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Introduction

One of the strengths of stochastic analysis has been to discover numerous and various links between
stochastic processes and deterministic linear evolution equations. Everything started with the rela-
tion established by Albert Einstein in 1905, between the Brownian motion and the heat equation, see
for example [41]. Today stochastic analysis has extended that link to the correspondence between
different types of stochastic processes and linear deterministic problems for which a non exhaustive
list is given below.

1. Solutions to Stochastic Differential Equations (SDEs) and parabolic Partial Differential Equa-
tions (PDEs);

2. jump diffusions and Integro Partial Differential Equations (IPDEs);

3. Markov processes and pseudo-differential operators;

4. SDEs and PDEs with distributional drift;

5. SDEs and PDEs in manifolds;

6. path-dependent SDEs and related (I)PDEs etc...

The dynamics in law of each stochastic problem (e.g. SDE) is guided by a family of operators which
permits to describe both the evolution in time of the law of the process and the one of the solution
of the deterministic problem. When the process is Markovian, those operators are constituted by
transition semigroups. In the non-Markovian case, we will see that those can be replaced by a natural
system of projectors.

More recently, at the beginning of the 90s, a particular family of stochastic differential equations
with terminal condition was introduced. The solution of such an equation is a couple (Y,Z) of
adapted processes. They contain a random coefficient f called the driver depending pointwise on
the solution. They were called Backward Stochastic Differential Equations (BSDEs). When the ran-
dom dependence of f is expressed through a forward process being the solution of a classical SDE (see
item 1. above), they constitute the probabilistic representation of some special classes of semilinear
PDEs. Later those solutions of SDEs were replaced by more general forward processes, with the idea
of extending the stochastic representation of the linear equations mentioned in the above list (see
items 2. to 6.) to non-linear equations. For a long time, the notion of viscosity solution was consid-
ered as the most adapted notion of solution (although others have been used) to study links between
BSDEs and non-linear deterministic problems. In this thesis, we propose a new type of solution for
these deterministic equations, which we call decoupled mild solution. It is inspired from the usual no-
tion of mild solution and we see it as competitor to the notion of viscosity solution. We prove results
of existence and uniqueness of a decoupled mild solution for various types of equations associated
to all the situations mentioned above, under often very weak assumptions on the coefficients, and
we give arguments in favor of that new notion of solution.

1
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The classical notion of Brownian BSDE was introduced in 1990 by E. Pardoux and S. Peng in
[71], after an early work of J.M. Bismut in 1973 in [18]. It is a stochastic differential equation with
prescribed terminal condition ξ and driver f̂

Yt = ξ +

∫ T

t
f̂(r, Yr, Zr)dr −

∫ T

t
ZrdBr, t ∈ [0, T ], (1)

where B is a Brownian motion. We insist on the fact that f̂ is also random and in particular progres-
sively measurable for every fixed variable y, z. As mentioned above, the unknown is a couple (Y, Z)
of adapted processes. Existence and uniqueness of (1) was established first supposing essentially
Lipschitz conditions on f with respect to Y,Z and square integrability-type conditions on ξ, f̂(·, 0, 0).
In the sequel those conditions were considerably relaxed, see [74] and references therein. When the
randomness of the driver is expressed through a forward diffusion process X and the terminal con-
dition only depends on XT , the BSDE is often said to be Markovian. In order to characterize the link
between a Markovian BSDE and a semilinear PDE, one considers the family of forward diffusions
X = Xs,x, where s is the initial time and x the initial position. The corresponding Markovian BSDEs
are characterized by the solution (Y,Z) = (Y s,x, Zs,x) of the system{

Xs,x
t = x+

∫ t
s β(r,Xs,x

r )dr +
∫ t
s σ(r,Xs,x

r )dBr
Y s,x
t = g(Xs,x

T ) +
∫ T
t f (r,Xs,x

r , Y s,x
r , Zs,xr ) dr −

∫ T
t Zs,xr dBr, t ∈ [0, T ].

(2)

Seminal papers on Markovian BSDEs are [76] and [72]. There β and σ are supposed to be Lipschitz
(with respect to x), g, f(·, ·, 0, 0) to have polynomial growth and f has to be Lipschitz in the variables
(y, z). In [76] and in [72], (2) was linked to the semilinear PDE{

∂tu+ 1
2

∑
i,j≤d

(σσᵀ)i,j∂
2
xixju+

∑
i≤d
βi∂xiu+ f(·, ·, u, σ∇u) = 0 on [0, T [×Rd

u(T, ·) = g.
(3)

In particular, if (3) has a classical smooth solution u then (Y s,x, Zs,x) := (u(·, Xs,x
· ), σ∇u(·, Xs,x

· ))
solves the second line of (2). Conversely, only under the Lipschitz type conditions mentioned after
(2), the solution of the BSDE can be expressed as a function of the forward process, i.e. (Y s,x, Zs,x) =
(u(·, Xs,x

· ), v(·, Xs,x
· )), see [43]. It was shown in [72] that if moreover f and g are continuous, then u

is a viscosity solution of (3). Excepted in the case when u has some minimal differentiability prop-
erties in the second variable, see e.g. [52], it is difficult to say something more on v. The analytical
identification of v is commonly called the resolution of the identification problem. One major contri-
bution of this thesis consists in giving an analytical meaning to v. Since the pioneering work of [72],
in the Brownian case, the relations between more general BSDEs and associated deterministic prob-
lems have been studied extensively, and innovations have been made in several directions. In [7] the
authors introduced a new kind of BSDE including a term with jumps generated by a Poisson mea-
sure, where an underlying forward process X solves a jump diffusion equation with Lipschitz type
conditions. They associated with it an Integro-Partial Differential Equation (in short IPDE) in which
some non-local operators are added to the classical partial differential maps, and proved that, under
some continuity and monotonicity conditions on the coefficients, the BSDE provides a viscosity so-
lution of the IPDE. The monotonicity type condition is crucial in [7], indeed, when it does not hold,
a counterexemple is given. Such conditions will not be necessary in our work. In Chapter 13 of [8],
under some Sobolev-type conditions on the coefficients of the Brownian BSDE (2), it is shown that
the function u mentioned above is a solution in the sense of distributions of the parabolic PDE (3).
Later, the notion of mild solution of the PDE was used in [4] where the authors tackled diffusion op-
erators generating symmetric Dirichlet forms and associated Markov processes thanks to the theory
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of Fukushima Dirichlet forms, see e.g. [53]. Those results were extended to the case of non symmetric
Markov processes in [87]. Infinite dimensional setups were considered for example in [52] where an
infinite dimensional BSDE could produce the mild solution of a PDE on a Hilbert space. Concerning
the study of BSDEs driven by more general processes or random fields than Brownian motion, we
have already mentioned BSDEs driven by Poisson measures. In this respect, more recently, BSDEs
driven by marked point processes were introduced in [24], see also [5, 6]; in that case the underly-
ing process does not contain any diffusion term. The latter one also includes a diffusive part and it
attacks the resolution of a sort of identification problem in the spirit of [52], by making use of the
notion of weak Dirichlet process.

The BSDEs that we focus on, are situated in the extension of BSDEs driven by a cadlag mar-
tingale M . Those were considered by [20] and applied to obtain the celebrated Föllmer-Schweizer
decomposition, see e.g. [83]. Instead of being a couple (Y,Z) as in the case of an underlying Brow-
nian filtration, the solution was a triplet (Y, Z,O) where O is a martingale strongly orthogonal to
M . When the driver vanishes, this constitutes the generalization of the so called Kunita-Watanabe
decomposition. Brownian BSDEs involving a supplementary orthogonal term were studied in [43].
More recently BSDEs driven by a martingale were intensively studied by [22]. BSDEs of the same
type, but with partial information have been investigated in [23]. Finally, BSDEs in a general filtered
space were studied in [67]. The latter appear to be a great extension of the previously existing lit-
erature, and the BSDEs that we will consider in this work lie in the scope of this contribution. The
general (not necessarily Markovian) BSDE of Pardoux-Peng (1) regained attention recently with the
(re)development of path dependent stochastic calculus. Brownian BSDEs of the type

Y s,η = ξ
(
(Bs,η

t )t∈[0,T ]

)
+

∫ T

·
f
(
r, (Bs,η

t )t∈[0,r], Y
s,η
r , Zs,ηr

)
dr −

∫ T

·
Zs,ηr dBr, t ∈ [0, T ], (4)

where for any s ∈ [0, T ], η belongs to the Skorokhod space of cadlag functions D([0, T ],Rd), Bs,η =
η(· ∧ s) + (B·∨s −Bs), were associated to the path-dependent semi-linear PDE{

DΦ + 1
2Tr(∇

2Φ) + f(·, ·,Φ,∇Φ) = 0 on [0, T [×Ω
ΦT = ξ,

(5)

where D is the horizontal derivative and ∇ is the vertical gradient intended in the sense of [37, 27].
Path-dependent PDEs of previous type have been investigated by several methods. For instance strict
(classical, regular) solutions have been studied in [35, 49, 29] under the point of view of Banach space
valued stochastic processes. It was shown for instance in [29, 77] that if the coefficients are regular
enough then the mapping (s, η) 7−→ Y s,η

s is the unique smooth solution of (5). Another popular ap-
proach is the one of viscosity solutions, which was considered by several authors. For instance it was
shown in [42] that if f is bounded, continuous in t , uniformly continuous in the second variable, and
uniformly Lipschitz continuous in (y, z) and if ξ is bounded uniformly continuous, (s, η) 7−→ Y s,η

s is a
viscosity solution of (5) in some specific sense, where the sense of solutions involves the underlying
probability. On another level, [28] considered the so called strong-viscosity solutions (based on ap-
proximation techniques), which are an analytic concept, the first under non-smoothness conditions.
Another interesting approach, probabilistic, but still based on approximation (discretizations) was
given by [65]. More recently, [17] produced a viscosity solution to a more general path-dependent
(possibly integro)-PDE through dynamic risk measures.

We remark that in [42] and [65] for instance, the underlying forward process is the Brownian mo-
tion in its path-dependent formulation, i.e. the window Brownian motion. In [29, 28] (resp. [17])
the underlying forward process is a strong (resp. in law) solution of an SDE with functional de-
pendence. In all those cases the solution Φ of (5) was associated to the process Y s,η of the solution
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couple (Y s,η, Zs,η) of (4) with initial time s and initial condition η. A challenging link to be explored
was the link between Zs,η and the solution of the path-dependent PDE Φ. For instance in the case
when Y s,η is of the form Φ(t,Xs,η) where Xs,η is the solution of functional dependent SDE and Φ
is Fréchet C0,1([0, T ] × C([−T, 0]), [50] has shown that Zs,η is closely related to the Radon measure
DdxΦ(·,Xs,η)) on x ∈ [−T, 0], evaluated at {0}. When X is the window Brownian motion that quan-
tity equals the vertical derivative ∇Φ. This constitutes again a partial resolution of the identification
problem in the path-dependent context.

Those path-dependent developments naturally lead to consider a more general path-dependent
forward dynamics as the (strong or in law) solution of an SDE with path-dependent coefficients Xs,η

with starting time s and starting path η. Other examples of path-dependent processes are naturally
non-Markovian processes as fractional Brownian motion, general Gaussian processes or solutions
of Volterra type SDEs. In [86], the authors linked a BSDE which forward process is the solution
of a Volterra type SDE to a PDE with Gâteaux type derivatives, involving only a finite number of
directions.

Our setup is the following. E is a Polish space, Ω := D(R+, E) is the Skorokhod space of cadlag
functions fromR+ to E which we equip with its Borel σ-field F , its initial filtration Fo and its (right-
continuous) canonical filtration F, see Definition 1.3.1. (Xt)t∈R+ denotes the canonical process.

We will consider various types of BSDEs with different forward processes, which are solution (in
law) of some forward dynamics, in general a (Markovian or not) martingale problem. Those BSDEs
will be indexed by the initial time s and point x (or path η) of the forward process. Then we will link
those families of BSDEs to non-linear deterministic problems generalizing the usual semilinear PDE
in the case that the forward process is a Markov diffusion. As anticipated, our contributions concern
both the case of a Markovian forward process and the case of a non-Markovian (or path-dependent)
one.

We start discussing our work in the Markovian framework. We consider on (Ω,F) a canonical
Markov class (Ps,x)(s,x)∈R+×E , see Definition 1.3.7. This concept was first introduced by E.B. Dinkin,
see [38]. For all (s, x), Ps,x corresponds to the law of the (Markovian) forward process starting in x
at time s. That canonical Markov class is assumed to solve a well-posed martingale problem with
respect to some linear operator (D(a), a) (see Definition 2.4.2), where D(a) is a linear subspace of the
space of Borel real valued functions B(R+×E,R) defined onR+×E and a : D(a) −→ B(R+×E,R).
We mean by this that for every (s, x),Ps,x is the unique probability measure such that for all φ ∈ D(a),
the process

M [φ]s,x := φ(· ∨ s,X·∨s)−
∫ ·∨s
s

a(φ)(Xr)dr (6)

introduced in Notation 2.4.4 is, on [s,+∞[, an (F,Ps,x)-martingale. The transition kernel (see Defini-
tion 1.3.4) of that canonical Markov class will be denoted (Ps,t)0≤s≤t, which means the following: for
all real valued bounded Borel φ and s ≤ t,

Es,x[φ(Xt)] = Ps,t[φ](x),∀x ∈ E.

When φ, ψ ∈ D(a) are such that φψ ∈ D(a) we denote

Γ(φ, ψ) := a(φψ)− φa(ψ)− ψa(φ), (7)

or shorter Γ(φ) when φ = ψ. Γ is called the carré du champ operator and is of great importance in
our work. It was first introduced (in the case of time-homogeneous operators) by J.P. Roth in poten-
tial analysis (see Chapter III in [79]), and popularized by P.A. Meyer in the study of homogeneous
Markov processes, see e.g. [34] Chapter XV Comment 23 or [60] Remark 13.46. It has finally become
a fundamental tool in the study of Markov processes and semi-groups, see for instance [3]. A first
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approach to face deterministic problems for those equations appears in [64]; that paper also contains
an application to obtention of the celebrated Föllmer-Schweizer decomposition.

The first type of BSDE which we study in Chapter 2 is the following. For every (s, x), under the
probability Ps,x, we consider the BSDE without driving martingale

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

√
d〈M s,x〉r

dr

)
dr − (M s,x

T −M s,x
t ), t ∈ [0, T ]. (8)

Here the solution is the couple (Y s,x,M s,x) where Y s,x is a cadlag adapted square integrable process
and M s,x is a square integrable martingale. It is a specific type of BSDE on a filtered space as intro-
duced in [66]. Following the ideas of [43], we can show in Theorem 2.5.15 the existence of a Borel
function u and some positive Borel v such that for any (s, x) ∈ [0, T ]× E, the solution of (8) verifies{

∀t ≥ s : Y s,x
t = u(t,Xt) Ps,x a.s.

d〈Ms,x〉t
dt = v2(t,Xt) dt⊗ dPs,x a.e.

(9)

In order to prove this technical Theorem 2.5.15 in a very general context (in the sense that the un-
derlying forward Markov process is very general) we extend in Chapter 1 some results concerning
homogeneous (Martingale) Additive Functionnals to a time-dependent framework. The theory of
(Martingale) Additive Functionnals associated to Markov processes was developped in the ’60s, see
for instance [38], [68], [19]. A mature version of the homogeneous theory may be found for example
in [34], Chapter XV.

In Subsection 2.5 of Chapter 2, we link the BSDEs (8) to the deterministic equation{
a(u) + f

(
·, ·, u,Γ(u)

1
2

)
= 0 on [0, T ]× E

u(T, ·) = g.
(10)

As in the classical theory of Brownian BSDEs (i.e. the BSDEs with underlying Brownian filtration)
and parabolic PDEs, the candidate function to solve (10) is naturally the function u appearing in (9)
and which can be expressed as u(s, x) ≡ Y s,x

s . For this equation, we introduce in Chapter 3, the
notion of decoupled mild solution. We will here explain the intuition behind this notion of solution.
Later on, that notion will be adapted to other types of equations, but the fundamental idea will be
the same and can be sketched below.

The (time-dependent) semigroup (Ps,t)s≤t associated to a naturally guide the reader to a notion
of mild solution of the deterministic problem (10). A function u for which Γ(u) exists in some sense
(classical, weak, as the closure of some operator etc...), is a mild solution of (10) if for all (s, x)

u(s, x) = Ps,T [g](x) +

∫ T

s
Ps,r[f(·, ·, u,Γ(u)

1
2 )(r, ·)](x)dr. (11)

However, in the most general setup, we can only show that the (deterministic) function (s, x) 7−→
Y s,x
s is Borel, so it is not always possible to define the value of Γ applied to this function. If it were

continuous, one could try to make use of a notion of viscosity solution. The concept of viscosity
solution has been very popular when (10) reduces to a semilinear PDE, but also in some IPDEs with
monotonicity condition and in the case of Hilbert valued equations, see e.g. [45]. Finally as men-
tioned earlier, a flavor of viscosity solution has been implemented even in the path-dependent case.

We propose an alternative strategy. It relies on the fact that Γ may be expressed with use of the
operator a itself. Since Γ(u) = a(u2)− 2ua(u) one can decouple the first line of (10) into the couple of
equations {

a(u) = −f(·, ·, u, v)
v2 = a(u2)− 2ua(u),

(12)
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where v is a positive real valued auxiliary function. We can then rewrite this as{
a(u) = −f(·, ·, u, v)
a(u2) = v2 − 2uf(·, ·, u, v).

(13)

Taking (13) into account, it is now natural to use the semigroup (mild) formulation for this system
of equations. A decoupled mild solution of (10) will be a Borel function u for which there exists a
positive Borel v such that for all (s, x),{

u(s, x) = Ps,T [g](x) +
∫ T
s Ps,r[f(·, ·, u, v)(r, ·)](x)dr

u2(s, x) = Ps,T [g2](x)−
∫ T
s Ps,r[(v

2 − 2uf(·, ·, u, v)(r, ·)](x)dr.
(14)

Our first main achievement is to prove in Theorem 3.3.9 that whenever f, g are Borel with classical
growth conditions in x and if f is uniformly Lipschitz in y, z, then (10) admits a unique decoupled
mild solution which is given by (s, x) 7−→ Y s,x

s . We also showed in Corollary 3.3.10 that a classical
solution, if it exists, is a decoupled mild solution (hence is unique), and conversely that if the unique
decoupled mild solution belongs to the domain, then it verifies (10) up to a zero potential set (see
Definition 2.4.11). An important impact of this approach, is that the component M s,x of the solution
(Y s,x,M s,x) of the BSDE (8) can be related to the (analytically defined) auxiliary function v appearing
in (14). Indeed that function is also the one appearing in (9), meaning that we have v2(t,Xt) = d〈Ms,x〉t

dt
dt⊗ dPs,x a.e. for all (s, x).

Applications are numerous since the Markov process may be very general. Considering solutions
of SDEs possibly with jumps (see [60, 84, 85]), we can tackle in Subsection 3.4.1 (with a slightly
different formulation) (I)PDEs of the form

∂tφ+ 1
2Tr(σσ

ᵀ∇2φ) + β∇φ+
∫
Rd

(φ(·+ γ(y))− φ− γ(y)∇φ)F (dy)

+f
(
·, ·, φ,

(
‖σ∇φ‖2 +

∫
Rd

(φ(·+ γ(y))− φ)2F (dy)
) 1

2

)
= 0

φ(T, ·) = g,

(15)

where β : [0, T ]×Rd −→ Rd, σ : [0, T ]×Rd −→Md(R), γ : [0, T ]×Rd ×Rd −→ Rd and F is a finite
positive measure not charging 0. IPDE (15) becomes the PDE{

∂tφ+ 1
2Tr(σσ

ᵀ∇2φ) + β∇φ+ f (·, ·, φ, ‖σ∇φ‖) = 0,
φ(T, ·) = g,

(16)

when γ ≡ 0. Considering solutions of SDEs with distributional drift (see [47, 48, 21, 46, 31]) we can
address in Subsection 3.4.3 singular non linear PDEs of the form{

∂tφ+ b′∂xφ+ 1
2σ∂

2
xφ+ f(·, ·, φ, h′|σ∂xφ|) = 0

φ(T, ·) = g,
(17)

where b is only a continuous function, hence b′ is a distribution, and h is an harmonic function in the
sense that

Lh := b′∂xh+
1

2
σ∂2

xh = 0, (18)

by approximations, in a precise sense.
Considering Markov processes associated to pseudo-differential operators (see [57, 58, 59]) we

can discuss in Subsection 3.4.2 pseudo-PDEs such as ∂tφ− (−∆)
α
2 φ+ f

(
·, ·, φ,

(
cαPV

∫
Rd

(φ(·+y)−φ)2

‖y‖d+α dy
) 1

2

)
= 0

u(T, ·) = g,
(19)



Contents 7

where α ∈]0, 2[, (−∆)
α
2 : φ 7−→ cαPV

∫
Rd

(φ(·+y)−φ)
‖y‖d+α dy is the fractional Laplace operator, cα is a funda-

mental constant and PV stands for principal value. Finally by considering diffusions in manifolds,
we can treat in Subsection 3.4.4 the non-linear PDE (16) defined on compact smooth manifold.

The limit of this first group of results, is of course the unidimensionality of Γ(φ). To give an idea,
one would like to consider a semilinear PDE, where the driver f should possibly depend on the
whole vector ∇φ and not just its norm ‖∇φ‖. This naturally brings us to consider in Chapter 4, an-
other class of BSDEs close to the BSDEs driven by cadlag martingales studied in [22]. Let us consider
ψ1, · · · , ψd ∈ D(a) and under eachPs,x the d-dimensional martingaleM [ψ]s,x := (M [ψ1]s,x, · · · ,M [ψd]

s,x)
as defined in (6). M [ψ]s,x will be, under Ps,x, the driving martingale of the BSDE indexed by (s, x).
When the identity belongs to the domain, then X is under each Ps,x a special semimartingale so a
natural choice for ψ is to take the identity; the driving martingale is just the martingale part of the
canonical process. Under each Ps,x we consider the BSDEs driven by a cadlag martingale

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

d〈M s,x,M [ψ]s,x〉r
dr

)
dr − (M s,x

T −M s,x
t ), t ∈ [0, T ]. (20)

Those BSDEs are linked to the deterministic equation{
a(u) + f (·, ·, u,Γ(u, ψ)) = 0 on [0, T ]× E

u(T, ·) = g.
(21)

Reasoning as for (10), we can decompose the first line of (21) into the system{
a(u) = −f(·, ·, u, v)
vi = a(uψi)− ua(ψi)− ψia(u), 1 ≤ i ≤ d, (22)

and {
a(u) = −f(·, ·, u, v)
a(uψi) = vi + ua(ψi)− ψif(·, ·, u, v), 1 ≤ i ≤ d, (23)

where this time v is an Rd-valued auxiliary function. We define a decoupled mild solution of (21) as
a Borel function u for which there exists a Borel v such that for all (s, x) ∈ [0, T ]× E,

u(s, x) = Ps,T [g](x) +
∫ T
s Ps,r [f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x)−
∫ T
s Ps,r [(v1 + ua(ψ1)− ψ1f (·, ·, u, v)) (r, ·)] (x)dr

· · ·
uψd(s, x) = Ps,T [gψd(T, ·)](x)−

∫ T
s Ps,r [(vd + ua(ψd)− ψdf (·, ·, u, v)) (r, ·)] (x)dr.

(24)

We show in Theorem 4.5.20 that if f, g are Borel with reasonable growth conditions on x and if f is
uniformly Lipschitz in (y, z) then (21) admits a unique decoupled mild solution which is given by
(s, x) 7−→ Y s,x

s where this time Y s,x comes from the solution of (20). Again, by Proposition 4.5.17, a
classical solution is a decoupled mild solution and whenever the decoupled mild solution belongs
to the domain then it verifies (21) up to a zero potential set. The second item of the solution of the
BSDE can now be related to v appearing in (24) by v(t,Xt) = d〈Ms,x,M [ψ]s,x〉t

dt dt ⊗ dPs,x a.e. for all
(s, x). With this extension of our first result, keeping all previous notations, we tackle in Subsection
4.6.2 singular PDEs of the form{

∂tφ+ b′∂xu+ 1
2σ∂

2
xu+ f(·, ·, u, h′σ2∂xu) = 0

φ(T, ·) = g,
(25)



8 Contents

and in Subsection 4.6.1 PDEs of the form{
∂tφ+ 1

2Tr(σσ
ᵀ∇2φ) + β∇φ+ f (·, ·, φ, σσᵀ∇φ) = 0

φ(T, ·) = g,
(26)

where h is again a function fulfilling (18). We could also tackle easily IPDEs of the form
∂tφ+ 1

2Tr(σσ
ᵀ∇2φ) + β∇φ+

∫
Rd

(φ(·+ γ(y))− φ− γ(y)∇φ)F (dy)
+f
(
·, ·, φ, σσᵀ∇φ+

∫
Rd
γ(y)(φ(·+ γ(y))− φ)F (dy)

)
= 0

φ(T, ·) = g,
(27)

as we will see in the path-dependent framework.
We wish to emphasize that even in the most classical situation of PDE (26), our concepts and re-

sults provide a new light to the known literature. Indeed, firstly, we obtain an existence and unique-
ness result under very low regularity assumptions on the coefficients. f, g need only be measurable
in t, x and β, σ need only to ensure well-posedness of the martingale problem, for example with β
Borel and σ continuous invertible, or with β, σ continuous in x at fixed t. Moreover, we provide an
analytical meaning for the processes Zs,x := d〈Ms,x,M [Id]s,x〉t

dt coming from the BSDEs, which in the
diffusion setup are given by

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

d〈M s,x,M [Id]s,x〉r
dr

)
dr − (M s,x

T −M s,x
t ), t ∈ [0, T ], (28)

where M [Id]s,x is the martingale part of the canonical process under Ps,x. As stated above, the
process Zs,x is strongly related to the function v appearing in (24) which may be interpreted as a
generalized gradient of u. This identification of Zs,x is not possible in general when using viscosity
solutions.

The next step in our work is to consider path-dependent extensions of our results. We start by
extending in Chapter 5, some notions and results of Markov processes theory to the path-dependent
setup, since such notions were fundamental in our work. First we introduce the notion of path-
dependent canonical class, see Definition 5.3.4. It will be a set of probability measures
(Ps,η)(s,η)∈R+×Ω defined on the canonical space and such that for some fixed (s, η), Ps,η models a
forward (path-dependent) dynamics in law, with imposed initial path η on the time interval [0, s].
More formally, this set of probability measures verifies the following.

1. For every (s, η) ∈ R+ × Ω, Ps,η(ωs = ηs) = 1;

2. for every s ∈ R+ and G ∈ F , the mapping
η 7−→ Ps,η(G)
Ω −→ [0, 1]

is Fos -measurable;

3. for every (s, η) ∈ R+ × Ω, t ≥ s and G ∈ F ,

Ps,η(G|Fot )(ω) = Pt,ω(G) for Ps,η almost all ω. (29)

It constitutes the natural adaptation to the path-dependent world of the notion of canonical Markov
class (Ps,x)(s,x)∈R+×E , where in general, Ps,x models the law of some Markov stochastic process,
with imposed value x at time s. In particular, (29) is the natural extension of the Markov property
Ps,x(G|Xt) = Pt,Xt(G) Ps,x a.s. , see Proposition 1.3.4.

In substitution to the notion a Markov semigroup associated with a canonical Markov class, we
introduce the concept of path-dependent system of projectors denoted (Ps)s∈R+ , see Definition 5.3.8.
That is a family of operators defined on the set of bounded random variables (in short r.v.) and
verifying the following three items.
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1. For all s ∈ R+, the restriction of Ps to Bsb(Ω) coincides with the identity;

2. for all s ∈ R+, Ps maps Bb(Ω) into Bsb(Ω);

3. for all s, t ∈ R+ with t ≥ s, Ps ◦ Pt = Ps,

where Bsb(Ω) denotes the set of bounded Fos -measurable r.v. A one-to-one connection between them
and path-dependent canonical classes is shown in Corollary 5.3.11. Indeed to any path-dependent
canonical class (Ps,x)(s,x)∈R+×E , one can associate a unique path-dependent system of projectors
(Ps)s∈R+ such that for all bounded r.v. Z and every (s, η), we have

Es,η[Z] = Ps[Z](η). (30)

This steers us towards the notion of weak generator (D(A), A) of (Ps)s∈R+ which extends the
notion of generator of a Markovian semigroup and will permit us to define mild type solutions of
path-dependent equations. If (D(A), A) is a linear mapping in the space of Fo-progressively measur-
able processes, we say that (D(A), A) is a weak generator of the path-dependent system of projectors
(Ps)s∈R+ if for all Φ ∈ D(A), (s, η) ∈ R+ × Ω and t ≥ s, we have

Ps[Φt](η) = Φs(η) +

∫ t

s
Ps[A(Φ)r](η)dr, (31)

see Definition 5.5.14. We show in Proposition 5.5.16 that (D(A), A) is a weak generator of the path-
dependent system of projectors (Ps)s∈R+ iff the corresponding (in the sense of (30)) path-dependent
canonical class (Ps,η)(s,η)∈R+×Ω solves the martingale problem associated to (D(A), A), see Definition
5.5.15.

As in the Markovian set-up, examples of path-dependent canonical classes arise from solutions
of a (this time path-dependent) martingale problem as we explain below. Let χ be a set of cadlag
processes adapted to the initial filtrationFo. For some given (s, η) ∈ R+×Ω, we say that a probability
measure Ps,η on (Ω,F) solves the martingale problem with respect to χ starting in (s, η) if

• Ps,η(ωs = ηs) = 1;

• all elements of χ are on [s,+∞[ (Ps,η,Fo)-martingales.

We show in Theorem 5.5.12 that merely under some well-posedness assumption, the set of solutions
for varying starting times and paths (Ps,η)(s,η)∈R+×Ω defines a path-dependent canonical class. This
in particularly holds for weak solutions of path-dependent SDEs possibly with jumps when there is
existence and uniqueness of a solution, see Theorem 5.6.7.

Once these extensions of Markovian tools are made, in Chapter 6, on a family of path-dependent
problems, which naturally extend (21) and are of the type{

AY + f(·, ·, Y,Γ(Y,Ψ)) = 0 on [0, T ]× Ω
YT = ξ on Ω,

(32)

where (D(A), A) is the weak generator of a path-dependent system of projectors (Ps)s∈R+ . Ψ :=
(Ψ1, · · · ,Ψd) is a given vector of elements of D(A) and Γ is this time the bilinear map acting on
processes by

Γ(Φ,Φ′) := A(ΦΦ′)− ΦA(Φ′)− Φ′A(Φ). (33)

A typical example is to consider Ψ := X the canonical process, and a map A given by

(AΦ)t(ω) := (DΦ)t(ω) + 1
2Tr(σtσ

ᵀ
t (∇2Φ)t(ω)) + βt(ω) · (∇Φ)t(ω)

+
∫

(Φt(ω + γt(ω, y)1[t,+∞[)− Φt(ω)− γt(ω, y) · (∇Φ)t(ω))F (dy),
(34)
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where β, σ, γ are bounded (this time path-dependent) predictable coefficients and F is still a bounded
positive measure not charging 0. In (34), D is the horizontal derivative and∇ is the vertical gradient
intended in the sense of [37, 27]. In that case, by Proposition 6.5.27 we can evaluate

Γ(X,Φ)t = (σσᵀ∇Φ)t +

∫
Rd
γt(·, y)(Φt(·+ γt(·, y)1[t,+∞[)− Φt)F (dy). (35)

If γ ≡ 0 then (32) becomes the path-dependent PDE{
DY + 1

2Tr(σσ
ᵀ∇2Y ) + β · ∇Y + f(·, ·, Y, σσᵀ∇Y ) = 0 on [0, T ]× Ω

YT = ξ on Ω.
(36)

We extend to (32) the notion of decoupled mild solution defining it as a functional Y for which
there exists an auxiliary Rd-valued functional Z := (Z1, · · · , Zd) such that for all (s, η) ∈ [0, T ] × Ω
we have 

Ys(η) = Ps[ξ](η) +
∫ T
s
Ps [f (r, ·, Yr, Zr)] (η)dr

Ys(η)η1(s) = Ps[ξΨ
1
T ](η)−

∫ T
s
Ps
[(
Z1
r + YrAΨ1

r −Ψ1
rf (r, ·, Yr, Zr)

)]
(η)dr

· · ·
Ys(η)ηd(s) = Ps[ξΨ

d
T ](η)−

∫ T
s
Ps
[(
Zdr + YrAΨd

r −Ψd
rf (r, ·, Yr, Zr)

)]
(η)dr.

(37)

We consider for any (s, η) the BSDE

Y s,η
t = ξ +

∫ T

t
f

(
r, ·, Y s,η

r ,
d〈M s,η,M [Ψ]s,η〉r

dr

)
dr − (M s,η

T −M
s,η
t ), t ∈ [0, T ], (38)

under Ps,η, where (Ps,η)(s,η)∈R+×Ω solves a martingale problem associated to (D(A), A). In (38),
M [Ψ]s,η is the driving martingale of the BSDE, and is the martingale part of the process Ψ under
Ps,η. These BSDEs are a particular case of those studied in Chapter 4, see Definition 4.3.2. Those
BSDEs have this time however a forward component which is modeled in law by the fixed family
(Ps,η)(s,η)∈R+×Ω.

An important application for path-dependent (I)PDEs is Theorem 6.5.32 that states the following.
Suppose that the path-dependent SDE of coefficients β, σ, γ admits existence and uniqueness in law
for every initial condition (s, η), and that βt, σt (resp. γt(·, x)) are continuous for the Skorokhod
topology in ω for almost all t (resp. dt⊗ dF a.e.), that f(·, ·, 0, 0), ξ have polynomial growth and that
f is Lipschitz in (y, z) uniformly in (t, ω). Then there is a unique decoupled mild solution Y for (32)
with Ψ := X and A given in (34). Moreover, both processes Y,Z appearing in (37) can be represented
through the associated BSDEs (38). In particular we have Y : (s, η) 7−→ Y s,η

s and (37) gives, as in
the Markovian case, an analytical meaning to the second process Z obtained through those BSDEs.
Indeed, this process may be interpreted as a generalization of the vertical derivative.



Chapter 1

A note on time-dependent additive
functionals

This chapter is the object of the paper [12].

Abstract

This note develops shortly the theory of non-homogeneous additive functionals and is a useful
support for the analysis of time-dependent Markov processes and related topics. It is a significant
tool for the analysis of Markovian BSDEs in law. In particular we extend to a non-homogeneous
setup some results concerning the quadratic variation and the angular bracket of Martingale Ad-
ditive Functionals (in short MAF) associated to a homogeneous Markov processes.

1.1 Introduction

The notion of Additive Functional of a general Markov process is due to E.B Dynkin and has been
studied since the early ’60s by the Russian, French and American schools of probability, see for ex-
ample [38], [68], [19]. A mature version of the homogeneous theory may be found for example in
[34], Chapter XV. In that context, given an element x in some state space E, Px denotes the law of a
time-homogeneous Markov process with initial value x.

An Additive Functional (AF) is a right-continuous process (At)t≥0 defined on a canonical space,
adapted to the canonical filtration such that for any s ≤ t and x ∈ E, As+t = As + At ◦ θs Px-a.s.,
where θ is the usual shift operator on the canonical space. If moreover A is under any law Px a
martingale, then it is called a Martingale Additive Functional (MAF). The quadratic variation and
angular bracket of a MAF were shown to be AFs in [34]. We extend this type of results to a more
general definition of an AF which is closer to the original notion of Additive Functional associated to
a stochastic system introduced by E.B. Dynkin, see [39] for instance.

Our setup will be the following. We consider a canonical Markov class
(Ps,x)(s,x)∈[0,T ]×E with time index [0, T ] and state space E being a Polish space. For any (s, x) ∈
[0, T ]×E,Ps,x corresponds to the probability law (defined on some canonical filtered space (Ω,F ,F))
of a Markov process starting from point x at time s. On (Ω,F), we define a non-homogeneous
Additive Functional (shortened by AF) as a real-valued random-field A := (Atu)0≤t≤u≤T verifying
the two following conditions.

1. For any 0 ≤ t ≤ u ≤ T , Atu is Ft,u-measurable;

2. for any (s, x) ∈ [0, T ] × E, there exists a real cadlag Fs,x-adapted process As,x (taken equal to
zero on [0, s] by convention) such that for any x ∈ E and s ≤ t ≤ u, Atu = As,xu −As,xt Ps,x a.s.

11
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Ft,u denotes the σ-field generated by the canonical process between time t and u, andFs,x is obtained
by adding the Ps,x negligible sets to F. As,x will be called the cadlag version of A under Ps,x. If for
any (s, x), As,x is a (Ps,x,F)-square integrable martingale then A will be called a square integrable
Martingale Additive Functional (in short, square integrable MAF).

The main contributions of the paper are essentially the following. In Section 1.3, we recall the
definition and prove some basic results concerning canonical Markov classes. In Section 1.4, we
start by defining an AF in Definition 1.4.1. In Proposition 1.4.4, we show that if (M t

u)0≤t≤u≤T is a
square integrable MAF, then there exists an AF ([M ]tu)0≤t≤u≤T which for any (s, x) ∈ [0, T ] × E, has
[M s,x] as cadlag version under Ps,x. Corollary 1.4.11 states that given two square integrable MAFs
(M t

u)0≤t≤u≤T , (N t
u)0≤t≤u≤T , there exists an AF, denoted by (〈M,N〉tu)0≤t≤u≤T , which has 〈M s,x, N s,x〉

as cadlag version under Ps,x. Finally, we prove in Proposition 1.4.17 that if M or N is such that for
every (s, x), its cadlag version under Ps,x has its angular bracket absolutely continuous with respect
to some continuous non-decreasing function V , then there exists a Borel function v such that for any
(s, x), 〈M s,x, N s,x〉 =

∫ ·∨s
s v(r,Xr)dVr.

The present note constitutes a support for the authors, in the analysis of deterministic problems
related to Markovian type backward stochastic differential equations where the forward process is
given in law, see e.g. Chapters 2, 3, 4. Indeed, when the forward process of the BSDE does not define
a stochastic flow (typically if it is not the strong solution of an SDE but only a weak solution), we
cannot exploit the mentioned flow property to show that the solution of the BSDE is a function of the
forward process, as it is usually done, see Remark 5.35 (ii) in [74] for instance.

1.2 Preliminaries

The present section is devoted to fix some basic notions, notations and vocabulary. A topological
spaceE will always be considered as a measurable space with its Borel σ-field which shall be denoted
B(E) and if S is another topological space equipped with its Borel σ-field, B(E,S) (resp. Bb(E,S),
resp. C(E,S), resp. Cb(E,S)) will denote the set of Borel (resp. bounded Borel, reps. continuous,
resp. bounded continuous) functions from E to S. Let T ∈ R∗+, d ∈ N∗, then C1,2

b ([0, T ] × Rd) will
denote the space of bounded continuous real valued functions on [0, T ]×Rd which are differentiable
in the first variable, twice differentiable in the second with bounded continuous partial derivatives.

Let (Ω,F), (E, E) be two measurable spaces. A measurable mapping from (Ω,F) to (E, E) shall
often be called a random variable (with values in E), or in short r.v. If T is some set, an indexed set
of r.v. with values in E, (Xt)t∈T will be called a random field (indexed by T with values in E). In
particular, if T is an interval included in R+, (Xt)t∈T will be called a stochastic process (indexed by
Twith values in E). Given a stochastic process, if the mapping

(t, ω) 7−→ Xt(ω)
(T× Ω,B(T)⊗F) −→ (E, E)

is measurable, then the process (Xt)t∈T will be called a measurable process (indexed by T with
values in E).

Let (Ω,F ,P) be a fixed probability space. For any p ≥ 1, Lp := Lp(R) will denote the set of
real valued random variables with finite p-th moment. Two random fields (or stochastic processes)
(Xt)t∈T, (Yt)t∈T indexed by the same set and with values in the same space will be said to be mod-
ifications (or versions) of each other if for every t ∈ T, P(Xt = Yt) = 1. If the probability space is
equipped with a right-continuous filtration F = (Ft)t∈T, then (Ω,F ,F,P) will be called stochastic
basis and will be said to fulfill the usual conditions if the probability space is complete and if F0

contains all the P-negligible sets.
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Concerning spaces of real valued stochastic processes on the above mentioned stochastic basis,
M will be the space of cadlag martingales. For any p ∈ [1,∞] Hp will denote the subset of M of
elements M such that sup

t∈T
|Mt| ∈ Lp and in this set we identify indistinguishable elements. Hp is a

Banach space for the norm ‖M‖Hp = E[|sup
t∈T

Mt|p]
1
p , and Hp0 will denote the Banach subspace of Hp

whose elements start at zero.
A crucial role in the present note, as well as in classical stochastic analysis is played by localization

via stopping times. If T = [0, T ] for some T ∈ R∗+, a stopping time will be intended as a random
variable with values in [0, T ]∪{+∞} such that for any t ∈ [0, T ], {τ ≤ t} ∈ Ft. We define a localizing
sequence of stopping times as an increasing sequence of stopping times (τn)n≥0 such that there exists
N ∈ N for which τN = +∞. Let Y be a process and τ a stopping time, we denote Y τ the process
t 7→ Yt∧τ which we call stopped process. If C is a set of processes, we define its localized class Cloc as
the set of processes Y such that there exists a localizing sequence (τn)n≥0 such that for every n, the
stopped process Y τn belongs to C.

We say some words about the concept of bracket related to two processes: the square bracket
and the angular bracket. They coincide if at least one of the two processes is continuous. For any
M,N ∈ M [M,N ] denotes the covariation of M,N . If M = N , we write [M ] := [M,N ]. [M ] is
called quadratic variation of M . If M,N ∈ H2

loc, 〈M,N〉 (or simply 〈M〉 if M = N ) will denote
their (predictable) angular bracket. H2

0 will be equipped with scalar product defined by (M,N)H2 :=
E[MTNT ] = E[〈M,N〉T ] which makes it a Hilbert space. Two elements M,N ofH2

0,loc will be said to
be strongly orthogonal if 〈M,N〉 = 0.

If A is an adapted process with bounded variation then V ar(A) (resp. Pos(A), Neg(A)) will
denote its total variation (resp. positive variation, negative variation), see Proposition 3.1, chap. 1 in
[61]. In particular for almost all ω ∈ Ω, t 7→ V art(A(ω)) is the total variation function of the function
t 7→ At(ω).

For more details concerning these notions, one may consult [78] or [61] for example.

1.3 Markov classes

We recall here some basic definitions and results concerning Markov processes. For a complete study
of homogeneous Markov processes, one may consult [34], concerning non-homogeneous Markov
classes, our reference was Chapter VI of [40].

1.3.1 Definition and basic results

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 1.3.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topolog-
ical space), and B(E) its Borel σ-field. E will be called the state space.

We consider T ∈ R∗+. We denote Ω := D(E) the Skorokhod space of functions from [0, T ] to E right-
continuous with left limits and continuous at time T (e.g. cadlag). For any t ∈ [0, T ] we denote the coordinate
mapping Xt : ω 7→ ω(t), and we introduce on Ω the σ-field F := σ(Xr|r ∈ [0, T ]).

On the measurable space (Ω,F), we introduce the canonical process

X :
(t, ω) 7−→ ω(t)

([0, T ]× Ω,B([0, T ])⊗F) −→ (E,B(E)),
(1.3.1)

and the right-continuous filtration F := (Ft)t∈[0,T ] where Ft :=
⋂

s∈]t,T ]

σ(Xr|r ≤ s) if t < T , and FT :=

σ(Xr|r ∈ [0, T ]) = F .
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(Ω,F ,F) will be called the canonical space (associated to T and E). For any t ∈ [0, T ] we denote
Ft,T := σ(Xr|r ≥ t), and for any 0 ≤ t ≤ u < T we will denote Ft,u :=

⋂
n≥0

σ(Xr|r ∈ [t, u+ 1
n ]).

Remark 1.3.2. All the results of the present paper remain valid if Ω is the space of continuous functions from
[0, T ] to E, and if the time index is equal toR+.

We recall that since E is Polish, then D(E) can be equipped with a Skorokhod distance which
makes it a Polish metric space (see Theorem 5.6 in Chapter 3 of [44]), and for which the Borel σ-field
is F (see Proposition 7.1 in Chapter 3 of [44]). This in particular implies that F is separable, as the
Borel σ-field of a separable metric space.

Remark 1.3.3. The above σ-fields fulfill the properties below.

1. For any 0 ≤ t ≤ u < T , Ft,u = Fu ∩ Ft,T ;

2. for any t ≥ 0, Ft ∨ Ft,T = F ;

3. for any (s, x) ∈ [0, T ]×E, the two first items remain true when considering the Ps,x-closures of all the
σ-fields;

4. for any t ≥ 0, Π := {F = Ft ∩ F tT |(Ft, F tT ) ∈ Ft × Ft,T } is a π-system generating F , i.e. it is stable
with respect to the intersection.

Definition 1.3.4. The function

P :
(s, t, x, A) 7−→ Ps,t(x,A)

[0, T ]2 × E × B(E) −→ [0, 1],

will be called transition kernel if, for any s, t in [0, T ], x ∈ E, A ∈ B(E), it verifies the following.

1. Ps,t(·, A) is Borel,

2. Ps,t(x, ·) is a probability measure on (E,B(E)),

3. if t ≤ s then Ps,t(x,A) = 1A(x),

4. if s < t, for any u > t,
∫
E Ps,t(x, dy)Pt,u(y,A) = Ps,u(x,A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 1.3.5. A transition kernel P is said to be measurable in time if for every t ∈ [0, T ] andA ∈ B(E),
(s, x) 7−→ Ps,t(x,A) is Borel.

Remark 1.3.6. Let P be a transition kernel which is measurable in time, let φ ∈ B(E,R) and t ∈ [0, T ].
Assume that for any (s, x) ∈ [0, T ] × E, the integral

∫
|φ|(y)Ps,t(x, dy) exists and it is finite. Then the

mapping (s, x) 7→
∫
φ(y)Ps,t(x, dy) is Borel. This can be easily shown by approximating φ by simple functions

and using the definition.

Definition 1.3.7. A canonical Markov class associated to a transition kernel P is a set of probability mea-
sures (Ps,x)(s,x)∈[0,T ]×E defined on the measurable space (Ω,F) and verifying for any t ∈ [0, T ] andA ∈ B(E)

Ps,x(Xt ∈ A) = Ps,t(x,A), (1.3.2)

and for any s ≤ t ≤ u
Ps,x(Xu ∈ A|Ft) = Pt,u(Xt, A) Ps,x a.s. (1.3.3)
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The statement below comes Formula 1.7 in Chapter 6 of [40].

Proposition 1.3.8. For any (s, x) ∈ [0, T ]× E, t ≥ s and F ∈ Ft,T yields

Ps,x(F |Ft) = Pt,Xt(F ) = Ps,x(F |Xt) P
s,xa.s. (1.3.4)

Property (1.3.4) is often called Markov property. We recall here the concept of homogeneous
canonical Markov classes and its links with Markov classes.

Notation 1.3.9. A mapping

P̃ :
E × [0, T ]× B(E) −→ [0, 1]

(t, x,A) 7−→ P̃t(x,A),
(1.3.5)

will be called a homogeneous transition kernel if
P : (s, t, x, A) 7−→ P̃t−s(x,A)1s<t + 1A(x)1s≥t is a transition kernel in the sense of Definition 1.3.4. This
in particular implies P̃ = P0,·(·, ·).

A set of probability measures (Px)x∈E on the canonical space associated to T and E (see Notation 1.3.1)
will be called a homogeneous canonical Markov class associated to a homogeneous transition kernel P̃ if{

∀t ∈ [0, T ] ∀A ∈ B(E) ,Px(Xt ∈ A) = P̃t(x,A)

∀0 ≤ t ≤ u ≤ T ,Px(Xu ∈ A|Ft) = P̃u−t(Xt, A) Ps,xa.s.
(1.3.6)

Given a homogeneous canonical Markov class (Px)x∈E associated to a homogeneous transition kernel P̃ , one
can always consider the canonical Markov class (Ps,x)(s,x)∈[0,T ]×E associated to the transition kernel
P : (s, x, t, A) 7−→ P̃t−s(x,A)1s<t + 1A(x)1s≥t. In particular, for any x ∈ E, we have P0,x = Px.

For the rest of this section, we are given a canonical Markov class
(Ps,x)(s,x)∈[0,T ]×E whose transition kernel is measurable in time. Proposition 3.A.10 in Chapter 3
shows the following.

Proposition 1.3.10. For any event F ∈ F , (s, x) 7−→ Ps,x(F ) is Borel. For any random variable Z, if the
function (s, x) 7−→ Es,x[Z] is well-defined (with possible values in [−∞,∞]), then it is Borel.

Definition 1.3.11. For any (s, x) ∈ [0, T ]× E we will consider the (s, x)-completion(
Ω,Fs,x,Fs,x := (Fs,xt )t∈[0,T ],P

s,x
)

of the stochastic basis (Ω,F ,F,Ps,x) by defining Fs,x as the Ps,x-
completion of F , by extending Ps,x to Fs,x and finally by defining Fs,xt as the Ps,x-closure of Ft, for every
t ∈ [0, T ].

We remark that, for any (s, x) ∈ [0, T ] × E, (Ω,Fs,x,Fs,x,Ps,x) is a stochastic basis fulfilling the
usual conditions, see 1.4 in [61] Chapter I.

We recall the following simple consequence of Remark 32 in [32] Chapter II.

Proposition 1.3.12. Let G be a sub-σ-field of F ,P a probability on (Ω,F) and GP theP-closure of G. Let ZP

be a real GP-measurable random variable. There exists a G-measurable random variable Z such that Z = ZP

P-a.s.

From this we can deduce the following.

Proposition 1.3.13. Let (s, x) ∈ [0, T ]×E be fixed, Z be a random variable and t ∈ [s, T ]. ThenEs,x[Z|Ft] =
Es,x[Z|Fs,xt ] Ps,x a.s.
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Proof. Es,x[Z|Ft] is Ft-measurable and therefore Fs,xt -measurable. Moreover, let Gs,x ∈ Fs,xt , by
Remark 32 in [32] Chapter II, there exists G ∈ Ft such that
Ps,x(G ∪Gs,x) = Ps,x(G\Gs,x) implying 1G = 1Gs,x P

s,x a.s. So

Es,x [1Gs,xE
s,x[Z|Ft]] = Es,x [1GE

s,x[Z|Ft]]
= Es,x [1GZ]
= Es,x [1Gs,xZ] ,

where the second equality occurs because of the definition of Es,x[Z|Ft].

In particular, under the probability Ps,x, F-martingales and
Fs,x-martingales coincide.

We now show that in our setup, a canonical Markov class verifies the Blumenthal 0-1 law in the
following sense.

Proposition 1.3.14. Let (s, x) ∈ [0, T ]×E and F ∈ Fs,s. ThenPs,x(F ) is equal to 1 or to 0; In other words,
Fs,s is Ps,x-trivial.

Proof. Let F ∈ Fs,s as introduced in Notation 1.3.1. Since by Remark 1.3.3, Fs,s = Fs ∩ Fs,T , then F
belongs to Fs so by conditioning we get

Es,x[1F ] = Es,x[1F1F ]
= Es,x[1FE

s,x[1F |Fs]]
= Es,x[1FE

s,Xs [1F ]],

where the latter equality comes from (1.3.4) because F ∈ Fs,T . But Xs = x, Ps,x a.s., so

Es,x[1F ] = Es,x[1FE
s,x[1F ]]

= Es,x[1F ]2.

1.3.2 Examples of canonical Markov classes

We will list here some well-known examples of canonical Markov classes and some more recent ones.

• Let E := Rd for some d ∈ N∗. We are given β ∈ Bb(R+ × Rd,Rd), α ∈ Cb(R+ × Rd, S∗+(Rd))
(where S∗+(Rd) is the space of symmetric strictly positive definite matrices of size d) and K
a Lévy kernel (this means that for every (t, x) ∈ R+ × Rd, K(t, x, ·) is a σ-finite measure
on Rd\{0}, sup

t,x

∫ ‖y‖2
1+‖y‖2K(t, x, dy) < ∞ and for every Borel set A ∈ B(Rd\{0}), (t, x) 7−→∫

A
‖y‖2

1+‖y‖2K(t, x, dy) is Borel) such that for any A ∈ B(Rd\{0}), (t, x) 7−→
∫
A

y
1+‖y‖2K(t, x, dy) is

bounded continuous.

Let a denote the operator defined on some φ ∈ C1,2
b (R+ ×Rd) by

∂tφ+
1

2
Tr(α∇2φ) + (β,∇φ) +

∫ (
φ(·, ·+ y)− φ− (y,∇φ)

1 + ‖y‖2

)
K(·, ·, dy) (1.3.7)

In [84] (see Theorem 4.3 and the penultimate sentence of its proof), the following is shown.
For every (s, x) ∈ R+ × Rd, there exists a unique probability Ps,x on the canonical space (see
Definition 1.3.1) such that φ(·, X·)−

∫ ·
s a(φ)(r,Xr)dr is a local martingale for every φ ∈ C1,2

b (R+×
Rd) and Ps,x(Xs = x) = 1. Moreover (Ps,x)(s,x)∈R+×Rd defines a canonical Markov class and
its transition kernel is measurable in time.
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• The case K = 0 was studied extensively in the celebrated book [85] in which it is also shown
that if β, α are bounded and continuous in the second variable, then there exists a canonical
Markov class with transition kernel measurable in time (Ps,x)(s,x)∈R+×Rd such that φ(·, X·) −∫ ·
s a(φ)(r,Xr)dr is a local martingale for any φ ∈ C1,2

b (R+ ×Rd).

• In [80], a canonical Markov class whose transition kernel is the weak fundamental solution of
a parabolic PDE in divergence form is exhibited.

• In [55], diffusions on manifolds are studied and shown to define canonical Markov classes.

• Solutions of PDEs with distributional drift are exhibited in [47] and shown to define canonical
Markov classes.

Some of previous examples were only studied as homogeneous Markov processes but can easily be
shown to fall in the non-homogeneous setup of the present paper as it will be illustrated in Chapter
3.

1.4 Martingale Additive Functionals

We now introduce the notion of non-homogeneous Additive Functional that we use in the paper. This
looks to be a good compromise between the notion of Additive Functional associated to a stochastic
system introduced by E.B. Dynkin (see for example [39]) and the more popular notion of homoge-
neous Additive Functional studied extensively, for instance by C. Dellacherie and P.A. Meyer in [34]
Chapter XV. This section consists in extending some essential results stated in [34] Chapter XV to our
setup.

Our framework is still the canonical space introduced at Notation 1.3.1. In particular X is the
canonical process.

Definition 1.4.1. We denote ∆ := {(t, u) ∈ [0, T ]2|t ≤ u}. On (Ω,F), we define a non-homogeneous
Additive Functional (shortened AF) as a random-field A := (Atu)(t,u)∈∆ indexed by ∆ with values in R,
verifying the two following conditions.

1. For any (t, u) ∈ ∆, Atu is Ft,u-measurable;

2. for any (s, x) ∈ [0, T ] × E, there exists a real cadlag Fs,x-adapted process As,x (taken equal to zero on
[0, s] by convention) such that for any x ∈ E and s ≤ t ≤ u, Atu = As,xu −As,xt Ps,x a.s.

As,x will be called the cadlag version of A under Ps,x.
An AF will be called a non-homogeneous square integrable Martingale Additive Functional (short-

ened square integrable MAF) if under any Ps,x its cadlag version is a square integrable martingale. More
generally an AF will be said to verify a certain property (being non-negative, increasing, of bounded variation,
square integrable, having L1-terminal value) if under any Ps,x its cadlag version verifies it.

Finally, given an increasing AF A and an increasing function V , A will be said to be absolutely contin-
uous with respect to V if for any (s, x) ∈ [0, T ]× E, dAs,x � dV in the sense of stochastic measures.

Remark 1.4.2. Let (Px)x∈E be a homogeneous canonical Markov class (see Notation 1.3.9). We recall that
in the classical literature (see Definition 3 of [34] for instance), an adapted right-continuous process A on the
canonical space is called an Additive Functional if for all 0 ≤ t ≤ u ≤ T and x ∈ E

Au = At +Au−t ◦ θt Px a.s., (1.4.1)



18 Chapter 1. A note on time-dependent additive functionals

where θt : ω 7→ ω ((t+ ·) ∧ T ) denotes the shift operator at time t.
Let (Ps,x)(s,x)∈[0,T ]×E be the canonical Markov class related to (Px)x∈E in the sense of Notation 1.3.9. If

for every 0 ≤ t ≤ u ≤ T , Equation (1.4.1) holds for all ω, then the random field (t, u) 7−→ Au − At is a
non-homogeneous Additive Functional in the sense of Definition 1.4.1.

Example 1.4.3. Let φ ∈ C([0, T ]× E,R), ψ ∈ Bb([0, T ]× E,R) and V : [0, T ] 7−→ R be right-continuous
and non-decreasing function. Then the random field A given by

Atu := φ(u,Xu)− φ(t,Xt)−
∫ u

t
ψ(r,Xr)dVr, (1.4.2)

defines a non-homogeneous Additive Functional. Its cadlag version under Ps,x may be given by

As,x = φ(· ∨ s,X·∨s)− φ(s, x)−
∫ ·∨s
s

ψ(r,Xr)dVr. (1.4.3)

We now adopt the setup of the first item of Section 1.3.2. We consider some φ ∈ C1,2
b ([0, T ] × Rd), then the

random field M given by

M t
u := φ(u,Xu)− φ(t,Xt)−

∫ u

t
a(φ)(r,Xr)dr, (1.4.4)

defines a square integrable MAF with cadlag version under Ps,x given by

M s,x = φ(· ∨ s,X·∨s)− φ(s, x)−
∫ ·∨s
s

a(φ)(r,Xr)dr. (1.4.5)

In this section for a given MAF (M t
u)(t,u)∈∆ we will be able to exhibit two AF, denoted respectively

by ([M ]tu)(t,u)∈∆ and (〈M〉tu)(t,u)∈∆, which will play respectively the role of a quadratic variation
and an angular bracket of it. Moreover we will show that the Radon-Nikodym derivative of the
mentioned angular bracket of a MAF with respect to our reference function V is a time-dependent
function of the underlying process.

Proposition 1.4.4. Let (M t
u)(t,u)∈∆ be a square integrable MAF, and for any

(s, x) ∈ [0, T ]×E, [M s,x] be the quadratic variation of its cadlag version M s,x under Ps,x. Then there exists
an AF which we will call ([M ]tu)(t,u)∈∆ and which, for any (s, x) ∈ [0, T ] × E, has [M s,x] as cadlag version
under Ps,x.

Proof. We adapt Theorem 16 Chapter XV in [34] to a non homogeneous set-up but the reader must
keep in mind that our definition of Additive Functional is different from the one related to the ho-
mogeneous case.

For the whole proof t < u will be fixed. We consider a sequence of subdivisions of [t, u]: t =
tk1 < tk2 < · · · < tkk = u such that min

i<k
(tki+1 − tki ) −→

k→∞
0. Let (s, x) ∈ [0, t] × E with corresponding

probability Ps,x. For any k, we have
∑
i<k

(
M

tki
tki+1

)2

=
∑
i<k

(M s,x

tki+1

−M s,x

tki
)2 Ps,x a.s., so by definition of

quadratic variation we know that∑
i<k

(
M

tki
tki+1

)2
Ps,x−→
k→∞

[M s,x]u − [M s,x]t. (1.4.6)

In the sequel we will construct an Ft,u-measurable random variable [M ]tu such that for any (s, x) ∈

[0, t]×E,
∑

i≤k

(
M

tki
tki+1

)2
Ps,x−→
k→∞

[M ]tu. In that case [M ]tu will then bePs,x a.s. equal to [M s,x]u− [M s,x]t.



1.4. Martingale Additive Functionals 19

Let x ∈ E. Since M is a MAF, for any k,
∑
i<k

(
M

tki
tki+1

)2

is Ft,u-measurable and therefore F t,xt,u -

measurable. Since F t,xt,u is complete, the limit in probability of this sequence, [M t,x]u − [M t,x]t, is still
F t,xt,u -measurable. By Proposition 1.3.12, there is an Ft,u-measurable variable which depends on (t, x),
that we call at(x, ω) such that

at(x, ω) = [M t,x]u − [M t,x]t,P
t,x a.s. (1.4.7)

We will show below that there is a jointly measurable version of (x, ω) 7→ at(x, ω). For every integer

n ≥ 0, we set ant (x, ω) := n ∧ at(x, ω) which is in particular limit in probability of n ∧
∑
i≤k

(
M

tki
tki+1

)2

under Pt,x. For any integers k, n and any x ∈ E, we define the finite positive measures Qk,n,x, Qn,x

andQx on (Ω,Ft,u) by

1. Qk,n,x(F ) := Et,x

[
1F

(
n ∧

∑
i<k

(
M

tki
tki+1

)2
)]

;

2. Qn,x(F ) := Et,x[1F (ant (x, ω))];

3. Qx(F ) := Et,x[1F (at(x, ω))].

When k and n are fixed, for any fixed F , by Proposition 1.3.10,

x 7−→ Et,x
[
F

(
n ∧

∑
i<k

(
M

tki
tki+1

)2
)]

, is Borel.

Then n ∧
∑
i<k

(
M

tki
tki+1

)2
Pt,x−→
k→∞

ant (x, ω), and this sequence is uniformly bounded by the constant

n, so the convergence takes place in L1, therefore x 7−→ Qn,x(F ) is also Borel as the pointwise limit
in k of the functions x 7−→ Qk,n,x(F ). Similarly, ant (x, ω)

a.s.−→
n→∞

at(x, ω) and is non-decreasing, so by

monotone convergence theorem, being a pointwise limit in n of the functions x 7−→ Qn,x(F ), the
function x 7−→ Qx(F ) is Borel. We recall that F is separable.

The just two mentioned properties and the fact that, for any x, we also have (by item 3. above)
Qx � Pt,x, allows to show (see Theorem 58 Chapter V in [33]) the existence of a jointly measurable
(for B(E)⊗Ft,u) version of (x, ω) 7→ at(x, ω), that we recall to be densities ofQx with respect to Pt,x.
That version will still be denoted by the same symbol.

We can now set [M ]tu(ω) = at(Xt(ω), ω), which is a correctly defined
Ft,u-measurable random variable. For any x, since Pt,x(Xt = x) = 1, we have the equalities

[M ]tu = at(x, ·) = [M t,x]u − [M t,x]t P
t,xa.s. (1.4.8)

We will moreover prove that

[M ]tu = [M s,x]u − [M s,x]t P
s,x a.s., (1.4.9)

holds for every (s, x) ∈ [0, t]×E, and not just in the case s = t that we have just established in (1.4.8).
Let us fix s < t and x ∈ E. We show that under any Ps,x, [M ]tu is the limit in probability of∑

i<k

(
M

tki
tki+1

)2

. Indeed, let ε > 0: the event
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{∣∣∣∣∣∑i<k
(
M

tki
tki+1

)2

− [M ]tu

∣∣∣∣∣ > ε

}
belongs to Ft,T so by conditioning and using the Markov property

(1.3.4) we have

Ps,x

(∣∣∣∣∣∑i<k
(
M

tki
tki+1

)2

− [M ]tu

∣∣∣∣∣ > ε

)

= Es,x

[
Ps,x

(∣∣∣∣∣∑i<k
(
M

tki
tki+1

)2

− [M ]tu

∣∣∣∣∣ > ε

∣∣∣∣∣Ft
)]

= Es,x

[
Pt,Xt

(∣∣∣∣∣∑i<k
(
M

tki
tki+1

)2

− [M ]tu

∣∣∣∣∣ > ε

)]
.

For any fixed y, by (1.4.6) and (1.4.8), Pt,y
(∣∣∣∣∣∑i<k

(
M

tki
tki+1

)2

− [M ]tu

∣∣∣∣∣ > ε

)
tends to zero when k goes to

infinity, for every realization ω, it yields that

Pt,Xt

(∣∣∣∣∣∑i<k
(
M

tki
tki+1

)2

− [M ]tu

∣∣∣∣∣ > ε

)
tends to zero when k goes to infinity. Since this sequence is dom-

inated by the constant 1, that convergence still holds under the expectation with respect to the prob-
ability the probability Ps,x, thanks to the dominated convergence theorem.

So we have built an Ft,u-measurable variable [M ]tu such that under any Ps,x with s ≤ t, [M s,x]u−
[M s,x]t = [M ]tu a.s. and this concludes the proof.

We will now extend the result about quadratic variation to the angular bracket of MAFs. The next
result can be seen as an extension of Theorem 15 Chapter XV in [34] to a non-homogeneous context.

Proposition 1.4.5. Let (Bt
u)(t,u)∈∆ be an increasing AF withL1-terminal value, for any (s, x) ∈ [0, T ]×E, let

Bs,x be its cadlag version underPs,x and letAs,x be the predictable dual projection ofBs,x in (Ω,Fs,x,Fs,x,Ps,x).
Then there exists an increasing AF with L1 terminal value (Atu)(t,u)∈∆ such that under any Ps,x, the cadlag
version of A is As,x.

Proof. The first half of the demonstration will consist in showing that

∀(s, x) ∈ [0, t]× E, (As,xu −A
s,x
t ) is Fs,xt,u−measurable. (1.4.10)

We start by recalling a property of the predictable dual projection which we will have to extend
slightly. Let us fix (s, x) and the corresponding stochastic basis (Ω,Fs,x,Fs,x,Ps,x). For any F ∈ Fs,x,
let N s,x,F be the cadlag version of the martingale, r 7−→ Es,x[1F |Fr]. Then for any 0 ≤ t ≤ u ≤ T , the
predictable projection of the process r 7→ 1F1[t,u[(r) is r 7→ N s,x,F

r− 1[t,u[(r), see the proof of Theorem
43 Chapter VI in [33]. Therefore by definition of the dual predictable projection (see Definition 73
Chapter VI in [33]) we have

Es,x [1F (As,xu −A
s,x
t )] = Es,x

[∫ u

t
N s,x,F
r− dBs,x

r

]
, (1.4.11)

for any F ∈ Fs,x.
We will now prove some technical lemmas which in a sense extend this property, and will permit

us to operate with a good common version of the random variable
∫ u
t N

s,x,F
r− dBs,x

r not depending on
(s, x).

For the rest of the proof, 0 ≤ t < u ≤ T will be fixed.

Notation 1.4.6. Let F ∈ Ft,T . We denote for any r ∈ [t, T ], ω ∈ Ω, NF
r (ω) := Pt,Xt(ω)(F ).
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It is clear thatNF previously introduced is an (Ft,r)r∈[t,T ]-adapted process which does not depend
on (s, x), which takes values in [0, 1] for all r, ω and by Proposition 1.3.8, for any (s, x) ∈ [0, t] × E,
N s,x,F is, on [t, T ], a Ps,x-version of NF .

Lemma 1.4.7. LetF ∈ Ft,T . There exists anFt,u-measurable random variable which we will denote
∫ u
t N

F
r−dBr

such that for any (s, x) ∈ [0, t]× E,∫ u
t N

F
r−dBr =

∫ u
t N

s,x,F
r− dBs,x

r Ps,x a.s.

Remark 1.4.8. By definition, the process NF introduced in Notation 1.4.6 and the r.v.
∫ u
t N

F
r−dBr will not

depend on any (s, x).

Proof. In some sense we wish to integrate r 7→ NF
r− against Bt for fixed ω. However first we do not

know a priori if the paths r 7→ NF
r and r 7→ Bt

r are measurable, second r 7→ NF
r may not have a left

limit and Bt may be not of bounded variation. So it is not clear if
∫ u
t N

F
r−dB

t
r makes sense for any

ω. Moreover under a certain Ps,x, NF,s,x and Bs,x
· − Bs,x

t are only versions of NF and Bt and not
indistinguishable to them. Even if we could compute the aforementioned integral, it would not be
clear if

∫ u
t N

F
r−dB

t
r =

∫ u
t N

s,x,F
r− dBs,x

r Ps,x a.s.
We start by some considerations about B, setting Wtu := {ω : sup

r∈[t,u]∩Q
Bt
r < ∞} which is Ft,u-

measurable, and for r ∈ [t, u]

B̄t
r(ω) :=


sup
t≤v<r
v∈Q

Bt
v(ω) if ω ∈Wtu

0 otherwise.

B̄t is an increasing, finite (for all ω) process. In general, it is neither a measurable nor an adapted
process; however for any r ∈ [t, u], B̄t

r is still Ft,u-measurable. Since it is increasing, it has right and
left limits at each point for every ω, so we can define the process B̃t indexed on [t, u] below:

B̃t
r := lim

v↓r
v∈Q

B̄t
v, r ∈ [t, u], (1.4.12)

when u ∈]t, T [ and B̃t
T := Bt

T if u = T . Therefore B̃t is an increasing, cadlag process. It is consti-
tuted by Ft,u-measurable random variables, and by Theorem 15 Chapter IV of [32], B̃t is a also a
measurable process (indexed by [t, u]).

We can show that B̃t is Ps,x-indistinguishable from Bs,x
· −Bs,x

t for any (s, x) ∈ [0, t]×E. Indeed,
let (s, x) be fixed. Since Bs,x

· − Bs,x
t is a version of Bt andQ being countable, there exists a Ps,x-null

setN such that for all ω ∈ N c and r ∈ Q∩ [t, u], Bs,x
r (ω)−Bs,x

t (ω) = Bt
r(ω). Therefore for any ω ∈ N c

and r ∈ [t, u],

B̃t
r(ω) = lim

v↓r
v∈Q

sup
t≤w<v
w∈Q

Bt
w(ω) = lim

v↓r
v∈Q

sup
t≤w<v
w∈Q

Bs,x(ω)w −Bs,x(ω)t

= Bs,x(ω)r −Bs,x(ω)t,

where the latter equality comes from the fact that Bs,x(ω) is cadlag and increasing. So we have
constructed an increasing finite cadlag (for all ω) process and so the path r 7→ B̃t(ω) is a Lebesgue
integrator on [t, u] for each ω.

We fix now F ∈ Ft,T and we discuss some issues related to NF . Since it is positive, we can start
defining the process N̄ , for index values r ∈ [t, T [ by N̄F

r := liminf
v↓r
v∈Q

NF
v , and setting N̄F

T := NF
T . This
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process is (by similar arguments as for B̃t defined in (1.4.12)), Ps,x-indistinguishable to N s,x,F for
all (s, x) ∈ [0, t] × E. For any r ∈ [t, T ], NF

r (see Notation 1.4.6) is Ft,r-measurable, so N̄F
r will also

be Ft,r-measurable for any r ∈ [t, T ] by right-continuity of Ft,· (see Notation 1.3.1). However, N̄F is
not necessarily cadlag for every ω, and also not necessarily a measurable process. We subsequently
define

W ′tu := {ω ∈ Ω|there is a cadlag function f such that N̄F (ω) = f on [t, u] ∩Q}.
By Theorem 18 b) in Chapter IV of [32], W ′tu is Ft,u-measurable so we can define on [t, u] ÑF

r :=
N̄F
r 1W ′tu . ÑF is no longerFs,x-adapted, however, it is now cadlag for all ω and therefore a measurable

process by Theorem 15 Chapter IV of [32]. The r.v. ÑF
r are still Ft,u-measurable , and ÑF is still Ps,x-

indistinguishable to N s,x,F on [t, u] for any (s, x) ∈ [0, t]× E.
Finally we can define

∫ u
t N

F
r−dBr :=

∫ u
t Ñ

F
r−dB̃

t
r which is Ps,x a.s. equal to

∫ u
t N

s,x,F
r− dBs,x

r for any
(s, x) ∈ [0, t]×E. Moreover, since ÑF and B̃ are both measurable with respect to B([t, u])⊗Ft,u, then∫ u
t N

F
r−dBr is Ft,u-measurable.

The lemma below is a conditional version of the property (1.4.11).

Lemma 1.4.9. For any (s, x) ∈ [0, t]× E and F ∈ Fs,xt,T we have Ps,x-a.s.

Es,x [1F (As,xu −A
s,x
t )|Ft] = Es,x

[∫ u

t
NF
r−dBr

∣∣∣∣Ft] .
Proof. Let s, x, F be fixed. By definition of conditional expectation, we need to show that for any
G ∈ Ft we have

Es,x [1G1F (As,xu −A
s,x
t )] = Es,x

[
1GE

s,x

[∫ u

t
NF
r−dBr

∣∣∣∣Ft]] a.s.

For r ∈ [t, u] we have Es,x[1F∩G|Fr] = 1GE
s,x[1F |Fr] a.s. therefore the cadlag versions of those

processes are indistinguishable on [t, u] and the random variables
∫ u
t N

G∩F
r− dBr and 1G

∫ u
t N

F
r−dBr

as defined in Lemma 1.4.7 are a.s. equal. So by the non conditional property of dual predictable
projection (1.4.11) we have

Es,x [1G1F (As,xu −As,xt )] = Es,x
[∫ u
t N

G∩F
r− dBr

]
= Es,x

[
1G
∫ u
t N

F
r−dBr

]
= Es,x

[
1GE

s,x
[∫ u
t N

F
r−dBr

∣∣Ft]] ,
which concludes the proof.

Lemma 1.4.10. For any (s, x) ∈ [0, t]× E and F ∈ Ft,T we have Ps,x-a.s.,

Es,x [1F (As,xu −A
s,x
t )|Ft] = Es,x [1F (As,xu −A

s,x
t )|Xt] .

Proof. By Lemma 1.4.9 we have

Es,x [1F (As,xu −A
s,x
t )|Ft] = Es,x

[∫ u

t
NF
r−dBr

∣∣∣∣Ft] .
By Lemma 1.4.7,

∫ u
t N

F
r−dBr is Ft,T measurable so the Markov property (1.3.4) implies

Es,x
[∫ u

t
NF
r−dBr

∣∣∣∣Ft] = Es,x
[∫ u

t
NF
r−dBr

∣∣∣∣Xt

]
,

therefore Es,x [1F (As,xu −As,xt )|Ft] is a.s. equal to a σ(Xt)-measurable r.v and so is a.s. equal to
Es,x [1F (As,xu −As,xt )|Xt] .
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We are now able to prove (1.4.10) which is the first important issue of the proof of Proposition
1.4.5, which states that By definition, a predictable dual projection is adapted so we already know
that (As,xu − As,xt ) is Fs,xu -measurable, therefore by Remark 1.3.3, it is enough to show that it is also
Fs,xt,T -measurable. So we are going to show that

As,xu −A
s,x
t = Es,x [As,xu −A

s,x
t |Ft,T ] Ps,x a.s. (1.4.13)

For this we will show that

Es,x [1F (As,xu −A
s,x
t )] = Es,x [1FE

s,x [As,xu −A
s,x
t |Ft,T ]] , (1.4.14)

for any F ∈ F . We will prove (1.4.14) for F ∈ F event of the form F = Ft ∩ Ft,T with Ft ∈ Ft
and Ft,T ∈ Ft,T . By item 4. of Remark 1.3.3, such events form a π-system Π which generates F .
Consequently, by the monotone class theorem, (1.4.14) will remain true for any F ∈ F and even in
Fs,x since Ps,x-null set will not impact the equality. This will imply (1.4.13) so that As,xu − As,xt is
Fs,xt,T -measurable. At this point, as we have anticipated, we prove (1.4.14) for a fixed
F = Ft ∩ Ft,T ∈ Π. By Lemma 1.4.10 we have

Es,x [1F (As,xu −A
s,x
t )] = Es,x

[
1FtE

s,x
[
1Ft,T (As,xu −A

s,x
t )|Ft

]]
= Es,x

[
1FtE

s,x
[
1Ft,T (As,xu −A

s,x
t )|Xt

]]
= Es,x

[
1FtE

s,x
[
Es,x

[
1Ft,T (As,xu −A

s,x
t )|Ft,T

]
|Xt

]]
,

where the latter equality holds since
σ(Xt) ⊂ Ft,T . Now since Es,x

[
1Ft,T (As,xu −As,xt )|Ft,T

]
is Ft,T -measurable, the Markov property

(1.3.4) allows us to substitute the conditional σ-field σ(Xt) with Ft and obtain

Es,x [1F (As,xu −A
s,x
t )] = Es,x

[
1FtE

s,x
[
Es,x

[
1Ft,T (As,xu −A

s,x
t )|Ft,T

]
|Ft
]]

= Es,x
[
1FtE

s,x
[
1Ft,T (As,xu −A

s,x
t )|Ft,T

]]
= Es,x

[
1Ft1Ft,TE

s,x [(As,xu −A
s,x
t )|Ft,T ]

]
= Es,x [1FE

s,x [(As,xu −A
s,x
t )|Ft,T ]] .

This concludes the proof of (1.4.14), therefore (1.4.13) holds so thatAs,xu −As,xt is Fs,xt,u -measurable and
so (1.4.10) is established. This concludes the first part of the proof of Proposition 1.4.5.

We pass to the second part of the proof of Proposition 1.4.5 where we will show that for given
0 < t < u there is an Ft,u-measurable r.v. Atu such that for every (s, x) ∈ [0, t]×E, (As,xu −As,xt ) = Atu
Ps,x a.s.

Similarly to what we did with the quadratic variation in Proposition 1.4.4, we start by noticing
that for any x ∈ E, since (At,xu − At,xt ) is F t,xt,u -measurable, there exists by Proposition 1.3.12 an Ft,u-
measurable r.v. a(x, ω) such that

a(x, ω) = At,xu −A
t,x
t Pt,x a.s. (1.4.15)

As in the proof of Proposition 1.4.4, we will show the existence of a jointly measurable version of
(x, ω) 7→ a(x, ω). For every x ∈ E we define on Ft,u the positive measure

Qx : F 7−→ Et,x
[
1F (At,xu −A

t,x
t )
]

= Et,x [1Fa(x, ω)] . (1.4.16)

By Lemma 1.4.7, and (1.4.11), for every F ∈ Ft,u we have

Qx(F ) = Et,x
[∫ u

t
NF
r−dBr

]
, (1.4.17)
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and we recall that
∫ u
t N

F
r−dBr does not depend on x. So by Proposition 1.3.10 x 7−→ Qx(F ) is Borel

for any F . Moreover, for any x, Qx � Pt,x. Again by Theorem 58 Chapter V in [33], there exists a
version (x, ω) 7→ a(x, ω) measurable for B(E)⊗Ft,u of the related Radon-Nikodym densities.

We can now setAtu(ω) := a(Xt(ω), ω) which is then anFt,u-measurable r.v. SincePt,x(Xt = x) = 1
and (1.4.15) hold, we have

Atu = a(Xt, ·) = a(x, ·) = At,xu −A
t,x
t Pt,x a.s. (1.4.18)

We now fix s < t and x ∈ E and we want to show that we still have
Atu = As,xu −As,xt Ps,x a.s. So, as above, we consider F ∈ Ft,u and, thanks to (1.4.11) we compute

Es,x [1F (As,xu −As,xt )] = Es,x
[∫ u
t N

F
r−dBr

]
= Es,x

[
Es,x

[∫ u
t N

F
r−dBr|Ft

]]
= Es,x

[
Et,Xt

[∫ u
t N

F
r−dBr

]]
= Es,x

[
Et,Xt

[
1FA

t
u

]]
= Es,x

[
Es,x

[
1FA

t
u|Ft

]]
= Es,x

[
1FA

t
u

]
.

(1.4.19)

Indeed, concerning the fourth equality we recall that, by (1.4.16), (1.4.17) and (1.4.18), we have
Et,x

[∫ u
t N

F
r−dBr

]
= Et,x

[
1FA

t
u

]
for all x, so this equality becomes an equality whatever random

variable we plug into x. The third and fifth equalities come from the Markov property (1.3.4) since∫ u
t N

F
r−dBr and Atu are Ft,T -measurable. Then, adding Ps,x-null sets does not change the validity of

(1.4.19), so we have for any F ∈ Fs,xt,u that Es,x [1F (As,xu −As,xt )] = Es,x
[
1FA

t
u

]
.

Finally, since we had shown in the first half of the proof that As,xu − As,xt is Fs,xt,u -measurable, and
since Atu also has, by construction, the same measurability property, we can conclude that As,xu −
As,xt = Atu P

s,x a.s.
Since this holds for every t ≤ u and (s, x) ∈ [0, t] × E, (Atu)(t,u)∈∆ is the desired AF, which ends

the proof of Proposition 1.4.5.

Corollary 1.4.11. Let M , M ′ be two square integrable MAFs, let M s,x (respectively M ′s,x) be the cadlag
version of M (respectively M ′) under Ps,x. Then there exists a bounded variation AF with L1 terminal
condition denoted 〈M,M ′〉 such that under any Ps,x, the cadlag version of 〈M,M ′〉 is 〈M s,x,M ′s,x〉. If
M = M ′ the AF 〈M,M ′〉 will be denoted 〈M〉 and is increasing.

Proof. If M = M ′, the corollary comes from the combination of Propositions 1.4.4 and 1.4.5, and the
fact that the angular bracket of a square integrable martingale is the dual predictable projection of its
quadratic variation. Otherwise, it is clear that M + M ′ and M −M ′ are square integrable MAFs, so
we can consider the increasing MAFs 〈M −M ′〉 and 〈M +M ′〉. We introduce the AF

〈M,M ′〉 =
1

4
(〈M +M ′〉 − 〈M −M ′〉),

which by polarization has cadlag version 〈M s,x,M ′s,x〉 under Ps,x. 〈M,M ′〉 is therefore a bounded
variation AF with L1 terminal condition.

We are now going to study the Radon-Nikodym derivative of an increasing continuous AF with
respect to some measure. The next result can be seen as an extension of Theorem 13 Chapter XV in
[34] in a non-homogeneous setup. We will need the following lemma.

Lemma 1.4.12. Let (E, E) be a measurable space, let I be a sub-interval of R+ and let f : E × I −→ R be a
mapping such that for all t ∈ I, x 7→ f(x, t) is measurable with respect to E and for all x ∈ E, t 7→ f(x, t) is
right-continuous, then f is measurable with respect to E ⊗ B(I).



