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Chapter 1

Introduction

Résumé

L’électricité est devenue critique dans le monde pour améliorer l’économie, la santé et la sécurité
d’un pays. Actuellement, la production de cette électricité pour le monde entier est principale-
ment basee sur les ressources fossiles. Les ressources fossiles sont à présent critiquées pour leur
durabilité et leur impact sur l’environnement. S’il faut diminuer la consommation des ressources
fossiles, il faut développer autres technologies pour fournir une électricité de qualité pour l’avenir.
Cette transition des ressources fossiles aux nouvelles technologies non polluantes est souvent ap-
pelée la transition énergétique. Cette transition peut apparaître comme une mission colossale
mais une transition énergétique à déjà eu lieu en France. Cette transition a impliqué un passage
des ressources fossiles aux ressources nucléaires et a été effectué entre les années 1971 et 2001.
Les leçons à retenir de cette expérience sont importantes pour réussir la transition vers les én-
ergies renouvelables. La différence principale de ces deux transitions est le passage d’un modèle
centralisé à un modèle décentralisé. Cette évolution vers un modèle décentralisé implique une
rénovation significative du réseau de distribution. Une possibilité pour cette transformation est
de modifier le système actuel passif en un système actif pour optimiser l’infrastructure actuelle.
Le Smart Grid est un réseau qui est adapté vers un réseau contrôlable et automatisé. Pour
réussir cette transformation, le système actuel sera étudié.

Le système électrique actuel est composé de deux réseaux: le réseau de transport et le réseau
de distribution. Ces deux systèmes sont connectés pour créer le système électrique. Ces systèmes
utilisent plusieurs niveaux de tension et transformateurs pour amener l’électricité depuis des
générateurs centralisés jusqu’aux consommateurs finaux. Ainsi que ce système est efficace, mais
il est aussi cher à construire et à maintenir. Ce modèle centralisé est efficace pour fournir une
grande quantité de clients en minimisant les coûts d’opération. Le réseau de basse tension est le
point de connexion pour une majorité des clients. De ce fait, la qualité de puissance du réseau
de basse tension est importante pour satisfaire les consommateurs finaux.

La planification opérationnelle du réseau de distribution est une tâche complexe. Les dé-
cisions prises aujourd’hui peuvent avoir des effets sur le long terme et déterminer l’utilisation
possible de ces réseaux dans l’avenir. Les investissements, principalement gérés par les opéra-
teurs du réseau de distribution, sont classifiés en deux catégories: la gestion des déffaillances
des équipements et les investissements de préventifs. Cette thèse focalise plutôt sur les in-
vestissements préventifs notamment les investissements d’adaptation du réseau de distribution
actuel pour un fonctionnement plus intelligent. Toutefois, ces investissements sont difficiles à
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16 CHAPTER 1. INTRODUCTION

hiérarchiser du au fait qu’il existe des incertitudes sur l’évolution de la consommation, la péné-
tration des générateurs décentralisés et l’évolution de la technologie en général. Un besoin existe
pour adapter les réseaux passifs existants afin d’être plus actifs. Cette transformation permettra
l’augmentation de la pénétration des générateurs décentralisés tout en évitant des renforcements
coûteux du réseau électrique.

L’intégration des générateurs décentralisés sur le réseau de distribution peut amener de
nouvelles difficultés par exemple le flux de puissance bi-directionels, une déviation du profil de
tension et des problèmes de congestion. Ces difficultés peuvent influencer les appareils existants
par exemple les régulateurs de tension. De plus, les générateurs décentralisés peuvent être
connectés par des acteurs différents qui ont des priorités autre que la qualité de puissance du
réseau électrique. Ces installations peuvent contribuer aux problèmes de la qualité de fourniture
du réseau électrique et par conséquent augmenter le coût d’opération pour l’opérateur du réseau.
Ces difficultés amènent de nouvelles problématiques pour les opérateurs du réseau électrique.

Ces nouvelles difficultés amènent la planification à prendre en compte des solutions intel-
ligentes comme décrites par différents pays. Cette évolution est principalement conduite avec
l’objectif d’augmenter la pénétration des énergies renouvelables tout en évitant les investisse-
ments coûteux de renforcement du réseau. La stratégie principale implique l’exploitation des
flexibilités du réseau de distribution. Plus précisément, cette thèse va explorer trois sources de
flexibilité : le stockage, la gestion de la demande et le dispatch down. Pour hiérarchiser ces
flexibilités, de nouveaux outils de planification et gestion sont nécessaires.

Les études de flux de puissance optimal sont une possibilité pour l’analyse du réseau intelli-
gent. Ce type d’étude est focalisé sur flux de puissance active et réactive pour minimiser le coût
d’opération d’un réseau intelligent. Cet outil est efficace pour la planification et la gestion des
réseaux avec des composants actifs et contrôlables. Les charactéristiques du réseau de distribu-
tion impliquent l’utilisation des équations de courant alternatif pour réussir des analyses précises.
Ces équations ne peuvent pas être directement intégrées dans un algorithme d’optimisation con-
vexe mais, il existe plusieurs stratégies pour les prendre en considération. Cette thèse fait un
focus sur les techniques de relaxation convexe pour la résolution optimale de ces problèmes
mathématiques. Les algorithmes développés dans cette thèse s’adressent principalement à la
problématique de planification et de la gestion du réseau électrique intelligent.

De nouvelles méthodologies de planification et de la gestion sont applicables pour les réseaux
électriques avec une forte pénétration des énergies renouvelables et la possibilité de contrôle. Ces
méthodologies considèrent les coûts d’investissement, les stratégies d’opération et les incertitudes
pour la gestion du réseau afin de hiérarchiser les investissements. L’intégration des générateurs
décentralisés grâce aux outils d’optimisation peut diminuer les coûts d’opération et réduire la
production de déchets. Avec des incertitudes élevés concernant la production électrique des
énergies renouvelables, la gestion optimal de ces ressources est difficile. Toutefois, il existe des
techniques pour une gestion robuste qui considère les incertitudes de la consommation et la
production. Les détails de l’organisation de l’introduction sont présentés dans la Fig. 1.1.

1.1 Summary

Electricity is a critical element in society to improve health, safety and the economy around the
world. Currently, fossil fuels are the primary source of the majority of electricity consumed in
the world. This primary source has recently been questioned for its sustainability and longevity.
In order to guarantee a future with easy access to high quality electricity, an energy transition
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from fossil fuels to new renewable sources is necessary. In the past, specifically in France,
a successful energy transition has already come about. This transition was from fossil fuels to
nuclear power achieved between 1971 and 2001. Lessons learned from this past energy transition
can be helpful for the success of the current energy transition. The primary difference of the
current energy transition is the focus on decentralization as opposed to a more centralized model.
This shift from centralized to decentralized production will require a significant adaptation of
the distribution network. This adaptation implies the transformation of a passive distribution
system to an active controllable system. A distribution network that is an active distribution
network (ADN) can also be referred to as a smart grid. For this successful adaptation from
passive to active electrical networks, it is important to understand the existing infrastructure
and architecture.

The current electric power system is composed of a transmission system and a distribution
system. These two systems combined create an interconnected system with varying levels of
voltage and varying configurations. This sophisticated infrastructure is expensive and time con-
suming to develop. However, this architecture is a cost-effective model to provide electricity to a
substantial number of clients (e.g. all citizens of a country). The low voltage distribution grid is
the connecting point for a majority of industrial and residential clients. Therefore, guaranteeing
the power quality at the end-user connection point is important for end-user satisfaction.

The planning for investment decisions resulting in the evolution of the distribution grid are
multifaceted, long lasting and have a significant impact on the end-user experience. Distribution
system operators’ (DSO) investment decisions fall into two main categories: failure management
and preventative investments. This thesis will focus primarily on preventative investments
including the opportunity to adapt the existing architecture allowing new functionality. However,
these investments are challenging due to uncertainties in the future evolution of load, generation
and technology. The need for an adaptation of the distribution grid from a passive to an active
network is primarily driven by the introduction of distributed energy resources (DER).

DER can create bi-directional flow, voltage deviation and congestion problems in the dis-
tribution grid. These new challenges can affect existing grid regulation devices which may not
be capable of regulating voltage. Furthermore, DER may be connected by various stakeholders
that are not responsible for guaranteeing power quality in the distribution grid. This could
possibly increase costs for the distribution system operator (DSO) indirectly. Therefore, DSO
are faced with a challenging new environment in relation to operations and planning of future
distribution grids.

In order for DSO to plan for more intelligent distribution grid systems, smart grid develop-
ment goals have been defined by various countries. This evolution is primarily driven by the
goal of increasing DER integration and deferring infrastructure investments. The key to this
new era of smart grid operations and planning is to optimize the available flexibilities of the
distribution grid. Specifically, this thesis will explore three sources of flexibility: storage, de-
mand side management (DSM) and curtailment. In order to perform techno-economic analysis
of distribution grid flexibility, sophisticated planning and operations tools are necessary.

OPF is a class of optimization problems where active and reactive power of devices con-
nected to the distribution grid can be optimized to minimize a cost function under power flow
constraints. It is an appropriate tool to model the operation and planning of distribution systems
that contain active elements. Due to the specificity of the distribution network characteristics,
alternating current (AC) OPF is the most appropriate method. An AC OPF problem requires
sophisticated techniques for its resolution, however these techniques are well documented in the
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Figure 1.1: Introduction outline

literature. In this thesis, the problem resolution technique of convex relaxations has been cho-
sen to guarantee a low calculation burden and optimal solutions. This thesis will focus on the
development of operations and planning methodologies to address new challenges in planning
and operations for smart grids.

These new planning methodologies and operational strategies will consider decentralized
controllable devices such as storage, DSM and curtailment. They will consider investment costs,
operational strategies and uncertainties to prioritize smart grid investments. The integration
of DER along with the optimization of grid operations could result in lower maintenance costs
and fewer waste products. Due to a high degree of uncertainty in renewable energy generator
production, optimal management of decentralized components is difficult. Robust management
strategies that consider these uncertainties in load profiles and decentralized production are
critical. A figure summarizing the contents in this chapter can be found in Fig. 1.1.

1.2 The energy transition context

The discussion encompassing a future with easy access to high quality electricity is economically
and culturally complex, as well as highly technical. A new mix of technologies will be necessary
to satisfy an increasing demand and uncertain availability of future resources. With new tech-
nologies, new technical, political and cultural challenges arise. This new transformation of the
future energy outlook plan is commonly referred to as the energy transition.

Energy and more specifically electricity is an essential part of developed countries daily
activity. Once reserved only for the rich, electricity is now accessible by 83 % of the global
population as sited by IEA [2]. Since electricity was invented, the GDP and wealth of a country
has been closely connected to the availability and quality of the electricity. This has driven
countries worldwide to invest in the development of the power transmission and distribution
systems. Due to these investments, power systems expanded from small microgrids to intercon-
nected transcontinental networks. The transit of energy from a centralized power plant down
to individual customers became the most cost-effective solution.

The high dependency of modern society on electricity sheds light on the importance of
guaranteeing the primary sources of electricity production. Over the past decades, the source
of electricity production has evolved. As seen in Fig. 1.2, a continual increase in fossil fuels as
well as nuclear electricity production is seen between 1971 and 2014. Increasing concerns about
the sustainability of fossil fuels is a part of the driving forces of the recent energy transition.
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Figure 1.2: World electricity generation by fuel from 1971 to 2014 in TWh published by IEA

Figure 1.3: Electricity produced in France by source in TWh from 1970 to 2015 [2]

The current concern of stakeholders in electricity markets is to find a strategy of sustainable
development that is dependent on renewable primary energy sources while guaranteeing power
quality and security of supply in the future.

The energy transition from "traditional" resources to renewable ones is not the first energy
transition in the history of the industrialized world. The first major energy transition was
initiated by the discovery of fossil fuels in the 1700s. This transition took two centuries and, by
the 19th century, fossil fuels became the primary global energy source. In 1973, oil accounted
for 70 % of the total primary energy used to produce electricity in France. However, due to
various oil embargoes and the growing concern of dependence on Middle Eastern countries’ oil
production, France invested in a new electricity production technology, nuclear. Between 1971
and 2001, 58 nuclear reactors were built in France. By 2015, a large percentage of the electricity
produced in France resulted from nuclear generators as seen in Fig. 1.3. This figure shows the
source energy mix of electricity production in France between 1970 and 2015. In the 2009 IEA
report, it was reported that the French government had achieved their goal to produce at least
50 % of the electricity used domestically [2] therefore succeeding in their initial goals driving
the energy transition started in the 1970s.

This massive development of nuclear power between 1971 and 2001 was primarily driven by
EDF as well as substantial subsidies [5]. France had a desire to "create a distinct role for itself
in the two decades following World War II". Involved actors started work to enable the trans-
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formation into an "all-electric all-nuclear" society and therefore successfully transitioned their
electricity production strategy in a period of 30 years. The major energy transition in France
to nuclear was reinforced by strong government policy, large subsidies and a strong desire to
revitalize France as a powerful world leader. Lessons learned from past major energy transitions
included: "a stated ambition for an energy transition is not enough; energy alternatives have to
be nurtured through a combination of research and technology development as well as deploy-
ment policies over a sustained period; nationalistic sentiments and centralized power appear to
be important for marshaling resources in a sustained way; the existence of new types of energy
firms and jobs can help governments to stay committed and focused; and the relative costs of
new energy technologies also must develop favorably" [6]. These lessons learned can be helpful
to ensure the success of the current energy transition.

Similar mechanisms have been put in place for the current energy transition. These mecha-
nisms include subsidies, as well as policy and research funded by the European Union to encour-
age the development of decentralized generator technologies and their integration into the grid.
The current energy transition resembles the previous energy transition in the fact that subsidies
are available for the development of new technologies. A notable difference between the two
transitions is the focus on decentralized generation as opposed to centralized generation. The
integration of new decentralized generators imply a significant development of the distribution
grid.

The renovation of the current distribution grid requires a passive system to be evolved into
an active system with automation and control. This new active distribution system is often
referred to as a smart grid. A smart grid as defined by the CEN-CENELEC-ETSI standards is
an electricity network that can integrate, in a cost-efficient manner, the behavior and actions
of all users connected to it (generators and/or consumers). This behavioral control ensures an
economically efficient, sustainable power system with high levels of quality and security of supply
and safety [7]. The next large-scale energy transition is currently emerging often associated in
the literature with the term smart grid.

1.3 The electric power system

The development of an electric power system is expensive and time consuming. For example,
the full development of the electric power system in France has been an ongoing task for the
past hundred years. The three steps of development of an electrical power system include the
initial electrification, the expansion of the system to supply a desired quantity of end-users and
finally the quality assurance of the delivered electricity. In France this evolution began between
1880-1990 with the first industrial clients. The electric distribution grid was later labeled as a
public service in 1906 when the development of distribution grids started to be present in large
cities and densely populated areas. At this point, a majority of electricity was generated and
used locally with few interconnections between cities. In 1938, the French government pushed to
develop interconnections between existing distribution grids. EDF was created in 1946 to unite
all the small private power producers into one entity and move towards a more standardized
service of electricity in France. In the 1970s, EDF successfully interconnected an electric power
system that reached almost all French citizens except individuals in very rural areas [8]. The
connection of a majority of French citizens to the electric grid conveniently was completed just
before the beginning of the development of centralized nuclear power plants as the primary
electric generation source in France.
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Figure 1.4: Grid components and voltage levels of an example transmission and distribution
network [3]

The current architecture of the electric power system contains two primary electric grid
structures: the transmission system and the distribution system. These two systems are con-
nected and interact to transit electricity from primarily centralized producers to end-use clients.
Therefore, the classical distribution grid is mono-directional which has encouraged a majority
of distribution grids to be operated with a radial configuration.

The primary objectives of the transmission and distribution system is to transit electricity
from the producer to the end consumer while maintaining power quality, minimizing losses and
minimizing operational costs. To achieve this goal multiple levels of voltage are used in the
transportation and distribution system to minimize losses and improve end-user power quality.
Transformers are used at various stages to step down voltages to a level accessible for industrial,
commercial and residential customers. A schematic of the transmission and distribution system
and the connection of the two is found in Fig. 1.4. The transmission system is connected to a high
voltage partitioning of lines that then are converted to medium voltage through transformers
connected to industrial clients. Another transformer is used to lower the voltage to the low
voltage distribution level that most commercial and residential customers are connected to [3].
The distribution system is represented by the bottom half of Fig. 1.4 highlighted in yellow.
The current distribution grids were designed to distribute energy with a mono-directional flow
of power from a substation to end-use customers.

1.3.1 The electric distribution system

The electric distribution system is the lower voltage system that a majority of end-use customers
are connected to. Two voltage levels exist in a distribution system: medium voltage and low
voltage. Two important technical specifications of a distribution system are the number of
phases and voltage levels. In France, the medium voltage distribution grid ranges from 3 to
33 kV. The low voltage distribution system ranges between 110 and 600 V with the standard
connection voltage of most customers being 230 V. Unlike the medium voltage distribution grid,
the low voltage distribution grid can have single-phase clients. The low voltage distribution grid
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is composed of three-phase systems that are connected to one-phase or three-phase end-user
clients. The connection of a single-phase client to one phase and a different client to another
phase of the three-phase system can create unbalanced loading scenarios. Therefore, low voltage
grids often experience imbalances between phases of a three-phase system. Depending on the
load profiles of varying clients, imbalances in the system can be more or less elevated.

Residential and commercial customers can use electricity at any time of the day. In France,
there are 31.6 million residential customers and 4.9 million commercial customers [9]. Clients
subscribe to a maximum power usage and then pay by kWh their total energy use. The end use
quality of the power delivered by the DSO is required by legislation in France to be +-5 percent
for the medium voltage distribution grid [10] norm C13-200 and +-10 percent for the low voltage
distribution grid [10] norm C15-100. This implies that a client has very few limitations, besides
the maximum power value, on how much energy and which periods of the day the client is
allowed to use energy. The distribution grid operator then is responsible to balance the electric
production and consumption that is required to cover the load at the lowest possible cost.

1.4 Planning strategies for distribution systems

The investment strategy of a country in relation to the electric distribution system can signifi-
cantly affect the experience of end-users and the future development of smart grid functionality.
These investment decisions are often expensive and are long-lived. Investments in electrical lines,
transformers, or security equipment could last from 2 to more than 40 years. The planning strat-
egy often must find an investment schedule considering for example the current investment price,
the life span of the investment, the timing of the proposed investment in relation to the long-term
investment strategy, risk assessment of aging material, time of implementation and attempting
to prepare for future possible new uses of the distribution grid. The planning strategy must take
these considerations into account to find the optimal economic strategy.

The distribution grid investment strategy of the French DSO is managed by Enedis which
is funded by a user tariff (Tarif d’Utilisation des Réseaux Publics d’Electricité) proposed by the
CRE and approved by the government. The investment choices of Enedis must satisfy power
quality and safety regulations while minimizing the environmental impact and the final cost to
the society. The main axis pursued for the maintenance and expansion of the current electric
grid include: resolution of specific technical problem, long term architecture planning, required
annual investments including new customer connections or replacement of broken components
and future environmental concerns that require the reduction of CO2 emissions [4]. These
planning goals lead to two main categories of infrastructure investments: failure management
and preventative investments that reduce future failures, improve the quality, or reduce the cost
of service. This thesis will focus primarily on preventative investment planning that addresses
increasing load and grid adaptation to encourage renewable energy integration.

Preventative investments are difficult to calculate due to high uncertainty in future failures
or power quality issues, new strategies or technologies that have not been extensively tested, the
evolution of load profiles and the future penetration of decentralized generators. For the testing
and validation of new innovative solutions, numerous test platforms and demonstration projects
have been developed [11, 12, 13]. These projects attempt to analyze and validate the cost
benefits of innovative technologies that may facilitate grid operations, improve system efficiency
and increase the penetration of renewable energy systems. Pilot projects can be expensive and
time consuming. Therefore, mathematical modeling is also used for techno-economic analysis of
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network renovations.

1.4.1 Increasing demand - new clients and evolution of existing clients

For new customer connections or the evolution of the maximum power subscribed by a client,
studies addressing existing line capacity are necessary. These studies are often power flow cal-
culations for worst-case scenarios, in order to minimize risks. The recent evolution of electric
meters allows for a more detailed data collection of client consumption. The new more sophis-
ticated metering devices allow for an increased controllability of appliances and the possibility
to connect small decentralized generators with associated tariff schemes. This large push to
renovate electric meters has significantly increased the observability and the possibility of con-
trollability in the low voltage distribution grid. However, the exploitation of the controllability
is not yet widely implemented. These new smart meters allow for the more precise analysis
and optimization of existing architecture to avoid unnecessary costly infrastructure investments
[14]. The evolution of the distribution grid is also dependent on the trends of electric demand
country wide. For this reason, it is important to address briefly the analysis of RTE which is
more specifically related to the transmission grid but has direct effects on the evolution of the
distribution grid.

The evolution of the demand for electricity varies for each country based on political strategy,
cultural context, climate conditions, etc. Specifically, in France, there are varying scenarios for
future electric demand as published by RTE [15]. Fig. 1.5 shows three primary trends of total
electric consumption for the three main energy sectors: residential, industrial and commercial.
These three scenarios are developed from detailed analysis of historical data and current trends
in all three sectors. The primary influence creating three possible demand scenarios is based on
three key unknown factors: i) energy efficiency of future appliances, ii) new end-user appliances
deployment such as EVs or the switching between energy sources such as replacing an oil boiler
with a heat pump, and iii) unknown increase in population therefore increasing housing density
and economic activity.

As seen in Fig. 1.5 the dotted line represents RTE’s plan for electric generation to have
sufficient energy to meet the load requirements. For two out of three scenarios, the projected
generation in relation to the projected demand increases in the next 4 years.

1.4.2 Integration of decentralized generation

The current procedure of Enedis to connect decentralized generators includes verification of
short circuit security, harmonics produced by generator, perturbations of the communication
system with safety components, flicker in voltage profile, maximum line capacity study, and
indicating a set maximum possible current injected by the generator. These regulations force
the DSO to often reinforce existing lines when installing new generators or creating new separate
lines specifically for the generator [14]. The overall goals of France for the energy balance
objectives in relation to the transmission grid is important to understand the possible effects on
the distribution grid.

The energy production in France as stated by RTE will most likely have an increasing
trend to match the increasing trend of load. In RTE’s adequacy report [15], the evolution of
renewable energy, nuclear power and fossil fired plants is discussed. Fig. 1.6 shows the evolution
of supplied energy for each technology to meet an increasing demand in the high-need scenario
and a constant demand in the low-need scenario. More specifically, Fig. 1.7 shows the renewable
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Figure 1.5: Annual domestic electricity demand in mainland France at reference temperatures

Figure 1.6: Forecast trend in supply in France between 2016-2021
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Figure 1.7: Regional plans for the climate, air and energy (RPCAE) renewable energy targets
for mainland France

energy development targets in France for the next 5 years (2016 to 2021).

1.4.3 Mathematical tools for distribution grid planning with DER

There are two main groups of mathematical tools that exist for distribution grid planning. These
tools include the tools that are actually used by current DSO and the proposed more innovative
tools that exist in academic literature. The current tools used by the DSO include different
techno-economic indicators to evaluate investment choices. For example, in France, these in-
dicators include return on investment, rate of return or discounted benefit as described in [3].
Mathematical modeling tools such as power flow analysis are also used to give insights into the
behavior or expected operation of a distribution grid. The presence of new decentralized gener-
ators, can significantly affect the voltage profile of a distribution grid. Therefore, detailed power
flow models are necessary to quantify these effects for intelligent planning of these generators.
Current assumptions for power flow analysis used by the French DSO can be found in Fig. 1.8.
Often these power flow studies use simplifications of grid operations and single time step anal-
ysis. Existing power flow algorithms include the forward/backward sweep, Newton Raphson
method [16, 17], fast-decoupled load-flow method [18, 19], z-bus matrix construction method
[20], and loop impedance method [21, 22]. A power flow calculation is capable of calculating
the currents and losses in all the branches (lines, cables, and transformers), the voltage in load
buses, the reactive power in generator buses and the active and reactive power in the slack bus
(primary substation in a distribution grid). This method gives full detail of the electric system
for a given instance.

Power flow analysis is effective for certain grid analysis studies, but in the context of an
ADN, power flow analysis is incapable of optimally managing controllable devices. More adapted
methodologies that exist for ADN in the literature include OPF analysis. OPF analysis is not
very commonly used in distribution grid planning. In contrast to a power flow analysis, an OPF
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algorithm is capable of performing multi-period analysis. A multi-period analysis is important
when temporally dependent variables such as storage are present. An OPF can also take into
account the bounds of each variable including voltage and current limits of a network and
generator power limits. Therefore, the OPF is more appropriate for smart grid analysis.

Many OPF algorithms are proposed in the literature for power systems applications as
described in [23]. These algorithms are grouped into three main categories: DC approximations,
non-linear convex approximations or non-convex problems. In the context of distribution grids,
DC approximations are often not accurate enough for planning and operations algorithms. DC
approximations can be used to reduce calculation time and eliminate convergence problems.
However, a DC approximation makes linear assumptions about the losses in the lines and does
not consider the transit of reactive power flows. These two characteristics are critical in the
distribution grid. Due to a high ratio between the resistance and the reactance of lower voltage
networks, losses are not linear but quadratic as a function of the current. The reactive power
transit in a distribution system can also have effects on the voltage profiles and congestion
problems. Therefore, full AC power flow models should be used when performing distribution
grid analysis.

Full AC power flow models are non-linear and non-convex. Non-convex problems are often
solved by decomposition or heuristic techniques which can be costly in terms of calculation
burden. Within the non-linear convex category, there exist two main convex relaxations: the
SDP relaxation and the SOCP relaxation. Both of these relaxations have been proposed in
various papers for distribution power system analysis. These papers often address operations of
distribution grids [24] [25] [26] [27] [28] [29] [28] [30]. Few are presented as planning algorithms
[31] [32] [33]. An OPF is capable of calculating optimal set points of controllable devices dur-
ing multi-period analysis. It assumes a centralized control that optimizes the entire network.
This implies that one actor is controlling all the controllable devices with one primary objec-
tive. The lack of controllability and observability in current distribution grids make the OPF
somewhat unrealistic. However, increased decentralized generators could make this control and
optimization more important.

1.5 Challenges of decentralized energy resources

Some possible decentralized generators that are often connected to the distribution grid include
PV, wind turbines and micro-hydroelectric generators. These decentralized generators bring
about new challenges for the distribution grid operators. These challenges include bi-directional
or increased power flow within the network, voltage profile deviation and compromised safety of
equipment. To exacerbate these challenges, uncertainties in the distribution grid are high due
to reduced aggregation effects in comparison to medium and high voltage grids. Unpredictable
variation in load and generation can create high fluctuations in network power flow therefore
causing unpredictable changes in the voltage profile.

The principal challenges associated with DER are discussed in [34]. The primary difficulty in
relation to the quality of power delivered can be related to voltage level, and power conditioning.
Localized voltage regulation is important at the distribution level. The voltage level can be
significantly affected by high variations of power flow in the electrical lines. Undesirable effects
such as flicker or voltage deviations can occur. Power conditioning through voltage regulation
devices (e.g. tap changing transformers or static var compensator) is not always compatible with
decentralized generators. Decentralized generator inverters can also contribute to harmonics in
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Figure 1.8: Hypothesis used by the French DSO for medium voltage and low voltage distribution
systems planning studies [4]

the grid which reduce power quality, affect negatively regulation and safety devices [34].
Additionally, DSO are not the only entity installing decentralized generators, adding further

challenges to guarantee power quality. Individuals, companies and also private power producers
have increased their interest in DER in the past years due to increasing environmental concerns
and subsidies for renewable energy development. While in France, one primary player exists
(EDF), new players are emerging offering alternative energy generation possibilities. These new
decentralized generators may be used for alternative uses not aligning with the objectives of
EDF or Enedis. However, these generators may still be connected to the distribution grid. This
implies a new usage of the existing architecture. This introduction of multiple players forces the
DSO to adapt current planning and operational strategies to host such demands.

1.5.1 Increased or bi-directional current

DER generators can act as current sources connected to decentralized nodes throughout the
network. The injection of current into a distribution grid at a decentralized node can cause
local challenges. If a high capacity of DER is installed in an area that has low load, current
can flow from the decentralized node towards the substation. This reverse current flow can have
effects on safety devices, voltage regulation devices and maximum current limits of distribution
lines. Certain nodes may have so much DER installed in networks with low loading scenarios
that reverse current exceeds maximum current values of the electrical line. Therefore, possibly
requiring a re-sizing of the current electrical line based on the peak load resulting from peak
injection of the generator.

Safety devices in distribution grids can be significantly affected by an increase or reverse



28 CHAPTER 1. INTRODUCTION

power flow created by decentralized generators. Fuse coordination can be affected by DER
due to the fact that DER change downstream current. If DER do not disconnect early in
a fault situation, security devices attempting to clear the fault could malfunction. This can
cause further damage to conductors, insulators or DER itself. Existing breakers, reclosers and
fuses may also be affected if these devices are already operating close to their rated maximum
device current. DER can increase the existing currents running through these devices therefore
exceeding maximum current limits. Faults on adjacent feeders can have tripping effects on
DER, therefore disconnecting the DER for no reason and propagating the fault signal. When
generators are connected to a low voltage system with a grounded wye connection, the DER can
have a negative effect on the ground fault coordination of utility breakers and reclosers. For a
more extensive and more detailed list of other safety concerns see [35].

1.5.2 Voltage regulation devices

Generally, DER will increase the voltage profile locally where it is installed due to the injections
of power into the distribution grid. The DER can inject active power but also reactive power.
Active power injection when correlated with local loading of the feeder can decrease losses in
the distribution system. However, injected active power far away from load can increase losses.
Reactive power injection is not allowed in some countries due to undesirable effects of interactions
with existing voltage regulation components such as switch capacitor banks or OLTCs. However,
reactive power control to assist volt var regulators has been shown to be promising [36] [37].

If DER do not attempt to regulate local voltages, normally switch capacitor banks are
unaffected. However, if DER do attempt to control local voltages or change downstream current
of the regulating device, line drop compensation calculations may no longer be accurate. Both
switch capacitor banks and step type voltage regulators attempt to calculate the downstream
voltage based on the current close to the device. Assumptions of downstream voltage are no
longer accurate if DER attempt to change local voltage or inject significant power into the grid.
Therefore, downstream voltage regulation calculations are no longer accurate [35].

1.6 Innovative smart grid solutions
In the current context of smart grids, the existing electric grid infrastructure should evolve in
the following areas as stated by the US Congress: increased digital information and controls,
dynamic optimization of grid operations, deployment of distributed resources, incorporation of
demand-side resources and demand response, deployment of smart technologies and integration
of smart appliances and consumer devices, deployment of storage and peak-shaving technology,
provision of timely information and control options to consumers, standard development for com-
munication and interoperability of equipment and identification, and lowering of unreasonable
barriers to adopt smart grid technology, practices, and services [38].

