y, M) = ®(Y, M) and therefore by Propositions|2.3.14\and 2.3.19|that sup |Yy| is L? and that [ Y,-dM,
t€[0,T]

is a real martingale.

Remark 2.3.23. Let (¢, f, V) satisfying Hypothesis Until now we have considered the related BSDE
on the interval [0,T]. Without restriction of generality we can consider a BSDE on a restricted interval
[s,T] for some s € [0,T[. The results and comments of this section immediately extend to this case. In
particular there exists a unique couple of processes (Y, M*®), indexed by [s, T| such that Y*® is adapted, cadlag

and verifies ]E[f (Y;$)2dV,] < oo, such that M* is a martingale starting at 0 in s and such that Y =
e+ [T f <7“, Y7, dﬁlv>( )) dV, — (M3 — M?) in the sense of indistinguishability on [s, T).

Moreover, if (Y, M) denotes the solution of BSDE(E, f,V) then (Y, M. — M) and (Y, M*) coincide on
[s, T|. This follows by the uniqueness argument for the restricted BSDE to [s,T].

The lemma below shows that, in order to verify thata couple (Y, M) is the solution of BSDE(¢, f,V),
it is not necessary to verify the square integrability of Y since it will be automatically fulfilled.

Lemma 2.3.24. Let (&, 1, V') verify Hypothesis and consider BSDE(E, 1, V') defined in Definition
2.3.101 Assume that there exists a cadlag adapted process Y with Yy € L? , and M € H3 such that

T
Y = £+/ f(r,',Yr, diﬁ@m) v, — (My — M), (2.3.10)

in the sense of indistinguishability. Then sup |Y:| € L. In particular,
t€[0,T]

Y € L2(dV ® dP) and (Y, M) is the unique solution of BSDE(E, f,V) .
On the other hand if (Y, M) verifies 2.3.10) on [s,T] with s < T, if Ys € L%, My = 0 and if we denote
(U, N) the unique solution of BSDE(&, f, V'), then (Y, M) and (U, N. — N;) are indistinguishable on [s, T.

Proof. Let A > 0 and t € [0,7]. By integration by parts formula applied to Y2e~*" between 0 and ¢
we get

Y2y = —2f "\VTYf(r,-,YT,\/dy‘p r)dV +2 [l e Ay, dM,
+ [y e MVed[M], = A [} e AV YEdM,

By re-arranging the terms and using the Llpschltz conditions in Hypothesis we get
V2e Ve 4 A [T e VY 2ay,

Yo +2f ‘erYrHﬂ (r,-,n,\/@(@ dv, +2‘ft AV,
+ft —>\V,~

G —Wrm (r.-,0,0)dV; +(2KY+1+KZ) LNy v
+2‘ft —AVy e Weg

IN

IN
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Choosing A = 2K + 1 + K7 this gives

Y2e e < Y2+ L e MV R (r, -, 0,0)dV, + K2 [y e AV D (r)dV,
2| fy e VYo dM |+ [y eV d[M],

Since V' is bounded, there is a constant C' > 0, such that for any ¢ € [0, 7’|

")

ya (r)dVy + [M]r +

T
v}<cC (Yf +/ |f?(r,-,0,0)dV; +/
0 0

t
/ Y,—dM, >
0

By Hypothesis and since we assumed Yy € L? and M € H?, the first four terms on the right
hand side are integrable and we can conclude by Lemma|2.3.18

An analogous proof also holds on the interval [s, 7| taking into account Remark[2.3.23 O

If the underlying filtration is Brownian and V; = t, we can identify the solution of the BSDE with
no driving martingale to the solution of a Brownian BSDE.

Let B be a 1-dimensional Brownian motion defined on a complete probability space (2, F,P).
Let T € R’ and for any t € [0,7], let 7P denote the o-field o(B,|r € [0,¢]) augmented with the
P-negligible sets.

In the stochastic basis (€, F, 2, P), let V; = t and (¢, f) satisfy Hypothesis m Let (Y, M) be the
unique solution of BSDE(, f,V), see Theorem

Proposition 2.3.25. We have Y = U, M = fo ZydB,, where (U, Z) is the unique solution of the Brownian
BSDE

T T
U:§+/ f(r,-,Ur,|Zr|)dr—/ Z,.dB,.. (2.3.11)

Proof. By Theorem 1.2 in [70], (2.3.11) admits a unique solution (U, Z) of progressively measurable

processes such that Z € L?(dt @ dPP). It is known that sup |U;| € L? and therefore that U € £2(dt ®
te[0,T]

dP), see Proposition 1.1 in [70] for instance. We define N = fo Z,dB,. The couple (U, N) belongs

to £L2(dt ® dP) x H3. N verifies AM)e Z?2 dt ® dP a.e. So by ([2.3.T1), the couple (U, N) verifies

dr

U=¢+ [ r f (r, Upy o/ dg)") dr — (N7 — N.) in the sense of indistinguishability. It therefore solves

BSDE(¢, f,V) and the assertion yields by uniqueness of the solution. O

2.4 Martingale Problem and Markov classes

In this section, we introduce the Markov process which will later be the forward process which will
be coupled to a BSDE in order to constitute Markovian BSDEs with no driving martingales. For
details about the exact mathematical background that we use to define our Markov process, one can
consult the Section of the Appendix. We also introduce the martingale problem related to this
Markov process.

Let £ be a Polish space and T' € R’ be a fixed horizon. From now on, (2, F,F') denotes the canon-
ical space and (X});c[o,7) the canonical process defined in Definition We consider a canonical
Markov class (P*%)  .)e(0,71x £ @ssociated to a transition kernel measurable in time as defined in Def-
initions[2.A.5/and 2.A.4} and for any (s, z) € [0,T] x E, (Q, F>*,F** P*"*) will denote the stochastic
basis introduced in Definition and which fulfills the usual conditions.

The following notion of Martingale Problem comes from [60] Chapter XI.
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Definition 2.4.1. Let x be a family of stochastic processes defined on a filtered space (Q, F,TF). We say that
a probability measure P defined on (2, F) solves the martingale problem associated to x if under P all
elements of x are in M,.. We denote MP(x) the set of probability measures solving this martingale problem.
P in MP(x) is said to be extremal if there can not exist distinct probability measures Q, Q' in MP(x) and
a €]0,1[such that P = aQ + (1 — a)@'.

We now introduce a Martingale problem associated to an operator, following closely the formal-
ism of D.W. Stroock and S.R.S Varadhan in [85]. We will see in Remark that both Definitions

2.4.1|and [2.4.2|are closely related.
y

Definition 2.4.2. Let us consider a domain D(a) C B([0,T] x E,R) which is a linear algebra; a linear
operator a : D(a) — B([0,T] x E,R) and a non-decreasing continuous function V : [0,T] — R starting
at 0.

We say that a set of probability measures (IP*%) (; »ye(0,1)x £ defined on (§2, F) solves the martingale problem
associated to (D(a),a, V) if, for any

(s,z) €0, T] x E, P** verifies

(a) P>*(Vt € [0,s], Xy =) = 1;

(b) for every ¢ € D(a), (t— 6(t, X1) — 6(s,) — [1 a(6)(r, X,)dV, ),
t € [s,T], is a cadlag (P*”, IF)-local martingale.

We say that the Martingale Problem is well-posed if for any (s,x) € [0,T] x E, P** is the only probability
measure satisfying those two properties.

Remark 2.4.3. In other words, (P>%) s »ye(0,1]x £ S0lves the martingale problem associated to (D(a), a, V') if
and only if, for any (s,z) € [0,T] x E,

P** € MP(x**) (see Definition , where x*7 is the family of processes

{t = g (1) (¢(t, Xi) — o(s,x) — fst a(o)(r, X,,)dVT) ’qﬁ € D(a)}, together with processes

{t — ]l{r}(t)(Xt - I)‘T‘ S [0, S]}

Notation 2.4.4. For every (s,z) € [0,T] x E and ¢ € D(a), the process

t oy (8) (606 X0) = 6(s,) — [ al6)(r, X,)aV; ) will be denoted M (4]

MI¢]*" is a cadlag (IP**,IF')-local martingale which is equal to 0 on [0, s|, and by Proposition
2.A.10] it is also a (IP®*,F**)-local martingale.

The following Hypothesis is assumed for the rest of this section.

Hypothesis 2.4.5. The Markov class (P**) s »)e[0,1]x £ S0lves a well-posed Martingale Problem associated
to a triplet (D(a),a, V') in the sense of Definition[2.4.2}

The bilinear operator below was introduced (in the case of time-homogeneous operators) by J.P.
Roth in potential analysis (see Chapter III in [79]), and popularized by P.A. Meyer in the study of
homogeneous Markov processes, see e.g. [34] Chapter XV Comment 23 or [60] Remark 13.46. It
has finally become a fundamental tool in the study of Markov processes and semi-groups, see for
instance [3]]. It will be central in our work.

Definition 2.4.6. We set
D(a) x D(a) — B([0,T] x E)
(@.%) = al¢y) — da(v) — a(e).
When ¢ = 1, I'(¢, ¢) will be denoted I'(¢). The operator I is called the carré du champs operator.

T: (2.4.1)
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This operator will appear in the expression of the angular bracket of the local martingales that we
have defined.

Proposition 2.4.7. For any ¢ € D(a) and (s,z) € [0,T] x E, M[$]** belongs to H2 loc- Moreover, for any
(¢,1) € D(a) x D(a) and (s,x) € [0,T] x E, we have

(Mgl M(0°) = [ (6.0 X )av,

S
on the interval [s, T, in the stochastic basis (2, F&*, 5% P5%).

Proof. We fix some (s,z) € [0,7] x E and the associated probability IP**. For any ¢, in D(a), by
integration by parts on [s, 7] we have

M{[@]** M[y]**
= [LM[o]7TdM[]7" + [ M2 dM (@)™ + [M[¢]>*, M [1]*"]
= [, M[¢] ”dM P [y MR AM (] 4 [, X.), 9 (, X))
= [, M[¢] ”dM +ISM[¢]f,i”dM[ ]”+¢>¢( X))
—oY(s,x f <25 = )d(r, — [, u(r -)do(r, X..).

Since ¢ belongs to D(a), we can use the decomposition of ¢)(-, X.) given by (b) in Definition
R.42and

MIg)>* Mp]**
— [ Mg AMRT + [ M) dM][o ”+f ¢¢ (r, X,)dV,
+M”¢¢ I ga(y rX )dV, — fwa X,)dV, 242)
— [, olr M” f Y(r M”[dﬂ o
= qubw(rX )dV, +fM ”dM[ ”JrfM [¥], = dM ]
+M>T (o] — L d(r )AMST [l — [ ab(r - )dM* (@)

Since V' is continuous, this implies that A/ [qﬂsvf’*’M [¥]5" is a spec1al semlmartmgale with bounded
Variation predictable part [ T'(¢,¢)(r, X;)dV;. In particular taking ¢ = v, we have on [s,T] that
(M = [.T(¢)(r, X,)dV, + N**, where N*" is some local martingale. The first element in pre-
vious sum is locally bounded since it is a continuous process. The second one is locally integrable as
every local martingale. Finally (M[¢]>*)? is locally integrable, implying that M[¢]** is in 7—[87100.

Let us come back to two given ¢, v € D(a). Since we know that M[¢]*, M [)]>® belong to H2 , . we
can consider (M[¢]**, M[]**) which, by definition, is the unique predictable process with bounded
variation such that

M[@]5* M[p]*>* — (M[p]®*, M[1]*>") is a local martingale. So necessarily, taking into account,
(M[g]**, M[¢]**) = [[T(6,¢)(r, X;)dV:. O

Taking ¢ = 1 in Proposition [2.4.7 yields the following.
Corollary 2.4.8. Forany (s,z) € [0,T] x Eand ¢ € D(a), M[¢]** € 7—[12(;2/.

Proposition 2.4.9. Let (s,z) € [0,T] x E and P> be fixed. If N € Hg3,,. is strongly orthogonal to M{[¢]**
for all ¢ € D(a) then it is necessarily equal to 0.

Proof. In Hypothesis for any (s,z) € [0,T] x E we have assumed that P** was the unique
element of MP(x*"), where x** was introduced in Remark Therefore P*%* is extremal in
MP(x*>"). So thanks to the Jacod-Yor Theorem (see e.g. Theorem 11.2 in [60]), we know that if an
element N of 133, is strongly orthogonal to all the M([¢]** then it is equal to zero. O
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Proposition 2.4.10. If Hypothesis is verified then for any (s,x) € [0,T] x E, in the stochastic basis
(Q, Fo T P5), we have HE = H>".

Proof. We fix (s,z) € [0,T] x E. It is enough to show the inclusion H2 C H>*". We start considering
a bounded martingale N € H° and showing that it belongs to #*". Since N belongs to H2, we
can consider the corresponding NV, NV in 2, appearing in the statement of Propositionm We
show below that NV and N+ are locally bounded, which will permit us to use Jacod-Yor theorem
on N1V,

Indeed, by Proposition there exists a predictable process K such that
NV = [ 1{x,<1}dN, and NtV = [ 1{k,=13dN;. So if N is bounded then it has bounded jumps; by
previous way of characterizing NV and N1V, their jumps can be expressed (ANY); = Ly, .13 AN,
and (AN1Y), = 1¢k,—1yAN; (see Theorem 8 Chapter IV.3 in [78]), so they also have bounded jumps
which implies that they are locally bounded, see (2.4) in [60].

So N1V is in HG70. and by construction it belongs to H>+V. Since by Corollary all the

M{[¢]** belong to ’leo’}:/, then, by Proposition N1V is strongly orthogonal to all the M[¢]*2.
Consequently, by Proposition NV is equal to zero. This shows that N = NV which by con-
struction belongs to #%", and consequently that H5® C H?*", which concludes the proof when N is
a bounded martingale.

We can conclude by density arguments as follows. Let M € H3. For any integer n € N*, we
denote by M" the martingale in H{® defined as the cadlag version of ¢t — E**[((—n) V M7 A n)|F].
Now (M} — My)? —2 Oas. and this sequence is bounded by 4M2 which is an integrable r.v.

So by the dominated convergence theorem E** | (M} — MT)z} —2 0. Then by Doob’s inequality,

sup (M[* — M) 2 meaning that M" M. Since HE C H?Y, then M™ belongs to H>V for

t€[0.7] n—00 n—00
any n > 0. Moreover H?V is closed in 2, since by Proposition it is a sub-Hilbert space. Finally
we have shown that M € H>V. O

Since V' is continuous, it follows in particular that every (IP**, IF**)-square integrable martingale
has a continuous angular bracket. By localization, the same assertion holds for local square integrable
martingales.

We will now be interested in extending the domain D(a).

For any (s, x) € [0,T] x E we define the positive bounded potential measure U (s, z, -) on
([0, 7] x E,B([0,T]) ® B(E)) by

B([0,T]) @ B(E) — [0, V7]
U(s,z,-): T
A B [T xpendvi]
Definition 2.4.11. A Borel set A C [0, T x E will be said to be of zero potential if, for any (s,z) € [0, T|xE
we have U(s,x, A) = 0.

Notation 2.4.12. Let p > 0. We introduce
L8y = £r(U(s,2,)) = {f € B0, T] x B, R) : B | [T |fP(r, X,)dV, | < oo},

That classical LP-space is equipped with the seminorm
1

| lpsa: [ (ESV” {fsT | f(r, X,,)|pdVrD;. We also introduce

L), =LU(s,z,-)) = {f € B([0,T] x E,R) : /T If|(r, X,)dV, < 00 P52 a.s.} :
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We then denote for any p € N

= () L2, (2.4.3)
(s,2)€[0,T|xXE

Let N be the linear sub-space of B([0,T] x E,R) containing all functions which are equal to 0, U(s, z, ) a.e.
for every (s, x).

For any p € N, we define the quotient space LX. = L%, /N

Ifp € N*, L. can be equipped with the topology generated by the family of semi-norms (| - || psa)(

s,2)€[0,T|xXE
which makes it a separate locally convex topological vector space, see Theorem 5.76 in [1]].

Proposition 2.4.13. Let f and g be in LS. Then f and g are equal up to a set of zero potential if and only if
forany (s,x) € [0,T] x E, the processes [ f(r, X,)dV; and [, g(r, X,)dV, are indistinguishable under P*7.
Of course in this case f and g correspond to the same element of LY.

Proof. Let P*7 be fixed. Evaluating the total variation of [ (f —g)(r, X,.)dV; yields that [ f(r, X, )dV,;
and [, g(r, X,)dV, are indistinguishable if and only if fST |f — gl(r, X;)dV, = 0 a.s. Since that r.v. is
non-negative, this is true if and only if [E* { fsT |f —gl(r, Xr)dW} = 0 and therefore if and only if
U(s,z,N) = 0, where N is the Borel subset of [0,7] x E, defined by {(t,y) : f(t,y) # g(t,y)}. This
concludes the proof of Proposition

O

We can now define our notion of extended generator.

Definition 2.4.14. We first define the extended domain D(a) as the set functions ¢ € B([0,T] x E,R) for
which there exists
¥ € B([0,T] x E,R) such that under any P** the process

o <¢<~,X‘> ~ots.0) - [ v Xr>dvr) (2.4.4)

(which is not necessarily cadlag) has a cadlag modification in H3.

Proposition 2.4.15. Let ¢ € B([0,T] x E,IR). There is at most one (up to zero potential sets) ¢ € B([0,T] x
E,R) such that under any P**, the process defined in has a modification which belongs to M.

If moreover ¢ € D(a), then a(¢) = 1) up to zero potential sets. In this case, according to Notation for
every (s,x) € [0,T] x E, M[$]>® is the P** cadlag modification in H3 of

]l[s,T] (¢(7X) - ¢(87x) - fs ¢(T, Xr)dvr)

Proof. Let ¢! and 92 be two functions such that for any P**,
Loy (0, X.) — o(s,2) — [ 4'(r, X;)dV;), i = 1,2, admits a cadlag modification which is a local
martingale.

Then, under a fixed P*7*, ¢(-, X.) has two cadlag modifications which are therefore indistin-
guishable, and by uniqueness of the decomposition of special semimartingales, [, ¢! (r, X,)dV;. and
fs V2(r, X, )dV;, are indistinguishable on [s, T']. Since this is true under any P**, the two functions are
equal up to a zero-potential set because of Proposition

Concerning the second part of the statement, let ¢ € D(a) ND(a). The result follows by Definition
and the uniqueness of the function ¢ established just before. O
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Definition 2.4.16. Let ¢ € D(a) as in Definition|2.4.14, We denote again by M|[$|**, the unique cadlag ver-
sion of the process 2.4.4) in H3. Taking Proposition |2.4.13|into account, this will not generate any ambiguity
with respect to Notation Proposition |2.4.13} also permits to define without ambiguity the operator

D(a) — L%

¢ — .

a:

a will be called the extended generator.
We now want to extend the carré du champs operator I'(, -) to D(a) x D(a).

Proposition 2.4.17. Let ¢1, ¢ be in D(a). There exists a (unique up to zero-potential sets) function in
B([0,T] x E,R) which we will denote & (1, ¢p2) such that under any P>,

(MI011°%, M[6%) = [ ®(61,02) (1, X, )03 [5. 7],
up to indistinguishability.
If moreover ¢1 and ¢o belong to D(a), then I'(¢1, p2) = &(p1, p2) up to zero potential sets.

Proof. Let ¢1,¢2 € D(a) according to Definition 2.4.16, We take some representative of the classes
a(¢i) for i = 1,2, still denoted by the same symbol and define the square integrable MAFs (see

Definition 2.A.11) M{[¢;] by

i(u, Xu(w)) — di(t, Xe(w)) — [, al¢s)(r, X (w))dVi
Mgl (w) = if [ |a(e)|(r, X, (w))dV; < +o00 (24.5)
0 otherwise.

Indeed, for every (s, z) € [0,T] x E, M[¢;]>" is the cadlag version under P**.

The existence of &(¢1, ¢2) therefore derives from Proposition By Proposition that
function is determined up to a zero-potential set.

The second statement holds because of Proposition[2.4.7} O

Definition 2.4.18. The bilinear operator & : D(a) x D(a) — LS will be called the extended carré du
champs operator.
When ¢1 = ¢a, B(¢1, ¢1) will be denoted &(¢py).

According to Definition [2.4.14] we do not have necessarily D(a) C D(a), however we have the
following.

Corollary 2.4.19. If ¢ € D(a) and T'(¢) € L, then ¢ € D(a) and (a(¢),T(¢)) = (a(¢), B(¢)) up to zero
potential sets.

Proof. Given some ¢ € D(a), by Definition 2.4.14] if for every (s,z) € [0,T] x E, M|[¢]*" is square
integrable, then ¢ € D(a). By Proposition 2.4.7} for every (s, z) € [0,T] x E M|[$]*" is a P** square
integrable if and only if I'(¢) € L. So the statement holds because of Propositions[2.4.15/and [2.4.17|

O
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2.5 Pseudo-PDEs and associated Markovian BSDEs with no driving mar-
tingale

In this section, we still consider T" € R, a Polish space E and the associated canonical space (£, F, IF)
and canonical process (X);c[o,7], see Definition We also consider a canonical Markov class
(P*%) (5,2)e[0,7]x £ and assume the following for the rest of the Section.

Hypothesis 2.5.1. The transition kernel of (IP*%), »)c[o,11x £ 18 measurable in time (see Definitions [2.A.
and and (P*®) (s 2 efo,1)x £ solves a well-posed martingale problem associated to a triplet (D(a), a, V),

see Definition and Hypothesis

We will investigate here a specific type of BSDE with no driving martingale BSDE(, f, V) which
we will call of Markovian type, or Markovian BSDE, in the following sense. The process V" will be
the (deterministic) function V introduced in Definition the final condition ¢ will only depend
on the final value of the canonical process X7 and the randomness of the driver f at time ¢ will only
appear via the value at time ¢ of the forward process X. Given a function
f:00,T] x ExR xR — R, we will set f(t,w,y,z) = f(t, Xi(w),y,2) fort € [0,T],w € Q,y, z € R.

That BSDE will be connected with the deterministic problem below.

Notation 2.5.2. From now on, we fix some g € B(E,R) and
fe€B(0,T] x Ex R x R,R).

Definition 2.5.3. We will call Pseudo-Partial Differential Equation (in short Pseudo-PDE) the following
equation with final condition:

[NIE
~—~
~~
8
SN—

= 0 on|0,T|xE
u(T,) = g.

We will say that w is a classical solution of the Pseudo-PDE if it belongs to D(a) and verifies (2.5.1)).

{ a(w)(t,) + f (., u(t, 2), D(u) (2.5.1)

Notation 2.5.4. Equation (2.5.1)) will be denoted Pseudo — PDE(f, g).

For the rest of this section, we will also assume that f, g verify the following.
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Hypothesis 2.5.5. e g(X7) is L? under P** for every (s,x) € [0,T] x E
o t— f(t,X;,0,0) € L%
o there exist K¥ |, KZ > 0 such that for all (t,z,y,y,2,2'),
[ty 2) = f(ta,y ) < KV |y —y'| + K72 = 2. (25.2)

With the equation Pseudo — PDE(f,g), we will associate the family of BSDEs with no driving
martingale indexed by (s, x) € [0, 7] x E and defined on the interval [0, 7] and in the stochastic basis
(Q, F** F5* P5*), given by

8, 4 d<MS7$> 8,2 s,x
Yy = g(Xr) +/ frX, v, T (1) | dVe = (M7 = M), (2.5.3)
t
Notation 2.5.6. Equation ([2.5.3) will be denoted BSDE>*(f,g). It corresponds to BSDE(g(Xr), f,V)
with P := P57,
Remark 2.5.7. .

1. If Hypothesis is verified then Hypothesis [2.3.8]is verified for 2.5.3). By Theorem [2.3.21] for any
(s,x), BSDE*™(f,g) has a unique solution, in the sense of Definition |2.3.10)

2. Ewven if the underlying process X admits no (even generalized) moments, given a couple (f, g) such that
f(-,+,0,0) and g are bounded, the considerations of this section still apply. In particular the connection
between the BSDE*™(f, g) and the corresponding Pseudo — PDE(f, g) still exists.

Notation 2.5.8. From now on, (Y*%, M*%) will always denote the (unique) solution of BSDE**(f,g).

The goal of our work is to understand if and how the solutions of equations BSDE**( f, g) pro-
duce a solution of Pseudo — PDE(f, g) and reciprocally.

We will start by showing that if Pseudo — PDE(f, g) has a classical solution, then this one provides
solutions to the associated BSDE**(f, g).

Proposition 2.5.9. Let u be a classical solution of Pseudo — PDE(f, g) verifying T'(u) € LY. Then, for any
(s,z) € [0, T x E, if M[u]** is as in Notation we have that (u(-, X.), M[u]®%) and (Y%, M>" — M"™)
are P**-indistinguishable on [s, T.

Proof. Let (s, x) be fixed. Since u € D(a), the martingale problem in the sense of Definition and
(2.5.1) imply that, on [s, 7], under P**

(- X.)

= ull,Xr) = [" a(w)(r, Xp)dV, — (M [l - M[u]™)

= g(x1) +f f(r XT,u<rX>r< B X)) = (M[ul” = M[u]*)
(Xr

where the latter equality comes from Proposition Since I'(u) € L it follows that E$® [( M [u]®*)r
ES* UST T'(u)(r, XT)dVT} < 00. This means that M[u]*® € H3, so by Lemma[2.3.24] (u(-, X.), M [u]”")
and (Y% M>" — M;") are indistinguishable on [s, T'. O

]
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We will now adopt the converse point of view, starting with the solutions of the equations

BSDE®*(f,g). Below we will show that there exist Borel functions v and v > 0 such that for any
(s,2) € [0,T] x E, forall t € [s,T], Y"" = u(t, X;) P*%-as., and L5 — 2. X)) dV @ dP**
a.e. on [s, T']. This will be the object of Theorem [2.5.15, whose an analogous formulation exists in the

Brownian framework, see e.g. Theorem 4.1 in [43]]. We start with a lemma.

Lemma 2.5.10. Let f € L% Let, for any (s,x) € [0,T] x E, (Y*%, M%) be the (unique by Theorem
and Remark solution of

T _ - -
Y = g(Xr) +/ fr Xp)dVe — (Mp" — M), t€[s,T],
t

in (Q, F*% Fs* P5*). Then there exist two functions uw and v > 0 in B([0,T] x E,R) such that for any
(s,z) €[0,T] x E

{ Ve [s,T): V" =u(t,X;) P*as.

d%;ﬂ =0, X)) dV @ dP*" a.e. on [s,T).

Proof. We set u : (s,z) — E** [g(XT) + fsT frX,) dVr} which is Borel by Proposition 2.A.7| and
Lemma Therefore by (2.A.3)) in Remark for afixed t € [s,T] P*"- a.s. we have
u(t, X)) = B g(Xp)+ [ F (r, %) dv,]
= B g(Xr) + J}| f (. X,) dV; |
= B[V (U - W),

S,
= Y

since M*? is a martingale and Y ** is adapted. Then the square integrable AF (see Definition [2.A.11)
defined by
U(t/, Xt/) - U(t, Xt) + ftt f(h XT(W))d‘/T
My(w) = if [¥|F](r, X (w))dV; < 400 (2.5.4)
0 otherwise

is a MAF whose cadlag version under P*% is M**. The existence of the function v follows setting
v=+kin Proposition[2.A.12
O

We now define the Picard iterations associated to the contraction defining the solution of the
BSDE associated with BSDE**(f, g).

Notation 2.5.11. For a fixed (s,z) € [0,T] x E, ®* will denote the contraction ® : L*(dV ® dP*%) x H3
introduced in Notation [2.3.15|with respect to the BSDE associated with BSDE*(f, g), see Notation[2.5.8|In
the sequel we will not distinguish between a couple (Y, M) in L*(dV @ dIP*®) x HZ and (Y, M), where Y is
the reference cadlag process of Y, according to Definition We then convene the following.

1. (YOs® MOs®) .= (0,0);
2. Vk € N* - (Yk,s,ac Mk,s,a:) = q)s,ac(ykz—l,s,x Mk—l,s,ac)
meaning that for k € N*, (Y*5% M%) is the solution of the BSDE

d<Mk71,s,x>

T
Yk,s,x = a(X XT Yk*l,s,x
g( T) +/ f (Ta ) ) dv

(7’)) AV, — (Mp*" — M=), (2.5.5)
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The processes (Y% M*5%) will be called the Picard iterations of BSDE**(f, g)

Proposition 2.5.12. For each k € N, there exist functions uy and vy, > 0 in B([0,T] x E,R) such that for
every (s,x) € [0,T] x E

(2.5.6)

Vt € [S,T] . Y;k,sw _ Uk(t, Xt) PS%q.s.
duﬁ:}s’m) =vi(-,X.) dV ®dP*"ae. on[s,T).

Lemma 2.5.13. Let (s,x) € [0,T] x E be fixed and let ¢, be two measurable processes. If ¢ and 1) are
P**-modifications of each other, then they are equal dV @ dIP*" a.e.

Proof. Since foranyt € [0,T], ¢+ = ¢+ P** a.s. we can write by Fubini’s theorem E** [fOT 1,2, th} =
Jy Po(ge # wn)dVi = 0. 0
Proof of Proposition[2.5.12

We proceed by induction on k. It is clear that (ug, vo) = (0, 0) verifies the assertion for k£ = 0.

Now let us assume that functions ux_1, vr—1 exist, for some integer £ > 1, verifying for k
replaced with £ — 1.

We fix (s, z) € [0,7] x E. By Lemma[2.5.13] (Y*~ 152, ZE=1s%) = (uy_q,v_1)(-, X.) dV @ P*® a.e. on
[s,T]. Therefore by (2.5.5), on [s, T]]

Yhet = g(Xr) + [1 f (r, Xo, wea (r, X0) v (r, X)) dVe = (Mp™® — MET),

Since ®*% maps L?(dV ® dP**) x H3 into itself (see Definition , obviously all the Picard itera-

tions belong to L?(dV @dP*®) x H3. In particular, Y*~15% and 4/ M belong to £2(dV @dP*%).

So, by recurrence assumption on u;_; and vy, it follows that Therefore, using the assumptions f in
Hypothesis f( uk—1,v6-1) € L3%. The existence of uj, and vz now comes from Lemma
applied to f := f(-,-,ug—1,vg—1). This establishes the induction step for a general k and allows to

conclude the proof.
O

Now we intend to pass to the limit in k. For any (s,z) € [0,7] x E, we have seen in Proposition
.3.20|that ®*7 is a contraction in (L?(dV ® dP*) x H3, | - ||») for some A > 0, so we know that the
sequence (V%52 MF:5%) converges to (Y *%, M*%) in this topology.

The proposition below also shows an a.e. corresponding convergence, adapting the techniques of
Corollary 2.1 in [43].

Proposition 2.5.14. For any (s,x) € [0,T] x E, YF*% — Y% (JV @ dP>" a.e. and M]\gil;s,z) R

k—o00 k—00

d(]g;@) dV @ dP%* a.e.

Proof. We fix (s, x) and the associated probability. In this proof, all superscripts s, z are dropped. We
set Zk = d<é\‘4,k> and Z = %. By Proposition [2.3.20 there exists A > 0 such that for any k£ € N*

E [ OT e Ve [y R yki2qy, +fT e AV q(MFT Mk>r}

< 1]E[ T */\VT’Yk Yk 1’2dV _|_fT f)\Vrd<Mlc_Mk71>r],
therefore
sz[ T oAV yhtl _ Y;k‘QdVT} IR [foTef/\VTd<Mk+l _Mk>r}
>0
< Z%(E[ T —/\Vrlyl‘QdV} +EUT —’\Vrd<M1>r]> (2.5.7)

k>0
< 0.
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Thanks to and we have

> k>0 (E [ G S YTdeVT} +E [ e AV ZhHt Zf]QdVrD < 00. So by Fubini’s theorem
we have

B [fy eV (Smg (YA = VAP 41254 = 252)) av;] < oo,

Consequently the sum 3", .o ([VF (w) — Vi (w)|? + |25 (w) — ZF(w)|?) is finite on a set of full dV ®
dIP measure. So on this set of full measure, the sequence (Y;*™!(w), ZF*!(w)) converges, and the limit
is necessarily equal to (Y,(w), Z,(w)) dV ® dP a.e. because of the L?(dV ® dIP) convergence that we
have mentioned in the lines before the statement of the present Proposition

O
Theorem 2.5.15. There exist two functions wand v > 0 in
B(]0,T] x E,R) such that for every (s,z) € [0,T] x E,
YVt € [S, T] : }/tS,I = 'U,(t, Xt) P5T a.s. (2 5 8)
% =v2(, X)) dV ®@dP>" a.e. on[s,T). o

Proof. We set u := limsup uy, in the sense that for any (s,z) € [0,7] x E,
keN
a(s,z) = limsup ug(s,z) and v := limsup v;. @ and v are Borel functions. We know by Propositions

keN keN
2.5.12}2.5.14/and Lemma 2.5.13|that for every (s, z) € [0,T] x E
{ up(-, X)) — Y5 dV ®@dP*"ae.on|s,T]

k—o00

(X)) — Z%% dV @dP*"a.e.onls,T],

k—o0

where Z5% := 4/ d<lc\l4;’x>. Therefore, for some fixed (s,z) € [0,7] x E and on the set of full dV ® dP**

measure on which these convergences hold we have

u(t, Xy(w)) = lir?:&lp uk(, Xo(w) = lim ug (t, Xp(w)) = ¥, (@)
v(t, X¢(w)) = limsup vy (t, X¢(w)) = Er%vk(tht(w)) = 757(w).
kEN €

(2.5.9)

This shows in particular the existence of v and the validity of the second line of (2.5.8).

It remains to show the existence of u so that the first line of (2.5.8) holds. Thanks to the dV ® dIP**
equalities concerning v and u stated in (2.5.9), under every [P** we actually have

Yo = g(Xr) + / ! £, X, ti(r, X,.), 0(r, X)) dVy — (M3 — M5), (2.5.10)

Now (2.5.10) can be considered as a BSDE where the driver does not depend on y and z. For any
(s,z) € [0,T] x E, Y** and Z*" belong to L*(dV ® dP**), then by 2.5.9), so do u(:, X.)1[, 7] and
v(+, X.)1, 71, meaning that # and v belong to £%. Using the two assumptions made on f in Hypoth-
esis f(-,-,u,v) also belongs to £%. We can therefore apply Lemmato f= f(, -, a,v), and
conclude to the existence of a Borel function u such that for every (s,z) € [0,7] x E, Y*"ison [s, T
a P**-version of u(-, X.).

O
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Remark 2.5.16. Since u(-, X.) = Y% = u(-, X.) dV ® dP*" a.e. for every (s,x) € [0,T] x E, one can
remark that w = @ up to a zero potential set, and in particular that u € L3 since @ does.
Moreover, for any (s, z) € [0,T] x E, the stochastic convergence

lIll2,s,2
L2 (dVRdP*") xH? , —
(Yksw prhsa) (ave s (Y**% M*%) now has the functional counterpart b Il
k—o0 Vg »5,% v,
L%
which yields b 12 where we recall that the locally convex topological space L% was introduced in
X,
Vg >,
Notation|2.4.12

Corollary 2.5.17. For any (s,z) € [0,T] x E and for any t € [s,T), the couple of functions (u,v) obtained
in Theorem 2.5.15|verifies P** a.s.

T
u(t, X¢) = g(Xr) —|—/ £, Xp u(r, X)), v(r, X;)) dV, — (M:,six — M),
t

where M** denotes the martingale part of the unique solution of BSDE**(f, g).
Proof. The corollary follows from Theorem [2.5.15/and Lemma[2.5.13 O]
We now introduce now a probabilistic notion of solution for Pseudo — PDE(f, g).

Definition 2.5.18. A function u : [0,T] x E — R will be said to be a martingale solution of Pseudo —
PDE(f,g)ifu € D(a)and

NI

{ (a(u) = —f(5u,6(u)?) (2.5.11)

T,-) = g.

Remark 2.5.19. The first equation of (2.5.11)) holds in LS, hence up to a zero potential set. The second one is
a pointwise equality.

Proposition 2.5.20. A classical solution u of Pseudo— PDE(f, g) such that T'(u) € L%, is also a martingale
solution.

Conversely, if u is a martingale solution of Pseudo — PDE(f, g) belonging to D(a), then w is a classical
solution of Pseudo — PDE(f, g) up to a zero-potential set, meaning that the first equality of holds up
to a set of zero potential.

Proof. Let u be a classical solution of Pseudo — PDE(f, g) verifying
['(u) € LY, Definition and Corollary|2.4.19|imply that u € D(a),

u(T,-) = g, and the equalities up to zero potential sets
a(u) =a(u) =—f(-,,u,l(uw) =—f(-, -, u, &), (2.5.12)

which shows that u is a martingale solution.
Similarly, the second statement follows by Definition 2.5.18/and again Corollary|2.4.19 O

Theorem 2.5.21. Assume Hypothesis[2.5.1|and[2.5.5and let (u,v) be the functions defined in Theorem
Then u € D(a), v? = &(u) and u is a martingale solution of Pseudo — PDE(f, g).

Proof. For any (s,z) € [0,7] x E, by Corollary|2.5.17} for t € [s,T], we have
ut, Xy) — u(s,x) = — [ f(r, Xpyu(r, Xp),0(r, X;))dV; + (MP® — M$™)  P*% as. so by Definition
2.4.16, uw € D(a), a(u) = —f(-,-,u,v) and



2.5. Pseudo-PDEs and associated Markovian BSDEs with no driving martingale 55

M[u)*® = M>® — M5*®.
Moreover by Theoremwe have d(Jy‘j’ )=y 2(-,X.) dV ® dP** a.e. on [s, T], so by Proposition
it follows v? = &(u) and therefore, the L% equality
a(u) = —f(--,u, Qj(u)%), which establishes the first line of (2.5.11).
Concerning the second line, we have for any z € E,
uw(T,z) = u(T, X1) = 9(X7) = g(x) PT® a:s. so u(T, -) = g (in the deterministic pointwise sense). [

We conclude the section with Theorem [2.5.22) which states that the previously constructed mar-
tingale solution of Pseudo — PDE(f, g) is unique.

Theorem 2.5.22. Under Hypothesis and Pseudo— PDE(f, g) admits a unique martingale solu-
tion.

Proof. Existence has been the object of Theorem

Let u and v’ be two elements of D(a) solving and let (s, z) € [0,T] x E be fixed. By Defini-
tion[2.4.14|and Remark [2.3.23] the process u(-, X.) (respectively «/(-, X.)) under P** admits a cadlag
modification U** (respectively U’**) on [s, T, which is a special semimartingale with decomposition

Us* = wu(s,z)+ [, a( X,)dV, + Mu]**
= uls,2) = [, f r,Xr,U(r,Xr),(’5(U)2(T,Xr)) Vi + M[u]** (2.5.13)
= u(s, @) = [1f (r, X, U, ()3 (r, X,)) dV; + M[u**

where the third equality of (2.5.13) comes from Lemma [2.5.13] Similarly we have U"** = u/(s,z) —
Ji f (7 X0 U2, ()3 (r, X)) dV, + M),

The processes Mu]** and M u']** (introduced at Deﬁnition belong to HZ; by Proposition
(M [u] = [, &(u)(r, X, )dV, (respectively (M[u']**) = [ &(u',u)(r, X,)dV,). Moreover
since u(T,-) = u (T ) =g, then u(T Xr) = (T, Xr) = g(X7) a.s. then the couples (U*, M [u]**)
and (U"**, M[u']*") both verify the equation (with respect to P*%).

T
Y. =g(Xr) + / f (r, X, Y., dfj‘f@)) dV, — (Mp — M.) (2.5.14)

on [s,T].

Even though we do not have a priori information on the square integrability of U** and U’"**,
we know that M[u]** and M[u']*? are in H? and equal to zero at time s, and that U;"* and U;>" are
deterministic so L2. By Lemma and the fact that (U*®, M[u]®>*) and (U'**, M[u']*") solve the
BSDE in the weaker sense ([2.5.14), it is sufficient to conclude that both solve BSDE**(f, g) on [s, T].
By Theorem and Remark the two couples are P**-indistinguishable. This implies that
u(-, X.) and u/(-, X.) are P®*-modifications one of the other on [s, T]. In particular, considering their
values at time s, we have u(s,z) = u/(s,x). We therefore have v’ = u.

O

Corollary 2.5.23. There is at most one classical solution u of Pseudo — PDE(f, g) such that T'(u) € L.

Proof. The proof follows from Proposition 2.5.20|and Theorem [2.5.22 O
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2.6 Applications

In Chapter 3| which is the continuation of the present chapter, several examples are studied. The
examples below fit in the framework of Section 2.4]
A first typical example is the setup of jump diffusions as in the formalism D.W. Stroock in [84]. These
are Markov processes which solve a Martingale problem associated to an operator of the type

a(@) = Op+35 > (007)i;0%, ¢+ > Bibs, ¢

ij<d ! i<d

+f <¢(a -+ y) - (b('ay) - anwzyzazl(/ﬁ) K(': ',dy),
i<d

where 3 is a bounded Borel function with values in R? and ¢ is a continuousBorel function with
values in GL4(R), the set of invertible matrices of size d. K is a Lévy kernel.

We also study Markov processes associated to a large class of pseudo-differential operators with
the formalism of N. Jacob in [59]. A typical example of equation considered is

{ du— (—=A)5u = f(--,u,T*(u)7) on [0,T] x R 2.6.1)

u(T,) =g.
Here, the fractional Laplace operator (—A) 2 is given for some a €]0, 2| by ¢ — ¢, PV Jra %dy
where ¢, is some positive constant and PV denotes the principal value operator.

(¢(’ -+ y) - ¢)2dy

ly[l+e

I'“(¢) = co PV
RA

(2.6.2)

is the corresponding Carré du champ. The forward process of the corresponding BSDEs is the a-
stable Levy process.

Another example of application is given by solutions of SDEs with distributional drift, which are
studied in [47]. These permit to tackle semilinear parabolic PDEs with distributional drift of type

{ du+ 30°02u+ b 0pu+ f(-,,u,0l0,ul) =0 on[0,T] x R

u(T,-) =g, (2.6.3)

where b is only a continuous function, hence ¥’ is a distribution.

Finally, examples in non Euclidean state spaces are given with the study of diffusions in a compact
differential manifold M. A typical example is the Brownian motion in a Riemannian manifold. The
equation considered is then of type

{ Ou+ Apu+ (o u, [[Vyull2) =0 on [0,T] x M (2.6.4)

U(T7 ) =9,

where Ay is the Laplace-Beltrami operator and V), is the gradient in local coordinates. More general
equations are considered in Chapter 3|



Appendix

2.A Markov classes

We recall in this Appendix some basic definitions and results concerning Markov processes. For a
complete study of homogeneous Markov processes, one may consult [34], concerning non-homogeneous
Markov classes, our reference was chapter VI of [40]. Some results are proven in Chapters(ljand

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 2.A.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topo-
logical space), and B(E) its Borel o-field. E will be called the state space.

We consider T € RY.. We denote Q) := ID(FE) the Skorokhod space of functions from [0,T] to E right-
continuous with left limits and continuous at time T (e.g. cadlag). For any t € [0, T'] we denote the coordinate
mapping X; : w — w(t), and we introduce on 2 the o-field F := o(X,|r € [0,T]).

On the measurable space (2, F), we introduce the measurable canonical process

(t,w) — w(t)

X 0T x B0, T)) @ F) — (E,B(E)),

and the right-continuous filtration B := (F)iepo,r) where Fy == () o(Xp|r < s)ift < T, and Fr =
s€]t,T)
o(X,|r €[0,T]) = F.
(Q, F,F) will be called the canonical space (associated to T and E).
For any t € [0,T] we denote Fyr := o(X,|r > t), and for any 0 < t < u < T we will denote

Fiuw = N o(X,lr € [tu+ 1),
n>0

Remark 2.A.2. Previous definitions and all the notions of this Appendix, extend to a time interval equal to
R+ or replacing the Skorokhod space with the Wiener space of continuous functions from [0,T] (or Ry) to E.

Definition 2.A.3. The function

P (s,t,z,A) +—— Psy(z,A)
’ —

0,72 x E x B(E) 0, 1],

will be called transition kernel if, for any s, t in [0,T], x € E, A € B(E), it verifies
1. x +— Py4(z, A) is Borel,
2. B Psy(x, B) is a probability measure on (E, B(E)),
3. ift < sthen Py (x,A) =14(x),

4. ifs <t,forany u >t, [ Psi(x,dy)Pu(y, A) = Psu(x, A).

57
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The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 2.A.4. A transition kernel P for which the first item is reinforced supposing that (s,z) —
P ¢(x, A) is Borel for any t, A, will be said measurable in time.

Definition 2.A.5. A canonical Markov class associated to a transition kernel P is a set of probability
measures (P*%) 1)eo,m)x e defined on the measurable space (2, F) and verifying for any t € [0,T] and
Ae B(E)
Ps’m(Xt S A) = Ps,t(ib, A), (2A1)
and forany s <t < u
P**(X, € AlF;) = Psu(Xy, A) P as. 2.A.2)

Remark 2.A.6. Formula 1.7 in Chapter 6 of [40] states that for any F' € F; r yields
P*%(F|F;) = PYX(F) = PS*(F|X;) P*a.s. (2.A.3)
Property (2.A.3) will be called Markov property.

For the rest of this section, we are given a canonical Markov class (IP**)(, »)e[0,71x £ Which transi-
tion kernel is measurable in time.

Proposition 2.A.7. For any event F' € F, (s,z) — P*%(F) is Borel. For any random variable Z, if the
function (s, x) — E5*[Z] is well-defined (with possible values in [—oo, o0]), then it is Borel.
Lemma 2.A.8. Let V be a continuous non-decreasing function on [0, T] and
f € B([0,T] x E) be such that for every (s, ), E57m[fsT |f(r, X;)|dV;] < oo, then
(s,x) — B>*[ [T f(r, X,)dV;] is Borel.
Definition 2.A.9. For any (s,z) € [0,T] x E we will consider the (s, z)-completion
(Q, Fo* T := (F}" )ieqo.r), P**) of the stochastic basis (0, F,T,P*) by defining F** as the P>*-
completion of F , by extending P*% to F** and finally by defining F,;"* as the P**-closure of JF, for every
t € 10,7

We remark that, for any (s, z) € [0,7] x E, (, F** F* P*%) is a stochastic basis fulfilling the

usual conditions.
Proposition[1.3.13]in Chapter [I|states the following.

Proposition 2.A.10. Let (s,x) € [0,T] x E be fixed, Z be a random variable and t € [s, T, then E**[Z|F;] =
ES[Z|F5%] P52 as.

We recall here Definition in Chapter

Definition 2.A.11. We denote A := {(t,u) € [0,T)%|t < u}. On (2, F), we define a non-homogeneous
Additive Functional (shortened AF) as a random-field indexed by A A := (Al)(u)ea, with values in R,
verifying the two following conditions.

1. Forany (t,u) € A, A, is F; ,-measurable;

2. for any (s,z) € [0,T] x E, there exists a real cadlag F**-adapted process A>" (taken equal to zero on
[0, s] by convention) such that forany x € E and s <t <u, Al, = A" — A" P> as.

A*>* will be called the cadlag version of A under P*~.

An AF will be called a non-homogeneous square integrable Martingale Additive Functional (shortened
square integrable MAF) if under any IP*% its cadlag version is a square integrable martingale.
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A immediate consequence of Proposition in Chapter [I]is the following.

Proposition 2.A.12. Given an increasing continuous function V., if in every stochastic basis (Q, F** 5% P*7),
we have H3 = H>Y, then we can state the following.

Let M and M’ be two square integrable MAFs and let M*7 (respectively M'$*) be the cadlag version of M
(respectively M') under a fixed P**. There exists a Borel function k € B([0,T] x E,R) such that for any
(s,2) € [0,T] x E, (M, M">") = [ k(r, X,)dV,.

In particular if M is a square integrable MAF and M*®* its cadlag version under a fixed P**, there exists

a Borel function k € B([0,T] x E,R) (which can be taken positive) such that for any (s,z) € [0,T] x E,
(M>*) = [ k(r, X,)dV,.

2.B Technicalities related to Section 2.3l

Proof of Proposition Since we have dA < dA + dB in the sense of stochastic measures with
A, B predictable, there exists a predictable positive process K such that A = [; K dA, + [, KsdB up
to indistinguishability, see Proposition 1.3.13in [61] Now there exists a IP-null set A such that for any
we N wehave 0 < [ K,(w) = [, ))dAs(w) , s0 K(w) < 1dA(w) a.e. on N¢. There-
fore if we set E(w) = {t : Kt( ) = 1} and F( ) = {t Ki(w) < 1} then E(w) and F(w) are disjoint
Borel sets and dA(w) has all its mass in F(w)UF(w) so we can decompose dA(w) within these two sets.

We therefore define the processes AP = [[ 1 _1ydAs and ; AP = [[ 1 3dA,. ATE and AP
are both in V»*, and A = AP + AB. In particular the (stochastic) measures dA+? and dA? fulfill
dAB (W) (G) = dA(w)(E(w) N G) and dAB(w)(G) = dA(w)(F(w) N G).

We remark dA+B 1dB in the sense of stochastic measures. Indeed, fixing w € N, for t € E(w),
Ki(w) = 1,50 [, dAW) = [g,) dAW) + [5(,) dB(w) implying that [, dB(w) = 0. Since for any
w e N¢ dB(w) (Ew)) = 0 while dAlB (w) has all its mass in E(w), which gives this first result.

Now let us prove dAP” < dB in the sense of stochastic measure.
Letw € N and let G € B([0,T7), such that [, dB(w) = 0. Then

deAB("") = fGﬁFw Aw)
= fGﬁFw K(w)dA(w) +meF K(w)dB(w)
meFW K(w)dA(w).

S0 Jorp(w (1 — K(w))dA(w) = 0, but (1 — K(w)) > 0 on F(w).
So dAB(w)(G) = 0. Consequently for every w € N¢, dAP(w) < dB(w) and so that dA® < dB.
Now, since K is positive and K (w) < 1 dA(w) a.e. for almost all w, we can replace K by K A1 which is
still positive predictable, without changing the associated stochastic measures dA?, dA+5; therefore
we can consider that K;(w) € [0, 1] for all (w, t).
We remark that for P> almost all w the decomposition A+ and AP is unique because of the corre-
sponding uniqueness of the decomposition in the Lebesgue-Radon-Nikodym theorem for each fixed
w e N°e.

Since dA? <« dB, again by Proposition 1.3.13 in [61]], there exists a predictable positive process
that we will call 4% such that A? = IN gg dB and which is only unique up to dB ® dIP null sets. [

Proposition 2.B.1. Let M and M’ be two local martingales in H3, . and let
’ , 2
V e VPt We have U\‘f) di%) — (du\g{ﬁ\“) >0 dV @dP ae.
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Proof. Letx € Q. Since (M +xM’) is an increasing process starting at zero, then by Proposition[2.3.2}
wehavew >0 dV®dP ae.
By the linearity property stated in Proposition we have

0< d<M:[‘fM ) — < > 49 UM T M) g 2d< > dV®d1P a.e. Since () is countable, there exists a dV ® dIP-
null set V such that for (w,t) ¢ N and ac 6 Q,
d< >(w t)+2x M( 1) +a? < >(w t) > 0. By continuity of polynomes, this holds for any z € R.
Expressmg the discriminant of th1s polynome, we deduce that

!/ 2 !
4 (d%” ) (w, t)) — 4400 (o 1M (5 #) < 0 for all (w, £) ¢ N. 0

always belongs to VP'*, by Proposition [2.3.2, we can consider the processes (M)" and (M)*V; in
particular there exists a predictable process K with values in [0, 1] such that (M)" = [( L5, <13d(M)s
and (M) = f; e,y d(M),.

We can then set MV = fo Lk, <1ydMsand M S fo 1{k,—1ydM; which are well-defined because
K is predictable, and therefore 1,1y and 1;k,—} are also predictable. M V.MV belong to H2
because their angular brackets are both bounded by (M)r € L!. Since K takes values in [0, 1], we
have
MY + MY = [(Lix,<1ydMs + fon{K _1ydM, = M;
(MY) = [§ L, ciyd(M)s = (MY (MEY) = [o e,y d(M)s = (M)
and <MV,MJ'V> == fO ]1{K5<1}]]-{K5:1}d<M>8 =0. ]

Proof of Proposition 2.3.5] Since the angular bracket (M) of a square integrable martingale M
237

Proof of Proposition We start by remarking that for any M;, M in HZ, a consequence of
Kunita-Watanabe’s decomposition (see Theorem 4.27 in [61]) is that dVar({M, Mz)) < d(M;) and
dVaT(<M1, Mg)) < d<M2>

Now, let M7 and M, be in H>". We have dV ar({My, Ms)) < d{M;) < dV. So since (M; + My) =
(M) + 2(My, Ma) + (Ms), then d(M; + Ms) < dV which shows that #?" is a vector space.