1.4. Martingale Additive Functionals 25

Proof. On (E, E) we introduce the filtration (Et)t∈I where Et = E for all t. In the filtered space
(E, E , (Et)t∈I), f defines a right-continuous adapted process and is therefore progressively measur-
able (see Theorem 15 in [32] Chapter IV for instance), and in particular it is measurable. This means
that f is measurable with respect to E ⊗ B(I).

Proposition 1.4.13. Let A be a positive, non-decreasing AF absolutely continuous with respect to some con-
tinuous non-decreasing function V , and for every (s, x) ∈ [0, T [×E let As,x be the cadlag version of A
under Ps,x. There exists a Borel function h ∈ B([0, T ] × E,R) such that for every (s, x) ∈ [0, T ] × E,
As,x =

∫ ·∨s
s h(r,Xr)dVr, in the sense of indistinguishability.

Proof. We set
Ctu = Atu + (Vu − Vt) + (u− t), (1.4.20)

which is an AF with cadlag versions

Cs,xt = As,xt + Vt + t, (1.4.21)

and we start by showing the statement for A and C instead of A and V . We introduce the intermedi-
ary function C so that for any u > t that As,xu −As,xt

Cs,xu −Cs,xt
∈ [0, 1]; that property will be used extensively in

connections with the application of dominated convergence theorem.
Since As,x is non-decreasing for any (s, x) ∈ [0, T ] × E, A can be taken positive (in the sense that

Atu(ω) ≥ 0 for any (t, u) ∈ ∆ and ω ∈ Ω) by considering A+ (defined by (A+)tu(ω) := Atu(ω)+) instead
of A.

For t ∈ [0, T [ we set

Kt := liminf
n→∞

At
t+ 1

n

At
t+ 1

n

+ 1
n + (Vt+ 1

n
− Vt)

= lim
n→∞

inf
p≥n

At
t+ 1

p

At
t+ 1

p

+ 1
p + (Vt+ 1

p
− Vt)

(1.4.22)

= lim
n→∞

lim
m→∞

min
n≤p≤m

At
t+ 1

p

At
t+ 1

p

+ 1
p + (Vt+ 1

p
− Vt)

.

By positivity, this liminf always exists and belongs to [0, 1] since the sequence belongs to [0, 1]. For
every (s, x) ∈ [0, T ]× E, since for all t ≥ s and n ≥ 0,

At
t+ 1

n

= As,x
t+ 1

n

− As,xt Ps,x a.s., then Ks,x defined by Ks,x
t := liminf

n→∞

As,x
t+ 1
n
−As,xt

Cs,x
t+ 1
n
−Cs,xt

is a Ps,x-version of K,

for t ∈ [s, T [. By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [34] for a version
of the theorem with a general atomless measure), for any (s, x), for Ps,x-almost all ω, since dCs,x(ω)
is absolutely continuous with respect to dAs,x(ω), Ks,x(ω) is a density of dAs,x(ω) with respect to
dCs,x(ω).

We now show that there exists a Borel function k in B([0, T [×E,R) such that under any Ps,x,
k(t,Xt) is on [s, T [ a version of K (and therefore of Ks,x). For every t ∈ [0, T [, Kt is measurable
with respect to

⋂
n≥0
Ft,t+ 1

n
= Ft,t by construction, taking into account Notation 1.3.1. So for any

(t, x) ∈ [0, T ]× E, by Proposition 1.3.14, there exists a constant which we denote k(t, x) such that

Kt = k(t, x), Pt,xa.s. (1.4.23)
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For any integers (n,m), we define

kn,m : (t, x) 7→ Et,x
 min
n≤p≤m

At
t+ 1

p

At
t+ 1

p

+ 1
p + (Vt+ 1

p
− Vt)

 ,
and for any n

kn : (t, x) 7→ Et,x
inf
p≥n

At
t+ 1

p

At
t+ 1

p

+ 1
p + (Vt+ 1

p
− Vt)

 , (1.4.24)

We start showing that

k̃n,m :
(s, x, t) 7−→ Es,x

[
min
n≤p≤m

At
t+1
p

At
t+1
p

+ 1
p

+(V
t+1
p
−Vt)

]
1s≤t,

[0, T ]× E × [0, T [ −→ [0, 1],

(1.4.25)

is jointly Borel. In order to do so, we will show that at fixed t, k̃n,m(·, ·, t) is Borel, at fixed (s, x),
k̃n,m(s, x, ·) is right-continuous and we will conclude on the joint measurability thanks to Lemma
1.4.12.

If we fix t ∈ [0, T [, then by Proposition 1.3.10

(s, x) 7−→ Es,x
 min
n≤p≤m

At
t+ 1

p

At
t+ 1

p

+ 1
p + (Vt+ 1

p
− Vt)


is a Borel map. Since (s, x) 7→ 1[t,T ](s) is obviously Borel, considering the product of the two previ-
ous maps, k̃n,m(·, ·, t) is Borel. We now fix some (s, x) and show that k̃n,m(s, x, ·) is right-continuous.
Since that function is equal to zero on [0, s[, showing its continuity on [s, T [ will be sufficient. We
remark that As,x is continuous Ps,x a.s. V is continuous, and the minimum of a finite number of
continuous functions remains continuous. Let tq −→

q→∞
t be a converging sequence in [s, T [. Then

min
n≤p≤m

As,x
tq+

1
p
−As,xtq

As,x
tq+

1
p
−As,xtq + 1

p
+(V

tq+
1
p
−Vtq )

tends a.s. to min
n≤p≤m

As,x
t+1
p
−As,xt

As,x
t+1
p
−As,xt + 1

p
+(V

t+1
p
−Vt)

, when q tends to infin-

ity. Since for any s ≤ t ≤ u, Atu = As,xu − As,xt Ps,x a.s., then
A
tq

tq+
1
p

A
tq

tq+
1
p

+ 1
p

+(V
tq+

1
p
−Vtq )

tends a.s. to

At
t+1
p

At
t+1
p

+ 1
p

+(V
t+1
p
−Vt)

. All those terms belonging to [0, 1], by dominated convergence theorem, the men-

tioned convergence also holds under the expectation, hence the announced continuity related to k̃n,m

is established and as anticipated, k̃n,m is jointly measurable in all its variables.
Since kn,m(t, y) = k̃n,m(t, t, y), by composition we can deduce that for any n,m, kn,m is Borel.

By the dominated convergence theorem, kn,m tends pointwise to kn (which was defined in (1.4.24),
when m goes to infinity so kn are also Borel for every n. Finally, keeping in mind (1.4.22) nd (1.4.23)
we have Pt,x a.s.

k(t, x) = Kt = lim
n→∞

inf
p≥n

At
t+ 1

p

At
t+ 1

p

+ 1
p + (Vt+ 1

p
− Vt)

.

Taking the expectation and again by the dominated convergence theorem, kn (defined in (1.4.24))
tends pointwise to k when n goes to infinity so k is Borel.
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We now show that, for any (s, x) ∈ [0, T ] × E, k(·, X·) is a Ps,x-version of K on [s, T [. Since
Pt,x(Xt = x) = 1, we know that for any t ∈ [0, T ], x ∈ E, we have Kt = k(t, x) = k(t,Xt) P

t,x-a.s.,
and we prove below that for any t ∈ [0, T ], (s, x) ∈ [0, t]× E, we have Kt = k(t,Xt) P

s,x-a.s.

Let t ∈ [0, T ] be fixed. Since A is an AF, for any n,
At
t+1
p

At
t+1
p

+ 1
n

+(V
t+ 1
n
−Vt)

is Ft,t+ 1
n

-measurable. So the

event

{
liminf
n→∞

At
t+ 1
n

At
t+ 1
n

+ 1
n

+(V
t+ 1
n
−Vt)

= k(t,Xt)

}
belongs to Ft,T and

by Markov property (1.3.4), for any (s, x) ∈ [0, t]× E, we get

Ps,x(Kt = k(t,Xt)) = Es,x[Ps,x (Kt = k(t,Xt)|Ft)]
= Es,x[Pt,Xt (Kt = k(t,Xt))]

= 1.

For any (s, x), the process k(·, X·) is therefore on [s, T [ a Ps,x-modification of K and therefore of
Ks,x. However it is not yet clear if provides another density of dAs,x with respect to dCs,x, which
was defined at (1.4.21).

Considering that (t, u, ω) 7→ Vu − Vt also defines a positive non-decreasing AF absolutely con-
tinuous with respect to C, defined in (1.4.20), we proceed similarly as at the beginning of the proof,
replacing the AF A with V .

Let the process K ′ be defined by

K ′t = liminf
n→∞

Vt+ 1
n
− Vt

At
t+ 1

n

+ 1
n + (Vt+ 1

n
− Vt)

,

and for any(s, x), let K ′s,x be defined on [s, T [ by

K ′s,xt = liminf
n→∞

Vt+ 1
n
− Vt

As,x
t+ 1

n

−As,xt + 1
n + (Vt+ 1

n
− Vt)

.

Then, for any (s, x), K ′s,x on [s, T [ is a Ps,x-version of K ′, and it constitutes a density of dV (ω) with
respect to dCs,x(ω) on [s, T [, for almost all ω. One shows then the existence of a Borel function k′ such
that for any (s, x), k′(·, X·) is a Ps,x-version of K ′ and a modification of K ′s,x on [s, T [. So for any
(s, x), under Ps,x, we can write {

As,x =
∫ ·∨s
s Ks,x

r dCs,xr
V·∨s − Vs =

∫ ·∨s
s K ′s,xr dCs,xr

Now since dAs,x � dV , for a fixed ω, the set {r ∈ [s, T ]|K ′s,xr (ω) = 0} is negligible with respect to dV
so also for dAs,x(ω) and therefore we can write

As,x =
∫ ·∨s
s Ks,x

r dCs,xr

=
∫ ·∨s
s

Ks,x
r

K′s,xr
1{K′s,xr 6=0}K

′s,x
r dCs,xr

+
∫ ·∨s
s 1{K′s,xr =0}dA

s,x
r

=
∫ ·∨s
s

Ks,x
r

K′s,xr
1{K′s,xr 6=0}dVr,

where we use the convention that for any two functions φ, ψ then φ
ψ1ψ 6=0 is defined by by

φ

ψ
1{ψ 6=0}(x) =

{
φ(x)
ψ(x) if ψ(x) 6= 0

0 if ψ(x) = 0.
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We set now h := k
k′1{k′r 6=0} which is Borel, and clearly for any (s, x), h(t,Xt) is a Ps,x-version of

Hs,x := Ks,x

K′s,x1{K′s,x 6=0} on [s, T [. So by Lemma 2.5.13 in Chapter 2,
Hs,x
t = h(t,Xt) dV ⊗ dPs,x a.e. and finally we have shown that under any Ps,x,

As,x =
∫ ·∨s
s h(r,Xr)dVr on [0, T [. Without change of notations we extend h to [0, T ] × E by zero for

t = T . Since As,x is continuous Ps,x-a.s. previous equality extends to T .

Proposition 1.4.14. Let (Atu)(t,u)∈∆ be an AF with bounded variation and taking L1 values. Then there
exists an increasing AF which we denote (Pos(A)tu)(t,u)∈∆ (resp. (Neg(A)tu)(t,u)∈∆ ) and which, for any
(s, x) ∈ [0, T ]× E, has Pos(As,x) (resp. Neg(As,x)) as cadlag version under Ps,x.

Proof. By definition of the total variation of a bounded variation function, the following holds. For
every (s, x) ∈ [0, T ] × E, s ≤ t ≤ u ≤ T for Ps,x almost all ω ∈ Ω, and any sequence of subdivisions
of [t, u]: t = tk1 < tk2 < · · · < tkk = u such that min

i<k
(tki+1 − tki ) −→

k→∞
0 we have

∑
i<k

|As,x
tki+1

(ω)−As,x
tki

(ω)| −→
k→∞

V ar(As,x)u(ω)− V ar(As,x)t(ω), (1.4.26)

taking into account the considerations of the end of Section 1.2.
By Proposition 3.3 in [61] Chapter I, we have Pos(As,x) = 1

2(V ar(As,x) + As,x) and Neg(As,x) =
1
2(V ar(As,x)−As,x). Moreover, for any x ∈ R we know that x+ = 1

2(|x|+ x) and x− = 1
2(|x| − x), so

we also have 
∑
i<k

(As,x
tki+1

(ω)−As,x
tki

(ω))+ −→
k→∞

Pos(As,x)u(ω)− Pos(As,x)t(ω)∑
i<k

(As,x
tki+1

(ω)−As,x
tki

(ω))− −→
k→∞

Neg(As,x)u(ω)−Neg(As,x)t(ω),
(1.4.27)

for Ps,x almost all ω. Since the convergence a.s. implies the convergence in probability, for every
(s, x) ∈ [0, T ] × E, s ≤ t ≤ u and any sequence of subdivisions of [t, u]: t = tk1 < tk2 < · · · < tkk = u
such that min

i<k
(tki+1 − tki ) −→

k→∞
0, we have


∑
i<k

(
A
tki
tki+1

)+
Ps,x−→
k→∞

Pos(As,x)u − Pos(As,x)t∑
i<k

(
A
tki
tki+1

)−
Ps,x−→
k→∞

Neg(As,x)u −Neg(As,x)t.

(1.4.28)

The proof can now be performed according to the same arguments as in the proof of Proposition
1.4.4, replacing M with A, the quadratic increments with the positive (resp. negative) increments,
and the quadratic variation with the positive (resp. negative) variation of an adapted process.

We assume for now that we are given a fixed stochastic basis fulfilling the usual conditions, and
a non-decreasing function V .

Notation 1.4.15. We denoteH2,V := {M ∈ H2
0|d〈M〉 � dV } andH2,⊥V := {M ∈ H2

0|d〈M〉 ⊥ dV }.

Proposition 2.3.5 which proof is postponed to Chapter 2 states the following.

Proposition 1.4.16. H2,V and H2,⊥V are orthogonal sub-Hilbert spaces of H2
0 and H2

0 = H2,V ⊕⊥ H2,⊥V .
Moreover, any element ofH2,V

loc is strongly orthogonal to any element ofH2,⊥V
loc .

For any M ∈ H2
0, we denote by MV its projection onH2,V .

We can now finally establish the main result of the present note.
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Proposition 1.4.17. Let V be a continuous non-decreasing function. Let M,N be two square integrable
MAFs, and assume that the AF 〈N〉 is absolutely continuous with respect to V . There exists a function
v ∈ B([0, T ]× E,R) such that for any (s, x), 〈M s,x, N s,x〉 =

∫ ·∨s
s v(r,Xr)dVr.

Proof. By Corollary 1.4.11, there exists a bounded variation AF with L1 values denoted 〈M,N〉 such
that under any Ps,x, the cadlag version of 〈M,N〉 is
〈M s,x, N s,x〉. By Proposition 1.4.14, there exists an increasing AF withL1 values denotedPos(〈M,N〉)
(resp. Neg(〈M,N〉)) such that under anyPs,x, the cadlag version ofPos(〈M,N〉) (resp. Neg(〈M,N〉))
is Pos(〈M s,x, N s,x〉) (resp. Neg(〈M s,x, N s,x〉)). We fix some (s, x) and the associated probabilityPs,x.
Since 〈N〉 is absolutely continuous with respect to V , comparing Definition 1.4.1 and Notation 1.4.15
we have N s,x ∈ H2,V . Therefore by Proposition 1.4.16 we have

〈M s,x, N s,x〉 = 〈(M s,x)V , N s,x〉
= 1

4〈(M
s,x)V +N s,x〉 − 1

4〈(M
s,x)V −N s,x〉. (1.4.29)

Since both processes 1
4〈(M

s,x)V + N s,x〉, 1
4〈(M

s,x)V − N s,x〉 are increasing and starting at zero, we
have Pos(〈M s,x, N s,x〉) = 1

4〈(M
s,x)V +N s,x〉 and

Neg(〈M s,x, N s,x〉) =
1

4
〈(M s,x)V −N s,x〉.

Now since (M s,x)V +N s,x and (M s,x)V−N s,x belong toH2,V , we have shown that dPos(〈M s,x, N s,x〉)�
dV and dNeg(〈M s,x, N s,x〉)� dV in the sense of stochastic measures.

Since this holds for all (s, x) Proposition 1.4.13, insures the existence of two functions v+, v− in
B([0, T ]×E,R) such that for any (s, x), Pos(〈M s,x, N s,x〉) =

∫ ·∨s
s v+(r,Xr)dVr andNeg(〈M s,x, N s,x〉) =∫ ·∨s

s v−(r,Xr)dVr. The conclusion now follows setting v = v+ − v−.





Chapter 2

BSDEs with no driving martingale,
Markov processes and associated Pseudo
PDEs

This chapter is the object of paper [9].

Abstract

We discuss a class of Backward Stochastic Differential Equations (BSDEs) with no driving mar-
tingale. When the randomness of the driver depends on a general Markov process X , those BS-
DEs are denominated Markovian BSDEs and can be associated to a deterministic problem, called
Pseudo-PDE which constitutes the natural generalization of a parabolic semilinear PDE which
naturally appears when the underlying filtration is Brownian. We consider two aspects of well-
posedness for the Pseudo-PDEs: classical and martingale solutions.

2.1 Introduction

This paper focuses on a new concept of Backward Stochastic Differential Equation (in short BSDE)
with no driving martingale of the form

Yt = ξ +

∫ T

t
f̂

(
r, ·, Yr,

√
d〈M〉
dV

(r)

)
dVr − (MT −Mt), t ∈ [0, T ] (2.1.1)

defined on a fixed stochastic basis fulfilling the usual conditions. V is a given bounded non-decreasing
continuous adapted process, ξ (resp. f̂ ) is a prescribed terminal condition (resp. driver). The un-
known will be a couple of cadlag adapted processes (Y,M) where M is a martingale. When Vt = t
(2.1.1) is a particular case of the class of BSDEs introduced and studied by [67], for which we bring a
new light.

A special case of such BSDEs are the Markovian BSDEs of the form

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

√
d〈M s,x〉
dV

(r)

)
dVr − (M s,x

T −M s,x
t ), t ∈ [0, T ] (2.1.2)

defined in a stochastic basis (Ω,Fs,x,Fs,x,Ps,x) where (Ps,x)(s,x)∈[0,T ]×E corresponds to the laws (for
different starting times s and starting points x) of an underlying forward Markov process with time
index [0, T ], taking values in a Polish state spaceE. Indeed this Markov process is supposed to solve a
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martingale problem with respect to a given deterministic operator a, which is the natural generalization
of a stochastic differential equation in law. (2.1.2) will be naturally associated with a deterministic
problem involving a, which will be called Pseudo-PDE, being of the type{

a(u) + f
(
·, ·, u,Γ(u)

1
2

)
= 0 on [0, T ]× E

u(T, ·) = g,
(2.1.3)

where Γ(u) = a(u2) − 2ua(u) is a potential theory operator called the carré du champs operator. The
Markovian BSDE (2.1.2) seems to be appropriated in the case when the forward underlying process
X is a general Markov process which does not rely to a fixed reference process or random field as a
Brownian motion or a Poisson measure.

The classical notion of Brownian BSDE was introduced in 1990 by E. Pardoux and S. Peng in
[71], after an early work of J.M. Bismut in 1973 in [18]. It is a stochastic differential equation with
prescribed terminal condition ξ and driver f̂ ; the unknown is a couple (Y,Z) of adapted processes.
Of particular interest is the case when the randomness of the driver is expressed through a forward
diffusion process X and the terminal condition only depends on XT . The solution, when it exists, is
usually indexed by the starting time s and starting point x of the forward diffusion X = Xs,x, and it
is expressed by{

Xs,x
t = x+

∫ t
s β(r,Xs,x

r )dr +
∫ t
s σ(r,Xs,x

r )dBr
Y s,x
t = g(Xs,x

T ) +
∫ T
t f (r,Xs,x

r , Y s,x
r , Zs,xr ) dr −

∫ T
t Zs,xr dBr, t ∈ [0, T ]

(2.1.4)

where B is a Brownian motion. Existence and uniqueness of (2.1.4) (that we still indicate with BSDE)
above was established first supposing essentially Lipschitz conditions on f with respect to the third
and fourth variable. β and σ were also supposed to be Lipschitz (with respect to x). In the sequel
those conditions were considerably relaxed, see [74] and references therein.
In [76] and in [72] previous BSDE was linked to the semilinear PDE{

∂tu+ 1
2

∑
i,j≤d

(σσᵀ)i,j∂
2
xixju+

∑
i≤d
βi∂xiu+ f(·, ·, u, σ∇u) = 0 on [0, T [×Rd

u(T, ·) = g.
(2.1.5)

In particular, if (2.1.5) has a classical smooth solution u then (Y s,x, Zs,x) := (u(·, Xs,x
· ), σ∇u(·, Xs,x

· ))
solves the second line of (2.1.4). Conversely, only under the Lipschitz type conditions mentioned after
(2.1.4), the solution of the BSDE can be expressed as a function of the forward process (Y s,x, Zs,x) =
(u(·, Xs,x

· ), v(·, Xs,x
· )), see [43]. When f and g are continuous, u is a viscosity solution of (2.1.5). Ex-

cepted in the case when u has some minimal differentiability properties, see e.g. [52], it is difficult to
say something more on v. One major contribution of this paper consists in specifying v.

Since the pioneering work of [72], in the Brownian case, the relations between more general BS-
DEs and associated deterministic problems have been studied extensively, and innovations have been
made in several directions.

In [7] the authors introduced a new kind of BSDE including a term with jumps generated by a
Poisson measure, where an underlying forward processX solves a jump diffusion equation with Lip-
schitz type conditions. They associated with it an Integro-Partial Differential Equation (in short IPDE)
in which some non-local operators are added to the classical partial differential maps, and proved
that, under some continuity conditions on the coefficients, the BSDE provides a viscosity solution of
the IPDE. In chapter 13 of [8], under some specific conditions on the coefficients of a Brownian BSDE,
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one produces a solution in the sense of distributions of the parabolic PDE. Later, the notion of mild
solution of the PDE was used in [4] where the authors tackled diffusion operators generating sym-
metric Dirichlet forms and associated Markov processes thanks to the theory of Fukushima Dirichlet
forms, see e.g. [53]. Those results were extended to the case of non symmetric Markov processes
in [87]. Infinite dimensional setups were considered for example in [52] where an infinite dimen-
sional BSDE could produce the mild solution of a PDE on a Hilbert space. Concerning the study
of BSDEs driven by more general martingales than Brownian motion, we have already mentioned
BSDEs driven by Poisson measures. In this respect, more recently, BSDEs driven by marked point
processes were introduced in [24], see also [5]; in that case the underlying process does not contain
any diffusion term. Brownian BSDEs involving a supplementary orthogonal term were studied in
[43]. We can also mention the study of BSDEs driven by a general martingale in [22]. BSDEs of the
same type, but with partial information have been investigated in [23]. A first approach to face de-
terministic problems for those equations appears in [64]; that paper also contains an application to
financial hedging in incomplete markets. Finally, BSDEs in general filtered space were studied in [67]
as we have already mentioned.

We come back to the motivations of the paper. Besides introducing and studying the new class of
BSDEs (2.1.1), (resp. Markovian BSDEs (2.1.2)), we study the corresponding Pseudo-PDE (2.1.3) and
carefully explore their relations in the spirit of the existing links between (2.1.4) and (2.1.5). For the
Pseudo-PDE, we analyze well-posedness at two different levels: classical solutions, which generalize
the C1,2-solutions of (2.1.5) and the so called martingale solutions. In the following Chapter 3, we also
discuss other (analytical) solutions, that we denominate as decoupled mild solutions. The main con-
tributions of the paper are essentially the following. In Section 2.3 we introduce the notion of BSDE
with no driving martingale (2.1.1). Theorem 2.3.21 states existence and uniqueness of a solution for
that BSDE, when the final condition ξ is square integrable and the driver f̂ verifies some integra-
bility and Lipschitz conditions. For technical reasons we have decided to provide an independent
constructive proof from the one of [67]. Indeed we need that construction for the sequel of the paper.
On the other hand, the particular form of our BSDE allows a simple and direct proof.

In Section 2.4, we consider an operator and its domain (a,D(a)); V will be a continuous non-
decreasing function. That section is devoted to the formulation of the martingale problem concerning
our underlying process X . For each initial time s and initial point x the solution will be a probability
Ps,x under which for any φ ∈ D(a),

φ(·, X·)− φ(s, x)−
∫ ·
s
a(φ)(r,Xr)dVr

is a local martingale starting in zero at time s. We will then assume that this martingale problem is
well-posed and that its solution (Ps,x)(s,x)∈[0,T ]×E defines a Markov process. In Proposition 2.4.10,
we prove that, under each one of those probabilities, the angular bracket of every square integrable
martingale is absolutely continuous with respect to dV . In Definition 2.4.14, we suitably define some
extended domains for the operators a and Γ, using some locally convex topology. In Section 2.5 we
introduce the Pseudo-PDE (2.1.3) to which we associate the Markovian BSDE (2.1.2), considered un-
der every Ps,x. We also introduce the notions of classical solution in Definition 2.5.3, and of martingale
solution in Definition 2.5.18, which is fully probabilistic. Proposition 2.5.20 says the following. Clas-
sical solutions of (2.1.3) typically belong to the domain D(a) and are shown also to be essentially
martingale solutions. Conversely a martingale solution belonging to D(a) is a classical solution, up
to so called zero potential sets, see Definition 2.4.11. Proposition 2.5.9 asserts that, given a classical
solution u ∈ D(a), then for any (s, x) the processes Y s,x = u(·, X·) and
M s,x = u(·, X·)− u(s, x)−

∫ ·
s f(·, ·, u,Γ(u)

1
2 )(r,Xr)dVr solve (2.1.2) under the probability Ps,x.
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Theorem 2.5.15 states that, without any assumptions of regularity, there exist Borel functions u
and v such that for any (s, x) ∈ [0, T ]× E, the solution of (2.1.2) verifies{

∀t ≥ s : Y s,x
t = u(t,Xt) Ps,x a.s.

d〈Ms,x〉
dV (t) = v2(t,Xt) dV ⊗ dPs,x a.e.

Theorems 2.5.21 and 2.5.22 state that the function u mentioned above is the unique martingale
solution of (2.1.3). Moreover v is also identified as a function of u through an extension of the carré
du champs operator.

In Section 2.6 we list some examples which are developed in Chapter 3. These include Markov
processes defined as weak solutions of Stochastic Differential Equations (in short SDEs) including
possible jump terms, α-stable Lévy processes associated to fractional Laplace operators, solutions of
SDEs with distributional drift and diffusions on compact manifolds.

2.2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.

A topological space E will always be considered as a measurable space with its Borel σ-field which
shall be denotedB(E) and if (F, dF ) is a metric space, C(E,F ) (respectively Cb(E,F ), B(E,F ), Bb(E,F ))
will denote the set of functions from E to F which are continuous (respectively bounded continuous,
Borel, bounded Borel).

On a fixed probability space (Ω,F ,P), for any p ≥ 1, Lp will denote the set of random vari-
ables with finite p-th moment. A measurable space equipped with a right-continuous filtration
(Ω,F ,F := (Ft)t∈T) (where T is equal to R+ or to [0, T ] for some T ∈ R∗+) will be called a filtered
space. A probability space equipped with a right-continuous filtration (Ω,F ,F,P) will be called
called a stochastic basis and will be said to fulfill the usual conditions if the probability space is
complete and if F0 contains all the P-negligible sets. We introduce now some notations and vocab-
ulary about spaces of stochastic processes, on a fixed stochastic basis (Ω,F ,F,P). Most of them are
taken or adapted from [60] or [61]. A process (Xt)t∈T is said to be integrable if Xt is an integrable
r.v. for any t. We will denote V (resp V+) the set of adapted, bounded variation (resp non-decreasing)
processes starting at 0; Vp (resp Vp,+) the elements of V (resp V+) which are predictable, and Vc
(resp Vc,+) the elements of V (resp V+) which are continuous. If A ∈ V , we will denote Pos(A)
and Neg(A) the positive variation and negative variation parts of A, meaning the unique pair of
elements V+ such that A = Pos(A) − Neg(A) (see Proposition I.3.3 in [61] for their existence) and
V ar(A) = Pos(A) + Neg(A) its total variation. M will be the space of cadlag martingales. For any
p ∈ [1,∞]Hp will denote the Banach space of elements ofM for which ‖M‖Hp := E[|sup

t∈T
Mt|p]

1
p <∞

and in this set we identify indistinguishable elements. Hp0 will denote the Banach subspace of Hp of
elements vanishing at zero.

If T = [0, T ] for some T ∈ R∗+, a stopping time will take values in [0, T ] ∪ {+∞}. We define a
localizing sequence of stopping times as an a.s. increasing sequence of stopping times (τn)n≥0 such
that there a.s. exists N ∈ N for which τN = +∞. Let Y be a process and τ a stopping time, we
denote by Y τ the stopped process t 7→ Yt∧τ . If C is a set of processes, we define its localized class
Cloc as the set of processes Y such that there exists a localizing sequence (τn)n≥0 such that for every
n, the stopped process Y τn belongs to C. In particular a process X is said to be locally integrable
(resp. locally square integrable) if there is a localizing sequence (τn)n≥0 such that for every n, Xτn

t is
integrable (resp. square integrable) for every t.
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For any M ∈ Mloc, we denote [M ] its quadratic variation and if moreover M ∈ H2
loc, 〈M〉

will denote its (predictable) angular bracket. H2
0 will be equipped with scalar product defined by

(M,N)H2
0

= E[MTNT ] = E[〈M,N〉T ] which makes it a Hilbert space. Two local martingales M,N

will be said to be strongly orthogonal if MN is a local martingale starting in 0 at time 0. InH2
0,loc this

notion is equivalent to 〈M,N〉 = 0.

2.3 BSDEs without driving martingale

In the whole present section we are given T ∈ R∗+, and a stochastic basis
(
Ω,F ,F := (Ft)t∈[0,T ],P

)
fulfilling the usual conditions. Some proofs and intermediary results of the first part of this section
are postponed to Appendix 2.B.

Definition 2.3.1. Let A and B be in V+. We will say that dB dominates dA in the sense of stochastic
measures (written dA� dB) if for almost all ω, dA(ω)� dB(ω) as Borel measures on [0, T ].

We will say that dB and dA are mutually singular in the sense of stochastic measures (written dA⊥dB)
if for almost all ω, the Borel measures dA(ω) and dB(ω) are mutually singular.

Let B ∈ V+. dB ⊗ dP will denote the positive measure on
(Ω× [0, T ],F ⊗ B([0, T ])) defined for any F ∈ F ⊗ B([0, T ]) by
dB⊗dP(F ) = E

[∫ T
0 1F (r, ω)dBr(ω)

]
. A property which holds true everywhere except on a null set for this

measure will be said to be true dB ⊗ dP almost everywhere (a.e).

The proof of Proposition below is in Appendix 2.B.

Proposition 2.3.2. For any A and B in Vp,+, there exists a (non-negative
dB ⊗ dP a.e.) predictable process dA

dB and a process in Vp,+ A⊥B such that

dA⊥B⊥ dB and A = AB +A⊥B a.s.

where AB =
∫ ·

0
dA
dB (r)dBr. The process A⊥B is unique and the process dA

dB is unique dB ⊗ dP a.e.
Moreover, there exists a predictable processK with values in [0, 1] (for every (ω, t)), such thatAB =

∫ ·
0 1{Kr<1}dAr

and A⊥B =
∫ ·

0 1{Kr=1}dAr.

The predictable process dA
dB appearing in the statement of Proposition 2.3.2 will beF the Radon-

Nikodym derivative of A by B.

Remark 2.3.3. Since for any s < t At −As =
∫ t
s
dA
dB (r)dBr +A⊥Bt −A⊥Bs a.s. where A⊥B is increasing, it

is clear that for any s < t,∫ t
s
dA
dB (r)dBr ≤ At−As a.s. and therefore that for any positive measurable process φwe have

∫ T
0 φr

dA
dB (r)dBr ≤∫ T

0 φrdAr a.s.

IfA is in Vp, andB ∈ Vp,+. We set dAdB := dPos(A)
dB − dPos(A)

dB andA⊥B := (Pos(A))⊥B−(Neg(A))⊥B .

Proposition 2.3.4. Let A1 and A2 be in Vp, and B ∈ Vp,+. Then,
d(A1+A2)

dB = dA1
dB + dA2

dB dV ⊗ dP a.e. and (A1 +A2)⊥B = A⊥B1 +A⊥B2 .

Proof. The proof is an immediate consequence of the uniqueness of the decomposition (2.3.2).
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Let V ∈ Vp,+. We introduce two significant spaces related to V .
H2,V := {M ∈ H2

0|d〈M〉 � dV } andH2,⊥V := {M ∈ H2
0|d〈M〉 ⊥ dV }.

The proof of the two propositions below are in Appendix 2.B.

Proposition 2.3.5. Let M ∈ H2
0, and let V ∈ Vp,+. There exists a pair (MV ,M⊥V ) in H2,V ×H2,⊥V such

that M = MV +M⊥V and 〈MV ,M⊥V 〉 = 0.
Moreover, we have 〈MV 〉 = 〈M〉V =

∫ ·
0
d〈M〉
dV (r)dVr and 〈M⊥V 〉 = 〈M〉⊥V and there exists a predictable

process K with values in [0, 1] such that
MV =

∫ ·
0 1{Kr<1}dMr and M⊥V =

∫ ·
0 1{Kr=1}dMr.

Proposition 2.3.6. H2,V and H2,⊥V are orthogonal sub-Hilbert spaces of H2
0 and H2

0 = H2,V ⊕⊥ H2,⊥V .
Moreover, any element ofH2,V

loc is strongly orthogonal to any element ofH2,⊥V
loc .

Remark 2.3.7. All previous results extend when the filtration is indexed byR+.

We are going to introduce here our Backward Stochastic Differential Equation (BSDE) for which
there is no need for having a particular martingale of reference.

We will denotePro the σ-field generated by progressively measurable processes defined on [0, T ]×Ω.
Given some V ∈ Vc,+, we will indicate by L2(dV ⊗ dP) (resp. L0(dV ⊗ dP)) the set of (up to indistin-
guishability) progressively measurable processes φ such thatE[

∫ T
0 φ2

rdVr] <∞ (resp.
∫ T

0 |φr|dVr <∞
P a.s.) and L2(dV ⊗ dP) the quotient space of L2(dV ⊗ dP) with respect to the subspace of pro-
cesses equal to zero dV ⊗ dP a.e. More formally, L2(dV ⊗ dP) corresponds to the classical L2 space
L2([0, T ]× Ω,Pro, dV ⊗ dP) and is therefore complete for its usual norm.
L2,cadlag(dV ⊗dP) (resp. L2,cadlag(dV ⊗dP)) will denote the subspace of L2(dV ⊗dP) (resp. L2(dV ⊗
dP)) of cadlag elements (resp. of elements having a cadlag representative). We emphasize that
L2,cadlag(dV ⊗ dP) is not a closed subspace of L2(dV ⊗ dP).
The application which associates to a process its corresponding class will be denoted φ 7→ φ̇.

The aforementioned BSDE will depend on a triple (V, ξ, f) of coefficients: V is an integrator pro-
cess, ξ is the final condition, f is the driver.

Hypothesis 2.3.8. 1. V is bounded continuous non-decreasing adapted process;

2. ξ is a square integrable FT -measurable r.v.

3. f̂ : ([0, T ]× Ω)×R×R −→ R, measurable with respect to Pro⊗ B(R)⊗ B(R).

4. f̂(·, ·, 0, 0) ∈ L2(dV ⊗ dP).

5. There exist positive constants KY ,KZ such that, P a.s. we have for all t, y, y′, z, z′,

|f̂(t, ·, y, z)− f̂(t, ·, y′, z′)| ≤ KY |y − y′|+KZ |z − z′|. (2.3.1)

We start with a lemma.

Lemma 2.3.9. LetU1 andU2 be inL2(dV ⊗dP) and such that U̇1 = U̇2. Let F : [0, T ]×Ω×R −→ R be such
that F (·, ·, U1) and F (·, ·, U2) are in L0(dV ⊗dP), then the processes

∫ ·
0 F (r, ·, U1

r )dVr and
∫ ·

0 F (r, ·, U2
r )dVr

are indistinguishable.

Proof. There exists a P-null set N such that for any ω ∈ N c, U1(ω) = U2(ω) dV (ω) a.e. So for any
ω ∈ N c, F (·, ω, U1(ω)) = F (·, ω, U2(ω)) dV (ω) a.e. implying∫ ·

0 F (r, ω, U1
r (ω))dVr(ω) =

∫ ·
0 F (r, ω, U2

r (ω))dVr(ω). So
∫ ·

0 F (r, ·, U1
r )dVr and

∫ ·
0 F (r, ·, U2

r )dVr are indis-
tinguishable processes.
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In some of the following proofs, we will have to work with classes of processes. According to
Lemma 2.3.9, if U̇ is an element of L2(dV ⊗ dP), the integral

∫ ·
0 F (r, ω, Ur)dVr will not depend on the

representantive process U that we have chosen.
We will now give the formulation of our BSDE.

Definition 2.3.10. We say that a couple (Y,M) ∈ L2,cadlag(dV ⊗ dP)×H2
0 is a solution of BSDE(ξ, f̂ , V )

if it verifies

Y = ξ +

∫ T

·
f̂

(
r, ·, Yr,

√
d〈M〉
dV

(r)

)
dVr − (MT −M·) (2.3.2)

in the sense of indistinguishability.

Proposition 2.3.11. If (Y,M) solves BSDE(ξ, f̂ , V ), and if we denote

f̂

(
r, ·, Yr,

√
d〈M〉
dV (r)

)
by f̂r, then for any t ∈ [0, T ], a.s. we have

 Yt = E
[
ξ +

∫ T
t f̂rdVr

∣∣∣Ft]
Mt = E

[
ξ +

∫ T
0 f̂rdVr

∣∣∣Ft]−E [ξ +
∫ T

0 f̂rdVr

∣∣∣F0

]
.

(2.3.3)

Proof. Since Yt = ξ +
∫ T
t f̂rdVr − (MT −Mt) a.s., Y being an adapted process and M a martingale,

taking the expectation in (2.3.2) at time t, we directly get Yt = E
[
ξ +

∫ T
t f̂rdVr

∣∣∣Ft] and in particular

that Y0 = E
[
ξ +

∫ T
0 f̂rdVr

∣∣∣F0

]
. Since M0 = 0, looking at the BSDE at time 0 we get MT = ξ +∫ T

0 f̂rdVr − Y0 = ξ+
∫ T

0 f̂rdVr −E
[
ξ +

∫ T
0 f̂rdVr

∣∣∣F0

]
. Taking the expectation with respect to Ft in the

above inequality gives the second line of (2.3.3).

We will proceed showing that BSDE(ξ, f̂ , V ) has a unique solution. At this point we introduce
a significant map Φ which will map L2(dV ⊗ dP) × H2

0 into its subspace L2,cadlag(dV ⊗ dP) × H2
0.

From now on, until Notation 2.3.15, we fix a couple (U̇ , N) ∈ L2(dV ⊗ dP) × H2
0 to which we will

associate (Ẏ ,M) which, as we will show, will belong to L2,cadlag(dV ⊗ dP) ×H2
0. We will show that

(U̇ , N) 7→ (Ẏ ,M) is a contraction for a certain norm. In all the proofs below, U̇ will only appear in
integrals driven by dV through a representative U .

Proposition 2.3.12. For any t ∈ [0, T ],
∫ T
t f̂2

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr is in L1 and(∫ T

t f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr

)
is in L2.

Proof. By Cauchy-Schwarz inequality and thanks to the boundedness of V together the Lipschitz con-
ditions on f in Hypothesis 2.3.8, there exist a positive constant C such that, for any t ∈ [0, T ], we have(∫ T

t f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr

)2

≤ V 2
T

∫ T
t f̂2

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr

≤ C
(∫ T

t f̂2 (r, ·, 0, 0) dVr +
∫ T
t U2

r dVr +
∫ T
t

d〈N〉
dV (r)dVr

)
.

(2.3.4)

The three terms on the right are in L1. Indeed, by Remark 2.3.3∫ T
t

d〈N〉
dV (r)dVr ≤ (〈N〉T − 〈N〉t) which belongs to L1 since N is taken in H2. By Hypothesis 2.3.8,

f(·, ·, 0, 0) is in L2(dV ⊗ dP), and U̇ was also taken in L2(dV ⊗ dP). This concludes the proof.
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We can therefore state the following definition.

Definition 2.3.13. Setting f̂r = f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
, we define M as the cadlag version of the martingale

t 7→ E
[
ξ +

∫ T
0 f̂rdVr

∣∣∣Ft]−E [ξ +
∫ T

0 f̂rdVr

∣∣∣F0

]
.

It admits a cadlag version taking into account Theorem 4 in Chapter IV of [33], since the stochastic basis ful-

fills the usual conditions. We denote by Y the cadlag process defined by Yt = ξ+
∫ T
t f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr−

(MT−Mt). This will be called the cadlag reference process and we will often omit its dependence to (U̇ , N).

According to previous definition, it is not clear whether Y is adapted, however, we have the
almost sure equalities

Yt = ξ +
∫ T
t f̂rdVr − (MT −Mt)

= ξ +
∫ T
t f̂rdVr −

(
ξ +

∫ T
0 f̂rdVr −E

[
ξ +

∫ T
0 f̂rdVr

∣∣∣Ft])
= E

[
ξ +

∫ T
0 f̂rdVr

∣∣∣Ft]− ∫ t0 f̂rdVr
= E

[
ξ +

∫ T
t f̂rdVr

∣∣∣Ft] .
(2.3.5)

Since Y is cadlag and adapted, by Theorem 15 Chapter IV of [32], it is progressively measurable.

Proposition 2.3.14. M belongs toH2
0 and sup

t∈[0,T ]

|Yt| ∈ L2.

Proof. M is square integrable and vanishes at 0 by Definition 2.3.13 and Proposition 2.3.12. A con-
sequence of Definition 2.3.13, of Cauchy-Schwarz inequality and of the boundedness of V is the
existence of some C,C ′ > 0 such that, a.s.,

sup
t∈[0,T ]

Y 2
t ≤ C

(
ξ2 + sup

t∈[0,T ]

(∫ T
t f̂rdVr

)2
+ sup
t∈[0,T ]

(MT −Mt)
2

)

≤ C ′

(
ξ2 +

∫ T
0 f̂2

r dVr + sup
t∈[0,T ]

M2
t

) (2.3.6)

which belongs to L1 by Proposition 2.3.12 and the fact that ξ and M are square integrable.

Since Y is cadlag progressively measurable, sup
t∈[0,T ]

|Yt| ∈ L2 and since V is bounded, it is clear that

Y ∈ L2,cadlag(dV ⊗ dP) and the corresponding class Ẏ belongs to L2,cadlag(dV ⊗ dP).

Notation 2.3.15. We denote by Φ the operator which associates to a couple (U̇ , N) the couple (Ẏ ,M).

Φ :
L2(dV ⊗ dP)×H2

0 −→ L2,cadlag(dV ⊗ dP)×H2
0

(U̇ , N) 7−→ (Ẏ ,M).

Proposition 2.3.16. The mapping (Y,M) 7−→ (Ẏ ,M) induces a bijection between the set of solutions of
BSDE(ξ, f̂ , V ) and the set of fixed points of Φ.

Proof. First, let (U,N) be a solution of BSDE(ξ, f̂ , V ), let (Ẏ ,M) := Φ(U̇ , N) and let Y be the refer-
ence cadlag process associated to U as in Definition 2.3.13. By this same definition, M is the cadlag
version of
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t 7→ E
[
ξ +

∫ T
0 f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr

∣∣∣∣Ft]−E [ξ +
∫ T

0 f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr

∣∣∣∣F0

]
, but by Propo-

sition 2.3.11, so isN , meaningM = N . Again by Definition 2.3.13, Y = ξ+
∫ T
· f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr−

(NT −N·) which is equal to U thanks to (2.3.2), so Y = U in the sense of indistinguishability, and in
particular, U̇ = Ẏ , implying (U̇ , N) = (Ẏ ,M) = Φ(U̇ , N). The mapping (Y,M) 7−→ (Ẏ ,M) therefore
does indeed map the set of solutions of BSDE(ξ, f̂ , V ) into the set of fix points of Φ.

The map is surjective. Indeed let (U̇ , N) be a fixed point of Φ, the couple (Y,M) of Definition 2.3.13

verifies Y = ξ +
∫ T
· f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr − (MT −M·) in the sense of indistinguishability, and

(Ẏ ,M) = Φ(U̇ , N) = (U̇ , N), so by Lemma 2.3.9,
∫ T
· f̂

(
r, ·, Yr,

√
d〈M〉
dV (r)

)
dVr and∫ T

· f̂

(
r, ·, Ur,

√
d〈N〉
dV (r)

)
dVr are indistinguishable and Y = ξ+

∫ T
· f̂

(
r, ·, Yr,

√
d〈M〉
dV (r)

)
dVr−(MT−

M·), meaning that (Y,M) solves BSDE(ξ, f̂ , V ).

We finally show that it is injective. Let us consider two solutions (Y 1,M) and (Y 2,M) ofBSDE(ξ, f̂ , V )

with Ẏ 1 = Ẏ 2. By Lemma 2.3.9, the processes
∫ T
· f̂

(
r, ·, Y 1

r ,

√
d〈M〉
dV (r)

)
dVr and∫ T

· f̂

(
r, ·, Y 2

r ,

√
d〈M〉
dV (r)

)
dVr are indistinguishable, so taking (2.3.2) into account, we have Y 1 = Y 2.

From now on, if (Ẏ ,M) is the image by Φ of a couple
(U̇ , N) ∈ L2(dV ⊗ dP) ×H2

0, by default, we will always refer to the cadlag reference process Y of Ẏ
defined in Definition 2.3.13.

Lemma 2.3.17. Let Y be a cadlag adapted process satisfyingE

[
sup
t∈[0,T ]

Y 2
t

]
<∞ andM be a square integrable

martingale. Then there exists a constant C > 0 such that for any ε > 0 we have

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
Yr−dMr

∣∣∣∣
]
≤ C

(
ε

2
E

[
sup
t∈[0,T ]

Y 2
t

]
+

1

2ε
E [[M ]T ]

)
.

In particular,
∫ ·

0 Yr−dMr is a uniformly integrable martingale.

Proof. By Burkholder-Davis-Gundy and Cauchy-Schwarz inequalities, there exists C > 0 such that

E

[
sup
t∈[0,T ]

∣∣∣∫ t0 Yr−dMr

∣∣∣] ≤ CE

[√∫ T
0 Y 2

r−d[M ]r

]

≤ CE

[√
sup
t∈[0,T ]

Y 2
t [M ]T

]
≤ C

√√√√E[ sup
t∈[0,T ]

Y 2
t

]
E[[M ]]T

≤ C

(
ε
2E

[
sup
t∈[0,T ]

Y 2
t

]
+ 1

2εE [[M ]T ]

)
< +∞.

So
∫ ·

0 Yr−dMr is a uniformly integrable local martingale, and therefore a martingale.
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Lemma 2.3.18. Let Y be a cadlag adapted process andM ∈ H2. Assume the existence of a constantC > 0 and
an L1-random variable Z such that for any t ∈ [0, T ], Y 2

t ≤ C
(
Z +

∣∣∣∫ t0 Yr−dMr

∣∣∣). Then sup
t∈[0,T ]

|Yt| ∈ L2.

Proof. For any stopping time τ we have

sup
t∈[0,τ ]

Y 2
t ≤ C

(
Z + sup

t∈[0,τ ]

∣∣∣∣∫ t

0
Yr−dMr

∣∣∣∣
)
. (2.3.7)

Since Yt− is caglad and therefore locally bounded, (see Definition p164 in [78]) we define τn = inf {t >
0 : Yt− ≥ n}. It yields

∫ ·∧τn
0 Yr−dMr is in H2 since its angular bracket is equal to

∫ ·∧τn
0 Y 2

r−d〈M〉r
which is inferior to n2〈M〉T ∈ L1. By Doob’s inequality we know that sup

t∈[0,τn]

∣∣∣∫ t0 Yr−dMr

∣∣∣ is L2 and

using (2.3.7), we get that sup
t∈[0,τn]

Y 2
t is L1. By (2.3.7) applied with τn and taking expectation, we get

E

[
sup
t∈[0,τn]

Y 2
t

]
≤ C ′

(
1 +E

[
sup
t∈[0,τn]

∣∣∣∫ t0 Yr−dMr

∣∣∣]), for some C ′ which does not depend on n. By

Lemma 2.3.17 applied to (Y τn ,M) there exists C ′′ > 0 such that for any n ∈ N∗ and ε > 0,

E

[
sup
t∈[0,τn]

Y 2
t

]
≤ C ′′

(
1 + ε

2E

[
sup
t∈[0,τn]

Y 2
t

]
+ 1

2εE [[M ]T ]

)
. Choosing ε = 1

C′′ , it follows that there exists

C3 > 0 such that for any n > 0,

1
2E

[
sup
t∈[0,τn]

Y 2
t

]
≤ C3 (1 +E [[M ]T ]) < ∞. By monotone convergence theorem, taking the limit in n

we get the result.

Proposition 2.3.19. Let λ ∈ R, let (U̇ , N), (U̇ ′, N ′) be in
L2(dV ⊗ dP) × H2

0, let (Ẏ ,M), (Ẏ ′,M ′) be their images by Φ and let Y, Y ′ be the cadlag representa-
tives of Ẏ , Ẏ ′ introduced in Definition 2.3.13. Then

∫ ·
0 e

λVrYr−dMr,
∫ ·

0 e
λVrY ′r−dM

′
r,
∫ ·

0 e
λVrYr−dM

′
r and∫ ·

0 e
λVrY ′r−dMr are martingales.

Proof. Thanks to Proposition 2.3.14 we know that sup
t∈[0,T ]

|Yt| and sup
t∈[0,T ]

|Y ′t | are L2. Moreover since M

and M ′ are square integrable, the statement yields therefore as a consequence of Lemma 2.3.17 and
the fact that V is bounded.

We will now show that Φ is a contraction for a certain norm. This will imply that it has a unique
fixed point in L2(dV ⊗ dP)×H2

0 since this space is complete and therefore that BSDE(ξ, f̂ , V ) has a
unique solution thanks to Proposition 2.3.16.
For any λ > 0, on L2(dV ⊗ dP)×H2

0 we define the norm
‖(Ẏ ,M)‖2λ := E

[∫ T
0 eλVrY 2

r dVr

]
+E

[∫ T
0 eλVrd〈M〉r

]
. Since V is bounded, these norms are all equiv-

alent to the usual one of this space, which corresponds to λ = 0.

Proposition 2.3.20. There exists λ > 0 such that for any

(U̇ , N) ∈ L2(dV ⊗ dP) × H2
0,
∥∥∥Φ(U̇ , N)

∥∥∥2

λ
≤ 1

2

∥∥∥(U̇ , N)
∥∥∥2

λ
. In particular, Φ is a contraction in L2(dV ⊗

dP)×H2
0 for the norm ‖ · ‖λ.

Proof. Let (U̇ , N) and (U̇ ′, N ′) be two couples of L2(dV ⊗ dP)×H2
0, let (Ẏ ,M) and (Ẏ ′,M ′) be their

images via Φ and let Y, Y ′ be the cadlag reference process of Ẏ , Ẏ ′ introduced in Definition 2.3.13.
We will write Ȳ for Y − Y ′ and we adopt a similar notation for other processes. We will also write
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f̄t := f̂

(
t, ·, Ut,

√
d〈N〉
dV (t)

)
− f̂

(
t, ·, U ′t ,

√
d〈N ′〉
dV (t)

)
.

By additivity, we have dȲt = −f̄tdVt + dM̄t. Since ȲT = ξ − ξ = 0, applying the integration by
parts formula to Ȳ 2

t e
λVt between 0 and T we get

Ȳ 2
0 − 2

∫ T

0
eλVr Ȳrf̄rdVr + 2

∫ T

0
eλVr Ȳr−dM̄r +

∫ T

0
eλVrd[M̄ ]r + λ

∫ T

0
eλVr Ȳ 2

r dVr = 0.

Since, by Proposition 2.3.19, the stochastic integral with respect to M̄ is a real martingale, by
taking the expectations we get

E
[
Ȳ 2

0

]
− 2E

[∫ T

0
eλVr Ȳrf̄rdVr

]
+E

[∫ T

0
eλVrd〈M̄〉r

]
+ λE

[∫ T

0
eλVr Ȳ 2

r dVr

]
= 0.

So by re-arranging and by using the Lipschitz condition on f stated in Hypothesis 2.3.8, we get

λE
[∫ T

0 eλVr Ȳ 2
r dVr

]
+E

[∫ T
0 eλVrd〈M̄〉r

]
≤ 2KYE

[∫ T
0 eλVr |Ȳr||Ūr|dVr

]
+2KZE

[∫ T
0 eλVr |Ȳr|

∣∣∣∣√d〈N〉
dV (r)−

√
d〈N ′〉
dV (r)

∣∣∣∣ dVr]
≤ (KY α+KZβ)E

[∫ T
0 eλVr |Ȳr|2dVr

]
+ KY

α E
[∫ T

0 eλVr |Ūr|2dVr
]

+KZ

β E

[∫ T
0 eλVr

∣∣∣∣√d〈N〉
dV (r)−

√
d〈N ′〉
dV (r)

∣∣∣∣2 dVr
]
,

for any positive α and β. Then we pick α = 2KY and β = 2KZ , which gives us

λE
[∫ T

0 eλVr Ȳ 2
r dVr

]
+E

[∫ T
0 eλVrd〈M̄〉r

]
≤ 2((KY )2 + (KZ)2)E

[∫ T
0 eλVr |Ȳr|2dVr

]
+ 1

2E
[∫ T

0 eλVr |Ūr|2dVr
]

+ 1
2E

[∫ T
0 eλVr

∣∣∣∣√d〈N〉
dV (r)−

√
d〈N ′〉
dV (r)

∣∣∣∣2dVr] .
We choose now λ = 1 + 2((KY )2 + (KZ)2) and we get

E
[∫ T

0 eλVr Ȳ 2
r dVr

]
+E

[∫ T
0 eλVrd〈M̄〉r

]
≤ 1

2E
[∫ T

0 eλVr |Ūr|2dVr
]

+ 1
2E

[∫ T
0 eλVr

∣∣∣∣√d〈N〉
dV (r)−

√
d〈N ′〉
dV (r)

∣∣∣∣2 dVr
]
.

(2.3.8)

On the other hand, since by Proposition 2.B.1 we know that d〈N〉
dV

d〈N ′〉
dV −

(
d〈N,N ′〉
dV

)2
is a positive

process, we have ∣∣∣∣√d〈N〉
dV −

√
d〈N ′〉
dV

∣∣∣∣2 = d〈N〉
dV − 2

√
d〈N〉
dV

√
d〈N ′〉
dV + d〈N ′〉

dV

≤ d〈N〉
dV − 2d〈N,N

′〉
dV + d〈N ′〉

dV

= d〈N̄〉
dV dV ⊗ dP a.e.

(2.3.9)

Therefore, since by Remark 2.3.3 we have
∫ ·

0 e
λVr d〈N̄〉

dV (r)dVr ≤
∫ ·

0 e
λVrd〈N̄〉r, then expression (2.3.8)

implies
E
[∫ T

0 eλVr Ȳ 2
r dVr +

∫ T
0 eλVrd〈M̄〉r

]
≤ 1

2E
[∫ T

0 eλVr |Ūr|2dVr +
∫ T

0 eλVrd〈N̄〉r
]
, which proves the con-

traction for the norm ‖ · ‖λ.
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Theorem 2.3.21. If (ξ, f̂) verifies Hypothesis 2.3.8 then BSDE(ξ, f̂ , V ) has a unique solution.

Proof. The space L2(dV ⊗dP)×H2
0 is complete and Φ defines on it a contraction for the norm ‖(·, ·)‖λ

for some λ > 0, so Φ has a unique fixed point in
L2(dV ⊗ dP)×H2

0. Then by Proposition 2.3.16, BSDE(ξ, f̂ , V ) has a unique solution.

Remark 2.3.22. Let (Y,M) be the solution of BSDE(ξ, f̂ , V ) and Ẏ the class of Y in L2(dV ⊗ dP). Thanks
to Proposition 2.3.16, we know that
(Ẏ ,M) = Φ(Ẏ ,M) and therefore by Propositions 2.3.14 and 2.3.19 that sup

t∈[0,T ]

|Yt| is L2 and that
∫ ·

0 Yr−dMr

is a real martingale.

Remark 2.3.23. Let (ξ, f̂ , V ) satisfying Hypothesis 2.3.8. Until now we have considered the related BSDE
on the interval [0, T ]. Without restriction of generality we can consider a BSDE on a restricted interval
[s, T ] for some s ∈ [0, T [. The results and comments of this section immediately extend to this case. In
particular there exists a unique couple of processes (Y s,M s), indexed by [s, T ] such that Y s is adapted, cadlag
and verifies E[

∫ T
s (Y s

r )2dVr] < ∞, such that M s is a martingale starting at 0 in s and such that Y s
· =

ξ +
∫ T
· f̂

(
r, ·, Y s

r ,

√
d〈M〉
dV (r)

)
dVr − (M s

T −M s
· ) in the sense of indistinguishability on [s, T ].

Moreover, if (Y,M) denotes the solution of BSDE(ξ, f̂ , V ) then (Y,M· −Ms) and (Y s,M s) coincide on
[s, T ]. This follows by the uniqueness argument for the restricted BSDE to [s, T ].

The lemma below shows that, in order to verify that a couple (Y,M) is the solution ofBSDE(ξ, f̂ , V ),
it is not necessary to verify the square integrability of Y since it will be automatically fulfilled.

Lemma 2.3.24. Let (ξ, f̂ , V ) verify Hypothesis 2.3.8 and consider BSDE(ξ, f̂ , V ) defined in Definition
2.3.10. Assume that there exists a cadlag adapted process Y with Y0 ∈ L2 , and M ∈ H2

0 such that

Y = ξ +

∫ T

·
f̂

(
r, ·, Yr,

√
d〈M〉
dV

(r)

)
dVr − (MT −M·), (2.3.10)

in the sense of indistinguishability. Then sup
t∈[0,T ]

|Yt| ∈ L2. In particular,

Y ∈ L2(dV ⊗ dP) and (Y,M) is the unique solution of BSDE(ξ, f̂ , V ) .

On the other hand if (Y,M) verifies (2.3.10) on [s, T ] with s < T , if Ys ∈ L2, Ms = 0 and if we denote
(U,N) the unique solution of BSDE(ξ, f̂ , V ), then (Y,M) and (U,N· −Ns) are indistinguishable on [s, T ].

Proof. Let λ > 0 and t ∈ [0, T ]. By integration by parts formula applied to Y 2e−λV between 0 and t
we get

Y 2
t e
−λVt − Y 2

0 = −2
∫ t

0 e
−λVrYrf̂

(
r, ·, Yr,

√
d〈M〉
dV (r)

)
dVr + 2

∫ t
0 e
−λVrYr−dMr

+
∫ t

0 e
−λVrd[M ]r − λ

∫ t
0 e
−λVrY 2

r dMr.

By re-arranging the terms and using the Lipschitz conditions in Hypothesis 2.3.8, we get

Y 2
t e
−λVt + λ

∫ t
0 e
−λVrY 2

r dVr

≤ Y 2
0 + 2

∫ t
0 e
−λVr |Yr||f̂ |

(
r, ·, Yr,

√
d〈M〉
dV (r)

)
dVr + 2

∣∣∣∫ t0 e−λVrYr−dMr

∣∣∣
+
∫ t

0 e
−λVrd[M ]r

≤ Y 2
0 +

∫ t
0 e
−λVr |f̂ |2(r, ·, 0, 0)dVr + (2KY + 1 +KZ)

∫ t
0 e
−λVr |Yr|2dVr

+2
∣∣∣∫ t0 e−λVrYr−dMr

∣∣∣+
∫ t

0 e
−λVrd[M ]r.
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Choosing λ = 2KY + 1 +KZ this gives

Y 2
t e
−λVt ≤ Y 2

0 +
∫ t

0 e
−λVr |f̂ |2(r, ·, 0, 0)dVr +KZ

∫ t
0 e
−λVr d〈M〉

dV (r)dVr

+2
∣∣∣∫ t0 e−λVrYr−dMr

∣∣∣+
∫ t

0 e
−λVrd[M ]r.

Since V is bounded, there is a constant C > 0, such that for any t ∈ [0, T ]

Y 2
t ≤ C

(
Y 2

0 +

∫ T

0
|f̂ |2(r, ·, 0, 0)dVr +

∫ T

0

d〈M〉
dV

(r)dVr + [M ]T +

∣∣∣∣∫ t

0
Yr−dMr

∣∣∣∣) .
By Hypothesis 2.3.8 and since we assumed Y0 ∈ L2 and M ∈ H2, the first four terms on the right
hand side are integrable and we can conclude by Lemma 2.3.18.

An analogous proof also holds on the interval [s, T ] taking into account Remark 2.3.23.

If the underlying filtration is Brownian and Vt = t, we can identify the solution of the BSDE with
no driving martingale to the solution of a Brownian BSDE.

Let B be a 1-dimensional Brownian motion defined on a complete probability space (Ω,F ,P).
Let T ∈ R∗+ and for any t ∈ [0, T ], let FBt denote the σ-field σ(Br|r ∈ [0, t]) augmented with the
P-negligible sets.
In the stochastic basis (Ω,F ,FB,P), let Vt = t and (ξ, f̂) satisfy Hypothesis 2.3.8. Let (Y,M) be the
unique solution of BSDE(ξ, f̂ , V ), see Theorem 2.3.21.

Proposition 2.3.25. We have Y = U , M =
∫ ·

0 ZrdBr, where (U,Z) is the unique solution of the Brownian
BSDE

U = ξ +

∫ T

·
f̂ (r, ·, Ur, |Zr|) dr −

∫ T

·
ZrdBr. (2.3.11)

Proof. By Theorem 1.2 in [70], (2.3.11) admits a unique solution (U,Z) of progressively measurable
processes such that Z ∈ L2(dt⊗ dP). It is known that sup

t∈[0,T ]

|Ut| ∈ L2 and therefore that U ∈ L2(dt⊗

dP), see Proposition 1.1 in [70] for instance. We define N =
∫ ·

0 ZrdBr. The couple (U,N) belongs
to L2(dt ⊗ dP) × H2

0. N verifies d〈N〉r
dr = Z2

r dt ⊗ dP a.e. So by (2.3.11), the couple (U,N) verifies

U = ξ+
∫ T
· f̂

(
r, ·, Ur,

√
d〈N〉r
dr

)
dr− (NT −N·) in the sense of indistinguishability. It therefore solves

BSDE(ξ, f̂ , V ) and the assertion yields by uniqueness of the solution.

2.4 Martingale Problem and Markov classes

In this section, we introduce the Markov process which will later be the forward process which will
be coupled to a BSDE in order to constitute Markovian BSDEs with no driving martingales. For
details about the exact mathematical background that we use to define our Markov process, one can
consult the Section 2.A of the Appendix. We also introduce the martingale problem related to this
Markov process.

LetE be a Polish space and T ∈ R∗+ be a fixed horizon. From now on, (Ω,F ,F) denotes the canon-
ical space and (Xt)t∈[0,T ] the canonical process defined in Definition 2.A.1. We consider a canonical
Markov class (Ps,x)(s,x)∈[0,T ]×E associated to a transition kernel measurable in time as defined in Def-
initions 2.A.5 and 2.A.4, and for any (s, x) ∈ [0, T ]×E, (Ω,Fs,x,Fs,x,Ps,x) will denote the stochastic
basis introduced in Definition 2.A.9 and which fulfills the usual conditions.

The following notion of Martingale Problem comes from [60] Chapter XI.
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Definition 2.4.1. Let χ be a family of stochastic processes defined on a filtered space (Ω̃, F̃ , F̃). We say that
a probability measure P defined on (Ω̃, F̃) solves the martingale problem associated to χ if under P all
elements of χ are inMloc. We denoteMP(χ) the set of probability measures solving this martingale problem.
P inMP(χ) is said to be extremal if there can not exist distinct probability measuresQ,Q′ inMP(χ) and
α ∈]0, 1[ such that P = αQ+ (1− α)Q′.

We now introduce a Martingale problem associated to an operator, following closely the formal-
ism of D.W. Stroock and S.R.S Varadhan in [85]. We will see in Remark 2.4.3 that both Definitions
2.4.1 and 2.4.2 are closely related.

Definition 2.4.2. Let us consider a domain D(a) ⊂ B([0, T ] × E,R) which is a linear algebra; a linear
operator a : D(a) −→ B([0, T ]× E,R) and a non-decreasing continuous function V : [0, T ]→ R+ starting
at 0.
We say that a set of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on (Ω,F) solves the martingale problem
associated to (D(a), a, V ) if, for any
(s, x) ∈ [0, T ]× E, Ps,x verifies

(a) Ps,x(∀t ∈ [0, s], Xt = x) = 1;

(b) for every φ ∈ D(a),
(
t 7−→ φ(t,Xt)− φ(s, x)−

∫ t
s a(φ)(r,Xr)dVr

)
,

t ∈ [s, T ], is a cadlag (Ps,x,F)-local martingale.

We say that the Martingale Problem is well-posed if for any (s, x) ∈ [0, T ]× E, Ps,x is the only probability
measure satisfying those two properties.

Remark 2.4.3. In other words, (Ps,x)(s,x)∈[0,T ]×E solves the martingale problem associated to (D(a), a, V ) if
and only if, for any (s, x) ∈ [0, T ]× E,
Ps,x ∈MP(χs,x) (see Definition 2.4.1), where χs,x is the family of processes{
t 7→ 1[s,T ](t)

(
φ(t,Xt)− φ(s, x)−

∫ t
s a(φ)(r,Xr)dVr

)∣∣∣φ ∈ D(a)
}

, together with processes{
t 7→ 1{r}(t)(Xt − x)

∣∣r ∈ [0, s]
}

.

Notation 2.4.4. For every (s, x) ∈ [0, T ]× E and φ ∈ D(a), the process
t 7→ 1[s,T ](t)

(
φ(t,Xt)− φ(s, x)−

∫ t
s a(φ)(r,Xr)dVr

)
will be denoted M [φ]s,x.

M [φ]s,x is a cadlag (Ps,x,F)-local martingale which is equal to 0 on [0, s], and by Proposition
2.A.10, it is also a (Ps,x,Fs,x)-local martingale.

The following Hypothesis 2.4.5 is assumed for the rest of this section.

Hypothesis 2.4.5. The Markov class (Ps,x)(s,x)∈[0,T ]×E solves a well-posed Martingale Problem associated
to a triplet (D(a), a, V ) in the sense of Definition 2.4.2.

The bilinear operator below was introduced (in the case of time-homogeneous operators) by J.P.
Roth in potential analysis (see Chapter III in [79]), and popularized by P.A. Meyer in the study of
homogeneous Markov processes, see e.g. [34] Chapter XV Comment 23 or [60] Remark 13.46. It
has finally become a fundamental tool in the study of Markov processes and semi-groups, see for
instance [3]. It will be central in our work.

Definition 2.4.6. We set

Γ :
D(a)×D(a) → B([0, T ]× E)

(φ, ψ) 7→ a(φψ)− φa(ψ)− ψa(φ).
(2.4.1)

When φ = ψ, Γ(φ, φ) will be denoted Γ(φ). The operator Γ is called the carré du champs operator.
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This operator will appear in the expression of the angular bracket of the local martingales that we
have defined.

Proposition 2.4.7. For any φ ∈ D(a) and (s, x) ∈ [0, T ]× E, M [φ]s,x belongs to H2
0,loc. Moreover, for any

(φ, ψ) ∈ D(a)×D(a) and (s, x) ∈ [0, T ]× E, we have

〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·
s

Γ(φ, ψ)(r,Xr)dVr,

on the interval [s, T ], in the stochastic basis (Ω,Fs,x,Fs,x,Ps,x).

Proof. We fix some (s, x) ∈ [0, T ] × E and the associated probability Ps,x. For any φ, ψ in D(a), by
integration by parts on [s, T ] we have

M [φ]s,xM [ψ]s,x

=
∫ ·
sM [φ]s,x

r− dM [ψ]s,xr +
∫ ·
sM [ψ]s,x

r− dM [φ]s,xr + [M [φ]s,x,M [ψ]s,x]
=

∫ ·
sM [φ]s,x

r− dM [ψ]s,xr +
∫ ·
sM [ψ]s,x

r− dM [φ]s,xr + [φ(·, X·), ψ(·, X·)]
=

∫ ·
sM [φ]s,x

r− dM [ψ]s,xr +
∫ ·
sM [ψ]s,x

r− dM [φ]s,xr + φψ(·, X·)
−φψ(s, x)−

∫ ·
s φ(r−, Xr−)dψ(r,Xr)−

∫ ·
s ψ(r−, Xr−)dφ(r,Xr).

Since φψ belongs to D(a), we can use the decomposition of φψ(·, X·) given by (b) in Definition
2.4.2 and

M [φ]s,xM [ψ]s,x

=
∫ ·
sM [φ]s,x

r− dM [ψ]s,xr +
∫ ·
sM [ψ]s,x

r− dM [φ]s,xr +
∫ ·
s a(φψ)(r,Xr)dVr

+M s,x[φψ]−
∫ ·
s φa(ψ)(r,Xr)dVr −

∫ ·
s ψa(φ)(r,Xr)dVr

−
∫ ·
s φ(r−, Xr−)dM s,x[ψ]r −

∫ ·
s ψ(r−, Xr−)dM s,x[φ]r

=
∫ ·
s Γ(φ, ψ)(r,Xr)dVr +

∫ ·
sM [φ]s,x

r− dM [ψ]s,xr +
∫ ·
sM [ψ]s,x

r− dM [φ]s,xr
+M s,x[φψ]−

∫ ·
s φ(r−, Xr−)dM s,x[ψ]r −

∫ ·
s ψ(r−, Xr−)dM s,x[φ]r.

(2.4.2)

Since V is continuous, this implies that M [φ]s,xM [ψ]s,x is a special semimartingale with bounded
variation predictable part

∫ ·
s Γ(φ, ψ)(r,Xr)dVr. In particular taking φ = ψ, we have on [s, T ] that

(M [φ]s,x)2 =
∫ ·
s Γ(φ)(r,Xr)dVr +N s,x, where N s,x is some local martingale. The first element in pre-

vious sum is locally bounded since it is a continuous process. The second one is locally integrable as
every local martingale. Finally (M [φ]s,x)2 is locally integrable, implying that M [φ]s,x is inH2

0,loc.

Let us come back to two given φ, ψ ∈ D(a). Since we know that M [φ]s,x, M [ψ]s,x belong to H2
0,loc we

can consider 〈M [φ]s,x,M [ψ]s,x〉which, by definition, is the unique predictable process with bounded
variation such that
M [φ]s,xM [ψ]s,x − 〈M [φ]s,x,M [ψ]s,x〉 is a local martingale. So necessarily, taking (2.4.2) into account,
〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·
s Γ(φ, ψ)(r,Xr)dVr.

Taking φ = ψ in Proposition 2.4.7, yields the following.

Corollary 2.4.8. For any (s, x) ∈ [0, T ]× E and φ ∈ D(a), M [φ]s,x ∈ H2,V
loc .

Proposition 2.4.9. Let (s, x) ∈ [0, T ]×E and Ps,x be fixed. If N ∈ H∞0,loc is strongly orthogonal to M [φ]s,x

for all φ ∈ D(a) then it is necessarily equal to 0.

Proof. In Hypothesis 2.4.5, for any (s, x) ∈ [0, T ] × E we have assumed that Ps,x was the unique
element of MP(χs,x), where χs,x was introduced in Remark 2.4.3. Therefore Ps,x is extremal in
MP(χs,x). So thanks to the Jacod-Yor Theorem (see e.g. Theorem 11.2 in [60]), we know that if an
element N ofH∞0,loc is strongly orthogonal to all the M [φ]s,x then it is equal to zero.
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Proposition 2.4.10. If Hypothesis 2.4.5 is verified then for any (s, x) ∈ [0, T ] × E, in the stochastic basis
(Ω,Fs,x,Fs,x,Ps,x), we haveH2

0 = H2,V .

Proof. We fix (s, x) ∈ [0, T ] × E. It is enough to show the inclusion H2
0 ⊂ H2,V . We start considering

a bounded martingale N ∈ H∞0 and showing that it belongs to H2,V . Since N belongs to H2
0, we

can consider the corresponding NV , N⊥V in H2
0, appearing in the statement of Proposition 2.3.5. We

show below that NV and N⊥V are locally bounded, which will permit us to use Jacod-Yor theorem
on N⊥V .

Indeed, by Proposition 2.3.5 there exists a predictable process K such that
NV =

∫ ·
s 1{Kr<1}dNr and N⊥V =

∫ ·
s 1{Kr=1}dNr. So if N is bounded then it has bounded jumps; by

previous way of characterizing NV and N⊥V , their jumps can be expressed (∆NV )t = 1{Kt<1}∆Nt

and (∆N⊥V )t = 1{Kt=1}∆Nt (see Theorem 8 Chapter IV.3 in [78]), so they also have bounded jumps
which implies that they are locally bounded, see (2.4) in [60].

So N⊥V is in H∞0,loc and by construction it belongs to H2,⊥V . Since by Corollary 2.4.8, all the
M [φ]s,x belong to H2,V

loc , then, by Proposition 2.3.6, N⊥V is strongly orthogonal to all the M [φ]s,x.
Consequently, by Proposition 2.4.9, N⊥V is equal to zero. This shows that N = NV which by con-
struction belongs to H2,V , and consequently that H∞0 ⊂ H2,V , which concludes the proof when N is
a bounded martingale.

We can conclude by density arguments as follows. Let M ∈ H2
0. For any integer n ∈ N∗, we

denote by Mn the martingale in H∞0 defined as the cadlag version of t 7→ Es,x[((−n) ∨MT ∧ n)|Ft].
Now (Mn

T −MT )2 −→
n→∞

0 a.s. and this sequence is bounded by 4M2
T which is an integrable r.v.

So by the dominated convergence theorem Es,x
[
(Mn

T −MT )2
]
−→
n→∞

0. Then by Doob’s inequality,

sup
t∈[0,T ]

(Mn
t −Mt)

L2

−→
n→∞

0 meaning that Mn H2

−→
n→∞

M . Since H∞0 ⊂ H2,V , then Mn belongs to H2,V for

any n ≥ 0. MoreoverH2,V is closed inH2, since by Proposition 2.3.6, it is a sub-Hilbert space. Finally
we have shown that M ∈ H2,V .

Since V is continuous, it follows in particular that every (Ps,x,Fs,x)-square integrable martingale
has a continuous angular bracket. By localization, the same assertion holds for local square integrable
martingales.

We will now be interested in extending the domain D(a).
For any (s, x) ∈ [0, T ]× E we define the positive bounded potential measure U(s, x, ·) on

([0, T ]× E,B([0, T ])⊗ B(E)) by

U(s, x, ·) :
B([0, T ])⊗ B(E) −→ [0, VT ]

A 7−→ Es,x
[∫ T
s 1{(t,Xt)∈A}dVt

]
.

Definition 2.4.11. A Borel setA ⊂ [0, T ]×E will be said to be of zero potential if, for any (s, x) ∈ [0, T ]×E
we have U(s, x,A) = 0.

Notation 2.4.12. Let p > 0. We introduce
Lps,x := Lp(U(s, x, ·)) =

{
f ∈ B([0, T ]× E,R) : Es,x

[∫ T
s |f |

p(r,Xr)dVr

]
<∞

}
.

That classical Lp-space is equipped with the seminorm

‖ · ‖p,s,x : f 7→
(
Es,x

[∫ T
s |f(r,Xr)|pdVr

]) 1
p . We also introduce

L0
s,x := L0(U(s, x, ·)) =

{
f ∈ B([0, T ]× E,R) :

∫ T

s
|f |(r,Xr)dVr <∞ Ps,x a.s.

}
.
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We then denote for any p ∈ N
LpX =

⋂
(s,x)∈[0,T ]×E

Lps,x. (2.4.3)

Let N be the linear sub-space of B([0, T ]× E,R) containing all functions which are equal to 0, U(s, x, ·) a.e.
for every (s, x).

For any p ∈ N, we define the quotient space LpX = LpX/N .
If p ∈ N∗,LpX can be equipped with the topology generated by the family of semi-norms (‖ · ‖p,s,x)(s,x)∈[0,T ]×E

which makes it a separate locally convex topological vector space, see Theorem 5.76 in [1].

Proposition 2.4.13. Let f and g be in L0
X . Then f and g are equal up to a set of zero potential if and only if

for any (s, x) ∈ [0, T ]×E, the processes
∫ ·
s f(r,Xr)dVr and

∫ ·
s g(r,Xr)dVr are indistinguishable underPs,x.

Of course in this case f and g correspond to the same element of L0
X .

Proof. LetPs,x be fixed. Evaluating the total variation of
∫ ·
s(f−g)(r,Xr)dVr yields that

∫ ·
s f(r,Xr)dVr

and
∫ ·
s g(r,Xr)dVr are indistinguishable if and only if

∫ T
s |f − g|(r,Xr)dVr = 0 a.s. Since that r.v. is

non-negative, this is true if and only if Es,x
[∫ T
s |f − g|(r,Xr)dVr

]
= 0 and therefore if and only if

U(s, x,N) = 0, where N is the Borel subset of [0, T ] × E, defined by {(t, y) : f(t, y) 6= g(t, y)}. This
concludes the proof of Proposition 2.4.13.

We can now define our notion of extended generator.

Definition 2.4.14. We first define the extended domain D(a) as the set functions φ ∈ B([0, T ]× E,R) for
which there exists
ψ ∈ B([0, T ]× E,R) such that under any Ps,x the process

1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s
ψ(r,Xr)dVr

)
(2.4.4)

(which is not necessarily cadlag) has a cadlag modification inH2
0.

Proposition 2.4.15. Let φ ∈ B([0, T ]×E,R). There is at most one (up to zero potential sets) ψ ∈ B([0, T ]×
E,R) such that under any Ps,x, the process defined in (2.4.4) has a modification which belongs toMloc.
If moreover φ ∈ D(a), then a(φ) = ψ up to zero potential sets. In this case, according to Notation 2.4.4, for
every (s, x) ∈ [0, T ]× E, M [φ]s,x is the Ps,x cadlag modification inH2

0 of
1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s ψ(r,Xr)dVr

)
.

Proof. Let ψ1 and ψ2 be two functions such that for any Ps,x,
1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s ψ

i(r,Xr)dVr
)
, i = 1, 2, admits a cadlag modification which is a local

martingale.
Then, under a fixed Ps,x, φ(·, X·) has two cadlag modifications which are therefore indistin-

guishable, and by uniqueness of the decomposition of special semimartingales,
∫ ·
s ψ

1(r,Xr)dVr and∫ ·
s ψ

2(r,Xr)dVr are indistinguishable on [s, T ]. Since this is true under anyPs,x, the two functions are
equal up to a zero-potential set because of Proposition 2.4.13.

Concerning the second part of the statement, let φ ∈ D(a)∩D(a). The result follows by Definition
2.4.2 and the uniqueness of the function φ established just before.
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Definition 2.4.16. Let φ ∈ D(a) as in Definition 2.4.14. We denote again by M [φ]s,x, the unique cadlag ver-
sion of the process (2.4.4) inH2

0. Taking Proposition 2.4.13 into account, this will not generate any ambiguity
with respect to Notation 2.4.4. Proposition 2.4.13, also permits to define without ambiguity the operator

a :
D(a) −→ L0

X

φ 7−→ ψ.

a will be called the extended generator.

We now want to extend the carré du champs operator Γ(·, ·) to D(a)×D(a).

Proposition 2.4.17. Let φ1, φ2 be in D(a). There exists a (unique up to zero-potential sets) function in
B([0, T ]× E,R) which we will denote G(φ1, φ2) such that under any Ps,x,

〈M [φ1]s,x,M [φ2]s,x〉 =

∫ ·
s
G(φ1, φ2)(r,Xr)dVr, [s, T ],

up to indistinguishability.
If moreover φ1 and φ2 belong to D(a), then Γ(φ1, φ2) = G(φ1, φ2) up to zero potential sets.

Proof. Let φ1, φ2 ∈ D(a) according to Definition 2.4.16. We take some representative of the classes
a(φi) for i = 1, 2, still denoted by the same symbol and define the square integrable MAFs (see
Definition 2.A.11) M [φi] by

M [φi]
t
u(ω) =


φi(u,Xu(ω))− φi(t,Xt(ω))−

∫ u
t a(φi)(r,Xr(ω))dVr

if
∫ u
t |a(φi)|(r,Xr(ω))dVr < +∞

0 otherwise.
(2.4.5)

Indeed, for every (s, x) ∈ [0, T ]× E, M [φi]
s,x is the cadlag version under Ps,x.

The existence of G(φ1, φ2) therefore derives from Proposition 2.A.12. By Proposition 2.4.13 that
function is determined up to a zero-potential set.

The second statement holds because of Proposition 2.4.7.

Definition 2.4.18. The bilinear operator G : D(a) × D(a) 7−→ L0
X will be called the extended carré du

champs operator.
When φ1 = φ2, G(φ1, φ1) will be denoted G(φ1).

According to Definition 2.4.14, we do not have necessarily D(a) ⊂ D(a), however we have the
following.

Corollary 2.4.19. If φ ∈ D(a) and Γ(φ) ∈ L1
X , then φ ∈ D(a) and (a(φ),Γ(φ)) = (a(φ),G(φ)) up to zero

potential sets.