Smart grid solutions are often proposed to optimize existing infrastructure therefore delaying
power electronic and infrastructure investments. The idea of a smart grid is to optimize certain
flexibilities available in the grid as opposed to allowing a passive operational scenario. A review
of ADN enabling technologies can be found in [39]. This review covers a general summary of
existing solutions to transform a passive traditional distribution system into an ADN. These
strategies include the active control of generator dispatch, transformer tap positions, voltage
regulators, reactive power and system configuration. The strategies discussed in [39] to be the
most common ones found in the literature include demand side management, storage devices,



1.6. INNOVATIVE SMART GRID SOLUTIONS 29

dynamic line rating, voltage and power control, fault current limiters and advanced distribution
protection. This thesis will focus primarily on three of these solutions including storage devices,
demand side management and power control in the form of curtailment.

1.6.1 Storage

The advantages of storage devices in ADN are well documented in [40]. Techno-economic analysis
is necessary to evaluate if the advantages of battery systems outweigh their costs. The main
categories of storage benefits as described by [41] include bulk energy services, ancillary services,
transmission infrastructure services, distribution infrastructure services and customer energy
management services. The primary benefits analyzed in this thesis include lines loss reduction,
electric energy time-shifting, minimization of DER curtailment and mitigation of congestion
problems.

With variable prices of electricity, retail electric energy time-shift can become economically
advantageous. Economic benefits occur when storage units absorb energy during periods when
electric prices are low and resell the electricity during periods when electric prices are high. This
mechanism allows storage devices to reduce operational costs for a DSO or reduce electric bills
for residential and commercial customers. Naturally a distributed storage device managed by
the DSO can also decrease line losses. Distributed storage devices may also significantly reduce
necessary curtailment when installed close to decentralized generators. When attempting to
optimize a whole feeder, a centralized optimization algorithm is most effective to determine the
operational set points of each storage device. These types of algorithms can coordinate the
operation of decentralized storage devices so that a conflict of interest does not occur possibly
creating more problems for the DSO.

1.6.2 Demand side management

Demand side management can be implemented passively by giving price signals to end-user
customers and encouraging behavioral changes. Active control of devices is another technique.
Often these devices that are possible to control are devices that are not time sensitive. For
example, the washing machine that must be finished by a certain time in the evening but the
precise hour when the machine is launched is less important. The second type of controllable
load has some inherent storage, for example hot water heaters or space heating equipment. If
the thermal inertia of a thermal electrical load is large enough, these devices can be turned
off for certain periods without affecting significantly end-user comfort. This type of demand
side management is based on a sort of decentralized thermal storage characteristic that when
cumulated can have significant effects on operational grid costs.

1.6.3 Curtailment

Curtailment is the active reduction of power of a decentralized generator below the ideal power
output operational set point because the grid is incapable of absorbing the produced power.
This can be caused when decentralized generation is high and electric consumption is low. The
injection of large amount of power into an unloaded feeder can result in backwards power flow,
voltage rise and congestion problems. This strategy is implemented usually if there is not another
solution to consuming the excess energy. It can be cost-effective in comparison to infrastructure
reinforcements but can negatively affect the payback period of the generator.
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1.7 OPF analysis for planning tools

OPF algorithms are capable of analyzing multi-period problems and calculating optimal set
points of controllable variables. An OPF analysis allows the consideration of flexibilities of
smart grids to be considered during the planning phase. An optimization algorithm is ca-
pable of minimizing or maximizing multiple parameters while considering the boundaries and
requirements of each variable (i.e. power quality constraints). This approach is effective in grid
simulation because it is capable of taking into account the system of equations used to describe
a power flow in electrical lines while minimizing certain parameters such as losses. Optimum
power flow has been used in the management and planning of the transmission grid however
the use of optimum power flow in distribution systems is less frequent. An extensive review of
optimization algorithms in the context of transmission system planning can be found in [42].

Optimization algorithms are capable of integrating the benefits of smart grid operations
and devices into the planning process. These types of algorithms have been proposed in the
literature but are rarely used in current planning strategies of the DSO. OPF analysis can
include DC or AC power flow equations depending on the system analyzed. The classic power
flow problem (AC model) calculates the active and reactive power flow at each node. However,
AC power flow calculations are non-linear, non-convex and high-dimensional, which can be
computationally intensive. Methods for resolving this non-linear system of equations include the
forward/backward sweep, Newton Raphson method [16, 17], fast-decoupled load-flow method
[18, 19], z-bus matrix construction method [20], and loop impedance method [21, 22].

The resolution of an OPF requires evolved techniques due to the fact that the problem
formulation is high-dimensional and non-linear. Furthermore, these equations are considered
non-convex. Convexity is the characterization of a set of values. A set of values is convex if any
line drawn between two points in the set is also included in the given set [43]. This implies that,
with solving techniques such as the interior-point method, simply following the gradient of the
solution set will allow the algorithm to find the absolute minimum or maximum of the function.
If a problem is not convex, following the gradient of the set will not result in finding an absolute
minimum or maximum. Therefore, other techniques are used to attempt to find the absolute
minimum of the solution set. These techniques include heuristics methods that consist of testing
the solution space and comparing final values, thereafter selecting the best values. Examples
of heuristic methods include particle swarm optimization [44], artificial bee colony [45] [46],
differential evolution [47] and a hybrid tabu search particle swarm optimization [48]. However,
heuristic algorithms often require a long calculation time as noted in [49] when compared to
convex relaxation algorithms. The relaxation of certain equations to create a convex problem
has been widely explored in the literature [50, 51]. The convex problem may not represent
exactly the initial problem but can still find an optimal solution to the original problem. The
advantages of heuristics include a real representation of the initial problem. The disadvantages
include a substantial calculation burden and a final solution that is not guaranteed to be optimal.
The advantages of convex relaxations are a low calculation burden and if the relaxation is proven
to be exact, a guaranteed optimal solution.

The family of convex relaxation algorithms that is most commonly used for distribution
grids is called a Quadratically Constrained Quadratic Program (QCQP). In multiple studies,
the non-convex power flow equations have been cast as a QCQP as shown in [52, 53]. Within the
QCQP family, two convex relaxation algorithms exist including the Second-Order Cone Program
(SOCP) or the Semi-Definite Program (SDP). An SDP convex relaxation has been proved to be
exact under certain conditions by [54]. While an SOCP relaxation has also proved to be exact
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under certain conditions as stated in [55, 50, 56]. However, these relaxations have been proven
to be inexact during periods of high renewable energy production feeding into the grid due to
elevated line losses [57]. In order to determine the hosting capacity of a distribution grid, it is
critical to have a precise and accurate calculation methodology when RE production is high.
An example of this difficulty could be high photovoltaic (PV) production during the summer
season. In order to overcome the challenge of inaccurate results at periods of high PV injection,
[57] presents an AC optimum power flow algorithm that integrates linear cuts, implemented in
a iterative fashion, to ensure an exact and feasible relaxation of the power flow equations. This
single-phase AC optimum power flow algorithm has then been developed into a multi-temporal
algorithm in order to more effectively evaluate the benefits of grid connected storage in [58].

1.8 Thesis work objectives

Through power flow modeling and optimal power flow modeling, strategies of distribution plan-
ning and operations will be explored during this PhD. The main contributions of this thesis
are the proposed methodologies for the planning and operations of distribution grids through
sophisticated OPF tools. The author of the thesis studies the current methodologies and tools
available for the distribution system planning and operations. These methodologies are analyzed
for their applicability in smart grids with high renewable energy penetration. New methodolo-
gies are proposed that improve the current methodologies existing in the literature. Case studies
are implemented to demonstrate the concrete results possible of such studies. The contributions
of this thesis are summarized as:

• evaluation of the importance of three-phase unbalanced power flow equations in the context
of planning and operations of distribution grids

• development of a methodology for the simultaneous optimal sizing and placement of de-
centralized storage devices

• development of a methodology that considers uncertainties while generating day-ahead
storage and controllable load schedules through stochastic optimal power flow analysis

This thesis is divided into three main sections. First, (Ch. 2), low voltage three-phase unbal-
anced systems are analyzed to identify the specificity of these systems and how these specificities
affect the planning and operations of such systems. A more detailed literature review is pre-
sented specifically related to three-phase unbalanced systems. An analysis of the effects of these
imbalances on the power flow equations is presented. A case study is implemented to quantify
these effects. In conclusion, accuracy improvements of the detailed analysis of three-phase sys-
tems are deemed to be insignificant in the context of OPF planning and operations analysis.
This conclusion motivates further studies in the thesis to consider single-phase estimations for
each phase as opposed to fully developed unbalanced three-phase equations.

Second, (Ch. 3), deterministic OPF planning methodologies are presented for decentralized
storage analysis. Multi-temporal aspects of an OPF algorithm are presented including a case
study calculating the hosting capacity of an example distribution grid. Further adaptation of the
OPF algorithm is presented for the use of optimal sizing and placement of distributed storage
devices. A case study is presented showing the advantages of optimal distributed storage devices.
The chapter concludes by presenting the real world applications of presented methodologies.
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Figure 1.9: Thesis document outline and main contributions

Third, (Ch. 4), uncertainties in generation and load profiles are discussed. A methodology
for integrating these uncertainties into the operations of distribution grids is presented. A case
study showing the added benefits of DSM and storage is analyzed. Conclusions are drawn
about the importance of considering uncertainties in the operations and planning process for
distribution grids. A schematic outline of the thesis topics is found in 1.9.



Chapter 2

Low voltage unbalanced distribution
networks

Résumé

Les réseaux de distribution sont composés de lignes à moyenne et basses tensions qui distribuent
l’électricité au client final. Lorsque l’on considère leur planification et gestion, il est essentiel
de prendre en considération les freins spécifiques au réseau de distribution basse tension. Ces
spécificités incluent un ration R/X plus important, une grande amplitude du à un nombre
important de lignes électriques et à l’existence de déséquilibres entre les phases. Garantir une
puissance de qualité au niveau de la basse tension pourrait être considéré comme le critère le
plus critique du fait de l’impact sur la satisfaction du client final. En revanche, la visualisation
et la contrôlabilité manquent cruellement à ce niveau. Les outils existants pour l’analyse du
réseau basse tension sont présentés dans la littérature mais ne sont pas spécifiquement adaptés
pour les études OPF. Ce chapitre explore les techniques de modélisation existantes pour les
systèmes triphasés basse tension ainsi que les modèles OPF existant prenant en compte de
multiples phases déséquilibrées. Les calculs sur trois phases déséquilibrées sont comparés avec
les estimations monophasées de chaque phases. Les conclusions finales portent sur la précision
versus la complexité du couplage entre phases. L’estimation monophasée de chaque phase est
définie comme étant suffisante dans les études de planification. Cette méthode est donc celle
utilisée pour les chapitres suivant de la thèse.

2.1 Summary

Distribution grids are composed of medium voltage and low voltage lines that deliver electricity
to end-users. When considering their planning and operation, it is essential to consider the
specific challenges present in the low voltage distribution network. These specificities include a
higher R/X ratio, high dimensionality due to a large number of electrical lines and the existence
of imbalances between phases. Guaranteeing power quality at the low voltage level could be
considered the most critical in relation to end-user satisfaction. However, observability and
controllability is significantly lacking at this level. Existing tools for low voltage grid analysis
are presented in the literature but are not specifically adapted for OPF studies. This chapter will
explore the existing modeling techniques for low voltage three-phase systems as well as existing
OPF models considering multiple unbalanced phases. Three-phase unbalanced calculations are

33
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compared to single-phase estimations of each phase. Final conclusions are discussed about the
accuracy vs complexity of considering the coupling between phases. The single-phase estimation
for each phase is concluded to be sufficient in planning studies and therefore is the method used
for the following chapters of the thesis.

2.2 Introduction

In order to accurately analyze low voltage distribution networks, the specificity of these networks
must be considered. This specificity includes a higher R/X ratio, a higher quantity of nodes and
the possibility of three-phase imbalanced power flow. These challenges will now be addressed
individually in relation to their direct consequence on low voltage distribution network analysis.

The primary difference between low voltage distribution grids and medium voltage distribu-
tion grids or transmission grids is a high R/X ratio. This implies that the relative value of the
line resistance (R) is much higher than the relative value of the line reactance (X). In the case
where R is relatively much larger than X, the losses become non-linear. This implies a quadratic
relationship between voltage and the apparent power load [59]. A high R/X implies that linear
estimations of the losses are no longer accurate. For modeling purposes, to accurately calculate
losses and consequently the voltage profile the quadratic current equation is necessary.

The large size of low voltage distribution grids introduces an increased size to the problem.
In France, the low voltage distribution grid network is composed of 1.3 million kilometers of
electrical lines in comparison to the 100,000 kilometers of the transmission lines [60]. Distribution
grids also tend to have a significantly larger number of nodes than a transmission grid. When
attempting to optimize a grid with a large number of nodes, the high-dimensional problem
results in a high calculation burden. The use of optimization algorithms on these networks
require simplification strategies without losing accuracy.

The low voltage distribution network can experience an unbalanced three-phase power flow
as opposed to normal operational conditions of medium voltage or high voltage networks that
are typically balanced due to equal loading of each phase. These imbalances are a result of
low voltage residential and commercial customers being connected to the grid on only one
phase. Inherently with the varying electric load profiles of different single-phase customers, power
imbalances between the phases can occur [61]. These imbalances can result in increased line
losses, protective relay malfunction, system voltage profile deviation, saturation of transformer
current or power and decreased end-use power quality [62]. The end quality of three-phase low
voltage grids is highly critical for end-use customers and is difficult to control for the DSO.

This chapter therefore addresses these specificities in the context of power flow analysis.
Unbalanced multi-phase power flow calculations are compared to single-phase power flow calcu-
lations. The three-phase unbalanced power flow equations are developed in the first half of the
chapter followed by a case study. The case study is used to complete three comparative studies.
The first study compares the unbalanced power flow calculation using presented methods with
an existing low voltage distribution grid simulation software, OpenDSS [63]. The second study
compares a power flow calculation of the original grid and the simplified grid using simplification
techniques presented in section 2.3.3. The third study compares a three-phase unbalanced power
flow calculation with a single-phase power flow estimation for each phase. In the second part
of this chapter, a literature review is presented for existing OPF multi-phase unbalanced algo-
rithms. Two algorithms found in the literature are implemented. However, these algorithms are
found to have convergence problems and difficulty in relation to scalability. In conclusion, single-
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phase estimations of three-phase unbalanced systems in the context of optimization algorithms
were proven to be sufficient for planning methodologies.

2.3 Single-phase and three-phase unbalanced systems
The power flow equations for a single-phase AC power flow and a three-phase unbalanced power
flow are different due to neutral current effects caused by imbalances. These effects can create
voltage profiles divergence, increased losses in the neutral line and increased losses within the
transformer. The two formulations will be developed and compared in the next two sections.

2.3.1 Single-phase power flow formulation

Two different sets of equations can be used within a power flow model, the bus injection model
(BIM) or the branch flow model (BFM). While both models can be effective for various appli-
cations, the BFM system of equations will be used due to better convergence characteristics as
explained in [50], specifically in relation to a radial network topology.

Pij = Pul,j +
K∑
k=1

Pjk + rijI
2
ij − Ppv,j + Pst,j (2.1)

Qij = Qul,j +
K∑
k=1

Qjk + xijI
2
ij −Qpv,j +Qst,j (2.2)

Equation eqs. (2.1) and (2.2) describe the balance of power from the upstream and down-
stream branches where Pul, Ppv, and Pst are the instantaneous load, PV production and battery
storage charge or discharge at a given time step, respectively. Pij , rij , Qij , xij and Iij are
the power, the resistance, the reactive power, the reactance and the current associated with
the branch ij, respectively. Qul, Qpv, and Qst are the instantaneous reactive load, PV reactive
production, and battery reactive power values, respectively. The voltage at each node can be
calculated by the equation (2.3).

|Vj |2 = |Vi|2 − 2(rijPij + xijQij) + (r2
ij + x2

ij)I2
ij (2.3)

where |Vj | is the voltage magnitude at node j. The current of each branch is calculated as
shown in equation (2.4).

I2
ij =

P 2
ij +Q2

ij

|Vi|2
(2.4)

2.3.2 Unbalanced power flow formulation

The three-phase unbalanced power flow that takes into account neutral current effects but ignores
shunt resistance effects uses the same power balance equations in eq. (2.1) and eq. (2.2) but uses
a more complicated equation to calculate the voltage at each node. In order to find the equivalent
equation of 2.3 for three-phase unbalanced systems, it must be derived from the basic voltage
equation as found in chapter 6 of [64]. The basic voltage equation for a three-phase system is
found in eq. (2.5).
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If shunt resistance is considered the three-phase imbalanced voltage equation becomes eq. (2.6).
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Due to limited grid characterization data for low voltage grids, shunt resistance values and
data for each node is often not available. Therefore, a modified line model is often adopted in
order to reduce the calculation complexity and minimize data collection for certain studies. It is
also shown in [64] that the shunt admittance is often so small, neglecting shunt admittance effects
does not significantly affect the calculated solutions. Therefore, the voltage profile calculation
can be simplified to be eq. (2.5) without decreasing the accuracy.

A further simplification is also detailed based on the fact that often full impedance matrices
are not well defined for low voltage lines and grids. Therefore, symmetric components are widely
used. A different simplified model called the "approximate line segment model" allows the power
flow calculation only depending on these two parameters. The impedance matrix is therefore
simplified by taking the sequence impedance matrix and assuming equal dependencies between
each phase. This assumption can be made for lines that are transposed. The transposition of
lines along the length of the line (changing of position of one phase with the others) ensures that
the magnetic fields surrounding each line are evenly distributed therefore equalizing the effects
of one phase on the other. Therefore, the sequence matrix is then defined in eq. (2.7) assuming
transposed lines.

[
Zeq

]
i

=

z0 0 0
0 zp 0
0 0 zp

 (2.7)

The approximate impedance matrix can then be found through a reverse impedance trans-
formation that results in eq. (2.8).

[
Zappx

]
i

= 1
3 ×

(2 ∗ zp + z0) (z0 − zp) (z0 − zp)
(z0 − zp) (2 ∗ zp + z0) (z0 − zp)
(z0 − zp) (z0 − zp) (2 ∗ zp + z0)

 (2.8)

Therefore, the calculation for the voltage of one phase using the approximate line segment
model is found in eq. (2.9).
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Van,i = Van,j + zpIa + z0 − zp
3 (Ia + Ib + Ic) (2.9)

where the voltage and current of each phase is composed of a magnitude and an angle as
detailed in eqs. (2.10) and (2.11). The impedance is composed of the resistance and the reactance
of the lines as shown in eqs. (2.12) and (2.13).

Van,i = |Va| ∗ cos(θV,a) + j ∗ |Va| ∗ sin(θV,a) (2.10)
Ia = |Ia| ∗ cos(θI,a) + j ∗ |Ia| ∗ sin(θI,a) (2.11)

zp = rp + jxp (2.12)
z0 = r0 + jx0 (2.13)

(2.14)

To acquire the equivalent equation of eq. (2.3) for a three-phase unbalanced system, eq. (2.9)
is then squared. This results in an equation capable of calculating the square of the voltage
magnitude as a function of the voltage between each phase and the neutral line Van,j , the
positive impedance, the negative impedance and the three currents flowing through each phase
Ia, Ib, and Ic. In order to complete this derivation, abbreviations to facilitate the derivation are
used as stated in eq. (2.15).

vi = |Vag,i|2

φa = θV,a − θI,a
βab = θI,a − θI,b

(2.15)

The derivation of the eq. (2.9) was performed in the frame of this thesis because this specific
formulation was not found in the literature. After developing and deriving this proof, the
equation in eq. (2.16) was determined.
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vj = vi + 2 ∗ Vi ∗ Ia,ij ∗
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2.3.3 Simplification of high dimensionality

Often, distribution grids have a very large number of nodes. Certain nodes of a network can be
simplified in order to reduce this high number of nodes and therefore reduce the complexity of the
power flow calculation. A simplification technique was used in the frame of this thesis in order
to reduce the power flow calculation time. The simplification algorithm consists of identifying
"active" and "passive" nodes. Once active and passive nodes are identified, all passive nodes
can be removed by redefining a new segment that consists of the sum of multiple segments. An
active node is defined by a node with more than one downstream element. An element is defined
as a downstream node, a load or a generator. Therefore, if there is more than one downstream
element, the node must be conserved and it is labeled an "active node". If there is only one
downstream element, for example, one downstream node, one consumer or one generator, the
node is labeled as a "passive node" and is not critical to conserve for an accurate power flow
calculation. These nodes are not necessary because the power balance calculation between
these two nodes only concerns the upstream branch, downstream branch and the losses of both.
Therefore, calculating the losses across both lines with the combined impedance is equivalent
to calculating the losses of each branch individually and then summing them. The node can
be removed by redefining a segment that includes the sum of the impedance values of the two
original segments. Examples of active and passive nodes can be found in Fig. 2.1.

This node reduction technique consists of testing each node to determine if it is an active or
passive node and then removing all passive nodes by redefining new nodes and branches. This
simplification is extremely useful for low voltage feeders due to the fact that typically only a
third of the nodes are "active nodes" and that the calculation time of a power flow analysis is
directly related to the quantity of nodes of a given feeder.
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Figure 2.1: Passive node examples indicated by a blue "P" and active node examples indicated
by a red "A"

Table 2.1: Feeder characteristics of network 20 [1]

Feeder Sum of all loads (kW) Nodes
1 25 76
2 26 609
3 59 833
4 29 69
5 23 63

Table 2.2: Feeder 3 electrical characteristics

Grid element Characteristic Value
Nodes quantity 833

Load Nodes quantity 59
Resistance avg value 0.0012
Reactance avg value 0.0001014

Zero Resistance avg value 0.00156
Zero Reactance avg value 0.0001097

2.3.4 Case study

In order to demonstrate the analysis strategies developed in this chapter, a case study consisting
of a low voltage grid feeder topology in England is implemented. The chosen grid is network 20
found on the Electricity North West project site [1]. The network 20 consists of five three-phase
feeders that are connected to a 800 kVA transformer. The loads reported in the OpenDSS [63]
file indicate an initial loading scenario for each feeder as noted in 2.1. Due to the fact that feeder
3 represents 50.5% of the nodes and 36.4 % of the loading scenario, this feeder was considered
to be the most important to model. Example feeder characteristics can be found in Table 2.2
and a diagram of the grid topology can be found in Fig. 2.2.

2.3.5 Results

Three power flow calculation comparisons are completed to validate the accuracy of the three-
phase unbalanced equations developed in eqs. (2.1), (2.2) and (2.16). The first power flow
calculation comparison is between the developed equations eqs. (2.1), (2.2) and (2.16) and an
open source low voltage distribution grid software called OpenDSS [63]. The second comparison
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Figure 2.2: Low voltage network used in the case study

is completed between the original grid detailed in Table 2.2 and the simplified grid detailed in
Table 2.3 after using the simplification technique detailed in section 2.3.3. The final analysis
is a comparison of the fully developed three-phase unbalanced power flow calculation and the
single-phase estimation technique for each phase. The evaluation metric used for evaluating the
difference between each pair of power flow calculations is the RMSE. Therefore, the RMSE value
is the error of one strategy compared to the other.

Comparison of unbalanced power flow calculation and OpenDSS

The full AC three-phase unbalanced power flow calculation was implemented in python using
a forward backward sweep method. This calculation was compared to the voltage, active and
reactive power values calculated by an open source distribution modeling software developed by
Electric Power Research Institute called OpenDSS [63]. This modeling tool has been widely used
for the analysis of three-phase unbalanced systems in research and industry. A visualization of
the two different load flow calculation strategies is found in Fig. 2.3.

When comparing the voltage profile results of eqs. (2.1), (2.2) and (2.16) and OpenDSS,
an RMSE value of between 0.8% and 0.9% of the voltage magnitude was calculated for the
three-phases. This small error is a result of the way OpenDSS treats load profiles. Load profiles
are voltage dependent in OpenDSS while the load profiles used to calculate voltage profiles by
eqs. (2.1), (2.2) and (2.16) are considered to be fixed active and reactive power values. The 0.9%
RMSE value for bus voltages was judged to be negligible therefore validating the calculation
methods derived in this chapter.

Comparison of original and simplified grid

The grid reduction technique described in section 2.3.3 was applied to the original grid topology
of network 20. This node reduction technique successfully reduced the 835 node network to 226
nodes. The new grid characteristics for the network after the reduction technique are found in
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Figure 2.3: Comparison of OpenDSS and load flow calculations using a forward backward sweep
and eqs. (2.1), (2.2) and (2.16)
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Table 2.3: Simplified feeder 3 electrical characteristics

Grid element Characteristic Value
Nodes quantity 226

Load Nodes quantity 59
Resistance avg value 0.00447
Reactance avg value 0.000377

Zero Resistance avg value 0.00583
Zero Reactance avg value 0.000408

Table 2.3.
A comparison of a power flow calculation of the original grid topology and the simplified

grid topology was completed to validate the grid reduction technique. The comparison of these
calculations can be visualized in Fig. 2.4.

The RMSE value when comparing the original network to the simplified network was zero
for voltage, active and reactive power for all phases. This result validates the hypothesis that
the reduction strategy has no effect on the final power flow calculation of a network.

Single-phase estimation of unbalanced power flow

Three-phase unbalanced power flow calculations are used to calculate the effects that neutral
current can have on voltage profiles. In order to evaluate the importance of these effects,
a comparative study was performed between a single-phase representation of each phase as
opposed to a fully developed three-phase unbalanced power flow calculation of all three phases.
The case study uses the simplified grid as detailed in Table 2.3.

As seen in eq. (2.16), the neutral current effects are relative to the rp to rn and xp to
xn ratio as well as the amount of imbalance within the system. The rp to rn and xp to xn
ratios were calculated based on the grid data specifications. Varying levels of imbalances were
therefore simulated in order to quantify the influence of the magnitude of imbalances on the
power flow calculations. The parameter that will be used to quantify the imbalance in the
system is calculated with eq. (2.17).

Imb = (Ia − Ib) + (Ia − Ic)
2 (2.17)

The load factor may also contribute to the influence of imbalances on the system. For
this reason, varying load factors were also simulated and the resulting voltage deviations are
observed. The load factor indicator is calculated as detailed in eq. (2.18).

LF = Ia ∗ Va + Ib ∗ Vb + Ic ∗ Vc
Tnom

(2.18)

Unbalanced power flow calculations and single-phase estimations were therefore completed
for imbalances between 2% - 70%. Varying loading factors from 10.7% to 52.5% were also
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Figure 2.4: Comparison of simplified grid load flow calculation with original one
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Figure 2.5: Comparison of three-phase unbalanced and single-phase load flow calculation

simulated. The results of the RMSE calculated by comparing the single-phase estimation to the
unbalanced power flow calculation is found in Fig. 2.5.

As seen in Fig. 2.5, a 10.7% load factor results in an RMSE value of less than 0.2% for
the case with no imbalances and up to 0.4% for the case with 70% imbalances. The highest
load factor simulated of 52.5% results in higher errors with an RMSE averaging 0.2% for the
case with no imbalances up to an RMSE of 1.6% with 70% imbalances. Even with the highest
loading factor and the highest percent of imbalances simulated, the RMSE error values for the
single-phase estimation are relatively low.

2.4 OPF multi-phase unbalanced algorithms

2.4.1 Existing algorithms literature review

Few optimization algorithms are capable of analyzing three-phase unbalanced low voltage sys-
tems. The advantages of detailed three-phase system models in planning stages have been
demonstrated in [65].

The added complexities of low voltage unbalanced systems are important to consider when
accurately quantify the problems of renewable energy integration in low-voltage grids. Existing
multi-phase optimal power flow algorithms include [66][67][68] [69] [70] [71] [72] [73] [74]. These
algorithms include heuristic methods [73], iterative methods [74] [70], non-linear solvers [69],
convex relaxations [67] [71] [72] [66] or a recently published new method Feasible Point Pursuit
and Successive Convex Approximation algorithm [68]. Heuristic and iterative methods can be
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time intensive and are not always guaranteed to find a global optimal solution. Non-linear solvers
often combine multiple techniques of heuristic and local linearizations of certain equations.
Convex relaxations are not always proven to be exact however exactness can be verified. Convex
relaxations tend to have very low calculation burden. Therefore, convex relaxations are explored
in more detail to identify possible OPF methodologies applicable to low voltage grids.

An algorithm that solves two sub problems with an SDP relaxation consists of an initial
decoupled nodal formulation that then solves a global optimization problem that shares the
Lagrange function of each node. Exact relaxations were achieved for a 34 bus system but
convergence problems arose with a 123 node grid [75]. A multi-phase optimal power flow model
proposed by [67] illustrates possible relaxations within the BIM or the BFM implementation.
The BIM is a system of equations based on the current balance at each node. The BFM is
based on Kirchhoff’s current law that the power flowing in the upstream branch is equal to the
power flowing in all downstream branches and the losses. A case study is not presented for these
two formulations but the BFM formulation is said to be more stable with fewer convergence
problems due to the added mathematical difficulty in the BIM of subtracting two small current
values. The BFM equations are relaxed using an SDP and implemented in a case study in [72].
A more recent paper elaborating the implementation of the algorithm is published in [71]. The
BFM SDP in [67][71][72] was implemented in the context of this thesis in python using the cvxpy
package. The cvxpy package was chosen due to the capability of this package to accept and
implement Hermitian matrices within the problem formulation. A case study was implemented
to assess the effectiveness of multi-phase optimal power flow algorithms that take into account
the added complexity of unbalanced three-phase power flow.

2.4.2 Implemented algorithms

The SDP BFM published in [67][71] was implemented at the beginning of this PhD work. At the
time of implementation, few details were available describing the algorithm in detail and no case
studies has been presented showing the practical application of such an algorithm. Recently,
this algorithm has been implemented with multiple case studies as found in [71].

After implementation, the algorithm detailed in [67] had significant convergence problems.
An exact relaxation was achieved for a 10 node grid. However, all larger systems that were
tested did not converge. This three-phase unbalanced optimal power flow was implemented in
order to analyze the performance of this type of algorithm in comparison with a single-phase
estimation for each phase. The added benefit of taking into account the coupling between each
phase must be weighted against the inconveniences of increased calculation time and complexity.

Due to the fact that few algorithms existed in the literature, the derived equation in eq. (2.16)
was explored to possibly propose new relaxations for an OPF multi-phase unbalanced system
algorithm. However, no promising formulations were found and due to other priorities of this
thesis work, research was not continued in this subject area.