If My and M; are in H2+V, then since dVar({M, Ms)) < d{M;) we can write Var({M, My)) =

IN WMM 1) which is almost surely singular with respect to dV since M; belongs to H>1V.

So, by the bilinearity of the angular bracket H2" is also a vector space.

Finally if M; € H?*Y and My € H>1V then dVar((My, Ms)) < d{M;) < dV but we also have
seen that if d(M>) is singular to dV then so is dVar((M;, Ma)) < d{M>).

For fixed w, a measure being simultaneously dominated and singular with respect to to dV'(w) is
necessarily the null measure, so dVar((M;, Ms3)) = 0 as a stochastic measure. Therefore M; and Mo
are strongly orthogonal, which implies in particular that M; and M, are orthogonal in HZ.

So we have shown that H%" and H?*1" are orthogonal sublinear-spaces of 72 but we also know
that H2 = H>" + H>1V thanks to Proposition therefore HZ = H>Y &1 %1V This implies that
HEY = (H2V)L and HZHY = (H*V) 1 and therefore that these spaces are closed. So they are sub-
Hilbert spaces. We also have shown that they were strongly orthogonal spaces, in the sense that any

Ve H2V, M? € H>1V are strongly orthogonal. By localization the strong orthogonality property
also extends to M1 € Hloc ,M? e HZQOCLV. O



Chapter 3

BSDEs with no driving martingale,
Markov processes and associated Pseudo

PDEs. Part II: Decoupled mild solutions
and Examples

This chapter is the object of paper [10].

Abstract

Let (IP**)(s.2)e0,7)x £ be a family of probability measures, where E is a Polish space, defined
on the canonical probability space ID([0,T], E') of E-valued cadlag functions. We suppose that a
martingale problem with respect to a time-inhomogeneous generator a is well-posed. We consider
also an associated semilinear Pseudo-PDE for which we introduce a notion of so called decoupled
mild solution and study the equivalence with the notion of martingale solution introduced in the
previous chapter. We also investigate well-posedness for decoupled mild solutions and their re-
lations with a special class of BSDEs without driving martingale. The notion of decoupled mild
solution is a good candidate to replace the notion of viscosity solution which is not always suitable
when the map a is not a PDE operator.

3.1 Introduction

The framework of this paper is the canonical space 2 = D([0,T7], E) of cadlag functions defined
on the interval [0, 7] with values in a Polish space E. This space will be equipped with a family
(P%)(s,2)elo,r1x £ Of probability measures indexed by an initial time s € [0,7] and a starting point
xz € E. For each (s,z) € [0,T] x E, P%* corresponds to the law of an underlying forward Markov
process with time index [0, T, taking values in the Polish state space E which is characterized as the
solution of a well-posed martingale problem related to a certain operator (D(a), a) and an increasing
continuous function V' : [0,7] — R. In the previous Chapter [2| we have introduced a semilinear
equation generated by (D(a), a), called Pseudo-PDE of the type

{ a(u) + f (.,-,u,r(u)%) = 0 on[0,T]xE (3.1.1)
’LL(T,) = 9,

where I'(u) = a(u?) — 2ua(u) is a potential theory operator called the carré du champs operator. A
classical solution of (3.1.1) is defined as an element of D(a) verifying (3.1.1). In Chapter[2Jwe have also
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defined the notion of martingale solution of (3.1.1), see Definition[3.2.22] A function u is a martingale
solution if holds replacing the map a (resp. I') with an extended operator a (resp. &) which is
introduced in Definition [3.2.15| (resp. [3.2.17). The martingale solution extends the (analytical) notion
of classical solution, however it is a probabilistic concept. The objectives of the present paper are
essentially three.

1. To introduce an alternative notion of (this time analytical) solution, that we call decoupled mild,
since it makes use of the time-dependent transition kernel associated with a. This new type of
solution will be shown to be essentially equivalent to the martingale one.

2. To show existence and uniqueness of decoupled mild solutions.

3. To emphasize the link with solutions of Markovian BSDEs without driving martingale intro-
duced in Chapter

The aforementioned Markovian BSDEs are of the form

d(M)
dv

T
}/ts,x = Q(XT) +/ f (Ta Xra Ks,x7 ("”)) dV;“ - (M’;’x - Mts,m% te [OvT]7 te [OvT]’
t

(3.1.2)
in a stochastic basis (€2, 7%, F** P**) which depends on (s,z). Under suitable conditions, the
solution of this Markovian BSDE is a couple (Y**, M**) of cadlag stochastic processes where M**
is a martingale. This was introduced and studied in a more general setting in Chapter 2} see [66] for
a similar formulation.

We refer to the introduction and reference list of previous chapter for an extensive description of
contributions to non-Brownian type BSDEs.

The classical Markovian BSDE, which is driven by a Brownian motion is of the form

{ XpE = a8 XP)dr + [{o(r, X3¥)dB, (3.1.3)

YU = (X + S X2, 22 dr — [ 23 dB

where B is a Brownian motion. Existence and uniqueness for was established first supposing
mainly Lipschitz conditions on f with respect to the third and fourth variable. 8 and o were also
assumed to be Lipschitz (with respect to ) and to have linear growth. In the sequel those conditions
were considerably relaxed, see [74] and references therein. This is a particular case of a more general
(non-Markovian) Brownian BSDE introduced in 1990 by E. Pardoux and S. Peng in [71]], after an early
work of J.M. Bismut in 1973 in [18].

Equation (3.1.3) was a probabilistic representation of a semilinear partial differential equation of
parabolic type with terminal condition:

i,j<d i<d (3.14)
u(T, ) =g.

Given, for every (s,z), a solution (Y*%, Z%%) of the Markovian BSDE (3.1.3), under some conti-
nuity assumptions on the coefficients, see e.g. [72], it was proved that the function u(s,z) := Y;"* is
a viscosity solution of (3.1.4), see also [76, 72} [76) 43], for related work.

We prolong this idea in a general case where the Markovian BSDE is with solution (Y%, M*5%).
In that case u(s, z) := Y;"" will be the decoupled mild solution of (3.1.1), see Theorem 3.3.15} in that
general context the decoupled mild solution replaces the one of viscosity, for reasons that we will

{ du+i Y (UJT)i,j8§inu + Y Bi0s,u+ f(+, -, u,0Vu) =0 on [0, T[xR?
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explain below. One celebrated problem in the case of Brownian Markovian BSDEs is the characteri-
zation of Z°* through a deterministic function v. This is what we will call the identification problem.
In general the link between v and u is not always analytically established, excepted when u has some
suitable differentiability property, see e.g. [8]: in that case v is closely related to the gradient of w.
In our case, the notion of decoupled mild solution allows to identify (u,v) as the analytical solu-
tion of a deterministic problem. In the literature, the notion of mild solution of PDEs was used in
finite dimension in [4], where the authors tackled diffusion operators generating symmetric Dirichlet
forms and associated Markov processes thanks to the theory of Fukushima Dirichlet forms, see e.g.
[53]. A partial extension to the case of non-symmetric Dirichlet forms is performed in [63]. Infinite
dimensional setups were considered for example in [51] where an infinite dimensional BSDE could
produce the mild solution of a PDE on a Hilbert space.

Let (B,|| - ||) be a functional Banach space of real Borel functions defined on £ and A be an
unbounded operator on (B, || - ||). In the theory of evolution equations one often considers systems
of the type

o d
{ Ou+Au = lon [OvT] x R (3.1.5)

U(T7 ) = 9

where [ : [0,7] x RY — R and g : R¢ — R are such that [(¢,-) and g belong to B for every ¢ € [0, 7.
The idea of mild solutions consists to consider —A (when possible) as the infinitesimal generator of
a semigroup of operators (Pt)t>o on (B, | - ), in the following sense. There is D(A) C B, a dense
subset on which —Af = hm (Pt f — f). In particular one may think of (P;);>¢ as the heat kernel

semi-group and A as %A. The approach of mild solutions is also very popular in the framework of
stochastic PDEs see e. g. [30].

When A is a local operator, one solution (in the sense of distributions, or in the sense of evaluation
against test functions) to the linear evolution problem with terminal condition (3.1.5) is the so called
mild solution

u(s,”) = Pp_| / P r. (3.1.6)

If [ is explicitly a function of u then (3.1.6) becomes itself an equation and a mild solution would
consist in finding a fixed point of (3.1.6). Let us now suppose the existence of amap S : D(S) C B —
B, typically S being the gradient, when (P;) is the heat kernel semigroup. The natural question is
what would be a natural replacement for a mild solution of
O+ Au = f(s,-,u,Su)on [0,T] x R?
3.1.7
If the domain of S is B, then it is not difficult to extend the notion of mild solution to this case. One
novelty of our approach consists is considering the case of solutions u : [0,7] x R? — R for which
Su(t,-) is not defined.

1. Suppose one expects a solution not to be classical, i.e. such that u(r,-) should not belong to
the domain of D(A) but to be in the domain of S. In the case when Pseudo-PDEs are usual
PDEs, one think to possible solutions which are not C L2 but admitting a gradient, typically
viscosity solutions which are differentiable in x. In that case the usual idea of mild solutions

theory applies to equations of type (3.1.7).

In this setup, inspired by (3.1.6) a mild solution of the equation is naturally defined as a solution
of the integral equation

T
u(s, ) = Pr_Jg] + / Po o [f (- ulr, ), Su(r, ))]dr. (3.1.8)



Chapter 3. BSDEs with no driving martingale, Markov processes and associated Pseudo PDEs. Part
64 II: Decoupled mild solutions and Examples

2. However, there may be reasons for which the candidate solution u is such that u(¢, -) does not
even belong to D(S). In the case of PDE:s it is often the case for viscosity solutions of PDEs
which do not admit a gradient. In that case the idea is to replace (3.1.8) with

T
u(s, ) = Pr—s|g] +/ Pr_[f(r, -, u(r,-),v(r,-))]dr. (3.1.9)

and to add a second equality which expresses in a mild form the equality v(r, -) = Su(r, -).

We will work out previous methodology for the Pseudo — PDE(f,g). In that case S will be given

by the mapping v — F(u)% If A is the laplacian for instance one would have I'(u) = ||Vul||?. For
pedagogical purposes, one can first consider an operator a of type 9, + A when —A is the generator
of a Markovian (time-homogeneous) semigroup. In this case,

D(u) = O(u?) + A(u?) — 2udsu — 2uAu

A(u?) — 2uAu.
Equation
Opu+ Au+ f ( o, r(u)%) —0, (3.1.10)
could therefore be decoupled into the system
atu+Au+ f('a'?uav) =0
{ v? = O (u?) + A(u?) — 2u(Opu + Au), G.1.11)
which furthermore can be expressed as
8tu +Au = _f(7 5 Uy U)
TS O A N

Taking into account the existing notions of mild solution (3.1.6) (resp. (3.1.8)), for corresponding

equations (3.1.5) (resp. (3.1.7)), one is naturally tempted to define a decoupled mild solution of (3.1.1)
as a function u for which there exist v > 0 such that

{ u(s,) = Proglgl+ [T Proslf (- u(r, ) v(r,-))ldr
U2(57 ) = PT—S[QQ] - fsT PT,S[U2(’I", ) - 2”(7“7 -)f(?“, "y U(T7 ')7 ’U(T‘, ))]d?"

As we mentioned before, our approach is alternative to a possible notion of viscosity solution for the
Pseudo — PDE(f, g). That notion will be the object of a subsequent paper, at least in the case when
the driver do not depend on the last variable. In the general case the notion of viscosity solution does
not fit well because of lack of suitable comparison theorems. On the other hand, even in the recent
literature (see [7]]) in order to show existence of viscosity solutions specific conditions exist on the
driver. In our opinion our approach of decoupled mild solutions for Pseudo — PDE( f, g) constitutes
an interesting novelty even in the case of semilinear parabolic PDEs.

The main contributions of the paper are essentially the following. In Section[3.3.1} Definition
introduces our notion of decoupled mild solution of in the general setup. In Section [3.3.2]
Proposition states that under a square integrability type condition, every martingale solution is
a decoupled mild solution of (3.1.1). Conversely, Proposition [3.3.8/shows that every decoupled mild
solution is a martingale solution. In Theorem3.3.9we prove existence and uniqueness of a decoupled
mild solution for (3.1.1). In Section 3.3.3) we show how the unique decoupled mild solution of
can be represented via the Markovian BSDEs (3.1.2). In Section [3.4 we develop examples of Markov

(3.1.13)
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processes and corresponding operators a falling into our abstract setup. In Section[3.4.1, we work in
the setup of [85], the Markov process is a diffusion with jumps and the corresponding operator is of
diffusion type with an additional non-local operator. In Section we consider Markov processes
associated to pseudo-differential operators (typically the fractional Laplacian) as in [59]. In Section
3.4.3l we study a semilinear parabolic PDE with distributional drift, and the corresponding process
is the solution an SDE with distributional drift as defined in [47]. Finally, in Section we are
interested with diffusions on differential manifolds and associated diffusion operators, an example
being the Brownian motion in a Riemannian manifold associated to the Laplace-Beltrami operator.

3.2 Preliminaries

In this section we will recall the notations, notions and results of previous Chapter 2, which will be
used here.

Notation 3.2.1. In the whole paper, concerning functional spaces we will use the following notations.

A topological space E will always be considered as a measurable space with its Borel o-field which shall be
denoted B(E). Given two topological spaces, E, F, then C(E, F') (respectively B(E, F')) will denote the set
of functions from E to F which are continuous (respectively Borel) and if F' is a metric space, Cp(E, F)
(respectively By (E, F)) will denote the set of functions from E to F which are bounded continuous (respectively
bounded Borel). For any p € [1,00], d € N*, (LP(RY),|| - ||,) will denote the usual Lebesgue space equipped
with its usual norm.

On a fixed probability space (0, F,IP), for any p € N*, LP will denote the set of random variables with
finite p-th moment.

A probability space equipped with a right-continuous filtration (Q, F,F := (F;)ieT, P) (where T is equal
to Ry or to [0, T for some T' € RY ) will be called called a stochastic basis and will be said to fulfill the
usual conditions if the probability space is complete and if Fy contains all the P-negligible sets. When a
stochastic basis is fixed, Pro denotes the progressive o-field on T x €.

On a fixed stochastic basis (Q2, F,IF,P), we will use the following notations and vocabulary, concerning
spaces of stochastic processes, most of them being taken or adapted from [60] or [61]. V (resp V) will denote
the set of adapted, bounded variation (resp non-decreasing) processes starting at 0; VP (resp VP>+) the elements
of V (resp V) which are predictable, and V° (resp V) the elements of V (resp V) which are continuous.
M will be the space of cadlag martingales. For any p € [1,00] HP will denote the subset of M of elements

M such that sup |M| € LP and in this set we identify indistinguishable elements. It is a Banach space for
teT

1
the norm ||M ||y = E[|sup My|P]?, and HE will denote the Banach subspace of HP containing the elements
teT
starting at zero.

If T = [0,T)] for some T € R, a stopping time will be considered as a random variable with values in
[0,T] U {+oo}. We define a localizing sequence of stopping times as an increasing sequence of stopping
times (Tp,)n>0 such that there exists N € N for which T = +oo. Let Y be a process and T a stopping time,
we denote Y the process t — Yinr which we call stopped process. If C is a set of processes, we define its
localized class Cy,. as the set of processes Y such that there exist a localizing sequence (7, )n>0 such that for
every n, the stopped process Y belongs to C.

For any M € M., we denote [M) its quadratic variation and if moreover M € H2 , (M) will
denote its (predictable) angular bracket. H3 will be equipped with scalar product defined by (M, N )2 =
E[MpNr| = E[(M, N)r] which makes it a Hilbert space. Two local martingales M, N will be said to be
strongly orthogonal if M N is a local martingale starting in 0 at time 0. In Hg,zoc this notion is equivalent
to (M,N) = 0.
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Concerning the following definitions and results, we are given some 7" € R, and a stochastic
basis (Q, F,F := (F)iejo,1], P) fulfilling the usual conditions.

Definition 3.2.2. Let A and B be in V. We will say that dB dominates dA in the sense of stochastic
measures (written dA < dB) if for almost all w, dA(w) < dB(w) as Borel measures on [0, T.

Let B € V*. dB ® dP will denote the positive measure on (2 x [0,T],F @ B([0,T])) defined for any
F ¢ F® B([0,T]) by dB ® dP(F) = E UOT ]lp(t,w)dBt(w)}. A property which holds true everywhere
except on a null set for this measure will be said to be true dB & dIP almost everywhere (a.e.).

We recall that given two processes A4, B in VP'T, if dA < dB, there exists a predictable process
which we will denote g—g‘ and call Radon-Nikodym derivative of A by B, verifying A = [ j—g (r)dBy,
see Proposition 1.3.13 in [61]].

As in previous Chapter 2, we will be interested in a Markov process which is the solution of
a martingale problem which we now recall below. For definitions and results concerning Markov
processes, the reader may refer to Appendix In particular, let £ be a Polish space and 7' € R
be a finite value we now consider ({2, F,IF) the canonical space and (X;);c(o,r) the canonical pro-
cess which are introduced in Notation [3.A.1} and a canonical Markov class measurable in time
(IP**) (s,2)el0,7)x £, see Definitions [3.A.6| and 3.A.4, We will also consider the completed stochastic
basis (2, F**, F** P*¥), see Definition|3.A.8

We now recall what the notion of martingale problem associated to an operator introduced in Section

of Chapter 2} see Definition [2.4.2]

Definition 3.2.3. Given a linear algebra D(a) C B([0,T] x E,R), a linear operator a mapping D(a) into
B([0,T] x E,R) and a non-decreasing continuous function V : [0,T] — R starting at 0, we say that a set
of probability measures (P*%) ; 2)e(0,1)x £ defined on (Q, F) solves the Martingale Problem associated to
(D(a),a, V) if, forany (s,z) € [0,T] x E, P*>* verifies

(a) P5*(Vt € [0,s], Xy =) = 1;

(b) for every ¢ € D(a), the process ¢(-,X.) — [,

L a()(r, X;)dV,, t € [s,T] is a cadlag (P>, TF)-local
martingale.

We say that the Martingale Problem is well-posed if for any (s, z) € [0,T]x E, P** is the only probability
measure satisfying the properties (a) and (b).

As for Chapter 2} in the sequel of the paper we will assume the following.

Hypothesis 3.2.4. The Markov class (P*®) s )e[o0,1]x £ S0lves a well-posed Martingale Problem associated
to a triplet (D(a),a, V') in the sense of Definition[3.2.3]

Notation 3.2.5. For every (s,z) € [0,T] x E and ¢ € D(a), the process

t gy () (6(6 X0) = 6(s,) — [ al6)(r, X,)aV; ) will be denoted M (4],

M¢]*" is a cadlag (IP*", IF')-local martingale equal to 0 on [0, s], and by Proposition it is
also a (IP**,IF**)-local martingale.

The bilinear operator below was introduced (in the case of time-homogeneous operators) by J.P. Roth
in potential analysis (see Chapter III in [79]), and popularized by P.A. Meyer and others in the study
of homogeneous Markov processes (see for example Exposé II: L'opérateur carré du champs in [69]
or 13.46 in [60]).
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Definition 3.2.6. We introduce the bilinear operator

I:

D(a) x D(a) — B([0,T] x E) (3.2.1)
—

(¢,) a(¢p) — ga(p) — va(e).
When ¢ = 1, I'(¢, ¢) will be denoted T'(¢). The operator I is called the carré du champs operator.

The angular bracket of the martingales introduced in Notation are expressed via the operator
I. Proposition[2.4.7 of Chapter 2} tells the following.

Proposition 3.2.7. For any ¢ € D(a) and (s,x) € [0,T] x E, M[¢p|>" is in Hg,loc. Moreover, for any
(¢,1) € D(a) x D(a) and (s,x) € [0,T] x E we have in (Q, F>* F** P**) and on the interval [s, T

(M[g]>, M) = / T(6, 4)(r, X,)dV;. (3.22)

S

We introduce some significant spaces related to V.

Notation 3.2.8. H>V := {M € HE|d(M) < dV'}.
We will also denote L£?(dV ® dIP) the set of (up to indistinguishability) progressively measurable processes ¢
such that E[fOT P2dV,] < oo.

Proposition [2.4.10| of Chapter [2|says the following.

Proposition 3.2.9. If Hypothesis is verified then under any P**,
H = H2V.

In the sequel, several functional equations will hold up to a zero potential set that we recall below.

Definition 3.2.10. For any (s,z) € [0,T] x E we define the potential measure U (s, x,-) on B([0,T] x E)
by U(S, x, A) = 5T [IST ]l{(t,Xt)GA}d‘/}l .

A Borel set A € B([0,T] x E) will be said to be of zero potential if, for any (s, x) € [0,T] x E we have
U(s,z,A)=0.

Notation 3.2.11. Let p > 0, we define
LE, = {f € B([0,T] x E,R) : E>* [fsT | fIP(r, Xr)d,Vr} < oo} on which we introduce the usual semi-

1
norm || - |lpse : f (]Es"” [fST |f(r, XT)\pdV}])p We also denote

L0, = {f € B(0,T) x E,R) : [T |f](r, X,)dV; < 0o P> s, }
For any p > 0, we then define an intersection of these spaces, i.e. L% = N L8 .

(s,2)€[0,T|xE
Finally, let N the linear subspace of B(|0,T] x E,R) containing all functions which are equal to 0 U (s, z, -)
a.e. for every (s, x). For any p € N, we define the quotient space L%, := L5 /N If p > 1, L. can be equipped
with the topology generated by the family of semi-norms (|| - |lp,s.c) (s 1)e(0,7)x r Which makes it into a separable
locally convex topological vector space.

The statement below was stated in Proposition 2.4.13|of Chapter

Proposition 3.2.12. Let f and g be in B([0, T]x E, R) such that the processes [ f(r, X,)dV, and [, g(r, X, )dV,
are finite P** a.s. for any (s,z) € [0,T] x E. Then f and g are equal up a zero potential set if and only if
[, f(r,X;)dV, and [ g(r, X,)dV;, are indistinguishable under P** for any (s, z) € [0,T] x E.
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We recall that if two functions f, g differ only on a zero potential set then they represent the same
element of L%, .
We recall our notion of extended generator.

Definition 3.2.13. We first define the extended domain D(a) as the set functions ¢ € B([0,T] x E,IR) for
which there exists 1 € B([0,T] x E,R) such that under any P** the process

Lismy <¢(~,X-) — P(s,x) — /.w(r, Xr)dvr) (3.2.3)

(which is not necessarily cadlag) has a cadlag modification in H3.
Proposition [2.4.15/in Chapter [2|states the following.

Proposition 3.2.14. Let ¢ € B([0,T] x E,R). There is at most one (up to zero potential sets) 1 € B([0,T] x
E,R) such that under any IP**, the process defined in has a modification which belongs to M.

If moreover ¢ € D(a), then a(¢) = 1 up to zero potential sets. In this case, according to Notation for
every (s,z) € [0,T] x E, M[¢]>® is the P*® cadlag modification in H3 of

]l[s,T} (¢(7 X) - ¢(87 x) - fs ¢(T> Xr)d‘/r)

Definition 3.2.15. Let ¢ € D(a) as in Definition We denote again by M [¢|>*, the unique cadlag ver-

sion of the process (3.2.3) in H3. Taking Proposition 3.2.12|into account, this will not generate any ambiguity
with respect to Notation Proposition|3.2.12} also permits to define without ambiguity the operator

D(a) — LY

¢ — .

a:

a will be called the extended generator.

We also extend the carré du champs operator I'(-, ) to D(a) x D(a).
Proposition in Chapter [2|states the following.

Proposition 3.2.16. Let ¢ and 1) be in D(a), there exists a (unique up to zero-potential sets) function in
B([0,T) x E,R) which we will denote & (¢, 1)) such that under any P**,

(M[p]**, M[Y]**) = [ &(¢,1))(r, X, )dV, on [s, T, up to indistinguishability. If moreover ¢ and v belong
to D(a), then T' (¢, 1) = &(¢, ) up to zero potential sets.

Definition 3.2.17. The bilinear operator & : D(a) x D(a) — LS will be called the extended carré du
champs operator. When ¢ = 1, &(¢, ¢) will be denoted & ().

According to Definition [3.2.13] we do not have necessarily D(a) C D(a), however we have the
following.

Corollary 3.2.18. If ¢ € D(a) and T'(¢) € L, then ¢ € D(a) and (a(¢),T(¢)) = (a(p), &(p)) up to zero
potential sets.

We also recall Lemma [2.5.13|of Chapter

Lemma 3.2.19. Let (s,x) € [0,T] x E be fixed and let ¢, be two measurable processes. If ¢ and 1) are
P**-modifications of each other, then they are equal dV & dIP** a.e.

We now keep in mind the Pseudo-Partial Differential Equation (in short Pseudo-PDE), with final
condition, that we have introduced in Chapter
Let us consider the following data.
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1. A measurable final condition g € B(E, R);
2. a measurable nonlinear function f € B([0,7] x E x R x R, R).

The equation is
{ a(u)+f(.,-,u,r(u)a) = 0 on[0,T]xE (320
uw(T,) = g.
Notation 3.2.20. Equation will be denoted Pseudo — PDE(f, g).

Definition 3.2.21. We will say that u is a classical solution of Pseudo — PDE(f, g) if it belongs to D(a)
and verifies (3.2.4).

Definition 3.2.22. A function u : [0,T] x E — R will be said to be a martingale solution of Pseudo —
PDE(f,g)ifu € D(a)and

o=

{ (a(u) = —f(u,6(u)?2) (3.2.5)

T,) = g.
Until the end of these preliminaries, we will assume some growth conditions on the functions

(f,9)-

Hypothesis 3.2.23. A couple of functions
f€B(0,T] x E xR x R,R)and g € B(E,R) will be said to verify H'P if there exist positive constants
KY,K? such that

1. g(Xr) is L? under P>< for every (s,z) € [0,T] x E;
2. t— f(t,X4,0,0) € £%;
3. v(tvxaya y,7272/) : |f(t,a:,y, Z) - f(t,l‘,y/,Z)| < KY|y - y/| + KZ|Z - Z/|.

We conclude these preliminaries by stating the Theorem of existence and uniqueness of a martin-
gale solution for Pseudo — PDE(f, g). It was the object of Theorem [2.5.21| of Chapter

Theorem 3.2.24. Let (P*®)(, »)c[0,1)x & be a Markov class associated to a transition kernel measurable in time

(see Definitions and which fulfills Hypothesis i.e. it is a solution of a well-posed Martingale
‘3.2.23

Problem associated with the triplet (D(a),a, V). Let (f, g) be a couple verifying H'", see Hypothesis
Then Pseudo — PDE(f,g) has a unique martingale solution.

We also had shown (see Proposition [2.5.20|in Chapter [2) that the unique martingale solution is
the only possible classical solution if there is one, as stated below.

Proposition 3.2.25. Under the conditions of previous Theorem a classical solution u of Pseudo —
PDE(f,g) such that T'(u) € L}, is also a martingale solution.

Conversely, if u is a martingale solution of Pseudo — PDE(f, g) belonging to D(a), then u is a classical
solution of Pseudo — PDE(f, g) up to a zero-potential set, meaning that the first equality of holds up
to a set of zero potential.

3.3 Decoupled mild solutions of Pseudo-PDEs

All along this section we will consider a canonical Markov class (P*%) .)e(0,1)x £ associated to a
transition kernel P measurable in time (see Definitions 3.A.4) verifying Hypothesis for
a certain (D(a),a, V). We are also given a couple of functions f € B([0,7] x E x R x R,R) and
g € B(E,R).
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3.3.1 Definition

As mentioned in the introduction, in this section we introduce a notion of solution of our Pseudo —
PDE(f,g) that we will denominate decoupled mild, which is a generalization of the mild solution
concept for partial differential equation. We will show that such solution exists and is unique. Indeed,
that function will be the one appearing in Theorem [3.3.13}

A function u will be a decoupled mild solution of Pseudo — PDE(f, g) if there is a function v such
that the couple (u,v) is a (decoupled mild) solution of the identification problem IP(f,g). In this
section we first go through a notion of decoupled mild solution for the identification problem, which
has particular interest in itself.

We will be interested in functions (f, g) which satisfy weaker conditions than those of type H'P
(see Hypothesis namely the following ones.

Hypothesis 3.3.1. A couple of functions
f € B([0,T] x Ex R x R,R) and g € B(E,R) will be said to verify HI"V" if there exists a positive
constant C such that

1. g(Xr) is L? under P** for every (s,z) € [0,T] x E;
2.t — f(t,X,0,0) € £L%;

Notation 3.3.2. Let s,t in [0,T| with s < t, x € Eand ¢ € B(E,R), if the expectation E>*[|p(Xy)|] is
finite, then Py ,[¢](x) will denote [ ¢(y)Ps(x, dy) or equivalently B [p(Xy)] .

We recall two important measurability properties.

Remark 3.3.3. Let ¢ € B(E,R).

e Suppose that for any (s, z,t), E**[|¢(X;)|] < oo then by Proposition[3.A.12) (s, x,t) — Ps[¢](x) is
Borel.

e Suppose that for every (s, x), Es’x[fST |p(X;)|dVy] < oo. Then by Lemma
(s,2) > [ Py [¢](x)dVr is Borel.

In our general setup, considering some operator a, the equation

a(w) + f (- uT(w?) =0, (3:31)
can be naturally decoupled into
CL(U) = _f('v'vuvv)
{ Tu) = o (3.3.2)
Since I'(u) = a(u?) — 2ua(u), this system of equation will be rewritten as
a(u) = —f(,uv)
{ a(u?) = v*—2uf(-, -, u,v). (3:33)

On the other hand our Markov process X is time non-homogeneous and V; can be more general
than ¢, which leads us to the following definition of a decoupled mild solution.

Definition 3.3.4. Let (f, g) be a couple verifying H9™*wth,
Let u,v € B([0,T] x E,R) be two Borel functions with v > 0.



3.3. Decoupled mild solutions of Pseudo-PDEs 71

1. The couple (u,v) will be called solution of the identification problem determined by (f,g) or
simply solution of IP(f,g) if uand v belong to L3, and if for every (s,z) € [0,T] x E,

u(s,x) = g (x) + f PST ryu(r, ), o(r, )] (2)dV,
{ P g (J? f PS T [ ) - 2uf (Ta E 'LL(T, ')7’[1(7", ))] (.%)d‘/r (334)

IS
—~
»
S

I

2. The function u will be called decoupled mild solution of Pseudo — PDE(f, g) if there is a function
v such that the couple (u, v) is a solution of IP(f, g).

Lemma 3.3.5. Let u,v € L%, and let f be a Borel function satisfying items 2 and 3 of HIrowth  then
I (- u,v) belongs to L3 and uf (-, -, u,v) to L.

Proof. Thanks to the growth condition on f in H9"°%!"  there exists a constant C' > 0 such that for any
(s,z) € [0,T] x E,

[E5* [ftT fz(rv XT: u(r, XT)’ U(’I”, XT))dVr]

. (3.3.5)
< CE** {ft (f2(r, X,,0,0) +u?(r, X;) + 02 (r, X;))dV;

since we have assumed that u?, v? belong to £, and since we have made Hypothesis H97°%!". This
means that f2 (-, -, u,v) belongs to L. Since 2 [uf (-, -, u,v)| < u?® + f2(-,-,u,v) then uf (-,-,u,v) also
belongs to L. m

Remark 3.3.6. Consequently, under the assumptions of Lemma|[3.3.5|all the terms in (3.3.4) make sense.

3.3.2 Existence and uniqueness of a solution

Proposition 3.3.7. Assume that (f, g) verifies H9"*"'" (see Hypothesis and let u € L3 be a martingale

solution of Pseudo— PDE(f, g). Then (u, ®(u) %) is a solution of I P( f, g) and in particular, u is a decoupled
mild solution of Pseudo — PDE(f, g).

Proof. Let u € L% be a martingale solution of Pseudo — PDE(f,g). We emphasize that, taking
Definitionand Propositionm into account, &(u) belongs to £}, or equivalently that (’5(u)%
belongs to £%. By Lemma 3.3.5} it follows that f (-, -, Gj(u)%) € L3 and uf (-, -, ®(u)%) € L.
We fix some (s,z) € [0,T] x E and the corresponding probability P**. We are going to show that

u(s,2) = Purlgle f pw[ (,,u<r,->,®<u>%<r,->)}<x>dw
u(s,z) = P 92 f PST[ ')—2uf(r,-,u(r,-),@(u)%(r,-))](:L‘)dVT.

Combining Definitions [3.2.13} [3.2.15} [3.2.22], we know that on [s,T], the process u(-, X.) has a
cadlag modification which we denote U** which is a special semimartingale with decomposition

(3.3.6)

US® = u(s,z) — / f ( L, @(u)%) (r, X,)dV, + M[u]*®, (3.3.7)

where M[u]*® € HE. Definition 3.2.22|also states that u(7, -) = g, implying that

T 1
u(s,x):g(XT)—i—/ f(-,-,u,@(u)a)( AV, — Mul3" as. (3.3.8)
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Taking the expectation, by Fubini’s theorem we get

u(s,z) = E[ (Xr)+ [ f .7.’u,®(u)%> (r, X,)dV, 6539)
= )+ J] P [ (- ur, ), 8@ (1)) (@)avs. '

By integration by parts, we obtain
AU = <20 (s, S(w)} ) (8 Xo)dVs + 207 M ™ + dIM[u]*); (3.3.10)

so integrating from s to T, we get

u?(s, )

S.T 1 $,T $,T S, T
= P(Xr) +2 [T (w8t ) (r, X)dV, = 2 [T U aM [l — [MEul*lr 3.3.11)

= (Xp)+2 [T uf (w6} ) (r,X,)dV, - 2 [T UM ) — [M[u]**]r,
where the latter line is a consequence of Lemma [3.2.19, The next step will consist in taking the

expectation in equation (3.3.11), but before, we will check that [ U**dM[u];”* is a martingale. Thanks
to (3.3.7) and Jensen’s inequality, there exists a constant C' > 0 such that

T 1
sup (US*)? < C (/ & (u & (u )a) (r, X,)dV, + sup (M]u ]8@)2). (3.3.12)

tels,T) tels,T)

Since M[u]** € HZ and f (-, U (’5(u)%) € L%, it follows that sup (U;*)? € L! and Lemma [2.3.17

tels,T]
in Chapter @ states that [ U dM[u];>" is a martingale. Taking the expectation in (3.3.11), we now
obtain

w@m: " g2(
f@ﬂ+f%fw%®M%@XMW%MMWT
= [EF [g2 fT (05 u) — 2uf (-,~,u,@5(u)%>> r, Xp)dV,

(
r,-) — 2u(r, ) f (r, u(r, ), B (u)3 (r, );} (z)dV,,

where the third equality derives from Proposition 3.2.16|and the fourth from Fubini’s theorem. This
concludes the proof. O

Xr)+ [ 2uf E L, wuﬁg (r, X,)dV; — [M[U]W]T}}

(3.3.13)
XT)] —_ [Es®

(
(x) f Ps, |6

We now show the converse result of Proposition [3.3.7,

Proposition 3.3.8. Assume that (f, g) verifies H9"°"*", see Hypothesis Every decoupled mild solution
of Pseudo — PDE(f, g) is a also a martingale solution. Moreover, if (u,v) solves IP(f,g), then v* = &(u)
(up to zero potential sets).

Proof. Let uwand v > 0 be a couple of functions in £3% verifying (3.3.4). We first note that, the first line
of with s = T, gives u(T,-) = g.

We fix (s,z) € [0,T] x E and the associated probability P**, and on [s, T], we set U; := u(t, X;) and
Ny :=u(t, X)) —u(s,x) + f; flr, Xp u(r, X)), v(r, X;))dV,.
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Combining the first line of (3.3.4) applied in (s,z) = (¢, X;) and the Markov property (3.A.3), and
since f (-, -, u,v) belongs to £% (see Lemma 3.3.5) we get the a.s. equalities

U, = ult,X,)
= Pt,T[ ](Xt) + ftT Ptr ( Ty ,u(r, ')71}( ))] (Xt)dv;“
— EbLXt [g(X +ft (r, X, u(r, X,), o(r, T))d‘/r:| (3.3.14)

= B [g(Xr) + 1 £ X, ulr, X, 0, X)) ViR

from which we deduce that N; = E** {g(XT) + fsT flr, X u(r, X)), v(r, XT))dVr|.7-"t} —u(s,z)a.s. So
N is a martingale. We can therefore consider on [s, 7| and under P**, N** the cadlag version of N,
and the special semimartingale

Us* = wu(s,x) — [, f(r, Xp,u(r, X;),v(r, X,))dV, + N** which is a cadlag version of U. By Jensen’s
inequality for both expectation and conditional expectation, we have

2 T 2
Bl = B | (5 o) + L 0Kl X0 vl X )V R] s 2))’]
< 3u3(s, @) + 3B (g (X)) + 3B | [T F2(r, Xo,ulr, X,), v(r, X))V,
< o0,
(3.3.15)

where the second term is finite because of H9"°“!" and the same also holds for the third one because
f(-,-,u,v) belongs to E%O see Lemma So N*7 is square integrable. We have therefore shown
that under any IP*%, the process u(-, X.) — u(s,z) + [, f(r, X, u(r, X;),v(r, X;.))dV, has on [s,T] a
modification in 2. Definitions 3.2.13|and [3.2.15) justify that u € D(a), a(u) = —f(-,-,u,v) and that
for any (s,z) € [0,T] x E, M[u]** = N5,

To conclude that u is a martingale solution of Pseudo — PDE(f, g), there is left to show that
®(u) = v%, up to zero potential sets. By Proposition this is equivalent to show that for every
(s,z) € [0,T] x E, (N**) = [, v*(r, X;)dV,, in the sense of indistinguishability.

We fix again (s,z) € [0,7] x E and the associated probability, and now set

N} = u?(t, X;) — u?(s,x) — /t(fu2 —2uf(-,-,u,v))(r, X;)dV,.

Combining the second line of (3.3.4) applied in (s, z) = (¢, X;) and the Markov property (3.A.3), and
since v2, uf (-, -, u,v) belong to L} (see Lemma 3.3.5) we get the a.s. equalities

UQ(t7Xt) = Pt,T[QQ ftT PtT [ ( ) 2u (7’, )f (T7 '7U(T7 ')7U(T7 )))] (Xt)d‘/T
EHXt [ ft v? = 2uf (-, u,v))(r, X, )d } (3.3.16)
= e [gA(xy) - j; 0 = 2uf (-, 0)) (1, X, AV,

from which we deduce that for any ¢ € [s, T,

N =B |0 - [ L2~ uf ) X7 = s, 0) s

So N’ is a martingale. We can therefore consider on [s, 7] and under IP**, N’$* the cadlag version of
N'.



Chapter 3. BSDEs with no driving martingale, Markov processes and associated Pseudo PDEs. Part
74 II: Decoupled mild solutions and Examples

The process u?(s,z) + [ (v? — uf(-,-,u,v))(r, X;)dV, + N'" is therefore a cadlag special semi-
martingale which is a P*?-version of u*(-, X)) on [s, T]. But we also had shown that

U* = u(s,z) — / fr, Xe,u(r, X)), v(r, X;))dV, + N**
is a version of (-, X), which by integration by part implies that
u?(s,z) — 2/ U f(e, - u,v)(r, X, )dV, + 2/ U AN 4 [N*7]

is another cadlag semimartingale which is a P*®-version of u?(-, X) on [s, T'.
[i(0* = 2uf(-, -, u,v))(r, X;)dV, + N'** is therefore indistinguishable from
=2 [LUZf (- u,0)(r, Xp)dV, + 2 [ UZFdN" 4 [N**] which can be written

(N57) =2 / U F(-, - u,0)(r, X, )dVy + 2 / USTANS® + ([NS7] — (N*%)),

where (N*%) =2 [" U™ f(-,-,u,v)(r, X, )dV; is predictable with bounded variationand 2 [, U dN;"*+
([N®*] — (N**)) is a local martingale. By uniqueness of the decomposition of a special semimartin-
gale, we have

/@2 —2uf (s, 0)) (r, Xy ) AV, = (N*F) — 2/' US f (-, 0)(r, X, )dV,

S S

and by Lemma 3.2.19

/'(1)2 —2uf(, - u,0))(r, X,)dV, = (N**) — 2/. uf (-, u,v)(r, X, )dV,,

S S

which finally yields (N**) = [ v?(r, X,.)dV, as desired. O

We recall that (IP*%), »)cp0,71x £ is @ Markov class associated to a transition kernel measurable in
time (see Definitions 3.A.6| and 3.A.4) which fulfills Hypothesis i.e. it is a solution of a well-
posed Martingale Problem associated with the triplet (D(a),a, V).

Theorem 3.3.9. Let (f, g) be a couple verifying H'"P, see Hypothesis|3.2.23| Then Pseudo — PDE(f, g) has
a unique decoupled mild solution.

Proof. This derives from Theorem [3.2.24]and Propositions O

Corollary 3.3.10. Assume that (f, g) verifies H'"P, see Hypothesis A classical solution u of Pseudo —
PDE(f,g) such that T'(u) € LY, is also a decoupled mild solution.

Conwversely, if u is a decoupled mild solution of Pseudo — PDE(f, g) belonging to D(a), then w is a classical
solution of Pseudo — PDE(f, g) up to a zero-potential set, meaning that the first equality of holds up
to a set of zero potential.

Proof. The statement holds by Proposition and Proposition 3.2.25 O
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3.3.3 Representation of the solution via Markovian BSDEs with no driving martingale

In Chapter [2, the following family of Markovian BSDEs with no driving martingale indexed by
(s,z) € |0, T] x E was introduced.

Definition 3.3.11. Lef (s,z) € [0,T] x E and the associated stochastic basis (Q, F** 5% P7) be fixed. A
couple

(Y52 M*®) € L2(dV @ dP*®) x HE will be said to solve BSDE>*(f, g) if it verifies on [0, T), in the sense
of indistinguishability

d(M=)
dv

T
Y5 = g(Xr) +/ f <7~, X, Y5 (r)) dV, — (M7" — M>7). (3.3.17)

If (3.3.17) is only satisfied on a smaller interval [to, T, with 0 < to < T, we say that (Y5*, M*7) solves
BSDE®**(f,g) on [to,T].

The following result follows from Theorem in Chapter

Theorem 3.3.12. Assume that (f, g) verifies H'"P, see Hypothesis|3.2.23| Then for any (s,x) € [0,T] x E,
BSDE®*(f,g) has a unique solution.

In the following theorem, we summarize the links between the BSDE®*(f, g) and the notion
of martingale solution of Pseudo — PDE(f,g). These are shown in Theorem [2.5.15, Remark [2.5.16

Theorem [2.5.21|and Theorem [2.5.22| of Chapter

Theorem 3.3.13. Assume that (f, g) verifies H' (see Hypothesis |3.2.23) and let (Y% M%) denote the
(unique) solution of BSDE®"(f, g) for fixed (s,z). Let u be the unique martingale solution of Pseudo —
PDE(f,q). For every (s,x) € [0,T] x E, on the interval [s,T|,

o Y% and u(-, X.) are P*"-modifications, and equal dV @ dP** a.e.;
o M*% and M [u]** are P**-indistinguishable.

Moreover u belongs to L3 and for any (s,z) € [0,T] x E, we have d%[i‘j’m) =6&(u)(-, X.) dV @ dP** a.e.

Remark 3.3.14. The martingale solution u of Pseudo — PDE exists and is unique by Theorem|3.2.24

We can therefore represent the unique decoupled mild solution of Pseudo — PDE(f,g) via the
stochastic equations BSDE**(f, g) as follows.

Theorem 3.3.15. Assume that (f,g) verifies H'P (see Hypothesis and let (Y%, M5%) denote the
(unique) solution of BSDE**(f, g) for fixed (s, z).
Then for any (s,z) € [0,T] x E, the random variable Y5"" is P> a.s. equal to a constant (which we still
denote Y3*), and the function
w:(s,x) — Y37 (3.3.18)

is the unique decoupled mild solution of Pseudo — PDE(f, g).
Proof. By Theorem [3.3.13} there exists a Borel function u such that for every (s,z) € [0,T] x E, Y* =

u(s, Xs) = u(s,x) P> as. and u is the unique martingale solution of Pseudo — PDE(f,g). By
Proposition [3.3.7 it is also its unique decoupled mild solution. O

Remark 3.3.16. The function v such that (u,v) is the unique solution of the identification problem IP(f, g)
also has a stochastic representation since it verifies for every (s, z) € [0,T] x E, on the interval [s,T],

d<]g;x> =v2(-, X.) dV @ dP*® a.e. where M*< is the martingale part of the solution of BSDE**.
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Conversely, under the weaker condition H97°“*" if one knows the solution of IP(f,g), one can
(for every (s, x)) produce a version of a solution of BSDE**(f, g) as follows. This is only possible
with the notion of decoupled mild solution: even in the case of Brownian BSDEs the knowledge of
the viscosity solution of the related PDE would (in general) not be sufficient to reconstruct the family
of solutions of the BSDEs.

Proposition 3.3.17. Assume that (f, g) verifies H9""'", see Hypothesis Suppose the existence of a
solution (u,v) to IP(f,g), and let (s,z) € [0,T] x E be fixed. Then

(u(',X)7 u(~7X)—u(s,x)+/s. f(.,-,u,u)(r,xr)dvr> (3.3.19)

admits on [s, T| a P**-version (Y%, M*7*) which solves BSDE** on [s,T].

Proof. By Proposition[3.3.8] u is a martingale solution of Pseudo— PDE(f,g) and v? = &(u). We now
fix (s,z) € [0,T] x E. Combining Definitions 3.2.15| 3.2.17|and [3.2.22}, we know that u(T’,-) = g and
thaton [s, T, u(-, X ) has a P**-version U** with decomposition U** = u(s, z)— [, f(-,-,u,v)(r, X, )dV,+
M[u]**, where M[u]** is an element of Hj3 of angular bracket [ v*(r, X,)dV, and is a version of
u(-, X) —u(s,z) + [, f(-,-,u,v)(r, X;)dV,. By Lemma taking into account u(T,-) = g, the
couple (U**, M[u|*") verifies on [s, T, in the sense of indistinguishability

T uls-®
Us* = g(Xr) —i—/ f (r, X, U™, W(r)) dVe — (M[u]7" — M[u]>%) (3.3.20)

with M[u]*® € HE verifying M[u]s® = 0 (see Definition and U;"" is deterministic so in partic-
ular is a square integrable r.v. Following a slight adaptation of the proof of Lemma in Chapter
(see Remarkbelow), this implies that U** € £2(dV ® dP*®) and therefore that (U**, M [u]*%)
is a solution of BSDE**(f,g) on [s,T]. O

Remark 3.3.18. Indeed Lemma[2.3.24in Chapter 2|, taking into account Notation 5.5 ibidem, can be applied

rigorously only under H'" for (f,g). However, the same proof easily allows an extension to our framework
ngowth_

3.4 Examples of applications

We now develop some examples. Some of the applications that we are interested in involve operators
which only act on the space variable, and we will extend them to time-dependent functions. The
reader may consult Appendix concerning details about such extensions. In all the items below
there will be a canonical Markov class with transition kernel measurable in time which is solution of
a well-posed Martingale Problem associated to some triplet (D(a), a, V') as introduced in Definition
Therefore all the results of this paper will apply to all the examples below, namely Theorem
3.2.24} Propositions [3.2.25, [3.3.7] and [3.3.8] Theorem Corollaries 3.3.10] and [3.3.10, Theorems
3.3.12| [3.3.13| and [3.3.15| and Proposition In particular, Theorem [3.3.9 states in all the cases,
under suitable Lipschitz type conditions for the driver f, that the corresponding Pseudo-PDE admits
a unique decoupled mild solution. In all the examples 7" € R’ will be fixed.

3.4.1 Markovian jump diffusions

In this subsection, the state space will be E := R¢ for some d € N*. We are given 3 € B([0,7] x
R%, RY), a € B([0, T] x R4, 5% (R)) (where S* (R?) is the space of symmetric strictly positive definite
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matrices of size d) and K a Lévy kernel: this means that for every (t,z) € [0,7] x R%, K(t,z,-) is

a o-finite measure on R%\ {0}, sup i 1J||FZ|J‘||;‘2K(1S, z,dy) < oo and for every Borel set A € B(R%\{0}),

(t,x) — [, 1 +HyH2 K(t,z,dy) is Borel We will consider the operator a defined by

(y, Vo)

o+ 5Tr(05%0) +(5.99) + [ (90 +) —ot0) ~ {5

> K(-,- dy), (3.4.1)

on the domain D(a) which is here the linear algebra C; ’2([0, T] x R%, R) of real continuous bounded
functions on [0,7] x R¢ which are continuously differentiable in the first variable with bounded
derivative, and twice continuously differentiable in the second variable with bounded derivatives.

Concerning martingale problems associated to parabolic PDE operators, one may consult [85].
Since we want to include integral operators, we will adopt the formalism of D.W. Stroock in [84]. Its
Theorem 4.3 and the penultimate sentence of its proof states the following.

Theorem 3.4.1. Suppose that 3 is bounded, that o is bounded continuous and that for any A € B(R\{0}),
(t,x) — [, ﬁK (t,z, dy) is bounded continuous. Then, for every (s, x), there exists a unique probability

IP** on the canonical space (see Definition such that ¢(-, X.) — [ a(¢)(r, X, )dr is a local martingale
for any ¢ € D(a) and P**(X, = x) = 1. Moreover (P>%), ycjo,1xre defines a Markov class and its
transition kernel is measurable in time.

The Martingale Problem associated to (D(a), a, V; = t) in the sense of Definition is therefore
well-posed and solved by (P*%), o)co,71x R
In this context, D(a) is an algebra and for ¢, ¢ in D(a), the carré du champs operator is given by

P(‘bv 1/}) = Z ai,ja:vi(ﬁaxjw +/ ((b(a -+ y) - ¢)(¢(7 -+ y) - w)K(ﬂ '7dy)-

s R\{0}

We will consider a couple (f, g) satisfying H'"? (its items 1 and 2 hold for example if g and f(, -,0,0)
are bounded).

Proposition 3.4.2. Under the assumptions of Theorem|3.4.1} and if ( f, g) verify H'"P (see Hypothesis|3.2.23),
Pseudo — PDE(f, g) admits a unique decoupled mild solutzon in the sense of Definition[3.3.4}

Proof. D(a) is an algebra. Moreover (P*) .yco7)xre 18 @ Markov class which is measurable in
time, and it solves the well-posed Martingale Problem associated to (D(a), a, Vi = t). Therefore our

Theorem applies. O

3.4.2 Pseudo-Differential operators and Fractional Laplacian

This section concerns pseudo-differential operators with negative definite symbol, see [58] for an ex-
tensive description. A typical example of such operators will be the fractional Laplacian A% with
a €]0, 2[, see Chapter 3 in [36] for a detailed study of this operator. We will mainly use the notations
and vocabulary of N. Jacob in [57], [58] and [59], some results being attributed to W. Hoh [54]. We
fix d € N*. C°(R?) will denote the space of real functions defined on R which are infinitely con-
tinuously differentiable with compact support and S(IR?) the Schwartz space of fast decreasing real
smooth functions also defined on R?. Fu will denote the Fourler transforrn of a funct1on u whenever
it is well-defined. For u € L'(IR?) we use the convention Fu(¢ 7 (x)dx.
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Definition 3.4.3. A function ) € C(RY, R) will be said negative definite if forany k € N, &1, -+ , & € R,
the matrix (¥(&7) + (&) — (&7 — €Y))ju=1,... k is symmetric positive definite.

A function q € C(R% x R%, R) will be called a continuous negative definite symbol if for any x € R,
q(z,-) is continuous negative definite

In this case we introduce the pseudo-differential operator q(-, D) defined by

. w)(zx) = 1 @8 g (2 U
DI = o [t s 342)

Remark 3.4.4. By Theorem 4.5.7 in [57], q(-, D) maps the space C2°(IR%) of smooth functions with compact
support into itself. In particular q(-, D) will be defined on C2°(RRY). However, the proof of this Theorem 4.5.7
only uses the fact that if ¢ € C°(R?) then F¢ € S(R?) and this still holds for every ¢ € S(R?). Therefore
q(-, D) is well-defined on S(R?) and maps it into C(R?, R).