Proof. Given some φ ∈ D(a), by Definition 2.4.14, if for every (s, x) ∈ [0, T ] × E, M [φ]s,x is square
integrable, then φ ∈ D(a). By Proposition 2.4.7, for every (s, x) ∈ [0, T ] × E M [φ]s,x is a Ps,x square
integrable if and only if Γ(φ) ∈ L1

X . So the statement holds because of Propositions 2.4.15 and 2.4.17.
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2.5 Pseudo-PDEs and associated Markovian BSDEs with no driving mar-
tingale

In this section, we still consider T ∈ R∗+, a Polish spaceE and the associated canonical space (Ω,F ,F)
and canonical process (Xt)t∈[0,T ], see Definition 2.A.1. We also consider a canonical Markov class
(Ps,x)(s,x)∈[0,T ]×E and assume the following for the rest of the Section.

Hypothesis 2.5.1. The transition kernel of (Ps,x)(s,x)∈[0,T ]×E is measurable in time (see Definitions 2.A.5
and 2.A.4) and (Ps,x)(s,x)∈[0,T ]×E solves a well-posed martingale problem associated to a triplet (D(a), a, V ),
see Definition 2.4.2 and Hypothesis 2.4.5.

We will investigate here a specific type of BSDE with no driving martingaleBSDE(ξ, f̂ , V ) which
we will call of Markovian type, or Markovian BSDE, in the following sense. The process V will be
the (deterministic) function V introduced in Definition 2.4.2, the final condition ξ will only depend
on the final value of the canonical process XT and the randomness of the driver f̂ at time t will only
appear via the value at time t of the forward process X . Given a function
f : [0, T ]× E ×R×R→ R, we will set f̂(t, ω, y, z) = f(t,Xt(ω), y, z) for t ∈ [0, T ], ω ∈ Ω, y, z ∈ R.

That BSDE will be connected with the deterministic problem below.

Notation 2.5.2. From now on, we fix some g ∈ B(E,R) and
f ∈ B([0, T ]× E ×R×R,R).

Definition 2.5.3. We will call Pseudo-Partial Differential Equation (in short Pseudo-PDE) the following
equation with final condition:{

a(u)(t, x) + f
(
t, x, u(t, x),Γ(u)

1
2 (t, x)

)
= 0 on [0, T ]× E

u(T, ·) = g.
(2.5.1)

We will say that u is a classical solution of the Pseudo-PDE if it belongs to D(a) and verifies (2.5.1).

Notation 2.5.4. Equation (2.5.1) will be denoted Pseudo− PDE(f, g).

For the rest of this section, we will also assume that f, g verify the following.
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Hypothesis 2.5.5. • g(XT ) is L2 under Ps,x for every (s, x) ∈ [0, T ]× E;

• t 7−→ f(t,Xt, 0, 0) ∈ L2
X ;

• there exist KY ,KZ > 0 such that for all (t, x, y, y′, z, z′),

|f(t, x, y, z)− f(t, x, y′, z′)| ≤ KY |y − y′|+KZ |z − z′|. (2.5.2)

With the equation Pseudo − PDE(f, g), we will associate the family of BSDEs with no driving
martingale indexed by (s, x) ∈ [0, T ]×E and defined on the interval [0, T ] and in the stochastic basis
(Ω,Fs,x,Fs,x,Ps,x), given by

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

√
d〈M s,x〉
dV

(r)

)
dVr − (M s,x

T −M s,x
t ). (2.5.3)

Notation 2.5.6. Equation (2.5.3) will be denoted BSDEs,x(f, g). It corresponds to BSDE(g(XT ), f̂ , V )
with P := Ps,x.

Remark 2.5.7. .

1. If Hypothesis 2.5.5 is verified then Hypothesis 2.3.8 is verified for (2.5.3). By Theorem 2.3.21, for any
(s, x), BSDEs,x(f, g) has a unique solution, in the sense of Definition 2.3.10.

2. Even if the underlying process X admits no (even generalized) moments, given a couple (f, g) such that
f(·, ·, 0, 0) and g are bounded, the considerations of this section still apply. In particular the connection
between the BSDEs,x(f, g) and the corresponding Pseudo− PDE(f, g) still exists.

Notation 2.5.8. From now on, (Y s,x,M s,x) will always denote the (unique) solution of BSDEs,x(f, g).

The goal of our work is to understand if and how the solutions of equations BSDEs,x(f, g) pro-
duce a solution of Pseudo− PDE(f, g) and reciprocally.

We will start by showing that if Pseudo − PDE(f, g) has a classical solution, then this one provides
solutions to the associated BSDEs,x(f, g).

Proposition 2.5.9. Let u be a classical solution of Pseudo−PDE(f, g) verifying Γ(u) ∈ L1
X . Then, for any

(s, x) ∈ [0, T ]×E, ifM [u]s,x is as in Notation 2.4.4, we have that (u(·, X·),M [u]s,x) and (Y s,x,M s,x
· −M s,x

s )
are Ps,x-indistinguishable on [s, T ].

Proof. Let (s, x) be fixed. Since u ∈ D(a), the martingale problem in the sense of Definition 2.4.2 and
(2.5.1) imply that, on [s, T ], under Ps,x

u(·, X·)
= u(T,XT )−

∫ T
· a(u)(r,Xr)dVr − (M [u]s,xT −M [u]s,x· )

= g(XT ) +
∫ T
· f

(
r,Xr, u(r,Xr),Γ(u)

1
2 (r,Xr)

)
− (M [u]s,xT −M [u]s,x· )

= g(XT ) +
∫ T
· f

(
r,Xr, Yr,

√
d〈M [u]s,x〉

dV (r)

)
dVr − (M [u]s,xT −M [u]s,x· ),

where the latter equality comes from Proposition 2.4.7. Since Γ(u) ∈ L1
X it follows thatEs,x [〈M [u]s,x〉T ] =

Es,x
[∫ T
s Γ(u)(r,Xr)dVr

]
< ∞. This means that M [u]s,x ∈ H2

0, so by Lemma 2.3.24 (u(·, X·),M [u]s,x· )

and (Y s,x,M s,x
· −M s,x

s ) are indistinguishable on [s, T ].



2.5. Pseudo-PDEs and associated Markovian BSDEs with no driving martingale 51

We will now adopt the converse point of view, starting with the solutions of the equations
BSDEs,x(f, g). Below we will show that there exist Borel functions u and v ≥ 0 such that for any
(s, x) ∈ [0, T ] × E, for all t ∈ [s, T ], Y s,x

t = u(t,Xt) P
s,x-a.s., and d〈Ms,x〉

dV = v2(·, X·) dV ⊗ dPs,x

a.e. on [s, T ]. This will be the object of Theorem 2.5.15, whose an analogous formulation exists in the
Brownian framework, see e.g. Theorem 4.1 in [43]. We start with a lemma.

Lemma 2.5.10. Let f̃ ∈ L2
X . Let, for any (s, x) ∈ [0, T ]× E, (Ỹ s,x, M̃ s,x) be the (unique by Theorem 2.3.21

and Remark 2.3.23) solution of

Ỹ s,x
t = g(XT ) +

∫ T

t
f̃ (r,Xr) dVr − (M̃ s,x

T − M̃ s,x
t ), t ∈ [s, T ],

in (Ω,Fs,x,Fs,x,Ps,x). Then there exist two functions u and v ≥ 0 in B([0, T ] × E,R) such that for any
(s, x) ∈ [0, T ]× E {

∀t ∈ [s, T ] : Ỹ s,x
t = u(t,Xt) Ps,xa.s.

d〈M̃s,x〉
dV = v2(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

Proof. We set u : (s, x) 7→ Es,x
[
g(XT ) +

∫ T
s f̃ (r,Xr) dVr

]
which is Borel by Proposition 2.A.7 and

Lemma 2.A.8. Therefore by (2.A.3) in Remark 2.A.6, for a fixed t ∈ [s, T ] Ps,x- a.s. we have

u(t,Xt) = Et,Xt
[
g(XT ) +

∫ T
t f̃ (r,Xr) dVr

]
= Es,x

[
g(XT ) +

∫ T
t f̃ (r,Xr) dVr

∣∣∣Ft]
= Es,x

[
Ỹ s,x
t + (M̃ s,x

T − M̃ s,x
t )|Ft

]
= Ỹ s,x

t ,

since M̃ s,x is a martingale and Ỹ s,x is adapted. Then the square integrable AF (see Definition 2.A.11)
defined by

M t
t′(ω) =


u(t′, Xt′)− u(t,Xt) +

∫ t′
t f̃(r,Xr(ω))dVr

if
∫ t′
t |f̃ |(r,Xr(ω))dVr < +∞

0 otherwise
(2.5.4)

is a MAF whose cadlag version under Ps,x is M̃ s,x. The existence of the function v follows setting
v =
√
k in Proposition 2.A.12.

We now define the Picard iterations associated to the contraction defining the solution of the
BSDE associated with BSDEs,x(f, g).

Notation 2.5.11. For a fixed (s, x) ∈ [0, T ]× E, Φs,x will denote the contraction Φ : L2(dV ⊗ dPs,x)×H2
0

introduced in Notation 2.3.15 with respect to the BSDE associated with BSDEs,x(f, g), see Notation 2.5.8 In
the sequel we will not distinguish between a couple (Ẏ ,M) in L2(dV ⊗ dPs,x)×H2

0 and (Y,M), where Y is
the reference cadlag process of Ẏ , according to Definition 2.3.13. We then convene the following.

1. (Y 0,s,x,M0,s,x) := (0, 0);

2. ∀k ∈ N∗ : (Y k,s,x,Mk,s,x) := Φs,x(Y k−1,s,x,Mk−1,s,x),

meaning that for k ∈ N∗, (Y k,s,x,Mk,s,x) is the solution of the BSDE

Y k,s,x = g(XT ) +

∫ T

·
f

(
r,Xr, Y

k−1,s,x,

√
d〈Mk−1,s,x〉

dV
(r)

)
dVr − (Mk,s,x

T −Mk,s,x
· ). (2.5.5)
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The processes (Y k,s,x,Mk,s,x) will be called the Picard iterations of BSDEs,x(f, g)

Proposition 2.5.12. For each k ∈ N, there exist functions uk and vk ≥ 0 in B([0, T ] × E,R) such that for
every (s, x) ∈ [0, T ]× E {

∀t ∈ [s, T ] : Y k,s,x
t = uk(t,Xt) Ps,xa.s.

d〈Mk,s,x〉
dV = v2

k(·, X·) dV ⊗ dPs,x a.e. on [s, T ].
(2.5.6)

Lemma 2.5.13. Let (s, x) ∈ [0, T ] × E be fixed and let φ, ψ be two measurable processes. If φ and ψ are
Ps,x-modifications of each other, then they are equal dV ⊗ dPs,x a.e.

Proof. Since for any t ∈ [0, T ], φt = ψt P
s,x a.s. we can write by Fubini’s theoremEs,x

[∫ T
0 1φt 6=ψtdVt

]
=∫ T

0 P
s,x(φt 6= ψt)dVt = 0.

Proof of Proposition 2.5.12.
We proceed by induction on k. It is clear that (u0, v0) = (0, 0) verifies the assertion for k = 0.
Now let us assume that functions uk−1, vk−1 exist, for some integer k ≥ 1, verifying (2.5.6) for k
replaced with k − 1.
We fix (s, x) ∈ [0, T ]×E. By Lemma 2.5.13, (Y k−1,s,x, Zk−1,s,x) = (uk−1, vk−1)(·, X·) dV ⊗Ps,x a.e. on
[s,T]. Therefore by (2.5.5), on [s, T ]

Y k,s,x = g(XT ) +
∫ T
· f (r,Xr, uk−1(r,Xr), vk−1(r,Xr)) dVr − (Mk,s,x

T −Mk,s,x
· ).

Since Φs,x maps L2(dV ⊗ dPs,x)×H2
0 into itself (see Definition 2.3.15), obviously all the Picard itera-

tions belong to L2(dV ⊗dPs,x)×H2
0. In particular, Y k−1,s,x and

√
d〈Mk−1,s,x〉

dV belong to L2(dV ⊗dPs,x).
So, by recurrence assumption on uk−1 and vk−1, it follows that Therefore, using the assumptions f in
Hypothesis 2.5.5, f(·, ·, uk−1, vk−1) ∈ L2

X . The existence of uk and vk now comes from Lemma 2.5.10
applied to f̃ := f(·, ·, uk−1, vk−1). This establishes the induction step for a general k and allows to
conclude the proof.

Now we intend to pass to the limit in k. For any (s, x) ∈ [0, T ] × E, we have seen in Proposition
2.3.20 that Φs,x is a contraction in

(
L2(dV ⊗ dPs,x)×H2

0, ‖ · ‖λ
)

for some λ > 0, so we know that the
sequence (Y k,s,x,Mk,s,x) converges to (Y s,x,M s,x) in this topology.
The proposition below also shows an a.e. corresponding convergence, adapting the techniques of
Corollary 2.1 in [43].

Proposition 2.5.14. For any (s, x) ∈ [0, T ] × E, Y k,s,x −→
k→∞

Y s,x dV ⊗ dPs,x a.e. and
√

d〈Mk,s,x〉
dV −→

k→∞√
d〈Ms,x〉
dV dV ⊗ dPs,x a.e.

Proof. We fix (s, x) and the associated probability. In this proof, all superscripts s, x are dropped. We

set Zk =

√
d〈Mk〉
dV and Z =

√
d〈M 〉
dV . By Proposition 2.3.20, there exists λ > 0 such that for any k ∈ N∗

E
[∫ T

0 e−λVr |Y k+1
r − Y k

r |2dVr +
∫ T

0 e−λVrd〈Mk+1 −Mk〉r
]

≤ 1
2E
[∫ T

0 e−λVr |Y k
r − Y k−1

r |2dVr +
∫ T

0 e−λVrd〈Mk −Mk−1〉r
]
,

therefore ∑
k≥0

E
[∫ T

0 e−λVr |Y k+1
r − Y k

r |2dVr
]

+E
[∫ T

0 e−λVrd〈Mk+1 −Mk〉r
]

≤
∑
k≥0

1
2k

(
E
[∫ T

0 e−λVr |Y 1
r |2dVr

]
+E

[∫ T
0 e−λVrd〈M1〉r

])
< ∞.

(2.5.7)
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Thanks to (2.3.9) and (2.5.7) we have∑
k≥0

(
E
[∫ T

0 e−λVr |Y k+1
r − Y k

r |2dVr
]

+E
[∫ T

0 e−λVr |Zk+1
r − Zkr |2dVr

])
<∞. So by Fubini’s theorem

we have
E
[∫ T

0 e−λVr
(∑

k≥0(|Y k+1
r − Y k

r |2 + |Zk+1
r − Zkr |2)

)
dVr

]
<∞.

Consequently the sum
∑

k≥0

(
|Y k+1
r (ω)− Y k

r (ω)|2 + |Zk+1
r (ω)− Zkr (ω)|2

)
is finite on a set of full dV ⊗

dPmeasure. So on this set of full measure, the sequence (Y k+1
t (ω), Zk+1

t (ω)) converges, and the limit
is necessarily equal to (Yt(ω), Zt(ω)) dV ⊗ dP a.e. because of the L2(dV ⊗ dP) convergence that we
have mentioned in the lines before the statement of the present Proposition 2.5.14.

Theorem 2.5.15. There exist two functions u and v ≥ 0 in
B([0, T ]× E,R) such that for every (s, x) ∈ [0, T ]× E,{

∀t ∈ [s, T ] : Y s,x
t = u(t,Xt) Ps,x a.s.

d〈Ms,x〉
dV = v2(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

(2.5.8)

Proof. We set ū := limsup
k∈N

uk, in the sense that for any (s, x) ∈ [0, T ]× E,

ū(s, x) = limsup
k∈N

uk(s, x) and v := limsup
k∈N

vk. ū and v are Borel functions. We know by Propositions

2.5.12, 2.5.14 and Lemma 2.5.13 that for every (s, x) ∈ [0, T ]× E{
uk(·, X·) −→

k→∞
Y s,x dV ⊗ dPs,x a.e. on [s, T ]

vk(·, X·) −→
k→∞

Zs,x dV ⊗ dPs,x a.e. on [s, T ],

where Zs,x :=

√
d〈Ms,x〉
dV . Therefore, for some fixed (s, x) ∈ [0, T ]×E and on the set of full dV ⊗ dPs,x

measure on which these convergences hold we have
ū(t,Xt(ω)) = limsup

k∈N
uk(t,Xt(ω)) = lim

k∈N
uk(t,Xt(ω)) = Y s,x

t (ω)

v(t,Xt(ω)) = limsup
k∈N

vk(t,Xt(ω)) = lim
k∈N

vk(t,Xt(ω)) = Zs,xt (ω).
(2.5.9)

This shows in particular the existence of v and the validity of the second line of (2.5.8).

It remains to show the existence of u so that the first line of (2.5.8) holds. Thanks to the dV ⊗dPs,x
equalities concerning v and ū stated in (2.5.9), under every Ps,x we actually have

Y s,x = g(XT ) +

∫ T

·
f (r,Xr, ū(r,Xr), v(r,Xr)) dVr − (M s,x

T −M s,x
· ). (2.5.10)

Now (2.5.10) can be considered as a BSDE where the driver does not depend on y and z. For any
(s, x) ∈ [0, T ] × E, Y s,x and Zs,x belong to L2(dV ⊗ dPs,x), then by (2.5.9), so do ū(·, X·)1[s,T ] and
v(·, X·)1[s,T ], meaning that ū and v belong to L2

X . Using the two assumptions made on f in Hypoth-
esis 2.5.5, f(·, ·, ū, v) also belongs to L2

X . We can therefore apply Lemma 2.5.10 to f̃ = f(·, ·, ū, v), and
conclude to the existence of a Borel function u such that for every (s, x) ∈ [0, T ]× E, Y s,x is on [s, T ]
a Ps,x-version of u(·, X·).
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Remark 2.5.16. Since ū(·, X·) = Y s,x = u(·, X·) dV ⊗ dPs,x a.e. for every (s, x) ∈ [0, T ] × E, one can
remark that u = ū up to a zero potential set, and in particular that u ∈ L2

X since ū does.
Moreover, for any (s, x) ∈ [0, T ]× E, the stochastic convergence

(Y k,s,x,Mk,s,x)
L2(dV⊗dPs,x)×H2

−−−−−−−−−−−−→
k→∞

(Y s,x,M s,x) now has the functional counterpart

 uk
‖·‖2,s,x−−−−→ u

vk
‖·‖2,s,x−−−−→ v,

which yields

 uk
L2
X−→ u

vk
L2
X−→ v,

where we recall that the locally convex topological space L2
X was introduced in

Notation 2.4.12.

Corollary 2.5.17. For any (s, x) ∈ [0, T ] × E and for any t ∈ [s, T ], the couple of functions (u, v) obtained
in Theorem 2.5.15 verifies Ps,x a.s.

u(t,Xt) = g(XT ) +

∫ T

t
f (r,Xr, u(r,Xr), v(r,Xr)) dVr − (M s,x

T −M s,x
t ),

where M s,x denotes the martingale part of the unique solution of BSDEs,x(f, g).

Proof. The corollary follows from Theorem 2.5.15 and Lemma 2.5.13.

We now introduce now a probabilistic notion of solution for Pseudo− PDE(f, g).

Definition 2.5.18. A function u : [0, T ] × E → R will be said to be a martingale solution of Pseudo −
PDE(f, g) if u ∈ D(a) and {

a(u) = −f(·, ·, u,G(u)
1
2 )

u(T, ·) = g.
(2.5.11)

Remark 2.5.19. The first equation of (2.5.11) holds in L0
X , hence up to a zero potential set. The second one is

a pointwise equality.

Proposition 2.5.20. A classical solution u of Pseudo−PDE(f, g) such that Γ(u) ∈ L1
X , is also a martingale

solution.
Conversely, if u is a martingale solution of Pseudo − PDE(f, g) belonging to D(a), then u is a classical
solution of Pseudo− PDE(f, g) up to a zero-potential set, meaning that the first equality of (2.5.1) holds up
to a set of zero potential.

Proof. Let u be a classical solution of Pseudo− PDE(f, g) verifying
Γ(u) ∈ L1

X , Definition 2.5.3 and Corollary 2.4.19 imply that u ∈ D(a),
u(T, ·) = g, and the equalities up to zero potential sets

a(u) = a(u) = −f(·, ·, u,Γ(u)) = −f(·, ·, u,G(u)), (2.5.12)

which shows that u is a martingale solution.
Similarly, the second statement follows by Definition 2.5.18 and again Corollary 2.4.19.

Theorem 2.5.21. Assume Hypothesis 2.5.1 and 2.5.5 and let (u, v) be the functions defined in Theorem 2.5.15.
Then u ∈ D(a), v2 = G(u) and u is a martingale solution of Pseudo− PDE(f, g).

Proof. For any (s, x) ∈ [0, T ]× E, by Corollary 2.5.17, for t ∈ [s, T ], we have
u(t,Xt) − u(s, x) = −

∫ t
s f(r,Xr, u(r,Xr), v(r,Xr))dVr + (M s,x

t −M s,x
s ) Ps,x a.s. so by Definition

2.4.16, u ∈ D(a), a(u) = −f(·, ·, u, v) and



2.5. Pseudo-PDEs and associated Markovian BSDEs with no driving martingale 55

M [u]s,x = M s,x
· −M s,x

s .
Moreover by Theorem 2.5.15 we have d〈Ms,x〉

dV = v2(·, X·) dV ⊗ dPs,x a.e. on [s, T ], so by Proposition
2.4.17 it follows v2 = G(u) and therefore, the L2

X equality
a(u) = −f(·, ·, u,G(u)

1
2 ), which establishes the first line of (2.5.11).

Concerning the second line, we have for any x ∈ E,
u(T, x) = u(T,XT ) = g(XT ) = g(x)PT,x a.s. so u(T, ·) = g (in the deterministic pointwise sense).

We conclude the section with Theorem 2.5.22 which states that the previously constructed mar-
tingale solution of Pseudo− PDE(f, g) is unique.

Theorem 2.5.22. Under Hypothesis 2.5.1 and 2.5.5, Pseudo−PDE(f, g) admits a unique martingale solu-
tion.

Proof. Existence has been the object of Theorem 2.5.21.
Let u and u′ be two elements ofD(a) solving (2.5.11) and let (s, x) ∈ [0, T ]×E be fixed. By Defini-

tion 2.4.14 and Remark 2.3.23, the process u(·, X·) (respectively u′(·, X·)) under Ps,x admits a cadlag
modification U s,x (respectively U ′s,x) on [s, T ], which is a special semimartingale with decomposition

U s,x = u(s, x) +
∫ ·
s a(u)(r,Xr)dVr +M [u]s,x

= u(s, x)−
∫ ·
s f
(
r,Xr, u(r,Xr),G(u)

1
2 (r,Xr)

)
dVr +M [u]s,x

= u(s, x)−
∫ ·
s f
(
r,Xr, U

s,x,G(u)
1
2 (r,Xr)

)
dVr +M [u]s,x,

(2.5.13)

where the third equality of (2.5.13) comes from Lemma 2.5.13. Similarly we have U ′s,x = u′(s, x) −∫ ·
s f
(
r,Xr, U

′s,x,G(u′)
1
2 (r,Xr)

)
dVr +M [u′]s,x).

The processes M [u]s,x and M [u′]s,x (introduced at Definition 2.4.16) belong toH2
0; by Proposition

2.4.17, 〈M [u]s,x〉 =
∫ ·
s G(u)(r,Xr)dVr (respectively 〈M [u′]s,x〉 =

∫ ·
s G(u′, u′)(r,Xr)dVr). Moreover

since u(T, ·) = u′(T, ·) = g, then u(T,XT ) = u′(T,XT ) = g(XT ) a.s. then the couples (U s,x,M [u]s,x)
and (U ′s,x,M [u′]s,x) both verify the equation (with respect to Ps,x).

Y· = g(XT ) +

∫ T

·
f

(
r,Xr, Yr,

√
d〈M〉
dV

(r)

)
dVr − (MT −M·) (2.5.14)

on [s, T ].
Even though we do not have a priori information on the square integrability of U s,x and U ′s,x,

we know that M [u]s,x and M [u′]s,x are in H2 and equal to zero at time s, and that U s,xs and U ′s,xs are
deterministic so L2. By Lemma 2.3.24 and the fact that (U s,x,M [u]s,x) and (U ′s,x,M [u′]s,x) solve the
BSDE in the weaker sense (2.5.14), it is sufficient to conclude that both solve BSDEs,x(f, g) on [s, T ].
By Theorem 2.3.21 and Remark 2.3.23 the two couples are Ps,x-indistinguishable. This implies that
u(·, X·) and u′(·, X·) are Ps,x-modifications one of the other on [s, T ]. In particular, considering their
values at time s, we have u(s, x) = u′(s, x). We therefore have u′ = u.

Corollary 2.5.23. There is at most one classical solution u of Pseudo− PDE(f, g) such that Γ(u) ∈ L1
X .

Proof. The proof follows from Proposition 2.5.20 and Theorem 2.5.22.
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2.6 Applications

In Chapter 3 which is the continuation of the present chapter, several examples are studied. The
examples below fit in the framework of Section 2.4.
A first typical example is the setup of jump diffusions as in the formalism D.W. Stroock in [84]. These
are Markov processes which solve a Martingale problem associated to an operator of the type

a(φ) = ∂tφ+ 1
2

∑
i,j≤d

(σσᵀ)i,j∂
2
xixjφ+

∑
i≤d
βi∂xiφ

+
∫ (

φ(·, ·+ y)− φ(·, y)− 1
1+‖y‖2

∑
i≤d
yi∂xiφ

)
K(·, ·, dy),

where β is a bounded Borel function with values in Rd and σ is a continuousBorel function with
values in GLd(R), the set of invertible matrices of size d. K is a Lévy kernel.

We also study Markov processes associated to a large class of pseudo-differential operators with
the formalism of N. Jacob in [59]. A typical example of equation considered is{

∂tu− (−∆)
α
2 u = f(·, ·, u,Γα(u)

1
2 ) on [0, T ]×Rd

u(T, ·) = g.
(2.6.1)

Here, the fractional Laplace operator (−∆)
α
2 is given for someα ∈]0, 2[ by φ 7−→ cαPV

∫
Rd

(φ(·+y)−φ)
‖y‖d+α dy

where cα is some positive constant and PV denotes the principal value operator.

Γα(φ) = cαPV

∫
Rd

(φ(·, ·+ y)− φ)2

‖y‖d+α
dy (2.6.2)

is the corresponding Carré du champ. The forward process of the corresponding BSDEs is the α-
stable Levy process.

Another example of application is given by solutions of SDEs with distributional drift, which are
studied in [47]. These permit to tackle semilinear parabolic PDEs with distributional drift of type{

∂tu+ 1
2σ

2∂2
xu+ b′∂xu+ f(·, ·, u, σ|∂xu|) = 0 on [0, T ]×R

u(T, ·) = g,
(2.6.3)

where b is only a continuous function, hence b′ is a distribution.
Finally, examples in non Euclidean state spaces are given with the study of diffusions in a compact

differential manifold M . A typical example is the Brownian motion in a Riemannian manifold. The
equation considered is then of type{

∂tu+ ∆Mu+ f(·, ·, u, ‖∇Mu‖2) = 0 on [0, T ]×M
u(T, ·) = g,

(2.6.4)

where ∆M is the Laplace-Beltrami operator and∇M is the gradient in local coordinates. More general
equations are considered in Chapter 3.



Appendix

2.A Markov classes

We recall in this Appendix some basic definitions and results concerning Markov processes. For a
complete study of homogeneous Markov processes, one may consult [34], concerning non-homogeneous
Markov classes, our reference was chapter VI of [40]. Some results are proven in Chapters 1 and 3.

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 2.A.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topo-
logical space), and B(E) its Borel σ-field. E will be called the state space.

We consider T ∈ R∗+. We denote Ω := D(E) the Skorokhod space of functions from [0, T ] to E right-
continuous with left limits and continuous at time T (e.g. cadlag). For any t ∈ [0, T ] we denote the coordinate
mapping Xt : ω 7→ ω(t), and we introduce on Ω the σ-field F := σ(Xr|r ∈ [0, T ]).

On the measurable space (Ω,F), we introduce the measurable canonical process

X :
(t, ω) 7−→ ω(t)

([0, T ]× Ω,B([0, T ])⊗F) −→ (E,B(E)),

and the right-continuous filtration F := (Ft)t∈[0,T ] where Ft :=
⋂

s∈]t,T ]

σ(Xr|r ≤ s) if t < T , and FT :=

σ(Xr|r ∈ [0, T ]) = F .
(Ω,F ,F) will be called the canonical space (associated to T and E).
For any t ∈ [0, T ] we denote Ft,T := σ(Xr|r ≥ t), and for any 0 ≤ t ≤ u < T we will denote

Ft,u :=
⋂
n≥0

σ(Xr|r ∈ [t, u+ 1
n ]).

Remark 2.A.2. Previous definitions and all the notions of this Appendix, extend to a time interval equal to
R+ or replacing the Skorokhod space with the Wiener space of continuous functions from [0, T ] (orR+) to E.

Definition 2.A.3. The function

P :
(s, t, x, A) 7−→ Ps,t(x,A)

[0, T ]2 × E × B(E) −→ [0, 1],

will be called transition kernel if, for any s, t in [0, T ], x ∈ E, A ∈ B(E), it verifies

1. x 7→ Ps,t(x,A) is Borel,

2. B 7→ Ps,t(x,B) is a probability measure on (E,B(E)),

3. if t ≤ s then Ps,t(x,A) = 1A(x),

4. if s < t, for any u > t,
∫
E Ps,t(x, dy)Pt,u(y,A) = Ps,u(x,A).

57
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The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 2.A.4. A transition kernel P for which the first item is reinforced supposing that (s, x) 7−→
Ps,t(x,A) is Borel for any t, A, will be said measurable in time.

Definition 2.A.5. A canonical Markov class associated to a transition kernel P is a set of probability
measures (Ps,x)(s,x)∈[0,T ]×E defined on the measurable space (Ω,F) and verifying for any t ∈ [0, T ] and
A ∈ B(E)

Ps,x(Xt ∈ A) = Ps,t(x,A), (2.A.1)

and for any s ≤ t ≤ u
Ps,x(Xu ∈ A|Ft) = Ps,u(Xt, A) Ps,x a.s. (2.A.2)

Remark 2.A.6. Formula 1.7 in Chapter 6 of [40] states that for any F ∈ Ft,T yields

Ps,x(F |Ft) = Pt,Xt(F ) = Ps,x(F |Xt) P
s,xa.s. (2.A.3)

Property (2.A.3) will be called Markov property.

For the rest of this section, we are given a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E which transi-
tion kernel is measurable in time.

Proposition 2.A.7. For any event F ∈ F , (s, x) 7−→ Ps,x(F ) is Borel. For any random variable Z, if the
function (s, x) 7−→ Es,x[Z] is well-defined (with possible values in [−∞,∞]), then it is Borel.

Lemma 2.A.8. Let V be a continuous non-decreasing function on [0, T ] and
f ∈ B([0, T ]× E) be such that for every (s, x), Es,x[

∫ T
s |f(r,Xr)|dVr] <∞, then

(s, x) 7−→ Es,x[
∫ T
s f(r,Xr)dVr] is Borel.

Definition 2.A.9. For any (s, x) ∈ [0, T ]× E we will consider the (s, x)-completion(
Ω,Fs,x,Fs,x := (Fs,xt )t∈[0,T ],P

s,x
)

of the stochastic basis (Ω,F ,F,Ps,x) by defining Fs,x as the Ps,x-
completion of F , by extending Ps,x to Fs,x and finally by defining Fs,xt as the Ps,x-closure of Ft for every
t ∈ [0, T ].

We remark that, for any (s, x) ∈ [0, T ] × E, (Ω,Fs,x,Fs,x,Ps,x) is a stochastic basis fulfilling the
usual conditions.

Proposition 1.3.13 in Chapter 1 states the following.

Proposition 2.A.10. Let (s, x) ∈ [0, T ]×E be fixed, Z be a random variable and t ∈ [s, T ], thenEs,x[Z|Ft] =
Es,x[Z|Fs,xt ] Ps,x a.s.

We recall here Definition 1.4.1 in Chapter 1.

Definition 2.A.11. We denote ∆ := {(t, u) ∈ [0, T ]2|t ≤ u}. On (Ω,F), we define a non-homogeneous
Additive Functional (shortened AF) as a random-field indexed by ∆ A := (Atu)(t,u)∈∆, with values in R,
verifying the two following conditions.

1. For any (t, u) ∈ ∆, Atu is Ft,u-measurable;

2. for any (s, x) ∈ [0, T ] × E, there exists a real cadlag Fs,x-adapted process As,x (taken equal to zero on
[0, s] by convention) such that for any x ∈ E and s ≤ t ≤ u, Atu = As,xu −As,xt Ps,x a.s.

As,x will be called the cadlag version of A under Ps,x.

An AF will be called a non-homogeneous square integrable Martingale Additive Functional (shortened
square integrable MAF) if under any Ps,x its cadlag version is a square integrable martingale.
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A immediate consequence of Proposition 1.4.17 in Chapter 1 is the following.

Proposition 2.A.12. Given an increasing continuous function V , if in every stochastic basis (Ω,Fs,x,Fs,x,Ps,x),
we haveH2

0 = H2,V , then we can state the following.
Let M and M ′ be two square integrable MAFs and let M s,x (respectively M ′s,x) be the cadlag version of M
(respectively M ′) under a fixed Ps,x. There exists a Borel function k ∈ B([0, T ] × E,R) such that for any
(s, x) ∈ [0, T ]× E, 〈M s,x,M ′s,x〉 =

∫ ·
s k(r,Xr)dVr.

In particular if M is a square integrable MAF and M s,x its cadlag version under a fixed Ps,x, there exists
a Borel function k ∈ B([0, T ] × E,R) (which can be taken positive) such that for any (s, x) ∈ [0, T ] × E,
〈M s,x〉 =

∫ ·
s k(r,Xr)dVr.

2.B Technicalities related to Section 2.3

Proof of Proposition 2.3.2. Since we have dA � dA + dB in the sense of stochastic measures with
A,B predictable, there exists a predictable positive process K such that A =

∫ ·
0 KsdAs +

∫ ·
0 KsdBs up

to indistinguishability, see Proposition I.3.13 in [61]. Now there exists aP-null setN such that for any
ω ∈ N c we have 0 ≤

∫ ·
0 Ks(ω)dBs(ω) =

∫ ·
0(1−Ks(ω))dAs(ω) , so K(ω) ≤ 1 dA(ω) a.e. on N c. There-

fore if we set E(ω) = {t : Kt(ω) = 1} and F (ω) = {t : Kt(ω) < 1} then E(ω) and F (ω) are disjoint
Borel sets and dA(ω) has all its mass inE(ω)∪F (ω) so we can decompose dA(ω) within these two sets.

We therefore define the processes A⊥B =
∫ ·

0 1{Ks=1}dAs and ; AB =
∫ ·

0 1{Ks<1}dAs. A⊥B and AB

are both in Vp,+, and A = A⊥B + AB . In particular the (stochastic) measures dA⊥B and dAB fulfill
dA⊥B(ω)(G) = dA(ω)(E(ω) ∩G) and dAB(ω)(G) = dA(ω)(F (ω) ∩G).
We remark dA⊥B⊥dB in the sense of stochastic measures. Indeed, fixing ω ∈ N c, for t ∈ E(ω),
Kt(ω) = 1, so

∫
E(ω) dA(ω) =

∫
E(ω) dA(ω) +

∫
E(ω) dB(ω) implying that

∫
E(ω) dB(ω) = 0. Since for any

ω ∈ N c, dB(ω) (E(ω)) = 0 while dA⊥B(ω) has all its mass in E(ω), which gives this first result.

Now let us prove dAB � dB in the sense of stochastic measure.
Let ω ∈ N c, and let G ∈ B([0, T ]), such that

∫
G dB(ω) = 0. Then∫

G dA
B(ω) =

∫
G∩F (ω) dA(ω)

=
∫
G∩F (ω)K(ω)dA(ω) +

∫
G∩F (ω)K(ω)dB(ω)

=
∫
G∩F (ω)K(ω)dA(ω).

So
∫
G∩F (ω)(1−K(ω))dA(ω) = 0, but (1−K(ω)) > 0 on F (ω).

So dAB(ω)(G) = 0. Consequently for every ω ∈ N c, dAB(ω)� dB(ω) and so that dAB � dB.
Now, sinceK is positive andK(ω) ≤ 1 dA(ω) a.e. for almost all ω, we can replaceK byK∧1 which is
still positive predictable, without changing the associated stochastic measures dAB, dA⊥B ; therefore
we can consider that Kt(ω) ∈ [0, 1] for all (ω, t).
We remark that for P almost all ω the decomposition A⊥B and AB is unique because of the corre-
sponding uniqueness of the decomposition in the Lebesgue-Radon-Nikodym theorem for each fixed
ω ∈ N c.

Since dAB � dB, again by Proposition I.3.13 in [61], there exists a predictable positive process
that we will call dAdB such that AB =

∫ ·
0
dA
dBdB and which is only unique up to dB ⊗ dP null sets.

Proposition 2.B.1. Let M and M ′ be two local martingales inH2
loc and let

V ∈ Vp,+. We have d〈M〉
dV

d〈M ′〉
dV −

(
d〈M,M ′〉

dV

)2
≥ 0 dV ⊗ dP a.e.
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Proof. Let x ∈ Q. Since 〈M +xM ′〉 is an increasing process starting at zero, then by Proposition 2.3.2,
we have d〈M+xM ′〉

dV ≥ 0 dV ⊗ dP a.e.
By the linearity property stated in Proposition 2.3.4, we have

0 ≤ d〈M+xM ′〉
dV = d〈M〉

dV +2xd〈M,M ′〉
dV +x2 d〈M ′〉

dV dV ⊗dP a.e. SinceQ is countable, there exists a dV ⊗dP-
null set N such that for (ω, t) /∈ N and x ∈ Q,
d〈M〉
dV (ω, t)+2xd〈M,M ′〉

dV (ω, t)+x2 d〈M ′〉
dV (ω, t) ≥ 0. By continuity of polynomes, this holds for any x ∈ R.

Expressing the discriminant of this polynome, we deduce that

4
(
d〈M,M ′〉

dV (ω, t)
)2
− 4d〈M〉dV (ω, t)d〈M

′〉
dV (ω, t) ≤ 0 for all (ω, t) /∈ N .

Proof of Proposition 2.3.5. Since the angular bracket 〈M〉 of a square integrable martingale M
always belongs to Vp,+, by Proposition 2.3.2, we can consider the processes 〈M〉V and 〈M〉⊥V ; in
particular there exists a predictable processK with values in [0, 1] such that 〈M〉V =

∫ ·
0 1{Ks<1}d〈M〉s

and 〈M〉⊥V =
∫ ·

0 1{Ks=1}d〈M〉s.
We can then setMV =

∫ ·
0 1{Ks<1}dMs andM⊥V =

∫ ·
0 1{Ks=1}dMs which are well-defined because

K is predictable, and therefore 1{Kt<1} and 1{Kt=1} are also predictable. MV ,M⊥V belong to H2
0

because their angular brackets are both bounded by 〈M〉T ∈ L1. Since K takes values in [0, 1], we
have
MV +M⊥V =

∫ ·
0 1{Ks<1}dMs +

∫ ·
0 1{Ks=1}dMs = M ;

〈MV 〉 =
∫ ·

0 1{Ks<1}d〈M〉s = 〈M〉V ; 〈M⊥V 〉 =
∫ ·

0 1{Ks=1}d〈M〉s = 〈M〉⊥V

and 〈MV ,M⊥V 〉 =
∫ ·

0 1{Ks<1}1{Ks=1}d〈M〉s = 0.

Proof of Proposition 2.3.6. We start by remarking that for any M1,M2 in H2
0, a consequence of

Kunita-Watanabe’s decomposition (see Theorem 4.27 in [61]) is that dV ar(〈M1,M2〉) � d〈M1〉 and
dV ar(〈M1,M2〉)� d〈M2〉.

Now, let M1 and M2 be inH2,V . We have dV ar(〈M1,M2〉)� d〈M1〉 � dV . So since 〈M1 +M2〉 =
〈M1〉+ 2〈M1,M2〉+ 〈M2〉, then d〈M1 +M2〉 � dV which shows thatH2,V is a vector space.

If M1 and M2 are in H2,⊥V , then since dV ar(〈M1,M2〉) � d〈M1〉 we can write V ar(〈M1,M2〉) =∫ ·
0
dV ar(〈M1,M2〉)

d〈M1〉 d〈M1〉 which is almost surely singular with respect to dV since M1 belongs to H2,⊥V .
So, by the bilinearity of the angular bracketH2,⊥V is also a vector space.

Finally if M1 ∈ H2,V and M2 ∈ H2,⊥V then dV ar(〈M1,M2〉) � d〈M1〉 � dV but we also have
seen that if d〈M2〉 is singular to dV then so is dV ar(〈M1,M2〉)� d〈M2〉.

For fixed ω, a measure being simultaneously dominated and singular with respect to to dV (ω) is
necessarily the null measure, so dV ar(〈M1,M2〉) = 0 as a stochastic measure. Therefore M1 and M2

are strongly orthogonal, which implies in particular that M1 and M2 are orthogonal inH2
0.

So we have shown that H2,V and H2,⊥V are orthogonal sublinear-spaces of H2
0 but we also know

thatH2
0 = H2,V +H2,⊥V thanks to Proposition 2.3.5, thereforeH2

0 = H2,V ⊕⊥H2,⊥V . This implies that
H2,V = (H2,⊥V )⊥ and H2,⊥V = (H2,V )⊥ and therefore that these spaces are closed. So they are sub-
Hilbert spaces. We also have shown that they were strongly orthogonal spaces, in the sense that any
M1 ∈ H2,V , M2 ∈ H2,⊥V are strongly orthogonal. By localization the strong orthogonality property
also extends to M1 ∈ H2,V

loc , M2 ∈ H2,⊥V
loc .



Chapter 3

BSDEs with no driving martingale,
Markov processes and associated Pseudo
PDEs. Part II: Decoupled mild solutions
and Examples

This chapter is the object of paper [10].

Abstract

Let (Ps,x)(s,x)∈[0,T ]×E be a family of probability measures, where E is a Polish space, defined
on the canonical probability space D([0, T ], E) of E-valued cadlag functions. We suppose that a
martingale problem with respect to a time-inhomogeneous generator a is well-posed. We consider
also an associated semilinear Pseudo-PDE for which we introduce a notion of so called decoupled
mild solution and study the equivalence with the notion of martingale solution introduced in the
previous chapter. We also investigate well-posedness for decoupled mild solutions and their re-
lations with a special class of BSDEs without driving martingale. The notion of decoupled mild
solution is a good candidate to replace the notion of viscosity solution which is not always suitable
when the map a is not a PDE operator.

3.1 Introduction

The framework of this paper is the canonical space Ω = D([0, T ], E) of cadlag functions defined
on the interval [0, T ] with values in a Polish space E. This space will be equipped with a family
(Ps,x)(s,x)∈[0,T ]×E of probability measures indexed by an initial time s ∈ [0, T ] and a starting point
x ∈ E. For each (s, x) ∈ [0, T ] × E, Ps,x corresponds to the law of an underlying forward Markov
process with time index [0, T ], taking values in the Polish state space E which is characterized as the
solution of a well-posed martingale problem related to a certain operator (D(a), a) and an increasing
continuous function V : [0, T ] → R. In the previous Chapter 2 we have introduced a semilinear
equation generated by (D(a), a), called Pseudo-PDE of the type{

a(u) + f
(
·, ·, u,Γ(u)

1
2

)
= 0 on [0, T ]× E

u(T, ·) = g,
(3.1.1)

where Γ(u) = a(u2) − 2ua(u) is a potential theory operator called the carré du champs operator. A
classical solution of (3.1.1) is defined as an element ofD(a) verifying (3.1.1). In Chapter 2 we have also
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defined the notion of martingale solution of (3.1.1), see Definition 3.2.22. A function u is a martingale
solution if (3.1.1) holds replacing the map a (resp. Γ) with an extended operator a (resp. G) which is
introduced in Definition 3.2.15 (resp. 3.2.17). The martingale solution extends the (analytical) notion
of classical solution, however it is a probabilistic concept. The objectives of the present paper are
essentially three.

1. To introduce an alternative notion of (this time analytical) solution, that we call decoupled mild,
since it makes use of the time-dependent transition kernel associated with a. This new type of
solution will be shown to be essentially equivalent to the martingale one.

2. To show existence and uniqueness of decoupled mild solutions.

3. To emphasize the link with solutions of Markovian BSDEs without driving martingale intro-
duced in Chapter 2.

The aforementioned Markovian BSDEs are of the form

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

√
d〈M s,x〉
dV

(r)

)
dVr − (M s,x

T −M s,x
t ), t ∈ [0, T ], t ∈ [0, T ],

(3.1.2)
in a stochastic basis (Ω,Fs,x,Fs,x,Ps,x) which depends on (s, x). Under suitable conditions, the
solution of this Markovian BSDE is a couple (Y s,x,M s,x) of cadlag stochastic processes where M s,x

is a martingale. This was introduced and studied in a more general setting in Chapter 2, see [66] for
a similar formulation.

We refer to the introduction and reference list of previous chapter for an extensive description of
contributions to non-Brownian type BSDEs.

The classical Markovian BSDE, which is driven by a Brownian motion is of the form{
Xs,x
t = x+

∫ t
s β(r,Xs,x

r )dr +
∫ t
s σ(r,Xs,x

r )dBr
Y s,x
t = g(Xs,x

T ) +
∫ T
t f (r,Xs,x

r , Y s,x
r , Zs,xr ) dr −

∫ T
t Zs,xr dBr,

(3.1.3)

where B is a Brownian motion. Existence and uniqueness for (3.1.3) was established first supposing
mainly Lipschitz conditions on f with respect to the third and fourth variable. β and σ were also
assumed to be Lipschitz (with respect to x) and to have linear growth. In the sequel those conditions
were considerably relaxed, see [74] and references therein. This is a particular case of a more general
(non-Markovian) Brownian BSDE introduced in 1990 by E. Pardoux and S. Peng in [71], after an early
work of J.M. Bismut in 1973 in [18].

Equation (3.1.3) was a probabilistic representation of a semilinear partial differential equation of
parabolic type with terminal condition:{

∂tu+ 1
2

∑
i,j≤d

(σσᵀ)i,j∂
2
xixju+

∑
i≤d
βi∂xiu+ f(·, ·, u, σ∇u) = 0 on [0, T [×Rd

u(T, ·) = g.
(3.1.4)

Given, for every (s, x), a solution (Y s,x, Zs,x) of the Markovian BSDE (3.1.3), under some conti-
nuity assumptions on the coefficients, see e.g. [72], it was proved that the function u(s, x) := Y s,x

s is
a viscosity solution of (3.1.4), see also [76, 72, 76, 43], for related work.

We prolong this idea in a general case where the Markovian BSDE is (3.1.2) with solution (Y s,x,M s,x).
In that case u(s, x) := Y s,x

s will be the decoupled mild solution of (3.1.1), see Theorem 3.3.15; in that
general context the decoupled mild solution replaces the one of viscosity, for reasons that we will
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explain below. One celebrated problem in the case of Brownian Markovian BSDEs is the characteri-
zation of Zs,x through a deterministic function v. This is what we will call the identification problem.
In general the link between v and u is not always analytically established, excepted when u has some
suitable differentiability property, see e.g. [8]: in that case v is closely related to the gradient of u.
In our case, the notion of decoupled mild solution allows to identify (u, v) as the analytical solu-
tion of a deterministic problem. In the literature, the notion of mild solution of PDEs was used in
finite dimension in [4], where the authors tackled diffusion operators generating symmetric Dirichlet
forms and associated Markov processes thanks to the theory of Fukushima Dirichlet forms, see e.g.
[53]. A partial extension to the case of non-symmetric Dirichlet forms is performed in [63]. Infinite
dimensional setups were considered for example in [51] where an infinite dimensional BSDE could
produce the mild solution of a PDE on a Hilbert space.

Let (B, ‖ · ‖) be a functional Banach space of real Borel functions defined on E and A be an
unbounded operator on (B, ‖ · ‖). In the theory of evolution equations one often considers systems
of the type {

∂tu+Au = l on [0, T ]×Rd
u(T, ·) = g,

(3.1.5)

where l : [0, T ] ×Rd → R and g : Rd → R are such that l(t, ·) and g belong to B for every t ∈ [0, T ].
The idea of mild solutions consists to consider −A (when possible) as the infinitesimal generator of
a semigroup of operators (Pt)t≥0 on (B, ‖ · ‖), in the following sense. There is D(A) ⊂ B, a dense
subset on which −Af = lim

t→0+

1
t (Ptf − f). In particular one may think of (Pt)t≥0 as the heat kernel

semi-group and A as 1
2∆. The approach of mild solutions is also very popular in the framework of

stochastic PDEs see e. g. [30].
WhenA is a local operator, one solution (in the sense of distributions, or in the sense of evaluation

against test functions) to the linear evolution problem with terminal condition (3.1.5) is the so called
mild solution

u(s, ·) = PT−s[g]−
∫ T

s
Pr−s[l(r, ·)]dr. (3.1.6)

If l is explicitly a function of u then (3.1.6) becomes itself an equation and a mild solution would
consist in finding a fixed point of (3.1.6). Let us now suppose the existence of a map S : D(S) ⊂ B →
B, typically S being the gradient, when (Pt) is the heat kernel semigroup. The natural question is
what would be a natural replacement for a mild solution of{

∂tu+Au = f(s, ·, u, Su) on [0, T ]×Rd
u(T, ·) = g.

(3.1.7)

If the domain of S is B, then it is not difficult to extend the notion of mild solution to this case. One
novelty of our approach consists is considering the case of solutions u : [0, T ] × Rd → R for which
Su(t, ·) is not defined.

1. Suppose one expects a solution not to be classical, i.e. such that u(r, ·) should not belong to
the domain of D(A) but to be in the domain of S. In the case when Pseudo-PDEs are usual
PDEs, one think to possible solutions which are not C1,2 but admitting a gradient, typically
viscosity solutions which are differentiable in x. In that case the usual idea of mild solutions
theory applies to equations of type (3.1.7).

In this setup, inspired by (3.1.6) a mild solution of the equation is naturally defined as a solution
of the integral equation

u(s, ·) = PT−s[g] +

∫ T

s
Pr−s[f(r, ·, u(r, ·), Su(r, ·))]dr. (3.1.8)
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2. However, there may be reasons for which the candidate solution u is such that u(t, ·) does not
even belong to D(S). In the case of PDEs it is often the case for viscosity solutions of PDEs
which do not admit a gradient. In that case the idea is to replace (3.1.8) with

u(s, ·) = PT−s[g] +

∫ T

s
Pr−s[f(r, ·, u(r, ·), v(r, ·))]dr. (3.1.9)

and to add a second equality which expresses in a mild form the equality v(r, ·) = Su(r, ·).

We will work out previous methodology for the Pseudo − PDE(f, g). In that case S will be given
by the mapping u 7−→ Γ(u)

1
2 . If A is the laplacian for instance one would have Γ(u) = ‖∇u‖2. For

pedagogical purposes, one can first consider an operator a of type ∂t + A when −A is the generator
of a Markovian (time-homogeneous) semigroup. In this case,

Γ(u) = ∂t(u
2) +A(u2)− 2u∂tu− 2uAu

= A(u2)− 2uAu.

Equation
∂tu+Au+ f

(
·, ·, u,Γ(u)

1
2

)
= 0, (3.1.10)

could therefore be decoupled into the system{
∂tu+Au+ f(·, ·, u, v) = 0
v2 = ∂t(u

2) +A(u2)− 2u(∂tu+Au),
(3.1.11)

which furthermore can be expressed as{
∂tu+Au = −f(·, ·, u, v)

∂t(u
2) +A(u2) = v2 − 2uf(·, ·, u, v)

(3.1.12)

Taking into account the existing notions of mild solution (3.1.6) (resp. (3.1.8)), for corresponding
equations (3.1.5) (resp. (3.1.7)), one is naturally tempted to define a decoupled mild solution of (3.1.1)
as a function u for which there exist v ≥ 0 such that{

u(s, ·) = PT−s[g] +
∫ T
s Pr−s[f(r, ·, u(r, ·), v(r, ·))]dr

u2(s, ·) = PT−s[g
2]−

∫ T
s Pr−s[v

2(r, ·)− 2u(r, ·)f(r, ·, u(r, ·), v(r, ·))]dr.
(3.1.13)

As we mentioned before, our approach is alternative to a possible notion of viscosity solution for the
Pseudo − PDE(f, g). That notion will be the object of a subsequent paper, at least in the case when
the driver do not depend on the last variable. In the general case the notion of viscosity solution does
not fit well because of lack of suitable comparison theorems. On the other hand, even in the recent
literature (see [7]) in order to show existence of viscosity solutions specific conditions exist on the
driver. In our opinion our approach of decoupled mild solutions for Pseudo−PDE(f, g) constitutes
an interesting novelty even in the case of semilinear parabolic PDEs.

The main contributions of the paper are essentially the following. In Section 3.3.1, Definition 3.3.4
introduces our notion of decoupled mild solution of (3.1.1) in the general setup. In Section 3.3.2,
Proposition 3.3.7 states that under a square integrability type condition, every martingale solution is
a decoupled mild solution of (3.1.1). Conversely, Proposition 3.3.8 shows that every decoupled mild
solution is a martingale solution. In Theorem 3.3.9 we prove existence and uniqueness of a decoupled
mild solution for (3.1.1). In Section 3.3.3, we show how the unique decoupled mild solution of (3.1.1)
can be represented via the Markovian BSDEs (3.1.2). In Section 3.4 we develop examples of Markov
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processes and corresponding operators a falling into our abstract setup. In Section 3.4.1, we work in
the setup of [85], the Markov process is a diffusion with jumps and the corresponding operator is of
diffusion type with an additional non-local operator. In Section 3.4.2 we consider Markov processes
associated to pseudo-differential operators (typically the fractional Laplacian) as in [59]. In Section
3.4.3 we study a semilinear parabolic PDE with distributional drift, and the corresponding process
is the solution an SDE with distributional drift as defined in [47]. Finally, in Section 3.4.4, we are
interested with diffusions on differential manifolds and associated diffusion operators, an example
being the Brownian motion in a Riemannian manifold associated to the Laplace-Beltrami operator.

3.2 Preliminaries

In this section we will recall the notations, notions and results of previous Chapter 2, which will be
used here.

Notation 3.2.1. In the whole paper, concerning functional spaces we will use the following notations.
A topological space E will always be considered as a measurable space with its Borel σ-field which shall be
denoted B(E). Given two topological spaces, E,F , then C(E,F ) (respectively B(E,F )) will denote the set
of functions from E to F which are continuous (respectively Borel) and if F is a metric space, Cb(E,F )
(respectivelyBb(E,F )) will denote the set of functions fromE to F which are bounded continuous (respectively
bounded Borel). For any p ∈ [1,∞], d ∈ N∗, (Lp(Rd), ‖ · ‖p) will denote the usual Lebesgue space equipped
with its usual norm.

On a fixed probability space (Ω,F ,P), for any p ∈ N∗, Lp will denote the set of random variables with
finite p-th moment.

A probability space equipped with a right-continuous filtration (Ω,F ,F := (Ft)t∈T,P) (whereT is equal
to R+ or to [0, T ] for some T ∈ R∗+) will be called called a stochastic basis and will be said to fulfill the
usual conditions if the probability space is complete and if F0 contains all the P-negligible sets. When a
stochastic basis is fixed, Pro denotes the progressive σ-field on T× Ω.

On a fixed stochastic basis (Ω,F ,F,P), we will use the following notations and vocabulary, concerning
spaces of stochastic processes, most of them being taken or adapted from [60] or [61]. V (resp V+) will denote
the set of adapted, bounded variation (resp non-decreasing) processes starting at 0; Vp (resp Vp,+) the elements
of V (resp V+) which are predictable, and Vc (resp Vc,+) the elements of V (resp V+) which are continuous.
M will be the space of cadlag martingales. For any p ∈ [1,∞] Hp will denote the subset of M of elements
M such that sup

t∈T
|Mt| ∈ Lp and in this set we identify indistinguishable elements. It is a Banach space for

the norm ‖M‖Hp = E[|sup
t∈T

Mt|p]
1
p , and Hp0 will denote the Banach subspace of Hp containing the elements

starting at zero.
If T = [0, T ] for some T ∈ R∗+, a stopping time will be considered as a random variable with values in

[0, T ] ∪ {+∞}. We define a localizing sequence of stopping times as an increasing sequence of stopping
times (τn)n≥0 such that there exists N ∈ N for which τN = +∞. Let Y be a process and τ a stopping time,
we denote Y τ the process t 7→ Yt∧τ which we call stopped process. If C is a set of processes, we define its
localized class Cloc as the set of processes Y such that there exist a localizing sequence (τn)n≥0 such that for
every n, the stopped process Y τn belongs to C.

For any M ∈ Mloc, we denote [M ] its quadratic variation and if moreover M ∈ H2
loc, 〈M〉 will

denote its (predictable) angular bracket. H2
0 will be equipped with scalar product defined by (M,N)H2 =

E[MTNT ] = E[〈M,N〉T ] which makes it a Hilbert space. Two local martingales M,N will be said to be
strongly orthogonal if MN is a local martingale starting in 0 at time 0. In H2

0,loc this notion is equivalent
to 〈M,N〉 = 0.
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Concerning the following definitions and results, we are given some T ∈ R∗+, and a stochastic
basis

(
Ω,F ,F := (Ft)t∈[0,T ],P

)
fulfilling the usual conditions.

Definition 3.2.2. Let A and B be in V+. We will say that dB dominates dA in the sense of stochastic
measures (written dA� dB) if for almost all ω, dA(ω)� dB(ω) as Borel measures on [0, T ].

Let B ∈ V+. dB ⊗ dP will denote the positive measure on (Ω × [0, T ],F ⊗ B([0, T ])) defined for any
F ∈ F ⊗ B([0, T ]) by dB ⊗ dP(F ) = E

[∫ T
0 1F (t, ω)dBt(ω)

]
. A property which holds true everywhere

except on a null set for this measure will be said to be true dB ⊗ dP almost everywhere (a.e.).

We recall that given two processes A,B in Vp,+, if dA � dB, there exists a predictable process
which we will denote dA

dB and call Radon-Nikodym derivative ofA byB, verifyingA =
∫ ·

0
dA
dB (r)dBr,

see Proposition I.3.13 in [61].
As in previous Chapter 2, we will be interested in a Markov process which is the solution of

a martingale problem which we now recall below. For definitions and results concerning Markov
processes, the reader may refer to Appendix 3.A. In particular, let E be a Polish space and T ∈ R+

be a finite value we now consider (Ω,F ,F) the canonical space and (Xt)t∈[0,T ] the canonical pro-
cess which are introduced in Notation 3.A.1, and a canonical Markov class measurable in time
(Ps,x)(s,x)∈[0,T ]×E , see Definitions 3.A.6 and 3.A.4. We will also consider the completed stochastic
basis (Ω,Fs,x,Fs,x,Ps,x), see Definition 3.A.8.

We now recall what the notion of martingale problem associated to an operator introduced in Section
2.4 of Chapter 2, see Definition 2.4.2.

Definition 3.2.3. Given a linear algebra D(a) ⊂ B([0, T ] × E,R), a linear operator a mapping D(a) into
B([0, T ] × E,R) and a non-decreasing continuous function V : [0, T ] → R+ starting at 0, we say that a set
of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on (Ω,F) solves the Martingale Problem associated to
(D(a), a, V ) if, for any (s, x) ∈ [0, T ]× E, Ps,x verifies

(a) Ps,x(∀t ∈ [0, s], Xt = x) = 1;

(b) for every φ ∈ D(a), the process φ(·, X·) −
∫ ·
s a(φ)(r,Xr)dVr, t ∈ [s, T ] is a cadlag (Ps,x,F)-local

martingale.

We say that the Martingale Problem is well-posed if for any (s, x) ∈ [0, T ]×E,Ps,x is the only probability
measure satisfying the properties (a) and (b).

As for Chapter 2, in the sequel of the paper we will assume the following.

Hypothesis 3.2.4. The Markov class (Ps,x)(s,x)∈[0,T ]×E solves a well-posed Martingale Problem associated
to a triplet (D(a), a, V ) in the sense of Definition 3.2.3.

Notation 3.2.5. For every (s, x) ∈ [0, T ]× E and φ ∈ D(a), the process
t 7→ 1[s,T ](t)

(
φ(t,Xt)− φ(s, x)−

∫ t
s a(φ)(r,Xr)dVr

)
will be denoted M [φ]s,x.

M [φ]s,x is a cadlag (Ps,x,F)-local martingale equal to 0 on [0, s], and by Proposition 3.A.9, it is
also a (Ps,x,Fs,x)-local martingale.

The bilinear operator below was introduced (in the case of time-homogeneous operators) by J.P. Roth
in potential analysis (see Chapter III in [79]), and popularized by P.A. Meyer and others in the study
of homogeneous Markov processes (see for example Exposé II: L’opérateur carré du champs in [69]
or 13.46 in [60]).
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Definition 3.2.6. We introduce the bilinear operator

Γ :
D(a)×D(a) → B([0, T ]× E)

(φ, ψ) 7→ a(φψ)− φa(ψ)− ψa(φ).
(3.2.1)

When φ = ψ, Γ(φ, φ) will be denoted Γ(φ). The operator Γ is called the carré du champs operator.

The angular bracket of the martingales introduced in Notation 3.2.5 are expressed via the operator
Γ. Proposition 2.4.7 of Chapter 2, tells the following.

Proposition 3.2.7. For any φ ∈ D(a) and (s, x) ∈ [0, T ] × E, M [φ]s,x is in H2
0,loc. Moreover, for any

(φ, ψ) ∈ D(a)×D(a) and (s, x) ∈ [0, T ]× E we have in (Ω,Fs,x,Fs,x,Ps,x) and on the interval [s, T ]

〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·
s

Γ(φ, ψ)(r,Xr)dVr. (3.2.2)

We introduce some significant spaces related to V .

Notation 3.2.8. H2,V := {M ∈ H2
0|d〈M〉 � dV }.

We will also denote L2(dV ⊗ dP) the set of (up to indistinguishability) progressively measurable processes φ
such that E[

∫ T
0 φ2

rdVr] <∞.

Proposition 2.4.10 of Chapter 2 says the following.

Proposition 3.2.9. If Hypothesis 3.2.4 is verified then under any Ps,x,
H2

0 = H2,V .

In the sequel, several functional equations will hold up to a zero potential set that we recall below.

Definition 3.2.10. For any (s, x) ∈ [0, T ]×E we define the potential measure U(s, x, ·) on B([0, T ]×E)

by U(s, x,A) := Es,x
[∫ T
s 1{(t,Xt)∈A}dVt

]
.

A Borel set A ∈ B([0, T ]× E) will be said to be of zero potential if, for any (s, x) ∈ [0, T ]× E we have
U(s, x,A) = 0.

Notation 3.2.11. Let p > 0, we define
Lps,x :=

{
f ∈ B([0, T ]× E,R) : Es,x

[∫ T
s |f |

p(r,Xr)dVr

]
<∞

}
on which we introduce the usual semi-

norm ‖ · ‖p,s,x : f 7→
(
Es,x

[∫ T
s |f(r,Xr)|pdVr

]) 1
p We also denote

L0
s,x :=

{
f ∈ B([0, T ]× E,R) :

∫ T
s |f |(r,Xr)dVr <∞Ps,x a.s.

}
.

For any p ≥ 0, we then define an intersection of these spaces, i.e. LpX :=
⋂

(s,x)∈[0,T ]×E
Lps,x.

Finally, let N the linear subspace of B([0, T ] × E,R) containing all functions which are equal to 0 U(s, x, ·)
a.e. for every (s, x). For any p ∈ N, we define the quotient space LpX := LpX/N . If p ≥ 1, LpX can be equipped
with the topology generated by the family of semi-norms (‖ · ‖p,s,x)(s,x)∈[0,T ]×E which makes it into a separable
locally convex topological vector space.

The statement below was stated in Proposition 2.4.13 of Chapter 2.

Proposition 3.2.12. Let f and g be inB([0, T ]×E,R) such that the processes
∫ ·
s f(r,Xr)dVr and

∫ ·
s g(r,Xr)dVr

are finite Ps,x a.s. for any (s, x) ∈ [0, T ] × E. Then f and g are equal up a zero potential set if and only if∫ ·
s f(r,Xr)dVr and

∫ ·
s g(r,Xr)dVr are indistinguishable under Ps,x for any (s, x) ∈ [0, T ]× E.
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We recall that if two functions f, g differ only on a zero potential set then they represent the same
element of LpX .

We recall our notion of extended generator.

Definition 3.2.13. We first define the extended domain D(a) as the set functions φ ∈ B([0, T ]× E,R) for
which there exists ψ ∈ B([0, T ]× E,R) such that under any Ps,x the process

1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s
ψ(r,Xr)dVr

)
(3.2.3)

(which is not necessarily cadlag) has a cadlag modification inH2
0.

Proposition 2.4.15 in Chapter 2 states the following.

Proposition 3.2.14. Let φ ∈ B([0, T ]×E,R). There is at most one (up to zero potential sets) ψ ∈ B([0, T ]×
E,R) such that under any Ps,x, the process defined in (3.2.3) has a modification which belongs toMloc.
If moreover φ ∈ D(a), then a(φ) = ψ up to zero potential sets. In this case, according to Notation 3.2.5, for
every (s, x) ∈ [0, T ]× E, M [φ]s,x is the Ps,x cadlag modification inH2

0 of
1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s ψ(r,Xr)dVr

)
.

Definition 3.2.15. Let φ ∈ D(a) as in Definition 3.2.13. We denote again by M [φ]s,x, the unique cadlag ver-
sion of the process (3.2.3) inH2

0. Taking Proposition 3.2.12 into account, this will not generate any ambiguity
with respect to Notation 3.2.5. Proposition 3.2.12, also permits to define without ambiguity the operator

a :
D(a) −→ L0

X

φ 7−→ ψ.

a will be called the extended generator.

We also extend the carré du champs operator Γ(·, ·) to D(a)×D(a).
Proposition 2.4.17 in Chapter 2 states the following.

Proposition 3.2.16. Let φ and ψ be in D(a), there exists a (unique up to zero-potential sets) function in
B([0, T ]× E,R) which we will denote G(φ, ψ) such that under any Ps,x,
〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·
s G(φ, ψ)(r,Xr)dVr on [s, T ], up to indistinguishability. If moreover φ and ψ belong

to D(a), then Γ(φ, ψ) = G(φ, ψ) up to zero potential sets.

Definition 3.2.17. The bilinear operator G : D(a) × D(a) 7−→ L0
X will be called the extended carré du

champs operator. When φ = ψ, G(φ, φ) will be denoted G(φ).

According to Definition 3.2.13, we do not have necessarily D(a) ⊂ D(a), however we have the
following.

Corollary 3.2.18. If φ ∈ D(a) and Γ(φ) ∈ L1
X , then φ ∈ D(a) and (a(φ),Γ(φ)) = (a(φ),G(φ)) up to zero

potential sets.

We also recall Lemma 2.5.13 of Chapter 2.

Lemma 3.2.19. Let (s, x) ∈ [0, T ] × E be fixed and let φ, ψ be two measurable processes. If φ and ψ are
Ps,x-modifications of each other, then they are equal dV ⊗ dPs,x a.e.

We now keep in mind the Pseudo-Partial Differential Equation (in short Pseudo-PDE), with final
condition, that we have introduced in Chapter 2.
Let us consider the following data.
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1. A measurable final condition g ∈ B(E,R);

2. a measurable nonlinear function f ∈ B([0, T ]× E ×R×R,R).

The equation is {
a(u) + f

(
·, ·, u,Γ(u)

1
2

)
= 0 on [0, T ]× E

u(T, ·) = g.
(3.2.4)

Notation 3.2.20. Equation (3.2.4) will be denoted Pseudo− PDE(f, g).

Definition 3.2.21. We will say that u is a classical solution of Pseudo− PDE(f, g) if it belongs to D(a)
and verifies (3.2.4).

Definition 3.2.22. A function u : [0, T ] × E → R will be said to be a martingale solution of Pseudo −
PDE(f, g) if u ∈ D(a) and {

a(u) = −f(·, ·, u,G(u)
1
2 )

u(T, ·) = g.
(3.2.5)

Until the end of these preliminaries, we will assume some growth conditions on the functions
(f, g).

Hypothesis 3.2.23. A couple of functions
f ∈ B([0, T ] × E ×R ×R,R) and g ∈ B(E,R) will be said to verify H lip if there exist positive constants
KY ,KZ such that

1. g(XT ) is L2 under Ps,x for every (s, x) ∈ [0, T ]× E;

2. t 7−→ f(t,Xt, 0, 0) ∈ L2
X ;

3. ∀(t, x, y, y′, z, z′) : |f(t, x, y, z)− f(t, x, y′, z)| ≤ KY |y − y′|+KZ |z − z′|.

We conclude these preliminaries by stating the Theorem of existence and uniqueness of a martin-
gale solution for Pseudo− PDE(f, g). It was the object of Theorem 2.5.21 of Chapter 2.

Theorem 3.2.24. Let (Ps,x)(s,x)∈[0,T ]×E be a Markov class associated to a transition kernel measurable in time
(see Definitions 3.A.6 and 3.A.4) which fulfills Hypothesis 3.2.4, i.e. it is a solution of a well-posed Martingale
Problem associated with the triplet (D(a), a, V ). Let (f, g) be a couple verifying H lip, see Hypothesis 3.2.23.

Then Pseudo− PDE(f, g) has a unique martingale solution.

We also had shown (see Proposition 2.5.20 in Chapter 2) that the unique martingale solution is
the only possible classical solution if there is one, as stated below.

Proposition 3.2.25. Under the conditions of previous Theorem 3.2.24, a classical solution u of Pseudo −
PDE(f, g) such that Γ(u) ∈ L1

X , is also a martingale solution.
Conversely, if u is a martingale solution of Pseudo − PDE(f, g) belonging to D(a), then u is a classical
solution of Pseudo− PDE(f, g) up to a zero-potential set, meaning that the first equality of (3.2.4) holds up
to a set of zero potential.

3.3 Decoupled mild solutions of Pseudo-PDEs

All along this section we will consider a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E associated to a
transition kernel P measurable in time (see Definitions 3.A.6, 3.A.4) verifying Hypothesis 3.2.4 for
a certain (D(a), a, V ). We are also given a couple of functions f ∈ B([0, T ] × E × R × R,R) and
g ∈ B(E,R).
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3.3.1 Definition

As mentioned in the introduction, in this section we introduce a notion of solution of our Pseudo −
PDE(f, g) that we will denominate decoupled mild, which is a generalization of the mild solution
concept for partial differential equation. We will show that such solution exists and is unique. Indeed,
that function will be the one appearing in Theorem 3.3.13.

A function u will be a decoupled mild solution of Pseudo− PDE(f, g) if there is a function v such
that the couple (u, v) is a (decoupled mild) solution of the identification problem IP (f, g). In this
section we first go through a notion of decoupled mild solution for the identification problem, which
has particular interest in itself.

We will be interested in functions (f, g) which satisfy weaker conditions than those of type H lip

(see Hypothesis 3.2.23) namely the following ones.

Hypothesis 3.3.1. A couple of functions
f ∈ B([0, T ] × E × R × R,R) and g ∈ B(E,R) will be said to verify Hgrowth if there exists a positive
constant C such that

1. g(XT ) is L2 under Ps,x for every (s, x) ∈ [0, T ]× E;

2. t 7−→ f(t,Xt, 0, 0) ∈ L2
X ;

3. ∀(t, x, y, z) : |f(t, x, y, z)| ≤ C(f(t, x, 0, 0) + |y|+ |z|).

Notation 3.3.2. Let s, t in [0, T ] with s ≤ t, x ∈ E and φ ∈ B(E,R), if the expectation Es,x[|φ(Xt)|] is
finite, then Ps,t[φ](x) will denote

∫
E φ(y)Ps,t(x, dy) or equivalently Es,x[φ(Xt)] .

We recall two important measurability properties.

Remark 3.3.3. Let φ ∈ B(E,R).

• Suppose that for any (s, x, t), Es,x[|φ(Xt)|] <∞ then by Proposition 3.A.12, (s, x, t) 7−→ Ps,t[φ](x) is
Borel.

• Suppose that for every (s, x), Es,x[
∫ T
s |φ(Xr)|dVr] <∞. Then by Lemma 3.A.11,

(s, x) 7−→
∫ T
s Ps,r[φ](x)dV r is Borel.

In our general setup, considering some operator a, the equation

a(u) + f
(
·, ·, u,Γ(u)

1
2

)
= 0, (3.3.1)

can be naturally decoupled into {
a(u) = −f(·, ·, u, v)
Γ(u) = v2.

(3.3.2)

Since Γ(u) = a(u2)− 2ua(u), this system of equation will be rewritten as{
a(u) = −f(·, ·, u, v)
a(u2) = v2 − 2uf(·, ·, u, v).

(3.3.3)

On the other hand our Markov process X is time non-homogeneous and Vt can be more general
than t, which leads us to the following definition of a decoupled mild solution.

Definition 3.3.4. Let (f, g) be a couple verifying Hgrowth.
Let u, v ∈ B([0, T ]× E,R) be two Borel functions with v ≥ 0.
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1. The couple (u, v) will be called solution of the identification problem determined by (f, g) or
simply solution of IP (f, g) if u and v belong to L2

X and if for every (s, x) ∈ [0, T ]× E,{
u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r [f (r, ·, u(r, ·), v(r, ·))] (x)dVr

u2(s, x) = Ps,T [g2](x)−
∫ T
s Ps,r

[
v2(r, ·)− 2uf (r, ·, u(r, ·), v(r, ·))

]
(x)dVr.

(3.3.4)

2. The function u will be called decoupled mild solution of Pseudo− PDE(f, g) if there is a function
v such that the couple (u, v) is a solution of IP (f, g).

Lemma 3.3.5. Let u, v ∈ L2
X , and let f be a Borel function satisfying items 2 and 3 of Hgrowth, then

f (·, ·, u, v) belongs to L2
X and uf (·, ·, u, v) to L1

X .

Proof. Thanks to the growth condition on f inHgrowth, there exists a constant C > 0 such that for any
(s, x) ∈ [0, T ]× E,

Es,x
[∫ T
t f2(r,Xr, u(r,Xr), v(r,Xr))dVr

]
≤ CEs,x

[∫ T
t (f2(r,Xr, 0, 0) + u2(r,Xr) + v2(r,Xr))dVr

]
<∞,

(3.3.5)

since we have assumed that u2, v2 belong to L1
X , and since we have made Hypothesis Hgrowth. This

means that f2 (·, ·, u, v) belongs to L1
X . Since 2 |uf (·, ·, u, v)| ≤ u2 + f2 (·, ·, u, v) then uf (·, ·, u, v) also

belongs to L1
X .

Remark 3.3.6. Consequently, under the assumptions of Lemma 3.3.5 all the terms in (3.3.4) make sense.

3.3.2 Existence and uniqueness of a solution

Proposition 3.3.7. Assume that (f, g) verifiesHgrowth (see Hypothesis 3.3.1) and let u ∈ L2
X be a martingale

solution of Pseudo−PDE(f, g). Then (u,G(u)
1
2 ) is a solution of IP (f, g) and in particular, u is a decoupled

mild solution of Pseudo− PDE(f, g).

Proof. Let u ∈ L2
X be a martingale solution of Pseudo − PDE(f, g). We emphasize that, taking

Definition 3.2.13 and Proposition 3.2.16 into account, G(u) belongs to L1
X , or equivalently that G(u)

1
2

belongs to L2
X . By Lemma 3.3.5, it follows that f

(
·, ·, u,G(u)

1
2

)
∈ L2

X and uf
(
·, ·, u,G(u)

1
2

)
∈ L1

X .
We fix some (s, x) ∈ [0, T ]× E and the corresponding probability Ps,x. We are going to show that u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r

[
f
(
r, ·, u(r, ·),G(u)

1
2 (r, ·)

)]
(x)dVr

u2(s, x) = Ps,T [g2](x)−
∫ T
s Ps,r

[
G(u)(r, ·)− 2uf

(
r, ·, u(r, ·),G(u)

1
2 (r, ·)

)]
(x)dVr.

(3.3.6)

Combining Definitions 3.2.13, 3.2.15, 3.2.22, we know that on [s, T ], the process u(·, X·) has a
cadlag modification which we denote U s,x which is a special semimartingale with decomposition

U s,x = u(s, x)−
∫ ·
s
f
(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr +M [u]s,x, (3.3.7)

where M [u]s,x ∈ H2
0. Definition 3.2.22 also states that u(T, ·) = g, implying that

u(s, x) = g(XT ) +

∫ T

s
f
(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr −M [u]s,xT a.s. (3.3.8)
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Taking the expectation, by Fubini’s theorem we get

u(s, x) = Es,x
[
g(XT ) +

∫ T
s f

(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr

]
= Ps,T [g](x) +

∫ T
s Ps,r

[
f
(
r, ·, u(r, ·),G(u)

1
2 (r, ·)

)]
(x)dVr.

(3.3.9)

By integration by parts, we obtain

d(U s,x)2
t = −2U s,xt f

(
·, ·, u,G(u)

1
2

)
(t,Xt)dVt + 2U s,x

t− dM [u]s,xt + d[M [u]s,x]t, (3.3.10)

so integrating from s to T , we get

u2(s, x)

= g2(XT ) + 2
∫ T
s U s,xr f

(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr − 2

∫ T
s U s,x

r− dM [u]s,xr − [M [u]s,x]T

= g2(XT ) + 2
∫ T
s uf

(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr − 2

∫ T
s U s,x

r− dM [u]s,xr − [M [u]s,x]T ,

(3.3.11)

where the latter line is a consequence of Lemma 3.2.19. The next step will consist in taking the
expectation in equation (3.3.11), but before, we will check that

∫ ·
s U

s,x
r− dM [u]s,xr is a martingale. Thanks

to (3.3.7) and Jensen’s inequality, there exists a constant C > 0 such that

sup
t∈[s,T ]

(U s,xt )2 ≤ C

(∫ T

s
f2
(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr + sup

t∈[s,T ]

(M [u]s,xt )2

)
. (3.3.12)

Since M [u]s,x ∈ H2
0 and f

(
·, ·, u,G(u)

1
2

)
∈ L2

X , it follows that sup
t∈[s,T ]

(U s,xt )2 ∈ L1 and Lemma 2.3.17

in Chapter 2 states that
∫ ·
s U

s,x
r− dM [u]s,xr is a martingale. Taking the expectation in (3.3.11), we now

obtain

u2(s, x) = Es,x
[
g2(XT ) +

∫ T
s 2uf

(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr − [M [u]s,x]T

]
= Es,x

[
g2(XT ) +

∫ T
s 2uf

(
·, ·, u,G(u)

1
2

)
(r,Xr)dVr − 〈M [u]s,x〉T

]
= Es,x

[
g2(XT )

]
−Es,x

[∫ T
s

(
G(u)− 2uf

(
·, ·, u,G(u)

1
2

))
(r,Xr)dVr

]
= Ps,T [g2](x)−

∫ T
s Ps,r

[
G(u)(r, ·)− 2u(r, ·)f

(
r, ·, u(r, ·),G(u)

1
2 (r, ·)

)]
(x)dVr,

(3.3.13)

where the third equality derives from Proposition 3.2.16 and the fourth from Fubini’s theorem. This
concludes the proof.

We now show the converse result of Proposition 3.3.7.

Proposition 3.3.8. Assume that (f, g) verifies Hgrowth, see Hypothesis 3.3.1. Every decoupled mild solution
of Pseudo− PDE(f, g) is a also a martingale solution. Moreover, if (u, v) solves IP (f, g), then v2 = G(u)
(up to zero potential sets).

Proof. Let u and v ≥ 0 be a couple of functions in L2
X verifying (3.3.4). We first note that, the first line

of (3.3.4) with s = T , gives u(T, ·) = g.
We fix (s, x) ∈ [0, T ] × E and the associated probability Ps,x, and on [s, T ], we set Ut := u(t,Xt) and
Nt := u(t,Xt)− u(s, x) +

∫ t
s f(r,Xr, u(r,Xr), v(r,Xr))dVr.
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Combining the first line of (3.3.4) applied in (s, x) = (t,Xt) and the Markov property (3.A.3), and
since f (·, ·, u, v) belongs to L2

X (see Lemma 3.3.5) we get the a.s. equalities

Ut = u(t,Xt)

= Pt,T [g](Xt) +
∫ T
t Pt,r [f (r, ·, u(r, ·), v(r, ·))] (Xt)dVr

= Et,Xt
[
g(XT ) +

∫ T
t f(r,Xr, u(r,Xr), v(r,Xr))dVr

]
= Es,x

[
g(XT ) +

∫ T
t f(r,Xr, u(r,Xr), v(r,Xr))dVr|Ft

]
,

(3.3.14)

from which we deduce that Nt = Es,x
[
g(XT ) +

∫ T
s f(r,Xr, u(r,Xr), v(r,Xr))dVr|Ft

]
−u(s, x) a.s. So

N is a martingale. We can therefore consider on [s, T ] and under Ps,x, N s,x the cadlag version of N ,
and the special semimartingale
U s,x := u(s, x) −

∫ ·
s f(r,Xr, u(r,Xr), v(r,Xr))dVr + N s,x which is a cadlag version of U . By Jensen’s

inequality for both expectation and conditional expectation, we have

Es,x[(N s,x)2
t ] = Es,x

[(
Es,x

[
g(XT ) +

∫ T
s f(r,Xr, u(r,Xr), v(r,Xr))dVr|Ft

]
− u(s, x)

)2
]

≤ 3u2(s, x) + 3Es,x[g2(XT )] + 3Es,x
[∫ T
s f2(r,Xr, u(r,Xr), v(r,Xr))dVr

]
< ∞,

(3.3.15)
where the second term is finite because of Hgrowth, and the same also holds for the third one because
f (·, ·, u, v) belongs to L2

X , see Lemma 3.3.5. So N s,x is square integrable. We have therefore shown
that under any Ps,x, the process u(·, X·) − u(s, x) +

∫ ·
s f(r,Xr, u(r,Xr), v(r,Xr))dVr has on [s, T ] a

modification in H2
0. Definitions 3.2.13 and 3.2.15, justify that u ∈ D(a), a(u) = −f(·, ·, u, v) and that

for any (s, x) ∈ [0, T ]× E, M [u]s,x = N s,x.
To conclude that u is a martingale solution of Pseudo − PDE(f, g), there is left to show that

G(u) = v2, up to zero potential sets. By Proposition 3.2.16, this is equivalent to show that for every
(s, x) ∈ [0, T ]× E, 〈N s,x〉 =

∫ ·
s v

2(r,Xr)dVr, in the sense of indistinguishability.
We fix again (s, x) ∈ [0, T ]× E and the associated probability, and now set

N ′t := u2(t,Xt)− u2(s, x)−
∫ t

s
(v2 − 2uf(·, ·, u, v))(r,Xr)dVr.