2.5 Conclusion

Three-phase unbalanced power flow analysis was completed to quantify the advantages of unbal-
anced power flow calculations in the context of OPF analysis. Varying strategies to help with
the analysis of low voltage unbalanced distribution grids have been presented. These strate-
gies include derived equations allowing for the calculation of three phase unbalanced systems.
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A strategy allowing the simplification of networks with a large number of nodes was also pre-
sented. Finally, a proposal to use single-phase estimations of three-phase unbalanced systems
was discussed. Conclusive results show that the additional accuracy of taking into account the
neutral current effects on the voltage profile is very small.

A state of the art literature review on multi-phase unbalanced OPF algorithms has been
presented. The primary formulation presented in the literature has been implemented in the
frame of this thesis. This algorithm had a significant calculation burden as well as convergence
problems.

In conclusion, optimal power flow algorithms that exist in the literature and take into account
the increased complexity of three-phase unbalanced load flow calculations significantly increase
the complexity of the problem and sometimes have convergence problems. The added accuracy
achieved by taking into account the coupling between phases, i.e. the neutral current effects,
is minimal and therefore insignificant during the planning phase. For specific studies, these
imbalances can have significant effects on the planning process such as calculating transformer
aging or possible re-balancing strategies in the planning phase that are not considered in this
thesis. For this reason, all future model developments will consider single-phase estimations
of three-phase systems. These single-phase models take into account individual loading and
generation profiles connected to the phase of interest but neutral current effects and the coupling
of the three-phases is not considered.



Chapter 3

Planning methodologies for smart
grids

Résumé

La grande variabilité et les incertitudes introduites dans les systèmes de distribution modernes
à cause des générateurs à énergie renouvelable décentralisés nécessitent de nouvelles solutions
pour la gestion du réseau et l’assurance d’une qualité de fourniture. Des analyses multi tem-
porelles sont nécessaire pour l’analyse de variables dépendant du temps tel que le stockage. Le
développement de ces outils permet l’analyse de la capacité d’accueil d’un réseau existant ou
l’optimisation de la taille et du positionnement du stockage décentralisé. Les algorithmes OPF
sont capables de prendre en compte les stratégies de gestion des réseaux intelligents tout comme
les limites du réseau pour analyser les bénéfices en termes de coûts des solutions de réseaux
intelligents. Ce chapitre présente le développement d’un outil d’analyse OPF multi temporel.
Une démonstration de cet algorithme est ensuite présentée pour le dimensionnement optimal
et le positionnement sur le réseau d’équipements de stockage de manière simultanée. Les mod-
èles présentés utilisent un algorithme OPF multi temporel avec des relaxations convexes des
équations de flux de puissance pour garantir des solutions optimales et une grande performance
algorithmique. Les coûts de gestion, les coûts d’investissement et les contraintes du réseau sont
pris en compte pendant ce procédé d’optimisation. Des conclusions sont tirées sur l’efficacité
d’un tel algorithme dans les stratégies de planification et de gestion. Deux études de cas sont
analysées, une pour calculer la capacité d’accueil d’un réseau de distribution et l’autre pour
determiner le dimensionnement et le positionnement optimal du stockage.

3.1 Summary

The high variability and uncertainty introduced into modern electrical distribution systems due
to decentralized renewable energy generators requires new solutions for grid management and
power quality assurance. Multi-temporal analysis is necessary for the analysis of temporally
dependent variables such as storage. The development of these tools allows for the analysis of
the hosting capacity of an existing network or the optimal size and placement of decentralized
storage. OPF algorithms are capable of taking into account Smart Grid operational strategies
as well as network limits to analyze the cost benefit analysis of Smart Grid solutions. This
chapter presents the development of a multi-temporal OPF analysis tool. An elaboration of
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this algorithm is then presented for the simultaneous optimal sizing and placement of grid
connected storage devices. The models presented use an (AC) multi-temporal OPF algorithm
that uses convex relaxations of the power flow equations to guarantee optimal solutions with
high algorithmic performance. Operational costs, investment costs and grid constraints are
considered during the optimization process. Conclusions are drawn about the effectiveness of
such algorithms in planning and operations strategies. Two case studies are analyzed, one to
calculate the hosting capacity of a distribution grid and the other for the exercise of optimal
sizing and placement.

3.2 Introduction

Increasing environmental concern is one of the main drivers behind the large-scale development
of DER in electric distribution grids. This development involves connection of decentralized
generators to the electric grid, for example PV, wind turbines and micro-hydroelectric genera-
tors. These DER bring about new challenges for the distribution grid operators. Decentralized
renewable energy generators can introduce bi-directional flow within the network, while their
production is uncertain and variable due to its inherent dependence on weather conditions. Other
specific challenges of the distribution grid include higher uncertainty due to reduced aggregation
effects of DER generators, voltage profile deviation and increased power flow in electric lines.
These challenges are generally localized, therefore creating local voltage perturbations that may
not be visible by the distribution operator.

Solutions to these challenges include infrastructure upgrades such as electric line reinforce-
ment or automation and integration of smart grid functionalities, such as OLTC, DER generation
curtailment, storage devices and DSM [76]. Infrastructure upgrade investments are easily calcu-
lated. However, new control and flexibility functionality is difficult to quantify economically and
integrate into the planning phase of distribution grids. The cost benefit analysis of varying smart
grid technologies and management strategies will become more important as DER penetration
increases in future distribution grid systems.

Grid storage elements are presented in some papers in the literature as a cost-effective so-
lution to deal with the above challenges. A techno-economic analysis of energy storage ele-
ments as a possible solution to problems of DER grid integration is presented in [77]. The
cost-effectiveness of different grid storage applications is explored including regulation of trans-
mission and distribution power quality, voltage regulation and control, energy management,
smoothing of intermittent renewable energy production, energy back-up, peak shaving, etc. For
each specific application, taking into account the operational strategy of the storage device is
important when sizing and placing the unit.

The importance of multi-temporal analysis is directly related to the evaluation of the role
of storage within an active distribution network. Using storage devices to maximize renewable
energy production and improve generation and load mismatch requires the multi-period simula-
tion of the storage capacity limits. This multi-temporal coupling is critical in order to evaluate
the technical constraints of the storage elements and the possible benefits. Possible applications
of this type of algorithm are the hosting capacity of existing grids or the optimal sizing and
placement of battery systems to improve grid operations or increase hosting capacity.

The optimal sizing and placement of storage devices in distribution grids has been addressed
through various mathematical modeling methods presented in the literature. This problem is
high-dimensional and non-convex. The resolution of this high-dimensional non-convex problem
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has been successful with multiple mathematical techniques including analytical, classical, artifi-
cial intelligence and other miscellaneous techniques [78]. In a review of energy storage allocation,
four main categories are defined to solve this high-dimensional non-convex problem: analytical
methods, mathematical programming, exhaustive search and heuristics [33]. OPF are classified
as mathematical programming methods and can be used to simulate power system functionality
with generators and storage devices while taking into account grid constraints. OPF algorithms
are capable of taking into account decision variables and therefore capable of analyzing active
management of distribution grids. An example of an OPF that analyzes hosting capacity of an
active distribution grid is found in [79], where curtailment strategies and dynamic line rating
are explored to increase renewable energy penetration.

OPF algorithms are efficient at analyzing active distribution networks for operation and
planning. The two primary problem resolution techniques for solving this high-dimensional
non-convex problem include heuristic techniques or linear convex relaxations of the power flow
equations. Heuristic algorithms have been used to solve the optimal placement and sizing of
storage devices. For example, a two-step process with a master and a sub-problem is proposed
in [80]. This method first uses a heuristic algorithm to solve optimal placement and sizing
of batteries. Secondly, a daily AC OPF multi-objective function takes into account optimal
voltage control, minimization of network losses and total energy costs. Another paper presents
a comprehensive sizing and siting algorithm using particle swarm optimization [81]. A different
type of heuristic method was used to simultaneously size and place storage units using an
artificial bee colony algorithm with an objective function that forces each storage node to be as
autonomous as possible [82]. Another heuristic method implemented a multi-objective problem
addressing both distribution grid and transmission grid [83]. However, heuristic algorithms
often require a larger calculation burden and are not guaranteed to converge to a global optimal
solution as noted in [49]. A mixed integer linear programming approach for complete DER
portfolio sizing and placement is presented in [84]. The mixed integer strategy uses linearized
power flow equations and loss estimations. Mixed integer linear approximations are proven to
be effective at solving the non-convex placement and sizing problems. However, the calculation
time is high and scalability to large network sizes have not been addressed.

Convex relaxations of the power flow equations generally have a lower calculation burden.
The relaxation of the power flow equation into a second order cone has already been theoretically
explained and detailed mathematically in [50]. Papers addressing optimal sizing and placement
of storage devices using convex relaxations can be found in the literature. An impedance model
was used to perform optimal placement and sizing in [85]. An optimal placement and sizing of
batteries using a linearized DC power flow for transmission planning with a maximum investment
cost is presented in [86]. This linearization is not accurate for the high R/X ratio found in the low
voltage distribution systems, which implies electrical losses that are non-linear. The use of an
AC OPF for optimal placement [87] or optimal sizing [88] is also found in the literature. In [31]
the authors explore a two-step process of sizing and placement of storage units through relaxed
power flow equations. However, this sizing methodology calculates power and energy imbalances
locally at PV nodes and sizes the battery systems to mitigate these imbalances. Therefore, this
methodology sizes the battery systems to reduce PV injection when power quality becomes
an issue. This sizing methodology does not compare the cost of storage elements to other cost-
effective solutions such as curtailment. The algorithm also does not analyze the possible benefits
of batteries participating in an electricity market. A SOCP OPF algorithm is then used in the
second step to site the sized battery systems.
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The SOCP relaxation of the power flow equations has been proven to be inexact during
periods of high penetration from decentralized production. An example of this could be high
PV production and low loads during the summer season. In order to overcome the challenge of
inaccurate convex relaxations, [57] presents an AC OPF algorithm that integrates linear cuts
implemented in an iterative manner to ensure an exact and feasible relaxation of the power
flow equations. In a follow-up work, this algorithm has then been developed into a multi-
temporal one in order to more objectively evaluate the benefits of grid connected storage and
other temporally dependent variables in [58]. A possible application of the multi-temporal OPF
algorithm as described in [58] is the calculation of the PV hosting capacity of a network. The
PV hosting capacity is defined in [58] as the total PV capacity that can be installed before
power quality is not affected. If more capacity is installed, active management techniques such
as curtailment or battery peak shaving must be implemented to avoid negative power quality
effects. The details of this method are discussed in more detail later in this chapter.

This chapter is two-fold. Firstly, the chapter addresses the importance of multi-temporal
analysis to analyze networks with time dependent variables. A case study including the cal-
culation of the hosting capacity of a network with high renewable energy penetration and the
presence of storage is presented. Secondly, a methodology is detailed to simultaneously perform
optimal sizing and placement of storage devices in a distribution grid from a techno-economical
view by considering the investment cost of batteries weighted against the operational benefit.

3.3 Multi-temporal OPF for hosting capacity analysis

3.3.1 Power flow model

Four equations are used for AC power flow calculations: the balance of active power, the balance
of reactive power, the voltage magnitude and current magnitude. When considering a radial
distribution system with decentralized PV generation and decentralized storage elements, the
power flow equations used for this analysis are shown in eqs. (2.1) and (2.2). Eq. (2.1) and
eq. (2.2) describe the balance of active and reactive power from the upstream and downstream
branches. The voltage magnitude at each node is calculated by eq. (2.3). The current magnitude
of each branch is calculated as shown in eq. (2.4). Along with the power flow system of equations,
constraints are also present in an OPF formulation.

System constraints

The system constraints of an electrical distribution network include maximum and minimum
voltage limits, and maximum and minimum apparent power limits. The network voltage and
apparent power limits can be described in eqs. (3.1) and (3.2).

V ≤ Vt,j ≤ V (3.1)
0 ≤ |sij,t| ≤ sij (3.2)

where V and V are the lower and upper limits of the voltage on a line, respectively. sij,t
is the maximum apparent power limit of each branch. Individual components such as the PV
and battery systems were modeled through their inverter behavior as described in the following
sections.
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PV inverter model

The PV inverter behavior was modeled as an active and reactive power source with upper and
lower limits on active and apparent power injection for a given time step.

0 ≤ Ppv,t,j ≤ P pv,j (3.3)
0 ≤ spv,t,j ≤ spv,j (3.4)

where spv,t,j is the total apparent power of the power injection as defined in 3.5.

spv,t,j =
√
P 2
pv,t,j +Q2

pv,t,j (3.5)

Battery inverter model

The battery inverter was modeled as either an apparent power injection or an apparent power
load for a given node at a given time step. The time coupling variable indicating the SOC was
calculated based on a total charging and discharging efficiency associated with the inverter.

socst,t,j = socst,t−1,j + tηstPst+,t,j + t
1
ηst
Pst−,t,j (3.6)

socst,j ≤ socst,t,j ≤ socnomst,j (3.7)
Pst,t,j = Pst+,t,j + Pst−,t,j (3.8)
−Pnomst,j ≤ Pst,t,j ≤ Pnomst,j (3.9)

0 ≤ |sst,t,j | ≤ sst,j (3.10)

where ηst, Pst+,t,j , Pst−,t,j , sst and sst are the charging efficiency, power absorbed during
charging, power injected into the grid, upper limit and lower limit of total apparent power
exchange with the grid. sst,t,j is the apparent power at node j as defined by eq. (3.11).

|sst,t,j | =
√
P 2
st,t,j +Q2

st,t,j (3.11)

The power flow equations are non-linear and non-convex. Therefore, when solving a high-
dimensional power flow problem, convex relaxations have been used to ensure high performance
algorithms.

3.3.2 SOCP optimum power flow formulation

The same SOCP convex relaxation used in [89] and [55] is implemented in a multi-temporal
model in order to analyze the hosting capacity of a distribution grid. This relaxation entails
the replacement of certain equality constraints by inequality constraints and the substitution
of certain quadratic terms with linear terms. The equality constraints in question, eqs. (2.4),
(3.5) and (3.11), are relaxed using conic functions to limit the apparent power of each branch
or the apparent power injected into the grid by the PV and battery systems. Two new variables
are also introduced to replace quadratic terms as shown in eq. (3.12) in order to successfully
formulate an SOCP problem as explained in [55].
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υj = |Vj |2

` = |Iij |2
(3.12)

The objective function is composed of two parts. The first part is the minimization of the
total losses of the system. The second part minimizes the curtailment of the PV systems in
order to maximize renewable energy injection into the grid. Therefore, the objective function is
formulated as seen in eq. (3.13):

min
J∑
j=0

T∑
t=0

[rij`ij,t + (Ppvid,t,j − Ppv,t,j)] (3.13)

subject to eqs. (2.1), (2.2), (3.1)–(3.4) and (3.6)–(3.10)

υj = υi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij (3.14)

`ij ≥
P 2
ij +Q2

ij

υi
(3.15)

spv,t,j ≥
√
P 2
pv,t,j +Q2

pv,t,j (3.16)

sst,t,j ≥
√
P 2
st,t,j +Q2

st,t,j (3.17)

The decision variables of this optimization problem include the curtailment of PV systems
and the power load or injection of the battery systems for each time step at each node.

3.3.3 Case study

The optimization of storage elements and PV curtailment was analyzed for a time scale of 0.5
to 4 days. An example medium voltage grid published in [90] was studied in order to evaluate
the performance of this algorithm. The network studied is a 12.66 kV 69 nodes grid. A map of
the grid topology can be found in Fig 3.3.

Consumption load profiles were simulated using an aggregation load simulator as described
in [91] for each low voltage substation and medium voltage consumer. This load simulator takes
into account a mix of residential and commercial customers. Residential consumption is simu-
lated with statistically accurate representations of surface area, electric heating and the number
of individuals that align with the INSEE building inventory database of France. Industrial load
profiles are simulated by assuming a typical industrial activity mix in France from a medium
voltage substation. The two medium voltage customers were modeled as office building com-
plexes with typical business hours operation. A peak of 5 MW during the winter and 2.9 MW
during the summer was simulated for the medium voltage substation transformer with a max-
imum apparent power limit of 10 MW. Solar radiation data from a site in the south of France
was used to calculate expected PV production as a function of system nominal power.

Four different seasonal scenarios were studied in order to understand a typical annual opera-
tion. Within each season, three renewable energy solutions were studied: the hosting capacity of
a typical grid topology without storage, the hosting capacity with decentralized storage elements
installed at the same nodes as the PV systems and the hosting capacity with centralized storage
elements close to the high voltage transformer. The hosting capacity of a feeder was defined as
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the maximum capacity of PV that does not violate grid constraints without using curtailment.
This considers the defined configuration and repartition of PV systems within the grid. Twenty
sites were chosen for PV decentralized installations and nominal power of each system was in-
creased until either current or voltage limits were reached. Therefore, the calculated hosting
capacity is for the given configuration and repartition as defined by the case study.

3.3.4 Results

A three-day simulation period with an hourly resolution was chosen in order to allow for at least
one full cycle of charging and discharging of the storage elements. Three-day typical profiles
were chosen for four different seasons in order to understand the annual performance of the
system. Considering only PV installations without storage elements, the maximum current
limit of the lines was reached during low loading periods and high peak PV injection in summer.
Multiple capacities for 20 decentralized PV systems were tested until curtailment was necessary
to not exceed voltage or apparent power limits of the network. The maximum installed capacity
where curtailment was unnecessary was achieved with a PV penetration of 10 MW nominal
power installed. A total of 701 kWh was curtailed of the 156 MWh produced during a three-
day simulation to ensure maximum apparent power limits were not exceeded. During typical
daily profiles for fall, winter and spring, no curtailment was necessary for any system. In all
simulations, the summer period was the most critical to monitor for power quality verification,
therefore the rest of the results section will focus on summer production and load profiles.

Added storage capacity was integrated into the grid in order to quantify the additional
possible hosting capacity. Initially storage elements were placed at the same nodes as all PV
installations to represent a decentralized storage configuration. Therefore, 20 systems of 116
kWh energy storage capacity were modeled through their inverter behavior. For 10 MW of PV
capacity installed, no curtailment was needed within all seasons. The improvement in system
performance can be seen in Fig. 3.1 and Fig. 3.2. The curtailment necessary and the losses on
the lines are compared in Fig. 3.1.

Figure 3.1: Comparison of curtailment and line losses with and without battery systems during
a three-day period using typical summer profiles
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Table 3.1: For a given amount of coupled time steps, the calculation time in seconds

Time steps coupled Calculation time (s)
24 8
48 23
96 67

A comparison of the imports and exports at the substation during summer periods can be
found in Fig. 3.2.

Figure 3.2: Comparison imports and exports with and without batteries during a three-day
period using typical summer profiles

The same amount of storage capacity was then used in a centralized configuration. This
centralized storage was placed very close to the high voltage transformer offering the same
services. The necessary curtailment was also reduced to zero for the 10 MW system. However,
the centralized battery system also resulted in higher overall line losses.

Algorithmic performance

The time of execution of the algorithm was recorded for varying time coupling scenarios as
shown in Table 3.1.

This multi-temporal coupling allows the optimization of PV curtailment and battery storage
utilization for up to a four-day period with a satisfactory calculation burden. It also ensures
that the relaxation is exact and applies linear cuts to time steps that are not exact in order to
guarantee the exactness of the relaxation.

3.3.5 Discussion

The optimization algorithm proposed uses a convex relaxation algorithm with linear cuts applied
to a multi-temporal application for battery storage analysis. This algorithm was shown to be
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effective when studying a distribution system for a 3-4 day time span. The multi-temporal
algorithm allows for the assessment of battery storage functionality while taking into account
the technology limitations such as charging efficiency, discharging efficiency, maximum injection
and absorption. The algorithm also calculates an optimal charging and discharging schedule
based on the objective function. A French medium voltage distribution feeder was successfully
analyzed to determine the hosting capacity, decentralized and centralized battery systems effects
on curtailment. This algorithm could be used for comparison studies between different grid
stability control strategies such as real-time curtailment, centralized and decentralized battery
installations. The use of this algorithm for real-time management could also be effective if
real-time predicted PV production profiles and expected load profiles are used as inputs. The
optimization of charging and discharging schedules of batteries can effectively increase hosting
capacity of a distribution network by reducing the necessity to curtail PV systems.

3.4 Optimal placement and sizing of storage devices

The Optimal placement and sizing of storage devices uses an OPF algorithm that assumes a
certain level of smart grid functionality. Operational control of active power of storage and
PV inverters are modeled with a multi-temporal OPF. The objective function is formulated in
a way to include economic operational benefit and constraints that guarantee power quality.
This methodology is capable of taking into account in detail the operational strategy of storage
devices in order to make planning decisions about their sizing and placement. Therefore, it is
effective for distribution grid planning applications with predefined operational strategies.

3.4.1 Optimal power flow model

The proposed methodology relies on solving the optimization problem with the objective function
eq. (3.18) and constraints given by eqs. (2.1), (2.2), (3.1)–(3.4), (3.6), (3.7) and (3.14)–(3.22).
The objective function is the sum of the battery investment costs, operation and maintenance
costs, the system losses and power imported at the feeder substation. The constraints of this
model include the active power limits of PV systems defined by the maximum available power
as a function of weather conditions eq. (3.3), apparent power limits of PV systems eqs. (3.4)
and (3.16), power flow equations eqs. (2.1), (2.2) and (3.14), relaxation of the current equation
eq. (3.15) to represent the power flow equations as a convex SOCP, voltage limits of each branch
eq. (3.1), battery SOC constraints eqs. (3.6) and (3.8) and daily nominal power and capacity
value constraints eqs. (3.19)–(3.21). Constraint eq. (3.22) limits the ratio of nominal power and
nominal capacity to be appropriate for distribution grid storage elements managed on a daily
basis. This constraint also allows for fast convergence of the algorithm.

min Finv + FO&M + Fp + Fst,p (3.18)

subject to eqs. (2.1), (2.2), (3.1)–(3.4), (3.6), (3.8) and (3.14)–(3.17)
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Pnomst,j,d ≥ |Pst,j,t| (3.19)
socnomst,j,d ≥ socst,j,t (3.20)
socnomst,j,d = Nnom

st,j,dP
nom
st,j,d (3.21)

0.1 ≤ Nnom
st,j,d ≤ 8 (3.22)

The optimal sizing and placement of storage requires the resolution of a temporal and spatial
problem. The temporal problem implies a coupling of multiple time steps to ensure coherence of
the battery SOC between each consecutive time step. The spatial problem implies the consider-
ation of all nodes as possible placement locations for storage devices. The multi-temporal OPF
is already high dimensional. For a grid with 137 nodes, feasibility testing showed that up to
130 coupled time steps resulted in a successful calculation by the solver. While using the Mosek
solver, attempts at simulations with more than 130 coupled time steps returned a maximum
size exceeded error. Therefore, a certain decoupling is necessary in order to complete an annual
analysis. In this algorithm, a daily decoupling was implemented. Therefore, the number t of
coupled time-steps is 24. The decoupling was chosen to be done on a daily basis due to the fact
that battery systems are often managed on a daily basis. The coupled time steps of a one-day
period were then simulated for each day of the year in order to successfully complete an annual
analysis. An additional constraint is added to avoid daily accumulation effects by forcing the
SOC of the first and last time step of a day to be equal as stated in eq. (3.23).

socst,j,0 = socst,j,T (3.23)

Constraint eq. (3.21) is the product of two variables and is non-convex rendering the problem
NP-hard. The variable N represents the number of hours of autonomy of the battery system,
limited by feasible battery sizes of 0.1 to 8. This relationship between the nominal power and
capacity of a battery system is an essential relationship for accurately representing the cost
of battery systems. In order to keep this constraint, a linearization is performed through an
iterative process. The linearization is shown in equation eq. (3.24).

Nnom
st,j,dP

nom
st,j,d = 1

2
[
Nnom
init,j,d ∗ Pnomst,j,d +Nnom

st,j,d ∗ Pnominit,j,d

]
(3.24)

Where Nnom
0,j,d and Pnom0,j,d are the initial values. With these initial values Pnomst,j,d and Nnom

st,j,d

are calculated with the algorithm. If the difference between the initial estimation and the final
calculated values is larger than a 0.001 for either Pnomst,j,d or Nnom

st,j,d, a new iteration is performed
assigning Nnom

0,j,d and Pnom0,j,d to the values of Pnomst,j,d or Nnom
st,j,d.

The algorithm effectively calculates the optimal size and placement of storage devices for
each node for each day. This sizing and placement exercise therefore results in 365 optimal
nominal capacity and power values. The final optimal size must then be chosen from analyzing
these 365 values. This is done by taking the 75th quantile of the set of optimal values to calculate
a final annual optimal size.

3.4.2 Variations of the objective function

The objective function of the general form given by eq. (3.18) can be altered in order to size the
battery systems for different purposes. Two objectives are considered in this section. The first
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objective function is to size the battery systems to minimize losses in the system. The second
possible objective function considers the minimization of losses and the absolute value of the
active power injection from the high voltage grid to the medium voltage grid at the substation.

Loss minimization

The first sizing exercise entails using the battery system only for loss cost minimization and
allows a comparison between the cost of line losses eq. (3.28), charging/discharging losses of
the battery systems eq. (3.29), the sum of battery investment costs eq. (3.26) and battery
operations costs eq. (3.27). The objective function is therefore eq. (3.25). The optimal nominal
power and capacity is then calculated based only on the economic viability of using batteries
for loss reduction.

min Finv + FO&M + Fp + Fst,p (3.25)

where:

Finv =
J∑
j=0

minv
st soc

nom
st,j,d (3.26)

FO&M =
J∑
j=0

mom
st tP

nom
st,j,d (3.27)

Fp =
T∑
t=0

J∑
j=0

(
mec,trij`ij,tt+mec,tt

[
P pv,j,t − Ppv,j,t

])
(3.28)

Fst,p =
T∑
t=0

J∑
j=0

mec,tηstt|Pst,j,t| (3.29)

subject to eqs. (2.1), (2.2), (3.1)–(3.4), (3.6), (3.8), (3.14)–(3.17) and (3.19)–(3.22)
The losses considered are the line losses, PV curtailment and the losses of the battery system

due to the battery charging efficiency. If the sum of the operational costs and the investment
costs of the battery systems is higher than the economic gain from loss reduction, the algorithm
will calculate zero nominal capacity and power for each node.

Minimization of absolute active power flow at substation

Battery systems can also be used to participate in variable pricing electricity markets. This
implies using battery systems to buy and sell electricity from the grid based on the hourly price
of electricity. This objective function as detailed in eq. (3.30) allows the calculation of economic
gains through battery participation in variable pricing markets and encourages autonomy of the
feeder by minimization of the total absolute active power flow imported at the substation |P0,t|.
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This formulation does not include explicitly the losses associated with the battery charging
efficiency because this energy is already counted in the variable |P0,t|.

min
j∈J

Finv + FO&M + Fp + Finj (3.30)

where:

Finj =
T∑
t=0

mec,tt|P0,t| (3.31)

subject to eqs. (2.1), (2.2), (3.1)–(3.4), (3.6), (3.8), (3.14)–(3.17) and (3.19)–(3.22)
These two objective function variations can be used to determine the size and placement

of battery storage devices coupled with installed PV systems for specific end-use scenarios.
This algorithm does not consider constraints to exclude very small battery systems. Therefore,
it is incapable of minimizing the number of nodes that battery systems are installed at. As
a result, the algorithm often sizes battery systems for every node. In some cases, it can be
desirable by the DSO to consider a limited number of battery systems or a battery system size
minimum. If a minimum battery size was introduced into the problem, it would introduce a
binary constraint making the problem NP-Hard. Therefore, to remove these small infeasible
systems sizes, an iterative approach can be used. At a first stage, nodes with the larger battery
sizes are identified with the initial sizing and placement algorithm. Then, final sizing can be
performed with added constraints eqs. (3.32) and (3.33) as a second iteration.

socnomst,j,d = 0 for J −Kst (3.32)
Pnomst,j,d = 0 for J −Kst (3.33)

The criteria for choosing final node placement can be determined by choosing a maximum
number of battery systems or an acceptable maximum and minimum size of battery systems.
For sizing based on a maximum number of systems, Kst in eq. (3.33) represents the number
of nodes n with the n largest values for the nominal capacity and power. For sizing based on
an acceptable maximum and minimum size, Kst represents the nodes with nominal power and
capacity values within these bounds.

3.4.3 Results

Case Study

The example grid used for this study is a medium voltage distribution grid published in [90].
This grid is composed of 69 nodes with a nominal voltage of 12.66 kV and is assumed to be
located in Nice, France. A map of the grid topology can be found in Fig. 3.3.

Generation and Load Profiles

Electric load profiles were simulated using a load simulator as described in [91] for each low
voltage substation load profile. Residential and commercial load profiles are simulated with
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Figure 3.3: Grid topology including low voltage substation (C) and PV system placement (PV)

statistically accurate representations of surface area, electric heating and number of individuals
that align with the INSEE household inventory database of France. The location of each load
node was chosen randomly due to the fact that no grid load data was available. The medium
voltage feeder is assumed to be a 10 MVA transformer serving 21 low voltage substations. Load
profiles aligning with meteorological data in Nice, France indicated a peak load of 4.7 MW during
the summer and 5.9 MW during the winter with an average load of respectively 2.1 MW and
2.6 MW. Solar radiation data was simulated for Nice, France for the year 2012 by analyzing the
global irradiation collected by HelioClim 3 [92]. The PV system production was calculated based
on a statistical distribution of direct and diffuse irradiation [93]. This data is then integrated
into a projection model to calculate the percentage of direct and diffuse irradiation exposed to
the panels [94]. A system performance coefficient is then calculated based on the atmospheric
conditions extrapolated from a performance data base of PV systems in the south of France.

An amount of 10 PV systems were randomly assigned to 10 nodes. The size of these systems
was also chosen randomly to be between 125 - 1250 kW. Characteristics of the electric load
profile nodes can be found in Fig. 3.4 and PV size information can be found in Fig. 3.5.

Economic analysis

In order to analyze the economic viability of battery systems, market price variation and battery
system costs were taken into account. Historical variable hourly pricing market data from France
was used for 2012.

The capital cost of batteries for nominal capacity and power is determined by analyzing
the study [41]. The nine case studies on high performance lead acid battery for transmission
and distribution applications were analyzed to calculate the battery investment cost per MWh.
Battery costs ranged from 500 ke/MWh to 2.5 Me/MWh. To integrate these costs into the
daily analysis, the investment costs per MWh are divided by the lifetime of the system. For all
economic analysis, the battery life is assumed to be 10 years as assumed also in [40]. Therefore,
the "daily" investment costs ranged from 137.6 e/MWh-day to 678.6 e/MWh-day. Due to the
large range of battery investment costs, a sensitivity analysis was completed to determine the
price of batteries that is economically viable. In [40], operations and maintenance prices of the
battery systems are given to be between 2-6 cents per kWh. For this study this cost is selected
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Figure 3.4: Load characteristics for all loaded nodes

Figure 3.5: PV nominal power ratings for each PV node
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Figure 3.6: Total aggregated nominal capacity and power optimal system size as a function of
battery costs

to be 2 cents/kWh.