A typical example of such pseudo-differential operators is the fractional Laplacian defined for
some fixed o €]0, 2[ on S(R%) by

—A)? (u)(z) = ! @8 ||g)|° Fu
i = [ Ol Fue s (343

Its symbol has no dependence in z and is the continuous negative definite function £ — ||£]|*. Com-
bining Theorem 4.5.12 and 4.6.6 in [59], one can state the following.

Theorem 3.4.5. Let 1) be a continuous negative definite function satisfying for some ro,co > 0: P(§) >
coll&||™ if ||&]| > 1. Let M be the smallest integer strictly superior to (% V 2) + d. Let q be a continuous

negative symbol verifying, for some c,c’ > 0 and v : RY — R, the following items.

e q(-,0) = 0and sup |q(z,&)| — 0;
2eR4 £—0

q is C2M+1=d iy the first variable and for any 8 € N¢ with ||8]| < 2M + 1 —d, |92¢|| < c(1 + ¥);
q(z,€) 2 ()1 +¢(2) ifz € RY, ||| = 1;

q(z,€) < (1 +[¢]?) for every (z,¢).

Then the homogeneous Martingale Problem associated to (—q(-, D), S(R?)) is well-posed (see Definition
and its solution (P*),cra defines a homogeneous Markov class, see Notation 3.B.1}

We will now introduce the time-inhomogeneous domain which will be used to extend D(—¢(-, D)) =
S(RY).

Definition 3.4.6. Let 7 be a Hausdorff topological linear space. We will denote by C*([0,T],T) the set of
functions ¢ € C([0,T], ) such that there exists a function 0y¢ € C([|0,T], ) verifying the following. For

every to € [0, T we have ﬁ(qﬁ(t) — P(to)) t_%z drp(to).

We recall that a topological algebra is a topological space equipped with a structure of linear
algebra such that addition, multiplication and multiplication by a scalar are continuous.

Lemma 3.4.7. Let A be a (Hausdorff) topological algebra, then C*([0,T), A) is a linear algebra, and for any
¢,v € C1([0,T], A), we have y(¢1)) = Y0, + ¢y

Proof. The proof is very close to the one of R. O
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Remark 3.4.8. Classical examples of topological algebras are C°(R?), S(R?), C*>*(R%), C™(RY) for some
m € N (equipped with their usual topologies), or WFP(RY) W (R?) for any k € N*,p > 1, where
WkP(R?) denotes the usual Sobolev space of parameters k, p. Those are all Fréchet algebras except for C2°(IR%)
which is only locally convex one.

Notation 3.4.9. We set D(0; — q(-, D)) := C*([0, T], S(R%)).

Elements in C([0, T, S(R¥)) will also be seen as functions of two variables, and since convergence
in S(R?) implies pointwise convergence, the usual notion of partial derivative coincides with the
notation 0; introduced in Definition Any ¢ € D(0; — q(-, D)) clearly verifies

o ¥t € [0,T], #(t,-) € S(RY) and Vz € R%, (-, 2) € C*([0,T],R);
e Vt € [0,T], 0ib(t,-) € S(RY).

Our goal now is to show that D(9; — ¢(-, D) also verifies the other items needed to be included in
D™ (9, — q(-, D)) (see Notation 3.B.5) and therefore that Corollary applies with this domain.

Notation 3.4.10. Let o, 3 € N be multi-indices, we introduce the semi-norm

S(RY) — R
I Mlas - ¢ — sup 2205 (). (3.4.4)
zeR4
S(R?) is a Fréchet space whose topology is determined by the family of seminorms || - [|o.5. In

particular those seminorms are continuous.
In what follows, F, will denote the Fourier transform taken in the space variable.

Proposition 3.4.11. Let ¢ € C([0,T],S(R?)). Then F.¢ € C([0, T], S(R?)). Moreover if ¢ € C1([0,T], S(R)),
then F.¢ € C*([0,T], S(R?)) and
at]:asgb = ]:xat¢

Proof. F, : S(R?) — S(IR?) is continuous, so ¢ € C([0,T], S(R?) implies F,¢ € C([0,T], S(RY)). If
¢ € CH([0,T],S(R?)) then d:¢ € C([0,T],S(R?) so F.d¢p € C([0,T],S(R). Then for any ¢, € [0, 7],
the convergence

1
t—to

d
(o(t,) — o(to,-)) SE®Y) Orp(to, -) is preserved by the continuous mapping F, meaning that (by

t—to
linearity)
d
ﬁ(fxﬁb(t, ) — Fad(to, ) i%) Fu0sp(to, ). Since Frorp € C([0,T],S(RY)), we have shown that
Fop € CH[0,T],S(RY)) and 0, Fpp = FpOsp. O

Proposition 3.4.12. If ¢ € C([0,T],S(R?)), then for any o, 3 € N¢,
(t,x) —> x“@fgﬂ)(t, x) is bounded.

Proof. Let a, 3 be fixed. Since the maps || - [las : S(RY) — R are continuous, for every ¢ &
C([0,T],S(R%)), the application t + |¢(t, )]s is continuous on the compact interval [0, 7] and
therefore bounded, which yields the result. O

Proposition 3.4.13. If ¢ € C([0,T],S(R%)) and «, B € N9, then there exist non-negative functions 1o 5 €
LY(R®) such that for every (t,x) € [0,T] x R4, 2288 p(t, )| < o p(x).
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Proof. We decompose

w00t 2)] = [2°07G(t,w) [Ny pa(x) + 2B DGt )| oy Tgay (170 ()
L isd (3.4.5)
< Oy g3e(®) + 72 Lray—1,14(2)),
i<d
where (' is some constant which exists thanks to Proposition|3.4.12 O

Proposition 3.4.14. Let q be a continuous negative definite symbol verifying the assumptions of Theorem[3.4.5]
and let ¢ € C1([0,T],S(RY)). Then for any x € R, t +— q(-, D)¢(t,z) € C([0,T],R) and dyq(-, D) =
q('a D)8t¢

Proof We le ¢ € CH[0,T],S(RY)), and = € RY. We wish to show that for any ¢ € R?, t

( )d Jga €@9q(x, ) Fro(t, €)d¢ is C! with derivative
-

t—

(21)d /R ) g, ) Fody (L, €)de.
T)2 d

Since ¢ € C1([0,T], S(RY)), then 9,¢ € C([0,T], S(R?)) and by Proposmonm]—" ¢ € C([0,T7, S(Rd)).
Moreover since g verifies the assumptions of Theorem 3.4.5| then |q(z,¢)| is bounded by ¢/(1 + [|£]|?)
for some constant ¢’. Therefore by Proposition |3. there exists a non-negative ¢ € L'(R¢) such
that for every ¢,¢, \q(x,ﬁ)]-},@tqb(t 8| < P(§). Smce by Proposition 3.4.11} F,0,¢ = 0,F,¢, this im-
plies that for any (t,£), |9;e" @8 q(x, &) Fo(t,€)| < (& ) So by the theorem about the differentiation

of integrals depending on a parameter for any ¢ € RY, ¢ — o L JRa @O q(x, &) Fpp(t, £)dE is of
7
class C! with derivative t — Y Jra€ @8 q(x, &) Fporo(t, €)dE.
2

O]

Proposition 3.4.15. Let g be a continuous negative definite symbol verifying the assumptions of Theorem
and let ¢ € C*([0,T],S(R?)). Then ¢, 8;¢, q(-, D)¢ and q(-, D)0y ¢ are bounded.

Proof. Proposition [3.4.12/implies that any element of C([0, 7], S(R¢)) is bounded, so we immediately
deduce that ¢ and 0;¢ are bounded.
Since g verifies the assumptions of Theorem for any fixed (t,x) € [0,T] x R%, we have

DD = | L et 00000 646

(2m)2

< O Jra(L+[IE1D)|Fao(t, €)]dE,

for some constant C. Since ¢ € C([0,7],S(R?)) then, by Proposition [3.4.11, F,¢ also belongs to
C([0,T],S(R%)), and by Proposition 3.4.12} there exists a positive 1> € L' (R?) such that for any (¢, &),

(L + €I Fa(t,§)] < ¥(€), so forany (¢, 2), (-, D)o (t, )| < [|¢ 1.
Similar arguments hold replacing ¢ with ;¢ since it also belongs to C([0, 7], S(R%)). O

Remark 3.4.16. C*([0, T], S(R?)) seems to be a domain which is particularly appropriate for time-dependent
Fourier analysis and it fits well for our framework. On the other hand it is not so fundamental to require such
reqularity for classical solutions for Pseudo-PDEs, so that we could consider a larger domain. For example
the Fréchet algebra S(RY) could be replaced with the Banach algebra W+31(R4) N\ W4+3°°(R?) in all the
previous proofs.

Even bigger domains are certainly possible, we will however not insist on such refinements.
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Corollary 3.4.17. Let q be a continuous negative definite symbol verifying the hypotheses of Theorem [3.4.5
Then D(0¢ — q(-, D)) is a linear algebra included in D" (0, — q(-, D)) as defined in Notation

Proof. We recall that, according to Notation[3.4.9D(9;—q(-, D)) = C*(]0, T], S(R?)). The proof follows
from Lemma Propositions 3.4.14]and [3.4.15 and the comments under Notation [3.4.9] O

Corollary 3.4.18. Let g be a continuous negative definite symbol verifying the hypotheses of Theorem let
(P*) ,cra be the corresponding homogeneous Markov class exhibited in Theorem let (P*%) (5 2)efo,1]x R
be the corresponding Markov class (see Notation [3.B.1), let (D(8; — q(-, D)), 8; — q(-, D)) be as in Notation
Then

o (P*%)(sm)efo,r)xre Solves the well-posed Martingale Problem associated to (D(0; — q(-, D)), 0 —

e its transition kernel is measurable in time.

Proof. The first statement directly comes from Theorem and Corollaries and the
second from Proposition[3.B.2} O

Remark 3.4.19. The symbol of the fractional Laplacian q : (x,&) — ||€||“ trivially verifies the assumptions of
Theorem Indeed, it has no dependence in x, so it is enough toset p : & — ||€]|%, co=c= =1,10 = «
and v = 3.

The Pseudo-PDE that we focus on is the following.

{ O — q(, Dyu = f(-, - u,T(u)2)on [0,T] x R (3.47)

U(Tv ) =9

where ¢ is a continuous negative definite symbol verifying the assumptions of Theorem and I'
is the associated carré du champs operator, see Definition 3.2.6}

Remark 3.4.20. By Proposition 3.3 in [36l], for any o €]0,2], there exists a constant ¢, such that for any
¢ € S(RY),

(—A)2¢ =co PV N Wdy, (3.4.8)

where PV is a notation for principal value, see (3.1) in [36]. Therefore in the particular case of the fractional
Laplace operator, the carré du champs operator T associated to (—A)? is given by

r(¢)
2(.. —¢? .. —
= CaPV [ ST dy — 2000 PV [a Wit dy (3.49)
.. —¢)?
= coPV fRd (¢(|iy—}_|g-)%a¢) dy.

Proposition 3.4.21. Let q be a continuous negative symbol verifying the assumptions of Theorem let
(P*%) (s x)ef0.7) xR be the Markov class which by Corollary 3.4.18|solves the well-posed Martingale Problem
associated to (D(0¢ — q(+, D)), 0« — q(-, D), Vi = t).

For any (f, g) verifying H'P (see Hypothesis , Pseudo — PDE(f, g) admits a unique decoupled
mild solution in the sense of Definition [3.3.4]

Proof. The assertion comes from Corollary [3.4.18]and Theorem 3.3.9] O
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3.4.3 Parabolic semi-linear PDEs with distributional drift

In this section we will use the formalism and results obtained in [47] and [48], see also [81]], [31] for
more recent developments. In particular the latter paper treats interesting applications to polymers.
Those papers introduced a suitable framework of Martingale Problem related to a PDE operator
containing a distributional drift ¥’ which is the derivative of a continuous function. [46] established
a first work in the n-dimensional setting.

Let b,0 € C°(R) such that o > 0. By mollifier, we intend a function ® € S(R) with [ ®(z)dz = 1.
We denote ®,,(z) = n®(nx), 02 = 02 * ®,,, b, = b* D,,.
We then define L, g = %g” +b.g. f e C(R)is said to be a solution to Lf = [ where [ € C?, if for
any mollifier ®, there are sequences (f,) in C2, (i) in C° such that L, f, = (in), fx <, £l i We

will assume that ¥(x) = 1i_r>n 2 [y 2—/’5 (y)dy exists in CY independently from the mollifier.

By Proposition 2.3 in [47] there exists a solution h € C! to Lh = 0, h(0) = 0, h'(0) = 1. Moreover
it verifies h’ = e~>. Moreover by Remark 2.4 in [47], for any [ € CY, xg, 1 € R, there exists a unique
solution of

Lf(z)=1,feCh f(0) =z, f(0) = ;. (3.4.10)

Dy, is defined as the set of f € C! such that there exists some | € C° with Lf = [. And by Lemma 2.9
in [47] it is equal to the set of f € C! such that ﬁ—: € CL. So it is clearly an algebra.
h is strictly increasing, I will denote its image. Let L° be the classical differential operator defined by

2
L% = 24", where

ooly) :{ (oh’)(h—l(y)g zgﬁc (3.411)

Let v be the unique solution to Lv = 1, v(0) = v'(0) = 0, we will assume that
v(—00) = v(+00) = +o0, (3.4.12)

which represents a non-explosion condition. In this case, Proposition 3.13 in [47] states that the Mar-
tingale Problem associated to (Dy, L, V; = t) is well-posed. Its solution will be denoted

(P*®) (s,2)c[0,7]xm¢- By Proposition 2.13, Dyo = C?(I). and by Proposition 3.2 in [47], the Martingale
Problem associated to (Dpo, L%, V; = t) is also well-posed, we will call (Q*%) 5 ) c(0.7]xr its solution.
Moreover under any P*? the canonical process is a Dirichlet process, and h~!(X) is a semimartin-
gale that we call Y solving the SDE Y; = h(z) + fst 00(Ys)dWs in law, where the law of Y is Q**.
X} is a P**-Dirichlet process whose martingale component is [, o(X;)dW,. (P*%) .yeio.1xre and
(Q*)(5,2)c[0,7]xre both define Markov classes.

We introduce now the domain that we will indeed use.

S,T

Definition 3.4.22. We set

D(a) = {qs e CYH[0,T] x R) : % e clY([0,T] x IR)} , (3.4.13)
which clearly is a linear algebra.
On D(a), we set Lo := #8@”(8}?}1’) and a(¢) := 0r¢p + L.

Proposition 3.4.23. Let I' denote the carré du champ operator associated to a, let ¢, be in D(a), then
F(¢7 1/]) = Uzaxd)aaﬂ/}
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Proof. We fix ¢, in D(a). We write

(¢, v) = (0 + L) (o) — ¢(0r + L)(¥) — (0 + L)()
= o (0, (%) - 00, (% ) zpax(a,;?) (3.4.14)
= 020,00..

O
Emphasizing that b’ is a distribution, the equation that we will study in this section is therefore
given by
{ o+ 30202u+ b 0pu+ f(-,,u,0l0,ul) =0 on[0,T] x R
u(T, ) =g.

Proposition 3.4.24. (P*%)(, ,)c(o,71xRe Solves the Martingale Problem associated to (a, D(a),V; = t).

(3.4.15)

Proof. (t,y) — &(t,h~'(y)) is of class C%; moreover 8, (¢(r,-) o h™!) =
2L6 o1

o2h/2

= h' 2oh~'and 2 (¢p(r,-)oh™1t) =

= 2L2 5 p=1, By Ito formula we have
0

o(t, X:) = o(t,h (Vs ))
= ¢(s,2)+ [} (aw hH(Ye)) + 300(Yn)03 (8(r,-) o h™1) (Yr)) dr
+ ! UoTh H(Y:)) 0, (qb(n)oh 1)( )dW
= ¢(s,2)+ [} (atwh YY) + Lo(r, h7H(Y7))) dr
+ [ o(r, B T))%;)(Yr”dw
= o(s,2) + [T (Bio(r, Xo) + U, X)) dr + [* o(r, X,)Dpp(r, X ) AW,

(3.4.16)

Therefore ¢(t, X;)—¢(s, ) — [ a(¢)(r, X, )dr = fst o(r, X,)0.¢(r, X,)dW, is alocal martingale. [J

In order to consider the BSDE®**(f, g) for functions (f, g) having polynomial growth in = we
will show the following result. We formulate here the supplementary assumption, called (TA) in
[47]. This means the existence of strictly positive constants c¢;, C; such that

< (1. (3.4.17)

Proposition 3.4.25. We suppose that (TA) is fulfilled and o has linear growth. Then, for any p > 0 and
(s,z) € [0,T] x R, ES*[|X7[P] < oo and ]ES’I[fST | X, [Pdr] < oo. In other words, if g and f(-,-,0,0) have
polynomial growth in x uniformly in t, then (f,g) verify the first two items of H9""t" or equivalently the
first two items of H'P.

Proof. We start by proving the proposition in the divergence form case, meaning that b = "72
Let (s,z) and t € [s, T] be fixed. Thanks to the Aronson estimates, see e.g. [2] and also Section 5. of
[47], there is a constant M > 0 such that

E5*[| X¢P] = fR\y!ppt_s(x,y)dyQ
|z—y|
< e~ M5
= mf]R [y|Pe” T dz 2 (3.4.18)
= M3 fR|x+z\/M(t—s)]pe “dz
3+k
< Z:OM ()|x| |t—s| 2 f]R z|P~ ke dz,

which (for fixed (s, z)) is bounded in ¢t € [s, T and therefore Lebesgue integrable in ¢ on [s, T'|. This
in particular shows that E**[| X¢|P] and Es’m[fsT | X |Pdr](= fsT ES*[| X, [P]dr) are finite.
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Now we will consider the case in which X only verifies and we will add the hypothesis that
o has linear growth.

Then there exists a process Z (see Lemma 5.6 in [47]) solving an SDE with distributional drift of
divergence form generator, and a function k of class C! such that X = k~!(Z). The condition
implies that there exist two constants such that 0 < ¢ < k’o < C implying that for any z, (k™) (z) =

k’okll @ = JOk? @) < Ca(1+|k=Y(x)|), for a positive constant Cs. So by Gronwall Lemma there exists

C3 > 0 such that k1 (z) < C3e“2l?l, ¥z € R.
Now thank to the Aronson estimates on the transition function pZ of Z, for every p > 0, we have

BXE] S Cy [ eI (ke 2)ds
C 2| M 7|k(z)7z\
S N L (34.19)
< M%feczp(\/mly\%(x))e*fdy
S AeBk(aJ)’

where A, B are two constants depending on p and M. This implies that E**[|X7|P] < oo and
]Es*“[fsT | X [Pdr] < oc. O

We can now state the main result of this section.

Proposition 3.4.26. Assume that the non-explosion condition (3.4.12) is verified and the validity of one of the
two following items.

e the (TA) condition (3.4.17) is fulfilled, o has linear growth, f(-,-,0,0), g have polynomial growth in x
and f verifies item 3 of H'"P (see Hypothesis|3.2.23

e f(-,-,0,0), g are bounded and f verifies item 3 of H'P.
Then (3.4.15) has a unique decoupled mild solution u in the sense of Definition [3.3.4}

Proof. The assertion comes from Theorem which applies thanks to Propositions [3.4.24} |3.4.25
and3.B.2 O

Remark 3.4.27. 1. A first analysis linking PDEs (in fact second order elliptic differential equations) with
distributional drift and BSDEs was performed by [82]]. In those BSDEs the final horizon was a stopping
time.

2. In [56]], the authors have considered a class of BSDEs involving particular distributions.

3.44 Diffusion equations on differential manifolds

In this section, we will provide an example of application in a non Euclidean space. We consider a
compact connected smooth differential manifold A of dimension n. We denote by C*°(M) the linear
algebra of smooth functions from M to R, and (Uj;, ¢;)ier its atlas. The reader may consult [62] for
an extensive introduction to the study of differential manifolds, and [55] concerning diffusions on
differential manifolds.

Lemma 3.4.28. M is Polish.

Proof. By Theorem 1.4.1 in [62] M may be equipped with a Riemannian metric, that we denote by ¢
and its topology may be metricized by the associated distance which we denote by d. As any compact
metric space, (M, d) is separable and complete so that M is a Polish space. ]
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We denote by (2, F,IF) the canonical space associated to M and 7', and (X¢),c[o,7] the canonical
process, see Definitionm

Definition 3.4.29. An operator L : C>°(M ) — C°°(M ) will be called a smooth second order elliptic non
degenerate differential operator on M if for any chart ¢ : U — R™ there exist smooth 3 : ¢(U) — R”
and o : $(U) — S (R™) such that on ¢(U) for any f € C°° (M) we have

Lf(¢~(2)) = % > @ @)Dy, (f o ™) (@) + Y B (@), (f 0 67 (@), (34.20)
=1

ij=1

a and 3 depend on the chart ¢ but this dependence will be sometimes omitted and we will say
that for some given local coordinates,

Lf= % > O‘i’jaxﬂjf + ;Bzamzf

i,7=1
The following definition comes from [55], see Definition 1.3.1.

Definition 3.4.30. Let L denote a smooth second order elliptic non degenerate differential operator on M. Let
x € M. A probability measure P* on (2, F) will be called an L-diffusion starting in x if

e P'(Xog=2z)=1,
o forevery f € C*(M), f(X) — [, Lf(X,)dr is a (P*,F) local martingale.

Remark 3.4.31. No explosion can occur for continuous stochastic processes with values in a compact space,
so there is no need to consider paths in the compactification of M as in Definition 1.1.4 in [55].

Theorems 1.3.4 and 1.3.5 in [55] state that for any x € M, there exists a unique L-diffusion starting in x.
Theorem 1.3.7 in [55l] implies that those probability measures (IP*) ¢ define a homogeneous Markov class.

For a given operator L, the carré du champs operator I is given (in local coordinates) by I'(¢, 1)) =
n

3 abia,, $0x, ¢, see equation (1.3.3) in [55]. We wish to emphasize here that the carré du champs
ij=1
operator has recently become a powerful tool in the study of geometrical properties of Riemannian
manifolds. The reader may refer e.g. to [3].

Definition 3.4.32. (IP¥),cnr will be called the L-diffusion. If M is equipped with a specific Riemannian
metric g and L is chosen to be equal to A, where Ay the Laplace-Beltrami operator associated to g, then
(P*)zenr will be called the Brownian motion associated to g, see [55] Chapter 3 for details.

We now fix some smooth second order elliptic non degenerate differential operator L and the
L-diffusion (P?),cp. We introduce the associated Markov class (IP*%) 2)e(0,7)xar @s described in
Notation which by Proposition is measurable in time.

Notation 3.4.33. We define D(0, + L) the set of functions u : [0,T] x M — R such that, for any chart
¢ : U — R", the mapping

(t,z) +— ult,¢'(2)) (3.4.21)

belongs to C*>°(]0,T] x ¢(U),R), the set of infinitely continuously differentiable functions in the usual Eu-
clidean setup.

Lemma 3.4.34. D(8; + L) is a linear algebra included in D% (9, + L) as defined in Notation [3.B.5]
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Proof. For some fixed chart ¢ : U — R", C*°([0,T] x ¢(U),R) is an algebra, so it is immediate that
D(0: + L) is an algebra.
Moreover, if u € D(0; + L), it is clear that

o Vo € M,u(-,x) € C'([0,T],R) and Vt € [0, T], u(t,-) € C>®(M);
o Vt € [0,7T), Qyu(t, ) € C°(M) and Vo € M, Lu(-,z) € C*([0,T],R).

Givenachart ¢ : U — R", by the Schwarz Theorem allowing the commutation of partial derivatives
(in the classical Euclidean setup), we have for = € ¢(U)

deo L(u)(t, 67" (2)) = 3 21: a9 (2)040n,a; (u(, ¢~ ())(t,2) + éﬁi(fv)é’ﬁxi(U(W1('))(@»”6)

i=1
= %.Zla”’(w)axlxﬁt(U(w¢‘1(-))(t, ) + Z)lﬁi(l‘)(?m@t(u(»dfl('))(t,w)
INES 1=

(3.4.22)
So 0; o Lu = L o Oyu. Finally 0;u, Lu and 0; o Lu are continuous (since they are continuous on all the
sets [0, 7] x U where U is the domain of a chart) and are therefore bounded as continuous functions
on the compact set [0, 7] x M. This concludes the proof. O

Corollary 3.4.35. (IP%%), 2)e[o,7]x M Solves the well-posed Martingale Problem associated to (0 + L, D(0 +
L), V; = t) in the sense of Definition[3.2.3]

Proof. The corollary derives from Lemma 3.4.34/and Corollary O
We fix a couple (f, g) verifying H'"P (see Hypothesis[3.2.23) and consider the PDE
1
{ o+ Lu+ f(-,u,T'(w)2) =0 onl0,T] x M (3.4.23)
Since Theorem applies, we have the following result.

Proposition 3.4.36. Equation (3.4.23) admits a unique decoupled mild solution u in the sense of Definition
3.3.4

Remark 3.4.37. Since M is compact, we emphasize that if g is continuous and f is continuous in t, x Lipschitz
iny,z then f(-,-,0,0), g are bounded so (f, g) verifies H'P.



Appendix

3.A Markov classes

In this Appendix we recall some basic definitions and results concerning Markov processes. For a
complete study of homogeneous Markov processes, one may consult [34], concerning non-homogeneous
Markov classes, our reference was chapter VI of [40]. The first definition refers to the canonical space
that one can find in [60], see paragraph 12.63.

Notation 3.A.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topo-
logical space). E will be called the state space.

We consider T' € RY,.. We denote ) := ID([0, T, E) the space of functions from [0, T)] to E right-continuous
with left limits and continuous at time T, e.g. cadlag. For any t € [0,T] we denote the coordinate mapping
X : w — w(t), and we introduce on Q) the o-field F := o(X,|r € [0,T)).

On the measurable space (2, F), we introduce the measurable canonical process

X, (tw) > w(t)
and the right-continuous filtration T := (Fy)iejo,r) where Fy == () o(Xp|r < s)ift < T, and Fr =
s€]t,T)

o(X,|rel0,T]) =F.
(Q, F,TF) will be called the canonical space (associated to T and E).
For any t € [0,T] we denote Fyr := o(Xy|r > t), and for any 0 < t < uw < T we will denote F,, =
N o(X,|r € [t,u+ L))
n>0

Since E is Polish, we recall that D([0, 7], E') can be equipped with a Skorokhod distance which
makes it a Polish metric space (see Theorem 5.6 in chapter 3 of [44], and for which the Borel o-field is
F, see Proposition 7.1 in Chapter 3 of [44]. This in particular implies that F is separable, as the Borel
o-field of a separable metric space.

Remark 3.A.2. Previous definitions and all the notions of this Appendix, extend to a time interval equal to
R+ or replacing the Skorokhod space with the Wiener space of continuous functions from [0, T] (or R4) to E.

Definition 3.A.3. The function

P (s,t,x,A) +—— Psi(z,A)
' —

[0,T)? x E x B(E) [0, 1],
will be called transition kernel if, for any s,t in [0,T], zy € E, A € B(E), it verifies

1. x +— Py(x, A) is Borel,

87
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2. B — Ps(x0, B) is a probability measure on (E, B(E)),

3. ift < sthen Py (zo, A) = La(zo),

4. ifs <t foranyu >t, [ Psi(xo,dy)Pru(y, A) = Psu(zo, A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 3.A.4. A transition kernel P for which the first item is reinforced supposing that (s,x) —
P, ¢(x, A) is Borel for any t, A, will be said measurable in time.

Remark 3.A.5. Let P be a transition kernel which is measurable in time. By approximation by step functions,
one can easily show that, for any Borel function ¢ from E to R then (s,z) — [, ¢(y)Ps(z,dy) is Borel,
provided ¢ is quasi integrable for every (s, x).

Definition 3.A.6. A canonical Markov class associated to a transition kernel P is a set of probability
measures (P*%) 1)ejo,m)x & defined on the measurable space (2, F) and verifying for any t € [0,T] and
Ae B(E)

P5*(Xy € A) = Psy(x, A), (3.A.1)

and forany s <t < u
PoY(X, € A|lF) = Pu(Xe, A) P*% as. (3.A.2)

Remark 3.A.7. Formula 1.7 in Chapter 6 of [40] states that for any F' € F; r yields
P*%(F|F;) = PY(F) = PS*(F|X;) P*a.s. (3.A.3)
Property (3.A.3) will be called Markov property.

For the rest of this section, we are given a canonical Markov class (P*%), »yc[0,7]x £ With transition
kernel P.
We will complete the o-fields F; of the canonical filtration by IP** as follows.

Definition 3.A.8. For any (s,x) € [0,T] x E we will consider the (s, x)-completion

(Q, Fo* 5 := (F}" )ieo.r), P5") of the stochastic basis (0, F,IF,IP*") by defining F** as the P*"-
completion of F, by extending P> to F>* and finally by defining F;"* as the P>*-closure of F; (meaning F;
augmented with the P**-negligible sets) for every t € [0,T].

We remark that, for any (s, z) € [0,7] x E, (, F*>*, F* P*¥) is a stochastic basis fulfilling the
usual conditions, see (1.4) in chapter I of [61]). We recall that considering a conditional expectation
with respect to a o-field augmented with the negligible sets or not, does not change the result. In
particular we have the following.

Proposition 3.A.9. Let (P*%); .yc(0,11x £ be a canonical Markov class. Let (s,x) € [0,T] x E be fixed, Z
be a random variable and t € [s, T, then
Es*[Z|F] = ES*[Z|F) "] P5* a.s.

Proposition 3.A.10. Let Z be a random variable. If the function (s,z) — E>*[Z] is well-defined (with
possible values in [—oo, 00|), then at fixed s € [0, T, x — E**[Z] is Borel. If moreover the transition kernel
P is measurable in time then, (s, z) — E>*[Z] is Borel.

In particular if F' € F be fixed, then at fixed s € [0,T], x — P**(F) is Borel. If the transition kernel P
is measurable in time then, (s,z) — P*%(F') is Borel.
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Proof. We will only deal with the case of a measurable in time transition kernel since the other case
is proven in a very similar way.

We consider first the case Z = 1p where I' € F. We start by assuming that F' is of the form

N {X:, € Ai},wheren e N*, 0=ty <t; <---<t, <TandA,---,A, are Borel sets of E, and we
i<n
denote by II the set of such events.

In this proof we will make use of monotone class arguments, see for instance Section 4.3 in [1] for
the definitions of m-systems and A-systems and for the presently used version of the monotone class
theorem, also called the Dynkin’s lemma.

We remark that II is a 7-system (see Definition 4.9 in [1]) generating F. For such events we
can explicitly compute P**(F). We compute this when (s, z) belongs to [t;—1 — 1,t;«[x E for some
0 <i* <n.Onlt,,T] x E, a similar computation can be performed. We will show below that those
restricted functions are Borel, the general result will follow by concatenation. We have

[ n
— I 14, (2)E5® jHi*]lAi(Xti)]

[n—1
= H ]]‘A(x)ES7I H*ﬂAz (th)lES,x[]lAn (th)|ftnl]:|

i=1 |l J=1

n—1
L @B T L ()P (X))

= lJ=t

i*—1 n
= i) [ <j};[+1]1Aj (@) Pt (-1, dfﬂj)) Lag (20) Po e (2, diie),

which indeed is Borel in (s, z) thank to Definition and Remark

We can extend this result to any event F' by the monotone class theorem. Indeed, let A be the set
of elements F of F such that (s, z) — P*%(F) is Borel. For any two events F'!, F2,in A with F! C F?,
since for any (s, x),
Ps*(F2\F!) = P5*(F?) — PS%(FY), (s,z) — P*%(F?\F') is still Borel. For any increasing sequence
(F™)n>0 of elements of A, P**( | F™) = lim P**(F") so (s,x) — P**( |J F") is still Borel, there-

- neN n—00 neN

fore A is a A-system containing the 7-system II which generates F. So by the monotone class theorem,

A = F, which shows the case Z = 1.

We go on with the proof when Z is a general r.v. If Z > 0, there exists an increasing sequence
(Zn)n>0 of simple functions on €2 converging pointwise to Z, and thank to the first statement of the
Proposition, for each of these functions, (s,z) — E®?*[Z,] is Borel. Therefore since by monotonic
convergence, E**[Z,] = E**[Z], then (s,z) — E**[Z] is Borel as the pointwise limit of Borel

functions. For a general Z one just has to consider its decomposition Z = Z* — Z~ where Z* and
Z~ are positive. ]

Lemma 3.A.11. Assume that the transition kernel of the canonical Markov class is measurable in time.
Let V' be a continuous non-decreasing function on [0,T] and f € B(]0,T] x E,R) be such that for every
(s,x) € [0,T] x B, E>*[[T| f(r, X,)|dV;] < co. Then (s,x) —s E>*[[ f(r, X,)dV;] is Borel.

Proof. We will start by showing that on ([0, 7] x E) x [0, T, the function
k" (s,2,t) = B[ ((=n) V f(r, X,) An)dV;] is Borel, where n € N.

Lett € [0,T] be fixed. Then by Proposition (s,2) — Es’x[ftT((—n) vV f(r, X;) An)dV,] is
Borel. Let (s,z) € [0,7] x E be fixed and t,, — t be a converging sequence in [0, 7). Since V is

m—r0o0
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continuous, fgn n)V f(r, X)) A n)dV, — j; )V f(r,X,) An)dV, a.s. Since this sequence
is uniformly bounded, by dominated Convergence theorem, the same convergence holds under the
expectation. This implies that ¢t — E**| ft )V f(r, X,) An)dV,]is continuous. By Lemma 4.51 in
[1], k™ is therefore jointly Borel.

By composing with (s, z,t) — (s, , s), we also have that for any n > 0, k™ : (s, z) — Es’x[fsT((—n)\/
f(r,X;) A n)dV,] is Borel. Then by letting n tend to infinity, (—n) V f(r, X,) A n tends dV ® dP**
a.e. to f(r,X,) and since we assumed E**| fST |f(r, X;)|dV;] < oo, by dominated convergence,
E>*[[7((—n) Vv f(r, X,) An)dV;] tends to E>*[ [ f(r, X,)dV;].

(s,2) — B[] ST f(r, X,,)dV;] is therefore Borel as the pointwise limit of the & which are Borel. []

Proposition 3.A.12. Let f € B(]|0,T] x E,RR) be such that for any (s,z,t), ES*[| f(t, X:)|] < oo then at
fixed s € [0,T), (z,t) —> BE>*[f(t, Xt)] is Borel. If moreover the transition kernel P is measurable in time,
then (s, x,t) — ES*[f(t, Xy)] is Borel.

Proof. We will only show the case in which p is measurable in time since the other case is proven very
similarly.

We start by showing the statement for f € Cp([0,7] x E,R). X is cadlag so t — f(¢, X¢) also
is. So for any fixed (s,z) € [0,7T] x E if we take a converging sequence ¢, S tT(resp. t7), an
easy application of the Lebesgue dominated convergence theorem shows that ¢t —— E®*[f(t, X;)]
is cadlag. On the other hand, by Proposition 3.A.10} for a fixed ¢, (s,z) — E**[f(t, X;)] is Borel.
Therefore by Theorem 15 Chapter IV of [32], (s, z,t) — E**[f(t, X})] is jointly Borel.

In order to extend the result to any f € B,([0,7] x E,R), we consider the subset Z of functions
f € By([0,T] x E,R) such that (s, z,t) — E**[f(t, X;)] is Borel. Then Z is a linear space stable by
uniform convergence and by monotone convergence and containing Cy([0, 7] x E,R) which is stable
by multiplication and generates the Borel o-field B([0,7]) ® B(E). So by Theorem 21 in Chapter I of
[32], Z = B,([0,T] x E,R). This theorem is sometimes called the functional monotone class theorem.
Now for any positive Borel function f, we can set f,, = f A n which is bounded Borel. Since by
monotonic convergence, E**[f,(t, X;)] tends to E**[f(t, X;)], then (s, z,t) — E**[f(t, X;)] is Borel
as the pointwise limit of Borel functions. Finally for a general f it is enough to decompose it into
f=/fT—f where f*, f~ are positive functions. O

3.B Technicalities concerning homogeneous Markov classes and martin-
gale problems

We start by introducing homogeneous Markov classes. In this section, we are given a Polish space I/
and some 7" € R*.

Notation 3.B.1. A mapping P : [0,T] x E x B(E) — [0, 1] will be called a homogeneous transition
kernel if P: (s,t,x,A) —> P, S(x ALt + 1 a(x)Ls>y is a transition kernel in the sense of Definition
3| This in particular implies P = Py_.(-, -).

A set of probability measures (P*),c g on the canonical space associated to T and E (see Notation [3.A.1) will
be called a homogeneous Markov class associated to a homogeneous transition kernel P if

{ Vte[0,T] VYAeB(E) ,P*X,e A) Pi(z, A)

VoO<t<u<T ]PI(X e A|J~_~t) P, t(Xt,A) P57, (3.B.1)

Given a homogeneous Markov class (IP*),cp associated to a homogeneous transition kernel P, one can al-
ways consider the Markov class (P*%), 2)eo,1)x E associated to the transition kernel P : (s, t,r, A) —

Pt_s(aa Aot + La(x) s>y In particular, for any x € E, we have P%* = P*,
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We show that a homogeneous transition kernel necessarily produces a measurable in time non
homogeneous transition kernel.

Proposition 3.B.2. Let P be a homogeneous transition kernel and let P be the associated non homogeneous
transition kernel as described in Notation Then P is measurable in time in the sense of Definition|3.A.4

lzroof. Given that P : (s,t,z,A) — Pt_s(x, A)lget + ]lé(x)]lszt, it is actually enough to show that
P(-,A) is Borel for any A € B(E). We can also write P = Py _.(-,-), so P is measurable in time if
Py,.(-, A) is Borel for any A € B(E), and this holds thanks to Proposition [3.A.12| applied to f :=
1y ]

We then introduce below the notion of homogeneous martingale problems.

Definition 3.B.3. Given A an operator mapping a linear algebra D(A) C By(E,R) into By,(E,R), we say
that a set of probability measures (P*),cp on the measurable space (2, F) (see Notation solves the
homogeneous Martingale Problem associated to (D(A), A) if for any x € E, P” satisfies

o forevery ¢ € D(A), ¢(X.) — [, Ap(X,)dr is a (P*,TF)-local martingale;
o P¥(Xog=1x)=1

We say that this homogeneous Martingale Problem is well-posed if for any x € E, P is the only
probability measure on (2, F) verifying those two items.

Remark 3.B.4. If (IP?),cp is a homogeneous Markov class solving the homogeneous Martingale Problem
associated to some (D(A), A), then the corresponding (IP*%) (s »ye(0,1)x E (see Notation solves the Mar-
tingale Problem associated to (D(A), A, V; = t) in the sense of Definition Moreover if the homogeneous
Martingale Problem is well-posed, so is the latter one.

So a homogeneous Markov process solving a homogeneous martingale problem falls into our
setup. We will now see how we can pass from an operator A which only acts on time-independent
functions to an evolution operator J; + A, and see how our Markov class still solves the corresponding
martingale problem.

Notation 3.B.5. Let E be a Polish space and let A be an operator mapping a linear algebra D(A) C By(E,R)
into By(E, R).

If € B([0,T] x E,R) is such that for every t € [0,T)], ¢(t,-) € D(A), then A¢p will denote the mapping
(t,2) — A(o(, ) (2).

We now introduce the time-inhomogeneous domain associated to A which we denote D™**(0; + A) and
which consists in functions ¢ € By([0,T] x E,R) verifying the following conditions:

e Vxc E, ¢(,z) € CH[0,T],R) and ¥t € [0,T), ¢(t,-) € D(A);
o Vt € [0,T], 0,6(t,-) € D(A)and Vx € E, Ag(-,x) € C1([0,T],R);
e 0;0Ap = Ao 0io;
e 0:¢, Ap and 0y o A¢ belong to By,([0,T] x E,R).
On D" (9 + A) we will consider the operator 0, + A.

Remark 3.B.6. With these notations, it is clear that D™* (0,4 A) is a sub-linear space of By([0,T] x E,R). It
is in general not a linear algebra, but always contains D(A), and even C*([0, T], R) @ D(A), the linear algebra

of functions which can be written > M\roy where N € N, and for any k, A\, € R, ¢ € C1([0,T],R),
k<N
¢ € D(A). We also notice that 0, + A maps D" (0; + A) into By([0,T] x E,R).
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Lemma 3.B.7. Let us consider the same notations and under the same assumptions as in Notation Let
(P*%) (s,2)el0,7]x £ be a Markov class solving the well-posed Martingale Problem associated to (A, D(A),V; =
t) in the sense of Definition Then it also solves the well-posed martingale problem associated to (0; +
A, A, Vi =t) for any linear algebra A included in D" (0, + A).

Proof. We start by noticing that since D(A) C By(E,R) and is mapped into B,(E, R), then for any
(s,x) € [0,T] x E and ¢ € D(A), M**[¢] is bounded and is therefore a martingale.

We fix (s,z) € [0,T] X E, ¢ € D"**(9; + A) and s < t < u < T and we will show that

E5* |\ é(u, Xy) — o(t, Xi) — /tu((?t + A)p(r, X, )dr

]-'t] =0, (3.B.2)

which implies that ¢(-, X.) — [ (0; + A)p(r, X,.)dr, t € [s,T] is a P**-martingale. We have

E5*[p(u, Xu) — &(t, X¢)|F]
= E*"[(@(u, Xi) — o(t, Xi)) + (o(u, Xu) — ¢(u, X)) F]
1D [ftu 8t¢(r7 Xt)dr + (ftu A¢(u7 XT)dr + (Ms’z[d)(ua )]u - Msw[gb(ua )]t)) ’]:t]
E5* [ftu 8%%)(7", Xt)dT + ftu A¢(U, Xr)d’l”|.Ft]
= lo— 5L+ Iy,

where Iy = B [ [" 0,(r, X, )dr + [} Ad(r, X,)dr|F]; I = B [ [“(0(r, X;) — Dyb(r, X1))dr|Fi]
L =E* [ ["(Ad(u, X;) — Ag(r, X;))dr|Fy]. will be established if one proves that [; = . We
do this below.
At fixed r and w, v — A¢(v, X, (w)) is C!, therefore A¢(u, X, (w))—Ad(r, Xr(w)) = [ 0 A (v, X, (w))dv
and I, = E$~ [ftu fTu Oy Ad(v, Xr)dvdr|]:t]. Then
I =E* [ [* [ Adp(r, Xy )dvodr|Fy| + ES* [ [[*(M**[0p(r,)]r — M>[0s(r, )] )dr|Fe] .
Since 0,¢ and Ad;¢ are bounded, M**[0;¢(r, )], (w) is uniformly bounded in (r,w), so by Fubini’s
theorem for conditional expectations we have

B[ [ (M7 [0pp(r, )] — M>T[0p(r, -)]e)dr | Fi]
= [ EYEIMET0p(r, ) — MOT[0pb(r, ) e Feldr (3.B.3)
0.

Finally since 0;A¢ = A0:;¢ and again by Fubini’s theorem for conditional expectations, we have
Es* [ [* [Y 0, Ad(v, Xy )dvdr|Fy) = E* [[* [ Add(r, X, )dvdr|F;] so I = I which concludes the
proof. O

In conclusion we can state the following.

Corollary 3.B.8. Given a homogeneous Markov class (IP*) ¢ g solving a well-posed homogeneous Martingale
Problem associated to some (D(A), A), there exists a Markov class (P*%) (; )e[o,1)x £ Which transition kernel
is measurable in time and such that for any algebra A included in D™ (9 + A), (P>%) (s 2)el0,1)x E S0lves
the well-posed Martingale Problem associated to (9; + A, A, V; = t) in the sense of Definition [3.2.3




Chapter 4

Martingale driven BSDEs, PDEs and other
related deterministic problems

This chapter is the object of paper [11].

Abstract

We focus on a class of BSDEs driven by a cadlag martingale and corresponding Markov type
BSDEs which arise when the randomness of the driver appears through a Markov process. To
those BSDEs we associate a deterministic problem which, when the Markov process is a Brownian
diffusion, is nothing else but a parabolic type PDE. The solution of the deterministic problem is
intended as decoupled mild solution, and it is formulated with the help of a time-inhomogeneous
semigroup.

4.1 Introduction

Markovian backward stochastic differential equations (BSDEs) are BSDEs in the sense of [71] involv-
ing a forward dynamics described by a Markov (often a diffusion) process X. Those are naturally
linked to a parabolic PDE, which constitutes a particular deterministic problem. In particular, under
reasonable conditions, which among others ensure well-posedness, the solutions of BSDEs produce
viscosity type solutions for the mentioned PDE. In this paper we focus on Pseudo-PDEs which are
the corresponding deterministic problems associated to the case of a Markovian BSDE when this is
driven by a cadlag martingale and when the underlying forward process is a general Markov pro-
cess. In that case the concept of viscosity solution (based on comparison theorems) is not completely
appropriated. For this we propose a new type of solution called decoupled mild which extends the
usual notion of mild solution which is very familiar to the experts of PDEs. We establish an existence
and uniqueness theorem in the class of Borel functions having a certain growth condition.

In the Brownian framework, BSDEs were introduced first by E. Pardoux and S. Peng in [71]. An
interesting particular case appears when the random dependence of the driver generally denoted by
f comes through a diffusion process X and the terminal condition only depends on Xr. The solution,
when it exists, is usually indexed by the starting time s and starting point = of the forward diffusion
X = X*7,and it is expressed by

Xt = a4 [LB0n XP)dr + [Lo(r, XP")dB,, te[0,T) 41.1)
YO = g(XEN) 4 [T XN Y 20 dr — [T 2B, te[0,T), -
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where B is a Brownian motion. In [76] and in [72] previous Markovian BSDE was linked to the
semilinear PDE
dyu + % Z (O-O-T)i,ja%im]-u + Zﬁlaﬂﬁzu + f((a '),’LL, O’Vu) =0 on [O’T[XRd
i,j<d i<d (4.1.2)

In particular, if has a classical smooth solution u then (Y%, Z5%) := (u(-, X*"), o Vu(-, X*7))
solves the second line of (4.1.1)). Conversely, only under the Lipschitz type conditions on 3, o, f, g, the
solution of the BSDE can be expressed as a function (u,v) of the forward process, i.e. (Y*%, Z%%) =
(u(-, X5*),v(-, X5")), see [43]. When f and g are continuous, u is a viscosity solution of (4.1.2). In
chapter 13 of [8], under some specific conditions on the coefficients of a Brownian BSDE, one pro-
duces a solution in the sense of distributions of the parabolic PDE. Later, a first notion of mild solu-
tion of the PDE was used in [4]. In [52] v was associated with a generalized form of cVu. Excepted
in the case when previous u has some minimal differentiability properties, it is difficult to say some-
thing more on v. To express v in the general case, for instance when w is only a viscosity solution of
the PDE, is not an easy task. Some authors call this the identification problem.

In [7] the authors introduced a new kind of Markovian BSDE including a term with jumps gener-
ated by a Poisson measure, where an underlying forward process X solves a jump diffusion equation
with Lipschitz type conditions. They associated with it an Integro-Partial Differential Equation (in
short IPDE) in which some non-local operators are added to the classical partial differential maps,
and proved that, under some continuity and monotonicity conditions on the coefficients, the BSDE
provides a viscosity solution of the IPDE. Concerning the study of BSDEs driven by more general
martingales than Brownian motion, we have already mentioned BSDEs driven by Poisson measures.
In this respect, more recently, BSDEs driven by marked point processes were introduced in [24], see
also [5]; in that case the underlying process does not contain any diffusion term. Brownian BSDEs
involving a supplementary orthogonal term were studied in [43]. A notion of BSDE driven by a mar-
tingale also involving a supplementary orthogonal martingale has appeared, see for instance [20],
[22] and references therein.

In this paper, we consider a BSDE whose given data are a continuous increasing process V, a
square integrable martingale M, a terminal condition ¢ and a driver f. A solution will be a couple
(Y, M) verifying

. .
Y =¢ +/ f (n LY, ‘W(r)) vV, — (Myp — M.), (4.1.3)

where Y is cadlag adapted and M is a square integrable martingale. We show existence and unique-
ness of a solution for (4.1.3).

We will then be interested in a canonical Markov class (P*) 4 2)e[0,71x g With time interval [0, T']
and state space I being a Polish space. This will be supposed to be a solution of a martingale problem
related to an operator (D(a), a) and a non-decreasing function V/, meaning that for any ¢ € D(a), and
(s,x) € [0,T) x E, M[¢]*" := L5 77 (6(-, X.) — ¢(s,2) — [ a(¢)(r, X,)dV}) is a P**-square integrable
martingale. We will fix some function ¢ := (1, -+ ,%4) € D(a)? and at Notation we will
introduce some special BSDEs driven by a martingale which we will call Markovian BSDEs.

Those will be indexed by some (s, ) € [0, T]x E, defined in some stochastic basis (2, 7*%, %% P*%)
and will have the form

d<MS,I’ M[w]57x>
dVv

T
Yo = g(Xr) + / f ( X, Y, <r>) aV; — (MG" — M), (4.1.4)

where X is the canonical process, g is a Borel function with some growth condition and f is a Borel
function with some growth condition with respect to the second variable, and Lipschitz conditions
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with respect to the third and fourth variables. Those Markovian BSDEs will be linked to the Pseudo-
PDE

{ a(w)+ f (- u,IYw) = 0 on[0,T]xE (4.1.5)

U(T, ) = 9
where TV (u) = (a(u);) — ua(i;) — Yia(u));ep,qp- see Definition We introduce the notion of
classical solution which is an element of D(a) fulfilling @.1.5). We call 'V the i-generalized gradient,
due to the fact that when E = R%, a = 8, + 1A and v; : (t,z) —> w; foralli € [1,d] thenT'¥(u) = Vu.
In this particular setup, the forward Markov process is of course the Brownian motion. In that case
the space D(a) where classical solutions are defined is C2([0, T] x R%).

We show the existence of a Borel function u in some extended domain D(a) such that for every
(s,x) € [0,T]xE,Y*"is, on[s, T], a P**-modification of u(-, X.). At Definition4.5.8lwe will introduce
the notion of martingale solution for the Pseudo-PDE (4.1.5). We then show that previous u is the
unique martingale solution of (£.1.5), which means that it solves (£.1.5) where the maps a and I'? are
respectively replaced with some extended operators a and &Y. We also show that previous u is the
unique decoupled mild solution of the same equation. We explain below that notion of solution which
is introduced at Definition

A Borel function u will be called decoupled mild solution if there exists an R¢-valued Borel func-
tion v := (v1, -+ ,v4) such that for every (s, z),

u(s;w) = Porlgl(@) + [ Porlf (5 u,0) ()] (@)Y,
upr(s,x) = Porlgi(T,-)](x) — fs Py [(v1 +ua(r) — o f (- u,0)) (r, )] ()dVi (4.1.6)
Wﬂd(&x) = sT[gwd f Psr Ud"i_ua(wd) _wdf ('7'7“’71})) (’I",')] (l‘)d‘/r,

where P is the time-dependent transition kernel associated to the Markov class and to the operator
a, see Notation v coincides with &¥(u) and the couple (u,v) will be called solution to the
identification problem, see Definition The intuition behind this notion of solution relies to the
fact that the equation a(u) = —f (-, -,u,'¥(u)) can be decoupled into the system

a(u) = —f(,-u,v)
{ v; = T%i(u), ie][l;d], (4.1.7)

which may be rewritten

a(u) = —f(-,-,u,v)
{ a(wﬁz) = v; +ua % — szf(’ ',U,U), = [1’ d]] (418)

Martingale solutions were introduced in Chapter |2/ and decoupled mild solutions in Chapter (3} in
relation to a specific type of Pseudo-PDE, for which v was one-dimensional and which did not in-
clude the usual parabolic PDE related to classical BSDEs. A first approach to classical solutions to
a general deterministic problem, associated with forward BSDEs with applications to the so called
Follmer-Schweizer decomposition was performed by [64].