Combining the second line of (3.3.4) applied in (s, x) = (t,Xt) and the Markov property (3.A.3), and
since v2, uf (·, ·, u, v) belong to L1

X (see Lemma 3.3.5) we get the a.s. equalities

u2(t,Xt) = Pt,T [g2](Xt)−
∫ T
t Pt,r

[
(v2(r, ·)− 2u(r, ·)f (r, ·, u(r, ·), v(r, ·)))

]
(Xt)dVr

= Et,Xt
[
g2(XT )−

∫ T
t (v2 − 2uf(·, ·, u, v))(r,Xr)dVr

]
= Es,x

[
g2(XT )−

∫ T
t (v2 − 2uf(·, ·, u, v))(r,Xr)dVr|Ft

]
,

(3.3.16)

from which we deduce that for any t ∈ [s, T ],

N ′t = Es,x
[
g2(XT )−

∫ T

s
(v2 − uf(·, ·, u, v))(r,Xr)dVr|Ft

]
− u2(s, x) a.s.

So N ′ is a martingale. We can therefore consider on [s, T ] and under Ps,x, N ′s,x the cadlag version of
N ′.
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The process u2(s, x) +
∫ ·
s(v

2 − uf(·, ·, u, v))(r,Xr)dVr + N ′s,x is therefore a cadlag special semi-
martingale which is a Ps,x-version of u2(·, X) on [s, T ]. But we also had shown that

U s,x = u(s, x)−
∫ ·
s
f(r,Xr, u(r,Xr), v(r,Xr))dVr +N s,x

is a version of u(·, X), which by integration by part implies that

u2(s, x)− 2

∫ ·
s
U s,xr f(·, ·, u, v)(r,Xr)dVr + 2

∫ ·
s
U s,x
r− dN

s,x
r + [N s,x]

is another cadlag semimartingale which is a Ps,x-version of u2(·, X) on [s, T ].∫ ·
s(v

2 − 2uf(·, ·, u, v))(r,Xr)dVr +N ′s,x is therefore indistinguishable from
−2
∫ ·
s U

s,x
r f(·, ·, u, v)(r,Xr)dVr + 2

∫ ·
s U

s,x
r− dN

s,x
r + [N s,x] which can be written

〈N s,x〉 − 2

∫ ·
s
U s,xr f(·, ·, u, v)(r,Xr)dVr + 2

∫ ·
s
U s,x
r− dN

s,x
r + ([N s,x]− 〈N s,x〉),

where 〈N s,x〉−2
∫ ·
s U

s,x
r f(·, ·, u, v)(r,Xr)dVr is predictable with bounded variation and 2

∫ ·
s U

s,x
r− dN

s,x
r +

([N s,x] − 〈N s,x〉) is a local martingale. By uniqueness of the decomposition of a special semimartin-
gale, we have∫ ·

s
(v2 − 2uf(·, ·, u, v))(r,Xr)dVr = 〈N s,x〉 − 2

∫ ·
s
U s,xr f(·, ·, u, v)(r,Xr)dVr,

and by Lemma 3.2.19,∫ ·
s

(v2 − 2uf(·, ·, u, v))(r,Xr)dVr = 〈N s,x〉 − 2

∫ ·
s
uf(·, ·, u, v)(r,Xr)dVr,

which finally yields 〈N s,x〉 =
∫ ·
s v

2(r,Xr)dVr as desired.

We recall that (Ps,x)(s,x)∈[0,T ]×E is a Markov class associated to a transition kernel measurable in
time (see Definitions 3.A.6 and 3.A.4) which fulfills Hypothesis 3.2.4, i.e. it is a solution of a well-
posed Martingale Problem associated with the triplet (D(a), a, V ).

Theorem 3.3.9. Let (f, g) be a couple verifying H lip, see Hypothesis 3.2.23. Then Pseudo−PDE(f, g) has
a unique decoupled mild solution.

Proof. This derives from Theorem 3.2.24 and Propositions 3.3.7, 3.3.8.

Corollary 3.3.10. Assume that (f, g) verifies H lip, see Hypothesis 3.2.23. A classical solution u of Pseudo−
PDE(f, g) such that Γ(u) ∈ L1

X , is also a decoupled mild solution.
Conversely, if u is a decoupled mild solution of Pseudo− PDE(f, g) belonging to D(a), then u is a classical
solution of Pseudo− PDE(f, g) up to a zero-potential set, meaning that the first equality of (3.2.4) holds up
to a set of zero potential.

Proof. The statement holds by Proposition 3.3.8 and Proposition 3.2.25.
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3.3.3 Representation of the solution via Markovian BSDEs with no driving martingale

In Chapter 2, the following family of Markovian BSDEs with no driving martingale indexed by
(s, x) ∈ [0, T ]× E was introduced.

Definition 3.3.11. Let (s, x) ∈ [0, T ]×E and the associated stochastic basis (Ω,Fs,x,Fs,x,Ps,x) be fixed. A
couple
(Y s,x,M s,x) ∈ L2(dV ⊗ dPs,x)×H2

0 will be said to solve BSDEs,x(f, g) if it verifies on [0, T ], in the sense
of indistinguishability

Y s,x = g(XT ) +

∫ T

·
f

(
r,Xr, Y

s,x
r ,

√
d〈M s,x〉
dV

(r)

)
dVr − (M s,x

T −M s,x
· ). (3.3.17)

If (3.3.17) is only satisfied on a smaller interval [t0, T ], with 0 < t0 < T , we say that (Y s,x,M s,x) solves
BSDEs,x(f, g) on [t0, T ].

The following result follows from Theorem 2.3.21 in Chapter 2.

Theorem 3.3.12. Assume that (f, g) verifies H lip, see Hypothesis 3.2.23. Then for any (s, x) ∈ [0, T ] × E,
BSDEs,x(f, g) has a unique solution.

In the following theorem, we summarize the links between the BSDEs,x(f, g) and the notion
of martingale solution of Pseudo − PDE(f, g). These are shown in Theorem 2.5.15, Remark 2.5.16,
Theorem 2.5.21 and Theorem 2.5.22 of Chapter 2.

Theorem 3.3.13. Assume that (f, g) verifies H lip (see Hypothesis 3.2.23) and let (Y s,x,M s,x) denote the
(unique) solution of BSDEs,x(f, g) for fixed (s, x). Let u be the unique martingale solution of Pseudo −
PDE(f, g). For every (s, x) ∈ [0, T ]× E, on the interval [s, T ],

• Y s,x and u(·, X·) are Ps,x-modifications, and equal dV ⊗ dPs,x a.e.;

• M s,x and M [u]s,x are Ps,x-indistinguishable.

Moreover u belongs to L2
X and for any (s, x) ∈ [0, T ]× E, we have d〈Ms,x〉

dV = G(u)(·, X·) dV ⊗ dPs,x a.e.

Remark 3.3.14. The martingale solution u of Pseudo− PDE exists and is unique by Theorem 3.2.24.

We can therefore represent the unique decoupled mild solution of Pseudo − PDE(f, g) via the
stochastic equations BSDEs,x(f, g) as follows.

Theorem 3.3.15. Assume that (f, g) verifies H lip (see Hypothesis 3.2.23) and let (Y s,x,M s,x) denote the
(unique) solution of BSDEs,x(f, g) for fixed (s, x).

Then for any (s, x) ∈ [0, T ]× E, the random variable Y s,x
s is Ps,x a.s. equal to a constant (which we still

denote Y s,x
s ), and the function

u : (s, x) 7−→ Y s,x
s (3.3.18)

is the unique decoupled mild solution of Pseudo− PDE(f, g).

Proof. By Theorem 3.3.13, there exists a Borel function u such that for every (s, x) ∈ [0, T ]×E, Y s,x
s =

u(s,Xs) = u(s, x) Ps,x a.s. and u is the unique martingale solution of Pseudo − PDE(f, g). By
Proposition 3.3.7, it is also its unique decoupled mild solution.

Remark 3.3.16. The function v such that (u, v) is the unique solution of the identification problem IP (f, g)
also has a stochastic representation since it verifies for every (s, x) ∈ [0, T ]× E, on the interval [s, T ],
d〈Ms,x〉
dV = v2(·, X·) dV ⊗ dPs,x a.e. where M s,x is the martingale part of the solution of BSDEs,x.
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Conversely, under the weaker condition Hgrowth if one knows the solution of IP (f, g), one can
(for every (s, x)) produce a version of a solution of BSDEs,x(f, g) as follows. This is only possible
with the notion of decoupled mild solution: even in the case of Brownian BSDEs the knowledge of
the viscosity solution of the related PDE would (in general) not be sufficient to reconstruct the family
of solutions of the BSDEs.

Proposition 3.3.17. Assume that (f, g) verifies Hgrowth, see Hypothesis 3.3.1. Suppose the existence of a
solution (u, v) to IP (f, g), and let (s, x) ∈ [0, T ]× E be fixed. Then(

u(·, X), u(·, X)− u(s, x) +

∫ ·
s
f(·, ·, u, v)(r,Xr)dVr

)
(3.3.19)

admits on [s, T ] a Ps,x-version (Y s,x,M s,x) which solves BSDEs,x on [s, T ].

Proof. By Proposition 3.3.8, u is a martingale solution of Pseudo−PDE(f, g) and v2 = G(u). We now
fix (s, x) ∈ [0, T ] × E. Combining Definitions 3.2.15, 3.2.17 and 3.2.22, we know that u(T, ·) = g and
that on [s, T ], u(·, X) has aPs,x-versionU s,x with decompositionU s,x = u(s, x)−

∫ ·
s f(·, ·, u, v)(r,Xr)dVr+

M [u]s,x, where M [u]s,x is an element of H2
0 of angular bracket

∫ ·
s v

2(r,Xr)dVr and is a version of
u(·, X) − u(s, x) +

∫ ·
s f(·, ·, u, v)(r,Xr)dVr. By Lemma 3.2.19, taking into account u(T, ·) = g, the

couple (U s,x,M [u]s,x) verifies on [s, T ], in the sense of indistinguishability

U s,x = g(XT ) +

∫ T

·
f

(
r,Xr, U

s,x
r ,

√
d〈M [u]s,x〉

dV
(r)

)
dVr − (M [u]s,xT −M [u]s,x· ) (3.3.20)

with M [u]s,x ∈ H2
0 verifying M [u]s,xs = 0 (see Definition 3.2.15) and U s,xs is deterministic so in partic-

ular is a square integrable r.v. Following a slight adaptation of the proof of Lemma 2.3.24 in Chapter
2 (see Remark 3.3.18 below), this implies that U s,x ∈ L2(dV ⊗dPs,x) and therefore that (U s,x,M [u]s,x)
is a solution of BSDEs,x(f, g) on [s, T ].

Remark 3.3.18. Indeed Lemma 2.3.24 in Chapter 2 , taking into account Notation 5.5 ibidem, can be applied
rigorously only under H lip for (f, g). However, the same proof easily allows an extension to our framework
Hgrowth.

3.4 Examples of applications

We now develop some examples. Some of the applications that we are interested in involve operators
which only act on the space variable, and we will extend them to time-dependent functions. The
reader may consult Appendix 3.B, concerning details about such extensions. In all the items below
there will be a canonical Markov class with transition kernel measurable in time which is solution of
a well-posed Martingale Problem associated to some triplet (D(a), a, V ) as introduced in Definition
3.2.3. Therefore all the results of this paper will apply to all the examples below, namely Theorem
3.2.24, Propositions 3.2.25, 3.3.7 and 3.3.8, Theorem 3.3.9, Corollaries 3.3.10 and 3.3.10, Theorems
3.3.12, 3.3.13 and 3.3.15 and Proposition 3.3.17. In particular, Theorem 3.3.9 states in all the cases,
under suitable Lipschitz type conditions for the driver f , that the corresponding Pseudo-PDE admits
a unique decoupled mild solution. In all the examples T ∈ R∗+ will be fixed.

3.4.1 Markovian jump diffusions

In this subsection, the state space will be E := Rd for some d ∈ N∗. We are given β ∈ B([0, T ] ×
Rd,Rd), α ∈ B([0, T ]×Rd, S∗+(Rd)) (where S∗+(Rd) is the space of symmetric strictly positive definite
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matrices of size d) and K a Lévy kernel: this means that for every (t, x) ∈ [0, T ] × Rd, K(t, x, ·) is
a σ-finite measure on Rd\{0}, sup

t,x

∫ ‖y‖2
1+‖y‖2K(t, x, dy) < ∞ and for every Borel set A ∈ B(Rd\{0}),

(t, x) 7−→
∫
A
‖y‖2

1+‖y‖2K(t, x, dy) is Borel. We will consider the operator a defined by

∂tφ+
1

2
Tr(α∇2φ) + (β,∇φ) +

∫ (
φ(·, ·+ y)− φ(·, y)− (y,∇φ)

1 + ‖y‖2

)
K(·, ·, dy), (3.4.1)

on the domain D(a) which is here the linear algebra C1,2
b ([0, T ]×Rd,R) of real continuous bounded

functions on [0, T ] × Rd which are continuously differentiable in the first variable with bounded
derivative, and twice continuously differentiable in the second variable with bounded derivatives.

Concerning martingale problems associated to parabolic PDE operators, one may consult [85].
Since we want to include integral operators, we will adopt the formalism of D.W. Stroock in [84]. Its
Theorem 4.3 and the penultimate sentence of its proof states the following.

Theorem 3.4.1. Suppose that β is bounded, that α is bounded continuous and that for any A ∈ B(Rd\{0}),
(t, x) 7−→

∫
A

y
1+‖y‖2K(t, x, dy) is bounded continuous. Then, for every (s, x), there exists a unique probability

Ps,x on the canonical space (see Definition 3.A.1) such that φ(·, X·) −
∫ ·
s a(φ)(r,Xr)dr is a local martingale

for any φ ∈ D(a) and Ps,x(Xs = x) = 1. Moreover (Ps,x)(s,x)∈[0,T ]×Rd defines a Markov class and its
transition kernel is measurable in time.

The Martingale Problem associated to (D(a), a, Vt ≡ t) in the sense of Definition 3.2.3 is therefore
well-posed and solved by (Ps,x)(s,x)∈[0,T ]×Rd .

In this context, D(a) is an algebra and for φ, ψ in D(a), the carré du champs operator is given by

Γ(φ, ψ) =
∑
i,j≤d

αi,j∂xiφ∂xjψ +

∫
Rd\{0}

(φ(·, ·+ y)− φ)(ψ(·, ·+ y)− ψ)K(·, ·, dy).

We will consider a couple (f, g) satisfying H lip (its items 1 and 2 hold for example if g and f(·, ·, 0, 0)
are bounded).

Proposition 3.4.2. Under the assumptions of Theorem 3.4.1, and if (f, g) verify H lip (see Hypothesis 3.2.23),
Pseudo− PDE(f, g) admits a unique decoupled mild solution in the sense of Definition 3.3.4.

Proof. D(a) is an algebra. Moreover (Ps,x)(s,x)∈[0,T ]×Rd is a Markov class which is measurable in
time, and it solves the well-posed Martingale Problem associated to (D(a), a, Vt ≡ t). Therefore our
Theorem 3.3.9 applies.

3.4.2 Pseudo-Differential operators and Fractional Laplacian

This section concerns pseudo-differential operators with negative definite symbol, see [58] for an ex-
tensive description. A typical example of such operators will be the fractional Laplacian ∆

α
2 with

α ∈]0, 2[, see Chapter 3 in [36] for a detailed study of this operator. We will mainly use the notations
and vocabulary of N. Jacob in [57], [58] and [59], some results being attributed to W. Hoh [54]. We
fix d ∈ N∗. C∞c (Rd) will denote the space of real functions defined on Rd which are infinitely con-
tinuously differentiable with compact support and S(Rd) the Schwartz space of fast decreasing real
smooth functions also defined onRd. Fu will denote the Fourier transform of a function u whenever
it is well-defined. For u ∈ L1(Rd) we use the convention Fu(ξ) = 1

(2π)
d
2

∫
Rd
e−i(x,ξ)u(x)dx.
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Definition 3.4.3. A function ψ ∈ C(Rd,R) will be said negative definite if for any k ∈ N, ξ1, · · · , ξk ∈ Rd,
the matrix (ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))j,l=1,··· ,k is symmetric positive definite.

A function q ∈ C(Rd ×Rd,R) will be called a continuous negative definite symbol if for any x ∈ Rd,
q(x, ·) is continuous negative definite

In this case we introduce the pseudo-differential operator q(·, D) defined by

q(·, D)(u)(x) =
1

(2π)
d
2

∫
Rd
ei(x,ξ)q(x, ξ)Fu(ξ)dξ. (3.4.2)

Remark 3.4.4. By Theorem 4.5.7 in [57], q(·, D) maps the space C∞c (Rd) of smooth functions with compact
support into itself. In particular q(·, D) will be defined on C∞c (Rd). However, the proof of this Theorem 4.5.7
only uses the fact that if φ ∈ C∞c (Rd) then Fφ ∈ S(Rd) and this still holds for every φ ∈ S(Rd). Therefore
q(·, D) is well-defined on S(Rd) and maps it into C(Rd,R).

A typical example of such pseudo-differential operators is the fractional Laplacian defined for
some fixed α ∈]0, 2[ on S(Rd) by

(−∆)
α
2 (u)(x) =

1

(2π)
d
2

∫
Rd
ei(x,ξ)‖ξ‖αFu(ξ)dξ. (3.4.3)

Its symbol has no dependence in x and is the continuous negative definite function ξ 7→ ‖ξ‖α. Com-
bining Theorem 4.5.12 and 4.6.6 in [59], one can state the following.

Theorem 3.4.5. Let ψ be a continuous negative definite function satisfying for some r0, c0 > 0: ψ(ξ) ≥
c0‖ξ‖r0 if ‖ξ‖ ≥ 1. Let M be the smallest integer strictly superior to ( dr0 ∨ 2) + d. Let q be a continuous
negative symbol verifying, for some c, c′ > 0 and γ : Rd → R∗+, the following items.

• q(·, 0) = 0 and sup
x∈Rd
|q(x, ξ)| −→

ξ→0
0;

• q is C2M+1−d in the first variable and for any β ∈ Nd with ‖β‖ ≤ 2M + 1− d, ‖∂βx q‖ ≤ c(1 + ψ);

• q(x, ξ) ≥ γ(x)(1 + ψ(x)) if x ∈ Rd, ‖ξ‖ ≥ 1;

• q(x, ξ) ≤ c′(1 + ‖ξ‖2) for every (x, ξ).

Then the homogeneous Martingale Problem associated to (−q(·, D),S(Rd)) is well-posed (see Definition
3.B.3) and its solution (Px)x∈Rd defines a homogeneous Markov class, see Notation 3.B.1.

We will now introduce the time-inhomogeneous domain which will be used to extendD(−q(·, D)) =
S(Rd).

Definition 3.4.6. Let τ be a Hausdorff topological linear space. We will denote by C1([0, T ], τ) the set of
functions φ ∈ C([0, T ], τ) such that there exists a function ∂tφ ∈ C([0, T ], τ) verifying the following. For
every t0 ∈ [0, T ] we have 1

(t−t0)(φ(t)− φ(t0))
τ−→

t→t0
∂tφ(t0).

We recall that a topological algebra is a topological space equipped with a structure of linear
algebra such that addition, multiplication and multiplication by a scalar are continuous.

Lemma 3.4.7. Let A be a (Hausdorff) topological algebra, then C1([0, T ],A) is a linear algebra, and for any
φ, ψ ∈ C1([0, T ],A), we have ∂t(φψ) = ψ∂tφ+ φ∂tψ.

Proof. The proof is very close to the one ofR.
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Remark 3.4.8. Classical examples of topological algebras are C∞c (Rd), S(Rd), C∞(Rd), Cm(Rd) for some
m ∈ N (equipped with their usual topologies), or W k,p(Rd)

⋂
W k,∞(Rd) for any k ∈ N∗, p ≥ 1, where

W k,p(Rd) denotes the usual Sobolev space of parameters k, p. Those are all Fréchet algebras except for C∞c (Rd)
which is only locally convex one.

Notation 3.4.9. We set D(∂t − q(·, D)) := C1([0, T ],S(Rd)).

Elements in C([0, T ],S(Rd)) will also be seen as functions of two variables, and since convergence
in S(Rd) implies pointwise convergence, the usual notion of partial derivative coincides with the
notation ∂t introduced in Definition 3.4.6. Any φ ∈ D(∂t − q(·, D)) clearly verifies

• ∀t ∈ [0, T ], φ(t, ·) ∈ S(Rd) and ∀x ∈ Rd, φ(·, x) ∈ C1([0, T ],R);

• ∀t ∈ [0, T ], ∂tφ(t, ·) ∈ S(Rd).

Our goal now is to show that D(∂t − q(·, D) also verifies the other items needed to be included in
Dmax(∂t − q(·, D)) (see Notation 3.B.5) and therefore that Corollary 3.B.8 applies with this domain.

Notation 3.4.10. Let α, β ∈ Nd be multi-indices, we introduce the semi-norm

‖ · ‖α,β :
S(Rd) −→ R

φ 7−→ sup
x∈Rd
|xα∂βxφ(x)|. (3.4.4)

S(Rd) is a Fréchet space whose topology is determined by the family of seminorms ‖ · ‖α,β . In
particular those seminorms are continuous.
In what follows, Fx will denote the Fourier transform taken in the space variable.

Proposition 3.4.11. Let φ ∈ C([0, T ],S(Rd)). ThenFxφ ∈ C([0, T ],S(Rd)). Moreover if φ ∈ C1([0, T ],S(Rd)),
then Fxφ ∈ C1([0, T ],S(Rd)) and
∂tFxφ = Fx∂tφ.

Proof. Fx : S(Rd) −→ S(Rd) is continuous, so φ ∈ C([0, T ],S(Rd) implies Fxφ ∈ C([0, T ],S(Rd)). If
φ ∈ C1([0, T ],S(Rd)) then ∂tφ ∈ C([0, T ],S(Rd) so Fx∂tφ ∈ C([0, T ],S(Rd). Then for any t0 ∈ [0, T ],
the convergence

1
t−t0 (φ(t, ·) − φ(t0, ·))

S(Rd)−→
t→t0

∂tφ(t0, ·) is preserved by the continuous mapping Fx meaning that (by

linearity)
1

t−t0 (Fxφ(t, ·) − Fxφ(t0, ·))
S(Rd)−→
t→t0

Fx∂tφ(t0, ·). Since Fx∂tφ ∈ C([0, T ],S(Rd)), we have shown that

Fxφ ∈ C1([0, T ],S(Rd)) and ∂tFxφ = Fx∂tφ.

Proposition 3.4.12. If φ ∈ C([0, T ],S(Rd)), then for any α, β ∈ Nd,
(t, x) 7−→ xα∂βxφ(t, x) is bounded.

Proof. Let α, β be fixed. Since the maps ‖ · ‖α,β : S(Rd) → R are continuous, for every φ ∈
C([0, T ],S(Rd)), the application t 7→ ‖φ(t, ·)‖α,β is continuous on the compact interval [0, T ] and
therefore bounded, which yields the result.

Proposition 3.4.13. If φ ∈ C([0, T ],S(Rd)) and α, β ∈ Nd, then there exist non-negative functions ψα,β ∈
L1(Rd) such that for every (t, x) ∈ [0, T ]×Rd, |xα∂βxφ(t, x)| ≤ ψα,β(x).
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Proof. We decompose

|xα∂βxφ(t, x)| = |xα∂βxφ(t, x)|1[−1,1]d(x) + |xα+(2,··· ,2)∂βxφ(t, x)| 1
Π
i≤d

x2i
1Rd\[−1,1]d(x)

≤ C(1[−1,1]d(x) + 1
Π
i≤d

x2i
1Rd\[−1,1]d(x)),

(3.4.5)

where C is some constant which exists thanks to Proposition 3.4.12.

Proposition 3.4.14. Let q be a continuous negative definite symbol verifying the assumptions of Theorem 3.4.5
and let φ ∈ C1([0, T ],S(Rd)). Then for any x ∈ Rd, t 7→ q(·, D)φ(t, x) ∈ C1([0, T ],R) and ∂tq(·, D)φ =
q(·, D)∂tφ.

Proof. We fix φ ∈ C1([0, T ],S(Rd)), and x ∈ Rd. We wish to show that for any ξ ∈ Rd, t 7−→
1

(2π)
d
2

∫
Rd
ei(x,ξ)q(x, ξ)Fxφ(t, ξ)dξ is C1 with derivative

t 7−→ 1

(2π)
d
2

∫
Rd
ei(x,ξ)q(x, ξ)Fx∂tφ(t, ξ)dξ.

Since φ ∈ C1([0, T ],S(Rd)), then ∂tφ ∈ C([0, T ],S(Rd)) and by Proposition 3.4.11,Fx∂tφ ∈ C([0, T ],S(Rd)).
Moreover since q verifies the assumptions of Theorem 3.4.5, then |q(x, ξ)| is bounded by c′(1 + ‖ξ‖2)
for some constant c′. Therefore by Proposition 3.4.13, there exists a non-negative ψ ∈ L1(Rd) such
that for every t, ξ, |q(x, ξ)Fx∂tφ(t, ξ)| ≤ ψ(ξ). Since by Proposition 3.4.11, Fx∂tφ = ∂tFxφ, this im-
plies that for any (t, ξ), |∂tei(x,ξ)q(x, ξ)Fxφ(t, ξ)| ≤ ψ(ξ). So by the theorem about the differentiation
of integrals depending on a parameter, for any ξ ∈ Rd, t 7−→ 1

(2π)
d
2

∫
Rd
ei(x,ξ)q(x, ξ)Fxφ(t, ξ)dξ is of

class C1 with derivative t 7−→ 1

(2π)
d
2

∫
Rd
ei(x,ξ)q(x, ξ)Fx∂tφ(t, ξ)dξ.

Proposition 3.4.15. Let q be a continuous negative definite symbol verifying the assumptions of Theorem
3.4.5 and let φ ∈ C1([0, T ],S(Rd)). Then φ, ∂tφ, q(·, D)φ and q(·, D)∂tφ are bounded.

Proof. Proposition 3.4.12 implies that any element of C([0, T ],S(Rd)) is bounded, so we immediately
deduce that φ and ∂tφ are bounded.

Since q verifies the assumptions of Theorem 3.4.5, for any fixed (t, x) ∈ [0, T ]×Rd, we have

|q(·, D)φ(t, x)| =

∣∣∣∣ 1

(2π)
d
2

∫
Rd
ei(x,ξ)q(x, ξ)Fxφ(t, ξ)dξ

∣∣∣∣
≤ C

∫
Rd

(1 + ‖ξ‖2)|Fxφ(t, ξ)|dξ,
(3.4.6)

for some constant C. Since φ ∈ C([0, T ],S(Rd)) then, by Proposition 3.4.11, Fxφ also belongs to
C([0, T ],S(Rd)), and by Proposition 3.4.12, there exists a positive ψ ∈ L1(Rd) such that for any (t, ξ),
(1 + ‖ξ‖2)|Fxφ(t, ξ)| ≤ ψ(ξ), so for any (t, x), |q(·, D)φ(t, x)| ≤ ‖ψ‖1.

Similar arguments hold replacing φ with ∂tφ since it also belongs to C([0, T ],S(Rd)).

Remark 3.4.16. C1([0, T ],S(Rd)) seems to be a domain which is particularly appropriate for time-dependent
Fourier analysis and it fits well for our framework. On the other hand it is not so fundamental to require such
regularity for classical solutions for Pseudo-PDEs, so that we could consider a larger domain. For example
the Fréchet algebra S(Rd) could be replaced with the Banach algebra W d+3,1(Rd)

⋂
W d+3,∞(Rd) in all the

previous proofs.
Even bigger domains are certainly possible, we will however not insist on such refinements.



3.4. Examples of applications 81

Corollary 3.4.17. Let q be a continuous negative definite symbol verifying the hypotheses of Theorem 3.4.5.
Then D(∂t − q(·, D)) is a linear algebra included in Dmax(∂t − q(·, D)) as defined in Notation 3.B.5.

Proof. We recall that, according to Notation 3.4.9D(∂t−q(·, D)) = C1([0, T ],S(Rd)). The proof follows
from Lemma 3.4.7, Propositions 3.4.14 and 3.4.15, and the comments under Notation 3.4.9.

Corollary 3.4.18. Let q be a continuous negative definite symbol verifying the hypotheses of Theorem 3.4.5, let
(Px)x∈Rd be the corresponding homogeneous Markov class exhibited in Theorem 3.4.5, let (Ps,x)(s,x)∈[0,T ]×Rd
be the corresponding Markov class (see Notation 3.B.1), let (D(∂t − q(·, D)), ∂t − q(·, D)) be as in Notation
3.4.9. Then

• (Ps,x)(s,x)∈[0,T ]×Rd solves the well-posed Martingale Problem associated to (D(∂t − q(·, D)), ∂t −
q(·, D), Vt ≡ t);

• its transition kernel is measurable in time.

Proof. The first statement directly comes from Theorem 3.4.5 and Corollaries 3.4.17 3.B.8, and the
second from Proposition 3.B.2.

Remark 3.4.19. The symbol of the fractional Laplacian q : (x, ξ) 7→ ‖ξ‖α trivially verifies the assumptions of
Theorem 3.4.5. Indeed, it has no dependence in x, so it is enough to set ψ : ξ 7→ ‖ξ‖α, c0 = c = c′ = 1, r0 = α
and γ = 1

2 .

The Pseudo-PDE that we focus on is the following.{
∂tu− q(·, D)u = f(·, ·, u,Γ(u)

1
2 ) on [0, T ]×Rd

u(T, ·) = g,
(3.4.7)

where q is a continuous negative definite symbol verifying the assumptions of Theorem 3.4.5 and Γ
is the associated carré du champs operator, see Definition 3.2.6.

Remark 3.4.20. By Proposition 3.3 in [36], for any α ∈]0, 2[, there exists a constant cα such that for any
φ ∈ S(Rd),

(−∆)
α
2 φ = cαPV

∫
Rd

(φ(·+ y)− φ)

‖y‖d+α
dy, (3.4.8)

where PV is a notation for principal value, see (3.1) in [36]. Therefore in the particular case of the fractional
Laplace operator, the carré du champs operator Γα associated to (−∆)

α
2 is given by

Γα(φ)

= cαPV
∫
Rd

(φ2(·,·+y)−φ2)
‖y‖d+α dy − 2φcαPV

∫
Rd

(φ(·,·+y)−φ)
‖y‖d+α dy

= cαPV
∫
Rd

(φ(·,·+y)−φ)2

‖y‖d+α dy.

(3.4.9)

Proposition 3.4.21. Let q be a continuous negative symbol verifying the assumptions of Theorem 3.4.5, let
(Ps,x)(s,x)∈[0,T ]×Rd be the Markov class which by Corollary 3.4.18 solves the well-posed Martingale Problem
associated to (D(∂t − q(·, D)), ∂t − q(·, D), Vt ≡ t).

For any (f, g) verifying H lip (see Hypothesis 3.2.23), Pseudo − PDE(f, g) admits a unique decoupled
mild solution in the sense of Definition 3.3.4.

Proof. The assertion comes from Corollary 3.4.18 and Theorem 3.3.9.
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3.4.3 Parabolic semi-linear PDEs with distributional drift

In this section we will use the formalism and results obtained in [47] and [48], see also [81], [31] for
more recent developments. In particular the latter paper treats interesting applications to polymers.
Those papers introduced a suitable framework of Martingale Problem related to a PDE operator
containing a distributional drift b′ which is the derivative of a continuous function. [46] established
a first work in the n-dimensional setting.

Let b, σ ∈ C0(R) such that σ > 0. By mollifier, we intend a function Φ ∈ S(R) with
∫

Φ(x)dx = 1.
We denote Φn(x) = nΦ(nx), σ2

n = σ2 ∗ Φn, bn = b ∗ Φn.
We then define Lng = σ2

n
2 g
′′ + b′ng

′. f ∈ C1(R) is said to be a solution to Lf = l̇ where l̇ ∈ C0, if for

any mollifier Φ, there are sequences (fn) in C2, (l̇n) in C0 such that Lnfn = (l̇n), fn
C1−→ f , l̇n

C0−→ l̇. We
will assume that Σ(x) = lim

n→∞
2
∫ x

0
b′n
σ2
n

(y)dy exists in C0 independently from the mollifier.

By Proposition 2.3 in [47] there exists a solution h ∈ C1 to Lh = 0, h(0) = 0, h′(0) = 1. Moreover
it verifies h′ = e−Σ. Moreover by Remark 2.4 in [47], for any l̇ ∈ C0, x0, x1 ∈ R, there exists a unique
solution of

Lf(x) = l̇, f ∈ C1, f(0) = x0, f ′(0) = x1. (3.4.10)

DL is defined as the set of f ∈ C1 such that there exists some l̇ ∈ C0 with Lf = l̇. And by Lemma 2.9
in [47] it is equal to the set of f ∈ C1 such that f

′

h′ ∈ C
1. So it is clearly an algebra.

h is strictly increasing, I will denote its image. Let L0 be the classical differential operator defined by
L0φ =

σ2
0
2 φ
′′, where

σ0(y) =

{
(σh′)(h−1(y)) : y ∈ I

0 : y ∈ Ic. (3.4.11)

Let v be the unique solution to Lv = 1, v(0) = v′(0) = 0, we will assume that

v(−∞) = v(+∞) = +∞, (3.4.12)

which represents a non-explosion condition. In this case, Proposition 3.13 in [47] states that the Mar-
tingale Problem associated to (DL, L, Vt ≡ t) is well-posed. Its solution will be denoted
(Ps,x)(s,x)∈[0,T ]×Rd . By Proposition 2.13, DL0 = C2(I). and by Proposition 3.2 in [47], the Martingale
Problem associated to (DL0 , L0, Vt ≡ t) is also well-posed, we will call (Qs,x)(s,x)∈[0,T ]×Rd its solution.
Moreover under any Ps,x the canonical process is a Dirichlet process, and h−1(X) is a semimartin-
gale that we call Y solving the SDE Yt = h(x) +

∫ t
s σ0(Ys)dWs in law, where the law of Y is Qs,x.

Xt is a Ps,x-Dirichlet process whose martingale component is
∫ ·
s σ(Xr)dWr. (Ps,x)(s,x)∈[0,T ]×Rd and

(Qs,x)(s,x)∈[0,T ]×Rd both define Markov classes.
We introduce now the domain that we will indeed use.

Definition 3.4.22. We set

D(a) =

{
φ ∈ C1,1([0, T ]×R) :

∂xφ

h′
∈ C1,1([0, T ]×R)

}
, (3.4.13)

which clearly is a linear algebra.
On D(a), we set Lφ := σ2h′

2 ∂x(∂xφh′ ) and a(φ) := ∂tφ+ Lφ.

Proposition 3.4.23. Let Γ denote the carré du champ operator associated to a, let φ, ψ be in D(a), then
Γ(φ, ψ) = σ2∂xφ∂xψ.
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Proof. We fix φ, ψ in D(a). We write

Γ(φ, ψ) = (∂t + L)(φψ)− φ(∂t + L)(ψ)− ψ(∂t + L)(φ)

= σ2h′

2

(
∂x

(
∂xφψ
h′

)
− φ∂x

(
∂xψ
h′

)
− ψ∂x

(
∂xφ
h′

))
= σ2∂xφ∂xψ.

(3.4.14)

Emphasizing that b′ is a distribution, the equation that we will study in this section is therefore
given by {

∂tu+ 1
2σ

2∂2
xu+ b′∂xu+ f(·, ·, u, σ|∂xu|) = 0 on [0, T ]×R

u(T, ·) = g.
(3.4.15)

Proposition 3.4.24. (Ps,x)(s,x)∈[0,T ]×Rd solves the Martingale Problem associated to (a,D(a), Vt ≡ t).

Proof. (t, y) 7→ φ(t, h−1(y)) is of class C1,2; moreover ∂x
(
φ(r, ·) ◦ h−1

)
= ∂xφ

h′ ◦h
−1 and ∂2

x

(
φ(r, ·) ◦ h−1

)
=

2Lφ
σ2h′2 ◦ h

−1 = 2Lφ
σ2
0
◦ h−1. By Itô formula we have

φ(t,Xt) = φ(t, h−1(Yt))

= φ(s, x) +
∫ t
s

(
∂tφ(r, h−1(Yr)) + 1

2σ
2
0(Yr)∂

2
x

(
φ(r, ·) ◦ h−1

)
(Yr)

)
dr

+
∫ t
s σ0(r, h−1(Yr))∂x

(
φ(r, ·) ◦ h−1

)
(Yr)dWr

= φ(s, x) +
∫ t
s

(
∂tφ(r, h−1(Yr)) + Lφ(r, h−1(Yr))

)
dr

+
∫ t
s σ0(r, h−1(Yr))

∂xφ(r,h−1(Yr))
h′(Yr)

dWr

= φ(s, x) +
∫ t
s (∂tφ(r,Xr) + l(r,Xr))) dr +

∫ t
s σ(r,Xr)∂xφ(r,Xr)dWr.

(3.4.16)

Therefore φ(t,Xt)−φ(s, x)−
∫ t
s a(φ)(r,Xr)dr =

∫ t
s σ(r,Xr)∂xφ(r,Xr)dWr is a local martingale.

In order to consider the BSDEs,x(f, g) for functions (f, g) having polynomial growth in x we
will show the following result. We formulate here the supplementary assumption, called (TA) in
[47]. This means the existence of strictly positive constants c1, C1 such that

c1 ≤
eΣ

σ
≤ C1. (3.4.17)

Proposition 3.4.25. We suppose that (TA) is fulfilled and σ has linear growth. Then, for any p > 0 and
(s, x) ∈ [0, T ] ×R, Es,x[|XT |p] < ∞ and Es,x[

∫ T
s |Xr|pdr] < ∞. In other words, if g and f(·, ·, 0, 0) have

polynomial growth in x uniformly in t, then (f, g) verify the first two items of Hgrowth or equivalently the
first two items of H lip.

Proof. We start by proving the proposition in the divergence form case, meaning that b = σ2

2 .
Let (s, x) and t ∈ [s, T ] be fixed. Thanks to the Aronson estimates, see e.g. [2] and also Section 5. of
[47], there is a constant M > 0 such that

Es,x[|Xt|p] =
∫
R
|y|ppt−s(x, y)dy

≤ M√
t−s
∫
R
|y|pe−

|x−y|2
M(t−s)dz

= M
3
2

∫
R
|x+ z

√
M(t− s)|pe−z2dz

≤
∑p

k=0M
3+k
2

(
p
k

)
|x|k|t− s|

p−k
2

∫
R
|z|p−ke−z2dz,

(3.4.18)

which (for fixed (s, x)) is bounded in t ∈ [s, T ] and therefore Lebesgue integrable in t on [s, T ]. This
in particular shows that Es,x[|XT |p] and Es,x[

∫ T
s |Xr|pdr](=

∫ T
s E

s,x[|Xr|p]dr) are finite.
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Now we will consider the case in which X only verifies (3.4.17) and we will add the hypothesis that
σ has linear growth.
Then there exists a process Z (see Lemma 5.6 in [47]) solving an SDE with distributional drift of
divergence form generator, and a function k of class C1 such that X = k−1(Z). The (3.4.17) condition
implies that there exist two constants such that 0 < c ≤ k′σ ≤ C implying that for any x, (k−1)′(x) =

1
k′◦k−1(x)

≤ σ◦k−1(x)
c ≤ C2(1+ |k−1(x)|), for a positive constantC2. So by Gronwall Lemma there exists

C3 > 0 such that k−1(x) ≤ C3e
C2|x|, ∀x ∈ R.

Now thank to the Aronson estimates on the transition function pZ of Z, for every p > 0, we have

Es,x[|X|pt ] ≤ C3

∫
eC2p|z|pZt−s(k(x), z)dz

≤
∫
eC2p|z|M√

t
e−
|k(x)−z|2

Mt dz

≤ M
3
2

∫
eC2p(

√
Mt|y|+k(x))e−y

2
dy

≤ AeBk(x),

(3.4.19)

where A,B are two constants depending on p and M . This implies that Es,x[|XT |p] < ∞ and
Es,x[

∫ T
s |Xr|pdr] <∞.

We can now state the main result of this section.

Proposition 3.4.26. Assume that the non-explosion condition (3.4.12) is verified and the validity of one of the
two following items.

• the (TA) condition (3.4.17) is fulfilled, σ has linear growth, f(·, ·, 0, 0), g have polynomial growth in x
and f verifies item 3 of H lip (see Hypothesis 3.2.23)

• f(·, ·, 0, 0), g are bounded and f verifies item 3 of H lip.

Then (3.4.15) has a unique decoupled mild solution u in the sense of Definition 3.3.4.

Proof. The assertion comes from Theorem 3.3.9 which applies thanks to Propositions 3.4.24, 3.4.25
and 3.B.2.

Remark 3.4.27. 1. A first analysis linking PDEs (in fact second order elliptic differential equations) with
distributional drift and BSDEs was performed by [82]. In those BSDEs the final horizon was a stopping
time.

2. In [56], the authors have considered a class of BSDEs involving particular distributions.

3.4.4 Diffusion equations on differential manifolds

In this section, we will provide an example of application in a non Euclidean space. We consider a
compact connected smooth differential manifold M of dimension n. We denote by C∞(M) the linear
algebra of smooth functions from M to R, and (Ui, φi)i∈I its atlas. The reader may consult [62] for
an extensive introduction to the study of differential manifolds, and [55] concerning diffusions on
differential manifolds.

Lemma 3.4.28. M is Polish.

Proof. By Theorem 1.4.1 in [62] M may be equipped with a Riemannian metric, that we denote by g
and its topology may be metricized by the associated distance which we denote by d. As any compact
metric space, (M,d) is separable and complete so that M is a Polish space.
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We denote by (Ω,F ,F) the canonical space associated to M and T , and (Xt)t∈[0,T ] the canonical
process, see Definition 3.A.1.

Definition 3.4.29. An operator L : C∞(M) −→ C∞(M) will be called a smooth second order elliptic non
degenerate differential operator on M if for any chart φ : U −→ Rn there exist smooth β : φ(U) −→ Rn
and α : φ(U) −→ S∗+(Rn) such that on φ(U) for any f ∈ C∞(M) we have

Lf(φ−1(x)) =
1

2

n∑
i,j=1

αi,j(x)∂xixj (f ◦ φ−1)(x) +

n∑
i=1

βi(x)∂xi(f ◦ φ−1)(x). (3.4.20)

α and β depend on the chart φ but this dependence will be sometimes omitted and we will say
that for some given local coordinates,

Lf = 1
2

n∑
i,j=1

αi,j∂xixjf +
n∑
i=1
βi∂xif .

The following definition comes from [55], see Definition 1.3.1.

Definition 3.4.30. Let L denote a smooth second order elliptic non degenerate differential operator on M . Let
x ∈M . A probability measure Px on (Ω,F) will be called an L-diffusion starting in x if

• Px(X0 = x) = 1;

• for every f ∈ C∞(M), f(X)−
∫ ·

0 Lf(Xr)dr is a (Px,F) local martingale.

Remark 3.4.31. No explosion can occur for continuous stochastic processes with values in a compact space,
so there is no need to consider paths in the compactification of M as in Definition 1.1.4 in [55].
Theorems 1.3.4 and 1.3.5 in [55] state that for any x ∈ M , there exists a unique L-diffusion starting in x.
Theorem 1.3.7 in [55] implies that those probability measures (Px)x∈M define a homogeneous Markov class.

For a given operator L, the carré du champs operator Γ is given (in local coordinates) by Γ(φ, ψ) =
n∑

i,j=1
αi,j∂xiφ∂xjφ, see equation (1.3.3) in [55]. We wish to emphasize here that the carré du champs

operator has recently become a powerful tool in the study of geometrical properties of Riemannian
manifolds. The reader may refer e.g. to [3].

Definition 3.4.32. (Px)x∈M will be called the L-diffusion. If M is equipped with a specific Riemannian
metric g and L is chosen to be equal to 1

2∆g where ∆g the Laplace-Beltrami operator associated to g, then
(Px)x∈M will be called the Brownian motion associated to g, see [55] Chapter 3 for details.

We now fix some smooth second order elliptic non degenerate differential operator L and the
L-diffusion (Px)x∈M . We introduce the associated Markov class (Ps,x)(s,x)∈[0,T ]×M as described in
Notation 3.B.1, which by Proposition 3.B.2 is measurable in time.

Notation 3.4.33. We define D(∂t + L) the set of functions u : [0, T ] ×M −→ R such that, for any chart
φ : U −→ Rn, the mapping

[0, T ]× φ(U) −→ R

(t, x) 7−→ u(t, φ−1(x))
(3.4.21)

belongs to C∞([0, T ] × φ(U),R), the set of infinitely continuously differentiable functions in the usual Eu-
clidean setup.

Lemma 3.4.34. D(∂t + L) is a linear algebra included in Dmax(∂t + L) as defined in Notation 3.B.5.
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Proof. For some fixed chart φ : U −→ Rn, C∞([0, T ] × φ(U),R) is an algebra, so it is immediate that
D(∂t + L) is an algebra.

Moreover, if u ∈ D(∂t + L), it is clear that

• ∀x ∈M , u(·, x) ∈ C1([0, T ],R) and ∀t ∈ [0, T ], u(t, ·) ∈ C∞(M);

• ∀t ∈ [0, T ], ∂tu(t, ·) ∈ C∞(M) and ∀x ∈M , Lu(·, x) ∈ C1([0, T ],R).

Given a chart φ : U −→ Rn, by the Schwarz Theorem allowing the commutation of partial derivatives
(in the classical Euclidean setup), we have for x ∈ φ(U)

∂t ◦ L(u)(t, φ−1(x)) = 1
2

n∑
i,j=1

αi,j(x)∂t∂xixj (u(·, φ−1(·))(t, x) +
n∑
i=1
βi(x)∂t∂xi(u(·, φ−1(·))(t, x)

= 1
2

n∑
i,j=1

αi,j(x)∂xixj∂t(u(·, φ−1(·))(t, x) +
n∑
i=1
βi(x)∂xi∂t(u(·, φ−1(·))(t, x)

= L ◦ ∂t(u)(t, φ−1(x)).
(3.4.22)

So ∂t ◦ Lu = L ◦ ∂tu. Finally ∂tu, Lu and ∂t ◦ Lu are continuous (since they are continuous on all the
sets [0, T ]× U where U is the domain of a chart) and are therefore bounded as continuous functions
on the compact set [0, T ]×M . This concludes the proof.

Corollary 3.4.35. (Ps,x)(s,x)∈[0,T ]×M solves the well-posed Martingale Problem associated to (∂t+L,D(∂t+
L), Vt ≡ t) in the sense of Definition 3.2.3.

Proof. The corollary derives from Lemma 3.4.34 and Corollary 3.B.8.

We fix a couple (f, g) verifying H lip (see Hypothesis 3.2.23) and consider the PDE{
∂tu+ Lu+ f(·, ·, u,Γ(u)

1
2 ) = 0 on [0, T ]×M

u(T, ·) = g.
(3.4.23)

Since Theorem 3.3.9 applies, we have the following result.

Proposition 3.4.36. Equation (3.4.23) admits a unique decoupled mild solution u in the sense of Definition
3.3.4.

Remark 3.4.37. SinceM is compact, we emphasize that if g is continuous and f is continuous in t, x Lipschitz
in y, z then f(·, ·, 0, 0), g are bounded so (f, g) verifies H lip.



Appendix

3.A Markov classes

In this Appendix we recall some basic definitions and results concerning Markov processes. For a
complete study of homogeneous Markov processes, one may consult [34], concerning non-homogeneous
Markov classes, our reference was chapter VI of [40]. The first definition refers to the canonical space
that one can find in [60], see paragraph 12.63.

Notation 3.A.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topo-
logical space). E will be called the state space.

We consider T ∈ R∗+. We denote Ω := D([0, T ], E) the space of functions from [0, T ] to E right-continuous
with left limits and continuous at time T , e.g. cadlag. For any t ∈ [0, T ] we denote the coordinate mapping
Xt : ω 7→ ω(t), and we introduce on Ω the σ-field F := σ(Xr|r ∈ [0, T ]).

On the measurable space (Ω,F), we introduce the measurable canonical process

X :
(t, ω) 7−→ ω(t)

([0, T ]× Ω,B([0, T ])⊗F) −→ (E,B(E)),

and the right-continuous filtration F := (Ft)t∈[0,T ] where Ft :=
⋂

s∈]t,T ]

σ(Xr|r ≤ s) if t < T , and FT :=

σ(Xr|r ∈ [0, T ]) = F .
(Ω,F ,F) will be called the canonical space (associated to T and E).
For any t ∈ [0, T ] we denote Ft,T := σ(Xr|r ≥ t), and for any 0 ≤ t ≤ u < T we will denote Ft,u :=⋂
n≥0

σ(Xr|r ∈ [t, u+ 1
n ]).

Since E is Polish, we recall that D([0, T ], E) can be equipped with a Skorokhod distance which
makes it a Polish metric space (see Theorem 5.6 in chapter 3 of [44], and for which the Borel σ-field is
F , see Proposition 7.1 in Chapter 3 of [44]. This in particular implies that F is separable, as the Borel
σ-field of a separable metric space.

Remark 3.A.2. Previous definitions and all the notions of this Appendix, extend to a time interval equal to
R+ or replacing the Skorokhod space with the Wiener space of continuous functions from [0, T ] (orR+) to E.

Definition 3.A.3. The function

P :
(s, t, x, A) 7−→ Ps,t(x,A)

[0, T ]2 × E × B(E) −→ [0, 1],

will be called transition kernel if, for any s, t in [0, T ], x0 ∈ E, A ∈ B(E), it verifies

1. x 7→ Ps,t(x,A) is Borel,

87
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2. B 7→ Ps,t(x0, B) is a probability measure on (E,B(E)),

3. if t ≤ s then Ps,t(x0, A) = 1A(x0),

4. if s < t, for any u > t,
∫
E Ps,t(x0, dy)Pt,u(y,A) = Ps,u(x0, A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 3.A.4. A transition kernel P for which the first item is reinforced supposing that (s, x) 7−→
Ps,t(x,A) is Borel for any t, A, will be said measurable in time.

Remark 3.A.5. Let P be a transition kernel which is measurable in time. By approximation by step functions,
one can easily show that, for any Borel function φ from E to R̄ then (s, x) 7→

∫
E φ(y)Ps,t(x, dy) is Borel,

provided φ is quasi integrable for every (s, x).

Definition 3.A.6. A canonical Markov class associated to a transition kernel P is a set of probability
measures (Ps,x)(s,x)∈[0,T ]×E defined on the measurable space (Ω,F) and verifying for any t ∈ [0, T ] and
A ∈ B(E)

Ps,x(Xt ∈ A) = Ps,t(x,A), (3.A.1)

and for any s ≤ t ≤ u
Ps,x(Xu ∈ A|Ft) = Pt,u(Xt, A) Ps,x a.s. (3.A.2)

Remark 3.A.7. Formula 1.7 in Chapter 6 of [40] states that for any F ∈ Ft,T yields

Ps,x(F |Ft) = Pt,Xt(F ) = Ps,x(F |Xt) P
s,xa.s. (3.A.3)

Property (3.A.3) will be called Markov property.

For the rest of this section, we are given a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E with transition
kernel P .
We will complete the σ-fields Ft of the canonical filtration by Ps,x as follows.

Definition 3.A.8. For any (s, x) ∈ [0, T ]× E we will consider the (s, x)-completion(
Ω,Fs,x,Fs,x := (Fs,xt )t∈[0,T ],P

s,x
)

of the stochastic basis (Ω,F ,F,Ps,x) by defining Fs,x as the Ps,x-
completion of F , by extending Ps,x to Fs,x and finally by defining Fs,xt as the Ps,x-closure of Ft (meaning Ft
augmented with the Ps,x-negligible sets) for every t ∈ [0, T ].

We remark that, for any (s, x) ∈ [0, T ] × E, (Ω,Fs,x,Fs,x,Ps,x) is a stochastic basis fulfilling the
usual conditions, see (1.4) in chapter I of [61]). We recall that considering a conditional expectation
with respect to a σ-field augmented with the negligible sets or not, does not change the result. In
particular we have the following.

Proposition 3.A.9. Let (Ps,x)(s,x)∈[0,T ]×E be a canonical Markov class. Let (s, x) ∈ [0, T ] × E be fixed, Z
be a random variable and t ∈ [s, T ], then
Es,x[Z|Ft] = Es,x[Z|Fs,xt ] Ps,x a.s.

Proposition 3.A.10. Let Z be a random variable. If the function (s, x) 7−→ Es,x[Z] is well-defined (with
possible values in [−∞,∞]), then at fixed s ∈ [0, T ], x 7−→ Es,x[Z] is Borel. If moreover the transition kernel
P is measurable in time then, (s, x) 7−→ Es,x[Z] is Borel.

In particular if F ∈ F be fixed, then at fixed s ∈ [0, T ], x 7−→ Ps,x(F ) is Borel. If the transition kernel P
is measurable in time then, (s, x) 7−→ Ps,x(F ) is Borel.
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Proof. We will only deal with the case of a measurable in time transition kernel since the other case
is proven in a very similar way.

We consider first the case Z = 1F where F ∈ F . We start by assuming that F is of the form⋂
i≤n
{Xti ∈ Ai}, where n ∈ N∗, 0 = t0 ≤ t1 < · · · < tn ≤ T and A1, · · · , An are Borel sets of E, and we

denote by Π the set of such events.
In this proof we will make use of monotone class arguments, see for instance Section 4.3 in [1] for

the definitions of π-systems and λ-systems and for the presently used version of the monotone class
theorem, also called the Dynkin’s lemma.

We remark that Π is a π-system (see Definition 4.9 in [1]) generating F . For such events we
can explicitly compute Ps,x(F ). We compute this when (s, x) belongs to [ti∗−1 − 1, ti∗ [×E for some
0 < i∗ ≤ n. On [tn, T ] × E, a similar computation can be performed. We will show below that those
restricted functions are Borel, the general result will follow by concatenation. We have

Ps,x(F )

=
i∗−1
Π
i=1

1Ai(x)Es,x
[

n
Π
j=i∗

1Ai(Xti)

]
=

i∗−1
Π
i=1

1Ai(x)Es,x
[
n−1
Π
j=i∗

1Ai(Xti)E
s,x[1An(Xtn)|Ftn−1 ]

]
=

i∗−1
Π
i=1

1Ai(x)Es,x
[
n−1
Π
j=i∗

1Ai(Xti)Ptn−1,tn(Xtn−1 , An)

]
= · · ·

=
i∗−1
Π
i=1

1Ai(x)
∫ ( n

Π
j=i∗+1

1Aj (xj)Ptj−1,tj (xj−1, dxj)

)
1Ai∗ (xi∗)Ps,ti∗ (x, dxi∗),

which indeed is Borel in (s, x) thank to Definition 3.A.4 and Remark 3.A.5.
We can extend this result to any event F by the monotone class theorem. Indeed, let Λ be the set

of elements F of F such that (s, x) 7→ Ps,x(F ) is Borel. For any two events F 1, F 2, in Λ with F 1 ⊂ F 2,
since for any (s, x),
Ps,x(F 2\F 1) = Ps,x(F 2)−Ps,x(F 1), (s, x) 7→ Ps,x(F 2\F 1) is still Borel. For any increasing sequence
(Fn)n≥0 of elements of Λ, Ps,x(

⋃
n∈N

Fn) = lim
n→∞

Ps,x(Fn) so (s, x) 7→ Ps,x(
⋃
n∈N

Fn) is still Borel, there-

fore Λ is a λ-system containing the π-system Π which generatesF . So by the monotone class theorem,
Λ = F , which shows the case Z = 1F .

We go on with the proof when Z is a general r.v. If Z ≥ 0, there exists an increasing sequence
(Zn)n≥0 of simple functions on Ω converging pointwise to Z, and thank to the first statement of the
Proposition, for each of these functions, (s, x) 7→ Es,x[Zn] is Borel. Therefore since by monotonic
convergence, Es,x[Zn] −→

n→∞
Es,x[Z], then (s, x) 7→ Es,x[Z] is Borel as the pointwise limit of Borel

functions. For a general Z one just has to consider its decomposition Z = Z+ − Z− where Z+ and
Z− are positive.

Lemma 3.A.11. Assume that the transition kernel of the canonical Markov class is measurable in time.
Let V be a continuous non-decreasing function on [0, T ] and f ∈ B([0, T ] × E,R) be such that for every

(s, x) ∈ [0, T ]× E, Es,x[
∫ T
s |f(r,Xr)|dVr] <∞. Then (s, x) 7−→ Es,x[

∫ T
s f(r,Xr)dVr] is Borel.

Proof. We will start by showing that on ([0, T ]× E)× [0, T ], the function
kn : (s, x, t) 7→ Es,x[

∫ T
t ((−n) ∨ f(r,Xr) ∧ n)dVr] is Borel, where n ∈ N.

Let t ∈ [0, T ] be fixed. Then by Proposition 3.A.10, (s, x) 7→ Es,x[
∫ T
t ((−n) ∨ f(r,Xr) ∧ n)dVr] is

Borel. Let (s, x) ∈ [0, T ] × E be fixed and tm −→
m→∞

t be a converging sequence in [0, T ]. Since V is
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continuous,
∫ T
tm

((−n) ∨ f(r,Xr) ∧ n)dVr −→
m→∞

∫ T
t ((−n) ∨ f(r,Xr) ∧ n)dVr a.s. Since this sequence

is uniformly bounded, by dominated convergence theorem, the same convergence holds under the
expectation. This implies that t 7→ Es,x[

∫ T
t ((−n) ∨ f(r,Xr) ∧ n)dVr] is continuous. By Lemma 4.51 in

[1], kn is therefore jointly Borel.
By composing with (s, x, t) 7→ (s, x, s), we also have that for any n ≥ 0, k̃n : (s, x) 7−→ Es,x[

∫ T
s ((−n)∨

f(r,Xr) ∧ n)dVr] is Borel. Then by letting n tend to infinity, (−n) ∨ f(r,Xr) ∧ n tends dV ⊗ dPs,x

a.e. to f(r,Xr) and since we assumed Es,x[
∫ T
s |f(r,Xr)|dVr] < ∞, by dominated convergence,

Es,x[
∫ T
s ((−n) ∨ f(r,Xr) ∧ n)dVr] tends to Es,x[

∫ T
s f(r,Xr)dVr].

(s, x) 7−→ Es,x[
∫ T
s f(r,Xr)dVr] is therefore Borel as the pointwise limit of the k̃n which are Borel.

Proposition 3.A.12. Let f ∈ B([0, T ] × E,R) be such that for any (s, x, t), Es,x[|f(t,Xt)|] < ∞ then at
fixed s ∈ [0, T ], (x, t) 7−→ Es,x[f(t,Xt)] is Borel. If moreover the transition kernel P is measurable in time,
then (s, x, t) 7−→ Es,x[f(t,Xt)] is Borel.

Proof. We will only show the case in which p is measurable in time since the other case is proven very
similarly.

We start by showing the statement for f ∈ Cb([0, T ] × E,R). X is cadlag so t 7−→ f(t,Xt) also
is. So for any fixed (s, x) ∈ [0, T ] × E if we take a converging sequence tn −→

n→∞
t+(resp. t−), an

easy application of the Lebesgue dominated convergence theorem shows that t 7−→ Es,x[f(t,Xt)]
is cadlag. On the other hand, by Proposition 3.A.10, for a fixed t, (s, x) 7−→ Es,x[f(t,Xt)] is Borel.
Therefore by Theorem 15 Chapter IV of [32], (s, x, t) 7−→ Es,x[f(t,Xt)] is jointly Borel.

In order to extend the result to any f ∈ Bb([0, T ] × E,R), we consider the subset I of functions
f ∈ Bb([0, T ] × E,R) such that (s, x, t) 7−→ Es,x[f(t,Xt)] is Borel. Then I is a linear space stable by
uniform convergence and by monotone convergence and containing Cb([0, T ]×E,R) which is stable
by multiplication and generates the Borel σ-field B([0, T ])⊗ B(E). So by Theorem 21 in Chapter I of
[32], I = Bb([0, T ]×E,R). This theorem is sometimes called the functional monotone class theorem.
Now for any positive Borel function f , we can set fn = f ∧ n which is bounded Borel. Since by
monotonic convergence, Es,x[fn(t,Xt)] tends to Es,x[f(t,Xt)], then (s, x, t) 7−→ Es,x[f(t,Xt)] is Borel
as the pointwise limit of Borel functions. Finally for a general f it is enough to decompose it into
f = f+ − f− where f+, f− are positive functions.

3.B Technicalities concerning homogeneous Markov classes and martin-
gale problems

We start by introducing homogeneous Markov classes. In this section, we are given a Polish space E
and some T ∈ R∗.
Notation 3.B.1. A mapping P̃ : [0, T ] × E × B(E) 7−→ [0, 1] will be called a homogeneous transition
kernel if P : (s, t, x, A) 7−→ P̃t−s(x,A)1s<t + 1A(x)1s≥t is a transition kernel in the sense of Definition
3.A.3. This in particular implies P̃ = P0,·(·, ·).
A set of probability measures (Px)x∈E on the canonical space associated to T and E (see Notation 3.A.1) will
be called a homogeneous Markov class associated to a homogeneous transition kernel P̃ if{

∀t ∈ [0, T ] ∀A ∈ B(E) ,Px(Xt ∈ A) = P̃t(x,A)

∀0 ≤ t ≤ u ≤ T ,Px(Xu ∈ A|Ft) = P̃u−t(Xt, A) Ps,xa.s.
(3.B.1)

Given a homogeneous Markov class (Px)x∈E associated to a homogeneous transition kernel P̃ , one can al-
ways consider the Markov class (Ps,x)(s,x)∈[0,T ]×E associated to the transition kernel P : (s, t, x, A) 7−→
P̃t−s(x,A)1s<t + 1A(x)1s≥t. In particular, for any x ∈ E, we have P0,x = Px.
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We show that a homogeneous transition kernel necessarily produces a measurable in time non
homogeneous transition kernel.

Proposition 3.B.2. Let P̃ be a homogeneous transition kernel and let P be the associated non homogeneous
transition kernel as described in Notation 3.B.1. Then P is measurable in time in the sense of Definition 3.A.4.

Proof. Given that P : (s, t, x, A) 7−→ P̃t−s(x,A)1s<t + 1A(x)1s≥t, it is actually enough to show that
P̃·(·, A) is Borel for any A ∈ B(E). We can also write P̃ = P0,·(·, ·), so P is measurable in time if
P0,·(·, A) is Borel for any A ∈ B(E), and this holds thanks to Proposition 3.A.12 applied to f :=
1A.

We then introduce below the notion of homogeneous martingale problems.

Definition 3.B.3. Given A an operator mapping a linear algebra D(A) ⊂ Bb(E,R) into Bb(E,R), we say
that a set of probability measures (Px)x∈E on the measurable space (Ω,F) (see Notation 3.A.1) solves the
homogeneous Martingale Problem associated to (D(A), A) if for any x ∈ E, Px satisfies

• for every φ ∈ D(A), φ(X·)−
∫ ·

0 Aφ(Xr)dr is a (Px,F)-local martingale;

• Px(X0 = x) = 1.

We say that this homogeneous Martingale Problem is well-posed if for any x ∈ E, Px is the only
probability measure on (Ω,F) verifying those two items.

Remark 3.B.4. If (Px)x∈E is a homogeneous Markov class solving the homogeneous Martingale Problem
associated to some (D(A), A), then the corresponding (Ps,x)(s,x)∈[0,T ]×E (see Notation 3.B.1) solves the Mar-
tingale Problem associated to (D(A), A, Vt ≡ t) in the sense of Definition 3.2.3. Moreover if the homogeneous
Martingale Problem is well-posed, so is the latter one.

So a homogeneous Markov process solving a homogeneous martingale problem falls into our
setup. We will now see how we can pass from an operator A which only acts on time-independent
functions to an evolution operator ∂t+A, and see how our Markov class still solves the corresponding
martingale problem.

Notation 3.B.5. Let E be a Polish space and let A be an operator mapping a linear algebra D(A) ⊂ Bb(E,R)
into Bb(E,R).
If φ ∈ B([0, T ] × E,R) is such that for every t ∈ [0, T ], φ(t, ·) ∈ D(A), then Aφ will denote the mapping
(t, x) 7−→ A(φ(t, ·))(x).

We now introduce the time-inhomogeneous domain associated to A which we denote Dmax(∂t + A) and
which consists in functions φ ∈ Bb([0, T ]× E,R) verifying the following conditions:

• ∀x ∈ E, φ(·, x) ∈ C1([0, T ],R) and ∀t ∈ [0, T ], φ(t, ·) ∈ D(A);

• ∀t ∈ [0, T ], ∂tφ(t, ·) ∈ D(A) and ∀x ∈ E, Aφ(·, x) ∈ C1([0, T ],R);

• ∂t ◦Aφ = A ◦ ∂tφ;

• ∂tφ, Aφ and ∂t ◦Aφ belong to Bb([0, T ]× E,R).

On Dmax(∂t +A) we will consider the operator ∂t +A.

Remark 3.B.6. With these notations, it is clear thatDmax(∂t+A) is a sub-linear space of Bb([0, T ]×E,R). It
is in general not a linear algebra, but always containsD(A), and even C1([0, T ],R)⊗D(A), the linear algebra
of functions which can be written

∑
k≤N

λkψkφk where N ∈ N, and for any k, λk ∈ R, ψk ∈ C1([0, T ],R),

φk ∈ D(A). We also notice that ∂t +A maps Dmax(∂t +A) into Bb([0, T ]× E,R).
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Lemma 3.B.7. Let us consider the same notations and under the same assumptions as in Notation 3.B.5. Let
(Ps,x)(s,x)∈[0,T ]×E be a Markov class solving the well-posed Martingale Problem associated to (A,D(A), Vt ≡
t) in the sense of Definition 3.2.3. Then it also solves the well-posed martingale problem associated to (∂t +
A,A, Vt ≡ t) for any linear algebra A included in Dmax(∂t +A).

Proof. We start by noticing that since D(A) ⊂ Bb(E,R) and is mapped into Bb(E,R), then for any
(s, x) ∈ [0, T ]× E and φ ∈ D(A), M s,x[φ] is bounded and is therefore a martingale.

We fix (s, x) ∈ [0, T ]× E, φ ∈ Dmax(∂t +A) and s ≤ t ≤ u ≤ T and we will show that

Es,x
[
φ(u,Xu)− φ(t,Xt)−

∫ u

t
(∂t +A)φ(r,Xr)dr

∣∣∣∣Ft] = 0, (3.B.2)

which implies that φ(·, X·)−
∫ ·
s(∂t +A)φ(r,Xr)dr, t ∈ [s, T ] is a Ps,x-martingale. We have

Es,x[φ(u,Xu)− φ(t,Xt)|Ft]
= Es,x[(φ(u,Xt)− φ(t,Xt)) + (φ(u,Xu)− φ(u,Xt))|Ft]
= Es,x

[∫ u
t ∂tφ(r,Xt)dr +

(∫ u
t Aφ(u,Xr)dr + (M s,x[φ(u, ·)]u −M s,x[φ(u, ·)]t)

)
|Ft
]

= Es,x
[∫ u
t ∂tφ(r,Xt)dr +

∫ u
t Aφ(u,Xr)dr|Ft

]
= I0 − I1 + I2,

where I0 = Es,x
[∫ u
t ∂tφ(r,Xr)dr +

∫ u
t Aφ(r,Xr)dr|Ft

]
; I1 = Es,x

[∫ u
t (∂tφ(r,Xr)− ∂tφ(r,Xt))dr|Ft

]
I2 = Es,x

[∫ u
t (Aφ(u,Xr)−Aφ(r,Xr))dr|Ft

]
. (3.B.2) will be established if one proves that I1 = I2. We

do this below.
At fixed r and ω, v 7−→ Aφ(v,Xr(ω)) is C1, thereforeAφ(u,Xr(ω))−Aφ(r,Xr(ω)) =

∫ u
r ∂tAφ(v,Xr(ω))dv

and I2 = Es,x
[∫ u
t

∫ u
r ∂tAφ(v,Xr)dvdr|Ft

]
. Then

I1 = Es,x
[∫ u
t

∫ r
t A∂tφ(r,Xv)dvdr|Ft

]
+Es,x

[∫ u
t (M s,x[∂tφ(r, ·)]r −M s,x[∂tφ(r, ·)]t)dr|Ft

]
.

Since ∂tφ and A∂tφ are bounded, M s,x[∂tφ(r, ·)]r(ω) is uniformly bounded in (r, ω), so by Fubini’s
theorem for conditional expectations we have

Es,x[
∫ u
t (M s,x[∂tφ(r, ·)]r −M s,x[∂tφ(r, ·)]t)dr|Ft]

=
∫ u
t E

s,x[M s,x[∂tφ(r, ·)]r −M s,x[∂tφ(r, ·)]t|Ft]dr
= 0.

(3.B.3)

Finally since ∂tAφ = A∂tφ and again by Fubini’s theorem for conditional expectations, we have
Es,x

[∫ u
t

∫ u
r ∂tAφ(v,Xr)dvdr|Ft

]
= Es,x

[∫ u
t

∫ r
t A∂tφ(r,Xv)dvdr|Ft

]
so I1 = I2 which concludes the

proof.

In conclusion we can state the following.

Corollary 3.B.8. Given a homogeneous Markov class (Px)x∈E solving a well-posed homogeneous Martingale
Problem associated to some (D(A), A), there exists a Markov class (Ps,x)(s,x)∈[0,T ]×E which transition kernel
is measurable in time and such that for any algebra A included in Dmax(∂t + A), (Ps,x)(s,x)∈[0,T ]×E solves
the well-posed Martingale Problem associated to (∂t +A,A, Vt ≡ t) in the sense of Definition 3.2.3.



Chapter 4

Martingale driven BSDEs, PDEs and other
related deterministic problems

This chapter is the object of paper [11].

Abstract

We focus on a class of BSDEs driven by a cadlag martingale and corresponding Markov type
BSDEs which arise when the randomness of the driver appears through a Markov process. To
those BSDEs we associate a deterministic problem which, when the Markov process is a Brownian
diffusion, is nothing else but a parabolic type PDE. The solution of the deterministic problem is
intended as decoupled mild solution, and it is formulated with the help of a time-inhomogeneous
semigroup.

4.1 Introduction

Markovian backward stochastic differential equations (BSDEs) are BSDEs in the sense of [71] involv-
ing a forward dynamics described by a Markov (often a diffusion) process X . Those are naturally
linked to a parabolic PDE, which constitutes a particular deterministic problem. In particular, under
reasonable conditions, which among others ensure well-posedness, the solutions of BSDEs produce
viscosity type solutions for the mentioned PDE. In this paper we focus on Pseudo-PDEs which are
the corresponding deterministic problems associated to the case of a Markovian BSDE when this is
driven by a cadlag martingale and when the underlying forward process is a general Markov pro-
cess. In that case the concept of viscosity solution (based on comparison theorems) is not completely
appropriated. For this we propose a new type of solution called decoupled mild which extends the
usual notion of mild solution which is very familiar to the experts of PDEs. We establish an existence
and uniqueness theorem in the class of Borel functions having a certain growth condition.

In the Brownian framework, BSDEs were introduced first by E. Pardoux and S. Peng in [71]. An
interesting particular case appears when the random dependence of the driver generally denoted by
f comes through a diffusion processX and the terminal condition only depends onXT . The solution,
when it exists, is usually indexed by the starting time s and starting point x of the forward diffusion
X = Xs,x, and it is expressed by{

Xs,x
t = x+

∫ t
s β(r,Xs,x

r )dr +
∫ t
s σ(r,Xs,x

r )dBr, t ∈ [0, T ]

Y s,x
t = g(Xs,x

T ) +
∫ T
t f (r,Xs,x

r , Y s,x
r , Zs,xr ) dr −

∫ T
t Zs,xr dBr, t ∈ [0, T ],

(4.1.1)
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where B is a Brownian motion. In [76] and in [72] previous Markovian BSDE was linked to the
semilinear PDE{

∂tu+ 1
2

∑
i,j≤d

(σσᵀ)i,j∂
2
xixju+

∑
i≤d
βi∂xiu+ f((·, ·), u, σ∇u) = 0 on [0, T [×Rd

u(T, ·) = g.
(4.1.2)

In particular, if (4.1.2) has a classical smooth solution u then (Y s,x, Zs,x) := (u(·, Xs,x
· ), σ∇u(·, Xs,x

· ))
solves the second line of (4.1.1). Conversely, only under the Lipschitz type conditions on β, σ, f, g, the
solution of the BSDE can be expressed as a function (u, v) of the forward process, i.e. (Y s,x, Zs,x) =
(u(·, Xs,x

· ), v(·, Xs,x
· )), see [43]. When f and g are continuous, u is a viscosity solution of (4.1.2). In

chapter 13 of [8], under some specific conditions on the coefficients of a Brownian BSDE, one pro-
duces a solution in the sense of distributions of the parabolic PDE. Later, a first notion of mild solu-
tion of the PDE was used in [4]. In [52] v was associated with a generalized form of σ∇u. Excepted
in the case when previous u has some minimal differentiability properties, it is difficult to say some-
thing more on v. To express v in the general case, for instance when u is only a viscosity solution of
the PDE, is not an easy task. Some authors call this the identification problem.

In [7] the authors introduced a new kind of Markovian BSDE including a term with jumps gener-
ated by a Poisson measure, where an underlying forward processX solves a jump diffusion equation
with Lipschitz type conditions. They associated with it an Integro-Partial Differential Equation (in
short IPDE) in which some non-local operators are added to the classical partial differential maps,
and proved that, under some continuity and monotonicity conditions on the coefficients, the BSDE
provides a viscosity solution of the IPDE. Concerning the study of BSDEs driven by more general
martingales than Brownian motion, we have already mentioned BSDEs driven by Poisson measures.
In this respect, more recently, BSDEs driven by marked point processes were introduced in [24], see
also [5]; in that case the underlying process does not contain any diffusion term. Brownian BSDEs
involving a supplementary orthogonal term were studied in [43]. A notion of BSDE driven by a mar-
tingale also involving a supplementary orthogonal martingale has appeared, see for instance [20],
[22] and references therein.

In this paper, we consider a BSDE whose given data are a continuous increasing process V̂ , a
square integrable martingale M̂ , a terminal condition ξ and a driver f̂ . A solution will be a couple
(Y,M) verifying

Y = ξ +

∫ T

·
f̂

(
r, ·, Yr,

d〈M, M̂〉
dV̂

(r)

)
dV̂r − (MT −M·), (4.1.3)

where Y is cadlag adapted and M is a square integrable martingale. We show existence and unique-
ness of a solution for (4.1.3).

We will then be interested in a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E with time interval [0, T ]
and state spaceE being a Polish space. This will be supposed to be a solution of a martingale problem
related to an operator (D(a), a) and a non-decreasing function V , meaning that for any φ ∈ D(a), and
(s, x) ∈ [0, T ]× E, M [φ]s,x := 1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s a(φ)(r,Xr)dVr

)
is a Ps,x-square integrable

martingale. We will fix some function ψ := (ψ1, · · · , ψd) ∈ D(a)d and at Notation 4.5.6 we will
introduce some special BSDEs driven by a martingale which we will call Markovian BSDEs.

Those will be indexed by some (s, x) ∈ [0, T ]×E, defined in some stochastic basis (Ω,Fs,x,Fs,x,Ps,x)
and will have the form

Y s,x = g(XT ) +

∫ T

·
f

(
r,Xr, Y

s,x
r ,

d〈M s,x,M [ψ]s,x〉
dV

(r)

)
dVr − (M s,x

T −M s,x
· ), (4.1.4)

where X is the canonical process, g is a Borel function with some growth condition and f is a Borel
function with some growth condition with respect to the second variable, and Lipschitz conditions



4.1. Introduction 95

with respect to the third and fourth variables. Those Markovian BSDEs will be linked to the Pseudo-
PDE {

a(u) + f
(
·, ·, u,Γψ(u)

)
= 0 on [0, T ]× E

u(T, ·) = g,
(4.1.5)

where Γψ(u) := (a(uψi)− ua(ψi)− ψia(u))i∈[[1;d]], see Definition 4.5.3. We introduce the notion of
classical solution which is an element of D(a) fulfilling (4.1.5). We call Γψ the ψ-generalized gradient,
due to the fact that when E = Rd, a = ∂t+

1
2∆ and ψi : (t, x) 7−→ xi for all i ∈ [[1, d]] then Γψ(u) = ∇u.

In this particular setup, the forward Markov process is of course the Brownian motion. In that case
the space D(a) where classical solutions are defined is C1,2([0, T ]×Rd).

We show the existence of a Borel function u in some extended domain D(a) such that for every
(s, x) ∈ [0, T ]×E, Y s,x is, on [s, T ], aPs,x-modification of u(·, X·). At Definition 4.5.8 we will introduce
the notion of martingale solution for the Pseudo-PDE (4.1.5). We then show that previous u is the
unique martingale solution of (4.1.5), which means that it solves (4.1.5) where the maps a and Γψ are
respectively replaced with some extended operators a and Gψ. We also show that previous u is the
unique decoupled mild solution of the same equation. We explain below that notion of solution which
is introduced at Definition 4.5.13.

A Borel function u will be called decoupled mild solution if there exists anRd-valued Borel func-
tion v := (v1, · · · , vd) such that for every (s, x),

u(s, x) = Ps,T [g](x) +
∫ T
s Ps,r [f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x)−
∫ T
s Ps,r [(v1 + ua(ψ1)− ψ1f (·, ·, u, v)) (r, ·)] (x)dVr

· · ·
uψd(s, x) = Ps,T [gψd(T, ·)](x)−

∫ T
s Ps,r [(vd + ua(ψd)− ψdf (·, ·, u, v)) (r, ·)] (x)dVr,

(4.1.6)

where P is the time-dependent transition kernel associated to the Markov class and to the operator
a, see Notation 4.5.11. v coincides with Gψ(u) and the couple (u, v) will be called solution to the
identification problem, see Definition 4.5.13. The intuition behind this notion of solution relies to the
fact that the equation a(u) = −f(·, ·, u,Γψ(u)) can be decoupled into the system{

a(u) = −f(·, ·, u, v)
vi = Γψi(u), i ∈ [[1; d]],

(4.1.7)

which may be rewritten{
a(u) = −f(·, ·, u, v)
a(uψi) = vi + ua(ψi)− ψif(·, ·, u, v), i ∈ [[1; d]].

(4.1.8)

Martingale solutions were introduced in Chapter 2 and decoupled mild solutions in Chapter 3, in
relation to a specific type of Pseudo-PDE, for which v was one-dimensional and which did not in-
clude the usual parabolic PDE related to classical BSDEs. A first approach to classical solutions to
a general deterministic problem, associated with forward BSDEs with applications to the so called
Föllmer-Schweizer decomposition was performed by [64].

The paper is organized as follows. In Section 4.3 we introduce an alternative formulation (4.1.3)
for BSDEs driven by cadlag martingales discussed in [22]: we formulate in Theorem 4.3.3 existence
and uniqueness for such equations. In Section 4.4, we introduce a canonical Markov class and the
martingale problem which it is assumed to solve. We also define the extended domainD(a) in Defini-
tion 4.4.11 and the extended operator a (resp. Gψ) in Definition 4.4.13 (resp. Notation 4.4.16). In Sec-
tion 4.5, we introduce the Pseudo-PDE (4.1.5) (see Definition 4.5.3), the associated Markovian BSDEs



96 Chapter 4. Martingale driven BSDEs, PDEs and other related deterministic problems

(4.1.4), see Notation 4.5.6. We introduce the notion of martingale solution of the Pseudo-PDE in (4.5.8)
and of decoupled mild solution in Definition 4.5.13. Propositions 4.5.15 and 4.5.16 show the equiva-
lence between martingale solutions and decoupled mild solutions. Proposition 4.5.17 states that any
classical solution is a decoupled mild solution and conversely that any decoupled mild solution be-
longing toD(Γψ) is a classical solution up to what we call a zero potential set. Let (Y s,x,M s,x) denote
the unique solution of the associated BSDE (4.1.4), denoted by BSDEs,x(f, g). In Theorem 4.5.18 we
show the existence of some u ∈ D(a) such that for every (s, x) ∈ [0, T ]×E, Y s,x is aPs,x-modification
of u(·, X·) on [s, T ]. Theorem 4.5.20 states that the function (s, x) 7−→ Y s,x

s is the unique decoupled
mild solution of (4.1.5). Proposition 4.5.23 states that if the functions (u, v) verify (4.1.6), then for
any (s, x), the couple of processes

(
u(t,Xt), u(t,Xt)− u(s, x) +

∫ t
s f(·, ·, u, v)(r,Xr)dVr

)
t∈[s,T ]

has

a Ps,x-version which solves BSDEs,x(f, g) on [s, T ]. Finally in Section 4.6 we study some examples
of applications. In section 4.6.1 we deal with parabolic semi-linear PDEs and in Section 4.6.2 with
parabolic semi-linear PDEs with distributional drift.