Results

The two objective functions presented in eqs. (3.25) and (3.30) were analyzed to determine eco-
nomically viable battery placement and sizing. In all considered scenarios, eq. (3.25) showed that
battery investments were not economically viable for only loss minimization with the considered
PV penetration and load profiles. A sensitivity analysis of the battery costs was performed with
objective function eq. (3.30) to analyze the economic viability of storage systems used for loss
minimization in addition to market participation. Results of the nominal power and capacity
specifications calculated for each node using objective function eq. (3.30) can be found in Fig.
3.6.

This sensitivity analysis compares the sum of total nominal power and capacity for a feeder
in relation to different investment costs. These total nominal capacity and power values are a
sum of the individual nominal capacity and power values for each node. The price of batteries
calculated by this study to be economically viable are lower than the battery costs found in [41].
For example, a battery with a capacity of 2 MWh and a nominal power rating of 1 MW cost on
average 2.238 Me according to the study [41]. In the sensitivity analysis, if the investment costs
of the battery are 85 e/MWh-day, the total ideal nominal capacity and power for the feeder is
1 MWh and 0.6 MW. This per day investment cost can be translated into an initial investment
cost by taking into account a life time of 10 years. The calculated initial investment cost of
this system is therefore 310.25 ke. This implies that, for this battery to be economically viable,
capital costs must be 7.2 times cheaper than the battery costs published in [41].

For the specific example of a battery investment price of 85 e/MWh-day, a sensitivity analysis
was performed comparing the PV penetration and associated battery size. This comparison is
found in Fig. 3.7

This sensitivity analysis shows a high correlation between optimally sized battery systems
and PV system size. Therefore, grid connected battery systems become exponentially more
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Figure 3.7: Sensitivity analysis of PV penetration in relation to optimal aggregated nominal
power and capacity battery size for an investment cost of 85 e/MWh-day

economical with high penetration of DER.
A comparison of centralized and decentralized optimally placed capacity is shown in Fig.

3.8. The centralized storage nodes are considered to be any node on the main branch of the grid
topology tree. The list of centralized nodes for this network are therefore 0, 1, 2, 3, 4, 5 and 6.
All other nodes are considered to be decentralized placement nodes for storage devices.

As seen from this analysis, decentralized battery systems are prioritized for lower battery
investment costs while centralized system sizes are mostly stable over all investment costs. De-
centralized battery systems are prioritized when battery costs are low and overall total capacity
and power installed is higher. When total capacity and power installed is smaller, the ratio of
decentralized to centralized systems is also much smaller.

The partitioning of total nominal battery capacity and power as a function of battery in-
vestment cost is found in Fig. 3.9 and Fig. 3.10 to demonstrate the repartitioning of battery
capacity and power.

As seen in Fig. 3.9 and Fig. 3.10, certain decentralized nodes including, for example, node
25, 34, 65 and 66, are prioritized for storage placement. These four nodes give three different
examples of when storage is advantageous. Node 25 is a priority due to the high nominal PV
power installed at node 24 and also due to the fact that this system is at the end of the electric
feeder. For the case of node 34, high nominal PV power at node 35 combined with high loading
at node 34 makes this node a priority. Nodes 65 and 66 are two nodes relatively close to each
other. Node 66 has a high load and node 65 has a large PV system. The algorithm assigned
capacity to both nodes, however in all cases a larger capacity is assigned to node 65 than 66
prioritizing a placement closer to the PV system installation rather than the node with a high
load.

A closer look is taken into the case study with a battery cost of 85 e/MWh-day. The
individual calculated sizes of battery systems for each node can be found in Fig. 3.11.

In Fig. 3.11 a nominal power and capacity value of storage devices is assigned to every node.
This is due to the fact that many small systems allow to reduce losses. The size of the battery
systems exponentially decreases when the nodes are ranked by size. This shows that certain
nodes are high priority but having a storage at all nodes is ideal.

The objective function does not penalize small battery systems, therefore the infeasible small
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Figure 3.8: Comparison of centralized and decentralized nominal power (P) and capacity (C)
optimal system size as a function of battery costs

Figure 3.9: Calculated nominal power of battery systems for each node with battery prices
varying from 55 e/MWh-day to 95 e/MWh-day

Figure 3.10: Calculated nominal capacity of battery systems for each node with battery prices
varying from 55 e/MWh-day to 95 e/MWh-day
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Figure 3.11: Calculated size of battery sizes for battery prices of 85 e/MWh-day

Figure 3.12: Final size of selected nodes with a battery cost of 85 e/MWh-day

battery systems must be eliminated through an iterative qualitative analysis. The final optimal
placement and sizing of battery systems can be calculated by limiting the possible nodes where
battery systems can be placed. This selection is performed based on the initial sizing and
placement analysis. For the case defined by 85 e/MWh-day, the total number of systems
installed was fixed to be 10. Therefore, a final analysis is performed by using eq. (3.33) and
setting the set Kst as seen in eq. (3.34). The final resulting ideal sizing is found in Fig. 3.12.

Kst = 4, 34, 48, 35, 36, 32, 47, 25, 24, 65 (3.34)

After fixing the maximum number of battery systems to be 10, a similar total nominal power
and capacity is sized by the algorithm. Due to limited number of nodes for the repartition, the
size of each system is therefore significantly larger than when all nodes are considered. Annual
analysis results are then calculated by fixing the upper bounds of the nominal power and capacity
of each battery system based on the values graphed in Fig. 3.12. The annual statistics of feeder
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Table 3.2: Operation of electrical feeder with and without battery integration. Annual analysis
for the case of 85 e/MWh-day

Characteristic With battery Without battery
Total Cost of Energy Imports (thousand e) 467 489

Total Benefit from Energy Exports (thousand e) 1.64 2.13
PV Benefits (thousand e) 334 314
PV Curtailement (MWh) 1.05 1.39

Nominal PV Power Installed (MW) 5.53 5.53
Nominal Batt Power Installed (MW) 0.74 0.0

Nominal Batt Capacity Installed (MWh) 1.55 0.0

Table 3.3: Calculation time for daily and annual analysis

Algorithm Simulated time steps Calculation time (s)
multi-temporal SOCP OPF 24 2.7
multi-temporal SOCP OPF 24x365 2700

operation with and without battery systems, is shown in Table 3.2.
The operation of the above feeder is affected by the presence of optimally placed and sized

battery systems that allow for load shifting through pricing signals. The sum of imports and
exports at the substation is therefore decreased. The first line in Table 3.2 shows that the
optimized battery systems succeed to decrease the cost of imported energy. The level of exported
energy shown in line two remains low due to the objective function that minimizes the absolute
energy flow at the substation. Line four shows a reduction in PV curtailment due to added
battery systems therefore increasing PV benefits as shown in line three.

Algorithmic Performance

The algorithmic performance of the simulation of a single time step and the full annual analysis
is shown in Table 3.3.

The iterative approach to calculate Pnomst,j,d and Nnom
st,j,d increases the daily analysis calculation

time linearly depending on the number of iterations needed for convergence. The calculation
times showed in 3.3 are therefore averages of all analysis performed.

3.4.4 Discussion

This algorithm is capable of calculating the placement and sizing of storage devices in a dis-
tribution grid. The optimal battery size is highly sensitive to the investment cost as shown in
Fig. 3.7. In the context of a project, the capital investment of the project may be lower than
the ideal size of storage capacity and power. If an investment constraint exists, an investment
constraint can be integrated into the optimization problem as seen in eq. (3.35).
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minv
st

J∑
j=0

socnomst,j,d ≤ minv (3.35)

This algorithm does not consider the planning of active demand as an alternative solution
to electrochemical storage. While the algorithmic structure is very similar to modeling electro-
chemical storage elements, the calculation of the cost of demand side management is difficult.
The costs are non-linear, client-dependent and data sets quantifying these costs are rare. Other
possible solutions that were not explored include infrastructure upgrades.

A challenge identified was the capability to integrate non-linear cost functions with respect
to the nominal power and capacity of batteries. Another interesting improvement to the cost
function could include the integration of variable battery technologies and the associated variable
cost parameters. Future work can be done to integrate these non-linear characteristics into the
SOCP convex relaxation algorithm.

3.5 Conclusion
This chapter has presented two different multi-temporal OPF algorithms used for hosting capac-
ity analysis and optimal placement and sizing of storage systems. A multi-temporal analysis is
necessary to analyze the added benefits of storage in a smart grid setting coupled with high DER
penetration. These storage devices can reduce annual operational costs and increase the hosting
capacity of a network. However, the economic benefits of storage devices must be compared to
their investment costs during the planning process.

An algorithm is proposed that simultaneously sizes and places battery systems that can be
effectively used to analyze the economic viability of operational case studies in comparison to
investment and operational costs. The advantages of this algorithm in relation to the literature
include:

· A high performance algorithm for solving an annual sizing and placement problem through
decomposition into daily analysis

· A methodology to integrate operational case studies of battery management strategies into
the planning phase of active distribution grids

· A qualitative study of battery investment costs and their operational benefits to make invest-
ment decisions about grid connected storage

· A demonstration of the increasing benefit of grid connected storage in the presence of high
DER penetration

This type of innovative algorithm gives insights into the advantages of grid connected storage
devices in distribution systems and the integration of operational strategies into the planning
phase.

Another important aspect of the distribution grid is the consideration of uncertainties. While
deterministic planning tools can be effective for certain applications, uncertainties in decentral-
ized production and load must be taken into account, especially for operational strategies. OPF
algorithms for distribution grids are already non-convex and high-dimensional. Integrating more
variables into the problem to account for uncertainties is a complex task and will be addressed
in the next chapter.



Chapter 4

OPF analysis considering
uncertainties

Résumé

Les incertitudes de la génération et des charges distribuées sont assez élevées dans un réseau
de distribution en comparaison avec un réseau de transport. Les incertitudes dans la gestion
journalière peuvent avoir un effet significatif sur les coûts de gestion. Il en résulte que la flexibilité
de la charge et de la génération pourrait être prise en compte pour mieux optimiser les coûts
de gestion et reporter les investissements des infrastructures. Une planification robuste des
flexibilités à J-1 peut aider à améliorer la gestion du jour J. Planifier les flexibilités d’une
manière robuste signifie de prendre en compte des variables incertaines telles que les conditions
météorologiques ou les profils de charge. Les techniques existantes de prévisions peuvent être
utilisées pour intégrer ces incertitudes dans un problème OPF et ainsi calculer la planification de
la flexibilité optimale sous certaines contraintes, et réaliser des analyses stochastiques OPF. Ce
chapitre se divise en deux sections principales. Premièrement, une introduction et présentation
des challenges d’une OPF stochastique algorithmique est réalisée. Cette section aborde les
difficultés associées avec la génération de scénarios et l’intégration dans une OPF. Différentes
possibilité pour la modélisation de la flexibilité sont également présentées. Une présentation
plus approfondie des contraintes de confort en lien avec les algorithmes utilisés par la gestion
de la demande est également détaillée. Deuxièmement, une méthodologie intégrant avec succès
les incertitudes dans un algorithme de planification à J-1 pour les composants de stockage et la
gestion de la demande. Cet algorithme utilise deux méthodes pour la génération de scénarios
et les compare. Un cas d’étude présente une analyse des bénéfices en terme de coûts de la
gestion de la demande et la prise en compte des contraintes de confort. Une étude comparative
entre une stratégie stochastique et une déterministe est également présentée. La planification
stochastique des flexibilités au travers d’un outil de stochastique OPF amène des coûts annuel
de gestion inférieurs dans tous les cas. Les contraintes de confort des clients finaux montrent
également un impact économique sur les coûts annuels de gestion. Une comparaison entre les
violations des contraintes de confort et les coûts annuels de gestion est réalisée montrant une
augmentation des coût pour des violations des contraintes de confort réduites.

67
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4.1 Summary

Uncertainties of distributed generation and load are relatively high in the distribution grid in
comparison to transmission grids. Uncertainties in daily operation can have significant effects on
the operational costs of distribution grids. Therefore, flexibility of load and generation should
be considered to better optimize operational costs and defer infrastructure investments. Day-
ahead robust scheduling of these flexibilities can help improve day-of operations. Scheduling
flexibilities in a robust manner implies taking into account uncertain variables such as meteoro-
logical conditions or load profiles. Existing forecasting techniques can be used to integrate these
uncertainties into the OPF problem and therefore calculate optimal flexibility scheduling under
uncertain conditions, therefore performing stochastic OPF analysis. This chapter is presented
in two main sections. First, an introduction and discussion of stochastic OPF algorithmic chal-
lenges is completed. This section discusses the difficulties associated with scenario generation
and integration into an OPF. Different possibilities for flexibility modeling are also presented.
A more in depth discussion about comfort constraints in the context of algorithms that manage
DSM is also detailed. Second, a methodology is presented that successfully integrates uncertain-
ties into a day-ahead scheduling algorithm for storage devices and DSM. This algorithm uses two
methods for scenario generation and compares the two. A case study is presented demonstrating
the a cost-benefit analysis of DSM and the consideration of comfort constraints. A comparative
study between stochastic and deterministic strategies is also presented. The stochastic schedul-
ing of flexibilities through OPF simulation tools results in lower annual operational costs in all
cases. Comfort constraints of end users are also shown to have economic impacts on annual
operational costs. A comparison of comfort constraint violations and annual operational costs
is completed showing increased costs for reduced comfort constraint violations.

4.2 Introduction

At the distribution grid level, uncertainties of load and renewable energy generation represent a
challenge for the DSO. On the load side, aggregation effects of higher voltage grids are no longer
applicable for distribution grids. These aggregation effects tend to smooth out the variability and
uncertainty of the total load on an electrical network. Due to a relatively lower load and voltage,
the variation of commercial and residential load profiles can have a more significant impact on
voltage profiles and congestion problems. On the decentralized generation side, a majority
of DER such as solar panels are connected to the distribution grid. The electric production
of DER is variable and uncertain due to their dependence on meteorological conditions. The
combination of generation and load uncertainties introduce new challenges for DSO to maintain
power quality in distribution grids as discussed in section 1.5. In the context of smart grids,
these uncertainties are critical when scheduling DER such as grid connected storage, controllable
loads or PV curtailment.

While short term uncertainties have created challenges for daily operations, more long term
uncertainties also exist in relation to increasing load and decentralized generation. The uncer-
tain evolution of load in combination with an uncertain evolution of DER is challenging for
the planning of future operational strategies. Therefore, it is important to integrate into the
planning phase innovative operational strategies that mitigate these challenges. Current plan-
ning strategies that propose grid reinforcements primarily based on a worst-case operational
scenario are expensive and conservative. In the context of increasing load and DER, the worst-
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case scenario becomes very expensive. New planning and operational strategies that take into
account uncertainties without oversizing electrical systems are necessary. These planning and
operational strategies are primarily based on leveraging the flexibilities of distribution grids.

Flexibilities in distribution grids such as generator curtailment, demand side management
or storage can help smooth out the volatility of load and generation profiles. These flexibilities
can be harnessed to ensure a stable and reliable operation of the distribution grid and optimize
economic exploitation [95] [84]. Possible controllable loads include residential hot water heaters
or HVAC systems. In particular, the control of individual loads, e.g. HVAC systems [96], brings
new sources of uncertainty to the day-ahead planning but also new added flexibility. These
added uncertainties include ambient temperature, building occupation, and variations in the
consumption habits. However, these appliances used for DSM can be seen as a type of thermal
storage and therefore can be controlled without affecting end-user comfort.

DSM has proven to be a valuable resource to compensate the variability of the renewable
sources, especially through the control of thermal loads such as HVAC and EWH. As shown in
[28], load control can significantly reduce microgrid operation costs as well as C02 emissions.
While DSM can add significant flexibility to a distribution grid, the thermal comfort constraints
of end-users must be maintained. The scheduling of these flexibilities should therefore take into
account uncertainties to allow for the robust optimization of operational costs while satisfying
end-user comfort constraints. Effectively taking into account uncertainties of next day operations
requires sophisticated forecasting methods.

Sophisticated forecasting is essential for robust scheduling of controllable devices. The im-
portance of forecasting strategies for power systems applications is extensively discussed in [97].
While multiple forecasting strategies exist in the literature, the appropriate forecasting strategy
must be selected for each application. In this thesis, forecasts will be used as inputs into an OPF
algorithm. This specific use of forecasts is unique because only certain forecasts that influence
the limits of the problem or change the value of the objective function will affect the optimization
results. Due to the fact that an OPF problem is already high-dimensional, scenario selection is
important to minimize the number of scenarios considered therefore keeping the problem size
manageable. Only scenarios that influence the problem should be included.

This chapter will explore the advantages of considering uncertainties in a day-ahead flexibility
scheduling algorithm. Two new major topics will be presented in this chapter, the consideration
of uncertainties and the added benefit of DSM. The integration of uncertainties into an OPF
includes deciding the way uncertainties are represented in the problem and the type of forecasting
that is used to calculate the uncertainties. The second topic of DSM implies deciding which types
of components are controllable and which constraints will be considered for the flexible loads.
These topics will be discussed in further detail in this chapter.

4.3 Stochastic OPF for day-ahead scheduling

Optimization algorithms can be found in the literature to solve the problem of day-ahead schedul-
ing of dispatchable resources. Numerous examples of deterministic [26] [27], stochastic [98] [29]
and hybrid [28] [30] approaches to optimal scheduling used in the presence of DER and control-
lable load are presented in the literature. Optimization methods include quadratic programming
QP [58] as well as heuristic and meta-heuristic techniques [26] [99]. In the optimal scheduling of
DER in multi-node distribution grids, heuristics have the advantage of enabling exact network
constraints [26], while QP requires a convex relaxation of the power flow equations [30]. Due
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Figure 4.1: Scenario tree with "trunk" period between 0-5 and the branch region between 6-12

to the random aspect of search techniques in heuristic methods, calculation time can be high
and the global optimal is not guaranteed. However, QP methods perform significantly better in
terms of computational time. Thus, when combined with techniques that guarantee accuracy of
the power flow calculations, e.g. linear cuts [57], they become a better solution.

Stochastic approaches have been used in OPF algorithms to represent uncertainties of load
and generation profiles. Primarily, these strategies include either scenario trees [100] [29] or
statistical parameters of the stochastic variables [101] [102] [103] that are integrated into the
optimization problem. The scenario tree approach allows for the representation of a temporal
evolution of each stochastic variable. This temporal dependency is important when considering
flexibilities that are temporally constrained such as storage devices. The generation of scenarios
for optimization algorithm purposes have been explored in [29] [104] [105]. The first method
presents probabilistic forecasts that are directly used as scenarios within the optimization prob-
lem [29]. The method described in [105] is a more sophisticated technique developed for wind
generation scenarios that uses a zero-mean multivariate normal distribution function and a his-
torical covariance matrix to preserve realistic temporal dependencies of each scenario. A more
recent paper [104] applied the method developed in [105] to wind generation and load scenarios
by generating 500 scenarios for each variable and reducing the scenarios by using probabilistic
distance and a fast forward selection algorithm. Besides the probabilistic forecasting technique
originally developed for wind scenarios, few other techniques exist specifically applied to PV,
load and temperature scenarios.

4.3.1 Scenario representation in an OPF

The integration of scenarios in an OPF algorithm can be completed in different ways. Three
different methods were implemented in the frame of this thesis. The difference for each technique
implies a different organization of the OPF linear constraint matrix. The technique of integrating
a scenario tree into the linear constraint matrix is classified as a probabilistic analytical approach
named scenario-based decision making, for taking into account uncertainties in power systems
as classified in [106].

The first method includes a scenario tree structure composed of a "trunk" and "branches".
This scenario tree implies certain number of time steps where the controllable variable is forced
to have the same value across all scenarios for the time steps included in the "trunk". The second
period allows the controllable variables to assume multiple values for each "branch". A diagram
of an example scenario tree can be found in Fig. 4.1.

A second strategy has only one time step for the "trunk", therefore allowing the controllable
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Figure 4.2: Scenario tree with "trunk" period for time step 0 and the branch region between
1-12

Figure 4.3: Sliding scenario tree formation to solve optimal scheduling problem

variables to vary for almost all the time steps except for the first one. This scenario tree structure
is seen in Fig. 4.2.

The third strategy has only a "trunk" for all time steps. This means that all controllable
variables for each time step for all scenarios must be equal. This forces the controllable variables
for each time step to satisfy all constraints of all scenarios for each time step.

If the first or second strategy is chosen, a sliding optimization is necessary to successfully
calculate the optimal schedule for a period longer than the "trunk" period. This sliding technique
solves the optimal schedule of the "trunk" based on the varying profiles in each branch. A new
tree is then defined for the next period with the set points of the first optimization as an input.
A diagram of this sliding optimization technique is shown for the first strategy presented in this
section in Fig. 4.3.

The first and second technique allow for controllable variables to have different behavior
based on varying scenarios. However, instead of solving one optimization problem, four opti-
mization problems are resolved consecutively as shown in Fig. 4.3. This sliding optimization
technique can increase calculation time.

The last strategy forces the control variables to satisfy all of the constraints of each scenario
with one single value. This strategy can result in feasibility problems depending on the distance
between the scenarios. However, this strategy only requires the resolution of one optimization
problem therefore lowering the calculation time.
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4.3.2 Scenario generation techniques

The multi-period scenarios described in section 4.3.1 can be generated in various ways. Two
scenario generation techniques were implemented in the frame of this thesis to evaluate the
effectiveness of the stochastic OPF algorithm. The first technique uses directly probabilistic
forecasts for all uncertain variables. Two probabilistic quantiles were chosen for each variable
representing a high-end and low-end estimation. These two quantiles were chosen to be 25%
and 75%. These two scenarios for each stochastic variable were then considered to be equally
probable and were combined in all possible combinations.

The second scenario generation technique implemented a more sophisticated strategy to ac-
quire more realistic scenarios. The scenarios generated for each stochastic variable are calculated
with a probabilistic scenario generation technique as described in [105] [104]. The UL, temper-
ature and EWH scenarios were generated directly by using a three-month historical period to
calculate the quantiles and the covariance matrix to generate normal Gaussian scenarios.

The PV production profile has a very strong correlation associated with the irradiation.
Therefore, the method presented in [105] is less effective. The strong correlation with irradia-
tion may dilute the other causes of variation in PV production such as cloud cover. The PV
production profiles were therefore normalized by the clear sky index before applying the scenario
generation strategy of [105]. This allows for a more precise analysis of inter temporal variation
due to cloud cover that are not correlated with irradiation.

Using this strategy, 50 scenarios were generated for each stochastic variable. Of these 50
scenarios, three scenarios were selected based on the total cumulative values of the day. There-
fore, for temperature, EWH, UL and PV, the units of the cumulative values are degree-hour,
liters of hot water, MWh and MWh respectively. The three scenarios are chosen by selecting
the maximum, minimum and closest to average value of the cumulative values. The scenarios
associated with the minimum, maximum and average cumulative values are then used as inputs
for the stochastic OPF analysis.

4.3.3 Demand side management of thermal loads

Demand side management is a complicated flexibility to consider due to the fact that end-user
comfort may be affected by the DSO management strategy. Whenever considering demand side
management in an optimization model, it is important to consider the financial consequences in
comparison to client satisfaction. Two primary modeling strategies are presented in the literature
for DSM consideration: an aggregated model or individual modeling of devices. Aggregated
models make acceptable assumptions about individual devices [100] and they improve aggregated
controllability of a distribution grid, but the comfort of individual end-users is not modeled in
detail. Thus, individual load models become more appropriate for small scale applications
(e.g. buildings) where a detailed comfort representation is required. In [30], individual load
models are used in optimization of building operations with DR. A deterministic approach that
considers end-user comfort constraints and PV for a three building micro-grid is detailed in [27].
An algorithm proposing an economic penalty for violations in thermal comfort constraints is
presented in [29]. It is important when considering DSM, to consider the effects on end-users
to properly quantify this flexibility. Therefore, end-user comfort constraints should be explicitly
considered in the stochastic OPF problem formulation.

Thermal comfort constraints can be considered as a hard optimization constraint or can
be included in the objective function as a cost penalty. Hard optimization constraints can
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create more infeasible situations in the optimization simulations. Integrating soft constraints
for comfort constraint violations allows for more flexibility in the thermal loads. However, the
appropriate price must be associated with these comfort violations. Associating a low cost to
comfort violations will result in the preference of under-heating of the houses to reduce total
operational costs.

4.4 Proposed stochastic optimal power flow method
This section presents an example algorithm and case study that uses stochastic modeling tech-
niques and considerations as described in section 4.3. The example algorithm and case study
demonstrate results that allow for discussion about the above modeling strategy possibilities.
The algorithm presented is a method for day-ahead scheduling of DER. The algorithm uses
the SOCP convex relaxation of the power flow equations to guarantee an optimal solution and
ensure a low calculation burden as mentioned in [57]. During periods of high DER injection,
this relaxation can be inexact, therefore, linear cuts are added to the problem to guarantee
exactness. The flexibilities considered include electrochemical storage and thermal loads, such
as electric heating or cooling loads and EWH. Individual device models are considered in the
scheduling task as seen in [30]. The constraints on the DSM devices are therefore thermal com-
fort constraints of end-users as described in [107]. The integration of comfort constraints into
an optimization algorithm has been completed in a paper found in the literature [29]. However,
this paper does not consider constraints on the network which is critical in a distribution grid
context.

The proposed formulation is based on an interdisciplinary perspective and it merges con-
tributions from three different areas of power systems optimization with primary contributions
being:

· a multi-period SOCP adapted to consider uncertainties through scenarios of generation and
load

· the optimal day-ahead scheduling of distribution grid flexibilities, considering grid constraints,
end-user comfort constraints, and the multi-temporal dispatch of different DER technolo-
gies

· the behind-the-meter individual loads devices modeling and scheduling for optimal DR strate-
gies, constrained by the comfort of end-users, and integrated with the distribution grid
stochastic dispatch

By combining these contributions in a single stochastic OPF, the methodology aims to pro-
vide a valuable discussion on the implications of generation and load uncertainties for distribution
grid control and the resulting effects on end-user comfort while considering DSM.

4.4.1 Method overview

The stochastic formulation presented takes into account uncertainties in PV generation, uncon-
trollable load, temperature and hot water consumption habits of the end-users. High and low
scenarios for each variable are selected through a scenario reduction strategy and are consid-
ered to be equiprobable. Combinations of these variables’ scenarios therefore create scenario
constraints that are included in the stochastic optimization problem. The methodology is rep-
resented as a flow chart in Fig. 4.4.
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Figure 4.4: Flow chart of proposed methodology to take into account uncertainties in day-ahead
operational scheduling of flexibilities

4.4.2 Formulation

The proposed formulation eqs. (4.1) and (4.3)–(4.21) is a multi period (t) multi-scenario (γ)
optimal power flow that aims at reducing operational costs through robust scheduling of batteries
(Pst,j,t) and controllable thermal loads, EWH (Pewh,j,t) and AC (Pac,j,t), located at the nodes
(j) of the distribution grid.

Objective function

Two objective functions are presented in this section. One which optimizes the cost of operation
of a grid and the second which optimizes the cost of operation plus the cost penalties associated
with comfort constraint violations. The operation cost function eq. (4.1) considers different
costs for energy imports and exports, following the current regulatory mechanisms adopted
by several European countries to promote self-consumption. Hence, the energy exports at the
point of common coupling are remunerated at wholesale electricity market price, while the energy
consumption costs are charged at the final electricity price. The hourly electricity market price
includes fixed rates added to the wholesale electricity price due to transmission distribution cost.
The first objective function presented therefore implies strict thermal comfort constraints. This
means that eqs. (4.21)–(4.23) ΘHac,d,t and ΘLac,d,t are forced to be zero. The objective only
considering minimization of operational costs is found in eq. (4.1).

min.
Γ∑
γ=0

T∑
t=0

[medc,tP+,γ,tt+mec,tP−,γ,tt] (4.1)

The second possible objective function includes cost penalties for comfort constraint vio-
lations. If this objective is used, the temperature constraints described in eqs. (4.21)–(4.23)
are relaxed to include a wider range of temperatures but cost penalties are associated with
temperatures outside of the desired range.
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min.
Γ∑
γ=0

T∑
t=0

[
medc,tP+,γ,tt+mec,tP−,γ,tt+

D∑
d=0

mcf (∆Θlow,d,γ,t + ∆Θhigh,d,γ,t)
]

(4.2)

The necessity of introducing cost penalties for comfort constraint violations stems from
possible feasibility problems in the thermal models. If infeasibility is a problem, a relaxation of
the thermal constraints and introduced cost penalty can resolve these infeasibilities.

Power flow constraints

The constraints of the problem include the nodal power balance considering different DER tech-
nologies eqs. (4.3)–(4.6). The eq. (4.7) describes the convex relaxations of the line constraints.
The result of each OPF calculation for each time step is compared to a forward backward
sweep power flow calculation to verify that the convex relaxation of the line constraint equation
eq. (4.7) is exact. If the solution is not exact, linear cuts are added to the problem to guarantee
exactness as explained in [57].

Pij,γ,t = Pul,j,γ,t + Pcl,j,t +
K∑
k=0

Pjk,γ,t + rij`ij,γ,t + Ppv,j,γ,t + Pst,j,t (4.3)

Qij,γ,t = Qul,j,γ,t +
K∑
k=0

Qjk,γ,t + xij`ij,γ,t +Qpv,j,γ,t (4.4)

υj,γ,t = υi,γ,t − 2(rijPij,γ,t + xijQij,γ,t) + (r2
ij + x2

ij)`ij,γ,t (4.5)

V 2 ≤ υj,γ,t ≤ V
2 (4.6)

`ij,t ≥
P 2
ij,γ,t +Q2

ij,γ,t

υi,γ,t
(4.7)

Battery system constraints

The eqs. (4.8)–(4.12) represent the battery limits regarding power and state of charge. This
includes the definition of power injection limits, charging and discharging variables for the bat-
tery systems in eqs. (4.8)–(4.10). The state of charge calculation and limits are also defined in
eqs. (4.11) and (4.12). The battery power and state of charge are not scenario dependent as
explained in section 4.3.1.