The paper is organized as follows. In Section 4.3 we introduce an alternative formulation {#.1.3)
for BSDEs driven by cadlag martingales discussed in [22]: we formulate in Theorem existence
and uniqueness for such equations. In Section we introduce a canonical Markov class and the
martingale problem which it is assumed to solve. We also define the extended domain D(a) in Defini-
tion and the extended operator a (resp. &%) in Deﬁnition (resp. Notation 4.4.16). In Sec-
tion4.5] we introduce the Pseudo-PDE (see Definition4.5.3), the associated Markovian BSDEs
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(4.1.4), see Notation[4.5.6f We introduce the notion of martingale solution of the Pseudo-PDE in
and of decoupled mild solution in Definition Propositions [4.5.15|and [4.5.16| show the equiva-
lence between martingale solutions and decoupled mild solutions. Proposition [4.5.17]states that any
classical solution is a decoupled mild solution and conversely that any decoupled mild solution be-
longing to D(T'¥) is a classical solution up to what we call a zero potential set. Let (Y**, M*%) denote
the unique solution of the associated BSDE #.1.4), denoted by BSDE**(f, g). In Theorem [4.5.18 we
show the existence of some u € D(a) such that for every (s, x) € [0, T] x E, Y** is a P**-modification
of u(-, X.) on [s,T]. Theorem states that the function (s,z) — Y5"" is the unique decoupled
mild solution of {#.1.5). Proposition states that if the functions (u,v) verify (4.1.6), then for

any (s,z), the couple of processes (u(t, Xe), u(t,X¢) —u(s,x) + fst fs - u,v)(r, XT)dVr>t n has
€ls,

a IP5*-version which solves BSDE**(f, g) on [s,T]. Finally in Section 4.6l we study some examples

of applications. In section we deal with parabolic semi-linear PDEs and in Section with

parabolic semi-linear PDEs with distributional drift.

4.2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.

For any integers k < n, [k; n] will denote the set of integers i verifying k < i < n.

A topological space E will always be considered as a measurable space with its Borel o-field which
shall be denoted B(E). If (F, dr) is a metric space, C(E, F') (respectively Cy(E, F'), B(E, F'), By(E, F'))
will denote the set of functions from E to F' which are continuous (respectively bounded continuous,
Borel, bounded Borel). T will stand for a real interval, of type [0, 7] with T" € R or R;.

On a fixed probability space (2, F, P), for any p > 0, LP will denote the set of random variables with
finite p-th moment. A probability space equipped with a right-continuous filtration (Q2, 7, F := (F¢)teT, P)
will be called called a stochastic basis and will be said to fulfill the usual conditions if the probabil-
ity space is complete and if F; contains all the IP-negligible sets. We introduce now some notations
and vocabulary about spaces of stochastic processes, on a fixed stochastic basis (€2, 7, I, P). Most of
them are taken or adapted from [60] or [61]. We will denote V (resp V) the set of adapted, bounded
variation (resp non-decreasing) processes vanishing at 0; V¥ (resp VP»") the elements of V (resp V)
which are predictable, and V¢ (resp V“T) the elements of V (resp V) which are continuous; M will
be the space of cadlag martingales. For any p € [1, 00|, HP will denote the Banach space of elements
of M for which || M ||3» := E[[sup M, \p]% < oo and in this set we identify indistinguishable elements.

teT
H}, will denote the Banach subspace of H? of elements vanishing at zero.

If T = [0,T] for some T' € RY, a stopping time will take values in [0,7] U {+o00}. Let Y be a process
and 7 a stopping time, we denote by Y7 the stopped process t — Yirr. If C is a set of processes,
we define its localized class Cj,. as the set of processes Y such that there exist a localizing sequence
(Tn)n>0 such that for every n, the stopped process Y™ belongs to C. By localizing sequence of stop-
ping times we mean an increasing sequence of stopping times (7,,),>0 such that a.s. there exists
N € N for which 7y = +cc.

For any M, N € M;,., we denote [M, N] their quadratic covariation and simply [M] if M = N and
if moreover M, N € H2 , (M, N) will denote their (predictable) angular bracket, or simply (M) if
M = N.

Pro will denote the o-field generated by progressively measurable processes defined on [0,77] x .

From now on, we are given 7" € R’ . Until the end of Section we also fix a stochastic basis
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(Q, F,F := (Fi)teo,), P) fulfilling the usual conditions.

Definition 4.2.1. Let A and B be in V. We will say that dB dominates dA in the sense of stochastic
measures (written dA < dB) if for almost all w, dA(w) < dB(w) as Borel measures on [0, T)].

We will say that dB and dA are mutually singular in the sense of stochastic measures (written dA1dB)
if for almost all w, the Borel measures dA(w) and dB(w) are mutually singular.

Let B € V*. dB ® dP will denote the positive measure on

(Q % [0,T],F @ B([0,T7)) defined for any F € F @ B([0,T]) by

dB®dP(F)=E [ fOT 1p(w,r)dB, (w)} . A property which holds true everywhere except on a null set for this
measure will be said to be true dB & dIP almost everywhere (a.e.).

The proposition below was the object of Proposition in Chapter

Proposition 4.2.2. For any A and B in VPt there exists a (non-negative
dB ® dP a.e.) predictable process %4 and a process in VPt AL such that

dA*P 1 dBand A= AP + AP as.,

where AP = [, %(r)dBr. The process AL is unique up to indistinguishability and the process g—g is unique
dB ® dP a.e.

The predictable process %2 appearing in the statement of Proposition will be called the
Radon-Nikodym derivative of A by B.

If A belongs to V, we will denote by Var(A) (resp. Pos(A), resp Neg(A)) the total (resp. positive,
resp. negative) variation of A, meaning the unique pair of elements V* such that A = Pos(A) —
Neg(A), see Proposition 1.3.3 in [61] for their existence. If A is in V?, and B € VP, We set j—g =

dPos(A) _ dNeg(4) ang ALE .= Pos(A)LP — Neg(A)-B.

Below we restate Proposition in Chapter

Proposition 4.2.3. Let Ay and As be in VP, and B € VP, Then,

dAtAs) _ ddy | ddy B & dIP ae. and (Ay + As)tB = ALB 4 ALB.

The following lemma was the object of Lemma [2.5.13]in Chapter 2}

Lemma 4.2.4. Let V be a non-decreasing function. If two measurable processes are IP-modifications of each
other, then they are also equal dV & dIP a.e.

4.3 An alternative formulation of BSDEs driven by a cadlag martingale

We are now going to introduce here an alternative formulation for Backward Stochastic Differential
Equations driven by a general cadlag martingale investigated for instance by [22].

Given some V € Vo, we will indicate by L2(dV ®dP) the set of (up to indistinguishability) progres-
sively measurable processes ¢ such that [E| fOT P2dV;] < oc.
L£2cadlag (4 @ dP) will denote the subspace of cadlag elements of £2(dV ® dP).
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We will now fix a bounded process V € Vot, an Fr-measurable random variable ¢ called the fi-
nal condition, a square integrable reference martingale M := (M!, ... M¢9) taking values in R?

~

for some d € N*, and a driver f : ([0,7]x Q) x R x R? — R, measurable with respect to
Pro® B(R) @ B(R?). We will assume that (¢, f, M) verify the following hypothesis.

Hypothesis 4.3.1.
1. £eL?
2. f(-,-,0,0) € L2(dV @ dP);

3. There exist positive constants KY | K such that, P a.s. for all t,y,v/', z, 2', we have

|f(t7 Y, Z) - f(t7 'aylaz/)| S Ky‘y - y/| + KZHZ - Z,H; (431)

M) ;
4. =+ is bounded.
We will now formulate precisely our BSDE.

Definition 4.3.2. We say that a couple (Y, M) € £2<4a9(qV @dIP) x H2 is a solution of BSDE(E, f,V, M)
if it verifies

, A
v [ (e S8 ) ) a0 132

in the sense of indistinguishability.

The proof of the theorem below is very similar to the one of Theorem [2.3.21|in Chapter [2| For the
convenience of the reader, it is therefore postponed to Appendix[4.A]

Theorem 4.3.3. If (&, f, v, M) verifies Hypothesis then BSDE(, f, v, M) has a unique solution.

Remark 4.3.4. Let (¢, f,V, M) satisfying Hypothesis We can consider a BSDE on a restricted in-
terval [s,T) for some s € [0,T[. Previous discussion and Theorem extend easily to this case. In par-
ticular there exists a unique couple of processes (Y, M?®), indexed by [s,T| such that Y* is adapted, cad-

lag and verifies E[ fST(Y;f)QdVT] < oo, such that M? is a martingale vanishing in s and such that Y° =

€+ fo (r, LY, d%;’m (r)) dv, — (M3 — M?) in the sense of indistinguishability on [s, T).

Moreover, if (Y, M) denotes the solution of BSDE(E, f,V, M) then (Y, M. — M,) and (Y'*, M) coincide on
[s, T']. This follows by an uniqueness argument resulting by Theorem on time interval [s,T).

4.4 Martingale Problem and Markov classes

In this section, we introduce the Markov process which will later explain the random dependence
of the driver f of our BSDE driven by a cadlag martingale. For that reason that BSDE will be called
Markovian.

For details about the exact mathematical background necessary for our Markov process, one can
consult Section of the Appendix. That process will be supposed to solve a martingale problem
described below.

Let E be a Polish space. From now on, (€2, F,[F) denotes the canonical space and (Xi);c[o,7] the
canonical process defined in Definition We consider a canonical Markov class (IP*%) (s »)c(0,7)x E
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associated to a transition kernel measurable in time as defined in Definitions4.C.5|and 4#.C.4] and for
any (s,x) € [0,T] x E, (@, F>*, F** P**) will denote the stochastic basis introduced in Definition
and which fulfills the usual conditions.

Our Martingale problem will be associated to an operator, in a close formalism to the one of D.W.
Stroock and S.R.S Varadhan in [85].

Definition 4.4.1. Let V : [0,T] — Ry be a non-decreasing continuous function vanishing at 0.
Let us consider a linear operator a : D(a) C B([0,T] x E,R) — B([0,T] x E,R), where the domain D(a)
is a linear space.

We say that a family of probability measures (P*%) s 2)eo,1)x £ defined on (2, F) solves the martingale
problem associated to (D(a), a, V) if, for any
(s,x) € [0,T] x E, P> verifies the following.

(a) P57 (Vt € [0,s], Xy =) =1,

(b) for every ¢ € D(a), ¢(-,X.) — [, a(¢)(r, X;)dV,, t € [s,T), is a cadlag (P**,F) square integrable
martingale.

We say that the Martingale Problem is well-posed if for any (s,x) € [0,T] x E, P** is the only probability
measure satisfying those two properties.

We anticipate that well-posedness for the martingale problem will not be an hypothesis in the
sequel.

Notation 4.4.2. For every (s,z) € [0,T] x E and ¢ € D(a), the process
t Loy (8) (011 X0) = 6(s,2) = [ a(@)(r, X,)dV; ) will be denoted M[g]**.

M]|¢|®" is a cadlag (IP**, IF') square integrable martingale equal to 0 on [0, s|, and by Proposition
it is also a (IP**,IF**) square integrable martingale.

Notation 4.4.3. Let ¢ € D(a). Weset, for 0 <t <u <T

Mgl = { O, Xu) = §(t, Xi) = [[* al@)(r Xr)dV, if [[" a(9)|(r. Xp)dVy < o, (44.1)

wr 0 otherwise.

M ¢ is a square integrable Martingale Additive Functional (in short MAF), see Definition whose cadlag
version under P** for every (s, x) € [0,T] x E, is M [¢p]>*.

From now on we fix some d € N* and a vector ¢ = (v1,...,%q) € D(a)®.
For any (s,z) € [0,T] x E, the R%valued martingale (M[i1]*%,--- , M[14]**) will be denoted
MIyp)*.

Definition 4.4.4. For any ¢1, ¢p2 € D(a) such that ¢1p2 € D(a) we set I'(¢p1, p2) := a(p1¢p2) — pra(p2) —
¢2a(¢1). T will be called the carré du champs operator. We set D(I'Y) := {¢ € D(a) : Vi € [1;d], ¢2* € D(a)}.
We define the linear operator TV : D(I'Y) — B([0,T] x E,R%) by

() = (T%(0)) o= (a(dws) — da(th) = ia(6) eia) - (442)

1€[1;d]

'Y will be called the 1)-generalized gradient operator.
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This operator appears in the expression of the angular bracket of the local martingales that we
have defined.

Proposition 4.4.5. If ¢ € D(T'Y), then for any (s,z) € [0,T] x F and i € [1;d] we have
Vs

(M[G]®, M) = / I ()(r, X, )dV,. (44.3)

S

in the stochastic basis (Q, F*%, F5% P5T).

Proof. The result follows from a slight modification of the proof of Prop051t10n of Chapter [2]
in which D(a) was assumed to be stable by multiplication and M [¢]** could potent1ally be a local
martingale which is not a martingale. O

We will later need the following assumption.

Hypothesis 4.4.6. Foreveryi € [1;d], the Additive Functional (M [v;]) (see Proposition(4.C.10) is absolutely
continuous with respect to dV', see Definition

Taking ¢ = 1); for some i € [1;d] in Proposition yields the following.
Corollary 4.4.7. Ify)? € D(a) for all i € [1;d], then Hypothesis is fulfilled.

We will now consider a suitable extension of the domain D(a).

For any (s,z) € [0,T] x E we define the positive bounded potential measure U(s, z,-) on
([0,T] x E,B([0,T]) ® B(E)) by
B([0,T]) @ B(E) —> [0, V]

U s Lyt) s,x
(s,2,) — E® [fsTﬂ{(t,Xt)eA}d% :

N

Definition 4.4.8. A Borel set A C [0, T x E will be said to be of zero potential if, for any (s,z) € [0,T|x E
we have U (s, x, A) = 0.

Notation 4.4.9. Let p > 0. We introduce
L0, = LP(U(s,z,-)) = {f € B([0,T] x E,R) : E** [fsT fIP(r, X,,)dw} < oo}.
For p > 1, that classical LP-space is equipped with the seminorm

1
| lpsa: [ (EW {fST | f(r, Xr)|pdVTDp. We also introduce

L0, = LU (s,,) = {f € B(0,T) x B,R) : [T |f|(r, X,)dV, < 00 P** a.s.}.
For any p > 0 we set
= () £ (444)
(s,2)€[0,T|XE

Let N be the linear sub-space of B([0,T] x E,R) containing all functions which are equal to 0, U (s, z, ) a.e.
for every (s, x).

For any p > 0, we define the quotient space L5 = L /N.

If p > 1, L%, can be equipped with the topology generated by the family of semi-norms (|| -
which makes it a separate locally convex topological vector space, see Theorem 5.76 in [[1]].

‘p757x)(8,$)€[0,T] xE

We recall that Proposition [2.4.13|in Chapter [2|states the following.
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Proposition 4.4.10. Let f and g be in LS. Then f and g are equal up to a set of zero potential if and only if
forany (s,x) € [0,T] x E, the processes [, f(r, X,)dV; and [ g(r, X,.)dV,. are indistinguishable under P**.
Of course in this case f and g correspond to the same element of L.

We introduce now our notion of extended generator starting from its domain.

Definition 4.4.11. We first define the extended domain D(a) as the set of functions ¢ € B([0,T] x E,R)
for which there exists
x € LY such that under any P57 the process

lhﬂ(ﬂwX)—¢@#ﬁ—/wMﬂXﬁdw> 045

(which is not necessarily cadlag) has a cadlag modification in H3.
A direct consequence of Proposition 2.4.15(in Chapter 2|is the following.

Proposition 4.4.12. Let ¢ € B([0,T] x E,R). There is at most one (up to zero potential sets) x € LS. such

that under any IP*%, the process defined in has a modification which belongs to H?>.

If moreover ¢ € D(a), then a(¢) = x up to zero potential sets. In this case, according to Notation for ev-

ery (s,x) € [0, T)xE, M[¢]>" is the P** cadlag modification in Hg of L5 71 (¢(-, X.) — ¢(s, ) — [ x(r, X;)dV}.).

Definition 4.4.13. Let ¢ € D(a) as in Definition4.4.11| We denote again by M [p]*>*, the unique cadlag ver-
sion of the process @A5) in H3. Taking Proposition [4.4.10|into account, this will not generate any ambiguity
with respect to Notation Proposition 4.4.10, also permits to define without ambiguity the operator

D(a) — L%

a:
¢ — X

a will be called the extended generator.

Remark 4.4.14. a extends a in the sense that D(a) C D(a) (comparing Definitions (4.4.11|and [4.4.1) and if
¢ € D(a) then a(¢) is an element of the class a(¢), see Proposition

We also introduce an extended 1)-generalized gradient.

Proposition 4.4.15. Assume the validity of Hypothesis Let ¢ € D(a) and i € [1;d]. There exists a
(unique up to zero-potential sets) function in B([0,T] x E,R) which we will denote & ($) such that under
any P*%, (M [g]>", M [(;]**) = fs~v$ Vi (¢)(r, X,)dV, up to indistinguishability.

Proof. We fix i € [1;d]. Let M[y;] be the square integrable MAF (see Definition 4.C.9) presented in
Notation We introduce the random field M[¢] = (M[¢]!,) o<i<u<r) as follows. We fix some y in
the class a(¢) and set

o(u, Xu) — o(t, X¢) — [ x(r, Xp)dV, if [Y [x|(r, X;)dV, < 00,8 < u,

0 elsewhere, (4.4.6)

Miglh = {
We emphasize that, a priori, the function x is only in £9( implying that at fixed ¢ < u, ftu Ix|(r, Xy (w))dV,
is not finite for every w € Q, but only on a set which is P**-negligible for all (s, z) € [0,] x E.
According to Definition M]¢] is an AF whose cadlag version under P** is M[¢]**. Of course
M;]*" is the cadlag version of M [);] under P**.
By Definition since ¢ € D(a), M[p]** is a square integrable martingale for every (s, z), so
M|¢] is a square integrable MAF. Then by Corollary the AF (M(y;]) is absolutely continuous
with respect to dV. The existence of &¥i(¢) now follows from Proposition and the uniqueness

follows by Proposition O
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Notation 4.4.16. If| holds, we can introduce the linear operator

D(a) — (L)
¢ — (QS¢1(¢)’... 7®wd(¢)>7

which will be called the extended 1)-generalized gradient.

BY (4.4.7)

Corollary 4.4.17. Let ¢ € D(T'V). Then TV (¢) = &Y (4) up to zero potential sets.

Proof. Comparing Propositions 4.4.5/and 4.4.15| for every (s, z) € [0,T] x E and i € [1;d],
fs'vs % (¢)(r, X,)dV, and f;\/s Vi (¢)(r, X, )dV; are P**-indistinguishable. We can conclude by Propo-
sition 4.4.10) O

&Y therefore extends I'Y as well as a extends a, see Remark |4.4.14

4.5 Pseudo-PDEs and associated Markovian type BSDEs driven by a cad-
lag martingale

4.5.1 The concepts

In this section, we still consider 7" € R, a Polish space E and the associated canonical space (2, 7, IF')
and canonical process (Xt);c[o,7], see Definition We also consider a canonical Markov class
(P%%) (s,2)e[0,7]x E associated to a transition kernel measurable in time (see Definitions 4.C.5| and|4_.C.4[)
which solves a martingale problem associated to a triplet (D(a), a, V'), see Definition 4.4.1

We will investigate here a specific type of BSDE driven by a cadlag martingale, denoted by
BSDE(¢, f,V, M) which we will call of Markovian type, or Markovian BSDE, in the following
sense. The process V will be the (deterministic) function V introduced in Definition the fi-
nal condition £ will only depend on the final value of the canonical process X7 and the random-
ness of the driver f at time ¢ will only appear via the value at time ¢ of the forward process X.
Given a function f : [0,7] x E x R x R? — R, we will set f(t,w,y, z) = f(t,Xi(w),y,z) for
te0,T],weQycR, 2R

Given d functions i1, - - - , 1hq in D(a), we will set M := (M[1]5%, -+, M[pg]®™®).

That BSDE will be connected with the deterministic problem in Definition

We fix an integer d € N* and some functions ¢1,--- ,94 € D(a) which in the sequel, will verify
the following hypothesis.

Hypothesis 4.5.1. For any i € [1;d] we have the following
e Hypothesis holds;
o a(yy) € L%;
o &Vi(v;) is bounded.
In particular, for every i € [1;d], previous hypothesis implies the following.
Proposition 4.5.2.
e Forany (s,x) € [0,T] x E, M := M[)]** verifies item 4. onypothesiswith respect to V := V.
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e forevery (s,x) € [0,T] x E, sup |1;(t, X;)|? belongs to L' under P*%;
te(s,T)

® 1 GE%(.

Proof. The first item follows form the fact that for any (s, z) € [0, T|x E, (M [¢]**) = fs'vs &Y (v;)(r, X;)dV;
(see Proposition 4.4.15), and the fact that &Y (1;) is bounded. Concerning the second item, for any
(s,x) € [0, T] x E, the martingale problem gives ¢(-, X) = ¢;(s, ) + [ a(t;)(r, X )dV, + M [th;]>%, see
Definition|4.4.1} By Jensen’s inequality, we have sup [;(t, X;)|? < C(¥2(s, x)+fST a®(v;) (r, X, )dV,+
tels, T

sup (M;];™")?) for some C' > 0. It is therefore L! since a(¢;) € £3% and M[y;]5* € H?. The last
te(s,T)

item is a direct consequence of the second one. O

Definition 4.5.3. Let us consider some g € B(E,R) and

f€B(0,T] x E xR x R,R%).

We will call Pseudo-Partial Differential Equation related to (f,g) (in short Pseudo — PDE(f,g)) the
following equation with final condition:

{ a(u)+ f (-, u,T%w) = 0 on[0,T]x E (4.5.1)

u(T,:) = g.

We will say that u is a classical solution of Pseudo — PDE(f, g) if u,ut;, i € [1;d] belong to D(a) and if
u verifies (4.5.1).

The connection between a Markovian BSDE and a Pseudo — PDE(f, g), will be possible under
some growth conditions on the functions (f, g).

Hypothesis 4.5.4. A couple of functions f € B([0,T] x E x R x R R) and g € B(E,R) will be said to
verify H'" if there exist positive constants K | KZ such that

1. g(Xr) is L? under P*< for every (s,z) € [0,T] x E;
2. t— f(t,X4,0,0) € £%;
3. v(ta%y,y/aZ,Z,) : |f(tax)y) Z) - f(t7x,y,72,)| < KY|ZU - y,‘ + KZHZ - Z/H'

(f, g) will be said to verify HI"V™" if the following lighter Hypothesis hold. There exist a positive constant C
such that

1. g(Xr) is L? under P5< for every (s,z) € [0,T] x E;

2. t— f(t,X4,0,0) € £%;

3' v(ta xz, y7z) : |f(t7x7y7 Z)| S C(f(twrv 07 0) + ‘y’ + HZH)
Remark 4.5.5. We fix for now a couple (f, g) verifying H v, For any (s,z) € [0,T] x E, in the stochastic
basis (Q, F*¥, F>*, P*7) and setting V' := V., the triplet £ := g(X7), f : (t,w,y,2) — f(t, Xi(w),y, 2),
M := M[)]** verifies Hypothesis

With the equation Pseudo — PDE(f, g), we will associate the following family of BSDEs indexed
by (s,z) € [0,T] x E, driven by a cadlag martingale.
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Notation 4.5.6. For any (s,z) € [0,T] x E, we consider in the stochastic basis (2, 7>, F** P**) and
on the interval [0, T the BSDE(E, f,V, )where§ = g(X7), f (t,w,y,2z) — f(t, X¢(w),y,2), M =
M{[y]*").

This BSDE will from now on be denoted BSDE®*®(f,g) and its unique solution (see Theorem and
Remark 4.5.5) will be denoted (Y%, M*%).

If H' is fulfilled by (f, g), then (Y%, M*7) is therefore the unique couple in £2(dV @ dP**) x H2
verifying

d(M*>", M[y]**)
av

T
YS® = g(Xp) + / f <r, X, Y5, (r)) AV, — (M3* — M%), (4.5.2)

Remark 4.5.7. Even if the underlying process X admits no generalized moments, given a couple (f, g) such
that f(-,-,0,0) and g are bounded, the considerations of this section still apply. In particular the connections
that we will establish between the BS DE®™( f, g) and the corresponding Pseudo— PDE( f, g) still take place.

The goal of our work is to emphasize the precise link under general enough conditions between
the solutions of equations BSDE**( f, g) and of Pseudo—PDE(f, g). In particular we will emphasize
that a solution of BSDE**(f, g) produces a solution of Pseudo — PDE( f, g) and reciprocally.

We now introduce a probabilistic notion of solution for Pseudo — PDE(f, g).

Definition 4.5.8. A Borel function u : [0,T] x E — R will be said to be a martingale solution of Pseudo—
PDE(f,g) ifu € D(a) and
Cl(u) = _f('7'7u7 6w(u))
453
{ U(Tv ) = g ( )

Remark 4.5.9. The first equation of (&5.3) holds in LS, hence up to a zero potential set. The second one is a
pointwise equality.

Proposition 4.5.10. Let (f, g) verify H9""t". Let u be a martingale solution of Pseudo — PDE(f, g). Then
forany (s, z) € [0,T] x E, the couple of processes

<u(t,Xt), u(t, X;) — u(s, ) /f e, BY( ))(r,XT)dV,) - (4.5.4)

has a P5*-version which is a solution on (s, T] of BSDE**(f, g), see Remark[4.3.4]
Moreover, u € ng.

Proof. Letu € D(a) be a solution of {¢.5.3) and let (s, z) € [0,T] x E be fixed. By Definition and
Remark the process u(-, X.) under P** admits a cadlag modification U*” on [s, T, which is a
special semimartingale with decomposition

Ust = s,:c + [ af dV+M[]’”
e T ), 8%, %) v + M (455)
= u(s,@) = [, f (. X, U, ST ) v, 4 M),

where the third equality of (4.5.5) comes from Lemma and Proposition 4.4.15 Moreover since
uw(T,-) = g, then Uy" = u(T, X1) = g(Xr) as. so the couple (U, M[u|*") verifies the following
equation on [s, T'] (with respect to P*%):

T uls® S,T
US* = g(Xr) + / f (r, X, U™, d(Mlu] d"/MM >(r)> dVy — (Mu]" — M[u]*™®).  (45.6)
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Mu]** (introduced at Definition belongs to 2 but we do not have a priori information on
the square integrability of U**. However we know that M[u]*” is equal to zero at time s, and that
U:"" is deterministic so square integrable. We can therefore apply Lemma[#.A.12] which implies that
(U**, M[u]*®) solves BSDE**(f, g) on [s, T]. In particular, U*? belongs to £?(dV ® dP*%) for every

(s,2),s0 by Lemma and Definition u € L%. O
4.5.2 Decoupled mild solutions of Pseudo-PDEs

In this section we introduce an analytical notion of solution of our Pseudo — PDE(f, g) that we will
denominate decoupled mild since it inspired by the mild solution of partial differential equation. We
will show that it is equivalent to the notion of martingale solution introduced in Definition [4.5.8]

Notation 4.5.11. Let P denote the transition kernel of the canonical class (see Definition . Let s,t in
[0,T)withs <t,xz € Eand ¢ € B(E,R), if ¢ is integrable with respect to P (z,-), then Ps4[¢](x) will
denote its integral.

We recall two important measurability properties.
Remark 4.5.12.

o Let ¢ € B(E,R) be such that for any (s, x,t), E**[|¢(X¢)|] < oo, then (s, z,t) — Py [¢](x) is Borel,
see Proposition[3.A.12)in Chapter 3|

o Let ¢ € L, then (s,z) — f P . [¢](x)dV; is Borel, see Lemma in Chapter

Our notion of decoupled mild solution relies on the fact that the equation a(u)+ f (-, -, u, T'¥ (u)) =
0 can be naturally decoupled into

a(u) = —f(,-u,v)
{ vi = T¥i(u), i€ [1;d]. (4.5.7)

Then, by definition of the carré du champ operator (see Definition [4.4.4), we formally have i € [1;d],
a(uth;) = T¥i(u) + ua(vy;) + ia(u). So the system of equations (£.5.7) can be rewritten as

atu) = —f(,-u,v)
{ a(uh;) = wvi+uaty) —if(-, - u,v), i€ [l;d]. (4.5.8)

Inspired by the usual notions of mild solution, this naturally leads us to the following definition
of a mild solution.

Definition 4.5.13. Let (f, g) be a couple verifying HI" V", Let
u € B([0,T] x E,R) and v € B([0,T] x E,R%).

1. The couple (u,v) will be called solution of the identification problem determined by (f,g) or
simply solution of IP(f,g) if u,v1,- - ,vq belong to L3 and if for every (s,z) € [0,T] x E,

u(s,z) = +fs s,r Lf (Cusv) ()] (2)dV
UT,Z)l(S,ZL') = sT[g¢1 T, )] ZL‘ fST Ps,r U1 +ua(¢1) _wlf (',',U,’U)) (7", )} (ZE)C“/;A
wpa(s,#) = Porlgva(T,))(@) = [ Por [(va+ua(a) = af (- u,0)) ()] ()dV;.

4.5.9)
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2. The function v will be called decoupled mild solution of Pseudo— PDE(f, g) if there exist a function
v such that the couple (u, v) is a solution of IP(f,g).

Lemma 4.5.14. Let u,vy,--- ,vq € L%, let (f,g) be a couple satisfying HI™V'" and let 1)y, - - - ,1bg verify
Hypothesis Then f (-, -, u,v) belongs to L% and for every i € [1;d], ¥if (-, -, u,v), and ua(1);), belong
to LY. Forany (s,z) € [0,T) x E, i € [1;d], g(Xr)¢;(T, Xr) belongs to L' under P*. In particular, all
terms in make sense.

Proof. Thanks to the growth condition on f in H9"°%!", there exists a constant C' > 0 such that for any
(s,z) €10, T] x E,

[E5* [ftT fz(rv XT: u(r, XT)’ U(’I”, XT))dVT]

T (4.5.10)
< OB [T (20, X0, 0,0) + w2(r, X)) + [[0](r, X))V, |

Previous quantity is finite since we have assumed that u, vy, - - - , v4 belong to £%, taking into account
Hypothesis H9"°%*", This means that f2 (-, -, u,v) belongs to £ . All the other assertions are easily
obtained taking into account Hypothesis HIowth and the classical inequality 2|ab| < a?+b%. O

Proposition 4.5.15. Let (f, g) verify H9"*"t". Let u be a martingale solution of Pseudo — PDE(f, g), then
(u, &Y (u)) is a solution of I P(f, g) and in particular, u is a decoupled mild solution of Pseudo— PDE(f, g).

Proof. Let u be a martingale solution of Pseudo — PDE(f, g). By Proposmonm u € L%. Taking

into account Definition[4.4.13} for every (s,z), M[u]*® € HZ under P*?. So by Lemma[{.A.2} for any
€ [1;4], d<M[u]s’2§i\/[ L") belongs to £?(dV ® dP*%). Taking Proposition 4.4.15/into account, this

means that &¥i(u) € L3 for every i. By Lemma it follows that f (-, -, u, 7 (u)) belongs to L3

and so for any i € [1;d], ¢ f (-, -, u, &% (u)) and ua(y);), belong to L.

We fix some (s, z) € [0,T] x E and the correspondent probability P**, and we are going to show that

u(s,z) = Purlgl() Psr 4, 0%00) 9] ()
UK/Jl(S,(E) = sT[gwl fs s,T [( wl) (¢1) - ¢1f ('7 5 U, 61/1(“))) (’I’, )] ('r)dVT’
u¢d(37x) = sT[gwd fSTP [( wd) + ua(wd) wdf ('7 5 U, 61[1(“))) (T? )} (x)d‘/;“

(4.5.11)
Combining Definitions4.4.11} 4.4.13} |4.5.8, we know that on [s, T'], the process u(-, X.) has a mod-
ification which we denote U** which is a special semimartingale with decomposition

US* =u(s,z) — /s I (-, U, Q5¢(u)) (r, X;)dV, + M[u]**, (4.5.12)

and M[u]®* € H3.
Definition [4.5.8|also states that u(T’,-) = g, implying that

T
u(s, ) = g(Xr) + / 7 (2.8 (W) (r. X,)aV, — Muli® as 45.13)
Taking the expectation, by Fubini’s theorem we get

u(s,z) = Esr[ (X2)+ JF 1 (e u, ©%(w) (T,Xr)dw}

(4.5.14)
= ) + [ Py [f (ryulr, ), 8 (u)(r,))] (2)dV.
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We now fix i € [1;d]. By integration by parts, taking (4.5.12) and Definition into account, we
obtain

d(Uis’I%(t’Xt)) = —1/%‘(757 Xt)f ( ' u7®¢(u)) (taXt)d‘/t +¢i(t_7Xt*)dM[u]f7x

U a0 (6 XOVi + Uy dME " + il M), 91
so integrating from s to 7', we get
ui(s, )
= g(Xr)0i(T, Xr) + [T 0a(t, X f (0, 8% (w) (r, X )dVe — [T bi(r™, X )dM [u]3"
— [ U a(i)(r, Xo)dVy — [ URTdMle® — [Mu]*®, M4
= Q(XT)@Z%(T’ XT) - fsT (Ua(%) - %f ('a 5 U, ®w(u))) d‘/?’ fs wl )dM[u]ws"’m
SO M~ (M), M),
(4.5.16)

where the latter equality is a consequence of Lemma [4.2.4]

The next step will consist in taking the expectation in equation (4.5.16), but before, we will check that
LU dM ;)" and [ i(r~, X,— )dM [u];”* are martingales.

By Propos1t1onm [i]5%) = [° &%i(4;)(r, X, )dV;. So the angular bracket of [ UZFdM [aps]7"

at time 7" is equal to f u? BV (1/}1)(7“ X,)dV, which is an integrable r.v. since &¥i(1;) is bounded and
u € L%. Therefore [, U™ dM[i);];"" is a square integrable martingale.
Then, by Hypothesis |4.5.1] and Proposition 4.5.2] sup [;(t, X;)|?> € L', and by Definition [4.4.13
tels,T]

Mlu]** € H? so by Lemma|2.3.17|in Chapter 2} [ ¢;(r~, X,-)dM[u]?" is a martingale.

We can now take the expectation in (4.5.16)), to get

u;(s, x)
= B | g(Xp)i(T, X7) — [ (ua(er) — i f (0 u, 8 (w)) (r, X,)dV; — [M[u]>® M[W]”]T}
= B |g(Xn)ei(T, Xr) — [ (alt) + &V (w) = i (o0, 8% (w)) (r, X, )V
(4.5.17)

since u and 1; belong to D(a). Indeed the second equality follows from the fact [M[u]**, M[1);]5*] —
(M[u]®*, M [1;]>") is a martingale and Proposition4.4.15

Since we have assumed that u € £%, Lemma {4.5.14/says that f (-,-,u, 8% (u)) € L%, Hypothesis
4.5.1/implies that ¢; and a(1;) are in £%;, so all terms in the integral inside the expectation in the third
line belong to £},. We can therefore apply Fubini’s theorem to get

wi(s,0) = Palgw(T. (@) ~ | "o [(wa) + % ) uf (0. 8%))) (19)] (@Y
(4.5.18)
This concludes the proof. O

Proposition admits a converse implication.

Proposition 4.5.16. Let (f, g) verify HI“*". Every decoupled mild solution of Pseudo — PDE(f,g) is a
also a martingale solution. Moreover, if (u,v) solves I P(f, g), then v = &Y (u), up to zero potential sets.

Proof. Let u and v;, i € [1;d] in £% verify [@.5.9). We observe that the first line of (£5.9) with s = T
gives u(T,-) = g.
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We fix (s,z) € [0,7] x E and the associated probability P**. On [s,T], we set U := u(:,X) and
N =u(, X) —u(s,z) + [ f(r, Xp,u(r, Xp),0(r, Xy))dV,.

For some ¢ € [s,T], we combine the first line of (4.5.9) applied in (s,z) = (¢, X;) and the Markov
property C.3). Since f (-, -, u,v) belongs to L3 (see Lemma {4.5.14) we get the a.s. equalities

Ut = (t Xt)
= Prlgl(X0) +ftTPM [f (r, -y ulr, ), 0(r, )] (Xe)dV;
— [ELXt |:g( +ft T‘ Xr,u r X) ( r))d‘/r:| (4.5.19)

— e [g(XT "‘ft (r, Xp, u(r, X;),v(r, r))dVH]:t} ,

from which we deduce that N; = E** [g(XT) + [T £, X u(r, X,), 0(r, XT))dmft} — u(s,z) as.

and so N is a martingale. We can therefore consider on [s, 7] and under IP*7, the cadlag version N**
of N. We extend now N;**, to t € [0, 7], putting its value equal to zero on [0, 5|, and consider the
special semimartingale

US* = u(s,z) — / f(r, Xo,u(r, X)), v(r, X;))dV, + N*%, (4.5.20)

indexed on [s, T'] which is obviously a cadlag version of U.
By Jensen’s inequality, we have

Es’m[(N;“7x)2] = [E5% {(Q(XT) + fSTf(r, X u(r, X,),v(r, X;.))dV, — u(s,x))Q]
< 8u(s, ) + 3B [gA (X)) + 3B | [T £2(r, Xy, u(r, X, v(r, X))V (4.5.21)
< oo,

where the second term is finite because of H97°%*", and the third one because f (+,-,u,v) belongs
to L%, see Lemma So N*7 is square integrable. We have therefore shown that under any
P5*, the process (u(-, X.) — u(s, ) + [, f(r, X;, u(r, X,),v(r, X;.))dV;) 1[5 7 has a modification in 3.
According to Definitions 4.4.11|and 4.4.13|we have u € D(a), a(u) = —f(-, -, u,v) and for any (s,z) €
[0,T] x E, M[u]®>* = N®" in the sense of P**-indistinguishability.

So to conclude that u is a martingale solution of Pseudo— PDE(f, g), there is left to show &% (u) = v,
up to zero potential sets. By Proposition this is equivalent to show that for every (s,z) €
[0,7] x Eand i € [1;d],

Vs
(M5 [u], M**[]) = / vi(r, X;)dVi, (4.5.22)
in the sense of indistinguishability.

We fix again (s,z) € [0,7] x E, the associated probability, and some i € [1;d]. Combining the
(14 1)th line of (4.5.9) applied in (s, x) = (¢, X;) and the Markov property (4.C.3), taking into account
the fact that all terms belong to £, (see Lemma4.5.14] Hypothesis[4.5.1) we get the a.s. equalities

wi(t, Xp) = Porlgvi(T,))(Xe) = f, P [(0; + wa(es) = if (-5 u,0)) (r, )] (X3)dV,
= EM% [g(XT)w’L(Tv XT) - ftT (Ui + UG(Q/JZ) =i f ('7 5 U, U)) (1”, Xr)d‘/;:| (4523)
1D [Q(XT)wi(Tv XT) - ftT (vi =+ Ua(?/)z) - 77be (" 5 Uy U)) (Tv XT)dVTLFt} .
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Setting, for t € [s,T], Nj := wihi(t, X¢) — [ (v; +ua(yh)’ — i f (-, u,v))(r, X;)dV;, from [@5.23) we
deduce that, for any ¢ € [s,T1,

' T
NtZ = [E5T |:g(XT)’(/Jz(T7 XT) _/ (Ui +ua(¢l) 1/sz( y 5y Uy )) (n XT)dVvT

7]

a.s. So N'is a martingale. We can therefore consider on [s, T] and under P*?, the cadlag version
N&$T of N°.,

The process

/. (vi + ua(ehi) = if (-, u,0) (r, X, )dVy + ND7, (4.5.24)

is therefore a Cadlag special semimartingale which is a P**-version of u1;(-, X) on [s, T'|. But we also
had shown see ), that

US* = u(s, ) f f T, Xr,u(r X;),v(r, X,))dV, + N*% is a version of u(-, X) which by integration
by parts on the process U**;(-, X.) implies that

ui(s,z) + [ U2 a(i)(r, X )dV, + [ U5 dM* 1)),

— [ f (e, 0) (7, X )V, + [ (e, X, )dMSE ], + (M= [u], M5 [4]] (4.5.25)

is another cadlag semimartingale which is a P**-version of ut;(-, X) on [s, T]. Now (4.5.25) equals

M4V (4.5.26)

where

M = u(s,x) + /U”dM” /m , X, )dM® [ul,
+  ([M>[u], MPF[i]]e — (M5 [u], M>[i])e

is a local martingale and
t t
Vi = (M>*[ul, M>[¢i]) + / U a(@)(r, Xp)dVe = [ i f (-, u,0) (r, Xp)dV,

is a predictable with bounded variation vanishing at zero process. Now and are two
cadlag versions of u1;(-, X) on [s, T7].

By the uniqueness of the decomposition of a special semimartingale, identifying the bounded
variation predictable components and using Lemma [4.2.4|we get

[+ waw) = s ) X )av

= (M>[u], M>*[¢]) + [ wa(i)(r, Xr)dV, — / Gif (- u,0)(r, X )dV,.
This yields (M*®[u], M**[;]) = fs'vs v;(r, X;)dV, as desired, which implies (4.5.22).
0

Proposition 4.5.17. Let (f, g) verify H9"°"*". A classical solution of Pseudo—PDE(f, g) is also a decoupled
mild solution.

Conversely, a decoupled mild solution of Pseudo — PDE(f, g) belonging to D(I'V) is a classical solution
of Pseudo — PDE(f, g) up to a zero-potential set, meaning that it verifies the first equality of up toa
set of zero potential.
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Proof. Letu be a classical solution of Pseudo— PDE(f, g). Definition[4.5.3/and Corollary imply
that u(T, -) = g, and the equalities up to zero potential sets

a(u) = a(u) = —f(,u, TV (w) = (-, -, u, ¥ (u)), (4.5.27)

which shows that u is a martingale solution and by Proposition |4.5.15| it is also a decoupled mild
solution.

Similarly, the second statement follows by Proposition[4.5.16, Definition[4.5.8) and again Corollary
4417 O

4.5.3 Existence and uniqueness of a decoupled mild solution

In this subsection, the functions (f, g) appearing in Pseudo — PDE(f, g) are fixed and verify H"P.
Using arguments which are very close to those developed in Chapter [2| one can show the fol-
lowing theorem. For the convenience of the reader, we postpone the adapted proof to Appendix

Let (Y%, M*7) be for any (s,z) € [0,T] x E the unique solution of (¢.5.2), see Notation [4.5.6]

Theorem 4.5.18. Let (f, g) verify H'"P. There exists u € D(a) such that for any (s,z) € [0,T] x E

Vte s, T): Y = u(t,X:) P5*as.
MST  — M[u]s,x’

and in particular w = &% (u)(-, X.) dV @ dP*? a.e. on [s, T|. Moreover, for every (s, z), Ys'" is
P5* a.s. equal to a constant (which we shall still denote Ys™*) and u(s, z) = Y5" for every (s,z) € [0,T] x E.

Corollary 4.5.19. Let (f, g) verify H""P. For any (s,x) € [0,T] x E, the functions u obtained in Theorem

[.5.18| verifies P** a.s. on s, T
T
(t,X0) = 9(Xr)+ [ F (X ulr, X, 8 ) X)) V= (M[ly = M),

and in particular, a(u) = —f(-, -, u, &Y (u)).
Proof. The corollary follows from Theorem [4.5.18 and Lemma O

Theorem 4.5.20. Let (P**)(, . e[0,7]x £ be a Markov class associated to a transition kernel measurable in time
(see Definitions [4.C.5|and |4.C.4) which solves a martingale problem associated with the triplet (D(a),a, V).
Let (f, g) be a couple verifying H'™.

Then Pseudo — PDE(f,g) has a unique decoupled mild solution given by

0,T]xE — R

(5.2) YT (4.5.28)

where (Y%, M%) denotes the (unique) solution of BSDE**(f, g) for fixed (s, x).

Proof. Let u be the function exhibited in Theorem[4.5.18] In order to show that u is a decoupled mild
solution of Pseudo — PDE(f,g), it is enough by Proposition to show that it is a martingale
solution.

In Corollary we have already seen that a(u) = —f(-, -, u, &Y (u)).

Concerning the second line of {#.5.3), for any = € E, we have
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u(T,z) = u(T, X1) = g(X7) = g(x) PT* as., so u(T, -) = g, in the deterministic pointwise sense.

We now show uniqueness. By Proposition it is enough to show that Pseudo — PDE(f,g)
admits at most one martingale solution. Let u, v’ be two martingale solutions of Pseudo— PDE(f, g).
We fix (s,z) € [0,T] x E. By Proposition[4.5.10} both couples, indexed by [s, T},

(u(,X), u(,X)—u(s,z)+ [ f(-,-,u, &Y (u))(r, X,)dV;) and

(W(-, X), W(,X)=d(s,2)+ [, f(-, o/, 8¥()))(r, X,)dV;) admit a P*?-version which solves
BSDE®**(f,g)on[s, T]. By Theorem[4.3.3land Remark[4.3.4, BSDE**( f, g) admits a unique solution,
so u(-,X.) and u/(-, X.) are P**-modifications one of the other on [s,T]. In particular, considering
their values at time s, we have u(s, z) = /(s, ). We therefore have v’ = w. O

Corollary 4.5.21. Let (f, g) verify H'"P. There is at most one classical solution of Pseudo — PDE(f, g) and
this only possible classical solution is the unique decoupled mild solution (s, z) — Y5, where (Y5%, M*7)
denotes the (unique) solution of BSDE>*(f, g) for fixed (s, ).

Proof. The proof follows from Proposition and Theorem O

Remark 4.5.22. The function v such that (u,v) is the unique solution of the identification problem I P(f, g)
also has a stochastic representation since it verifies for every (s, z) € [0,T] x E, on the interval [s, T},

w = v(-, X.) dV ®@dP*" a.e. where M*" is the martingale part of the solution of BSDE**(f, g).

The existence of a decoupled mild solution of Pseudo — PDE(f, g) provides in fact an existence
theorem for BSDE®*™(f, g) for any (s, z). The following constitutes the converse of Theorem

Proposition 4.5.23. Assume (f, g) verifies HI""", Let (u,v) be a solution of IP(f, g), let (s, x) € [0, T|x E
and the associated probability P** be fixed. The couple

(u(t,Xt), w(t, X)) — uls, o) + / t f(-,.,u,v)(r,x,.)dVT> (4.5.29)

tels,T|

has a P**-version which solves BSDE**(f, g) on [s,T].

In particular if (f, g) verifies the stronger hypothesis H'"P and (u,v) is the unique solution of IP(f, g), then
forany (s,z) € [0,T] x E,
(u(t, Xy), u(t,Xy) —u(s,z)+ fst fs - u,v)(r, XT)dVr> is a P modification of the unique solu-

tels,T
tion of BSDE®**(f,qg) on [s,T].

Proof. It follows from Propositions [4.5.16, and 4.5.10]

4.6 Examples of applications

We now develop some examples. In all the items below there will be a canonical Markov class with
transition kernel being measurable in time which is solution of a Martingale Problem associated to
some triplet (D(a), a, V') as introduced in Definition Therefore all the results of this chapter will

apply to all the examples below. In particular, Propositions [4.5.16 Theorem Corollary

4.5.21|and Proposition 4.5.23|will apply but we will mainly emphasize Theorem |4.5.20|and Corollary
4.5.21

In all the examples 7" > 0 will be fixed.
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4.6.1 A new approach to Brownian BSDEs and associate semilinear PDEs
In this subsection, the state space will be E := R4 for some d € N*.

Notation 4.6.1. A function ¢ € B([0,T] x R%,R) will be said to have polynomial growth if there exists
p € Nand C > 0 such that for every (t,z) € [0,T] x R%, |¢(t,z)] < C(1 + ||z||P). For any k,p €
N, C*P([0,T] x RY) (resp. C{f’p([O,T] x RY), resp. Cg&?([O,T] x RY)) will denote the sublinear algebra
of C([0,T] x R%,R) of functions admitting continuous (resp. bounded continuous, resp. continuous with

polynomial growth) derivatives up to order k in the first variable and order p in the second.

We consider bounded Borel functions 3 € B,([0, T]xR%, R¢) and a € B,([0, T]xR%, S (R)) where
ST (R) is the space of symmetric non-negative d x d real matrices. We define for ¢ € C*([0,7] x RY)
the operator a by
1
a(¢) = 0o + 5 > 0, ¢+ Y Bilrd. (4.6.1)
ij<d i<d

We will assume the following.

Hypothesis 4.6.2. There exists a canonical Markov class (P*®), ,yc(0,r)xre Which solves the Martingale
Problem associated to (C;’Q([O, T] x RY), a,V; = t) in the sense of Definition

We now recall a non-exhaustive list of sets of conditions on 3, & under which Hypothesis is
satisfied.

1. a is continuous non-degenerate, in the sense that for any ¢, z, a(t, z) is invertible, see Theorem
4.2 in [84];

2. B and « are continuous in the second variable, see Exercise 12.4.1 in [85];
3. d =1 and « is uniformly positive on compact sets, see Exercise 7.3.3 in [85].

Remark 4.6.3. When the first or third item above is verified, the mentioned Markov class is unique, but if
the second one holds, uniqueness may not hold. We therefore fix a Markov class which solves the martingale
problem. We wish to emphasize that given a fixed Markov class, we will obtain some uniqueness results
concerning the martingale solution and the decoupled mild solution of an associated PDE, but that for every
Markov class solving the martingale problem may correspond a different solution.

In this context, for ¢, in D(a), the carré du champs operator (see Definition is given by
ij<d
Remark 4.6.4. By a localization procedure, it is also clear that for every (s,x) € [0,T] x R¢, P verifies
that for any ¢ € C2([0,T] x R?), ¢(-, X.) — [, a(¢)(r, Xy )dr € H}, and that Propositionextends to
all g € C12([0,T] x RY).

We set now D(a) = C;ﬁ([(), T] x R%).
For any ¢ € [1;d], the function Id; denotes (¢, z) — z; which belongs to D(a) and Id := (Idy,- - ,Idg).
It is clear that for any ¢, a(/d;) = f;, and for any i, j, Id;Id; € D(a) and I'(1d;, Id;) = o ;. In particu-
lar, by Corollary[4.4.7) (Idy,- - -, Idg) verify Hypothesis and since j3, « are bounded, they verify
Hypothesis[4.5.1]

For any i we can therefore consider the MAF M([Id;] : (t,u) — X! — X} — [\ Bi(r, X;)dr whose
cadlag version under P*7 for every (s, z) € [0,T] x R%is M[Id;]*" = 15 7} (X' — z; — [ Bi(r, X, )dr)
and we have for any 4, j (M[Id;]**, M[Id;]5*) = [° o ;(r, X, )dr.

S
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Lemma 4.6.5. Let (s,z) € [0,T] x R and associated probability P**, i € [1;d] and p € [1, +oo| be fixed.
Then sup |X}|P € L.
tels, T

Proof. We have X' = z; + fs Bi(r, X, )dr + M[1d;]*>* where §; is bounded so it is enough to show that

sup |M[Id;);"|P € L'. Since (M[Id;]*>*) = [."* a; ;(r, X,-)dr, which is bounded, the result holds by
tels,T)
Burkholder-Davis-Gundy inequality. O

Corollary 4.6.6. (P*7), ,yc[0,7)xre Solves the Martingale Problem associated to (c;;j([o, T) x RY),a,V; =
t) in the sense of Definition

Proof. By Remark forany ¢ € C;ﬁ([(), T)xR%) and (s,z) € [0, T]xRY, ¢(-, X.) — [, a(®)(r, X, )dr
is a P**-local martingale. Since ¢ and a(¢) have polynomial growth, Lemma and Jensen’s
inequality imply that it is also a square integrable martingale. O

Letg: RY—— Ran f:[0,7] x R x R x R — R. We consider the PDE

ij<d i<d (4.6.2)

{ du+1> aiﬂ-@%ﬂju + > B0z, u+ f(-, -, u,aVu) =0
u(T,-) =g.

We emphasize that for u € C;ﬁ([O, T] x RY), aVu = T''4(u). The associated decoupled mild equation
is given by

N®

{ u(s,2) = Purlgl@)+ [ Porlf (o) ()] (2)dr 463
U(sa x)xz = PS,T[gIdi](«'U) - fs Ps,r [(Uz + uﬁz - Idif ('7 5 Uy U)) (Ta )] (.%')d?",’i € [[15 d]],

(s,2) € [0,T] x R%, where P is the transition kernel of the Markov class.

Proposition 4.6.7. Assume that Hypothesis is verified, that f(-,-,0,0), g have polynomial growth in x
uniformly in t and that f verifies item 3 of H'"P.

Then equation has a unique decoupled mild solution .

Moreover it has at most one classical solution which (when it exists) equals this function u.