4.2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.
For any integers k ≤ n, [[k;n]] will denote the set of integers i verifying k ≤ i ≤ n.
A topological space E will always be considered as a measurable space with its Borel σ-field which
shall be denoted B(E). If (F, dF ) is a metric space, C(E,F ) (respectively Cb(E,F ), B(E,F ), Bb(E,F ))
will denote the set of functions from E to F which are continuous (respectively bounded continuous,
Borel, bounded Borel). Twill stand for a real interval, of type [0, T ] with T ∈ R∗+ orR+.

On a fixed probability space (Ω,F ,P), for any p > 0, Lp will denote the set of random variables with
finite p-th moment. A probability space equipped with a right-continuous filtration (Ω,F ,F := (Ft)t∈T,P)
will be called called a stochastic basis and will be said to fulfill the usual conditions if the probabil-
ity space is complete and if F0 contains all the P-negligible sets. We introduce now some notations
and vocabulary about spaces of stochastic processes, on a fixed stochastic basis (Ω,F ,F,P). Most of
them are taken or adapted from [60] or [61]. We will denote V (resp V+) the set of adapted, bounded
variation (resp non-decreasing) processes vanishing at 0; Vp (resp Vp,+) the elements of V (resp V+)
which are predictable, and Vc (resp Vc,+) the elements of V (resp V+) which are continuous;M will
be the space of cadlag martingales. For any p ∈ [1,∞], Hp will denote the Banach space of elements
ofM for which ‖M‖Hp := E[|sup

t∈T
Mt|p]

1
p <∞ and in this set we identify indistinguishable elements.

Hp0 will denote the Banach subspace ofHp of elements vanishing at zero.
If T = [0, T ] for some T ∈ R∗+, a stopping time will take values in [0, T ] ∪ {+∞}. Let Y be a process
and τ a stopping time, we denote by Y τ the stopped process t 7→ Yt∧τ . If C is a set of processes,
we define its localized class Cloc as the set of processes Y such that there exist a localizing sequence
(τn)n≥0 such that for every n, the stopped process Y τn belongs to C. By localizing sequence of stop-
ping times we mean an increasing sequence of stopping times (τn)n≥0 such that a.s. there exists
N ∈ N for which τN = +∞.
For any M,N ∈ Mloc, we denote [M,N ] their quadratic covariation and simply [M ] if M = N and
if moreover M,N ∈ H2

loc, 〈M,N〉 will denote their (predictable) angular bracket, or simply 〈M〉 if
M = N .
Pro will denote the σ-field generated by progressively measurable processes defined on [0, T ]× Ω.

From now on, we are given T ∈ R∗+. Until the end of Section 4.3, we also fix a stochastic basis
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(
Ω,F ,F := (Ft)t∈[0,T ],P

)
fulfilling the usual conditions.

Definition 4.2.1. Let A and B be in V+. We will say that dB dominates dA in the sense of stochastic
measures (written dA� dB) if for almost all ω, dA(ω)� dB(ω) as Borel measures on [0, T ].

We will say that dB and dA are mutually singular in the sense of stochastic measures (written dA⊥dB)
if for almost all ω, the Borel measures dA(ω) and dB(ω) are mutually singular.

Let B ∈ V+. dB ⊗ dP will denote the positive measure on
(Ω× [0, T ],F ⊗ B([0, T ])) defined for any F ∈ F ⊗ B([0, T ]) by
dB⊗dP(F ) = E

[∫ T
0 1F (ω, r)dBr(ω)

]
. A property which holds true everywhere except on a null set for this

measure will be said to be true dB ⊗ dP almost everywhere (a.e.).

The proposition below was the object of Proposition 2.3.2 in Chapter 2.

Proposition 4.2.2. For any A and B in Vp,+, there exists a (non-negative
dB ⊗ dP a.e.) predictable process dA

dB and a process in Vp,+ A⊥B such that

dA⊥B⊥ dB and A = AB +A⊥B a.s.,

where AB =
∫ ·

0
dA
dB (r)dBr. The process A⊥B is unique up to indistinguishability and the process dA

dB is unique
dB ⊗ dP a.e.

The predictable process dA
dB appearing in the statement of Proposition 4.2.2 will be called the

Radon-Nikodym derivative of A by B.
If A belongs to V , we will denote by V ar(A) (resp. Pos(A), resp Neg(A)) the total (resp. positive,

resp. negative) variation of A, meaning the unique pair of elements V+ such that A = Pos(A) −
Neg(A), see Proposition I.3.3 in [61] for their existence. If A is in Vp, and B ∈ Vp,+. We set dA

dB :=
dPos(A)
dB − dNeg(A)

dB and A⊥B := Pos(A)⊥B −Neg(A)⊥B .
Below we restate Proposition 2.3.4 in Chapter 2.

Proposition 4.2.3. Let A1 and A2 be in Vp, and B ∈ Vp,+. Then,
d(A1+A2)

dB = dA1
dB + dA2

dB dB ⊗ dP a.e. and (A1 +A2)⊥B = A⊥B1 +A⊥B2 .

The following lemma was the object of Lemma 2.5.13 in Chapter 2.

Lemma 4.2.4. Let V be a non-decreasing function. If two measurable processes are P-modifications of each
other, then they are also equal dV ⊗ dP a.e.

4.3 An alternative formulation of BSDEs driven by a cadlag martingale

We are now going to introduce here an alternative formulation for Backward Stochastic Differential
Equations driven by a general cadlag martingale investigated for instance by [22].

Given some V̂ ∈ Vc,+, we will indicate by L2(dV̂ ⊗dP) the set of (up to indistinguishability) progres-
sively measurable processes φ such that E[

∫ T
0 φ2

rdV̂r] <∞.
L2,cadlag(dV̂ ⊗ dP) will denote the subspace of cadlag elements of L2(dV̂ ⊗ dP).
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We will now fix a bounded process V̂ ∈ Vc,+, an FT -measurable random variable ξ called the fi-
nal condition, a square integrable reference martingale M̂ := (M̂1, · · · , M̂d) taking values in Rd

for some d ∈ N∗, and a driver f̂ : ([0, T ]× Ω) × R × Rd −→ R, measurable with respect to
Pro⊗ B(R)⊗ B(Rd). We will assume that (ξ, f̂ , M̂) verify the following hypothesis.

Hypothesis 4.3.1.

1. ξ ∈ L2;

2. f̂(·, ·, 0, 0) ∈ L2(dV̂ ⊗ dP);

3. There exist positive constants KY ,KZ such that, P a.s. for all t, y, y′, z, z′, we have

|f̂(t, ·, y, z)− f̂(t, ·, y′, z′)| ≤ KY |y − y′|+KZ‖z − z′‖; (4.3.1)

4. d〈M̂〉
dV̂

is bounded.

We will now formulate precisely our BSDE.

Definition 4.3.2. We say that a couple (Y,M) ∈ L2,cadlag(dV̂ ⊗dP)×H2
0 is a solution ofBSDE(ξ, f̂ , V, M̂)

if it verifies

Y = ξ +

∫ T

·
f̂

(
r, ·, Yr,

d〈M,M̂〉
dV̂

(r)

)
dV̂r − (MT −M·) (4.3.2)

in the sense of indistinguishability.

The proof of the theorem below is very similar to the one of Theorem 2.3.21 in Chapter 2. For the
convenience of the reader, it is therefore postponed to Appendix 4.A.

Theorem 4.3.3. If (ξ, f̂ , V̂ , M̂) verifies Hypothesis 4.3.1 then BSDE(ξ, f̂ , V̂ , M̂) has a unique solution.

Remark 4.3.4. Let (ξ, f̂ , V̂ , M̂) satisfying Hypothesis 4.3.1. We can consider a BSDE on a restricted in-
terval [s, T ] for some s ∈ [0, T [. Previous discussion and Theorem 4.3.3 extend easily to this case. In par-
ticular there exists a unique couple of processes (Y s,M s), indexed by [s, T ] such that Y s is adapted, cad-
lag and verifies E[

∫ T
s (Y s

r )2dV̂r] < ∞, such that M s is a martingale vanishing in s and such that Y s =

ξ +
∫ T
· f̂

(
r, ·, Y s

r ,
d〈Ms,M̂〉

dV̂
(r)
)
dV̂r − (M s

T −M s
· ) in the sense of indistinguishability on [s, T ].

Moreover, if (Y,M) denotes the solution of BSDE(ξ, f̂ , V̂ , M̂) then (Y,M· −Ms) and (Y s,M s) coincide on
[s, T ]. This follows by an uniqueness argument resulting by Theorem 4.3.3 on time interval [s, T ].

4.4 Martingale Problem and Markov classes

In this section, we introduce the Markov process which will later explain the random dependence
of the driver f̂ of our BSDE driven by a cadlag martingale. For that reason that BSDE will be called
Markovian.

For details about the exact mathematical background necessary for our Markov process, one can
consult Section 4.C of the Appendix. That process will be supposed to solve a martingale problem
described below.

Let E be a Polish space. From now on, (Ω,F ,F) denotes the canonical space and (Xt)t∈[0,T ] the
canonical process defined in Definition 4.C.1. We consider a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E
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associated to a transition kernel measurable in time as defined in Definitions 4.C.5 and 4.C.4, and for
any (s, x) ∈ [0, T ] × E, (Ω,Fs,x,Fs,x,Ps,x) will denote the stochastic basis introduced in Definition
4.C.7 and which fulfills the usual conditions.

Our Martingale problem will be associated to an operator, in a close formalism to the one of D.W.
Stroock and S.R.S Varadhan in [85].

Definition 4.4.1. Let V : [0, T ]→ R+ be a non-decreasing continuous function vanishing at 0.
Let us consider a linear operator a : D(a) ⊂ B([0, T ]× E,R) −→ B([0, T ]× E,R), where the domain D(a)
is a linear space.

We say that a family of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on (Ω,F) solves the martingale
problem associated to (D(a), a, V ) if, for any
(s, x) ∈ [0, T ]× E, Ps,x verifies the following.

(a) Ps,x(∀t ∈ [0, s], Xt = x) = 1;

(b) for every φ ∈ D(a), φ(·, X·) −
∫ ·
s a(φ)(r,Xr)dVr, t ∈ [s, T ], is a cadlag (Ps,x,F) square integrable

martingale.

We say that the Martingale Problem is well-posed if for any (s, x) ∈ [0, T ]× E, Ps,x is the only probability
measure satisfying those two properties.

We anticipate that well-posedness for the martingale problem will not be an hypothesis in the
sequel.

Notation 4.4.2. For every (s, x) ∈ [0, T ]× E and φ ∈ D(a), the process
t 7→ 1[s,T ](t)

(
φ(t,Xt)− φ(s, x)−

∫ t
s a(φ)(r,Xr)dVr

)
will be denoted M [φ]s,x.

M [φ]s,x is a cadlag (Ps,x,F) square integrable martingale equal to 0 on [0, s], and by Proposition
4.C.8, it is also a (Ps,x,Fs,x) square integrable martingale.

Notation 4.4.3. Let φ ∈ D(a). We set, for 0 ≤ t ≤ u ≤ T

M [φ]tu :=

{
φ(u,Xu)− φ(t,Xt)−

∫ u
t a(φ)(r,Xr)dVr if

∫ u
t |a(φ)|(r,Xr)dVr <∞,

0 otherwise. (4.4.1)

M [φ] is a square integrable Martingale Additive Functional (in short MAF), see Definition 4.C.9, whose cadlag
version under Ps,x for every (s, x) ∈ [0, T ]× E, is M [φ]s,x.

From now on we fix some d ∈ N∗ and a vector ψ = (ψ1, . . . , ψd) ∈ D(a)d.
For any (s, x) ∈ [0, T ] × E, the Rd-valued martingale (M [ψ1]s,x, · · · ,M [ψd]

s,x) will be denoted
M [ψ]s,x.

Definition 4.4.4. For any φ1, φ2 ∈ D(a) such that φ1φ2 ∈ D(a) we set Γ(φ1, φ2) := a(φ1φ2)− φ1a(φ2)−
φ2a(φ1). Γ will be called the carré du champs operator. We setD(Γψ) :=

{
φ ∈ D(a) : ∀i ∈ [[1; d]], φψi ∈ D(a)

}
.

We define the linear operator Γψ : D(Γψ) −→ B([0, T ]× E,Rd) by

Γψ(φ) :=
(

Γψi(φ)
)
i∈[[1;d]]

:= (a(φψi)− φa(ψi)− ψia(φ))i∈[[1;d]] . (4.4.2)

Γψ will be called the ψ-generalized gradient operator.
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This operator appears in the expression of the angular bracket of the local martingales that we
have defined.

Proposition 4.4.5. If φ ∈ D(Γψ), then for any (s, x) ∈ [0, T ]× E and i ∈ [[1; d]] we have

〈M [φ]s,x,M [ψi]
s,x〉 =

∫ ·∨s
s

Γψi(φ)(r,Xr)dVr, (4.4.3)

in the stochastic basis (Ω,Fs,x,Fs,x,Ps,x).

Proof. The result follows from a slight modification of the proof of Proposition 2.4.7 of Chapter 2
in which D(a) was assumed to be stable by multiplication and M [φ]s,x could potentially be a local
martingale which is not a martingale.

We will later need the following assumption.

Hypothesis 4.4.6. For every i ∈ [[1; d]], the Additive Functional 〈M [ψi]〉 (see Proposition 4.C.10) is absolutely
continuous with respect to dV , see Definition 4.C.9.

Taking φ = ψi for some i ∈ [[1; d]] in Proposition 4.4.5, yields the following.

Corollary 4.4.7. If ψ2
i ∈ D(a) for all i ∈ [[1; d]], then Hypothesis 4.4.6 is fulfilled.

We will now consider a suitable extension of the domain D(a).

For any (s, x) ∈ [0, T ]× E we define the positive bounded potential measure U(s, x, ·) on
([0, T ]× E,B([0, T ])⊗ B(E)) by

U(s, x, ·) :
B([0, T ])⊗ B(E) −→ [0, VT ]

A 7−→ Es,x
[∫ T
s 1{(t,Xt)∈A}dVt

]
.

Definition 4.4.8. A Borel setA ⊂ [0, T ]×E will be said to be of zero potential if, for any (s, x) ∈ [0, T ]×E
we have U(s, x,A) = 0.

Notation 4.4.9. Let p > 0. We introduce
Lps,x := Lp(U(s, x, ·)) =

{
f ∈ B([0, T ]× E,R) : Es,x

[∫ T
s |f |

p(r,Xr)dVr

]
<∞

}
.

For p ≥ 1, that classical Lp-space is equipped with the seminorm

‖ · ‖p,s,x : f 7→
(
Es,x

[∫ T
s |f(r,Xr)|pdVr

]) 1
p . We also introduce

L0
s,x := L0(U(s, x, ·)) =

{
f ∈ B([0, T ]× E,R) :

∫ T
s |f |(r,Xr)dVr <∞ Ps,x a.s.

}
.

For any p ≥ 0 we set
LpX =

⋂
(s,x)∈[0,T ]×E

Lps,x. (4.4.4)

Let N be the linear sub-space of B([0, T ]× E,R) containing all functions which are equal to 0, U(s, x, ·) a.e.
for every (s, x).
For any p ≥ 0, we define the quotient space LpX = LpX/N .
If p ≥ 1, LpX can be equipped with the topology generated by the family of semi-norms (‖ · ‖p,s,x)(s,x)∈[0,T ]×E
which makes it a separate locally convex topological vector space, see Theorem 5.76 in [1].

We recall that Proposition 2.4.13 in Chapter 2 states the following.
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Proposition 4.4.10. Let f and g be in L0
X . Then f and g are equal up to a set of zero potential if and only if

for any (s, x) ∈ [0, T ]×E, the processes
∫ ·
s f(r,Xr)dVr and

∫ ·
s g(r,Xr)dVr are indistinguishable underPs,x.

Of course in this case f and g correspond to the same element of L0
X .

We introduce now our notion of extended generator starting from its domain.

Definition 4.4.11. We first define the extended domain D(a) as the set of functions φ ∈ B([0, T ] × E,R)
for which there exists
χ ∈ L0

X such that under any Ps,x the process

1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s
χ(r,Xr)dVr

)
(4.4.5)

(which is not necessarily cadlag) has a cadlag modification inH2
0.

A direct consequence of Proposition 2.4.15 in Chapter 2 is the following.

Proposition 4.4.12. Let φ ∈ B([0, T ] × E,R). There is at most one (up to zero potential sets) χ ∈ L0
X such

that under any Ps,x, the process defined in (4.4.5) has a modification which belongs toH2.
If moreover φ ∈ D(a), then a(φ) = χ up to zero potential sets. In this case, according to Notation 4.4.2, for ev-
ery (s, x) ∈ [0, T ]×E,M [φ]s,x is thePs,x cadlag modification inH2

0 of 1[s,T ]

(
φ(·, X·)− φ(s, x)−

∫ ·
s χ(r,Xr)dVr

)
.

Definition 4.4.13. Let φ ∈ D(a) as in Definition 4.4.11. We denote again by M [φ]s,x, the unique cadlag ver-
sion of the process (4.4.5) inH2

0. Taking Proposition 4.4.10 into account, this will not generate any ambiguity
with respect to Notation 4.4.2. Proposition 4.4.10, also permits to define without ambiguity the operator

a :
D(a) −→ L0

X

φ 7−→ χ.

a will be called the extended generator.

Remark 4.4.14. a extends a in the sense that D(a) ⊂ D(a) (comparing Definitions 4.4.11 and 4.4.1) and if
φ ∈ D(a) then a(φ) is an element of the class a(φ), see Proposition 4.4.12.

We also introduce an extended ψ-generalized gradient.

Proposition 4.4.15. Assume the validity of Hypothesis 4.4.6. Let φ ∈ D(a) and i ∈ [[1; d]]. There exists a
(unique up to zero-potential sets) function in B([0, T ] × E,R) which we will denote Gψi(φ) such that under
any Ps,x, 〈M [φ]s,x,M [ψi]

s,x〉 =
∫ ·∨s
s Gψi(φ)(r,Xr)dVr up to indistinguishability.

Proof. We fix i ∈ [[1; d]]. Let M [ψi] be the square integrable MAF (see Definition 4.C.9) presented in
Notation 4.4.3. We introduce the random field M [φ] = (M [φ]tu)(0≤t≤u≤T ) as follows. We fix some χ in
the class a(φ) and set

M [φ]tu :=

{
φ(u,Xu)− φ(t,Xt)−

∫ u
t χ(r,Xr)dVr if

∫ u
t |χ|(r,Xr)dVr <∞, t ≤ u,

0 elsewhere,
(4.4.6)

We emphasize that, a priori, the function χ is only inL0
X implying that at fixed t ≤ u,

∫ u
t |χ|(r,Xr(ω))dVr

is not finite for every ω ∈ Ω, but only on a set which is Ps,x-negligible for all (s, x) ∈ [0, t]× E.
According to Definition 4.C.9 M [φ] is an AF whose cadlag version under Ps,x is M [φ]s,x. Of course
M [ψi]

s,x is the cadlag version of M [ψi] under Ps,x.
By Definition 4.4.13, since φ ∈ D(a), M [φ]s,x is a square integrable martingale for every (s, x), so
M [φ] is a square integrable MAF. Then by Corollary 4.4.7, the AF 〈M [ψi]〉 is absolutely continuous
with respect to dV . The existence of Gψi(φ) now follows from Proposition 4.C.11 and the uniqueness
follows by Proposition 4.4.10.
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Notation 4.4.16. If 4.4.6 holds, we can introduce the linear operator

Gψ :
D(a) −→ (L0

X)d

φ 7−→ (Gψ1(φ), · · · ,Gψd(φ)),
(4.4.7)

which will be called the extended ψ-generalized gradient.

Corollary 4.4.17. Let φ ∈ D(Γψ). Then Γψ(φ) = Gψ(φ) up to zero potential sets.

Proof. Comparing Propositions 4.4.5 and 4.4.15, for every (s, x) ∈ [0, T ]× E and i ∈ [[1; d]],∫ ·∨s
s Γψi(φ)(r,Xr)dVr and

∫ ·∨s
s Gψi(φ)(r,Xr)dVr arePs,x-indistinguishable. We can conclude by Propo-

sition 4.4.10.

Gψ therefore extends Γψ as well as a extends a, see Remark 4.4.14.

4.5 Pseudo-PDEs and associated Markovian type BSDEs driven by a cad-
lag martingale

4.5.1 The concepts

In this section, we still consider T ∈ R∗+, a Polish spaceE and the associated canonical space (Ω,F ,F)
and canonical process (Xt)t∈[0,T ], see Definition 4.C.1. We also consider a canonical Markov class
(Ps,x)(s,x)∈[0,T ]×E associated to a transition kernel measurable in time (see Definitions 4.C.5 and 4.C.4)
which solves a martingale problem associated to a triplet (D(a), a, V ), see Definition 4.4.1.

We will investigate here a specific type of BSDE driven by a cadlag martingale, denoted by
BSDE(ξ, f̂ , V̂ , M̂) which we will call of Markovian type, or Markovian BSDE, in the following
sense. The process V̂ will be the (deterministic) function V introduced in Definition 4.4.1, the fi-
nal condition ξ will only depend on the final value of the canonical process XT and the random-
ness of the driver f̂ at time t will only appear via the value at time t of the forward process X .
Given a function f : [0, T ] × E × R × Rd → R, we will set f̂(t, ω, y, z) = f(t,Xt(ω), y, z) for
t ∈ [0, T ], ω ∈ Ω, y ∈ R, z ∈ Rd.
Given d functions ψ1, · · · , ψd in D(a), we will set M̂ := (M [ψ1]s,x, · · · ,M [ψd]

s,x).

That BSDE will be connected with the deterministic problem in Definition 4.5.3.

We fix an integer d ∈ N∗ and some functions ψ1, · · · , ψd ∈ D(a) which in the sequel, will verify
the following hypothesis.

Hypothesis 4.5.1. For any i ∈ [[1; d]] we have the following

• Hypothesis 4.4.6 holds;

• a(ψi) ∈ L2
X ;

• Gψi(ψi) is bounded.

In particular, for every i ∈ [[1; d]], previous hypothesis implies the following.

Proposition 4.5.2.

• For any (s, x) ∈ [0, T ]×E, M̂ := M [ψ]s,x verifies item 4. of Hypothesis 4.3.1 with respect to V̂ := V .
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• for every (s, x) ∈ [0, T ]× E, sup
t∈[s,T ]

|ψi(t,Xt)|2 belongs to L1 under Ps,x;

• ψi ∈ L2
X .

Proof. The first item follows form the fact that for any (s, x) ∈ [0, T ]×E, 〈M [ψ]s,x〉 =
∫ ·∨s
s Gψi(ψi)(r,Xr)dVr

(see Proposition 4.4.15), and the fact that Gψi(ψi) is bounded. Concerning the second item, for any
(s, x) ∈ [0, T ]×E, the martingale problem gives ψ(·, X) = ψi(s, x)+

∫ ·
s a(ψi)(r,Xr)dVr +M [ψi]

s,x, see
Definition 4.4.1. By Jensen’s inequality, we have sup

t∈[s,T ]

|ψi(t,Xt)|2 ≤ C(ψ2
i (s, x)+

∫ T
s a2(ψi)(r,Xr)dVr+

sup
t∈[s,T ]

(M [ψi]
s,x
t )2) for some C > 0. It is therefore L1 since a(ψi) ∈ L2

X and M [ψi]
s,x ∈ H2. The last

item is a direct consequence of the second one.

Definition 4.5.3. Let us consider some g ∈ B(E,R) and
f ∈ B([0, T ]× E ×R×R,Rd).
We will call Pseudo-Partial Differential Equation related to (f, g) (in short Pseudo − PDE(f, g)) the
following equation with final condition:{

a(u) + f
(
·, ·, u,Γψ(u)

)
= 0 on [0, T ]× E

u(T, ·) = g.
(4.5.1)

We will say that u is a classical solution of Pseudo− PDE(f, g) if u, uψi, i ∈ [[1; d]] belong to D(a) and if
u verifies (4.5.1).

The connection between a Markovian BSDE and a Pseudo − PDE(f, g), will be possible under
some growth conditions on the functions (f, g).

Hypothesis 4.5.4. A couple of functions f ∈ B([0, T ] × E ×R ×Rd,R) and g ∈ B(E,R) will be said to
verify H lip if there exist positive constants KY ,KZ such that

1. g(XT ) is L2 under Ps,x for every (s, x) ∈ [0, T ]× E;

2. t 7−→ f(t,Xt, 0, 0) ∈ L2
X ;

3. ∀(t, x, y, y′, z, z′) : |f(t, x, y, z)− f(t, x, y′, z′)| ≤ KY |y − y′|+KZ‖z − z′‖.

(f, g) will be said to verify Hgrowth if the following lighter Hypothesis hold. There exist a positive constant C
such that

1. g(XT ) is L2 under Ps,x for every (s, x) ∈ [0, T ]× E;

2. t 7−→ f(t,Xt, 0, 0) ∈ L2
X ;

3. ∀(t, x, y, z) : |f(t, x, y, z)| ≤ C(f(t, x, 0, 0) + |y|+ ‖z‖).

Remark 4.5.5. We fix for now a couple (f, g) verifying H lip. For any (s, x) ∈ [0, T ] × E, in the stochastic
basis (Ω,Fs,x,Fs,x,Ps,x) and setting V̂ := V , the triplet ξ := g(XT ), f̂ : (t, ω, y, z) 7−→ f(t,Xt(ω), y, z),
M̂ := M [ψ]s,x verifies Hypothesis 4.3.1.

With the equation Pseudo− PDE(f, g), we will associate the following family of BSDEs indexed
by (s, x) ∈ [0, T ]× E, driven by a cadlag martingale.
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Notation 4.5.6. For any (s, x) ∈ [0, T ] × E, we consider in the stochastic basis (Ω,Fs,x,Fs,x,Ps,x) and
on the interval [0, T ] the BSDE(ξ, f̂ , V, M̂) where ξ = g(XT ), f̂ : (t, ω, y, z) 7−→ f(t,Xt(ω), y, z), M̂ =
M [ψ]s,x).
This BSDE will from now on be denoted BSDEs,x(f, g) and its unique solution (see Theorem 4.3.3 and
Remark 4.5.5) will be denoted (Y s,x,M s,x).

IfH lip is fulfilled by (f, g), then (Y s,x,M s,x) is therefore the unique couple in L2(dV ⊗dPs,x)×H2
0

verifying

Y s,x
· = g(XT ) +

∫ T

·
f

(
r,Xr, Y

s,x
r ,

d〈M s,x,M [ψ]s,x〉
dV

(r)

)
dVr − (M s,x

T −M s,x
· ). (4.5.2)

Remark 4.5.7. Even if the underlying process X admits no generalized moments, given a couple (f, g) such
that f(·, ·, 0, 0) and g are bounded, the considerations of this section still apply. In particular the connections
that we will establish between theBSDEs,x(f, g) and the corresponding Pseudo−PDE(f, g) still take place.

The goal of our work is to emphasize the precise link under general enough conditions between
the solutions of equationsBSDEs,x(f, g) and of Pseudo−PDE(f, g). In particular we will emphasize
that a solution of BSDEs,x(f, g) produces a solution of Pseudo− PDE(f, g) and reciprocally.

We now introduce a probabilistic notion of solution for Pseudo− PDE(f, g).

Definition 4.5.8. A Borel function u : [0, T ]×E → R will be said to be a martingale solution of Pseudo−
PDE(f, g) if u ∈ D(a) and {

a(u) = −f(·, ·, u,Gψ(u))
u(T, ·) = g.

(4.5.3)

Remark 4.5.9. The first equation of (4.5.3) holds in L0
X , hence up to a zero potential set. The second one is a

pointwise equality.

Proposition 4.5.10. Let (f, g) verify Hgrowth. Let u be a martingale solution of Pseudo−PDE(f, g). Then
for any (s, x) ∈ [0, T ]× E, the couple of processes(

u(t,Xt), u(t,Xt)− u(s, x) +

∫ t

s
f(·, ·, u,Gψ(u))(r,Xr)dVr

)
t∈[s,T ]

(4.5.4)

has a Ps,x-version which is a solution on [s, T ] of BSDEs,x(f, g), see Remark 4.3.4.
Moreover, u ∈ L2

X .

Proof. Let u ∈ D(a) be a solution of (4.5.3) and let (s, x) ∈ [0, T ]×E be fixed. By Definition 4.4.11 and
Remark 4.3.4, the process u(·, X·) under Ps,x admits a cadlag modification U s,x on [s, T ], which is a
special semimartingale with decomposition

U s,x = u(s, x) +
∫ ·
s a(u)(r,Xr)dVr +M [u]s,x

= u(s, x)−
∫ ·
s f
(
r,Xr, u(r,Xr),G

ψ(u)(r,Xr)
)
dVr +M [u]s,x

= u(s, x)−
∫ ·
s f
(
r,Xr, U

s,x, d〈M [u]s,x,M [ψ]s,x〉
dV

)
dVr +M [u]s,x,

(4.5.5)

where the third equality of (4.5.5) comes from Lemma 4.2.4 and Proposition 4.4.15. Moreover since
u(T, ·) = g, then U s,xT = u(T,XT ) = g(XT ) a.s. so the couple (U s,x,M [u]s,x) verifies the following
equation on [s, T ] (with respect to Ps,x):

U s,x· = g(XT ) +

∫ T

·
f

(
r,Xr, U

s,x
r ,

d〈M [u]s,x,M [ψ]s,x〉
dV

(r)

)
dVr − (M [u]s,xT −M [u]s,x· ). (4.5.6)
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M [u]s,x (introduced at Definition 4.4.13) belongs to H2
0 but we do not have a priori information on

the square integrability of U s,x. However we know that M [u]s,x is equal to zero at time s, and that
U s,xs is deterministic so square integrable. We can therefore apply Lemma 4.A.12 which implies that
(U s,x,M [u]s,x) solves BSDEs,x(f, g) on [s, T ]. In particular, U s,x belongs to L2(dV ⊗ dPs,x) for every
(s, x), so by Lemma 4.2.4 and Definition 4.4.9, u ∈ L2

X .

4.5.2 Decoupled mild solutions of Pseudo-PDEs

In this section we introduce an analytical notion of solution of our Pseudo− PDE(f, g) that we will
denominate decoupled mild since it inspired by the mild solution of partial differential equation. We
will show that it is equivalent to the notion of martingale solution introduced in Definition 4.5.8.

Notation 4.5.11. Let P denote the transition kernel of the canonical class (see Definition 4.C.3). Let s, t in
[0, T ] with s ≤ t, x ∈ E and φ ∈ B(E,R), if φ is integrable with respect to Ps,t(x, ·), then Ps,t[φ](x) will
denote its integral.

We recall two important measurability properties.

Remark 4.5.12.

• Let φ ∈ B(E,R) be such that for any (s, x, t),Es,x[|φ(Xt)|] <∞, then (s, x, t) 7−→ Ps,t[φ](x) is Borel,
see Proposition 3.A.12 in Chapter 3.

• Let φ ∈ L1
X , then (s, x) 7−→

∫ T
s Ps,r[φ](x)dVr is Borel, see Lemma 2.A.8 in Chapter 3.

Our notion of decoupled mild solution relies on the fact that the equation a(u)+f
(
·, ·, u,Γψ(u)

)
=

0 can be naturally decoupled into{
a(u) = −f(·, ·, u, v)
vi = Γψi(u), i ∈ [[1; d]].

(4.5.7)

Then, by definition of the carré du champ operator (see Definition 4.4.4), we formally have i ∈ [[1; d]],
a(uψi) = Γψi(u) + ua(ψi) + ψia(u). So the system of equations (4.5.7) can be rewritten as{

a(u) = −f(·, ·, u, v)
a(uψi) = vi + ua(ψi)− ψif(·, ·, u, v), i ∈ [[1; d]].

(4.5.8)

Inspired by the usual notions of mild solution, this naturally leads us to the following definition
of a mild solution.

Definition 4.5.13. Let (f, g) be a couple verifying Hgrowth. Let
u ∈ B([0, T ]× E,R) and v ∈ B([0, T ]× E,Rd).

1. The couple (u, v) will be called solution of the identification problem determined by (f, g) or
simply solution of IP (f, g) if u, v1, · · · , vd belong to L2

X and if for every (s, x) ∈ [0, T ]× E,
u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r [f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x)−
∫ T
s Ps,r [(v1 + ua(ψ1)− ψ1f (·, ·, u, v)) (r, ·)] (x)dVr

· · ·
uψd(s, x) = Ps,T [gψd(T, ·)](x)−

∫ T
s Ps,r [(vd + ua(ψd)− ψdf (·, ·, u, v)) (r, ·)] (x)dVr.

(4.5.9)
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2. The function uwill be called decoupled mild solution of Pseudo−PDE(f, g) if there exist a function
v such that the couple (u, v) is a solution of IP (f, g).

Lemma 4.5.14. Let u, v1, · · · , vd ∈ L2
X , let (f, g) be a couple satisfying Hgrowth and let ψ1, · · · , ψd verify

Hypothesis 4.5.1. Then f (·, ·, u, v) belongs to L2
X and for every i ∈ [[1; d]], ψif (·, ·, u, v), and ua(ψi), belong

to L1
X . For any (s, x) ∈ [0, T ] × E, i ∈ [[1; d]], g(XT )ψi(T,XT ) belongs to L1 under Ps,x. In particular, all

terms in (4.5.9) make sense.

Proof. Thanks to the growth condition on f inHgrowth, there exists a constant C > 0 such that for any
(s, x) ∈ [0, T ]× E,

Es,x
[∫ T
t f2(r,Xr, u(r,Xr), v(r,Xr))dVr

]
≤ CEs,x

[∫ T
t (f2(r,Xr, 0, 0) + u2(r,Xr) + ‖v‖2(r,Xr))dVr

]
.

(4.5.10)

Previous quantity is finite since we have assumed that u, v1, · · · , vd belong to L2
X , taking into account

Hypothesis Hgrowth. This means that f2 (·, ·, u, v) belongs to L1
X . All the other assertions are easily

obtained taking into account Hypothesis 4.5.1,Hgrowth and the classical inequality 2|ab| ≤ a2+b2.

Proposition 4.5.15. Let (f, g) verify Hgrowth. Let u be a martingale solution of Pseudo− PDE(f, g), then
(u,Gψ(u)) is a solution of IP (f, g) and in particular, u is a decoupled mild solution of Pseudo−PDE(f, g).

Proof. Let u be a martingale solution of Pseudo − PDE(f, g). By Proposition 4.5.10, u ∈ L2
X . Taking

into account Definition 4.4.13, for every (s, x), M [u]s,x ∈ H2
0 under Ps,x. So by Lemma 4.A.2, for any

i ∈ [[1; d]], d〈M [u]s,x,M [ψi]s,x〉
dV belongs to L2(dV ⊗ dPs,x). Taking Proposition 4.4.15 into account, this

means that Gψi(u) ∈ L2
X for every i. By Lemma 4.5.14, it follows that f

(
·, ·, u,Gψ(u)

)
belongs to L2

X

and so for any i ∈ [[1; d]], ψif
(
·, ·, u,Gψ(u)

)
and ua(ψi), belong to L1

X .
We fix some (s, x) ∈ [0, T ]×E and the correspondent probabilityPs,x, and we are going to show that

u(s, x) = Ps,T [g](x) +
∫ T
s Ps,r

[
f
(
·, ·, u,Gψ(u)

)
(r, ·)

]
(x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x)−
∫ T
s Ps,r

[(
G(u, ψ1) + ua(ψ1)− ψ1f

(
·, ·, u,Gψ(u)

))
(r, ·)

]
(x)dVr

· · ·
uψd(s, x) = Ps,T [gψd(T, ·)](x)−

∫ T
s Ps,r

[(
G(u, ψd) + ua(ψd)− ψdf

(
·, ·, u,Gψ(u)

))
(r, ·)

]
(x)dVr.

(4.5.11)
Combining Definitions 4.4.11, 4.4.13, 4.5.8, we know that on [s, T ], the process u(·, X·) has a mod-

ification which we denote U s,x which is a special semimartingale with decomposition

U s,x = u(s, x)−
∫ ·
s
f
(
·, ·, u,Gψ(u)

)
(r,Xr)dVr +M [u]s,x, (4.5.12)

and M [u]s,x ∈ H2
0.

Definition 4.5.8 also states that u(T, ·) = g, implying that

u(s, x) = g(XT ) +

∫ T

s
f
(
·, ·, u,Gψ(u)

)
(r,Xr)dVr −M [u]s,xT a.s. (4.5.13)

Taking the expectation, by Fubini’s theorem we get

u(s, x) = Es,x
[
g(XT ) +

∫ T
s f

(
·, ·, u,Gψ(u)

)
(r,Xr)dVr

]
= Ps,T [g](x) +

∫ T
s Ps,r

[
f
(
r, ·, u(r, ·),Gψ(u)(r, ·)

)]
(x)dVr.

(4.5.14)
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We now fix i ∈ [[1; d]]. By integration by parts, taking (4.5.12) and Definition 4.4.1 into account, we
obtain

d(U s,xt ψi(t,Xt)) = −ψi(t,Xt)f
(
·, ·, u,Gψ(u)

)
(t,Xt)dVt + ψi(t

−, Xt−)dM [u]s,xt
+U s,xt a(ψi)(t,Xt)dVt + U s,x

t− dM [ψi]
s,x
t + d[M [u]s,x,M [ψi]

s,x]t,
(4.5.15)

so integrating from s to T , we get

uψi(s, x)

= g(XT )ψi(T,XT ) +
∫ T
s ψi(t,Xt)f

(
·, ·, u,Gψ(u)

)
(r,Xr)dVr −

∫ T
s ψi(r

−, Xr−)dM [u]s,xr

−
∫ T
s U s,xt a(ψi)(r,Xr)dVr −

∫ T
s U s,x

r− dM [ψi]
s,x
r − [M [u]s,x,M [ψi]

s,x]T
= g(XT )ψi(T,XT )−

∫ T
s

(
ua(ψi)− ψif

(
·, ·, u,Gψ(u)

))
(r,Xr)dVr −

∫ T
s ψi(r

−, Xr−)dM [u]s,xr

−
∫ T
s U s,x

r− dM [ψi]
s,x
r − [M [u]s,x,M [ψi]

s,x]T ,
(4.5.16)

where the latter equality is a consequence of Lemma 4.2.4.
The next step will consist in taking the expectation in equation (4.5.16), but before, we will check that∫ ·
s U

s,x
r− dM [ψi]

s,x
r and

∫ ·
s ψi(r

−, Xr−)dM [u]s,xr are martingales.
By Proposition 4.4.15, 〈M [ψi]

s,x〉 =
∫ ·∨s
s Gψi(ψi)(r,Xr)dVr. So the angular bracket of

∫ ·
s U

s,x
r− dM [ψi]

s,x
r

at time T is equal to
∫ T
s u2Gψi(ψi)(r,Xr)dVr which is an integrable r.v. since Gψi(ψi) is bounded and

u ∈ L2
X . Therefore

∫ ·
s U

s,x
r− dM [ψi]

s,x
r is a square integrable martingale.

Then, by Hypothesis 4.5.1 and Proposition 4.5.2, sup
t∈[s,T ]

|ψi(t,Xt)|2 ∈ L1, and by Definition 4.4.13,

M [u]s,x ∈ H2 so by Lemma 2.3.17 in Chapter 2,
∫ ·
s ψi(r

−, Xr−)dM [u]s,xr is a martingale.

We can now take the expectation in (4.5.16), to get

uψi(s, x)

= Es,x
[
g(XT )ψi(T,XT )−

∫ T
s

(
ua(ψi)− ψif

(
·, ·, u,Gψ(u)

))
(r,Xr)dVr − [M [u]s,x,M [ψi]

s,x]T

]
= Es,x

[
g(XT )ψi(T,XT )−

∫ T
s

(
ua(ψi) + Gψi(u)− ψif

(
·, ·, u,Gψ(u)

))
(r,Xr)dVr

]
,

(4.5.17)
since u and ψi belong to D(a). Indeed the second equality follows from the fact [M [u]s,x,M [ψi]

s,x]−
〈M [u]s,x,M [ψi]

s,x〉 is a martingale and Proposition 4.4.15.
Since we have assumed that u ∈ L2

X , Lemma 4.5.14 says that f
(
·, ·, u,Gψ(u)

)
∈ L2

X , Hypothesis
4.5.1 implies that ψi and a(ψi) are in L2

X , so all terms in the integral inside the expectation in the third
line belong to L1

X . We can therefore apply Fubini’s theorem to get

uψi(s, x) = Ps,T [gψi(T, ·)](x)−
∫ T

s
Ps,r

[(
ua(ψi) + Gψi(u)− ψif

(
·, ·, u,Gψ(u)

))
(r, ·)

]
(x)dVr.

(4.5.18)
This concludes the proof.

Proposition 4.5.15 admits a converse implication.

Proposition 4.5.16. Let (f, g) verify Hgrowth. Every decoupled mild solution of Pseudo − PDE(f, g) is a
also a martingale solution. Moreover, if (u, v) solves IP (f, g), then v = Gψ(u), up to zero potential sets.

Proof. Let u and vi, i ∈ [[1; d]] in L2
X verify (4.5.9). We observe that the first line of (4.5.9) with s = T ,

gives u(T, ·) = g.



108 Chapter 4. Martingale driven BSDEs, PDEs and other related deterministic problems

We fix (s, x) ∈ [0, T ] × E and the associated probability Ps,x. On [s, T ], we set U := u(·, X) and
N := u(·, X)− u(s, x) +

∫ ·
s f(r,Xr, u(r,Xr), v(r,Xr))dVr.

For some t ∈ [s, T ], we combine the first line of (4.5.9) applied in (s, x) = (t,Xt) and the Markov
property (4.C.3). Since f (·, ·, u, v) belongs to L2

X (see Lemma 4.5.14) we get the a.s. equalities

Ut = u(t,Xt)

= Pt,T [g](Xt) +
∫ T
t Pt,r [f (r, ·, u(r, ·), v(r, ·))] (Xt)dVr

= Et,Xt
[
g(XT ) +

∫ T
t f(r,Xr, u(r,Xr), v(r,Xr))dVr

]
= Es,x

[
g(XT ) +

∫ T
t f(r,Xr, u(r,Xr), v(r,Xr))dVr|Ft

]
,

(4.5.19)

from which we deduce that Nt = Es,x
[
g(XT ) +

∫ T
s f(r,Xr, u(r,Xr), v(r,Xr))dVr|Ft

]
− u(s, x) a.s.

and so N is a martingale. We can therefore consider on [s, T ] and under Ps,x, the cadlag version N s,x

of N . We extend now N s,x
t , to t ∈ [0, T ], putting its value equal to zero on [0, s], and consider the

special semimartingale

U s,x := u(s, x)−
∫ ·
s
f(r,Xr, u(r,Xr), v(r,Xr))dVr +N s,x, (4.5.20)

indexed on [s, T ] which is obviously a cadlag version of U .
By Jensen’s inequality, we have

Es,x[(N s,x
T )2] = Es,x

[(
g(XT ) +

∫ T
s f(r,Xr, u(r,Xr), v(r,Xr))dVr − u(s, x)

)2
]

≤ 3u2(s, x) + 3Es,x[g2(XT )] + 3Es,x
[∫ T
s f2(r,Xr, u(r,Xr), v(r,Xr))dVr

]
< ∞,

(4.5.21)

where the second term is finite because of Hgrowth, and the third one because f (·, ·, u, v) belongs
to L2

X , see Lemma 4.5.14. So N s,x is square integrable. We have therefore shown that under any
Ps,x, the process

(
u(·, X·)− u(s, x) +

∫ ·
s f(r,Xr, u(r,Xr), v(r,Xr))dVr

)
1[s,T ] has a modification inH2

0.
According to Definitions 4.4.11 and 4.4.13 we have u ∈ D(a), a(u) = −f(·, ·, u, v) and for any (s, x) ∈
[0, T ]× E, M [u]s,x = N s,x in the sense of P s,x-indistinguishability.
So to conclude that u is a martingale solution of Pseudo−PDE(f, g), there is left to show Gψ(u) = v,
up to zero potential sets. By Proposition 4.4.15, this is equivalent to show that for every (s, x) ∈
[0, T ]× E and i ∈ [[1; d]],

〈M s,x[u],M s,x[ψi]〉 =

∫ ·∨s
s

vi(r,Xr)dVr, (4.5.22)

in the sense of indistinguishability.

We fix again (s, x) ∈ [0, T ] × E, the associated probability, and some i ∈ [[1; d]]. Combining the
(i+ 1)th line of (4.5.9) applied in (s, x) = (t,Xt) and the Markov property (4.C.3), taking into account
the fact that all terms belong to L1

X (see Lemma 4.5.14, Hypothesis 4.5.1) we get the a.s. equalities

uψi(t,Xt) = Pt,T [gψi(T, ·)](Xt)−
∫ T
t Pt,r [(vi + ua(ψi)− ψif (·, ·, u, v)) (r, ·)] (Xt)dVr

= Et,Xt
[
g(XT )ψi(T,XT )−

∫ T
t (vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr

]
= Es,x

[
g(XT )ψi(T,XT )−

∫ T
t (vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr|Ft

]
.

(4.5.23)
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Setting, for t ∈ [s, T ], N i
t := uψi(t,Xt) −

∫ t
s (vi + ua(ψ)i − ψif(·, ·, u, v))(r,Xr)dVr, from (4.5.23) we

deduce that, for any t ∈ [s, T ],

N i
t = Es,x

[
g(XT )ψi(T,XT )−

∫ T

s
(vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr

∣∣∣∣Ft]
a.s. So N i is a martingale. We can therefore consider on [s, T ] and under Ps,x, the cadlag version
N i,s,x of N i.

The process ∫ ·
s

(vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr +N i,s,x, (4.5.24)

is therefore a cadlag special semimartingale which is aPs,x-version of uψi(·, X) on [s, T ]. But we also
had shown, see (4.5.20), that
U s,x = u(s, x) −

∫ ·
s f(r,Xr, u(r,Xr), v(r,Xr))dVr + N s,x is a version of u(·, X) which by integration

by parts on the process U s,xψi(·, X·) implies that

uψi(s, x) +
∫ ·
s U

s,x
r a(ψi)(r,Xr)dVr +

∫ ·
s U

s,x
r− dM

s,x[ψi]r
−
∫ ·
s ψif(·, ·, u, v)(r,Xr)dVr +

∫ ·
s ψi(r

−, Xr−)dM s,x[u]r + [M s,x[u],M s,x[ψi]]
(4.5.25)

is another cadlag semimartingale which is a Ps,x-version of uψi(·, X) on [s, T ]. Now (4.5.25) equals

Mi + V i, (4.5.26)

where

Mi
t = uψi(s, x) +

∫ t

s
U s,x
r− dM

s,x[ψi]r +

∫ t

s
ψi(r

−, Xr−)dM s,x[u]r

+ ([M s,x[u],M s,x[ψi]]t − 〈M s,x[u],M s,x[ψi]〉t,

is a local martingale and

V it = 〈M s,x[u],M s,x[ψi]〉t +

∫ t

s
U s,xr a(ψi)(r,Xr)dVr −

∫ t

s
ψif(·, ·, u, v)(r,Xr)dVr,

is a predictable with bounded variation vanishing at zero process. Now (4.5.26) and (4.5.24) are two
cadlag versions of uψi(·, X) on [s, T ].

By the uniqueness of the decomposition of a special semimartingale, identifying the bounded
variation predictable components and using Lemma 4.2.4 we get∫ ·

s
(vi + ua(ψi)− ψif(·, ·, u, v))(r,Xr)dVr

= 〈M s,x[u],M s,x[ψi]〉+

∫ ·
s
ua(ψi)(r,Xr)dVr −

∫ ·
s
ψif(·, ·, u, v)(r,Xr)dVr.

This yields 〈M s,x[u],M s,x[ψi]〉 =
∫ ·∨s
s vi(r,Xr)dVr as desired, which implies (4.5.22).

Proposition 4.5.17. Let (f, g) verifyHgrowth. A classical solution of Pseudo−PDE(f, g) is also a decoupled
mild solution.

Conversely, a decoupled mild solution of Pseudo− PDE(f, g) belonging to D(Γψ) is a classical solution
of Pseudo− PDE(f, g) up to a zero-potential set, meaning that it verifies the first equality of (4.5.1) up to a
set of zero potential.
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Proof. Let u be a classical solution of Pseudo−PDE(f, g). Definition 4.5.3 and Corollary 4.4.17 imply
that u(T, ·) = g, and the equalities up to zero potential sets

a(u) = a(u) = −f(·, ·, u,Γψ(u)) = −f(·, ·, u,Gψ(u)), (4.5.27)

which shows that u is a martingale solution and by Proposition 4.5.15 it is also a decoupled mild
solution.

Similarly, the second statement follows by Proposition 4.5.16, Definition 4.5.8, and again Corollary
4.4.17.

4.5.3 Existence and uniqueness of a decoupled mild solution

In this subsection, the functions (f, g) appearing in Pseudo− PDE(f, g) are fixed and verify H lip.
Using arguments which are very close to those developed in Chapter 2, one can show the fol-

lowing theorem. For the convenience of the reader, we postpone the adapted proof to Appendix
4.B.

Let (Y s,x,M s,x) be for any (s, x) ∈ [0, T ]× E the unique solution of (4.5.2), see Notation 4.5.6.

Theorem 4.5.18. Let (f, g) verify H lip. There exists u ∈ D(a) such that for any (s, x) ∈ [0, T ]× E{
∀t ∈ [s, T ] : Y s,x

t = u(t,Xt) Ps,xa.s.
M s,x = M [u]s,x,

and in particular d〈Ms,x,M [ψ]s,x〉
dV = Gψ(u)(·, X·) dV ⊗ dPs,x a.e. on [s, T ]. Moreover, for every (s, x), Y s,x

s is
Ps,x a.s. equal to a constant (which we shall still denote Y s,x

s ) and u(s, x) = Y s,x
s for every (s, x) ∈ [0, T ]×E.

Corollary 4.5.19. Let (f, g) verify H lip. For any (s, x) ∈ [0, T ] × E, the functions u obtained in Theorem
4.5.18 verifies Ps,x a.s. on [s, T ]

u(t,Xt) = g(XT ) +

∫ T

t
f
(
r,Xr, u(r,Xr),G

ψ(u)(r,Xr)
)
dVr − (M [u]s,xT −M [u]s,xt ),

and in particular, a(u) = −f(·, ·, u,Gψ(u)).

Proof. The corollary follows from Theorem 4.5.18 and Lemma 4.2.4.

Theorem 4.5.20. Let (Ps,x)(s,x)∈[0,T ]×E be a Markov class associated to a transition kernel measurable in time
(see Definitions 4.C.5 and 4.C.4) which solves a martingale problem associated with the triplet (D(a), a, V ).
Let (f, g) be a couple verifying H lip.

Then Pseudo− PDE(f, g) has a unique decoupled mild solution given by

u :
[0, T ]× E −→ R

(s, x) 7−→ Y s,x
s ,

(4.5.28)

where (Y s,x,M s,x) denotes the (unique) solution of BSDEs,x(f, g) for fixed (s, x).

Proof. Let u be the function exhibited in Theorem 4.5.18. In order to show that u is a decoupled mild
solution of Pseudo − PDE(f, g), it is enough by Proposition 4.5.15 to show that it is a martingale
solution.
In Corollary 4.5.19, we have already seen that a(u) = −f(·, ·, u,Gψ(u)).
Concerning the second line of (4.5.3), for any x ∈ E, we have
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u(T, x) = u(T,XT ) = g(XT ) = g(x) PT,x a.s., so u(T, ·) = g, in the deterministic pointwise sense.
We now show uniqueness. By Proposition 4.5.16, it is enough to show that Pseudo − PDE(f, g)
admits at most one martingale solution. Let u, u′ be two martingale solutions of Pseudo−PDE(f, g).
We fix (s, x) ∈ [0, T ]× E. By Proposition 4.5.10, both couples, indexed by [s, T ],(
u(·, X), u(·, X)− u(s, x) +

∫ ·
s f(·, ·, u,Gψ(u))(r,Xr)dVr

)
and(

u′(·, X), u′(·, X)− u′(s, x) +
∫ ·
s f(·, ·, u′,Gψ(u′))(r,Xr)dVr

)
admit a Ps,x-version which solves

BSDEs,x(f, g) on [s, T ]. By Theorem 4.3.3 and Remark 4.3.4,BSDEs,x(f, g) admits a unique solution,
so u(·, X·) and u′(·, X·) are Ps,x-modifications one of the other on [s, T ]. In particular, considering
their values at time s, we have u(s, x) = u′(s, x). We therefore have u′ = u.

Corollary 4.5.21. Let (f, g) verify H lip. There is at most one classical solution of Pseudo− PDE(f, g) and
this only possible classical solution is the unique decoupled mild solution (s, x) 7−→ Y s,x

s , where (Y s,x,M s,x)
denotes the (unique) solution of BSDEs,x(f, g) for fixed (s, x).

Proof. The proof follows from Proposition 4.5.17 and Theorem 4.5.20.

Remark 4.5.22. The function v such that (u, v) is the unique solution of the identification problem IP (f, g)
also has a stochastic representation since it verifies for every (s, x) ∈ [0, T ]× E, on the interval [s, T ],
d〈Ms,x,Ms,x[ψ]〉

dV = v(·, X·) dV ⊗dPs,x a.e. whereM s,x is the martingale part of the solution ofBSDEs,x(f, g).

The existence of a decoupled mild solution of Pseudo − PDE(f, g) provides in fact an existence
theorem for BSDEs,x(f, g) for any (s, x). The following constitutes the converse of Theorem 4.5.20.

Proposition 4.5.23. Assume (f, g) verifiesHgrowth. Let (u, v) be a solution of IP (f, g), let (s, x) ∈ [0, T ]×E
and the associated probability Ps,x be fixed. The couple(

u(t,Xt), u(t,Xt)− u(s, x) +

∫ t

s
f(·, ·, u, v)(r,Xr)dVr

)
t∈[s,T ]

(4.5.29)

has a Ps,x-version which solves BSDEs,x(f, g) on [s, T ].

In particular if (f, g) verifies the stronger hypothesis H lip and (u, v) is the unique solution of IP (f, g), then
for any (s, x) ∈ [0, T ]× E,(
u(t,Xt), u(t,Xt)− u(s, x) +

∫ t
s f(·, ·, u, v)(r,Xr)dVr

)
t∈[s,T ]

is a Ps,x modification of the unique solu-

tion of BSDEs,x(f, g) on [s, T ].

Proof. It follows from Propositions 4.5.16, and 4.5.10.

4.6 Examples of applications

We now develop some examples. In all the items below there will be a canonical Markov class with
transition kernel being measurable in time which is solution of a Martingale Problem associated to
some triplet (D(a), a, V ) as introduced in Definition 4.4.1. Therefore all the results of this chapter will
apply to all the examples below. In particular, Propositions 4.5.16, 4.5.17, Theorem 4.5.20, Corollary
4.5.21 and Proposition 4.5.23 will apply but we will mainly emphasize Theorem 4.5.20 and Corollary
4.5.21.

In all the examples T > 0 will be fixed.
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4.6.1 A new approach to Brownian BSDEs and associate semilinear PDEs

In this subsection, the state space will be E := Rd for some d ∈ N∗.

Notation 4.6.1. A function φ ∈ B([0, T ] × Rd,R) will be said to have polynomial growth if there exists
p ∈ N and C > 0 such that for every (t, x) ∈ [0, T ] × Rd, |φ(t, x)| ≤ C(1 + ‖x‖p). For any k, p ∈
N, Ck,p([0, T ] × Rd) (resp. Ck,pb ([0, T ] × Rd), resp. Ck,ppol ([0, T ] × Rd)) will denote the sublinear algebra
of C([0, T ] × Rd,R) of functions admitting continuous (resp. bounded continuous, resp. continuous with
polynomial growth) derivatives up to order k in the first variable and order p in the second.

We consider bounded Borel functions β ∈ Bb([0, T ]×Rd,Rd) and α ∈ Bb([0, T ]×Rd, S+
d (R)) where

S+
d (R) is the space of symmetric non-negative d× d real matrices. We define for φ ∈ C1,2([0, T ]×Rd)

the operator a by

a(φ) = ∂tφ+
1

2

∑
i,j≤d

αi,j∂
2
xixjφ+

∑
i≤d

βi∂xiφ. (4.6.1)

We will assume the following.

Hypothesis 4.6.2. There exists a canonical Markov class (Ps,x)(s,x)∈[0,T ]×Rd which solves the Martingale
Problem associated to (C1,2

b ([0, T ]×Rd), a, Vt ≡ t) in the sense of Definition 4.4.1.

We now recall a non-exhaustive list of sets of conditions on β, α under which Hypothesis 4.6.2 is
satisfied.

1. α is continuous non-degenerate, in the sense that for any t, x, α(t, x) is invertible, see Theorem
4.2 in [84];

2. β and α are continuous in the second variable, see Exercise 12.4.1 in [85];

3. d = 1 and α is uniformly positive on compact sets, see Exercise 7.3.3 in [85].

Remark 4.6.3. When the first or third item above is verified, the mentioned Markov class is unique, but if
the second one holds, uniqueness may not hold. We therefore fix a Markov class which solves the martingale
problem. We wish to emphasize that given a fixed Markov class, we will obtain some uniqueness results
concerning the martingale solution and the decoupled mild solution of an associated PDE, but that for every
Markov class solving the martingale problem may correspond a different solution.

In this context, for φ, ψ in D(a), the carré du champs operator (see Definition 4.4.4) is given by
Γ(φ, ψ) =

∑
i,j≤d

αi,j∂xiφ∂xjψ.

Remark 4.6.4. By a localization procedure, it is also clear that for every (s, x) ∈ [0, T ] × Rd, Ps,x verifies
that for any φ ∈ C1,2([0, T ]×Rd), φ(·, X·)−

∫ ·
s a(φ)(r,Xr)dr ∈ H2

loc and that Proposition 4.4.5 extends to
all φ ∈ C1,2([0, T ]×Rd).

We set now D(a) = C1,2
pol([0, T ]×Rd).

For any i ∈ [[1; d]], the function Idi denotes (t, x) 7−→ xi which belongs toD(a) and Id := (Id1, · · · , Idd).
It is clear that for any i, a(Idi) = βi, and for any i, j, IdiIdj ∈ D(a) and Γ(Idi, Idj) = αi,j . In particu-
lar, by Corollary 4.4.7, (Id1, · · · , Idd) verify Hypothesis 4.4.6 and since β, α are bounded, they verify
Hypothesis 4.5.1.

For any i we can therefore consider the MAF M [Idi] : (t, u) 7→ Xi
u − Xi

t −
∫ u
t βi(r,Xr)dr whose

cadlag version underPs,x for every (s, x) ∈ [0, T ]×Rd is M [Idi]
s,x = 1[s,T ]

(
Xi − xi −

∫ ·
s βi(r,Xr)dr

)
and we have for any i, j 〈M [Idi]

s,x,M [Idj ]
s,x〉 =

∫ ·∨s
s αi,j(r,Xr)dr.
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Lemma 4.6.5. Let (s, x) ∈ [0, T ] ×Rd and associated probability Ps,x, i ∈ [[1; d]] and p ∈ [1,+∞[ be fixed.
Then sup

t∈[s,T ]

|Xi
t |p ∈ L1.

Proof. We have Xi = xi +
∫ ·
s βi(r,Xr)dr+M [Idi]

s,x where βi is bounded so it is enough to show that
sup
t∈[s,T ]

|M [Idi]
s,x
t |p ∈ L1. Since 〈M [Idi]

s,x〉 =
∫ ·∨s
s αi,i(r,Xr)dr, which is bounded, the result holds by

Burkholder-Davis-Gundy inequality.

Corollary 4.6.6. (Ps,x)(s,x)∈[0,T ]×Rd solves the Martingale Problem associated to (C1,2
pol([0, T ]×Rd), a, Vt ≡

t) in the sense of Definition 4.4.1.

Proof. By Remark 4.6.4, for any φ ∈ C1,2
pol([0, T ]×Rd) and (s, x) ∈ [0, T ]×Rd, φ(·, X·)−

∫ ·
s a(φ)(r,Xr)dr

is a Ps,x-local martingale. Since φ and a(φ) have polynomial growth, Lemma 4.6.5 and Jensen’s
inequality imply that it is also a square integrable martingale.

Let g : Rd 7−→ R an f : [0, T ]×Rd ×R×Rd 7−→ R. We consider the PDE{
∂tu+ 1

2

∑
i,j≤d

αi,j∂
2
xixju+

∑
i≤d
βi∂xiu+ f(·, ·, u, α∇u) = 0

u(T, ·) = g.
(4.6.2)

We emphasize that for u ∈ C1,2
pol([0, T ]×Rd), α∇u = ΓId(u). The associated decoupled mild equation

is given by

{
u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r [f (·, ·, u, v) (r, ·)] (x)dr

u(s, x)xi = Ps,T [gIdi](x)−
∫ T
s Ps,r [(vi + uβi − Idif (·, ·, u, v)) (r, ·)] (x)dr, i ∈ [[1; d]],

(4.6.3)

(s, x) ∈ [0, T ]×Rd, where P is the transition kernel of the Markov class.

Proposition 4.6.7. Assume that Hypothesis 4.6.2 is verified, that f(·, ·, 0, 0), g have polynomial growth in x
uniformly in t and that f verifies item 3 of H lip.

Then equation (4.6.2) has a unique decoupled mild solution u.
Moreover it has at most one classical solution which (when it exists) equals this function u.

Proof. (Ps,x)(s,x)∈[0,T ]×Rd verifies a martingale problem in the sense of Definition 4.4.1 and has a
transition kernel which is measurable in time. Moreover (Id1, · · · , Idd) verify Hypothesis 4.5.1. By
Lemma 4.6.5, the polynomial growth of f, g imply that they verify items 1 and 2 of H lip, which third
item is also assumed to hold. So Theorem 4.5.20 and Corollary 4.5.21 apply.

Remark 4.6.8. The unique decoupled mild solution mentioned in the previous proposition admits the proba-
bilistic representation given in Theorem 4.5.20.

Remark 4.6.9. In the classical literature, a Brownian BSDE is linked to a slightly different type of parabolic
PDE, see the introduction of the present paper, or [72] for more details.

The PDE which is generally considered is of the type{
∂tu+ 1

2

∑
i,j≤d

(σσᵀ)i,j∂
2
xixju+

∑
i≤d
βi∂xiu+ f(·, ·, u, σ∇u) = 0

u(T, ·) = g,
(4.6.4)
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(where σ =
√
α in the sense of non-negative symmetric matrices) rather than (4.6.2). In fact, the only differ-

ence is that the term σ∇u replaces α∇u in the fourth argument of the driver f .

We recall that the Markovian BSDE was given in (2).
Under the probability Ps,x (for some fixed (s, x)), one can introduce the square integrable martingale

M̃ [Id]s,x :=
∫ ·
s(σ

ᵀ)+(r,Xr)dM [Id]s,xr where A 7→ A+ denotes the Moore-Penrose pseudo-inverse operator,
see [15] chapter 1. The Brownian BSDE (2) can then be reexpressed here as

Y s,x
t = g(XT ) +

∫ T

t
f

(
r,Xr, Y

s,x
r ,

d〈M s,x, M̃ [Id]s,x〉r
dr

)
dr − (M s,x

T −M s,x
t ). (4.6.5)

Under the assumptions of Proposition 4.6.7 where α = σσᵀ), it is possible to show that (4.6.5) constitutes
the probabilistic representation of (4.6.4) performing similar arguments as in our approach for (4.6.2). In
particular we can show existence and uniqueness of a function u ∈ L2

X for which there exists v1, · · · , vd ∈ L2
X

such that for all (s, x) ∈ [0, T ]×Rd,{
u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r [f (·, ·, u, (σᵀ)+v) (r, ·)] (x)dr

u(s, x)xi = Ps,T [gIdi](x)−
∫ T
s Ps,r [(vi + uβi − Idif (·, ·, u, (σᵀ)+v)) (r, ·)] (x)dr, i ∈ [[1; d]],

(4.6.6)
and that this function u is the only possible classical solution of (4.6.4) in C1,2

pol([0, T ]×Rd). (4.6.6) constitutes
the ”good” version of decoupled mild solution for the (4.6.4).

This technique is however technically more complicated and for purpose of illustration we prefer to re-
main in our set up (which is by the way close to (4.6.4)) to keep our notion of decoupled-mild solution more
comprehensible.

Remark 4.6.10. It is also possible to treat jump diffusions instead of continuous diffusions (see [84]), and
under suitable conditions on the coefficients, it is also possible to prove existence and uniqueness of a decoupled
mild solution for equations of type{

∂tu+ 1
2Tr(α∇

2u) + (β,∇u) +
∫

(u(·, ·+ γ(·, ·, y))− u− (γ(·, ·, y),∇u))F (dy) + f(·, ·, u,ΓId(u)) = 0
u(T, ·) = g,

(4.6.7)
where γ : [0, T ] ×Rd ×Rd 7−→ Rd and F is a bounded positive measure not charging 0. In that framework
we have

ΓId : φ 7−→ α∇φ+

∫
γ(·, ·, y)(φ(·, ·+ γ(·, ·, y))− φ(·, ·))F (dy). (4.6.8)

4.6.2 Parabolic semi-linear PDEs with distributional drift

In this subsection we will use the formalism and results obtained by in [47] and [48], see also [81]
and [31] for more recent developments in dimension 1. Those authors make reference to stochas-
tic differential equations with distributional drift whose solution are possibly non-semimartingales.
Those papers introduced a suitable framework of Martingale Problem related to a PDE operator in-
volving a distributional drift b′ which is the derivative of a continuous function. [46] established a
first work in the n-dimensional setting, later developments were discussed by [21]. Other Markov
processes associated to diffusion operators which are not semimartingales were produced when the
diffusion operator is in divergence form, see e.g. [80] or Markov processes associated to singular
PDEs involving paracontrolled distributions introduced in [21].

Let b, σ ∈ C0(R) such that σ > 0. By a mollifier, we intend a function Φ ∈ S(R) with
∫

Φ(x)dx = 1.
We denote Φn(x) = nΦ(nx), σ2

n = σ2 ∗ Φn, bn = b ∗ Φn.
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We then define Lng = σ2
n
2 g
′′+ b′ng

′. f ∈ C1(R) is said to be a solution to Lf = l̇ where l̇ ∈ C0(R), if for
any mollifier Φ, there are sequences (fn) in C2(R), (l̇n) in C0(R) such that

Lnfn = (l̇n), fn
C1(R)−→ f , l̇n

C0(R)−→ l̇. (4.6.9)

We will assume that Σ(x) = lim
n→∞

2
∫ x

0
b′n
σ2
n

(y)dy exists in C0(R) independently from the mollifier.

By Proposition 2.3 in [47] there exists a solution h ∈ C1(R) to Lh = 0, h(0) = 0, h′(0) = 1. More-
over it verifies h′ = e−Σ.
DL is defined as the set of f ∈ C1(R) such that there exists some l̇ ∈ C0(R) with Lf = l̇ and it is a

linear algebra.
Let v be the unique solution to Lv = 1, v(0) = v′(0) = 0 (see Remark 2.4 in [47]), we will assume

that
v(−∞) = v(+∞) = +∞, (4.6.10)

which represents a non-explosion condition. In this case, Proposition 3.13 in [47] states that a certain
martingale problem associated to (DL, L) is well-posed. Its solution will be denoted (Ps,x)(s,x)∈[0,T ]×Rd .

X is a Ps,x-Dirichlet process for every (s, x) and (Ps,x)(s,x)∈[0,T ]×Rd defines a Markov class and
Proposition 3.B.2 in Chapter 3 implies that its transition kernel is measurable in time.

We introduce the domain that we will indeed use.

Definition 4.6.11. We set

Dmax(a) =

{
φ ∈ C1,1([0, T ]×R) :

∂xφ

h′
∈ C1,1([0, T ]×R)

}
(4.6.11)

On Dmax(a), we set Lφ := σ2h′

2 ∂x(∂xφh′ ) and a(φ) := ∂tφ+ Lφ. We then define the smaller domain

D(a) =
{
φ ∈ Dmax(a) : σ∂xφ ∈ C0,0

pol([0, T ]×R)
}
. (4.6.12)

We formulate here some supplementary assumptions that we will make, the first one being called
(TA) in [47].

Hypothesis 4.6.12.

• There exists c1, C1 > 0 such that c1 ≤ σh′ ≤ C1;

• σ has linear growth.

The first item states in particular that σh′ is bounded so h ∈ D(a). Proposition 3.2 in [47] states
that for every (s, x), 〈M [h]s,x〉 =

∫ ·∨s
s (σh′)2(Xr)dr. Moreover the AF 〈M [h]〉tu =

∫ u
t (σh′)2(Xr)dr is

absolutely continuous with respect to Vt ≡ t. Therefore Hypothesis 4.4.6 is verified (for ψ = h) and
Gh(h) = (σh′)2. Since this function is bounded and clearly a(h) = 0 then h verifies Hypothesis 4.5.1.

We will therefore consider Γh the h-generalized gradient associated to a, and Proposition 3.4.23
in Chapter 3 implies the following.

Proposition 4.6.13. Let φ ∈ D(Γh), then Γh(φ) = σ2h′∂xφ.

Remarking that b′ is a distribution, the equation that we will study in this section is the following.{
∂tu+ 1

2σ
2∂2
xu+ b′∂xu+ f(·, ·, u, σ2h′∂xu) = 0 on [0, T ]×R

u(T, ·) = g.
(4.6.13)
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The associated PDE in the decoupled mild sense is given by{
u(s, x) = PT−s[g](x) +

∫ T
s Pr−s [f (·, ·, u, v) (r, ·)] (x)dr

u(s, x)h(x) = PT−s[gh](x)−
∫ T
s Pr−s [(v − hf (·, ·, u, v)) (r, ·)] (x)dr,

(4.6.14)

(s, x) ∈ [0, T ]×R, where P is the (homogeneous) transition kernel of the Markov class.

In order to consider the BSDEs,x(f, g) for functions (f, g) having polynomial growth in x, we had
shown in Chapter 3 the following result, stated as Proposition 3.4.25.

Proposition 4.6.14. We suppose that Hypothesis 4.6.12 is fulfilled. Then, for any p ∈ N and (s, x) ∈
[0, T ] × R, Es,x[|XT |p] < ∞ and Es,x[

∫ T
s |Xr|pdr] < ∞. In other words, if f(·, ·, 0, 0), g have polynomial

growth in x uniformly in t then they verify items 1 and 2 of Hgrowth or H lip.

Proposition 4.6.15. We suppose that Hypothesis 4.6.12 is fulfilled. Then (Ps,x)(s,x)∈[0,T ]×Rd solves the
Martingale Problem associated to (a,D(a), Vt ≡ t) in the sense of Definition 4.4.1.

Proof. Let (s, x) ∈ [0, T ] ×R be fixed. Proposition 3.4.24 in Chapter 3 implies that for any φ ∈ D(a),
φ(·, X·) −

∫ ·
s a(φ)(r,Xr)dr is a (continuous) Ps,x-local martingale, so taking Definition 4.4.1 into ac-

count, it is enough to show that this local martingale is a square integrable martingale. Considering
Definition 3.4.22, Proposition 3.4.24 and Proposition 3.2.7 in Chapter 3, we know that the angular
bracket of this local martingale is given by

∫ ·
s(σ∂xφ)2(r,Xr)dr. Since φ ∈ D(a) then σ∂xφ has poly-

nomial growth, so by Proposition 4.6.14,
∫ T
s (σ∂xφ)2(r,Xr)dr ∈ L1 and this implies that the overmen-

tioned local martingale is a square integrable martingale.

We can now state the main result of this section.

Proposition 4.6.16. Assume that the non-explosion condition (4.6.10) is verified, that Hypothesis 4.6.12 is
fulfilled, that f(·, ·, 0, 0), g have polynomial growth in x uniformly in t and that f verifies item 3. of H lip, see
Hypothesis 4.5.4. Then equation (4.6.13) has a unique decoupled mild solution u. It has at most one classical
solution which can only be equal to u.

Remark 4.6.17. The unique decoupled mild solution u can be of course represented by (4.5.28), Theorem
4.5.20.

Proof. The assertions come from Theorem 4.5.20 and Corollary 4.5.21 which applies thanks to Propo-
sitions 4.6.15, 4.6.14, and the fact that h verifies Hypothesis 4.5.1.

Remark 4.6.18.

1. [82] has made a first analysis linking elliptic PDEs (in fact second order ODEs) with distributional drift
and BSDEs. In those BSDEs the final horizon was a stopping time.

2. [56] have considered a class of BSDEs involving distributions in their setting.



Appendix

4.A Proof of Theorem 4.3.3 and related technicalities

We adopt here the same notations as at the beginning of Section 4.3. We will denote L2(dV̂ ⊗ dP)
the quotient space of L2(dV̂ ⊗ dP) with respect to the subspace of processes equal to zero dV̂ ⊗
dP a.e. L2(dV̂ ⊗ dP) is a Hilbert space equipped with its usual norm. L2,cadlag(dV̂ ⊗ dP)) will
denote the subspace of L2(dV̂ ⊗ dP)) of elements having a cadlag representative. We emphasize that
L2,cadlag(dV̂ ⊗ dP) is not a closed subspace of L2(dV̂ ⊗ dP).
The application which to a process associate its class will be denoted φ 7→ φ̇.

Proposition 4.A.1. If (Y,M) solves BSDE(ξ, f̂ , V, M̂), and if we denote
f̂
(
r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

by f̂r, then for any t ∈ [0, T ], a.s. we have Yt = E
[
ξ +

∫ T
t f̂rdV̂r

∣∣∣Ft]
Mt = E

[
ξ +

∫ T
0 f̂rdV̂r

∣∣∣Ft]−E [ξ +
∫ T

0 f̂rdV̂r

∣∣∣F0

]
.

(4.A.1)

Proof. Since Yt = ξ +
∫ T
t f̂rdV̂r − (MT −Mt) a.s., Y being an adapted process and M a martingale,

taking the expectation in (4.3.2) at time t, we directly get Yt = E
[
ξ +

∫ T
t f̂rdV̂r

∣∣∣Ft] and in particular

that Y0 = E
[
ξ +

∫ T
0 f̂rdV̂r

∣∣∣F0

]
. Since M0 = 0, looking at the BSDE at time 0 we get

MT = ξ +

∫ T

0
f̂rdV̂r −E

[
ξ +

∫ T

0
f̂rdV̂r

∣∣∣∣F0

]
.

Taking the expectation with respect to Ft in the above inequality gives the second line of (4.A.1).

Lemma 4.A.2. Let M ∈ H2 and φ be a bounded positive process. Then there exists a constant C > 0 such
that for any i ∈ [[1; d]],∫ T

0 φr

(
d〈M,M̂ i〉

dV̂
(r)
)2
dV̂r ≤ C

∫ T
0 φrd〈M〉r. In particular, d〈M,M̂ i〉

dV̂
belongs to L2(dV̂ ⊗ dP).

Proof. We fix i ∈ [[1; d]]. By Hypothesis 4.3.1 d〈M̂ i〉
dV̂

is bounded; using Proposition 2.B.1 and Remark
2.3.3 in Chapter 2, we show the existence of C > 0 such that∫ T

0 φr

(
d〈M,M̂ i〉

dV̂
(r)
)2
dV̂r ≤

∫ T
0 φr

d〈M̂ i〉
dV̂

(r)d〈M〉
dV̂

(r)dV̂r

≤ C
∫ T

0 φr
d〈M〉
dV̂

(r)dV̂r

≤ C
∫ T

0 φrd〈M〉r.

(4.A.2)

In particular, setting φ = 1, we have
∫ T

0

(
d〈M,M̂ i〉

dV̂
(r)
)2
dV̂r ≤ C〈M〉T which belongs to L1 since

M ∈ H2
0.

117
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We fix for now a couple (U̇ , N) ∈ L2(dV̂ ⊗ dP) × H2
0 and we consider a representative U of U̇ .

Until Proposition 4.A.6 included, we will use the notation f̂r := f̂
(
r, ·, Ur, d〈N,M̂〉dV̂

(r)
)

.

Proposition 4.A.3. For any t ∈ [0, T ],
∫ T
t f̂2

r dV̂r belongs to L1 and
(∫ T

t f̂rdV̂r

)
is in L2.

Proof. By Jensen’s inequality, thanks to the Lipschitz conditions on f̂ in Hypothesis 4.3.1 and by
Lemma 4.A.2 there exist positive constants C,C ′, C” such that, for any t ∈ [0, T ], we have(∫ T

t f̂rdV̂r

)2
≤ C

∫ T
t f̂2

r dV̂r

≤ C ′
(∫ T

t f̂2 (r, ·, 0, 0) dV̂r +
∫ T
t U2

r dV̂r +
d∑
i=1

∫ T
t

(
d〈N,M̂ i〉
dV̂

(r)
)2
dV̂r

)
≤ C”

(∫ T
t f̂2 (r, ·, 0, 0) dV̂r +

∫ T
t U2

r dV̂r + (〈N〉T − 〈N〉t)
)
.

(4.A.3)

All terms on the right-hand side are in L1. Indeed, N is taken in H2, U̇ in L2(dV̂ ⊗ dP) and by
Hypothesis 4.3.1, f(·, ·, 0, 0) is in L2(dV̂ ⊗ dP). This concludes the proof.

We can therefore state the following definition.

Definition 4.A.4. LetM be the cadlag version of the martingale t 7→ E
[
ξ +

∫ T
0 f̂rdV̂r

∣∣∣Ft]−E [ξ +
∫ T

0 f̂rdV̂r

∣∣∣F0

]
.

M is square integrable by Proposition 4.A.3. It admits a cadlag version taking into account Theorem 4 in
Chapter IV of [33], since the stochastic basis fulfills the usual conditions. We denote by Y the cadlag process
defined by
Yt = ξ+

∫ T
t f̂rdV̂r−(MT−Mt). This will be called the cadlag reference process and we omit its dependence

to (U̇ , N).

Proposition 4.A.5. Y and M take square integrable values.

Proof. We already know that M is a square integrable martingale. As we have seen in Proposition
4.A.3,

∫ T
t f̂rdV̂r belongs to L2 for any t ∈ [0, T ] and by Hypothesis 4.3.1, ξ ∈ L2. So by (4.A.1) and

Jensen’s inequality for conditional expectation we have

E
[
Y 2
t

]
= E

[
E
[
ξ +

∫ T
t f̂rdV̂r

∣∣∣Ft]2
]

≤ E

[
E

[(
ξ +

∫ T
t f̂rdV̂r

)2
∣∣∣∣Ft]]

≤ E
[
2ξ2 + 2

∫ T
t f̂2

r dV̂r

]
,

which is finite.

Proposition 4.A.6. sup
t∈[0,T ]

|Yt| ∈ L2 and in particular, Y ∈ L2,cadlag(dV̂ ⊗P).

Proof. Since dYr = −f̂rdV̂r + dMr, by integration by parts formula we get

d(Y 2
r e
−V̂r) = −2e−V̂rYrf̂rdV̂r + 2e−V̂rYr−dMr + e−V̂rd[M ]r − e−V̂rY 2

r dV̂r.
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So integrating from 0 to some t ∈ [0, T ], we get

Y 2
t e
−V̂t = Y 2

0 − 2
∫ t

0 e
−V̂rYrf̂rdV̂r + 2

∫ t
0 e
−V̂rYr−dMr

+
∫ t

0 e
−V̂rd[M ]r −

∫ t
0 e
−V̂rY 2

r dV̂r

≤ Y 2
0 +

∫ t
0 e
−V̂rY 2

r dV̂r +
∫ t

0 e
−V̂r f̂2

r dV̂r

+2
∣∣∣∫ t0 e−V̂rYr−dMr

∣∣∣+
∫ t

0 e
−V̂rd[M ]r −

∫ t
0 e
−V̂rY 2

r dV̂r

≤ Z + 2
∣∣∣∫ t0 e−V̂rYr−dMr

∣∣∣ ,
where Z = Y 2

0 +
∫ T

0 e−V̂r f̂2
r dV̂r +

∫ T
0 e−V̂rd[M ]r. Therefore, for any t ∈ [0, T ] we have (Yte

−V̂t)2 ≤
Y 2
t e
−V̂t ≤ Z + 2

∣∣∣∫ t0 e−V̂rYr−dMr

∣∣∣. Thanks to Propositions 4.A.3 and 4.A.5, Z is integrable, so we can

conclude by Lemma 2.3.18 in Chapter 2 applied to the process Y e−V̂ , and the fact that V̂ is bounded.
Since Y is cadlag progressively measurable, sup

t∈[0,T ]

|Yt| ∈ L2 and since V̂ is bounded, it is clear that

Y ∈ L2,cadlag(dV̂ ⊗ dP) and the corresponding class Ẏ belongs to L2,cadlag(dV̂ ⊗ dP).

Thanks to Propositions 4.A.5 and 4.A.6, we are allowed to introduce the following operator.

Notation 4.A.7. We denote by Φ the operator which associates to a couple (U̇ , N) the couple (Ẏ ,M).

Φ :
L2(dV̂ ⊗ dP)×H2

0 −→ L2,cadlag(dV̂ ⊗ dP)×H2
0

(U̇ , N) 7−→ (Ẏ ,M).

Proposition 4.A.8. The mapping (Y,M) 7−→ (Ẏ ,M) induces a bijection between the set of solutions of
BSDE(ξ, f̂ , V̂ , M̂) and the set of fixed points of Φ.

Proof. First, let (U,N) be a solution of BSDE(ξ, f̂ , V, M̂), let (Ẏ ,M) := Φ(U̇ , N) and let Y be the ref-
erence cadlag process associated to U as in Definition 4.A.4. By this same definition, M is the cadlag
version of
t 7→ E

[
ξ +

∫ T
0 f̂

(
r, ·, Ur, d〈N,M̂〉dV̂

(r)
)
dV̂r

∣∣∣Ft]−E [ξ +
∫ T

0 f̂
(
r, ·, Ur, d〈N,M̂〉dV̂

(r)
)
dV̂r

∣∣∣F0

]
, but by Propo-

sition 4.A.1, so isN , meaningM = N . Again by Definition 4.A.4, Y = ξ+
∫ T
· f̂

(
r, ·, Ur, d〈N,M̂〉dV̂

(r)
)
dV̂r−

(NT −N·) which is equal to U thanks to (4.3.2), so Y = U in the sense of indistinguishability. In par-
ticular, U̇ = Ẏ , implying (U̇ , N) = (Ẏ ,M) = Φ(U̇ , N). Therefore, the mapping (Y,M) 7−→ (Ẏ ,M)
does indeed map the set of solutions of BSDE(ξ, f̂ , V, M̂) into the set of fixed points of Φ.