Pst,j = Pst+,j,t + Pst−,j,t (4.8)
0 ≤ Pst+,j,t ≤ P st,j (4.9)
− P st,j ≤ Pst−,j,t ≤ 0 (4.10)
socst,j ≤ socst,j,t ≤ socst,j (4.11)

socst,j,t−1 = socst,j,t + tηstPst+,j,t + t
1
ηst
Pst−,j,t (4.12)
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Thermal comfort constraints

The thermal comfort constraints associated with the individual HVAC and EWH controllable
devices are shown in eqs. (4.13)–(4.23). These are the first order physically-based load modes –
considering the thermal capacity (C), resistance (R), and heat loss constant (α) - to describe the
temperature behavior of thermal systems. The full matrix representation of the multi-period
power/thermal conversion in a form Ax<>b is presented in [107]. The division of over and
under heating is shown in eqs. (4.21)–(4.23) which allows for a piecewise linear penalty function
of thermal constraint violations in the objective function. Costs are associated with both under
and over heating in the HVAC systems. The penalization was used only for HVAC systems
and not for EWH systems due to the fact that HVAC thermal constraint violations are more
common than EWH violations.

Pcl,j,t =
J∑
j=0

Phvac,j,t +
J∑
j=0

Pewh,j,t (4.13)

D∑
d=0

Pewh,d,t = Pewh,j,t (4.14)

0 ≤ Pewh,d,t ≤ P ewh,d (4.15)
Θwtr ≤ Θewh,d,γ,t ≤ Θwtr (4.16)

Θewh,d,γ,t = Θewh,d,γ,t−1 + t

Cd
×

[−αd (Θewh,d,γ,t−1 −Θint,d)− ϑd,tCwtr (Θd −Θi) + Pewh,d,t]
(4.17)

D∑
d=0

Phvac,j,t,d = Phvac,j,t (4.18)

0 ≤ Phvac,j,t,d ≤ P hvac,j,d (4.19)

Θhvac,d,γ,t = Θhvac,d,γ,t−1 −
t

CdRd
[Θhvac,d,γ,t−1 −Θext,γ,t + ηdRdPhvac,d,t] (4.20)

Θhvac,d −∆Θlow ≤ Θhvac,d,γ,t ≤ Θhvac,d + ∆Θhigh (4.21)
Θhvac,d −Θhvac,d,γ,t = ∆Θlow,d,γ,t (4.22)
Θhvac,d,γ,t −Θhvac,d = ∆Θhigh,d,γ,t (4.23)

(4.24)

These thermal equations are implemented for each individual device. This allows for a
detailed modeling of DSM and the calculation of an optimal schedule for each device.

Stochastic variables

Controllable variables include the active power of EWH for residential clients and HVAC thermal
loads for commercial clients (Pewh,j,t,h and Pac,j,t,h) and the active power of battery systems
(Pst,j,t). A part of the load is considered to be uncontrollable (Pul,j,t). A table summarizing the
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Table 4.1: Control variables, scenario dependent variables and stochastic variables

controllable variables, stochastic variables and scenario dependent variables is found in Table
4.1.

The scenario structure used in this algorithm is the third scenario structure technique de-
scribed in section 4.3.1. This scenario structure forces the controllable variables to satisfy all the
constraints of each scenario while minimizing the cost of imports and exports at the substation.
In the deterministic case, only the constraints of one scenario apply to the controllable variables.

4.4.3 Performance evaluation of deterministic vs stochastic strategy

The effectiveness of the stochastic method is evaluated through two measures as done in [108].
The two measures include the expected value of perfect information (EVPI) and the value of the
stochastic solution (VSS). EVPI is the difference between the cost of the stochastic approach and
the perfect forecast. VSS is the difference between the deterministic strategy and the stochastic
strategy. The stochastic strategy uses high and low scenarios while the deterministic strategy
uses average scenarios. The average scenarios rely on one scenario that combines the average
conditions of all uncertain variables. The scheduled set points for EWH, HVAC and battery
power are implemented with no intra-day adjustments for the real conditions. The thermal
equations are used to simulate the evolution of temperatures in the buildings and in the hot
water tanks. Energy costs, grid constraint violations and thermal comfort profiles are then
analyzed to assess the comfort of end-users in comparison with the economic performance of the
optimization strategies.

4.5 Case study
In this section, the proposed methodology presented in section 4.4 is applied to a medium
voltage IEEE 37 node network (4.8 kV) assumed to be located in Grenoble, France. A map of
the grid topology can be found in Fig. 4.5.

4.5.1 Generation and Load Data

Load profiles including EWH, HVAC and uncontrollable load profiles are simulated using a
bottom up load simulator detailed in [91]. The load profile simulator produces a group of indi-
vidual commercial and residential building load profiles. The group of load profiles are simulated
to be statistically accurate representations of residential and commercial customer proportion,
electric heating, living surface area and population using the INSEE building inventory database
of France. The location of each load profile was determined randomly due to the fact that no
grid load data was available. The medium voltage feeder is assumed to have a 5 MVA trans-
former serving 5 low voltage substations for a total of 312 clients, 300 residential clients and
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Figure 4.5: Medium voltage IEEE 37 node case study feeder. C indicates a node with load, PV
+ B indicates nodes with PV and batteries

12 commercial clients. Of the 300 residential clients, 53 residential hot water heaters are con-
trollable. It was assumed that only commercial clients’ HVAC systems could be controlled and
therefore all of the 12 commercial clients heating and air conditioning devices were assumed to
be controllable. A total of 1.2 MW uncontrollable load, 155 kW of controllable EWH and 308
kW of controllable HVAC are therefore considered.

PV production curves were based on the normalized real production of a PV plant in
Grenoble, France [109]. The real hourly production was normalized by the nominal power and
was used as the coefficient of production for all PV nodes. A total capacity of 2.62 MW of
PV is distributed at 5 nodes. Each node with a PV system was assumed to also have a battery
system of 250 kW nominal power and 500 kWh nominal capacity, resulting in a total of 1.25 MW
and 2.5 MWh of battery systems. The UL, CL and DER characteristics for each node can be
found in Table 4.2. The parameters that are used for the HVAC and EWH units are as follows:
for EWH, the maximum power per device is between 2.0-6.0 kW, thermal capacities and heat
loss coefficient are within 0.0877 – 0.2925 kWh/ oC and 0.0004-0.0012 kW/ oC, respectively.
Cold water (φi) and usage temperatures (φd) are 12 oC and 65 oC, while temperature limits
are between 60 oC and 80 oC. For individual buildings HVAC systems, the maximum power
is between 2.44 – 158.67, C and R values are within 0.2244 – 1318.4959 kWh/ oC and 0.0127-
21.0012 oC/kW, respectively. The comfort temperatures are between 19 oC and 26 oC. The case
study also uses historical variable market prices for electricity cost in France for 2012.

4.6 Results
The results section will highlight four primary findings: i) the difference in performance by
using probabilistic forecasts in comparison to the multivariate covariance matrix approach, ii)
cost benefits of combining stochastically managed storage devices with controllable loads, iii)
economic advantages of using a stochastic approach instead of a deterministic one and iv) thermal
comfort improvements with stochastic techniques. The method described in this chapter has
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Table 4.2: UL, CL and DER characteristics per node

Table 4.3: Case study labels

been implemented in Python and uses the Mosek optimization API. The computer that is used
for the simulation of all calculations is a desktop with a 3.4GHz processor.

Multiple case studies are tested to quantify the effect of each stochastic variable on the total
annual operational cost. The test cases consider high (H) and low (L) scenarios for between
one and four of the four stochastic variables to analyze the effects of each stochastic variable
independently as well as their compounded effects. If the high and low scenario is not used for
a stochastic variable the average scenario is used (M). Table 4.3 details the labels for each case
study used in the following figures.

4.6.1 Probabilistic forecasts

Probabilistic scenarios are calculated by calculating the quantiles of a historical data set. The
studies in this chapter use historical data from the past three months. The quantiles are cal-
culated for each hour individually. This is done for all unknown variables. Examples for PV
production, UL and temperature are found in Fig. 4.6, Fig. 4.7 and Fig. 4.8 respectively.

These profiles are acceptable for estimating high and low values of an uncertain variable
based on historical data. However, this type of modeling does not produce realistic scenarios
that follow the temporal dependencies of the historical values. This is due to the fact that the
quantiles are calculated per hour and are therefore independent models of each hour. Another
scenario generation technique was implemented based on the methods found in [105]. This
method considers the temporal dependencies of each hour to produce more realistic scenarios.

4.6.2 Multivariate covariance forecasts

The method described in [105] is a more sophisticated technique developed for wind generation
scenarios that uses a zero-mean multivariate normal distribution function and a historical co-
variance matrix to preserve realistic temporal dependencies of each scenario. This method was
implemented and tested in an OPF problem to evaluate the added value of temporally depen-
dent realistic scenarios as opposed to basic probabilistic scenarios. Example scenarios generated
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Figure 4.6: PV production quantiles 10 to 90 (left) and the selected high, low and middle
quantiles (25th, 75th and 50th) (right) with the real PV realization for the prediction day in red

Figure 4.7: Uncontrollable load profile quantiles 10 to 90 (left) and the selected hig, low and
middle quantiles (25th, 75th and 50th) (right) with the real load profile realization for the
prediction day in red
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Figure 4.8: Temperature profile quantiles 10 to 90 (left) and the selected high, low and middle
quantiles (25th, 75th and 50th) (right) with the real load profile realization for the prediction
day in red

Figure 4.9: PV production scenarios (left) and the selected high, low and middle scenarios (right)
with the real PV realization for the prediction day in red

with this technique for PV generation and uncontrollable load are found in Fig. 4.9, Fig. 4.10
and Fig. 4.11 respectively.

From the 50 scenarios generated with this technique, three scenarios were chosen to input
into the optimization problem. These three scenarios included one high, one low and one middle
scenario. To determine which scenarios were high low and middle, the integral of each scenario
was calculated. This results in a cumulative value for each scenario profile. Of these cumulative
values, the maximum, minimum and average value were selected. The scenarios generated
associated with the minimum maximum and average values were used as inputs to the OPF
model.

4.6.3 Annual operational cost benefit

The annual operational costs with grid connected storage devices are calculated using both the
stochastic and deterministic day-ahead management strategies. The deterministic case uses the
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Figure 4.10: Load profile scenarios (left) and the selected high, low and middle scenarios (right)
with the real load profile realization for the prediction day in red

Figure 4.11: Temperature profile scenarios (left) and the selected high, low and middle scenarios
(right) with the real temperature profile realization for the prediction day in red
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forecast that corresponds to the average of the available forecasts for all stochastic variables. The
stochastic case uses combinations of high and low generate forecasts for each stochastic variable.
Considering only one variable as stochastic therefore results in two scenarios. Considering two
scenarios for two variables will result in four scenarios of equal probability. For example, the
simulation cases ‘St 2 S’ and ‘St 4 S’ consider two and four scenarios respectively.

Two sets of simulations have been conducted to show the difference in annual operational
cost when using probabilistic forecasts or multivariate covariance forecasts. The results are
presented by calculating the VSS and EVPI indicators as described in section 4.4.3. Fig. 4.13
and Fig. 4.12 show the stochastic performance evaluated with the two performance analysis
measures for annual operational costs. The advantages of the stochastic method in comparison
to the deterministic method are discussed in the following topics:

· reduced annual cost due to the integration of controllable load

· impact of considering a higher number of scenarios

· relaxed thermal constraints with cost penalties

A detailed comparison of the stochastic and the deterministic schedules is presented for
an example day to better understand why stochastic management strategies are advantageous.
Lastly, the thermal comfort constraints violations are quantified for each case.

Reduced costs with controllable load

For both scenario generation techniques, integrating controllable load into the optimal scheduling
problem reduces annual costs significantly. The reduction in operational costs is primarily due to
variable hourly pricing. If the distribution grid operator is capable of shifting the power demand
for HVAC and EWH loads to less expensive periods, annual operational costs are reduced even
if the same energy is consumed. This can be seen in the EVPI indicator of Fig. 4.15 and Fig.
4.16. The first two simulations for both scenario generation techniques are performed without
controllable load.

Benefit of increasing number of scenarios

In the simulations with no CL, a first comparison of simulating only extreme scenarios or simu-
lating all possible combinations of scenarios can be seen between "St No CL 2 S" and "St No CL
4 S". The simulation of "St No CL 2 S" simulates only the extremes of PV and UL uncertainty.
This means the high PV scenario is combined with the low UL scenario and the high UL scenario
is combined with the low PV scenario. As seen in Fig. 4.12 and Fig. 4.13 no major economic
advantage is seen in using 4 scenarios instead of 2. This could be because the 2 initial scenarios
already represent extreme situations that have a dominant impact in the optimization problem.

A similar comparison is completed with the case including CL. The two simulations that
represent all possible combinations or just the extremes of PV and UL are "St 4 S" and "St
2 S" respectively. Similar to with no CL, the simulation of "St 4 S" represents all possible
combinations of PV and UL while "St 2 S" only represents high PV combined with low load
and low PV combined with high load. This comparison shows an increase in cost benefit when
considering all 4 scenario combinations.
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Figure 4.12: Annual costs of operation for the case with only batteries ("St No CL 2 S" and "St
No CL 4 S") and with additional flexibility from CL ("St w T 1 e", "St w T 10 e", "St 2 S", "St
C", "St PV" and "St 4 S") using probabilistic forecasts

Figure 4.13: Annual costs of operation for the case with only batteries ("St No CL 2 S" and "St
No CL 4 S") and with additional flexibility from CL ("St w T 1 e", "St w T 10 e", "St 2 S", "St
C", "St PV" and "St 4 S") using multivariate covariance forecasts
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Effects of increased costs penalty of comfort constraints

The simulations ‘St w T 10 e’ and ‘St w T 1 e’ consider uncertainty in PV and UL as well as
considering uncertainty in outside temperature and EWH consumption. The difference between
these two simulations is the cost penalty for violating comfort constraints. The value of this
cost penalty is either 1 euro or 10 euros. The consideration of uncertainties in temperature
and EWH consumption forces the stochastic day-ahead management strategy to satisfy a larger
range of outside temperatures or EWH use in the thermal comfort constraints. Therefore, the
management strategy is more conservative and increases annual operational costs. This is the
reason why these two simulations are the only simulations where the stochastic management
strategy is more expensive than the deterministic one shown by the VSS indicator in Fig. 4.12
and Fig. 4.13. In addition, higher annual costs result for the simulation with higher cost
penalties for comfort constraint violations, however, comfort constraint violations are reduced.

Example day comparison of stochastic and deterministic scheduling techniques

An example day profile of the different battery and controllable load management schedules
for the deterministic and the stochastic strategy is shown in Fig. 4.14. The stochastic day
ahead scheduling of loads and batteries on this day proved to reduce costs significantly when
simulated with real day-of conditions. This improvement can be explained by the transition
periods between the hours 6 to 9 and 14 to 19. In the period between hours 6 to 9 am, the
deterministic case is expecting PV injection, therefore it charges the battery. The stochastic case
considers the low PV scenario and therefore it performs a more conservative discharge during
this period. Instead, it moves the battery discharge to the hours 10-13, where low generation
of PV is expected (in low scenario) and the electricity price is high. When the real conditions
are simulated for day-of, very low PV production occurs and the deterministic case incurs in
high operational cost during the period 10-13. In contrast, the stochastic approach is capable
of anticipating low PV generation, discharging the battery when prices are higher and shift the
CL to the early morning, avoiding the costs at 16-18 incurred by the deterministic case.

From the analysis performed, a trade-off was observed between annual operational costs and
comfort constraint violations in the thermal loads. This trade-off can be considered as a Pareto-
optimality state with annual operational costs and end-user comfort defining the Pareto-frontier.

Comfort constraint violations

As shown in Fig. 4.15 and Fig. 4.16, considering uncertainties in external temperature is
a Pareto improvement for end-user comfort constraints in HVAC loads while not considering
these uncertainties is a Pareto improvement for annual costs. Considering uncertainties in
EWH consumption results in very minimal annual operational costs increases, however comfort
violations are reduced. Two different values for cost penalties were also tested, 1 eand 10 e.
With higher cost penalties for temperature violations, annual costs were higher but fewer comfort
violations resulted. In all cases the stochastic algorithm results in lower annual operational
costs for the same number of comfort constraint violations when comparing stochastic and
deterministic approaches.
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Figure 4.14: Example day where stochastic scheduling results in lower operational costs than
the deterministic one. From top to bottom, price of electricity (1), PV scenarios and real PV
production (2), UL scenarios and real UL (3), stochastic and deterministic battery schedule (4),
stochastic and deterministic controllable load schedule (5).
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Figure 4.15: Annual operational cost vs annual comfort constraint violations for the total comfort
constraint violations of AC and EWH using probabilistic forecasts

Figure 4.16: Annual operational cost vs annual comfort constraint violations for the total comfort
constraint violations of AC and EWH using multivariate covariance forecasts
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Table 4.4: Algorithmic performance of deterministic and stochastic methods for 24 coupled
time-steps

Method Number of Scenarios Forecast Technique CL present Time (s)
Deterministic 1 Probabilistic No 3
Stochastic 2 Probabilistic No 8
Stochastic 4 Probabilistic No 14

Deterministic 1 Probabilistic Yes 6
Stochastic 2 Probabilistic Yes 15
Stochastic 4 Probabilistic Yes 44

Deterministic 1 Multivariate covariance Yes 7
Stochastic 2 Multivariate covariance Yes 16
Stochastic 4 Multivariate covariance Yes 47

Algorithmic performance

It is important to consider the calculation time of the day-ahead scheduling strategies presented
above. Due to the fact that the stochastic algorithm takes into account multiple scenarios, the
calculation time of this algorithm is higher. A performance analysis was completed to compare
the time of calculation for the deterministic algorithm and varying number of scenarios in the
stochastic algorithm. The average calculation time of each 24 coupled time-steps is shown in
Table IV. Therefore, the stochastic algorithm is about 3 times slower with the consideration of
2 scenarios and 6 times slower with the consideration of 4 scenarios.

4.7 Conclusion
This chapter discusses techniques used for stochastic OPF algorithms. Varying techniques used
in stochastic OPF are presented including scenario generation, flexibility modeling and thermal
comfort constraints representation. A methodology to integrate these techniques into a stochas-
tic OPF is then proposed and two analysis are completed with two different scenario generation
techniques. The results in terms of annual operation and comfort constraint violations are
presented. Five significant conclusions have been drawn from these simulations:

· there is no significant improvement in operational costs when using a more sophisticated
forecasting technique (the multivariate covariance forecasts). However, thermal comfort
constraint violations are reduced with this forecasting technique

· annual operational costs are significantly reduced when controllable load such as HVAC and
EWH are considered

· the increased number of scenarios reduced annual operational costs for the simulations with
CL but increased costs in the simulations without CL

· there is a compromise between annual operational costs and comfort constraint violations when
CL is integrated into the problem. The cost of these comfort constraint violations must be
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comparable to the energy cost of satisfying these constraints, therefore avoiding significant
discomfort for end-users.

The use of the stochastic algorithm resulted in a reduction in the operational costs for the
case study presented in comparison with the deterministic strategy. However, given that the
stochastic approach permits hedging over a higher number of scenarios for the input variables to
anticipate risks, the cost reduction is moderate. Significant savings can be achieved by harnessing
DSM. However individual devices and end-user comfort constraints must be considered.
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Chapter 5

Conclusions

5.1 Conclusions

The current energy transition is characterized by the desire to transition from traditional fossil
fuels to more sustainable sources of electricity production. This transition implies the integration
of new technologies such as renewable energy generators. New electric production technologies
have presented new design and implementation challenges due to the specificity of each resource.
Traditional planning and operational strategies have solved these types of problems in the past
by infrastructure reinforcements of the transmission or distribution grid. When considering a
high DER penetration, these infrastructure upgrades can become expensive and, consequently,
are an economic barrier for renewable energy development.

A majority of these generators are connected to the electric distribution grid due to their
relatively small size and the current development strategies for these technologies. Therefore,
a new problem emerges requiring optimization of new decentralized components. This decen-
tralized optimization requires a new type of infrastructure including automation and control of
a much larger quantity of devices. The automation and control of distribution grids can push
back expensive infrastructure upgrades.

A literature review has been detailed, presenting possible alternative solutions to infras-
tructure upgrades. However, these innovative solutions are often not integrated in the current
planning or operations of distribution grids. The author of this thesis therefore has explored
the existing methodologies and presented new methodologies to improve on the current methods
found in the literature. This literature review included a definition of the existing electric power
system followed by a more detailed explanation of the distribution system. Specific challenges
of decentralized generators in the distribution grid in relation to voltage profile deviation and
safety devices were detailed. The literature review was continued by presenting existing planning
strategies with and without massive integration of DER. Innovative smart grid solution such as
storage, demand side management and curtailment were proposed as possible alternatives for
infrastructure investments. These solutions require sophisticated power flow analysis tools. Ex-
isting power analysis tools were presented including power flow analysis and OPF analysis. OPF
analysis was described in more detail to justify the choice of this tool as opposed to power flow
analysis. These sophisticated algorithms present new mathematical challenges as well which
were discussed along with proposed solutions to overcome these challenges.

This thesis has presented work contributing to the advancement of power system analysis for
smart grids in the presence of high renewable energy penetration. New sophisticated planning
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and operational tools are necessary to analyze the effects of high DER penetration on existing
architecture. The optimization of existing networks through automation and control has been
discussed, i.e. smart grids. The case studies presented in this thesis assume a controllabil-
ity of the grid with the possibility of automation through intelligent algorithms. In order to
thoroughly explore the application of these types of algorithms, three primary subjects were
addressed: three-phase unbalanced systems, distribution planning methodologies, and uncer-
tainties in distribution grid operation. The thesis was presented in three parts. The first section
presented the challenges of a three-phase unbalanced systems. The second section presented the
difficulties of planning tools for distribution networks and proposed an innovative algorithm for
the simultaneous sizing and placement of storage systems. The last section discussed the ele-
vated uncertainties that are experienced by the distribution grid and how these uncertainties can
pose challenges for distribution grid operations. A methodology to integrate these uncertainties
into a day-ahead planning algorithm was then presented.

Three-phase unbalanced systems found in low voltage distribution grids can exacerbate dis-
tribution grid power quality issues. Few OPF analysis tools exist in the literature that are
capable of taking into account neutral current effects. These effects can increase voltage profile
divergence. Detailed analysis of the three-phase unbalanced power flow equations in compari-
son with single-phase estimations were presented. The single-phase estimations of three-phase
unbalanced systems in the context of OPF analysis for planning were concluded to be suffi-
cient. Therefore, further chapters continue with single-phase estimations of individual phases of
distribution grids.

Planning methodologies that are capable of considering smart grid operational strategies
were presented in Ch. 3. Existing algorithms using OPF analysis of distribution grids were
presented specifically in relations to multi-period OPF analysis. Flexibilities that are temporally
constrained such as storage elements were used to increase the hosting capacity of an example
grid. A methodology was presented that successfully integrates an operational strategy for
storage systems into the sizing and placement exercise through a techno-economic analysis.
This methodology successfully integrated operational strategies into the planning phase and
quantified the benefits of smart grid operation.

The innovation and specific contributions of this planning methodology in relation to the
state of the art is the development of a high performance algorithm for solving an annual sizing
and placement problem through decomposition into daily analysis. The methodology presented
is innovative because it integrates operational case studies of battery management strategies
into the planning phase of active distribution grids. This contribution allows for the qualitative
study of battery investment costs and their operational benefits to make investment decisions
about grid connected storage.

Uncertainties in distribution grids are relatively high due to lack of aggregation effects for
load profiles and generation profiles. The section has presented a state of the art on uncertainty
modeling in the context of power system analysis. The algorithmic challenges of integrating
these uncertainties were then discussed along with varying modeling methods. DSM was pre-
sented as a promising solution to reduce annual operational costs significantly and therefore was
integrated in parallel with storage units and curtailment strategies. Finally, a methodology for
the integration of these uncertainties in an OPF day-ahead scheduling algorithm of grid flexibil-
ities including DSM, storage and curtailment was presented through a comparison of stochastic
and deterministic techniques.

The innovation in relation to the state of the art of this day-ahead scheduling algorithm
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is the development of a multi-period SOCP OPF that is capable of considering uncertainties
through scenarios of generation and load. This algorithm does not exist in current literature
and allows for the optimal day-ahead scheduling of distribution grid flexibilities. To the author’s
knowledge, there is no paper published that implements an SOCP OPF with integrated indi-
vidual appliance models for their optimal scheduling and associated thermal constraints while
considering uncertainties. This behind-the-meter individual load device modeling and schedul-
ing for optimal DSM integrated with the distribution grid enables a very precise quantification
of the benefits of DSM. It is combined with stochastic dispatch of decentralized generators and
storage to quantify this benefit in a smart grid context.

The work completed in the frame of this thesis contributes to the need for further smart grid
planning and operational methodologies for the future. The success of the energy transition is
highly dependent on the intelligent evolution of the current distribution grid. This evolution
is critical to guarantee a future with easy access to high quality electricity. Work in this area
is a high priority due to the high dependence of the safety, health and economy on electricity
worldwide.

5.2 Future work

In relation to planning algorithms that consider sizing and placement of storage devices, this
methodology could be enlarged to include a choice of different battery technologies or other types
of flexibilities for the DSO. A challenge identified during Ch. 3 was the capability to integrate
non-linear cost functions with respect to the nominal power and capacity of batteries. These non-
linear costs add mathematical complexity to the problem. Another interesting improvement to
the cost function could include the integration of variable battery technologies and the associated
variable cost parameters. This would allow the algorithm to not only size and place battery
systems but also give suggestions about the best battery technology to install based on the
operational use case. Future work can be done to integrate these non-linear characteristics into
the SOCP convex relaxation algorithm.

Another possible flexibility to consider in contrast to battery systems is DSM. These studies
could be very interesting to analyze the techno-economic advantages of DSM in comparison to
electrochemical storage. The algorithmic structure for the consideration of DSM is not compli-
cated however, the calculation of the cost of demand side management is difficult. The costs may
be non-linear, client-dependent and data sets quantifying these costs are rare. Other possible
solutions that were not explored include the comparison of the cost of infrastructure upgrades
with smart grid functionality integration. The cost-benefit analysis of these two alternatives
should be further researched.

On the subject of uncertainty scheduling with stochastic OPF algorithms, future work should
be completed in more sophisticated scenario reduction techniques. Detailed analysis of which
scenarios are most important to include in an OPF analysis could be performed to better un-
derstand the effect of extreme scenarios or more realistic scenarios on the optimization problem.
The effects of taking into account more scenarios should also be studied to understand the added
benefit of a larger number of scenarios in comparison with increased calculation burden. Identi-
fying which scenarios do not affect the optimization problem should be further pursued as well
to remove scenarios when they are unnecessary.

Little work was completed to understand the correlations between unknown variables and
their effects on the optimization problem. These correlations between unknown variables should
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first be quantified and then be integrated into the scenario combination strategy. The added
benefit of correlated scenario generation for stochastic OPF analysis can then be quantified.
These correlated uncertainties may improve the proposed methodology.
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Optimal sizing and placement of distribution grid connected battery systems
through an SOCP optimal power flow algorithm

Etta Grover-Silva1,2, Robin Girard1, George Kariniotakis1

Abstract

The high variability and uncertainty introduced into modern electrical distribution systems due to decentralized renew-
able energy generators requires new solutions for grid management and power quality assurance. One of these possible
solutions includes grid integrated energy storage. The appropriate size and placement of decentralized storage is highly
dependent on purpose of the battery system and expected operational strategy. However, battery operational strategies
are difficult to simulate simultaneously during a sizing and placement planning calculation. The motivation of this paper
is to propose an algorithm that is capable of integrating sizing, placement and operational strategies of batteries into an
Optimal Power Flow (OPF) distribution grid planning tool. The choice of the OPF approach permits to account for grid
constraints which is more adapted for grid-connected storage devices compared to other approaches in the state of the
art that are based only on an email balance analysis. This paper presents an alternating current (AC) multi-temporal
OPF algorithm that uses a convex relaxation of the power flow equations to guarantee exact and optimal solutions with
high algorithmic performance. The algorithm is unique and innovative due to the fact that it combines the simultaneous
optimization of placement and sizing of storage devices taking into account load curves, photovoltaic (PV) production
profiles, and distribution grid power quality constraints. The choice to invest in battery capacity is highly sensitive
to the price of battery systems. The investment in battery systems solely for reducing losses an operational costs was
proven not to be cost effective, however when battery systems are allowed to buy and sell electricity based on variable
market prices they become cost effective. The assumptions used for this study shows that current battery system prices
are too high to be cost effective even when allowing battery system market participation.

Keywords: Optimal power flow, storage, smart grids, renewable energy, distribution grid planning

Nomenclature

Parameters

ηst Charging and discharging efficiency of the battery
system

P pv,j,t Ideal PV production for node j at time step t

Spv,j,t PV maximum apparent power flow at node j

V j Voltage maximum at node n

V j Voltage minimum at node n

cinvst Investment costs of the battery system for the nom-
inal capacity in e/MWh-day
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comst Operations and maintenance costs of using the bat-
tery system for the power use in e/MWh-day

ce,t Price of electricity at time step t

Imax Total capital cost limit of project

Pld,j,t Active power load at node j

Qld,j,t Reactive power load at node j

rjk Resistance of branch jk

t Duration of timestep

xjk Reactance of branch jk

Sets

J Set of all nodes j ∈ J

Jst Set of nodes chosen for battery placement j ∈ Jst
Variables

`jk,t Square of current in branch jk

υj,t Square of voltage at node j
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Cnom
st,j,d Final nominal capacity of battery systems for each

node j for each day d

Finj Function describing the cost of power injected into
the feeder at the substation

Finv Function describing the cost of investment of the
battery nominal capacity and power

FO&M Function describing the cost of operation and main-
tenance of the battery devices

Fp Function describing the cost of losses within the
system including PV curtailment

Fst,p Function describing the cost of battery losses due
to charging/discharging efficiency

Nnom
st,j,d The number of hours of nominal autonomy of the

battery system at node j

Pnom
st,j,d Final nominal power of battery systems for each

node j for each day d

P0,t Active power flow at the substation

Pjk,t Active power of branch jk

Ppv,j,t Photovoltaic injection at node j at time t after
eventual curtailment

Pst,j,t Power injected by battery devices connected at
node j

Qjk,t Reactive power of branch jk

Qpv,j,t PV reactive power injection at node j after even-
tual curtailment

Sjk,t Apparent power of branch jk

Spv,j,t PV apparent power flow at node j

socst,j,t State of charge of the storage unit as a cumulation
of energy at node j and time step t

Vj,t Voltage at node j

1. Introduction

The increasing environmental concerns, is one of the
main drivers behind the large scale development of dis-
tributed energy resources (DER) in electric distribution
grids. This development involves connection of decentral-
ized generators to the electric grid primarily photovoltaic
(PV) and wind turbines and also micro-hydroelectric gen-
erators bring about new challenges for the distribution
grid operators. Decentralized renewable energy genera-
tors can introduce bi-directional flow within the network,
while their production is uncertain and variable due to its

inherent dependence on weather conditions. Other spe-
cific challenges of the distribution grid include higher un-
certainty due to reduced aggregation effects of DER gen-
erators, voltage profile deviation and increased power flow
in electric lines. These challenges are generally localized
therefore creating local voltage perturbations that may not
be visible by the distribution operator.