Proof. (P*%) (s 2)efo,r)xwe Vverifies a martingale problem in the sense of Definition and has a
transition kernel which is measurable in time. Moreover (Idy, - -- ,Id,) verify Hypothesis By
Lemma the polynomial growth of £, g imply that they verify items 1 and 2 of H"?, which third
item is also assumed to hold. So Theorem and Corollary [.5.21]apply. O

Remark 4.6.8. The unique decoupled mild solution mentioned in the previous proposition admits the proba-
bilistic representation given in Theorem 4.5.20)

Remark 4.6.9. In the classical literature, a Brownian BSDE is linked to a slightly different type of parabolic
PDE, see the introduction of the present paper, or [72] for more details.
The PDE which is generally considered is of the type

i,j<d i<d (4.6.4)

{ Du + % Z (O-O-T)i,jagirﬁju + Zﬁlaﬁvzu + f(7 K U,O’V’LL) =0
U’(Tv ) =9
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(where o = \/« in the sense of non-negative symmetric matrices) rather than (4.6.2). In fact, the only differ-
ence is that the term oVu replaces oV in the fourth argument of the driver f.

We recall that the Markovian BSDE was given in (2).

Under the probability P> (for some fixed (s, x)), one can introduce the square integrable martingale
MId]*>® .= [(oT)*(r, X,)dM[Id]}" where A — AT denotes the Moore-Penrose pseudo-inverse operator,
see [15] chapter 1. The Brownian BSDE (2) can then be reexpressed here as

d(M®* M[Id]>"),
dr

T
Y = g(Xr) + / f <T, X, Y58, ) dr — (MZ" — M™). (4.6.5)
t
Under the assumptions of Proposition where o = ooT), it is possible to show that (4.6.5) constitutes
the probabilistic representation of (4.6.4) performing similar arquments as in our approach for (4.6.2). In
particular we can show existence and uniqueness of a function u € L% for which there exists vy, - -+ ,vq € L%
such that for all (s, z) € [0,T] x R,

uls,x) = Purlgl@) + [J Por [f (0, (0T) 7o) ()] (2)dr
uls,2)z; = Parlgld](@) — [T Py [0 + By — Idif (- u, (067)+0)) (1, )] ()dr,i € [1:d],
(4.6.6)
and that this function w is the only possible classical solution of in c;;j([o, T xR9). constitutes
the "good” version of decoupled mild solution for the (4.6.4).
This technique is however technically more complicated and for purpose of illustration we prefer to re-
main in our set up (which is by the way close to (4.6.4)) to keep our notion of decoupled-mild solution more
comprehensible.

Remark 4.6.10. It is also possible to treat jump diffusions instead of continuous diffusions (see [84]), and
under suitable conditions on the coefficients, it is also possible to prove existence and uniqueness of a decoupled
mild solution for equations of type

{ 8tu + %TT(@VQu) + (6; VU) + f (’U,(, -+ '7(7 ) y)) —u-— (7(7 '73/)7 VU)) F(dy) + f(7 '7U7F1d(u)) =0
U(Ta ) =9

(4.6.7)
where v : [0, T] x RY x RY +— R and F is a bounded positive measure not charging 0. In that framework
we have

P 6 a6+ [ 200 0)(@(s +(0) = 6, D F(dy) (468)

4.6.2 Parabolic semi-linear PDEs with distributional drift

In this subsection we will use the formalism and results obtained by in [47] and [48], see also [81]
and [31] for more recent developments in dimension 1. Those authors make reference to stochas-
tic differential equations with distributional drift whose solution are possibly non-semimartingales.
Those papers introduced a suitable framework of Martingale Problem related to a PDE operator in-
volving a distributional drift &’ which is the derivative of a continuous function. [46] established a
first work in the n-dimensional setting, later developments were discussed by [21]. Other Markov
processes associated to diffusion operators which are not semimartingales were produced when the
diffusion operator is in divergence form, see e.g. [80] or Markov processes associated to singular
PDEs involving paracontrolled distributions introduced in [21].

Letb, o € C°(R) such that o > 0. By a mollifier, we intend a function ® € S(R) with [ ®(z)dz = 1.
We denote ®,,(z) = n®(nz), 02 = 02 * ®,,, b, = b x O,,.

n =
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We then define L,,g = %g” +¥.¢. f € C(R) is said to be a solution to Lf = [ where [ € C°(R), if for
any mollifier ®, there are sequences (f,,) in C*(R), (in) in C°(R) such that

C°®) ;

Lofu = (in), fo =5 1,0, (4.6.9)

We will assume that ¥(z) = 71L1_r>noo2 fo Un y)dy exists in C°(R) independently from the mollifier.
By Proposition 2.3 in [47] there exists a solution h € C}(R) to Lh = 0, h(0) = 0, ¥/(0) = 1. More-
over it verifies h' = e=*.

Dy, is defined as the set of f € C'(IR) such that there exists some [ € C°(R) with Lf = [ and it is a
linear algebra.

Let v be the unique solution to Lv = 1, v(0) = v/(0) = 0 (see Remark 2.4 in [47]), we will assume
that

v(—00) = v(4+00) = +o00, (4.6.10)

which represents a non-explosion condition. In this case, Proposition 3.13 in [47] states that a certain
martingale problem associated to (D, L) is well-posed. Its solution will be denoted (P*%) , ,)c(0,7]x R
X is a P**-Dirichlet process for every (s,z) and (P*%) ;)cf0,1)xre defines a Markov class and
Proposition [3.B.2)in Chapter [|implies that its transition kernel is measurable in time.
We introduce the domain that we will indeed use.

Definition 4.6.11. We set

DM (g e Cch([0,T] x R) : ah¢ ([0, 1] x IR)} (4.6.11)

On D™ (a), we set L := Qh' 02 (%5

) and a(¢p) := d;¢ + Lo. We then define the smaller domain

D(a) = {cb € D™ (a) : 0 € C2U([0,T] x ]R)} (4.6.12)

‘pol

We formulate here some supplementary assumptions that we will make, the first one being called
(TA) in [47].

Hypothesis 4.6.12.
o There exists c¢1,Cq > 0 such that ¢c; < oh/ < Cy;
e o has linear growth.

The first item states in particular that o’ is bounded so h € D(a). Proposition 3.2 in [47] states
that for every (s, z), (M[h]**) = ["*(ch')*(X,)dr. Moreover the AF (M[h])!, = [(ch’)*(X,)dr is
absolutely continuous with respect to V; = t¢. Therefore Hypothesis is verified (for ¢» = h) and

®"(h) = (ch')%. Since this function is bounded and clearly a(h) = 0 then h verifies Hypothesis
We will therefore consider I'" the h-generalized gradient associated to a, and Proposition [3.4.23

in Chapter [3|implies the following.
Proposition 4.6.13. Let ¢ € D(T'"), then T"(¢) = %R’ 0, ¢.
Remarking that ¢’ is a distribution, the equation that we will study in this section is the following.

{ Oru + 5 10202u 4+ Vopu + f(-,-,u,0?Wd,u) =0 on[0,T] x R

(T, ) i (4.6.13)
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The associated PDE in the decoupled mild sense is given by

u(s,z)h(z) = Pr- sgh f Pr s[(v—="hf(,u,v))(r,)] (x)dr, (4.6.14)

(s,z) € [0,T] x R, where P is the (homogeneous) transition kernel of the Markov class.

{ u(s,z) = Pp_] +f Pres[f (o) () (@)

In order to consider the BSDE**(f, g) for functions (f, g) having polynomial growth in x, we had
shown in Chapter 3| the following result, stated as Proposition [3.4.25

Proposition 4.6.14. We suppose that Hypothesis 4.6.12| is fulfilled. Then, for any p € N and (s,z) €
[0,7] x R, ES*[|X7P] < oo and 1E57f‘3[fsT | X [Pdr] < oco. In other words, if f(-,-,0,0), g have polynomial
growth in x uniformly in t then they verify items 1 and 2 of HI%t" or HP,

Proposition 4.6.15. We suppose that Hypothesis [4.6.12| is fulfilled. Then (P*%) .yc(01)xre S0lves the
Martingale Problem associated to (a, D(a), Vi = t) in the sense of Definition

Proof. Let (s,z) € [0,T] x R be fixed. Proposition [3.4.24]in Chapter [3|implies that for any ¢ € D(a),
o(-,X.) — [, a(¢)(r, X, )dr is a (continuous) P**-local martingale, so taking Definition into ac-
count, it is enough to show that this local martingale is a square integrable martingale. Considering
Definition Proposition and Proposition in Chapter 3] we know that the angular
bracket of this local martingale is given by [ (c0,¢)*(r, X, )dr. Since ¢ € D(a) then 00, ¢ has poly-

nomial growth, so by Proposition|4.6.14 fsT(aaxd>)2 (r, X, )dr € L' and this implies that the overmen-
tioned local martingale is a square integrable martingale. O

We can now state the main result of this section.

Proposition 4.6.16. Assume that the non-explosion condition is verified, that Hypothesis is
fulfilled, that f(-,-,0,0), g have polynomial growth in x uniformly in t and that f verifies item 3. of H'P, see
Hypothesis Then equation has a unique decoupled mild solution u. It has at most one classical
solution which can only be equal to .

Remark 4.6.17. The unique decoupled mild solution w can be of course represented by (4.5.28)), Theorem

4.5.20)

Proof. The assertions come from Theorem 4.5.20/and Corollary which applies thanks to Propo-
sitions [4.6.15 and the fact that h verifies Hypothesis O

Remark 4.6.18.

1. [82l] has made a first analysis linking elliptic PDEs (in fact second order ODEs) with distributional drift
and BSDEs. In those BSDEs the final horizon was a stopping time.

2. [56] have considered a class of BSDEs involving distributions in their setting.



Appendix

4.A Proof of Theorem [4.3.3/ and related technicalities

We adopt here the same notations as at the beginning of Section - We will denote L2(dV ® dP)
the quotient space of L£%(dV @ dP) with respect to the subspace of processes equal to zero dV ®
dP a.e. L*(dV ® dP) is a Hilbert space equipped with its usual norm. L*°9(qV @ dP)) will
denote the subspace of L?(dV ® dP)) of elements having a cadlag representative. We emphasize that
L2<adlag (Y @ dIP) is not a closed subspace of L(dV ® dPP).

The application which to a process associate its class will be denoted ¢ — 6.

Proposition 4.A.1. If (Y, M) solves BSDE(&, f,V, M), and if we denote

f (r, . d(M, M) (r)) by fr, then for any t € 0,7, a.s. we have

av
}/t =
M, =
Proof. Since Y; = £ + ftT frdf/,, — (Mr — M) as., Y being an adapted process and M a martingale,
taking the expectation in (4.3.2) at time ¢, we directly get Y; = E {5 + ftT frdV,

that Yy = E [g + [ feav,

E|¢+ [ frdV,|F
E ¢+ [] frdVi | Fi

~E ¢+ [y frati| ] “AD

} and in particular

] . Since My = 0, looking at the BSDE at time 0 we get

MT=§+/OTfrdm—E{5+/OTﬁdV;

7.
Taking the expectation with respect to F; in the above inequality gives the second line of (4.A.1). [

Lemma 4.A.2. Let M € H? and ¢ be a bounded positive process. Then there exists a constant C > 0 such
that for any i € [1;d],

i 2 . . i N
fOT br <d<]\§£/[ >(r)) dv, < CfOT ¢rd(M),.. In particular, % belongs to L*(dV ® dP).

Proof. We fix i € [1;d]. By Hypothesis 4.3.1 CKTA\@ is bounded; using Proposition [2.B.1jand Remark
in Chapter 2} we show the existence of C' > 0 such that

i 2
Iy o (MR 0)) av, < [ o, a <>W>< )V,
< C fo ¢ 120 dv (r)df/r (4.A.2)
< O [ g
In particular, setting ¢ = 1, we have fOT <d<]\§é\;[ D (r)) v, < C (M)7 which belongs to L' since
M € H3. O

117
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We fix for now a couple (U, N) € L?(dV ® dP) x HZ and we consider a representative U of U.

Until Proposition 4.A.6/included, we will use the notation fr=F (r, Uy, d<];/"7M> (7'))

Proposition 4.A.3. Forany t € [0,T], ftT f2dV;, belongs to L' and ( ftT deVT> isin L2

Proof. By Jensen’s inequality, thanks to the Lipschitz conditions on f in Hypothesis and by
Lemma there exist positive constants C, C’, C” such that, for any ¢ € [0, 7], we have

(f7 Fav)" < o fF j2av,

< (ftT F2(r,-,0,0)dV, + [ U2dV, + é Ir (%ﬁ“mf m) (4.A.3)
< o (ftT F2(r,-,0,0)dV; + [T U2dV; + ((N)7 — <N>t)) _

All terms on the right-hand side are in L'. Indeed, N is taken in H2, U in L*(dV ® dP) and by
Hypothesis f(-,+,0,0) is in £L2(dV ® dP). This concludes the proof. O

We can therefore state the following definition.

Definition 4.A.4. Let M be the cadlag version of the martingale t — IE {5 + fOT frdf/r ft} —E {5 + fOT frdf/r

M is square integrable by Proposition It admits a cadlag version taking into account Theorem 4 in
Chapter IV of [133ll, since the stochastic basis fulfills the usual conditions. We denote by Y the cadlag process
defined by
Y, =¢+ ftT f‘rdf/r — (M7 — My). This will be called the cadlag reference process and we omit its dependence
to (U, N).

7o

Proposition 4.A.5. Y and M take square integrable values.

Proof. We already know that M is a square integrable martingale. As we have seen in Proposition

ftT frdV; belongs to L? for any t € [0, T] and by Hypothesis ¢ € L2 So by #A) and

Jensen’s inequality for conditional expectation we have

2 [ T 2 47 2
E[Y?] = E E[f-l-ft frd‘/rft:|:|
i P a2
< E E[(wfffrdvr) ftH
< B|2¢+2 7 f2a0;],
which is finite. O

Proposition 4.A.6. sup |Y;| € L? and in particular, Y € L>%9(dV @ P).
t€[0,T]

Proof. Since dY, = — f,dV; + dM,, by integration by parts formula we get

d(Y2e V) = =27V Y, fodV, + 2 VYo dM, + eV d[M], — eV Y2V,

r
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So integrating from 0 to some ¢ € [0, 7], we get

YV = Y@-2[; _VfoTdV +2 [y e Y, -dM,

+ [y e dM), — f3 e VY2V,

YE+ [ e_V’“Y2dV + e_V"f,,dV

2|y eV o e VM, — [ eV Y2y,

< Z+2 ‘ft —Vryfer

IN

)

where Z = Y + fT _V*fde + fT ~Veg M],. Therefore, for any ¢t € [0,7] we have (Y;e“};f)2 <
Y2e Vi< Z 42| ‘ " e=VrY,_dM,|. Thanks to Propositions 4.A.3 and 4.A.5, Z is integrable, so we can

conclude by Lemma|2.3.18/in Chapterlapphed to the process Ye~", and the fact that V is bounded.

Since Y is cadlag progressively measurable, sup |Y;| € L? and since V is bounded, it is clear that
t€[0,T]

Y € £2c0dlag(qV @ dP) and the corresponding class Y belongs to L*¢9(qV @ dP). O

Thanks to Propositions 4.A.5/and 4.A.6| we are allowed to introduce the following operator.

Notation 4.A.7. We denote by ® the operator which associates to a couple (U, N) the couple (Y, M).

L2(dV @ dP) x H2 — L2adlag(qy @ dP) x H3

¢ (U,N) —s (V,M).

Proposition 4.A.8. The mapping (Y, M) — (Y, M) induces a bijection between the set of solutions of
BSDE(, f,V, M) and the set of fixed points of .

Proof. First, let (U, N) be a solution of BSDE(¢, f,V, M), let (Y, M) := (U, N) and let Y be the ref-
erence cadlag process associated to U as in Definition[#.A.4] By this same definition, M is the cadlag

version of A
|—E[e+ 5" f (-0, 2220 0)) a,

to B e+ [ F (U 020 ()
sition4.A.1} sois N, meaning M = N. Again by Definition4.A.4, Y = §+f f ( U, d<NlM> (r)) dv,—

] but by Propo-

dv
dVv
(N1 — N.) which is equal to U thanks to (4.3.2), so Y = U in the sense of 1ndlst1ngu1shabﬂity. In par-

ticular, U = Y, implying (U, N) = (Y, M) = <I>(UA, N). Therefore, the mapping (Y, M) — (Y, M)
does indeed map the set of solutions of BSDE(E, f,V, M) into the set of fixed points of ®.

The map ® is surjective. Indeed let (U, N) be a fixed point of @, the couple (Y, M) of Definition
4.A 4fverifies Y = £ + f f ( U,, 4NM) (r)) dV, — (My — M.) in the sense of indistinguishability,

v
and (Y, M) = ®(U,N) = (U, N), so by Lemma [2.3.9in Chapter@ fo r, . d<1‘d47‘1/M>(7«)) dV, and
I ( U,, d(fc\l’{A/M)( )) dV, are indistinguishable and Y = ¢ + [ f ( Y, d<]5‘l/M> (r)) v, — (Mp —

M.), meaning that (Y, M) (which is a preimage of (U, N)) solves BSDE(¢, f, v, M)

We finally show that it is injective. Let us consider two solutions (Y, M) and (Y, M) of BSDE(&, f,V, M)
withY =Y. By Lemma|2.3.9|in Chapterthe processes f f ( Y, y,. UM M) (r)) df/r and

dv
f f ( r, Y, « AjVM>( )) dV, are indistinguishable, so taking (4.3.2) into account, we have Y = Y.
d
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Proposition 4.A.9. Let A € R, let (U, N), (U',N') € L*(dV ® dIP) x Mg, let (Y, M), (Y' M be their
images through ® and let Y,Y" be the cadlag representatives of Y, Y’ introduced in Definition 4. Then
In e’\V7Y dM,, |, eAVrY’ dMy, [se ’\VTY dM] and |, e)‘V’“Y’ dM, are martingales.

Proof. V is bounded and thanks to Proposition 4.A.6 we know that sup |Y;| and sup |Y/| are L2.

t€[0,7) t€[0,T]
Moreover, since M and M’ are square integrable, the statement yields therefore as a consequence
Lemma 2.3.17]in Chapter 2} O

_ Starting from now, if (Y, M) is the image by ® of some _
(U,N) € L?(dV ® dP) x H3, by default, we will always refer to the cadlag reference process Y of Y
defined in Definition

Forany A > 0, on L2(dV ® dP) x H we define the norm
(Y, M)|} :=E [ o ’\V’“YQdV} +E [ g AV’“d(M)J. Since V is bounded, these norms are all equiv-
alent.

Proposition 4.A.10. There exists A > 0 such that for any

. . . 2 . 2 .
(U,N) € L*(dV ® dP) x H3, (I)(U,N)H)\ <3 H(U, N)H/\. In particular, ® is a contraction in L*(dV ®
dP) x H2 for the norm || - ||x.

Proof. Let (U, N) and (U’, N’) be two couples belonging to L2(dV®d1P) X ’HO, let (Y, M)and (Y', M’)
be thelr images via ® and let Y, Y be the cadlag reference process of Y, Y’ introduced in Definition
4.A.4 We will write Y for Y — Y’ and we adopt a similar notation for other processes. We will also

write
I d(N, M A d(N', M
ft = f <t7 '7Ut7 M(t)> - f <t7 '7Ut,7 <d{7>(t)> .

By additivity, we have dY; = —f;dV; + dM;. Since Yy = £ — ¢ = 0, applying the integration by parts

2)\Vt

formula to Y;2e*"t between 0 and T we get

T L T L B T . B T . .
YE -2 / VY, frdVy + 2 / VY, _dM, + / AVrd[M], 4+ X / AVry2av, = 0.
0 0 0 0

Since, by Proposition the stochastic integral with respect to M is a real martingale, by taking
the expectations we get

T . T . B T .
E [Y7] - 2E { / VY, deVT] +E [ / e’\Vrd<M)T] +AE [ / e)‘VTY;?dV;] —
0 0 0

So by re-arranging previous expression, by the Lipschitz condition on f stated in Hypothesis 4.3.1
by the linearity of the Radon-Nikodym derivative stated in Proposition and by Lemma .A.2
we get
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NE[f) XV v2an] + B | [y eVaa), |
< 2B | f) AT f1dV; |
< 2KVE [ AT, 10|V ] +2KZZIE o V17, |48 ()| v |
< (KYa+dKZB)E [fTeWrYQdV} KB |fy eV 02av; |
KZE]E|: T m( <]Z‘ﬁ/[>(7“)> av.
<

(KYa+dK?3)E [fT e/\VTYTQdV,«} + KTYIE [fOT e)‘VTUTQdVr}
CO [ ],

for some positive C' and any positive a and 3. The latter equality holds by Hypothesis 4. Then
we pick a = 2KY and 3 = 2CdK#, which gives us
\E [ r eWry%zv} +E [ r Wrd<M>r}
< (K + C(dK?Y?)E [ Jy X2y,
+ B[ V02| + 4B | ) VN, |
We choose now A = 1+ 2((KY)? + C(dK?#)?) and we get

B [f) Vv2av) + B [ e Va),]

< IE UT ’\V’Uzdf/r] i %IE[ OTG’\VTd<N>r} 7 4.A4)

which proves the contraction for the norm || - || 5. O

Proof of Theorem43.3

The space L2(dV @ dP) x H2 is complete and ® defines on it a contraction for the norm ||(-, -)||
for some A > 0, so ® has a unique fixed point in
L2(dV @ dP) x H32. Then by Proposition[.A.8) BSDE(¢, f, V, M) has a unique solution.

Remark 4.A.11. Let (Y, M) be the solution of BSDE(E, f.V,M) and Y the class of Y in L?(d le
Thanks to Proposition we know that (Y, M) = ®(Y, M) and therefore by Propositions |4.A.6) and
that sup |Yi| is L* and that [;Y,-dM, is a real martingale.

te[0,7]

The lemma below shows that, in order to verify that a couple (Y, M) is the solution of
BSDE(, f,V, M), it is not necessary to verify the square integrability of Y since it will be automati-
cally fulfilled.

Lemma 4.A.12. We consider (¢, f,V, M) such that €, ]\:4 verify items 1., 2. of Hypothesis but where
item 3. is replaced by the weaker following hypothesis on f. There exists C > 0 such that IP a.s., for all t,y, z,

1f(t,w,y,2)] < C+ |y| + [|2])- (4.A.5)

Assume that there exists a cadlag adapted process Y with Yy € L? , and M € H3 such that

. .
Y=§+/ f(r,-,n,‘wg‘;m(r)) v, — (Myp — M), (4.A.6)
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in the sense of indistinguishability. Then sup |Yy|is L% In particular,
te[0,7)

Y e L’Z(dVA@ dP) and if (€, £, V, M) verify Hypothesis 4.3.1| (Y, M) is the unique solution of
BSDE(, f,V, M) in the sense of Definition 4.3.Zl

On the other hand if (Y, M) verifies (A.6) on [s,T] with s < T, Yy € L* and My = 0 then sup |Yy|

tels,T)

is L*. In particular if (€, f,V, M) verify Hypothesis |4.3.1| and if we denote (U, N) the unique solution of
BSDE(E, f,V, M), then (Y, M) and (U, N. — Ny) are mdzstmguzshable on [s,T).

Proof. Let A > 0 and ¢ € [0,T]. By integration by parts formula applied to Y2~V between 0 and ¢
we get

AV t _ A d(M, t
}/;526 AV - }/02 = _2 f )\VTY f (Ta RESS) <dV >( )) dv + 2 f )\VTY dM
+ft —)er )\ft _)\VTYQdV:,,.

By re-arranging the terms and using the Lipschitz conditions item 3. of in Hypothesis we
get
Y2 Vi + Aft efAVT}/QdV

_ d(M, _
< Y +2fie WTIYHfI( ¥, WL (1)) 47, + 2| fi NV
+ft —/\Vr
< VY +ft *er2( r,-,0,0)dV; +(2KY+1+KZ) te*Wrde

+KZth 7/\VT( A§§4>(7> dV+2’ t o= AVr t 7)\VTd

Picking A = 2K + 1 + K7 and using Lemma[4.A.2] this gives

Y2 < Y2 4 [Le N fR(r, -, 0,0)dV, + KZC [ eNrd(M),
19 ’ft —)\Vry_dMT‘ + fg e AVrd[M],,

for some C' > 0. Since V' is bounded, there is a constant C’ > 0, such that for any ¢ € [0, 7]

By Hypothesis and since we assumed Yy € L? and M € H?, the first four terms on the right-
hand side are integrable and we can conclude by Lemma [2.3.18]in Chapter 2}
An analogous proof also holds on the interval [s, T taking into account Remark[4.3.4] In particu-

lar, if (U, N) is the unique solution of BSDE(, f,V, M) then (U, N — N,) is a solution on [s, T]. The
final statement result follows by the uniqueness argument of Remark [4.3.4, O

T
V2 < (Yo2 + / |F2(r,+,0,0)dV, + (M)7 + [M]r +
0

In the sequel we will not distinguish between a couple (Y, M) in L*(dV ® dPP) x H3 and (Y, M),
where Y is the reference cadlag process of Y, according to Definition

Notation 4.A.13. Let ® : L?(dV ® dIP) x H3 be the operator introduced in Notation We then convene
the following.

1. (Y%, MY) :=(0,0);

2. Vk € N* : (YF, MF) := ®(vh-1, pk-1),
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meaning that for k € N*, (Y*, M*) is the solution of the BSDE
T ME—1 M
= §+/ f (r, LY R d<dv’>( )) dv, — (ME — MF). (4.A.7)

Definition 4.A.14. The processes (Y*, M*)cn will be called the Picard iterations associated to

We know that ® is a contraction in L?(dV @ dIP**) x H2 for a certain norm, so that (Y%, M*) tends
to (Y, M) in this topology. The proposition below also shows an a.e. corresponding convergence,
adapting the techniques of Corollary 2.1 in [43].

Proposition 4.A.15. Y* " Y dV ® dP a.e. and forany i € [1;d],
—00

d(M* M7 d(M M)

s T ar dV @ dIP a.e.

Proof of Proposition{4.A.15

For any i € [1;d] and k € N we set Z4F := %&Mi) and 7' := ‘Miiéw). By Proposition 4.A.10
there exists A > 0 such that for any £ € N*

E [ OT —A\/;’Yk—&-l YH| 24V, +fT —AVTd<Mk+1 _Mk>r}

< 1E|: T —)\VT‘Yk Yk 1‘2dv +fT _>‘V’“d<Mk—Mk_1>r:|,
therefore
P o eVt - yE2an ] 4 B [ f e ra(a - M), |
< Z ik ( |:fT _’\VT|Y;,1|2C[VT:| +E [f()T e_A‘A/Td<M1>7‘:|) (4A8)
k>0
< Q.

For every fixed (i, k), the linearity property stated in Proposmon 3) says that
Zz k41 Zz K _ d(MET MR M
av

. Therefore combining equation (#.A.8) and Lemma4.A.2, we get

> (E o eVt - v2ar;] + ZE[ T oAV ikl _ ik |2df/,,D < 0. So by Fubini’s theo-
k>0
rem we have

T .
E / e MV Z

0 £>0

d
<|Yrk+1 _ Y;k,z + Z‘Zfi"k“ .

i=1

2) dVr < 0.

d .
Consequently the sum ) <|Y;k+1(w) ~YEW)2 + S| ZH (W) - Zﬁ’k(w)2> is finite on a set of full
k>0 i=1

dV @ dIP measure. So on this set of full measure, the sequence (Y}*(w), (ZZ ’k(w))ie[[l;d]]) converges, and
the limit is necessarily equal to (Y;(w), (Z{(w))ie[i;a]) dV ® dP a.e. Indeed, as we have mentioned in
the lines before the statement of the present Proposition we already know that Y'* converges to

Y in L2(dV @dP). Since by Lemmald.A.2| F [ T o= AVe| gk _ Z,é|2dm} < CE [ ST e Vet — ), |,

0
for every (i, k), where C'is a positive constant which does not depend on (i, k), the convergence of
MP to M in H3 also implies the convergence of Z%* to Z¢ in L?(dV ® dP).

O]
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4.B Proof of Theorem

Lemma 4.B.1. Let f € £%. For every (s,x) € [0,T] x E, let (Y**, M*%) be the unique (by Theoremm
and Remark solution of

~ T ~ ~ ~
7o = g6r)+ [ U () ;= (083 = 31 @B

in (Q, F5* T P5*). Then there exist . € D(a) such that for any (s,z) € [0,T] x E

Vie [s,T]: Y% = a(t,X;) P**as.
MsS® = M[a]s,m’

and in particular w = &¥(@)(-, X.) dV ®@ dP*" a.e. on [s,T).

Proof. We set @ : (s,x) — E* [g(XT) + fST frX,) dVT} which is Borel by Proposition [3.A.10|and
Lemma (3.A.11|in Chapter 3} Therefore by (4.C.3) in Remark for every fixed ¢t € [s,T] we have

P5*- a.s.

at, X,) = E4X |:9(XT)+ftTf(Ter)dVT’]
= B |g(X7) + ftTf(r, X,)dv, ft}
= B [ 4 (U — W)

— }/'ts,it.
By we have dY;"" = —f(t, X;)dV; + dM;"*, so for every fixed t € [s,T], u(t, X;) = u(s,z) —
fst f(r, X,)dV, — MJ® P**- a.s. Since M** is square integrable and since previous relation holds for
any (s,z) and ¢, Definition implies that & € D(a), a(ii)) = —f and M>* = M[u]** for every
(s, ), hence the announced results. O

Notation 4.B.2. For a fixed (s,z) € [0,T] x E, we will denote by (Y**% MF*5%), .\ the Picard iterations
associated to BSDE**(f, g).

Proposition 4.B.3. For each k € N, there exists uy, € D(a), such that for every (s,z) € [0,T] x E

k7 b
{Vte[s,T]:Yt o= w(t X)) PTas. (4.B.2)

Mk,s,x — M[uk]s,z'

Remark 4.B.4. In particular, (4.B.2) implies that %‘W = &% (ug) (-, X.) dV @dP>* a.e. on [s, T).

Proof. We proceed by induction on k. It is clear that ug = 0 verifies the assertion for k& = 0.

Now let us assume that the function u;_; exists, for some integer k& > 1, verifying and in
particular Remark [4.B.4) for k replaced with k — 1.

We fix (s,2) € [0,7] x E. By Lemma [4.2.4) (v-tow dOMZ MUy (| 6% (uy ))(-, X.)
dV @ P* a.e. on [s, T]. Therefore by @.A.7), on [s, T

Yo = g(Xp) + [T (r, Xe w1 (r, X,), 6% (w1 (r, X)) dVy — (M5 — MFST),

Since ®*® maps L*(dV ® dP**) x HZ into itself (see Definition @ , obviously all the Picard it-
erations belong to L*(dV @ dP*®) x HZ. In particular, by Lemma [4.A.2] Y*~ 1% and for every
i € [1;d], d<Mk71’s;}MW”S’x> belong to £2(dV ® dP*%). So, by recurrence assumption on uj_1, it
follows that u;_1 and for any i € [1;d], &¥i(ui_1) belong to £L%. By H'P (see Hypotheses ,
fCup1, ®Y(up_1)) € L'%(. The existence of u; now comes from Lemma applied to f :=
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fC, - up—1,®%(up_1)), which establishes the induction step for a general k£ and allows to conclude
the proof.
L]

Proof of Theorem 4.5.18f We set @ := limsup uy, in the sense that for any (s,z) € [0,7] x E,

keN

a(s,x) = limsup uy(s,z) and v := limsup v;. @ and v are Borel functions. Let us fix now (s,z) €
keN keIN

[0,T] x E. We know by Propositions 4.A.15/and Lemma that
{ up(, X.) — Y% dV ®dP>" ae.ons,T]

k—o0

&Y (up)(-, X)) — Z% dV ®dP>" a.e. on [s,T),

k—o0

where Z57% := w. Therefore, and on the subset of [s, T x E of full dV ® dP** measure on
which these convergences hold we have

u(t,X¢(w)) = limsup ug(t, X¢(w)) = lkigfqu’f(t’Xt(w)) — V(W)
i =y 1 S,T (4B3)
vt Xew)) = limsup 6% (ue)(, Xo(w)) = lim &% (u)(t, Xu(w)) = 2" (w).

Thanks to the dV ® dIP** equalities concerning v and % stated in (4.B.3), under P** we actually
have

T
Yo = g(Xr) + / £, X, a(r, X)), v(r, X)) dVy — (M3® — M5%), (4.B.4)

Now can be considered as a BSDE where the driver does not depend on y and z. Y** and Z**
belong to £L2(dV ® dP*®) (see Lemma , then by (4.B.3), so do u(-, X.)1 7y and v(:, X. )15 1),
meaning that @ and v belong to £%. By H', f(-,-,u,v) also belongs to £L%. We can therefore apply
Lemmato fi= f(,+,a,v), and conclude.

Concerning the last statement of the theorem, for any (s, z) € [0, T]|x E, wehave Y;"* = u(s, X;) =
u(s,z) P5* a.s. so 3" is P** a.s. equal to a constant and u is the mapping (s, z) — Y5". O

4.C Markov classes and Martingale Additive Functionals

We recall in this Appendix section some basic definitions and results concerning Markov processes.
For a complete study of homogeneous Markov processes, one may consult [34], concerning non-
homogeneous Markov classes, our reference was chapter VI of [40]. Some results are only stated,
they were howether carefully proven in Chapter

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 4.C.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topo-
logical space). It will be called the state space.

We fix T € RY.. We denote 2 := ID(E) the Skorokhod space of functions from [0, T to E right-continuous
with left limits and continuous at time T (for which we also use the french acronym cadlag). For any t € [0, T
we denote the coordinate mapping X, : w — w(t), and we introduce on ) the o-field F := o(X,|r € [0,T7]).

On the measurable space (2, F), we introduce the canonical process

¥, (tw) — wl)
([0,T] x Q,B([0,T)) ® F) — (E,B(E)),
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and the right-continuous filtration I := (Fy)eo,r) where Fy := () o(X,|r < s)ift < T, and Fr :=
s€t, T

o(X,|re[0,T]) =F.

(Q, F,IF) will be called the canonical space (associated to T' and E).

For any t € [0,T] we denote Fyr = o(Xy|r > t), and for any 0 < t < w < T we will denote
Few = N o(Xp|r € [t,u+ 1))

n>0

Remark 4.C.2. Previous definitions and all the notions of this Appendix, extend to a time interval equal to
R4 or replacing the Skorokhod space with the space of continuous functions from [0,T] (or Ry) to E. but
since our goal is to work on a finite time interval, we will not consider this situation.

Definition 4.C.3. The function

p. (s,t,x, A) — Psy(xz, A)
' —

0,T]2 x E x B(E) 0,1],

will be called transition kernel if, for any s,t in [0,T), x € E, A € B(E), it verifies the following.

1. Psy(-, A) is Borel,
2. Py (z,-) is a probability measure on (E, B(E)),
3. ift < sthen Py (x,A) =14(x),

4. ifs <t,forany u > t, [ Psi(x,dy)Pu(y, A) = Psu(z, A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 4.C.4. A transition kernel P for which the first item is reinforced supposing that (s,x) —
P ¢(x, A) is Borel for any t, A, will be said measurable in time.

Definition 4.C.5. A canonical Markov class associated to a transition kernel P is a set of probability
measures (P*%), ) ejo,mx £ defined on the measurable space (Q2, F) and verifying for any t € [0,T] and
A€ B(E)

P*¥(X; € A) = Pyy(z, A), (4.C1)

and forany s <t <wu
P*(X, € A|F) = Pro(Xy, A) P as. (4.C2)

Remark 4.C.6. Formula 1.7 in Chapter 6 of [40] states that for any F' € F; 1 yields
PS*(F|F;) = PH(F) = P**(F|X;) P*"a.s. (4.C.3)
Property (4.C.3) will be called Markov property.

For the rest of this section, we are given a canonical Markov class (IP**), »)e[0,71x £ Which transi-
tion kernel is measurable in time.

Definition 4.C.7. For any (s,z) € [0,T] x E we will consider the (s, z)-completion

(Q, Fo* F* := (F}" )ieo.r), P5") of the stochastic basis (0, F,IF,IP*) by defining F** as the P*"-
completion of F , by extending P*% to F** and finally by defining F,;"* as the P**-closure of JF for every
t € 10,7
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We remark that, for any (s, z) € [0,7] x E, (, F** F* P*%) is a stochastic basis fulfilling the
usual conditions.
We recall the following simple consequence of Remark 32 in [32] Chapter IL

Proposition 4.C.8. Let (s,z) € [0,T] x E be fixed, Z be a random variable and t € [s, T, then ES*[Z|F;] =
E52[Z|F5% P a.s.

We now introduce the notion of non-homogeneous Additive Functional that we use in the paper.

Definition 4.C.9. We denote A := {(t,u) € [0,T]?|t < u}. On (2, F), we define a non-homogeneous
Additive Functional (shortened AF) as a random-field A := (AL) .)ea with values in R verifying the two
following conditions.

1. Forany (t,u) € A, Al is F; ,,-measurable;

2. forany (s,x) € [0,T] x E, there exists a real cadlag F**-adapted process A>" (taken equal to zero on
[0, s] by convention) such that forany x € Eand s <t <wu, A, = Ay" — A" P a.s.

A** will be called the cadlag version of A under P*~.

An AF will be called a non-homogeneous square integrable Martingale Additive Functional (short-
ened square integrable MAF) if under any P*7 its cadlag version is a square integrable martingale. More
generally an AF will be said to verify a certain property (being non-negative, increasing, of bounded variation,
square integrable, having L' terminal value) if under any P*< its cadlag version verifies it.

Finally, given an increasing AF A and an increasing function V, A will be said to be absolutely contin-
uous with respect to V if for any (s,x) € [0,T] x E, dA*>* < dV in the sense of stochastic measures.

The two following results are proven in Chapter|[l]

Proposition 4.C.10. Let M, M’ be two square integrable MAFs, let M*7 (respectively M'*) be the cadlag
version of M (respectively M') under P**. Then there exists a bounded variation AF with L' terminal
condition denoted (M, M') such that under any P*%, the cadlag version of (M, M’) is (M** M'>*). If
M = M’ the AF (M, M') will be denoted (M) and is increasing.

Proposition 4.C.11. Let V' be a continuous non-decreasing function. Let M, N be two square integrable
MAFs, and assume that the AF (N) is absolutely continuous with respect to V. There exists a function
v € B([0,T] x E,R) such that for any (s, x), (M**, N*%) = [*v(r, X,)V,.






Chapter 5

Path-dependent Martingale Problems and
Additive Functionals

This chapter is the object of paper [14].

Abstract

The paper introduces and investigates the natural extension to the path-dependent setup of
the usual concept of canonical Markov class introduced by Dynkin and which is at the basis of
the theory of Markov processes. That extension, indexed by starting paths rather than starting
points will be called path-dependent canonical class. Associated with this is the generalization
of the notions of semi-group and of additive functionals to the path-dependent framework. A
typical example of such family is constituted by the laws (IP*"), ycr, x, where for fixed time
s and fixed path 7 defined on [0, s], P*" is the (unique) solution of a path-dependent martingale
problem or more specifically a weak solution of a path-dependent SDE with jumps, with initial
path 7. In the following Chapter [} we apply those results to study path-dependent analysis
problems associated with BSDEs.

5.1 Introduction

In this paper we extend some aspects of the theory of Markov processes to the (non-Markovian)
path-dependent case. The crucial object of canonical Markov class introduced by Dynkin is replaced
with the one of path-dependent canonical class. The associated notion of Markov semigroup is extended
to the notion of path-dependent system of projectors. The classical Markovian concept of (Martingale)
Additive Functional is generalized to the one of path-dependent (Martingale) Additive Functional. We
then study some general path-dependent martingale problems with applications to weak solutions
of path-dependent SDEs (possibly) with jumps and show that, under well-posedness, the solution
of the martingale problem provides a path-dependent canonical class. The following Chapter 6| will
exploit these results to extend the links between BSDEs and (possibly Integro) PDEs obtained in
Chapter[4} to a path-dependent framework.

The theory of Additive Functionals associated to a Markov process was initiated during the early
'60s, see the historical papers [38], [68], [19] and see [34] for a complete theory in the homogeneous
setup. The strong links between martingale problems and Markov processes were first observed for
the study of weak solutions of SDEs in [85], and more generally in [44] or [60] for example. Weak
solutions of path-dependent SDEs possibly with jumps were studied in [60], where the author shows
their equivalence to some path-dependent martingale problems and proves existence and uniqueness
of a solution under Lipschitz conditions. More recent results concerning path-dependent martingale

129
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problems may be found in [17]. However, at our knowledge, the structure of the set of solutions for
different starting paths was not yet studied.

The setup of this paper is the canonical space (€2, F) where €2 := D(RR 4, E) is the Skorokhod space
of cadlag functions from R into a Polish space £ and F is its Borel o-field. X = (X;);cr, denotes
the canonical process and the initial filtration F° is defined by F? := o (X, |r € [0,¢]) forall ¢t > 0.

A path-dependent canonical class will be a set of probability measures
(P*") (s,mer, x0 defined on the canonical space and such that, for some fixed (s,7), P*”7 models a
forward (path-dependent) dynamics in law, with imposed initial path 7 on the time interval [0, s]. As
already mentioned, it constitutes the natural adaptation to the path-dependent world of the notion
of canonical Markov class (IP**) s 2R, x £, Where in general, P** models the law of some Markov
stochastic process, with imposed value z at time s. IF*" is the augmented initial filtration fulfilling
the usual conditions.

In substitution of a Markov semigroup associated with a canonical Markov class, we introduce a
path-dependent system of projectors denoted (Ps).cr, and a one-to-one connection between them
and path-dependent canonical classes. Each projector Ps acts on the space of bounded random vari-
ables. This brings us to introduce the notion of weak generator (D(A), A) of (Ps)ser, which will
permit us in Chapter [f|to define mild type solutions of path-dependent PDEs of the form

{ D® + $Tr(00TV2®) + VP + f(-,-, ®,00TV®) = 0 on [0,T] x © L

&7y =¢on (),

where D is the horizontal derivative and V the vertical gradient in the sense of [37, 26] and 3, o are
progressively measurable path-dependent coefficients.

As mentioned earlier, given a path-dependent canonical class we also introduce the notion of
path-dependent Additive Functional (resp. path-dependent square integrable Martingale Additive
Functional), which is a real-valued random-field M := (M;,)o<t<u<+oo such that for any (s,n) €
R+ x €, there exists a real cadlag '*7-adapted process (resp. IF*"-square integrable martingale) M *"
called the cadlag version of M under P*", and verifying for all s < ¢t < u that M, = M;" — M;""
P*" a.s. Under some reasonable measurability assumptions on the path-dependent canonical class,
we extend to our path-dependent setup some classical results of Markov processes theory concern-
ing the quadratic covariation and the angular bracket of square integrable MAFs. As in the Marko-
vian set-up, examples of path-dependent canonical classes arise from solutions of a (this time path-
dependent) martingale problem as we explain below. Let x be a set of cadlag processes adapted to
the initial filtration IF°. For some given (s,n) € Ry X €2, we say that a probability measure P*" on
(2, F) solves the martingale problem with respect to x starting in (s, n) if

o P5I(w' =17°) = 1;
e all elements of x are on [s, +oo[ (P*", F°)-martingales.

We show that merely under some well-posedness assumptions, the set of solutions for varying start-
ing times and paths (P*")(, ,)cr, xo defines a path-dependent canonical class. This in particularly
holds for weak solutions of path-dependent SDEs possibly with jumps.

The paper is organized as follows. In Section we introduce the notion of path-dependent
canonical class in Definition and of path-dependent system of projectors in Definition and
prove a one-to-one correspondence between those two concepts in Corollary[5.3.11} In Section[5.4] we
introduce the notion of path-dependent Additive Functional, in short AF (resp. Martingale Additive
Functional, in short MAF). We state in Proposition and Corollary that for a given square
integrable path-dependent MAF (M; ) (;u)ea, We can exhibit two non-decreasing path-dependent
AFs with £!-terminal value, denoted respectively by ([M];u)uyea and ((M)i )¢ u)ea, Which will
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play respectively the role of a quadratic variation and an angular bracket of it. Then in Corollary
we state that the Radon-Nikodym derivative of the mentioned angular bracket of a square
integrable path-dependent MAF with respect to a reference function V/, is a progressively measur-
able process which does not depend on the probability. In Section we introduce what we mean
by path-dependent martingale problem with respect to a set of processes ¥, to a time s and a start-
ing path 7, see Definition Suppose that x is a countable set of cadlag [F°-adapted processes
which are uniformly bounded on each interval [0, T; in Proposition we state that, whenever
the martingale problem with respect to x is well-posed, then the solution (IP*7), »ycRr, x defines a
path-dependent canonical class. In Subsection Definition introduces the notion of weak
generator of a path-dependent system of projectors, and Definition that of martingale problem
associated to a path-dependent operator (D(A), A). Suppose now that for any (s,7) the martingale
problem associated with (D(A), A) is well-posed, and let (Ps)cr, be the system of projectors asso-
ciated to the canonical class constituted by the solutions (P*"), ;)cr, x- Then (D(A), A) is a weak
generator of (Ps)scr,, and (Ps)scr, is the unique system of projectors such that this holds. In other
words, (Ps)ser, can be analytically associated to (D(A), A) without ambiguity. Finally, in Section
we consider path-dependent SDEs with jumps, whose coefficients are denoted by 3, o, ~. If for
any couple (s, n), the SDE has a unique weak solution, then Theorem [5.6.7 ensures that the set of so-
lutions (P*7), yer, xq defines a path-dependent canonical class. Under the additional assumptions
that 3, 0,y are bounded and continuous in w for fixed other variables, then Proposition states
that (s,n) — P*" is continuous for the topology of weak convergence.

5.2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.

A topological space E will always be considered as a measurable space with its Borel o-field
which shall be denoted B(E) and if S is another topological space equipped with its Borel o-field,
B(E, S) will denote the set of Borel functions from E to S. For some fixed d € N*, C2°(R%) will
denote the set of smooth functions with compact support. For fixed d, k € N*, C¥(R?), (resp. CF(R%))
will denote the set of functions k times differentiable with continuous (resp. bounded continuous)
derivatives.

Let (2, F), (E, ) be two measurable spaces. A measurable mapping from (2, F) to (E, £) shall
often be called a random variable (with values in E), or in short r.v. If T is the indices set, a family
(X¢)teT of r.v. with values in E, will be called a random field (indexed by T with values in E). In the
particular case when T is a subinterval of R+, (X;):eT will be called a stochastic process (indexed

(t,w) — Xi(w)
(TxQ,B(T)®F) — (EE)
process (or random field) (X;);eT will be said to be measurable (indexed by T with values in E).

On a fixed probability space (2, F,P), for any p > 1, £LP will denote the set of real-valued random
variables with finite p-th moment. Two random fields (or stochastic processes) (X;)ie, (Yi)teT in-
dexed by the same set and with values in the same space will be said to be modifications (or versions)
of each other if for every t € T, P(X; = Y;) = 1. A filtered probability space (Q, F,F = (Fi)teRrs 113)
will be called called stochastic basis and will be said to fulfill the usual conditions if the filtration is
right-continuous, if the probability space is complete and if 7y contains all the P-negligible sets. Let
us fix a stochastic basis (2, 7,IF,P). If Y = (Y});eRr, is a stochastic process and 7 is a stopping time,
we denote Y7 the process t — Y1, which we call stopped process (by 7). If C is a set of processes,
we will say that Y is locally in C (resp. locally verifies some property) if there exist an a.s. increasing
sequence of stopping times (7;,),>0 tending a.s. to infinity such that for every n, the stopped process

by T with values in E). If the mapping is measurable, then the



132 Chapter 5. Path-dependent Martingale Problems and Additive Functionals

Y™ belongs to C (resp. verifies this property).

Given two martingales M, N, we denote by [M] (resp. [M, N]) the quadratic variation of M (resp.

covariation of M, N). If M, N are locally square integrable martingales, (M, N) (or simply (M) if
M = N) will denote their (predictable) angular bracket. Two locally square integrable martingales
vanishing at zero M, N will be said to be strongly orthogonal if (A/, N) = 0.
If A is an adapted process with bounded variation then Var(A) (resp. Pos(A), Neg(A)) will denote
its total variation (resp. positive variation, negative variation), see Proposition 3.1, chap. 1 in [61].
In particular for almost all w € Q, t — Var (A(w)) is the total variation function of the function
t— At (W)

5.3 Path-dependent canonical classes

We will introduce here an abstract context which is relevant for the study of path-dependent stochas-
tic equations. The definitions and results which will be presented here are inspired from the theory
of Markov processes and of additive functionals which one can find for example in [34].

The first definition refers to the canonical space that one can find in [60]], see paragraph 12.63.

Notation 5.3.1. In the whole section, E will be a fixed Polish space, i.e. a separable completely metrizable
topological space, that we call the state space.

Q will denote D(R.y, E) the space of functions from R to E being right-continuous with left limits (e.g.
cadlag). For every t € R we denote the coordinate mapping X; : w — w(t) and we define on 2 the o-field
F = o(X;|r € Ry). On the measurable space (S, F), we introduce initial filtration F° := (F{)ier..,

where F{ = o(X,|r € [0,t]), and the (right-continuous) canonical filtration F := (F})icr,, where
Fi = N F2. (Q,F,F) will be called the canonical space (associated to E). On R x , we will denote by
s>t

Pro° (resp. Pre°) the F°-progressive (resp. F°-predictable) o-field. Q will be equipped with the Skorokhod
topology which is Polish since E is Polish (see Theorem 5.6 in chapter 3 of [44]), and for which the Borel o-field
is F, see Proposition 7.1 in chapter 3 of [44]. This in particular implies that F is separable, being the Borel
o-field of a separable metric space.

P () will denote the set of probability measures on 2 and will be equipped with the topology of weak
convergence of measures which also makes it a Polish space since €2 is Polish (see Theorems 1.7 and 3.1 in [44]
chapter 3). It will also be equipped with the associated Borel o-field.

Notation 5.3.2. Foranyw € Qand t € R, the path w stopped at time t: v — w(r A t) will be denoted w".

Remark 5.3.3. In Sections and Subsections all notions and results can easily be adapted
to different canonical spaces Q: for instance, C(R, E), the space of continuous functions from Ry to E;
C([0,T7, E) (resp. D([0,T, E)) the space of continuous (resp. cadlag) functions from [0, T to E, for some
T > 0; fixing x € E, C, (R4, E) (resp. C,([0, T, E)) the space of continuous functions from R (resp. [0,T])
to E starting at x .

Definition 5.3.4. A path-dependent canonical class will be a family (P*"), er, x of probability mea-
sures defined on the canonical space (2, F), which verifies the three following items.

1. Forevery (s,n) € Ry x Q, P¥"(w® =n°) = 1;

2. forevery s € Ry and F € F, the mapping
n > PoI(F)

Q — [0,1] is F¢-measurable;
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3. forevery (s,n) € Ry xQ,t>sand F € F,

P (F|F7)(w) = PY(F) for P> almost all w. (5.3.1)

This implies in particular that for every (s,n) € Ry x Qand t > s, then (P'"),,cq is a reqular conditional
expectation of P*" by F7, see the Definition above Theorem 1.1.6 in [85]] for instance.

A path-dependent canonical class (P*"), yer, xq Will be said to be progressive if for every I' € F, the
mapping (t,w) — P (F) is Fo-progressively measurable.

In concrete examples, path-dependent canonical classes will always verify the following impor-
tant hypothesis which is a reinforcement of (5.3.1).

Hypothesis 5.3.5. For every (s,n) € Ry x Q,t > sand F € F,
P (F|F)(w) = P (F) for P> almost all w. (5.3.2)

Remark 5.3.6. By approximation through simple functions, one can easily show the following. Let Z be a
random variable.

o Let s > 0. The functional n — E"[Z] is F2-measurable and for every (s,n) € Ry x Q, t > s,
E*Z|Ff)(w) = EY[Z] for P*" almost all w, provided previous expectations are finite;

e if the path-dependent canonical class is progressive, (t,w) — E'[Z] is Fo-progressively measurable,
provided previous expectations are finite.

Notation 5.3.7.
o By(Q) (resp. By () will denote the space of measurable (resp. non-negative measurable) bounded r.v.

o Let s > 0. B;(§2) will denote the space of F¢-measurable bounded r.v.

Definition 5.3.8.
1. A linear map Q : By(Q2) — By,(R) is said positivity preserving monotonic if for every ¢ € B, (2)
then Q[¢] € By (Q) and for every increasing converging (in the pointwise sense) sequence f,, — f we

have that Q[f.] — Q][] in the pointwise sense.