The map Φ is surjective. Indeed let (U̇ , N) be a fixed point of Φ, the couple (Y,M) of Definition

4.A.4 verifies Y = ξ +
∫ T
· f̂

(
r, ·, Ur, d〈N,M̂〉dV̂

(r)
)
dV̂r − (MT −M·) in the sense of indistinguishability,

and (Ẏ ,M) = Φ(U̇ , N) = (U̇ , N), so by Lemma 2.3.9 in Chapter 2,
∫ T
· f̂

(
r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)
dV̂r and∫ T

· f̂
(
r, ·, Ur, d〈N,M̂〉dV̂

(r)
)
dV̂r are indistinguishable and Y = ξ+

∫ T
· f̂

(
r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)
dV̂r− (MT −

M·), meaning that (Y,M) (which is a preimage of (U̇ , N)) solves BSDE(ξ, f̂ , V, M̂).

We finally show that it is injective. Let us consider two solutions (Y,M) and (Y ′,M) ofBSDE(ξ, f̂ , V, M̂)

with Ẏ = Ẏ ′. By Lemma 2.3.9 in Chapter 2 the processes
∫ T
· f̂

(
r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)
dV̂r and∫ T

· f̂
(
r, ·, Y ′r ,

d〈M,M̂〉
dV̂

(r)
)
dV̂r are indistinguishable, so taking (4.3.2) into account, we have Y = Y ′.
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Proposition 4.A.9. Let λ ∈ R, let (U̇ , N), (U̇ ′, N ′) ∈ L2(dV̂ ⊗ dP) × H2
0, let (Ẏ ,M), (Ẏ ′,M ′) be their

images through Φ and let Y, Y ′ be the cadlag representatives of Ẏ , Ẏ ′ introduced in Definition 4.A.4. Then∫ ·
0 e

λV̂rYr−dMr,
∫ ·

0 e
λV̂rY ′r−dM

′
r,
∫ ·

0 e
λV̂rYr−dM

′
r and

∫ ·
0 e

λV̂rY ′r−dMr are martingales.

Proof. V̂ is bounded and thanks to Proposition 4.A.6 we know that sup
t∈[0,T ]

|Yt| and sup
t∈[0,T ]

|Y ′t | are L2.

Moreover, since M and M ′ are square integrable, the statement yields therefore as a consequence
Lemma 2.3.17 in Chapter 2.

Starting from now, if (Ẏ ,M) is the image by Φ of some
(U̇ , N) ∈ L2(dV̂ ⊗ dP) ×H2

0, by default, we will always refer to the cadlag reference process Y of Ẏ
defined in Definition 4.A.4.

For any λ ≥ 0, on L2(dV̂ ⊗ dP)×H2
0 we define the norm

‖(Ẏ ,M)‖2λ := E
[∫ T

0 eλV̂rY 2
r dV̂r

]
+E

[∫ T
0 eλV̂rd〈M〉r

]
. Since V̂ is bounded, these norms are all equiv-

alent.

Proposition 4.A.10. There exists λ > 0 such that for any

(U̇ , N) ∈ L2(dV̂ ⊗ dP) × H2
0,
∥∥∥Φ(U̇ , N)

∥∥∥2

λ
≤ 1

2

∥∥∥(U̇ , N)
∥∥∥2

λ
. In particular, Φ is a contraction in L2(dV̂ ⊗

dP)×H2
0 for the norm ‖ · ‖λ.

Proof. Let (U̇ , N) and (U̇ ′, N ′) be two couples belonging to L2(dV̂ ⊗dP)×H2
0, let (Ẏ ,M) and (Ẏ ′,M ′)

be their images via Φ and let Y, Y ′ be the cadlag reference process of Ẏ , Ẏ ′ introduced in Definition
4.A.4. We will write Ȳ for Y − Y ′ and we adopt a similar notation for other processes. We will also
write

f̄t := f̂

(
t, ·, Ut,

d〈N, M̂〉
dV̂

(t)

)
− f̂

(
t, ·, U ′t ,

d〈N ′, M̂〉
dV̂

(t)

)
.

By additivity, we have dȲt = −f̄tdV̂t + dM̄t. Since ȲT = ξ − ξ = 0, applying the integration by parts
formula to Ȳ 2

t e
λV̂t between 0 and T we get

Ȳ 2
0 − 2

∫ T

0
eλV̂r Ȳrf̄rdV̂r + 2

∫ T

0
eλV̂r Ȳr−dM̄r +

∫ T

0
eλV̂rd[M̄ ]r + λ

∫ T

0
eλV̂r Ȳ 2

r dV̂r = 0.

Since, by Proposition 4.A.9, the stochastic integral with respect to M̄ is a real martingale, by taking
the expectations we get

E
[
Ȳ 2

0

]
− 2E

[∫ T

0
eλV̂r Ȳrf̄rdV̂r

]
+E

[∫ T

0
eλV̂rd〈M̄〉r

]
+ λE

[∫ T

0
eλV̂r Ȳ 2

r dV̂r

]
= 0.

So by re-arranging previous expression, by the Lipschitz condition on f̂ stated in Hypothesis 4.3.1,
by the linearity of the Radon-Nikodym derivative stated in Proposition 4.2.3 and by Lemma 4.A.2,
we get
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λE
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+E

[∫ T
0 eλV̂rd〈M̄〉r

]
≤ 2E

[∫ T
0 eλV̂r |Ȳr||f̄r|dV̂r

]
≤ 2KYE

[∫ T
0 eλV̂r |Ȳr||Ūr|dV̂r

]
+ 2KZ

d∑
i=1
E
[∫ T

0 eλV̂r |Ȳr|
∣∣∣d〈N̄,M̂ i〉

dV̂
(r)
∣∣∣ dV̂r]

≤ (KY α+ dKZβ)E
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+ KY

α E
[∫ T

0 eλV̂r Ū2
r dV̂r

]
+KZ

β

d∑
i=1
E

[∫ T
0 eλV̂r

(
d〈N̄,M̂ i〉
dV̂

(r)
)2
dV̂r

]
≤ (KY α+ dKZβ)E

[∫ T
0 eλV̂r Ȳ 2

r dV̂r

]
+ KY

α E
[∫ T

0 eλV̂r Ū2
r dV̂r

]
+CdKZ

β E
[∫ T

0 eλV̂rd〈N̄〉r
]
,

for some positive C and any positive α and β. The latter equality holds by Hypothesis 4.3.1 4. Then
we pick α = 2KY and β = 2CdKZ , which gives us

λE
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+E

[∫ T
0 eλV̂rd〈M̄〉r

]
≤ 2((KY )2 + C(dKZ)2)E

[∫ T
0 eλV̂r Ȳ 2

r dV̂r

]
+ 1

2E
[∫ T

0 eλV̂r Ū2
r dV̂r

]
+ 1

2E
[∫ T

0 eλV̂rd〈N̄〉r
]
.

We choose now λ = 1 + 2((KY )2 + C(dKZ)2) and we get

E
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+E

[∫ T
0 eλV̂rd〈M̄〉r

]
≤ 1

2E
[∫ T

0 eλV̂r Ū2
r dV̂r

]
+ 1

2E
[∫ T

0 eλV̂rd〈N̄〉r
]
,

(4.A.4)

which proves the contraction for the norm ‖ · ‖λ.

Proof of Theorem 4.3.3.
The space L2(dV̂ ⊗ dP) × H2

0 is complete and Φ defines on it a contraction for the norm ‖(·, ·)‖λ
for some λ > 0, so Φ has a unique fixed point in
L2(dV̂ ⊗ dP)×H2

0. Then by Proposition 4.A.8, BSDE(ξ, f̂ , V, M̂) has a unique solution.

Remark 4.A.11. Let (Y,M) be the solution of BSDE(ξ, f̂ , V, M̂) and Ẏ the class of Y in L2(dV̂ ⊗ dP).
Thanks to Proposition 4.A.8, we know that (Ẏ ,M) = Φ(Ẏ ,M) and therefore by Propositions 4.A.6 and 4.A.9
that sup

t∈[0,T ]

|Yt| is L2 and that
∫ ·

0 Yr−dMr is a real martingale.

The lemma below shows that, in order to verify that a couple (Y,M) is the solution of
BSDE(ξ, f̂ , V, M̂), it is not necessary to verify the square integrability of Y since it will be automati-
cally fulfilled.

Lemma 4.A.12. We consider (ξ, f̂ , V, M̂) such that ξ, M̂ verify items 1., 2. of Hypothesis 4.3.1 but where
item 3. is replaced by the weaker following hypothesis on f̂ . There exists C > 0 such that P a.s., for all t, y, z,

|f̂(t, ω, y, z)| ≤ C(1 + |y|+ ‖z‖). (4.A.5)

Assume that there exists a cadlag adapted process Y with Y0 ∈ L2 , and M ∈ H2
0 such that

Y = ξ +

∫ T

·
f̂

(
r, ·, Yr,

d〈M, M̂〉
dV̂

(r)

)
dV̂r − (MT −M·), (4.A.6)
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in the sense of indistinguishability. Then sup
t∈[0,T ]

|Yt| is L2. In particular,

Y ∈ L2(dV̂ ⊗ dP) and if (ξ, f̂ , V, M̂) verify Hypothesis 4.3.1 (Y,M) is the unique solution of
BSDE(ξ, f̂ , V, M̂) in the sense of Definition 4.3.2.

On the other hand if (Y,M) verifies (4.A.6) on [s, T ] with s < T , Ys ∈ L2 and Ms = 0 then sup
t∈[s,T ]

|Yt|

is L2. In particular if (ξ, f̂ , V, M̂) verify Hypothesis 4.3.1 and if we denote (U,N) the unique solution of
BSDE(ξ, f̂ , V, M̂), then (Y,M) and (U,N· −Ns) are indistinguishable on [s, T ].

Proof. Let λ > 0 and t ∈ [0, T ]. By integration by parts formula applied to Y 2e−λV̂ between 0 and t
we get

Y 2
t e
−λV̂t − Y 2

0 = −2
∫ t

0 e
−λV̂rYrf̂

(
r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)
dV̂r + 2

∫ t
0 e
−λV̂rYr−dMr

+
∫ t

0 e
−λV̂rd[M ]r − λ

∫ t
0 e
−λV̂rY 2

r dV̂r.

By re-arranging the terms and using the Lipschitz conditions item 3. of in Hypothesis 4.3.1, we
get

Y 2
t e
−λV̂t + λ

∫ t
0 e
−λV̂rY 2

r dV̂r

≤ Y 2
0 + 2

∫ t
0 e
−λV̂r |Yr||f̂ |

(
r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)
dV̂r + 2

∣∣∣∫ t0 e−λV̂rYr−dMr

∣∣∣
+
∫ t

0 e
−λV̂rd[M ]r

≤ Y 2
0 +

∫ t
0 e
−λV̂r f̂2(r, ·, 0, 0)dV̂r + (2KY + 1 +KZ)

∫ t
0 e
−λV̂rY 2

r dV̂r

+KZ
d∑
i=1

∫ t
0 e
−λV̂r

(
d〈M,M̂ i〉

dV̂
(r)
)2
dV̂r + 2

∣∣∣∫ t0 e−λV̂rYr−dMr

∣∣∣+
∫ t

0 e
−λV̂rd[M ]r.

Picking λ = 2KY + 1 +KZ and using Lemma 4.A.2, this gives

Y 2
t e
−λV̂t ≤ Y 2

0 +
∫ t

0 e
−λV̂r |f̂ |2(r, ·, 0, 0)dV̂r +KZC

∫ t
0 e
−λV̂rd〈M〉r

+2
∣∣∣∫ t0 e−λV̂rYr−dMr

∣∣∣+
∫ t

0 e
−λV̂rd[M ]r,

for some C > 0. Since V̂ is bounded, there is a constant C ′ > 0, such that for any t ∈ [0, T ]

Y 2
t ≤ C ′

(
Y 2

0 +

∫ T

0
|f̂ |2(r, ·, 0, 0)dV̂r + 〈M〉T + [M ]T +

∣∣∣∣∫ t

0
Yr−dMr

∣∣∣∣) .
By Hypothesis 4.3.1 and since we assumed Y0 ∈ L2 and M ∈ H2, the first four terms on the right-
hand side are integrable and we can conclude by Lemma 2.3.18 in Chapter 2.

An analogous proof also holds on the interval [s, T ] taking into account Remark 4.3.4. In particu-
lar, if (U,N) is the unique solution of BSDE(ξ, f̂ , V, M̂) then (U,N −Ns) is a solution on [s, T ]. The
final statement result follows by the uniqueness argument of Remark 4.3.4.

In the sequel we will not distinguish between a couple (Ẏ ,M) in L2(dV̂ ⊗ dP)×H2
0 and (Y,M),

where Y is the reference cadlag process of Ẏ , according to Definition 4.A.4.

Notation 4.A.13. Let Φ : L2(dV̂ ⊗dP)×H2
0 be the operator introduced in Notation 4.A.7. We then convene

the following.

1. (Y 0,M0) := (0, 0);

2. ∀k ∈ N∗ : (Y k,Mk) := Φ(Y k−1,Mk−1),
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meaning that for k ∈ N∗, (Y k,Mk) is the solution of the BSDE

Y k = ξ +

∫ T

·
f̂

(
r, ·, Y k−1,

d〈Mk−1, M̂〉
dV̂

(r)

)
dV̂r − (Mk

T −Mk
· ). (4.A.7)

Definition 4.A.14. The processes (Y k,Mk)k∈N will be called the Picard iterations associated to
BSDE(ξ, f̂ , V̂ , M̂).

We know that Φ is a contraction in L2(dV̂ ⊗dPs,x)×H2
0 for a certain norm, so that (Y k,Mk) tends

to (Y,M) in this topology. The proposition below also shows an a.e. corresponding convergence,
adapting the techniques of Corollary 2.1 in [43].

Proposition 4.A.15. Y k −→
k→∞

Y dV̂ ⊗ dP a.e. and for any i ∈ [[1; d]],
d〈Mk,M̂ i〉

dV̂
−→
k→∞

d〈M,M̂ i〉
dV̂

dV̂ ⊗ dP a.e.

Proof of Proposition 4.A.15.

For any i ∈ [[1; d]] and k ∈ N we set Zi,k := d〈Mk,M̂ i〉
dV̂

and Zi := d〈M,M̂ i〉
dV̂

. By Proposition 4.A.10,
there exists λ > 0 such that for any k ∈ N∗

E
[∫ T

0 e−λV̂r |Y k+1
r − Y k

r |2dV̂r +
∫ T

0 e−λV̂rd〈Mk+1 −Mk〉r
]

≤ 1
2E
[∫ T

0 e−λV̂r |Y k
r − Y k−1

r |2dV̂r +
∫ T

0 e−λV̂rd〈Mk −Mk−1〉r
]
,

therefore ∑
k≥0

E
[∫ T

0 e−λV̂r |Y k+1
r − Y k

r |2dV̂r
]

+E
[∫ T

0 e−λV̂rd〈Mk+1 −Mk〉r
]

≤
∑
k≥0

1
2k

(
E
[∫ T

0 e−λV̂r |Y 1
r |2dV̂r

]
+E

[∫ T
0 e−λV̂rd〈M1〉r

])
< ∞.

(4.A.8)

For every fixed (i, k), the linearity property stated in Proposition 4.2.3) says that

Zi,k+1
r − Zi,kr = d〈Mk+1−Mk,M̂ i〉

dV̂
. Therefore combining equation (4.A.8) and Lemma 4.A.2, we get∑

k≥0

(
E
[∫ T

0 e−λV̂r |Y k+1
r − Y k

r |2dV̂r
]

+
d∑
i=1
E
[∫ T

0 e−λV̂r |Zi,k+1
r − Zi,kr |2dV̂r

])
<∞. So by Fubini’s theo-

rem we have

E

∫ T

0
e−λV̂r

∑
k≥0

(
|Y k+1
r − Y k

r |2 +
d∑
i=1

|Zi,k+1
r − Zi,kr |2

) dV̂r

 <∞.
Consequently the sum

∑
k≥0

(
|Y k+1
r (ω)− Y k

r (ω)|2 +
d∑
i=1
|Zi,k+1
r (ω)− Zi,kr (ω)|2

)
is finite on a set of full

dV̂ ⊗dPmeasure. So on this set of full measure, the sequence (Y k
t (ω), (Zi,kt (ω))i∈[[1;d]]) converges, and

the limit is necessarily equal to (Yt(ω), (Zit(ω))i∈[[1;d]]) dV̂ ⊗ dP a.e. Indeed, as we have mentioned in
the lines before the statement of the present Proposition 4.A.15, we already know that Y k converges to
Y in L2(dV̂ ⊗dP). Since by Lemma 4.A.2,E

[∫ T
0 e−λV̂r |Zi,kr − Zir|2dV̂r

]
≤ CE

[∫ T
0 e−λV̂rd〈Mk −M〉r

]
,

for every (i, k), where C is a positive constant which does not depend on (i, k), the convergence of
Mk to M inH2

0 also implies the convergence of Zi,k to Zi in L2(dV̂ ⊗ dP).
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4.B Proof of Theorem 4.5.18

Lemma 4.B.1. Let f̃ ∈ L2
X . For every (s, x) ∈ [0, T ] × E, let (Ỹ s,x, M̃ s,x) be the unique (by Theorem 4.3.3

and Remark 4.3.4) solution of

Ỹ s,x
· = g(XT ) +

∫ T

·
1[s,T ](r)f̃ (r,Xr) dVr − (M̃ s,x

T − M̃ s,x
· ) (4.B.1)

in (Ω,Fs,x,Fs,x,Ps,x). Then there exist ũ ∈ D(a) such that for any (s, x) ∈ [0, T ]× E{
∀t ∈ [s, T ] : Ỹ s,x

t = ũ(t,Xt) Ps,xa.s.
M̃ s,x = M [ũ]s,x,

and in particular d〈M̃s,x,M [ψ]s,x〉
dV = Gψ(ũ)(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

Proof. We set ũ : (s, x) 7→ Es,x
[
g(XT ) +

∫ T
s f̃ (r,Xr) dVr

]
which is Borel by Proposition 3.A.10 and

Lemma 3.A.11 in Chapter 3. Therefore by (4.C.3) in Remark 4.C.6, for every fixed t ∈ [s, T ] we have
Ps,x- a.s.

ũ(t,Xt) = Et,Xt
[
g(XT ) +

∫ T
t f̃ (r,Xr) dVr

]
= Es,x

[
g(XT ) +

∫ T
t f̃ (r,Xr) dVr

∣∣∣Ft]
= Es,x

[
Ỹ s,x
t + (M̃ s,x

T − M̃ s,x
t )|Ft

]
= Ỹ s,x

t .

By (4.B.1) we have dỸ s,x
t = −f̃(t,Xt)dVt + dM̃ s,x

t , so for every fixed t ∈ [s, T ], ũ(t,Xt) = ũ(s, x) −∫ t
s f̃(r,Xr)dVr − M̃ s,x

t Ps,x- a.s. Since M̃ s,x is square integrable and since previous relation holds for
any (s, x) and t, Definition 4.4.13 implies that ũ ∈ D(a), a(ũ) = −f̃ and M̃ s,x = M [ũ]s,x for every
(s, x), hence the announced results.

Notation 4.B.2. For a fixed (s, x) ∈ [0, T ] × E, we will denote by (Y k,s,x,Mk,s,x)k∈N the Picard iterations
associated to BSDEs,x(f, g).

Proposition 4.B.3. For each k ∈ N, there exists uk ∈ D(a), such that for every (s, x) ∈ [0, T ]× E{
∀t ∈ [s, T ] : Y k,s,x

t = uk(t,Xt) Ps,xa.s.
Mk,s,x = M [uk]

s,x.
(4.B.2)

Remark 4.B.4. In particular, (4.B.2) implies that d〈M
k,s,x,M [ψ]s,x〉

dV = Gψ(uk)(·, X·) dV ⊗dPs,x a.e. on [s, T ].

Proof. We proceed by induction on k. It is clear that u0 = 0 verifies the assertion for k = 0.
Now let us assume that the function uk−1 exists, for some integer k ≥ 1, verifying (4.B.2) and in
particular Remark 4.B.4, for k replaced with k − 1.
We fix (s, x) ∈ [0, T ] × E. By Lemma 4.2.4, (Y k−1,s,x, d〈M

k−1,s,x,M [ψ]s,x〉
dV ) = (uk−1,G

ψ(uk−1))(·, X·)
dV ⊗Ps,x a.e. on [s, T ]. Therefore by (4.A.7), on [s, T ]

Y k,s,x = g(XT ) +
∫ T
· f

(
r,Xr, uk−1(r,Xr),G

ψ(uk−1)(r,Xr)
)
dVr − (Mk,s,x

T −Mk,s,x
· ).

Since Φs,x maps L2(dV ⊗ dPs,x) × H2
0 into itself (see Definition 4.A.7), obviously all the Picard it-

erations belong to L2(dV ⊗ dPs,x) × H2
0. In particular, by Lemma 4.A.2 Y k−1,s,x and for every

i ∈ [[1; d]], d〈Mk−1,s,x,M [ψi]
s,x〉

dV belong to L2(dV ⊗ dPs,x). So, by recurrence assumption on uk−1, it
follows that uk−1 and for any i ∈ [[1; d]], Gψi(uk−1) belong to L2

X . By H lip (see Hypotheses 4.5.4),
f(·, ·, uk−1,G

ψ(uk−1)) ∈ L2
X . The existence of uk now comes from Lemma 4.B.1 applied to f̃ :=
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f(·, ·, uk−1,G
ψ(uk−1)), which establishes the induction step for a general k and allows to conclude

the proof.

Proof of Theorem 4.5.18. We set ū := limsup
k∈N

uk, in the sense that for any (s, x) ∈ [0, T ] × E,

ū(s, x) = limsup
k∈N

uk(s, x) and v := limsup
k∈N

vk. ū and v are Borel functions. Let us fix now (s, x) ∈

[0, T ]× E. We know by Propositions 4.B.3, 4.A.15 and Lemma 4.2.4 that{
uk(·, X·) −→

k→∞
Y s,x dV ⊗ dPs,x a.e. on [s, T ]

Gψ(uk)(·, X·) −→
k→∞

Zs,x dV ⊗ dPs,x a.e. on [s, T ],

where Zs,x := d〈Ms,x,M [ψ]s,x〉
dV . Therefore, and on the subset of [s, T ]×E of full dV ⊗ dPs,x measure on

which these convergences hold we have
ū(t,Xt(ω)) = limsup

k∈N
uk(t,Xt(ω)) = lim

k∈N
uk(t,Xt(ω)) = Y s,x

t (ω)

v(t,Xt(ω)) = limsup
k∈N

Gψ(uk)(t,Xt(ω)) = lim
k∈N

Gψ(uk)(t,Xt(ω)) = Zs,xt (ω).
(4.B.3)

Thanks to the dV ⊗ dPs,x equalities concerning v and ū stated in (4.B.3), under Ps,x we actually
have

Y s,x = g(XT ) +

∫ T

·
f (r,Xr, ū(r,Xr), v(r,Xr)) dVr − (M s,x

T −M s,x
· ). (4.B.4)

Now (4.B.4) can be considered as a BSDE where the driver does not depend on y and z. Y s,x and Zs,x

belong to L2(dV ⊗ dPs,x) (see Lemma 4.A.2), then by (4.B.3), so do ū(·, X·)1[s,T ] and v(·, X·)1[s,T ],
meaning that ū and v belong to L2

X . By H lip, f(·, ·, ū, v) also belongs to L2
X . We can therefore apply

Lemma 4.B.1 to f̃ := f(·, ·, ū, v), and conclude.
Concerning the last statement of the theorem, for any (s, x) ∈ [0, T ]×E, we have Y s,x

s = u(s,Xs) =
u(s, x) Ps,x a.s. so Y s,x

s is Ps,x a.s. equal to a constant and u is the mapping (s, x) 7−→ Y s,x
s .

4.C Markov classes and Martingale Additive Functionals

We recall in this Appendix section some basic definitions and results concerning Markov processes.
For a complete study of homogeneous Markov processes, one may consult [34], concerning non-
homogeneous Markov classes, our reference was chapter VI of [40]. Some results are only stated,
they were howether carefully proven in Chapter 1.

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 4.C.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topo-
logical space). It will be called the state space.

We fix T ∈ R∗+. We denote Ω := D(E) the Skorokhod space of functions from [0, T ] toE right-continuous
with left limits and continuous at time T (for which we also use the french acronym cadlag). For any t ∈ [0, T ]
we denote the coordinate mapping Xt : ω 7→ ω(t), and we introduce on Ω the σ-field F := σ(Xr|r ∈ [0, T ]).

On the measurable space (Ω,F), we introduce the canonical process

X :
(t, ω) 7−→ ω(t)

([0, T ]× Ω,B([0, T ])⊗F) −→ (E,B(E)),
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and the right-continuous filtration F := (Ft)t∈[0,T ] where Ft :=
⋂

s∈]t,T ]

σ(Xr|r ≤ s) if t < T , and FT :=

σ(Xr|r ∈ [0, T ]) = F .
(Ω,F ,F) will be called the canonical space (associated to T and E).
For any t ∈ [0, T ] we denote Ft,T := σ(Xr|r ≥ t), and for any 0 ≤ t ≤ u < T we will denote

Ft,u :=
⋂
n≥0

σ(Xr|r ∈ [t, u+ 1
n ]).

Remark 4.C.2. Previous definitions and all the notions of this Appendix, extend to a time interval equal to
R+ or replacing the Skorokhod space with the space of continuous functions from [0, T ] (or R+) to E. but
since our goal is to work on a finite time interval, we will not consider this situation.

Definition 4.C.3. The function

P :
(s, t, x, A) 7−→ Ps,t(x,A)

[0, T ]2 × E × B(E) −→ [0, 1],

will be called transition kernel if, for any s, t in [0, T ], x ∈ E, A ∈ B(E), it verifies the following.

1. Ps,t(·, A) is Borel,

2. Ps,t(x, ·) is a probability measure on (E,B(E)),

3. if t ≤ s then Ps,t(x,A) = 1A(x),

4. if s < t, for any u > t,
∫
E Ps,t(x, dy)Pt,u(y,A) = Ps,u(x,A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition 4.C.4. A transition kernel P for which the first item is reinforced supposing that (s, x) 7−→
Ps,t(x,A) is Borel for any t, A, will be said measurable in time.

Definition 4.C.5. A canonical Markov class associated to a transition kernel P is a set of probability
measures (Ps,x)(s,x)∈[0,T ]×E defined on the measurable space (Ω,F) and verifying for any t ∈ [0, T ] and
A ∈ B(E)

Ps,x(Xt ∈ A) = Ps,t(x,A), (4.C.1)

and for any s ≤ t ≤ u
Ps,x(Xu ∈ A|Ft) = Pt,u(Xt, A) Ps,x a.s. (4.C.2)

Remark 4.C.6. Formula 1.7 in Chapter 6 of [40] states that for any F ∈ Ft,T yields

Ps,x(F |Ft) = Pt,Xt(F ) = Ps,x(F |Xt) P
s,xa.s. (4.C.3)

Property (4.C.3) will be called Markov property.

For the rest of this section, we are given a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E which transi-
tion kernel is measurable in time.

Definition 4.C.7. For any (s, x) ∈ [0, T ]× E we will consider the (s, x)-completion(
Ω,Fs,x,Fs,x := (Fs,xt )t∈[0,T ],P

s,x
)

of the stochastic basis (Ω,F ,F,Ps,x) by defining Fs,x as the Ps,x-
completion of F , by extending Ps,x to Fs,x and finally by defining Fs,xt as the Ps,x-closure of Ft for every
t ∈ [0, T ].
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We remark that, for any (s, x) ∈ [0, T ] × E, (Ω,Fs,x,Fs,x,Ps,x) is a stochastic basis fulfilling the
usual conditions.

We recall the following simple consequence of Remark 32 in [32] Chapter II.

Proposition 4.C.8. Let (s, x) ∈ [0, T ]×E be fixed, Z be a random variable and t ∈ [s, T ], thenEs,x[Z|Ft] =
Es,x[Z|Fs,xt ] Ps,x a.s.

We now introduce the notion of non-homogeneous Additive Functional that we use in the paper.

Definition 4.C.9. We denote ∆ := {(t, u) ∈ [0, T ]2|t ≤ u}. On (Ω,F), we define a non-homogeneous
Additive Functional (shortened AF) as a random-field A := (Atu)(t,u)∈∆ with values in R verifying the two
following conditions.

1. For any (t, u) ∈ ∆, Atu is Ft,u-measurable;

2. for any (s, x) ∈ [0, T ] × E, there exists a real cadlag Fs,x-adapted process As,x (taken equal to zero on
[0, s] by convention) such that for any x ∈ E and s ≤ t ≤ u, Atu = As,xu −As,xt Ps,x a.s.

As,x will be called the cadlag version of A under Ps,x.
An AF will be called a non-homogeneous square integrable Martingale Additive Functional (short-

ened square integrable MAF) if under any Ps,x its cadlag version is a square integrable martingale. More
generally an AF will be said to verify a certain property (being non-negative, increasing, of bounded variation,
square integrable, having L1 terminal value) if under any Ps,x its cadlag version verifies it.

Finally, given an increasing AF A and an increasing function V , A will be said to be absolutely contin-
uous with respect to V if for any (s, x) ∈ [0, T ]× E, dAs,x � dV in the sense of stochastic measures.

The two following results are proven in Chapter 1.

Proposition 4.C.10. Let M , M ′ be two square integrable MAFs, let M s,x (respectively M ′s,x) be the cadlag
version of M (respectively M ′) under Ps,x. Then there exists a bounded variation AF with L1 terminal
condition denoted 〈M,M ′〉 such that under any Ps,x, the cadlag version of 〈M,M ′〉 is 〈M s,x,M ′s,x〉. If
M = M ′ the AF 〈M,M ′〉 will be denoted 〈M〉 and is increasing.

Proposition 4.C.11. Let V be a continuous non-decreasing function. Let M,N be two square integrable
MAFs, and assume that the AF 〈N〉 is absolutely continuous with respect to V . There exists a function
v ∈ B([0, T ]× E,R) such that for any (s, x), 〈M s,x, N s,x〉 =

∫ ·∨s
s v(r,Xr)Vr.





Chapter 5

Path-dependent Martingale Problems and
Additive Functionals

This chapter is the object of paper [14].

Abstract

The paper introduces and investigates the natural extension to the path-dependent setup of
the usual concept of canonical Markov class introduced by Dynkin and which is at the basis of
the theory of Markov processes. That extension, indexed by starting paths rather than starting
points will be called path-dependent canonical class. Associated with this is the generalization
of the notions of semi-group and of additive functionals to the path-dependent framework. A
typical example of such family is constituted by the laws (Ps,η)(s,η)∈R+×Ω, where for fixed time
s and fixed path η defined on [0, s], Ps,η is the (unique) solution of a path-dependent martingale
problem or more specifically a weak solution of a path-dependent SDE with jumps, with initial
path η. In the following Chapter 6, we apply those results to study path-dependent analysis
problems associated with BSDEs.

5.1 Introduction

In this paper we extend some aspects of the theory of Markov processes to the (non-Markovian)
path-dependent case. The crucial object of canonical Markov class introduced by Dynkin is replaced
with the one of path-dependent canonical class. The associated notion of Markov semigroup is extended
to the notion of path-dependent system of projectors. The classical Markovian concept of (Martingale)
Additive Functional is generalized to the one of path-dependent (Martingale) Additive Functional. We
then study some general path-dependent martingale problems with applications to weak solutions
of path-dependent SDEs (possibly) with jumps and show that, under well-posedness, the solution
of the martingale problem provides a path-dependent canonical class. The following Chapter 6 will
exploit these results to extend the links between BSDEs and (possibly Integro) PDEs obtained in
Chapter 4, to a path-dependent framework.

The theory of Additive Functionals associated to a Markov process was initiated during the early
’60s, see the historical papers [38], [68], [19] and see [34] for a complete theory in the homogeneous
setup. The strong links between martingale problems and Markov processes were first observed for
the study of weak solutions of SDEs in [85], and more generally in [44] or [60] for example. Weak
solutions of path-dependent SDEs possibly with jumps were studied in [60], where the author shows
their equivalence to some path-dependent martingale problems and proves existence and uniqueness
of a solution under Lipschitz conditions. More recent results concerning path-dependent martingale

129
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problems may be found in [17]. However, at our knowledge, the structure of the set of solutions for
different starting paths was not yet studied.

The setup of this paper is the canonical space (Ω,F) where Ω := D(R+, E) is the Skorokhod space
of cadlag functions from R+ into a Polish space E and F is its Borel σ-field. X = (Xt)t∈R+ denotes
the canonical process and the initial filtration Fo is defined by Fot := σ(Xr|r ∈ [0, t]) for all t ≥ 0.

A path-dependent canonical class will be a set of probability measures
(Ps,η)(s,η)∈R+×Ω defined on the canonical space and such that, for some fixed (s, η), Ps,η models a
forward (path-dependent) dynamics in law, with imposed initial path η on the time interval [0, s]. As
already mentioned, it constitutes the natural adaptation to the path-dependent world of the notion
of canonical Markov class (Ps,x)(s,x)∈R+×E , where in general, Ps,x models the law of some Markov
stochastic process, with imposed value x at time s. Fs,η is the augmented initial filtration fulfilling
the usual conditions.

In substitution of a Markov semigroup associated with a canonical Markov class, we introduce a
path-dependent system of projectors denoted (Ps)s∈R+ and a one-to-one connection between them
and path-dependent canonical classes. Each projector Ps acts on the space of bounded random vari-
ables. This brings us to introduce the notion of weak generator (D(A), A) of (Ps)s∈R+ which will
permit us in Chapter 6 to define mild type solutions of path-dependent PDEs of the form{

DΦ + 1
2Tr(σσ

ᵀ∇2Φ) + β∇Φ + f(·, ·,Φ, σσᵀ∇Φ) = 0 on [0, T ]× Ω
ΦT = ξ on Ω,

(5.1.1)

where D is the horizontal derivative and ∇ the vertical gradient in the sense of [37, 26] and β, σ are
progressively measurable path-dependent coefficients.

As mentioned earlier, given a path-dependent canonical class we also introduce the notion of
path-dependent Additive Functional (resp. path-dependent square integrable Martingale Additive
Functional), which is a real-valued random-field M := (Mt,u)0≤t≤u<+∞ such that for any (s, η) ∈
R+×Ω, there exists a real cadlagFs,η-adapted process (resp. Fs,η-square integrable martingale)M s,η

called the cadlag version of M under Ps,η, and verifying for all s ≤ t ≤ u that Mt,u = M s,η
u −M s,η

t

Ps,η a.s. Under some reasonable measurability assumptions on the path-dependent canonical class,
we extend to our path-dependent setup some classical results of Markov processes theory concern-
ing the quadratic covariation and the angular bracket of square integrable MAFs. As in the Marko-
vian set-up, examples of path-dependent canonical classes arise from solutions of a (this time path-
dependent) martingale problem as we explain below. Let χ be a set of cadlag processes adapted to
the initial filtration Fo. For some given (s, η) ∈ R+ × Ω, we say that a probability measure Ps,η on
(Ω,F) solves the martingale problem with respect to χ starting in (s, η) if

• Ps,η(ωs = ηs) = 1;

• all elements of χ are on [s,+∞[ (Ps,η,Fo)-martingales.

We show that merely under some well-posedness assumptions, the set of solutions for varying start-
ing times and paths (Ps,η)(s,η)∈R+×Ω defines a path-dependent canonical class. This in particularly
holds for weak solutions of path-dependent SDEs possibly with jumps.

The paper is organized as follows. In Section 5.3, we introduce the notion of path-dependent
canonical class in Definition 5.3.4 and of path-dependent system of projectors in Definition 5.3.8 and
prove a one-to-one correspondence between those two concepts in Corollary 5.3.11. In Section 5.4, we
introduce the notion of path-dependent Additive Functional, in short AF (resp. Martingale Additive
Functional, in short MAF). We state in Proposition 5.4.6 and Corollary 5.4.9 that for a given square
integrable path-dependent MAF (Mt,u)(t,u)∈∆, we can exhibit two non-decreasing path-dependent
AFs with L1-terminal value, denoted respectively by ([M ]t,u)(t,u)∈∆ and (〈M〉t,u)(t,u)∈∆, which will
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play respectively the role of a quadratic variation and an angular bracket of it. Then in Corollary
5.4.12, we state that the Radon-Nikodym derivative of the mentioned angular bracket of a square
integrable path-dependent MAF with respect to a reference function V , is a progressively measur-
able process which does not depend on the probability. In Section 5.5, we introduce what we mean
by path-dependent martingale problem with respect to a set of processes χ, to a time s and a start-
ing path η, see Definition 5.5.4. Suppose that χ is a countable set of cadlag Fo-adapted processes
which are uniformly bounded on each interval [0, T ]; in Proposition 5.5.12, we state that, whenever
the martingale problem with respect to χ is well-posed, then the solution (Ps,η)(s,η)∈R+×Ω defines a
path-dependent canonical class. In Subsection 5.5.2, Definition 5.5.14 introduces the notion of weak
generator of a path-dependent system of projectors, and Definition 5.5.15 that of martingale problem
associated to a path-dependent operator (D(A), A). Suppose now that for any (s, η) the martingale
problem associated with (D(A), A) is well-posed, and let (Ps)s∈R+ be the system of projectors asso-
ciated to the canonical class constituted by the solutions (Ps,η)(s,η)∈R+×Ω. Then (D(A), A) is a weak
generator of (Ps)s∈R+ , and (Ps)s∈R+ is the unique system of projectors such that this holds. In other
words, (Ps)s∈R+ can be analytically associated to (D(A), A) without ambiguity. Finally, in Section
5.6, we consider path-dependent SDEs with jumps, whose coefficients are denoted by β, σ, γ. If for
any couple (s, η), the SDE has a unique weak solution, then Theorem 5.6.7 ensures that the set of so-
lutions (Ps,η)(s,η)∈R+×Ω defines a path-dependent canonical class. Under the additional assumptions
that β, σ, γ are bounded and continuous in ω for fixed other variables, then Proposition 5.6.13 states
that (s, η) 7−→ Ps,η is continuous for the topology of weak convergence.

5.2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.
A topological space E will always be considered as a measurable space with its Borel σ-field

which shall be denoted B(E) and if S is another topological space equipped with its Borel σ-field,
B(E,S) will denote the set of Borel functions from E to S. For some fixed d ∈ N∗, C∞c (Rd) will
denote the set of smooth functions with compact support. For fixed d, k ∈ N∗, Ck(Rd), (resp. Ckb (Rd))
will denote the set of functions k times differentiable with continuous (resp. bounded continuous)
derivatives.

Let (Ω,F), (E, E) be two measurable spaces. A measurable mapping from (Ω,F) to (E, E) shall
often be called a random variable (with values in E), or in short r.v. If T is the indices set, a family
(Xt)t∈T of r.v. with values in E, will be called a random field (indexed byTwith values in E). In the
particular case when T is a subinterval of R+, (Xt)t∈T will be called a stochastic process (indexed

by T with values in E). If the mapping
(t, ω) 7−→ Xt(ω)

(T× Ω,B(T)⊗F) −→ (E, E)
is measurable, then the

process (or random field) (Xt)t∈T will be said to be measurable (indexed by Twith values in E).
On a fixed probability space (Ω,F ,P), for any p ≥ 1, Lp will denote the set of real-valued random

variables with finite p-th moment. Two random fields (or stochastic processes) (Xt)t∈T, (Yt)t∈T in-
dexed by the same set and with values in the same space will be said to be modifications (or versions)
of each other if for every t ∈ T,P(Xt = Yt) = 1. A filtered probability space

(
Ω,F ,F := (Ft)t∈R+ ,P

)
will be called called stochastic basis and will be said to fulfill the usual conditions if the filtration is
right-continuous, if the probability space is complete and if F0 contains all the P-negligible sets. Let
us fix a stochastic basis (Ω,F ,F,P). If Y = (Yt)t∈R+ is a stochastic process and τ is a stopping time,
we denote Y τ the process t 7→ Yt∧τ which we call stopped process (by τ ). If C is a set of processes,
we will say that Y is locally in C (resp. locally verifies some property) if there exist an a.s. increasing
sequence of stopping times (τn)n≥0 tending a.s. to infinity such that for every n, the stopped process



132 Chapter 5. Path-dependent Martingale Problems and Additive Functionals

Y τn belongs to C (resp. verifies this property).
Given two martingalesM,N , we denote by [M ] (resp. [M,N ]) the quadratic variation ofM (resp.

covariation of M,N ). If M,N are locally square integrable martingales, 〈M,N〉 (or simply 〈M〉 if
M = N ) will denote their (predictable) angular bracket. Two locally square integrable martingales
vanishing at zero M,N will be said to be strongly orthogonal if 〈M,N〉 = 0.
If A is an adapted process with bounded variation then V ar(A) (resp. Pos(A), Neg(A)) will denote
its total variation (resp. positive variation, negative variation), see Proposition 3.1, chap. 1 in [61].
In particular for almost all ω ∈ Ω, t 7→ V art(A(ω)) is the total variation function of the function
t 7→ At(ω).

5.3 Path-dependent canonical classes

We will introduce here an abstract context which is relevant for the study of path-dependent stochas-
tic equations. The definitions and results which will be presented here are inspired from the theory
of Markov processes and of additive functionals which one can find for example in [34].

The first definition refers to the canonical space that one can find in [60], see paragraph 12.63.

Notation 5.3.1. In the whole section, E will be a fixed Polish space, i.e. a separable completely metrizable
topological space, that we call the state space.

Ω will denoteD(R+, E) the space of functions from R+ to E being right-continuous with left limits (e.g.
cadlag). For every t ∈ R+ we denote the coordinate mapping Xt : ω 7→ ω(t) and we define on Ω the σ-field
F := σ(Xr|r ∈ R+). On the measurable space (Ω,F), we introduce initial filtration Fo := (Fot )t∈R+ ,
where Fot := σ(Xr|r ∈ [0, t]), and the (right-continuous) canonical filtration F := (Ft)t∈R+ , where
Ft :=

⋂
s>t
Fos . (Ω,F ,F) will be called the canonical space (associated to E). On R+ × Ω, we will denote by

Proo (resp. Preo) the Fo-progressive (resp. Fo-predictable) σ-field. Ω will be equipped with the Skorokhod
topology which is Polish since E is Polish (see Theorem 5.6 in chapter 3 of [44]), and for which the Borel σ-field
is F , see Proposition 7.1 in chapter 3 of [44]. This in particular implies that F is separable, being the Borel
σ-field of a separable metric space.
P(Ω) will denote the set of probability measures on Ω and will be equipped with the topology of weak

convergence of measures which also makes it a Polish space since Ω is Polish (see Theorems 1.7 and 3.1 in [44]
chapter 3). It will also be equipped with the associated Borel σ-field.

Notation 5.3.2. For any ω ∈ Ω and t ∈ R+, the path ω stopped at time t: r 7→ ω(r ∧ t) will be denoted ωt.

Remark 5.3.3. In Sections 5.3,5.4 and Subsections 5.5.1, 5.5.2, all notions and results can easily be adapted
to different canonical spaces Ω: for instance, C(R+, E), the space of continuous functions from R+ to E;
C([0, T ], E) (resp. D([0, T ], E)) the space of continuous (resp. cadlag) functions from [0, T ] to E, for some
T > 0; fixing x ∈ E, Cx(R+, E) (resp. Cx([0, T ], E)) the space of continuous functions fromR+ (resp. [0, T ])
to E starting at x .

Definition 5.3.4. A path-dependent canonical class will be a family (Ps,η)(s,η)∈R+×Ω of probability mea-
sures defined on the canonical space (Ω,F), which verifies the three following items.

1. For every (s, η) ∈ R+ × Ω, Ps,η(ωs = ηs) = 1;

2. for every s ∈ R+ and F ∈ F , the mapping
η 7−→ Ps,η(F )
Ω −→ [0, 1]

is Fos -measurable;
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3. for every (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F ,

Ps,η(F |Fot )(ω) = Pt,ω(F ) for Ps,η almost all ω. (5.3.1)

This implies in particular that for every (s, η) ∈ R+ × Ω and t ≥ s, then (Pt,ω)ω∈Ω is a regular conditional
expectation of Ps,η by Fot , see the Definition above Theorem 1.1.6 in [85] for instance.

A path-dependent canonical class (Ps,η)(s,η)∈R+×Ω will be said to be progressive if for every F ∈ F , the
mapping (t, ω) 7−→ Pt,ω(F ) is Fo-progressively measurable.

In concrete examples, path-dependent canonical classes will always verify the following impor-
tant hypothesis which is a reinforcement of (5.3.1).

Hypothesis 5.3.5. For every (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F ,

Ps,η(F |Ft)(ω) = Pt,ω(F ) for Ps,η almost all ω. (5.3.2)

Remark 5.3.6. By approximation through simple functions, one can easily show the following. Let Z be a
random variable.

• Let s ≥ 0. The functional η 7−→ Es,η[Z] is Fos -measurable and for every (s, η) ∈ R+ × Ω, t ≥ s,
Es,η[Z|Fot ](ω) = Et,ω[Z] for Ps,η almost all ω, provided previous expectations are finite;

• if the path-dependent canonical class is progressive, (t, ω) 7−→ Et,ω[Z] is Fo-progressively measurable,
provided previous expectations are finite.

Notation 5.3.7.

• Bb(Ω) (resp. B+
b (Ω)) will denote the space of measurable (resp. non-negative measurable) bounded r.v.

• Let s ≥ 0. Bsb(Ω) will denote the space of Fos -measurable bounded r.v.

Definition 5.3.8.

1. A linear map Q : Bb(Ω) → Bb(Ω) is said positivity preserving monotonic if for every φ ∈ B+
b (Ω)

then Q[φ] ∈ B+
b (Ω) and for every increasing converging (in the pointwise sense) sequence fn −→

n
f we

have that Q[fn] −→
n

Q[f ] in the pointwise sense.

2. A family (Ps)s∈R+ of positivity preserving monotonic linear operators on Bb(Ω) will be called a path-
dependent system of projectors if it verifies the three following properties.

• For all s ∈ R+, the restriction of Ps to Bsb(Ω) coincides with the identity;

• for all s ∈ R+, Ps maps Bb(Ω) into Bsb(Ω);

• for all s, t ∈ R+ with t ≥ s, Ps ◦ Pt = Ps.

Proposition 5.3.9. Let (Ps,η)(s,η)∈R+×Ω be a path-dependent canonical class. For every s ∈ R+, we define
Ps : φ 7−→ (η 7→ Es,η[φ]). Then (Ps)s∈R+ defines a path-dependent system of projectors.

Proof. For every s ≥ 0 each map Ps is linear, positivity preserving and monotonic using the usual
properties of the expectation under a given probability. The rest follows taking into account Defini-
tions 5.3.4, 5.3.8 and Remark 5.3.6.
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Proposition 5.3.10. Let (Ps)s∈R+ be a path-dependent system of projectors. For any (s, η) ∈ R+×Ω, we set

Ps,η :

(
F 7−→ Ps[1F ](η)
F −→ R

)
. (5.3.3)

Then for all (s, η), Ps,η defines a probability measure and (Ps,η)(s,η)∈R+×Ω is a path-dependent canonical
class.

Proof. We fix s and η. Since ∅,Ω ∈ Fos , then by the first item of Definition 5.3.8, Ps[1∅] = 1∅ and
Ps[1Ω] = 1Ω, so Ps,η(∅) = 0 and Ps,η(Ω) = 1. For any F ∈ F , since Ps is positivity preserving and
1∅ ≤ 1F ≤ 1Ω then 1∅ ≤ Ps[1F ] ≤ 1Ω so, Ps,η takes values in [0, 1]. If (Fn)n is a sequence of pairwise
disjoint elements of F then the increasing sequence

∑N
k=01Fk converges pointwise to 1⋃

n
Fn . Since

the Ps are linear and monotonic then
∑
n
Ps[1Fn ] = Ps[1⋃

n
Fn ], hence

∑
n
Ps,η(Fn) = Ps,η

(⋃
n
Fn

)
. So for

every (s, η), Ps,η, is σ-additive, positive, vanishing in ∅ and takes value 1 in Ω hence is a probability
measure.

Then, for any (s, η) we have Ps,η(ωs = ηs) = Ps[1{ωs=ηs}](η) = 1{ωs=ηs}(η) = 1 since {ωs = ηs} ∈
Fos , so item 1. of Definition 5.3.4 is satisfied. Concerning item 2., at fixed s ∈ R+ and F ∈ F , we have
(η 7→ Ps,η(F )) = Ps[1F ] which is Fos -measurable since Ps has its range in Bsb(Ω), see Definition 5.3.8.

It remains to show item 3. We now fix (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F and show that (5.3.1)
holds. Let G ∈ Fot . We need to show that Es,η[1G1F ] = Es,η[1G(ζ)Et,ζ [1F ]]. We have

Es,η[1G1F ] = Es,η[Et,ζ [1G(ω)1F (ω)]]

= Es,η[Et,ζ [1G(ζ)1F (ω)]]

= Es,η[1G(ζ)Et,ζ [1F (ω)]],

where the first equality comes from the fact that Ps = Ps◦Pt and the second from the fact thatG ∈ Fot
and Pt,ζ(ωt = ζt) = 1 so 1G = 1G(ζ) Pt,ζ a.s.

Corollary 5.3.11. The mapping

Φ : (Ps,η)(s,η)∈R+×Ω 7−→ (Z 7−→ (η 7→ Es,η[Z]))s∈R+
, (5.3.4)

is a bijection between the set of path-dependent canonical classes and the set of path-dependent system of
projectors, whose reciprocal map is given by

Φ−1 : (Ps)s∈R+ 7−→ (F 7→ Ps[1F ](η))(s,η)∈R+×Ω . (5.3.5)

Proof. Φ is by Proposition 5.3.9 well-defined. Moreover it is injective since ifP1 andP2 are two prob-
abilities such that respective expectations of all the bounded r.v. are the same then P1 = P2. Then
given a path-dependent system of projectors (Ps)s∈R+ , by Proposition 5.3.10
(Ps,η : F 7→ Ps[1F ](η))(s,η)∈R+×Ω is a path-dependent canonical class. It is then enough to show that
the image through Φ of that path-dependent canonical class is indeed (Ps)s∈R+ . Let (Qs)s∈R+ denote
its image by Φ, in order to conclude we are left to show that Qs = Ps for all s.
We fix s. For every F ∈ F , η ∈ Ω we have Qs[1F ](η) = Ps,η(F ) = Ps[1F ](η) so Qs and Ps coincide on
the indicator functions, hence on the simple functions by linearity, and everywhere by monotonic-
ity and the fact that every bounded Borel function is the limit of an increasing sequence of simple
functions.

Definition 5.3.12. From now on, two elements mapped by the previous bijection will be said to be associated.
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Remark 5.3.13. Path-dependent canonical classes naturally extend canonical Markov classes (see Definition
4.C.5 in Chapter 4 for instance) as follows.

Let (Ps,x)(s,x)∈R+×E be a canonical Markov class with state space E and let (Ps,t)0≤s≤t denote its transi-
tion kernel, see Definition 4.C.3 in Chapter 4.

For all (s, η) ∈ R+×Ω, letPs,η be the unique probability measure on (Ω,F) such thatPs,η(ωs = ηs) and
Ps,η coincides on σ(Xr|r ≥ s) with Ps,η(s). Then (Ps,η)(s,η)∈R+×Ω is a path-dependent canonical class. Let
(Ps)s∈R+ denote the associated path-dependent system of projectors. Then for all bounded Borel φ : E 7→ R,
η ∈ Ω and 0 ≤ s ≤ t we have

Ps[φ ◦Xt](η) = Es,η[φ(Xt)] = Es,η(s)[φ(Xt)] = Ps,t[φ](η(s)). (5.3.6)

Notation 5.3.14. For the rest of this section, we are given a path-dependent canonical class (Ps,η)(s,η)∈R+×Ω

and (Ps)s∈R+ denotes the associated path-dependent system of projectors.

Definition 5.3.15. Let P be a probability on (Ω,F). If G be a sub-σ-field of F , we call P-closure of G the
σ-field generated by G and the set of P-negligible sets. We denote it GP. In the particular case G = F , we call
FP P-completion of F .

Remark 5.3.16. Thanks to Remark 32.b) in Chapter II of [32], we have an equivalent definition of the P-
closure of some sub-σ-field G of F which can be characterized by the following property: B ∈ GP if and only if
there exist F ∈ G such that 1B = 1F P a.s.

Moreover, P can be extended to a probability on GP by setting P(B) := P(F ) for such events.

Notation 5.3.17. For any (s, η) ∈ R+×Ω we will consider the stochastic basis
(
Ω,Fs,η,Fs,η := (Fs,ηt )t∈R+ ,P

s,η
)

where Fs,η is the Ps,η-completion of F , Ps,η is extended to Fs,η and Fs,ηt is the Ps,η-closure of Ft for every
t ∈ R+.

We remark that, for any (s, η) ∈ R+ × Ω, (Ω,Fs,η,Fs,η,Ps,η) is a stochastic basis fulfilling the
usual conditions, see 1.4 in [61] Chapter I.

A direct consequence of Remark 32.b) in Chapter II of [32] is the following.

Proposition 5.3.18. Let G be a sub-σ-field of F ,P a probability on (Ω,F) and GP theP-closure of G. Let ZP

be a real GP-measurable random variable. There exists a G-measurable random variable Z such that Z = ZP

P-a.s.

Proposition 5.3.18 yields the following.

Proposition 5.3.19. Let P be a probability measure on (Ω,F), let G := (Gt)t∈R+ be a filtration and GP

denote (GPt )t∈R+ . Let Z be a positive or L1-random variable and t ∈ R+. Then E[Z|Gt] = E[Z|GPt ] P a.s. In
particular, (P,G)-martingales are also (P,GP)-martingales.

According to Proposition 5.3.19 for P = Ps,η, the related conditional expectations with respect to
Fs,ηt coincide with conditional expectations with respect to Ft. For that reason we will only use the
notation Es,η[ · |Ft] omitting the (s, η)-superscript over Ft.

In the next proposition, Fo,s,ηt will denote for any (s, η) ∈ R+ × Ω and t ≥ s the Ps,η-closure of
Fot .

Proposition 5.3.20. Assume that Hypothesis 5.3.5 holds. For any (s, η) ∈ R+×Ω and t ≥ s, Fo,s,ηt = Fs,ηt .
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Proof. We fix s, η, t. Since inclusion Fo,s,ηt ⊂ Fs,ηt is obvious, we show the converse inclusion.
Let F s,η ∈ Fs,ηt . By Remark 5.3.16, there exists F ∈ Ft, such that 1F s,η = 1F P

s,η a.s. It is there-
fore sufficient to prove the existence of some F o ∈ Fot such that 1F o = 1F P

s,η a.s. (and therefore
1F o = 1F s,η P

s,η a.s.) to conclude that F s,η ∈ Fo,s,ηt .

We set Z :
ω 7−→ Pt,ω(F )
Ω −→ [0, 1]

. By (5.3.2) and the fact that F ∈ Ft, we have

Z(ω) = Pt,ω(F ) = Es,η[1F |Ft](ω) = 1F (ω) Ps,ηa.s. (5.3.7)

By Definition 5.3.4, Z is Fot -measurable, so F o := Z−1({1}) belongs to Fot , and we will proceed
showing that 1F o = 1F P

s,η a.s.
By construction, 1F o(ω) = 1 iff Pt,ω(F ) = 1 and 1F o(ω) = 0 iff Pt,ω(F ) ∈ [0, 1[. So

{ω : 1F o(ω) 6= 1F (ω)}
= {ω : 1F o(ω) = 1 and 1F (ω) = 0}

⋃
{ω : 1F o(ω) = 0 and 1F (ω) = 1}

= {ω : Pt,ω(F ) = 1 and 1F (ω) = 0}
⋃
{ω : Pt,ω(F ) ∈ [0, 1[ and 1F (ω) = 1}

⊂ {ω : Pt,ω(F ) 6= 1F (ω)},

(5.3.8)

where the latter set is Ps,η-negligible by (5.3.7).

Combining Propositions 5.3.18 and 5.3.20, we have the following.

Corollary 5.3.21. Assume that Hypothesis 5.3.5 holds and let us fix (s, η) ∈ R+ × Ω and t ≥ s. Given an
Fs,ηt -measurable r.v. Zs,η, there exists an Fot -measurable r.v. Zo such that Zs,η = Zo Ps,η a.s.

Definition 5.3.22. If (Ω̃, F̃ , P̃) is a probability space and G is a sub-σ-field of F̃ , we say that G is P-trivial
if for any element G of G, then P(G) ∈ {0, 1}.

Corollary 5.3.23. Assume that Hypothesis 5.3.5 holds. For every (s, η) ∈ R+×Ω,Fos andFs arePs,η-trivial.

Proof. We fix (s, η) ∈ R+ × Ω. We start by showing that Fos is Ps,η-trivial. For every B ∈ Fos and
ω we have 1B(ω) = 1B(ωs), and since Ps,η(ωs = ηs) = 1, we have 1B(ωs) = 1B(ηs) Ps,η a.s. So
Ps,η(B) = Es,η[1B(ω)] = 1B(ηs) ∈ {0, 1}. Then, it is clear that adding Ps,η-negligible sets does
not change the fact of being Ps,η-trivial, so Fo,s,ηs (which by Proposition 5.3.20 is equal to Fs,ηs ) is
Ps,η-trivial and therefore so is Fs ⊂ Fs,ηs .

5.4 Path-dependent Additive Functionals

In this section, we introduce the notion of Path-dependent Additive Functionals that we use in the
chapter. As already anticipated, this can be interpreted as a path-dependent extension of the notion
of non-homogeneous Additive Functionals of a canonical Markov class developed in Chapter 1. For
that reason, several proofs of this section are very similar to those of Chapter 1 and are inspired from
[34] Chapter XV, which treats the time-homogeneous case.

We keep on using Notation 5.3.1 and we fix a path-dependent canonical class (Ps,η)(s,η)∈R+×Ω

and assume the following for the whole section.

Hypothesis 5.4.1. (Ps,η)(s,η)∈R+×Ω is progressive and verifies Hypothesis 5.3.5.

We will use the notation ∆ := {(t, u) ∈ R2
+|t ≤ u}.
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Definition 5.4.2. On (Ω,F), a path-dependent Additive Functional (in short path-dependent AF) will be
a random-field A := (At,u)(t,u)∈∆ with values inR verifying the two following conditions.

1. For any (t, u) ∈ ∆, At,u is Fou-measurable;

2. for any (s, η) ∈ R+ × Ω, there exists a real cadlag Fs,η-adapted process As,η (taken equal to zero on
[0, s] by convention) such that for any η ∈ Ω and s ≤ t ≤ u,

At,u = As,ηu −A
s,η
t Ps,η a.s.

We denote byAt the (Fo-adapted) process u 7→ At,u indexed by [t,+∞[. For any (s, η) ∈ [0, t]×Ω,As,η· −As,ηt
is a Ps,η-version of At on [t,+∞[. As,η will be called the cadlag version of A under Ps,η.

A path-dependent Additive Functional will be called a path-dependent Martingale Additive Func-
tional (in short path-dependent MAF) if under any Ps,η its cadlag version is a martingale.

More generally, a path-dependent AF will be said to verify a certain property (being non-decreasing, of
bounded variation, square integrable, having L1-terminal value) if under any Ps,η its cadlag version verifies
it.

Finally, given two increasing path-dependent AFs A and B, A will be said to be absolutely continuous
with respect to B if for any (s, η) ∈ R+×Ω, dAs,η � dBs,η in the sense of stochastic measures. This means
that dAs,η(ω) is absolutely continuous with respect to dBs,η(ω) for Ps,η almost all ω.

Remark 5.4.3. The set of path-dependent AFs (resp. path-dependent AFs with bounded variation, path-
dependent AFs with L1-terminal value, path-dependent MAFs, square integrable path-dependent MAFs) is a
linear space.

Lemma 5.4.4. Let M be an Fo-adapted process such that for all (s, η), on [s,+∞[, M is a (Ps,η,Fo)-
martingale.

Then, for all (s, η), M·∨s − Ms admits a Ps,η-version which is a (Ps,η,Fs,η) cadlag martingale M s,η

vanishing in [0, s]. In particular Mt,u(ω) := Mu(ω) −Mt(ω) defines a path-dependent MAF with cadlag
version M s,η under Ps,η.

Proof. By Propositions 5.3.19 and 5.3.20, M is also on [s,+∞[ a (Ps,η,Fs,η)-martingale hence M·∨s −
Ms is on R+ a (Ps,η,Fs,η)-martingale and vanishes on [0, s]. Since Fs,η satisfies the usual condi-
tions, then M·∨s −Ms admits a cadlag Ps,η-modification M s,η which also is a (Ps,η,Fs,η)-martingale
vanishing in [0, s]. It clearly verifies thatMt,u = Mu−Mt = M s,η

u −M s,η
t Ps,η-a.s. for all s ≤ t ≤ u.

Example 5.4.5. Let Z be an F-measurable bounded r.v. A typical example of process verifying the conditions
of previous Lemma 5.4.4 is given by MZ : (t, ω) 7−→ Et,ω[Z], see Remark 5.3.6.

The following results state that, for a given square integrable path-dependent MAF (Mt,u)(t,u)∈∆

we can exhibit two non-decreasing path-dependent AFs with L1-terminal value, denoted respec-
tively by ([M ]t,u)(t,u)∈∆ and (〈M〉t,u)(t,u)∈∆, which will play respectively the role of a quadratic varia-
tion and an angular bracket of it. Moreover we will show that the Radon-Nikodym derivative of the
mentioned angular bracket of a square integrable path-dependent MAF with respect to a reference
function V is a progressively measurable process which does not depend on the probability.

The proof of the proposition below is postponed to the appendix.

Proposition 5.4.6. Let (Mt,u)(t,u)∈∆ be a square integrable path-dependent MAF, and for any (s, η) ∈ R+×
Ω, [M s,η] denote the quadratic variation of its cadlag version M s,η under Ps,η. Then there exists a non-
decreasing path-dependent AF with L1-terminal value which we will call ([M ]t,u)(t,u)∈∆ and which, for any
(s, η) ∈ R+ × Ω, has [M s,η] as cadlag version under Ps,η.
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The next result can be seen as an extension of Theorem 15 Chapter XV in [34] to a path-dependent
context and will be needed to show that the result above also holds for the angular bracket. Its proof
is also postponed to the appendix.

Proposition 5.4.7. Let (Bt,u)(t,u)∈∆ be a non-decreasing path-dependent AF with L1- terminal value. For
any (s, η) ∈ R+×Ω, let Bs,η be its cadlag version underPs,η and let As,η be the predictable dual projection of
Bs,η in (Ω,Fs,η,Fs,η,Ps,η). Then there exists a non-decreasing path-dependent AF with L1-terminal value
(At,u)(t,u)∈∆ such that under any Ps,η, the cadlag version of A is As,η.

Remark 5.4.8.

1. About the notion of dual predictable projection (also called compensator) related to some stochastic basis
we refer to Theorem 3.17 in Chapter I of [61].

2. We recall that, wheneverM,N are two local martingales, the angle bracket 〈M,N〉 is the dual predictable
projection of [M,N ], see Proposition 4.50 b) in Chapter I of [61].

Corollary 5.4.9. Let (Mt,u)(t,u)∈∆, (Nt,u)(t,u)∈∆ be two square integrable path-dependent MAFs, let M s,η

(respectively N s,η) be the cadlag version of M (respectively N ) under Ps,η. Then there exists a bounded
variation path-dependent AF with L1-terminal value, denoted (〈M,N〉t,u)(t,u)∈∆, such that under any Ps,η,
the cadlag version of 〈M,N〉 is 〈M s,η, N s,η〉. If M = N the path-dependent AF 〈M,N〉 will be denoted 〈M〉
and is non-decreasing.

Proof. This can be proved as for Corollary 1.4.11 in Chapter 1, replacing parameter (s, x) with (s, η).

The result below concerns the Radon-Nikodym derivative of a non-decreasing continuous path-
dependent AF with respect to some reference measure dV . Its proof is postponed to the Appendix.

Proposition 5.4.10. Let V : R+ −→ R be a non-decreasing continuous function. Let A be a non-negative,
non-decreasing path-dependent AF absolutely continuous with respect to V , and for any (s, η) ∈ R+ × Ω let
As,η be the cadlag version of A under Ps,η. There exists an Fo-progressively measurable process h such that
for any (s, η) ∈ R+ × Ω, As,η =

∫ ·∨s
s hrdVr, in the sense of indistinguishability.

Proposition 5.4.11. Let (At,u)(t,u)∈∆ be a path-dependent AF with bounded variation, taking L1-terminal
value. Then there exists an increasing path-dependent AF that we denote (Pos(A)t,u)(t,u)∈∆ (resp.
(Neg(A)t,u)(t,u)∈∆), which, for any (s, η) ∈ R+ × Ω, has Pos(As,η) (resp. Neg(As,η))) as cadlag version
under Ps,η.

Proof. This can be proved similarly as for Proposition 1.4.14 in Chapter 1, replacing parameter (s, x)
with (s, η).

Corollary 5.4.12. Let V be a continuous non-decreasing function. Let M and N be two square integrable
path-dependent MAFs and let M s,η (respectively N s,η) be the cadlag version of M (respectively N ) under a
fixed Ps,η. Assume that 〈N〉 is absolutely continuous with respect to dV . There exists an Fo-progressively
measurable process k such that for any (s, η) ∈ R+ × Ω, 〈M s,η, N s,η〉 =

∫ ·∨s
s krdVr.

Proof. The proof follows the same lines as the one of Proposition 1.4.17 in Chapter 1 replacing pa-
rameter (s, x) by (s, η) and Borel functions of (t,Xt) with Fo-progressively measurable processes.
We make use of Corollary 5.4.9, Propositions 5.4.11 and 5.4.10, respectively in substitution of Corol-
lary 1.4.11 an Propositions 1.4.14 and 1.4.13.
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Corollary 5.4.13. Let V be a continuous non-decreasing function. Let M (resp. N ) be an Fo-adapted process
such that for all (s, η), M (resp. N ) is on [s,+∞[ a (Ps,η,Fo)-square integrable martingale. For any (s, η),
let M s,η (resp. N s,η) denote its Ps,η-cadlag version. Assume that for all (s, η), d〈N s,η〉 � dV .
Then there exists anFo-progressively measurable process k such that for any (s, η) ∈ R+×Ω, 〈M s,η, N s,η〉 =∫ ·∨s
s krdVr.

Proof. The mentioned cadlag versions exist because of Lemma 5.4.4. The statement follows by the
same Lemma 5.4.4 and Corollary 5.4.12.

5.5 Path-dependent Martingale problems

5.5.1 Abstract Martingale Problems

In this section we show that, whenever a (path-dependent) martingale problem is well-posed, then
its solution is a path-dependent canonical class verifying Hypothesis 5.3.5. This relies on the same
mathematical tools than those used by D.S Stroock and S.R.S Varadhan in the context of Markovian
diffusions in [85]. Indeed it was already known that the ideas of [85] could be used in any type of
Markovian setup and not just for martingale problems associated to diffusions, see [44] for exam-
ple. One of the interests of the following lines is to show that their scope goes beyond the Markovian
framework. First we prove that η 7→ Ps,η is measurable, using well-posedness arguments and the cel-
ebrated Kuratowsky Theorem. Then we show in Proposition 5.5.12 that the solution of the martingale
problem verifies (5.3.2), which is the analogous formulation of Markov property, through the theory
of regular conditional expectations and again the fact that the martingale problem is well-posed.

Notation 5.5.1. For every t ∈ R+, Ωt := {ω ∈ Ω : ω = ωt} will denote the set of constant paths after time t.
We also denote Λ := {(s, η) ∈ R+ × Ω : η ∈ Ωs}.

Proposition 5.5.2.

1. Λ is a closed subspace ofR+ × Ω, hence a Polish space when equipped with the induced topology.

2. For any t ∈ R+, Ωt is also a closed subspace of Ω.

Proof. We will only show the first statement since the proof of the second one is similar but simpler.
Let (sn, ηn)n be a sequence in Λ. Let (s, η) ∈ R+ × Ω and assume that sn → s and that ηn tends to η
for the Skorokhod topology. Then ηn tends to η Lebesgue a.e. Let ε > 0. There is a subsequence (snk)
such that |snk − s| ≤ ε, implying that for all k, ηnk is constantly equal to ηnk(snk) on [s+ ε,+∞[. Since
ηn tends to η Lebesgue a.e., then necessarily, ηnk(snk) tends to some c ∈ E and η takes value c a.e. on
[s+ ε,+∞[. This holds for every ε, and η is cadlag, so η is constantly equal to c on [s,+∞[, implying
that (s, η) ∈ Λ.

From now on, Λ, introduced in Notation 5.5.1, is equipped with the trace topology.

Proposition 5.5.3. The Borel σ-field B(Λ) is equal to the trace σ-field Λ ∩ Proo. For any t ∈ R+, the Borel
σ-field B(Ωt) is equal to the trace σ-field Ωt ∩ Fot .

Proof. Again we only show the first statement since the proof of the second one is similar. By def-
inition of the topology on Λ, it is clear that B(Λ) = Λ ∩ B(R+ × Ω) = Λ ∩ (B(R+) ⊗ F) contains
Λ ∩ Proo. We show the converse inclusion. The sets Λ ∩ ([s, u] × {ω(r) ∈ A}) for s, u, r ∈ R+ with
s ≤ u, A ∈ B(E) generate Λ∩ (B(R+)⊗F) so it is enough to show that these sets belong to Λ∩Proo.
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We fix s ≤ u and r inR+, and A ∈ B(E). We have

Λ
⋂

([s, u]× {ω(r) ∈ A}) =

(t, ω) :


t ∈ [s, u]
ω = ωt

ω(r) ∈ A


=

(t, ω) :


t ∈ [s, u]
ω = ωt

ω(r ∧ t) ∈ A


= Λ

⋂{
(t, ω) :

{
t ∈ [s, u]
ω(r ∧ t) ∈ A.

}
. (5.5.1)

We are left to show that
{

(t, ω) :

{
t ∈ [s, u]
ω(r ∧ t) ∈ A

}
∈ Proo, or equivalently that

t 7→ 1[s,u](t)1A(Xr∧t) is Fo − progressively measurable. (5.5.2)

Now t 7→ Xr∧t is right-continuous and Fo-adapted so it is an E-valued Fo-progressively mea-
surable process, see Theorem 15 in [32] Chapter IV. By composition with a Borel function, t 7→
1A(Xr∧t) is a real-valued Fo-progressively measurable process; (5.5.2) follows since t 7→ 1[s,u](t)
is Fo-progressively measurable and the product of the two Fo-progressively measurable processes
remains Fo-progressively measurable.

Definition 5.5.4. Let (s, η) ∈ Λ and χ be a set of Fo-adapted processes. We say that a probability measure P
on (Ω,F) solves the martingale problem with respect to χ starting in (s, η) if

• P(ωs = ηs) = 1,

• all elements of χ are on [s,+∞[ (P,Fo)-martingales.

Remark 5.5.5. We insist on the following important fact. If M ∈ χ is cadlag and P solves the martingale
problem associated to χ, then by Theorem 3 in [33] Chapter VI, M is also on [s,+∞[ a (P,F)-martingale.

Notation 5.5.6. For fixed (s, η) ∈ Λ and χ, the set of probability measures solving the martingale problem
with respect to χ starting in (s, η) will be denoted MP s,η(χ).

Definition 5.5.7. Let us consider a set χ of processes. If for every (s, η) ∈ Λ, MP s,η(χ) is reduced to a single
element Ps,η, we will say that the martingale problem associated to χ is well-posed. In this case we will
always extend the mapping

(s, η) 7−→ Ps,η

Λ −→ P(Ω)
(5.5.3)

toR+ × Ω by setting for all (s, η) ∈ R+ × Ω, Ps,η := Ps,η
s .

Notation 5.5.8. We fix a dense sequence (xn)n≥0 of elements of E. For any s ∈ R+, we will denote by Πs

the set of elements of Fos of type {ω(t1) ∈ B(xi1 , r1), · · · , ω(tN ) ∈ B(xiN , rN )} where N ∈ N, t1, · · · , tN ∈
[0, s] ∩Q, i1, · · · , iN ∈ N, r1, · · · , rN ∈ Q+ and where B(x, r) denotes the open ball centered in x and of
radius r.

It is easy to show that for any s ∈ R+, Πs is a countable π-system generating Fos , see [1] Definition
4.9 for the notions of π-system and λ-system.

Below we consider the set As of probability measures P on (Ω,F) for which there exists η ∈ Ω
such that P solves the martingale problem with respect to χ starting at (s, η).
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Proposition 5.5.9. We fix a countable set χ of cadlag Fo-adapted processes which are uniformly bounded on
each interval [0, T ], and some s ∈ R+. Let As :=

⋃
η∈Ω

MP s,η(χ). Then As is a Borel set of P(Ω).

For the proof of this proposition we need a technical lemma.

Lemma 5.5.10. We fix s ∈ R+. An element P of P(Ω) belongs to As if and only if it verifies the following
conditions:

1. P(F ) ∈ {0, 1} for all F ∈ Πs;

2. EP[(Mu −Mt)1F ] = 0 for all M ∈ χ, t, u ∈ [s,+∞[∩Q such that t ≤ u, F ∈ Πt.

Proof. By definition of As, an element P of P(Ω) belongs to As iff

a) there exists η ∈ Ω such that P(ωs = ηs) = 1;

b) for all M ∈ χ, (Mt)t∈[s,+∞[ is a (P,Fo)-martingale.

Item a) above is equivalent to saying that Fos is P-trivial which is equivalent to item 1. of the
Lemma statement by Dynkin’s Lemma (see 4.11 in [1]), since Πs is a π-system generating Fos and
since the sets F ∈ Fos such thatP(F ) ∈ {0, 1} form a λ-system. On the other hand, it is clear that item
b) above implies item 2. in the statement of the Lemma.

Conversely, assume thatM ∈ χ satisfies item 2. of the statement. We fix s ≤ t ≤ u. Let (tn)n, (un)n
be two sequences of rational numbers which converge respectively to t, u strictly from the right and
such that tn ≤ un for all n. For every fixed n, we have EP[(Mun −Mtn)1G] = 0 for all G ∈ Πt. We
then pass to the limit in n using the fact that M is right-continuous at fixed ω, and the dominated
convergence theorem and taking into account the fact that M is bounded on compact intervals; this
yields EP[(Mu −Mt)1G] = 0 for all G ∈ Πt. Since sets G ∈ Fot verifying this property form a λ-
system and since Πt is a π-system generating Fot , then by Dynkin’s lemma (see 4.11 in [1]),EP[(Mu−
Mt)1G] = 0 for all G ∈ Fot . This implies that (Mt)t∈[s,+∞[ is a (P,Fo)-martingale which concludes
the proof of Lemma 5.5.10.

Proof of Proposition 5.5.9.
We fix s ∈ R+. We recall that for any bounded random variable φ, P 7→ EP[φ] is Borel. In particular
for all F ∈ Πs, P 7−→ P(F ) and for all M ∈ χ, t, u ∈ [s,+∞[∩Q, F ∈ Πt, P 7−→ EP[(Mu −Mt)1F ] are
Borel maps. The result follows by Lemma 5.5.10, taking into account the fact Πt is countable for any
t, and χ and the rational number setQ are also countable. Indeed since {0} and {0, 1} are Borel sets,
As is Borel being a countable intersection of preimages of Borel sets by Borel functions.

Proposition 5.5.11. Let χ be a countable set of cadlag Fo-adapted processes which are uniformly bounded on
each interval [0, T ]. We assume that the martingale problem associated to χ is well-posed, see Definition 5.5.7.

Let s ∈ R+. Then Φs :

(
η 7−→ Ps,η

Ωs −→ P(Ω)

)
is Borel. Moreover,

(
(s, η) 7−→ Ps,η

R+ × Ω −→ P(Ω)

)
isFo-adapted.

Proof. We fix s ∈ R+ and set

Φs :
η 7−→ Ps,η

Ωs −→ As,
(5.5.4)

whereAs is defined as in Proposition 5.5.9. Φs is surjective by construction. It is also injective. Indeed,
if η1, η2 ∈ Ωs are different, there exists t ∈ [0, s] such that η1(t) 6= η2(t) and we have Ps,η1(ω(t) =
η1(t)) = 1 and Ps,η2(ω(t) = η2(t)) = 1 so clearly Ps,η1 6= Ps,η2 .



142 Chapter 5. Path-dependent Martingale Problems and Additive Functionals

We can therefore introduce the reciprocal mapping

Φ−1
s :

Ps,η 7−→ η
As −→ Ωs,

(5.5.5)

which is a bijection. We wish to show that it is Borel. Since the Borel σ-algebra of Ωs is generated by
the sets of type {ω(r ∧ s) ∈ A}where r ∈ R+ and A ∈ B(E), it is enough to show that Φs({ω(r ∧ s) ∈
A}) is for any r,A a Borel subset of P(Ω). We then have Φs({ω(r ∧ s) ∈ A}) = As ∩ {P : P(ω(r ∧ s) ∈
A) = 1} which is Borel being the intersection of As which is Borel by Lemma 5.5.10, and of the
preimage of {1} by the Borel functionP 7→ P(F ) with F = {ω(r∧ s) ∈ A}. So Φ−1

s is a Borel bijection
which maps the Borel set As of the Polish space P(Ω) into the Polish space Ωs. By Kuratowsky

theorem (see Corollary 3.3 in [75]), Φs :
η 7−→ Ps,η

Ωs −→ P(Ω)
is Borel.

Let us justify the second part of the statement. Since by Proposition 5.5.3, B(Ωs) = Ωs ∩Fos for all

s, it is clear that
(
η 7−→ ηs

Ω −→ Ωs

)
is (Fos ,B(Ωs))-measurable and therefore that

(
η 7−→ Ps,η

Ω −→ P(Ω)

)
is Fos -measurable.

Proposition 5.5.12. Let χ be a countable set of cadlag Fo-adapted processes which are uniformly bounded on
each interval [0, T ], and assume that the martingale problem associated to χ is well-posed, see Definition 5.5.7.
Then (Ps,η)(s,η)∈R+×Ω is a path-dependent canonical class verifying Hypothesis 5.3.5 .

Proof. The first two items of Definition 5.3.4 are directly implied by Proposition 5.5.11 and the fact
that Ps,η ∈ MP s,η(χ) hence Ps,η(ωs = ηs) = 1 for all (s, η). It remains to show the validity of
Hypothesis 5.3.5.

We fix (s, η) ∈ R+ × Ω and t ≥ s. Since Ω is Polish and Ft is a sub σ-field of its Borel σ-field,
there exists a regular conditional expectation of Ps,η by Ft (see Theorem 1.1.6 in [85]), meaning a set
of probability measures (Qt,ζ)ζ∈Ω on (Ω,F) such that

1. for any F ∈ F , ζ 7→ Qt,ζ(F ) is Ft-measurable;

2. for any F ∈ F , Ps,η(F |Ft)(ζ) = Qt,ζ(F ) Ps,η a.s.

We will now show that for Ps,η almost all ζ, we have

Qt,ζ = Pt,ζ , (5.5.6)

so that item 2. above will imply Hypothesis 5.3.5. In order to show that equality, we will show that
for Ps,η almost all ζ, Qt,ζ solves the Martingale problem associated to χ starting in (t, ζ) and con-
clude (5.5.6) since MP t,ζ(χ) is a singleton, taking into account the fact the corresponding martingale
problem is well-posed.

For any F ∈ Fot , by item 2. above we have Qt,ζ(F ) = 1F (ζ) Ps,η a.s. Since Πt is countable, there
exists a Ps,η-null set N1 such that for all ζ ∈ N c

1 we have Qt,ζ(F ) = 1F (ζ) for all F ∈ Πt. Then since
Πt is a π-system generating Fot and since sets verifying the previous relation define a λ-system, we
have by Dynkin’s lemma (see 4.11 in [1]) that for all ζ ∈ N c

1 ,Qt,ζ(F ) = 1F (ζ) for all F ∈ Fot . Now for
every fixed ζ ∈ N c

1 , since {ω : ωt = ζt} ∈ Fot , we haveQt,ζ(ωt = ζt) = 1{ω:ωt=ζt}(ζ) = 1, which is the
first item of Definition 5.5.4 related to MP t,ζ(χ).

We then show that for Ps,η-almost all ζ, the elements of χ are (Qt,ζ ,Fo)-martingales, which con-
stitutes the second item of Definition 5.5.4.
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For any t1 ≤ t2 in [t,+∞[, M ∈ χ and F ∈ Fot1 , we have

EQ
t,ζ

[(Mt2 −Mt1)1F ] = Es,η[(Mt2 −Mt1)1F |Ft](ζ)
= Es,η[Es,η[(Mt2 −Mt1)1F |Ft1 ]|Ft](ζ)
= Es,η[Es,η[(Mt2 −Mt1)|Ft1 ]1F |Ft](ζ)
= 0,

(5.5.7)

for Ps,η almost all ζ by Remark 5.5.5 since M is a (Ps,η,F)-martingale on[s,+∞[ and F ∈ Fot1 ⊂ Ft1 .
Since χ and the set of rational numbers are countable and taking into account the fact that for any
r ≥ 0, For is countably generated, there exists a Ps,η-null set N2 such that for any ζ ∈ N c

2 , we have for
any t1 ≤ t2 in [t,+∞[∩Q, M ∈ χ, F ∈ Fot1 , that EQ

t,ζ
[(Mt2 −Mt1)1F ] = 0.