Solutions to these challenges include infrastructure up-
grades such as electric line reinforcement or automation
and integration of smart grid functionalities such as on-line
tap changers (OLTC), DER generation curtailment, stor-
age devices, demand side management (DSM) [1]. Specific
technologies related to flexibilities include privately owned
grid connected batteries such as electric vehicles [2] or
larger grid operator owned storage used to improve overall
economic exploitation of the feeder. Demand side manage-
ment optimization in smart grids and efficient smart grid
technologies have been thouroughly explored for a vari-
ety of use cases [3] [4] [5] [6] [7]. Infrastructure upgrades
are easily quantified. However, new control and flexibility
functionality is difficult to quantify economically and inte-
grate into the planning phase of distribution grids. The
cost benefit analysis of varying smart grid technologies
and management strategies will become more important
as DER penetration increases in future distribution grid
systems.

Grid storage elements are presented in the literature
as a cost effective solution to deal with the above chal-
lenges in distribution grids with high DER penetration. A
techno-economic analysis of energy storage elements as a
solution to intermittency of DER is presented in [8]. That
paper details the cost-effectiveness of different grid stor-
age applications including regulation of transmission and
distribution power quality, voltage regulation and control,
energy management, smoothing of intermittent renewable
energy production, energy back-up, peak shaving, etc. For
each specific application, taking into account the opera-
tional strategy of the storage device is important when
sizing and placing the unit.

The optimal sizing and placement of storage devices
in distribution grids has been addressed through various
mathematical modeling methods presented in the litera-
ture. The problem of calculating the optimal placement
and size of storage devices of an electric grid is highly di-
mensional and non-convex. The resolution of this highly
dimensional non-convex problem has been successful with
multiple mathematical techniques including analytical tech-
niques, classical techniques, artificial intelligence techniques
and other miscellaneous techniques [9]. In a different re-
view of energy storage allocation, four main categories are
defined to solve this highly dimensional non-convex prob-
lem: analytical methods, mathematical programming, ex-
haustive search and heuristics [10]. The different existing
methods are of different complexity, some being simple,
i.e. based on an energy balance of the examined system
to size the storage. However, for grid connected systems
the placement involves analysis of the impact of storage
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devices to the grid. For this reason, techniques based on
mathematical programming such as power flow and opti-
mal power flow (OPF) are more appropriate. These meth-
ods can be used to simulate distribution system function-
ality with generators and storage devices while taking into
account grid constraints as seen in [11]. OPF algorithms
are capable of taking into account decision variables and
therefore capable of analyzing active management of dis-
tribution grids. An example of an OPF that analyzes host-
ing capacity of an active distribution grid is found in [12],
where curtailment strategies and dynamic line rating are
explored to increase renewable energy penetration.

OPF algorithms are efficient at analyzing active distri-
bution networks for operation and planning. The two pri-
mary problem resolution techniques for solving this highly
dimensional non-convex problem include heuristic tech-
niques or linear convex relaxations of the power flow equa-
tions. Heuristic algorithms have been used to solve the
optimal placement and sizing of storage devices. For ex-
ample, a two-step process with a master and a sub-problem
is proposed in [13]. This method firstly uses a heuristic al-
gorithm to solve optimal placement and sizing of batteries.
Secondly, a daily AC OPF multi-objective function takes
into account optimal voltage control, minimization of net-
work losses and total energy costs. Another paper presents
a comprehensive sizing and siting algorithm using parti-
cle swarm optimization [14]. A different type of heuristic
method was used to simultaneously size and place storage
units using an artificial bee colony algorithm with an ob-
jective function that forces each storage node to be as au-
tonomous as possible [15]. Another heuristic method used
to analyze grid connected storage for a multi-objective
problem addressing both distribution grid and transmis-
sion grid objectives is found in [16]. However, heuristic
algorithms often require a larger calculation burden and
are not guaranteed to converge to a global optimal solu-
tion as noted in [17]. A mixed integer linear programming
approach for complete DER portfolio sizing and placement
is presented in [18]. The mixed integer strategy uses lin-
earized power flow equations and loss estimations. Mixed
integer linear approximations are proven to be effective at
solving the non-convex placement and sizing problem how-
ever the calculation time is high and scalability to large
network sizes have not been addressed.

Convex relaxations of the power flow equations gen-
erally have a lower calculation burden. The relaxation
of the power flow equation into a second order cone has
already been theoretically explained and detailed mathe-
matically in [19]. Papers addressing specifically optimal
sizing and placement of storage devices using convex re-
laxations can be found in the literature. An impedance
model was used to perform optimal placement and sizing
in [20]. A convex relaxation was used for optimal place-
ment and sizing of batteries with a linearized DC power
flow for transmission planning with a maximum invest-
ment cost [21]. This linearization is not accurate for the
high R/X ratio found in the low voltage distribution sys-

tems, which implies electrical losses that are non linear.
The use of an AC OPF for optimal placement [22] or op-
timal sizing [23] are also found in the literature. In [24]
the authors explore a two-step process of sizing and place-
ment of storage units through relaxed power flow equa-
tions. However, this sizing methodology calculates power
and energy imbalances locally at PV nodes and sizes the
battery systems to mitigate these imbalances. Therefore,
this methodology sizes the battery systems to reduce PV
injection when power quality issues become an issue. This
sizing methodology does not compare the cost of storage
elements to other cost-effective solutions such as curtail-
ment. The algorithm also does not analyze the possible
benefits of batteries participating in an electricity market.
A second order cone program (SOCP) OPF algorithm is
then used in the second step to site the sized battery sys-
tems.

While there are multiple sizing and placement algo-
rithms (e.g. [13],[14],[25],[16]), the objective function of
each presented methodology varies significantly implying
significant variation in the results of the optimization sim-
ulations. For example in [13] the objective is composed
of minimizing the energy injection, voltage deviation and
network losses. In [14] the objective is peak load shav-
ing, improving voltage profile quality and providing active
power adjustment capacity. In [25] the investment, re-
placement and operations costs of PV, diesel generators,
and battery banks as well as slack bus power, cost of energy
not served, losses and excess energy of HPVDS. In [16] the
cost of local generation, the cost of centralized generation,
unit cost of storage and the unit cost of power conversion.
Due to the fact that the exploitation of a battery system
for a specific purpose can have significant effects on the
optimal size and placement as stated in [8], the results of
the sizing and placement of these studies are very difficult
to compare.

The SOCP relaxation of the power flow equations is
present in multiple articles in the literature for example
[26]. However, it has been proven to be inexact during pe-
riods of high penetration from decentralized production.
An example of this could be high PV production and low
loads during the summer season. In order to overcome
the challenge of inaccurate convex relaxations [27] presents
an AC OPF algorithm that integrates linear cuts imple-
mented in an iterative manner to ensure an exact and fea-
sible relaxation of the power flow equations. In a follow-
up work, this algorithm has then been developed into a
multi-temporal one in order to more objectively evaluate
the benefits of grid connected storage and other temporally
dependent variables in [28].

This paper proposes a novel methodology to simulta-
neously perform optimal sizing and placement of storage
devices to the distribution grid from a techno-economical
view by considering the investment cost of batteries weighted
against the operational benefit. Operational control of ac-
tive power of storage and PV inverters are modeled with
a multi-temporal OPF. The objective function of the op-
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Figure 1: Paper organization

timization problem is formulated in a way to include eco-
nomic operational benefit and constraints that guarantee
power quality.

This methodology is capable of taking into account in
detail the operational strategy of storage devices in order
to make planning decisions about their sizing and place-
ment. Therefore, it is effective for distribution grid plan-
ning applications with predefined operational strategies.
The structure of this paper includes section II describing
the optimal power flow algorithm, section III illustrating
a case study of the proposed methodology and section IV
stating significant conclusions. A flow chart of the papers
organization is found in 1

2. Optimal power flow model

The proposed methodology relies on solving the op-
timization problem given by eqs. (1)–(15). The objective
function is the sum of the battery investment costs, oper-
ation and maintenance costs, the system losses and power
imported at the feeder substation. The constraints of this
model include the active power limits of PV systems de-
fined by the maximum available power as a function of
weather conditions eq. (2), apparent power limits of PV
systems eqs. (3) and (4), power flow equations eqs. (5)–
(7), relaxation of the current equation eqs. (8) and (9) to
represent the power flow equations as a convex SOCP, volt-
age limits of each branch eq. (10), battery state of charge
(SOC) constraint eq. (11) and daily nominal power and ca-
pacity value constraints eqs. (12)–(14). Constraint eq. (15)
limits the ratio of nominal power and nominal capacity to
be appropriate for distribution grid storage elements man-
aged on a daily basis. This constraint also allows for fast
convergence of the algorithm.

min Finv + FO&M + Fp + Fst,p (1)

subject to:

0 ≤ Ppv,j,t ≤ P pv,j,t (2)

Spv,j,t ≤ Spv,j,t (3)

Spv,j,t =
√
P 2
pv,j,t +Q2

pv,j,t (4)

Pij,t = Pld,j,t +
J∑

j=0

Pjk,t + rij`ij,t + Ppv,j,t + Pst,j,t

(5)

Qij,t = Qld,j,t +

J∑

j=0

Qjk,t + xij`ij,t +Qpv,j,t (6)

υj,t = υi,t − 2(rijPij,t + xijQij,t) + (r2ij + x2ij)`ij,t
(7)

Sij,t ≥
√
P 2
ij,t +Q2

ij,t (8)

Sij,t ≥ `ij,tυi,t (9)

V 2 ≤ υj,t ≤ V
2

(10)

socst,j,t = socst,j,t−1 − t (Pst,j,t + ηst|Pst,j,t|) (11)

Pnom
st,j,d ≥ |Pst,j,t| (12)

Cnom
st,j,d ≥ socst,j,t (13)

Cnom
st,j,d = Nnom

st,j,dP
nom
st,j,d (14)

0.1 ≤ Nnom
st,j,d ≤ 8 (15)

The optimal sizing and placement of storage requires
the resolution of a temporal and spatial problem. The tem-
poral problem implies a coupling of multiple time steps to
ensure coherence of the battery state of charge (SOC) be-
tween each consecutive time step. The spatial problem
implies the consideration of all nodes as possible place-
ment locations for storage devices. The multi-temporal
OPF is already high dimensional. For a grid with 137
nodes, feasibility testing showed that up to 130 coupled
time steps was returned results by the solver, any larger
coupling returned a maximum size exceeded error. There-
fore, a certain decoupling is necessary in order to complete
an annual analysis. In this paper, a daily decoupling was
implemented. Therefore, the number T of coupled time-
steps is 24. A temporal decoupling is applied due to the
size limitations of the optimization problem. The decou-
pling was chosen to be done on a daily basis due to the
fact that battery systems are often managed on a daily ba-
sis. The coupled time steps of a one day period were then
simulated for each day of the year in order to successfully
complete an annual analysis. An additional constraint is
added to avoid daily accumulation effects by forcing the
state of charge (SOC) of the first and last time step of a
day to be equal as stated in eq. (16).

socst,j,0 = socst,j,T (16)

Constraint 14 is the product of two variables and is
non-convex rendering the problem NP-hard. The variable
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N represents the number of hours of autonomy of the bat-
tery system, limited by feasible battery sizes of 0.1 to 8.
This relationship between the nominal power and capacity
of a battery system is an essential relationship for accu-
rately representing the cost of battery systems. In or-
der to keep this constraint, a linearization of is performed
through an iterative process. The linearization is shown
in equation 17.

Nnom
st,j,dP

nom
st,j,d =

1

2

[
Nnom

0,j,d ∗ Pnom
st,j,d +Nnom

st,j,d ∗ Pnom
0,j,d

]
(17)

Where Nnom
0,j,d and Pnom

0,j,d are initial values assigned.
With these initial values Pnom

st,j,d and Nnom
st,j,d are calculated

with the algorithm. If the difference between the initial
estimation and the final calculated values is larger than
a 0.001 for either Pnom

st,j,d or Nnom
st,j,d a new iteration is per-

formed assigning Nnom
0,j,d and Pnom

0,j,d to the values of Pnom
st,j,d

or Nnom
st,j,d.
The algorithm effectively calculates the optimal size

and placement of storage devices for each node for each
day. This sizing and placement exercise therefore results
in 365 optimal nominal capacity and power. The final
optimal size must then be choosen from analyzing these
365 values. This is done by taking the 75th quantile of the
set of optimal values to calculate a final annual optimal
size.

2.1. Variations of the objective function

The objective function of the general form given by
Eq. eq. (1) can be altered in order to size the battery
systems for different purposes. Two objectives are consid-
ered in this Section. The first objective function is to size
the battery systems to minimize losses in the system sec-
tion. The second possible objective function considers the
minimization of losses and the absolute value of the active
power injection from the high voltage grid to the medium
voltage grid at the substation.

2.1.1. Loss minimization

The first sizing exercise entails using the battery sys-
tem only for loss minimization and allows a comparison
between loss minimization eq. (21), losses associated with
charging/discharging of the battery systems eq. (22) and
the sum of battery investment costs eq. (19) and battery
operations costs eq. (20). The objective function is there-
fore eq. (18). The optimal nominal power and capacity
is then calculated based only on the economic viability of
using batteries for loss reduction.

min Finv + FO&M + Fp + Fst,p (18)

where:

Finv =
J∑

j=0

cinvst C
nom
st,j,d (19)

FO&M =
J∑

j=0

comst tP
nom
st,j,d (20)

Fp =

T∑

t=0

J∑

j=0

ce,trij`ij,t + ce,tt
[
P pv,j,t − Ppv,j,t

]
(21)

Fst,p =
T∑

t=0

J∑

j=0

ce,tηstt|Pst,j,t| (22)

subject to:eqs. (2)–(15)
The losses considered are the line losses, PV curtail-

ment and the losses of the battery system due to the bat-
tery charging efficiency. If the sum of the operational costs
and the investment costs of the battery systems is higher
than the economic gain from loss reduction, the algorithm
eq. (18) will calculate zero nominal capacity and power for
each node.

2.1.2. Minimization of absolute active power flow at sub-
station

Battery systems can also be used to participate in
variable pricing electricity markets. This implies using
battery systems to buy and sell electricity from the grid
based on the hourly price of electricity. This objective
function as detailed in eq. (23) allows the calculation of
economic gains through battery participation in variable
pricing markets and encourages autonomy of the feeder by
minimization of the total absolute active power flow im-
ported at the substation |P0,t|. This formulation does not
include explicitly the losses associated with the battery
charging efficiency because this energy is already counted
in the variable |P0,t|.

min
j∈J

Finv + FO&M + Fp + Finj (23)

where:

Finj =

T∑

t=0

ce,tt|P0,t| (24)

subject to:eqs. (2)–(15)
These two objective function variations can be used

to determine the size and placement of battery storage de-
vices coupled with installed PV systems for specific end-
use scenarios. This algorithm does not consider constraints
to exclude very small battery systems. Therefore it is in-
capable of minimizing the number of nodes that battery
systems are installed at. As a result the algorithm often
sizes battery systems for every node. However, in some
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Figure 2: Grid topology including low voltage substation (C) and
PV system placement (PV)

cases, it can be desirable by the DSO to consider a lim-
ited number of battery systems or a battery system size
minimum. If a minimum battery size was introduced into
the problem, it would introduce a binary constraint mak-
ing the problem NP Hard. Therefore, to deal with these
small infeasible systems sizes, an iterative approach can
be taken. At a first stage, nodes with the larger battery
sizes are identified with the initial sizing and placement al-
gorithm. Then, final sizing can be performed with added
constraints eqs. (25) and (26) as a second iteration.

Cnom
st,j,d = 0 for J − Jst (25)

Pnom
st,j,d = 0 for J − Jst (26)

The criteria for choosing final node placement can be
determined by choosing a maximum number of battery
systems or an acceptable maximum and minimum size of
battery systems. For sizing based on a maximum num-
ber of systems, Jst in eq. (26) represents the number of
nodes n with the n largest values for the nominal capacity
and power. For sizing based on an acceptable maximum
and minimum size, Jst represents the nodes with feasible
nominal power and capacity values.

3. Results

3.1. Case study

The example grid used for this study is a medium
voltage distribution grid published here [29]. This grid is
composed of 69 nodes with a nominal voltage of 12.66 kV
and is assumed to be located in Nice, France. A map of
the grid topology can be found in Fig 2.

3.2. Generation and load profiles

Electric load profiles were simulated using a load sim-
ulator as described in [30] for each low voltage substa-
tion load profile. Residential and commercial load profiles
are simulated with statistically accurate representations
of surface area, electric heating and number of individuals

Figure 3: Load characteristics for all loaded nodes

Figure 4: PV nominal power ratings for each PV node

that align with the INSEE household inventory database
of France. The location of each load node was chosen ran-
domly due to the fact that no grid load data was available.
The medium voltage feeder is assumed to be a 10 MVA
transformer serving 21 low voltage substations. Load pro-
files aligning with meteorological data in Nice, France in-
dicated a peak load of 4.7 MW during the summer and 5.9
MW during the winter with an average load of respectively
2.1 MW and 2.6 MW. Solar radiation data was simulated
for Nice, France for the year 2012 by analyzing the global
irradiation collected by HelioClim 3 [31]. The PV system
production was calculated based on a statistical distribu-
tion of direct and diffuse irradiation [32]. This data is
then integrated into a projection model to calculate the
percentage of direct and diffuse irradiation exposed to the
panels [33]. A system performance coefficient is then cal-
culated based on the atmospheric conditions extrapolated
from a performance data base of PV systems in the south
of France.

An amount of 10 PV systems were randomly assigned
to 10 nodes. The size of these systems was also chosen
randomly to be between 125 - 1250 kW. Characteristics of
the electric load profile nodes can be found in Fig. 3 and
PV size information can be found in Figure 4.

3.3. Economic analysis

In order to analyze the economic viability of battery
systems, market price variation and battery system costs
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Figure 5: Total aggregated nominal capacity and power optimal sys-
tem size as a function of battery costs

were taken into account. Historical market data from
France was used for 2012.

The capital cost of batteries for nominal capacity and
power is determined by analyzing the study [34]. The
nine case studies on high performance lead acid battery for
transmission and distribution applications were analyzed
to calculate the battery investment cost per MWh. Bat-
tery costs ranged from 500 ke/MWh to 2.5 Me/MWh. To
integrate these costs into the daily analysis, the investment
costs per MWh are divided by the lifetime of the system.
For all economic analysis, the battery life is assumed to be
10 years as assumed also in [35]. Therefore, the ”daily”
investment costs ranged from 137.6 e/MWh-day to 678.6
e/MWh-day. Due to the large range of battery investment
costs, a sensitivity analysis was completed to determine
the price of batteries that is economically viable. In [35],
operations and maintenance prices of the battery systems
are given to be between 2-6 cents per kWh. For this study
this cost is selected to be 2 cents/kWh.

3.4. Results

The two objective functions presented in eq. (18) and
eq. (23) were analyzed to determine economically viable
battery placement and sizing. In all considered scenarios,
equation eq. (18) showed that battery investments were
not economically viable for only loss minimization with
the considered PV penetration and load profiles. A sen-
sitivity analysis of the battery costs was performed with
objective function eq. (23) to analyze the economic viabil-
ity of storage systems used for loss minimization in addi-
tion to market participation. Results of the nominal power
and capacity specifications calculated for each node using
objective function eq. (23) can be found in Fig. 5.

This sensitivity analysis compares the sum of total
nominal power and capacity for a feeder in relation to dif-
ferent investment costs. These total nominal capacity and
power values are a sum of the individual nominal capacity
and power values for each node. The price of batteries cal-
culated by this study to be economically viable are lower
than the battery costs found in [34]. For example, a bat-
tery with a capacity of 2 MWh and a nominal power rating

Figure 6: Sensitivity analysis of PV penetration in relation to op-
timal aggregated nominal power and capacity battery size for an
investment cost of 85 e/MWh-day

of 1 MW cost on average 2.238 Me according to the study
[34]. In the sensitivity analysis, if the investment costs of
the battery are 85 e/MWh-day, the total ideal nominal
capacity and power for the feeder is 2 MWh and 1 MW.
This per day investment cost can be translated into an
initial investment cost by taking into account a life time
of 10 years. The calculated initial investment cost of this
system is therefore 310.25 ke. This implies that for this
battery to be economically viable, capital costs must be
7.2 times cheaper than the battery costs published in [34].

For the specific example of a battery investment price
of 85 e/MWh-day, a sensitivity analysis was performed
comparing the PV penetration and associated battery size.
This comparison is found in Fig. 6

This sensitivity analysis shows a high correlation be-
tween optimally sized battery systems and PV system size.
Therefore grid connected battery systems become expo-
nentially more economical with high penetration of DER.
A comparison of centralized and decentralized optimally
placed capacity is shown in Fig. 7. The centralized storage
nodes are considered to be any node on the main branch
of the grid topology tree. The list of centralized nodes
for this network are therefore 0,1,2,3,4,5 and 6. All other
nodes are considered to be decentralized placement nodes
for storage devices.

As seen from this analysis, decentralized battery sys-
tems are prioritized for lower battery investment costs
while centralized systems size is mostly stable over all in-
vestment costs. Decentralized battery systems are more
prioritized when battery costs are low and overall total
capacity and power installed is higher. When total capac-
ity and power installed is smaller, the ratio of decentralized
to centralized systems is also much smaller.

The partitioning of total nominal battery capacity and
power as a function of battery investment cost is found in
Fig. 8 to demonstrate the repartitioning of battery capac-
ity and power.

As seen in 8, certain decentralized nodes including for
example node 25, 34, 65 and 66 are prioritized for storage
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Figure 7: Comparison of centralized and decentralized nominal
power (P) and capacity (C) optimal system size as a function of
battery costs

Figure 8: Calculated size of battery systems for each node including
nominal power (upper) and nominal capacity (lower) with battery
prices varying from 55 e/MWh-day to 95 e/MWh-day

Figure 9: Calculated size of battery sizes for battery prices of 85
e/MWh-day

placement. These three nodes give three different exam-
ples of when storage is advantages. Node 25 is a priority
due to the high nominal PV power installed at node 24 and
also the fact that this system is at the end of an electric
feeder. For the case of node 34, high nominal PV power at
node 35 combined with high loading at node 34 makes this
node a priority. Node 65 and 66 are two nodes relatively
close to each other. Node 66 has a high load and node 65
has a large PV system. The algorithm assigned capacity
to both nodes, however in all cases a larger capacity is as-
signed to node 65 than 66 prioritizing a placement closer to
the PV system installation rather than the highly loaded
node.

A closer look is taken into the case study with a battery
cost of 85 e/MWh-day. The individual calculated sizes of
battery systems for each node can be found in Fig. 9.

In Fig. 9 a nominal power and capacity value of stor-
age devices is assigned to every node. This is due to the
fact that many small systems allow to reduce losses and
regulate the balanced of generation and consumption at
each node. The size of the battery systems exponentially
decreases when the nodes are ranked by size. This shows
that certain nodes are high priority but having a storage
at all nodes is ideal.

The objective function does not penalize small bat-
tery systems, therefore the infeasible small battery systems
must be eliminated through an iterative qualitative anal-
ysis. The final optimal placement and sizing of battery
systems can be calculated by limiting the possible nodes
where battery systems can be placed. This selection is per-
formed based on the initial sizing and placement analysis.
For the case defined by 85 e/MWh-day, the total number
of systems installed was fixed to be 10. Therefore, a final
analysis is performed by using eq. (26) and setting fixed
the set Jst as seen in eq. (27). The final resulting ideal
sizing is found in Fig. 10.

Jst = 4, 34, 48, 35, 36, 32, 47, 25, 24, 65 (27)

After fixing the maximum number of battery systems
to be 10, a similar total nominal power and capacity is
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Figure 10: Final size of selected nodes with a battery cost of 85
e/MWh-day

Table 1: Operation of electrical feeder with and without battery
integration. Annual analysis for the case of 85 e/MWh-day

Characteristic With battery Without battery

Total Cost of En-
ergy Imports (thou-
sand e)

467 489

Total Price of En-
ergy Exports (thou-
sand e)

1.64 2.13

PV Benefits (thou-
sand e)

334 314

PV Curtailement
(MWh)

1.05 1.39

Nominal PV Power
Installed (MW)

5.53 5.53

Nominal Batt Power
Installed (MW)

0.74 0.0

Nominal Batt Ca-
pacity Installed
(MWh)

1.55 0.0

sized by the algorithm. Due to limited number of nodes
for the repartition, the size of each system is therefore
significantly larger than when all nodes are considered.
Annual analysis results are then calculated by fixing the
upper bounds of the nominal power and capacity of each
battery system based on the values graphed in Fig. 10
and calculated by fig. 10. The feeder operation with and
without battery systems is shown in Table 1.

The operation of the above feeder is affected by the
presence of optimally placed and sized battery systems
that allow for load shifting through pricing signals. The
sum of imports and exports at the substation is therefore
decreased. The first line in Table 1 shows that the op-
timized battery systems succeed to decrease the cost of
imported energy. The level of exported energy shown in
line two remains low due to the objective function that

Table 2: Calculation time for daily and annual analysis

Algorithm Simulated
time steps

Calculation
time (s)

multi-temporal
SOCP OPF

24 2.7

multi-temporal
SOCP OPF

24x365 2700

minimizes the absolute energy flow at the feeder. Line
four shows a reduction in PV curtailment due to added
battery systems therefore increasing PV benefits as shown
in line three.

3.5. Algorithmic performance

The algorithmic performance of the simulation of a
single time step and the full annual analysis has been ob-
served as shown in Table 2.

The iterative approach to calculate Pnom
st,j,d and Nnom

st,j,d

increases the daily analysis calculation time linearly de-
pending on the number of iterations needed for conver-
gence. The calculation time showed in 2 are therefore av-
erages of all analysis performed.

4. Discussion

This algorithm is capable of calculating the placement
and sizing of storage devices in a distribution grid. The
size is sensitive to the investment cost of the batteries
as shown by the sensitivity analysis. In the context of
a project, the capital investment of the project may be
lower than the ideal size of storage capacity and power. If
an investment constraint exists, an investment constraint
can be integrated into the optimization problem as seen in
eq. (28).

cinvst

J∑

j=0

Cnom
st,j,d ≤ Imax (28)

This algorithm does not consider the planning of ac-
tive demand as an alternative solution to electrochemical
storage. While the algorithmic structure is very similar to
modeling electrochemical storage elements, the calculation
of the cost of demand side management is difficult. The
costs are non-linear, client-dependent and data sets quan-
tifying these costs are rare. Other possible solutions that
were not explored include infrastructure upgrades.

A challenge identified in this paper was the capability
to integrate non linear cost functions with respect to the
nominal power and capacity of batteries. Another inter-
sting improvement to the cost function could include the
integration of variable battery technologies and the asso-
ciated variable cost parameters. Future work can be done
to integrate these non-linear characteristics into the SOCP
convex relaxation algorithm.
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5. Conclusion

This paper has successfully demonstrated an adapta-
tion of a SOCP convex relaxation of the power flow equa-
tions for optimal sizing and placement of battery systems
in a medium voltage distribution feeder. The proposed al-
gorithm that simultaneously sizes and places battery sys-
tems can be effectively used to analyze the economic via-
bility of operational case studies in comparison to invest-
ment and operational costs. The specific contributions of
this paper include:

· A high performance algorithm for solving simultaneously
the sizing and placement problem through decompo-
sition into daily analysis and assessment of a typical
year of operation of the system under study and tak-
ing into account the impact of the electrical network.
This is a major contribution compared to the state
of the art where these two problems of placement
and sizing are often considered in a decoupled way

· A methodology to integrate operational case studies of
battery management strategies into the planning phase
of active distribution grids

· A qualitative study of battery investment costs and their
operational benfits to make investment decisions about
grid connected storage

· A demonstration of the increasing benefit of grid con-
nected storage in the presence of high DER penetra-
tion

This type of innovative algorithm gives insights into
the advantages of grid connected storage devices in distri-
bution systems and the integration of operational strate-
gies into the planning phase.
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Abstract— Microgrid operations are challenging due to 

variability in loads and renewable energy generation. Advanced 

tools capable of taking uncertainty into account are essential to 

maximize microgrid benefits. This paper proposes a novel 

centralized algorithm for day-ahead microgrid economic 

dispatch considering uncertainty and detailed modeling of 

flexibility sources like storage and controllable loads. The 

proposed stochastic optimization is bound by end-user comfort 

constraints to more precisely quantify flexibility of controllable 

thermal loads, and constraint violations are considered in the 

deterministic and the stochastic approach. Other constraints 

consider uncertainty in outside air temperature, uncontrollable 

load profiles, electric water heating consumption and 

photovoltaic production. The IEEE 37 bus topology is used to 

represent a typical medium voltage microgrid with active 

demand, storage and photovoltaic production within a case study 

to validate the algorithm. An annual analysis shows that the 

stochastic day ahead planning strategy reduces energy 

consumption and feeder operational costs. 

 
Index Terms— demand response, microgrids, optimal power 

flow, photovoltaics, smart grid, stochastic optimization, storage 
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 t   period 

 ij   branch 

 j   node 

 pv   PV system association 

 ul   uncontrollable load 

 cl   controllable load 

 st   storage system association 

 hvac  heating, ventilation, and Air-Conditioning systems 

 ewh  electric water heater systems 

 ext  external air temperature 

 int  internal air temperature of each house 

 w   property of water 

 d   controllable device 

 s   scenario-dependent variables 

 +   positive domain 

 -   negative domain 

0    substation node point of common coupling 

 

B. Constants: 

 ce   cost of wholesale electricity (€/MWh) 

 cc   cost of wholesale electricity plus distribution and 

transmission costs(€/MWh) 

 ccf   cost of comfort constraint violation (€/    ) 

 rij   resistance of a specific branch ( ) 

 xij   reactance of a specific branch ( ) 

     efficiency of a device 

     thermal capacity of a device (kWh/
o
C)     heat 

loss coefficient of building (kW/
o
C) 

  ̅   maximum active power value allowable (MW) 

  ̅   maximum apparent power value allowable (MVA) 

     minimum voltage constraint of grid (V) 

  ̅   maximum voltage constraint of grid (V) 

    ̅̅ ̅̅   maximum state of charge of battery (MWh) 

     minimum state of charge of battery (MWh) 

     minimum temperature (
o
C) 

     maximum temperature (
o
C) 

     water specific heat (J/g°C) 

     thermal resistance of device (
o
C/kW) 

   ̅̅̅̅     maximum degrees of under-heating tolerated (
o
C) 

   ̅̅̅̅      maximum degrees of overheating tolerated (
o
C) 

 

C. Variables: 

     active power (MW) 

     squared current magnitude (A) 

bus 0

0

bus i

i

bus j

j

bus k

k

ij jk k
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     reactive power (MW) 

     squared voltage magnitude (V
2
) 

      state of charge of a battery system (MWh) 

     temperature (°C) 

      electric hot water consumption (l) 

      inlet water temperature (
o
C) 

       desired outlet water temperature (
o
C) 

       degrees of under-heating (
o
C) 

        degrees of overheating (
o
C) 

 

I. INTRODUCTION 

t the distribution grid level, uncertainties in renewable 

generation and load consumption represent a challenge to 

network operation, namely for day ahead planning of 

Distributed Energy Resources (DERs), such as grid connected 

storage, controllable loads or photovoltaic (PV) curtailment 

strategies, implemented in  real time by a distribution 

management system (DMS). These challenges are magnified 

in microgrids, where uncertainties are higher due to minimal 

aggregation and smoothing effects. Since microgrids are more 

easily perturbed by DERs, an accurate control is needed to 

manage multiple electric storage systems, load devices and 

generation units, while ensuring a stable and reliable operation 

of the microgrid network and minimizing costs [1] [2]. 