2. A family (Ps)ser, of positivity preserving monotonic linear operators on By,(Q2) will be called a path-
dependent system of projectors if it verifies the three following properties.

e Forall s € Ry, the restriction of Ps to By (Q2) coincides with the identity;
e forall s € Ry, Ps maps By(N2) into By (§2);
o forall s,t € Ry witht > s, Pso P, = Ps.

Proposition 5.3.9. Let (P*7) yer, xq be a path-dependent canonical class. For every s € R, we define
Py : ¢ — (n = E*"[¢]). Then (Ps)scr.. defines a path-dependent system of projectors.

Proof. For every s > 0 each map P is linear, positivity preserving and monotonic using the usual
properties of the expectation under a given probability. The rest follows taking into account Defini-

tions and Remark
O
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Proposition 5.3.10. Let (P;)scr, be a path-dependent system of projectors. For any (s,n) € Ry x Q, we set

Then for all (s,n), P*" defines a probability measure and (PP*"7)
class.

sm)ER,xQ IS a path-dependent canonical

Proof. We fix s and 7. Since 0, € F?, then by the first item of Definition Ps[1y] = 15 and
Pi[1g] = 1g, so P*"()) = 0 and P*7(Q) = 1. For any F € F, since P; is positivity preserving and
1y <1p <1gthen 1y < Ps[1r] < 1g so, P*" takes values in [0, 1]. If (F},),, is a sequence of pairwise
disjoint elements of F then the increasing sequence SN 1, converges pointwise to 1y, Since

the Ps are linear and monotonic then } Ps[1r,] = Ps[1|F, ], hence } P*7(F),) = P (UFn> . So for
n

every (s,n), P®", is o-additive, positive, vanishing in () and takes value 1 in Q hence is a probability
measure.

Then, for any (s,n) we have P*"(w® = n°) = Ps[l{ys—ys1]() = Lys—ysy () = 1 since {w® =n°} €
F?,soitem 1. of Definition [5.3.4is satisfied. Concerning item 2., at fixed s € R4 and F' € F, we have
(7= P*"(F)) = P[ly] which is F¢-measurable since P; has its range in 5;(2), see Definition[5.3.8|

It remains to show item 3. We now fix (s,n) € Ry x Q,t > sand F € F and show that
holds. Let G € F?. We need to show that E*"[1¢1 5] = E*"[1¢(¢)EX[1£]]. We have

E*[lelr] = E*[E“[lo(w)lrw)]
= ESE[1g(O)1r(w)]
E*[16(¢)E" [Lr(w)]],

where the first equality comes from the fact that P; = P;o P, and the second from the fact that G € 77
and P*¢(w! = ¢!) = 1s0 1g = 15(¢) P*¢ as. O

Corollary 5.3.11. The mapping

P (IPSW)(SJ])G]RJFXQ — (Z — (77 — ES’H[Z]))SEIR+ ) (534)

is a bijection between the set of path-dependent canonical classes and the set of path-dependent system of
projectors, whose reciprocal map is given by

O (Py)ser, — (F = P1E)(0) (o yer, x - (5.3.5)

Proof. ®isby Propositionwell—deﬁned. Moreover it is injective since if P! and IP? are two prob-
abilities such that respective expectations of all the bounded r.v. are the same then P! = P2. Then
given a path-dependent system of projectors (Ps)scr., , by Proposition

(P51 F = Po[Lr](1)) (5,n)er., o 18 @ path-dependent canonical class. It is then enough to show that
the image through @ of that path-dependent canonical class is indeed (P;)scr, - Let (Qs)ser, denote
its image by @, in order to conclude we are left to show that Qs = P for all s.

We fix s. For every F' € F,n € Q we have Q,[1r|(n) = P*"(F) = Ps[1r](n) so Qs and Ps coincide on
the indicator functions, hence on the simple functions by linearity, and everywhere by monotonic-
ity and the fact that every bounded Borel function is the limit of an increasing sequence of simple
functions. O

Definition 5.3.12. From now on, two elements mapped by the previous bijection will be said to be associated.
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Remark 5.3.13. Path-dependent canonical classes naturally extend canonical Markov classes (see Definition
in Chapter [ for instance) as follows.

Let (P*%) (s 2)er. x E be a canonical Markov class with state space E and let (Ps¢)o<s<¢ denote its transi-
tion kernel, see Definition in Chapter {4}

Forall (s,n) € Ry x Q, let P*" be the unique probability measure on (2, F) such that P*"(w® = n®) and
P$" coincides on o (X, |r > s) with P*"%). Then (P¥) (s, eR xQ 18 @ path-dependent canonical class. Let
(Ps)ser.. denote the associated path-dependent system of projectors. Then for all bounded Borel ¢ : E — R,
n € Qand 0 < s <t we have

Pylg o Xi)(n) = E*6(X0)] = BX"9[6(X,)] = Perlél(n(s))- (5.3.6)

Notation 5.3.14. For the rest of this section, we are given a path-dependent canonical class (P*") (s VeR. x
and (Ps)scr, denotes the associated path-dependent system of projectors.

Definition 5.3.15. Let P be a probability on (Q, F). If G be a sub-o-field of F, we call P-closure of G the
o-field generated by G and the set of P-negligible sets. We denote it G¥. In the particular case G = F, we call
F¥ P-completion of F.

Remark 5.3.16. Thanks to Remark 32.b) in Chapter 1I of [32l], we have an equivalent definition of the IP-
closure of some sub-o-field G of F which can be characterized by the following property: B € G¥ if and only if
there exist ' € G such that 1g = 1p P a.s.

Moreover, P can be extended to a probability on G¥ by setting P(B) := P(F) for such events.

Notation 5.3.17. Forany (s,n) € R xQwe will consider the stochastic basis (€2, F*1, F51 := (F;")er,, , P*")
where F*" is the P*"-completion of F, P5" is extended to F*" and F;"" is the P*"-closure of F; for every
t € Ry.

We remark that, for any (s,n) € Ry x Q, (Q, F®7 F7 P*") is a stochastic basis fulfilling the
usual conditions, see 1.4 in [61] Chapter I.

A direct consequence of Remark 32.b) in Chapter II of [32] is the following.

Proposition 5.3.18. Let G be a sub-o-field of F, P a probability on (Q, F) and G¥ the P-closure of G. Let Z%
be a real G¥ -measurable random variable. There exists a G-measurable random variable Z such that Z = Z¥
P-a.s.

Proposition [5.3.18yields the following.

Proposition 5.3.19. Let P be a probability measure on (Q, F), let G := (Gy)er., be a filtration and G¥
denote (GF )i, - Let Z be a positive or L-random variable and t € R... Then E[Z|G] = E[Z|GF] P a.s. In
particular, (P, G)-martingales are also (P, GY')-martingales.

According to Proposition for P = IP*", the related conditional expectations with respect to
F;’" coincide with conditional expectations with respect to F;. For that reason we will only use the
notation E*"[ - | F;] omitting the (s, n)-superscript over F;.

In the next proposition, F;"*" will denote for any (s,7) € R4 x Q and ¢ > s the P5"-closure of
FP.

Proposition 5.3.20. Assume that Hypothesis[5.3.5holds. For any (s,n) € Ry x Qand t > s, F""" = F;".
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Proof. We fix s,n, t. Since inclusion F;"*" c F;"" is obvious, we show the converse inclusion.

Let 5" € F;”". By Remark there exists F' € F;, such that 1psn = 1p P57 a.s. It is there-
fore sufficient to prove the existence of some F° € Fy such that 1o = 1 P*" a.s. (and therefore
Lpo = L s P a.s.) to conclude that F*7 € F,*".

w — PW(F)

We set 7 : Q — [0,1]

. By (6.3.2) and the fact that F' € F;, we have

Z(w) = PY(F) = E¥"[1p|F)(w) = 1p(w) P*"as. (5.3.7)

By Definition 7 is Ff-measurable, so F° := Z71({1}) belongs to F¢, and we will proceed
showing that 1o = 1 P*" a.s.
By construction, 1o(w) = 1iff P4 (F) = 1 and 1 po(w) = 0 iff P (F) € [0, 1]. So

{w:Tpo(w) # 1p(w)}

= {w:lpo(w)=1land Ip(w) =0} U{w: Lpo(w) = 0and 1 p(w) = 1} (5.3.8)

= {w:P"¥(F)=1land 1p(w) =0} J{w: P*(F) € [0,1[and 1p(w) = 1}
C A{w:P(F) # 1p(w)},
where the latter set is IP*7-negligible by (5.3.7). O

Combining Propositions|5.3.18 and [5.3.20} we have the following.

Corollary 5.3.21. Assume that Hypothesis holds and let us fix (s,n) € Ry x Qand t > s. Given an
F;""-measurable r.v. Z5", there exists an Ff-measurable r.v. Z° such that Z5" = Z° P q.s.

Definition 5.3.22. If (Q, F, IP) is a probability space and G is a sub-o-field of F, we say that G is P-trivial
if for any element G of G, then P(G) € {0,1}.

Corollary 5.3.23. Assume that Hypothesis holds. For every (s,n) € Ry xQ, F¢ and Fy are P*"-trivial.

Proof. We fix (s,n) € Ry x Q. We start by showing that F¢ is P*"-trivial. For every B € F¢ and
w we have 1p(w) = 1p(w*), and since P*"(w® = n°) = 1, we have 1p(w®) = 15(n°) P*" a.s. So
Ps"(B) = E*"1p(w)] = 1p(n°) € {0,1}. Then, it is clear that adding P*"-negligible sets does
not change the fact of being P*"-trivial, so F5">" (which by Proposition is equal to F3'") is
P#"-trivial and therefore so is Fs C F3'".

O

5.4 Path-dependent Additive Functionals

In this section, we introduce the notion of Path-dependent Additive Functionals that we use in the
chapter. As already anticipated, this can be interpreted as a path-dependent extension of the notion
of non-homogeneous Additive Functionals of a canonical Markov class developed in Chapter (1| For
that reason, several proofs of this section are very similar to those of Chapter[Ijand are inspired from
[34] Chapter XV, which treats the time-homogeneous case.

We keep on using Notation and we fix a path-dependent canonical class (P*7), »er, x0
and assume the following for the whole section.

Hypothesis 5.4.1. (P*")(,,\cRr, xq 18 progressive and verifies Hypothesis[5.3.5]

We will use the notation A := {(t,u) € R%|t < u}.
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Definition 5.4.2. On (Q, F), a path-dependent Additive Functional (in short path-dependent AF) will be
a random-field A := (A¢ ) (t,u)en with values in R verifying the two following conditions.

1. Forany (t,u) € A, Az, is F-measurable;

2. for any (s,m) € Ry x Q, there exists a real cadlag F*"-adapted process A*" (taken equal to zero on
[0, s] by convention) such that foranyn € Qand s <t < u,

Apy = AS1 — AT P as,

We denote by A the (F°-adapted) process u +— Ay, indexed by [t, +oc[. Forany (s,n) € [0,t] x, A>T—AP"
is a P*"-version of A on [t, +oo[. A% will be called the cadlag version of A under P*".

A path-dependent Additive Functional will be called a path-dependent Martingale Additive Func-
tional (in short path-dependent MAF) if under any IP*" its cadlag version is a martingale.

More generally, a path-dependent AF will be said to verify a certain property (being non-decreasing, of
bounded variation, square integrable, having L ~terminal value) if under any P*" its cadlag version verifies
it.

Finally, given two increasing path-dependent AFs A and B, A will be said to be absolutely continuous
with respect to B if for any (s,n) € Ry x Q, dA®" < dB*" in the sense of stochastic measures. This means
that dA*"(w) is absolutely continuous with respect to dB*"(w) for P*" almost all w.

Remark 5.4.3. The set of path-dependent AFs (resp. path-dependent AFs with bounded variation, path-
dependent AFs with L-terminal value, path-dependent MAFs, square integrable path-dependent MAFSs) is a
linear space.

Lemma 5.4.4. Let M be an F°-adapted process such that for all (s,n), on [s,+oo[, M is a (P", F°)-
martingale.

Then, for all (s,n), M.ys — Ms admits a P*"-version which is a (IP*", ") cadlag martingale M*"
vanishing in [0, s|. In particular M, (w) := M,(w) — M;(w) defines a path-dependent MAF with cadlag
version M*" under P>,

Proof. By Propositions [5.3.19|and [5.3.20} M is also on [s, +-oo[ a (P77, F¥")-martingale hence M./s —
M, is on R4 a (IP*", F¥")-martingale and vanishes on [0, s]. Since F*®" satisfies the usual condi-
tions, then M.,; — M, admits a cadlag P*""-modification M *" which also is a (P*", ['*")-martingale
vanishing in [0, s]. It clearly verifies that M; , = M, — My = M;" — M;"" P$"-as. forall s <t <wu. O

Example 5.4.5. Let Z be an F-measurable bounded r.v. A typical example of process verifying the conditions
of previous Lemma is given by M? : (t,w) — E"[Z], see Remark

The following results state that, for a given square integrable path-dependent MAF (M; 4,) (1 u)ea
we can exhibit two non-decreasing path-dependent AFs with £!-terminal value, denoted respec-
tively by ([M]iu)t,uyea and ((M)t.u)(¢,u)ea, which will play respectively the role of a quadratic varia-
tion and an angular bracket of it. Moreover we will show that the Radon-Nikodym derivative of the
mentioned angular bracket of a square integrable path-dependent MAF with respect to a reference
function V' is a progressively measurable process which does not depend on the probability.

The proof of the proposition below is postponed to the appendix.

Proposition 5.4.6. Let (M) u)ea be a square integrable path-dependent MAF, and for any (s,n) € Ry x
Q, [M*"] denote the quadratic variation of its cadlag version M*" under IP*". Then there exists a non-
decreasing path-dependent AF with L'-terminal value which we will call ([M];u)t.w)en and which, for any
(s,n) € Ry x Q, has [M*")] as cadlag version under P*".
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The next result can be seen as an extension of Theorem 15 Chapter XV in [34] to a path-dependent
context and will be needed to show that the result above also holds for the angular bracket. Its proof
is also postponed to the appendix.

Proposition 5.4.7. Let (Byu)t.u)ea be a non-decreasing path-dependent AF with £'- terminal value. For
any (s,n) € Ry x Q, let B5" be its cadlag version under P> and let A>" be the predictable dual projection of
B in (Q, F&1 51 PS"). Then there exists a non-decreasing path-dependent AF with L'-terminal value
(Atu)(t,u)en such that under any =7, the cadlag version of A is A*",

Remark 5.4.8.

1. About the notion of dual predictable projection (also called compensator) related to some stochastic basis
we refer to Theorem 3.17 in Chapter I of [61]].

2. Werecall that, whenever M, N are two local martingales, the angle bracket (M, N ) is the dual predictable
projection of [M, N, see Proposition 4.50 b) in Chapter I of [61]].

Corollary 5.4.9. Let (M u)tuyen, (Nitw)(tu)ea be two square integrable path-dependent MAFs, let M*"
(respectively N*") be the cadlag version of M (respectively N) under IP>". Then there exists a bounded
variation path-dependent AF with L'-terminal value, denoted ((M, N); )t uyen, such that under any P,
the cadlag version of (M, N) is (M*", N*"). If M = N the path-dependent AF (M, N') will be denoted (M)
and is non-decreasing.

Proof. This can be proved as for Corollary|(1.4.11|in Chapter [1} replacing parameter (s, z) with (s, 7).
O

The result below concerns the Radon-Nikodym derivative of a non-decreasing continuous path-
dependent AF with respect to some reference measure dV'. Its proof is postponed to the Appendix.

Proposition 5.4.10. Let V : Ry — R be a non-decreasing continuous function. Let A be a non-negative,
non-decreasing path-dependent AF absolutely continuous with respect to V', and for any (s,n) € Ry x Q let
A" be the cadlag version of A under P*". There exists an IF°-progressively measurable process h such that
forany (s,n) € Ry x Q, A" = fs'vs hydV;., in the sense of indistinguishability.

Proposition 5.4.11. Let (Ayy)(tu)en be a path-dependent AF with bounded variation, taking L'-terminal
value. Then there exists an increasing path-dependent AF that we denote (Pos(A)iu)tu)en (resp.
(Neg(A)tu)t,uyen), which, for any (s,n) € Ry x Q, has Pos(A*") (resp. Neg(A*"))) as cadlag version
under P,

Proof. This can be proved similarly as for Proposition [1.4.14|in Chapter [1} replacing parameter (s, z)
with (s, 7). O

Corollary 5.4.12. Let V be a continuous non-decreasing function. Let M and N be two square integrable
path-dependent MAFs and let M*>" (respectively N*") be the cadlag version of M (respectively N) under a
fixed PN, Assume that (N) is absolutely continuous with respect to dV'. There exists an F°-progressively
measurable process k such that for any (s,n) € Ry x Q, (M1, N*T) = fs'vs k. dV,.

Proof. The proof follows the same lines as the one of Proposition in Chapter (1| replacing pa-
rameter (s,z) by (s,n) and Borel functions of (¢, X;) with [F°-progressively measurable processes.
We make use of Corollary[5.4.9) Propositions[5.4.11] and [.4.10] respectively in substitution of Corol-
lary an Propositions [1.4.14)and [1.4.13] O
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Corollary 5.4.13. Let V' be a continuous non-decreasing function. Let M (resp. N) be an F°-adapted process
such that for all (s,n), M (resp. N) is on [s,+oo[ a (P*",F°)-square integrable martingale. For any (s,n),
let M*" (resp. N*") denote its P*"-cadlag version. Assume that for all (s,n), d(N*") < dV.

T hven there exists an IF°-progressively measurable process k such that for any (s,n) € Ry xQ, (M1, N*1) =
L7 kpdV.

Proof. The mentioned cadlag versions exist because of Lemma The statement follows by the

same Lemma and Corollary [5.4.12
O

5.5 Path-dependent Martingale problems

5.5.1 Abstract Martingale Problems

In this section we show that, whenever a (path-dependent) martingale problem is well-posed, then
its solution is a path-dependent canonical class verifying Hypothesis This relies on the same
mathematical tools than those used by D.S Stroock and S.R.S Varadhan in the context of Markovian
diffusions in [85]. Indeed it was already known that the ideas of [85] could be used in any type of
Markovian setup and not just for martingale problems associated to diffusions, see [44] for exam-
ple. One of the interests of the following lines is to show that their scope goes beyond the Markovian
framework. First we prove that ) — IP*" is measurable, using well-posedness arguments and the cel-
ebrated Kuratowsky Theorem. Then we show in Proposition[5.5.12]that the solution of the martingale
problem verifies (5.3.2), which is the analogous formulation of Markov property, through the theory
of regular conditional expectations and again the fact that the martingale problem is well-posed.

Notation 5.5.1. Forevery t € Ry, Q' := {w € Q : w = w'} will denote the set of constant paths after time t.
We also denote A := {(s,n) € Ry x Q:n e Q°}.

Proposition 5.5.2.
1. Ais a closed subspace of Ry x 0, hence a Polish space when equipped with the induced topology.
2. Foranyt € Ry, Q is also a closed subspace of Q).

Proof. We will only show the first statement since the proof of the second one is similar but simpler.
Let (sp,7n)n be a sequence in A. Let (s,7) € R4+ x Q and assume that s,, — s and that 7,, tends to 7
for the Skorokhod topology. Then 7, tends to 1 Lebesgue a.e. Let € > 0. There is a subsequence (s, )
such that |s,, — s| < ¢, implying that for all &, n,,, is constantly equal to 7,,, (sp, ) on [s + €, +o00[. Since
7, tends to 1) Lebesgue a.e., then necessarily, 1, (sn, ) tends to some ¢ € E and 7 takes value c a.e. on
[s + €, 4+o0o[. This holds for every ¢, and 7 is cadlag, so 7 is constantly equal to ¢ on [s, +00], implying
that (s,n) € A. O

From now on, A, introduced in Notation is equipped with the trace topology.

Proposition 5.5.3. The Borel o-field B(A) is equal to the trace o-field A N Pro°. For any t € R, the Borel
o-field B(Q) is equal to the trace o-field Q' N Fy.

Proof. Again we only show the first statement since the proof of the second one is similar. By def-
inition of the topology on A, it is clear that B(A) = AN B(R+ x 2) = AN (B(R4) ® F) contains
A NPro°. We show the converse inclusion. The sets A N ([s,u] x {w(r) € A}) for s,u,r € R4 with
s <u, A € B(E) generate AN (B(R4+) ® F) so it is enough to show that these sets belong to A N Pro°.
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We fix s <wand rin R4, and A € B(E). We have

t € [s,u]
Aﬂ ([S,U] X {W(T) € A}) = (t,w) : w = wt
w(r)e A
t € [s,ul
= {(tw) : { W= wt } . (5.5.1)
w(rnt)e A

t € [s,ul

_ Aﬂ{(tw)i{ w(r At) € A }

We are left to show that {(t, w) { Z)(Er [Z’Z;] cA } € Pro?, or equivalently that

t gy ()L a(X,p¢) is F? — progressively measurable. (5.5.2)

Now ¢ — X, is right-continuous and F°-adapted so it is an E-valued F°-progressively mea-
surable process, see Theorem 15 in [32] Chapter IV. By composition with a Borel function, ¢t —
14(Xyn¢) is a real-valued F-progressively measurable process; follows since ¢ — 15 (%)
is F°-progressively measurable and the product of the two F°-progressively measurable processes
remains [F°-progressively measurable. O

Definition 5.5.4. Let (s,n) € A and x be a set of F°-adapted processes. We say that a probability measure P
on (2, F) solves the martingale problem with respect to x starting in (s, n) if

o P(w*=n°)=1,
o all elements of x are on [s, +oo[ (P, F°)-martingales.

Remark 5.5.5. We insist on the following important fact. If M € x is cadlag and IP solves the martingale
problem associated to x, then by Theorem 3 in [33] Chapter VI, M is also on [s, +ocol a (P, F)-martingale.

Notation 5.5.6. For fixed (s,n) € A and x, the set of probability measures solving the martingale problem
with respect to x starting in (s,n) will be denoted M P*"(x).

Definition 5.5.7. Let us consider a set x of processes. If for every (s,n) € A, M P*"(x) is reduced to a single
element IP*", we will say that the martingale problem associated to x is well-posed. In this case we will
always extend the mapping
(s,m) —> P27
A — P

to Ry x Q by setting for all (s,n) € Ry x Q, PS7 := P,

(5.5.3)

Notation 5.5.8. We fix a dense sequence (x,,)n>0 of elements of E. For any s € Ry, we will denote by 11,
the set of elements of F¢ of type {w(t1) € B(zi,, 1), -+ ,w(tn) € B(xiy,Tn)} where N € N, tq,--- ity €
0,s]NQ, i1, -+ ,in € N, r1,--- ,rny € Q4 and where B(x,r) denotes the open ball centered in x and of
radius r.

It is easy to show that for any s € R, I, is a countable m-system generating F¢, see [1] Definition
4.9 for the notions of m-system and A-system.

Below we consider the set A, of probability measures P on (2, ) for which there exists n €
such that [P solves the martingale problem with respect to  starting at (s, 7).
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Proposition 5.5.9. We fix a countable set x of cadlag IF°-adapted processes which are uniformly bounded on

each interval [0, T, and some s € R. Let As :== |J M P*"(x). Then A is a Borel set of P(2).
neQ

For the proof of this proposition we need a technical lemma.

Lemma 5.5.10. We fix s € R.. An element P of P(2) belongs to A if and only if it verifies the following
conditions:

1. P(F) € {0,1} forall F € 11;
2. BEP[(My, — My)1p] = 0forall M € x, t,u € [s, +00[NQ such that t < u, F € TI,.
Proof. By definition of A, an element IP of P(£2) belongs to Aj iff
a) there exists € Q such that P(w® = n®) = 1;
b) for all M € x, (M¢)se[s, o0 is @ (P, F?)-martingale.

Item a) above is equivalent to saying that ¢ is IP-trivial which is equivalent to item 1. of the
Lemma statement by Dynkin’s Lemma (see 4.11 in [1]]), since II, is a 7-system generating F¢ and
since the sets F' € F¢ such that P(F') € {0,1} form a A-system. On the other hand, it is clear that item
b) above implies item 2. in the statement of the Lemma.

Conversely, assume that M € y satisfies item 2. of the statement. We fix s < ¢ < u. Let (tn)n, (un)n
be two sequences of rational numbers which converge respectively to ¢, u strictly from the right and
such that ¢, < w, for all n. For every fixed n, we have IEJ]P[(MUn — M, )1g] = 0forall G € II;. We
then pass to the limit in n using the fact that M is right-continuous at fixed w, and the dominated
convergence theorem and taking into account the fact that M is bounded on compact intervals; this
yields E¥[(M,, — M;)1¢] = 0 for all G € II;. Since sets G € F? verifying this property form a \-
system and since I1; is a 7-system generating F¢, then by Dynkin’s lemma (see 4.11 in [1])), EF'[(M,, —
M)lg] = 0 for all G € F7. This implies that (M;)ics o0 is a (P, IF?)-martingale which concludes

the proof of Lemma5.5.10 O

Proof of Proposition[5.5.9

We fix s € R. We recall that for any bounded random variable ¢, P — E[¢] is Borel. In particular
forall F € II,, P — IP(F) and for all M € x, t,u € [s, +00[NQ, F € II;, P — EP[(M, — M;)15] are
Borel maps. The result follows by Lemma taking into account the fact II; is countable for any
t, and x and the rational number set (Q are also countable. Indeed since {0} and {0, 1} are Borel sets,
Ay is Borel being a countable intersection of preimages of Borel sets by Borel functions. O

Proposition 5.5.11. Let x be a countable set of cadlag IF°-adapted processes which are uniformly bounded on

each interval [0, T). We assume that the martingale problem associated to x is well-posed, see Definition [5.5.7}
) n > P . (s,m) +— P57 e

Let s € Ry. Then @ : < P s POQ) ) is Borel. Moreover, < R, xQ — PQ) is F%-adapted.

Proof. We fix s € Ry and set

n — P

s : Q5 — A,

(5.5.4)
where A, is defined as in Proposition ®, is surjective by construction. Itis also injective. Indeed,
if n1,m2 € QF are different, there exists ¢ € [0, s| such that n;(t) # n2(t) and we have P*" (w(t) =
n(t)) = 1and P*(w(t) = n2(t)) = 1 so clearly P*" £ P2,
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We can therefore introduce the reciprocal mapping

-1, ]Ps’n — n
D A s 00 (5.5.5)
which is a bijection. We wish to show that it is Borel. Since the Borel o-algebra of (2° is generated by
the sets of type {w(r A s) € A} wherer € Ry and A € B(E), it is enough to show that ®,({w(r A s) €
A}) is for any r, A a Borel subset of P(£2). We then have ®,({w(r As) € A}) = AsN{P : P(w(rAs) e
A) = 1} which is Borel being the intersection of A, which is Borel by Lemma and of the
preimage of {1} by the Borel function P — P(F) with F = {w(r A s) € A}. So ®;! is a Borel bijection
which maps the Borel set A, of the Polish space P({2) into the Polish space ©°. By Kuratowsky
N — P
QF — PO
Let us justify the second part of the statement. Since by Proposition[5.5.3} B(Q2*) = Q* N F? for all

n — n°\. o SVY. n — P
O — 0 ) is (F2, B(92°))-measurable and therefore that < Q — PQ) )

theorem (see Corollary 3.3 in [75]), @, : is Borel.

s, it is clear that (

is F¢-measurable.
O

Proposition 5.5.12. Let x be a countable set of cadlag I°-adapted processes which are uniformly bounded on
each interval [0, T, and assume that the martingale problem associated to x is well-posed, see Definition [5.5.7]
Then (P*") (s n)er, x i3 a path-dependent canonical class verifying Hypothesis[5.3.5].

Proof. The first two items of Definition are directly implied by Proposition and the fact
that P*"7 € MP*"(x) hence P*"(w® = n*) = 1 for all (s,n). It remains to show the validity of
Hypothesis[5.3.5

We fix (s,n) € Ry x Qand t > s. Since () is Polish and F; is a sub o-field of its Borel o-field,
there exists a regular conditional expectation of IP*" by F; (see Theorem 1.1.6 in [85]), meaning a set
of probability measures (Q"¢).cq on (£, F) such that

1. forany F € F,( — Qt’C(F) is F;-measurable;
2. forany F € F, P*"(F|F)(¢) = Qb4 (F) P*" ass.
We will now show that for IP*" almost all {, we have
Q¢ =P, (5.5.6)

so that item 2. above will imply Hypothesis In order to show that equality, we will show that
for P*" almost all ¢, Q"¢ solves the Martingale problem associated to x starting in (¢, () and con-
clude since M P'¢(x) is a singleton, taking into account the fact the corresponding martingale
problem is well-posed.

For any F' € F?, by item 2. above we have Q"¢ (F) = 1(¢) P*" a.s. Since I, is countable, there
exists a P*"-null set N such that for all ( € N¢ we have Q"¢ (F) = 1(¢) for all F € II;. Then since
II; is a m-system generating F; and since sets verifying the previous relation define a A-system, we
have by Dynkin’s lemma (see 4.11 in [1]) that for all ¢ € N{, Q4¢(F) = 1z(¢) forall F € F¢. Now for
every fixed ¢ € Nf, since {w : w' = ('} € Ff, we have Q"¢ (w' = (") = Ly, t—¢11(¢) = 1, which is the
first item of Definition related to M P (x).

We then show that for P*"-almost all ¢, the elements of x are (Q"¢, F°)-martingales, which con-
stitutes the second item of Definition[5.5.4]
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For any ¢y < tyin [t, +oo[, M € x and F' € F},, we have

EQt’ﬁ[(Mtz - Mtl)]lF] - ESW[(MQ - Mtl)]lF’]:t](C)
ESTES(My, — My, )1p|F, ]| F)(€)
EST[ES(My, — My,)|Fe, |1 | F](€)
-0,

(5.5.7)

for P almost all ( by Remarksince M is a (IP*", [F)-martingale on[s, +oo[ and F' € Fy, C Fy,.
Since x and the set of rational numbers are countable and taking into account the fact that for any
r > 0, F¢ is countably generated, there exists a P*"-null set N, such that for any { € N§, we have for
any t; <ty in [t, +oo[NQ, M € x, F € FP, that EQ"*[(My, — My, )1x] = 0.

Let ¢ € N5. We will now show that this still holds for any t; < t3in [t,+00[, M € x, F € F{.
We consider rational valued sequences (t7), (resp. (¢3),) which converge to t; (resp. to t) strictly
from the right and such that ¢} < t3 for all n. For all n, ER" [(Mt; — Mt?)]l r| = 0; since M is right-
continuous and bounded on finite intervals, by dominated convergence, we can pass to the limit in
n and we obtain ER®"° [(My, — My, )1p] = 0. Therefore if ( ¢ N;|J N2 which is P*"-negligible, then
Q¢ (w! = ¢!) = 1 and all the elements of x are (Q, [F°)-martingales. This means that Q¢ = P%¢ by
well-posedness and concludes the proof of Proposition O

5.5.2 Martingale problem associated to an operator and weak generators

This section links the notion of martingale problem with respect to a natural notion of (weak) gen-
erator. In this section Notationwill be again in force. Let (IP*")(, ,)er. xo be a path-dependent
canonical class and let the corresponding path-dependent system of projectors be denoted (Ps)scr,
see Definition[5.3.12] Let V : Ry +—— R be a non-decreasing cadlag function.

In the sequel of this section, we are given a couple (D(A), A) verifying the following.

Hypothesis 5.5.13.
1. D(A) is a linear subspace of the space of F°-progressively measurable processes;
2. Ais a linear mapping from D(A) into the space of F°-progressively measurable processes;

3. forall® € D(A),w e Q,t>0, [ |A®,(w)|dV; < +oc;

4. forall ® € D(A), (s,7) € Ry x Qand t € [s,-+oo|, we have B [ It yA(cp)TydvT} < +o0 and
ES[|®,[] < +oc.

Inspired from the classical literature (see 13.28 in [61]) we introduce a notion of weak generator.
Definition 5.5.14. We say that (D(A), A) is a weak generator of the path-dependent system of projectors
(Ps)ser. if forall ® € D(A), (s,n) € Ry x Qand t € [s,4o00], we have

Pu[@4)(n) = (1) + / PA@®),)(n)dV;. (5.58)

Definition 5.5.15. We will call martingale problem associated to (D(A), A) the martingale problem (in
the sense of Definition associated to the set of processes x constituted by the processes ® — [, A(®),dV;,
® € D(A). It will be said to be well-posed if it is well-posed in the sense of Definition[5.5.7]
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Proposition 5.5.16. (D(A), A) is a weak generator of (Ps)ser, iff (P*")(sn)er. xq solves the martingale
problem associated to (D(A), A).

Moreover, if (IP*") (s, e, xq solves the well-posed martingale problem associated to (D(A), A) then
(Ps)ser., is the unique path-dependent system of projectors for which (D(A), A) is a weak generator.

Proof. We start assuming that (D(A), A) is a weak generator of (Ps)scr, . Let ® € D(A), s <t < w.
P57 a.s. we have
E*"®,, — &y — ft dV\}'O]( )
= E[d, — P — f A
= Pt[fb J(w) = ®4(w ft Pt ‘P rl(w)dVe
= 0,

(5.5.9)

where the first equality holds by Remark[5.3.6} the second one by Fubini’s theorem and the third one
because (D(A), A) is assumed to be a weak generator of (Ps)secr, . By definition of path-dependent
canonical class, we have P*"(w® = n°) = 1. By (5.5.9), forall ® € D(A), ®— [ A(®),dV, isa (P*",F°)-
martingale, and therefore P solves the martingale problem associated to (D(A), A) starting in (s, 7).
Conversely, let us assume that (IP*"), ;) cr , xo solves the martingale problem associated to (D(A), A).

Let ® € D(A) and (s,n) € R4 x Q2 be fixed. By Definitions{5.5.15(and[5.5.7, M [®] := ®— [, A(®),dV,, is
a (P*", [F°)-martingale on [s, +00[. Moreover, since P*"(w® = 77 ) = 1 and @, being F; O-measurable,
we obtain &, = ®,(n) P*" a.s. Therefore, for any t > s, &, — f A(P),dV, = M[®], — M[P]s

a.s.; so taking the IP*"" expectation, by Fubini’s Theorem and Def1n1t1on 5. 3 12 it yields

P, [®,](n) f Ps[A(®),](n)dV;
= s [(I)t f A( (I))rdv;"} (5.5.10)
= [Esn [M[(I)]t — M[(I)]s]
= 0,

hence that (D(A), A) is a weak generator of (P;)cR, -

Finally assume moreover that the martingale problem is well-posed and that (D(A), A) is a weak
generator of another path-dependent system of projectors (Qs)scr, With associated path-dependent
canonical class (Q*") s n)eRr, xo- Then by the first statement of the present proposition, (Q*") (s y)er x
solves the martingale problem associated to (D(A), A). Since that martingale problem is well-posed

we have (Qs’n)(s,n)eﬁh_ xQ = (Psm)(s,n)E]R_‘_XQ and by Proposition (QS)SG]R+ = (PS)SER+- 0

Remark 5.5.17. When the conditions of previous proposition are verified, one can therefore associate analyti-
cally to (D(A), A) a unique path-dependent system of projectors (Ps)scr.,. through Definition

Combining Proposition and Lemma yields the following.

Corollary 5.5.18. Assume that (P>") e, xq is progressive and fulfills Hypothesis Suppose that
(D(A), A) is a weak generator of (Ps)ser, . Let ® € D(A), and fix (s,n). Then & — [ A(®),dV, admits
on [s, +oo[ a P version M[®|*" which is a (P*", F*")-cadlag martingale. In particular, the random field
defined by M[®]; ,(w) := Oy (w) — Py(w) — [ A®,(w)dV, defines a MAF with cadlag version M [®]*" under
pen.

We insist on the fact that in previous corollary, ® is not necessarily cadlag. That result will be
crucial in the following Chapter [6}
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5.6 Weak solutions of path-dependent SDEs

We will now focus on a more specific type of martingale problem which will be associated to a path-
dependent Stochastic Differential Equation with jumps. In this section we will refer to notions of [61]]
Chapters II, III, VI and [60] Chapter XIV.5.

We fix m € N*, E = R™, the associated canonical space, see Definition and a finite positive
measure F' on B(R™) not charging 0.

Definition 5.6.1. (Q, F,F, P, W, p) will be called a space of driving processes if(@, F,T,P)isastochastic
basis fulfilling the usual conditions, W is an m-dimensional Brownian motion and p is a Poisson measure of
intensity q(dt, dz) = dt @ F(dx), and W, p are optional for the underlying filtration.

We now fix the following objects defined on the canonical space.

e 3, an R™-valued [F’-predictable process;

e 0,a M,,(R)-valued F°-predictable process;

e 7, an R™-valued Pre° @ B(R™)-measurable function on R; x  x R™,
where M,,,(R) denotes the set of real-valued square matrices of size m.

Definition 5.6.2. Let (s,n) € R4 x Q. We call a weak solution of the SDE with coefficients (3, o, v and
starting in (s, n) any probability measure P> on (2, F) such that there exists a space of drzvmg processes
(Q, F,F, P, W,p), on it an m-dimensional F-adapted cadlag process X such that P*" = P o X~ and such
that the followmg holds.

Let f:= B.(X()), 6 := 0.(X(-)) and 7 := (-, X (-), -). We have the following.

o forallt €[0,s], X; = n(t) Pas.;

A (HBTH 1602 + S (170 )|+ 13, 9)|2) E(dy) ) dr takes finite values P a.s.

o Xj=mni(s)+ [IBidr+ X [l dWE + 4 x (p— q)i Pas. forallt > s,i <m,
j<m

where * is the integration against random measures, see [61l] Chapter 11.2.d for instance.

Remark 5.6.3. Previous Definition|5.6.2|corresponds to Definition 14.73 in [60]. However, in the second item
we have required that

[ el + 150 ol Paar

takes finite values a.s. so that 4 x (p — q) is a well-defined purely discontinuous locally square integrable
martingale with angle bracket the M,, (R)-valued process fs’vs Jgm AT (7, -, y) F(dy)dr, (see Definition 1.27,
Proposition 1.28 and Theorem 1.33 in [60] chapter 1I) and we will not need to use any truncation function.

With this definition, if P*" is a weak solution of the SDE starting at some (s, n), then under P*", (X¢)>s
is a special semimartingale.

Definition 5.6.4. Let s € R and (Y;)i>s be a cadlag special semimartingale defined on the canonical space
with (unique) decomposition Y = Yy + B + M¢ + M9 where B is predictable with bounded variation, M¢
a continuous local martingale, M? a purely discontinuous local martingale, all three vanishing at the initial
time t = s. We will call characteristics of Y the triplet (B, C,v) where C = (M€) and v is the predictable
compensator of the measure of the jumps of Y.
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There are several known equivalent characterizations of weak solutions of path-dependent SDEs
with jumps which we will now state in our setup.

Notation 5.6.5. For every f € CZ2(R™) and t > 0, we denote by A f the r.v.

- V(X)) + 5 Tr(ono VFO0) + [ (PG 3(t,) = FOX) = VA (8 0) F(d). G6:)

m

Proposition 5.6.6. Let (s,n) € R4 x Q) be fixed and let P € P(2). There is equivalence between the following
properties.

1. IP is a weak solution of the SDE with coefficients (3, o, v starting in (s,n);

2. P(w® =n°) = 1land (X¢)e>s is under IP a special semimartingale with characteristics

e B= fs Brdr;
o C= [ (007)dr;

e U (wv G) = f;roo fE ]lG(rfY(wvT7y))]l{'y(w,r,y);éO}F(dy)dr;
3. P solves M P*"I(x) where x is constituted of processes f(X.) — [ Ay fdr forall f € CZ(R™).

4. P solves M P*"(x') where x' is constituted of processes f(X.) — [, Ay fdr for all functions f : x —
cos(0-x)and f : x — sin(0 - x) with § € Q™.

Proof. Equivalence between items 1. and 2. is a consequence of Theorem 14.80 in [60]. The equiva-
lence between items 2., 3. and 4. if § was ranging in R™ is shown in Theorem 2.42 of [61] chapter II.
Observe that 4. is stated for § € R™; however the proof of the implication (4. = 2.) in Theorem 2.42
of [61] chapter II only uses the values of 6 in Q™. ]

Theorem 5.6.7. Assume that for any (s,n) € Ry x Q, the SDE with coefficients 3, o, vy and starting in (s, n)
admits a unique weak solution P*". Then (P*"), \er, x is a path-dependent canonical class verifying

Hypothesis[5.3.5]

Proof. By Proposition [5.6.6] IP*" is for each (s,n) the unique solution of M P*"(x) where x is consti-
tuted of the processes f(X.) — [, A, fdr for all functions f : x — cos(f - z) or f : x> sin(f - x) with
6 € Q™. Since x is a countable set of cadlag [F°-adapted processes which are bounded on bounded
intervals, we can conclude by Proposition[5.5.12} O

We recall two classical examples of conditions on the coefficients for which it is known that there
is existence and uniqueness of a weak solution for the path-dependent SDE, hence for which the
above theorem applies, see Theorem 14.95 and Corollary 14.82 in [60].

Example 5.6.8. We suppose 3, 0,7 to be bounded. Moreover we suppose that for all n € IN* there exist
Ky € L, (Ry) and a Borel function KY : R™ x Ry — R such that [, K§(-,y)F(dy) € L}, (Ry)
verifying the following.
Forallz € R™, t > 0 and w,w" € Q such that sup |w(r)|| < nand sup ||w'(r)| < n, we have
r<t r<t

¢ llot(w) —ar(w)] < KS(t)Sug lwo(r) — w' ()%

o [v(tw,2) =t 2)|| < K§ (¢t z)sup [lw(r) — o' (r)]%
r<t
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Finally we suppose that one of the two following hypotheses is fulfilled.

1. For all n € N*, there exists K" € L (Ry) such that for all t > 0 and w,w’ € Q verifying
sup [[w(r)|| < nand sup ||/ (r)]| < n, we have |[B;(w) — Be(w)]| < KT ()sup ||w(r) — /(1)
r<t r<t r<t

2. there exists ¢ > 0 such that for all z € R™, t > 0and w € Q, xTo(w)oy(w)Tz > ¢z

If the assumptions of Theoremare tulfilled and 3, o (resp. ) are bounded and continuous in
w for fixed ¢ (resp. fixed ¢, y), then (s, ) — P*" is continuous for the topology of weak convergence,
and in particular, the path-dependent canonical class is progressive hence all results of Section[5.4/can
be applied with respect to (P*7) 5 nyeRr, x0-

Proposition 5.6.9. Assume that that (3,0, are bounded. Let (sp, 1) be a sequence in A which converges
to some (s,n). For every n € N, let P™ be a weak solution starting in (s, ny) of the SDE with coefficients
B,0,7. Then (IP™),>0 is tight.

We recall some notations from [61] Chapter VI which we will use in the proof of Proposition[5.6.9
Notation 5.6.10. For any w € Q and interval T of Ry, we denote W (w,Z) = sup ||w(t) — w(s)||. For any

s,tel
we N, NeN*and 6 > 0, we write
Wiy(w,0) = sup W(w,[t,t+0]) = sup Jw(t) —w(s)]]-
0<t<t+0<N s,t€[0,N]: [t—s|<6

Foranyw € Q, N € N*and § > 0, we denote
W§ (w, ) :=inf {mgx W(w,[ti—1,ti[): O0=tg<---<t,=N; VI<i<r:t;—tiq> 9}.
1 <r

We will also recall the classical general tightness criterion in P(£2) which one can find for example
in Theorem 3.21 of [61] Chapter VL

Theorem 5.6.11. Let (IP™),,>( be a sequence of elements of P (), then it is tight iff it verifies the two following
conditions.

VNeN* Ve>0 K >0 VneN: P"[sup|w®)|>K]<e
e (5.6.2)

VN eN* Ve>0 Va>0 30 VneN: P"(Wy(w,0)<a)>1-—e
Finally we will also need to introduce a definition.

Definition 5.6.12. A sequence of probability measures on (2, F) is called C-tight if it is tight and if each of
its limiting points has all its support in C(R4, R™).

Proof of Proposition[5.6.9]
We fix a converging sequence (sy,7,) — (s,n) in A, and for every n, a weak solution IP" of the

SDE with coefficients 3, o,y starting in (sy,7,). In order to show that (IP"),> is tight, we will use
Theorem[5.6.11} The main idea consists in combining the fact that the canonical process X under P" is
deterministic on [0, s,,], where it coincides with 7,, with the fact that on [s,,, +00[ it is a semimartingale
with known characteristics. So we will split the study of the modulus of continuity of path w on these
two intervals [0, s,,] and [s,,, +00].

Since 7, tends to 7, the set {7, : n > 0} is relatively compact in €2 so by Theorem 1.14.b in [61]
Chapter VI we have

VNeN* 3JK; >0 VneN: sup |[n(t)] <K
te[0,N] (5.6.3)
VNeN* VYa>0 30, >0 YneN: Wi(n,b0) <.
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For fixed n € N, we now introduce the process
X"t w > a(sn)Ljg,s,[ + Wl[s, +oo[, We denote by Q" := P" o (X"~ € P(Q) its law under P” and
we now show that (RQ"),,> is tight.

By Proposition under P", (Xi)ie[s,,+o0[ 1S @ special semimartingale with initial value 7,,(s»)
and characteristics (see Deﬁnition ., Bedr, [ (o0T),dr and
(w, A) — f;oo Jm La(r, (1w, 9) 1 (0.4 20y F' (dy)dr. Therefore, since X™ is constant on [0, s,,[ and
since on [sy, +o0o[ its law under P" coincides with the one of X, we can say that Q" is the law
of a special semimartingale (starting at time ¢ = 0) with initial value 7,(s;), and characteristics

fd ]l[Seroo[(T)ﬂrdr, fo ]l[stroo[(T)(O'O'T)rdT and

(w,G) = f0+oo ]l[sn,—l—oo[(r) me La(r,y(r,w, y))]l{w(r,w,y)yéo}F(dy)dr'
Theorem 4.18 in [61] chapter VI implies that (Q"),>0 is tight if and only if the properties below hold
true.

1. (Q" o X )0 is tight;
2. the following sequences are C-tight (under (Q"),>0):
@) (B™ = [o Lis, 100l (1) Brdr)n>o0;
©) (€™ = fo Vo ot (7) (00T + AT ) Fld)) dr)

© (G = Jo s 00l () Jrm Linrwmzoy (I (r )| = D)) ALF (dy)dr),
forallp € N;

3. forall N >0,¢e >0,

N
alLH;oSup Qn </ /]R ]l{||'y(r,-,y)H>a}F(dy)dr > 6> = 0. (5.6.4)

Item 3. trivially holds since + is bounded. At this point 7, (s, ) is a bounded sequence according to the
first line of and the fact that the sequence (s,),>0 is bounded, so (Q" 0 X; )50 = (O (50) )0

is obviously tight. We are left to show item 2. By Proposition 3.36 in [61] chapter VI, items 2. (a) and

2. (b) hold if (Var(B™)nz0 = (Jy Lis, 4ol (M)l B¢ dr)n>0 and

(Tr(C™))nz0 = (Jo Ljsn,400((T) (Tr(col) + [gm Tr(yyT(r, -, y)) F(dy)) dr)n>0 are C-tight. Finally, 8,0,v, F
being bounded, there exists some strictly positive constant K such that all the processes given below

are increasing;:

o t— Kt—Var(B"), n>0;
ot Kt—Tr(CP), n>0;
o t— Kt—(Gp), mn,p=>0.

In the terminology of [61] chapter VI, this means that the increasing processes Var(B"), n > 0,
Tr(C™), n >0, G, n,p > 0 are strongly dominated by the increasing function ¢ — Kt. The sin-
gleton ¢t — Kt being trivially C-tight, Proposition 3.35 in [61]] chapter VI implies that the dominated
sequences of processes (Var(B™)),>o, (Tr(C™))n>0 and (G} )n>o for all p are C-tight. Finally (Q"),>0
is tight.

Now by Theorem this implies that

VNeN* Ve>0 JK;>0 VYneN: Q"|sup|w(®)|>Ks| <e
<N (5.6.5)

VN eN* Ve>0 Va>0 30 VneN: Q'"(Wji(w,b)<a)>1-—c
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Combining the first line of (5.6.3) and the first line of (5.6.5) and by construction of Q", taking K =
K1 + K5 for instance, we have

VNeN" Ve>0 IK >0 YneN: P" (sup lw(®)|| > K) <e. (5.6.6)
t<N
Our aim is now to show that
VN eN" Ve>0 Va>0 30 YVneN: P'(Wy(w,0)<a)>1-—c¢ (5.6.7)

this combined with will imply by Theorem [5.6.11] that (P"),,> is tight.

In what follows, if n,w € Q and s € R+, 7 ®; w will denote the path 11 (g 4 + wl|s 1 [, which still
belongs to 2.

By construction of ", for every n, P" is the law of 7, ®,, w under Q". Therefore, (5.6.7) is
equivalent to

VNeN* Ve>0 Va>0 30 VneN: Q"(Wy, ®s, w,0) <a)>1—c¢, (5.6.8)

and this is what we will now show to conclude the proof of Proposition So we prove (5.6.8).
We fix some N € N*, @ > 0 and ¢ > 0. Combining the second lines of (5.6.3) and of (5.6.5), there
exists § > 0 such that for alln > 0,

Wh (0, 0) < &
{ Q’]‘V(W]’V(w,e)4< H>1-e (5.6.9)

We show below that, for every n
{wHV&@4@<:%}C{@HV&Wn®&gm9)<a} (5.6.10)
This together with will imply that for all n,
Q (W (10 @5, ,6) < 0) > Q' (Wi(w,0) < ) > 1—¢,

hence that (5.6.8) is verified.
We fix n. To establish (5.6.10) let w be such that W} (w,f) < §; we need to show that

Wi (0 ®s, w, 0) < ov. (5.6.11)

By the first line of (5.6.9) and the definition of W}, (see Notation [5.6.10), there exist two subdivisions
of [0, N] 0 = t(l) < < t}l =N,0= tg << t%Q = Nwithincrementstg—t{_1 >0foralll <i<r;
and j = 1,2, such that

Lot < ¢ <i<
{ W(nnu [ta—l)té[) — é fOf all 1 — Z =" (5612)
Wi(w,[t;_;,t;]) < Fforalll <i<ro.
We set i := max {i: t! < s,} for j = 1,2 and introduce the third subdivision
(185 stpy) 7= (80, b1t i1s 5ty (5.6.13)

which we represent in the following graphic.
to ti th
tp t ths

1 1
ti;+1 ti}+2

:
th

2
t
3 3 3 3
ti; ti;+1 tr3-1 tr3
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As for the other two, the subdivision of [0, N] above verifies t; — ¢} ; > 0 for all i. Indeed, tJ — 3| is
eitherequal tot; —t;_, > ¢ for some i, orto ¢ —t7_, > 0 for some j,ortot% \ —tj_; >t —ti: ;>0
where the first inequality follows by the fact that t%—1 < t}I < §p < tz* 41

Now by definition of W} (9, ®s, w,0), in order to show (5.6.1T) and conclude this proof, it is

enough to show that
W(T/TL ®8n w? [ 1—1» t3[) 7 (5614)

foralll <i <rs.
If i <if—1,then [t} |, t3[= [t} |, t}[C [0, s,[ where 1, ®s, w coincides with 7, so W (1, ®s,
w, [t3_1,82]) = Wi, [ti_1,t1]) < § < a by the first line of (5.6.12). Similarly, if i > i} + 1, then
[tf’ LBE=1t2 . +Z;,tf it+iz+11C 8 [ , +0o[ where 7, ®, w coincides with w so W (0, ®s,, w, [t5_ 1,t:?[)
«
1

W(w, [t2_. H;,tf irvis41l) < a by the second line of (5.6.12). Finally, we consider the specific

case i = i} meaning that [t] |, tf’[ 3 1 tz* [ contains s,,. We have

W(n, ®s, w, [til;‘—latz*-f—l[) < W ®s, w [ z *_1» z D
+ W ®s, [ it SnD + W (nn ®s, w, [Sns tz*+1[)
S W(nm [ 11 tzl D + W(nnv [tl*ﬂsn[) =+ W( [8n7t12§+1[)
< W (i, [tzl _ptl* D)+ W, [t ti 1) (5.6.15)
+ W(w, [t%,t? +1[)
< 2te4e
< «

by (5.6.12). So (5.6.14) is verified for all i and the proof is complete.