Let ζ ∈ N c
2 . We will now show that this still holds for any t1 ≤ t2 in [t,+∞[, M ∈ χ, F ∈ Fot1 .

We consider rational valued sequences (tn1 )n (resp. (tn2 )n) which converge to t1 (resp. to t2) strictly
from the right and such that tn1 ≤ tn2 for all n. For all n, EQ

t,ζ
[(Mtn2

−Mtn1
)1F ] = 0; since M is right-

continuous and bounded on finite intervals, by dominated convergence, we can pass to the limit in
n and we obtain EQ

t,ζ
[(Mt2 −Mt1)1F ] = 0. Therefore if ζ /∈ N1

⋃
N2 which is Ps,η-negligible, then

Qt,ζ(ωt = ζt) = 1 and all the elements of χ are (Qt,ζ ,Fo)-martingales. This means thatQt,ζ = Pt,ζ by
well-posedness and concludes the proof of Proposition 5.5.12.

5.5.2 Martingale problem associated to an operator and weak generators

This section links the notion of martingale problem with respect to a natural notion of (weak) gen-
erator. In this section Notation 5.3.1 will be again in force. Let (Ps,η)(s,η)∈R+×Ω be a path-dependent
canonical class and let the corresponding path-dependent system of projectors be denoted (Ps)s∈R+ ,
see Definition 5.3.12. Let V : R+ 7−→ R+ be a non-decreasing cadlag function.

In the sequel of this section, we are given a couple (D(A), A) verifying the following.

Hypothesis 5.5.13.

1. D(A) is a linear subspace of the space of Fo-progressively measurable processes;

2. A is a linear mapping from D(A) into the space of Fo-progressively measurable processes;

3. for all Φ ∈ D(A), ω ∈ Ω, t ≥ 0,
∫ t

0 |AΦr(ω)|dVr < +∞;

4. for all Φ ∈ D(A), (s, η) ∈ R+ × Ω and t ∈ [s,+∞[, we have Es,η
[∫ t
s |A(Φ)r|dVr

]
< +∞ and

Es,η[|Φt|] < +∞.

Inspired from the classical literature (see 13.28 in [61]) we introduce a notion of weak generator.

Definition 5.5.14. We say that (D(A), A) is a weak generator of the path-dependent system of projectors
(Ps)s∈R+ if for all Φ ∈ D(A), (s, η) ∈ R+ × Ω and t ∈ [s,+∞[, we have

Ps[Φt](η) = Φs(η) +

∫ t

s
Ps[A(Φ)r](η)dVr. (5.5.8)

Definition 5.5.15. We will call martingale problem associated to (D(A), A) the martingale problem (in
the sense of Definition 5.5.4) associated to the set of processes χ constituted by the processes Φ−

∫ ·
0 A(Φ)rdVr,

Φ ∈ D(A). It will be said to be well-posed if it is well-posed in the sense of Definition 5.5.7.
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Proposition 5.5.16. (D(A), A) is a weak generator of (Ps)s∈R+ iff (Ps,η)(s,η)∈R+×Ω solves the martingale
problem associated to (D(A), A).

Moreover, if (Ps,η)(s,η)∈R+×Ω solves the well-posed martingale problem associated to (D(A), A) then
(Ps)s∈R+ is the unique path-dependent system of projectors for which (D(A), A) is a weak generator.

Proof. We start assuming that (D(A), A) is a weak generator of (Ps)s∈R+ . Let Φ ∈ D(A), s ≤ t ≤ u.
Ps,η a.s. we have

Es,η[Φu − Φt −
∫ u
t A(Φ)rdVr|Fot ](ω)

= Et,ω[Φu − Φt −
∫ u
t A(Φ)rdVr]

= Pt[Φu](ω)− Φt(ω)−
∫ u
t Pt[A(Φr)](ω)dVr

= 0,

(5.5.9)

where the first equality holds by Remark 5.3.6, the second one by Fubini’s theorem and the third one
because (D(A), A) is assumed to be a weak generator of (Ps)s∈R+ . By definition of path-dependent
canonical class, we havePs,η(ωs = ηs) = 1. By (5.5.9), for all Φ ∈ D(A), Φ−

∫ ·
s A(Φ)rdVr is a (Ps,η,Fo)-

martingale, and thereforePs,η solves the martingale problem associated to (D(A), A) starting in (s, η).
Conversely, let us assume that (Ps,η)(s,η)∈R+×Ω solves the martingale problem associated to (D(A), A).

Let Φ ∈ D(A) and (s, η) ∈ R+×Ω be fixed. By Definitions 5.5.15 and 5.5.7,M [Φ] := Φ−
∫ ·

0 A(Φ)rdVr, is
a (Ps,η,Fo)-martingale on [s,+∞[. Moreover, since Ps,η(ωs = ηs) = 1 and Φs being Fos -measurable,
we obtain Φs = Φs(η) Ps,η a.s. Therefore, for any t ≥ s, Φt − Φs(η) −

∫ t
s A(Φ)rdVr = M [Φ]t −M [Φ]s

a.s.; so taking the Ps,η expectation, by Fubini’s Theorem and Definition 5.3.12 it yields

Ps[Φt](η)− Φs(η)−
∫ t
s Ps[A(Φ)r](η)dVr

= Es,η
[
Φt − Φs(η)−

∫ t
s A(Φ)rdVr

]
= Es,η [M [Φ]t −M [Φ]s]
= 0,

(5.5.10)

hence that (D(A), A) is a weak generator of (Ps)s∈R+ .
Finally assume moreover that the martingale problem is well-posed and that (D(A), A) is a weak

generator of another path-dependent system of projectors (Qs)s∈R+ with associated path-dependent
canonical class (Qs,η)(s,η)∈R+×Ω. Then by the first statement of the present proposition, (Qs,η)(s,η)∈R+×Ω

solves the martingale problem associated to (D(A), A). Since that martingale problem is well-posed
we have (Qs,η)(s,η)∈R+×Ω = (Ps,η)(s,η)∈R+×Ω and by Proposition 5.3.11, (Qs)s∈R+ = (Ps)s∈R+ .

Remark 5.5.17. When the conditions of previous proposition are verified, one can therefore associate analyti-
cally to (D(A), A) a unique path-dependent system of projectors (Ps)s∈R+ through Definition 5.5.14.

Combining Proposition 5.5.16 and Lemma 5.4.4 yields the following.

Corollary 5.5.18. Assume that (Ps,η)(s,η)∈R+×Ω is progressive and fulfills Hypothesis 5.3.5. Suppose that
(D(A), A) is a weak generator of (Ps)s∈R+ . Let Φ ∈ D(A), and fix (s, η). Then Φ −

∫ ·
0 A(Φ)rdVr admits

on [s,+∞[ a Ps,η version M [Φ]s,η which is a (Ps,η,Fs,η)-cadlag martingale. In particular, the random field
defined byM [Φ]t,u(ω) := Φu(ω)−Φt(ω)−

∫ u
t AΦr(ω)dVr defines a MAF with cadlag versionM [Φ]s,η under

Ps,η.

We insist on the fact that in previous corollary, Φ is not necessarily cadlag. That result will be
crucial in the following Chapter 6.
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5.6 Weak solutions of path-dependent SDEs

We will now focus on a more specific type of martingale problem which will be associated to a path-
dependent Stochastic Differential Equation with jumps. In this section we will refer to notions of [61]
Chapters II, III, VI and [60] Chapter XIV.5.

We fix m ∈ N∗, E = Rm, the associated canonical space, see Definition 5.3.1, and a finite positive
measure F on B(Rm) not charging 0.

Definition 5.6.1. (Ω̃, F̃ , F̃, P̃,W, p) will be called a space of driving processes if (Ω̃, F̃ , F̃, P̃) is a stochastic
basis fulfilling the usual conditions, W is an m-dimensional Brownian motion and p is a Poisson measure of
intensity q(dt, dx) := dt⊗ F (dx), and W,p are optional for the underlying filtration.

We now fix the following objects defined on the canonical space.

• β, anRm-valued Fo-predictable process;

• σ, aMm(R)-valued Fo-predictable process;

• γ, anRm-valued Preo ⊗ B(Rm)-measurable function onR+ × Ω×Rm,

whereMm(R) denotes the set of real-valued square matrices of size m.

Definition 5.6.2. Let (s, η) ∈ R+×Ω. We call a weak solution of the SDE with coefficients β, σ, γ and
starting in (s, η) any probability measure Ps,η on (Ω,F) such that there exists a space of driving processes
(Ω̃, F̃ , F̃, P̃,W, p), on it an m-dimensional F̃-adapted cadlag process X̃ such that Ps,η = P̃ ◦ X̃−1 and such
that the following holds.

Let β̃ := β·(X̃(·)), σ̃ := σ·(X̃(·)) and γ̃ := γ(·, X̃(·), ·). We have the following.

• for all t ∈ [0, s], X̃t = η(t) P̃ a.s.;

•
∫ ·
s

(
‖β̃r‖+ ‖σ̃r‖2 +

∫
Rm

(‖γ̃(r, ·, y)‖+ ‖γ̃(r, ·, y)‖2)F (dy)
)
dr takes finite values P̃ a.s.;

• X̃i
t = ηi(s) +

∫ t
s β̃

i
rdr +

∑
j≤m

∫ t
s σ̃

i,j
r dW

j
r + γ̃i ? (p− q)t P̃ a.s. for all t ≥ s, i ≤ m,

where ? is the integration against random measures, see [61] Chapter II.2.d for instance.

Remark 5.6.3. Previous Definition 5.6.2 corresponds to Definition 14.73 in [60]. However, in the second item
we have required that ∫ ·

s

∫
Rm

(‖γ̃(r, ·, y)‖+ ‖γ̃(r, ·, y)‖2)F (dy)dr

takes finite values a.s. so that γ̃ ? (p − q) is a well-defined purely discontinuous locally square integrable
martingale with angle bracket theMm(R)-valued process

∫ ·∨s
s

∫
Rm

γ̃γ̃ᵀ(r, ·, y)F (dy)dr, (see Definition 1.27,
Proposition 1.28 and Theorem 1.33 in [60] chapter II) and we will not need to use any truncation function.

With this definition, ifPs,η is a weak solution of the SDE starting at some (s, η), then underPs,η, (Xt)t≥s
is a special semimartingale.

Definition 5.6.4. Let s ∈ R+ and (Yt)t≥s be a cadlag special semimartingale defined on the canonical space
with (unique) decomposition Y = Ys + B + M c + Md where B is predictable with bounded variation, M c

a continuous local martingale, Md a purely discontinuous local martingale, all three vanishing at the initial
time t = s. We will call characteristics of Y the triplet (B,C, ν) where C = 〈M c〉 and ν is the predictable
compensator of the measure of the jumps of Y .
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There are several known equivalent characterizations of weak solutions of path-dependent SDEs
with jumps which we will now state in our setup.

Notation 5.6.5. For every f ∈ C2
b (Rm) and t ≥ 0, we denote by Atf the r.v.

βt · ∇f(Xt) +
1

2
Tr(σtσ

ᵀ
t∇2f(Xt)) +

∫
Rm

(f(Xt + γ(t, ·, y))− f(Xt)−∇f(Xt) · γ(t, ·, y))F (dy). (5.6.1)

Proposition 5.6.6. Let (s, η) ∈ R+×Ω be fixed and letP ∈ P(Ω). There is equivalence between the following
properties.

1. P is a weak solution of the SDE with coefficients β, σ, γ starting in (s, η);

2. P(ωs = ηs) = 1 and (Xt)t≥s is under P a special semimartingale with characteristics

• B =
∫ ·
s βrdr;

• C =
∫ ·
s(σσ

ᵀ)rdr;

• ν : (ω,G) 7→
∫ +∞
s

∫
E 1G(r, γ(ω, r, y))1{γ(ω,r,y)6=0}F (dy)dr;

3. P solves MP s,η(χ) where χ is constituted of processes f(X·)−
∫ ·

0 Arfdr for all f ∈ C2
b (Rm).

4. P solves MP s,η(χ′) where χ′ is constituted of processes f(X·) −
∫ ·

0 Arfdr for all functions f : x 7→
cos(θ · x) and f : x 7→ sin(θ · x) with θ ∈ Qm.

Proof. Equivalence between items 1. and 2. is a consequence of Theorem 14.80 in [60]. The equiva-
lence between items 2., 3. and 4. if θ was ranging in Rm is shown in Theorem 2.42 of [61] chapter II.
Observe that 4. is stated for θ ∈ Rm; however the proof of the implication (4. =⇒ 2.) in Theorem 2.42
of [61] chapter II only uses the values of θ inQm.

Theorem 5.6.7. Assume that for any (s, η) ∈ R+×Ω, the SDE with coefficients β, σ, γ and starting in (s, η)
admits a unique weak solution Ps,η. Then (Ps,η)(s,η)∈R+×Ω is a path-dependent canonical class verifying
Hypothesis 5.3.5.

Proof. By Proposition 5.6.6, Ps,η is for each (s, η) the unique solution of MP s,η(χ) where χ is consti-
tuted of the processes f(X·) −

∫ ·
s Arfdr for all functions f : x 7→ cos(θ · x) or f : x 7→ sin(θ · x) with

θ ∈ Qm. Since χ is a countable set of cadlag Fo-adapted processes which are bounded on bounded
intervals, we can conclude by Proposition 5.5.12.

We recall two classical examples of conditions on the coefficients for which it is known that there
is existence and uniqueness of a weak solution for the path-dependent SDE, hence for which the
above theorem applies, see Theorem 14.95 and Corollary 14.82 in [60].

Example 5.6.8. We suppose β, σ, γ to be bounded. Moreover we suppose that for all n ∈ N∗ there exist
Kn

2 ∈ L1
loc(R+) and a Borel function Kn

3 : Rm × R+ → R such that
∫
Rm

Kn
3 (·, y)F (dy) ∈ L1

loc(R+)
verifying the following.

For all x ∈ Rm, t ≥ 0 and ω, ω′ ∈ Ω such that sup
r≤t
‖ω(r)‖ ≤ n and sup

r≤t
‖ω′(r)‖ ≤ n, we have

• ‖σt(ω)− σt(ω′)‖ ≤ Kn
2 (t)sup

r≤t
‖ω(r)− ω′(r)‖2;

• ‖γ(t, ω, x)− γ(t, ω′, x)‖ ≤ Kn
3 (t, x)sup

r≤t
‖ω(r)− ω′(r)‖2.
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Finally we suppose that one of the two following hypotheses is fulfilled.

1. For all n ∈ N∗, there exists Kn
1 ∈ L1

loc(R+) such that for all t ≥ 0 and ω, ω′ ∈ Ω verifying
sup
r≤t
‖ω(r)‖ ≤ n and sup

r≤t
‖ω′(r)‖ ≤ n, we have ‖βt(ω)− βt(ω′)‖ ≤ Kn

1 (t)sup
r≤t
‖ω(r)− ω′(r)‖;

2. there exists c > 0 such that for all x ∈ Rm, t ≥ 0 and ω ∈ Ω, xᵀσt(ω)σt(ω)ᵀx ≥ c‖x‖2.

If the assumptions of Theorem 5.6.7 are fulfilled and β, σ (resp. γ) are bounded and continuous in
ω for fixed t (resp. fixed t, y), then (s, η) 7−→ Ps,η is continuous for the topology of weak convergence,
and in particular, the path-dependent canonical class is progressive hence all results of Section 5.4 can
be applied with respect to (Ps,η)(s,η)∈R+×Ω.

Proposition 5.6.9. Assume that that β, σ, γ are bounded. Let (sn, ηn)n be a sequence in Λ which converges
to some (s, η). For every n ∈ N, let Pn be a weak solution starting in (sn, ηn) of the SDE with coefficients
β, σ, γ. Then (Pn)n≥0 is tight.

We recall some notations from [61] Chapter VI which we will use in the proof of Proposition 5.6.9.

Notation 5.6.10. For any ω ∈ Ω and interval I of R+, we denote W (ω, I) := sup
s,t∈I
‖ω(t) − ω(s)‖. For any

ω ∈ Ω, N ∈ N? and θ > 0, we write
WN (ω, θ) := sup

0≤t≤t+θ≤N
W (ω, [t, t+ θ]) = sup

s,t∈[0,N ]: |t−s|≤θ
‖ω(t)− ω(s)‖.

For any ω ∈ Ω, N ∈ N? and θ > 0, we denote

W ′N (ω, θ) := inf
{

max
i≤r

W (ω, [ti−1, ti[) : 0 = t0 < · · · < tr = N ; ∀1 ≤ i ≤ r : ti − ti−1 ≥ θ
}

.

We will also recall the classical general tightness criterion in P(Ω) which one can find for example
in Theorem 3.21 of [61] Chapter VI.

Theorem 5.6.11. Let (Pn)n≥0 be a sequence of elements ofP(Ω), then it is tight iff it verifies the two following
conditions. ∀N ∈ N

∗ ∀ε > 0 ∃K > 0 ∀n ∈ N : Pn

(
sup
t≤N
‖ω(t)‖ > K

)
≤ ε

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ ∀n ∈ N : Pn(W ′N (ω, θ) < α) ≥ 1− ε.
(5.6.2)

Finally we will also need to introduce a definition.

Definition 5.6.12. A sequence of probability measures on (Ω,F) is called C-tight if it is tight and if each of
its limiting points has all its support in C(R+,R

m).

Proof of Proposition 5.6.9.
We fix a converging sequence (sn, ηn) −→

n
(s, η) in Λ, and for every n, a weak solution Pn of the

SDE with coefficients β, σ, γ starting in (sn, ηn). In order to show that (Pn)n≥0 is tight, we will use
Theorem 5.6.11. The main idea consists in combining the fact that the canonical processX underPn is
deterministic on [0, sn], where it coincides with ηn with the fact that on [sn,+∞[ it is a semimartingale
with known characteristics. So we will split the study of the modulus of continuity of path ω on these
two intervals [0, sn] and [sn,+∞[.

Since ηn tends to η, the set {ηn : n ≥ 0} is relatively compact in Ω so by Theorem 1.14.b in [61]
Chapter VI we have ∀N ∈ N

∗ ∃K1 > 0 ∀n ∈ N : sup
t∈[0,N ]

‖ηn(t)‖ ≤ K1

∀N ∈ N∗ ∀α > 0 ∃θ1 > 0 ∀n ∈ N : W ′N (ηn, θ1) < α.
(5.6.3)
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For fixed n ∈ N, we now introduce the process
Xn : ω 7−→ ηn(sn)1[0,sn[ + ω1[sn,+∞[, we denote byQn := Pn ◦ (Xn)−1 ∈ P(Ω) its law under Pn and
we now show that (Qn)n≥0 is tight.

By Proposition 5.6.6, underPn , (Xt)t∈[sn,+∞[ is a special semimartingale with initial value ηn(sn)
and characteristics (see Definition 5.6.4)

∫ ·
sn
βrdr,

∫ ·
sn

(σσᵀ)rdr and
(ω,A) 7→

∫ +∞
sn

∫
Rm

1A(r, γ(r, ω, y))1{γ(r,ω,y)6=0}F (dy)dr. Therefore, since Xn is constant on [0, sn[ and
since on [sn,+∞[ its law under Pn coincides with the one of X , we can say that Qn is the law
of a special semimartingale (starting at time t = 0) with initial value ηn(sn), and characteristics∫ ·

0 1[sn,+∞[(r)βrdr,
∫ ·

0 1[sn,+∞[(r)(σσ
ᵀ)rdr and

(ω,G) 7→
∫ +∞

0 1[sn,+∞[(r)
∫
Rm

1G(r, γ(r, ω, y))1{γ(r,ω,y)6=0}F (dy)dr.
Theorem 4.18 in [61] chapter VI implies that (Qn)n≥0 is tight if and only if the properties below hold
true.

1. (Qn ◦X−1
0 )n≥0 is tight;

2. the following sequences are C-tight (under (Qn)n≥0):

(a) (Bn :=
∫ ·

0 1[sn,+∞[(r)βrdr)n≥0;

(b)
(
C̃n :=

∫ ·
0 1[sn,+∞[(r)

(
(σσᵀ)r +

∫
Rm

(γγᵀ)(r, ·, y)F (dy)
)
dr
)
n≥0

;

(c)
(
Gnp :=

∫ ·
0 1[sn,+∞[(r)

∫
Rm

1{γ(r,ω,y) 6=0}((p‖γ(r, ·, y)‖ − 1)+) ∧ 1F (dy)dr
)
n≥0

for all p ∈ N;

3. for all N > 0, ε > 0,

lim
a→∞

sup
n
Qn

(∫ N

sn

∫
Rm

1{‖γ(r,·,y)‖>a}F (dy)dr > ε

)
= 0. (5.6.4)

Item 3. trivially holds since γ is bounded. At this point ηn(sn) is a bounded sequence according to the
first line of (5.6.3) and the fact that the sequence (sn)n≥0 is bounded, so (Qn ◦X−1

0 )n≥0 = (δηn(sn))n≥0

is obviously tight. We are left to show item 2. By Proposition 3.36 in [61] chapter VI, items 2. (a) and
2. (b) hold if (V ar(Bn))n≥0 = (

∫ ·
0 1[sn,+∞[(r)‖βr‖dr)n≥0 and

(Tr(C̃n))n≥0 =
(∫ ·

0 1[sn,+∞[(r)
(
Tr(σσᵀr ) +

∫
Rm

Tr(γγᵀ(r, ·, y))F (dy)
)
dr
)
n≥0

are C-tight. Finally, β, σ, γ, F
being bounded, there exists some strictly positive constant K such that all the processes given below
are increasing:

• t 7→ Kt− V ar(Bn)t, n ≥ 0;

• t 7→ Kt− Tr(C̃nt ), n ≥ 0;

• t 7→ Kt− (Gnp )t, n, p ≥ 0.

In the terminology of [61] chapter VI, this means that the increasing processes V ar(Bn), n ≥ 0,
Tr(C̃n), n ≥ 0, Gnp n, p ≥ 0 are strongly dominated by the increasing function t 7→ Kt. The sin-
gleton t 7→ Kt being trivially C-tight, Proposition 3.35 in [61] chapter VI implies that the dominated
sequences of processes (V ar(Bn))n≥0, (Tr(C̃n))n≥0 and (Gnp )n≥0 for all p are C-tight. Finally (Qn)n≥0

is tight.
Now by Theorem 5.6.11 this implies that ∀N ∈ N

∗ ∀ε > 0 ∃K2 > 0 ∀n ∈ N : Qn

(
sup
t≤N
‖ω(t)‖ > K2

)
≤ ε

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ2 ∀n ∈ N : Qn(W ′N (ω, θ2) < α) ≥ 1− ε.
(5.6.5)
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Combining the first line of (5.6.3) and the first line of (5.6.5) and by construction of Qn, taking K =
K1 +K2 for instance, we have

∀N ∈ N∗ ∀ε > 0 ∃K > 0 ∀n ∈ N : Pn

(
sup
t≤N
‖ω(t)‖ > K

)
≤ ε. (5.6.6)

Our aim is now to show that

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ ∀n ∈ N : Pn(W ′N (ω, θ) < α) ≥ 1− ε; (5.6.7)

this combined with (5.6.6) will imply by Theorem 5.6.11 that (Pn)n≥0 is tight.
In what follows, if η, ω ∈ Ω and s ∈ R+, η ⊗s ω will denote the path η1[0,s[ + ω1[s,+∞[, which still

belongs to Ω.
By construction of Qn, for every n, Pn is the law of ηn ⊗sn ω under Qn. Therefore, (5.6.7) is

equivalent to

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ ∀n ∈ N : Qn(W ′N (ηn ⊗sn ω, θ) < α) ≥ 1− ε, (5.6.8)

and this is what we will now show to conclude the proof of Proposition 5.6.9. So we prove (5.6.8).
We fix some N ∈ N∗, α > 0 and ε > 0. Combining the second lines of (5.6.3) and of (5.6.5), there

exists θ > 0 such that for all n ≥ 0,{
W ′N (ηn, θ) <

α
4

Qn(W ′N (ω, θ) < α
4 ) ≥ 1− ε. (5.6.9)

We show below that, for every n

{ω|W ′N (ω, θ) <
α

4
} ⊂ {ω|W ′N (ηn ⊗sn ω, θ) < α}. (5.6.10)

This together with (5.6.9) will imply that for all n,

Qn(W ′N (ηn ⊗sn ω, θ) < α) ≥ Qn(W ′N (ω, θ) <
α

4
) ≥ 1− ε,

hence that (5.6.8) is verified.
We fix n. To establish (5.6.10) let ω be such that W ′N (ω, θ) < α

4 ; we need to show that

W ′N (ηn ⊗sn ω, θ) < α. (5.6.11)

By the first line of (5.6.9) and the definition of W ′N (see Notation 5.6.10), there exist two subdivisions
of [0, N ] 0 = t10 < · · · < t1r1 = N , 0 = t20 < · · · < t2r2 = N with increments tji − t

j
i−1 ≥ θ for all 1 ≤ i ≤ rj

and j = 1, 2, such that {
W (ηn, [t

1
i−1, t

1
i [) ≤ α

4 for all 1 ≤ i ≤ r1

W (ω, [t2i−1, t
2
i [) ≤ α

4 for all 1 ≤ i ≤ r2.
(5.6.12)

We set i∗j := max {i : tji ≤ sn} for j = 1, 2 and introduce the third subdivision

(t30, · · · , t3r3) := (t10, · · · , t1i∗1−1, t
2
i∗2+1, · · · , t2r2), (5.6.13)

which we represent in the following graphic.
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As for the other two, the subdivision of [0, N ] above verifies t3i − t3i−1 ≥ θ for all i. Indeed, t3i − t3i−1 is
either equal to t1i −t1i−1 ≥ θ for some i, or to t2j−t2j−1 ≥ θ for some j, or to t2i∗2+1−t1i∗1−1 ≥ t1i∗1−t

1
i∗1−1 ≥ θ

where the first inequality follows by the fact that t1i∗1−1 ≤ t1i∗1 ≤ sn < t2i∗2+1.
Now by definition of W ′N (ηn ⊗sn ω, θ), in order to show (5.6.11) and conclude this proof, it is

enough to show that
W (ηn ⊗sn ω, [t3i−1, t

3
i [) < α, (5.6.14)

for all 1 ≤ i ≤ r3.
If i ≤ i∗1 − 1, then [t3i−1, t

3
i [= [t1i−1, t

1
i [⊂ [0, sn[ where ηn ⊗sn ω coincides with ηn so W (ηn ⊗sn

ω, [t3i−1, t
3
i [) = W (ηn, [t

1
i−1, t

1
i [) ≤ α

4 < α by the first line of (5.6.12). Similarly, if i ≥ i∗1 + 1, then
[t3i−1, t

3
i [= [t2i−i∗1+i∗2

, t2i−i∗1+i∗2+1[⊂ [sn,+∞[ where ηn ⊗sn ω coincides with ω so W (ηn ⊗sn ω, [t3i−1, t
3
i [) =

W (ω, [t2i−i∗1+i∗2
, t2i−i∗1+i∗2+1[) ≤ α

4 < α by the second line of (5.6.12). Finally, we consider the specific
case i = i∗1 meaning that [t3i−1, t

3
i [= [t1i∗1−1, t

2
i∗2+1[ contains sn. We have

W (ηn ⊗sn ω, [t1i∗1−1, t
2
i∗2+1[) ≤ W (ηn ⊗sn ω, [t1i∗1−1, t

1
i∗1

[)

+ W (ηn ⊗sn ω, [t1i∗1 , sn[) +W (ηn ⊗sn ω, [sn, t2i∗2+1[)

≤ W (ηn, [t
1
i∗1−1, t

1
i∗1

[) +W (ηn, [t
1
i∗1
, sn[) +W (ω, [sn, t

2
i∗2+1[)

≤ W (ηn, [t
1
i∗1−1, t

1
i∗1

[) +W (ηn, [t
1
i∗1
, t1i∗1+1[)

+ W (ω, [t2i∗2
, t2i∗2+1[)

≤ α
4 + α

4 + α
4

< α,

(5.6.15)

by (5.6.12). So (5.6.14) is verified for all i and the proof is complete.

Proposition 5.6.13. Assume that β, σ (resp. γ) are bounded and that for Lebesgue almost all t (resp. dt⊗ dF
almost all (t, y)), β(t, ·), σ(t, ·) (resp. γ(t, ·, y)) are continuous. Assume that for any (s, η) ∈ R+×Ω there ex-

ists a unique weak solutionPs,η of the SDE of coefficients β, σ, γ starting in (s, η). Then (s, η) 7−→ Ps,η

Λ −→ P(Ω)
is continuous. Moreover the path-dependent canonical class (Ps,η)(s,η)∈R+×Ω is progressive.

Remark 5.6.14. Taking Theorem 5.6.7 into account, the family of probabilities (Ps,η)(s,η)∈R+×Ω of Proposition
5.6.13 constitutes a progressive path-dependent canonical class verifying Hypothesis 5.3.5. It therefore verifies
Hypothesis 5.4.1 and all results of Section 5.4 apply.

Proof. of Proposition 5.6.13.
We consider a convergent sequence (sn, ηn) −→

n
(s, η) in Λ. Since β, σ, γ are bounded, by Proposition

5.6.9 (Psn,ηn)n∈N is tight, hence relatively compact by Prokhorov’s theorem. We consider a subse-
quence Psnk ,ηnk −→

k
Q and we show below that Q is a weak solution of the SDE with coefficients

β, σ, γ, starting at (s, η). Since that problem has a unique solution, we will have Q = Ps,η. This will
imply that Psn,ηn −→

n
Ps,η, hence the announced continuity.

We will indeed verify item 3. of Proposition 5.6.6. For the convenience of the reader, we will omit
the extraction of the subsequence in the notations.

We start by showing
Q(ωs = ηs) = 1. (5.6.16)

The set
D := {t ∈ R+ : Q(Xt 6= Xt−) > 0} ∪

{
t ∈ [0, s] : η(t) 6= η(t−)

}
, (5.6.17)
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is countable first because η is a cadlag function and second because of Proposition 3.12 in [61] Chapter
VI which states that, for every probabilityQ on (Ω,F), the set D0 := {t ∈ R+ : Q(Xt 6= Xt−) > 0} is
countable. If t /∈ D0 then

Psn,ηn ◦X−1
t =⇒

n
Q ◦X−1

t , (5.6.18)

by Proposition 3.14 ibidem. Since ηn converges to η in the Skorokhod topology, if t /∈ D (t is a
continuity point of η), then it follows that ηn(t) −→

n
η(t), see Proposition 2.3 of [61] Chapter VI.

Let ε > 0, t ∈ [0, s− ε]∩Dc be fixed. Since sn tends to s, we can suppose without loss of generality
that sn ≥ s− ε for all n, so that Psn,ηn ◦X−1

t = δηn(t). By (5.6.18) this sequence converges toQ ◦X−1
t

which is therefore necessarily equal to δη(t) since ηn(t) tends to η(t) being t /∈ D. This means that

Q(ω(t) = η(t)) = 1, (5.6.19)

for all t ∈ [0, s − ε] ∩ Dc. Since ε > 0 is arbitrary, (5.6.19) holds for all t ∈ [0, s[∩Dc; and since ω is
right-continuous and D is countable, (5.6.19) holds for all t ∈ [0, s[. We will now show that (5.6.19)
also holds for t = s. We first note that

ηn(sn) −→
n

η(s). (5.6.20)

Indeed, without restriction of generality we can consider that sn ≤ s+ 1, so since (sn, ηn(sn)) ∈ Λ, ηn
is constantly equal to ηn(sn) on [sn,+∞[ which contains [s+1,+∞[. On the other hand η is constantly
equal to η(s) on [s,+∞[ which also contains [s+ 1,+∞[, and ηn tends to η almost everywhere on that
interval, because it converges in the Skorokhod sense. So necessarily (5.6.20) holds.

We fix now some f ∈ C∞c (Rm). For all n, since Psn,ηn is a weak solution of the SDE starting
at (sn, ηn) and by Proposition 5.6.6, it follows that f(ω(·)) − f(ηn(sn)) −

∫ ·
sn
Arf(ω)dr (see Notation

5.6.5) is a martingale on [sn,+∞[ underPsn,ηn vanishing in sn. We consider a sequence (tp)p∈N in Dc

converging to t strictly from the right. For all n, p we have

Esn,ηn [f(ω(tp))] = f(ηn(sn)) +Esn,ηn
[∫ tp
sn
Arf(ω)dr

]
= f(ηn(sn)) +Esn,ηn

[∫ tp
s Arf(ω)dr

]
+
∫ s
sn
Esn,ηn [Arf(ω)]dr,

(5.6.21)

where the second equality holds by Fubini’s theorem since Arf(ω) is uniformly bounded for r vary-
ing on bounded intervals. We now pass to the limit in n. Since tp /∈ D, taking into account (5.6.18),
we have Psn,ηn ◦X−1

tp =⇒
n
Q ◦X−1

tp ; moreover f is bounded and continuous, so

Esn,ηn [f(ω(tp))] −→
n
EQ[f(ω(tp))]. (5.6.22)

Since β, σ, γ are bounded and β(r, ·), σ(r, ·) (resp. γ(r, ·, y)) are continuous for Lebesgue almost all
r (resp. dt ⊗ dF almost all (r, y)) and since f ∈ C∞c , then Φ : ω 7−→

∫ tp
s Arf(ω)dr is a bounded

continuous functional for the Skorokhod topology, so

Esn,ηn
[∫ tp

s
Arf(ω)dr

]
−→
n
EQ

[∫ tp

s
Arf(ω)dr

]
. (5.6.23)

Finally since sn tends to s and Arf is uniformly bounded for r varying on bounded intervals, we
have ∫ s

sn

Esn,ηn [Arf(ω)]dr −→
n

0. (5.6.24)

Combining relations (5.6.21), (5.6.20), (5.6.22), (5.6.23), (5.6.24), for all p, we get

EQ[f(ω(tp))] = f(η(s)) +EQ
[∫ tp

s
Arf(ω)dr

]
. (5.6.25)
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We now pass to the limit in p. Since tp tends to s from the right and ω is right-continuous, the left-hand
side of (5.6.25) tends to EQ[f(ω(s))]. By dominated convergence, the second term in the right-hand
side of (5.6.25) tends to 0. This yields EQ[f(ω(s))] = f(η(s)) and this holds for all f ∈ C∞c (Rm),
which implies thatQ ◦X−1

s = δη(s). So we have shown (5.6.16).
We will proceed showing that Q solves weakly the SDE with respect to β, σ, γ starting in (s, η).

By Proposition 5.6.6 this holds iff for any f ∈ C2
b (Rm), f(X·) −

∫ ·
s Arfdr is a (Q,Fo)-martingale. We

fix such an f , some t ≤ u in ]s,+∞[∩Dc, N ∈ N∗, t1 ≤ · · · ≤ tN ∈ [s, t] ∩ Dc and φ1, · · · , φN ∈
Cb(Rm,R). Taking into account Proposition 5.6.6, since s < t, for n large enough, we can suppose
that f(X·)−

∫ ·
t Arfdr is under every Psn,ηn a martingale on the interval [t,+∞[. Therefore, for all n,

we have

Esn,ηn
[(
f(ω(u))− f(ω(t))−

∫ u

t
Arf(ω)dr

)
Π

1≤i≤N
φi(ω(ti))

]
= 0. (5.6.26)

We wish to pass to the limit in n. By Theorem 12.5 in [16], for any r ∈ R+, the mapping Xr is con-
tinuous on the set Cr := {ω ∈ Ω : ω(r) = ω(r−)}. By construction of D and since t, u, t1, · · · , tN /∈ D,
then Ct, Cu, Ct1 , · · · , CtN are of full Q-measure hence Φ := (X,Xu, Xt, Xt1 , · · · , XtN ) is continu-
ous on a set of full Q-measure. By the mapping theorem (see Theorem 2.7 in [16] for instance),
since Psn,ηn =⇒

n
Q and Φ is continuous on a set of full Q-measure, then Psn,ηn ◦ Φ−1 =⇒

n
Q ◦

Φ−1, meaning Psn,ηn ◦ (X,Xu, Xt, Xt1 , · · · , XtN )−1 =⇒
n
Q ◦ (X,Xu, Xt, Xt1 , · · · , XtN )−1. Since ω 7→∫ u

t Arf(ω)dr, f, φ1, · · · , φN are bounded continuous functions, the previous convergence in law al-
lows to pass to the limit in n in (5.6.26) so that for any t ≤ u ∈]s,+∞[∩Dc and t1, · · · , tN ∈ [s, t] ∩Dc

EQ
[(
f(ω(u))− f(ω(t))−

∫ u

t
Arf(ω)dr

)
Π

1≤i≤N
φi(ω(ti))

]
= 0. (5.6.27)

Equality (5.6.27) still holds if t = s and if some of the values t, u, t1, · · · , tN belong to D. Indeed to
show this statement we approximate from the right such values by sequences of times not belong-
ing to D and strictly greater than s and we then use the right-continuity of ω and the dominated
convergence theorem.

By use of the functional monotone class theorem (see Theorem 21 in [32] Chapter I), we have

EQ
[(
f(ω(u))− f(ω(t))−

∫ u

t
Arf(ω)dr

)
1G

]
= 0, (5.6.28)

for any s ≤ t ≤ u and G ∈ σ(Xr|r ∈ [s, t]). Since Q(ωs = ηs) = 1 then Fos is Q-trivial, so equality
(5.6.28) holds for all G = Gs ∩Gst where Gs ∈ Fos and Gst ∈ σ(Xr|r ∈ [s, t]). Events of such type form
a π-system generating Fot so by Dynkin’s Lemma, (5.6.28) holds for all G ∈ Fot . For all s ≤ t ≤ u,
then we have

EQ
[(
f(ω(u))− f(ω(t))−

∫ u

t
Arf(ω)rdr

)∣∣∣∣Fot ] = 0. (5.6.29)

So f(X) −
∫ ·
s Arfrdr is a (Q,Fo)-martingale. This implies that Q is a weak solution of the SDE with

coefficients β, σ, γ starting in (s, η). As anticipated, since the SDE is well-posed for every (s, η), we
haveQ = Ps,η and the proof of the first statement is complete.

The second statement follows from the fact that a continuous function is Borel and that B(Λ) =
Λ ∩ Proo, see Proposition 5.5.3.



Appendix

5.A Proofs of Section 5.4

Proof of Proposition 5.4.6.
In the whole proof t < u will be fixed. We consider a sequence of subdivisions of [t, u]: t = tk1 < tk2 <
· · · < tkk = u such that min

i<k
(tki+1 − tki ) −→

k→∞
0. Let (s, η) ∈ [0, t] × Ω with corresponding probability

Ps,η. For any k, we have
∑
i<k

(
Mtki ,t

k
i+1

)2
=
∑
i<k

(M s,η

tki+1

−M s,η

tki
)2 Ps,η a.s., so by definition of quadratic

variation we know that
∑
i<k

(
Mtki ,t

k
i+1

)2 Ps,η−→
k→∞

[M s,η]u − [M s,η]t. In the sequel we will construct an Fou-

measurable random variable [M ]t,u such that for any (s, η) ∈ [0, t]×Ω,
∑

i<k

(
Mtki ,t

k
i+1

)2 Ps,η−→
k→∞

[M ]t,u.

In that case [M ]t,u will then be Ps,η a.s. equal to [M s,η]u − [M s,η]t.
Let η ∈ Ω. [M t,η] is Ft,η-adapted, so [M t,η]u − [M t,η]t is F t,ηu -measurable and by Corollary 5.3.21,

there is an Fou-measurable variable which depends on (t, u, η), that we denote ω 7→ at,u(η, ω) such
that at,u(η, ω) = [M t,η]u − [M t,η]t,P

t,η a.s.
We will show below that there is a jointly Fot ⊗Fou -measurable version of (η, ω) 7→ at,u(η, ω).
For every integer n ≥ 0, we set ant,u(η, ω) := n∧at,u(η, ω) which is in particular limit in probability

of n ∧
∑
i≤k

(
Mtki ,t

k
i+1

)2
under Pt,η. For any integers k, n and any η ∈ Ω, we define the finite positive

measuresQk,n,η,Qn,η andQη on (Ω,Fou) by

1. Qk,n,η(F ) := Et,η
[
1F

(
n ∧

∑
i<k

(
Mtki ,t

k
i+1

)2
)]

;

2. Qn,η(F ) := Et,η[1F
(
ant,u(η, ω)

)
];

3. Qη(F ) := Et,η[1F (at,u(η, ω))].

When k and n are fixed integers and F is a fixed event, by Remark 5.3.6,

η 7−→ Et,η
[
F

(
n ∧

∑
i<k

(
Mtki ,t

k
i+1

)2
)]

, is Fot -measurable.

Then n∧
∑
i<k

(
Mtki ,t

k
i+1

)2 Pt,η−→
k→∞

ant,u(η, ω), and this sequence is uniformly bounded by the constant n,

so the convergence takes place in L1, therefore η 7−→ Qn,η(F ) is also Fot -measurable as the pointwise

limit in k of the functions η 7−→ Qk,n,η(F ). Similarly, ant,u(η, ω)
Pt,η−a.s.−→
n→∞

at(η, ω) and is non-decreasing,

so by monotone convergence theorem, the function η 7−→ Qη(F ) is Fot -measurable being a pointwise
limit in n of the functions η 7−→ Qn,η(F ).

We make then use of Theorem 58 Chapter V in [33]: the property above, the separability of F and
the fact that for any η, Qη � Pt,η by item 3. above, imply the existence of a jointly measurable (for
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Fot ⊗ Fou) version of (η, ω) 7→ at,u(η, ω). That version will still be denoted by the same symbol. We
recall that for any η, at,u(η, ·) is the Radon-Nikodym density ofQη with respect to Pt,η.

We can now set [M ]t,u(ω) := at,u(ω, ω), which is a well-defined Fou-measurable random variable.
Since at,u is Fot -measurable in the first variable and for any η Pt,η(ωt = ηt) = 1 we have the equalities

[M ]t,u(ω) = at,u(ω, ω) = at,u(η, ω) = [M t,η]u(ω)− [M t,η]t(ω) Pt,ηa.s. (5.A.1)

We can then show that
[M ]t,u = [M s,η]u − [M s,η]t P

s,η a.s., (5.A.2)

holds for every (s, η) ∈ [0, t]×Ω, and not just in the case s = t that we have just established in (5.A.1).
This can be done reasoning as in the proof of Proposition 1.4.4 in Chapter 1, replacing the use of the
Markov property with item 3. of Definition 5.3.4.

So we have built an Fou-measurable variable [M ]t,u such that under any Ps,η with s ≤ t, [M s,η]u−
[M s,η]t = [M ]t,u a.s. and this concludes the proof.

Proof of Proposition 5.4.7.
We start defining At,t = 0 for every t ≥ 0. We then recall a property of the predictable dual
projection which we will have to extend slightly. Let us fix (s, η) and the corresponding stochas-
tic basis (Ω,Fs,η,Fs,η,Ps,η). For any F ∈ Fs,η, let N s,η,F be the cadlag version of the martingale
r 7−→ Es,η[1F |Fr]. Then for any 0 ≤ t ≤ u, the predictable projection of the process r 7→ 1F1[t,u[(r)

is r 7→ N s,η,F
r− 1[t,u[(r), see the proof of Theorem 43 Chapter VI in [33]. Therefore by definition of the

dual predictable projection (see Definition 73 Chapter VI in [33]), for any 0 ≤ t ≤ u and F ∈ Fs,η

we have Es,η
[
1F (As,η

u− −A
s,η
t )
]

= Es,η
[∫ u−
t N s,η,F

r− dBs,η
r

]
. Then, at fixed t, u, F , since for every ε > 0

we have Es,η
[
1F (As,η

(u+ε)− −A
s,η
t )
]

= Es,η
[∫ (u+ε)−

t N s,η,F
r− dBs,η

r

]
, letting ε tend to zero we obtain by

dominated convergence theorem that

Es,η [1F (As,ηu −A
s,η
t )] = Es,η

[∫ u

t
N s,η,F
r− dBs,η

r

]
, (5.A.3)

taking into account the right-continuity of As,η, Bs,η and the fact that they are both non-decreasing
processes with L1 -terminal value.

For any F ∈ F , we introduce the process NF : (t, ω) 7−→ Pt,ω(F ). NF takes values in [0, 1] for
every (t, ω), and by Definition 5.3.4, it is an Fo-progressively measurable process such that for any
(s, η) ∈ R+ × Ω, N s,η,F is a Ps,η cadlag version of NF on [s,+∞[.

For the rest of the proof, 0 ≤ t < u are fixed. Following the same proof than that of Lemma 1.4.7
in Chapter 1 but with parameter (s, x) replaced with (s, η), we obtain the following.

Lemma 5.A.1. Let F ∈ F . There exists an Fu-measurable random variable which we will call
∫ u
t N

F
r−dBr

such that for any (s, η) ∈ [0, t]× Ω,
∫ u
t N

F
r−dBr =

∫ u
t N

s,η,F
r− dBs,η

r Ps,η a.s.

Remark 5.A.2. By definition, the r.v.
∫ u
t N

F
r−dBr will not depend on (s, η).

We continue now the proof of Proposition 5.4.7 by showing that for given 0 ≤ t < u there is an
Fou-measurable r.v. At,u such that for every (s, η) ∈ [0, t]× Ω, (As,ηu −As,ηt ) = At,u Ps,η a.s.

Similarly to what we did with the quadratic variation in Proposition 5.4.6, we start noticing that
for any η ∈ Ω, (At,ηu −At,ηt ) being F t,ηu -measurable, there exists by Corollary 5.3.21 an Fou-measurable
r.v. ω 7→ at,u(η, ω) such that

at,u(η, ω) = At,ηu (ω)−At,ηt (ω) Pt,η a.s. (5.A.4)
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As in the proof of Proposition 5.4.6, we show below the existence of a jointly-measurable version of
(η, ω) 7→ at,u(η, ω).

For every η ∈ Ω we define on Fou the positive measure

Qη : F 7−→ Et,η [1Fat,u(η, ω)] = Et,η
[
1F (At,ηu −A

t,η
t )
]
. (5.A.5)

By Lemma 5.A.1 and (5.A.3), for every F ∈ Fou we have

Qη(F ) = Et,η
[∫ u

t
NF
r−dBr

]
, (5.A.6)

where we recall that
∫ u
t N

F
r−dBr does not depend on η. So by Remark 5.3.6, η 7−→ Qη(F ) is Fot -

measurable for any F . Moreover, by (5.A.5) for any η,Qη � Pt,η. Again by Theorem 58 Chapter V in
[33], there exists a version (η, ω) 7→ at,u(η, ω) -measurable for Fot ⊗Fou of the related Radon-Nikodym
densities.

We can now set At,u(ω) := at,u(ω, ω) which is then an Fou-measurable r.v.
It yields for any η ∈ Ω

At,u(ω) = at,u(ω, ω) = at,u(η, ω) = At,ηu (ω)−At,ηt (ω) Pt,η a.s. (5.A.7)

Indeed the second equality holds given that at,u is Fot -measurable with respect to the first variable,
taking into account that Pt,η(ωt = ηt) = 1; the third equality follows by (5.A.4).

We now set s < t and η ∈ Ω. We want to show that we still have
At,u = As,ηu −As,ηt Ps,η a.s. So we consider F ∈ Fou; we compute

Es,η [1F (As,ηu −As,ηt )] = Es,η
[∫ u
t N

F
r−dBr

]
= Es,η

[
Es,η

[∫ u
t N

F
r−dBr|Ft

]]
= Es,η

[
Et,ω

[∫ u
t N

F
r−dBr

]]
= Es,η

[
Et,ω [1FAt,u]

]
= Es,η [Es,η [1FAt,u|Ft]]

= Es,η [1FAt,u] .

(5.A.8)

Indeed, the first equality comes from (5.A.3) and Lemma 5.A.1; concerning the fourth equality we
recall that, by (5.A.5), (5.A.6) and (5.A.7), we have Et,ω

[∫ u
t N

F
r−dBr

]
= Et,ω [1FAt,u] for all ω. The

third and fifth equalities come from Remark 5.3.6.
Since adding Ps,η-null sets does not change the validity of (5.A.8), by Proposition 5.3.20 for any

F ∈ Fs,ηu we have Es,η [1F (As,ηu −As,ηt )] = Es,η [1FAt,u].
Finally, since bothAs,ηu −As,ηt andAt,u areFs,ηu -measurable, we can conclude thatAs,ηu −As,ηt = At,u

Ps,η a.s. We emphasize that this holds for any t ≤ u and (s, η) ∈ [0, t]×Ω, so (At,u)(t,u)∈∆ is the desired
path-dependent AF, which ends the proof of Proposition 5.4.7.

Proof of Proposition 5.4.10.
We set

Ct,u = At,u + (Vu − Vt) + (u− t), (5.A.9)

which is a path-dependent AF with cadlag versions Cs,ηt = As,ηt + Vt + t and we start by showing the
statement for A and C instead of A and V .

The reason of the introduction of the intermediary function C is that for any u > t we have
As,ηu −As,ηt
Cs,ηu −Cs,ηt

∈ [0, 1]; that property will be used extensively in connection with the application of domi-
nated convergence theorem.
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Since As,η is non-decreasing for any (s, η) ∈ R+ × Ω, A can be taken positive (in the sense that
At,u(ω) ≥ 0 for any (t, u) ∈ ∆ and ω ∈ Ω) by considering A+ (defined by (A+)t,u(ω) := At,u(ω)+)
instead of A. OnR+ we set

Kt = liminf
n→∞

At,t+ 1
n

At,t+ 1
n

+ 1
n + (Vt+ 1

n
− Vt)

(5.A.10)

= lim
n→∞

lim
m→∞

min
n≤p≤m

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

.

This liminf always exists and belongs to [0, 1] since the sequence belongs to [0, 1]. For any (s, η) ∈
R+ × Ω, since for all t ≥ s and n ≥ 0,

At,t+ 1
n

= As,η
t+ 1

n

− As,ηt Ps,η a.s., then Ks,η defined by Ks,η
t := liminf

n→∞

As,η
t+ 1
n
−As,ηt

Cs,η
t+ 1
n
−Cs,ηt

is a Ps,η-version of K,

for t ∈ [s,+∞[.
By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [34] for a version of the theo-

rem with a general atomless measure), for any (s, η), forPs,η-almost all ω, since dCs,η(ω) is absolutely
continuous with respect to dAs,η(ω), Ks,η(ω) is a density of dAs,η(ω) with respect to dCs,η(ω).
For any t ≥ 0,Kt is measurable with respect to

⋂
n≥0
Fo
t+ 1

n

= Ft, by definition of the canonical filtration.

For any (t, ω) ∈ R+ × Ω, we now set
kt(ω) := Et,ω[Kt]. (5.A.11)

Remark 5.3.6 implies that k is an Fo-adapted process. The path-dependent canonical class verifies
Hypothesis 5.3.5, and Kt is Ft-measurable then for any (s, η) ∈ [t,+∞[×Ω, Kt(ω) = Es,η[Kt|Ft](ω) =
Et,ω[Kt] = kt(ω) Ps,η-a.s. hence k is on [s,+∞[ a Ps,η-version of K, and therefore of Ks,η.

The next main object of this proof is to show that k is an Fo-progressively measurable process.
For any integers (n,m), we define

kn,m : (t, η) 7→ Et,η
 min
n≤p≤m

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

 ,
and for all n,

kn : (t, η) 7→ Et,η
inf
p≥n

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

 . (5.A.12)

We start showing that

k̃n,m :
((s, η), t) 7−→ Es,η

[
min
n≤p≤m

A
t,t+1

p

A
t,t+1

p
+ 1
p

+(V
t+1
p
−Vt)

]
1s≤t,

(R+ × Ω)×R+ −→ [0, 1],

(5.A.13)

is measurable with respect to Proo ⊗ B(R+). In order to do so, we will show that it is measurable
in the first variable (s, η), and right-continuous in the second variable t, and conclude with Lemma
1.4.12 in Chapter 1.

We fix t ∈ R+. Since the path-dependent canonical class is progressive, by Remark 5.3.6, the map

(s, η) 7−→ Es,η

 min
n≤p≤m

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

 (5.A.14)

R+ × Ω −→ [0, 1],
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is measurable with respect to Proo. The map (s, η) 7−→ 1[t,+∞[(s) is also trivially measurable with
respect to Proo; therefore the product of the latter map and (5.A.14), that we denote by k̃(·, ·, t) is also
measurable with respect to Proo. Moreover, if we fix (s, η) ∈ R+ × Ω, reasoning exactly as in the
proof of Proposition 1.4.13 in Chapter 1 we see that t 7→ k̃n,m(s, η, t) is right-continuous, which by
Lemma 1.4.12 in Chapter 1 implies the joint measurability of k̃n,m.

Since kn,m(t, η) = k̃n,m(t, t, η), and since (t, η) 7→ (t, η, t) is obviously
(Proo,Proo ⊗ B(R+))-measurable, then by composition we can deduce that for any n,m, kn,m is an
Fo-progressively measurable process. By the dominated convergence theorem, kn,m tends pointwise
to kn when m goes to infinity, so kn also is an Fo-progressively measurable process for every n.

Finally, since Kt = lim
n→∞

inf
p≥n

A
t,t+1

p

A
t,t+1

p
+ 1
p

+(V
t+1
p
−Vt)

, taking the expectation and again by the dominated

convergence theorem, kn (defined in (5.A.12)) tends pointwise to k (defined in (5.A.11)), when n goes
to infinity, so k is an Fo-progressively measurable process.

Considering that (t, u, ω) 7→ Vu − Vt also trivially defines a non-negative non-decreasing path-
dependent AF absolutely continuous with respect to C, defined in (5.A.9), we proceed similarly as at
the beginning of the proof, replacing the path-dependent AF A with V .

Let the process K ′ be defined by K ′t = liminf
n→∞

V
t+ 1
n
−Vt

A
t,t+ 1

n
+ 1
n

+(V
t+ 1
n
−Vt)

, and for any (s, η), let K ′s,η be

defined on [s,+∞[ by K ′s,ηt = liminf
n→∞

V
t+ 1
n
−Vt

As,η
t+ 1
n
−As,ηt + 1

n
+(V

t+ 1
n
−Vt)

. Then, for any (s, η), K ′s,η on [s,+∞[ is

aPs,η-version of K ′, and it constitutes a density of dV with respect to dCs,η(ω) on [s,+∞[, for almost
all ω. One shows then the existence of an Fo-progressively measurable process k′ such that for any
(s, η), k′ is a Ps,η-version of K ′ and of K ′s,η on [s,+∞[.

By the considerations after (5.A.10), for any (s, η), under Ps,η, we can write{
As,η =

∫ ·∨s
s Ks,η

r dCs,ηr
V·∨s − Vs =

∫ ·∨s
s K ′s,ηr dCs,ηr .

Now since dAs,η � dV , we have for Ps,η almost all ω that the set {r ∈ [s,+∞[: |K ′s,ηr (ω) = 0} is
negligible with respect to dV so also for dAs,η(ω) and therefore we can write

As,η =
∫ ·∨s
s Ks,η

r dCs,ηr

=
∫ ·∨s
s

Ks,η
r

K′s,ηr
1{K′s,ηr 6=0}K

′s,η
r dCs,ηr +

∫ ·∨s
s 1{K′s,ηr =0}dA

s,η
r

=
∫ ·∨s
s

Ks,η
r

K′s,ηr
1{K′s,ηr 6=0}dVr,

where we use the convention that for any two functions φ, ψ then φ
ψ1ψ 6=0 is defined by

φ

ψ
1{ψ 6=0}(x) =

{
φ(x)
ψ(x) if ψ(x) 6= 0

0 if ψ(x) = 0.

We now set h := k
k′1{k′r 6=0} which is an Fo-progressively measurable process, and clearly for

any (s, η), h is a Ps,η-version of Hs,η := Ks,η

K′s,η1{K′s,η 6=0} on [s,+∞[. So by Lemma 2.5.13 in Chapter
2, Hs,η = h dV ⊗ dPs,η a.e. on [s,+∞[ and finally we have shown that under any Ps,η, As,η =∫ ·∨s
s hrdVr.





Chapter 6

Decoupled mild solutions of
path-dependent PDEs and IPDEs
represented by BSDEs driven by cadlag
martingales

This chapter is the object of paper [13].

Abstract

We focus on a class of path-dependent problems which include path-dependent (possibly Inte-
gro) PDEs, and their representation via BSDEs driven by a cadlag martingale. For those equations
we introduce the notion of decoupled mild solution for which, under general assumptions, we study
existence and uniqueness and its representation via the afore mentioned BSDEs. This concept
generalizes a similar notion introduced by the authors in previous papers in the framework of
classical PDEs and IPDEs. For every initial condition (s, η), where s is an initial time and η an
initial path, the solution of such BSDE produces a couple of processes (Y s,η, Zs,η). In the classical
(Markovian or not) literature the function u(s, η) := Y s,ηs constitutes a viscosity type solution of an
associated PDE (resp. IPDE); our approach allows not only to identify u as (in our language) the
unique decoupled mild solution, but also to solve quite generally the so called identification prob-
lem, i.e. to also characterize the (Zs,η)s,η processes in term of a deterministic function v associated
to the (above decoupled mild) solution u.

6.1 Introduction

We focus on a family of path-dependent problems of the type{
AY + f(·, ·, Y,Γ(Ψ, Y )) = 0 on [0, T ]× Ω
YT = ξ on Ω,

(6.1.1)

where A is a linear map from some linear subspace D(A) of the space of progressively measurable
processes into the space of progressively measurable processes, Ψ := (Ψ1, · · · ,Ψd) is a given vector of
elements of D(A) and Γ is a carré du champs type operator defined by Γ(Φ,Φ′) := A(ΦΦ′)−ΦA(Φ′)−
Φ′A(Φ). Associated with this map, there is a path-dependent system of projectors (Ps)s∈R+ , which
extends the notion of semigroups from the Markovian case, for which A is a weak generator, see
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driven by cadlag martingales

Definition 6.3.16. A typical example is to consider Ψ := X the canonical process, and a map A given
by

(AΦ)t(ω) := (DΦ)t(ω) + 1
2Tr(σtσ

ᵀ
t (∇2Φ)t(ω)) + βt(ω) · (∇Φ)t(ω)

+
∫

(Φt(ω + γt(ω, y)1[t,+∞[)− Φt(ω)− γt(ω, y) · (∇Φ)t(ω))F (dy),
(6.1.2)

where β, σ, γ are bounded path-dependent predictable coefficients and F is a bounded positive mea-
sure not charging 0. In (6.1.2), D is the horizontal derivative and ∇ is the vertical gradient intended
in the sense of [37, 27]. In that case one has

Γ(X,Φ)t = (σσᵀ∇Φ)t +

∫
Rd
γt(·, y)(Φt(·+ γt(·, y)1[t,+∞[)− Φt)F (dy). (6.1.3)

If γ ≡ 0 then (6.1.1) becomes the path-dependent PDE{
DY + 1

2Tr(σσ
ᵀ∇2Y ) + β · ∇Y + f(·, ·, Y, σσᵀ∇Y ) = 0 on [0, T ]× Ω

YT = ξ on Ω.
(6.1.4)

We introduce a notion of decoupled mild solution which is inspired by the one for classical (I)PDEs
introduced in Chapters 3, 4, which can be represented by solutions of Markovian BSDEs. Concerning
the corresponding notion for (6.1.1) the intuition behind is the following. We decouple the first line
of equation (6.1.1) into {

AY = −f(·, ·, Y, Z)
Zi = Γ(Ψi, Y ), 1 ≤ i ≤ d, (6.1.5)

which we can also write {
AY = −f(·, ·, Y, Z)

A(YΨi) = Zi + Y AΨi + ΨiAY, 1 ≤ i ≤ d, (6.1.6)

and finally {
AY = −f(·, ·, Y, Z)

A(YΨi) = Zi + Y AΨi −Ψif(·, ·, Y, Z), 1 ≤ i ≤ d. (6.1.7)

Taking (6.1.7) into account and inspired by the classical notion of mild solution of an evolution prob-
lem, we define a decoupled mild solution of equation (6.1.1) as a functional Y for which there exists
an auxiliaryRd-valued functional Z := (Z1, · · · , Zd) such that for all (s, η) ∈ [0, T ]× Ω we have

Ys(η) = Ps[ξ](η) +
∫ T
s
Ps [f (r, ·, Yr, Zr)] (η)dr

(YΨ1)s(η) = Ps[ξΨ
1
T ](η)−

∫ T
s
Ps
[(
Z1
r + YrAΨ1

r −Ψ1
rf (r, ·, Yr, Zr)

)]
(η)dr

· · ·
(YΨd)s(η) = Ps[ξΨ

d
T ](η)−

∫ T
s
Ps
[(
Zdr + YrAΨd

r −Ψd
rf (r, ·, Yr, Zr)

)]
(η)dr.

(6.1.8)

The couple (Y,Z) will be called solution of the identification problem related to (f, ξ) because it can be
strictly related to BSDEs driven by cadlag martingales which are one natural generalization of clas-
sical Brownian BSDEs. We consider for any (s, η) the BSDE

Y s,η = ξ +

∫ T

·
f

(
r, ·, Y s,η

r ,
d〈M s,η,M [Ψ]s,η〉r

dr

)
dr − (M s,η

T −M
s,η
· ), (6.1.9)

in the (completed) stochastic basis (Ω,Fs,η,Fs,η,Ps,η), where (Ps,η)(s,η)∈R+×Ω solves a martingale
problem associated to (D(A), A). In (6.1.9), M [Ψ]s,η is the driving martingale of the BSDE, and is the
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martingale part of the process Ψ under Ps,η. These BSDEs were considered in a more general frame-
work by the authors in Chapter 4. A significant contribution about BSDEs driven by cadlag martin-
gales and beyond was provided by [22] and [67]. Those BSDEs have however a forward component
which is modeled in law by the fixed family (Ps,η)(s,η)∈R+×Ω. An important application for path-
dependent (I)PDEs is Theorem 6.5.32 that states the following. Suppose that the path-dependent
SDE with coefficients β, σ, γ admits existence and uniqueness in law for every initial condition (s, η);
we suppose moreover that βt, σt (resp. γt(·, x)) are continuous for the Skorokhod topology in ω for
almost all t (resp. dt ⊗ dF a.e.), that f(·, ·, 0, 0), ξ have polynomial growth and that f is Lipschitz in
(y, z) uniformly in (t, ω). Then there is a unique decoupled mild solution Y for (6.1.1) with Ψ := X
and A given in (6.1.2). Moreover, both processes Y,Z appearing in (6.1.8) can be represented through
the associated BSDEs (6.1.9). In particular, (6.1.8) gives an analytical meaning to the second process
Z obtained through those BSDEs. In general the way of linking the first component Y of the solution
(Y, Z) of a BSDE with the solution of a PDE is made by means of viscosity solutions. However, even
when the BSDE is Markovian, this does not allow to identify Z. In particular, when γ ≡ 0, our tech-
nique allows to characterize Z as a generalized gradient even if the solution does not have the vertical
derivative, contrarily to the case in [50].

Brownian Backward stochastic differential equations (BSDEs) were introduced in [71], after a pio-
neering work of [18]. When those involve a forward dynamic described by the solution X of a Brow-
nian Markovian SDE, they are said to be Markovian, and are naturally linked to a parabolic PDE, see
[73]. In particular, under reasonable conditions, which among others ensure well-posedness, the so-
lutions of BSDEs produce viscosity type solutions for the mentioned PDE. Recently Brownian BSDEs
of the type

Y s,η = ξ
(
(Bs,η

t )t∈[0,T ]

)
+

∫ T

·
f
(
r, (Bs,η

t )t∈[0,r], Y
s,η
r , Zs,ηr

)
dr −

∫ T

·
Zs,ηr dBr, (6.1.10)

where B is a Brownian motion and for any s ∈ [0, T ], η ∈ D([0, T ],Rd), Bs,η = η(· ∧ s) + (B·∨s −Bs)
were associated to the path-dependent semi-linear PDE{

DΦ + 1
2Tr(∇

2Φ) + f(·, ·,Φ,∇Φ) = 0 on [0, T [×Ω
ΦT = ξ.

(6.1.11)

Path-dependent PDEs of previous type have been investigated by several methods. For instance strict
(classical, regular) solutions have been studied in [35, 49, 29] under the point of view of Banach space
valued stochastic processes. It was shown for instance in [29, 77] that under some assumptions the
mapping (s, η) 7−→ Y s,η

s is the unique smooth solution of (6.1.11). Another popular approach is the
one of viscosity solutions, which was considered by several authors. For instance it was shown in [42]
that if f is bounded, continuous in t , uniformly continuous in the second variable, and uniformly
Lipschitz continuous in (y, z) and if ξ is bounded uniformly continuous, (s, η) 7−→ Y s,η

s is a viscos-
ity solution of (6.1.11) in some specific sense, where the sense of solutions involved the underlying
probability. On another level, [28] considered the so called strong-viscosity solutions (based on ap-
proximation techniques), which are an analytic concept, the first under non-smoothness conditions.
Another interesting approach (probabilistic) but still based on approximation (discretizations) was
given by [65]. More recently, [17] produced a viscosity solution to a more general path-dependent
(possibly integro)-PDE through Dynamic risk measures. In all those cases the solution Φ of (6.1.11)
was associated to the process Y s,η of the solution couple (Y s,η, Zs,η) of (6.1.10) with initial time s and
initial condition η. As mentioned earlier a challenging link to be explored was the link between Zs,η

and the solution of the path-dependent PDE Φ. For instance in the case of Fréchet C0,1 solutions Φ
defined on C([−T, 0]), then Zs,η is equal to the vertical derivative∇Φ, see for instance [50].
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The paper is organized as follows. After Section 6.2 devoted to fix some notations and basic vo-
cabulary, Section 6.3 recalls some fundamental tools from the previous Chapter 5. In Section 6.4, we
are given a general path dependent canonical class, its associated path-dependent system of projec-
tors (Ps)s∈R+ and we treat BSDEs driven by a general path-dependent MAF, see Definition 6.3.19. In
Subsection 6.4.2 we are given a weak generatorA of (Ps)s∈R+ , and a corresponding abstract equation.
We define the notion of decoupled mild solution of that equation and prove under some conditions,
existence and uniqueness of such a solution in Theorem 6.4.19. In Section 6.5, we focus on the frame-
work of (I)PDEs. In Subsection 6.5.1 (resp. 6.5.2) we recall some results concerning path-dependent
SDEs (resp. path-dependent differential operators). In Subsection 6.5.3, we consider an IPDE of co-
efficients β, σ, γ (which when γ ≡ 0 is given by (6.1.4)) and Theorem 6.5.32 states the existence and
uniqueness of a decoupled mild solution. Proposition 6.5.34 compares classical and decoupled mild
solutions for that IPDE.

6.2 Basic vocabulary and Notations

For fixed d, k ∈ N∗, Ckb (Rd) will denote the set of functions k times differentiable with bounded
continuous derivatives. A topological space E will always be considered as a measurable space
equipped with its Borel σ-field which shall be denoted B(E).

Let (Ω,F), (E, E) be two measurable spaces. A measurable mapping from (Ω,F) to (E, E) shall
often be called a random variable (with values in E), or in short r.v. If T is some index set, a family
(Xt)t∈T of r.v. with values in E, will be called random field (indexed by T with values in E). In
particular, if T is an interval included in R+, (Xt)t∈T will be called a stochastic process (indexed by
Twith values in E).

Given a measurable space (Ω,F), for any p ≥ 1, the set of real valued random variables with
finite p-th moment under probability P will be denoted Lp(P) or Lp if there can be no ambiguity
concerning the underlying probability. Two random fields (or stochastic processes) (Xt)t∈T, (Yt)t∈T
indexed by the same set and with values in the same space will be said to be modifications (or
versions) of each other if for every t ∈ T, P(Xt = Yt) = 1.

A filtered probability space
(
Ω,F ,F := (Ft)t∈R+ ,P

)
will be called called stochastic basis and

will be said to fulfill the usual conditions if the filtration is right-continuous, if the probability space
is complete and if F0 contains all the P-negligible sets. Let (Ω,F ,F,P) be a stochastic basis. Let Y
be a process and τ a stopping time, we denote Y τ the process t 7→ Yt∧τ . If C is a set of processes, we
will say that Y is locally in C (resp. locally verifies some property) if there exists an a.s. increasing
sequence of stopping times (τn)n≥0 tending a.s. to infinity such that for every n, Y τn belongs to C
(resp. verifies the mentioned property). In this paper we will consider martingales (with respect to a
given filtration and probability), which are not necessarily cadlag. For any cadlag local martingales
M,N , we denote [M ] (resp. [M,N ]) the quadratic variation of M (resp. quadratic covariation of
M,N ). If moreover M,N are locally square integrable, 〈M,N〉 (or simply 〈M〉 if M = N ) will denote
their (predictable) angular bracket.

6.3 Fundamental tools

6.3.1 Path-dependent canonical classes and systems of projectors

We start by recalling some notions and results of Section 5.3 of Chapter 5. that will be used all along
the paper. The first definition refers to the canonical space that one can find in [60], see paragraph
12.63.
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Notation 6.3.1. In the whole section E will be a fixed Polish space (a separable completely metrizable topolog-
ical space), which will be called the state space.

Ω := D(R+, E) will denote the Skorokhod space of functions from R+ to E right-continuous with left
limits (e.g. cadlag). For every t ∈ R+ we denote the coordinate mapping Xt : ω 7→ ω(t) and we define on
Ω the σ-field F := σ(Xr|r ∈ R+). On the measurable space (Ω,F), we introduce initial filtration Fo :=
(Fot )t∈R+ , where Fot := σ(Xr|r ∈ [0, t]), and the (right-continuous) canonical filtration F := (Ft)t∈R+ ,
where Ft :=

⋂
s>t
Fos . (Ω,F ,F) will be called the canonical space (associated to E), and X the canonical

process. OnR+×Ω, we will denote by Proo (resp. Preo) theFo-progressive (resp. Fo-predictable) σ-field. Ω
will be equipped with the Skorokhod topology which makes it a Polish space sinceE is itself Polish (see Theorem
5.6 in chapter 3 of [44]), and for which the Borel σ-field is F , see Proposition 7.1 in chapter 3 of [44]. This in
particular implies that F is separable, as the Borel σ-field of a separable metric space.
P(Ω) will denote the set of probability measures on Ω and will be equipped with the topology of weak

convergence of measures which also makes it a Polish space since Ω is Polish, see Theorems 1.7 and 3.1 in [44]
chapter 3. It will also be equipped with the associated Borel σ-field.

Notation 6.3.2. For any ω ∈ Ω and t ∈ R+, the path ω stopped at time t r 7→ ω(r ∧ t) will be denoted ωt.

Definition 6.3.3. A path-dependent canonical class will be a set of probability measures (Ps,η)(s,η)∈R+×Ω

defined on the canonical space (Ω,F). It will verify the three following items.

1. For every (s, η) ∈ R+ × Ω, Ps,η(ωs = ηs) = 1;

2. for every s ∈ R+ and F ∈ F , the mapping
η 7−→ Ps,η(F )
Ω −→ [0, 1]

is Fos -measurable;

3. for every (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F ,

Ps,η(F |Fot )(ω) = Pt,ω(F ) for Ps,η almost all ω. (6.3.1)

This implies in particular that for every (s, η) ∈ R+ × Ω and t ≥ s, then (Pt,ω)ω∈Ω is a regular conditional
expectation of Ps,η by Fot , see the Definition above Theorem 1.1.6 in [85] for instance.

A path-dependent canonical class (Ps,η)(s,η)∈R+×Ω will be said to be progressive if for every F ∈ F , the
mapping (t, ω) 7−→ Pt,ω(F ) is Fo-progressively measurable.

Very often path-dependent canonical classes will verify the following important hypothesis which
is a reinforcement of (6.3.1).

Hypothesis 6.3.4. For every (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F ,

Ps,η(F |Ft)(ω) = Pt,ω(F ) for Ps,η almost all ω. (6.3.2)

Remark 6.3.5. By approximation through simple functions, one can easily show the following.

• For s ≥ 0 and random variable Z we have that η 7−→ Es,η[Z] is Fos -measurable and for every (s, η) ∈
R+ × Ω, t ≥ s, Es,η[Z|Fot ](ω) = Et,ω[Z] for Ps,η almost all ω, provided previous expectations are
finite;

• if the path-dependent canonical class is progressive, (t, ω) 7−→ Et,ω[Z] is Fo-progressively measurable,
provided previous expectations are finite.
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Notation 6.3.6. Bb(Ω) stands for the set of real bounded measurable functions on Ω. Let s ∈ R+, Bsb(Ω)
will denote the set of real bounded Fos -measurable functions on Ω. We also denote by B+

b (Ω) the subset of r.v.
φ ∈ Bb(Ω) such that φ(ω) ≥ 0 for all ω ∈ Ω.

Definition 6.3.7.

1. A linear map Q : Bb(Ω) → Bb(Ω) is said positivity preserving monotonic if for every φ ∈ B+
b (Ω)

then Q[φ] ∈ B+
b (Ω) and for every increasing converging (in the pointwise sense) sequence fn −→

n
f we

have that Q[fn] −→
n

Ps[f ] in the pointwise sense.

2. A family (Ps)s∈R+ of positivity preserving monotonic linear operators on Bb(Ω) will be called a path-
dependent system of projectors if it verifies the three following items.

• For all s ∈ R+, the restriction of Ps on Bsb(Ω) coincides with the identity;

• for all s ∈ R+, Ps maps Bb(Ω) into Bsb(Ω);

• for all s, t ∈ R+ with t ≥ s, Ps ◦ Pt = Ps.

The proposition below states a correspondence between path-dependent canonical classes and
path-dependent systems of projectors.

Proposition 6.3.8. The mapping

(Ps,η)(s,η)∈R+×Ω 7−→
(

Z 7−→ (η 7→ Es,η[Z])
Bb(Ω) −→ Bb(Ω)

)
s∈R+

, (6.3.3)

is a bijection between the set of path-dependent system of probability measures and the set of path-dependent
system of projectors.

Definition 6.3.9. From now on, two elements in correspondence through the previous bijection will be said to
be associated.

Notation 6.3.10. Let (Ps)s∈R+ be a path-dependent system of projectors, and (Ps,η)(s,η)∈R+×Ω the associated
path-dependent system of probability measures. Then for any r.v. φ ∈ L1(Ps,η), Ps[φ](η) will still denote the
expectation of φ underPs,η. In other words we extend the linear form φ 7−→ Ps[φ](η) from Bb(Ω) to L1(Ps,η).

For the results of the whole section, we are given a progressive path-dependent canonical class
(Ps,η)(s,η)∈R+×Ω satisfying Hypothesis 6.3.4 and the corresponding path-dependent system of pro-
jectors (Ps)s∈R+ .

Notation 6.3.11. For any (s, η) ∈ R+ × Ω we will consider the stochastic basis(
Ω,Fs,η,Fs,η := (Fs,ηt )t∈R+ ,P

s,η
)

where Fs,η (resp. Fs,ηt for all t) is F (resp. Ft) augmented with the Ps,η

negligible sets. Ps,η is extended to Fs,η.

We remark that, for any (s, η) ∈ R+ × Ω, (Ω,Fs,η,Fs,η,Ps,η) is a stochastic basis fulfilling the
usual conditions, see 1.4 in [61] Chapter I.

Proposition 6.3.12. Let (s, η) ∈ R+ × Ω be fixed, Z be a positive r.v. or in L1(Ps,η) and t ≥ s. Then
Es,η[Z|Ft] = Es,η[Z|Fs,ηt ] Ps,η a.s.

So when considering conditional expectations, we will always drop the (s, η) superscript on the
filtration.
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Definition 6.3.13. Let G be a sub-σ-field of F and P be a probability measure on (Ω,F), we say that G is
P-trivial if for any element G of G, then P(G) ∈ {0, 1}.

Proposition 6.3.14. For every (s, η) ∈ R+×Ω, Fs isPs,η-trivial. In particular, an Fs,ηs -measurable r.v. will
be Ps,η-a.s. equal to a constant.

The last notions and results of this subsection are taken from Subsection 5.5.2 of Chapter 5.
From now on we are given a non-decreasing continuous function V and a couple (D(A), A) veri-

fying the following.

Hypothesis 6.3.15.

1. D(A) is a linear subspace of the space of Fo-progressively measurable processes;

2. A is a linear mapping from D(A) into the space of Fo-progressively measurable processes;

3. for all Φ ∈ D(A), ω ∈ Ω, t ≥ 0,
∫ t

0 |AΦr(ω)|dVr < +∞;

4. for all Φ ∈ D(A), (s, η) ∈ R+ × Ω and t ∈ [s,+∞[, we have
Es,η

[∫ t
s |A(Φ)r|dVr

]
< +∞ and Es,η[|Φt|] < +∞.

Inspired from the classical literature (see 13.28 in [61]) we introduce the following notion of a
weak generator.

Definition 6.3.16. We say that (D(A), A) is a weak generator of a path-dependent system of projectors
(Ps)s∈R+ if for all Φ ∈ D(A), (s, η) ∈ R+ × Ω and t ∈ [s,+∞[, we have

Ps[Φt](η) = Φs(η) +

∫ t

s
Ps[A(Φ)r](η)dVr. (6.3.4)

Definition 6.3.17.

1. (Ps,η)(s,η)∈R+×Ω will be said to solve the martingale problem associated to (D(A), A) if for every
(s, η) ∈ R+ × Ω,

• Ps,η(ωs = ηs) = 1;

• Φ−
∫ ·

0 A(Φ)rdr, is on [s,+∞[ a (Ps,η,Fo)-martingale for all Φ ∈ D(A).

2. The martingale problem associated to (D(A), A) will be said to be well-posed if for every (s, η) ∈
R+ × Ω there exists a unique Ps,η verifying both items above.

Proposition 6.3.18. (D(A), A) is a weak generator of (Ps)s∈R+ if and only if (Ps,η)(s,η)∈R+×Ω solves the
martingale problem associated to (D(A), A).

In particular, if (Ps,η)(s,η)∈R+×Ω solves the well-posed martingale problem associated to (D(A), A) then
(Ps)s∈R+ is the unique path-dependent system of projectors for which (D(A), A) is a weak generator.

Indeed, the last statement allows to associate analytically to (D(A), A) a unique path-dependent
system of projectors (Ps)s∈R+ through Definition 6.3.16.
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6.3.2 Path-dependent martingale additive functionals

We now recall the notion of Path-dependent Martingale Additive Functionals that we use in the
chapter. This was introduced in Chapter 5 and can be conceived as a path-dependent extension of
the notion of non-homogeneous Martingale Additive Functionals of a Markov processes developed
in Chapter 1. In this subsection, all results come from Section 5.4 in Chapter 5. In this subsection we
are again given a progressive path-dependent canonical class (Ps,η)(s,η)∈R+×Ω satisfying Hypothesis
6.3.4 and the corresponding path-dependent system of projectors (Ps)s∈R+ .

Definition 6.3.19. On (Ω,F), a path-dependent Martingale Additive Functional, in short path-dependent
MAF will be a real-valued random-field M := (Mt,u)0≤t≤u verifying the two following conditions.

1. For any 0 ≤ t ≤ u, Mt,u is Fou-measurable;

2. for any (s, η) ∈ R+×Ω, there exists a real cadlag (Ps,η,Fs,η)- martingale M s,η (taken equal to zero on
[0, s] by convention) such that for any η ∈ Ω and s ≤ t ≤ u,

Mt,u = M s,η
u −M

s,η
t Ps,η a.s.

M s,η will be called the cadlag version of M under Ps,η.
A path-dependent MAF will be said to verify a certain property (being square integrable, having angu-

lar bracket absolutely continuous with respect to some non-decreasing function) if under any Ps,η its cadlag
version verifies it.

Proposition 6.3.20. Let (D(A), A) be a weak generator of (Ps)s∈R+ and (s, η) ∈ R+ × Ω. Then for every
Φ ∈ D(A), Φ−

∫ ·
0 A(Φ)rdVr admits for all (s, η) on [s,+∞[ a Ps,η version M [Φ]s,η which is a (Ps,η,Fs,η)-

cadlag martingale. In particular, the random field defined by M [Φ]t,u(ω) := Φu(ω)−Φt(ω)−
∫ u
t AΦr(ω)dVr

defines a MAF with cadlag version M [Φ]s,η under Ps,η.

Proposition 6.3.21. Let M and N be two square integrable path-dependent MAFs and let M s,η (respec-
tively N s,η) be the cadlag version of M (respectively N ) under a fixed Ps,η. Assume that N has an angular
bracket absolutely continuous with respect to V (introduced above Hypothesis 6.3.15). Then there exists an
Fo-progressively measurable process k such that for any (s, η) ∈ R+ × Ω,

〈M s,η, N s,η〉 =

∫ ·∨s
s

krdVr.

Notation 6.3.22. The process k whose existence is stated in Proposition 6.3.21 will be denoted d〈M,N〉
dV .

6.4 BSDEs and abstract analytical problem

6.4.1 BSDEs driven by a path-dependent MAF

We keep using Notation 6.3.1. We fix a progressive path-dependent canonical class (Ps,η)(s,η)∈R+×Ω

verifying Hypothesis 6.3.4, and (Ps)s∈R+ the associated path-dependent system of projectors.
(Ps,η)(s,η)∈R+×Ω will model the forward process evolution in the BSDEs.

In this section, we fix T > 0 and a non-decreasing continuous function V : [0, T ] 7−→ R+. By
convention, any process (resp. function) Y defined on [0, T ]×Ω (resp. [0, T ]) will be extended taking
value YT after time T .



6.4. BSDEs and abstract analytical problem 167

Notation 6.4.1. For a fixed (s, η) ∈ [0, T ]×Ω, we denote by dV ⊗dPs,η the measure on B([s, T ])⊗F defined
by dV ⊗ dPs,η(C) = Es,η

[∫ T
s 1C(r, ω)dVr

]
. For any p ∈ N∗ we denote by Lp(dV ⊗ dPs,η) the space of

(Fs,ηt )t∈[s,T ]-progressively measurable processes Y such that ‖Y ‖p,s,η :=
(
Es,η

[∫ T
s |Yr|

pdVr

]) 1
p
< ∞. By

a slight abuse of notation we will also say that a process indexed by [0, T ] belongs to Lp(dV ⊗ dPs,η) if its
restriction to [s, T ]× Ω does.
H2

0(Ps,η) will denote the space of (Ps,η, (Fs,ηt )t∈[0,T ])-square integrable martingales vanishing at time s,
hence on the interval [0, s] since Fs is Ps,η-trivial, see Proposition 6.3.14; they will be defined up to indistin-
guishability.