Due to high uncertainties in load and renewable generation, 

microgrid control requires sophisticated forecasting tools and 

robust scheduling of controllable devices to guarantee power 

quality and security of supply. In particular, the control of 

individual loads, e.g. heating, ventilation and air-conditioning 

(HVAC) systems [3], brings new sources of uncertainty to the 

day ahead planning of DERs, such as ambient temperature, 

building occupancy and variations in consumption habits. This 

uncertainty has a modest impact on grid operations when 

aggregated at the distribution level but becomes relevant at the 

microgrid scale. 

Optimization algorithms have been presented in the 

literature to solve the problem of day ahead scheduling of 

microgrid dispatchable resources. Numerous examples of 

deterministic [4] [5], stochastic [6] [7] and hybrid [8] [9] 

approaches to optimal scheduling used in the presence of 

DERs and controllable loads are presented in the literature. 

Optimization methods include quadratic programming (QP) 

[10], as well as heuristic and meta-heuristic techniques [4] 

[11]. In the optimal scheduling of DERs in multi-node 

microgrids, heuristics have the advantage of enabling exact 

network constraints [4], while QP requires a convex relaxation 

of power flow equations [9]. Due to the random aspect of 

search techniques in heuristic methods, calculation time can be 

high and the global optimal is not guaranteed. However, QP 

methods perform significantly better in terms of computational 

time. Thus, when combined with techniques that guarantee 

accuracy of the power flow calculations, e. g. linear cuts [12], 

they become a better solution. 

Stochastic approaches have been used in optimal operation 

of microgrids to capture uncertainties of renewable sources 

[13]. Primarily, these strategies include either scenario trees 

[14] [7] or statistical parameters of the stochastic variables 

[15] [11] [16] that are integrated into the optimization 

problem. Monte Carlo simulation along with the distribution 

functions for generators and load are used to generate 

scenarios in [15]. Scenarios are constructed by analyzing the 

mean, standard deviation and probability density functions of 

load and generation in [11]. Upper and lower bounds on 

generation and load are considered in [16]. A scenario tree is 

developed to represent stochastic variables such as 

temperature, electricity prices and consumer occupancy 

through the calculation of quantiles and consideration of the 

probability density function (PDF) of historical data [7]. 

The day ahead operation of microgrids includes optimal 

scheduling of multiple DER technologies. Besides the 

generation and storage control solutions, demand response 

(DR) has been a valuable resource to compensate the 

variability of the renewable sources, especially through the 

control of thermal loads, such as HVAC and Electric Water 

Heaters (EWH). In fact, as shown in [8], load control can 

significantly reduce microgrid operation costs as well as CO2 

emissions. Two primary modeling strategies are presented in 

the literature for DR consideration: an aggregated model or 

individual modeling of devices. Aggregated models make 

acceptable assumptions about individual devices [14] and 

improve aggregated controllability of the microgrid, but the 

comfort of individual end users is not modeled in detail. Thus, 

individual load models become more appropriate for small 

scale applications (e.g. buildings) where a detailed comfort 

representation is required. In [9], individual load models are 

used in optimization of building operations with DR. A 

deterministic approach that considers end-user comfort 

constraints and PV for a 3 building micro-grid is detailed in 

[5]. An algorithm proposing an economic penalty for 

violations in thermal comfort constraints is presented in [7] 

however, this paper does not consider the electric network and 

instead performs only an energy balance. 

A majority of the mentioned citations take into account the 

losses in the electrical lines in a two-step process and do not 

integrate a full AC optimal power flow (AC-OPF) into the 

optimization problem [13] [11] [15]. 

This paper advances the current state of the art by 

presenting a novel method for day ahead scheduling of DR 

and DERs that has a low calculation burden while considering 

network constraints. To the authors knowledge, it is the first 

time that a full AC-OPF algorithm is used while considering 

thermal comfort constraints of end users and uncertainties in 

multiple variables. The algorithm uses the second order cone 

program (SOCP) convex relaxation of the power flow 

equations proposed in [12] to guarantee an optimal solution 

and ensure a low calculation burden. However, during periods 

of high DER injection, this relaxation can be inexact, 

therefore, linear cuts are added to the problem to guarantee 

exactness. The only other study found implementing a SOCP 

and taking into account uncertainties is [17], where only 

uncertainty in wind generation and the corresponding effects 

on network losses is considered. Here, a more realistic case for 

distribution networks is considered where uncertainties in PV 

A  
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generation, ambient temperature, EWH consumption and 

uncontrollable electric loads are taken into account.  

In the method now introduced, the flexibilities considered 

include electrochemical storage and thermal loads, such as 

electric heating or cooling loads and EWH. Individual device 

models are considered in the scheduling task as proposed in 

[9]. The constraints on the DR devices are thermal comfort 

constraints of end users as described in [18]. The integration 

of comfort constraints into an optimization algorithm has been 

proposed in [7]. However, that paper does not consider 

constraints on the network which is critical in a microgrid 

context. 

The proposed formulation merges contributions from three 

different areas of power systems optimization with primary 

contributions being: 

 a multi-period SOCP adapted to consider uncertainties 

through scenarios of generation, load and also hot water 

consumption and ambient temperature to account for 

thermal loads; 

 the optimal day-ahead scheduling of microgrid 

flexibilities, considering grid constraints, end-user 

comfort constraints, and the multi-temporal dispatch of 

different DER technologies; 

 the behind-the-meter individual loads devices modeling 

and scheduling for optimal DR strategies, constrained by 

the comfort of end-users, and integrated with the 

microgrid stochastic dispatch. 

By combining these contributions in a single stochastic AC-

OPF, the authors aim at providing a valuable discussion on the 

implications of generation and load uncertainties for 

microgrids control and the resulting effects on end-user 

comfort while considering demand side management. 

Following this introductory section, section II describes the 

novel formulation introduced by this paper. Section III 

describes a case study to demonstrate the utility of the day-

ahead scheduling strategies produced, and section IV 

discusses final conclusions. 

II. STOCHASTIC OPTIMAL POWER FLOW METHOD 

A. Methodology Overview 

This section proposes a multi period stochastic algorithm 

for the day ahead scheduling of a microgrid. It is considered 

that the microgrid includes electric storage, controllable (CL) 

thermal loads, such as residential EWH and commercial 

HVAC units, at the building level, and uncontrollable loads 

(UL) that include other electronic appliances such as the 

television, computers, washing machines, cooking equipment, 

etc. This stochastic algorithm considers uncertainties in PV 

generation, uncontrollable loads, ambient temperature and hot 

water consumption. These uncertainties are considered in the 

form of forecast scenarios which are generated from 

probabilistic forecasts taking into account the spatial and 

temporal correlations in the processes. High and low scenarios 

for each variable are selected through a scenario reduction 

strategy and are assumed equally probable as described later in 

section II C. 

The benefit introduced by the stochastic approach is 

measured by the value of the stochastic solution (VSS). This 

consists of comparing the expected value of perfect 

information (EVPI) given the stochastic solution and the 

deterministic average solution [19]. A schematic showing the 

methodology as a flow chart is shown in Fig. 1. 

 

B. Formulation 

The proposed formulation (1)-(22) is a multi-period (t) 

multi-scenario (s) optimal power flow that aims at reducing 

the day ahead microgrid operation costs through scheduling of 

batteries (       ) and controllable thermal loads, EWH (        ) 

and HVAC (         ), located at the nodes (j) of the microgrid.  
 

1) Objective function 

The operation cost function (1) considers differentiated rates 

for energy imports and exports, following the current 

regulatory mechanisms adopted by several European countries 

to promote self-consumption. Hence, the energy exports at the 

point of common coupling are remunerated at wholesale 

electricity market price, while the energy consumption costs 

are charged at the final electricity price, which corresponds to 

the hourly electricity market price with fixed rates, e. g. due to 

transmission and distribution cost. The comfort constraints of 

space heating systems are also considered in the objective 

function through a cost function associating a price penalty 

with under heating and overheating. 

    ∑ ∑ [                           ∑    (                    )
 

]
  

   (1) 

2) Power flow constraints 

The constraints of the problem include the nodal power 

balance considering different DER units (2)-(5). Equation 

(6) describes the convex relaxations of the line 

constraints. The result of each OPF calculation for each 

time step is compared to a forward backward sweep 

power flow calculation to verify that the convex 

relaxation of the line constraint equation (6) is exact. If 

the solution is not exact, linear cuts are added to the 

problem to guarantee exactness as explained in [12]. 

 

                          ∑                                        (2) 

 
Fig. 1. Flow chart of proposed methodology 



 4 

                            ∑                                 

 
  (3) 

               (                     )  (   
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           ̅
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3) Battery system constraints 

Equations (7)-(10) represent the battery limits regarding 

power and state of charge.  

 

  ̅              ̅     (7) 

                     ̅̅ ̅̅      (8) 

                          (9) 

                                   
 

   
         (10) 

4) Thermal comfort constraints 

The thermal comfort constraints associated with the 

individual HVAC and EWH controllable devices are shown in 

(12)-(19). The division of over and under heating in equation 

(20)-(22) allows for a piecewise linear penalty function of 

thermal constraint violations in the objective function. 

                           (12) 

∑         
 

          (13) 

                  (14) 

             ̅  (15) 

                     
 

  
[   (                   )

       (        )          ] 
(16) 

∑          
 

           (17) 

                    (18) 

                      
 

    
[                                ] (19) 

          ̅̅̅̅                           ̅̅̅̅        (20) 

                            (21) 

                             (22) 

These thermal equations are the first order physically-based 

load modes – considering the thermal capacity (C), resistance 

(R), and heat loss constant (α) - to describe the temperature 

behavior of thermal systems. 

5) Stochastic variable and scenario generation 

Controllable variables include the active power of EWH for 

residential clients and HVAC thermal loads for commercial 

clients (         and          ) and the active power of battery 

systems (       ). A part of the load is considered to be 

uncontrollable (       ). A table summarizing the controllable 

variables, stochastic variables and scenario dependent 

variables is found in Table I.  

The stochastic variables are represented in the linear 

constraint matrix of the optimization problem  through parallel 

multi-period scenarios. This technique to integrate 

uncertainties into and OPF is classified as a probabilistic 

scenario-based technique for taking into account uncertainties 

in power systems as classified in [20] a.k.a. a deterministic 

equivalent formulation of the stochastic problem. Here we 

apply the approach proposed. Two main steps are necessary, 

the generation of scenarios and the reduction of scenarios. 

That paper uses a Monte Carlo scenario generation method 

applied to wind turbine generation and load profiles based on 

[22]. The scenario reduction technique that is used is based on 

probabilistic distance and fast-forward selection as described 

in [23]. 

 
Here we use the same scenario generation technique as [22] 

for the UL, ambient temperature and EWH scenarios. A three-

month historical period is used to calculate the quantiles and 

the covariance matrix to generate normal Gaussian scenarios. 

This technique is less effective when applied to PV 

production scenarios due to the fact that PV production profile 

has a very strong correlation associated with the irradiation 

which depends on the course of the sun during the day. This 

strong correlation with irradiation may dilute the other causes 

of variation in PV production such as cloud cover. The PV 

production profiles were therefore normalized by the clear sky 

index before applying the scenario generation method. This 

allows for a more precise analysis of inter-temporal variation 

due to cloud cover or other phenomena that are not correlated 

with irradiation. For further discussion on the necessity to 

stationnarise PV production time-series when modeling 

spatio-temporal correlations and also a more sophisticated 

stationnarisation techniques for that purpose, refer to [24]. 

It is noted that a limitation of the approach in [21] concerns 

the fact that the scenario generation techniques does not 

consider possible correlations between the stochastic variables 

considered. This could be part of the perspectives of the 

current work. The stochastic OPF optimization, through the 

use of multiple scenarios as input, aims at finding a solution 

that provides “hedging” to the considered physical system 

against uncertainties. This means that the system is prepared 

to face more situations than when optimized through the 

simpler deterministic approach. This strategy may 

consequently involve higher costs. To be able to evaluate this 

risk for higher costs we have adopted a simple but intuitive 

scenario reduction method that is based on choosing the 

“extreme” upper and lower scenarios resulting from the 

scenario generation step and then combine these opposite 

situations that these scenarios reflect. This can be considered 

as a pessimistic approach that could lead to amplified 

“hedging” costs compared to the deterministic case. 

Depending on the system this does not necessarily mean that 

there is no margin to reduce costs through the deterministic 

approach. It is a matter of tradeoff between the hedging cost 

TABLE I 
VARIABLE TYPES 

Type Applicable Variables 

Controllable Variables Pst (Pst+, Pst-), Pcl (Phvac, Pewh) 

Scenario Dependent Variables Pij, ℓij, Qij, ϑi 
Stochastic Variables Ppv, Pul, vd,t, θext 
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mentioned above and the impact of the deviations from a 

deterministic schedule. The overall approach remains though 

generic as one can replace by scenarios resulting from more 

sophisticated reduction method (i.e. from in [23]) as done by 

the authors in [21] More precisely, here, three scenarios were 

selected based on the total cumulative values of the day. The 

three scenarios are chosen by selecting the maximum, 

minimum and closest to average value of the cumulative 

values in order to produce a high, low and average scenario 

for each variable. Performance Evaluation of Stochastic 

Method 

C. Performance Evaluation of Stochastic Method  

The stochastic approach is evaluated through VSS and 

EVPI. To calculate these performance indicators, the day-

ahead schedules obtained in the deterministic approach and 

those obtained in the stochastic approach are benchmarked 

against a perfect forecast for real day-of conditions. VSS is the 

difference between the stochastic method and the deterministic 

one. The expected value of perfect information, EVPI, is the 

absolute difference between the expected value with perfect 

information, i.e., under a perfect forecast, and the expected 

value without perfect information – either the stochastic 

solution or the deterministic solution. 

When evaluating each of these cases, the set points for 

EWH, HVAC and battery power are implemented with no 

intra-day adjustments for the real conditions. The thermal 

equations are used to simulate the evolution of temperatures in 

the buildings and in the hot water tanks. A forward backward 

sweep power flow calculation is performed to calculate the 

current and voltage of each node at each time step. Energy 

costs, grid constraint violations and thermal comfort profiles 

are then analyzed to assess the comfort of end-users in 

comparison with the economic performance of the 

optimization strategies. 

III. CASE STUDY 

In this section, the proposed methodology presented above 

is applied to a medium voltage IEEE 37 node network (4.8 

kV). Even though this circuit is published as a medium voltage 

distribution grid in the US, the feeder topology is used here as 

a medium voltage microgrid for demonstrative purposes 

because it is a well-documented grid feeder. A map of the grid 

topology can be found in Fig. 2.  

A. Generation and Load Data 

The considered network is assumed to be located in the area 

of Grenoble city, France. Load profiles including EWH, 

HVAC and uncontrollable loads are generated using a bottom 

up load simulator detailed in [23]. This simulator produces a 

group of individual commercial and residential building load 

profiles. These profiles are generated to be statistically 

accurate representations of residential and commercial 

customer proportion, electric heating, building surface area 

and population using the INSEE building inventory database 

of France, and distributed randomly across the network. The 

medium voltage feeder is assumed to have a 5 MVA 

transformer serving 5 low voltage substations for a total of 

312 clients, of which 300 are residential and 12 are 

commercial. Of the 300 residential clients, 49 residential hot 

water heaters are controllable. It was assumed that all 12 

commercial clients have controllable HVAC systems. In 

addition, a total of 1.2 MW uncontrollable load, 155 kW of 

controllable EWH and 308 kW of controllable HVAC are 

considered. 

 
A total capacity of 2.62 MW of PV is distributed over 5 

nodes, with production curves based on a real PV plant in 

Grenoble [24], normalized by the nominal power installed in 

each node. In addition, all 5 PV nodes are assumed to have a 

battery system with 250 kW nominal power and 500 kWh 

nominal capacity, totaling 1.25 MW and 2.5 MWh. The UL, 

CL and DER characteristics for each node can be found in 

Table II. The parameters used for the HVAC and EWH units 

are as follows: for EWH, the maximum power per device is 

between 2.0-6.0 kW, thermal capacities and heat loss 

coefficients are within 0.0877 – 0.2925 kWh/
o
C and 0.0004-

0.0012 kW/
o
C, respectively. Cold water intake temperature 

(θint) and usage temperatures (θout) are 12
o
C and 65 

o
C, while 

temperature limits are between 60 
o
C and 80 

o
C. For 

individual buildings HVAC systems, the maximum power is 

between 2.44 – 158.67, C and R values are within 0.2244 – 

1318.4959 kWh/
o
C and 0.0127-21.0012 

o
C/kW, respectively. 

The comfort temperatures are between 19 
o
C and 26 

o
C. The 

cost of discomfort for under heating and overheating was 

considered to be 10€/°Ch or 1€/°Ch for different case studies. 

The case study uses historical variable market prices for 

electricity cost in France for 2012.  

 
Fig. 2. Medium voltage microgrid case study feeder. C indicates a node 

with customer load, PV + B indicates nodes with PV and batteries 

TABLE II 
UL, CL AND DER CHARACTERISTICS PER NODE 

Node 0 6 10 12 14 15 19 23 28 29 32 

Average UL (kW) 28 - 95 62 95 64 76 66 - 21 8 

Maximum UL (kW) 68 - 212 156 212 155 183 159 - 52 20 

Nominal PV Power (kW) - 313 - 819 428 - 518 - 542 - - 

Nominal Battery Power (kW) - 250 - 250 250 - 250 - 250 - - 

Nominal Battery Capacity (kWh) - 500 - 500 500 - 500 - 500 - - 

Number of EWH devices 4 - 7 5 4 4 6 6 - 10 3 

Number of HVAC devices 0 - 0 2 1 2 2 1 - 3 0 
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B. Results 

The results presented below focus on three primary topics: 

i) economic benefit of using a stochastic approach over a 

deterministic one, ii) economic benefits of combining 

stochastically managed storage devices with controllable loads 

and iii) thermal comfort improvements with stochastic 

techniques.  

The annual operational costs with microgrid connected 

storage devices are calculated using both the stochastic and 

deterministic day-ahead management strategies. The 

deterministic case (denoted as “Det” for future Figures) uses 

the forecast that corresponds to the average daily cumulative 

value of the available forecasts for all stochastic variables. The 

stochastic case (denoted as “St” for future Figures) uses 

combinations of high and low generate forecasts for each 

stochastic variable of Table I. Multiple case studies are tested 

to quantify the effect of each stochastic variable on the total 

annual operational cost. The test cases consider high (H) and 

low (L) scenarios for between one and four of the four 

stochastic variables to analyze the effects of each stochastic 

variable independently as well as their compounded effects. If 

the high and low scenario is not used for a stochastic variable 

the average scenario is used (M). Table III details the labels 

for each case study used in the following figures.  

 
Fig. 3 shows the stochastic performance measures of the 

annual operational cost. The case study with CL in Fig. 3 

show that stochastic strategies result in lower annual costs. 

However, no major economic advantage is seen in using 4 

scenarios instead of 2. In fact, the 2 initial scenarios already 

represent extreme the conditions of PV and UL and they have 

a dominant impact in the optimization. The added importance 

of the method presented in this paper is the integration of more 

flexibility in a microgrid operation though the active control of 

loads. Individual appliance schedules are calculated by the 

optimization algorithm for 49 EWH and 12 HVAC systems. 

The combination of microgrid connected storage and DR 

significantly increases the controllability of the microgrid 

loading characteristics. 

As seen in Fig. 3, when integrating controllable load into 

the optimal scheduling problem, annual costs are reduced. 

This reduction is primarily due to shifting HVAC and EWH to 

less expensive periods. 

The case study „St w T 10 €‟ and „St w T 1 €‟ do not only 

consider uncertainty in PV and UL but they also consider 

uncertainties in outside temperature (T) and EWH 

consumption. The difference between these two case studies is 

the cost penalty for violating comfort constraints,     is 1 or 

10 euros. With higher cost penalties for comfort constraints, 

annual costs increase due to the more conservative 

management of thermal loads by the stochastic algorithm. This 

results in the stochastic schedule having higher annual costs 

than the deterministic schedule. In general the stochastic 

scheduling results in lower annual costs except when 

uncertainties in temperature are considered. 

An example day profile of the different battery and 

controllable load schedules for the deterministic and the 

stochastic strategies is shown in Fig. 4. The stochastic day 

ahead scheduling proved to reduce costs significantly when 

simulated with real day of conditions. This improvement can 

be explained by the transition periods between the hours 6 to 9 

and 14 to 19. This improvement can be explained by the 

inability of the deterministic approach to respond to situations 

where PV production deviates from the predicted average. The 

deterministic strategy consisted in charging the battery 

between 6 and 9 AM, taking advantage of the early morning 

on-site PV generation. However, the actual generation is 

significantly lower, jeopardizing the deterministic economic 

solution in the subsequent periods.  

In contrast, the stochastic approach took into account the 

possibility of low PV generation therefore scheduling a more 

conservative discharge during this period. The battery is 

therefore discharged during the hours 10-13, where low 

generation of PV is expected (in low scenario) and the 

electricity price is high. When the real conditions result in low 

PV production, the deterministic schedule incurs a high 

operational cost during the period 10-13. 

From the analysis performed, a tradeoff was observed between 

annual operational costs and thermal comfort of the users. 

This tradeoff can be represented as a Pareto-optimality state 

with annual operational costs and end user comfort defining 

the Pareto-frontier.  

 

 
Fig. 3. Annual VSS (top) and EVPI (bottom) costs of case studies 

TABLE III 

CASE STUDY LABELS 

Scenario ST NO CL 2 S ST NO CL 4 S ST W T 10 € ST W T 1 € ST 2 S ST C ST PV ST 4 S 

1  𝑝𝑣
𝐿  𝑢𝑙

𝐻   𝑒𝑤 
𝑀 θ𝑒𝑥𝑡

𝑀   𝑝𝑣
𝐿  𝑢𝑙

𝐻   𝑒𝑤 
𝑀 θ𝑒𝑥𝑡

𝑀   𝑝𝑣
𝐿  𝑢𝑙

𝐻   𝑒𝑤 
𝐻 θ𝑒𝑥𝑡
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 As shown in Fig. 5, considering uncertainties in ambient 

temperature is a Pareto improvement for end user comfort in 

HVAC loads while not considering these uncertainties is a 

Pareto improvement for annual costs. Two different values for 

cost penalties were also tested, 1 €/°Ch and 10 €/°Ch. With 

higher cost penalties for temperature violations, annual costs 

were higher but fewer comfort violations resulted. In all cases 

the stochastic algorithm results in lower annual operational 

costs for the same number of comfort constraint violations 

when comparing stochastic and deterministic approaches. 

C. Algorithm Performance 

The algorithms presented in this paper have been implemented 

in Python and solved using the MOSEK SOCP solver on an 8-

core, 3.4 GHz CPU. Due to the fact that the stochastic 

algorithm takes into account multiple scenarios the calculation 

time of this algorithm is higher. A performance analysis was 

completed to compare the time of calculation for the 

deterministic algorithm and varying amounts of scenarios in 

the stochastic algorithm. The average calculation time of 

stochastic and deterministic methods for 24 coupled time steps 

is shown in Table IV. Therefore the stochastic algorithm is 

about 3 times slower with the consideration of 2 scenarios and 

6 times slower with the consideration of 4 scenarios. 

 

IV. CONCLUSION 

This paper presents a multi-temporal stochastic algorithm 

that performs a centralized day-ahead scheduling of a 

microgrid including controllable loads and microgrid 

connected storage. The algorithm permits the scheduling of 

the behind-the-meter individual loads. It considers grid 

constraints and end-user comfort constraints through an OPF. 

It integrates a multi-period SOCP adapted to consider 

uncertainties through a scenarios approach. Scenarios of the 

different stochastic variables are generated based on a Monte 

Carlo technique that takes into account spatio-temporal 

correlations in the variables. The stochastic optimization 

approach is compared to a deterministic one to quantify the 

benefit of taking into account uncertainty for the day-ahead 

scheduling of controllable loads and battery systems. The use 

of the stochastic algorithm resulted in a reduction in the cost 

of operating the grid for the case study presented in 

comparison with the deterministic strategy. However, given 

that the stochastic approach permits hedging over a higher 

number of scenarios for the input variables to anticipate risks, 

the cost reduction is moderate. Significant savings can be 

achieved by harnessing DR in day-ahead scheduling of 

microgrids as shown in this paper. However individual devices 

and end user comfort constraints must be considered. The 

primary conclusions of this paper are: i) considering 

uncertainties in UL and PV during day ahead scheduling can 

decrease annual operational costs; ii) considering DR in 

microgrids decreases annual costs; iii) considering detailed 

 
Fig. 4. Example day where stochastic scheduling results in lower 

operational costs than the deterministic one. From top to bottom: cost of 

electricity (1), PV scenarios and real PV production (2), uncontrollable 
load (UL) scenarios and  real UL (3), stochastic and deterministic battery 

schedule (4), stochastic and deterministic controllable load schedule (5). 

 
Fig. 5. EVPI vs comfort constraint violations of HVAC and EWH systems 

TABLE IV 

ALGORITHMIC PERFORMANCE 

Analysis 
Number of 

Scenarios 

Coupled 

Timesteps 

CL 

present 

Time (s) 

Deterministic 1 24 No 3 

Stochastic 2 24 No 8 

Stochastic 4 24 No 14 

Deterministic 1 24 Yes 7 

Stochastic 2 24 Yes 15 

Stochastic 4 24 Yes 45 
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DR models and end user comfort constraints is important to 

effectively implement DR without affecting end user comfort. 
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ABSTRACT 

Renewable energy (RE) integration into distribution grids 
is becoming more common in the context of the energy 
transition. The management of wind or solar generation 
due to their variability and low predictability are 
challenging for distribution system operators (DSO). To 
that may be added uncertainties related to electric load 
profiles. The role of flexibility, coming from decentralized 
storage devices, will be important for DSOs trying to 
manage uncertain loads as well as high levels of RE 
penetration. The introduction of automation and smart 
metering in distribution grids allows for the optimized 
management of storage devices to maximize the 
capability of current infrastructure to integrate RE 
generators. These optimized management strategies can 
be calculated with optimal power flow (OPF) algorithms.  
This paper uses a convex relaxation of the power flow 
equations to expand the multi-temporal deterministic 
approach presented in [1] to a stochastic one. The 
stochastic algorithm implies the integration of a scenario 
tree to plan the charging and discharging schedule of 
batteries one day in advance. When comparing 
deterministic and stochastic operation planning 
strategies, the stochastic method annually increases total 
economic benefit by 3.1% while requiring lower annual 
cycling of the battery therefore increasing battery life. 

INTRODUCTION 

Renewable energy generators are becoming more 
common in the distribution system as a result of the 
transition from traditional electric generation to more 
sustainable technologies. These decentralized generators, 
such as photovoltaic (PV) systems, introduce new 
technical difficulties for distribution system operators 
(DSO) including bi-directional power flow, over current 
and voltage profile shifting. Smart meters are gaining 
popularity as a solution to improved visibility and 
controllability in distribution grids. The automation of 
distribution grids can allow for the optimization of 
existing grid architecture to avoid unnecessary 
infrastructure upgrades.  
The new possibility to control decentralized generators 
and loads in the distribution system requires new and 

innovative management strategies. Optimal power flow 
algorithms are effective at calculating optimal set points 
for decentralized controllable devices while guaranteeing 
that no power quality requirements are violated. These 
types of algorithms can take into account the voltage and 
current constraints of an electrical distribution grid while 
minimizing an overall cost function. 
At the distribution grid level, the uncertainties of 
renewable energy production and electric loads are high 
due to minimal aggregation effects. These uncertainties 
introduce a challenge for DSOs to optimize their 
controllable devices. Management strategies have been 
employed by DSOs to optimize decentralized controllable 
devices under uncertainty. These management strategies 
include real time flexibility of the system through grid 
connected storage or PV curtailment strategies managed 
by a real time distribution management system (DMS). 
However, real time control of a distribution system can 
imply sophisticated communication networks. This 
flexibility can also be scheduled on a day-ahead basis to 
reduce the need for real time power flow control. 
Stochastic optimization has been presented in the 
literature as effective for planning operational strategies 
of controllable grid connected devices under uncertainty. 
For example reactive power compensation under 
uncertainty was explored by using statistical probability 
distribution curves and a Monte Carlo sampling 
technique to represent prediction errors in an OPF 
algorithm [2]. A similar probability distribution using 
multi-stage stochastic programming with a chance-
constrained optimization problem uses probabilistic 
penalty constraints associated with prediction errors [3]. 
However, these techniques imply a precise estimation of 
the distribution profile of errors associated with each 
forecast. 
The use of scenarios to take uncertainties into account 
requires less detailed forecast data. Accounting for 
uncertainties through scenarios is present in the literature. 
For example, a simulation of a deterministic scenario and 
associated forecast limits of load and PV for a three-
phase distribution grid is presented in [4]. This analysis is 
a single time step analysis performed for each hour of the 
day. This daily analysis does not take into account 
variables that have temporal dependencies. A multi-
temporal algorithm is necessary to consider time 
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dependent variables such as storage devices and 
controllable loads. 
Multi-temporal stochastic OPF can 
distribution grids to analyze the benefits of grid 
connected storage devices under uncertainty. 
the integration of multi-temporal and multi
aspects into an OPF algorithm can increase exponentially 
the size of the problem. Therefore, intelligent scenario 
selection and a certain decoupling are
effectively resolve this type of problem
analysis. There exist few algorithms that take into 
account temporal dependencies and uncertainties 
same time for the distribution grid. 
This paper presents a stochastic OPF algorithm whose 
structure allows the integration of scenarios and multi
temporal aspects for day ahead planning of st
devices. It utilizes convex relaxations of the power flow 
equations in the form of a second order cone program 
(SOCP) and iterative cuts to guarantee exactness as 
described in [5]. Just as the convex relaxations exploit the 
radial geometry of distribution grids, a radial geometry is 
also used for the scenario tree. This innovati
proposes a simple scenario generation strategy based on 
historical data that shows a higher performance in 
comparison to a deterministic day ahead planning
strategy. 
The paper organization includes the definition of the 
algorithm in section 2, the algorithmic performance in 
section 3, the demonstration of such an algorithm for a 
French case study in section 4 followed by the case study 
results in section 5 and final conclusions in section 6.