O]

Proposition 5.6.13. Assume that 3, o (resp. ) are bounded and that for Lebesgue almost all t (resp. dt @ dF
almost all (t,y)), B(t,-),o(t,-) (resp. v(t,-,y)) are continuous. Assume that for any (s,n) € R x §2 there ex-

. . . - L (s,n) —> P71
8777
ists a unique weak solution P> of the SDE of coefficients [3, o, ~y starting in (s, n). Then P(Q)

is continuous. Moreover the path-dependent canonical class (P*") (s . eR., xq 18 progressive.

Remark 5.6.14. Tnking Theorem_mto account, the family of probabilities (P*") ; nyer ., xq of Proposition
5.6.13|constitutes a progressive path-dependent canonical class verifying Hypothesis[5.3.5] It therefore verifies

Hypothesis[5.4.1|and all results of Section 5.4 apply.
Proof. of Proposition[5.6.13

We consider a convergent sequence (s, 7,) — (s,n) in A. Since (3, 0,y are bounded, by Proposition
n
5.6.9| (P, o is tight, hence relatively compact by Prokhorov’s theorem. We consider a subse-
quence Pk " ? @) and we show below that Q) is a weak solution of the SDE with coefficients
B, 0,7, starting at (s,n). Since that problem has a unique solution, we will have { = P*". This will
imply that P¥»"™ — TP*"7, hence the announced continuity.
n

We will indeed verify item 3. of Proposition For the convenience of the reader, we will omit
the extraction of the subsequence in the notations.
We start by showing
QR =n°) =1 (5.6.16)

The set
D:={teRy: QX #X;-) >0 U{te|0,s]:n(t) #n(t)}, (5.6.17)
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is countable first because 7 is a cadlag function and second because of Proposition 3.12 in [61] Chapter
VI which states that, for every probability @ on (€2, F), the set Dy := {t € Ry : Q(X¢ # X;-) > 0} is
countable. If t ¢ Dy then

Psnin o X1 = Qo X (5.6.18)

by Proposition 3.14 ibidem. Since 7, converges to 7 in the Skorokhod topology, if ¢ ¢ D (t is a
continuity point of ), then it follows that 7,,(t) — 7(t), see Proposition 2.3 of [61] Chapter VI.

Lete > 0,t € [0, s — €] N D be fixed. Since s,, tends to s, we can suppose without loss of generality
that s, > s — € for all n, so that P*n o X, ! = Oy, (t)- By (5.6.18) this sequence converges to Q o X!
which is therefore necessarily equal to d,;) since 7, (t) tends to n(t) being ¢ ¢ D. This means that

Qw(t) =n(t)) =1, (5.6.19)

forall t € [0,s — €] N D°. Since € > 0 is arbitrary, holds for all ¢ € [0, s|ND¢; and since w is
right-continuous and D is countable, holds for all ¢ € [0, s[. We will now show that
also holds for t = s. We first note that

M (sn) — 1(s)- (5.6.20)

Indeed, without restriction of generality we can consider that s,, < s+ 1, so since (sp, 7n(sn)) € A, 7
is constantly equal to 7, (s, ) on [sy,, +00[ which contains [s+1, +-00[. On the other hand 7 is constantly
equal to n(s) on [s, +o00[ which also contains [s + 1, +00[, and 7,, tends to n almost everywhere on that
interval, because it converges in the Skorokhod sense. So necessarily holds.

We fix now some f € C°(R™). For all n, since P**"™ is a weak solution of the SDE starting
at (sp,n,) and by Proposition it follows that f(w(-)) — f(Mu(sn)) — fsn A, f(w)dr (see Notation
is a martingale on [s,,, +-00[ under P**" vanishing in s,,. We consider a sequence (t,)pen in D¢
converging to ¢ strictly from the right. For all n, p we have

S A f(w)dr
f;p Ay f(w)dr
where the second equality holds by Fubini’s theorem since A, f(w) is uniformly bounded for r vary-

ing on bounded intervals. We now pass to the limit in n. Since ¢, ¢ D, taking into account (5.6.18),
we have P o X~ l— Qo Xy L. moreover f is bounded and continuous, so
n

B [f(w(tp))] = f(n(sn)) + E

(5.6.21)
= f(n(sn)) + ESM

+ [, B [Ar f (w)]dr,

B £ (w(ty)] — BR{f(w(t,))]. (5.6.22)

Since 3,0, are bounded and 5(r,-),o(r,-) (resp. (r,-,y)) are continuous for Lebesgue almost all
r (resp. dt ® dF almost all (r,y)) and since f € C°, then ¢ : w — fstp A, f(w)dr is a bounded
continuous functional for the Skorokhod topology, so

Esn [ / v AJ(w)dr] — E® [ / v Arf(w)dr} : (5.6.23)

Finally since s, tends to s and A, f is uniformly bounded for r varying on bounded intervals, we
have .
/ LM [A, f(w)]dr — 0. (5.6.24)

S

Combining relations (5.6.21)), (5.6.20), (.6.22), (5.6.23), (5.6.24), for all p, we get

E®[f(w(t,))] = f(n(s)) + E [ I Arf(w)dr] . (5:6.25)

s
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We now pass to the limit in p. Since ¢, tends to s from the right and w is right-continuous, the left-hand
side of tends to E®[f(w(s))]. By dominated convergence, the second term in the right-hand
side of tends to 0. This yields E®[f(w(s))] = f(n(s)) and this holds for all f € C>*(R™),
which implies that Q o X! = §,,). So we have shown (5.6.16).

We will proceed showing that @) solves weakly the SDE with respect to 3, o, starting in (s, 7).
By Propositionw this holds iff for any f € CZ(R™), f(X.) — [, A, fdr is a (Q, F°)-martingale. We
fix such an f, some ¢t < w in |s,+o00[ND¢ N € N*, t; < --- <ty € [s,t] N D and ¢y, -+ ,¢n €
Cy(R™, R). Taking into account Proposition since s < t, for n large enough, we can suppose
that f(X.) — [, A, fdr is under every P*"" a martingale on the interval [t, +-cc[. Therefore, for all n,
we have

SnNn . —

E [(f(w(u / A f(w > 1<1<N¢) (w(tl))] 0. (5.6.26)
We wish to pass to the limit in n. By Theorem 12.5 in [16], for any » € R, the mapping X, is con-
tinuous on the set C, := {w € Q : w(r) = w(r™)}. By construction of D and since ¢, u,t;,--- ,tx ¢ D,

then Cy,Cy,Cy,, -+ ,Cy, are of full Q3-measure hence ¢ = (X, X,, X;, Xy, -+, X¢y) is continu-
ous on a set of full Q-measure. By the mapping theorem (see Theorem 2.7 in [16] for instance),
since [P%» = Q and @ is continuous on a set of full -measure, then P*"™ o 1 = Qo

®~!, meaning PSnvﬂwzo(X,Xu,Xt,th,-- JXiy) = Qo (X, Xy, Xp, Xpyy oo, Xiy) 5 Slncewr—>
n

[ Arf(w)dr, f,¢1,- -+, ¢n are bounded continuous functions, the previous convergence in law al-
lows to pass to the limit in n in (5.6.26)) so that for any ¢ < u €]s, +00[ND® and t1,--- ,ty € [s,t] N D¢

52 [ (ftwtw) - Swt) - [, f@ar) | I st o (5627)

1<i<N
Equality still holds if ¢ = s and if some of the values ¢, u, 1, - ,ty belong to D. Indeed to
show this statement we approximate from the right such values by sequences of times not belong-
ing to D and strictly greater than s and we then use the right-continuity of w and the dominated
convergence theorem.

By use of the functional monotone class theorem (see Theorem 21 in [32] Chapter I), we have

E® [(ﬂw(u)) - sty - [ Arf(w)d?”> nc] 0, (5.6.28)

forany s <t <wand G € o(X,|r € [s,t]). Since Q(w® = n°*) = 1 then F¢ is Q-trivial, so equality
holds for all G = G5 N G§ where G € F2 and G € o(X,|r € [s,t]). Events of such type form
a m-system generating F{ so by Dynkin’s Lemma, holds for all G € F¢. Forall s <t < u,
then we have

E® [(ﬂw(u)) SCORNE Arf(w)Tdr)

So f(X f A, frdris a (Q,F°)-martingale. This implies that @) is a weak solution of the SDE with
coeff1c1ents B, 0, starting in (s,7). As anticipated, since the SDE is well-posed for every (s,n), we
have @ = IP*" and the proof of the first statement is complete.

The second statement follows from the fact that a continuous function is Borel and that B(A) =
A NPro°, see Proposition[5.5.3] O

t] =0. (5.6.29)



Appendix

5.A Proofs of Section 5.4

Proof of Proposition
In the whole proof ¢ < u will be fixed. We consider a sequence of subdivisions of [t,u]: t = t} <tk <

-+ <tk = u such that mig (téﬁrl —tF) 2 0. Let (s,n) € [0,¢] x Q with corresponding probability
1< —00
2
P, For any k, we have > (Mt;_c o ) = > (M7" — M")? P*" as., so by definition of quadratic

A k
i<k et i<k itl g

2 ps,
variation we know that (Mt;_g t’.“H) 5:) [M*"M],, — [M*7"];. In the sequel we will construct an F¢-
i<k e —+oo
2 ps,
measurable random variable [M]; , such that for any (s,n) € [0,1] x Q, >, ;. (Mt;; t’?ﬂ) ::; [M]t 4.
1% —00
In that case [M];,, will then be P*" a.s. equal to [M*"],, — [M*"];.

Let n € Q. [M'"] is F-adapted, so [M""],, — [M*"]; is F;"-measurable and by Corollary 5.3.21
there is an F;-measurable variable which depends on (¢, u,7), that we denote w — a;,(n,w) such
that a; ,,(n,w) = [M57],, — [M""]);, PY7 as.

We will show below that there is a jointly F? @ F -measurable version of (7, w) + a (7, w).

For every integer n > 0, we set af’,, (7, w) := nAaz(n,w) which is in particular limit in probability

2
of n A} (Mtzy t’?’H) under P"". For any integers k,n and any 1 € ), we define the finite positive
i<k e

measures Q%™", Q™" and Q" on (2, F2) by
2
i<k 17141
2. QUIEF) = EY1p (af,(n,w))];
3. Q(F) :=EY"[1g (aru(n,w))]-
When £ and n are fixed integers and F is a fixed event, by Remark
2
n —s Eb [F <n A <Mt;§ ok ) ﬂ ,is F7 -measurable.

i<k s
2 t,
ThennA)’ (Mt;_e t'-“+1> kﬂ a}, (n,w), and this sequence is uniformly bounded by the constant n,
i<k e —oo 7
so the convergence takes place in L!, therefore n — Q™"(F) is also Ff-measurable as the pointwise

t,m_
limit in % of the functions 1) —s Q%" (F). Similarly, a?,,(n, w) F %f * ay(n,w) and is non-decreasing,
) n—o0

so by monotone convergence theorem, the function n — Q"(F) is F-measurable being a pointwise
limit in n of the functions n — Q™" (F).

We make then use of Theorem 58 Chapter V in [33]: the property above, the separability of 7 and
the fact that for any 7, Q"7 < P%"7 by item 3. above, imply the existence of a jointly measurable (for

153
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F? ® FJ) version of (n,w) — a4 (n,w). That version will still be denoted by the same symbol. We
recall that for any 7, a; (7, -) is the Radon-Nikodym density of Q" with respect to P*".

We can now set [M]; ,(w) := atq(w,w), which is a well-defined F-measurable random variable.
Since ay,, is FP-measurable in the first variable and for any n P*7(w! = n') = 1 we have the equalities

(M u(w) = atu(w,w) = aru(n,w) = [M"),(w) — [M"];(w) PHas. (5.A.1)

We can then show that
(M = [M*y — [M*"], P*"as., (5.A.2)

holds for every (s,n) € [0,t] x ©, and not just in the case s = t that we have just established in (5.A.1).
This can be done reasoning as in the proof of Proposition in Chapter (1} replacing the use of the
Markov property with item 3. of Definition[5.3.4}

So we have built an F-measurable variable [M], , such that under any P*" with s < ¢, [M*"], —
[M*"1]; = [M]; 4 a.s. and this concludes the proof. O

Proof of Proposition[5.4.7}
We start defining A;; = 0 for every t > 0. We then recall a property of the predictable dual

projection which we will have to extend slightly. Let us fix (s,7) and the corresponding stochas-
tic basis (2, 751, %1 P*"). For any F' € F*7, let NsMF be the cadlag version of the martingale
r +— E>1p|F,]. Then for any 0 <t < v, the predictable projection of the process r — 1p1 ,((r)
isr — Nf’_"’F]l[m[(r), see the proof of Theorem 43 Chapter VI in [33]. Therefore by definition of the
dual predictable projection (see Definition 73 Chapter VI in [33]), forany 0 < ¢t < w and F' € F*7

we have E57 []IF(AZ’? — APN] = Es1 [ft“_ NTS’,"’FdBf’"}. Then, at fixed ¢, u, F', since for every ¢ > 0

we have E*" []lp(Afﬂre), — Af’")} = Es" [ff““r N:’;"’FdBf’"} , letting € tend to zero we obtain by

dominated convergence theorem that
E*" [1p(AS" — AP = E®N [/ N:’"’FdBf’"] , (5.A3)
t

taking into account the right-continuity of A%", B%" and the fact that they are both non-decreasing
processes with £! -terminal value.

For any F' € F, we introduce the process Nt : (t,w) — P"“(F). N¥ takes values in [0, 1] for
every (t,w), and by Definition it is an [F'°-progressively measurable process such that for any
(5,m) € Ry x Q, N7 is a P57 cadlag version of N on [s, +ocl.

For the rest of the proof, 0 < t < u are fixed. Following the same proof than that of Lemma [1.4.7]
in Chapter[I|but with parameter (s, z) replaced with (s,7), we obtain the following.

Lemma 5.A.1. Let F € F. There exists an F,-measurable random variable which we will call ftu N f_ dB,
such that for any (s,n) € [0,] x Q, [* NF dB, = [ N*"FdB3" P> a.

Remark 5.A.2. By definition, the r.v. [ N dB, will not depend on (s,n).

We continue now the proof of Proposition 5.4.7 by showing that for given 0 < ¢ < u there is an
F?-measurable r.v. A, such that for every (s,n) € [0,¢] x Q, (47" — A7) = A,y P57 as.

Similarly to what we did with the quadratic variation in Proposition we start noticing that
for any 17 € Q, (A" — A}") being F."-measurable, there exists by Corollary an FJ-measurable
ILV. w — a¢ (7, w) such that

aru(n,w) = ALT(W) — AP (W) PY as. (5.A.4)
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As in the proof of Proposition we show below the existence of a jointly-measurable version of

(777 w) = Aty (777 w)'
For every n € 2 we define on F the positive measure

Q" F— B [1pagq(n,w)] = B []lp(Afﬂ - A?")] . (5.A.5)

By Lemma5.A.1jand (5.A.3), for every F' € F we have
Q"(F) =E" [ / Nde,} , (5.A.6)
t

where we recall that [“ N dB, does not depend on 7. So by Remark n — QNF) is Ff-
measurable for any F. Moreover, by for any 7, Q7 < P"". Again by Theorem 58 Chapter V in
[33]], there exists a version (7, w) — a (7, w) -measurable for 7Y @ F¢ of the related Radon-Nikodym
densities.

We can now set A; ,,(w) := at,u(w,w) which is then an F;-measurable r.v.
It yields for any n €

Ap (W) = ap (W, w) = agu(n,w) = AL (w) — Ai’n(w) P a.s. (5.A.7)

Indeed the second equality holds given that a;,, is F{-measurable with respect to the first variable,
taking into account that P (w' = n') = 1; the third equality follows by (5.A.4).

We now set s < t and n € 2. We want to show that we still have
Ay = A" — AT P as. So we consider F € F2; we compute

o (L (45"~ A7)

B° ([ N dB,]

g s [[* NEdB,|F]] = B [BW [ [ NEdB,]] (5.A.8)
= [ES7 [Et“’ ]lFAt U ] = ET[EST [1p Ay Fi] o
= ES,T) []lFAt;u,] .

Indeed, the first equality comes from (5.A.3) and Lemma concerning the fourth equality we
recall that, by (5.A.5), 5.A.6) and B.A7), we have E* [ [“ N_dB,| = E* [1pA;,] for all w. The
third and fifth equalities come from Remark [5.3.6|

Since adding P*"-null sets does not change the validity of (5.A.8), by Proposition for any
F € F;"we have E5 [1p(Ay" — A7) = ES [1p Ay ).

Finally, since both A" — A" and A, , are F,;"-measurable, we can conclude that A" — A" = A,
P a.s. We emphasize that this holds forany t < wand (s, ) € [0,#] %€, 50 (At ) (t,u)ea is the desired
path-dependent AF, which ends the proof of Proposition O

Proof of Proposition|5.4.10
We set

Ct,u = At,u + (Vu - V;S) + (U - t), (5A9)

which is a path-dependent AF with cadlag versions C;"" = A} + V}, + t and we start by showing the
statement for A and C instead of A and V.
The reason of the introduction of the intermediary function C' is that for any v > t we have

% € [0, 1]; that property will be used extensively in connection with the application of domi-

nated convergence theorem.
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Since A" is non-decreasing for any (s,7) € Ry x ), A can be taken positive (in the sense that
Apy(w) > 0 for any (t,u) € A and w € Q) by considering A" (defined by (A1), u(w) = Apy(w)™)
instead of A. On R we set

A1
K; = liminf 1 b
noo Apa+ o+ (Vi = V)

(5.A.10)
A

. . . tt+1
= lim lim min I .
n—>oom—>oon§pgm14t’t+% +5t (Vt+% -V)

This liminf always exists and belongs to [0, 1] since the sequence belongs to [0, 1]. For any (s,n) €

R4 x €, since forallt > sand n > 0,
AST A5
A1 = Afﬁ% — A7 P as., then K" defined by K[ := liminf % is a P*"-version of K,
fort € [s, +o0]. !
By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [34] for a version of the theo-
rem with a general atomless measure), for any (s, 7), for P*"-almost all w, since dC*"(w) is absolutely
continuous with respect to dA*"(w), K*"(w) is a density of dA*"(w) with respect to dC*"(w).

Foranyt > 0, K; is measurable with respect to () ]-"f+ 1 = JF, by definition of the canonical filtration.
n>0 n
For any (¢,w) € R4 x €, we now set
kt(W) = Et’w[Kt]. (5A11)

Remark implies that £ is an F°-adapted process. The path-dependent canonical class verifies
Hypothesis and K, is F;-measurable then for any (s,7) € [t, +oo[x ), K;(w) = ES[ K| F](w) =
EY* K| = ki(w) P*"-a.s. hence k is on [s, +00[ a P*"-version of K, and therefore of K.

The next main object of this proof is to show that k is an [F°-progressively measurable process.
For any integers (n,m), we define

; ) At,t+l
E™™  (t,n) — EYT | min i P ,
nspsm A1+ g+ (Vg = V)
»op P

and for all n,
A

tt+1
k™ (t,n) — EY" |inf £ (5.A.12)
pZnAt’H_% + % + (V;H—% - V)
We start showing that
((s,m),t) — ES"| min s, 1
frm 1) n<psm A 1tV =V | TS (5.A.13)

(R4 x Q) xRy — [0,1],

is measurable with respect to Pro° @ B(R.). In order to do so, we will show that it is measurable
in the first variable (s,7), and right-continuous in the second variable ¢, and conclude with Lemma

1.4.12]in Chapter
We fix t € R. Since the path-dependent canonical class is progressive, by Remark the map

) At,t+l
(s,n) — E*7| min —
nspsm Ay 1+ o+ (Vigr = V)
o P

(5.A.14)

IR,+ xQ — [0, 1],
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is measurable with respect to Pro°. The map (s,n) = 1 yoo[(s) is also trivially measurable with

respect to Pro?; therefore the product of the latter map and (5.A.14), that we denote by (-, -, ) is also
measurable with respect to Pro°. Moreover, if we fix (s,77) € Ry x (), reasoning exactly as in the
proof of Proposition [1.4.13)in Chapter [1| we see that t — k™ "(s,m, ) is right-continuous, which by
Lemma in Chapter [1|implies the joint measurability of ™.
Since k™™ (t,n) = k™™ (t,t,n), and since (t,n) — (t,n,t) is obviously

(Pro°, Pro° ® B(R+))-measurable, then by composition we can deduce that for any n, m, k™™ is an
[Fe-progressively measurable process. By the dominated convergence theorem, £ tends pointwise
to K" when m goes to infinity, so k" also is an IF’-progressively measurable process for every n.

tt+1

Finally, since K; = lim inf
y’ t TL—)OOp>nA +1+ "F(V 1 V)

convergence theorem, k" (defined in m) tends pointwise to k (defined in (5.A.11)), when n goes
to infinity, so k is an [F°-progressively measurable process.

Considering that (¢, u,w) — V,, — V; also trivially defines a non-negative non-decreasing path-
dependent AF absolutely continuous with respect to C, defined in (5.A.9), we proceed similarly as at
the beginning of the proof, replacing the path-dependent AF A with V.

, taking the expectation and again by the dominated

Vig 1- -V
/ s — /s,m
Let the process K’ be defined by K} 117£r_1)1£10f A, + AL and for any (s, n), let K'*" be
Vip1—Ve
. Is,n __ Tn /s, i
defined on [s, +o00[ by K, hg?of At+ ATV, ) Then, for any (s,n), K'*" on [s, +oo is

a IP*"-version of K’, and it constitutes a density of dV with respect to dC*"(w) on [s, +o00[, for almost
all w. One shows then the existence of an [F°-progressively measurable process k' such that for any
(s,n), k' is a P*"-version of K’ and of K'*" on [s, +00].
By the considerations after (5.A.10), for any (s,7), under P*", we can write

Asn = [ KEAC
{ VVs s f Vs K/s ndCs,n
Now since dA*" < dV, we have for P*" almost all w that the set {r € [s,+oo[: |K;*"(w) = 0} is
negligible with respect to dV so also for dA*"(w) and therefore we can write

Asn = [V RIACTT
= f‘;vs /S’H]I{K,S n;’éO}K/S ndcsn + f Vs ]].{K/.sn O}dAS

Vs
Js /sn]l{K’”;Ao}dVﬁ

where we use the convention that for any two functions ¢, 1) then %11#0 is defined by

¢ _ ) S y(n) £0
w]l{w;eo}(:v) = { g(if)zp(x) _

We now set h := %]l{k; 201 which is an F?-progressively measurable process, and clearly for
any (s,n), his a P*"-version of H*" := £0 L{grsmroy on [s,+00[. So by Lemma [2.5.13|in Chapter
H*" = h dV @ dP*" a.e. on [s,+o0o] and finally we have shown that under any P*", A%" =
1. hydVi. O






Chapter 6

Decoupled mild solutions of
path-dependent PDEs and IPDEs
represented by BSDEs driven by cadlag
martingales

This chapter is the object of paper [13].

Abstract

We focus on a class of path-dependent problems which include path-dependent (possibly Inte-
gro) PDEs, and their representation via BSDEs driven by a cadlag martingale. For those equations
we introduce the notion of decoupled mild solution for which, under general assumptions, we study
existence and uniqueness and its representation via the afore mentioned BSDEs. This concept
generalizes a similar notion introduced by the authors in previous papers in the framework of
classical PDEs and IPDEs. For every initial condition (s, ), where s is an initial time and 7 an
initial path, the solution of such BSDE produces a couple of processes (Y *, Z*7). In the classical
(Markovian or not) literature the function u(s,n) := Y;>" constitutes a viscosity type solution of an
associated PDE (resp. IPDE); our approach allows not only to identify u as (in our language) the
unique decoupled mild solution, but also to solve quite generally the so called identification prob-
lem, i.e. to also characterize the (Z°"), ,, processes in term of a deterministic function v associated
to the (above decoupled mild) solution w.

6.1 Introduction
We focus on a family of path-dependent problems of the type

{ AY + f(-, Y,T(¥,Y)) = 0on [0,T] x Q 6.11)
Yr=£&on ), o
where A is a linear map from some linear subspace D(A) of the space of progressively measurable
processes into the space of progressively measurable processes, ¥ := (¥!, ...  ¥%)isa given vector of
elements of D(A) and I' is a carré du champs type operator defined by I'(®, @) := A(®P') — PA(P') —
' A(®). Associated with this map, there is a path-dependent system of projectors (Ps)secr., which
extends the notion of semigroups from the Markovian case, for which A is a weak generator, see

159
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Definition [6.3.16, A typical example is to consider ¥ := X the canonical process, and a map A given
by

(AD)(w) = (D®)i(w) + 5Tr(oe0] (V2@)i(w)) + Bi(w) - (V) (w)

+ f(q)t(w + %(w, y)IL[HOO[) — (I)t(w) — ’)’t(w, y) . (V@)t(W))F(dy), (6.1.2)

where 3, 0,y are bounded path-dependent predictable coefficients and F' is a bounded positive mea-
sure not charging 0. In (6.1.2), D is the horizontal derivative and V is the vertical gradient intended
in the sense of [37,27]. In that case one has

[(X,®); = (00TV®); + /Rd V(s (@i + (Y Lt 4o0]) — Pe)F(dy). (6.1.3)

If v = 0 then (6.1.1) becomes the path-dependent PDE

{ DY + 3Tr(00"V?Y) + - VY + f(-,-,Y,00TVY) = 0 on [0, T] x Q (6.1.4)

Yr=£&on Q.

We introduce a notion of decoupled mild solution which is inspired by the one for classical (I)PDEs
introduced in Chapters[3 [}, which can be represented by solutions of Markovian BSDEs. Concerning
the corresponding notion for the intuition behind is the following. We decouple the first line
of equation (6.1.1) into

{ Zi = T(\Y), 1<i<d, (6.1.3)
which we can also write
AY = _f('7'7Y7Z) (616)
AYTY = Z'+ YAV +WAY, 1<i<d, o
and finally
AY = —f(-,-,Y,Z) (617)
A(Y\Ili) = Zi+YA\IIi—\IIif(‘,-,KZ), 1<q<d. o

Taking (6.1.7) into account and inspired by the classical notion of mild solution of an evolution prob-
lem, we defme a decoupled mild solution of equatlon as a functional Y for which there exists

an auxiliary R%valued functional Z := (Z1,--- , Z%) such that forall (s,n) € [0,T] x Q we have
Y‘?(n) = P +f P 7'7}/7'727")] (W)dr
(YU),(n) = Pif¢ —fr P (Z} + Y, AV — W f (r,-, Y, Z,)] (n)dr (6.1.8)
YUhsm) = PEUF)(m) = [ P [(Z8+ Y, AU = Wi f (1, Y, Z,))] ()

The couple (Y, Z) will be called solution of the identification problem related to (f,&) because it can be
strictly related to BSDEs driven by cadlag martingales which are one natural generalization of clas-
sical Brownian BSDEs. We consider for any (s,7) the BSDE

T S, SM
=g+ [ <n-,Yﬁm,d<M e >>dr—< - M), (6.1.9)

in the (completed) stochastic basis (€2, 7", >, P*"), where (P*"7) nyer, xo solves a martingale
problem associated to (D(A), A). In (6.1.9), M[¥]*" is the driving martingale of the BSDE, and is the
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martingale part of the process ¥ under P*". These BSDEs were considered in a more general frame-
work by the authors in Chapter |4, A significant contribution about BSDEs driven by cadlag martin-
gales and beyond was provided by [22] and [67]. Those BSDEs have however a forward component
which is modeled in law by the fixed family (P*"), ,)er, xo- An important application for path-
dependent (I)PDEs is Theorem that states the following. Suppose that the path-dependent
SDE with coefficients 3, o, v admits existence and uniqueness in law for every initial condition (s, n);
we suppose moreover that 5, o; (resp. (-, x)) are continuous for the Skorokhod topology in w for
almost all ¢ (resp. dt ® dF a.e.), that f(-,-,0,0),& have polynomial growth and that f is Lipschitz in
(y, z) uniformly in (¢,w). Then there is a unique decoupled mild solution Y for with ¥ := X
and A given in (6.1.2). Moreover, both processes Y, Z appearing in can be represented through
the associated BSDEs (6.1.9). In particular, gives an analytical meaning to the second process
Z obtained through those BSDEs. In general the way of linking the first component Y of the solution
(Y, Z) of a BSDE with the solution of a PDE is made by means of viscosity solutions. However, even
when the BSDE is Markovian, this does not allow to identify Z. In particular, when v = 0, our tech-
nique allows to characterize Z as a generalized gradient even if the solution does not have the vertical
derivative, contrarily to the case in [50].

Brownian Backward stochastic differential equations (BSDEs) were introduced in [71], after a pio-
neering work of [18]. When those involve a forward dynamic described by the solution X of a Brow-
nian Markovian SDE, they are said to be Markovian, and are naturally linked to a parabolic PDE, see
[73]. In particular, under reasonable conditions, which among others ensure well-posedness, the so-
lutions of BSDEs produce viscosity type solutions for the mentioned PDE. Recently Brownian BSDEs
of the type

T T
Yo =€ (B ieom) + [ (B neto Y, 25 dr - [ 2z, (6:1.10)

where B is a Brownian motion and for any s € [0,7], n € D([0, 7], R%), BS" = n(- A s) + (B.vs — Bs)
were associated to the path-dependent semi-linear PDE

{ D® + 3Tr(V2®) + f(, ® V) =0 on [0,T[x0 (6.1.11)

Oy = €.

Path-dependent PDEs of previous type have been investigated by several methods. For instance strict
(classical, regular) solutions have been studied in [35, 49, 29] under the point of view of Banach space
valued stochastic processes. It was shown for instance in [29, 77] that under some assumptions the
mapping (s,n) — Ys'" is the unique smooth solution of (6.1.1T). Another popular approach is the
one of viscosity solutions, which was considered by several authors. For instance it was shown in [42]
that if f is bounded, continuous in ¢ , uniformly continuous in the second variable, and uniformly
Lipschitz continuous in (y, z) and if ¢ is bounded uniformly continuous, (s,7) — Y7 is a viscos-
ity solution of in some specific sense, where the sense of solutions involved the underlying
probability. On another level, [28] considered the so called strong-viscosity solutions (based on ap-
proximation techniques), which are an analytic concept, the first under non-smoothness conditions.
Another interesting approach (probabilistic) but still based on approximation (discretizations) was
given by [65]. More recently, [17] produced a viscosity solution to a more general path-dependent
(possibly integro)-PDE through Dynamic risk measures. In all those cases the solution ® of
was associated to the process Y*" of the solution couple (Y*", Z*™) of with initial time s and
initial condition 7. As mentioned earlier a challenging link to be explored was the link between Z*"
and the solution of the path-dependent PDE ®. For instance in the case of Fréchet C%! solutions ®
defined on C([-T, 0]), then Z*" is equal to the vertical derivative V®, see for instance [50].
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The paper is organized as follows. After Section [6.2] devoted to fix some notations and basic vo-
cabulary, Section [6.3|recalls some fundamental tools from the previous Chapter 5, In Section we
are given a general path dependent canonical class, its associated path-dependent system of projec-
tors (Ps)ser. and we treat BSDEs driven by a general path-dependent MAF, see Definition In
Subsection[6.4.2]we are given a weak generator A of (P;)scr,, and a corresponding abstract equation.
We define the notion of decoupled mild solution of that equation and prove under some conditions,
existence and uniqueness of such a solution in Theorem [6.4.19} In Section[6.5, we focus on the frame-
work of (I)PDEs. In Subsection (resp. we recall some results concerning path-dependent
SDEs (resp. path-dependent differential operators). In Subsection we consider an IPDE of co-
efficients 8, o,y (which when v = 0 is given by (6.1.4)) and Theorem states the existence and
uniqueness of a decoupled mild solution. Proposition compares classical and decoupled mild
solutions for that IPDE.

6.2 Basic vocabulary and Notations

For fixed d,k € N*, CF(R?) will denote the set of functions k times differentiable with bounded
continuous derivatives. A topological space £ will always be considered as a measurable space
equipped with its Borel o-field which shall be denoted B(E).

Let (22, F), (E, £) be two measurable spaces. A measurable mapping from (2, F) to (E, ) shall
often be called a random variable (with values in E), or in short r.v. If T is some index set, a family
(Xt)tem of r.v. with values in E, will be called random field (indexed by T with values in E). In
particular, if T is an interval included in R, (X})+cm will be called a stochastic process (indexed by
T with values in F).

Given a measurable space (2, F), for any p > 1, the set of real valued random variables with
finite p-th moment under probability P will be denoted LP(IP) or L if there can be no ambiguity
concerning the underlying probability. Two random fields (or stochastic processes) (X¢)ict, (Y2)teT
indexed by the same set and with values in the same space will be said to be modifications (or
versions) of each other if foreveryt € T, P(X; =Y;) = 1.

A filtered probability space (€2, F,F := (F)icr, ,P) will be called called stochastic basis and
will be said to fulfill the usual conditions if the filtration is right-continuous, if the probability space
is complete and if Fj contains all the P-negligible sets. Let (2, 7, I, IP) be a stochastic basis. Let Y’
be a process and 7 a stopping time, we denote Y™ the process t — Yia-. If C is a set of processes, we
will say that Y is locally in C (resp. locally verifies some property) if there exists an a.s. increasing
sequence of stopping times (7,),>0 tending a.s. to infinity such that for every n, Y™ belongs to C
(resp. verifies the mentioned property). In this paper we will consider martingales (with respect to a
given filtration and probability), which are not necessarily cadlag. For any cadlag local martingales
M, N, we denote [M] (resp. [M, N]) the quadratic variation of M (resp. quadratic covariation of
M, N). If moreover M, N are locally square integrable, (M, N) (or simply (M) if M = N) will denote
their (predictable) angular bracket.

6.3 Fundamental tools

6.3.1 Path-dependent canonical classes and systems of projectors

We start by recalling some notions and results of Section [5.3|of Chapter 5 that will be used all along
the paper. The first definition refers to the canonical space that one can find in [60], see paragraph
12.63.
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Notation 6.3.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topolog-
ical space), which will be called the state space.

Q = D(Ry, E) will denote the Skorokhod space of functions from R to E right-continuous with left
limits (e.g. cadlag). For every t € R we denote the coordinate mapping X; : w — w(t) and we define on
Q the o-field F := o(X,|r € Ry). On the measurable space (2, F), we introduce initial filtration F° :=
(F?)ter,, where FY := o(X,|r € [0,t]), and the (right-continuous) canonical filtration F := (F;)icr,,

where Fy = (F2. (2, F,F) will be called the canonical space (associated to E), and X the canonical
s>t

process. On R x Q, we will denote by Pro® (resp. Pre®) the F°-progressive (resp. F°-predictable) o-field.
will be equipped with the Skorokhod topology which makes it a Polish space since E is itself Polish (see Theorem
5.6 in chapter 3 of [44]), and for which the Borel o-field is F, see Proposition 7.1 in chapter 3 of [44]. This in
particular implies that F is separable, as the Borel o-field of a separable metric space.

P(Q) will denote the set of probability measures on Q2 and will be equipped with the topology of weak
convergence of measures which also makes it a Polish space since 2 is Polish, see Theorems 1.7 and 3.1 in [44]
chapter 3. It will also be equipped with the associated Borel o-field.

Notation 6.3.2. Forany w € Qand t € Ry, the path w stopped at time t r — w(r A t) will be denoted w".

Definition 6.3.3. A path-dependent canonical class will be a set of probability measures (P>") (s eRr, x0
defined on the canonical space (2, F). It will verify the three following items.

1. Forevery (s,n) € Ry x Q, P*"(w® =n®) =1,

2. forevery s € Ry and F € F, the mapping
no— PYIE) :
Q — [0,1] is F¢-measurable;
3. for every (s,n) € Ry xQ,t>sand F € F,

P1(F|F?)(w) = P (F) for P*" almost all w. (6.3.1)

This implies in particular that for every (s,n) € Ry x Qand t > s, then (P"),cq is a reqular conditional
expectation of P*" by Fy, see the Definition above Theorem 1.1.6 in [85] for instance.

A path-dependent canonical class (P*"), er, xq Will be said to be progressive if for every I' € F, the
mapping (t,w) — P (F) is F°-progressively measurable.

Very often path-dependent canonical classes will verify the following important hypothesis which

is a reinforcement of (6.3.1).
Hypothesis 6.3.4. For every (s,n) € Ry xQ,t > sand F € F,

P (F|F)(w) = P"(F) for P> almost all w. (6.3.2)
Remark 6.3.5. By approximation through simple functions, one can easily show the following.

e For s > 0 and random variable Z we have that n — E*"[Z] is F¢-measurable and for every (s,n) €
Ry x Q, t > s, ESZ|F](w) = EY|[Z] for P57 almost all w, provided previous expectations are
finite;

e if the path-dependent canonical class is progressive, (t,w) — E'[Z] is Fo-progressively measurable,
provided previous expectations are finite.
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Notation 6.3.6. By () stands for the set of real bounded measurable functions on Q. Let s € Ry, B;(Q)
will denote the set of real bounded F¢-measurable functions on Q. We also denote by By’ (Q2) the subset of r.v.
¢ € Bp(2) such that ¢p(w) > 0 forall w € Q.

Definition 6.3.7.

1. A linear map Q : By(Q) — By(Q) is said positivity preserving monotonic if for every ¢ € B, (2)
then Q[¢] € B, (Q) and for every increasing converging (in the pointwise sense) sequence f,, — f we
have that Q[f,] — Ps|[f] in the pointwise sense.

2. A family (Ps)ser, of positivity preserving monotonic linear operators on By, (£2) will be called a path-
dependent system of projectors if it verifies the three following items.

e Forall s € Ry, the restriction of Ps on By () coincides with the identity;
e forall s € Ry, Py maps By(Q) into By (§2);
° fOT’ﬂll s,t € R+ with t >s, PsoP, =P,

The proposition below states a correspondence between path-dependent canonical classes and
path-dependent systems of projectors.

Proposition 6.3.8. The mapping

s, Z +— (n— E>"Z])
(P> (s eRy x0 — ( B(Q) — By(Q) >56R+’ (6.3.3)

is a bijection between the set of path-dependent system of probability measures and the set of path-dependent
system of projectors.

Definition 6.3.9. From now on, two elements in correspondence through the previous bijection will be said to
be associated.

Notation 6.3.10. Let (Ps)scr . be a path-dependent system of projectors, and (P*") (, R, xq the associated
path-dependent system of probability measures. Then for any rv. ¢ € L1 (P*7), Py[¢](n) will still denote the
expectation of ¢ under PS". In other words we extend the linear form ¢ — Ps[¢](n) from By(Q2) to L1 (PS7).

For the results of the whole section, we are given a progressive path-dependent canonical class
(P") (s,meRr, x0 satisfying Hypothesis and the corresponding path-dependent system of pro-
jectors (Ps)scRr., -

Notation 6.3.11. For any (s,n) € Ry x Q we will consider the stochastic basis
(Q, Fon s = (Fer,, , P5") where F*1 (resp. F;" for all t) is F (resp. Fy) augmented with the "
negligible sets. IP*" is extended to F>".

We remark that, for any (s,n) € Ry x Q, (Q, F®7, F1 P*") is a stochastic basis fulfilling the
usual conditions, see 1.4 in [61] Chapter I.

Proposition 6.3.12. Let (s,n) € Ry x Q be fixed, Z be a positive r.v. or in LY(P*") and t > s. Then
ESM[Z|F] = B[ Z|FS P50 as.

So when considering conditional expectations, we will always drop the (s,7) superscript on the
filtration.
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Definition 6.3.13. Let G be a sub-o-field of F and IP be a probability measure on (2, F), we say that G is
P-trivial if for any element G of G, then P(G) € {0,1}.

Proposition 6.3.14. For every (s,n) € Ry x Q, Fy is P*"-trivial. In particular, an F3'"-measurable r.v. will
be IP*"-a.s. equal to a constant.

The last notions and results of this subsection are taken from Subsection of Chapter[5]
From now on we are given a non-decreasing continuous function V" and a couple (D(A), A) veri-
tying the following.

Hypothesis 6.3.15.
1. D(A) is a linear subspace of the space of F°-progressively measurable processes;
2. A'is a linear mapping from D(A) into the space of F°-progressively measurable processes;
3. forall ® € D(A),w € Q,t >0, [ |AD,(w)|dV; < +00;

4. forall ® € D(A), (s,n) € Ry x Qand t € [s,+o0[, we have
Esn [f; |A(<1>)T|dVT} < to0 and B[ ®y[] < 400,

Inspired from the classical literature (see 13.28 in [61]) we introduce the following notion of a
weak generator.

Definition 6.3.16. We say that (D(A), A) is a weak generator of a path-dependent system of projectors
(Ps)ser, if forall ® € D(A), (s,n) € Ry x Qand t € [s,4o00], we have

Pu[@4)(n) = (1) + / PA(®),]()dV;. (6.3.4)

Definition 6.3.17.

1. (P*") (s m)eRr. xq Will be said to solve the martingale problem associated to (D(A), A) if for every
(S, 7]) S IR,+ X Q,

o P5"(w* =1nf) =1,
o & — [ A(D),dr, ison [s,+oo a (P¥",F°)-martingale for all € D(A).

2. The martingale problem associated to (D(A), A) will be said to be well-posed if for every (s,n) €
Ry x Q there exists a unique I>*" verifying both items above.

Proposition 6.3.18. (D(A), A) is a weak generator of (Ps)ser, if and only if (P*7) pyer, xq solves the
martingale problem associated to (D(A), A).

In particular, if (P>") (s yer, xq solves the well-posed martingale problem associated to (D(A), A) then
(Ps)ser., is the unique path-dependent system of projectors for which (D(A), A) is a weak generator.

Indeed, the last statement allows to associate analytically to (D(A), A) a unique path-dependent
system of projectors (Ps)scr, through Definition|6.3.16
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6.3.2 Path-dependent martingale additive functionals

We now recall the notion of Path-dependent Martingale Additive Functionals that we use in the
chapter. This was introduced in Chapter [5|and can be conceived as a path-dependent extension of
the notion of non-homogeneous Martingale Additive Functionals of a Markov processes developed
in Chapter([I] In this subsection, all results come from Section [5.4]in Chapter[5} In this subsection we
are again given a progressive path-dependent canonical class (IP*"), »cRr, x satisfying Hypothesis
and the corresponding path-dependent system of projectors (Ps)scRr., -

Definition 6.3.19. On (2, F), a path-dependent Martingale Additive Functional, in short path-dependent
MAF will be a real-valued random-field M := (M, )o<i<u verifying the two following conditions.

1. Forany 0 <t <wu, M, is F;-measurable;

2. forany (s,n) € Ry x Q, there exists a real cadlag (IP*", *")- martingale M*" (taken equal to zero on
[0, s] by convention) such that for any n € Qand s <t < u,

My, = MJ" — M P as.

MM will be called the cadlag version of M under P>,

A path-dependent MAF will be said to verify a certain property (being square integrable, having angu-
lar bracket absolutely continuous with respect to some non-decreasing function) if under any P*" its cadlag
version verifies it.

Proposition 6.3.20. Let (D(A), A) be a weak generator of (Ps)ser, and (s,n) € Ry x Q. Then for every
® € D(A), @ — [, A(P),dV, admits for all (s,n) on [s, +oo[ a P> version M[®|*" which is a (P*", F*")-
cadlag martingale. In particular, the random field defined by M [®]; (w) := ®y(w) — P¢(w) — [;* AP (w)dV;
defines a MAF with cadlag version M [®]*" under P*".

Proposition 6.3.21. Let M and N be two square integrable path-dependent MAFs and let M*" (respec-
tively N*") be the cadlag version of M (respectively N) under a fixed I>*". Assume that N has an angular
bracket absolutely continuous with respect to V' (introduced above Hypothesis [6.3.15). Then there exists an
[Fo-progressively measurable process k such that for any (s,n) € Ry x Q,

Vs
(MBS NSTY = / k.dV;.

Notation 6.3.22. The process k whose existence is stated in Proposition |6.3.21|will be denoted ‘“fi‘}m.

6.4 BSDEs and abstract analytical problem

6.4.1 BSDEs driven by a path-dependent MAF

We keep using Notation We fix a progressive path-dependent canonical class (P*7), )er, x0
verifying Hypothesis and (Ps)scr.,. the associated path-dependent system of projectors.

(P") (s,mery xo Will model the forward process evolution in the BSDEs.

In this section, we fix ' > 0 and a non-decreasing continuous function V' : [0,7] — Ry. By
convention, any process (resp. function) Y defined on [0, 7] x € (resp. [0, T']) will be extended taking
value Y7 after time T'.
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Notation 6.4.1. For afixed (s,n) € [0,T] x §2, we denote by dV @ dIP*" the measure on B([s,T]) ® F defined
by dV @ dP*"(C) = E*" UST 1c(r,w)dV,|. For any p € IN* we denote by LP(dV & dIP*") the space of

P

(F2"")eels,r)-progressively measurable processes Y such that ||Y ||psy = (Esv" [ fST |Y7«|pdVT]> < oo. By

a slight abuse of notation we will also say that a process indexed by [0,T] belongs to LP(dV & dIP*") if its
restriction to [s, T| x S does.

HE (=) will denote the space of (P5", (F;™")se(0,11)-square integrable martingales vanishing at time s,
hence on the interval [0, s| since F is P*"I-trivial, see Proposition they will be defined up to indistin-
guishability.

Forany p > 1, we define LL . as the linear space of F°-progressively measurable processes such that for all
(5,m) € [0, T] x Q, (Y¢)se[s,1) belongs to LP(dV @ dIP*"). Let N be the linear subspace of LY,  ; constituted of
elements which are equal to 0 dV @ dP>" a.e. for all (s,n) € [0,T] x Q. We denote L? . := P \N. L .
can be equipped with the topology generated by the family of semi-norms (|| - | p.s:m) (s,m)€[0,7)x 2 Which makes
it a separate locally convex topological vector space, see Theorem 5.76 in [1]].

Definition 6.4.2. A set C' € Pro° will be said to be of zero potential if 1o € N, meaning that
ESN [fsT Lo(t, w)th] = 0 for all (s,n) and equivalently that 1 is equal to 0 in L>

uni*

A property holding everywhere in [0, T x § except on a set of zero potential will said to hold quasi surely
abbreviated by q.s.

Remark 6.4.3. The terminology zero potential is inspired from classical potential theory in the Markovian
setup, whereas the terminology quasi surely comes from the theory of capacities and is justified by the fact A is
of zero potential iff ~ sup  dV ® dP*"(AN([s,T] x )) =0.
(s,m)€l0,T]xQ
We now fix some some d € IN* and d square integrable path-dependent MAFs (see Definition
6.3.19) (N} o<t<us -+ (Nf,)o<t<u With cadlag versions N7 := (N1 ... N%7) under P for
tixed (s,n).

Definition 6.4.4. N := (N, ---  N%) will be called the driving MAF.

In relation to this driving MAF we introduce the following hypothesis, which will be in force for
the rest of the section.

Hypothesis 6.4.5. For every integer i such that 1 < i < d, N* has an angular bracket which is absolutely
continuous with respect to V (see Definition|6.3.19) and % (see Notation [6.3.22) is q.s. bounded.

We consider some &, f verifying the following hypothesis.
Hypothesis 6.4.6.
1. ¢ is an Fp-measurable r.v. which belongs to L2(IP*") for every (s,n);
2. f:([0,T] x Q) x R x R? — R is measurable with respect to Pro° @ B(R) @ B(R?) and such that
(a) f(-,-,0,0) € L2

uni’/

(b) there exists K > 0 such that for all (t,w,y,y,2,2') € [0,T] x 2 x R x R x R? x R¢
|f(t,w,y/,zl) - f(tvwvyaz)‘ < K(|y/ - y| + HZ/ - Z”) (641)

An immediate application of Theorem and Remark in Chapter E] is the following exis-
tence and uniqueness theorem.
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Theorem 6.4.7. Assume the validity of Hypotheses For every (s,n) € [0,T] x Q, there exists a
unique couple of processes (Y*, M) € L2(dV @ dP*") x HZ(P*") such that on [s,T]

dv;
in the sense of indistinguishability, under probability P*".

T
d MSJ] ]\]‘Sﬂ7 r S
vor—gt [r (reren SO av - are), (642)

Notation 6.4.8. For the rest of this section, at fixed (s,n) € [0,T] x Q, the previous equation will be
denoted BSDE®*"(f,&). Its unique solution will be denoted (Y*", M*") and we will use the notation
Z5M .— Zl,s,n Zd,s,n = (d<MS’naNS’n>t) )

( ’ ’ ) vy tels,T)
Remark 6.4.9. We emphasize that equation BSDE®"(f,&) of the present paper corresponds to equation
BSDE(E, f,V, N%") in Chapter 4

The following proposition can be seen as a path-dependent extension of Theorem in Chap-
ter |4 Its proof is similar to the one in the Markovian setup and is therefore postponed to the Ap-
pendix.

Proposition 6.4.10. Assume the validity of Hypotheses 6.4.6| For any (s,n) let (Y, M*") be as
introduced at Theorem There exists a unique process Y € L2 ., a square integrable path-dependent

MAF (Myy)o<t<uand Z1,--- , Z% € £2 . unique up to zero potential sets (see Definition such that for
all (s,n) € [0,T] x  the following holds.

1. Y*"ison [s,T| a P*"-modification of Y;

2. M*" is the cadlag version of M under P*>";

3. Forallintegersi € {1,...,d}, Z' = d<M+{M dV @ dP*" a.e.
Moreover, Y is given by Y : (s,n) — Y5

6.4.2 Decoupled mild solutions for abstract operators

In this subsection, we assume that we are given some (D(A), A) satisfying Hypothesis and be-
ing a weak generator of (P;)scr - We recall that by Proposition[6.3.18] this implies that (P>") (, ;) ek x0
solves the martingale problem associated to (D(A), A). By convention we will assume that every
® € D(A) is constant after time 7" (meaning ® = ®.,7) and AP = 0 on |T', +o0].

Notation 6.4.11. For every ® € D(A) we introduce the MAF (see Proposition|6.3.20
M) = Bu(w) = i) — [ AB @)V, (64.3)
t

For all (s,n) we denote by M |[®]*" its cadlag version.
We also denote " := ®4(n) + fssv'(Atb),,dV; + M[D]*m.

Remark 6.4.12. By Proposition|6.3.20, M [®]|*" is a cadlag (P, F%")-martingale which is a P*"-version of
Dy nr — Ds(n) — f;v' (A®),dV, and therefore ®*" is a cadlag special semimartingale which is a >*"-version
of ® on [s,T).

Notation 6.4.13. Let &,V € D(A) be such that @V € D(A). We denote by T'(®, ¥) the process A(PV) —
QA(V) — VA(D). If © or U is multidimensional, then we define I'(®, V) as a vector or matrix, coordinate by
coordinate.

When it exists, I'(®, ®) will be denoted T'(P).
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I' can be interpreted as a path-dependent extension of the concept of carré du champ operator in
the theory of Markov processes.
Lemma 6.4.14. Let ®, ¥ € D(A) be such that @V € D(A) and assume that both M [¥], M [®] are square
integrable MAFs. Then for any (s,n) € [0,T] x Q we have (M*"[®], M[¥]*") = fSSV'AT [(®, ¥)dV, in the
sense of P*"-indistinguishability. In particular, T'(®, V) = %&MM q.s., see Notation [6.3.22
Proof. We fix ®, ¥ € D(A), (s,n) € [0,T] x Q and the associated probability P*". We recall that on
[s, T, @5 = ®y(n)+ [} A(®),pdV,+ M*"1[®] and U = Uy () + [ A(¥),dV, + M*"[¥] are both cadlag
special semimartingales; since M*"[®], M*"[¥] are assumed to be square integrable martingales,

they have a well-defined quadratic covariation and angular bracket. Therefore, by integration by
parts on [s, 7] and by Lemma we have

OIS = Dy (n)Ws(n) + [ ( ‘P A(D), + @, A(D),)dV, + (M>1[D], M>"[¥])
+ [ o ’"dMs”? - [ USAN ),
+ (M), M”[‘I’H (M=7[®], M*"[W])).