For any p ≥ 1, we define Lpuni as the linear space of Fo-progressively measurable processes such that for all
(s, η) ∈ [0, T ]×Ω, (Yt)t∈[s,T ] belongs to Lp(dV ⊗ dPs,η). LetN be the linear subspace of Lpuni constituted of
elements which are equal to 0 dV ⊗ dPs,η a.e. for all (s, η) ∈ [0, T ] × Ω. We denote Lpuni := Lpuni\N . Lpuni
can be equipped with the topology generated by the family of semi-norms (‖ · ‖p,s,η)(s,η)∈[0,T ]×Ω which makes
it a separate locally convex topological vector space, see Theorem 5.76 in [1].

Definition 6.4.2. A set C ∈ Proo will be said to be of zero potential if 1C ∈ N , meaning that
Es,η

[∫ T
s 1C(t, ω)dVt

]
= 0 for all (s, η) and equivalently that 1C is equal to 0 in L2

uni.
A property holding everywhere in [0, T ]×Ω except on a set of zero potential will said to hold quasi surely

abbreviated by q.s.

Remark 6.4.3. The terminology zero potential is inspired from classical potential theory in the Markovian
setup, whereas the terminology quasi surely comes from the theory of capacities and is justified by the fact A is
of zero potential iff sup

(s,η)∈[0,T ]×Ω

dV ⊗ dPs,η(A ∩ ([s, T ]× Ω)) = 0.

We now fix some some d ∈ N∗ and d square integrable path-dependent MAFs (see Definition
6.3.19) (N1

t,u)0≤t≤u, · · · , (Nd
t,u)0≤t≤u with cadlag versions N s,η := (N1,s,η, · · · , Nd,s,η) under Ps,η for

fixed (s, η).

Definition 6.4.4. N := (N1, · · · , Nd) will be called the driving MAF.

In relation to this driving MAF we introduce the following hypothesis, which will be in force for
the rest of the section.

Hypothesis 6.4.5. For every integer i such that 1 ≤ i ≤ d, N i has an angular bracket which is absolutely
continuous with respect to V (see Definition 6.3.19) and d〈N i〉

dV (see Notation 6.3.22) is q.s. bounded.

We consider some ξ, f verifying the following hypothesis.

Hypothesis 6.4.6.

1. ξ is an FT -measurable r.v. which belongs to L2(Ps,η) for every (s, η);

2. f : ([0, T ]× Ω)×R×Rd 7−→ R is measurable with respect to Proo ⊗ B(R)⊗ B(Rd) and such that

(a) f(·, ·, 0, 0) ∈ L2
uni;

(b) there exists K > 0 such that for all (t, ω, y, y′, z, z′) ∈ [0, T ]× Ω×R×R×Rd ×Rd

|f(t, ω, y′, z′)− f(t, ω, y, z)| ≤ K(|y′ − y|+ ‖z′ − z‖). (6.4.1)

An immediate application of Theorem 4.3.3 and Remark 4.3.4 in Chapter 4 is the following exis-
tence and uniqueness theorem.



168
Chapter 6. Decoupled mild solutions of path-dependent PDEs and IPDEs represented by BSDEs

driven by cadlag martingales

Theorem 6.4.7. Assume the validity of Hypotheses 6.4.5, 6.4.6. For every (s, η) ∈ [0, T ] × Ω, there exists a
unique couple of processes (Y s,η,M s,η) ∈ L2(dV ⊗ dPs,η)×H2

0(Ps,η) such that on [s, T ]

Y s,η
· = ξ +

∫ T

·
f

(
r, ·, Y s,η

r ,
d〈M s,η, N s,η〉r

dVr

)
dVr − (M s,η

T −M
s,η
· ), (6.4.2)

in the sense of indistinguishability, under probability Ps,η.

Notation 6.4.8. For the rest of this section, at fixed (s, η) ∈ [0, T ] × Ω, the previous equation will be
denoted BSDEs,η(f, ξ). Its unique solution will be denoted (Y s,η,M s,η) and we will use the notation
Zs,η := (Z1,s,η, · · · , Zd,s,η) :=

(
d〈Ms,η ,Ns,η〉t

dVt

)
t∈[s,T ]

.

Remark 6.4.9. We emphasize that equation BSDEs,η(f, ξ) of the present paper corresponds to equation
BSDE(ξ, f, V,N s,η) in Chapter 4.

The following proposition can be seen as a path-dependent extension of Theorem 4.5.18 in Chap-
ter 4. Its proof is similar to the one in the Markovian setup and is therefore postponed to the Ap-
pendix.

Proposition 6.4.10. Assume the validity of Hypotheses 6.4.5, 6.4.6. For any (s, η) let (Y s,η,M s,η) be as
introduced at Theorem 6.4.7. There exists a unique process Y ∈ L2

uni, a square integrable path-dependent
MAF (Mt,u)0≤t≤u and Z1, · · · , Zd ∈ L2

uni unique up to zero potential sets (see Definition 6.4.2) such that for
all (s, η) ∈ [0, T ]× Ω the following holds.

1. Y s,η is on [s, T ] a Ps,η-modification of Y ;

2. M s,η is the cadlag version of M under Ps,η;

3. For all integers i ∈ {1, . . . , d}, Zi = d〈Ms,η ,N i,s,η〉
dV dV ⊗ dPs,η a.e.

Moreover, Y is given by Y : (s, η) 7−→ Y s,η
s .

6.4.2 Decoupled mild solutions for abstract operators

In this subsection, we assume that we are given some (D(A), A) satisfying Hypothesis 6.3.15 and be-
ing a weak generator of (Ps)s∈R+ . We recall that by Proposition 6.3.18, this implies that (Ps,η)(s,η)∈R+×Ω

solves the martingale problem associated to (D(A), A). By convention we will assume that every
Φ ∈ D(A) is constant after time T (meaning Φ = Φ·∧T ) and AΦ = 0 on ]T,+∞[.

Notation 6.4.11. For every Φ ∈ D(A) we introduce the MAF (see Proposition 6.3.20)

M [Φ]t,u(ω) := Φu(ω)− Φt(ω)−
∫ u

t
AΦr(ω)dVr. (6.4.3)

For all (s, η) we denote by M [Φ]s,η its cadlag version.
We also denote Φs,η := Φs(η) +

∫ s∨·
s (AΦ)rdVr +M [Φ]s,η.

Remark 6.4.12. By Proposition 6.3.20, M [Φ]s,η is a cadlag (Ps,η,Fs,η)-martingale which is aPs,η-version of
Φs∨·∧T −Φs(η)−

∫ s∨·
s (AΦ)rdVr and therefore Φs,η is a cadlag special semimartingale which is aPs,η-version

of Φ on [s, T ].

Notation 6.4.13. Let Φ,Ψ ∈ D(A) be such that ΦΨ ∈ D(A). We denote by Γ(Φ,Ψ) the process A(ΦΨ) −
ΦA(Ψ)−ΨA(Φ). If Φ or Ψ is multidimensional, then we define Γ(Φ,Ψ) as a vector or matrix, coordinate by
coordinate.

When it exists, Γ(Φ,Φ) will be denoted Γ(Φ).
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Γ can be interpreted as a path-dependent extension of the concept of carré du champ operator in
the theory of Markov processes.

Lemma 6.4.14. Let Φ,Ψ ∈ D(A) be such that ΦΨ ∈ D(A) and assume that both M [Ψ],M [Φ] are square
integrable MAFs. Then for any (s, η) ∈ [0, T ]× Ω we have 〈M s,η[Φ],M [Ψ]s,η〉 =

∫ s∨·∧T
s Γ(Φ,Ψ)dVr in the

sense of Ps,η-indistinguishability. In particular, Γ(Φ,Ψ) = d〈M [Φ],M [Ψ]〉
dV q.s., see Notation 6.3.22.

Proof. We fix Φ,Ψ ∈ D(A), (s, η) ∈ [0, T ] × Ω and the associated probability Ps,η. We recall that on
[s, T ], Φs,η = Φs(η)+

∫ ·
s A(Φ)rdVr+M s,η[Φ] and Ψs,η = Ψs(η)+

∫ ·
s A(Ψ)rdVr+M s,η[Ψ] are both cadlag

special semimartingales; since M s,η[Φ],M s,η[Ψ] are assumed to be square integrable martingales,
they have a well-defined quadratic covariation and angular bracket. Therefore, by integration by
parts on [s, T ] and by Lemma 6.A.2 we have

Φs,ηΨs,η = Φs(η)Ψs(η) +
∫ ·
s(ΨrA(Φ)r + ΦrA(Ψ)r)dVr + 〈M s,η[Φ],M s,η[Ψ]〉

+
∫ ·
s Φs,η

r−dM
s,η[Ψ]r +

∫ ·
s Ψs,η

r−dM
s,η[Φ]r

+ ([M s,η[Φ],M s,η[Ψ]]− 〈M s,η[Φ],M s,η[Ψ]〉) .

On the other hand, since ΦΨ belongs to D(A), we also have that

Φs,ηΨs,η = (ΦΨ)s,η = Φs(η)Ψs(η) +

∫ ·
s
A(ΦΨ)rdVr +M s,η[ΦΨ]. (6.4.4)

By uniqueness of the decomposition of a special semimartingale, we can identify the predictable
bounded variation part in the two previous decompositions, and we get∫ ·

s
(ΨrA(Φ)r + ΦrA(Ψ)r)dVr + 〈M s,η[Φ],M s,η[Ψ]〉 =

∫ ·
s
A(ΦΨ)rdVr, (6.4.5)

hence that
〈M s,η[Φ],M s,η[Ψ]〉 =

∫ ·
s

(A(ΦΨ)r −ΨrA(Φ)r − ΦrA(Ψ)r)dVr, (6.4.6)

and the proof is complete.

Lemma 6.4.15. If Φ ∈ D(A), Φ2 ∈ D(A) and AΦ ∈ L2
uni, then the MAF M [Φ] is square integrable.

Moreover, sup
t∈[s,T ]

|Φs,η
t | ∈ L2(Ps,η) for all (s, η).

Proof. Let (s, η) be fixed. We have (Φs,η)2 = Φ2
s(η) +

∫ ·
s A(Φ2)rdVr + M s,η[Φ2], where M s,η[Φ2] is a

martingale, hence takes L1-values; moreover A(Φ2) ∈ L1(dV ⊗ dPs,η), see Hypothesis 6.3.15. It is
therefore clear that Φs,η has L2-values. Since

Φs,η = Φs(η) +

∫ ·
s
A(Φ)rdVr +M s,η[Φ], (6.4.7)

by Cauchy-Schwarz inequality we have

(M s,η[Φ]T )2 ≤ 4(Φ2
s(η) + (VT − Vs)

∫ T

s
A(Φ)2

rdVr + (Φs,η
T )2).

The right-hand side belongs to L1 becauseAΦ ∈ L2
uni, Φ2

s(η) is deterministic and Φs,η takes L2 values,
therefore M s,η[Φ] ∈ H2(Ps,η).

Concerning the second statement, (6.4.7) yields

sup
t∈[s,T ]

(Φs,η
t )2 ≤ 4(Φ2

s(η) + (VT − Vs)
∫ T

s
A(Φ)2

rdVr + sup
t∈[s,T ]

(M s,η[Φ]t)
2) ∈ L1,

by Doob’s inequality because M s,η[Φ] ∈ H2(Ps,η).
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We will now be interested in a specific type of driving MAF N , see Definition 6.4.4.
We fix Ψ1, · · · ,Ψd ∈ D(A) verifying the following.

Hypothesis 6.4.16. For every 1 ≤ i ≤ d,

1. Ψi, A(Ψi) ∈ L2
uni;

2. (Ψi)2 ∈ D(A);

3. Γ(Ψi) is bounded.

Remark 6.4.17.

1. (M [Ψ1], · · · ,M [Ψd]) is a vector of square integrable MAFs verifying Hypothesis 6.4.5. This follows
because of Lemmas 6.4.14 and 6.4.15.

2. In the sequel of Section 6.4, we therefore work with the driving MAFN = M [Ψ] := (M [Ψ1], · · · ,M [Ψd]),
see Definition 6.4.4. With this choice we fit the framework of Section 6.4.1.

3. In particular, Theorem 6.4.7 and Proposition 6.4.10 apply: for all (s, η) there is a unique solution
(Y s,η,M s,η) of the BSDEs,η(f, ξ) (6.4.2), where the driving MAF is N = M [Ψ].

We now consider the following abstract path-dependent non linear equation.{
AΦ + f(·, ·,Φ,Γ(Φ,Ψ)) = 0 on [0, T ]× Ω
ΦT = ξ on Ω.

(6.4.8)

Inspired by an analogous notion in the Markovian framework (see Chapter 4) and by the classical
notion of mild solution, we introduce the corresponding notion of decoupled mild solution for a path-
dependent evolution equation.

Definition 6.4.18. Let Y, Z1, · · · , Zd ∈ L2
uni (see Notation 6.4.1) and denote Z := (Z1, · · · , Zd).

1. The couple (Y,Z) will be called solution of the identification problem related to (f, ξ) or simply
solution of IP (f, ξ) if for every (s, η) ∈ [0, T ]× Ω,

Ys(η) = Ps[ξ](η) +
∫ T
s
Ps [f (r, ·, Yr, Zr)] (η)dVr

(YΨ1)s(η) = Ps[ξΨ
1
T ](η)−

∫ T
s
Ps
[(
Z1
r + YrA(Ψ1)r −Ψ1

rf (r, ·, Yr, Zr)
)]

(η)dVr
· · ·

(YΨd)s(η) = Ps[ξΨ
d
T ](η)−

∫ T
s
Ps
[(
Zdr + YrA(Ψd)r −Ψd

rf (r, ·, Yr, Zr)
)]

(η)dVr.

(6.4.9)

2. A process Y will be called decoupled mild solution of (6.4.8) if there exist some Z such that the
couple (Y,Z) is a solution of IP (f, ξ).

Theorem 6.4.19. Assume the validity of Hypothesis 6.4.16 for Ψ1, . . . ,Ψd and of Hypothesis 6.4.6 for (f, ξ).

1. IP (f, ξ) admits a unique solution (Y,Z) ∈ L2
uni × (L2

uni)
d. By uniqueness we mean more precisely

the following: if (Y, Z) and (Ȳ , Z̄) are two solutions then Y and Ȳ are identical and Z = Z̄ q.s. In
particular, there is a unique decoupled mild solution Y of (6.4.8).

2. For every (s, η), let (Y s,η,M s,η) be the solution of BSDEs,η(f, ξ) (6.4.2) with N s,η = M [Ψ]s,η. Then,
for every (s, η), Ys(η) = Y s,η

s , and (Z1, . . . , Zd) are identified as in item 3. of Proposition 6.4.10 with
N = M [Ψ].
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Proof. We start establishing existence in item 1. Let Y,Z be the processes introduced in Proposition
6.4.10. A direct consequence of that proposition, of Lemma 6.A.2 and of equations BSDEs,η(f, g) is
that for every (s, η) ∈ [0, T ]× Ω, we have

Ys = ξ +

∫ T

s
f (r, ·, Yr, Zr) dVr − (M s,η

T −M
s,η
s ) Ps,η a.s. (6.4.10)

Taking the expectation, applying Fubini’s theorem and using the fact that M s,η is a martingale, in
agreement with Remark 6.3.5 we get

Ys(η) = Ps[ξ](η) +

∫ T

s
Ps[f(r, ·, Yr, Zr)](η)dVr. (6.4.11)

We now fix an integer 1 ≤ i ≤ d and (s, η) ∈ [0, T ] × Ω. By Remark 6.4.12. we recall that the process
Ψi admits on [s, T ] a Ps,η-modification which is a cadlag special semimartingale with decomposition

Ψi,s,η = Ψi
s(η) +

∫ ·
s
A(Ψi)rdVr +M [Ψi]s,η. (6.4.12)

Applying the integration by parts formula to Y s,ηΨi,s,η, we get

d(Y s,ηΨi,s,η)t = −Ψi,s,η
t f(t, ·, Y s,η

t , Zs,ηt )dVt + Ψi,s,η
t− dM s,η

t + Y s,η
t A(Ψi)tdVt

+ Y s,η
t− dM [Ψi]s,ηt + d[M s,η,M [Ψi]s,η]t,

hence integrating between s and T , by Proposition 6.4.10 and by Lemma 6.A.2,

Ys(η)Ψi
s(η) = ξΨi

T −
∫ T

s
(YrA(Ψi)r −Ψi

rf(r, ·, Yr, Zr))dVr −
∫ T

s
Ψi,s,η
r− dM s,η

r

(6.4.13)

−
∫ T

s
Y s,η
r− dM [Ψi]s,ηr − [M s,η,M [Ψi]s,η]T .

We wish once again to take the expectation and to use Fubini’s theorem. Since Y,A(Ψi),Ψi, f(·, ·, Y, Z) ∈
L2
uni then (YrA(Ψi)r −Ψi

rf(r, ·, Yr, Zr)) ∈ L1
uni.

By Lemma 6.4.15 we have sup
t∈[s,T ]

|Ψi,s,η
t | ∈ L2(Ps,η) and M [Ψi]s,η ∈ H2(Ps,η). We also have M s,η ∈

H2(Ps,η), and by Remark 4.A.11 in Chapter 4, sup
t∈[s,T ]

|Y s,η
t | ∈ L2(Ps,η). We recall that this implies that

both
∫ ·
s Ψi,s,η

r− dM s,η
r and

∫ ·
s Y

s,η
r− dM [Ψi]s,ηr are martingales, see for example Lemma 2.3.17 in Chapter

2. Finally, since by Lemma 6.4.15, Ψi
T ∈ L2(Ps,η) and since ξ ∈ L2(Ps,η), then ξΨi

T ∈ L1(Ps,η). So we
can take the expectation in (6.4.13) to get

Ys(η)Ψi
s(η) = Es,η

[
ξΨi

T −
∫ T
s

(YrA(Ψi)r −Ψi
rf(r, ·, Yr, Zr))dVr − [Ms,η,M [Ψi]s,η]T

]
= Es,η

[
ξΨi

T −
∫ T
s

(YrA(Ψi)r −Ψi
rf(r, ·, Yr, Zr))dVr − 〈Ms,η,M [Ψi]s,η〉T

]
= Es,η

[
ξΨi

T −
∫ T
s

(Zir + YrA(Ψi)r −Ψi
rf(r, ·, Yr, Zr))dVr

]
,

(6.4.14)

where the latter equality yields from Proposition 6.4.10. SinceZi ∈ L2
uni and (YrA(Ψi)r−Ψi

rf(r, ·, Yr, Zr)) ∈
L1
uni, by Fubini’s Theorem we have

Ys(η)Ψi
s(η) = Ps[ξΨ

i
T ](η)−

∫ T

s
Ps[Z

i
r + YrA(Ψi)r −Ψi

rf(r, ·, Yr, Zr)](η)dVr. (6.4.15)
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This shows existence in item 1. The validity of item 2. comes from the choice of (Y, Z) and by
Proposition 6.4.10.

We will now proceed showing uniqueness in item 1. We assume the existence of U,W 1, · · · ,W d ∈
L2
uni such that for all (s, η) ∈ [0, T ]× Ω,

Us(η) = Ps[ξ](η) +
∫ T
s Ps[f(r, ·, Ur,Wr)](η)dVr

Us(η)Ψi
s(η) = Ps[ξΨ

i
T ](η)−

∫ T
s Ps[W

i
r + UrA(Ψi)r −Ψi

rf(r, ·, Ur,Wr)](η)dVr
1 ≤ i ≤ d.

(6.4.16)

We will show that U = Y and that for all (s, η), 1 ≤ i ≤ d,
W i = d〈Ms,η ,M [Ψi]s,η〉r

dVr
, dV ⊗ dPs,ηa.e. hence that W = Z q.s.

We fix (s, η) ∈ [0, T ]×Ω. We define the process M̄ as being equal to 0 on [0, s] and to Ut−Us(η) +∫ t
s f(r, ·, Ur,Wr)dVr for t ∈ [s, T ]. Let us fix t ∈ [s, T ]. We emphasize that U and M̄ are a priori not

cadlag. Applying the first line of (6.4.16) to (s, η) := (t, ω), we get, Ps,η a.s.

Ut(ω) = Pt[ξ](ω) +
∫ T
t Pt[f(r, ·, Ur,Wr)](ω)dVr

= Et,ω
[
ξ +

∫ T
t f(r, ·, Ur,Wr)dVr

]
= Es,η

[
ξ +

∫ T
t f(r, ·, Ur,Wr)dVr|Ft

]
,

(6.4.17)

thanks to Remark 6.3.5. From this we deduce that for all t ∈ [s, T ],

M̄t = Es,η
[
ξ +

∫ T

s
f(r, ·, Ur,Wr)dVr

∣∣∣∣Ft]− Us(η) Ps,ηa.s. (6.4.18)

In particular M̄ is a Ps,η-martingale on [s, T ]. Since (Ω,Fs,η,Fs,η,Ps,η) fulfills the usual conditions,
M̄ admits a cadlag version which we will denote M̄ s,η. Then U admits on [s, T ] a cadlag version U s,η

which is a special semimartingale with decomposition

U s,η := Us(η)−
∫ ·
s
f(r, ·, Ur,Wr)dVr + M̄ s,η

(6.4.19)

= Us(η)−
∫ ·
s
f(r, ·, U s,ηr ,Wr)dVr + M̄ s,η,

where the second equality follows by the fact that U s,η is a version of U and by Lemma 6.A.2. By
(6.4.17), we have U s,ηT = UT = ξ, Ps,η-a.s. so,

U s,η = ξ +

∫ T

·
f(r, ·, U s,ηr ,Wr)dVr − (M̄ s,η

T − M̄
s,η). (6.4.20)

We show below that (U s,η, M̄ s,η) solves BSDEs,η(f, ξ) on [s, T ]. For this, we are left to show that
W = d〈M̄s,η ,M [Ψ]s,η〉

dV , dV ⊗ dPs,η a.e., and that (U s,η, M̄ s,η) ∈ L2(dV ⊗ dPs,η) × H2
0(Ps,η). By (6.4.18)

together with Jensen’s and Cauchy-Schwarz inequalities we have

Es,η[M̄2
T ]

= Es,η
[
(ξ − Us(η) +

∫ T
s f(r, ·, Ur,Wr)dVr)

2
]

≤ 4
(
Us(η)2 +Es,η[ξ2] + (VT − Vs)Es,η

[∫ T
s f2(r, ·, Ur,Wr)dVr)

])
,

(6.4.21)
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where the latter term is finite because f(·, ·, 0, 0), U,W 1, · · · ,W d ∈ L2
uni and because of the Lipschitz

condition on f . So the cadlag version M̄ s,η of M̄ , belongs toH2
0(Ps,η). We fix again some 1 ≤ i ≤ d.

Combining the second line of (6.4.16) with this fixed integer i, applied with (t, ω) instead of (s, η),
Fubini’s lemma and Remark 6.3.5, we get the Ps,η-a.s. equalities

Ut(ω)Ψi
t(ω)

= Pt[ξΨ
i
T ](ω)−

∫ T
t Pt

[(
W i
r + UrA(Ψi)r −Ψi

rf (r, ·, Ur,Wr)
)]

(ω)dVr

= Et,ω
[
ξΨi

T −
∫ T
t

(
W i
r + UrA(Ψi)r −Ψi

rf (r, ·, Ur,Wr)
)
dVr

]
= Es,η

[
ξΨi

T −
∫ T
t

(
W i
r + UrA(Ψi)r −Ψi

rf (r, ·, Ur,Wr)
)
dVr|Ft

]
(ω).

(6.4.22)

We introduce the process M̃ i equal to 0 on [0, s[ and defined on [s, T ] by

M̃ i
t := UtΨ

i
t − Us(η)Ψi

s(η)−
∫ t

s

(
W i
r + UrA(Ψi)r −Ψi

rf (r, ·, Ur,Wr)
)
dVr. (6.4.23)

Similarly as for (6.4.18), we deduce from (6.4.22) that for all t ∈ [s, T ], Ps,η a.s.,
M̃ i
t = Es,η

[
ξΨi

T −
∫ T
s

(
W i
r + UrA(Ψi)r −Ψi

rf (r, ·, Ur,Wr)
)
dVr|Ft

]
− Us(η)Ψi

s(η) So M̃ i is a Ps,η-

martingale. Under Ps,η, we consider the cadlag version M̃ i,s,x of M̃ i.
It follows by (6.4.23) that the process

Us(η)Ψi
s(η) +

∫ ·
s

(
W i
r + UrA(Ψi)r −Ψi

rf (r, ·, Ur,Wr)
)
dVr + M̃ i,s,η, (6.4.24)

is a cadlag special semimartingale which is a Ps,η-version of UΨi on [s, T ] hence indistinguishable
from U s,ηΨi,s,η on [s, T ] since U s,η (resp. Ψi,s,η) is a cadlag version of U (resp. Ψi). Using (6.4.19) and
integrating by parts, on [s, T ] we also get for U s,ηΨi,s,η the decomposition

U s,ηΨi,s,η

= Us(η)Ψi
s(η) +

∫ ·
s U

s,η
r A(Ψi)rdVr +

∫ ·
s U

s,η
r− dM [Ψi]s,ηr

−
∫ ·
s Ψi,s,η

r f(r, ·, Ur,Wr)dVr +
∫ ·
s Ψi,s,η

r− dM̄ s,η
r + [M̄ s,η,M [Ψi]s,η]

= Us(η)Ψi
s(η) +

∫ ·
s(U

s,η
r A(Ψi)r −Ψi,s,η

r f(r, ·, Ur,Wr))dVr + 〈M̄ s,η,M [Ψi]s,η〉
+
∫ ·
s U

s,η
r− dM [Ψi]s,ηr +

∫ ·
s Ψi,s,η

r− dM̄ s,η
r +

(
[M̄ s,η,M [Ψi]s,η]− 〈M̄ s,η,M [Ψi]s,η〉

)
.

(6.4.25)

(6.4.24) and (6.4.25) provide now two ways of decomposing the special semimartingale U s,ηΨi,s,η into
the sum of an initial value, a bounded variation predictable process vanishing at time s and of a local
martingale vanishing at time s.

By uniqueness of the decomposition of a special semimartingale, identifying the bounded varia-
tion predictable components and using Lemma 6.A.2 we get∫ ·

s(W
i
r + UrA(Ψi)r −Ψi

rf(r, ·, Ur,Wr))dVr
= 〈M̄ s,η,M [Ψi]s,η〉+

∫ ·
s(UrA(Ψi)r −Ψi

rf(r, ·, Ur,Wr))dVr.
(6.4.26)

This yields that 〈M̄ s,η,M [Ψi]s,η〉 and
∫ ·
sW

i
rdVr are indistinguishable on [s, T ]. Since this holds for all

i, thanks to (6.4.20) we have

U s,η = ξ +

∫ T

·
f

(
r, ·, U s,ηr ,

d〈M̄ s,η,M [Ψ]s,η〉r
dVr

)
dVr − (M̄ s,η

T − M̄
s,η), (6.4.27)
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with M̄ s,η ∈ H2
0(Ps,η). This implies of course that (U s,η, M̄ s,η) is a solution of BSDEs,η(f, ξ). Thanks

to the uniqueness statement for BSDEs, see Theorem 6.4.7, this shows U s,η = Y s,η and M̄ s,η = M s,η

in the sense of indistinguishability. In particular, the first equality gives

Us(η) = U s,ηs = Y s,η
s = Ys(η) a.s. (6.4.28)

Since this holds for all (s, η), we haveU = Y . On the other hand, for all iwe haveW i
t = d〈M̄s,η ,M [Ψi]s,η〉t

dVt
=

d〈Ms,η ,M [Ψi]s,η〉t
dVt

= Zit dV ⊗ dP s,η a.e. for all (s, η) hence W i = Zi q.s. This concludes the proof of
uniqueness.

6.5 Decoupled mild solutions of path-dependent PDEs and IPDEs

In this section we keep using Notation 6.3.1, but E = Rd for some d ∈ N∗ and (X1
t , · · · , Xd

t )t∈R+ will
denote the coordinates of the canonical process,see Notation 6.3.1. T > 0 will be a fixed horizon.

For the convenience of the reader, the stopped canonical process (X1
·∧T , · · · , Xd

·∧T ) will still be by
denoted (X1, · · · , Xd).

6.5.1 Path-dependent SDEs

We now recall some notions and results concerning a family of path-dependent SDEs with jumps
whose solution provide examples of path-dependent canonical classes. In this subsection, all results
come from Subsection 5.6 in Chapter 5. We will also refer to notions of [61] Chapters II, III, VI and
[60] Chapter XIV.5.

Notation 6.5.1. For any t ∈ R+, we denote Ωt := {ω ∈ Ω : ω = ωt} the set of paths which are constant after
time t. We also denote Λ := {(s, η) ∈ R+ × Ω : η ∈ Ωs}.

Proposition 6.5.2. Λ is a closed subspace of R+ × Ω, hence a Polish space when equipped with the induced
topology. The Borel σ-field B(Λ) is equal to the trace σ-field Λ ∩ Proo.

From now on, Λ, introduced in Notation 6.5.1, is equipped with the induced topology and the
trace σ-field.

We fix a bounded positive measure F on (Rd,B(Rd)) not charging 0, and some coefficients:

• β, a boundedRd-valued Fo-predictable process;

• σ, a boundedMd(R)-valued Fo-predictable process;

• γ, a boundedRd-valued Preo ⊗ B(Rd)-measurable function onR+ × Ω×Rd,

defined on the canonical space.

Definition 6.5.3. Let (s, η) ∈ R+ × Ω. We call weak solution of the SDE with coefficients β, σ, γ and
starting in (s, η) any probability measurePs,η on (Ω,F) such that there exists a stochastic basis fulfilling the
usual conditions (Ω̃, F̃ , F̃, P̃) on which is defined a d-dimensional Brownian motionW and a Poisson measure
p of intensity q(dt, dx) := dt ⊗ F (dx), W,p being optional for the filtration F̃, a d-dimensional F̃-adapted
cadlag process X̃ such that Ps,η = P̃ ◦ X̃−1 and such that the following holds.

Let β̃, σ̃, γ̃ be defined by β̃t := βt ◦ X̃ , σ̃t := σt ◦ X̃ for all t ∈ R+ and γ̃t(·, x) := γt(X̃, x) for all
(t, x) ∈ R+ ×Rd. Then
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• for all t ∈ [0, s], X̃t = η(t) P̃ a.s.;

• X̃t = η(s) +
∫ t
s β̃rdr +

∫ t
s σ̃rdWr + γ̃ ? (p− q)t P̃ a.s. for all t ≥ s,

where ? is the integration against random measures, see [61] Chapter II.2.d for instance.

Definition 6.5.4. Let s ∈ R+ and (Yt)t≥s be a cadlag special semimartingale defined on the canonical space
with (unique) decomposition Y = Ys + B + M c + Md, where B is predictable with bounded variation, M c

a continuous local martingale, Md a purely discontinuous martingale, all three vanishing at time s. We will
call characteristics of Y the triplet (B,C, ν) where C = 〈M c〉 and ν is the predictable compensator of the
measure of the jumps of Y .

There are several equivalent characterizations of weak solutions of path-dependent SDEs with
jumps which we will now state in our setup.

Notation 6.5.5. For any f ∈ C2
b (Rd) and t ≥ 0, we denote by Atf the r.v.

βt · ∇f(Xt) + 1
2Tr(σσ

ᵀ∇2f(Xt))
+

∫
Rd

(f(Xt + γt(·, y))− f(Xt)−∇f(Xt) · γt(·, y))F (dy).
(6.5.1)

Proposition 6.5.6. Let (s, η) ∈ R+×Ω be fixed and letP ∈ P(Ω). There is equivalence between the following
items.

1. P is a weak solution of the SDE with coefficients β, σ, γ starting in (s, η).

2. P(ωs = ηs) = 1 and, under P, (Xt)t≥s is a special semimartingale with characteristics

B =
∫ ·
s βrdr;

C =
∫ ·
s(σσ

ᵀ)rdr;

ν : (ω,A) 7−→
∫ +∞
s

∫
Rd

1A(r, γr(ω, y))1{γr(ω,y)6=0}F (dy)dr.

(6.5.2)

3. P(ωs = ηs) = 1 and f(X·)−
∫ ·
s Arfdr is on [s,+∞[ a (P,Fo)-martingale for all f ∈ C2

b (Rd).

Theorem 6.5.7. Assume that for every (s, η) ∈ R+ × Ω, the SDE with coefficients β, σ, γ and starting
in (s, η) admits a unique weak solution Ps,η. Then (Ps,η)(s,η)∈R+×Ω is a path-dependent canonical class
verifying Hypothesis 6.3.4.

We introduce the following hypothesis on the coefficients β, σ, γ.

Hypothesis 6.5.8.

1. β, σ (resp. γ) are bounded and for Lebesgue almost all t (resp. dt ⊗ dF almost all (t, y)), βt, σt (resp.
γt(·, y)) are continuous.

2. For every (s, η) ∈ R+ × Ω there exists a unique weak solution Ps,η of the SDE of coefficients β, σ, γ
starting in (s, η), see Definition 6.5.3.

We recall two classical examples of conditions on the coefficients for which it is known that there
is existence and uniqueness of a weak solution for the path-dependent SDE, see Theorem 14.95 and
Corollary 14.82 in [60].

Example 6.5.9. Assume that β, σ, γ are bounded. Moreover we suppose that for all n ∈ N∗ there exist
Kn

2 ∈ L1
loc(R+) and a Borel function Kn

3 : Rd × R+ → R such that
∫
Rd
Kn

3 (·, y)F (dy) ∈ L1
loc(R+)

verifying the following. For all x ∈ Rd, t ≥ 0 and ω, ω′ ∈ Ω such that sup
r≤t
‖ω(r)‖ ≤ n and sup

r≤t
‖ω′(r)‖ ≤ n,

we have
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• ‖σt(ω)− σt(ω′)‖ ≤ Kn
2 (t)sup

r≤t
‖ω(r)− ω′(r)‖2;

• ‖γ(t, ω, x)− γ(t, ω′, x)‖ ≤ Kn
3 (t, x)sup

r≤t
‖ω(r)− ω′(r)‖2.

Finally assume that one of the two following hypotheses are fulfilled.

1. For all n ∈ N∗, there exists Kn
1 ∈ L1

loc(R+) such that for all t ≥ 0 and ω, ω′ ∈ Ω verifying
sup
r≤t
‖ω(r)‖ ≤ n and sup

r≤t
‖ω′(r)‖ ≤ n, we have ‖βt(ω)− βt(ω′)‖ ≤ Kn

1 (t)sup
r≤t
‖ω(r)− ω′(r)‖;

2. there exists c > 0 such that for all x ∈ Rd, t ≥ 0 and ω ∈ Ω, xᵀσt(ω)σt(ω)ᵀx ≥ c‖x‖2.

Then item 2. of Hypothesis 6.5.8 is satisfied.

Proposition 6.5.10. Assume that Hypothesis 6.5.8 holds. Then (Ps,η)(s,η)∈R+×Ω is a progressive path-
dependent canonical class verifying Hypothesis 6.3.4.

6.5.2 Dupire’s derivatives and path-dependent stochastic calculus

We will recall here some notions and results introduced in [37] and later developed in [27].

Definition 6.5.11. From now on, anFo-progressively measurable process with values inRn for some n ∈ N∗
will also be called anRn-valued functional. If n = 1, Φ will be said real valued functional.

We recall that such anRn-valued functional can also be seen (by considering its restriction on Λ)
as a Borel function from Λ to Rn, see Definition 6.5.1 and Proposition 6.5.2. In the sequel we will not
distinguish between an Fo-progressively measurable process and its restriction to Λ.

Notation 6.5.12. For all t ≥ 0, we denote Λt := {(s, η) ∈ [0, t] × Ω : η ∈ Ωs} which is clearly a closed
subspace of Λ and of R+ × Ω. On ΛT we denote by d∞ the distance defined by d∞((s1, η1), (s2, η2)) :=
sup
t∈[0,T ]

|η2(t)− η1(t)|+ |s2 − s1|.

This distance induces a topology on ΛT which is stronger than its natural induced topology in-
herited fromR+ × Ω.

Definition 6.5.13. Let Φ be some Rn-valued functional. Φ will be said to be continuous if it is continuous
with respect to d∞.

The following definitions and notations are adapted from [25].

Definition 6.5.14. In the whole definition, we fix Φ a real valued functional, constant after time T , i.e. such
that Φt(ω) = Φt∧T (ω) for all (t, ω).

Let (s, η) ∈ ΛT . We say that Φ is vertically differentiable at (s, η) if

x 7−→ Φs(η + x1[s,T ])

Rd −→ R,
(6.5.3)

is differentiable in 0. The corresponding gradient at 0 is denoted∇Φs(η).
We say that Φ is vertically differentiable if it is vertically differentiable in (s, η) for all (s, η) ∈ ΛT . In

this case,∇Φ : (s, η) 7−→ ∇Φ(s, η) defined on ΛT , will be called the gradient of Φ. We remark that, whenever
that derivation gradient is Borel, it defines anRd-valued functional. Its coordinates will be denoted (∇iΦ)i≤d.
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Similarly, we can define the Hessian∇2Φs(η) of Φ at some point (t, η). It belongs to the space of symmet-
ric matrices of size d and its coordinates will be denoted (∇2

i,jΦs(η))i,j≤d.
Let (s, η) ∈ ΛT (implying that η is constant after time s). We say that Φ is horizontally differentiable

at (s, η) ∈ ΛT , s < T ; if
t 7−→ Φt(η)

[s, T ] −→ R,
(6.5.4)

admits a right-derivative at s. The corresponding derivative will be denoted DΦs(η).
We say that Φ is horizontally differentiable if it is horizontally differentiable in (s, η) for all (s, η) ∈ ΛT

such that s < T and the limit DΦT (η) := lims↑T DΦs(η
s) exists for every η ∈ ΩT . In this case, DΦ :

(s, η) 7−→ DΦs(η) will be called the horizontal derivative of Φ.
If it is Borel, it defines a real valued functional. Φ will be said continuous at fixed times if for all

t ∈ [0, T ], Φt(·) : Ωt 7−→ R is continuous with respect to the sup norm on Ωt.
By convention, if Ψ = DΦ,∇Φ,∇2Φ is well-defined on ΛT , it will be extended on [0, T ] × Ω by setting

Ψt(ω) := Ψt(ω
t) and on ]T,+∞[×Ω by the value 0.

Φ will be said left-continuous if for all t ∈ [0, T ], ε > 0, ω ∈ Ωt, there exists ζ > 0 such that for any
(t′, ω′) ∈ Λt verifying d∞((t, ω), (t′, ω′)) < ζ we have |Φt(ω)− Φt′(ω

′)| ≤ ε.
Φ will be said boundedness preserving if for any compact set K of Rd there exists a constant CK > 0

such that for all t ∈ [0, T ] and ω ∈ Ωt taking values in K, we have |Φt(ω)| ≤ CK .
Φ will be said to have the horizontal local Lipschitz property if for all (t, ω) ∈ ΛT , there exists C > 0

and ζ > 0 such that for all (s, η) ∈ ΛT verifying d∞((t, ω), (s, η)) ≤ ζ we have for all 0 ≤ t1 ≤ t2 ≤ s that
|Φt2(ηt1)− Φt1(ηt1)| ≤ C|t2 − t1|.

Notation 6.5.15. We denote by C1,2
b (ΛT ) the space of real valued functionals Φ constant after time T , which

admit a horizontal derivative and vertical derivatives up to order two such that Φ, DΦ,∇Φ,∇2Φ are bound-
edness preserving, left-continuous and are continuous at fixed time.

This space is stable by pointwise sum and product.

Notation 6.5.16. For every ω ∈ Ω, and t ≥ 0, we denote by ωt− the element of Ωt defined by ωt−(r) = ω(r)

if r ∈ [0, t[ and ωt−(r) = ω(t−) otherwise.
For any process Y and time t ≥ 0, we denote ∆Yt := Yt − Yt− .

The following path-dependent Itô formula comes from [25] Proposition 6.1. We formulate it in
our setup.

Theorem 6.5.17. Let P be a probability measure on the canonical space (Ω,F). Let s ∈ [0, T ] and assume
that under probability P, the canonical process X is such that (Xt)t∈[s,T ] is an (Ft)t∈[s,T ]-semimartingale.
Let Φ ∈ C1,2

b (ΛT ) and assume that ∇Φ has the horizontal local Lipschitz property. Then (Φt)t∈[s,T ] is an
(Ft)t∈[s,T ]-semimartingale and we have

Φ = Φs +

∫ ·
s
DΦrdr +

∫ ·
s
∇ΦrdXr +

1

2

∫ ·
s
Tr((∇2Φr)

ᵀd〈Xc〉r)

+
∑

r∈]s,·]:∆Xr 6=0

(Φr(ω)− Φr(ω
r−)−∇Φr(ω

r−) ·∆Xr),

in the sense of P-indistinguishability.

We recall the following elementary example.

Lemma 6.5.18. Let h ∈ C1,2([0, T ]×Rd) thenH : (t, ω) 7−→ h(t∧T, ω(t∧T )) belongs toC1,2
b (ΛT ) andDH :

(t, ω) 7→ ∂th(t, ω(t))1[0,T ](t), ∇H : (t, ω) 7→ ∇xh(t, ω(t))1[0,T ](t),∇2H : (t, ω) 7→ ∇2
xh(t, ω(t))1[0,T ](t).
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Remark 6.5.19.

1. In Lemma 6.5.18, it is moreover clear that if h does not depend on t then ∇H has the horizontal local
Lipschitz property, hence that Theorem 6.5.17 above applies for Φ = H .

2. In particular, for any i ∈ [[1, d]], Xi ∈ C1,2
b (ΛT ), DXi ≡ 0, ∇Xi ≡ ei1[0,T ] and ∇2Xi ≡ 0, where

(e1, · · · , ed) denotes the Euclidean basis ofRd.

6.5.3 Decoupled mild solutions of Path-dependent (I)PDEs

From now on, we suppose V (t) ≡ t. We fix some coefficients β, σ, γ verifying Hypothesis 6.5.8 but
vanishing after time T . We denote by (Ps,η)(s,η)∈R+×Ω the weak solution of the corresponding SDE.
By Proposition 6.5.10 it defines a progressive path-dependent canonical class verifying Hypothesis
6.3.4. We denote again by (Ps)s∈R+ the associated path-dependent system of projectors, see Defini-
tion 6.3.9.

Definition 6.5.20. Let Φ be an Fo-progressively measurable process constant after time T . Φ will be said to
have polynomial growth if there exists C > 0, p ∈ N∗ such that for all (t, ω) ∈ [0, T ] × Ω, |Φt(ω)| ≤
C(1 + sup

r≤t
‖ω(r)‖p).

A r.v. ξ will be said to have polynomial growth if there exists C > 0, p ∈ N∗ such that |ξ(ω)| ≤
C(1 + sup

r≤T
‖ω(r)‖p).

Lemma 6.5.21. For any finite p ≥ 1, (s, η) ∈ [0, T ]× Ω, sup
t∈[s,T ]

|Xi
t | ∈ Lp(Ps,η).

Proof. We fix some (s, η) ∈ [0, T ] × Ω, 1 ≤ i ≤ d and some finite p ≥ 1. A direct consequence of
Proposition 6.5.6 item 2. and of Definition 6.5.4 a is that under Ps,η, Xi may be decomposed on [s, T ]
as ηi(s) +

∫ ·
s β

i
rdr + M c + Md where M c (resp. Md) is a continuous (resp. purely discontinuous)

local martingale.
∫ ·
s β

i
rdr is bounded and M c is a continuous local martingale with bounded bracket

〈M c〉 = [M c] =
∫ ·
s(σσ

ᵀ)irdr hence by BDG inequality, sup
t∈[s,T ]

|M c
t | ∈ Lp(Ps,η). In order to conclude, we

are therefore left to show that the same holds forMd. We haveMd
t =

∑
r≤t

∆Xi
r−
∫ t
s

∫
Rd
γir(·, y)F (dy)dr,

where the integral in previous formula is bounded, because γ is bounded. So we need to show that(∑
r≤T
|∆Xi

r|

)
∈ Lp(Ps,η). Observing the definition of Ps,η and X̃ in Definition 6.5.3 it is clear that

since γ is bounded then the jumps of X under Ps,η are bounded. So finally, we are left to show that
the number of jumps of Xi, meaning

∑
r≤T

1∆Xi
r 6=0, belongs to Lp(Ps,η). This holds since X can jump

only if the underlying Poisson measure p jumps (see Definition 6.5.3) and the number of jumps of p
on [s, T ] is a Poisson r.v. of parameter (T − s)F (Rd) which admits a finite p-th moment.

Notation 6.5.22. We setD(A) to be the space of real valued functionals Φ ∈ C1,2
b (ΛT ) such that Φ, DΦ,∇Φ,∇2Φ

have polynomial growth and such that∇Φ has the horizontal local Lipschitz property. We define the map A on
D(A) by setting for every Φ ∈ D(A)

(AΦ)t(ω) := DΦt(ω) + 1
2Tr((σσ

ᵀ)t(ω)∇2Φt(ω)) + βt(ω) · ∇Φt(ω)
+
∫
Rd

(Φt(ω + γt(ω, y)1[t,+∞[)− Φt(ω)− γt(ω, y) · ∇Φt(ω))F (dy).
(6.5.5)

We also set M [Φ] as in (6.4.3) in Notation 6.4.11. It defines an AF.
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Remark 6.5.23. By Lemma 6.5.18, and expression (6.5.5), the coordinates Xi, 1 ≤ i ≤ d of the canonical
process belong to D(A) and A(Xi) = βi.

Definition 6.5.20, Lemma 6.5.21, Notation 6.5.22 and the fact that β, σ, γ are bounded and F is
finite yield the following.

Corollary 6.5.24.

1. for every Φ ∈ D(A), AΦ and Φ−
∫ ·

0(AΦ)rdr have polynomial growth;

2. every Φ with polynomial growth verifies that sup
r∈[s,T ]

|Φr| ∈ Lp(Ps,η) for all finite p ≥ 1, (s, η) ∈

[0, T ]× Ω;

3. for all Φ ∈ D(A), (s, η) ∈ [0, T ]× Ω and finite p ≥ 1, we have
sup
t∈[s,T ]

∣∣∣Φt − Φs(η)−
∫ t
s A(Φ)rdr

∣∣∣ ∈ Lp(Ps,η);

4. (D(A), A) verifies Hypothesis 6.3.15.

Proposition 6.5.25. Let (s, η) ∈ [0, T ]×Ω. A probability measureP on (Ω,F) is a weak solution of the SDE
with coefficients β, σ, γ starting in (s, η) iff it solves the martingale problem associated to (D(A), A), defined
in Notation 6.5.22, in the sense of Definition 6.3.17.

Proof. We fix (s, η). Let P be a weak solution of the SDE with coefficients β, σ, γ starting in (s, η). We
show that it fulfills the martingale problem in the sense of Definition 6.3.17. By Proposition 6.5.6, we
immediately see that P(ωs = ηs) = 1 which constitutes item 1. of Definition 6.3.17. By Proposition
6.5.6 it follows that, underP, (Xt)t∈[s,+∞[ is a semimartingale with characteristics

∫ ·
s βrdr,

∫ ·
s(σσ

ᵀ)rdr

and ν : (ω,C) 7→
∫ +∞
s

∫
Rd

1C(r, γr(ω, y))1{γr(ω,y)6=0}F (dy)dr.
Now let Φ ∈ D(A). Since for every ω, the set of jump times {t : ∆ω(t) 6= 0} is countable hence

Lebesgue negligible, then Φr(ω
r) = Φr(ω

r−), dr a.e., and so∫ ·
s

∫
Rd

(Φr(ω + γr(ω, y)1[r,+∞[)− Φr(ω)− γr(ω, y) · ∇Φr(ω))F (dy)dr,

is indistinguishable from∫ ·
s

∫
Rd

(Φr(ω
r− + γr(ω, y)1[r,+∞[)− Φr(ω

r−)− γr(ω, y) · ∇Φr(ω
r−))F (dy)dr,

which is the compensator of ∑
r∈]s,·]:∆Xr 6=0

Φr(ω)− Φr(ω
r−)−∆Xr · ∇Φr(ω

r−),

i.e. their difference is a local martingale. By Theorem 6.5.17, we therefore have that, Φ−
∫ ·
s AΦrdr is

a local martingale, and by item 3. of Corollary 6.5.24 it is a martingale. Since this holds for any Φ ∈
D(A), P also verifies item 2. of Definition 6.3.17. This concludes the proof of the direct implication.

As far as the converse implication is concerned, let us assume that P satisfies both items of Def-
inition 6.3.17. By Lemma 6.5.18 and Remark 6.5.19, we have the following. For any h ∈ C2

b (Rd), the
functional H : (t, ω) 7→ h(ω(t ∧ T )) belongs to D(A) and, for any (t, ω) ∈ Λ, AH(t, ω) = Ath(ω), see
Notation 6.5.5. Definition 6.3.17 therefore implies that P verifies item 3. in Proposition 6.5.6, hence
that it is a weak solution of the SDE.
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Corollary 6.5.26. Let (Ps,η)(s,η)∈R+×Ω be the family introduced at the beginning of Section 6.5.3. We suppose
the validity Hypothesis 6.5.8.

1. (Ps,η)(s,η)∈R+×Ω solves the well-posed martingale problem associated to (D(A), A), see Definition 6.3.17.

2. (D(A), A) is a weak generator of (Ps)s∈R+ , which is the unique path-dependent system of projectors for
which this holds.

3. For all Φ ∈ D(A), the AF M [Φ] is a square integrable MAF.

Proof. The first statement follows by Proposition 6.5.25, the second one by the second statement of
Proposition 6.3.18. The third statement holds because of Proposition 6.3.20. We are indeed in the
framework of Section 6.4.2, see Notation 6.4.11.

Proposition 6.5.27. Let Φ ∈ D(A) be such that for all i ≤ d, ΦXi ∈ D(A). Then for all (t, ω) ∈ R+ × Ω,

Γ(X,Φ)t(ω) = (σσᵀ∇Φ)t(ω) +

∫
Rd
γt(ω, y)(Φt(ω + γt(ω, y)1[t,+∞[)− Φt(ω))F (dy). (6.5.6)

Proof. We fix Φ and 1 ≤ i ≤ d. We recall that the usual product rules apply to both the horizontal and
the vertical derivative so that

A(ΦXi)t − ΦtAX
i
t −Xi

tAΦt

= D(ΦXi)t − ΦtDX
i
t −Xi

tDΦt

+1
2Tr((σσ

ᵀ∇2(ΦXi))t)− 1
2ΦtTr((σσ

ᵀ∇2Xi)t)− 1
2X

i
tTr((σσ

ᵀ∇2Φ)t)
+βt · ∇(ΦXi)t − Φtβt · ∇Xi

t −Xi
tβt · ∇Φt

+
∫
Rd

(Φt(·+ γt(·, y)1[t,+∞[)(X
i
t + γit(·, y))− ΦtX

i
t − γt(·, y) · ∇(XiΦ)t)F (dy)

−Φt

∫
Rd

(γit(·, y)− γt(·, y) · ∇Φt)F (dy)
−Xi

t

∫
Rd

(Φt(·+ γt(·, y)1[t,+∞[)− Φt − γt(·, y) · ∇Φt)F (dy)

= 1
2Tr

(
σσᵀt (∇2(ΦXi)t − Φt∇2Xi

t −Xi
t∇2Φt)

)
+
∫
Rd

(Φt(·+ γt(·, y)1[t,+∞[)(X
i
t + γit(·, y))− ΦtX

i
t

−Xi
t(Φt(·+ γt(·, y)1[t,+∞[)− Φt)− Φtγ

i
t(·, y))F (dy)

= 1
2

∑
j,k

(σσᵀ)j,kt (∇2
j,k(ΦX

i)t − Φt∇2
j,kX

i
t −Xi

t∇2
j,kΦt)

+
∫
Rd
γit(·, y)(Φt(·+ γt(·, y)1[t,+∞[)− Φt)F (dy)

= 1
2

∑
j,k

(σσᵀ)j,kt (∇jΦt∇kXi
t +∇kΦt∇jXi

t)

+
∫
Rd
γit(·, y)(Φt(·+ γt(·, y)1[t,+∞[)− Φt)F (dy)

= 1
2

(∑
j

(σσᵀ)j,it ∇jΦt +
∑
k

(σσᵀ)i,kt ∇kΦt

)
+
∫
Rd
γit(·, y)(Φt(·+ γt(·, y)1[t,+∞[)− Φt)F (dy)

= (σσᵀ∇Φ)it +
∫
Rd
γit(·, y)(Φt(·+ γt(·, y)1[t,+∞[)− Φt)F (dy),

(6.5.7)

where by Lemma 6.5.18, the fifth equality holds since ∇jXi is constantly equal to 1 if j = i and 0
otherwise.

Proposition 6.5.28. X verifies Hypothesis 6.4.16.

Proof. We fix i ≤ d. By Remark 6.5.23, Xi ∈ D(A) with A(Xi) = βi. A consequence of Lemma 6.5.21
and of the fact that β is bounded is that Xi verifies item 1. of Hypothesis 6.4.16. By Remark 6.5.19
and since (Xi)2 clearly has polynomial growth we have (Xi)2 ∈ D(A) which is item 2. of Hypothesis
6.4.16. Finally by Proposition 6.5.27, we have Γ(Xi)t(ω) = (σσᵀ)i,it (ω) +

∫
Rd

(γi)2
t (ω, y)F (dy) which is

bounded being the coefficients σ, γ, F bounded; so item 3. of Hypothesis 6.4.16 is verified.
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From now on we fix Ψi := Xi for all i and the corresponding driving MAF M [X] and we will
apply the results of Subsection 6.4.2 to this specific setup.

We now fix ξ, f verifying Hypothesis 6.4.6. We will be interested in the following path-dependent
non linear IPDE with terminal condition, denoted by IPDE(f, ξ):{

A(Φ) + f(·, ·,Φ,Γ(Φ, X)) = 0 on [0, T ]× Ω
ΦT = ξ on Ω,

(6.5.8)

where the explicit expression of Γ(Φ, X) is given by Proposition 6.5.27.

Remark 6.5.29. When γ ≡ 0, the equation (6.5.8) is given by{
DΦ + 1

2Tr(σσ
ᵀ∇2Φ) + β∇Φ + f(·, ·,Φ, σσᵀ∇Φ) = 0 on [0, T ]× Ω

ΦT = ξ on Ω,
(6.5.9)

and it is a path-dependent PDE.

To the path-dependent IPDE (6.5.8), we will associate a family of BSDEs driven by a cadlag mar-
tingale, indexed by (s, η) ∈ [0, T ]× Ω.

Notation 6.5.30. BSDEs,η(f, ξ) will denote equation

Y s,η = ξ +

∫ T

·
f

(
r, ·, Y s,η

r ,
d〈M s,η,M s,η[X]〉r

dr

)
dr − (M s,η

T −M
s,η
· ), (6.5.10)

in the stochastic basis (Ω,Fs,η,Fs,η,Ps,η).

By Proposition 6.5.28, Ψ := X , where X is the canonical process, verifies Hypothesis 6.4.16; by
item 1. of Remark 6.4.17, M [X] satisfies Hypothesis 6.4.5. Now ξ, f verify Hypothesis 6.4.6; so by
Theorem 6.4.7, for every (s, η) ∈ [0, T ] × Ω, BSDEs,η(f, ξ) admits a unique solution (Y s,η,M s,η) in
L2(dt⊗ dPs,η)×H2

0(Ps,η).

Definition 6.5.31. Let Φ ∈ D(A) such that ΦXi ∈ D(A) for all i ≤ d. We will say that Φ is a classical
solution of IPDE(f, ξ) if it verifies (6.5.8).

We can now formulate the main result of this paper.

Theorem 6.5.32. Assume that Hypothesis 6.5.8 holds, that ξ, f(·, ·, 0, 0) are Borel with polynomial growth
and that f is Lipschitz in y, z uniformly in t, ω.

1. The identification problem IP (f, ξ) (see Definition 6.4.18) admits a unique solution (Y,Z) ∈ L2
uni ×

(L2
uni)

d.

2. IPDE(f, ξ) admits a unique decoupled mild solution Y in the sense that whenever Y and Ȳ are two
decoupled mild solutions then Y and Ȳ are identical.

3. If for every (s, η), (Y s,η,M s,η) is the solution of BSDEs,η(f, ξ), i.e. (6.5.10), then the decoupled mild
solution Y is given by (s, η) 7→ Y s,η

s . Moreover, for every (s, η), on [s, T ], Y s,η is a Ps,η version of Y
and Zt = d〈Ms,η ,M [X]s,η〉t

dt , dt⊗Ps,η a.e.

Proof. It is a consequence of Theorem 6.4.19. Indeed firstly Hypothesis 6.4.16 holds by Proposition
6.5.28 and Ψ := X satisfies Hypothesis 6.4.16; secondly ξ and f(·, ·, 0, 0), being of polynomial growth
then (f, ξ) fulfill Hypothesis 6.4.6 because of item 2. of Corollary 6.5.24 and the Lipschitz property of
f in (y, z).
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Remark 6.5.33. As anticipated in the introduction, given the family of solutions (Y s,η,M s,η) ofBSDEs,η(f, ξ),
we have obtained an analytical characterization of the process d〈Ms,η ,M [X]s,η〉

dt . This constitutes indeed the
”identification” of the ”second component” of a solution to a BSDE via solving an analytical problem.

1. Indeed, by item 3. of Theorem 6.5.32, that process is dt ⊗ dPs,η a.e. equal to the q.s. unique functional
Z such that (Y, Z) fulfills (6.4.9).

2. If Γ(Y,X) (hence σσᵀ∇Y if γ ≡ 0) is well-defined then (Y,Γ(Y,X)) fulfills equation (6.4.9), see item
3. of Proposition 6.5.34.

3. Previous analytical characterization of d〈M
s,η ,M [X]s,η〉

dt is not possible with the theory of viscosity solu-
tions, even in the case of classical Pardoux-Peng Markovian Brownian BSDEs.

The link between decoupled mild solutions and classical solutions is the following.

Proposition 6.5.34.

1. Let Φ be a classical solution of IPDE(f, ξ), see Definition 6.5.31. Then (Φ,Γ(Φ, X)) is a solution of the
identification problem IP (f, ξ) (see Definition 6.4.18) and in particular, Φ is a decoupled mild solution
of IPDE(f, ξ);

2. there is at most one classical solution of IPDE(f, ξ);

3. assume that the unique decoupled mild solution Y of IPDE(f, ξ) verifies Y ∈ D(A) and Y Xi ∈
D(A), 0 ≤ i ≤ d, then Y is a classical solution q.s., in the sense that YT = ξ (for all ω) and that
A(Y ) = −f(·, ·, Y,Γ(Y,X)) q.s., see Definition 6.4.2.

Proof. 1. Let Φ be a classical solution. First, since Φ and ΦXi belong to D(A) for all i ≤ d;
taking into account Notation 6.4.13, by items 1. 2. of Corollary 6.5.24 we can show that
Φ,Γ(Φ, X1), · · · ,Γ(Φ, Xd) belong to L2

uni.

On the other hand, let (s, η) ∈ [0, T ]×Ω. By Corollary 6.5.26 3. M [Φ]s,· := Φ−Φs(η)−
∫ ·
s AΦrdr,

and M [ΦXi]s,· := ΦXi − Φs(η)ηi(s)−
∫ ·
s A(ΦXi)rdr, 1 ≤ i ≤ d, are Ps,η-martingales on [s, T ]

vanishing at time s. By Definition 6.5.31 we have AΦ = −f(·, ·,Φ,Γ(Φ, X)) and by Remark
6.5.23 and Notation 6.4.13 we have

A(ΦXi) = Γ(ΦXi) + ΦAXi +XiAΦ = Γ(ΦXi) + Φβi −Xif(·, ·,Φ,Γ(Φ, X)),

so the previously mentioned martingales indexed by [s, T ], can be rewritten M [Φ]s,· = Φ− Φs(η) +
∫ ·
s
f(r, ·,Φr,Γ(Φ, X)r)dr

M [ΦXi]s,· = ΦXi − Φs(η)ηi(s)−
∫ ·
s
(Γ(ΦXi)r + Φrβ

i
r −Xi

rf(r, ·,Φ,Γ(Φ, X)r))dr,
1 ≤ i ≤ d.

(6.5.11)

Finally, again by Definition 6.5.31 we have ΦT = ξ, so, for any (s, η), taking the expectations in
(6.5.11) at s = T , we get

E
s,η
[
ξ − Φs(η) +

∫ T
s
f(r, ·,Φr,Γ(Φ, X)r)dr

]
= 0;

E
s,η
[
ξXi

T − Φs(η)ηi(s)−
∫ T
s

(Γ(ΦXi)r + Φrβ
i
r −Xi

rf(r, ·,Φ,Γ(Φ, X)r))dr
]

= 0,

1 ≤ i ≤ d,

(6.5.12)

which by Fubini’s Lemma and Definition 6.3.9 yields
Φs(η) = Ps[ξ](η) +

∫ T
s
Ps [f (r, ·,Φr,Γ(Φ, X)r)] (η)dr

(ΦX1)s(η) = Ps[ξX
1
T ](η)−

∫ T
s
Ps
[(

Γ(ΦX1)r + Φrβ
1
r −X1

r f (r, ·,Φr,Γ(Φ, X)r)
)]

(η)dr
· · ·

(ΦXd)s(η) = Ps[ξX
d
T ](η)−

∫ T
s
Ps
[(

Γ(Φ, Xd)r + Φrβ
d
r −Xd

r f (r, ·,Φr,Γ(Φ, X)r)
)]

(η)dr,

(6.5.13)
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and the first item is proven.

2. The second item follows from item 1. and by the uniqueness of a decoupled mild solution of
IPDE(f, ξ), see Theorem 6.5.32.

3. Concerning item 3. let (Y,Z) be the unique decoupled mild solution of IP (f, ξ). We first note
that the first line of (6.4.9) taken with s = T yields YT = ξ.

Let us now fix some (s, η) ∈ [0, T ] × Ω. The fact that Y ∈ D(A) implies by Proposition 6.5.25
that Y −Ys−

∫ ·
s AYrdr is on [s, T ] aPs,η-martingale and by Theorem 6.5.17 that this martingale,

which we shall denote M s,η[Y ], isPs,η a.s. cadlag. Hence Y is underPs,η a cadlag special semi-
martingale. Let us keep in mind the solution (Y s,η,M s,η) of (6.5.10). A consequence of item 3.
of Theorem 6.5.32 is that Y admits on [s, T ], Y s,η as Ps,η cadlag version which is a special semi-
martingale verifying Y s,η

t = Y s,η
s −

∫ t
s f(r, Yr, Zr)dt+M s,η

t , t ∈ [s, T ]. Since Y isPs,η a.s. cadlag,
then Y and Y s,η are actuallyPs,η-indistinguishable on [s, T ] and by uniqueness of the decompo-
sition of the semi-martingale Y , we have that (

∫ ·
s AYrdr,M

s,η[Y ]) and (−
∫ ·
s f(r, Yr, Zr)dr,M

s,η)
are Ps,η-indistinguishable on [s, T ]. Since this holds for all (s, η), by Definition 6.4.2 we have
AY = −f(·, ·, Y, Z) q.s. so we are left to show that Z = Γ(Y,X) q.s.

We fix again (s, η). By item 3. of Theorem 6.5.32, 〈M s,η,M s,η[X]〉 =
∫ ·
s Zrdr. By item 3. of

Corollary 6.5.26 and Lemma 6.4.14, 〈M s,η[Y ],M s,η[X]〉 =
∫ ·
s Γ(Y,X)rdr. As we have remarked

above, M s,η = M s,η[Y ] so
∫ ·
s Zrdr and

∫ ·
s Γ(Y,X)rdr are Ps,η-indistinguishable on [s, T ]. Since

this holds for all (s, η), we indeed have by Definition 6.4.2 that Z = Γ(Y,X) q.s., and the proof
is complete.





Appendix

6.A Some technicalities

In all the appendix, we are in the framework of Section 6.4.

Lemma 6.A.1. Let f̃ ∈ L1
uni. Then (s, η) 7−→ Es,η[

∫ T
s f̃rdVr]

[0, T ]× Ω −→ R
is Fo-progressively measurable.

Proof. We fix T0 ∈]0, T ] and we will show that on [0, T0]×Ω, (s, η) 7−→ Es,η[
∫ T
s f̃rdVr] isB([0, T0])⊗FoT0-

measurable. We will start by showing that on [0, T0]× Ω× [0, T0], the function
kn : (s, η, t) 7→ Es,η[

∫ T
t ((−n) ∨ f̃r ∧ n)dVr] is B([0, T0])⊗FoT0 ⊗ B([0, T0])-measurable, where n ∈ N.

Let t ∈ [0, T0] be fixed. Then by Remark 6.3.5
(s, η) 7→ Es,η[

∫ T
t ((−n) ∨ f̃r ∧ n)dVr] is B([0, T0])⊗FoT0-measurable.

Let (s, η) ∈ [0, T0] × Ω be fixed and tm −→
m→∞

t be a converging sequence in [0, T0]. Since V is
continuous, ∫ T

tm

((−n) ∨ f̃r ∧ n)dVr −→
m→∞

∫ T

t
((−n) ∨ f̃r ∧ n)dVr a.s. (6.A.1)

This sequence is uniformly bounded by nVT , so by dominated convergence theorem, the conver-
gence in (6.A.1) also holds under the expectation, so that t 7→ Es,η[

∫ T
t ((−n)∨f̃r∧n)dVr] is continuous.

By Lemma 4.51 in [1], kn is therefore B([0, T0])⊗FoT0 ⊗ B([0, T0])-measurable.
The composition of (s, η) 7→ (s, η, s) with the maps kn yields that, for any n ≥ 0, k̃n : (s, η) 7−→

Es,η[
∫ T
s ((−n)∨ f̃r ∧ n)dVr] is (on [0, T0]×Ω) B([0, T0])⊗FoT0-measurable. k̃n therefore defines an Fo-

progressively measurable process. Then by letting n tend to infinity, ((−n)∨ f̃ ∧ n) tends dV ⊗ dPs,η

a.e. to f̃ and since we assumed Es,η[
∫ T
s |f̃r|dVr] < ∞, by dominated convergence, Es,η[

∫ T
s ((−n) ∨

f̃r ∧ n)dVr] tends to Es,η[
∫ T
s f̃rdVr]. (s, η) 7−→ Es,η[

∫ T
s f̃(r,Xr)dVr] is therefore an Fo-progressively

measurable process as the pointwise limit of the k̃n which areFo-progressively measurable processes.

We recall the following immediate consequence of Fubini’s Theorem which corresponds to Lemma
2.5.13 in Chapter 1.

Lemma 6.A.2. LetP be a probability measure on (Ω,F) and φ, ψ be two measurable processes. If φ and ψ are
P-modifications of each other, then they are equal dV ⊗ dP a.e.

The proof of Proposition 6.4.10 goes through a linearization lemma.

Lemma 6.A.3. Let f̃ ∈ L2
uni. Let, for every (s, η) ∈ [0, T ]× Ω, (Ỹ s,η, M̃ s,η) be the unique solution of

Ỹ s,η
t = ξ +

∫ T

t
f̃rdVr − (M̃ s,η

T − M̃
s,η
t ), t ∈ [s, T ], (6.A.2)

185
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in (Ω,Fs,η,Fs,η,Ps,η). Then there exists a process Ỹ ∈ L2
uni, a square integrable path-dependent MAF

(M̃t,u)0≤t≤u and Z̃1, · · · , Z̃d ∈ L2
uni, such that for all (s, η) ∈ [0, T ]× Ω the following holds.

1. Ỹ s,η is on [s, T ] a Ps,η-modification of Ỹ ;

2. M̃ s,η is the cadlag version of M̃ under Ps,η.

3. For each integer 1 ≤ i ≤ d, Z̃i = d〈M̃s,η ,N i,s,η〉
dV dV ⊗ dPs,η a.e.

Remark 6.A.4. The existence, for any (s, η), of a unique solution (Ỹ s,η, M̃ s,η) of (6.A.2) holds because ξ and
(t, ω, y, z) 7→ f̃t(ω) trivially verify the hypothesis of Theorem 6.4.7.

Proof. We set Ỹ : (s, η) 7→ Es,η
[
ξ +

∫ T
s f̃rdVr

]
which isFo-progressively measurable by Remark 6.3.5

and Lemma 6.A.1. Therefore, for a fixed t ∈ [s, T ] we have Ps,η-a.s.

Ỹt(ω) = Et,ω
[
ξ +

∫ T
t f̃rdVr

]
= Es,η

[
ξ +

∫ T
t f̃rdVr

∣∣∣Ft] (ω)

= Es,η
[
Ỹ s,η
t + (M̃ s,η

T − M̃
s,η
t )|Ft

]
(ω)

= Ỹ s,η
t (ω).

The second equality follows by Remark 6.3.5 and the third one uses (6.A.2). For every 0 ≤ t ≤ u and
ω ∈ Ω we set

M̃t,u(ω) :=

{
Ỹu∧T (ω)− Ỹt∧T (ω)−

∫ u∧T
t∧T f̃r(ω)dVr if

∫ u∧T
t∧T |f̃(ω)|rdVr < +∞,

0 otherwise.
(6.A.3)

For fixed (s, η), (6.A.2) implies dỸ s,η
r = −f̃rdVr + dM̃ s,η

r . On the other hand
∫ T
s |f̃ |rdVr < +∞ Ps,η

a.s.; so for any s ≤ t ≤ u we have M̃ s,η
u − M̃ s,η

t = M̃t,u P
s,η- a.s. Taking into account that M̃ s,η is

square integrable and the fact that previous equality holds for any (s, η) and t ≤ u, then (M̃t,u)0≤t≤u
indeed defines a square integrable path-dependent MAF. Y belongs to L2

uni because the validity of
the two following arguments hold for all (s, η). First Y is a Ps,η-modification of Y s,η on [s, T ], so by
Lemma 6.A.2 Y = Y s,η dV ⊗ dPs,η a.e.; second Y s,η ∈ L2(dV ⊗ dPs,η). The existence of Z follows
setting for all i, Zi = d〈M̃,N i〉

dV , see Notation 6.3.22 and Proposition 6.3.21.

Notation 6.A.5. For every fixed (s, η) ∈ [0, T ]×Ω, we will denote by (Y k,s,η,Mk,s,η)k∈N the Picard iterations
associated to BSDEs,η(f, ξ) as defined in Notation 4.A.13 in Chapter 4 and Zk,s,η := (Z1,k,s,η, · · ·Zd,k,s,η)
will denote 〈M

k,s,η ,Ns,η〉
dV .

This means that for all (s, η) ∈ [0, T ]× Ω, (Y 0,s,η,M0,s,η) ≡ (0, 0) and for all k ≥ 1, we have on [s, T ]

Y k,s,η = ξ +

∫ T

·
f(r, ·, Y k−1,s,η

r , Zk−1,s,η
r )dVr − (Mk,s,η

T −Mk,s,η
· ), (6.A.4)

in the sense ofPs,η-indistinguishability, and that for all (s, η) ∈ [0, T ]×Ω, k ≥ 0, Y k,s,η, Z1,k,s,η, · · ·Zd,k,s,η
belong to L2(dV ⊗ dPs,η), see Notation 4.A.13 and Lemma 4.A.2 in Chapter 4.

A direct consequence of Proposition 4.A.15 in Chapter 4 and the lines above it, is the following.

Proposition 6.A.6. For every (s, η) ∈ [0, T ]× Ω, each component of
(Y k,s,η, Z1,k,s,η, · · · , Zd,k,s,η) tends to each component of (Y s,η, Z1,s,η, · · · , Zd,s,η) in L2(dV ⊗ dPs,η) and
dV ⊗ dPs,η-a.e. when k tends to infinity.
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Proposition 6.A.7. For each k ∈ N, there exist processes Y k ∈ L2
uni, Z

k,1, · · · , Zk,d ∈ L2
uni, a square

integrable path-dependent MAF (Mk
t,u)0≤t≤u such that for all (s, η) ∈ [0, T ]× Ω, we have the following.

1. Y k,s,η is on [s, T ] a Ps,η-modification of Y k;

2. Mk,s,η is the cadlag version of Mk under Ps,η.

3. For all (s, η) ∈ [0, T ]× Ω and i ∈ [[1; d]], Zk,i = d〈Mk,s,η ,N i,s,η〉
dV dV ⊗ dPs,η a.e.

Proof. We prove the statement by induction on k ≥ 0. It is clear that Y 0 ≡ 0 and M0 ≡ 0 verify the
assertion for k = 0.

Suppose the existence, for k ≥ 1, of a square integrable path-dependent MAFMk−1 and processes
Y k−1 Zk−1,1, · · · , Zk−1,d ∈ L2

uni such that the statements 1. 2. 3. above hold replacing k with k − 1.

We fix (s, η) ∈ [0, T ] × Ω. By Lemma 6.A.2, (Y k−1,s,η, Zk−1,s,η) = (Y k−1, Zk−1) dV ⊗ dPs,η a.e.
Therefore by (6.A.4)

Y k,s,η
t = ξ +

∫ T

t
f
(
r, ·, Y k−1

r , Zk−1
r

)
dVr − (Mk,s,η

T −Mk,s,η
t ), t ∈ [s, T ].

According to Notation 6.4.8, the equation (6.A.4) can be seen as a BSDE of the type BSDEs,η(f̃ , ξ)
where f̃ : (t, ω) 7−→ f(t, ω, Y k−1

t (ω), Zk−1
t (ω)). We now verify that f̃ verifies the conditions under

which Lemma 6.A.3 applies.
f̃ is Fo-progressively measurable since Y k−1, Zk−1 are Fo-progressively measurable and f is

Proo ⊗ B(R)⊗ B(Rd)-measurable. Since

|f̃(t, ω)| = |f(t, ω, Y k−1
t (ω), Zk−1

t (ω))| ≤ |f(t, ω, 0, 0)|+K(|Y k−1
t (ω)|+ ‖Zk−1

t (ω)‖),

for all t, ω, with f(·, ·, 0, 0), Y k−1, Zk−1,1, · · · , Zk−1,d ∈ L2
uni by recurrence hypothesis, it is clear that

f̃ ∈ L2
uni. Since (Y k,s,η,Mk,s,η) is a solution of BSDEs,η(f̃ , ξ), Lemma 6.A.3 shows the existence of

suitable Y k,Mk, Zk,1, · · · , Zk,d verifying the statement for the integer k.

Proof of Proposition 6.4.10. We define Ȳ and Z̄i, 1 ≤ i ≤ d by Ȳs(η) := limsup
k∈N

Y k
s (η) and Z̄is(η) :=

limsup
k∈N

Zk,is (η), for every (s, η) ∈ [0, T ]× Ω.

Ȳ and Z̄ := (Z̄1, · · · , Z̄d) are Fo-progressively measurable. Combining Propositions 6.A.7, 6.A.6 and
Lemma 6.A.2 it follows that for every (s, η) ∈ [0, T ]× Ω,{

Y k −→
k→∞

Y s,η dV ⊗ dPs,η

Zk,i −→
k→∞

Zi,s,η dV ⊗ dPs,η, for all 1 ≤ i ≤ d. (6.A.5)

Let us fix 1 ≤ i ≤ d and (s, η) ∈ [0, T ]×Ω. There is a set As,η of full dV ⊗ dPs,η measure such that for
all (t, ω) ∈ As,η we have

Ȳt(ω) = limsup
k∈N

Y k
t (ω) = lim

k∈N
Y k
t (ω) = Y s,η

t (ω)

Z̄t(ω) =

(
limsup
k∈N

Zk,it (ω)

)
i≤d

=

(
lim
k∈N

Zk,it (ω)

)
i≤d

= Zs,ηt (ω).
(6.A.6)
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This implies

Ȳt(ω) = Y s,η dV ⊗ dPs,ηa.e. (6.A.7)
Z̄t(ω) = Zs,η dV ⊗ dPs,ηa.e.

By (6.A.7) and (6.4.2), under every Ps,η, we actually have

Y s,η = ξ +

∫ T

·
f
(
r, ·, Ȳr, Z̄r

)
dVr − (M s,η

T −M
s,η
· ), (6.A.8)

in the sense ofPs,η-indistinguishability, on the interval [s, T ]. At this stage, in spite of (6.A.7), Ȳ is not
necessarily a modification of Y s,η. We will construct processes Y,Z fulfilling indeed the statement of
Proposition 6.4.10. In particular Y fulfills item 1. that is a bit stronger than (6.A.7).

We set now f̃ : (t, ω) 7→ f(t, ω, Ȳt(ω), Z̄t(ω)); equation (6.A.8) is now of the form (6.A.2) and
we show that f̃ so defined verifies the conditions under which Lemma 6.A.3 applies. f̃ is Fo-
progressively measurable since f is Proo⊗B(R)⊗B(Rd)-measurable and Ȳ , Z̄ are Fo-progressively
measurable.

Moreover, for any (s, η) ∈ [0, T ]×Ω, Y s,η and Z1,s,η, · · · , Zd,s,η belong to L2(dV ⊗dPs,η); therefore
by (6.A.6), so do Ȳ and Z̄1, · · · , Z̄d.

Since this holds for all (s, η), then Ȳ and Z̄1, · · · , Z̄d belong to L2
uni.

Finally, since |f̃(t, ω)| = |f(t, ω, Ȳt(ω), Z̄t(ω))| ≤ |f(t, ω, 0, 0)|+ K(|Ȳt(ω)|+ ‖Z̄t(ω)‖) for all t, ω, with
f(·, ·, 0, 0), Ȳ , Z̄1, · · · , Z̄d ∈ L2

uni, it is clear that f̃ ∈ L2
uni. Now (6.A.8) can be considered as a BSDE

where the driver does not depend on y and z of the form (6.A.2). We can therefore apply Lemma 6.A.3
to f̃ and conclude on the existence of (Y,M,Z1, · · · , Zd) verifying the three items of the proposition.

It remains to prove now the last assertion of Proposition 6.4.10. We fix some (s, η). The first
item implies that Ys = Y s,η

s Ps,η a.s. But since Ys is Fos -measurable and Ps,η(ωs = ηs) = 1, it also
yields that Ys is Ps,η a.s. equal to the deterministic value Ys(η) hence Y s,η

s is Ps,η a.s. equal to the
deterministic value Ys(η). This also proves that Y is unique because it is given by Y : (s, η) 7−→ Y s,η

s .
The uniqueness of Z up to zero potential sets is immediate by the third item of the proposition and
Definition 6.4.2.
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Titre: Solutions mild découplées de problèmes d’évolution déterministes à coefficients singuliers
ou dépendants de la trajectorie, et leur représentation par des EDS rétrogrades.

Mots-clés: EDS rétrogrades dirigées par des martingales cadlag; équations aux dérivées partielles
semilinéaires; équations intégrales aux dérivées partielles; EDS et EDP à drift distributionnel; calcul
stochastique et EDP dépendant de la trajectoire.

Résumé: Cette thèse introduit une nouvelle notion de solution pour des équations d’évolution non-
linéaires déterministes, appellées solutions mild découplées. Nous revisitons les liens entre équa-
tions différentielles rétrogrades (EDSRs) markoviennes browniennes et EDPs paraboliques semil-
inéaires en montrant que, sous de très faibles hypothèses, les EDSRs produisent une unique solution
mild découplée d’une EDP. Nous étendons ce résultat à de nombreuses autres équations détermin-
istes telles que des Pseudo-EDPs, des Équations Intégrales aux Dérivées Partielles (EIDPs), des
EDPs à drift distributionnel, ou des E(I)DPs à dépendance trajectorielle. Les solutions de ces équa-
tions sont représentées via des EDSRs qui peuvent être sans martingale de référence, ou dirigées
par des martingales cadlag. En particulier, cette thèse résout le problème d’identification, qui consiste,
dans le cas classique d’une EDSR markovienne brownienne, à donner un sens analytique au proces-
sus Z, second membre de la solution (Y, Z) de l’EDSR. Dans la littérature, Y détermine en général
une solution de viscosité de l’équation déterministe et ce problème d’identification n’est résolu que
quand cette solution de viscosité a un minimum de régularité. Notre méthode permet de résoudre
ce problème même dans le cas général d’EDSRs à sauts (non nécéssairement markoviennes).

Title: Decoupled mild solutions of deterministic evolution problems with singular or path-
dependent coefficients, represented by backward SDEs.

Keywords: BSDEs driven by cadlag martingales; semilinear partial differential equations; integro-
partial differential equations; SDEs and PDEs with distributional drift; path-dependent stochastic
calculus and PDEs.

Abstract: This thesis introduces a new notion of solution for deterministic non-linear evolution
equations, called decoupled mild solution. We revisit the links between Markovian Brownian Back-
ward stochastic differential equations (BSDEs) and parabolic semilinear PDEs showing that under
very mild assumptions, the BSDEs produce a unique decoupled mild solution of some PDE. We
extend this result to many other deterministic equations such as Pseudo-PDEs, Integro-PDEs, PDEs
with distributional drift or path-dependent (I)PDEs. The solutions of those equations are repre-
sented through BSDEs which may either be without driving martingale, or driven by cadlag mar-
tingales. In particular this thesis solves the so called identification problem, which consists, in the
case of classical Markovian Brownian BSDEs, to give an analytical meaning to the second com-
ponent Z of the solution (Y,Z) of the BSDE. In the literature, Y generally determines a so called
viscosity solution and the identification problem is only solved when this viscosity solution has
a minimal regularity. Our method allows to treat this problem even in the case of general (even
non-Markovian) BSDEs with jumps.
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