STOCHASTIC OPTIMAL POWER FLOW 
ALGORITHM 

SOCP Optimization Problem Formulation
 
The SOCP optimization objective function is defined in 
eq. (1). 
 

. ∑ , | , | ∑ ∑

, , , ,  

Where the definition of node specific variables will use 
the convention below: 

   

,  is the price of electricity for the time step 
active power at the substation at time step 
resistance of branch ij, ℓ ,  is the square of the magnitude 
of the current on branch ij at time 
maximum PV injection at node j at time step 
the actual injection at node j at time step 
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Formulation 

The SOCP optimization objective function is defined in 
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 (1) 

Where the definition of node specific variables will use 

 

is the price of electricity for the time step t, ,  is the 
power at the substation at time step t,  is the 

is the square of the magnitude 
at time t, , ,  is the 

at time step t,  , ,  is 
at time step t, and   , ,  is 

the losses of the battery system at node 
 
The optimization constraints include the PV power limits 
eq. (2), PV apparent power limits eq.
power flow equations eq. (5)
the current equation eq. (8) –
eq. (10), battery power constraints eq.
constraints associated with the 
eq. (13). 
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where , ,  is the apparent power injection of the PV 
system at time step t, ̅ ,  
power rating of the PV inverter,
power of the PV system at time step 
power of branch ij at time step 
node j at time step t, , ,  is the active power injection of 
the battery system at node j
reactive power of branch ij 
reactive load at node j at time step 
of branch ij, , ,  is the reactive power injection of the 
PV system at node j at time step 

voltage magnitude at node j at time step 
maximum voltage,  is the minimum voltage, 
is the state of charge of the battery system at node 
time step t for scenario s. The temporal and scenario 
dependencies are a result of eq. (12).
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the losses of the battery system at node j at time step t. 

The optimization constraints include the PV power limits 
, PV apparent power limits eq. (3) – eq. (4), the 

(5) – eq. (7), the relaxation of 
– eq. (9), the voltage limits 

, battery power constraints eq. (11) and the 
constraints associated with the battery capacity eq. (12) – 

 (2) 

 (3) 

 (4) 

, , , , , (5) 

, , ,  (6) 

, , (7) 

 (8) 

 (9) 

 (10) 

 (11) 

, , , , , ,  (12) 

 (13) 

is the apparent power injection of the PV 
 is the maximum apparent 

power rating of the PV inverter, , ,  is the apparent 
em at time step t, ,  is the active 

at time step t, , ,  is the active load at 
is the active power injection of 

j at time step t, ,  is the 
 at time step t, , ,  is the 

at time step t,  is the reactance 
is the reactive power injection of the 
at time step t, ,  is the square of the 

voltage magnitude at node j at time step t,  is the 
is the minimum voltage,  , , ,  

is the state of charge of the battery system at node j at 
. The temporal and scenario 

a result of eq. (12). 
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Scenario Generation and Structure
 
Scenarios are generated for the PV production and load 
profiles for each node. The scenarios are generated by 
using historical PV production and load 
regression is completed using a historical 
period of 60 days to then predict the 25
quantile of PV production and load profile for the next 
two day period. The deterministic approach analyzes a 
daily period consisting of 24 coupled time steps 
using the 50th percentile for the PV production
profiles for the predicted profiles. 
approach combines the 25th and 75th quantile scenario
PV and load profiles to create 4 combination scenarios.
These combination scenarios are then used i
with the 50th quantile scenario to generate four stochastic 
OPF problems, here after called calculation 
Within each of these four calculation blocks
target period and a scenario period as shown by the time 
steps in black in Figure 2. The target period is defined as 
a period where there is only one variable representing the 
power of each battery system or controllable load
also corresponds to the 50th PV quantile and 50
quantile in all scenarios. The scenario 
characterized by multiple optimal values of the
power injection or controllable load power 
step. The physical meaning of multiple optimal values of 
the controllable power injection is the optimal power 
injection for each unique scenario. The target is coupled 
with each independent scenario therefore finding the 
optimal injection of the target period for all following 
injection possibilities. These blocks include using the 50
quantile for the target period and the 4 combinat
scenarios for the scenario period. The target period for 
the first three blocks is 6 hours while the target period for 
the last block is 12 hours. The deterministic problem 
scenario tree is found in Figure 1 while the stochastic 
OPF scenario tree can be found in Figure 
 

 
Figure 1: Deterministic analysis with a single scenario 

using the 50th quantile of PV and load profiles
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or controllable load power for each time 
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include using the 50th 
quantile for the target period and the 4 combination 

The target period for 
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deterministic problem 
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Figure 2: Stochastic analysis with a four dimensional 
scenario tree using 25th, 50th

and load profiles

After a scenario tree splits, the four combination 
scenarios are considered to be independent. Therefore the 
final optimal charging schedule of the battery is 
composed of the solution calculated during the target 
period for each block. For the deterministi
target period is the same length as the total simulation 
period. Therefore only one problem is solved during the 
deterministic algorithm. The stochastic 
four different stochastic problems taking into account 
critical periods where scenarios could be significantly 
different. The coupling between the four blocks is done 
by setting the state of charge and power of the battery 
systems at the end of one target period equal to the 
time step of the next block’s target period. 
optimal charging schedule is composed of the target 
periods of each block. 

ALGORITHMIC PERFORMA

An annual analysis is performed to calculate the annual 
benefit possible from using a stochastic day ahead 
scheduling in comparison to the de
scheduling. The algorithmic performance of the 
deterministic approach and the stochastic approach are 
shown in  
 
Approach Coupled time steps
Deterministic 24
Stochastic 24
 
The deterministic algorithm has a
in comparison to the stochastic algorithm.
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: Stochastic analysis with a four dimensional 

th and 75th quantiles of PV 
and load profiles 

After a scenario tree splits, the four combination 
scenarios are considered to be independent. Therefore the 
final optimal charging schedule of the battery is 
composed of the solution calculated during the target 
period for each block. For the deterministic problem, the 
target period is the same length as the total simulation 
period. Therefore only one problem is solved during the 
deterministic algorithm. The stochastic algorithm solves 
four different stochastic problems taking into account 

where scenarios could be significantly 
different. The coupling between the four blocks is done 
by setting the state of charge and power of the battery 
systems at the end of one target period equal to the first 
time step of the next block’s target period. The final daily 
optimal charging schedule is composed of the target 

ALGORITHMIC PERFORMANCE 

An annual analysis is performed to calculate the annual 
benefit possible from using a stochastic day ahead 
scheduling in comparison to the deterministic day ahead 
scheduling. The algorithmic performance of the 
deterministic approach and the stochastic approach are 

Coupled time steps Time (s) 
24 3.4 
24 31.1 

The deterministic algorithm has a lower calculation time 
comparison to the stochastic algorithm. 



 24th International Conference on Electricity Distribution

 

CIRED 2017  

An example urban electric grid in France was studied to 
demonstrate the use of the algorithm. The medium 
voltage distribution grid feeder is composed of 137 nodes 
with a nominal voltage of 30 kV and is assumed to be 
located in Nice, France. A map of the gr
be found in Figure 3. 
 

Figure 3: Grid topology with low voltage substation 
connections of medium voltage urban feeder in 

France. 

Generation and Load Profiles 
 
Electric load profile data was simulated with a bottom up 
load simulator detailed in [6] for each low voltage 
substation. A statistically accurate representation of 
residential and commercial customer proportion, electri
heating, living surface area and population was simulated 
using the INSEE building inventory database of France. 
The location of each load profile was determined 
randomly due to the fact that no grid load data was 
available. The transformer connecting th
voltage feeder and the high voltage grid is an 8 MVA 
transformer serving 21 low voltage substations. Load 
profiles aligning with meteorological data in Grenoble
France indicated a peak load of 3.0 MW during the 
summer and 7.7 MW during the winter 
load of respectively 2.8 MW and 4.2 MW.
production data was based on the normalized real 
production of a PV plant in Grenoble France [7].
 
An amount of 20 PV systems and 20 battery systems 
were assigned to 20 nodes, a majority were chosen to be 
the same nodes as the nodes hosting low voltage 
substations. The size of these systems was chosen 
randomly to be between 35-250 kW. Characteristics of 
the final load profile nodes can be found in
PV size information can be found in Figure 5
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using the INSEE building inventory database of France. 
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production data was based on the normalized real 
production of a PV plant in Grenoble France [7]. 
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Figure 5: Nominal power of PV systems 
indicated node

 

 

 

 

 

 

Figure 6: Nominal power and capacity of battery 
systems installed at indicated node

RESULTS 

An annual analysis was performed
effectiveness of day ahead planning for storage devices 
with stochastic and deterministic techniques. An example 
detailed profiles of the charging and discharging schedule
for node 86 can be found in Figure
the different charging profiles
and deterministic algorithms. 
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Figure 6: Nominal power and capacity of battery 
systems installed at indicated nodes 

analysis was performed to compare the 
effectiveness of day ahead planning for storage devices 
with stochastic and deterministic techniques. An example 

of the charging and discharging schedule 
Figure 7. These profiles show 

profiles solved by the stochastic 
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Figure 7: Charging schedule for July 11, 2012 of 
stochastic and deterministic planning methods (top) 

and associated load profile, PV production and 
market price (bottom) 

As seen by the figure above, the stochastic battery 
charging schedule is more conservative using the battery 
less during the day. While the number of
the battery systems are lower in the stochastic case study 
the economic annual benefit is higher as seen in Table
 
This table shows that stochastic day ahead planning not 
only increases the battery life by decrea
battery cycles but also increases annual e
by 3.1 %. 
 
Table 1: Comparison of stochastic and deterministic 

charging schedule annual performance

Algorithm Energy 
(MWh) 

Cost 
(M€) 

Deterministic 30.02 1441 
Stochastic 30.65 1396 
 

CONCLUSION 

This paper has presented two day
operations scheduling for a distribution grid: one 
deterministic method and one stochastic method. These 
two methods are then compared quantifying the benefits 
of using stochastic analysis in distribution grid for storage 
operations management. The primary difference between 
the stochastic and deterministic analysis is that the 
stochastic algorithm calculated a more conservative use 
of the battery systems. This conservative usage decreases 
the number of cycles per year of the battery while 
increasing economic benefit by 3.1%. Another advantage 
of this type of algorithm is that the quantile regression 
method used to calculate the scenarios 
calculation burden and requires a short historical data set 
of only three months. Future work cou
improving the scenario generation method to be more 
precise and integrating parallel programming to decrease 
the calculation time. 
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Abstract—The detailed modeling of distribution grids is ex-
pected to be critical to understand the current functionality limits
and necessary retrofits to satisfy integration of massive amounts
of distributed generation, energy storage devices and the electric
consumption demand of the future. Due to the highly dimensional
non-convex characteristics of the power flow equations, convex
relaxations have been used to ensure an efficient calculation
time. However, these relaxations have been proven to be inexact
during periods of high RES injection. In this paper additional
linear constraints were introduced in the power flow formulation
to guaranty an exact relaxation. This convex relaxation is then
applied within a multi-temporal algorithm in order to evaluate
the benefits of storage grid integration. The case study of a French
medium voltage feeder is studied to evaluate the maximum
capacity of the grid to host RES sources and the advantages
of storage systems in reducing curtailment of RES.

I. INTRODUCTION

The electric distribution system is critical for energy secu-
rity and economic stability. With the exploration of new en-
ergy production solutions including renewable energy sources
(RES) and associated storage devices, the architecture and
functionality of the current distribution grid has been a subject
of high interest. For example, a renewable energy source
could include wind turbines, hydro turbines or photovoltaic
panels. The simulation of current functionality limits with
new decentralized renewable energy generation can in turn
indicate the advantages of the automation and control of
components in the distribution grid. This automation and
control is typically labeled as an active distribution system.
The added control possibilities of an active distribution grid
can allow for a high capacity of decentralized generators
to be installed without major infrastructure upgrades. The
capacity of a grid to integrate decentralized generators without
violating operational limits can be called a distribution grid
hosting capacity. In order to quantify the hosting capacity
of a distribution grid, detailed AC power flow models are
necessary. However, for AC power flow algorithms to be useful
and applicable, computation time must be optimized.

There exists many different techniques of AC power flow
modeling. However, power flow calculations are non-linear,
non-convex and highly dimensional, which can be extremely
computationally intensive. Existing power flow algorithms in-
clude the forward/backward sweep, Newton Raphson method

[1], [2], fast-decoupled load-flow method [3], [4], z-bus matrix
construction method [5], and loop impedance method [6],
[7]. The quantification of the current hosting capacity of the
electric grid is evaluated in [8]. As noted within this study,
possible strategies to increase this current hosting capacity
include curtailment and dynamic line rating. Other strategies
well explored in the literature include the use of storage
elements [9].

The development of smart grid solutions and grid au-
tomation has increased the passive hosting capacity by con-
trolling certain components during critical times. However,
management algorithms for optimal control must resolve this
highly dimensional non-convex power flow problem. Convex
optimum power flow relaxation algorithms have been devel-
oped to optimize the controllable components while ensuring
algorithmic efficiency as seen in [10], [11]. Heuristic methods
have also been explored to solve the non-convex power flow
equations as seen in [12]. However, heuristic algorithms often
require a larger calculation burden as noted in [13] when
compared to convex relaxation algorithms. The family of
convex relaxation algorithms that is most commonly used
for distribution grids is called a Quadratically Constrained
Quadratic Program (QCQP). In multiple studies, the non-
convex power flow equations have been cast as a QCQP as
shown in [14], [15]. Within the QCQP family, two convex
relaxation algorithms exist including the Second-Order Cone
Program (SOCP) or the Semi-Definite Program (SDP). An
SDP convex relaxation has been proved to be exact under
certain conditions by [16]. While an SOCP relaxation has also
proved to be exact under certain conditions as stated in [17],
[10], [18]. However, these relaxations have been proven to be
inexact during periods of high renewable energy production
feeding into the grid due to elevated line losses [19]. In order
to determine the hosting capacity of a distribution grid, it is
critical to have a precise and accurate calculation methodology
when RE production is high. An example of this difficulty
could be high photovoltaic (PV) production during the summer
season. In order to overcome the challenge of inaccurate
results at periods of high PV injection, [19] presents an
AC optimum power flow algorithm that integrates linear cuts
implemented in a iterative fashion to ensure an exact and
feasible relaxation of the power flow equations. This single



phase AC optimum power flow algorithm minimizes losses
in the system, while also minimizing the distance between
the curtailed production and the real PV production capacity.
This methodology allows for the instantaneous assessment
of grid operational limits with a certain PV injection and a
certain consumption. However, this algorithm does not allow
for the assessment of time dependent components such as
storage devices. In contrast to the literature, the consideration
of multiple time steps permits to properly assess the impact
of storage since decisions for charging/discharging involve
temporal dependencies. Here, the second order cone program
(SOCP) convex relaxation algorithm will be implemented
using the same linear cuts in a multi-temporal application.
The advantage of a multi-temporal problem formulation is the
optimization of the charging and discharging schedule of a
given time period, here between 12-96 consecutive time-steps.

The importance of multi-temporal coupling in an optimum
power flow algorithm is directly related to the evaluation of
the role of storage within an active distribution network. An
alternative solution to curtailment on the RES generation is
the storage of this energy in order to mitigate grid constraint
violations. This stored energy can then be later used to mini-
mize the high consumption peak periods. This multi-temporal
coupling is critical in order to evaluate the technical constraints
of the storage elements and the possible benefits. In this
paper, an example active medium voltage distribution grid will
be modeled in order to understand the existing RES hosting
capacity with curtailment in comparison with centralized and
decentralized storage options. This multi-temporal algorithm
will allow the quantification of storage element advantages and
their optimum placement.

II. PROBLEM FORMULATION

A. Power Flow Model
Two different sets of equations can be used within

a power flow model, the bus injection model (BIM) or
the branch flow model (BFM). While both models can
be effective for various applications, the BFM system
of equations will be used due to better convergence
characteristics as explained in [10] specifically in relation
to a radial network topology. Let the labeled nodes i,
j and k be oriented as described in the figure below.

nodeiq
branchij

nodejq
branchjk

nodekq- -

When considering a radial distribution system with
decentralized PV generation and decentralized storage
elements, the power flow equations can be written as shown
below.

Pij = Pload,j +
n∑

k=1

Pjk + rijI
2
ij + Ppv,j + Pst,j (1)

Qij = Qload,j +
n∑

k=1

Qjk + xijI
2
ij +Qpv,j +Qst,j (2)

Equation (1) and (2) describe the balance of power from
the upstream and downstream branches where Pload, Ppv ,
and Pst are respectively the instantaneous consumption, PV
production and battery storage charge or discharge at a given
timestep. Pjk, rjk, Qjk,xjk and I2ij are respectively the
power, the resistance, the reactive power, the reactance and
the current associated with the branch jk. Qload, Qpv , and
Qst are respectively the instantaneous reactive consumption,
PV reactive production, and battery reactive power values. The
voltage at each node can be calculated by equation (3).

|Vj |2 = |Vi|2 − 2(rijPij + xijQij) + (r2ij + x2ij)I
2
ij (3)

where |Vj | is the voltage magnitude at node j. The current of
each branch is calculated as shown in equation (4).

I2ij =
P 2
ij +Q2

ij

|Vi|2
(4)

B. System Constraints

The system constraints of an electrical distribution network
include maximum and minimum voltage limits, maximum and
minimum current limits, and operational limits imposed by
individual components. The network voltage and current limits
can be described as shown below:

V i ≤ |Vi| ≤ V i (5)

where V i and V i are respectively the lower and upper limits
of the voltage on a line. Individual components such as the
PV and battery systems were modeled through their inverter
behavior as described in the following sections.

1) PV Inverter Model: The PV inverter behavior was
modeled as active and reactive generation source with upper
and lower limits, P

pv
and P pv respectively on active power

and spv , spv on total apparent power injection for a given
timestep.

P pv ≤ |Ppv| ≤ P pv

spv ≤ |spv| ≤ spv
(6)

where spv is the total apparent power of the power injection
as defined below.

s2pv = P 2
pv +Q2

pv

spv =
√
P 2
pv +Q2

pv

(7)

2) Battery Inverter Model: The battery inverter was mod-
eled as either a power injection or power consumption for a
given node at a given timestep. The time coupling variable
indicating the state of charge (SOC) was calculated based
on a charging and discharging efficiency associated with the
inverter.

Ebatt,t1 = Ebatt,t0 − ηchPch,t1 − ηdchPdch,t1

Pst = Pch + Pdch

sst ≤ |sst| ≤ sst
(8)

where ηch, Pch,t1, ηdch, Pdch,t1, sst and sst is the charg-
ing efficiency, power absorbed during charging, discharging
efficiency, power injected into the grid, upper limit and lower



limit of total apparent power exchange with the grid. Pst is the
power injection or absorbed by the battery as defined below:

s2st = P 2
st +Q2

st

sst =
√
P 2
st +Q2

st

(9)

The power flow equations are non-linear and non-convex.
Therefore, when solving a highly dimensional power flow
problem, convex relaxation have been used to ensure high
performance algorithms.

III. OPTIMUM POWER FLOW FORMULATION

The same SOCP convex relaxation used in [19] and [17] is
implemented in a multi-temporal model in order to analyze
the hosting capacity of a distribution grid. This relaxation
entails the relaxation of certain equality constraints and the
substitution of certain quadratic terms for linear terms. The
equality constraints in question, (4), (5) and (6), are relaxed
ultimately relaxing the magnitude of currents within each
branch and using a conic formation on the limitation of
active power exchange with the grid. Two new variables
are introduced to replace quadratic terms, υi = |Vi|2 and
` = |Iij |2 in order to successfully formulate an SOCP problem
as explained in [17].

A. Objective Function

In order to optimize the total system functionality, the
objective function is composed of two parts. The first part is
the minimization of the total losses of the system. The second
part minimizes the curtailment of the PV systems in order
to maximize renewable energy consumption within the grid.
Therefore the objective function is formulated as seen below:

min

n∑

i=1

rij`ij + (P pv
ideal,i − P

pv
i ) (10)

B. SOCP Problem Formulation

The complete SOCP formulation is then found below:

min
n∑

i=1

rij`ij + (P pv
ideal,i − P

pv
i ) (11)

s.t.

(6), (7), (8), (9)

Pij = P load
j +

n∑

k=1

Pjk + rij`+ P pv
j + P st

j

Qij = Qload
j +

n∑

k=1

Qjk + xij`+Qpv
j +Qst

j

υj = υi − 2(rijPij + xijQij) + (r2ij + x2ij)`ij

`ij ≥
P 2
ij +Q2

ij

υi

V 2
i ≤ υ ≤ V

2

i

(12)

TABLE I
FOR A GIVEN TIMESTEP, THE INEXACT INSTANCES PRESENT AND

CALCULATION TIME IN SECONDS

Timesteps coupled Inexact instances Calculation time (s)

12 0 33

12 2 38

48 0 121

48 18 158

96 0 289

96 36 339

IV. ALGORITHMIC PERFORMANCE

The optimization of storage elements and PV curtailment
was analyzed for a time scale of 0.5 to 4 days. An example
urban electric grid in France was studied in order to evaluate
the performance of this algorithm. The network studied is a
30 kV 137 nodes typical urban grid topology. Network data
was acquired through a partnership with ErDF. Twenty PV
systems with equivalent power ratings were placed randomly
throughout the grid topology with an associated battery system
installed at the same node. The time of execution of the
algorithm was recorded for varying time coupling scenarios
as shown below.

This multi-temporal coupling allows the optimization of PV
curtailment and battery storage utilization for up to a four day
period with a satisfactory calculation burden. It also ensures
that the relaxation is exact and applies linear cuts to timesteps
that are not exact in order to guaranty the exactness of the
relaxation.

V. CASE STUDY

An example urban electric grid in France was studied
to demonstrate possible algorithm utilization. The grid is
composed of 137 nodes at 30 kV and serves as a medium
voltage distribution grid feeder. A map of the grid topology
can be found below.

Fig. 1. Case study of typical medium voltage electric grid topology

Consumption load profiles were simulated using an ag-
gregation load simulator as described in [20] for each low
voltage substation and medium voltage consumer. This load



simulator takes into account a mix of residential and com-
mercial customers. Residential consumption is simulated with
statistically accurate representations of surface area, electric
heating and number of individuals that align with the INSEE
building inventory database of France. Industrial load profiles
are simulated by assuming a typical industrial activity mix in
France from a medium voltage substation. The two medium
voltage customers were modeled as office building complexes
with typical business hours operation. A peak of 5 MW during
the winter and 2.9 MW during the summer was simulated for
the medium voltage substation transformer with a maximum
apparent power limit of 10 MW. Solar radiation data from a
site in the south of France was used to calculate expected PV
production as a function of system nominal power.

Four different seasonal scenarios were studied in order to
understand a typical annual operation. Within each season,
three renewable energy solutions were studied: the hosting
capacity of a typical grid topology without storage, the hosting
capacity with decentralized storage elements installed at the
same nodes as the PV systems and the hosting capacity
with centralized storage elements close to the high voltage
transformer. The hosting capacity of a feeder was defined as
the maximum capacity of PV that does not violate grid con-
straints without using curtailment. Twenty sites were chosen
for PV decentralized installations and nominal power of each
system was increased until either current or voltage limits were
reached.

VI. RESULTS

A three day simulation period was chosen in order to
allow for at least one full cycle of charging and discharging of
the storage elements. Three day typical profiles were chosen
for four different seasons in order to understand the annual
performance of the system. Considering only PV installa-
tions without storage elements, the maximum current limit
of the lines was reached during low loading periods and
high peak PV injection in summer. Multiple capacities for 20
decentralized PV systems were tested until curtailment was
necessary to not exceed voltage or apparent power limits of the
network. The maximum installed capacity where curtailment
was unnecessary was achieved with a PV penetration of 10
MW nominal power installed. A a total of 701 kWh of
the 156 MWh produced during a three-day simulation was
necessary to ensure maximum apparent power limits were not
exceeded. During typical daily profiles for fall, winter and
spring, no curtailment was necessary for a 10 MW systems.
In all simulations, the summer period was the most critical
to monitor for grid stability verification, therefore the rest
of the results section will focus on summer production and
consumption profiles. A comparison of the net consumption
of the high voltage transformer and the total power injected
into the high voltage grid from the medium voltage substation
during summer periods can be found in figure 2.

The curtailment necessary and the losses on the lines were
then compared as seen in figure 3.

Fig. 2. Comparison of net consumption of feeder and total PV injection
during a three day period using typical summer profiles

Fig. 3. Comparison of line losses of feeder and total PV curtailment necessary
during a three day period using typical summer profiles

Added storage capacity was then integrated into the grid
in order to quantify the additional hosting capacity possible.
Initially storage elements were placed at the same nodes as all
PV installations to represent a decentralized storage configura-
tion. Therefore 20 systems of 116 kWh energy storage capacity
were modeled through their inverter behavior as described
in equation 8. For 10 MW of PV capacity installed, no
curtailment was needed within all seasons. The improvement
in system performance can be seen in figure 4 as a percentage
increase or decrease for each parameter.

Fig. 4. Percentage increase or decrease due to added storage elemnts at each
PV production node. Calculations for a 7 MW and 10 MW systems during a
three days period using typical summer profiles

The same amount of storage capacity was then used
in a centralized configuration. This centralized storage was
placed very close to the high voltage transformer offering the
same services. The necessary curtailement was also reduced



to zero for the 10 MW system. However, the centralized
battery system also resulted in higher overall line losses. The
percentage change due to the presence of a centralized battery
system is shown in figure 5.

Fig. 5. Percentage increase or decrease due to an added centralized storage
elemnt when comparing 7 MW and 10 MW systems during a three days
period using typical summer profiles

VII. CONCLUSION

The optimization algorithm proposed in this paper success-
fully applied a convex relaxation algorithm with linear cuts to a
multi-temporal application for battery storage analysis. This al-
gorithm was shown to be effective when studying a distribution
system for a 3-4 day time span. The multi-temporal algorithm
allows for the assessment of battery storage functionality while
taking into account the technology limitations such as charg-
ing and discharging efficiency, and maximum injection and
absorption. The algorithm also calculates an optimal charging
and discharging schedule based on the objective function. A
French medium voltage distribution feeder was successfully
analyzed to determine the hosting capacity, decentralized and
centralized battery systems effects on curtailment. This algo-
rithm could be used for comparison studies between different
grid stability control strategies such as real time curtailment,
centralized and decentralized battery installations. The use of
this algorithm for real time management could also be effective
if real time predicted PV production profiles and expected
load profiles are used as inputs. The optimization of charging
and discharging schedules of batteries can effectively increase
hosting capacity of a distribution network by reducing the
necessity to curtail PV systems.
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Résumé

Dans le contexte de la transition énergé-
tique, il existe des inconnues liées à
la fonctionnalité du réseau électrique fu-
tur avec l’augmentation de la consomma-
tion et l’introduction de nouvelles formes
de production. L’adaptation du système
actuel est inévitable, néanmoins, les so-
lutions efficaces sont difficiles à définir.
Les stratégies actuelles de la planifica-
tion du réseau de distribution ne répon-
dent pas précisément aux problématiques
des nouvelles productions décentralisées,
le changement du profil de la consomma-
tion, l’automation du réseau de distribution
avec de nouvelles stratégies de gestion du
réseau ainsi que la déréglementation du
marché de l’électricité. De plus, la visi-
bilité et la contrôlabilité du réseau de dis-
tribution est limité, l’implémentation d’une
gestion active optimale n’est pas à présent
une réalité. L’évaluation du réseau intelli-
gent est critique pour comparer aux solu-
tions traditionnelles.
L’objectif principal de cette thèse est
d’éxplorer les barrières technico-
économiques pour l’intégration mas-
sive des énergies renouvelables sur
le réseau de distribution. Cette thèse
explore plusieurs solutions au travers
d’algorithmes d’optimisation de type
flux de puissance qui utilisent des re-
laxations convexes. Pour le cas du
réseau électrique basse tension, des
systèmes triphasés déséquilibrés sont
considérés. Pour analyser les incertitudes
associées avec la génération et la de-
mande, des algorithmes stochastiques
sont abordés. Ces outils sont utilisés
pour i) l’optimisation de l’emplacement
et le dimensionnement des batteries, ii)
l’optimisation des stratégies de gestion
de la demande, iii) l’évaluation des straté-
gies d’opération de flexibilité du réseau
centralisé et aussi décentralisé et iv)
étudier l’impact de différents scénarios de
pénétration des énergies renouvelables
sur les réseaux existants.

Mots Clés

Système Electrique intelligent, réseau de
distribution, énergies renouvelables, plani-
fication, optimisation

Abstract

In the context of the energy transition,
there are many unknowns related to the
required capabilities of future electric dis-
tribution systems to meet the growing elec-
tric load and new forms of electric produc-
tion. The transformation of current electric
distribution systems is inevitable, however,
the most cost-effective investments are dif-
ficult to evaluate. Current electric distri-
bution grid planning strategies are inade-
quate to take into account the accommo-
dation of massive decentralized produc-
tion, increased electric load with higher
volatility, automation of distribution grids
and unbundling of electricity markets. Due
to a lack of observability and controllability
in the distribution grid, the feasibility of op-
timal power flow management is not cur-
rently a reality. The quantification of smart
distribution grids is critical to evaluate the
added benefit of this solution in compari-
son to infrastructure upgrades.
The primary objective of my PhD is to
explore the techno-economical barriers of
massive renewable energy integration into
the distribution grid. This thesis will ex-
plore different solutions through convex re-
laxations of optimal power flow analysis.
For the low voltage distribution grid case,
three-phase unbalanced power flow analy-
sis is considered. In order to consider real-
istically the uncertainties related to renew-
able generation and demand, stochastic
optimal power flow (OPF) algorithms are
proposed. These tools are used among
others to i) optimize placement and siz-
ing of grid connected storage, ii) optimize
demand response strategies, iii) study dif-
ferent operation strategies for storage de-
vices including centralized and decentral-
ized ones and iv) study the impact of differ-
ent renewable energy integration scenar-
ios into real-world distribution grids.

Keywords

Smart Grid, electric distribution grid, re-
newable energy, planning, optimization