On the other hand, since ®¥ belongs to D(A), we also have that
O3NPST = (W)*" = Py(n)Ws(n) —|—/ A(QW),dV, + M*"[PW]. (6.4.4)

By uniqueness of the decomposition of a special semimartingale, we can identify the predictable
bounded variation part in the two previous decompositions, and we get

/ (U, A(®), + O, A(V),)dV, + (M>"[®], M*"[¥ / A(PY),dV;, (6.4.5)

hence that .
(o7l M) = [ (A@D), - B, A(), - B, AWV, (6.4.6)
and the proof is complete. O

Lemma 6.4.15. If ® € D(A), ®* € D(A) and A® € L2,
Moreover, sup |®;"| € L2(PS") for all (s, 7).

te(s,T)
Proof. Let (s,n) be fixed. We have (@57)2 = ®%(n) + [ A(®?),dV; + M*"[®?], where MSW[(I)z} is a
martingale, hence takes £!-values; moreover A(CIDQ) € El(dV ® dP$"), see Hypothesis 6. It is
therefore clear that ®*" has £2-values. Since

then the MAF M|[®] is square integrable.

B = 0,(0) + [ A@),aV; + 3, (64.7)
by Cauchy-Schwarz inequality we have
T
(M8l < 4(830) + (Ve ~ Vi) [ A@4Y, + (@577,

The right-hand side belongs to £! because A® € L2, ., ®2(n) is deterministic and ®*" takes £? values,
therefore M57[®] € H2(P*1).

Concerning the second statement, (6.4.7) yields

uni’

T
sup (97")? < 4(Z(n) + (Vr - Vs)/ A(®)7dV; + sup (M*"[®];)%) € L},
tels,T) s tels,T)

by Doob’s inequality because M*"[®] € H2(P*"). O
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We will now be interested in a specific type of driving MAF N, see Definition [6.4.4]
We fix U1, ..., U € D(A) verifying the following.

Hypothesis 6.4.16. For cvery1 <i <d,
1. Wi AW e £2

2. (U9)2 € D(A);

3. T'(V?) is bounded.

Remark 6.4.17.

1. (M[VY, -, M[¥9)) is a vector of square integrable MAFs verifying Hypothesis This follows
because of Lemmas|6.4.14{and [6.4.15]

2. In the sequel ofSection we therefore work with the driving MAF N = M[V] := (M[V1],--- , M[¥9]),
see Definition With this choice we fit the framework of Section[6.4.1]

3. In particular, Theorem and Proposition |6.4.10| apply: for all (s,n) there is a unique solution
(Ysn, M*") of the BSDE®"(f,&) (6.4.2), where the driving MAF is N = M[¥].

We now consider the following abstract path-dependent non linear equation.

{ A® + f(-,-,®,T(2,T)) =00n [0,T] x (6.4.8)

7=&on).

Inspired by an analogous notion in the Markovian framework (see Chapter[) and by the classical
notion of mild solution, we introduce the corresponding notion of decoupled mild solution for a path-
dependent evolution equation.

Definition 6.4.18. Let Y, Z',---  Z% ¢ [?

ung

(see Notation |6.4.1) and denote Z := (Zy,- -+ , Zy).

1. The couple (Y, Z) will be called solution of the identification problem related to (f,¢) or simply
solution of I P(f, &) if for every (s,n) € [0,T] x Q,

Yi(n) =Psl¢ + f Py (f (r,-. Yy, Z:)] (n)dV;
(Y\Iﬂ)s(n) - P f P [(Zv} + YTA(\Ill)T - \I]}*f (Ta ) va Zr))] (n)d‘/r (649)
(YU (n) = P[E9T](n f P [(23 4+ Y, A9, — W f (r,-,Y,, Z,))] (n)dV.

2. A process Y will be called decoupled mild solution of (6.4.8) if there exist some Z such that the
couple (Y, Z) is a solution of IP(f,§).

Theorem 6.4.19. Assume the validity of Hypothesis|6.4.16/for W', ..., U? and of Hypothesis or (f,€).

1. IP(f,€) admits a unique solution (Y, Z) € L2, x (L2,,)%. By uniqueness we mean more precisely
the following: if (Y, Z) and (Y, Z) are two solutions then Y and Y are identical and Z = Z gq.s. In

particular, there is a unique decoupled mild solution Y of (6.4.8).

2. Forevery (s,n), let (Y57, M*>") be the solution of BSDE*"(f,§) (6.4.2) with N*" = M[V]|*". Then,
for every (s,m), Ys(n) = Y5, and (Z', ..., Z%) are identified as in ztem 3. of Proposition with
N = M[¥].
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Proof. We start establishing existence in item 1. Let Y, Z be the processes introduced in Proposition
6.4.10L A direct consequence of that proposition, of Lemma and of equations BSDE®*"(f, g) is
that for every (s,n) € [0,T] x Q, we have

T
Ve =64 / F(ry Yo, Z) dVy — (M — M) P*" as. (6.4.10)

Taking the expectation, applying Fubini’s theorem and using the fact that M/*" is a martingale, in
agreement with Remark we get

T
Yo(n) = Pulé)(n) + / Pf(r, .Yy 2,)) (n)dVi. (6.4.11)

We now fix an integer 1 < ¢ < dand (s,7n) € [0,T] x 2. By Remark|6.4.12] we recall that the process
¥’ admits on [s, T'| a P*"-modification which is a cadlag special semimartingale with decomposition

W = W (n) + / AT,V + M. (64.12)

S
Applying the integration by parts formula to Y*7W%7, we get
AU = U (L YO, 20T AV, + U AMT 4 YT A(BY),dV;
+ Yt‘i”dM[\Ifi]f’" + d[Ms’”,M[\Ili]s’”]t,

hence integrating between s and T, by Proposition [6.4.10|and by Lemma [6.A.2}

T T
Yi(Wi(n) = &V — / (YA, = W f(r, -, Ye, Z,))dV; — / UM
(6.4.13)

T
- / Y2TAMW2 — (M7, M8,
S

We wish once again to take the expectation and to use Fubini’s theorem. Since Y, A(U%), W%, f(-,-Y, Z) €
£2 . then (Y, AV, — Vi f(r,-.Y,, Z,)) € L]

By Lemma [6.4.15/we have sup |U0*"| € £L2(IP5") and M[¥7]*" € H2(IP*"). We also have M*" €
tels,T]

H?*(P*"), and by Remark 4.A.11in Chapterﬂ sup |Y;"| € L2(P*"). We recall that this implies that

te(s,T)

both [; w»>"dM;" and [ V>"dM [U?]>" are martingales, see for example Lemma [2.3.17|in Chapter

Finally, since by Lemma 6.4.15, ¥%. € £2(IP%") and since £ € £L2(IP*"), then (VY. € L1(P*7). So we
(6.4.13

can take the expectation in (6.4.13) to get

= B W5 — [T (Y A(WY), = Wi f(r,, Ve, Z,)) AV, — (M50, MW7) 5
=B [eWh — [T (24 VAW, = Wi f(r, Y, Z0))dV, ]

Y Ui(n) =E" |0 — [T AW, — U f(r,-,Y,, Z,))dV; — M7, M[T)*7] 7
(6.4.14)

where the latter equality yields from Proposition|6.4.10} Since Z* € £2,, and (Y, A(V*),— V. f(r,-,Y,, Z,)) €
Ll . by Fubini’s Theorem we have

uni’

T
Yi(n)Wi(n) = Ps[€VE](n) — / Py[Z}+ Y, A(Y), — WL f(r,, Yy, Z,)](n)dV;. (6.4.15)
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This shows existence in item 1. The validity of item 2. comes from the choice of (Y,Z) and by

Proposition 6.4.10}
We will now proceed showing uniqueness in item 1. We assume the existence of U, wt... wie

£2 . such that for all (s,n) € [0,T] x €,

uns

Ustn) = Pale)tn) + [, Bulf(r U W) (m)aVs
U Wi(n) = PleWl(n) — [ PIW} + UAW), = Cof(r, Uy W)l (m)dV,  (64.16)
1<i<d.

We will show that U =Y and that forall (s,7), 1 <i <d,
Wi = W, dV @ dP*"a.e. hence that W = Z g.s.

We fix (s,n) € [0,T] x Q. We define the process M as being equal to 0 on [0, s] and to U; — Us(n) +
fst f(r,-, U, W,)dV, for t € [s,T]. Let us fix t € [s,T]. We emphasize that U and M are a priori not
cadlag. Applying the first line of to (s,n) = (t,w), we get, P¥" as.

Uw) = BEw) + [ Blf(r,-, U, W,)](w)dV;
= B e+ 1 fr, U W)V (6.4.17)
= B e+ [ S, Un W)Vl 7

thanks to Remark From this we deduce that for all ¢ € [s,T],

T
M, = E*1 |:§ + / f(rv K UTa WT)dV;“

ft] —Us(n) P%"as. (6.4.18)

In particular M is a P*"-martingale on [s, T). Since (2, 71, >, P*7) fulfills the usual conditions,
M admits a cadlag version which we will denote A/*". Then U admits on [s, T a cadlag version U*"
which is a special semimartingale with decomposition

Usn .— Us("?)—/ f(r,-, Uy, W,)dV, 4+ M>"
(6.4.19)
= )~ [ f U WA, AT,

where the second equality follows by the fact that U*" is a version of U and by Lemma By
(6.4.17), we have U;" = Up = £, P*"-ass. so,

T
U = ¢ + / Flr, - US1, W, )dVy — (M7 — M*T), (6.4.20)

We show below that (U*", M*") solves BSDE*"(f,£) on [s,T]. For this, we are left to show that
W = MM gy @ dPo ace., and that (U7, M*7) € L2(dV ® dP*7) x HZ(P"). By
together with Jensen’s and Cauchy-Schwarz inequalities we have
5> [ M)
= B [(6 V) + [ S U W)V (6.421)
4 (U2 + B + (Vo = VOB [T 120, Ur, Wi)aVh)) )

IN
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where the latter term is finite because f(-,-,0,0),U, W1, -.. W% ¢ E%m and because of the Lipschitz

condition on f. So the cadlag version M*" of M, belongs to H3(P*"). We fix again some 1 < i < d.
Combining the second line of (6.4.16) with this fixed integer ¢, applied with (¢, w) instead of (s, 7),
Fubini’s lemma and Remark we get the P*"-a.s. equalities

U(w )\If‘(w)
= PBevi]( ft P, (W) + U A9, — WL f (r,-, Uy, Wy
= Etv gqﬂT 5 (Wi 4 U A, — Wi f (r,-, Uy, W) dV,
= B (e — [T (Wi 4 UL AW, = WLf (7, U, W) 4V, || ().

~—

)] (w)dV;.
} (6.4.22)

<

We introduce the process M® equal to 0 on [0, s[ and defined on [s, T] by
M = Uy — U, ()W (1) — / (W} + U, AW, — W £ (r,, Uy, W,)) V. (64.23)

Similarly as for (6.4.18), we deduce from (6.4.22) that for all ¢ € [s,T], P*" a.s.,
NG = o (6w — [T (Wi 4 Up AW, = WL (1, Un, W) AV, || = Us(n)Wi(n) So M is a P7-

martingale. Under IP*", we consider the cadlag version M"*% of M".
It follows by (6.4.23) that the process

Us(n) W () + / (Wi + U, A(W), — Wof (1, Uy, W) dVy + BT, (6.424)

is a cadlag special semimartingale which is a P*"-version of U¥* on [s, T| hence indistinguishable
from US04 on [s, T since US" (resp. U%*") is a cadlag version of U (resp. ¥%). Using (6.4.19) and
integrating by parts, on [s, T] we also get for U*7W¥"*" the decomposition

Us n\I,i,s,n
= Us()Wi(n) + [, UZ"A(),dV, + [, UZTdM [0

- f \11”’7 f( vy, Uy, W) dVy + [ 05 SRS 4 (M50, M[W]5) (6.4.25)
= U)W () + [ (USTAY), — W f (o Uy, W)V, + (M5, MW7)

+ fs UT’_77CUW[\I/Z 2T+ fs \Il:,f’nde’” ([]\4&’,777 MWi)sn] — (Ms, M[\Ili]sf”» .

(6-4:24) and (6.4.25) provide now two ways of decomposing the special semimartingale U*"W¥%*" into
the sum of an initial value, a bounded variation predictable process vanishing at time s and of a local
martingale vanishing at time s.

By uniqueness of the decomposition of a special semimartingale, identifying the bounded varia-
tion predictable components and using Lemma|6.A.2l we get

= (M1, M) + [ (U, AY), = WLf(r,, Up, W;))dV;. o
This yields that (AM*, M[¥*]*") and [, W/dV; are indistinguishable on [s, T]. Since this holds for all
1, thanks to (6.4.20) we have

T Vil 5,m
=g [ (e SRS Jav - g a4
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with M*7 € HZ(P*"). This implies of course that (U*", M*") is a solution of BSDE*"(f,§). Thanks
to the uniqueness statement for BSDEs, see Theorem this shows U%" = Y57 and M*5" = MS"
in the sense of indistinguishability. In particular, the first equality gives

Us(n) = U =Y =Yi(n) as. (6.4.28)
avi

= Z} dV @ dP*" a.e. for all (s,n) hence W' = Z' q.s. This concludes the proof of

uniqueness. O

Since this holds for all (s, 1), we have U = Y. On the other hand, for all i we have W} =
d{Ms MM,
dVy

6.5 Decoupled mild solutions of path-dependent PDEs and IPDEs

In this section we keep using Notation but E = RY for some d € N* and (X}, , X)er, will
denote the coordinates of the canonical process,see Notation T > 0 will be a fixed horizon.

For the convenience of the reader, the stopped canonical process (X1 ;.- , X4 ;) will still be by
denoted (X!, ---, X9).

6.5.1 Path-dependent SDEs

We now recall some notions and results concerning a family of path-dependent SDEs with jumps
whose solution provide examples of path-dependent canonical classes. In this subsection, all results
come from Subsection in Chapter 5 We will also refer to notions of [61] Chapters II, III, VI and
[60] Chapter XIV.5.

Notation 6.5.1. Foranyt € Ry, we denote Q' := {w € Q : w = w'} the set of paths which are constant after
time t. We also denote A := {(s,n) € Ry x Q:n € Q°}.

Proposition 6.5.2. A is a closed subspace of R4 x Q, hence a Polish space when equipped with the induced
topology. The Borel o-field B(A) is equal to the trace o-field A N Pro°.

From now on, A, introduced in Notation is equipped with the induced topology and the
trace o-field.

We fix a bounded positive measure F on (R¢, B(RY)) not charging 0, and some coefficients:
e 3, abounded R?valued F’-predictable process;
e 0, abounded M;(RR)-valued F°-predictable process;
e v, abounded R%valued Pre® @ B(RY)-measurable function on Ry x  x R¢,
defined on the canonical space.

Definition 6.5.3. Let (s,n) € Ry x . We call weak solution of the SDE with coefficients 3, o, v and
starting in (s, n) any probability measure P*" on (2, F) such that there exists a stochastic basis fulfilling the
usual conditions (0, F, T, P) on which is defined a d-dimensional Brownian motion W and a Poisson measure
p of intensity q(dt,dx) := dt ® F(dx), W, p being optional for the filtration IF, a d-dimensional F-adapted
cadlag process X such that P*" = P o X' and such that the following holds.

Let B3, &, 7 be defined by By = BioX, 5 = oy0 f(for all t € Ry and A4(-,x) = fyt(f(,x) for all
(t,x) € Ry x R% Then
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e forallt € [0,s], X; =n(t) P as.;
o Xy =n(s)+ [LBpdr+ [L6,dW, + 7% (p— q)i Pas. forall t > s,
where * is the integration against random measures, see [61l] Chapter 11.2.d for instance.

Definition 6.5.4. Let s € Ry and (Yy;)>s be a cadlag special semimartingale defined on the canonical space
with (unique) decomposition Y = Y, + B + M¢ + M, where B is predictable with bounded variation, M¢
a continuous local martingale, M a purely discontinuous martingale, all three vanishing at time s. We will
call characteristics of Y the triplet (B, C,v) where C = (M€) and v is the predictable compensator of the
measure of the jumps of Y.

There are several equivalent characterizations of weak solutions of path-dependent SDEs with
jumps which we will now state in our setup.

Notation 6.5.5. Forany f € C2(R%) and t > 0, we denote by A, f the r.v.
B VI(Xy) + 5Tr(00TV?f(Xy))
+ Jra(f(Xe +2(y) — f(Xe) = VF(XL) (- ) F(dy).

Proposition 6.5.6. Let (s,n) € R4 xQ be fixed and let P € P(Q2). There is equivalence between the following
items.

(6.5.1)

1. IP is a weak solution of the SDE with coefficients (3, o, starting in (s,n).

2. P(w® =n®) = 1land, under P, (X;)>s is a special semimartingale with characteristics

B = fs Brdr;
C = [[(ooT).dr; (6.5.2)
v : (wv A) — f:‘OO f]Rd ]lA(T, ’YT(W7y))]l{%«(w,y);ﬁ(]}F(dy)dr'

3. P(w® =n%)=land f(X.) — [, A, fdris on [s, +oo a (P, F)-martingale for all f € CZ(R?).

Theorem 6.5.7. Assume that for every (s,n) € Ry x Q, the SDE with coefficients 3, o, v and starting
in (s,n) admits a unique weak solution *". Then (P> er, xq 18 a path-dependent canonical class
verifying Hypothesis|6.3.4

We introduce the following hypothesis on the coefficients 53, o, .

Hypothesis 6.5.8.

1. B, o (resp. ) are bounded and for Lebesgue almost all t (resp. dt @ dF almost all (t,vy)), B¢, o (resp.
v(+,y)) are continuous.

2. For every (s,n) € Ry x Q there exists a unique weak solution IP*" of the SDE of coefficients [3,0,~y
starting in (s, n), see Definition[6.5.3]

We recall two classical examples of conditions on the coefficients for which it is known that there
is existence and uniqueness of a weak solution for the path-dependent SDE, see Theorem 14.95 and
Corollary 14.82 in [60].

Example 6.5.9. Assume that 3,0, are bounded. Moreover we suppose that for all n € IN* there exist

K% € L} (Ry) and a Borel function K§ : R x Ry — R such that [, K§(-,y)F(dy) € Li,.(Ry)

verifying the following. Forall z € RY, t > 0and w,w’ € Q such that sup ||w(r)| < nand sup |’ (r)| < n,
r<t r<t

we have
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¢ Jlot(w) —ar(w)l < K?(t)suft lw(r) — o' ()%

o [v(tw,2) =t )| < K§(t z)sup [lw(r) — o' (r)]>
r<t

Finally assume that one of the two following hypotheses are fulfilled.

1. For all n € N*, there exists K € L} (Ry) such that for all t > 0 and w,w’ € Q verifying
sup [lw(r)[| < nand sup ||/ (r)|| < n, we have ||B;(w) — Bi(w)|| < K7 ()sup [|w(r) —o'(r)];

r<t r<t r<t
2. there exists ¢ > 0 such that for all x € R, ¢t > 0 and w € Q, 270y (w)o(w)Tx > ¢z

Then item 2. of Hypothesis is satisfied.

Proposition 6.5.10. Assume that Hypothesis holds.  Then (P*") (s er, xo 18 @ progressive path-
dependent canonical class verifying Hypothesis

6.5.2 Dupire’s derivatives and path-dependent stochastic calculus

We will recall here some notions and results introduced in [37] and later developed in [27].

Definition 6.5.11. From now on, an IF°-progressively measurable process with values in R™ for some n € IN*
will also be called an R™-valued functional. If n = 1, ® will be said real valued functional.

We recall that such an R"-valued functional can also be seen (by considering its restriction on A)
as a Borel function from A to R", see Definition and Proposition In the sequel we will not
distinguish between an F°-progressively measurable process and its restriction to A.

Notation 6.5.12. For all t > 0, we denote Ay := {(s,n) € [0,t] x Q : n € Q°} which is clearly a closed
subspace of A and of R4 x Q. On Ar we denote by d the distance defined by d((s1,m), (s2,m2)) =

sup |na2(t) —m(t)| + |s2 — s1.
te[0,T)

This distance induces a topology on A7 which is stronger than its natural induced topology in-
herited from R, x .

Definition 6.5.13. Let ® be some R™-valued functional. ® will be said to be continuous if it is continuous
with respect to du.

The following definitions and notations are adapted from [25].

Definition 6.5.14. In the whole definition, we fix ® a real valued functional, constant after time T, i.e. such
that @ (w) = Piar(w) for all (t,w).
Let (s,n) € Ap. We say that ® is vertically differentiable at (s,n) if

z — Dy(n+alyg)
R — R (6.5.3)
is differentiable in 0. The corresponding gradient at 0 is denoted V®(n).

We say that ® is vertically differentiable if it is vertically differentiable in (s,n) for all (s,n) € Ar. In
this case, VO : (s,n) —> V®(s, n) defined on Ar, will be called the gradient of . We remark that, whenever
that derivation gradient is Borel, it defines an R%-valued functional. Its coordinates will be denoted (V;®);<g.
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Similarly, we can define the Hessian V2®4(n) of ® at some point (t,n). It belongs to the space of symmet-
ric matrices of size d and its coordinates will be denoted (V?’ i ®s(n))ij<d-
Let (s,n) € Ap (implying that 1) is constant after time s). We say that ® is horizontally differentiable
at (s,n) € Ar, s <T;if
t o ®y(n)

6T — R (6.5.4)

admits a right-derivative at s. The corresponding derivative will be denoted D®(n).

We say that ® is horizontally differentiable if it is horizontally differentiable in (s, n) forall (s,n) € Ar
such that s < T and the limit D®7(n) = limgr D®4(n°) exists for every n € QOT. In this case, D :
(s,n) — D®s(n) will be called the horizontal derivative of .

If it is Borel, it defines a real valued functional. ® will be said continuous at fixed times if for all
t €[0,T], ®4() : Q — R is continuous with respect to the sup norm on Q.

By convention, if ¥ = D®, V&, V2® is well-defined on A, it will be extended on [0, T] x Q by setting
Uy (w) := Uy (wh) and on | T, +00[xQ by the value 0.

® will be said left-continuous if for all t € [0,T], e > 0, w € Q, there exists ¢ > 0 such that for any
(t' ") € Ay verifying doo ((t,w), (t',w")) < ¢ we have |Py(w) — Py (W')| < e

® will be said boundedness preserving if for any compact set K of RY there exists a constant Crc > 0
such that for all t € [0, T and w € QF taking values in K, we have |®;(w)| < Ck.

O will be said to have the horizontal local Lipschitz property if for all (t,w) € Ar, there exists C > 0
and ¢ > 0 such that for all (s,n) € Ar verifying doo ((t,w), (s,m)) < ¢ we have for all 0 < t; <ty < s that
(@1 (1) — @1, ()] < Cltz — 1],

Notation 6.5.15. We denote by @;’Q(AT) the space of real valued functionals ® constant after time T', which
admit a horizontal derivative and vertical derivatives up to order two such that ®, D®,V®, V2® are bound-
edness preserving, left-continuous and are continuous at fixed time.

This space is stable by pointwise sum and product.

Notation 6.5.16. For every w € Q, and t > 0, we denote by w'  the element of Q' defined by w' (r) = w(r)
ifr € [0,t[and W' (r) = w(t™) otherwise.
For any process Y and time t > 0, we denote AY; :=Y; — Y.

The following path-dependent It6 formula comes from [25] Proposition 6.1. We formulate it in
our setup.

Theorem 6.5.17. Let IP be a probability measure on the canonical space (2, F). Let s € [0,T] and assume
that under probability I, the canonical process X is such that (Xi)c(s) is an (Fi)els,r)-sSemimartingale.

Let ® € @;’2(AT) and assume that V® has the horizontal local Lipschitz property. Then (®t),c(s1 is an
(Ft)tels,r-semimartingale and we have

‘ . L
o = <1>S+/ Dcprdr+/ vq>Ter+2/ Tr((V2®,)Td(X°),)

+ > (@) — (W) = V(W) - AX,),
r€ls, :AX,#0

in the sense of P-indistinguishability.
We recall the following elementary example.

Lemma 6.5.18. Let h € C12([0, T|xRY) then H : (t,w) — h(tAT,w(tAT)) belongs to (ng(AT) and DH :
(t,w) = Oph(t,w(t)) L) (t), VH : (t,w) = Veh(t,w(t)) Lo (t), V2H : (t,w) — Vah(t,w(t)) L7 (t).
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Remark 6.5.19.

1. In Lemma6.5.18| it is moreover clear that if h does not depend on t then NV H has the horizontal local
Lipschitz property, hence that Theorem above applies for ® = H.

2. In particular, for any i € [1,d], X* € @;’2(AT), DX =0, VX! = eiljo,r) and V2X' = 0, where
(e1,--- ,eq) denotes the Euclidean basis of R%.

6.5.3 Decoupled mild solutions of Path-dependent (I)PDEs

From now on, we suppose V (t) = ¢. We fix some coefficients 8, o, v verifying Hypothesis [6.5.8 but
vanishing after time 7. We denote by (P*"), \er., xq the weak solution of the corresponding SDE.
By Proposition it defines a progressive path-dependent canonical class verifying Hypothesis
We denote again by (Ps)scr ., the associated path-dependent system of projectors, see Defini-
tion

Definition 6.5.20. Let ® be an IF°-progressively measurable process constant after time T. ® will be said to
have polynomial growth if there exists C > 0, p € N* such that for all (t,w) € [0,T] x , |P(w)| <
CQ +supllwm)lF).

A rv. € will be said to have polynomial growth if there exists C > 0, p € N* such that |£(w)| <
C (1 + supllw(r)||P).

r<T

Lemma 6.5.21. For any finitep > 1, (s,n) € [0,T] x Q, sup |X}| € LP(P5").
te(s,T)

Proof. We fix some (s,n) € [0,7] x Q, 1 < i < d and some finite p > 1. A direct consequence of
Proposition item 2. and of Definition a is that under P*", X* may be decomposed on [s, T
as ni(s) + [, Bidr + M+ M? where M¢ (resp. M?) is a continuous (resp. purely discontinuous)
local martingale. [ B.dr is bounded and M€ is a continuous local martingale with bounded bracket
(M€) = [M€] = [ (coT).Ldr hence by BDG inequality, sup |[Mf| € £P(IP*7). In order to conclude, we
te(s,T)
are therefore left to show that the same holds for M%. We have M = S AX} — fst Jra V(L y)F(dy)dr,
r<t
where the integral in previous formula is bounded, because 7 is bounded. So we need to show that

( STIAXE | € £P(IP*"). Observing the definition of P*" and X in Definition |6.5.3|it is clear that
r<T

since 7 is bounded then the jumps of X under [P*" are bounded. So finally, we are left to show that

the number of jumps of X, meaning - 1 xi_, belongs to £P(IP*"). This holds since X can jump
r<T

only if the underlying Poisson measure p jumps (see Definition |6.5.3) and the number of jumps of p

on [s,T] is a Poisson r.v. of parameter (T — s) F(R?) which admits a finite p-th moment.

O]

Notation 6.5.22. We set D(A) to be the space of real valued functionals ® @;’2 (Ar) such that ®, D®, Vo, V2®
have polynomial growth and such that NV ® has the horizontal local Lipschitz property. We define the map A on
D(A) by setting for every & € D(A)

(AD)¢(w) := DPy(w) + %TT’((UO’T)t(w)V2(I)t(w)) + B (w) - VO (w)
+ Jra(@e(w + 7 (W, )Lt oop) = Pe(w) — Ye(w, y) - VO (w)) F(dy).

We also set M [®] as in (6.4.3) in Notation|6.4.11| It defines an AF.

(6.5.5)
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Remark 6.5.23. By Lemma [6.5.18| and expression (6.5.5)), the coordinates X i1<i<d of the canonical
process belong to D(A) and A(X?) = B

Definition [6.5.20, Lemma [6.5.21} Notation [6.5.22| and the fact that 3, o,~ are bounded and F is
finite yield the following.

Corollary 6.5.24.
1. for every ® € D(A), AP and ® — [ (A®),.dr have polynomial growth;

2. every ® with polynomial growth verifies that sup |®,.| € LP(P*") for all finite p > 1, (s,n) €
re(s,T)
[0,7] x

3. forall ® € D(A), (s,n) € [0, T] x Qand finite p > 1, we have

sup |~ @,(n) — [! A(®),dr| € LP(P*T);
te(s,T)

4. (D(A), A) verifies Hypothesis [6.3.15)

Proposition 6.5.25. Let (s,n) € [0,T] x Q. A probability measure P on (2, F) is a weak solution of the SDE
with coefficients [3, 0,y starting in (s,n) iff it solves the martingale problem associated to (D(A), A), defined
in Notation |6.5.22} in the sense of Definition |6.3.17

Proof. We fix (s,n). Let IP be a weak solution of the SDE with coefficients 3, o, v starting in (s, 7). We
show that it fulfills the martingale problem in the sense of Definition By Proposition[6.5.6, we
immediately see that IP(w® = 7°) = 1 which constitutes item 1. of Definition By Proposition
it follows that, under P, (X;);c(s,+ 0| is @ semimartingale with characteristics [ 8.dr, [;(ooT),dr
andv: (w,C) — f:oo Jra Le(r, v (w, )Ly, w20y F (dy)dr.

Now let ® € D(A). Since for every w, the set of jump times {t : Aw(t) # 0} is countable hence
Lebesgue negligible, then ®,(w") = ®,(w" ™), dr a.e., and so

| @l 9o s) = ®1l) = 25 00) - T () Pl

is indistinguishable from

| @0 ) ) = B1(7) = () - V) Py
which is the compensator of

Y Ppw) = (W) = AX, - VO(W),
re]s, :AX,#0

i.e. their difference is a local martingale. By Theorem we therefore have that, ® — fs Ad,dr is
a local martingale, and by item 3. of Corollary it is a martingale. Since this holds for any ® €
D(A), P also verifies item 2. of Definition[6.3.17} This concludes the proof of the direct implication.
As far as the converse implication is concerned, let us assume that [P satisfies both items of Def-
inition By Lemma and Remark we have the following. For any h € CZ(R%), the
functional H : (t,w) — h(w(t A T)) belongs to D(A) and, for any (t,w) € A, AH(t,w) = Ath(w), see
Notation Definition therefore implies that P verifies item 3. in Proposition hence
that it is a weak solution of the SDE. ]
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Corollary 6.5.26. Let ("), »cRr, x be the family introduced at the beginning of Section We suppose
the validity Hypothesis

1. (P¥")(s n)eRr., x Solves the well-posed martingale problem associated to (D(A), A), see Definition

2. (D(A), A) is a weak generator of (Ps)ser. , which is the unique path-dependent system of projectors for
which this holds.

3. Forall ® € D(A), the AF M[®] is a square integrable MAF.

Proof. The first statement follows by Proposition |6.5.25, the second one by the second statement of

Proposition [6.3.18] The third statement holds because of Proposition [6.3.20, We are indeed in the
framework of Section |6.4.2} see Notation [6.4.11 O

Proposition 6.5.27. Let ® € D(A) be such that for all i < d, ®X* € D(A). Then forall (t,w) € Ry x Q,

I(X, ®)i(w) = (00TVO)s(w) + /Rd Ye(w, Y)(Pe(w + 7e(w, Y) Lt qoo]) — Po(w)) F(dy). (6.5.6)

Proof. We fix ® and 1 < ¢ < d. We recall that the usual product rules apply to both the horizontal and
the vertical derivative so that

A(PXY) — ©AX] — X[ AD,
= D(®XY); - ®DX} - X]Dd,
+%Tr((aUTV2(<PXi))t) — 38T ((00TV2X"),) — 3 X{Tr((00TV?®),)
+6i - V(@X") — @18 - VX — XiBy - VO, ‘
+ [ra(®e(: +%( Yoo (X7 +21(,y) — @ X7 — () - V(X'®)) F(dy)
-, f]Rri ’Yt y) 'Yt('vy) ’ V(I)t)F(dy)
=X} Jra(@e( + (9L too) — Pt = 2(5y) - VO, F(dy)
— %Tr (0o] (V2(®X"); — &, V2X] — X[ VD)) A
+ fRd(q’t(' + 9 (5 Y) L oo (X7 + (5 y)) -0 X}
— X7 (Pe(- +’Yt( YL 4oo) — Pe) — Pyi (-, y)) F(dy)
1 2 2 (657)
= Z(UUT) 7 ( (‘I)Xl)t — &V k:Xt XiVi5 )

+fRd7g(a Y)(Pe(- + 7 (5 Y) Lt o) — Po) F(dy)
= 22( ooT)y (V O,V X} + VFO, VI X))

+fRd%? Y ®e(- 4% (5 Y) L o) — o) F(dy)

- 5<Z<aar>”v Pt So0T) VA,

+fRd fYt Y )((I)t( + fyt( Y )]l[t,+oo[) - q)t)F(dy)
= (00TV®); + Jra % () (Pe(- + 7 (- ¥) L 1oo) — Po) F(dy),

where by Lemma [6.5.18, the fifth equality holds since V;X" is constantly equal to 1 if j = i and 0
otherwise. n

Proposition 6.5.28. X verifies Hypothesis|6.4.16

Proof. We fix i < d. By Remark X% e D(A) with A(X?) = . A consequence of Lemma|6.5.21
and of the fact that 3 is bounded is that X verifies item 1. of Hypothesis By Remark [6.5.19
and since (X*%)? clearly has polynomial growth we have (X%)? € D(A) which is item 2. of Hypothesis
6.4.16| Finally by Proposition we have I'(X ") (w) = (007)y" (w) + [ra(7)F(w,y) F(dy) which is
bounded being the coefficients o, v, F bounded; so item 3. of Hypothes1s 0.4.16]is verified. O
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From now on we fix U := X' for all i and the corresponding driving MAF M[X] and we will
apply the results of Subsection [6.4.2] to this specific setup.

We now fix &, f verifying Hypothesis We will be interested in the following path-dependent
non linear IPDE with terminal condition, denoted by IPDE(f,¢):

{ A(®) + f(,-, @, T(®, X)) =00n [0,T] x Q (6.5.8)

dr =¢on (),
where the explicit expression of I'(®, X) is given by Proposition
Remark 6.5.29. When v = 0, the equation (6.5.8) is given by

{ D® + 1Tr(50TV2®) + SV + f(-,-, B, 00TV®) = 001 [0,T] x Q 659)

Pr=E&on,
and it is a path-dependent PDE.

To the path-dependent IPDE (6.5.8), we will associate a family of BSDEs driven by a cadlag mar-
tingale, indexed by (s,7) € [0,T] x €.

Notation 6.5.30. BSDE?®"(f,&) will denote equation

T M S1
vor—gt [ g (reen ST 4 g - aen, (65.10)
. T

in the stochastic basis (2, F*" 1 P1),

By Proposition |6.5.28) ¥ := X, where X is the canonical process, verifies Hypothesis |6.4.16] by

item 1. of Remark M [X] satisfies Hypothesis Now &, f verify Hypothesis so by
Theorem [6.4.7) for every (s,n) € [0,T] x Q, BSDE*"(f,£) admits a unique solution (Y*7, M*") in

L3(dt @ dP7) x H3(P*M).
Definition 6.5.31. Let ® € D(A) such that X' € D(A) for all i < d. We will say that ® is a classical
solution of IPDE(f,€) if it verifies (6.5.8).

We can now formulate the main result of this paper.

Theorem 6.5.32. Assume that Hypothesis holds, that &, f(-,-,0,0) are Borel with polynomial growth
and that f is Lipschitz in y, z uniformly in t,w.

1. The identification problem IP(f,&) (see Definition 6.4.18) admits a unique solution (Y, Z) € L2, . x

2. IPDE(f,£) admits a unique decoupled mild solution Y in the sense that whenever Y and Y are two
decoupled mild solutions then Y and Y are identical.

3. If for every (s,n), (Y*", M*") is the solution of BSDE®*"(f,§), i.e. (6.5.10), then the decoupled mild
solution Y is given by (s,n) — Y. Moreover, for every (s,n), on [s,T], Y*" is a P*" version of Y
and Z; = w, dt @ P57 g.e.

Proof. Tt is a consequence of Theorem Indeed firstly Hypothesis holds by Proposition
and ¥ := X satisfies Hypothesis[6.4.16} secondly ¢ and f(-, -, 0, 0), being of polynomial growth
then (f, £) fulfill Hypothesis[6.4.6|because of item 2. of Corollary|[6.5.24]and the Lipschitz property of
fin(y,2).

O
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Remark 6.5.33. As anticipated in the introduction, given the family of solutions (Y*", M*") of BSDE®*"(f,§),

we have obtained an analytical characterization of the process W”E—J\ZI[X]L‘“")' This constitutes indeed the

“identification” of the “second component” of a solution to a BSDE via solving an analytical problem.
1. Indeed, by item 3. of Theorem |6.5.32} that process is dt @ dIP*" a.e. equal to the q.s. unique functional
Z such that (Y, Z) fulfills (6.4.9).

2. If (Y, X) (hence oo™VY if v = 0) is well-defined then (Y,I'(Y, X)) fulfills equation (6.4.9), see item
3. of Proposition [6.5.34
d(M*1 M[X]*"
dt

3. Previous analytical characterization of L is not possible with the theory of viscosity solu-
tions, even in the case of classical Pardoux-Peng Markovian Brownian BSDEs.

The link between decoupled mild solutions and classical solutions is the following.

Proposition 6.5.34.

1. Let ® be a classical solution of IPDE(f, ), see Definition|6.5.31| Then (®,T'(®, X)) is a solution of the
identification problem I P(f, &) (see Definition |6.4.18) and in particular, ® is a decoupled mild solution
of IPDE(f,€);

2. there is at most one classical solution of IPDE(f,§);

3. assume that the unique decoupled mild solution Y of IPDE(f,¢) verifies Y € D(A) and YX' €
D(A), 0 < i <d, thenY is a classical solution q.s., in the sense that Y = & (for all w) and that
AY)=—f(,-Y,I(Y, X)) q.s., see Definition[6.4.2}

Proof. 1. Let ® be a classical solution. First, since ® and ®X? belong to D(A) for all i < d;
taking into account Notation [6.4.13] by items 1. 2. of Corollary [6.5.24) we can show that

®, (@, X1, - ,T'(®, X% belong to L2, ,.
On the other hand, let (s,n) € [0, T] x Q. By Corollary|6.5.26/3. M[®],. := & —®y(n) — [, AD,dr,
and M[®X],. := ®X' — Dy(n)n'(s) — [ A(PX")pdr, 1<i<d,are IPS’”—martmgales on [s,T]

vanishing at time s. By Deflmtlon 6.5.31| we have A® = —f(-,-,®,['(®, X)) and by Remark
6.5.23|and Notation [6.4.13| we have

A(DXYH =T(®X) + PAX' + X'AD =T(dXY) + dp" — X' f(-,-, ®,T(®, X)),

so the previously mentioned martingales indexed by [s, T, can be rewritten

M[®),. = ®—O(n)+ [, f(r,-, @, D(®, X),)dr
{MFI)Xi]a- = ‘11>X’ q;(n)n’(S) [T(@X), + @8, — X, f(r,-,®,T(®, X),))dr,  (6.5.11)
<i<

Finally, again by Definition|6.5.31|we have &7 = ¢, so, for any (s, ), taking the expectations in
(6.5.11) at s =T, we get

B (6= y(n) + [ £, @, T(®, X),)dr| = 0;
B X5 — @, (n)n'(s) — [ (N@X), + @, 80 — X0 f(r,, @,T(®, X),))dr| =0, (6:5.12)
1<i<d,
which by Fubini’s Lemma and Definitionyields
®s(n) = B¢ +f Py [f (r,, @, [(®, X),)] (n)dr
(@X1),(n) = §XT — P [( (X 1) + @B = X0 f (7,5 @, (@, X)) (m)dr (513

(@X%4(n) = PJEXE () — [T P [(T(@, X9, + ®,8¢ — X2f (r,-, @, (@, X),))] (n)dr,
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and the first item is proven.

2. The second item follows from item 1. and by the uniqueness of a decoupled mild solution of

IPDE(f,§), see Theorem6.5.32

3. Concerning item 3. let (Y, Z) be the unique decoupled mild solution of I P(f,§). We first note
that the first line of (6.4.9) taken with s = T yields Y7 = &.

Let us now fix some (s,n) € [0,T] x €. The fact that Y € D(A) implies by Proposition
that Y — Y, — [] AY,dr is on [s, T] a P*"-martingale and by Theorem|6.5.17|that this martingale,
which we shall denote M*"[Y], is P*" a.s. cadlag. Hence Y is under P*7 a cadlag special semi-
martingale. Let us keep in mind the solution (Y%7, M*") of (6.5.10). A consequence of item 3.
of Theorem|[6.5.32]is that Y admits on [s, 7], Y*" as P*" cadlag version which is a special semi-
martingale verifying Y;>" = Y — [! f(r, Y, Z,)dt + Mt € [s,T). Since Y is P*" a.s. cadlag,
then Y and Y*" are actually P*"-indistinguishable on [s, 7] and by uniqueness of the decompo-
sition of the semi-martingale Y, we have that ( [ AY,dr, M*"[Y]) and (— [ f(r,Y,, Z)dr, M)
are IP*"-indistinguishable on [s, T]. Since this holds for all (s, 7), by Definition we have
AY = —f(-,-,Y, Z) g.s. so we are left to show that Z =T'(Y, X) qs.

We fix again (s, 7). By item 3. of Theorem [6.5.32, (M*®", M*"[X]) = [’ Z.dr. By item 3. of
Corollary and Lemma (MY], M*"[X]) = [ T(Y,X),.dr. As we have remarked
above, M*" = M*"[Y]so [ Z.dr and [, T'(Y,X),dr are P*"-indistinguishable on [s, T]. Since
this holds for all (s,7), we indeed have by Definition[6.4.2that Z = I'(Y, X) q.s., and the proof
is complete.

O]






Appendix

6.A Some technicalities

In all the appendix, we are in the framework of Section

(s.m) v+ B[] frdVi]

L Al Let feLl,. Th
emma 6 et f €L, Then 0.7]x0Q — R

is F°-progressively measurable.
Proof. We fix Ty €]0, T and we will show thaton [0, Tp] x €2, (s,n) — E" [fST frdV,]is B([0, Ty JRFF, -
measurable. We will start by showing that on [0, Tp] x © x [0, Tp], the function
k™ (s,m,t) — Esvn[ftT((—n) V fr An)dV,]is B([0,Ty]) ® Fz, @ B([0, Tp])-measurable, where n € N.
Let t € [0, Tp) be fixed. Then by Remark|[6.3.5]
(s,m) Es’n[ftT((—n) V fr An)dV;] is B([0, Tp)) ® F§,-measurable.
Let (s,n) € [0,Tp] x € be fixed and ¢,, —> t be a converging sequence in [0,7p]. Since V is

m—00
continuous,
T ~ T ~
/ ((=n) V fr An)dV, — ((—n) V fr An)dV, a.s. (6.A.1)
tm m—oo Ji

This sequence is uniformly bounded by nV7, so by dominated convergence theorem, the conver-

gence in also holds under the expectation, so that ¢ — E*" ftT((—n) V fAn)dV,] is continuous.
By Lemma 4.51 in [1], £ is therefore B([0, Tp]) ® F7, @ B([0, Ty])-measurable.

The composition of (s,n) +— (s,7n, s) with the maps k,, yields that, for any n > 0, k" : (s,n) —
IESW[IST((—n) V fr An)dV,]is (on [0, Tp] x Q) B([0, Ty]) ® JFi,-measurable. k™ therefore defines an IF°-
progressively measurable process. Then by letting n tend to infinity, ((—n) V f An) tends dV @ dIP*"
a.e. to f and since we assumed E*" fsT |f+|dV;] < oo, by dominated convergence, | fST((—n) \Y
fr A n)dV,] tends to IES*”[IST frdVy). (s,m) — IESW[IST f(r, X,)dV;] is therefore an Fo-progressively
measurable process as the pointwise limit of the £” which are F°-progressively measurable processes.

O

We recall the following immediate consequence of Fubini’s Theorem which corresponds to Lemma
2.5.13|in Chapter

Lemma 6.A.2. Let IP be a probability measure on (Q, F) and ¢, ¢ be two measurable processes. If ¢ and + are
P-modifications of each other, then they are equal dV & dIP a.e.

The proof of Proposition 6.4.10|goes through a linearization lemma.
Lemma 6.A.3. Let f € L2 .. Let, for every (s,n) € [0,T] x Q, (Y*", M*") be the unique solution of

uni’

T - -
ven— e [ vt -, re o) 642
t
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71~(Q,.7:5,77,IE‘8777’]PS7’7), Then there exists a process Y € L2
(Myu)o<t<uand Z*,--- , 2% € L2

unt’

onis @ square integrable path-dependent MAF
such that for all (s,n) € [0,T] x 2 the following holds.

1. Y ison [s, T] a P*"-modification of Y;
2. M*" is the cadlag version of M under P,

3. Foreach integer 1 < i <d, Z' = W dV ® dP*" a.e.

Remark 6.A.4. The existence, for any (s,n), of a unique solution Y1, M*") of (6.A.2) holds because ¢ and
(t,w,y,2) — fi(w) trivially verify the hypothesis of Theorem

Proof. WesetY : (s,n) > ES7 {5 + fST frdVT} which is [F°-progressively measurable by Remark|(6.3.5
and Lemma Therefore, for a fixed t € [s, T| we have P*"-a.s.

Vilw) = B |6+ [ frdV,

= B ¢+ [T fav, ft} (w)

= B[V 4 (VT - M) ()
= %)

The second equality follows by Remark and the third one uses (6.A.2). For every 0 <t < u and
w € Q we set

W () = | Yot (@) = Yinr (@) = i1 Fr(@)dVeif [1357 1 F()]pdVe < +oo, (6.A3)
“ 0 otherwise.

For fixed (s,7), (6.A.2) implies dY;>" = — f,dV, + dM;". On the other hand fsT | f1-dV, < 400 P
a.s.; so for any s < t < u we have M;" — M = M, P*"- a.s. Taking into account that M*" is
square integrable and the fact that previous equality holds for any (s,7) and ¢ < u, then (M; ., )o<i<u
indeed defines a square integrable path-dependent MAF. Y belongs to £2 ; because the validity of
the two followmg arguments hold for all (s, 7). First Y is a P®"-modification of Y*" on [s, T, so by
Lemmal6.A.2lY = Y*7 dV ® dP*" a.e.; second Y*" € L2(dV ® dP*"). The existence of Z follows

setting for all i, Z i — d<1\g"/Ni> , see Notation [6.3.22/and Proposition|6.3.21 O

Notation 6.A.5. For every fixed (s,n) € [0, T|x, we will denote by (Y'*-1 M¥*:3), - the Picard iterations

associated to BSDE*"(f, &) as defined in Notation[4.A.13|in Chapter[fand Z%>n .= (ZVFsn, ... zdksm)

. (MPF-sn N
will denote .

This means that for all (s,n) € [0,T] x Q, (Y%7, M%$1) = (0, 0) and for all k > 1, we have on [s, T
yhsn = ¢ 4 / fr, - YEmLsn zh=bemyqy — (Mp*T — MFsm), (6.A.4)
in the sense of P*"-indistinguishability, and that for all (s,n) € [0, T] x Q, k > 0, Yk ZLksn ... zdksn
belong to L%(dV @ dIP*"), see Notation 4.A.13|and Lemma in Chapter 4}

A direct consequence of Proposition[4.A.15/in Chapter [ and the lines above it, is the following.

Proposition 6.A.6. For every (s,n) € [0,T] x Q, each component of
(Yksn zlksn ... zdksn) tends to each component of (Y1, Z%5m ... Z4s0) jn L2(dV & dP*") and
dV @ dIP®"-a.e. when k tends to infinity.
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Proposition 6.A.7. For each k € N, there exist processes Y* € L2 . 7K1 ... zkd ¢ (2 . a square

uni’ uni’

integrable path-dependent MAF (MF, )o<i<y such that for all (s,n) € [0,T] x €, we have the following.
1. YEs1 is on [s, T] a PS"-modification of Y*;

2. MF57 s the cadlag version of MPF under P57,

k,s,nvNi,s,n)

3. Forall (s,n) € [0,T] x Qandi € [1;d], Z* = WT dV @ dlP*" a.e.
Proof. We prove the statement by induction on k > 0. It is clear that Y = 0 and M° = 0 verify the
assertion for k = 0.

Suppose the existence, for k > 1, of a square integrable path-dependent MAF M*~! and processes
yhk=1 zk=11 ... 7zk=1d ¢ £2 such that the statements 1. 2. 3. above hold replacing k with k& — 1.

uni

We fix (s,n) € [0,T] x Q. By Lemmal6.A.2} (YFE-Lsn, zk=Lsny = (yk=1 Zk=1) 4V @ dP*" a..
Therefore by (6.A.4)

T
}/;k‘,s,n _ 5 +/ f (T, '7}/7']9_17 Z,'l?_l) d‘/;“ _ (Mfw’s’n _ Mtlﬂs,n)’t c [S’T].
t

According to Notation [6.4.8} the equation can be seen as a BSDE of the type BSDE*"(f,¢)
where f : (t,w) — f(t,w, Y w), ZF 1 (w)). We now verify that f verifies the conditions under
which Lemma applies.

f is Fo-progressively measurable since Y*~!, Zk~1 are F°-progressively measurable and f is
Pro° ® B(R) ® B(R?%)-measurable. Since

()l = [f(tw, Y w), 27 Hw)] < 1f(tw, 0,0)] + K (Y w) + 128 @)]),

ung

f e L2 .. Since (Y*51 M55 is a solution of BSDE*"(f,¢), Lemma |6.A.3 shows the existence of

uni®

for all t,w, with f(-,-,0,0),Yk=1 zk-L1 ... 7k=ld ¢ £2 by recurrence hypothesis, it is clear that
i
suitable Y* Mk Zk1 ... 7ZFd verifying the statement for the integer k. O

Proof of Proposition |6.4.10 We define Y and Z%,1 < i < d by Ys(n) := limsup Y*(n) and Zi(n) :=
keN

limsup Z&(n), for every (s,n) € [0,T] x Q.
kEN

Y and Z := (Z',--- , Z%) are F°-progressively measurable. Combining Propositions and
Lemma it follows that for every (s,n) € [0,7] x Q,

k—oo
Zki Ly zisn Qv @ dP, forall 1 <i < d. (6.A.5)

k—o0

{ YE —  YSn dV @ dPST

Letusfix 1 <i <dand (s,n) € [0,T] x §. There is a set A*" of full dV' ® dIP*" measure such that for
all (t,w) € A" we have

Vi(w) = limsup Y;k (w) = le Ytk (w) = V(W)
kEN eN
7 - ki R . (6.A.6)
Zi(w) = | limsup Z;”"(w) = (lim 2" (w) — ZM().
keN keN i<d

i<d
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This implies

i
E
I

Y5 dV @ dP*a.e. (6.A.7)
Zy(w) = Z®"dV @ dP*"a.e.

By (6.A.7) and (6.4.2), under every P*", we actually have

T
Yo — gy / (Yo, Z,) dVy — (M — M), (6.A.8)

in the sense of P*"-indistinguishability, on the interval [s, T]. At this stage, in spite of (6.A.7), Y is not
necessarily a modification of Y*". We will construct processes Y, Z fulfilling indeed the statement of
Proposition In particular Y fulfills item 1. that is a bit stronger than (6.A.7).

We set now f : (t,w) — f(t,w,Y;(w), Z¢(w)); equation is now of the form and
we show that f so defined verifies the conditions under which Lemma applies. f is TF°-
progressively measurable since f is Pro° ® B(R) ® B(R%)-measurable and Y, Z are F-progressively
measurable.

Moreover, for any (s,n) € [0,7] xQ, Y¥"and Z11, ...  Z%$1 belong to L2(dV ®@dP*"); therefore

by (6.Af),sodoY and Z1,--- , Z.

Since this holds for all (s,7), then Y and Z%,--- , Z¢ belong to £? ..
Finally, since | f(t,w)| = | f(t,w, Yi(w), Z¢(w))| < |f(t,w,0,0)| + K(|Vi(w)| + || Ze(w)]|) for all t,w, with
f(-,0,0),Y, 2%, .. Z¢ € L2 . itis clear that f € £2 .. Now can be considered as a BSDE
where the driver does not depend on y and z of the form (6.A.2). We can therefore apply Lemma
to f and conclude on the existence of (Y,M,Z, .-, Z9) verifying the three items of the proposition.

It remains to prove now the last assertion of Proposition We fix some (s,n). The first
item implies that Y; = Y;*" P" a.s. But since Y; is F?-measurable and P*"(w® = n®) = 1, it also
yields that Y; is P57 a.s. equal to the deterministic value Y;(n) hence Y;"" is P*" a.s. equal to the
deterministic value Y;(n). This also proves that Y is unique because it is given by Y : (s,n) — Y.
The uniqueness of Z up to zero potential sets is immediate by the third item of the proposition and

Definition 0
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